1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2019 Joyent, Inc. 25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/stat.h> 69 #include <sys/modctl.h> 70 #include <sys/conf.h> 71 #include <sys/systm.h> 72 #include <sys/ddi.h> 73 #include <sys/sunddi.h> 74 #include <sys/cpuvar.h> 75 #include <sys/kmem.h> 76 #include <sys/strsubr.h> 77 #include <sys/sysmacros.h> 78 #include <sys/dtrace_impl.h> 79 #include <sys/atomic.h> 80 #include <sys/cmn_err.h> 81 #include <sys/mutex_impl.h> 82 #include <sys/rwlock_impl.h> 83 #include <sys/ctf_api.h> 84 #include <sys/panic.h> 85 #include <sys/priv_impl.h> 86 #include <sys/policy.h> 87 #include <sys/cred_impl.h> 88 #include <sys/procfs_isa.h> 89 #include <sys/taskq.h> 90 #include <sys/mkdev.h> 91 #include <sys/kdi.h> 92 #include <sys/zone.h> 93 #include <sys/socket.h> 94 #include <netinet/in.h> 95 #include "strtolctype.h" 96 97 /* 98 * DTrace Tunable Variables 99 * 100 * The following variables may be tuned by adding a line to /etc/system that 101 * includes both the name of the DTrace module ("dtrace") and the name of the 102 * variable. For example: 103 * 104 * set dtrace:dtrace_destructive_disallow = 1 105 * 106 * In general, the only variables that one should be tuning this way are those 107 * that affect system-wide DTrace behavior, and for which the default behavior 108 * is undesirable. Most of these variables are tunable on a per-consumer 109 * basis using DTrace options, and need not be tuned on a system-wide basis. 110 * When tuning these variables, avoid pathological values; while some attempt 111 * is made to verify the integrity of these variables, they are not considered 112 * part of the supported interface to DTrace, and they are therefore not 113 * checked comprehensively. Further, these variables should not be tuned 114 * dynamically via "mdb -kw" or other means; they should only be tuned via 115 * /etc/system. 116 */ 117 int dtrace_destructive_disallow = 0; 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 119 size_t dtrace_difo_maxsize = (256 * 1024); 120 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 121 size_t dtrace_statvar_maxsize = (16 * 1024); 122 size_t dtrace_actions_max = (16 * 1024); 123 size_t dtrace_retain_max = 1024; 124 dtrace_optval_t dtrace_helper_actions_max = 1024; 125 dtrace_optval_t dtrace_helper_providers_max = 32; 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 127 size_t dtrace_strsize_default = 256; 128 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 129 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 135 dtrace_optval_t dtrace_nspec_default = 1; 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 137 dtrace_optval_t dtrace_stackframes_default = 20; 138 dtrace_optval_t dtrace_ustackframes_default = 20; 139 dtrace_optval_t dtrace_jstackframes_default = 50; 140 dtrace_optval_t dtrace_jstackstrsize_default = 512; 141 int dtrace_msgdsize_max = 128; 142 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ 143 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 144 int dtrace_devdepth_max = 32; 145 int dtrace_err_verbose; 146 hrtime_t dtrace_deadman_interval = NANOSEC; 147 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 148 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 149 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 150 151 /* 152 * DTrace External Variables 153 * 154 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 155 * available to DTrace consumers via the backtick (`) syntax. One of these, 156 * dtrace_zero, is made deliberately so: it is provided as a source of 157 * well-known, zero-filled memory. While this variable is not documented, 158 * it is used by some translators as an implementation detail. 159 */ 160 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 161 162 /* 163 * DTrace Internal Variables 164 */ 165 static dev_info_t *dtrace_devi; /* device info */ 166 static vmem_t *dtrace_arena; /* probe ID arena */ 167 static vmem_t *dtrace_minor; /* minor number arena */ 168 static taskq_t *dtrace_taskq; /* task queue */ 169 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 170 static int dtrace_nprobes; /* number of probes */ 171 static dtrace_provider_t *dtrace_provider; /* provider list */ 172 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 173 static int dtrace_opens; /* number of opens */ 174 static int dtrace_helpers; /* number of helpers */ 175 static int dtrace_getf; /* number of unpriv getf()s */ 176 static void *dtrace_softstate; /* softstate pointer */ 177 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 178 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 179 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 180 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 181 static int dtrace_toxranges; /* number of toxic ranges */ 182 static int dtrace_toxranges_max; /* size of toxic range array */ 183 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 184 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 185 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 186 static kthread_t *dtrace_panicked; /* panicking thread */ 187 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 188 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 189 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 190 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 191 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 192 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 193 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 194 195 /* 196 * DTrace Locking 197 * DTrace is protected by three (relatively coarse-grained) locks: 198 * 199 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 200 * including enabling state, probes, ECBs, consumer state, helper state, 201 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 202 * probe context is lock-free -- synchronization is handled via the 203 * dtrace_sync() cross call mechanism. 204 * 205 * (2) dtrace_provider_lock is required when manipulating provider state, or 206 * when provider state must be held constant. 207 * 208 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 209 * when meta provider state must be held constant. 210 * 211 * The lock ordering between these three locks is dtrace_meta_lock before 212 * dtrace_provider_lock before dtrace_lock. (In particular, there are 213 * several places where dtrace_provider_lock is held by the framework as it 214 * calls into the providers -- which then call back into the framework, 215 * grabbing dtrace_lock.) 216 * 217 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 218 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 219 * role as a coarse-grained lock; it is acquired before both of these locks. 220 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 221 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 222 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 223 * acquired _between_ dtrace_provider_lock and dtrace_lock. 224 */ 225 static kmutex_t dtrace_lock; /* probe state lock */ 226 static kmutex_t dtrace_provider_lock; /* provider state lock */ 227 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 228 229 /* 230 * DTrace Provider Variables 231 * 232 * These are the variables relating to DTrace as a provider (that is, the 233 * provider of the BEGIN, END, and ERROR probes). 234 */ 235 static dtrace_pattr_t dtrace_provider_attr = { 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 241 }; 242 243 static void 244 dtrace_nullop_provide(void *arg __unused, 245 const dtrace_probedesc_t *spec __unused) 246 { 247 } 248 249 static void 250 dtrace_nullop_module(void *arg __unused, struct modctl *mp __unused) 251 { 252 } 253 254 static void 255 dtrace_nullop(void *arg __unused, dtrace_id_t id __unused, void *parg __unused) 256 { 257 } 258 259 static int 260 dtrace_enable_nullop(void *arg __unused, dtrace_id_t id __unused, 261 void *parg __unused) 262 { 263 return (0); 264 } 265 266 static dtrace_pops_t dtrace_provider_ops = { 267 .dtps_provide = dtrace_nullop_provide, 268 .dtps_provide_module = dtrace_nullop_module, 269 .dtps_enable = dtrace_enable_nullop, 270 .dtps_disable = dtrace_nullop, 271 .dtps_suspend = dtrace_nullop, 272 .dtps_resume = dtrace_nullop, 273 .dtps_getargdesc = NULL, 274 .dtps_getargval = NULL, 275 .dtps_mode = NULL, 276 .dtps_destroy = dtrace_nullop 277 }; 278 279 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 280 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 281 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 282 283 /* 284 * DTrace Helper Tracing Variables 285 * 286 * These variables should be set dynamically to enable helper tracing. The 287 * only variables that should be set are dtrace_helptrace_enable (which should 288 * be set to a non-zero value to allocate helper tracing buffers on the next 289 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 290 * non-zero value to deallocate helper tracing buffers on the next close of 291 * /dev/dtrace). When (and only when) helper tracing is disabled, the 292 * buffer size may also be set via dtrace_helptrace_bufsize. 293 */ 294 int dtrace_helptrace_enable = 0; 295 int dtrace_helptrace_disable = 0; 296 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 297 uint32_t dtrace_helptrace_nlocals; 298 static dtrace_helptrace_t *dtrace_helptrace_buffer; 299 static uint32_t dtrace_helptrace_next = 0; 300 static int dtrace_helptrace_wrapped = 0; 301 302 /* 303 * DTrace Error Hashing 304 * 305 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 306 * table. This is very useful for checking coverage of tests that are 307 * expected to induce DIF or DOF processing errors, and may be useful for 308 * debugging problems in the DIF code generator or in DOF generation . The 309 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 310 */ 311 #ifdef DEBUG 312 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 313 static const char *dtrace_errlast; 314 static kthread_t *dtrace_errthread; 315 static kmutex_t dtrace_errlock; 316 #endif 317 318 /* 319 * DTrace Macros and Constants 320 * 321 * These are various macros that are useful in various spots in the 322 * implementation, along with a few random constants that have no meaning 323 * outside of the implementation. There is no real structure to this cpp 324 * mishmash -- but is there ever? 325 */ 326 #define DTRACE_HASHSTR(hash, probe) \ 327 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 328 329 #define DTRACE_HASHNEXT(hash, probe) \ 330 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 331 332 #define DTRACE_HASHPREV(hash, probe) \ 333 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 334 335 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 336 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 337 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 338 339 #define DTRACE_AGGHASHSIZE_SLEW 17 340 341 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 342 343 /* 344 * The key for a thread-local variable consists of the lower 61 bits of the 345 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 346 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 347 * equal to a variable identifier. This is necessary (but not sufficient) to 348 * assure that global associative arrays never collide with thread-local 349 * variables. To guarantee that they cannot collide, we must also define the 350 * order for keying dynamic variables. That order is: 351 * 352 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 353 * 354 * Because the variable-key and the tls-key are in orthogonal spaces, there is 355 * no way for a global variable key signature to match a thread-local key 356 * signature. 357 */ 358 #define DTRACE_TLS_THRKEY(where) { \ 359 uint_t intr = 0; \ 360 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 361 for (; actv; actv >>= 1) \ 362 intr++; \ 363 ASSERT(intr < (1 << 3)); \ 364 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 365 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 366 } 367 368 #define DT_BSWAP_8(x) ((x) & 0xff) 369 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 370 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 371 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 372 373 #define DT_MASK_LO 0x00000000FFFFFFFFULL 374 375 #define DTRACE_STORE(type, tomax, offset, what) \ 376 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 377 378 #ifndef __x86 379 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 380 if (addr & (size - 1)) { \ 381 *flags |= CPU_DTRACE_BADALIGN; \ 382 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 383 return (0); \ 384 } 385 #else 386 #define DTRACE_ALIGNCHECK(addr, size, flags) 387 #endif 388 389 /* 390 * Test whether a range of memory starting at testaddr of size testsz falls 391 * within the range of memory described by addr, sz. We take care to avoid 392 * problems with overflow and underflow of the unsigned quantities, and 393 * disallow all negative sizes. Ranges of size 0 are allowed. 394 */ 395 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 396 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 397 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 398 (testaddr) + (testsz) >= (testaddr)) 399 400 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \ 401 do { \ 402 if ((remp) != NULL) { \ 403 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \ 404 } \ 405 _NOTE(CONSTCOND) } while (0) 406 407 408 /* 409 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 410 * alloc_sz on the righthand side of the comparison in order to avoid overflow 411 * or underflow in the comparison with it. This is simpler than the INRANGE 412 * check above, because we know that the dtms_scratch_ptr is valid in the 413 * range. Allocations of size zero are allowed. 414 */ 415 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 416 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 417 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 418 419 #define DTRACE_LOADFUNC(bits) \ 420 /*CSTYLED*/ \ 421 uint##bits##_t \ 422 dtrace_load##bits(uintptr_t addr) \ 423 { \ 424 size_t size = bits / NBBY; \ 425 /*CSTYLED*/ \ 426 uint##bits##_t rval; \ 427 int i; \ 428 volatile uint16_t *flags = (volatile uint16_t *) \ 429 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 430 \ 431 DTRACE_ALIGNCHECK(addr, size, flags); \ 432 \ 433 for (i = 0; i < dtrace_toxranges; i++) { \ 434 if (addr >= dtrace_toxrange[i].dtt_limit) \ 435 continue; \ 436 \ 437 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 438 continue; \ 439 \ 440 /* \ 441 * This address falls within a toxic region; return 0. \ 442 */ \ 443 *flags |= CPU_DTRACE_BADADDR; \ 444 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 445 return (0); \ 446 } \ 447 \ 448 *flags |= CPU_DTRACE_NOFAULT; \ 449 /*CSTYLED*/ \ 450 rval = *((volatile uint##bits##_t *)addr); \ 451 *flags &= ~CPU_DTRACE_NOFAULT; \ 452 \ 453 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 454 } 455 456 #ifdef _LP64 457 #define dtrace_loadptr dtrace_load64 458 #else 459 #define dtrace_loadptr dtrace_load32 460 #endif 461 462 #define DTRACE_DYNHASH_FREE 0 463 #define DTRACE_DYNHASH_SINK 1 464 #define DTRACE_DYNHASH_VALID 2 465 466 #define DTRACE_MATCH_FAIL -1 467 #define DTRACE_MATCH_NEXT 0 468 #define DTRACE_MATCH_DONE 1 469 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 470 #define DTRACE_STATE_ALIGN 64 471 472 #define DTRACE_FLAGS2FLT(flags) \ 473 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 474 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 475 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 476 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 477 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 478 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 479 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 480 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 481 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 482 DTRACEFLT_UNKNOWN) 483 484 #define DTRACEACT_ISSTRING(act) \ 485 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 486 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 487 488 static size_t dtrace_strlen(const char *, size_t); 489 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 490 static void dtrace_enabling_provide(dtrace_provider_t *); 491 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 492 static void dtrace_enabling_matchall(void); 493 static void dtrace_enabling_reap(void); 494 static dtrace_state_t *dtrace_anon_grab(void); 495 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 496 dtrace_state_t *, uint64_t, uint64_t); 497 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 498 static void dtrace_buffer_drop(dtrace_buffer_t *); 499 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 500 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 501 dtrace_state_t *, dtrace_mstate_t *); 502 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 503 dtrace_optval_t); 504 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 505 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 506 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *); 507 static void dtrace_getf_barrier(void); 508 static int dtrace_canload_remains(uint64_t, size_t, size_t *, 509 dtrace_mstate_t *, dtrace_vstate_t *); 510 static int dtrace_canstore_remains(uint64_t, size_t, size_t *, 511 dtrace_mstate_t *, dtrace_vstate_t *); 512 513 /* 514 * DTrace Probe Context Functions 515 * 516 * These functions are called from probe context. Because probe context is 517 * any context in which C may be called, arbitrarily locks may be held, 518 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 519 * As a result, functions called from probe context may only call other DTrace 520 * support functions -- they may not interact at all with the system at large. 521 * (Note that the ASSERT macro is made probe-context safe by redefining it in 522 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 523 * loads are to be performed from probe context, they _must_ be in terms of 524 * the safe dtrace_load*() variants. 525 * 526 * Some functions in this block are not actually called from probe context; 527 * for these functions, there will be a comment above the function reading 528 * "Note: not called from probe context." 529 */ 530 void 531 dtrace_panic(const char *format, ...) 532 { 533 va_list alist; 534 535 va_start(alist, format); 536 dtrace_vpanic(format, alist); 537 va_end(alist); 538 } 539 540 int 541 dtrace_assfail(const char *a, const char *f, int l) 542 { 543 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 544 545 /* 546 * We just need something here that even the most clever compiler 547 * cannot optimize away. 548 */ 549 return (a[(uintptr_t)f]); 550 } 551 552 /* 553 * Atomically increment a specified error counter from probe context. 554 */ 555 static void 556 dtrace_error(uint32_t *counter) 557 { 558 /* 559 * Most counters stored to in probe context are per-CPU counters. 560 * However, there are some error conditions that are sufficiently 561 * arcane that they don't merit per-CPU storage. If these counters 562 * are incremented concurrently on different CPUs, scalability will be 563 * adversely affected -- but we don't expect them to be white-hot in a 564 * correctly constructed enabling... 565 */ 566 uint32_t oval, nval; 567 568 do { 569 oval = *counter; 570 571 if ((nval = oval + 1) == 0) { 572 /* 573 * If the counter would wrap, set it to 1 -- assuring 574 * that the counter is never zero when we have seen 575 * errors. (The counter must be 32-bits because we 576 * aren't guaranteed a 64-bit compare&swap operation.) 577 * To save this code both the infamy of being fingered 578 * by a priggish news story and the indignity of being 579 * the target of a neo-puritan witch trial, we're 580 * carefully avoiding any colorful description of the 581 * likelihood of this condition -- but suffice it to 582 * say that it is only slightly more likely than the 583 * overflow of predicate cache IDs, as discussed in 584 * dtrace_predicate_create(). 585 */ 586 nval = 1; 587 } 588 } while (dtrace_cas32(counter, oval, nval) != oval); 589 } 590 591 /* 592 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 593 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 594 */ 595 /* BEGIN CSTYLED */ 596 DTRACE_LOADFUNC(8) 597 DTRACE_LOADFUNC(16) 598 DTRACE_LOADFUNC(32) 599 DTRACE_LOADFUNC(64) 600 /* END CSTYLED */ 601 602 static int 603 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 604 { 605 if (dest < mstate->dtms_scratch_base) 606 return (0); 607 608 if (dest + size < dest) 609 return (0); 610 611 if (dest + size > mstate->dtms_scratch_ptr) 612 return (0); 613 614 return (1); 615 } 616 617 static int 618 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain, 619 dtrace_statvar_t **svars, int nsvars) 620 { 621 int i; 622 size_t maxglobalsize, maxlocalsize; 623 624 if (nsvars == 0) 625 return (0); 626 627 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t); 628 maxlocalsize = maxglobalsize * NCPU; 629 630 for (i = 0; i < nsvars; i++) { 631 dtrace_statvar_t *svar = svars[i]; 632 uint8_t scope; 633 size_t size; 634 635 if (svar == NULL || (size = svar->dtsv_size) == 0) 636 continue; 637 638 scope = svar->dtsv_var.dtdv_scope; 639 640 /* 641 * We verify that our size is valid in the spirit of providing 642 * defense in depth: we want to prevent attackers from using 643 * DTrace to escalate an orthogonal kernel heap corruption bug 644 * into the ability to store to arbitrary locations in memory. 645 */ 646 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) || 647 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize)); 648 649 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, 650 svar->dtsv_size)) { 651 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data, 652 svar->dtsv_size); 653 return (1); 654 } 655 } 656 657 return (0); 658 } 659 660 /* 661 * Check to see if the address is within a memory region to which a store may 662 * be issued. This includes the DTrace scratch areas, and any DTrace variable 663 * region. The caller of dtrace_canstore() is responsible for performing any 664 * alignment checks that are needed before stores are actually executed. 665 */ 666 static int 667 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 668 dtrace_vstate_t *vstate) 669 { 670 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate)); 671 } 672 673 /* 674 * Implementation of dtrace_canstore which communicates the upper bound of the 675 * allowed memory region. 676 */ 677 static int 678 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain, 679 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 680 { 681 /* 682 * First, check to see if the address is in scratch space... 683 */ 684 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 685 mstate->dtms_scratch_size)) { 686 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base, 687 mstate->dtms_scratch_size); 688 return (1); 689 } 690 691 /* 692 * Now check to see if it's a dynamic variable. This check will pick 693 * up both thread-local variables and any global dynamically-allocated 694 * variables. 695 */ 696 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 697 vstate->dtvs_dynvars.dtds_size)) { 698 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 699 uintptr_t base = (uintptr_t)dstate->dtds_base + 700 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 701 uintptr_t chunkoffs; 702 dtrace_dynvar_t *dvar; 703 704 /* 705 * Before we assume that we can store here, we need to make 706 * sure that it isn't in our metadata -- storing to our 707 * dynamic variable metadata would corrupt our state. For 708 * the range to not include any dynamic variable metadata, 709 * it must: 710 * 711 * (1) Start above the hash table that is at the base of 712 * the dynamic variable space 713 * 714 * (2) Have a starting chunk offset that is beyond the 715 * dtrace_dynvar_t that is at the base of every chunk 716 * 717 * (3) Not span a chunk boundary 718 * 719 * (4) Not be in the tuple space of a dynamic variable 720 * 721 */ 722 if (addr < base) 723 return (0); 724 725 chunkoffs = (addr - base) % dstate->dtds_chunksize; 726 727 if (chunkoffs < sizeof (dtrace_dynvar_t)) 728 return (0); 729 730 if (chunkoffs + sz > dstate->dtds_chunksize) 731 return (0); 732 733 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs); 734 735 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) 736 return (0); 737 738 if (chunkoffs < sizeof (dtrace_dynvar_t) + 739 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t))) 740 return (0); 741 742 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize); 743 return (1); 744 } 745 746 /* 747 * Finally, check the static local and global variables. These checks 748 * take the longest, so we perform them last. 749 */ 750 if (dtrace_canstore_statvar(addr, sz, remain, 751 vstate->dtvs_locals, vstate->dtvs_nlocals)) 752 return (1); 753 754 if (dtrace_canstore_statvar(addr, sz, remain, 755 vstate->dtvs_globals, vstate->dtvs_nglobals)) 756 return (1); 757 758 return (0); 759 } 760 761 762 /* 763 * Convenience routine to check to see if the address is within a memory 764 * region in which a load may be issued given the user's privilege level; 765 * if not, it sets the appropriate error flags and loads 'addr' into the 766 * illegal value slot. 767 * 768 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 769 * appropriate memory access protection. 770 */ 771 static int 772 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 773 dtrace_vstate_t *vstate) 774 { 775 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate)); 776 } 777 778 /* 779 * Implementation of dtrace_canload which communicates the upper bound of the 780 * allowed memory region. 781 */ 782 static int 783 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain, 784 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 785 { 786 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 787 file_t *fp; 788 789 /* 790 * If we hold the privilege to read from kernel memory, then 791 * everything is readable. 792 */ 793 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 794 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 795 return (1); 796 } 797 798 /* 799 * You can obviously read that which you can store. 800 */ 801 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate)) 802 return (1); 803 804 /* 805 * We're allowed to read from our own string table. 806 */ 807 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 808 mstate->dtms_difo->dtdo_strlen)) { 809 DTRACE_RANGE_REMAIN(remain, addr, 810 mstate->dtms_difo->dtdo_strtab, 811 mstate->dtms_difo->dtdo_strlen); 812 return (1); 813 } 814 815 if (vstate->dtvs_state != NULL && 816 dtrace_priv_proc(vstate->dtvs_state, mstate)) { 817 proc_t *p; 818 819 /* 820 * When we have privileges to the current process, there are 821 * several context-related kernel structures that are safe to 822 * read, even absent the privilege to read from kernel memory. 823 * These reads are safe because these structures contain only 824 * state that (1) we're permitted to read, (2) is harmless or 825 * (3) contains pointers to additional kernel state that we're 826 * not permitted to read (and as such, do not present an 827 * opportunity for privilege escalation). Finally (and 828 * critically), because of the nature of their relation with 829 * the current thread context, the memory associated with these 830 * structures cannot change over the duration of probe context, 831 * and it is therefore impossible for this memory to be 832 * deallocated and reallocated as something else while it's 833 * being operated upon. 834 */ 835 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) { 836 DTRACE_RANGE_REMAIN(remain, addr, curthread, 837 sizeof (kthread_t)); 838 return (1); 839 } 840 841 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 842 sz, curthread->t_procp, sizeof (proc_t))) { 843 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp, 844 sizeof (proc_t)); 845 return (1); 846 } 847 848 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 849 curthread->t_cred, sizeof (cred_t))) { 850 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred, 851 sizeof (cred_t)); 852 return (1); 853 } 854 855 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 856 &(p->p_pidp->pid_id), sizeof (pid_t))) { 857 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id), 858 sizeof (pid_t)); 859 return (1); 860 } 861 862 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 863 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 864 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu, 865 offsetof(cpu_t, cpu_pause_thread)); 866 return (1); 867 } 868 } 869 870 if ((fp = mstate->dtms_getf) != NULL) { 871 uintptr_t psz = sizeof (void *); 872 vnode_t *vp; 873 vnodeops_t *op; 874 875 /* 876 * When getf() returns a file_t, the enabling is implicitly 877 * granted the (transient) right to read the returned file_t 878 * as well as the v_path and v_op->vnop_name of the underlying 879 * vnode. These accesses are allowed after a successful 880 * getf() because the members that they refer to cannot change 881 * once set -- and the barrier logic in the kernel's closef() 882 * path assures that the file_t and its referenced vode_t 883 * cannot themselves be stale (that is, it impossible for 884 * either dtms_getf itself or its f_vnode member to reference 885 * freed memory). 886 */ 887 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) { 888 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t)); 889 return (1); 890 } 891 892 if ((vp = fp->f_vnode) != NULL) { 893 size_t slen; 894 895 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) { 896 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path, 897 psz); 898 return (1); 899 } 900 901 slen = strlen(vp->v_path) + 1; 902 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) { 903 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path, 904 slen); 905 return (1); 906 } 907 908 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) { 909 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op, 910 psz); 911 return (1); 912 } 913 914 if ((op = vp->v_op) != NULL && 915 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 916 DTRACE_RANGE_REMAIN(remain, addr, 917 &op->vnop_name, psz); 918 return (1); 919 } 920 921 if (op != NULL && op->vnop_name != NULL && 922 DTRACE_INRANGE(addr, sz, op->vnop_name, 923 (slen = strlen(op->vnop_name) + 1))) { 924 DTRACE_RANGE_REMAIN(remain, addr, 925 op->vnop_name, slen); 926 return (1); 927 } 928 } 929 } 930 931 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 932 *illval = addr; 933 return (0); 934 } 935 936 /* 937 * Convenience routine to check to see if a given string is within a memory 938 * region in which a load may be issued given the user's privilege level; 939 * this exists so that we don't need to issue unnecessary dtrace_strlen() 940 * calls in the event that the user has all privileges. 941 */ 942 static int 943 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain, 944 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 945 { 946 size_t rsize; 947 948 /* 949 * If we hold the privilege to read from kernel memory, then 950 * everything is readable. 951 */ 952 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 953 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 954 return (1); 955 } 956 957 /* 958 * Even if the caller is uninterested in querying the remaining valid 959 * range, it is required to ensure that the access is allowed. 960 */ 961 if (remain == NULL) { 962 remain = &rsize; 963 } 964 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) { 965 size_t strsz; 966 /* 967 * Perform the strlen after determining the length of the 968 * memory region which is accessible. This prevents timing 969 * information from being used to find NULs in memory which is 970 * not accessible to the caller. 971 */ 972 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, 973 MIN(sz, *remain)); 974 if (strsz <= *remain) { 975 return (1); 976 } 977 } 978 979 return (0); 980 } 981 982 /* 983 * Convenience routine to check to see if a given variable is within a memory 984 * region in which a load may be issued given the user's privilege level. 985 */ 986 static int 987 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain, 988 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 989 { 990 size_t sz; 991 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 992 993 /* 994 * Calculate the max size before performing any checks since even 995 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function 996 * return the max length via 'remain'. 997 */ 998 if (type->dtdt_kind == DIF_TYPE_STRING) { 999 dtrace_state_t *state = vstate->dtvs_state; 1000 1001 if (state != NULL) { 1002 sz = state->dts_options[DTRACEOPT_STRSIZE]; 1003 } else { 1004 /* 1005 * In helper context, we have a NULL state; fall back 1006 * to using the system-wide default for the string size 1007 * in this case. 1008 */ 1009 sz = dtrace_strsize_default; 1010 } 1011 } else { 1012 sz = type->dtdt_size; 1013 } 1014 1015 /* 1016 * If we hold the privilege to read from kernel memory, then 1017 * everything is readable. 1018 */ 1019 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1020 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz); 1021 return (1); 1022 } 1023 1024 if (type->dtdt_kind == DIF_TYPE_STRING) { 1025 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate, 1026 vstate)); 1027 } 1028 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate, 1029 vstate)); 1030 } 1031 1032 /* 1033 * Convert a string to a signed integer using safe loads. 1034 * 1035 * NOTE: This function uses various macros from strtolctype.h to manipulate 1036 * digit values, etc -- these have all been checked to ensure they make 1037 * no additional function calls. 1038 */ 1039 static int64_t 1040 dtrace_strtoll(char *input, int base, size_t limit) 1041 { 1042 uintptr_t pos = (uintptr_t)input; 1043 int64_t val = 0; 1044 int x; 1045 boolean_t neg = B_FALSE; 1046 char c, cc, ccc; 1047 uintptr_t end = pos + limit; 1048 1049 /* 1050 * Consume any whitespace preceding digits. 1051 */ 1052 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 1053 pos++; 1054 1055 /* 1056 * Handle an explicit sign if one is present. 1057 */ 1058 if (c == '-' || c == '+') { 1059 if (c == '-') 1060 neg = B_TRUE; 1061 c = dtrace_load8(++pos); 1062 } 1063 1064 /* 1065 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 1066 * if present. 1067 */ 1068 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 1069 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 1070 pos += 2; 1071 c = ccc; 1072 } 1073 1074 /* 1075 * Read in contiguous digits until the first non-digit character. 1076 */ 1077 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 1078 c = dtrace_load8(++pos)) 1079 val = val * base + x; 1080 1081 return (neg ? -val : val); 1082 } 1083 1084 /* 1085 * Compare two strings using safe loads. 1086 */ 1087 static int 1088 dtrace_strncmp(char *s1, char *s2, size_t limit) 1089 { 1090 uint8_t c1, c2; 1091 volatile uint16_t *flags; 1092 1093 if (s1 == s2 || limit == 0) 1094 return (0); 1095 1096 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 1097 1098 do { 1099 if (s1 == NULL) { 1100 c1 = '\0'; 1101 } else { 1102 c1 = dtrace_load8((uintptr_t)s1++); 1103 } 1104 1105 if (s2 == NULL) { 1106 c2 = '\0'; 1107 } else { 1108 c2 = dtrace_load8((uintptr_t)s2++); 1109 } 1110 1111 if (c1 != c2) 1112 return (c1 - c2); 1113 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 1114 1115 return (0); 1116 } 1117 1118 /* 1119 * Compute strlen(s) for a string using safe memory accesses. The additional 1120 * len parameter is used to specify a maximum length to ensure completion. 1121 */ 1122 static size_t 1123 dtrace_strlen(const char *s, size_t lim) 1124 { 1125 uint_t len; 1126 1127 for (len = 0; len != lim; len++) { 1128 if (dtrace_load8((uintptr_t)s++) == '\0') 1129 break; 1130 } 1131 1132 return (len); 1133 } 1134 1135 /* 1136 * Check if an address falls within a toxic region. 1137 */ 1138 static int 1139 dtrace_istoxic(uintptr_t kaddr, size_t size) 1140 { 1141 uintptr_t taddr, tsize; 1142 int i; 1143 1144 for (i = 0; i < dtrace_toxranges; i++) { 1145 taddr = dtrace_toxrange[i].dtt_base; 1146 tsize = dtrace_toxrange[i].dtt_limit - taddr; 1147 1148 if (kaddr - taddr < tsize) { 1149 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1150 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 1151 return (1); 1152 } 1153 1154 if (taddr - kaddr < size) { 1155 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1156 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 1157 return (1); 1158 } 1159 } 1160 1161 return (0); 1162 } 1163 1164 /* 1165 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1166 * memory specified by the DIF program. The dst is assumed to be safe memory 1167 * that we can store to directly because it is managed by DTrace. As with 1168 * standard bcopy, overlapping copies are handled properly. 1169 */ 1170 static void 1171 dtrace_bcopy(const void *src, void *dst, size_t len) 1172 { 1173 if (len != 0) { 1174 uint8_t *s1 = dst; 1175 const uint8_t *s2 = src; 1176 1177 if (s1 <= s2) { 1178 do { 1179 *s1++ = dtrace_load8((uintptr_t)s2++); 1180 } while (--len != 0); 1181 } else { 1182 s2 += len; 1183 s1 += len; 1184 1185 do { 1186 *--s1 = dtrace_load8((uintptr_t)--s2); 1187 } while (--len != 0); 1188 } 1189 } 1190 } 1191 1192 /* 1193 * Copy src to dst using safe memory accesses, up to either the specified 1194 * length, or the point that a nul byte is encountered. The src is assumed to 1195 * be unsafe memory specified by the DIF program. The dst is assumed to be 1196 * safe memory that we can store to directly because it is managed by DTrace. 1197 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1198 */ 1199 static void 1200 dtrace_strcpy(const void *src, void *dst, size_t len) 1201 { 1202 if (len != 0) { 1203 uint8_t *s1 = dst, c; 1204 const uint8_t *s2 = src; 1205 1206 do { 1207 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1208 } while (--len != 0 && c != '\0'); 1209 } 1210 } 1211 1212 /* 1213 * Copy src to dst, deriving the size and type from the specified (BYREF) 1214 * variable type. The src is assumed to be unsafe memory specified by the DIF 1215 * program. The dst is assumed to be DTrace variable memory that is of the 1216 * specified type; we assume that we can store to directly. 1217 */ 1218 static void 1219 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit) 1220 { 1221 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1222 1223 if (type->dtdt_kind == DIF_TYPE_STRING) { 1224 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit)); 1225 } else { 1226 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit)); 1227 } 1228 } 1229 1230 /* 1231 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1232 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1233 * safe memory that we can access directly because it is managed by DTrace. 1234 */ 1235 static int 1236 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1237 { 1238 volatile uint16_t *flags; 1239 1240 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 1241 1242 if (s1 == s2) 1243 return (0); 1244 1245 if (s1 == NULL || s2 == NULL) 1246 return (1); 1247 1248 if (s1 != s2 && len != 0) { 1249 const uint8_t *ps1 = s1; 1250 const uint8_t *ps2 = s2; 1251 1252 do { 1253 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1254 return (1); 1255 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1256 } 1257 return (0); 1258 } 1259 1260 /* 1261 * Zero the specified region using a simple byte-by-byte loop. Note that this 1262 * is for safe DTrace-managed memory only. 1263 */ 1264 static void 1265 dtrace_bzero(void *dst, size_t len) 1266 { 1267 uchar_t *cp; 1268 1269 for (cp = dst; len != 0; len--) 1270 *cp++ = 0; 1271 } 1272 1273 static void 1274 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1275 { 1276 uint64_t result[2]; 1277 1278 result[0] = addend1[0] + addend2[0]; 1279 result[1] = addend1[1] + addend2[1] + 1280 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1281 1282 sum[0] = result[0]; 1283 sum[1] = result[1]; 1284 } 1285 1286 /* 1287 * Shift the 128-bit value in a by b. If b is positive, shift left. 1288 * If b is negative, shift right. 1289 */ 1290 static void 1291 dtrace_shift_128(uint64_t *a, int b) 1292 { 1293 uint64_t mask; 1294 1295 if (b == 0) 1296 return; 1297 1298 if (b < 0) { 1299 b = -b; 1300 if (b >= 64) { 1301 a[0] = a[1] >> (b - 64); 1302 a[1] = 0; 1303 } else { 1304 a[0] >>= b; 1305 mask = 1LL << (64 - b); 1306 mask -= 1; 1307 a[0] |= ((a[1] & mask) << (64 - b)); 1308 a[1] >>= b; 1309 } 1310 } else { 1311 if (b >= 64) { 1312 a[1] = a[0] << (b - 64); 1313 a[0] = 0; 1314 } else { 1315 a[1] <<= b; 1316 mask = a[0] >> (64 - b); 1317 a[1] |= mask; 1318 a[0] <<= b; 1319 } 1320 } 1321 } 1322 1323 /* 1324 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1325 * use native multiplication on those, and then re-combine into the 1326 * resulting 128-bit value. 1327 * 1328 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1329 * hi1 * hi2 << 64 + 1330 * hi1 * lo2 << 32 + 1331 * hi2 * lo1 << 32 + 1332 * lo1 * lo2 1333 */ 1334 static void 1335 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1336 { 1337 uint64_t hi1, hi2, lo1, lo2; 1338 uint64_t tmp[2]; 1339 1340 hi1 = factor1 >> 32; 1341 hi2 = factor2 >> 32; 1342 1343 lo1 = factor1 & DT_MASK_LO; 1344 lo2 = factor2 & DT_MASK_LO; 1345 1346 product[0] = lo1 * lo2; 1347 product[1] = hi1 * hi2; 1348 1349 tmp[0] = hi1 * lo2; 1350 tmp[1] = 0; 1351 dtrace_shift_128(tmp, 32); 1352 dtrace_add_128(product, tmp, product); 1353 1354 tmp[0] = hi2 * lo1; 1355 tmp[1] = 0; 1356 dtrace_shift_128(tmp, 32); 1357 dtrace_add_128(product, tmp, product); 1358 } 1359 1360 /* 1361 * This privilege check should be used by actions and subroutines to 1362 * verify that the user credentials of the process that enabled the 1363 * invoking ECB match the target credentials 1364 */ 1365 static int 1366 dtrace_priv_proc_common_user(dtrace_state_t *state) 1367 { 1368 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1369 1370 /* 1371 * We should always have a non-NULL state cred here, since if cred 1372 * is null (anonymous tracing), we fast-path bypass this routine. 1373 */ 1374 ASSERT(s_cr != NULL); 1375 1376 if ((cr = CRED()) != NULL && 1377 s_cr->cr_uid == cr->cr_uid && 1378 s_cr->cr_uid == cr->cr_ruid && 1379 s_cr->cr_uid == cr->cr_suid && 1380 s_cr->cr_gid == cr->cr_gid && 1381 s_cr->cr_gid == cr->cr_rgid && 1382 s_cr->cr_gid == cr->cr_sgid) 1383 return (1); 1384 1385 return (0); 1386 } 1387 1388 /* 1389 * This privilege check should be used by actions and subroutines to 1390 * verify that the zone of the process that enabled the invoking ECB 1391 * matches the target credentials 1392 */ 1393 static int 1394 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1395 { 1396 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1397 1398 /* 1399 * We should always have a non-NULL state cred here, since if cred 1400 * is null (anonymous tracing), we fast-path bypass this routine. 1401 */ 1402 ASSERT(s_cr != NULL); 1403 1404 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1405 return (1); 1406 1407 return (0); 1408 } 1409 1410 /* 1411 * This privilege check should be used by actions and subroutines to 1412 * verify that the process has not setuid or changed credentials. 1413 */ 1414 static int 1415 dtrace_priv_proc_common_nocd() 1416 { 1417 proc_t *proc; 1418 1419 if ((proc = ttoproc(curthread)) != NULL && 1420 !(proc->p_flag & SNOCD)) 1421 return (1); 1422 1423 return (0); 1424 } 1425 1426 static int 1427 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate) 1428 { 1429 int action = state->dts_cred.dcr_action; 1430 1431 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC)) 1432 goto bad; 1433 1434 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1435 dtrace_priv_proc_common_zone(state) == 0) 1436 goto bad; 1437 1438 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1439 dtrace_priv_proc_common_user(state) == 0) 1440 goto bad; 1441 1442 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1443 dtrace_priv_proc_common_nocd() == 0) 1444 goto bad; 1445 1446 return (1); 1447 1448 bad: 1449 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1450 1451 return (0); 1452 } 1453 1454 static int 1455 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate) 1456 { 1457 if (mstate->dtms_access & DTRACE_ACCESS_PROC) { 1458 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1459 return (1); 1460 1461 if (dtrace_priv_proc_common_zone(state) && 1462 dtrace_priv_proc_common_user(state) && 1463 dtrace_priv_proc_common_nocd()) 1464 return (1); 1465 } 1466 1467 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1468 1469 return (0); 1470 } 1471 1472 static int 1473 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate) 1474 { 1475 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) && 1476 (state->dts_cred.dcr_action & DTRACE_CRA_PROC)) 1477 return (1); 1478 1479 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1480 1481 return (0); 1482 } 1483 1484 static int 1485 dtrace_priv_kernel(dtrace_state_t *state) 1486 { 1487 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1488 return (1); 1489 1490 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1491 1492 return (0); 1493 } 1494 1495 static int 1496 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1497 { 1498 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1499 return (1); 1500 1501 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1502 1503 return (0); 1504 } 1505 1506 /* 1507 * Determine if the dte_cond of the specified ECB allows for processing of 1508 * the current probe to continue. Note that this routine may allow continued 1509 * processing, but with access(es) stripped from the mstate's dtms_access 1510 * field. 1511 */ 1512 static int 1513 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1514 dtrace_ecb_t *ecb) 1515 { 1516 dtrace_probe_t *probe = ecb->dte_probe; 1517 dtrace_provider_t *prov = probe->dtpr_provider; 1518 dtrace_pops_t *pops = &prov->dtpv_pops; 1519 int mode = DTRACE_MODE_NOPRIV_DROP; 1520 1521 ASSERT(ecb->dte_cond); 1522 1523 if (pops->dtps_mode != NULL) { 1524 mode = pops->dtps_mode(prov->dtpv_arg, 1525 probe->dtpr_id, probe->dtpr_arg); 1526 1527 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL)); 1528 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT | 1529 DTRACE_MODE_NOPRIV_DROP)); 1530 } 1531 1532 /* 1533 * If the dte_cond bits indicate that this consumer is only allowed to 1534 * see user-mode firings of this probe, check that the probe was fired 1535 * while in a user context. If that's not the case, use the policy 1536 * specified by the provider to determine if we drop the probe or 1537 * merely restrict operation. 1538 */ 1539 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1540 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1541 1542 if (!(mode & DTRACE_MODE_USER)) { 1543 if (mode & DTRACE_MODE_NOPRIV_DROP) 1544 return (0); 1545 1546 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1547 } 1548 } 1549 1550 /* 1551 * This is more subtle than it looks. We have to be absolutely certain 1552 * that CRED() isn't going to change out from under us so it's only 1553 * legit to examine that structure if we're in constrained situations. 1554 * Currently, the only times we'll this check is if a non-super-user 1555 * has enabled the profile or syscall providers -- providers that 1556 * allow visibility of all processes. For the profile case, the check 1557 * above will ensure that we're examining a user context. 1558 */ 1559 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1560 cred_t *cr; 1561 cred_t *s_cr = state->dts_cred.dcr_cred; 1562 proc_t *proc; 1563 1564 ASSERT(s_cr != NULL); 1565 1566 if ((cr = CRED()) == NULL || 1567 s_cr->cr_uid != cr->cr_uid || 1568 s_cr->cr_uid != cr->cr_ruid || 1569 s_cr->cr_uid != cr->cr_suid || 1570 s_cr->cr_gid != cr->cr_gid || 1571 s_cr->cr_gid != cr->cr_rgid || 1572 s_cr->cr_gid != cr->cr_sgid || 1573 (proc = ttoproc(curthread)) == NULL || 1574 (proc->p_flag & SNOCD)) { 1575 if (mode & DTRACE_MODE_NOPRIV_DROP) 1576 return (0); 1577 1578 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1579 } 1580 } 1581 1582 /* 1583 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1584 * in our zone, check to see if our mode policy is to restrict rather 1585 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1586 * and DTRACE_ACCESS_ARGS 1587 */ 1588 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1589 cred_t *cr; 1590 cred_t *s_cr = state->dts_cred.dcr_cred; 1591 1592 ASSERT(s_cr != NULL); 1593 1594 if ((cr = CRED()) == NULL || 1595 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1596 if (mode & DTRACE_MODE_NOPRIV_DROP) 1597 return (0); 1598 1599 mstate->dtms_access &= 1600 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1601 } 1602 } 1603 1604 /* 1605 * By merits of being in this code path at all, we have limited 1606 * privileges. If the provider has indicated that limited privileges 1607 * are to denote restricted operation, strip off the ability to access 1608 * arguments. 1609 */ 1610 if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT) 1611 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1612 1613 return (1); 1614 } 1615 1616 /* 1617 * Note: not called from probe context. This function is called 1618 * asynchronously (and at a regular interval) from outside of probe context to 1619 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1620 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1621 */ 1622 void 1623 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1624 { 1625 dtrace_dynvar_t *dirty; 1626 dtrace_dstate_percpu_t *dcpu; 1627 dtrace_dynvar_t **rinsep; 1628 int i, j, work = 0; 1629 1630 for (i = 0; i < NCPU; i++) { 1631 dcpu = &dstate->dtds_percpu[i]; 1632 rinsep = &dcpu->dtdsc_rinsing; 1633 1634 /* 1635 * If the dirty list is NULL, there is no dirty work to do. 1636 */ 1637 if (dcpu->dtdsc_dirty == NULL) 1638 continue; 1639 1640 if (dcpu->dtdsc_rinsing != NULL) { 1641 /* 1642 * If the rinsing list is non-NULL, then it is because 1643 * this CPU was selected to accept another CPU's 1644 * dirty list -- and since that time, dirty buffers 1645 * have accumulated. This is a highly unlikely 1646 * condition, but we choose to ignore the dirty 1647 * buffers -- they'll be picked up a future cleanse. 1648 */ 1649 continue; 1650 } 1651 1652 if (dcpu->dtdsc_clean != NULL) { 1653 /* 1654 * If the clean list is non-NULL, then we're in a 1655 * situation where a CPU has done deallocations (we 1656 * have a non-NULL dirty list) but no allocations (we 1657 * also have a non-NULL clean list). We can't simply 1658 * move the dirty list into the clean list on this 1659 * CPU, yet we also don't want to allow this condition 1660 * to persist, lest a short clean list prevent a 1661 * massive dirty list from being cleaned (which in 1662 * turn could lead to otherwise avoidable dynamic 1663 * drops). To deal with this, we look for some CPU 1664 * with a NULL clean list, NULL dirty list, and NULL 1665 * rinsing list -- and then we borrow this CPU to 1666 * rinse our dirty list. 1667 */ 1668 for (j = 0; j < NCPU; j++) { 1669 dtrace_dstate_percpu_t *rinser; 1670 1671 rinser = &dstate->dtds_percpu[j]; 1672 1673 if (rinser->dtdsc_rinsing != NULL) 1674 continue; 1675 1676 if (rinser->dtdsc_dirty != NULL) 1677 continue; 1678 1679 if (rinser->dtdsc_clean != NULL) 1680 continue; 1681 1682 rinsep = &rinser->dtdsc_rinsing; 1683 break; 1684 } 1685 1686 if (j == NCPU) { 1687 /* 1688 * We were unable to find another CPU that 1689 * could accept this dirty list -- we are 1690 * therefore unable to clean it now. 1691 */ 1692 dtrace_dynvar_failclean++; 1693 continue; 1694 } 1695 } 1696 1697 work = 1; 1698 1699 /* 1700 * Atomically move the dirty list aside. 1701 */ 1702 do { 1703 dirty = dcpu->dtdsc_dirty; 1704 1705 /* 1706 * Before we zap the dirty list, set the rinsing list. 1707 * (This allows for a potential assertion in 1708 * dtrace_dynvar(): if a free dynamic variable appears 1709 * on a hash chain, either the dirty list or the 1710 * rinsing list for some CPU must be non-NULL.) 1711 */ 1712 *rinsep = dirty; 1713 dtrace_membar_producer(); 1714 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1715 dirty, NULL) != dirty); 1716 } 1717 1718 if (!work) { 1719 /* 1720 * We have no work to do; we can simply return. 1721 */ 1722 return; 1723 } 1724 1725 dtrace_sync(); 1726 1727 for (i = 0; i < NCPU; i++) { 1728 dcpu = &dstate->dtds_percpu[i]; 1729 1730 if (dcpu->dtdsc_rinsing == NULL) 1731 continue; 1732 1733 /* 1734 * We are now guaranteed that no hash chain contains a pointer 1735 * into this dirty list; we can make it clean. 1736 */ 1737 ASSERT(dcpu->dtdsc_clean == NULL); 1738 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1739 dcpu->dtdsc_rinsing = NULL; 1740 } 1741 1742 /* 1743 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1744 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1745 * This prevents a race whereby a CPU incorrectly decides that 1746 * the state should be something other than DTRACE_DSTATE_CLEAN 1747 * after dtrace_dynvar_clean() has completed. 1748 */ 1749 dtrace_sync(); 1750 1751 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1752 } 1753 1754 /* 1755 * Depending on the value of the op parameter, this function looks-up, 1756 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1757 * allocation is requested, this function will return a pointer to a 1758 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1759 * variable can be allocated. If NULL is returned, the appropriate counter 1760 * will be incremented. 1761 */ 1762 dtrace_dynvar_t * 1763 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1764 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1765 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1766 { 1767 uint64_t hashval = DTRACE_DYNHASH_VALID; 1768 dtrace_dynhash_t *hash = dstate->dtds_hash; 1769 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1770 processorid_t me = CPU->cpu_id, cpu = me; 1771 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1772 size_t bucket, ksize; 1773 size_t chunksize = dstate->dtds_chunksize; 1774 uintptr_t kdata, lock, nstate; 1775 uint_t i; 1776 1777 ASSERT(nkeys != 0); 1778 1779 /* 1780 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1781 * algorithm. For the by-value portions, we perform the algorithm in 1782 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1783 * bit, and seems to have only a minute effect on distribution. For 1784 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1785 * over each referenced byte. It's painful to do this, but it's much 1786 * better than pathological hash distribution. The efficacy of the 1787 * hashing algorithm (and a comparison with other algorithms) may be 1788 * found by running the ::dtrace_dynstat MDB dcmd. 1789 */ 1790 for (i = 0; i < nkeys; i++) { 1791 if (key[i].dttk_size == 0) { 1792 uint64_t val = key[i].dttk_value; 1793 1794 hashval += (val >> 48) & 0xffff; 1795 hashval += (hashval << 10); 1796 hashval ^= (hashval >> 6); 1797 1798 hashval += (val >> 32) & 0xffff; 1799 hashval += (hashval << 10); 1800 hashval ^= (hashval >> 6); 1801 1802 hashval += (val >> 16) & 0xffff; 1803 hashval += (hashval << 10); 1804 hashval ^= (hashval >> 6); 1805 1806 hashval += val & 0xffff; 1807 hashval += (hashval << 10); 1808 hashval ^= (hashval >> 6); 1809 } else { 1810 /* 1811 * This is incredibly painful, but it beats the hell 1812 * out of the alternative. 1813 */ 1814 uint64_t j, size = key[i].dttk_size; 1815 uintptr_t base = (uintptr_t)key[i].dttk_value; 1816 1817 if (!dtrace_canload(base, size, mstate, vstate)) 1818 break; 1819 1820 for (j = 0; j < size; j++) { 1821 hashval += dtrace_load8(base + j); 1822 hashval += (hashval << 10); 1823 hashval ^= (hashval >> 6); 1824 } 1825 } 1826 } 1827 1828 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1829 return (NULL); 1830 1831 hashval += (hashval << 3); 1832 hashval ^= (hashval >> 11); 1833 hashval += (hashval << 15); 1834 1835 /* 1836 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1837 * comes out to be one of our two sentinel hash values. If this 1838 * actually happens, we set the hashval to be a value known to be a 1839 * non-sentinel value. 1840 */ 1841 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1842 hashval = DTRACE_DYNHASH_VALID; 1843 1844 /* 1845 * Yes, it's painful to do a divide here. If the cycle count becomes 1846 * important here, tricks can be pulled to reduce it. (However, it's 1847 * critical that hash collisions be kept to an absolute minimum; 1848 * they're much more painful than a divide.) It's better to have a 1849 * solution that generates few collisions and still keeps things 1850 * relatively simple. 1851 */ 1852 bucket = hashval % dstate->dtds_hashsize; 1853 1854 if (op == DTRACE_DYNVAR_DEALLOC) { 1855 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1856 1857 for (;;) { 1858 while ((lock = *lockp) & 1) 1859 continue; 1860 1861 if (dtrace_casptr((void *)lockp, 1862 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1863 break; 1864 } 1865 1866 dtrace_membar_producer(); 1867 } 1868 1869 top: 1870 prev = NULL; 1871 lock = hash[bucket].dtdh_lock; 1872 1873 dtrace_membar_consumer(); 1874 1875 start = hash[bucket].dtdh_chain; 1876 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1877 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1878 op != DTRACE_DYNVAR_DEALLOC)); 1879 1880 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1881 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1882 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1883 1884 if (dvar->dtdv_hashval != hashval) { 1885 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1886 /* 1887 * We've reached the sink, and therefore the 1888 * end of the hash chain; we can kick out of 1889 * the loop knowing that we have seen a valid 1890 * snapshot of state. 1891 */ 1892 ASSERT(dvar->dtdv_next == NULL); 1893 ASSERT(dvar == &dtrace_dynhash_sink); 1894 break; 1895 } 1896 1897 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1898 /* 1899 * We've gone off the rails: somewhere along 1900 * the line, one of the members of this hash 1901 * chain was deleted. Note that we could also 1902 * detect this by simply letting this loop run 1903 * to completion, as we would eventually hit 1904 * the end of the dirty list. However, we 1905 * want to avoid running the length of the 1906 * dirty list unnecessarily (it might be quite 1907 * long), so we catch this as early as 1908 * possible by detecting the hash marker. In 1909 * this case, we simply set dvar to NULL and 1910 * break; the conditional after the loop will 1911 * send us back to top. 1912 */ 1913 dvar = NULL; 1914 break; 1915 } 1916 1917 goto next; 1918 } 1919 1920 if (dtuple->dtt_nkeys != nkeys) 1921 goto next; 1922 1923 for (i = 0; i < nkeys; i++, dkey++) { 1924 if (dkey->dttk_size != key[i].dttk_size) 1925 goto next; /* size or type mismatch */ 1926 1927 if (dkey->dttk_size != 0) { 1928 if (dtrace_bcmp( 1929 (void *)(uintptr_t)key[i].dttk_value, 1930 (void *)(uintptr_t)dkey->dttk_value, 1931 dkey->dttk_size)) 1932 goto next; 1933 } else { 1934 if (dkey->dttk_value != key[i].dttk_value) 1935 goto next; 1936 } 1937 } 1938 1939 if (op != DTRACE_DYNVAR_DEALLOC) 1940 return (dvar); 1941 1942 ASSERT(dvar->dtdv_next == NULL || 1943 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1944 1945 if (prev != NULL) { 1946 ASSERT(hash[bucket].dtdh_chain != dvar); 1947 ASSERT(start != dvar); 1948 ASSERT(prev->dtdv_next == dvar); 1949 prev->dtdv_next = dvar->dtdv_next; 1950 } else { 1951 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1952 start, dvar->dtdv_next) != start) { 1953 /* 1954 * We have failed to atomically swing the 1955 * hash table head pointer, presumably because 1956 * of a conflicting allocation on another CPU. 1957 * We need to reread the hash chain and try 1958 * again. 1959 */ 1960 goto top; 1961 } 1962 } 1963 1964 dtrace_membar_producer(); 1965 1966 /* 1967 * Now set the hash value to indicate that it's free. 1968 */ 1969 ASSERT(hash[bucket].dtdh_chain != dvar); 1970 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1971 1972 dtrace_membar_producer(); 1973 1974 /* 1975 * Set the next pointer to point at the dirty list, and 1976 * atomically swing the dirty pointer to the newly freed dvar. 1977 */ 1978 do { 1979 next = dcpu->dtdsc_dirty; 1980 dvar->dtdv_next = next; 1981 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1982 1983 /* 1984 * Finally, unlock this hash bucket. 1985 */ 1986 ASSERT(hash[bucket].dtdh_lock == lock); 1987 ASSERT(lock & 1); 1988 hash[bucket].dtdh_lock++; 1989 1990 return (NULL); 1991 next: 1992 prev = dvar; 1993 continue; 1994 } 1995 1996 if (dvar == NULL) { 1997 /* 1998 * If dvar is NULL, it is because we went off the rails: 1999 * one of the elements that we traversed in the hash chain 2000 * was deleted while we were traversing it. In this case, 2001 * we assert that we aren't doing a dealloc (deallocs lock 2002 * the hash bucket to prevent themselves from racing with 2003 * one another), and retry the hash chain traversal. 2004 */ 2005 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 2006 goto top; 2007 } 2008 2009 if (op != DTRACE_DYNVAR_ALLOC) { 2010 /* 2011 * If we are not to allocate a new variable, we want to 2012 * return NULL now. Before we return, check that the value 2013 * of the lock word hasn't changed. If it has, we may have 2014 * seen an inconsistent snapshot. 2015 */ 2016 if (op == DTRACE_DYNVAR_NOALLOC) { 2017 if (hash[bucket].dtdh_lock != lock) 2018 goto top; 2019 } else { 2020 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 2021 ASSERT(hash[bucket].dtdh_lock == lock); 2022 ASSERT(lock & 1); 2023 hash[bucket].dtdh_lock++; 2024 } 2025 2026 return (NULL); 2027 } 2028 2029 /* 2030 * We need to allocate a new dynamic variable. The size we need is the 2031 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 2032 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 2033 * the size of any referred-to data (dsize). We then round the final 2034 * size up to the chunksize for allocation. 