Print this page
OS-208 DTrace needs to use zone_did to match zone-limited enablings
INTRO-118 enabling USDT probes in zones should be more scalable
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/dtrace/dtrace.c
+++ new/usr/src/uts/common/dtrace/dtrace.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 * Copyright 2019 Joyent, Inc.
25 25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
26 26 */
27 27
28 28 /*
29 29 * DTrace - Dynamic Tracing for Solaris
30 30 *
31 31 * This is the implementation of the Solaris Dynamic Tracing framework
32 32 * (DTrace). The user-visible interface to DTrace is described at length in
33 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace
34 34 * library, the in-kernel DTrace framework, and the DTrace providers are
35 35 * described in the block comments in the <sys/dtrace.h> header file. The
36 36 * internal architecture of DTrace is described in the block comments in the
37 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace
38 38 * implementation very much assume mastery of all of these sources; if one has
39 39 * an unanswered question about the implementation, one should consult them
40 40 * first.
41 41 *
42 42 * The functions here are ordered roughly as follows:
43 43 *
44 44 * - Probe context functions
45 45 * - Probe hashing functions
46 46 * - Non-probe context utility functions
47 47 * - Matching functions
48 48 * - Provider-to-Framework API functions
49 49 * - Probe management functions
50 50 * - DIF object functions
51 51 * - Format functions
52 52 * - Predicate functions
53 53 * - ECB functions
54 54 * - Buffer functions
55 55 * - Enabling functions
56 56 * - DOF functions
57 57 * - Anonymous enabling functions
58 58 * - Consumer state functions
59 59 * - Helper functions
60 60 * - Hook functions
61 61 * - Driver cookbook functions
62 62 *
63 63 * Each group of functions begins with a block comment labelled the "DTrace
64 64 * [Group] Functions", allowing one to find each block by searching forward
65 65 * on capital-f functions.
66 66 */
67 67 #include <sys/errno.h>
68 68 #include <sys/stat.h>
69 69 #include <sys/modctl.h>
70 70 #include <sys/conf.h>
71 71 #include <sys/systm.h>
72 72 #include <sys/ddi.h>
73 73 #include <sys/sunddi.h>
74 74 #include <sys/cpuvar.h>
75 75 #include <sys/kmem.h>
76 76 #include <sys/strsubr.h>
77 77 #include <sys/sysmacros.h>
78 78 #include <sys/dtrace_impl.h>
79 79 #include <sys/atomic.h>
80 80 #include <sys/cmn_err.h>
81 81 #include <sys/mutex_impl.h>
82 82 #include <sys/rwlock_impl.h>
83 83 #include <sys/ctf_api.h>
84 84 #include <sys/panic.h>
85 85 #include <sys/priv_impl.h>
86 86 #include <sys/policy.h>
87 87 #include <sys/cred_impl.h>
88 88 #include <sys/procfs_isa.h>
89 89 #include <sys/taskq.h>
90 90 #include <sys/mkdev.h>
91 91 #include <sys/kdi.h>
92 92 #include <sys/zone.h>
93 93 #include <sys/socket.h>
94 94 #include <netinet/in.h>
95 95 #include "strtolctype.h"
96 96
97 97 /*
98 98 * DTrace Tunable Variables
99 99 *
100 100 * The following variables may be tuned by adding a line to /etc/system that
101 101 * includes both the name of the DTrace module ("dtrace") and the name of the
102 102 * variable. For example:
103 103 *
104 104 * set dtrace:dtrace_destructive_disallow = 1
105 105 *
106 106 * In general, the only variables that one should be tuning this way are those
107 107 * that affect system-wide DTrace behavior, and for which the default behavior
108 108 * is undesirable. Most of these variables are tunable on a per-consumer
109 109 * basis using DTrace options, and need not be tuned on a system-wide basis.
110 110 * When tuning these variables, avoid pathological values; while some attempt
111 111 * is made to verify the integrity of these variables, they are not considered
112 112 * part of the supported interface to DTrace, and they are therefore not
113 113 * checked comprehensively. Further, these variables should not be tuned
114 114 * dynamically via "mdb -kw" or other means; they should only be tuned via
115 115 * /etc/system.
116 116 */
117 117 int dtrace_destructive_disallow = 0;
118 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
119 119 size_t dtrace_difo_maxsize = (256 * 1024);
120 120 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024);
121 121 size_t dtrace_statvar_maxsize = (16 * 1024);
122 122 size_t dtrace_actions_max = (16 * 1024);
123 123 size_t dtrace_retain_max = 1024;
124 124 dtrace_optval_t dtrace_helper_actions_max = 1024;
125 125 dtrace_optval_t dtrace_helper_providers_max = 32;
126 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
127 127 size_t dtrace_strsize_default = 256;
128 128 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */
129 129 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */
130 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */
131 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */
132 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */
133 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */
134 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */
135 135 dtrace_optval_t dtrace_nspec_default = 1;
136 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
137 137 dtrace_optval_t dtrace_stackframes_default = 20;
138 138 dtrace_optval_t dtrace_ustackframes_default = 20;
139 139 dtrace_optval_t dtrace_jstackframes_default = 50;
140 140 dtrace_optval_t dtrace_jstackstrsize_default = 512;
141 141 int dtrace_msgdsize_max = 128;
142 142 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */
143 143 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */
144 144 int dtrace_devdepth_max = 32;
145 145 int dtrace_err_verbose;
146 146 hrtime_t dtrace_deadman_interval = NANOSEC;
147 147 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
148 148 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
149 149 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
150 150
151 151 /*
152 152 * DTrace External Variables
153 153 *
154 154 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
155 155 * available to DTrace consumers via the backtick (`) syntax. One of these,
156 156 * dtrace_zero, is made deliberately so: it is provided as a source of
157 157 * well-known, zero-filled memory. While this variable is not documented,
158 158 * it is used by some translators as an implementation detail.
159 159 */
160 160 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */
161 161
162 162 /*
163 163 * DTrace Internal Variables
164 164 */
165 165 static dev_info_t *dtrace_devi; /* device info */
166 166 static vmem_t *dtrace_arena; /* probe ID arena */
167 167 static vmem_t *dtrace_minor; /* minor number arena */
168 168 static taskq_t *dtrace_taskq; /* task queue */
169 169 static dtrace_probe_t **dtrace_probes; /* array of all probes */
170 170 static int dtrace_nprobes; /* number of probes */
171 171 static dtrace_provider_t *dtrace_provider; /* provider list */
172 172 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */
173 173 static int dtrace_opens; /* number of opens */
174 174 static int dtrace_helpers; /* number of helpers */
175 175 static int dtrace_getf; /* number of unpriv getf()s */
176 176 static void *dtrace_softstate; /* softstate pointer */
177 177 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */
178 178 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */
179 179 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */
180 180 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */
181 181 static int dtrace_toxranges; /* number of toxic ranges */
182 182 static int dtrace_toxranges_max; /* size of toxic range array */
183 183 static dtrace_anon_t dtrace_anon; /* anonymous enabling */
184 184 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */
185 185 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */
186 186 static kthread_t *dtrace_panicked; /* panicking thread */
187 187 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */
188 188 static dtrace_genid_t dtrace_probegen; /* current probe generation */
189 189 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */
190 190 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */
191 191 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */
192 192 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */
193 193 static int dtrace_dynvar_failclean; /* dynvars failed to clean */
194 194
195 195 /*
196 196 * DTrace Locking
197 197 * DTrace is protected by three (relatively coarse-grained) locks:
198 198 *
199 199 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
200 200 * including enabling state, probes, ECBs, consumer state, helper state,
201 201 * etc. Importantly, dtrace_lock is _not_ required when in probe context;
202 202 * probe context is lock-free -- synchronization is handled via the
203 203 * dtrace_sync() cross call mechanism.
204 204 *
205 205 * (2) dtrace_provider_lock is required when manipulating provider state, or
206 206 * when provider state must be held constant.
207 207 *
208 208 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
209 209 * when meta provider state must be held constant.
210 210 *
211 211 * The lock ordering between these three locks is dtrace_meta_lock before
212 212 * dtrace_provider_lock before dtrace_lock. (In particular, there are
213 213 * several places where dtrace_provider_lock is held by the framework as it
214 214 * calls into the providers -- which then call back into the framework,
215 215 * grabbing dtrace_lock.)
216 216 *
217 217 * There are two other locks in the mix: mod_lock and cpu_lock. With respect
218 218 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
219 219 * role as a coarse-grained lock; it is acquired before both of these locks.
220 220 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must
221 221 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
222 222 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
223 223 * acquired _between_ dtrace_provider_lock and dtrace_lock.
224 224 */
225 225 static kmutex_t dtrace_lock; /* probe state lock */
226 226 static kmutex_t dtrace_provider_lock; /* provider state lock */
227 227 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */
228 228
229 229 /*
230 230 * DTrace Provider Variables
231 231 *
232 232 * These are the variables relating to DTrace as a provider (that is, the
233 233 * provider of the BEGIN, END, and ERROR probes).
234 234 */
235 235 static dtrace_pattr_t dtrace_provider_attr = {
236 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
237 237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
238 238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
239 239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
240 240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
241 241 };
242 242
243 243 static void
244 244 dtrace_nullop_provide(void *arg __unused,
245 245 const dtrace_probedesc_t *spec __unused)
246 246 {
247 247 }
248 248
249 249 static void
250 250 dtrace_nullop_module(void *arg __unused, struct modctl *mp __unused)
251 251 {
252 252 }
253 253
254 254 static void
255 255 dtrace_nullop(void *arg __unused, dtrace_id_t id __unused, void *parg __unused)
256 256 {
257 257 }
258 258
259 259 static int
260 260 dtrace_enable_nullop(void *arg __unused, dtrace_id_t id __unused,
261 261 void *parg __unused)
262 262 {
263 263 return (0);
264 264 }
265 265
266 266 static dtrace_pops_t dtrace_provider_ops = {
267 267 .dtps_provide = dtrace_nullop_provide,
268 268 .dtps_provide_module = dtrace_nullop_module,
269 269 .dtps_enable = dtrace_enable_nullop,
270 270 .dtps_disable = dtrace_nullop,
271 271 .dtps_suspend = dtrace_nullop,
272 272 .dtps_resume = dtrace_nullop,
273 273 .dtps_getargdesc = NULL,
274 274 .dtps_getargval = NULL,
275 275 .dtps_mode = NULL,
276 276 .dtps_destroy = dtrace_nullop
277 277 };
278 278
279 279 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */
280 280 static dtrace_id_t dtrace_probeid_end; /* special END probe */
281 281 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */
282 282
283 283 /*
284 284 * DTrace Helper Tracing Variables
285 285 *
286 286 * These variables should be set dynamically to enable helper tracing. The
287 287 * only variables that should be set are dtrace_helptrace_enable (which should
288 288 * be set to a non-zero value to allocate helper tracing buffers on the next
289 289 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
290 290 * non-zero value to deallocate helper tracing buffers on the next close of
291 291 * /dev/dtrace). When (and only when) helper tracing is disabled, the
292 292 * buffer size may also be set via dtrace_helptrace_bufsize.
293 293 */
294 294 int dtrace_helptrace_enable = 0;
295 295 int dtrace_helptrace_disable = 0;
296 296 int dtrace_helptrace_bufsize = 16 * 1024 * 1024;
297 297 uint32_t dtrace_helptrace_nlocals;
298 298 static dtrace_helptrace_t *dtrace_helptrace_buffer;
299 299 static uint32_t dtrace_helptrace_next = 0;
300 300 static int dtrace_helptrace_wrapped = 0;
301 301
302 302 /*
303 303 * DTrace Error Hashing
304 304 *
305 305 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
306 306 * table. This is very useful for checking coverage of tests that are
307 307 * expected to induce DIF or DOF processing errors, and may be useful for
308 308 * debugging problems in the DIF code generator or in DOF generation . The
309 309 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
310 310 */
311 311 #ifdef DEBUG
312 312 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
313 313 static const char *dtrace_errlast;
314 314 static kthread_t *dtrace_errthread;
315 315 static kmutex_t dtrace_errlock;
316 316 #endif
317 317
318 318 /*
319 319 * DTrace Macros and Constants
320 320 *
321 321 * These are various macros that are useful in various spots in the
322 322 * implementation, along with a few random constants that have no meaning
323 323 * outside of the implementation. There is no real structure to this cpp
324 324 * mishmash -- but is there ever?
325 325 */
326 326 #define DTRACE_HASHSTR(hash, probe) \
327 327 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
328 328
329 329 #define DTRACE_HASHNEXT(hash, probe) \
330 330 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
331 331
332 332 #define DTRACE_HASHPREV(hash, probe) \
333 333 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
334 334
335 335 #define DTRACE_HASHEQ(hash, lhs, rhs) \
336 336 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
337 337 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
338 338
339 339 #define DTRACE_AGGHASHSIZE_SLEW 17
340 340
341 341 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3)
342 342
343 343 /*
344 344 * The key for a thread-local variable consists of the lower 61 bits of the
345 345 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
346 346 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
347 347 * equal to a variable identifier. This is necessary (but not sufficient) to
348 348 * assure that global associative arrays never collide with thread-local
349 349 * variables. To guarantee that they cannot collide, we must also define the
350 350 * order for keying dynamic variables. That order is:
351 351 *
352 352 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
353 353 *
354 354 * Because the variable-key and the tls-key are in orthogonal spaces, there is
355 355 * no way for a global variable key signature to match a thread-local key
356 356 * signature.
357 357 */
358 358 #define DTRACE_TLS_THRKEY(where) { \
359 359 uint_t intr = 0; \
360 360 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
361 361 for (; actv; actv >>= 1) \
362 362 intr++; \
363 363 ASSERT(intr < (1 << 3)); \
364 364 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
365 365 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
366 366 }
367 367
368 368 #define DT_BSWAP_8(x) ((x) & 0xff)
369 369 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
370 370 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
371 371 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
372 372
373 373 #define DT_MASK_LO 0x00000000FFFFFFFFULL
374 374
375 375 #define DTRACE_STORE(type, tomax, offset, what) \
376 376 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
377 377
378 378 #ifndef __x86
379 379 #define DTRACE_ALIGNCHECK(addr, size, flags) \
380 380 if (addr & (size - 1)) { \
381 381 *flags |= CPU_DTRACE_BADALIGN; \
382 382 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
383 383 return (0); \
384 384 }
385 385 #else
386 386 #define DTRACE_ALIGNCHECK(addr, size, flags)
387 387 #endif
388 388
389 389 /*
390 390 * Test whether a range of memory starting at testaddr of size testsz falls
391 391 * within the range of memory described by addr, sz. We take care to avoid
392 392 * problems with overflow and underflow of the unsigned quantities, and
393 393 * disallow all negative sizes. Ranges of size 0 are allowed.
394 394 */
395 395 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
396 396 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
397 397 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
398 398 (testaddr) + (testsz) >= (testaddr))
399 399
400 400 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \
401 401 do { \
402 402 if ((remp) != NULL) { \
403 403 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \
404 404 } \
405 405 _NOTE(CONSTCOND) } while (0)
406 406
407 407
408 408 /*
409 409 * Test whether alloc_sz bytes will fit in the scratch region. We isolate
410 410 * alloc_sz on the righthand side of the comparison in order to avoid overflow
411 411 * or underflow in the comparison with it. This is simpler than the INRANGE
412 412 * check above, because we know that the dtms_scratch_ptr is valid in the
413 413 * range. Allocations of size zero are allowed.
414 414 */
415 415 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
416 416 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
417 417 (mstate)->dtms_scratch_ptr >= (alloc_sz))
418 418
419 419 #define DTRACE_LOADFUNC(bits) \
420 420 /*CSTYLED*/ \
421 421 uint##bits##_t \
422 422 dtrace_load##bits(uintptr_t addr) \
423 423 { \
424 424 size_t size = bits / NBBY; \
425 425 /*CSTYLED*/ \
426 426 uint##bits##_t rval; \
427 427 int i; \
428 428 volatile uint16_t *flags = (volatile uint16_t *) \
429 429 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \
430 430 \
431 431 DTRACE_ALIGNCHECK(addr, size, flags); \
432 432 \
433 433 for (i = 0; i < dtrace_toxranges; i++) { \
434 434 if (addr >= dtrace_toxrange[i].dtt_limit) \
435 435 continue; \
436 436 \
437 437 if (addr + size <= dtrace_toxrange[i].dtt_base) \
438 438 continue; \
439 439 \
440 440 /* \
441 441 * This address falls within a toxic region; return 0. \
442 442 */ \
443 443 *flags |= CPU_DTRACE_BADADDR; \
444 444 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
445 445 return (0); \
446 446 } \
447 447 \
448 448 *flags |= CPU_DTRACE_NOFAULT; \
449 449 /*CSTYLED*/ \
450 450 rval = *((volatile uint##bits##_t *)addr); \
451 451 *flags &= ~CPU_DTRACE_NOFAULT; \
452 452 \
453 453 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \
454 454 }
455 455
456 456 #ifdef _LP64
457 457 #define dtrace_loadptr dtrace_load64
458 458 #else
459 459 #define dtrace_loadptr dtrace_load32
460 460 #endif
461 461
462 462 #define DTRACE_DYNHASH_FREE 0
463 463 #define DTRACE_DYNHASH_SINK 1
464 464 #define DTRACE_DYNHASH_VALID 2
465 465
466 466 #define DTRACE_MATCH_FAIL -1
467 467 #define DTRACE_MATCH_NEXT 0
468 468 #define DTRACE_MATCH_DONE 1
469 469 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0')
470 470 #define DTRACE_STATE_ALIGN 64
471 471
472 472 #define DTRACE_FLAGS2FLT(flags) \
473 473 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \
474 474 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \
475 475 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \
476 476 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \
477 477 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \
478 478 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \
479 479 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \
480 480 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \
481 481 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \
482 482 DTRACEFLT_UNKNOWN)
483 483
484 484 #define DTRACEACT_ISSTRING(act) \
485 485 ((act)->dta_kind == DTRACEACT_DIFEXPR && \
486 486 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
487 487
488 488 static size_t dtrace_strlen(const char *, size_t);
489 489 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
490 490 static void dtrace_enabling_provide(dtrace_provider_t *);
491 491 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
492 492 static void dtrace_enabling_matchall(void);
493 493 static void dtrace_enabling_reap(void);
494 494 static dtrace_state_t *dtrace_anon_grab(void);
495 495 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
496 496 dtrace_state_t *, uint64_t, uint64_t);
497 497 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
498 498 static void dtrace_buffer_drop(dtrace_buffer_t *);
499 499 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
500 500 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
501 501 dtrace_state_t *, dtrace_mstate_t *);
502 502 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
503 503 dtrace_optval_t);
504 504 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
505 505 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
506 506 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *);
507 507 static void dtrace_getf_barrier(void);
508 508 static int dtrace_canload_remains(uint64_t, size_t, size_t *,
509 509 dtrace_mstate_t *, dtrace_vstate_t *);
510 510 static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
511 511 dtrace_mstate_t *, dtrace_vstate_t *);
512 512
513 513 /*
514 514 * DTrace Probe Context Functions
515 515 *
516 516 * These functions are called from probe context. Because probe context is
517 517 * any context in which C may be called, arbitrarily locks may be held,
518 518 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
519 519 * As a result, functions called from probe context may only call other DTrace
520 520 * support functions -- they may not interact at all with the system at large.
521 521 * (Note that the ASSERT macro is made probe-context safe by redefining it in
522 522 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
523 523 * loads are to be performed from probe context, they _must_ be in terms of
524 524 * the safe dtrace_load*() variants.
525 525 *
526 526 * Some functions in this block are not actually called from probe context;
527 527 * for these functions, there will be a comment above the function reading
528 528 * "Note: not called from probe context."
529 529 */
530 530 void
531 531 dtrace_panic(const char *format, ...)
532 532 {
533 533 va_list alist;
534 534
535 535 va_start(alist, format);
536 536 dtrace_vpanic(format, alist);
537 537 va_end(alist);
538 538 }
539 539
540 540 int
541 541 dtrace_assfail(const char *a, const char *f, int l)
542 542 {
543 543 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
544 544
545 545 /*
546 546 * We just need something here that even the most clever compiler
547 547 * cannot optimize away.
548 548 */
549 549 return (a[(uintptr_t)f]);
550 550 }
551 551
552 552 /*
553 553 * Atomically increment a specified error counter from probe context.
554 554 */
555 555 static void
556 556 dtrace_error(uint32_t *counter)
557 557 {
558 558 /*
559 559 * Most counters stored to in probe context are per-CPU counters.
560 560 * However, there are some error conditions that are sufficiently
561 561 * arcane that they don't merit per-CPU storage. If these counters
562 562 * are incremented concurrently on different CPUs, scalability will be
563 563 * adversely affected -- but we don't expect them to be white-hot in a
564 564 * correctly constructed enabling...
565 565 */
566 566 uint32_t oval, nval;
567 567
568 568 do {
569 569 oval = *counter;
570 570
571 571 if ((nval = oval + 1) == 0) {
572 572 /*
573 573 * If the counter would wrap, set it to 1 -- assuring
574 574 * that the counter is never zero when we have seen
575 575 * errors. (The counter must be 32-bits because we
576 576 * aren't guaranteed a 64-bit compare&swap operation.)
577 577 * To save this code both the infamy of being fingered
578 578 * by a priggish news story and the indignity of being
579 579 * the target of a neo-puritan witch trial, we're
580 580 * carefully avoiding any colorful description of the
581 581 * likelihood of this condition -- but suffice it to
582 582 * say that it is only slightly more likely than the
583 583 * overflow of predicate cache IDs, as discussed in
584 584 * dtrace_predicate_create().
585 585 */
586 586 nval = 1;
587 587 }
588 588 } while (dtrace_cas32(counter, oval, nval) != oval);
589 589 }
590 590
591 591 /*
592 592 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
593 593 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
594 594 */
595 595 /* BEGIN CSTYLED */
596 596 DTRACE_LOADFUNC(8)
597 597 DTRACE_LOADFUNC(16)
598 598 DTRACE_LOADFUNC(32)
599 599 DTRACE_LOADFUNC(64)
600 600 /* END CSTYLED */
601 601
602 602 static int
603 603 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
604 604 {
605 605 if (dest < mstate->dtms_scratch_base)
606 606 return (0);
607 607
608 608 if (dest + size < dest)
609 609 return (0);
610 610
611 611 if (dest + size > mstate->dtms_scratch_ptr)
612 612 return (0);
613 613
614 614 return (1);
615 615 }
616 616
617 617 static int
618 618 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain,
619 619 dtrace_statvar_t **svars, int nsvars)
620 620 {
621 621 int i;
622 622 size_t maxglobalsize, maxlocalsize;
623 623
624 624 if (nsvars == 0)
625 625 return (0);
626 626
627 627 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t);
628 628 maxlocalsize = maxglobalsize * NCPU;
629 629
630 630 for (i = 0; i < nsvars; i++) {
631 631 dtrace_statvar_t *svar = svars[i];
632 632 uint8_t scope;
633 633 size_t size;
634 634
635 635 if (svar == NULL || (size = svar->dtsv_size) == 0)
636 636 continue;
637 637
638 638 scope = svar->dtsv_var.dtdv_scope;
639 639
640 640 /*
641 641 * We verify that our size is valid in the spirit of providing
642 642 * defense in depth: we want to prevent attackers from using
643 643 * DTrace to escalate an orthogonal kernel heap corruption bug
644 644 * into the ability to store to arbitrary locations in memory.
645 645 */
646 646 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) ||
647 647 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize));
648 648
649 649 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data,
650 650 svar->dtsv_size)) {
651 651 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data,
652 652 svar->dtsv_size);
653 653 return (1);
654 654 }
655 655 }
656 656
657 657 return (0);
658 658 }
659 659
660 660 /*
661 661 * Check to see if the address is within a memory region to which a store may
662 662 * be issued. This includes the DTrace scratch areas, and any DTrace variable
663 663 * region. The caller of dtrace_canstore() is responsible for performing any
664 664 * alignment checks that are needed before stores are actually executed.
665 665 */
666 666 static int
667 667 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
668 668 dtrace_vstate_t *vstate)
669 669 {
670 670 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate));
671 671 }
672 672
673 673 /*
674 674 * Implementation of dtrace_canstore which communicates the upper bound of the
675 675 * allowed memory region.
676 676 */
677 677 static int
678 678 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain,
679 679 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
680 680 {
681 681 /*
682 682 * First, check to see if the address is in scratch space...
683 683 */
684 684 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
685 685 mstate->dtms_scratch_size)) {
686 686 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base,
687 687 mstate->dtms_scratch_size);
688 688 return (1);
689 689 }
690 690
691 691 /*
692 692 * Now check to see if it's a dynamic variable. This check will pick
693 693 * up both thread-local variables and any global dynamically-allocated
694 694 * variables.
695 695 */
696 696 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
697 697 vstate->dtvs_dynvars.dtds_size)) {
698 698 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
699 699 uintptr_t base = (uintptr_t)dstate->dtds_base +
700 700 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
701 701 uintptr_t chunkoffs;
702 702 dtrace_dynvar_t *dvar;
703 703
704 704 /*
705 705 * Before we assume that we can store here, we need to make
706 706 * sure that it isn't in our metadata -- storing to our
707 707 * dynamic variable metadata would corrupt our state. For
708 708 * the range to not include any dynamic variable metadata,
709 709 * it must:
710 710 *
711 711 * (1) Start above the hash table that is at the base of
712 712 * the dynamic variable space
713 713 *
714 714 * (2) Have a starting chunk offset that is beyond the
715 715 * dtrace_dynvar_t that is at the base of every chunk
716 716 *
717 717 * (3) Not span a chunk boundary
718 718 *
719 719 * (4) Not be in the tuple space of a dynamic variable
720 720 *
721 721 */
722 722 if (addr < base)
723 723 return (0);
724 724
725 725 chunkoffs = (addr - base) % dstate->dtds_chunksize;
726 726
727 727 if (chunkoffs < sizeof (dtrace_dynvar_t))
728 728 return (0);
729 729
730 730 if (chunkoffs + sz > dstate->dtds_chunksize)
731 731 return (0);
732 732
733 733 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs);
734 734
735 735 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE)
736 736 return (0);
737 737
738 738 if (chunkoffs < sizeof (dtrace_dynvar_t) +
739 739 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t)))
740 740 return (0);
741 741
742 742 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize);
743 743 return (1);
744 744 }
745 745
746 746 /*
747 747 * Finally, check the static local and global variables. These checks
748 748 * take the longest, so we perform them last.
749 749 */
750 750 if (dtrace_canstore_statvar(addr, sz, remain,
751 751 vstate->dtvs_locals, vstate->dtvs_nlocals))
752 752 return (1);
753 753
754 754 if (dtrace_canstore_statvar(addr, sz, remain,
755 755 vstate->dtvs_globals, vstate->dtvs_nglobals))
756 756 return (1);
757 757
758 758 return (0);
759 759 }
760 760
761 761
762 762 /*
763 763 * Convenience routine to check to see if the address is within a memory
764 764 * region in which a load may be issued given the user's privilege level;
765 765 * if not, it sets the appropriate error flags and loads 'addr' into the
766 766 * illegal value slot.
767 767 *
768 768 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
769 769 * appropriate memory access protection.
770 770 */
771 771 static int
772 772 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
773 773 dtrace_vstate_t *vstate)
774 774 {
775 775 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate));
776 776 }
777 777
778 778 /*
779 779 * Implementation of dtrace_canload which communicates the upper bound of the
780 780 * allowed memory region.
781 781 */
782 782 static int
783 783 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain,
784 784 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
785 785 {
786 786 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
787 787 file_t *fp;
788 788
789 789 /*
790 790 * If we hold the privilege to read from kernel memory, then
791 791 * everything is readable.
792 792 */
793 793 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
794 794 DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
795 795 return (1);
796 796 }
797 797
798 798 /*
799 799 * You can obviously read that which you can store.
800 800 */
801 801 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate))
802 802 return (1);
803 803
804 804 /*
805 805 * We're allowed to read from our own string table.
806 806 */
807 807 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
808 808 mstate->dtms_difo->dtdo_strlen)) {
809 809 DTRACE_RANGE_REMAIN(remain, addr,
810 810 mstate->dtms_difo->dtdo_strtab,
811 811 mstate->dtms_difo->dtdo_strlen);
812 812 return (1);
813 813 }
814 814
815 815 if (vstate->dtvs_state != NULL &&
816 816 dtrace_priv_proc(vstate->dtvs_state, mstate)) {
817 817 proc_t *p;
818 818
819 819 /*
820 820 * When we have privileges to the current process, there are
821 821 * several context-related kernel structures that are safe to
822 822 * read, even absent the privilege to read from kernel memory.
823 823 * These reads are safe because these structures contain only
824 824 * state that (1) we're permitted to read, (2) is harmless or
825 825 * (3) contains pointers to additional kernel state that we're
826 826 * not permitted to read (and as such, do not present an
827 827 * opportunity for privilege escalation). Finally (and
828 828 * critically), because of the nature of their relation with
829 829 * the current thread context, the memory associated with these
830 830 * structures cannot change over the duration of probe context,
831 831 * and it is therefore impossible for this memory to be
832 832 * deallocated and reallocated as something else while it's
833 833 * being operated upon.
834 834 */
835 835 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) {
836 836 DTRACE_RANGE_REMAIN(remain, addr, curthread,
837 837 sizeof (kthread_t));
838 838 return (1);
839 839 }
840 840
841 841 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
842 842 sz, curthread->t_procp, sizeof (proc_t))) {
843 843 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp,
844 844 sizeof (proc_t));
845 845 return (1);
846 846 }
847 847
848 848 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
849 849 curthread->t_cred, sizeof (cred_t))) {
850 850 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred,
851 851 sizeof (cred_t));
852 852 return (1);
853 853 }
854 854
855 855 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
856 856 &(p->p_pidp->pid_id), sizeof (pid_t))) {
857 857 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id),
858 858 sizeof (pid_t));
859 859 return (1);
860 860 }
861 861
862 862 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
863 863 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
864 864 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu,
865 865 offsetof(cpu_t, cpu_pause_thread));
866 866 return (1);
867 867 }
868 868 }
869 869
870 870 if ((fp = mstate->dtms_getf) != NULL) {
871 871 uintptr_t psz = sizeof (void *);
872 872 vnode_t *vp;
873 873 vnodeops_t *op;
874 874
875 875 /*
876 876 * When getf() returns a file_t, the enabling is implicitly
877 877 * granted the (transient) right to read the returned file_t
878 878 * as well as the v_path and v_op->vnop_name of the underlying
879 879 * vnode. These accesses are allowed after a successful
880 880 * getf() because the members that they refer to cannot change
881 881 * once set -- and the barrier logic in the kernel's closef()
882 882 * path assures that the file_t and its referenced vode_t
883 883 * cannot themselves be stale (that is, it impossible for
884 884 * either dtms_getf itself or its f_vnode member to reference
885 885 * freed memory).
886 886 */
887 887 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) {
888 888 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t));
889 889 return (1);
890 890 }
891 891
892 892 if ((vp = fp->f_vnode) != NULL) {
893 893 size_t slen;
894 894
895 895 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) {
896 896 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path,
897 897 psz);
898 898 return (1);
899 899 }
900 900
901 901 slen = strlen(vp->v_path) + 1;
902 902 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) {
903 903 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path,
904 904 slen);
905 905 return (1);
906 906 }
907 907
908 908 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) {
909 909 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op,
910 910 psz);
911 911 return (1);
912 912 }
913 913
914 914 if ((op = vp->v_op) != NULL &&
915 915 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
916 916 DTRACE_RANGE_REMAIN(remain, addr,
917 917 &op->vnop_name, psz);
918 918 return (1);
919 919 }
920 920
921 921 if (op != NULL && op->vnop_name != NULL &&
922 922 DTRACE_INRANGE(addr, sz, op->vnop_name,
923 923 (slen = strlen(op->vnop_name) + 1))) {
924 924 DTRACE_RANGE_REMAIN(remain, addr,
925 925 op->vnop_name, slen);
926 926 return (1);
927 927 }
928 928 }
929 929 }
930 930
931 931 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
932 932 *illval = addr;
933 933 return (0);
934 934 }
935 935
936 936 /*
937 937 * Convenience routine to check to see if a given string is within a memory
938 938 * region in which a load may be issued given the user's privilege level;
939 939 * this exists so that we don't need to issue unnecessary dtrace_strlen()
940 940 * calls in the event that the user has all privileges.
941 941 */
942 942 static int
943 943 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain,
944 944 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
945 945 {
946 946 size_t rsize;
947 947
948 948 /*
949 949 * If we hold the privilege to read from kernel memory, then
950 950 * everything is readable.
951 951 */
952 952 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
953 953 DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
954 954 return (1);
955 955 }
956 956
957 957 /*
958 958 * Even if the caller is uninterested in querying the remaining valid
959 959 * range, it is required to ensure that the access is allowed.
960 960 */
961 961 if (remain == NULL) {
962 962 remain = &rsize;
963 963 }
964 964 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) {
965 965 size_t strsz;
966 966 /*
967 967 * Perform the strlen after determining the length of the
968 968 * memory region which is accessible. This prevents timing
969 969 * information from being used to find NULs in memory which is
970 970 * not accessible to the caller.
971 971 */
972 972 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr,
973 973 MIN(sz, *remain));
974 974 if (strsz <= *remain) {
975 975 return (1);
976 976 }
977 977 }
978 978
979 979 return (0);
980 980 }
981 981
982 982 /*
983 983 * Convenience routine to check to see if a given variable is within a memory
984 984 * region in which a load may be issued given the user's privilege level.
985 985 */
986 986 static int
987 987 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain,
988 988 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
989 989 {
990 990 size_t sz;
991 991 ASSERT(type->dtdt_flags & DIF_TF_BYREF);
992 992
993 993 /*
994 994 * Calculate the max size before performing any checks since even
995 995 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
996 996 * return the max length via 'remain'.
997 997 */
998 998 if (type->dtdt_kind == DIF_TYPE_STRING) {
999 999 dtrace_state_t *state = vstate->dtvs_state;
1000 1000
1001 1001 if (state != NULL) {
1002 1002 sz = state->dts_options[DTRACEOPT_STRSIZE];
1003 1003 } else {
1004 1004 /*
1005 1005 * In helper context, we have a NULL state; fall back
1006 1006 * to using the system-wide default for the string size
1007 1007 * in this case.
1008 1008 */
1009 1009 sz = dtrace_strsize_default;
1010 1010 }
1011 1011 } else {
1012 1012 sz = type->dtdt_size;
1013 1013 }
1014 1014
1015 1015 /*
1016 1016 * If we hold the privilege to read from kernel memory, then
1017 1017 * everything is readable.
1018 1018 */
1019 1019 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1020 1020 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz);
1021 1021 return (1);
1022 1022 }
1023 1023
1024 1024 if (type->dtdt_kind == DIF_TYPE_STRING) {
1025 1025 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate,
1026 1026 vstate));
1027 1027 }
1028 1028 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate,
1029 1029 vstate));
1030 1030 }
1031 1031
1032 1032 /*
1033 1033 * Convert a string to a signed integer using safe loads.
1034 1034 *
1035 1035 * NOTE: This function uses various macros from strtolctype.h to manipulate
1036 1036 * digit values, etc -- these have all been checked to ensure they make
1037 1037 * no additional function calls.
1038 1038 */
1039 1039 static int64_t
1040 1040 dtrace_strtoll(char *input, int base, size_t limit)
1041 1041 {
1042 1042 uintptr_t pos = (uintptr_t)input;
1043 1043 int64_t val = 0;
1044 1044 int x;
1045 1045 boolean_t neg = B_FALSE;
1046 1046 char c, cc, ccc;
1047 1047 uintptr_t end = pos + limit;
1048 1048
1049 1049 /*
1050 1050 * Consume any whitespace preceding digits.
1051 1051 */
1052 1052 while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1053 1053 pos++;
1054 1054
1055 1055 /*
1056 1056 * Handle an explicit sign if one is present.
1057 1057 */
1058 1058 if (c == '-' || c == '+') {
1059 1059 if (c == '-')
1060 1060 neg = B_TRUE;
1061 1061 c = dtrace_load8(++pos);
1062 1062 }
1063 1063
1064 1064 /*
1065 1065 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1066 1066 * if present.
1067 1067 */
1068 1068 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1069 1069 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1070 1070 pos += 2;
1071 1071 c = ccc;
1072 1072 }
1073 1073
1074 1074 /*
1075 1075 * Read in contiguous digits until the first non-digit character.
1076 1076 */
1077 1077 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1078 1078 c = dtrace_load8(++pos))
1079 1079 val = val * base + x;
1080 1080
1081 1081 return (neg ? -val : val);
1082 1082 }
1083 1083
1084 1084 /*
1085 1085 * Compare two strings using safe loads.
1086 1086 */
1087 1087 static int
1088 1088 dtrace_strncmp(char *s1, char *s2, size_t limit)
1089 1089 {
1090 1090 uint8_t c1, c2;
1091 1091 volatile uint16_t *flags;
1092 1092
1093 1093 if (s1 == s2 || limit == 0)
1094 1094 return (0);
1095 1095
1096 1096 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1097 1097
1098 1098 do {
1099 1099 if (s1 == NULL) {
1100 1100 c1 = '\0';
1101 1101 } else {
1102 1102 c1 = dtrace_load8((uintptr_t)s1++);
1103 1103 }
1104 1104
1105 1105 if (s2 == NULL) {
1106 1106 c2 = '\0';
1107 1107 } else {
1108 1108 c2 = dtrace_load8((uintptr_t)s2++);
1109 1109 }
1110 1110
1111 1111 if (c1 != c2)
1112 1112 return (c1 - c2);
1113 1113 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1114 1114
1115 1115 return (0);
1116 1116 }
1117 1117
1118 1118 /*
1119 1119 * Compute strlen(s) for a string using safe memory accesses. The additional
1120 1120 * len parameter is used to specify a maximum length to ensure completion.
1121 1121 */
1122 1122 static size_t
1123 1123 dtrace_strlen(const char *s, size_t lim)
1124 1124 {
1125 1125 uint_t len;
1126 1126
1127 1127 for (len = 0; len != lim; len++) {
1128 1128 if (dtrace_load8((uintptr_t)s++) == '\0')
1129 1129 break;
1130 1130 }
1131 1131
1132 1132 return (len);
1133 1133 }
1134 1134
1135 1135 /*
1136 1136 * Check if an address falls within a toxic region.
1137 1137 */
1138 1138 static int
1139 1139 dtrace_istoxic(uintptr_t kaddr, size_t size)
1140 1140 {
1141 1141 uintptr_t taddr, tsize;
1142 1142 int i;
1143 1143
1144 1144 for (i = 0; i < dtrace_toxranges; i++) {
1145 1145 taddr = dtrace_toxrange[i].dtt_base;
1146 1146 tsize = dtrace_toxrange[i].dtt_limit - taddr;
1147 1147
1148 1148 if (kaddr - taddr < tsize) {
1149 1149 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1150 1150 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
1151 1151 return (1);
1152 1152 }
1153 1153
1154 1154 if (taddr - kaddr < size) {
1155 1155 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1156 1156 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
1157 1157 return (1);
1158 1158 }
1159 1159 }
1160 1160
1161 1161 return (0);
1162 1162 }
1163 1163
1164 1164 /*
1165 1165 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe
1166 1166 * memory specified by the DIF program. The dst is assumed to be safe memory
1167 1167 * that we can store to directly because it is managed by DTrace. As with
1168 1168 * standard bcopy, overlapping copies are handled properly.
1169 1169 */
1170 1170 static void
1171 1171 dtrace_bcopy(const void *src, void *dst, size_t len)
1172 1172 {
1173 1173 if (len != 0) {
1174 1174 uint8_t *s1 = dst;
1175 1175 const uint8_t *s2 = src;
1176 1176
1177 1177 if (s1 <= s2) {
1178 1178 do {
1179 1179 *s1++ = dtrace_load8((uintptr_t)s2++);
1180 1180 } while (--len != 0);
1181 1181 } else {
1182 1182 s2 += len;
1183 1183 s1 += len;
1184 1184
1185 1185 do {
1186 1186 *--s1 = dtrace_load8((uintptr_t)--s2);
1187 1187 } while (--len != 0);
1188 1188 }
1189 1189 }
1190 1190 }
1191 1191
1192 1192 /*
1193 1193 * Copy src to dst using safe memory accesses, up to either the specified
1194 1194 * length, or the point that a nul byte is encountered. The src is assumed to
1195 1195 * be unsafe memory specified by the DIF program. The dst is assumed to be
1196 1196 * safe memory that we can store to directly because it is managed by DTrace.
1197 1197 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1198 1198 */
1199 1199 static void
1200 1200 dtrace_strcpy(const void *src, void *dst, size_t len)
1201 1201 {
1202 1202 if (len != 0) {
1203 1203 uint8_t *s1 = dst, c;
1204 1204 const uint8_t *s2 = src;
1205 1205
1206 1206 do {
1207 1207 *s1++ = c = dtrace_load8((uintptr_t)s2++);
1208 1208 } while (--len != 0 && c != '\0');
1209 1209 }
1210 1210 }
1211 1211
1212 1212 /*
1213 1213 * Copy src to dst, deriving the size and type from the specified (BYREF)
1214 1214 * variable type. The src is assumed to be unsafe memory specified by the DIF
1215 1215 * program. The dst is assumed to be DTrace variable memory that is of the
1216 1216 * specified type; we assume that we can store to directly.
1217 1217 */
1218 1218 static void
1219 1219 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit)
1220 1220 {
1221 1221 ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1222 1222
1223 1223 if (type->dtdt_kind == DIF_TYPE_STRING) {
1224 1224 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit));
1225 1225 } else {
1226 1226 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit));
1227 1227 }
1228 1228 }
1229 1229
1230 1230 /*
1231 1231 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be
1232 1232 * unsafe memory specified by the DIF program. The s2 data is assumed to be
1233 1233 * safe memory that we can access directly because it is managed by DTrace.
1234 1234 */
1235 1235 static int
1236 1236 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1237 1237 {
1238 1238 volatile uint16_t *flags;
1239 1239
1240 1240 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1241 1241
1242 1242 if (s1 == s2)
1243 1243 return (0);
1244 1244
1245 1245 if (s1 == NULL || s2 == NULL)
1246 1246 return (1);
1247 1247
1248 1248 if (s1 != s2 && len != 0) {
1249 1249 const uint8_t *ps1 = s1;
1250 1250 const uint8_t *ps2 = s2;
1251 1251
1252 1252 do {
1253 1253 if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1254 1254 return (1);
1255 1255 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1256 1256 }
1257 1257 return (0);
1258 1258 }
1259 1259
1260 1260 /*
1261 1261 * Zero the specified region using a simple byte-by-byte loop. Note that this
1262 1262 * is for safe DTrace-managed memory only.
1263 1263 */
1264 1264 static void
1265 1265 dtrace_bzero(void *dst, size_t len)
1266 1266 {
1267 1267 uchar_t *cp;
1268 1268
1269 1269 for (cp = dst; len != 0; len--)
1270 1270 *cp++ = 0;
1271 1271 }
1272 1272
1273 1273 static void
1274 1274 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1275 1275 {
1276 1276 uint64_t result[2];
1277 1277
1278 1278 result[0] = addend1[0] + addend2[0];
1279 1279 result[1] = addend1[1] + addend2[1] +
1280 1280 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1281 1281
1282 1282 sum[0] = result[0];
1283 1283 sum[1] = result[1];
1284 1284 }
1285 1285
1286 1286 /*
1287 1287 * Shift the 128-bit value in a by b. If b is positive, shift left.
1288 1288 * If b is negative, shift right.
1289 1289 */
1290 1290 static void
1291 1291 dtrace_shift_128(uint64_t *a, int b)
1292 1292 {
1293 1293 uint64_t mask;
1294 1294
1295 1295 if (b == 0)
1296 1296 return;
1297 1297
1298 1298 if (b < 0) {
1299 1299 b = -b;
1300 1300 if (b >= 64) {
1301 1301 a[0] = a[1] >> (b - 64);
1302 1302 a[1] = 0;
1303 1303 } else {
1304 1304 a[0] >>= b;
1305 1305 mask = 1LL << (64 - b);
1306 1306 mask -= 1;
1307 1307 a[0] |= ((a[1] & mask) << (64 - b));
1308 1308 a[1] >>= b;
1309 1309 }
1310 1310 } else {
1311 1311 if (b >= 64) {
1312 1312 a[1] = a[0] << (b - 64);
1313 1313 a[0] = 0;
1314 1314 } else {
1315 1315 a[1] <<= b;
1316 1316 mask = a[0] >> (64 - b);
1317 1317 a[1] |= mask;
1318 1318 a[0] <<= b;
1319 1319 }
1320 1320 }
1321 1321 }
1322 1322
1323 1323 /*
1324 1324 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1325 1325 * use native multiplication on those, and then re-combine into the
1326 1326 * resulting 128-bit value.
1327 1327 *
1328 1328 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1329 1329 * hi1 * hi2 << 64 +
1330 1330 * hi1 * lo2 << 32 +
1331 1331 * hi2 * lo1 << 32 +
1332 1332 * lo1 * lo2
1333 1333 */
1334 1334 static void
1335 1335 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1336 1336 {
1337 1337 uint64_t hi1, hi2, lo1, lo2;
1338 1338 uint64_t tmp[2];
1339 1339
1340 1340 hi1 = factor1 >> 32;
1341 1341 hi2 = factor2 >> 32;
1342 1342
1343 1343 lo1 = factor1 & DT_MASK_LO;
1344 1344 lo2 = factor2 & DT_MASK_LO;
1345 1345
1346 1346 product[0] = lo1 * lo2;
1347 1347 product[1] = hi1 * hi2;
1348 1348
1349 1349 tmp[0] = hi1 * lo2;
1350 1350 tmp[1] = 0;
1351 1351 dtrace_shift_128(tmp, 32);
1352 1352 dtrace_add_128(product, tmp, product);
1353 1353
1354 1354 tmp[0] = hi2 * lo1;
1355 1355 tmp[1] = 0;
1356 1356 dtrace_shift_128(tmp, 32);
1357 1357 dtrace_add_128(product, tmp, product);
1358 1358 }
1359 1359
1360 1360 /*
1361 1361 * This privilege check should be used by actions and subroutines to
1362 1362 * verify that the user credentials of the process that enabled the
1363 1363 * invoking ECB match the target credentials
1364 1364 */
1365 1365 static int
1366 1366 dtrace_priv_proc_common_user(dtrace_state_t *state)
1367 1367 {
1368 1368 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1369 1369
1370 1370 /*
1371 1371 * We should always have a non-NULL state cred here, since if cred
1372 1372 * is null (anonymous tracing), we fast-path bypass this routine.
1373 1373 */
1374 1374 ASSERT(s_cr != NULL);
1375 1375
1376 1376 if ((cr = CRED()) != NULL &&
1377 1377 s_cr->cr_uid == cr->cr_uid &&
1378 1378 s_cr->cr_uid == cr->cr_ruid &&
1379 1379 s_cr->cr_uid == cr->cr_suid &&
1380 1380 s_cr->cr_gid == cr->cr_gid &&
1381 1381 s_cr->cr_gid == cr->cr_rgid &&
1382 1382 s_cr->cr_gid == cr->cr_sgid)
1383 1383 return (1);
1384 1384
1385 1385 return (0);
1386 1386 }
1387 1387
1388 1388 /*
1389 1389 * This privilege check should be used by actions and subroutines to
1390 1390 * verify that the zone of the process that enabled the invoking ECB
1391 1391 * matches the target credentials
1392 1392 */
1393 1393 static int
1394 1394 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1395 1395 {
1396 1396 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1397 1397
1398 1398 /*
1399 1399 * We should always have a non-NULL state cred here, since if cred
1400 1400 * is null (anonymous tracing), we fast-path bypass this routine.
1401 1401 */
1402 1402 ASSERT(s_cr != NULL);
1403 1403
1404 1404 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1405 1405 return (1);
1406 1406
1407 1407 return (0);
1408 1408 }
1409 1409
1410 1410 /*
1411 1411 * This privilege check should be used by actions and subroutines to
1412 1412 * verify that the process has not setuid or changed credentials.
1413 1413 */
1414 1414 static int
1415 1415 dtrace_priv_proc_common_nocd()
1416 1416 {
1417 1417 proc_t *proc;
1418 1418
1419 1419 if ((proc = ttoproc(curthread)) != NULL &&
1420 1420 !(proc->p_flag & SNOCD))
1421 1421 return (1);
1422 1422
1423 1423 return (0);
1424 1424 }
1425 1425
1426 1426 static int
1427 1427 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate)
1428 1428 {
1429 1429 int action = state->dts_cred.dcr_action;
1430 1430
1431 1431 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC))
1432 1432 goto bad;
1433 1433
1434 1434 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1435 1435 dtrace_priv_proc_common_zone(state) == 0)
1436 1436 goto bad;
1437 1437
1438 1438 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1439 1439 dtrace_priv_proc_common_user(state) == 0)
1440 1440 goto bad;
1441 1441
1442 1442 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1443 1443 dtrace_priv_proc_common_nocd() == 0)
1444 1444 goto bad;
1445 1445
1446 1446 return (1);
1447 1447
1448 1448 bad:
1449 1449 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1450 1450
1451 1451 return (0);
1452 1452 }
1453 1453
1454 1454 static int
1455 1455 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate)
1456 1456 {
1457 1457 if (mstate->dtms_access & DTRACE_ACCESS_PROC) {
1458 1458 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1459 1459 return (1);
1460 1460
1461 1461 if (dtrace_priv_proc_common_zone(state) &&
1462 1462 dtrace_priv_proc_common_user(state) &&
1463 1463 dtrace_priv_proc_common_nocd())
1464 1464 return (1);
1465 1465 }
1466 1466
1467 1467 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1468 1468
1469 1469 return (0);
1470 1470 }
1471 1471
1472 1472 static int
1473 1473 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate)
1474 1474 {
1475 1475 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) &&
1476 1476 (state->dts_cred.dcr_action & DTRACE_CRA_PROC))
1477 1477 return (1);
1478 1478
1479 1479 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1480 1480
1481 1481 return (0);
1482 1482 }
1483 1483
1484 1484 static int
1485 1485 dtrace_priv_kernel(dtrace_state_t *state)
1486 1486 {
1487 1487 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1488 1488 return (1);
1489 1489
1490 1490 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1491 1491
1492 1492 return (0);
1493 1493 }
1494 1494
1495 1495 static int
1496 1496 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1497 1497 {
1498 1498 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1499 1499 return (1);
1500 1500
1501 1501 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1502 1502
1503 1503 return (0);
1504 1504 }
1505 1505
1506 1506 /*
1507 1507 * Determine if the dte_cond of the specified ECB allows for processing of
1508 1508 * the current probe to continue. Note that this routine may allow continued
1509 1509 * processing, but with access(es) stripped from the mstate's dtms_access
1510 1510 * field.
1511 1511 */
1512 1512 static int
1513 1513 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1514 1514 dtrace_ecb_t *ecb)
1515 1515 {
1516 1516 dtrace_probe_t *probe = ecb->dte_probe;
1517 1517 dtrace_provider_t *prov = probe->dtpr_provider;
1518 1518 dtrace_pops_t *pops = &prov->dtpv_pops;
1519 1519 int mode = DTRACE_MODE_NOPRIV_DROP;
1520 1520
1521 1521 ASSERT(ecb->dte_cond);
1522 1522
1523 1523 if (pops->dtps_mode != NULL) {
1524 1524 mode = pops->dtps_mode(prov->dtpv_arg,
1525 1525 probe->dtpr_id, probe->dtpr_arg);
1526 1526
1527 1527 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL));
1528 1528 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT |
1529 1529 DTRACE_MODE_NOPRIV_DROP));
1530 1530 }
1531 1531
1532 1532 /*
1533 1533 * If the dte_cond bits indicate that this consumer is only allowed to
1534 1534 * see user-mode firings of this probe, check that the probe was fired
1535 1535 * while in a user context. If that's not the case, use the policy
1536 1536 * specified by the provider to determine if we drop the probe or
1537 1537 * merely restrict operation.
1538 1538 */
1539 1539 if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1540 1540 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1541 1541
1542 1542 if (!(mode & DTRACE_MODE_USER)) {
1543 1543 if (mode & DTRACE_MODE_NOPRIV_DROP)
1544 1544 return (0);
1545 1545
1546 1546 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1547 1547 }
1548 1548 }
1549 1549
1550 1550 /*
1551 1551 * This is more subtle than it looks. We have to be absolutely certain
1552 1552 * that CRED() isn't going to change out from under us so it's only
1553 1553 * legit to examine that structure if we're in constrained situations.
1554 1554 * Currently, the only times we'll this check is if a non-super-user
1555 1555 * has enabled the profile or syscall providers -- providers that
1556 1556 * allow visibility of all processes. For the profile case, the check
1557 1557 * above will ensure that we're examining a user context.
1558 1558 */
1559 1559 if (ecb->dte_cond & DTRACE_COND_OWNER) {
1560 1560 cred_t *cr;
1561 1561 cred_t *s_cr = state->dts_cred.dcr_cred;
1562 1562 proc_t *proc;
1563 1563
1564 1564 ASSERT(s_cr != NULL);
1565 1565
1566 1566 if ((cr = CRED()) == NULL ||
1567 1567 s_cr->cr_uid != cr->cr_uid ||
1568 1568 s_cr->cr_uid != cr->cr_ruid ||
1569 1569 s_cr->cr_uid != cr->cr_suid ||
1570 1570 s_cr->cr_gid != cr->cr_gid ||
1571 1571 s_cr->cr_gid != cr->cr_rgid ||
1572 1572 s_cr->cr_gid != cr->cr_sgid ||
1573 1573 (proc = ttoproc(curthread)) == NULL ||
1574 1574 (proc->p_flag & SNOCD)) {
1575 1575 if (mode & DTRACE_MODE_NOPRIV_DROP)
1576 1576 return (0);
1577 1577
1578 1578 mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1579 1579 }
1580 1580 }
1581 1581
1582 1582 /*
1583 1583 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1584 1584 * in our zone, check to see if our mode policy is to restrict rather
1585 1585 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1586 1586 * and DTRACE_ACCESS_ARGS
1587 1587 */
1588 1588 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1589 1589 cred_t *cr;
1590 1590 cred_t *s_cr = state->dts_cred.dcr_cred;
1591 1591
1592 1592 ASSERT(s_cr != NULL);
1593 1593
1594 1594 if ((cr = CRED()) == NULL ||
1595 1595 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1596 1596 if (mode & DTRACE_MODE_NOPRIV_DROP)
1597 1597 return (0);
1598 1598
1599 1599 mstate->dtms_access &=
1600 1600 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1601 1601 }
1602 1602 }
1603 1603
1604 1604 /*
1605 1605 * By merits of being in this code path at all, we have limited
1606 1606 * privileges. If the provider has indicated that limited privileges
1607 1607 * are to denote restricted operation, strip off the ability to access
1608 1608 * arguments.
1609 1609 */
1610 1610 if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT)
1611 1611 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1612 1612
1613 1613 return (1);
1614 1614 }
1615 1615
1616 1616 /*
1617 1617 * Note: not called from probe context. This function is called
1618 1618 * asynchronously (and at a regular interval) from outside of probe context to
1619 1619 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable
1620 1620 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1621 1621 */
1622 1622 void
1623 1623 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1624 1624 {
1625 1625 dtrace_dynvar_t *dirty;
1626 1626 dtrace_dstate_percpu_t *dcpu;
1627 1627 dtrace_dynvar_t **rinsep;
1628 1628 int i, j, work = 0;
1629 1629
1630 1630 for (i = 0; i < NCPU; i++) {
1631 1631 dcpu = &dstate->dtds_percpu[i];
1632 1632 rinsep = &dcpu->dtdsc_rinsing;
1633 1633
1634 1634 /*
1635 1635 * If the dirty list is NULL, there is no dirty work to do.
1636 1636 */
1637 1637 if (dcpu->dtdsc_dirty == NULL)
1638 1638 continue;
1639 1639
1640 1640 if (dcpu->dtdsc_rinsing != NULL) {
1641 1641 /*
1642 1642 * If the rinsing list is non-NULL, then it is because
1643 1643 * this CPU was selected to accept another CPU's
1644 1644 * dirty list -- and since that time, dirty buffers
1645 1645 * have accumulated. This is a highly unlikely
1646 1646 * condition, but we choose to ignore the dirty
1647 1647 * buffers -- they'll be picked up a future cleanse.
1648 1648 */
1649 1649 continue;
1650 1650 }
1651 1651
1652 1652 if (dcpu->dtdsc_clean != NULL) {
1653 1653 /*
1654 1654 * If the clean list is non-NULL, then we're in a
1655 1655 * situation where a CPU has done deallocations (we
1656 1656 * have a non-NULL dirty list) but no allocations (we
1657 1657 * also have a non-NULL clean list). We can't simply
1658 1658 * move the dirty list into the clean list on this
1659 1659 * CPU, yet we also don't want to allow this condition
1660 1660 * to persist, lest a short clean list prevent a
1661 1661 * massive dirty list from being cleaned (which in
1662 1662 * turn could lead to otherwise avoidable dynamic
1663 1663 * drops). To deal with this, we look for some CPU
1664 1664 * with a NULL clean list, NULL dirty list, and NULL
1665 1665 * rinsing list -- and then we borrow this CPU to
1666 1666 * rinse our dirty list.
1667 1667 */
1668 1668 for (j = 0; j < NCPU; j++) {
1669 1669 dtrace_dstate_percpu_t *rinser;
1670 1670
1671 1671 rinser = &dstate->dtds_percpu[j];
1672 1672
1673 1673 if (rinser->dtdsc_rinsing != NULL)
1674 1674 continue;
1675 1675
1676 1676 if (rinser->dtdsc_dirty != NULL)
1677 1677 continue;
1678 1678
1679 1679 if (rinser->dtdsc_clean != NULL)
1680 1680 continue;
1681 1681
1682 1682 rinsep = &rinser->dtdsc_rinsing;
1683 1683 break;
1684 1684 }
1685 1685
1686 1686 if (j == NCPU) {
1687 1687 /*
1688 1688 * We were unable to find another CPU that
1689 1689 * could accept this dirty list -- we are
1690 1690 * therefore unable to clean it now.
1691 1691 */
1692 1692 dtrace_dynvar_failclean++;
1693 1693 continue;
1694 1694 }
1695 1695 }
1696 1696
1697 1697 work = 1;
1698 1698
1699 1699 /*
1700 1700 * Atomically move the dirty list aside.
1701 1701 */
1702 1702 do {
1703 1703 dirty = dcpu->dtdsc_dirty;
1704 1704
1705 1705 /*
1706 1706 * Before we zap the dirty list, set the rinsing list.
1707 1707 * (This allows for a potential assertion in
1708 1708 * dtrace_dynvar(): if a free dynamic variable appears
1709 1709 * on a hash chain, either the dirty list or the
1710 1710 * rinsing list for some CPU must be non-NULL.)
1711 1711 */
1712 1712 *rinsep = dirty;
1713 1713 dtrace_membar_producer();
1714 1714 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1715 1715 dirty, NULL) != dirty);
1716 1716 }
1717 1717
1718 1718 if (!work) {
1719 1719 /*
1720 1720 * We have no work to do; we can simply return.
1721 1721 */
1722 1722 return;
1723 1723 }
1724 1724
1725 1725 dtrace_sync();
1726 1726
1727 1727 for (i = 0; i < NCPU; i++) {
1728 1728 dcpu = &dstate->dtds_percpu[i];
1729 1729
1730 1730 if (dcpu->dtdsc_rinsing == NULL)
1731 1731 continue;
1732 1732
1733 1733 /*
1734 1734 * We are now guaranteed that no hash chain contains a pointer
1735 1735 * into this dirty list; we can make it clean.
1736 1736 */
1737 1737 ASSERT(dcpu->dtdsc_clean == NULL);
1738 1738 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1739 1739 dcpu->dtdsc_rinsing = NULL;
1740 1740 }
1741 1741
1742 1742 /*
1743 1743 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1744 1744 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1745 1745 * This prevents a race whereby a CPU incorrectly decides that
1746 1746 * the state should be something other than DTRACE_DSTATE_CLEAN
1747 1747 * after dtrace_dynvar_clean() has completed.
1748 1748 */
1749 1749 dtrace_sync();
1750 1750
1751 1751 dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1752 1752 }
1753 1753
1754 1754 /*
1755 1755 * Depending on the value of the op parameter, this function looks-up,
1756 1756 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an
1757 1757 * allocation is requested, this function will return a pointer to a
1758 1758 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1759 1759 * variable can be allocated. If NULL is returned, the appropriate counter
1760 1760 * will be incremented.
1761 1761 */
1762 1762 dtrace_dynvar_t *
1763 1763 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1764 1764 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1765 1765 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1766 1766 {
1767 1767 uint64_t hashval = DTRACE_DYNHASH_VALID;
1768 1768 dtrace_dynhash_t *hash = dstate->dtds_hash;
1769 1769 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1770 1770 processorid_t me = CPU->cpu_id, cpu = me;
1771 1771 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1772 1772 size_t bucket, ksize;
1773 1773 size_t chunksize = dstate->dtds_chunksize;
1774 1774 uintptr_t kdata, lock, nstate;
1775 1775 uint_t i;
1776 1776
1777 1777 ASSERT(nkeys != 0);
1778 1778
1779 1779 /*
1780 1780 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time"
1781 1781 * algorithm. For the by-value portions, we perform the algorithm in
1782 1782 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a
1783 1783 * bit, and seems to have only a minute effect on distribution. For
1784 1784 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1785 1785 * over each referenced byte. It's painful to do this, but it's much
1786 1786 * better than pathological hash distribution. The efficacy of the
1787 1787 * hashing algorithm (and a comparison with other algorithms) may be
1788 1788 * found by running the ::dtrace_dynstat MDB dcmd.
1789 1789 */
1790 1790 for (i = 0; i < nkeys; i++) {
1791 1791 if (key[i].dttk_size == 0) {
1792 1792 uint64_t val = key[i].dttk_value;
1793 1793
1794 1794 hashval += (val >> 48) & 0xffff;
1795 1795 hashval += (hashval << 10);
1796 1796 hashval ^= (hashval >> 6);
1797 1797
1798 1798 hashval += (val >> 32) & 0xffff;
1799 1799 hashval += (hashval << 10);
1800 1800 hashval ^= (hashval >> 6);
1801 1801
1802 1802 hashval += (val >> 16) & 0xffff;
1803 1803 hashval += (hashval << 10);
1804 1804 hashval ^= (hashval >> 6);
1805 1805
1806 1806 hashval += val & 0xffff;
1807 1807 hashval += (hashval << 10);
1808 1808 hashval ^= (hashval >> 6);
1809 1809 } else {
1810 1810 /*
1811 1811 * This is incredibly painful, but it beats the hell
1812 1812 * out of the alternative.
1813 1813 */
1814 1814 uint64_t j, size = key[i].dttk_size;
1815 1815 uintptr_t base = (uintptr_t)key[i].dttk_value;
1816 1816
1817 1817 if (!dtrace_canload(base, size, mstate, vstate))
1818 1818 break;
1819 1819
1820 1820 for (j = 0; j < size; j++) {
1821 1821 hashval += dtrace_load8(base + j);
1822 1822 hashval += (hashval << 10);
1823 1823 hashval ^= (hashval >> 6);
1824 1824 }
1825 1825 }
1826 1826 }
1827 1827
1828 1828 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1829 1829 return (NULL);
1830 1830
1831 1831 hashval += (hashval << 3);
1832 1832 hashval ^= (hashval >> 11);
1833 1833 hashval += (hashval << 15);
1834 1834
1835 1835 /*
1836 1836 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1837 1837 * comes out to be one of our two sentinel hash values. If this
1838 1838 * actually happens, we set the hashval to be a value known to be a
1839 1839 * non-sentinel value.
1840 1840 */
1841 1841 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1842 1842 hashval = DTRACE_DYNHASH_VALID;
1843 1843
1844 1844 /*
1845 1845 * Yes, it's painful to do a divide here. If the cycle count becomes
1846 1846 * important here, tricks can be pulled to reduce it. (However, it's
1847 1847 * critical that hash collisions be kept to an absolute minimum;
1848 1848 * they're much more painful than a divide.) It's better to have a
1849 1849 * solution that generates few collisions and still keeps things
1850 1850 * relatively simple.
1851 1851 */
1852 1852 bucket = hashval % dstate->dtds_hashsize;
1853 1853
1854 1854 if (op == DTRACE_DYNVAR_DEALLOC) {
1855 1855 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1856 1856
1857 1857 for (;;) {
1858 1858 while ((lock = *lockp) & 1)
1859 1859 continue;
1860 1860
1861 1861 if (dtrace_casptr((void *)lockp,
1862 1862 (void *)lock, (void *)(lock + 1)) == (void *)lock)
1863 1863 break;
1864 1864 }
1865 1865
1866 1866 dtrace_membar_producer();
1867 1867 }
1868 1868
1869 1869 top:
1870 1870 prev = NULL;
1871 1871 lock = hash[bucket].dtdh_lock;
1872 1872
1873 1873 dtrace_membar_consumer();
1874 1874
1875 1875 start = hash[bucket].dtdh_chain;
1876 1876 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1877 1877 start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1878 1878 op != DTRACE_DYNVAR_DEALLOC));
1879 1879
1880 1880 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1881 1881 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1882 1882 dtrace_key_t *dkey = &dtuple->dtt_key[0];
1883 1883
1884 1884 if (dvar->dtdv_hashval != hashval) {
1885 1885 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1886 1886 /*
1887 1887 * We've reached the sink, and therefore the
1888 1888 * end of the hash chain; we can kick out of
1889 1889 * the loop knowing that we have seen a valid
1890 1890 * snapshot of state.
1891 1891 */
1892 1892 ASSERT(dvar->dtdv_next == NULL);
1893 1893 ASSERT(dvar == &dtrace_dynhash_sink);
1894 1894 break;
1895 1895 }
1896 1896
1897 1897 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1898 1898 /*
1899 1899 * We've gone off the rails: somewhere along
1900 1900 * the line, one of the members of this hash
1901 1901 * chain was deleted. Note that we could also
1902 1902 * detect this by simply letting this loop run
1903 1903 * to completion, as we would eventually hit
1904 1904 * the end of the dirty list. However, we
1905 1905 * want to avoid running the length of the
1906 1906 * dirty list unnecessarily (it might be quite
1907 1907 * long), so we catch this as early as
1908 1908 * possible by detecting the hash marker. In
1909 1909 * this case, we simply set dvar to NULL and
1910 1910 * break; the conditional after the loop will
1911 1911 * send us back to top.
1912 1912 */
1913 1913 dvar = NULL;
1914 1914 break;
1915 1915 }
1916 1916
1917 1917 goto next;
1918 1918 }
1919 1919
1920 1920 if (dtuple->dtt_nkeys != nkeys)
1921 1921 goto next;
1922 1922
1923 1923 for (i = 0; i < nkeys; i++, dkey++) {
1924 1924 if (dkey->dttk_size != key[i].dttk_size)
1925 1925 goto next; /* size or type mismatch */
1926 1926
1927 1927 if (dkey->dttk_size != 0) {
1928 1928 if (dtrace_bcmp(
1929 1929 (void *)(uintptr_t)key[i].dttk_value,
1930 1930 (void *)(uintptr_t)dkey->dttk_value,
1931 1931 dkey->dttk_size))
1932 1932 goto next;
1933 1933 } else {
1934 1934 if (dkey->dttk_value != key[i].dttk_value)
1935 1935 goto next;
1936 1936 }
1937 1937 }
1938 1938
1939 1939 if (op != DTRACE_DYNVAR_DEALLOC)
1940 1940 return (dvar);
1941 1941
1942 1942 ASSERT(dvar->dtdv_next == NULL ||
1943 1943 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1944 1944
1945 1945 if (prev != NULL) {
1946 1946 ASSERT(hash[bucket].dtdh_chain != dvar);
1947 1947 ASSERT(start != dvar);
1948 1948 ASSERT(prev->dtdv_next == dvar);
1949 1949 prev->dtdv_next = dvar->dtdv_next;
1950 1950 } else {
1951 1951 if (dtrace_casptr(&hash[bucket].dtdh_chain,
1952 1952 start, dvar->dtdv_next) != start) {
1953 1953 /*
1954 1954 * We have failed to atomically swing the
1955 1955 * hash table head pointer, presumably because
1956 1956 * of a conflicting allocation on another CPU.
1957 1957 * We need to reread the hash chain and try
1958 1958 * again.
1959 1959 */
1960 1960 goto top;
1961 1961 }
1962 1962 }
1963 1963
1964 1964 dtrace_membar_producer();
1965 1965
1966 1966 /*
1967 1967 * Now set the hash value to indicate that it's free.
1968 1968 */
1969 1969 ASSERT(hash[bucket].dtdh_chain != dvar);
1970 1970 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1971 1971
1972 1972 dtrace_membar_producer();
1973 1973
1974 1974 /*
1975 1975 * Set the next pointer to point at the dirty list, and
1976 1976 * atomically swing the dirty pointer to the newly freed dvar.
1977 1977 */
1978 1978 do {
1979 1979 next = dcpu->dtdsc_dirty;
1980 1980 dvar->dtdv_next = next;
1981 1981 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1982 1982
1983 1983 /*
1984 1984 * Finally, unlock this hash bucket.
1985 1985 */
1986 1986 ASSERT(hash[bucket].dtdh_lock == lock);
1987 1987 ASSERT(lock & 1);
1988 1988 hash[bucket].dtdh_lock++;
1989 1989
1990 1990 return (NULL);
1991 1991 next:
1992 1992 prev = dvar;
1993 1993 continue;
1994 1994 }
1995 1995
1996 1996 if (dvar == NULL) {
1997 1997 /*
1998 1998 * If dvar is NULL, it is because we went off the rails:
1999 1999 * one of the elements that we traversed in the hash chain
2000 2000 * was deleted while we were traversing it. In this case,
2001 2001 * we assert that we aren't doing a dealloc (deallocs lock
2002 2002 * the hash bucket to prevent themselves from racing with
2003 2003 * one another), and retry the hash chain traversal.
2004 2004 */
2005 2005 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
2006 2006 goto top;
2007 2007 }
2008 2008
2009 2009 if (op != DTRACE_DYNVAR_ALLOC) {
2010 2010 /*
2011 2011 * If we are not to allocate a new variable, we want to
2012 2012 * return NULL now. Before we return, check that the value
2013 2013 * of the lock word hasn't changed. If it has, we may have
2014 2014 * seen an inconsistent snapshot.
2015 2015 */
2016 2016 if (op == DTRACE_DYNVAR_NOALLOC) {
2017 2017 if (hash[bucket].dtdh_lock != lock)
2018 2018 goto top;
2019 2019 } else {
2020 2020 ASSERT(op == DTRACE_DYNVAR_DEALLOC);
2021 2021 ASSERT(hash[bucket].dtdh_lock == lock);
2022 2022 ASSERT(lock & 1);
2023 2023 hash[bucket].dtdh_lock++;
2024 2024 }
2025 2025
2026 2026 return (NULL);
2027 2027 }
2028 2028
2029 2029 /*
2030 2030 * We need to allocate a new dynamic variable. The size we need is the
2031 2031 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2032 2032 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2033 2033 * the size of any referred-to data (dsize). We then round the final
2034 2034 * size up to the chunksize for allocation.
2035 2035 */
2036 2036 for (ksize = 0, i = 0; i < nkeys; i++)
2037 2037 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
2038 2038
2039 2039 /*
2040 2040 * This should be pretty much impossible, but could happen if, say,
2041 2041 * strange DIF specified the tuple. Ideally, this should be an
2042 2042 * assertion and not an error condition -- but that requires that the
2043 2043 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2044 2044 * bullet-proof. (That is, it must not be able to be fooled by
2045 2045 * malicious DIF.) Given the lack of backwards branches in DIF,
2046 2046 * solving this would presumably not amount to solving the Halting
2047 2047 * Problem -- but it still seems awfully hard.
2048 2048 */
2049 2049 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
2050 2050 ksize + dsize > chunksize) {
2051 2051 dcpu->dtdsc_drops++;
2052 2052 return (NULL);
2053 2053 }
2054 2054
2055 2055 nstate = DTRACE_DSTATE_EMPTY;
2056 2056
2057 2057 do {
2058 2058 retry:
2059 2059 free = dcpu->dtdsc_free;
2060 2060
2061 2061 if (free == NULL) {
2062 2062 dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2063 2063 void *rval;
2064 2064
2065 2065 if (clean == NULL) {
2066 2066 /*
2067 2067 * We're out of dynamic variable space on
2068 2068 * this CPU. Unless we have tried all CPUs,
2069 2069 * we'll try to allocate from a different
2070 2070 * CPU.
2071 2071 */
2072 2072 switch (dstate->dtds_state) {
2073 2073 case DTRACE_DSTATE_CLEAN: {
2074 2074 void *sp = &dstate->dtds_state;
2075 2075
2076 2076 if (++cpu >= NCPU)
2077 2077 cpu = 0;
2078 2078
2079 2079 if (dcpu->dtdsc_dirty != NULL &&
2080 2080 nstate == DTRACE_DSTATE_EMPTY)
2081 2081 nstate = DTRACE_DSTATE_DIRTY;
2082 2082
2083 2083 if (dcpu->dtdsc_rinsing != NULL)
2084 2084 nstate = DTRACE_DSTATE_RINSING;
2085 2085
2086 2086 dcpu = &dstate->dtds_percpu[cpu];
2087 2087
2088 2088 if (cpu != me)
2089 2089 goto retry;
2090 2090
2091 2091 (void) dtrace_cas32(sp,
2092 2092 DTRACE_DSTATE_CLEAN, nstate);
2093 2093
2094 2094 /*
2095 2095 * To increment the correct bean
2096 2096 * counter, take another lap.
2097 2097 */
2098 2098 goto retry;
2099 2099 }
2100 2100
2101 2101 case DTRACE_DSTATE_DIRTY:
2102 2102 dcpu->dtdsc_dirty_drops++;
2103 2103 break;
2104 2104
2105 2105 case DTRACE_DSTATE_RINSING:
2106 2106 dcpu->dtdsc_rinsing_drops++;
2107 2107 break;
2108 2108
2109 2109 case DTRACE_DSTATE_EMPTY:
2110 2110 dcpu->dtdsc_drops++;
2111 2111 break;
2112 2112 }
2113 2113
2114 2114 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2115 2115 return (NULL);
2116 2116 }
2117 2117
2118 2118 /*
2119 2119 * The clean list appears to be non-empty. We want to
2120 2120 * move the clean list to the free list; we start by
2121 2121 * moving the clean pointer aside.
2122 2122 */
2123 2123 if (dtrace_casptr(&dcpu->dtdsc_clean,
2124 2124 clean, NULL) != clean) {
2125 2125 /*
2126 2126 * We are in one of two situations:
2127 2127 *
2128 2128 * (a) The clean list was switched to the
2129 2129 * free list by another CPU.
2130 2130 *
2131 2131 * (b) The clean list was added to by the
2132 2132 * cleansing cyclic.
2133 2133 *
2134 2134 * In either of these situations, we can
2135 2135 * just reattempt the free list allocation.
2136 2136 */
2137 2137 goto retry;
2138 2138 }
2139 2139
2140 2140 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2141 2141
2142 2142 /*
2143 2143 * Now we'll move the clean list to our free list.
2144 2144 * It's impossible for this to fail: the only way
2145 2145 * the free list can be updated is through this
2146 2146 * code path, and only one CPU can own the clean list.
2147 2147 * Thus, it would only be possible for this to fail if
2148 2148 * this code were racing with dtrace_dynvar_clean().
2149 2149 * (That is, if dtrace_dynvar_clean() updated the clean
2150 2150 * list, and we ended up racing to update the free
2151 2151 * list.) This race is prevented by the dtrace_sync()
2152 2152 * in dtrace_dynvar_clean() -- which flushes the
2153 2153 * owners of the clean lists out before resetting
2154 2154 * the clean lists.
2155 2155 */
2156 2156 dcpu = &dstate->dtds_percpu[me];
2157 2157 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2158 2158 ASSERT(rval == NULL);
2159 2159 goto retry;
2160 2160 }
2161 2161
2162 2162 dvar = free;
2163 2163 new_free = dvar->dtdv_next;
2164 2164 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2165 2165
2166 2166 /*
2167 2167 * We have now allocated a new chunk. We copy the tuple keys into the
2168 2168 * tuple array and copy any referenced key data into the data space
2169 2169 * following the tuple array. As we do this, we relocate dttk_value
2170 2170 * in the final tuple to point to the key data address in the chunk.
2171 2171 */
2172 2172 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2173 2173 dvar->dtdv_data = (void *)(kdata + ksize);
2174 2174 dvar->dtdv_tuple.dtt_nkeys = nkeys;
2175 2175
2176 2176 for (i = 0; i < nkeys; i++) {
2177 2177 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2178 2178 size_t kesize = key[i].dttk_size;
2179 2179
2180 2180 if (kesize != 0) {
2181 2181 dtrace_bcopy(
2182 2182 (const void *)(uintptr_t)key[i].dttk_value,
2183 2183 (void *)kdata, kesize);
2184 2184 dkey->dttk_value = kdata;
2185 2185 kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2186 2186 } else {
2187 2187 dkey->dttk_value = key[i].dttk_value;
2188 2188 }
2189 2189
2190 2190 dkey->dttk_size = kesize;
2191 2191 }
2192 2192
2193 2193 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2194 2194 dvar->dtdv_hashval = hashval;
2195 2195 dvar->dtdv_next = start;
2196 2196
2197 2197 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2198 2198 return (dvar);
2199 2199
2200 2200 /*
2201 2201 * The cas has failed. Either another CPU is adding an element to
2202 2202 * this hash chain, or another CPU is deleting an element from this
2203 2203 * hash chain. The simplest way to deal with both of these cases
2204 2204 * (though not necessarily the most efficient) is to free our
2205 2205 * allocated block and re-attempt it all. Note that the free is
2206 2206 * to the dirty list and _not_ to the free list. This is to prevent
2207 2207 * races with allocators, above.
2208 2208 */
2209 2209 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2210 2210
2211 2211 dtrace_membar_producer();
2212 2212
2213 2213 do {
2214 2214 free = dcpu->dtdsc_dirty;
2215 2215 dvar->dtdv_next = free;
2216 2216 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2217 2217
2218 2218 goto top;
2219 2219 }
2220 2220
2221 2221 /*ARGSUSED*/
2222 2222 static void
2223 2223 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2224 2224 {
2225 2225 if ((int64_t)nval < (int64_t)*oval)
2226 2226 *oval = nval;
2227 2227 }
2228 2228
2229 2229 /*ARGSUSED*/
2230 2230 static void
2231 2231 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2232 2232 {
2233 2233 if ((int64_t)nval > (int64_t)*oval)
2234 2234 *oval = nval;
2235 2235 }
2236 2236
2237 2237 static void
2238 2238 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2239 2239 {
2240 2240 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2241 2241 int64_t val = (int64_t)nval;
2242 2242
2243 2243 if (val < 0) {
2244 2244 for (i = 0; i < zero; i++) {
2245 2245 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2246 2246 quanta[i] += incr;
2247 2247 return;
2248 2248 }
2249 2249 }
2250 2250 } else {
2251 2251 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2252 2252 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2253 2253 quanta[i - 1] += incr;
2254 2254 return;
2255 2255 }
2256 2256 }
2257 2257
2258 2258 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2259 2259 return;
2260 2260 }
2261 2261
2262 2262 ASSERT(0);
2263 2263 }
2264 2264
2265 2265 static void
2266 2266 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2267 2267 {
2268 2268 uint64_t arg = *lquanta++;
2269 2269 int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2270 2270 uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2271 2271 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2272 2272 int32_t val = (int32_t)nval, level;
2273 2273
2274 2274 ASSERT(step != 0);
2275 2275 ASSERT(levels != 0);
2276 2276
2277 2277 if (val < base) {
2278 2278 /*
2279 2279 * This is an underflow.