2035 */ 2036 for (ksize = 0, i = 0; i < nkeys; i++) 2037 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 2038 2039 /* 2040 * This should be pretty much impossible, but could happen if, say, 2041 * strange DIF specified the tuple. Ideally, this should be an 2042 * assertion and not an error condition -- but that requires that the 2043 * chunksize calculation in dtrace_difo_chunksize() be absolutely 2044 * bullet-proof. (That is, it must not be able to be fooled by 2045 * malicious DIF.) Given the lack of backwards branches in DIF, 2046 * solving this would presumably not amount to solving the Halting 2047 * Problem -- but it still seems awfully hard. 2048 */ 2049 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 2050 ksize + dsize > chunksize) { 2051 dcpu->dtdsc_drops++; 2052 return (NULL); 2053 } 2054 2055 nstate = DTRACE_DSTATE_EMPTY; 2056 2057 do { 2058 retry: 2059 free = dcpu->dtdsc_free; 2060 2061 if (free == NULL) { 2062 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 2063 void *rval; 2064 2065 if (clean == NULL) { 2066 /* 2067 * We're out of dynamic variable space on 2068 * this CPU. Unless we have tried all CPUs, 2069 * we'll try to allocate from a different 2070 * CPU. 2071 */ 2072 switch (dstate->dtds_state) { 2073 case DTRACE_DSTATE_CLEAN: { 2074 void *sp = &dstate->dtds_state; 2075 2076 if (++cpu >= NCPU) 2077 cpu = 0; 2078 2079 if (dcpu->dtdsc_dirty != NULL && 2080 nstate == DTRACE_DSTATE_EMPTY) 2081 nstate = DTRACE_DSTATE_DIRTY; 2082 2083 if (dcpu->dtdsc_rinsing != NULL) 2084 nstate = DTRACE_DSTATE_RINSING; 2085 2086 dcpu = &dstate->dtds_percpu[cpu]; 2087 2088 if (cpu != me) 2089 goto retry; 2090 2091 (void) dtrace_cas32(sp, 2092 DTRACE_DSTATE_CLEAN, nstate); 2093 2094 /* 2095 * To increment the correct bean 2096 * counter, take another lap. 2097 */ 2098 goto retry; 2099 } 2100 2101 case DTRACE_DSTATE_DIRTY: 2102 dcpu->dtdsc_dirty_drops++; 2103 break; 2104 2105 case DTRACE_DSTATE_RINSING: 2106 dcpu->dtdsc_rinsing_drops++; 2107 break; 2108 2109 case DTRACE_DSTATE_EMPTY: 2110 dcpu->dtdsc_drops++; 2111 break; 2112 } 2113 2114 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 2115 return (NULL); 2116 } 2117 2118 /* 2119 * The clean list appears to be non-empty. We want to 2120 * move the clean list to the free list; we start by 2121 * moving the clean pointer aside. 2122 */ 2123 if (dtrace_casptr(&dcpu->dtdsc_clean, 2124 clean, NULL) != clean) { 2125 /* 2126 * We are in one of two situations: 2127 * 2128 * (a) The clean list was switched to the 2129 * free list by another CPU. 2130 * 2131 * (b) The clean list was added to by the 2132 * cleansing cyclic. 2133 * 2134 * In either of these situations, we can 2135 * just reattempt the free list allocation. 2136 */ 2137 goto retry; 2138 } 2139 2140 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 2141 2142 /* 2143 * Now we'll move the clean list to our free list. 2144 * It's impossible for this to fail: the only way 2145 * the free list can be updated is through this 2146 * code path, and only one CPU can own the clean list. 2147 * Thus, it would only be possible for this to fail if 2148 * this code were racing with dtrace_dynvar_clean(). 2149 * (That is, if dtrace_dynvar_clean() updated the clean 2150 * list, and we ended up racing to update the free 2151 * list.) This race is prevented by the dtrace_sync() 2152 * in dtrace_dynvar_clean() -- which flushes the 2153 * owners of the clean lists out before resetting 2154 * the clean lists. 2155 */ 2156 dcpu = &dstate->dtds_percpu[me]; 2157 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2158 ASSERT(rval == NULL); 2159 goto retry; 2160 } 2161 2162 dvar = free; 2163 new_free = dvar->dtdv_next; 2164 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2165 2166 /* 2167 * We have now allocated a new chunk. We copy the tuple keys into the 2168 * tuple array and copy any referenced key data into the data space 2169 * following the tuple array. As we do this, we relocate dttk_value 2170 * in the final tuple to point to the key data address in the chunk. 2171 */ 2172 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2173 dvar->dtdv_data = (void *)(kdata + ksize); 2174 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2175 2176 for (i = 0; i < nkeys; i++) { 2177 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2178 size_t kesize = key[i].dttk_size; 2179 2180 if (kesize != 0) { 2181 dtrace_bcopy( 2182 (const void *)(uintptr_t)key[i].dttk_value, 2183 (void *)kdata, kesize); 2184 dkey->dttk_value = kdata; 2185 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2186 } else { 2187 dkey->dttk_value = key[i].dttk_value; 2188 } 2189 2190 dkey->dttk_size = kesize; 2191 } 2192 2193 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2194 dvar->dtdv_hashval = hashval; 2195 dvar->dtdv_next = start; 2196 2197 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2198 return (dvar); 2199 2200 /* 2201 * The cas has failed. Either another CPU is adding an element to 2202 * this hash chain, or another CPU is deleting an element from this 2203 * hash chain. The simplest way to deal with both of these cases 2204 * (though not necessarily the most efficient) is to free our 2205 * allocated block and re-attempt it all. Note that the free is 2206 * to the dirty list and _not_ to the free list. This is to prevent 2207 * races with allocators, above. 2208 */ 2209 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2210 2211 dtrace_membar_producer(); 2212 2213 do { 2214 free = dcpu->dtdsc_dirty; 2215 dvar->dtdv_next = free; 2216 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2217 2218 goto top; 2219 } 2220 2221 /*ARGSUSED*/ 2222 static void 2223 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2224 { 2225 if ((int64_t)nval < (int64_t)*oval) 2226 *oval = nval; 2227 } 2228 2229 /*ARGSUSED*/ 2230 static void 2231 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2232 { 2233 if ((int64_t)nval > (int64_t)*oval) 2234 *oval = nval; 2235 } 2236 2237 static void 2238 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2239 { 2240 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2241 int64_t val = (int64_t)nval; 2242 2243 if (val < 0) { 2244 for (i = 0; i < zero; i++) { 2245 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2246 quanta[i] += incr; 2247 return; 2248 } 2249 } 2250 } else { 2251 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2252 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2253 quanta[i - 1] += incr; 2254 return; 2255 } 2256 } 2257 2258 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2259 return; 2260 } 2261 2262 ASSERT(0); 2263 } 2264 2265 static void 2266 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2267 { 2268 uint64_t arg = *lquanta++; 2269 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2270 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2271 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2272 int32_t val = (int32_t)nval, level; 2273 2274 ASSERT(step != 0); 2275 ASSERT(levels != 0); 2276 2277 if (val < base) { 2278 /* 2279 * This is an underflow. 2280 */ 2281 lquanta[0] += incr; 2282 return; 2283 } 2284 2285 level = (val - base) / step; 2286 2287 if (level < levels) { 2288 lquanta[level + 1] += incr; 2289 return; 2290 } 2291 2292 /* 2293 * This is an overflow. 2294 */ 2295 lquanta[levels + 1] += incr; 2296 } 2297 2298 static int 2299 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2300 uint16_t high, uint16_t nsteps, int64_t value) 2301 { 2302 int64_t this = 1, last, next; 2303 int base = 1, order; 2304 2305 ASSERT(factor <= nsteps); 2306 ASSERT(nsteps % factor == 0); 2307 2308 for (order = 0; order < low; order++) 2309 this *= factor; 2310 2311 /* 2312 * If our value is less than our factor taken to the power of the 2313 * low order of magnitude, it goes into the zeroth bucket. 2314 */ 2315 if (value < (last = this)) 2316 return (0); 2317 2318 for (this *= factor; order <= high; order++) { 2319 int nbuckets = this > nsteps ? nsteps : this; 2320 2321 if ((next = this * factor) < this) { 2322 /* 2323 * We should not generally get log/linear quantizations 2324 * with a high magnitude that allows 64-bits to 2325 * overflow, but we nonetheless protect against this 2326 * by explicitly checking for overflow, and clamping 2327 * our value accordingly. 2328 */ 2329 value = this - 1; 2330 } 2331 2332 if (value < this) { 2333 /* 2334 * If our value lies within this order of magnitude, 2335 * determine its position by taking the offset within 2336 * the order of magnitude, dividing by the bucket 2337 * width, and adding to our (accumulated) base. 2338 */ 2339 return (base + (value - last) / (this / nbuckets)); 2340 } 2341 2342 base += nbuckets - (nbuckets / factor); 2343 last = this; 2344 this = next; 2345 } 2346 2347 /* 2348 * Our value is greater than or equal to our factor taken to the 2349 * power of one plus the high magnitude -- return the top bucket. 2350 */ 2351 return (base); 2352 } 2353 2354 static void 2355 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2356 { 2357 uint64_t arg = *llquanta++; 2358 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2359 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2360 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2361 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2362 2363 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2364 low, high, nsteps, nval)] += incr; 2365 } 2366 2367 /*ARGSUSED*/ 2368 static void 2369 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2370 { 2371 data[0]++; 2372 data[1] += nval; 2373 } 2374 2375 /*ARGSUSED*/ 2376 static void 2377 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2378 { 2379 int64_t snval = (int64_t)nval; 2380 uint64_t tmp[2]; 2381 2382 data[0]++; 2383 data[1] += nval; 2384 2385 /* 2386 * What we want to say here is: 2387 * 2388 * data[2] += nval * nval; 2389 * 2390 * But given that nval is 64-bit, we could easily overflow, so 2391 * we do this as 128-bit arithmetic. 2392 */ 2393 if (snval < 0) 2394 snval = -snval; 2395 2396 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2397 dtrace_add_128(data + 2, tmp, data + 2); 2398 } 2399 2400 /*ARGSUSED*/ 2401 static void 2402 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2403 { 2404 *oval = *oval + 1; 2405 } 2406 2407 /*ARGSUSED*/ 2408 static void 2409 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2410 { 2411 *oval += nval; 2412 } 2413 2414 /* 2415 * Aggregate given the tuple in the principal data buffer, and the aggregating 2416 * action denoted by the specified dtrace_aggregation_t. The aggregation 2417 * buffer is specified as the buf parameter. This routine does not return 2418 * failure; if there is no space in the aggregation buffer, the data will be 2419 * dropped, and a corresponding counter incremented. 2420 */ 2421 static void 2422 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2423 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2424 { 2425 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2426 uint32_t i, ndx, size, fsize; 2427 uint32_t align = sizeof (uint64_t) - 1; 2428 dtrace_aggbuffer_t *agb; 2429 dtrace_aggkey_t *key; 2430 uint32_t hashval = 0, limit, isstr; 2431 caddr_t tomax, data, kdata; 2432 dtrace_actkind_t action; 2433 dtrace_action_t *act; 2434 uintptr_t offs; 2435 2436 if (buf == NULL) 2437 return; 2438 2439 if (!agg->dtag_hasarg) { 2440 /* 2441 * Currently, only quantize() and lquantize() take additional 2442 * arguments, and they have the same semantics: an increment 2443 * value that defaults to 1 when not present. If additional 2444 * aggregating actions take arguments, the setting of the 2445 * default argument value will presumably have to become more 2446 * sophisticated... 2447 */ 2448 arg = 1; 2449 } 2450 2451 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2452 size = rec->dtrd_offset - agg->dtag_base; 2453 fsize = size + rec->dtrd_size; 2454 2455 ASSERT(dbuf->dtb_tomax != NULL); 2456 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2457 2458 if ((tomax = buf->dtb_tomax) == NULL) { 2459 dtrace_buffer_drop(buf); 2460 return; 2461 } 2462 2463 /* 2464 * The metastructure is always at the bottom of the buffer. 2465 */ 2466 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2467 sizeof (dtrace_aggbuffer_t)); 2468 2469 if (buf->dtb_offset == 0) { 2470 /* 2471 * We just kludge up approximately 1/8th of the size to be 2472 * buckets. If this guess ends up being routinely 2473 * off-the-mark, we may need to dynamically readjust this 2474 * based on past performance. 2475 */ 2476 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2477 2478 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2479 (uintptr_t)tomax || hashsize == 0) { 2480 /* 2481 * We've been given a ludicrously small buffer; 2482 * increment our drop count and leave. 2483 */ 2484 dtrace_buffer_drop(buf); 2485 return; 2486 } 2487 2488 /* 2489 * And now, a pathetic attempt to try to get a an odd (or 2490 * perchance, a prime) hash size for better hash distribution. 2491 */ 2492 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2493 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2494 2495 agb->dtagb_hashsize = hashsize; 2496 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2497 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2498 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2499 2500 for (i = 0; i < agb->dtagb_hashsize; i++) 2501 agb->dtagb_hash[i] = NULL; 2502 } 2503 2504 ASSERT(agg->dtag_first != NULL); 2505 ASSERT(agg->dtag_first->dta_intuple); 2506 2507 /* 2508 * Calculate the hash value based on the key. Note that we _don't_ 2509 * include the aggid in the hashing (but we will store it as part of 2510 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2511 * algorithm: a simple, quick algorithm that has no known funnels, and 2512 * gets good distribution in practice. The efficacy of the hashing 2513 * algorithm (and a comparison with other algorithms) may be found by 2514 * running the ::dtrace_aggstat MDB dcmd. 2515 */ 2516 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2517 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2518 limit = i + act->dta_rec.dtrd_size; 2519 ASSERT(limit <= size); 2520 isstr = DTRACEACT_ISSTRING(act); 2521 2522 for (; i < limit; i++) { 2523 hashval += data[i]; 2524 hashval += (hashval << 10); 2525 hashval ^= (hashval >> 6); 2526 2527 if (isstr && data[i] == '\0') 2528 break; 2529 } 2530 } 2531 2532 hashval += (hashval << 3); 2533 hashval ^= (hashval >> 11); 2534 hashval += (hashval << 15); 2535 2536 /* 2537 * Yes, the divide here is expensive -- but it's generally the least 2538 * of the performance issues given the amount of data that we iterate 2539 * over to compute hash values, compare data, etc. 2540 */ 2541 ndx = hashval % agb->dtagb_hashsize; 2542 2543 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2544 ASSERT((caddr_t)key >= tomax); 2545 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2546 2547 if (hashval != key->dtak_hashval || key->dtak_size != size) 2548 continue; 2549 2550 kdata = key->dtak_data; 2551 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2552 2553 for (act = agg->dtag_first; act->dta_intuple; 2554 act = act->dta_next) { 2555 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2556 limit = i + act->dta_rec.dtrd_size; 2557 ASSERT(limit <= size); 2558 isstr = DTRACEACT_ISSTRING(act); 2559 2560 for (; i < limit; i++) { 2561 if (kdata[i] != data[i]) 2562 goto next; 2563 2564 if (isstr && data[i] == '\0') 2565 break; 2566 } 2567 } 2568 2569 if (action != key->dtak_action) { 2570 /* 2571 * We are aggregating on the same value in the same 2572 * aggregation with two different aggregating actions. 2573 * (This should have been picked up in the compiler, 2574 * so we may be dealing with errant or devious DIF.) 2575 * This is an error condition; we indicate as much, 2576 * and return. 2577 */ 2578 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2579 return; 2580 } 2581 2582 /* 2583 * This is a hit: we need to apply the aggregator to 2584 * the value at this key. 2585 */ 2586 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2587 return; 2588 next: 2589 continue; 2590 } 2591 2592 /* 2593 * We didn't find it. We need to allocate some zero-filled space, 2594 * link it into the hash table appropriately, and apply the aggregator 2595 * to the (zero-filled) value. 2596 */ 2597 offs = buf->dtb_offset; 2598 while (offs & (align - 1)) 2599 offs += sizeof (uint32_t); 2600 2601 /* 2602 * If we don't have enough room to both allocate a new key _and_ 2603 * its associated data, increment the drop count and return. 2604 */ 2605 if ((uintptr_t)tomax + offs + fsize > 2606 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2607 dtrace_buffer_drop(buf); 2608 return; 2609 } 2610 2611 /*CONSTCOND*/ 2612 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2613 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2614 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2615 2616 key->dtak_data = kdata = tomax + offs; 2617 buf->dtb_offset = offs + fsize; 2618 2619 /* 2620 * Now copy the data across. 2621 */ 2622 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2623 2624 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2625 kdata[i] = data[i]; 2626 2627 /* 2628 * Because strings are not zeroed out by default, we need to iterate 2629 * looking for actions that store strings, and we need to explicitly 2630 * pad these strings out with zeroes. 2631 */ 2632 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2633 int nul; 2634 2635 if (!DTRACEACT_ISSTRING(act)) 2636 continue; 2637 2638 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2639 limit = i + act->dta_rec.dtrd_size; 2640 ASSERT(limit <= size); 2641 2642 for (nul = 0; i < limit; i++) { 2643 if (nul) { 2644 kdata[i] = '\0'; 2645 continue; 2646 } 2647 2648 if (data[i] != '\0') 2649 continue; 2650 2651 nul = 1; 2652 } 2653 } 2654 2655 for (i = size; i < fsize; i++) 2656 kdata[i] = 0; 2657 2658 key->dtak_hashval = hashval; 2659 key->dtak_size = size; 2660 key->dtak_action = action; 2661 key->dtak_next = agb->dtagb_hash[ndx]; 2662 agb->dtagb_hash[ndx] = key; 2663 2664 /* 2665 * Finally, apply the aggregator. 2666 */ 2667 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2668 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2669 } 2670 2671 /* 2672 * Given consumer state, this routine finds a speculation in the INACTIVE 2673 * state and transitions it into the ACTIVE state. If there is no speculation 2674 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2675 * incremented -- it is up to the caller to take appropriate action. 2676 */ 2677 static int 2678 dtrace_speculation(dtrace_state_t *state) 2679 { 2680 int i = 0; 2681 dtrace_speculation_state_t current; 2682 uint32_t *stat = &state->dts_speculations_unavail, count; 2683 2684 while (i < state->dts_nspeculations) { 2685 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2686 2687 current = spec->dtsp_state; 2688 2689 if (current != DTRACESPEC_INACTIVE) { 2690 if (current == DTRACESPEC_COMMITTINGMANY || 2691 current == DTRACESPEC_COMMITTING || 2692 current == DTRACESPEC_DISCARDING) 2693 stat = &state->dts_speculations_busy; 2694 i++; 2695 continue; 2696 } 2697 2698 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2699 current, DTRACESPEC_ACTIVE) == current) 2700 return (i + 1); 2701 } 2702 2703 /* 2704 * We couldn't find a speculation. If we found as much as a single 2705 * busy speculation buffer, we'll attribute this failure as "busy" 2706 * instead of "unavail". 2707 */ 2708 do { 2709 count = *stat; 2710 } while (dtrace_cas32(stat, count, count + 1) != count); 2711 2712 return (0); 2713 } 2714 2715 /* 2716 * This routine commits an active speculation. If the specified speculation 2717 * is not in a valid state to perform a commit(), this routine will silently do 2718 * nothing. The state of the specified speculation is transitioned according 2719 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2720 */ 2721 static void 2722 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2723 dtrace_specid_t which) 2724 { 2725 dtrace_speculation_t *spec; 2726 dtrace_buffer_t *src, *dest; 2727 uintptr_t daddr, saddr, dlimit, slimit; 2728 dtrace_speculation_state_t current, new; 2729 intptr_t offs; 2730 uint64_t timestamp; 2731 2732 if (which == 0) 2733 return; 2734 2735 if (which > state->dts_nspeculations) { 2736 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2737 return; 2738 } 2739 2740 spec = &state->dts_speculations[which - 1]; 2741 src = &spec->dtsp_buffer[cpu]; 2742 dest = &state->dts_buffer[cpu]; 2743 2744 do { 2745 current = spec->dtsp_state; 2746 2747 if (current == DTRACESPEC_COMMITTINGMANY) 2748 break; 2749 2750 switch (current) { 2751 case DTRACESPEC_INACTIVE: 2752 case DTRACESPEC_DISCARDING: 2753 return; 2754 2755 case DTRACESPEC_COMMITTING: 2756 /* 2757 * This is only possible if we are (a) commit()'ing 2758 * without having done a prior speculate() on this CPU 2759 * and (b) racing with another commit() on a different 2760 * CPU. There's nothing to do -- we just assert that 2761 * our offset is 0. 2762 */ 2763 ASSERT(src->dtb_offset == 0); 2764 return; 2765 2766 case DTRACESPEC_ACTIVE: 2767 new = DTRACESPEC_COMMITTING; 2768 break; 2769 2770 case DTRACESPEC_ACTIVEONE: 2771 /* 2772 * This speculation is active on one CPU. If our 2773 * buffer offset is non-zero, we know that the one CPU 2774 * must be us. Otherwise, we are committing on a 2775 * different CPU from the speculate(), and we must 2776 * rely on being asynchronously cleaned. 2777 */ 2778 if (src->dtb_offset != 0) { 2779 new = DTRACESPEC_COMMITTING; 2780 break; 2781 } 2782 /*FALLTHROUGH*/ 2783 2784 case DTRACESPEC_ACTIVEMANY: 2785 new = DTRACESPEC_COMMITTINGMANY; 2786 break; 2787 2788 default: 2789 ASSERT(0); 2790 } 2791 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2792 current, new) != current); 2793 2794 /* 2795 * We have set the state to indicate that we are committing this 2796 * speculation. Now reserve the necessary space in the destination 2797 * buffer. 2798 */ 2799 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2800 sizeof (uint64_t), state, NULL)) < 0) { 2801 dtrace_buffer_drop(dest); 2802 goto out; 2803 } 2804 2805 /* 2806 * We have sufficient space to copy the speculative buffer into the 2807 * primary buffer. First, modify the speculative buffer, filling 2808 * in the timestamp of all entries with the current time. The data 2809 * must have the commit() time rather than the time it was traced, 2810 * so that all entries in the primary buffer are in timestamp order. 2811 */ 2812 timestamp = dtrace_gethrtime(); 2813 saddr = (uintptr_t)src->dtb_tomax; 2814 slimit = saddr + src->dtb_offset; 2815 while (saddr < slimit) { 2816 size_t size; 2817 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2818 2819 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2820 saddr += sizeof (dtrace_epid_t); 2821 continue; 2822 } 2823 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2824 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2825 2826 ASSERT3U(saddr + size, <=, slimit); 2827 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2828 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2829 2830 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2831 2832 saddr += size; 2833 } 2834 2835 /* 2836 * Copy the buffer across. (Note that this is a 2837 * highly subobtimal bcopy(); in the unlikely event that this becomes 2838 * a serious performance issue, a high-performance DTrace-specific 2839 * bcopy() should obviously be invented.) 2840 */ 2841 daddr = (uintptr_t)dest->dtb_tomax + offs; 2842 dlimit = daddr + src->dtb_offset; 2843 saddr = (uintptr_t)src->dtb_tomax; 2844 2845 /* 2846 * First, the aligned portion. 2847 */ 2848 while (dlimit - daddr >= sizeof (uint64_t)) { 2849 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2850 2851 daddr += sizeof (uint64_t); 2852 saddr += sizeof (uint64_t); 2853 } 2854 2855 /* 2856 * Now any left-over bit... 2857 */ 2858 while (dlimit - daddr) 2859 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2860 2861 /* 2862 * Finally, commit the reserved space in the destination buffer. 2863 */ 2864 dest->dtb_offset = offs + src->dtb_offset; 2865 2866 out: 2867 /* 2868 * If we're lucky enough to be the only active CPU on this speculation 2869 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2870 */ 2871 if (current == DTRACESPEC_ACTIVE || 2872 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2873 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2874 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2875 2876 ASSERT(rval == DTRACESPEC_COMMITTING); 2877 } 2878 2879 src->dtb_offset = 0; 2880 src->dtb_xamot_drops += src->dtb_drops; 2881 src->dtb_drops = 0; 2882 } 2883 2884 /* 2885 * This routine discards an active speculation. If the specified speculation 2886 * is not in a valid state to perform a discard(), this routine will silently 2887 * do nothing. The state of the specified speculation is transitioned 2888 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2889 */ 2890 static void 2891 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2892 dtrace_specid_t which) 2893 { 2894 dtrace_speculation_t *spec; 2895 dtrace_speculation_state_t current, new; 2896 dtrace_buffer_t *buf; 2897 2898 if (which == 0) 2899 return; 2900 2901 if (which > state->dts_nspeculations) { 2902 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2903 return; 2904 } 2905 2906 spec = &state->dts_speculations[which - 1]; 2907 buf = &spec->dtsp_buffer[cpu]; 2908 2909 do { 2910 current = spec->dtsp_state; 2911 2912 switch (current) { 2913 case DTRACESPEC_INACTIVE: 2914 case DTRACESPEC_COMMITTINGMANY: 2915 case DTRACESPEC_COMMITTING: 2916 case DTRACESPEC_DISCARDING: 2917 return; 2918 2919 case DTRACESPEC_ACTIVE: 2920 case DTRACESPEC_ACTIVEMANY: 2921 new = DTRACESPEC_DISCARDING; 2922 break; 2923 2924 case DTRACESPEC_ACTIVEONE: 2925 if (buf->dtb_offset != 0) { 2926 new = DTRACESPEC_INACTIVE; 2927 } else { 2928 new = DTRACESPEC_DISCARDING; 2929 } 2930 break; 2931 2932 default: 2933 ASSERT(0); 2934 } 2935 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2936 current, new) != current); 2937 2938 buf->dtb_offset = 0; 2939 buf->dtb_drops = 0; 2940 } 2941 2942 /* 2943 * Note: not called from probe context. This function is called 2944 * asynchronously from cross call context to clean any speculations that are 2945 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2946 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2947 * speculation. 2948 */ 2949 static void 2950 dtrace_speculation_clean_here(dtrace_state_t *state) 2951 { 2952 dtrace_icookie_t cookie; 2953 processorid_t cpu = CPU->cpu_id; 2954 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2955 dtrace_specid_t i; 2956 2957 cookie = dtrace_interrupt_disable(); 2958 2959 if (dest->dtb_tomax == NULL) { 2960 dtrace_interrupt_enable(cookie); 2961 return; 2962 } 2963 2964 for (i = 0; i < state->dts_nspeculations; i++) { 2965 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2966 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2967 2968 if (src->dtb_tomax == NULL) 2969 continue; 2970 2971 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2972 src->dtb_offset = 0; 2973 continue; 2974 } 2975 2976 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2977 continue; 2978 2979 if (src->dtb_offset == 0) 2980 continue; 2981 2982 dtrace_speculation_commit(state, cpu, i + 1); 2983 } 2984 2985 dtrace_interrupt_enable(cookie); 2986 } 2987 2988 /* 2989 * Note: not called from probe context. This function is called 2990 * asynchronously (and at a regular interval) to clean any speculations that 2991 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2992 * is work to be done, it cross calls all CPUs to perform that work; 2993 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2994 * INACTIVE state until they have been cleaned by all CPUs. 2995 */ 2996 static void 2997 dtrace_speculation_clean(dtrace_state_t *state) 2998 { 2999 int work = 0, rv; 3000 dtrace_specid_t i; 3001 3002 for (i = 0; i < state->dts_nspeculations; i++) { 3003 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3004 3005 ASSERT(!spec->dtsp_cleaning); 3006 3007 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 3008 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3009 continue; 3010 3011 work++; 3012 spec->dtsp_cleaning = 1; 3013 } 3014 3015 if (!work) 3016 return; 3017 3018 dtrace_xcall(DTRACE_CPUALL, 3019 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 3020 3021 /* 3022 * We now know that all CPUs have committed or discarded their 3023 * speculation buffers, as appropriate. We can now set the state 3024 * to inactive. 3025 */ 3026 for (i = 0; i < state->dts_nspeculations; i++) { 3027 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3028 dtrace_speculation_state_t current, new; 3029 3030 if (!spec->dtsp_cleaning) 3031 continue; 3032 3033 current = spec->dtsp_state; 3034 ASSERT(current == DTRACESPEC_DISCARDING || 3035 current == DTRACESPEC_COMMITTINGMANY); 3036 3037 new = DTRACESPEC_INACTIVE; 3038 3039 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 3040 ASSERT(rv == current); 3041 spec->dtsp_cleaning = 0; 3042 } 3043 } 3044 3045 /* 3046 * Called as part of a speculate() to get the speculative buffer associated 3047 * with a given speculation. Returns NULL if the specified speculation is not 3048 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 3049 * the active CPU is not the specified CPU -- the speculation will be 3050 * atomically transitioned into the ACTIVEMANY state. 3051 */ 3052 static dtrace_buffer_t * 3053 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 3054 dtrace_specid_t which) 3055 { 3056 dtrace_speculation_t *spec; 3057 dtrace_speculation_state_t current, new; 3058 dtrace_buffer_t *buf; 3059 3060 if (which == 0) 3061 return (NULL); 3062 3063 if (which > state->dts_nspeculations) { 3064 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3065 return (NULL); 3066 } 3067 3068 spec = &state->dts_speculations[which - 1]; 3069 buf = &spec->dtsp_buffer[cpuid]; 3070 3071 do { 3072 current = spec->dtsp_state; 3073 3074 switch (current) { 3075 case DTRACESPEC_INACTIVE: 3076 case DTRACESPEC_COMMITTINGMANY: 3077 case DTRACESPEC_DISCARDING: 3078 return (NULL); 3079 3080 case DTRACESPEC_COMMITTING: 3081 ASSERT(buf->dtb_offset == 0); 3082 return (NULL); 3083 3084 case DTRACESPEC_ACTIVEONE: 3085 /* 3086 * This speculation is currently active on one CPU. 3087 * Check the offset in the buffer; if it's non-zero, 3088 * that CPU must be us (and we leave the state alone). 3089 * If it's zero, assume that we're starting on a new 3090 * CPU -- and change the state to indicate that the 3091 * speculation is active on more than one CPU. 3092 */ 3093 if (buf->dtb_offset != 0) 3094 return (buf); 3095 3096 new = DTRACESPEC_ACTIVEMANY; 3097 break; 3098 3099 case DTRACESPEC_ACTIVEMANY: 3100 return (buf); 3101 3102 case DTRACESPEC_ACTIVE: 3103 new = DTRACESPEC_ACTIVEONE; 3104 break; 3105 3106 default: 3107 ASSERT(0); 3108 } 3109 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3110 current, new) != current); 3111 3112 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 3113 return (buf); 3114 } 3115 3116 /* 3117 * Return a string. In the event that the user lacks the privilege to access 3118 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3119 * don't fail access checking. 3120 * 3121 * dtrace_dif_variable() uses this routine as a helper for various 3122 * builtin values such as 'execname' and 'probefunc.' 3123 */ 3124 uintptr_t 3125 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 3126 dtrace_mstate_t *mstate) 3127 { 3128 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3129 uintptr_t ret; 3130 size_t strsz; 3131 3132 /* 3133 * The easy case: this probe is allowed to read all of memory, so 3134 * we can just return this as a vanilla pointer. 3135 */ 3136 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 3137 return (addr); 3138 3139 /* 3140 * This is the tougher case: we copy the string in question from 3141 * kernel memory into scratch memory and return it that way: this 3142 * ensures that we won't trip up when access checking tests the 3143 * BYREF return value. 3144 */ 3145 strsz = dtrace_strlen((char *)addr, size) + 1; 3146 3147 if (mstate->dtms_scratch_ptr + strsz > 3148 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3149 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3150 return (0); 3151 } 3152 3153 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3154 strsz); 3155 ret = mstate->dtms_scratch_ptr; 3156 mstate->dtms_scratch_ptr += strsz; 3157 return (ret); 3158 } 3159 3160 /* 3161 * This function implements the DIF emulator's variable lookups. The emulator 3162 * passes a reserved variable identifier and optional built-in array index. 3163 */ 3164 static uint64_t 3165 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3166 uint64_t ndx) 3167 { 3168 /* 3169 * If we're accessing one of the uncached arguments, we'll turn this 3170 * into a reference in the args array. 3171 */ 3172 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3173 ndx = v - DIF_VAR_ARG0; 3174 v = DIF_VAR_ARGS; 3175 } 3176 3177 switch (v) { 3178 case DIF_VAR_ARGS: 3179 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) { 3180 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= 3181 CPU_DTRACE_KPRIV; 3182 return (0); 3183 } 3184 3185 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3186 if (ndx >= sizeof (mstate->dtms_arg) / 3187 sizeof (mstate->dtms_arg[0])) { 3188 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3189 dtrace_provider_t *pv; 3190 uint64_t val; 3191 3192 pv = mstate->dtms_probe->dtpr_provider; 3193 if (pv->dtpv_pops.dtps_getargval != NULL) 3194 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3195 mstate->dtms_probe->dtpr_id, 3196 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3197 else 3198 val = dtrace_getarg(ndx, aframes); 3199 3200 /* 3201 * This is regrettably required to keep the compiler 3202 * from tail-optimizing the call to dtrace_getarg(). 3203 * The condition always evaluates to true, but the 3204 * compiler has no way of figuring that out a priori. 3205 * (None of this would be necessary if the compiler 3206 * could be relied upon to _always_ tail-optimize 3207 * the call to dtrace_getarg() -- but it can't.) 3208 */ 3209 if (mstate->dtms_probe != NULL) 3210 return (val); 3211 3212 ASSERT(0); 3213 } 3214 3215 return (mstate->dtms_arg[ndx]); 3216 3217 case DIF_VAR_UREGS: { 3218 klwp_t *lwp; 3219 3220 if (!dtrace_priv_proc(state, mstate)) 3221 return (0); 3222 3223 if ((lwp = curthread->t_lwp) == NULL) { 3224 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3225 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = 0; 3226 return (0); 3227 } 3228 3229 return (dtrace_getreg(lwp->lwp_regs, ndx)); 3230 } 3231 3232 case DIF_VAR_VMREGS: { 3233 uint64_t rval; 3234 3235 if (!dtrace_priv_kernel(state)) 3236 return (0); 3237 3238 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3239 3240 rval = dtrace_getvmreg(ndx, 3241 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags); 3242 3243 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3244 3245 return (rval); 3246 } 3247 3248 case DIF_VAR_CURTHREAD: 3249 if (!dtrace_priv_proc(state, mstate)) 3250 return (0); 3251 return ((uint64_t)(uintptr_t)curthread); 3252 3253 case DIF_VAR_TIMESTAMP: 3254 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3255 mstate->dtms_timestamp = dtrace_gethrtime(); 3256 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3257 } 3258 return (mstate->dtms_timestamp); 3259 3260 case DIF_VAR_VTIMESTAMP: 3261 ASSERT(dtrace_vtime_references != 0); 3262 return (curthread->t_dtrace_vtime); 3263 3264 case DIF_VAR_WALLTIMESTAMP: 3265 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3266 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3267 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3268 } 3269 return (mstate->dtms_walltimestamp); 3270 3271 case DIF_VAR_IPL: 3272 if (!dtrace_priv_kernel(state)) 3273 return (0); 3274 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3275 mstate->dtms_ipl = dtrace_getipl(); 3276 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3277 } 3278 return (mstate->dtms_ipl); 3279 3280 case DIF_VAR_EPID: 3281 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3282 return (mstate->dtms_epid); 3283 3284 case DIF_VAR_ID: 3285 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3286 return (mstate->dtms_probe->dtpr_id); 3287 3288 case DIF_VAR_STACKDEPTH: 3289 if (!dtrace_priv_kernel(state)) 3290 return (0); 3291 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3292 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3293 3294 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3295 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3296 } 3297 return (mstate->dtms_stackdepth); 3298 3299 case DIF_VAR_USTACKDEPTH: 3300 if (!dtrace_priv_proc(state, mstate)) 3301 return (0); 3302 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3303 /* 3304 * See comment in DIF_VAR_PID. 3305 */ 3306 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3307 CPU_ON_INTR(CPU)) { 3308 mstate->dtms_ustackdepth = 0; 3309 } else { 3310 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3311 mstate->dtms_ustackdepth = 3312 dtrace_getustackdepth(); 3313 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3314 } 3315 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3316 } 3317 return (mstate->dtms_ustackdepth); 3318 3319 case DIF_VAR_CALLER: 3320 if (!dtrace_priv_kernel(state)) 3321 return (0); 3322 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3323 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3324 3325 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3326 /* 3327 * If this is an unanchored probe, we are 3328 * required to go through the slow path: 3329 * dtrace_caller() only guarantees correct 3330 * results for anchored probes. 3331 */ 3332 pc_t caller[2]; 3333 3334 dtrace_getpcstack(caller, 2, aframes, 3335 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3336 mstate->dtms_caller = caller[1]; 3337 } else if ((mstate->dtms_caller = 3338 dtrace_caller(aframes)) == -1) { 3339 /* 3340 * We have failed to do this the quick way; 3341 * we must resort to the slower approach of 3342 * calling dtrace_getpcstack(). 3343 */ 3344 pc_t caller; 3345 3346 dtrace_getpcstack(&caller, 1, aframes, NULL); 3347 mstate->dtms_caller = caller; 3348 } 3349 3350 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3351 } 3352 return (mstate->dtms_caller); 3353 3354 case DIF_VAR_UCALLER: 3355 if (!dtrace_priv_proc(state, mstate)) 3356 return (0); 3357 3358 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3359 uint64_t ustack[3]; 3360 3361 /* 3362 * dtrace_getupcstack() fills in the first uint64_t 3363 * with the current PID. The second uint64_t will 3364 * be the program counter at user-level. The third 3365 * uint64_t will contain the caller, which is what 3366 * we're after. 3367 */ 3368 ustack[2] = 0; 3369 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3370 dtrace_getupcstack(ustack, 3); 3371 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3372 mstate->dtms_ucaller = ustack[2]; 3373 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3374 } 3375 3376 return (mstate->dtms_ucaller); 3377 3378 case DIF_VAR_PROBEPROV: 3379 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3380 return (dtrace_dif_varstr( 3381 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3382 state, mstate)); 3383 3384 case DIF_VAR_PROBEMOD: 3385 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3386 return (dtrace_dif_varstr( 3387 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3388 state, mstate)); 3389 3390 case DIF_VAR_PROBEFUNC: 3391 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3392 return (dtrace_dif_varstr( 3393 (uintptr_t)mstate->dtms_probe->dtpr_func, 3394 state, mstate)); 3395 3396 case DIF_VAR_PROBENAME: 3397 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3398 return (dtrace_dif_varstr( 3399 (uintptr_t)mstate->dtms_probe->dtpr_name, 3400 state, mstate)); 3401 3402 case DIF_VAR_PID: 3403 if (!dtrace_priv_proc(state, mstate)) 3404 return (0); 3405 3406 /* 3407 * Note that we are assuming that an unanchored probe is 3408 * always due to a high-level interrupt. (And we're assuming 3409 * that there is only a single high level interrupt.) 3410 */ 3411 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3412 return (pid0.pid_id); 3413 3414 /* 3415 * It is always safe to dereference one's own t_procp pointer: 3416 * it always points to a valid, allocated proc structure. 3417 * Further, it is always safe to dereference the p_pidp member 3418 * of one's own proc structure. (These are truisms becuase 3419 * threads and processes don't clean up their own state -- 3420 * they leave that task to whomever reaps them.) 3421 */ 3422 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3423 3424 case DIF_VAR_PPID: 3425 if (!dtrace_priv_proc(state, mstate)) 3426 return (0); 3427 3428 /* 3429 * See comment in DIF_VAR_PID. 3430 */ 3431 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3432 return (pid0.pid_id); 3433 3434 /* 3435 * It is always safe to dereference one's own t_procp pointer: 3436 * it always points to a valid, allocated proc structure. 3437 * (This is true because threads don't clean up their own 3438 * state -- they leave that task to whomever reaps them.) 3439 */ 3440 return ((uint64_t)curthread->t_procp->p_ppid); 3441 3442 case DIF_VAR_TID: 3443 /* 3444 * See comment in DIF_VAR_PID. 3445 */ 3446 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3447 return (0); 3448 3449 return ((uint64_t)curthread->t_tid); 3450 3451 case DIF_VAR_EXECNAME: 3452 if (!dtrace_priv_proc(state, mstate)) 3453 return (0); 3454 3455 /* 3456 * See comment in DIF_VAR_PID. 3457 */ 3458 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3459 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3460 3461 /* 3462 * It is always safe to dereference one's own t_procp pointer: 3463 * it always points to a valid, allocated proc structure. 3464 * (This is true because threads don't clean up their own 3465 * state -- they leave that task to whomever reaps them.) 3466 */ 3467 return (dtrace_dif_varstr( 3468 (uintptr_t)curthread->t_procp->p_user.u_comm, 3469 state, mstate)); 3470 3471 case DIF_VAR_ZONENAME: 3472 if (!dtrace_priv_proc(state, mstate)) 3473 return (0); 3474 3475 /* 3476 * See comment in DIF_VAR_PID. 3477 */ 3478 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3479 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3480 3481 /* 3482 * It is always safe to dereference one's own t_procp pointer: 3483 * it always points to a valid, allocated proc structure. 3484 * (This is true because threads don't clean up their own 3485 * state -- they leave that task to whomever reaps them.) 3486 */ 3487 return (dtrace_dif_varstr( 3488 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3489 state, mstate)); 3490 3491 case DIF_VAR_UID: 3492 if (!dtrace_priv_proc(state, mstate)) 3493 return (0); 3494 3495 /* 3496 * See comment in DIF_VAR_PID. 3497 */ 3498 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3499 return ((uint64_t)p0.p_cred->cr_uid); 3500 3501 /* 3502 * It is always safe to dereference one's own t_procp pointer: 3503 * it always points to a valid, allocated proc structure. 3504 * (This is true because threads don't clean up their own 3505 * state -- they leave that task to whomever reaps them.) 3506 * 3507 * Additionally, it is safe to dereference one's own process 3508 * credential, since this is never NULL after process birth. 3509 */ 3510 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3511 3512 case DIF_VAR_GID: 3513 if (!dtrace_priv_proc(state, mstate)) 3514 return (0); 3515 3516 /* 3517 * See comment in DIF_VAR_PID. 3518 */ 3519 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3520 return ((uint64_t)p0.p_cred->cr_gid); 3521 3522 /* 3523 * It is always safe to dereference one's own t_procp pointer: 3524 * it always points to a valid, allocated proc structure. 3525 * (This is true because threads don't clean up their own 3526 * state -- they leave that task to whomever reaps them.) 3527 * 3528 * Additionally, it is safe to dereference one's own process 3529 * credential, since this is never NULL after process birth. 3530 */ 3531 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3532 3533 case DIF_VAR_ERRNO: { 3534 klwp_t *lwp; 3535 if (!dtrace_priv_proc(state, mstate)) 3536 return (0); 3537 3538 /* 3539 * See comment in DIF_VAR_PID. 3540 */ 3541 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3542 return (0); 3543 3544 /* 3545 * It is always safe to dereference one's own t_lwp pointer in 3546 * the event that this pointer is non-NULL. (This is true 3547 * because threads and lwps don't clean up their own state -- 3548 * they leave that task to whomever reaps them.) 3549 */ 3550 if ((lwp = curthread->t_lwp) == NULL) 3551 return (0); 3552 3553 return ((uint64_t)lwp->lwp_errno); 3554 } 3555 3556 case DIF_VAR_THREADNAME: 3557 /* 3558 * See comment in DIF_VAR_PID. 3559 */ 3560 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3561 return (0); 3562 3563 if (curthread->t_name == NULL) 3564 return (0); 3565 3566 /* 3567 * Once set, ->t_name itself is never changed: any updates are 3568 * made to the same buffer that we are pointing out. So we are 3569 * safe to dereference it here. 3570 */ 3571 return (dtrace_dif_varstr((uintptr_t)curthread->t_name, 3572 state, mstate)); 3573 3574 default: 3575 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3576 return (0); 3577 } 3578 } 3579 3580 static void 3581 dtrace_dif_variable_write(dtrace_mstate_t *mstate, dtrace_state_t *state, 3582 uint64_t v, uint64_t ndx, uint64_t data) 3583 { 3584 switch (v) { 3585 case DIF_VAR_UREGS: { 3586 klwp_t *lwp; 3587 3588 if (dtrace_destructive_disallow || 3589 !dtrace_priv_proc_control(state, mstate)) { 3590 return; 3591 } 3592 3593 if ((lwp = curthread->t_lwp) == NULL) { 3594 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3595 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = 0; 3596 return; 3597 } 3598 3599 dtrace_setreg(lwp->lwp_regs, ndx, data); 3600 return; 3601 } 3602 3603 default: 3604 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3605 return; 3606 } 3607 } 3608 3609 typedef enum dtrace_json_state { 3610 DTRACE_JSON_REST = 1, 3611 DTRACE_JSON_OBJECT, 3612 DTRACE_JSON_STRING, 3613 DTRACE_JSON_STRING_ESCAPE, 3614 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3615 DTRACE_JSON_COLON, 3616 DTRACE_JSON_COMMA, 3617 DTRACE_JSON_VALUE, 3618 DTRACE_JSON_IDENTIFIER, 3619 DTRACE_JSON_NUMBER, 3620 DTRACE_JSON_NUMBER_FRAC, 3621 DTRACE_JSON_NUMBER_EXP, 3622 DTRACE_JSON_COLLECT_OBJECT 3623 } dtrace_json_state_t; 3624 3625 /* 3626 * This function possesses just enough knowledge about JSON to extract a single 3627 * value from a JSON string and store it in the scratch buffer. It is able 3628 * to extract nested object values, and members of arrays by index. 3629 * 3630 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3631 * be looked up as we descend into the object tree. e.g. 3632 * 3633 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3634 * with nelems = 5. 3635 * 3636 * The run time of this function must be bounded above by strsize to limit the 3637 * amount of work done in probe context. As such, it is implemented as a 3638 * simple state machine, reading one character at a time using safe loads 3639 * until we find the requested element, hit a parsing error or run off the 3640 * end of the object or string. 3641 * 3642 * As there is no way for a subroutine to return an error without interrupting 3643 * clause execution, we simply return NULL in the event of a missing key or any 3644 * other error condition. Each NULL return in this function is commented with 3645 * the error condition it represents -- parsing or otherwise. 3646 * 3647 * The set of states for the state machine closely matches the JSON 3648 * specification (http://json.org/). Briefly: 3649 * 3650 * DTRACE_JSON_REST: 3651 * Skip whitespace until we find either a top-level Object, moving 3652 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3653 * 3654 * DTRACE_JSON_OBJECT: 3655 * Locate the next key String in an Object. Sets a flag to denote 3656 * the next String as a key string and moves to DTRACE_JSON_STRING. 3657 * 3658 * DTRACE_JSON_COLON: 3659 * Skip whitespace until we find the colon that separates key Strings 3660 * from their values. Once found, move to DTRACE_JSON_VALUE. 3661 * 3662 * DTRACE_JSON_VALUE: 3663 * Detects the type of the next value (String, Number, Identifier, Object 3664 * or Array) and routes to the states that process that type. Here we also 3665 * deal with the element selector list if we are requested to traverse down 3666 * into the object tree. 3667 * 3668 * DTRACE_JSON_COMMA: 3669 * Skip whitespace until we find the comma that separates key-value pairs 3670 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3671 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3672 * states return to this state at the end of their value, unless otherwise 3673 * noted. 3674 * 3675 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3676 * Processes a Number literal from the JSON, including any exponent 3677 * component that may be present. Numbers are returned as strings, which 3678 * may be passed to strtoll() if an integer is required. 3679 * 3680 * DTRACE_JSON_IDENTIFIER: 3681 * Processes a "true", "false" or "null" literal in the JSON. 3682 * 3683 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3684 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3685 * Processes a String literal from the JSON, whether the String denotes 3686 * a key, a value or part of a larger Object. Handles all escape sequences 3687 * present in the specification, including four-digit unicode characters, 3688 * but merely includes the escape sequence without converting it to the 3689 * actual escaped character. If the String is flagged as a key, we 3690 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3691 * 3692 * DTRACE_JSON_COLLECT_OBJECT: 3693 * This state collects an entire Object (or Array), correctly handling 3694 * embedded strings. If the full element selector list matches this nested 3695 * object, we return the Object in full as a string. If not, we use this 3696 * state to skip to the next value at this level and continue processing. 3697 * 3698 * NOTE: This function uses various macros from strtolctype.h to manipulate 3699 * digit values, etc -- these have all been checked to ensure they make 3700 * no additional function calls. 3701 */ 3702 static char * 3703 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3704 char *dest) 3705 { 3706 dtrace_json_state_t state = DTRACE_JSON_REST; 3707 int64_t array_elem = INT64_MIN; 3708 int64_t array_pos = 0; 3709 uint8_t escape_unicount = 0; 3710 boolean_t string_is_key = B_FALSE; 3711 boolean_t collect_object = B_FALSE; 3712 boolean_t found_key = B_FALSE; 3713 boolean_t in_array = B_FALSE; 3714 uint32_t braces = 0, brackets = 0; 3715 char *elem = elemlist; 3716 char *dd = dest; 3717 uintptr_t cur; 3718 3719 for (cur = json; cur < json + size; cur++) { 3720 char cc = dtrace_load8(cur); 3721 if (cc == '\0') 3722 return (NULL); 3723 3724 switch (state) { 3725 case DTRACE_JSON_REST: 3726 if (isspace(cc)) 3727 break; 3728 3729 if (cc == '{') { 3730 state = DTRACE_JSON_OBJECT; 3731 break; 3732 } 3733 3734 if (cc == '[') { 3735 in_array = B_TRUE; 3736 array_pos = 0; 3737 array_elem = dtrace_strtoll(elem, 10, size); 3738 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3739 state = DTRACE_JSON_VALUE; 3740 break; 3741 } 3742 3743 /* 3744 * ERROR: expected to find a top-level object or array. 3745 */ 3746 return (NULL); 3747 case DTRACE_JSON_OBJECT: 3748 if (isspace(cc)) 3749 break; 3750 3751 if (cc == '"') { 3752 state = DTRACE_JSON_STRING; 3753 string_is_key = B_TRUE; 3754 break; 3755 } 3756 3757 /* 3758 * ERROR: either the object did not start with a key 3759 * string, or we've run off the end of the object 3760 * without finding the requested key. 3761 */ 3762 return (NULL); 3763 case DTRACE_JSON_STRING: 3764 if (cc == '\\') { 3765 *dd++ = '\\'; 3766 state = DTRACE_JSON_STRING_ESCAPE; 3767 break; 3768 } 3769 3770 if (cc == '"') { 3771 if (collect_object) { 3772 /* 3773 * We don't reset the dest here, as 3774 * the string is part of a larger 3775 * object being collected. 3776 */ 3777 *dd++ = cc; 3778 collect_object = B_FALSE; 3779 state = DTRACE_JSON_COLLECT_OBJECT; 3780 break; 3781 } 3782 *dd = '\0'; 3783 dd = dest; /* reset string buffer */ 3784 if (string_is_key) { 3785 if (dtrace_strncmp(dest, elem, 3786 size) == 0) 3787 found_key = B_TRUE; 3788 } else if (found_key) { 3789 if (nelems > 1) { 3790 /* 3791 * We expected an object, not 3792 * this string. 3793 */ 3794 return (NULL); 3795 } 3796 return (dest); 3797 } 3798 state = string_is_key ? DTRACE_JSON_COLON : 3799 DTRACE_JSON_COMMA; 3800 string_is_key = B_FALSE; 3801 break; 3802 } 3803 3804 *dd++ = cc; 3805 break; 3806 case DTRACE_JSON_STRING_ESCAPE: 3807 *dd++ = cc; 3808 if (cc == 'u') { 3809 escape_unicount = 0; 3810 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3811 } else { 3812 state = DTRACE_JSON_STRING; 3813 } 3814 break; 3815 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3816 if (!isxdigit(cc)) { 3817 /* 3818 * ERROR: invalid unicode escape, expected 3819 * four valid hexidecimal digits. 3820 */ 3821 return (NULL); 3822 } 3823 3824 *dd++ = cc; 3825 if (++escape_unicount == 4) 3826 state = DTRACE_JSON_STRING; 3827 break; 3828 case DTRACE_JSON_COLON: 3829 if (isspace(cc)) 3830 break; 3831 3832 if (cc == ':') { 3833 state = DTRACE_JSON_VALUE; 3834 break; 3835 } 3836 3837 /* 3838 * ERROR: expected a colon. 3839 */ 3840 return (NULL); 3841 case DTRACE_JSON_COMMA: 3842 if (isspace(cc)) 3843 break; 3844 3845 if (cc == ',') { 3846 if (in_array) { 3847 state = DTRACE_JSON_VALUE; 3848 if (++array_pos == array_elem) 3849 found_key = B_TRUE; 3850 } else { 3851 state = DTRACE_JSON_OBJECT; 3852 } 3853 break; 3854 } 3855 3856 /* 3857 * ERROR: either we hit an unexpected character, or 3858 * we reached the end of the object or array without 3859 * finding the requested key. 3860 */ 3861 return (NULL); 3862 case DTRACE_JSON_IDENTIFIER: 3863 if (islower(cc)) { 3864 *dd++ = cc; 3865 break; 3866 } 3867 3868 *dd = '\0'; 3869 dd = dest; /* reset string buffer */ 3870 3871 if (dtrace_strncmp(dest, "true", 5) == 0 || 3872 dtrace_strncmp(dest, "false", 6) == 0 || 3873 dtrace_strncmp(dest, "null", 5) == 0) { 3874 if (found_key) { 3875 if (nelems > 1) { 3876 /* 3877 * ERROR: We expected an object, 3878 * not this identifier. 3879 */ 3880 return (NULL); 3881 } 3882 return (dest); 3883 } else { 3884 cur--; 3885 state = DTRACE_JSON_COMMA; 3886 break; 3887 } 3888 } 3889 3890 /* 3891 * ERROR: we did not recognise the identifier as one 3892 * of those in the JSON specification. 3893 */ 3894 return (NULL); 3895 case DTRACE_JSON_NUMBER: 3896 if (cc == '.') { 3897 *dd++ = cc; 3898 state = DTRACE_JSON_NUMBER_FRAC; 3899 break; 3900 } 3901 3902 if (cc == 'x' || cc == 'X') { 3903 /* 3904 * ERROR: specification explicitly excludes 3905 * hexidecimal or octal numbers. 3906 */ 3907 return (NULL); 3908 } 3909 3910 /* FALLTHRU */ 3911 case DTRACE_JSON_NUMBER_FRAC: 3912 if (cc == 'e' || cc == 'E') { 3913 *dd++ = cc; 3914 state = DTRACE_JSON_NUMBER_EXP; 3915 break; 3916 } 3917 3918 if (cc == '+' || cc == '-') { 3919 /* 3920 * ERROR: expect sign as part of exponent only. 3921 */ 3922 return (NULL); 3923 } 3924 /* FALLTHRU */ 3925 case DTRACE_JSON_NUMBER_EXP: 3926 if (isdigit(cc) || cc == '+' || cc == '-') { 3927 *dd++ = cc; 3928 break; 3929 } 3930 3931 *dd = '\0'; 3932 dd = dest; /* reset string buffer */ 3933 if (found_key) { 3934 if (nelems > 1) { 3935 /* 3936 * ERROR: We expected an object, not 3937 * this number. 3938 */ 3939 return (NULL); 3940 } 3941 return (dest); 3942 } 3943 3944 cur--; 3945 state = DTRACE_JSON_COMMA; 3946 break; 3947 case DTRACE_JSON_VALUE: 3948 if (isspace(cc)) 3949 break; 3950 3951 if (cc == '{' || cc == '[') { 3952 if (nelems > 1 && found_key) { 3953 in_array = cc == '[' ? B_TRUE : B_FALSE; 3954 /* 3955 * If our element selector directs us 3956 * to descend into this nested object, 3957 * then move to the next selector 3958 * element in the list and restart the 3959 * state machine. 3960 */ 3961 while (*elem != '\0') 3962 elem++; 3963 elem++; /* skip the inter-element NUL */ 3964 nelems--; 3965 dd = dest; 3966 if (in_array) { 3967 state = DTRACE_JSON_VALUE; 3968 array_pos = 0; 3969 array_elem = dtrace_strtoll( 3970 elem, 10, size); 3971 found_key = array_elem == 0 ? 3972 B_TRUE : B_FALSE; 3973 } else { 3974 found_key = B_FALSE; 3975 state = DTRACE_JSON_OBJECT; 3976 } 3977 break; 3978 } 3979 3980 /* 3981 * Otherwise, we wish to either skip this 3982 * nested object or return it in full. 3983 */ 3984 if (cc == '[') 3985 brackets = 1; 3986 else 3987 braces = 1; 3988 *dd++ = cc; 3989 state = DTRACE_JSON_COLLECT_OBJECT; 3990 break; 3991 } 3992 3993 if (cc == '"') { 3994 state = DTRACE_JSON_STRING; 3995 break; 3996 } 3997 3998 if (islower(cc)) { 3999 /* 4000 * Here we deal with true, false and null. 4001 */ 4002 *dd++ = cc; 4003 state = DTRACE_JSON_IDENTIFIER; 4004 break; 4005 } 4006 4007 if (cc == '-' || isdigit(cc)) { 4008 *dd++ = cc; 4009 state = DTRACE_JSON_NUMBER; 4010 break; 4011 } 4012 4013 /* 4014 * ERROR: unexpected character at start of value. 4015 */ 4016 return (NULL); 4017 case DTRACE_JSON_COLLECT_OBJECT: 4018 if (cc == '\0') 4019 /* 4020 * ERROR: unexpected end of input. 4021 */ 4022 return (NULL); 4023 4024 *dd++ = cc; 4025 if (cc == '"') { 4026 collect_object = B_TRUE; 4027 state = DTRACE_JSON_STRING; 4028 break; 4029 } 4030 4031 if (cc == ']') { 4032 if (brackets-- == 0) { 4033 /* 4034 * ERROR: unbalanced brackets. 4035 */ 4036 return (NULL); 4037 } 4038 } else if (cc == '}') { 4039 if (braces-- == 0) { 4040 /* 4041 * ERROR: unbalanced braces. 4042 */ 4043 return (NULL); 4044 } 4045 } else if (cc == '{') { 4046 braces++; 4047 } else if (cc == '[') { 4048 brackets++; 4049 } 4050 4051 if (brackets == 0 && braces == 0) { 4052 if (found_key) { 4053 *dd = '\0'; 4054 return (dest); 4055 } 4056 dd = dest; /* reset string buffer */ 4057 state = DTRACE_JSON_COMMA; 4058 } 4059 break; 4060 } 4061 } 4062 return (NULL); 4063 } 4064 4065 /* 4066 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 4067 * Notice that we don't bother validating the proper number of arguments or 4068 * their types in the tuple stack. This isn't needed because all argument 4069 * interpretation is safe because of our load safety -- the worst that can 4070 * happen is that a bogus program can obtain bogus results. 4071 */ 4072 static void 4073 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 4074 dtrace_key_t *tupregs, int nargs, 4075 dtrace_mstate_t *mstate, dtrace_state_t *state) 4076 { 4077 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4078 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 4079 dtrace_vstate_t *vstate = &state->dts_vstate; 4080 4081 union { 4082 mutex_impl_t mi; 4083 uint64_t mx; 4084 } m; 4085 4086 union { 4087 krwlock_t ri; 4088 uintptr_t rw; 4089 } r; 4090 4091 switch (subr) { 4092 case DIF_SUBR_RAND: 4093 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 4094 break; 4095 4096 case DIF_SUBR_MUTEX_OWNED: 4097 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4098 mstate, vstate)) { 4099 regs[rd] = 0; 4100 break; 4101 } 4102 4103 m.mx = dtrace_load64(tupregs[0].dttk_value); 4104 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 4105 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 4106 else 4107 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 4108 break; 4109 4110 case DIF_SUBR_MUTEX_OWNER: 4111 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4112 mstate, vstate)) { 4113 regs[rd] = 0; 4114 break; 4115 } 4116 4117 m.mx = dtrace_load64(tupregs[0].dttk_value); 4118 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 4119 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 4120 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 4121 else 4122 regs[rd] = 0; 4123 break; 4124 4125 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4126 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4127 mstate, vstate)) { 4128 regs[rd] = 0; 4129 break; 4130 } 4131 4132 m.mx = dtrace_load64(tupregs[0].dttk_value); 4133 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 4134 break; 4135 4136 case DIF_SUBR_MUTEX_TYPE_SPIN: 4137 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4138 mstate, vstate)) { 4139 regs[rd] = 0; 4140 break; 4141 } 4142 4143 m.mx = dtrace_load64(tupregs[0].dttk_value); 4144 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 4145 break; 4146 4147 case DIF_SUBR_RW_READ_HELD: { 4148 uintptr_t tmp; 4149 4150 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4151 mstate, vstate)) { 4152 regs[rd] = 0; 4153 break; 4154 } 4155 4156 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4157 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 4158 break; 4159 } 4160 4161 case DIF_SUBR_RW_WRITE_HELD: 4162 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4163 mstate, vstate)) { 4164 regs[rd] = 0; 4165 break; 4166 } 4167 4168 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4169 regs[rd] = _RW_WRITE_HELD(&r.ri); 4170 break; 4171 4172 case DIF_SUBR_RW_ISWRITER: 4173 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4174 mstate, vstate)) { 4175 regs[rd] = 0; 4176 break; 4177 } 4178 4179 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4180 regs[rd] = _RW_ISWRITER(&r.ri); 4181 break; 4182 4183 case DIF_SUBR_BCOPY: { 4184 /* 4185 * We need to be sure that the destination is in the scratch 4186 * region -- no other region is allowed. 4187 */ 4188 uintptr_t src = tupregs[0].dttk_value; 4189 uintptr_t dest = tupregs[1].dttk_value; 4190 size_t size = tupregs[2].dttk_value; 4191 4192 if (!dtrace_inscratch(dest, size, mstate)) { 4193 *flags |= CPU_DTRACE_BADADDR; 4194 *illval = regs[rd]; 4195 break; 4196 } 4197 4198 if (!dtrace_canload(src, size, mstate, vstate)) { 4199 regs[rd] = 0; 4200 break; 4201 } 4202 4203 dtrace_bcopy((void *)src, (void *)dest, size); 4204 break; 4205 } 4206 4207 case DIF_SUBR_ALLOCA: 4208 case DIF_SUBR_COPYIN: { 4209 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4210 uint64_t size = 4211 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4212 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4213 4214 /* 4215 * This action doesn't require any credential checks since 4216 * probes will not activate in user contexts to which the 4217 * enabling user does not have permissions. 4218 */ 4219 4220 /* 4221 * Rounding up the user allocation size could have overflowed 4222 * a large, bogus allocation (like -1ULL) to 0. 4223 */ 4224 if (scratch_size < size || 4225 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4226 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4227 regs[rd] = 0; 4228 break; 4229 } 4230 4231 if (subr == DIF_SUBR_COPYIN) { 4232 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4233 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4234 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4235 } 4236 4237 mstate->dtms_scratch_ptr += scratch_size; 4238 regs[rd] = dest; 4239 break; 4240 } 4241 4242 case DIF_SUBR_COPYINTO: { 4243 uint64_t size = tupregs[1].dttk_value; 4244 uintptr_t dest = tupregs[2].dttk_value; 4245 4246 /* 4247 * This action doesn't require any credential checks since 4248 * probes will not activate in user contexts to which the 4249 * enabling user does not have permissions. 4250 */ 4251 if (!dtrace_inscratch(dest, size, mstate)) { 4252 *flags |= CPU_DTRACE_BADADDR; 4253 *illval = regs[rd]; 4254 break; 4255 } 4256 4257 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4258 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4259 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4260 break; 4261 } 4262 4263 case DIF_SUBR_COPYINSTR: { 4264 uintptr_t dest = mstate->dtms_scratch_ptr; 4265 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4266 4267 if (nargs > 1 && tupregs[1].dttk_value < size) 4268 size = tupregs[1].dttk_value + 1; 4269 4270 /* 4271 * This action doesn't require any credential checks since 4272 * probes will not activate in user contexts to which the 4273 * enabling user does not have permissions. 4274 */ 4275 if (!DTRACE_INSCRATCH(mstate, size)) { 4276 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4277 regs[rd] = 0; 4278 break; 4279 } 4280 4281 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4282 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4283 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4284 4285 ((char *)dest)[size - 1] = '\0'; 4286 mstate->dtms_scratch_ptr += size; 4287 regs[rd] = dest; 4288 break; 4289 } 4290 4291 case DIF_SUBR_MSGSIZE: 4292 case DIF_SUBR_MSGDSIZE: { 4293 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4294 uintptr_t wptr, rptr; 4295 size_t count = 0; 4296 int cont = 0; 4297 4298 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 4299 4300 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4301 vstate)) { 4302 regs[rd] = 0; 4303 break; 4304 } 4305 4306 wptr = dtrace_loadptr(baddr + 4307 offsetof(mblk_t, b_wptr)); 4308 4309 rptr = dtrace_loadptr(baddr + 4310 offsetof(mblk_t, b_rptr)); 4311 4312 if (wptr < rptr) { 4313 *flags |= CPU_DTRACE_BADADDR; 4314 *illval = tupregs[0].dttk_value; 4315 break; 4316 } 4317 4318 daddr = dtrace_loadptr(baddr + 4319 offsetof(mblk_t, b_datap)); 4320 4321 baddr = dtrace_loadptr(baddr + 4322 offsetof(mblk_t, b_cont)); 4323 4324 /* 4325 * We want to prevent against denial-of-service here, 4326 * so we're only going to search the list for 4327 * dtrace_msgdsize_max mblks. 4328 */ 4329 if (cont++ > dtrace_msgdsize_max) { 4330 *flags |= CPU_DTRACE_ILLOP; 4331 break; 4332 } 4333 4334 if (subr == DIF_SUBR_MSGDSIZE) { 4335 if (dtrace_load8(daddr + 4336 offsetof(dblk_t, db_type)) != M_DATA) 4337 continue; 4338 } 4339 4340 count += wptr - rptr; 4341 } 4342 4343 if (!(*flags & CPU_DTRACE_FAULT)) 4344 regs[rd] = count; 4345 4346 break; 4347 } 4348 4349 case DIF_SUBR_PROGENYOF: { 4350 pid_t pid = tupregs[0].dttk_value; 4351 proc_t *p; 4352 int rval = 0; 4353 4354 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4355 4356 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4357 if (p->p_pidp->pid_id == pid) { 4358 rval = 1; 4359 break; 4360 } 4361 } 4362 4363 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4364 4365 regs[rd] = rval; 4366 break; 4367 } 4368 4369 case DIF_SUBR_SPECULATION: 4370 regs[rd] = dtrace_speculation(state); 4371 break; 4372 4373 case DIF_SUBR_COPYOUT: { 4374 uintptr_t kaddr = tupregs[0].dttk_value; 4375 uintptr_t uaddr = tupregs[1].dttk_value; 4376 uint64_t size = tupregs[2].dttk_value; 4377 4378 if (!dtrace_destructive_disallow && 4379 dtrace_priv_proc_control(state, mstate) && 4380 !dtrace_istoxic(kaddr, size) && 4381 dtrace_canload(kaddr, size, mstate, vstate)) { 4382 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4383 dtrace_copyout(kaddr, uaddr, size, flags); 4384 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4385 } 4386 break; 4387 } 4388 4389 case DIF_SUBR_COPYOUTSTR: { 4390 uintptr_t kaddr = tupregs[0].dttk_value; 4391 uintptr_t uaddr = tupregs[1].dttk_value; 4392 uint64_t size = tupregs[2].dttk_value; 4393 size_t lim; 4394 4395 if (!dtrace_destructive_disallow && 4396 dtrace_priv_proc_control(state, mstate) && 4397 !dtrace_istoxic(kaddr, size) && 4398 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) { 4399 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4400 dtrace_copyoutstr(kaddr, uaddr, lim, flags); 4401 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4402 } 4403 break; 4404 } 4405 4406 case DIF_SUBR_STRLEN: { 4407 size_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4408 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4409 size_t lim; 4410 4411 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4412 regs[rd] = 0; 4413 break; 4414 } 4415 regs[rd] = dtrace_strlen((char *)addr, lim); 4416 4417 break; 4418 } 4419 4420 case DIF_SUBR_STRCHR: 4421 case DIF_SUBR_STRRCHR: { 4422 /* 4423 * We're going to iterate over the string looking for the 4424 * specified character. We will iterate until we have reached 4425 * the string length or we have found the character. If this 4426 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4427 * of the specified character instead of the first. 4428 */ 4429 uintptr_t addr = tupregs[0].dttk_value; 4430 uintptr_t addr_limit; 4431 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4432 size_t lim; 4433 char c, target = (char)tupregs[1].dttk_value; 4434 4435 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4436 regs[rd] = 0; 4437 break; 4438 } 4439 addr_limit = addr + lim; 4440 4441 for (regs[rd] = 0; addr < addr_limit; addr++) { 4442 if ((c = dtrace_load8(addr)) == target) { 4443 regs[rd] = addr; 4444 4445 if (subr == DIF_SUBR_STRCHR) 4446 break; 4447 } 4448 if (c == '\0') 4449 break; 4450 } 4451 4452 break; 4453 } 4454 4455 case DIF_SUBR_STRSTR: 4456 case DIF_SUBR_INDEX: 4457 case DIF_SUBR_RINDEX: { 4458 /* 4459 * We're going to iterate over the string looking for the 4460 * specified string. We will iterate until we have reached 4461 * the string length or we have found the string. (Yes, this 4462 * is done in the most naive way possible -- but considering 4463 * that the string we're searching for is likely to be 4464 * relatively short, the complexity of Rabin-Karp or similar 4465 * hardly seems merited.) 4466 */ 4467 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4468 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4469 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4470 size_t len = dtrace_strlen(addr, size); 4471 size_t sublen = dtrace_strlen(substr, size); 4472 char *limit = addr + len, *orig = addr; 4473 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4474 int inc = 1; 4475 4476 regs[rd] = notfound; 4477 4478 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4479 regs[rd] = 0; 4480 break; 4481 } 4482 4483 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4484 vstate)) { 4485 regs[rd] = 0; 4486 break; 4487 } 4488 4489 /* 4490 * strstr() and index()/rindex() have similar semantics if 4491 * both strings are the empty string: strstr() returns a 4492 * pointer to the (empty) string, and index() and rindex() 4493 * both return index 0 (regardless of any position argument). 4494 */ 4495 if (sublen == 0 && len == 0) { 4496 if (subr == DIF_SUBR_STRSTR) 4497 regs[rd] = (uintptr_t)addr; 4498 else 4499 regs[rd] = 0; 4500 break; 4501 } 4502 4503 if (subr != DIF_SUBR_STRSTR) { 4504 if (subr == DIF_SUBR_RINDEX) { 4505 limit = orig - 1; 4506 addr += len; 4507 inc = -1; 4508 } 4509 4510 /* 4511 * Both index() and rindex() take an optional position 4512 * argument that denotes the starting position. 4513 */ 4514 if (nargs == 3) { 4515 int64_t pos = (int64_t)tupregs[2].dttk_value; 4516 4517 /* 4518 * If the position argument to index() is 4519 * negative, Perl implicitly clamps it at 4520 * zero. This semantic is a little surprising 4521 * given the special meaning of negative 4522 * positions to similar Perl functions like 4523 * substr(), but it appears to reflect a 4524 * notion that index() can start from a 4525 * negative index and increment its way up to 4526 * the string. Given this notion, Perl's 4527 * rindex() is at least self-consistent in 4528 * that it implicitly clamps positions greater 4529 * than the string length to be the string 4530 * length. Where Perl completely loses 4531 * coherence, however, is when the specified 4532 * substring is the empty string (""). In 4533 * this case, even if the position is 4534 * negative, rindex() returns 0 -- and even if 4535 * the position is greater than the length, 4536 * index() returns the string length. These 4537 * semantics violate the notion that index() 4538 * should never return a value less than the 4539 * specified position and that rindex() should 4540 * never return a value greater than the 4541 * specified position. (One assumes that 4542 * these semantics are artifacts of Perl's 4543 * implementation and not the results of 4544 * deliberate design -- it beggars belief that 4545 * even Larry Wall could desire such oddness.) 4546 * While in the abstract one would wish for 4547 * consistent position semantics across 4548 * substr(), index() and rindex() -- or at the 4549 * very least self-consistent position 4550 * semantics for index() and rindex() -- we 4551 * instead opt to keep with the extant Perl 4552 * semantics, in all their broken glory. (Do 4553 * we have more desire to maintain Perl's 4554 * semantics than Perl does? Probably.) 4555 */ 4556 if (subr == DIF_SUBR_RINDEX) { 4557 if (pos < 0) { 4558 if (sublen == 0) 4559 regs[rd] = 0; 4560 break; 4561 } 4562 4563 if (pos > len) 4564 pos = len; 4565 } else { 4566 if (pos < 0) 4567 pos = 0; 4568 4569 if (pos >= len) { 4570 if (sublen == 0) 4571 regs[rd] = len; 4572 break; 4573 } 4574 } 4575 4576 addr = orig + pos; 4577 } 4578 } 4579 4580 for (regs[rd] = notfound; addr != limit; addr += inc) { 4581 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4582 if (subr != DIF_SUBR_STRSTR) { 4583 /* 4584 * As D index() and rindex() are 4585 * modeled on Perl (and not on awk), 4586 * we return a zero-based (and not a 4587 * one-based) index. (For you Perl 4588 * weenies: no, we're not going to add 4589 * $[ -- and shouldn't you be at a con 4590 * or something?) 4591 */ 4592 regs[rd] = (uintptr_t)(addr - orig); 4593 break; 4594 } 4595 4596 ASSERT(subr == DIF_SUBR_STRSTR); 4597 regs[rd] = (uintptr_t)addr; 4598 break; 4599 } 4600 } 4601 4602 break; 4603 } 4604 4605 case DIF_SUBR_STRTOK: { 4606 uintptr_t addr = tupregs[0].dttk_value; 4607 uintptr_t tokaddr = tupregs[1].dttk_value; 4608 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4609 uintptr_t limit, toklimit; 4610 size_t clim; 4611 uint8_t c, tokmap[32]; /* 256 / 8 */ 4612 char *dest = (char *)mstate->dtms_scratch_ptr; 4613 int i; 4614 4615 /* 4616 * Check both the token buffer and (later) the input buffer, 4617 * since both could be non-scratch addresses. 4618 */ 4619 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) { 4620 regs[rd] = 0; 4621 break; 4622 } 4623 toklimit = tokaddr + clim; 4624 4625 if (!DTRACE_INSCRATCH(mstate, size)) { 4626 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4627 regs[rd] = 0; 4628 break; 4629 } 4630 4631 if (addr == 0) { 4632 /* 4633 * If the address specified is NULL, we use our saved 4634 * strtok pointer from the mstate. Note that this 4635 * means that the saved strtok pointer is _only_ 4636 * valid within multiple enablings of the same probe -- 4637 * it behaves like an implicit clause-local variable. 4638 */ 4639 addr = mstate->dtms_strtok; 4640 limit = mstate->dtms_strtok_limit; 4641 } else { 4642 /* 4643 * If the user-specified address is non-NULL we must 4644 * access check it. This is the only time we have 4645 * a chance to do so, since this address may reside 4646 * in the string table of this clause-- future calls 4647 * (when we fetch addr from mstate->dtms_strtok) 4648 * would fail this access check. 4649 */ 4650 if (!dtrace_strcanload(addr, size, &clim, mstate, 4651 vstate)) { 4652 regs[rd] = 0; 4653 break; 4654 } 4655 limit = addr + clim; 4656 } 4657 4658 /* 4659 * First, zero the token map, and then process the token 4660 * string -- setting a bit in the map for every character 4661 * found in the token string. 4662 */ 4663 for (i = 0; i < sizeof (tokmap); i++) 4664 tokmap[i] = 0; 4665 4666 for (; tokaddr < toklimit; tokaddr++) { 4667 if ((c = dtrace_load8(tokaddr)) == '\0') 4668 break; 4669 4670 ASSERT((c >> 3) < sizeof (tokmap)); 4671 tokmap[c >> 3] |= (1 << (c & 0x7)); 4672 } 4673 4674 for (; addr < limit; addr++) { 4675 /* 4676 * We're looking for a character that is _not_ 4677 * contained in the token string. 4678 */ 4679 if ((c = dtrace_load8(addr)) == '\0') 4680 break; 4681 4682 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4683 break; 4684 } 4685 4686 if (c == '\0') { 4687 /* 4688 * We reached the end of the string without finding 4689 * any character that was not in the token string. 4690 * We return NULL in this case, and we set the saved 4691 * address to NULL as well. 4692 */ 4693 regs[rd] = 0; 4694 mstate->dtms_strtok = 0; 4695 mstate->dtms_strtok_limit = 0; 4696 break; 4697 } 4698 4699 /* 4700 * From here on, we're copying into the destination string. 4701 */ 4702 for (i = 0; addr < limit && i < size - 1; addr++) { 4703 if ((c = dtrace_load8(addr)) == '\0') 4704 break; 4705 4706 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4707 break; 4708 4709 ASSERT(i < size); 4710 dest[i++] = c; 4711 } 4712 4713 ASSERT(i < size); 4714 dest[i] = '\0'; 4715 regs[rd] = (uintptr_t)dest; 4716 mstate->dtms_scratch_ptr += size; 4717 mstate->dtms_strtok = addr; 4718 mstate->dtms_strtok_limit = limit; 4719 break; 4720 } 4721 4722 case DIF_SUBR_SUBSTR: { 4723 uintptr_t s = tupregs[0].dttk_value; 4724 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4725 char *d = (char *)mstate->dtms_scratch_ptr; 4726 int64_t index = (int64_t)tupregs[1].dttk_value; 4727 int64_t remaining = (int64_t)tupregs[2].dttk_value; 4728 size_t len = dtrace_strlen((char *)s, size); 4729 int64_t i; 4730 4731 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4732 regs[rd] = 0; 4733 break; 4734 } 4735 4736 if (!DTRACE_INSCRATCH(mstate, size)) { 4737 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4738 regs[rd] = 0; 4739 break; 4740 } 4741 4742 if (nargs <= 2) 4743 remaining = (int64_t)size; 4744 4745 if (index < 0) { 4746 index += len; 4747 4748 if (index < 0 && index + remaining > 0) { 4749 remaining += index; 4750 index = 0; 4751 } 4752 } 4753 4754 if (index >= len || index < 0) { 4755 remaining = 0; 4756 } else if (remaining < 0) { 4757 remaining += len - index; 4758 } else if (index + remaining > size) { 4759 remaining = size - index; 4760 } 4761 4762 for (i = 0; i < remaining; i++) { 4763 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 4764 break; 4765 } 4766 4767 d[i] = '\0'; 4768 4769 mstate->dtms_scratch_ptr += size; 4770 regs[rd] = (uintptr_t)d; 4771 break; 4772 } 4773 4774 case DIF_SUBR_JSON: { 4775 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4776 uintptr_t json = tupregs[0].dttk_value; 4777 size_t jsonlen = dtrace_strlen((char *)json, size); 4778 uintptr_t elem = tupregs[1].dttk_value; 4779 size_t elemlen = dtrace_strlen((char *)elem, size); 4780 4781 char *dest = (char *)mstate->dtms_scratch_ptr; 4782 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 4783 char *ee = elemlist; 4784 int nelems = 1; 4785 uintptr_t cur; 4786 4787 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 4788 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 4789 regs[rd] = 0; 4790 break; 4791 } 4792 4793 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 4794 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4795 regs[rd] = 0; 4796 break; 4797 } 4798 4799 /* 4800 * Read the element selector and split it up into a packed list 4801 * of strings. 4802 */ 4803 for (cur = elem; cur < elem + elemlen; cur++) { 4804 char cc = dtrace_load8(cur); 4805 4806 if (cur == elem && cc == '[') { 4807 /* 4808 * If the first element selector key is 4809 * actually an array index then ignore the 4810 * bracket. 4811 */ 4812 continue; 4813 } 4814 4815 if (cc == ']') 4816 continue; 4817 4818 if (cc == '.' || cc == '[') { 4819 nelems++; 4820 cc = '\0'; 4821 } 4822 4823 *ee++ = cc; 4824 } 4825 *ee++ = '\0'; 4826 4827 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 4828 nelems, dest)) != 0) 4829 mstate->dtms_scratch_ptr += jsonlen + 1; 4830 break; 4831 } 4832 4833 case DIF_SUBR_TOUPPER: 4834 case DIF_SUBR_TOLOWER: { 4835 uintptr_t s = tupregs[0].dttk_value; 4836 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4837 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4838 size_t len = dtrace_strlen((char *)s, size); 4839 char lower, upper, convert; 4840 int64_t i; 4841 4842 if (subr == DIF_SUBR_TOUPPER) { 4843 lower = 'a'; 4844 upper = 'z'; 4845 convert = 'A'; 4846 } else { 4847 lower = 'A'; 4848 upper = 'Z'; 4849 convert = 'a'; 4850 } 4851 4852 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4853 regs[rd] = 0; 4854 break; 4855 } 4856 4857 if (!DTRACE_INSCRATCH(mstate, size)) { 4858 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4859 regs[rd] = 0; 4860 break; 4861 } 4862 4863 for (i = 0; i < size - 1; i++) { 4864 if ((c = dtrace_load8(s + i)) == '\0') 4865 break; 4866 4867 if (c >= lower && c <= upper) 4868 c = convert + (c - lower); 4869 4870 dest[i] = c; 4871 } 4872 4873 ASSERT(i < size); 4874 dest[i] = '\0'; 4875 regs[rd] = (uintptr_t)dest; 4876 mstate->dtms_scratch_ptr += size; 4877 break; 4878 } 4879 4880 case DIF_SUBR_GETMAJOR: 4881 #ifdef _LP64 4882 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 4883 #else 4884 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 4885 #endif 4886 break; 4887 4888 case DIF_SUBR_GETMINOR: 4889 #ifdef _LP64 4890 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 4891 #else 4892 regs[rd] = tupregs[0].dttk_value & MAXMIN; 4893 #endif 4894 break; 4895 4896 case DIF_SUBR_DDI_PATHNAME: { 4897 /* 4898 * This one is a galactic mess. We are going to roughly 4899 * emulate ddi_pathname(), but it's made more complicated 4900 * by the fact that we (a) want to include the minor name and 4901 * (b) must proceed iteratively instead of recursively. 4902 */ 4903 uintptr_t dest = mstate->dtms_scratch_ptr; 4904 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4905 char *start = (char *)dest, *end = start + size - 1; 4906 uintptr_t daddr = tupregs[0].dttk_value; 4907 int64_t minor = (int64_t)tupregs[1].dttk_value; 4908 char *s; 4909 int i, len, depth = 0; 4910 4911 /* 4912 * Due to all the pointer jumping we do and context we must 4913 * rely upon, we just mandate that the user must have kernel 4914 * read privileges to use this routine. 4915 */ 4916 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 4917 *flags |= CPU_DTRACE_KPRIV; 4918 *illval = daddr; 4919 regs[rd] = 0; 4920 } 4921 4922 if (!DTRACE_INSCRATCH(mstate, size)) { 4923 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4924 regs[rd] = 0; 4925 break; 4926 } 4927 4928 *end = '\0'; 4929 4930 /* 4931 * We want to have a name for the minor. In order to do this, 4932 * we need to walk the minor list from the devinfo. We want 4933 * to be sure that we don't infinitely walk a circular list, 4934 * so we check for circularity by sending a scout pointer 4935 * ahead two elements for every element that we iterate over; 4936 * if the list is circular, these will ultimately point to the 4937 * same element. You may recognize this little trick as the 4938 * answer to a stupid interview question -- one that always 4939 * seems to be asked by those who had to have it laboriously 4940 * explained to them, and who can't even concisely describe 4941 * the conditions under which one would be forced to resort to 4942 * this technique. Needless to say, those conditions are 4943 * found here -- and probably only here. Is this the only use 4944 * of this infamous trick in shipping, production code? If it 4945 * isn't, it probably should be... 4946 */ 4947 if (minor != -1) { 4948 uintptr_t maddr = dtrace_loadptr(daddr + 4949 offsetof(struct dev_info, devi_minor)); 4950 4951 uintptr_t next = offsetof(struct ddi_minor_data, next); 4952 uintptr_t name = offsetof(struct ddi_minor_data, 4953 d_minor) + offsetof(struct ddi_minor, name); 4954 uintptr_t dev = offsetof(struct ddi_minor_data, 4955 d_minor) + offsetof(struct ddi_minor, dev); 4956 uintptr_t scout; 4957 4958 if (maddr != 0) 4959 scout = dtrace_loadptr(maddr + next); 4960 4961 while (maddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 4962 uint64_t m; 4963 #ifdef _LP64 4964 m = dtrace_load64(maddr + dev) & MAXMIN64; 4965 #else 4966 m = dtrace_load32(maddr + dev) & MAXMIN; 4967 #endif 4968 if (m != minor) { 4969 maddr = dtrace_loadptr(maddr + next); 4970 4971 if (scout == 0) 4972 continue; 4973 4974 scout = dtrace_loadptr(scout + next); 4975 4976 if (scout == 0) 4977 continue; 4978 4979 scout = dtrace_loadptr(scout + next); 4980 4981 if (scout == 0) 4982 continue; 4983 4984 if (scout == maddr) { 4985 *flags |= CPU_DTRACE_ILLOP; 4986 break; 4987 } 4988 4989 continue; 4990 } 4991 4992 /* 4993 * We have the minor data. Now we need to 4994 * copy the minor's name into the end of the 4995 * pathname. 4996 */ 4997 s = (char *)dtrace_loadptr(maddr + name); 4998 len = dtrace_strlen(s, size); 4999 5000 if (*flags & CPU_DTRACE_FAULT) 5001 break; 5002 5003 if (len != 0) { 5004 if ((end -= (len + 1)) < start) 5005 break; 5006 5007 *end = ':'; 5008 } 5009 5010 for (i = 1; i <= len; i++) 5011 end[i] = dtrace_load8((uintptr_t)s++); 5012 break; 5013 } 5014 } 5015 5016 while (daddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 5017 ddi_node_state_t devi_state; 5018 5019 devi_state = dtrace_load32(daddr + 5020 offsetof(struct dev_info, devi_node_state)); 5021 5022 if (*flags & CPU_DTRACE_FAULT) 5023 break; 5024 5025 if (devi_state >= DS_INITIALIZED) { 5026 s = (char *)dtrace_loadptr(daddr + 5027 offsetof(struct dev_info, devi_addr)); 5028 len = dtrace_strlen(s, size); 5029 5030 if (*flags & CPU_DTRACE_FAULT) 5031 break; 5032 5033 if (len != 0) { 5034 if ((end -= (len + 1)) < start) 5035 break; 5036 5037 *end = '@'; 5038 } 5039 5040 for (i = 1; i <= len; i++) 5041 end[i] = dtrace_load8((uintptr_t)s++); 5042 } 5043 5044 /* 5045 * Now for the node name... 5046 */ 5047 s = (char *)dtrace_loadptr(daddr + 5048 offsetof(struct dev_info, devi_node_name)); 5049 5050 daddr = dtrace_loadptr(daddr + 5051 offsetof(struct dev_info, devi_parent)); 5052 5053 /* 5054 * If our parent is NULL (that is, if we're the root 5055 * node), we're going to use the special path 5056 * "devices". 5057 */ 5058 if (daddr == 0) 5059 s = "devices"; 5060 5061 len = dtrace_strlen(s, size); 5062 if (*flags & CPU_DTRACE_FAULT) 5063 break; 5064 5065 if ((end -= (len + 1)) < start) 5066 break; 5067 5068 for (i = 1; i <= len; i++) 5069 end[i] = dtrace_load8((uintptr_t)s++); 5070 *end = '/'; 5071 5072 if (depth++ > dtrace_devdepth_max) { 5073 *flags |= CPU_DTRACE_ILLOP; 5074 break; 5075 } 5076 } 5077 5078 if (end < start) 5079 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5080 5081 if (daddr == 0) { 5082 regs[rd] = (uintptr_t)end; 5083 mstate->dtms_scratch_ptr += size; 5084 } 5085 5086 break; 5087 } 5088 5089 case DIF_SUBR_STRJOIN: { 5090 char *d = (char *)mstate->dtms_scratch_ptr; 5091 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5092 uintptr_t s1 = tupregs[0].dttk_value; 5093 uintptr_t s2 = tupregs[1].dttk_value; 5094 int i = 0, j = 0; 5095 size_t lim1, lim2; 5096 char c; 5097 5098 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) || 5099 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) { 5100 regs[rd] = 0; 5101 break; 5102 } 5103 5104 if (!DTRACE_INSCRATCH(mstate, size)) { 5105 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5106 regs[rd] = 0; 5107 break; 5108 } 5109 5110 for (;;) { 5111 if (i >= size) { 5112 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5113 regs[rd] = 0; 5114 break; 5115 } 5116 c = (i >= lim1) ? '\0' : dtrace_load8(s1++); 5117 if ((d[i++] = c) == '\0') { 5118 i--; 5119 break; 5120 } 5121 } 5122 5123 for (;;) { 5124 if (i >= size) { 5125 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5126 regs[rd] = 0; 5127 break; 5128 } 5129 5130 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++); 5131 if ((d[i++] = c) == '\0') 5132 break; 5133 } 5134 5135 if (i < size) { 5136 mstate->dtms_scratch_ptr += i; 5137 regs[rd] = (uintptr_t)d; 5138 } 5139 5140 break; 5141 } 5142 5143 case DIF_SUBR_STRTOLL: { 5144 uintptr_t s = tupregs[0].dttk_value; 5145 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5146 size_t lim; 5147 int base = 10; 5148 5149 if (nargs > 1) { 5150 if ((base = tupregs[1].dttk_value) <= 1 || 5151 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5152 *flags |= CPU_DTRACE_ILLOP; 5153 break; 5154 } 5155 } 5156 5157 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) { 5158 regs[rd] = INT64_MIN; 5159 break; 5160 } 5161 5162 regs[rd] = dtrace_strtoll((char *)s, base, lim); 5163 break; 5164 } 5165 5166 case DIF_SUBR_LLTOSTR: { 5167 int64_t i = (int64_t)tupregs[0].dttk_value; 5168 uint64_t val, digit; 5169 uint64_t size = 65; /* enough room for 2^64 in binary */ 5170 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 5171 int base = 10; 5172 5173 if (nargs > 1) { 5174 if ((base = tupregs[1].dttk_value) <= 1 || 5175 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5176 *flags |= CPU_DTRACE_ILLOP; 5177 break; 5178 } 5179 } 5180 5181 val = (base == 10 && i < 0) ? i * -1 : i; 5182 5183 if (!DTRACE_INSCRATCH(mstate, size)) { 5184 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5185 regs[rd] = 0; 5186 break; 5187 } 5188 5189 for (*end-- = '\0'; val; val /= base) { 5190 if ((digit = val % base) <= '9' - '0') { 5191 *end-- = '0' + digit; 5192 } else { 5193 *end-- = 'a' + (digit - ('9' - '0') - 1); 5194 } 5195 } 5196 5197 if (i == 0 && base == 16) 5198 *end-- = '0'; 5199 5200 if (base == 16) 5201 *end-- = 'x'; 5202 5203 if (i == 0 || base == 8 || base == 16) 5204 *end-- = '0'; 5205 5206 if (i < 0 && base == 10) 5207 *end-- = '-'; 5208 5209 regs[rd] = (uintptr_t)end + 1; 5210 mstate->dtms_scratch_ptr += size; 5211 break; 5212 } 5213 5214 case DIF_SUBR_HTONS: 5215 case DIF_SUBR_NTOHS: 5216 #ifdef _BIG_ENDIAN 5217 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5218 #else 5219 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5220 #endif 5221 break; 5222 5223 5224 case DIF_SUBR_HTONL: 5225 case DIF_SUBR_NTOHL: 5226 #ifdef _BIG_ENDIAN 5227 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5228 #else 5229 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5230 #endif 5231 break; 5232 5233 5234 case DIF_SUBR_HTONLL: 5235 case DIF_SUBR_NTOHLL: 5236 #ifdef _BIG_ENDIAN 5237 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5238 #else 5239 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5240 #endif 5241 break; 5242 5243 5244 case DIF_SUBR_DIRNAME: 5245 case DIF_SUBR_BASENAME: { 5246 char *dest = (char *)mstate->dtms_scratch_ptr; 5247 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5248 uintptr_t src = tupregs[0].dttk_value; 5249 int i, j, len = dtrace_strlen((char *)src, size); 5250 int lastbase = -1, firstbase = -1, lastdir = -1; 5251 int start, end; 5252 5253 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5254 regs[rd] = 0; 5255 break; 5256 } 5257 5258 if (!DTRACE_INSCRATCH(mstate, size)) { 5259 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5260 regs[rd] = 0; 5261 break; 5262 } 5263 5264 /* 5265 * The basename and dirname for a zero-length string is 5266 * defined to be "." 5267 */ 5268 if (len == 0) { 5269 len = 1; 5270 src = (uintptr_t)"."; 5271 } 5272 5273 /* 5274 * Start from the back of the string, moving back toward the 5275 * front until we see a character that isn't a slash. That 5276 * character is the last character in the basename. 5277 */ 5278 for (i = len - 1; i >= 0; i--) { 5279 if (dtrace_load8(src + i) != '/') 5280 break; 5281 } 5282 5283 if (i >= 0) 5284 lastbase = i; 5285 5286 /* 5287 * Starting from the last character in the basename, move 5288 * towards the front until we find a slash. The character 5289 * that we processed immediately before that is the first 5290 * character in the basename. 5291 */ 5292 for (; i >= 0; i--) { 5293 if (dtrace_load8(src + i) == '/') 5294 break; 5295 } 5296 5297 if (i >= 0) 5298 firstbase = i + 1; 5299 5300 /* 5301 * Now keep going until we find a non-slash character. That 5302 * character is the last character in the dirname. 5303 */ 5304 for (; i >= 0; i--) { 5305 if (dtrace_load8(src + i) != '/') 5306 break; 5307 } 5308 5309 if (i >= 0) 5310 lastdir = i; 5311 5312 ASSERT(!(lastbase == -1 && firstbase != -1)); 5313 ASSERT(!(firstbase == -1 && lastdir != -1)); 5314 5315 if (lastbase == -1) { 5316 /* 5317 * We didn't find a non-slash character. We know that 5318 * the length is non-zero, so the whole string must be 5319 * slashes. In either the dirname or the basename 5320 * case, we return '/'. 5321 */ 5322 ASSERT(firstbase == -1); 5323 firstbase = lastbase = lastdir = 0; 5324 } 5325 5326 if (firstbase == -1) { 5327 /* 5328 * The entire string consists only of a basename 5329 * component. If we're looking for dirname, we need 5330 * to change our string to be just "."; if we're 5331 * looking for a basename, we'll just set the first 5332 * character of the basename to be 0. 5333 */ 5334 if (subr == DIF_SUBR_DIRNAME) { 5335 ASSERT(lastdir == -1); 5336 src = (uintptr_t)"."; 5337 lastdir = 0; 5338 } else { 5339 firstbase = 0; 5340 } 5341 } 5342 5343 if (subr == DIF_SUBR_DIRNAME) { 5344 if (lastdir == -1) { 5345 /* 5346 * We know that we have a slash in the name -- 5347 * or lastdir would be set to 0, above. And 5348 * because lastdir is -1, we know that this 5349 * slash must be the first character. (That 5350 * is, the full string must be of the form 5351 * "/basename".) In this case, the last 5352 * character of the directory name is 0. 5353 */ 5354 lastdir = 0; 5355 } 5356 5357 start = 0; 5358 end = lastdir; 5359 } else { 5360 ASSERT(subr == DIF_SUBR_BASENAME); 5361 ASSERT(firstbase != -1 && lastbase != -1); 5362 start = firstbase; 5363 end = lastbase; 5364 } 5365 5366 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5367 dest[j] = dtrace_load8(src + i); 5368 5369 dest[j] = '\0'; 5370 regs[rd] = (uintptr_t)dest; 5371 mstate->dtms_scratch_ptr += size; 5372 break; 5373 } 5374 5375 case DIF_SUBR_GETF: { 5376 uintptr_t fd = tupregs[0].dttk_value; 5377 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo; 5378 file_t *fp; 5379 5380 if (!dtrace_priv_proc(state, mstate)) { 5381 regs[rd] = 0; 5382 break; 5383 } 5384 5385 /* 5386 * This is safe because fi_nfiles only increases, and the 5387 * fi_list array is not freed when the array size doubles. 5388 * (See the comment in flist_grow() for details on the 5389 * management of the u_finfo structure.) 5390 */ 5391 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL; 5392 5393 mstate->dtms_getf = fp; 5394 regs[rd] = (uintptr_t)fp; 5395 break; 5396 } 5397 5398 case DIF_SUBR_CLEANPATH: { 5399 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5400 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5401 uintptr_t src = tupregs[0].dttk_value; 5402 size_t lim; 5403 int i = 0, j = 0; 5404 zone_t *z; 5405 5406 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) { 5407 regs[rd] = 0; 5408 break; 5409 } 5410 5411 if (!DTRACE_INSCRATCH(mstate, size)) { 5412 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5413 regs[rd] = 0; 5414 break; 5415 } 5416 5417 /* 5418 * Move forward, loading each character. 5419 */ 5420 do { 5421 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5422 next: 5423 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5424 break; 5425 5426 if (c != '/') { 5427 dest[j++] = c; 5428 continue; 5429 } 5430 5431 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5432 5433 if (c == '/') { 5434 /* 5435 * We have two slashes -- we can just advance 5436 * to the next character. 5437 */ 5438 goto next; 5439 } 5440 5441 if (c != '.') { 5442 /* 5443 * This is not "." and it's not ".." -- we can 5444 * just store the "/" and this character and 5445 * drive on. 5446 */ 5447 dest[j++] = '/'; 5448 dest[j++] = c; 5449 continue; 5450 } 5451 5452 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5453 5454 if (c == '/') { 5455 /* 5456 * This is a "/./" component. We're not going 5457 * to store anything in the destination buffer; 5458 * we're just going to go to the next component. 5459 */ 5460 goto next; 5461 } 5462 5463 if (c != '.') { 5464 /* 5465 * This is not ".." -- we can just store the 5466 * "/." and this character and continue 5467 * processing. 5468 */ 5469 dest[j++] = '/'; 5470 dest[j++] = '.'; 5471 dest[j++] = c; 5472 continue; 5473 } 5474 5475 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5476 5477 if (c != '/' && c != '\0') { 5478 /* 5479 * This is not ".." -- it's "..[mumble]". 5480 * We'll store the "/.." and this character 5481 * and continue processing. 5482 */ 5483 dest[j++] = '/'; 5484 dest[j++] = '.'; 5485 dest[j++] = '.'; 5486 dest[j++] = c; 5487 continue; 5488 } 5489 5490 /* 5491 * This is "/../" or "/..\0". We need to back up 5492 * our destination pointer until we find a "/". 5493 */ 5494 i--; 5495 while (j != 0 && dest[--j] != '/') 5496 continue; 5497 5498 if (c == '\0') 5499 dest[++j] = '/'; 5500 } while (c != '\0'); 5501 5502 dest[j] = '\0'; 5503 5504 if (mstate->dtms_getf != NULL && 5505 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5506 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5507 /* 5508 * If we've done a getf() as a part of this ECB and we 5509 * don't have kernel access (and we're not in the global 5510 * zone), check if the path we cleaned up begins with 5511 * the zone's root path, and trim it off if so. Note 5512 * that this is an output cleanliness issue, not a 5513 * security issue: knowing one's zone root path does 5514 * not enable privilege escalation. 5515 */ 5516 if (strstr(dest, z->zone_rootpath) == dest) 5517 dest += strlen(z->zone_rootpath) - 1; 5518 } 5519 5520 regs[rd] = (uintptr_t)dest; 5521 mstate->dtms_scratch_ptr += size; 5522 break; 5523 } 5524 5525 case DIF_SUBR_INET_NTOA: 5526 case DIF_SUBR_INET_NTOA6: 5527 case DIF_SUBR_INET_NTOP: { 5528 size_t size; 5529 int af, argi, i; 5530 char *base, *end; 5531 5532 if (subr == DIF_SUBR_INET_NTOP) { 5533 af = (int)tupregs[0].dttk_value; 5534 argi = 1; 5535 } else { 5536 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5537 argi = 0; 5538 } 5539 5540 if (af == AF_INET) { 5541 ipaddr_t ip4; 5542 uint8_t *ptr8, val; 5543 5544 if (!dtrace_canload(tupregs[argi].dttk_value, 5545 sizeof (ipaddr_t), mstate, vstate)) { 5546 regs[rd] = 0; 5547 break; 5548 } 5549 5550 /* 5551 * Safely load the IPv4 address. 5552 */ 5553 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5554 5555 /* 5556 * Check an IPv4 string will fit in scratch. 5557 */ 5558 size = INET_ADDRSTRLEN; 5559 if (!DTRACE_INSCRATCH(mstate, size)) { 5560 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5561 regs[rd] = 0; 5562 break; 5563 } 5564 base = (char *)mstate->dtms_scratch_ptr; 5565 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5566 5567 /* 5568 * Stringify as a dotted decimal quad. 5569 */ 5570 *end-- = '\0'; 5571 ptr8 = (uint8_t *)&ip4; 5572 for (i = 3; i >= 0; i--) { 5573 val = ptr8[i]; 5574 5575 if (val == 0) { 5576 *end-- = '0'; 5577 } else { 5578 for (; val; val /= 10) { 5579 *end-- = '0' + (val % 10); 5580 } 5581 } 5582 5583 if (i > 0) 5584 *end-- = '.'; 5585 } 5586 ASSERT(end + 1 >= base); 5587 5588 } else if (af == AF_INET6) { 5589 struct in6_addr ip6; 5590 int firstzero, tryzero, numzero, v6end; 5591 uint16_t val; 5592 const char digits[] = "0123456789abcdef"; 5593 5594 /* 5595 * Stringify using RFC 1884 convention 2 - 16 bit 5596 * hexadecimal values with a zero-run compression. 5597 * Lower case hexadecimal digits are used. 5598 * eg, fe80::214:4fff:fe0b:76c8. 5599 * The IPv4 embedded form is returned for inet_ntop, 5600 * just the IPv4 string is returned for inet_ntoa6. 5601 */ 5602 5603 if (!dtrace_canload(tupregs[argi].dttk_value, 5604 sizeof (struct in6_addr), mstate, vstate)) { 5605 regs[rd] = 0; 5606 break; 5607 } 5608 5609 /* 5610 * Safely load the IPv6 address. 5611 */ 5612 dtrace_bcopy( 5613 (void *)(uintptr_t)tupregs[argi].dttk_value, 5614 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5615 5616 /* 5617 * Check an IPv6 string will fit in scratch. 5618 */ 5619 size = INET6_ADDRSTRLEN; 5620 if (!DTRACE_INSCRATCH(mstate, size)) { 5621 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5622 regs[rd] = 0; 5623 break; 5624 } 5625 base = (char *)mstate->dtms_scratch_ptr; 5626 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5627 *end-- = '\0'; 5628 5629 /* 5630 * Find the longest run of 16 bit zero values 5631 * for the single allowed zero compression - "::". 5632 */ 5633 firstzero = -1; 5634 tryzero = -1; 5635 numzero = 1; 5636 for (i = 0; i < sizeof (struct in6_addr); i++) { 5637 if (ip6._S6_un._S6_u8[i] == 0 && 5638 tryzero == -1 && i % 2 == 0) { 5639 tryzero = i; 5640 continue; 5641 } 5642 5643 if (tryzero != -1 && 5644 (ip6._S6_un._S6_u8[i] != 0 || 5645 i == sizeof (struct in6_addr) - 1)) { 5646 5647 if (i - tryzero <= numzero) { 5648 tryzero = -1; 5649 continue; 5650 } 5651 5652 firstzero = tryzero; 5653 numzero = i - i % 2 - tryzero; 5654 tryzero = -1; 5655 5656 if (ip6._S6_un._S6_u8[i] == 0 && 5657 i == sizeof (struct in6_addr) - 1) 5658 numzero += 2; 5659 } 5660 } 5661 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5662 5663 /* 5664 * Check for an IPv4 embedded address. 5665 */ 5666 v6end = sizeof (struct in6_addr) - 2; 5667 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5668 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5669 for (i = sizeof (struct in6_addr) - 1; 5670 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5671 ASSERT(end >= base); 5672 5673 val = ip6._S6_un._S6_u8[i]; 5674 5675 if (val == 0) { 5676 *end-- = '0'; 5677 } else { 5678 for (; val; val /= 10) { 5679 *end-- = '0' + val % 10; 5680 } 5681 } 5682 5683 if (i > DTRACE_V4MAPPED_OFFSET) 5684 *end-- = '.'; 5685 } 5686 5687 if (subr == DIF_SUBR_INET_NTOA6) 5688 goto inetout; 5689 5690 /* 5691 * Set v6end to skip the IPv4 address that 5692 * we have already stringified. 5693 */ 5694 v6end = 10; 5695 } 5696 5697 /* 5698 * Build the IPv6 string by working through the 5699 * address in reverse. 5700 */ 5701 for (i = v6end; i >= 0; i -= 2) { 5702 ASSERT(end >= base); 5703 5704 if (i == firstzero + numzero - 2) { 5705 *end-- = ':'; 5706 *end-- = ':'; 5707 i -= numzero - 2; 5708 continue; 5709 } 5710 5711 if (i < 14 && i != firstzero - 2) 5712 *end-- = ':'; 5713 5714 val = (ip6._S6_un._S6_u8[i] << 8) + 5715 ip6._S6_un._S6_u8[i + 1]; 5716 5717 if (val == 0) { 5718 *end-- = '0'; 5719 } else { 5720 for (; val; val /= 16) { 5721 *end-- = digits[val % 16]; 5722 } 5723 } 5724 } 5725 ASSERT(end + 1 >= base); 5726 5727 } else { 5728 /* 5729 * The user didn't use AH_INET or AH_INET6. 5730 */ 5731 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5732 regs[rd] = 0; 5733 break; 5734 } 5735 5736 inetout: regs[rd] = (uintptr_t)end + 1; 5737 mstate->dtms_scratch_ptr += size; 5738 break; 5739 } 5740 5741 } 5742 } 5743 5744 /* 5745 * Emulate the execution of DTrace IR instructions specified by the given 5746 * DIF object. This function is deliberately void of assertions as all of 5747 * the necessary checks are handled by a call to dtrace_difo_validate(). 5748 */ 5749 static uint64_t 5750 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 5751 dtrace_vstate_t *vstate, dtrace_state_t *state) 5752 { 5753 const dif_instr_t *text = difo->dtdo_buf; 5754 const uint_t textlen = difo->dtdo_len; 5755 const char *strtab = difo->dtdo_strtab; 5756 const uint64_t *inttab = difo->dtdo_inttab; 5757 5758 uint64_t rval = 0; 5759 dtrace_statvar_t *svar; 5760 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 5761 dtrace_difv_t *v; 5762 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5763 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 5764 5765 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 5766 uint64_t regs[DIF_DIR_NREGS]; 5767 uint64_t *tmp; 5768 5769 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 5770 int64_t cc_r; 5771 uint_t pc = 0, id, opc; 5772 uint8_t ttop = 0; 5773 dif_instr_t instr; 5774 uint_t r1, r2, rd; 5775 5776 /* 5777 * We stash the current DIF object into the machine state: we need it 5778 * for subsequent access checking. 5779 */ 5780 mstate->dtms_difo = difo; 5781 5782 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 5783 5784 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 5785 opc = pc; 5786 5787 instr = text[pc++]; 5788 r1 = DIF_INSTR_R1(instr); 5789 r2 = DIF_INSTR_R2(instr); 5790 rd = DIF_INSTR_RD(instr); 5791 5792 switch (DIF_INSTR_OP(instr)) { 5793 case DIF_OP_OR: 5794 regs[rd] = regs[r1] | regs[r2]; 5795 break; 5796 case DIF_OP_XOR: 5797 regs[rd] = regs[r1] ^ regs[r2]; 5798 break; 5799 case DIF_OP_AND: 5800 regs[rd] = regs[r1] & regs[r2]; 5801 break; 5802 case DIF_OP_SLL: 5803 regs[rd] = regs[r1] << regs[r2]; 5804 break; 5805 case DIF_OP_SRL: 5806 regs[rd] = regs[r1] >> regs[r2]; 5807 break; 5808 case DIF_OP_SUB: 5809 regs[rd] = regs[r1] - regs[r2]; 5810 break; 5811 case DIF_OP_ADD: 5812 regs[rd] = regs[r1] + regs[r2]; 5813 break; 5814 case DIF_OP_MUL: 5815 regs[rd] = regs[r1] * regs[r2]; 5816 break; 5817 case DIF_OP_SDIV: 5818 if (regs[r2] == 0) { 5819 regs[rd] = 0; 5820 *flags |= CPU_DTRACE_DIVZERO; 5821 } else { 5822 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5823 regs[rd] = (int64_t)regs[r1] / 5824 (int64_t)regs[r2]; 5825 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5826 } 5827 break; 5828 5829 case DIF_OP_UDIV: 5830 if (regs[r2] == 0) { 5831 regs[rd] = 0; 5832 *flags |= CPU_DTRACE_DIVZERO; 5833 } else { 5834 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5835 regs[rd] = regs[r1] / regs[r2]; 5836 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5837 } 5838 break; 5839 5840 case DIF_OP_SREM: 5841 if (regs[r2] == 0) { 5842 regs[rd] = 0; 5843 *flags |= CPU_DTRACE_DIVZERO; 5844 } else { 5845 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5846 regs[rd] = (int64_t)regs[r1] % 5847 (int64_t)regs[r2]; 5848 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5849 } 5850 break; 5851 5852 case DIF_OP_UREM: 5853 if (regs[r2] == 0) { 5854 regs[rd] = 0; 5855 *flags |= CPU_DTRACE_DIVZERO; 5856 } else { 5857 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5858 regs[rd] = regs[r1] % regs[r2]; 5859 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5860 } 5861 break; 5862 5863 case DIF_OP_NOT: 5864 regs[rd] = ~regs[r1]; 5865 break; 5866 case DIF_OP_MOV: 5867 regs[rd] = regs[r1]; 5868 break; 5869 case DIF_OP_CMP: 5870 cc_r = regs[r1] - regs[r2]; 5871 cc_n = cc_r < 0; 5872 cc_z = cc_r == 0; 5873 cc_v = 0; 5874 cc_c = regs[r1] < regs[r2]; 5875 break; 5876 case DIF_OP_TST: 5877 cc_n = cc_v = cc_c = 0; 5878 cc_z = regs[r1] == 0; 5879 break; 5880 case DIF_OP_BA: 5881 pc = DIF_INSTR_LABEL(instr); 5882 break; 5883 case DIF_OP_BE: 5884 if (cc_z) 5885 pc = DIF_INSTR_LABEL(instr); 5886 break; 5887 case DIF_OP_BNE: 5888 if (cc_z == 0) 5889 pc = DIF_INSTR_LABEL(instr); 5890 break; 5891 case DIF_OP_BG: 5892 if ((cc_z | (cc_n ^ cc_v)) == 0) 5893 pc = DIF_INSTR_LABEL(instr); 5894 break; 5895 case DIF_OP_BGU: 5896 if ((cc_c | cc_z) == 0) 5897 pc = DIF_INSTR_LABEL(instr); 5898 break; 5899 case DIF_OP_BGE: 5900 if ((cc_n ^ cc_v) == 0) 5901 pc = DIF_INSTR_LABEL(instr); 5902 break; 5903 case DIF_OP_BGEU: 5904 if (cc_c == 0) 5905 pc = DIF_INSTR_LABEL(instr); 5906 break; 5907 case DIF_OP_BL: 5908 if (cc_n ^ cc_v) 5909 pc = DIF_INSTR_LABEL(instr); 5910 break; 5911 case DIF_OP_BLU: 5912 if (cc_c) 5913 pc = DIF_INSTR_LABEL(instr); 5914 break; 5915 case DIF_OP_BLE: 5916 if (cc_z | (cc_n ^ cc_v)) 5917 pc = DIF_INSTR_LABEL(instr); 5918 break; 5919 case DIF_OP_BLEU: 5920 if (cc_c | cc_z) 5921 pc = DIF_INSTR_LABEL(instr); 5922 break; 5923 case DIF_OP_RLDSB: 5924 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5925 break; 5926 /*FALLTHROUGH*/ 5927 case DIF_OP_LDSB: 5928 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 5929 break; 5930 case DIF_OP_RLDSH: 5931 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5932 break; 5933 /*FALLTHROUGH*/ 5934 case DIF_OP_LDSH: 5935 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 5936 break; 5937 case DIF_OP_RLDSW: 5938 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5939 break; 5940 /*FALLTHROUGH*/ 5941 case DIF_OP_LDSW: 5942 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 5943 break; 5944 case DIF_OP_RLDUB: 5945 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5946 break; 5947 /*FALLTHROUGH*/ 5948 case DIF_OP_LDUB: 5949 regs[rd] = dtrace_load8(regs[r1]); 5950 break; 5951 case DIF_OP_RLDUH: 5952 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5953 break; 5954 /*FALLTHROUGH*/ 5955 case DIF_OP_LDUH: 5956 regs[rd] = dtrace_load16(regs[r1]); 5957 break; 5958 case DIF_OP_RLDUW: 5959 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5960 break; 5961 /*FALLTHROUGH*/ 5962 case DIF_OP_LDUW: 5963 regs[rd] = dtrace_load32(regs[r1]); 5964 break; 5965 case DIF_OP_RLDX: 5966 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 5967 break; 5968 /*FALLTHROUGH*/ 5969 case DIF_OP_LDX: 5970 regs[rd] = dtrace_load64(regs[r1]); 5971 break; 5972 case DIF_OP_ULDSB: 5973 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5974 regs[rd] = (int8_t) 5975 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5976 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5977 break; 5978 case DIF_OP_ULDSH: 5979 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5980 regs[rd] = (int16_t) 5981 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5982 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5983 break; 5984 case DIF_OP_ULDSW: 5985 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5986 regs[rd] = (int32_t) 5987 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5988 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5989 break; 5990 case DIF_OP_ULDUB: 5991 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5992 regs[rd] = 5993 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5994 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5995 break; 5996 case DIF_OP_ULDUH: 5997 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5998 regs[rd] = 5999 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6000 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6001 break; 6002 case DIF_OP_ULDUW: 6003 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6004 regs[rd] = 6005 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6006 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6007 break; 6008 case DIF_OP_ULDX: 6009 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6010 regs[rd] = 6011 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 6012 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6013 break; 6014 case DIF_OP_RET: 6015 rval = regs[rd]; 6016 pc = textlen; 6017 break; 6018 case DIF_OP_NOP: 6019 break; 6020 case DIF_OP_SETX: 6021 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 6022 break; 6023 case DIF_OP_SETS: 6024 regs[rd] = (uint64_t)(uintptr_t) 6025 (strtab + DIF_INSTR_STRING(instr)); 6026 break; 6027 case DIF_OP_SCMP: { 6028 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 6029 uintptr_t s1 = regs[r1]; 6030 uintptr_t s2 = regs[r2]; 6031 size_t lim1, lim2; 6032 6033 if (s1 != 0 && 6034 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate)) 6035 break; 6036 if (s2 != 0 && 6037 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate)) 6038 break; 6039 6040 cc_r = dtrace_strncmp((char *)s1, (char *)s2, 6041 MIN(lim1, lim2)); 6042 6043 cc_n = cc_r < 0; 6044 cc_z = cc_r == 0; 6045 cc_v = cc_c = 0; 6046 break; 6047 } 6048 case DIF_OP_LDGA: 6049 regs[rd] = dtrace_dif_variable(mstate, state, 6050 r1, regs[r2]); 6051 break; 6052 case DIF_OP_LDGS: 6053 id = DIF_INSTR_VAR(instr); 6054 6055 if (id >= DIF_VAR_OTHER_UBASE) { 6056 uintptr_t a; 6057 6058 id -= DIF_VAR_OTHER_UBASE; 6059 svar = vstate->dtvs_globals[id]; 6060 ASSERT(svar != NULL); 6061 v = &svar->dtsv_var; 6062 6063 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 6064 regs[rd] = svar->dtsv_data; 6065 break; 6066 } 6067 6068 a = (uintptr_t)svar->dtsv_data; 6069 6070 if (*(uint8_t *)a == UINT8_MAX) { 6071 /* 6072 * If the 0th byte is set to UINT8_MAX 6073 * then this is to be treated as a 6074 * reference to a NULL variable. 6075 */ 6076 regs[rd] = 0; 6077 } else { 6078 regs[rd] = a + sizeof (uint64_t); 6079 } 6080 6081 break; 6082 } 6083 6084 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 6085 break; 6086 6087 case DIF_OP_STGA: 6088 dtrace_dif_variable_write(mstate, state, r1, regs[r2], 6089 regs[rd]); 6090 break; 6091 6092 case DIF_OP_STGS: 6093 id = DIF_INSTR_VAR(instr); 6094 6095 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6096 id -= DIF_VAR_OTHER_UBASE; 6097 6098 VERIFY(id < vstate->dtvs_nglobals); 6099 svar = vstate->dtvs_globals[id]; 6100 ASSERT(svar != NULL); 6101 v = &svar->dtsv_var; 6102 6103 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6104 uintptr_t a = (uintptr_t)svar->dtsv_data; 6105 size_t lim; 6106 6107 ASSERT(a != (uintptr_t)NULL); 6108 ASSERT(svar->dtsv_size != 0); 6109 6110 if (regs[rd] == 0) { 6111 *(uint8_t *)a = UINT8_MAX; 6112 break; 6113 } else { 6114 *(uint8_t *)a = 0; 6115 a += sizeof (uint64_t); 6116 } 6117 if (!dtrace_vcanload( 6118 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6119 &lim, mstate, vstate)) 6120 break; 6121 6122 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6123 (void *)a, &v->dtdv_type, lim); 6124 break; 6125 } 6126 6127 svar->dtsv_data = regs[rd]; 6128 break; 6129 6130 case DIF_OP_LDTA: 6131 /* 6132 * There are no DTrace built-in thread-local arrays at 6133 * present. This opcode is saved for future work. 6134 */ 6135 *flags |= CPU_DTRACE_ILLOP; 6136 regs[rd] = 0; 6137 break; 6138 6139 case DIF_OP_LDLS: 6140 id = DIF_INSTR_VAR(instr); 6141 6142 if (id < DIF_VAR_OTHER_UBASE) { 6143 /* 6144 * For now, this has no meaning. 6145 */ 6146 regs[rd] = 0; 6147 break; 6148 } 6149 6150 id -= DIF_VAR_OTHER_UBASE; 6151 6152 ASSERT(id < vstate->dtvs_nlocals); 6153 ASSERT(vstate->dtvs_locals != NULL); 6154 6155 svar = vstate->dtvs_locals[id]; 6156 ASSERT(svar != NULL); 6157 v = &svar->dtsv_var; 6158 6159 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6160 uintptr_t a = (uintptr_t)svar->dtsv_data; 6161 size_t sz = v->dtdv_type.dtdt_size; 6162 6163 sz += sizeof (uint64_t); 6164 ASSERT(svar->dtsv_size == NCPU * sz); 6165 a += CPU->cpu_id * sz; 6166 6167 if (*(uint8_t *)a == UINT8_MAX) { 6168 /* 6169 * If the 0th byte is set to UINT8_MAX 6170 * then this is to be treated as a 6171 * reference to a NULL variable. 6172 */ 6173 regs[rd] = 0; 6174 } else { 6175 regs[rd] = a + sizeof (uint64_t); 6176 } 6177 6178 break; 6179 } 6180 6181 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6182 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6183 regs[rd] = tmp[CPU->cpu_id]; 6184 break; 6185 6186 case DIF_OP_STLS: 6187 id = DIF_INSTR_VAR(instr); 6188 6189 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6190 id -= DIF_VAR_OTHER_UBASE; 6191 VERIFY(id < vstate->dtvs_nlocals); 6192 6193 ASSERT(vstate->dtvs_locals != NULL); 6194 svar = vstate->dtvs_locals[id]; 6195 ASSERT(svar != NULL); 6196 v = &svar->dtsv_var; 6197 6198 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6199 uintptr_t a = (uintptr_t)svar->dtsv_data; 6200 size_t sz = v->dtdv_type.dtdt_size; 6201 size_t lim; 6202 6203 sz += sizeof (uint64_t); 6204 ASSERT(svar->dtsv_size == NCPU * sz); 6205 a += CPU->cpu_id * sz; 6206 6207 if (regs[rd] == 0) { 6208 *(uint8_t *)a = UINT8_MAX; 6209 break; 6210 } else { 6211 *(uint8_t *)a = 0; 6212 a += sizeof (uint64_t); 6213 } 6214 6215 if (!dtrace_vcanload( 6216 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6217 &lim, mstate, vstate)) 6218 break; 6219 6220 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6221 (void *)a, &v->dtdv_type, lim); 6222 break; 6223 } 6224 6225 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6226 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6227 tmp[CPU->cpu_id] = regs[rd]; 6228 break; 6229 6230 case DIF_OP_LDTS: { 6231 dtrace_dynvar_t *dvar; 6232 dtrace_key_t *key; 6233 6234 id = DIF_INSTR_VAR(instr); 6235 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6236 id -= DIF_VAR_OTHER_UBASE; 6237 v = &vstate->dtvs_tlocals[id]; 6238 6239 key = &tupregs[DIF_DTR_NREGS]; 6240 key[0].dttk_value = (uint64_t)id; 6241 key[0].dttk_size = 0; 6242 DTRACE_TLS_THRKEY(key[1].dttk_value); 6243 key[1].dttk_size = 0; 6244 6245 dvar = dtrace_dynvar(dstate, 2, key, 6246 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 6247 mstate, vstate); 6248 6249 if (dvar == NULL) { 6250 regs[rd] = 0; 6251 break; 6252 } 6253 6254 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6255 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6256 } else { 6257 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6258 } 6259 6260 break; 6261 } 6262 6263 case DIF_OP_STTS: { 6264 dtrace_dynvar_t *dvar; 6265 dtrace_key_t *key; 6266 6267 id = DIF_INSTR_VAR(instr); 6268 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6269 id -= DIF_VAR_OTHER_UBASE; 6270 VERIFY(id < vstate->dtvs_ntlocals); 6271 6272 key = &tupregs[DIF_DTR_NREGS]; 6273 key[0].dttk_value = (uint64_t)id; 6274 key[0].dttk_size = 0; 6275 DTRACE_TLS_THRKEY(key[1].dttk_value); 6276 key[1].dttk_size = 0; 6277 v = &vstate->dtvs_tlocals[id]; 6278 6279 dvar = dtrace_dynvar(dstate, 2, key, 6280 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6281 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6282 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6283 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6284 6285 /* 6286 * Given that we're storing to thread-local data, 6287 * we need to flush our predicate cache. 6288 */ 6289 curthread->t_predcache = DTRACE_CACHEIDNONE; 6290 6291 if (dvar == NULL) 6292 break; 6293 6294 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6295 size_t lim; 6296 6297 if (!dtrace_vcanload( 6298 (void *)(uintptr_t)regs[rd], 6299 &v->dtdv_type, &lim, mstate, vstate)) 6300 break; 6301 6302 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6303 dvar->dtdv_data, &v->dtdv_type, lim); 6304 } else { 6305 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6306 } 6307 6308 break; 6309 } 6310 6311 case DIF_OP_SRA: 6312 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6313 break; 6314 6315 case DIF_OP_CALL: 6316 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6317 regs, tupregs, ttop, mstate, state); 6318 break; 6319 6320 case DIF_OP_PUSHTR: 6321 if (ttop == DIF_DTR_NREGS) { 6322 *flags |= CPU_DTRACE_TUPOFLOW; 6323 break; 6324 } 6325 6326 if (r1 == DIF_TYPE_STRING) { 6327 /* 6328 * If this is a string type and the size is 0, 6329 * we'll use the system-wide default string 6330 * size. Note that we are _not_ looking at 6331 * the value of the DTRACEOPT_STRSIZE option; 6332 * had this been set, we would expect to have 6333 * a non-zero size value in the "pushtr". 6334 */ 6335 tupregs[ttop].dttk_size = 6336 dtrace_strlen((char *)(uintptr_t)regs[rd], 6337 regs[r2] ? regs[r2] : 6338 dtrace_strsize_default) + 1; 6339 } else { 6340 if (regs[r2] > LONG_MAX) { 6341 *flags |= CPU_DTRACE_ILLOP; 6342 break; 6343 } 6344 6345 tupregs[ttop].dttk_size = regs[r2]; 6346 } 6347 6348 tupregs[ttop++].dttk_value = regs[rd]; 6349 break; 6350 6351 case DIF_OP_PUSHTV: 6352 if (ttop == DIF_DTR_NREGS) { 6353 *flags |= CPU_DTRACE_TUPOFLOW; 6354 break; 6355 } 6356 6357 tupregs[ttop].dttk_value = regs[rd]; 6358 tupregs[ttop++].dttk_size = 0; 6359 break; 6360 6361 case DIF_OP_POPTS: 6362 if (ttop != 0) 6363 ttop--; 6364 break; 6365 6366 case DIF_OP_FLUSHTS: 6367 ttop = 0; 6368 break; 6369 6370 case DIF_OP_LDGAA: 6371 case DIF_OP_LDTAA: { 6372 dtrace_dynvar_t *dvar; 6373 dtrace_key_t *key = tupregs; 6374 uint_t nkeys = ttop; 6375 6376 id = DIF_INSTR_VAR(instr); 6377 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6378 id -= DIF_VAR_OTHER_UBASE; 6379 6380 key[nkeys].dttk_value = (uint64_t)id; 6381 key[nkeys++].dttk_size = 0; 6382 6383 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6384 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6385 key[nkeys++].dttk_size = 0; 6386 VERIFY(id < vstate->dtvs_ntlocals); 6387 v = &vstate->dtvs_tlocals[id]; 6388 } else { 6389 VERIFY(id < vstate->dtvs_nglobals); 6390 v = &vstate->dtvs_globals[id]->dtsv_var; 6391 } 6392 6393 dvar = dtrace_dynvar(dstate, nkeys, key, 6394 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6395 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6396 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6397 6398 if (dvar == NULL) { 6399 regs[rd] = 0; 6400 break; 6401 } 6402 6403 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6404 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6405 } else { 6406 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6407 } 6408 6409 break; 6410 } 6411 6412 case DIF_OP_STGAA: 6413 case DIF_OP_STTAA: { 6414 dtrace_dynvar_t *dvar; 6415 dtrace_key_t *key = tupregs; 6416 uint_t nkeys = ttop; 6417 6418 id = DIF_INSTR_VAR(instr); 6419 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6420 id -= DIF_VAR_OTHER_UBASE; 6421 6422 key[nkeys].dttk_value = (uint64_t)id; 6423 key[nkeys++].dttk_size = 0; 6424 6425 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6426 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6427 key[nkeys++].dttk_size = 0; 6428 VERIFY(id < vstate->dtvs_ntlocals); 6429 v = &vstate->dtvs_tlocals[id]; 6430 } else { 6431 VERIFY(id < vstate->dtvs_nglobals); 6432 v = &vstate->dtvs_globals[id]->dtsv_var; 6433 } 6434 6435 dvar = dtrace_dynvar(dstate, nkeys, key, 6436 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6437 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6438 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6439 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6440 6441 if (dvar == NULL) 6442 break; 6443 6444 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6445 size_t lim; 6446 6447 if (!dtrace_vcanload( 6448 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6449 &lim, mstate, vstate)) 6450 break; 6451 6452 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6453 dvar->dtdv_data, &v->dtdv_type, lim); 6454 } else { 6455 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6456 } 6457 6458 break; 6459 } 6460 6461 case DIF_OP_ALLOCS: { 6462 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6463 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6464 6465 /* 6466 * Rounding up the user allocation size could have 6467 * overflowed large, bogus allocations (like -1ULL) to 6468 * 0. 6469 */ 6470 if (size < regs[r1] || 6471 !DTRACE_INSCRATCH(mstate, size)) { 6472 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6473 regs[rd] = 0; 6474 break; 6475 } 6476 6477 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6478 mstate->dtms_scratch_ptr += size; 6479 regs[rd] = ptr; 6480 break; 6481 } 6482 6483 case DIF_OP_COPYS: 6484 if (!dtrace_canstore(regs[rd], regs[r2], 6485 mstate, vstate)) { 6486 *flags |= CPU_DTRACE_BADADDR; 6487 *illval = regs[rd]; 6488 break; 6489 } 6490 6491 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6492 break; 6493 6494 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6495 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6496 break; 6497 6498 case DIF_OP_STB: 6499 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6500 *flags |= CPU_DTRACE_BADADDR; 6501 *illval = regs[rd]; 6502 break; 6503 } 6504 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6505 break; 6506 6507 case DIF_OP_STH: 6508 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6509 *flags |= CPU_DTRACE_BADADDR; 6510 *illval = regs[rd]; 6511 break; 6512 } 6513 if (regs[rd] & 1) { 6514 *flags |= CPU_DTRACE_BADALIGN; 6515 *illval = regs[rd]; 6516 break; 6517 } 6518 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6519 break; 6520 6521 case DIF_OP_STW: 6522 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6523 *flags |= CPU_DTRACE_BADADDR; 6524 *illval = regs[rd]; 6525 break; 6526 } 6527 if (regs[rd] & 3) { 6528 *flags |= CPU_DTRACE_BADALIGN; 6529 *illval = regs[rd]; 6530 break; 6531 } 6532 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6533 break; 6534 6535 case DIF_OP_STX: 6536 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6537 *flags |= CPU_DTRACE_BADADDR; 6538 *illval = regs[rd]; 6539 break; 6540 } 6541 if (regs[rd] & 7) { 6542 *flags |= CPU_DTRACE_BADALIGN; 6543 *illval = regs[rd]; 6544 break; 6545 } 6546 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6547 break; 6548 } 6549 } 6550 6551 if (!(*flags & CPU_DTRACE_FAULT)) 6552 return (rval); 6553 6554 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6555 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6556 6557 return (0); 6558 } 6559 6560 static void 6561 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6562 { 6563 dtrace_probe_t *probe = ecb->dte_probe; 6564 dtrace_provider_t *prov = probe->dtpr_provider; 6565 char c[DTRACE_FULLNAMELEN + 80], *str; 6566 char *msg = "dtrace: breakpoint action at probe "; 6567 char *ecbmsg = " (ecb "; 6568 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6569 uintptr_t val = (uintptr_t)ecb; 6570 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6571 6572 if (dtrace_destructive_disallow) 6573 return; 6574 6575 /* 6576 * It's impossible to be taking action on the NULL probe. 