2280 2280 */
2281 2281 lquanta[0] += incr;
2282 2282 return;
2283 2283 }
2284 2284
2285 2285 level = (val - base) / step;
2286 2286
2287 2287 if (level < levels) {
2288 2288 lquanta[level + 1] += incr;
2289 2289 return;
2290 2290 }
2291 2291
2292 2292 /*
2293 2293 * This is an overflow.
2294 2294 */
2295 2295 lquanta[levels + 1] += incr;
2296 2296 }
2297 2297
2298 2298 static int
2299 2299 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2300 2300 uint16_t high, uint16_t nsteps, int64_t value)
2301 2301 {
2302 2302 int64_t this = 1, last, next;
2303 2303 int base = 1, order;
2304 2304
2305 2305 ASSERT(factor <= nsteps);
2306 2306 ASSERT(nsteps % factor == 0);
2307 2307
2308 2308 for (order = 0; order < low; order++)
2309 2309 this *= factor;
2310 2310
2311 2311 /*
2312 2312 * If our value is less than our factor taken to the power of the
2313 2313 * low order of magnitude, it goes into the zeroth bucket.
2314 2314 */
2315 2315 if (value < (last = this))
2316 2316 return (0);
2317 2317
2318 2318 for (this *= factor; order <= high; order++) {
2319 2319 int nbuckets = this > nsteps ? nsteps : this;
2320 2320
2321 2321 if ((next = this * factor) < this) {
2322 2322 /*
2323 2323 * We should not generally get log/linear quantizations
2324 2324 * with a high magnitude that allows 64-bits to
2325 2325 * overflow, but we nonetheless protect against this
2326 2326 * by explicitly checking for overflow, and clamping
2327 2327 * our value accordingly.
2328 2328 */
2329 2329 value = this - 1;
2330 2330 }
2331 2331
2332 2332 if (value < this) {
2333 2333 /*
2334 2334 * If our value lies within this order of magnitude,
2335 2335 * determine its position by taking the offset within
2336 2336 * the order of magnitude, dividing by the bucket
2337 2337 * width, and adding to our (accumulated) base.
2338 2338 */
2339 2339 return (base + (value - last) / (this / nbuckets));
2340 2340 }
2341 2341
2342 2342 base += nbuckets - (nbuckets / factor);
2343 2343 last = this;
2344 2344 this = next;
2345 2345 }
2346 2346
2347 2347 /*
2348 2348 * Our value is greater than or equal to our factor taken to the
2349 2349 * power of one plus the high magnitude -- return the top bucket.
2350 2350 */
2351 2351 return (base);
2352 2352 }
2353 2353
2354 2354 static void
2355 2355 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2356 2356 {
2357 2357 uint64_t arg = *llquanta++;
2358 2358 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2359 2359 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2360 2360 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2361 2361 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2362 2362
2363 2363 llquanta[dtrace_aggregate_llquantize_bucket(factor,
2364 2364 low, high, nsteps, nval)] += incr;
2365 2365 }
2366 2366
2367 2367 /*ARGSUSED*/
2368 2368 static void
2369 2369 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2370 2370 {
2371 2371 data[0]++;
2372 2372 data[1] += nval;
2373 2373 }
2374 2374
2375 2375 /*ARGSUSED*/
2376 2376 static void
2377 2377 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2378 2378 {
2379 2379 int64_t snval = (int64_t)nval;
2380 2380 uint64_t tmp[2];
2381 2381
2382 2382 data[0]++;
2383 2383 data[1] += nval;
2384 2384
2385 2385 /*
2386 2386 * What we want to say here is:
2387 2387 *
2388 2388 * data[2] += nval * nval;
2389 2389 *
2390 2390 * But given that nval is 64-bit, we could easily overflow, so
2391 2391 * we do this as 128-bit arithmetic.
2392 2392 */
2393 2393 if (snval < 0)
2394 2394 snval = -snval;
2395 2395
2396 2396 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2397 2397 dtrace_add_128(data + 2, tmp, data + 2);
2398 2398 }
2399 2399
2400 2400 /*ARGSUSED*/
2401 2401 static void
2402 2402 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2403 2403 {
2404 2404 *oval = *oval + 1;
2405 2405 }
2406 2406
2407 2407 /*ARGSUSED*/
2408 2408 static void
2409 2409 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2410 2410 {
2411 2411 *oval += nval;
2412 2412 }
2413 2413
2414 2414 /*
2415 2415 * Aggregate given the tuple in the principal data buffer, and the aggregating
2416 2416 * action denoted by the specified dtrace_aggregation_t. The aggregation
2417 2417 * buffer is specified as the buf parameter. This routine does not return
2418 2418 * failure; if there is no space in the aggregation buffer, the data will be
2419 2419 * dropped, and a corresponding counter incremented.
2420 2420 */
2421 2421 static void
2422 2422 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2423 2423 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2424 2424 {
2425 2425 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2426 2426 uint32_t i, ndx, size, fsize;
2427 2427 uint32_t align = sizeof (uint64_t) - 1;
2428 2428 dtrace_aggbuffer_t *agb;
2429 2429 dtrace_aggkey_t *key;
2430 2430 uint32_t hashval = 0, limit, isstr;
2431 2431 caddr_t tomax, data, kdata;
2432 2432 dtrace_actkind_t action;
2433 2433 dtrace_action_t *act;
2434 2434 uintptr_t offs;
2435 2435
2436 2436 if (buf == NULL)
2437 2437 return;
2438 2438
2439 2439 if (!agg->dtag_hasarg) {
2440 2440 /*
2441 2441 * Currently, only quantize() and lquantize() take additional
2442 2442 * arguments, and they have the same semantics: an increment
2443 2443 * value that defaults to 1 when not present. If additional
2444 2444 * aggregating actions take arguments, the setting of the
2445 2445 * default argument value will presumably have to become more
2446 2446 * sophisticated...
2447 2447 */
2448 2448 arg = 1;
2449 2449 }
2450 2450
2451 2451 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2452 2452 size = rec->dtrd_offset - agg->dtag_base;
2453 2453 fsize = size + rec->dtrd_size;
2454 2454
2455 2455 ASSERT(dbuf->dtb_tomax != NULL);
2456 2456 data = dbuf->dtb_tomax + offset + agg->dtag_base;
2457 2457
2458 2458 if ((tomax = buf->dtb_tomax) == NULL) {
2459 2459 dtrace_buffer_drop(buf);
2460 2460 return;
2461 2461 }
2462 2462
2463 2463 /*
2464 2464 * The metastructure is always at the bottom of the buffer.
2465 2465 */
2466 2466 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2467 2467 sizeof (dtrace_aggbuffer_t));
2468 2468
2469 2469 if (buf->dtb_offset == 0) {
2470 2470 /*
2471 2471 * We just kludge up approximately 1/8th of the size to be
2472 2472 * buckets. If this guess ends up being routinely
2473 2473 * off-the-mark, we may need to dynamically readjust this
2474 2474 * based on past performance.
2475 2475 */
2476 2476 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2477 2477
2478 2478 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2479 2479 (uintptr_t)tomax || hashsize == 0) {
2480 2480 /*
2481 2481 * We've been given a ludicrously small buffer;
2482 2482 * increment our drop count and leave.
2483 2483 */
2484 2484 dtrace_buffer_drop(buf);
2485 2485 return;
2486 2486 }
2487 2487
2488 2488 /*
2489 2489 * And now, a pathetic attempt to try to get a an odd (or
2490 2490 * perchance, a prime) hash size for better hash distribution.
2491 2491 */
2492 2492 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2493 2493 hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2494 2494
2495 2495 agb->dtagb_hashsize = hashsize;
2496 2496 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2497 2497 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2498 2498 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2499 2499
2500 2500 for (i = 0; i < agb->dtagb_hashsize; i++)
2501 2501 agb->dtagb_hash[i] = NULL;
2502 2502 }
2503 2503
2504 2504 ASSERT(agg->dtag_first != NULL);
2505 2505 ASSERT(agg->dtag_first->dta_intuple);
2506 2506
2507 2507 /*
2508 2508 * Calculate the hash value based on the key. Note that we _don't_
2509 2509 * include the aggid in the hashing (but we will store it as part of
2510 2510 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time"
2511 2511 * algorithm: a simple, quick algorithm that has no known funnels, and
2512 2512 * gets good distribution in practice. The efficacy of the hashing
2513 2513 * algorithm (and a comparison with other algorithms) may be found by
2514 2514 * running the ::dtrace_aggstat MDB dcmd.
2515 2515 */
2516 2516 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2517 2517 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2518 2518 limit = i + act->dta_rec.dtrd_size;
2519 2519 ASSERT(limit <= size);
2520 2520 isstr = DTRACEACT_ISSTRING(act);
2521 2521
2522 2522 for (; i < limit; i++) {
2523 2523 hashval += data[i];
2524 2524 hashval += (hashval << 10);
2525 2525 hashval ^= (hashval >> 6);
2526 2526
2527 2527 if (isstr && data[i] == '\0')
2528 2528 break;
2529 2529 }
2530 2530 }
2531 2531
2532 2532 hashval += (hashval << 3);
2533 2533 hashval ^= (hashval >> 11);
2534 2534 hashval += (hashval << 15);
2535 2535
2536 2536 /*
2537 2537 * Yes, the divide here is expensive -- but it's generally the least
2538 2538 * of the performance issues given the amount of data that we iterate
2539 2539 * over to compute hash values, compare data, etc.
2540 2540 */
2541 2541 ndx = hashval % agb->dtagb_hashsize;
2542 2542
2543 2543 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2544 2544 ASSERT((caddr_t)key >= tomax);
2545 2545 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2546 2546
2547 2547 if (hashval != key->dtak_hashval || key->dtak_size != size)
2548 2548 continue;
2549 2549
2550 2550 kdata = key->dtak_data;
2551 2551 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2552 2552
2553 2553 for (act = agg->dtag_first; act->dta_intuple;
2554 2554 act = act->dta_next) {
2555 2555 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2556 2556 limit = i + act->dta_rec.dtrd_size;
2557 2557 ASSERT(limit <= size);
2558 2558 isstr = DTRACEACT_ISSTRING(act);
2559 2559
2560 2560 for (; i < limit; i++) {
2561 2561 if (kdata[i] != data[i])
2562 2562 goto next;
2563 2563
2564 2564 if (isstr && data[i] == '\0')
2565 2565 break;
2566 2566 }
2567 2567 }
2568 2568
2569 2569 if (action != key->dtak_action) {
2570 2570 /*
2571 2571 * We are aggregating on the same value in the same
2572 2572 * aggregation with two different aggregating actions.
2573 2573 * (This should have been picked up in the compiler,
2574 2574 * so we may be dealing with errant or devious DIF.)
2575 2575 * This is an error condition; we indicate as much,
2576 2576 * and return.
2577 2577 */
2578 2578 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2579 2579 return;
2580 2580 }
2581 2581
2582 2582 /*
2583 2583 * This is a hit: we need to apply the aggregator to
2584 2584 * the value at this key.
2585 2585 */
2586 2586 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2587 2587 return;
2588 2588 next:
2589 2589 continue;
2590 2590 }
2591 2591
2592 2592 /*
2593 2593 * We didn't find it. We need to allocate some zero-filled space,
2594 2594 * link it into the hash table appropriately, and apply the aggregator
2595 2595 * to the (zero-filled) value.
2596 2596 */
2597 2597 offs = buf->dtb_offset;
2598 2598 while (offs & (align - 1))
2599 2599 offs += sizeof (uint32_t);
2600 2600
2601 2601 /*
2602 2602 * If we don't have enough room to both allocate a new key _and_
2603 2603 * its associated data, increment the drop count and return.
2604 2604 */
2605 2605 if ((uintptr_t)tomax + offs + fsize >
2606 2606 agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2607 2607 dtrace_buffer_drop(buf);
2608 2608 return;
2609 2609 }
2610 2610
2611 2611 /*CONSTCOND*/
2612 2612 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2613 2613 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2614 2614 agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2615 2615
2616 2616 key->dtak_data = kdata = tomax + offs;
2617 2617 buf->dtb_offset = offs + fsize;
2618 2618
2619 2619 /*
2620 2620 * Now copy the data across.
2621 2621 */
2622 2622 *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2623 2623
2624 2624 for (i = sizeof (dtrace_aggid_t); i < size; i++)
2625 2625 kdata[i] = data[i];
2626 2626
2627 2627 /*
2628 2628 * Because strings are not zeroed out by default, we need to iterate
2629 2629 * looking for actions that store strings, and we need to explicitly
2630 2630 * pad these strings out with zeroes.
2631 2631 */
2632 2632 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2633 2633 int nul;
2634 2634
2635 2635 if (!DTRACEACT_ISSTRING(act))
2636 2636 continue;
2637 2637
2638 2638 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2639 2639 limit = i + act->dta_rec.dtrd_size;
2640 2640 ASSERT(limit <= size);
2641 2641
2642 2642 for (nul = 0; i < limit; i++) {
2643 2643 if (nul) {
2644 2644 kdata[i] = '\0';
2645 2645 continue;
2646 2646 }
2647 2647
2648 2648 if (data[i] != '\0')
2649 2649 continue;
2650 2650
2651 2651 nul = 1;
2652 2652 }
2653 2653 }
2654 2654
2655 2655 for (i = size; i < fsize; i++)
2656 2656 kdata[i] = 0;
2657 2657
2658 2658 key->dtak_hashval = hashval;
2659 2659 key->dtak_size = size;
2660 2660 key->dtak_action = action;
2661 2661 key->dtak_next = agb->dtagb_hash[ndx];
2662 2662 agb->dtagb_hash[ndx] = key;
2663 2663
2664 2664 /*
2665 2665 * Finally, apply the aggregator.
2666 2666 */
2667 2667 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2668 2668 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2669 2669 }
2670 2670
2671 2671 /*
2672 2672 * Given consumer state, this routine finds a speculation in the INACTIVE
2673 2673 * state and transitions it into the ACTIVE state. If there is no speculation
2674 2674 * in the INACTIVE state, 0 is returned. In this case, no error counter is
2675 2675 * incremented -- it is up to the caller to take appropriate action.
2676 2676 */
2677 2677 static int
2678 2678 dtrace_speculation(dtrace_state_t *state)
2679 2679 {
2680 2680 int i = 0;
2681 2681 dtrace_speculation_state_t current;
2682 2682 uint32_t *stat = &state->dts_speculations_unavail, count;
2683 2683
2684 2684 while (i < state->dts_nspeculations) {
2685 2685 dtrace_speculation_t *spec = &state->dts_speculations[i];
2686 2686
2687 2687 current = spec->dtsp_state;
2688 2688
2689 2689 if (current != DTRACESPEC_INACTIVE) {
2690 2690 if (current == DTRACESPEC_COMMITTINGMANY ||
2691 2691 current == DTRACESPEC_COMMITTING ||
2692 2692 current == DTRACESPEC_DISCARDING)
2693 2693 stat = &state->dts_speculations_busy;
2694 2694 i++;
2695 2695 continue;
2696 2696 }
2697 2697
2698 2698 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2699 2699 current, DTRACESPEC_ACTIVE) == current)
2700 2700 return (i + 1);
2701 2701 }
2702 2702
2703 2703 /*
2704 2704 * We couldn't find a speculation. If we found as much as a single
2705 2705 * busy speculation buffer, we'll attribute this failure as "busy"
2706 2706 * instead of "unavail".
2707 2707 */
2708 2708 do {
2709 2709 count = *stat;
2710 2710 } while (dtrace_cas32(stat, count, count + 1) != count);
2711 2711
2712 2712 return (0);
2713 2713 }
2714 2714
2715 2715 /*
2716 2716 * This routine commits an active speculation. If the specified speculation
2717 2717 * is not in a valid state to perform a commit(), this routine will silently do
2718 2718 * nothing. The state of the specified speculation is transitioned according
2719 2719 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2720 2720 */
2721 2721 static void
2722 2722 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2723 2723 dtrace_specid_t which)
2724 2724 {
2725 2725 dtrace_speculation_t *spec;
2726 2726 dtrace_buffer_t *src, *dest;
2727 2727 uintptr_t daddr, saddr, dlimit, slimit;
2728 2728 dtrace_speculation_state_t current, new;
2729 2729 intptr_t offs;
2730 2730 uint64_t timestamp;
2731 2731
2732 2732 if (which == 0)
2733 2733 return;
2734 2734
2735 2735 if (which > state->dts_nspeculations) {
2736 2736 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2737 2737 return;
2738 2738 }
2739 2739
2740 2740 spec = &state->dts_speculations[which - 1];
2741 2741 src = &spec->dtsp_buffer[cpu];
2742 2742 dest = &state->dts_buffer[cpu];
2743 2743
2744 2744 do {
2745 2745 current = spec->dtsp_state;
2746 2746
2747 2747 if (current == DTRACESPEC_COMMITTINGMANY)
2748 2748 break;
2749 2749
2750 2750 switch (current) {
2751 2751 case DTRACESPEC_INACTIVE:
2752 2752 case DTRACESPEC_DISCARDING:
2753 2753 return;
2754 2754
2755 2755 case DTRACESPEC_COMMITTING:
2756 2756 /*
2757 2757 * This is only possible if we are (a) commit()'ing
2758 2758 * without having done a prior speculate() on this CPU
2759 2759 * and (b) racing with another commit() on a different
2760 2760 * CPU. There's nothing to do -- we just assert that
2761 2761 * our offset is 0.
2762 2762 */
2763 2763 ASSERT(src->dtb_offset == 0);
2764 2764 return;
2765 2765
2766 2766 case DTRACESPEC_ACTIVE:
2767 2767 new = DTRACESPEC_COMMITTING;
2768 2768 break;
2769 2769
2770 2770 case DTRACESPEC_ACTIVEONE:
2771 2771 /*
2772 2772 * This speculation is active on one CPU. If our
2773 2773 * buffer offset is non-zero, we know that the one CPU
2774 2774 * must be us. Otherwise, we are committing on a
2775 2775 * different CPU from the speculate(), and we must
2776 2776 * rely on being asynchronously cleaned.
2777 2777 */
2778 2778 if (src->dtb_offset != 0) {
2779 2779 new = DTRACESPEC_COMMITTING;
2780 2780 break;
2781 2781 }
2782 2782 /*FALLTHROUGH*/
2783 2783
2784 2784 case DTRACESPEC_ACTIVEMANY:
2785 2785 new = DTRACESPEC_COMMITTINGMANY;
2786 2786 break;
2787 2787
2788 2788 default:
2789 2789 ASSERT(0);
2790 2790 }
2791 2791 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2792 2792 current, new) != current);
2793 2793
2794 2794 /*
2795 2795 * We have set the state to indicate that we are committing this
2796 2796 * speculation. Now reserve the necessary space in the destination
2797 2797 * buffer.
2798 2798 */
2799 2799 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2800 2800 sizeof (uint64_t), state, NULL)) < 0) {
2801 2801 dtrace_buffer_drop(dest);
2802 2802 goto out;
2803 2803 }
2804 2804
2805 2805 /*
2806 2806 * We have sufficient space to copy the speculative buffer into the
2807 2807 * primary buffer. First, modify the speculative buffer, filling
2808 2808 * in the timestamp of all entries with the current time. The data
2809 2809 * must have the commit() time rather than the time it was traced,
2810 2810 * so that all entries in the primary buffer are in timestamp order.
2811 2811 */
2812 2812 timestamp = dtrace_gethrtime();
2813 2813 saddr = (uintptr_t)src->dtb_tomax;
2814 2814 slimit = saddr + src->dtb_offset;
2815 2815 while (saddr < slimit) {
2816 2816 size_t size;
2817 2817 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2818 2818
2819 2819 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2820 2820 saddr += sizeof (dtrace_epid_t);
2821 2821 continue;
2822 2822 }
2823 2823 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2824 2824 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2825 2825
2826 2826 ASSERT3U(saddr + size, <=, slimit);
2827 2827 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2828 2828 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2829 2829
2830 2830 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2831 2831
2832 2832 saddr += size;
2833 2833 }
2834 2834
2835 2835 /*
2836 2836 * Copy the buffer across. (Note that this is a
2837 2837 * highly subobtimal bcopy(); in the unlikely event that this becomes
2838 2838 * a serious performance issue, a high-performance DTrace-specific
2839 2839 * bcopy() should obviously be invented.)
2840 2840 */
2841 2841 daddr = (uintptr_t)dest->dtb_tomax + offs;
2842 2842 dlimit = daddr + src->dtb_offset;
2843 2843 saddr = (uintptr_t)src->dtb_tomax;
2844 2844
2845 2845 /*
2846 2846 * First, the aligned portion.
2847 2847 */
2848 2848 while (dlimit - daddr >= sizeof (uint64_t)) {
2849 2849 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2850 2850
2851 2851 daddr += sizeof (uint64_t);
2852 2852 saddr += sizeof (uint64_t);
2853 2853 }
2854 2854
2855 2855 /*
2856 2856 * Now any left-over bit...
2857 2857 */
2858 2858 while (dlimit - daddr)
2859 2859 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2860 2860
2861 2861 /*
2862 2862 * Finally, commit the reserved space in the destination buffer.
2863 2863 */
2864 2864 dest->dtb_offset = offs + src->dtb_offset;
2865 2865
2866 2866 out:
2867 2867 /*
2868 2868 * If we're lucky enough to be the only active CPU on this speculation
2869 2869 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2870 2870 */
2871 2871 if (current == DTRACESPEC_ACTIVE ||
2872 2872 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2873 2873 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2874 2874 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2875 2875
2876 2876 ASSERT(rval == DTRACESPEC_COMMITTING);
2877 2877 }
2878 2878
2879 2879 src->dtb_offset = 0;
2880 2880 src->dtb_xamot_drops += src->dtb_drops;
2881 2881 src->dtb_drops = 0;
2882 2882 }
2883 2883
2884 2884 /*
2885 2885 * This routine discards an active speculation. If the specified speculation
2886 2886 * is not in a valid state to perform a discard(), this routine will silently
2887 2887 * do nothing. The state of the specified speculation is transitioned
2888 2888 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2889 2889 */
2890 2890 static void
2891 2891 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2892 2892 dtrace_specid_t which)
2893 2893 {
2894 2894 dtrace_speculation_t *spec;
2895 2895 dtrace_speculation_state_t current, new;
2896 2896 dtrace_buffer_t *buf;
2897 2897
2898 2898 if (which == 0)
2899 2899 return;
2900 2900
2901 2901 if (which > state->dts_nspeculations) {
2902 2902 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2903 2903 return;
2904 2904 }
2905 2905
2906 2906 spec = &state->dts_speculations[which - 1];
2907 2907 buf = &spec->dtsp_buffer[cpu];
2908 2908
2909 2909 do {
2910 2910 current = spec->dtsp_state;
2911 2911
2912 2912 switch (current) {
2913 2913 case DTRACESPEC_INACTIVE:
2914 2914 case DTRACESPEC_COMMITTINGMANY:
2915 2915 case DTRACESPEC_COMMITTING:
2916 2916 case DTRACESPEC_DISCARDING:
2917 2917 return;
2918 2918
2919 2919 case DTRACESPEC_ACTIVE:
2920 2920 case DTRACESPEC_ACTIVEMANY:
2921 2921 new = DTRACESPEC_DISCARDING;
2922 2922 break;
2923 2923
2924 2924 case DTRACESPEC_ACTIVEONE:
2925 2925 if (buf->dtb_offset != 0) {
2926 2926 new = DTRACESPEC_INACTIVE;
2927 2927 } else {
2928 2928 new = DTRACESPEC_DISCARDING;
2929 2929 }
2930 2930 break;
2931 2931
2932 2932 default:
2933 2933 ASSERT(0);
2934 2934 }
2935 2935 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2936 2936 current, new) != current);
2937 2937
2938 2938 buf->dtb_offset = 0;
2939 2939 buf->dtb_drops = 0;
2940 2940 }
2941 2941
2942 2942 /*
2943 2943 * Note: not called from probe context. This function is called
2944 2944 * asynchronously from cross call context to clean any speculations that are
2945 2945 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be
2946 2946 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2947 2947 * speculation.
2948 2948 */
2949 2949 static void
2950 2950 dtrace_speculation_clean_here(dtrace_state_t *state)
2951 2951 {
2952 2952 dtrace_icookie_t cookie;
2953 2953 processorid_t cpu = CPU->cpu_id;
2954 2954 dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2955 2955 dtrace_specid_t i;
2956 2956
2957 2957 cookie = dtrace_interrupt_disable();
2958 2958
2959 2959 if (dest->dtb_tomax == NULL) {
2960 2960 dtrace_interrupt_enable(cookie);
2961 2961 return;
2962 2962 }
2963 2963
2964 2964 for (i = 0; i < state->dts_nspeculations; i++) {
2965 2965 dtrace_speculation_t *spec = &state->dts_speculations[i];
2966 2966 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2967 2967
2968 2968 if (src->dtb_tomax == NULL)
2969 2969 continue;
2970 2970
2971 2971 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2972 2972 src->dtb_offset = 0;
2973 2973 continue;
2974 2974 }
2975 2975
2976 2976 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2977 2977 continue;
2978 2978
2979 2979 if (src->dtb_offset == 0)
2980 2980 continue;
2981 2981
2982 2982 dtrace_speculation_commit(state, cpu, i + 1);
2983 2983 }
2984 2984
2985 2985 dtrace_interrupt_enable(cookie);
2986 2986 }
2987 2987
2988 2988 /*
2989 2989 * Note: not called from probe context. This function is called
2990 2990 * asynchronously (and at a regular interval) to clean any speculations that
2991 2991 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there
2992 2992 * is work to be done, it cross calls all CPUs to perform that work;
2993 2993 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2994 2994 * INACTIVE state until they have been cleaned by all CPUs.
2995 2995 */
2996 2996 static void
2997 2997 dtrace_speculation_clean(dtrace_state_t *state)
2998 2998 {
2999 2999 int work = 0, rv;
3000 3000 dtrace_specid_t i;
3001 3001
3002 3002 for (i = 0; i < state->dts_nspeculations; i++) {
3003 3003 dtrace_speculation_t *spec = &state->dts_speculations[i];
3004 3004
3005 3005 ASSERT(!spec->dtsp_cleaning);
3006 3006
3007 3007 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
3008 3008 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3009 3009 continue;
3010 3010
3011 3011 work++;
3012 3012 spec->dtsp_cleaning = 1;
3013 3013 }
3014 3014
3015 3015 if (!work)
3016 3016 return;
3017 3017
3018 3018 dtrace_xcall(DTRACE_CPUALL,
3019 3019 (dtrace_xcall_t)dtrace_speculation_clean_here, state);
3020 3020
3021 3021 /*
3022 3022 * We now know that all CPUs have committed or discarded their
3023 3023 * speculation buffers, as appropriate. We can now set the state
3024 3024 * to inactive.
3025 3025 */
3026 3026 for (i = 0; i < state->dts_nspeculations; i++) {
3027 3027 dtrace_speculation_t *spec = &state->dts_speculations[i];
3028 3028 dtrace_speculation_state_t current, new;
3029 3029
3030 3030 if (!spec->dtsp_cleaning)
3031 3031 continue;
3032 3032
3033 3033 current = spec->dtsp_state;
3034 3034 ASSERT(current == DTRACESPEC_DISCARDING ||
3035 3035 current == DTRACESPEC_COMMITTINGMANY);
3036 3036
3037 3037 new = DTRACESPEC_INACTIVE;
3038 3038
3039 3039 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
3040 3040 ASSERT(rv == current);
3041 3041 spec->dtsp_cleaning = 0;
3042 3042 }
3043 3043 }
3044 3044
3045 3045 /*
3046 3046 * Called as part of a speculate() to get the speculative buffer associated
3047 3047 * with a given speculation. Returns NULL if the specified speculation is not
3048 3048 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and
3049 3049 * the active CPU is not the specified CPU -- the speculation will be
3050 3050 * atomically transitioned into the ACTIVEMANY state.
3051 3051 */
3052 3052 static dtrace_buffer_t *
3053 3053 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
3054 3054 dtrace_specid_t which)
3055 3055 {
3056 3056 dtrace_speculation_t *spec;
3057 3057 dtrace_speculation_state_t current, new;
3058 3058 dtrace_buffer_t *buf;
3059 3059
3060 3060 if (which == 0)
3061 3061 return (NULL);
3062 3062
3063 3063 if (which > state->dts_nspeculations) {
3064 3064 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3065 3065 return (NULL);
3066 3066 }
3067 3067
3068 3068 spec = &state->dts_speculations[which - 1];
3069 3069 buf = &spec->dtsp_buffer[cpuid];
3070 3070
3071 3071 do {
3072 3072 current = spec->dtsp_state;
3073 3073
3074 3074 switch (current) {
3075 3075 case DTRACESPEC_INACTIVE:
3076 3076 case DTRACESPEC_COMMITTINGMANY:
3077 3077 case DTRACESPEC_DISCARDING:
3078 3078 return (NULL);
3079 3079
3080 3080 case DTRACESPEC_COMMITTING:
3081 3081 ASSERT(buf->dtb_offset == 0);
3082 3082 return (NULL);
3083 3083
3084 3084 case DTRACESPEC_ACTIVEONE:
3085 3085 /*
3086 3086 * This speculation is currently active on one CPU.
3087 3087 * Check the offset in the buffer; if it's non-zero,
3088 3088 * that CPU must be us (and we leave the state alone).
3089 3089 * If it's zero, assume that we're starting on a new
3090 3090 * CPU -- and change the state to indicate that the
3091 3091 * speculation is active on more than one CPU.
3092 3092 */
3093 3093 if (buf->dtb_offset != 0)
3094 3094 return (buf);
3095 3095
3096 3096 new = DTRACESPEC_ACTIVEMANY;
3097 3097 break;
3098 3098
3099 3099 case DTRACESPEC_ACTIVEMANY:
3100 3100 return (buf);
3101 3101
3102 3102 case DTRACESPEC_ACTIVE:
3103 3103 new = DTRACESPEC_ACTIVEONE;
3104 3104 break;
3105 3105
3106 3106 default:
3107 3107 ASSERT(0);
3108 3108 }
3109 3109 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3110 3110 current, new) != current);
3111 3111
3112 3112 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3113 3113 return (buf);
3114 3114 }
3115 3115
3116 3116 /*
3117 3117 * Return a string. In the event that the user lacks the privilege to access
3118 3118 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3119 3119 * don't fail access checking.
3120 3120 *
3121 3121 * dtrace_dif_variable() uses this routine as a helper for various
3122 3122 * builtin values such as 'execname' and 'probefunc.'
3123 3123 */
3124 3124 uintptr_t
3125 3125 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3126 3126 dtrace_mstate_t *mstate)
3127 3127 {
3128 3128 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3129 3129 uintptr_t ret;
3130 3130 size_t strsz;
3131 3131
3132 3132 /*
3133 3133 * The easy case: this probe is allowed to read all of memory, so
3134 3134 * we can just return this as a vanilla pointer.
3135 3135 */
3136 3136 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3137 3137 return (addr);
3138 3138
3139 3139 /*
3140 3140 * This is the tougher case: we copy the string in question from
3141 3141 * kernel memory into scratch memory and return it that way: this
3142 3142 * ensures that we won't trip up when access checking tests the
3143 3143 * BYREF return value.
3144 3144 */
3145 3145 strsz = dtrace_strlen((char *)addr, size) + 1;
3146 3146
3147 3147 if (mstate->dtms_scratch_ptr + strsz >
3148 3148 mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3149 3149 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3150 3150 return (0);
3151 3151 }
3152 3152
3153 3153 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3154 3154 strsz);
3155 3155 ret = mstate->dtms_scratch_ptr;
3156 3156 mstate->dtms_scratch_ptr += strsz;
3157 3157 return (ret);
3158 3158 }
3159 3159
3160 3160 /*
3161 3161 * This function implements the DIF emulator's variable lookups. The emulator
3162 3162 * passes a reserved variable identifier and optional built-in array index.
3163 3163 */
3164 3164 static uint64_t
3165 3165 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3166 3166 uint64_t ndx)
3167 3167 {
3168 3168 /*
3169 3169 * If we're accessing one of the uncached arguments, we'll turn this
3170 3170 * into a reference in the args array.
3171 3171 */
3172 3172 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3173 3173 ndx = v - DIF_VAR_ARG0;
3174 3174 v = DIF_VAR_ARGS;
3175 3175 }
3176 3176
3177 3177 switch (v) {
3178 3178 case DIF_VAR_ARGS:
3179 3179 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) {
3180 3180 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |=
3181 3181 CPU_DTRACE_KPRIV;
3182 3182 return (0);
3183 3183 }
3184 3184
3185 3185 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3186 3186 if (ndx >= sizeof (mstate->dtms_arg) /
3187 3187 sizeof (mstate->dtms_arg[0])) {
3188 3188 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3189 3189 dtrace_provider_t *pv;
3190 3190 uint64_t val;
3191 3191
3192 3192 pv = mstate->dtms_probe->dtpr_provider;
3193 3193 if (pv->dtpv_pops.dtps_getargval != NULL)
3194 3194 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3195 3195 mstate->dtms_probe->dtpr_id,
3196 3196 mstate->dtms_probe->dtpr_arg, ndx, aframes);
3197 3197 else
3198 3198 val = dtrace_getarg(ndx, aframes);
3199 3199
3200 3200 /*
3201 3201 * This is regrettably required to keep the compiler
3202 3202 * from tail-optimizing the call to dtrace_getarg().
3203 3203 * The condition always evaluates to true, but the
3204 3204 * compiler has no way of figuring that out a priori.
3205 3205 * (None of this would be necessary if the compiler
3206 3206 * could be relied upon to _always_ tail-optimize
3207 3207 * the call to dtrace_getarg() -- but it can't.)
3208 3208 */
3209 3209 if (mstate->dtms_probe != NULL)
3210 3210 return (val);
3211 3211
3212 3212 ASSERT(0);
3213 3213 }
3214 3214
3215 3215 return (mstate->dtms_arg[ndx]);
3216 3216
3217 3217 case DIF_VAR_UREGS: {
3218 3218 klwp_t *lwp;
3219 3219
3220 3220 if (!dtrace_priv_proc(state, mstate))
3221 3221 return (0);
3222 3222
3223 3223 if ((lwp = curthread->t_lwp) == NULL) {
3224 3224 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3225 3225 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = 0;
3226 3226 return (0);
3227 3227 }
3228 3228
3229 3229 return (dtrace_getreg(lwp->lwp_regs, ndx));
3230 3230 }
3231 3231
3232 3232 case DIF_VAR_VMREGS: {
3233 3233 uint64_t rval;
3234 3234
3235 3235 if (!dtrace_priv_kernel(state))
3236 3236 return (0);
3237 3237
3238 3238 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3239 3239
3240 3240 rval = dtrace_getvmreg(ndx,
3241 3241 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags);
3242 3242
3243 3243 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3244 3244
3245 3245 return (rval);
3246 3246 }
3247 3247
3248 3248 case DIF_VAR_CURTHREAD:
3249 3249 if (!dtrace_priv_proc(state, mstate))
3250 3250 return (0);
3251 3251 return ((uint64_t)(uintptr_t)curthread);
3252 3252
3253 3253 case DIF_VAR_TIMESTAMP:
3254 3254 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3255 3255 mstate->dtms_timestamp = dtrace_gethrtime();
3256 3256 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3257 3257 }
3258 3258 return (mstate->dtms_timestamp);
3259 3259
3260 3260 case DIF_VAR_VTIMESTAMP:
3261 3261 ASSERT(dtrace_vtime_references != 0);
3262 3262 return (curthread->t_dtrace_vtime);
3263 3263
3264 3264 case DIF_VAR_WALLTIMESTAMP:
3265 3265 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3266 3266 mstate->dtms_walltimestamp = dtrace_gethrestime();
3267 3267 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3268 3268 }
3269 3269 return (mstate->dtms_walltimestamp);
3270 3270
3271 3271 case DIF_VAR_IPL:
3272 3272 if (!dtrace_priv_kernel(state))
3273 3273 return (0);
3274 3274 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3275 3275 mstate->dtms_ipl = dtrace_getipl();
3276 3276 mstate->dtms_present |= DTRACE_MSTATE_IPL;
3277 3277 }
3278 3278 return (mstate->dtms_ipl);
3279 3279
3280 3280 case DIF_VAR_EPID:
3281 3281 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3282 3282 return (mstate->dtms_epid);
3283 3283
3284 3284 case DIF_VAR_ID:
3285 3285 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3286 3286 return (mstate->dtms_probe->dtpr_id);
3287 3287
3288 3288 case DIF_VAR_STACKDEPTH:
3289 3289 if (!dtrace_priv_kernel(state))
3290 3290 return (0);
3291 3291 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3292 3292 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3293 3293
3294 3294 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3295 3295 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3296 3296 }
3297 3297 return (mstate->dtms_stackdepth);
3298 3298
3299 3299 case DIF_VAR_USTACKDEPTH:
3300 3300 if (!dtrace_priv_proc(state, mstate))
3301 3301 return (0);
3302 3302 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3303 3303 /*
3304 3304 * See comment in DIF_VAR_PID.
3305 3305 */
3306 3306 if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3307 3307 CPU_ON_INTR(CPU)) {
3308 3308 mstate->dtms_ustackdepth = 0;
3309 3309 } else {
3310 3310 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3311 3311 mstate->dtms_ustackdepth =
3312 3312 dtrace_getustackdepth();
3313 3313 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3314 3314 }
3315 3315 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3316 3316 }
3317 3317 return (mstate->dtms_ustackdepth);
3318 3318
3319 3319 case DIF_VAR_CALLER:
3320 3320 if (!dtrace_priv_kernel(state))
3321 3321 return (0);
3322 3322 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3323 3323 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3324 3324
3325 3325 if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3326 3326 /*
3327 3327 * If this is an unanchored probe, we are
3328 3328 * required to go through the slow path:
3329 3329 * dtrace_caller() only guarantees correct
3330 3330 * results for anchored probes.
3331 3331 */
3332 3332 pc_t caller[2];
3333 3333
3334 3334 dtrace_getpcstack(caller, 2, aframes,
3335 3335 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3336 3336 mstate->dtms_caller = caller[1];
3337 3337 } else if ((mstate->dtms_caller =
3338 3338 dtrace_caller(aframes)) == -1) {
3339 3339 /*
3340 3340 * We have failed to do this the quick way;
3341 3341 * we must resort to the slower approach of
3342 3342 * calling dtrace_getpcstack().
3343 3343 */
3344 3344 pc_t caller;
3345 3345
3346 3346 dtrace_getpcstack(&caller, 1, aframes, NULL);
3347 3347 mstate->dtms_caller = caller;
3348 3348 }
3349 3349
3350 3350 mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3351 3351 }
3352 3352 return (mstate->dtms_caller);
3353 3353
3354 3354 case DIF_VAR_UCALLER:
3355 3355 if (!dtrace_priv_proc(state, mstate))
3356 3356 return (0);
3357 3357
3358 3358 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3359 3359 uint64_t ustack[3];
3360 3360
3361 3361 /*
3362 3362 * dtrace_getupcstack() fills in the first uint64_t
3363 3363 * with the current PID. The second uint64_t will
3364 3364 * be the program counter at user-level. The third
3365 3365 * uint64_t will contain the caller, which is what
3366 3366 * we're after.
3367 3367 */
3368 3368 ustack[2] = 0;
3369 3369 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3370 3370 dtrace_getupcstack(ustack, 3);
3371 3371 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3372 3372 mstate->dtms_ucaller = ustack[2];
3373 3373 mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3374 3374 }
3375 3375
3376 3376 return (mstate->dtms_ucaller);
3377 3377
3378 3378 case DIF_VAR_PROBEPROV:
3379 3379 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3380 3380 return (dtrace_dif_varstr(
3381 3381 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3382 3382 state, mstate));
3383 3383
3384 3384 case DIF_VAR_PROBEMOD:
3385 3385 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3386 3386 return (dtrace_dif_varstr(
3387 3387 (uintptr_t)mstate->dtms_probe->dtpr_mod,
3388 3388 state, mstate));
3389 3389
3390 3390 case DIF_VAR_PROBEFUNC:
3391 3391 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3392 3392 return (dtrace_dif_varstr(
3393 3393 (uintptr_t)mstate->dtms_probe->dtpr_func,
3394 3394 state, mstate));
3395 3395
3396 3396 case DIF_VAR_PROBENAME:
3397 3397 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3398 3398 return (dtrace_dif_varstr(
3399 3399 (uintptr_t)mstate->dtms_probe->dtpr_name,
3400 3400 state, mstate));
3401 3401
3402 3402 case DIF_VAR_PID:
3403 3403 if (!dtrace_priv_proc(state, mstate))
3404 3404 return (0);
3405 3405
3406 3406 /*
3407 3407 * Note that we are assuming that an unanchored probe is
3408 3408 * always due to a high-level interrupt. (And we're assuming
3409 3409 * that there is only a single high level interrupt.)
3410 3410 */
3411 3411 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3412 3412 return (pid0.pid_id);
3413 3413
3414 3414 /*
3415 3415 * It is always safe to dereference one's own t_procp pointer:
3416 3416 * it always points to a valid, allocated proc structure.
3417 3417 * Further, it is always safe to dereference the p_pidp member
3418 3418 * of one's own proc structure. (These are truisms becuase
3419 3419 * threads and processes don't clean up their own state --
3420 3420 * they leave that task to whomever reaps them.)
3421 3421 */
3422 3422 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3423 3423
3424 3424 case DIF_VAR_PPID:
3425 3425 if (!dtrace_priv_proc(state, mstate))
3426 3426 return (0);
3427 3427
3428 3428 /*
3429 3429 * See comment in DIF_VAR_PID.
3430 3430 */
3431 3431 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3432 3432 return (pid0.pid_id);
3433 3433
3434 3434 /*
3435 3435 * It is always safe to dereference one's own t_procp pointer:
3436 3436 * it always points to a valid, allocated proc structure.
3437 3437 * (This is true because threads don't clean up their own
3438 3438 * state -- they leave that task to whomever reaps them.)
3439 3439 */
3440 3440 return ((uint64_t)curthread->t_procp->p_ppid);
3441 3441
3442 3442 case DIF_VAR_TID:
3443 3443 /*
3444 3444 * See comment in DIF_VAR_PID.
3445 3445 */
3446 3446 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3447 3447 return (0);
3448 3448
3449 3449 return ((uint64_t)curthread->t_tid);
3450 3450
3451 3451 case DIF_VAR_EXECNAME:
3452 3452 if (!dtrace_priv_proc(state, mstate))
3453 3453 return (0);
3454 3454
3455 3455 /*
3456 3456 * See comment in DIF_VAR_PID.
3457 3457 */
3458 3458 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3459 3459 return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3460 3460
3461 3461 /*
3462 3462 * It is always safe to dereference one's own t_procp pointer:
3463 3463 * it always points to a valid, allocated proc structure.
3464 3464 * (This is true because threads don't clean up their own
3465 3465 * state -- they leave that task to whomever reaps them.)
3466 3466 */
3467 3467 return (dtrace_dif_varstr(
3468 3468 (uintptr_t)curthread->t_procp->p_user.u_comm,
3469 3469 state, mstate));
3470 3470
3471 3471 case DIF_VAR_ZONENAME:
3472 3472 if (!dtrace_priv_proc(state, mstate))
3473 3473 return (0);
3474 3474
3475 3475 /*
3476 3476 * See comment in DIF_VAR_PID.
3477 3477 */
3478 3478 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3479 3479 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3480 3480
3481 3481 /*
3482 3482 * It is always safe to dereference one's own t_procp pointer:
3483 3483 * it always points to a valid, allocated proc structure.
3484 3484 * (This is true because threads don't clean up their own
3485 3485 * state -- they leave that task to whomever reaps them.)
3486 3486 */
3487 3487 return (dtrace_dif_varstr(
3488 3488 (uintptr_t)curthread->t_procp->p_zone->zone_name,
3489 3489 state, mstate));
3490 3490
3491 3491 case DIF_VAR_UID:
3492 3492 if (!dtrace_priv_proc(state, mstate))
3493 3493 return (0);
3494 3494
3495 3495 /*
3496 3496 * See comment in DIF_VAR_PID.
3497 3497 */
3498 3498 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3499 3499 return ((uint64_t)p0.p_cred->cr_uid);
3500 3500
3501 3501 /*
3502 3502 * It is always safe to dereference one's own t_procp pointer:
3503 3503 * it always points to a valid, allocated proc structure.
3504 3504 * (This is true because threads don't clean up their own
3505 3505 * state -- they leave that task to whomever reaps them.)
3506 3506 *
3507 3507 * Additionally, it is safe to dereference one's own process
3508 3508 * credential, since this is never NULL after process birth.
3509 3509 */
3510 3510 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3511 3511
3512 3512 case DIF_VAR_GID:
3513 3513 if (!dtrace_priv_proc(state, mstate))
3514 3514 return (0);
3515 3515
3516 3516 /*
3517 3517 * See comment in DIF_VAR_PID.
3518 3518 */
3519 3519 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3520 3520 return ((uint64_t)p0.p_cred->cr_gid);
3521 3521
3522 3522 /*
3523 3523 * It is always safe to dereference one's own t_procp pointer:
3524 3524 * it always points to a valid, allocated proc structure.
3525 3525 * (This is true because threads don't clean up their own
3526 3526 * state -- they leave that task to whomever reaps them.)
3527 3527 *
3528 3528 * Additionally, it is safe to dereference one's own process
3529 3529 * credential, since this is never NULL after process birth.
3530 3530 */
3531 3531 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3532 3532
3533 3533 case DIF_VAR_ERRNO: {
3534 3534 klwp_t *lwp;
3535 3535 if (!dtrace_priv_proc(state, mstate))
3536 3536 return (0);
3537 3537
3538 3538 /*
3539 3539 * See comment in DIF_VAR_PID.
3540 3540 */
3541 3541 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3542 3542 return (0);
3543 3543
3544 3544 /*
3545 3545 * It is always safe to dereference one's own t_lwp pointer in
3546 3546 * the event that this pointer is non-NULL. (This is true
3547 3547 * because threads and lwps don't clean up their own state --
3548 3548 * they leave that task to whomever reaps them.)
3549 3549 */
3550 3550 if ((lwp = curthread->t_lwp) == NULL)
3551 3551 return (0);
3552 3552
3553 3553 return ((uint64_t)lwp->lwp_errno);
3554 3554 }
3555 3555
3556 3556 case DIF_VAR_THREADNAME:
3557 3557 /*
3558 3558 * See comment in DIF_VAR_PID.
3559 3559 */
3560 3560 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3561 3561 return (0);
3562 3562
3563 3563 if (curthread->t_name == NULL)
3564 3564 return (0);
3565 3565
3566 3566 /*
3567 3567 * Once set, ->t_name itself is never changed: any updates are
3568 3568 * made to the same buffer that we are pointing out. So we are
3569 3569 * safe to dereference it here.
3570 3570 */
3571 3571 return (dtrace_dif_varstr((uintptr_t)curthread->t_name,
3572 3572 state, mstate));
3573 3573
3574 3574 default:
3575 3575 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3576 3576 return (0);
3577 3577 }
3578 3578 }
3579 3579
3580 3580 static void
3581 3581 dtrace_dif_variable_write(dtrace_mstate_t *mstate, dtrace_state_t *state,
3582 3582 uint64_t v, uint64_t ndx, uint64_t data)
3583 3583 {
3584 3584 switch (v) {
3585 3585 case DIF_VAR_UREGS: {
3586 3586 klwp_t *lwp;
3587 3587
3588 3588 if (dtrace_destructive_disallow ||
3589 3589 !dtrace_priv_proc_control(state, mstate)) {
3590 3590 return;
3591 3591 }
3592 3592
3593 3593 if ((lwp = curthread->t_lwp) == NULL) {
3594 3594 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3595 3595 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = 0;
3596 3596 return;
3597 3597 }
3598 3598
3599 3599 dtrace_setreg(lwp->lwp_regs, ndx, data);
3600 3600 return;
3601 3601 }
3602 3602
3603 3603 default:
3604 3604 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3605 3605 return;
3606 3606 }
3607 3607 }
3608 3608
3609 3609 typedef enum dtrace_json_state {
3610 3610 DTRACE_JSON_REST = 1,
3611 3611 DTRACE_JSON_OBJECT,
3612 3612 DTRACE_JSON_STRING,
3613 3613 DTRACE_JSON_STRING_ESCAPE,
3614 3614 DTRACE_JSON_STRING_ESCAPE_UNICODE,
3615 3615 DTRACE_JSON_COLON,
3616 3616 DTRACE_JSON_COMMA,
3617 3617 DTRACE_JSON_VALUE,
3618 3618 DTRACE_JSON_IDENTIFIER,
3619 3619 DTRACE_JSON_NUMBER,
3620 3620 DTRACE_JSON_NUMBER_FRAC,
3621 3621 DTRACE_JSON_NUMBER_EXP,
3622 3622 DTRACE_JSON_COLLECT_OBJECT
3623 3623 } dtrace_json_state_t;
3624 3624
3625 3625 /*
3626 3626 * This function possesses just enough knowledge about JSON to extract a single
3627 3627 * value from a JSON string and store it in the scratch buffer. It is able
3628 3628 * to extract nested object values, and members of arrays by index.
3629 3629 *
3630 3630 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3631 3631 * be looked up as we descend into the object tree. e.g.
3632 3632 *
3633 3633 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3634 3634 * with nelems = 5.
3635 3635 *
3636 3636 * The run time of this function must be bounded above by strsize to limit the
3637 3637 * amount of work done in probe context. As such, it is implemented as a
3638 3638 * simple state machine, reading one character at a time using safe loads
3639 3639 * until we find the requested element, hit a parsing error or run off the
3640 3640 * end of the object or string.
3641 3641 *
3642 3642 * As there is no way for a subroutine to return an error without interrupting
3643 3643 * clause execution, we simply return NULL in the event of a missing key or any
3644 3644 * other error condition. Each NULL return in this function is commented with
3645 3645 * the error condition it represents -- parsing or otherwise.
3646 3646 *
3647 3647 * The set of states for the state machine closely matches the JSON
3648 3648 * specification (http://json.org/). Briefly:
3649 3649 *
3650 3650 * DTRACE_JSON_REST:
3651 3651 * Skip whitespace until we find either a top-level Object, moving
3652 3652 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3653 3653 *
3654 3654 * DTRACE_JSON_OBJECT:
3655 3655 * Locate the next key String in an Object. Sets a flag to denote
3656 3656 * the next String as a key string and moves to DTRACE_JSON_STRING.
3657 3657 *
3658 3658 * DTRACE_JSON_COLON:
3659 3659 * Skip whitespace until we find the colon that separates key Strings
3660 3660 * from their values. Once found, move to DTRACE_JSON_VALUE.
3661 3661 *
3662 3662 * DTRACE_JSON_VALUE:
3663 3663 * Detects the type of the next value (String, Number, Identifier, Object
3664 3664 * or Array) and routes to the states that process that type. Here we also
3665 3665 * deal with the element selector list if we are requested to traverse down
3666 3666 * into the object tree.
3667 3667 *
3668 3668 * DTRACE_JSON_COMMA:
3669 3669 * Skip whitespace until we find the comma that separates key-value pairs
3670 3670 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3671 3671 * (similarly DTRACE_JSON_VALUE). All following literal value processing
3672 3672 * states return to this state at the end of their value, unless otherwise
3673 3673 * noted.
3674 3674 *
3675 3675 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3676 3676 * Processes a Number literal from the JSON, including any exponent
3677 3677 * component that may be present. Numbers are returned as strings, which
3678 3678 * may be passed to strtoll() if an integer is required.
3679 3679 *
3680 3680 * DTRACE_JSON_IDENTIFIER:
3681 3681 * Processes a "true", "false" or "null" literal in the JSON.
3682 3682 *
3683 3683 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3684 3684 * DTRACE_JSON_STRING_ESCAPE_UNICODE:
3685 3685 * Processes a String literal from the JSON, whether the String denotes
3686 3686 * a key, a value or part of a larger Object. Handles all escape sequences
3687 3687 * present in the specification, including four-digit unicode characters,
3688 3688 * but merely includes the escape sequence without converting it to the
3689 3689 * actual escaped character. If the String is flagged as a key, we
3690 3690 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3691 3691 *
3692 3692 * DTRACE_JSON_COLLECT_OBJECT:
3693 3693 * This state collects an entire Object (or Array), correctly handling
3694 3694 * embedded strings. If the full element selector list matches this nested
3695 3695 * object, we return the Object in full as a string. If not, we use this
3696 3696 * state to skip to the next value at this level and continue processing.
3697 3697 *
3698 3698 * NOTE: This function uses various macros from strtolctype.h to manipulate
3699 3699 * digit values, etc -- these have all been checked to ensure they make
3700 3700 * no additional function calls.
3701 3701 */
3702 3702 static char *
3703 3703 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3704 3704 char *dest)
3705 3705 {
3706 3706 dtrace_json_state_t state = DTRACE_JSON_REST;
3707 3707 int64_t array_elem = INT64_MIN;
3708 3708 int64_t array_pos = 0;
3709 3709 uint8_t escape_unicount = 0;
3710 3710 boolean_t string_is_key = B_FALSE;
3711 3711 boolean_t collect_object = B_FALSE;
3712 3712 boolean_t found_key = B_FALSE;
3713 3713 boolean_t in_array = B_FALSE;
3714 3714 uint32_t braces = 0, brackets = 0;
3715 3715 char *elem = elemlist;
3716 3716 char *dd = dest;
3717 3717 uintptr_t cur;
3718 3718
3719 3719 for (cur = json; cur < json + size; cur++) {
3720 3720 char cc = dtrace_load8(cur);
3721 3721 if (cc == '\0')
3722 3722 return (NULL);
3723 3723
3724 3724 switch (state) {
3725 3725 case DTRACE_JSON_REST:
3726 3726 if (isspace(cc))
3727 3727 break;
3728 3728
3729 3729 if (cc == '{') {
3730 3730 state = DTRACE_JSON_OBJECT;
3731 3731 break;
3732 3732 }
3733 3733
3734 3734 if (cc == '[') {
3735 3735 in_array = B_TRUE;
3736 3736 array_pos = 0;
3737 3737 array_elem = dtrace_strtoll(elem, 10, size);
3738 3738 found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3739 3739 state = DTRACE_JSON_VALUE;
3740 3740 break;
3741 3741 }
3742 3742
3743 3743 /*
3744 3744 * ERROR: expected to find a top-level object or array.
3745 3745 */
3746 3746 return (NULL);
3747 3747 case DTRACE_JSON_OBJECT:
3748 3748 if (isspace(cc))
3749 3749 break;
3750 3750
3751 3751 if (cc == '"') {
3752 3752 state = DTRACE_JSON_STRING;
3753 3753 string_is_key = B_TRUE;
3754 3754 break;
3755 3755 }
3756 3756
3757 3757 /*
3758 3758 * ERROR: either the object did not start with a key
3759 3759 * string, or we've run off the end of the object
3760 3760 * without finding the requested key.
3761 3761 */
3762 3762 return (NULL);
3763 3763 case DTRACE_JSON_STRING:
3764 3764 if (cc == '\\') {
3765 3765 *dd++ = '\\';
3766 3766 state = DTRACE_JSON_STRING_ESCAPE;
3767 3767 break;
3768 3768 }
3769 3769
3770 3770 if (cc == '"') {
3771 3771 if (collect_object) {
3772 3772 /*
3773 3773 * We don't reset the dest here, as
3774 3774 * the string is part of a larger
3775 3775 * object being collected.
3776 3776 */
3777 3777 *dd++ = cc;
3778 3778 collect_object = B_FALSE;
3779 3779 state = DTRACE_JSON_COLLECT_OBJECT;
3780 3780 break;
3781 3781 }
3782 3782 *dd = '\0';
3783 3783 dd = dest; /* reset string buffer */
3784 3784 if (string_is_key) {
3785 3785 if (dtrace_strncmp(dest, elem,
3786 3786 size) == 0)
3787 3787 found_key = B_TRUE;
3788 3788 } else if (found_key) {
3789 3789 if (nelems > 1) {
3790 3790 /*
3791 3791 * We expected an object, not
3792 3792 * this string.
3793 3793 */
3794 3794 return (NULL);
3795 3795 }
3796 3796 return (dest);
3797 3797 }
3798 3798 state = string_is_key ? DTRACE_JSON_COLON :
3799 3799 DTRACE_JSON_COMMA;
3800 3800 string_is_key = B_FALSE;
3801 3801 break;
3802 3802 }
3803 3803
3804 3804 *dd++ = cc;
3805 3805 break;
3806 3806 case DTRACE_JSON_STRING_ESCAPE:
3807 3807 *dd++ = cc;
3808 3808 if (cc == 'u') {
3809 3809 escape_unicount = 0;
3810 3810 state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3811 3811 } else {
3812 3812 state = DTRACE_JSON_STRING;
3813 3813 }
3814 3814 break;
3815 3815 case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3816 3816 if (!isxdigit(cc)) {
3817 3817 /*
3818 3818 * ERROR: invalid unicode escape, expected
3819 3819 * four valid hexidecimal digits.
3820 3820 */
3821 3821 return (NULL);
3822 3822 }
3823 3823
3824 3824 *dd++ = cc;
3825 3825 if (++escape_unicount == 4)
3826 3826 state = DTRACE_JSON_STRING;
3827 3827 break;
3828 3828 case DTRACE_JSON_COLON:
3829 3829 if (isspace(cc))
3830 3830 break;
3831 3831
3832 3832 if (cc == ':') {
3833 3833 state = DTRACE_JSON_VALUE;
3834 3834 break;
3835 3835 }
3836 3836
3837 3837 /*
3838 3838 * ERROR: expected a colon.
3839 3839 */
3840 3840 return (NULL);
3841 3841 case DTRACE_JSON_COMMA:
3842 3842 if (isspace(cc))
3843 3843 break;
3844 3844
3845 3845 if (cc == ',') {
3846 3846 if (in_array) {
3847 3847 state = DTRACE_JSON_VALUE;
3848 3848 if (++array_pos == array_elem)
3849 3849 found_key = B_TRUE;
3850 3850 } else {
3851 3851 state = DTRACE_JSON_OBJECT;
3852 3852 }
3853 3853 break;
3854 3854 }
3855 3855
3856 3856 /*
3857 3857 * ERROR: either we hit an unexpected character, or
3858 3858 * we reached the end of the object or array without
3859 3859 * finding the requested key.
3860 3860 */
3861 3861 return (NULL);
3862 3862 case DTRACE_JSON_IDENTIFIER:
3863 3863 if (islower(cc)) {
3864 3864 *dd++ = cc;
3865 3865 break;
3866 3866 }
3867 3867
3868 3868 *dd = '\0';
3869 3869 dd = dest; /* reset string buffer */
3870 3870
3871 3871 if (dtrace_strncmp(dest, "true", 5) == 0 ||
3872 3872 dtrace_strncmp(dest, "false", 6) == 0 ||
3873 3873 dtrace_strncmp(dest, "null", 5) == 0) {
3874 3874 if (found_key) {
3875 3875 if (nelems > 1) {
3876 3876 /*
3877 3877 * ERROR: We expected an object,
3878 3878 * not this identifier.
3879 3879 */
3880 3880 return (NULL);
3881 3881 }
3882 3882 return (dest);
3883 3883 } else {
3884 3884 cur--;
3885 3885 state = DTRACE_JSON_COMMA;
3886 3886 break;
3887 3887 }
3888 3888 }
3889 3889
3890 3890 /*
3891 3891 * ERROR: we did not recognise the identifier as one
3892 3892 * of those in the JSON specification.
3893 3893 */
3894 3894 return (NULL);
3895 3895 case DTRACE_JSON_NUMBER:
3896 3896 if (cc == '.') {
3897 3897 *dd++ = cc;
3898 3898 state = DTRACE_JSON_NUMBER_FRAC;
3899 3899 break;
3900 3900 }
3901 3901
3902 3902 if (cc == 'x' || cc == 'X') {
3903 3903 /*
3904 3904 * ERROR: specification explicitly excludes
3905 3905 * hexidecimal or octal numbers.
3906 3906 */
3907 3907 return (NULL);
3908 3908 }
3909 3909
3910 3910 /* FALLTHRU */
3911 3911 case DTRACE_JSON_NUMBER_FRAC:
3912 3912 if (cc == 'e' || cc == 'E') {
3913 3913 *dd++ = cc;
3914 3914 state = DTRACE_JSON_NUMBER_EXP;
3915 3915 break;
3916 3916 }
3917 3917
3918 3918 if (cc == '+' || cc == '-') {
3919 3919 /*
3920 3920 * ERROR: expect sign as part of exponent only.
3921 3921 */
3922 3922 return (NULL);
3923 3923 }
3924 3924 /* FALLTHRU */
3925 3925 case DTRACE_JSON_NUMBER_EXP:
3926 3926 if (isdigit(cc) || cc == '+' || cc == '-') {
3927 3927 *dd++ = cc;
3928 3928 break;
3929 3929 }
3930 3930
3931 3931 *dd = '\0';
3932 3932 dd = dest; /* reset string buffer */
3933 3933 if (found_key) {
3934 3934 if (nelems > 1) {
3935 3935 /*
3936 3936 * ERROR: We expected an object, not
3937 3937 * this number.
3938 3938 */
3939 3939 return (NULL);
3940 3940 }
3941 3941 return (dest);
3942 3942 }
3943 3943
3944 3944 cur--;
3945 3945 state = DTRACE_JSON_COMMA;
3946 3946 break;
3947 3947 case DTRACE_JSON_VALUE:
3948 3948 if (isspace(cc))
3949 3949 break;
3950 3950
3951 3951 if (cc == '{' || cc == '[') {
3952 3952 if (nelems > 1 && found_key) {
3953 3953 in_array = cc == '[' ? B_TRUE : B_FALSE;
3954 3954 /*
3955 3955 * If our element selector directs us
3956 3956 * to descend into this nested object,
3957 3957 * then move to the next selector
3958 3958 * element in the list and restart the
3959 3959 * state machine.
3960 3960 */
3961 3961 while (*elem != '\0')
3962 3962 elem++;
3963 3963 elem++; /* skip the inter-element NUL */
3964 3964 nelems--;
3965 3965 dd = dest;
3966 3966 if (in_array) {
3967 3967 state = DTRACE_JSON_VALUE;
3968 3968 array_pos = 0;
3969 3969 array_elem = dtrace_strtoll(
3970 3970 elem, 10, size);
3971 3971 found_key = array_elem == 0 ?
3972 3972 B_TRUE : B_FALSE;
3973 3973 } else {
3974 3974 found_key = B_FALSE;
3975 3975 state = DTRACE_JSON_OBJECT;
3976 3976 }
3977 3977 break;
3978 3978 }
3979 3979
3980 3980 /*
3981 3981 * Otherwise, we wish to either skip this
3982 3982 * nested object or return it in full.
3983 3983 */
3984 3984 if (cc == '[')
3985 3985 brackets = 1;
3986 3986 else
3987 3987 braces = 1;
3988 3988 *dd++ = cc;
3989 3989 state = DTRACE_JSON_COLLECT_OBJECT;
3990 3990 break;
3991 3991 }
3992 3992
3993 3993 if (cc == '"') {
3994 3994 state = DTRACE_JSON_STRING;
3995 3995 break;
3996 3996 }
3997 3997
3998 3998 if (islower(cc)) {
3999 3999 /*
4000 4000 * Here we deal with true, false and null.
4001 4001 */
4002 4002 *dd++ = cc;
4003 4003 state = DTRACE_JSON_IDENTIFIER;
4004 4004 break;
4005 4005 }
4006 4006
4007 4007 if (cc == '-' || isdigit(cc)) {
4008 4008 *dd++ = cc;
4009 4009 state = DTRACE_JSON_NUMBER;
4010 4010 break;
4011 4011 }
4012 4012
4013 4013 /*
4014 4014 * ERROR: unexpected character at start of value.
4015 4015 */
4016 4016 return (NULL);
4017 4017 case DTRACE_JSON_COLLECT_OBJECT:
4018 4018 if (cc == '\0')
4019 4019 /*
4020 4020 * ERROR: unexpected end of input.
4021 4021 */
4022 4022 return (NULL);
4023 4023
4024 4024 *dd++ = cc;
4025 4025 if (cc == '"') {
4026 4026 collect_object = B_TRUE;
4027 4027 state = DTRACE_JSON_STRING;
4028 4028 break;
4029 4029 }
4030 4030
4031 4031 if (cc == ']') {
4032 4032 if (brackets-- == 0) {
4033 4033 /*
4034 4034 * ERROR: unbalanced brackets.
4035 4035 */
4036 4036 return (NULL);
4037 4037 }
4038 4038 } else if (cc == '}') {
4039 4039 if (braces-- == 0) {
4040 4040 /*
4041 4041 * ERROR: unbalanced braces.
4042 4042 */
4043 4043 return (NULL);
4044 4044 }
4045 4045 } else if (cc == '{') {
4046 4046 braces++;
4047 4047 } else if (cc == '[') {
4048 4048 brackets++;
4049 4049 }
4050 4050
4051 4051 if (brackets == 0 && braces == 0) {
4052 4052 if (found_key) {
4053 4053 *dd = '\0';
4054 4054 return (dest);
4055 4055 }
4056 4056 dd = dest; /* reset string buffer */
4057 4057 state = DTRACE_JSON_COMMA;
4058 4058 }
4059 4059 break;
4060 4060 }
4061 4061 }
4062 4062 return (NULL);
4063 4063 }
4064 4064
4065 4065 /*
4066 4066 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4067 4067 * Notice that we don't bother validating the proper number of arguments or
4068 4068 * their types in the tuple stack. This isn't needed because all argument
4069 4069 * interpretation is safe because of our load safety -- the worst that can
4070 4070 * happen is that a bogus program can obtain bogus results.
4071 4071 */
4072 4072 static void
4073 4073 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4074 4074 dtrace_key_t *tupregs, int nargs,
4075 4075 dtrace_mstate_t *mstate, dtrace_state_t *state)
4076 4076 {
4077 4077 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4078 4078 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
4079 4079 dtrace_vstate_t *vstate = &state->dts_vstate;
4080 4080
4081 4081 union {
4082 4082 mutex_impl_t mi;
4083 4083 uint64_t mx;
4084 4084 } m;
4085 4085
4086 4086 union {
4087 4087 krwlock_t ri;
4088 4088 uintptr_t rw;
4089 4089 } r;
4090 4090
4091 4091 switch (subr) {
4092 4092 case DIF_SUBR_RAND:
4093 4093 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
4094 4094 break;
4095 4095
4096 4096 case DIF_SUBR_MUTEX_OWNED:
4097 4097 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4098 4098 mstate, vstate)) {
4099 4099 regs[rd] = 0;
4100 4100 break;
4101 4101 }
4102 4102
4103 4103 m.mx = dtrace_load64(tupregs[0].dttk_value);
4104 4104 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4105 4105 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4106 4106 else
4107 4107 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4108 4108 break;
4109 4109
4110 4110 case DIF_SUBR_MUTEX_OWNER:
4111 4111 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4112 4112 mstate, vstate)) {
4113 4113 regs[rd] = 0;
4114 4114 break;
4115 4115 }
4116 4116
4117 4117 m.mx = dtrace_load64(tupregs[0].dttk_value);
4118 4118 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4119 4119 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4120 4120 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4121 4121 else
4122 4122 regs[rd] = 0;
4123 4123 break;
4124 4124
4125 4125 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4126 4126 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4127 4127 mstate, vstate)) {
4128 4128 regs[rd] = 0;
4129 4129 break;
4130 4130 }
4131 4131
4132 4132 m.mx = dtrace_load64(tupregs[0].dttk_value);
4133 4133 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4134 4134 break;
4135 4135
4136 4136 case DIF_SUBR_MUTEX_TYPE_SPIN:
4137 4137 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4138 4138 mstate, vstate)) {
4139 4139 regs[rd] = 0;
4140 4140 break;
4141 4141 }
4142 4142
4143 4143 m.mx = dtrace_load64(tupregs[0].dttk_value);
4144 4144 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4145 4145 break;
4146 4146
4147 4147 case DIF_SUBR_RW_READ_HELD: {
4148 4148 uintptr_t tmp;
4149 4149
4150 4150 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4151 4151 mstate, vstate)) {
4152 4152 regs[rd] = 0;
4153 4153 break;
4154 4154 }
4155 4155
4156 4156 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4157 4157 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4158 4158 break;
4159 4159 }
4160 4160
4161 4161 case DIF_SUBR_RW_WRITE_HELD:
4162 4162 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4163 4163 mstate, vstate)) {
4164 4164 regs[rd] = 0;
4165 4165 break;
4166 4166 }
4167 4167
4168 4168 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4169 4169 regs[rd] = _RW_WRITE_HELD(&r.ri);
4170 4170 break;
4171 4171
4172 4172 case DIF_SUBR_RW_ISWRITER:
4173 4173 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4174 4174 mstate, vstate)) {
4175 4175 regs[rd] = 0;
4176 4176 break;
4177 4177 }
4178 4178
4179 4179 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4180 4180 regs[rd] = _RW_ISWRITER(&r.ri);
4181 4181 break;
4182 4182
4183 4183 case DIF_SUBR_BCOPY: {
4184 4184 /*
4185 4185 * We need to be sure that the destination is in the scratch
4186 4186 * region -- no other region is allowed.
4187 4187 */
4188 4188 uintptr_t src = tupregs[0].dttk_value;
4189 4189 uintptr_t dest = tupregs[1].dttk_value;
4190 4190 size_t size = tupregs[2].dttk_value;
4191 4191
4192 4192 if (!dtrace_inscratch(dest, size, mstate)) {
4193 4193 *flags |= CPU_DTRACE_BADADDR;
4194 4194 *illval = regs[rd];
4195 4195 break;
4196 4196 }
4197 4197
4198 4198 if (!dtrace_canload(src, size, mstate, vstate)) {
4199 4199 regs[rd] = 0;
4200 4200 break;
4201 4201 }
4202 4202
4203 4203 dtrace_bcopy((void *)src, (void *)dest, size);
4204 4204 break;
4205 4205 }
4206 4206
4207 4207 case DIF_SUBR_ALLOCA:
4208 4208 case DIF_SUBR_COPYIN: {
4209 4209 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4210 4210 uint64_t size =
4211 4211 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4212 4212 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4213 4213
4214 4214 /*
4215 4215 * This action doesn't require any credential checks since
4216 4216 * probes will not activate in user contexts to which the
4217 4217 * enabling user does not have permissions.
4218 4218 */
4219 4219
4220 4220 /*
4221 4221 * Rounding up the user allocation size could have overflowed
4222 4222 * a large, bogus allocation (like -1ULL) to 0.
4223 4223 */
4224 4224 if (scratch_size < size ||
4225 4225 !DTRACE_INSCRATCH(mstate, scratch_size)) {
4226 4226 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4227 4227 regs[rd] = 0;
4228 4228 break;
4229 4229 }
4230 4230
4231 4231 if (subr == DIF_SUBR_COPYIN) {
4232 4232 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4233 4233 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4234 4234 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4235 4235 }
4236 4236
4237 4237 mstate->dtms_scratch_ptr += scratch_size;
4238 4238 regs[rd] = dest;
4239 4239 break;
4240 4240 }
4241 4241
4242 4242 case DIF_SUBR_COPYINTO: {
4243 4243 uint64_t size = tupregs[1].dttk_value;
4244 4244 uintptr_t dest = tupregs[2].dttk_value;
4245 4245
4246 4246 /*
4247 4247 * This action doesn't require any credential checks since
4248 4248 * probes will not activate in user contexts to which the
4249 4249 * enabling user does not have permissions.
4250 4250 */
4251 4251 if (!dtrace_inscratch(dest, size, mstate)) {
4252 4252 *flags |= CPU_DTRACE_BADADDR;
4253 4253 *illval = regs[rd];
4254 4254 break;
4255 4255 }
4256 4256
4257 4257 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4258 4258 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4259 4259 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4260 4260 break;
4261 4261 }
4262 4262
4263 4263 case DIF_SUBR_COPYINSTR: {
4264 4264 uintptr_t dest = mstate->dtms_scratch_ptr;
4265 4265 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4266 4266
4267 4267 if (nargs > 1 && tupregs[1].dttk_value < size)
4268 4268 size = tupregs[1].dttk_value + 1;
4269 4269
4270 4270 /*
4271 4271 * This action doesn't require any credential checks since
4272 4272 * probes will not activate in user contexts to which the
4273 4273 * enabling user does not have permissions.
4274 4274 */
4275 4275 if (!DTRACE_INSCRATCH(mstate, size)) {
4276 4276 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4277 4277 regs[rd] = 0;
4278 4278 break;
4279 4279 }
4280 4280
4281 4281 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4282 4282 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4283 4283 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4284 4284
4285 4285 ((char *)dest)[size - 1] = '\0';
4286 4286 mstate->dtms_scratch_ptr += size;
4287 4287 regs[rd] = dest;
4288 4288 break;
4289 4289 }
4290 4290
4291 4291 case DIF_SUBR_MSGSIZE:
4292 4292 case DIF_SUBR_MSGDSIZE: {
4293 4293 uintptr_t baddr = tupregs[0].dttk_value, daddr;
4294 4294 uintptr_t wptr, rptr;
4295 4295 size_t count = 0;
4296 4296 int cont = 0;
4297 4297
4298 4298 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4299 4299
4300 4300 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4301 4301 vstate)) {
4302 4302 regs[rd] = 0;
4303 4303 break;
4304 4304 }
4305 4305
4306 4306 wptr = dtrace_loadptr(baddr +
4307 4307 offsetof(mblk_t, b_wptr));
4308 4308
4309 4309 rptr = dtrace_loadptr(baddr +
4310 4310 offsetof(mblk_t, b_rptr));
4311 4311
4312 4312 if (wptr < rptr) {
4313 4313 *flags |= CPU_DTRACE_BADADDR;
4314 4314 *illval = tupregs[0].dttk_value;
4315 4315 break;
4316 4316 }
4317 4317
4318 4318 daddr = dtrace_loadptr(baddr +
4319 4319 offsetof(mblk_t, b_datap));
4320 4320
4321 4321 baddr = dtrace_loadptr(baddr +
4322 4322 offsetof(mblk_t, b_cont));
4323 4323
4324 4324 /*
4325 4325 * We want to prevent against denial-of-service here,
4326 4326 * so we're only going to search the list for
4327 4327 * dtrace_msgdsize_max mblks.
4328 4328 */
4329 4329 if (cont++ > dtrace_msgdsize_max) {
4330 4330 *flags |= CPU_DTRACE_ILLOP;
4331 4331 break;
4332 4332 }
4333 4333
4334 4334 if (subr == DIF_SUBR_MSGDSIZE) {
4335 4335 if (dtrace_load8(daddr +
4336 4336 offsetof(dblk_t, db_type)) != M_DATA)
4337 4337 continue;
4338 4338 }
4339 4339
4340 4340 count += wptr - rptr;
4341 4341 }
4342 4342
4343 4343 if (!(*flags & CPU_DTRACE_FAULT))
4344 4344 regs[rd] = count;
4345 4345
4346 4346 break;
4347 4347 }
4348 4348
4349 4349 case DIF_SUBR_PROGENYOF: {
4350 4350 pid_t pid = tupregs[0].dttk_value;
4351 4351 proc_t *p;
4352 4352 int rval = 0;
4353 4353
4354 4354 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4355 4355
4356 4356 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4357 4357 if (p->p_pidp->pid_id == pid) {
4358 4358 rval = 1;
4359 4359 break;
4360 4360 }
4361 4361 }
4362 4362
4363 4363 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4364 4364
4365 4365 regs[rd] = rval;
4366 4366 break;
4367 4367 }
4368 4368
4369 4369 case DIF_SUBR_SPECULATION:
4370 4370 regs[rd] = dtrace_speculation(state);
4371 4371 break;
4372 4372
4373 4373 case DIF_SUBR_COPYOUT: {
4374 4374 uintptr_t kaddr = tupregs[0].dttk_value;
4375 4375 uintptr_t uaddr = tupregs[1].dttk_value;
4376 4376 uint64_t size = tupregs[2].dttk_value;
4377 4377
4378 4378 if (!dtrace_destructive_disallow &&
4379 4379 dtrace_priv_proc_control(state, mstate) &&
4380 4380 !dtrace_istoxic(kaddr, size) &&
4381 4381 dtrace_canload(kaddr, size, mstate, vstate)) {
4382 4382 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4383 4383 dtrace_copyout(kaddr, uaddr, size, flags);
4384 4384 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4385 4385 }
4386 4386 break;
4387 4387 }
4388 4388
4389 4389 case DIF_SUBR_COPYOUTSTR: {
4390 4390 uintptr_t kaddr = tupregs[0].dttk_value;
4391 4391 uintptr_t uaddr = tupregs[1].dttk_value;
4392 4392 uint64_t size = tupregs[2].dttk_value;
4393 4393 size_t lim;
4394 4394
4395 4395 if (!dtrace_destructive_disallow &&
4396 4396 dtrace_priv_proc_control(state, mstate) &&
4397 4397 !dtrace_istoxic(kaddr, size) &&
4398 4398 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) {
4399 4399 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4400 4400 dtrace_copyoutstr(kaddr, uaddr, lim, flags);
4401 4401 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4402 4402 }
4403 4403 break;
4404 4404 }
4405 4405
4406 4406 case DIF_SUBR_STRLEN: {
4407 4407 size_t size = state->dts_options[DTRACEOPT_STRSIZE];
4408 4408 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4409 4409 size_t lim;
4410 4410
4411 4411 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4412 4412 regs[rd] = 0;
4413 4413 break;
4414 4414 }
4415 4415 regs[rd] = dtrace_strlen((char *)addr, lim);
4416 4416
4417 4417 break;
4418 4418 }
4419 4419
4420 4420 case DIF_SUBR_STRCHR:
4421 4421 case DIF_SUBR_STRRCHR: {
4422 4422 /*
4423 4423 * We're going to iterate over the string looking for the
4424 4424 * specified character. We will iterate until we have reached
4425 4425 * the string length or we have found the character. If this
4426 4426 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4427 4427 * of the specified character instead of the first.
4428 4428 */
4429 4429 uintptr_t addr = tupregs[0].dttk_value;
4430 4430 uintptr_t addr_limit;
4431 4431 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4432 4432 size_t lim;
4433 4433 char c, target = (char)tupregs[1].dttk_value;
4434 4434
4435 4435 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4436 4436 regs[rd] = 0;
4437 4437 break;
4438 4438 }
4439 4439 addr_limit = addr + lim;
4440 4440
4441 4441 for (regs[rd] = 0; addr < addr_limit; addr++) {
4442 4442 if ((c = dtrace_load8(addr)) == target) {
4443 4443 regs[rd] = addr;
4444 4444
4445 4445 if (subr == DIF_SUBR_STRCHR)
4446 4446 break;
4447 4447 }
4448 4448 if (c == '\0')
4449 4449 break;
4450 4450 }
4451 4451
4452 4452 break;
4453 4453 }
4454 4454
4455 4455 case DIF_SUBR_STRSTR:
4456 4456 case DIF_SUBR_INDEX:
4457 4457 case DIF_SUBR_RINDEX: {
4458 4458 /*
4459 4459 * We're going to iterate over the string looking for the
4460 4460 * specified string. We will iterate until we have reached
4461 4461 * the string length or we have found the string. (Yes, this
4462 4462 * is done in the most naive way possible -- but considering
4463 4463 * that the string we're searching for is likely to be
4464 4464 * relatively short, the complexity of Rabin-Karp or similar
4465 4465 * hardly seems merited.)