6577 */ 6578 ASSERT(probe != NULL); 6579 6580 /* 6581 * This is a poor man's (destitute man's?) sprintf(): we want to 6582 * print the provider name, module name, function name and name of 6583 * the probe, along with the hex address of the ECB with the breakpoint 6584 * action -- all of which we must place in the character buffer by 6585 * hand. 6586 */ 6587 while (*msg != '\0') 6588 c[i++] = *msg++; 6589 6590 for (str = prov->dtpv_name; *str != '\0'; str++) 6591 c[i++] = *str; 6592 c[i++] = ':'; 6593 6594 for (str = probe->dtpr_mod; *str != '\0'; str++) 6595 c[i++] = *str; 6596 c[i++] = ':'; 6597 6598 for (str = probe->dtpr_func; *str != '\0'; str++) 6599 c[i++] = *str; 6600 c[i++] = ':'; 6601 6602 for (str = probe->dtpr_name; *str != '\0'; str++) 6603 c[i++] = *str; 6604 6605 while (*ecbmsg != '\0') 6606 c[i++] = *ecbmsg++; 6607 6608 while (shift >= 0) { 6609 mask = (uintptr_t)0xf << shift; 6610 6611 if (val >= ((uintptr_t)1 << shift)) 6612 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6613 shift -= 4; 6614 } 6615 6616 c[i++] = ')'; 6617 c[i] = '\0'; 6618 6619 debug_enter(c); 6620 } 6621 6622 static void 6623 dtrace_action_panic(dtrace_ecb_t *ecb) 6624 { 6625 dtrace_probe_t *probe = ecb->dte_probe; 6626 6627 /* 6628 * It's impossible to be taking action on the NULL probe. 6629 */ 6630 ASSERT(probe != NULL); 6631 6632 if (dtrace_destructive_disallow) 6633 return; 6634 6635 if (dtrace_panicked != NULL) 6636 return; 6637 6638 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6639 return; 6640 6641 /* 6642 * We won the right to panic. (We want to be sure that only one 6643 * thread calls panic() from dtrace_probe(), and that panic() is 6644 * called exactly once.) 6645 */ 6646 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6647 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6648 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 6649 } 6650 6651 static void 6652 dtrace_action_raise(uint64_t sig) 6653 { 6654 if (dtrace_destructive_disallow) 6655 return; 6656 6657 if (sig >= NSIG) { 6658 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6659 return; 6660 } 6661 6662 /* 6663 * raise() has a queue depth of 1 -- we ignore all subsequent 6664 * invocations of the raise() action. 6665 */ 6666 if (curthread->t_dtrace_sig == 0) 6667 curthread->t_dtrace_sig = (uint8_t)sig; 6668 6669 curthread->t_sig_check = 1; 6670 aston(curthread); 6671 } 6672 6673 static void 6674 dtrace_action_stop(void) 6675 { 6676 if (dtrace_destructive_disallow) 6677 return; 6678 6679 if (!curthread->t_dtrace_stop) { 6680 curthread->t_dtrace_stop = 1; 6681 curthread->t_sig_check = 1; 6682 aston(curthread); 6683 } 6684 } 6685 6686 static void 6687 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 6688 { 6689 hrtime_t now; 6690 volatile uint16_t *flags; 6691 cpu_t *cpu = CPU; 6692 6693 if (dtrace_destructive_disallow) 6694 return; 6695 6696 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 6697 6698 now = dtrace_gethrtime(); 6699 6700 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 6701 /* 6702 * We need to advance the mark to the current time. 6703 */ 6704 cpu->cpu_dtrace_chillmark = now; 6705 cpu->cpu_dtrace_chilled = 0; 6706 } 6707 6708 /* 6709 * Now check to see if the requested chill time would take us over 6710 * the maximum amount of time allowed in the chill interval. (Or 6711 * worse, if the calculation itself induces overflow.) 6712 */ 6713 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 6714 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 6715 *flags |= CPU_DTRACE_ILLOP; 6716 return; 6717 } 6718 6719 while (dtrace_gethrtime() - now < val) 6720 continue; 6721 6722 /* 6723 * Normally, we assure that the value of the variable "timestamp" does 6724 * not change within an ECB. The presence of chill() represents an 6725 * exception to this rule, however. 6726 */ 6727 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 6728 cpu->cpu_dtrace_chilled += val; 6729 } 6730 6731 static void 6732 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 6733 uint64_t *buf, uint64_t arg) 6734 { 6735 int nframes = DTRACE_USTACK_NFRAMES(arg); 6736 int strsize = DTRACE_USTACK_STRSIZE(arg); 6737 uint64_t *pcs = &buf[1], *fps; 6738 char *str = (char *)&pcs[nframes]; 6739 int size, offs = 0, i, j; 6740 size_t rem; 6741 uintptr_t old = mstate->dtms_scratch_ptr, saved; 6742 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6743 char *sym; 6744 6745 /* 6746 * Should be taking a faster path if string space has not been 6747 * allocated. 6748 */ 6749 ASSERT(strsize != 0); 6750 6751 /* 6752 * We will first allocate some temporary space for the frame pointers. 6753 */ 6754 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6755 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 6756 (nframes * sizeof (uint64_t)); 6757 6758 if (!DTRACE_INSCRATCH(mstate, size)) { 6759 /* 6760 * Not enough room for our frame pointers -- need to indicate 6761 * that we ran out of scratch space. 6762 */ 6763 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6764 return; 6765 } 6766 6767 mstate->dtms_scratch_ptr += size; 6768 saved = mstate->dtms_scratch_ptr; 6769 6770 /* 6771 * Now get a stack with both program counters and frame pointers. 6772 */ 6773 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6774 dtrace_getufpstack(buf, fps, nframes + 1); 6775 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6776 6777 /* 6778 * If that faulted, we're cooked. 6779 */ 6780 if (*flags & CPU_DTRACE_FAULT) 6781 goto out; 6782 6783 /* 6784 * Now we want to walk up the stack, calling the USTACK helper. For 6785 * each iteration, we restore the scratch pointer. 6786 */ 6787 for (i = 0; i < nframes; i++) { 6788 mstate->dtms_scratch_ptr = saved; 6789 6790 if (offs >= strsize) 6791 break; 6792 6793 sym = (char *)(uintptr_t)dtrace_helper( 6794 DTRACE_HELPER_ACTION_USTACK, 6795 mstate, state, pcs[i], fps[i]); 6796 6797 /* 6798 * If we faulted while running the helper, we're going to 6799 * clear the fault and null out the corresponding string. 6800 */ 6801 if (*flags & CPU_DTRACE_FAULT) { 6802 *flags &= ~CPU_DTRACE_FAULT; 6803 str[offs++] = '\0'; 6804 continue; 6805 } 6806 6807 if (sym == NULL) { 6808 str[offs++] = '\0'; 6809 continue; 6810 } 6811 6812 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate, 6813 &(state->dts_vstate))) { 6814 str[offs++] = '\0'; 6815 continue; 6816 } 6817 6818 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6819 6820 /* 6821 * Now copy in the string that the helper returned to us. 6822 */ 6823 for (j = 0; offs + j < strsize && j < rem; j++) { 6824 if ((str[offs + j] = sym[j]) == '\0') 6825 break; 6826 } 6827 6828 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6829 6830 offs += j + 1; 6831 } 6832 6833 if (offs >= strsize) { 6834 /* 6835 * If we didn't have room for all of the strings, we don't 6836 * abort processing -- this needn't be a fatal error -- but we 6837 * still want to increment a counter (dts_stkstroverflows) to 6838 * allow this condition to be warned about. (If this is from 6839 * a jstack() action, it is easily tuned via jstackstrsize.) 6840 */ 6841 dtrace_error(&state->dts_stkstroverflows); 6842 } 6843 6844 while (offs < strsize) 6845 str[offs++] = '\0'; 6846 6847 out: 6848 mstate->dtms_scratch_ptr = old; 6849 } 6850 6851 static void 6852 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 6853 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 6854 { 6855 volatile uint16_t *flags; 6856 uint64_t val = *valp; 6857 size_t valoffs = *valoffsp; 6858 6859 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6860 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 6861 6862 /* 6863 * If this is a string, we're going to only load until we find the zero 6864 * byte -- after which we'll store zero bytes. 6865 */ 6866 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 6867 char c = '\0' + 1; 6868 size_t s; 6869 6870 for (s = 0; s < size; s++) { 6871 if (c != '\0' && dtkind == DIF_TF_BYREF) { 6872 c = dtrace_load8(val++); 6873 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 6874 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6875 c = dtrace_fuword8((void *)(uintptr_t)val++); 6876 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6877 if (*flags & CPU_DTRACE_FAULT) 6878 break; 6879 } 6880 6881 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 6882 6883 if (c == '\0' && intuple) 6884 break; 6885 } 6886 } else { 6887 uint8_t c; 6888 while (valoffs < end) { 6889 if (dtkind == DIF_TF_BYREF) { 6890 c = dtrace_load8(val++); 6891 } else if (dtkind == DIF_TF_BYUREF) { 6892 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6893 c = dtrace_fuword8((void *)(uintptr_t)val++); 6894 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6895 if (*flags & CPU_DTRACE_FAULT) 6896 break; 6897 } 6898 6899 DTRACE_STORE(uint8_t, tomax, 6900 valoffs++, c); 6901 } 6902 } 6903 6904 *valp = val; 6905 *valoffsp = valoffs; 6906 } 6907 6908 /* 6909 * If you're looking for the epicenter of DTrace, you just found it. This 6910 * is the function called by the provider to fire a probe -- from which all 6911 * subsequent probe-context DTrace activity emanates. 6912 */ 6913 void 6914 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 6915 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 6916 { 6917 processorid_t cpuid; 6918 dtrace_icookie_t cookie; 6919 dtrace_probe_t *probe; 6920 dtrace_mstate_t mstate; 6921 dtrace_ecb_t *ecb; 6922 dtrace_action_t *act; 6923 intptr_t offs; 6924 size_t size; 6925 int vtime, onintr; 6926 volatile uint16_t *flags; 6927 hrtime_t now, end; 6928 6929 /* 6930 * Kick out immediately if this CPU is still being born (in which case 6931 * curthread will be set to -1) or the current thread can't allow 6932 * probes in its current context. 6933 */ 6934 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 6935 return; 6936 6937 cookie = dtrace_interrupt_disable(); 6938 6939 /* 6940 * Also refuse to process any probe firings that might happen on a 6941 * disabled CPU. 6942 */ 6943 if (CPU->cpu_flags & CPU_DISABLED) { 6944 dtrace_interrupt_enable(cookie); 6945 return; 6946 } 6947 6948 probe = dtrace_probes[id - 1]; 6949 cpuid = CPU->cpu_id; 6950 onintr = CPU_ON_INTR(CPU); 6951 6952 CPU->cpu_dtrace_probes++; 6953 6954 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 6955 probe->dtpr_predcache == curthread->t_predcache) { 6956 /* 6957 * We have hit in the predicate cache; we know that 6958 * this predicate would evaluate to be false. 6959 */ 6960 dtrace_interrupt_enable(cookie); 6961 return; 6962 } 6963 6964 if (panic_quiesce) { 6965 /* 6966 * We don't trace anything if we're panicking. 6967 */ 6968 dtrace_interrupt_enable(cookie); 6969 return; 6970 } 6971 6972 now = mstate.dtms_timestamp = dtrace_gethrtime(); 6973 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 6974 vtime = dtrace_vtime_references != 0; 6975 6976 if (vtime && curthread->t_dtrace_start) 6977 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 6978 6979 mstate.dtms_difo = NULL; 6980 mstate.dtms_probe = probe; 6981 mstate.dtms_strtok = 0; 6982 mstate.dtms_arg[0] = arg0; 6983 mstate.dtms_arg[1] = arg1; 6984 mstate.dtms_arg[2] = arg2; 6985 mstate.dtms_arg[3] = arg3; 6986 mstate.dtms_arg[4] = arg4; 6987 6988 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 6989 6990 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 6991 dtrace_predicate_t *pred = ecb->dte_predicate; 6992 dtrace_state_t *state = ecb->dte_state; 6993 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 6994 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 6995 dtrace_vstate_t *vstate = &state->dts_vstate; 6996 dtrace_provider_t *prov = probe->dtpr_provider; 6997 uint64_t tracememsize = 0; 6998 int committed = 0; 6999 caddr_t tomax; 7000 7001 /* 7002 * A little subtlety with the following (seemingly innocuous) 7003 * declaration of the automatic 'val': by looking at the 7004 * code, you might think that it could be declared in the 7005 * action processing loop, below. (That is, it's only used in 7006 * the action processing loop.) However, it must be declared 7007 * out of that scope because in the case of DIF expression 7008 * arguments to aggregating actions, one iteration of the 7009 * action loop will use the last iteration's value. 7010 */ 7011 #ifdef lint 7012 uint64_t val = 0; 7013 #else 7014 uint64_t val; 7015 #endif 7016 7017 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 7018 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC; 7019 mstate.dtms_getf = NULL; 7020 7021 *flags &= ~CPU_DTRACE_ERROR; 7022 7023 if (prov == dtrace_provider) { 7024 /* 7025 * If dtrace itself is the provider of this probe, 7026 * we're only going to continue processing the ECB if 7027 * arg0 (the dtrace_state_t) is equal to the ECB's 7028 * creating state. (This prevents disjoint consumers 7029 * from seeing one another's metaprobes.) 7030 */ 7031 if (arg0 != (uint64_t)(uintptr_t)state) 7032 continue; 7033 } 7034 7035 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 7036 /* 7037 * We're not currently active. If our provider isn't 7038 * the dtrace pseudo provider, we're not interested. 7039 */ 7040 if (prov != dtrace_provider) 7041 continue; 7042 7043 /* 7044 * Now we must further check if we are in the BEGIN 7045 * probe. If we are, we will only continue processing 7046 * if we're still in WARMUP -- if one BEGIN enabling 7047 * has invoked the exit() action, we don't want to 7048 * evaluate subsequent BEGIN enablings. 7049 */ 7050 if (probe->dtpr_id == dtrace_probeid_begin && 7051 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 7052 ASSERT(state->dts_activity == 7053 DTRACE_ACTIVITY_DRAINING); 7054 continue; 7055 } 7056 } 7057 7058 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb)) 7059 continue; 7060 7061 if (now - state->dts_alive > dtrace_deadman_timeout) { 7062 /* 7063 * We seem to be dead. Unless we (a) have kernel 7064 * destructive permissions (b) have explicitly enabled 7065 * destructive actions and (c) destructive actions have 7066 * not been disabled, we're going to transition into 7067 * the KILLED state, from which no further processing 7068 * on this state will be performed. 7069 */ 7070 if (!dtrace_priv_kernel_destructive(state) || 7071 !state->dts_cred.dcr_destructive || 7072 dtrace_destructive_disallow) { 7073 void *activity = &state->dts_activity; 7074 dtrace_activity_t current; 7075 7076 do { 7077 current = state->dts_activity; 7078 } while (dtrace_cas32(activity, current, 7079 DTRACE_ACTIVITY_KILLED) != current); 7080 7081 continue; 7082 } 7083 } 7084 7085 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 7086 ecb->dte_alignment, state, &mstate)) < 0) 7087 continue; 7088 7089 tomax = buf->dtb_tomax; 7090 ASSERT(tomax != NULL); 7091 7092 if (ecb->dte_size != 0) { 7093 dtrace_rechdr_t dtrh; 7094 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 7095 mstate.dtms_timestamp = dtrace_gethrtime(); 7096 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 7097 } 7098 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 7099 dtrh.dtrh_epid = ecb->dte_epid; 7100 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 7101 mstate.dtms_timestamp); 7102 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 7103 } 7104 7105 mstate.dtms_epid = ecb->dte_epid; 7106 mstate.dtms_present |= DTRACE_MSTATE_EPID; 7107 7108 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 7109 mstate.dtms_access |= DTRACE_ACCESS_KERNEL; 7110 7111 if (pred != NULL) { 7112 dtrace_difo_t *dp = pred->dtp_difo; 7113 int rval; 7114 7115 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 7116 7117 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 7118 dtrace_cacheid_t cid = probe->dtpr_predcache; 7119 7120 if (cid != DTRACE_CACHEIDNONE && !onintr) { 7121 /* 7122 * Update the predicate cache... 7123 */ 7124 ASSERT(cid == pred->dtp_cacheid); 7125 curthread->t_predcache = cid; 7126 } 7127 7128 continue; 7129 } 7130 } 7131 7132 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 7133 act != NULL; act = act->dta_next) { 7134 size_t valoffs; 7135 dtrace_difo_t *dp; 7136 dtrace_recdesc_t *rec = &act->dta_rec; 7137 7138 size = rec->dtrd_size; 7139 valoffs = offs + rec->dtrd_offset; 7140 7141 if (DTRACEACT_ISAGG(act->dta_kind)) { 7142 uint64_t v = 0xbad; 7143 dtrace_aggregation_t *agg; 7144 7145 agg = (dtrace_aggregation_t *)act; 7146 7147 if ((dp = act->dta_difo) != NULL) 7148 v = dtrace_dif_emulate(dp, 7149 &mstate, vstate, state); 7150 7151 if (*flags & CPU_DTRACE_ERROR) 7152 continue; 7153 7154 /* 7155 * Note that we always pass the expression 7156 * value from the previous iteration of the 7157 * action loop. This value will only be used 7158 * if there is an expression argument to the 7159 * aggregating action, denoted by the 7160 * dtag_hasarg field. 7161 */ 7162 dtrace_aggregate(agg, buf, 7163 offs, aggbuf, v, val); 7164 continue; 7165 } 7166 7167 switch (act->dta_kind) { 7168 case DTRACEACT_STOP: 7169 if (dtrace_priv_proc_destructive(state, 7170 &mstate)) 7171 dtrace_action_stop(); 7172 continue; 7173 7174 case DTRACEACT_BREAKPOINT: 7175 if (dtrace_priv_kernel_destructive(state)) 7176 dtrace_action_breakpoint(ecb); 7177 continue; 7178 7179 case DTRACEACT_PANIC: 7180 if (dtrace_priv_kernel_destructive(state)) 7181 dtrace_action_panic(ecb); 7182 continue; 7183 7184 case DTRACEACT_STACK: 7185 if (!dtrace_priv_kernel(state)) 7186 continue; 7187 7188 dtrace_getpcstack((pc_t *)(tomax + valoffs), 7189 size / sizeof (pc_t), probe->dtpr_aframes, 7190 DTRACE_ANCHORED(probe) ? NULL : 7191 (uint32_t *)arg0); 7192 7193 continue; 7194 7195 case DTRACEACT_JSTACK: 7196 case DTRACEACT_USTACK: 7197 if (!dtrace_priv_proc(state, &mstate)) 7198 continue; 7199 7200 /* 7201 * See comment in DIF_VAR_PID. 7202 */ 7203 if (DTRACE_ANCHORED(mstate.dtms_probe) && 7204 CPU_ON_INTR(CPU)) { 7205 int depth = DTRACE_USTACK_NFRAMES( 7206 rec->dtrd_arg) + 1; 7207 7208 dtrace_bzero((void *)(tomax + valoffs), 7209 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 7210 + depth * sizeof (uint64_t)); 7211 7212 continue; 7213 } 7214 7215 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 7216 curproc->p_dtrace_helpers != NULL) { 7217 /* 7218 * This is the slow path -- we have 7219 * allocated string space, and we're 7220 * getting the stack of a process that 7221 * has helpers. Call into a separate 7222 * routine to perform this processing. 7223 */ 7224 dtrace_action_ustack(&mstate, state, 7225 (uint64_t *)(tomax + valoffs), 7226 rec->dtrd_arg); 7227 continue; 7228 } 7229 7230 /* 7231 * Clear the string space, since there's no 7232 * helper to do it for us. 7233 */ 7234 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) { 7235 int depth = DTRACE_USTACK_NFRAMES( 7236 rec->dtrd_arg); 7237 size_t strsize = DTRACE_USTACK_STRSIZE( 7238 rec->dtrd_arg); 7239 uint64_t *buf = (uint64_t *)(tomax + 7240 valoffs); 7241 void *strspace = &buf[depth + 1]; 7242 7243 dtrace_bzero(strspace, 7244 MIN(depth, strsize)); 7245 } 7246 7247 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7248 dtrace_getupcstack((uint64_t *) 7249 (tomax + valoffs), 7250 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 7251 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7252 continue; 7253 7254 default: 7255 break; 7256 } 7257 7258 dp = act->dta_difo; 7259 ASSERT(dp != NULL); 7260 7261 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 7262 7263 if (*flags & CPU_DTRACE_ERROR) 7264 continue; 7265 7266 switch (act->dta_kind) { 7267 case DTRACEACT_SPECULATE: { 7268 dtrace_rechdr_t *dtrh; 7269 7270 ASSERT(buf == &state->dts_buffer[cpuid]); 7271 buf = dtrace_speculation_buffer(state, 7272 cpuid, val); 7273 7274 if (buf == NULL) { 7275 *flags |= CPU_DTRACE_DROP; 7276 continue; 7277 } 7278 7279 offs = dtrace_buffer_reserve(buf, 7280 ecb->dte_needed, ecb->dte_alignment, 7281 state, NULL); 7282 7283 if (offs < 0) { 7284 *flags |= CPU_DTRACE_DROP; 7285 continue; 7286 } 7287 7288 tomax = buf->dtb_tomax; 7289 ASSERT(tomax != NULL); 7290 7291 if (ecb->dte_size == 0) 7292 continue; 7293 7294 ASSERT3U(ecb->dte_size, >=, 7295 sizeof (dtrace_rechdr_t)); 7296 dtrh = ((void *)(tomax + offs)); 7297 dtrh->dtrh_epid = ecb->dte_epid; 7298 /* 7299 * When the speculation is committed, all of 7300 * the records in the speculative buffer will 7301 * have their timestamps set to the commit 7302 * time. Until then, it is set to a sentinel 7303 * value, for debugability. 7304 */ 7305 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7306 continue; 7307 } 7308 7309 case DTRACEACT_CHILL: 7310 if (dtrace_priv_kernel_destructive(state)) 7311 dtrace_action_chill(&mstate, val); 7312 continue; 7313 7314 case DTRACEACT_RAISE: 7315 if (dtrace_priv_proc_destructive(state, 7316 &mstate)) 7317 dtrace_action_raise(val); 7318 continue; 7319 7320 case DTRACEACT_COMMIT: 7321 ASSERT(!committed); 7322 7323 /* 7324 * We need to commit our buffer state. 7325 */ 7326 if (ecb->dte_size) 7327 buf->dtb_offset = offs + ecb->dte_size; 7328 buf = &state->dts_buffer[cpuid]; 7329 dtrace_speculation_commit(state, cpuid, val); 7330 committed = 1; 7331 continue; 7332 7333 case DTRACEACT_DISCARD: 7334 dtrace_speculation_discard(state, cpuid, val); 7335 continue; 7336 7337 case DTRACEACT_DIFEXPR: 7338 case DTRACEACT_LIBACT: 7339 case DTRACEACT_PRINTF: 7340 case DTRACEACT_PRINTA: 7341 case DTRACEACT_SYSTEM: 7342 case DTRACEACT_FREOPEN: 7343 case DTRACEACT_TRACEMEM: 7344 break; 7345 7346 case DTRACEACT_TRACEMEM_DYNSIZE: 7347 tracememsize = val; 7348 break; 7349 7350 case DTRACEACT_SYM: 7351 case DTRACEACT_MOD: 7352 if (!dtrace_priv_kernel(state)) 7353 continue; 7354 break; 7355 7356 case DTRACEACT_USYM: 7357 case DTRACEACT_UMOD: 7358 case DTRACEACT_UADDR: { 7359 struct pid *pid = curthread->t_procp->p_pidp; 7360 7361 if (!dtrace_priv_proc(state, &mstate)) 7362 continue; 7363 7364 DTRACE_STORE(uint64_t, tomax, 7365 valoffs, (uint64_t)pid->pid_id); 7366 DTRACE_STORE(uint64_t, tomax, 7367 valoffs + sizeof (uint64_t), val); 7368 7369 continue; 7370 } 7371 7372 case DTRACEACT_EXIT: { 7373 /* 7374 * For the exit action, we are going to attempt 7375 * to atomically set our activity to be 7376 * draining. If this fails (either because 7377 * another CPU has beat us to the exit action, 7378 * or because our current activity is something 7379 * other than ACTIVE or WARMUP), we will 7380 * continue. This assures that the exit action 7381 * can be successfully recorded at most once 7382 * when we're in the ACTIVE state. If we're 7383 * encountering the exit() action while in 7384 * COOLDOWN, however, we want to honor the new 7385 * status code. (We know that we're the only 7386 * thread in COOLDOWN, so there is no race.) 7387 */ 7388 void *activity = &state->dts_activity; 7389 dtrace_activity_t current = state->dts_activity; 7390 7391 if (current == DTRACE_ACTIVITY_COOLDOWN) 7392 break; 7393 7394 if (current != DTRACE_ACTIVITY_WARMUP) 7395 current = DTRACE_ACTIVITY_ACTIVE; 7396 7397 if (dtrace_cas32(activity, current, 7398 DTRACE_ACTIVITY_DRAINING) != current) { 7399 *flags |= CPU_DTRACE_DROP; 7400 continue; 7401 } 7402 7403 break; 7404 } 7405 7406 default: 7407 ASSERT(0); 7408 } 7409 7410 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7411 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7412 uintptr_t end = valoffs + size; 7413 7414 if (tracememsize != 0 && 7415 valoffs + tracememsize < end) { 7416 end = valoffs + tracememsize; 7417 tracememsize = 0; 7418 } 7419 7420 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7421 !dtrace_vcanload((void *)(uintptr_t)val, 7422 &dp->dtdo_rtype, NULL, &mstate, vstate)) 7423 continue; 7424 7425 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7426 &val, end, act->dta_intuple, 7427 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7428 DIF_TF_BYREF: DIF_TF_BYUREF); 7429 continue; 7430 } 7431 7432 switch (size) { 7433 case 0: 7434 break; 7435 7436 case sizeof (uint8_t): 7437 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7438 break; 7439 case sizeof (uint16_t): 7440 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7441 break; 7442 case sizeof (uint32_t): 7443 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7444 break; 7445 case sizeof (uint64_t): 7446 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7447 break; 7448 default: 7449 /* 7450 * Any other size should have been returned by 7451 * reference, not by value. 7452 */ 7453 ASSERT(0); 7454 break; 7455 } 7456 } 7457 7458 if (*flags & CPU_DTRACE_DROP) 7459 continue; 7460 7461 if (*flags & CPU_DTRACE_FAULT) { 7462 int ndx; 7463 dtrace_action_t *err; 7464 7465 buf->dtb_errors++; 7466 7467 if (probe->dtpr_id == dtrace_probeid_error) { 7468 /* 7469 * There's nothing we can do -- we had an 7470 * error on the error probe. We bump an 7471 * error counter to at least indicate that 7472 * this condition happened. 7473 */ 7474 dtrace_error(&state->dts_dblerrors); 7475 continue; 7476 } 7477 7478 if (vtime) { 7479 /* 7480 * Before recursing on dtrace_probe(), we 7481 * need to explicitly clear out our start 7482 * time to prevent it from being accumulated 7483 * into t_dtrace_vtime. 7484 */ 7485 curthread->t_dtrace_start = 0; 7486 } 7487 7488 /* 7489 * Iterate over the actions to figure out which action 7490 * we were processing when we experienced the error. 7491 * Note that act points _past_ the faulting action; if 7492 * act is ecb->dte_action, the fault was in the 7493 * predicate, if it's ecb->dte_action->dta_next it's 7494 * in action #1, and so on. 7495 */ 7496 for (err = ecb->dte_action, ndx = 0; 7497 err != act; err = err->dta_next, ndx++) 7498 continue; 7499 7500 dtrace_probe_error(state, ecb->dte_epid, ndx, 7501 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7502 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7503 cpu_core[cpuid].cpuc_dtrace_illval); 7504 7505 continue; 7506 } 7507 7508 if (!committed) 7509 buf->dtb_offset = offs + ecb->dte_size; 7510 } 7511 7512 end = dtrace_gethrtime(); 7513 if (vtime) 7514 curthread->t_dtrace_start = end; 7515 7516 CPU->cpu_dtrace_nsec += end - now; 7517 7518 dtrace_interrupt_enable(cookie); 7519 } 7520 7521 /* 7522 * DTrace Probe Hashing Functions 7523 * 7524 * The functions in this section (and indeed, the functions in remaining 7525 * sections) are not _called_ from probe context. (Any exceptions to this are 7526 * marked with a "Note:".) Rather, they are called from elsewhere in the 7527 * DTrace framework to look-up probes in, add probes to and remove probes from 7528 * the DTrace probe hashes. (Each probe is hashed by each element of the 7529 * probe tuple -- allowing for fast lookups, regardless of what was 7530 * specified.) 7531 */ 7532 static uint_t 7533 dtrace_hash_str(char *p) 7534 { 7535 unsigned int g; 7536 uint_t hval = 0; 7537 7538 while (*p) { 7539 hval = (hval << 4) + *p++; 7540 if ((g = (hval & 0xf0000000)) != 0) 7541 hval ^= g >> 24; 7542 hval &= ~g; 7543 } 7544 return (hval); 7545 } 7546 7547 static dtrace_hash_t * 7548 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 7549 { 7550 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 7551 7552 hash->dth_stroffs = stroffs; 7553 hash->dth_nextoffs = nextoffs; 7554 hash->dth_prevoffs = prevoffs; 7555 7556 hash->dth_size = 1; 7557 hash->dth_mask = hash->dth_size - 1; 7558 7559 hash->dth_tab = kmem_zalloc(hash->dth_size * 7560 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 7561 7562 return (hash); 7563 } 7564 7565 static void 7566 dtrace_hash_destroy(dtrace_hash_t *hash) 7567 { 7568 #ifdef DEBUG 7569 int i; 7570 7571 for (i = 0; i < hash->dth_size; i++) 7572 ASSERT(hash->dth_tab[i] == NULL); 7573 #endif 7574 7575 kmem_free(hash->dth_tab, 7576 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 7577 kmem_free(hash, sizeof (dtrace_hash_t)); 7578 } 7579 7580 static void 7581 dtrace_hash_resize(dtrace_hash_t *hash) 7582 { 7583 int size = hash->dth_size, i, ndx; 7584 int new_size = hash->dth_size << 1; 7585 int new_mask = new_size - 1; 7586 dtrace_hashbucket_t **new_tab, *bucket, *next; 7587 7588 ASSERT((new_size & new_mask) == 0); 7589 7590 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 7591 7592 for (i = 0; i < size; i++) { 7593 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 7594 dtrace_probe_t *probe = bucket->dthb_chain; 7595 7596 ASSERT(probe != NULL); 7597 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 7598 7599 next = bucket->dthb_next; 7600 bucket->dthb_next = new_tab[ndx]; 7601 new_tab[ndx] = bucket; 7602 } 7603 } 7604 7605 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 7606 hash->dth_tab = new_tab; 7607 hash->dth_size = new_size; 7608 hash->dth_mask = new_mask; 7609 } 7610 7611 static void 7612 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 7613 { 7614 int hashval = DTRACE_HASHSTR(hash, new); 7615 int ndx = hashval & hash->dth_mask; 7616 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7617 dtrace_probe_t **nextp, **prevp; 7618 7619 for (; bucket != NULL; bucket = bucket->dthb_next) { 7620 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 7621 goto add; 7622 } 7623 7624 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 7625 dtrace_hash_resize(hash); 7626 dtrace_hash_add(hash, new); 7627 return; 7628 } 7629 7630 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 7631 bucket->dthb_next = hash->dth_tab[ndx]; 7632 hash->dth_tab[ndx] = bucket; 7633 hash->dth_nbuckets++; 7634 7635 add: 7636 nextp = DTRACE_HASHNEXT(hash, new); 7637 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 7638 *nextp = bucket->dthb_chain; 7639 7640 if (bucket->dthb_chain != NULL) { 7641 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 7642 ASSERT(*prevp == NULL); 7643 *prevp = new; 7644 } 7645 7646 bucket->dthb_chain = new; 7647 bucket->dthb_len++; 7648 } 7649 7650 static dtrace_probe_t * 7651 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 7652 { 7653 int hashval = DTRACE_HASHSTR(hash, template); 7654 int ndx = hashval & hash->dth_mask; 7655 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7656 7657 for (; bucket != NULL; bucket = bucket->dthb_next) { 7658 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7659 return (bucket->dthb_chain); 7660 } 7661 7662 return (NULL); 7663 } 7664 7665 static int 7666 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 7667 { 7668 int hashval = DTRACE_HASHSTR(hash, template); 7669 int ndx = hashval & hash->dth_mask; 7670 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7671 7672 for (; bucket != NULL; bucket = bucket->dthb_next) { 7673 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7674 return (bucket->dthb_len); 7675 } 7676 7677 return (0); 7678 } 7679 7680 static void 7681 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 7682 { 7683 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 7684 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7685 7686 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 7687 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 7688 7689 /* 7690 * Find the bucket that we're removing this probe from. 7691 */ 7692 for (; bucket != NULL; bucket = bucket->dthb_next) { 7693 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 7694 break; 7695 } 7696 7697 ASSERT(bucket != NULL); 7698 7699 if (*prevp == NULL) { 7700 if (*nextp == NULL) { 7701 /* 7702 * The removed probe was the only probe on this 7703 * bucket; we need to remove the bucket. 7704 */ 7705 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 7706 7707 ASSERT(bucket->dthb_chain == probe); 7708 ASSERT(b != NULL); 7709 7710 if (b == bucket) { 7711 hash->dth_tab[ndx] = bucket->dthb_next; 7712 } else { 7713 while (b->dthb_next != bucket) 7714 b = b->dthb_next; 7715 b->dthb_next = bucket->dthb_next; 7716 } 7717 7718 ASSERT(hash->dth_nbuckets > 0); 7719 hash->dth_nbuckets--; 7720 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 7721 return; 7722 } 7723 7724 bucket->dthb_chain = *nextp; 7725 } else { 7726 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 7727 } 7728 7729 if (*nextp != NULL) 7730 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 7731 } 7732 7733 /* 7734 * DTrace Utility Functions 7735 * 7736 * These are random utility functions that are _not_ called from probe context. 7737 */ 7738 static int 7739 dtrace_badattr(const dtrace_attribute_t *a) 7740 { 7741 return (a->dtat_name > DTRACE_STABILITY_MAX || 7742 a->dtat_data > DTRACE_STABILITY_MAX || 7743 a->dtat_class > DTRACE_CLASS_MAX); 7744 } 7745 7746 /* 7747 * Return a duplicate copy of a string. If the specified string is NULL, 7748 * this function returns a zero-length string. 7749 */ 7750 static char * 7751 dtrace_strdup(const char *str) 7752 { 7753 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 7754 7755 if (str != NULL) 7756 (void) strcpy(new, str); 7757 7758 return (new); 7759 } 7760 7761 #define DTRACE_ISALPHA(c) \ 7762 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 7763 7764 static int 7765 dtrace_badname(const char *s) 7766 { 7767 char c; 7768 7769 if (s == NULL || (c = *s++) == '\0') 7770 return (0); 7771 7772 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 7773 return (1); 7774 7775 while ((c = *s++) != '\0') { 7776 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 7777 c != '-' && c != '_' && c != '.' && c != '`') 7778 return (1); 7779 } 7780 7781 return (0); 7782 } 7783 7784 static void 7785 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 7786 { 7787 uint32_t priv; 7788 7789 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 7790 /* 7791 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 7792 */ 7793 priv = DTRACE_PRIV_ALL; 7794 } else { 7795 *uidp = crgetuid(cr); 7796 *zoneidp = crgetzonedid(cr); 7797 7798 priv = 0; 7799 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 7800 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 7801 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 7802 priv |= DTRACE_PRIV_USER; 7803 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 7804 priv |= DTRACE_PRIV_PROC; 7805 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 7806 priv |= DTRACE_PRIV_OWNER; 7807 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 7808 priv |= DTRACE_PRIV_ZONEOWNER; 7809 } 7810 7811 *privp = priv; 7812 } 7813 7814 #ifdef DTRACE_ERRDEBUG 7815 static void 7816 dtrace_errdebug(const char *str) 7817 { 7818 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 7819 int occupied = 0; 7820 7821 mutex_enter(&dtrace_errlock); 7822 dtrace_errlast = str; 7823 dtrace_errthread = curthread; 7824 7825 while (occupied++ < DTRACE_ERRHASHSZ) { 7826 if (dtrace_errhash[hval].dter_msg == str) { 7827 dtrace_errhash[hval].dter_count++; 7828 goto out; 7829 } 7830 7831 if (dtrace_errhash[hval].dter_msg != NULL) { 7832 hval = (hval + 1) % DTRACE_ERRHASHSZ; 7833 continue; 7834 } 7835 7836 dtrace_errhash[hval].dter_msg = str; 7837 dtrace_errhash[hval].dter_count = 1; 7838 goto out; 7839 } 7840 7841 panic("dtrace: undersized error hash"); 7842 out: 7843 mutex_exit(&dtrace_errlock); 7844 } 7845 #endif 7846 7847 /* 7848 * DTrace Matching Functions 7849 * 7850 * These functions are used to match groups of probes, given some elements of 7851 * a probe tuple, or some globbed expressions for elements of a probe tuple. 7852 */ 7853 static int 7854 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 7855 zoneid_t zoneid) 7856 { 7857 if (priv != DTRACE_PRIV_ALL) { 7858 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 7859 uint32_t match = priv & ppriv; 7860 7861 /* 7862 * No PRIV_DTRACE_* privileges... 7863 */ 7864 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 7865 DTRACE_PRIV_KERNEL)) == 0) 7866 return (0); 7867 7868 /* 7869 * No matching bits, but there were bits to match... 7870 */ 7871 if (match == 0 && ppriv != 0) 7872 return (0); 7873 7874 /* 7875 * Need to have permissions to the process, but don't... 7876 */ 7877 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 7878 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 7879 return (0); 7880 } 7881 7882 /* 7883 * Need to be in the same zone unless we possess the 7884 * privilege to examine all zones. 7885 */ 7886 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 7887 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 7888 return (0); 7889 } 7890 } 7891 7892 return (1); 7893 } 7894 7895 /* 7896 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 7897 * consists of input pattern strings and an ops-vector to evaluate them. 7898 * This function returns >0 for match, 0 for no match, and <0 for error. 7899 */ 7900 static int 7901 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 7902 uint32_t priv, uid_t uid, zoneid_t zoneid) 7903 { 7904 dtrace_provider_t *pvp = prp->dtpr_provider; 7905 int rv; 7906 7907 if (pvp->dtpv_defunct) 7908 return (0); 7909 7910 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 7911 return (rv); 7912 7913 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 7914 return (rv); 7915 7916 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 7917 return (rv); 7918 7919 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 7920 return (rv); 7921 7922 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 7923 return (0); 7924 7925 return (rv); 7926 } 7927 7928 /* 7929 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 7930 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 7931 * libc's version, the kernel version only applies to 8-bit ASCII strings. 7932 * In addition, all of the recursion cases except for '*' matching have been 7933 * unwound. For '*', we still implement recursive evaluation, but a depth 7934 * counter is maintained and matching is aborted if we recurse too deep. 7935 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 7936 */ 7937 static int 7938 dtrace_match_glob(const char *s, const char *p, int depth) 7939 { 7940 const char *olds; 7941 char s1, c; 7942 int gs; 7943 7944 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 7945 return (-1); 7946 7947 if (s == NULL) 7948 s = ""; /* treat NULL as empty string */ 7949 7950 top: 7951 olds = s; 7952 s1 = *s++; 7953 7954 if (p == NULL) 7955 return (0); 7956 7957 if ((c = *p++) == '\0') 7958 return (s1 == '\0'); 7959 7960 switch (c) { 7961 case '[': { 7962 int ok = 0, notflag = 0; 7963 char lc = '\0'; 7964 7965 if (s1 == '\0') 7966 return (0); 7967 7968 if (*p == '!') { 7969 notflag = 1; 7970 p++; 7971 } 7972 7973 if ((c = *p++) == '\0') 7974 return (0); 7975 7976 do { 7977 if (c == '-' && lc != '\0' && *p != ']') { 7978 if ((c = *p++) == '\0') 7979 return (0); 7980 if (c == '\\' && (c = *p++) == '\0') 7981 return (0); 7982 7983 if (notflag) { 7984 if (s1 < lc || s1 > c) 7985 ok++; 7986 else 7987 return (0); 7988 } else if (lc <= s1 && s1 <= c) 7989 ok++; 7990 7991 } else if (c == '\\' && (c = *p++) == '\0') 7992 return (0); 7993 7994 lc = c; /* save left-hand 'c' for next iteration */ 7995 7996 if (notflag) { 7997 if (s1 != c) 7998 ok++; 7999 else 8000 return (0); 8001 } else if (s1 == c) 8002 ok++; 8003 8004 if ((c = *p++) == '\0') 8005 return (0); 8006 8007 } while (c != ']'); 8008 8009 if (ok) 8010 goto top; 8011 8012 return (0); 8013 } 8014 8015 case '\\': 8016 if ((c = *p++) == '\0') 8017 return (0); 8018 /*FALLTHRU*/ 8019 8020 default: 8021 if (c != s1) 8022 return (0); 8023 /*FALLTHRU*/ 8024 8025 case '?': 8026 if (s1 != '\0') 8027 goto top; 8028 return (0); 8029 8030 case '*': 8031 while (*p == '*') 8032 p++; /* consecutive *'s are identical to a single one */ 8033 8034 if (*p == '\0') 8035 return (1); 8036 8037 for (s = olds; *s != '\0'; s++) { 8038 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 8039 return (gs); 8040 } 8041 8042 return (0); 8043 } 8044 } 8045 8046 /*ARGSUSED*/ 8047 static int 8048 dtrace_match_string(const char *s, const char *p, int depth) 8049 { 8050 return (s != NULL && strcmp(s, p) == 0); 8051 } 8052 8053 /*ARGSUSED*/ 8054 static int 8055 dtrace_match_nul(const char *s, const char *p, int depth) 8056 { 8057 return (1); /* always match the empty pattern */ 8058 } 8059 8060 /*ARGSUSED*/ 8061 static int 8062 dtrace_match_nonzero(const char *s, const char *p, int depth) 8063 { 8064 return (s != NULL && s[0] != '\0'); 8065 } 8066 8067 static int 8068 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 8069 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 8070 { 8071 dtrace_probe_t template, *probe; 8072 dtrace_hash_t *hash = NULL; 8073 int len, rc, best = INT_MAX, nmatched = 0; 8074 dtrace_id_t i; 8075 8076 ASSERT(MUTEX_HELD(&dtrace_lock)); 8077 8078 /* 8079 * If the probe ID is specified in the key, just lookup by ID and 8080 * invoke the match callback once if a matching probe is found. 8081 */ 8082 if (pkp->dtpk_id != DTRACE_IDNONE) { 8083 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 8084 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 8085 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 8086 return (DTRACE_MATCH_FAIL); 8087 nmatched++; 8088 } 8089 return (nmatched); 8090 } 8091 8092 template.dtpr_mod = (char *)pkp->dtpk_mod; 8093 template.dtpr_func = (char *)pkp->dtpk_func; 8094 template.dtpr_name = (char *)pkp->dtpk_name; 8095 8096 /* 8097 * We want to find the most distinct of the module name, function 8098 * name, and name. So for each one that is not a glob pattern or 8099 * empty string, we perform a lookup in the corresponding hash and 8100 * use the hash table with the fewest collisions to do our search. 8101 */ 8102 if (pkp->dtpk_mmatch == &dtrace_match_string && 8103 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 8104 best = len; 8105 hash = dtrace_bymod; 8106 } 8107 8108 if (pkp->dtpk_fmatch == &dtrace_match_string && 8109 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 8110 best = len; 8111 hash = dtrace_byfunc; 8112 } 8113 8114 if (pkp->dtpk_nmatch == &dtrace_match_string && 8115 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 8116 best = len; 8117 hash = dtrace_byname; 8118 } 8119 8120 /* 8121 * If we did not select a hash table, iterate over every probe and 8122 * invoke our callback for each one that matches our input probe key. 8123 */ 8124 if (hash == NULL) { 8125 for (i = 0; i < dtrace_nprobes; i++) { 8126 if ((probe = dtrace_probes[i]) == NULL || 8127 dtrace_match_probe(probe, pkp, priv, uid, 8128 zoneid) <= 0) 8129 continue; 8130 8131 nmatched++; 8132 8133 if ((rc = (*matched)(probe, arg)) != 8134 DTRACE_MATCH_NEXT) { 8135 if (rc == DTRACE_MATCH_FAIL) 8136 return (DTRACE_MATCH_FAIL); 8137 break; 8138 } 8139 } 8140 8141 return (nmatched); 8142 } 8143 8144 /* 8145 * If we selected a hash table, iterate over each probe of the same key 8146 * name and invoke the callback for every probe that matches the other 8147 * attributes of our input probe key. 8148 */ 8149 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 8150 probe = *(DTRACE_HASHNEXT(hash, probe))) { 8151 8152 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 8153 continue; 8154 8155 nmatched++; 8156 8157 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 8158 if (rc == DTRACE_MATCH_FAIL) 8159 return (DTRACE_MATCH_FAIL); 8160 break; 8161 } 8162 } 8163 8164 return (nmatched); 8165 } 8166 8167 /* 8168 * Return the function pointer dtrace_probecmp() should use to compare the 8169 * specified pattern with a string. For NULL or empty patterns, we select 8170 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 8171 * For non-empty non-glob strings, we use dtrace_match_string(). 8172 */ 8173 static dtrace_probekey_f * 8174 dtrace_probekey_func(const char *p) 8175 { 8176 char c; 8177 8178 if (p == NULL || *p == '\0') 8179 return (&dtrace_match_nul); 8180 8181 while ((c = *p++) != '\0') { 8182 if (c == '[' || c == '?' || c == '*' || c == '\\') 8183 return (&dtrace_match_glob); 8184 } 8185 8186 return (&dtrace_match_string); 8187 } 8188 8189 /* 8190 * Build a probe comparison key for use with dtrace_match_probe() from the 8191 * given probe description. By convention, a null key only matches anchored 8192 * probes: if each field is the empty string, reset dtpk_fmatch to 8193 * dtrace_match_nonzero(). 8194 */ 8195 static void 8196 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 8197 { 8198 pkp->dtpk_prov = pdp->dtpd_provider; 8199 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 8200 8201 pkp->dtpk_mod = pdp->dtpd_mod; 8202 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 8203 8204 pkp->dtpk_func = pdp->dtpd_func; 8205 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 8206 8207 pkp->dtpk_name = pdp->dtpd_name; 8208 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 8209 8210 pkp->dtpk_id = pdp->dtpd_id; 8211 8212 if (pkp->dtpk_id == DTRACE_IDNONE && 8213 pkp->dtpk_pmatch == &dtrace_match_nul && 8214 pkp->dtpk_mmatch == &dtrace_match_nul && 8215 pkp->dtpk_fmatch == &dtrace_match_nul && 8216 pkp->dtpk_nmatch == &dtrace_match_nul) 8217 pkp->dtpk_fmatch = &dtrace_match_nonzero; 8218 } 8219 8220 /* 8221 * DTrace Provider-to-Framework API Functions 8222 * 8223 * These functions implement much of the Provider-to-Framework API, as 8224 * described in <sys/dtrace.h>. The parts of the API not in this section are 8225 * the functions in the API for probe management (found below), and 8226 * dtrace_probe() itself (found above). 8227 */ 8228 8229 /* 8230 * Register the calling provider with the DTrace framework. This should 8231 * generally be called by DTrace providers in their attach(9E) entry point. 8232 */ 8233 int 8234 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 8235 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 8236 { 8237 dtrace_provider_t *provider; 8238 8239 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 8240 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8241 "arguments", name ? name : "<NULL>"); 8242 return (EINVAL); 8243 } 8244 8245 if (name[0] == '\0' || dtrace_badname(name)) { 8246 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8247 "provider name", name); 8248 return (EINVAL); 8249 } 8250 8251 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 8252 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 8253 pops->dtps_destroy == NULL || 8254 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 8255 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8256 "provider ops", name); 8257 return (EINVAL); 8258 } 8259 8260 if (dtrace_badattr(&pap->dtpa_provider) || 8261 dtrace_badattr(&pap->dtpa_mod) || 8262 dtrace_badattr(&pap->dtpa_func) || 8263 dtrace_badattr(&pap->dtpa_name) || 8264 dtrace_badattr(&pap->dtpa_args)) { 8265 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8266 "provider attributes", name); 8267 return (EINVAL); 8268 } 8269 8270 if (priv & ~DTRACE_PRIV_ALL) { 8271 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8272 "privilege attributes", name); 8273 return (EINVAL); 8274 } 8275 8276 if ((priv & DTRACE_PRIV_KERNEL) && 8277 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 8278 pops->dtps_mode == NULL) { 8279 cmn_err(CE_WARN, "failed to register provider '%s': need " 8280 "dtps_mode() op for given privilege attributes", name); 8281 return (EINVAL); 8282 } 8283 8284 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 8285 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8286 (void) strcpy(provider->dtpv_name, name); 8287 8288 provider->dtpv_attr = *pap; 8289 provider->dtpv_priv.dtpp_flags = priv; 8290 if (cr != NULL) { 8291 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8292 provider->dtpv_priv.dtpp_zoneid = crgetzonedid(cr); 8293 } 8294 provider->dtpv_pops = *pops; 8295 8296 if (pops->dtps_provide == NULL) { 8297 ASSERT(pops->dtps_provide_module != NULL); 8298 provider->dtpv_pops.dtps_provide = dtrace_nullop_provide; 8299 } 8300 8301 if (pops->dtps_provide_module == NULL) { 8302 ASSERT(pops->dtps_provide != NULL); 8303 provider->dtpv_pops.dtps_provide_module = dtrace_nullop_module; 8304 } 8305 8306 if (pops->dtps_suspend == NULL) { 8307 ASSERT(pops->dtps_resume == NULL); 8308 provider->dtpv_pops.dtps_suspend = dtrace_nullop; 8309 provider->dtpv_pops.dtps_resume = dtrace_nullop; 8310 } 8311 8312 provider->dtpv_arg = arg; 8313 *idp = (dtrace_provider_id_t)provider; 8314 8315 if (pops == &dtrace_provider_ops) { 8316 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8317 ASSERT(MUTEX_HELD(&dtrace_lock)); 8318 ASSERT(dtrace_anon.dta_enabling == NULL); 8319 8320 /* 8321 * We make sure that the DTrace provider is at the head of 8322 * the provider chain. 8323 */ 8324 provider->dtpv_next = dtrace_provider; 8325 dtrace_provider = provider; 8326 return (0); 8327 } 8328 8329 mutex_enter(&dtrace_provider_lock); 8330 mutex_enter(&dtrace_lock); 8331 8332 /* 8333 * If there is at least one provider registered, we'll add this 8334 * provider after the first provider. 8335 */ 8336 if (dtrace_provider != NULL) { 8337 provider->dtpv_next = dtrace_provider->dtpv_next; 8338 dtrace_provider->dtpv_next = provider; 8339 } else { 8340 dtrace_provider = provider; 8341 } 8342 8343 if (dtrace_retained != NULL) { 8344 dtrace_enabling_provide(provider); 8345 8346 /* 8347 * Now we need to call dtrace_enabling_matchall() -- which 8348 * will acquire cpu_lock and dtrace_lock. We therefore need 8349 * to drop all of our locks before calling into it... 8350 */ 8351 mutex_exit(&dtrace_lock); 8352 mutex_exit(&dtrace_provider_lock); 8353 dtrace_enabling_matchall(); 8354 8355 return (0); 8356 } 8357 8358 mutex_exit(&dtrace_lock); 8359 mutex_exit(&dtrace_provider_lock); 8360 8361 return (0); 8362 } 8363 8364 /* 8365 * Unregister the specified provider from the DTrace framework. This should 8366 * generally be called by DTrace providers in their detach(9E) entry point. 8367 */ 8368 int 8369 dtrace_unregister(dtrace_provider_id_t id) 8370 { 8371 dtrace_provider_t *old = (dtrace_provider_t *)id; 8372 dtrace_provider_t *prev = NULL; 8373 int i, self = 0, noreap = 0; 8374 dtrace_probe_t *probe, *first = NULL; 8375 8376 if (old->dtpv_pops.dtps_enable == dtrace_enable_nullop) { 8377 /* 8378 * If DTrace itself is the provider, we're called with locks 8379 * already held. 8380 */ 8381 ASSERT(old == dtrace_provider); 8382 ASSERT(dtrace_devi != NULL); 8383 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8384 ASSERT(MUTEX_HELD(&dtrace_lock)); 8385 self = 1; 8386 8387 if (dtrace_provider->dtpv_next != NULL) { 8388 /* 8389 * There's another provider here; return failure. 8390 */ 8391 return (EBUSY); 8392 } 8393 } else { 8394 mutex_enter(&dtrace_provider_lock); 8395 mutex_enter(&mod_lock); 8396 mutex_enter(&dtrace_lock); 8397 } 8398 8399 /* 8400 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8401 * probes, we refuse to let providers slither away, unless this 8402 * provider has already been explicitly invalidated. 8403 */ 8404 if (!old->dtpv_defunct && 8405 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8406 dtrace_anon.dta_state->dts_necbs > 0))) { 8407 if (!self) { 8408 mutex_exit(&dtrace_lock); 8409 mutex_exit(&mod_lock); 8410 mutex_exit(&dtrace_provider_lock); 8411 } 8412 return (EBUSY); 8413 } 8414 8415 /* 8416 * Attempt to destroy the probes associated with this provider. 8417 */ 8418 for (i = 0; i < dtrace_nprobes; i++) { 8419 if ((probe = dtrace_probes[i]) == NULL) 8420 continue; 8421 8422 if (probe->dtpr_provider != old) 8423 continue; 8424 8425 if (probe->dtpr_ecb == NULL) 8426 continue; 8427 8428 /* 8429 * If we are trying to unregister a defunct provider, and the 8430 * provider was made defunct within the interval dictated by 8431 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8432 * attempt to reap our enablings. To denote that the provider 8433 * should reattempt to unregister itself at some point in the 8434 * future, we will return a differentiable error code (EAGAIN 8435 * instead of EBUSY) in this case. 8436 */ 8437 if (dtrace_gethrtime() - old->dtpv_defunct > 8438 dtrace_unregister_defunct_reap) 8439 noreap = 1; 8440 8441 if (!self) { 8442 mutex_exit(&dtrace_lock); 8443 mutex_exit(&mod_lock); 8444 mutex_exit(&dtrace_provider_lock); 8445 } 8446 8447 if (noreap) 8448 return (EBUSY); 8449 8450 (void) taskq_dispatch(dtrace_taskq, 8451 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8452 8453 return (EAGAIN); 8454 } 8455 8456 /* 8457 * All of the probes for this provider are disabled; we can safely 8458 * remove all of them from their hash chains and from the probe array. 8459 */ 8460 for (i = 0; i < dtrace_nprobes; i++) { 8461 if ((probe = dtrace_probes[i]) == NULL) 8462 continue; 8463 8464 if (probe->dtpr_provider != old) 8465 continue; 8466 8467 dtrace_probes[i] = NULL; 8468 8469 dtrace_hash_remove(dtrace_bymod, probe); 8470 dtrace_hash_remove(dtrace_byfunc, probe); 8471 dtrace_hash_remove(dtrace_byname, probe); 8472 8473 if (first == NULL) { 8474 first = probe; 8475 probe->dtpr_nextmod = NULL; 8476 } else { 8477 probe->dtpr_nextmod = first; 8478 first = probe; 8479 } 8480 } 8481 8482 /* 8483 * The provider's probes have been removed from the hash chains and 8484 * from the probe array. Now issue a dtrace_sync() to be sure that 8485 * everyone has cleared out from any probe array processing. 8486 */ 8487 dtrace_sync(); 8488 8489 for (probe = first; probe != NULL; probe = first) { 8490 first = probe->dtpr_nextmod; 8491 8492 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8493 probe->dtpr_arg); 8494 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8495 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8496 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8497 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 8498 kmem_free(probe, sizeof (dtrace_probe_t)); 8499 } 8500 8501 if ((prev = dtrace_provider) == old) { 8502 ASSERT(self || dtrace_devi == NULL); 8503 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 8504 dtrace_provider = old->dtpv_next; 8505 } else { 8506 while (prev != NULL && prev->dtpv_next != old) 8507 prev = prev->dtpv_next; 8508 8509 if (prev == NULL) { 8510 panic("attempt to unregister non-existent " 8511 "dtrace provider %p\n", (void *)id); 8512 } 8513 8514 prev->dtpv_next = old->dtpv_next; 8515 } 8516 8517 if (!self) { 8518 mutex_exit(&dtrace_lock); 8519 mutex_exit(&mod_lock); 8520 mutex_exit(&dtrace_provider_lock); 8521 } 8522 8523 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 8524 kmem_free(old, sizeof (dtrace_provider_t)); 8525 8526 return (0); 8527 } 8528 8529 /* 8530 * Invalidate the specified provider. All subsequent probe lookups for the 8531 * specified provider will fail, but its probes will not be removed. 8532 */ 8533 void 8534 dtrace_invalidate(dtrace_provider_id_t id) 8535 { 8536 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 8537 8538 ASSERT(pvp->dtpv_pops.dtps_enable != dtrace_enable_nullop); 8539 8540 mutex_enter(&dtrace_provider_lock); 8541 mutex_enter(&dtrace_lock); 8542 8543 pvp->dtpv_defunct = dtrace_gethrtime(); 8544 8545 mutex_exit(&dtrace_lock); 8546 mutex_exit(&dtrace_provider_lock); 8547 } 8548 8549 /* 8550 * Indicate whether or not DTrace has attached. 8551 */ 8552 int 8553 dtrace_attached(void) 8554 { 8555 /* 8556 * dtrace_provider will be non-NULL iff the DTrace driver has 8557 * attached. (It's non-NULL because DTrace is always itself a 8558 * provider.) 8559 */ 8560 return (dtrace_provider != NULL); 8561 } 8562 8563 /* 8564 * Remove all the unenabled probes for the given provider. This function is 8565 * not unlike dtrace_unregister(), except that it doesn't remove the provider 8566 * -- just as many of its associated probes as it can. 8567 */ 8568 int 8569 dtrace_condense(dtrace_provider_id_t id) 8570 { 8571 dtrace_provider_t *prov = (dtrace_provider_t *)id; 8572 int i; 8573 dtrace_probe_t *probe; 8574 8575 /* 8576 * Make sure this isn't the dtrace provider itself. 8577 */ 8578 ASSERT(prov->dtpv_pops.dtps_enable != dtrace_enable_nullop); 8579 8580 mutex_enter(&dtrace_provider_lock); 8581 mutex_enter(&dtrace_lock); 8582 8583 /* 8584 * Attempt to destroy the probes associated with this provider. 8585 */ 8586 for (i = 0; i < dtrace_nprobes; i++) { 8587 if ((probe = dtrace_probes[i]) == NULL) 8588 continue; 8589 8590 if (probe->dtpr_provider != prov) 8591 continue; 8592 8593 if (probe->dtpr_ecb != NULL) 8594 continue; 8595 8596 dtrace_probes[i] = NULL; 8597 8598 dtrace_hash_remove(dtrace_bymod, probe); 8599 dtrace_hash_remove(dtrace_byfunc, probe); 8600 dtrace_hash_remove(dtrace_byname, probe); 8601 8602 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 8603 probe->dtpr_arg); 8604 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8605 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8606 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8607 kmem_free(probe, sizeof (dtrace_probe_t)); 8608 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 8609 } 8610 8611 mutex_exit(&dtrace_lock); 8612 mutex_exit(&dtrace_provider_lock); 8613 8614 return (0); 8615 } 8616 8617 /* 8618 * DTrace Probe Management Functions 8619 * 8620 * The functions in this section perform the DTrace probe management, 8621 * including functions to create probes, look-up probes, and call into the 8622 * providers to request that probes be provided. Some of these functions are 8623 * in the Provider-to-Framework API; these functions can be identified by the 8624 * fact that they are not declared "static". 8625 */ 8626 8627 /* 8628 * Create a probe with the specified module name, function name, and name. 8629 */ 8630 dtrace_id_t 8631 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 8632 const char *func, const char *name, int aframes, void *arg) 8633 { 8634 dtrace_probe_t *probe, **probes; 8635 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 8636 dtrace_id_t id; 8637 8638 if (provider == dtrace_provider) { 8639 ASSERT(MUTEX_HELD(&dtrace_lock)); 8640 } else { 8641 mutex_enter(&dtrace_lock); 8642 } 8643 8644 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 8645 VM_BESTFIT | VM_SLEEP); 8646 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 8647 8648 probe->dtpr_id = id; 8649 probe->dtpr_gen = dtrace_probegen++; 8650 probe->dtpr_mod = dtrace_strdup(mod); 8651 probe->dtpr_func = dtrace_strdup(func); 8652 probe->dtpr_name = dtrace_strdup(name); 8653 probe->dtpr_arg = arg; 8654 probe->dtpr_aframes = aframes; 8655 probe->dtpr_provider = provider; 8656 8657 dtrace_hash_add(dtrace_bymod, probe); 8658 dtrace_hash_add(dtrace_byfunc, probe); 8659 dtrace_hash_add(dtrace_byname, probe); 8660 8661 if (id - 1 >= dtrace_nprobes) { 8662 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 8663 size_t nsize = osize << 1; 8664 8665 if (nsize == 0) { 8666 ASSERT(osize == 0); 8667 ASSERT(dtrace_probes == NULL); 8668 nsize = sizeof (dtrace_probe_t *); 8669 } 8670 8671 probes = kmem_zalloc(nsize, KM_SLEEP); 8672 8673 if (dtrace_probes == NULL) { 8674 ASSERT(osize == 0); 8675 dtrace_probes = probes; 8676 dtrace_nprobes = 1; 8677 } else { 8678 dtrace_probe_t **oprobes = dtrace_probes; 8679 8680 bcopy(oprobes, probes, osize); 8681 dtrace_membar_producer(); 8682 dtrace_probes = probes; 8683 8684 dtrace_sync(); 8685 8686 /* 8687 * All CPUs are now seeing the new probes array; we can 8688 * safely free the old array. 8689 */ 8690 kmem_free(oprobes, osize); 8691 dtrace_nprobes <<= 1; 8692 } 8693 8694 ASSERT(id - 1 < dtrace_nprobes); 8695 } 8696 8697 ASSERT(dtrace_probes[id - 1] == NULL); 8698 dtrace_probes[id - 1] = probe; 8699 8700 if (provider != dtrace_provider) 8701 mutex_exit(&dtrace_lock); 8702 8703 return (id); 8704 } 8705 8706 static dtrace_probe_t * 8707 dtrace_probe_lookup_id(dtrace_id_t id) 8708 { 8709 ASSERT(MUTEX_HELD(&dtrace_lock)); 8710 8711 if (id == 0 || id > dtrace_nprobes) 8712 return (NULL); 8713 8714 return (dtrace_probes[id - 1]); 8715 } 8716 8717 static int 8718 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 8719 { 8720 *((dtrace_id_t *)arg) = probe->dtpr_id; 8721 8722 return (DTRACE_MATCH_DONE); 8723 } 8724 8725 /* 8726 * Look up a probe based on provider and one or more of module name, function 8727 * name and probe name. 8728 */ 8729 dtrace_id_t 8730 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 8731 const char *func, const char *name) 8732 { 8733 dtrace_probekey_t pkey; 8734 dtrace_id_t id; 8735 int match; 8736 8737 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 8738 pkey.dtpk_pmatch = &dtrace_match_string; 8739 pkey.dtpk_mod = mod; 8740 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 8741 pkey.dtpk_func = func; 8742 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 8743 pkey.dtpk_name = name; 8744 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 8745 pkey.dtpk_id = DTRACE_IDNONE; 8746 8747 mutex_enter(&dtrace_lock); 8748 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 8749 dtrace_probe_lookup_match, &id); 8750 mutex_exit(&dtrace_lock); 8751 8752 ASSERT(match == 1 || match == 0); 8753 return (match ? id : 0); 8754 } 8755 8756 /* 8757 * Returns the probe argument associated with the specified probe. 8758 */ 8759 void * 8760 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 8761 { 8762 dtrace_probe_t *probe; 8763 void *rval = NULL; 8764 8765 mutex_enter(&dtrace_lock); 8766 8767 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 8768 probe->dtpr_provider == (dtrace_provider_t *)id) 8769 rval = probe->dtpr_arg; 8770 8771 mutex_exit(&dtrace_lock); 8772 8773 return (rval); 8774 } 8775 8776 /* 8777 * Copy a probe into a probe description. 8778 */ 8779 static void 8780 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 8781 { 8782 bzero(pdp, sizeof (dtrace_probedesc_t)); 8783 pdp->dtpd_id = prp->dtpr_id; 8784 8785 (void) strncpy(pdp->dtpd_provider, 8786 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 8787 8788 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 8789 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 8790 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 8791 } 8792 8793 /* 8794 * Called to indicate that a probe -- or probes -- should be provided by a 8795 * specfied provider. If the specified description is NULL, the provider will 8796 * be told to provide all of its probes. (This is done whenever a new 8797 * consumer comes along, or whenever a retained enabling is to be matched.) If 8798 * the specified description is non-NULL, the provider is given the 8799 * opportunity to dynamically provide the specified probe, allowing providers 8800 * to support the creation of probes on-the-fly. (So-called _autocreated_ 8801 * probes.) If the provider is NULL, the operations will be applied to all 8802 * providers; if the provider is non-NULL the operations will only be applied 8803 * to the specified provider. The dtrace_provider_lock must be held, and the 8804 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 8805 * will need to grab the dtrace_lock when it reenters the framework through 8806 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 8807 */ 8808 static void 8809 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 8810 { 8811 struct modctl *ctl; 8812 int all = 0; 8813 8814 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8815 8816 if (prv == NULL) { 8817 all = 1; 8818 prv = dtrace_provider; 8819 } 8820 8821 do { 8822 /* 8823 * First, call the blanket provide operation. 