4466 4466 */
4467 4467 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4468 4468 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4469 4469 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4470 4470 size_t len = dtrace_strlen(addr, size);
4471 4471 size_t sublen = dtrace_strlen(substr, size);
4472 4472 char *limit = addr + len, *orig = addr;
4473 4473 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4474 4474 int inc = 1;
4475 4475
4476 4476 regs[rd] = notfound;
4477 4477
4478 4478 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4479 4479 regs[rd] = 0;
4480 4480 break;
4481 4481 }
4482 4482
4483 4483 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4484 4484 vstate)) {
4485 4485 regs[rd] = 0;
4486 4486 break;
4487 4487 }
4488 4488
4489 4489 /*
4490 4490 * strstr() and index()/rindex() have similar semantics if
4491 4491 * both strings are the empty string: strstr() returns a
4492 4492 * pointer to the (empty) string, and index() and rindex()
4493 4493 * both return index 0 (regardless of any position argument).
4494 4494 */
4495 4495 if (sublen == 0 && len == 0) {
4496 4496 if (subr == DIF_SUBR_STRSTR)
4497 4497 regs[rd] = (uintptr_t)addr;
4498 4498 else
4499 4499 regs[rd] = 0;
4500 4500 break;
4501 4501 }
4502 4502
4503 4503 if (subr != DIF_SUBR_STRSTR) {
4504 4504 if (subr == DIF_SUBR_RINDEX) {
4505 4505 limit = orig - 1;
4506 4506 addr += len;
4507 4507 inc = -1;
4508 4508 }
4509 4509
4510 4510 /*
4511 4511 * Both index() and rindex() take an optional position
4512 4512 * argument that denotes the starting position.
4513 4513 */
4514 4514 if (nargs == 3) {
4515 4515 int64_t pos = (int64_t)tupregs[2].dttk_value;
4516 4516
4517 4517 /*
4518 4518 * If the position argument to index() is
4519 4519 * negative, Perl implicitly clamps it at
4520 4520 * zero. This semantic is a little surprising
4521 4521 * given the special meaning of negative
4522 4522 * positions to similar Perl functions like
4523 4523 * substr(), but it appears to reflect a
4524 4524 * notion that index() can start from a
4525 4525 * negative index and increment its way up to
4526 4526 * the string. Given this notion, Perl's
4527 4527 * rindex() is at least self-consistent in
4528 4528 * that it implicitly clamps positions greater
4529 4529 * than the string length to be the string
4530 4530 * length. Where Perl completely loses
4531 4531 * coherence, however, is when the specified
4532 4532 * substring is the empty string (""). In
4533 4533 * this case, even if the position is
4534 4534 * negative, rindex() returns 0 -- and even if
4535 4535 * the position is greater than the length,
4536 4536 * index() returns the string length. These
4537 4537 * semantics violate the notion that index()
4538 4538 * should never return a value less than the
4539 4539 * specified position and that rindex() should
4540 4540 * never return a value greater than the
4541 4541 * specified position. (One assumes that
4542 4542 * these semantics are artifacts of Perl's
4543 4543 * implementation and not the results of
4544 4544 * deliberate design -- it beggars belief that
4545 4545 * even Larry Wall could desire such oddness.)
4546 4546 * While in the abstract one would wish for
4547 4547 * consistent position semantics across
4548 4548 * substr(), index() and rindex() -- or at the
4549 4549 * very least self-consistent position
4550 4550 * semantics for index() and rindex() -- we
4551 4551 * instead opt to keep with the extant Perl
4552 4552 * semantics, in all their broken glory. (Do
4553 4553 * we have more desire to maintain Perl's
4554 4554 * semantics than Perl does? Probably.)
4555 4555 */
4556 4556 if (subr == DIF_SUBR_RINDEX) {
4557 4557 if (pos < 0) {
4558 4558 if (sublen == 0)
4559 4559 regs[rd] = 0;
4560 4560 break;
4561 4561 }
4562 4562
4563 4563 if (pos > len)
4564 4564 pos = len;
4565 4565 } else {
4566 4566 if (pos < 0)
4567 4567 pos = 0;
4568 4568
4569 4569 if (pos >= len) {
4570 4570 if (sublen == 0)
4571 4571 regs[rd] = len;
4572 4572 break;
4573 4573 }
4574 4574 }
4575 4575
4576 4576 addr = orig + pos;
4577 4577 }
4578 4578 }
4579 4579
4580 4580 for (regs[rd] = notfound; addr != limit; addr += inc) {
4581 4581 if (dtrace_strncmp(addr, substr, sublen) == 0) {
4582 4582 if (subr != DIF_SUBR_STRSTR) {
4583 4583 /*
4584 4584 * As D index() and rindex() are
4585 4585 * modeled on Perl (and not on awk),
4586 4586 * we return a zero-based (and not a
4587 4587 * one-based) index. (For you Perl
4588 4588 * weenies: no, we're not going to add
4589 4589 * $[ -- and shouldn't you be at a con
4590 4590 * or something?)
4591 4591 */
4592 4592 regs[rd] = (uintptr_t)(addr - orig);
4593 4593 break;
4594 4594 }
4595 4595
4596 4596 ASSERT(subr == DIF_SUBR_STRSTR);
4597 4597 regs[rd] = (uintptr_t)addr;
4598 4598 break;
4599 4599 }
4600 4600 }
4601 4601
4602 4602 break;
4603 4603 }
4604 4604
4605 4605 case DIF_SUBR_STRTOK: {
4606 4606 uintptr_t addr = tupregs[0].dttk_value;
4607 4607 uintptr_t tokaddr = tupregs[1].dttk_value;
4608 4608 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4609 4609 uintptr_t limit, toklimit;
4610 4610 size_t clim;
4611 4611 uint8_t c, tokmap[32]; /* 256 / 8 */
4612 4612 char *dest = (char *)mstate->dtms_scratch_ptr;
4613 4613 int i;
4614 4614
4615 4615 /*
4616 4616 * Check both the token buffer and (later) the input buffer,
4617 4617 * since both could be non-scratch addresses.
4618 4618 */
4619 4619 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) {
4620 4620 regs[rd] = 0;
4621 4621 break;
4622 4622 }
4623 4623 toklimit = tokaddr + clim;
4624 4624
4625 4625 if (!DTRACE_INSCRATCH(mstate, size)) {
4626 4626 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4627 4627 regs[rd] = 0;
4628 4628 break;
4629 4629 }
4630 4630
4631 4631 if (addr == 0) {
4632 4632 /*
4633 4633 * If the address specified is NULL, we use our saved
4634 4634 * strtok pointer from the mstate. Note that this
4635 4635 * means that the saved strtok pointer is _only_
4636 4636 * valid within multiple enablings of the same probe --
4637 4637 * it behaves like an implicit clause-local variable.
4638 4638 */
4639 4639 addr = mstate->dtms_strtok;
4640 4640 limit = mstate->dtms_strtok_limit;
4641 4641 } else {
4642 4642 /*
4643 4643 * If the user-specified address is non-NULL we must
4644 4644 * access check it. This is the only time we have
4645 4645 * a chance to do so, since this address may reside
4646 4646 * in the string table of this clause-- future calls
4647 4647 * (when we fetch addr from mstate->dtms_strtok)
4648 4648 * would fail this access check.
4649 4649 */
4650 4650 if (!dtrace_strcanload(addr, size, &clim, mstate,
4651 4651 vstate)) {
4652 4652 regs[rd] = 0;
4653 4653 break;
4654 4654 }
4655 4655 limit = addr + clim;
4656 4656 }
4657 4657
4658 4658 /*
4659 4659 * First, zero the token map, and then process the token
4660 4660 * string -- setting a bit in the map for every character
4661 4661 * found in the token string.
4662 4662 */
4663 4663 for (i = 0; i < sizeof (tokmap); i++)
4664 4664 tokmap[i] = 0;
4665 4665
4666 4666 for (; tokaddr < toklimit; tokaddr++) {
4667 4667 if ((c = dtrace_load8(tokaddr)) == '\0')
4668 4668 break;
4669 4669
4670 4670 ASSERT((c >> 3) < sizeof (tokmap));
4671 4671 tokmap[c >> 3] |= (1 << (c & 0x7));
4672 4672 }
4673 4673
4674 4674 for (; addr < limit; addr++) {
4675 4675 /*
4676 4676 * We're looking for a character that is _not_
4677 4677 * contained in the token string.
4678 4678 */
4679 4679 if ((c = dtrace_load8(addr)) == '\0')
4680 4680 break;
4681 4681
4682 4682 if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4683 4683 break;
4684 4684 }
4685 4685
4686 4686 if (c == '\0') {
4687 4687 /*
4688 4688 * We reached the end of the string without finding
4689 4689 * any character that was not in the token string.
4690 4690 * We return NULL in this case, and we set the saved
4691 4691 * address to NULL as well.
4692 4692 */
4693 4693 regs[rd] = 0;
4694 4694 mstate->dtms_strtok = 0;
4695 4695 mstate->dtms_strtok_limit = 0;
4696 4696 break;
4697 4697 }
4698 4698
4699 4699 /*
4700 4700 * From here on, we're copying into the destination string.
4701 4701 */
4702 4702 for (i = 0; addr < limit && i < size - 1; addr++) {
4703 4703 if ((c = dtrace_load8(addr)) == '\0')
4704 4704 break;
4705 4705
4706 4706 if (tokmap[c >> 3] & (1 << (c & 0x7)))
4707 4707 break;
4708 4708
4709 4709 ASSERT(i < size);
4710 4710 dest[i++] = c;
4711 4711 }
4712 4712
4713 4713 ASSERT(i < size);
4714 4714 dest[i] = '\0';
4715 4715 regs[rd] = (uintptr_t)dest;
4716 4716 mstate->dtms_scratch_ptr += size;
4717 4717 mstate->dtms_strtok = addr;
4718 4718 mstate->dtms_strtok_limit = limit;
4719 4719 break;
4720 4720 }
4721 4721
4722 4722 case DIF_SUBR_SUBSTR: {
4723 4723 uintptr_t s = tupregs[0].dttk_value;
4724 4724 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4725 4725 char *d = (char *)mstate->dtms_scratch_ptr;
4726 4726 int64_t index = (int64_t)tupregs[1].dttk_value;
4727 4727 int64_t remaining = (int64_t)tupregs[2].dttk_value;
4728 4728 size_t len = dtrace_strlen((char *)s, size);
4729 4729 int64_t i;
4730 4730
4731 4731 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4732 4732 regs[rd] = 0;
4733 4733 break;
4734 4734 }
4735 4735
4736 4736 if (!DTRACE_INSCRATCH(mstate, size)) {
4737 4737 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4738 4738 regs[rd] = 0;
4739 4739 break;
4740 4740 }
4741 4741
4742 4742 if (nargs <= 2)
4743 4743 remaining = (int64_t)size;
4744 4744
4745 4745 if (index < 0) {
4746 4746 index += len;
4747 4747
4748 4748 if (index < 0 && index + remaining > 0) {
4749 4749 remaining += index;
4750 4750 index = 0;
4751 4751 }
4752 4752 }
4753 4753
4754 4754 if (index >= len || index < 0) {
4755 4755 remaining = 0;
4756 4756 } else if (remaining < 0) {
4757 4757 remaining += len - index;
4758 4758 } else if (index + remaining > size) {
4759 4759 remaining = size - index;
4760 4760 }
4761 4761
4762 4762 for (i = 0; i < remaining; i++) {
4763 4763 if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4764 4764 break;
4765 4765 }
4766 4766
4767 4767 d[i] = '\0';
4768 4768
4769 4769 mstate->dtms_scratch_ptr += size;
4770 4770 regs[rd] = (uintptr_t)d;
4771 4771 break;
4772 4772 }
4773 4773
4774 4774 case DIF_SUBR_JSON: {
4775 4775 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4776 4776 uintptr_t json = tupregs[0].dttk_value;
4777 4777 size_t jsonlen = dtrace_strlen((char *)json, size);
4778 4778 uintptr_t elem = tupregs[1].dttk_value;
4779 4779 size_t elemlen = dtrace_strlen((char *)elem, size);
4780 4780
4781 4781 char *dest = (char *)mstate->dtms_scratch_ptr;
4782 4782 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
4783 4783 char *ee = elemlist;
4784 4784 int nelems = 1;
4785 4785 uintptr_t cur;
4786 4786
4787 4787 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
4788 4788 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
4789 4789 regs[rd] = 0;
4790 4790 break;
4791 4791 }
4792 4792
4793 4793 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
4794 4794 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4795 4795 regs[rd] = 0;
4796 4796 break;
4797 4797 }
4798 4798
4799 4799 /*
4800 4800 * Read the element selector and split it up into a packed list
4801 4801 * of strings.
4802 4802 */
4803 4803 for (cur = elem; cur < elem + elemlen; cur++) {
4804 4804 char cc = dtrace_load8(cur);
4805 4805
4806 4806 if (cur == elem && cc == '[') {
4807 4807 /*
4808 4808 * If the first element selector key is
4809 4809 * actually an array index then ignore the
4810 4810 * bracket.
4811 4811 */
4812 4812 continue;
4813 4813 }
4814 4814
4815 4815 if (cc == ']')
4816 4816 continue;
4817 4817
4818 4818 if (cc == '.' || cc == '[') {
4819 4819 nelems++;
4820 4820 cc = '\0';
4821 4821 }
4822 4822
4823 4823 *ee++ = cc;
4824 4824 }
4825 4825 *ee++ = '\0';
4826 4826
4827 4827 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
4828 4828 nelems, dest)) != 0)
4829 4829 mstate->dtms_scratch_ptr += jsonlen + 1;
4830 4830 break;
4831 4831 }
4832 4832
4833 4833 case DIF_SUBR_TOUPPER:
4834 4834 case DIF_SUBR_TOLOWER: {
4835 4835 uintptr_t s = tupregs[0].dttk_value;
4836 4836 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4837 4837 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4838 4838 size_t len = dtrace_strlen((char *)s, size);
4839 4839 char lower, upper, convert;
4840 4840 int64_t i;
4841 4841
4842 4842 if (subr == DIF_SUBR_TOUPPER) {
4843 4843 lower = 'a';
4844 4844 upper = 'z';
4845 4845 convert = 'A';
4846 4846 } else {
4847 4847 lower = 'A';
4848 4848 upper = 'Z';
4849 4849 convert = 'a';
4850 4850 }
4851 4851
4852 4852 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4853 4853 regs[rd] = 0;
4854 4854 break;
4855 4855 }
4856 4856
4857 4857 if (!DTRACE_INSCRATCH(mstate, size)) {
4858 4858 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4859 4859 regs[rd] = 0;
4860 4860 break;
4861 4861 }
4862 4862
4863 4863 for (i = 0; i < size - 1; i++) {
4864 4864 if ((c = dtrace_load8(s + i)) == '\0')
4865 4865 break;
4866 4866
4867 4867 if (c >= lower && c <= upper)
4868 4868 c = convert + (c - lower);
4869 4869
4870 4870 dest[i] = c;
4871 4871 }
4872 4872
4873 4873 ASSERT(i < size);
4874 4874 dest[i] = '\0';
4875 4875 regs[rd] = (uintptr_t)dest;
4876 4876 mstate->dtms_scratch_ptr += size;
4877 4877 break;
4878 4878 }
4879 4879
4880 4880 case DIF_SUBR_GETMAJOR:
4881 4881 #ifdef _LP64
4882 4882 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4883 4883 #else
4884 4884 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4885 4885 #endif
4886 4886 break;
4887 4887
4888 4888 case DIF_SUBR_GETMINOR:
4889 4889 #ifdef _LP64
4890 4890 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4891 4891 #else
4892 4892 regs[rd] = tupregs[0].dttk_value & MAXMIN;
4893 4893 #endif
4894 4894 break;
4895 4895
4896 4896 case DIF_SUBR_DDI_PATHNAME: {
4897 4897 /*
4898 4898 * This one is a galactic mess. We are going to roughly
4899 4899 * emulate ddi_pathname(), but it's made more complicated
4900 4900 * by the fact that we (a) want to include the minor name and
4901 4901 * (b) must proceed iteratively instead of recursively.
4902 4902 */
4903 4903 uintptr_t dest = mstate->dtms_scratch_ptr;
4904 4904 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4905 4905 char *start = (char *)dest, *end = start + size - 1;
4906 4906 uintptr_t daddr = tupregs[0].dttk_value;
4907 4907 int64_t minor = (int64_t)tupregs[1].dttk_value;
4908 4908 char *s;
4909 4909 int i, len, depth = 0;
4910 4910
4911 4911 /*
4912 4912 * Due to all the pointer jumping we do and context we must
4913 4913 * rely upon, we just mandate that the user must have kernel
4914 4914 * read privileges to use this routine.
4915 4915 */
4916 4916 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4917 4917 *flags |= CPU_DTRACE_KPRIV;
4918 4918 *illval = daddr;
4919 4919 regs[rd] = 0;
4920 4920 }
4921 4921
4922 4922 if (!DTRACE_INSCRATCH(mstate, size)) {
4923 4923 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4924 4924 regs[rd] = 0;
4925 4925 break;
4926 4926 }
4927 4927
4928 4928 *end = '\0';
4929 4929
4930 4930 /*
4931 4931 * We want to have a name for the minor. In order to do this,
4932 4932 * we need to walk the minor list from the devinfo. We want
4933 4933 * to be sure that we don't infinitely walk a circular list,
4934 4934 * so we check for circularity by sending a scout pointer
4935 4935 * ahead two elements for every element that we iterate over;
4936 4936 * if the list is circular, these will ultimately point to the
4937 4937 * same element. You may recognize this little trick as the
4938 4938 * answer to a stupid interview question -- one that always
4939 4939 * seems to be asked by those who had to have it laboriously
4940 4940 * explained to them, and who can't even concisely describe
4941 4941 * the conditions under which one would be forced to resort to
4942 4942 * this technique. Needless to say, those conditions are
4943 4943 * found here -- and probably only here. Is this the only use
4944 4944 * of this infamous trick in shipping, production code? If it
4945 4945 * isn't, it probably should be...
4946 4946 */
4947 4947 if (minor != -1) {
4948 4948 uintptr_t maddr = dtrace_loadptr(daddr +
4949 4949 offsetof(struct dev_info, devi_minor));
4950 4950
4951 4951 uintptr_t next = offsetof(struct ddi_minor_data, next);
4952 4952 uintptr_t name = offsetof(struct ddi_minor_data,
4953 4953 d_minor) + offsetof(struct ddi_minor, name);
4954 4954 uintptr_t dev = offsetof(struct ddi_minor_data,
4955 4955 d_minor) + offsetof(struct ddi_minor, dev);
4956 4956 uintptr_t scout;
4957 4957
4958 4958 if (maddr != 0)
4959 4959 scout = dtrace_loadptr(maddr + next);
4960 4960
4961 4961 while (maddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4962 4962 uint64_t m;
4963 4963 #ifdef _LP64
4964 4964 m = dtrace_load64(maddr + dev) & MAXMIN64;
4965 4965 #else
4966 4966 m = dtrace_load32(maddr + dev) & MAXMIN;
4967 4967 #endif
4968 4968 if (m != minor) {
4969 4969 maddr = dtrace_loadptr(maddr + next);
4970 4970
4971 4971 if (scout == 0)
4972 4972 continue;
4973 4973
4974 4974 scout = dtrace_loadptr(scout + next);
4975 4975
4976 4976 if (scout == 0)
4977 4977 continue;
4978 4978
4979 4979 scout = dtrace_loadptr(scout + next);
4980 4980
4981 4981 if (scout == 0)
4982 4982 continue;
4983 4983
4984 4984 if (scout == maddr) {
4985 4985 *flags |= CPU_DTRACE_ILLOP;
4986 4986 break;
4987 4987 }
4988 4988
4989 4989 continue;
4990 4990 }
4991 4991
4992 4992 /*
4993 4993 * We have the minor data. Now we need to
4994 4994 * copy the minor's name into the end of the
4995 4995 * pathname.
4996 4996 */
4997 4997 s = (char *)dtrace_loadptr(maddr + name);
4998 4998 len = dtrace_strlen(s, size);
4999 4999
5000 5000 if (*flags & CPU_DTRACE_FAULT)
5001 5001 break;
5002 5002
5003 5003 if (len != 0) {
5004 5004 if ((end -= (len + 1)) < start)
5005 5005 break;
5006 5006
5007 5007 *end = ':';
5008 5008 }
5009 5009
5010 5010 for (i = 1; i <= len; i++)
5011 5011 end[i] = dtrace_load8((uintptr_t)s++);
5012 5012 break;
5013 5013 }
5014 5014 }
5015 5015
5016 5016 while (daddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
5017 5017 ddi_node_state_t devi_state;
5018 5018
5019 5019 devi_state = dtrace_load32(daddr +
5020 5020 offsetof(struct dev_info, devi_node_state));
5021 5021
5022 5022 if (*flags & CPU_DTRACE_FAULT)
5023 5023 break;
5024 5024
5025 5025 if (devi_state >= DS_INITIALIZED) {
5026 5026 s = (char *)dtrace_loadptr(daddr +
5027 5027 offsetof(struct dev_info, devi_addr));
5028 5028 len = dtrace_strlen(s, size);
5029 5029
5030 5030 if (*flags & CPU_DTRACE_FAULT)
5031 5031 break;
5032 5032
5033 5033 if (len != 0) {
5034 5034 if ((end -= (len + 1)) < start)
5035 5035 break;
5036 5036
5037 5037 *end = '@';
5038 5038 }
5039 5039
5040 5040 for (i = 1; i <= len; i++)
5041 5041 end[i] = dtrace_load8((uintptr_t)s++);
5042 5042 }
5043 5043
5044 5044 /*
5045 5045 * Now for the node name...
5046 5046 */
5047 5047 s = (char *)dtrace_loadptr(daddr +
5048 5048 offsetof(struct dev_info, devi_node_name));
5049 5049
5050 5050 daddr = dtrace_loadptr(daddr +
5051 5051 offsetof(struct dev_info, devi_parent));
5052 5052
5053 5053 /*
5054 5054 * If our parent is NULL (that is, if we're the root
5055 5055 * node), we're going to use the special path
5056 5056 * "devices".
5057 5057 */
5058 5058 if (daddr == 0)
5059 5059 s = "devices";
5060 5060
5061 5061 len = dtrace_strlen(s, size);
5062 5062 if (*flags & CPU_DTRACE_FAULT)
5063 5063 break;
5064 5064
5065 5065 if ((end -= (len + 1)) < start)
5066 5066 break;
5067 5067
5068 5068 for (i = 1; i <= len; i++)
5069 5069 end[i] = dtrace_load8((uintptr_t)s++);
5070 5070 *end = '/';
5071 5071
5072 5072 if (depth++ > dtrace_devdepth_max) {
5073 5073 *flags |= CPU_DTRACE_ILLOP;
5074 5074 break;
5075 5075 }
5076 5076 }
5077 5077
5078 5078 if (end < start)
5079 5079 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5080 5080
5081 5081 if (daddr == 0) {
5082 5082 regs[rd] = (uintptr_t)end;
5083 5083 mstate->dtms_scratch_ptr += size;
5084 5084 }
5085 5085
5086 5086 break;
5087 5087 }
5088 5088
5089 5089 case DIF_SUBR_STRJOIN: {
5090 5090 char *d = (char *)mstate->dtms_scratch_ptr;
5091 5091 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5092 5092 uintptr_t s1 = tupregs[0].dttk_value;
5093 5093 uintptr_t s2 = tupregs[1].dttk_value;
5094 5094 int i = 0, j = 0;
5095 5095 size_t lim1, lim2;
5096 5096 char c;
5097 5097
5098 5098 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) ||
5099 5099 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) {
5100 5100 regs[rd] = 0;
5101 5101 break;
5102 5102 }
5103 5103
5104 5104 if (!DTRACE_INSCRATCH(mstate, size)) {
5105 5105 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5106 5106 regs[rd] = 0;
5107 5107 break;
5108 5108 }
5109 5109
5110 5110 for (;;) {
5111 5111 if (i >= size) {
5112 5112 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5113 5113 regs[rd] = 0;
5114 5114 break;
5115 5115 }
5116 5116 c = (i >= lim1) ? '\0' : dtrace_load8(s1++);
5117 5117 if ((d[i++] = c) == '\0') {
5118 5118 i--;
5119 5119 break;
5120 5120 }
5121 5121 }
5122 5122
5123 5123 for (;;) {
5124 5124 if (i >= size) {
5125 5125 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5126 5126 regs[rd] = 0;
5127 5127 break;
5128 5128 }
5129 5129
5130 5130 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++);
5131 5131 if ((d[i++] = c) == '\0')
5132 5132 break;
5133 5133 }
5134 5134
5135 5135 if (i < size) {
5136 5136 mstate->dtms_scratch_ptr += i;
5137 5137 regs[rd] = (uintptr_t)d;
5138 5138 }
5139 5139
5140 5140 break;
5141 5141 }
5142 5142
5143 5143 case DIF_SUBR_STRTOLL: {
5144 5144 uintptr_t s = tupregs[0].dttk_value;
5145 5145 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5146 5146 size_t lim;
5147 5147 int base = 10;
5148 5148
5149 5149 if (nargs > 1) {
5150 5150 if ((base = tupregs[1].dttk_value) <= 1 ||
5151 5151 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5152 5152 *flags |= CPU_DTRACE_ILLOP;
5153 5153 break;
5154 5154 }
5155 5155 }
5156 5156
5157 5157 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) {
5158 5158 regs[rd] = INT64_MIN;
5159 5159 break;
5160 5160 }
5161 5161
5162 5162 regs[rd] = dtrace_strtoll((char *)s, base, lim);
5163 5163 break;
5164 5164 }
5165 5165
5166 5166 case DIF_SUBR_LLTOSTR: {
5167 5167 int64_t i = (int64_t)tupregs[0].dttk_value;
5168 5168 uint64_t val, digit;
5169 5169 uint64_t size = 65; /* enough room for 2^64 in binary */
5170 5170 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5171 5171 int base = 10;
5172 5172
5173 5173 if (nargs > 1) {
5174 5174 if ((base = tupregs[1].dttk_value) <= 1 ||
5175 5175 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5176 5176 *flags |= CPU_DTRACE_ILLOP;
5177 5177 break;
5178 5178 }
5179 5179 }
5180 5180
5181 5181 val = (base == 10 && i < 0) ? i * -1 : i;
5182 5182
5183 5183 if (!DTRACE_INSCRATCH(mstate, size)) {
5184 5184 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5185 5185 regs[rd] = 0;
5186 5186 break;
5187 5187 }
5188 5188
5189 5189 for (*end-- = '\0'; val; val /= base) {
5190 5190 if ((digit = val % base) <= '9' - '0') {
5191 5191 *end-- = '0' + digit;
5192 5192 } else {
5193 5193 *end-- = 'a' + (digit - ('9' - '0') - 1);
5194 5194 }
5195 5195 }
5196 5196
5197 5197 if (i == 0 && base == 16)
5198 5198 *end-- = '0';
5199 5199
5200 5200 if (base == 16)
5201 5201 *end-- = 'x';
5202 5202
5203 5203 if (i == 0 || base == 8 || base == 16)
5204 5204 *end-- = '0';
5205 5205
5206 5206 if (i < 0 && base == 10)
5207 5207 *end-- = '-';
5208 5208
5209 5209 regs[rd] = (uintptr_t)end + 1;
5210 5210 mstate->dtms_scratch_ptr += size;
5211 5211 break;
5212 5212 }
5213 5213
5214 5214 case DIF_SUBR_HTONS:
5215 5215 case DIF_SUBR_NTOHS:
5216 5216 #ifdef _BIG_ENDIAN
5217 5217 regs[rd] = (uint16_t)tupregs[0].dttk_value;
5218 5218 #else
5219 5219 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5220 5220 #endif
5221 5221 break;
5222 5222
5223 5223
5224 5224 case DIF_SUBR_HTONL:
5225 5225 case DIF_SUBR_NTOHL:
5226 5226 #ifdef _BIG_ENDIAN
5227 5227 regs[rd] = (uint32_t)tupregs[0].dttk_value;
5228 5228 #else
5229 5229 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5230 5230 #endif
5231 5231 break;
5232 5232
5233 5233
5234 5234 case DIF_SUBR_HTONLL:
5235 5235 case DIF_SUBR_NTOHLL:
5236 5236 #ifdef _BIG_ENDIAN
5237 5237 regs[rd] = (uint64_t)tupregs[0].dttk_value;
5238 5238 #else
5239 5239 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5240 5240 #endif
5241 5241 break;
5242 5242
5243 5243
5244 5244 case DIF_SUBR_DIRNAME:
5245 5245 case DIF_SUBR_BASENAME: {
5246 5246 char *dest = (char *)mstate->dtms_scratch_ptr;
5247 5247 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5248 5248 uintptr_t src = tupregs[0].dttk_value;
5249 5249 int i, j, len = dtrace_strlen((char *)src, size);
5250 5250 int lastbase = -1, firstbase = -1, lastdir = -1;
5251 5251 int start, end;
5252 5252
5253 5253 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5254 5254 regs[rd] = 0;
5255 5255 break;
5256 5256 }
5257 5257
5258 5258 if (!DTRACE_INSCRATCH(mstate, size)) {
5259 5259 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5260 5260 regs[rd] = 0;
5261 5261 break;
5262 5262 }
5263 5263
5264 5264 /*
5265 5265 * The basename and dirname for a zero-length string is
5266 5266 * defined to be "."
5267 5267 */
5268 5268 if (len == 0) {
5269 5269 len = 1;
5270 5270 src = (uintptr_t)".";
5271 5271 }
5272 5272
5273 5273 /*
5274 5274 * Start from the back of the string, moving back toward the
5275 5275 * front until we see a character that isn't a slash. That
5276 5276 * character is the last character in the basename.
5277 5277 */
5278 5278 for (i = len - 1; i >= 0; i--) {
5279 5279 if (dtrace_load8(src + i) != '/')
5280 5280 break;
5281 5281 }
5282 5282
5283 5283 if (i >= 0)
5284 5284 lastbase = i;
5285 5285
5286 5286 /*
5287 5287 * Starting from the last character in the basename, move
5288 5288 * towards the front until we find a slash. The character
5289 5289 * that we processed immediately before that is the first
5290 5290 * character in the basename.
5291 5291 */
5292 5292 for (; i >= 0; i--) {
5293 5293 if (dtrace_load8(src + i) == '/')
5294 5294 break;
5295 5295 }
5296 5296
5297 5297 if (i >= 0)
5298 5298 firstbase = i + 1;
5299 5299
5300 5300 /*
5301 5301 * Now keep going until we find a non-slash character. That
5302 5302 * character is the last character in the dirname.
5303 5303 */
5304 5304 for (; i >= 0; i--) {
5305 5305 if (dtrace_load8(src + i) != '/')
5306 5306 break;
5307 5307 }
5308 5308
5309 5309 if (i >= 0)
5310 5310 lastdir = i;
5311 5311
5312 5312 ASSERT(!(lastbase == -1 && firstbase != -1));
5313 5313 ASSERT(!(firstbase == -1 && lastdir != -1));
5314 5314
5315 5315 if (lastbase == -1) {
5316 5316 /*
5317 5317 * We didn't find a non-slash character. We know that
5318 5318 * the length is non-zero, so the whole string must be
5319 5319 * slashes. In either the dirname or the basename
5320 5320 * case, we return '/'.
5321 5321 */
5322 5322 ASSERT(firstbase == -1);
5323 5323 firstbase = lastbase = lastdir = 0;
5324 5324 }
5325 5325
5326 5326 if (firstbase == -1) {
5327 5327 /*
5328 5328 * The entire string consists only of a basename
5329 5329 * component. If we're looking for dirname, we need
5330 5330 * to change our string to be just "."; if we're
5331 5331 * looking for a basename, we'll just set the first
5332 5332 * character of the basename to be 0.
5333 5333 */
5334 5334 if (subr == DIF_SUBR_DIRNAME) {
5335 5335 ASSERT(lastdir == -1);
5336 5336 src = (uintptr_t)".";
5337 5337 lastdir = 0;
5338 5338 } else {
5339 5339 firstbase = 0;
5340 5340 }
5341 5341 }
5342 5342
5343 5343 if (subr == DIF_SUBR_DIRNAME) {
5344 5344 if (lastdir == -1) {
5345 5345 /*
5346 5346 * We know that we have a slash in the name --
5347 5347 * or lastdir would be set to 0, above. And
5348 5348 * because lastdir is -1, we know that this
5349 5349 * slash must be the first character. (That
5350 5350 * is, the full string must be of the form
5351 5351 * "/basename".) In this case, the last
5352 5352 * character of the directory name is 0.
5353 5353 */
5354 5354 lastdir = 0;
5355 5355 }
5356 5356
5357 5357 start = 0;
5358 5358 end = lastdir;
5359 5359 } else {
5360 5360 ASSERT(subr == DIF_SUBR_BASENAME);
5361 5361 ASSERT(firstbase != -1 && lastbase != -1);
5362 5362 start = firstbase;
5363 5363 end = lastbase;
5364 5364 }
5365 5365
5366 5366 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5367 5367 dest[j] = dtrace_load8(src + i);
5368 5368
5369 5369 dest[j] = '\0';
5370 5370 regs[rd] = (uintptr_t)dest;
5371 5371 mstate->dtms_scratch_ptr += size;
5372 5372 break;
5373 5373 }
5374 5374
5375 5375 case DIF_SUBR_GETF: {
5376 5376 uintptr_t fd = tupregs[0].dttk_value;
5377 5377 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo;
5378 5378 file_t *fp;
5379 5379
5380 5380 if (!dtrace_priv_proc(state, mstate)) {
5381 5381 regs[rd] = 0;
5382 5382 break;
5383 5383 }
5384 5384
5385 5385 /*
5386 5386 * This is safe because fi_nfiles only increases, and the
5387 5387 * fi_list array is not freed when the array size doubles.
5388 5388 * (See the comment in flist_grow() for details on the
5389 5389 * management of the u_finfo structure.)
5390 5390 */
5391 5391 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL;
5392 5392
5393 5393 mstate->dtms_getf = fp;
5394 5394 regs[rd] = (uintptr_t)fp;
5395 5395 break;
5396 5396 }
5397 5397
5398 5398 case DIF_SUBR_CLEANPATH: {
5399 5399 char *dest = (char *)mstate->dtms_scratch_ptr, c;
5400 5400 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5401 5401 uintptr_t src = tupregs[0].dttk_value;
5402 5402 size_t lim;
5403 5403 int i = 0, j = 0;
5404 5404 zone_t *z;
5405 5405
5406 5406 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) {
5407 5407 regs[rd] = 0;
5408 5408 break;
5409 5409 }
5410 5410
5411 5411 if (!DTRACE_INSCRATCH(mstate, size)) {
5412 5412 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5413 5413 regs[rd] = 0;
5414 5414 break;
5415 5415 }
5416 5416
5417 5417 /*
5418 5418 * Move forward, loading each character.
5419 5419 */
5420 5420 do {
5421 5421 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5422 5422 next:
5423 5423 if (j + 5 >= size) /* 5 = strlen("/..c\0") */
5424 5424 break;
5425 5425
5426 5426 if (c != '/') {
5427 5427 dest[j++] = c;
5428 5428 continue;
5429 5429 }
5430 5430
5431 5431 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5432 5432
5433 5433 if (c == '/') {
5434 5434 /*
5435 5435 * We have two slashes -- we can just advance
5436 5436 * to the next character.
5437 5437 */
5438 5438 goto next;
5439 5439 }
5440 5440
5441 5441 if (c != '.') {
5442 5442 /*
5443 5443 * This is not "." and it's not ".." -- we can
5444 5444 * just store the "/" and this character and
5445 5445 * drive on.
5446 5446 */
5447 5447 dest[j++] = '/';
5448 5448 dest[j++] = c;
5449 5449 continue;
5450 5450 }
5451 5451
5452 5452 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5453 5453
5454 5454 if (c == '/') {
5455 5455 /*
5456 5456 * This is a "/./" component. We're not going
5457 5457 * to store anything in the destination buffer;
5458 5458 * we're just going to go to the next component.
5459 5459 */
5460 5460 goto next;
5461 5461 }
5462 5462
5463 5463 if (c != '.') {
5464 5464 /*
5465 5465 * This is not ".." -- we can just store the
5466 5466 * "/." and this character and continue
5467 5467 * processing.
5468 5468 */
5469 5469 dest[j++] = '/';
5470 5470 dest[j++] = '.';
5471 5471 dest[j++] = c;
5472 5472 continue;
5473 5473 }
5474 5474
5475 5475 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5476 5476
5477 5477 if (c != '/' && c != '\0') {
5478 5478 /*
5479 5479 * This is not ".." -- it's "..[mumble]".
5480 5480 * We'll store the "/.." and this character
5481 5481 * and continue processing.
5482 5482 */
5483 5483 dest[j++] = '/';
5484 5484 dest[j++] = '.';
5485 5485 dest[j++] = '.';
5486 5486 dest[j++] = c;
5487 5487 continue;
5488 5488 }
5489 5489
5490 5490 /*
5491 5491 * This is "/../" or "/..\0". We need to back up
5492 5492 * our destination pointer until we find a "/".
5493 5493 */
5494 5494 i--;
5495 5495 while (j != 0 && dest[--j] != '/')
5496 5496 continue;
5497 5497
5498 5498 if (c == '\0')
5499 5499 dest[++j] = '/';
5500 5500 } while (c != '\0');
5501 5501
5502 5502 dest[j] = '\0';
5503 5503
5504 5504 if (mstate->dtms_getf != NULL &&
5505 5505 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5506 5506 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5507 5507 /*
5508 5508 * If we've done a getf() as a part of this ECB and we
5509 5509 * don't have kernel access (and we're not in the global
5510 5510 * zone), check if the path we cleaned up begins with
5511 5511 * the zone's root path, and trim it off if so. Note
5512 5512 * that this is an output cleanliness issue, not a
5513 5513 * security issue: knowing one's zone root path does
5514 5514 * not enable privilege escalation.
5515 5515 */
5516 5516 if (strstr(dest, z->zone_rootpath) == dest)
5517 5517 dest += strlen(z->zone_rootpath) - 1;
5518 5518 }
5519 5519
5520 5520 regs[rd] = (uintptr_t)dest;
5521 5521 mstate->dtms_scratch_ptr += size;
5522 5522 break;
5523 5523 }
5524 5524
5525 5525 case DIF_SUBR_INET_NTOA:
5526 5526 case DIF_SUBR_INET_NTOA6:
5527 5527 case DIF_SUBR_INET_NTOP: {
5528 5528 size_t size;
5529 5529 int af, argi, i;
5530 5530 char *base, *end;
5531 5531
5532 5532 if (subr == DIF_SUBR_INET_NTOP) {
5533 5533 af = (int)tupregs[0].dttk_value;
5534 5534 argi = 1;
5535 5535 } else {
5536 5536 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5537 5537 argi = 0;
5538 5538 }
5539 5539
5540 5540 if (af == AF_INET) {
5541 5541 ipaddr_t ip4;
5542 5542 uint8_t *ptr8, val;
5543 5543
5544 5544 if (!dtrace_canload(tupregs[argi].dttk_value,
5545 5545 sizeof (ipaddr_t), mstate, vstate)) {
5546 5546 regs[rd] = 0;
5547 5547 break;
5548 5548 }
5549 5549
5550 5550 /*
5551 5551 * Safely load the IPv4 address.
5552 5552 */
5553 5553 ip4 = dtrace_load32(tupregs[argi].dttk_value);
5554 5554
5555 5555 /*
5556 5556 * Check an IPv4 string will fit in scratch.
5557 5557 */
5558 5558 size = INET_ADDRSTRLEN;
5559 5559 if (!DTRACE_INSCRATCH(mstate, size)) {
5560 5560 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5561 5561 regs[rd] = 0;
5562 5562 break;
5563 5563 }
5564 5564 base = (char *)mstate->dtms_scratch_ptr;
5565 5565 end = (char *)mstate->dtms_scratch_ptr + size - 1;
5566 5566
5567 5567 /*
5568 5568 * Stringify as a dotted decimal quad.
5569 5569 */
5570 5570 *end-- = '\0';
5571 5571 ptr8 = (uint8_t *)&ip4;
5572 5572 for (i = 3; i >= 0; i--) {
5573 5573 val = ptr8[i];
5574 5574
5575 5575 if (val == 0) {
5576 5576 *end-- = '0';
5577 5577 } else {
5578 5578 for (; val; val /= 10) {
5579 5579 *end-- = '0' + (val % 10);
5580 5580 }
5581 5581 }
5582 5582
5583 5583 if (i > 0)
5584 5584 *end-- = '.';
5585 5585 }
5586 5586 ASSERT(end + 1 >= base);
5587 5587
5588 5588 } else if (af == AF_INET6) {
5589 5589 struct in6_addr ip6;
5590 5590 int firstzero, tryzero, numzero, v6end;
5591 5591 uint16_t val;
5592 5592 const char digits[] = "0123456789abcdef";
5593 5593
5594 5594 /*
5595 5595 * Stringify using RFC 1884 convention 2 - 16 bit
5596 5596 * hexadecimal values with a zero-run compression.
5597 5597 * Lower case hexadecimal digits are used.
5598 5598 * eg, fe80::214:4fff:fe0b:76c8.
5599 5599 * The IPv4 embedded form is returned for inet_ntop,
5600 5600 * just the IPv4 string is returned for inet_ntoa6.
5601 5601 */
5602 5602
5603 5603 if (!dtrace_canload(tupregs[argi].dttk_value,
5604 5604 sizeof (struct in6_addr), mstate, vstate)) {
5605 5605 regs[rd] = 0;
5606 5606 break;
5607 5607 }
5608 5608
5609 5609 /*
5610 5610 * Safely load the IPv6 address.
5611 5611 */
5612 5612 dtrace_bcopy(
5613 5613 (void *)(uintptr_t)tupregs[argi].dttk_value,
5614 5614 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5615 5615
5616 5616 /*
5617 5617 * Check an IPv6 string will fit in scratch.
5618 5618 */
5619 5619 size = INET6_ADDRSTRLEN;
5620 5620 if (!DTRACE_INSCRATCH(mstate, size)) {
5621 5621 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5622 5622 regs[rd] = 0;
5623 5623 break;
5624 5624 }
5625 5625 base = (char *)mstate->dtms_scratch_ptr;
5626 5626 end = (char *)mstate->dtms_scratch_ptr + size - 1;
5627 5627 *end-- = '\0';
5628 5628
5629 5629 /*
5630 5630 * Find the longest run of 16 bit zero values
5631 5631 * for the single allowed zero compression - "::".
5632 5632 */
5633 5633 firstzero = -1;
5634 5634 tryzero = -1;
5635 5635 numzero = 1;
5636 5636 for (i = 0; i < sizeof (struct in6_addr); i++) {
5637 5637 if (ip6._S6_un._S6_u8[i] == 0 &&
5638 5638 tryzero == -1 && i % 2 == 0) {
5639 5639 tryzero = i;
5640 5640 continue;
5641 5641 }
5642 5642
5643 5643 if (tryzero != -1 &&
5644 5644 (ip6._S6_un._S6_u8[i] != 0 ||
5645 5645 i == sizeof (struct in6_addr) - 1)) {
5646 5646
5647 5647 if (i - tryzero <= numzero) {
5648 5648 tryzero = -1;
5649 5649 continue;
5650 5650 }
5651 5651
5652 5652 firstzero = tryzero;
5653 5653 numzero = i - i % 2 - tryzero;
5654 5654 tryzero = -1;
5655 5655
5656 5656 if (ip6._S6_un._S6_u8[i] == 0 &&
5657 5657 i == sizeof (struct in6_addr) - 1)
5658 5658 numzero += 2;
5659 5659 }
5660 5660 }
5661 5661 ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5662 5662
5663 5663 /*
5664 5664 * Check for an IPv4 embedded address.
5665 5665 */
5666 5666 v6end = sizeof (struct in6_addr) - 2;
5667 5667 if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5668 5668 IN6_IS_ADDR_V4COMPAT(&ip6)) {
5669 5669 for (i = sizeof (struct in6_addr) - 1;
5670 5670 i >= DTRACE_V4MAPPED_OFFSET; i--) {
5671 5671 ASSERT(end >= base);
5672 5672
5673 5673 val = ip6._S6_un._S6_u8[i];
5674 5674
5675 5675 if (val == 0) {
5676 5676 *end-- = '0';
5677 5677 } else {
5678 5678 for (; val; val /= 10) {
5679 5679 *end-- = '0' + val % 10;
5680 5680 }
5681 5681 }
5682 5682
5683 5683 if (i > DTRACE_V4MAPPED_OFFSET)
5684 5684 *end-- = '.';
5685 5685 }
5686 5686
5687 5687 if (subr == DIF_SUBR_INET_NTOA6)
5688 5688 goto inetout;
5689 5689
5690 5690 /*
5691 5691 * Set v6end to skip the IPv4 address that
5692 5692 * we have already stringified.
5693 5693 */
5694 5694 v6end = 10;
5695 5695 }
5696 5696
5697 5697 /*
5698 5698 * Build the IPv6 string by working through the
5699 5699 * address in reverse.
5700 5700 */
5701 5701 for (i = v6end; i >= 0; i -= 2) {
5702 5702 ASSERT(end >= base);
5703 5703
5704 5704 if (i == firstzero + numzero - 2) {
5705 5705 *end-- = ':';
5706 5706 *end-- = ':';
5707 5707 i -= numzero - 2;
5708 5708 continue;
5709 5709 }
5710 5710
5711 5711 if (i < 14 && i != firstzero - 2)
5712 5712 *end-- = ':';
5713 5713
5714 5714 val = (ip6._S6_un._S6_u8[i] << 8) +
5715 5715 ip6._S6_un._S6_u8[i + 1];
5716 5716
5717 5717 if (val == 0) {
5718 5718 *end-- = '0';
5719 5719 } else {
5720 5720 for (; val; val /= 16) {
5721 5721 *end-- = digits[val % 16];
5722 5722 }
5723 5723 }
5724 5724 }
5725 5725 ASSERT(end + 1 >= base);
5726 5726
5727 5727 } else {
5728 5728 /*
5729 5729 * The user didn't use AH_INET or AH_INET6.
5730 5730 */
5731 5731 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5732 5732 regs[rd] = 0;
5733 5733 break;
5734 5734 }
5735 5735
5736 5736 inetout: regs[rd] = (uintptr_t)end + 1;
5737 5737 mstate->dtms_scratch_ptr += size;
5738 5738 break;
5739 5739 }
5740 5740
5741 5741 }
5742 5742 }
5743 5743
5744 5744 /*
5745 5745 * Emulate the execution of DTrace IR instructions specified by the given
5746 5746 * DIF object. This function is deliberately void of assertions as all of
5747 5747 * the necessary checks are handled by a call to dtrace_difo_validate().
5748 5748 */
5749 5749 static uint64_t
5750 5750 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
5751 5751 dtrace_vstate_t *vstate, dtrace_state_t *state)
5752 5752 {
5753 5753 const dif_instr_t *text = difo->dtdo_buf;
5754 5754 const uint_t textlen = difo->dtdo_len;
5755 5755 const char *strtab = difo->dtdo_strtab;
5756 5756 const uint64_t *inttab = difo->dtdo_inttab;
5757 5757
5758 5758 uint64_t rval = 0;
5759 5759 dtrace_statvar_t *svar;
5760 5760 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5761 5761 dtrace_difv_t *v;
5762 5762 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5763 5763 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
5764 5764
5765 5765 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5766 5766 uint64_t regs[DIF_DIR_NREGS];
5767 5767 uint64_t *tmp;
5768 5768
5769 5769 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5770 5770 int64_t cc_r;
5771 5771 uint_t pc = 0, id, opc;
5772 5772 uint8_t ttop = 0;
5773 5773 dif_instr_t instr;
5774 5774 uint_t r1, r2, rd;
5775 5775
5776 5776 /*
5777 5777 * We stash the current DIF object into the machine state: we need it
5778 5778 * for subsequent access checking.
5779 5779 */
5780 5780 mstate->dtms_difo = difo;
5781 5781
5782 5782 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */
5783 5783
5784 5784 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5785 5785 opc = pc;
5786 5786
5787 5787 instr = text[pc++];
5788 5788 r1 = DIF_INSTR_R1(instr);
5789 5789 r2 = DIF_INSTR_R2(instr);
5790 5790 rd = DIF_INSTR_RD(instr);
5791 5791
5792 5792 switch (DIF_INSTR_OP(instr)) {
5793 5793 case DIF_OP_OR:
5794 5794 regs[rd] = regs[r1] | regs[r2];
5795 5795 break;
5796 5796 case DIF_OP_XOR:
5797 5797 regs[rd] = regs[r1] ^ regs[r2];
5798 5798 break;
5799 5799 case DIF_OP_AND:
5800 5800 regs[rd] = regs[r1] & regs[r2];
5801 5801 break;
5802 5802 case DIF_OP_SLL:
5803 5803 regs[rd] = regs[r1] << regs[r2];
5804 5804 break;
5805 5805 case DIF_OP_SRL:
5806 5806 regs[rd] = regs[r1] >> regs[r2];
5807 5807 break;
5808 5808 case DIF_OP_SUB:
5809 5809 regs[rd] = regs[r1] - regs[r2];
5810 5810 break;
5811 5811 case DIF_OP_ADD:
5812 5812 regs[rd] = regs[r1] + regs[r2];
5813 5813 break;
5814 5814 case DIF_OP_MUL:
5815 5815 regs[rd] = regs[r1] * regs[r2];
5816 5816 break;
5817 5817 case DIF_OP_SDIV:
5818 5818 if (regs[r2] == 0) {
5819 5819 regs[rd] = 0;
5820 5820 *flags |= CPU_DTRACE_DIVZERO;
5821 5821 } else {
5822 5822 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5823 5823 regs[rd] = (int64_t)regs[r1] /
5824 5824 (int64_t)regs[r2];
5825 5825 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5826 5826 }
5827 5827 break;
5828 5828
5829 5829 case DIF_OP_UDIV:
5830 5830 if (regs[r2] == 0) {
5831 5831 regs[rd] = 0;
5832 5832 *flags |= CPU_DTRACE_DIVZERO;
5833 5833 } else {
5834 5834 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5835 5835 regs[rd] = regs[r1] / regs[r2];
5836 5836 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5837 5837 }
5838 5838 break;
5839 5839
5840 5840 case DIF_OP_SREM:
5841 5841 if (regs[r2] == 0) {
5842 5842 regs[rd] = 0;
5843 5843 *flags |= CPU_DTRACE_DIVZERO;
5844 5844 } else {
5845 5845 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5846 5846 regs[rd] = (int64_t)regs[r1] %
5847 5847 (int64_t)regs[r2];
5848 5848 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5849 5849 }
5850 5850 break;
5851 5851
5852 5852 case DIF_OP_UREM:
5853 5853 if (regs[r2] == 0) {
5854 5854 regs[rd] = 0;
5855 5855 *flags |= CPU_DTRACE_DIVZERO;
5856 5856 } else {
5857 5857 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5858 5858 regs[rd] = regs[r1] % regs[r2];
5859 5859 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5860 5860 }
5861 5861 break;
5862 5862
5863 5863 case DIF_OP_NOT:
5864 5864 regs[rd] = ~regs[r1];
5865 5865 break;
5866 5866 case DIF_OP_MOV:
5867 5867 regs[rd] = regs[r1];
5868 5868 break;
5869 5869 case DIF_OP_CMP:
5870 5870 cc_r = regs[r1] - regs[r2];
5871 5871 cc_n = cc_r < 0;
5872 5872 cc_z = cc_r == 0;
5873 5873 cc_v = 0;
5874 5874 cc_c = regs[r1] < regs[r2];
5875 5875 break;
5876 5876 case DIF_OP_TST:
5877 5877 cc_n = cc_v = cc_c = 0;
5878 5878 cc_z = regs[r1] == 0;
5879 5879 break;
5880 5880 case DIF_OP_BA:
5881 5881 pc = DIF_INSTR_LABEL(instr);
5882 5882 break;
5883 5883 case DIF_OP_BE:
5884 5884 if (cc_z)
5885 5885 pc = DIF_INSTR_LABEL(instr);
5886 5886 break;
5887 5887 case DIF_OP_BNE:
5888 5888 if (cc_z == 0)
5889 5889 pc = DIF_INSTR_LABEL(instr);
5890 5890 break;
5891 5891 case DIF_OP_BG:
5892 5892 if ((cc_z | (cc_n ^ cc_v)) == 0)
5893 5893 pc = DIF_INSTR_LABEL(instr);
5894 5894 break;
5895 5895 case DIF_OP_BGU:
5896 5896 if ((cc_c | cc_z) == 0)
5897 5897 pc = DIF_INSTR_LABEL(instr);
5898 5898 break;
5899 5899 case DIF_OP_BGE:
5900 5900 if ((cc_n ^ cc_v) == 0)
5901 5901 pc = DIF_INSTR_LABEL(instr);
5902 5902 break;
5903 5903 case DIF_OP_BGEU:
5904 5904 if (cc_c == 0)
5905 5905 pc = DIF_INSTR_LABEL(instr);
5906 5906 break;
5907 5907 case DIF_OP_BL:
5908 5908 if (cc_n ^ cc_v)
5909 5909 pc = DIF_INSTR_LABEL(instr);
5910 5910 break;
5911 5911 case DIF_OP_BLU:
5912 5912 if (cc_c)
5913 5913 pc = DIF_INSTR_LABEL(instr);
5914 5914 break;
5915 5915 case DIF_OP_BLE:
5916 5916 if (cc_z | (cc_n ^ cc_v))
5917 5917 pc = DIF_INSTR_LABEL(instr);
5918 5918 break;
5919 5919 case DIF_OP_BLEU:
5920 5920 if (cc_c | cc_z)
5921 5921 pc = DIF_INSTR_LABEL(instr);
5922 5922 break;
5923 5923 case DIF_OP_RLDSB:
5924 5924 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5925 5925 break;
5926 5926 /*FALLTHROUGH*/
5927 5927 case DIF_OP_LDSB:
5928 5928 regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5929 5929 break;
5930 5930 case DIF_OP_RLDSH:
5931 5931 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5932 5932 break;
5933 5933 /*FALLTHROUGH*/
5934 5934 case DIF_OP_LDSH:
5935 5935 regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5936 5936 break;
5937 5937 case DIF_OP_RLDSW:
5938 5938 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5939 5939 break;
5940 5940 /*FALLTHROUGH*/
5941 5941 case DIF_OP_LDSW:
5942 5942 regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5943 5943 break;
5944 5944 case DIF_OP_RLDUB:
5945 5945 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5946 5946 break;
5947 5947 /*FALLTHROUGH*/
5948 5948 case DIF_OP_LDUB:
5949 5949 regs[rd] = dtrace_load8(regs[r1]);
5950 5950 break;
5951 5951 case DIF_OP_RLDUH:
5952 5952 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5953 5953 break;
5954 5954 /*FALLTHROUGH*/
5955 5955 case DIF_OP_LDUH:
5956 5956 regs[rd] = dtrace_load16(regs[r1]);
5957 5957 break;
5958 5958 case DIF_OP_RLDUW:
5959 5959 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5960 5960 break;
5961 5961 /*FALLTHROUGH*/
5962 5962 case DIF_OP_LDUW:
5963 5963 regs[rd] = dtrace_load32(regs[r1]);
5964 5964 break;
5965 5965 case DIF_OP_RLDX:
5966 5966 if (!dtrace_canload(regs[r1], 8, mstate, vstate))
5967 5967 break;
5968 5968 /*FALLTHROUGH*/
5969 5969 case DIF_OP_LDX:
5970 5970 regs[rd] = dtrace_load64(regs[r1]);
5971 5971 break;
5972 5972 case DIF_OP_ULDSB:
5973 5973 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5974 5974 regs[rd] = (int8_t)
5975 5975 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5976 5976 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5977 5977 break;
5978 5978 case DIF_OP_ULDSH:
5979 5979 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5980 5980 regs[rd] = (int16_t)
5981 5981 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5982 5982 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5983 5983 break;
5984 5984 case DIF_OP_ULDSW:
5985 5985 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5986 5986 regs[rd] = (int32_t)
5987 5987 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5988 5988 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5989 5989 break;
5990 5990 case DIF_OP_ULDUB:
5991 5991 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5992 5992 regs[rd] =
5993 5993 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5994 5994 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5995 5995 break;
5996 5996 case DIF_OP_ULDUH:
5997 5997 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5998 5998 regs[rd] =
5999 5999 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6000 6000 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6001 6001 break;
6002 6002 case DIF_OP_ULDUW:
6003 6003 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6004 6004 regs[rd] =
6005 6005 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6006 6006 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6007 6007 break;
6008 6008 case DIF_OP_ULDX:
6009 6009 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6010 6010 regs[rd] =
6011 6011 dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6012 6012 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6013 6013 break;
6014 6014 case DIF_OP_RET:
6015 6015 rval = regs[rd];
6016 6016 pc = textlen;
6017 6017 break;
6018 6018 case DIF_OP_NOP:
6019 6019 break;
6020 6020 case DIF_OP_SETX:
6021 6021 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6022 6022 break;
6023 6023 case DIF_OP_SETS:
6024 6024 regs[rd] = (uint64_t)(uintptr_t)
6025 6025 (strtab + DIF_INSTR_STRING(instr));
6026 6026 break;
6027 6027 case DIF_OP_SCMP: {
6028 6028 size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6029 6029 uintptr_t s1 = regs[r1];
6030 6030 uintptr_t s2 = regs[r2];
6031 6031 size_t lim1, lim2;
6032 6032
6033 6033 if (s1 != 0 &&
6034 6034 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate))
6035 6035 break;
6036 6036 if (s2 != 0 &&
6037 6037 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate))
6038 6038 break;
6039 6039
6040 6040 cc_r = dtrace_strncmp((char *)s1, (char *)s2,
6041 6041 MIN(lim1, lim2));
6042 6042
6043 6043 cc_n = cc_r < 0;
6044 6044 cc_z = cc_r == 0;
6045 6045 cc_v = cc_c = 0;
6046 6046 break;
6047 6047 }
6048 6048 case DIF_OP_LDGA:
6049 6049 regs[rd] = dtrace_dif_variable(mstate, state,
6050 6050 r1, regs[r2]);
6051 6051 break;
6052 6052 case DIF_OP_LDGS:
6053 6053 id = DIF_INSTR_VAR(instr);
6054 6054
6055 6055 if (id >= DIF_VAR_OTHER_UBASE) {
6056 6056 uintptr_t a;
6057 6057
6058 6058 id -= DIF_VAR_OTHER_UBASE;
6059 6059 svar = vstate->dtvs_globals[id];
6060 6060 ASSERT(svar != NULL);
6061 6061 v = &svar->dtsv_var;
6062 6062
6063 6063 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6064 6064 regs[rd] = svar->dtsv_data;
6065 6065 break;
6066 6066 }
6067 6067
6068 6068 a = (uintptr_t)svar->dtsv_data;
6069 6069
6070 6070 if (*(uint8_t *)a == UINT8_MAX) {
6071 6071 /*
6072 6072 * If the 0th byte is set to UINT8_MAX
6073 6073 * then this is to be treated as a
6074 6074 * reference to a NULL variable.
6075 6075 */
6076 6076 regs[rd] = 0;
6077 6077 } else {
6078 6078 regs[rd] = a + sizeof (uint64_t);
6079 6079 }
6080 6080
6081 6081 break;
6082 6082 }
6083 6083
6084 6084 regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6085 6085 break;
6086 6086
6087 6087 case DIF_OP_STGA:
6088 6088 dtrace_dif_variable_write(mstate, state, r1, regs[r2],
6089 6089 regs[rd]);
6090 6090 break;
6091 6091
6092 6092 case DIF_OP_STGS:
6093 6093 id = DIF_INSTR_VAR(instr);
6094 6094
6095 6095 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6096 6096 id -= DIF_VAR_OTHER_UBASE;
6097 6097
6098 6098 VERIFY(id < vstate->dtvs_nglobals);
6099 6099 svar = vstate->dtvs_globals[id];
6100 6100 ASSERT(svar != NULL);
6101 6101 v = &svar->dtsv_var;
6102 6102
6103 6103 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6104 6104 uintptr_t a = (uintptr_t)svar->dtsv_data;
6105 6105 size_t lim;
6106 6106
6107 6107 ASSERT(a != (uintptr_t)NULL);
6108 6108 ASSERT(svar->dtsv_size != 0);
6109 6109
6110 6110 if (regs[rd] == 0) {
6111 6111 *(uint8_t *)a = UINT8_MAX;
6112 6112 break;
6113 6113 } else {
6114 6114 *(uint8_t *)a = 0;
6115 6115 a += sizeof (uint64_t);
6116 6116 }
6117 6117 if (!dtrace_vcanload(
6118 6118 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6119 6119 &lim, mstate, vstate))
6120 6120 break;
6121 6121
6122 6122 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6123 6123 (void *)a, &v->dtdv_type, lim);
6124 6124 break;
6125 6125 }
6126 6126
6127 6127 svar->dtsv_data = regs[rd];
6128 6128 break;
6129 6129
6130 6130 case DIF_OP_LDTA:
6131 6131 /*
6132 6132 * There are no DTrace built-in thread-local arrays at
6133 6133 * present. This opcode is saved for future work.
6134 6134 */
6135 6135 *flags |= CPU_DTRACE_ILLOP;
6136 6136 regs[rd] = 0;
6137 6137 break;
6138 6138
6139 6139 case DIF_OP_LDLS:
6140 6140 id = DIF_INSTR_VAR(instr);
6141 6141
6142 6142 if (id < DIF_VAR_OTHER_UBASE) {
6143 6143 /*
6144 6144 * For now, this has no meaning.
6145 6145 */
6146 6146 regs[rd] = 0;
6147 6147 break;
6148 6148 }
6149 6149
6150 6150 id -= DIF_VAR_OTHER_UBASE;
6151 6151
6152 6152 ASSERT(id < vstate->dtvs_nlocals);
6153 6153 ASSERT(vstate->dtvs_locals != NULL);
6154 6154
6155 6155 svar = vstate->dtvs_locals[id];
6156 6156 ASSERT(svar != NULL);
6157 6157 v = &svar->dtsv_var;
6158 6158
6159 6159 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6160 6160 uintptr_t a = (uintptr_t)svar->dtsv_data;
6161 6161 size_t sz = v->dtdv_type.dtdt_size;
6162 6162
6163 6163 sz += sizeof (uint64_t);
6164 6164 ASSERT(svar->dtsv_size == NCPU * sz);
6165 6165 a += CPU->cpu_id * sz;
6166 6166
6167 6167 if (*(uint8_t *)a == UINT8_MAX) {
6168 6168 /*
6169 6169 * If the 0th byte is set to UINT8_MAX
6170 6170 * then this is to be treated as a
6171 6171 * reference to a NULL variable.
6172 6172 */
6173 6173 regs[rd] = 0;
6174 6174 } else {
6175 6175 regs[rd] = a + sizeof (uint64_t);
6176 6176 }
6177 6177
6178 6178 break;
6179 6179 }
6180 6180
6181 6181 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6182 6182 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6183 6183 regs[rd] = tmp[CPU->cpu_id];
6184 6184 break;
6185 6185
6186 6186 case DIF_OP_STLS:
6187 6187 id = DIF_INSTR_VAR(instr);
6188 6188
6189 6189 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6190 6190 id -= DIF_VAR_OTHER_UBASE;
6191 6191 VERIFY(id < vstate->dtvs_nlocals);
6192 6192
6193 6193 ASSERT(vstate->dtvs_locals != NULL);
6194 6194 svar = vstate->dtvs_locals[id];
6195 6195 ASSERT(svar != NULL);
6196 6196 v = &svar->dtsv_var;
6197 6197
6198 6198 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6199 6199 uintptr_t a = (uintptr_t)svar->dtsv_data;
6200 6200 size_t sz = v->dtdv_type.dtdt_size;
6201 6201 size_t lim;
6202 6202
6203 6203 sz += sizeof (uint64_t);
6204 6204 ASSERT(svar->dtsv_size == NCPU * sz);
6205 6205 a += CPU->cpu_id * sz;
6206 6206
6207 6207 if (regs[rd] == 0) {
6208 6208 *(uint8_t *)a = UINT8_MAX;
6209 6209 break;
6210 6210 } else {
6211 6211 *(uint8_t *)a = 0;
6212 6212 a += sizeof (uint64_t);
6213 6213 }
6214 6214
6215 6215 if (!dtrace_vcanload(
6216 6216 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6217 6217 &lim, mstate, vstate))
6218 6218 break;
6219 6219
6220 6220 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6221 6221 (void *)a, &v->dtdv_type, lim);
6222 6222 break;
6223 6223 }
6224 6224
6225 6225 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6226 6226 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6227 6227 tmp[CPU->cpu_id] = regs[rd];
6228 6228 break;
6229 6229
6230 6230 case DIF_OP_LDTS: {
6231 6231 dtrace_dynvar_t *dvar;
6232 6232 dtrace_key_t *key;
6233 6233
6234 6234 id = DIF_INSTR_VAR(instr);
6235 6235 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6236 6236 id -= DIF_VAR_OTHER_UBASE;
6237 6237 v = &vstate->dtvs_tlocals[id];
6238 6238
6239 6239 key = &tupregs[DIF_DTR_NREGS];
6240 6240 key[0].dttk_value = (uint64_t)id;
6241 6241 key[0].dttk_size = 0;
6242 6242 DTRACE_TLS_THRKEY(key[1].dttk_value);
6243 6243 key[1].dttk_size = 0;
6244 6244
6245 6245 dvar = dtrace_dynvar(dstate, 2, key,
6246 6246 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6247 6247 mstate, vstate);
6248 6248
6249 6249 if (dvar == NULL) {
6250 6250 regs[rd] = 0;
6251 6251 break;
6252 6252 }
6253 6253
6254 6254 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6255 6255 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6256 6256 } else {
6257 6257 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6258 6258 }
6259 6259
6260 6260 break;
6261 6261 }
6262 6262
6263 6263 case DIF_OP_STTS: {
6264 6264 dtrace_dynvar_t *dvar;
6265 6265 dtrace_key_t *key;
6266 6266
6267 6267 id = DIF_INSTR_VAR(instr);
6268 6268 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6269 6269 id -= DIF_VAR_OTHER_UBASE;
6270 6270 VERIFY(id < vstate->dtvs_ntlocals);
6271 6271
6272 6272 key = &tupregs[DIF_DTR_NREGS];
6273 6273 key[0].dttk_value = (uint64_t)id;
6274 6274 key[0].dttk_size = 0;
6275 6275 DTRACE_TLS_THRKEY(key[1].dttk_value);
6276 6276 key[1].dttk_size = 0;
6277 6277 v = &vstate->dtvs_tlocals[id];
6278 6278
6279 6279 dvar = dtrace_dynvar(dstate, 2, key,
6280 6280 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6281 6281 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6282 6282 regs[rd] ? DTRACE_DYNVAR_ALLOC :
6283 6283 DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6284 6284
6285 6285 /*
6286 6286 * Given that we're storing to thread-local data,
6287 6287 * we need to flush our predicate cache.
6288 6288 */
6289 6289 curthread->t_predcache = DTRACE_CACHEIDNONE;
6290 6290
6291 6291 if (dvar == NULL)
6292 6292 break;
6293 6293
6294 6294 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6295 6295 size_t lim;
6296 6296
6297 6297 if (!dtrace_vcanload(
6298 6298 (void *)(uintptr_t)regs[rd],
6299 6299 &v->dtdv_type, &lim, mstate, vstate))
6300 6300 break;
6301 6301
6302 6302 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6303 6303 dvar->dtdv_data, &v->dtdv_type, lim);
6304 6304 } else {
6305 6305 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6306 6306 }
6307 6307
6308 6308 break;
6309 6309 }
6310 6310
6311 6311 case DIF_OP_SRA:
6312 6312 regs[rd] = (int64_t)regs[r1] >> regs[r2];
6313 6313 break;
6314 6314
6315 6315 case DIF_OP_CALL:
6316 6316 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6317 6317 regs, tupregs, ttop, mstate, state);
6318 6318 break;
6319 6319
6320 6320 case DIF_OP_PUSHTR:
6321 6321 if (ttop == DIF_DTR_NREGS) {
6322 6322 *flags |= CPU_DTRACE_TUPOFLOW;
6323 6323 break;
6324 6324 }
6325 6325
6326 6326 if (r1 == DIF_TYPE_STRING) {
6327 6327 /*
6328 6328 * If this is a string type and the size is 0,
6329 6329 * we'll use the system-wide default string
6330 6330 * size. Note that we are _not_ looking at
6331 6331 * the value of the DTRACEOPT_STRSIZE option;
6332 6332 * had this been set, we would expect to have
6333 6333 * a non-zero size value in the "pushtr".
6334 6334 */
6335 6335 tupregs[ttop].dttk_size =
6336 6336 dtrace_strlen((char *)(uintptr_t)regs[rd],
6337 6337 regs[r2] ? regs[r2] :
6338 6338 dtrace_strsize_default) + 1;
6339 6339 } else {
6340 6340 if (regs[r2] > LONG_MAX) {
6341 6341 *flags |= CPU_DTRACE_ILLOP;
6342 6342 break;
6343 6343 }
6344 6344
6345 6345 tupregs[ttop].dttk_size = regs[r2];
6346 6346 }
6347 6347
6348 6348 tupregs[ttop++].dttk_value = regs[rd];
6349 6349 break;
6350 6350
6351 6351 case DIF_OP_PUSHTV:
6352 6352 if (ttop == DIF_DTR_NREGS) {
6353 6353 *flags |= CPU_DTRACE_TUPOFLOW;
6354 6354 break;
6355 6355 }
6356 6356
6357 6357 tupregs[ttop].dttk_value = regs[rd];
6358 6358 tupregs[ttop++].dttk_size = 0;
6359 6359 break;
6360 6360
6361 6361 case DIF_OP_POPTS:
6362 6362 if (ttop != 0)
6363 6363 ttop--;
6364 6364 break;
6365 6365
6366 6366 case DIF_OP_FLUSHTS:
6367 6367 ttop = 0;
6368 6368 break;
6369 6369
6370 6370 case DIF_OP_LDGAA:
6371 6371 case DIF_OP_LDTAA: {
6372 6372 dtrace_dynvar_t *dvar;
6373 6373 dtrace_key_t *key = tupregs;
6374 6374 uint_t nkeys = ttop;
6375 6375
6376 6376 id = DIF_INSTR_VAR(instr);
6377 6377 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6378 6378 id -= DIF_VAR_OTHER_UBASE;
6379 6379
6380 6380 key[nkeys].dttk_value = (uint64_t)id;
6381 6381 key[nkeys++].dttk_size = 0;
6382 6382
6383 6383 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6384 6384 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6385 6385 key[nkeys++].dttk_size = 0;
6386 6386 VERIFY(id < vstate->dtvs_ntlocals);
6387 6387 v = &vstate->dtvs_tlocals[id];
6388 6388 } else {
6389 6389 VERIFY(id < vstate->dtvs_nglobals);
6390 6390 v = &vstate->dtvs_globals[id]->dtsv_var;
6391 6391 }
6392 6392
6393 6393 dvar = dtrace_dynvar(dstate, nkeys, key,
6394 6394 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6395 6395 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6396 6396 DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6397 6397
6398 6398 if (dvar == NULL) {
6399 6399 regs[rd] = 0;
6400 6400 break;
6401 6401 }
6402 6402
6403 6403 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6404 6404 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6405 6405 } else {
6406 6406 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6407 6407 }
6408 6408
6409 6409 break;
6410 6410 }
6411 6411
6412 6412 case DIF_OP_STGAA:
6413 6413 case DIF_OP_STTAA: {
6414 6414 dtrace_dynvar_t *dvar;
6415 6415 dtrace_key_t *key = tupregs;
6416 6416 uint_t nkeys = ttop;
6417 6417
6418 6418 id = DIF_INSTR_VAR(instr);
6419 6419 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6420 6420 id -= DIF_VAR_OTHER_UBASE;
6421 6421
6422 6422 key[nkeys].dttk_value = (uint64_t)id;
6423 6423 key[nkeys++].dttk_size = 0;
6424 6424
6425 6425 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6426 6426 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6427 6427 key[nkeys++].dttk_size = 0;
6428 6428 VERIFY(id < vstate->dtvs_ntlocals);
6429 6429 v = &vstate->dtvs_tlocals[id];
6430 6430 } else {
6431 6431 VERIFY(id < vstate->dtvs_nglobals);
6432 6432 v = &vstate->dtvs_globals[id]->dtsv_var;
6433 6433 }
6434 6434
6435 6435 dvar = dtrace_dynvar(dstate, nkeys, key,
6436 6436 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6437 6437 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6438 6438 regs[rd] ? DTRACE_DYNVAR_ALLOC :
6439 6439 DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6440 6440
6441 6441 if (dvar == NULL)
6442 6442 break;
6443 6443
6444 6444 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6445 6445 size_t lim;
6446 6446
6447 6447 if (!dtrace_vcanload(
6448 6448 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6449 6449 &lim, mstate, vstate))
6450 6450 break;
6451 6451
6452 6452 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6453 6453 dvar->dtdv_data, &v->dtdv_type, lim);
6454 6454 } else {
6455 6455 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6456 6456 }
6457 6457
6458 6458 break;
6459 6459 }
6460 6460
6461 6461 case DIF_OP_ALLOCS: {
6462 6462 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6463 6463 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6464 6464
6465 6465 /*
6466 6466 * Rounding up the user allocation size could have
6467 6467 * overflowed large, bogus allocations (like -1ULL) to
6468 6468 * 0.
6469 6469 */
6470 6470 if (size < regs[r1] ||
6471 6471 !DTRACE_INSCRATCH(mstate, size)) {
6472 6472 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6473 6473 regs[rd] = 0;
6474 6474 break;
6475 6475 }
6476 6476
6477 6477 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6478 6478 mstate->dtms_scratch_ptr += size;
6479 6479 regs[rd] = ptr;
6480 6480 break;
6481 6481 }
6482 6482
6483 6483 case DIF_OP_COPYS:
6484 6484 if (!dtrace_canstore(regs[rd], regs[r2],
6485 6485 mstate, vstate)) {
6486 6486 *flags |= CPU_DTRACE_BADADDR;
6487 6487 *illval = regs[rd];
6488 6488 break;
6489 6489 }
6490 6490
6491 6491 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6492 6492 break;
6493 6493
6494 6494 dtrace_bcopy((void *)(uintptr_t)regs[r1],
6495 6495 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6496 6496 break;
6497 6497
6498 6498 case DIF_OP_STB:
6499 6499 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6500 6500 *flags |= CPU_DTRACE_BADADDR;
6501 6501 *illval = regs[rd];
6502 6502 break;
6503 6503 }
6504 6504 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6505 6505 break;
6506 6506
6507 6507 case DIF_OP_STH:
6508 6508 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6509 6509 *flags |= CPU_DTRACE_BADADDR;
6510 6510 *illval = regs[rd];
6511 6511 break;
6512 6512 }
6513 6513 if (regs[rd] & 1) {
6514 6514 *flags |= CPU_DTRACE_BADALIGN;
6515 6515 *illval = regs[rd];
6516 6516 break;
6517 6517 }
6518 6518 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6519 6519 break;
6520 6520
6521 6521 case DIF_OP_STW:
6522 6522 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6523 6523 *flags |= CPU_DTRACE_BADADDR;
6524 6524 *illval = regs[rd];
6525 6525 break;
6526 6526 }
6527 6527 if (regs[rd] & 3) {
6528 6528 *flags |= CPU_DTRACE_BADALIGN;
6529 6529 *illval = regs[rd];
6530 6530 break;
6531 6531 }
6532 6532 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6533 6533 break;
6534 6534
6535 6535 case DIF_OP_STX:
6536 6536 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6537 6537 *flags |= CPU_DTRACE_BADADDR;
6538 6538 *illval = regs[rd];
6539 6539 break;
6540 6540 }
6541 6541 if (regs[rd] & 7) {
6542 6542 *flags |= CPU_DTRACE_BADALIGN;
6543 6543 *illval = regs[rd];
6544 6544 break;
6545 6545 }
6546 6546 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6547 6547 break;
6548 6548 }
6549 6549 }
6550 6550
6551 6551 if (!(*flags & CPU_DTRACE_FAULT))
6552 6552 return (rval);
6553 6553
6554 6554 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6555 6555 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6556 6556
6557 6557 return (0);
6558 6558 }
6559 6559
6560 6560 static void
6561 6561 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6562 6562 {
6563 6563 dtrace_probe_t *probe = ecb->dte_probe;
6564 6564 dtrace_provider_t *prov = probe->dtpr_provider;
6565 6565 char c[DTRACE_FULLNAMELEN + 80], *str;
6566 6566 char *msg = "dtrace: breakpoint action at probe ";
6567 6567 char *ecbmsg = " (ecb ";
6568 6568 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6569 6569 uintptr_t val = (uintptr_t)ecb;
6570 6570 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6571 6571
6572 6572 if (dtrace_destructive_disallow)
6573 6573 return;
6574 6574
6575 6575 /*
6576 6576 * It's impossible to be taking action on the NULL probe.
6577 6577 */
6578 6578 ASSERT(probe != NULL);
6579 6579
6580 6580 /*
6581 6581 * This is a poor man's (destitute man's?) sprintf(): we want to
6582 6582 * print the provider name, module name, function name and name of
6583 6583 * the probe, along with the hex address of the ECB with the breakpoint
6584 6584 * action -- all of which we must place in the character buffer by
6585 6585 * hand.
6586 6586 */
6587 6587 while (*msg != '\0')
6588 6588 c[i++] = *msg++;
6589 6589
6590 6590 for (str = prov->dtpv_name; *str != '\0'; str++)
6591 6591 c[i++] = *str;
6592 6592 c[i++] = ':';
6593 6593
6594 6594 for (str = probe->dtpr_mod; *str != '\0'; str++)
6595 6595 c[i++] = *str;
6596 6596 c[i++] = ':';
6597 6597
6598 6598 for (str = probe->dtpr_func; *str != '\0'; str++)
6599 6599 c[i++] = *str;
6600 6600 c[i++] = ':';
6601 6601
6602 6602 for (str = probe->dtpr_name; *str != '\0'; str++)
6603 6603 c[i++] = *str;
6604 6604
6605 6605 while (*ecbmsg != '\0')
6606 6606 c[i++] = *ecbmsg++;
6607 6607
6608 6608 while (shift >= 0) {
6609 6609 mask = (uintptr_t)0xf << shift;
6610 6610
6611 6611 if (val >= ((uintptr_t)1 << shift))
6612 6612 c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6613 6613 shift -= 4;
6614 6614 }
6615 6615
6616 6616 c[i++] = ')';
6617 6617 c[i] = '\0';
6618 6618
6619 6619 debug_enter(c);
6620 6620 }
6621 6621
6622 6622 static void
6623 6623 dtrace_action_panic(dtrace_ecb_t *ecb)
6624 6624 {
6625 6625 dtrace_probe_t *probe = ecb->dte_probe;
6626 6626
6627 6627 /*
6628 6628 * It's impossible to be taking action on the NULL probe.
6629 6629 */
6630 6630 ASSERT(probe != NULL);
6631 6631
6632 6632 if (dtrace_destructive_disallow)
6633 6633 return;
6634 6634
6635 6635 if (dtrace_panicked != NULL)
6636 6636 return;
6637 6637
6638 6638 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6639 6639 return;
6640 6640
6641 6641 /*
6642 6642 * We won the right to panic. (We want to be sure that only one
6643 6643 * thread calls panic() from dtrace_probe(), and that panic() is
6644 6644 * called exactly once.)
6645 6645 */
6646 6646 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6647 6647 probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6648 6648 probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6649 6649 }
6650 6650
6651 6651 static void
6652 6652 dtrace_action_raise(uint64_t sig)
6653 6653 {
6654 6654 if (dtrace_destructive_disallow)
6655 6655 return;
6656 6656
6657 6657 if (sig >= NSIG) {
6658 6658 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6659 6659 return;
6660 6660 }
6661 6661
6662 6662 /*
6663 6663 * raise() has a queue depth of 1 -- we ignore all subsequent
6664 6664 * invocations of the raise() action.