8824 */ 8825 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 8826 8827 /* 8828 * Now call the per-module provide operation. We will grab 8829 * mod_lock to prevent the list from being modified. Note 8830 * that this also prevents the mod_busy bits from changing. 8831 * (mod_busy can only be changed with mod_lock held.) 8832 */ 8833 mutex_enter(&mod_lock); 8834 8835 ctl = &modules; 8836 do { 8837 if (ctl->mod_busy || ctl->mod_mp == NULL) 8838 continue; 8839 8840 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 8841 8842 } while ((ctl = ctl->mod_next) != &modules); 8843 8844 mutex_exit(&mod_lock); 8845 } while (all && (prv = prv->dtpv_next) != NULL); 8846 } 8847 8848 /* 8849 * Iterate over each probe, and call the Framework-to-Provider API function 8850 * denoted by offs. 8851 */ 8852 static void 8853 dtrace_probe_foreach(uintptr_t offs) 8854 { 8855 dtrace_provider_t *prov; 8856 void (*func)(void *, dtrace_id_t, void *); 8857 dtrace_probe_t *probe; 8858 dtrace_icookie_t cookie; 8859 int i; 8860 8861 /* 8862 * We disable interrupts to walk through the probe array. This is 8863 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 8864 * won't see stale data. 8865 */ 8866 cookie = dtrace_interrupt_disable(); 8867 8868 for (i = 0; i < dtrace_nprobes; i++) { 8869 if ((probe = dtrace_probes[i]) == NULL) 8870 continue; 8871 8872 if (probe->dtpr_ecb == NULL) { 8873 /* 8874 * This probe isn't enabled -- don't call the function. 8875 */ 8876 continue; 8877 } 8878 8879 prov = probe->dtpr_provider; 8880 func = *((void(**)(void *, dtrace_id_t, void *)) 8881 ((uintptr_t)&prov->dtpv_pops + offs)); 8882 8883 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 8884 } 8885 8886 dtrace_interrupt_enable(cookie); 8887 } 8888 8889 static int 8890 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 8891 { 8892 dtrace_probekey_t pkey; 8893 uint32_t priv; 8894 uid_t uid; 8895 zoneid_t zoneid; 8896 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 8897 8898 ASSERT(MUTEX_HELD(&dtrace_lock)); 8899 dtrace_ecb_create_cache = NULL; 8900 8901 if (desc == NULL) { 8902 /* 8903 * If we're passed a NULL description, we're being asked to 8904 * create an ECB with a NULL probe. 8905 */ 8906 (void) dtrace_ecb_create_enable(NULL, enab); 8907 return (0); 8908 } 8909 8910 dtrace_probekey(desc, &pkey); 8911 dtrace_cred2priv(state->dts_cred.dcr_cred, &priv, &uid, &zoneid); 8912 8913 if ((priv & DTRACE_PRIV_ZONEOWNER) && 8914 state->dts_options[DTRACEOPT_ZONE] != DTRACEOPT_UNSET) { 8915 /* 8916 * If we have the privilege of instrumenting all zones but we 8917 * have been told to instrument but one, we will spoof this up 8918 * depriving ourselves of DTRACE_PRIV_ZONEOWNER for purposes 8919 * of dtrace_match(). (Note that DTRACEOPT_ZONE is not for 8920 * security but rather for performance: it allows the global 8921 * zone to instrument USDT probes in a local zone without 8922 * requiring all zones to be instrumented.) 8923 */ 8924 priv &= ~DTRACE_PRIV_ZONEOWNER; 8925 zoneid = state->dts_options[DTRACEOPT_ZONE]; 8926 } 8927 8928 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 8929 enab)); 8930 } 8931 8932 /* 8933 * DTrace Helper Provider Functions 8934 */ 8935 static void 8936 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 8937 { 8938 attr->dtat_name = DOF_ATTR_NAME(dofattr); 8939 attr->dtat_data = DOF_ATTR_DATA(dofattr); 8940 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 8941 } 8942 8943 static void 8944 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 8945 const dof_provider_t *dofprov, char *strtab) 8946 { 8947 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 8948 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 8949 dofprov->dofpv_provattr); 8950 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 8951 dofprov->dofpv_modattr); 8952 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 8953 dofprov->dofpv_funcattr); 8954 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 8955 dofprov->dofpv_nameattr); 8956 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 8957 dofprov->dofpv_argsattr); 8958 } 8959 8960 static void 8961 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8962 { 8963 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8964 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8965 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 8966 dof_provider_t *provider; 8967 dof_probe_t *probe; 8968 uint32_t *off, *enoff; 8969 uint8_t *arg; 8970 char *strtab; 8971 uint_t i, nprobes; 8972 dtrace_helper_provdesc_t dhpv; 8973 dtrace_helper_probedesc_t dhpb; 8974 dtrace_meta_t *meta = dtrace_meta_pid; 8975 dtrace_mops_t *mops = &meta->dtm_mops; 8976 void *parg; 8977 8978 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8979 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8980 provider->dofpv_strtab * dof->dofh_secsize); 8981 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8982 provider->dofpv_probes * dof->dofh_secsize); 8983 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8984 provider->dofpv_prargs * dof->dofh_secsize); 8985 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8986 provider->dofpv_proffs * dof->dofh_secsize); 8987 8988 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8989 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 8990 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 8991 enoff = NULL; 8992 8993 /* 8994 * See dtrace_helper_provider_validate(). 8995 */ 8996 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 8997 provider->dofpv_prenoffs != DOF_SECT_NONE) { 8998 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8999 provider->dofpv_prenoffs * dof->dofh_secsize); 9000 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 9001 } 9002 9003 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 9004 9005 /* 9006 * Create the provider. 9007 */ 9008 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9009 9010 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 9011 return; 9012 9013 meta->dtm_count++; 9014 9015 /* 9016 * Create the probes. 9017 */ 9018 for (i = 0; i < nprobes; i++) { 9019 probe = (dof_probe_t *)(uintptr_t)(daddr + 9020 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 9021 9022 dhpb.dthpb_mod = dhp->dofhp_mod; 9023 dhpb.dthpb_func = strtab + probe->dofpr_func; 9024 dhpb.dthpb_name = strtab + probe->dofpr_name; 9025 dhpb.dthpb_base = probe->dofpr_addr; 9026 dhpb.dthpb_offs = off + probe->dofpr_offidx; 9027 dhpb.dthpb_noffs = probe->dofpr_noffs; 9028 if (enoff != NULL) { 9029 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 9030 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 9031 } else { 9032 dhpb.dthpb_enoffs = NULL; 9033 dhpb.dthpb_nenoffs = 0; 9034 } 9035 dhpb.dthpb_args = arg + probe->dofpr_argidx; 9036 dhpb.dthpb_nargc = probe->dofpr_nargc; 9037 dhpb.dthpb_xargc = probe->dofpr_xargc; 9038 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 9039 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 9040 9041 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 9042 } 9043 } 9044 9045 static void 9046 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 9047 { 9048 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9049 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9050 int i; 9051 9052 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9053 9054 for (i = 0; i < dof->dofh_secnum; i++) { 9055 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9056 dof->dofh_secoff + i * dof->dofh_secsize); 9057 9058 if (sec->dofs_type != DOF_SECT_PROVIDER) 9059 continue; 9060 9061 dtrace_helper_provide_one(dhp, sec, pid); 9062 } 9063 9064 /* 9065 * We may have just created probes, so we must now rematch against 9066 * any retained enablings. Note that this call will acquire both 9067 * cpu_lock and dtrace_lock; the fact that we are holding 9068 * dtrace_meta_lock now is what defines the ordering with respect to 9069 * these three locks. 9070 */ 9071 dtrace_enabling_matchall(); 9072 } 9073 9074 static void 9075 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9076 { 9077 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9078 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9079 dof_sec_t *str_sec; 9080 dof_provider_t *provider; 9081 char *strtab; 9082 dtrace_helper_provdesc_t dhpv; 9083 dtrace_meta_t *meta = dtrace_meta_pid; 9084 dtrace_mops_t *mops = &meta->dtm_mops; 9085 9086 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9087 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9088 provider->dofpv_strtab * dof->dofh_secsize); 9089 9090 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9091 9092 /* 9093 * Create the provider. 9094 */ 9095 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9096 9097 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 9098 9099 meta->dtm_count--; 9100 } 9101 9102 static void 9103 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 9104 { 9105 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9106 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9107 int i; 9108 9109 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9110 9111 for (i = 0; i < dof->dofh_secnum; i++) { 9112 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9113 dof->dofh_secoff + i * dof->dofh_secsize); 9114 9115 if (sec->dofs_type != DOF_SECT_PROVIDER) 9116 continue; 9117 9118 dtrace_helper_provider_remove_one(dhp, sec, pid); 9119 } 9120 } 9121 9122 /* 9123 * DTrace Meta Provider-to-Framework API Functions 9124 * 9125 * These functions implement the Meta Provider-to-Framework API, as described 9126 * in <sys/dtrace.h>. 9127 */ 9128 int 9129 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 9130 dtrace_meta_provider_id_t *idp) 9131 { 9132 dtrace_meta_t *meta; 9133 dtrace_helpers_t *help, *next; 9134 int i; 9135 9136 *idp = DTRACE_METAPROVNONE; 9137 9138 /* 9139 * We strictly don't need the name, but we hold onto it for 9140 * debuggability. All hail error queues! 9141 */ 9142 if (name == NULL) { 9143 cmn_err(CE_WARN, "failed to register meta-provider: " 9144 "invalid name"); 9145 return (EINVAL); 9146 } 9147 9148 if (mops == NULL || 9149 mops->dtms_create_probe == NULL || 9150 mops->dtms_provide_pid == NULL || 9151 mops->dtms_remove_pid == NULL) { 9152 cmn_err(CE_WARN, "failed to register meta-register %s: " 9153 "invalid ops", name); 9154 return (EINVAL); 9155 } 9156 9157 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 9158 meta->dtm_mops = *mops; 9159 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 9160 (void) strcpy(meta->dtm_name, name); 9161 meta->dtm_arg = arg; 9162 9163 mutex_enter(&dtrace_meta_lock); 9164 mutex_enter(&dtrace_lock); 9165 9166 if (dtrace_meta_pid != NULL) { 9167 mutex_exit(&dtrace_lock); 9168 mutex_exit(&dtrace_meta_lock); 9169 cmn_err(CE_WARN, "failed to register meta-register %s: " 9170 "user-land meta-provider exists", name); 9171 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 9172 kmem_free(meta, sizeof (dtrace_meta_t)); 9173 return (EINVAL); 9174 } 9175 9176 dtrace_meta_pid = meta; 9177 *idp = (dtrace_meta_provider_id_t)meta; 9178 9179 /* 9180 * If there are providers and probes ready to go, pass them 9181 * off to the new meta provider now. 9182 */ 9183 9184 help = dtrace_deferred_pid; 9185 dtrace_deferred_pid = NULL; 9186 9187 mutex_exit(&dtrace_lock); 9188 9189 while (help != NULL) { 9190 for (i = 0; i < help->dthps_nprovs; i++) { 9191 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 9192 help->dthps_pid); 9193 } 9194 9195 next = help->dthps_next; 9196 help->dthps_next = NULL; 9197 help->dthps_prev = NULL; 9198 help->dthps_deferred = 0; 9199 help = next; 9200 } 9201 9202 mutex_exit(&dtrace_meta_lock); 9203 9204 return (0); 9205 } 9206 9207 int 9208 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 9209 { 9210 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 9211 9212 mutex_enter(&dtrace_meta_lock); 9213 mutex_enter(&dtrace_lock); 9214 9215 if (old == dtrace_meta_pid) { 9216 pp = &dtrace_meta_pid; 9217 } else { 9218 panic("attempt to unregister non-existent " 9219 "dtrace meta-provider %p\n", (void *)old); 9220 } 9221 9222 if (old->dtm_count != 0) { 9223 mutex_exit(&dtrace_lock); 9224 mutex_exit(&dtrace_meta_lock); 9225 return (EBUSY); 9226 } 9227 9228 *pp = NULL; 9229 9230 mutex_exit(&dtrace_lock); 9231 mutex_exit(&dtrace_meta_lock); 9232 9233 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 9234 kmem_free(old, sizeof (dtrace_meta_t)); 9235 9236 return (0); 9237 } 9238 9239 9240 /* 9241 * DTrace DIF Object Functions 9242 */ 9243 static int 9244 dtrace_difo_err(uint_t pc, const char *format, ...) 9245 { 9246 if (dtrace_err_verbose) { 9247 va_list alist; 9248 9249 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 9250 va_start(alist, format); 9251 (void) vuprintf(format, alist); 9252 va_end(alist); 9253 } 9254 9255 #ifdef DTRACE_ERRDEBUG 9256 dtrace_errdebug(format); 9257 #endif 9258 return (1); 9259 } 9260 9261 /* 9262 * Validate a DTrace DIF object by checking the IR instructions. The following 9263 * rules are currently enforced by dtrace_difo_validate(): 9264 * 9265 * 1. Each instruction must have a valid opcode 9266 * 2. Each register, string, variable, or subroutine reference must be valid 9267 * 3. No instruction can modify register %r0 (must be zero) 9268 * 4. All instruction reserved bits must be set to zero 9269 * 5. The last instruction must be a "ret" instruction 9270 * 6. All branch targets must reference a valid instruction _after_ the branch 9271 */ 9272 static int 9273 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 9274 cred_t *cr) 9275 { 9276 int err = 0, i; 9277 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9278 int kcheckload; 9279 uint_t pc; 9280 int maxglobal = -1, maxlocal = -1, maxtlocal = -1; 9281 9282 kcheckload = cr == NULL || 9283 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 9284 9285 dp->dtdo_destructive = 0; 9286 9287 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9288 dif_instr_t instr = dp->dtdo_buf[pc]; 9289 9290 uint_t r1 = DIF_INSTR_R1(instr); 9291 uint_t r2 = DIF_INSTR_R2(instr); 9292 uint_t rd = DIF_INSTR_RD(instr); 9293 uint_t rs = DIF_INSTR_RS(instr); 9294 uint_t label = DIF_INSTR_LABEL(instr); 9295 uint_t v = DIF_INSTR_VAR(instr); 9296 uint_t subr = DIF_INSTR_SUBR(instr); 9297 uint_t type = DIF_INSTR_TYPE(instr); 9298 uint_t op = DIF_INSTR_OP(instr); 9299 9300 switch (op) { 9301 case DIF_OP_OR: 9302 case DIF_OP_XOR: 9303 case DIF_OP_AND: 9304 case DIF_OP_SLL: 9305 case DIF_OP_SRL: 9306 case DIF_OP_SRA: 9307 case DIF_OP_SUB: 9308 case DIF_OP_ADD: 9309 case DIF_OP_MUL: 9310 case DIF_OP_SDIV: 9311 case DIF_OP_UDIV: 9312 case DIF_OP_SREM: 9313 case DIF_OP_UREM: 9314 case DIF_OP_COPYS: 9315 if (r1 >= nregs) 9316 err += efunc(pc, "invalid register %u\n", r1); 9317 if (r2 >= nregs) 9318 err += efunc(pc, "invalid register %u\n", r2); 9319 if (rd >= nregs) 9320 err += efunc(pc, "invalid register %u\n", rd); 9321 if (rd == 0) 9322 err += efunc(pc, "cannot write to %r0\n"); 9323 break; 9324 case DIF_OP_NOT: 9325 case DIF_OP_MOV: 9326 case DIF_OP_ALLOCS: 9327 if (r1 >= nregs) 9328 err += efunc(pc, "invalid register %u\n", r1); 9329 if (r2 != 0) 9330 err += efunc(pc, "non-zero reserved bits\n"); 9331 if (rd >= nregs) 9332 err += efunc(pc, "invalid register %u\n", rd); 9333 if (rd == 0) 9334 err += efunc(pc, "cannot write to %r0\n"); 9335 break; 9336 case DIF_OP_LDSB: 9337 case DIF_OP_LDSH: 9338 case DIF_OP_LDSW: 9339 case DIF_OP_LDUB: 9340 case DIF_OP_LDUH: 9341 case DIF_OP_LDUW: 9342 case DIF_OP_LDX: 9343 if (r1 >= nregs) 9344 err += efunc(pc, "invalid register %u\n", r1); 9345 if (r2 != 0) 9346 err += efunc(pc, "non-zero reserved bits\n"); 9347 if (rd >= nregs) 9348 err += efunc(pc, "invalid register %u\n", rd); 9349 if (rd == 0) 9350 err += efunc(pc, "cannot write to %r0\n"); 9351 if (kcheckload) 9352 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9353 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9354 break; 9355 case DIF_OP_RLDSB: 9356 case DIF_OP_RLDSH: 9357 case DIF_OP_RLDSW: 9358 case DIF_OP_RLDUB: 9359 case DIF_OP_RLDUH: 9360 case DIF_OP_RLDUW: 9361 case DIF_OP_RLDX: 9362 if (r1 >= nregs) 9363 err += efunc(pc, "invalid register %u\n", r1); 9364 if (r2 != 0) 9365 err += efunc(pc, "non-zero reserved bits\n"); 9366 if (rd >= nregs) 9367 err += efunc(pc, "invalid register %u\n", rd); 9368 if (rd == 0) 9369 err += efunc(pc, "cannot write to %r0\n"); 9370 break; 9371 case DIF_OP_ULDSB: 9372 case DIF_OP_ULDSH: 9373 case DIF_OP_ULDSW: 9374 case DIF_OP_ULDUB: 9375 case DIF_OP_ULDUH: 9376 case DIF_OP_ULDUW: 9377 case DIF_OP_ULDX: 9378 if (r1 >= nregs) 9379 err += efunc(pc, "invalid register %u\n", r1); 9380 if (r2 != 0) 9381 err += efunc(pc, "non-zero reserved bits\n"); 9382 if (rd >= nregs) 9383 err += efunc(pc, "invalid register %u\n", rd); 9384 if (rd == 0) 9385 err += efunc(pc, "cannot write to %r0\n"); 9386 break; 9387 case DIF_OP_STB: 9388 case DIF_OP_STH: 9389 case DIF_OP_STW: 9390 case DIF_OP_STX: 9391 if (r1 >= nregs) 9392 err += efunc(pc, "invalid register %u\n", r1); 9393 if (r2 != 0) 9394 err += efunc(pc, "non-zero reserved bits\n"); 9395 if (rd >= nregs) 9396 err += efunc(pc, "invalid register %u\n", rd); 9397 if (rd == 0) 9398 err += efunc(pc, "cannot write to 0 address\n"); 9399 break; 9400 case DIF_OP_CMP: 9401 case DIF_OP_SCMP: 9402 if (r1 >= nregs) 9403 err += efunc(pc, "invalid register %u\n", r1); 9404 if (r2 >= nregs) 9405 err += efunc(pc, "invalid register %u\n", r2); 9406 if (rd != 0) 9407 err += efunc(pc, "non-zero reserved bits\n"); 9408 break; 9409 case DIF_OP_TST: 9410 if (r1 >= nregs) 9411 err += efunc(pc, "invalid register %u\n", r1); 9412 if (r2 != 0 || rd != 0) 9413 err += efunc(pc, "non-zero reserved bits\n"); 9414 break; 9415 case DIF_OP_BA: 9416 case DIF_OP_BE: 9417 case DIF_OP_BNE: 9418 case DIF_OP_BG: 9419 case DIF_OP_BGU: 9420 case DIF_OP_BGE: 9421 case DIF_OP_BGEU: 9422 case DIF_OP_BL: 9423 case DIF_OP_BLU: 9424 case DIF_OP_BLE: 9425 case DIF_OP_BLEU: 9426 if (label >= dp->dtdo_len) { 9427 err += efunc(pc, "invalid branch target %u\n", 9428 label); 9429 } 9430 if (label <= pc) { 9431 err += efunc(pc, "backward branch to %u\n", 9432 label); 9433 } 9434 break; 9435 case DIF_OP_RET: 9436 if (r1 != 0 || r2 != 0) 9437 err += efunc(pc, "non-zero reserved bits\n"); 9438 if (rd >= nregs) 9439 err += efunc(pc, "invalid register %u\n", rd); 9440 break; 9441 case DIF_OP_NOP: 9442 case DIF_OP_POPTS: 9443 case DIF_OP_FLUSHTS: 9444 if (r1 != 0 || r2 != 0 || rd != 0) 9445 err += efunc(pc, "non-zero reserved bits\n"); 9446 break; 9447 case DIF_OP_SETX: 9448 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9449 err += efunc(pc, "invalid integer ref %u\n", 9450 DIF_INSTR_INTEGER(instr)); 9451 } 9452 if (rd >= nregs) 9453 err += efunc(pc, "invalid register %u\n", rd); 9454 if (rd == 0) 9455 err += efunc(pc, "cannot write to %r0\n"); 9456 break; 9457 case DIF_OP_SETS: 9458 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9459 err += efunc(pc, "invalid string ref %u\n", 9460 DIF_INSTR_STRING(instr)); 9461 } 9462 if (rd >= nregs) 9463 err += efunc(pc, "invalid register %u\n", rd); 9464 if (rd == 0) 9465 err += efunc(pc, "cannot write to %r0\n"); 9466 break; 9467 case DIF_OP_LDGA: 9468 case DIF_OP_LDTA: 9469 if (r1 > DIF_VAR_ARRAY_MAX) 9470 err += efunc(pc, "invalid array %u\n", r1); 9471 if (r2 >= nregs) 9472 err += efunc(pc, "invalid register %u\n", r2); 9473 if (rd >= nregs) 9474 err += efunc(pc, "invalid register %u\n", rd); 9475 if (rd == 0) 9476 err += efunc(pc, "cannot write to %r0\n"); 9477 break; 9478 case DIF_OP_STGA: 9479 if (r1 > DIF_VAR_ARRAY_MAX) 9480 err += efunc(pc, "invalid array %u\n", r1); 9481 if (r2 >= nregs) 9482 err += efunc(pc, "invalid register %u\n", r2); 9483 if (rd >= nregs) 9484 err += efunc(pc, "invalid register %u\n", rd); 9485 dp->dtdo_destructive = 1; 9486 break; 9487 case DIF_OP_LDGS: 9488 case DIF_OP_LDTS: 9489 case DIF_OP_LDLS: 9490 case DIF_OP_LDGAA: 9491 case DIF_OP_LDTAA: 9492 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9493 err += efunc(pc, "invalid variable %u\n", v); 9494 if (rd >= nregs) 9495 err += efunc(pc, "invalid register %u\n", rd); 9496 if (rd == 0) 9497 err += efunc(pc, "cannot write to %r0\n"); 9498 break; 9499 case DIF_OP_STGS: 9500 case DIF_OP_STTS: 9501 case DIF_OP_STLS: 9502 case DIF_OP_STGAA: 9503 case DIF_OP_STTAA: 9504 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 9505 err += efunc(pc, "invalid variable %u\n", v); 9506 if (rs >= nregs) 9507 err += efunc(pc, "invalid register %u\n", rd); 9508 break; 9509 case DIF_OP_CALL: 9510 if (subr > DIF_SUBR_MAX) 9511 err += efunc(pc, "invalid subr %u\n", subr); 9512 if (rd >= nregs) 9513 err += efunc(pc, "invalid register %u\n", rd); 9514 if (rd == 0) 9515 err += efunc(pc, "cannot write to %r0\n"); 9516 9517 if (subr == DIF_SUBR_COPYOUT || 9518 subr == DIF_SUBR_COPYOUTSTR) { 9519 dp->dtdo_destructive = 1; 9520 } 9521 9522 if (subr == DIF_SUBR_GETF) { 9523 /* 9524 * If we have a getf() we need to record that 9525 * in our state. Note that our state can be 9526 * NULL if this is a helper -- but in that 9527 * case, the call to getf() is itself illegal, 9528 * and will be caught (slightly later) when 9529 * the helper is validated. 9530 */ 9531 if (vstate->dtvs_state != NULL) 9532 vstate->dtvs_state->dts_getf++; 9533 } 9534 9535 break; 9536 case DIF_OP_PUSHTR: 9537 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 9538 err += efunc(pc, "invalid ref type %u\n", type); 9539 if (r2 >= nregs) 9540 err += efunc(pc, "invalid register %u\n", r2); 9541 if (rs >= nregs) 9542 err += efunc(pc, "invalid register %u\n", rs); 9543 break; 9544 case DIF_OP_PUSHTV: 9545 if (type != DIF_TYPE_CTF) 9546 err += efunc(pc, "invalid val type %u\n", type); 9547 if (r2 >= nregs) 9548 err += efunc(pc, "invalid register %u\n", r2); 9549 if (rs >= nregs) 9550 err += efunc(pc, "invalid register %u\n", rs); 9551 break; 9552 default: 9553 err += efunc(pc, "invalid opcode %u\n", 9554 DIF_INSTR_OP(instr)); 9555 } 9556 } 9557 9558 if (dp->dtdo_len != 0 && 9559 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 9560 err += efunc(dp->dtdo_len - 1, 9561 "expected 'ret' as last DIF instruction\n"); 9562 } 9563 9564 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 9565 /* 9566 * If we're not returning by reference, the size must be either 9567 * 0 or the size of one of the base types. 9568 */ 9569 switch (dp->dtdo_rtype.dtdt_size) { 9570 case 0: 9571 case sizeof (uint8_t): 9572 case sizeof (uint16_t): 9573 case sizeof (uint32_t): 9574 case sizeof (uint64_t): 9575 break; 9576 9577 default: 9578 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 9579 } 9580 } 9581 9582 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 9583 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 9584 dtrace_diftype_t *vt, *et; 9585 uint_t id, ndx; 9586 9587 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 9588 v->dtdv_scope != DIFV_SCOPE_THREAD && 9589 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 9590 err += efunc(i, "unrecognized variable scope %d\n", 9591 v->dtdv_scope); 9592 break; 9593 } 9594 9595 if (v->dtdv_kind != DIFV_KIND_ARRAY && 9596 v->dtdv_kind != DIFV_KIND_SCALAR) { 9597 err += efunc(i, "unrecognized variable type %d\n", 9598 v->dtdv_kind); 9599 break; 9600 } 9601 9602 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 9603 err += efunc(i, "%d exceeds variable id limit\n", id); 9604 break; 9605 } 9606 9607 if (id < DIF_VAR_OTHER_UBASE) 9608 continue; 9609 9610 /* 9611 * For user-defined variables, we need to check that this 9612 * definition is identical to any previous definition that we 9613 * encountered. 9614 */ 9615 ndx = id - DIF_VAR_OTHER_UBASE; 9616 9617 switch (v->dtdv_scope) { 9618 case DIFV_SCOPE_GLOBAL: 9619 if (maxglobal == -1 || ndx > maxglobal) 9620 maxglobal = ndx; 9621 9622 if (ndx < vstate->dtvs_nglobals) { 9623 dtrace_statvar_t *svar; 9624 9625 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 9626 existing = &svar->dtsv_var; 9627 } 9628 9629 break; 9630 9631 case DIFV_SCOPE_THREAD: 9632 if (maxtlocal == -1 || ndx > maxtlocal) 9633 maxtlocal = ndx; 9634 9635 if (ndx < vstate->dtvs_ntlocals) 9636 existing = &vstate->dtvs_tlocals[ndx]; 9637 break; 9638 9639 case DIFV_SCOPE_LOCAL: 9640 if (maxlocal == -1 || ndx > maxlocal) 9641 maxlocal = ndx; 9642 9643 if (ndx < vstate->dtvs_nlocals) { 9644 dtrace_statvar_t *svar; 9645 9646 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 9647 existing = &svar->dtsv_var; 9648 } 9649 9650 break; 9651 } 9652 9653 vt = &v->dtdv_type; 9654 9655 if (vt->dtdt_flags & DIF_TF_BYREF) { 9656 if (vt->dtdt_size == 0) { 9657 err += efunc(i, "zero-sized variable\n"); 9658 break; 9659 } 9660 9661 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || 9662 v->dtdv_scope == DIFV_SCOPE_LOCAL) && 9663 vt->dtdt_size > dtrace_statvar_maxsize) { 9664 err += efunc(i, "oversized by-ref static\n"); 9665 break; 9666 } 9667 } 9668 9669 if (existing == NULL || existing->dtdv_id == 0) 9670 continue; 9671 9672 ASSERT(existing->dtdv_id == v->dtdv_id); 9673 ASSERT(existing->dtdv_scope == v->dtdv_scope); 9674 9675 if (existing->dtdv_kind != v->dtdv_kind) 9676 err += efunc(i, "%d changed variable kind\n", id); 9677 9678 et = &existing->dtdv_type; 9679 9680 if (vt->dtdt_flags != et->dtdt_flags) { 9681 err += efunc(i, "%d changed variable type flags\n", id); 9682 break; 9683 } 9684 9685 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 9686 err += efunc(i, "%d changed variable type size\n", id); 9687 break; 9688 } 9689 } 9690 9691 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9692 dif_instr_t instr = dp->dtdo_buf[pc]; 9693 9694 uint_t v = DIF_INSTR_VAR(instr); 9695 uint_t op = DIF_INSTR_OP(instr); 9696 9697 switch (op) { 9698 case DIF_OP_LDGS: 9699 case DIF_OP_LDGAA: 9700 case DIF_OP_STGS: 9701 case DIF_OP_STGAA: 9702 if (v > DIF_VAR_OTHER_UBASE + maxglobal) 9703 err += efunc(pc, "invalid variable %u\n", v); 9704 break; 9705 case DIF_OP_LDTS: 9706 case DIF_OP_LDTAA: 9707 case DIF_OP_STTS: 9708 case DIF_OP_STTAA: 9709 if (v > DIF_VAR_OTHER_UBASE + maxtlocal) 9710 err += efunc(pc, "invalid variable %u\n", v); 9711 break; 9712 case DIF_OP_LDLS: 9713 case DIF_OP_STLS: 9714 if (v > DIF_VAR_OTHER_UBASE + maxlocal) 9715 err += efunc(pc, "invalid variable %u\n", v); 9716 break; 9717 default: 9718 break; 9719 } 9720 } 9721 9722 return (err); 9723 } 9724 9725 /* 9726 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 9727 * are much more constrained than normal DIFOs. Specifically, they may 9728 * not: 9729 * 9730 * 1. Make calls to subroutines other than copyin(), copyinstr() or 9731 * miscellaneous string routines 9732 * 2. Access DTrace variables other than the args[] array, and the 9733 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 9734 * 3. Have thread-local variables. 9735 * 4. Have dynamic variables. 9736 */ 9737 static int 9738 dtrace_difo_validate_helper(dtrace_difo_t *dp) 9739 { 9740 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9741 int err = 0; 9742 uint_t pc; 9743 9744 for (pc = 0; pc < dp->dtdo_len; pc++) { 9745 dif_instr_t instr = dp->dtdo_buf[pc]; 9746 9747 uint_t v = DIF_INSTR_VAR(instr); 9748 uint_t subr = DIF_INSTR_SUBR(instr); 9749 uint_t op = DIF_INSTR_OP(instr); 9750 9751 switch (op) { 9752 case DIF_OP_OR: 9753 case DIF_OP_XOR: 9754 case DIF_OP_AND: 9755 case DIF_OP_SLL: 9756 case DIF_OP_SRL: 9757 case DIF_OP_SRA: 9758 case DIF_OP_SUB: 9759 case DIF_OP_ADD: 9760 case DIF_OP_MUL: 9761 case DIF_OP_SDIV: 9762 case DIF_OP_UDIV: 9763 case DIF_OP_SREM: 9764 case DIF_OP_UREM: 9765 case DIF_OP_COPYS: 9766 case DIF_OP_NOT: 9767 case DIF_OP_MOV: 9768 case DIF_OP_RLDSB: 9769 case DIF_OP_RLDSH: 9770 case DIF_OP_RLDSW: 9771 case DIF_OP_RLDUB: 9772 case DIF_OP_RLDUH: 9773 case DIF_OP_RLDUW: 9774 case DIF_OP_RLDX: 9775 case DIF_OP_ULDSB: 9776 case DIF_OP_ULDSH: 9777 case DIF_OP_ULDSW: 9778 case DIF_OP_ULDUB: 9779 case DIF_OP_ULDUH: 9780 case DIF_OP_ULDUW: 9781 case DIF_OP_ULDX: 9782 case DIF_OP_STB: 9783 case DIF_OP_STH: 9784 case DIF_OP_STW: 9785 case DIF_OP_STX: 9786 case DIF_OP_ALLOCS: 9787 case DIF_OP_CMP: 9788 case DIF_OP_SCMP: 9789 case DIF_OP_TST: 9790 case DIF_OP_BA: 9791 case DIF_OP_BE: 9792 case DIF_OP_BNE: 9793 case DIF_OP_BG: 9794 case DIF_OP_BGU: 9795 case DIF_OP_BGE: 9796 case DIF_OP_BGEU: 9797 case DIF_OP_BL: 9798 case DIF_OP_BLU: 9799 case DIF_OP_BLE: 9800 case DIF_OP_BLEU: 9801 case DIF_OP_RET: 9802 case DIF_OP_NOP: 9803 case DIF_OP_POPTS: 9804 case DIF_OP_FLUSHTS: 9805 case DIF_OP_SETX: 9806 case DIF_OP_SETS: 9807 case DIF_OP_LDGA: 9808 case DIF_OP_LDLS: 9809 case DIF_OP_STGS: 9810 case DIF_OP_STLS: 9811 case DIF_OP_PUSHTR: 9812 case DIF_OP_PUSHTV: 9813 break; 9814 9815 case DIF_OP_LDGS: 9816 if (v >= DIF_VAR_OTHER_UBASE) 9817 break; 9818 9819 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 9820 break; 9821 9822 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 9823 v == DIF_VAR_PPID || v == DIF_VAR_TID || 9824 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 9825 v == DIF_VAR_UID || v == DIF_VAR_GID) 9826 break; 9827 9828 err += efunc(pc, "illegal variable %u\n", v); 9829 break; 9830 9831 case DIF_OP_LDTA: 9832 if (v < DIF_VAR_OTHER_UBASE) { 9833 err += efunc(pc, "illegal variable load\n"); 9834 break; 9835 } 9836 /* FALLTHROUGH */ 9837 case DIF_OP_LDTS: 9838 case DIF_OP_LDGAA: 9839 case DIF_OP_LDTAA: 9840 err += efunc(pc, "illegal dynamic variable load\n"); 9841 break; 9842 9843 case DIF_OP_STGA: 9844 if (v < DIF_VAR_OTHER_UBASE) { 9845 err += efunc(pc, "illegal variable store\n"); 9846 break; 9847 } 9848 /* FALLTHROUGH */ 9849 case DIF_OP_STTS: 9850 case DIF_OP_STGAA: 9851 case DIF_OP_STTAA: 9852 err += efunc(pc, "illegal dynamic variable store\n"); 9853 break; 9854 9855 case DIF_OP_CALL: 9856 if (subr == DIF_SUBR_ALLOCA || 9857 subr == DIF_SUBR_BCOPY || 9858 subr == DIF_SUBR_COPYIN || 9859 subr == DIF_SUBR_COPYINTO || 9860 subr == DIF_SUBR_COPYINSTR || 9861 subr == DIF_SUBR_INDEX || 9862 subr == DIF_SUBR_INET_NTOA || 9863 subr == DIF_SUBR_INET_NTOA6 || 9864 subr == DIF_SUBR_INET_NTOP || 9865 subr == DIF_SUBR_JSON || 9866 subr == DIF_SUBR_LLTOSTR || 9867 subr == DIF_SUBR_STRTOLL || 9868 subr == DIF_SUBR_RINDEX || 9869 subr == DIF_SUBR_STRCHR || 9870 subr == DIF_SUBR_STRJOIN || 9871 subr == DIF_SUBR_STRRCHR || 9872 subr == DIF_SUBR_STRSTR || 9873 subr == DIF_SUBR_HTONS || 9874 subr == DIF_SUBR_HTONL || 9875 subr == DIF_SUBR_HTONLL || 9876 subr == DIF_SUBR_NTOHS || 9877 subr == DIF_SUBR_NTOHL || 9878 subr == DIF_SUBR_NTOHLL) 9879 break; 9880 9881 err += efunc(pc, "invalid subr %u\n", subr); 9882 break; 9883 9884 default: 9885 err += efunc(pc, "invalid opcode %u\n", 9886 DIF_INSTR_OP(instr)); 9887 } 9888 } 9889 9890 return (err); 9891 } 9892 9893 /* 9894 * Returns 1 if the expression in the DIF object can be cached on a per-thread 9895 * basis; 0 if not. 9896 */ 9897 static int 9898 dtrace_difo_cacheable(dtrace_difo_t *dp) 9899 { 9900 int i; 9901 9902 if (dp == NULL) 9903 return (0); 9904 9905 for (i = 0; i < dp->dtdo_varlen; i++) { 9906 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9907 9908 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 9909 continue; 9910 9911 switch (v->dtdv_id) { 9912 case DIF_VAR_CURTHREAD: 9913 case DIF_VAR_PID: 9914 case DIF_VAR_TID: 9915 case DIF_VAR_EXECNAME: 9916 case DIF_VAR_ZONENAME: 9917 break; 9918 9919 default: 9920 return (0); 9921 } 9922 } 9923 9924 /* 9925 * This DIF object may be cacheable. Now we need to look for any 9926 * array loading instructions, any memory loading instructions, or 9927 * any stores to thread-local variables. 9928 */ 9929 for (i = 0; i < dp->dtdo_len; i++) { 9930 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 9931 9932 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 9933 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 9934 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 9935 op == DIF_OP_LDGA || op == DIF_OP_STTS) 9936 return (0); 9937 } 9938 9939 return (1); 9940 } 9941 9942 static void 9943 dtrace_difo_hold(dtrace_difo_t *dp) 9944 { 9945 int i; 9946 9947 ASSERT(MUTEX_HELD(&dtrace_lock)); 9948 9949 dp->dtdo_refcnt++; 9950 ASSERT(dp->dtdo_refcnt != 0); 9951 9952 /* 9953 * We need to check this DIF object for references to the variable 9954 * DIF_VAR_VTIMESTAMP. 9955 */ 9956 for (i = 0; i < dp->dtdo_varlen; i++) { 9957 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9958 9959 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9960 continue; 9961 9962 if (dtrace_vtime_references++ == 0) 9963 dtrace_vtime_enable(); 9964 } 9965 } 9966 9967 /* 9968 * This routine calculates the dynamic variable chunksize for a given DIF 9969 * object. The calculation is not fool-proof, and can probably be tricked by 9970 * malicious DIF -- but it works for all compiler-generated DIF. Because this 9971 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 9972 * if a dynamic variable size exceeds the chunksize. 9973 */ 9974 static void 9975 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9976 { 9977 uint64_t sval; 9978 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 9979 const dif_instr_t *text = dp->dtdo_buf; 9980 uint_t pc, srd = 0; 9981 uint_t ttop = 0; 9982 size_t size, ksize; 9983 uint_t id, i; 9984 9985 for (pc = 0; pc < dp->dtdo_len; pc++) { 9986 dif_instr_t instr = text[pc]; 9987 uint_t op = DIF_INSTR_OP(instr); 9988 uint_t rd = DIF_INSTR_RD(instr); 9989 uint_t r1 = DIF_INSTR_R1(instr); 9990 uint_t nkeys = 0; 9991 uchar_t scope; 9992 9993 dtrace_key_t *key = tupregs; 9994 9995 switch (op) { 9996 case DIF_OP_SETX: 9997 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 9998 srd = rd; 9999 continue; 10000 10001 case DIF_OP_STTS: 10002 key = &tupregs[DIF_DTR_NREGS]; 10003 key[0].dttk_size = 0; 10004 key[1].dttk_size = 0; 10005 nkeys = 2; 10006 scope = DIFV_SCOPE_THREAD; 10007 break; 10008 10009 case DIF_OP_STGAA: 10010 case DIF_OP_STTAA: 10011 nkeys = ttop; 10012 10013 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 10014 key[nkeys++].dttk_size = 0; 10015 10016 key[nkeys++].dttk_size = 0; 10017 10018 if (op == DIF_OP_STTAA) { 10019 scope = DIFV_SCOPE_THREAD; 10020 } else { 10021 scope = DIFV_SCOPE_GLOBAL; 10022 } 10023 10024 break; 10025 10026 case DIF_OP_PUSHTR: 10027 if (ttop == DIF_DTR_NREGS) 10028 return; 10029 10030 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 10031 /* 10032 * If the register for the size of the "pushtr" 10033 * is %r0 (or the value is 0) and the type is 10034 * a string, we'll use the system-wide default 10035 * string size. 10036 */ 10037 tupregs[ttop++].dttk_size = 10038 dtrace_strsize_default; 10039 } else { 10040 if (srd == 0) 10041 return; 10042 10043 if (sval > LONG_MAX) 10044 return; 10045 10046 tupregs[ttop++].dttk_size = sval; 10047 } 10048 10049 break; 10050 10051 case DIF_OP_PUSHTV: 10052 if (ttop == DIF_DTR_NREGS) 10053 return; 10054 10055 tupregs[ttop++].dttk_size = 0; 10056 break; 10057 10058 case DIF_OP_FLUSHTS: 10059 ttop = 0; 10060 break; 10061 10062 case DIF_OP_POPTS: 10063 if (ttop != 0) 10064 ttop--; 10065 break; 10066 } 10067 10068 sval = 0; 10069 srd = 0; 10070 10071 if (nkeys == 0) 10072 continue; 10073 10074 /* 10075 * We have a dynamic variable allocation; calculate its size. 10076 */ 10077 for (ksize = 0, i = 0; i < nkeys; i++) 10078 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 10079 10080 size = sizeof (dtrace_dynvar_t); 10081 size += sizeof (dtrace_key_t) * (nkeys - 1); 10082 size += ksize; 10083 10084 /* 10085 * Now we need to determine the size of the stored data. 10086 */ 10087 id = DIF_INSTR_VAR(instr); 10088 10089 for (i = 0; i < dp->dtdo_varlen; i++) { 10090 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10091 10092 if (v->dtdv_id == id && v->dtdv_scope == scope) { 10093 size += v->dtdv_type.dtdt_size; 10094 break; 10095 } 10096 } 10097 10098 if (i == dp->dtdo_varlen) 10099 return; 10100 10101 /* 10102 * We have the size. If this is larger than the chunk size 10103 * for our dynamic variable state, reset the chunk size. 10104 */ 10105 size = P2ROUNDUP(size, sizeof (uint64_t)); 10106 10107 /* 10108 * Before setting the chunk size, check that we're not going 10109 * to set it to a negative value... 10110 */ 10111 if (size > LONG_MAX) 10112 return; 10113 10114 /* 10115 * ...and make certain that we didn't badly overflow. 10116 */ 10117 if (size < ksize || size < sizeof (dtrace_dynvar_t)) 10118 return; 10119 10120 if (size > vstate->dtvs_dynvars.dtds_chunksize) 10121 vstate->dtvs_dynvars.dtds_chunksize = size; 10122 } 10123 } 10124 10125 static void 10126 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10127 { 10128 int i, oldsvars, osz, nsz, otlocals, ntlocals; 10129 uint_t id; 10130 10131 ASSERT(MUTEX_HELD(&dtrace_lock)); 10132 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 10133 10134 for (i = 0; i < dp->dtdo_varlen; i++) { 10135 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10136 dtrace_statvar_t *svar, ***svarp; 10137 size_t dsize = 0; 10138 uint8_t scope = v->dtdv_scope; 10139 int *np; 10140 10141 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10142 continue; 10143 10144 id -= DIF_VAR_OTHER_UBASE; 10145 10146 switch (scope) { 10147 case DIFV_SCOPE_THREAD: 10148 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 10149 dtrace_difv_t *tlocals; 10150 10151 if ((ntlocals = (otlocals << 1)) == 0) 10152 ntlocals = 1; 10153 10154 osz = otlocals * sizeof (dtrace_difv_t); 10155 nsz = ntlocals * sizeof (dtrace_difv_t); 10156 10157 tlocals = kmem_zalloc(nsz, KM_SLEEP); 10158 10159 if (osz != 0) { 10160 bcopy(vstate->dtvs_tlocals, 10161 tlocals, osz); 10162 kmem_free(vstate->dtvs_tlocals, osz); 10163 } 10164 10165 vstate->dtvs_tlocals = tlocals; 10166 vstate->dtvs_ntlocals = ntlocals; 10167 } 10168 10169 vstate->dtvs_tlocals[id] = *v; 10170 continue; 10171 10172 case DIFV_SCOPE_LOCAL: 10173 np = &vstate->dtvs_nlocals; 10174 svarp = &vstate->dtvs_locals; 10175 10176 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10177 dsize = NCPU * (v->dtdv_type.dtdt_size + 10178 sizeof (uint64_t)); 10179 else 10180 dsize = NCPU * sizeof (uint64_t); 10181 10182 break; 10183 10184 case DIFV_SCOPE_GLOBAL: 10185 np = &vstate->dtvs_nglobals; 10186 svarp = &vstate->dtvs_globals; 10187 10188 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10189 dsize = v->dtdv_type.dtdt_size + 10190 sizeof (uint64_t); 10191 10192 break; 10193 10194 default: 10195 ASSERT(0); 10196 } 10197 10198 while (id >= (oldsvars = *np)) { 10199 dtrace_statvar_t **statics; 10200 int newsvars, oldsize, newsize; 10201 10202 if ((newsvars = (oldsvars << 1)) == 0) 10203 newsvars = 1; 10204 10205 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 10206 newsize = newsvars * sizeof (dtrace_statvar_t *); 10207 10208 statics = kmem_zalloc(newsize, KM_SLEEP); 10209 10210 if (oldsize != 0) { 10211 bcopy(*svarp, statics, oldsize); 10212 kmem_free(*svarp, oldsize); 10213 } 10214 10215 *svarp = statics; 10216 *np = newsvars; 10217 } 10218 10219 if ((svar = (*svarp)[id]) == NULL) { 10220 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 10221 svar->dtsv_var = *v; 10222 10223 if ((svar->dtsv_size = dsize) != 0) { 10224 svar->dtsv_data = (uint64_t)(uintptr_t) 10225 kmem_zalloc(dsize, KM_SLEEP); 10226 } 10227 10228 (*svarp)[id] = svar; 10229 } 10230 10231 svar->dtsv_refcnt++; 10232 } 10233 10234 dtrace_difo_chunksize(dp, vstate); 10235 dtrace_difo_hold(dp); 10236 } 10237 10238 static dtrace_difo_t * 10239 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10240 { 10241 dtrace_difo_t *new; 10242 size_t sz; 10243 10244 ASSERT(dp->dtdo_buf != NULL); 10245 ASSERT(dp->dtdo_refcnt != 0); 10246 10247 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10248 10249 ASSERT(dp->dtdo_buf != NULL); 10250 sz = dp->dtdo_len * sizeof (dif_instr_t); 10251 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 10252 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 10253 new->dtdo_len = dp->dtdo_len; 10254 10255 if (dp->dtdo_strtab != NULL) { 10256 ASSERT(dp->dtdo_strlen != 0); 10257 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 10258 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 10259 new->dtdo_strlen = dp->dtdo_strlen; 10260 } 10261 10262 if (dp->dtdo_inttab != NULL) { 10263 ASSERT(dp->dtdo_intlen != 0); 10264 sz = dp->dtdo_intlen * sizeof (uint64_t); 10265 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 10266 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 10267 new->dtdo_intlen = dp->dtdo_intlen; 10268 } 10269 10270 if (dp->dtdo_vartab != NULL) { 10271 ASSERT(dp->dtdo_varlen != 0); 10272 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 10273 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 10274 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 10275 new->dtdo_varlen = dp->dtdo_varlen; 10276 } 10277 10278 dtrace_difo_init(new, vstate); 10279 return (new); 10280 } 10281 10282 static void 10283 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10284 { 10285 int i; 10286 10287 ASSERT(dp->dtdo_refcnt == 0); 10288 10289 for (i = 0; i < dp->dtdo_varlen; i++) { 10290 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10291 dtrace_statvar_t *svar, **svarp; 10292 uint_t id; 10293 uint8_t scope = v->dtdv_scope; 10294 int *np; 10295 10296 switch (scope) { 10297 case DIFV_SCOPE_THREAD: 10298 continue; 10299 10300 case DIFV_SCOPE_LOCAL: 10301 np = &vstate->dtvs_nlocals; 10302 svarp = vstate->dtvs_locals; 10303 break; 10304 10305 case DIFV_SCOPE_GLOBAL: 10306 np = &vstate->dtvs_nglobals; 10307 svarp = vstate->dtvs_globals; 10308 break; 10309 10310 default: 10311 ASSERT(0); 10312 } 10313 10314 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10315 continue; 10316 10317 id -= DIF_VAR_OTHER_UBASE; 10318 ASSERT(id < *np); 10319 10320 svar = svarp[id]; 10321 ASSERT(svar != NULL); 10322 ASSERT(svar->dtsv_refcnt > 0); 10323 10324 if (--svar->dtsv_refcnt > 0) 10325 continue; 10326 10327 if (svar->dtsv_size != 0) { 10328 ASSERT(svar->dtsv_data != 0); 10329 kmem_free((void *)(uintptr_t)svar->dtsv_data, 10330 svar->dtsv_size); 10331 } 10332 10333 kmem_free(svar, sizeof (dtrace_statvar_t)); 10334 svarp[id] = NULL; 10335 } 10336 10337 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10338 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10339 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10340 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10341 10342 kmem_free(dp, sizeof (dtrace_difo_t)); 10343 } 10344 10345 static void 10346 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10347 { 10348 int i; 10349 10350 ASSERT(MUTEX_HELD(&dtrace_lock)); 10351 ASSERT(dp->dtdo_refcnt != 0); 10352 10353 for (i = 0; i < dp->dtdo_varlen; i++) { 10354 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10355 10356 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10357 continue; 10358 10359 ASSERT(dtrace_vtime_references > 0); 10360 if (--dtrace_vtime_references == 0) 10361 dtrace_vtime_disable(); 10362 } 10363 10364 if (--dp->dtdo_refcnt == 0) 10365 dtrace_difo_destroy(dp, vstate); 10366 } 10367 10368 /* 10369 * DTrace Format Functions 10370 */ 10371 static uint16_t 10372 dtrace_format_add(dtrace_state_t *state, char *str) 10373 { 10374 char *fmt, **new; 10375 uint16_t ndx, len = strlen(str) + 1; 10376 10377 fmt = kmem_zalloc(len, KM_SLEEP); 10378 bcopy(str, fmt, len); 10379 10380 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10381 if (state->dts_formats[ndx] == NULL) { 10382 state->dts_formats[ndx] = fmt; 10383 return (ndx + 1); 10384 } 10385 } 10386 10387 if (state->dts_nformats == USHRT_MAX) { 10388 /* 10389 * This is only likely if a denial-of-service attack is being 10390 * attempted. As such, it's okay to fail silently here. 10391 */ 10392 kmem_free(fmt, len); 10393 return (0); 10394 } 10395 10396 /* 10397 * For simplicity, we always resize the formats array to be exactly the 10398 * number of formats. 10399 */ 10400 ndx = state->dts_nformats++; 10401 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10402 10403 if (state->dts_formats != NULL) { 10404 ASSERT(ndx != 0); 10405 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10406 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10407 } 10408 10409 state->dts_formats = new; 10410 state->dts_formats[ndx] = fmt; 10411 10412 return (ndx + 1); 10413 } 10414 10415 static void 10416 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10417 { 10418 char *fmt; 10419 10420 ASSERT(state->dts_formats != NULL); 10421 ASSERT(format <= state->dts_nformats); 10422 ASSERT(state->dts_formats[format - 1] != NULL); 10423 10424 fmt = state->dts_formats[format - 1]; 10425 kmem_free(fmt, strlen(fmt) + 1); 10426 state->dts_formats[format - 1] = NULL; 10427 } 10428 10429 static void 10430 dtrace_format_destroy(dtrace_state_t *state) 10431 { 10432 int i; 10433 10434 if (state->dts_nformats == 0) { 10435 ASSERT(state->dts_formats == NULL); 10436 return; 10437 } 10438 10439 ASSERT(state->dts_formats != NULL); 10440 10441 for (i = 0; i < state->dts_nformats; i++) { 10442 char *fmt = state->dts_formats[i]; 10443 10444 if (fmt == NULL) 10445 continue; 10446 10447 kmem_free(fmt, strlen(fmt) + 1); 10448 } 10449 10450 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10451 state->dts_nformats = 0; 10452 state->dts_formats = NULL; 10453 } 10454 10455 /* 10456 * DTrace Predicate Functions 10457 */ 10458 static dtrace_predicate_t * 10459 dtrace_predicate_create(dtrace_difo_t *dp) 10460 { 10461 dtrace_predicate_t *pred; 10462 10463 ASSERT(MUTEX_HELD(&dtrace_lock)); 10464 ASSERT(dp->dtdo_refcnt != 0); 10465 10466 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10467 pred->dtp_difo = dp; 10468 pred->dtp_refcnt = 1; 10469 10470 if (!dtrace_difo_cacheable(dp)) 10471 return (pred); 10472 10473 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10474 /* 10475 * This is only theoretically possible -- we have had 2^32 10476 * cacheable predicates on this machine. We cannot allow any 10477 * more predicates to become cacheable: as unlikely as it is, 10478 * there may be a thread caching a (now stale) predicate cache 10479 * ID. (N.B.: the temptation is being successfully resisted to 10480 * have this cmn_err() "Holy shit -- we executed this code!") 10481 */ 10482 return (pred); 10483 } 10484 10485 pred->dtp_cacheid = dtrace_predcache_id++; 10486 10487 return (pred); 10488 } 10489 10490 static void 10491 dtrace_predicate_hold(dtrace_predicate_t *pred) 10492 { 10493 ASSERT(MUTEX_HELD(&dtrace_lock)); 10494 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 10495 ASSERT(pred->dtp_refcnt > 0); 10496 10497 pred->dtp_refcnt++; 10498 } 10499 10500 static void 10501 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 10502 { 10503 dtrace_difo_t *dp = pred->dtp_difo; 10504 10505 ASSERT(MUTEX_HELD(&dtrace_lock)); 10506 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 10507 ASSERT(pred->dtp_refcnt > 0); 10508 10509 if (--pred->dtp_refcnt == 0) { 10510 dtrace_difo_release(pred->dtp_difo, vstate); 10511 kmem_free(pred, sizeof (dtrace_predicate_t)); 10512 } 10513 } 10514 10515 /* 10516 * DTrace Action Description Functions 10517 */ 10518 static dtrace_actdesc_t * 10519 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 10520 uint64_t uarg, uint64_t arg) 10521 { 10522 dtrace_actdesc_t *act; 10523 10524 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != 0 && 10525 arg >= KERNELBASE) || (arg == 0 && kind == DTRACEACT_PRINTA)); 10526 10527 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 10528 act->dtad_kind = kind; 10529 act->dtad_ntuple = ntuple; 10530 act->dtad_uarg = uarg; 10531 act->dtad_arg = arg; 10532 act->dtad_refcnt = 1; 10533 10534 return (act); 10535 } 10536 10537 static void 10538 dtrace_actdesc_hold(dtrace_actdesc_t *act) 10539 { 10540 ASSERT(act->dtad_refcnt >= 1); 10541 act->dtad_refcnt++; 10542 } 10543 10544 static void 10545 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 10546 { 10547 dtrace_actkind_t kind = act->dtad_kind; 10548 dtrace_difo_t *dp; 10549 10550 ASSERT(act->dtad_refcnt >= 1); 10551 10552 if (--act->dtad_refcnt != 0) 10553 return; 10554 10555 if ((dp = act->dtad_difo) != NULL) 10556 dtrace_difo_release(dp, vstate); 10557 10558 if (DTRACEACT_ISPRINTFLIKE(kind)) { 10559 char *str = (char *)(uintptr_t)act->dtad_arg; 10560 10561 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 10562 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 10563 10564 if (str != NULL) 10565 kmem_free(str, strlen(str) + 1); 10566 } 10567 10568 kmem_free(act, sizeof (dtrace_actdesc_t)); 10569 } 10570 10571 /* 10572 * DTrace ECB Functions 10573 */ 10574 static dtrace_ecb_t * 10575 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 10576 { 10577 dtrace_ecb_t *ecb; 10578 dtrace_epid_t epid; 10579 10580 ASSERT(MUTEX_HELD(&dtrace_lock)); 10581 10582 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 10583 ecb->dte_predicate = NULL; 10584 ecb->dte_probe = probe; 10585 10586 /* 10587 * The default size is the size of the default action: recording 10588 * the header. 10589 */ 10590 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 10591 ecb->dte_alignment = sizeof (dtrace_epid_t); 10592 10593 epid = state->dts_epid++; 10594 10595 if (epid - 1 >= state->dts_necbs) { 10596 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 10597 int necbs = state->dts_necbs << 1; 10598 10599 ASSERT(epid == state->dts_necbs + 1); 10600 10601 if (necbs == 0) { 10602 ASSERT(oecbs == NULL); 10603 necbs = 1; 10604 } 10605 10606 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 10607 10608 if (oecbs != NULL) 10609 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 10610 10611 dtrace_membar_producer(); 10612 state->dts_ecbs = ecbs; 10613 10614 if (oecbs != NULL) { 10615 /* 10616 * If this state is active, we must dtrace_sync() 10617 * before we can free the old dts_ecbs array: we're 10618 * coming in hot, and there may be active ring 10619 * buffer processing (which indexes into the dts_ecbs 10620 * array) on another CPU. 10621 */ 10622 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 10623 dtrace_sync(); 10624 10625 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 10626 } 10627 10628 dtrace_membar_producer(); 10629 state->dts_necbs = necbs; 10630 } 10631 10632 ecb->dte_state = state; 10633 10634 ASSERT(state->dts_ecbs[epid - 1] == NULL); 10635 dtrace_membar_producer(); 10636 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 10637 10638 return (ecb); 10639 } 10640 10641 static int 10642 dtrace_ecb_enable(dtrace_ecb_t *ecb) 10643 { 10644 dtrace_probe_t *probe = ecb->dte_probe; 10645 10646 ASSERT(MUTEX_HELD(&cpu_lock)); 10647 ASSERT(MUTEX_HELD(&dtrace_lock)); 10648 ASSERT(ecb->dte_next == NULL); 10649 10650 if (probe == NULL) { 10651 /* 10652 * This is the NULL probe -- there's nothing to do. 10653 */ 10654 return (0); 10655 } 10656 10657 if (probe->dtpr_ecb == NULL) { 10658 dtrace_provider_t *prov = probe->dtpr_provider; 10659 10660 /* 10661 * We're the first ECB on this probe. 10662 */ 10663 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 10664 10665 if (ecb->dte_predicate != NULL) 10666 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 10667 10668 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 10669 probe->dtpr_id, probe->dtpr_arg)); 10670 } else { 10671 /* 10672 * This probe is already active. Swing the last pointer to 10673 * point to the new ECB, and issue a dtrace_sync() to assure 10674 * that all CPUs have seen the change. 10675 */ 10676 ASSERT(probe->dtpr_ecb_last != NULL); 10677 probe->dtpr_ecb_last->dte_next = ecb; 10678 probe->dtpr_ecb_last = ecb; 10679 probe->dtpr_predcache = 0; 10680 10681 dtrace_sync(); 10682 return (0); 10683 } 10684 } 10685 10686 static int 10687 dtrace_ecb_resize(dtrace_ecb_t *ecb) 10688 { 10689 dtrace_action_t *act; 10690 uint32_t curneeded = UINT32_MAX; 10691 uint32_t aggbase = UINT32_MAX; 10692 10693 /* 10694 * If we record anything, we always record the dtrace_rechdr_t. (And 10695 * we always record it first.) 10696 */ 10697 ecb->dte_size = sizeof (dtrace_rechdr_t); 10698 ecb->dte_alignment = sizeof (dtrace_epid_t); 10699 10700 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10701 dtrace_recdesc_t *rec = &act->dta_rec; 10702 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 10703 10704 ecb->dte_alignment = MAX(ecb->dte_alignment, 10705 rec->dtrd_alignment); 10706 10707 if (DTRACEACT_ISAGG(act->dta_kind)) { 10708 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10709 10710 ASSERT(rec->dtrd_size != 0); 10711 ASSERT(agg->dtag_first != NULL); 10712 ASSERT(act->dta_prev->dta_intuple); 10713 ASSERT(aggbase != UINT32_MAX); 10714 ASSERT(curneeded != UINT32_MAX); 10715 10716 agg->dtag_base = aggbase; 10717 10718 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10719 rec->dtrd_offset = curneeded; 10720 if (curneeded + rec->dtrd_size < curneeded) 10721 return (EINVAL); 10722 curneeded += rec->dtrd_size; 10723 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 10724 10725 aggbase = UINT32_MAX; 10726 curneeded = UINT32_MAX; 10727 } else if (act->dta_intuple) { 10728 if (curneeded == UINT32_MAX) { 10729 /* 10730 * This is the first record in a tuple. Align 10731 * curneeded to be at offset 4 in an 8-byte 10732 * aligned block. 10733 */ 10734 ASSERT(act->dta_prev == NULL || 10735 !act->dta_prev->dta_intuple); 10736 ASSERT3U(aggbase, ==, UINT32_MAX); 10737 curneeded = P2PHASEUP(ecb->dte_size, 10738 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 10739 10740 aggbase = curneeded - sizeof (dtrace_aggid_t); 10741 ASSERT(IS_P2ALIGNED(aggbase, 10742 sizeof (uint64_t))); 10743 } 10744 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10745 rec->dtrd_offset = curneeded; 10746 if (curneeded + rec->dtrd_size < curneeded) 10747 return (EINVAL); 10748 curneeded += rec->dtrd_size; 10749 } else { 10750 /* tuples must be followed by an aggregation */ 10751 ASSERT(act->dta_prev == NULL || 10752 !act->dta_prev->dta_intuple); 10753 10754 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 10755 rec->dtrd_alignment); 10756 rec->dtrd_offset = ecb->dte_size; 10757 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size) 10758 return (EINVAL); 10759 ecb->dte_size += rec->dtrd_size; 10760 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 10761 } 10762 } 10763 10764 if ((act = ecb->dte_action) != NULL && 10765 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 10766 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 10767 /* 10768 * If the size is still sizeof (dtrace_rechdr_t), then all 10769 * actions store no data; set the size to 0. 10770 */ 10771 ecb->dte_size = 0; 10772 } 10773 10774 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 10775 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 10776 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 10777 ecb->dte_needed); 10778 return (0); 10779 } 10780 10781 static dtrace_action_t * 10782 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10783 { 10784 dtrace_aggregation_t *agg; 10785 size_t size = sizeof (uint64_t); 10786 int ntuple = desc->dtad_ntuple; 10787 dtrace_action_t *act; 10788 dtrace_recdesc_t *frec; 10789 dtrace_aggid_t aggid; 10790 dtrace_state_t *state = ecb->dte_state; 10791 10792 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 10793 agg->dtag_ecb = ecb; 10794 10795 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 10796 10797 switch (desc->dtad_kind) { 10798 case DTRACEAGG_MIN: 10799 agg->dtag_initial = INT64_MAX; 10800 agg->dtag_aggregate = dtrace_aggregate_min; 10801 break; 10802 10803 case DTRACEAGG_MAX: 10804 agg->dtag_initial = INT64_MIN; 10805 agg->dtag_aggregate = dtrace_aggregate_max; 10806 break; 10807 10808 case DTRACEAGG_COUNT: 10809 agg->dtag_aggregate = dtrace_aggregate_count; 10810 break; 10811 10812 case DTRACEAGG_QUANTIZE: 10813 agg->dtag_aggregate = dtrace_aggregate_quantize; 10814 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 10815 sizeof (uint64_t); 10816 break; 10817 10818 case DTRACEAGG_LQUANTIZE: { 10819 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 10820 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 10821 10822 agg->dtag_initial = desc->dtad_arg; 10823 agg->dtag_aggregate = dtrace_aggregate_lquantize; 10824 10825 if (step == 0 || levels == 0) 10826 goto err; 10827 10828 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 10829 break; 10830 } 10831 10832 case DTRACEAGG_LLQUANTIZE: { 10833 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 10834 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 10835 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 10836 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 10837 int64_t v; 10838 10839 agg->dtag_initial = desc->dtad_arg; 10840 agg->dtag_aggregate = dtrace_aggregate_llquantize; 10841 10842 if (factor < 2 || low >= high || nsteps < factor) 10843 goto err; 10844 10845 /* 10846 * Now check that the number of steps evenly divides a power 10847 * of the factor. (This assures both integer bucket size and 10848 * linearity within each magnitude.) 10849 */ 10850 for (v = factor; v < nsteps; v *= factor) 10851 continue; 10852 10853 if ((v % nsteps) || (nsteps % factor)) 10854 goto err; 10855 10856 size = (dtrace_aggregate_llquantize_bucket(factor, 10857 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 10858 break; 10859 } 10860 10861 case DTRACEAGG_AVG: 10862 agg->dtag_aggregate = dtrace_aggregate_avg; 10863 size = sizeof (uint64_t) * 2; 10864 break; 10865 10866 case DTRACEAGG_STDDEV: 10867 agg->dtag_aggregate = dtrace_aggregate_stddev; 10868 size = sizeof (uint64_t) * 4; 10869 break; 10870 10871 case DTRACEAGG_SUM: 10872 agg->dtag_aggregate = dtrace_aggregate_sum; 10873 break; 10874 10875 default: 10876 goto err; 10877 } 10878 10879 agg->dtag_action.dta_rec.dtrd_size = size; 10880 10881 if (ntuple == 0) 10882 goto err; 10883 10884 /* 10885 * We must make sure that we have enough actions for the n-tuple. 10886 */ 10887 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 10888 if (DTRACEACT_ISAGG(act->dta_kind)) 10889 break; 10890 10891 if (--ntuple == 0) { 10892 /* 10893 * This is the action with which our n-tuple begins. 10894 */ 10895 agg->dtag_first = act; 10896 goto success; 10897 } 10898 } 10899 10900 /* 10901 * This n-tuple is short by ntuple elements. Return failure. 10902 */ 10903 ASSERT(ntuple != 0); 10904 err: 10905 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10906 return (NULL); 10907 10908 success: 10909 /* 10910 * If the last action in the tuple has a size of zero, it's actually 10911 * an expression argument for the aggregating action. 10912 */ 10913 ASSERT(ecb->dte_action_last != NULL); 10914 act = ecb->dte_action_last; 10915 10916 if (act->dta_kind == DTRACEACT_DIFEXPR) { 10917 ASSERT(act->dta_difo != NULL); 10918 10919 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 10920 agg->dtag_hasarg = 1; 10921 } 10922 10923 /* 10924 * We need to allocate an id for this aggregation. 10925 */ 10926 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 10927 VM_BESTFIT | VM_SLEEP); 10928 10929 if (aggid - 1 >= state->dts_naggregations) { 10930 dtrace_aggregation_t **oaggs = state->dts_aggregations; 10931 dtrace_aggregation_t **aggs; 10932 int naggs = state->dts_naggregations << 1; 10933 int onaggs = state->dts_naggregations; 10934 10935 ASSERT(aggid == state->dts_naggregations + 1); 10936 10937 if (naggs == 0) { 10938 ASSERT(oaggs == NULL); 10939 naggs = 1; 10940 } 10941 10942 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 10943 10944 if (oaggs != NULL) { 10945 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 10946 kmem_free(oaggs, onaggs * sizeof (*aggs)); 10947 } 10948 10949 state->dts_aggregations = aggs; 10950 state->dts_naggregations = naggs; 10951 } 10952 10953 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 10954 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 10955 10956 frec = &agg->dtag_first->dta_rec; 10957 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 10958 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 10959 10960 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 10961 ASSERT(!act->dta_intuple); 10962 act->dta_intuple = 1; 10963 } 10964 10965 return (&agg->dtag_action); 10966 } 10967 10968 static void 10969 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 10970 { 10971 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10972 dtrace_state_t *state = ecb->dte_state; 10973 dtrace_aggid_t aggid = agg->dtag_id; 10974 10975 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 10976 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 10977 10978 ASSERT(state->dts_aggregations[aggid - 1] == agg); 10979 state->dts_aggregations[aggid - 1] = NULL; 10980 10981 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10982 } 10983 10984 static int 10985 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10986 { 10987 dtrace_action_t *action, *last; 10988 dtrace_difo_t *dp = desc->dtad_difo; 10989 uint32_t size = 0, align = sizeof (uint8_t), mask; 10990 uint16_t format = 0; 10991 dtrace_recdesc_t *rec; 10992 dtrace_state_t *state = ecb->dte_state; 10993 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 10994 uint64_t arg = desc->dtad_arg; 10995 10996 ASSERT(MUTEX_HELD(&dtrace_lock)); 10997 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 10998 10999 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 11000 /* 11001 * If this is an aggregating action, there must be neither 11002 * a speculate nor a commit on the action chain. 11003 */ 11004 dtrace_action_t *act; 11005 11006 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11007 if (act->dta_kind == DTRACEACT_COMMIT) 11008 return (EINVAL); 11009 11010 if (act->dta_kind == DTRACEACT_SPECULATE) 11011 return (EINVAL); 11012 } 11013 11014 action = dtrace_ecb_aggregation_create(ecb, desc); 11015 11016 if (action == NULL) 11017 return (EINVAL); 11018 } else { 11019 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 11020 (desc->dtad_kind == DTRACEACT_DIFEXPR && 11021 dp != NULL && dp->dtdo_destructive)) { 11022 state->dts_destructive = 1; 11023 } 11024 11025 switch (desc->dtad_kind) { 11026 case DTRACEACT_PRINTF: 11027 case DTRACEACT_PRINTA: 11028 case DTRACEACT_SYSTEM: 11029 case DTRACEACT_FREOPEN: 11030 case DTRACEACT_DIFEXPR: 11031 /* 11032 * We know that our arg is a string -- turn it into a 11033 * format. 11034 */ 11035 if (arg == 0) { 11036 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 11037 desc->dtad_kind == DTRACEACT_DIFEXPR); 11038 format = 0; 11039 } else { 11040 ASSERT(arg != 0); 11041 ASSERT(arg > KERNELBASE); 11042 format = dtrace_format_add(state, 11043 (char *)(uintptr_t)arg); 11044 } 11045 11046 /*FALLTHROUGH*/ 11047 case DTRACEACT_LIBACT: 11048 case DTRACEACT_TRACEMEM: 11049 case DTRACEACT_TRACEMEM_DYNSIZE: 11050 if (dp == NULL) 11051 return (EINVAL); 11052 11053 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 11054 break; 11055 11056 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 11057 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11058 return (EINVAL); 11059 11060 size = opt[DTRACEOPT_STRSIZE]; 11061 } 11062 11063 break; 11064 11065 case DTRACEACT_STACK: 11066 if ((nframes = arg) == 0) { 11067 nframes = opt[DTRACEOPT_STACKFRAMES]; 11068 ASSERT(nframes > 0); 11069 arg = nframes; 11070 } 11071 11072 size = nframes * sizeof (pc_t); 11073 break; 11074 11075 case DTRACEACT_JSTACK: 11076 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 11077 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 11078 11079 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 11080 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 11081 11082 arg = DTRACE_USTACK_ARG(nframes, strsize); 11083 11084 /*FALLTHROUGH*/ 11085 case DTRACEACT_USTACK: 11086 if (desc->dtad_kind != DTRACEACT_JSTACK && 11087 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 11088 strsize = DTRACE_USTACK_STRSIZE(arg); 11089 nframes = opt[DTRACEOPT_USTACKFRAMES]; 11090 ASSERT(nframes > 0); 11091 arg = DTRACE_USTACK_ARG(nframes, strsize); 11092 } 11093 11094 /* 11095 * Save a slot for the pid. 11096 */ 11097 size = (nframes + 1) * sizeof (uint64_t); 11098 size += DTRACE_USTACK_STRSIZE(arg); 11099 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 11100 11101 break; 11102 11103 case DTRACEACT_SYM: 11104 case DTRACEACT_MOD: 11105 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 11106 sizeof (uint64_t)) || 11107 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11108 return (EINVAL); 11109 break; 11110 11111 case DTRACEACT_USYM: 11112 case DTRACEACT_UMOD: 11113 case DTRACEACT_UADDR: 11114 if (dp == NULL || 11115 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 11116 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11117 return (EINVAL); 11118 11119 /* 11120 * We have a slot for the pid, plus a slot for the 11121 * argument. To keep things simple (aligned with 11122 * bitness-neutral sizing), we store each as a 64-bit 11123 * quantity. 11124 */ 11125 size = 2 * sizeof (uint64_t); 11126 break; 11127 11128 case DTRACEACT_STOP: 11129 case DTRACEACT_BREAKPOINT: 11130 case DTRACEACT_PANIC: 11131 break; 11132 11133 case DTRACEACT_CHILL: 11134 case DTRACEACT_DISCARD: 11135 case DTRACEACT_RAISE: 11136 if (dp == NULL) 11137 return (EINVAL); 11138 break; 11139 11140 case DTRACEACT_EXIT: 11141 if (dp == NULL || 11142 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 11143 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11144 return (EINVAL); 11145 break; 11146 11147 case DTRACEACT_SPECULATE: 11148 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 11149 return (EINVAL); 11150 11151 if (dp == NULL) 11152 return (EINVAL); 11153 11154 state->dts_speculates = 1; 11155 break; 11156 11157 case DTRACEACT_COMMIT: { 11158 dtrace_action_t *act = ecb->dte_action; 11159 11160 for (; act != NULL; act = act->dta_next) { 11161 if (act->dta_kind == DTRACEACT_COMMIT) 11162 return (EINVAL); 11163 } 11164 11165 if (dp == NULL) 11166 return (EINVAL); 11167 break; 11168 } 11169 11170 default: 11171 return (EINVAL); 11172 } 11173 11174 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 11175 /* 11176 * If this is a data-storing action or a speculate, 11177 * we must be sure that there isn't a commit on the 11178 * action chain. 11179 */ 11180 dtrace_action_t *act = ecb->dte_action; 11181 11182 for (; act != NULL; act = act->dta_next) { 11183 if (act->dta_kind == DTRACEACT_COMMIT) 11184 return (EINVAL); 11185 } 11186 } 11187 11188 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 11189 action->dta_rec.dtrd_size = size; 11190 } 11191 11192 action->dta_refcnt = 1; 11193 rec = &action->dta_rec; 11194 size = rec->dtrd_size; 11195 11196 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 11197 if (!(size & mask)) { 11198 align = mask + 1; 11199 break; 11200 } 11201 } 11202 11203 action->dta_kind = desc->dtad_kind; 11204 11205 if ((action->dta_difo = dp) != NULL) 11206 dtrace_difo_hold(dp); 11207 11208 rec->dtrd_action = action->dta_kind; 11209 rec->dtrd_arg = arg; 11210 rec->dtrd_uarg = desc->dtad_uarg; 11211 rec->dtrd_alignment = (uint16_t)align; 11212 rec->dtrd_format = format; 11213 11214 if ((last = ecb->dte_action_last) != NULL) { 11215 ASSERT(ecb->dte_action != NULL); 11216 action->dta_prev = last; 11217 last->dta_next = action; 11218 } else { 11219 ASSERT(ecb->dte_action == NULL); 11220 ecb->dte_action = action; 11221 } 11222 11223 ecb->dte_action_last = action; 11224 11225 return (0); 11226 } 11227 11228 static void 11229 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 11230 { 11231 dtrace_action_t *act = ecb->dte_action, *next; 11232 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 11233 dtrace_difo_t *dp; 11234 uint16_t format; 11235 11236 if (act != NULL && act->dta_refcnt > 1) { 11237 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 11238 act->dta_refcnt--; 11239 } else { 11240 for (; act != NULL; act = next) { 11241 next = act->dta_next; 11242 ASSERT(next != NULL || act == ecb->dte_action_last); 11243 ASSERT(act->dta_refcnt == 1); 11244 11245 if ((format = act->dta_rec.dtrd_format) != 0) 11246 dtrace_format_remove(ecb->dte_state, format); 11247 11248 if ((dp = act->dta_difo) != NULL) 11249 dtrace_difo_release(dp, vstate); 11250 11251 if (DTRACEACT_ISAGG(act->dta_kind)) { 11252 dtrace_ecb_aggregation_destroy(ecb, act); 11253 } else { 11254 kmem_free(act, sizeof (dtrace_action_t)); 11255 } 11256 } 11257 } 11258 11259 ecb->dte_action = NULL; 11260 ecb->dte_action_last = NULL; 11261 ecb->dte_size = 0; 11262 } 11263 11264 static void 11265 dtrace_ecb_disable(dtrace_ecb_t *ecb) 11266 { 11267 /* 11268 * We disable the ECB by removing it from its probe. 11269 */ 11270 dtrace_ecb_t *pecb, *prev = NULL; 11271 dtrace_probe_t *probe = ecb->dte_probe; 11272 11273 ASSERT(MUTEX_HELD(&dtrace_lock)); 11274 11275 if (probe == NULL) { 11276 /* 11277 * This is the NULL probe; there is nothing to disable. 11278 */ 11279 return; 11280 } 11281 11282 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 11283 if (pecb == ecb) 11284 break; 11285 prev = pecb; 11286 } 11287 11288 ASSERT(pecb != NULL); 11289 11290 if (prev == NULL) { 11291 probe->dtpr_ecb = ecb->dte_next; 11292 } else { 11293 prev->dte_next = ecb->dte_next; 11294 } 11295 11296 if (ecb == probe->dtpr_ecb_last) { 11297 ASSERT(ecb->dte_next == NULL); 11298 probe->dtpr_ecb_last = prev; 11299 } 11300 11301 /* 11302 * The ECB has been disconnected from the probe; now sync to assure 11303 * that all CPUs have seen the change before returning. 11304 */ 11305 dtrace_sync(); 11306 11307 if (probe->dtpr_ecb == NULL) { 11308 /* 11309 * That was the last ECB on the probe; clear the predicate 11310 * cache ID for the probe, disable it and sync one more time 11311 * to assure that we'll never hit it again. 11312 */ 11313 dtrace_provider_t *prov = probe->dtpr_provider; 11314 11315 ASSERT(ecb->dte_next == NULL); 11316 ASSERT(probe->dtpr_ecb_last == NULL); 11317 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 11318 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 11319 probe->dtpr_id, probe->dtpr_arg); 11320 dtrace_sync(); 11321 } else { 11322 /* 11323 * There is at least one ECB remaining on the probe. If there 11324 * is _exactly_ one, set the probe's predicate cache ID to be 11325 * the predicate cache ID of the remaining ECB. 11326 */ 11327 ASSERT(probe->dtpr_ecb_last != NULL); 11328 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 11329 11330 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 11331 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 11332 11333 ASSERT(probe->dtpr_ecb->dte_next == NULL); 11334 11335 if (p != NULL) 11336 probe->dtpr_predcache = p->dtp_cacheid; 11337 } 11338 11339 ecb->dte_next = NULL; 11340 } 11341 } 11342 11343 static void 11344 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 11345 { 11346 dtrace_state_t *state = ecb->dte_state; 11347 dtrace_vstate_t *vstate = &state->dts_vstate; 11348 dtrace_predicate_t *pred; 11349 dtrace_epid_t epid = ecb->dte_epid; 11350 11351 ASSERT(MUTEX_HELD(&dtrace_lock)); 11352 ASSERT(ecb->dte_next == NULL); 11353 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 11354 11355 if ((pred = ecb->dte_predicate) != NULL) 11356 dtrace_predicate_release(pred, vstate); 11357 11358 dtrace_ecb_action_remove(ecb); 11359 11360 ASSERT(state->dts_ecbs[epid - 1] == ecb); 11361 state->dts_ecbs[epid - 1] = NULL; 11362 11363 kmem_free(ecb, sizeof (dtrace_ecb_t)); 11364 } 11365 11366 static dtrace_ecb_t * 11367 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 11368 dtrace_enabling_t *enab) 11369 { 11370 dtrace_ecb_t *ecb; 11371 dtrace_predicate_t *pred; 11372 dtrace_actdesc_t *act; 11373 dtrace_provider_t *prov; 11374 dtrace_ecbdesc_t *desc = enab->dten_current; 11375 11376 ASSERT(MUTEX_HELD(&dtrace_lock)); 11377 ASSERT(state != NULL); 11378 11379 ecb = dtrace_ecb_add(state, probe); 11380 ecb->dte_uarg = desc->dted_uarg; 11381 11382 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11383 dtrace_predicate_hold(pred); 11384 ecb->dte_predicate = pred; 11385 } 11386 11387 if (probe != NULL) { 11388 /* 11389 * If the provider shows more leg than the consumer is old 11390 * enough to see, we need to enable the appropriate implicit 11391 * predicate bits to prevent the ecb from activating at 11392 * revealing times. 11393 * 11394 * Providers specifying DTRACE_PRIV_USER at register time 11395 * are stating that they need the /proc-style privilege 11396 * model to be enforced, and this is what DTRACE_COND_OWNER 11397 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11398 */ 11399 prov = probe->dtpr_provider; 11400 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11401 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11402 ecb->dte_cond |= DTRACE_COND_OWNER; 11403 11404 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11405 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11406 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11407 11408 /* 11409 * If the provider shows us kernel innards and the user 11410 * is lacking sufficient privilege, enable the 11411 * DTRACE_COND_USERMODE implicit predicate. 11412 */ 11413 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11414 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11415 ecb->dte_cond |= DTRACE_COND_USERMODE; 11416 } 11417 11418 if (dtrace_ecb_create_cache != NULL) { 11419 /* 11420 * If we have a cached ecb, we'll use its action list instead 11421 * of creating our own (saving both time and space). 11422 */ 11423 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11424 dtrace_action_t *act = cached->dte_action; 11425 11426 if (act != NULL) { 11427 ASSERT(act->dta_refcnt > 0); 11428 act->dta_refcnt++; 11429 ecb->dte_action = act; 11430 ecb->dte_action_last = cached->dte_action_last; 11431 ecb->dte_needed = cached->dte_needed; 11432 ecb->dte_size = cached->dte_size; 11433 ecb->dte_alignment = cached->dte_alignment; 11434 } 11435 11436 return (ecb); 11437 } 11438 11439 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11440 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11441 dtrace_ecb_destroy(ecb); 11442 return (NULL); 11443 } 11444 } 11445 11446 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) { 11447 dtrace_ecb_destroy(ecb); 11448 return (NULL); 11449 } 11450 11451 return (dtrace_ecb_create_cache = ecb); 11452 } 11453 11454 static int 11455 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11456 { 11457 dtrace_ecb_t *ecb; 11458 dtrace_enabling_t *enab = arg; 11459 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11460 11461 ASSERT(state != NULL); 11462 11463 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11464 /* 11465 * This probe was created in a generation for which this 11466 * enabling has previously created ECBs; we don't want to 11467 * enable it again, so just kick out. 11468 */ 11469 return (DTRACE_MATCH_NEXT); 11470 } 11471 11472 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 11473 return (DTRACE_MATCH_DONE); 11474 11475 if (dtrace_ecb_enable(ecb) < 0) 11476 return (DTRACE_MATCH_FAIL); 11477 11478 return (DTRACE_MATCH_NEXT); 11479 } 11480 11481 static dtrace_ecb_t * 11482 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 11483 { 11484 dtrace_ecb_t *ecb; 11485 11486 ASSERT(MUTEX_HELD(&dtrace_lock)); 11487 11488 if (id == 0 || id > state->dts_necbs) 11489 return (NULL); 11490 11491 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 11492 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 11493 11494 return (state->dts_ecbs[id - 1]); 11495 } 11496 11497 static dtrace_aggregation_t * 11498 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 11499 { 11500 dtrace_aggregation_t *agg; 11501 11502 ASSERT(MUTEX_HELD(&dtrace_lock)); 11503 11504 if (id == 0 || id > state->dts_naggregations) 11505 return (NULL); 11506 11507 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 11508 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 11509 agg->dtag_id == id); 11510 11511 return (state->dts_aggregations[id - 1]); 11512 } 11513 11514 /* 11515 * DTrace Buffer Functions 11516 * 11517 * The following functions manipulate DTrace buffers. Most of these functions 11518 * are called in the context of establishing or processing consumer state; 11519 * exceptions are explicitly noted. 11520 */ 11521 11522 /* 11523 * Note: called from cross call context. This function switches the two 11524 * buffers on a given CPU. The atomicity of this operation is assured by 11525 * disabling interrupts while the actual switch takes place; the disabling of 11526 * interrupts serializes the execution with any execution of dtrace_probe() on 11527 * the same CPU. 11528 */ 11529 static void 11530 dtrace_buffer_switch(dtrace_buffer_t *buf) 11531 { 11532 caddr_t tomax = buf->dtb_tomax; 11533 caddr_t xamot = buf->dtb_xamot; 11534 dtrace_icookie_t cookie; 11535 hrtime_t now; 11536 11537 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11538 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 11539 11540 cookie = dtrace_interrupt_disable(); 11541 now = dtrace_gethrtime(); 11542 buf->dtb_tomax = xamot; 11543 buf->dtb_xamot = tomax; 11544 buf->dtb_xamot_drops = buf->dtb_drops; 11545 buf->dtb_xamot_offset = buf->dtb_offset; 11546 buf->dtb_xamot_errors = buf->dtb_errors; 11547 buf->dtb_xamot_flags = buf->dtb_flags; 11548 buf->dtb_offset = 0; 11549 buf->dtb_drops = 0; 11550 buf->dtb_errors = 0; 11551 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 11552 buf->dtb_interval = now - buf->dtb_switched; 11553 buf->dtb_switched = now; 11554 dtrace_interrupt_enable(cookie); 11555 } 11556 11557 /* 11558 * Note: called from cross call context. This function activates a buffer 11559 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 11560 * is guaranteed by the disabling of interrupts. 11561 */ 11562 static void 11563 dtrace_buffer_activate(dtrace_state_t *state) 11564 { 11565 dtrace_buffer_t *buf; 11566 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 11567 11568 buf = &state->dts_buffer[CPU->cpu_id]; 11569 11570 if (buf->dtb_tomax != NULL) { 11571 /* 11572 * We might like to assert that the buffer is marked inactive, 11573 * but this isn't necessarily true: the buffer for the CPU 11574 * that processes the BEGIN probe has its buffer activated 11575 * manually. In this case, we take the (harmless) action 11576 * re-clearing the bit INACTIVE bit. 11577 */ 11578 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 11579 } 11580 11581 dtrace_interrupt_enable(cookie); 11582 } 11583 11584 static int 11585 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 11586 processorid_t cpu, int *factor) 11587 { 11588 cpu_t *cp; 11589 dtrace_buffer_t *buf; 11590 int allocated = 0, desired = 0; 11591 11592 ASSERT(MUTEX_HELD(&cpu_lock)); 11593 ASSERT(MUTEX_HELD(&dtrace_lock)); 11594 11595 *factor = 1; 11596 11597 if (size > dtrace_nonroot_maxsize && 11598 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 11599 return (EFBIG); 11600 11601 cp = cpu_list; 11602 11603 do { 11604 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11605 continue; 11606 11607 buf = &bufs[cp->cpu_id]; 11608 11609 /* 11610 * If there is already a buffer allocated for this CPU, it 11611 * is only possible that this is a DR event. In this case, 11612 * the buffer size must match our specified size. 11613 */ 11614 if (buf->dtb_tomax != NULL) { 11615 ASSERT(buf->dtb_size == size); 11616 continue; 11617 } 11618 11619 ASSERT(buf->dtb_xamot == NULL); 11620 11621 if ((buf->dtb_tomax = kmem_zalloc(size, 11622 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11623 goto err; 11624 11625 buf->dtb_size = size; 11626 buf->dtb_flags = flags; 11627 buf->dtb_offset = 0; 11628 buf->dtb_drops = 0; 11629 11630 if (flags & DTRACEBUF_NOSWITCH) 11631 continue; 11632 11633 if ((buf->dtb_xamot = kmem_zalloc(size, 11634 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11635 goto err; 11636 } while ((cp = cp->cpu_next) != cpu_list); 11637 11638 return (0); 11639 11640 err: 11641 cp = cpu_list; 11642 11643 do { 11644 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11645 continue; 11646 11647 buf = &bufs[cp->cpu_id]; 11648 desired += 2; 11649 11650 if (buf->dtb_xamot != NULL) { 11651 ASSERT(buf->dtb_tomax != NULL); 11652 ASSERT(buf->dtb_size == size); 11653 kmem_free(buf->dtb_xamot, size); 11654 allocated++; 11655 } 11656 11657 if (buf->dtb_tomax != NULL) { 11658 ASSERT(buf->dtb_size == size); 11659 kmem_free(buf->dtb_tomax, size); 11660 allocated++; 11661 } 11662 11663 buf->dtb_tomax = NULL; 11664 buf->dtb_xamot = NULL; 11665 buf->dtb_size = 0; 11666 } while ((cp = cp->cpu_next) != cpu_list); 11667 11668 *factor = desired / (allocated > 0 ? allocated : 1); 11669 11670 return (ENOMEM); 11671 } 11672 11673 /* 11674 * Note: called from probe context. This function just increments the drop 11675 * count on a buffer. It has been made a function to allow for the 11676 * possibility of understanding the source of mysterious drop counts. (A 11677 * problem for which one may be particularly disappointed that DTrace cannot 11678 * be used to understand DTrace.) 11679 */ 11680 static void 11681 dtrace_buffer_drop(dtrace_buffer_t *buf) 11682 { 11683 buf->dtb_drops++; 11684 } 11685 11686 /* 11687 * Note: called from probe context. This function is called to reserve space 11688 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 11689 * mstate. Returns the new offset in the buffer, or a negative value if an 11690 * error has occurred. 11691 */ 11692 static intptr_t 11693 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 11694 dtrace_state_t *state, dtrace_mstate_t *mstate) 11695 { 11696 intptr_t offs = buf->dtb_offset, soffs; 11697 intptr_t woffs; 11698 caddr_t tomax; 11699 size_t total; 11700 11701 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 11702 return (-1); 11703 11704 if ((tomax = buf->dtb_tomax) == NULL) { 11705 dtrace_buffer_drop(buf); 11706 return (-1); 11707 } 11708 11709 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 11710 while (offs & (align - 1)) { 11711 /* 11712 * Assert that our alignment is off by a number which 11713 * is itself sizeof (uint32_t) aligned. 11714 */ 11715 ASSERT(!((align - (offs & (align - 1))) & 11716 (sizeof (uint32_t) - 1))); 11717 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11718 offs += sizeof (uint32_t); 11719 } 11720 11721 if ((soffs = offs + needed) > buf->dtb_size) { 11722 dtrace_buffer_drop(buf); 11723 return (-1); 11724 } 11725 11726 if (mstate == NULL) 11727 return (offs); 11728 11729 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 11730 mstate->dtms_scratch_size = buf->dtb_size - soffs; 11731 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11732 11733 return (offs); 11734 } 11735 11736 if (buf->dtb_flags & DTRACEBUF_FILL) { 11737 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 11738 (buf->dtb_flags & DTRACEBUF_FULL)) 11739 return (-1); 11740 goto out; 11741 } 11742 11743 total = needed + (offs & (align - 1)); 11744 11745 /* 11746 * For a ring buffer, life is quite a bit more complicated. Before 11747 * we can store any padding, we need to adjust our wrapping offset. 11748 * (If we've never before wrapped or we're not about to, no adjustment 11749 * is required.) 11750 */ 11751 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 11752 offs + total > buf->dtb_size) { 11753 woffs = buf->dtb_xamot_offset; 11754 11755 if (offs + total > buf->dtb_size) { 11756 /* 11757 * We can't fit in the end of the buffer. First, a 11758 * sanity check that we can fit in the buffer at all. 11759 */ 11760 if (total > buf->dtb_size) { 11761 dtrace_buffer_drop(buf); 11762 return (-1); 11763 } 11764 11765 /* 11766 * We're going to be storing at the top of the buffer, 11767 * so now we need to deal with the wrapped offset. We 11768 * only reset our wrapped offset to 0 if it is 11769 * currently greater than the current offset. If it 11770 * is less than the current offset, it is because a 11771 * previous allocation induced a wrap -- but the 11772 * allocation didn't subsequently take the space due 11773 * to an error or false predicate evaluation. In this 11774 * case, we'll just leave the wrapped offset alone: if 11775 * the wrapped offset hasn't been advanced far enough 11776 * for this allocation, it will be adjusted in the 11777 * lower loop. 11778 */ 11779 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 11780 if (woffs >= offs) 11781 woffs = 0; 11782 } else { 11783 woffs = 0; 11784 } 11785 11786 /* 11787 * Now we know that we're going to be storing to the 11788 * top of the buffer and that there is room for us 11789 * there. We need to clear the buffer from the current 11790 * offset to the end (there may be old gunk there). 11791 */ 11792 while (offs < buf->dtb_size) 11793 tomax[offs++] = 0; 11794 11795 /* 11796 * We need to set our offset to zero. And because we 11797 * are wrapping, we need to set the bit indicating as 11798 * much. We can also adjust our needed space back 11799 * down to the space required by the ECB -- we know 11800 * that the top of the buffer is aligned. 11801 */ 11802 offs = 0; 11803 total = needed; 11804 buf->dtb_flags |= DTRACEBUF_WRAPPED; 11805 } else { 11806 /* 11807 * There is room for us in the buffer, so we simply 11808 * need to check the wrapped offset. 11809 */ 11810 if (woffs < offs) { 11811 /* 11812 * The wrapped offset is less than the offset. 11813 * This can happen if we allocated buffer space 11814 * that induced a wrap, but then we didn't 11815 * subsequently take the space due to an error 11816 * or false predicate evaluation. This is 11817 * okay; we know that _this_ allocation isn't 11818 * going to induce a wrap. We still can't 11819 * reset the wrapped offset to be zero, 11820 * however: the space may have been trashed in 11821 * the previous failed probe attempt. But at 11822 * least the wrapped offset doesn't need to 11823 * be adjusted at all... 11824 */ 11825 goto out; 11826 } 11827 } 11828 11829 while (offs + total > woffs) { 11830 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 11831 size_t size; 11832 11833 if (epid == DTRACE_EPIDNONE) { 11834 size = sizeof (uint32_t); 11835 } else { 11836 ASSERT3U(epid, <=, state->dts_necbs); 11837 ASSERT(state->dts_ecbs[epid - 1] != NULL); 11838 11839 size = state->dts_ecbs[epid - 1]->dte_size; 11840 } 11841 11842 ASSERT(woffs + size <= buf->dtb_size); 11843 ASSERT(size != 0); 11844 11845 if (woffs + size == buf->dtb_size) { 11846 /* 11847 * We've reached the end of the buffer; we want 11848 * to set the wrapped offset to 0 and break 11849 * out. However, if the offs is 0, then we're 11850 * in a strange edge-condition: the amount of 11851 * space that we want to reserve plus the size 11852 * of the record that we're overwriting is 11853 * greater than the size of the buffer. This 11854 * is problematic because if we reserve the 11855 * space but subsequently don't consume it (due 11856 * to a failed predicate or error) the wrapped 11857 * offset will be 0 -- yet the EPID at offset 0 11858 * will not be committed. This situation is 11859 * relatively easy to deal with: if we're in 11860 * this case, the buffer is indistinguishable 11861 * from one that hasn't wrapped; we need only 11862 * finish the job by clearing the wrapped bit, 11863 * explicitly setting the offset to be 0, and 11864 * zero'ing out the old data in the buffer. 11865 */ 11866 if (offs == 0) { 11867 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 11868 buf->dtb_offset = 0; 11869 woffs = total; 11870 11871 while (woffs < buf->dtb_size) 11872 tomax[woffs++] = 0; 11873 } 11874 11875 woffs = 0; 11876 break; 11877 } 11878 11879 woffs += size; 11880 } 11881 11882 /* 11883 * We have a wrapped offset. It may be that the wrapped offset 11884 * has become zero -- that's okay. 11885 */ 11886 buf->dtb_xamot_offset = woffs; 11887 } 11888 11889 out: 11890 /* 11891 * Now we can plow the buffer with any necessary padding. 11892 */ 11893 while (offs & (align - 1)) { 11894 /* 11895 * Assert that our alignment is off by a number which 11896 * is itself sizeof (uint32_t) aligned. 11897 */ 11898 ASSERT(!((align - (offs & (align - 1))) & 11899 (sizeof (uint32_t) - 1))); 11900 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11901 offs += sizeof (uint32_t); 11902 } 11903 11904 if (buf->dtb_flags & DTRACEBUF_FILL) { 11905 if (offs + needed > buf->dtb_size - state->dts_reserve) { 11906 buf->dtb_flags |= DTRACEBUF_FULL; 11907 return (-1); 11908 } 11909 } 11910 11911 if (mstate == NULL) 11912 return (offs); 11913 11914 /* 11915 * For ring buffers and fill buffers, the scratch space is always 11916 * the inactive buffer. 11917 */ 11918 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 11919 mstate->dtms_scratch_size = buf->dtb_size; 11920 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11921 11922 return (offs); 11923 } 11924 11925 static void 11926 dtrace_buffer_polish(dtrace_buffer_t *buf) 11927 { 11928 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 11929 ASSERT(MUTEX_HELD(&dtrace_lock)); 11930 11931 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 11932 return; 11933 11934 /* 11935 * We need to polish the ring buffer. There are three cases: 11936 * 11937 * - The first (and presumably most common) is that there is no gap 11938 * between the buffer offset and the wrapped offset. In this case, 11939 * there is nothing in the buffer that isn't valid data; we can 11940 * mark the buffer as polished and return. 11941 * 11942 * - The second (less common than the first but still more common 11943 * than the third) is that there is a gap between the buffer offset 11944 * and the wrapped offset, and the wrapped offset is larger than the 11945 * buffer offset. This can happen because of an alignment issue, or 11946 * can happen because of a call to dtrace_buffer_reserve() that 11947 * didn't subsequently consume the buffer space. In this case, 11948 * we need to zero the data from the buffer offset to the wrapped 11949 * offset. 11950 * 11951 * - The third (and least common) is that there is a gap between the 11952 * buffer offset and the wrapped offset, but the wrapped offset is 11953 * _less_ than the buffer offset. This can only happen because a 11954 * call to dtrace_buffer_reserve() induced a wrap, but the space 11955 * was not subsequently consumed. In this case, we need to zero the 11956 * space from the offset to the end of the buffer _and_ from the 11957 * top of the buffer to the wrapped offset. 11958 */ 11959 if (buf->dtb_offset < buf->dtb_xamot_offset) { 11960 bzero(buf->dtb_tomax + buf->dtb_offset, 11961 buf->dtb_xamot_offset - buf->dtb_offset); 11962 } 11963 11964 if (buf->dtb_offset > buf->dtb_xamot_offset) { 11965 bzero(buf->dtb_tomax + buf->dtb_offset, 11966 buf->dtb_size - buf->dtb_offset); 11967 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 11968 } 11969 } 11970 11971 /* 11972 * This routine determines if data generated at the specified time has likely 11973 * been entirely consumed at user-level. This routine is called to determine 11974 * if an ECB on a defunct probe (but for an active enabling) can be safely 11975 * disabled and destroyed. 11976 */ 11977 static int 11978 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 11979 { 11980 int i; 11981 11982 for (i = 0; i < NCPU; i++) { 11983 dtrace_buffer_t *buf = &bufs[i]; 11984 11985 if (buf->dtb_size == 0) 11986 continue; 11987 11988 if (buf->dtb_flags & DTRACEBUF_RING) 11989 return (0); 11990 11991 if (!buf->dtb_switched && buf->dtb_offset != 0) 11992 return (0); 11993 11994 if (buf->dtb_switched - buf->dtb_interval < when) 11995 return (0); 11996 } 11997 11998 return (1); 11999 } 12000 12001 static void 12002 dtrace_buffer_free(dtrace_buffer_t *bufs) 12003 { 12004 int i; 12005 12006 for (i = 0; i < NCPU; i++) { 12007 dtrace_buffer_t *buf = &bufs[i]; 12008 12009 if (buf->dtb_tomax == NULL) { 12010 ASSERT(buf->dtb_xamot == NULL); 12011 ASSERT(buf->dtb_size == 0); 12012 continue; 12013 } 12014 12015 if (buf->dtb_xamot != NULL) { 12016 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12017 kmem_free(buf->dtb_xamot, buf->dtb_size); 12018 } 12019 12020 kmem_free(buf->dtb_tomax, buf->dtb_size); 12021 buf->dtb_size = 0; 12022 buf->dtb_tomax = NULL; 12023 buf->dtb_xamot = NULL; 12024 } 12025 } 12026 12027 /* 12028 * DTrace Enabling Functions 12029 */ 12030 static dtrace_enabling_t * 12031 dtrace_enabling_create(dtrace_vstate_t *vstate) 12032 { 12033 dtrace_enabling_t *enab; 12034 12035 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 12036 enab->dten_vstate = vstate; 12037 12038 return (enab); 12039 } 12040 12041 static void 12042 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 12043 { 12044 dtrace_ecbdesc_t **ndesc; 12045 size_t osize, nsize; 12046 12047 /* 12048 * We can't add to enablings after we've enabled them, or after we've 12049 * retained them. 12050 */ 12051 ASSERT(enab->dten_probegen == 0); 12052 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12053 12054 if (enab->dten_ndesc < enab->dten_maxdesc) { 12055 enab->dten_desc[enab->dten_ndesc++] = ecb; 12056 return; 12057 } 12058 12059 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12060 12061 if (enab->dten_maxdesc == 0) { 12062 enab->dten_maxdesc = 1; 12063 } else { 12064 enab->dten_maxdesc <<= 1; 12065 } 12066 12067 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 12068 12069 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12070 ndesc = kmem_zalloc(nsize, KM_SLEEP); 12071 bcopy(enab->dten_desc, ndesc, osize); 12072 kmem_free(enab->dten_desc, osize); 12073 12074 enab->dten_desc = ndesc; 12075 enab->dten_desc[enab->dten_ndesc++] = ecb; 12076 } 12077 12078 static void 12079 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 12080 dtrace_probedesc_t *pd) 12081 { 12082 dtrace_ecbdesc_t *new; 12083 dtrace_predicate_t *pred; 12084 dtrace_actdesc_t *act; 12085 12086 /* 12087 * We're going to create a new ECB description that matches the 12088 * specified ECB in every way, but has the specified probe description. 12089 */ 12090 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12091 12092 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 12093 dtrace_predicate_hold(pred); 12094 12095 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 12096 dtrace_actdesc_hold(act); 12097 12098 new->dted_action = ecb->dted_action; 12099 new->dted_pred = ecb->dted_pred; 12100 new->dted_probe = *pd; 12101 new->dted_uarg = ecb->dted_uarg; 12102 12103 dtrace_enabling_add(enab, new); 12104 } 12105 12106 static void 12107 dtrace_enabling_dump(dtrace_enabling_t *enab) 12108 { 12109 int i; 12110 12111 for (i = 0; i < enab->dten_ndesc; i++) { 12112 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 12113 12114 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 12115 desc->dtpd_provider, desc->dtpd_mod, 12116 desc->dtpd_func, desc->dtpd_name); 12117 } 12118 } 12119 12120 static void 12121 dtrace_enabling_destroy(dtrace_enabling_t *enab) 12122 { 12123 int i; 12124 dtrace_ecbdesc_t *ep; 12125 dtrace_vstate_t *vstate = enab->dten_vstate; 12126 12127 ASSERT(MUTEX_HELD(&dtrace_lock)); 12128 12129 for (i = 0; i < enab->dten_ndesc; i++) { 12130 dtrace_actdesc_t *act, *next; 12131 dtrace_predicate_t *pred; 12132 12133 ep = enab->dten_desc[i]; 12134 12135 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 12136 dtrace_predicate_release(pred, vstate); 12137 12138 for (act = ep->dted_action; act != NULL; act = next) { 12139 next = act->dtad_next; 12140 dtrace_actdesc_release(act, vstate); 12141 } 12142 12143 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12144 } 12145 12146 kmem_free(enab->dten_desc, 12147 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 12148 12149 /* 12150 * If this was a retained enabling, decrement the dts_nretained count 12151 * and take it off of the dtrace_retained list. 12152 */ 12153 if (enab->dten_prev != NULL || enab->dten_next != NULL || 12154 dtrace_retained == enab) { 12155 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12156 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 12157 enab->dten_vstate->dtvs_state->dts_nretained--; 12158 dtrace_retained_gen++; 12159 } 12160 12161 if (enab->dten_prev == NULL) { 12162 if (dtrace_retained == enab) { 12163 dtrace_retained = enab->dten_next; 12164 12165 if (dtrace_retained != NULL) 12166 dtrace_retained->dten_prev = NULL; 12167 } 12168 } else { 12169 ASSERT(enab != dtrace_retained); 12170 ASSERT(dtrace_retained != NULL); 12171 enab->dten_prev->dten_next = enab->dten_next; 12172 } 12173 12174 if (enab->dten_next != NULL) { 12175 ASSERT(dtrace_retained != NULL); 12176 enab->dten_next->dten_prev = enab->dten_prev; 12177 } 12178 12179 kmem_free(enab, sizeof (dtrace_enabling_t)); 12180 } 12181 12182 static int 12183 dtrace_enabling_retain(dtrace_enabling_t *enab) 12184 { 12185 dtrace_state_t *state; 12186 12187 ASSERT(MUTEX_HELD(&dtrace_lock)); 12188 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12189 ASSERT(enab->dten_vstate != NULL); 12190 12191 state = enab->dten_vstate->dtvs_state; 12192 ASSERT(state != NULL); 12193 12194 /* 12195 * We only allow each state to retain dtrace_retain_max enablings. 12196 */ 12197 if (state->dts_nretained >= dtrace_retain_max) 12198 return (ENOSPC); 12199 12200 state->dts_nretained++; 12201 dtrace_retained_gen++; 12202 12203 if (dtrace_retained == NULL) { 12204 dtrace_retained = enab; 12205 return (0); 12206 } 12207 12208 enab->dten_next = dtrace_retained; 12209 dtrace_retained->dten_prev = enab; 12210 dtrace_retained = enab; 12211 12212 return (0); 12213 } 12214 12215 static int 12216 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 12217 dtrace_probedesc_t *create) 12218 { 12219 dtrace_enabling_t *new, *enab; 12220 int found = 0, err = ENOENT; 12221 12222 ASSERT(MUTEX_HELD(&dtrace_lock)); 12223 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 12224 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 12225 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 12226 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 12227 12228 new = dtrace_enabling_create(&state->dts_vstate); 12229 12230 /* 12231 * Iterate over all retained enablings, looking for enablings that 12232 * match the specified state. 12233 */ 12234 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12235 int i; 12236 12237 /* 12238 * dtvs_state can only be NULL for helper enablings -- and 12239 * helper enablings can't be retained. 12240 */ 12241 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12242 12243 if (enab->dten_vstate->dtvs_state != state) 12244 continue; 12245 12246 /* 12247 * Now iterate over each probe description; we're looking for 12248 * an exact match to the specified probe description. 12249 */ 12250 for (i = 0; i < enab->dten_ndesc; i++) { 12251 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12252 dtrace_probedesc_t *pd = &ep->dted_probe; 12253 12254 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 12255 continue; 12256 12257 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 12258 continue; 12259 12260 if (strcmp(pd->dtpd_func, match->dtpd_func)) 12261 continue; 12262 12263 if (strcmp(pd->dtpd_name, match->dtpd_name)) 12264 continue; 12265 12266 /* 12267 * We have a winning probe! Add it to our growing 12268 * enabling. 12269 */ 12270 found = 1; 12271 dtrace_enabling_addlike(new, ep, create); 12272 } 12273 } 12274 12275 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 12276 dtrace_enabling_destroy(new); 12277 return (err); 12278 } 12279 12280 return (0); 12281 } 12282 12283 static void 12284 dtrace_enabling_retract(dtrace_state_t *state) 12285 { 12286 dtrace_enabling_t *enab, *next; 12287 12288 ASSERT(MUTEX_HELD(&dtrace_lock)); 12289 12290 /* 12291 * Iterate over all retained enablings, destroy the enablings retained 12292 * for the specified state. 12293 */ 12294 for (enab = dtrace_retained; enab != NULL; enab = next) { 12295 next = enab->dten_next; 12296 12297 /* 12298 * dtvs_state can only be NULL for helper enablings -- and 12299 * helper enablings can't be retained. 12300 */ 12301 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12302 12303 if (enab->dten_vstate->dtvs_state == state) { 12304 ASSERT(state->dts_nretained > 0); 12305 dtrace_enabling_destroy(enab); 12306 } 12307 } 12308 12309 ASSERT(state->dts_nretained == 0); 12310 } 12311 12312 static int 12313 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 12314 { 12315 int i = 0; 12316 int total_matched = 0, matched = 0; 12317 12318 ASSERT(MUTEX_HELD(&cpu_lock)); 12319 ASSERT(MUTEX_HELD(&dtrace_lock)); 12320 12321 for (i = 0; i < enab->dten_ndesc; i++) { 12322 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12323 12324 enab->dten_current = ep; 12325 enab->dten_error = 0; 12326 12327 /* 12328 * If a provider failed to enable a probe then get out and 12329 * let the consumer know we failed. 12330 */ 12331 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 12332 return (EBUSY); 12333 12334 total_matched += matched; 12335 12336 if (enab->dten_error != 0) { 12337 /* 12338 * If we get an error half-way through enabling the 12339 * probes, we kick out -- perhaps with some number of 12340 * them enabled. Leaving enabled probes enabled may 12341 * be slightly confusing for user-level, but we expect 12342 * that no one will attempt to actually drive on in 12343 * the face of such errors. If this is an anonymous 12344 * enabling (indicated with a NULL nmatched pointer), 12345 * we cmn_err() a message. We aren't expecting to 12346 * get such an error -- such as it can exist at all, 12347 * it would be a result of corrupted DOF in the driver 12348 * properties. 12349 */ 12350 if (nmatched == NULL) { 12351 cmn_err(CE_WARN, "dtrace_enabling_match() " 12352 "error on %p: %d", (void *)ep, 12353 enab->dten_error); 12354 } 12355 12356 return (enab->dten_error); 12357 } 12358 } 12359 12360 enab->dten_probegen = dtrace_probegen; 12361 if (nmatched != NULL) 12362 *nmatched = total_matched; 12363 12364 return (0); 12365 } 12366 12367 static void 12368 dtrace_enabling_matchall(void) 12369 { 12370 dtrace_enabling_t *enab; 12371 12372 mutex_enter(&cpu_lock); 12373 mutex_enter(&dtrace_lock); 12374 12375 /* 12376 * Iterate over all retained enablings to see if any probes match 12377 * against them. We only perform this operation on enablings for which 12378 * we have sufficient permissions by virtue of being in the global zone 12379 * or in the same zone as the DTrace client. Because we can be called 12380 * after dtrace_detach() has been called, we cannot assert that there 12381 * are retained enablings. We can safely load from dtrace_retained, 12382 * however: the taskq_destroy() at the end of dtrace_detach() will 12383 * block pending our completion. 12384 */ 12385 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12386 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred; 12387 cred_t *cr = dcr->dcr_cred; 12388 zoneid_t zone = cr != NULL ? crgetzonedid(cr) : 0; 12389 12390 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL && 12391 (zone == GLOBAL_ZONEID || getzonedid() == zone))) 12392 (void) dtrace_enabling_match(enab, NULL); 12393 } 12394 12395 mutex_exit(&dtrace_lock); 12396 mutex_exit(&cpu_lock); 12397 } 12398 12399 /* 12400 * If an enabling is to be enabled without having matched probes (that is, if 12401 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 12402 * enabling must be _primed_ by creating an ECB for every ECB description. 12403 * This must be done to assure that we know the number of speculations, the 12404 * number of aggregations, the minimum buffer size needed, etc. before we 12405 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 12406 * enabling any probes, we create ECBs for every ECB decription, but with a 12407 * NULL probe -- which is exactly what this function does. 12408 */ 12409 static void 12410 dtrace_enabling_prime(dtrace_state_t *state) 12411 { 12412 dtrace_enabling_t *enab; 12413 int i; 12414 12415 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12416 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12417 12418 if (enab->dten_vstate->dtvs_state != state) 12419 continue; 12420 12421 /* 12422 * We don't want to prime an enabling more than once, lest 12423 * we allow a malicious user to induce resource exhaustion. 12424 * (The ECBs that result from priming an enabling aren't 12425 * leaked -- but they also aren't deallocated until the 12426 * consumer state is destroyed.) 12427 */ 12428 if (enab->dten_primed) 12429 continue; 12430 12431 for (i = 0; i < enab->dten_ndesc; i++) { 12432 enab->dten_current = enab->dten_desc[i]; 12433 (void) dtrace_probe_enable(NULL, enab); 12434 } 12435 12436 enab->dten_primed = 1; 12437 } 12438 } 12439 12440 /* 12441 * Called to indicate that probes should be provided due to retained 12442 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 12443 * must take an initial lap through the enabling calling the dtps_provide() 12444 * entry point explicitly to allow for autocreated probes. 12445 */ 12446 static void 12447 dtrace_enabling_provide(dtrace_provider_t *prv) 12448 { 12449 int i, all = 0; 12450 dtrace_probedesc_t desc; 12451 dtrace_genid_t gen; 12452 12453 ASSERT(MUTEX_HELD(&dtrace_lock)); 12454 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 12455 12456 if (prv == NULL) { 12457 all = 1; 12458 prv = dtrace_provider; 12459 } 12460 12461 do { 12462 dtrace_enabling_t *enab; 12463 void *parg = prv->dtpv_arg; 12464 12465 retry: 12466 gen = dtrace_retained_gen; 12467 for (enab = dtrace_retained; enab != NULL; 12468 enab = enab->dten_next) { 12469 for (i = 0; i < enab->dten_ndesc; i++) { 12470 desc = enab->dten_desc[i]->dted_probe; 12471 mutex_exit(&dtrace_lock); 12472 prv->dtpv_pops.dtps_provide(parg, &desc); 12473 mutex_enter(&dtrace_lock); 12474 /* 12475 * Process the retained enablings again if 12476 * they have changed while we weren't holding 12477 * dtrace_lock. 12478 */ 12479 if (gen != dtrace_retained_gen) 12480 goto retry; 12481 } 12482 } 12483 } while (all && (prv = prv->dtpv_next) != NULL); 12484 12485 mutex_exit(&dtrace_lock); 12486 dtrace_probe_provide(NULL, all ? NULL : prv); 12487 mutex_enter(&dtrace_lock); 12488 } 12489 12490 /* 12491 * Called to reap ECBs that are attached to probes from defunct providers. 12492 */ 12493 static void 12494 dtrace_enabling_reap(void) 12495 { 12496 dtrace_provider_t *prov; 12497 dtrace_probe_t *probe; 12498 dtrace_ecb_t *ecb; 12499 hrtime_t when; 12500 int i; 12501 12502 mutex_enter(&cpu_lock); 12503 mutex_enter(&dtrace_lock); 12504 12505 for (i = 0; i < dtrace_nprobes; i++) { 12506 if ((probe = dtrace_probes[i]) == NULL) 12507 continue; 12508 12509 if (probe->dtpr_ecb == NULL) 12510 continue; 12511 12512 prov = probe->dtpr_provider; 12513 12514 if ((when = prov->dtpv_defunct) == 0) 12515 continue; 12516 12517 /* 12518 * We have ECBs on a defunct provider: we want to reap these 12519 * ECBs to allow the provider to unregister. The destruction 12520 * of these ECBs must be done carefully: if we destroy the ECB 12521 * and the consumer later wishes to consume an EPID that 12522 * corresponds to the destroyed ECB (and if the EPID metadata 12523 * has not been previously consumed), the consumer will abort 12524 * processing on the unknown EPID. To reduce (but not, sadly, 12525 * eliminate) the possibility of this, we will only destroy an 12526 * ECB for a defunct provider if, for the state that 12527 * corresponds to the ECB: 12528 * 12529 * (a) There is no speculative tracing (which can effectively 12530 * cache an EPID for an arbitrary amount of time). 12531 * 12532 * (b) The principal buffers have been switched twice since the 12533 * provider became defunct. 12534 * 12535 * (c) The aggregation buffers are of zero size or have been 12536 * switched twice since the provider became defunct. 12537 * 12538 * We use dts_speculates to determine (a) and call a function 12539 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 12540 * that as soon as we've been unable to destroy one of the ECBs 12541 * associated with the probe, we quit trying -- reaping is only 12542 * fruitful in as much as we can destroy all ECBs associated 12543 * with the defunct provider's probes. 12544 */ 12545 while ((ecb = probe->dtpr_ecb) != NULL) { 12546 dtrace_state_t *state = ecb->dte_state; 12547 dtrace_buffer_t *buf = state->dts_buffer; 12548 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 12549 12550 if (state->dts_speculates) 12551 break; 12552 12553 if (!dtrace_buffer_consumed(buf, when)) 12554 break; 12555 12556 if (!dtrace_buffer_consumed(aggbuf, when)) 12557 break; 12558 12559 dtrace_ecb_disable(ecb); 12560 ASSERT(probe->dtpr_ecb != ecb); 12561 dtrace_ecb_destroy(ecb); 12562 } 12563 } 12564 12565 mutex_exit(&dtrace_lock); 12566 mutex_exit(&cpu_lock); 12567 } 12568 12569 /* 12570 * DTrace DOF Functions 12571 */ 12572 /*ARGSUSED*/ 12573 static void 12574 dtrace_dof_error(dof_hdr_t *dof, const char *str) 12575 { 12576 if (dtrace_err_verbose) 12577 cmn_err(CE_WARN, "failed to process DOF: %s", str); 12578 12579 #ifdef DTRACE_ERRDEBUG 12580 dtrace_errdebug(str); 12581 #endif 12582 } 12583 12584 /* 12585 * Create DOF out of a currently enabled state. Right now, we only create 12586 * DOF containing the run-time options -- but this could be expanded to create 12587 * complete DOF representing the enabled state. 12588 */ 12589 static dof_hdr_t * 12590 dtrace_dof_create(dtrace_state_t *state) 12591 { 12592 dof_hdr_t *dof; 12593 dof_sec_t *sec; 12594 dof_optdesc_t *opt; 12595 int i, len = sizeof (dof_hdr_t) + 12596 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 12597 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12598 12599 ASSERT(MUTEX_HELD(&dtrace_lock)); 12600 12601 dof = kmem_zalloc(len, KM_SLEEP); 12602 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 12603 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 12604 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 12605 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 12606 12607 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 12608 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 12609 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 12610 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 12611 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 12612 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 12613 12614 dof->dofh_flags = 0; 12615 dof->dofh_hdrsize = sizeof (dof_hdr_t); 12616 dof->dofh_secsize = sizeof (dof_sec_t); 12617 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 12618 dof->dofh_secoff = sizeof (dof_hdr_t); 12619 dof->dofh_loadsz = len; 12620 dof->dofh_filesz = len; 12621 dof->dofh_pad = 0; 12622 12623 /* 12624 * Fill in the option section header... 12625 */ 12626 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 12627 sec->dofs_type = DOF_SECT_OPTDESC; 12628 sec->dofs_align = sizeof (uint64_t); 12629 sec->dofs_flags = DOF_SECF_LOAD; 12630 sec->dofs_entsize = sizeof (dof_optdesc_t); 12631 12632 opt = (dof_optdesc_t *)((uintptr_t)sec + 12633 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 12634 12635 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 12636 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12637 12638 for (i = 0; i < DTRACEOPT_MAX; i++) { 12639 opt[i].dofo_option = i; 12640 opt[i].dofo_strtab = DOF_SECIDX_NONE; 12641 opt[i].dofo_value = state->dts_options[i]; 12642 } 12643 12644 return (dof); 12645 } 12646 12647 static dof_hdr_t * 12648 dtrace_dof_copyin(uintptr_t uarg, int *errp) 12649 { 12650 dof_hdr_t hdr, *dof; 12651 12652 ASSERT(!MUTEX_HELD(&dtrace_lock)); 12653 12654 /* 12655 * First, we're going to copyin() the sizeof (dof_hdr_t). 12656 */ 12657 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 12658 dtrace_dof_error(NULL, "failed to copyin DOF header"); 12659 *errp = EFAULT; 12660 return (NULL); 12661 } 12662 12663 /* 12664 * Now we'll allocate the entire DOF and copy it in -- provided 12665 * that the length isn't outrageous. 12666 */ 12667 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 12668 dtrace_dof_error(&hdr, "load size exceeds maximum"); 12669 *errp = E2BIG; 12670 return (NULL); 12671 } 12672 12673 if (hdr.dofh_loadsz < sizeof (hdr)) { 12674 dtrace_dof_error(&hdr, "invalid load size"); 12675 *errp = EINVAL; 12676 return (NULL); 12677 } 12678 12679 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 12680 12681 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 12682 dof->dofh_loadsz != hdr.dofh_loadsz) { 12683 kmem_free(dof, hdr.dofh_loadsz); 12684 *errp = EFAULT; 12685 return (NULL); 12686 } 12687 12688 return (dof); 12689 } 12690 12691 static dof_hdr_t * 12692 dtrace_dof_property(const char *name) 12693 { 12694 uchar_t *buf; 12695 uint64_t loadsz; 12696 unsigned int len, i; 12697 dof_hdr_t *dof; 12698 12699 /* 12700 * Unfortunately, array of values in .conf files are always (and 12701 * only) interpreted to be integer arrays. We must read our DOF 12702 * as an integer array, and then squeeze it into a byte array. 12703 */ 12704 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 12705 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 12706 return (NULL); 12707 12708 for (i = 0; i < len; i++) 12709 buf[i] = (uchar_t)(((int *)buf)[i]); 12710 12711 if (len < sizeof (dof_hdr_t)) { 12712 ddi_prop_free(buf); 12713 dtrace_dof_error(NULL, "truncated header"); 12714 return (NULL); 12715 } 12716 12717 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 12718 ddi_prop_free(buf); 12719 dtrace_dof_error(NULL, "truncated DOF"); 12720 return (NULL); 12721 } 12722 12723 if (loadsz >= dtrace_dof_maxsize) { 12724 ddi_prop_free(buf); 12725 dtrace_dof_error(NULL, "oversized DOF"); 12726 return (NULL); 12727 } 12728 12729 dof = kmem_alloc(loadsz, KM_SLEEP); 12730 bcopy(buf, dof, loadsz); 12731 ddi_prop_free(buf); 12732 12733 return (dof); 12734 } 12735 12736 static void 12737 dtrace_dof_destroy(dof_hdr_t *dof) 12738 { 12739 kmem_free(dof, dof->dofh_loadsz); 12740 } 12741 12742 /* 12743 * Return the dof_sec_t pointer corresponding to a given section index. If the 12744 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 12745 * a type other than DOF_SECT_NONE is specified, the header is checked against 12746 * this type and NULL is returned if the types do not match. 12747 */ 12748 static dof_sec_t * 12749 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 12750 { 12751 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 12752 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 12753 12754 if (i >= dof->dofh_secnum) { 12755 dtrace_dof_error(dof, "referenced section index is invalid"); 12756 return (NULL); 12757 } 12758 12759 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 12760 dtrace_dof_error(dof, "referenced section is not loadable"); 12761 return (NULL); 12762 } 12763 12764 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 12765 dtrace_dof_error(dof, "referenced section is the wrong type"); 12766 return (NULL); 12767 } 12768 12769 return (sec); 12770 } 12771 12772 static dtrace_probedesc_t * 12773 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 12774 { 12775 dof_probedesc_t *probe; 12776 dof_sec_t *strtab; 12777 uintptr_t daddr = (uintptr_t)dof; 12778 uintptr_t str; 12779 size_t size; 12780 12781 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 12782 dtrace_dof_error(dof, "invalid probe section"); 12783 return (NULL); 12784 } 12785 12786 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12787 dtrace_dof_error(dof, "bad alignment in probe description"); 12788 return (NULL); 12789 } 12790 12791 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 12792 dtrace_dof_error(dof, "truncated probe description"); 12793 return (NULL); 12794 } 12795 12796 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 12797 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 12798 12799 if (strtab == NULL) 12800 return (NULL); 12801 12802 str = daddr + strtab->dofs_offset; 12803 size = strtab->dofs_size; 12804 12805 if (probe->dofp_provider >= strtab->dofs_size) { 12806 dtrace_dof_error(dof, "corrupt probe provider"); 12807 return (NULL); 12808 } 12809 12810 (void) strncpy(desc->dtpd_provider, 12811 (char *)(str + probe->dofp_provider), 12812 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 12813 12814 if (probe->dofp_mod >= strtab->dofs_size) { 12815 dtrace_dof_error(dof, "corrupt probe module"); 12816 return (NULL); 12817 } 12818 12819 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 12820 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 12821 12822 if (probe->dofp_func >= strtab->dofs_size) { 12823 dtrace_dof_error(dof, "corrupt probe function"); 12824 return (NULL); 12825 } 12826 12827 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 12828 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 12829 12830 if (probe->dofp_name >= strtab->dofs_size) { 12831 dtrace_dof_error(dof, "corrupt probe name"); 12832 return (NULL); 12833 } 12834 12835 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 12836 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 12837 12838 return (desc); 12839 } 12840 12841 static dtrace_difo_t * 12842 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12843 cred_t *cr) 12844 { 12845 dtrace_difo_t *dp; 12846 size_t ttl = 0; 12847 dof_difohdr_t *dofd; 12848 uintptr_t daddr = (uintptr_t)dof; 12849 size_t max = dtrace_difo_maxsize; 12850 int i, l, n; 12851 12852 static const struct { 12853 int section; 12854 int bufoffs; 12855 int lenoffs; 12856 int entsize; 12857 int align; 12858 const char *msg; 12859 } difo[] = { 12860 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 12861 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 12862 sizeof (dif_instr_t), "multiple DIF sections" }, 12863 12864 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 12865 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 12866 sizeof (uint64_t), "multiple integer tables" }, 12867 12868 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 12869 offsetof(dtrace_difo_t, dtdo_strlen), 0, 12870 sizeof (char), "multiple string tables" }, 12871 12872 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 12873 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 12874 sizeof (uint_t), "multiple variable tables" }, 12875 12876 { DOF_SECT_NONE, 0, 0, 0, 0, NULL } 12877 }; 12878 12879 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 12880 dtrace_dof_error(dof, "invalid DIFO header section"); 12881 return (NULL); 12882 } 12883 12884 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12885 dtrace_dof_error(dof, "bad alignment in DIFO header"); 12886 return (NULL); 12887 } 12888 12889 if (sec->dofs_size < sizeof (dof_difohdr_t) || 12890 sec->dofs_size % sizeof (dof_secidx_t)) { 12891 dtrace_dof_error(dof, "bad size in DIFO header"); 12892 return (NULL); 12893 } 12894 12895 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12896 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 12897 12898 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 12899 dp->dtdo_rtype = dofd->dofd_rtype; 12900 12901 for (l = 0; l < n; l++) { 12902 dof_sec_t *subsec; 12903 void **bufp; 12904 uint32_t *lenp; 12905 12906 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 12907 dofd->dofd_links[l])) == NULL) 12908 goto err; /* invalid section link */ 12909 12910 if (ttl + subsec->dofs_size > max) { 12911 dtrace_dof_error(dof, "exceeds maximum size"); 12912 goto err; 12913 } 12914 12915 ttl += subsec->dofs_size; 12916 12917 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 12918 if (subsec->dofs_type != difo[i].section) 12919 continue; 12920 12921 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 12922 dtrace_dof_error(dof, "section not loaded"); 12923 goto err; 12924 } 12925 12926 if (subsec->dofs_align != difo[i].align) { 12927 dtrace_dof_error(dof, "bad alignment"); 12928 goto err; 12929 } 12930 12931 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 12932 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 12933 12934 if (*bufp != NULL) { 12935 dtrace_dof_error(dof, difo[i].msg); 12936 goto err; 12937 } 12938 12939 if (difo[i].entsize != subsec->dofs_entsize) { 12940 dtrace_dof_error(dof, "entry size mismatch"); 12941 goto err; 12942 } 12943 12944 if (subsec->dofs_entsize != 0 && 12945 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 12946 dtrace_dof_error(dof, "corrupt entry size"); 12947 goto err; 12948 } 12949 12950 *lenp = subsec->dofs_size; 12951 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 12952 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 12953 *bufp, subsec->dofs_size); 12954 12955 if (subsec->dofs_entsize != 0) 12956 *lenp /= subsec->dofs_entsize; 12957 12958 break; 12959 } 12960 12961 /* 12962 * If we encounter a loadable DIFO sub-section that is not 12963 * known to us, assume this is a broken program and fail. 12964 */ 12965 if (difo[i].section == DOF_SECT_NONE && 12966 (subsec->dofs_flags & DOF_SECF_LOAD)) { 12967 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 12968 goto err; 12969 } 12970 } 12971 12972 if (dp->dtdo_buf == NULL) { 12973 /* 12974 * We can't have a DIF object without DIF text. 12975 */ 12976 dtrace_dof_error(dof, "missing DIF text"); 12977 goto err; 12978 } 12979 12980 /* 12981 * Before we validate the DIF object, run through the variable table 12982 * looking for the strings -- if any of their size are under, we'll set 12983 * their size to be the system-wide default string size. Note that 12984 * this should _not_ happen if the "strsize" option has been set -- 12985 * in this case, the compiler should have set the size to reflect the 12986 * setting of the option. 12987 */ 12988 for (i = 0; i < dp->dtdo_varlen; i++) { 12989 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 12990 dtrace_diftype_t *t = &v->dtdv_type; 12991 12992 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 12993 continue; 12994 12995 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 12996 t->dtdt_size = dtrace_strsize_default; 12997 } 12998 12999 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 13000 goto err; 13001 13002 dtrace_difo_init(dp, vstate); 13003 return (dp); 13004 13005 err: 13006 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 13007 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 13008 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 13009 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 13010 13011 kmem_free(dp, sizeof (dtrace_difo_t)); 13012 return (NULL); 13013 } 13014 13015 static dtrace_predicate_t * 13016 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13017 cred_t *cr) 13018 { 13019 dtrace_difo_t *dp; 13020 13021 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 13022 return (NULL); 13023 13024 return (dtrace_predicate_create(dp)); 13025 } 13026 13027 static dtrace_actdesc_t * 13028 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13029 cred_t *cr) 13030 { 13031 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 13032 dof_actdesc_t *desc; 13033 dof_sec_t *difosec; 13034 size_t offs; 13035 uintptr_t daddr = (uintptr_t)dof; 13036 uint64_t arg; 13037 dtrace_actkind_t kind; 13038 13039 if (sec->dofs_type != DOF_SECT_ACTDESC) { 13040 dtrace_dof_error(dof, "invalid action section"); 13041 return (NULL); 13042 } 13043 13044 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 13045 dtrace_dof_error(dof, "truncated action description"); 13046 return (NULL); 13047 } 13048 13049 if (sec->dofs_align != sizeof (uint64_t)) { 13050 dtrace_dof_error(dof, "bad alignment in action description"); 13051 return (NULL); 13052 } 13053 13054 if (sec->dofs_size < sec->dofs_entsize) { 13055 dtrace_dof_error(dof, "section entry size exceeds total size"); 13056 return (NULL); 13057 } 13058 13059 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 13060 dtrace_dof_error(dof, "bad entry size in action description"); 13061 return (NULL); 13062 } 13063 13064 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 13065 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 13066 return (NULL); 13067 } 13068 13069 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 13070 desc = (dof_actdesc_t *)(daddr + 13071 (uintptr_t)sec->dofs_offset + offs); 13072 kind = (dtrace_actkind_t)desc->dofa_kind; 13073 13074 if ((DTRACEACT_ISPRINTFLIKE(kind) && 13075 (kind != DTRACEACT_PRINTA || 13076 desc->dofa_strtab != DOF_SECIDX_NONE)) || 13077 (kind == DTRACEACT_DIFEXPR && 13078 desc->dofa_strtab != DOF_SECIDX_NONE)) { 13079 dof_sec_t *strtab; 13080 char *str, *fmt; 13081 uint64_t i; 13082 13083 /* 13084 * The argument to these actions is an index into the 13085 * DOF string table. For printf()-like actions, this 13086 * is the format string. For print(), this is the 13087 * CTF type of the expression result. 