6665 6665 */
6666 6666 if (curthread->t_dtrace_sig == 0)
6667 6667 curthread->t_dtrace_sig = (uint8_t)sig;
6668 6668
6669 6669 curthread->t_sig_check = 1;
6670 6670 aston(curthread);
6671 6671 }
6672 6672
6673 6673 static void
6674 6674 dtrace_action_stop(void)
6675 6675 {
6676 6676 if (dtrace_destructive_disallow)
6677 6677 return;
6678 6678
6679 6679 if (!curthread->t_dtrace_stop) {
6680 6680 curthread->t_dtrace_stop = 1;
6681 6681 curthread->t_sig_check = 1;
6682 6682 aston(curthread);
6683 6683 }
6684 6684 }
6685 6685
6686 6686 static void
6687 6687 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
6688 6688 {
6689 6689 hrtime_t now;
6690 6690 volatile uint16_t *flags;
6691 6691 cpu_t *cpu = CPU;
6692 6692
6693 6693 if (dtrace_destructive_disallow)
6694 6694 return;
6695 6695
6696 6696 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
6697 6697
6698 6698 now = dtrace_gethrtime();
6699 6699
6700 6700 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6701 6701 /*
6702 6702 * We need to advance the mark to the current time.
6703 6703 */
6704 6704 cpu->cpu_dtrace_chillmark = now;
6705 6705 cpu->cpu_dtrace_chilled = 0;
6706 6706 }
6707 6707
6708 6708 /*
6709 6709 * Now check to see if the requested chill time would take us over
6710 6710 * the maximum amount of time allowed in the chill interval. (Or
6711 6711 * worse, if the calculation itself induces overflow.)
6712 6712 */
6713 6713 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
6714 6714 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6715 6715 *flags |= CPU_DTRACE_ILLOP;
6716 6716 return;
6717 6717 }
6718 6718
6719 6719 while (dtrace_gethrtime() - now < val)
6720 6720 continue;
6721 6721
6722 6722 /*
6723 6723 * Normally, we assure that the value of the variable "timestamp" does
6724 6724 * not change within an ECB. The presence of chill() represents an
6725 6725 * exception to this rule, however.
6726 6726 */
6727 6727 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
6728 6728 cpu->cpu_dtrace_chilled += val;
6729 6729 }
6730 6730
6731 6731 static void
6732 6732 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
6733 6733 uint64_t *buf, uint64_t arg)
6734 6734 {
6735 6735 int nframes = DTRACE_USTACK_NFRAMES(arg);
6736 6736 int strsize = DTRACE_USTACK_STRSIZE(arg);
6737 6737 uint64_t *pcs = &buf[1], *fps;
6738 6738 char *str = (char *)&pcs[nframes];
6739 6739 int size, offs = 0, i, j;
6740 6740 size_t rem;
6741 6741 uintptr_t old = mstate->dtms_scratch_ptr, saved;
6742 6742 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6743 6743 char *sym;
6744 6744
6745 6745 /*
6746 6746 * Should be taking a faster path if string space has not been
6747 6747 * allocated.
6748 6748 */
6749 6749 ASSERT(strsize != 0);
6750 6750
6751 6751 /*
6752 6752 * We will first allocate some temporary space for the frame pointers.
6753 6753 */
6754 6754 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6755 6755 size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
6756 6756 (nframes * sizeof (uint64_t));
6757 6757
6758 6758 if (!DTRACE_INSCRATCH(mstate, size)) {
6759 6759 /*
6760 6760 * Not enough room for our frame pointers -- need to indicate
6761 6761 * that we ran out of scratch space.
6762 6762 */
6763 6763 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6764 6764 return;
6765 6765 }
6766 6766
6767 6767 mstate->dtms_scratch_ptr += size;
6768 6768 saved = mstate->dtms_scratch_ptr;
6769 6769
6770 6770 /*
6771 6771 * Now get a stack with both program counters and frame pointers.
6772 6772 */
6773 6773 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6774 6774 dtrace_getufpstack(buf, fps, nframes + 1);
6775 6775 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6776 6776
6777 6777 /*
6778 6778 * If that faulted, we're cooked.
6779 6779 */
6780 6780 if (*flags & CPU_DTRACE_FAULT)
6781 6781 goto out;
6782 6782
6783 6783 /*
6784 6784 * Now we want to walk up the stack, calling the USTACK helper. For
6785 6785 * each iteration, we restore the scratch pointer.
6786 6786 */
6787 6787 for (i = 0; i < nframes; i++) {
6788 6788 mstate->dtms_scratch_ptr = saved;
6789 6789
6790 6790 if (offs >= strsize)
6791 6791 break;
6792 6792
6793 6793 sym = (char *)(uintptr_t)dtrace_helper(
6794 6794 DTRACE_HELPER_ACTION_USTACK,
6795 6795 mstate, state, pcs[i], fps[i]);
6796 6796
6797 6797 /*
6798 6798 * If we faulted while running the helper, we're going to
6799 6799 * clear the fault and null out the corresponding string.
6800 6800 */
6801 6801 if (*flags & CPU_DTRACE_FAULT) {
6802 6802 *flags &= ~CPU_DTRACE_FAULT;
6803 6803 str[offs++] = '\0';
6804 6804 continue;
6805 6805 }
6806 6806
6807 6807 if (sym == NULL) {
6808 6808 str[offs++] = '\0';
6809 6809 continue;
6810 6810 }
6811 6811
6812 6812 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate,
6813 6813 &(state->dts_vstate))) {
6814 6814 str[offs++] = '\0';
6815 6815 continue;
6816 6816 }
6817 6817
6818 6818 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6819 6819
6820 6820 /*
6821 6821 * Now copy in the string that the helper returned to us.
6822 6822 */
6823 6823 for (j = 0; offs + j < strsize && j < rem; j++) {
6824 6824 if ((str[offs + j] = sym[j]) == '\0')
6825 6825 break;
6826 6826 }
6827 6827
6828 6828 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6829 6829
6830 6830 offs += j + 1;
6831 6831 }
6832 6832
6833 6833 if (offs >= strsize) {
6834 6834 /*
6835 6835 * If we didn't have room for all of the strings, we don't
6836 6836 * abort processing -- this needn't be a fatal error -- but we
6837 6837 * still want to increment a counter (dts_stkstroverflows) to
6838 6838 * allow this condition to be warned about. (If this is from
6839 6839 * a jstack() action, it is easily tuned via jstackstrsize.)
6840 6840 */
6841 6841 dtrace_error(&state->dts_stkstroverflows);
6842 6842 }
6843 6843
6844 6844 while (offs < strsize)
6845 6845 str[offs++] = '\0';
6846 6846
6847 6847 out:
6848 6848 mstate->dtms_scratch_ptr = old;
6849 6849 }
6850 6850
6851 6851 static void
6852 6852 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
6853 6853 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
6854 6854 {
6855 6855 volatile uint16_t *flags;
6856 6856 uint64_t val = *valp;
6857 6857 size_t valoffs = *valoffsp;
6858 6858
6859 6859 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6860 6860 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
6861 6861
6862 6862 /*
6863 6863 * If this is a string, we're going to only load until we find the zero
6864 6864 * byte -- after which we'll store zero bytes.
6865 6865 */
6866 6866 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
6867 6867 char c = '\0' + 1;
6868 6868 size_t s;
6869 6869
6870 6870 for (s = 0; s < size; s++) {
6871 6871 if (c != '\0' && dtkind == DIF_TF_BYREF) {
6872 6872 c = dtrace_load8(val++);
6873 6873 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
6874 6874 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6875 6875 c = dtrace_fuword8((void *)(uintptr_t)val++);
6876 6876 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6877 6877 if (*flags & CPU_DTRACE_FAULT)
6878 6878 break;
6879 6879 }
6880 6880
6881 6881 DTRACE_STORE(uint8_t, tomax, valoffs++, c);
6882 6882
6883 6883 if (c == '\0' && intuple)
6884 6884 break;
6885 6885 }
6886 6886 } else {
6887 6887 uint8_t c;
6888 6888 while (valoffs < end) {
6889 6889 if (dtkind == DIF_TF_BYREF) {
6890 6890 c = dtrace_load8(val++);
6891 6891 } else if (dtkind == DIF_TF_BYUREF) {
6892 6892 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6893 6893 c = dtrace_fuword8((void *)(uintptr_t)val++);
6894 6894 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6895 6895 if (*flags & CPU_DTRACE_FAULT)
6896 6896 break;
6897 6897 }
6898 6898
6899 6899 DTRACE_STORE(uint8_t, tomax,
6900 6900 valoffs++, c);
6901 6901 }
6902 6902 }
6903 6903
6904 6904 *valp = val;
6905 6905 *valoffsp = valoffs;
6906 6906 }
6907 6907
6908 6908 /*
6909 6909 * If you're looking for the epicenter of DTrace, you just found it. This
6910 6910 * is the function called by the provider to fire a probe -- from which all
6911 6911 * subsequent probe-context DTrace activity emanates.
6912 6912 */
6913 6913 void
6914 6914 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6915 6915 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6916 6916 {
6917 6917 processorid_t cpuid;
6918 6918 dtrace_icookie_t cookie;
6919 6919 dtrace_probe_t *probe;
6920 6920 dtrace_mstate_t mstate;
6921 6921 dtrace_ecb_t *ecb;
6922 6922 dtrace_action_t *act;
6923 6923 intptr_t offs;
6924 6924 size_t size;
6925 6925 int vtime, onintr;
6926 6926 volatile uint16_t *flags;
6927 6927 hrtime_t now, end;
6928 6928
6929 6929 /*
6930 6930 * Kick out immediately if this CPU is still being born (in which case
6931 6931 * curthread will be set to -1) or the current thread can't allow
6932 6932 * probes in its current context.
6933 6933 */
6934 6934 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6935 6935 return;
6936 6936
6937 6937 cookie = dtrace_interrupt_disable();
6938 6938
6939 6939 /*
6940 6940 * Also refuse to process any probe firings that might happen on a
6941 6941 * disabled CPU.
6942 6942 */
6943 6943 if (CPU->cpu_flags & CPU_DISABLED) {
6944 6944 dtrace_interrupt_enable(cookie);
6945 6945 return;
6946 6946 }
6947 6947
6948 6948 probe = dtrace_probes[id - 1];
6949 6949 cpuid = CPU->cpu_id;
6950 6950 onintr = CPU_ON_INTR(CPU);
6951 6951
6952 6952 CPU->cpu_dtrace_probes++;
6953 6953
6954 6954 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6955 6955 probe->dtpr_predcache == curthread->t_predcache) {
6956 6956 /*
6957 6957 * We have hit in the predicate cache; we know that
6958 6958 * this predicate would evaluate to be false.
6959 6959 */
6960 6960 dtrace_interrupt_enable(cookie);
6961 6961 return;
6962 6962 }
6963 6963
6964 6964 if (panic_quiesce) {
6965 6965 /*
6966 6966 * We don't trace anything if we're panicking.
6967 6967 */
6968 6968 dtrace_interrupt_enable(cookie);
6969 6969 return;
6970 6970 }
6971 6971
6972 6972 now = mstate.dtms_timestamp = dtrace_gethrtime();
6973 6973 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6974 6974 vtime = dtrace_vtime_references != 0;
6975 6975
6976 6976 if (vtime && curthread->t_dtrace_start)
6977 6977 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6978 6978
6979 6979 mstate.dtms_difo = NULL;
6980 6980 mstate.dtms_probe = probe;
6981 6981 mstate.dtms_strtok = 0;
6982 6982 mstate.dtms_arg[0] = arg0;
6983 6983 mstate.dtms_arg[1] = arg1;
6984 6984 mstate.dtms_arg[2] = arg2;
6985 6985 mstate.dtms_arg[3] = arg3;
6986 6986 mstate.dtms_arg[4] = arg4;
6987 6987
6988 6988 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6989 6989
6990 6990 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6991 6991 dtrace_predicate_t *pred = ecb->dte_predicate;
6992 6992 dtrace_state_t *state = ecb->dte_state;
6993 6993 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6994 6994 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6995 6995 dtrace_vstate_t *vstate = &state->dts_vstate;
6996 6996 dtrace_provider_t *prov = probe->dtpr_provider;
6997 6997 uint64_t tracememsize = 0;
6998 6998 int committed = 0;
6999 6999 caddr_t tomax;
7000 7000
7001 7001 /*
7002 7002 * A little subtlety with the following (seemingly innocuous)
7003 7003 * declaration of the automatic 'val': by looking at the
7004 7004 * code, you might think that it could be declared in the
7005 7005 * action processing loop, below. (That is, it's only used in
7006 7006 * the action processing loop.) However, it must be declared
7007 7007 * out of that scope because in the case of DIF expression
7008 7008 * arguments to aggregating actions, one iteration of the
7009 7009 * action loop will use the last iteration's value.
7010 7010 */
7011 7011 #ifdef lint
7012 7012 uint64_t val = 0;
7013 7013 #else
7014 7014 uint64_t val;
7015 7015 #endif
7016 7016
7017 7017 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7018 7018 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC;
7019 7019 mstate.dtms_getf = NULL;
7020 7020
7021 7021 *flags &= ~CPU_DTRACE_ERROR;
7022 7022
7023 7023 if (prov == dtrace_provider) {
7024 7024 /*
7025 7025 * If dtrace itself is the provider of this probe,
7026 7026 * we're only going to continue processing the ECB if
7027 7027 * arg0 (the dtrace_state_t) is equal to the ECB's
7028 7028 * creating state. (This prevents disjoint consumers
7029 7029 * from seeing one another's metaprobes.)
7030 7030 */
7031 7031 if (arg0 != (uint64_t)(uintptr_t)state)
7032 7032 continue;
7033 7033 }
7034 7034
7035 7035 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7036 7036 /*
7037 7037 * We're not currently active. If our provider isn't
7038 7038 * the dtrace pseudo provider, we're not interested.
7039 7039 */
7040 7040 if (prov != dtrace_provider)
7041 7041 continue;
7042 7042
7043 7043 /*
7044 7044 * Now we must further check if we are in the BEGIN
7045 7045 * probe. If we are, we will only continue processing
7046 7046 * if we're still in WARMUP -- if one BEGIN enabling
7047 7047 * has invoked the exit() action, we don't want to
7048 7048 * evaluate subsequent BEGIN enablings.
7049 7049 */
7050 7050 if (probe->dtpr_id == dtrace_probeid_begin &&
7051 7051 state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7052 7052 ASSERT(state->dts_activity ==
7053 7053 DTRACE_ACTIVITY_DRAINING);
7054 7054 continue;
7055 7055 }
7056 7056 }
7057 7057
7058 7058 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb))
7059 7059 continue;
7060 7060
7061 7061 if (now - state->dts_alive > dtrace_deadman_timeout) {
7062 7062 /*
7063 7063 * We seem to be dead. Unless we (a) have kernel
7064 7064 * destructive permissions (b) have explicitly enabled
7065 7065 * destructive actions and (c) destructive actions have
7066 7066 * not been disabled, we're going to transition into
7067 7067 * the KILLED state, from which no further processing
7068 7068 * on this state will be performed.
7069 7069 */
7070 7070 if (!dtrace_priv_kernel_destructive(state) ||
7071 7071 !state->dts_cred.dcr_destructive ||
7072 7072 dtrace_destructive_disallow) {
7073 7073 void *activity = &state->dts_activity;
7074 7074 dtrace_activity_t current;
7075 7075
7076 7076 do {
7077 7077 current = state->dts_activity;
7078 7078 } while (dtrace_cas32(activity, current,
7079 7079 DTRACE_ACTIVITY_KILLED) != current);
7080 7080
7081 7081 continue;
7082 7082 }
7083 7083 }
7084 7084
7085 7085 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7086 7086 ecb->dte_alignment, state, &mstate)) < 0)
7087 7087 continue;
7088 7088
7089 7089 tomax = buf->dtb_tomax;
7090 7090 ASSERT(tomax != NULL);
7091 7091
7092 7092 if (ecb->dte_size != 0) {
7093 7093 dtrace_rechdr_t dtrh;
7094 7094 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7095 7095 mstate.dtms_timestamp = dtrace_gethrtime();
7096 7096 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7097 7097 }
7098 7098 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7099 7099 dtrh.dtrh_epid = ecb->dte_epid;
7100 7100 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7101 7101 mstate.dtms_timestamp);
7102 7102 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7103 7103 }
7104 7104
7105 7105 mstate.dtms_epid = ecb->dte_epid;
7106 7106 mstate.dtms_present |= DTRACE_MSTATE_EPID;
7107 7107
7108 7108 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7109 7109 mstate.dtms_access |= DTRACE_ACCESS_KERNEL;
7110 7110
7111 7111 if (pred != NULL) {
7112 7112 dtrace_difo_t *dp = pred->dtp_difo;
7113 7113 int rval;
7114 7114
7115 7115 rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7116 7116
7117 7117 if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7118 7118 dtrace_cacheid_t cid = probe->dtpr_predcache;
7119 7119
7120 7120 if (cid != DTRACE_CACHEIDNONE && !onintr) {
7121 7121 /*
7122 7122 * Update the predicate cache...
7123 7123 */
7124 7124 ASSERT(cid == pred->dtp_cacheid);
7125 7125 curthread->t_predcache = cid;
7126 7126 }
7127 7127
7128 7128 continue;
7129 7129 }
7130 7130 }
7131 7131
7132 7132 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7133 7133 act != NULL; act = act->dta_next) {
7134 7134 size_t valoffs;
7135 7135 dtrace_difo_t *dp;
7136 7136 dtrace_recdesc_t *rec = &act->dta_rec;
7137 7137
7138 7138 size = rec->dtrd_size;
7139 7139 valoffs = offs + rec->dtrd_offset;
7140 7140
7141 7141 if (DTRACEACT_ISAGG(act->dta_kind)) {
7142 7142 uint64_t v = 0xbad;
7143 7143 dtrace_aggregation_t *agg;
7144 7144
7145 7145 agg = (dtrace_aggregation_t *)act;
7146 7146
7147 7147 if ((dp = act->dta_difo) != NULL)
7148 7148 v = dtrace_dif_emulate(dp,
7149 7149 &mstate, vstate, state);
7150 7150
7151 7151 if (*flags & CPU_DTRACE_ERROR)
7152 7152 continue;
7153 7153
7154 7154 /*
7155 7155 * Note that we always pass the expression
7156 7156 * value from the previous iteration of the
7157 7157 * action loop. This value will only be used
7158 7158 * if there is an expression argument to the
7159 7159 * aggregating action, denoted by the
7160 7160 * dtag_hasarg field.
7161 7161 */
7162 7162 dtrace_aggregate(agg, buf,
7163 7163 offs, aggbuf, v, val);
7164 7164 continue;
7165 7165 }
7166 7166
7167 7167 switch (act->dta_kind) {
7168 7168 case DTRACEACT_STOP:
7169 7169 if (dtrace_priv_proc_destructive(state,
7170 7170 &mstate))
7171 7171 dtrace_action_stop();
7172 7172 continue;
7173 7173
7174 7174 case DTRACEACT_BREAKPOINT:
7175 7175 if (dtrace_priv_kernel_destructive(state))
7176 7176 dtrace_action_breakpoint(ecb);
7177 7177 continue;
7178 7178
7179 7179 case DTRACEACT_PANIC:
7180 7180 if (dtrace_priv_kernel_destructive(state))
7181 7181 dtrace_action_panic(ecb);
7182 7182 continue;
7183 7183
7184 7184 case DTRACEACT_STACK:
7185 7185 if (!dtrace_priv_kernel(state))
7186 7186 continue;
7187 7187
7188 7188 dtrace_getpcstack((pc_t *)(tomax + valoffs),
7189 7189 size / sizeof (pc_t), probe->dtpr_aframes,
7190 7190 DTRACE_ANCHORED(probe) ? NULL :
7191 7191 (uint32_t *)arg0);
7192 7192
7193 7193 continue;
7194 7194
7195 7195 case DTRACEACT_JSTACK:
7196 7196 case DTRACEACT_USTACK:
7197 7197 if (!dtrace_priv_proc(state, &mstate))
7198 7198 continue;
7199 7199
7200 7200 /*
7201 7201 * See comment in DIF_VAR_PID.
7202 7202 */
7203 7203 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7204 7204 CPU_ON_INTR(CPU)) {
7205 7205 int depth = DTRACE_USTACK_NFRAMES(
7206 7206 rec->dtrd_arg) + 1;
7207 7207
7208 7208 dtrace_bzero((void *)(tomax + valoffs),
7209 7209 DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7210 7210 + depth * sizeof (uint64_t));
7211 7211
7212 7212 continue;
7213 7213 }
7214 7214
7215 7215 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7216 7216 curproc->p_dtrace_helpers != NULL) {
7217 7217 /*
7218 7218 * This is the slow path -- we have
7219 7219 * allocated string space, and we're
7220 7220 * getting the stack of a process that
7221 7221 * has helpers. Call into a separate
7222 7222 * routine to perform this processing.
7223 7223 */
7224 7224 dtrace_action_ustack(&mstate, state,
7225 7225 (uint64_t *)(tomax + valoffs),
7226 7226 rec->dtrd_arg);
7227 7227 continue;
7228 7228 }
7229 7229
7230 7230 /*
7231 7231 * Clear the string space, since there's no
7232 7232 * helper to do it for us.
7233 7233 */
7234 7234 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) {
7235 7235 int depth = DTRACE_USTACK_NFRAMES(
7236 7236 rec->dtrd_arg);
7237 7237 size_t strsize = DTRACE_USTACK_STRSIZE(
7238 7238 rec->dtrd_arg);
7239 7239 uint64_t *buf = (uint64_t *)(tomax +
7240 7240 valoffs);
7241 7241 void *strspace = &buf[depth + 1];
7242 7242
7243 7243 dtrace_bzero(strspace,
7244 7244 MIN(depth, strsize));
7245 7245 }
7246 7246
7247 7247 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7248 7248 dtrace_getupcstack((uint64_t *)
7249 7249 (tomax + valoffs),
7250 7250 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7251 7251 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7252 7252 continue;
7253 7253
7254 7254 default:
7255 7255 break;
7256 7256 }
7257 7257
7258 7258 dp = act->dta_difo;
7259 7259 ASSERT(dp != NULL);
7260 7260
7261 7261 val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7262 7262
7263 7263 if (*flags & CPU_DTRACE_ERROR)
7264 7264 continue;
7265 7265
7266 7266 switch (act->dta_kind) {
7267 7267 case DTRACEACT_SPECULATE: {
7268 7268 dtrace_rechdr_t *dtrh;
7269 7269
7270 7270 ASSERT(buf == &state->dts_buffer[cpuid]);
7271 7271 buf = dtrace_speculation_buffer(state,
7272 7272 cpuid, val);
7273 7273
7274 7274 if (buf == NULL) {
7275 7275 *flags |= CPU_DTRACE_DROP;
7276 7276 continue;
7277 7277 }
7278 7278
7279 7279 offs = dtrace_buffer_reserve(buf,
7280 7280 ecb->dte_needed, ecb->dte_alignment,
7281 7281 state, NULL);
7282 7282
7283 7283 if (offs < 0) {
7284 7284 *flags |= CPU_DTRACE_DROP;
7285 7285 continue;
7286 7286 }
7287 7287
7288 7288 tomax = buf->dtb_tomax;
7289 7289 ASSERT(tomax != NULL);
7290 7290
7291 7291 if (ecb->dte_size == 0)
7292 7292 continue;
7293 7293
7294 7294 ASSERT3U(ecb->dte_size, >=,
7295 7295 sizeof (dtrace_rechdr_t));
7296 7296 dtrh = ((void *)(tomax + offs));
7297 7297 dtrh->dtrh_epid = ecb->dte_epid;
7298 7298 /*
7299 7299 * When the speculation is committed, all of
7300 7300 * the records in the speculative buffer will
7301 7301 * have their timestamps set to the commit
7302 7302 * time. Until then, it is set to a sentinel
7303 7303 * value, for debugability.
7304 7304 */
7305 7305 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7306 7306 continue;
7307 7307 }
7308 7308
7309 7309 case DTRACEACT_CHILL:
7310 7310 if (dtrace_priv_kernel_destructive(state))
7311 7311 dtrace_action_chill(&mstate, val);
7312 7312 continue;
7313 7313
7314 7314 case DTRACEACT_RAISE:
7315 7315 if (dtrace_priv_proc_destructive(state,
7316 7316 &mstate))
7317 7317 dtrace_action_raise(val);
7318 7318 continue;
7319 7319
7320 7320 case DTRACEACT_COMMIT:
7321 7321 ASSERT(!committed);
7322 7322
7323 7323 /*
7324 7324 * We need to commit our buffer state.
7325 7325 */
7326 7326 if (ecb->dte_size)
7327 7327 buf->dtb_offset = offs + ecb->dte_size;
7328 7328 buf = &state->dts_buffer[cpuid];
7329 7329 dtrace_speculation_commit(state, cpuid, val);
7330 7330 committed = 1;
7331 7331 continue;
7332 7332
7333 7333 case DTRACEACT_DISCARD:
7334 7334 dtrace_speculation_discard(state, cpuid, val);
7335 7335 continue;
7336 7336
7337 7337 case DTRACEACT_DIFEXPR:
7338 7338 case DTRACEACT_LIBACT:
7339 7339 case DTRACEACT_PRINTF:
7340 7340 case DTRACEACT_PRINTA:
7341 7341 case DTRACEACT_SYSTEM:
7342 7342 case DTRACEACT_FREOPEN:
7343 7343 case DTRACEACT_TRACEMEM:
7344 7344 break;
7345 7345
7346 7346 case DTRACEACT_TRACEMEM_DYNSIZE:
7347 7347 tracememsize = val;
7348 7348 break;
7349 7349
7350 7350 case DTRACEACT_SYM:
7351 7351 case DTRACEACT_MOD:
7352 7352 if (!dtrace_priv_kernel(state))
7353 7353 continue;
7354 7354 break;
7355 7355
7356 7356 case DTRACEACT_USYM:
7357 7357 case DTRACEACT_UMOD:
7358 7358 case DTRACEACT_UADDR: {
7359 7359 struct pid *pid = curthread->t_procp->p_pidp;
7360 7360
7361 7361 if (!dtrace_priv_proc(state, &mstate))
7362 7362 continue;
7363 7363
7364 7364 DTRACE_STORE(uint64_t, tomax,
7365 7365 valoffs, (uint64_t)pid->pid_id);
7366 7366 DTRACE_STORE(uint64_t, tomax,
7367 7367 valoffs + sizeof (uint64_t), val);
7368 7368
7369 7369 continue;
7370 7370 }
7371 7371
7372 7372 case DTRACEACT_EXIT: {
7373 7373 /*
7374 7374 * For the exit action, we are going to attempt
7375 7375 * to atomically set our activity to be
7376 7376 * draining. If this fails (either because
7377 7377 * another CPU has beat us to the exit action,
7378 7378 * or because our current activity is something
7379 7379 * other than ACTIVE or WARMUP), we will
7380 7380 * continue. This assures that the exit action
7381 7381 * can be successfully recorded at most once
7382 7382 * when we're in the ACTIVE state. If we're
7383 7383 * encountering the exit() action while in
7384 7384 * COOLDOWN, however, we want to honor the new
7385 7385 * status code. (We know that we're the only
7386 7386 * thread in COOLDOWN, so there is no race.)
7387 7387 */
7388 7388 void *activity = &state->dts_activity;
7389 7389 dtrace_activity_t current = state->dts_activity;
7390 7390
7391 7391 if (current == DTRACE_ACTIVITY_COOLDOWN)
7392 7392 break;
7393 7393
7394 7394 if (current != DTRACE_ACTIVITY_WARMUP)
7395 7395 current = DTRACE_ACTIVITY_ACTIVE;
7396 7396
7397 7397 if (dtrace_cas32(activity, current,
7398 7398 DTRACE_ACTIVITY_DRAINING) != current) {
7399 7399 *flags |= CPU_DTRACE_DROP;
7400 7400 continue;
7401 7401 }
7402 7402
7403 7403 break;
7404 7404 }
7405 7405
7406 7406 default:
7407 7407 ASSERT(0);
7408 7408 }
7409 7409
7410 7410 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7411 7411 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7412 7412 uintptr_t end = valoffs + size;
7413 7413
7414 7414 if (tracememsize != 0 &&
7415 7415 valoffs + tracememsize < end) {
7416 7416 end = valoffs + tracememsize;
7417 7417 tracememsize = 0;
7418 7418 }
7419 7419
7420 7420 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7421 7421 !dtrace_vcanload((void *)(uintptr_t)val,
7422 7422 &dp->dtdo_rtype, NULL, &mstate, vstate))
7423 7423 continue;
7424 7424
7425 7425 dtrace_store_by_ref(dp, tomax, size, &valoffs,
7426 7426 &val, end, act->dta_intuple,
7427 7427 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7428 7428 DIF_TF_BYREF: DIF_TF_BYUREF);
7429 7429 continue;
7430 7430 }
7431 7431
7432 7432 switch (size) {
7433 7433 case 0:
7434 7434 break;
7435 7435
7436 7436 case sizeof (uint8_t):
7437 7437 DTRACE_STORE(uint8_t, tomax, valoffs, val);
7438 7438 break;
7439 7439 case sizeof (uint16_t):
7440 7440 DTRACE_STORE(uint16_t, tomax, valoffs, val);
7441 7441 break;
7442 7442 case sizeof (uint32_t):
7443 7443 DTRACE_STORE(uint32_t, tomax, valoffs, val);
7444 7444 break;
7445 7445 case sizeof (uint64_t):
7446 7446 DTRACE_STORE(uint64_t, tomax, valoffs, val);
7447 7447 break;
7448 7448 default:
7449 7449 /*
7450 7450 * Any other size should have been returned by
7451 7451 * reference, not by value.
7452 7452 */
7453 7453 ASSERT(0);
7454 7454 break;
7455 7455 }
7456 7456 }
7457 7457
7458 7458 if (*flags & CPU_DTRACE_DROP)
7459 7459 continue;
7460 7460
7461 7461 if (*flags & CPU_DTRACE_FAULT) {
7462 7462 int ndx;
7463 7463 dtrace_action_t *err;
7464 7464
7465 7465 buf->dtb_errors++;
7466 7466
7467 7467 if (probe->dtpr_id == dtrace_probeid_error) {
7468 7468 /*
7469 7469 * There's nothing we can do -- we had an
7470 7470 * error on the error probe. We bump an
7471 7471 * error counter to at least indicate that
7472 7472 * this condition happened.
7473 7473 */
7474 7474 dtrace_error(&state->dts_dblerrors);
7475 7475 continue;
7476 7476 }
7477 7477
7478 7478 if (vtime) {
7479 7479 /*
7480 7480 * Before recursing on dtrace_probe(), we
7481 7481 * need to explicitly clear out our start
7482 7482 * time to prevent it from being accumulated
7483 7483 * into t_dtrace_vtime.
7484 7484 */
7485 7485 curthread->t_dtrace_start = 0;
7486 7486 }
7487 7487
7488 7488 /*
7489 7489 * Iterate over the actions to figure out which action
7490 7490 * we were processing when we experienced the error.
7491 7491 * Note that act points _past_ the faulting action; if
7492 7492 * act is ecb->dte_action, the fault was in the
7493 7493 * predicate, if it's ecb->dte_action->dta_next it's
7494 7494 * in action #1, and so on.
7495 7495 */
7496 7496 for (err = ecb->dte_action, ndx = 0;
7497 7497 err != act; err = err->dta_next, ndx++)
7498 7498 continue;
7499 7499
7500 7500 dtrace_probe_error(state, ecb->dte_epid, ndx,
7501 7501 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7502 7502 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7503 7503 cpu_core[cpuid].cpuc_dtrace_illval);
7504 7504
7505 7505 continue;
7506 7506 }
7507 7507
7508 7508 if (!committed)
7509 7509 buf->dtb_offset = offs + ecb->dte_size;
7510 7510 }
7511 7511
7512 7512 end = dtrace_gethrtime();
7513 7513 if (vtime)
7514 7514 curthread->t_dtrace_start = end;
7515 7515
7516 7516 CPU->cpu_dtrace_nsec += end - now;
7517 7517
7518 7518 dtrace_interrupt_enable(cookie);
7519 7519 }
7520 7520
7521 7521 /*
7522 7522 * DTrace Probe Hashing Functions
7523 7523 *
7524 7524 * The functions in this section (and indeed, the functions in remaining
7525 7525 * sections) are not _called_ from probe context. (Any exceptions to this are
7526 7526 * marked with a "Note:".) Rather, they are called from elsewhere in the
7527 7527 * DTrace framework to look-up probes in, add probes to and remove probes from
7528 7528 * the DTrace probe hashes. (Each probe is hashed by each element of the
7529 7529 * probe tuple -- allowing for fast lookups, regardless of what was
7530 7530 * specified.)
7531 7531 */
7532 7532 static uint_t
7533 7533 dtrace_hash_str(char *p)
7534 7534 {
7535 7535 unsigned int g;
7536 7536 uint_t hval = 0;
7537 7537
7538 7538 while (*p) {
7539 7539 hval = (hval << 4) + *p++;
7540 7540 if ((g = (hval & 0xf0000000)) != 0)
7541 7541 hval ^= g >> 24;
7542 7542 hval &= ~g;
7543 7543 }
7544 7544 return (hval);
7545 7545 }
7546 7546
7547 7547 static dtrace_hash_t *
7548 7548 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7549 7549 {
7550 7550 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
7551 7551
7552 7552 hash->dth_stroffs = stroffs;
7553 7553 hash->dth_nextoffs = nextoffs;
7554 7554 hash->dth_prevoffs = prevoffs;
7555 7555
7556 7556 hash->dth_size = 1;
7557 7557 hash->dth_mask = hash->dth_size - 1;
7558 7558
7559 7559 hash->dth_tab = kmem_zalloc(hash->dth_size *
7560 7560 sizeof (dtrace_hashbucket_t *), KM_SLEEP);
7561 7561
7562 7562 return (hash);
7563 7563 }
7564 7564
7565 7565 static void
7566 7566 dtrace_hash_destroy(dtrace_hash_t *hash)
7567 7567 {
7568 7568 #ifdef DEBUG
7569 7569 int i;
7570 7570
7571 7571 for (i = 0; i < hash->dth_size; i++)
7572 7572 ASSERT(hash->dth_tab[i] == NULL);
7573 7573 #endif
7574 7574
7575 7575 kmem_free(hash->dth_tab,
7576 7576 hash->dth_size * sizeof (dtrace_hashbucket_t *));
7577 7577 kmem_free(hash, sizeof (dtrace_hash_t));
7578 7578 }
7579 7579
7580 7580 static void
7581 7581 dtrace_hash_resize(dtrace_hash_t *hash)
7582 7582 {
7583 7583 int size = hash->dth_size, i, ndx;
7584 7584 int new_size = hash->dth_size << 1;
7585 7585 int new_mask = new_size - 1;
7586 7586 dtrace_hashbucket_t **new_tab, *bucket, *next;
7587 7587
7588 7588 ASSERT((new_size & new_mask) == 0);
7589 7589
7590 7590 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
7591 7591
7592 7592 for (i = 0; i < size; i++) {
7593 7593 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
7594 7594 dtrace_probe_t *probe = bucket->dthb_chain;
7595 7595
7596 7596 ASSERT(probe != NULL);
7597 7597 ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
7598 7598
7599 7599 next = bucket->dthb_next;
7600 7600 bucket->dthb_next = new_tab[ndx];
7601 7601 new_tab[ndx] = bucket;
7602 7602 }
7603 7603 }
7604 7604
7605 7605 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
7606 7606 hash->dth_tab = new_tab;
7607 7607 hash->dth_size = new_size;
7608 7608 hash->dth_mask = new_mask;
7609 7609 }
7610 7610
7611 7611 static void
7612 7612 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
7613 7613 {
7614 7614 int hashval = DTRACE_HASHSTR(hash, new);
7615 7615 int ndx = hashval & hash->dth_mask;
7616 7616 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7617 7617 dtrace_probe_t **nextp, **prevp;
7618 7618
7619 7619 for (; bucket != NULL; bucket = bucket->dthb_next) {
7620 7620 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
7621 7621 goto add;
7622 7622 }
7623 7623
7624 7624 if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
7625 7625 dtrace_hash_resize(hash);
7626 7626 dtrace_hash_add(hash, new);
7627 7627 return;
7628 7628 }
7629 7629
7630 7630 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
7631 7631 bucket->dthb_next = hash->dth_tab[ndx];
7632 7632 hash->dth_tab[ndx] = bucket;
7633 7633 hash->dth_nbuckets++;
7634 7634
7635 7635 add:
7636 7636 nextp = DTRACE_HASHNEXT(hash, new);
7637 7637 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
7638 7638 *nextp = bucket->dthb_chain;
7639 7639
7640 7640 if (bucket->dthb_chain != NULL) {
7641 7641 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
7642 7642 ASSERT(*prevp == NULL);
7643 7643 *prevp = new;
7644 7644 }
7645 7645
7646 7646 bucket->dthb_chain = new;
7647 7647 bucket->dthb_len++;
7648 7648 }
7649 7649
7650 7650 static dtrace_probe_t *
7651 7651 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
7652 7652 {
7653 7653 int hashval = DTRACE_HASHSTR(hash, template);
7654 7654 int ndx = hashval & hash->dth_mask;
7655 7655 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7656 7656
7657 7657 for (; bucket != NULL; bucket = bucket->dthb_next) {
7658 7658 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7659 7659 return (bucket->dthb_chain);
7660 7660 }
7661 7661
7662 7662 return (NULL);
7663 7663 }
7664 7664
7665 7665 static int
7666 7666 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
7667 7667 {
7668 7668 int hashval = DTRACE_HASHSTR(hash, template);
7669 7669 int ndx = hashval & hash->dth_mask;
7670 7670 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7671 7671
7672 7672 for (; bucket != NULL; bucket = bucket->dthb_next) {
7673 7673 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7674 7674 return (bucket->dthb_len);
7675 7675 }
7676 7676
7677 7677 return (0);
7678 7678 }
7679 7679
7680 7680 static void
7681 7681 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7682 7682 {
7683 7683 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
7684 7684 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7685 7685
7686 7686 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7687 7687 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
7688 7688
7689 7689 /*
7690 7690 * Find the bucket that we're removing this probe from.
7691 7691 */
7692 7692 for (; bucket != NULL; bucket = bucket->dthb_next) {
7693 7693 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
7694 7694 break;
7695 7695 }
7696 7696
7697 7697 ASSERT(bucket != NULL);
7698 7698
7699 7699 if (*prevp == NULL) {
7700 7700 if (*nextp == NULL) {
7701 7701 /*
7702 7702 * The removed probe was the only probe on this
7703 7703 * bucket; we need to remove the bucket.
7704 7704 */
7705 7705 dtrace_hashbucket_t *b = hash->dth_tab[ndx];
7706 7706
7707 7707 ASSERT(bucket->dthb_chain == probe);
7708 7708 ASSERT(b != NULL);
7709 7709
7710 7710 if (b == bucket) {
7711 7711 hash->dth_tab[ndx] = bucket->dthb_next;
7712 7712 } else {
7713 7713 while (b->dthb_next != bucket)
7714 7714 b = b->dthb_next;
7715 7715 b->dthb_next = bucket->dthb_next;
7716 7716 }
7717 7717
7718 7718 ASSERT(hash->dth_nbuckets > 0);
7719 7719 hash->dth_nbuckets--;
7720 7720 kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7721 7721 return;
7722 7722 }
7723 7723
7724 7724 bucket->dthb_chain = *nextp;
7725 7725 } else {
7726 7726 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7727 7727 }
7728 7728
7729 7729 if (*nextp != NULL)
7730 7730 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7731 7731 }
7732 7732
7733 7733 /*
7734 7734 * DTrace Utility Functions
7735 7735 *
7736 7736 * These are random utility functions that are _not_ called from probe context.
7737 7737 */
7738 7738 static int
7739 7739 dtrace_badattr(const dtrace_attribute_t *a)
7740 7740 {
7741 7741 return (a->dtat_name > DTRACE_STABILITY_MAX ||
7742 7742 a->dtat_data > DTRACE_STABILITY_MAX ||
7743 7743 a->dtat_class > DTRACE_CLASS_MAX);
7744 7744 }
7745 7745
7746 7746 /*
7747 7747 * Return a duplicate copy of a string. If the specified string is NULL,
7748 7748 * this function returns a zero-length string.
7749 7749 */
7750 7750 static char *
7751 7751 dtrace_strdup(const char *str)
7752 7752 {
7753 7753 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7754 7754
7755 7755 if (str != NULL)
7756 7756 (void) strcpy(new, str);
7757 7757
7758 7758 return (new);
7759 7759 }
7760 7760
7761 7761 #define DTRACE_ISALPHA(c) \
7762 7762 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7763 7763
7764 7764 static int
7765 7765 dtrace_badname(const char *s)
7766 7766 {
7767 7767 char c;
7768 7768
7769 7769 if (s == NULL || (c = *s++) == '\0')
7770 7770 return (0);
7771 7771
7772 7772 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7773 7773 return (1);
7774 7774
7775 7775 while ((c = *s++) != '\0') {
7776 7776 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7777 7777 c != '-' && c != '_' && c != '.' && c != '`')
7778 7778 return (1);
7779 7779 }
7780 7780
7781 7781 return (0);
7782 7782 }
7783 7783
7784 7784 static void
7785 7785 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
↓ open down ↓ |
7785 lines elided |
↑ open up ↑ |
7786 7786 {
7787 7787 uint32_t priv;
7788 7788
7789 7789 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7790 7790 /*
7791 7791 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7792 7792 */
7793 7793 priv = DTRACE_PRIV_ALL;
7794 7794 } else {
7795 7795 *uidp = crgetuid(cr);
7796 - *zoneidp = crgetzoneid(cr);
7796 + *zoneidp = crgetzonedid(cr);
7797 7797
7798 7798 priv = 0;
7799 7799 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7800 7800 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7801 7801 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7802 7802 priv |= DTRACE_PRIV_USER;
7803 7803 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7804 7804 priv |= DTRACE_PRIV_PROC;
7805 7805 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7806 7806 priv |= DTRACE_PRIV_OWNER;
7807 7807 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7808 7808 priv |= DTRACE_PRIV_ZONEOWNER;
7809 7809 }
7810 7810
7811 7811 *privp = priv;
7812 7812 }
7813 7813
7814 7814 #ifdef DTRACE_ERRDEBUG
7815 7815 static void
7816 7816 dtrace_errdebug(const char *str)
7817 7817 {
7818 7818 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
7819 7819 int occupied = 0;
7820 7820
7821 7821 mutex_enter(&dtrace_errlock);
7822 7822 dtrace_errlast = str;
7823 7823 dtrace_errthread = curthread;
7824 7824
7825 7825 while (occupied++ < DTRACE_ERRHASHSZ) {
7826 7826 if (dtrace_errhash[hval].dter_msg == str) {
7827 7827 dtrace_errhash[hval].dter_count++;
7828 7828 goto out;
7829 7829 }
7830 7830
7831 7831 if (dtrace_errhash[hval].dter_msg != NULL) {
7832 7832 hval = (hval + 1) % DTRACE_ERRHASHSZ;
7833 7833 continue;
7834 7834 }
7835 7835
7836 7836 dtrace_errhash[hval].dter_msg = str;
7837 7837 dtrace_errhash[hval].dter_count = 1;
7838 7838 goto out;
7839 7839 }
7840 7840
7841 7841 panic("dtrace: undersized error hash");
7842 7842 out:
7843 7843 mutex_exit(&dtrace_errlock);
7844 7844 }
7845 7845 #endif
7846 7846
7847 7847 /*
7848 7848 * DTrace Matching Functions
7849 7849 *
7850 7850 * These functions are used to match groups of probes, given some elements of
7851 7851 * a probe tuple, or some globbed expressions for elements of a probe tuple.
7852 7852 */
7853 7853 static int
7854 7854 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7855 7855 zoneid_t zoneid)
7856 7856 {
7857 7857 if (priv != DTRACE_PRIV_ALL) {
7858 7858 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7859 7859 uint32_t match = priv & ppriv;
7860 7860
7861 7861 /*
7862 7862 * No PRIV_DTRACE_* privileges...
7863 7863 */
7864 7864 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7865 7865 DTRACE_PRIV_KERNEL)) == 0)
7866 7866 return (0);
7867 7867
7868 7868 /*
7869 7869 * No matching bits, but there were bits to match...
7870 7870 */
7871 7871 if (match == 0 && ppriv != 0)
7872 7872 return (0);
7873 7873
7874 7874 /*
7875 7875 * Need to have permissions to the process, but don't...
7876 7876 */
7877 7877 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7878 7878 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7879 7879 return (0);
7880 7880 }
7881 7881
7882 7882 /*
7883 7883 * Need to be in the same zone unless we possess the
7884 7884 * privilege to examine all zones.
7885 7885 */
7886 7886 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7887 7887 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7888 7888 return (0);
7889 7889 }
7890 7890 }
7891 7891
7892 7892 return (1);
7893 7893 }
7894 7894
7895 7895 /*
7896 7896 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7897 7897 * consists of input pattern strings and an ops-vector to evaluate them.
7898 7898 * This function returns >0 for match, 0 for no match, and <0 for error.
7899 7899 */
7900 7900 static int
7901 7901 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7902 7902 uint32_t priv, uid_t uid, zoneid_t zoneid)
7903 7903 {
7904 7904 dtrace_provider_t *pvp = prp->dtpr_provider;
7905 7905 int rv;
7906 7906
7907 7907 if (pvp->dtpv_defunct)
7908 7908 return (0);
7909 7909
7910 7910 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7911 7911 return (rv);
7912 7912
7913 7913 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7914 7914 return (rv);
7915 7915
7916 7916 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7917 7917 return (rv);
7918 7918
7919 7919 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7920 7920 return (rv);
7921 7921
7922 7922 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7923 7923 return (0);
7924 7924
7925 7925 return (rv);
7926 7926 }
7927 7927
7928 7928 /*
7929 7929 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7930 7930 * interface for matching a glob pattern 'p' to an input string 's'. Unlike
7931 7931 * libc's version, the kernel version only applies to 8-bit ASCII strings.
7932 7932 * In addition, all of the recursion cases except for '*' matching have been
7933 7933 * unwound. For '*', we still implement recursive evaluation, but a depth
7934 7934 * counter is maintained and matching is aborted if we recurse too deep.
7935 7935 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7936 7936 */
7937 7937 static int
7938 7938 dtrace_match_glob(const char *s, const char *p, int depth)
7939 7939 {
7940 7940 const char *olds;
7941 7941 char s1, c;
7942 7942 int gs;
7943 7943
7944 7944 if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7945 7945 return (-1);
7946 7946
7947 7947 if (s == NULL)
7948 7948 s = ""; /* treat NULL as empty string */
7949 7949
7950 7950 top:
7951 7951 olds = s;
7952 7952 s1 = *s++;
7953 7953
7954 7954 if (p == NULL)
7955 7955 return (0);
7956 7956
7957 7957 if ((c = *p++) == '\0')
7958 7958 return (s1 == '\0');
7959 7959
7960 7960 switch (c) {
7961 7961 case '[': {
7962 7962 int ok = 0, notflag = 0;
7963 7963 char lc = '\0';
7964 7964
7965 7965 if (s1 == '\0')
7966 7966 return (0);
7967 7967
7968 7968 if (*p == '!') {
7969 7969 notflag = 1;
7970 7970 p++;
7971 7971 }
7972 7972
7973 7973 if ((c = *p++) == '\0')
7974 7974 return (0);
7975 7975
7976 7976 do {
7977 7977 if (c == '-' && lc != '\0' && *p != ']') {
7978 7978 if ((c = *p++) == '\0')
7979 7979 return (0);
7980 7980 if (c == '\\' && (c = *p++) == '\0')
7981 7981 return (0);
7982 7982
7983 7983 if (notflag) {
7984 7984 if (s1 < lc || s1 > c)
7985 7985 ok++;
7986 7986 else
7987 7987 return (0);
7988 7988 } else if (lc <= s1 && s1 <= c)
7989 7989 ok++;
7990 7990
7991 7991 } else if (c == '\\' && (c = *p++) == '\0')
7992 7992 return (0);
7993 7993
7994 7994 lc = c; /* save left-hand 'c' for next iteration */
7995 7995
7996 7996 if (notflag) {
7997 7997 if (s1 != c)
7998 7998 ok++;
7999 7999 else
8000 8000 return (0);
8001 8001 } else if (s1 == c)
8002 8002 ok++;
8003 8003
8004 8004 if ((c = *p++) == '\0')
8005 8005 return (0);
8006 8006
8007 8007 } while (c != ']');
8008 8008
8009 8009 if (ok)
8010 8010 goto top;
8011 8011
8012 8012 return (0);
8013 8013 }
8014 8014
8015 8015 case '\\':
8016 8016 if ((c = *p++) == '\0')
8017 8017 return (0);
8018 8018 /*FALLTHRU*/
8019 8019
8020 8020 default:
8021 8021 if (c != s1)
8022 8022 return (0);
8023 8023 /*FALLTHRU*/
8024 8024
8025 8025 case '?':
8026 8026 if (s1 != '\0')
8027 8027 goto top;
8028 8028 return (0);
8029 8029
8030 8030 case '*':
8031 8031 while (*p == '*')
8032 8032 p++; /* consecutive *'s are identical to a single one */
8033 8033
8034 8034 if (*p == '\0')
8035 8035 return (1);
8036 8036
8037 8037 for (s = olds; *s != '\0'; s++) {
8038 8038 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8039 8039 return (gs);
8040 8040 }
8041 8041
8042 8042 return (0);
8043 8043 }
8044 8044 }
8045 8045
8046 8046 /*ARGSUSED*/
8047 8047 static int
8048 8048 dtrace_match_string(const char *s, const char *p, int depth)
8049 8049 {
8050 8050 return (s != NULL && strcmp(s, p) == 0);
8051 8051 }
8052 8052
8053 8053 /*ARGSUSED*/
8054 8054 static int
8055 8055 dtrace_match_nul(const char *s, const char *p, int depth)
8056 8056 {
8057 8057 return (1); /* always match the empty pattern */
8058 8058 }
8059 8059
8060 8060 /*ARGSUSED*/
8061 8061 static int
8062 8062 dtrace_match_nonzero(const char *s, const char *p, int depth)
8063 8063 {
8064 8064 return (s != NULL && s[0] != '\0');
8065 8065 }
8066 8066
8067 8067 static int
8068 8068 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8069 8069 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8070 8070 {
8071 8071 dtrace_probe_t template, *probe;
8072 8072 dtrace_hash_t *hash = NULL;
8073 8073 int len, rc, best = INT_MAX, nmatched = 0;
8074 8074 dtrace_id_t i;
8075 8075
8076 8076 ASSERT(MUTEX_HELD(&dtrace_lock));
8077 8077
8078 8078 /*
8079 8079 * If the probe ID is specified in the key, just lookup by ID and
8080 8080 * invoke the match callback once if a matching probe is found.
8081 8081 */
8082 8082 if (pkp->dtpk_id != DTRACE_IDNONE) {
8083 8083 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8084 8084 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8085 8085 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
8086 8086 return (DTRACE_MATCH_FAIL);
8087 8087 nmatched++;
8088 8088 }
8089 8089 return (nmatched);
8090 8090 }
8091 8091
8092 8092 template.dtpr_mod = (char *)pkp->dtpk_mod;
8093 8093 template.dtpr_func = (char *)pkp->dtpk_func;
8094 8094 template.dtpr_name = (char *)pkp->dtpk_name;
8095 8095
8096 8096 /*
8097 8097 * We want to find the most distinct of the module name, function
8098 8098 * name, and name. So for each one that is not a glob pattern or
8099 8099 * empty string, we perform a lookup in the corresponding hash and
8100 8100 * use the hash table with the fewest collisions to do our search.
8101 8101 */
8102 8102 if (pkp->dtpk_mmatch == &dtrace_match_string &&
8103 8103 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8104 8104 best = len;
8105 8105 hash = dtrace_bymod;
8106 8106 }
8107 8107
8108 8108 if (pkp->dtpk_fmatch == &dtrace_match_string &&
8109 8109 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8110 8110 best = len;
8111 8111 hash = dtrace_byfunc;
8112 8112 }
8113 8113
8114 8114 if (pkp->dtpk_nmatch == &dtrace_match_string &&
8115 8115 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8116 8116 best = len;
8117 8117 hash = dtrace_byname;
8118 8118 }
8119 8119
8120 8120 /*
8121 8121 * If we did not select a hash table, iterate over every probe and
8122 8122 * invoke our callback for each one that matches our input probe key.
8123 8123 */
8124 8124 if (hash == NULL) {
8125 8125 for (i = 0; i < dtrace_nprobes; i++) {
8126 8126 if ((probe = dtrace_probes[i]) == NULL ||
8127 8127 dtrace_match_probe(probe, pkp, priv, uid,
8128 8128 zoneid) <= 0)
8129 8129 continue;
8130 8130
8131 8131 nmatched++;
8132 8132
8133 8133 if ((rc = (*matched)(probe, arg)) !=
8134 8134 DTRACE_MATCH_NEXT) {
8135 8135 if (rc == DTRACE_MATCH_FAIL)
8136 8136 return (DTRACE_MATCH_FAIL);
8137 8137 break;
8138 8138 }
8139 8139 }
8140 8140
8141 8141 return (nmatched);
8142 8142 }
8143 8143
8144 8144 /*
8145 8145 * If we selected a hash table, iterate over each probe of the same key
8146 8146 * name and invoke the callback for every probe that matches the other
8147 8147 * attributes of our input probe key.
8148 8148 */
8149 8149 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8150 8150 probe = *(DTRACE_HASHNEXT(hash, probe))) {
8151 8151
8152 8152 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8153 8153 continue;
8154 8154
8155 8155 nmatched++;
8156 8156
8157 8157 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
8158 8158 if (rc == DTRACE_MATCH_FAIL)
8159 8159 return (DTRACE_MATCH_FAIL);
8160 8160 break;
8161 8161 }
8162 8162 }
8163 8163
8164 8164 return (nmatched);
8165 8165 }
8166 8166
8167 8167 /*
8168 8168 * Return the function pointer dtrace_probecmp() should use to compare the
8169 8169 * specified pattern with a string. For NULL or empty patterns, we select
8170 8170 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob().
8171 8171 * For non-empty non-glob strings, we use dtrace_match_string().
8172 8172 */
8173 8173 static dtrace_probekey_f *
8174 8174 dtrace_probekey_func(const char *p)
8175 8175 {
8176 8176 char c;
8177 8177
8178 8178 if (p == NULL || *p == '\0')
8179 8179 return (&dtrace_match_nul);
8180 8180
8181 8181 while ((c = *p++) != '\0') {
8182 8182 if (c == '[' || c == '?' || c == '*' || c == '\\')
8183 8183 return (&dtrace_match_glob);
8184 8184 }
8185 8185
8186 8186 return (&dtrace_match_string);
8187 8187 }
8188 8188
8189 8189 /*
8190 8190 * Build a probe comparison key for use with dtrace_match_probe() from the
8191 8191 * given probe description. By convention, a null key only matches anchored
8192 8192 * probes: if each field is the empty string, reset dtpk_fmatch to
8193 8193 * dtrace_match_nonzero().
8194 8194 */
8195 8195 static void
8196 8196 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8197 8197 {
8198 8198 pkp->dtpk_prov = pdp->dtpd_provider;
8199 8199 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8200 8200
8201 8201 pkp->dtpk_mod = pdp->dtpd_mod;
8202 8202 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8203 8203
8204 8204 pkp->dtpk_func = pdp->dtpd_func;
8205 8205 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8206 8206
8207 8207 pkp->dtpk_name = pdp->dtpd_name;
8208 8208 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8209 8209
8210 8210 pkp->dtpk_id = pdp->dtpd_id;
8211 8211
8212 8212 if (pkp->dtpk_id == DTRACE_IDNONE &&
8213 8213 pkp->dtpk_pmatch == &dtrace_match_nul &&
8214 8214 pkp->dtpk_mmatch == &dtrace_match_nul &&
8215 8215 pkp->dtpk_fmatch == &dtrace_match_nul &&
8216 8216 pkp->dtpk_nmatch == &dtrace_match_nul)
8217 8217 pkp->dtpk_fmatch = &dtrace_match_nonzero;
8218 8218 }
8219 8219
8220 8220 /*
8221 8221 * DTrace Provider-to-Framework API Functions
8222 8222 *
8223 8223 * These functions implement much of the Provider-to-Framework API, as
8224 8224 * described in <sys/dtrace.h>. The parts of the API not in this section are
8225 8225 * the functions in the API for probe management (found below), and
8226 8226 * dtrace_probe() itself (found above).
8227 8227 */
8228 8228
8229 8229 /*
8230 8230 * Register the calling provider with the DTrace framework. This should
8231 8231 * generally be called by DTrace providers in their attach(9E) entry point.
8232 8232 */
8233 8233 int
8234 8234 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8235 8235 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8236 8236 {
8237 8237 dtrace_provider_t *provider;
8238 8238
8239 8239 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8240 8240 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8241 8241 "arguments", name ? name : "<NULL>");
8242 8242 return (EINVAL);
8243 8243 }
8244 8244
8245 8245 if (name[0] == '\0' || dtrace_badname(name)) {
8246 8246 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8247 8247 "provider name", name);
8248 8248 return (EINVAL);
8249 8249 }
8250 8250
8251 8251 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8252 8252 pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8253 8253 pops->dtps_destroy == NULL ||
8254 8254 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8255 8255 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8256 8256 "provider ops", name);
8257 8257 return (EINVAL);
8258 8258 }
8259 8259
8260 8260 if (dtrace_badattr(&pap->dtpa_provider) ||
8261 8261 dtrace_badattr(&pap->dtpa_mod) ||
8262 8262 dtrace_badattr(&pap->dtpa_func) ||
8263 8263 dtrace_badattr(&pap->dtpa_name) ||
8264 8264 dtrace_badattr(&pap->dtpa_args)) {
8265 8265 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8266 8266 "provider attributes", name);
8267 8267 return (EINVAL);
8268 8268 }
8269 8269
8270 8270 if (priv & ~DTRACE_PRIV_ALL) {
8271 8271 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8272 8272 "privilege attributes", name);
8273 8273 return (EINVAL);
8274 8274 }
8275 8275
8276 8276 if ((priv & DTRACE_PRIV_KERNEL) &&
8277 8277 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8278 8278 pops->dtps_mode == NULL) {
8279 8279 cmn_err(CE_WARN, "failed to register provider '%s': need "
8280 8280 "dtps_mode() op for given privilege attributes", name);
8281 8281 return (EINVAL);
↓ open down ↓ |
475 lines elided |
↑ open up ↑ |
8282 8282 }
8283 8283
8284 8284 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8285 8285 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8286 8286 (void) strcpy(provider->dtpv_name, name);
8287 8287
8288 8288 provider->dtpv_attr = *pap;
8289 8289 provider->dtpv_priv.dtpp_flags = priv;
8290 8290 if (cr != NULL) {
8291 8291 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8292 - provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8292 + provider->dtpv_priv.dtpp_zoneid = crgetzonedid(cr);
8293 8293 }
8294 8294 provider->dtpv_pops = *pops;
8295 8295
8296 8296 if (pops->dtps_provide == NULL) {
8297 8297 ASSERT(pops->dtps_provide_module != NULL);
8298 8298 provider->dtpv_pops.dtps_provide = dtrace_nullop_provide;
8299 8299 }
8300 8300
8301 8301 if (pops->dtps_provide_module == NULL) {
8302 8302 ASSERT(pops->dtps_provide != NULL);
8303 8303 provider->dtpv_pops.dtps_provide_module = dtrace_nullop_module;
8304 8304 }
8305 8305
8306 8306 if (pops->dtps_suspend == NULL) {
8307 8307 ASSERT(pops->dtps_resume == NULL);
8308 8308 provider->dtpv_pops.dtps_suspend = dtrace_nullop;
8309 8309 provider->dtpv_pops.dtps_resume = dtrace_nullop;
8310 8310 }
8311 8311
8312 8312 provider->dtpv_arg = arg;
8313 8313 *idp = (dtrace_provider_id_t)provider;
8314 8314
8315 8315 if (pops == &dtrace_provider_ops) {
8316 8316 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8317 8317 ASSERT(MUTEX_HELD(&dtrace_lock));
8318 8318 ASSERT(dtrace_anon.dta_enabling == NULL);
8319 8319
8320 8320 /*
8321 8321 * We make sure that the DTrace provider is at the head of
8322 8322 * the provider chain.
8323 8323 */
8324 8324 provider->dtpv_next = dtrace_provider;
8325 8325 dtrace_provider = provider;
8326 8326 return (0);
8327 8327 }
8328 8328
8329 8329 mutex_enter(&dtrace_provider_lock);
8330 8330 mutex_enter(&dtrace_lock);
8331 8331
8332 8332 /*
8333 8333 * If there is at least one provider registered, we'll add this
8334 8334 * provider after the first provider.
8335 8335 */
8336 8336 if (dtrace_provider != NULL) {
8337 8337 provider->dtpv_next = dtrace_provider->dtpv_next;
8338 8338 dtrace_provider->dtpv_next = provider;
8339 8339 } else {
8340 8340 dtrace_provider = provider;
8341 8341 }
8342 8342
8343 8343 if (dtrace_retained != NULL) {
8344 8344 dtrace_enabling_provide(provider);
8345 8345
8346 8346 /*
8347 8347 * Now we need to call dtrace_enabling_matchall() -- which
8348 8348 * will acquire cpu_lock and dtrace_lock. We therefore need
8349 8349 * to drop all of our locks before calling into it...
8350 8350 */
8351 8351 mutex_exit(&dtrace_lock);
8352 8352 mutex_exit(&dtrace_provider_lock);
8353 8353 dtrace_enabling_matchall();
8354 8354
8355 8355 return (0);
8356 8356 }
8357 8357
8358 8358 mutex_exit(&dtrace_lock);
8359 8359 mutex_exit(&dtrace_provider_lock);
8360 8360
8361 8361 return (0);
8362 8362 }
8363 8363
8364 8364 /*
8365 8365 * Unregister the specified provider from the DTrace framework. This should
8366 8366 * generally be called by DTrace providers in their detach(9E) entry point.
8367 8367 */
8368 8368 int
8369 8369 dtrace_unregister(dtrace_provider_id_t id)
8370 8370 {
8371 8371 dtrace_provider_t *old = (dtrace_provider_t *)id;
8372 8372 dtrace_provider_t *prev = NULL;
8373 8373 int i, self = 0, noreap = 0;
8374 8374 dtrace_probe_t *probe, *first = NULL;
8375 8375
8376 8376 if (old->dtpv_pops.dtps_enable == dtrace_enable_nullop) {
8377 8377 /*
8378 8378 * If DTrace itself is the provider, we're called with locks
8379 8379 * already held.
8380 8380 */
8381 8381 ASSERT(old == dtrace_provider);
8382 8382 ASSERT(dtrace_devi != NULL);
8383 8383 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8384 8384 ASSERT(MUTEX_HELD(&dtrace_lock));
8385 8385 self = 1;
8386 8386
8387 8387 if (dtrace_provider->dtpv_next != NULL) {
8388 8388 /*
8389 8389 * There's another provider here; return failure.
8390 8390 */
8391 8391 return (EBUSY);
8392 8392 }
8393 8393 } else {
8394 8394 mutex_enter(&dtrace_provider_lock);
8395 8395 mutex_enter(&mod_lock);
8396 8396 mutex_enter(&dtrace_lock);
8397 8397 }
8398 8398
8399 8399 /*
8400 8400 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8401 8401 * probes, we refuse to let providers slither away, unless this
8402 8402 * provider has already been explicitly invalidated.
8403 8403 */
8404 8404 if (!old->dtpv_defunct &&
8405 8405 (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8406 8406 dtrace_anon.dta_state->dts_necbs > 0))) {
8407 8407 if (!self) {
8408 8408 mutex_exit(&dtrace_lock);
8409 8409 mutex_exit(&mod_lock);
8410 8410 mutex_exit(&dtrace_provider_lock);
8411 8411 }
8412 8412 return (EBUSY);
8413 8413 }
8414 8414
8415 8415 /*
8416 8416 * Attempt to destroy the probes associated with this provider.
8417 8417 */
8418 8418 for (i = 0; i < dtrace_nprobes; i++) {
8419 8419 if ((probe = dtrace_probes[i]) == NULL)
8420 8420 continue;
8421 8421
8422 8422 if (probe->dtpr_provider != old)
8423 8423 continue;
8424 8424
8425 8425 if (probe->dtpr_ecb == NULL)
8426 8426 continue;
8427 8427
8428 8428 /*
8429 8429 * If we are trying to unregister a defunct provider, and the
8430 8430 * provider was made defunct within the interval dictated by
8431 8431 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8432 8432 * attempt to reap our enablings. To denote that the provider
8433 8433 * should reattempt to unregister itself at some point in the
8434 8434 * future, we will return a differentiable error code (EAGAIN
8435 8435 * instead of EBUSY) in this case.
8436 8436 */
8437 8437 if (dtrace_gethrtime() - old->dtpv_defunct >
8438 8438 dtrace_unregister_defunct_reap)
8439 8439 noreap = 1;
8440 8440
8441 8441 if (!self) {
8442 8442 mutex_exit(&dtrace_lock);
8443 8443 mutex_exit(&mod_lock);
8444 8444 mutex_exit(&dtrace_provider_lock);
8445 8445 }
8446 8446
8447 8447 if (noreap)
8448 8448 return (EBUSY);
8449 8449
8450 8450 (void) taskq_dispatch(dtrace_taskq,
8451 8451 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8452 8452
8453 8453 return (EAGAIN);
8454 8454 }
8455 8455
8456 8456 /*
8457 8457 * All of the probes for this provider are disabled; we can safely
8458 8458 * remove all of them from their hash chains and from the probe array.
8459 8459 */
8460 8460 for (i = 0; i < dtrace_nprobes; i++) {
8461 8461 if ((probe = dtrace_probes[i]) == NULL)
8462 8462 continue;
8463 8463
8464 8464 if (probe->dtpr_provider != old)
8465 8465 continue;
8466 8466
8467 8467 dtrace_probes[i] = NULL;
8468 8468
8469 8469 dtrace_hash_remove(dtrace_bymod, probe);
8470 8470 dtrace_hash_remove(dtrace_byfunc, probe);
8471 8471 dtrace_hash_remove(dtrace_byname, probe);
8472 8472
8473 8473 if (first == NULL) {
8474 8474 first = probe;
8475 8475 probe->dtpr_nextmod = NULL;
8476 8476 } else {
8477 8477 probe->dtpr_nextmod = first;
8478 8478 first = probe;
8479 8479 }
8480 8480 }
8481 8481
8482 8482 /*
8483 8483 * The provider's probes have been removed from the hash chains and
8484 8484 * from the probe array. Now issue a dtrace_sync() to be sure that
8485 8485 * everyone has cleared out from any probe array processing.
8486 8486 */
8487 8487 dtrace_sync();
8488 8488
8489 8489 for (probe = first; probe != NULL; probe = first) {
8490 8490 first = probe->dtpr_nextmod;
8491 8491
8492 8492 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8493 8493 probe->dtpr_arg);
8494 8494 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8495 8495 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8496 8496 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8497 8497 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8498 8498 kmem_free(probe, sizeof (dtrace_probe_t));
8499 8499 }
8500 8500
8501 8501 if ((prev = dtrace_provider) == old) {
8502 8502 ASSERT(self || dtrace_devi == NULL);
8503 8503 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8504 8504 dtrace_provider = old->dtpv_next;
8505 8505 } else {
8506 8506 while (prev != NULL && prev->dtpv_next != old)
8507 8507 prev = prev->dtpv_next;
8508 8508
8509 8509 if (prev == NULL) {
8510 8510 panic("attempt to unregister non-existent "
8511 8511 "dtrace provider %p\n", (void *)id);
8512 8512 }
8513 8513
8514 8514 prev->dtpv_next = old->dtpv_next;
8515 8515 }
8516 8516
8517 8517 if (!self) {
8518 8518 mutex_exit(&dtrace_lock);
8519 8519 mutex_exit(&mod_lock);
8520 8520 mutex_exit(&dtrace_provider_lock);
8521 8521 }
8522 8522
8523 8523 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8524 8524 kmem_free(old, sizeof (dtrace_provider_t));
8525 8525
8526 8526 return (0);
8527 8527 }
8528 8528
8529 8529 /*
8530 8530 * Invalidate the specified provider. All subsequent probe lookups for the
8531 8531 * specified provider will fail, but its probes will not be removed.
8532 8532 */
8533 8533 void
8534 8534 dtrace_invalidate(dtrace_provider_id_t id)
8535 8535 {
8536 8536 dtrace_provider_t *pvp = (dtrace_provider_t *)id;
8537 8537
8538 8538 ASSERT(pvp->dtpv_pops.dtps_enable != dtrace_enable_nullop);
8539 8539
8540 8540 mutex_enter(&dtrace_provider_lock);
8541 8541 mutex_enter(&dtrace_lock);
8542 8542
8543 8543 pvp->dtpv_defunct = dtrace_gethrtime();
8544 8544
8545 8545 mutex_exit(&dtrace_lock);
8546 8546 mutex_exit(&dtrace_provider_lock);
8547 8547 }
8548 8548
8549 8549 /*
8550 8550 * Indicate whether or not DTrace has attached.
8551 8551 */
8552 8552 int
8553 8553 dtrace_attached(void)
8554 8554 {
8555 8555 /*
8556 8556 * dtrace_provider will be non-NULL iff the DTrace driver has
8557 8557 * attached. (It's non-NULL because DTrace is always itself a
8558 8558 * provider.)
8559 8559 */
8560 8560 return (dtrace_provider != NULL);
8561 8561 }
8562 8562
8563 8563 /*
8564 8564 * Remove all the unenabled probes for the given provider. This function is
8565 8565 * not unlike dtrace_unregister(), except that it doesn't remove the provider
8566 8566 * -- just as many of its associated probes as it can.
8567 8567 */
8568 8568 int
8569 8569 dtrace_condense(dtrace_provider_id_t id)
8570 8570 {
8571 8571 dtrace_provider_t *prov = (dtrace_provider_t *)id;
8572 8572 int i;
8573 8573 dtrace_probe_t *probe;
8574 8574
8575 8575 /*
8576 8576 * Make sure this isn't the dtrace provider itself.
8577 8577 */
8578 8578 ASSERT(prov->dtpv_pops.dtps_enable != dtrace_enable_nullop);
8579 8579
8580 8580 mutex_enter(&dtrace_provider_lock);
8581 8581 mutex_enter(&dtrace_lock);
8582 8582
8583 8583 /*
8584 8584 * Attempt to destroy the probes associated with this provider.
8585 8585 */
8586 8586 for (i = 0; i < dtrace_nprobes; i++) {
8587 8587 if ((probe = dtrace_probes[i]) == NULL)
8588 8588 continue;
8589 8589
8590 8590 if (probe->dtpr_provider != prov)
8591 8591 continue;
8592 8592
8593 8593 if (probe->dtpr_ecb != NULL)
8594 8594 continue;
8595 8595
8596 8596 dtrace_probes[i] = NULL;
8597 8597
8598 8598 dtrace_hash_remove(dtrace_bymod, probe);
8599 8599 dtrace_hash_remove(dtrace_byfunc, probe);
8600 8600 dtrace_hash_remove(dtrace_byname, probe);
8601 8601
8602 8602 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
8603 8603 probe->dtpr_arg);
8604 8604 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8605 8605 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8606 8606 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8607 8607 kmem_free(probe, sizeof (dtrace_probe_t));
8608 8608 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
8609 8609 }
8610 8610
8611 8611 mutex_exit(&dtrace_lock);
8612 8612 mutex_exit(&dtrace_provider_lock);
8613 8613
8614 8614 return (0);
8615 8615 }
8616 8616
8617 8617 /*
8618 8618 * DTrace Probe Management Functions
8619 8619 *
8620 8620 * The functions in this section perform the DTrace probe management,
8621 8621 * including functions to create probes, look-up probes, and call into the
8622 8622 * providers to request that probes be provided. Some of these functions are
8623 8623 * in the Provider-to-Framework API; these functions can be identified by the
8624 8624 * fact that they are not declared "static".
8625 8625 */
8626 8626
8627 8627 /*
8628 8628 * Create a probe with the specified module name, function name, and name.
8629 8629 */
8630 8630 dtrace_id_t
8631 8631 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
8632 8632 const char *func, const char *name, int aframes, void *arg)
8633 8633 {
8634 8634 dtrace_probe_t *probe, **probes;
8635 8635 dtrace_provider_t *provider = (dtrace_provider_t *)prov;
8636 8636 dtrace_id_t id;
8637 8637
8638 8638 if (provider == dtrace_provider) {
8639 8639 ASSERT(MUTEX_HELD(&dtrace_lock));
8640 8640 } else {
8641 8641 mutex_enter(&dtrace_lock);
8642 8642 }
8643 8643
8644 8644 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
8645 8645 VM_BESTFIT | VM_SLEEP);
8646 8646 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
8647 8647
8648 8648 probe->dtpr_id = id;
8649 8649 probe->dtpr_gen = dtrace_probegen++;
8650 8650 probe->dtpr_mod = dtrace_strdup(mod);
8651 8651 probe->dtpr_func = dtrace_strdup(func);
8652 8652 probe->dtpr_name = dtrace_strdup(name);
8653 8653 probe->dtpr_arg = arg;
8654 8654 probe->dtpr_aframes = aframes;
8655 8655 probe->dtpr_provider = provider;
8656 8656
8657 8657 dtrace_hash_add(dtrace_bymod, probe);
8658 8658 dtrace_hash_add(dtrace_byfunc, probe);
8659 8659 dtrace_hash_add(dtrace_byname, probe);
8660 8660
8661 8661 if (id - 1 >= dtrace_nprobes) {
8662 8662 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
8663 8663 size_t nsize = osize << 1;
8664 8664
8665 8665 if (nsize == 0) {
8666 8666 ASSERT(osize == 0);
8667 8667 ASSERT(dtrace_probes == NULL);
8668 8668 nsize = sizeof (dtrace_probe_t *);
8669 8669 }
8670 8670
8671 8671 probes = kmem_zalloc(nsize, KM_SLEEP);
8672 8672
8673 8673 if (dtrace_probes == NULL) {
8674 8674 ASSERT(osize == 0);
8675 8675 dtrace_probes = probes;
8676 8676 dtrace_nprobes = 1;
8677 8677 } else {
8678 8678 dtrace_probe_t **oprobes = dtrace_probes;
8679 8679
8680 8680 bcopy(oprobes, probes, osize);
8681 8681 dtrace_membar_producer();
8682 8682 dtrace_probes = probes;
8683 8683
8684 8684 dtrace_sync();
8685 8685
8686 8686 /*
8687 8687 * All CPUs are now seeing the new probes array; we can
8688 8688 * safely free the old array.
8689 8689 */
8690 8690 kmem_free(oprobes, osize);
8691 8691 dtrace_nprobes <<= 1;
8692 8692 }
8693 8693
8694 8694 ASSERT(id - 1 < dtrace_nprobes);
8695 8695 }
8696 8696
8697 8697 ASSERT(dtrace_probes[id - 1] == NULL);
8698 8698 dtrace_probes[id - 1] = probe;
8699 8699
8700 8700 if (provider != dtrace_provider)
8701 8701 mutex_exit(&dtrace_lock);
8702 8702
8703 8703 return (id);
8704 8704 }
8705 8705
8706 8706 static dtrace_probe_t *
8707 8707 dtrace_probe_lookup_id(dtrace_id_t id)
8708 8708 {
8709 8709 ASSERT(MUTEX_HELD(&dtrace_lock));
8710 8710
8711 8711 if (id == 0 || id > dtrace_nprobes)
8712 8712 return (NULL);
8713 8713
8714 8714 return (dtrace_probes[id - 1]);
8715 8715 }
8716 8716
8717 8717 static int
8718 8718 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8719 8719 {
8720 8720 *((dtrace_id_t *)arg) = probe->dtpr_id;
8721 8721
8722 8722 return (DTRACE_MATCH_DONE);
8723 8723 }
8724 8724
8725 8725 /*
8726 8726 * Look up a probe based on provider and one or more of module name, function
8727 8727 * name and probe name.
8728 8728 */
8729 8729 dtrace_id_t
8730 8730 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
8731 8731 const char *func, const char *name)
8732 8732 {
8733 8733 dtrace_probekey_t pkey;
8734 8734 dtrace_id_t id;
8735 8735 int match;
8736 8736
8737 8737 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
8738 8738 pkey.dtpk_pmatch = &dtrace_match_string;
8739 8739 pkey.dtpk_mod = mod;
8740 8740 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
8741 8741 pkey.dtpk_func = func;
8742 8742 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
8743 8743 pkey.dtpk_name = name;
8744 8744 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
8745 8745 pkey.dtpk_id = DTRACE_IDNONE;
8746 8746
8747 8747 mutex_enter(&dtrace_lock);
8748 8748 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
8749 8749 dtrace_probe_lookup_match, &id);
8750 8750 mutex_exit(&dtrace_lock);
8751 8751
8752 8752 ASSERT(match == 1 || match == 0);
8753 8753 return (match ? id : 0);
8754 8754 }
8755 8755
8756 8756 /*
8757 8757 * Returns the probe argument associated with the specified probe.
8758 8758 */
8759 8759 void *
8760 8760 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8761 8761 {
8762 8762 dtrace_probe_t *probe;
8763 8763 void *rval = NULL;
8764 8764
8765 8765 mutex_enter(&dtrace_lock);
8766 8766
8767 8767 if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8768 8768 probe->dtpr_provider == (dtrace_provider_t *)id)
8769 8769 rval = probe->dtpr_arg;
8770 8770
8771 8771 mutex_exit(&dtrace_lock);
8772 8772
8773 8773 return (rval);
8774 8774 }
8775 8775
8776 8776 /*
8777 8777 * Copy a probe into a probe description.
8778 8778 */
8779 8779 static void
8780 8780 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8781 8781 {
8782 8782 bzero(pdp, sizeof (dtrace_probedesc_t));
8783 8783 pdp->dtpd_id = prp->dtpr_id;
8784 8784
8785 8785 (void) strncpy(pdp->dtpd_provider,
8786 8786 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8787 8787
8788 8788 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8789 8789 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8790 8790 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8791 8791 }
8792 8792
8793 8793 /*
8794 8794 * Called to indicate that a probe -- or probes -- should be provided by a
8795 8795 * specfied provider. If the specified description is NULL, the provider will
8796 8796 * be told to provide all of its probes. (This is done whenever a new
8797 8797 * consumer comes along, or whenever a retained enabling is to be matched.) If
8798 8798 * the specified description is non-NULL, the provider is given the
8799 8799 * opportunity to dynamically provide the specified probe, allowing providers
8800 8800 * to support the creation of probes on-the-fly. (So-called _autocreated_
8801 8801 * probes.) If the provider is NULL, the operations will be applied to all
8802 8802 * providers; if the provider is non-NULL the operations will only be applied
8803 8803 * to the specified provider. The dtrace_provider_lock must be held, and the
8804 8804 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8805 8805 * will need to grab the dtrace_lock when it reenters the framework through
8806 8806 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8807 8807 */
8808 8808 static void
8809 8809 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8810 8810 {
8811 8811 struct modctl *ctl;
8812 8812 int all = 0;
8813 8813
8814 8814 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8815 8815
8816 8816 if (prv == NULL) {
8817 8817 all = 1;
8818 8818 prv = dtrace_provider;
8819 8819 }
8820 8820
8821 8821 do {
8822 8822 /*
8823 8823 * First, call the blanket provide operation.