13088 */ 13089 if ((strtab = dtrace_dof_sect(dof, 13090 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 13091 goto err; 13092 13093 str = (char *)((uintptr_t)dof + 13094 (uintptr_t)strtab->dofs_offset); 13095 13096 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 13097 if (str[i] == '\0') 13098 break; 13099 } 13100 13101 if (i >= strtab->dofs_size) { 13102 dtrace_dof_error(dof, "bogus format string"); 13103 goto err; 13104 } 13105 13106 if (i == desc->dofa_arg) { 13107 dtrace_dof_error(dof, "empty format string"); 13108 goto err; 13109 } 13110 13111 i -= desc->dofa_arg; 13112 fmt = kmem_alloc(i + 1, KM_SLEEP); 13113 bcopy(&str[desc->dofa_arg], fmt, i + 1); 13114 arg = (uint64_t)(uintptr_t)fmt; 13115 } else { 13116 if (kind == DTRACEACT_PRINTA) { 13117 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 13118 arg = 0; 13119 } else { 13120 arg = desc->dofa_arg; 13121 } 13122 } 13123 13124 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 13125 desc->dofa_uarg, arg); 13126 13127 if (last != NULL) { 13128 last->dtad_next = act; 13129 } else { 13130 first = act; 13131 } 13132 13133 last = act; 13134 13135 if (desc->dofa_difo == DOF_SECIDX_NONE) 13136 continue; 13137 13138 if ((difosec = dtrace_dof_sect(dof, 13139 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 13140 goto err; 13141 13142 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 13143 13144 if (act->dtad_difo == NULL) 13145 goto err; 13146 } 13147 13148 ASSERT(first != NULL); 13149 return (first); 13150 13151 err: 13152 for (act = first; act != NULL; act = next) { 13153 next = act->dtad_next; 13154 dtrace_actdesc_release(act, vstate); 13155 } 13156 13157 return (NULL); 13158 } 13159 13160 static dtrace_ecbdesc_t * 13161 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13162 cred_t *cr) 13163 { 13164 dtrace_ecbdesc_t *ep; 13165 dof_ecbdesc_t *ecb; 13166 dtrace_probedesc_t *desc; 13167 dtrace_predicate_t *pred = NULL; 13168 13169 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 13170 dtrace_dof_error(dof, "truncated ECB description"); 13171 return (NULL); 13172 } 13173 13174 if (sec->dofs_align != sizeof (uint64_t)) { 13175 dtrace_dof_error(dof, "bad alignment in ECB description"); 13176 return (NULL); 13177 } 13178 13179 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 13180 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 13181 13182 if (sec == NULL) 13183 return (NULL); 13184 13185 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 13186 ep->dted_uarg = ecb->dofe_uarg; 13187 desc = &ep->dted_probe; 13188 13189 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 13190 goto err; 13191 13192 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 13193 if ((sec = dtrace_dof_sect(dof, 13194 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 13195 goto err; 13196 13197 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 13198 goto err; 13199 13200 ep->dted_pred.dtpdd_predicate = pred; 13201 } 13202 13203 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 13204 if ((sec = dtrace_dof_sect(dof, 13205 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 13206 goto err; 13207 13208 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 13209 13210 if (ep->dted_action == NULL) 13211 goto err; 13212 } 13213 13214 return (ep); 13215 13216 err: 13217 if (pred != NULL) 13218 dtrace_predicate_release(pred, vstate); 13219 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 13220 return (NULL); 13221 } 13222 13223 /* 13224 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 13225 * specified DOF. At present, this amounts to simply adding 'ubase' to the 13226 * site of any user SETX relocations to account for load object base address. 13227 * In the future, if we need other relocations, this function can be extended. 13228 */ 13229 static int 13230 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 13231 { 13232 uintptr_t daddr = (uintptr_t)dof; 13233 uintptr_t ts_end; 13234 dof_relohdr_t *dofr = 13235 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 13236 dof_sec_t *ss, *rs, *ts; 13237 dof_relodesc_t *r; 13238 uint_t i, n; 13239 13240 if (sec->dofs_size < sizeof (dof_relohdr_t) || 13241 sec->dofs_align != sizeof (dof_secidx_t)) { 13242 dtrace_dof_error(dof, "invalid relocation header"); 13243 return (-1); 13244 } 13245 13246 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 13247 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 13248 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 13249 ts_end = (uintptr_t)ts + sizeof (dof_sec_t); 13250 13251 if (ss == NULL || rs == NULL || ts == NULL) 13252 return (-1); /* dtrace_dof_error() has been called already */ 13253 13254 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 13255 rs->dofs_align != sizeof (uint64_t)) { 13256 dtrace_dof_error(dof, "invalid relocation section"); 13257 return (-1); 13258 } 13259 13260 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 13261 n = rs->dofs_size / rs->dofs_entsize; 13262 13263 for (i = 0; i < n; i++) { 13264 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 13265 13266 switch (r->dofr_type) { 13267 case DOF_RELO_NONE: 13268 break; 13269 case DOF_RELO_SETX: 13270 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 13271 sizeof (uint64_t) > ts->dofs_size) { 13272 dtrace_dof_error(dof, "bad relocation offset"); 13273 return (-1); 13274 } 13275 13276 if (taddr >= (uintptr_t)ts && taddr < ts_end) { 13277 dtrace_dof_error(dof, "bad relocation offset"); 13278 return (-1); 13279 } 13280 13281 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 13282 dtrace_dof_error(dof, "misaligned setx relo"); 13283 return (-1); 13284 } 13285 13286 *(uint64_t *)taddr += ubase; 13287 break; 13288 default: 13289 dtrace_dof_error(dof, "invalid relocation type"); 13290 return (-1); 13291 } 13292 13293 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 13294 } 13295 13296 return (0); 13297 } 13298 13299 /* 13300 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 13301 * header: it should be at the front of a memory region that is at least 13302 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 13303 * size. It need not be validated in any other way. 13304 */ 13305 static int 13306 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 13307 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 13308 { 13309 uint64_t len = dof->dofh_loadsz, seclen; 13310 uintptr_t daddr = (uintptr_t)dof; 13311 dtrace_ecbdesc_t *ep; 13312 dtrace_enabling_t *enab; 13313 uint_t i; 13314 13315 ASSERT(MUTEX_HELD(&dtrace_lock)); 13316 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 13317 13318 /* 13319 * Check the DOF header identification bytes. In addition to checking 13320 * valid settings, we also verify that unused bits/bytes are zeroed so 13321 * we can use them later without fear of regressing existing binaries. 13322 */ 13323 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 13324 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 13325 dtrace_dof_error(dof, "DOF magic string mismatch"); 13326 return (-1); 13327 } 13328 13329 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 13330 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 13331 dtrace_dof_error(dof, "DOF has invalid data model"); 13332 return (-1); 13333 } 13334 13335 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 13336 dtrace_dof_error(dof, "DOF encoding mismatch"); 13337 return (-1); 13338 } 13339 13340 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 13341 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 13342 dtrace_dof_error(dof, "DOF version mismatch"); 13343 return (-1); 13344 } 13345 13346 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 13347 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 13348 return (-1); 13349 } 13350 13351 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 13352 dtrace_dof_error(dof, "DOF uses too many integer registers"); 13353 return (-1); 13354 } 13355 13356 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 13357 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 13358 return (-1); 13359 } 13360 13361 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 13362 if (dof->dofh_ident[i] != 0) { 13363 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 13364 return (-1); 13365 } 13366 } 13367 13368 if (dof->dofh_flags & ~DOF_FL_VALID) { 13369 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 13370 return (-1); 13371 } 13372 13373 if (dof->dofh_secsize == 0) { 13374 dtrace_dof_error(dof, "zero section header size"); 13375 return (-1); 13376 } 13377 13378 /* 13379 * Check that the section headers don't exceed the amount of DOF 13380 * data. Note that we cast the section size and number of sections 13381 * to uint64_t's to prevent possible overflow in the multiplication. 13382 */ 13383 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 13384 13385 if (dof->dofh_secoff > len || seclen > len || 13386 dof->dofh_secoff + seclen > len) { 13387 dtrace_dof_error(dof, "truncated section headers"); 13388 return (-1); 13389 } 13390 13391 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 13392 dtrace_dof_error(dof, "misaligned section headers"); 13393 return (-1); 13394 } 13395 13396 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 13397 dtrace_dof_error(dof, "misaligned section size"); 13398 return (-1); 13399 } 13400 13401 /* 13402 * Take an initial pass through the section headers to be sure that 13403 * the headers don't have stray offsets. If the 'noprobes' flag is 13404 * set, do not permit sections relating to providers, probes, or args. 13405 */ 13406 for (i = 0; i < dof->dofh_secnum; i++) { 13407 dof_sec_t *sec = (dof_sec_t *)(daddr + 13408 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13409 13410 if (noprobes) { 13411 switch (sec->dofs_type) { 13412 case DOF_SECT_PROVIDER: 13413 case DOF_SECT_PROBES: 13414 case DOF_SECT_PRARGS: 13415 case DOF_SECT_PROFFS: 13416 dtrace_dof_error(dof, "illegal sections " 13417 "for enabling"); 13418 return (-1); 13419 } 13420 } 13421 13422 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 13423 !(sec->dofs_flags & DOF_SECF_LOAD)) { 13424 dtrace_dof_error(dof, "loadable section with load " 13425 "flag unset"); 13426 return (-1); 13427 } 13428 13429 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13430 continue; /* just ignore non-loadable sections */ 13431 13432 if (!ISP2(sec->dofs_align)) { 13433 dtrace_dof_error(dof, "bad section alignment"); 13434 return (-1); 13435 } 13436 13437 if (sec->dofs_offset & (sec->dofs_align - 1)) { 13438 dtrace_dof_error(dof, "misaligned section"); 13439 return (-1); 13440 } 13441 13442 if (sec->dofs_offset > len || sec->dofs_size > len || 13443 sec->dofs_offset + sec->dofs_size > len) { 13444 dtrace_dof_error(dof, "corrupt section header"); 13445 return (-1); 13446 } 13447 13448 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 13449 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 13450 dtrace_dof_error(dof, "non-terminating string table"); 13451 return (-1); 13452 } 13453 } 13454 13455 /* 13456 * Take a second pass through the sections and locate and perform any 13457 * relocations that are present. We do this after the first pass to 13458 * be sure that all sections have had their headers validated. 13459 */ 13460 for (i = 0; i < dof->dofh_secnum; i++) { 13461 dof_sec_t *sec = (dof_sec_t *)(daddr + 13462 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13463 13464 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13465 continue; /* skip sections that are not loadable */ 13466 13467 switch (sec->dofs_type) { 13468 case DOF_SECT_URELHDR: 13469 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 13470 return (-1); 13471 break; 13472 } 13473 } 13474 13475 if ((enab = *enabp) == NULL) 13476 enab = *enabp = dtrace_enabling_create(vstate); 13477 13478 for (i = 0; i < dof->dofh_secnum; i++) { 13479 dof_sec_t *sec = (dof_sec_t *)(daddr + 13480 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13481 13482 if (sec->dofs_type != DOF_SECT_ECBDESC) 13483 continue; 13484 13485 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 13486 dtrace_enabling_destroy(enab); 13487 *enabp = NULL; 13488 return (-1); 13489 } 13490 13491 dtrace_enabling_add(enab, ep); 13492 } 13493 13494 return (0); 13495 } 13496 13497 /* 13498 * Process DOF for any options. This routine assumes that the DOF has been 13499 * at least processed by dtrace_dof_slurp(). 13500 */ 13501 static int 13502 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 13503 { 13504 int i, rval; 13505 uint32_t entsize; 13506 size_t offs; 13507 dof_optdesc_t *desc; 13508 13509 for (i = 0; i < dof->dofh_secnum; i++) { 13510 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 13511 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13512 13513 if (sec->dofs_type != DOF_SECT_OPTDESC) 13514 continue; 13515 13516 if (sec->dofs_align != sizeof (uint64_t)) { 13517 dtrace_dof_error(dof, "bad alignment in " 13518 "option description"); 13519 return (EINVAL); 13520 } 13521 13522 if ((entsize = sec->dofs_entsize) == 0) { 13523 dtrace_dof_error(dof, "zeroed option entry size"); 13524 return (EINVAL); 13525 } 13526 13527 if (entsize < sizeof (dof_optdesc_t)) { 13528 dtrace_dof_error(dof, "bad option entry size"); 13529 return (EINVAL); 13530 } 13531 13532 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 13533 desc = (dof_optdesc_t *)((uintptr_t)dof + 13534 (uintptr_t)sec->dofs_offset + offs); 13535 13536 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 13537 dtrace_dof_error(dof, "non-zero option string"); 13538 return (EINVAL); 13539 } 13540 13541 if (desc->dofo_value == DTRACEOPT_UNSET) { 13542 dtrace_dof_error(dof, "unset option"); 13543 return (EINVAL); 13544 } 13545 13546 if ((rval = dtrace_state_option(state, 13547 desc->dofo_option, desc->dofo_value)) != 0) { 13548 dtrace_dof_error(dof, "rejected option"); 13549 return (rval); 13550 } 13551 } 13552 } 13553 13554 return (0); 13555 } 13556 13557 /* 13558 * DTrace Consumer State Functions 13559 */ 13560 int 13561 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 13562 { 13563 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 13564 void *base; 13565 uintptr_t limit; 13566 dtrace_dynvar_t *dvar, *next, *start; 13567 int i; 13568 13569 ASSERT(MUTEX_HELD(&dtrace_lock)); 13570 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 13571 13572 bzero(dstate, sizeof (dtrace_dstate_t)); 13573 13574 if ((dstate->dtds_chunksize = chunksize) == 0) 13575 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 13576 13577 VERIFY(dstate->dtds_chunksize < LONG_MAX); 13578 13579 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 13580 size = min; 13581 13582 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 13583 return (ENOMEM); 13584 13585 dstate->dtds_size = size; 13586 dstate->dtds_base = base; 13587 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 13588 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 13589 13590 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 13591 13592 if (hashsize != 1 && (hashsize & 1)) 13593 hashsize--; 13594 13595 dstate->dtds_hashsize = hashsize; 13596 dstate->dtds_hash = dstate->dtds_base; 13597 13598 /* 13599 * Set all of our hash buckets to point to the single sink, and (if 13600 * it hasn't already been set), set the sink's hash value to be the 13601 * sink sentinel value. The sink is needed for dynamic variable 13602 * lookups to know that they have iterated over an entire, valid hash 13603 * chain. 13604 */ 13605 for (i = 0; i < hashsize; i++) 13606 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 13607 13608 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 13609 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 13610 13611 /* 13612 * Determine number of active CPUs. Divide free list evenly among 13613 * active CPUs. 13614 */ 13615 start = (dtrace_dynvar_t *) 13616 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 13617 limit = (uintptr_t)base + size; 13618 13619 VERIFY((uintptr_t)start < limit); 13620 VERIFY((uintptr_t)start >= (uintptr_t)base); 13621 13622 maxper = (limit - (uintptr_t)start) / NCPU; 13623 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 13624 13625 for (i = 0; i < NCPU; i++) { 13626 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 13627 13628 /* 13629 * If we don't even have enough chunks to make it once through 13630 * NCPUs, we're just going to allocate everything to the first 13631 * CPU. And if we're on the last CPU, we're going to allocate 13632 * whatever is left over. In either case, we set the limit to 13633 * be the limit of the dynamic variable space. 13634 */ 13635 if (maxper == 0 || i == NCPU - 1) { 13636 limit = (uintptr_t)base + size; 13637 start = NULL; 13638 } else { 13639 limit = (uintptr_t)start + maxper; 13640 start = (dtrace_dynvar_t *)limit; 13641 } 13642 13643 VERIFY(limit <= (uintptr_t)base + size); 13644 13645 for (;;) { 13646 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 13647 dstate->dtds_chunksize); 13648 13649 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 13650 break; 13651 13652 VERIFY((uintptr_t)dvar >= (uintptr_t)base && 13653 (uintptr_t)dvar <= (uintptr_t)base + size); 13654 dvar->dtdv_next = next; 13655 dvar = next; 13656 } 13657 13658 if (maxper == 0) 13659 break; 13660 } 13661 13662 return (0); 13663 } 13664 13665 void 13666 dtrace_dstate_fini(dtrace_dstate_t *dstate) 13667 { 13668 ASSERT(MUTEX_HELD(&cpu_lock)); 13669 13670 if (dstate->dtds_base == NULL) 13671 return; 13672 13673 kmem_free(dstate->dtds_base, dstate->dtds_size); 13674 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 13675 } 13676 13677 static void 13678 dtrace_vstate_fini(dtrace_vstate_t *vstate) 13679 { 13680 /* 13681 * Logical XOR, where are you? 13682 */ 13683 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 13684 13685 if (vstate->dtvs_nglobals > 0) { 13686 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 13687 sizeof (dtrace_statvar_t *)); 13688 } 13689 13690 if (vstate->dtvs_ntlocals > 0) { 13691 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 13692 sizeof (dtrace_difv_t)); 13693 } 13694 13695 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 13696 13697 if (vstate->dtvs_nlocals > 0) { 13698 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 13699 sizeof (dtrace_statvar_t *)); 13700 } 13701 } 13702 13703 static void 13704 dtrace_state_clean(dtrace_state_t *state) 13705 { 13706 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 13707 return; 13708 13709 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 13710 dtrace_speculation_clean(state); 13711 } 13712 13713 static void 13714 dtrace_state_deadman(dtrace_state_t *state) 13715 { 13716 hrtime_t now; 13717 13718 dtrace_sync(); 13719 13720 now = dtrace_gethrtime(); 13721 13722 if (state != dtrace_anon.dta_state && 13723 now - state->dts_laststatus >= dtrace_deadman_user) 13724 return; 13725 13726 /* 13727 * We must be sure that dts_alive never appears to be less than the 13728 * value upon entry to dtrace_state_deadman(), and because we lack a 13729 * dtrace_cas64(), we cannot store to it atomically. We thus instead 13730 * store INT64_MAX to it, followed by a memory barrier, followed by 13731 * the new value. This assures that dts_alive never appears to be 13732 * less than its true value, regardless of the order in which the 13733 * stores to the underlying storage are issued. 13734 */ 13735 state->dts_alive = INT64_MAX; 13736 dtrace_membar_producer(); 13737 state->dts_alive = now; 13738 } 13739 13740 dtrace_state_t * 13741 dtrace_state_create(dev_t *devp, cred_t *cr) 13742 { 13743 minor_t minor; 13744 major_t major; 13745 char c[30]; 13746 dtrace_state_t *state; 13747 dtrace_optval_t *opt; 13748 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 13749 13750 ASSERT(MUTEX_HELD(&dtrace_lock)); 13751 ASSERT(MUTEX_HELD(&cpu_lock)); 13752 13753 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 13754 VM_BESTFIT | VM_SLEEP); 13755 13756 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 13757 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 13758 return (NULL); 13759 } 13760 13761 state = ddi_get_soft_state(dtrace_softstate, minor); 13762 state->dts_epid = DTRACE_EPIDNONE + 1; 13763 13764 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 13765 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 13766 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 13767 13768 if (devp != NULL) { 13769 major = getemajor(*devp); 13770 } else { 13771 major = ddi_driver_major(dtrace_devi); 13772 } 13773 13774 state->dts_dev = makedevice(major, minor); 13775 13776 if (devp != NULL) 13777 *devp = state->dts_dev; 13778 13779 /* 13780 * We allocate NCPU buffers. On the one hand, this can be quite 13781 * a bit of memory per instance (nearly 36K on a Starcat). On the 13782 * other hand, it saves an additional memory reference in the probe 13783 * path. 13784 */ 13785 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 13786 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 13787 state->dts_cleaner = CYCLIC_NONE; 13788 state->dts_deadman = CYCLIC_NONE; 13789 state->dts_vstate.dtvs_state = state; 13790 13791 for (i = 0; i < DTRACEOPT_MAX; i++) 13792 state->dts_options[i] = DTRACEOPT_UNSET; 13793 13794 /* 13795 * Set the default options. 13796 */ 13797 opt = state->dts_options; 13798 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 13799 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 13800 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 13801 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 13802 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 13803 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 13804 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 13805 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 13806 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 13807 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 13808 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 13809 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 13810 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 13811 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 13812 13813 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 13814 13815 /* 13816 * Depending on the user credentials, we set flag bits which alter probe 13817 * visibility or the amount of destructiveness allowed. In the case of 13818 * actual anonymous tracing, or the possession of all privileges, all of 13819 * the normal checks are bypassed. 13820 */ 13821 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 13822 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 13823 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 13824 } else { 13825 /* 13826 * Set up the credentials for this instantiation. We take a 13827 * hold on the credential to prevent it from disappearing on 13828 * us; this in turn prevents the zone_t referenced by this 13829 * credential from disappearing. This means that we can 13830 * examine the credential and the zone from probe context. 13831 */ 13832 crhold(cr); 13833 state->dts_cred.dcr_cred = cr; 13834 13835 /* 13836 * CRA_PROC means "we have *some* privilege for dtrace" and 13837 * unlocks the use of variables like pid, zonename, etc. 13838 */ 13839 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 13840 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13841 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 13842 } 13843 13844 /* 13845 * dtrace_user allows use of syscall and profile providers. 13846 * If the user also has proc_owner and/or proc_zone, we 13847 * extend the scope to include additional visibility and 13848 * destructive power. 13849 */ 13850 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 13851 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 13852 state->dts_cred.dcr_visible |= 13853 DTRACE_CRV_ALLPROC; 13854 13855 state->dts_cred.dcr_action |= 13856 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13857 } 13858 13859 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 13860 state->dts_cred.dcr_visible |= 13861 DTRACE_CRV_ALLZONE; 13862 13863 state->dts_cred.dcr_action |= 13864 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13865 } 13866 13867 /* 13868 * If we have all privs in whatever zone this is, 13869 * we can do destructive things to processes which 13870 * have altered credentials. 13871 */ 13872 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13873 cr->cr_zone->zone_privset)) { 13874 state->dts_cred.dcr_action |= 13875 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13876 } 13877 } 13878 13879 /* 13880 * Holding the dtrace_kernel privilege also implies that 13881 * the user has the dtrace_user privilege from a visibility 13882 * perspective. But without further privileges, some 13883 * destructive actions are not available. 13884 */ 13885 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 13886 /* 13887 * Make all probes in all zones visible. However, 13888 * this doesn't mean that all actions become available 13889 * to all zones. 13890 */ 13891 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 13892 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 13893 13894 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 13895 DTRACE_CRA_PROC; 13896 /* 13897 * Holding proc_owner means that destructive actions 13898 * for *this* zone are allowed. 13899 */ 13900 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13901 state->dts_cred.dcr_action |= 13902 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13903 13904 /* 13905 * Holding proc_zone means that destructive actions 13906 * for this user/group ID in all zones is allowed. 13907 */ 13908 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13909 state->dts_cred.dcr_action |= 13910 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13911 13912 /* 13913 * If we have all privs in whatever zone this is, 13914 * we can do destructive things to processes which 13915 * have altered credentials. 13916 */ 13917 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13918 cr->cr_zone->zone_privset)) { 13919 state->dts_cred.dcr_action |= 13920 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13921 } 13922 } 13923 13924 /* 13925 * Holding the dtrace_proc privilege gives control over fasttrap 13926 * and pid providers. We need to grant wider destructive 13927 * privileges in the event that the user has proc_owner and/or 13928 * proc_zone. 13929 */ 13930 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13931 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13932 state->dts_cred.dcr_action |= 13933 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13934 13935 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13936 state->dts_cred.dcr_action |= 13937 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13938 } 13939 } 13940 13941 return (state); 13942 } 13943 13944 static int 13945 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 13946 { 13947 dtrace_optval_t *opt = state->dts_options, size; 13948 processorid_t cpu; 13949 int flags = 0, rval, factor, divisor = 1; 13950 13951 ASSERT(MUTEX_HELD(&dtrace_lock)); 13952 ASSERT(MUTEX_HELD(&cpu_lock)); 13953 ASSERT(which < DTRACEOPT_MAX); 13954 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 13955 (state == dtrace_anon.dta_state && 13956 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 13957 13958 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 13959 return (0); 13960 13961 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 13962 cpu = opt[DTRACEOPT_CPU]; 13963 13964 if (which == DTRACEOPT_SPECSIZE) 13965 flags |= DTRACEBUF_NOSWITCH; 13966 13967 if (which == DTRACEOPT_BUFSIZE) { 13968 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 13969 flags |= DTRACEBUF_RING; 13970 13971 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 13972 flags |= DTRACEBUF_FILL; 13973 13974 if (state != dtrace_anon.dta_state || 13975 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 13976 flags |= DTRACEBUF_INACTIVE; 13977 } 13978 13979 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 13980 /* 13981 * The size must be 8-byte aligned. If the size is not 8-byte 13982 * aligned, drop it down by the difference. 13983 */ 13984 if (size & (sizeof (uint64_t) - 1)) 13985 size -= size & (sizeof (uint64_t) - 1); 13986 13987 if (size < state->dts_reserve) { 13988 /* 13989 * Buffers always must be large enough to accommodate 13990 * their prereserved space. We return E2BIG instead 13991 * of ENOMEM in this case to allow for user-level 13992 * software to differentiate the cases. 13993 */ 13994 return (E2BIG); 13995 } 13996 13997 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 13998 13999 if (rval != ENOMEM) { 14000 opt[which] = size; 14001 return (rval); 14002 } 14003 14004 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14005 return (rval); 14006 14007 for (divisor = 2; divisor < factor; divisor <<= 1) 14008 continue; 14009 } 14010 14011 return (ENOMEM); 14012 } 14013 14014 static int 14015 dtrace_state_buffers(dtrace_state_t *state) 14016 { 14017 dtrace_speculation_t *spec = state->dts_speculations; 14018 int rval, i; 14019 14020 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 14021 DTRACEOPT_BUFSIZE)) != 0) 14022 return (rval); 14023 14024 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 14025 DTRACEOPT_AGGSIZE)) != 0) 14026 return (rval); 14027 14028 for (i = 0; i < state->dts_nspeculations; i++) { 14029 if ((rval = dtrace_state_buffer(state, 14030 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 14031 return (rval); 14032 } 14033 14034 return (0); 14035 } 14036 14037 static void 14038 dtrace_state_prereserve(dtrace_state_t *state) 14039 { 14040 dtrace_ecb_t *ecb; 14041 dtrace_probe_t *probe; 14042 14043 state->dts_reserve = 0; 14044 14045 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 14046 return; 14047 14048 /* 14049 * If our buffer policy is a "fill" buffer policy, we need to set the 14050 * prereserved space to be the space required by the END probes. 14051 */ 14052 probe = dtrace_probes[dtrace_probeid_end - 1]; 14053 ASSERT(probe != NULL); 14054 14055 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 14056 if (ecb->dte_state != state) 14057 continue; 14058 14059 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 14060 } 14061 } 14062 14063 static int 14064 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 14065 { 14066 dtrace_optval_t *opt = state->dts_options, sz, nspec; 14067 dtrace_speculation_t *spec; 14068 dtrace_buffer_t *buf; 14069 cyc_handler_t hdlr; 14070 cyc_time_t when; 14071 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14072 dtrace_icookie_t cookie; 14073 14074 mutex_enter(&cpu_lock); 14075 mutex_enter(&dtrace_lock); 14076 14077 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14078 rval = EBUSY; 14079 goto out; 14080 } 14081 14082 /* 14083 * Before we can perform any checks, we must prime all of the 14084 * retained enablings that correspond to this state. 14085 */ 14086 dtrace_enabling_prime(state); 14087 14088 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 14089 rval = EACCES; 14090 goto out; 14091 } 14092 14093 dtrace_state_prereserve(state); 14094 14095 /* 14096 * Now we want to do is try to allocate our speculations. 14097 * We do not automatically resize the number of speculations; if 14098 * this fails, we will fail the operation. 14099 */ 14100 nspec = opt[DTRACEOPT_NSPEC]; 14101 ASSERT(nspec != DTRACEOPT_UNSET); 14102 14103 if (nspec > INT_MAX) { 14104 rval = ENOMEM; 14105 goto out; 14106 } 14107 14108 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 14109 KM_NOSLEEP | KM_NORMALPRI); 14110 14111 if (spec == NULL) { 14112 rval = ENOMEM; 14113 goto out; 14114 } 14115 14116 state->dts_speculations = spec; 14117 state->dts_nspeculations = (int)nspec; 14118 14119 for (i = 0; i < nspec; i++) { 14120 if ((buf = kmem_zalloc(bufsize, 14121 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 14122 rval = ENOMEM; 14123 goto err; 14124 } 14125 14126 spec[i].dtsp_buffer = buf; 14127 } 14128 14129 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 14130 if (dtrace_anon.dta_state == NULL) { 14131 rval = ENOENT; 14132 goto out; 14133 } 14134 14135 if (state->dts_necbs != 0) { 14136 rval = EALREADY; 14137 goto out; 14138 } 14139 14140 state->dts_anon = dtrace_anon_grab(); 14141 ASSERT(state->dts_anon != NULL); 14142 state = state->dts_anon; 14143 14144 /* 14145 * We want "grabanon" to be set in the grabbed state, so we'll 14146 * copy that option value from the grabbing state into the 14147 * grabbed state. 14148 */ 14149 state->dts_options[DTRACEOPT_GRABANON] = 14150 opt[DTRACEOPT_GRABANON]; 14151 14152 *cpu = dtrace_anon.dta_beganon; 14153 14154 /* 14155 * If the anonymous state is active (as it almost certainly 14156 * is if the anonymous enabling ultimately matched anything), 14157 * we don't allow any further option processing -- but we 14158 * don't return failure. 14159 */ 14160 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14161 goto out; 14162 } 14163 14164 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 14165 opt[DTRACEOPT_AGGSIZE] != 0) { 14166 if (state->dts_aggregations == NULL) { 14167 /* 14168 * We're not going to create an aggregation buffer 14169 * because we don't have any ECBs that contain 14170 * aggregations -- set this option to 0. 14171 */ 14172 opt[DTRACEOPT_AGGSIZE] = 0; 14173 } else { 14174 /* 14175 * If we have an aggregation buffer, we must also have 14176 * a buffer to use as scratch. 14177 */ 14178 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 14179 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 14180 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 14181 } 14182 } 14183 } 14184 14185 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 14186 opt[DTRACEOPT_SPECSIZE] != 0) { 14187 if (!state->dts_speculates) { 14188 /* 14189 * We're not going to create speculation buffers 14190 * because we don't have any ECBs that actually 14191 * speculate -- set the speculation size to 0. 14192 */ 14193 opt[DTRACEOPT_SPECSIZE] = 0; 14194 } 14195 } 14196 14197 /* 14198 * The bare minimum size for any buffer that we're actually going to 14199 * do anything to is sizeof (uint64_t). 14200 */ 14201 sz = sizeof (uint64_t); 14202 14203 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 14204 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 14205 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 14206 /* 14207 * A buffer size has been explicitly set to 0 (or to a size 14208 * that will be adjusted to 0) and we need the space -- we 14209 * need to return failure. We return ENOSPC to differentiate 14210 * it from failing to allocate a buffer due to failure to meet 14211 * the reserve (for which we return E2BIG). 14212 */ 14213 rval = ENOSPC; 14214 goto out; 14215 } 14216 14217 if ((rval = dtrace_state_buffers(state)) != 0) 14218 goto err; 14219 14220 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 14221 sz = dtrace_dstate_defsize; 14222 14223 do { 14224 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 14225 14226 if (rval == 0) 14227 break; 14228 14229 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14230 goto err; 14231 } while (sz >>= 1); 14232 14233 opt[DTRACEOPT_DYNVARSIZE] = sz; 14234 14235 if (rval != 0) 14236 goto err; 14237 14238 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 14239 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 14240 14241 if (opt[DTRACEOPT_CLEANRATE] == 0) 14242 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 14243 14244 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 14245 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 14246 14247 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 14248 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 14249 14250 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 14251 hdlr.cyh_arg = state; 14252 hdlr.cyh_level = CY_LOW_LEVEL; 14253 14254 when.cyt_when = 0; 14255 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 14256 14257 state->dts_cleaner = cyclic_add(&hdlr, &when); 14258 14259 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 14260 hdlr.cyh_arg = state; 14261 hdlr.cyh_level = CY_LOW_LEVEL; 14262 14263 when.cyt_when = 0; 14264 when.cyt_interval = dtrace_deadman_interval; 14265 14266 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 14267 state->dts_deadman = cyclic_add(&hdlr, &when); 14268 14269 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 14270 14271 if (state->dts_getf != 0 && 14272 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14273 /* 14274 * We don't have kernel privs but we have at least one call 14275 * to getf(); we need to bump our zone's count, and (if 14276 * this is the first enabling to have an unprivileged call 14277 * to getf()) we need to hook into closef(). 14278 */ 14279 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 14280 14281 if (dtrace_getf++ == 0) { 14282 ASSERT(dtrace_closef == NULL); 14283 dtrace_closef = dtrace_getf_barrier; 14284 } 14285 } 14286 14287 /* 14288 * Now it's time to actually fire the BEGIN probe. We need to disable 14289 * interrupts here both to record the CPU on which we fired the BEGIN 14290 * probe (the data from this CPU will be processed first at user 14291 * level) and to manually activate the buffer for this CPU. 14292 */ 14293 cookie = dtrace_interrupt_disable(); 14294 *cpu = CPU->cpu_id; 14295 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 14296 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 14297 14298 dtrace_probe(dtrace_probeid_begin, 14299 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 14300 dtrace_interrupt_enable(cookie); 14301 /* 14302 * We may have had an exit action from a BEGIN probe; only change our 14303 * state to ACTIVE if we're still in WARMUP. 14304 */ 14305 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 14306 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 14307 14308 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 14309 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 14310 14311 /* 14312 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 14313 * want each CPU to transition its principal buffer out of the 14314 * INACTIVE state. Doing this assures that no CPU will suddenly begin 14315 * processing an ECB halfway down a probe's ECB chain; all CPUs will 14316 * atomically transition from processing none of a state's ECBs to 14317 * processing all of them. 14318 */ 14319 dtrace_xcall(DTRACE_CPUALL, 14320 (dtrace_xcall_t)dtrace_buffer_activate, state); 14321 goto out; 14322 14323 err: 14324 dtrace_buffer_free(state->dts_buffer); 14325 dtrace_buffer_free(state->dts_aggbuffer); 14326 14327 if ((nspec = state->dts_nspeculations) == 0) { 14328 ASSERT(state->dts_speculations == NULL); 14329 goto out; 14330 } 14331 14332 spec = state->dts_speculations; 14333 ASSERT(spec != NULL); 14334 14335 for (i = 0; i < state->dts_nspeculations; i++) { 14336 if ((buf = spec[i].dtsp_buffer) == NULL) 14337 break; 14338 14339 dtrace_buffer_free(buf); 14340 kmem_free(buf, bufsize); 14341 } 14342 14343 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14344 state->dts_nspeculations = 0; 14345 state->dts_speculations = NULL; 14346 14347 out: 14348 mutex_exit(&dtrace_lock); 14349 mutex_exit(&cpu_lock); 14350 14351 return (rval); 14352 } 14353 14354 static int 14355 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 14356 { 14357 dtrace_icookie_t cookie; 14358 14359 ASSERT(MUTEX_HELD(&dtrace_lock)); 14360 14361 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 14362 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 14363 return (EINVAL); 14364 14365 /* 14366 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 14367 * to be sure that every CPU has seen it. See below for the details 14368 * on why this is done. 14369 */ 14370 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 14371 dtrace_sync(); 14372 14373 /* 14374 * By this point, it is impossible for any CPU to be still processing 14375 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 14376 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 14377 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 14378 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 14379 * iff we're in the END probe. 14380 */ 14381 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 14382 dtrace_sync(); 14383 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 14384 14385 /* 14386 * Finally, we can release the reserve and call the END probe. We 14387 * disable interrupts across calling the END probe to allow us to 14388 * return the CPU on which we actually called the END probe. This 14389 * allows user-land to be sure that this CPU's principal buffer is 14390 * processed last. 14391 */ 14392 state->dts_reserve = 0; 14393 14394 cookie = dtrace_interrupt_disable(); 14395 *cpu = CPU->cpu_id; 14396 dtrace_probe(dtrace_probeid_end, 14397 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 14398 dtrace_interrupt_enable(cookie); 14399 14400 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 14401 dtrace_sync(); 14402 14403 if (state->dts_getf != 0 && 14404 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14405 /* 14406 * We don't have kernel privs but we have at least one call 14407 * to getf(); we need to lower our zone's count, and (if 14408 * this is the last enabling to have an unprivileged call 14409 * to getf()) we need to clear the closef() hook. 14410 */ 14411 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 14412 ASSERT(dtrace_closef == dtrace_getf_barrier); 14413 ASSERT(dtrace_getf > 0); 14414 14415 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 14416 14417 if (--dtrace_getf == 0) 14418 dtrace_closef = NULL; 14419 } 14420 14421 return (0); 14422 } 14423 14424 static int 14425 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 14426 dtrace_optval_t val) 14427 { 14428 ASSERT(MUTEX_HELD(&dtrace_lock)); 14429 14430 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14431 return (EBUSY); 14432 14433 if (option >= DTRACEOPT_MAX) 14434 return (EINVAL); 14435 14436 if (option != DTRACEOPT_CPU && val < 0) 14437 return (EINVAL); 14438 14439 switch (option) { 14440 case DTRACEOPT_DESTRUCTIVE: 14441 if (dtrace_destructive_disallow) 14442 return (EACCES); 14443 14444 state->dts_cred.dcr_destructive = 1; 14445 break; 14446 14447 case DTRACEOPT_BUFSIZE: 14448 case DTRACEOPT_DYNVARSIZE: 14449 case DTRACEOPT_AGGSIZE: 14450 case DTRACEOPT_SPECSIZE: 14451 case DTRACEOPT_STRSIZE: 14452 if (val < 0) 14453 return (EINVAL); 14454 14455 if (val >= LONG_MAX) { 14456 /* 14457 * If this is an otherwise negative value, set it to 14458 * the highest multiple of 128m less than LONG_MAX. 14459 * Technically, we're adjusting the size without 14460 * regard to the buffer resizing policy, but in fact, 14461 * this has no effect -- if we set the buffer size to 14462 * ~LONG_MAX and the buffer policy is ultimately set to 14463 * be "manual", the buffer allocation is guaranteed to 14464 * fail, if only because the allocation requires two 14465 * buffers. (We set the the size to the highest 14466 * multiple of 128m because it ensures that the size 14467 * will remain a multiple of a megabyte when 14468 * repeatedly halved -- all the way down to 15m.) 14469 */ 14470 val = LONG_MAX - (1 << 27) + 1; 14471 } 14472 } 14473 14474 state->dts_options[option] = val; 14475 14476 return (0); 14477 } 14478 14479 static void 14480 dtrace_state_destroy(dtrace_state_t *state) 14481 { 14482 dtrace_ecb_t *ecb; 14483 dtrace_vstate_t *vstate = &state->dts_vstate; 14484 minor_t minor = getminor(state->dts_dev); 14485 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14486 dtrace_speculation_t *spec = state->dts_speculations; 14487 int nspec = state->dts_nspeculations; 14488 uint32_t match; 14489 14490 ASSERT(MUTEX_HELD(&dtrace_lock)); 14491 ASSERT(MUTEX_HELD(&cpu_lock)); 14492 14493 /* 14494 * First, retract any retained enablings for this state. 14495 */ 14496 dtrace_enabling_retract(state); 14497 ASSERT(state->dts_nretained == 0); 14498 14499 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 14500 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 14501 /* 14502 * We have managed to come into dtrace_state_destroy() on a 14503 * hot enabling -- almost certainly because of a disorderly 14504 * shutdown of a consumer. (That is, a consumer that is 14505 * exiting without having called dtrace_stop().) In this case, 14506 * we're going to set our activity to be KILLED, and then 14507 * issue a sync to be sure that everyone is out of probe 14508 * context before we start blowing away ECBs. 14509 */ 14510 state->dts_activity = DTRACE_ACTIVITY_KILLED; 14511 dtrace_sync(); 14512 } 14513 14514 /* 14515 * Release the credential hold we took in dtrace_state_create(). 14516 */ 14517 if (state->dts_cred.dcr_cred != NULL) 14518 crfree(state->dts_cred.dcr_cred); 14519 14520 /* 14521 * Now we can safely disable and destroy any enabled probes. Because 14522 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 14523 * (especially if they're all enabled), we take two passes through the 14524 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 14525 * in the second we disable whatever is left over. 14526 */ 14527 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 14528 for (i = 0; i < state->dts_necbs; i++) { 14529 if ((ecb = state->dts_ecbs[i]) == NULL) 14530 continue; 14531 14532 if (match && ecb->dte_probe != NULL) { 14533 dtrace_probe_t *probe = ecb->dte_probe; 14534 dtrace_provider_t *prov = probe->dtpr_provider; 14535 14536 if (!(prov->dtpv_priv.dtpp_flags & match)) 14537 continue; 14538 } 14539 14540 dtrace_ecb_disable(ecb); 14541 dtrace_ecb_destroy(ecb); 14542 } 14543 14544 if (!match) 14545 break; 14546 } 14547 14548 /* 14549 * Before we free the buffers, perform one more sync to assure that 14550 * every CPU is out of probe context. 14551 */ 14552 dtrace_sync(); 14553 14554 dtrace_buffer_free(state->dts_buffer); 14555 dtrace_buffer_free(state->dts_aggbuffer); 14556 14557 for (i = 0; i < nspec; i++) 14558 dtrace_buffer_free(spec[i].dtsp_buffer); 14559 14560 if (state->dts_cleaner != CYCLIC_NONE) 14561 cyclic_remove(state->dts_cleaner); 14562 14563 if (state->dts_deadman != CYCLIC_NONE) 14564 cyclic_remove(state->dts_deadman); 14565 14566 dtrace_dstate_fini(&vstate->dtvs_dynvars); 14567 dtrace_vstate_fini(vstate); 14568 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 14569 14570 if (state->dts_aggregations != NULL) { 14571 #ifdef DEBUG 14572 for (i = 0; i < state->dts_naggregations; i++) 14573 ASSERT(state->dts_aggregations[i] == NULL); 14574 #endif 14575 ASSERT(state->dts_naggregations > 0); 14576 kmem_free(state->dts_aggregations, 14577 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 14578 } 14579 14580 kmem_free(state->dts_buffer, bufsize); 14581 kmem_free(state->dts_aggbuffer, bufsize); 14582 14583 for (i = 0; i < nspec; i++) 14584 kmem_free(spec[i].dtsp_buffer, bufsize); 14585 14586 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14587 14588 dtrace_format_destroy(state); 14589 14590 vmem_destroy(state->dts_aggid_arena); 14591 ddi_soft_state_free(dtrace_softstate, minor); 14592 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14593 } 14594 14595 /* 14596 * DTrace Anonymous Enabling Functions 14597 */ 14598 static dtrace_state_t * 14599 dtrace_anon_grab(void) 14600 { 14601 dtrace_state_t *state; 14602 14603 ASSERT(MUTEX_HELD(&dtrace_lock)); 14604 14605 if ((state = dtrace_anon.dta_state) == NULL) { 14606 ASSERT(dtrace_anon.dta_enabling == NULL); 14607 return (NULL); 14608 } 14609 14610 ASSERT(dtrace_anon.dta_enabling != NULL); 14611 ASSERT(dtrace_retained != NULL); 14612 14613 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 14614 dtrace_anon.dta_enabling = NULL; 14615 dtrace_anon.dta_state = NULL; 14616 14617 return (state); 14618 } 14619 14620 static void 14621 dtrace_anon_property(void) 14622 { 14623 int i, rv; 14624 dtrace_state_t *state; 14625 dof_hdr_t *dof; 14626 char c[32]; /* enough for "dof-data-" + digits */ 14627 14628 ASSERT(MUTEX_HELD(&dtrace_lock)); 14629 ASSERT(MUTEX_HELD(&cpu_lock)); 14630 14631 for (i = 0; ; i++) { 14632 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 14633 14634 dtrace_err_verbose = 1; 14635 14636 if ((dof = dtrace_dof_property(c)) == NULL) { 14637 dtrace_err_verbose = 0; 14638 break; 14639 } 14640 14641 /* 14642 * We want to create anonymous state, so we need to transition 14643 * the kernel debugger to indicate that DTrace is active. If 14644 * this fails (e.g. because the debugger has modified text in 14645 * some way), we won't continue with the processing. 14646 */ 14647 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14648 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 14649 "enabling ignored."); 14650 dtrace_dof_destroy(dof); 14651 break; 14652 } 14653 14654 /* 14655 * If we haven't allocated an anonymous state, we'll do so now. 14656 */ 14657 if ((state = dtrace_anon.dta_state) == NULL) { 14658 state = dtrace_state_create(NULL, NULL); 14659 dtrace_anon.dta_state = state; 14660 14661 if (state == NULL) { 14662 /* 14663 * This basically shouldn't happen: the only 14664 * failure mode from dtrace_state_create() is a 14665 * failure of ddi_soft_state_zalloc() that 14666 * itself should never happen. Still, the 14667 * interface allows for a failure mode, and 14668 * we want to fail as gracefully as possible: 14669 * we'll emit an error message and cease 14670 * processing anonymous state in this case. 14671 */ 14672 cmn_err(CE_WARN, "failed to create " 14673 "anonymous state"); 14674 dtrace_dof_destroy(dof); 14675 break; 14676 } 14677 } 14678 14679 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 14680 &dtrace_anon.dta_enabling, 0, B_TRUE); 14681 14682 if (rv == 0) 14683 rv = dtrace_dof_options(dof, state); 14684 14685 dtrace_err_verbose = 0; 14686 dtrace_dof_destroy(dof); 14687 14688 if (rv != 0) { 14689 /* 14690 * This is malformed DOF; chuck any anonymous state 14691 * that we created. 14692 */ 14693 ASSERT(dtrace_anon.dta_enabling == NULL); 14694 dtrace_state_destroy(state); 14695 dtrace_anon.dta_state = NULL; 14696 break; 14697 } 14698 14699 ASSERT(dtrace_anon.dta_enabling != NULL); 14700 } 14701 14702 if (dtrace_anon.dta_enabling != NULL) { 14703 int rval; 14704 14705 /* 14706 * dtrace_enabling_retain() can only fail because we are 14707 * trying to retain more enablings than are allowed -- but 14708 * we only have one anonymous enabling, and we are guaranteed 14709 * to be allowed at least one retained enabling; we assert 14710 * that dtrace_enabling_retain() returns success. 14711 */ 14712 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 14713 ASSERT(rval == 0); 14714 14715 dtrace_enabling_dump(dtrace_anon.dta_enabling); 14716 } 14717 } 14718 14719 /* 14720 * DTrace Helper Functions 14721 */ 14722 static void 14723 dtrace_helper_trace(dtrace_helper_action_t *helper, 14724 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 14725 { 14726 uint32_t size, next, nnext, i; 14727 dtrace_helptrace_t *ent, *buffer; 14728 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14729 14730 if ((buffer = dtrace_helptrace_buffer) == NULL) 14731 return; 14732 14733 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 14734 14735 /* 14736 * What would a tracing framework be without its own tracing 14737 * framework? (Well, a hell of a lot simpler, for starters...) 14738 */ 14739 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 14740 sizeof (uint64_t) - sizeof (uint64_t); 14741 14742 /* 14743 * Iterate until we can allocate a slot in the trace buffer. 14744 */ 14745 do { 14746 next = dtrace_helptrace_next; 14747 14748 if (next + size < dtrace_helptrace_bufsize) { 14749 nnext = next + size; 14750 } else { 14751 nnext = size; 14752 } 14753 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 14754 14755 /* 14756 * We have our slot; fill it in. 14757 */ 14758 if (nnext == size) { 14759 dtrace_helptrace_wrapped++; 14760 next = 0; 14761 } 14762 14763 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 14764 ent->dtht_helper = helper; 14765 ent->dtht_where = where; 14766 ent->dtht_nlocals = vstate->dtvs_nlocals; 14767 14768 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 14769 mstate->dtms_fltoffs : -1; 14770 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 14771 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 14772 14773 for (i = 0; i < vstate->dtvs_nlocals; i++) { 14774 dtrace_statvar_t *svar; 14775 14776 if ((svar = vstate->dtvs_locals[i]) == NULL) 14777 continue; 14778 14779 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 14780 ent->dtht_locals[i] = 14781 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 14782 } 14783 } 14784 14785 static uint64_t 14786 dtrace_helper(int which, dtrace_mstate_t *mstate, 14787 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 14788 { 14789 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14790 uint64_t sarg0 = mstate->dtms_arg[0]; 14791 uint64_t sarg1 = mstate->dtms_arg[1]; 14792 uint64_t rval; 14793 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 14794 dtrace_helper_action_t *helper; 14795 dtrace_vstate_t *vstate; 14796 dtrace_difo_t *pred; 14797 int i, trace = dtrace_helptrace_buffer != NULL; 14798 14799 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 14800 14801 if (helpers == NULL) 14802 return (0); 14803 14804 if ((helper = helpers->dthps_actions[which]) == NULL) 14805 return (0); 14806 14807 vstate = &helpers->dthps_vstate; 14808 mstate->dtms_arg[0] = arg0; 14809 mstate->dtms_arg[1] = arg1; 14810 14811 /* 14812 * Now iterate over each helper. If its predicate evaluates to 'true', 14813 * we'll call the corresponding actions. Note that the below calls 14814 * to dtrace_dif_emulate() may set faults in machine state. This is 14815 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 14816 * the stored DIF offset with its own (which is the desired behavior). 14817 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 14818 * from machine state; this is okay, too. 14819 */ 14820 for (; helper != NULL; helper = helper->dtha_next) { 14821 if ((pred = helper->dtha_predicate) != NULL) { 14822 if (trace) 14823 dtrace_helper_trace(helper, mstate, vstate, 0); 14824 14825 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 14826 goto next; 14827 14828 if (*flags & CPU_DTRACE_FAULT) 14829 goto err; 14830 } 14831 14832 for (i = 0; i < helper->dtha_nactions; i++) { 14833 if (trace) 14834 dtrace_helper_trace(helper, 14835 mstate, vstate, i + 1); 14836 14837 rval = dtrace_dif_emulate(helper->dtha_actions[i], 14838 mstate, vstate, state); 14839 14840 if (*flags & CPU_DTRACE_FAULT) 14841 goto err; 14842 } 14843 14844 next: 14845 if (trace) 14846 dtrace_helper_trace(helper, mstate, vstate, 14847 DTRACE_HELPTRACE_NEXT); 14848 } 14849 14850 if (trace) 14851 dtrace_helper_trace(helper, mstate, vstate, 14852 DTRACE_HELPTRACE_DONE); 14853 14854 /* 14855 * Restore the arg0 that we saved upon entry. 14856 */ 14857 mstate->dtms_arg[0] = sarg0; 14858 mstate->dtms_arg[1] = sarg1; 14859 14860 return (rval); 14861 14862 err: 14863 if (trace) 14864 dtrace_helper_trace(helper, mstate, vstate, 14865 DTRACE_HELPTRACE_ERR); 14866 14867 /* 14868 * Restore the arg0 that we saved upon entry. 14869 */ 14870 mstate->dtms_arg[0] = sarg0; 14871 mstate->dtms_arg[1] = sarg1; 14872 14873 return (0); 14874 } 14875 14876 static void 14877 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 14878 dtrace_vstate_t *vstate) 14879 { 14880 int i; 14881 14882 if (helper->dtha_predicate != NULL) 14883 dtrace_difo_release(helper->dtha_predicate, vstate); 14884 14885 for (i = 0; i < helper->dtha_nactions; i++) { 14886 ASSERT(helper->dtha_actions[i] != NULL); 14887 dtrace_difo_release(helper->dtha_actions[i], vstate); 14888 } 14889 14890 kmem_free(helper->dtha_actions, 14891 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 14892 kmem_free(helper, sizeof (dtrace_helper_action_t)); 14893 } 14894 14895 static int 14896 dtrace_helper_destroygen(int gen) 14897 { 14898 proc_t *p = curproc; 14899 dtrace_helpers_t *help = p->p_dtrace_helpers; 14900 dtrace_vstate_t *vstate; 14901 int i; 14902 14903 ASSERT(MUTEX_HELD(&dtrace_lock)); 14904 14905 if (help == NULL || gen > help->dthps_generation) 14906 return (EINVAL); 14907 14908 vstate = &help->dthps_vstate; 14909 14910 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14911 dtrace_helper_action_t *last = NULL, *h, *next; 14912 14913 for (h = help->dthps_actions[i]; h != NULL; h = next) { 14914 next = h->dtha_next; 14915 14916 if (h->dtha_generation == gen) { 14917 if (last != NULL) { 14918 last->dtha_next = next; 14919 } else { 14920 help->dthps_actions[i] = next; 14921 } 14922 14923 dtrace_helper_action_destroy(h, vstate); 14924 } else { 14925 last = h; 14926 } 14927 } 14928 } 14929 14930 /* 14931 * Interate until we've cleared out all helper providers with the 14932 * given generation number. 14933 */ 14934 for (;;) { 14935 dtrace_helper_provider_t *prov; 14936 14937 /* 14938 * Look for a helper provider with the right generation. We 14939 * have to start back at the beginning of the list each time 14940 * because we drop dtrace_lock. It's unlikely that we'll make 14941 * more than two passes. 14942 */ 14943 for (i = 0; i < help->dthps_nprovs; i++) { 14944 prov = help->dthps_provs[i]; 14945 14946 if (prov->dthp_generation == gen) 14947 break; 14948 } 14949 14950 /* 14951 * If there were no matches, we're done. 14952 */ 14953 if (i == help->dthps_nprovs) 14954 break; 14955 14956 /* 14957 * Move the last helper provider into this slot. 14958 */ 14959 help->dthps_nprovs--; 14960 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 14961 help->dthps_provs[help->dthps_nprovs] = NULL; 14962 14963 mutex_exit(&dtrace_lock); 14964 14965 /* 14966 * If we have a meta provider, remove this helper provider. 14967 */ 14968 mutex_enter(&dtrace_meta_lock); 14969 if (dtrace_meta_pid != NULL) { 14970 ASSERT(dtrace_deferred_pid == NULL); 14971 dtrace_helper_provider_remove(&prov->dthp_prov, 14972 p->p_pid); 14973 } 14974 mutex_exit(&dtrace_meta_lock); 14975 14976 dtrace_helper_provider_destroy(prov); 14977 14978 mutex_enter(&dtrace_lock); 14979 } 14980 14981 return (0); 14982 } 14983 14984 static int 14985 dtrace_helper_validate(dtrace_helper_action_t *helper) 14986 { 14987 int err = 0, i; 14988 dtrace_difo_t *dp; 14989 14990 if ((dp = helper->dtha_predicate) != NULL) 14991 err += dtrace_difo_validate_helper(dp); 14992 14993 for (i = 0; i < helper->dtha_nactions; i++) 14994 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 14995 14996 return (err == 0); 14997 } 14998 14999 static int 15000 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 15001 { 15002 dtrace_helpers_t *help; 15003 dtrace_helper_action_t *helper, *last; 15004 dtrace_actdesc_t *act; 15005 dtrace_vstate_t *vstate; 15006 dtrace_predicate_t *pred; 15007 int count = 0, nactions = 0, i; 15008 15009 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 15010 return (EINVAL); 15011 15012 help = curproc->p_dtrace_helpers; 15013 last = help->dthps_actions[which]; 15014 vstate = &help->dthps_vstate; 15015 15016 for (count = 0; last != NULL; last = last->dtha_next) { 15017 count++; 15018 if (last->dtha_next == NULL) 15019 break; 15020 } 15021 15022 /* 15023 * If we already have dtrace_helper_actions_max helper actions for this 15024 * helper action type, we'll refuse to add a new one. 15025 */ 15026 if (count >= dtrace_helper_actions_max) 15027 return (ENOSPC); 15028 15029 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 15030 helper->dtha_generation = help->dthps_generation; 15031 15032 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 15033 ASSERT(pred->dtp_difo != NULL); 15034 dtrace_difo_hold(pred->dtp_difo); 15035 helper->dtha_predicate = pred->dtp_difo; 15036 } 15037 15038 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 15039 if (act->dtad_kind != DTRACEACT_DIFEXPR) 15040 goto err; 15041 15042 if (act->dtad_difo == NULL) 15043 goto err; 15044 15045 nactions++; 15046 } 15047 15048 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 15049 (helper->dtha_nactions = nactions), KM_SLEEP); 15050 15051 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 15052 dtrace_difo_hold(act->dtad_difo); 15053 helper->dtha_actions[i++] = act->dtad_difo; 15054 } 15055 15056 if (!dtrace_helper_validate(helper)) 15057 goto err; 15058 15059 if (last == NULL) { 15060 help->dthps_actions[which] = helper; 15061 } else { 15062 last->dtha_next = helper; 15063 } 15064 15065 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 15066 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 15067 dtrace_helptrace_next = 0; 15068 } 15069 15070 return (0); 15071 err: 15072 dtrace_helper_action_destroy(helper, vstate); 15073 return (EINVAL); 15074 } 15075 15076 static void 15077 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 15078 dof_helper_t *dofhp) 15079 { 15080 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 15081 15082 mutex_enter(&dtrace_meta_lock); 15083 mutex_enter(&dtrace_lock); 15084 15085 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 15086 /* 15087 * If the dtrace module is loaded but not attached, or if 15088 * there aren't isn't a meta provider registered to deal with 15089 * these provider descriptions, we need to postpone creating 15090 * the actual providers until later. 15091 */ 15092 15093 if (help->dthps_next == NULL && help->dthps_prev == NULL && 15094 dtrace_deferred_pid != help) { 15095 help->dthps_deferred = 1; 15096 help->dthps_pid = p->p_pid; 15097 help->dthps_next = dtrace_deferred_pid; 15098 help->dthps_prev = NULL; 15099 if (dtrace_deferred_pid != NULL) 15100 dtrace_deferred_pid->dthps_prev = help; 15101 dtrace_deferred_pid = help; 15102 } 15103 15104 mutex_exit(&dtrace_lock); 15105 15106 } else if (dofhp != NULL) { 15107 /* 15108 * If the dtrace module is loaded and we have a particular 15109 * helper provider description, pass that off to the 15110 * meta provider. 15111 */ 15112 15113 mutex_exit(&dtrace_lock); 15114 15115 dtrace_helper_provide(dofhp, p->p_pid); 15116 15117 } else { 15118 /* 15119 * Otherwise, just pass all the helper provider descriptions 15120 * off to the meta provider. 15121 */ 15122 15123 int i; 15124 mutex_exit(&dtrace_lock); 15125 15126 for (i = 0; i < help->dthps_nprovs; i++) { 15127 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 15128 p->p_pid); 15129 } 15130 } 15131 15132 mutex_exit(&dtrace_meta_lock); 15133 } 15134 15135 static int 15136 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 15137 { 15138 dtrace_helpers_t *help; 15139 dtrace_helper_provider_t *hprov, **tmp_provs; 15140 uint_t tmp_maxprovs, i; 15141 15142 ASSERT(MUTEX_HELD(&dtrace_lock)); 15143 15144 help = curproc->p_dtrace_helpers; 15145 ASSERT(help != NULL); 15146 15147 /* 15148 * If we already have dtrace_helper_providers_max helper providers, 15149 * we're refuse to add a new one. 15150 */ 15151 if (help->dthps_nprovs >= dtrace_helper_providers_max) 15152 return (ENOSPC); 15153 15154 /* 15155 * Check to make sure this isn't a duplicate. 15156 */ 15157 for (i = 0; i < help->dthps_nprovs; i++) { 15158 if (dofhp->dofhp_addr == 15159 help->dthps_provs[i]->dthp_prov.dofhp_addr) 15160 return (EALREADY); 15161 } 15162 15163 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 15164 hprov->dthp_prov = *dofhp; 15165 hprov->dthp_ref = 1; 15166 hprov->dthp_generation = gen; 15167 15168 /* 15169 * Allocate a bigger table for helper providers if it's already full. 15170 */ 15171 if (help->dthps_maxprovs == help->dthps_nprovs) { 15172 tmp_maxprovs = help->dthps_maxprovs; 15173 tmp_provs = help->dthps_provs; 15174 15175 if (help->dthps_maxprovs == 0) 15176 help->dthps_maxprovs = 2; 15177 else 15178 help->dthps_maxprovs *= 2; 15179 if (help->dthps_maxprovs > dtrace_helper_providers_max) 15180 help->dthps_maxprovs = dtrace_helper_providers_max; 15181 15182 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 15183 15184 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 15185 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15186 15187 if (tmp_provs != NULL) { 15188 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 15189 sizeof (dtrace_helper_provider_t *)); 15190 kmem_free(tmp_provs, tmp_maxprovs * 15191 sizeof (dtrace_helper_provider_t *)); 15192 } 15193 } 15194 15195 help->dthps_provs[help->dthps_nprovs] = hprov; 15196 help->dthps_nprovs++; 15197 15198 return (0); 15199 } 15200 15201 static void 15202 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 15203 { 15204 mutex_enter(&dtrace_lock); 15205 15206 if (--hprov->dthp_ref == 0) { 15207 dof_hdr_t *dof; 15208 mutex_exit(&dtrace_lock); 15209 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 15210 dtrace_dof_destroy(dof); 15211 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 15212 } else { 15213 mutex_exit(&dtrace_lock); 15214 } 15215 } 15216 15217 static int 15218 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 15219 { 15220 uintptr_t daddr = (uintptr_t)dof; 15221 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 15222 dof_provider_t *provider; 15223 dof_probe_t *probe; 15224 uint8_t *arg; 15225 char *strtab, *typestr; 15226 dof_stridx_t typeidx; 15227 size_t typesz; 15228 uint_t nprobes, j, k; 15229 15230 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 15231 15232 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 15233 dtrace_dof_error(dof, "misaligned section offset"); 15234 return (-1); 15235 } 15236 15237 /* 15238 * The section needs to be large enough to contain the DOF provider 15239 * structure appropriate for the given version. 15240 */ 15241 if (sec->dofs_size < 15242 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 15243 offsetof(dof_provider_t, dofpv_prenoffs) : 15244 sizeof (dof_provider_t))) { 15245 dtrace_dof_error(dof, "provider section too small"); 15246 return (-1); 15247 } 15248 15249 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 15250 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 15251 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 15252 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 15253 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 15254 15255 if (str_sec == NULL || prb_sec == NULL || 15256 arg_sec == NULL || off_sec == NULL) 15257 return (-1); 15258 15259 enoff_sec = NULL; 15260 15261 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 15262 provider->dofpv_prenoffs != DOF_SECT_NONE && 15263 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 15264 provider->dofpv_prenoffs)) == NULL) 15265 return (-1); 15266 15267 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 15268 15269 if (provider->dofpv_name >= str_sec->dofs_size || 15270 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 15271 dtrace_dof_error(dof, "invalid provider name"); 15272 return (-1); 15273 } 15274 15275 if (prb_sec->dofs_entsize == 0 || 15276 prb_sec->dofs_entsize > prb_sec->dofs_size) { 15277 dtrace_dof_error(dof, "invalid entry size"); 15278 return (-1); 15279 } 15280 15281 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 15282 dtrace_dof_error(dof, "misaligned entry size"); 15283 return (-1); 15284 } 15285 15286 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 15287 dtrace_dof_error(dof, "invalid entry size"); 15288 return (-1); 15289 } 15290 15291 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 15292 dtrace_dof_error(dof, "misaligned section offset"); 15293 return (-1); 15294 } 15295 15296 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 15297 dtrace_dof_error(dof, "invalid entry size"); 15298 return (-1); 15299 } 15300 15301 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 15302 15303 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 15304 15305 /* 15306 * Take a pass through the probes to check for errors. 15307 */ 15308 for (j = 0; j < nprobes; j++) { 15309 probe = (dof_probe_t *)(uintptr_t)(daddr + 15310 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 15311 15312 if (probe->dofpr_func >= str_sec->dofs_size) { 15313 dtrace_dof_error(dof, "invalid function name"); 15314 return (-1); 15315 } 15316 15317 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 15318 dtrace_dof_error(dof, "function name too long"); 15319 return (-1); 15320 } 15321 15322 if (probe->dofpr_name >= str_sec->dofs_size || 15323 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 15324 dtrace_dof_error(dof, "invalid probe name"); 15325 return (-1); 15326 } 15327 15328 /* 15329 * The offset count must not wrap the index, and the offsets 15330 * must also not overflow the section's data. 15331 */ 15332 if (probe->dofpr_offidx + probe->dofpr_noffs < 15333 probe->dofpr_offidx || 15334 (probe->dofpr_offidx + probe->dofpr_noffs) * 15335 off_sec->dofs_entsize > off_sec->dofs_size) { 15336 dtrace_dof_error(dof, "invalid probe offset"); 15337 return (-1); 15338 } 15339 15340 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 15341 /* 15342 * If there's no is-enabled offset section, make sure 15343 * there aren't any is-enabled offsets. Otherwise 15344 * perform the same checks as for probe offsets 15345 * (immediately above). 15346 */ 15347 if (enoff_sec == NULL) { 15348 if (probe->dofpr_enoffidx != 0 || 15349 probe->dofpr_nenoffs != 0) { 15350 dtrace_dof_error(dof, "is-enabled " 15351 "offsets with null section"); 15352 return (-1); 15353 } 15354 } else if (probe->dofpr_enoffidx + 15355 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 15356 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 15357 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 15358 dtrace_dof_error(dof, "invalid is-enabled " 15359 "offset"); 15360 return (-1); 15361 } 15362 15363 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 15364 dtrace_dof_error(dof, "zero probe and " 15365 "is-enabled offsets"); 15366 return (-1); 15367 } 15368 } else if (probe->dofpr_noffs == 0) { 15369 dtrace_dof_error(dof, "zero probe offsets"); 15370 return (-1); 15371 } 15372 15373 if (probe->dofpr_argidx + probe->dofpr_xargc < 15374 probe->dofpr_argidx || 15375 (probe->dofpr_argidx + probe->dofpr_xargc) * 15376 arg_sec->dofs_entsize > arg_sec->dofs_size) { 15377 dtrace_dof_error(dof, "invalid args"); 15378 return (-1); 15379 } 15380 15381 typeidx = probe->dofpr_nargv; 15382 typestr = strtab + probe->dofpr_nargv; 15383 for (k = 0; k < probe->dofpr_nargc; k++) { 15384 if (typeidx >= str_sec->dofs_size) { 15385 dtrace_dof_error(dof, "bad " 15386 "native argument type"); 15387 return (-1); 15388 } 15389 15390 typesz = strlen(typestr) + 1; 15391 if (typesz > DTRACE_ARGTYPELEN) { 15392 dtrace_dof_error(dof, "native " 15393 "argument type too long"); 15394 return (-1); 15395 } 15396 typeidx += typesz; 15397 typestr += typesz; 15398 } 15399 15400 typeidx = probe->dofpr_xargv; 15401 typestr = strtab + probe->dofpr_xargv; 15402 for (k = 0; k < probe->dofpr_xargc; k++) { 15403 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 15404 dtrace_dof_error(dof, "bad " 15405 "native argument index"); 15406 return (-1); 15407 } 15408 15409 if (typeidx >= str_sec->dofs_size) { 15410 dtrace_dof_error(dof, "bad " 15411 "translated argument type"); 15412 return (-1); 15413 } 15414 15415 typesz = strlen(typestr) + 1; 15416 if (typesz > DTRACE_ARGTYPELEN) { 15417 dtrace_dof_error(dof, "translated argument " 15418 "type too long"); 15419 return (-1); 15420 } 15421 15422 typeidx += typesz; 15423 typestr += typesz; 15424 } 15425 } 15426 15427 return (0); 15428 } 15429 15430 static int 15431 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 15432 { 15433 dtrace_helpers_t *help; 15434 dtrace_vstate_t *vstate; 15435 dtrace_enabling_t *enab = NULL; 15436 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 15437 uintptr_t daddr = (uintptr_t)dof; 15438 15439 ASSERT(MUTEX_HELD(&dtrace_lock)); 15440 15441 if ((help = curproc->p_dtrace_helpers) == NULL) 15442 help = dtrace_helpers_create(curproc); 15443 15444 vstate = &help->dthps_vstate; 15445 15446 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 15447 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 15448 dtrace_dof_destroy(dof); 15449 return (rv); 15450 } 15451 15452 /* 15453 * Look for helper providers and validate their descriptions. 15454 */ 15455 if (dhp != NULL) { 15456 for (i = 0; i < dof->dofh_secnum; i++) { 15457 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 15458 dof->dofh_secoff + i * dof->dofh_secsize); 15459 15460 if (sec->dofs_type != DOF_SECT_PROVIDER) 15461 continue; 15462 15463 if (dtrace_helper_provider_validate(dof, sec) != 0) { 15464 dtrace_enabling_destroy(enab); 15465 dtrace_dof_destroy(dof); 15466 return (-1); 15467 } 15468 15469 nprovs++; 15470 } 15471 } 15472 15473 /* 15474 * Now we need to walk through the ECB descriptions in the enabling. 15475 */ 15476 for (i = 0; i < enab->dten_ndesc; i++) { 15477 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 15478 dtrace_probedesc_t *desc = &ep->dted_probe; 15479 15480 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 15481 continue; 15482 15483 if (strcmp(desc->dtpd_mod, "helper") != 0) 15484 continue; 15485 15486 if (strcmp(desc->dtpd_func, "ustack") != 0) 15487 continue; 15488 15489 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 15490 ep)) != 0) { 15491 /* 15492 * Adding this helper action failed -- we are now going 15493 * to rip out the entire generation and return failure. 15494 */ 15495 (void) dtrace_helper_destroygen(help->dthps_generation); 15496 dtrace_enabling_destroy(enab); 15497 dtrace_dof_destroy(dof); 15498 return (-1); 15499 } 15500 15501 nhelpers++; 15502 } 15503 15504 if (nhelpers < enab->dten_ndesc) 15505 dtrace_dof_error(dof, "unmatched helpers"); 15506 15507 gen = help->dthps_generation++; 15508 dtrace_enabling_destroy(enab); 15509 15510 if (dhp != NULL && nprovs > 0) { 15511 /* 15512 * Now that this is in-kernel, we change the sense of the 15513 * members: dofhp_dof denotes the in-kernel copy of the DOF 15514 * and dofhp_addr denotes the address at user-level. 15515 */ 15516 dhp->dofhp_addr = dhp->dofhp_dof; 15517 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 15518 15519 if (dtrace_helper_provider_add(dhp, gen) == 0) { 15520 mutex_exit(&dtrace_lock); 15521 dtrace_helper_provider_register(curproc, help, dhp); 15522 mutex_enter(&dtrace_lock); 15523 15524 destroy = 0; 15525 } 15526 } 15527 15528 if (destroy) 15529 dtrace_dof_destroy(dof); 15530 15531 return (gen); 15532 } 15533 15534 static dtrace_helpers_t * 15535 dtrace_helpers_create(proc_t *p) 15536 { 15537 dtrace_helpers_t *help; 15538 15539 ASSERT(MUTEX_HELD(&dtrace_lock)); 15540 ASSERT(p->p_dtrace_helpers == NULL); 15541 15542 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 15543 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 15544 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 15545 15546 p->p_dtrace_helpers = help; 15547 dtrace_helpers++; 15548 15549 return (help); 15550 } 15551 15552 static void 15553 dtrace_helpers_destroy(proc_t *p) 15554 { 15555 dtrace_helpers_t *help; 15556 dtrace_vstate_t *vstate; 15557 int i; 15558 15559 mutex_enter(&dtrace_lock); 15560 15561 ASSERT(p->p_dtrace_helpers != NULL); 15562 ASSERT(dtrace_helpers > 0); 15563 15564 help = p->p_dtrace_helpers; 15565 vstate = &help->dthps_vstate; 15566 15567 /* 15568 * We're now going to lose the help from this process. 15569 */ 15570 p->p_dtrace_helpers = NULL; 15571 if (p == curproc) { 15572 dtrace_sync(); 15573 } else { 15574 /* 15575 * It is sometimes necessary to clean up dtrace helpers from a 15576 * an incomplete child process as part of a failed fork 15577 * operation. In such situations, a dtrace_sync() call should 15578 * be unnecessary as the process should be devoid of threads, 15579 * much less any in probe context. 15580 */ 15581 VERIFY(p->p_stat == SIDL); 15582 } 15583 15584 /* 15585 * Destroy the helper actions. 15586 */ 15587 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15588 dtrace_helper_action_t *h, *next; 15589 15590 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15591 next = h->dtha_next; 15592 dtrace_helper_action_destroy(h, vstate); 15593 h = next; 15594 } 15595 } 15596 15597 mutex_exit(&dtrace_lock); 15598 15599 /* 15600 * Destroy the helper providers. 15601 */ 15602 if (help->dthps_maxprovs > 0) { 15603 mutex_enter(&dtrace_meta_lock); 15604 if (dtrace_meta_pid != NULL) { 15605 ASSERT(dtrace_deferred_pid == NULL); 15606 15607 for (i = 0; i < help->dthps_nprovs; i++) { 15608 dtrace_helper_provider_remove( 15609 &help->dthps_provs[i]->dthp_prov, p->p_pid); 15610 } 15611 } else { 15612 mutex_enter(&dtrace_lock); 15613 ASSERT(help->dthps_deferred == 0 || 15614 help->dthps_next != NULL || 15615 help->dthps_prev != NULL || 15616 help == dtrace_deferred_pid); 15617 15618 /* 15619 * Remove the helper from the deferred list. 15620 */ 15621 if (help->dthps_next != NULL) 15622 help->dthps_next->dthps_prev = help->dthps_prev; 15623 if (help->dthps_prev != NULL) 15624 help->dthps_prev->dthps_next = help->dthps_next; 15625 if (dtrace_deferred_pid == help) { 15626 dtrace_deferred_pid = help->dthps_next; 15627 ASSERT(help->dthps_prev == NULL); 15628 } 15629 15630 mutex_exit(&dtrace_lock); 15631 } 15632 15633 mutex_exit(&dtrace_meta_lock); 15634 15635 for (i = 0; i < help->dthps_nprovs; i++) { 15636 dtrace_helper_provider_destroy(help->dthps_provs[i]); 15637 } 15638 15639 kmem_free(help->dthps_provs, help->dthps_maxprovs * 15640 sizeof (dtrace_helper_provider_t *)); 15641 } 15642 15643 mutex_enter(&dtrace_lock); 15644 15645 dtrace_vstate_fini(&help->dthps_vstate); 15646 kmem_free(help->dthps_actions, 15647 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 15648 kmem_free(help, sizeof (dtrace_helpers_t)); 15649 15650 --dtrace_helpers; 15651 mutex_exit(&dtrace_lock); 15652 } 15653 15654 static void 15655 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 15656 { 15657 dtrace_helpers_t *help, *newhelp; 15658 dtrace_helper_action_t *helper, *new, *last; 15659 dtrace_difo_t *dp; 15660 dtrace_vstate_t *vstate; 15661 int i, j, sz, hasprovs = 0; 15662 15663 mutex_enter(&dtrace_lock); 15664 ASSERT(from->p_dtrace_helpers != NULL); 15665 ASSERT(dtrace_helpers > 0); 15666 15667 help = from->p_dtrace_helpers; 15668 newhelp = dtrace_helpers_create(to); 15669 ASSERT(to->p_dtrace_helpers != NULL); 15670 15671 newhelp->dthps_generation = help->dthps_generation; 15672 vstate = &newhelp->dthps_vstate; 15673 15674 /* 15675 * Duplicate the helper actions. 15676 */ 15677 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15678 if ((helper = help->dthps_actions[i]) == NULL) 15679 continue; 15680 15681 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 15682 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 15683 KM_SLEEP); 15684 new->dtha_generation = helper->dtha_generation; 15685 15686 if ((dp = helper->dtha_predicate) != NULL) { 15687 dp = dtrace_difo_duplicate(dp, vstate); 15688 new->dtha_predicate = dp; 15689 } 15690 15691 new->dtha_nactions = helper->dtha_nactions; 15692 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 15693 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 15694 15695 for (j = 0; j < new->dtha_nactions; j++) { 15696 dtrace_difo_t *dp = helper->dtha_actions[j]; 15697 15698 ASSERT(dp != NULL); 15699 dp = dtrace_difo_duplicate(dp, vstate); 15700 new->dtha_actions[j] = dp; 15701 } 15702 15703 if (last != NULL) { 15704 last->dtha_next = new; 15705 } else { 15706 newhelp->dthps_actions[i] = new; 15707 } 15708 15709 last = new; 15710 } 15711 } 15712 15713 /* 15714 * Duplicate the helper providers and register them with the 15715 * DTrace framework. 15716 */ 15717 if (help->dthps_nprovs > 0) { 15718 newhelp->dthps_nprovs = help->dthps_nprovs; 15719 newhelp->dthps_maxprovs = help->dthps_nprovs; 15720 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 15721 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15722 for (i = 0; i < newhelp->dthps_nprovs; i++) { 15723 newhelp->dthps_provs[i] = help->dthps_provs[i]; 15724 newhelp->dthps_provs[i]->dthp_ref++; 15725 } 15726 15727 hasprovs = 1; 15728 } 15729 15730 mutex_exit(&dtrace_lock); 15731 15732 if (hasprovs) 15733 dtrace_helper_provider_register(to, newhelp, NULL); 15734 } 15735 15736 /* 15737 * DTrace Hook Functions 15738 */ 15739 static void 15740 dtrace_module_loaded(struct modctl *ctl) 15741 { 15742 dtrace_provider_t *prv; 15743 15744 mutex_enter(&dtrace_provider_lock); 15745 mutex_enter(&mod_lock); 15746 15747 ASSERT(ctl->mod_busy); 15748 15749 /* 15750 * We're going to call each providers per-module provide operation 15751 * specifying only this module. 15752 */ 15753 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 15754 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 15755 15756 mutex_exit(&mod_lock); 15757 mutex_exit(&dtrace_provider_lock); 15758 15759 /* 15760 * If we have any retained enablings, we need to match against them. 15761 * Enabling probes requires that cpu_lock be held, and we cannot hold 15762 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 15763 * module. (In particular, this happens when loading scheduling 15764 * classes.) So if we have any retained enablings, we need to dispatch 15765 * our task queue to do the match for us. 15766 */ 15767 mutex_enter(&dtrace_lock); 15768 15769 if (dtrace_retained == NULL) { 15770 mutex_exit(&dtrace_lock); 15771 return; 15772 } 15773 15774 (void) taskq_dispatch(dtrace_taskq, 15775 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 15776 15777 mutex_exit(&dtrace_lock); 15778 15779 /* 15780 * And now, for a little heuristic sleaze: in general, we want to 15781 * match modules as soon as they load. However, we cannot guarantee 15782 * this, because it would lead us to the lock ordering violation 15783 * outlined above. The common case, of course, is that cpu_lock is 15784 * _not_ held -- so we delay here for a clock tick, hoping that that's 15785 * long enough for the task queue to do its work. If it's not, it's 15786 * not a serious problem -- it just means that the module that we 15787 * just loaded may not be immediately instrumentable. 15788 */ 15789 delay(1); 15790 } 15791 15792 static void 15793 dtrace_module_unloaded(struct modctl *ctl) 15794 { 15795 dtrace_probe_t template, *probe, *first, *next; 15796 dtrace_provider_t *prov; 15797 15798 template.dtpr_mod = ctl->mod_modname; 15799 15800 mutex_enter(&dtrace_provider_lock); 15801 mutex_enter(&mod_lock); 15802 mutex_enter(&dtrace_lock); 15803 15804 if (dtrace_bymod == NULL) { 15805 /* 15806 * The DTrace module is loaded (obviously) but not attached; 15807 * we don't have any work to do. 15808 */ 15809 mutex_exit(&dtrace_provider_lock); 15810 mutex_exit(&mod_lock); 15811 mutex_exit(&dtrace_lock); 15812 return; 15813 } 15814 15815 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 15816 probe != NULL; probe = probe->dtpr_nextmod) { 15817 if (probe->dtpr_ecb != NULL) { 15818 mutex_exit(&dtrace_provider_lock); 15819 mutex_exit(&mod_lock); 15820 mutex_exit(&dtrace_lock); 15821 15822 /* 15823 * This shouldn't _actually_ be possible -- we're 15824 * unloading a module that has an enabled probe in it. 15825 * (It's normally up to the provider to make sure that 15826 * this can't happen.) However, because dtps_enable() 15827 * doesn't have a failure mode, there can be an 15828 * enable/unload race. Upshot: we don't want to 15829 * assert, but we're not going to disable the 15830 * probe, either. 15831 */ 15832 if (dtrace_err_verbose) { 15833 cmn_err(CE_WARN, "unloaded module '%s' had " 15834 "enabled probes", ctl->mod_modname); 15835 } 15836 15837 return; 15838 } 15839 } 15840 15841 probe = first; 15842 15843 for (first = NULL; probe != NULL; probe = next) { 15844 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 15845 15846 dtrace_probes[probe->dtpr_id - 1] = NULL; 15847 15848 next = probe->dtpr_nextmod; 15849 dtrace_hash_remove(dtrace_bymod, probe); 15850 dtrace_hash_remove(dtrace_byfunc, probe); 15851 dtrace_hash_remove(dtrace_byname, probe); 15852 15853 if (first == NULL) { 15854 first = probe; 15855 probe->dtpr_nextmod = NULL; 15856 } else { 15857 probe->dtpr_nextmod = first; 15858 first = probe; 15859 } 15860 } 15861 15862 /* 15863 * We've removed all of the module's probes from the hash chains and 15864 * from the probe array. Now issue a dtrace_sync() to be sure that 15865 * everyone has cleared out from any probe array processing. 15866 */ 15867 dtrace_sync(); 15868 15869 for (probe = first; probe != NULL; probe = first) { 15870 first = probe->dtpr_nextmod; 15871 prov = probe->dtpr_provider; 15872 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 15873 probe->dtpr_arg); 15874 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 15875 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 15876 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 15877 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 15878 kmem_free(probe, sizeof (dtrace_probe_t)); 15879 } 15880 15881 mutex_exit(&dtrace_lock); 15882 mutex_exit(&mod_lock); 15883 mutex_exit(&dtrace_provider_lock); 15884 } 15885 15886 void 15887 dtrace_suspend(void) 15888 { 15889 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 15890 } 15891 15892 void 15893 dtrace_resume(void) 15894 { 15895 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 15896 } 15897 15898 static int 15899 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu, void *ptr __unused) 15900 { 15901 ASSERT(MUTEX_HELD(&cpu_lock)); 15902 mutex_enter(&dtrace_lock); 15903 15904 switch (what) { 15905 case CPU_CONFIG: { 15906 dtrace_state_t *state; 15907 dtrace_optval_t *opt, rs, c; 15908 15909 /* 15910 * For now, we only allocate a new buffer for anonymous state. 15911 */ 15912 if ((state = dtrace_anon.dta_state) == NULL) 15913 break; 15914 15915 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 15916 break; 15917 15918 opt = state->dts_options; 15919 c = opt[DTRACEOPT_CPU]; 15920 15921 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 15922 break; 15923 15924 /* 15925 * Regardless of what the actual policy is, we're going to 15926 * temporarily set our resize policy to be manual. We're 15927 * also going to temporarily set our CPU option to denote 15928 * the newly configured CPU. 15929 */ 15930 rs = opt[DTRACEOPT_BUFRESIZE]; 15931 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 15932 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 15933 15934 (void) dtrace_state_buffers(state); 15935 15936 opt[DTRACEOPT_BUFRESIZE] = rs; 15937 opt[DTRACEOPT_CPU] = c; 15938 15939 break; 15940 } 15941 15942 case CPU_UNCONFIG: 15943 /* 15944 * We don't free the buffer in the CPU_UNCONFIG case. (The 15945 * buffer will be freed when the consumer exits.) 15946 */ 15947 break; 15948 15949 default: 15950 break; 15951 } 15952 15953 mutex_exit(&dtrace_lock); 15954 return (0); 15955 } 15956 15957 static void 15958 dtrace_cpu_setup_initial(processorid_t cpu) 15959 { 15960 (void) dtrace_cpu_setup(CPU_CONFIG, cpu, NULL); 15961 } 15962 15963 static void 15964 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 15965 { 15966 if (dtrace_toxranges >= dtrace_toxranges_max) { 15967 int osize, nsize; 15968 dtrace_toxrange_t *range; 15969 15970 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15971 15972 if (osize == 0) { 15973 ASSERT(dtrace_toxrange == NULL); 15974 ASSERT(dtrace_toxranges_max == 0); 15975 dtrace_toxranges_max = 1; 15976 } else { 15977 dtrace_toxranges_max <<= 1; 15978 } 15979 15980 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15981 range = kmem_zalloc(nsize, KM_SLEEP); 15982 15983 if (dtrace_toxrange != NULL) { 15984 ASSERT(osize != 0); 15985 bcopy(dtrace_toxrange, range, osize); 15986 kmem_free(dtrace_toxrange, osize); 15987 } 15988 15989 dtrace_toxrange = range; 15990 } 15991 15992 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == (uintptr_t)NULL); 15993 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == (uintptr_t)NULL); 15994 15995 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 15996 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 15997 dtrace_toxranges++; 15998 } 15999 16000 static void 16001 dtrace_getf_barrier() 16002 { 16003 /* 16004 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 16005 * that contain calls to getf(), this routine will be called on every 16006 * closef() before either the underlying vnode is released or the 16007 * file_t itself is freed. By the time we are here, it is essential 16008 * that the file_t can no longer be accessed from a call to getf() 16009 * in probe context -- that assures that a dtrace_sync() can be used 16010 * to clear out any enablings referring to the old structures. 16011 */ 16012 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 16013 kcred->cr_zone->zone_dtrace_getf != 0) 16014 dtrace_sync(); 16015 } 16016 16017 /* 16018 * DTrace Driver Cookbook Functions 16019 */ 16020 /*ARGSUSED*/ 16021 static int 16022 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 16023 { 16024 dtrace_provider_id_t id; 16025 dtrace_state_t *state = NULL; 16026 dtrace_enabling_t *enab; 16027 16028 mutex_enter(&cpu_lock); 16029 mutex_enter(&dtrace_provider_lock); 16030 mutex_enter(&dtrace_lock); 16031 16032 if (ddi_soft_state_init(&dtrace_softstate, 16033 sizeof (dtrace_state_t), 0) != 0) { 16034 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 16035 mutex_exit(&cpu_lock); 16036 mutex_exit(&dtrace_provider_lock); 16037 mutex_exit(&dtrace_lock); 16038 return (DDI_FAILURE); 16039 } 16040 16041 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 16042 DTRACEMNRN_DTRACE, DDI_PSEUDO, 0) == DDI_FAILURE || 16043 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 16044 DTRACEMNRN_HELPER, DDI_PSEUDO, 0) == DDI_FAILURE) { 16045 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 16046 ddi_remove_minor_node(devi, NULL); 16047 ddi_soft_state_fini(&dtrace_softstate); 16048 mutex_exit(&cpu_lock); 16049 mutex_exit(&dtrace_provider_lock); 16050 mutex_exit(&dtrace_lock); 16051 return (DDI_FAILURE); 16052 } 16053 16054 ddi_report_dev(devi); 16055 dtrace_devi = devi; 16056 16057 dtrace_modload = dtrace_module_loaded; 16058 dtrace_modunload = dtrace_module_unloaded; 16059 dtrace_cpu_init = dtrace_cpu_setup_initial; 16060 dtrace_helpers_cleanup = dtrace_helpers_destroy; 16061 dtrace_helpers_fork = dtrace_helpers_duplicate; 16062 dtrace_cpustart_init = dtrace_suspend; 16063 dtrace_cpustart_fini = dtrace_resume; 16064 dtrace_debugger_init = dtrace_suspend; 16065 dtrace_debugger_fini = dtrace_resume; 16066 16067 register_cpu_setup_func(dtrace_cpu_setup, NULL); 16068 16069 ASSERT(MUTEX_HELD(&cpu_lock)); 16070 16071 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 16072 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 16073 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 16074 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 16075 VM_SLEEP | VMC_IDENTIFIER); 16076 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 16077 1, INT_MAX, 0); 16078 16079 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 16080 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 16081 NULL, NULL, NULL, NULL, NULL, 0); 16082 16083 ASSERT(MUTEX_HELD(&cpu_lock)); 16084 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 16085 offsetof(dtrace_probe_t, dtpr_nextmod), 16086 offsetof(dtrace_probe_t, dtpr_prevmod)); 16087 16088 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 16089 offsetof(dtrace_probe_t, dtpr_nextfunc), 16090 offsetof(dtrace_probe_t, dtpr_prevfunc)); 16091 16092 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 16093 offsetof(dtrace_probe_t, dtpr_nextname), 16094 offsetof(dtrace_probe_t, dtpr_prevname)); 16095 16096 if (dtrace_retain_max < 1) { 16097 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 16098 "setting to 1", dtrace_retain_max); 16099 dtrace_retain_max = 1; 16100 } 16101 16102 /* 16103 * Now discover our toxic ranges. 16104 */ 16105 dtrace_toxic_ranges(dtrace_toxrange_add); 16106 16107 /* 16108 * Before we register ourselves as a provider to our own framework, 16109 * we would like to assert that dtrace_provider is NULL -- but that's 16110 * not true if we were loaded as a dependency of a DTrace provider. 16111 * Once we've registered, we can assert that dtrace_provider is our 16112 * pseudo provider. 16113 */ 16114 (void) dtrace_register("dtrace", &dtrace_provider_attr, 16115 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 16116 16117 ASSERT(dtrace_provider != NULL); 16118 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 16119 16120 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 16121 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 16122 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 16123 dtrace_provider, NULL, NULL, "END", 0, NULL); 16124 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 16125 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 16126 16127 dtrace_anon_property(); 16128 mutex_exit(&cpu_lock); 16129 16130 /* 16131 * If there are already providers, we must ask them to provide their 16132 * probes, and then match any anonymous enabling against them. Note 16133 * that there should be no other retained enablings at this time: 16134 * the only retained enablings at this time should be the anonymous 16135 * enabling. 16136 */ 16137 if (dtrace_anon.dta_enabling != NULL) { 16138 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 16139 16140 dtrace_enabling_provide(NULL); 16141 state = dtrace_anon.dta_state; 16142 16143 /* 16144 * We couldn't hold cpu_lock across the above call to 16145 * dtrace_enabling_provide(), but we must hold it to actually 16146 * enable the probes. We have to drop all of our locks, pick 16147 * up cpu_lock, and regain our locks before matching the 16148 * retained anonymous enabling. 16149 */ 16150 mutex_exit(&dtrace_lock); 16151 mutex_exit(&dtrace_provider_lock); 16152 16153 mutex_enter(&cpu_lock); 16154 mutex_enter(&dtrace_provider_lock); 16155 mutex_enter(&dtrace_lock); 16156 16157 if ((enab = dtrace_anon.dta_enabling) != NULL) 16158 (void) dtrace_enabling_match(enab, NULL); 16159 16160 mutex_exit(&cpu_lock); 16161 } 16162 16163 mutex_exit(&dtrace_lock); 16164 mutex_exit(&dtrace_provider_lock); 16165 16166 if (state != NULL) { 16167 /* 16168 * If we created any anonymous state, set it going now. 16169 */ 16170 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 16171 } 16172 16173 return (DDI_SUCCESS); 16174 } 16175 16176 /*ARGSUSED*/ 16177 static int 16178 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 16179 { 16180 dtrace_state_t *state; 16181 uint32_t priv; 16182 uid_t uid; 16183 zoneid_t zoneid; 16184 16185 if (getminor(*devp) == DTRACEMNRN_HELPER) 16186 return (0); 16187 16188 /* 16189 * If this wasn't an open with the "helper" minor, then it must be 16190 * the "dtrace" minor. 16191 */ 16192 if (getminor(*devp) != DTRACEMNRN_DTRACE) 16193 return (ENXIO); 16194 16195 /* 16196 * If no DTRACE_PRIV_* bits are set in the credential, then the 16197 * caller lacks sufficient permission to do anything with DTrace. 16198 */ 16199 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 16200 if (priv == DTRACE_PRIV_NONE) 16201 return (EACCES); 16202 16203 /* 16204 * Ask all providers to provide all their probes. 16205 */ 16206 mutex_enter(&dtrace_provider_lock); 16207 dtrace_probe_provide(NULL, NULL); 16208 mutex_exit(&dtrace_provider_lock); 16209 16210 mutex_enter(&cpu_lock); 16211 mutex_enter(&dtrace_lock); 16212 dtrace_opens++; 16213 dtrace_membar_producer(); 16214 16215 /* 16216 * If the kernel debugger is active (that is, if the kernel debugger 16217 * modified text in some way), we won't allow the open. 16218 */ 16219 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 16220 dtrace_opens--; 16221 mutex_exit(&cpu_lock); 16222 mutex_exit(&dtrace_lock); 16223 return (EBUSY); 16224 } 16225 16226 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 16227 /* 16228 * If DTrace helper tracing is enabled, we need to allocate the 16229 * trace buffer and initialize the values. 16230 */ 16231 dtrace_helptrace_buffer = 16232 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 16233 dtrace_helptrace_next = 0; 16234 dtrace_helptrace_wrapped = 0; 16235 dtrace_helptrace_enable = 0; 16236 } 16237 16238 state = dtrace_state_create(devp, cred_p); 16239 mutex_exit(&cpu_lock); 16240 16241 if (state == NULL) { 16242 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 16243 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16244 mutex_exit(&dtrace_lock); 16245 return (EAGAIN); 16246 } 16247 16248 mutex_exit(&dtrace_lock); 16249 16250 return (0); 16251 } 16252 16253 /*ARGSUSED*/ 16254 static int 16255 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 16256 { 16257 minor_t minor = getminor(dev); 16258 dtrace_state_t *state; 16259 dtrace_helptrace_t *buf = NULL; 16260 16261 if (minor == DTRACEMNRN_HELPER) 16262 return (0); 16263 16264 state = ddi_get_soft_state(dtrace_softstate, minor); 16265 16266 mutex_enter(&cpu_lock); 16267 mutex_enter(&dtrace_lock); 16268 16269 if (state->dts_anon) { 16270 /* 16271 * There is anonymous state. Destroy that first. 16272 */ 16273 ASSERT(dtrace_anon.dta_state == NULL); 16274 dtrace_state_destroy(state->dts_anon); 16275 } 16276 16277 if (dtrace_helptrace_disable) { 16278 /* 16279 * If we have been told to disable helper tracing, set the 16280 * buffer to NULL before calling into dtrace_state_destroy(); 16281 * we take advantage of its dtrace_sync() to know that no 16282 * CPU is in probe context with enabled helper tracing 16283 * after it returns. 16284 */ 16285 buf = dtrace_helptrace_buffer; 16286 dtrace_helptrace_buffer = NULL; 16287 } 16288 16289 dtrace_state_destroy(state); 16290 ASSERT(dtrace_opens > 0); 16291 16292 /* 16293 * Only relinquish control of the kernel debugger interface when there 16294 * are no consumers and no anonymous enablings. 16295 */ 16296 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 16297 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16298 16299 if (buf != NULL) { 16300 kmem_free(buf, dtrace_helptrace_bufsize); 16301 dtrace_helptrace_disable = 0; 16302 } 16303 16304 mutex_exit(&dtrace_lock); 16305 mutex_exit(&cpu_lock); 16306 16307 return (0); 16308 } 16309 16310 /*ARGSUSED*/ 16311 static int 16312 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 16313 { 16314 int rval; 16315 dof_helper_t help, *dhp = NULL; 16316 16317 switch (cmd) { 16318 case DTRACEHIOC_ADDDOF: 16319 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 16320 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 16321 return (EFAULT); 16322 } 16323 16324 dhp = &help; 16325 arg = (intptr_t)help.dofhp_dof; 16326 /*FALLTHROUGH*/ 16327 16328 case DTRACEHIOC_ADD: { 16329 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 16330 16331 if (dof == NULL) 16332 return (rval); 16333 16334 mutex_enter(&dtrace_lock); 16335 16336 /* 16337 * dtrace_helper_slurp() takes responsibility for the dof -- 16338 * it may free it now or it may save it and free it later. 16339 */ 16340 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 16341 *rv = rval; 16342 rval = 0; 16343 } else { 16344 rval = EINVAL; 16345 } 16346 16347 mutex_exit(&dtrace_lock); 16348 return (rval); 16349 } 16350 16351 case DTRACEHIOC_REMOVE: { 16352 mutex_enter(&dtrace_lock); 16353 rval = dtrace_helper_destroygen(arg); 16354 mutex_exit(&dtrace_lock); 16355 16356 return (rval); 16357 } 16358 16359 default: 16360 break; 16361 } 16362 16363 return (ENOTTY); 16364 } 16365 16366 /*ARGSUSED*/ 16367 static int 16368 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 16369 { 16370 minor_t minor = getminor(dev); 16371 dtrace_state_t *state; 16372 int rval; 16373 16374 if (minor == DTRACEMNRN_HELPER) 16375 return (dtrace_ioctl_helper(cmd, arg, rv)); 16376 16377 state = ddi_get_soft_state(dtrace_softstate, minor); 16378 16379 if (state->dts_anon) { 16380 ASSERT(dtrace_anon.dta_state == NULL); 16381 state = state->dts_anon; 16382 } 16383 16384 switch (cmd) { 16385 case DTRACEIOC_PROVIDER: { 16386 dtrace_providerdesc_t pvd; 16387 dtrace_provider_t *pvp; 16388 16389 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 16390 return (EFAULT); 16391 16392 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 16393 mutex_enter(&dtrace_provider_lock); 16394 16395 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 16396 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 16397 break; 16398 } 16399 16400 mutex_exit(&dtrace_provider_lock); 16401 16402 if (pvp == NULL) 16403 return (ESRCH); 16404 16405 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 16406 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 16407 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 16408 return (EFAULT); 16409 16410 return (0); 16411 } 16412 16413 case DTRACEIOC_EPROBE: { 16414 dtrace_eprobedesc_t epdesc; 16415 dtrace_ecb_t *ecb; 16416 dtrace_action_t *act; 16417 void *buf; 16418 size_t size; 16419 uintptr_t dest; 16420 int nrecs; 16421 16422 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 16423 return (EFAULT); 16424 16425 mutex_enter(&dtrace_lock); 16426 16427 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 16428 mutex_exit(&dtrace_lock); 16429 return (EINVAL); 16430 } 16431 16432 if (ecb->dte_probe == NULL) { 16433 mutex_exit(&dtrace_lock); 16434 return (EINVAL); 16435 } 16436 16437 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 16438 epdesc.dtepd_uarg = ecb->dte_uarg; 16439 epdesc.dtepd_size = ecb->dte_size; 16440 16441 nrecs = epdesc.dtepd_nrecs; 16442 epdesc.dtepd_nrecs = 0; 16443 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16444 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16445 continue; 16446 16447 epdesc.dtepd_nrecs++; 16448 } 16449 16450 /* 16451 * Now that we have the size, we need to allocate a temporary 16452 * buffer in which to store the complete description. We need 16453 * the temporary buffer to be able to drop dtrace_lock() 16454 * across the copyout(), below. 16455 */ 16456 size = sizeof (dtrace_eprobedesc_t) + 16457 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 16458 16459 buf = kmem_alloc(size, KM_SLEEP); 16460 dest = (uintptr_t)buf; 16461 16462 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 16463 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 16464 16465 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16466 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16467 continue; 16468 16469 if (nrecs-- == 0) 16470 break; 16471 16472 bcopy(&act->dta_rec, (void *)dest, 16473 sizeof (dtrace_recdesc_t)); 16474 dest += sizeof (dtrace_recdesc_t); 16475 } 16476 16477 mutex_exit(&dtrace_lock); 16478 16479 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16480 kmem_free(buf, size); 16481 return (EFAULT); 16482 } 16483 16484 kmem_free(buf, size); 16485 return (0); 16486 } 16487 16488 case DTRACEIOC_AGGDESC: { 16489 dtrace_aggdesc_t aggdesc; 16490 dtrace_action_t *act; 16491 dtrace_aggregation_t *agg; 16492 int nrecs; 16493 uint32_t offs; 16494 dtrace_recdesc_t *lrec; 16495 void *buf; 16496 size_t size; 16497 uintptr_t dest; 16498 16499 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 16500 return (EFAULT); 16501 16502 mutex_enter(&dtrace_lock); 16503 16504 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 16505 mutex_exit(&dtrace_lock); 16506 return (EINVAL); 16507 } 16508 16509 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 16510 16511 nrecs = aggdesc.dtagd_nrecs; 16512 aggdesc.dtagd_nrecs = 0; 16513 16514 offs = agg->dtag_base; 16515 lrec = &agg->dtag_action.dta_rec; 16516 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 16517 16518 for (act = agg->dtag_first; ; act = act->dta_next) { 16519 ASSERT(act->dta_intuple || 16520 DTRACEACT_ISAGG(act->dta_kind)); 16521 16522 /* 16523 * If this action has a record size of zero, it 16524 * denotes an argument to the aggregating action. 16525 * Because the presence of this record doesn't (or 16526 * shouldn't) affect the way the data is interpreted, 16527 * we don't copy it out to save user-level the 16528 * confusion of dealing with a zero-length record. 16529 */ 16530 if (act->dta_rec.dtrd_size == 0) { 16531 ASSERT(agg->dtag_hasarg); 16532 continue; 16533 } 16534 16535 aggdesc.dtagd_nrecs++; 16536 16537 if (act == &agg->dtag_action) 16538 break; 16539 } 16540 16541 /* 16542 * Now that we have the size, we need to allocate a temporary 16543 * buffer in which to store the complete description. We need 16544 * the temporary buffer to be able to drop dtrace_lock() 16545 * across the copyout(), below. 16546 */ 16547 size = sizeof (dtrace_aggdesc_t) + 16548 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 16549 16550 buf = kmem_alloc(size, KM_SLEEP); 16551 dest = (uintptr_t)buf; 16552 16553 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 16554 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 16555 16556 for (act = agg->dtag_first; ; act = act->dta_next) { 16557 dtrace_recdesc_t rec = act->dta_rec; 16558 16559 /* 16560 * See the comment in the above loop for why we pass 16561 * over zero-length records. 16562 */ 16563 if (rec.dtrd_size == 0) { 16564 ASSERT(agg->dtag_hasarg); 16565 continue; 16566 } 16567 16568 if (nrecs-- == 0) 16569 break; 16570 16571 rec.dtrd_offset -= offs; 16572 bcopy(&rec, (void *)dest, sizeof (rec)); 16573 dest += sizeof (dtrace_recdesc_t); 16574 16575 if (act == &agg->dtag_action) 16576 break; 16577 } 16578 16579 mutex_exit(&dtrace_lock); 16580 16581 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16582 kmem_free(buf, size); 16583 return (EFAULT); 16584 } 16585 16586 kmem_free(buf, size); 16587 return (0); 16588 } 16589 16590 case DTRACEIOC_ENABLE: { 16591 dof_hdr_t *dof; 16592 dtrace_enabling_t *enab = NULL; 16593 dtrace_vstate_t *vstate; 16594 int err = 0; 16595 16596 *rv = 0; 16597 16598 /* 16599 * If a NULL argument has been passed, we take this as our 16600 * cue to reevaluate our enablings. 16601 */ 16602 if (arg == 0) { 16603 dtrace_enabling_matchall(); 16604 16605 return (0); 16606 } 16607 16608 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 16609 return (rval); 16610 16611 mutex_enter(&cpu_lock); 16612 mutex_enter(&dtrace_lock); 16613 vstate = &state->dts_vstate; 16614 16615 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 16616 mutex_exit(&dtrace_lock); 16617 mutex_exit(&cpu_lock); 16618 dtrace_dof_destroy(dof); 16619 return (EBUSY); 16620 } 16621 16622 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 16623 mutex_exit(&dtrace_lock); 16624 mutex_exit(&cpu_lock); 16625 dtrace_dof_destroy(dof); 16626 return (EINVAL); 16627 } 16628 16629 if ((rval = dtrace_dof_options(dof, state)) != 0) { 16630 dtrace_enabling_destroy(enab); 16631 mutex_exit(&dtrace_lock); 16632 mutex_exit(&cpu_lock); 16633 dtrace_dof_destroy(dof); 16634 return (rval); 16635 } 16636 16637 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 16638 err = dtrace_enabling_retain(enab); 16639 } else { 16640 dtrace_enabling_destroy(enab); 16641 } 16642 16643 mutex_exit(&cpu_lock); 16644 mutex_exit(&dtrace_lock); 16645 dtrace_dof_destroy(dof); 16646 16647 return (err); 16648 } 16649 16650 case DTRACEIOC_REPLICATE: { 16651 dtrace_repldesc_t desc; 16652 dtrace_probedesc_t *match = &desc.dtrpd_match; 16653 dtrace_probedesc_t *create = &desc.dtrpd_create; 16654 int err; 16655 16656 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16657 return (EFAULT); 16658 16659 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16660 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16661 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16662 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16663 16664 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16665 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16666 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16667 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16668 16669 mutex_enter(&dtrace_lock); 16670 err = dtrace_enabling_replicate(state, match, create); 16671 mutex_exit(&dtrace_lock); 16672 16673 return (err); 16674 } 16675 16676 case DTRACEIOC_PROBEMATCH: 16677 case DTRACEIOC_PROBES: { 16678 dtrace_probe_t *probe = NULL; 16679 dtrace_probedesc_t desc; 16680 dtrace_probekey_t pkey; 16681 dtrace_id_t i; 16682 int m = 0; 16683 uint32_t priv; 16684 uid_t uid; 16685 zoneid_t zoneid; 16686 16687 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16688 return (EFAULT); 16689 16690 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16691 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16692 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16693 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16694 16695 /* 16696 * Before we attempt to match this probe, we want to give 16697 * all providers the opportunity to provide it. 16698 */ 16699 if (desc.dtpd_id == DTRACE_IDNONE) { 16700 mutex_enter(&dtrace_provider_lock); 16701 dtrace_probe_provide(&desc, NULL); 16702 mutex_exit(&dtrace_provider_lock); 16703 desc.dtpd_id++; 16704 } 16705 16706 if (cmd == DTRACEIOC_PROBEMATCH) { 16707 dtrace_probekey(&desc, &pkey); 16708 pkey.dtpk_id = DTRACE_IDNONE; 16709 } 16710 16711 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 16712 16713 mutex_enter(&dtrace_lock); 16714 16715 if (cmd == DTRACEIOC_PROBEMATCH) { 16716 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16717 if ((probe = dtrace_probes[i - 1]) != NULL && 16718 (m = dtrace_match_probe(probe, &pkey, 16719 priv, uid, zoneid)) != 0) 16720 break; 16721 } 16722 16723 if (m < 0) { 16724 mutex_exit(&dtrace_lock); 16725 return (EINVAL); 16726 } 16727 16728 } else { 16729 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16730 if ((probe = dtrace_probes[i - 1]) != NULL && 16731 dtrace_match_priv(probe, priv, uid, zoneid)) 16732 break; 16733 } 16734 } 16735 16736 if (probe == NULL) { 16737 mutex_exit(&dtrace_lock); 16738 return (ESRCH); 16739 } 16740 16741 dtrace_probe_description(probe, &desc); 16742 mutex_exit(&dtrace_lock); 16743 16744 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16745 return (EFAULT); 16746 16747 return (0); 16748 } 16749 16750 case DTRACEIOC_PROBEARG: { 16751 dtrace_argdesc_t desc; 16752 dtrace_probe_t *probe; 16753 dtrace_provider_t *prov; 16754 16755 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16756 return (EFAULT); 16757 16758 if (desc.dtargd_id == DTRACE_IDNONE) 16759 return (EINVAL); 16760 16761 if (desc.dtargd_ndx == DTRACE_ARGNONE) 16762 return (EINVAL); 16763 16764 mutex_enter(&dtrace_provider_lock); 16765 mutex_enter(&mod_lock); 16766 mutex_enter(&dtrace_lock); 16767 16768 if (desc.dtargd_id > dtrace_nprobes) { 16769 mutex_exit(&dtrace_lock); 16770 mutex_exit(&mod_lock); 16771 mutex_exit(&dtrace_provider_lock); 16772 return (EINVAL); 16773 } 16774 16775 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 16776 mutex_exit(&dtrace_lock); 16777 mutex_exit(&mod_lock); 16778 mutex_exit(&dtrace_provider_lock); 16779 return (EINVAL); 16780 } 16781 16782 mutex_exit(&dtrace_lock); 16783 16784 prov = probe->dtpr_provider; 16785 16786 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 16787 /* 16788 * There isn't any typed information for this probe. 16789 * Set the argument number to DTRACE_ARGNONE. 16790 */ 16791 desc.dtargd_ndx = DTRACE_ARGNONE; 16792 } else { 16793 desc.dtargd_native[0] = '\0'; 16794 desc.dtargd_xlate[0] = '\0'; 16795 desc.dtargd_mapping = desc.dtargd_ndx; 16796 16797 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 16798 probe->dtpr_id, probe->dtpr_arg, &desc); 16799 } 16800 16801 mutex_exit(&mod_lock); 16802 mutex_exit(&dtrace_provider_lock); 16803 16804 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16805 return (EFAULT); 16806 16807 return (0); 16808 } 16809 16810 case DTRACEIOC_GO: { 16811 processorid_t cpuid; 16812 rval = dtrace_state_go(state, &cpuid); 16813 16814 if (rval != 0) 16815 return (rval); 16816 16817 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16818 return (EFAULT); 16819 16820 return (0); 16821 } 16822 16823 case DTRACEIOC_STOP: { 16824 processorid_t cpuid; 16825 16826 mutex_enter(&dtrace_lock); 16827 rval = dtrace_state_stop(state, &cpuid); 16828 mutex_exit(&dtrace_lock); 16829 16830 if (rval != 0) 16831 return (rval); 16832 16833 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16834 return (EFAULT); 16835 16836 return (0); 16837 } 16838 16839 case DTRACEIOC_DOFGET: { 16840 dof_hdr_t hdr, *dof; 16841 uint64_t len; 16842 16843 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 16844 return (EFAULT); 16845 16846 mutex_enter(&dtrace_lock); 16847 dof = dtrace_dof_create(state); 16848 mutex_exit(&dtrace_lock); 16849 16850 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 16851 rval = copyout(dof, (void *)arg, len); 16852 dtrace_dof_destroy(dof); 16853 16854 return (rval == 0 ? 0 : EFAULT); 16855 } 16856 16857 case DTRACEIOC_AGGSNAP: 16858 case DTRACEIOC_BUFSNAP: { 16859 dtrace_bufdesc_t desc; 16860 caddr_t cached; 16861 dtrace_buffer_t *buf; 16862 16863 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16864 return (EFAULT); 16865 16866 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 16867 return (EINVAL); 16868 16869 mutex_enter(&dtrace_lock); 16870 16871 if (cmd == DTRACEIOC_BUFSNAP) { 16872 buf = &state->dts_buffer[desc.dtbd_cpu]; 16873 } else { 16874 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 16875 } 16876 16877 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 16878 size_t sz = buf->dtb_offset; 16879 16880 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 16881 mutex_exit(&dtrace_lock); 16882 return (EBUSY); 16883 } 16884 16885 /* 16886 * If this buffer has already been consumed, we're 16887 * going to indicate that there's nothing left here 16888 * to consume. 16889 */ 16890 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 16891 mutex_exit(&dtrace_lock); 16892 16893 desc.dtbd_size = 0; 16894 desc.dtbd_drops = 0; 16895 desc.dtbd_errors = 0; 16896 desc.dtbd_oldest = 0; 16897 sz = sizeof (desc); 16898 16899 if (copyout(&desc, (void *)arg, sz) != 0) 16900 return (EFAULT); 16901 16902 return (0); 16903 } 16904 16905 /* 16906 * If this is a ring buffer that has wrapped, we want 16907 * to copy the whole thing out. 16908 */ 16909 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 16910 dtrace_buffer_polish(buf); 16911 sz = buf->dtb_size; 16912 } 16913 16914 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 16915 mutex_exit(&dtrace_lock); 16916 return (EFAULT); 16917 } 16918 16919 desc.dtbd_size = sz; 16920 desc.dtbd_drops = buf->dtb_drops; 16921 desc.dtbd_errors = buf->dtb_errors; 16922 desc.dtbd_oldest = buf->dtb_xamot_offset; 16923 desc.dtbd_timestamp = dtrace_gethrtime(); 16924 16925 mutex_exit(&dtrace_lock); 16926 16927 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16928 return (EFAULT); 16929 16930 buf->dtb_flags |= DTRACEBUF_CONSUMED; 16931 16932 return (0); 16933 } 16934 16935 if (buf->dtb_tomax == NULL) { 16936 ASSERT(buf->dtb_xamot == NULL); 16937 mutex_exit(&dtrace_lock); 16938 return (ENOENT); 16939 } 16940 16941 cached = buf->dtb_tomax; 16942 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 16943 16944 dtrace_xcall(desc.dtbd_cpu, 16945 (dtrace_xcall_t)dtrace_buffer_switch, buf); 16946 16947 state->dts_errors += buf->dtb_xamot_errors; 16948 16949 /* 16950 * If the buffers did not actually switch, then the cross call 16951 * did not take place -- presumably because the given CPU is 16952 * not in the ready set. If this is the case, we'll return 16953 * ENOENT. 16954 */ 16955 if (buf->dtb_tomax == cached) { 16956 ASSERT(buf->dtb_xamot != cached); 16957 mutex_exit(&dtrace_lock); 16958 return (ENOENT); 16959 } 16960 16961 ASSERT(cached == buf->dtb_xamot); 16962 16963 /* 16964 * We have our snapshot; now copy it out. 16965 */ 16966 if (copyout(buf->dtb_xamot, desc.dtbd_data, 16967 buf->dtb_xamot_offset) != 0) { 16968 mutex_exit(&dtrace_lock); 16969 return (EFAULT); 16970 } 16971 16972 desc.dtbd_size = buf->dtb_xamot_offset; 16973 desc.dtbd_drops = buf->dtb_xamot_drops; 16974 desc.dtbd_errors = buf->dtb_xamot_errors; 16975 desc.dtbd_oldest = 0; 16976 desc.dtbd_timestamp = buf->dtb_switched; 16977 16978 mutex_exit(&dtrace_lock); 16979 16980 /* 16981 * Finally, copy out the buffer description. 16982 */ 16983 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16984 return (EFAULT); 16985 16986 return (0); 16987 } 16988 16989 case DTRACEIOC_CONF: { 16990 dtrace_conf_t conf; 16991 16992 bzero(&conf, sizeof (conf)); 16993 conf.dtc_difversion = DIF_VERSION; 16994 conf.dtc_difintregs = DIF_DIR_NREGS; 16995 conf.dtc_diftupregs = DIF_DTR_NREGS; 16996 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 16997 16998 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 16999 return (EFAULT); 17000 17001 return (0); 17002 } 17003 17004 case DTRACEIOC_STATUS: { 17005 dtrace_status_t stat; 17006 dtrace_dstate_t *dstate; 17007 int i, j; 17008 uint64_t nerrs; 17009 17010 /* 17011 * See the comment in dtrace_state_deadman() for the reason 17012 * for setting dts_laststatus to INT64_MAX before setting 17013 * it to the correct value. 17014 */ 17015 state->dts_laststatus = INT64_MAX; 17016 dtrace_membar_producer(); 17017 state->dts_laststatus = dtrace_gethrtime(); 17018 17019 bzero(&stat, sizeof (stat)); 17020 17021 mutex_enter(&dtrace_lock); 17022 17023 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 17024 mutex_exit(&dtrace_lock); 17025 return (ENOENT); 17026 } 17027 17028 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 17029 stat.dtst_exiting = 1; 17030 17031 nerrs = state->dts_errors; 17032 dstate = &state->dts_vstate.dtvs_dynvars; 17033 17034 for (i = 0; i < NCPU; i++) { 17035 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 17036 17037 stat.dtst_dyndrops += dcpu->dtdsc_drops; 17038 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 17039 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 17040 17041 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 17042 stat.dtst_filled++; 17043 17044 nerrs += state->dts_buffer[i].dtb_errors; 17045 17046 for (j = 0; j < state->dts_nspeculations; j++) { 17047 dtrace_speculation_t *spec; 17048 dtrace_buffer_t *buf; 17049 17050 spec = &state->dts_speculations[j]; 17051 buf = &spec->dtsp_buffer[i]; 17052 stat.dtst_specdrops += buf->dtb_xamot_drops; 17053 } 17054 } 17055 17056 stat.dtst_specdrops_busy = state->dts_speculations_busy; 17057 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 17058 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 17059 stat.dtst_dblerrors = state->dts_dblerrors; 17060 stat.dtst_killed = 17061 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 17062 stat.dtst_errors = nerrs; 17063 17064 mutex_exit(&dtrace_lock); 17065 17066 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 17067 return (EFAULT); 17068 17069 return (0); 17070 } 17071 17072 case DTRACEIOC_FORMAT: { 17073 dtrace_fmtdesc_t fmt; 17074 char *str; 17075 int len; 17076 17077 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 17078 return (EFAULT); 17079 17080 mutex_enter(&dtrace_lock); 17081 17082 if (fmt.dtfd_format == 0 || 17083 fmt.dtfd_format > state->dts_nformats) { 17084 mutex_exit(&dtrace_lock); 17085 return (EINVAL); 17086 } 17087 17088 /* 17089 * Format strings are allocated contiguously and they are 17090 * never freed; if a format index is less than the number 17091 * of formats, we can assert that the format map is non-NULL 17092 * and that the format for the specified index is non-NULL. 17093 */ 17094 ASSERT(state->dts_formats != NULL); 17095 str = state->dts_formats[fmt.dtfd_format - 1]; 17096 ASSERT(str != NULL); 17097 17098 len = strlen(str) + 1; 17099 17100 if (len > fmt.dtfd_length) { 17101 fmt.dtfd_length = len; 17102 17103 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 17104 mutex_exit(&dtrace_lock); 17105 return (EINVAL); 17106 } 17107 } else { 17108 if (copyout(str, fmt.dtfd_string, len) != 0) { 17109 mutex_exit(&dtrace_lock); 17110 return (EINVAL); 17111 } 17112 } 17113 17114 mutex_exit(&dtrace_lock); 17115 return (0); 17116 } 17117 17118 default: 17119 break; 17120 } 17121 17122 return (ENOTTY); 17123 } 17124 17125 /*ARGSUSED*/ 17126 static int 17127 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 17128 { 17129 dtrace_state_t *state; 17130 17131 switch (cmd) { 17132 case DDI_DETACH: 17133 break; 17134 17135 case DDI_SUSPEND: 17136 return (DDI_SUCCESS); 17137 17138 default: 17139 return (DDI_FAILURE); 17140 } 17141 17142 mutex_enter(&cpu_lock); 17143 mutex_enter(&dtrace_provider_lock); 17144 mutex_enter(&dtrace_lock); 17145 17146 ASSERT(dtrace_opens == 0); 17147 17148 if (dtrace_helpers > 0) { 17149 mutex_exit(&dtrace_provider_lock); 17150 mutex_exit(&dtrace_lock); 17151 mutex_exit(&cpu_lock); 17152 return (DDI_FAILURE); 17153 } 17154 17155 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 17156 mutex_exit(&dtrace_provider_lock); 17157 mutex_exit(&dtrace_lock); 17158 mutex_exit(&cpu_lock); 17159 return (DDI_FAILURE); 17160 } 17161 17162 dtrace_provider = NULL; 17163 17164 if ((state = dtrace_anon_grab()) != NULL) { 17165 /* 17166 * If there were ECBs on this state, the provider should 17167 * have not been allowed to detach; assert that there is 17168 * none. 17169 */ 17170 ASSERT(state->dts_necbs == 0); 17171 dtrace_state_destroy(state); 17172 17173 /* 17174 * If we're being detached with anonymous state, we need to 17175 * indicate to the kernel debugger that DTrace is now inactive. 17176 */ 17177 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17178 } 17179 17180 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 17181 unregister_cpu_setup_func(dtrace_cpu_setup, NULL); 17182 dtrace_cpu_init = NULL; 17183 dtrace_helpers_cleanup = NULL; 17184 dtrace_helpers_fork = NULL; 17185 dtrace_cpustart_init = NULL; 17186 dtrace_cpustart_fini = NULL; 17187 dtrace_debugger_init = NULL; 17188 dtrace_debugger_fini = NULL; 17189 dtrace_modload = NULL; 17190 dtrace_modunload = NULL; 17191 17192 ASSERT(dtrace_getf == 0); 17193 ASSERT(dtrace_closef == NULL); 17194 17195 mutex_exit(&cpu_lock); 17196 17197 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 17198 dtrace_probes = NULL; 17199 dtrace_nprobes = 0; 17200 17201 dtrace_hash_destroy(dtrace_bymod); 17202 dtrace_hash_destroy(dtrace_byfunc); 17203 dtrace_hash_destroy(dtrace_byname); 17204 dtrace_bymod = NULL; 17205 dtrace_byfunc = NULL; 17206 dtrace_byname = NULL; 17207 17208 kmem_cache_destroy(dtrace_state_cache); 17209 vmem_destroy(dtrace_minor); 17210 vmem_destroy(dtrace_arena); 17211 17212 if (dtrace_toxrange != NULL) { 17213 kmem_free(dtrace_toxrange, 17214 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 17215 dtrace_toxrange = NULL; 17216 dtrace_toxranges = 0; 17217 dtrace_toxranges_max = 0; 17218 } 17219 17220 ddi_remove_minor_node(dtrace_devi, NULL); 17221 dtrace_devi = NULL; 17222 17223 ddi_soft_state_fini(&dtrace_softstate); 17224 17225 ASSERT(dtrace_vtime_references == 0); 17226 ASSERT(dtrace_opens == 0); 17227 ASSERT(dtrace_retained == NULL); 17228 17229 mutex_exit(&dtrace_lock); 17230 mutex_exit(&dtrace_provider_lock); 17231 17232 /* 17233 * We don't destroy the task queue until after we have dropped our 17234 * locks (taskq_destroy() may block on running tasks). To prevent 17235 * attempting to do work after we have effectively detached but before 17236 * the task queue has been destroyed, all tasks dispatched via the 17237 * task queue must check that DTrace is still attached before 17238 * performing any operation. 17239 */ 17240 taskq_destroy(dtrace_taskq); 17241 dtrace_taskq = NULL; 17242 17243 return (DDI_SUCCESS); 17244 } 17245 17246 /*ARGSUSED*/ 17247 static int 17248 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 17249 { 17250 int error; 17251 17252 switch (infocmd) { 17253 case DDI_INFO_DEVT2DEVINFO: 17254 *result = (void *)dtrace_devi; 17255 error = DDI_SUCCESS; 17256 break; 17257 case DDI_INFO_DEVT2INSTANCE: 17258 *result = (void *)0; 17259 error = DDI_SUCCESS; 17260 break; 17261 default: 17262 error = DDI_FAILURE; 17263 } 17264 return (error); 17265 } 17266 17267 static struct cb_ops dtrace_cb_ops = { 17268 dtrace_open, /* open */ 17269 dtrace_close, /* close */ 17270 nulldev, /* strategy */ 17271 nulldev, /* print */ 17272 nodev, /* dump */ 17273 nodev, /* read */ 17274 nodev, /* write */ 17275 dtrace_ioctl, /* ioctl */ 17276 nodev, /* devmap */ 17277 nodev, /* mmap */ 17278 nodev, /* segmap */ 17279 nochpoll, /* poll */ 17280 ddi_prop_op, /* cb_prop_op */ 17281 0, /* streamtab */ 17282 D_NEW | D_MP /* Driver compatibility flag */ 17283 }; 17284 17285 static struct dev_ops dtrace_ops = { 17286 DEVO_REV, /* devo_rev */ 17287 0, /* refcnt */ 17288 dtrace_info, /* get_dev_info */ 17289 nulldev, /* identify */ 17290 nulldev, /* probe */ 17291 dtrace_attach, /* attach */ 17292 dtrace_detach, /* detach */ 17293 nodev, /* reset */ 17294 &dtrace_cb_ops, /* driver operations */ 17295 NULL, /* bus operations */ 17296 nodev, /* dev power */ 17297 ddi_quiesce_not_needed, /* quiesce */ 17298 }; 17299 17300 static struct modldrv modldrv = { 17301 &mod_driverops, /* module type (this is a pseudo driver) */ 17302 "Dynamic Tracing", /* name of module */ 17303 &dtrace_ops, /* driver ops */ 17304 }; 17305 17306 static struct modlinkage modlinkage = { 17307 MODREV_1, 17308 (void *)&modldrv, 17309 NULL 17310 }; 17311 17312 int 17313 _init(void) 17314 { 17315 return (mod_install(&modlinkage)); 17316 } 17317 17318 int 17319 _info(struct modinfo *modinfop) 17320 { 17321 return (mod_info(&modlinkage, modinfop)); 17322 } 17323 17324 int 17325 _fini(void) 17326 { 17327 return (mod_remove(&modlinkage)); 17328 }