8824 8824 */
8825 8825 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8826 8826
8827 8827 /*
8828 8828 * Now call the per-module provide operation. We will grab
8829 8829 * mod_lock to prevent the list from being modified. Note
8830 8830 * that this also prevents the mod_busy bits from changing.
8831 8831 * (mod_busy can only be changed with mod_lock held.)
8832 8832 */
8833 8833 mutex_enter(&mod_lock);
8834 8834
8835 8835 ctl = &modules;
8836 8836 do {
8837 8837 if (ctl->mod_busy || ctl->mod_mp == NULL)
8838 8838 continue;
8839 8839
8840 8840 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8841 8841
8842 8842 } while ((ctl = ctl->mod_next) != &modules);
8843 8843
8844 8844 mutex_exit(&mod_lock);
8845 8845 } while (all && (prv = prv->dtpv_next) != NULL);
8846 8846 }
8847 8847
8848 8848 /*
8849 8849 * Iterate over each probe, and call the Framework-to-Provider API function
8850 8850 * denoted by offs.
8851 8851 */
8852 8852 static void
8853 8853 dtrace_probe_foreach(uintptr_t offs)
8854 8854 {
8855 8855 dtrace_provider_t *prov;
8856 8856 void (*func)(void *, dtrace_id_t, void *);
8857 8857 dtrace_probe_t *probe;
8858 8858 dtrace_icookie_t cookie;
8859 8859 int i;
8860 8860
8861 8861 /*
8862 8862 * We disable interrupts to walk through the probe array. This is
8863 8863 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8864 8864 * won't see stale data.
8865 8865 */
8866 8866 cookie = dtrace_interrupt_disable();
8867 8867
8868 8868 for (i = 0; i < dtrace_nprobes; i++) {
8869 8869 if ((probe = dtrace_probes[i]) == NULL)
8870 8870 continue;
8871 8871
8872 8872 if (probe->dtpr_ecb == NULL) {
8873 8873 /*
8874 8874 * This probe isn't enabled -- don't call the function.
8875 8875 */
8876 8876 continue;
8877 8877 }
8878 8878
8879 8879 prov = probe->dtpr_provider;
8880 8880 func = *((void(**)(void *, dtrace_id_t, void *))
8881 8881 ((uintptr_t)&prov->dtpv_pops + offs));
8882 8882
8883 8883 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8884 8884 }
8885 8885
↓ open down ↓ |
583 lines elided |
↑ open up ↑ |
8886 8886 dtrace_interrupt_enable(cookie);
8887 8887 }
8888 8888
8889 8889 static int
8890 8890 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8891 8891 {
8892 8892 dtrace_probekey_t pkey;
8893 8893 uint32_t priv;
8894 8894 uid_t uid;
8895 8895 zoneid_t zoneid;
8896 + dtrace_state_t *state = enab->dten_vstate->dtvs_state;
8896 8897
8897 8898 ASSERT(MUTEX_HELD(&dtrace_lock));
8898 8899 dtrace_ecb_create_cache = NULL;
8899 8900
8900 8901 if (desc == NULL) {
8901 8902 /*
8902 8903 * If we're passed a NULL description, we're being asked to
8903 8904 * create an ECB with a NULL probe.
8904 8905 */
8905 8906 (void) dtrace_ecb_create_enable(NULL, enab);
8906 8907 return (0);
8907 8908 }
8908 8909
8909 8910 dtrace_probekey(desc, &pkey);
8910 - dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8911 - &priv, &uid, &zoneid);
8911 + dtrace_cred2priv(state->dts_cred.dcr_cred, &priv, &uid, &zoneid);
8912 8912
8913 + if ((priv & DTRACE_PRIV_ZONEOWNER) &&
8914 + state->dts_options[DTRACEOPT_ZONE] != DTRACEOPT_UNSET) {
8915 + /*
8916 + * If we have the privilege of instrumenting all zones but we
8917 + * have been told to instrument but one, we will spoof this up
8918 + * depriving ourselves of DTRACE_PRIV_ZONEOWNER for purposes
8919 + * of dtrace_match(). (Note that DTRACEOPT_ZONE is not for
8920 + * security but rather for performance: it allows the global
8921 + * zone to instrument USDT probes in a local zone without
8922 + * requiring all zones to be instrumented.)
8923 + */
8924 + priv &= ~DTRACE_PRIV_ZONEOWNER;
8925 + zoneid = state->dts_options[DTRACEOPT_ZONE];
8926 + }
8927 +
8913 8928 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8914 8929 enab));
8915 8930 }
8916 8931
8917 8932 /*
8918 8933 * DTrace Helper Provider Functions
8919 8934 */
8920 8935 static void
8921 8936 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8922 8937 {
8923 8938 attr->dtat_name = DOF_ATTR_NAME(dofattr);
8924 8939 attr->dtat_data = DOF_ATTR_DATA(dofattr);
8925 8940 attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8926 8941 }
8927 8942
8928 8943 static void
8929 8944 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8930 8945 const dof_provider_t *dofprov, char *strtab)
8931 8946 {
8932 8947 hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8933 8948 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8934 8949 dofprov->dofpv_provattr);
8935 8950 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8936 8951 dofprov->dofpv_modattr);
8937 8952 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8938 8953 dofprov->dofpv_funcattr);
8939 8954 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8940 8955 dofprov->dofpv_nameattr);
8941 8956 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8942 8957 dofprov->dofpv_argsattr);
8943 8958 }
8944 8959
8945 8960 static void
8946 8961 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8947 8962 {
8948 8963 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8949 8964 dof_hdr_t *dof = (dof_hdr_t *)daddr;
8950 8965 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8951 8966 dof_provider_t *provider;
8952 8967 dof_probe_t *probe;
8953 8968 uint32_t *off, *enoff;
8954 8969 uint8_t *arg;
8955 8970 char *strtab;
8956 8971 uint_t i, nprobes;
8957 8972 dtrace_helper_provdesc_t dhpv;
8958 8973 dtrace_helper_probedesc_t dhpb;
8959 8974 dtrace_meta_t *meta = dtrace_meta_pid;
8960 8975 dtrace_mops_t *mops = &meta->dtm_mops;
8961 8976 void *parg;
8962 8977
8963 8978 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8964 8979 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8965 8980 provider->dofpv_strtab * dof->dofh_secsize);
8966 8981 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8967 8982 provider->dofpv_probes * dof->dofh_secsize);
8968 8983 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8969 8984 provider->dofpv_prargs * dof->dofh_secsize);
8970 8985 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8971 8986 provider->dofpv_proffs * dof->dofh_secsize);
8972 8987
8973 8988 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8974 8989 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8975 8990 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8976 8991 enoff = NULL;
8977 8992
8978 8993 /*
8979 8994 * See dtrace_helper_provider_validate().
8980 8995 */
8981 8996 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8982 8997 provider->dofpv_prenoffs != DOF_SECT_NONE) {
8983 8998 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8984 8999 provider->dofpv_prenoffs * dof->dofh_secsize);
8985 9000 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8986 9001 }
8987 9002
8988 9003 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8989 9004
8990 9005 /*
8991 9006 * Create the provider.
8992 9007 */
8993 9008 dtrace_dofprov2hprov(&dhpv, provider, strtab);
8994 9009
8995 9010 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8996 9011 return;
8997 9012
8998 9013 meta->dtm_count++;
8999 9014
9000 9015 /*
9001 9016 * Create the probes.
9002 9017 */
9003 9018 for (i = 0; i < nprobes; i++) {
9004 9019 probe = (dof_probe_t *)(uintptr_t)(daddr +
9005 9020 prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9006 9021
9007 9022 dhpb.dthpb_mod = dhp->dofhp_mod;
9008 9023 dhpb.dthpb_func = strtab + probe->dofpr_func;
9009 9024 dhpb.dthpb_name = strtab + probe->dofpr_name;
9010 9025 dhpb.dthpb_base = probe->dofpr_addr;
9011 9026 dhpb.dthpb_offs = off + probe->dofpr_offidx;
9012 9027 dhpb.dthpb_noffs = probe->dofpr_noffs;
9013 9028 if (enoff != NULL) {
9014 9029 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9015 9030 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9016 9031 } else {
9017 9032 dhpb.dthpb_enoffs = NULL;
9018 9033 dhpb.dthpb_nenoffs = 0;
9019 9034 }
9020 9035 dhpb.dthpb_args = arg + probe->dofpr_argidx;
9021 9036 dhpb.dthpb_nargc = probe->dofpr_nargc;
9022 9037 dhpb.dthpb_xargc = probe->dofpr_xargc;
9023 9038 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9024 9039 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9025 9040
9026 9041 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9027 9042 }
9028 9043 }
9029 9044
9030 9045 static void
9031 9046 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9032 9047 {
9033 9048 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9034 9049 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9035 9050 int i;
9036 9051
9037 9052 ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9038 9053
9039 9054 for (i = 0; i < dof->dofh_secnum; i++) {
9040 9055 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9041 9056 dof->dofh_secoff + i * dof->dofh_secsize);
9042 9057
9043 9058 if (sec->dofs_type != DOF_SECT_PROVIDER)
9044 9059 continue;
9045 9060
9046 9061 dtrace_helper_provide_one(dhp, sec, pid);
9047 9062 }
9048 9063
9049 9064 /*
9050 9065 * We may have just created probes, so we must now rematch against
9051 9066 * any retained enablings. Note that this call will acquire both
9052 9067 * cpu_lock and dtrace_lock; the fact that we are holding
9053 9068 * dtrace_meta_lock now is what defines the ordering with respect to
9054 9069 * these three locks.
9055 9070 */
9056 9071 dtrace_enabling_matchall();
9057 9072 }
9058 9073
9059 9074 static void
9060 9075 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9061 9076 {
9062 9077 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9063 9078 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9064 9079 dof_sec_t *str_sec;
9065 9080 dof_provider_t *provider;
9066 9081 char *strtab;
9067 9082 dtrace_helper_provdesc_t dhpv;
9068 9083 dtrace_meta_t *meta = dtrace_meta_pid;
9069 9084 dtrace_mops_t *mops = &meta->dtm_mops;
9070 9085
9071 9086 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9072 9087 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9073 9088 provider->dofpv_strtab * dof->dofh_secsize);
9074 9089
9075 9090 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9076 9091
9077 9092 /*
9078 9093 * Create the provider.
9079 9094 */
9080 9095 dtrace_dofprov2hprov(&dhpv, provider, strtab);
9081 9096
9082 9097 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9083 9098
9084 9099 meta->dtm_count--;
9085 9100 }
9086 9101
9087 9102 static void
9088 9103 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9089 9104 {
9090 9105 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9091 9106 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9092 9107 int i;
9093 9108
9094 9109 ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9095 9110
9096 9111 for (i = 0; i < dof->dofh_secnum; i++) {
9097 9112 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9098 9113 dof->dofh_secoff + i * dof->dofh_secsize);
9099 9114
9100 9115 if (sec->dofs_type != DOF_SECT_PROVIDER)
9101 9116 continue;
9102 9117
9103 9118 dtrace_helper_provider_remove_one(dhp, sec, pid);
9104 9119 }
9105 9120 }
9106 9121
9107 9122 /*
9108 9123 * DTrace Meta Provider-to-Framework API Functions
9109 9124 *
9110 9125 * These functions implement the Meta Provider-to-Framework API, as described
9111 9126 * in <sys/dtrace.h>.
9112 9127 */
9113 9128 int
9114 9129 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9115 9130 dtrace_meta_provider_id_t *idp)
9116 9131 {
9117 9132 dtrace_meta_t *meta;
9118 9133 dtrace_helpers_t *help, *next;
9119 9134 int i;
9120 9135
9121 9136 *idp = DTRACE_METAPROVNONE;
9122 9137
9123 9138 /*
9124 9139 * We strictly don't need the name, but we hold onto it for
9125 9140 * debuggability. All hail error queues!
9126 9141 */
9127 9142 if (name == NULL) {
9128 9143 cmn_err(CE_WARN, "failed to register meta-provider: "
9129 9144 "invalid name");
9130 9145 return (EINVAL);
9131 9146 }
9132 9147
9133 9148 if (mops == NULL ||
9134 9149 mops->dtms_create_probe == NULL ||
9135 9150 mops->dtms_provide_pid == NULL ||
9136 9151 mops->dtms_remove_pid == NULL) {
9137 9152 cmn_err(CE_WARN, "failed to register meta-register %s: "
9138 9153 "invalid ops", name);
9139 9154 return (EINVAL);
9140 9155 }
9141 9156
9142 9157 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9143 9158 meta->dtm_mops = *mops;
9144 9159 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9145 9160 (void) strcpy(meta->dtm_name, name);
9146 9161 meta->dtm_arg = arg;
9147 9162
9148 9163 mutex_enter(&dtrace_meta_lock);
9149 9164 mutex_enter(&dtrace_lock);
9150 9165
9151 9166 if (dtrace_meta_pid != NULL) {
9152 9167 mutex_exit(&dtrace_lock);
9153 9168 mutex_exit(&dtrace_meta_lock);
9154 9169 cmn_err(CE_WARN, "failed to register meta-register %s: "
9155 9170 "user-land meta-provider exists", name);
9156 9171 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9157 9172 kmem_free(meta, sizeof (dtrace_meta_t));
9158 9173 return (EINVAL);
9159 9174 }
9160 9175
9161 9176 dtrace_meta_pid = meta;
9162 9177 *idp = (dtrace_meta_provider_id_t)meta;
9163 9178
9164 9179 /*
9165 9180 * If there are providers and probes ready to go, pass them
9166 9181 * off to the new meta provider now.
9167 9182 */
9168 9183
9169 9184 help = dtrace_deferred_pid;
9170 9185 dtrace_deferred_pid = NULL;
9171 9186
9172 9187 mutex_exit(&dtrace_lock);
9173 9188
9174 9189 while (help != NULL) {
9175 9190 for (i = 0; i < help->dthps_nprovs; i++) {
9176 9191 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9177 9192 help->dthps_pid);
9178 9193 }
9179 9194
9180 9195 next = help->dthps_next;
9181 9196 help->dthps_next = NULL;
9182 9197 help->dthps_prev = NULL;
9183 9198 help->dthps_deferred = 0;
9184 9199 help = next;
9185 9200 }
9186 9201
9187 9202 mutex_exit(&dtrace_meta_lock);
9188 9203
9189 9204 return (0);
9190 9205 }
9191 9206
9192 9207 int
9193 9208 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9194 9209 {
9195 9210 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9196 9211
9197 9212 mutex_enter(&dtrace_meta_lock);
9198 9213 mutex_enter(&dtrace_lock);
9199 9214
9200 9215 if (old == dtrace_meta_pid) {
9201 9216 pp = &dtrace_meta_pid;
9202 9217 } else {
9203 9218 panic("attempt to unregister non-existent "
9204 9219 "dtrace meta-provider %p\n", (void *)old);
9205 9220 }
9206 9221
9207 9222 if (old->dtm_count != 0) {
9208 9223 mutex_exit(&dtrace_lock);
9209 9224 mutex_exit(&dtrace_meta_lock);
9210 9225 return (EBUSY);
9211 9226 }
9212 9227
9213 9228 *pp = NULL;
9214 9229
9215 9230 mutex_exit(&dtrace_lock);
9216 9231 mutex_exit(&dtrace_meta_lock);
9217 9232
9218 9233 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9219 9234 kmem_free(old, sizeof (dtrace_meta_t));
9220 9235
9221 9236 return (0);
9222 9237 }
9223 9238
9224 9239
9225 9240 /*
9226 9241 * DTrace DIF Object Functions
9227 9242 */
9228 9243 static int
9229 9244 dtrace_difo_err(uint_t pc, const char *format, ...)
9230 9245 {
9231 9246 if (dtrace_err_verbose) {
9232 9247 va_list alist;
9233 9248
9234 9249 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
9235 9250 va_start(alist, format);
9236 9251 (void) vuprintf(format, alist);
9237 9252 va_end(alist);
9238 9253 }
9239 9254
9240 9255 #ifdef DTRACE_ERRDEBUG
9241 9256 dtrace_errdebug(format);
9242 9257 #endif
9243 9258 return (1);
9244 9259 }
9245 9260
9246 9261 /*
9247 9262 * Validate a DTrace DIF object by checking the IR instructions. The following
9248 9263 * rules are currently enforced by dtrace_difo_validate():
9249 9264 *
9250 9265 * 1. Each instruction must have a valid opcode
9251 9266 * 2. Each register, string, variable, or subroutine reference must be valid
9252 9267 * 3. No instruction can modify register %r0 (must be zero)
9253 9268 * 4. All instruction reserved bits must be set to zero
9254 9269 * 5. The last instruction must be a "ret" instruction
9255 9270 * 6. All branch targets must reference a valid instruction _after_ the branch
9256 9271 */
9257 9272 static int
9258 9273 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9259 9274 cred_t *cr)
9260 9275 {
9261 9276 int err = 0, i;
9262 9277 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9263 9278 int kcheckload;
9264 9279 uint_t pc;
9265 9280 int maxglobal = -1, maxlocal = -1, maxtlocal = -1;
9266 9281
9267 9282 kcheckload = cr == NULL ||
9268 9283 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9269 9284
9270 9285 dp->dtdo_destructive = 0;
9271 9286
9272 9287 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9273 9288 dif_instr_t instr = dp->dtdo_buf[pc];
9274 9289
9275 9290 uint_t r1 = DIF_INSTR_R1(instr);
9276 9291 uint_t r2 = DIF_INSTR_R2(instr);
9277 9292 uint_t rd = DIF_INSTR_RD(instr);
9278 9293 uint_t rs = DIF_INSTR_RS(instr);
9279 9294 uint_t label = DIF_INSTR_LABEL(instr);
9280 9295 uint_t v = DIF_INSTR_VAR(instr);
9281 9296 uint_t subr = DIF_INSTR_SUBR(instr);
9282 9297 uint_t type = DIF_INSTR_TYPE(instr);
9283 9298 uint_t op = DIF_INSTR_OP(instr);
9284 9299
9285 9300 switch (op) {
9286 9301 case DIF_OP_OR:
9287 9302 case DIF_OP_XOR:
9288 9303 case DIF_OP_AND:
9289 9304 case DIF_OP_SLL:
9290 9305 case DIF_OP_SRL:
9291 9306 case DIF_OP_SRA:
9292 9307 case DIF_OP_SUB:
9293 9308 case DIF_OP_ADD:
9294 9309 case DIF_OP_MUL:
9295 9310 case DIF_OP_SDIV:
9296 9311 case DIF_OP_UDIV:
9297 9312 case DIF_OP_SREM:
9298 9313 case DIF_OP_UREM:
9299 9314 case DIF_OP_COPYS:
9300 9315 if (r1 >= nregs)
9301 9316 err += efunc(pc, "invalid register %u\n", r1);
9302 9317 if (r2 >= nregs)
9303 9318 err += efunc(pc, "invalid register %u\n", r2);
9304 9319 if (rd >= nregs)
9305 9320 err += efunc(pc, "invalid register %u\n", rd);
9306 9321 if (rd == 0)
9307 9322 err += efunc(pc, "cannot write to %r0\n");
9308 9323 break;
9309 9324 case DIF_OP_NOT:
9310 9325 case DIF_OP_MOV:
9311 9326 case DIF_OP_ALLOCS:
9312 9327 if (r1 >= nregs)
9313 9328 err += efunc(pc, "invalid register %u\n", r1);
9314 9329 if (r2 != 0)
9315 9330 err += efunc(pc, "non-zero reserved bits\n");
9316 9331 if (rd >= nregs)
9317 9332 err += efunc(pc, "invalid register %u\n", rd);
9318 9333 if (rd == 0)
9319 9334 err += efunc(pc, "cannot write to %r0\n");
9320 9335 break;
9321 9336 case DIF_OP_LDSB:
9322 9337 case DIF_OP_LDSH:
9323 9338 case DIF_OP_LDSW:
9324 9339 case DIF_OP_LDUB:
9325 9340 case DIF_OP_LDUH:
9326 9341 case DIF_OP_LDUW:
9327 9342 case DIF_OP_LDX:
9328 9343 if (r1 >= nregs)
9329 9344 err += efunc(pc, "invalid register %u\n", r1);
9330 9345 if (r2 != 0)
9331 9346 err += efunc(pc, "non-zero reserved bits\n");
9332 9347 if (rd >= nregs)
9333 9348 err += efunc(pc, "invalid register %u\n", rd);
9334 9349 if (rd == 0)
9335 9350 err += efunc(pc, "cannot write to %r0\n");
9336 9351 if (kcheckload)
9337 9352 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9338 9353 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9339 9354 break;
9340 9355 case DIF_OP_RLDSB:
9341 9356 case DIF_OP_RLDSH:
9342 9357 case DIF_OP_RLDSW:
9343 9358 case DIF_OP_RLDUB:
9344 9359 case DIF_OP_RLDUH:
9345 9360 case DIF_OP_RLDUW:
9346 9361 case DIF_OP_RLDX:
9347 9362 if (r1 >= nregs)
9348 9363 err += efunc(pc, "invalid register %u\n", r1);
9349 9364 if (r2 != 0)
9350 9365 err += efunc(pc, "non-zero reserved bits\n");
9351 9366 if (rd >= nregs)
9352 9367 err += efunc(pc, "invalid register %u\n", rd);
9353 9368 if (rd == 0)
9354 9369 err += efunc(pc, "cannot write to %r0\n");
9355 9370 break;
9356 9371 case DIF_OP_ULDSB:
9357 9372 case DIF_OP_ULDSH:
9358 9373 case DIF_OP_ULDSW:
9359 9374 case DIF_OP_ULDUB:
9360 9375 case DIF_OP_ULDUH:
9361 9376 case DIF_OP_ULDUW:
9362 9377 case DIF_OP_ULDX:
9363 9378 if (r1 >= nregs)
9364 9379 err += efunc(pc, "invalid register %u\n", r1);
9365 9380 if (r2 != 0)
9366 9381 err += efunc(pc, "non-zero reserved bits\n");
9367 9382 if (rd >= nregs)
9368 9383 err += efunc(pc, "invalid register %u\n", rd);
9369 9384 if (rd == 0)
9370 9385 err += efunc(pc, "cannot write to %r0\n");
9371 9386 break;
9372 9387 case DIF_OP_STB:
9373 9388 case DIF_OP_STH:
9374 9389 case DIF_OP_STW:
9375 9390 case DIF_OP_STX:
9376 9391 if (r1 >= nregs)
9377 9392 err += efunc(pc, "invalid register %u\n", r1);
9378 9393 if (r2 != 0)
9379 9394 err += efunc(pc, "non-zero reserved bits\n");
9380 9395 if (rd >= nregs)
9381 9396 err += efunc(pc, "invalid register %u\n", rd);
9382 9397 if (rd == 0)
9383 9398 err += efunc(pc, "cannot write to 0 address\n");
9384 9399 break;
9385 9400 case DIF_OP_CMP:
9386 9401 case DIF_OP_SCMP:
9387 9402 if (r1 >= nregs)
9388 9403 err += efunc(pc, "invalid register %u\n", r1);
9389 9404 if (r2 >= nregs)
9390 9405 err += efunc(pc, "invalid register %u\n", r2);
9391 9406 if (rd != 0)
9392 9407 err += efunc(pc, "non-zero reserved bits\n");
9393 9408 break;
9394 9409 case DIF_OP_TST:
9395 9410 if (r1 >= nregs)
9396 9411 err += efunc(pc, "invalid register %u\n", r1);
9397 9412 if (r2 != 0 || rd != 0)
9398 9413 err += efunc(pc, "non-zero reserved bits\n");
9399 9414 break;
9400 9415 case DIF_OP_BA:
9401 9416 case DIF_OP_BE:
9402 9417 case DIF_OP_BNE:
9403 9418 case DIF_OP_BG:
9404 9419 case DIF_OP_BGU:
9405 9420 case DIF_OP_BGE:
9406 9421 case DIF_OP_BGEU:
9407 9422 case DIF_OP_BL:
9408 9423 case DIF_OP_BLU:
9409 9424 case DIF_OP_BLE:
9410 9425 case DIF_OP_BLEU:
9411 9426 if (label >= dp->dtdo_len) {
9412 9427 err += efunc(pc, "invalid branch target %u\n",
9413 9428 label);
9414 9429 }
9415 9430 if (label <= pc) {
9416 9431 err += efunc(pc, "backward branch to %u\n",
9417 9432 label);
9418 9433 }
9419 9434 break;
9420 9435 case DIF_OP_RET:
9421 9436 if (r1 != 0 || r2 != 0)
9422 9437 err += efunc(pc, "non-zero reserved bits\n");
9423 9438 if (rd >= nregs)
9424 9439 err += efunc(pc, "invalid register %u\n", rd);
9425 9440 break;
9426 9441 case DIF_OP_NOP:
9427 9442 case DIF_OP_POPTS:
9428 9443 case DIF_OP_FLUSHTS:
9429 9444 if (r1 != 0 || r2 != 0 || rd != 0)
9430 9445 err += efunc(pc, "non-zero reserved bits\n");
9431 9446 break;
9432 9447 case DIF_OP_SETX:
9433 9448 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9434 9449 err += efunc(pc, "invalid integer ref %u\n",
9435 9450 DIF_INSTR_INTEGER(instr));
9436 9451 }
9437 9452 if (rd >= nregs)
9438 9453 err += efunc(pc, "invalid register %u\n", rd);
9439 9454 if (rd == 0)
9440 9455 err += efunc(pc, "cannot write to %r0\n");
9441 9456 break;
9442 9457 case DIF_OP_SETS:
9443 9458 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9444 9459 err += efunc(pc, "invalid string ref %u\n",
9445 9460 DIF_INSTR_STRING(instr));
9446 9461 }
9447 9462 if (rd >= nregs)
9448 9463 err += efunc(pc, "invalid register %u\n", rd);
9449 9464 if (rd == 0)
9450 9465 err += efunc(pc, "cannot write to %r0\n");
9451 9466 break;
9452 9467 case DIF_OP_LDGA:
9453 9468 case DIF_OP_LDTA:
9454 9469 if (r1 > DIF_VAR_ARRAY_MAX)
9455 9470 err += efunc(pc, "invalid array %u\n", r1);
9456 9471 if (r2 >= nregs)
9457 9472 err += efunc(pc, "invalid register %u\n", r2);
9458 9473 if (rd >= nregs)
9459 9474 err += efunc(pc, "invalid register %u\n", rd);
9460 9475 if (rd == 0)
9461 9476 err += efunc(pc, "cannot write to %r0\n");
9462 9477 break;
9463 9478 case DIF_OP_STGA:
9464 9479 if (r1 > DIF_VAR_ARRAY_MAX)
9465 9480 err += efunc(pc, "invalid array %u\n", r1);
9466 9481 if (r2 >= nregs)
9467 9482 err += efunc(pc, "invalid register %u\n", r2);
9468 9483 if (rd >= nregs)
9469 9484 err += efunc(pc, "invalid register %u\n", rd);
9470 9485 dp->dtdo_destructive = 1;
9471 9486 break;
9472 9487 case DIF_OP_LDGS:
9473 9488 case DIF_OP_LDTS:
9474 9489 case DIF_OP_LDLS:
9475 9490 case DIF_OP_LDGAA:
9476 9491 case DIF_OP_LDTAA:
9477 9492 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9478 9493 err += efunc(pc, "invalid variable %u\n", v);
9479 9494 if (rd >= nregs)
9480 9495 err += efunc(pc, "invalid register %u\n", rd);
9481 9496 if (rd == 0)
9482 9497 err += efunc(pc, "cannot write to %r0\n");
9483 9498 break;
9484 9499 case DIF_OP_STGS:
9485 9500 case DIF_OP_STTS:
9486 9501 case DIF_OP_STLS:
9487 9502 case DIF_OP_STGAA:
9488 9503 case DIF_OP_STTAA:
9489 9504 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9490 9505 err += efunc(pc, "invalid variable %u\n", v);
9491 9506 if (rs >= nregs)
9492 9507 err += efunc(pc, "invalid register %u\n", rd);
9493 9508 break;
9494 9509 case DIF_OP_CALL:
9495 9510 if (subr > DIF_SUBR_MAX)
9496 9511 err += efunc(pc, "invalid subr %u\n", subr);
9497 9512 if (rd >= nregs)
9498 9513 err += efunc(pc, "invalid register %u\n", rd);
9499 9514 if (rd == 0)
9500 9515 err += efunc(pc, "cannot write to %r0\n");
9501 9516
9502 9517 if (subr == DIF_SUBR_COPYOUT ||
9503 9518 subr == DIF_SUBR_COPYOUTSTR) {
9504 9519 dp->dtdo_destructive = 1;
9505 9520 }
9506 9521
9507 9522 if (subr == DIF_SUBR_GETF) {
9508 9523 /*
9509 9524 * If we have a getf() we need to record that
9510 9525 * in our state. Note that our state can be
9511 9526 * NULL if this is a helper -- but in that
9512 9527 * case, the call to getf() is itself illegal,
9513 9528 * and will be caught (slightly later) when
9514 9529 * the helper is validated.
9515 9530 */
9516 9531 if (vstate->dtvs_state != NULL)
9517 9532 vstate->dtvs_state->dts_getf++;
9518 9533 }
9519 9534
9520 9535 break;
9521 9536 case DIF_OP_PUSHTR:
9522 9537 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9523 9538 err += efunc(pc, "invalid ref type %u\n", type);
9524 9539 if (r2 >= nregs)
9525 9540 err += efunc(pc, "invalid register %u\n", r2);
9526 9541 if (rs >= nregs)
9527 9542 err += efunc(pc, "invalid register %u\n", rs);
9528 9543 break;
9529 9544 case DIF_OP_PUSHTV:
9530 9545 if (type != DIF_TYPE_CTF)
9531 9546 err += efunc(pc, "invalid val type %u\n", type);
9532 9547 if (r2 >= nregs)
9533 9548 err += efunc(pc, "invalid register %u\n", r2);
9534 9549 if (rs >= nregs)
9535 9550 err += efunc(pc, "invalid register %u\n", rs);
9536 9551 break;
9537 9552 default:
9538 9553 err += efunc(pc, "invalid opcode %u\n",
9539 9554 DIF_INSTR_OP(instr));
9540 9555 }
9541 9556 }
9542 9557
9543 9558 if (dp->dtdo_len != 0 &&
9544 9559 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9545 9560 err += efunc(dp->dtdo_len - 1,
9546 9561 "expected 'ret' as last DIF instruction\n");
9547 9562 }
9548 9563
9549 9564 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
9550 9565 /*
9551 9566 * If we're not returning by reference, the size must be either
9552 9567 * 0 or the size of one of the base types.
9553 9568 */
9554 9569 switch (dp->dtdo_rtype.dtdt_size) {
9555 9570 case 0:
9556 9571 case sizeof (uint8_t):
9557 9572 case sizeof (uint16_t):
9558 9573 case sizeof (uint32_t):
9559 9574 case sizeof (uint64_t):
9560 9575 break;
9561 9576
9562 9577 default:
9563 9578 err += efunc(dp->dtdo_len - 1, "bad return size\n");
9564 9579 }
9565 9580 }
9566 9581
9567 9582 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9568 9583 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
9569 9584 dtrace_diftype_t *vt, *et;
9570 9585 uint_t id, ndx;
9571 9586
9572 9587 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
9573 9588 v->dtdv_scope != DIFV_SCOPE_THREAD &&
9574 9589 v->dtdv_scope != DIFV_SCOPE_LOCAL) {
9575 9590 err += efunc(i, "unrecognized variable scope %d\n",
9576 9591 v->dtdv_scope);
9577 9592 break;
9578 9593 }
9579 9594
9580 9595 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
9581 9596 v->dtdv_kind != DIFV_KIND_SCALAR) {
9582 9597 err += efunc(i, "unrecognized variable type %d\n",
9583 9598 v->dtdv_kind);
9584 9599 break;
9585 9600 }
9586 9601
9587 9602 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
9588 9603 err += efunc(i, "%d exceeds variable id limit\n", id);
9589 9604 break;
9590 9605 }
9591 9606
9592 9607 if (id < DIF_VAR_OTHER_UBASE)
9593 9608 continue;
9594 9609
9595 9610 /*
9596 9611 * For user-defined variables, we need to check that this
9597 9612 * definition is identical to any previous definition that we
9598 9613 * encountered.
9599 9614 */
9600 9615 ndx = id - DIF_VAR_OTHER_UBASE;
9601 9616
9602 9617 switch (v->dtdv_scope) {
9603 9618 case DIFV_SCOPE_GLOBAL:
9604 9619 if (maxglobal == -1 || ndx > maxglobal)
9605 9620 maxglobal = ndx;
9606 9621
9607 9622 if (ndx < vstate->dtvs_nglobals) {
9608 9623 dtrace_statvar_t *svar;
9609 9624
9610 9625 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
9611 9626 existing = &svar->dtsv_var;
9612 9627 }
9613 9628
9614 9629 break;
9615 9630
9616 9631 case DIFV_SCOPE_THREAD:
9617 9632 if (maxtlocal == -1 || ndx > maxtlocal)
9618 9633 maxtlocal = ndx;
9619 9634
9620 9635 if (ndx < vstate->dtvs_ntlocals)
9621 9636 existing = &vstate->dtvs_tlocals[ndx];
9622 9637 break;
9623 9638
9624 9639 case DIFV_SCOPE_LOCAL:
9625 9640 if (maxlocal == -1 || ndx > maxlocal)
9626 9641 maxlocal = ndx;
9627 9642
9628 9643 if (ndx < vstate->dtvs_nlocals) {
9629 9644 dtrace_statvar_t *svar;
9630 9645
9631 9646 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
9632 9647 existing = &svar->dtsv_var;
9633 9648 }
9634 9649
9635 9650 break;
9636 9651 }
9637 9652
9638 9653 vt = &v->dtdv_type;
9639 9654
9640 9655 if (vt->dtdt_flags & DIF_TF_BYREF) {
9641 9656 if (vt->dtdt_size == 0) {
9642 9657 err += efunc(i, "zero-sized variable\n");
9643 9658 break;
9644 9659 }
9645 9660
9646 9661 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
9647 9662 v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
9648 9663 vt->dtdt_size > dtrace_statvar_maxsize) {
9649 9664 err += efunc(i, "oversized by-ref static\n");
9650 9665 break;
9651 9666 }
9652 9667 }
9653 9668
9654 9669 if (existing == NULL || existing->dtdv_id == 0)
9655 9670 continue;
9656 9671
9657 9672 ASSERT(existing->dtdv_id == v->dtdv_id);
9658 9673 ASSERT(existing->dtdv_scope == v->dtdv_scope);
9659 9674
9660 9675 if (existing->dtdv_kind != v->dtdv_kind)
9661 9676 err += efunc(i, "%d changed variable kind\n", id);
9662 9677
9663 9678 et = &existing->dtdv_type;
9664 9679
9665 9680 if (vt->dtdt_flags != et->dtdt_flags) {
9666 9681 err += efunc(i, "%d changed variable type flags\n", id);
9667 9682 break;
9668 9683 }
9669 9684
9670 9685 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9671 9686 err += efunc(i, "%d changed variable type size\n", id);
9672 9687 break;
9673 9688 }
9674 9689 }
9675 9690
9676 9691 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9677 9692 dif_instr_t instr = dp->dtdo_buf[pc];
9678 9693
9679 9694 uint_t v = DIF_INSTR_VAR(instr);
9680 9695 uint_t op = DIF_INSTR_OP(instr);
9681 9696
9682 9697 switch (op) {
9683 9698 case DIF_OP_LDGS:
9684 9699 case DIF_OP_LDGAA:
9685 9700 case DIF_OP_STGS:
9686 9701 case DIF_OP_STGAA:
9687 9702 if (v > DIF_VAR_OTHER_UBASE + maxglobal)
9688 9703 err += efunc(pc, "invalid variable %u\n", v);
9689 9704 break;
9690 9705 case DIF_OP_LDTS:
9691 9706 case DIF_OP_LDTAA:
9692 9707 case DIF_OP_STTS:
9693 9708 case DIF_OP_STTAA:
9694 9709 if (v > DIF_VAR_OTHER_UBASE + maxtlocal)
9695 9710 err += efunc(pc, "invalid variable %u\n", v);
9696 9711 break;
9697 9712 case DIF_OP_LDLS:
9698 9713 case DIF_OP_STLS:
9699 9714 if (v > DIF_VAR_OTHER_UBASE + maxlocal)
9700 9715 err += efunc(pc, "invalid variable %u\n", v);
9701 9716 break;
9702 9717 default:
9703 9718 break;
9704 9719 }
9705 9720 }
9706 9721
9707 9722 return (err);
9708 9723 }
9709 9724
9710 9725 /*
9711 9726 * Validate a DTrace DIF object that it is to be used as a helper. Helpers
9712 9727 * are much more constrained than normal DIFOs. Specifically, they may
9713 9728 * not:
9714 9729 *
9715 9730 * 1. Make calls to subroutines other than copyin(), copyinstr() or
9716 9731 * miscellaneous string routines
9717 9732 * 2. Access DTrace variables other than the args[] array, and the
9718 9733 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9719 9734 * 3. Have thread-local variables.
9720 9735 * 4. Have dynamic variables.
9721 9736 */
9722 9737 static int
9723 9738 dtrace_difo_validate_helper(dtrace_difo_t *dp)
9724 9739 {
9725 9740 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9726 9741 int err = 0;
9727 9742 uint_t pc;
9728 9743
9729 9744 for (pc = 0; pc < dp->dtdo_len; pc++) {
9730 9745 dif_instr_t instr = dp->dtdo_buf[pc];
9731 9746
9732 9747 uint_t v = DIF_INSTR_VAR(instr);
9733 9748 uint_t subr = DIF_INSTR_SUBR(instr);
9734 9749 uint_t op = DIF_INSTR_OP(instr);
9735 9750
9736 9751 switch (op) {
9737 9752 case DIF_OP_OR:
9738 9753 case DIF_OP_XOR:
9739 9754 case DIF_OP_AND:
9740 9755 case DIF_OP_SLL:
9741 9756 case DIF_OP_SRL:
9742 9757 case DIF_OP_SRA:
9743 9758 case DIF_OP_SUB:
9744 9759 case DIF_OP_ADD:
9745 9760 case DIF_OP_MUL:
9746 9761 case DIF_OP_SDIV:
9747 9762 case DIF_OP_UDIV:
9748 9763 case DIF_OP_SREM:
9749 9764 case DIF_OP_UREM:
9750 9765 case DIF_OP_COPYS:
9751 9766 case DIF_OP_NOT:
9752 9767 case DIF_OP_MOV:
9753 9768 case DIF_OP_RLDSB:
9754 9769 case DIF_OP_RLDSH:
9755 9770 case DIF_OP_RLDSW:
9756 9771 case DIF_OP_RLDUB:
9757 9772 case DIF_OP_RLDUH:
9758 9773 case DIF_OP_RLDUW:
9759 9774 case DIF_OP_RLDX:
9760 9775 case DIF_OP_ULDSB:
9761 9776 case DIF_OP_ULDSH:
9762 9777 case DIF_OP_ULDSW:
9763 9778 case DIF_OP_ULDUB:
9764 9779 case DIF_OP_ULDUH:
9765 9780 case DIF_OP_ULDUW:
9766 9781 case DIF_OP_ULDX:
9767 9782 case DIF_OP_STB:
9768 9783 case DIF_OP_STH:
9769 9784 case DIF_OP_STW:
9770 9785 case DIF_OP_STX:
9771 9786 case DIF_OP_ALLOCS:
9772 9787 case DIF_OP_CMP:
9773 9788 case DIF_OP_SCMP:
9774 9789 case DIF_OP_TST:
9775 9790 case DIF_OP_BA:
9776 9791 case DIF_OP_BE:
9777 9792 case DIF_OP_BNE:
9778 9793 case DIF_OP_BG:
9779 9794 case DIF_OP_BGU:
9780 9795 case DIF_OP_BGE:
9781 9796 case DIF_OP_BGEU:
9782 9797 case DIF_OP_BL:
9783 9798 case DIF_OP_BLU:
9784 9799 case DIF_OP_BLE:
9785 9800 case DIF_OP_BLEU:
9786 9801 case DIF_OP_RET:
9787 9802 case DIF_OP_NOP:
9788 9803 case DIF_OP_POPTS:
9789 9804 case DIF_OP_FLUSHTS:
9790 9805 case DIF_OP_SETX:
9791 9806 case DIF_OP_SETS:
9792 9807 case DIF_OP_LDGA:
9793 9808 case DIF_OP_LDLS:
9794 9809 case DIF_OP_STGS:
9795 9810 case DIF_OP_STLS:
9796 9811 case DIF_OP_PUSHTR:
9797 9812 case DIF_OP_PUSHTV:
9798 9813 break;
9799 9814
9800 9815 case DIF_OP_LDGS:
9801 9816 if (v >= DIF_VAR_OTHER_UBASE)
9802 9817 break;
9803 9818
9804 9819 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9805 9820 break;
9806 9821
9807 9822 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9808 9823 v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9809 9824 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9810 9825 v == DIF_VAR_UID || v == DIF_VAR_GID)
9811 9826 break;
9812 9827
9813 9828 err += efunc(pc, "illegal variable %u\n", v);
9814 9829 break;
9815 9830
9816 9831 case DIF_OP_LDTA:
9817 9832 if (v < DIF_VAR_OTHER_UBASE) {
9818 9833 err += efunc(pc, "illegal variable load\n");
9819 9834 break;
9820 9835 }
9821 9836 /* FALLTHROUGH */
9822 9837 case DIF_OP_LDTS:
9823 9838 case DIF_OP_LDGAA:
9824 9839 case DIF_OP_LDTAA:
9825 9840 err += efunc(pc, "illegal dynamic variable load\n");
9826 9841 break;
9827 9842
9828 9843 case DIF_OP_STGA:
9829 9844 if (v < DIF_VAR_OTHER_UBASE) {
9830 9845 err += efunc(pc, "illegal variable store\n");
9831 9846 break;
9832 9847 }
9833 9848 /* FALLTHROUGH */
9834 9849 case DIF_OP_STTS:
9835 9850 case DIF_OP_STGAA:
9836 9851 case DIF_OP_STTAA:
9837 9852 err += efunc(pc, "illegal dynamic variable store\n");
9838 9853 break;
9839 9854
9840 9855 case DIF_OP_CALL:
9841 9856 if (subr == DIF_SUBR_ALLOCA ||
9842 9857 subr == DIF_SUBR_BCOPY ||
9843 9858 subr == DIF_SUBR_COPYIN ||
9844 9859 subr == DIF_SUBR_COPYINTO ||
9845 9860 subr == DIF_SUBR_COPYINSTR ||
9846 9861 subr == DIF_SUBR_INDEX ||
9847 9862 subr == DIF_SUBR_INET_NTOA ||
9848 9863 subr == DIF_SUBR_INET_NTOA6 ||
9849 9864 subr == DIF_SUBR_INET_NTOP ||
9850 9865 subr == DIF_SUBR_JSON ||
9851 9866 subr == DIF_SUBR_LLTOSTR ||
9852 9867 subr == DIF_SUBR_STRTOLL ||
9853 9868 subr == DIF_SUBR_RINDEX ||
9854 9869 subr == DIF_SUBR_STRCHR ||
9855 9870 subr == DIF_SUBR_STRJOIN ||
9856 9871 subr == DIF_SUBR_STRRCHR ||
9857 9872 subr == DIF_SUBR_STRSTR ||
9858 9873 subr == DIF_SUBR_HTONS ||
9859 9874 subr == DIF_SUBR_HTONL ||
9860 9875 subr == DIF_SUBR_HTONLL ||
9861 9876 subr == DIF_SUBR_NTOHS ||
9862 9877 subr == DIF_SUBR_NTOHL ||
9863 9878 subr == DIF_SUBR_NTOHLL)
9864 9879 break;
9865 9880
9866 9881 err += efunc(pc, "invalid subr %u\n", subr);
9867 9882 break;
9868 9883
9869 9884 default:
9870 9885 err += efunc(pc, "invalid opcode %u\n",
9871 9886 DIF_INSTR_OP(instr));
9872 9887 }
9873 9888 }
9874 9889
9875 9890 return (err);
9876 9891 }
9877 9892
9878 9893 /*
9879 9894 * Returns 1 if the expression in the DIF object can be cached on a per-thread
9880 9895 * basis; 0 if not.
9881 9896 */
9882 9897 static int
9883 9898 dtrace_difo_cacheable(dtrace_difo_t *dp)
9884 9899 {
9885 9900 int i;
9886 9901
9887 9902 if (dp == NULL)
9888 9903 return (0);
9889 9904
9890 9905 for (i = 0; i < dp->dtdo_varlen; i++) {
9891 9906 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9892 9907
9893 9908 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9894 9909 continue;
9895 9910
9896 9911 switch (v->dtdv_id) {
9897 9912 case DIF_VAR_CURTHREAD:
9898 9913 case DIF_VAR_PID:
9899 9914 case DIF_VAR_TID:
9900 9915 case DIF_VAR_EXECNAME:
9901 9916 case DIF_VAR_ZONENAME:
9902 9917 break;
9903 9918
9904 9919 default:
9905 9920 return (0);
9906 9921 }
9907 9922 }
9908 9923
9909 9924 /*
9910 9925 * This DIF object may be cacheable. Now we need to look for any
9911 9926 * array loading instructions, any memory loading instructions, or
9912 9927 * any stores to thread-local variables.
9913 9928 */
9914 9929 for (i = 0; i < dp->dtdo_len; i++) {
9915 9930 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9916 9931
9917 9932 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9918 9933 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9919 9934 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9920 9935 op == DIF_OP_LDGA || op == DIF_OP_STTS)
9921 9936 return (0);
9922 9937 }
9923 9938
9924 9939 return (1);
9925 9940 }
9926 9941
9927 9942 static void
9928 9943 dtrace_difo_hold(dtrace_difo_t *dp)
9929 9944 {
9930 9945 int i;
9931 9946
9932 9947 ASSERT(MUTEX_HELD(&dtrace_lock));
9933 9948
9934 9949 dp->dtdo_refcnt++;
9935 9950 ASSERT(dp->dtdo_refcnt != 0);
9936 9951
9937 9952 /*
9938 9953 * We need to check this DIF object for references to the variable
9939 9954 * DIF_VAR_VTIMESTAMP.
9940 9955 */
9941 9956 for (i = 0; i < dp->dtdo_varlen; i++) {
9942 9957 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9943 9958
9944 9959 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9945 9960 continue;
9946 9961
9947 9962 if (dtrace_vtime_references++ == 0)
9948 9963 dtrace_vtime_enable();
9949 9964 }
9950 9965 }
9951 9966
9952 9967 /*
9953 9968 * This routine calculates the dynamic variable chunksize for a given DIF
9954 9969 * object. The calculation is not fool-proof, and can probably be tricked by
9955 9970 * malicious DIF -- but it works for all compiler-generated DIF. Because this
9956 9971 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9957 9972 * if a dynamic variable size exceeds the chunksize.
9958 9973 */
9959 9974 static void
9960 9975 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9961 9976 {
9962 9977 uint64_t sval;
9963 9978 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9964 9979 const dif_instr_t *text = dp->dtdo_buf;
9965 9980 uint_t pc, srd = 0;
9966 9981 uint_t ttop = 0;
9967 9982 size_t size, ksize;
9968 9983 uint_t id, i;
9969 9984
9970 9985 for (pc = 0; pc < dp->dtdo_len; pc++) {
9971 9986 dif_instr_t instr = text[pc];
9972 9987 uint_t op = DIF_INSTR_OP(instr);
9973 9988 uint_t rd = DIF_INSTR_RD(instr);
9974 9989 uint_t r1 = DIF_INSTR_R1(instr);
9975 9990 uint_t nkeys = 0;
9976 9991 uchar_t scope;
9977 9992
9978 9993 dtrace_key_t *key = tupregs;
9979 9994
9980 9995 switch (op) {
9981 9996 case DIF_OP_SETX:
9982 9997 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9983 9998 srd = rd;
9984 9999 continue;
9985 10000
9986 10001 case DIF_OP_STTS:
9987 10002 key = &tupregs[DIF_DTR_NREGS];
9988 10003 key[0].dttk_size = 0;
9989 10004 key[1].dttk_size = 0;
9990 10005 nkeys = 2;
9991 10006 scope = DIFV_SCOPE_THREAD;
9992 10007 break;
9993 10008
9994 10009 case DIF_OP_STGAA:
9995 10010 case DIF_OP_STTAA:
9996 10011 nkeys = ttop;
9997 10012
9998 10013 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9999 10014 key[nkeys++].dttk_size = 0;
10000 10015
10001 10016 key[nkeys++].dttk_size = 0;
10002 10017
10003 10018 if (op == DIF_OP_STTAA) {
10004 10019 scope = DIFV_SCOPE_THREAD;
10005 10020 } else {
10006 10021 scope = DIFV_SCOPE_GLOBAL;
10007 10022 }
10008 10023
10009 10024 break;
10010 10025
10011 10026 case DIF_OP_PUSHTR:
10012 10027 if (ttop == DIF_DTR_NREGS)
10013 10028 return;
10014 10029
10015 10030 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10016 10031 /*
10017 10032 * If the register for the size of the "pushtr"
10018 10033 * is %r0 (or the value is 0) and the type is
10019 10034 * a string, we'll use the system-wide default
10020 10035 * string size.
10021 10036 */
10022 10037 tupregs[ttop++].dttk_size =
10023 10038 dtrace_strsize_default;
10024 10039 } else {
10025 10040 if (srd == 0)
10026 10041 return;
10027 10042
10028 10043 if (sval > LONG_MAX)
10029 10044 return;
10030 10045
10031 10046 tupregs[ttop++].dttk_size = sval;
10032 10047 }
10033 10048
10034 10049 break;
10035 10050
10036 10051 case DIF_OP_PUSHTV:
10037 10052 if (ttop == DIF_DTR_NREGS)
10038 10053 return;
10039 10054
10040 10055 tupregs[ttop++].dttk_size = 0;
10041 10056 break;
10042 10057
10043 10058 case DIF_OP_FLUSHTS:
10044 10059 ttop = 0;
10045 10060 break;
10046 10061
10047 10062 case DIF_OP_POPTS:
10048 10063 if (ttop != 0)
10049 10064 ttop--;
10050 10065 break;
10051 10066 }
10052 10067
10053 10068 sval = 0;
10054 10069 srd = 0;
10055 10070
10056 10071 if (nkeys == 0)
10057 10072 continue;
10058 10073
10059 10074 /*
10060 10075 * We have a dynamic variable allocation; calculate its size.
10061 10076 */
10062 10077 for (ksize = 0, i = 0; i < nkeys; i++)
10063 10078 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10064 10079
10065 10080 size = sizeof (dtrace_dynvar_t);
10066 10081 size += sizeof (dtrace_key_t) * (nkeys - 1);
10067 10082 size += ksize;
10068 10083
10069 10084 /*
10070 10085 * Now we need to determine the size of the stored data.
10071 10086 */
10072 10087 id = DIF_INSTR_VAR(instr);
10073 10088
10074 10089 for (i = 0; i < dp->dtdo_varlen; i++) {
10075 10090 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10076 10091
10077 10092 if (v->dtdv_id == id && v->dtdv_scope == scope) {
10078 10093 size += v->dtdv_type.dtdt_size;
10079 10094 break;
10080 10095 }
10081 10096 }
10082 10097
10083 10098 if (i == dp->dtdo_varlen)
10084 10099 return;
10085 10100
10086 10101 /*
10087 10102 * We have the size. If this is larger than the chunk size
10088 10103 * for our dynamic variable state, reset the chunk size.
10089 10104 */
10090 10105 size = P2ROUNDUP(size, sizeof (uint64_t));
10091 10106
10092 10107 /*
10093 10108 * Before setting the chunk size, check that we're not going
10094 10109 * to set it to a negative value...
10095 10110 */
10096 10111 if (size > LONG_MAX)
10097 10112 return;
10098 10113
10099 10114 /*
10100 10115 * ...and make certain that we didn't badly overflow.
10101 10116 */
10102 10117 if (size < ksize || size < sizeof (dtrace_dynvar_t))
10103 10118 return;
10104 10119
10105 10120 if (size > vstate->dtvs_dynvars.dtds_chunksize)
10106 10121 vstate->dtvs_dynvars.dtds_chunksize = size;
10107 10122 }
10108 10123 }
10109 10124
10110 10125 static void
10111 10126 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10112 10127 {
10113 10128 int i, oldsvars, osz, nsz, otlocals, ntlocals;
10114 10129 uint_t id;
10115 10130
10116 10131 ASSERT(MUTEX_HELD(&dtrace_lock));
10117 10132 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10118 10133
10119 10134 for (i = 0; i < dp->dtdo_varlen; i++) {
10120 10135 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10121 10136 dtrace_statvar_t *svar, ***svarp;
10122 10137 size_t dsize = 0;
10123 10138 uint8_t scope = v->dtdv_scope;
10124 10139 int *np;
10125 10140
10126 10141 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10127 10142 continue;
10128 10143
10129 10144 id -= DIF_VAR_OTHER_UBASE;
10130 10145
10131 10146 switch (scope) {
10132 10147 case DIFV_SCOPE_THREAD:
10133 10148 while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10134 10149 dtrace_difv_t *tlocals;
10135 10150
10136 10151 if ((ntlocals = (otlocals << 1)) == 0)
10137 10152 ntlocals = 1;
10138 10153
10139 10154 osz = otlocals * sizeof (dtrace_difv_t);
10140 10155 nsz = ntlocals * sizeof (dtrace_difv_t);
10141 10156
10142 10157 tlocals = kmem_zalloc(nsz, KM_SLEEP);
10143 10158
10144 10159 if (osz != 0) {
10145 10160 bcopy(vstate->dtvs_tlocals,
10146 10161 tlocals, osz);
10147 10162 kmem_free(vstate->dtvs_tlocals, osz);
10148 10163 }
10149 10164
10150 10165 vstate->dtvs_tlocals = tlocals;
10151 10166 vstate->dtvs_ntlocals = ntlocals;
10152 10167 }
10153 10168
10154 10169 vstate->dtvs_tlocals[id] = *v;
10155 10170 continue;
10156 10171
10157 10172 case DIFV_SCOPE_LOCAL:
10158 10173 np = &vstate->dtvs_nlocals;
10159 10174 svarp = &vstate->dtvs_locals;
10160 10175
10161 10176 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10162 10177 dsize = NCPU * (v->dtdv_type.dtdt_size +
10163 10178 sizeof (uint64_t));
10164 10179 else
10165 10180 dsize = NCPU * sizeof (uint64_t);
10166 10181
10167 10182 break;
10168 10183
10169 10184 case DIFV_SCOPE_GLOBAL:
10170 10185 np = &vstate->dtvs_nglobals;
10171 10186 svarp = &vstate->dtvs_globals;
10172 10187
10173 10188 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10174 10189 dsize = v->dtdv_type.dtdt_size +
10175 10190 sizeof (uint64_t);
10176 10191
10177 10192 break;
10178 10193
10179 10194 default:
10180 10195 ASSERT(0);
10181 10196 }
10182 10197
10183 10198 while (id >= (oldsvars = *np)) {
10184 10199 dtrace_statvar_t **statics;
10185 10200 int newsvars, oldsize, newsize;
10186 10201
10187 10202 if ((newsvars = (oldsvars << 1)) == 0)
10188 10203 newsvars = 1;
10189 10204
10190 10205 oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10191 10206 newsize = newsvars * sizeof (dtrace_statvar_t *);
10192 10207
10193 10208 statics = kmem_zalloc(newsize, KM_SLEEP);
10194 10209
10195 10210 if (oldsize != 0) {
10196 10211 bcopy(*svarp, statics, oldsize);
10197 10212 kmem_free(*svarp, oldsize);
10198 10213 }
10199 10214
10200 10215 *svarp = statics;
10201 10216 *np = newsvars;
10202 10217 }
10203 10218
10204 10219 if ((svar = (*svarp)[id]) == NULL) {
10205 10220 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10206 10221 svar->dtsv_var = *v;
10207 10222
10208 10223 if ((svar->dtsv_size = dsize) != 0) {
10209 10224 svar->dtsv_data = (uint64_t)(uintptr_t)
10210 10225 kmem_zalloc(dsize, KM_SLEEP);
10211 10226 }
10212 10227
10213 10228 (*svarp)[id] = svar;
10214 10229 }
10215 10230
10216 10231 svar->dtsv_refcnt++;
10217 10232 }
10218 10233
10219 10234 dtrace_difo_chunksize(dp, vstate);
10220 10235 dtrace_difo_hold(dp);
10221 10236 }
10222 10237
10223 10238 static dtrace_difo_t *
10224 10239 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10225 10240 {
10226 10241 dtrace_difo_t *new;
10227 10242 size_t sz;
10228 10243
10229 10244 ASSERT(dp->dtdo_buf != NULL);
10230 10245 ASSERT(dp->dtdo_refcnt != 0);
10231 10246
10232 10247 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10233 10248
10234 10249 ASSERT(dp->dtdo_buf != NULL);
10235 10250 sz = dp->dtdo_len * sizeof (dif_instr_t);
10236 10251 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10237 10252 bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10238 10253 new->dtdo_len = dp->dtdo_len;
10239 10254
10240 10255 if (dp->dtdo_strtab != NULL) {
10241 10256 ASSERT(dp->dtdo_strlen != 0);
10242 10257 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10243 10258 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10244 10259 new->dtdo_strlen = dp->dtdo_strlen;
10245 10260 }
10246 10261
10247 10262 if (dp->dtdo_inttab != NULL) {
10248 10263 ASSERT(dp->dtdo_intlen != 0);
10249 10264 sz = dp->dtdo_intlen * sizeof (uint64_t);
10250 10265 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10251 10266 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10252 10267 new->dtdo_intlen = dp->dtdo_intlen;
10253 10268 }
10254 10269
10255 10270 if (dp->dtdo_vartab != NULL) {
10256 10271 ASSERT(dp->dtdo_varlen != 0);
10257 10272 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10258 10273 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10259 10274 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10260 10275 new->dtdo_varlen = dp->dtdo_varlen;
10261 10276 }
10262 10277
10263 10278 dtrace_difo_init(new, vstate);
10264 10279 return (new);
10265 10280 }
10266 10281
10267 10282 static void
10268 10283 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10269 10284 {
10270 10285 int i;
10271 10286
10272 10287 ASSERT(dp->dtdo_refcnt == 0);
10273 10288
10274 10289 for (i = 0; i < dp->dtdo_varlen; i++) {
10275 10290 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10276 10291 dtrace_statvar_t *svar, **svarp;
10277 10292 uint_t id;
10278 10293 uint8_t scope = v->dtdv_scope;
10279 10294 int *np;
10280 10295
10281 10296 switch (scope) {
10282 10297 case DIFV_SCOPE_THREAD:
10283 10298 continue;
10284 10299
10285 10300 case DIFV_SCOPE_LOCAL:
10286 10301 np = &vstate->dtvs_nlocals;
10287 10302 svarp = vstate->dtvs_locals;
10288 10303 break;
10289 10304
10290 10305 case DIFV_SCOPE_GLOBAL:
10291 10306 np = &vstate->dtvs_nglobals;
10292 10307 svarp = vstate->dtvs_globals;
10293 10308 break;
10294 10309
10295 10310 default:
10296 10311 ASSERT(0);
10297 10312 }
10298 10313
10299 10314 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10300 10315 continue;
10301 10316
10302 10317 id -= DIF_VAR_OTHER_UBASE;
10303 10318 ASSERT(id < *np);
10304 10319
10305 10320 svar = svarp[id];
10306 10321 ASSERT(svar != NULL);
10307 10322 ASSERT(svar->dtsv_refcnt > 0);
10308 10323
10309 10324 if (--svar->dtsv_refcnt > 0)
10310 10325 continue;
10311 10326
10312 10327 if (svar->dtsv_size != 0) {
10313 10328 ASSERT(svar->dtsv_data != 0);
10314 10329 kmem_free((void *)(uintptr_t)svar->dtsv_data,
10315 10330 svar->dtsv_size);
10316 10331 }
10317 10332
10318 10333 kmem_free(svar, sizeof (dtrace_statvar_t));
10319 10334 svarp[id] = NULL;
10320 10335 }
10321 10336
10322 10337 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10323 10338 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10324 10339 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10325 10340 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10326 10341
10327 10342 kmem_free(dp, sizeof (dtrace_difo_t));
10328 10343 }
10329 10344
10330 10345 static void
10331 10346 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10332 10347 {
10333 10348 int i;
10334 10349
10335 10350 ASSERT(MUTEX_HELD(&dtrace_lock));
10336 10351 ASSERT(dp->dtdo_refcnt != 0);
10337 10352
10338 10353 for (i = 0; i < dp->dtdo_varlen; i++) {
10339 10354 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10340 10355
10341 10356 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10342 10357 continue;
10343 10358
10344 10359 ASSERT(dtrace_vtime_references > 0);
10345 10360 if (--dtrace_vtime_references == 0)
10346 10361 dtrace_vtime_disable();
10347 10362 }
10348 10363
10349 10364 if (--dp->dtdo_refcnt == 0)
10350 10365 dtrace_difo_destroy(dp, vstate);
10351 10366 }
10352 10367
10353 10368 /*
10354 10369 * DTrace Format Functions
10355 10370 */
10356 10371 static uint16_t
10357 10372 dtrace_format_add(dtrace_state_t *state, char *str)
10358 10373 {
10359 10374 char *fmt, **new;
10360 10375 uint16_t ndx, len = strlen(str) + 1;
10361 10376
10362 10377 fmt = kmem_zalloc(len, KM_SLEEP);
10363 10378 bcopy(str, fmt, len);
10364 10379
10365 10380 for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10366 10381 if (state->dts_formats[ndx] == NULL) {
10367 10382 state->dts_formats[ndx] = fmt;
10368 10383 return (ndx + 1);
10369 10384 }
10370 10385 }
10371 10386
10372 10387 if (state->dts_nformats == USHRT_MAX) {
10373 10388 /*
10374 10389 * This is only likely if a denial-of-service attack is being
10375 10390 * attempted. As such, it's okay to fail silently here.
10376 10391 */
10377 10392 kmem_free(fmt, len);
10378 10393 return (0);
10379 10394 }
10380 10395
10381 10396 /*
10382 10397 * For simplicity, we always resize the formats array to be exactly the
10383 10398 * number of formats.
10384 10399 */
10385 10400 ndx = state->dts_nformats++;
10386 10401 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10387 10402
10388 10403 if (state->dts_formats != NULL) {
10389 10404 ASSERT(ndx != 0);
10390 10405 bcopy(state->dts_formats, new, ndx * sizeof (char *));
10391 10406 kmem_free(state->dts_formats, ndx * sizeof (char *));
10392 10407 }
10393 10408
10394 10409 state->dts_formats = new;
10395 10410 state->dts_formats[ndx] = fmt;
10396 10411
10397 10412 return (ndx + 1);
10398 10413 }
10399 10414
10400 10415 static void
10401 10416 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10402 10417 {
10403 10418 char *fmt;
10404 10419
10405 10420 ASSERT(state->dts_formats != NULL);
10406 10421 ASSERT(format <= state->dts_nformats);
10407 10422 ASSERT(state->dts_formats[format - 1] != NULL);
10408 10423
10409 10424 fmt = state->dts_formats[format - 1];
10410 10425 kmem_free(fmt, strlen(fmt) + 1);
10411 10426 state->dts_formats[format - 1] = NULL;
10412 10427 }
10413 10428
10414 10429 static void
10415 10430 dtrace_format_destroy(dtrace_state_t *state)
10416 10431 {
10417 10432 int i;
10418 10433
10419 10434 if (state->dts_nformats == 0) {
10420 10435 ASSERT(state->dts_formats == NULL);
10421 10436 return;
10422 10437 }
10423 10438
10424 10439 ASSERT(state->dts_formats != NULL);
10425 10440
10426 10441 for (i = 0; i < state->dts_nformats; i++) {
10427 10442 char *fmt = state->dts_formats[i];
10428 10443
10429 10444 if (fmt == NULL)
10430 10445 continue;
10431 10446
10432 10447 kmem_free(fmt, strlen(fmt) + 1);
10433 10448 }
10434 10449
10435 10450 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10436 10451 state->dts_nformats = 0;
10437 10452 state->dts_formats = NULL;
10438 10453 }
10439 10454
10440 10455 /*
10441 10456 * DTrace Predicate Functions
10442 10457 */
10443 10458 static dtrace_predicate_t *
10444 10459 dtrace_predicate_create(dtrace_difo_t *dp)
10445 10460 {
10446 10461 dtrace_predicate_t *pred;
10447 10462
10448 10463 ASSERT(MUTEX_HELD(&dtrace_lock));
10449 10464 ASSERT(dp->dtdo_refcnt != 0);
10450 10465
10451 10466 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10452 10467 pred->dtp_difo = dp;
10453 10468 pred->dtp_refcnt = 1;
10454 10469
10455 10470 if (!dtrace_difo_cacheable(dp))
10456 10471 return (pred);
10457 10472
10458 10473 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10459 10474 /*
10460 10475 * This is only theoretically possible -- we have had 2^32
10461 10476 * cacheable predicates on this machine. We cannot allow any
10462 10477 * more predicates to become cacheable: as unlikely as it is,
10463 10478 * there may be a thread caching a (now stale) predicate cache
10464 10479 * ID. (N.B.: the temptation is being successfully resisted to
10465 10480 * have this cmn_err() "Holy shit -- we executed this code!")
10466 10481 */
10467 10482 return (pred);
10468 10483 }
10469 10484
10470 10485 pred->dtp_cacheid = dtrace_predcache_id++;
10471 10486
10472 10487 return (pred);
10473 10488 }
10474 10489
10475 10490 static void
10476 10491 dtrace_predicate_hold(dtrace_predicate_t *pred)
10477 10492 {
10478 10493 ASSERT(MUTEX_HELD(&dtrace_lock));
10479 10494 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10480 10495 ASSERT(pred->dtp_refcnt > 0);
10481 10496
10482 10497 pred->dtp_refcnt++;
10483 10498 }
10484 10499
10485 10500 static void
10486 10501 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10487 10502 {
10488 10503 dtrace_difo_t *dp = pred->dtp_difo;
10489 10504
10490 10505 ASSERT(MUTEX_HELD(&dtrace_lock));
10491 10506 ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10492 10507 ASSERT(pred->dtp_refcnt > 0);
10493 10508
10494 10509 if (--pred->dtp_refcnt == 0) {
10495 10510 dtrace_difo_release(pred->dtp_difo, vstate);
10496 10511 kmem_free(pred, sizeof (dtrace_predicate_t));
10497 10512 }
10498 10513 }
10499 10514
10500 10515 /*
10501 10516 * DTrace Action Description Functions
10502 10517 */
10503 10518 static dtrace_actdesc_t *
10504 10519 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10505 10520 uint64_t uarg, uint64_t arg)
10506 10521 {
10507 10522 dtrace_actdesc_t *act;
10508 10523
10509 10524 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != 0 &&
10510 10525 arg >= KERNELBASE) || (arg == 0 && kind == DTRACEACT_PRINTA));
10511 10526
10512 10527 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10513 10528 act->dtad_kind = kind;
10514 10529 act->dtad_ntuple = ntuple;
10515 10530 act->dtad_uarg = uarg;
10516 10531 act->dtad_arg = arg;
10517 10532 act->dtad_refcnt = 1;
10518 10533
10519 10534 return (act);
10520 10535 }
10521 10536
10522 10537 static void
10523 10538 dtrace_actdesc_hold(dtrace_actdesc_t *act)
10524 10539 {
10525 10540 ASSERT(act->dtad_refcnt >= 1);
10526 10541 act->dtad_refcnt++;
10527 10542 }
10528 10543
10529 10544 static void
10530 10545 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10531 10546 {
10532 10547 dtrace_actkind_t kind = act->dtad_kind;
10533 10548 dtrace_difo_t *dp;
10534 10549
10535 10550 ASSERT(act->dtad_refcnt >= 1);
10536 10551
10537 10552 if (--act->dtad_refcnt != 0)
10538 10553 return;
10539 10554
10540 10555 if ((dp = act->dtad_difo) != NULL)
10541 10556 dtrace_difo_release(dp, vstate);
10542 10557
10543 10558 if (DTRACEACT_ISPRINTFLIKE(kind)) {
10544 10559 char *str = (char *)(uintptr_t)act->dtad_arg;
10545 10560
10546 10561 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10547 10562 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
10548 10563
10549 10564 if (str != NULL)
10550 10565 kmem_free(str, strlen(str) + 1);
10551 10566 }
10552 10567
10553 10568 kmem_free(act, sizeof (dtrace_actdesc_t));
10554 10569 }
10555 10570
10556 10571 /*
10557 10572 * DTrace ECB Functions
10558 10573 */
10559 10574 static dtrace_ecb_t *
10560 10575 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
10561 10576 {
10562 10577 dtrace_ecb_t *ecb;
10563 10578 dtrace_epid_t epid;
10564 10579
10565 10580 ASSERT(MUTEX_HELD(&dtrace_lock));
10566 10581
10567 10582 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
10568 10583 ecb->dte_predicate = NULL;
10569 10584 ecb->dte_probe = probe;
10570 10585
10571 10586 /*
10572 10587 * The default size is the size of the default action: recording
10573 10588 * the header.
10574 10589 */
10575 10590 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
10576 10591 ecb->dte_alignment = sizeof (dtrace_epid_t);
10577 10592
10578 10593 epid = state->dts_epid++;
10579 10594
10580 10595 if (epid - 1 >= state->dts_necbs) {
10581 10596 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
10582 10597 int necbs = state->dts_necbs << 1;
10583 10598
10584 10599 ASSERT(epid == state->dts_necbs + 1);
10585 10600
10586 10601 if (necbs == 0) {
10587 10602 ASSERT(oecbs == NULL);
10588 10603 necbs = 1;
10589 10604 }
10590 10605
10591 10606 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
10592 10607
10593 10608 if (oecbs != NULL)
10594 10609 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
10595 10610
10596 10611 dtrace_membar_producer();
10597 10612 state->dts_ecbs = ecbs;
10598 10613
10599 10614 if (oecbs != NULL) {
10600 10615 /*
10601 10616 * If this state is active, we must dtrace_sync()
10602 10617 * before we can free the old dts_ecbs array: we're
10603 10618 * coming in hot, and there may be active ring
10604 10619 * buffer processing (which indexes into the dts_ecbs
10605 10620 * array) on another CPU.
10606 10621 */
10607 10622 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
10608 10623 dtrace_sync();
10609 10624
10610 10625 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
10611 10626 }
10612 10627
10613 10628 dtrace_membar_producer();
10614 10629 state->dts_necbs = necbs;
10615 10630 }
10616 10631
10617 10632 ecb->dte_state = state;
10618 10633
10619 10634 ASSERT(state->dts_ecbs[epid - 1] == NULL);
10620 10635 dtrace_membar_producer();
10621 10636 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
10622 10637
10623 10638 return (ecb);
10624 10639 }
10625 10640
10626 10641 static int
10627 10642 dtrace_ecb_enable(dtrace_ecb_t *ecb)
10628 10643 {
10629 10644 dtrace_probe_t *probe = ecb->dte_probe;
10630 10645
10631 10646 ASSERT(MUTEX_HELD(&cpu_lock));
10632 10647 ASSERT(MUTEX_HELD(&dtrace_lock));
10633 10648 ASSERT(ecb->dte_next == NULL);
10634 10649
10635 10650 if (probe == NULL) {
10636 10651 /*
10637 10652 * This is the NULL probe -- there's nothing to do.
10638 10653 */
10639 10654 return (0);
10640 10655 }
10641 10656
10642 10657 if (probe->dtpr_ecb == NULL) {
10643 10658 dtrace_provider_t *prov = probe->dtpr_provider;
10644 10659
10645 10660 /*
10646 10661 * We're the first ECB on this probe.
10647 10662 */
10648 10663 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
10649 10664
10650 10665 if (ecb->dte_predicate != NULL)
10651 10666 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
10652 10667
10653 10668 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
10654 10669 probe->dtpr_id, probe->dtpr_arg));
10655 10670 } else {
10656 10671 /*
10657 10672 * This probe is already active. Swing the last pointer to
10658 10673 * point to the new ECB, and issue a dtrace_sync() to assure
10659 10674 * that all CPUs have seen the change.
10660 10675 */
10661 10676 ASSERT(probe->dtpr_ecb_last != NULL);
10662 10677 probe->dtpr_ecb_last->dte_next = ecb;
10663 10678 probe->dtpr_ecb_last = ecb;
10664 10679 probe->dtpr_predcache = 0;
10665 10680
10666 10681 dtrace_sync();
10667 10682 return (0);
10668 10683 }
10669 10684 }
10670 10685
10671 10686 static int
10672 10687 dtrace_ecb_resize(dtrace_ecb_t *ecb)
10673 10688 {
10674 10689 dtrace_action_t *act;
10675 10690 uint32_t curneeded = UINT32_MAX;
10676 10691 uint32_t aggbase = UINT32_MAX;
10677 10692
10678 10693 /*
10679 10694 * If we record anything, we always record the dtrace_rechdr_t. (And
10680 10695 * we always record it first.)
10681 10696 */
10682 10697 ecb->dte_size = sizeof (dtrace_rechdr_t);
10683 10698 ecb->dte_alignment = sizeof (dtrace_epid_t);
10684 10699
10685 10700 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10686 10701 dtrace_recdesc_t *rec = &act->dta_rec;
10687 10702 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
10688 10703
10689 10704 ecb->dte_alignment = MAX(ecb->dte_alignment,
10690 10705 rec->dtrd_alignment);
10691 10706
10692 10707 if (DTRACEACT_ISAGG(act->dta_kind)) {
10693 10708 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10694 10709
10695 10710 ASSERT(rec->dtrd_size != 0);
10696 10711 ASSERT(agg->dtag_first != NULL);
10697 10712 ASSERT(act->dta_prev->dta_intuple);
10698 10713 ASSERT(aggbase != UINT32_MAX);
10699 10714 ASSERT(curneeded != UINT32_MAX);
10700 10715
10701 10716 agg->dtag_base = aggbase;
10702 10717
10703 10718 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10704 10719 rec->dtrd_offset = curneeded;
10705 10720 if (curneeded + rec->dtrd_size < curneeded)
10706 10721 return (EINVAL);
10707 10722 curneeded += rec->dtrd_size;
10708 10723 ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
10709 10724
10710 10725 aggbase = UINT32_MAX;
10711 10726 curneeded = UINT32_MAX;
10712 10727 } else if (act->dta_intuple) {
10713 10728 if (curneeded == UINT32_MAX) {
10714 10729 /*
10715 10730 * This is the first record in a tuple. Align
10716 10731 * curneeded to be at offset 4 in an 8-byte
10717 10732 * aligned block.
10718 10733 */
10719 10734 ASSERT(act->dta_prev == NULL ||
10720 10735 !act->dta_prev->dta_intuple);
10721 10736 ASSERT3U(aggbase, ==, UINT32_MAX);
10722 10737 curneeded = P2PHASEUP(ecb->dte_size,
10723 10738 sizeof (uint64_t), sizeof (dtrace_aggid_t));
10724 10739
10725 10740 aggbase = curneeded - sizeof (dtrace_aggid_t);
10726 10741 ASSERT(IS_P2ALIGNED(aggbase,
10727 10742 sizeof (uint64_t)));
10728 10743 }
10729 10744 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10730 10745 rec->dtrd_offset = curneeded;
10731 10746 if (curneeded + rec->dtrd_size < curneeded)
10732 10747 return (EINVAL);
10733 10748 curneeded += rec->dtrd_size;
10734 10749 } else {
10735 10750 /* tuples must be followed by an aggregation */
10736 10751 ASSERT(act->dta_prev == NULL ||
10737 10752 !act->dta_prev->dta_intuple);
10738 10753
10739 10754 ecb->dte_size = P2ROUNDUP(ecb->dte_size,
10740 10755 rec->dtrd_alignment);
10741 10756 rec->dtrd_offset = ecb->dte_size;
10742 10757 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size)
10743 10758 return (EINVAL);
10744 10759 ecb->dte_size += rec->dtrd_size;
10745 10760 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
10746 10761 }
10747 10762 }
10748 10763
10749 10764 if ((act = ecb->dte_action) != NULL &&
10750 10765 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
10751 10766 ecb->dte_size == sizeof (dtrace_rechdr_t)) {
10752 10767 /*
10753 10768 * If the size is still sizeof (dtrace_rechdr_t), then all
10754 10769 * actions store no data; set the size to 0.
10755 10770 */
10756 10771 ecb->dte_size = 0;
10757 10772 }
10758 10773
10759 10774 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
10760 10775 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
10761 10776 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
10762 10777 ecb->dte_needed);
10763 10778 return (0);
10764 10779 }
10765 10780
10766 10781 static dtrace_action_t *
10767 10782 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10768 10783 {
10769 10784 dtrace_aggregation_t *agg;
10770 10785 size_t size = sizeof (uint64_t);
10771 10786 int ntuple = desc->dtad_ntuple;
10772 10787 dtrace_action_t *act;
10773 10788 dtrace_recdesc_t *frec;
10774 10789 dtrace_aggid_t aggid;
10775 10790 dtrace_state_t *state = ecb->dte_state;
10776 10791
10777 10792 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10778 10793 agg->dtag_ecb = ecb;
10779 10794
10780 10795 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10781 10796
10782 10797 switch (desc->dtad_kind) {
10783 10798 case DTRACEAGG_MIN:
10784 10799 agg->dtag_initial = INT64_MAX;
10785 10800 agg->dtag_aggregate = dtrace_aggregate_min;
10786 10801 break;
10787 10802
10788 10803 case DTRACEAGG_MAX:
10789 10804 agg->dtag_initial = INT64_MIN;
10790 10805 agg->dtag_aggregate = dtrace_aggregate_max;
10791 10806 break;
10792 10807
10793 10808 case DTRACEAGG_COUNT:
10794 10809 agg->dtag_aggregate = dtrace_aggregate_count;
10795 10810 break;
10796 10811
10797 10812 case DTRACEAGG_QUANTIZE:
10798 10813 agg->dtag_aggregate = dtrace_aggregate_quantize;
10799 10814 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10800 10815 sizeof (uint64_t);
10801 10816 break;
10802 10817
10803 10818 case DTRACEAGG_LQUANTIZE: {
10804 10819 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10805 10820 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10806 10821
10807 10822 agg->dtag_initial = desc->dtad_arg;
10808 10823 agg->dtag_aggregate = dtrace_aggregate_lquantize;
10809 10824
10810 10825 if (step == 0 || levels == 0)
10811 10826 goto err;
10812 10827
10813 10828 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10814 10829 break;
10815 10830 }
10816 10831
10817 10832 case DTRACEAGG_LLQUANTIZE: {
10818 10833 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10819 10834 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10820 10835 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10821 10836 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10822 10837 int64_t v;
10823 10838
10824 10839 agg->dtag_initial = desc->dtad_arg;
10825 10840 agg->dtag_aggregate = dtrace_aggregate_llquantize;
10826 10841
10827 10842 if (factor < 2 || low >= high || nsteps < factor)
10828 10843 goto err;
10829 10844
10830 10845 /*
10831 10846 * Now check that the number of steps evenly divides a power
10832 10847 * of the factor. (This assures both integer bucket size and
10833 10848 * linearity within each magnitude.)
10834 10849 */
10835 10850 for (v = factor; v < nsteps; v *= factor)
10836 10851 continue;
10837 10852
10838 10853 if ((v % nsteps) || (nsteps % factor))
10839 10854 goto err;
10840 10855
10841 10856 size = (dtrace_aggregate_llquantize_bucket(factor,
10842 10857 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10843 10858 break;
10844 10859 }
10845 10860
10846 10861 case DTRACEAGG_AVG:
10847 10862 agg->dtag_aggregate = dtrace_aggregate_avg;
10848 10863 size = sizeof (uint64_t) * 2;
10849 10864 break;
10850 10865
10851 10866 case DTRACEAGG_STDDEV:
10852 10867 agg->dtag_aggregate = dtrace_aggregate_stddev;
10853 10868 size = sizeof (uint64_t) * 4;
10854 10869 break;
10855 10870
10856 10871 case DTRACEAGG_SUM:
10857 10872 agg->dtag_aggregate = dtrace_aggregate_sum;
10858 10873 break;
10859 10874
10860 10875 default:
10861 10876 goto err;
10862 10877 }
10863 10878
10864 10879 agg->dtag_action.dta_rec.dtrd_size = size;
10865 10880
10866 10881 if (ntuple == 0)
10867 10882 goto err;
10868 10883
10869 10884 /*
10870 10885 * We must make sure that we have enough actions for the n-tuple.
10871 10886 */
10872 10887 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10873 10888 if (DTRACEACT_ISAGG(act->dta_kind))
10874 10889 break;
10875 10890
10876 10891 if (--ntuple == 0) {
10877 10892 /*
10878 10893 * This is the action with which our n-tuple begins.
10879 10894 */
10880 10895 agg->dtag_first = act;
10881 10896 goto success;
10882 10897 }
10883 10898 }
10884 10899
10885 10900 /*
10886 10901 * This n-tuple is short by ntuple elements. Return failure.
10887 10902 */
10888 10903 ASSERT(ntuple != 0);
10889 10904 err:
10890 10905 kmem_free(agg, sizeof (dtrace_aggregation_t));
10891 10906 return (NULL);
10892 10907
10893 10908 success:
10894 10909 /*
10895 10910 * If the last action in the tuple has a size of zero, it's actually
10896 10911 * an expression argument for the aggregating action.
10897 10912 */
10898 10913 ASSERT(ecb->dte_action_last != NULL);
10899 10914 act = ecb->dte_action_last;
10900 10915
10901 10916 if (act->dta_kind == DTRACEACT_DIFEXPR) {
10902 10917 ASSERT(act->dta_difo != NULL);
10903 10918
10904 10919 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10905 10920 agg->dtag_hasarg = 1;
10906 10921 }
10907 10922
10908 10923 /*
10909 10924 * We need to allocate an id for this aggregation.
10910 10925 */
10911 10926 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10912 10927 VM_BESTFIT | VM_SLEEP);
10913 10928
10914 10929 if (aggid - 1 >= state->dts_naggregations) {
10915 10930 dtrace_aggregation_t **oaggs = state->dts_aggregations;
10916 10931 dtrace_aggregation_t **aggs;
10917 10932 int naggs = state->dts_naggregations << 1;
10918 10933 int onaggs = state->dts_naggregations;
10919 10934
10920 10935 ASSERT(aggid == state->dts_naggregations + 1);
10921 10936
10922 10937 if (naggs == 0) {
10923 10938 ASSERT(oaggs == NULL);
10924 10939 naggs = 1;
10925 10940 }
10926 10941
10927 10942 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10928 10943
10929 10944 if (oaggs != NULL) {
10930 10945 bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10931 10946 kmem_free(oaggs, onaggs * sizeof (*aggs));
10932 10947 }
10933 10948
10934 10949 state->dts_aggregations = aggs;
10935 10950 state->dts_naggregations = naggs;
10936 10951 }
10937 10952
10938 10953 ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10939 10954 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10940 10955
10941 10956 frec = &agg->dtag_first->dta_rec;
10942 10957 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10943 10958 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10944 10959
10945 10960 for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10946 10961 ASSERT(!act->dta_intuple);
10947 10962 act->dta_intuple = 1;
10948 10963 }
10949 10964
10950 10965 return (&agg->dtag_action);
10951 10966 }
10952 10967
10953 10968 static void
10954 10969 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10955 10970 {
10956 10971 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10957 10972 dtrace_state_t *state = ecb->dte_state;
10958 10973 dtrace_aggid_t aggid = agg->dtag_id;
10959 10974
10960 10975 ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10961 10976 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10962 10977
10963 10978 ASSERT(state->dts_aggregations[aggid - 1] == agg);
10964 10979 state->dts_aggregations[aggid - 1] = NULL;
10965 10980
10966 10981 kmem_free(agg, sizeof (dtrace_aggregation_t));
10967 10982 }
10968 10983
10969 10984 static int
10970 10985 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10971 10986 {
10972 10987 dtrace_action_t *action, *last;
10973 10988 dtrace_difo_t *dp = desc->dtad_difo;
10974 10989 uint32_t size = 0, align = sizeof (uint8_t), mask;
10975 10990 uint16_t format = 0;
10976 10991 dtrace_recdesc_t *rec;
10977 10992 dtrace_state_t *state = ecb->dte_state;
10978 10993 dtrace_optval_t *opt = state->dts_options, nframes, strsize;
10979 10994 uint64_t arg = desc->dtad_arg;
10980 10995
10981 10996 ASSERT(MUTEX_HELD(&dtrace_lock));
10982 10997 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10983 10998
10984 10999 if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10985 11000 /*
10986 11001 * If this is an aggregating action, there must be neither
10987 11002 * a speculate nor a commit on the action chain.
10988 11003 */
10989 11004 dtrace_action_t *act;
10990 11005
10991 11006 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10992 11007 if (act->dta_kind == DTRACEACT_COMMIT)
10993 11008 return (EINVAL);
10994 11009
10995 11010 if (act->dta_kind == DTRACEACT_SPECULATE)
10996 11011 return (EINVAL);
10997 11012 }
10998 11013
10999 11014 action = dtrace_ecb_aggregation_create(ecb, desc);
11000 11015
11001 11016 if (action == NULL)
11002 11017 return (EINVAL);
11003 11018 } else {
11004 11019 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11005 11020 (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11006 11021 dp != NULL && dp->dtdo_destructive)) {
11007 11022 state->dts_destructive = 1;
11008 11023 }
11009 11024
11010 11025 switch (desc->dtad_kind) {
11011 11026 case DTRACEACT_PRINTF:
11012 11027 case DTRACEACT_PRINTA:
11013 11028 case DTRACEACT_SYSTEM:
11014 11029 case DTRACEACT_FREOPEN:
11015 11030 case DTRACEACT_DIFEXPR:
11016 11031 /*
11017 11032 * We know that our arg is a string -- turn it into a
11018 11033 * format.
11019 11034 */
11020 11035 if (arg == 0) {
11021 11036 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11022 11037 desc->dtad_kind == DTRACEACT_DIFEXPR);
11023 11038 format = 0;
11024 11039 } else {
11025 11040 ASSERT(arg != 0);
11026 11041 ASSERT(arg > KERNELBASE);
11027 11042 format = dtrace_format_add(state,
11028 11043 (char *)(uintptr_t)arg);
11029 11044 }
11030 11045
11031 11046 /*FALLTHROUGH*/
11032 11047 case DTRACEACT_LIBACT:
11033 11048 case DTRACEACT_TRACEMEM:
11034 11049 case DTRACEACT_TRACEMEM_DYNSIZE:
11035 11050 if (dp == NULL)
11036 11051 return (EINVAL);
11037 11052
11038 11053 if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11039 11054 break;
11040 11055
11041 11056 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11042 11057 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11043 11058 return (EINVAL);
11044 11059
11045 11060 size = opt[DTRACEOPT_STRSIZE];
11046 11061 }
11047 11062
11048 11063 break;
11049 11064
11050 11065 case DTRACEACT_STACK:
11051 11066 if ((nframes = arg) == 0) {
11052 11067 nframes = opt[DTRACEOPT_STACKFRAMES];
11053 11068 ASSERT(nframes > 0);
11054 11069 arg = nframes;
11055 11070 }
11056 11071
11057 11072 size = nframes * sizeof (pc_t);
11058 11073 break;
11059 11074
11060 11075 case DTRACEACT_JSTACK:
11061 11076 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11062 11077 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11063 11078
11064 11079 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11065 11080 nframes = opt[DTRACEOPT_JSTACKFRAMES];
11066 11081
11067 11082 arg = DTRACE_USTACK_ARG(nframes, strsize);
11068 11083
11069 11084 /*FALLTHROUGH*/
11070 11085 case DTRACEACT_USTACK:
11071 11086 if (desc->dtad_kind != DTRACEACT_JSTACK &&
11072 11087 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11073 11088 strsize = DTRACE_USTACK_STRSIZE(arg);
11074 11089 nframes = opt[DTRACEOPT_USTACKFRAMES];
11075 11090 ASSERT(nframes > 0);
11076 11091 arg = DTRACE_USTACK_ARG(nframes, strsize);
11077 11092 }
11078 11093
11079 11094 /*
11080 11095 * Save a slot for the pid.
11081 11096 */
11082 11097 size = (nframes + 1) * sizeof (uint64_t);
11083 11098 size += DTRACE_USTACK_STRSIZE(arg);
11084 11099 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11085 11100
11086 11101 break;
11087 11102
11088 11103 case DTRACEACT_SYM:
11089 11104 case DTRACEACT_MOD:
11090 11105 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11091 11106 sizeof (uint64_t)) ||
11092 11107 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11093 11108 return (EINVAL);
11094 11109 break;
11095 11110
11096 11111 case DTRACEACT_USYM:
11097 11112 case DTRACEACT_UMOD:
11098 11113 case DTRACEACT_UADDR:
11099 11114 if (dp == NULL ||
11100 11115 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11101 11116 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11102 11117 return (EINVAL);
11103 11118
11104 11119 /*
11105 11120 * We have a slot for the pid, plus a slot for the
11106 11121 * argument. To keep things simple (aligned with
11107 11122 * bitness-neutral sizing), we store each as a 64-bit
11108 11123 * quantity.
11109 11124 */
11110 11125 size = 2 * sizeof (uint64_t);
11111 11126 break;
11112 11127
11113 11128 case DTRACEACT_STOP:
11114 11129 case DTRACEACT_BREAKPOINT:
11115 11130 case DTRACEACT_PANIC:
11116 11131 break;
11117 11132
11118 11133 case DTRACEACT_CHILL:
11119 11134 case DTRACEACT_DISCARD:
11120 11135 case DTRACEACT_RAISE:
11121 11136 if (dp == NULL)
11122 11137 return (EINVAL);
11123 11138 break;
11124 11139
11125 11140 case DTRACEACT_EXIT:
11126 11141 if (dp == NULL ||
11127 11142 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11128 11143 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11129 11144 return (EINVAL);
11130 11145 break;
11131 11146
11132 11147 case DTRACEACT_SPECULATE:
11133 11148 if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11134 11149 return (EINVAL);
11135 11150
11136 11151 if (dp == NULL)
11137 11152 return (EINVAL);
11138 11153
11139 11154 state->dts_speculates = 1;
11140 11155 break;
11141 11156
11142 11157 case DTRACEACT_COMMIT: {
11143 11158 dtrace_action_t *act = ecb->dte_action;
11144 11159
11145 11160 for (; act != NULL; act = act->dta_next) {
11146 11161 if (act->dta_kind == DTRACEACT_COMMIT)
11147 11162 return (EINVAL);
11148 11163 }
11149 11164
11150 11165 if (dp == NULL)
11151 11166 return (EINVAL);
11152 11167 break;
11153 11168 }
11154 11169
11155 11170 default:
11156 11171 return (EINVAL);
11157 11172 }
11158 11173
11159 11174 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11160 11175 /*
11161 11176 * If this is a data-storing action or a speculate,
11162 11177 * we must be sure that there isn't a commit on the
11163 11178 * action chain.
11164 11179 */
11165 11180 dtrace_action_t *act = ecb->dte_action;
11166 11181
11167 11182 for (; act != NULL; act = act->dta_next) {
11168 11183 if (act->dta_kind == DTRACEACT_COMMIT)
11169 11184 return (EINVAL);
11170 11185 }
11171 11186 }
11172 11187
11173 11188 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11174 11189 action->dta_rec.dtrd_size = size;
11175 11190 }
11176 11191
11177 11192 action->dta_refcnt = 1;
11178 11193 rec = &action->dta_rec;
11179 11194 size = rec->dtrd_size;
11180 11195
11181 11196 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11182 11197 if (!(size & mask)) {
11183 11198 align = mask + 1;
11184 11199 break;
11185 11200 }
11186 11201 }
11187 11202
11188 11203 action->dta_kind = desc->dtad_kind;
11189 11204
11190 11205 if ((action->dta_difo = dp) != NULL)
11191 11206 dtrace_difo_hold(dp);
11192 11207
11193 11208 rec->dtrd_action = action->dta_kind;
11194 11209 rec->dtrd_arg = arg;
11195 11210 rec->dtrd_uarg = desc->dtad_uarg;
11196 11211 rec->dtrd_alignment = (uint16_t)align;
11197 11212 rec->dtrd_format = format;
11198 11213
11199 11214 if ((last = ecb->dte_action_last) != NULL) {
11200 11215 ASSERT(ecb->dte_action != NULL);
11201 11216 action->dta_prev = last;
11202 11217 last->dta_next = action;
11203 11218 } else {
11204 11219 ASSERT(ecb->dte_action == NULL);
11205 11220 ecb->dte_action = action;
11206 11221 }
11207 11222
11208 11223 ecb->dte_action_last = action;
11209 11224
11210 11225 return (0);
11211 11226 }
11212 11227
11213 11228 static void
11214 11229 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11215 11230 {
11216 11231 dtrace_action_t *act = ecb->dte_action, *next;
11217 11232 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11218 11233 dtrace_difo_t *dp;
11219 11234 uint16_t format;
11220 11235
11221 11236 if (act != NULL && act->dta_refcnt > 1) {
11222 11237 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11223 11238 act->dta_refcnt--;
11224 11239 } else {
11225 11240 for (; act != NULL; act = next) {
11226 11241 next = act->dta_next;
11227 11242 ASSERT(next != NULL || act == ecb->dte_action_last);
11228 11243 ASSERT(act->dta_refcnt == 1);
11229 11244
11230 11245 if ((format = act->dta_rec.dtrd_format) != 0)
11231 11246 dtrace_format_remove(ecb->dte_state, format);
11232 11247
11233 11248 if ((dp = act->dta_difo) != NULL)
11234 11249 dtrace_difo_release(dp, vstate);
11235 11250
11236 11251 if (DTRACEACT_ISAGG(act->dta_kind)) {
11237 11252 dtrace_ecb_aggregation_destroy(ecb, act);
11238 11253 } else {
11239 11254 kmem_free(act, sizeof (dtrace_action_t));
11240 11255 }
11241 11256 }
11242 11257 }
11243 11258
11244 11259 ecb->dte_action = NULL;
11245 11260 ecb->dte_action_last = NULL;
11246 11261 ecb->dte_size = 0;
11247 11262 }
11248 11263
11249 11264 static void
11250 11265 dtrace_ecb_disable(dtrace_ecb_t *ecb)
11251 11266 {
11252 11267 /*
11253 11268 * We disable the ECB by removing it from its probe.
11254 11269 */
11255 11270 dtrace_ecb_t *pecb, *prev = NULL;
11256 11271 dtrace_probe_t *probe = ecb->dte_probe;
11257 11272
11258 11273 ASSERT(MUTEX_HELD(&dtrace_lock));
11259 11274
11260 11275 if (probe == NULL) {
11261 11276 /*
11262 11277 * This is the NULL probe; there is nothing to disable.
11263 11278 */
11264 11279 return;
11265 11280 }
11266 11281
11267 11282 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11268 11283 if (pecb == ecb)
11269 11284 break;
11270 11285 prev = pecb;
11271 11286 }
11272 11287
11273 11288 ASSERT(pecb != NULL);
11274 11289
11275 11290 if (prev == NULL) {
11276 11291 probe->dtpr_ecb = ecb->dte_next;
11277 11292 } else {
11278 11293 prev->dte_next = ecb->dte_next;
11279 11294 }
11280 11295
11281 11296 if (ecb == probe->dtpr_ecb_last) {
11282 11297 ASSERT(ecb->dte_next == NULL);
11283 11298 probe->dtpr_ecb_last = prev;
11284 11299 }
11285 11300
11286 11301 /*
11287 11302 * The ECB has been disconnected from the probe; now sync to assure
11288 11303 * that all CPUs have seen the change before returning.
11289 11304 */
11290 11305 dtrace_sync();
11291 11306
11292 11307 if (probe->dtpr_ecb == NULL) {
11293 11308 /*
11294 11309 * That was the last ECB on the probe; clear the predicate
11295 11310 * cache ID for the probe, disable it and sync one more time
11296 11311 * to assure that we'll never hit it again.
11297 11312 */
11298 11313 dtrace_provider_t *prov = probe->dtpr_provider;
11299 11314
11300 11315 ASSERT(ecb->dte_next == NULL);
11301 11316 ASSERT(probe->dtpr_ecb_last == NULL);
11302 11317 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11303 11318 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11304 11319 probe->dtpr_id, probe->dtpr_arg);
11305 11320 dtrace_sync();
11306 11321 } else {
11307 11322 /*
11308 11323 * There is at least one ECB remaining on the probe. If there
11309 11324 * is _exactly_ one, set the probe's predicate cache ID to be
11310 11325 * the predicate cache ID of the remaining ECB.
11311 11326 */
11312 11327 ASSERT(probe->dtpr_ecb_last != NULL);
11313 11328 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11314 11329
11315 11330 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11316 11331 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11317 11332
11318 11333 ASSERT(probe->dtpr_ecb->dte_next == NULL);
11319 11334
11320 11335 if (p != NULL)
11321 11336 probe->dtpr_predcache = p->dtp_cacheid;
11322 11337 }
11323 11338
11324 11339 ecb->dte_next = NULL;
11325 11340 }
11326 11341 }
11327 11342
11328 11343 static void
11329 11344 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11330 11345 {
11331 11346 dtrace_state_t *state = ecb->dte_state;
11332 11347 dtrace_vstate_t *vstate = &state->dts_vstate;
11333 11348 dtrace_predicate_t *pred;
11334 11349 dtrace_epid_t epid = ecb->dte_epid;
11335 11350
11336 11351 ASSERT(MUTEX_HELD(&dtrace_lock));
11337 11352 ASSERT(ecb->dte_next == NULL);
11338 11353 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11339 11354
11340 11355 if ((pred = ecb->dte_predicate) != NULL)
11341 11356 dtrace_predicate_release(pred, vstate);
11342 11357
11343 11358 dtrace_ecb_action_remove(ecb);
11344 11359
11345 11360 ASSERT(state->dts_ecbs[epid - 1] == ecb);
11346 11361 state->dts_ecbs[epid - 1] = NULL;
11347 11362
11348 11363 kmem_free(ecb, sizeof (dtrace_ecb_t));
11349 11364 }
11350 11365
11351 11366 static dtrace_ecb_t *
11352 11367 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11353 11368 dtrace_enabling_t *enab)
11354 11369 {
11355 11370 dtrace_ecb_t *ecb;
11356 11371 dtrace_predicate_t *pred;
11357 11372 dtrace_actdesc_t *act;
11358 11373 dtrace_provider_t *prov;
11359 11374 dtrace_ecbdesc_t *desc = enab->dten_current;
11360 11375
11361 11376 ASSERT(MUTEX_HELD(&dtrace_lock));
11362 11377 ASSERT(state != NULL);
11363 11378
11364 11379 ecb = dtrace_ecb_add(state, probe);
11365 11380 ecb->dte_uarg = desc->dted_uarg;
11366 11381
11367 11382 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11368 11383 dtrace_predicate_hold(pred);
11369 11384 ecb->dte_predicate = pred;
11370 11385 }
11371 11386
11372 11387 if (probe != NULL) {
11373 11388 /*
11374 11389 * If the provider shows more leg than the consumer is old
11375 11390 * enough to see, we need to enable the appropriate implicit
11376 11391 * predicate bits to prevent the ecb from activating at
11377 11392 * revealing times.
11378 11393 *
11379 11394 * Providers specifying DTRACE_PRIV_USER at register time
11380 11395 * are stating that they need the /proc-style privilege
11381 11396 * model to be enforced, and this is what DTRACE_COND_OWNER
11382 11397 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11383 11398 */
11384 11399 prov = probe->dtpr_provider;
11385 11400 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11386 11401 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11387 11402 ecb->dte_cond |= DTRACE_COND_OWNER;
11388 11403
11389 11404 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11390 11405 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11391 11406 ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11392 11407
11393 11408 /*
11394 11409 * If the provider shows us kernel innards and the user
11395 11410 * is lacking sufficient privilege, enable the
11396 11411 * DTRACE_COND_USERMODE implicit predicate.
11397 11412 */
11398 11413 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11399 11414 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11400 11415 ecb->dte_cond |= DTRACE_COND_USERMODE;
11401 11416 }
11402 11417
11403 11418 if (dtrace_ecb_create_cache != NULL) {
11404 11419 /*
11405 11420 * If we have a cached ecb, we'll use its action list instead
11406 11421 * of creating our own (saving both time and space).
11407 11422 */
11408 11423 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11409 11424 dtrace_action_t *act = cached->dte_action;
11410 11425
11411 11426 if (act != NULL) {
11412 11427 ASSERT(act->dta_refcnt > 0);
11413 11428 act->dta_refcnt++;
11414 11429 ecb->dte_action = act;
11415 11430 ecb->dte_action_last = cached->dte_action_last;
11416 11431 ecb->dte_needed = cached->dte_needed;
11417 11432 ecb->dte_size = cached->dte_size;
11418 11433 ecb->dte_alignment = cached->dte_alignment;
11419 11434 }
11420 11435
11421 11436 return (ecb);
11422 11437 }
11423 11438
11424 11439 for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11425 11440 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11426 11441 dtrace_ecb_destroy(ecb);
11427 11442 return (NULL);
11428 11443 }
11429 11444 }
11430 11445
11431 11446 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) {
11432 11447 dtrace_ecb_destroy(ecb);
11433 11448 return (NULL);
11434 11449 }
11435 11450
11436 11451 return (dtrace_ecb_create_cache = ecb);
11437 11452 }
11438 11453
11439 11454 static int
11440 11455 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11441 11456 {
11442 11457 dtrace_ecb_t *ecb;
11443 11458 dtrace_enabling_t *enab = arg;
11444 11459 dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11445 11460
11446 11461 ASSERT(state != NULL);
11447 11462
11448 11463 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11449 11464 /*
11450 11465 * This probe was created in a generation for which this
11451 11466 * enabling has previously created ECBs; we don't want to
11452 11467 * enable it again, so just kick out.
11453 11468 */
11454 11469 return (DTRACE_MATCH_NEXT);
11455 11470 }
11456 11471
11457 11472 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11458 11473 return (DTRACE_MATCH_DONE);
11459 11474
11460 11475 if (dtrace_ecb_enable(ecb) < 0)
11461 11476 return (DTRACE_MATCH_FAIL);
11462 11477
11463 11478 return (DTRACE_MATCH_NEXT);
11464 11479 }
11465 11480
11466 11481 static dtrace_ecb_t *
11467 11482 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11468 11483 {
11469 11484 dtrace_ecb_t *ecb;
11470 11485
11471 11486 ASSERT(MUTEX_HELD(&dtrace_lock));
11472 11487
11473 11488 if (id == 0 || id > state->dts_necbs)
11474 11489 return (NULL);
11475 11490
11476 11491 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11477 11492 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11478 11493
11479 11494 return (state->dts_ecbs[id - 1]);
11480 11495 }
11481 11496
11482 11497 static dtrace_aggregation_t *
11483 11498 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11484 11499 {
11485 11500 dtrace_aggregation_t *agg;
11486 11501
11487 11502 ASSERT(MUTEX_HELD(&dtrace_lock));
11488 11503
11489 11504 if (id == 0 || id > state->dts_naggregations)
11490 11505 return (NULL);
11491 11506
11492 11507 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11493 11508 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11494 11509 agg->dtag_id == id);
11495 11510
11496 11511 return (state->dts_aggregations[id - 1]);
11497 11512 }
11498 11513
11499 11514 /*
11500 11515 * DTrace Buffer Functions
11501 11516 *
11502 11517 * The following functions manipulate DTrace buffers. Most of these functions
11503 11518 * are called in the context of establishing or processing consumer state;
11504 11519 * exceptions are explicitly noted.
11505 11520 */
11506 11521
11507 11522 /*
11508 11523 * Note: called from cross call context. This function switches the two
11509 11524 * buffers on a given CPU. The atomicity of this operation is assured by
11510 11525 * disabling interrupts while the actual switch takes place; the disabling of
11511 11526 * interrupts serializes the execution with any execution of dtrace_probe() on
11512 11527 * the same CPU.
11513 11528 */
11514 11529 static void
11515 11530 dtrace_buffer_switch(dtrace_buffer_t *buf)
11516 11531 {
11517 11532 caddr_t tomax = buf->dtb_tomax;
11518 11533 caddr_t xamot = buf->dtb_xamot;
11519 11534 dtrace_icookie_t cookie;
11520 11535 hrtime_t now;
11521 11536
11522 11537 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11523 11538 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
11524 11539
11525 11540 cookie = dtrace_interrupt_disable();
11526 11541 now = dtrace_gethrtime();
11527 11542 buf->dtb_tomax = xamot;
11528 11543 buf->dtb_xamot = tomax;
11529 11544 buf->dtb_xamot_drops = buf->dtb_drops;
11530 11545 buf->dtb_xamot_offset = buf->dtb_offset;
11531 11546 buf->dtb_xamot_errors = buf->dtb_errors;
11532 11547 buf->dtb_xamot_flags = buf->dtb_flags;
11533 11548 buf->dtb_offset = 0;
11534 11549 buf->dtb_drops = 0;
11535 11550 buf->dtb_errors = 0;
11536 11551 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
11537 11552 buf->dtb_interval = now - buf->dtb_switched;
11538 11553 buf->dtb_switched = now;
11539 11554 dtrace_interrupt_enable(cookie);
11540 11555 }
11541 11556
11542 11557 /*
11543 11558 * Note: called from cross call context. This function activates a buffer
11544 11559 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation
11545 11560 * is guaranteed by the disabling of interrupts.
11546 11561 */
11547 11562 static void
11548 11563 dtrace_buffer_activate(dtrace_state_t *state)
11549 11564 {
11550 11565 dtrace_buffer_t *buf;
11551 11566 dtrace_icookie_t cookie = dtrace_interrupt_disable();
11552 11567
11553 11568 buf = &state->dts_buffer[CPU->cpu_id];
11554 11569
11555 11570 if (buf->dtb_tomax != NULL) {
11556 11571 /*
11557 11572 * We might like to assert that the buffer is marked inactive,
11558 11573 * but this isn't necessarily true: the buffer for the CPU
11559 11574 * that processes the BEGIN probe has its buffer activated
11560 11575 * manually. In this case, we take the (harmless) action
11561 11576 * re-clearing the bit INACTIVE bit.
11562 11577 */
11563 11578 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
11564 11579 }
11565 11580
11566 11581 dtrace_interrupt_enable(cookie);
11567 11582 }
11568 11583
11569 11584 static int
11570 11585 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
11571 11586 processorid_t cpu, int *factor)
11572 11587 {
11573 11588 cpu_t *cp;
11574 11589 dtrace_buffer_t *buf;
11575 11590 int allocated = 0, desired = 0;
11576 11591
11577 11592 ASSERT(MUTEX_HELD(&cpu_lock));
11578 11593 ASSERT(MUTEX_HELD(&dtrace_lock));
11579 11594
11580 11595 *factor = 1;
11581 11596
11582 11597 if (size > dtrace_nonroot_maxsize &&
11583 11598 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
11584 11599 return (EFBIG);
11585 11600
11586 11601 cp = cpu_list;
11587 11602
11588 11603 do {
11589 11604 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11590 11605 continue;
11591 11606
11592 11607 buf = &bufs[cp->cpu_id];
11593 11608
11594 11609 /*
11595 11610 * If there is already a buffer allocated for this CPU, it
11596 11611 * is only possible that this is a DR event. In this case,
11597 11612 * the buffer size must match our specified size.
11598 11613 */
11599 11614 if (buf->dtb_tomax != NULL) {
11600 11615 ASSERT(buf->dtb_size == size);
11601 11616 continue;
11602 11617 }
11603 11618
11604 11619 ASSERT(buf->dtb_xamot == NULL);
11605 11620
11606 11621 if ((buf->dtb_tomax = kmem_zalloc(size,
11607 11622 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11608 11623 goto err;
11609 11624
11610 11625 buf->dtb_size = size;
11611 11626 buf->dtb_flags = flags;
11612 11627 buf->dtb_offset = 0;
11613 11628 buf->dtb_drops = 0;
11614 11629
11615 11630 if (flags & DTRACEBUF_NOSWITCH)
11616 11631 continue;
11617 11632
11618 11633 if ((buf->dtb_xamot = kmem_zalloc(size,
11619 11634 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11620 11635 goto err;
11621 11636 } while ((cp = cp->cpu_next) != cpu_list);
11622 11637
11623 11638 return (0);
11624 11639
11625 11640 err:
11626 11641 cp = cpu_list;
11627 11642
11628 11643 do {
11629 11644 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11630 11645 continue;
11631 11646
11632 11647 buf = &bufs[cp->cpu_id];
11633 11648 desired += 2;
11634 11649
11635 11650 if (buf->dtb_xamot != NULL) {
11636 11651 ASSERT(buf->dtb_tomax != NULL);
11637 11652 ASSERT(buf->dtb_size == size);
11638 11653 kmem_free(buf->dtb_xamot, size);
11639 11654 allocated++;
11640 11655 }
11641 11656
11642 11657 if (buf->dtb_tomax != NULL) {
11643 11658 ASSERT(buf->dtb_size == size);
11644 11659 kmem_free(buf->dtb_tomax, size);
11645 11660 allocated++;
11646 11661 }
11647 11662
11648 11663 buf->dtb_tomax = NULL;
11649 11664 buf->dtb_xamot = NULL;
11650 11665 buf->dtb_size = 0;
11651 11666 } while ((cp = cp->cpu_next) != cpu_list);
11652 11667
11653 11668 *factor = desired / (allocated > 0 ? allocated : 1);
11654 11669
11655 11670 return (ENOMEM);
11656 11671 }
11657 11672
11658 11673 /*
11659 11674 * Note: called from probe context. This function just increments the drop
11660 11675 * count on a buffer. It has been made a function to allow for the
11661 11676 * possibility of understanding the source of mysterious drop counts. (A
11662 11677 * problem for which one may be particularly disappointed that DTrace cannot
11663 11678 * be used to understand DTrace.)
11664 11679 */
11665 11680 static void
11666 11681 dtrace_buffer_drop(dtrace_buffer_t *buf)
11667 11682 {
11668 11683 buf->dtb_drops++;
11669 11684 }
11670 11685
11671 11686 /*
11672 11687 * Note: called from probe context. This function is called to reserve space
11673 11688 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the
11674 11689 * mstate. Returns the new offset in the buffer, or a negative value if an
11675 11690 * error has occurred.
11676 11691 */
11677 11692 static intptr_t
11678 11693 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11679 11694 dtrace_state_t *state, dtrace_mstate_t *mstate)
11680 11695 {
11681 11696 intptr_t offs = buf->dtb_offset, soffs;
11682 11697 intptr_t woffs;
11683 11698 caddr_t tomax;
11684 11699 size_t total;
11685 11700
11686 11701 if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11687 11702 return (-1);
11688 11703
11689 11704 if ((tomax = buf->dtb_tomax) == NULL) {
11690 11705 dtrace_buffer_drop(buf);
11691 11706 return (-1);
11692 11707 }
11693 11708
11694 11709 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11695 11710 while (offs & (align - 1)) {
11696 11711 /*
11697 11712 * Assert that our alignment is off by a number which
11698 11713 * is itself sizeof (uint32_t) aligned.
11699 11714 */
11700 11715 ASSERT(!((align - (offs & (align - 1))) &
11701 11716 (sizeof (uint32_t) - 1)));
11702 11717 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11703 11718 offs += sizeof (uint32_t);
11704 11719 }
11705 11720
11706 11721 if ((soffs = offs + needed) > buf->dtb_size) {
11707 11722 dtrace_buffer_drop(buf);
11708 11723 return (-1);
11709 11724 }
11710 11725
11711 11726 if (mstate == NULL)
11712 11727 return (offs);
11713 11728
11714 11729 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11715 11730 mstate->dtms_scratch_size = buf->dtb_size - soffs;
11716 11731 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11717 11732
11718 11733 return (offs);
11719 11734 }
11720 11735
11721 11736 if (buf->dtb_flags & DTRACEBUF_FILL) {
11722 11737 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11723 11738 (buf->dtb_flags & DTRACEBUF_FULL))
11724 11739 return (-1);
11725 11740 goto out;
11726 11741 }
11727 11742
11728 11743 total = needed + (offs & (align - 1));
11729 11744
11730 11745 /*
11731 11746 * For a ring buffer, life is quite a bit more complicated. Before
11732 11747 * we can store any padding, we need to adjust our wrapping offset.
11733 11748 * (If we've never before wrapped or we're not about to, no adjustment
11734 11749 * is required.)
11735 11750 */
11736 11751 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11737 11752 offs + total > buf->dtb_size) {
11738 11753 woffs = buf->dtb_xamot_offset;
11739 11754
11740 11755 if (offs + total > buf->dtb_size) {
11741 11756 /*
11742 11757 * We can't fit in the end of the buffer. First, a
11743 11758 * sanity check that we can fit in the buffer at all.
11744 11759 */
11745 11760 if (total > buf->dtb_size) {
11746 11761 dtrace_buffer_drop(buf);
11747 11762 return (-1);
11748 11763 }
11749 11764
11750 11765 /*
11751 11766 * We're going to be storing at the top of the buffer,
11752 11767 * so now we need to deal with the wrapped offset. We
11753 11768 * only reset our wrapped offset to 0 if it is
11754 11769 * currently greater than the current offset. If it
11755 11770 * is less than the current offset, it is because a
11756 11771 * previous allocation induced a wrap -- but the
11757 11772 * allocation didn't subsequently take the space due
11758 11773 * to an error or false predicate evaluation. In this
11759 11774 * case, we'll just leave the wrapped offset alone: if
11760 11775 * the wrapped offset hasn't been advanced far enough
11761 11776 * for this allocation, it will be adjusted in the
11762 11777 * lower loop.
11763 11778 */
11764 11779 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11765 11780 if (woffs >= offs)
11766 11781 woffs = 0;
11767 11782 } else {
11768 11783 woffs = 0;
11769 11784 }
11770 11785
11771 11786 /*
11772 11787 * Now we know that we're going to be storing to the
11773 11788 * top of the buffer and that there is room for us
11774 11789 * there. We need to clear the buffer from the current
11775 11790 * offset to the end (there may be old gunk there).
11776 11791 */
11777 11792 while (offs < buf->dtb_size)
11778 11793 tomax[offs++] = 0;
11779 11794
11780 11795 /*
11781 11796 * We need to set our offset to zero. And because we
11782 11797 * are wrapping, we need to set the bit indicating as
11783 11798 * much. We can also adjust our needed space back
11784 11799 * down to the space required by the ECB -- we know
11785 11800 * that the top of the buffer is aligned.
11786 11801 */
11787 11802 offs = 0;
11788 11803 total = needed;
11789 11804 buf->dtb_flags |= DTRACEBUF_WRAPPED;
11790 11805 } else {
11791 11806 /*
11792 11807 * There is room for us in the buffer, so we simply
11793 11808 * need to check the wrapped offset.
11794 11809 */
11795 11810 if (woffs < offs) {
11796 11811 /*
11797 11812 * The wrapped offset is less than the offset.
11798 11813 * This can happen if we allocated buffer space
11799 11814 * that induced a wrap, but then we didn't
11800 11815 * subsequently take the space due to an error
11801 11816 * or false predicate evaluation. This is
11802 11817 * okay; we know that _this_ allocation isn't
11803 11818 * going to induce a wrap. We still can't
11804 11819 * reset the wrapped offset to be zero,
11805 11820 * however: the space may have been trashed in
11806 11821 * the previous failed probe attempt. But at
11807 11822 * least the wrapped offset doesn't need to
11808 11823 * be adjusted at all...
11809 11824 */
11810 11825 goto out;
11811 11826 }
11812 11827 }
11813 11828
11814 11829 while (offs + total > woffs) {
11815 11830 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11816 11831 size_t size;
11817 11832
11818 11833 if (epid == DTRACE_EPIDNONE) {
11819 11834 size = sizeof (uint32_t);
11820 11835 } else {
11821 11836 ASSERT3U(epid, <=, state->dts_necbs);
11822 11837 ASSERT(state->dts_ecbs[epid - 1] != NULL);
11823 11838
11824 11839 size = state->dts_ecbs[epid - 1]->dte_size;
11825 11840 }
11826 11841
11827 11842 ASSERT(woffs + size <= buf->dtb_size);
11828 11843 ASSERT(size != 0);
11829 11844
11830 11845 if (woffs + size == buf->dtb_size) {
11831 11846 /*
11832 11847 * We've reached the end of the buffer; we want
11833 11848 * to set the wrapped offset to 0 and break
11834 11849 * out. However, if the offs is 0, then we're
11835 11850 * in a strange edge-condition: the amount of
11836 11851 * space that we want to reserve plus the size
11837 11852 * of the record that we're overwriting is
11838 11853 * greater than the size of the buffer. This
11839 11854 * is problematic because if we reserve the
11840 11855 * space but subsequently don't consume it (due
11841 11856 * to a failed predicate or error) the wrapped
11842 11857 * offset will be 0 -- yet the EPID at offset 0
11843 11858 * will not be committed. This situation is
11844 11859 * relatively easy to deal with: if we're in
11845 11860 * this case, the buffer is indistinguishable
11846 11861 * from one that hasn't wrapped; we need only
11847 11862 * finish the job by clearing the wrapped bit,
11848 11863 * explicitly setting the offset to be 0, and
11849 11864 * zero'ing out the old data in the buffer.
11850 11865 */
11851 11866 if (offs == 0) {
11852 11867 buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11853 11868 buf->dtb_offset = 0;
11854 11869 woffs = total;
11855 11870
11856 11871 while (woffs < buf->dtb_size)
11857 11872 tomax[woffs++] = 0;
11858 11873 }
11859 11874
11860 11875 woffs = 0;
11861 11876 break;
11862 11877 }
11863 11878
11864 11879 woffs += size;
11865 11880 }
11866 11881
11867 11882 /*
11868 11883 * We have a wrapped offset. It may be that the wrapped offset
11869 11884 * has become zero -- that's okay.
11870 11885 */
11871 11886 buf->dtb_xamot_offset = woffs;
11872 11887 }
11873 11888
11874 11889 out:
11875 11890 /*
11876 11891 * Now we can plow the buffer with any necessary padding.
11877 11892 */
11878 11893 while (offs & (align - 1)) {
11879 11894 /*
11880 11895 * Assert that our alignment is off by a number which
11881 11896 * is itself sizeof (uint32_t) aligned.
11882 11897 */
11883 11898 ASSERT(!((align - (offs & (align - 1))) &
11884 11899 (sizeof (uint32_t) - 1)));
11885 11900 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11886 11901 offs += sizeof (uint32_t);
11887 11902 }
11888 11903
11889 11904 if (buf->dtb_flags & DTRACEBUF_FILL) {
11890 11905 if (offs + needed > buf->dtb_size - state->dts_reserve) {
11891 11906 buf->dtb_flags |= DTRACEBUF_FULL;
11892 11907 return (-1);
11893 11908 }
11894 11909 }
11895 11910
11896 11911 if (mstate == NULL)
11897 11912 return (offs);
11898 11913
11899 11914 /*
11900 11915 * For ring buffers and fill buffers, the scratch space is always
11901 11916 * the inactive buffer.
11902 11917 */
11903 11918 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11904 11919 mstate->dtms_scratch_size = buf->dtb_size;
11905 11920 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11906 11921
11907 11922 return (offs);
11908 11923 }
11909 11924
11910 11925 static void
11911 11926 dtrace_buffer_polish(dtrace_buffer_t *buf)
11912 11927 {
11913 11928 ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11914 11929 ASSERT(MUTEX_HELD(&dtrace_lock));
11915 11930
11916 11931 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11917 11932 return;
11918 11933
11919 11934 /*
11920 11935 * We need to polish the ring buffer. There are three cases:
11921 11936 *
11922 11937 * - The first (and presumably most common) is that there is no gap
11923 11938 * between the buffer offset and the wrapped offset. In this case,
11924 11939 * there is nothing in the buffer that isn't valid data; we can
11925 11940 * mark the buffer as polished and return.
11926 11941 *
11927 11942 * - The second (less common than the first but still more common
11928 11943 * than the third) is that there is a gap between the buffer offset
11929 11944 * and the wrapped offset, and the wrapped offset is larger than the
11930 11945 * buffer offset. This can happen because of an alignment issue, or
11931 11946 * can happen because of a call to dtrace_buffer_reserve() that
11932 11947 * didn't subsequently consume the buffer space. In this case,
11933 11948 * we need to zero the data from the buffer offset to the wrapped
11934 11949 * offset.
11935 11950 *
11936 11951 * - The third (and least common) is that there is a gap between the
11937 11952 * buffer offset and the wrapped offset, but the wrapped offset is
11938 11953 * _less_ than the buffer offset. This can only happen because a
11939 11954 * call to dtrace_buffer_reserve() induced a wrap, but the space
11940 11955 * was not subsequently consumed. In this case, we need to zero the
11941 11956 * space from the offset to the end of the buffer _and_ from the
11942 11957 * top of the buffer to the wrapped offset.
11943 11958 */
11944 11959 if (buf->dtb_offset < buf->dtb_xamot_offset) {
11945 11960 bzero(buf->dtb_tomax + buf->dtb_offset,
11946 11961 buf->dtb_xamot_offset - buf->dtb_offset);
11947 11962 }
11948 11963
11949 11964 if (buf->dtb_offset > buf->dtb_xamot_offset) {
11950 11965 bzero(buf->dtb_tomax + buf->dtb_offset,
11951 11966 buf->dtb_size - buf->dtb_offset);
11952 11967 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11953 11968 }
11954 11969 }
11955 11970
11956 11971 /*
11957 11972 * This routine determines if data generated at the specified time has likely
11958 11973 * been entirely consumed at user-level. This routine is called to determine
11959 11974 * if an ECB on a defunct probe (but for an active enabling) can be safely
11960 11975 * disabled and destroyed.
11961 11976 */
11962 11977 static int
11963 11978 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11964 11979 {
11965 11980 int i;
11966 11981
11967 11982 for (i = 0; i < NCPU; i++) {
11968 11983 dtrace_buffer_t *buf = &bufs[i];
11969 11984
11970 11985 if (buf->dtb_size == 0)
11971 11986 continue;
11972 11987
11973 11988 if (buf->dtb_flags & DTRACEBUF_RING)
11974 11989 return (0);
11975 11990
11976 11991 if (!buf->dtb_switched && buf->dtb_offset != 0)
11977 11992 return (0);
11978 11993
11979 11994 if (buf->dtb_switched - buf->dtb_interval < when)
11980 11995 return (0);
11981 11996 }
11982 11997
11983 11998 return (1);
11984 11999 }
11985 12000
11986 12001 static void
11987 12002 dtrace_buffer_free(dtrace_buffer_t *bufs)
11988 12003 {
11989 12004 int i;
11990 12005
11991 12006 for (i = 0; i < NCPU; i++) {
11992 12007 dtrace_buffer_t *buf = &bufs[i];
11993 12008
11994 12009 if (buf->dtb_tomax == NULL) {
11995 12010 ASSERT(buf->dtb_xamot == NULL);
11996 12011 ASSERT(buf->dtb_size == 0);
11997 12012 continue;
11998 12013 }
11999 12014
12000 12015 if (buf->dtb_xamot != NULL) {
12001 12016 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12002 12017 kmem_free(buf->dtb_xamot, buf->dtb_size);
12003 12018 }
12004 12019
12005 12020 kmem_free(buf->dtb_tomax, buf->dtb_size);
12006 12021 buf->dtb_size = 0;
12007 12022 buf->dtb_tomax = NULL;
12008 12023 buf->dtb_xamot = NULL;
12009 12024 }
12010 12025 }
12011 12026
12012 12027 /*
12013 12028 * DTrace Enabling Functions
12014 12029 */
12015 12030 static dtrace_enabling_t *
12016 12031 dtrace_enabling_create(dtrace_vstate_t *vstate)
12017 12032 {
12018 12033 dtrace_enabling_t *enab;
12019 12034
12020 12035 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12021 12036 enab->dten_vstate = vstate;
12022 12037
12023 12038 return (enab);
12024 12039 }
12025 12040
12026 12041 static void
12027 12042 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12028 12043 {
12029 12044 dtrace_ecbdesc_t **ndesc;
12030 12045 size_t osize, nsize;
12031 12046
12032 12047 /*
12033 12048 * We can't add to enablings after we've enabled them, or after we've
12034 12049 * retained them.
12035 12050 */
12036 12051 ASSERT(enab->dten_probegen == 0);
12037 12052 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12038 12053
12039 12054 if (enab->dten_ndesc < enab->dten_maxdesc) {
12040 12055 enab->dten_desc[enab->dten_ndesc++] = ecb;
12041 12056 return;
12042 12057 }
12043 12058
12044 12059 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12045 12060
12046 12061 if (enab->dten_maxdesc == 0) {
12047 12062 enab->dten_maxdesc = 1;
12048 12063 } else {
12049 12064 enab->dten_maxdesc <<= 1;
12050 12065 }
12051 12066
12052 12067 ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12053 12068
12054 12069 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12055 12070 ndesc = kmem_zalloc(nsize, KM_SLEEP);
12056 12071 bcopy(enab->dten_desc, ndesc, osize);
12057 12072 kmem_free(enab->dten_desc, osize);
12058 12073
12059 12074 enab->dten_desc = ndesc;
12060 12075 enab->dten_desc[enab->dten_ndesc++] = ecb;
12061 12076 }
12062 12077
12063 12078 static void
12064 12079 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12065 12080 dtrace_probedesc_t *pd)
12066 12081 {
12067 12082 dtrace_ecbdesc_t *new;
12068 12083 dtrace_predicate_t *pred;
12069 12084 dtrace_actdesc_t *act;
12070 12085
12071 12086 /*
12072 12087 * We're going to create a new ECB description that matches the
12073 12088 * specified ECB in every way, but has the specified probe description.
12074 12089 */
12075 12090 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12076 12091
12077 12092 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12078 12093 dtrace_predicate_hold(pred);
12079 12094
12080 12095 for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12081 12096 dtrace_actdesc_hold(act);
12082 12097
12083 12098 new->dted_action = ecb->dted_action;
12084 12099 new->dted_pred = ecb->dted_pred;
12085 12100 new->dted_probe = *pd;
12086 12101 new->dted_uarg = ecb->dted_uarg;
12087 12102
12088 12103 dtrace_enabling_add(enab, new);
12089 12104 }
12090 12105
12091 12106 static void
12092 12107 dtrace_enabling_dump(dtrace_enabling_t *enab)
12093 12108 {
12094 12109 int i;
12095 12110
12096 12111 for (i = 0; i < enab->dten_ndesc; i++) {
12097 12112 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12098 12113
12099 12114 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12100 12115 desc->dtpd_provider, desc->dtpd_mod,
12101 12116 desc->dtpd_func, desc->dtpd_name);
12102 12117 }
12103 12118 }
12104 12119
12105 12120 static void
12106 12121 dtrace_enabling_destroy(dtrace_enabling_t *enab)
12107 12122 {
12108 12123 int i;
12109 12124 dtrace_ecbdesc_t *ep;
12110 12125 dtrace_vstate_t *vstate = enab->dten_vstate;
12111 12126
12112 12127 ASSERT(MUTEX_HELD(&dtrace_lock));
12113 12128
12114 12129 for (i = 0; i < enab->dten_ndesc; i++) {
12115 12130 dtrace_actdesc_t *act, *next;
12116 12131 dtrace_predicate_t *pred;
12117 12132
12118 12133 ep = enab->dten_desc[i];
12119 12134
12120 12135 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12121 12136 dtrace_predicate_release(pred, vstate);
12122 12137
12123 12138 for (act = ep->dted_action; act != NULL; act = next) {
12124 12139 next = act->dtad_next;
12125 12140 dtrace_actdesc_release(act, vstate);
12126 12141 }
12127 12142
12128 12143 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12129 12144 }
12130 12145
12131 12146 kmem_free(enab->dten_desc,
12132 12147 enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12133 12148
12134 12149 /*
12135 12150 * If this was a retained enabling, decrement the dts_nretained count
12136 12151 * and take it off of the dtrace_retained list.
12137 12152 */
12138 12153 if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12139 12154 dtrace_retained == enab) {
12140 12155 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12141 12156 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12142 12157 enab->dten_vstate->dtvs_state->dts_nretained--;
12143 12158 dtrace_retained_gen++;
12144 12159 }
12145 12160
12146 12161 if (enab->dten_prev == NULL) {
12147 12162 if (dtrace_retained == enab) {
12148 12163 dtrace_retained = enab->dten_next;
12149 12164
12150 12165 if (dtrace_retained != NULL)
12151 12166 dtrace_retained->dten_prev = NULL;
12152 12167 }
12153 12168 } else {
12154 12169 ASSERT(enab != dtrace_retained);
12155 12170 ASSERT(dtrace_retained != NULL);
12156 12171 enab->dten_prev->dten_next = enab->dten_next;
12157 12172 }
12158 12173
12159 12174 if (enab->dten_next != NULL) {
12160 12175 ASSERT(dtrace_retained != NULL);
12161 12176 enab->dten_next->dten_prev = enab->dten_prev;
12162 12177 }
12163 12178
12164 12179 kmem_free(enab, sizeof (dtrace_enabling_t));
12165 12180 }
12166 12181
12167 12182 static int
12168 12183 dtrace_enabling_retain(dtrace_enabling_t *enab)
12169 12184 {
12170 12185 dtrace_state_t *state;
12171 12186
12172 12187 ASSERT(MUTEX_HELD(&dtrace_lock));
12173 12188 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12174 12189 ASSERT(enab->dten_vstate != NULL);
12175 12190
12176 12191 state = enab->dten_vstate->dtvs_state;
12177 12192 ASSERT(state != NULL);
12178 12193
12179 12194 /*
12180 12195 * We only allow each state to retain dtrace_retain_max enablings.
12181 12196 */
12182 12197 if (state->dts_nretained >= dtrace_retain_max)
12183 12198 return (ENOSPC);
12184 12199
12185 12200 state->dts_nretained++;
12186 12201 dtrace_retained_gen++;
12187 12202
12188 12203 if (dtrace_retained == NULL) {
12189 12204 dtrace_retained = enab;
12190 12205 return (0);
12191 12206 }
12192 12207
12193 12208 enab->dten_next = dtrace_retained;
12194 12209 dtrace_retained->dten_prev = enab;
12195 12210 dtrace_retained = enab;
12196 12211
12197 12212 return (0);
12198 12213 }
12199 12214
12200 12215 static int
12201 12216 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12202 12217 dtrace_probedesc_t *create)
12203 12218 {
12204 12219 dtrace_enabling_t *new, *enab;
12205 12220 int found = 0, err = ENOENT;
12206 12221
12207 12222 ASSERT(MUTEX_HELD(&dtrace_lock));
12208 12223 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12209 12224 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12210 12225 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12211 12226 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12212 12227
12213 12228 new = dtrace_enabling_create(&state->dts_vstate);
12214 12229
12215 12230 /*
12216 12231 * Iterate over all retained enablings, looking for enablings that
12217 12232 * match the specified state.
12218 12233 */
12219 12234 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12220 12235 int i;
12221 12236
12222 12237 /*
12223 12238 * dtvs_state can only be NULL for helper enablings -- and
12224 12239 * helper enablings can't be retained.
12225 12240 */
12226 12241 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12227 12242
12228 12243 if (enab->dten_vstate->dtvs_state != state)
12229 12244 continue;
12230 12245
12231 12246 /*
12232 12247 * Now iterate over each probe description; we're looking for
12233 12248 * an exact match to the specified probe description.
12234 12249 */
12235 12250 for (i = 0; i < enab->dten_ndesc; i++) {
12236 12251 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12237 12252 dtrace_probedesc_t *pd = &ep->dted_probe;
12238 12253
12239 12254 if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12240 12255 continue;
12241 12256
12242 12257 if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12243 12258 continue;
12244 12259
12245 12260 if (strcmp(pd->dtpd_func, match->dtpd_func))
12246 12261 continue;
12247 12262
12248 12263 if (strcmp(pd->dtpd_name, match->dtpd_name))
12249 12264 continue;
12250 12265
12251 12266 /*
12252 12267 * We have a winning probe! Add it to our growing
12253 12268 * enabling.
12254 12269 */
12255 12270 found = 1;
12256 12271 dtrace_enabling_addlike(new, ep, create);
12257 12272 }
12258 12273 }
12259 12274
12260 12275 if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12261 12276 dtrace_enabling_destroy(new);
12262 12277 return (err);
12263 12278 }
12264 12279
12265 12280 return (0);
12266 12281 }
12267 12282
12268 12283 static void
12269 12284 dtrace_enabling_retract(dtrace_state_t *state)
12270 12285 {
12271 12286 dtrace_enabling_t *enab, *next;
12272 12287
12273 12288 ASSERT(MUTEX_HELD(&dtrace_lock));
12274 12289
12275 12290 /*
12276 12291 * Iterate over all retained enablings, destroy the enablings retained
12277 12292 * for the specified state.
12278 12293 */
12279 12294 for (enab = dtrace_retained; enab != NULL; enab = next) {
12280 12295 next = enab->dten_next;
12281 12296
12282 12297 /*
12283 12298 * dtvs_state can only be NULL for helper enablings -- and
12284 12299 * helper enablings can't be retained.
12285 12300 */
12286 12301 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12287 12302
12288 12303 if (enab->dten_vstate->dtvs_state == state) {
12289 12304 ASSERT(state->dts_nretained > 0);
12290 12305 dtrace_enabling_destroy(enab);
12291 12306 }
12292 12307 }
12293 12308
12294 12309 ASSERT(state->dts_nretained == 0);
12295 12310 }
12296 12311
12297 12312 static int
12298 12313 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12299 12314 {
12300 12315 int i = 0;
12301 12316 int total_matched = 0, matched = 0;
12302 12317
12303 12318 ASSERT(MUTEX_HELD(&cpu_lock));
12304 12319 ASSERT(MUTEX_HELD(&dtrace_lock));
12305 12320
12306 12321 for (i = 0; i < enab->dten_ndesc; i++) {
12307 12322 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12308 12323
12309 12324 enab->dten_current = ep;
12310 12325 enab->dten_error = 0;
12311 12326
12312 12327 /*
12313 12328 * If a provider failed to enable a probe then get out and
12314 12329 * let the consumer know we failed.
12315 12330 */
12316 12331 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
12317 12332 return (EBUSY);
12318 12333
12319 12334 total_matched += matched;
12320 12335
12321 12336 if (enab->dten_error != 0) {
12322 12337 /*
12323 12338 * If we get an error half-way through enabling the
12324 12339 * probes, we kick out -- perhaps with some number of
12325 12340 * them enabled. Leaving enabled probes enabled may
12326 12341 * be slightly confusing for user-level, but we expect
12327 12342 * that no one will attempt to actually drive on in
12328 12343 * the face of such errors. If this is an anonymous
12329 12344 * enabling (indicated with a NULL nmatched pointer),
12330 12345 * we cmn_err() a message. We aren't expecting to
12331 12346 * get such an error -- such as it can exist at all,
12332 12347 * it would be a result of corrupted DOF in the driver
12333 12348 * properties.
12334 12349 */
12335 12350 if (nmatched == NULL) {
12336 12351 cmn_err(CE_WARN, "dtrace_enabling_match() "
12337 12352 "error on %p: %d", (void *)ep,
12338 12353 enab->dten_error);
12339 12354 }
12340 12355
12341 12356 return (enab->dten_error);
12342 12357 }
12343 12358 }
12344 12359
12345 12360 enab->dten_probegen = dtrace_probegen;
12346 12361 if (nmatched != NULL)
12347 12362 *nmatched = total_matched;
12348 12363
12349 12364 return (0);
12350 12365 }
12351 12366
12352 12367 static void
12353 12368 dtrace_enabling_matchall(void)
12354 12369 {
12355 12370 dtrace_enabling_t *enab;
12356 12371
12357 12372 mutex_enter(&cpu_lock);
12358 12373 mutex_enter(&dtrace_lock);
12359 12374
12360 12375 /*
12361 12376 * Iterate over all retained enablings to see if any probes match
12362 12377 * against them. We only perform this operation on enablings for which
↓ open down ↓ |
3440 lines elided |
↑ open up ↑ |
12363 12378 * we have sufficient permissions by virtue of being in the global zone
12364 12379 * or in the same zone as the DTrace client. Because we can be called
12365 12380 * after dtrace_detach() has been called, we cannot assert that there
12366 12381 * are retained enablings. We can safely load from dtrace_retained,
12367 12382 * however: the taskq_destroy() at the end of dtrace_detach() will
12368 12383 * block pending our completion.
12369 12384 */
12370 12385 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12371 12386 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred;
12372 12387 cred_t *cr = dcr->dcr_cred;
12373 - zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0;
12388 + zoneid_t zone = cr != NULL ? crgetzonedid(cr) : 0;
12374 12389
12375 12390 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL &&
12376 - (zone == GLOBAL_ZONEID || getzoneid() == zone)))
12391 + (zone == GLOBAL_ZONEID || getzonedid() == zone)))
12377 12392 (void) dtrace_enabling_match(enab, NULL);
12378 12393 }
12379 12394
12380 12395 mutex_exit(&dtrace_lock);
12381 12396 mutex_exit(&cpu_lock);
12382 12397 }
12383 12398
12384 12399 /*
12385 12400 * If an enabling is to be enabled without having matched probes (that is, if
12386 12401 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12387 12402 * enabling must be _primed_ by creating an ECB for every ECB description.
12388 12403 * This must be done to assure that we know the number of speculations, the
12389 12404 * number of aggregations, the minimum buffer size needed, etc. before we
12390 12405 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually
12391 12406 * enabling any probes, we create ECBs for every ECB decription, but with a
12392 12407 * NULL probe -- which is exactly what this function does.
12393 12408 */
12394 12409 static void
12395 12410 dtrace_enabling_prime(dtrace_state_t *state)
12396 12411 {
12397 12412 dtrace_enabling_t *enab;
12398 12413 int i;
12399 12414
12400 12415 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12401 12416 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12402 12417
12403 12418 if (enab->dten_vstate->dtvs_state != state)
12404 12419 continue;
12405 12420
12406 12421 /*
12407 12422 * We don't want to prime an enabling more than once, lest
12408 12423 * we allow a malicious user to induce resource exhaustion.
12409 12424 * (The ECBs that result from priming an enabling aren't
12410 12425 * leaked -- but they also aren't deallocated until the
12411 12426 * consumer state is destroyed.)
12412 12427 */
12413 12428 if (enab->dten_primed)
12414 12429 continue;
12415 12430
12416 12431 for (i = 0; i < enab->dten_ndesc; i++) {
12417 12432 enab->dten_current = enab->dten_desc[i];
12418 12433 (void) dtrace_probe_enable(NULL, enab);
12419 12434 }
12420 12435
12421 12436 enab->dten_primed = 1;
12422 12437 }
12423 12438 }
12424 12439
12425 12440 /*
12426 12441 * Called to indicate that probes should be provided due to retained
12427 12442 * enablings. This is implemented in terms of dtrace_probe_provide(), but it
12428 12443 * must take an initial lap through the enabling calling the dtps_provide()
12429 12444 * entry point explicitly to allow for autocreated probes.
12430 12445 */
12431 12446 static void
12432 12447 dtrace_enabling_provide(dtrace_provider_t *prv)
12433 12448 {
12434 12449 int i, all = 0;
12435 12450 dtrace_probedesc_t desc;
12436 12451 dtrace_genid_t gen;
12437 12452
12438 12453 ASSERT(MUTEX_HELD(&dtrace_lock));
12439 12454 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
12440 12455
12441 12456 if (prv == NULL) {
12442 12457 all = 1;
12443 12458 prv = dtrace_provider;
12444 12459 }
12445 12460
12446 12461 do {
12447 12462 dtrace_enabling_t *enab;
12448 12463 void *parg = prv->dtpv_arg;
12449 12464
12450 12465 retry:
12451 12466 gen = dtrace_retained_gen;
12452 12467 for (enab = dtrace_retained; enab != NULL;
12453 12468 enab = enab->dten_next) {
12454 12469 for (i = 0; i < enab->dten_ndesc; i++) {
12455 12470 desc = enab->dten_desc[i]->dted_probe;
12456 12471 mutex_exit(&dtrace_lock);
12457 12472 prv->dtpv_pops.dtps_provide(parg, &desc);
12458 12473 mutex_enter(&dtrace_lock);
12459 12474 /*
12460 12475 * Process the retained enablings again if
12461 12476 * they have changed while we weren't holding
12462 12477 * dtrace_lock.
12463 12478 */
12464 12479 if (gen != dtrace_retained_gen)
12465 12480 goto retry;
12466 12481 }
12467 12482 }
12468 12483 } while (all && (prv = prv->dtpv_next) != NULL);
12469 12484
12470 12485 mutex_exit(&dtrace_lock);
12471 12486 dtrace_probe_provide(NULL, all ? NULL : prv);
12472 12487 mutex_enter(&dtrace_lock);
12473 12488 }
12474 12489
12475 12490 /*
12476 12491 * Called to reap ECBs that are attached to probes from defunct providers.
12477 12492 */
12478 12493 static void
12479 12494 dtrace_enabling_reap(void)
12480 12495 {
12481 12496 dtrace_provider_t *prov;
12482 12497 dtrace_probe_t *probe;
12483 12498 dtrace_ecb_t *ecb;
12484 12499 hrtime_t when;
12485 12500 int i;
12486 12501
12487 12502 mutex_enter(&cpu_lock);
12488 12503 mutex_enter(&dtrace_lock);
12489 12504
12490 12505 for (i = 0; i < dtrace_nprobes; i++) {
12491 12506 if ((probe = dtrace_probes[i]) == NULL)
12492 12507 continue;
12493 12508
12494 12509 if (probe->dtpr_ecb == NULL)
12495 12510 continue;
12496 12511
12497 12512 prov = probe->dtpr_provider;
12498 12513
12499 12514 if ((when = prov->dtpv_defunct) == 0)
12500 12515 continue;
12501 12516
12502 12517 /*
12503 12518 * We have ECBs on a defunct provider: we want to reap these
12504 12519 * ECBs to allow the provider to unregister. The destruction
12505 12520 * of these ECBs must be done carefully: if we destroy the ECB
12506 12521 * and the consumer later wishes to consume an EPID that
12507 12522 * corresponds to the destroyed ECB (and if the EPID metadata
12508 12523 * has not been previously consumed), the consumer will abort
12509 12524 * processing on the unknown EPID. To reduce (but not, sadly,
12510 12525 * eliminate) the possibility of this, we will only destroy an
12511 12526 * ECB for a defunct provider if, for the state that
12512 12527 * corresponds to the ECB:
12513 12528 *
12514 12529 * (a) There is no speculative tracing (which can effectively
12515 12530 * cache an EPID for an arbitrary amount of time).
12516 12531 *
12517 12532 * (b) The principal buffers have been switched twice since the
12518 12533 * provider became defunct.
12519 12534 *
12520 12535 * (c) The aggregation buffers are of zero size or have been
12521 12536 * switched twice since the provider became defunct.
12522 12537 *
12523 12538 * We use dts_speculates to determine (a) and call a function
12524 12539 * (dtrace_buffer_consumed()) to determine (b) and (c). Note
12525 12540 * that as soon as we've been unable to destroy one of the ECBs
12526 12541 * associated with the probe, we quit trying -- reaping is only
12527 12542 * fruitful in as much as we can destroy all ECBs associated
12528 12543 * with the defunct provider's probes.
12529 12544 */
12530 12545 while ((ecb = probe->dtpr_ecb) != NULL) {
12531 12546 dtrace_state_t *state = ecb->dte_state;
12532 12547 dtrace_buffer_t *buf = state->dts_buffer;
12533 12548 dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
12534 12549
12535 12550 if (state->dts_speculates)
12536 12551 break;
12537 12552
12538 12553 if (!dtrace_buffer_consumed(buf, when))
12539 12554 break;
12540 12555
12541 12556 if (!dtrace_buffer_consumed(aggbuf, when))
12542 12557 break;
12543 12558
12544 12559 dtrace_ecb_disable(ecb);
12545 12560 ASSERT(probe->dtpr_ecb != ecb);
12546 12561 dtrace_ecb_destroy(ecb);
12547 12562 }
12548 12563 }
12549 12564
12550 12565 mutex_exit(&dtrace_lock);
12551 12566 mutex_exit(&cpu_lock);
12552 12567 }
12553 12568
12554 12569 /*
12555 12570 * DTrace DOF Functions
12556 12571 */
12557 12572 /*ARGSUSED*/
12558 12573 static void
12559 12574 dtrace_dof_error(dof_hdr_t *dof, const char *str)
12560 12575 {
12561 12576 if (dtrace_err_verbose)
12562 12577 cmn_err(CE_WARN, "failed to process DOF: %s", str);
12563 12578
12564 12579 #ifdef DTRACE_ERRDEBUG
12565 12580 dtrace_errdebug(str);
12566 12581 #endif
12567 12582 }
12568 12583
12569 12584 /*
12570 12585 * Create DOF out of a currently enabled state. Right now, we only create
12571 12586 * DOF containing the run-time options -- but this could be expanded to create
12572 12587 * complete DOF representing the enabled state.
12573 12588 */
12574 12589 static dof_hdr_t *
12575 12590 dtrace_dof_create(dtrace_state_t *state)
12576 12591 {
12577 12592 dof_hdr_t *dof;
12578 12593 dof_sec_t *sec;
12579 12594 dof_optdesc_t *opt;
12580 12595 int i, len = sizeof (dof_hdr_t) +
12581 12596 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
12582 12597 sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12583 12598
12584 12599 ASSERT(MUTEX_HELD(&dtrace_lock));
12585 12600
12586 12601 dof = kmem_zalloc(len, KM_SLEEP);
12587 12602 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
12588 12603 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
12589 12604 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
12590 12605 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
12591 12606
12592 12607 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
12593 12608 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
12594 12609 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
12595 12610 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
12596 12611 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
12597 12612 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
12598 12613
12599 12614 dof->dofh_flags = 0;
12600 12615 dof->dofh_hdrsize = sizeof (dof_hdr_t);
12601 12616 dof->dofh_secsize = sizeof (dof_sec_t);
12602 12617 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */
12603 12618 dof->dofh_secoff = sizeof (dof_hdr_t);
12604 12619 dof->dofh_loadsz = len;
12605 12620 dof->dofh_filesz = len;
12606 12621 dof->dofh_pad = 0;
12607 12622
12608 12623 /*
12609 12624 * Fill in the option section header...
12610 12625 */
12611 12626 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
12612 12627 sec->dofs_type = DOF_SECT_OPTDESC;
12613 12628 sec->dofs_align = sizeof (uint64_t);
12614 12629 sec->dofs_flags = DOF_SECF_LOAD;
12615 12630 sec->dofs_entsize = sizeof (dof_optdesc_t);
12616 12631
12617 12632 opt = (dof_optdesc_t *)((uintptr_t)sec +
12618 12633 roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
12619 12634
12620 12635 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
12621 12636 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12622 12637
12623 12638 for (i = 0; i < DTRACEOPT_MAX; i++) {
12624 12639 opt[i].dofo_option = i;
12625 12640 opt[i].dofo_strtab = DOF_SECIDX_NONE;
12626 12641 opt[i].dofo_value = state->dts_options[i];
12627 12642 }
12628 12643
12629 12644 return (dof);
12630 12645 }
12631 12646
12632 12647 static dof_hdr_t *
12633 12648 dtrace_dof_copyin(uintptr_t uarg, int *errp)
12634 12649 {
12635 12650 dof_hdr_t hdr, *dof;
12636 12651
12637 12652 ASSERT(!MUTEX_HELD(&dtrace_lock));
12638 12653
12639 12654 /*
12640 12655 * First, we're going to copyin() the sizeof (dof_hdr_t).
12641 12656 */
12642 12657 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
12643 12658 dtrace_dof_error(NULL, "failed to copyin DOF header");
12644 12659 *errp = EFAULT;
12645 12660 return (NULL);
12646 12661 }
12647 12662
12648 12663 /*
12649 12664 * Now we'll allocate the entire DOF and copy it in -- provided
12650 12665 * that the length isn't outrageous.
12651 12666 */
12652 12667 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
12653 12668 dtrace_dof_error(&hdr, "load size exceeds maximum");
12654 12669 *errp = E2BIG;
12655 12670 return (NULL);
12656 12671 }
12657 12672
12658 12673 if (hdr.dofh_loadsz < sizeof (hdr)) {
12659 12674 dtrace_dof_error(&hdr, "invalid load size");
12660 12675 *errp = EINVAL;
12661 12676 return (NULL);
12662 12677 }
12663 12678
12664 12679 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
12665 12680
12666 12681 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
12667 12682 dof->dofh_loadsz != hdr.dofh_loadsz) {
12668 12683 kmem_free(dof, hdr.dofh_loadsz);
12669 12684 *errp = EFAULT;
12670 12685 return (NULL);
12671 12686 }
12672 12687
12673 12688 return (dof);
12674 12689 }
12675 12690
12676 12691 static dof_hdr_t *
12677 12692 dtrace_dof_property(const char *name)
12678 12693 {
12679 12694 uchar_t *buf;
12680 12695 uint64_t loadsz;
12681 12696 unsigned int len, i;
12682 12697 dof_hdr_t *dof;
12683 12698
12684 12699 /*
12685 12700 * Unfortunately, array of values in .conf files are always (and
12686 12701 * only) interpreted to be integer arrays. We must read our DOF
12687 12702 * as an integer array, and then squeeze it into a byte array.
12688 12703 */
12689 12704 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
12690 12705 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
12691 12706 return (NULL);
12692 12707
12693 12708 for (i = 0; i < len; i++)
12694 12709 buf[i] = (uchar_t)(((int *)buf)[i]);
12695 12710
12696 12711 if (len < sizeof (dof_hdr_t)) {
12697 12712 ddi_prop_free(buf);
12698 12713 dtrace_dof_error(NULL, "truncated header");
12699 12714 return (NULL);
12700 12715 }
12701 12716
12702 12717 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12703 12718 ddi_prop_free(buf);
12704 12719 dtrace_dof_error(NULL, "truncated DOF");
12705 12720 return (NULL);
12706 12721 }
12707 12722
12708 12723 if (loadsz >= dtrace_dof_maxsize) {
12709 12724 ddi_prop_free(buf);
12710 12725 dtrace_dof_error(NULL, "oversized DOF");
12711 12726 return (NULL);
12712 12727 }
12713 12728
12714 12729 dof = kmem_alloc(loadsz, KM_SLEEP);
12715 12730 bcopy(buf, dof, loadsz);
12716 12731 ddi_prop_free(buf);
12717 12732
12718 12733 return (dof);
12719 12734 }
12720 12735
12721 12736 static void
12722 12737 dtrace_dof_destroy(dof_hdr_t *dof)
12723 12738 {
12724 12739 kmem_free(dof, dof->dofh_loadsz);
12725 12740 }
12726 12741
12727 12742 /*
12728 12743 * Return the dof_sec_t pointer corresponding to a given section index. If the
12729 12744 * index is not valid, dtrace_dof_error() is called and NULL is returned. If
12730 12745 * a type other than DOF_SECT_NONE is specified, the header is checked against
12731 12746 * this type and NULL is returned if the types do not match.
12732 12747 */
12733 12748 static dof_sec_t *
12734 12749 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12735 12750 {
12736 12751 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12737 12752 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12738 12753
12739 12754 if (i >= dof->dofh_secnum) {
12740 12755 dtrace_dof_error(dof, "referenced section index is invalid");
12741 12756 return (NULL);
12742 12757 }
12743 12758
12744 12759 if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12745 12760 dtrace_dof_error(dof, "referenced section is not loadable");
12746 12761 return (NULL);
12747 12762 }
12748 12763
12749 12764 if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12750 12765 dtrace_dof_error(dof, "referenced section is the wrong type");
12751 12766 return (NULL);
12752 12767 }
12753 12768
12754 12769 return (sec);
12755 12770 }
12756 12771
12757 12772 static dtrace_probedesc_t *
12758 12773 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12759 12774 {
12760 12775 dof_probedesc_t *probe;
12761 12776 dof_sec_t *strtab;
12762 12777 uintptr_t daddr = (uintptr_t)dof;
12763 12778 uintptr_t str;
12764 12779 size_t size;
12765 12780
12766 12781 if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12767 12782 dtrace_dof_error(dof, "invalid probe section");
12768 12783 return (NULL);
12769 12784 }
12770 12785
12771 12786 if (sec->dofs_align != sizeof (dof_secidx_t)) {
12772 12787 dtrace_dof_error(dof, "bad alignment in probe description");
12773 12788 return (NULL);
12774 12789 }
12775 12790
12776 12791 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12777 12792 dtrace_dof_error(dof, "truncated probe description");
12778 12793 return (NULL);
12779 12794 }
12780 12795
12781 12796 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12782 12797 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12783 12798
12784 12799 if (strtab == NULL)
12785 12800 return (NULL);
12786 12801
12787 12802 str = daddr + strtab->dofs_offset;
12788 12803 size = strtab->dofs_size;
12789 12804
12790 12805 if (probe->dofp_provider >= strtab->dofs_size) {
12791 12806 dtrace_dof_error(dof, "corrupt probe provider");
12792 12807 return (NULL);
12793 12808 }
12794 12809
12795 12810 (void) strncpy(desc->dtpd_provider,
12796 12811 (char *)(str + probe->dofp_provider),
12797 12812 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12798 12813
12799 12814 if (probe->dofp_mod >= strtab->dofs_size) {
12800 12815 dtrace_dof_error(dof, "corrupt probe module");
12801 12816 return (NULL);
12802 12817 }
12803 12818
12804 12819 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12805 12820 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12806 12821
12807 12822 if (probe->dofp_func >= strtab->dofs_size) {
12808 12823 dtrace_dof_error(dof, "corrupt probe function");
12809 12824 return (NULL);
12810 12825 }
12811 12826
12812 12827 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12813 12828 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12814 12829
12815 12830 if (probe->dofp_name >= strtab->dofs_size) {
12816 12831 dtrace_dof_error(dof, "corrupt probe name");
12817 12832 return (NULL);
12818 12833 }
12819 12834
12820 12835 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12821 12836 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12822 12837
12823 12838 return (desc);
12824 12839 }
12825 12840
12826 12841 static dtrace_difo_t *
12827 12842 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12828 12843 cred_t *cr)
12829 12844 {
12830 12845 dtrace_difo_t *dp;
12831 12846 size_t ttl = 0;
12832 12847 dof_difohdr_t *dofd;
12833 12848 uintptr_t daddr = (uintptr_t)dof;
12834 12849 size_t max = dtrace_difo_maxsize;
12835 12850 int i, l, n;
12836 12851
12837 12852 static const struct {
12838 12853 int section;
12839 12854 int bufoffs;
12840 12855 int lenoffs;
12841 12856 int entsize;
12842 12857 int align;
12843 12858 const char *msg;
12844 12859 } difo[] = {
12845 12860 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12846 12861 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12847 12862 sizeof (dif_instr_t), "multiple DIF sections" },
12848 12863
12849 12864 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12850 12865 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12851 12866 sizeof (uint64_t), "multiple integer tables" },
12852 12867
12853 12868 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12854 12869 offsetof(dtrace_difo_t, dtdo_strlen), 0,
12855 12870 sizeof (char), "multiple string tables" },
12856 12871
12857 12872 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12858 12873 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12859 12874 sizeof (uint_t), "multiple variable tables" },
12860 12875
12861 12876 { DOF_SECT_NONE, 0, 0, 0, 0, NULL }
12862 12877 };
12863 12878
12864 12879 if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12865 12880 dtrace_dof_error(dof, "invalid DIFO header section");
12866 12881 return (NULL);
12867 12882 }
12868 12883
12869 12884 if (sec->dofs_align != sizeof (dof_secidx_t)) {
12870 12885 dtrace_dof_error(dof, "bad alignment in DIFO header");
12871 12886 return (NULL);
12872 12887 }
12873 12888
12874 12889 if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12875 12890 sec->dofs_size % sizeof (dof_secidx_t)) {
12876 12891 dtrace_dof_error(dof, "bad size in DIFO header");
12877 12892 return (NULL);
12878 12893 }
12879 12894
12880 12895 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12881 12896 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12882 12897
12883 12898 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12884 12899 dp->dtdo_rtype = dofd->dofd_rtype;
12885 12900
12886 12901 for (l = 0; l < n; l++) {
12887 12902 dof_sec_t *subsec;
12888 12903 void **bufp;
12889 12904 uint32_t *lenp;
12890 12905
12891 12906 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12892 12907 dofd->dofd_links[l])) == NULL)
12893 12908 goto err; /* invalid section link */
12894 12909
12895 12910 if (ttl + subsec->dofs_size > max) {
12896 12911 dtrace_dof_error(dof, "exceeds maximum size");
12897 12912 goto err;
12898 12913 }
12899 12914
12900 12915 ttl += subsec->dofs_size;
12901 12916
12902 12917 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12903 12918 if (subsec->dofs_type != difo[i].section)
12904 12919 continue;
12905 12920
12906 12921 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12907 12922 dtrace_dof_error(dof, "section not loaded");
12908 12923 goto err;
12909 12924 }
12910 12925
12911 12926 if (subsec->dofs_align != difo[i].align) {
12912 12927 dtrace_dof_error(dof, "bad alignment");
12913 12928 goto err;
12914 12929 }
12915 12930
12916 12931 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12917 12932 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12918 12933
12919 12934 if (*bufp != NULL) {
12920 12935 dtrace_dof_error(dof, difo[i].msg);
12921 12936 goto err;
12922 12937 }
12923 12938
12924 12939 if (difo[i].entsize != subsec->dofs_entsize) {
12925 12940 dtrace_dof_error(dof, "entry size mismatch");
12926 12941 goto err;
12927 12942 }
12928 12943
12929 12944 if (subsec->dofs_entsize != 0 &&
12930 12945 (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12931 12946 dtrace_dof_error(dof, "corrupt entry size");
12932 12947 goto err;
12933 12948 }
12934 12949
12935 12950 *lenp = subsec->dofs_size;
12936 12951 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12937 12952 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12938 12953 *bufp, subsec->dofs_size);
12939 12954
12940 12955 if (subsec->dofs_entsize != 0)
12941 12956 *lenp /= subsec->dofs_entsize;
12942 12957
12943 12958 break;
12944 12959 }
12945 12960
12946 12961 /*
12947 12962 * If we encounter a loadable DIFO sub-section that is not
12948 12963 * known to us, assume this is a broken program and fail.
12949 12964 */
12950 12965 if (difo[i].section == DOF_SECT_NONE &&
12951 12966 (subsec->dofs_flags & DOF_SECF_LOAD)) {
12952 12967 dtrace_dof_error(dof, "unrecognized DIFO subsection");
12953 12968 goto err;
12954 12969 }
12955 12970 }
12956 12971
12957 12972 if (dp->dtdo_buf == NULL) {
12958 12973 /*
12959 12974 * We can't have a DIF object without DIF text.
12960 12975 */
12961 12976 dtrace_dof_error(dof, "missing DIF text");
12962 12977 goto err;
12963 12978 }
12964 12979
12965 12980 /*
12966 12981 * Before we validate the DIF object, run through the variable table
12967 12982 * looking for the strings -- if any of their size are under, we'll set
12968 12983 * their size to be the system-wide default string size. Note that
12969 12984 * this should _not_ happen if the "strsize" option has been set --
12970 12985 * in this case, the compiler should have set the size to reflect the
12971 12986 * setting of the option.
12972 12987 */
12973 12988 for (i = 0; i < dp->dtdo_varlen; i++) {
12974 12989 dtrace_difv_t *v = &dp->dtdo_vartab[i];
12975 12990 dtrace_diftype_t *t = &v->dtdv_type;
12976 12991
12977 12992 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12978 12993 continue;
12979 12994
12980 12995 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12981 12996 t->dtdt_size = dtrace_strsize_default;
12982 12997 }
12983 12998
12984 12999 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12985 13000 goto err;
12986 13001
12987 13002 dtrace_difo_init(dp, vstate);
12988 13003 return (dp);
12989 13004
12990 13005 err:
12991 13006 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12992 13007 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12993 13008 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12994 13009 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12995 13010
12996 13011 kmem_free(dp, sizeof (dtrace_difo_t));
12997 13012 return (NULL);
12998 13013 }
12999 13014
13000 13015 static dtrace_predicate_t *
13001 13016 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13002 13017 cred_t *cr)
13003 13018 {
13004 13019 dtrace_difo_t *dp;
13005 13020
13006 13021 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13007 13022 return (NULL);
13008 13023
13009 13024 return (dtrace_predicate_create(dp));
13010 13025 }
13011 13026
13012 13027 static dtrace_actdesc_t *
13013 13028 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13014 13029 cred_t *cr)
13015 13030 {
13016 13031 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13017 13032 dof_actdesc_t *desc;
13018 13033 dof_sec_t *difosec;
13019 13034 size_t offs;
13020 13035 uintptr_t daddr = (uintptr_t)dof;
13021 13036 uint64_t arg;
13022 13037 dtrace_actkind_t kind;
13023 13038
13024 13039 if (sec->dofs_type != DOF_SECT_ACTDESC) {
13025 13040 dtrace_dof_error(dof, "invalid action section");
13026 13041 return (NULL);
13027 13042 }
13028 13043
13029 13044 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13030 13045 dtrace_dof_error(dof, "truncated action description");
13031 13046 return (NULL);
13032 13047 }
13033 13048
13034 13049 if (sec->dofs_align != sizeof (uint64_t)) {
13035 13050 dtrace_dof_error(dof, "bad alignment in action description");
13036 13051 return (NULL);
13037 13052 }
13038 13053
13039 13054 if (sec->dofs_size < sec->dofs_entsize) {
13040 13055 dtrace_dof_error(dof, "section entry size exceeds total size");
13041 13056 return (NULL);
13042 13057 }
13043 13058
13044 13059 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13045 13060 dtrace_dof_error(dof, "bad entry size in action description");
13046 13061 return (NULL);
13047 13062 }
13048 13063
13049 13064 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13050 13065 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13051 13066 return (NULL);
13052 13067 }
13053 13068
13054 13069 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13055 13070 desc = (dof_actdesc_t *)(daddr +
13056 13071 (uintptr_t)sec->dofs_offset + offs);
13057 13072 kind = (dtrace_actkind_t)desc->dofa_kind;
13058 13073
13059 13074 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13060 13075 (kind != DTRACEACT_PRINTA ||
13061 13076 desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13062 13077 (kind == DTRACEACT_DIFEXPR &&
13063 13078 desc->dofa_strtab != DOF_SECIDX_NONE)) {
13064 13079 dof_sec_t *strtab;
13065 13080 char *str, *fmt;
13066 13081 uint64_t i;
13067 13082
13068 13083 /*
13069 13084 * The argument to these actions is an index into the
13070 13085 * DOF string table. For printf()-like actions, this
13071 13086 * is the format string. For print(), this is the
13072 13087 * CTF type of the expression result.
13073 13088 */
13074 13089 if ((strtab = dtrace_dof_sect(dof,
13075 13090 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13076 13091 goto err;
13077 13092
13078 13093 str = (char *)((uintptr_t)dof +
13079 13094 (uintptr_t)strtab->dofs_offset);
13080 13095
13081 13096 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13082 13097 if (str[i] == '\0')
13083 13098 break;
13084 13099 }
13085 13100
13086 13101 if (i >= strtab->dofs_size) {
13087 13102 dtrace_dof_error(dof, "bogus format string");
13088 13103 goto err;
13089 13104 }
13090 13105
13091 13106 if (i == desc->dofa_arg) {
13092 13107 dtrace_dof_error(dof, "empty format string");
13093 13108 goto err;
13094 13109 }
13095 13110
13096 13111 i -= desc->dofa_arg;
13097 13112 fmt = kmem_alloc(i + 1, KM_SLEEP);
13098 13113 bcopy(&str[desc->dofa_arg], fmt, i + 1);
13099 13114 arg = (uint64_t)(uintptr_t)fmt;
13100 13115 } else {
13101 13116 if (kind == DTRACEACT_PRINTA) {
13102 13117 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13103 13118 arg = 0;
13104 13119 } else {
13105 13120 arg = desc->dofa_arg;
13106 13121 }
13107 13122 }
13108 13123
13109 13124 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13110 13125 desc->dofa_uarg, arg);
13111 13126
13112 13127 if (last != NULL) {
13113 13128 last->dtad_next = act;
13114 13129 } else {
13115 13130 first = act;
13116 13131 }
13117 13132
13118 13133 last = act;
13119 13134
13120 13135 if (desc->dofa_difo == DOF_SECIDX_NONE)
13121 13136 continue;
13122 13137
13123 13138 if ((difosec = dtrace_dof_sect(dof,
13124 13139 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13125 13140 goto err;
13126 13141
13127 13142 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13128 13143
13129 13144 if (act->dtad_difo == NULL)
13130 13145 goto err;
13131 13146 }
13132 13147
13133 13148 ASSERT(first != NULL);
13134 13149 return (first);
13135 13150
13136 13151 err:
13137 13152 for (act = first; act != NULL; act = next) {
13138 13153 next = act->dtad_next;
13139 13154 dtrace_actdesc_release(act, vstate);
13140 13155 }
13141 13156
13142 13157 return (NULL);
13143 13158 }
13144 13159
13145 13160 static dtrace_ecbdesc_t *
13146 13161 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13147 13162 cred_t *cr)
13148 13163 {
13149 13164 dtrace_ecbdesc_t *ep;
13150 13165 dof_ecbdesc_t *ecb;
13151 13166 dtrace_probedesc_t *desc;
13152 13167 dtrace_predicate_t *pred = NULL;
13153 13168
13154 13169 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13155 13170 dtrace_dof_error(dof, "truncated ECB description");
13156 13171 return (NULL);
13157 13172 }
13158 13173
13159 13174 if (sec->dofs_align != sizeof (uint64_t)) {
13160 13175 dtrace_dof_error(dof, "bad alignment in ECB description");
13161 13176 return (NULL);
13162 13177 }
13163 13178
13164 13179 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13165 13180 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13166 13181
13167 13182 if (sec == NULL)
13168 13183 return (NULL);
13169 13184
13170 13185 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13171 13186 ep->dted_uarg = ecb->dofe_uarg;
13172 13187 desc = &ep->dted_probe;
13173 13188
13174 13189 if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13175 13190 goto err;
13176 13191
13177 13192 if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13178 13193 if ((sec = dtrace_dof_sect(dof,
13179 13194 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13180 13195 goto err;
13181 13196
13182 13197 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13183 13198 goto err;
13184 13199
13185 13200 ep->dted_pred.dtpdd_predicate = pred;
13186 13201 }
13187 13202
13188 13203 if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13189 13204 if ((sec = dtrace_dof_sect(dof,
13190 13205 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13191 13206 goto err;
13192 13207
13193 13208 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13194 13209
13195 13210 if (ep->dted_action == NULL)
13196 13211 goto err;
13197 13212 }
13198 13213
13199 13214 return (ep);
13200 13215
13201 13216 err:
13202 13217 if (pred != NULL)
13203 13218 dtrace_predicate_release(pred, vstate);
13204 13219 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
13205 13220 return (NULL);
13206 13221 }
13207 13222
13208 13223 /*
13209 13224 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13210 13225 * specified DOF. At present, this amounts to simply adding 'ubase' to the
13211 13226 * site of any user SETX relocations to account for load object base address.
13212 13227 * In the future, if we need other relocations, this function can be extended.
13213 13228 */
13214 13229 static int
13215 13230 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
13216 13231 {
13217 13232 uintptr_t daddr = (uintptr_t)dof;
13218 13233 uintptr_t ts_end;
13219 13234 dof_relohdr_t *dofr =
13220 13235 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13221 13236 dof_sec_t *ss, *rs, *ts;
13222 13237 dof_relodesc_t *r;
13223 13238 uint_t i, n;
13224 13239
13225 13240 if (sec->dofs_size < sizeof (dof_relohdr_t) ||
13226 13241 sec->dofs_align != sizeof (dof_secidx_t)) {
13227 13242 dtrace_dof_error(dof, "invalid relocation header");
13228 13243 return (-1);
13229 13244 }
13230 13245
13231 13246 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
13232 13247 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
13233 13248 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
13234 13249 ts_end = (uintptr_t)ts + sizeof (dof_sec_t);
13235 13250
13236 13251 if (ss == NULL || rs == NULL || ts == NULL)
13237 13252 return (-1); /* dtrace_dof_error() has been called already */
13238 13253
13239 13254 if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
13240 13255 rs->dofs_align != sizeof (uint64_t)) {
13241 13256 dtrace_dof_error(dof, "invalid relocation section");
13242 13257 return (-1);
13243 13258 }
13244 13259
13245 13260 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
13246 13261 n = rs->dofs_size / rs->dofs_entsize;
13247 13262
13248 13263 for (i = 0; i < n; i++) {
13249 13264 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
13250 13265
13251 13266 switch (r->dofr_type) {
13252 13267 case DOF_RELO_NONE:
13253 13268 break;
13254 13269 case DOF_RELO_SETX:
13255 13270 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
13256 13271 sizeof (uint64_t) > ts->dofs_size) {
13257 13272 dtrace_dof_error(dof, "bad relocation offset");
13258 13273 return (-1);
13259 13274 }
13260 13275
13261 13276 if (taddr >= (uintptr_t)ts && taddr < ts_end) {
13262 13277 dtrace_dof_error(dof, "bad relocation offset");
13263 13278 return (-1);
13264 13279 }
13265 13280
13266 13281 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
13267 13282 dtrace_dof_error(dof, "misaligned setx relo");
13268 13283 return (-1);
13269 13284 }
13270 13285
13271 13286 *(uint64_t *)taddr += ubase;
13272 13287 break;
13273 13288 default:
13274 13289 dtrace_dof_error(dof, "invalid relocation type");
13275 13290 return (-1);
13276 13291 }
13277 13292
13278 13293 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
13279 13294 }
13280 13295
13281 13296 return (0);
13282 13297 }
13283 13298
13284 13299 /*
13285 13300 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
13286 13301 * header: it should be at the front of a memory region that is at least
13287 13302 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
13288 13303 * size. It need not be validated in any other way.
13289 13304 */
13290 13305 static int
13291 13306 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
13292 13307 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
13293 13308 {
13294 13309 uint64_t len = dof->dofh_loadsz, seclen;
13295 13310 uintptr_t daddr = (uintptr_t)dof;
13296 13311 dtrace_ecbdesc_t *ep;
13297 13312 dtrace_enabling_t *enab;
13298 13313 uint_t i;
13299 13314
13300 13315 ASSERT(MUTEX_HELD(&dtrace_lock));
13301 13316 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
13302 13317
13303 13318 /*
13304 13319 * Check the DOF header identification bytes. In addition to checking
13305 13320 * valid settings, we also verify that unused bits/bytes are zeroed so
13306 13321 * we can use them later without fear of regressing existing binaries.
13307 13322 */
13308 13323 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
13309 13324 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
13310 13325 dtrace_dof_error(dof, "DOF magic string mismatch");
13311 13326 return (-1);
13312 13327 }
13313 13328
13314 13329 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
13315 13330 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
13316 13331 dtrace_dof_error(dof, "DOF has invalid data model");
13317 13332 return (-1);
13318 13333 }
13319 13334
13320 13335 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
13321 13336 dtrace_dof_error(dof, "DOF encoding mismatch");
13322 13337 return (-1);
13323 13338 }
13324 13339
13325 13340 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13326 13341 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
13327 13342 dtrace_dof_error(dof, "DOF version mismatch");
13328 13343 return (-1);
13329 13344 }
13330 13345
13331 13346 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
13332 13347 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
13333 13348 return (-1);
13334 13349 }
13335 13350
13336 13351 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
13337 13352 dtrace_dof_error(dof, "DOF uses too many integer registers");
13338 13353 return (-1);
13339 13354 }
13340 13355
13341 13356 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
13342 13357 dtrace_dof_error(dof, "DOF uses too many tuple registers");
13343 13358 return (-1);
13344 13359 }
13345 13360
13346 13361 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
13347 13362 if (dof->dofh_ident[i] != 0) {
13348 13363 dtrace_dof_error(dof, "DOF has invalid ident byte set");
13349 13364 return (-1);
13350 13365 }
13351 13366 }
13352 13367
13353 13368 if (dof->dofh_flags & ~DOF_FL_VALID) {
13354 13369 dtrace_dof_error(dof, "DOF has invalid flag bits set");
13355 13370 return (-1);
13356 13371 }
13357 13372
13358 13373 if (dof->dofh_secsize == 0) {
13359 13374 dtrace_dof_error(dof, "zero section header size");
13360 13375 return (-1);
13361 13376 }
13362 13377
13363 13378 /*
13364 13379 * Check that the section headers don't exceed the amount of DOF
13365 13380 * data. Note that we cast the section size and number of sections
13366 13381 * to uint64_t's to prevent possible overflow in the multiplication.
13367 13382 */
13368 13383 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
13369 13384
13370 13385 if (dof->dofh_secoff > len || seclen > len ||
13371 13386 dof->dofh_secoff + seclen > len) {
13372 13387 dtrace_dof_error(dof, "truncated section headers");
13373 13388 return (-1);
13374 13389 }
13375 13390
13376 13391 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
13377 13392 dtrace_dof_error(dof, "misaligned section headers");
13378 13393 return (-1);
13379 13394 }
13380 13395
13381 13396 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
13382 13397 dtrace_dof_error(dof, "misaligned section size");
13383 13398 return (-1);
13384 13399 }
13385 13400
13386 13401 /*
13387 13402 * Take an initial pass through the section headers to be sure that
13388 13403 * the headers don't have stray offsets. If the 'noprobes' flag is
13389 13404 * set, do not permit sections relating to providers, probes, or args.
13390 13405 */
13391 13406 for (i = 0; i < dof->dofh_secnum; i++) {
13392 13407 dof_sec_t *sec = (dof_sec_t *)(daddr +
13393 13408 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13394 13409
13395 13410 if (noprobes) {
13396 13411 switch (sec->dofs_type) {
13397 13412 case DOF_SECT_PROVIDER:
13398 13413 case DOF_SECT_PROBES:
13399 13414 case DOF_SECT_PRARGS:
13400 13415 case DOF_SECT_PROFFS:
13401 13416 dtrace_dof_error(dof, "illegal sections "
13402 13417 "for enabling");
13403 13418 return (-1);
13404 13419 }
13405 13420 }
13406 13421
13407 13422 if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
13408 13423 !(sec->dofs_flags & DOF_SECF_LOAD)) {
13409 13424 dtrace_dof_error(dof, "loadable section with load "
13410 13425 "flag unset");
13411 13426 return (-1);
13412 13427 }
13413 13428
13414 13429 if (!(sec->dofs_flags & DOF_SECF_LOAD))
13415 13430 continue; /* just ignore non-loadable sections */
13416 13431
13417 13432 if (!ISP2(sec->dofs_align)) {
13418 13433 dtrace_dof_error(dof, "bad section alignment");
13419 13434 return (-1);
13420 13435 }
13421 13436
13422 13437 if (sec->dofs_offset & (sec->dofs_align - 1)) {
13423 13438 dtrace_dof_error(dof, "misaligned section");
13424 13439 return (-1);
13425 13440 }
13426 13441
13427 13442 if (sec->dofs_offset > len || sec->dofs_size > len ||
13428 13443 sec->dofs_offset + sec->dofs_size > len) {
13429 13444 dtrace_dof_error(dof, "corrupt section header");
13430 13445 return (-1);
13431 13446 }
13432 13447
13433 13448 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
13434 13449 sec->dofs_offset + sec->dofs_size - 1) != '\0') {
13435 13450 dtrace_dof_error(dof, "non-terminating string table");
13436 13451 return (-1);
13437 13452 }
13438 13453 }
13439 13454
13440 13455 /*
13441 13456 * Take a second pass through the sections and locate and perform any
13442 13457 * relocations that are present. We do this after the first pass to
13443 13458 * be sure that all sections have had their headers validated.
13444 13459 */
13445 13460 for (i = 0; i < dof->dofh_secnum; i++) {
13446 13461 dof_sec_t *sec = (dof_sec_t *)(daddr +
13447 13462 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13448 13463
13449 13464 if (!(sec->dofs_flags & DOF_SECF_LOAD))
13450 13465 continue; /* skip sections that are not loadable */
13451 13466
13452 13467 switch (sec->dofs_type) {
13453 13468 case DOF_SECT_URELHDR:
13454 13469 if (dtrace_dof_relocate(dof, sec, ubase) != 0)
13455 13470 return (-1);
13456 13471 break;
13457 13472 }
13458 13473 }
13459 13474
13460 13475 if ((enab = *enabp) == NULL)
13461 13476 enab = *enabp = dtrace_enabling_create(vstate);
13462 13477
13463 13478 for (i = 0; i < dof->dofh_secnum; i++) {
13464 13479 dof_sec_t *sec = (dof_sec_t *)(daddr +
13465 13480 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13466 13481
13467 13482 if (sec->dofs_type != DOF_SECT_ECBDESC)
13468 13483 continue;
13469 13484
13470 13485 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
13471 13486 dtrace_enabling_destroy(enab);
13472 13487 *enabp = NULL;
13473 13488 return (-1);
13474 13489 }
13475 13490
13476 13491 dtrace_enabling_add(enab, ep);
13477 13492 }
13478 13493
13479 13494 return (0);
13480 13495 }
13481 13496
13482 13497 /*
13483 13498 * Process DOF for any options. This routine assumes that the DOF has been
13484 13499 * at least processed by dtrace_dof_slurp().
13485 13500 */
13486 13501 static int
13487 13502 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
13488 13503 {
13489 13504 int i, rval;
13490 13505 uint32_t entsize;
13491 13506 size_t offs;
13492 13507 dof_optdesc_t *desc;
13493 13508
13494 13509 for (i = 0; i < dof->dofh_secnum; i++) {
13495 13510 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
13496 13511 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13497 13512
13498 13513 if (sec->dofs_type != DOF_SECT_OPTDESC)
13499 13514 continue;
13500 13515
13501 13516 if (sec->dofs_align != sizeof (uint64_t)) {
13502 13517 dtrace_dof_error(dof, "bad alignment in "
13503 13518 "option description");
13504 13519 return (EINVAL);
13505 13520 }
13506 13521
13507 13522 if ((entsize = sec->dofs_entsize) == 0) {
13508 13523 dtrace_dof_error(dof, "zeroed option entry size");
13509 13524 return (EINVAL);
13510 13525 }
13511 13526
13512 13527 if (entsize < sizeof (dof_optdesc_t)) {
13513 13528 dtrace_dof_error(dof, "bad option entry size");
13514 13529 return (EINVAL);
13515 13530 }
13516 13531
13517 13532 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
13518 13533 desc = (dof_optdesc_t *)((uintptr_t)dof +
13519 13534 (uintptr_t)sec->dofs_offset + offs);
13520 13535
13521 13536 if (desc->dofo_strtab != DOF_SECIDX_NONE) {
13522 13537 dtrace_dof_error(dof, "non-zero option string");
13523 13538 return (EINVAL);
13524 13539 }
13525 13540
13526 13541 if (desc->dofo_value == DTRACEOPT_UNSET) {
13527 13542 dtrace_dof_error(dof, "unset option");
13528 13543 return (EINVAL);
13529 13544 }
13530 13545
13531 13546 if ((rval = dtrace_state_option(state,
13532 13547 desc->dofo_option, desc->dofo_value)) != 0) {
13533 13548 dtrace_dof_error(dof, "rejected option");
13534 13549 return (rval);
13535 13550 }
13536 13551 }
13537 13552 }
13538 13553
13539 13554 return (0);
13540 13555 }
13541 13556
13542 13557 /*
13543 13558 * DTrace Consumer State Functions
13544 13559 */
13545 13560 int
13546 13561 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
13547 13562 {
13548 13563 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
13549 13564 void *base;
13550 13565 uintptr_t limit;
13551 13566 dtrace_dynvar_t *dvar, *next, *start;
13552 13567 int i;
13553 13568
13554 13569 ASSERT(MUTEX_HELD(&dtrace_lock));
13555 13570 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
13556 13571
13557 13572 bzero(dstate, sizeof (dtrace_dstate_t));
13558 13573
13559 13574 if ((dstate->dtds_chunksize = chunksize) == 0)
13560 13575 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
13561 13576
13562 13577 VERIFY(dstate->dtds_chunksize < LONG_MAX);
13563 13578
13564 13579 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
13565 13580 size = min;
13566 13581
13567 13582 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
13568 13583 return (ENOMEM);
13569 13584
13570 13585 dstate->dtds_size = size;
13571 13586 dstate->dtds_base = base;
13572 13587 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
13573 13588 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
13574 13589
13575 13590 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
13576 13591
13577 13592 if (hashsize != 1 && (hashsize & 1))
13578 13593 hashsize--;
13579 13594
13580 13595 dstate->dtds_hashsize = hashsize;
13581 13596 dstate->dtds_hash = dstate->dtds_base;
13582 13597
13583 13598 /*
13584 13599 * Set all of our hash buckets to point to the single sink, and (if
13585 13600 * it hasn't already been set), set the sink's hash value to be the
13586 13601 * sink sentinel value. The sink is needed for dynamic variable
13587 13602 * lookups to know that they have iterated over an entire, valid hash
13588 13603 * chain.
13589 13604 */
13590 13605 for (i = 0; i < hashsize; i++)
13591 13606 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
13592 13607
13593 13608 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
13594 13609 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
13595 13610
13596 13611 /*
13597 13612 * Determine number of active CPUs. Divide free list evenly among
13598 13613 * active CPUs.
13599 13614 */
13600 13615 start = (dtrace_dynvar_t *)
13601 13616 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
13602 13617 limit = (uintptr_t)base + size;
13603 13618
13604 13619 VERIFY((uintptr_t)start < limit);
13605 13620 VERIFY((uintptr_t)start >= (uintptr_t)base);
13606 13621
13607 13622 maxper = (limit - (uintptr_t)start) / NCPU;
13608 13623 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
13609 13624
13610 13625 for (i = 0; i < NCPU; i++) {
13611 13626 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
13612 13627
13613 13628 /*
13614 13629 * If we don't even have enough chunks to make it once through
13615 13630 * NCPUs, we're just going to allocate everything to the first
13616 13631 * CPU. And if we're on the last CPU, we're going to allocate
13617 13632 * whatever is left over. In either case, we set the limit to
13618 13633 * be the limit of the dynamic variable space.
13619 13634 */
13620 13635 if (maxper == 0 || i == NCPU - 1) {
13621 13636 limit = (uintptr_t)base + size;
13622 13637 start = NULL;
13623 13638 } else {
13624 13639 limit = (uintptr_t)start + maxper;
13625 13640 start = (dtrace_dynvar_t *)limit;
13626 13641 }
13627 13642
13628 13643 VERIFY(limit <= (uintptr_t)base + size);
13629 13644
13630 13645 for (;;) {
13631 13646 next = (dtrace_dynvar_t *)((uintptr_t)dvar +
13632 13647 dstate->dtds_chunksize);
13633 13648
13634 13649 if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
13635 13650 break;
13636 13651
13637 13652 VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
13638 13653 (uintptr_t)dvar <= (uintptr_t)base + size);
13639 13654 dvar->dtdv_next = next;
13640 13655 dvar = next;
13641 13656 }
13642 13657
13643 13658 if (maxper == 0)
13644 13659 break;
13645 13660 }
13646 13661
13647 13662 return (0);
13648 13663 }
13649 13664
13650 13665 void
13651 13666 dtrace_dstate_fini(dtrace_dstate_t *dstate)
13652 13667 {
13653 13668 ASSERT(MUTEX_HELD(&cpu_lock));
13654 13669
13655 13670 if (dstate->dtds_base == NULL)
13656 13671 return;
13657 13672
13658 13673 kmem_free(dstate->dtds_base, dstate->dtds_size);
13659 13674 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
13660 13675 }
13661 13676
13662 13677 static void
13663 13678 dtrace_vstate_fini(dtrace_vstate_t *vstate)
13664 13679 {
13665 13680 /*
13666 13681 * Logical XOR, where are you?
13667 13682 */
13668 13683 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13669 13684
13670 13685 if (vstate->dtvs_nglobals > 0) {
13671 13686 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13672 13687 sizeof (dtrace_statvar_t *));
13673 13688 }
13674 13689
13675 13690 if (vstate->dtvs_ntlocals > 0) {
13676 13691 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13677 13692 sizeof (dtrace_difv_t));
13678 13693 }
13679 13694
13680 13695 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13681 13696
13682 13697 if (vstate->dtvs_nlocals > 0) {
13683 13698 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13684 13699 sizeof (dtrace_statvar_t *));
13685 13700 }
13686 13701 }
13687 13702
13688 13703 static void
13689 13704 dtrace_state_clean(dtrace_state_t *state)
13690 13705 {
13691 13706 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13692 13707 return;
13693 13708
13694 13709 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13695 13710 dtrace_speculation_clean(state);
13696 13711 }
13697 13712
13698 13713 static void
13699 13714 dtrace_state_deadman(dtrace_state_t *state)
13700 13715 {
13701 13716 hrtime_t now;
13702 13717
13703 13718 dtrace_sync();
13704 13719
13705 13720 now = dtrace_gethrtime();
13706 13721
13707 13722 if (state != dtrace_anon.dta_state &&
13708 13723 now - state->dts_laststatus >= dtrace_deadman_user)
13709 13724 return;
13710 13725
13711 13726 /*
13712 13727 * We must be sure that dts_alive never appears to be less than the
13713 13728 * value upon entry to dtrace_state_deadman(), and because we lack a
13714 13729 * dtrace_cas64(), we cannot store to it atomically. We thus instead
13715 13730 * store INT64_MAX to it, followed by a memory barrier, followed by
13716 13731 * the new value. This assures that dts_alive never appears to be
13717 13732 * less than its true value, regardless of the order in which the
13718 13733 * stores to the underlying storage are issued.
13719 13734 */
13720 13735 state->dts_alive = INT64_MAX;
13721 13736 dtrace_membar_producer();
13722 13737 state->dts_alive = now;
13723 13738 }
13724 13739
13725 13740 dtrace_state_t *
13726 13741 dtrace_state_create(dev_t *devp, cred_t *cr)
13727 13742 {
13728 13743 minor_t minor;
13729 13744 major_t major;
13730 13745 char c[30];
13731 13746 dtrace_state_t *state;
13732 13747 dtrace_optval_t *opt;
13733 13748 int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13734 13749
13735 13750 ASSERT(MUTEX_HELD(&dtrace_lock));
13736 13751 ASSERT(MUTEX_HELD(&cpu_lock));
13737 13752
13738 13753 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13739 13754 VM_BESTFIT | VM_SLEEP);
13740 13755
13741 13756 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13742 13757 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13743 13758 return (NULL);
13744 13759 }
13745 13760
13746 13761 state = ddi_get_soft_state(dtrace_softstate, minor);
13747 13762 state->dts_epid = DTRACE_EPIDNONE + 1;
13748 13763
13749 13764 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
13750 13765 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13751 13766 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13752 13767
13753 13768 if (devp != NULL) {
13754 13769 major = getemajor(*devp);
13755 13770 } else {
13756 13771 major = ddi_driver_major(dtrace_devi);
13757 13772 }
13758 13773
13759 13774 state->dts_dev = makedevice(major, minor);
13760 13775
13761 13776 if (devp != NULL)
13762 13777 *devp = state->dts_dev;
13763 13778
13764 13779 /*
13765 13780 * We allocate NCPU buffers. On the one hand, this can be quite
13766 13781 * a bit of memory per instance (nearly 36K on a Starcat). On the
13767 13782 * other hand, it saves an additional memory reference in the probe
13768 13783 * path.
13769 13784 */
13770 13785 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13771 13786 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13772 13787 state->dts_cleaner = CYCLIC_NONE;
13773 13788 state->dts_deadman = CYCLIC_NONE;
13774 13789 state->dts_vstate.dtvs_state = state;
13775 13790
13776 13791 for (i = 0; i < DTRACEOPT_MAX; i++)
13777 13792 state->dts_options[i] = DTRACEOPT_UNSET;
13778 13793
13779 13794 /*
13780 13795 * Set the default options.
13781 13796 */
13782 13797 opt = state->dts_options;
13783 13798 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13784 13799 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13785 13800 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13786 13801 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13787 13802 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13788 13803 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13789 13804 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13790 13805 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13791 13806 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13792 13807 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13793 13808 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13794 13809 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13795 13810 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13796 13811 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13797 13812
13798 13813 state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13799 13814
13800 13815 /*
13801 13816 * Depending on the user credentials, we set flag bits which alter probe
13802 13817 * visibility or the amount of destructiveness allowed. In the case of
13803 13818 * actual anonymous tracing, or the possession of all privileges, all of
13804 13819 * the normal checks are bypassed.
13805 13820 */
13806 13821 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13807 13822 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13808 13823 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13809 13824 } else {
13810 13825 /*
13811 13826 * Set up the credentials for this instantiation. We take a
13812 13827 * hold on the credential to prevent it from disappearing on
13813 13828 * us; this in turn prevents the zone_t referenced by this
13814 13829 * credential from disappearing. This means that we can
13815 13830 * examine the credential and the zone from probe context.
13816 13831 */
13817 13832 crhold(cr);
13818 13833 state->dts_cred.dcr_cred = cr;
13819 13834
13820 13835 /*
13821 13836 * CRA_PROC means "we have *some* privilege for dtrace" and
13822 13837 * unlocks the use of variables like pid, zonename, etc.
13823 13838 */
13824 13839 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13825 13840 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13826 13841 state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13827 13842 }
13828 13843
13829 13844 /*
13830 13845 * dtrace_user allows use of syscall and profile providers.
13831 13846 * If the user also has proc_owner and/or proc_zone, we
13832 13847 * extend the scope to include additional visibility and
13833 13848 * destructive power.
13834 13849 */
13835 13850 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13836 13851 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13837 13852 state->dts_cred.dcr_visible |=
13838 13853 DTRACE_CRV_ALLPROC;
13839 13854
13840 13855 state->dts_cred.dcr_action |=
13841 13856 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13842 13857 }
13843 13858
13844 13859 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13845 13860 state->dts_cred.dcr_visible |=
13846 13861 DTRACE_CRV_ALLZONE;
13847 13862
13848 13863 state->dts_cred.dcr_action |=
13849 13864 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13850 13865 }
13851 13866
13852 13867 /*
13853 13868 * If we have all privs in whatever zone this is,
13854 13869 * we can do destructive things to processes which
13855 13870 * have altered credentials.
13856 13871 */
13857 13872 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13858 13873 cr->cr_zone->zone_privset)) {
13859 13874 state->dts_cred.dcr_action |=
13860 13875 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13861 13876 }
13862 13877 }
13863 13878
13864 13879 /*
13865 13880 * Holding the dtrace_kernel privilege also implies that
13866 13881 * the user has the dtrace_user privilege from a visibility
13867 13882 * perspective. But without further privileges, some
13868 13883 * destructive actions are not available.
13869 13884 */
13870 13885 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13871 13886 /*
13872 13887 * Make all probes in all zones visible. However,
13873 13888 * this doesn't mean that all actions become available
13874 13889 * to all zones.
13875 13890 */
13876 13891 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13877 13892 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13878 13893
13879 13894 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13880 13895 DTRACE_CRA_PROC;
13881 13896 /*
13882 13897 * Holding proc_owner means that destructive actions
13883 13898 * for *this* zone are allowed.
13884 13899 */
13885 13900 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13886 13901 state->dts_cred.dcr_action |=
13887 13902 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13888 13903
13889 13904 /*
13890 13905 * Holding proc_zone means that destructive actions
13891 13906 * for this user/group ID in all zones is allowed.
13892 13907 */
13893 13908 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13894 13909 state->dts_cred.dcr_action |=
13895 13910 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13896 13911
13897 13912 /*
13898 13913 * If we have all privs in whatever zone this is,
13899 13914 * we can do destructive things to processes which
13900 13915 * have altered credentials.
13901 13916 */
13902 13917 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13903 13918 cr->cr_zone->zone_privset)) {
13904 13919 state->dts_cred.dcr_action |=
13905 13920 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13906 13921 }
13907 13922 }
13908 13923
13909 13924 /*
13910 13925 * Holding the dtrace_proc privilege gives control over fasttrap
13911 13926 * and pid providers. We need to grant wider destructive
13912 13927 * privileges in the event that the user has proc_owner and/or
13913 13928 * proc_zone.
13914 13929 */
13915 13930 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13916 13931 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13917 13932 state->dts_cred.dcr_action |=
13918 13933 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13919 13934
13920 13935 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13921 13936 state->dts_cred.dcr_action |=
13922 13937 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13923 13938 }
13924 13939 }
13925 13940
13926 13941 return (state);
13927 13942 }
13928 13943
13929 13944 static int
13930 13945 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13931 13946 {
13932 13947 dtrace_optval_t *opt = state->dts_options, size;
13933 13948 processorid_t cpu;
13934 13949 int flags = 0, rval, factor, divisor = 1;
13935 13950
13936 13951 ASSERT(MUTEX_HELD(&dtrace_lock));
13937 13952 ASSERT(MUTEX_HELD(&cpu_lock));
13938 13953 ASSERT(which < DTRACEOPT_MAX);
13939 13954 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13940 13955 (state == dtrace_anon.dta_state &&
13941 13956 state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13942 13957
13943 13958 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13944 13959 return (0);
13945 13960
13946 13961 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13947 13962 cpu = opt[DTRACEOPT_CPU];
13948 13963
13949 13964 if (which == DTRACEOPT_SPECSIZE)
13950 13965 flags |= DTRACEBUF_NOSWITCH;
13951 13966
13952 13967 if (which == DTRACEOPT_BUFSIZE) {
13953 13968 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13954 13969 flags |= DTRACEBUF_RING;
13955 13970
13956 13971 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13957 13972 flags |= DTRACEBUF_FILL;
13958 13973
13959 13974 if (state != dtrace_anon.dta_state ||
13960 13975 state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13961 13976 flags |= DTRACEBUF_INACTIVE;
13962 13977 }
13963 13978
13964 13979 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
13965 13980 /*
13966 13981 * The size must be 8-byte aligned. If the size is not 8-byte
13967 13982 * aligned, drop it down by the difference.
13968 13983 */
13969 13984 if (size & (sizeof (uint64_t) - 1))
13970 13985 size -= size & (sizeof (uint64_t) - 1);
13971 13986
13972 13987 if (size < state->dts_reserve) {
13973 13988 /*
13974 13989 * Buffers always must be large enough to accommodate
13975 13990 * their prereserved space. We return E2BIG instead
13976 13991 * of ENOMEM in this case to allow for user-level
13977 13992 * software to differentiate the cases.
13978 13993 */
13979 13994 return (E2BIG);
13980 13995 }
13981 13996
13982 13997 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
13983 13998
13984 13999 if (rval != ENOMEM) {
13985 14000 opt[which] = size;
13986 14001 return (rval);
13987 14002 }
13988 14003
13989 14004 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13990 14005 return (rval);
13991 14006
13992 14007 for (divisor = 2; divisor < factor; divisor <<= 1)
13993 14008 continue;
13994 14009 }
13995 14010
13996 14011 return (ENOMEM);
13997 14012 }
13998 14013
13999 14014 static int
14000 14015 dtrace_state_buffers(dtrace_state_t *state)
14001 14016 {
14002 14017 dtrace_speculation_t *spec = state->dts_speculations;
14003 14018 int rval, i;
14004 14019
14005 14020 if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14006 14021 DTRACEOPT_BUFSIZE)) != 0)
14007 14022 return (rval);
14008 14023
14009 14024 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14010 14025 DTRACEOPT_AGGSIZE)) != 0)
14011 14026 return (rval);
14012 14027
14013 14028 for (i = 0; i < state->dts_nspeculations; i++) {
14014 14029 if ((rval = dtrace_state_buffer(state,
14015 14030 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14016 14031 return (rval);
14017 14032 }
14018 14033
14019 14034 return (0);
14020 14035 }
14021 14036
14022 14037 static void
14023 14038 dtrace_state_prereserve(dtrace_state_t *state)
14024 14039 {
14025 14040 dtrace_ecb_t *ecb;
14026 14041 dtrace_probe_t *probe;
14027 14042
14028 14043 state->dts_reserve = 0;
14029 14044
14030 14045 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14031 14046 return;
14032 14047
14033 14048 /*
14034 14049 * If our buffer policy is a "fill" buffer policy, we need to set the
14035 14050 * prereserved space to be the space required by the END probes.
14036 14051 */
14037 14052 probe = dtrace_probes[dtrace_probeid_end - 1];
14038 14053 ASSERT(probe != NULL);
14039 14054
14040 14055 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14041 14056 if (ecb->dte_state != state)
14042 14057 continue;
14043 14058
14044 14059 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14045 14060 }
14046 14061 }
14047 14062
14048 14063 static int
14049 14064 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14050 14065 {
14051 14066 dtrace_optval_t *opt = state->dts_options, sz, nspec;
14052 14067 dtrace_speculation_t *spec;
14053 14068 dtrace_buffer_t *buf;
14054 14069 cyc_handler_t hdlr;
14055 14070 cyc_time_t when;
14056 14071 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14057 14072 dtrace_icookie_t cookie;
14058 14073
14059 14074 mutex_enter(&cpu_lock);
14060 14075 mutex_enter(&dtrace_lock);
14061 14076
14062 14077 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14063 14078 rval = EBUSY;
14064 14079 goto out;
14065 14080 }
14066 14081
14067 14082 /*
14068 14083 * Before we can perform any checks, we must prime all of the
14069 14084 * retained enablings that correspond to this state.
14070 14085 */
14071 14086 dtrace_enabling_prime(state);
14072 14087
14073 14088 if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14074 14089 rval = EACCES;
14075 14090 goto out;
14076 14091 }
14077 14092
14078 14093 dtrace_state_prereserve(state);
14079 14094
14080 14095 /*
14081 14096 * Now we want to do is try to allocate our speculations.
14082 14097 * We do not automatically resize the number of speculations; if
14083 14098 * this fails, we will fail the operation.
14084 14099 */
14085 14100 nspec = opt[DTRACEOPT_NSPEC];
14086 14101 ASSERT(nspec != DTRACEOPT_UNSET);
14087 14102
14088 14103 if (nspec > INT_MAX) {
14089 14104 rval = ENOMEM;
14090 14105 goto out;
14091 14106 }
14092 14107
14093 14108 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
14094 14109 KM_NOSLEEP | KM_NORMALPRI);
14095 14110
14096 14111 if (spec == NULL) {
14097 14112 rval = ENOMEM;
14098 14113 goto out;
14099 14114 }
14100 14115
14101 14116 state->dts_speculations = spec;
14102 14117 state->dts_nspeculations = (int)nspec;
14103 14118
14104 14119 for (i = 0; i < nspec; i++) {
14105 14120 if ((buf = kmem_zalloc(bufsize,
14106 14121 KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
14107 14122 rval = ENOMEM;
14108 14123 goto err;
14109 14124 }
14110 14125
14111 14126 spec[i].dtsp_buffer = buf;
14112 14127 }
14113 14128
14114 14129 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
14115 14130 if (dtrace_anon.dta_state == NULL) {
14116 14131 rval = ENOENT;
14117 14132 goto out;
14118 14133 }
14119 14134
14120 14135 if (state->dts_necbs != 0) {
14121 14136 rval = EALREADY;
14122 14137 goto out;
14123 14138 }
14124 14139
14125 14140 state->dts_anon = dtrace_anon_grab();
14126 14141 ASSERT(state->dts_anon != NULL);
14127 14142 state = state->dts_anon;
14128 14143
14129 14144 /*
14130 14145 * We want "grabanon" to be set in the grabbed state, so we'll
14131 14146 * copy that option value from the grabbing state into the
14132 14147 * grabbed state.
14133 14148 */
14134 14149 state->dts_options[DTRACEOPT_GRABANON] =
14135 14150 opt[DTRACEOPT_GRABANON];
14136 14151
14137 14152 *cpu = dtrace_anon.dta_beganon;
14138 14153
14139 14154 /*
14140 14155 * If the anonymous state is active (as it almost certainly
14141 14156 * is if the anonymous enabling ultimately matched anything),
14142 14157 * we don't allow any further option processing -- but we
14143 14158 * don't return failure.
14144 14159 */
14145 14160 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14146 14161 goto out;
14147 14162 }
14148 14163
14149 14164 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
14150 14165 opt[DTRACEOPT_AGGSIZE] != 0) {
14151 14166 if (state->dts_aggregations == NULL) {
14152 14167 /*
14153 14168 * We're not going to create an aggregation buffer
14154 14169 * because we don't have any ECBs that contain
14155 14170 * aggregations -- set this option to 0.
14156 14171 */
14157 14172 opt[DTRACEOPT_AGGSIZE] = 0;
14158 14173 } else {
14159 14174 /*
14160 14175 * If we have an aggregation buffer, we must also have
14161 14176 * a buffer to use as scratch.
14162 14177 */
14163 14178 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
14164 14179 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
14165 14180 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
14166 14181 }
14167 14182 }
14168 14183 }
14169 14184
14170 14185 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
14171 14186 opt[DTRACEOPT_SPECSIZE] != 0) {
14172 14187 if (!state->dts_speculates) {
14173 14188 /*
14174 14189 * We're not going to create speculation buffers
14175 14190 * because we don't have any ECBs that actually
14176 14191 * speculate -- set the speculation size to 0.
14177 14192 */
14178 14193 opt[DTRACEOPT_SPECSIZE] = 0;
14179 14194 }
14180 14195 }
14181 14196
14182 14197 /*
14183 14198 * The bare minimum size for any buffer that we're actually going to
14184 14199 * do anything to is sizeof (uint64_t).
14185 14200 */
14186 14201 sz = sizeof (uint64_t);
14187 14202
14188 14203 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
14189 14204 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
14190 14205 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
14191 14206 /*
14192 14207 * A buffer size has been explicitly set to 0 (or to a size
14193 14208 * that will be adjusted to 0) and we need the space -- we
14194 14209 * need to return failure. We return ENOSPC to differentiate
14195 14210 * it from failing to allocate a buffer due to failure to meet
14196 14211 * the reserve (for which we return E2BIG).
14197 14212 */
14198 14213 rval = ENOSPC;
14199 14214 goto out;
14200 14215 }
14201 14216
14202 14217 if ((rval = dtrace_state_buffers(state)) != 0)
14203 14218 goto err;
14204 14219
14205 14220 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
14206 14221 sz = dtrace_dstate_defsize;
14207 14222
14208 14223 do {
14209 14224 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
14210 14225
14211 14226 if (rval == 0)
14212 14227 break;
14213 14228
14214 14229 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14215 14230 goto err;
14216 14231 } while (sz >>= 1);
14217 14232
14218 14233 opt[DTRACEOPT_DYNVARSIZE] = sz;
14219 14234
14220 14235 if (rval != 0)
14221 14236 goto err;
14222 14237
14223 14238 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
14224 14239 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
14225 14240
14226 14241 if (opt[DTRACEOPT_CLEANRATE] == 0)
14227 14242 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14228 14243
14229 14244 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
14230 14245 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
14231 14246
14232 14247 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
14233 14248 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14234 14249
14235 14250 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
14236 14251 hdlr.cyh_arg = state;
14237 14252 hdlr.cyh_level = CY_LOW_LEVEL;
14238 14253
14239 14254 when.cyt_when = 0;
14240 14255 when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
14241 14256
14242 14257 state->dts_cleaner = cyclic_add(&hdlr, &when);
14243 14258
14244 14259 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
14245 14260 hdlr.cyh_arg = state;
14246 14261 hdlr.cyh_level = CY_LOW_LEVEL;
14247 14262
14248 14263 when.cyt_when = 0;
14249 14264 when.cyt_interval = dtrace_deadman_interval;
14250 14265
14251 14266 state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
14252 14267 state->dts_deadman = cyclic_add(&hdlr, &when);
14253 14268
14254 14269 state->dts_activity = DTRACE_ACTIVITY_WARMUP;
14255 14270
14256 14271 if (state->dts_getf != 0 &&
14257 14272 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14258 14273 /*
14259 14274 * We don't have kernel privs but we have at least one call
14260 14275 * to getf(); we need to bump our zone's count, and (if
14261 14276 * this is the first enabling to have an unprivileged call
14262 14277 * to getf()) we need to hook into closef().
14263 14278 */
14264 14279 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
14265 14280
14266 14281 if (dtrace_getf++ == 0) {
14267 14282 ASSERT(dtrace_closef == NULL);
14268 14283 dtrace_closef = dtrace_getf_barrier;
14269 14284 }
14270 14285 }
14271 14286
14272 14287 /*
14273 14288 * Now it's time to actually fire the BEGIN probe. We need to disable
14274 14289 * interrupts here both to record the CPU on which we fired the BEGIN
14275 14290 * probe (the data from this CPU will be processed first at user
14276 14291 * level) and to manually activate the buffer for this CPU.
14277 14292 */
14278 14293 cookie = dtrace_interrupt_disable();
14279 14294 *cpu = CPU->cpu_id;
14280 14295 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
14281 14296 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
14282 14297
14283 14298 dtrace_probe(dtrace_probeid_begin,
14284 14299 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14285 14300 dtrace_interrupt_enable(cookie);
14286 14301 /*
14287 14302 * We may have had an exit action from a BEGIN probe; only change our
14288 14303 * state to ACTIVE if we're still in WARMUP.
14289 14304 */
14290 14305 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
14291 14306 state->dts_activity == DTRACE_ACTIVITY_DRAINING);
14292 14307
14293 14308 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
14294 14309 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
14295 14310
14296 14311 /*
14297 14312 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
14298 14313 * want each CPU to transition its principal buffer out of the
14299 14314 * INACTIVE state. Doing this assures that no CPU will suddenly begin
14300 14315 * processing an ECB halfway down a probe's ECB chain; all CPUs will
14301 14316 * atomically transition from processing none of a state's ECBs to
14302 14317 * processing all of them.
14303 14318 */
14304 14319 dtrace_xcall(DTRACE_CPUALL,
14305 14320 (dtrace_xcall_t)dtrace_buffer_activate, state);
14306 14321 goto out;
14307 14322
14308 14323 err:
14309 14324 dtrace_buffer_free(state->dts_buffer);
14310 14325 dtrace_buffer_free(state->dts_aggbuffer);
14311 14326
14312 14327 if ((nspec = state->dts_nspeculations) == 0) {
14313 14328 ASSERT(state->dts_speculations == NULL);
14314 14329 goto out;
14315 14330 }
14316 14331
14317 14332 spec = state->dts_speculations;
14318 14333 ASSERT(spec != NULL);
14319 14334
14320 14335 for (i = 0; i < state->dts_nspeculations; i++) {
14321 14336 if ((buf = spec[i].dtsp_buffer) == NULL)
14322 14337 break;
14323 14338
14324 14339 dtrace_buffer_free(buf);
14325 14340 kmem_free(buf, bufsize);
14326 14341 }
14327 14342
14328 14343 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14329 14344 state->dts_nspeculations = 0;
14330 14345 state->dts_speculations = NULL;
14331 14346
14332 14347 out:
14333 14348 mutex_exit(&dtrace_lock);
14334 14349 mutex_exit(&cpu_lock);
14335 14350
14336 14351 return (rval);
14337 14352 }
14338 14353
14339 14354 static int
14340 14355 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
14341 14356 {
14342 14357 dtrace_icookie_t cookie;
14343 14358
14344 14359 ASSERT(MUTEX_HELD(&dtrace_lock));
14345 14360
14346 14361 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
14347 14362 state->dts_activity != DTRACE_ACTIVITY_DRAINING)
14348 14363 return (EINVAL);
14349 14364
14350 14365 /*
14351 14366 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
14352 14367 * to be sure that every CPU has seen it. See below for the details
14353 14368 * on why this is done.
14354 14369 */
14355 14370 state->dts_activity = DTRACE_ACTIVITY_DRAINING;
14356 14371 dtrace_sync();
14357 14372
14358 14373 /*
14359 14374 * By this point, it is impossible for any CPU to be still processing
14360 14375 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to
14361 14376 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
14362 14377 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe()
14363 14378 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
14364 14379 * iff we're in the END probe.
14365 14380 */
14366 14381 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
14367 14382 dtrace_sync();
14368 14383 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
14369 14384
14370 14385 /*
14371 14386 * Finally, we can release the reserve and call the END probe. We
14372 14387 * disable interrupts across calling the END probe to allow us to
14373 14388 * return the CPU on which we actually called the END probe. This
14374 14389 * allows user-land to be sure that this CPU's principal buffer is
14375 14390 * processed last.
14376 14391 */
14377 14392 state->dts_reserve = 0;
14378 14393
14379 14394 cookie = dtrace_interrupt_disable();
14380 14395 *cpu = CPU->cpu_id;
14381 14396 dtrace_probe(dtrace_probeid_end,
14382 14397 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14383 14398 dtrace_interrupt_enable(cookie);
14384 14399
14385 14400 state->dts_activity = DTRACE_ACTIVITY_STOPPED;
14386 14401 dtrace_sync();
14387 14402
14388 14403 if (state->dts_getf != 0 &&
14389 14404 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14390 14405 /*
14391 14406 * We don't have kernel privs but we have at least one call
14392 14407 * to getf(); we need to lower our zone's count, and (if
14393 14408 * this is the last enabling to have an unprivileged call
14394 14409 * to getf()) we need to clear the closef() hook.
14395 14410 */
14396 14411 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
14397 14412 ASSERT(dtrace_closef == dtrace_getf_barrier);
14398 14413 ASSERT(dtrace_getf > 0);
14399 14414
14400 14415 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
14401 14416
14402 14417 if (--dtrace_getf == 0)
14403 14418 dtrace_closef = NULL;
14404 14419 }
14405 14420
14406 14421 return (0);
14407 14422 }
14408 14423
14409 14424 static int
14410 14425 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
14411 14426 dtrace_optval_t val)
14412 14427 {
14413 14428 ASSERT(MUTEX_HELD(&dtrace_lock));
14414 14429
14415 14430 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14416 14431 return (EBUSY);
14417 14432
14418 14433 if (option >= DTRACEOPT_MAX)
14419 14434 return (EINVAL);
14420 14435
14421 14436 if (option != DTRACEOPT_CPU && val < 0)
14422 14437 return (EINVAL);
14423 14438
14424 14439 switch (option) {
14425 14440 case DTRACEOPT_DESTRUCTIVE:
14426 14441 if (dtrace_destructive_disallow)
14427 14442 return (EACCES);
14428 14443
14429 14444 state->dts_cred.dcr_destructive = 1;
14430 14445 break;
14431 14446
14432 14447 case DTRACEOPT_BUFSIZE:
14433 14448 case DTRACEOPT_DYNVARSIZE:
14434 14449 case DTRACEOPT_AGGSIZE:
14435 14450 case DTRACEOPT_SPECSIZE:
14436 14451 case DTRACEOPT_STRSIZE:
14437 14452 if (val < 0)
14438 14453 return (EINVAL);
14439 14454
14440 14455 if (val >= LONG_MAX) {
14441 14456 /*
14442 14457 * If this is an otherwise negative value, set it to
14443 14458 * the highest multiple of 128m less than LONG_MAX.
14444 14459 * Technically, we're adjusting the size without
14445 14460 * regard to the buffer resizing policy, but in fact,
14446 14461 * this has no effect -- if we set the buffer size to
14447 14462 * ~LONG_MAX and the buffer policy is ultimately set to
14448 14463 * be "manual", the buffer allocation is guaranteed to
14449 14464 * fail, if only because the allocation requires two
14450 14465 * buffers. (We set the the size to the highest
14451 14466 * multiple of 128m because it ensures that the size
14452 14467 * will remain a multiple of a megabyte when
14453 14468 * repeatedly halved -- all the way down to 15m.)
14454 14469 */
14455 14470 val = LONG_MAX - (1 << 27) + 1;
14456 14471 }
14457 14472 }
14458 14473
14459 14474 state->dts_options[option] = val;
14460 14475
14461 14476 return (0);
14462 14477 }
14463 14478
14464 14479 static void
14465 14480 dtrace_state_destroy(dtrace_state_t *state)
14466 14481 {
14467 14482 dtrace_ecb_t *ecb;
14468 14483 dtrace_vstate_t *vstate = &state->dts_vstate;
14469 14484 minor_t minor = getminor(state->dts_dev);
14470 14485 int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14471 14486 dtrace_speculation_t *spec = state->dts_speculations;
14472 14487 int nspec = state->dts_nspeculations;
14473 14488 uint32_t match;
14474 14489
14475 14490 ASSERT(MUTEX_HELD(&dtrace_lock));
14476 14491 ASSERT(MUTEX_HELD(&cpu_lock));
14477 14492
14478 14493 /*
14479 14494 * First, retract any retained enablings for this state.
14480 14495 */
14481 14496 dtrace_enabling_retract(state);
14482 14497 ASSERT(state->dts_nretained == 0);
14483 14498
14484 14499 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
14485 14500 state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
14486 14501 /*
14487 14502 * We have managed to come into dtrace_state_destroy() on a
14488 14503 * hot enabling -- almost certainly because of a disorderly
14489 14504 * shutdown of a consumer. (That is, a consumer that is
14490 14505 * exiting without having called dtrace_stop().) In this case,
14491 14506 * we're going to set our activity to be KILLED, and then
14492 14507 * issue a sync to be sure that everyone is out of probe
14493 14508 * context before we start blowing away ECBs.
14494 14509 */
14495 14510 state->dts_activity = DTRACE_ACTIVITY_KILLED;
14496 14511 dtrace_sync();
14497 14512 }
14498 14513
14499 14514 /*
14500 14515 * Release the credential hold we took in dtrace_state_create().
14501 14516 */
14502 14517 if (state->dts_cred.dcr_cred != NULL)
14503 14518 crfree(state->dts_cred.dcr_cred);
14504 14519
14505 14520 /*
14506 14521 * Now we can safely disable and destroy any enabled probes. Because
14507 14522 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
14508 14523 * (especially if they're all enabled), we take two passes through the
14509 14524 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and
14510 14525 * in the second we disable whatever is left over.
14511 14526 */
14512 14527 for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
14513 14528 for (i = 0; i < state->dts_necbs; i++) {
14514 14529 if ((ecb = state->dts_ecbs[i]) == NULL)
14515 14530 continue;
14516 14531
14517 14532 if (match && ecb->dte_probe != NULL) {
14518 14533 dtrace_probe_t *probe = ecb->dte_probe;
14519 14534 dtrace_provider_t *prov = probe->dtpr_provider;
14520 14535
14521 14536 if (!(prov->dtpv_priv.dtpp_flags & match))
14522 14537 continue;
14523 14538 }
14524 14539
14525 14540 dtrace_ecb_disable(ecb);
14526 14541 dtrace_ecb_destroy(ecb);
14527 14542 }
14528 14543
14529 14544 if (!match)
14530 14545 break;
14531 14546 }
14532 14547
14533 14548 /*
14534 14549 * Before we free the buffers, perform one more sync to assure that
14535 14550 * every CPU is out of probe context.
14536 14551 */
14537 14552 dtrace_sync();
14538 14553
14539 14554 dtrace_buffer_free(state->dts_buffer);
14540 14555 dtrace_buffer_free(state->dts_aggbuffer);
14541 14556
14542 14557 for (i = 0; i < nspec; i++)
14543 14558 dtrace_buffer_free(spec[i].dtsp_buffer);
14544 14559
14545 14560 if (state->dts_cleaner != CYCLIC_NONE)
14546 14561 cyclic_remove(state->dts_cleaner);
14547 14562
14548 14563 if (state->dts_deadman != CYCLIC_NONE)
14549 14564 cyclic_remove(state->dts_deadman);
14550 14565
14551 14566 dtrace_dstate_fini(&vstate->dtvs_dynvars);
14552 14567 dtrace_vstate_fini(vstate);
14553 14568 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
14554 14569
14555 14570 if (state->dts_aggregations != NULL) {
14556 14571 #ifdef DEBUG
14557 14572 for (i = 0; i < state->dts_naggregations; i++)
14558 14573 ASSERT(state->dts_aggregations[i] == NULL);
14559 14574 #endif
14560 14575 ASSERT(state->dts_naggregations > 0);
14561 14576 kmem_free(state->dts_aggregations,
14562 14577 state->dts_naggregations * sizeof (dtrace_aggregation_t *));
14563 14578 }
14564 14579
14565 14580 kmem_free(state->dts_buffer, bufsize);
14566 14581 kmem_free(state->dts_aggbuffer, bufsize);
14567 14582
14568 14583 for (i = 0; i < nspec; i++)
14569 14584 kmem_free(spec[i].dtsp_buffer, bufsize);
14570 14585
14571 14586 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14572 14587
14573 14588 dtrace_format_destroy(state);
14574 14589
14575 14590 vmem_destroy(state->dts_aggid_arena);
14576 14591 ddi_soft_state_free(dtrace_softstate, minor);
14577 14592 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14578 14593 }
14579 14594
14580 14595 /*
14581 14596 * DTrace Anonymous Enabling Functions
14582 14597 */
14583 14598 static dtrace_state_t *
14584 14599 dtrace_anon_grab(void)
14585 14600 {
14586 14601 dtrace_state_t *state;
14587 14602
14588 14603 ASSERT(MUTEX_HELD(&dtrace_lock));
14589 14604
14590 14605 if ((state = dtrace_anon.dta_state) == NULL) {
14591 14606 ASSERT(dtrace_anon.dta_enabling == NULL);
14592 14607 return (NULL);
14593 14608 }
14594 14609
14595 14610 ASSERT(dtrace_anon.dta_enabling != NULL);
14596 14611 ASSERT(dtrace_retained != NULL);
14597 14612
14598 14613 dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14599 14614 dtrace_anon.dta_enabling = NULL;
14600 14615 dtrace_anon.dta_state = NULL;
14601 14616
14602 14617 return (state);
14603 14618 }
14604 14619
14605 14620 static void
14606 14621 dtrace_anon_property(void)
14607 14622 {
14608 14623 int i, rv;
14609 14624 dtrace_state_t *state;
14610 14625 dof_hdr_t *dof;
14611 14626 char c[32]; /* enough for "dof-data-" + digits */
14612 14627
14613 14628 ASSERT(MUTEX_HELD(&dtrace_lock));
14614 14629 ASSERT(MUTEX_HELD(&cpu_lock));
14615 14630
14616 14631 for (i = 0; ; i++) {
14617 14632 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
14618 14633
14619 14634 dtrace_err_verbose = 1;
14620 14635
14621 14636 if ((dof = dtrace_dof_property(c)) == NULL) {
14622 14637 dtrace_err_verbose = 0;
14623 14638 break;
14624 14639 }
14625 14640
14626 14641 /*
14627 14642 * We want to create anonymous state, so we need to transition
14628 14643 * the kernel debugger to indicate that DTrace is active. If
14629 14644 * this fails (e.g. because the debugger has modified text in
14630 14645 * some way), we won't continue with the processing.
14631 14646 */
14632 14647 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14633 14648 cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14634 14649 "enabling ignored.");
14635 14650 dtrace_dof_destroy(dof);
14636 14651 break;
14637 14652 }
14638 14653
14639 14654 /*
14640 14655 * If we haven't allocated an anonymous state, we'll do so now.
14641 14656 */
14642 14657 if ((state = dtrace_anon.dta_state) == NULL) {
14643 14658 state = dtrace_state_create(NULL, NULL);
14644 14659 dtrace_anon.dta_state = state;
14645 14660
14646 14661 if (state == NULL) {
14647 14662 /*
14648 14663 * This basically shouldn't happen: the only
14649 14664 * failure mode from dtrace_state_create() is a
14650 14665 * failure of ddi_soft_state_zalloc() that
14651 14666 * itself should never happen. Still, the
14652 14667 * interface allows for a failure mode, and
14653 14668 * we want to fail as gracefully as possible:
14654 14669 * we'll emit an error message and cease
14655 14670 * processing anonymous state in this case.
14656 14671 */
14657 14672 cmn_err(CE_WARN, "failed to create "
14658 14673 "anonymous state");
14659 14674 dtrace_dof_destroy(dof);
14660 14675 break;
14661 14676 }
14662 14677 }
14663 14678
14664 14679 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14665 14680 &dtrace_anon.dta_enabling, 0, B_TRUE);
14666 14681
14667 14682 if (rv == 0)
14668 14683 rv = dtrace_dof_options(dof, state);
14669 14684
14670 14685 dtrace_err_verbose = 0;
14671 14686 dtrace_dof_destroy(dof);
14672 14687
14673 14688 if (rv != 0) {
14674 14689 /*
14675 14690 * This is malformed DOF; chuck any anonymous state
14676 14691 * that we created.
14677 14692 */
14678 14693 ASSERT(dtrace_anon.dta_enabling == NULL);
14679 14694 dtrace_state_destroy(state);
14680 14695 dtrace_anon.dta_state = NULL;
14681 14696 break;
14682 14697 }
14683 14698
14684 14699 ASSERT(dtrace_anon.dta_enabling != NULL);
14685 14700 }
14686 14701
14687 14702 if (dtrace_anon.dta_enabling != NULL) {
14688 14703 int rval;
14689 14704
14690 14705 /*
14691 14706 * dtrace_enabling_retain() can only fail because we are
14692 14707 * trying to retain more enablings than are allowed -- but
14693 14708 * we only have one anonymous enabling, and we are guaranteed
14694 14709 * to be allowed at least one retained enabling; we assert
14695 14710 * that dtrace_enabling_retain() returns success.
14696 14711 */
14697 14712 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14698 14713 ASSERT(rval == 0);
14699 14714
14700 14715 dtrace_enabling_dump(dtrace_anon.dta_enabling);
14701 14716 }
14702 14717 }
14703 14718
14704 14719 /*
14705 14720 * DTrace Helper Functions
14706 14721 */
14707 14722 static void
14708 14723 dtrace_helper_trace(dtrace_helper_action_t *helper,
14709 14724 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14710 14725 {
14711 14726 uint32_t size, next, nnext, i;
14712 14727 dtrace_helptrace_t *ent, *buffer;
14713 14728 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14714 14729
14715 14730 if ((buffer = dtrace_helptrace_buffer) == NULL)
14716 14731 return;
14717 14732
14718 14733 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14719 14734
14720 14735 /*
14721 14736 * What would a tracing framework be without its own tracing
14722 14737 * framework? (Well, a hell of a lot simpler, for starters...)
14723 14738 */
14724 14739 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14725 14740 sizeof (uint64_t) - sizeof (uint64_t);
14726 14741
14727 14742 /*
14728 14743 * Iterate until we can allocate a slot in the trace buffer.
14729 14744 */
14730 14745 do {
14731 14746 next = dtrace_helptrace_next;
14732 14747
14733 14748 if (next + size < dtrace_helptrace_bufsize) {
14734 14749 nnext = next + size;
14735 14750 } else {
14736 14751 nnext = size;
14737 14752 }
14738 14753 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14739 14754
14740 14755 /*
14741 14756 * We have our slot; fill it in.
14742 14757 */
14743 14758 if (nnext == size) {
14744 14759 dtrace_helptrace_wrapped++;
14745 14760 next = 0;
14746 14761 }
14747 14762
14748 14763 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
14749 14764 ent->dtht_helper = helper;
14750 14765 ent->dtht_where = where;
14751 14766 ent->dtht_nlocals = vstate->dtvs_nlocals;
14752 14767
14753 14768 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14754 14769 mstate->dtms_fltoffs : -1;
14755 14770 ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14756 14771 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
14757 14772
14758 14773 for (i = 0; i < vstate->dtvs_nlocals; i++) {
14759 14774 dtrace_statvar_t *svar;
14760 14775
14761 14776 if ((svar = vstate->dtvs_locals[i]) == NULL)
14762 14777 continue;
14763 14778
14764 14779 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14765 14780 ent->dtht_locals[i] =
14766 14781 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
14767 14782 }
14768 14783 }
14769 14784
14770 14785 static uint64_t
14771 14786 dtrace_helper(int which, dtrace_mstate_t *mstate,
14772 14787 dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14773 14788 {
14774 14789 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14775 14790 uint64_t sarg0 = mstate->dtms_arg[0];
14776 14791 uint64_t sarg1 = mstate->dtms_arg[1];
14777 14792 uint64_t rval;
14778 14793 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14779 14794 dtrace_helper_action_t *helper;
14780 14795 dtrace_vstate_t *vstate;
14781 14796 dtrace_difo_t *pred;
14782 14797 int i, trace = dtrace_helptrace_buffer != NULL;
14783 14798
14784 14799 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14785 14800
14786 14801 if (helpers == NULL)
14787 14802 return (0);
14788 14803
14789 14804 if ((helper = helpers->dthps_actions[which]) == NULL)
14790 14805 return (0);
14791 14806
14792 14807 vstate = &helpers->dthps_vstate;
14793 14808 mstate->dtms_arg[0] = arg0;
14794 14809 mstate->dtms_arg[1] = arg1;
14795 14810
14796 14811 /*
14797 14812 * Now iterate over each helper. If its predicate evaluates to 'true',
14798 14813 * we'll call the corresponding actions. Note that the below calls
14799 14814 * to dtrace_dif_emulate() may set faults in machine state. This is
14800 14815 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow
14801 14816 * the stored DIF offset with its own (which is the desired behavior).
14802 14817 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14803 14818 * from machine state; this is okay, too.
14804 14819 */
14805 14820 for (; helper != NULL; helper = helper->dtha_next) {
14806 14821 if ((pred = helper->dtha_predicate) != NULL) {
14807 14822 if (trace)
14808 14823 dtrace_helper_trace(helper, mstate, vstate, 0);
14809 14824
14810 14825 if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14811 14826 goto next;
14812 14827
14813 14828 if (*flags & CPU_DTRACE_FAULT)
14814 14829 goto err;
14815 14830 }
14816 14831
14817 14832 for (i = 0; i < helper->dtha_nactions; i++) {
14818 14833 if (trace)
14819 14834 dtrace_helper_trace(helper,
14820 14835 mstate, vstate, i + 1);
14821 14836
14822 14837 rval = dtrace_dif_emulate(helper->dtha_actions[i],
14823 14838 mstate, vstate, state);
14824 14839
14825 14840 if (*flags & CPU_DTRACE_FAULT)
14826 14841 goto err;
14827 14842 }
14828 14843
14829 14844 next:
14830 14845 if (trace)
14831 14846 dtrace_helper_trace(helper, mstate, vstate,
14832 14847 DTRACE_HELPTRACE_NEXT);
14833 14848 }
14834 14849
14835 14850 if (trace)
14836 14851 dtrace_helper_trace(helper, mstate, vstate,
14837 14852 DTRACE_HELPTRACE_DONE);
14838 14853
14839 14854 /*
14840 14855 * Restore the arg0 that we saved upon entry.
14841 14856 */
14842 14857 mstate->dtms_arg[0] = sarg0;
14843 14858 mstate->dtms_arg[1] = sarg1;
14844 14859
14845 14860 return (rval);
14846 14861
14847 14862 err:
14848 14863 if (trace)
14849 14864 dtrace_helper_trace(helper, mstate, vstate,
14850 14865 DTRACE_HELPTRACE_ERR);
14851 14866
14852 14867 /*
14853 14868 * Restore the arg0 that we saved upon entry.
14854 14869 */
14855 14870 mstate->dtms_arg[0] = sarg0;
14856 14871 mstate->dtms_arg[1] = sarg1;
14857 14872
14858 14873 return (0);
14859 14874 }
14860 14875
14861 14876 static void
14862 14877 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14863 14878 dtrace_vstate_t *vstate)
14864 14879 {
14865 14880 int i;
14866 14881
14867 14882 if (helper->dtha_predicate != NULL)
14868 14883 dtrace_difo_release(helper->dtha_predicate, vstate);
14869 14884
14870 14885 for (i = 0; i < helper->dtha_nactions; i++) {
14871 14886 ASSERT(helper->dtha_actions[i] != NULL);
14872 14887 dtrace_difo_release(helper->dtha_actions[i], vstate);
14873 14888 }
14874 14889
14875 14890 kmem_free(helper->dtha_actions,
14876 14891 helper->dtha_nactions * sizeof (dtrace_difo_t *));
14877 14892 kmem_free(helper, sizeof (dtrace_helper_action_t));
14878 14893 }
14879 14894
14880 14895 static int
14881 14896 dtrace_helper_destroygen(int gen)
14882 14897 {
14883 14898 proc_t *p = curproc;
14884 14899 dtrace_helpers_t *help = p->p_dtrace_helpers;
14885 14900 dtrace_vstate_t *vstate;
14886 14901 int i;
14887 14902
14888 14903 ASSERT(MUTEX_HELD(&dtrace_lock));
14889 14904
14890 14905 if (help == NULL || gen > help->dthps_generation)
14891 14906 return (EINVAL);
14892 14907
14893 14908 vstate = &help->dthps_vstate;
14894 14909
14895 14910 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14896 14911 dtrace_helper_action_t *last = NULL, *h, *next;
14897 14912
14898 14913 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14899 14914 next = h->dtha_next;
14900 14915
14901 14916 if (h->dtha_generation == gen) {
14902 14917 if (last != NULL) {
14903 14918 last->dtha_next = next;
14904 14919 } else {
14905 14920 help->dthps_actions[i] = next;
14906 14921 }
14907 14922
14908 14923 dtrace_helper_action_destroy(h, vstate);
14909 14924 } else {
14910 14925 last = h;
14911 14926 }
14912 14927 }
14913 14928 }
14914 14929
14915 14930 /*
14916 14931 * Interate until we've cleared out all helper providers with the
14917 14932 * given generation number.
14918 14933 */
14919 14934 for (;;) {
14920 14935 dtrace_helper_provider_t *prov;
14921 14936
14922 14937 /*
14923 14938 * Look for a helper provider with the right generation. We
14924 14939 * have to start back at the beginning of the list each time
14925 14940 * because we drop dtrace_lock. It's unlikely that we'll make
14926 14941 * more than two passes.
14927 14942 */
14928 14943 for (i = 0; i < help->dthps_nprovs; i++) {
14929 14944 prov = help->dthps_provs[i];
14930 14945
14931 14946 if (prov->dthp_generation == gen)
14932 14947 break;
14933 14948 }
14934 14949
14935 14950 /*
14936 14951 * If there were no matches, we're done.
14937 14952 */
14938 14953 if (i == help->dthps_nprovs)
14939 14954 break;
14940 14955
14941 14956 /*
14942 14957 * Move the last helper provider into this slot.
14943 14958 */
14944 14959 help->dthps_nprovs--;
14945 14960 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14946 14961 help->dthps_provs[help->dthps_nprovs] = NULL;
14947 14962
14948 14963 mutex_exit(&dtrace_lock);
14949 14964
14950 14965 /*
14951 14966 * If we have a meta provider, remove this helper provider.
14952 14967 */
14953 14968 mutex_enter(&dtrace_meta_lock);
14954 14969 if (dtrace_meta_pid != NULL) {
14955 14970 ASSERT(dtrace_deferred_pid == NULL);
14956 14971 dtrace_helper_provider_remove(&prov->dthp_prov,
14957 14972 p->p_pid);
14958 14973 }
14959 14974 mutex_exit(&dtrace_meta_lock);
14960 14975
14961 14976 dtrace_helper_provider_destroy(prov);
14962 14977
14963 14978 mutex_enter(&dtrace_lock);
14964 14979 }
14965 14980
14966 14981 return (0);
14967 14982 }
14968 14983
14969 14984 static int
14970 14985 dtrace_helper_validate(dtrace_helper_action_t *helper)
14971 14986 {
14972 14987 int err = 0, i;
14973 14988 dtrace_difo_t *dp;
14974 14989
14975 14990 if ((dp = helper->dtha_predicate) != NULL)
14976 14991 err += dtrace_difo_validate_helper(dp);
14977 14992
14978 14993 for (i = 0; i < helper->dtha_nactions; i++)
14979 14994 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14980 14995
14981 14996 return (err == 0);
14982 14997 }
14983 14998
14984 14999 static int
14985 15000 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14986 15001 {
14987 15002 dtrace_helpers_t *help;
14988 15003 dtrace_helper_action_t *helper, *last;
14989 15004 dtrace_actdesc_t *act;
14990 15005 dtrace_vstate_t *vstate;
14991 15006 dtrace_predicate_t *pred;
14992 15007 int count = 0, nactions = 0, i;
14993 15008
14994 15009 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14995 15010 return (EINVAL);
14996 15011
14997 15012 help = curproc->p_dtrace_helpers;
14998 15013 last = help->dthps_actions[which];
14999 15014 vstate = &help->dthps_vstate;
15000 15015
15001 15016 for (count = 0; last != NULL; last = last->dtha_next) {
15002 15017 count++;
15003 15018 if (last->dtha_next == NULL)
15004 15019 break;
15005 15020 }
15006 15021
15007 15022 /*
15008 15023 * If we already have dtrace_helper_actions_max helper actions for this
15009 15024 * helper action type, we'll refuse to add a new one.
15010 15025 */
15011 15026 if (count >= dtrace_helper_actions_max)
15012 15027 return (ENOSPC);
15013 15028
15014 15029 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
15015 15030 helper->dtha_generation = help->dthps_generation;
15016 15031
15017 15032 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15018 15033 ASSERT(pred->dtp_difo != NULL);
15019 15034 dtrace_difo_hold(pred->dtp_difo);
15020 15035 helper->dtha_predicate = pred->dtp_difo;
15021 15036 }
15022 15037
15023 15038 for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15024 15039 if (act->dtad_kind != DTRACEACT_DIFEXPR)
15025 15040 goto err;
15026 15041
15027 15042 if (act->dtad_difo == NULL)
15028 15043 goto err;
15029 15044
15030 15045 nactions++;
15031 15046 }
15032 15047
15033 15048 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15034 15049 (helper->dtha_nactions = nactions), KM_SLEEP);
15035 15050
15036 15051 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
15037 15052 dtrace_difo_hold(act->dtad_difo);
15038 15053 helper->dtha_actions[i++] = act->dtad_difo;
15039 15054 }
15040 15055
15041 15056 if (!dtrace_helper_validate(helper))
15042 15057 goto err;
15043 15058
15044 15059 if (last == NULL) {
15045 15060 help->dthps_actions[which] = helper;
15046 15061 } else {
15047 15062 last->dtha_next = helper;
15048 15063 }
15049 15064
15050 15065 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
15051 15066 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
15052 15067 dtrace_helptrace_next = 0;
15053 15068 }
15054 15069
15055 15070 return (0);
15056 15071 err:
15057 15072 dtrace_helper_action_destroy(helper, vstate);
15058 15073 return (EINVAL);
15059 15074 }
15060 15075
15061 15076 static void
15062 15077 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
15063 15078 dof_helper_t *dofhp)
15064 15079 {
15065 15080 ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
15066 15081
15067 15082 mutex_enter(&dtrace_meta_lock);
15068 15083 mutex_enter(&dtrace_lock);
15069 15084
15070 15085 if (!dtrace_attached() || dtrace_meta_pid == NULL) {
15071 15086 /*
15072 15087 * If the dtrace module is loaded but not attached, or if
15073 15088 * there aren't isn't a meta provider registered to deal with
15074 15089 * these provider descriptions, we need to postpone creating
15075 15090 * the actual providers until later.
15076 15091 */
15077 15092
15078 15093 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
15079 15094 dtrace_deferred_pid != help) {
15080 15095 help->dthps_deferred = 1;
15081 15096 help->dthps_pid = p->p_pid;
15082 15097 help->dthps_next = dtrace_deferred_pid;
15083 15098 help->dthps_prev = NULL;
15084 15099 if (dtrace_deferred_pid != NULL)
15085 15100 dtrace_deferred_pid->dthps_prev = help;
15086 15101 dtrace_deferred_pid = help;
15087 15102 }
15088 15103
15089 15104 mutex_exit(&dtrace_lock);
15090 15105
15091 15106 } else if (dofhp != NULL) {
15092 15107 /*
15093 15108 * If the dtrace module is loaded and we have a particular
15094 15109 * helper provider description, pass that off to the
15095 15110 * meta provider.
15096 15111 */
15097 15112
15098 15113 mutex_exit(&dtrace_lock);
15099 15114
15100 15115 dtrace_helper_provide(dofhp, p->p_pid);
15101 15116
15102 15117 } else {
15103 15118 /*
15104 15119 * Otherwise, just pass all the helper provider descriptions
15105 15120 * off to the meta provider.
15106 15121 */
15107 15122
15108 15123 int i;
15109 15124 mutex_exit(&dtrace_lock);
15110 15125
15111 15126 for (i = 0; i < help->dthps_nprovs; i++) {
15112 15127 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
15113 15128 p->p_pid);
15114 15129 }
15115 15130 }
15116 15131
15117 15132 mutex_exit(&dtrace_meta_lock);
15118 15133 }
15119 15134
15120 15135 static int
15121 15136 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
15122 15137 {
15123 15138 dtrace_helpers_t *help;
15124 15139 dtrace_helper_provider_t *hprov, **tmp_provs;
15125 15140 uint_t tmp_maxprovs, i;
15126 15141
15127 15142 ASSERT(MUTEX_HELD(&dtrace_lock));
15128 15143
15129 15144 help = curproc->p_dtrace_helpers;
15130 15145 ASSERT(help != NULL);
15131 15146
15132 15147 /*
15133 15148 * If we already have dtrace_helper_providers_max helper providers,
15134 15149 * we're refuse to add a new one.
15135 15150 */
15136 15151 if (help->dthps_nprovs >= dtrace_helper_providers_max)
15137 15152 return (ENOSPC);
15138 15153
15139 15154 /*
15140 15155 * Check to make sure this isn't a duplicate.
15141 15156 */
15142 15157 for (i = 0; i < help->dthps_nprovs; i++) {
15143 15158 if (dofhp->dofhp_addr ==
15144 15159 help->dthps_provs[i]->dthp_prov.dofhp_addr)
15145 15160 return (EALREADY);
15146 15161 }
15147 15162
15148 15163 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
15149 15164 hprov->dthp_prov = *dofhp;
15150 15165 hprov->dthp_ref = 1;
15151 15166 hprov->dthp_generation = gen;
15152 15167
15153 15168 /*
15154 15169 * Allocate a bigger table for helper providers if it's already full.
15155 15170 */
15156 15171 if (help->dthps_maxprovs == help->dthps_nprovs) {
15157 15172 tmp_maxprovs = help->dthps_maxprovs;
15158 15173 tmp_provs = help->dthps_provs;
15159 15174
15160 15175 if (help->dthps_maxprovs == 0)
15161 15176 help->dthps_maxprovs = 2;
15162 15177 else
15163 15178 help->dthps_maxprovs *= 2;
15164 15179 if (help->dthps_maxprovs > dtrace_helper_providers_max)
15165 15180 help->dthps_maxprovs = dtrace_helper_providers_max;
15166 15181
15167 15182 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
15168 15183
15169 15184 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
15170 15185 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15171 15186
15172 15187 if (tmp_provs != NULL) {
15173 15188 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
15174 15189 sizeof (dtrace_helper_provider_t *));
15175 15190 kmem_free(tmp_provs, tmp_maxprovs *
15176 15191 sizeof (dtrace_helper_provider_t *));
15177 15192 }
15178 15193 }
15179 15194
15180 15195 help->dthps_provs[help->dthps_nprovs] = hprov;
15181 15196 help->dthps_nprovs++;
15182 15197
15183 15198 return (0);
15184 15199 }
15185 15200
15186 15201 static void
15187 15202 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
15188 15203 {
15189 15204 mutex_enter(&dtrace_lock);
15190 15205
15191 15206 if (--hprov->dthp_ref == 0) {
15192 15207 dof_hdr_t *dof;
15193 15208 mutex_exit(&dtrace_lock);
15194 15209 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
15195 15210 dtrace_dof_destroy(dof);
15196 15211 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
15197 15212 } else {
15198 15213 mutex_exit(&dtrace_lock);
15199 15214 }
15200 15215 }
15201 15216
15202 15217 static int
15203 15218 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
15204 15219 {
15205 15220 uintptr_t daddr = (uintptr_t)dof;
15206 15221 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
15207 15222 dof_provider_t *provider;
15208 15223 dof_probe_t *probe;
15209 15224 uint8_t *arg;
15210 15225 char *strtab, *typestr;
15211 15226 dof_stridx_t typeidx;
15212 15227 size_t typesz;
15213 15228 uint_t nprobes, j, k;
15214 15229
15215 15230 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
15216 15231
15217 15232 if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
15218 15233 dtrace_dof_error(dof, "misaligned section offset");
15219 15234 return (-1);
15220 15235 }
15221 15236
15222 15237 /*
15223 15238 * The section needs to be large enough to contain the DOF provider
15224 15239 * structure appropriate for the given version.
15225 15240 */
15226 15241 if (sec->dofs_size <
15227 15242 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
15228 15243 offsetof(dof_provider_t, dofpv_prenoffs) :
15229 15244 sizeof (dof_provider_t))) {
15230 15245 dtrace_dof_error(dof, "provider section too small");
15231 15246 return (-1);
15232 15247 }
15233 15248
15234 15249 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
15235 15250 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
15236 15251 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
15237 15252 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
15238 15253 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
15239 15254
15240 15255 if (str_sec == NULL || prb_sec == NULL ||
15241 15256 arg_sec == NULL || off_sec == NULL)
15242 15257 return (-1);
15243 15258
15244 15259 enoff_sec = NULL;
15245 15260
15246 15261 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
15247 15262 provider->dofpv_prenoffs != DOF_SECT_NONE &&
15248 15263 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
15249 15264 provider->dofpv_prenoffs)) == NULL)
15250 15265 return (-1);
15251 15266
15252 15267 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
15253 15268
15254 15269 if (provider->dofpv_name >= str_sec->dofs_size ||
15255 15270 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
15256 15271 dtrace_dof_error(dof, "invalid provider name");
15257 15272 return (-1);
15258 15273 }
15259 15274
15260 15275 if (prb_sec->dofs_entsize == 0 ||
15261 15276 prb_sec->dofs_entsize > prb_sec->dofs_size) {
15262 15277 dtrace_dof_error(dof, "invalid entry size");
15263 15278 return (-1);
15264 15279 }
15265 15280
15266 15281 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
15267 15282 dtrace_dof_error(dof, "misaligned entry size");
15268 15283 return (-1);
15269 15284 }
15270 15285
15271 15286 if (off_sec->dofs_entsize != sizeof (uint32_t)) {
15272 15287 dtrace_dof_error(dof, "invalid entry size");
15273 15288 return (-1);
15274 15289 }
15275 15290
15276 15291 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
15277 15292 dtrace_dof_error(dof, "misaligned section offset");
15278 15293 return (-1);
15279 15294 }
15280 15295
15281 15296 if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
15282 15297 dtrace_dof_error(dof, "invalid entry size");
15283 15298 return (-1);
15284 15299 }
15285 15300
15286 15301 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
15287 15302
15288 15303 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
15289 15304
15290 15305 /*
15291 15306 * Take a pass through the probes to check for errors.
15292 15307 */
15293 15308 for (j = 0; j < nprobes; j++) {
15294 15309 probe = (dof_probe_t *)(uintptr_t)(daddr +
15295 15310 prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
15296 15311
15297 15312 if (probe->dofpr_func >= str_sec->dofs_size) {
15298 15313 dtrace_dof_error(dof, "invalid function name");
15299 15314 return (-1);
15300 15315 }
15301 15316
15302 15317 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
15303 15318 dtrace_dof_error(dof, "function name too long");
15304 15319 return (-1);
15305 15320 }
15306 15321
15307 15322 if (probe->dofpr_name >= str_sec->dofs_size ||
15308 15323 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
15309 15324 dtrace_dof_error(dof, "invalid probe name");
15310 15325 return (-1);
15311 15326 }
15312 15327
15313 15328 /*
15314 15329 * The offset count must not wrap the index, and the offsets
15315 15330 * must also not overflow the section's data.
15316 15331 */
15317 15332 if (probe->dofpr_offidx + probe->dofpr_noffs <
15318 15333 probe->dofpr_offidx ||
15319 15334 (probe->dofpr_offidx + probe->dofpr_noffs) *
15320 15335 off_sec->dofs_entsize > off_sec->dofs_size) {
15321 15336 dtrace_dof_error(dof, "invalid probe offset");
15322 15337 return (-1);
15323 15338 }
15324 15339
15325 15340 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
15326 15341 /*
15327 15342 * If there's no is-enabled offset section, make sure
15328 15343 * there aren't any is-enabled offsets. Otherwise
15329 15344 * perform the same checks as for probe offsets
15330 15345 * (immediately above).
15331 15346 */
15332 15347 if (enoff_sec == NULL) {
15333 15348 if (probe->dofpr_enoffidx != 0 ||
15334 15349 probe->dofpr_nenoffs != 0) {
15335 15350 dtrace_dof_error(dof, "is-enabled "
15336 15351 "offsets with null section");
15337 15352 return (-1);
15338 15353 }
15339 15354 } else if (probe->dofpr_enoffidx +
15340 15355 probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
15341 15356 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
15342 15357 enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
15343 15358 dtrace_dof_error(dof, "invalid is-enabled "
15344 15359 "offset");
15345 15360 return (-1);
15346 15361 }
15347 15362
15348 15363 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
15349 15364 dtrace_dof_error(dof, "zero probe and "
15350 15365 "is-enabled offsets");
15351 15366 return (-1);
15352 15367 }
15353 15368 } else if (probe->dofpr_noffs == 0) {
15354 15369 dtrace_dof_error(dof, "zero probe offsets");
15355 15370 return (-1);
15356 15371 }
15357 15372
15358 15373 if (probe->dofpr_argidx + probe->dofpr_xargc <
15359 15374 probe->dofpr_argidx ||
15360 15375 (probe->dofpr_argidx + probe->dofpr_xargc) *
15361 15376 arg_sec->dofs_entsize > arg_sec->dofs_size) {
15362 15377 dtrace_dof_error(dof, "invalid args");
15363 15378 return (-1);
15364 15379 }
15365 15380
15366 15381 typeidx = probe->dofpr_nargv;
15367 15382 typestr = strtab + probe->dofpr_nargv;
15368 15383 for (k = 0; k < probe->dofpr_nargc; k++) {
15369 15384 if (typeidx >= str_sec->dofs_size) {
15370 15385 dtrace_dof_error(dof, "bad "
15371 15386 "native argument type");
15372 15387 return (-1);
15373 15388 }
15374 15389
15375 15390 typesz = strlen(typestr) + 1;
15376 15391 if (typesz > DTRACE_ARGTYPELEN) {
15377 15392 dtrace_dof_error(dof, "native "
15378 15393 "argument type too long");
15379 15394 return (-1);
15380 15395 }
15381 15396 typeidx += typesz;
15382 15397 typestr += typesz;
15383 15398 }
15384 15399
15385 15400 typeidx = probe->dofpr_xargv;
15386 15401 typestr = strtab + probe->dofpr_xargv;
15387 15402 for (k = 0; k < probe->dofpr_xargc; k++) {
15388 15403 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
15389 15404 dtrace_dof_error(dof, "bad "
15390 15405 "native argument index");
15391 15406 return (-1);
15392 15407 }
15393 15408
15394 15409 if (typeidx >= str_sec->dofs_size) {
15395 15410 dtrace_dof_error(dof, "bad "
15396 15411 "translated argument type");
15397 15412 return (-1);
15398 15413 }
15399 15414
15400 15415 typesz = strlen(typestr) + 1;
15401 15416 if (typesz > DTRACE_ARGTYPELEN) {
15402 15417 dtrace_dof_error(dof, "translated argument "
15403 15418 "type too long");
15404 15419 return (-1);
15405 15420 }
15406 15421
15407 15422 typeidx += typesz;
15408 15423 typestr += typesz;
15409 15424 }
15410 15425 }
15411 15426
15412 15427 return (0);
15413 15428 }
15414 15429
15415 15430 static int
15416 15431 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
15417 15432 {
15418 15433 dtrace_helpers_t *help;
15419 15434 dtrace_vstate_t *vstate;
15420 15435 dtrace_enabling_t *enab = NULL;
15421 15436 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
15422 15437 uintptr_t daddr = (uintptr_t)dof;
15423 15438
15424 15439 ASSERT(MUTEX_HELD(&dtrace_lock));
15425 15440
15426 15441 if ((help = curproc->p_dtrace_helpers) == NULL)
15427 15442 help = dtrace_helpers_create(curproc);
15428 15443
15429 15444 vstate = &help->dthps_vstate;
15430 15445
15431 15446 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
15432 15447 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
15433 15448 dtrace_dof_destroy(dof);
15434 15449 return (rv);
15435 15450 }
15436 15451
15437 15452 /*
15438 15453 * Look for helper providers and validate their descriptions.
15439 15454 */
15440 15455 if (dhp != NULL) {
15441 15456 for (i = 0; i < dof->dofh_secnum; i++) {
15442 15457 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
15443 15458 dof->dofh_secoff + i * dof->dofh_secsize);
15444 15459
15445 15460 if (sec->dofs_type != DOF_SECT_PROVIDER)
15446 15461 continue;
15447 15462
15448 15463 if (dtrace_helper_provider_validate(dof, sec) != 0) {
15449 15464 dtrace_enabling_destroy(enab);
15450 15465 dtrace_dof_destroy(dof);
15451 15466 return (-1);
15452 15467 }
15453 15468
15454 15469 nprovs++;
15455 15470 }
15456 15471 }
15457 15472
15458 15473 /*
15459 15474 * Now we need to walk through the ECB descriptions in the enabling.
15460 15475 */
15461 15476 for (i = 0; i < enab->dten_ndesc; i++) {
15462 15477 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
15463 15478 dtrace_probedesc_t *desc = &ep->dted_probe;
15464 15479
15465 15480 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
15466 15481 continue;
15467 15482
15468 15483 if (strcmp(desc->dtpd_mod, "helper") != 0)
15469 15484 continue;
15470 15485
15471 15486 if (strcmp(desc->dtpd_func, "ustack") != 0)
15472 15487 continue;
15473 15488
15474 15489 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
15475 15490 ep)) != 0) {
15476 15491 /*
15477 15492 * Adding this helper action failed -- we are now going
15478 15493 * to rip out the entire generation and return failure.
15479 15494 */
15480 15495 (void) dtrace_helper_destroygen(help->dthps_generation);
15481 15496 dtrace_enabling_destroy(enab);
15482 15497 dtrace_dof_destroy(dof);
15483 15498 return (-1);
15484 15499 }
15485 15500
15486 15501 nhelpers++;
15487 15502 }
15488 15503
15489 15504 if (nhelpers < enab->dten_ndesc)
15490 15505 dtrace_dof_error(dof, "unmatched helpers");
15491 15506
15492 15507 gen = help->dthps_generation++;
15493 15508 dtrace_enabling_destroy(enab);
15494 15509
15495 15510 if (dhp != NULL && nprovs > 0) {
15496 15511 /*
15497 15512 * Now that this is in-kernel, we change the sense of the
15498 15513 * members: dofhp_dof denotes the in-kernel copy of the DOF
15499 15514 * and dofhp_addr denotes the address at user-level.
15500 15515 */
15501 15516 dhp->dofhp_addr = dhp->dofhp_dof;
15502 15517 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
15503 15518
15504 15519 if (dtrace_helper_provider_add(dhp, gen) == 0) {
15505 15520 mutex_exit(&dtrace_lock);
15506 15521 dtrace_helper_provider_register(curproc, help, dhp);
15507 15522 mutex_enter(&dtrace_lock);
15508 15523
15509 15524 destroy = 0;
15510 15525 }
15511 15526 }
15512 15527
15513 15528 if (destroy)
15514 15529 dtrace_dof_destroy(dof);
15515 15530
15516 15531 return (gen);
15517 15532 }
15518 15533
15519 15534 static dtrace_helpers_t *
15520 15535 dtrace_helpers_create(proc_t *p)
15521 15536 {
15522 15537 dtrace_helpers_t *help;
15523 15538
15524 15539 ASSERT(MUTEX_HELD(&dtrace_lock));
15525 15540 ASSERT(p->p_dtrace_helpers == NULL);
15526 15541
15527 15542 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
15528 15543 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
15529 15544 DTRACE_NHELPER_ACTIONS, KM_SLEEP);
15530 15545
15531 15546 p->p_dtrace_helpers = help;
15532 15547 dtrace_helpers++;
15533 15548
15534 15549 return (help);
15535 15550 }
15536 15551
15537 15552 static void
15538 15553 dtrace_helpers_destroy(proc_t *p)
15539 15554 {
15540 15555 dtrace_helpers_t *help;
15541 15556 dtrace_vstate_t *vstate;
15542 15557 int i;
15543 15558
15544 15559 mutex_enter(&dtrace_lock);
15545 15560
15546 15561 ASSERT(p->p_dtrace_helpers != NULL);
15547 15562 ASSERT(dtrace_helpers > 0);
15548 15563
15549 15564 help = p->p_dtrace_helpers;
15550 15565 vstate = &help->dthps_vstate;
15551 15566
15552 15567 /*
15553 15568 * We're now going to lose the help from this process.
15554 15569 */
15555 15570 p->p_dtrace_helpers = NULL;
15556 15571 if (p == curproc) {
15557 15572 dtrace_sync();
15558 15573 } else {
15559 15574 /*
15560 15575 * It is sometimes necessary to clean up dtrace helpers from a
15561 15576 * an incomplete child process as part of a failed fork
15562 15577 * operation. In such situations, a dtrace_sync() call should
15563 15578 * be unnecessary as the process should be devoid of threads,
15564 15579 * much less any in probe context.
15565 15580 */
15566 15581 VERIFY(p->p_stat == SIDL);
15567 15582 }
15568 15583
15569 15584 /*
15570 15585 * Destroy the helper actions.
15571 15586 */
15572 15587 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15573 15588 dtrace_helper_action_t *h, *next;
15574 15589
15575 15590 for (h = help->dthps_actions[i]; h != NULL; h = next) {
15576 15591 next = h->dtha_next;
15577 15592 dtrace_helper_action_destroy(h, vstate);
15578 15593 h = next;
15579 15594 }
15580 15595 }
15581 15596
15582 15597 mutex_exit(&dtrace_lock);
15583 15598
15584 15599 /*
15585 15600 * Destroy the helper providers.
15586 15601 */
15587 15602 if (help->dthps_maxprovs > 0) {
15588 15603 mutex_enter(&dtrace_meta_lock);
15589 15604 if (dtrace_meta_pid != NULL) {
15590 15605 ASSERT(dtrace_deferred_pid == NULL);
15591 15606
15592 15607 for (i = 0; i < help->dthps_nprovs; i++) {
15593 15608 dtrace_helper_provider_remove(
15594 15609 &help->dthps_provs[i]->dthp_prov, p->p_pid);
15595 15610 }
15596 15611 } else {
15597 15612 mutex_enter(&dtrace_lock);
15598 15613 ASSERT(help->dthps_deferred == 0 ||
15599 15614 help->dthps_next != NULL ||
15600 15615 help->dthps_prev != NULL ||
15601 15616 help == dtrace_deferred_pid);
15602 15617
15603 15618 /*
15604 15619 * Remove the helper from the deferred list.
15605 15620 */
15606 15621 if (help->dthps_next != NULL)
15607 15622 help->dthps_next->dthps_prev = help->dthps_prev;
15608 15623 if (help->dthps_prev != NULL)
15609 15624 help->dthps_prev->dthps_next = help->dthps_next;
15610 15625 if (dtrace_deferred_pid == help) {
15611 15626 dtrace_deferred_pid = help->dthps_next;
15612 15627 ASSERT(help->dthps_prev == NULL);
15613 15628 }
15614 15629
15615 15630 mutex_exit(&dtrace_lock);
15616 15631 }
15617 15632
15618 15633 mutex_exit(&dtrace_meta_lock);
15619 15634
15620 15635 for (i = 0; i < help->dthps_nprovs; i++) {
15621 15636 dtrace_helper_provider_destroy(help->dthps_provs[i]);
15622 15637 }
15623 15638
15624 15639 kmem_free(help->dthps_provs, help->dthps_maxprovs *
15625 15640 sizeof (dtrace_helper_provider_t *));
15626 15641 }
15627 15642
15628 15643 mutex_enter(&dtrace_lock);
15629 15644
15630 15645 dtrace_vstate_fini(&help->dthps_vstate);
15631 15646 kmem_free(help->dthps_actions,
15632 15647 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15633 15648 kmem_free(help, sizeof (dtrace_helpers_t));
15634 15649
15635 15650 --dtrace_helpers;
15636 15651 mutex_exit(&dtrace_lock);
15637 15652 }
15638 15653
15639 15654 static void
15640 15655 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15641 15656 {
15642 15657 dtrace_helpers_t *help, *newhelp;
15643 15658 dtrace_helper_action_t *helper, *new, *last;
15644 15659 dtrace_difo_t *dp;
15645 15660 dtrace_vstate_t *vstate;
15646 15661 int i, j, sz, hasprovs = 0;
15647 15662
15648 15663 mutex_enter(&dtrace_lock);
15649 15664 ASSERT(from->p_dtrace_helpers != NULL);
15650 15665 ASSERT(dtrace_helpers > 0);
15651 15666
15652 15667 help = from->p_dtrace_helpers;
15653 15668 newhelp = dtrace_helpers_create(to);
15654 15669 ASSERT(to->p_dtrace_helpers != NULL);
15655 15670
15656 15671 newhelp->dthps_generation = help->dthps_generation;
15657 15672 vstate = &newhelp->dthps_vstate;
15658 15673
15659 15674 /*
15660 15675 * Duplicate the helper actions.
15661 15676 */
15662 15677 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15663 15678 if ((helper = help->dthps_actions[i]) == NULL)
15664 15679 continue;
15665 15680
15666 15681 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15667 15682 new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15668 15683 KM_SLEEP);
15669 15684 new->dtha_generation = helper->dtha_generation;
15670 15685
15671 15686 if ((dp = helper->dtha_predicate) != NULL) {
15672 15687 dp = dtrace_difo_duplicate(dp, vstate);
15673 15688 new->dtha_predicate = dp;
15674 15689 }
15675 15690
15676 15691 new->dtha_nactions = helper->dtha_nactions;
15677 15692 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15678 15693 new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15679 15694
15680 15695 for (j = 0; j < new->dtha_nactions; j++) {
15681 15696 dtrace_difo_t *dp = helper->dtha_actions[j];
15682 15697
15683 15698 ASSERT(dp != NULL);
15684 15699 dp = dtrace_difo_duplicate(dp, vstate);
15685 15700 new->dtha_actions[j] = dp;
15686 15701 }
15687 15702
15688 15703 if (last != NULL) {
15689 15704 last->dtha_next = new;
15690 15705 } else {
15691 15706 newhelp->dthps_actions[i] = new;
15692 15707 }
15693 15708
15694 15709 last = new;
15695 15710 }
15696 15711 }
15697 15712
15698 15713 /*
15699 15714 * Duplicate the helper providers and register them with the
15700 15715 * DTrace framework.
15701 15716 */
15702 15717 if (help->dthps_nprovs > 0) {
15703 15718 newhelp->dthps_nprovs = help->dthps_nprovs;
15704 15719 newhelp->dthps_maxprovs = help->dthps_nprovs;
15705 15720 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15706 15721 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15707 15722 for (i = 0; i < newhelp->dthps_nprovs; i++) {
15708 15723 newhelp->dthps_provs[i] = help->dthps_provs[i];
15709 15724 newhelp->dthps_provs[i]->dthp_ref++;
15710 15725 }
15711 15726
15712 15727 hasprovs = 1;
15713 15728 }
15714 15729
15715 15730 mutex_exit(&dtrace_lock);
15716 15731
15717 15732 if (hasprovs)
15718 15733 dtrace_helper_provider_register(to, newhelp, NULL);
15719 15734 }
15720 15735
15721 15736 /*
15722 15737 * DTrace Hook Functions
15723 15738 */
15724 15739 static void
15725 15740 dtrace_module_loaded(struct modctl *ctl)
15726 15741 {
15727 15742 dtrace_provider_t *prv;
15728 15743
15729 15744 mutex_enter(&dtrace_provider_lock);
15730 15745 mutex_enter(&mod_lock);
15731 15746
15732 15747 ASSERT(ctl->mod_busy);
15733 15748
15734 15749 /*
15735 15750 * We're going to call each providers per-module provide operation
15736 15751 * specifying only this module.
15737 15752 */
15738 15753 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15739 15754 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15740 15755
15741 15756 mutex_exit(&mod_lock);
15742 15757 mutex_exit(&dtrace_provider_lock);
15743 15758
15744 15759 /*
15745 15760 * If we have any retained enablings, we need to match against them.
15746 15761 * Enabling probes requires that cpu_lock be held, and we cannot hold
15747 15762 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15748 15763 * module. (In particular, this happens when loading scheduling
15749 15764 * classes.) So if we have any retained enablings, we need to dispatch
15750 15765 * our task queue to do the match for us.
15751 15766 */
15752 15767 mutex_enter(&dtrace_lock);
15753 15768
15754 15769 if (dtrace_retained == NULL) {
15755 15770 mutex_exit(&dtrace_lock);
15756 15771 return;
15757 15772 }
15758 15773
15759 15774 (void) taskq_dispatch(dtrace_taskq,
15760 15775 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15761 15776
15762 15777 mutex_exit(&dtrace_lock);
15763 15778
15764 15779 /*
15765 15780 * And now, for a little heuristic sleaze: in general, we want to
15766 15781 * match modules as soon as they load. However, we cannot guarantee
15767 15782 * this, because it would lead us to the lock ordering violation
15768 15783 * outlined above. The common case, of course, is that cpu_lock is
15769 15784 * _not_ held -- so we delay here for a clock tick, hoping that that's
15770 15785 * long enough for the task queue to do its work. If it's not, it's
15771 15786 * not a serious problem -- it just means that the module that we
15772 15787 * just loaded may not be immediately instrumentable.
15773 15788 */
15774 15789 delay(1);
15775 15790 }
15776 15791
15777 15792 static void
15778 15793 dtrace_module_unloaded(struct modctl *ctl)
15779 15794 {
15780 15795 dtrace_probe_t template, *probe, *first, *next;
15781 15796 dtrace_provider_t *prov;
15782 15797
15783 15798 template.dtpr_mod = ctl->mod_modname;
15784 15799
15785 15800 mutex_enter(&dtrace_provider_lock);
15786 15801 mutex_enter(&mod_lock);
15787 15802 mutex_enter(&dtrace_lock);
15788 15803
15789 15804 if (dtrace_bymod == NULL) {
15790 15805 /*
15791 15806 * The DTrace module is loaded (obviously) but not attached;
15792 15807 * we don't have any work to do.
15793 15808 */
15794 15809 mutex_exit(&dtrace_provider_lock);
15795 15810 mutex_exit(&mod_lock);
15796 15811 mutex_exit(&dtrace_lock);
15797 15812 return;
15798 15813 }
15799 15814
15800 15815 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15801 15816 probe != NULL; probe = probe->dtpr_nextmod) {
15802 15817 if (probe->dtpr_ecb != NULL) {
15803 15818 mutex_exit(&dtrace_provider_lock);
15804 15819 mutex_exit(&mod_lock);
15805 15820 mutex_exit(&dtrace_lock);
15806 15821
15807 15822 /*
15808 15823 * This shouldn't _actually_ be possible -- we're
15809 15824 * unloading a module that has an enabled probe in it.
15810 15825 * (It's normally up to the provider to make sure that
15811 15826 * this can't happen.) However, because dtps_enable()
15812 15827 * doesn't have a failure mode, there can be an
15813 15828 * enable/unload race. Upshot: we don't want to
15814 15829 * assert, but we're not going to disable the
15815 15830 * probe, either.
15816 15831 */
15817 15832 if (dtrace_err_verbose) {
15818 15833 cmn_err(CE_WARN, "unloaded module '%s' had "
15819 15834 "enabled probes", ctl->mod_modname);
15820 15835 }
15821 15836
15822 15837 return;
15823 15838 }
15824 15839 }
15825 15840
15826 15841 probe = first;
15827 15842
15828 15843 for (first = NULL; probe != NULL; probe = next) {
15829 15844 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15830 15845
15831 15846 dtrace_probes[probe->dtpr_id - 1] = NULL;
15832 15847
15833 15848 next = probe->dtpr_nextmod;
15834 15849 dtrace_hash_remove(dtrace_bymod, probe);
15835 15850 dtrace_hash_remove(dtrace_byfunc, probe);
15836 15851 dtrace_hash_remove(dtrace_byname, probe);
15837 15852
15838 15853 if (first == NULL) {
15839 15854 first = probe;
15840 15855 probe->dtpr_nextmod = NULL;
15841 15856 } else {
15842 15857 probe->dtpr_nextmod = first;
15843 15858 first = probe;
15844 15859 }
15845 15860 }
15846 15861
15847 15862 /*
15848 15863 * We've removed all of the module's probes from the hash chains and
15849 15864 * from the probe array. Now issue a dtrace_sync() to be sure that
15850 15865 * everyone has cleared out from any probe array processing.
15851 15866 */
15852 15867 dtrace_sync();
15853 15868
15854 15869 for (probe = first; probe != NULL; probe = first) {
15855 15870 first = probe->dtpr_nextmod;
15856 15871 prov = probe->dtpr_provider;
15857 15872 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15858 15873 probe->dtpr_arg);
15859 15874 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15860 15875 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15861 15876 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15862 15877 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15863 15878 kmem_free(probe, sizeof (dtrace_probe_t));
15864 15879 }
15865 15880
15866 15881 mutex_exit(&dtrace_lock);
15867 15882 mutex_exit(&mod_lock);
15868 15883 mutex_exit(&dtrace_provider_lock);
15869 15884 }
15870 15885
15871 15886 void
15872 15887 dtrace_suspend(void)
15873 15888 {
15874 15889 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15875 15890 }
15876 15891
15877 15892 void
15878 15893 dtrace_resume(void)
15879 15894 {
15880 15895 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15881 15896 }
15882 15897
15883 15898 static int
15884 15899 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu, void *ptr __unused)
15885 15900 {
15886 15901 ASSERT(MUTEX_HELD(&cpu_lock));
15887 15902 mutex_enter(&dtrace_lock);
15888 15903
15889 15904 switch (what) {
15890 15905 case CPU_CONFIG: {
15891 15906 dtrace_state_t *state;
15892 15907 dtrace_optval_t *opt, rs, c;
15893 15908
15894 15909 /*
15895 15910 * For now, we only allocate a new buffer for anonymous state.
15896 15911 */
15897 15912 if ((state = dtrace_anon.dta_state) == NULL)
15898 15913 break;
15899 15914
15900 15915 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15901 15916 break;
15902 15917
15903 15918 opt = state->dts_options;
15904 15919 c = opt[DTRACEOPT_CPU];
15905 15920
15906 15921 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15907 15922 break;
15908 15923
15909 15924 /*
15910 15925 * Regardless of what the actual policy is, we're going to
15911 15926 * temporarily set our resize policy to be manual. We're
15912 15927 * also going to temporarily set our CPU option to denote
15913 15928 * the newly configured CPU.
15914 15929 */
15915 15930 rs = opt[DTRACEOPT_BUFRESIZE];
15916 15931 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15917 15932 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15918 15933
15919 15934 (void) dtrace_state_buffers(state);
15920 15935
15921 15936 opt[DTRACEOPT_BUFRESIZE] = rs;
15922 15937 opt[DTRACEOPT_CPU] = c;
15923 15938
15924 15939 break;
15925 15940 }
15926 15941
15927 15942 case CPU_UNCONFIG:
15928 15943 /*
15929 15944 * We don't free the buffer in the CPU_UNCONFIG case. (The
15930 15945 * buffer will be freed when the consumer exits.)
15931 15946 */
15932 15947 break;
15933 15948
15934 15949 default:
15935 15950 break;
15936 15951 }
15937 15952
15938 15953 mutex_exit(&dtrace_lock);
15939 15954 return (0);
15940 15955 }
15941 15956
15942 15957 static void
15943 15958 dtrace_cpu_setup_initial(processorid_t cpu)
15944 15959 {
15945 15960 (void) dtrace_cpu_setup(CPU_CONFIG, cpu, NULL);
15946 15961 }
15947 15962
15948 15963 static void
15949 15964 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15950 15965 {
15951 15966 if (dtrace_toxranges >= dtrace_toxranges_max) {
15952 15967 int osize, nsize;
15953 15968 dtrace_toxrange_t *range;
15954 15969
15955 15970 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15956 15971
15957 15972 if (osize == 0) {
15958 15973 ASSERT(dtrace_toxrange == NULL);
15959 15974 ASSERT(dtrace_toxranges_max == 0);
15960 15975 dtrace_toxranges_max = 1;
15961 15976 } else {
15962 15977 dtrace_toxranges_max <<= 1;
15963 15978 }
15964 15979
15965 15980 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15966 15981 range = kmem_zalloc(nsize, KM_SLEEP);
15967 15982
15968 15983 if (dtrace_toxrange != NULL) {
15969 15984 ASSERT(osize != 0);
15970 15985 bcopy(dtrace_toxrange, range, osize);
15971 15986 kmem_free(dtrace_toxrange, osize);
15972 15987 }
15973 15988
15974 15989 dtrace_toxrange = range;
15975 15990 }
15976 15991
15977 15992 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == (uintptr_t)NULL);
15978 15993 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == (uintptr_t)NULL);
15979 15994
15980 15995 dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15981 15996 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15982 15997 dtrace_toxranges++;
15983 15998 }
15984 15999
15985 16000 static void
15986 16001 dtrace_getf_barrier()
15987 16002 {
15988 16003 /*
15989 16004 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
15990 16005 * that contain calls to getf(), this routine will be called on every
15991 16006 * closef() before either the underlying vnode is released or the
15992 16007 * file_t itself is freed. By the time we are here, it is essential
15993 16008 * that the file_t can no longer be accessed from a call to getf()
15994 16009 * in probe context -- that assures that a dtrace_sync() can be used
15995 16010 * to clear out any enablings referring to the old structures.
15996 16011 */
15997 16012 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
15998 16013 kcred->cr_zone->zone_dtrace_getf != 0)
15999 16014 dtrace_sync();
16000 16015 }
16001 16016
16002 16017 /*
16003 16018 * DTrace Driver Cookbook Functions
16004 16019 */
16005 16020 /*ARGSUSED*/
16006 16021 static int
16007 16022 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
16008 16023 {
16009 16024 dtrace_provider_id_t id;
16010 16025 dtrace_state_t *state = NULL;
16011 16026 dtrace_enabling_t *enab;
16012 16027
16013 16028 mutex_enter(&cpu_lock);
16014 16029 mutex_enter(&dtrace_provider_lock);
16015 16030 mutex_enter(&dtrace_lock);
16016 16031
16017 16032 if (ddi_soft_state_init(&dtrace_softstate,
16018 16033 sizeof (dtrace_state_t), 0) != 0) {
16019 16034 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
16020 16035 mutex_exit(&cpu_lock);
16021 16036 mutex_exit(&dtrace_provider_lock);
16022 16037 mutex_exit(&dtrace_lock);
16023 16038 return (DDI_FAILURE);
16024 16039 }
16025 16040
16026 16041 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
16027 16042 DTRACEMNRN_DTRACE, DDI_PSEUDO, 0) == DDI_FAILURE ||
16028 16043 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
16029 16044 DTRACEMNRN_HELPER, DDI_PSEUDO, 0) == DDI_FAILURE) {
16030 16045 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
16031 16046 ddi_remove_minor_node(devi, NULL);
16032 16047 ddi_soft_state_fini(&dtrace_softstate);
16033 16048 mutex_exit(&cpu_lock);
16034 16049 mutex_exit(&dtrace_provider_lock);
16035 16050 mutex_exit(&dtrace_lock);
16036 16051 return (DDI_FAILURE);
16037 16052 }
16038 16053
16039 16054 ddi_report_dev(devi);
16040 16055 dtrace_devi = devi;
16041 16056
16042 16057 dtrace_modload = dtrace_module_loaded;
16043 16058 dtrace_modunload = dtrace_module_unloaded;
16044 16059 dtrace_cpu_init = dtrace_cpu_setup_initial;
16045 16060 dtrace_helpers_cleanup = dtrace_helpers_destroy;
16046 16061 dtrace_helpers_fork = dtrace_helpers_duplicate;
16047 16062 dtrace_cpustart_init = dtrace_suspend;
16048 16063 dtrace_cpustart_fini = dtrace_resume;
16049 16064 dtrace_debugger_init = dtrace_suspend;
16050 16065 dtrace_debugger_fini = dtrace_resume;
16051 16066
16052 16067 register_cpu_setup_func(dtrace_cpu_setup, NULL);
16053 16068
16054 16069 ASSERT(MUTEX_HELD(&cpu_lock));
16055 16070
16056 16071 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
16057 16072 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
16058 16073 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
16059 16074 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
16060 16075 VM_SLEEP | VMC_IDENTIFIER);
16061 16076 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
16062 16077 1, INT_MAX, 0);
16063 16078
16064 16079 dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
16065 16080 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
16066 16081 NULL, NULL, NULL, NULL, NULL, 0);
16067 16082
16068 16083 ASSERT(MUTEX_HELD(&cpu_lock));
16069 16084 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
16070 16085 offsetof(dtrace_probe_t, dtpr_nextmod),
16071 16086 offsetof(dtrace_probe_t, dtpr_prevmod));
16072 16087
16073 16088 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
16074 16089 offsetof(dtrace_probe_t, dtpr_nextfunc),
16075 16090 offsetof(dtrace_probe_t, dtpr_prevfunc));
16076 16091
16077 16092 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
16078 16093 offsetof(dtrace_probe_t, dtpr_nextname),
16079 16094 offsetof(dtrace_probe_t, dtpr_prevname));
16080 16095
16081 16096 if (dtrace_retain_max < 1) {
16082 16097 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
16083 16098 "setting to 1", dtrace_retain_max);
16084 16099 dtrace_retain_max = 1;
16085 16100 }
16086 16101
16087 16102 /*
16088 16103 * Now discover our toxic ranges.
16089 16104 */
16090 16105 dtrace_toxic_ranges(dtrace_toxrange_add);
16091 16106
16092 16107 /*
16093 16108 * Before we register ourselves as a provider to our own framework,
16094 16109 * we would like to assert that dtrace_provider is NULL -- but that's
16095 16110 * not true if we were loaded as a dependency of a DTrace provider.
16096 16111 * Once we've registered, we can assert that dtrace_provider is our
16097 16112 * pseudo provider.
16098 16113 */
16099 16114 (void) dtrace_register("dtrace", &dtrace_provider_attr,
16100 16115 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
16101 16116
16102 16117 ASSERT(dtrace_provider != NULL);
16103 16118 ASSERT((dtrace_provider_id_t)dtrace_provider == id);
16104 16119
16105 16120 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
16106 16121 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
16107 16122 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
16108 16123 dtrace_provider, NULL, NULL, "END", 0, NULL);
16109 16124 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
16110 16125 dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
16111 16126
16112 16127 dtrace_anon_property();
16113 16128 mutex_exit(&cpu_lock);
16114 16129
16115 16130 /*
16116 16131 * If there are already providers, we must ask them to provide their
16117 16132 * probes, and then match any anonymous enabling against them. Note
16118 16133 * that there should be no other retained enablings at this time:
16119 16134 * the only retained enablings at this time should be the anonymous
16120 16135 * enabling.
16121 16136 */
16122 16137 if (dtrace_anon.dta_enabling != NULL) {
16123 16138 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
16124 16139
16125 16140 dtrace_enabling_provide(NULL);
16126 16141 state = dtrace_anon.dta_state;
16127 16142
16128 16143 /*
16129 16144 * We couldn't hold cpu_lock across the above call to
16130 16145 * dtrace_enabling_provide(), but we must hold it to actually
16131 16146 * enable the probes. We have to drop all of our locks, pick
16132 16147 * up cpu_lock, and regain our locks before matching the
16133 16148 * retained anonymous enabling.
16134 16149 */
16135 16150 mutex_exit(&dtrace_lock);
16136 16151 mutex_exit(&dtrace_provider_lock);
16137 16152
16138 16153 mutex_enter(&cpu_lock);
16139 16154 mutex_enter(&dtrace_provider_lock);
16140 16155 mutex_enter(&dtrace_lock);
16141 16156
16142 16157 if ((enab = dtrace_anon.dta_enabling) != NULL)
16143 16158 (void) dtrace_enabling_match(enab, NULL);
16144 16159
16145 16160 mutex_exit(&cpu_lock);
16146 16161 }
16147 16162
16148 16163 mutex_exit(&dtrace_lock);
16149 16164 mutex_exit(&dtrace_provider_lock);
16150 16165
16151 16166 if (state != NULL) {
16152 16167 /*
16153 16168 * If we created any anonymous state, set it going now.
16154 16169 */
16155 16170 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
16156 16171 }
16157 16172
16158 16173 return (DDI_SUCCESS);
16159 16174 }
16160 16175
16161 16176 /*ARGSUSED*/
16162 16177 static int
16163 16178 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
16164 16179 {
16165 16180 dtrace_state_t *state;
16166 16181 uint32_t priv;
16167 16182 uid_t uid;
16168 16183 zoneid_t zoneid;
16169 16184
16170 16185 if (getminor(*devp) == DTRACEMNRN_HELPER)
16171 16186 return (0);
16172 16187
16173 16188 /*
16174 16189 * If this wasn't an open with the "helper" minor, then it must be
16175 16190 * the "dtrace" minor.
16176 16191 */
16177 16192 if (getminor(*devp) != DTRACEMNRN_DTRACE)
16178 16193 return (ENXIO);
16179 16194
16180 16195 /*
16181 16196 * If no DTRACE_PRIV_* bits are set in the credential, then the
16182 16197 * caller lacks sufficient permission to do anything with DTrace.
16183 16198 */
16184 16199 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
16185 16200 if (priv == DTRACE_PRIV_NONE)
16186 16201 return (EACCES);
16187 16202
16188 16203 /*
16189 16204 * Ask all providers to provide all their probes.
16190 16205 */
16191 16206 mutex_enter(&dtrace_provider_lock);
16192 16207 dtrace_probe_provide(NULL, NULL);
16193 16208 mutex_exit(&dtrace_provider_lock);
16194 16209
16195 16210 mutex_enter(&cpu_lock);
16196 16211 mutex_enter(&dtrace_lock);
16197 16212 dtrace_opens++;
16198 16213 dtrace_membar_producer();
16199 16214
16200 16215 /*
16201 16216 * If the kernel debugger is active (that is, if the kernel debugger
16202 16217 * modified text in some way), we won't allow the open.
16203 16218 */
16204 16219 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
16205 16220 dtrace_opens--;
16206 16221 mutex_exit(&cpu_lock);
16207 16222 mutex_exit(&dtrace_lock);
16208 16223 return (EBUSY);
16209 16224 }
16210 16225
16211 16226 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
16212 16227 /*
16213 16228 * If DTrace helper tracing is enabled, we need to allocate the
16214 16229 * trace buffer and initialize the values.
16215 16230 */
16216 16231 dtrace_helptrace_buffer =
16217 16232 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
16218 16233 dtrace_helptrace_next = 0;
16219 16234 dtrace_helptrace_wrapped = 0;
16220 16235 dtrace_helptrace_enable = 0;
16221 16236 }
16222 16237
16223 16238 state = dtrace_state_create(devp, cred_p);
16224 16239 mutex_exit(&cpu_lock);
16225 16240
16226 16241 if (state == NULL) {
16227 16242 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16228 16243 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16229 16244 mutex_exit(&dtrace_lock);
16230 16245 return (EAGAIN);
16231 16246 }
16232 16247
16233 16248 mutex_exit(&dtrace_lock);
16234 16249
16235 16250 return (0);
16236 16251 }
16237 16252
16238 16253 /*ARGSUSED*/
16239 16254 static int
16240 16255 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
16241 16256 {
16242 16257 minor_t minor = getminor(dev);
16243 16258 dtrace_state_t *state;
16244 16259 dtrace_helptrace_t *buf = NULL;
16245 16260
16246 16261 if (minor == DTRACEMNRN_HELPER)
16247 16262 return (0);
16248 16263
16249 16264 state = ddi_get_soft_state(dtrace_softstate, minor);
16250 16265
16251 16266 mutex_enter(&cpu_lock);
16252 16267 mutex_enter(&dtrace_lock);
16253 16268
16254 16269 if (state->dts_anon) {
16255 16270 /*
16256 16271 * There is anonymous state. Destroy that first.
16257 16272 */
16258 16273 ASSERT(dtrace_anon.dta_state == NULL);
16259 16274 dtrace_state_destroy(state->dts_anon);
16260 16275 }
16261 16276
16262 16277 if (dtrace_helptrace_disable) {
16263 16278 /*
16264 16279 * If we have been told to disable helper tracing, set the
16265 16280 * buffer to NULL before calling into dtrace_state_destroy();
16266 16281 * we take advantage of its dtrace_sync() to know that no
16267 16282 * CPU is in probe context with enabled helper tracing
16268 16283 * after it returns.
16269 16284 */
16270 16285 buf = dtrace_helptrace_buffer;
16271 16286 dtrace_helptrace_buffer = NULL;
16272 16287 }
16273 16288
16274 16289 dtrace_state_destroy(state);
16275 16290 ASSERT(dtrace_opens > 0);
16276 16291
16277 16292 /*
16278 16293 * Only relinquish control of the kernel debugger interface when there
16279 16294 * are no consumers and no anonymous enablings.
16280 16295 */
16281 16296 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16282 16297 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16283 16298
16284 16299 if (buf != NULL) {
16285 16300 kmem_free(buf, dtrace_helptrace_bufsize);
16286 16301 dtrace_helptrace_disable = 0;
16287 16302 }
16288 16303
16289 16304 mutex_exit(&dtrace_lock);
16290 16305 mutex_exit(&cpu_lock);
16291 16306
16292 16307 return (0);
16293 16308 }
16294 16309
16295 16310 /*ARGSUSED*/
16296 16311 static int
16297 16312 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
16298 16313 {
16299 16314 int rval;
16300 16315 dof_helper_t help, *dhp = NULL;
16301 16316
16302 16317 switch (cmd) {
16303 16318 case DTRACEHIOC_ADDDOF:
16304 16319 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
16305 16320 dtrace_dof_error(NULL, "failed to copyin DOF helper");
16306 16321 return (EFAULT);
16307 16322 }
16308 16323
16309 16324 dhp = &help;
16310 16325 arg = (intptr_t)help.dofhp_dof;
16311 16326 /*FALLTHROUGH*/
16312 16327
16313 16328 case DTRACEHIOC_ADD: {
16314 16329 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
16315 16330
16316 16331 if (dof == NULL)
16317 16332 return (rval);
16318 16333
16319 16334 mutex_enter(&dtrace_lock);
16320 16335
16321 16336 /*
16322 16337 * dtrace_helper_slurp() takes responsibility for the dof --
16323 16338 * it may free it now or it may save it and free it later.
16324 16339 */
16325 16340 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
16326 16341 *rv = rval;
16327 16342 rval = 0;
16328 16343 } else {
16329 16344 rval = EINVAL;
16330 16345 }
16331 16346
16332 16347 mutex_exit(&dtrace_lock);
16333 16348 return (rval);
16334 16349 }
16335 16350
16336 16351 case DTRACEHIOC_REMOVE: {
16337 16352 mutex_enter(&dtrace_lock);
16338 16353 rval = dtrace_helper_destroygen(arg);
16339 16354 mutex_exit(&dtrace_lock);
16340 16355
16341 16356 return (rval);
16342 16357 }
16343 16358
16344 16359 default:
16345 16360 break;
16346 16361 }
16347 16362
16348 16363 return (ENOTTY);
16349 16364 }
16350 16365
16351 16366 /*ARGSUSED*/
16352 16367 static int
16353 16368 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
16354 16369 {
16355 16370 minor_t minor = getminor(dev);
16356 16371 dtrace_state_t *state;
16357 16372 int rval;
16358 16373
16359 16374 if (minor == DTRACEMNRN_HELPER)
16360 16375 return (dtrace_ioctl_helper(cmd, arg, rv));
16361 16376
16362 16377 state = ddi_get_soft_state(dtrace_softstate, minor);
16363 16378
16364 16379 if (state->dts_anon) {
16365 16380 ASSERT(dtrace_anon.dta_state == NULL);
16366 16381 state = state->dts_anon;
16367 16382 }
16368 16383
16369 16384 switch (cmd) {
16370 16385 case DTRACEIOC_PROVIDER: {
16371 16386 dtrace_providerdesc_t pvd;
16372 16387 dtrace_provider_t *pvp;
16373 16388
16374 16389 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
16375 16390 return (EFAULT);
16376 16391
16377 16392 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
16378 16393 mutex_enter(&dtrace_provider_lock);
16379 16394
16380 16395 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
16381 16396 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
16382 16397 break;
16383 16398 }
16384 16399
16385 16400 mutex_exit(&dtrace_provider_lock);
16386 16401
16387 16402 if (pvp == NULL)
16388 16403 return (ESRCH);
16389 16404
16390 16405 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
16391 16406 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
16392 16407 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
16393 16408 return (EFAULT);
16394 16409
16395 16410 return (0);
16396 16411 }
16397 16412
16398 16413 case DTRACEIOC_EPROBE: {
16399 16414 dtrace_eprobedesc_t epdesc;
16400 16415 dtrace_ecb_t *ecb;
16401 16416 dtrace_action_t *act;
16402 16417 void *buf;
16403 16418 size_t size;
16404 16419 uintptr_t dest;
16405 16420 int nrecs;
16406 16421
16407 16422 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
16408 16423 return (EFAULT);
16409 16424
16410 16425 mutex_enter(&dtrace_lock);
16411 16426
16412 16427 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
16413 16428 mutex_exit(&dtrace_lock);
16414 16429 return (EINVAL);
16415 16430 }
16416 16431
16417 16432 if (ecb->dte_probe == NULL) {
16418 16433 mutex_exit(&dtrace_lock);
16419 16434 return (EINVAL);
16420 16435 }
16421 16436
16422 16437 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
16423 16438 epdesc.dtepd_uarg = ecb->dte_uarg;
16424 16439 epdesc.dtepd_size = ecb->dte_size;
16425 16440
16426 16441 nrecs = epdesc.dtepd_nrecs;
16427 16442 epdesc.dtepd_nrecs = 0;
16428 16443 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16429 16444 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16430 16445 continue;
16431 16446
16432 16447 epdesc.dtepd_nrecs++;
16433 16448 }
16434 16449
16435 16450 /*
16436 16451 * Now that we have the size, we need to allocate a temporary
16437 16452 * buffer in which to store the complete description. We need
16438 16453 * the temporary buffer to be able to drop dtrace_lock()
16439 16454 * across the copyout(), below.
16440 16455 */
16441 16456 size = sizeof (dtrace_eprobedesc_t) +
16442 16457 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
16443 16458
16444 16459 buf = kmem_alloc(size, KM_SLEEP);
16445 16460 dest = (uintptr_t)buf;
16446 16461
16447 16462 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
16448 16463 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
16449 16464
16450 16465 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16451 16466 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16452 16467 continue;
16453 16468
16454 16469 if (nrecs-- == 0)
16455 16470 break;
16456 16471
16457 16472 bcopy(&act->dta_rec, (void *)dest,
16458 16473 sizeof (dtrace_recdesc_t));
16459 16474 dest += sizeof (dtrace_recdesc_t);
16460 16475 }
16461 16476
16462 16477 mutex_exit(&dtrace_lock);
16463 16478
16464 16479 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16465 16480 kmem_free(buf, size);
16466 16481 return (EFAULT);
16467 16482 }
16468 16483
16469 16484 kmem_free(buf, size);
16470 16485 return (0);
16471 16486 }
16472 16487
16473 16488 case DTRACEIOC_AGGDESC: {
16474 16489 dtrace_aggdesc_t aggdesc;
16475 16490 dtrace_action_t *act;
16476 16491 dtrace_aggregation_t *agg;
16477 16492 int nrecs;
16478 16493 uint32_t offs;
16479 16494 dtrace_recdesc_t *lrec;
16480 16495 void *buf;
16481 16496 size_t size;
16482 16497 uintptr_t dest;
16483 16498
16484 16499 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
16485 16500 return (EFAULT);
16486 16501
16487 16502 mutex_enter(&dtrace_lock);
16488 16503
16489 16504 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16490 16505 mutex_exit(&dtrace_lock);
16491 16506 return (EINVAL);
16492 16507 }
16493 16508
16494 16509 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16495 16510
16496 16511 nrecs = aggdesc.dtagd_nrecs;
16497 16512 aggdesc.dtagd_nrecs = 0;
16498 16513
16499 16514 offs = agg->dtag_base;
16500 16515 lrec = &agg->dtag_action.dta_rec;
16501 16516 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16502 16517
16503 16518 for (act = agg->dtag_first; ; act = act->dta_next) {
16504 16519 ASSERT(act->dta_intuple ||
16505 16520 DTRACEACT_ISAGG(act->dta_kind));
16506 16521
16507 16522 /*
16508 16523 * If this action has a record size of zero, it
16509 16524 * denotes an argument to the aggregating action.
16510 16525 * Because the presence of this record doesn't (or
16511 16526 * shouldn't) affect the way the data is interpreted,
16512 16527 * we don't copy it out to save user-level the
16513 16528 * confusion of dealing with a zero-length record.
16514 16529 */
16515 16530 if (act->dta_rec.dtrd_size == 0) {
16516 16531 ASSERT(agg->dtag_hasarg);
16517 16532 continue;
16518 16533 }
16519 16534
16520 16535 aggdesc.dtagd_nrecs++;
16521 16536
16522 16537 if (act == &agg->dtag_action)
16523 16538 break;
16524 16539 }
16525 16540
16526 16541 /*
16527 16542 * Now that we have the size, we need to allocate a temporary
16528 16543 * buffer in which to store the complete description. We need
16529 16544 * the temporary buffer to be able to drop dtrace_lock()
16530 16545 * across the copyout(), below.
16531 16546 */
16532 16547 size = sizeof (dtrace_aggdesc_t) +
16533 16548 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16534 16549
16535 16550 buf = kmem_alloc(size, KM_SLEEP);
16536 16551 dest = (uintptr_t)buf;
16537 16552
16538 16553 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16539 16554 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16540 16555
16541 16556 for (act = agg->dtag_first; ; act = act->dta_next) {
16542 16557 dtrace_recdesc_t rec = act->dta_rec;
16543 16558
16544 16559 /*
16545 16560 * See the comment in the above loop for why we pass
16546 16561 * over zero-length records.
16547 16562 */
16548 16563 if (rec.dtrd_size == 0) {
16549 16564 ASSERT(agg->dtag_hasarg);
16550 16565 continue;
16551 16566 }
16552 16567
16553 16568 if (nrecs-- == 0)
16554 16569 break;
16555 16570
16556 16571 rec.dtrd_offset -= offs;
16557 16572 bcopy(&rec, (void *)dest, sizeof (rec));
16558 16573 dest += sizeof (dtrace_recdesc_t);
16559 16574
16560 16575 if (act == &agg->dtag_action)
16561 16576 break;
16562 16577 }
16563 16578
16564 16579 mutex_exit(&dtrace_lock);
16565 16580
16566 16581 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16567 16582 kmem_free(buf, size);
16568 16583 return (EFAULT);
16569 16584 }
16570 16585
16571 16586 kmem_free(buf, size);
16572 16587 return (0);
16573 16588 }
16574 16589
16575 16590 case DTRACEIOC_ENABLE: {
16576 16591 dof_hdr_t *dof;
16577 16592 dtrace_enabling_t *enab = NULL;
16578 16593 dtrace_vstate_t *vstate;
16579 16594 int err = 0;
16580 16595
16581 16596 *rv = 0;
16582 16597
16583 16598 /*
16584 16599 * If a NULL argument has been passed, we take this as our
16585 16600 * cue to reevaluate our enablings.
16586 16601 */
16587 16602 if (arg == 0) {
16588 16603 dtrace_enabling_matchall();
16589 16604
16590 16605 return (0);
16591 16606 }
16592 16607
16593 16608 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16594 16609 return (rval);
16595 16610
16596 16611 mutex_enter(&cpu_lock);
16597 16612 mutex_enter(&dtrace_lock);
16598 16613 vstate = &state->dts_vstate;
16599 16614
16600 16615 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16601 16616 mutex_exit(&dtrace_lock);
16602 16617 mutex_exit(&cpu_lock);
16603 16618 dtrace_dof_destroy(dof);
16604 16619 return (EBUSY);
16605 16620 }
16606 16621
16607 16622 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16608 16623 mutex_exit(&dtrace_lock);
16609 16624 mutex_exit(&cpu_lock);
16610 16625 dtrace_dof_destroy(dof);
16611 16626 return (EINVAL);
16612 16627 }
16613 16628
16614 16629 if ((rval = dtrace_dof_options(dof, state)) != 0) {
16615 16630 dtrace_enabling_destroy(enab);
16616 16631 mutex_exit(&dtrace_lock);
16617 16632 mutex_exit(&cpu_lock);
16618 16633 dtrace_dof_destroy(dof);
16619 16634 return (rval);
16620 16635 }
16621 16636
16622 16637 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16623 16638 err = dtrace_enabling_retain(enab);
16624 16639 } else {
16625 16640 dtrace_enabling_destroy(enab);
16626 16641 }
16627 16642
16628 16643 mutex_exit(&cpu_lock);
16629 16644 mutex_exit(&dtrace_lock);
16630 16645 dtrace_dof_destroy(dof);
16631 16646
16632 16647 return (err);
16633 16648 }
16634 16649
16635 16650 case DTRACEIOC_REPLICATE: {
16636 16651 dtrace_repldesc_t desc;
16637 16652 dtrace_probedesc_t *match = &desc.dtrpd_match;
16638 16653 dtrace_probedesc_t *create = &desc.dtrpd_create;
16639 16654 int err;
16640 16655
16641 16656 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16642 16657 return (EFAULT);
16643 16658
16644 16659 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16645 16660 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16646 16661 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16647 16662 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16648 16663
16649 16664 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16650 16665 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16651 16666 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16652 16667 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16653 16668
16654 16669 mutex_enter(&dtrace_lock);
16655 16670 err = dtrace_enabling_replicate(state, match, create);
16656 16671 mutex_exit(&dtrace_lock);
16657 16672
16658 16673 return (err);
16659 16674 }
16660 16675
16661 16676 case DTRACEIOC_PROBEMATCH:
16662 16677 case DTRACEIOC_PROBES: {
16663 16678 dtrace_probe_t *probe = NULL;
16664 16679 dtrace_probedesc_t desc;
16665 16680 dtrace_probekey_t pkey;
16666 16681 dtrace_id_t i;
16667 16682 int m = 0;
16668 16683 uint32_t priv;
16669 16684 uid_t uid;
16670 16685 zoneid_t zoneid;
16671 16686
16672 16687 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16673 16688 return (EFAULT);
16674 16689
16675 16690 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16676 16691 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16677 16692 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16678 16693 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16679 16694
16680 16695 /*
16681 16696 * Before we attempt to match this probe, we want to give
16682 16697 * all providers the opportunity to provide it.
16683 16698 */
16684 16699 if (desc.dtpd_id == DTRACE_IDNONE) {
16685 16700 mutex_enter(&dtrace_provider_lock);
16686 16701 dtrace_probe_provide(&desc, NULL);
16687 16702 mutex_exit(&dtrace_provider_lock);
16688 16703 desc.dtpd_id++;
16689 16704 }
16690 16705
16691 16706 if (cmd == DTRACEIOC_PROBEMATCH) {
16692 16707 dtrace_probekey(&desc, &pkey);
16693 16708 pkey.dtpk_id = DTRACE_IDNONE;
16694 16709 }
16695 16710
16696 16711 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16697 16712
16698 16713 mutex_enter(&dtrace_lock);
16699 16714
16700 16715 if (cmd == DTRACEIOC_PROBEMATCH) {
16701 16716 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16702 16717 if ((probe = dtrace_probes[i - 1]) != NULL &&
16703 16718 (m = dtrace_match_probe(probe, &pkey,
16704 16719 priv, uid, zoneid)) != 0)
16705 16720 break;
16706 16721 }
16707 16722
16708 16723 if (m < 0) {
16709 16724 mutex_exit(&dtrace_lock);
16710 16725 return (EINVAL);
16711 16726 }
16712 16727
16713 16728 } else {
16714 16729 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16715 16730 if ((probe = dtrace_probes[i - 1]) != NULL &&
16716 16731 dtrace_match_priv(probe, priv, uid, zoneid))
16717 16732 break;
16718 16733 }
16719 16734 }
16720 16735
16721 16736 if (probe == NULL) {
16722 16737 mutex_exit(&dtrace_lock);
16723 16738 return (ESRCH);
16724 16739 }
16725 16740
16726 16741 dtrace_probe_description(probe, &desc);
16727 16742 mutex_exit(&dtrace_lock);
16728 16743
16729 16744 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16730 16745 return (EFAULT);
16731 16746
16732 16747 return (0);
16733 16748 }
16734 16749
16735 16750 case DTRACEIOC_PROBEARG: {
16736 16751 dtrace_argdesc_t desc;
16737 16752 dtrace_probe_t *probe;
16738 16753 dtrace_provider_t *prov;
16739 16754
16740 16755 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16741 16756 return (EFAULT);
16742 16757
16743 16758 if (desc.dtargd_id == DTRACE_IDNONE)
16744 16759 return (EINVAL);
16745 16760
16746 16761 if (desc.dtargd_ndx == DTRACE_ARGNONE)
16747 16762 return (EINVAL);
16748 16763
16749 16764 mutex_enter(&dtrace_provider_lock);
16750 16765 mutex_enter(&mod_lock);
16751 16766 mutex_enter(&dtrace_lock);
16752 16767
16753 16768 if (desc.dtargd_id > dtrace_nprobes) {
16754 16769 mutex_exit(&dtrace_lock);
16755 16770 mutex_exit(&mod_lock);
16756 16771 mutex_exit(&dtrace_provider_lock);
16757 16772 return (EINVAL);
16758 16773 }
16759 16774
16760 16775 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16761 16776 mutex_exit(&dtrace_lock);
16762 16777 mutex_exit(&mod_lock);
16763 16778 mutex_exit(&dtrace_provider_lock);
16764 16779 return (EINVAL);
16765 16780 }
16766 16781
16767 16782 mutex_exit(&dtrace_lock);
16768 16783
16769 16784 prov = probe->dtpr_provider;
16770 16785
16771 16786 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16772 16787 /*
16773 16788 * There isn't any typed information for this probe.
16774 16789 * Set the argument number to DTRACE_ARGNONE.
16775 16790 */
16776 16791 desc.dtargd_ndx = DTRACE_ARGNONE;
16777 16792 } else {
16778 16793 desc.dtargd_native[0] = '\0';
16779 16794 desc.dtargd_xlate[0] = '\0';
16780 16795 desc.dtargd_mapping = desc.dtargd_ndx;
16781 16796
16782 16797 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16783 16798 probe->dtpr_id, probe->dtpr_arg, &desc);
16784 16799 }
16785 16800
16786 16801 mutex_exit(&mod_lock);
16787 16802 mutex_exit(&dtrace_provider_lock);
16788 16803
16789 16804 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16790 16805 return (EFAULT);
16791 16806
16792 16807 return (0);
16793 16808 }
16794 16809
16795 16810 case DTRACEIOC_GO: {
16796 16811 processorid_t cpuid;
16797 16812 rval = dtrace_state_go(state, &cpuid);
16798 16813
16799 16814 if (rval != 0)
16800 16815 return (rval);
16801 16816
16802 16817 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16803 16818 return (EFAULT);
16804 16819
16805 16820 return (0);
16806 16821 }
16807 16822
16808 16823 case DTRACEIOC_STOP: {
16809 16824 processorid_t cpuid;
16810 16825
16811 16826 mutex_enter(&dtrace_lock);
16812 16827 rval = dtrace_state_stop(state, &cpuid);
16813 16828 mutex_exit(&dtrace_lock);
16814 16829
16815 16830 if (rval != 0)
16816 16831 return (rval);
16817 16832
16818 16833 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16819 16834 return (EFAULT);
16820 16835
16821 16836 return (0);
16822 16837 }
16823 16838
16824 16839 case DTRACEIOC_DOFGET: {
16825 16840 dof_hdr_t hdr, *dof;
16826 16841 uint64_t len;
16827 16842
16828 16843 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16829 16844 return (EFAULT);
16830 16845
16831 16846 mutex_enter(&dtrace_lock);
16832 16847 dof = dtrace_dof_create(state);
16833 16848 mutex_exit(&dtrace_lock);
16834 16849
16835 16850 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16836 16851 rval = copyout(dof, (void *)arg, len);
16837 16852 dtrace_dof_destroy(dof);
16838 16853
16839 16854 return (rval == 0 ? 0 : EFAULT);
16840 16855 }
16841 16856
16842 16857 case DTRACEIOC_AGGSNAP:
16843 16858 case DTRACEIOC_BUFSNAP: {
16844 16859 dtrace_bufdesc_t desc;
16845 16860 caddr_t cached;
16846 16861 dtrace_buffer_t *buf;
16847 16862
16848 16863 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16849 16864 return (EFAULT);
16850 16865
16851 16866 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16852 16867 return (EINVAL);
16853 16868
16854 16869 mutex_enter(&dtrace_lock);
16855 16870
16856 16871 if (cmd == DTRACEIOC_BUFSNAP) {
16857 16872 buf = &state->dts_buffer[desc.dtbd_cpu];
16858 16873 } else {
16859 16874 buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16860 16875 }
16861 16876
16862 16877 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16863 16878 size_t sz = buf->dtb_offset;
16864 16879
16865 16880 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16866 16881 mutex_exit(&dtrace_lock);
16867 16882 return (EBUSY);
16868 16883 }
16869 16884
16870 16885 /*
16871 16886 * If this buffer has already been consumed, we're
16872 16887 * going to indicate that there's nothing left here
16873 16888 * to consume.
16874 16889 */
16875 16890 if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16876 16891 mutex_exit(&dtrace_lock);
16877 16892
16878 16893 desc.dtbd_size = 0;
16879 16894 desc.dtbd_drops = 0;
16880 16895 desc.dtbd_errors = 0;
16881 16896 desc.dtbd_oldest = 0;
16882 16897 sz = sizeof (desc);
16883 16898
16884 16899 if (copyout(&desc, (void *)arg, sz) != 0)
16885 16900 return (EFAULT);
16886 16901
16887 16902 return (0);
16888 16903 }
16889 16904
16890 16905 /*
16891 16906 * If this is a ring buffer that has wrapped, we want
16892 16907 * to copy the whole thing out.
16893 16908 */
16894 16909 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16895 16910 dtrace_buffer_polish(buf);
16896 16911 sz = buf->dtb_size;
16897 16912 }
16898 16913
16899 16914 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16900 16915 mutex_exit(&dtrace_lock);
16901 16916 return (EFAULT);
16902 16917 }
16903 16918
16904 16919 desc.dtbd_size = sz;
16905 16920 desc.dtbd_drops = buf->dtb_drops;
16906 16921 desc.dtbd_errors = buf->dtb_errors;
16907 16922 desc.dtbd_oldest = buf->dtb_xamot_offset;
16908 16923 desc.dtbd_timestamp = dtrace_gethrtime();
16909 16924
16910 16925 mutex_exit(&dtrace_lock);
16911 16926
16912 16927 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16913 16928 return (EFAULT);
16914 16929
16915 16930 buf->dtb_flags |= DTRACEBUF_CONSUMED;
16916 16931
16917 16932 return (0);
16918 16933 }
16919 16934
16920 16935 if (buf->dtb_tomax == NULL) {
16921 16936 ASSERT(buf->dtb_xamot == NULL);
16922 16937 mutex_exit(&dtrace_lock);
16923 16938 return (ENOENT);
16924 16939 }
16925 16940
16926 16941 cached = buf->dtb_tomax;
16927 16942 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16928 16943
16929 16944 dtrace_xcall(desc.dtbd_cpu,
16930 16945 (dtrace_xcall_t)dtrace_buffer_switch, buf);
16931 16946
16932 16947 state->dts_errors += buf->dtb_xamot_errors;
16933 16948
16934 16949 /*
16935 16950 * If the buffers did not actually switch, then the cross call
16936 16951 * did not take place -- presumably because the given CPU is
16937 16952 * not in the ready set. If this is the case, we'll return
16938 16953 * ENOENT.
16939 16954 */
16940 16955 if (buf->dtb_tomax == cached) {
16941 16956 ASSERT(buf->dtb_xamot != cached);
16942 16957 mutex_exit(&dtrace_lock);
16943 16958 return (ENOENT);
16944 16959 }
16945 16960
16946 16961 ASSERT(cached == buf->dtb_xamot);
16947 16962
16948 16963 /*
16949 16964 * We have our snapshot; now copy it out.
16950 16965 */
16951 16966 if (copyout(buf->dtb_xamot, desc.dtbd_data,
16952 16967 buf->dtb_xamot_offset) != 0) {
16953 16968 mutex_exit(&dtrace_lock);
16954 16969 return (EFAULT);
16955 16970 }
16956 16971
16957 16972 desc.dtbd_size = buf->dtb_xamot_offset;
16958 16973 desc.dtbd_drops = buf->dtb_xamot_drops;
16959 16974 desc.dtbd_errors = buf->dtb_xamot_errors;
16960 16975 desc.dtbd_oldest = 0;
16961 16976 desc.dtbd_timestamp = buf->dtb_switched;
16962 16977
16963 16978 mutex_exit(&dtrace_lock);
16964 16979
16965 16980 /*
16966 16981 * Finally, copy out the buffer description.
16967 16982 */
16968 16983 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16969 16984 return (EFAULT);
16970 16985
16971 16986 return (0);
16972 16987 }
16973 16988
16974 16989 case DTRACEIOC_CONF: {
16975 16990 dtrace_conf_t conf;
16976 16991
16977 16992 bzero(&conf, sizeof (conf));
16978 16993 conf.dtc_difversion = DIF_VERSION;
16979 16994 conf.dtc_difintregs = DIF_DIR_NREGS;
16980 16995 conf.dtc_diftupregs = DIF_DTR_NREGS;
16981 16996 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16982 16997
16983 16998 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16984 16999 return (EFAULT);
16985 17000
16986 17001 return (0);
16987 17002 }
16988 17003
16989 17004 case DTRACEIOC_STATUS: {
16990 17005 dtrace_status_t stat;
16991 17006 dtrace_dstate_t *dstate;
16992 17007 int i, j;
16993 17008 uint64_t nerrs;
16994 17009
16995 17010 /*
16996 17011 * See the comment in dtrace_state_deadman() for the reason
16997 17012 * for setting dts_laststatus to INT64_MAX before setting
16998 17013 * it to the correct value.
16999 17014 */
17000 17015 state->dts_laststatus = INT64_MAX;
17001 17016 dtrace_membar_producer();
17002 17017 state->dts_laststatus = dtrace_gethrtime();
17003 17018
17004 17019 bzero(&stat, sizeof (stat));
17005 17020
17006 17021 mutex_enter(&dtrace_lock);
17007 17022
17008 17023 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
17009 17024 mutex_exit(&dtrace_lock);
17010 17025 return (ENOENT);
17011 17026 }
17012 17027
17013 17028 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
17014 17029 stat.dtst_exiting = 1;
17015 17030
17016 17031 nerrs = state->dts_errors;
17017 17032 dstate = &state->dts_vstate.dtvs_dynvars;
17018 17033
17019 17034 for (i = 0; i < NCPU; i++) {
17020 17035 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
17021 17036
17022 17037 stat.dtst_dyndrops += dcpu->dtdsc_drops;
17023 17038 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
17024 17039 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
17025 17040
17026 17041 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
17027 17042 stat.dtst_filled++;
17028 17043
17029 17044 nerrs += state->dts_buffer[i].dtb_errors;
17030 17045
17031 17046 for (j = 0; j < state->dts_nspeculations; j++) {
17032 17047 dtrace_speculation_t *spec;
17033 17048 dtrace_buffer_t *buf;
17034 17049
17035 17050 spec = &state->dts_speculations[j];
17036 17051 buf = &spec->dtsp_buffer[i];
17037 17052 stat.dtst_specdrops += buf->dtb_xamot_drops;
17038 17053 }
17039 17054 }
17040 17055
17041 17056 stat.dtst_specdrops_busy = state->dts_speculations_busy;
17042 17057 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
17043 17058 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
17044 17059 stat.dtst_dblerrors = state->dts_dblerrors;
17045 17060 stat.dtst_killed =
17046 17061 (state->dts_activity == DTRACE_ACTIVITY_KILLED);
17047 17062 stat.dtst_errors = nerrs;
17048 17063
17049 17064 mutex_exit(&dtrace_lock);
17050 17065
17051 17066 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
17052 17067 return (EFAULT);
17053 17068
17054 17069 return (0);
17055 17070 }
17056 17071
17057 17072 case DTRACEIOC_FORMAT: {
17058 17073 dtrace_fmtdesc_t fmt;
17059 17074 char *str;
17060 17075 int len;
17061 17076
17062 17077 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
17063 17078 return (EFAULT);
17064 17079
17065 17080 mutex_enter(&dtrace_lock);
17066 17081
17067 17082 if (fmt.dtfd_format == 0 ||
17068 17083 fmt.dtfd_format > state->dts_nformats) {
17069 17084 mutex_exit(&dtrace_lock);
17070 17085 return (EINVAL);
17071 17086 }
17072 17087
17073 17088 /*
17074 17089 * Format strings are allocated contiguously and they are
17075 17090 * never freed; if a format index is less than the number
17076 17091 * of formats, we can assert that the format map is non-NULL
17077 17092 * and that the format for the specified index is non-NULL.
17078 17093 */
17079 17094 ASSERT(state->dts_formats != NULL);
17080 17095 str = state->dts_formats[fmt.dtfd_format - 1];
17081 17096 ASSERT(str != NULL);
17082 17097
17083 17098 len = strlen(str) + 1;
17084 17099
17085 17100 if (len > fmt.dtfd_length) {
17086 17101 fmt.dtfd_length = len;
17087 17102
17088 17103 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
17089 17104 mutex_exit(&dtrace_lock);
17090 17105 return (EINVAL);
17091 17106 }
17092 17107 } else {
17093 17108 if (copyout(str, fmt.dtfd_string, len) != 0) {
17094 17109 mutex_exit(&dtrace_lock);
17095 17110 return (EINVAL);
17096 17111 }
17097 17112 }
17098 17113
17099 17114 mutex_exit(&dtrace_lock);
17100 17115 return (0);
17101 17116 }
17102 17117
17103 17118 default:
17104 17119 break;
17105 17120 }
17106 17121
17107 17122 return (ENOTTY);
17108 17123 }
17109 17124
17110 17125 /*ARGSUSED*/
17111 17126 static int
17112 17127 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
17113 17128 {
17114 17129 dtrace_state_t *state;
17115 17130
17116 17131 switch (cmd) {
17117 17132 case DDI_DETACH:
17118 17133 break;
17119 17134
17120 17135 case DDI_SUSPEND:
17121 17136 return (DDI_SUCCESS);
17122 17137
17123 17138 default:
17124 17139 return (DDI_FAILURE);
17125 17140 }
17126 17141
17127 17142 mutex_enter(&cpu_lock);
17128 17143 mutex_enter(&dtrace_provider_lock);
17129 17144 mutex_enter(&dtrace_lock);
17130 17145
17131 17146 ASSERT(dtrace_opens == 0);
17132 17147
17133 17148 if (dtrace_helpers > 0) {
17134 17149 mutex_exit(&dtrace_provider_lock);
17135 17150 mutex_exit(&dtrace_lock);
17136 17151 mutex_exit(&cpu_lock);
17137 17152 return (DDI_FAILURE);
17138 17153 }
17139 17154
17140 17155 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
17141 17156 mutex_exit(&dtrace_provider_lock);
17142 17157 mutex_exit(&dtrace_lock);
17143 17158 mutex_exit(&cpu_lock);
17144 17159 return (DDI_FAILURE);
17145 17160 }
17146 17161
17147 17162 dtrace_provider = NULL;
17148 17163
17149 17164 if ((state = dtrace_anon_grab()) != NULL) {
17150 17165 /*
17151 17166 * If there were ECBs on this state, the provider should
17152 17167 * have not been allowed to detach; assert that there is
17153 17168 * none.
17154 17169 */
17155 17170 ASSERT(state->dts_necbs == 0);
17156 17171 dtrace_state_destroy(state);
17157 17172
17158 17173 /*
17159 17174 * If we're being detached with anonymous state, we need to
17160 17175 * indicate to the kernel debugger that DTrace is now inactive.
17161 17176 */
17162 17177 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17163 17178 }
17164 17179
17165 17180 bzero(&dtrace_anon, sizeof (dtrace_anon_t));
17166 17181 unregister_cpu_setup_func(dtrace_cpu_setup, NULL);
17167 17182 dtrace_cpu_init = NULL;
17168 17183 dtrace_helpers_cleanup = NULL;
17169 17184 dtrace_helpers_fork = NULL;
17170 17185 dtrace_cpustart_init = NULL;
17171 17186 dtrace_cpustart_fini = NULL;
17172 17187 dtrace_debugger_init = NULL;
17173 17188 dtrace_debugger_fini = NULL;
17174 17189 dtrace_modload = NULL;
17175 17190 dtrace_modunload = NULL;
17176 17191
17177 17192 ASSERT(dtrace_getf == 0);
17178 17193 ASSERT(dtrace_closef == NULL);
17179 17194
17180 17195 mutex_exit(&cpu_lock);
17181 17196
17182 17197 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
17183 17198 dtrace_probes = NULL;
17184 17199 dtrace_nprobes = 0;
17185 17200
17186 17201 dtrace_hash_destroy(dtrace_bymod);
17187 17202 dtrace_hash_destroy(dtrace_byfunc);
17188 17203 dtrace_hash_destroy(dtrace_byname);
17189 17204 dtrace_bymod = NULL;
17190 17205 dtrace_byfunc = NULL;
17191 17206 dtrace_byname = NULL;
17192 17207
17193 17208 kmem_cache_destroy(dtrace_state_cache);
17194 17209 vmem_destroy(dtrace_minor);
17195 17210 vmem_destroy(dtrace_arena);
17196 17211
17197 17212 if (dtrace_toxrange != NULL) {
17198 17213 kmem_free(dtrace_toxrange,
17199 17214 dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
17200 17215 dtrace_toxrange = NULL;
17201 17216 dtrace_toxranges = 0;
17202 17217 dtrace_toxranges_max = 0;
17203 17218 }
17204 17219
17205 17220 ddi_remove_minor_node(dtrace_devi, NULL);
17206 17221 dtrace_devi = NULL;
17207 17222
17208 17223 ddi_soft_state_fini(&dtrace_softstate);
17209 17224
17210 17225 ASSERT(dtrace_vtime_references == 0);
17211 17226 ASSERT(dtrace_opens == 0);
17212 17227 ASSERT(dtrace_retained == NULL);
17213 17228
17214 17229 mutex_exit(&dtrace_lock);
17215 17230 mutex_exit(&dtrace_provider_lock);
17216 17231
17217 17232 /*
17218 17233 * We don't destroy the task queue until after we have dropped our
17219 17234 * locks (taskq_destroy() may block on running tasks). To prevent
17220 17235 * attempting to do work after we have effectively detached but before
17221 17236 * the task queue has been destroyed, all tasks dispatched via the
17222 17237 * task queue must check that DTrace is still attached before
17223 17238 * performing any operation.
17224 17239 */
17225 17240 taskq_destroy(dtrace_taskq);
17226 17241 dtrace_taskq = NULL;
17227 17242
17228 17243 return (DDI_SUCCESS);
17229 17244 }
17230 17245
17231 17246 /*ARGSUSED*/
17232 17247 static int
17233 17248 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
17234 17249 {
17235 17250 int error;
17236 17251
17237 17252 switch (infocmd) {
17238 17253 case DDI_INFO_DEVT2DEVINFO:
17239 17254 *result = (void *)dtrace_devi;
17240 17255 error = DDI_SUCCESS;
17241 17256 break;
17242 17257 case DDI_INFO_DEVT2INSTANCE:
17243 17258 *result = (void *)0;
17244 17259 error = DDI_SUCCESS;
17245 17260 break;
17246 17261 default:
17247 17262 error = DDI_FAILURE;
17248 17263 }
17249 17264 return (error);
17250 17265 }
17251 17266
17252 17267 static struct cb_ops dtrace_cb_ops = {
17253 17268 dtrace_open, /* open */
17254 17269 dtrace_close, /* close */
17255 17270 nulldev, /* strategy */
17256 17271 nulldev, /* print */
17257 17272 nodev, /* dump */
17258 17273 nodev, /* read */
17259 17274 nodev, /* write */
17260 17275 dtrace_ioctl, /* ioctl */
17261 17276 nodev, /* devmap */
17262 17277 nodev, /* mmap */
17263 17278 nodev, /* segmap */
17264 17279 nochpoll, /* poll */
17265 17280 ddi_prop_op, /* cb_prop_op */
17266 17281 0, /* streamtab */
17267 17282 D_NEW | D_MP /* Driver compatibility flag */
17268 17283 };
17269 17284
17270 17285 static struct dev_ops dtrace_ops = {
17271 17286 DEVO_REV, /* devo_rev */
17272 17287 0, /* refcnt */
17273 17288 dtrace_info, /* get_dev_info */
17274 17289 nulldev, /* identify */
17275 17290 nulldev, /* probe */
17276 17291 dtrace_attach, /* attach */
17277 17292 dtrace_detach, /* detach */
17278 17293 nodev, /* reset */
17279 17294 &dtrace_cb_ops, /* driver operations */
17280 17295 NULL, /* bus operations */
17281 17296 nodev, /* dev power */
17282 17297 ddi_quiesce_not_needed, /* quiesce */
17283 17298 };
17284 17299
17285 17300 static struct modldrv modldrv = {
17286 17301 &mod_driverops, /* module type (this is a pseudo driver) */
17287 17302 "Dynamic Tracing", /* name of module */
17288 17303 &dtrace_ops, /* driver ops */
17289 17304 };
17290 17305
17291 17306 static struct modlinkage modlinkage = {
17292 17307 MODREV_1,
17293 17308 (void *)&modldrv,
17294 17309 NULL
17295 17310 };
17296 17311
17297 17312 int
17298 17313 _init(void)
17299 17314 {
17300 17315 return (mod_install(&modlinkage));
17301 17316 }
17302 17317
17303 17318 int
17304 17319 _info(struct modinfo *modinfop)
17305 17320 {
17306 17321 return (mod_info(&modlinkage, modinfop));
17307 17322 }
17308 17323
17309 17324 int
17310 17325 _fini(void)
17311 17326 {
17312 17327 return (mod_remove(&modlinkage));
17313 17328 }
↓ open down ↓ |
4927 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX