
new/usr/src/Makefile.smatch 1

**
 1180 Mon Aug 5 08:37:45 2019
new/usr/src/Makefile.smatch
11506 smatch resync
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #
11 # Copyright 2019 Joyent, Inc.
12 #

14 #
15 # smatch/sparse checks we always disable, due to too many false positives (or
16 # simply too much legacy).
17 #

19 SMATCH_ARGS = --disable=uninitialized,check_check_deref,unreachable

21 # VLAs are OK by us
22 SMATCH_ARGS += -Wno-vla
23 # don’t care
24 SMATCH_ARGS += -Wno-one-bit-signed-bitfield
25 # there are lots of "extern void myfunc() { ... }" around
26 SMATCH_ARGS += -Wno-external-function-has-definition
27 # we have lots of legacy "void foo();" in headers
28 SMATCH_ARGS += -Wno-old-style-definition
29 SMATCH_ARGS += -Wno-strict-prototypes
30 SMATCH_ARGS += --fatal-checks
31 SMATCH_ARGS += --timeout=0
31 SMATCH_ARGS += --timeout=120

33 CERRWARN += $(SMATCH_ARGS:%=-_smatch=%)

35 CERRWARN += $(SMOFF:%=-_smatch=--disable=%)

37 SMATCH_ =
38 SMATCH_on =
39 SMATCH_off = -_smatch=off

41 CERRWARN += $(SMATCH_$(SMATCH))

new/usr/src/boot/lib/libstand/Makefile.inc 1

**
 7040 Mon Aug 5 08:37:45 2019
new/usr/src/boot/lib/libstand/Makefile.inc
11506 smatch resync
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2016 Toomas Soome <tsoome@me.com>
14 # Copyright 2019 Joyent, Inc.
15 #

17 #
18 # Notes:
19 # - We don’t use the libc strerror/sys_errlist because the string table is
20 # quite large.
21 #

23 # standalone components and stuff we have modified locally
24 SRCS= $(ZLIB)/gzguts.h $(ZLIB)/zutil.h
25 SRCS += $(SASRC)/__main.c $(SASRC)/assert.c
26 SRCS += $(SASRC)/bcd.c $(SASRC)/environment.c
27 SRCS += $(SASRC)/getopt.c $(SASRC)/strtol.c
28 SRCS += $(SASRC)/strtoul.c $(SASRC)/random.c
29 SRCS += $(SASRC)/sbrk.c $(SASRC)/twiddle.c
30 SRCS += $(SASRC)/zalloc.c $(SASRC)/zalloc_malloc.c

32 OBJS= __main.o assert.o bcd.o environment.o \
33 getopt.o gets.o globals.o pager.o panic.o printf.o \
34 strdup.o strerror.o strtol.o strtoul.o random.o \
35 sbrk.o twiddle.o zalloc.o zalloc_malloc.o

37 # private (pruned) versions of libc string functions
38 SRCS += $(SASRC)/strcasecmp.c
39 OBJS += strcasecmp.o

41 # from libc
42 SRCS += $(LIBSRC)/libc/net/ntoh.c
43 OBJS += ntoh.o

45 # string functions from libc
46 SRCS += $(LIBSRC)/libc/string/bcmp.c $(LIBSRC)/libc/string/bcopy.c
47 SRCS += $(LIBSRC)/libc/string/bzero.c $(LIBSRC)/libc/string/ffs.c
48 SRCS += $(LIBSRC)/libc/string/fls.c $(LIBSRC)/libc/string/memccpy.c
49 SRCS += $(LIBSRC)/libc/string/memchr.c $(LIBSRC)/libc/string/memcmp.c
50 SRCS += $(LIBSRC)/libc/string/memcpy.c $(LIBSRC)/libc/string/memmove.c
51 SRCS += $(LIBSRC)/libc/string/memset.c $(LIBSRC)/libc/string/strcat.c
52 SRCS += $(LIBSRC)/libc/string/strchr.c $(LIBSRC)/libc/string/strcmp.c
53 SRCS += $(LIBSRC)/libc/string/strcpy.c $(LIBSRC)/libc/string/stpcpy.c
54 SRCS += $(LIBSRC)/libc/string/stpncpy.c $(LIBSRC)/libc/string/strcspn.c
55 SRCS += $(LIBSRC)/libc/string/strlcat.c $(LIBSRC)/libc/string/strlcpy.c
56 SRCS += $(LIBSRC)/libc/string/strlen.c $(LIBSRC)/libc/string/strncat.c
57 SRCS += $(LIBSRC)/libc/string/strncmp.c $(LIBSRC)/libc/string/strncpy.c
58 SRCS += $(LIBSRC)/libc/string/strpbrk.c $(LIBSRC)/libc/string/strrchr.c
59 SRCS += $(LIBSRC)/libc/string/strsep.c $(LIBSRC)/libc/string/strspn.c
60 SRCS += $(LIBSRC)/libc/string/strstr.c $(LIBSRC)/libc/string/strtok.c
61 SRCS += $(LIBSRC)/libc/string/swab.c

new/usr/src/boot/lib/libstand/Makefile.inc 2

63 SRCS += $(SASRC)/qdivrem.c

65 OBJS += bcmp.o bcopy.o bzero.o ffs.o fls.o \
66 memccpy.o memchr.o memcmp.o memcpy.o memmove.o memset.o \
67 qdivrem.o strcat.o strchr.o strcmp.o strcpy.o stpcpy.o stpncpy.o \
68 strcspn.o strlcat.o strlcpy.o strlen.o strncat.o strncmp.o strncpy.o \
69 strpbrk.o strrchr.o strsep.o strspn.o strstr.o strtok.o swab.o

71 # uuid functions from libc
72 SRCS += $(LIBSRC)/libc/uuid/uuid_create_nil.c
73 SRCS += $(LIBSRC)/libc/uuid/uuid_equal.c
74 SRCS += $(LIBSRC)/libc/uuid/uuid_is_nil.c

76 SRCS += $(SASRC)/uuid_from_string.c
77 SRCS += $(SASRC)/uuid_to_string.c

79 OBJS += uuid_create_nil.o uuid_equal.o uuid_from_string.o uuid_is_nil.o \
80 uuid_to_string.o

82 # decompression functionality from libbz2
83 # NOTE: to actually test this functionality after libbz2 upgrade compile
84 # loader(8) with LOADER_BZIP2_SUPPORT defined
85 _bzlib.o _crctable.o _decompress.o _huffman.o _randtable.o bzipfs.o \
86 := CFLAGS += -DBZ_LOADER -DBZ_NO_STDIO -DBZ_NO_COMPRESS
87 SRCS += libstand_bzlib_private.h

89 # too hairy
90 _inflate.o := SMATCH=off

92 SRCS += _bzlib.c _crctable.c _decompress.c _huffman.c _randtable.c
93 OBJS += _bzlib.o _crctable.o _decompress.o _huffman.o _randtable.o
94 CLEANFILES += _bzlib.c _crctable.c _decompress.c _huffman.c _randtable.c

96 _bzlib.c: $(SRC)/common/bzip2/bzlib.c
97 sed "s|bzlib_private\.h|libstand_bzlib_private.h|" $^ > $@

99 _crctable.c: $(SRC)/common/bzip2/crctable.c
100 sed "s|bzlib_private\.h|libstand_bzlib_private.h|" $^ > $@

102 _decompress.c: $(SRC)/common/bzip2/decompress.c
103 sed "s|bzlib_private\.h|libstand_bzlib_private.h|" $^ > $@

105 _huffman.c: $(SRC)/common/bzip2/huffman.c
106 sed "s|bzlib_private\.h|libstand_bzlib_private.h|" $^ > $@

108 _randtable.c: $(SRC)/common/bzip2/randtable.c
109 sed "s|bzlib_private\.h|libstand_bzlib_private.h|" $^ > $@

111 CLEANFILES += libstand_bzlib_private.h
112 libstand_bzlib_private.h: $(SRC)/common/bzip2/bzlib_private.h
113 sed -e ’s|<stdlib.h>|"stand.h"|’ $^ > $@

115 # decompression functionality from zlib
116 adler32.o crc32.o _infback.o _inffast.o _inflate.o _inftrees.o _zutil.o \
117 gzipfs.o gzip.o := CPPFLAGS += -I$(ZLIB)
118 SRCS += $(ZLIB)/adler32.c $(ZLIB)/crc32.c \
119 libstand_zutil.h libstand_gzguts.h
120 OBJS += adler32.o crc32.o

122 _infback.c: $(ZLIB)/infback.c
123 sed -e "s|zutil\.h|libstand_zutil.h|" \
124 -e "s|gzguts\.h|libstand_gzguts.h|" \
125 $^ > $@
126 _inffast.c: $(ZLIB)/inffast.c
127 sed -e "s|zutil\.h|libstand_zutil.h|" \

new/usr/src/boot/lib/libstand/Makefile.inc 3

128 -e "s|gzguts\.h|libstand_gzguts.h|" \
129 $^ > $@
130 _inflate.c: $(ZLIB)/inflate.c
131 sed -e "s|zutil\.h|libstand_zutil.h|" \
132 -e "s|gzguts\.h|libstand_gzguts.h|" \
133 $^ > $@
134 _inftrees.c: $(ZLIB)/inftrees.c
135 sed -e "s|zutil\.h|libstand_zutil.h|" \
136 -e "s|gzguts\.h|libstand_gzguts.h|" \
137 $^ > $@
138 _zutil.c: $(ZLIB)/zutil.c
139 sed -e "s|zutil\.h|libstand_zutil.h|" \
140 -e "s|gzguts\.h|libstand_gzguts.h|" \
141 $^ > $@

143 SRCS += _infback.c _inffast.c _inflate.c _inftrees.c _zutil.c
144 OBJS += _infback.o _inffast.o _inflate.o _inftrees.o _zutil.o
145 CLEANFILES += _infback.c _inffast.c _inflate.c _inftrees.c _zutil.c

147 # depend on stand.h being able to be included multiple times
148 libstand_zutil.h: $(ZLIB)/zutil.h
149 sed -e ’s|<fcntl.h>|"stand.h"|’ \
150 -e ’s|<stddef.h>|"stand.h"|’ \
151 -e ’s|<string.h>|"stand.h"|’ \
152 -e ’s|<stdio.h>|"stand.h"|’ \
153 -e ’s|<stdlib.h>|"stand.h"|’ \
154 $^ > $@

156 libstand_gzguts.h: $(ZLIB)/gzguts.h
157 sed -e ’s|<fcntl.h>|"stand.h"|’ \
158 -e ’s|<stddef.h>|"stand.h"|’ \
159 -e ’s|<string.h>|"stand.h"|’ \
160 -e ’s|<stdio.h>|"stand.h"|’ \
161 -e ’s|<stdlib.h>|"stand.h"|’ \
162 $^ > $@

164 CLEANFILES += libstand_zutil.h libstand_gzguts.h

166 # io routines
167 SRCS += $(SASRC)/closeall.c $(SASRC)/dev.c \
168 $(SASRC)/ioctl.c $(SASRC)/nullfs.c \
169 $(SASRC)/stat.c $(SASRC)/fstat.c $(SASRC)/close.c \
170 $(SASRC)/lseek.c $(SASRC)/open.c $(SASRC)/read.c \
171 $(SASRC)/write.c $(SASRC)/readdir.c

173 OBJS += closeall.o dev.o ioctl.o nullfs.o stat.o fstat.o close.o lseek.o \
174 open.o read.o write.o readdir.o

176 # network routines
177 SRCS += $(SASRC)/arp.c $(SASRC)/ether.c $(SASRC)/ip.c \
178 $(SASRC)/inet_ntoa.c $(SASRC)/in_cksum.c \
179 $(SASRC)/net.c $(SASRC)/udp.c $(SASRC)/netif.c \
180 $(SASRC)/rpc.c
181 OBJS += arp.o ether.o ip.o inet_ntoa.o in_cksum.o net.o udp.o netif.o rpc.o

183 # network info services:
184 SRCS += $(SASRC)/bootp.c $(SASRC)/rarp.c \
185 $(SASRC)/bootparam.c
186 OBJS += bootp.o rarp.o bootparam.o

188 # boot filesystems
189 SRCS += $(SASRC)/ufs.c
190 SRCS += $(SASRC)/nfs.c
191 SRCS += $(SASRC)/cd9660.c
192 SRCS += $(SASRC)/tftp.c
193 SRCS += $(SASRC)/gzipfs.c

new/usr/src/boot/lib/libstand/Makefile.inc 4

194 SRCS += $(SASRC)/bzipfs.c
195 SRCS += $(SASRC)/dosfs.c
196 OBJS += ufs.o
197 OBJS += nfs.o
198 OBJS += cd9660.o
199 OBJS += tftp.o
200 OBJS += gzipfs.o
201 OBJS += bzipfs.o
202 OBJS += dosfs.o
203 #
204 .PARALLEL:

new/usr/src/boot/sys/boot/Makefile.inc 1

**
 2493 Mon Aug 5 08:37:46 2019
new/usr/src/boot/sys/boot/Makefile.inc
11506 smatch resync
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2017 Toomas Soome <tsoome@me.com>
14 # Copyright 2019 Joyent, Inc.
15 #

17 # loader.help build needs better awk
18 AWK= /usr/xpg4/bin/awk
19 LD= $(GNU_ROOT)/bin/gld
20 OBJCOPY= $(GNU_ROOT)/bin/gobjcopy
21 OBJDUMP= $(GNU_ROOT)/bin/gobjdump
22 GSTRIP= $(GNU_ROOT)/bin/gstrip

24 # Default Console font setup.
25 # We want it to be the same as kernel.
26 # We build compressed, stripped down version of the default font, so we have
27 # bare minimum for case we can not load font from the OS root.

29 FONT= 8x16
30 FONT_SRC= ter-u16n.bdf
31 FONT_DIR= $(SRC)/data/consfonts

33 PNGLITE= $(SRC)/common/pnglite

35 BOOTSRC= $(SRC)/boot/sys/boot
36 LIBSRC= $(SRC)/boot/lib
37 SASRC= $(LIBSRC)/libstand
38 ZFSSRC= $(SASRC)/zfs
39 ZLIB= $(SRC)/contrib/zlib

41 # set standard values
42 AS_CPPFLAGS=
43 CPPFLAGS= -D_STANDALONE -_gcc=-nostdinc
44 CFLAGS64= -_gcc=-mno-red-zone

46 CFLAGS= -_gcc=-Os -_gcc=-fPIC -_gcc=-ffreestanding -_gcc=-fno-builtin
47 CFLAGS += -_gcc=-ffunction-sections -_gcc=-fdata-sections
48 CFLAGS += -_gcc=-mno-mmx -_gcc=-mno-3dnow -_gcc=-mno-sse -_gcc=-mno-sse2
49 CFLAGS += -_gcc=-mno-sse3 -_gcc=-msoft-float
50 CFLAGS += -_gcc=-mno-avx -_gcc=-mno-aes
51 CFLAGS += -_gcc=-Wall
52 CFLAGS += $(CCNOAUTOINLINE) $(CCNOREORDER) $(CSTD_GNU99)
53 CCASFLAGS= -fPIC -Wa,--divide
54 ASFLAGS= --divide

56 SMATCH_ =
57 SMATCH_on =
58 SMATCH_off = -_smatch=off

60 # smatch does not define __amd64 and __amd64__
61 SMATCH_amd64= -_smatch=-D__amd64 -_smatch=-D__amd64__

new/usr/src/boot/sys/boot/Makefile.inc 2

63 # SMATCH_ARGS will bring in set of -Wno-* options.
64 #CFLAGS += $(SMATCH_ARGS:%=-_smatch=%)
65 CFLAGS += $(SMOFF:%=-_smatch=--disable=%)
66 CFLAGS += $(SMATCH_$(MACHINE))
67 CFLAGS += $(SMATCH_$(SMATCH))
68 CFLAGS += -_smatch=--timeout=0

70 COMPILE.S= $(CC) $(SMATCH_off) $(CCASFLAGS) $(CPPFLAGS) -c

72 ROOT_BOOT= $(ROOT)/boot
73 ROOTBOOTPROG=$(PROG:%=$(ROOT_BOOT)/%)

75 $(ROOT_BOOT)/%: %
76 $(INS.file)

78 #.if ${MACHINE_CPUARCH} == "arm"
79 # Do not generate movt/movw, because the relocation fixup for them does not
80 # translate to the -Bsymbolic -pie format required by self_reloc() in loader(8).
81 # Also, the fpu is not available in a standalone environment.
82 #CFLAGS.clang+= -mllvm -arm-use-movt=0
83 #CFLAGS.clang+= -mfpu=none
84 #.endif

new/usr/src/boot/sys/boot/efi/libefi/i386/Makefile 1

**
 721 Mon Aug 5 08:37:47 2019
new/usr/src/boot/sys/boot/efi/libefi/i386/Makefile
11506 smatch resync
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2016 Toomas Soome <tsoome@me.com>
14 # Copyright 2016 RackTop Systems.
15 # Copyright 2019 Joyent, Inc.
16 #

18 MACHINE= $(MACH)

20 all: libefi.a

22 SRCS= time.c
23 include ../Makefile.com

25 CFLAGS += -m32

27 # false positive only with a 64-bit smatch
28 SMOFF += uninitialized

30 CLEANFILES += machine x86

32 $(OBJS): machine x86

new/usr/src/boot/sys/boot/libstand/Makefile.com 1

**
 1361 Mon Aug 5 08:37:48 2019
new/usr/src/boot/sys/boot/libstand/Makefile.com
11506 smatch resync
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2016 Toomas Soome <tsoome@me.com>
14 # Copyright 2019 Joyent, Inc.
15 #

17 include $(SRC)/Makefile.master
18 include $(SRC)/boot/sys/boot/Makefile.inc

20 CPPFLAGS += -I../../../../include -I$(SASRC)
21 CPPFLAGS += -I../../.. -I. -I$(SRC)/common/bzip2

23 $(LIBRARY): $(SRCS) $(OBJS)
24 $(AR) $(ARFLAGS) $@ $(OBJS)

26 include $(SASRC)/Makefile.inc
27 include $(ZFSSRC)/Makefile.inc

29 CPPFLAGS += -I$(SRC)/uts/common

31 # needs work
32 printf.o := SMOFF += 64bit_shift

34 # too hairy
35 _inflate.o := SMATCH=off

37 # 64-bit smatch false positive :/
38 SMOFF += uninitialized

40 clean: clobber
41 clobber:
42 $(RM) $(CLEANFILES) $(OBJS) machine $(LIBRARY)

44 machine:
45 $(RM) machine
46 $(SYMLINK) ../../../$(MACHINE)/include machine

48 x86:
49 $(RM) x86
50 $(SYMLINK) ../../../x86/include x86

52 %.o: $(SASRC)/%.c
53 $(COMPILE.c) $<

55 %.o: $(LIBSRC)/libc/net/%.c
56 $(COMPILE.c) $<

58 %.o: $(LIBSRC)/libc/string/%.c
59 $(COMPILE.c) $<

61 %.o: $(LIBSRC)/libc/uuid/%.c

new/usr/src/boot/sys/boot/libstand/Makefile.com 2

62 $(COMPILE.c) $<

64 %.o: $(ZLIB)/%.c
65 $(COMPILE.c) $<

new/usr/src/cmd/ls/Makefile.com 1

**
 1660 Mon Aug 5 08:37:48 2019
new/usr/src/cmd/ls/Makefile.com
11506 smatch resync
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # Copyright 2019 Joyent, Inc.
25 # cmd/ls/Makefile.com
26 #

28 PROG= ls
29 XPG4PROG= ls
30 XPG6PROG= ls
31 OBJS= $(PROG).o
32 SRCS= $(OBJS:%.o=../%.c)

34 include ../../Makefile.cmd

36 LDLIBS += -lsec -lnvpair -lcmdutils -lcurses
37 CFLAGS += $(CCVERBOSE)
38 $(XPG4) := CFLAGS += -DXPG4

40 # Include all XPG4 changes in the XPG6 version
41 $(XPG6) := CFLAGS += -DXPG4 -DXPG6
42 $(XPG6) := CFLAGS64 += -DXPG4 -DXPG6

44 CFLAGS64 += $(CCVERBOSE)
45 CPPFLAGS += -D_FILE_OFFSET_BITS=64
46 LINTFLAGS64 += -errchk=longptr64

47 # main() can be too hairy
48 SMATCH=off

50 .KEEP_STATE:

52 all: $(PROG) $(XPG4) $(XPG6)

52 lint: lint_SRCS

54 clean:
55 $(RM) $(CLEANFILES)

57 include ../../Makefile.targ

new/usr/src/cmd/ls/Makefile.com 2

59 %.xpg4: ../%.c
60 $(LINK.c) -o $@ $< $(LDLIBS)
61 $(POST_PROCESS)

63 %.xpg6: ../%.c
64 $(LINK.c) -o $@ $< $(LDLIBS)
65 $(POST_PROCESS)

67 %: ../%.c
68 $(LINK.c) -o $@ $< $(LDLIBS)
69 $(POST_PROCESS)

new/usr/src/cmd/sgs/libld/Makefile.com 1

**
 4894 Mon Aug 5 08:37:49 2019
new/usr/src/cmd/sgs/libld/Makefile.com
11506 smatch resync
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # Copyright 2019 Joyent, Inc.
26 # Copyright (c) 2018, Joyent, Inc.
27 # Copyright 2019 OmniOS Community Edition (OmniOSce) Association.

29 LIBRARY = libld.a
30 VERS = .4

32 COMOBJS = debug.o globals.o util.o

34 COMOBJS32 = args32.o entry32.o exit32.o groups32.o \
35 ldentry32.o ldlibs32.o ldmachdep32.o ldmain32.o \
36 libs32.o files32.o map32.o map_core32.o \
37 map_support32.o map_v232.o order32.o outfile32.o \
38 place32.o relocate32.o resolve32.o sections32.o \
39 sunwmove32.o support32.o syms32.o update32.o \
40 unwind32.o version32.o wrap32.o

42 COMOBJS64 = args64.o entry64.o exit64.o groups64.o \
43 ldentry64.o ldlibs64.o ldmachdep64.o ldmain64.o \
44 libs64.o files64.o map64.o map_core64.o \
45 map_support64.o map_v264.o order64.o outfile64.o \
46 place64.o relocate64.o resolve64.o sections64.o \
47 sunwmove64.o support64.o syms64.o update64.o \
48 unwind64.o version64.o wrap64.o

50 TOOLOBJS = alist.o assfail.o findprime.o string_table.o \
51 strhash.o
52 AVLOBJ = avl.o

54 # Relocation engine objects.
55 G_MACHOBJS32 = doreloc_sparc_32.o doreloc_x86_32.o
56 G_MACHOBJS64 = doreloc_sparc_64.o doreloc_x86_64.o

58 # Target specific objects (sparc/sparcv9)
59 L_SPARC_MACHOBJS32 = machrel.sparc32.o machsym.sparc32.o
60 L_SPARC_MACHOBJS64 = machrel.sparc64.o machsym.sparc64.o

new/usr/src/cmd/sgs/libld/Makefile.com 2

62 # Target specific objects (i386/amd64)
63 E_X86_TOOLOBJS = leb128.o
64 L_X86_MACHOBJS32 = machrel.intel32.o
65 L_X86_MACHOBJS64 = machrel.amd64.o

67 # All target specific objects rolled together
68 E_TOOLOBJS = $(E_SPARC_TOOLOBJS) \
69 $(E_X86_TOOLOBJS)
70 L_MACHOBJS32 = $(L_SPARC_MACHOBJS32) \
71 $(L_X86_MACHOBJS32)
72 L_MACHOBJS64 = $(L_SPARC_MACHOBJS64) \
73 $(L_X86_MACHOBJS64)

76 BLTOBJ = msg.o
77 ELFCAPOBJ = elfcap.o

79 OBJECTS = $(BLTOBJ) $(G_MACHOBJS32) $(G_MACHOBJS64) \
80 $(L_MACHOBJS32) $(L_MACHOBJS64) \
81 $(COMOBJS) $(COMOBJS32) $(COMOBJS64) \
82 $(TOOLOBJS) $(E_TOOLOBJS) $(AVLOBJ) $(ELFCAPOBJ)

84 include $(SRC)/lib/Makefile.lib
85 include $(SRC)/cmd/sgs/Makefile.com

87 SRCDIR = ../common

89 CERRWARN += -_gcc=-Wno-unused-value
90 CERRWARN += -_gcc=-Wno-parentheses
91 CERRWARN += -_gcc=-Wno-uninitialized
92 CERRWARN += -_gcc=-Wno-switch
93 CERRWARN += -_gcc=-Wno-char-subscripts
94 CERRWARN += -_gcc=-Wno-type-limits
95 $(RELEASE_BUILD)CERRWARN += -_gcc=-Wno-unused

97 SMOFF += no_if_block

99 # Location of the shared relocation engines maintained under usr/src/uts.
100 #
101 KRTLD_I386 = $(SRCBASE)/uts/$(VAR_PLAT_i386)/krtld
102 KRTLD_AMD64 = $(SRCBASE)/uts/$(VAR_PLAT_amd64)/krtld
103 KRTLD_SPARC = $(SRCBASE)/uts/$(VAR_PLAT_sparc)/krtld

106 CPPFLAGS += -DUSE_LIBLD_MALLOC -I$(SRCBASE)/lib/libc/inc \
107 -I$(SRCBASE)/uts/common/krtld -I$(SRCBASE)/uts/sparc \
108 $(VAR_LIBLD_CPPFLAGS)
109 LDLIBS += $(CONVLIBDIR) $(CONV_LIB) $(LDDBGLIBDIR) $(LDDBG_LIB) \
110 $(ELFLIBDIR) -lelf $(DLLIB) -lc

112 DYNFLAGS += $(VERSREF) $(CC_USE_PROTO) ’-R$$ORIGIN’

114 native:= DYNFLAGS += $(CONVLIBDIR)

116 # too hairy
117 pics/sections32.o := SMATCH=off
118 pics/sections64.o := SMATCH=off

120 BLTDEFS = msg.h
121 BLTDATA = msg.c
122 BLTMESG = $(SGSMSGDIR)/libld

124 BLTFILES = $(BLTDEFS) $(BLTDATA) $(BLTMESG)

126 # Due to cross linking support, every copy of libld contains every message.

new/usr/src/cmd/sgs/libld/Makefile.com 3

127 # However, we keep target specific messages in their own separate files for
128 # organizational reasons.
129 #
130 SGSMSGCOM = ../common/libld.msg
131 SGSMSGSPARC = ../common/libld.sparc.msg
132 SGSMSGINTEL = ../common/libld.intel.msg
133 SGSMSGTARG = $(SGSMSGCOM) $(SGSMSGSPARC) $(SGSMSGINTEL)
134 SGSMSGALL = $(SGSMSGCOM) $(SGSMSGSPARC) $(SGSMSGINTEL)

136 SGSMSGFLAGS1 = $(SGSMSGFLAGS) -m $(BLTMESG)
137 SGSMSGFLAGS2 = $(SGSMSGFLAGS) -h $(BLTDEFS) -d $(BLTDATA) -n libld_msg

139 CHKSRCS = $(SRCBASE)/uts/common/krtld/reloc.h \
140 $(COMOBJS32:%32.o=../common/%.c) \
141 $(L_MACHOBJS32:%32.o=../common/%.c) \
142 $(L_MACHOBJS64:%64.o=../common/%.c) \
143 $(KRTLD_I386)/doreloc.c \
144 $(KRTLD_AMD64)/doreloc.c \
145 $(KRTLD_SPARC)/doreloc.c

147 LIBSRCS = $(TOOLOBJS:%.o=$(SGSTOOLS)/common/%.c) \
148 $(E_TOOLOBJS:%.o=$(SGSTOOLS)/common/%.c) \
149 $(COMOBJS:%.o=../common/%.c) \
150 $(AVLOBJS:%.o=$(VAR_AVLDIR)/%.c) \
151 $(BLTDATA)

153 CLEANFILES += $(BLTFILES)
154 CLOBBERFILES += $(DYNLIB) $(LIBLINKS)

156 ROOTFS_DYNLIB = $(DYNLIB:%=$(ROOTFS_LIBDIR)/%)

new/usr/src/cmd/svc/configd/Makefile 1

**
 3217 Mon Aug 5 08:37:50 2019
new/usr/src/cmd/svc/configd/Makefile
11506 smatch resync
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # Copyright 2015 RackTop Systems.
26 #
27 # Copyright 2019 Joyent, Inc.
28 #

30 MYPROG = svc.configd
31 MYOBJS = \
32 backend.o \
33 configd.o \
34 client.o \
35 file_object.o \
36 maindoor.o \
37 object.o \
38 rc_node.o \
39 snapshot.o

41 PROG = $(MYPROG)
42 OBJS = $(MYOBJS)

44 SRCS = $(MYOBJS:%.o=%.c)

46 include ../../Makefile.cmd
47 include ../../Makefile.ctf

49 NATIVE_BUILD=$(POUND_SIGN)
50 $(NATIVE_BUILD)PROG = $(MYPROG:%=%-native)
51 $(NATIVE_BUILD)OBJS = $(MYOBJS:%.o=%-native.o)

53 ROOTCMDDIR= $(ROOT)/lib/svc/bin

55 MYCPPFLAGS = -I. -I../common -I../../../common/svc \
56 -I$(ROOT)/usr/include/sqlite-sys -D_REENTRANT
57 CPPFLAGS += $(MYCPPFLAGS)
58 CFLAGS += $(CCVERBOSE)
59 CERRWARN += -_gcc=-Wno-parentheses
60 CERRWARN += -_gcc=-Wno-type-limits
61 CERRWARN += -_gcc=-Wno-unused-label

new/usr/src/cmd/svc/configd/Makefile 2

62 CERRWARN += -_gcc=-Wno-unused-variable
63 CERRWARN += -_gcc=-Wno-unused-function
64 CERRWARN += -_gcc=-Wno-uninitialized

66 # strange false positive
67 SMOFF += free

69 MYLDLIBS = -lumem -luutil
70 LDLIBS += -lsecdb -lbsm $(MYLDLIBS)
65 LINTFLAGS += -errtags -erroff=E_BAD_FORMAT_ARG_TYPE2 -erroff=E_NAME_DEF_NOT_USED

72 CLOBBERFILES += $(MYPROG:%=%-native)

74 LIBUUTIL = $(SRC)/lib/libuutil
75 LIBSCF = $(SRC)/lib/libscf

77 SCRIPTFILE = restore_repository
78 ROOTSCRIPTFILE = $(ROOTCMDDIR)/$(SCRIPTFILE)

80 #
81 # Native variant (used in ../seed)
82 #
83 $(NATIVE_BUILD)CC = $(NATIVECC)
84 $(NATIVE_BUILD)LD = $(NATIVELD)
85 $(NATIVE_BUILD)CFLAGS = $(NATIVE_CFLAGS)
86 $(NATIVE_BUILD)CPPFLAGS = $(MYCPPFLAGS) -I$(LIBUUTIL)/common -I$(LIBSCF)/inc
87 $(NATIVE_BUILD)CPPFLAGS += -DNATIVE_BUILD
88 $(NATIVE_BUILD)LDFLAGS =
89 $(NATIVE_BUILD)LDLIBS = -L$(ADJUNCT_PROTO)/usr/lib -R$(ADJUNCT_PROTO)/usr/lib \
90 -L$(LIBUUTIL)/native -R $(LIBUUTIL)/native $(MYLDLIBS)

92 DIRMODE = 0755
93 FILEMODE = 0555

95 OBJSQLITE =
96 LIBSQLITE = -lsqlite-sys
97 $(NATIVE_BUILD)OBJSQLITE = $(ROOT)/lib/libsqlite-native.o
98 $(NATIVE_BUILD)LIBSQLITE =

100 OBJS += $(OBJSQLITE)
101 LDLIBS += $(LIBSQLITE)

103 install := TARGET = install
104 clobber := TARGET = clobber

106 .KEEP_STATE:
107 .PARALLEL: $(MYOBJS) $(MYOBJS:%.o=%-native.o)

109 all: $(PROG)

111 native: FRC
112 @cd $(LIBUUTIL)/native; pwd; $(MAKE) $(MFLAGS) install
113 @NATIVE_BUILD= $(MAKE) $(MFLAGS) all

115 $(PROG): $(OBJS)
116 $(LINK.c) -o $@ $(OBJS) $(LDLIBS)
117 $(POST_PROCESS)

119 %-native.o: %.c
120 $(COMPILE.c) -o $@ $<
121 $(POST_PROCESS_O)

123 $(ROOTCMDDIR)/%: %.sh
124 $(INS.rename)

126 install: all $(ROOTCMD) $(ROOTVARSADMFILE) $(ROOTSCRIPTFILE)

new/usr/src/cmd/svc/configd/Makefile 3

128 clean: FRC
129 $(RM) $(MYOBJS) $(MYOBJS:%.o=%-native.o)

131 clobber:

128 lint: lint_SRCS

130 lint_SRCS:

133 include ../../Makefile.targ

135 FRC:

new/usr/src/cmd/syseventd/modules/sysevent_conf_mod/Makefile 1

**
 1291 Mon Aug 5 08:37:50 2019
new/usr/src/cmd/syseventd/modules/sysevent_conf_mod/Makefile
11506 smatch resync
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # Copyright 2019 Joyent, Inc.
26 #

28 LIBRARY = sysevent_conf_mod

30 include ../Makefile.com

32 LDLIBS += -lnvpair
33 CPPFLAGS += -I ../../daemons/syseventconfd

35 CERRWARN += -_gcc=-Wno-uninitialized

37 # strange smatch false positive
38 SMOFF += allocating_enough_data

40 .KEEP_STATE:

42 all: $(DYNLIB)

44 install: all \
45 $(ROOTLIBSYSEVENTDIR) \
46 $(ROOTLIBDIR) \
47 $(ROOTLIBS)

49 include ../Makefile.targ

new/usr/src/common/ficl/vm.c 1

**
 63652 Mon Aug 5 08:37:51 2019
new/usr/src/common/ficl/vm.c
11506 smatch resync
**

1 /*
2 * v m . c
3 * Forth Inspired Command Language - virtual machine methods
4 * Author: John Sadler (john_sadler@alum.mit.edu)
5 * Created: 19 July 1997
6 * $Id: vm.c,v 1.17 2010/09/13 18:43:04 asau Exp $
7 */
8 /*
9 * This file implements the virtual machine of Ficl. Each virtual

10 * machine retains the state of an interpreter. A virtual machine
11 * owns a pair of stacks for parameters and return addresses, as
12 * well as a pile of state variables and the two dedicated registers
13 * of the interpreter.
14 */
15 /*
16 * Copyright (c) 1997-2001 John Sadler (john_sadler@alum.mit.edu)
17 * All rights reserved.
18 *
19 * Get the latest Ficl release at http://ficl.sourceforge.net
20 *
21 * I am interested in hearing from anyone who uses Ficl. If you have
22 * a problem, a success story, a defect, an enhancement request, or
23 * if you would like to contribute to the Ficl release, please
24 * contact me by email at the address above.
25 *
26 * L I C E N S E and D I S C L A I M E R
27 *
28 * Redistribution and use in source and binary forms, with or without
29 * modification, are permitted provided that the following conditions
30 * are met:
31 * 1. Redistributions of source code must retain the above copyright
32 * notice, this list of conditions and the following disclaimer.
33 * 2. Redistributions in binary form must reproduce the above copyright
34 * notice, this list of conditions and the following disclaimer in the
35 * documentation and/or other materials provided with the distribution.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
38 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
41 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
42 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
43 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
45 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
46 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
47 * SUCH DAMAGE.
48 */

50 /*
51 * Copyright 2019 Joyent, Inc.
52 */

54 #include "ficl.h"

56 #if FICL_ROBUST >= 2
57 #define FICL_VM_CHECK(vm) \
58 FICL_VM_ASSERT(vm, (*(vm->ip - 1)) == vm->runningWord)
59 #else
60 #define FICL_VM_CHECK(vm)
61 #endif

new/usr/src/common/ficl/vm.c 2

63 /*
64 * v m B r a n c h R e l a t i v e
65 */
66 void
67 ficlVmBranchRelative(ficlVm *vm, int offset)
68 {
69 vm->ip += offset;
70 }

______unchanged_portion_omitted_

2159 /*
2160 * v m G e t W o r d T o P a d
2161 * Does vmGetWord and copies the result to the pad as a NULL terminated
2162 * string. Returns the length of the string. If the string is too long
2163 * to fit in the pad, it is truncated.
2164 */
2165 int
2166 ficlVmGetWordToPad(ficlVm *vm)
2167 {
2168 ficlString s;
2169 char *pad = (char *)vm->pad;
2170 s = ficlVmGetWord(vm);

2172 if (FICL_STRING_GET_LENGTH(s) >= FICL_PAD_SIZE)
2173 FICL_STRING_SET_LENGTH(s, FICL_PAD_SIZE - 1);
2168 if (FICL_STRING_GET_LENGTH(s) > FICL_PAD_SIZE)
2169 FICL_STRING_SET_LENGTH(s, FICL_PAD_SIZE);

2175 (void) strncpy(pad, FICL_STRING_GET_POINTER(s),
2176 FICL_STRING_GET_LENGTH(s));
2177 pad[FICL_STRING_GET_LENGTH(s)] = ’\0’;
2178 return ((int)(FICL_STRING_GET_LENGTH(s)));
2179 }
______unchanged_portion_omitted_

new/usr/src/lib/libpctx/Makefile.com 1

**
 1330 Mon Aug 5 08:37:51 2019
new/usr/src/lib/libpctx/Makefile.com
11506 smatch resync
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # Copyright 2019 Joyent, Inc.
25 # ident "%Z%%M% %I% %E% SMI"
26 #

28 LIBRARY = libpctx.a
29 VERS = .1

31 OBJECTS = libpctx.o

33 # include library definitions
34 include ../../Makefile.lib

36 LIBS = $(DYNLIB)
36 LIBS = $(DYNLIB) $(LINTLIB)
37 $(LINTLIB) := SRCS = ../common/llib-lpctx
37 LDLIBS += -lproc -lc

39 SRCDIR = ../common

41 CFLAGS += $(CCVERBOSE)
42 CPPFLAGS += -D_REENTRANT -I$(SRCDIR)

44 # false positive: pctx_run() error: dereferencing freed memory ’pctx’
45 SMOFF += free

47 .KEEP_STATE:

49 all: $(LIBS)

49 # x86 and sparc have different alignment complaints (all LINTED).
50 # Make lint shut up about suppression directive not used.
51 lint := LINTFLAGS += -erroff=E_SUPPRESSION_DIRECTIVE_UNUSED
52 lint := LINTFLAGS64 += -erroff=E_SUPPRESSION_DIRECTIVE_UNUSED

54 lint: lintcheck

51 # include library targets

new/usr/src/lib/libpctx/Makefile.com 2

52 include ../../Makefile.targ

new/usr/src/lib/libumem/Makefile.com 1

**
 4575 Mon Aug 5 08:37:52 2019
new/usr/src/lib/libumem/Makefile.com
11506 smatch resync
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # Copyright 2019 Joyent, Inc.
25 # Copyright (c) 2019, Joyent, Inc.
26 #

28 #
29 # The build process for libumem is sightly different from that used by other
30 # libraries, because libumem must be built in two flavors - as a standalone
31 # for use by kmdb and as a normal library. We use $(CURTYPE) to indicate the
32 # current flavor being built.
33 #

35 LIBRARY = libumem.a
36 STANDLIBRARY = libstandumem.so
37 VERS = .1

39 # By default, we build the shared library. Construction of the standalone
40 # is specifically requested by architecture-specific Makefiles.
41 TYPES = library
42 CURTYPE = library

44 # This would be much prettier if a) Makefile.lib didn’t reqire both $(SRCS) and
45 # $(OBJECTS) to be set or b) make gave us a nice way to do basename in pattern
46 # replacement definitions.

48 # Files specific to the library version of libumem
49 OBJECTS_library = \
50 init_lib.o \
51 umem_agent_support.o \
52 umem_fail.o \
53 umem_fork.o \
54 umem_genasm.o \
55 umem_update_thread.o \
56 vmem_mmap.o \
57 vmem_sbrk.o

59 SRCS_common_library = \
60 $(ISASRCDIR)/umem_genasm.c

new/usr/src/lib/libumem/Makefile.com 2

62 SRCS_library = $(OBJECTS_library:%.o=../common/%.c) $(SRC_common_library)

64 # Files specific to the standalone version of libumem
65 OBJECTS_standalone = \
66 init_stand.o \
67 stub_stand.o \
68 vmem_stand.o

70 SRCS_standalone = $(OBJECTS_standalone:%.o=../common/%.c)

72 # Architecture-dependent files common to both versions of libumem
73 OBJECTS_common_isadep = \
74 asm_subr.o

76 SRCS_common_isadep = \
77 $(ISASRCDIR)/asm_subr.s

79 # Architecture-independent files common to both versions of libumem
80 OBJECTS_common_common = \
81 envvar.o \
82 getpcstack.o \
83 malloc.o \
84 misc.o \
85 vmem_base.o \
86 umem.o \
87 vmem.o

89 SRCS_common_common = $(OBJECTS_common_common:%.o=../common/%.c)

91 OBJECTS = \
92 $(OBJECTS_$(CURTYPE)) \
93 $(OBJECTS_common_isadep) \
94 $(OBJECTS_common_common)

96 include ../../Makefile.lib
97 include ../../Makefile.rootfs

99 SRCS = \
100 $(SRCS_$(CURTYPE)) \
101 $(SRCS_common_common)

103 SRCDIR = ../common

105 #
106 # Used to verify that the standalone doesn’t have any unexpected external
107 # dependencies.
108 #
109 LINKTEST_OBJ = objs/linktest_stand.o

111 CLOBBERFILES_standalone = $(LINKTEST_OBJ)
112 CLOBBERFILES += $(CLOBBERFILES_$(CURTYPE))

114 LIBS_standalone = $(STANDLIBRARY)
115 LIBS_library = $(DYNLIB)
115 LIBS_library = $(DYNLIB) $(LINTLIB)
116 LIBS = $(LIBS_$(CURTYPE))

118 MAPFILE_SUPPLEMENTAL_standalone = ../common/stand_mapfile
119 MAPFILE_SUPPLEMENTAL = $(MAPFILE_SUPPLEMENTAL_$(CURTYPE))

121 LDLIBS += -lc

123 LDFLAGS_standalone = $(ZNOVERSION) $(BREDUCE) -M../common/mapfile-vers \
124 -M$(MAPFILE_SUPPLEMENTAL) -dy -r
125 LDFLAGS = $(LDFLAGS_$(CURTYPE))

new/usr/src/lib/libumem/Makefile.com 3

127 ASFLAGS_standalone = -DUMEM_STANDALONE
128 ASFLAGS_library =
129 ASFLAGS += -P $(ASFLAGS_$(CURTYPE)) -D_ASM

131 $(LINTLIB) := SRCS = ../common/$(LINTSRC)

131 # We want the thread-specific errno in the library, but we don’t want it in
132 # the standalone. $(DTS_ERRNO) is designed to add -D_TS_ERRNO to $(CPPFLAGS),
133 # in order to enable this feature. Conveniently, -D_REENTRANT does the same
134 # thing. As such, we null out $(DTS_ERRNO) to ensure that the standalone
135 # doesn’t get it.
136 DTS_ERRNO=

138 # We need to rename some standard functions so we can easily implement them
139 # in consumers.
140 STAND_RENAMED_FUNCS= \
141 atomic_add_64 \
142 atomic_add_32_nv \
143 atomic_swap_64 \
144 snprintf \
145 vsnprintf

147 CPPFLAGS_standalone = -DUMEM_STANDALONE $(STAND_RENAMED_FUNCS:%=-D%=umem_%)
148 CPPFLAGS_library = -D_REENTRANT
149 CPPFLAGS += -I../common -I../../common/inc $(CPPFLAGS_$(CURTYPE))

151 CFLAGS_standalone = $(STAND_FLAGS_32)
152 CFLAGS_common =
153 CFLAGS += $(CFLAGS_$(CURTYPE)) $(CFLAGS_common)

155 CFLAGS64_standalone = $(STAND_FLAGS_64)
156 CFLAGS64 += $(CCVERBOSE) $(CFLAGS64_$(CURTYPE)) $(CFLAGS64_common)

158 # false positive for umem_alloc_sizes_add()
159 pics/umem.o := SMOFF += index_overflow
160 objs/umem.o := SMOFF += index_overflow
160 INSTALL_DEPS_library = $(ROOTLINKS) $(ROOTLINT) $(ROOTLIBS)

162 INSTALL_DEPS_library = $(ROOTLINKS) $(ROOTLIBS)
162 #
163 # turn off ptr-cast warnings, since we do them all the time
164 #
165 LINTFLAGS += -erroff=E_BAD_PTR_CAST_ALIGN
166 LINTFLAGS64 += -erroff=E_BAD_PTR_CAST_ALIGN

164 DYNFLAGS += $(ZINTERPOSE)

166 .KEEP_STATE:

new/usr/src/tools/smatch/Makefile 1

**
 5257 Mon Aug 5 08:37:52 2019
new/usr/src/tools/smatch/Makefile
11506 smatch resync
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #
11 # Copyright (c) 2019, Joyent, Inc.
12 #

14 #
15 # The src/ sub-directory is un-modified copy of
16 # https://github.com/illumos/smatch/tree/0.5.1-il-4
16 # https://github.com/illumos/smatch/tree/0.5.1-il-3
17 #
18 # This Makefile installs just enough for us to be able to run smatch
19 # locally.
20 #

22 PROG = smatch
23 SPARSE_VERSION = 0.5.1-il-4
23 SPARSE_VERSION = 0.5.1-il-3

25 include ../Makefile.tools

27 # We have to build smatch before we can use cw
28 i386_CC = $(GNUC_ROOT)/bin/gcc
29 sparc_CC = $(GNUC_ROOT)/bin/gcc

31 CFLAGS = -O -m64 -msave-args -D__sun -Wall -Wno-unknown-pragmas -std=gnu99 -node
31 CFLAGS = -O -D__sun -Wall -Wno-unknown-pragmas -std=gnu99 -nodefaultlibs

33 SMATCHDATADIR = $(ROOTONBLDSHARE)/smatch

35 CFLAGS += -DSMATCHDATADIR=’"$(SMATCHDATADIR)"’
36 CFLAGS += -DGCC_BASE=’"/no/such/dir"’
37 CFLAGS += -DMULTIARCH_TRIPLET=NULL

39 LDLIBS += -lsqlite3 -lcrypto -lm -lgcc -lc
40 LDFLAGS = $(MAPFILE.NES:%=-Wl,-M%)
41 LDFLAGS += -L$(NATIVE_ADJUNCT)/lib -R$(NATIVE_ADJUNCT)/lib

43 CPPFLAGS += -nostdinc
44 CPPFLAGS += -Isrc/
45 CPPFLAGS += -I$(NATIVE_ADJUNCT)/include

47 # no install.bin
48 INS.file = $(RM) $@; $(CP) $< $(@D); $(CHMOD) $(FILEMODE) $@
49 INS.dir = mkdir -p $@; $(CHMOD) $(DIRMODE) $@

51 SMATCH_CHECK_OBJS:sh=ls src/check_*.c | sed -e ’s+\.c+.o+;s+src/++;’

53 OBJS = smatch.o $(SMATCH_CHECK_OBJS)

55 OBJS += smatch_flow.o smatch_conditions.o smatch_slist.o smatch_states.o \
56 smatch_helper.o smatch_type.o smatch_hooks.o smatch_function_hooks.o \
57 smatch_modification_hooks.o smatch_extra.o smatch_estate.o smatch_math.o
58 smatch_sval.o smatch_ranges.o smatch_implied.o smatch_ignore.o smatch_pr

new/usr/src/tools/smatch/Makefile 2

59 smatch_var_sym.o smatch_tracker.o smatch_files.o smatch_expression_stack
60 smatch_equiv.o smatch_buf_size.o smatch_strlen.o smatch_capped.o smatch_
61 smatch_expressions.o smatch_returns.o smatch_parse_call_math.o \
62 smatch_param_limit.o smatch_param_filter.o \
63 smatch_param_set.o smatch_comparison.o smatch_param_compare_limit.o smat
64 smatch_function_ptrs.o smatch_annotate.o smatch_string_list.o \
65 smatch_param_cleared.o smatch_start_states.o \
66 smatch_recurse.o smatch_data_source.o smatch_type_val.o \
67 smatch_common_functions.o smatch_struct_assignment.o \
68 smatch_unknown_value.o smatch_stored_conditions.o avl.o \
69 smatch_function_info.o smatch_links.o smatch_auto_copy.o \
70 smatch_type_links.o smatch_untracked_param.o smatch_impossible.o \
71 smatch_strings.o smatch_param_used.o smatch_container_of.o smatch_addres
72 smatch_buf_comparison.o smatch_real_absolute.o smatch_scope.o \
73 smatch_imaginary_absolute.o smatch_parameter_names.o \
74 smatch_return_to_param.o smatch_passes_array_size.o \
75 smatch_constraints.o smatch_constraints_required.o \
76 smatch_fn_arg_link.o smatch_about_fn_ptr_arg.o smatch_mtag.o \
77 smatch_mtag_map.o smatch_mtag_data.o \
78 smatch_param_to_mtag_data.o smatch_mem_tracker.o smatch_array_values.o \
79 smatch_nul_terminator.o smatch_assigned_expr.o smatch_kernel_user_data.o
80 smatch_statement_count.o smatch_bits.o smatch_integer_overflow.o
80 smatch_statement_count.o

82 OBJS += target.o parse.o tokenize.o pre-process.o symbol.o lib.o scope.o \
83 expression.o show-parse.o evaluate.o expand.o inline.o linearize.o \
84 char.o sort.o allocate.o compat-linux.o ptrlist.o \
85 builtin.o \
86 stats.o \
87 flow.o cse.o simplify.o memops.o liveness.o storage.o unssa.o \
88 dissect.o \
89 macro_table.o token_store.o hashtable.o

91 SMATCH_DATA = \
92 illumos_kernel.no_return_funcs \
93 illumos_kernel.skipped_functions \
94 illumos_user.no_return_funcs \
95 illumos_user.skipped_functions

97 SMATCH_DB_DATA = \
98 return_states.schema \
99 call_implies.schema \
100 type_value.schema \
101 param_map.schema \
102 function_type_size.schema \
103 parameter_name.schema \
104 fn_ptr_data_link.schema \
105 constraints.schema \
106 mtag_about.schema \
107 type_info.schema \
108 function_type_info.schema \
109 caller_info.schema \
110 function_type_value.schema \
111 return_implies.schema \
112 type_size.schema \
113 constraints_required.schema \
114 fn_data_link.schema \
115 mtag_alias.schema \
116 common_caller_info.schema \
117 data_info.schema \
118 function_type.schema \
119 db.schema \
120 mtag_data.schema \
121 function_ptr.schema \
122 sink_info.schema \
123 local_values.schema \

new/usr/src/tools/smatch/Makefile 3

124 mtag_map.schema

126 ROOTONBLDDATAFILES = $(SMATCH_DATA:%=$(SMATCHDATADIR)/smatch_data/%)
127 ROOTONBLDDATAFILES += $(SMATCH_DB_DATA:%=$(SMATCHDATADIR)/smatch_data/db/%)

129 BUILT_HEADERS = src/version.h src/check_list_local.h

131 .KEEP_STATE:

133 .PARALLEL: $(OBJS)

135 all: $(PROG)

137 install: all .WAIT $(ROOTONBLDMACHPROG) $(ROOTONBLDDATAFILES)

139 clean:
140 rm -f $(OBJS) $(BUILT_HEADERS)

142 $(ROOTONBLDDATAFILES): $(SMATCHDATADIR)/smatch_data/db

144 $(SMATCHDATADIR)/smatch_data/%: src/smatch_data/%
145 $(INS.file)

147 $(SMATCHDATADIR)/smatch_data/db:
148 $(INS.dir)

150 $(SMATCHDATADIR)/smatch_data:
151 $(INS.dir)

153 $(PROG): $(OBJS)
154 $(LINK.c) $(OBJS) -o $@ $(LDLIBS)
155 $(POST_PROCESS)

157 %.o: src/%.c $(BUILT_HEADERS)
158 $(COMPILE.c) -o $@ $<

160 %.o: src/cwchash/%.c
161 $(COMPILE.c) -o $@ $<

163 src/check_list_local.h:
164 touch src/check_list_local.h

166 src/version.h:
167 echo ’#define SPARSE_VERSION "$(SPARSE_VERSION)"’ > src/version.h

169 include ../Makefile.targ

new/usr/src/tools/smatch/src/Documentation/sparse-README.txt 1

**
 3019 Mon Aug 5 08:37:52 2019
new/usr/src/tools/smatch/src/Documentation/sparse-README.txt
11506 smatch resync
**

2 sparse (spˆ⁄rs), adj,., spars-er, spars-est.
2 sparse (spärs), adj,., spars-er, spars-est.
3 1. thinly scattered or distributed; "a sparse population"
4 2. thin; not thick or dense: "sparse hair"
5 3. scanty; meager.
6 4. semantic parse
7 [from Latin: spars(us) scattered, past participle of
8 spargere ’to sparge’]

10 Antonym: abundant

12 Sparse is a semantic parser of source files: it’s neither a compiler
13 (although it could be used as a front-end for one) nor is it a
14 preprocessor (although it contains as a part of it a preprocessing
15 phase).

17 It is meant to be a small - and simple - library. Scanty and meager,
18 and partly because of that easy to use. It has one mission in life:
19 create a semantic parse tree for some arbitrary user for further
20 analysis. It’s not a tokenizer, nor is it some generic context-free
21 parser. In fact, context (semantics) is what it’s all about - figuring
22 out not just what the grouping of tokens are, but what the _types_ are
23 that the grouping implies.

25 And no, it doesn’t use lex and yacc (or flex and bison). In my personal
26 opinion, the result of using lex/yacc tends to end up just having to
27 fight the assumptions the tools make.

29 The parsing is done in five phases:

31 - full-file tokenization
32 - pre-processing (which can cause another tokenization phase of another
33 file)
34 - semantic parsing.
35 - lazy type evaluation
36 - inline function expansion and tree simplification

38 Note the "full file" part. Partly for efficiency, but mostly for ease of
39 use, there are no "partial results". The library completely parses one
40 whole source file, and builds up the _complete_ parse tree in memory.

42 Also note the "lazy" in the type evaluation. The semantic parsing
43 itself will know which symbols are typedefines (required for parsing C
44 correctly), but it will not have calculated what the details of the
45 different types are. That will be done only on demand, as the back-end
46 requires the information.

48 This means that a user of the library will literally just need to do

50 struct string_list *filelist = NULL;
51 char *file;

53 action(sparse_initialize(argc, argv, filelist));

55 FOR_EACH_PTR_NOTAG(filelist, file) {
56 action(sparse(file));
57 } END_FOR_EACH_PTR_NOTAG(file);

59 and he is now done - having a full C parse of the file he opened. The
60 library doesn’t need any more setup, and once done does not impose any

new/usr/src/tools/smatch/src/Documentation/sparse-README.txt 2

61 more requirements. The user is free to do whatever he wants with the
62 parse tree that got built up, and needs not worry about the library ever
63 again. There is no extra state, there are no parser callbacks, there is
64 only the parse tree that is described by the header files. The action
65 funtion takes a pointer to a symbol_list and does whatever it likes with it.

67 The library also contains (as an example user) a few clients that do the
68 preprocessing, parsing and type evaluation and just print out the
69 results. These clients were done to verify and debug the library, and
70 also as trivial examples of what you can do with the parse tree once it
71 is formed, so that users can see how the tree is organized.

new/usr/src/tools/smatch/src/Makefile 1

**
 11978 Mon Aug 5 08:37:53 2019
new/usr/src/tools/smatch/src/Makefile
11506 smatch resync
**

1 VERSION=0.5.1-il-4
1 VERSION=0.5.1

3 # Generating file version.h if current version has changed
4 SPARSE_VERSION:=$(shell git describe 2>/dev/null || echo ’$(VERSION)’)
5 VERSION_H := $(shell cat version.h 2>/dev/null)
6 ifneq ($(lastword $(VERSION_H)),"$(SPARSE_VERSION)")
7 $(info $(shell echo ’ GEN ’version.h))
8 $(shell echo ’#define SPARSE_VERSION "$(SPARSE_VERSION)"’ > version.h)
9 endif

11 OS = linux

13 ifeq ($(CC),"")
14 CC = gcc
15 endif

17 CFLAGS += -O2 -finline-functions -fno-strict-aliasing -g
18 CFLAGS += -Wall -Wwrite-strings -Wno-switch
19 LDFLAGS += -g -lm -lsqlite3 -lssl -lcrypto
20 LD = gcc
21 AR = ar
22 PKG_CONFIG = pkg-config
23 COMMON_CFLAGS = -O2 -finline-functions -fno-strict-aliasing -g
24 COMMON_CFLAGS += -Wall -Wwrite-strings

26 ALL_CFLAGS = $(COMMON_CFLAGS) $(PKG_CFLAGS) $(CFLAGS)
27 #
28 # For debugging, put this in local.mk:
29 #
30 # CFLAGS += -O0 -DDEBUG -g3 -gdwarf-2
31 #

33 HAVE_LIBXML:=$(shell $(PKG_CONFIG) --exists libxml-2.0 2>/dev/null && echo ’yes’
34 HAVE_GCC_DEP:=$(shell touch .gcc-test.c && \
35 $(CC) -c -Wp,-MD,.gcc-test.d .gcc-test.c 2>/dev/null && \
36 echo ’yes’; rm -f .gcc-test.d .gcc-test.o .gcc-test.c)

38 GTK_VERSION:=3.0
39 HAVE_GTK:=$(shell $(PKG_CONFIG) --exists gtk+-$(GTK_VERSION) 2>/dev/null && echo
40 ifneq ($(HAVE_GTK),yes)
41 GTK_VERSION:=2.0
42 HAVE_GTK:=$(shell $(PKG_CONFIG) --exists gtk+-$(GTK_VERSION) 2>/dev/null
43 endif

45 LLVM_CONFIG:=llvm-config
46 HAVE_LLVM:=$(shell $(LLVM_CONFIG) --version >/dev/null 2>&1 && echo ’yes’)

48 GCC_BASE := $(shell $(CC) --print-file-name=)
49 COMMON_CFLAGS += -DGCC_BASE=\"$(GCC_BASE)\"

51 MULTIARCH_TRIPLET := $(shell $(CC) -print-multiarch 2>/dev/null)
52 COMMON_CFLAGS += -DMULTIARCH_TRIPLET=\"$(MULTIARCH_TRIPLET)\"

54 ifeq ($(HAVE_GCC_DEP),yes)
55 COMMON_CFLAGS += -Wp,-MD,$(@D)/.$(@F).d
56 endif

58 DESTDIR=
59 INSTALL_PREFIX ?=$(HOME)
60 BINDIR=$(INSTALL_PREFIX)/bin

new/usr/src/tools/smatch/src/Makefile 2

61 LIBDIR=$(INSTALL_PREFIX)/lib
62 MANDIR=$(INSTALL_PREFIX)/share/man
63 MAN1DIR=$(MANDIR)/man1
64 INCLUDEDIR=$(INSTALL_PREFIX)/include
65 PKGCONFIGDIR=$(LIBDIR)/pkgconfig
66 SMATCHDATADIR=$(INSTALL_PREFIX)/share/smatch

68 SMATCH_FILES=smatch_flow.o smatch_conditions.o smatch_slist.o smatch_states.o \
69 smatch_helper.o smatch_type.o smatch_hooks.o smatch_function_hooks.o \
70 smatch_modification_hooks.o smatch_extra.o smatch_estate.o smatch_math.o
71 smatch_sval.o smatch_ranges.o smatch_implied.o smatch_ignore.o smatch_pr
72 smatch_var_sym.o smatch_tracker.o smatch_files.o smatch_expression_stack
73 smatch_equiv.o smatch_buf_size.o smatch_strlen.o smatch_capped.o smatch_
74 smatch_expressions.o smatch_returns.o smatch_parse_call_math.o \
75 smatch_param_limit.o smatch_param_filter.o \
76 smatch_param_set.o smatch_comparison.o smatch_param_compare_limit.o smat
77 smatch_function_ptrs.o smatch_annotate.o smatch_string_list.o \
78 smatch_param_cleared.o smatch_start_states.o \
79 smatch_recurse.o smatch_data_source.o smatch_type_val.o \
80 smatch_common_functions.o smatch_struct_assignment.o \
81 smatch_unknown_value.o smatch_stored_conditions.o avl.o \
82 smatch_function_info.o smatch_links.o smatch_auto_copy.o \
83 smatch_type_links.o smatch_untracked_param.o smatch_impossible.o \
84 smatch_strings.o smatch_param_used.o smatch_container_of.o smatch_addres
85 smatch_buf_comparison.o smatch_real_absolute.o smatch_scope.o \
86 smatch_imaginary_absolute.o smatch_parameter_names.o \
87 smatch_return_to_param.o smatch_passes_array_size.o \
88 smatch_constraints.o smatch_constraints_required.o \
89 smatch_fn_arg_link.o smatch_about_fn_ptr_arg.o smatch_mtag.o \
90 smatch_mtag_map.o smatch_mtag_data.o \
91 smatch_param_to_mtag_data.o smatch_mem_tracker.o smatch_array_values.o \
92 smatch_nul_terminator.o smatch_assigned_expr.o smatch_kernel_user_data.o
93 smatch_statement_count.o smatch_integer_overflow.o smatch_bits.o
93 smatch_statement_count.o

95 SMATCH_CHECKS=$(shell ls check_*.c | sed -e ’s/\.c/.o/’)
96 SMATCH_DATA=smatch_data/kernel.allocation_funcs \
97 smatch_data/kernel.frees_argument smatch_data/kernel.puts_argument \
98 smatch_data/kernel.dev_queue_xmit smatch_data/kernel.returns_err_ptr \
99 smatch_data/kernel.dma_funcs smatch_data/kernel.returns_held_funcs \
100 smatch_data/kernel.no_return_funcs

102 SMATCH_SCRIPTS=smatch_scripts/add_gfp_to_allocations.sh \
103 smatch_scripts/build_kernel_data.sh \
104 smatch_scripts/call_tree.pl smatch_scripts/filter_kernel_deref_check.sh
105 smatch_scripts/find_expanded_holes.pl smatch_scripts/find_null_params.sh
106 smatch_scripts/follow_params.pl smatch_scripts/gen_allocation_list.sh \
107 smatch_scripts/gen_bit_shifters.sh smatch_scripts/gen_dma_funcs.sh \
108 smatch_scripts/generisize.pl smatch_scripts/gen_err_ptr_list.sh \
109 smatch_scripts/gen_expects_err_ptr.sh smatch_scripts/gen_frees_list.sh \
110 smatch_scripts/gen_gfp_flags.sh smatch_scripts/gen_no_return_funcs.sh \
111 smatch_scripts/gen_puts_list.sh smatch_scripts/gen_returns_held.sh \
112 smatch_scripts/gen_rosenberg_funcs.sh smatch_scripts/gen_sizeof_param.sh
113 smatch_scripts/gen_unwind_functions.sh smatch_scripts/kchecker \
114 smatch_scripts/kpatch.sh smatch_scripts/new_bugs.sh \
115 smatch_scripts/show_errs.sh smatch_scripts/show_ifs.sh \
116 smatch_scripts/show_unreachable.sh smatch_scripts/strip_whitespace.pl \
117 smatch_scripts/summarize_errs.sh smatch_scripts/test_kernel.sh \
118 smatch_scripts/trace_params.pl smatch_scripts/unlocked_paths.pl \
119 smatch_scripts/whitespace_only.sh smatch_scripts/wine_checker.sh \

121 PROGRAMS=test-lexing test-parsing obfuscate compile graph sparse \
122 test-linearize example test-unssa test-dissect ctags
123 INST_PROGRAMS=smatch cgcc

125 INST_MAN1=sparse.1 cgcc.1

new/usr/src/tools/smatch/src/Makefile 3

127 ifeq ($(HAVE_LIBXML),yes)
128 PROGRAMS+=c2xml
129 INST_PROGRAMS+=c2xml
130 c2xml_EXTRA_OBJS = ‘$(PKG_CONFIG) --libs libxml-2.0‘
131 LIBXML_CFLAGS := $(shell $(PKG_CONFIG) --cflags libxml-2.0)
132 else
133 $(warning Your system does not have libxml, disabling c2xml)
134 endif

136 ifeq ($(HAVE_GTK),yes)
137 GTK_CFLAGS := $(shell $(PKG_CONFIG) --cflags gtk+-$(GTK_VERSION))
138 GTK_LIBS := $(shell $(PKG_CONFIG) --libs gtk+-$(GTK_VERSION))
139 PROGRAMS += test-inspect
140 INST_PROGRAMS += test-inspect
141 test-inspect_EXTRA_DEPS := ast-model.o ast-view.o ast-inspect.o
142 test-inspect_OBJS := test-inspect.o $(test-inspect_EXTRA_DEPS)
143 $(test-inspect_OBJS) $(test-inspect_OBJS:.o=.sc): PKG_CFLAGS += $(GTK_CFLAGS)
144 test-inspect_EXTRA_OBJS := $(GTK_LIBS)
145 else
146 $(warning Your system does not have gtk3/gtk2, disabling test-inspect)
147 endif

149 ifeq ($(HAVE_LLVM),yes)
150 ifeq ($(shell uname -m | grep -q ’\(i386\|x86\)’ && echo ok),ok)
151 LLVM_VERSION:=$(shell $(LLVM_CONFIG) --version)
152 ifeq ($(shell expr "$(LLVM_VERSION)" : ’[3-9]\.’),2)
153 LLVM_PROGS := sparse-llvm
154 $(LLVM_PROGS): LD := g++
155 LLVM_LDFLAGS := $(shell $(LLVM_CONFIG) --ldflags)
156 LLVM_CFLAGS := $(shell $(LLVM_CONFIG) --cflags | sed -e "s/-DNDEBUG//g" | sed -e
157 LLVM_LIBS := $(shell $(LLVM_CONFIG) --libs)
158 LLVM_LIBS += $(shell $(LLVM_CONFIG) --system-libs 2>/dev/null)
159 PROGRAMS += $(LLVM_PROGS)
160 INST_PROGRAMS += sparse-llvm sparsec
161 sparse-llvm.o sparse-llvm.sc: PKG_CFLAGS += $(LLVM_CFLAGS)
162 sparse-llvm_EXTRA_OBJS := $(LLVM_LIBS) $(LLVM_LDFLAGS)
163 else
164 $(warning LLVM 3.0 or later required. Your system has version $(LLVM_VERSION) in
165 endif
166 else
167 $(warning sparse-llvm disabled on $(shell uname -m))
168 endif
169 else
170 $(warning Your system does not have llvm, disabling sparse-llvm)
171 endif

173 LIB_H= token.h parse.h lib.h symbol.h scope.h expression.h target.h \
174 linearize.h bitmap.h ident-list.h compat.h flow.h allocate.h \
175 storage.h ptrlist.h dissect.h

177 LIB_OBJS= target.o parse.o tokenize.o pre-process.o symbol.o lib.o scope.o \
178 expression.o show-parse.o evaluate.o expand.o inline.o linearize.o \
179 char.o sort.o allocate.o compat-$(OS).o ptrlist.o \
180 builtin.o \
181 stats.o \
182 flow.o cse.o simplify.o memops.o liveness.o storage.o unssa.o \
183 dissect.o \
184 macro_table.o token_store.o cwchash/hashtable.o

186 LIB_FILE= libsparse.a
187 SLIB_FILE= libsparse.so

189 # If you add $(SLIB_FILE) to this, you also need to add -fpic to BASIC_CFLAGS ab
190 # Doing so incurs a noticeable performance hit, and Sparse does not have a
191 # stable shared library interface, so this does not occur by default. If you

new/usr/src/tools/smatch/src/Makefile 4

192 # really want a shared library, you may want to build Sparse twice: once
193 # without -fpic to get all the Sparse tools, and again with -fpic to get the
194 # shared library.
195 LIBS=$(LIB_FILE)

197 #
198 # Pretty print
199 #
200 V = @
201 Q = $(V:1=)
202 QUIET_CC = $(Q:@=@echo ’ CC ’$@;)
203 QUIET_CHECK = $(Q:@=@echo ’ CHECK ’$<;)
204 QUIET_AR = $(Q:@=@echo ’ AR ’$@;)
205 QUIET_GEN = $(Q:@=@echo ’ GEN ’$@;)
206 QUIET_LINK = $(Q:@=@echo ’ LINK ’$@;)
207 # We rely on the -v switch of install to print ’file -> $install_dir/file’
208 QUIET_INST_SH = $(Q:@=echo -n ’ INSTALL ’;)
209 QUIET_INST = $(Q:@=@echo -n ’ INSTALL ’;)

211 define INSTALL_EXEC
212 $(QUIET_INST)install -v $1 $(DESTDIR)$2/$1 || exit 1;

214 endef

216 define INSTALL_FILE
217 $(QUIET_INST)install -v -m 644 $1 $(DESTDIR)$2/$1 || exit 1;

219 endef

221 SED_PC_CMD = ’s|@version@|$(VERSION)|g; \
222 s|@prefix@|$(INSTALL_PREFIX)|g; \
223 s|@libdir@|$(LIBDIR)|g; \
224 s|@includedir@|$(INCLUDEDIR)|g’

228 # Allow users to override build settings without dirtying their trees
229 -include local.mk

232 all: $(PROGRAMS) sparse.pc smatch

234 all-installable: $(INST_PROGRAMS) $(LIBS) $(LIB_H) sparse.pc

236 install: all-installable
237 $(Q)install -d $(DESTDIR)$(BINDIR)
238 $(Q)install -d $(DESTDIR)$(LIBDIR)
239 $(Q)install -d $(DESTDIR)$(MAN1DIR)
240 $(Q)install -d $(DESTDIR)$(INCLUDEDIR)/sparse
241 $(Q)install -d $(DESTDIR)$(PKGCONFIGDIR)
242 $(Q)install -d $(DESTDIR)$(SMATCHDATADIR)/smatch_data
243 $(Q)install -d $(DESTDIR)$(SMATCHDATADIR)/smatch_scripts
244 $(foreach f,$(INST_PROGRAMS),$(call INSTALL_EXEC,$f,$(BINDIR)))
245 $(foreach f,$(INST_MAN1),$(call INSTALL_FILE,$f,$(MAN1DIR)))
246 $(foreach f,$(LIBS),$(call INSTALL_FILE,$f,$(LIBDIR)))
247 $(foreach f,$(LIB_H),$(call INSTALL_FILE,$f,$(INCLUDEDIR)/sparse))
248 $(call INSTALL_FILE,sparse.pc,$(PKGCONFIGDIR))
249 $(foreach f,$(SMATCH_DATA),$(call INSTALL_FILE,$f,$(SMATCHDATADIR)))
250 $(foreach f,$(SMATCH_SCRIPTS),$(call INSTALL_EXEC,$f,$(SMATCHDATADIR)))

252 sparse.pc: sparse.pc.in
253 $(QUIET_GEN)sed $(SED_PC_CMD) sparse.pc.in > sparse.pc

256 compile_EXTRA_DEPS = compile-i386.o

new/usr/src/tools/smatch/src/Makefile 5

258 $(foreach p,$(PROGRAMS),$(eval $(p): $($(p)_EXTRA_DEPS) $(LIBS)))
259 $(PROGRAMS): % : %.o
260 $(QUIET_LINK)$(LD) -o $@ $^ $($@_EXTRA_OBJS) $(LDFLAGS)

262 smatch: smatch.o $(SMATCH_FILES) $(SMATCH_CHECKS) $(LIBS)
263 $(QUIET_LINK)$(LD) -o $@ $< $(SMATCH_FILES) $(SMATCH_CHECKS) $(LIBS) $(L

265 $(LIB_FILE): $(LIB_OBJS)
266 $(QUIET_AR)$(AR) rcs $@ $(LIB_OBJS)

268 $(SLIB_FILE): $(LIB_OBJS)
269 $(QUIET_LINK)$(CC) -Wl,-soname,$@ -shared -o $@ $(LIB_OBJS) $(LDFLAGS)

271 check_list_local.h:
272 touch check_list_local.h

274 smatch.o: smatch.c $(LIB_H) smatch.h check_list.h check_list_local.h
275 $(CC) $(CFLAGS) -c smatch.c -DSMATCHDATADIR=’"$(SMATCHDATADIR)"’
276 $(SMATCH_CHECKS): smatch.h smatch_slist.h smatch_extra.h avl.h
277 DEP_FILES := $(wildcard .*.o.d)

279 ifneq ($(DEP_FILES),)
280 include $(DEP_FILES)
281 endif

283 c2xml.o c2xml.sc: PKG_CFLAGS += $(LIBXML_CFLAGS)

285 pre-process.sc: CHECKER_FLAGS += -Wno-vla

287 %.o: %.c $(LIB_H)
288 $(QUIET_CC)$(CC) -o $@ -c $(ALL_CFLAGS) $<

290 %.sc: %.c sparse
291 $(QUIET_CHECK) $(CHECKER) $(CHECKER_FLAGS) -c $(ALL_CFLAGS) $<

293 ALL_OBJS := $(LIB_OBJS) $(foreach p,$(PROGRAMS),$(p).o $($(p)_EXTRA_DEPS))
294 selfcheck: $(ALL_OBJS:.o=.sc)

297 clean: clean-check
298 rm -f *.[oa] .*.d *.so cwchash/*.o cwchash/.*.d cwchash/tester \
299 $(PROGRAMS) $(SLIB_FILE) pre-process.h sparse.pc version.h

301 dist:
302 @if test "$(SPARSE_VERSION)" != "v$(VERSION)" ; then \
303 echo ’Update VERSION in the Makefile before running "make dist".
304 exit 1 ; \
305 fi
306 git archive --format=tar --prefix=sparse-$(VERSION)/ HEAD^{tree} | gzip

308 check: all
309 $(Q)cd validation && ./test-suite

311 clean-check:
312 find validation/ \(-name "*.c.output.expected" \
313 -o -name "*.c.output.got" \
314 -o -name "*.c.output.diff" \
315 -o -name "*.c.error.expected" \
316 -o -name "*.c.error.got" \
317 -o -name "*.c.error.diff" \
318 \) -exec rm {} \;

new/usr/src/tools/smatch/src/check_64bit_shift.c 1

**
 2466 Mon Aug 5 08:37:53 2019
new/usr/src/tools/smatch/src/check_64bit_shift.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2012 Oracle.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 #include "smatch.h"
19 #include "smatch_extra.h"

21 static int my_id;

23 static void match_shift_mask(struct expression *expr)
24 {
25 struct expression *right, *shifter;
26 struct range_list *rl;
27 char *str;

29 expr = strip_expr(expr);
30 if (expr->type != EXPR_BINOP || expr->op != ’&’)
31 return;

33 if (get_type(expr->left) != &ullong_ctype)
34 return;

36 if (type_bits(get_type(expr->right)) == 64)
37 return;

39 right = strip_expr(expr->right);
40 if (right->type != EXPR_BINOP || right->op != SPECIAL_LEFTSHIFT)
41 return;

43 shifter = strip_expr(right->right);
44 get_real_absolute_rl(shifter, &rl);
45 if (rl_max(rl).uvalue < 32)
46 return;

48 str = expr_to_str(expr->right);
49 sm_warning("should ’%s’ be a 64 bit type?", str);
50 free_string(str);
51 }

53 static void match_shift_assignment(struct expression *expr)
54 {
55 struct symbol *left_type, *right_type;
56 struct expression *right;
57 sval_t sval;
58 sval_t bits, shifter;
59 char *name;

61 right = strip_expr(expr->right);

new/usr/src/tools/smatch/src/check_64bit_shift.c 2

62 if (right->type != EXPR_BINOP || right->op != SPECIAL_LEFTSHIFT)
63 return;

65 left_type = get_type(expr->left);
66 if (left_type != &llong_ctype && left_type != &ullong_ctype)
67 return;

69 right_type = get_type(expr->right);

71 if (type_bits(right_type) == 64)
72 return;

74 if (get_value(right, &sval))
75 return;

77 get_absolute_max(right->left, &bits);
78 get_absolute_max(right->right, &shifter);

80 bits = sval_cast(&ullong_ctype, bits);
81 if (sval_cmp_val(shifter, 32) < 0) {
82 sval = sval_binop(bits, SPECIAL_LEFTSHIFT, shifter);
83 if (sval_cmp_val(sval, UINT_MAX) < 0)
84 return;
85 }

87 name = expr_to_str_sym(right, NULL);
88 sm_warning("should ’%s’ be a 64 bit type?", name);
89 free_string(name);
90 }

92 void check_64bit_shift(int id)
93 {
94 my_id = id;

96 add_hook(&match_shift_assignment, ASSIGNMENT_HOOK);
97 add_hook(&match_shift_mask, BINOP_HOOK);
98 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_buffer_too_small_for_struct.c 1

**
 2927 Mon Aug 5 08:37:54 2019
new/usr/src/tools/smatch/src/check_buffer_too_small_for_struct.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2014 Oracle.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 #include "smatch.h"

20 static int my_id;

22 STATE(too_small);

24 static void match_assign(struct expression *expr)
25 {
26 struct symbol *left_type, *right_type;
27 struct expression *size_expr;
28 sval_t min_size;
29 int limit_type;
30 int bytes;

32 left_type = get_type(expr->left);
33 if (!left_type || left_type->type != SYM_PTR)
34 return;
35 left_type = get_real_base_type(left_type);
36 if (!left_type || left_type->type != SYM_STRUCT)
37 return;

39 right_type = get_type(expr->right);
40 if (!right_type || right_type->type != SYM_PTR)
41 return;
42 right_type = get_real_base_type(right_type);
43 if (!right_type)
44 return;
45 if (right_type != &void_ctype && type_bits(right_type) != 8)
46 return;

48 bytes = get_array_size_bytes(expr->right);
49 if (bytes >= type_bytes(left_type))
50 return;

52 size_expr = get_size_variable(expr->right, &limit_type);
46 size_expr = get_size_variable(expr->right);
53 if (!size_expr)
54 return;
55 if (limit_type != ELEM_COUNT)
56 return;

58 get_absolute_min(size_expr, &min_size);
59 if (min_size.value >= type_bytes(left_type))
60 return;

new/usr/src/tools/smatch/src/check_buffer_too_small_for_struct.c 2

62 set_state_expr(my_id, expr->left, &too_small);
63 }

65 static void match_dereferences(struct expression *expr)
66 {
67 struct symbol *left_type;
68 struct expression *right;
69 struct smatch_state *state;
70 char *name;
71 struct expression *size_expr;
72 sval_t min_size;
73 int limit_type;

75 if (expr->type != EXPR_PREOP)
76 return;

78 expr = strip_expr(expr->unop);
79 state = get_state_expr(my_id, expr);
80 if (state != &too_small)
81 return;

83 left_type = get_type(expr);
84 if (!left_type || left_type->type != SYM_PTR)
85 return;
86 left_type = get_real_base_type(left_type);
87 if (!left_type || left_type->type != SYM_STRUCT)
88 return;

90 right = get_assigned_expr(expr);
91 size_expr = get_size_variable(right, &limit_type);
82 size_expr = get_size_variable(right);
92 if (!size_expr)
93 return;
94 if (limit_type != ELEM_COUNT)
95 return;

97 get_absolute_min(size_expr, &min_size);
98 if (min_size.value >= type_bytes(left_type))
99 return;

101 name = expr_to_str(right);
102 sm_warning("is ’%s’ large enough for ’struct %s’? %s", name, left_type->
103 free_string(name);
104 set_state_expr(my_id, expr, &undefined);
105 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_cmn_err.c 1

**
 1352 Mon Aug 5 08:37:55 2019
new/usr/src/tools/smatch/src/check_cmn_err.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2016 Oracle.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 *
17 * Copyright 2019 Joyent, Inc.
18 */

20 /*
21 * Heavily borrowed from check_wine.c: what we’re doing here is teaching smatch
22 * that cmn_err(CE_PANIC, ...) is noreturn.
23 */

25 #include "scope.h"
26 #include "smatch.h"
27 #include "smatch_extra.h"

29 #define CE_PANIC (3)

31 void match_cmn_err(const char *fn, struct expression *expr,
32 void *unused)
33 {
34 struct expression *arg;
35 sval_t sval;

37 arg = get_argument_from_call_expr(expr->args, 0);
38 if (!get_implied_value(arg, &sval))
39 return;

41 if (sval.value == CE_PANIC)
42 nullify_path();
43 }

46 void check_cmn_err(int id)
47 {
48 if (option_project != PROJ_ILLUMOS_KERNEL)
49 return;

51 add_function_hook("cmn_err", &match_cmn_err, NULL);
52 }

new/usr/src/tools/smatch/src/check_debug.c 1

**
 21157 Mon Aug 5 08:37:55 2019
new/usr/src/tools/smatch/src/check_debug.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2009 Dan Carpenter.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 #include "smatch.h"
19 #include "smatch_slist.h"
20 #include "smatch_extra.h"

22 void show_sname_alloc(void);
23 void show_data_range_alloc(void);
24 void show_ptrlist_alloc(void);
25 void show_sm_state_alloc(void);

27 int local_debug;
28 static int my_id;
29 char *trace_variable;

31 static void match_all_values(const char *fn, struct expression *expr, void *info
32 {
33 struct stree *stree;

35 stree = get_all_states_stree(SMATCH_EXTRA);
36 __print_stree(stree);
37 free_stree(&stree);
38 }

______unchanged_portion_omitted_

203 static void match_user_rl(const char *fn, struct expression *expr, void *info)
204 {
205 struct expression *arg;
206 struct range_list *rl = NULL;
201 struct range_list *rl;
207 char *name;

209 arg = get_argument_from_call_expr(expr->args, 0);
210 name = expr_to_str(arg);

212 get_user_rl(arg, &rl);
213 sm_msg("user rl: ’%s’ = ’%s’", name, show_rl(rl));

215 free_string(name);
216 }

______unchanged_portion_omitted_

385 static void match_buf_size(const char *fn, struct expression *expr, void *info)
386 {
387 struct expression *arg, *comp;
388 struct range_list *rl;

new/usr/src/tools/smatch/src/check_debug.c 2

389 int elements, bytes;
390 char *name;
391 char buf[256] = "";
392 int limit_type;
393 int n;
394 sval_t sval;

396 arg = get_argument_from_call_expr(expr->args, 0);

398 elements = get_array_size(arg);
399 bytes = get_array_size_bytes_max(arg);
400 rl = get_array_size_bytes_rl(arg);
401 comp = get_size_variable(arg, &limit_type);
395 comp = get_size_variable(arg);

403 name = expr_to_str(arg);
404 n = snprintf(buf, sizeof(buf), "buf size: ’%s’ %d elements, %d bytes", n
405 free_string(name);

407 if (!rl_to_sval(rl, &sval))
408 n += snprintf(buf + n, sizeof(buf) - n, " (rl = %s)", show_rl(rl

410 if (comp) {
411 name = expr_to_str(comp);
412 snprintf(buf + n, sizeof(buf) - n, "[size_var=%s %s]", limit_typ
406 snprintf(buf + n, sizeof(buf) - n, "[size_var=%s]", name);
413 free_string(name);
414 }
415 sm_msg("%s", buf);
416 }

______unchanged_portion_omitted_

507 static void match_debug_implied_on(const char *fn, struct expression *expr, void
508 {
509 option_debug_implied = 1;
510 }

512 static void match_debug_implied_off(const char *fn, struct expression *expr, voi
513 {
514 option_debug_implied = 0;
515 }

513 static void match_about(const char *fn, struct expression *expr, void *info)
514 {
515 struct expression *arg;
516 struct sm_state *sm;
517 char *name;

519 sm_msg("---- about ----");
520 match_print_implied(fn, expr, NULL);
521 match_buf_size(fn, expr, NULL);
522 match_strlen(fn, expr, NULL);
523 match_real_absolute(fn, expr, NULL);

525 arg = get_argument_from_call_expr(expr->args, 0);
526 name = expr_to_str(arg);
527 if (!name) {
528 sm_msg("info: not a straight forward variable.");
529 return;
530 }

532 FOR_EACH_SM(__get_cur_stree(), sm) {
533 if (strcmp(sm->name, name) != 0)
534 continue;
535 sm_msg("%s", show_sm(sm));
536 } END_FOR_EACH_SM(sm);

new/usr/src/tools/smatch/src/check_debug.c 3

537 }
______unchanged_portion_omitted_

638 static void match_mtag(const char *fn, struct expression *expr, void *info)
639 {
640 struct expression *arg;
641 char *name;
642 mtag_t tag = 0;
643 int offset = 0;

645 arg = get_argument_from_call_expr(expr->args, 0);
646 name = expr_to_str(arg);
647 expr_to_mtag_offset(arg, &tag, &offset);
648 sm_msg("mtag: ’%s’ => tag: %llu %d", name, tag, offset);
650 get_mtag(arg, &tag);
651 sm_msg("mtag: ’%s’ => tag: %lld", name, tag);
649 free_string(name);
650 }

______unchanged_portion_omitted_

666 static void match_container(const char *fn, struct expression *expr, void *info)
667 {
668 struct expression *container, *x;
669 char *cont, *name, *str;

671 container = get_argument_from_call_expr(expr->args, 0);
672 x = get_argument_from_call_expr(expr->args, 1);

674 str = get_container_name(container, x);
675 cont = expr_to_str(container);
676 name = expr_to_str(x);
677 sm_msg("container: ’%s’ vs ’%s’ --> ’%s’", cont, name, str);
678 free_string(cont);
679 free_string(name);
680 }

682 static void match_state_count(const char *fn, struct expression *expr, void *inf
683 {
684 sm_msg("state_count = %d\n", sm_state_counter);
685 }

______unchanged_portion_omitted_

736 void check_debug(int id)
737 {
738 my_id = id;
739 add_function_hook("__smatch_about", &match_about, NULL);
740 add_function_hook("__smatch_all_values", &match_all_values, NULL);
741 add_function_hook("__smatch_state", &match_state, NULL);
742 add_function_hook("__smatch_states", &match_states, NULL);
743 add_function_hook("__smatch_value", &match_print_value, NULL);
744 add_function_hook("__smatch_known", &match_print_known, NULL);
745 add_function_hook("__smatch_implied", &match_print_implied, NULL);
746 add_function_hook("__smatch_implied_min", &match_print_implied_min, NULL
747 add_function_hook("__smatch_implied_max", &match_print_implied_max, NULL
748 add_function_hook("__smatch_user_rl", &match_user_rl, NULL);
749 add_function_hook("__smatch_capped", &match_capped, NULL);
750 add_function_hook("__smatch_hard_max", &match_print_hard_max, NULL);
751 add_function_hook("__smatch_fuzzy_max", &match_print_fuzzy_max, NULL);
752 add_function_hook("__smatch_absolute", &match_print_absolute, NULL);
753 add_function_hook("__smatch_absolute_min", &match_print_absolute_min, NU
754 add_function_hook("__smatch_absolute_max", &match_print_absolute_max, NU
755 add_function_hook("__smatch_real_absolute", &match_real_absolute, NULL);
756 add_function_hook("__smatch_sval_info", &match_sval_info, NULL);
757 add_function_hook("__smatch_member_name", &match_member_name, NULL);
758 add_function_hook("__smatch_possible", &match_possible, NULL);
759 add_function_hook("__smatch_cur_stree", &match_cur_stree, NULL);

new/usr/src/tools/smatch/src/check_debug.c 4

760 add_function_hook("__smatch_strlen", &match_strlen, NULL);
761 add_function_hook("__smatch_buf_size", &match_buf_size, NULL);
762 add_function_hook("__smatch_note", &match_note, NULL);
763 add_function_hook("__smatch_dump_related", &match_dump_related, NULL);
764 add_function_hook("__smatch_compare", &match_compare, NULL);
765 add_function_hook("__smatch_debug_on", &match_debug_on, NULL);
766 add_function_hook("__smatch_debug_check", &match_debug_check, NULL);
767 add_function_hook("__smatch_debug_off", &match_debug_off, NULL);
768 add_function_hook("__smatch_local_debug_on", &match_local_debug_on, NULL
769 add_function_hook("__smatch_local_debug_off", &match_local_debug_off, NU
757 add_function_hook("__smatch_debug_implied_on", &match_debug_implied_on,
758 add_function_hook("__smatch_debug_implied_off", &match_debug_implied_off
770 add_function_hook("__smatch_intersection", &match_intersection, NULL);
771 add_function_hook("__smatch_type", &match_type, NULL);
772 add_implied_return_hook("__smatch_type_rl_helper", &match_type_rl_return
773 add_function_hook("__smatch_merge_tree", &match_print_merge_tree, NULL);
774 add_function_hook("__smatch_stree_id", &match_print_stree_id, NULL);
775 add_function_hook("__smatch_mtag", &match_mtag, NULL);
776 add_function_hook("__smatch_mtag_data", &match_mtag_data_offset, NULL);
777 add_function_hook("__smatch_state_count", &match_state_count, NULL);
778 add_function_hook("__smatch_mem", &match_mem, NULL);
779 add_function_hook("__smatch_exit", &match_exit, NULL);
780 add_function_hook("__smatch_container", &match_container, NULL);

782 add_hook(free_old_stree, AFTER_FUNC_HOOK);
783 add_hook(trace_var, STMT_HOOK_AFTER);
784 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_debug.h 1

**
 2890 Mon Aug 5 08:37:56 2019
new/usr/src/tools/smatch/src/check_debug.h
11506 smatch resync
**
______unchanged_portion_omitted_
60 #define __smatch_type_rl(type, fmt...) __smatch_type_rl_helper((type)0, fmt)
61 #define __smatch_rl(fmt...) __smatch_type_rl(long long, fmt)

63 static inline void __smatch_bit_info(long long expr){}

65 static inline void __smatch_oops(unsigned long null_val){}

67 static inline void __smatch_merge_tree(long long var){}

69 static inline void __smatch_stree_id(void){}

71 static inline void __smatch_mtag(void *p){}
72 static inline void __smatch_mtag_data(long long arg){}
73 static inline void __smatch_exit(void){}

75 static inline void __smatch_state_count(void){}
76 static inline void __smatch_mem(void){}

78 static inline void __smatch_container(long long container, long long x){}
79 #endif

new/usr/src/tools/smatch/src/check_dma_mapping_error.c 1

**
 2233 Mon Aug 5 08:37:56 2019
new/usr/src/tools/smatch/src/check_dma_mapping_error.c
11506 smatch resync
**
______unchanged_portion_omitted_

33 static void match_assign(const char *fn, struct expression *expr, void *unused)
34 {
35 struct range_list *rl;

37 if (!get_implied_rl(expr->right, &rl))
38 return;
39 if (rl_max(rl).value != 1)
40 return;
41 set_state_expr(my_id, expr->left, &positive);
42 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_err_ptr_deref.c 1

**
 6668 Mon Aug 5 08:37:56 2019
new/usr/src/tools/smatch/src/check_err_ptr_deref.c
11506 smatch resync
**
______unchanged_portion_omitted_

214 void check_err_ptr_deref(int id)
215 {
216 if (option_project != PROJ_KERNEL)
217 return;

219 my_id = id;
220 return_implies_state("IS_ERR", 0, 0, &match_checked, NULL);
221 return_implies_state("IS_ERR", 1, 1, &match_err, NULL);
222 return_implies_state("IS_ERR_OR_NULL", 0, 0, &match_checked, NULL);
223 return_implies_state("IS_ERR_OR_NULL", 1, 1, &match_err, NULL);
224 return_implies_state("PTR_RET", 0, 0, &match_checked, NULL);
225 return_implies_state("PTR_RET", -4095, -1, &match_err, NULL);
225 return_implies_state("PTR_RET", -4096, -1, &match_err, NULL);
226 register_err_ptr_funcs();
227 add_hook(&match_dereferences, DEREF_HOOK);
228 add_function_hook("ERR_PTR", &match_err_ptr_positive_const, NULL);
229 add_function_hook("ERR_PTR", &match_err_ptr, NULL);
230 add_hook(&match_condition, CONDITION_HOOK);
231 add_modification_hook(my_id, &ok_to_use);
232 add_function_hook("kfree", &match_kfree, INT_PTR(0));
233 add_function_hook("brelse", &match_kfree, INT_PTR(0));
234 add_function_hook("kmem_cache_free", &match_kfree, INT_PTR(1));
235 add_function_hook("vfree", &match_kfree, INT_PTR(0));

237 err_ptr_rl = clone_rl_permanent(alloc_rl(err_ptr_min, err_ptr_max));

239 select_return_implies_hook(DEREFERENCE, &set_param_dereferenced);
240 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_free_strict.c 1

**
 7059 Mon Aug 5 08:37:57 2019
new/usr/src/tools/smatch/src/check_free_strict.c
11506 smatch resync
**
______unchanged_portion_omitted_

294 static void match_untracked(struct expression *call, int param)
295 {
296 struct state_list *slist = NULL;
297 struct expression *arg;
298 struct sm_state *sm;
299 char *name;
300 char buf[64];
301 int len;

303 arg = get_argument_from_call_expr(call->args, param);
304 if (!arg)
305 return;

307 name = expr_to_var(arg);
308 if (!name)
309 return;
310 snprintf(buf, sizeof(buf), "%s->", name);
311 free_string(name);
312 len = strlen(buf);

314 FOR_EACH_MY_SM(my_id, __get_cur_stree(), sm) {
315 if (strncmp(sm->name, buf, len) == 0)
316 add_ptr_list(&slist, sm);
317 } END_FOR_EACH_SM(sm);

319 FOR_EACH_PTR(slist, sm) {
320 set_state(sm->owner, sm->name, sm->sym, &ok);
321 } END_FOR_EACH_PTR(sm);

323 free_slist(&slist);
324 }

326 void check_free_strict(int id)
327 {
328 my_id = id;

330 if (option_project != PROJ_KERNEL)
331 return;

333 add_function_hook("kfree", &match_free, INT_PTR(0));
334 add_function_hook("kmem_cache_free", &match_free, INT_PTR(1));

336 if (option_spammy)
337 add_hook(&match_symbol, SYM_HOOK);
338 add_hook(&match_dereferences, DEREF_HOOK);
339 add_hook(&match_call, FUNCTION_CALL_HOOK);
340 add_hook(&match_return, RETURN_HOOK);

342 add_modification_hook_late(my_id, &ok_to_use);
343 add_pre_merge_hook(my_id, &pre_merge_hook);

345 select_return_states_hook(PARAM_FREED, &set_param_freed);
346 add_untracked_param_hook(&match_untracked);
347 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_held_dev.c 1

**
 3457 Mon Aug 5 08:37:59 2019
new/usr/src/tools/smatch/src/check_held_dev.c
11506 smatch resync
**
______unchanged_portion_omitted_

101 static void register_returns_held_funcs(void)
102 {
103 struct token *token;
104 const char *func;

106 token = get_tokens_file("kernel.returns_held_funcs");
107 if (!token)
108 return;
109 if (token_type(token) != TOKEN_STREAMBEGIN)
110 return;
111 token = token->next;
112 while (token_type(token) != TOKEN_STREAMEND) {
113 if (token_type(token) != TOKEN_IDENT)
114 return;
115 func = show_ident(token->ident);
116 return_implies_state_sval(func, valid_ptr_min_sval, valid_ptr_ma
116 return_implies_state(func, valid_ptr_min, valid_ptr_max,
117 &match_returns_held, NULL);
118 return_implies_state(func, 0, 0, &match_returns_null,
119 NULL);
120 token = token->next;
121 }
122 clear_token_alloc();
123 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_kernel.c 1

**
 12812 Mon Aug 5 08:38:00 2019
new/usr/src/tools/smatch/src/check_kernel.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2010 Dan Carpenter.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 /*
19 * This is kernel specific stuff for smatch_extra.
20 */

22 #include "scope.h"
23 #include "smatch.h"
24 #include "smatch_extra.h"

26 static sval_t err_ptr_min;
27 static sval_t err_ptr_max;
28 static sval_t null_ptr;

30 static int implied_err_cast_return(struct expression *call, void *unused, struct
31 {
32 struct expression *arg;

34 arg = get_argument_from_call_expr(call->args, 0);
35 if (!get_implied_rl(arg, rl)) {
36 *rl = alloc_rl(err_ptr_min, err_ptr_max);
37 *rl = cast_rl(get_type(arg), *rl);
38 }
31 if (!get_implied_rl(arg, rl))
32 *rl = alloc_rl(ll_to_sval(-4095), ll_to_sval(-1));
39 return 1;
40 }

______unchanged_portion_omitted_

80 static void match_param_valid_ptr(const char *fn, struct expression *call_expr,
81 struct expression *assign_expr, void *_param)
82 {
83 int param = PTR_INT(_param);
84 struct expression *arg;
85 struct smatch_state *pre_state;
86 struct smatch_state *end_state;
87 struct range_list *rl;

89 arg = get_argument_from_call_expr(call_expr->args, param);
90 pre_state = get_state_expr(SMATCH_EXTRA, arg);
91 if (estate_rl(pre_state)) {
92 rl = estate_rl(pre_state);
93 rl = remove_range(rl, null_ptr, null_ptr);
94 rl = remove_range(rl, err_ptr_min, err_ptr_max);
95 } else {
96 rl = alloc_rl(valid_ptr_min_sval, valid_ptr_max_sval);

new/usr/src/tools/smatch/src/check_kernel.c 2

97 }
98 end_state = alloc_estate_rl(rl);
84 end_state = estate_filter_range(pre_state, ll_to_sval(-4095), ll_to_sval
99 set_extra_expr_nomod(arg, end_state);
100 }

102 static void match_param_err_or_null(const char *fn, struct expression *call_expr
103 struct expression *assign_expr, void *_param)
104 {
105 int param = PTR_INT(_param);
106 struct expression *arg;
107 struct range_list *rl;
108 struct smatch_state *pre_state;
109 struct smatch_state *end_state;

111 arg = get_argument_from_call_expr(call_expr->args, param);
112 pre_state = get_state_expr(SMATCH_EXTRA, arg);
113 call_results_to_rl(call_expr, &ptr_ctype, "0,(-4095)-(-1)", &rl);
99 rl = alloc_rl(ll_to_sval(-4095), ll_to_sval(0));
114 rl = rl_intersection(estate_rl(pre_state), rl);
115 rl = cast_rl(get_type(arg), rl);
101 rl = cast_rl(estate_type(pre_state), rl);
116 end_state = alloc_estate_rl(rl);
117 set_extra_expr_nomod(arg, end_state);
118 }

120 static void match_not_err(const char *fn, struct expression *call_expr,
121 struct expression *assign_expr, void *unused)
122 {
123 struct expression *arg;
124 struct smatch_state *pre_state;
125 struct range_list *rl;
111 struct smatch_state *new_state;

127 arg = get_argument_from_call_expr(call_expr->args, 0);
128 pre_state = get_state_expr(SMATCH_EXTRA, arg);
129 if (estate_rl(pre_state)) {
130 rl = estate_rl(pre_state);
131 rl = remove_range(rl, err_ptr_min, err_ptr_max);
132 } else {
133 rl = alloc_rl(valid_ptr_min_sval, valid_ptr_max_sval);
134 }
135 rl = cast_rl(get_type(arg), rl);
136 set_extra_expr_nomod(arg, alloc_estate_rl(rl));
115 new_state = estate_filter_range(pre_state, sval_type_min(&long_ctype), l
116 set_extra_expr_nomod(arg, new_state);
137 }

139 static void match_err(const char *fn, struct expression *call_expr,
140 struct expression *assign_expr, void *unused)
141 {
142 struct expression *arg;
143 struct smatch_state *pre_state;
144 struct range_list *rl;
124 struct smatch_state *new_state;

146 arg = get_argument_from_call_expr(call_expr->args, 0);
147 pre_state = get_state_expr(SMATCH_EXTRA, arg);
148 rl = estate_rl(pre_state);
149 if (!rl)
150 rl = alloc_rl(err_ptr_min, err_ptr_max);
151 rl = rl_intersection(rl, alloc_rl(err_ptr_min, err_ptr_max));
152 rl = cast_rl(get_type(arg), rl);
153 set_extra_expr_nomod(arg, alloc_estate_rl(rl));
128 new_state = estate_filter_range(pre_state, sval_type_min(&long_ctype), l
129 new_state = estate_filter_range(new_state, ll_to_sval(0), sval_type_max(

new/usr/src/tools/smatch/src/check_kernel.c 3

130 set_extra_expr_nomod(arg, new_state);
154 }

______unchanged_portion_omitted_

405 bool is_ignored_kernel_data(const char *name)
406 {
407 if (option_project != PROJ_KERNEL)
408 return false;

410 /*
411 * On the file I was looking at lockdep was 25% of the DB.
412 */
413 if (strstr(name, ".dep_map."))
414 return true;
415 if (strstr(name, ".lockdep_map."))
416 return true;
417 return false;
418 }

420 void check_kernel(int id)
421 {
422 if (option_project != PROJ_KERNEL)
423 return;

425 err_ptr_min.type = &ptr_ctype;
426 err_ptr_min.value = -4095;
427 err_ptr_max.type = &ptr_ctype;
428 err_ptr_max.value = -1l;
429 null_ptr.type = &ptr_ctype;
430 null_ptr.value = 0;

432 err_ptr_min = sval_cast(&ptr_ctype, err_ptr_min);
433 err_ptr_max = sval_cast(&ptr_ctype, err_ptr_max);

435 add_implied_return_hook("ERR_PTR", &implied_err_cast_return, NULL);
436 add_implied_return_hook("ERR_CAST", &implied_err_cast_return, NULL);
437 add_implied_return_hook("PTR_ERR", &implied_err_cast_return, NULL);
438 add_hook(hack_ERR_PTR, AFTER_DEF_HOOK);
439 return_implies_state("IS_ERR_OR_NULL", 0, 0, &match_param_valid_ptr, (vo
440 return_implies_state("IS_ERR_OR_NULL", 1, 1, &match_param_err_or_null, (
441 return_implies_state("IS_ERR", 0, 0, &match_not_err, NULL);
442 return_implies_state("IS_ERR", 1, 1, &match_err, NULL);
443 return_implies_state("tomoyo_memory_ok", 1, 1, &match_param_valid_ptr, (

445 add_macro_assign_hook_extra("container_of", &match_container_of_macro, N
446 add_hook(match_container_of, ASSIGNMENT_HOOK);

448 add_implied_return_hook("find_next_bit", &match_next_bit, NULL);
449 add_implied_return_hook("find_next_zero_bit", &match_next_bit, NULL);
450 add_implied_return_hook("find_first_bit", &match_next_bit, NULL);
451 add_implied_return_hook("find_first_zero_bit", &match_next_bit, NULL);

453 add_implied_return_hook("fls", &match_fls, NULL);
454 add_implied_return_hook("fls64", &match_fls, NULL);

456 add_function_hook("__ftrace_bad_type", &__match_nullify_path_hook, NULL)
457 add_function_hook("__write_once_size", &match__write_once_size, NULL);

459 add_function_hook("__read_once_size", &match__read_once_size, NULL);
460 add_function_hook("__read_once_size_nocheck", &match__read_once_size, NU

462 if (option_info)
463 add_hook(match_end_file, END_FILE_HOOK);
464 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_kernel_printf.c 1

**
 54325 Mon Aug 5 08:38:00 2019
new/usr/src/tools/smatch/src/check_kernel_printf.c
11506 smatch resync
**
______unchanged_portion_omitted_

524 static void time_and_date(const char *fmt, struct symbol *type, struct symbol *b
525 {
526 assert(tolower(fmt[0]) == ’t’);

528 if (fmt[1] == ’R’ && !is_struct_tag(basetype, "rtc_time"))
529 sm_error("’%%ptR’ expects argument of type struct ’rtc_time’, ar
530 vaidx, type_to_str(type));
531 }

533 static void check_clock(const char *fmt, struct symbol *type, struct symbol *bas
534 {
535 assert(fmt[0] == ’C’);
536 if (isalnum(fmt[1])) {
537 if (!strchr("nr", fmt[1]))
538 sm_warning("’%%pC’ can only be followed by one of [nr]")
539 if (isalnum(fmt[2]))
540 sm_warning("’%%pC%c’ cannot be followed by ’%c’", fmt[1]
541 }
542 if (!is_struct_tag(basetype, "clk"))
543 sm_error("’%%pC’ expects argument of type ’struct clk*’, argumen
544 vaidx, type_to_str(type));
545 }

______unchanged_portion_omitted_

660 static void
661 pointer(const char *fmt, struct expression *arg, int vaidx)
662 {
663 struct symbol *type, *basetype;

665 type = get_type(arg);
666 if (!type) {
667 sm_warning("could not determine type of argument %d", vaidx);
668 return;
669 }
670 if (!is_ptr_type(type)) {
671 sm_error("%%p expects pointer argument, but argument %d has type
672 vaidx, type_to_str(type));
673 return;
674 }
675 /* Just plain %p, nothing to check. */
676 if (!isalnum(*fmt))
677 return;

679 basetype = get_real_base_type(type);
680 if (is_void_type(basetype))
681 return;
682 /*
683 * Passing a pointer-to-array is harmless, but most likely one
684 * meant to pass pointer-to-first-element. If basetype is
685 * array type, we issue a notice and "dereference" the types
686 * once more.
687 */
688 if (basetype->type == SYM_ARRAY) {
689 spam("note: passing pointer-to-array; is the address-of redundan
690 type = basetype;
691 basetype = get_real_base_type(type);
692 }

694 /*

new/usr/src/tools/smatch/src/check_kernel_printf.c 2

695 * We pass both the type and the basetype to the helpers. If,
696 * for example, the pointer is really a decayed array which is
697 * passed to %pI4, we might want to check that it is in fact
698 * an array of four bytes. But most are probably only
699 * interested in whether the basetype makes sense. Also, the
700 * pointer may carry some annotation such as __user which
701 * might be worth checking in the handlers which actually
702 * dereference the pointer.
703 */

705 switch (*fmt) {
706 case ’b’:
707 case ’F’:
708 case ’f’:
709 case ’S’:
710 case ’s’:
711 case ’B’:
712 /* Can we do anything sensible? Check that the arg is a function
713 break;

715 case ’R’:
716 case ’r’:
717 resource_string(fmt, type, basetype, vaidx);
718 break;
719 case ’M’:
720 case ’m’:
721 mac_address_string(fmt, type, basetype, vaidx);
722 break;
723 case ’I’:
724 case ’i’:
725 switch (fmt[1]) {
726 case ’4’:
727 ip4(fmt, type, basetype, vaidx);
728 break;
729 case ’6’:
730 ip6(fmt, type, basetype, vaidx);
731 break;
732 case ’S’:
733 ipS(fmt, type, basetype, vaidx);
734 break;
735 default:
736 sm_warning("’%%p%c’ must be followed by one of [46S]", f
737 break;
738 }
739 break;
740 /*
741 * %pE and %ph can handle any valid pointer. We still check
742 * whether all the subsequent alphanumerics are valid for the
743 * particular %pX conversion.
744 */
745 case ’E’:
746 escaped_string(fmt, type, basetype, vaidx);
747 break;
748 case ’h’:
749 hex_string(fmt, type, basetype, vaidx);
750 break;
751 case ’U’: /* TODO */
752 break;
753 case ’V’:
754 va_format(fmt, type, basetype, vaidx);
755 break;
756 case ’K’: /* TODO */
757 break;
758 case ’N’:
759 netdev_feature(fmt, type, basetype, vaidx);
760 break;

new/usr/src/tools/smatch/src/check_kernel_printf.c 3

761 case ’a’:
762 address_val(fmt, type, basetype, vaidx);
763 break;
764 case ’D’:
765 case ’d’:
766 dentry_file(fmt, type, basetype, vaidx);
767 break;
768 case ’t’:
769 time_and_date(fmt, type, basetype, vaidx);
770 break;
771 case ’C’:
772 check_clock(fmt, type, basetype, vaidx);
773 break;
774 case ’g’:
775 block_device(fmt, type, basetype, vaidx);
776 break;
777 case ’G’:
778 flag_string(fmt, type, basetype, vaidx);
779 break;
780 case ’O’:
781 device_node_string(fmt, type, basetype, vaidx);
782 break;
783 case ’x’:
784 /* ’x’ is for an unhashed pointer */
785 break;
786 default:
787 sm_error("unrecognized %%p extension ’%c’, treated as normal %%p
788 }
789 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_list.h 1

**
 5616 Mon Aug 5 08:38:00 2019
new/usr/src/tools/smatch/src/check_list.h
11506 smatch resync
**

1 #ifndef CK
2 #define CK(_x) void _x(int id);
3 #define __undo_CK_def
4 #endif

6 CK(register_db_call_marker) /* always has to be first */
7 CK(register_param_used) /* get_state_hooks have to be registered before smat
8 CK(register_container_of)
9 CK(register_container_of2)

10 CK(register_smatch_extra) /* smatch_extra always has to be SMATCH_EXTRA */
11 CK(register_smatch_extra_links)
12 CK(register_modification_hooks)
13 /*
14 * Implications should probably be after all the modification and smatch_extra
15 * hooks have run.
16 *
17 */
18 CK(register_implications)
19 CK(register_definition_db_callbacks)
20 CK(register_project)
21 CK(register_untracked_param)
22 CK(register_buf_comparison)
23 CK(register_buf_comparison_links)
24 CK(register_param_compare_limit)
25 CK(register_param_compare_limit_links)
26 CK(register_returns_early)

28 CK(register_smatch_ignore)
29 CK(register_buf_size)
30 CK(register_strlen)
31 CK(register_strlen_equiv)
32 CK(register_capped)
33 CK(register_parse_call_math)
34 CK(register_param_limit)
35 CK(register_param_filter)
36 CK(register_param_set)
37 CK(register_param_cleared)
38 CK(register_struct_assignment)
39 CK(register_comparison)
40 CK(register_comparison_links)
41 CK(register_comparison_inc_dec)
42 CK(register_comparison_inc_dec_links)
43 CK(register_local_values)
44 CK(register_function_ptrs)
45 CK(register_annotate)
46 CK(register_start_states)
47 CK(register_type_val)
48 CK(register_data_source)
49 CK(register_common_functions)
50 CK(register_function_info)
51 CK(register_auto_copy)
52 CK(register_type_links)
53 CK(register_impossible)
54 CK(register_impossible_return)
55 CK(register_strings)
56 CK(register_integer_overflow)
57 CK(register_integer_overflow_links)
58 CK(register_real_absolute)
59 CK(register_imaginary_absolute)
60 CK(register_bits)
61 CK(register_fn_arg_link)

new/usr/src/tools/smatch/src/check_list.h 2

62 CK(register_parameter_names)
63 CK(register_return_to_param)
64 CK(register_return_to_param_links)
65 CK(register_constraints)
66 CK(register_constraints_required)
67 CK(register_about_fn_ptr_arg)
68 CK(register_mtag)
69 CK(register_mtag_map)
70 CK(register_mtag_data)
71 CK(register_param_to_mtag_data)
72 CK(register_array_values)
73 CK(register_nul_terminator)
74 CK(register_nul_terminator_param_set)
75 CK(register_statement_count)

77 CK(register_kernel_user_data)
78 CK(register_kernel_user_data2)
75 CK(register_kernel_user_data3)

80 CK(check_debug)

82 CK(check_bogus_loop)

84 CK(check_deref)
85 CK(check_check_deref)
86 CK(check_dereferences_param)
87 CK(check_index_overflow)
88 CK(check_index_overflow_loop_marker)
89 CK(check_testing_index_after_use)
90 CK(check_memcpy_overflow)
91 CK(check_strcpy_overflow)
92 CK(check_sprintf_overflow)
93 CK(check_snprintf_overflow)
94 CK(check_allocating_enough_data)
95 CK(check_leaks)
96 CK(check_type)
97 CK(check_allocation_funcs)
98 CK(check_frees_argument)
99 CK(check_deref_check)
100 CK(check_signed)
101 CK(check_precedence)
102 CK(check_unused_ret)
103 CK(check_dma_on_stack)
104 CK(check_param_mapper)
105 CK(check_call_tree)
106 CK(check_dev_queue_xmit)
107 CK(check_stack)
108 CK(check_no_return)
109 CK(check_mod_timer)
110 CK(check_return)
111 CK(check_resource_size)
112 CK(check_release_resource)
113 CK(check_proc_create)
114 CK(check_freeing_null)
115 CK(check_frees_param)
116 CK(check_free)
117 CK(check_frees_param_strict)
118 CK(check_free_strict)
119 CK(check_no_effect)
120 CK(check_kunmap)
121 CK(check_snprintf)
122 CK(check_macros)
123 CK(check_return_efault)
124 CK(check_gfp_dma)
125 CK(check_unwind)
126 CK(check_kmalloc_to_bugon)

new/usr/src/tools/smatch/src/check_list.h 3

127 CK(check_platform_device_put)
128 CK(check_info_leak)
129 CK(check_return_enomem)
130 CK(check_get_user_overflow)
131 CK(check_get_user_overflow2)
132 CK(check_access_ok_math)
133 CK(check_container_of)
134 CK(check_input_free_device)
135 CK(check_select)
136 CK(check_memset)
137 CK(check_logical_instead_of_bitwise)
138 CK(check_kmalloc_wrong_size)
139 CK(check_pointer_math)
140 CK(check_bit_shift)
141 CK(check_macro_side_effects)
142 CK(check_sizeof)
143 CK(check_return_cast)
144 CK(check_or_vs_and)
145 CK(check_passes_sizeof)
146 CK(check_assign_vs_compare)
147 CK(check_missing_break)
148 CK(check_array_condition)
149 CK(check_struct_type)
150 CK(check_64bit_shift)
151 CK(check_wrong_size_arg)
152 CK(check_cast_assign)
153 CK(check_readl_infinite_loops)
154 CK(check_double_checking)
155 CK(check_shift_to_zero)
156 CK(check_indenting)
157 CK(check_unreachable)
158 CK(check_no_if_block)
159 CK(check_buffer_too_small_for_struct)
160 CK(check_uninitialized)
161 CK(check_signed_integer_overflow_check)
162 CK(check_continue_vs_break)
163 CK(check_impossible_mask)
164 CK(check_syscall_arg_type)
165 CK(check_trinity_generator)

167 /* <- your test goes here */
168 /* CK(register_template) */

170 /* kernel specific */
171 CK(check_kernel_printf)
172 CK(check_locking)
173 CK(check_puts_argument)
174 CK(check_err_ptr)
175 CK(check_err_ptr_deref)
176 CK(check_expects_err_ptr)
177 CK(check_held_dev)
178 CK(check_return_negative_var)
179 CK(check_rosenberg)
180 CK(check_rosenberg2)
181 CK(check_wait_for_common)
182 CK(check_bogus_irqrestore)
183 CK(check_zero_to_err_ptr)
184 CK(check_freeing_devm)
185 CK(check_off_by_one_relative)
186 CK(check_capable)
187 CK(check_ns_capable)
188 CK(check_test_bit)
189 CK(check_dma_mapping_error)
190 CK(check_nospec)
191 CK(check_nospec_barrier)
192 CK(check_spectre)

new/usr/src/tools/smatch/src/check_list.h 4

193 CK(check_spectre_second_half)
194 CK(check_implicit_dependencies)

196 /* wine specific stuff */
197 CK(check_wine_filehandles)
198 CK(check_wine_WtoA)

200 /* illumos specific */
201 CK(check_all_func_returns)
202 CK(check_cmn_err)

204 #include "check_list_local.h"

206 CK(register_scope)
207 CK(register_stored_conditions)
208 CK(register_stored_conditions_links)
209 CK(register_sval)
210 CK(register_buf_size_late)
211 CK(register_smatch_extra_late)
212 CK(register_assigned_expr) /* This is used by smatch_extra.c so it has to come r
213 CK(register_assigned_expr_links)
214 CK(register_modification_hooks_late) /* has to come after smatch_extra */
215 CK(register_comparison_late) /* has to come after modification_hooks_late */
216 CK(register_function_hooks)
217 CK(check_kernel) /* this is overwriting stuff from smatch_extra_late */
218 CK(check_wine)
219 CK(register_returns)

221 #ifdef __undo_CK_def
222 #undef CK
223 #undef __undo_CK_def
224 #endif

new/usr/src/tools/smatch/src/check_locking.c 1

**
 35369 Mon Aug 5 08:38:00 2019
new/usr/src/tools/smatch/src/check_locking.c
11506 smatch resync
**
______unchanged_portion_omitted_

48 enum return_type {
49 ret_any,
50 ret_non_zero,
51 ret_zero,
52 ret_one,
53 ret_negative,
54 ret_positive,
55 };

______unchanged_portion_omitted_

104 static struct lock_info kernel_lock_table[] = {
105 {"lock_kernel", LOCK, "BKL", NO_ARG, ret_any},
106 {"unlock_kernel", UNLOCK, "BKL", NO_ARG, ret_any},

108 {"spin_lock", LOCK, "spin_lock", 0, ret_any},
109 {"spin_unlock", UNLOCK, "spin_lock", 0, ret_any},
110 {"spin_lock_nested", LOCK, "spin_lock", 0, ret_any},
111 {"_spin_lock", LOCK, "spin_lock", 0, ret_any},
112 {"_spin_unlock", UNLOCK, "spin_lock", 0, ret_any},
113 {"_spin_lock_nested", LOCK, "spin_lock", 0, ret_any},
114 {"__spin_lock", LOCK, "spin_lock", 0, ret_any},
115 {"__spin_unlock", UNLOCK, "spin_lock", 0, ret_any},
116 {"__spin_lock_nested", LOCK, "spin_lock", 0, ret_any},
117 {"raw_spin_lock", LOCK, "spin_lock", 0, ret_any},
118 {"raw_spin_unlock", UNLOCK, "spin_lock", 0, ret_any},
119 {"_raw_spin_lock", LOCK, "spin_lock", 0, ret_any},
120 {"_raw_spin_lock_nested", LOCK, "spin_lock", 0, ret_any},
121 {"_raw_spin_unlock", UNLOCK, "spin_lock", 0, ret_any},
122 {"__raw_spin_lock", LOCK, "spin_lock", 0, ret_any},
123 {"__raw_spin_unlock", UNLOCK, "spin_lock", 0, ret_any},

125 {"spin_lock_irq", LOCK, "spin_lock", 0, ret_any},
126 {"spin_unlock_irq", UNLOCK, "spin_lock", 0, ret_any},
127 {"_spin_lock_irq", LOCK, "spin_lock", 0, ret_any},
128 {"_spin_unlock_irq", UNLOCK, "spin_lock", 0, ret_any},
129 {"__spin_lock_irq", LOCK, "spin_lock", 0, ret_any},
130 {"__spin_unlock_irq", UNLOCK, "spin_lock", 0, ret_any},
131 {"_raw_spin_lock_irq", LOCK, "spin_lock", 0, ret_any},
132 {"_raw_spin_unlock_irq", UNLOCK, "spin_lock", 0, ret_any},
133 {"__raw_spin_unlock_irq", UNLOCK, "spin_lock", 0, ret_any},
134 {"spin_lock_irqsave", LOCK, "spin_lock", 0, ret_any},
135 {"spin_unlock_irqrestore", UNLOCK, "spin_lock", 0, ret_any},
136 {"_spin_lock_irqsave", LOCK, "spin_lock", 0, ret_any},
137 {"_spin_unlock_irqrestore", UNLOCK, "spin_lock", 0, ret_any},
138 {"__spin_lock_irqsave", LOCK, "spin_lock", 0, ret_any},
139 {"__spin_unlock_irqrestore", UNLOCK, "spin_lock", 0, ret_any},
140 {"_raw_spin_lock_irqsave", LOCK, "spin_lock", 0, ret_any},
141 {"_raw_spin_unlock_irqrestore", UNLOCK, "spin_lock", 0, ret_any},
142 {"__raw_spin_lock_irqsave", LOCK, "spin_lock", 0, ret_any},
143 {"__raw_spin_unlock_irqrestore", UNLOCK, "spin_lock", 0, ret_any},
144 {"spin_lock_irqsave_nested", LOCK, "spin_lock", 0, ret_any},
145 {"_spin_lock_irqsave_nested", LOCK, "spin_lock", 0, ret_any},
146 {"__spin_lock_irqsave_nested", LOCK, "spin_lock", 0, ret_any},
147 {"_raw_spin_lock_irqsave_nested", LOCK, "spin_lock", 0, ret_any},
148 {"spin_lock_bh", LOCK, "spin_lock", 0, ret_any},
149 {"spin_unlock_bh", UNLOCK, "spin_lock", 0, ret_any},
150 {"_spin_lock_bh", LOCK, "spin_lock", 0, ret_any},
151 {"_spin_unlock_bh", UNLOCK, "spin_lock", 0, ret_any},
152 {"__spin_lock_bh", LOCK, "spin_lock", 0, ret_any},

new/usr/src/tools/smatch/src/check_locking.c 2

153 {"__spin_unlock_bh", UNLOCK, "spin_lock", 0, ret_any},

155 {"spin_trylock", LOCK, "spin_lock", 0, ret_one},
156 {"_spin_trylock", LOCK, "spin_lock", 0, ret_one},
157 {"__spin_trylock", LOCK, "spin_lock", 0, ret_one},
158 {"raw_spin_trylock", LOCK, "spin_lock", 0, ret_one},
159 {"_raw_spin_trylock", LOCK, "spin_lock", 0, ret_one},
160 {"spin_trylock_irq", LOCK, "spin_lock", 0, ret_one},
161 {"spin_trylock_irqsave", LOCK, "spin_lock", 0, ret_one},
162 {"spin_trylock_bh", LOCK, "spin_lock", 0, ret_one},
163 {"_spin_trylock_bh", LOCK, "spin_lock", 0, ret_one},
164 {"__spin_trylock_bh", LOCK, "spin_lock", 0, ret_one},
165 {"__raw_spin_trylock", LOCK, "spin_lock", 0, ret_one},
166 {"_atomic_dec_and_lock", LOCK, "spin_lock", 1, ret_one},
154 {"spin_trylock", LOCK, "spin_lock", 0, ret_non_zero},
155 {"_spin_trylock", LOCK, "spin_lock", 0, ret_non_zero},
156 {"__spin_trylock", LOCK, "spin_lock", 0, ret_non_zero},
157 {"raw_spin_trylock", LOCK, "spin_lock", 0, ret_non_zero},
158 {"_raw_spin_trylock", LOCK, "spin_lock", 0, ret_non_zero},
159 {"spin_trylock_irq", LOCK, "spin_lock", 0, ret_non_zero},
160 {"spin_trylock_irqsave", LOCK, "spin_lock", 0, ret_non_zero},
161 {"spin_trylock_bh", LOCK, "spin_lock", 0, ret_non_zero},
162 {"_spin_trylock_bh", LOCK, "spin_lock", 0, ret_non_zero},
163 {"__spin_trylock_bh", LOCK, "spin_lock", 0, ret_non_zero},
164 {"__raw_spin_trylock", LOCK, "spin_lock", 0, ret_non_zero},
165 {"_atomic_dec_and_lock", LOCK, "spin_lock", 1, ret_non_zero},

168 {"read_lock", LOCK, "read_lock", 0, ret_any},
169 {"read_unlock", UNLOCK, "read_lock", 0, ret_any},
170 {"_read_lock", LOCK, "read_lock", 0, ret_any},
171 {"_read_unlock", UNLOCK, "read_lock", 0, ret_any},
172 {"__read_lock", LOCK, "read_lock", 0, ret_any},
173 {"__read_unlock", UNLOCK, "read_lock", 0, ret_any},
174 {"_raw_read_lock", LOCK, "read_lock", 0, ret_any},
175 {"_raw_read_unlock", UNLOCK, "read_lock", 0, ret_any},
176 {"__raw_read_lock", LOCK, "read_lock", 0, ret_any},
177 {"__raw_read_unlock", UNLOCK, "read_lock", 0, ret_any},
178 {"read_lock_irq", LOCK, "read_lock", 0, ret_any},
179 {"read_unlock_irq" , UNLOCK, "read_lock", 0, ret_any},
180 {"_read_lock_irq", LOCK, "read_lock", 0, ret_any},
181 {"_read_unlock_irq", UNLOCK, "read_lock", 0, ret_any},
182 {"__read_lock_irq", LOCK, "read_lock", 0, ret_any},
183 {"__read_unlock_irq", UNLOCK, "read_lock", 0, ret_any},
184 {"read_lock_irqsave", LOCK, "read_lock", 0, ret_any},
185 {"read_unlock_irqrestore", UNLOCK, "read_lock", 0, ret_any},
186 {"_read_lock_irqsave", LOCK, "read_lock", 0, ret_any},
187 {"_read_unlock_irqrestore", UNLOCK, "read_lock", 0, ret_any},
188 {"__read_lock_irqsave", LOCK, "read_lock", 0, ret_any},
189 {"__read_unlock_irqrestore", UNLOCK, "read_lock", 0, ret_any},
190 {"read_lock_bh", LOCK, "read_lock", 0, ret_any},
191 {"read_unlock_bh", UNLOCK, "read_lock", 0, ret_any},
192 {"_read_lock_bh", LOCK, "read_lock", 0, ret_any},
193 {"_read_unlock_bh", UNLOCK, "read_lock", 0, ret_any},
194 {"__read_lock_bh", LOCK, "read_lock", 0, ret_any},
195 {"__read_unlock_bh", UNLOCK, "read_lock", 0, ret_any},
196 {"_raw_read_lock_bh", LOCK, "read_lock", 0, ret_any},
197 {"_raw_read_unlock_bh", UNLOCK, "read_lock", 0, ret_any},
198 {"__raw_read_lock_bh", LOCK, "read_lock", 0, ret_any},
199 {"__raw_read_unlock_bh", UNLOCK, "read_lock", 0, ret_any},

201 {"generic__raw_read_trylock", LOCK, "read_lock", 0, ret_one},
202 {"read_trylock", LOCK, "read_lock", 0, ret_one},
203 {"_read_trylock", LOCK, "read_lock", 0, ret_one},
204 {"raw_read_trylock", LOCK, "read_lock", 0, ret_one},
205 {"_raw_read_trylock", LOCK, "read_lock", 0, ret_one},
206 {"__raw_read_trylock", LOCK, "read_lock", 0, ret_one},

new/usr/src/tools/smatch/src/check_locking.c 3

207 {"__read_trylock", LOCK, "read_lock", 0, ret_one},
200 {"generic__raw_read_trylock", LOCK, "read_lock", 0, ret_non_zero},
201 {"read_trylock", LOCK, "read_lock", 0, ret_non_zero},
202 {"_read_trylock", LOCK, "read_lock", 0, ret_non_zero},
203 {"raw_read_trylock", LOCK, "read_lock", 0, ret_non_zero},
204 {"_raw_read_trylock", LOCK, "read_lock", 0, ret_non_zero},
205 {"__raw_read_trylock", LOCK, "read_lock", 0, ret_non_zero},
206 {"__read_trylock", LOCK, "read_lock", 0, ret_non_zero},

209 {"write_lock", LOCK, "write_lock", 0, ret_any},
210 {"write_unlock", UNLOCK, "write_lock", 0, ret_any},
211 {"_write_lock", LOCK, "write_lock", 0, ret_any},
212 {"_write_unlock", UNLOCK, "write_lock", 0, ret_any},
213 {"__write_lock", LOCK, "write_lock", 0, ret_any},
214 {"__write_unlock", UNLOCK, "write_lock", 0, ret_any},
215 {"write_lock_irq", LOCK, "write_lock", 0, ret_any},
216 {"write_unlock_irq", UNLOCK, "write_lock", 0, ret_any},
217 {"_write_lock_irq", LOCK, "write_lock", 0, ret_any},
218 {"_write_unlock_irq", UNLOCK, "write_lock", 0, ret_any},
219 {"__write_lock_irq", LOCK, "write_lock", 0, ret_any},
220 {"__write_unlock_irq", UNLOCK, "write_lock", 0, ret_any},
221 {"write_lock_irqsave", LOCK, "write_lock", 0, ret_any},
222 {"write_unlock_irqrestore", UNLOCK, "write_lock", 0, ret_any},
223 {"_write_lock_irqsave", LOCK, "write_lock", 0, ret_any},
224 {"_write_unlock_irqrestore", UNLOCK, "write_lock", 0, ret_any},
225 {"__write_lock_irqsave", LOCK, "write_lock", 0, ret_any},
226 {"__write_unlock_irqrestore", UNLOCK, "write_lock", 0, ret_any},
227 {"write_lock_bh", LOCK, "write_lock", 0, ret_any},
228 {"write_unlock_bh", UNLOCK, "write_lock", 0, ret_any},
229 {"_write_lock_bh", LOCK, "write_lock", 0, ret_any},
230 {"_write_unlock_bh", UNLOCK, "write_lock", 0, ret_any},
231 {"__write_lock_bh", LOCK, "write_lock", 0, ret_any},
232 {"__write_unlock_bh", UNLOCK, "write_lock", 0, ret_any},
233 {"_raw_write_lock", LOCK, "write_lock", 0, ret_any},
234 {"__raw_write_lock", LOCK, "write_lock", 0, ret_any},
235 {"_raw_write_unlock", UNLOCK, "write_lock", 0, ret_any},
236 {"__raw_write_unlock", UNLOCK, "write_lock", 0, ret_any},

238 {"write_trylock", LOCK, "write_lock", 0, ret_one},
239 {"_write_trylock", LOCK, "write_lock", 0, ret_one},
240 {"raw_write_trylock", LOCK, "write_lock", 0, ret_one},
241 {"_raw_write_trylock", LOCK, "write_lock", 0, ret_one},
242 {"__write_trylock", LOCK, "write_lock", 0, ret_one},
243 {"__raw_write_trylock", LOCK, "write_lock", 0, ret_one},
237 {"write_trylock", LOCK, "write_lock", 0, ret_non_zero},
238 {"_write_trylock", LOCK, "write_lock", 0, ret_non_zero},
239 {"raw_write_trylock", LOCK, "write_lock", 0, ret_non_zero},
240 {"_raw_write_trylock", LOCK, "write_lock", 0, ret_non_zero},
241 {"__write_trylock", LOCK, "write_lock", 0, ret_non_zero},
242 {"__raw_write_trylock", LOCK, "write_lock", 0, ret_non_zero},

245 {"down", LOCK, "sem", 0, ret_any},
246 {"up", UNLOCK, "sem", 0, ret_any},
247 {"down_trylock", LOCK, "sem", 0, ret_zero},
248 {"down_timeout", LOCK, "sem", 0, ret_zero},
249 {"down_interruptible", LOCK, "sem", 0, ret_zero},

252 {"down_write", LOCK, "rw_sem", 0, ret_any},
253 {"downgrade_write", UNLOCK, "rw_sem", 0, ret_any},
254 {"downgrade_write", LOCK, "read_sem", 0, ret_any},
255 {"up_write", UNLOCK, "rw_sem", 0, ret_any},
256 {"down_write_trylock", LOCK, "rw_sem", 0, ret_one},
257 {"down_write_killable", LOCK, "rw_sem", 0, ret_zero},
258 {"down_read", LOCK, "read_sem", 0, ret_any},
259 {"down_read_trylock", LOCK, "read_sem", 0, ret_one},

new/usr/src/tools/smatch/src/check_locking.c 4

260 {"down_read_killable", LOCK, "read_sem", 0, ret_zero},
261 {"up_read", UNLOCK, "read_sem", 0, ret_any},

263 {"mutex_lock", LOCK, "mutex", 0, ret_any},
264 {"mutex_lock_io", LOCK, "mutex", 0, ret_any},
265 {"mutex_unlock", UNLOCK, "mutex", 0, ret_any},
266 {"mutex_lock_nested", LOCK, "mutex", 0, ret_any},
267 {"mutex_lock_io_nested", LOCK, "mutex", 0, ret_any},

269 {"mutex_lock_interruptible", LOCK, "mutex", 0, ret_zero},
270 {"mutex_lock_interruptible_nested", LOCK, "mutex", 0, ret_zero},
271 {"mutex_lock_killable", LOCK, "mutex", 0, ret_zero},
272 {"mutex_lock_killable_nested", LOCK, "mutex", 0, ret_zero},

274 {"mutex_trylock", LOCK, "mutex", 0, ret_one},
259 {"mutex_trylock", LOCK, "mutex", 0, ret_non_zero},

276 {"raw_local_irq_disable", LOCK, "irq", NO_ARG, ret_any},
277 {"raw_local_irq_enable", UNLOCK, "irq", NO_ARG, ret_any},
278 {"spin_lock_irq", LOCK, "irq", NO_ARG, ret_any},
279 {"spin_unlock_irq", UNLOCK, "irq", NO_ARG, ret_any},
280 {"_spin_lock_irq", LOCK, "irq", NO_ARG, ret_any},
281 {"_spin_unlock_irq", UNLOCK, "irq", NO_ARG, ret_any},
282 {"__spin_lock_irq", LOCK, "irq", NO_ARG, ret_any},
283 {"__spin_unlock_irq", UNLOCK, "irq", NO_ARG, ret_any},
284 {"_raw_spin_lock_irq", LOCK, "irq", NO_ARG, ret_any},
285 {"_raw_spin_unlock_irq", UNLOCK, "irq", NO_ARG, ret_any},
286 {"__raw_spin_unlock_irq", UNLOCK, "irq", NO_ARG, ret_any},
287 {"spin_trylock_irq", LOCK, "irq", NO_ARG, ret_one},
272 {"spin_trylock_irq", LOCK, "irq", NO_ARG, ret_non_zero},
288 {"read_lock_irq", LOCK, "irq", NO_ARG, ret_any},
289 {"read_unlock_irq", UNLOCK, "irq", NO_ARG, ret_any},
290 {"_read_lock_irq", LOCK, "irq", NO_ARG, ret_any},
291 {"_read_unlock_irq", UNLOCK, "irq", NO_ARG, ret_any},
292 {"__read_lock_irq", LOCK, "irq", NO_ARG, ret_any},
293 {"__read_unlock_irq", UNLOCK, "irq", NO_ARG, ret_any},
294 {"write_lock_irq", LOCK, "irq", NO_ARG, ret_any},
295 {"write_unlock_irq", UNLOCK, "irq", NO_ARG, ret_any},
296 {"_write_lock_irq", LOCK, "irq", NO_ARG, ret_any},
297 {"_write_unlock_irq", UNLOCK, "irq", NO_ARG, ret_any},
298 {"__write_lock_irq", LOCK, "irq", NO_ARG, ret_any},
299 {"__write_unlock_irq", UNLOCK, "irq", NO_ARG, ret_any},

301 {"arch_local_irq_save", LOCK, "irqsave", RETURN_VAL, ret_any},
302 {"arch_local_irq_restore", UNLOCK, "irqsave", 0, ret_any},
303 {"__raw_local_irq_save", LOCK, "irqsave", RETURN_VAL, ret_any},
304 {"raw_local_irq_restore", UNLOCK, "irqsave", 0, ret_any},
305 {"spin_lock_irqsave_nested", LOCK, "irqsave", RETURN_VAL, ret_any},
306 {"spin_lock_irqsave", LOCK, "irqsave", RETURN_VAL, ret_any},
307 {"spin_lock_irqsave", LOCK, "irqsave", 1, ret_any},
308 {"spin_unlock_irqrestore", UNLOCK, "irqsave", 1, ret_any},
309 {"_spin_lock_irqsave_nested", LOCK, "irqsave", RETURN_VAL, ret_any},
310 {"_spin_lock_irqsave", LOCK, "irqsave", RETURN_VAL, ret_any},
311 {"_spin_lock_irqsave", LOCK, "irqsave", 1, ret_any},
312 {"_spin_unlock_irqrestore", UNLOCK, "irqsave", 1, ret_any},
313 {"__spin_lock_irqsave_nested", LOCK, "irqsave", 1, ret_any},
314 {"__spin_lock_irqsave", LOCK, "irqsave", 1, ret_any},
315 {"__spin_unlock_irqrestore", UNLOCK, "irqsave", 1, ret_any},
316 {"_raw_spin_lock_irqsave", LOCK, "irqsave", RETURN_VAL, ret_any},
317 {"_raw_spin_lock_irqsave", LOCK, "irqsave", 1, ret_any},
318 {"_raw_spin_unlock_irqrestore",UNLOCK, "irqsave", 1, ret_any},
319 {"__raw_spin_lock_irqsave", LOCK, "irqsave", RETURN_VAL, ret_any},
320 {"__raw_spin_unlock_irqrestore",UNLOCK, "irqsave", 1, ret_any},
321 {"_raw_spin_lock_irqsave_nested", LOCK, "irqsave", RETURN_VAL, ret_any},
322 {"spin_trylock_irqsave", LOCK, "irqsave", 1, ret_one},
307 {"spin_trylock_irqsave", LOCK, "irqsave", 1, ret_non_zero},

new/usr/src/tools/smatch/src/check_locking.c 5

323 {"read_lock_irqsave", LOCK, "irqsave", RETURN_VAL, ret_any},
324 {"read_lock_irqsave", LOCK, "irqsave", 1, ret_any},
325 {"read_unlock_irqrestore", UNLOCK, "irqsave", 1, ret_any},
326 {"_read_lock_irqsave", LOCK, "irqsave", RETURN_VAL, ret_any},
327 {"_read_lock_irqsave", LOCK, "irqsave", 1, ret_any},
328 {"_read_unlock_irqrestore", UNLOCK, "irqsave", 1, ret_any},
329 {"__read_lock_irqsave", LOCK, "irqsave", RETURN_VAL, ret_any},
330 {"__read_unlock_irqrestore", UNLOCK, "irqsave", 1, ret_any},
331 {"write_lock_irqsave", LOCK, "irqsave", RETURN_VAL, ret_any},
332 {"write_lock_irqsave", LOCK, "irqsave", 1, ret_any},
333 {"write_unlock_irqrestore", UNLOCK, "irqsave", 1, ret_any},
334 {"_write_lock_irqsave", LOCK, "irqsave", RETURN_VAL, ret_any},
335 {"_write_lock_irqsave", LOCK, "irqsave", 1, ret_any},
336 {"_write_unlock_irqrestore", UNLOCK, "irqsave", 1, ret_any},
337 {"__write_lock_irqsave", LOCK, "irqsave", RETURN_VAL, ret_any},
338 {"__write_unlock_irqrestore", UNLOCK, "irqsave", 1, ret_any},

340 {"local_bh_disable", LOCK, "bottom_half", NO_ARG, ret_any},
341 {"_local_bh_disable", LOCK, "bottom_half", NO_ARG, ret_any},
342 {"__local_bh_disable", LOCK, "bottom_half", NO_ARG, ret_any},
343 {"local_bh_enable", UNLOCK, "bottom_half", NO_ARG, ret_any},
344 {"_local_bh_enable", UNLOCK, "bottom_half", NO_ARG, ret_any},
345 {"__local_bh_enable", UNLOCK, "bottom_half", NO_ARG, ret_any},
346 {"spin_lock_bh", LOCK, "bottom_half", NO_ARG, ret_any},
347 {"spin_unlock_bh", UNLOCK, "bottom_half", NO_ARG, ret_any},
348 {"_spin_lock_bh", LOCK, "bottom_half", NO_ARG, ret_any},
349 {"_spin_unlock_bh", UNLOCK, "bottom_half", NO_ARG, ret_any},
350 {"__spin_lock_bh", LOCK, "bottom_half", NO_ARG, ret_any},
351 {"__spin_unlock_bh", UNLOCK, "bottom_half", NO_ARG, ret_any},
352 {"read_lock_bh", LOCK, "bottom_half", NO_ARG, ret_any},
353 {"read_unlock_bh", UNLOCK, "bottom_half", NO_ARG, ret_any},
354 {"_read_lock_bh", LOCK, "bottom_half", NO_ARG, ret_any},
355 {"_read_unlock_bh", UNLOCK, "bottom_half", NO_ARG, ret_any},
356 {"__read_lock_bh", LOCK, "bottom_half", NO_ARG, ret_any},
357 {"__read_unlock_bh", UNLOCK, "bottom_half", NO_ARG, ret_any},
358 {"_raw_read_lock_bh", LOCK, "bottom_half", NO_ARG, ret_any},
359 {"_raw_read_unlock_bh", UNLOCK, "bottom_half", NO_ARG, ret_any},
360 {"write_lock_bh", LOCK, "bottom_half", NO_ARG, ret_any},
361 {"write_unlock_bh", UNLOCK, "bottom_half", NO_ARG, ret_any},
362 {"_write_lock_bh", LOCK, "bottom_half", NO_ARG, ret_any},
363 {"_write_unlock_bh", UNLOCK, "bottom_half", NO_ARG, ret_any},
364 {"__write_lock_bh", LOCK, "bottom_half", NO_ARG, ret_any},
365 {"__write_unlock_bh", UNLOCK, "bottom_half", NO_ARG, ret_any},
366 {"spin_trylock_bh", LOCK, "bottom_half", NO_ARG, ret_one},
367 {"_spin_trylock_bh", LOCK, "bottom_half", NO_ARG, ret_one},
368 {"__spin_trylock_bh", LOCK, "bottom_half", NO_ARG, ret_one},
351 {"spin_trylock_bh", LOCK, "bottom_half", NO_ARG, ret_non_zero},
352 {"_spin_trylock_bh", LOCK, "bottom_half", NO_ARG, ret_non_zero},
353 {"__spin_trylock_bh", LOCK, "bottom_half", NO_ARG, ret_non_zero},

370 {"ffs_mutex_lock", LOCK, "mutex", 0, ret_zero},
371 };

______unchanged_portion_omitted_

465 static bool nestable(const char *name)
466 {
467 if (strstr(name, "read_sem:"))
468 return true;
469 if (strcmp(name, "bottom_half:") == 0)
470 return true;
471 return false;
472 }

474 static void do_lock(const char *name)
475 {
476 struct sm_state *sm;

new/usr/src/tools/smatch/src/check_locking.c 6

478 if (__inline_fn)
479 return;

481 sm = get_sm_state(my_id, name, NULL);
482 if (!sm)
483 add_tracker(&starts_unlocked, my_id, name, NULL);
484 if (sm && slist_has_state(sm->possible, &locked) && !nestable(name))
460 if (sm && slist_has_state(sm->possible, &locked) &&
461 strcmp(name, "bottom_half:") != 0)
485 sm_error("double lock ’%s’", name);
486 if (sm)
487 func_has_transition = TRUE;
488 set_state(my_id, name, NULL, &locked);
489 }

______unchanged_portion_omitted_

767 static int matches_return_type(struct range_list *rl, enum return_type type)
768 {
769 sval_t zero_sval = ll_to_sval(0);
770 sval_t one_sval = ll_to_sval(1);

772 /* All these double negatives are super ugly! */

774 switch (type) {
775 case ret_zero:
776 return !possibly_true_rl(rl, SPECIAL_NOTEQUAL, alloc_rl(zero_sva
777 case ret_one:
778 return !possibly_true_rl(rl, SPECIAL_NOTEQUAL, alloc_rl(one_sval
779 case ret_non_zero:
780 return !possibly_true_rl(rl, SPECIAL_EQUAL, alloc_rl(zero_sval,
781 case ret_negative:
782 return !possibly_true_rl(rl, SPECIAL_GTE, alloc_rl(zero_sval, ze
783 case ret_positive:
784 return !possibly_true_rl(rl, ’<’, alloc_rl(zero_sval, zero_sval)
785 case ret_any:
786 default:
787 return 1;
788 }
789 }

______unchanged_portion_omitted_

929 static void register_lock(int index)
930 {
931 struct lock_info *lock = &lock_table[index];
932 void *idx = INT_PTR(index);

934 if (lock->return_type == ret_non_zero) {
935 return_implies_state(lock->function, 1, INT_MAX, &match_lock_hel
909 return_implies_state(lock->function, valid_ptr_min, valid_ptr_ma
936 return_implies_state(lock->function, 0, 0, &match_lock_failed, i
937 } else if (lock->return_type == ret_any && lock->arg == RETURN_VAL) {
938 add_function_assign_hook(lock->function, &match_returns_locked,
939 } else if (lock->return_type == ret_any) {
940 add_function_hook(lock->function, &match_lock_unlock, idx);
941 } else if (lock->return_type == ret_zero) {
942 return_implies_state(lock->function, 0, 0, &match_lock_held, idx
943 return_implies_state(lock->function, -4095, -1, &match_lock_fail
944 } else if (lock->return_type == ret_one) {
945 return_implies_state(lock->function, 1, 1, &match_lock_held, idx
946 return_implies_state(lock->function, 0, 0, &match_lock_failed, i
947 }
948 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_macro_side_effects.c 1

**
 3706 Mon Aug 5 08:38:01 2019
new/usr/src/tools/smatch/src/check_macro_side_effects.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2012 Oracle.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 #include "scope.h"
19 #include "smatch.h"
20 #include "smatch_slist.h"
21 #include "smatch_expression_stacks.h"

23 static int my_id;

25 static struct string_list *ignored_macros;
26 static struct position old_pos;

28 static struct smatch_state *alloc_my_state(struct expression *expr)
29 {
30 struct smatch_state *state;
31 char *name;

33 state = __alloc_smatch_state(0);
33 expr = strip_expr(expr);
34 name = expr_to_str(expr);
35 if (!name)
36 return NULL;

38 state = __alloc_smatch_state(0);
39 state->name = alloc_sname(name);
40 free_string(name);
41 state->data = expr;
42 return state;
43 }

______unchanged_portion_omitted_

159 void check_macro_side_effects(int id)
160 {
161 my_id = id;

163 if (!option_spammy)
164 return;

166 set_dynamic_states(my_id);
167 add_hook(&match_unop, OP_HOOK);
168 add_hook(&match_stmt, STMT_HOOK);
169 register_ignored_macros();
170 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_missing_break.c 1

**
 4313 Mon Aug 5 08:38:01 2019
new/usr/src/tools/smatch/src/check_missing_break.c
11506 smatch resync
**
______unchanged_portion_omitted_

173 void check_missing_break(int id)
174 {
175 my_id = id;

177 if (!option_spammy)
178 return;

180 set_dynamic_states(my_id);
181 add_unmatched_state_hook(my_id, &unmatched_state);
182 add_merge_hook(my_id, &merge_hook);

184 add_hook(&match_assign, ASSIGNMENT_HOOK);
185 add_hook(&match_symbol, SYM_HOOK);
186 add_hook(&match_stmt, STMT_HOOK);
187 add_hook(&match_switch, STMT_HOOK);
188 add_hook(&match_switch_end, STMT_HOOK_AFTER);
189 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_no_return.c 1

**
 1292 Mon Aug 5 08:38:02 2019
new/usr/src/tools/smatch/src/check_no_return.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2010 Dan Carpenter.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 #include "smatch.h"
19 #include "smatch_slist.h"

21 static int my_id;
22 static int returned;

24 static void match_return(struct expression *ret_value)
25 {
26 if (__inline_fn)
27 return;
28 if (is_reachable())
29 returned = 1;
30 }

32 static void match_func_end(struct symbol *sym)
33 {
34 if (__inline_fn)
35 return;
36 if (out_of_memory() || taking_too_long())
37 return;
38 if (!is_reachable() && !returned)
39 sm_info("info: add to no_return_funcs");
40 returned = 0;
41 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_nospec.c 1

**
 6705 Mon Aug 5 08:38:02 2019
new/usr/src/tools/smatch/src/check_nospec.c
11506 smatch resync
**
______unchanged_portion_omitted_

97 static void returned_struct_members(int return_id, char *return_ranges, struct e
98 {
99 struct stree *start_states = get_start_states();
100 struct symbol *returned_sym;
101 struct sm_state *sm;
102 const char *param_name;
103 struct range_list *rl;
104 int param;

106 returned_sym = expr_to_sym(expr);

108 FOR_EACH_MY_SM(my_id, __get_cur_stree(), sm) {
109 if (get_state_stree(start_states, my_id, sm->name, sm->sym) == s
110 continue;
111 param = get_param_num_from_sym(sm->sym);
112 if (param < 0) {
113 if (!returned_sym || returned_sym != sm->sym)
114 continue;
115 param = -1;
116 }

118 param_name = get_param_name(sm);
119 if (!param_name)
120 continue;
121 if (param != -1 && strcmp(param_name, "$") == 0)
122 continue;

124 if (!get_user_rl_var_sym(sm->name, sm->sym, &rl))
125 continue;

127 sql_insert_return_states(return_id, return_ranges, NOSPEC, param
128 } END_FOR_EACH_SM(sm);

130 if (is_nospec(expr) && get_user_rl(expr, &rl))
131 sql_insert_return_states(return_id, return_ranges, NOSPEC, -1, "

133 if (get_state(barrier_id, "barrier", NULL) == &nospec)
134 sql_insert_return_states(return_id, return_ranges, NOSPEC_WB, -1
135 }

______unchanged_portion_omitted_

219 static void match_barrier(struct statement *stmt)
220 {
221 char *macro;

223 macro = get_macro_name(stmt->pos);
224 if (!macro)
225 return;
226 if (strcmp(macro, "rmb") != 0 &&
227 strcmp(macro, "smp_rmb") != 0 &&
228 strcmp(macro, "barrier_nospec") != 0 &&
229 strcmp(macro, "preempt_disable") != 0)
225 strcmp(macro, "barrier_nospec") != 0)
230 return;

232 set_state(barrier_id, "barrier", NULL, &nospec);
233 mark_user_data_as_nospec();
234 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_nospec.c 2

241 static void select_return_stmt_cnt(struct expression *expr, int param, char *key
242 {
243 int cnt;

245 cnt = atoi(value);
246 if (cnt > 400)
247 mark_user_data_as_nospec();
248 }

250 void check_nospec(int id)
251 {
252 my_id = id;

254 add_hook(&nospec_assign, ASSIGNMENT_HOOK);

256 select_caller_info_hook(set_param_nospec, NOSPEC);
257 add_unmatched_state_hook(my_id, &unmatched_state);

259 add_hook(&match_call_info, FUNCTION_CALL_HOOK);
260 add_member_info_callback(my_id, struct_member_callback);
261 add_split_return_callback(&returned_struct_members);
262 select_return_states_hook(NOSPEC, &db_returns_nospec);
263 select_return_states_hook(NOSPEC_WB, &db_returns_barrier);
264 select_return_states_hook(STMT_CNT, &select_return_stmt_cnt);

266 add_hook(&match_asm, ASM_HOOK);
267 add_hook(&match_after_nospec_asm, STMT_HOOK_AFTER);
268 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_off_by_one_relative.c 1

**
 3372 Mon Aug 5 08:38:02 2019
new/usr/src/tools/smatch/src/check_off_by_one_relative.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2015 Oracle.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 /*
19 * The point here is to store that a buffer has x bytes even if we don’t know
20 * the value of x.
21 *
22 */

24 #include "smatch.h"
25 #include "smatch_slist.h"
26 #include "smatch_extra.h"

28 static int my_id;

30 static void array_check(struct expression *expr)
31 {
32 struct expression *array;
33 struct expression *size;
34 struct expression *offset;
35 char *array_str, *offset_str;
36 int limit_type;

38 expr = strip_expr(expr);
39 if (!is_array(expr))
40 return;

42 array = get_array_base(expr);
43 size = get_size_variable(array, &limit_type);
44 if (!size || limit_type != ELEM_COUNT)
42 size = get_size_variable(array);
43 if (!size)
45 return;
46 offset = get_array_offset(expr);
47 if (!possible_comparison(size, SPECIAL_EQUAL, offset))
48 return;

50 if (buf_comparison_index_ok(expr))
51 return;

53 array_str = expr_to_str(array);
54 offset_str = expr_to_str(offset);
55 sm_warning("potentially one past the end of array ’%s[%s]’", array_str,
56 free_string(array_str);
57 free_string(offset_str);
58 }

new/usr/src/tools/smatch/src/check_off_by_one_relative.c 2

56 static int known_access_ok_comparison(struct expression *expr)
57 {
58 struct expression *array;
59 struct expression *size;
60 struct expression *offset;
61 int comparison;

63 array = get_array_base(expr);
64 size = get_size_variable(array);
65 if (!size)
66 return 0;
67 offset = get_array_offset(expr);
68 comparison = get_comparison(size, offset);
69 if (comparison == ’>’ || comparison == SPECIAL_UNSIGNED_GT)
70 return 1;

72 return 0;
73 }

60 static int known_access_ok_numbers(struct expression *expr)
61 {
62 struct expression *array;
63 struct expression *offset;
64 sval_t max;
65 int size;

67 array = get_array_base(expr);
68 offset = get_array_offset(expr);

70 size = get_array_size(array);
71 if (size <= 0)
72 return 0;

74 get_absolute_max(offset, &max);
75 if (max.uvalue < size)
76 return 1;
77 return 0;
78 }

80 static void array_check_data_info(struct expression *expr)
81 {
82 struct expression *array;
83 struct expression *offset;
84 struct state_list *slist;
85 struct sm_state *sm;
86 struct compare_data *comp;
87 char *offset_name;
88 const char *equal_name = NULL;

90 expr = strip_expr(expr);
91 if (!is_array(expr))
92 return;

94 if (known_access_ok_numbers(expr))
95 return;
96 if (buf_comparison_index_ok(expr))
111 if (known_access_ok_comparison(expr))
97 return;

99 array = get_array_base(expr);
100 offset = get_array_offset(expr);
101 offset_name = expr_to_var(offset);
102 if (!offset_name)
103 return;
104 slist = get_all_possible_equal_comparisons(offset);
105 if (!slist)

new/usr/src/tools/smatch/src/check_off_by_one_relative.c 3

106 goto free;

108 FOR_EACH_PTR(slist, sm) {
109 comp = sm->state->data;
110 if (strcmp(comp->left_var, offset_name) == 0) {
111 if (db_var_is_array_limit(array, comp->right_var, comp->
112 equal_name = comp->right_var;
113 break;
114 }
115 } else if (strcmp(comp->right_var, offset_name) == 0) {
116 if (db_var_is_array_limit(array, comp->left_var, comp->l
117 equal_name = comp->left_var;
118 break;
119 }
120 }
121 } END_FOR_EACH_PTR(sm);

123 if (equal_name) {
124 char *array_name = expr_to_str(array);

126 sm_warning("potential off by one ’%s[]’ limit ’%s’", array_name,
127 free_string(array_name);
128 }

130 free:
131 free_slist(&slist);
132 free_string(offset_name);
133 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_precedence.c 1

**
 3526 Mon Aug 5 08:38:03 2019
new/usr/src/tools/smatch/src/check_precedence.c
11506 smatch resync
**
______unchanged_portion_omitted_

123 static void match_mask_compare(struct expression *expr)
124 {
125 if (expr->op != ’&’)
126 return;
127 if (expr->right->type != EXPR_COMPARE)
128 return;

130 sm_warning("compare has higher precedence than mask");
131 }

133 static void match_subtract_shift(struct expression *expr)
134 {
135 if (expr->op != SPECIAL_LEFTSHIFT)
136 return;
137 if (expr->right->type != EXPR_BINOP)
138 return;
139 if (expr->right->op != ’-’)
140 return;
141 sm_warning("subtract is higher precedence than shift");
142 }

144 void check_precedence(int id)
145 {
146 my_id = id;

148 add_hook(&match_condition, CONDITION_HOOK);
149 add_hook(&match_binop, BINOP_HOOK);
150 add_hook(&match_mask, BINOP_HOOK);
151 add_hook(&match_mask_compare, BINOP_HOOK);
152 add_hook(&match_subtract_shift, BINOP_HOOK);
153 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_return_cast.c 1

**
 1418 Mon Aug 5 08:38:03 2019
new/usr/src/tools/smatch/src/check_return_cast.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2012 Oracle.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 /*
19 * Complains about places that return -1 instead of -ENOMEM
20 */

22 #include "smatch.h"

24 static int my_id;

26 static void match_return(struct expression *ret_value)
27 {
28 struct symbol *func_type = get_real_base_type(cur_func_sym);
29 sval_t sval;

31 if (!func_type || func_type->type != SYM_FN)
32 return;
33 func_type = get_real_base_type(func_type);
34 if (!func_type)
35 return;
36 if (!type_unsigned(func_type))
37 return;
38 if (type_bits(func_type) > 16)
39 return;
40 if (!get_fuzzy_min(ret_value, &sval))
41 return;
42 if (sval_is_positive(sval) || sval_cmp_val(sval, -1) == 0)
43 return;

45 sm_warning("signedness bug returning ’%s’", sval_to_str(sval));
46 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_rosenberg.c 1

**
 9033 Mon Aug 5 08:38:04 2019
new/usr/src/tools/smatch/src/check_rosenberg.c
11506 smatch resync
**
______unchanged_portion_omitted_

379 void check_rosenberg2(int id)
380 {
381 if (option_project != PROJ_KERNEL)
382 return;

384 my_member_id = id;
385 set_dynamic_states(my_member_id);
386 add_extra_mod_hook(&extra_mod_hook);
387 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_shift_to_zero.c 1

**
 2212 Mon Aug 5 08:38:04 2019
new/usr/src/tools/smatch/src/check_shift_to_zero.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2014 Oracle.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 #include "smatch.h"

20 static int my_id;

22 static void match_binop(struct expression *expr)
23 {
24 struct symbol *type;
25 sval_t bits;

27 if (expr->op != SPECIAL_RIGHTSHIFT)
28 return;

30 if (!get_implied_value(expr->right, &bits))
31 return;

33 type = get_type(expr->left);
34 if (!type)
35 return;
36 if (type_bits(type) == -1 || type_bits(type) > bits.value)
37 return;
38 if (is_ignored_expr(my_id, expr))
39 return;
40 sm_warning("right shifting more than type allows %d vs %lld", type_bits(
41 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_snprintf.c 1

**
 2292 Mon Aug 5 08:38:05 2019
new/usr/src/tools/smatch/src/check_snprintf.c
11506 smatch resync
**
______unchanged_portion_omitted_

74 void check_snprintf(int id)
75 {
76 if (option_project != PROJ_KERNEL)
77 return;
78 if (!option_spammy)
79 return;

81 my_id = id;
82 set_dynamic_states(my_id);
83 add_hook(&match_call, FUNCTION_CALL_HOOK);
84 add_function_assign_hook("snprintf", &match_snprintf, NULL);
85 add_modification_hook(my_id, &ok_to_use);
86 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_spectre.c 1

**
 4707 Mon Aug 5 08:38:06 2019
new/usr/src/tools/smatch/src/check_spectre.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2018 Oracle.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 #include "smatch.h"
19 #include "smatch_extra.h"

21 static int my_id;
22 extern int second_half_id;
23 extern void set_spectre_first_half(struct expression *expr);

25 static int suppress_multiple = 1;

27 static int is_write(struct expression *expr)
28 {
29 return 0;
30 }

______unchanged_portion_omitted_

152 static void array_check(struct expression *expr)
153 {
154 struct expression_list *conditions;
155 struct expression *array_expr, *offset;
156 unsigned long long mask;
157 int array_size;
158 char *name;

160 expr = strip_expr(expr);
161 if (!is_array(expr))
162 return;

164 if (is_impossible_path())
165 return;
166 if (is_harmless(expr))
167 return;

169 array_expr = get_array_base(expr);
170 if (suppress_multiple && is_ignored_expr(my_id, array_expr)) {
171 set_spectre_first_half(expr);
168 if (suppress_multiple && is_ignored_expr(my_id, array_expr))
172 return;
173 }

175 offset = get_array_offset(expr);
176 if (!is_user_rl(offset))
177 return;
178 if (is_nospec(offset))
179 return;

new/usr/src/tools/smatch/src/check_spectre.c 2

181 array_size = get_array_size(array_expr);
182 if (array_size > 0 && get_max_by_type(offset) < array_size)
183 return;
184 // binfo = get_bit_info(offset);
185 // if (array_size > 0 && binfo && binfo->possible < array_size)
186 // return;

188 mask = get_mask(offset);
189 if (mask <= array_size)
190 return;

192 conditions = get_conditions(offset);

194 name = expr_to_str(array_expr);
195 sm_warning("potential spectre issue ’%s’ [%s]%s",
196 name,
197 is_read(expr) ? "r" : "w",
198 conditions ? " (local cap)" : "");

200 set_spectre_first_half(expr);
201 if (suppress_multiple)
202 add_ignore_expr(my_id, array_expr);
203 free_string(name);
204 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_spectre_second_half.c 1

**
 2926 Mon Aug 5 08:38:06 2019
new/usr/src/tools/smatch/src/check_spectre_second_half.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2018 Oracle.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 #include "smatch.h"
19 #include "smatch_extra.h"
20 #include "smatch_slist.h"

22 /* New chips will probably be able to speculate further ahead */
23 #define MAX_SPEC_STMT 200

25 static int my_id;

27 struct stree *first_halfs;

29 struct expression *recently_set;

31 void set_spectre_first_half(struct expression *expr)
32 {
33 char buf[64];
34 char *name;

36 name = expr_to_str(expr);
37 snprintf(buf, sizeof(buf), "%p %s", expr, name);
38 free_string(name);

40 set_state_stree(&first_halfs, my_id, buf, NULL, alloc_state_num(get_stmt
41 }

43 void clear_spectre_second_halfs(void)
44 {
45 struct sm_state *sm;

47 FOR_EACH_MY_SM(my_id, __get_cur_stree(), sm) {
48 set_state(my_id, sm->name, sm->sym, alloc_state_num(-MAX_SPEC_ST
49 } END_FOR_EACH_SM(sm);
50 }

52 static struct smatch_state *get_spectre_first_half(struct expression *expr)
53 {
54 char buf[64];
55 char *name;

57 name = expr_to_str(expr);
58 snprintf(buf, sizeof(buf), "%p %s", expr, name);
59 free_string(name);

61 return get_state_stree(first_halfs, my_id, buf, NULL);

new/usr/src/tools/smatch/src/check_spectre_second_half.c 2

62 }

64 static void match_assign(struct expression *expr)
65 {
66 struct smatch_state *state;

68 if (expr->op == SPECIAL_AND_ASSIGN)
69 return;

71 state = get_spectre_first_half(expr->right);
72 if (state) {
73 set_state_expr(my_id, expr->left, state);
74 recently_set = expr->left;
75 return;
76 }
77 state = get_state_expr(my_id, expr->right);
78 if (!state)
79 return;
80 set_state_expr(my_id, expr->left, state);
81 recently_set = expr->left;
82 }

84 static void match_done(struct expression *expr)
85 {
86 struct smatch_state *state;
87 char *name;

89 if (expr == recently_set)
90 return;

92 state = get_state_expr(my_id, expr);
93 if (!state)
94 return;

96 if (get_stmt_cnt() - (long)state->data > MAX_SPEC_STMT)
97 return;

99 name = expr_to_str(expr);
100 sm_msg("warn: possible spectre second half. ’%s’", name);
101 free_string(name);

103 set_state_expr(my_id, expr, alloc_state_num(-MAX_SPEC_STMT));
104 }

106 static void match_end_func(struct symbol *sym)
107 {
108 if (__inline_fn)
109 return;
110 free_stree(&first_halfs);
111 }

113 void check_spectre_second_half(int id)
114 {
115 my_id = id;

117 if (option_project != PROJ_KERNEL)
118 return;
119 set_dynamic_states(my_id);
120 add_hook(&match_assign, ASSIGNMENT_HOOK);
121 add_hook(&match_done, SYM_HOOK);
122 add_hook(&match_done, DEREF_HOOK);

124 add_hook(&match_end_func, END_FUNC_HOOK);
125 }

new/usr/src/tools/smatch/src/check_string_len.c 1

**
 5290 Mon Aug 5 08:38:06 2019
new/usr/src/tools/smatch/src/check_string_len.c
11506 smatch resync
**
______unchanged_portion_omitted_

36 struct param_info zero_one = {0, 1};

38 static int handle_format(struct expression *call, char **pp, int *arg_nr, bool u
38 static int handle_format(struct expression *call, char **pp, int *arg_nr)
39 {
40 struct expression *arg;
41 char *p = *pp;
42 int ret = 1;
43 char buf[256];
44 sval_t sval;
44 sval_t max;

46 p++; /* we passed it with *p == ’%’ */

48 if (*p == ’%’) {
49 p++;
50 ret = 1;
51 goto out_no_arg;
52 }
53 if (*p == ’c’) {
54 p++;
55 ret = 1;
56 goto out;
57 }

60 if (isdigit(*p) || *p == ’.’) {
61 unsigned long num;

63 if (*p == ’.’)
64 p++;

66 num = strtoul(p, &p, 10);
67 ret = num;

69 while (*p == ’l’)
70 p++;
71 p++; /* eat the ’d’ char */
72 goto out;
73 }

75 if (*p == ’l’) {
76 p++;
77 if (*p == ’l’)
78 p++;
79 }

81 if (option_project == PROJ_KERNEL && *p == ’z’)
82 p++;

84 if (option_project == PROJ_KERNEL && *p == ’p’) {
85 if (*(p + 1) == ’I’ || *(p + 1) == ’i’) {
86 char *eye;

88 eye = p + 1;
89 p += 2;
90 if (*p == ’h’ || *p == ’n’ || *p == ’b’ || *p == ’l’)
91 p++;
92 if (*p == ’4’) {

new/usr/src/tools/smatch/src/check_string_len.c 2

93 p++;
94 ret = 15;
95 goto out;
96 }
97 if (*p == ’6’) {
98 p++;
99 if (*p == ’c’)
100 p++;
101 if (*eye == ’I’)
102 ret = 39;
103 if (*eye == ’i’)
104 ret = 32;
105 goto out;
106 }
107 }
108 if (*(p + 1) == ’M’) {
109 p += 2;
110 if (*p == ’R’ || *p == ’F’)
111 p++;
112 ret = 17;
113 goto out;
114 }
115 if (*(p + 1) == ’m’) {
116 p += 2;
117 if (*p == ’R’)
118 p++;
119 ret = 12;
120 goto out;
121 }
122 }

124 arg = get_argument_from_call_expr(call->args, *arg_nr);
125 if (!arg)
126 goto out;

128 if (*p == ’s’) {
129 ret = get_array_size_bytes(arg);
130 if (ret < 0)
131 ret = 1;
132 /* we don’t print the NUL here */
133 ret--;
134 p++;
135 goto out;
136 }

138 if (*p != ’d’ && *p != ’i’ && *p != ’x’ && *p != ’X’ && *p != ’u’ && *p
139 ret = 1;
140 p++;
141 goto out;
142 }

144 if (use_max) {
145 get_absolute_max(arg, &sval);
146 } else {
147 get_absolute_min(arg, &sval);
148 if (sval_is_negative(sval))
149 sval.value = 0;
150 }
144 get_absolute_max(arg, &max);

153 if (*p == ’x’ || *p == ’X’ || *p == ’p’) {
154 ret = snprintf(buf, sizeof(buf), "%llx", sval.uvalue);
147 ret = snprintf(buf, sizeof(buf), "%llx", max.uvalue);
155 } else if (*p == ’u’) {
156 ret = snprintf(buf, sizeof(buf), "%llu", sval.uvalue);

new/usr/src/tools/smatch/src/check_string_len.c 3

149 ret = snprintf(buf, sizeof(buf), "%llu", max.uvalue);
157 } else if (!expr_unsigned(arg)) {
158 sval_t min;
159 int tmp;

161 ret = snprintf(buf, sizeof(buf), "%lld", sval.value);
154 ret = snprintf(buf, sizeof(buf), "%lld", max.value);
162 get_absolute_min(arg, &min);
163 tmp = snprintf(buf, sizeof(buf), "%lld", min.value);
164 if (tmp > ret)
165 ret = tmp;
166 } else {
167 ret = snprintf(buf, sizeof(buf), "%lld", sval.value);
160 ret = snprintf(buf, sizeof(buf), "%lld", max.value);
168 }
169 p++;

171 out:
172 (*arg_nr)++;
173 out_no_arg:
174 *pp = p;
175 return ret;
176 }

178 int get_formatted_string_size_helper(struct expression *call, int arg, bool use_
171 int get_formatted_string_size(struct expression *call, int arg)
179 {
180 struct expression *expr;
181 char *p;
182 int count;

184 expr = get_argument_from_call_expr(call->args, arg);
185 if (!expr || expr->type != EXPR_STRING)
186 return -1;

188 arg++;
189 count = 0;
190 p = expr->string->data;
191 while (*p) {

193 if (*p == ’%’) {
194 count += handle_format(call, &p, &arg, use_max);
187 count += handle_format(call, &p, &arg);
195 } else if (*p == ’\\’) {
196 p++;
197 }else {
198 p++;
199 count++;
200 }
201 }

196 count++; /* count the NUL terminator */
203 return count;
204 }

206 int get_formatted_string_size(struct expression *call, int arg)
207 {
208 return get_formatted_string_size_helper(call, arg, true);
209 }

211 int get_formatted_string_min_size(struct expression *call, int arg)
212 {
213 return get_formatted_string_size_helper(call, arg, false);
214 }

216 static void match_not_limited(const char *fn, struct expression *call, void *inf

new/usr/src/tools/smatch/src/check_string_len.c 4

217 {
218 struct param_info *params = info;
219 struct range_list *rl;
220 struct expression *dest;
221 struct expression *arg;
222 int buf_size, size;
223 int user = 0;
224 int i;
225 int offset = 0;

227 dest = get_argument_from_call_expr(call->args, params->buf_or_limit);
228 dest = strip_expr(dest);
229 if (dest->type == EXPR_BINOP && dest->op == ’+’) {
230 sval_t max;

232 if (get_hard_max(dest->right, &max))
233 offset = max.value;
234 dest = dest->left;
235 }

238 buf_size = get_array_size_bytes(dest);
239 if (buf_size <= 0)
240 return;

242 size = get_formatted_string_size(call, params->string);
243 if (size < 0)
227 if (size <= 0)
244 return;
245 if (size < offset)
246 size -= offset;
247 size++; /* add the NULL terminator */
248 if (size <= buf_size)
249 return;

251 i = 0;
252 FOR_EACH_PTR(call->args, arg) {
253 if (i++ <= params->string)
254 continue;
255 if (get_user_rl(arg, &rl))
256 user = 1;
257 } END_FOR_EACH_PTR(arg);

259 sm_error("format string overflow. buf_size: %d length: %d%s",
260 buf_size, size, user ? " [user data]": "");
261 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_syscall_arg_type.c 1

**
 3586 Mon Aug 5 08:38:07 2019
new/usr/src/tools/smatch/src/check_syscall_arg_type.c
11506 smatch resync
**
______unchanged_portion_omitted_

158 void check_syscall_arg_type(int id)
159 {
160 my_id = id;
161 if (option_project != PROJ_KERNEL)
162 return;

164 set_dynamic_states(my_id);
165 add_merge_hook(my_id, &merge_states);
166 add_function_hook("fdget", &match_fdget, NULL);
167 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_testing_index_after_use.c 1

**
 3027 Mon Aug 5 08:38:07 2019
new/usr/src/tools/smatch/src/check_testing_index_after_use.c
11506 smatch resync
**
______unchanged_portion_omitted_

38 static int get_the_max(struct expression *expr, sval_t *sval)
39 {
40 struct range_list *rl;

42 if (get_hard_max(expr, sval))
43 return 1;
44 if (!option_spammy)
45 return 0;
46 if (get_fuzzy_max(expr, sval))
47 return 1;
48 if (get_user_rl(expr, &rl)) {
49 *sval = rl_max(rl);
50 return 1;
51 }
52 return 0;
53 }

38 static void array_check(struct expression *expr)
39 {
40 struct expression *array_expr;
41 int array_size;
42 struct expression *offset;
43 struct range_list *rl;
60 sval_t max;

45 expr = strip_expr(expr);
46 if (!is_array(expr))
47 return;

49 array_expr = get_array_base(expr);
50 array_size = get_array_size(array_expr);
51 if (!array_size || array_size == 1)
52 return;

54 offset = get_array_offset(expr);
55 get_absolute_rl(offset, &rl);
56 if (rl_max(rl).uvalue < array_size)
57 return;
58 if (buf_comparison_index_ok(expr))
59 return;

72 if (!get_the_max(offset, &max)) {
61 if (getting_address())
62 return;
63 if (is_capped(offset))
64 return;
65 set_state_expr(my_used_id, offset, alloc_state_num(array_size));
78 }
66 }

______unchanged_portion_omitted_

108 void check_testing_index_after_use(int id)
109 {
110 my_used_id = id;
111 set_dynamic_states(my_used_id);
112 add_hook(&array_check, OP_HOOK);
113 add_hook(&match_condition, CONDITION_HOOK);
114 add_modification_hook(my_used_id, &delete);
115 }

new/usr/src/tools/smatch/src/check_uninitialized.c 1

**
 9286 Mon Aug 5 08:38:09 2019
new/usr/src/tools/smatch/src/check_uninitialized.c
11506 smatch resync
**
______unchanged_portion_omitted_

98 static void match_negative_comparison(struct expression *expr)
99 {
100 struct expression *success;
101 struct sm_state *sm;
102 sval_t max;

104 /*
105 * In the kernel, people don’t use "if (ret) {" and "if (ret < 0) {"
106 * consistently. Ideally Smatch would know the return but often it
107 * doesn’t.
108 *
109 */

111 if (option_project != PROJ_KERNEL)
112 return;

114 if (expr->type != EXPR_COMPARE || expr->op != ’<’)
115 return;
116 if (!is_zero(expr->right))
117 return;
118 if (get_implied_max(expr->left, &max) && max.value == 0)
119 return;

121 success = compare_expression(expr->left, SPECIAL_EQUAL, expr->right);
122 if (!assume(success))
123 return;

125 FOR_EACH_MY_SM(my_id, __get_cur_stree(), sm) {
126 if (sm->state == &initialized)
127 set_true_false_states(my_id, sm->name, sm->sym, NULL, &i
128 } END_FOR_EACH_SM(sm);

130 end_assume();
131 }

133 static int is_initialized(struct expression *expr)
134 {
135 struct sm_state *sm;

137 expr = strip_expr(expr);
138 if (expr->type != EXPR_SYMBOL)
139 return 1;
140 sm = get_sm_state_expr(my_id, expr);
141 if (!sm)
142 return 1;
143 if (!slist_has_state(sm->possible, &uninitialized))
144 return 1;
145 return 0;
146 }

148 static void match_dereferences(struct expression *expr)
149 {
150 char *name;

152 if (implications_off || parse_error)
117 if (parse_error)
153 return;

155 if (expr->type != EXPR_PREOP)

new/usr/src/tools/smatch/src/check_uninitialized.c 2

156 return;
157 if (is_impossible_path())
158 return;
159 if (is_initialized(expr->unop))
160 return;

162 name = expr_to_str(expr->unop);
163 sm_error("potentially dereferencing uninitialized ’%s’.", name);
164 free_string(name);

166 set_state_expr(my_id, expr->unop, &initialized);
167 }

169 static void match_condition(struct expression *expr)
170 {
171 char *name;

173 if (implications_off || parse_error)
138 if (parse_error)
174 return;

176 if (is_impossible_path())
177 return;

179 if (is_initialized(expr))
180 return;

182 name = expr_to_str(expr);
183 sm_error("potentially using uninitialized ’%s’.", name);
184 free_string(name);

186 set_state_expr(my_id, expr, &initialized);
187 }

______unchanged_portion_omitted_

299 static void match_symbol(struct expression *expr)
300 {
301 char *name;

303 if (implications_off || parse_error)
268 if (parse_error)
304 return;

306 if (is_impossible_path())
307 return;

309 if (is_initialized(expr))
310 return;

312 if (is_being_modified(expr))
313 return;

315 name = expr_to_str(expr);
316 sm_error("uninitialized symbol ’%s’.", name);
317 free_string(name);

319 set_state_expr(my_id, expr, &initialized);
320 }

______unchanged_portion_omitted_

383 void check_uninitialized(int id)
384 {
385 my_id = id;

387 add_hook(&match_declarations, DECLARATION_HOOK);
388 add_extra_mod_hook(&extra_mod_hook);

new/usr/src/tools/smatch/src/check_uninitialized.c 3

389 add_hook(&match_assign, ASSIGNMENT_HOOK);
390 add_hook(&match_negative_comparison, CONDITION_HOOK);
391 add_untracked_param_hook(&match_untracked);
392 add_pre_merge_hook(my_id, &pre_merge_hook);

394 add_hook(&match_dereferences, DEREF_HOOK);
395 add_hook(&match_condition, CONDITION_HOOK);
396 add_hook(&match_call, FUNCTION_CALL_HOOK);
397 add_hook(&match_call_struct_members, FUNCTION_CALL_HOOK);
398 add_hook(&match_symbol, SYM_HOOK);

400 register_ignored_params_from_file();
401 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_unwind.c 1

**
 6905 Mon Aug 5 08:38:10 2019
new/usr/src/tools/smatch/src/check_unwind.c
11506 smatch resync
**
______unchanged_portion_omitted_

184 void check_unwind(int id)
185 {
186 if (option_project != PROJ_KERNEL || !option_spammy)
187 return;
188 my_id = id;

190 register_unwind_functions();

192 return_implies_state("request_resource", 0, 0, &request_granted, INT_PTR
193 return_implies_state("request_resource", -EBUSY, -EBUSY, &request_denied
194 add_function_hook("release_resource", &match_release, INT_PTR(0));
195 release_function_indicator("release_resource");

197 return_implies_state_sval("__request_region", valid_ptr_min_sval, valid_
197 return_implies_state("__request_region", valid_ptr_min, valid_ptr_max, &
198 return_implies_state("__request_region", 0, 0, &request_denied, INT_PTR(
199 add_function_hook("__release_region", &match_release, INT_PTR(1));
200 release_function_indicator("__release_region");

202 return_implies_state_sval("ioremap", valid_ptr_min_sval, valid_ptr_max_s
202 return_implies_state("ioremap", valid_ptr_min, valid_ptr_max, &request_g
203 return_implies_state("ioremap", 0, 0, &request_denied, INT_PTR(-1));
204 add_function_hook("iounmap", &match_release, INT_PTR(0));

206 return_implies_state_sval("pci_iomap", valid_ptr_min_sval, valid_ptr_max
206 return_implies_state("pci_iomap", valid_ptr_min, valid_ptr_max, &request
207 return_implies_state("pci_iomap", 0, 0, &request_denied, INT_PTR(-1));
208 add_function_hook("pci_iounmap", &match_release, INT_PTR(1));
209 release_function_indicator("pci_iounmap");

211 return_implies_state_sval("__create_workqueue_key", valid_ptr_min_sval,
211 return_implies_state("__create_workqueue_key", valid_ptr_min, valid_ptr_
212 INT_PTR(-1));
213 return_implies_state("__create_workqueue_key", 0, 0, &request_denied, IN
214 add_function_hook("destroy_workqueue", &match_release, INT_PTR(0));

216 return_implies_state("request_irq", 0, 0, &request_granted, INT_PTR(0));
217 return_implies_state("request_irq", -MAX_ERRNO, -1, &request_denied, INT
218 add_function_hook("free_irq", &match_release, INT_PTR(0));
219 release_function_indicator("free_irq");

221 return_implies_state("register_netdev", 0, 0, &request_granted, INT_PTR(
222 return_implies_state("register_netdev", -MAX_ERRNO, -1, &request_denied,
223 add_function_hook("unregister_netdev", &match_release, INT_PTR(0));
224 release_function_indicator("unregister_netdev");

226 return_implies_state("misc_register", 0, 0, &request_granted, INT_PTR(0)
227 return_implies_state("misc_register", -MAX_ERRNO, -1, &request_denied, I
228 add_function_hook("misc_deregister", &match_release, INT_PTR(0));
229 release_function_indicator("misc_deregister");

231 add_hook(&match_return, RETURN_HOOK);
232 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_wine_WtoA.c 1

**
 1976 Mon Aug 5 08:38:10 2019
new/usr/src/tools/smatch/src/check_wine_WtoA.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2009 Dan Carpenter.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 /*
19 * Idea from Michael Stefaniuc and Vincent Bˆ'ron’s earlier WtoA
19 * Idea from Michael Stefaniuc and Vincent BØron’s earlier WtoA
20 * check.
21 *
22 * Apparently when you are coding WINE, you are not allowed to call
23 * functions that end in capital ’A’ from functions that end in
24 * capital ’W’
25 *
26 */

28 #include "smatch.h"

30 static int my_id;

32 static int in_w = 0;

34 static void match_function_def(struct symbol *sym)
35 {
36 char *func = get_function();
37 int len;

39 if (!func) {
40 in_w = 0;
41 return;
42 }
43 len = strlen(func);
44 if (func[len - 1] == ’W’ && len > 2 && func[len - 2] != ’A’)
45 in_w = 1;
46 else
47 in_w = 0;
48 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/check_zero_to_err_ptr.c 1

**
 4250 Mon Aug 5 08:38:11 2019
new/usr/src/tools/smatch/src/check_zero_to_err_ptr.c
11506 smatch resync
**
______unchanged_portion_omitted_

77 static int is_non_zero_int(struct range_list *rl)
78 {
79 struct data_range *tmp;
80 int cnt = -1;

82 FOR_EACH_PTR(rl, tmp) {
83 cnt++;

85 if (cnt == 0) {
86 if (tmp->min.value == INT_MIN &&
87 tmp->max.value == -1)
88 continue;
89 } else if (cnt == 1) {
90 if (tmp->min.value == 1 &&
91 tmp->max.value == INT_MAX)
92 return 1;
93 }
94 return 0;
95 } END_FOR_EACH_PTR(tmp);
96 return 0;
97 }

99 static int is_valid_ptr(sval_t sval)
100 {
101 if (sval.value == INT_MIN || sval.value == INT_MAX)
79 if (sval.type == &int_ctype &&
80 (sval.value == INT_MIN || sval.value == INT_MAX))
102 return 0;

104 if (sval_cmp(valid_ptr_min_sval, sval) <= 0 &&
105 sval_cmp(valid_ptr_max_sval, sval) >= 0) {
84 sval_cmp(valid_ptr_max_sval, sval) >= 0)
106 return 1;
107 }
108 return 0;
109 }

111 static int has_distinct_zero(struct range_list *rl)
112 {
113 struct data_range *tmp;

115 FOR_EACH_PTR(rl, tmp) {
116 if (tmp->min.value == 0 || tmp->max.value == 0)
117 return 1;
118 } END_FOR_EACH_PTR(tmp);
119 return 0;
120 }

122 static void match_err_ptr(const char *fn, struct expression *expr, void *data)
123 {
124 struct expression *arg_expr;
125 struct sm_state *sm, *tmp;
93 sval_t sval;

127 if (is_impossible_path())
128 return;

130 arg_expr = get_argument_from_call_expr(expr->args, 0);
131 sm = get_sm_state_expr(SMATCH_EXTRA, arg_expr);

new/usr/src/tools/smatch/src/check_zero_to_err_ptr.c 2

132 if (!sm)
133 return;

135 if (is_comparison_call(expr))
136 return;

138 if (next_line_checks_IS_ERR(expr, arg_expr))
139 return;
140 if (strcmp(fn, "ERR_PTR") == 0 &&
141 next_line_is_if(arg_expr))
142 return;

144 FOR_EACH_PTR(sm->possible, tmp) {
145 if (!estate_rl(tmp->state))
146 continue;
147 if (is_non_zero_int(estate_rl(tmp->state)))
148 continue;
149 if (has_distinct_zero(estate_rl(tmp->state))) {
150 sm_warning("passing zero to ’%s’", fn);
151 return;
152 }
153 if (strcmp(fn, "PTR_ERR") != 0)
154 continue;
155 if (is_valid_ptr(estate_min(tmp->state)) &&
156 is_valid_ptr(estate_max(tmp->state))) {
157 sm_warning("passing a valid pointer to ’%s’", fn);
158 return;
159 }
117 if (!rl_to_sval(estate_rl(tmp->state), &sval))
118 continue;
119 if (sval.value != 0)
120 continue;
121 sm_warning("passing zero to ’%s’", fn);
122 return;
160 } END_FOR_EACH_PTR(tmp);
161 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/evaluate.c 1

**
 92239 Mon Aug 5 08:38:11 2019
new/usr/src/tools/smatch/src/evaluate.c
11506 smatch resync
**
______unchanged_portion_omitted_

1949 struct symbol *find_identifier(struct ident *ident, struct symbol_list *_list, i
1949 static struct symbol *find_identifier(struct ident *ident, struct symbol_list *_
1950 {
1951 struct ptr_list *head = (struct ptr_list *)_list;
1952 struct ptr_list *list = head;

1954 if (!head)
1955 return NULL;
1956 do {
1957 int i;
1958 for (i = 0; i < list->nr; i++) {
1959 struct symbol *sym = (struct symbol *) list->list[i];
1960 if (sym->ident) {
1961 if (sym->ident != ident)
1962 continue;
1963 *offset = sym->offset;
1964 return sym;
1965 } else {
1966 struct symbol *ctype = sym->ctype.base_type;
1967 struct symbol *sub;
1968 if (!ctype)
1969 continue;
1970 if (ctype->type != SYM_UNION && ctype->type != S
1971 continue;
1972 sub = find_identifier(ident, ctype->symbol_list,
1973 if (!sub)
1974 continue;
1975 *offset += sym->offset;
1976 return sub;
1977 }
1978 }
1979 } while ((list = list->next) != head);
1980 return NULL;
1981 }
______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/expression.h 1

**
 8448 Mon Aug 5 08:38:11 2019
new/usr/src/tools/smatch/src/expression.h
11506 smatch resync
**
______unchanged_portion_omitted_

247 /* Constant expression values */
248 int is_zero_constant(struct expression *);
249 int expr_truth_value(struct expression *expr);
250 long long get_expression_value(struct expression *);
251 long long const_expression_value(struct expression *);
252 long long get_expression_value_silent(struct expression *expr);

254 /* Expression parsing */
255 struct token *parse_expression(struct token *token, struct expression **tree);
256 struct token *conditional_expression(struct token *token, struct expression **tr
257 struct token *primary_expression(struct token *token, struct expression **tree);
258 struct token *parens_expression(struct token *token, struct expression **expr, c
259 struct token *assignment_expression(struct token *token, struct expression **tre

261 extern void evaluate_symbol_list(struct symbol_list *list);
262 extern struct symbol *evaluate_statement(struct statement *stmt);
263 extern struct symbol *evaluate_expression(struct expression *);
264 struct symbol *find_identifier(struct ident *ident, struct symbol_list *_list, i

266 extern int expand_symbol(struct symbol *);

268 static inline struct expression *alloc_expression(struct position pos, int type)
269 {
270 struct expression *expr = __alloc_expression(0);
271 expr->type = type;
272 expr->pos = pos;
273 expr->flags = CEF_NONE;
274 return expr;
275 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/graph.c 1

**
 5766 Mon Aug 5 08:38:11 2019
new/usr/src/tools/smatch/src/graph.c
11506 smatch resync
**

1 /* Copyright ´' International Business Machines Corp., 2006
1 /* Copyright ' International Business Machines Corp., 2006
2 * Adelard LLP, 2007
3 *
4 * Author: Josh Triplett <josh@freedesktop.org>
5 * Dan Sheridan <djs@adelard.com>
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights

10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <string.h>
29 #include <ctype.h>
30 #include <unistd.h>
31 #include <fcntl.h>

33 #include "lib.h"
34 #include "allocate.h"
35 #include "token.h"
36 #include "parse.h"
37 #include "symbol.h"
38 #include "expression.h"
39 #include "linearize.h"

42 /* Draw the subgraph for a given entrypoint. Includes details of loads
43 * and stores for globals, and marks return bbs */
44 static void graph_ep(struct entrypoint *ep)
45 {
46 struct basic_block *bb;
47 struct instruction *insn;

49 const char *fname, *sname;

51 fname = show_ident(ep->name->ident);
52 sname = stream_name(ep->entry->bb->pos.stream);

54 printf("subgraph cluster%p {\n"
55 " color=blue;\n"
56 " label=<<TABLE BORDER=\"0\" CELLBORDER=\"0\">\n"
57 " <TR><TD>%s</TD></TR>\n"
58 " <TR><TD>%s()</TD></T
59 " </TABLE>>;\n"
60 " file=\"%s\";\n"

new/usr/src/tools/smatch/src/graph.c 2

61 " fun=\"%s\";\n"
62 " ep=bb%p;\n",
63 ep, sname, fname, sname, fname, ep->entry->bb);

65 FOR_EACH_PTR(ep->bbs, bb) {
66 struct basic_block *child;
67 int ret = 0;
68 const char * s = ", ls=\"[";

70 /* Node for the bb */
71 printf(" bb%p [shape=ellipse,label=%d,line=%d,col=%d",
72 bb, bb->pos.line, bb->pos.line, bb->pos.pos);

75 /* List loads and stores */
76 FOR_EACH_PTR(bb->insns, insn) {
77 switch(insn->opcode) {
78 case OP_STORE:
79 if (insn->symbol->type == PSEUDO_SYM) {
80 printf("%s store(%s)", s, show_ident(insn->sym
81 s = ",";
82 }
83 break;

85 case OP_LOAD:
86 if (insn->symbol->type == PSEUDO_SYM) {
87 printf("%s load(%s)", s, show_ident(insn->symb
88 s = ",";
89 }
90 break;

92 case OP_RET:
93 ret = 1;
94 break;

96 }
97 } END_FOR_EACH_PTR(insn);
98 if (s[1] == 0)
99 printf("]\"");
100 if (ret)
101 printf(",op=ret");
102 printf("];\n");

104 /* Edges between bbs; lower weight for upward edges */
105 FOR_EACH_PTR(bb->children, child) {
106 printf(" bb%p -> bb%p [op=br, %s];\n", bb, child,
107 (bb->pos.line > child->pos.line) ? "weight=5" : "
108 } END_FOR_EACH_PTR(child);
109 } END_FOR_EACH_PTR(bb);

111 printf("}\n");
112 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch.c 1

**
 8798 Mon Aug 5 08:38:12 2019
new/usr/src/tools/smatch/src/smatch.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2006 Dan Carpenter.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 *
17 * Copyright 2019 Joyent, Inc.
18 */

20 #include <stdio.h>
21 #include <unistd.h>
22 #include <libgen.h>
23 #include "smatch.h"
24 #include "smatch_slist.h"
25 #include "check_list.h"

27 char *option_debug_check = (char *)"";
28 char *option_project_str = (char *)"smatch_generic";
29 static char *option_db_file = (char *)"smatch_db.sqlite";
30 enum project_type option_project = PROJ_NONE;
31 char *bin_dir;
32 char *data_dir;
33 int option_no_data = 0;
34 int option_spammy = 0;
35 int option_info = 0;
36 int option_full_path = 0;
37 int option_param_mapper = 0;
38 int option_call_tree = 0;
39 int option_no_db = 0;
40 int option_enable = 0;
41 int option_disable = 0;
41 int option_debug_related;
42 int option_file_output;
43 int option_time;
44 int option_mem;
45 char *option_datadir_str;
46 int option_fatal_checks;
47 int option_succeed;
48 int option_timeout = 60;

50 FILE *sm_outfd;
51 FILE *sql_outfd;
52 FILE *caller_info_fd;

54 int sm_nr_errors;
55 int sm_nr_checks;

57 bool __silence_warnings_for_stmt;

59 const char *progname;

new/usr/src/tools/smatch/src/smatch.c 2

61 typedef void (*reg_func) (int id);
62 #define CK(_x) {.name = #_x, .func = &_x, .enabled = 0},
63 static struct reg_func_info {
64 const char *name;
65 reg_func func;
66 int enabled;
67 } reg_funcs[] = {

______unchanged_portion_omitted_

178 #define OPTION(_x) do { \
179 if (match_option((*argvp)[1], #_x)) { \
179 if (match_option((*argvp)[i], #_x)) { \
180 option_##_x = 1; \
181 } \
182 } while (0)

184 void parse_args(int *argcp, char ***argvp)
185 {
186 int i;

188 for (i = 1 ; i < *argcp; i++) {
189 if (!strcmp((*argvp)[i], "--help"))
190 help();

192 if (!strcmp((*argvp)[i], "--show-checks"))
193 show_checks();

195 if (!strncmp((*argvp)[i], "--project=", 10))
196 option_project_str = (*argvp)[i] + 10;

198 if (!strncmp((*argvp)[i], "-p=", 3))
199 option_project_str = (*argvp)[i] + 3;

201 if (!strncmp((*argvp)[i], "--db-file=", 10))
202 option_db_file = (*argvp)[i] + 10;

204 if (!strncmp((*argvp)[i], "--data=", 7))
205 option_datadir_str = (*argvp)[i] + 7;

207 if (!strncmp((*argvp)[i], "--debug=", 8))
208 option_debug_check = (*argvp)[i] + 8;

210 if (strncmp((*argvp)[i], "--trace=", 8) == 0)
211 trace_variable = (*argvp)[i] + 8;

213 if (strncmp((*argvp)[i], "--enable=", 9) == 0) {
214 enable_disable_checks((*argvp)[i] + 9, 1);
215 option_enable = 1;
216 }

218 if (strncmp((*argvp)[i], "--disable=", 10) == 0) {
219 enable_disable_checks((*argvp)[i] + 10, 0);
220 option_enable = 1;
221 option_disable = 1;
222 }

224 if (!strncmp((*argvp)[i], "--timeout=", 10)) {
225 if (sscanf((*argvp)[i] + 10, "%d",
226 &option_timeout) != 1)
227 sm_fatal("invalid option %s", (*argvp)[i]);
228 }

230 OPTION(fatal_checks);
231 OPTION(spammy);
232 OPTION(info);
233 OPTION(debug);

new/usr/src/tools/smatch/src/smatch.c 3

234 OPTION(debug_implied);
235 OPTION(debug_related);
234 OPTION(assume_loops);
235 OPTION(no_data);
236 OPTION(two_passes);
237 OPTION(full_path);
238 OPTION(param_mapper);
239 OPTION(call_tree);
240 OPTION(file_output);
241 OPTION(time);
242 OPTION(mem);
243 OPTION(no_db);
244 OPTION(succeed);
245 }

247 if (strcmp(option_project_str, "smatch_generic") != 0)
248 option_project = PROJ_UNKNOWN;

250 if (strcmp(option_project_str, "kernel") == 0)
251 option_project = PROJ_KERNEL;
252 else if (strcmp(option_project_str, "wine") == 0)
253 option_project = PROJ_WINE;
254 else if (strcmp(option_project_str, "illumos_kernel") == 0)
255 option_project = PROJ_ILLUMOS_KERNEL;
256 else if (strcmp(option_project_str, "illumos_user") == 0)
257 option_project = PROJ_ILLUMOS_USER;
258 }

______unchanged_portion_omitted_

321 int main(int argc, char **argv)
322 {
323 struct string_list *filelist = NULL;
324 int i;
325 reg_func func;

327 sm_outfd = stdout;
328 sql_outfd = stdout;
329 caller_info_fd = stdout;

331 progname = argv[0];

333 parse_args(&argc, &argv);

335 if (argc < 2)
336 help();

338 /* this gets set back to zero when we parse the first function */
339 final_pass = 1;

341 bin_dir = get_bin_dir(argv[0]);
342 data_dir = get_data_dir(argv[0]);

344 allocate_hook_memory();
345 allocate_dynamic_states_array(num_checks);
346 create_function_hook_hash();
347 open_smatch_db(option_db_file);
348 sparse_initialize(argc, argv, &filelist);
349 alloc_valid_ptr_rl();

351 for (i = 1; i < ARRAY_SIZE(reg_funcs); i++) {
352 func = reg_funcs[i].func;
353 /* The script IDs start at 1.
354 0 is used for internal stuff. */
355 if (!option_enable || reg_funcs[i].enabled == 1 ||
356 (option_disable && reg_funcs[i].enabled != -1) ||
357 strncmp(reg_funcs[i].name, "register_", 9) == 0)

new/usr/src/tools/smatch/src/smatch.c 4

358 func(i);
359 }

361 smatch(filelist);
358 smatch(argc, argv);
362 free_string(data_dir);

364 if (option_succeed)
365 return 0;
366 if (sm_nr_errors > 0)
367 return 1;
368 if (sm_nr_checks > 0 && option_fatal_checks)
369 return 1;
370 return 0;
371 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch.h 1

**
 47415 Mon Aug 5 08:38:12 2019
new/usr/src/tools/smatch/src/smatch.h
11506 smatch resync
**
______unchanged_portion_omitted_
72 DECLARE_ALLOCATOR(tracker);
73 DECLARE_PTR_LIST(tracker_list, struct tracker);
74 DECLARE_PTR_LIST(stree_stack, struct stree);

76 /* The first 3 struct members must match struct tracker */
77 struct sm_state {
78 const char *name;
79 struct symbol *sym;
80 unsigned short owner;
81 unsigned short merged:1;
82 unsigned short skip_implications:1;
83 unsigned int nr_children;
82 unsigned int line;
83 struct smatch_state *state;
84 struct stree *pool;
85 struct sm_state *left;
86 struct sm_state *right;
87 struct state_list *possible;
88 };

______unchanged_portion_omitted_
101 DECLARE_PTR_LIST(constraint_list, struct constraint);

103 struct bit_info {
104 unsigned long long set;
105 unsigned long long possible;
106 };

108 enum hook_type {
109 EXPR_HOOK,
110 STMT_HOOK,
111 STMT_HOOK_AFTER,
112 SYM_HOOK,
113 STRING_HOOK,
114 DECLARATION_HOOK,
115 ASSIGNMENT_HOOK,
116 ASSIGNMENT_HOOK_AFTER,
117 RAW_ASSIGNMENT_HOOK,
118 GLOBAL_ASSIGNMENT_HOOK,
119 LOGIC_HOOK,
120 CONDITION_HOOK,
121 PRELOOP_HOOK,
122 SELECT_HOOK,
123 WHOLE_CONDITION_HOOK,
124 FUNCTION_CALL_HOOK_BEFORE,
125 FUNCTION_CALL_HOOK,
126 CALL_HOOK_AFTER_INLINE,
127 FUNCTION_CALL_HOOK_AFTER_DB,
128 CALL_ASSIGNMENT_HOOK,
129 MACRO_ASSIGNMENT_HOOK,
130 BINOP_HOOK,
131 OP_HOOK,
132 DEREF_HOOK,
133 CASE_HOOK,
134 ASM_HOOK,
135 CAST_HOOK,
136 SIZEOF_HOOK,
137 BASE_HOOK,
138 FUNC_DEF_HOOK,
139 AFTER_DEF_HOOK,
140 END_FUNC_HOOK,

new/usr/src/tools/smatch/src/smatch.h 2

141 AFTER_FUNC_HOOK,
142 RETURN_HOOK,
143 INLINE_FN_START,
144 INLINE_FN_END,
145 END_FILE_HOOK,
146 NUM_HOOKS,
147 };

149 #define TRUE 1
150 #define FALSE 0

152 struct range_list;

154 void add_hook(void *func, enum hook_type type);
155 typedef struct smatch_state *(merge_func_t)(struct smatch_state *s1, struct smat
156 typedef struct smatch_state *(unmatched_func_t)(struct sm_state *state);
157 void add_merge_hook(int client_id, merge_func_t *func);
158 void add_unmatched_state_hook(int client_id, unmatched_func_t *func);
159 void add_pre_merge_hook(int client_id, void (*hook)(struct sm_state *sm));
160 typedef void (scope_hook)(void *data);
161 void add_scope_hook(scope_hook *hook, void *data);
162 typedef void (func_hook)(const char *fn, struct expression *expr, void *data);
163 typedef void (implication_hook)(const char *fn, struct expression *call_expr,
164 struct expression *assign_expr, void *data);
165 typedef void (return_implies_hook)(struct expression *call_expr,
166 int param, char *key, char *value);
167 typedef int (implied_return_hook)(struct expression *call_expr, void *info, stru
168 void add_function_hook(const char *look_for, func_hook *call_back, void *data);

170 void add_function_assign_hook(const char *look_for, func_hook *call_back,
171 void *info);
172 void add_implied_return_hook(const char *look_for,
173 implied_return_hook *call_back,
174 void *info);
175 void add_macro_assign_hook(const char *look_for, func_hook *call_back,
176 void *info);
177 void add_macro_assign_hook_extra(const char *look_for, func_hook *call_back,
178 void *info);
179 void return_implies_state(const char *look_for, long long start, long long end,
180 implication_hook *call_back, void *info);
181 void return_implies_state_sval(const char *look_for, sval_t start, sval_t end,
182 implication_hook *call_back, void *info);
183 void select_return_states_hook(int type, return_implies_hook *callback);
184 void select_return_states_before(void (*fn)(void));
185 void select_return_states_after(void (*fn)(void));
186 int get_implied_return(struct expression *expr, struct range_list **rl);
187 void allocate_hook_memory(void);

189 struct modification_data {
190 struct smatch_state *prev;
191 struct expression *cur;
192 };

194 typedef void (modification_hook)(struct sm_state *sm, struct expression *mod_exp
195 void add_modification_hook(int owner, modification_hook *call_back);
196 void add_modification_hook_late(int owner, modification_hook *call_back);
197 struct smatch_state *get_modification_state(struct expression *expr);

199 int outside_of_function(void);
200 const char *get_filename(void);
201 const char *get_base_file(void);
202 char *get_function(void);
203 int get_lineno(void);
204 extern int final_pass;
205 extern struct symbol *cur_func_sym;
206 extern int option_debug;

new/usr/src/tools/smatch/src/smatch.h 3

207 extern int local_debug;
208 extern int option_info;
209 extern int option_spammy;
210 extern int option_timeout;
211 extern char *trace_variable;
212 extern struct stree *global_states;
213 int is_skipped_function(void);
214 int is_silenced_function(void);
215 extern bool implications_off;

217 /* smatch_impossible.c */
218 int is_impossible_path(void);
219 void set_path_impossible(void);

221 extern FILE *sm_outfd;
222 extern FILE *sql_outfd;
223 extern FILE *caller_info_fd;
224 extern int sm_nr_checks;
225 extern int sm_nr_errors;
226 extern const char *progname;

228 /*
229 * How to use these routines:
230 *
231 * sm_fatal(): an internal error of some kind that should immediately exit
232 * sm_ierror(): an internal error
233 * sm_perror(): an internal error from parsing input source
234 * sm_error(): an error from input source
235 * sm_warning(): a warning from input source
236 * sm_info(): info message (from option_info)
237 * sm_debug(): debug message
238 * sm_msg(): other message (please avoid using this)
239 */

241 #define sm_printf(msg...) do { if (final_pass || option_debug || local_debug) fp

243 static inline void sm_prefix(void)
244 {
245 sm_printf("%s: %s:%d %s() ", progname, get_filename(), get_lineno(), get
246 }

______unchanged_portion_omitted_
339 #define ALIGN(x, a) (((x) + (a) - 1) & ~((a) - 1))

341 struct smatch_state *__get_state(int owner, const char *name, struct symbol *sym
342 struct smatch_state *get_state(int owner, const char *name, struct symbol *sym);
343 struct smatch_state *get_state_expr(int owner, struct expression *expr);
344 struct state_list *get_possible_states(int owner, const char *name,
345 struct symbol *sym);
346 struct state_list *get_possible_states_expr(int owner, struct expression *expr);
347 struct sm_state *set_state(int owner, const char *name, struct symbol *sym,
348 struct smatch_state *state);
349 struct sm_state *set_state_expr(int owner, struct expression *expr,
350 struct smatch_state *state);
351 void delete_state(int owner, const char *name, struct symbol *sym);
352 void delete_state_expr(int owner, struct expression *expr);
353 void __delete_all_states_sym(struct symbol *sym);
354 void set_true_false_states(int owner, const char *name, struct symbol *sym,
355 struct smatch_state *true_state,
356 struct smatch_state *false_state);
357 void set_true_false_states_expr(int owner, struct expression *expr,
358 struct smatch_state *true_state,
359 struct smatch_state *false_state);

361 struct stree *get_all_states_from_stree(int owner, struct stree *source);
362 struct stree *get_all_states_stree(int id);
363 struct stree *__get_cur_stree(void);

new/usr/src/tools/smatch/src/smatch.h 4

364 int is_reachable(void);
365 void add_get_state_hook(void (*fn)(int owner, const char *name, struct symbol *s

367 /* smatch_helper.c */
368 DECLARE_PTR_LIST(int_stack, int);
369 char *alloc_string(const char *str);
370 void free_string(char *str);
371 void append(char *dest, const char *data, int buff_len);
372 void remove_parens(char *str);
373 struct smatch_state *alloc_state_num(int num);
374 struct smatch_state *alloc_state_str(const char *name);
375 struct smatch_state *merge_str_state(struct smatch_state *s1, struct smatch_stat
376 struct smatch_state *alloc_state_expr(struct expression *expr);
377 struct expression *get_argument_from_call_expr(struct expression_list *args,
378 int num);

380 char *expr_to_var(struct expression *expr);
381 struct symbol *expr_to_sym(struct expression *expr);
382 char *expr_to_str(struct expression *expr);
383 char *expr_to_str_sym(struct expression *expr,
384 struct symbol **sym_ptr);
385 char *expr_to_var_sym(struct expression *expr,
386 struct symbol **sym_ptr);
387 char *expr_to_known_chunk_sym(struct expression *expr, struct symbol **sym);
388 char *expr_to_chunk_sym_vsl(struct expression *expr, struct symbol **sym, struct
389 int get_complication_score(struct expression *expr);

391 int sym_name_is(const char *name, struct expression *expr);
392 int get_const_value(struct expression *expr, sval_t *sval);
393 int get_value(struct expression *expr, sval_t *val);
394 int get_implied_value(struct expression *expr, sval_t *val);
395 int get_implied_min(struct expression *expr, sval_t *sval);
396 int get_implied_max(struct expression *expr, sval_t *val);
397 int get_hard_max(struct expression *expr, sval_t *sval);
398 int get_fuzzy_min(struct expression *expr, sval_t *min);
399 int get_fuzzy_max(struct expression *expr, sval_t *max);
400 int get_absolute_min(struct expression *expr, sval_t *sval);
401 int get_absolute_max(struct expression *expr, sval_t *sval);
402 int parse_call_math(struct expression *expr, char *math, sval_t *val);
403 int parse_call_math_rl(struct expression *call, const char *math, struct range_l
396 int parse_call_math_rl(struct expression *call, char *math, struct range_list **
404 char *get_value_in_terms_of_parameter_math(struct expression *expr);
405 char *get_value_in_terms_of_parameter_math_var_sym(const char *var, struct symbo
406 int is_zero(struct expression *expr);
407 int known_condition_true(struct expression *expr);
408 int known_condition_false(struct expression *expr);
409 int implied_condition_true(struct expression *expr);
410 int implied_condition_false(struct expression *expr);
411 int can_integer_overflow(struct symbol *type, struct expression *expr);
412 void clear_math_cache(void);

414 int is_array(struct expression *expr);
415 struct expression *get_array_base(struct expression *expr);
416 struct expression *get_array_offset(struct expression *expr);
417 const char *show_state(struct smatch_state *state);
418 struct statement *get_expression_statement(struct expression *expr);
419 struct expression *strip_parens(struct expression *expr);
420 struct expression *strip_expr(struct expression *expr);
421 struct expression *strip_expr_set_parent(struct expression *expr);
422 void scoped_state(int my_id, const char *name, struct symbol *sym);
423 int is_error_return(struct expression *expr);
424 int getting_address(void);
425 int get_struct_and_member(struct expression *expr, const char **type, const char
426 char *get_member_name(struct expression *expr);
427 char *get_fnptr_name(struct expression *expr);
428 int cmp_pos(struct position pos1, struct position pos2);

new/usr/src/tools/smatch/src/smatch.h 5

429 int positions_eq(struct position pos1, struct position pos2);
430 struct statement *get_current_statement(void);
431 struct statement *get_prev_statement(void);
432 struct expression *get_last_expr_from_expression_stmt(struct expression *expr);
433 int get_param_num_from_sym(struct symbol *sym);
434 int get_param_num(struct expression *expr);
435 int ms_since(struct timeval *start);
436 int parent_is_gone_var_sym(const char *name, struct symbol *sym);
437 int parent_is_gone(struct expression *expr);
438 int invert_op(int op);
439 int op_remove_assign(int op);
440 int expr_equiv(struct expression *one, struct expression *two);
441 void push_int(struct int_stack **stack, int num);
442 int pop_int(struct int_stack **stack);

444 /* smatch_type.c */
445 struct symbol *get_real_base_type(struct symbol *sym);
446 int type_bytes(struct symbol *type);
447 int array_bytes(struct symbol *type);
448 struct symbol *get_pointer_type(struct expression *expr);
449 struct symbol *get_type(struct expression *expr);
450 struct symbol *get_final_type(struct expression *expr);
451 struct symbol *get_promoted_type(struct symbol *left, struct symbol *right);
452 int type_signed(struct symbol *base_type);
453 int expr_unsigned(struct expression *expr);
454 int expr_signed(struct expression *expr);
455 int returns_unsigned(struct symbol *base_type);
456 int is_pointer(struct expression *expr);
457 int returns_pointer(struct symbol *base_type);
458 sval_t sval_type_max(struct symbol *base_type);
459 sval_t sval_type_min(struct symbol *base_type);
460 int nr_bits(struct expression *expr);
461 int is_void_pointer(struct expression *expr);
462 int is_char_pointer(struct expression *expr);
463 int is_string(struct expression *expr);
464 int is_static(struct expression *expr);
465 int is_local_variable(struct expression *expr);
466 int types_equiv(struct symbol *one, struct symbol *two);
467 int fn_static(void);
468 const char *global_static();
469 struct symbol *cur_func_return_type(void);
470 struct symbol *get_arg_type(struct expression *fn, int arg);
471 struct symbol *get_member_type_from_key(struct expression *expr, const char *key
472 struct symbol *get_arg_type_from_key(struct expression *fn, int param, struct ex
473 int is_struct(struct expression *expr);
474 char *type_to_str(struct symbol *type);

476 /* smatch_ignore.c */
477 void add_ignore(int owner, const char *name, struct symbol *sym);
478 int is_ignored(int owner, const char *name, struct symbol *sym);
479 void add_ignore_expr(int owner, struct expression *expr);
480 int is_ignored_expr(int owner, struct expression *expr);

482 /* smatch_var_sym */
483 struct var_sym *alloc_var_sym(const char *var, struct symbol *sym);
484 struct var_sym_list *expr_to_vsl(struct expression *expr);
485 void add_var_sym(struct var_sym_list **list, const char *var, struct symbol *sym
486 void add_var_sym_expr(struct var_sym_list **list, struct expression *expr);
487 void del_var_sym(struct var_sym_list **list, const char *var, struct symbol *sym
488 int in_var_sym_list(struct var_sym_list *list, const char *var, struct symbol *s
489 struct var_sym_list *clone_var_sym_list(struct var_sym_list *from_vsl);
490 void merge_var_sym_list(struct var_sym_list **dest, struct var_sym_list *src);
491 struct var_sym_list *combine_var_sym_lists(struct var_sym_list *one, struct var_
492 int var_sym_lists_equiv(struct var_sym_list *one, struct var_sym_list *two);
493 void free_var_sym_list(struct var_sym_list **list);
494 void free_var_syms_and_list(struct var_sym_list **list);

new/usr/src/tools/smatch/src/smatch.h 6

496 /* smatch_tracker */
497 struct tracker *alloc_tracker(int owner, const char *name, struct symbol *sym);
498 void add_tracker(struct tracker_list **list, int owner, const char *name,
499 struct symbol *sym);
500 void add_tracker_expr(struct tracker_list **list, int owner, struct expression *
501 void del_tracker(struct tracker_list **list, int owner, const char *name,
502 struct symbol *sym);
503 int in_tracker_list(struct tracker_list *list, int owner, const char *name,
504 struct symbol *sym);
505 void free_tracker_list(struct tracker_list **list);
506 void free_trackers_and_list(struct tracker_list **list);

508 /* smatch_conditions */
509 int in_condition(void);

511 /* smatch_flow.c */

513 extern int __in_fake_assign;
514 extern int __in_fake_parameter_assign;
515 extern int __in_fake_struct_assign;
516 extern int in_fake_env;
517 void smatch (struct string_list *filelist);
509 void smatch (int argc, char **argv);
518 int inside_loop(void);
519 int definitely_inside_loop(void);
520 struct expression *get_switch_expr(void);
521 int in_expression_statement(void);
522 void __process_post_op_stack(void);
523 void __split_expr(struct expression *expr);
524 void __split_label_stmt(struct statement *stmt);
525 void __split_stmt(struct statement *stmt);
526 extern int __in_function_def;
527 extern int option_assume_loops;
528 extern int option_two_passes;
529 extern int option_no_db;
530 extern int option_file_output;
531 extern int option_time;
532 extern struct expression_list *big_expression_stack;
533 extern struct expression_list *big_condition_stack;
534 extern struct statement_list *big_statement_stack;
535 int is_assigned_call(struct expression *expr);
536 int inlinable(struct expression *expr);
537 extern int __inline_call;
538 extern struct expression *__inline_fn;
539 extern int __in_pre_condition;
540 extern int __bail_on_rest_of_function;
541 extern struct statement *__prev_stmt;
542 extern struct statement *__cur_stmt;
543 extern struct statement *__next_stmt;
544 void init_fake_env(void);
545 void end_fake_env(void);
546 int time_parsing_function(void);
547 bool taking_too_long(void);

549 /* smatch_struct_assignment.c */
550 struct expression *get_faked_expression(void);
551 void __fake_struct_member_assignments(struct expression *expr);

553 /* smatch_project.c */
554 int is_no_inline_function(const char *function);

556 /* smatch_conditions */
557 void __split_whole_condition(struct expression *expr);
558 void __handle_logic(struct expression *expr);
559 int is_condition(struct expression *expr);

new/usr/src/tools/smatch/src/smatch.h 7

560 int __handle_condition_assigns(struct expression *expr);
561 int __handle_select_assigns(struct expression *expr);
562 int __handle_expr_statement_assigns(struct expression *expr);

564 /* smatch_implied.c */
556 extern int option_debug_implied;
557 extern int option_debug_related;
565 struct range_list_stack;
566 void param_limit_implications(struct expression *expr, int param, char *key, cha
567 struct stree *__implied_case_stree(struct expression *switch_expr,
568 struct range_list *case_rl,
569 struct range_list_stack **remaining_cases,
570 struct stree **raw_stree);
571 void overwrite_states_using_pool(struct sm_state *gate_sm, struct sm_state *pool
572 int assume(struct expression *expr);
573 void end_assume(void);
574 int impossible_assumption(struct expression *left, int op, sval_t sval);

576 /* smatch_slist.h */
577 bool has_dynamic_states(unsigned short owner);
578 void set_dynamic_states(unsigned short owner);

580 /* smatch_extras.c */
581 int in_warn_on_macro(void);
582 #define SMATCH_EXTRA 5 /* this is my_id from smatch extra set in smatch.c */
583 extern int RETURN_ID;

585 struct data_range {
586 sval_t min;
587 sval_t max;
588 };

590 #define MTAG_ALIAS_BIT (1ULL << 63)
591 #define MTAG_OFFSET_MASK 0xfffULL
592 #define MTAG_SEED 0xdead << 12

594 const extern unsigned long valid_ptr_min;
595 extern unsigned long valid_ptr_max;
596 extern const sval_t valid_ptr_min_sval;
597 extern sval_t valid_ptr_max_sval;
581 extern long long valid_ptr_min, valid_ptr_max;
582 extern sval_t valid_ptr_min_sval, valid_ptr_max_sval;
598 extern struct range_list *valid_ptr_rl;
599 void alloc_valid_ptr_rl(void);

601 static const sval_t array_min_sval = {
602 .type = &ptr_ctype,
603 {.value = 100000},
604 };
605 static const sval_t array_max_sval = {
606 .type = &ptr_ctype,
607 {.value = ULONG_MAX - 4095},
590 {.value = 199999},
608 };
609 static const sval_t text_seg_min = {
610 .type = &ptr_ctype,
611 {.value = 4096},
594 {.value = 100000000},
612 };
613 static const sval_t text_seg_max = {
614 .type = &ptr_ctype,
615 {.value = ULONG_MAX - 4095},
598 {.value = 177777777},
616 };
617 static const sval_t data_seg_min = {
618 .type = &ptr_ctype,

new/usr/src/tools/smatch/src/smatch.h 8

619 {.value = 4096},
602 {.value = 200000000},
620 };
621 static const sval_t data_seg_max = {
622 .type = &ptr_ctype,
623 {.value = ULONG_MAX - 4095},
606 {.value = 277777777},
624 };
625 static const sval_t bss_seg_min = {
626 .type = &ptr_ctype,
627 {.value = 4096},
610 {.value = 300000000},
628 };
629 static const sval_t bss_seg_max = {
630 .type = &ptr_ctype,
631 {.value = ULONG_MAX - 4095},
614 {.value = 377777777},
632 };
633 static const sval_t stack_seg_min = {
634 .type = &ptr_ctype,
635 {.value = 4096},
618 {.value = 400000000},
636 };
637 static const sval_t stack_seg_max = {
638 .type = &ptr_ctype,
639 {.value = ULONG_MAX - 4095},
622 {.value = 477777777},
640 };
641 static const sval_t kmalloc_seg_min = {
642 .type = &ptr_ctype,
643 {.value = 4096},
626 {.value = 500000000},
644 };
645 static const sval_t kmalloc_seg_max = {
646 .type = &ptr_ctype,
647 {.value = ULONG_MAX - 4095},
630 {.value = 577777777},
648 };
649 static const sval_t vmalloc_seg_min = {
650 .type = &ptr_ctype,
651 {.value = 4096},
634 {.value = 600000000},
652 };
653 static const sval_t vmalloc_seg_max = {
654 .type = &ptr_ctype,
655 {.value = ULONG_MAX - 4095},
638 {.value = 677777777},
656 };
657 static const sval_t fn_ptr_min = {
658 .type = &ptr_ctype,
659 {.value = 4096},
642 {.value = 700000000},
660 };
661 static const sval_t fn_ptr_max = {
662 .type = &ptr_ctype,
663 {.value = ULONG_MAX - 4095},
646 {.value = 777777777},
664 };

666 char *get_other_name_sym(const char *name, struct symbol *sym, struct symbol **n
667 char *map_call_to_other_name_sym(const char *name, struct symbol *sym, struct sy
668 char *map_long_to_short_name_sym(const char *name, struct symbol *sym, struct sy
651 char *map_long_to_short_name_sym(const char *name, struct symbol *sym, struct sy
652 char *map_long_to_short_name_sym_nostack(const char *name, struct symbol *sym, s

670 #define STRLEN_MAX_RET 1010101

new/usr/src/tools/smatch/src/smatch.h 9

672 /* smatch_absolute.c */
673 int get_absolute_min_helper(struct expression *expr, sval_t *sval);
674 int get_absolute_max_helper(struct expression *expr, sval_t *sval);

676 /* smatch_local_values.c */
677 int get_local_rl(struct expression *expr, struct range_list **rl);
678 int get_local_max_helper(struct expression *expr, sval_t *sval);
679 int get_local_min_helper(struct expression *expr, sval_t *sval);

681 /* smatch_type_value.c */
682 int get_db_type_rl(struct expression *expr, struct range_list **rl);
683 /* smatch_data_val.c */
684 int get_mtag_rl(struct expression *expr, struct range_list **rl);
685 /* smatch_array_values.c */
686 int get_array_rl(struct expression *expr, struct range_list **rl);

688 /* smatch_states.c */
689 void __swap_cur_stree(struct stree *stree);
690 void __push_fake_cur_stree();
691 struct stree *__pop_fake_cur_stree();
692 void __free_fake_cur_stree();
693 void __set_fake_cur_stree_fast(struct stree *stree);
694 void __pop_fake_cur_stree_fast(void);
695 void __merge_stree_into_cur(struct stree *stree);

697 int unreachable(void);
698 void __set_sm(struct sm_state *sm);
699 void __set_sm_cur_stree(struct sm_state *sm);
700 void __set_sm_fake_stree(struct sm_state *sm);
701 void __set_true_false_sm(struct sm_state *true_state,
702 struct sm_state *false_state);
703 void nullify_path(void);
704 void __match_nullify_path_hook(const char *fn, struct expression *expr,
705 void *unused);
706 void __unnullify_path(void);
707 int __path_is_null(void);
708 void save_all_states(void);
709 void restore_all_states(void);
710 void free_goto_stack(void);
711 void clear_all_states(void);

713 struct sm_state *get_sm_state(int owner, const char *name,
714 struct symbol *sym);
715 struct sm_state *get_sm_state_expr(int owner, struct expression *expr);
716 void __push_true_states(void);
717 void __use_false_states(void);
718 void __discard_false_states(void);
719 void __merge_false_states(void);
720 void __merge_true_states(void);

722 void __negate_cond_stacks(void);
723 void __use_pre_cond_states(void);
724 void __use_cond_true_states(void);
725 void __use_cond_false_states(void);
726 void __push_cond_stacks(void);
727 void __fold_in_set_states(void);
728 void __free_set_states(void);
729 struct stree *__copy_cond_true_states(void);
730 struct stree *__copy_cond_false_states(void);
731 struct stree *__pop_cond_true_stack(void);
732 struct stree *__pop_cond_false_stack(void);
733 void __and_cond_states(void);
734 void __or_cond_states(void);
735 void __save_pre_cond_states(void);
736 void __discard_pre_cond_states(void);

new/usr/src/tools/smatch/src/smatch.h 10

737 struct stree *__get_true_states(void);
738 struct stree *__get_false_states(void);
739 void __use_cond_states(void);
740 extern struct state_list *__last_base_slist;

742 void __push_continues(void);
743 void __discard_continues(void);
744 void __process_continues(void);
745 void __merge_continues(void);

747 void __push_breaks(void);
748 void __process_breaks(void);
749 int __has_breaks(void);
750 void __merge_breaks(void);
751 void __use_breaks(void);

753 void __save_switch_states(struct expression *switch_expr);
754 void __discard_switches(void);
755 int have_remaining_cases(void);
756 void __merge_switches(struct expression *switch_expr, struct range_list *case_rl
757 void __push_default(void);
758 void __set_default(void);
759 int __pop_default(void);

761 void __push_conditions(void);
762 void __discard_conditions(void);

764 void __save_gotos(const char *name, struct symbol *sym);
765 void __merge_gotos(const char *name, struct symbol *sym);

767 void __print_cur_stree(void);

769 /* smatch_hooks.c */
770 void __pass_to_client(void *data, enum hook_type type);
771 void __pass_to_client_no_data(enum hook_type type);
772 void __pass_case_to_client(struct expression *switch_expr,
773 struct range_list *rl);
774 int __has_merge_function(int client_id);
775 struct smatch_state *__client_merge_function(int owner,
776 struct smatch_state *s1,
777 struct smatch_state *s2);
778 struct smatch_state *__client_unmatched_state_function(struct sm_state *sm);
779 void call_pre_merge_hook(struct sm_state *sm);
780 void __push_scope_hooks(void);
781 void __call_scope_hooks(void);

783 /* smatch_function_hooks.c */
784 void create_function_hook_hash(void);
785 void __match_initializer_call(struct symbol *sym);

787 /* smatch_db.c */
788 enum info_type {
789 INTERNAL = 0,
790 /*
791 * Changing these numbers is a pain. Don’t do it. If you ever use a
792 * number it can’t be re-used right away so there may be gaps.
793 * We select these in order by type so if the order matters, then give
794 * it a number below 100-999,9000-9999 ranges. */

796 PARAM_CLEARED = 101,
797 PARAM_LIMIT = 103,
798 PARAM_FILTER = 104,

800 PARAM_VALUE = 1001,
801 BUF_SIZE = 1002,
786 USER_DATA = 1003,

new/usr/src/tools/smatch/src/smatch.h 11

802 CAPPED_DATA = 1004,
803 RETURN_VALUE = 1005,
804 DEREFERENCE = 1006,
805 RANGE_CAP = 1007,
806 LOCK_HELD = 1008,
807 LOCK_RELEASED = 1009,
808 ABSOLUTE_LIMITS = 1010,
809 PARAM_ADD = 1012,
810 PARAM_FREED = 1013,
811 DATA_SOURCE = 1014,
812 FUZZY_MAX = 1015,
813 HARD_MAX = 2015,
814 STR_LEN = 1016,
815 ARRAY_LEN = 1017,
816 CAPABLE = 1018,
817 NS_CAPABLE = 1019,
818 CONTAINER = 1020,
819 CASTED_CALL = 1021,
820 TYPE_LINK = 1022,
821 UNTRACKED_PARAM = 1023,
822 LOST_PARAM = 2023,
823 CULL_PATH = 1024,
824 PARAM_SET = 1025,
825 PARAM_USED = 1026,
826 BYTE_UNITS = 1027,
827 COMPARE_LIMIT = 1028,
828 PARAM_COMPARE = 1029,
829 CONSTRAINT = 1031,
830 PASSES_TYPE = 1032,
831 CONSTRAINT_REQUIRED = 1033,
832 BIT_INFO = 1034,
833 NOSPEC = 1035,
834 NOSPEC_WB = 1036,
835 STMT_CNT = 1037,
836 TERMINATED = 1038,

838 /* put random temporary stuff in the 7000-7999 range for testing */
839 USER_DATA = 8017,
840 USER_DATA_SET = 9017,
821 USER_DATA3 = 8017,
822 USER_DATA3_SET = 9017,
841 NO_OVERFLOW = 8018,
842 NO_OVERFLOW_SIMPLE = 8019,
843 LOCKED = 8020,
844 UNLOCKED = 8021,
845 SET_FS = 8022,
846 ATOMIC_INC = 8023,
847 ATOMIC_DEC = 8024,
848 NO_SIDE_EFFECT = 8025,
849 FN_ARG_LINK = 8028,
850 DATA_VALUE = 8029,
851 ARRAYSIZE_ARG = 8033,
852 SIZEOF_ARG = 8034,
853 MEMORY_TAG = 8036,
854 MTAG_ASSIGN = 8035,
855 STRING_VALUE = 8041,

857 BYTE_COUNT = 8050,
858 ELEM_COUNT = 8051,
859 ELEM_LAST = 8052,
860 USED_LAST = 8053,
861 USED_COUNT = 8054,
862 };

864 extern struct sqlite3 *smatch_db;
865 extern struct sqlite3 *mem_db;

new/usr/src/tools/smatch/src/smatch.h 12

866 extern struct sqlite3 *cache_db;

868 void db_ignore_states(int id);
869 void select_caller_info_hook(void (*callback)(const char *name, struct symbol *s
870 void add_member_info_callback(int owner, void (*callback)(struct expression *cal
871 void add_split_return_callback(void (*fn)(int return_id, char *return_ranges, st
872 void add_returned_member_callback(int owner, void (*callback)(int return_id, cha
873 void select_call_implies_hook(int type, void (*callback)(struct expression *call
874 void select_return_implies_hook(int type, void (*callback)(struct expression *ca
875 struct range_list *db_return_vals(struct expression *expr);
876 struct range_list *db_return_vals_from_str(const char *fn_name);
877 char *return_state_to_var_sym(struct expression *expr, int param, const char *ke
878 char *get_chunk_from_key(struct expression *arg, char *key, struct symbol **sym,
879 char *get_variable_from_key(struct expression *arg, const char *key, struct symb
880 const char *state_name_to_param_name(const char *state_name, const char *param_n
881 const char *get_param_name_var_sym(const char *name, struct symbol *sym);
882 const char *get_param_name(struct sm_state *sm);
883 const char *get_mtag_name_var_sym(const char *state_name, struct symbol *sym);
884 const char *get_mtag_name_expr(struct expression *expr);
885 char *get_data_info_name(struct expression *expr);
886 int is_recursive_member(const char *param_name);

888 char *escape_newlines(const char *str);
889 void sql_exec(struct sqlite3 *db, int (*callback)(void*, int, char**, char**), v

891 #define sql_helper(db, call_back, data, sql...)
892 do {
893 char sql_txt[1024];
894
895 sqlite3_snprintf(sizeof(sql_txt), sql_txt, sql);
896 sm_debug("debug: %s\n", sql_txt);
897 sql_exec(db, call_back, data, sql_txt);
898 } while (0)

______unchanged_portion_omitted_

951 #define sql_insert(table, values...) sql_insert_helper(table, 0, 0, 0, values);
952 #define sql_insert_or_ignore(table, values...) sql_insert_helper(table, 0, 1, 0,
953 #define sql_insert_late(table, values...) sql_insert_helper(table, 0, 0, 1, valu
954 #define sql_insert_cache(table, values...) sql_insert_helper(table, cache_db, 1,

956 char *get_static_filter(struct symbol *sym);

958 void sql_insert_return_states(int return_id, const char *return_ranges,
959 int type, int param, const char *key, const char *value);
960 void sql_insert_caller_info(struct expression *call, int type, int param,
961 const char *key, const char *value);
962 void sql_insert_function_ptr(const char *fn, const char *struct_name);
963 void sql_insert_return_values(const char *return_values);
964 void sql_insert_return_implies(int type, int param, const char *key, const char
965 void sql_insert_function_type_size(const char *member, const char *ranges);
966 void sql_insert_function_type_info(int type, const char *struct_type, const char
967 void sql_insert_type_info(int type, const char *member, const char *value);
968 void sql_insert_local_values(const char *name, const char *value);
969 void sql_insert_function_type_value(const char *type, const char *value);
970 void sql_insert_function_type(int param, const char *value);
971 void sql_insert_parameter_name(int param, const char *value);
972 void sql_insert_data_info(struct expression *data, int type, const char *value);
973 void sql_insert_data_info_var_sym(const char *var, struct symbol *sym, int type,
974 void sql_save_constraint(const char *con);
975 void sql_save_constraint_required(const char *data, int op, const char *limit);
976 void sql_copy_constraint_required(const char *new_limit, const char *old_limit);
977 void sql_insert_fn_ptr_data_link(const char *ptr, const char *data);
978 void sql_insert_fn_data_link(struct expression *fn, int type, int param, const c
979 void sql_insert_mtag_about(mtag_t tag, const char *left_name, const char *right_
955 void insert_mtag_data(sval_t sval, struct range_list *rl);
980 void sql_insert_mtag_map(mtag_t tag, int offset, mtag_t container);

new/usr/src/tools/smatch/src/smatch.h 13

981 void sql_insert_mtag_alias(mtag_t orig, mtag_t alias);
982 int mtag_map_select_container(mtag_t tag, int offset, mtag_t *container);
983 int mtag_map_select_tag(mtag_t container, int offset, mtag_t *tag);
984 struct smatch_state *swap_mtag_return(struct expression *expr, struct smatch_sta
985 struct range_list *swap_mtag_seed(struct expression *expr, struct range_list *rl

987 void sql_select_return_states(const char *cols, struct expression *call,
988 int (*callback)(void*, int, char**, char**), void *info);
989 void sql_select_call_implies(const char *cols, struct expression *call,
990 int (*callback)(void*, int, char**, char**));

992 void open_smatch_db(char *db_file);

994 /* smatch_files.c */
995 int open_data_file(const char *filename);
996 int open_schema_file(const char *schema);
997 struct token *get_tokens_file(const char *filename);

999 /* smatch.c */
1000 extern char *option_debug_check;
1001 extern char *option_project_str;
1002 extern char *bin_dir;
1003 extern char *data_dir;
1004 extern int option_no_data;
1005 extern int option_full_path;
1006 extern int option_param_mapper;
1007 extern int option_call_tree;
1008 extern int num_checks;

1010 enum project_type {
1011 PROJ_NONE,
1012 PROJ_KERNEL,
1013 PROJ_WINE,
1014 PROJ_ILLUMOS_KERNEL,
1015 PROJ_ILLUMOS_USER,
1016 PROJ_UNKNOWN,
1017 };
1018 extern enum project_type option_project;
1019 const char *check_name(unsigned short id);
1020 int id_from_name(const char *name);

1023 /* smatch_buf_size.c */
1024 int get_array_size(struct expression *expr);
1025 int get_array_size_bytes(struct expression *expr);
1026 int get_array_size_bytes_min(struct expression *expr);
1027 int get_array_size_bytes_max(struct expression *expr);
1028 struct range_list *get_array_size_bytes_rl(struct expression *expr);
1029 int get_real_array_size(struct expression *expr);
1030 int last_member_is_resizable(struct symbol *type);
1031 /* smatch_strlen.c */
1032 int get_implied_strlen(struct expression *expr, struct range_list **rl);
1033 int get_size_from_strlen(struct expression *expr);

1035 /* smatch_capped.c */
1036 int is_capped(struct expression *expr);
1037 int is_capped_var_sym(const char *name, struct symbol *sym);

1039 /* check_user_data.c */
1040 int is_user_macro(struct expression *expr);
1015 int is_user_data(struct expression *expr);
1041 int is_capped_user_data(struct expression *expr);
1042 int implied_user_data(struct expression *expr, struct range_list **rl);
1043 struct stree *get_user_stree(void);
1044 int get_user_rl(struct expression *expr, struct range_list **rl);
1020 int get_user_rl_spammy(struct expression *expr, struct range_list **rl);

new/usr/src/tools/smatch/src/smatch.h 14

1045 int is_user_rl(struct expression *expr);
1046 int get_user_rl_var_sym(const char *name, struct symbol *sym, struct range_list
1047 bool user_rl_capped(struct expression *expr);
1048 struct range_list *var_user_rl(struct expression *expr);

1050 /* check_locking.c */
1051 void print_held_locks();

1053 /* check_assigned_expr.c */
1054 struct expression *get_assigned_expr(struct expression *expr);
1055 struct expression *get_assigned_expr_name_sym(const char *name, struct symbol *s
1056 /* smatch_return_to_param.c */
1057 void __add_return_to_param_mapping(struct expression *assign, const char *return
1058 char *map_call_to_param_name_sym(struct expression *expr, struct symbol **sym);

1060 /* smatch_comparison.c */
1061 struct compare_data {
1062 /* The ->left and ->right expression pointers might be NULL (I’m lazy) *
1063 struct expression *left;
1064 const char *left_var;
1065 struct var_sym_list *left_vsl;
1066 int comparison;
1067 struct expression *right;
1068 const char *right_var;
1069 struct var_sym_list *right_vsl;
1070 };
1071 DECLARE_ALLOCATOR(compare_data);
1072 struct smatch_state *alloc_compare_state(
1073 struct expression *left,
1074 const char *left_var, struct var_sym_list *left_vsl,
1075 int comparison,
1076 struct expression *right,
1077 const char *right_var, struct var_sym_list *right_vsl);
1078 int filter_comparison(int orig, int op);
1079 int merge_comparisons(int one, int two);
1080 int combine_comparisons(int left_compare, int right_compare);
1081 int state_to_comparison(struct smatch_state *state);
1082 struct smatch_state *merge_compare_states(struct smatch_state *s1, struct smatch
1083 int get_comparison(struct expression *left, struct expression *right);
1084 int get_comparison_no_extra(struct expression *a, struct expression *b);
1085 int get_comparison_strings(const char *one, const char *two);
1086 int possible_comparison(struct expression *a, int comparison, struct expression
1087 struct state_list *get_all_comparisons(struct expression *expr);
1088 struct state_list *get_all_possible_equal_comparisons(struct expression *expr);
1089 void __add_return_comparison(struct expression *call, const char *range);
1090 void __add_comparison_info(struct expression *expr, struct expression *call, con
1091 char *get_printed_param_name(struct expression *call, const char *param_name, st
1092 char *name_sym_to_param_comparison(const char *name, struct symbol *sym);
1093 char *expr_equal_to_param(struct expression *expr, int ignore);
1094 char *expr_lte_to_param(struct expression *expr, int ignore);
1095 char *expr_param_comparison(struct expression *expr, int ignore);
1096 int flip_comparison(int op);
1097 int negate_comparison(int op);
1098 int remove_unsigned_from_comparison(int op);
1099 int param_compare_limit_is_impossible(struct expression *expr, int left_param, c
1100 void filter_by_comparison(struct range_list **rl, int comparison, struct range_l
1101 struct sm_state *comparison_implication_hook(struct expression *expr,
1102 struct state_list **true_stack,
1103 struct state_list **false_stack);
1104 void __compare_param_limit_hook(struct expression *left_expr, struct expression
1105 const char *state_name,
1106 struct smatch_state *true_state, struct smatch_s
1107 int impossibly_high_comparison(struct expression *expr);

1109 /* smatch_sval.c */
1110 sval_t *sval_alloc(sval_t sval);

new/usr/src/tools/smatch/src/smatch.h 15

1111 sval_t *sval_alloc_permanent(sval_t sval);
1112 sval_t sval_blank(struct expression *expr);
1113 sval_t sval_type_val(struct symbol *type, long long val);
1114 sval_t sval_from_val(struct expression *expr, long long val);
1115 int sval_is_ptr(sval_t sval);
1116 int sval_unsigned(sval_t sval);
1117 int sval_signed(sval_t sval);
1118 int sval_bits(sval_t sval);
1119 int sval_bits_used(sval_t sval);
1120 int sval_is_negative(sval_t sval);
1121 int sval_is_positive(sval_t sval);
1122 int sval_is_min(sval_t sval);
1123 int sval_is_max(sval_t sval);
1124 int sval_is_a_min(sval_t sval);
1125 int sval_is_a_max(sval_t sval);
1126 int sval_is_negative_min(sval_t sval);
1127 int sval_cmp_t(struct symbol *type, sval_t one, sval_t two);
1128 int sval_cmp_val(sval_t one, long long val);
1129 sval_t sval_min(sval_t one, sval_t two);
1130 sval_t sval_max(sval_t one, sval_t two);
1131 int sval_too_low(struct symbol *type, sval_t sval);
1132 int sval_too_high(struct symbol *type, sval_t sval);
1133 int sval_fits(struct symbol *type, sval_t sval);
1134 sval_t sval_cast(struct symbol *type, sval_t sval);
1135 sval_t sval_preop(sval_t sval, int op);
1136 sval_t sval_binop(sval_t left, int op, sval_t right);
1137 int sval_binop_overflows(sval_t left, int op, sval_t right);
1138 int sval_binop_overflows_no_sign(sval_t left, int op, sval_t right);
1139 int find_first_zero_bit(unsigned long long uvalue);
1140 int sm_fls64(unsigned long long uvalue);
1141 unsigned long long fls_mask(unsigned long long uvalue);
1142 unsigned long long sval_fls_mask(sval_t sval);
1143 const char *sval_to_str(sval_t sval);
1144 const char *sval_to_str_or_err_ptr(sval_t sval);
1145 const char *sval_to_numstr(sval_t sval);
1146 sval_t ll_to_sval(long long val);

1148 /* smatch_string_list.c */
1149 int list_has_string(struct string_list *str_list, const char *str);
1150 int insert_string(struct string_list **str_list, const char *str);
1120 void insert_string(struct string_list **str_list, const char *str);
1151 struct string_list *clone_str_list(struct string_list *orig);
1152 struct string_list *combine_string_lists(struct string_list *one, struct string_

1154 /* smatch_start_states.c */
1155 struct stree *get_start_states(void);

1157 /* smatch_recurse.c */
1158 int has_symbol(struct expression *expr, struct symbol *sym);
1159 int has_variable(struct expression *expr, struct expression *var);
1160 int has_inc_dec(struct expression *expr);

1162 /* smatch_stored_conditions.c */
1163 struct smatch_state *get_stored_condition(struct expression *expr);
1164 struct expression_list *get_conditions(struct expression *expr);
1165 struct sm_state *stored_condition_implication_hook(struct expression *expr,
1166 struct state_list **true_stack,
1167 struct state_list **false_stack);

1169 /* check_string_len.c */
1170 int get_formatted_string_size(struct expression *call, int arg);
1171 int get_formatted_string_min_size(struct expression *call, int arg);

1173 /* smatch_param_set.c */
1174 int param_was_set(struct expression *expr);
1175 int param_was_set_var_sym(const char *name, struct symbol *sym);

new/usr/src/tools/smatch/src/smatch.h 16

1176 /* smatch_param_filter.c */
1177 int param_has_filter_data(struct sm_state *sm);

1179 /* smatch_links.c */
1180 void set_up_link_functions(int id, int linkid);
1181 struct smatch_state *merge_link_states(struct smatch_state *s1, struct smatch_st
1182 void store_link(int link_id, const char *name, struct symbol *sym, const char *l

1184 /* smatch_auto_copy.c */
1185 void set_auto_copy(int owner);

1187 /* check_buf_comparison */
1188 const char *limit_type_str(unsigned int limit_type);
1189 struct expression *get_size_variable(struct expression *buf, int *limit_type);
1157 struct expression *get_size_variable(struct expression *buf);
1190 struct expression *get_array_variable(struct expression *size);
1191 int buf_comparison_index_ok(struct expression *expr);

1193 /* smatch_untracked_param.c */
1194 void mark_untracked(struct expression *expr, int param, const char *key, const c
1195 void add_untracked_param_hook(void (func)(struct expression *call, int param));
1196 void add_lost_param_hook(void (func)(struct expression *call, int param));
1197 void mark_all_params_untracked(int return_id, char *return_ranges, struct expres

1199 /* smatch_strings.c */
1200 struct state_list *get_strings(struct expression *expr);
1201 struct expression *fake_string_from_mtag(mtag_t tag);

1203 /* smatch_estate.c */
1204 int estate_get_single_value(struct smatch_state *state, sval_t *sval);

1206 /* smatch_address.c */
1207 int get_address_rl(struct expression *expr, struct range_list **rl);
1208 int get_member_offset(struct symbol *type, const char *member_name);
1209 int get_member_offset_from_deref(struct expression *expr);

1211 /* for now this is in smatch_used_parameter.c */
1212 void __get_state_hook(int owner, const char *name, struct symbol *sym);

1214 /* smatch_buf_comparison.c */
1215 int db_var_is_array_limit(struct expression *array, const char *name, struct var

1217 struct stree *get_all_return_states(void);
1218 struct stree_stack *get_all_return_strees(void);
1219 int on_atomic_dec_path(void);
1220 int was_inced(const char *name, struct symbol *sym);

1222 /* smatch_constraints.c */
1223 char *get_constraint_str(struct expression *expr);
1224 struct constraint_list *get_constraints(struct expression *expr);
1225 char *unmet_constraint(struct expression *data, struct expression *offset);
1226 char *get_required_constraint(const char *data_str);

1228 /* smatch_container_of.c */
1229 int get_param_from_container_of(struct expression *expr);
1230 int get_offset_from_container_of(struct expression *expr);
1231 char *get_container_name(struct expression *container, struct expression *expr);

1233 /* smatch_mtag.c */
1234 int get_string_mtag(struct expression *expr, mtag_t *tag);
1235 int get_toplevel_mtag(struct symbol *sym, mtag_t *tag);
1201 int get_mtag(struct expression *expr, mtag_t *tag);
1202 int get_mtag_offset(struct expression *expr, mtag_t *tag, int *offset);
1236 int create_mtag_alias(mtag_t tag, struct expression *expr, mtag_t *new);
1237 int expr_to_mtag_offset(struct expression *expr, mtag_t *tag, int *offset);
1238 void update_mtag_data(struct expression *expr);

new/usr/src/tools/smatch/src/smatch.h 17

1239 int get_mtag_sval(struct expression *expr, sval_t *sval);
1207 int get_mtag_addr_sval(struct expression *expr, sval_t *sval);

1241 /* Trinity fuzzer stuff */
1242 const char *get_syscall_arg_type(struct symbol *sym);

1244 /* smatch_bit_info.c */
1245 struct bit_info *get_bit_info(struct expression *expr);
1246 struct bit_info *get_bit_info_var_sym(const char *name, struct symbol *sym);
1247 /* smatch_mem_tracker.c */
1248 extern int option_mem;
1249 unsigned long get_mem_kb(void);
1250 unsigned long get_max_memory(void);

1252 /* check_is_nospec.c */
1253 bool is_nospec(struct expression *expr);
1254 long get_stmt_cnt(void);

1256 /* smatch_nul_terminator.c */
1257 bool is_nul_terminated(struct expression *expr);
1258 /* check_kernel.c */
1259 bool is_ignored_kernel_data(const char *name);

1261 static inline bool type_is_ptr(struct symbol *type)
1262 {
1263 return type &&
1264 (type->type == SYM_PTR ||
1265 type->type == SYM_ARRAY ||
1266 type->type == SYM_FN);
1267 }

1269 static inline int type_bits(struct symbol *type)
1270 {
1271 if (!type)
1272 return 0;
1273 if (type_is_ptr(type))
1226 if (type->type == SYM_PTR) /* Sparse doesn’t set this for &pointers */
1274 return bits_in_pointer;
1228 if (type->type == SYM_ARRAY)
1229 return bits_in_pointer;
1275 if (!type->examined)
1276 examine_symbol_type(type);
1277 return type->bit_size;
1278 }

1235 static inline bool type_is_ptr(struct symbol *type)
1236 {
1237 return type && (type->type == SYM_PTR || type->type == SYM_ARRAY);
1238 }

1280 static inline int type_unsigned(struct symbol *base_type)
1281 {
1282 if (!base_type)
1283 return 0;
1284 if (is_ptr_type(base_type))
1285 return 1;
1286 if (base_type->ctype.modifiers & MOD_UNSIGNED)
1287 return 1;
1288 return 0;
1289 }

1291 static inline int type_positive_bits(struct symbol *type)
1292 {
1293 if (!type)
1294 return 0;
1295 if (is_ptr_type(type))

new/usr/src/tools/smatch/src/smatch.h 18

1296 return bits_in_pointer;
1253 if (type->type == SYM_ARRAY)
1254 return bits_in_pointer - 1;
1297 if (type_unsigned(type))
1298 return type_bits(type);
1299 return type_bits(type) - 1;
1300 }
______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_about_fn_ptr_arg.c 1

**
 5351 Mon Aug 5 08:38:14 2019
new/usr/src/tools/smatch/src/smatch_about_fn_ptr_arg.c
11506 smatch resync
**
______unchanged_portion_omitted_

109 static char *get_data_member(char *fn_member, struct expression *expr, struct sy
110 {
111 struct symbol *tmp_sym;
112 char *fn_str;
113 char *arg_ptr = NULL;
114 char *end_type;
115 int len_ptr, len_str;
116 char buf[128];

118 *sym = NULL;
119 run_sql(get_arg_ptr, &arg_ptr,
120 "select data from fn_ptr_data_link where fn_ptr = ’%s’;", fn_mem
121 if (!arg_ptr)
122 return NULL;
123 end_type = strchr(arg_ptr, ’>’);
124 if (!end_type)
125 return NULL;
126 end_type++;
127 fn_str = expr_to_var_sym(expr, &tmp_sym);
128 if (!fn_str || !tmp_sym)
129 return NULL;
130 len_ptr = strlen(fn_member);
131 len_str = strlen(fn_str);
132 while (len_str > 0 && len_ptr > 0) {
133 if (fn_str[len_str - 1] != fn_member[len_ptr - 1])
134 break;
135 if (fn_str[len_str - 1] == ’>’)
136 break;
137 len_str--;
138 len_ptr--;
139 }

141 strncpy(buf, fn_str, sizeof(buf));
142 snprintf(buf + len_str, sizeof(buf) - len_str, "%s", end_type);
142 snprintf(buf + len_str, sizeof(buf) - len_str, end_type);
143 *sym = tmp_sym;
144 return alloc_string(buf);
145 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_address.c 1

**
 7086 Mon Aug 5 08:38:17 2019
new/usr/src/tools/smatch/src/smatch_address.c
11506 smatch resync
**
______unchanged_portion_omitted_

65 static bool matches_anonymous_union(struct symbol *sym, const char *member_name)
66 {
67 struct symbol *type, *tmp;

69 if (sym->ident)
70 return false;
71 type = get_real_base_type(sym);
72 if (!type || type->type != SYM_UNION)
73 return false;

75 FOR_EACH_PTR(type->symbol_list, tmp) {
76 if (tmp->ident &&
77 strcmp(member_name, tmp->ident->name) == 0) {
78 return true;
79 }
80 } END_FOR_EACH_PTR(tmp);

82 return false;
83 }

85 int get_member_offset(struct symbol *type, const char *member_name)
86 {
87 struct symbol *tmp;
88 int offset;
89 int bits;

91 if (!type || type->type != SYM_STRUCT)
92 return -1;

94 bits = 0;
95 offset = 0;
96 FOR_EACH_PTR(type->symbol_list, tmp) {
97 if (bits_to_bytes(bits + type_bits(tmp)) > tmp->ctype.alignment)
98 offset += bits_to_bytes(bits);
99 bits = 0;
100 }
101 offset = ALIGN(offset, tmp->ctype.alignment);
102 if (tmp->ident &&
103 strcmp(member_name, tmp->ident->name) == 0) {
104 return offset;
105 }
106 if (matches_anonymous_union(tmp, member_name))
107 return offset;
108 if (!(type_bits(tmp) % 8) && type_bits(tmp) / 8 == type_bytes(tm
109 offset += type_bytes(tmp);
110 else
111 bits += type_bits(tmp);
112 } END_FOR_EACH_PTR(tmp);
113 return -1;
114 }

116 int get_member_offset_from_deref(struct expression *expr)
117 {
118 struct symbol *type;
119 struct ident *member;
120 int offset;

122 if (expr->type != EXPR_DEREF) /* hopefully, this doesn’t happen */
123 return -1;

new/usr/src/tools/smatch/src/smatch_address.c 2

125 if (expr->member_offset >= 0)
126 return expr->member_offset;

128 member = expr->member;
129 if (!member)
130 return -1;

132 type = get_type(expr->deref);
133 if (type_is_ptr(type))
134 type = get_real_base_type(type);
135 if (!type || type->type != SYM_STRUCT)
136 return -1;

138 offset = get_member_offset(type, member->name);
139 if (offset >= 0)
140 expr->member_offset = offset;
141 return offset;
142 }

111 static struct range_list *filter_unknown_negatives(struct range_list *rl)
112 {
113 struct data_range *first;
114 struct range_list *filter = NULL;

116 first = first_ptr_list((struct ptr_list *)rl);

118 if (sval_is_min(first->min) &&
119 sval_is_negative(first->max) &&
120 first->max.value == -1) {
121 add_ptr_list(&filter, first);
122 return rl_filter(rl, filter);
123 }

125 return rl;
126 }

144 static void add_offset_to_pointer(struct range_list **rl, int offset)
145 {
146 sval_t min, max, remove, sval;
147 struct range_list *orig = *rl;

149 /*
150 * Ha ha. Treating zero as a special case means I’m correct at least a
151 * tiny fraction of the time. Which is better than nothing.
152 *
153 */
154 if (offset == 0)
155 return;

157 if (is_unknown_ptr(orig))
158 return;

160 /*
161 * This function doesn’t necessarily work how you might expect...
162 *
163 * Say you have s64min-(-1),1-s64max and you add 8 then I guess what
164 * we want to say is maybe something like 9-s64max. This shows that the
165 * min it could be is 9 which is potentially useful information. But
166 * if we start with (-12),5000000-57777777 and we add 8 then we’d want
167 * the result to be (-4),5000008-57777777 but (-4),5000000-57777777 is
168 * also probably acceptable. If you start with s64min-s64max then the
169 * result should be 8-s64max.
170 *
171 */

new/usr/src/tools/smatch/src/smatch_address.c 3

173 /* We do the math on void pointer type, because this isn’t "&v + 16" it
174 * is &v->sixteenth_byte.
175 */
176 orig = cast_rl(&ptr_ctype, orig);
177 min = sval_type_min(&ptr_ctype);
178 min.value = offset;
179 max = sval_type_max(&ptr_ctype);

181 if (!orig || is_whole_rl(orig)) {
182 *rl = alloc_rl(min, max);
183 return;
184 }

167 orig = filter_unknown_negatives(orig);
168 /*
169 * FIXME: This is not really accurate but we’re a bit screwed anyway
170 * when we start doing pointer math with error pointers so it’s probably
171 * not important.
172 *
173 */
174 if (sval_is_negative(rl_min(orig)))
175 return;

186 /* no wrap around */
187 max.uvalue = rl_max(orig).uvalue;
188 if (max.uvalue > sval_type_max(&ptr_ctype).uvalue - offset) {
189 remove = sval_type_max(&ptr_ctype);
190 remove.uvalue -= offset;
191 orig = remove_range(orig, remove, max);
192 }

194 sval.type = &int_ctype;
195 sval.value = offset;

197 *rl = rl_binop(orig, ’+’, alloc_rl(sval, sval));
198 }

200 static struct range_list *where_allocated_rl(struct symbol *sym)
201 {
202 if (!sym)
203 return NULL;

205 return alloc_rl(valid_ptr_min_sval, valid_ptr_max_sval);
196 if (sym->ctype.modifiers & (MOD_TOPLEVEL | MOD_STATIC)) {
197 if (sym->initializer)
198 return alloc_rl(data_seg_min, data_seg_max);
199 else
200 return alloc_rl(bss_seg_min, bss_seg_max);
201 }
202 return alloc_rl(stack_seg_min, stack_seg_max);
206 }

208 int get_address_rl(struct expression *expr, struct range_list **rl)
209 {
210 struct expression *unop;

212 expr = strip_expr(expr);
213 if (!expr)
214 return 0;

216 if (expr->type == EXPR_STRING) {
217 *rl = alloc_rl(valid_ptr_min_sval, valid_ptr_max_sval);
212 *rl = alloc_rl(text_seg_min, text_seg_max);
218 return 1;
219 }

new/usr/src/tools/smatch/src/smatch_address.c 4

221 if (expr->type == EXPR_PREOP && expr->op == ’&’)
222 expr = strip_expr(expr->unop);
223 else {
224 struct symbol *type;
216 if (expr->type == EXPR_PREOP && expr->op == ’&’) {
217 struct expression *unop;

226 type = get_type(expr);
227 if (!type || type->type != SYM_ARRAY)
228 return 0;
229 }

231 if (expr->type == EXPR_SYMBOL) {
232 *rl = where_allocated_rl(expr->symbol);
219 unop = strip_expr(expr->unop);
220 if (unop->type == EXPR_SYMBOL) {
221 *rl = where_allocated_rl(unop->symbol);
233 return 1;
234 }

236 if (is_array(expr)) {
237 struct expression *array;
238 struct expression *offset_expr;
239 struct range_list *array_rl, *offset_rl, *bytes_rl, *res;
240 struct symbol *type;
241 sval_t bytes;
225 if (unop->type == EXPR_DEREF) {
226 int offset = get_member_offset_from_deref(unop);

243 array = get_array_base(expr);
244 offset_expr = get_array_offset(expr);

246 type = get_type(array);
247 type = get_real_base_type(type);
248 bytes.type = ssize_t_ctype;
249 bytes.uvalue = type_bytes(type);
250 bytes_rl = alloc_rl(bytes, bytes);

252 get_absolute_rl(array, &array_rl);
253 get_absolute_rl(offset_expr, &offset_rl);

255 if (type_bytes(type)) {
256 res = rl_binop(offset_rl, ’*’, bytes_rl);
257 res = rl_binop(res, ’+’, array_rl);
258 *rl = res;
259 return true;
260 }

262 if (implied_not_equal(array, 0) ||
263 implied_not_equal(offset_expr, 0)) {
264 *rl = alloc_rl(valid_ptr_min_sval, valid_ptr_max_sval);
265 return 1;
266 }

228 unop = strip_expr(unop->unop);
229 if (unop->type == EXPR_SYMBOL) {
230 *rl = where_allocated_rl(unop->symbol);
231 } else if (unop->type == EXPR_PREOP && unop->op == ’*’)
232 unop = strip_expr(unop->unop);
233 get_absolute_rl(unop, rl);
234 } else {
268 return 0;
269 }

271 if (expr->type == EXPR_DEREF && expr->member) {
272 struct range_list *unop_rl;

new/usr/src/tools/smatch/src/smatch_address.c 5

273 int offset;

275 offset = get_member_offset_from_deref(expr);
276 unop = strip_expr(expr->unop);
277 if (unop->type == EXPR_PREOP && unop->op == ’*’)
278 unop = strip_expr(unop->unop);

280 if (offset >= 0 &&
281 get_implied_rl(unop, &unop_rl) &&
282 !is_whole_rl(unop_rl)) {
283 *rl = unop_rl;
284 add_offset_to_pointer(rl, offset);
285 return 1;
286 }

288 if (implied_not_equal(unop, 0) || offset > 0) {
289 *rl = alloc_rl(valid_ptr_min_sval, valid_ptr_max_sval);
290 return 1;
291 }

293 return 0;
294 }

296 if (is_non_null_array(expr)) {
297 *rl = alloc_rl(array_min_sval, array_max_sval);
298 return 1;
299 }

301 return 0;
302 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_array_values.c 1

**
 4541 Mon Aug 5 08:38:19 2019
new/usr/src/tools/smatch/src/smatch_array_values.c
11506 smatch resync
**
______unchanged_portion_omitted_

159 static void match_assign(struct expression *expr)
160 {
161 struct expression *left, *array;
162 struct range_list *orig_rl, *rl;
163 struct symbol *type;
164 char *name;

166 type = get_type(expr->left);
166 type = get_type(expr->right);
167 if (!type || type->type != SYM_BASETYPE)
168 return;

170 left = strip_expr(expr->left);
171 if (!is_array(left))
172 return;
173 array = get_array_base(left);
174 name = get_array_name(array);
175 if (!name)
176 return;

178 if (expr->op != ’=’) {
179 rl = alloc_whole_rl(get_type(expr->right));
180 rl = cast_rl(type, rl);
179 rl = alloc_whole_rl(type);
181 } else {
182 get_absolute_rl(expr->right, &rl);
183 rl = cast_rl(type, rl);
184 orig_rl = get_saved_rl(type, name);
185 rl = rl_union(orig_rl, rl);
186 }

188 update_cache(name, is_file_local(array), rl);
189 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_assigned_expr.c 1

**
 3775 Mon Aug 5 08:38:19 2019
new/usr/src/tools/smatch/src/smatch_assigned_expr.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2009 Dan Carpenter.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 /*
19 * This is not a check. It just saves an struct expression pointer
20 * whenever something is assigned. This can be used later on by other scripts.
21 */

23 #include "smatch.h"
24 #include "smatch_slist.h"
25 #include "smatch_extra.h"

27 int check_assigned_expr_id;
28 static int my_id;
29 static int link_id;

31 static struct expression *skip_mod;

33 static void undef(struct sm_state *sm, struct expression *mod_expr)
34 {
35 if (mod_expr == skip_mod)
36 return;
37 set_state(my_id, sm->name, sm->sym, &undefined);
38 }

______unchanged_portion_omitted_

60 static void match_assignment(struct expression *expr)
61 {
62 static struct expression *ignored_expr;
63 struct symbol *left_sym, *right_sym;
64 char *left_name = NULL;
65 char *right_name = NULL;

67 if (expr->op != ’=’)
68 return;
69 if (is_fake_call(expr->right))
70 return;
71 if (__in_fake_struct_assign) {
72 struct range_list *rl;

74 if (!get_implied_rl(expr->right, &rl))
75 return;
76 if (is_whole_rl(rl))
77 return;
78 }

80 if (expr->left == ignored_expr)

new/usr/src/tools/smatch/src/smatch_assigned_expr.c 2

81 return;
82 ignored_expr = NULL;
83 if (__in_fake_parameter_assign)
84 ignored_expr = expr->left;

86 left_name = expr_to_var_sym(expr->left, &left_sym);
87 if (!left_name || !left_sym)
88 goto free;
89 set_state(my_id, left_name, left_sym, alloc_state_expr(strip_expr(expr->

91 right_name = expr_to_var_sym(expr->right, &right_sym);
92 if (!right_name || !right_sym)
93 goto free;

95 store_link(link_id, right_name, right_sym, left_name, left_sym);

97 free:
98 free_string(left_name);
99 free_string(right_name);
100 }

102 static void record_param_assignment(struct expression *expr, int param, char *ke
103 {
104 struct expression *arg, *right;
105 struct symbol *sym;
106 char *name;
107 char *p;
108 int right_param;

110 while (expr->type == EXPR_ASSIGNMENT)
111 expr = strip_expr(expr->right);
112 if (!expr || expr->type != EXPR_CALL)
113 return;

115 p = strstr(value, "[$");
116 if (!p)
117 return;

119 p += 2;
120 right_param = strtol(p, &p, 10);
121 if (*p != ’]’)
122 return;

124 arg = get_argument_from_call_expr(expr->args, param);
125 right = get_argument_from_call_expr(expr->args, right_param);
126 if (!right || !arg)
127 return;
128 name = get_variable_from_key(arg, key, &sym);
129 if (!name || !sym)
130 goto free;

132 skip_mod = expr;
133 set_state(my_id, name, sym, alloc_state_expr(right));
134 free:
135 free_string(name);
136 }

138 void register_assigned_expr(int id)
139 {
140 my_id = check_assigned_expr_id = id;
141 set_dynamic_states(check_assigned_expr_id);
142 add_hook(&match_assignment, ASSIGNMENT_HOOK_AFTER);
143 add_modification_hook(my_id, &undef);
144 select_return_states_hook(PARAM_SET, &record_param_assignment);
145 }

new/usr/src/tools/smatch/src/smatch_assigned_expr.c 3

147 void register_assigned_expr_links(int id)
148 {
149 link_id = id;
150 set_dynamic_states(link_id);
151 db_ignore_states(link_id);
152 set_up_link_functions(my_id, link_id);
153 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_bits.c 1

**
 10625 Mon Aug 5 08:38:20 2019
new/usr/src/tools/smatch/src/smatch_bits.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2015 Oracle.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 /*
19 * This is to track when variables are masked away.
20 *
21 */

23 #include "smatch.h"
24 #include "smatch_extra.h"
25 #include "smatch_slist.h"

27 static int my_id;

29 static const struct bit_info unknown_bit_info = {
30 .possible = -1ULL,
31 };

33 ALLOCATOR(bit_info, "bit data");
34 static struct bit_info *alloc_bit_info(unsigned long long set, unsigned long lon
35 {
36 struct bit_info *bit_info = __alloc_bit_info(0);

38 bit_info->set = set;
39 bit_info->possible = possible;

41 return bit_info;
42 }

44 static struct smatch_state *alloc_bstate(unsigned long long set, unsigned long l
45 {
46 struct smatch_state *state;
47 char buf[64];

49 state = __alloc_smatch_state(0);
50 snprintf(buf, sizeof(buf), "0x%llx + 0x%llx", set, possible);
51 state->name = alloc_sname(buf);
52 state->data = alloc_bit_info(set, possible);

54 return state;
55 }

57 static struct bit_info *rl_to_binfo(struct range_list *rl)
58 {
59 struct bit_info *ret = __alloc_bit_info(0);
60 sval_t sval;

new/usr/src/tools/smatch/src/smatch_bits.c 2

62 if (rl_to_sval(rl, &sval)) {
63 ret->set = sval.uvalue;
64 ret->possible = sval.uvalue;

66 return ret;
67 }

69 ret->set = 0;
70 ret->possible = sval_fls_mask(rl_max(rl));
71 // FIXME: what about negatives?

73 return ret;
74 }

76 static int is_unknown_binfo(struct symbol *type, struct bit_info *binfo)
77 {
78 if (!type)
79 type = &ullong_ctype;

81 if (binfo->set != 0)
82 return 0;
83 if (binfo->possible < (-1ULL >> (64 - type_bits(type))))
84 return 0;

86 return 1;
87 }

89 static struct smatch_state *unmatched_state(struct sm_state *sm)
90 {
91 struct smatch_state *estate;
92 struct symbol *type;
93 unsigned long long possible;
94 struct bit_info *p;

96 estate = get_state(SMATCH_EXTRA, sm->name, sm->sym);
97 if (estate_rl(estate)) {
98 p = rl_to_binfo(estate_rl(estate));
99 return alloc_bstate(p->set, p->possible);
100 }

102 type = estate_type(estate);
103 if (!type)
104 return alloc_bstate(0, -1ULL);

106 if (type_bits(type) == 64)
107 possible = -1ULL;
108 else
109 possible = (1ULL << type_bits(type)) - 1;

111 return alloc_bstate(0, possible);
112 }

114 static void match_modify(struct sm_state *sm, struct expression *mod_expr)
115 {
116 // FIXME: we really need to store the type

118 set_state(my_id, sm->name, sm->sym, alloc_bstate(0, -1ULL));
119 }

121 static int binfo_equiv(struct bit_info *one, struct bit_info *two)
122 {
123 if (one->set == two->set &&
124 one->possible == two->possible)
125 return 1;
126 return 0;
127 }

new/usr/src/tools/smatch/src/smatch_bits.c 3

129 static struct smatch_state *merge_bstates(struct smatch_state *one_state, struct
130 {
131 struct bit_info *one, *two;

133 one = one_state->data;
134 two = two_state->data;

136 if (binfo_equiv(one, two))
137 return one_state;

139 return alloc_bstate(one->set & two->set, one->possible | two->possible);
140 }

142 /*
143 * The combine_bit_info() takes two bit_infos and takes creates the most
144 * accurate picture we can assuming both are true. Or it returns unknown if
145 * the information is logically impossible.
146 *
147 * Which means that it takes the | of the ->set bits and the & of the possibly
148 * set bits, which is the opposite of what merge_bstates() does.
149 *
150 */
151 static struct bit_info *combine_bit_info(struct bit_info *one, struct bit_info *
152 {
153 struct bit_info *ret = __alloc_bit_info(0);

155 if ((one->set & two->possible) != one->set)
156 return alloc_bit_info(0, -1ULL);
157 if ((two->set & one->possible) != two->set)
158 return alloc_bit_info(0, -1ULL);

160 ret->set = one->set | two->set;
161 ret->possible = one->possible & two->possible;

163 return ret;
164 }

166 static struct bit_info *binfo_AND(struct bit_info *left, struct bit_info *right)
167 {
168 unsigned long long set = 0;
169 unsigned long long possible = -1ULL;

171 if (!left && !right) {
172 /* nothing */
173 } else if (!left) {
174 possible = right->possible;
175 } else if (!right) {
176 possible = left->possible;
177 } else {
178 set = left->set & right->set;
179 possible = left->possible & right->possible;
180 }

182 return alloc_bit_info(set, possible);
183 }

185 static struct bit_info *binfo_OR(struct bit_info *left, struct bit_info *right)
186 {
187 unsigned long long set = 0;
188 unsigned long long possible = -1ULL;

190 if (!left && !right) {
191 /* nothing */
192 } else if (!left) {
193 set = right->set;

new/usr/src/tools/smatch/src/smatch_bits.c 4

194 } else if (!right) {
195 set = left->set;
196 } else {
197 set = left->set | right->set;
198 possible = left->possible | right->possible;
199 }

201 return alloc_bit_info(set, possible);
202 }

204 struct bit_info *get_bit_info(struct expression *expr)
205 {
206 struct range_list *rl;
207 struct smatch_state *bstate;
208 struct bit_info tmp;
209 struct bit_info *extra_info;
210 struct bit_info *bit_info;
211 sval_t known;

213 expr = strip_parens(expr);

215 if (get_implied_value(expr, &known))
216 return alloc_bit_info(known.value, known.value);

218 if (expr->type == EXPR_BINOP) {
219 if (expr->op == ’&’)
220 return binfo_AND(get_bit_info(expr->left),
221 get_bit_info(expr->right));
222 if (expr->op == ’|’)
223 return binfo_OR(get_bit_info(expr->left),
224 get_bit_info(expr->right));
225 }

227 if (get_implied_rl(expr, &rl))
228 extra_info = rl_to_binfo(rl);
229 else {
230 struct symbol *type;

232 tmp = unknown_bit_info;
233 extra_info = &tmp;

235 type = get_type(expr);
236 if (!type)
237 type = &ullong_ctype;
238 if (type_bits(type) == 64)
239 extra_info->possible = -1ULL;
240 else
241 extra_info->possible = (1ULL << type_bits(type)) - 1;
242 }

244 bstate = get_state_expr(my_id, expr);
245 if (bstate)
246 bit_info = bstate->data;
247 else
248 bit_info = (struct bit_info *)&unknown_bit_info;

250 return combine_bit_info(extra_info, bit_info);
251 }

253 static int is_single_bit(sval_t sval)
254 {
255 int i;
256 int count = 0;

258 for (i = 0; i < 64; i++) {
259 if (sval.uvalue & 1ULL << i &&

new/usr/src/tools/smatch/src/smatch_bits.c 5

260 count++)
261 return 0;
262 }
263 if (count == 1)
264 return 1;
265 return 0;
266 }

268 static void match_compare(struct expression *expr)
269 {
270 sval_t val;

272 if (expr->type != EXPR_COMPARE)
273 return;
274 if (expr->op != SPECIAL_EQUAL &&
275 expr->op != SPECIAL_NOTEQUAL)
276 return;

278 if (!get_implied_value(expr->right, &val))
279 return;

281 set_true_false_states_expr(my_id, expr->left,
282 (expr->op == SPECIAL_EQUAL) ? alloc_bstate(val.uvalue, v
283 (expr->op == SPECIAL_EQUAL) ? NULL : alloc_bstate(val.uv
284 }

286 static bool is_loop_iterator(struct expression *expr)
287 {
288 struct statement *pre_stmt, *loop_stmt;

290 pre_stmt = expr_get_parent_stmt(expr);
291 if (!pre_stmt || pre_stmt->type != STMT_EXPRESSION)
292 return false;

294 loop_stmt = stmt_get_parent_stmt(pre_stmt);
295 if (!loop_stmt || loop_stmt->type != STMT_ITERATOR)
296 return false;
297 if (loop_stmt->iterator_pre_statement != pre_stmt)
298 return false;

300 return true;
301 }

303 static void match_assign(struct expression *expr)
304 {
305 struct bit_info *binfo;

307 if (expr->op != ’=’)
308 return;
309 if (__in_fake_assign)
310 return;
311 if (is_loop_iterator(expr))
312 return;

314 binfo = get_bit_info(expr->right);
315 if (!binfo)
316 return;
317 if (is_unknown_binfo(get_type(expr->left), binfo))
318 return;
319 set_state_expr(my_id, expr->left, alloc_bstate(binfo->set, binfo->possib
320 }

322 static void match_condition(struct expression *expr)
323 {
324 struct bit_info *orig;
325 struct bit_info true_info;

new/usr/src/tools/smatch/src/smatch_bits.c 6

326 struct bit_info false_info;
327 sval_t right;

329 if (expr->type != EXPR_BINOP ||
330 expr->op != ’&’)
331 return;

333 if (!get_value(expr->right, &right))
334 return;

336 orig = get_bit_info(expr->left);
337 true_info = *orig;
338 false_info = *orig;

340 if (right.uvalue == 0 || is_single_bit(right))
341 true_info.set &= right.uvalue;

343 true_info.possible &= right.uvalue;
344 false_info.possible &= ~right.uvalue;

346 set_true_false_states_expr(my_id, expr->left,
347 alloc_bstate(true_info.set, true_info.possibl
348 alloc_bstate(false_info.set, false_info.possi
349 }

351 static void match_call_info(struct expression *expr)
352 {
353 struct bit_info *binfo, *rl_binfo;
354 struct expression *arg;
355 struct range_list *rl;
356 char buf[64];
357 int i;

359 i = -1;
360 FOR_EACH_PTR(expr->args, arg) {
361 i++;
362 binfo = get_bit_info(arg);
363 if (!binfo)
364 continue;
365 if (is_unknown_binfo(get_type(arg), binfo))
366 continue;
367 if (get_implied_rl(arg, &rl)) {
368 rl_binfo = rl_to_binfo(rl);
369 if (binfo_equiv(rl_binfo, binfo))
370 continue;
371 }
372 // If is just non-negative continue
373 // If ->set == ->possible continue
374 snprintf(buf, sizeof(buf), "0x%llx,0x%llx", binfo->set, binfo->p
375 sql_insert_caller_info(expr, BIT_INFO, i, "$", buf);
376 } END_FOR_EACH_PTR(arg);
377 }

379 static void struct_member_callback(struct expression *call, int param, char *pri
380 {
381 struct bit_info *binfo = sm->state->data;
382 struct smatch_state *estate;
383 struct bit_info *implied_binfo;
384 char buf[64];

386 if (!binfo)
387 return;

389 /* This means it can only be one value, so it’s handled by smatch_extra.
390 if (binfo->set == binfo->possible)
391 return;

new/usr/src/tools/smatch/src/smatch_bits.c 7

393 estate = get_state(SMATCH_EXTRA, sm->name, sm->sym);
394 if (is_unknown_binfo(estate_type(estate), binfo))
395 return;

397 if (estate_rl(estate)) {
398 sval_t sval;

400 if (estate_get_single_value(estate, &sval))
401 return;

403 implied_binfo = rl_to_binfo(estate_rl(estate));
404 if (binfo_equiv(implied_binfo, binfo))
405 return;
406 }

408 snprintf(buf, sizeof(buf), "0x%llx,0x%llx", binfo->set, binfo->possible)
409 sql_insert_caller_info(call, BIT_INFO, param, printed_name, buf);
410 }

412 static void set_param_bits(const char *name, struct symbol *sym, char *key, char
413 {
414 char fullname[256];
415 unsigned long long set, possible;

417 if (strcmp(key, "*$") == 0)
418 snprintf(fullname, sizeof(fullname), "*%s", name);
419 else if (strncmp(key, "$", 1) == 0)
420 snprintf(fullname, 256, "%s%s", name, key + 1);
421 else
422 return;

424 set = strtoull(value, &value, 16);
425 if (*value != ’,’)
426 return;
427 value++;
428 possible = strtoull(value, &value, 16);

430 set_state(my_id, fullname, sym, alloc_bstate(set, possible));
431 }

433 void register_bits(int id)
434 {
435 my_id = id;

437 set_dynamic_states(my_id);

439 add_unmatched_state_hook(my_id, &unmatched_state);
440 add_merge_hook(my_id, &merge_bstates);

442 add_hook(&match_condition, CONDITION_HOOK);
443 add_hook(&match_compare, CONDITION_HOOK);
444 add_hook(&match_assign, ASSIGNMENT_HOOK);
445 add_modification_hook(my_id, &match_modify);

447 add_hook(&match_call_info, FUNCTION_CALL_HOOK);
448 add_member_info_callback(my_id, struct_member_callback);
449 select_caller_info_hook(set_param_bits, BIT_INFO);
450 }

new/usr/src/tools/smatch/src/smatch_buf_comparison.c 1

**
 20837 Mon Aug 5 08:38:20 2019
new/usr/src/tools/smatch/src/smatch_buf_comparison.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2012 Oracle.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 /*
19 * The point here is to store that a buffer has x bytes even if we don’t know
20 * the value of x.
21 *
22 */

24 #include "smatch.h"
25 #include "smatch_extra.h"
26 #include "smatch_slist.h"

28 static int size_id;
29 static int link_id;

31 /*
32 * There is a bunch of code which does this:
32 * We need this for code which does:
33 *
34 * if (size)
35 * foo = malloc(size);
36 *
37 * So if "size" is non-zero then the size of "foo" is size. But really it’s
38 * also true if size is zero. It’s just better to assume to not trample over
39 * the data that we have by merging &undefined states.
37 * We want to record that the size of "foo" is "size" even after the merge.
40 *
41 */
42 static struct smatch_state *unmatched_state(struct sm_state *sm)
43 {
42 struct expression *size_expr;
43 sval_t sval;

45 if (!sm->state->data)
46 return &undefined;
47 size_expr = sm->state->data;
48 if (!get_implied_value(size_expr, &sval) || sval.value != 0)
49 return &undefined;
44 return sm->state;
45 }

______unchanged_portion_omitted_

79 static const char *limit_map[] = {
80 "byte_count",
81 "elem_count",
82 "elem_last",

new/usr/src/tools/smatch/src/smatch_buf_comparison.c 2

83 "used_count",
84 "used_last",
85 };

87 int state_to_limit(struct smatch_state *state)
85 static struct smatch_state *alloc_expr_state(struct expression *expr)
88 {
89 int i;

91 if (!state || !state->data)
92 return -1;

94 for (i = 0; i < ARRAY_SIZE(limit_map); i++) {
95 if (strncmp(state->name, limit_map[i], strlen(limit_map[i])) ==
96 return i + BYTE_COUNT;
97 }

99 return -1;
100 }

102 const char *limit_type_str(unsigned int limit_type)
103 {
104 if (limit_type - BYTE_COUNT >= ARRAY_SIZE(limit_map)) {
105 sm_msg("internal: wrong size type %u", limit_type);
106 return "unknown";
107 }

109 return limit_map[limit_type - BYTE_COUNT];
110 }

112 static struct smatch_state *alloc_compare_size(int limit_type, struct expression
113 {
114 struct smatch_state *state;
115 char *name;
116 char buf[256];

118 state = __alloc_smatch_state(0);
119 expr = strip_expr(expr);
120 name = expr_to_str(expr);
121 snprintf(buf, sizeof(buf), "%s %s", limit_type_str(limit_type), name);
122 state->name = alloc_sname(buf);
93 state->name = alloc_sname(name);
123 free_string(name);
124 state->data = expr;
125 return state;
126 }

______unchanged_portion_omitted_

143 static void db_save_type_links(struct expression *array, int type_limit, struct
114 static void db_save_type_links(struct expression *array, struct expression *size
144 {
145 const char *array_name;

147 array_name = get_data_info_name(array);
148 if (!array_name)
149 array_name = "";
150 sql_insert_data_info(size, type_limit, array_name);
121 sql_insert_data_info(size, ARRAY_LEN, array_name);
151 }

153 static void match_alloc_helper(struct expression *pointer, struct expression *si
154 {
155 struct expression *tmp;
156 struct sm_state *sm;
157 int limit_type = ELEM_COUNT;
158 sval_t sval;

new/usr/src/tools/smatch/src/smatch_buf_comparison.c 3

159 int cnt = 0;

161 pointer = strip_expr(pointer);
162 size = strip_expr(size);
163 if (!size || !pointer)
164 return;

166 while ((tmp = get_assigned_expr(size))) {
167 size = strip_expr(tmp);
168 if (cnt++ > 5)
169 break;
170 }

172 if (size->type == EXPR_BINOP && size->op == ’*’) {
173 struct expression *mult_left, *mult_right;

175 mult_left = strip_expr(size->left);
176 mult_right = strip_expr(size->right);

178 if (get_implied_value(mult_left, &sval) &&
179 sval.value == bytes_per_element(pointer))
180 size = mult_right;
181 else if (get_implied_value(mult_right, &sval) &&
182 sval.value == bytes_per_element(pointer))
183 size = mult_left;
184 else
185 return;
186 }

188 /* Only save links to variables, not fixed sizes */
189 if (get_value(size, &sval))
190 return;

192 if (size->type == EXPR_BINOP && size->op == ’+’ &&
193 get_value(size->right, &sval) && sval.value == 1) {
194 size = size->left;
195 limit_type = ELEM_LAST;
196 }

198 db_save_type_links(pointer, limit_type, size);
199 sm = set_state_expr(size_id, pointer, alloc_compare_size(limit_type, siz
162 db_save_type_links(pointer, size);
163 sm = set_state_expr(size_id, pointer, alloc_expr_state(size));
200 if (!sm)
201 return;
202 set_state_expr(link_id, size, alloc_state_expr(pointer));
166 set_state_expr(link_id, size, alloc_expr_state(pointer));
203 }

______unchanged_portion_omitted_

216 static void match_calloc(const char *fn, struct expression *expr, void *_start_a
217 {
218 int start_arg = PTR_INT(_start_arg);
219 struct expression *pointer, *call, *arg;
220 struct sm_state *tmp;
221 int limit_type = ELEM_COUNT;
222 sval_t sval;

224 pointer = strip_expr(expr->left);
225 call = strip_expr(expr->right);
226 arg = get_argument_from_call_expr(call->args, start_arg);
227 if (get_implied_value(arg, &sval) &&
228 sval.value == bytes_per_element(pointer))
229 arg = get_argument_from_call_expr(call->args, start_arg + 1);

231 if (arg->type == EXPR_BINOP && arg->op == ’+’ &&

new/usr/src/tools/smatch/src/smatch_buf_comparison.c 4

232 get_value(arg->right, &sval) && sval.value == 1) {
233 arg = arg->left;
234 limit_type = ELEM_LAST;
235 }

237 db_save_type_links(pointer, limit_type, arg);
238 tmp = set_state_expr(size_id, pointer, alloc_compare_size(limit_type, ar
194 db_save_type_links(pointer, arg);
195 tmp = set_state_expr(size_id, pointer, alloc_expr_state(arg));
239 if (!tmp)
240 return;
241 set_state_expr(link_id, arg, alloc_state_expr(pointer));
198 set_state_expr(link_id, arg, alloc_expr_state(pointer));
242 }

244 struct expression *get_size_variable(struct expression *buf, int *limit_type)
201 struct expression *get_size_variable(struct expression *buf)
245 {
246 struct smatch_state *state;

248 state = get_state_expr(size_id, buf);
249 if (!state)
250 return NULL;
251 *limit_type = state_to_limit(state);
206 if (state)
252 return state->data;
208 return NULL;
253 }

______unchanged_portion_omitted_

265 static void array_check(struct expression *expr)
266 {
267 struct expression *array;
268 struct expression *size;
269 struct expression *offset;
270 char *array_str, *offset_str;
271 int limit_type;

273 expr = strip_expr(expr);
274 if (!is_array(expr))
275 return;

277 array = get_array_base(expr);
278 size = get_size_variable(array, &limit_type);
233 size = get_size_variable(array);
279 if (!size)
280 return;
281 if (limit_type != ELEM_COUNT)
282 return;
283 offset = get_array_offset(expr);
284 if (!possible_comparison(size, SPECIAL_EQUAL, offset))
285 return;

287 array_str = expr_to_str(array);
288 offset_str = expr_to_str(offset);
289 sm_warning("potentially one past the end of array ’%s[%s]’", array_str,
290 free_string(array_str);
291 free_string(offset_str);
292 }

______unchanged_portion_omitted_

367 int buf_comparison_index_ok(struct expression *expr)
320 static int known_access_ok_comparison(struct expression *expr)
368 {
369 struct expression *array;
370 struct expression *size;

new/usr/src/tools/smatch/src/smatch_buf_comparison.c 5

371 struct expression *offset;
372 int limit_type;
373 int comparison;

375 array = get_array_base(expr);
376 size = get_size_variable(array, &limit_type);
328 size = get_size_variable(array);
377 if (!size)
378 return 0;
379 offset = get_array_offset(expr);
380 comparison = get_comparison(offset, size);
381 if (!comparison)
382 return 0;

384 if ((limit_type == ELEM_COUNT || limit_type == ELEM_LAST) &&
385 (comparison == ’<’ || comparison == SPECIAL_UNSIGNED_LT))
332 comparison = get_comparison(size, offset);
333 if (comparison == ’>’ || comparison == SPECIAL_UNSIGNED_GT)
386 return 1;
387 if (limit_type == ELEM_LAST &&
388 (comparison == SPECIAL_LTE ||
389 comparison == SPECIAL_UNSIGNED_LTE ||
390 comparison == SPECIAL_EQUAL))
391 return 1;

393 return 0;
394 }

______unchanged_portion_omitted_

416 static void array_check_data_info(struct expression *expr)
417 {
418 struct expression *array;
419 struct expression *offset;
420 struct state_list *slist;
421 struct sm_state *sm;
422 struct compare_data *comp;
423 char *offset_name;
424 const char *equal_name = NULL;

426 expr = strip_expr(expr);
427 if (!is_array(expr))
428 return;

430 if (known_access_ok_numbers(expr))
431 return;
432 if (buf_comparison_index_ok(expr))
375 if (known_access_ok_comparison(expr))
433 return;

435 array = get_array_base(expr);
436 offset = get_array_offset(expr);
437 offset_name = expr_to_var(offset);
438 if (!offset_name)
439 return;
440 slist = get_all_possible_equal_comparisons(offset);
441 if (!slist)
442 goto free;

444 FOR_EACH_PTR(slist, sm) {
445 comp = sm->state->data;
446 if (strcmp(comp->left_var, offset_name) == 0) {
447 if (db_var_is_array_limit(array, comp->right_var, comp->
448 equal_name = comp->right_var;
449 break;
450 }
451 } else if (strcmp(comp->right_var, offset_name) == 0) {

new/usr/src/tools/smatch/src/smatch_buf_comparison.c 6

452 if (db_var_is_array_limit(array, comp->left_var, comp->l
453 equal_name = comp->left_var;
454 break;
455 }
456 }
457 } END_FOR_EACH_PTR(sm);

459 if (equal_name) {
460 char *array_name = expr_to_str(array);

462 sm_warning("potential off by one ’%s[]’ limit ’%s’", array_name,
463 free_string(array_name);
464 }

466 free:
467 free_slist(&slist);
468 free_string(offset_name);
469 }

______unchanged_portion_omitted_

476 static int is_sizeof(struct expression *expr)
419 static char *buf_size_param_comparison(struct expression *array, struct expressi
477 {
478 const char *name;

480 if (expr->type == EXPR_SIZEOF)
481 return 1;
482 name = pos_ident(expr->pos);
483 if (name && strcmp(name, "sizeof") == 0)
484 return 1;
485 return 0;
486 }

488 static int match_size_binop(struct expression *size, struct expression *expr, in
489 {
490 int orig_type = *limit_type;
491 struct expression *left;
492 sval_t sval;

494 left = expr->left;
495 if (!expr_equiv(size, left))
496 return 0;

498 if (expr->op == ’-’ &&
499 get_value(expr->right, &sval) &&
500 sval.value == 1 &&
501 orig_type == ELEM_COUNT) {
502 *limit_type = ELEM_LAST;
503 return 1;
504 }

506 if (expr->op == ’+’ &&
507 get_value(expr->right, &sval) &&
508 sval.value == 1 &&
509 orig_type == ELEM_LAST) {
510 *limit_type = ELEM_COUNT;
511 return 1;
512 }

514 if (expr->op == ’*’ &&
515 is_sizeof(expr->right) &&
516 orig_type == ELEM_COUNT) {
517 *limit_type = BYTE_COUNT;
518 return 1;
519 }

new/usr/src/tools/smatch/src/smatch_buf_comparison.c 7

521 if (expr->op == ’/’ &&
522 is_sizeof(expr->right) &&
523 orig_type == BYTE_COUNT) {
524 *limit_type = ELEM_COUNT;
525 return 1;
526 }

528 return 0;
529 }

531 static char *buf_size_param_comparison(struct expression *array, struct expressi
532 {
533 struct expression *tmp, *arg;
421 struct expression *arg;
534 struct expression *size;
535 static char buf[32];
536 int i;

538 size = get_size_variable(array, limit_type);
426 size = get_size_variable(array);
539 if (!size)
540 return NULL;

542 if (*limit_type == USED_LAST)
543 *limit_type = ELEM_LAST;
544 if (*limit_type == USED_COUNT)
545 *limit_type = ELEM_COUNT;

547 i = -1;
548 FOR_EACH_PTR(args, tmp) {
431 FOR_EACH_PTR(args, arg) {
549 i++;
550 arg = tmp;
551 if (arg == array)
552 continue;
553 if (expr_equiv(arg, size) ||
554 (arg->type == EXPR_BINOP &&
555 match_size_binop(size, arg, limit_type))) {
435 if (!expr_equiv(arg, size))
436 continue;
556 snprintf(buf, sizeof(buf), "==$%d", i);
557 return buf;
558 }
559 } END_FOR_EACH_PTR(tmp);
439 } END_FOR_EACH_PTR(arg);

561 return NULL;
562 }

564 static void match_call(struct expression *call)
565 {
566 struct expression *arg;
567 char *compare;
568 int param;
569 char buf[5];
570 int limit_type;

572 param = -1;
573 FOR_EACH_PTR(call->args, arg) {
574 param++;
575 if (!is_pointer(arg))
576 continue;
577 compare = buf_size_param_comparison(arg, call->args, &limit_type
455 compare = buf_size_param_comparison(arg, call->args);
578 if (!compare)
579 continue;

new/usr/src/tools/smatch/src/smatch_buf_comparison.c 8

580 snprintf(buf, sizeof(buf), "%d", limit_type);
581 sql_insert_caller_info(call, limit_type, param, compare, buf);
458 sql_insert_caller_info(call, ARRAY_LEN, param, "$", compare);
582 } END_FOR_EACH_PTR(arg);
583 }

______unchanged_portion_omitted_

613 static void set_param_compare(const char *array_name, struct symbol *array_sym,
614 {
615 struct expression *array_expr;
616 struct expression *size_expr;
617 struct symbol *size_sym;
618 char *size_name;
619 long param;
620 struct sm_state *tmp;
621 int limit_type;

623 if (strncmp(key, "==$", 3) != 0)
499 if (strncmp(value, "==$", 3) != 0)
624 return;
625 param = strtol(key + 3, NULL, 10);
501 param = strtol(value + 3, NULL, 10);
626 if (!get_param(param, &size_name, &size_sym))
627 return;
628 array_expr = symbol_expression(array_sym);
629 size_expr = symbol_expression(size_sym);
630 limit_type = strtol(value, NULL, 10);

632 tmp = set_state_expr(size_id, array_expr, alloc_compare_size(limit_type,
507 tmp = set_state_expr(size_id, array_expr, alloc_expr_state(size_expr));
633 if (!tmp)
634 return;
635 set_state_expr(link_id, size_expr, alloc_state_expr(array_expr));
510 set_state_expr(link_id, size_expr, alloc_expr_state(array_expr));
636 }

638 static void set_implied(struct expression *call, struct expression *array_expr,
513 static void set_arraysize_arg(const char *array_name, struct symbol *array_sym,
639 {
515 struct expression *array_expr;
640 struct expression *size_expr;
641 struct symbol *size_sym;
642 char *size_name;
643 long param;
644 struct sm_state *tmp;
645 int limit_type;

647 if (strncmp(key, "==$", 3) != 0)
648 return;
649 param = strtol(key + 3, NULL, 10);
522 param = strtol(key, NULL, 10);
650 if (!get_param(param, &size_name, &size_sym))
651 return;
525 array_expr = symbol_expression(array_sym);
652 size_expr = symbol_expression(size_sym);

654 limit_type = strtol(value, NULL, 10);
655 tmp = set_state_expr(size_id, array_expr, alloc_compare_size(limit_type,
528 tmp = set_state_expr(size_id, array_expr, alloc_expr_state(size_expr));
656 if (!tmp)
657 return;
658 set_state_expr(link_id, size_expr, alloc_state_expr(array_expr));
531 set_state_expr(link_id, size_expr, alloc_expr_state(array_expr));
659 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_buf_comparison.c 9

690 static void set_used(struct expression *expr)
691 {
692 struct expression *parent;
693 struct expression *array;
694 struct expression *offset;
695 struct sm_state *tmp;
696 int limit_type;

698 if (expr->op != SPECIAL_INCREMENT)
699 return;

701 limit_type = USED_LAST;
702 if (expr->type == EXPR_POSTOP)
703 limit_type = USED_COUNT;

705 parent = expr_get_parent_expr(expr);
706 if (!parent || parent->type != EXPR_BINOP)
707 return;
708 parent = expr_get_parent_expr(parent);
709 if (!parent || !is_array(parent))
710 return;

712 array = get_array_base(parent);
713 offset = get_array_offset(parent);
714 if (offset != expr)
715 return;

717 tmp = set_state_expr(size_id, array, alloc_compare_size(limit_type, offs
718 if (!tmp)
719 return;
720 set_state_expr(link_id, offset->unop, alloc_state_expr(array));
721 }

723 static int match_assign_array(struct expression *expr)
724 {
725 // FIXME: implement
726 return 0;
727 }

729 static int match_assign_size(struct expression *expr)
730 {
731 struct expression *right, *size, *array;
732 struct smatch_state *state;
733 struct sm_state *tmp;
734 int limit_type;

736 right = expr->right;
737 size = right;
738 if (size->type == EXPR_BINOP)
739 size = size->left;

741 array = get_array_variable(size);
742 if (!array)
743 return 0;
744 state = get_state_expr(size_id, array);
745 if (!state || !state->data)
746 return 0;

748 limit_type = state_to_limit(state);
749 if (limit_type < 0)
750 return 0;

752 if (right->type == EXPR_BINOP && !match_size_binop(size, right, &limit_t
753 return 0;

755 tmp = set_state_expr(size_id, array, alloc_compare_size(limit_type, expr

new/usr/src/tools/smatch/src/smatch_buf_comparison.c 10

756 if (!tmp)
757 return 0;
758 set_state_expr(link_id, expr->left, alloc_state_expr(array));
759 return 1;
760 }

762 static void match_assign(struct expression *expr)
763 {
764 if (expr->op != ’=’)
765 return;

767 if (match_assign_array(expr))
768 return;
769 match_assign_size(expr);
770 }

772 static void match_copy(const char *fn, struct expression *expr, void *unused)
773 {
774 struct expression *src, *size;
775 int src_param, size_param;

777 src = get_argument_from_call_expr(expr->args, 1);
778 size = get_argument_from_call_expr(expr->args, 2);
779 src = strip_expr(src);
780 size = strip_expr(size);
781 if (!src || !size)
782 return;
783 if (src->type != EXPR_SYMBOL || size->type != EXPR_SYMBOL)
784 return;

786 src_param = get_param_num_from_sym(src->symbol);
787 size_param = get_param_num_from_sym(size->symbol);
788 if (src_param < 0 || size_param < 0)
789 return;

791 sql_insert_cache(call_implies, "’%s’, ’%s’, 0, %d, %d, %d, ’==$%d’, ’%d’
792 get_base_file(), get_function(), fn_static(),
793 BYTE_COUNT, src_param, size_param, BYTE_COUNT);
794 }

796 void register_buf_comparison(int id)
797 {
798 int i;

800 size_id = id;

802 set_dynamic_states(size_id);

804 add_unmatched_state_hook(size_id, &unmatched_state);

806 add_allocation_function("malloc", &match_alloc, 0);
807 add_allocation_function("memdup", &match_alloc, 1);
808 add_allocation_function("realloc", &match_alloc, 1);
809 if (option_project == PROJ_KERNEL) {
810 add_allocation_function("kmalloc", &match_alloc, 0);
811 add_allocation_function("kzalloc", &match_alloc, 0);
812 add_allocation_function("vmalloc", &match_alloc, 0);
813 add_allocation_function("__vmalloc", &match_alloc, 0);
814 add_allocation_function("sock_kmalloc", &match_alloc, 1);
815 add_allocation_function("kmemdup", &match_alloc, 1);
816 add_allocation_function("kmemdup_user", &match_alloc, 1);
817 add_allocation_function("dma_alloc_attrs", &match_alloc, 1);
818 add_allocation_function("pci_alloc_consistent", &match_alloc, 1)
819 add_allocation_function("pci_alloc_coherent", &match_alloc, 1);
820 add_allocation_function("devm_kmalloc", &match_alloc, 1);
821 add_allocation_function("devm_kzalloc", &match_alloc, 1);

new/usr/src/tools/smatch/src/smatch_buf_comparison.c 11

822 add_allocation_function("kcalloc", &match_calloc, 0);
823 add_allocation_function("devm_kcalloc", &match_calloc, 1);
824 add_allocation_function("kmalloc_array", &match_calloc, 0);
825 add_allocation_function("krealloc", &match_alloc, 1);

827 add_function_hook("copy_from_user", &match_copy, NULL);
828 add_function_hook("__copy_from_user", &match_copy, NULL);
829 }

831 add_hook(&array_check, OP_HOOK);
832 add_hook(&array_check_data_info, OP_HOOK);
833 add_hook(&set_used, OP_HOOK);

835 add_hook(&match_call, FUNCTION_CALL_HOOK);
595 select_caller_info_hook(set_param_compare, ARRAY_LEN);
596 select_caller_info_hook(set_arraysize_arg, ARRAYSIZE_ARG);
836 add_hook(&munge_start_states, AFTER_DEF_HOOK);

838 add_hook(&match_assign, ASSIGNMENT_HOOK);

840 for (i = BYTE_COUNT; i <= USED_COUNT; i++) {
841 select_call_implies_hook(i, &set_implied);
842 select_caller_info_hook(set_param_compare, i);
843 select_return_implies_hook(i, &set_implied);
844 }
845 }

847 void register_buf_comparison_links(int id)
848 {
849 link_id = id;
850 set_dynamic_states(link_id);
851 add_merge_hook(link_id, &merge_links);
852 add_modification_hook(link_id, &match_link_modify);
853 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_buf_size.c 1

**
 21796 Mon Aug 5 08:38:20 2019
new/usr/src/tools/smatch/src/smatch_buf_size.c
11506 smatch resync
**
______unchanged_portion_omitted_

328 static int get_bytes_from_address(struct expression *expr)
329 {
330 struct symbol *type;
331 int ret;

333 if (!option_spammy)
334 return 0;
333 if (expr->type != EXPR_PREOP || expr->op != ’&’)
334 return 0;
335 type = get_type(expr);
336 if (!type)
337 return 0;

339 if (type->type == SYM_PTR)
340 type = get_base_type(type);

342 ret = type_bytes(type);
343 if (ret == 1)
344 return 0; /* ignore char pointers */

346 return ret;
347 }

______unchanged_portion_omitted_

471 struct range_list *get_array_size_bytes_rl(struct expression *expr)
472 {
473 struct range_list *ret = NULL;
474 int size;

476 expr = remove_addr_fluff(expr);
477 if (!expr)
478 return NULL;

480 /* "BAR" */
481 if (expr->type == EXPR_STRING)
482 return alloc_int_rl(expr->string->length);

484 if (expr->type == EXPR_BINOP && expr->op == ’+’) {
485 sval_t offset;
486 struct symbol *type;
487 int bytes;

489 if (!get_implied_value(expr->right, &offset))
490 return NULL;
491 type = get_type(expr->left);
492 if (!type)
493 return NULL;
494 if (type->type != SYM_ARRAY && type->type != SYM_PTR)
495 return NULL;
496 type = get_real_base_type(type);
497 bytes = type_bytes(type);
498 if (bytes == 0)
499 return NULL;
500 offset.value *= bytes;
501 size = get_array_size_bytes(expr->left);
502 if (size <= 0)
503 return NULL;
504 return alloc_int_rl(size - offset.value);
505 }

new/usr/src/tools/smatch/src/smatch_buf_size.c 2

507 size = get_stored_size_end_struct_bytes(expr);
508 if (size)
509 return alloc_int_rl(size);

511 /* buf[4] */
512 size = get_real_array_size(expr);
513 if (size)
514 return alloc_int_rl(elements_to_bytes(expr, size));

516 /* buf = malloc(1024); */
517 ret = get_stored_size_bytes(expr);
518 if (ret)
519 return ret;

519 size = get_stored_size_end_struct_bytes(expr);
520 if (size)
521 return alloc_int_rl(size);

521 /* char *foo = "BAR" */
522 size = get_size_from_initializer(expr);
523 if (size)
524 return alloc_int_rl(elements_to_bytes(expr, size));

526 size = get_bytes_from_address(expr);
527 if (size)
528 return alloc_int_rl(size);

530 ret = size_from_db(expr);
531 if (ret)
532 return ret;

534 return NULL;
535 }

______unchanged_portion_omitted_

709 static void match_calloc(const char *fn, struct expression *expr, void *unused)
710 {
711 struct expression *right;
712 struct expression *size, *nr, *mult;
713 struct range_list *rl;
714 struct expression *arg;
715 sval_t elements;
716 sval_t size;

715 right = strip_expr(expr->right);
716 nr = get_argument_from_call_expr(right->args, 0);
717 size = get_argument_from_call_expr(right->args, 1);
718 mult = binop_expression(nr, ’*’, size);
719 if (get_implied_rl(mult, &rl))
720 store_alloc(expr->left, rl);
719 arg = get_argument_from_call_expr(right->args, 0);
720 if (!get_implied_value(arg, &elements))
721 return; // FIXME!!!
722 arg = get_argument_from_call_expr(right->args, 1);
723 if (get_implied_value(arg, &size))
724 store_alloc(expr->left, size_to_rl(elements.value * size.value))
721 else
722 store_alloc(expr->left, size_to_rl(-1));
723 }

______unchanged_portion_omitted_

868 void register_buf_size(int id)
869 {
870 my_size_id = id;

new/usr/src/tools/smatch/src/smatch_buf_size.c 3

872 set_dynamic_states(my_size_id);

874 add_unmatched_state_hook(my_size_id, &unmatched_size_state);

876 select_caller_info_hook(set_param_buf_size, BUF_SIZE);
877 select_return_states_hook(BUF_SIZE, &db_returns_buf_size);
878 add_split_return_callback(print_returned_allocations);

880 allocation_funcs = create_function_hashtable(100);
881 add_allocation_function("malloc", &match_alloc, 0);
882 add_allocation_function("calloc", &match_calloc, 0);
883 add_allocation_function("memdup", &match_alloc, 1);
884 add_allocation_function("realloc", &match_alloc, 1);
885 if (option_project == PROJ_KERNEL) {
886 add_allocation_function("kmalloc", &match_alloc, 0);
887 add_allocation_function("kmalloc_node", &match_alloc, 0);
888 add_allocation_function("kzalloc", &match_alloc, 0);
889 add_allocation_function("kzalloc_node", &match_alloc, 0);
890 add_allocation_function("vmalloc", &match_alloc, 0);
891 add_allocation_function("__vmalloc", &match_alloc, 0);
892 add_allocation_function("kcalloc", &match_calloc, 0);
893 add_allocation_function("kmalloc_array", &match_calloc, 0);
894 add_allocation_function("drm_malloc_ab", &match_calloc, 0);
895 add_allocation_function("drm_calloc_large", &match_calloc, 0);
896 add_allocation_function("sock_kmalloc", &match_alloc, 1);
897 add_allocation_function("kmemdup", &match_alloc, 1);
898 add_allocation_function("kmemdup_user", &match_alloc, 1);
899 add_allocation_function("dma_alloc_attrs", &match_alloc, 1);
900 add_allocation_function("pci_alloc_consistent", &match_alloc, 1)
901 add_allocation_function("pci_alloc_coherent", &match_alloc, 1);
902 add_allocation_function("devm_kmalloc", &match_alloc, 1);
903 add_allocation_function("devm_kzalloc", &match_alloc, 1);
904 add_allocation_function("krealloc", &match_alloc, 1);
905 add_allocation_function("__alloc_bootmem", &match_alloc, 0);
906 add_allocation_function("alloc_bootmem", &match_alloc, 0);
907 add_allocation_function("kmap", &match_page, 0);
908 add_allocation_function("get_zeroed_page", &match_page, 0);
909 add_allocation_function("alloc_page", &match_page, 0);
910 add_allocation_function("page_address", &match_page, 0);
911 add_allocation_function("lowmem_page_address", &match_page, 0);
912 add_allocation_function("alloc_pages", &match_alloc_pages, 1);
913 add_allocation_function("alloc_pages_current", &match_alloc_page
914 add_allocation_function("__get_free_pages", &match_alloc_pages,
915 }

917 add_allocation_function("strndup", match_strndup, 0);
918 if (option_project == PROJ_KERNEL)
919 add_allocation_function("kstrndup", match_strndup, 0);

921 add_modification_hook(my_size_id, &set_size_undefined);

923 add_merge_hook(my_size_id, &merge_size_func);

925 if (option_info)
926 add_hook(record_global_size, BASE_HOOK);
927 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_capped.c 1

**
 8275 Mon Aug 5 08:38:21 2019
new/usr/src/tools/smatch/src/smatch_capped.c
11506 smatch resync
**
______unchanged_portion_omitted_

41 static struct smatch_state *unmatched_state(struct sm_state *sm)
42 {
43 struct smatch_state *state;

45 state = __get_state(SMATCH_EXTRA, sm->name, sm->sym);
45 state = get_state(SMATCH_EXTRA, sm->name, sm->sym);
46 if (state && !estate_is_whole(state))
47 return &capped;
48 return &uncapped;
49 }

______unchanged_portion_omitted_

69 int is_capped(struct expression *expr)
70 {
71 struct symbol *type;
72 sval_t dummy;

74 expr = strip_expr(expr);
75 while (expr && expr->type == EXPR_POSTOP) {
76 expr = strip_expr(expr->unop);
77 }
78 if (!expr)
79 return 0;

81 type = get_type(expr);
82 if (is_ptr_type(type))
83 return 0;
84 if (type == &bool_ctype)
85 return 0;
86 if (type_bits(type) >= 0 && type_bits(type) <= 2)
87 return 0;

89 if (get_hard_max(expr, &dummy))
90 return 1;

92 if (is_capped_macro(expr))
93 return 1;

95 if (expr->type == EXPR_BINOP) {
96 struct range_list *left_rl, *right_rl;

98 if (expr->op == ’&’)
99 return 1;
100 if (expr->op == SPECIAL_RIGHTSHIFT)
101 return 1;
102 if (expr->op == ’%’ && is_capped(expr->right))
103 return 1;
93 if (expr->op == ’%’)
94 return is_capped(expr->right);
104 if (!is_capped(expr->left))
105 return 0;
106 if (expr->op == ’/’)
107 return 1;
108 if (!is_capped(expr->right))
109 return 0;
110 if (expr->op == ’*’) {
111 get_absolute_rl(expr->left, &left_rl);
112 get_absolute_rl(expr->right, &right_rl);
113 if (sval_is_negative(rl_min(left_rl)) ||

new/usr/src/tools/smatch/src/smatch_capped.c 2

114 sval_is_negative(rl_min(right_rl)))
115 return 0;
116 }
117 return 1;
118 }
119 if (get_state_expr(my_id, expr) == &capped)
120 return 1;
121 return 0;
122 }

______unchanged_portion_omitted_

141 static void match_condition(struct expression *expr)
142 {
143 struct expression *left, *right;
144 struct smatch_state *left_true = NULL;
145 struct smatch_state *left_false = NULL;
146 struct smatch_state *right_true = NULL;
147 struct smatch_state *right_false = NULL;
148 sval_t sval;

151 if (expr->type != EXPR_COMPARE)
152 return;

154 left = strip_expr(expr->left);
155 right = strip_expr(expr->right);

157 while (left->type == EXPR_ASSIGNMENT)
158 left = strip_expr(left->left);

160 /* If we’re dealing with known expressions, that’s for smatch_extra.c */
161 if (get_implied_value(left, &sval) ||
162 get_implied_value(right, &sval))
163 return;

165 switch (expr->op) {
166 case ’<’:
167 case SPECIAL_LTE:
168 case SPECIAL_UNSIGNED_LT:
169 case SPECIAL_UNSIGNED_LTE:
170 left_true = &capped;
171 right_false = &capped;
172 break;
173 case ’>’:
174 case SPECIAL_GTE:
175 case SPECIAL_UNSIGNED_GT:
176 case SPECIAL_UNSIGNED_GTE:
177 left_false = &capped;
178 right_true = &capped;
179 break;
180 case SPECIAL_EQUAL:
181 left_true = &capped;
182 right_true = &capped;
183 break;
184 case SPECIAL_NOTEQUAL:
185 left_false = &capped;
186 right_false = &capped;
187 break;

189 default:
190 return;
191 }

193 set_true_false_states_expr(my_id, left, left_true, left_false);
194 set_true_false_states_expr(my_id, right, right_true, right_false);
171 set_true_false_states_expr(my_id, expr->left, left_true, left_false);

new/usr/src/tools/smatch/src/smatch_capped.c 3

172 set_true_false_states_expr(my_id, expr->right, right_true, right_false);
195 }

197 static void match_assign(struct expression *expr)
198 {
199 struct symbol *type;

201 type = get_type(expr);
202 if (is_ptr_type(type))
203 return;
204 if (type == &bool_ctype)
205 return;
206 if (type_bits(type) >= 0 && type_bits(type) <= 2)
207 return;

209 if (is_capped(expr->right)) {
210 set_state_expr(my_id, expr->left, &capped);
211 } else {
212 if (get_state_expr(my_id, expr->left))
213 set_state_expr(my_id, expr->left, &uncapped);
214 }
215 }

______unchanged_portion_omitted_

234 static void struct_member_callback(struct expression *call, int param, char *pri
235 {
236 struct smatch_state *estate;
237 sval_t sval;

239 if (sm->state != &capped)
240 return;
241 estate = __get_state(SMATCH_EXTRA, sm->name, sm->sym);
209 estate = get_state(SMATCH_EXTRA, sm->name, sm->sym);
242 if (estate_get_single_value(estate, &sval))
243 return;
244 sql_insert_caller_info(call, CAPPED_DATA, param, printed_name, "1");
245 }

247 static void print_return_implies_capped(int return_id, char *return_ranges, stru
248 {
249 struct smatch_state *orig, *estate;
250 struct sm_state *sm;
251 struct symbol *ret_sym;
252 const char *param_name;
253 char *return_str;
254 int param;
255 sval_t sval;
256 bool return_found = false;

258 expr = strip_expr(expr);
259 return_str = expr_to_str(expr);
260 ret_sym = expr_to_sym(expr);

262 FOR_EACH_MY_SM(my_id, __get_cur_stree(), sm) {
263 if (sm->state != &capped)
264 continue;

266 param = get_param_num_from_sym(sm->sym);
267 if (param < 0)
268 continue;

270 estate = __get_state(SMATCH_EXTRA, sm->name, sm->sym);
238 estate = get_state(SMATCH_EXTRA, sm->name, sm->sym);
271 if (estate_get_single_value(estate, &sval))
272 continue;

new/usr/src/tools/smatch/src/smatch_capped.c 4

274 orig = get_state_stree(get_start_states(), my_id, sm->name, sm->
275 if (orig == &capped && !param_was_set_var_sym(sm->name, sm->sym)
243 if (orig == &capped)
276 continue;

278 param_name = get_param_name(sm);
279 if (!param_name)
280 continue;

282 sql_insert_return_states(return_id, return_ranges, CAPPED_DATA,
283 param, param_name, "1");
284 } END_FOR_EACH_SM(sm);

286 FOR_EACH_MY_SM(my_id, __get_cur_stree(), sm) {
287 if (!ret_sym)
288 break;
289 if (sm->state != &capped)
290 continue;
291 if (ret_sym != sm->sym)
292 continue;

294 estate = __get_state(SMATCH_EXTRA, sm->name, sm->sym);
295 if (estate_get_single_value(estate, &sval))
296 continue;

298 param_name = state_name_to_param_name(sm->name, return_str);
299 if (!param_name)
300 continue;
301 if (strcmp(param_name, "$") == 0)
302 return_found = true;
303 sql_insert_return_states(return_id, return_ranges, CAPPED_DATA,
304 -1, param_name, "1");
305 } END_FOR_EACH_SM(sm);

307 if (return_found)
308 goto free_string;

310 if (option_project == PROJ_KERNEL && get_function() &&
311 strstr(get_function(), "nla_get_"))
312 sql_insert_return_states(return_id, return_ranges, CAPPED_DATA,
313 -1, "$", "1");

315 free_string:
316 free_string(return_str);
317 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_comparison.c 1

**
 62964 Mon Aug 5 08:38:21 2019
new/usr/src/tools/smatch/src/smatch_comparison.c
11506 smatch resync
**
______unchanged_portion_omitted_

644 static void match_inc(struct sm_state *sm, bool preserve)
644 static void match_inc(struct sm_state *sm)
645 {
646 struct string_list *links;
647 struct smatch_state *state, *new;
648 struct compare_data *data;
649 char *tmp;
650 int flip;
651 int op;

653 links = sm->state->data;

655 FOR_EACH_PTR(links, tmp) {
656 state = get_state(compare_id, tmp, NULL);
657 if (!state)
658 continue;
659 data = state->data;
660 if (!data)
661 continue;

663 flip = 0;
664 if (strncmp(sm->name, tmp, strlen(sm->name)) != 0 ||
665 tmp[strlen(sm->name)] != ’ ’)
666 flip = 1;

668 op = state_to_comparison(state);

670 switch (flip ? flip_comparison(op) : op) {
671 case SPECIAL_EQUAL:
672 case SPECIAL_GTE:
673 case SPECIAL_UNSIGNED_GTE:
674 case ’>’:
675 case SPECIAL_UNSIGNED_GT:
676 if (preserve)
677 break;
678 new = alloc_compare_state(
679 data->left, data->left_var, data->left_v
680 flip ? ’<’ : ’>’,
681 data->right, data->right_var, data->righ
682 set_state(compare_id, tmp, NULL, new);
683 break;
684 case ’<’:
685 case SPECIAL_UNSIGNED_LT:
686 new = alloc_compare_state(
687 data->left, data->left_var, data->left_v
688 flip ? SPECIAL_GTE : SPECIAL_LTE,
689 data->right, data->right_var, data->righ
690 set_state(compare_id, tmp, NULL, new);
691 break;
692 default:
693 set_state(compare_id, tmp, NULL, &undefined);
694 }
695 } END_FOR_EACH_PTR(tmp);
696 }

698 static void match_dec(struct sm_state *sm, bool preserve)
696 static void match_dec(struct sm_state *sm)
699 {
700 struct string_list *links;

new/usr/src/tools/smatch/src/smatch_comparison.c 2

701 struct smatch_state *state;
702 char *tmp;

704 links = sm->state->data;

706 FOR_EACH_PTR(links, tmp) {
707 state = get_state(compare_id, tmp, NULL);

709 switch (state_to_comparison(state)) {
710 case SPECIAL_EQUAL:
711 case SPECIAL_LTE:
712 case SPECIAL_UNSIGNED_LTE:
713 case ’<’:
714 case SPECIAL_UNSIGNED_LT: {
715 struct compare_data *data = state->data;
716 struct smatch_state *new;

718 if (preserve)
719 break;

721 new = alloc_compare_state(
722 data->left, data->left_var, data->left_v
723 ’<’,
724 data->right, data->right_var, data->righ
725 set_state(compare_id, tmp, NULL, new);
726 break;
727 }
728 default:
729 set_state(compare_id, tmp, NULL, &undefined);
730 }
731 } END_FOR_EACH_PTR(tmp);
732 }

734 static void reset_sm(struct sm_state *sm)
735 {
736 struct string_list *links;
737 char *tmp;

739 links = sm->state->data;

741 FOR_EACH_PTR(links, tmp) {
742 set_state(compare_id, tmp, NULL, &undefined);
743 } END_FOR_EACH_PTR(tmp);
744 set_state(link_id, sm->name, sm->sym, &undefined);
745 }

747 static bool match_add_sub_assign(struct sm_state *sm, struct expression *expr)
748 {
749 struct range_list *rl;
750 sval_t zero = { .type = &int_ctype };

752 if (!expr || expr->type != EXPR_ASSIGNMENT)
753 return false;
754 if (expr->op != SPECIAL_ADD_ASSIGN && expr->op != SPECIAL_SUB_ASSIGN)
755 return false;

757 get_absolute_rl(expr->right, &rl);
758 if (sval_is_negative(rl_min(rl))) {
759 reset_sm(sm);
760 return false;
761 }

763 if (expr->op == SPECIAL_ADD_ASSIGN)
764 match_inc(sm, rl_has_sval(rl, zero));
765 else
766 match_dec(sm, rl_has_sval(rl, zero));

new/usr/src/tools/smatch/src/smatch_comparison.c 3

767 return true;
768 }

770 static void match_inc_dec(struct sm_state *sm, struct expression *mod_expr)
771 {
772 /*
773 * if (foo > bar) then ++foo is also > bar.
774 */
775 if (!mod_expr)
776 return;
777 if (match_add_sub_assign(sm, mod_expr))
778 return;
779 if (mod_expr->type != EXPR_PREOP && mod_expr->type != EXPR_POSTOP)
780 return;

782 if (mod_expr->op == SPECIAL_INCREMENT)
783 match_inc(sm, false);
740 match_inc(sm);
784 else if (mod_expr->op == SPECIAL_DECREMENT)
785 match_dec(sm, false);
742 match_dec(sm);
786 }

______unchanged_portion_omitted_

795 static void match_modify(struct sm_state *sm, struct expression *mod_expr)
796 {
754 struct string_list *links;
755 char *tmp;

797 if (mod_expr && is_self_assign(mod_expr))
798 return;

800 /* handled by match_inc_dec() */
801 if (mod_expr &&
802 ((mod_expr->type == EXPR_PREOP || mod_expr->type == EXPR_POSTOP) &&
803 (mod_expr->op == SPECIAL_INCREMENT || mod_expr->op == SPECIAL_DECRE
804 return;
805 if (mod_expr && mod_expr->type == EXPR_ASSIGNMENT &&
806 (mod_expr->op == SPECIAL_ADD_ASSIGN || mod_expr->op == SPECIAL_SUB_A
807 return;

809 reset_sm(sm);
766 links = sm->state->data;

768 FOR_EACH_PTR(links, tmp) {
769 set_state(compare_id, tmp, NULL, &undefined);
770 } END_FOR_EACH_PTR(tmp);
771 set_state(link_id, sm->name, sm->sym, &undefined);
810 }

______unchanged_portion_omitted_

1645 static int get_comparison_helper(struct expression *a, struct expression *b, boo
1607 int get_comparison(struct expression *a, struct expression *b)
1646 {
1647 char *one = NULL;
1648 char *two = NULL;
1649 int ret = 0;

1651 if (!a || !b)
1652 return 0;

1654 a = strip_parens(a);
1655 b = strip_parens(b);

1657 move_plus_to_minus(&a, &b);

new/usr/src/tools/smatch/src/smatch_comparison.c 4

1659 one = chunk_to_var(a);
1660 if (!one)
1661 goto free;
1662 two = chunk_to_var(b);
1663 if (!two)
1664 goto free;

1666 ret = get_comparison_strings(one, two);
1667 if (ret)
1668 goto free;

1670 if (is_plus_one(a) || is_minus_one(a)) {
1671 free_string(one);
1672 one = chunk_to_var(a->left);
1673 ret = get_comparison_strings(one, two);
1674 } else if (is_plus_one(b) || is_minus_one(b)) {
1675 free_string(two);
1676 two = chunk_to_var(b->left);
1677 ret = get_comparison_strings(one, two);
1678 }

1680 if (!ret)
1681 goto free;

1683 if ((is_plus_one(a) || is_minus_one(b)) && ret == ’<’)
1684 ret = SPECIAL_LTE;
1685 else if ((is_minus_one(a) || is_plus_one(b)) && ret == ’>’)
1686 ret = SPECIAL_GTE;
1687 else
1688 ret = 0;

1690 free:
1691 free_string(one);
1692 free_string(two);

1694 if (!ret && use_extra)
1656 if (!ret)
1695 return comparison_from_extra(a, b);
1696 return ret;
1697 }

1699 int get_comparison(struct expression *a, struct expression *b)
1700 {
1701 return get_comparison_helper(a, b, true);
1702 }

1704 int get_comparison_no_extra(struct expression *a, struct expression *b)
1705 {
1706 return get_comparison_helper(a, b, false);
1707 }

1709 int possible_comparison(struct expression *a, int comparison, struct expression
1710 {
1711 char *one = NULL;
1712 char *two = NULL;
1713 int ret = 0;
1714 char buf[256];
1715 struct sm_state *sm;
1716 int saved;

1718 one = chunk_to_var(a);
1719 if (!one)
1720 goto free;
1721 two = chunk_to_var(b);
1722 if (!two)
1723 goto free;

new/usr/src/tools/smatch/src/smatch_comparison.c 5

1726 if (strcmp(one, two) == 0 && comparison == SPECIAL_EQUAL) {
1727 ret = 1;
1728 goto free;
1729 }

1731 if (strcmp(one, two) > 0) {
1732 char *tmp = one;

1734 one = two;
1735 two = tmp;
1736 comparison = flip_comparison(comparison);
1737 }

1739 snprintf(buf, sizeof(buf), "%s vs %s", one, two);
1740 sm = get_sm_state(compare_id, buf, NULL);
1741 if (!sm)
1742 goto free;

1744 FOR_EACH_PTR(sm->possible, sm) {
1745 if (!sm->state->data)
1746 continue;
1747 saved = ((struct compare_data *)sm->state->data)->comparison;
1748 if (saved == comparison)
1749 ret = 1;
1750 if (comparison == SPECIAL_EQUAL &&
1751 (saved == SPECIAL_LTE ||
1752 saved == SPECIAL_GTE ||
1753 saved == SPECIAL_UNSIGNED_LTE ||
1754 saved == SPECIAL_UNSIGNED_GTE))
1755 ret = 1;
1756 if (ret == 1)
1757 goto free;
1758 } END_FOR_EACH_PTR(sm);

1760 return ret;
1761 free:
1762 free_string(one);
1763 free_string(two);
1764 return ret;
1765 }
______unchanged_portion_omitted_

2370 static int split_op_param_key(char *value, int *op, int *param, char **key)
2371 {
2372 static char buf[256];
2373 char *p;

2375 if (!parse_comparison(&value, op))
2376 return 0;

2378 snprintf(buf, sizeof(buf), "%s", value);
2330 snprintf(buf, sizeof(buf), value);

2380 p = buf;
2381 if (*p++ != ’$’)
2382 return 0;

2384 *param = atoi(p);
2385 if (*param < 0 || *param > 99)
2386 return 0;
2387 p++;
2388 if (*param > 9)
2389 p++;
2390 p--;

new/usr/src/tools/smatch/src/smatch_comparison.c 6

2391 *p = ’$’;
2392 *key = p;

2394 return 1;
2395 }
______unchanged_portion_omitted_

2543 void register_comparison(int id)
2544 {
2545 compare_id = id;
2546 set_dynamic_states(compare_id);
2547 add_hook(&save_start_states, AFTER_DEF_HOOK);
2548 add_unmatched_state_hook(compare_id, unmatched_comparison);
2549 add_pre_merge_hook(compare_id, &pre_merge_hook);
2550 add_merge_hook(compare_id, &merge_compare_states);
2551 add_hook(&free_data, AFTER_FUNC_HOOK);
2552 add_hook(&match_call_info, FUNCTION_CALL_HOOK);
2553 add_split_return_callback(&print_return_comparison);

2555 select_return_states_hook(PARAM_COMPARE, &db_return_comparison);
2556 add_hook(&match_preop, OP_HOOK);
2557 }
______unchanged_portion_omitted_

2564 void register_comparison_links(int id)
2565 {
2566 link_id = id;
2567 db_ignore_states(link_id);
2568 set_dynamic_states(link_id);
2569 add_merge_hook(link_id, &merge_links);
2570 add_modification_hook(link_id, &match_modify);
2571 add_modification_hook_late(link_id, match_inc_dec);

2573 add_member_info_callback(link_id, struct_member_callback);
2574 }
______unchanged_portion_omitted_

2582 void register_comparison_inc_dec_links(int id)
2583 {
2584 inc_dec_link_id = id;
2585 set_dynamic_states(inc_dec_link_id);
2586 set_up_link_functions(inc_dec_id, inc_dec_link_id);
2587 }
______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_conditions.c 1

**
 19182 Mon Aug 5 08:38:21 2019
new/usr/src/tools/smatch/src/smatch_conditions.c
11506 smatch resync
**
______unchanged_portion_omitted_

395 static void split_conditions(struct expression *expr)
396 {
397 if (option_debug) {
398 char *cond = expr_to_str(expr);

400 sm_msg("%d in split_conditions (%s)", get_lineno(), cond);
401 free_string(cond);
402 }

404 expr = strip_expr_set_parent(expr);
405 if (!expr) {
406 __fold_in_set_states();
407 return;
408 }

410 /*
411 * On fast paths (and also I guess some people think it’s cool) people
412 * sometimes use | instead of ||. It works the same basically except
413 * that || implies a memory barrier between conditions. The easiest way
414 * to handle it is by pretending that | also has a barrier and re-using
415 * all the normal condition code. This potentially hides some bugs, but
416 * people who write code like this should just be careful or they
417 * deserve bugs.
418 *
419 * We could potentially treat boolean bitwise & this way but that seems
420 * too complicated to deal with.
421 */
422 if (expr->type == EXPR_BINOP && expr->op == ’|’) {
423 expr_set_parent_expr(expr->left, expr);
424 expr_set_parent_expr(expr->right, expr);
425 handle_logical(expr);
426 return;
427 }

429 switch (expr->type) {
430 case EXPR_LOGICAL:
431 expr_set_parent_expr(expr->left, expr);
432 expr_set_parent_expr(expr->right, expr);
433 __pass_to_client(expr, LOGIC_HOOK);
434 handle_logical(expr);
435 return;
436 case EXPR_COMPARE:
437 expr_set_parent_expr(expr->left, expr);
438 expr_set_parent_expr(expr->right, expr);
439 hackup_unsigned_compares(expr);
440 if (handle_zero_comparisons(expr))
441 return;
442 break;
443 case EXPR_CALL:
444 if (ignore_builtin_expect(expr))
445 return;
446 break;
447 case EXPR_PREOP:
448 expr_set_parent_expr(expr->unop, expr);
449 if (handle_preop(expr))
450 return;
451 break;
452 case EXPR_CONDITIONAL:
453 case EXPR_SELECT:

new/usr/src/tools/smatch/src/smatch_conditions.c 2

454 expr_set_parent_expr(expr->conditional, expr);
455 expr_set_parent_expr(expr->cond_true, expr);
456 expr_set_parent_expr(expr->cond_false, expr);
457 handle_select(expr);
458 return;
459 case EXPR_COMMA:
460 expr_set_parent_expr(expr->left, expr);
461 expr_set_parent_expr(expr->right, expr);
462 handle_comma(expr);
463 return;
464 }

466 /* fixme: this should be in smatch_flow.c
467 but because of the funny stuff we do with conditions
468 it’s awkward to put it there. We would need to
469 call CONDITION_HOOK in smatch_flow as well.
470 */
471 push_expression(&big_expression_stack, expr);
472 push_expression(&big_condition_stack, expr);

474 if (expr->type == EXPR_COMPARE) {
475 if (expr->left->type != EXPR_POSTOP)
476 __split_expr(expr->left);
477 if (expr->right->type != EXPR_POSTOP)
478 __split_expr(expr->right);
479 } else if (expr->type != EXPR_POSTOP) {
480 __split_expr(expr);
481 }
482 do_condition(expr);
483 if (expr->type == EXPR_COMPARE) {
484 if (expr->left->type == EXPR_POSTOP)
485 __split_expr(expr->left);
486 if (expr->right->type == EXPR_POSTOP)
487 __split_expr(expr->right);
488 } else if (expr->type == EXPR_POSTOP) {
489 __split_expr(expr);
490 }
491 __push_fake_cur_stree();
492 __process_post_op_stack();
493 __fold_in_set_states();
494 pop_expression(&big_condition_stack);
495 pop_expression(&big_expression_stack);
496 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_constraints.c 1

**
 12703 Mon Aug 5 08:38:22 2019
new/usr/src/tools/smatch/src/smatch_constraints.c
11506 smatch resync
**
______unchanged_portion_omitted_

195 char *get_constraint_str(struct expression *expr)
196 {
197 char *name;

199 expr = strip_expr(expr);
200 if (!expr)
201 return NULL;
202 if (expr->type == EXPR_CALL)
203 return get_func_constraint(expr);
204 if (expr->type == EXPR_BINOP)
205 return expr_to_str(expr);
206 name = get_toplevel_name(expr);
207 if (name)
208 return name;
209 return get_member_name(expr);
210 }

______unchanged_portion_omitted_

342 struct string_list *saved_constraints;
343 static void save_new_constraint(const char *con)
344 {
345 if (!insert_string(&saved_constraints, con))
344 if (list_has_string(saved_constraints, con))
346 return;
346 insert_string(&saved_constraints, con);
347 sql_save_constraint(con);
348 }

350 static void handle_comparison(struct expression *left, int op, struct expression
351 {
352 struct constraint_list *constraints;
353 struct smatch_state *state;
354 char *constraint;
355 int constraint_id;
356 int orig_op = op;
357 sval_t sval;

359 /* known values are handled in smatch extra */
360 if (get_value(left, &sval) || get_value(right, &sval))
361 return;

363 if (local_debug)
364 sm_msg("COMPARE: %s %s %s", expr_to_str(left), show_special(op),

363 constraint = get_constraint_str(right);
364 if (!constraint)
365 return;
369 if (local_debug)
370 sm_msg("EXPR: %s CONSTRAINT %s", expr_to_str(right), constraint)
366 constraint_id = constraint_str_to_id(constraint);
372 if (local_debug)
373 sm_msg("CONSTRAINT ID %d", constraint_id);
367 if (constraint_id < 0)
368 save_new_constraint(constraint);
369 free_string(constraint);
370 if (constraint_id < 0)
371 return;

373 constraints = get_constraints(left);

new/usr/src/tools/smatch/src/smatch_constraints.c 2

374 constraints = clone_constraint_list(constraints);
375 op = negate_gt(orig_op);
376 add_constraint(&constraints, remove_unsigned_from_comparison(op), constr
377 state = alloc_constraint_state(constraints);

379 if (op == orig_op)
386 if (op == orig_op) {
387 if (local_debug)
388 sm_msg("SETTING %s true %s", expr_to_str(left), state->n
380 set_true_false_states_expr(my_id, left, state, NULL);
381 else
390 } else {
391 if (local_debug)
392 sm_msg("SETTING %s false %s", expr_to_str(left), state->

382 set_true_false_states_expr(my_id, left, NULL, state);
395 }
383 }

______unchanged_portion_omitted_

515 void register_constraints(int id)
516 {
517 my_id = id;

519 set_dynamic_states(my_id);
520 add_merge_hook(my_id, &merge_func);
521 add_hook(&match_condition, CONDITION_HOOK);

523 add_hook(&match_caller_info, FUNCTION_CALL_HOOK);
524 add_member_info_callback(my_id, struct_member_callback);
525 select_caller_info_hook(&set_param_constrained, CONSTRAINT);

527 add_split_return_callback(print_return_implies_constrained);
528 select_return_states_hook(CONSTRAINT, &db_returns_constrained);
529 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_constraints_required.c 1

**
 12381 Mon Aug 5 08:38:22 2019
new/usr/src/tools/smatch/src/smatch_constraints_required.c
11506 smatch resync
**
______unchanged_portion_omitted_

281 static void match_assign_has_buf_comparison(struct expression *expr)
282 {
283 struct expression *size;
284 int limit_type;

286 if (expr->op != ’=’)
287 return;
288 if (expr->right->type == EXPR_CALL)
289 return;
290 size = get_size_variable(expr->right, &limit_type);
289 size = get_size_variable(expr->right);
291 if (!size)
292 return;
293 if (limit_type != ELEM_COUNT)
294 return;
295 match_alloc_helper(expr->left, size, 1);
296 }

______unchanged_portion_omitted_

457 void register_constraints_required(int id)
458 {
459 my_id = id;

461 set_dynamic_states(my_id);
462 add_hook(&match_assign_size, ASSIGNMENT_HOOK);
463 add_hook(&match_assign_data, ASSIGNMENT_HOOK);
464 add_hook(&match_assign_has_buf_comparison, ASSIGNMENT_HOOK);

466 add_hook(&match_assign_ARRAY_SIZE, ASSIGNMENT_HOOK);
467 add_hook(&match_assign_ARRAY_SIZE, GLOBAL_ASSIGNMENT_HOOK);
468 add_hook(&match_assign_buf_comparison, ASSIGNMENT_HOOK);
469 add_hook(&match_assign_constraint, ASSIGNMENT_HOOK);

471 add_allocation_function("malloc", &match_alloc, 0);
472 add_allocation_function("memdup", &match_alloc, 1);
473 add_allocation_function("realloc", &match_alloc, 1);
474 add_allocation_function("realloc", &match_calloc, 0);
475 if (option_project == PROJ_KERNEL) {
476 add_allocation_function("kmalloc", &match_alloc, 0);
477 add_allocation_function("kzalloc", &match_alloc, 0);
478 add_allocation_function("vmalloc", &match_alloc, 0);
479 add_allocation_function("__vmalloc", &match_alloc, 0);
480 add_allocation_function("vzalloc", &match_alloc, 0);
481 add_allocation_function("sock_kmalloc", &match_alloc, 1);
482 add_allocation_function("kmemdup", &match_alloc, 1);
483 add_allocation_function("kmemdup_user", &match_alloc, 1);
484 add_allocation_function("dma_alloc_attrs", &match_alloc, 1);
485 add_allocation_function("pci_alloc_consistent", &match_alloc, 1)
486 add_allocation_function("pci_alloc_coherent", &match_alloc, 1);
487 add_allocation_function("devm_kmalloc", &match_alloc, 1);
488 add_allocation_function("devm_kzalloc", &match_alloc, 1);
489 add_allocation_function("kcalloc", &match_calloc, 0);
490 add_allocation_function("kmalloc_array", &match_calloc, 0);
491 add_allocation_function("devm_kcalloc", &match_calloc, 1);
492 add_allocation_function("krealloc", &match_alloc, 1);
493 }
494 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_container_of.c 1

**
 15722 Mon Aug 5 08:38:22 2019
new/usr/src/tools/smatch/src/smatch_container_of.c
11506 smatch resync
**
______unchanged_portion_omitted_

115 static char *get_container_name_sm(struct sm_state *sm, int offset)
115 static char *get_container_name(struct sm_state *sm, int offset)
116 {
117 static char buf[256];
118 const char *name;

120 name = get_param_name(sm);
121 if (!name)
122 return NULL;

124 if (name[0] == ’$’)
125 snprintf(buf, sizeof(buf), "$(-%d)%s", offset, name + 1);
126 else if (name[0] == ’*’ || name[1] == ’$’)
127 snprintf(buf, sizeof(buf), "*$(-%d)%s", offset, name + 2);
128 else
129 return NULL;

131 return buf;
132 }

______unchanged_portion_omitted_

165 static void process_states(void)
166 {
167 struct sm_state *tmp;
168 int arg, offset;
169 const char *name;

171 FOR_EACH_SM(used_stree, tmp) {
172 arg = get_container_arg(tmp->sym);
173 offset = get_container_offset(tmp->sym);
174 if (arg < 0 || offset < 0)
175 continue;
176 name = get_container_name_sm(tmp, offset);
176 name = get_container_name(tmp, offset);
177 if (!name)
178 continue;
179 sql_insert_return_implies(CONTAINER, arg, name, "");
180 } END_FOR_EACH_SM(tmp);

182 free_stree(&used_stree);
183 }

______unchanged_portion_omitted_

252 static int get_deref_count(struct expression *expr)
252 static int get_shared_cnt(const char *one, const char *two)
253 {
254 int cnt = 0;
254 int i;
255 int on_end = false;

256 while (expr && expr->type == EXPR_DEREF) {
257 expr = expr->deref;
258 if (expr->type == EXPR_PREOP && expr->op == ’*’)
259 expr = expr->unop;
260 cnt++;
261 if (cnt > 100)
262 return -1;
257 i = 0;
258 while (true) {

new/usr/src/tools/smatch/src/smatch_container_of.c 2

259 if (!one[i] || !two[i]) {
260 on_end = true;
261 break;
263 }
264 return cnt;
265 }

267 static struct expression *get_partial_deref(struct expression *expr, int cnt)
268 {
269 while (--cnt >= 0) {
270 if (!expr || expr->type != EXPR_DEREF)
271 return expr;
272 expr = expr->deref;
273 if (expr->type == EXPR_PREOP && expr->op == ’*’)
274 expr = expr->unop;
263 if (one[i] != two[i])
264 break;
265 i++;
275 }
276 return expr;
277 }

279 static int partial_deref_to_offset_str(struct expression *expr, int cnt, char op
280 {
281 int n, offset;

283 if (cnt == 0)
284 return snprintf(buf, size, "%c0", op);

286 n = 0;
287 while (--cnt >= 0) {
288 offset = get_member_offset_from_deref(expr);
289 if (offset < 0)
290 return -1;
291 n += snprintf(buf + n, size - n, "%c%d", op, offset);
292 if (expr->type != EXPR_DEREF)
293 return -1;
294 expr = expr->deref;
295 if (expr->type == EXPR_PREOP && expr->op == ’*’)
296 expr = expr->unop;
267 if (i == 0)
268 return 0;
269 i--;
270 while (i > 0 && (one[i] == ’>’ || one[i] == ’-’ || one[i] == ’.’)) {
271 on_end = true;
272 i--;
297 }
274 if (!on_end)
275 return 0;

299 return n;
277 return i + 1;
300 }

302 static char *get_shared_str(struct expression *container, struct expression *exp
280 static int build_offset_str(struct expression *expr, const char *name,
281 int shared, char *buf, int size, int op)
303 {
304 struct expression *one, *two;
305 int cont, exp, min, ret, n;
306 static char buf[48];
283 int chop = 0;
284 int offset;
285 int i;

308 cont = get_deref_count(container);

new/usr/src/tools/smatch/src/smatch_container_of.c 3

309 exp = get_deref_count(expr);
310 if (cont < 0 || exp < 0)
311 return NULL;

313 min = (cont < exp) ? cont : exp;
314 while (min >= 0) {
315 one = get_partial_deref(container, cont - min);
316 two = get_partial_deref(expr, exp - min);
317 if (expr_equiv(one, two))
318 goto found;
319 min--;
287 i = shared;
288 while (name[i]) {
289 if (name[i] == ’.’ || name[i] == ’-’)
290 chop++;
291 i++;
320 }

322 return NULL;
294 // FIXME: Handle more chops
295 if (chop > 1)
296 return 0;

324 found:
325 ret = partial_deref_to_offset_str(container, cont - min, ’-’, buf, sizeo
326 if (ret < 0)
327 return NULL;
328 n = ret;
329 ret = partial_deref_to_offset_str(expr, exp - min, ’+’, buf + ret, sizeo
330 if (ret < 0)
331 return NULL;
332 n += ret;
333 if (n >= sizeof(buf))
334 return NULL;

336 return buf;
337 }

339 char *get_container_name(struct expression *container, struct expression *expr)
340 {
341 struct symbol *container_sym, *sym;
342 struct expression *tmp;
343 static char buf[64];
344 char *shared;
345 bool star;
346 int cnt;

348 container_sym = expr_to_sym(container);
349 sym = expr_to_sym(expr);
350 if (container_sym && container_sym == sym)
351 goto found;

353 cnt = 0;
354 while ((tmp = get_assigned_expr(expr))) {
355 expr = tmp;
356 if (cnt++ > 3)
357 break;
298 if (chop == 0) {
299 offset = 0;
300 } else {
301 offset = get_member_offset_from_deref(expr);
302 if (offset < 0)
303 return 0;
358 }

360 cnt = 0;

new/usr/src/tools/smatch/src/smatch_container_of.c 4

361 while ((tmp = get_assigned_expr(container))) {
362 container = tmp;
363 if (cnt++ > 3)
364 break;
365 }

367 found:
368 expr = strip_expr(expr);
369 star = true;
370 if (expr->type == EXPR_PREOP && expr->op == ’&’) {
371 expr = strip_expr(expr->unop);
372 star = false;
373 }

375 container_sym = expr_to_sym(container);
376 if (!container_sym)
377 return NULL;
378 sym = expr_to_sym(expr);
379 if (!sym || container_sym != sym)
380 return NULL;

382 shared = get_shared_str(container, expr);
383 if (star)
384 snprintf(buf, sizeof(buf), "*(%s)", shared);
385 else
386 snprintf(buf, sizeof(buf), "%s", shared);

388 return buf;
306 snprintf(buf, size, "%c%d", (op == ’+’) ? ’+’ : ’-’, offset);
307 return 1;
389 }

391 static void match_call(struct expression *call)
392 {
393 struct expression *fn, *arg;
394 char *name;
395 int param;
313 char *fn_name, *arg_name;
314 int param, shared;
315 char minus_str[64];
316 char plus_str[64];
317 char offset_str[64];
318 bool star;

397 /*
398 * We’re trying to link the function with the parameter. There are a
399 * couple ways this can be passed:
400 * foo->func(foo, ...);
401 * foo->func(foo->x, ...);
402 * foo->bar.func(&foo->bar, ...);
403 * foo->bar->baz->func(foo, ...);
404 *
405 * So the method is basically to subtract the offsets until we get to
406 * the common bit, then add the member offsets to get the parameter.
407 *
408 * If we’re taking an address then the offset math is not stared,
409 * otherwise it is. Starred means dereferenced.
410 */
411 fn = strip_expr(call->fn);
335 fn_name = expr_to_var(fn);
336 if (!fn_name)
337 return;

413 param = -1;
414 FOR_EACH_PTR(call->args, arg) {
415 param++;

new/usr/src/tools/smatch/src/smatch_container_of.c 5

417 name = get_container_name(fn, arg);
418 if (!name)
419 continue;
343 arg = strip_expr(arg);
344 star = true;
345 if (arg->type == EXPR_PREOP && arg->op == ’&’) {
346 arg = strip_expr(arg->unop);
347 star = false;
348 }

421 sql_insert_caller_info(call, CONTAINER, param, name, "$(-1)");
350 arg_name = expr_to_var(arg);
351 if (!arg_name)
352 continue;
353 shared = get_shared_cnt(fn_name, arg_name);
354 if (!shared)
355 goto free_arg_name;
356 if (!build_offset_str(fn, fn_name, shared, minus_str, sizeof(min
357 goto free_arg_name;
358 if (!build_offset_str(arg, arg_name, shared, plus_str, sizeof(pl
359 goto free_arg_name;
360 if (star)
361 snprintf(offset_str, sizeof(offset_str), "*(%s%s)", minu
362 else
363 snprintf(offset_str, sizeof(offset_str), "%s%s", minus_s
364 sql_insert_caller_info(call, CONTAINER, param, offset_str, "$(-1
365 free_arg_name:
366 free_string(arg_name);
422 } END_FOR_EACH_PTR(arg);

369 free_string(fn_name);
423 }

425 static void db_passed_container(const char *name, struct symbol *sym, char *key,
426 {
427 set_state(param_id, name, sym, alloc_state_str(key));
374 sval_t offset = {
375 .type = &int_ctype,
376 };
377 const char *arg_offset;
378 int star = 0;
379 int val;

381 if (key[0] == ’*’) {
382 star = 1;
383 key += 2;
384 }

386 val = atoi(key);
387 if (val < -4095 || val > 0)
388 return;
389 offset.value = -val;
390 arg_offset = strchr(key, ’+’);
391 if (!arg_offset)
392 return;
393 val = atoi(arg_offset + 1);
394 if (val > 4095 || val < 0)
395 return;
396 offset.value |= val << 16;
397 if (star)
398 offset.value |= 1ULL << 31;

400 set_state(param_id, name, sym, alloc_estate_sval(offset));
428 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_container_of.c 6

604 static void load_container_data(struct symbol *arg, const char *info)
577 static void handle_passed_container(struct symbol *sym)
605 {
606 mtag_t cur_tag, container_tag, arg_tag;
607 int container_offset, arg_offset;
608 char *p = (char *)info;
579 struct symbol *arg;
580 struct smatch_state *state;
609 struct sm_state *sm;
610 struct stree *stree;
611 bool star = 0;
583 mtag_t fn_tag, container_tag, arg_tag;
584 sval_t offset;
585 int container_offset, arg_offset;
586 int star;

613 if (p[0] == ’*’) {
614 star = 1;
615 p += 2;
616 }
588 FOR_EACH_PTR(cur_func_sym->ctype.base_type->arguments, arg) {
589 state = get_state(param_id, arg->ident->name, arg);
590 if (state)
591 goto found;
592 } END_FOR_EACH_PTR(arg);

618 if (!get_toplevel_mtag(cur_func_sym, &cur_tag))
619 return;

621 while (true) {
622 container_offset = strtoul(p, &p, 0);
623 if (local_debug)
624 sm_msg("%s: cur_tag = %llu container_offset = %d",
625 __func__, cur_tag, container_offset);
626 if (!mtag_map_select_container(cur_tag, container_offset, &conta
595 found:
596 if (!estate_get_single_value(state, &offset))
627 return;
628 cur_tag = container_tag;
629 if (local_debug)
630 sm_msg("%s: container_tag = %llu p = ’%s’",
631 __func__, container_tag, p);
632 if (!p)
633 return;
634 if (p[0] != ’-’)
635 break;
636 p++;
637 }
598 container_offset = -(offset.value & 0xffff);
599 arg_offset = (offset.value & 0xfff0000) >> 16;
600 star = !!(offset.value & (1ULL << 31));

639 if (p[0] != ’+’)
602 if (!get_toplevel_mtag(cur_func_sym, &fn_tag))
640 return;

642 p++;
643 arg_offset = strtoul(p, &p, 0);
644 if (p && *p && *p != ’)’)
604 if (!mtag_map_select_container(fn_tag, container_offset, &container_tag)
645 return;

647 if (!arg_offset || star) {
648 arg_tag = container_tag;
649 } else {

new/usr/src/tools/smatch/src/smatch_container_of.c 7

650 if (!mtag_map_select_tag(container_tag, -arg_offset, &arg_tag))
651 return;
652 }

654 stree = load_tag_info_sym(arg_tag, arg, arg_offset, star);
655 FOR_EACH_SM(stree, sm) {
656 set_state(sm->owner, sm->name, sm->sym, sm->state);
657 } END_FOR_EACH_SM(sm);
658 free_stree(&stree);
659 }

661 static void handle_passed_container(struct symbol *sym)
662 {
663 struct symbol *arg;
664 struct smatch_state *state;

666 FOR_EACH_PTR(cur_func_sym->ctype.base_type->arguments, arg) {
667 state = get_state(param_id, arg->ident->name, arg);
668 if (!state || state == &merged)
669 continue;
670 load_container_data(arg, state->name);
671 } END_FOR_EACH_PTR(arg);
672 }

674 void register_container_of(int id)
675 {
676 my_id = id;

678 add_hook(&match_function_def, FUNC_DEF_HOOK);

680 add_get_state_hook(&get_state_hook);

682 add_hook(&match_save_states, INLINE_FN_START);
683 add_hook(&match_restore_states, INLINE_FN_END);

685 select_return_implies_hook(CONTAINER, &set_param_used);
686 all_return_states_hook(&process_states);

688 add_split_return_callback(&print_returns_container_of);
689 select_return_states_hook(CONTAINER, &returns_container_of);

691 add_hook(&match_call, FUNCTION_CALL_HOOK);
692 }

640 static struct smatch_state *unmatched_state(struct sm_state *sm)
641 {
642 return alloc_estate_whole(estate_type(sm->state));
643 }

694 void register_container_of2(int id)
695 {
696 param_id = id;

698 set_dynamic_states(param_id);
699 select_caller_info_hook(db_passed_container, CONTAINER);
700 add_merge_hook(param_id, &merge_str_state);
701 add_hook(&handle_passed_container, AFTER_DEF_HOOK);
651 add_unmatched_state_hook(param_id, &unmatched_state);
652 add_merge_hook(param_id, &merge_estates);
702 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_data/db/apply_return_fixes.sh 1

**
 456 Mon Aug 5 08:38:23 2019
new/usr/src/tools/smatch/src/smatch_data/db/apply_return_fixes.sh
11506 smatch resync
**

1 #!/bin/bash

3 if echo $1 | grep -q ’^-p’ ; then
4 PROJ=$(echo $1 | cut -d = -f 2)
5 shift
6 fi

8 bin_dir=$(dirname $0)
9 db_file=$1

10 if ["$db_file" == ""] ; then
11 echo "usage: $0 -p=<project> <db_file>"
12 exit
13 fi

15 test -e ${bin_dir}/${PROJ}.return_fixes && \
16 cat ${bin_dir}/${PROJ}.return_fixes | \
17 while read func old new ; do
18 echo "update return_states set return = ’$new’ where function = ’$func’ and
19 done

new/usr/src/tools/smatch/src/smatch_data/db/create_db.sh 1

**
 1645 Mon Aug 5 08:38:23 2019
new/usr/src/tools/smatch/src/smatch_data/db/create_db.sh
11506 smatch resync
**

1 #!/bin/bash

3 if echo $1 | grep -q ’^-p’ ; then
4 PROJ=$(echo $1 | cut -d = -f 2)
5 shift
6 fi

8 info_file=$1

10 if [["$info_file" = ""]] ; then
11 echo "Usage: $0 -p=<project> <file with smatch messages>"
12 exit 1
13 fi

15 bin_dir=$(dirname $0)
16 db_file=smatch_db.sqlite.new

18 rm -f $db_file

20 for i in ${bin_dir}/*.schema ; do
21 cat $i | sqlite3 $db_file
22 done

24 ${bin_dir}/init_constraints.pl "$PROJ" $info_file $db_file
25 ${bin_dir}/init_constraints_required.pl "$PROJ" $info_file $db_file
26 ${bin_dir}/fill_db_sql.pl "$PROJ" $info_file $db_file
27 if [-e ${info_file}.sql] ; then
28 ${bin_dir}/fill_db_sql.pl "$PROJ" ${info_file}.sql $db_file
29 fi
30 ${bin_dir}/fill_db_caller_info.pl "$PROJ" $info_file $db_file
31 if [-e ${info_file}.caller_info] ; then
32 ${bin_dir}/fill_db_caller_info.pl "$PROJ" ${info_file}.caller_info $db_file
33 fi
34 ${bin_dir}/build_early_index.sh $db_file

36 ${bin_dir}/fill_db_type_value.pl "$PROJ" $info_file $db_file
37 ${bin_dir}/fill_db_type_size.pl "$PROJ" $info_file $db_file
38 ${bin_dir}/copy_required_constraints.pl "$PROJ" $info_file $db_file
39 ${bin_dir}/build_late_index.sh $db_file

41 ${bin_dir}/fixup_all.sh $db_file
42 if ["$PROJ" != ""] ; then
43 ${bin_dir}/fixup_${PROJ}.sh $db_file
44 fi

46 ${bin_dir}/remove_mixed_up_pointer_params.pl $db_file
47 ${bin_dir}/delete_too_common_fn_ptr.sh $db_file
48 ${bin_dir}/mark_function_ptrs_searchable.pl $db_file

50 # delete duplicate entrees and speed things up
51 echo "delete from function_ptr where rowid not in (select min(rowid) from functi

53 ${bin_dir}/apply_return_fixes.sh -p=${PROJ} $db_file
52 test -e ${bin_dir}/${PROJ}.return_fixes && \
53 cat ${bin_dir}/${PROJ}.return_fixes | \
54 while read func old new ; do
55 echo "update return_states set return = ’$new’ where function = ’$func’ and
56 done

55 mv $db_file smatch_db.sqlite

new/usr/src/tools/smatch/src/smatch_data/db/delete_too_common_fn_ptr.sh 1

**
 331 Mon Aug 5 08:38:23 2019
new/usr/src/tools/smatch/src/smatch_data/db/delete_too_common_fn_ptr.sh
11506 smatch resync
**

1 #!/bin/bash

3 db_file=$1

5 IFS="|"
6 echo "select count(function), function from function_ptr group by function;" | \
7 sqlite3 $db_file | sort -n | tail -n 100 | \

9 while read cnt func ; do
10 if [$cnt -lt 200] ; then
11 continue
12 fi
13 echo "delete from function_ptr where function = ’$func’;" | sqlite3 $db_file
14 done

new/usr/src/tools/smatch/src/smatch_data/db/fixup_kernel.sh 1

**
 13929 Mon Aug 5 08:38:23 2019
new/usr/src/tools/smatch/src/smatch_data/db/fixup_kernel.sh
11506 smatch resync
**

1 #!/bin/bash

3 db_file=$1
4 cat << EOF | sqlite3 $db_file
5 /* we only care about the main ->read/write() functions. */
6 delete from caller_info where function = ’(struct file_operations)->read’ and fi
7 delete from caller_info where function = ’(struct file_operations)->write’ and f
8 delete from caller_info where function = ’(struct file_operations)->read’ and ca
9 delete from caller_info where function = ’(struct file_operations)->write’ and c

10 delete from function_ptr where function = ’(struct file_operations)->read’;
11 delete from function_ptr where function = ’(struct file_operations)->write’;
12 delete from caller_info where function = ’__vfs_write’ and caller != ’vfs_write’
13 delete from caller_info where function = ’__vfs_read’ and caller != ’vfs_read’;
14 delete from caller_info where function = ’(struct file_operations)->write’ and c
15 delete from caller_info where function = ’do_splice_from’ and caller = ’direct_s

17 /* delete these function pointers which cause false positives */
18 delete from caller_info where function = ’(struct file_operations)->open’ and ty
19 delete from caller_info where function = ’(struct notifier_block)->notifier_call
20 delete from caller_info where function = ’(struct mISDNchannel)->send’ and type
21 delete from caller_info where function = ’(struct irq_router)->get’ and type !=
22 delete from caller_info where function = ’(struct irq_router)->set’ and type !=
23 delete from caller_info where function = ’(struct net_device_ops)->ndo_change_mt
24 delete from caller_info where function = ’(struct timer_list)->function’ and typ

26 /* 8017 is USER_DATA and 9017 is USER_DATA_SET */
27 delete from caller_info where function = ’dev_hard_start_xmit’ and type = 8017;
26 /* type 1003 is USER_DATA */
27 delete from caller_info where caller = ’hid_input_report’ and type = 1003;
28 delete from caller_info where caller = ’nes_process_iwarp_aeqe’ and type = 1003;
29 delete from caller_info where caller = ’oz_process_ep0_urb’ and type = 1003;
30 delete from caller_info where function = ’dev_hard_start_xmit’ and key = ’\$’ an
31 delete from caller_info where function like ’%->ndo_start_xmit’ and key = ’\$’ a
32 delete from caller_info where caller = ’packet_rcv_fanout’ and function = ’(stru
33 delete from caller_info where caller = ’hptiop_probe’ and type = 1003;
34 delete from caller_info where caller = ’p9_fd_poll’ and function = ’(struct file
35 delete from caller_info where caller = ’proc_reg_poll’ and function = ’proc_reg_
36 delete from caller_info where function = ’blkdev_ioctl’ and type = 1003 and para
37 /* 9017 is USER_DATA3_SET */
28 delete from return_states where function=’vscnprintf’ and type = 9017;
29 delete from return_states where function=’scnprintf’ and type = 9017;
30 delete from return_states where function=’vsnprintf’ and type = 9017;
31 delete from return_states where function=’snprintf’ and type = 9017;
32 delete from return_states where function=’sprintf’ and type = 9017;
33 delete from return_states where function=’vscnprintf’ and type = 8017;
34 delete from return_states where function=’scnprintf’ and type = 8017;
35 delete from return_states where function=’vsnprintf’ and type = 8017;
36 delete from return_states where function=’snprintf’ and type = 8017;
37 delete from return_states where function=’sprintf’ and type = 8017;
38 /* There is something setting skb->sk->sk_mark and friends to user_data and */
39 /* because of recursion it gets passed to everything and is impossible to debug
40 delete from caller_info where function = ’__dev_queue_xmit’ and type = 8017;
41 delete from caller_info where function = ’__netdev_start_xmit’ and type = 8017;
42 delete from caller_info where function = ’(struct packet_type)->func’ and type =
43 delete from caller_info where function = ’(struct bio)->bi_end_io’ and type = 80
44 delete from caller_info where caller = ’NF_HOOK_COND’ and type = 8017;
45 delete from caller_info where caller = ’NF_HOOK’ and type = 8017;
46 /* comparison doesn’t deal with chunks, I guess. */
47 delete from return_states where function=’get_tty_driver’ and type = 8017;
48 delete from caller_info where caller = ’snd_ctl_elem_write’ and function = ’(str
49 delete from caller_info where caller = ’snd_ctl_elem_read’ and function = ’(stru

new/usr/src/tools/smatch/src/smatch_data/db/fixup_kernel.sh 2

50 delete from caller_info where function = ’nf_tables_newexpr’ and type = 8017 and
51 delete from caller_info where caller = ’fb_set_var’ and function = ’(struct fb_o
52 delete from return_states where function = ’tty_lookup_driver’ and parameter = 2

54 insert into caller_info values (’userspace’, ’’, ’compat_sys_ioctl’, 0, 0, 8017,
55 insert into caller_info values (’userspace’, ’’, ’compat_sys_ioctl’, 0, 0, 8017,
56 insert into caller_info values (’userspace’, ’’, ’compat_sys_ioctl’, 0, 0, 8017,
60 insert into caller_info values (’userspace’, ’’, ’compat_sys_ioctl’, 0, 0, 1003,
61 insert into caller_info values (’userspace’, ’’, ’compat_sys_ioctl’, 0, 0, 1003,
62 insert into caller_info values (’userspace’, ’’, ’compat_sys_ioctl’, 0, 0, 1003,

58 delete from caller_info where function = ’(struct timer_list)->function’ and par

60 /*
61 * rw_verify_area is a very central function for the kernel. The 1000000000
62 * isn’t accurate but I’ve picked it so that we can add "pos + count" without
63 * wrapping on 32 bits.
64 */
65 delete from return_states where function = ’rw_verify_area’;
66 insert into return_states values (’faked’, ’rw_verify_area’, 0, 1, ’0-1000000000
67 insert into return_states values (’faked’, ’rw_verify_area’, 0, 1, ’0-1000000000
68 insert into return_states values (’faked’, ’rw_verify_area’, 0, 1, ’0-1000000000
69 insert into return_states values (’faked’, ’rw_verify_area’, 0, 2, ’(-4095)-(-1)

71 delete from return_states where function = ’is_kernel_rodata’;
72 insert into return_states values (’faked’, ’is_kernel_rodata’, 0, 1, ’1’, 0, 0,
73 insert into return_states values (’faked’, ’is_kernel_rodata’, 0, 1, ’1’, 0, 103
79 insert into return_states values (’faked’, ’is_kernel_rodata’, 0, 1, ’1’, 0, 103
74 insert into return_states values (’faked’, ’is_kernel_rodata’, 0, 2, ’0’, 0, 0,

76 /*
83 * I am a bad person for doing this to __kmalloc() which is a very deep function
84 * and can easily be removed instead of to kmalloc(). But kmalloc() is an
85 * inline function so it ends up being recorded thousands of times in the
86 * database. Doing this is easier.
87 *
88 */
89 delete from return_states where function = ’__kmalloc’;
90 insert into return_states values (’faked’, ’__kmalloc’, 0, 1, ’16’, 0, 0, -1
91 insert into return_states values (’faked’, ’__kmalloc’, 0, 1, ’16’, 0, 103, 0,
92 insert into return_states values (’faked’, ’__kmalloc’, 0, 2, ’0,500000000-57777
93 insert into return_states values (’faked’, ’__kmalloc’, 0, 2, ’0,500000000-57777
94 insert into return_states values (’faked’, ’__kmalloc’, 0, 2, ’0,500000000-57777
95 insert into return_states values (’faked’, ’__kmalloc’, 0, 3, ’0’, 0, 0, -1,
96 insert into return_states values (’faked’, ’__kmalloc’, 0, 3, ’0’, 0, 103, 0

98 /*
77 * Other kmalloc hacking.
78 */
101 update return_states set return = ’0,500000000-577777777’ where function = ’kmal
102 update return_states set return = ’0,500000000-577777777’ where function = ’slab
103 update return_states set return = ’0,500000000-577777777’ where function = ’kmal
104 update return_states set return = ’0,500000000-577777777’ where function = ’kmal

79 delete from return_states where function = ’vmalloc’;
80 insert into return_states values (’faked’, ’vmalloc’, 0, 1, ’4096-ptr_max’, 0,
81 insert into return_states values (’faked’, ’vmalloc’, 0, 1, ’4096-ptr_max’, 0, 1
107 insert into return_states values (’faked’, ’vmalloc’, 0, 1, ’0,600000000-6777777
108 insert into return_states values (’faked’, ’vmalloc’, 0, 1, ’0,600000000-6777777
82 insert into return_states values (’faked’, ’vmalloc’, 0, 2, ’0’, 0, 0, -1, ’

84 delete from return_states where function = ’ksize’;
85 insert into return_states values (’faked’, ’ksize’, 0, 1, ’0’, 0, 0, -1, ’’,
86 insert into return_states values (’faked’, ’ksize’, 0, 1, ’0’, 0, 103, 0, ’\$’,
87 insert into return_states values (’faked’, ’ksize’, 0, 2, ’1-4000000’, 0, 0,

new/usr/src/tools/smatch/src/smatch_data/db/fixup_kernel.sh 3

89 /* store a bunch of capped functions */
90 update return_states set return = ’0-u32max[<=\$2]’ where function = ’copy_to_us
91 update return_states set return = ’0-u32max[<=\$2]’ where function = ’_copy_to_u
92 update return_states set return = ’0-u32max[<=\$2]’ where function = ’__copy_to_
93 update return_states set return = ’0-u32max[<=\$2]’ where function = ’copy_from_
94 update return_states set return = ’0-u32max[<=\$2]’ where function = ’_copy_from
95 update return_states set return = ’0-u32max[<=\$2]’ where function = ’__copy_fro

97 update return_states set return = ’0-8’ where function = ’__arch_hweight8’;
98 update return_states set return = ’0-16’ where function = ’__arch_hweight16’;
99 update return_states set return = ’0-32’ where function = ’__arch_hweight32’;
100 update return_states set return = ’0-64’ where function = ’__arch_hweight64’;

102 /*
103 * Preserve the value across byte swapping. By the time we use it for math it
104 * will be byte swapped back to CPU endian.
105 */
106 update return_states set return = ’0-u64max[==\$0]’ where function = ’__fswab64’
107 update return_states set return = ’0-u32max[==\$0]’ where function = ’__fswab32’
108 update return_states set return = ’0-u16max[==\$0]’ where function = ’__fswab16’
109 update return_states set return = ’0-u64max[==\$0]’ where function = ’__builtin_
110 update return_states set return = ’0-u32max[==\$0]’ where function = ’__builtin_
111 update return_states set return = ’0-u16max[==\$0]’ where function = ’__builtin_

113 delete from return_states where function = ’bitmap_allocate_region’ and return =
114 /* Just delete a lot of returns that everyone ignores */
115 delete from return_states where file = ’drivers/pci/access.c’ and (return >= 129

144 update return_states set return = ’(-4095)-s32max[<=\$1]’ where function = ’get_
145 update return_states set return = ’(-4095)-s64max[<=\$1]’ where function = ’get_

117 /* Smatch can’t parse wait_for_completion() */
118 update return_states set return = ’(-108),(-22),0’ where function = ’__spi_sync’

120 delete from caller_info where caller = ’__kernel_write’;

122 /* We sometimes use pre-allocated 4097 byte buffers for performance critical cod
123 update caller_info set value = 4096 where caller=’kernfs_file_direct_read’ and f
124 /* let’s pretend firewire doesn’t exist */
125 delete from caller_info where caller=’init_fw_attribute_group’ and function=’(st
126 /* and let’s fake the next dev_attr_show() call entirely */
127 delete from caller_info where caller=’sysfs_kf_seq_show’ and function=’(struct s
128 insert into caller_info values (’fake’, ’sysfs_kf_seq_show’, ’(struct sysfs_ops)
158 insert into caller_info values (’fake’, ’sysfs_kf_seq_show’, ’(struct sysfs_ops)
129 insert into caller_info values (’fake’, ’sysfs_kf_seq_show’, ’(struct sysfs_ops)
130 insert into caller_info values (’fake’, ’sysfs_kf_seq_show’, ’(struct sysfs_ops)
160 insert into caller_info values (’fake’, ’sysfs_kf_seq_show’, ’(struct sysfs_ops)
131 insert into caller_info values (’fake’, ’sysfs_kf_seq_show’, ’(struct sysfs_ops)
132 /* config fs confuses smatch a little */
133 update caller_info set value = 4096 where caller=’fill_read_buffer’ and function

135 /* smatch sees the memset() but not the subsequent changes */
136 update return_states set value = "" where function = ’gfs2_ea_find’ and return =

138 delete from type_value where type = ’(struct fd)->file’;
139 delete from type_value where type = ’(struct fd)->flags’;

141 /* This is sometimes an enum or a u64 */
142 delete from type_value where type = ’(struct mc_cmd_header)->status’;

144 /* this is handled in check_kernel.c */
145 delete from return_states where function = "__write_once_size";

147 update return_states set value = "s32min-s32max[\$1]" where function = ’atomic_s

149 /* handled in the check itself */

new/usr/src/tools/smatch/src/smatch_data/db/fixup_kernel.sh 4

150 delete from return_states where function = ’atomic_inc_return’ and (type = 8023
151 delete from return_states where function = ’atomic_add_return’ and (type = 8023
152 delete from return_states where function = ’atomic_sub_return’ and (type = 8023
153 delete from return_states where function = ’atomic_sub_and_test’ and (type = 802
154 delete from return_states where function = ’atomic_dec_and_test’ and (type = 802
155 delete from return_states where function = ’atomic_dec’ and (type = 8023 or type
156 delete from return_states where function = ’atomic_inc’ and (type = 8023 or type
157 delete from return_states where function = ’atomic_sub’ and (type = 8023 or type
158 delete from return_states where function = ’refcount_add_not_zero’ and (type = 8
159 delete from return_states where function = ’refcount_inc_not_zero’ and (type = 8
160 delete from return_states where function = ’refcount_sub_and_test’ and (type = 8

162 update return_states set return = ’0-32,2147483648-2147483690’ where function =
163 update return_states set value = ’0-u64max’ where function = ’_parse_integer’ an

165 /* delete some function pointers which are sometimes byte units */
166 delete from caller_info where function = ’(struct i2c_algorithm)->master_xfer’ a

168 /* this if from READ_ONCE(). We can’t know anything about the data. */
169 delete from type_info where key = ’(union anonymous)->__val’;

171 /* This is RIO_BAD_SIZE */
172 delete from return_states where file = ’drivers/rapidio/rio-access.c’ and return

174 /* Smatch sucks at loops */
175 delete from return_states where function = ’ata_dev_next’ and type = 103;

177 EOF

179 # fixme: this is totally broken
180 call_id=$(echo "select distinct call_id from caller_info where function = ’__ker
181 for id in $call_id ; do
182 echo "insert into caller_info values (’fake’, ’’, ’__kernel_write’, $id, 0,
206 echo "insert into caller_info values (’fake’, ’’, ’__kernel_write’, $id, 0,
183 done

185 for i in $(echo "select distinct return from return_states where function = ’cle
186 echo "update return_states set return = \"$i[<=\$1]\" where return = \"$i\"
187 done

189 echo "select distinct file, function from function_ptr where ptr=’(struct rtl_ha
190 | sqlite3 $db_file | sed -e ’s/|/ /’ | while read file function ; do

192 drv=$(echo $file | perl -ne ’s/.*\/rtlwifi\/(.*?)\/sw.c/$1/; print’)
193 if [$drv = ""] ; then
194 continue
195 fi

197 echo "update caller_info
198 set function = ’$drv (struct rtl_hal_ops)->set_hw_reg’
199 where function = ’(struct rtl_hal_ops)->set_hw_reg’ and file like ’dri
200 | sqlite3 $db_file

202 echo "insert into function_ptr values (’$file’, ’$function’, ’$drv (struct r
203 | sqlite3 $db_file
204 done

207 for func in __kmalloc __kmalloc_track_caller ; do

209 cat << EOF | sqlite3 $db_file
210 delete from return_states where function = ’$func’;
211 insert into return_states values (’faked’, ’$func’, 0, 1, ’16’, 0, 0, -1, ’’
212 insert into return_states values (’faked’, ’$func’, 0, 1, ’16’, 0, 103, 0, ’\$
213 insert into return_states values (’faked’, ’$func’, 0, 2, ’4096-ptr_max’, 0,
214 insert into return_states values (’faked’, ’$func’, 0, 2, ’4096-ptr_max’, 0, 103

new/usr/src/tools/smatch/src/smatch_data/db/fixup_kernel.sh 5

215 insert into return_states values (’faked’, ’$func’, 0, 2, ’4096-ptr_max’, 0, 103
216 insert into return_states values (’faked’, ’$func’, 0, 3, ’0’, 0, 0, -1, ’’,
217 insert into return_states values (’faked’, ’$func’, 0, 3, ’0’, 0, 103, 0, ’\
218 EOF
219 done

new/usr/src/tools/smatch/src/smatch_data/db/function_ptr.schema 1

**
 181 Mon Aug 5 08:38:24 2019
new/usr/src/tools/smatch/src/smatch_data/db/function_ptr.schema
11506 smatch resync
**

1 CREATE TABLE function_ptr (
2 file varchar(128),
3 function varchar(64),
4 ptr varchar(256),
5 searchable integer,

7 CONSTRAINT function_ptr_constraint UNIQUE (file, function, ptr)
8);

1 CREATE TABLE function_ptr (file varchar(128), function varchar(64), ptr varchar(

new/usr/src/tools/smatch/src/smatch_data/db/init_constraints.pl 1

**
 1721 Mon Aug 5 08:38:24 2019
new/usr/src/tools/smatch/src/smatch_data/db/init_constraints.pl
11506 smatch resync
**
______unchanged_portion_omitted_

43 sub load_manual_constraints($$)
44 {
45 my $full_path = shift;
46 my $project = shift;
47 my $dir = dirname($full_path);

49 if ($project =~ /^$/) {
50 return;
51 }

53 open(FILE, "$dir/$project.constraints");
54 while (<FILE>) {
55 s/\n//;
56 $db->do("insert or ignore into constraints (str) values (’$_’)");
57 }
58 close(FILE);

60 open(FILE, "$dir/$project.constraints_required");
61 while (<FILE>) {
62 my $limit;
63 my $dummy;

65 ($dummy, $dummy, $limit) = split(/,/);
66 $limit =~ s/^ +//;
67 $limit =~ s/\n//;
68 try {
69 $db->do("insert or ignore into constraints (str) values (’$limit’)")
70 } catch {}
71 }
72 close(FILE);

74 $db->commit();
75 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_data/db/init_constraints_required.pl 1

**
 1178 Mon Aug 5 08:38:24 2019
new/usr/src/tools/smatch/src/smatch_data/db/init_constraints_required.pl
11506 smatch resync
**
______unchanged_portion_omitted_

30 sub load_manual_constraints($$)
31 {
32 my $full_path = shift;
33 my $project = shift;
34 my $dir = dirname($full_path);
35 my ($data, $op, $limit);

37 if ($project =~ /^$/) {
38 return;
39 }

41 open(FILE, "$dir/$project.constraints_required");
42 while (<FILE>) {
43 ($data, $op, $limit) = split(/,/);
44 $op =~ s/ //g;
45 $limit =~ s/^ +//;
46 $limit =~ s/\n//;
47 $db->do("insert into constraints_required values (?, ?, ?);", undef, $da
48 }
49 close(FILE);

51 $db->commit();
52 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_data/db/kernel.return_fixes 1

**
 2704 Mon Aug 5 08:38:24 2019
new/usr/src/tools/smatch/src/smatch_data/db/kernel.return_fixes
11506 smatch resync
**

1 i2c_master_recv s32min-s32max 1-s32max[<=$2]
2 i2c_master_recv s32min-0,2-s32max 1-s32max[<=$2]
3 hid_hw_output_report s32min-s32max 1-s32max[<=$2]
4 _regmap_read s32min-(-1),1-s32max (-4095)-(-1)
5 regmap_bulk_read s32min-(-1),1-s32max (-4095)-(-1)
6 scnprintf s32min-s32max 0-s32max[<$1]
7 scnprintf s32min-(-2),0-2147483646[<$1] 0-s32max[<$1]
8 scnprintf s32min-(-2),0-2147483646 0-s32max[<$1]
9 scnprintf s32min-s32max[<=$1] 0-s32max[<$1]

10 scnprintf 0-s32max 0-s32max[<$1]
11 vscnprintf s32min-(-2),0-s32max[<$1] 0-s32max[<$1]
12 down_interruptible s32min-s32max (-62),(-4)
13 __sock_create s32min-(-1),1-s32max (-4095)-(-1)
14 __sock_create s32min-(-90),(-88)-(-1),1-s32max (-4095)-(-90),(-88)-(-1)
15 sock_create_kern s32min-(-1),1-s32max (-4095)-(-1)
16 sock_create_kern s32min-(-90),(-88)-(-1),1-s32max (-4095)-(-90),(-88)-(-1)
17 nilfs_cpfile_get_checkpoint_block s32min-(-18),(-16)-s32max (-4095)-(-18),(-16)-
18 nilfs_cpfile_get_checkpoint_block s32min-(-18),(-16)-(-3),(-1),1-s32max (-4095)-
19 nilfs_mdt_insert_new_block s32min-(-23),(-21)-(-1),1-s32max (-4095)-(-23),(-21)-
20 simple_write_to_buffer s64min-s64max 0-s32max[<=$1]
21 atomic_read s32min-s32max s32min-s32max[==$0->counter]
22 notifier_to_errno (-2147483646)-(-1) (-4095)-(-1)
23 mc_status_to_error s32min-s32max (-4095)-0
22 dma_fence_wait_timeout s64min-s64max (-4095)-s64max
23 dma_fence_wait_timeout s32min-s32max (-4095)-s32max
24 fls s32min-s32max 0-32
25 fls64 s64min-s64max 0-64
26 __bitmap_weight s32min-s32max 0-s32max[<=$1]
27 __bitmap_weight 0-s32max 0-s32max[<=$1]
28 __ffs 0-u64max 0-63
29 __ffs 0-u32max 0-31
30 find_last_bit 0-u64max 0-u32max[<=$1]
31 __spi_sync (-524),(-115),(-108),(-22) (-4095)-0
32 tpm_tis_spi_read_bytes s32min-s32max (-4095)-0
33 __irq_domain_activate_irq s32min-s32max (-4095)-0
34 get_user_pages_fast s32min-s32max 1-s32max[<=$1]
35 get_user_pages s32min-s32max (-4095)-s32max[<=$1]
36 get_user_pages s64min-s64max (-4095)-s64max[<=$1]
37 get_user_pages_remote 1-s64max 1-s64max[<=$3]
38 get_user_pages_remote (-133),(-14),(-12),1-s64max (-133),(-14),(-12),1-s64max[<=
33 get_user_pages_fast s32min-s32max 1-s32max[<$1]
39 __nci_request s32min-s32max (-4095)-0
40 wait_for_common s64min-s64max 0-s64max[<=$1]
41 wait_for_common 64min-(-1),1-s64max 1-s64max[<=$1]
42 dma_fence_wait_timeout s64min-(-1),1-s64max (-4095)-(-1),1-s32max[<=2]
43 dma_fence_wait_timeout s64min-s64max (-4095)-s32max
44 dma_fence_wait_timeout s32min-s32max (-4095)-s32max
45 __fw_state_wait_common s32min-s32max (-4095)-(-1)
46 __ilog2_u32 s32min-s32max 0-31
47 __ilog2_u64 s32min-s32max 0-63
48 driver_attach s32min-s32max (-4095)-0
49 mbox_post_sync_cmd 255 0-255
50 mmc_io_rw_extended s32min-(-1),1-s32max (-4095)-(-1)
51 kernel_read s64min-s64max (-4095)-1000000000
52 security_kernel_post_read_file s32min-(-1),1-s32max (-4095)-(-1)
53 array_index_mask_nospec 0-u64max u64max
54 array_index_mask_nospec 0-u32max u32max
55 nla_len (-4)-65531[$0->nla_len\ -\ 4] 0-65531[$0->nla_len\ -\ 4]

new/usr/src/tools/smatch/src/smatch_data/db/smdb.py 1

**
 21229 Mon Aug 5 08:38:25 2019
new/usr/src/tools/smatch/src/smatch_data/db/smdb.py
11506 smatch resync
**

1 #!/usr/bin/python

3 # Copyright (C) 2013 Oracle.
4 #
5 # Licensed under the Open Software License version 1.1

7 import sqlite3
8 import sys
9 import re

11 try:
12 con = sqlite3.connect(’smatch_db.sqlite’)
13 except sqlite3.Error, e:
14 print "Error %s:" % e.args[0]
15 sys.exit(1)

17 def usage():
18 print "%s" %(sys.argv[0])
19 print "<function> - how a function is called"
20 print "info <type> - how a function is called, filtered by type"
21 print "return_states <function> - what a function returns"
22 print "call_tree <function> - show the call tree"
23 print "where <struct_type> <member> - where a struct member is set"
24 print "type_size <struct_type> <member> - how a struct member is allocated"
25 print "data_info <struct_type> <member> - information about a given data typ
26 print "function_ptr <function> - which function pointers point to this"
27 print "trace_param <function> <param> - trace where a parameter came from"
28 print "locals <file> - print the local values in a file."
29 sys.exit(1)

31 function_ptrs = []
32 searched_ptrs = []
33 def get_function_pointers_helper(func):
34 cur = con.cursor()
35 cur.execute("select distinct ptr from function_ptr where function = ’%s’;" %
36 for row in cur:
37 ptr = row[0]
38 if ptr in function_ptrs:
39 continue
40 function_ptrs.append(ptr)
41 if not ptr in searched_ptrs:
42 searched_ptrs.append(ptr)
43 get_function_pointers_helper(ptr)

45 def get_function_pointers(func):
46 global function_ptrs
47 global searched_ptrs
48 function_ptrs = [func]
49 searched_ptrs = [func]
50 get_function_pointers_helper(func)
51 return function_ptrs

53 db_types = { 0: "INTERNAL",
54 101: "PARAM_CLEARED",
55 103: "PARAM_LIMIT",
56 104: "PARAM_FILTER",
57 1001: "PARAM_VALUE",
58 1002: "BUF_SIZE",
58 1003: "USER_DATA",
59 1004: "CAPPED_DATA",
60 1005: "RETURN_VALUE",

new/usr/src/tools/smatch/src/smatch_data/db/smdb.py 2

61 1006: "DEREFERENCE",
62 1007: "RANGE_CAP",
63 1008: "LOCK_HELD",
64 1009: "LOCK_RELEASED",
65 1010: "ABSOLUTE_LIMITS",
66 1012: "PARAM_ADD",
67 1013: "PARAM_FREED",
68 1014: "DATA_SOURCE",
69 1015: "FUZZY_MAX",
70 1016: "STR_LEN",
71 1017: "ARRAY_LEN",
72 1018: "CAPABLE",
73 1019: "NS_CAPABLE",
74 1022: "TYPE_LINK",
75 1023: "UNTRACKED_PARAM",
76 1024: "CULL_PATH",
77 1025: "PARAM_SET",
78 1026: "PARAM_USED",
79 1027: "BYTE_UNITS",
80 1028: "COMPARE_LIMIT",
81 1029: "PARAM_COMPARE",
82 1030: "EXPECTS_TYPE",
83 1031: "CONSTRAINT",
84 1032: "PASSES_TYPE",
85 1033: "CONSTRAINT_REQUIRED",
86 1034: "BIT_INFO",
87 1035: "NOSPEC",
88 1036: "NOSPEC_WB",
89 1037: "STMT_CNT",
90 1038: "TERMINATED",
91 1039: "SLEEP",
92 1040: "NO_SLEEP_CNT",
93 1041: "SMALLISH",
94 1042: "FRESH_MTAG",

96 8017: "USER_DATA",
97 9017: "USER_DATA_SET",
82 8017: "USER_DATA2",
98 8018: "NO_OVERFLOW",
99 8019: "NO_OVERFLOW_SIMPLE",
100 8020: "LOCKED",
101 8021: "UNLOCKED",
102 8023: "ATOMIC_INC",
103 8024: "ATOMIC_DEC",
104 };

106 def add_range(rl, min_val, max_val):
107 check_next = 0
108 done = 0
109 ret = []
110 idx = 0

112 if len(rl) == 0:
113 return [[min_val, max_val]]

115 for idx in range(len(rl)):
116 cur_min = rl[idx][0]
117 cur_max = rl[idx][1]

119 # we already merged the new range but we might need to change later
120 # ranges if they over lap with more than one
121 if check_next:
122 # join with added range
123 if max_val + 1 == cur_min:
124 ret[len(ret) - 1][1] = cur_max
125 done = 1

new/usr/src/tools/smatch/src/smatch_data/db/smdb.py 3

126 break
127 # don’t overlap
128 if max_val < cur_min:
129 ret.append([cur_min, cur_max])
130 done = 1
131 break
132 # partially overlap
133 if max_val < cur_max:
134 ret[len(ret) - 1][1] = cur_max
135 done = 1
136 break
137 # completely overlap
138 continue

140 # join 2 ranges into one
141 if max_val + 1 == cur_min:
142 ret.append([min_val, cur_max])
143 done = 1
144 break
145 # range is entirely below
146 if max_val < cur_min:
147 ret.append([min_val, max_val])
148 ret.append([cur_min, cur_max])
149 done = 1
150 break
151 # range is partially below
152 if min_val < cur_min:
153 if max_val <= cur_max:
154 ret.append([min_val, cur_max])
155 done = 1
156 break
157 else:
158 ret.append([min_val, max_val])
159 check_next = 1
160 continue
161 # range already included
162 if max_val <= cur_max:
163 ret.append([cur_min, cur_max])
164 done = 1
165 break;
166 # range partially above
167 if min_val <= cur_max:
168 ret.append([cur_min, max_val])
169 check_next = 1
170 continue
171 # join 2 ranges on the other side
172 if min_val - 1 == cur_max:
173 ret.append([cur_min, max_val])
174 check_next = 1
175 continue
176 # range is above
177 ret.append([cur_min, cur_max])

179 if idx + 1 < len(rl): # we hit a break statement
180 ret = ret + rl[idx + 1:]
181 elif done: # we hit a break on the last iteration
182 pass
183 elif not check_next: # it’s past the end of the rl
184 ret.append([min_val, max_val])

186 return ret;

188 def rl_union(rl1, rl2):
189 ret = []
190 for r in rl1:
191 ret = add_range(ret, r[0], r[1])

new/usr/src/tools/smatch/src/smatch_data/db/smdb.py 4

192 for r in rl2:
193 ret = add_range(ret, r[0], r[1])

195 if (rl1 or rl2) and not ret:
196 print "bug: merging %s + %s gives empty" %(rl1, rl2)

198 return ret

200 def txt_to_val(txt):
201 if txt == "s64min":
202 return -(2**63)
203 elif txt == "s32min":
204 return -(2**31)
205 elif txt == "s16min":
206 return -(2**15)
207 elif txt == "s64max":
208 return 2**63 - 1
209 elif txt == "s32max":
210 return 2**31 - 1
211 elif txt == "s16max":
212 return 2**15 - 1
213 elif txt == "u64max":
214 return 2**64 - 1
215 elif txt == "ptr_max":
216 return 2**64 - 1
217 elif txt == "u32max":
218 return 2**32 - 1
219 elif txt == "u16max":
220 return 2**16 - 1
221 else:
222 try:
223 return int(txt)
224 except ValueError:
225 return 0

227 def val_to_txt(val):
228 if val == -(2**63):
229 return "s64min"
230 elif val == -(2**31):
231 return "s32min"
232 elif val == -(2**15):
233 return "s16min"
234 elif val == 2**63 - 1:
235 return "s64max"
236 elif val == 2**31 - 1:
237 return "s32max"
238 elif val == 2**15 - 1:
239 return "s16max"
240 elif val == 2**64 - 1:
241 return "u64max"
242 elif val == 2**32 - 1:
243 return "u32max"
244 elif val == 2**16 - 1:
245 return "u16max"
246 elif val < 0:
247 return "(%d)" %(val)
248 else:
249 return "%d" %(val)

251 def get_next_str(txt):
252 val = ""
253 parsed = 0

255 if txt[0] == ’(’:
256 parsed += 1
257 for char in txt[1:]:

new/usr/src/tools/smatch/src/smatch_data/db/smdb.py 5

258 if char == ’)’:
259 break
260 parsed += 1
261 val = txt[1:parsed]
262 parsed += 1
263 elif txt[0] == ’s’ or txt[0] == ’u’:
264 parsed += 6
265 val = txt[:parsed]
266 else:
267 if txt[0] == ’-’:
268 parsed += 1
269 for char in txt[parsed:]:
270 if char == ’-’:
271 break
272 parsed += 1
273 val = txt[:parsed]
274 return [parsed, val]

276 def txt_to_rl(txt):
277 if len(txt) == 0:
278 return []

280 ret = []
281 pairs = txt.split(",")
282 for pair in pairs:
283 cnt, min_str = get_next_str(pair)
284 if cnt == len(pair):
285 max_str = min_str
286 else:
287 cnt, max_str = get_next_str(pair[cnt + 1:])
288 min_val = txt_to_val(min_str)
289 max_val = txt_to_val(max_str)
290 ret.append([min_val, max_val])

292 # Hm... Smatch won’t call INT_MAX s32max if the variable is unsigned.
293 # if txt != rl_to_txt(ret):
294 # print "bug: converting: text = %s rl = %s internal = %s" %(txt, rl_to_t

296 return ret

298 def rl_to_txt(rl):
299 ret = ""
300 for idx in range(len(rl)):
301 cur_min = rl[idx][0]
302 cur_max = rl[idx][1]

304 if idx != 0:
305 ret += ","

307 if cur_min == cur_max:
308 ret += val_to_txt(cur_min)
309 else:
310 ret += val_to_txt(cur_min)
311 ret += "-"
312 ret += val_to_txt(cur_max)
313 return ret

315 def type_to_str(type_int):

317 t = int(type_int)
318 if db_types.has_key(t):
319 return db_types[t]
320 return type_int

322 def type_to_int(type_string):
323 for k in db_types.keys():

new/usr/src/tools/smatch/src/smatch_data/db/smdb.py 6

324 if db_types[k] == type_string:
325 return k
326 return -1

328 def display_caller_info(printed, cur, param_names):
329 for txt in cur:
330 if not printed:
331 print "file | caller | function | type | parameter | key | value |"
332 printed = 1

334 parameter = int(txt[6])
335 key = txt[7]
336 if len(param_names) and parameter in param_names:
337 key = key.replace("$", param_names[parameter])

339 print "%20s | %20s | %20s |" %(txt[0], txt[1], txt[2]),
340 print " %10s |" %(type_to_str(txt[5])),
341 print " %d | %s | %s" %(parameter, key, txt[8])
342 return printed

344 def get_caller_info(filename, ptrs, my_type):
345 cur = con.cursor()
346 param_names = get_param_names(filename, func)
347 printed = 0
348 type_filter = ""
349 if my_type != "":
350 type_filter = "and type = %d" %(type_to_int(my_type))
351 for ptr in ptrs:
352 cur.execute("select * from caller_info where function = ’%s’ %s;" %(ptr,
353 printed = display_caller_info(printed, cur, param_names)

355 def print_caller_info(filename, func, my_type = ""):
356 ptrs = get_function_pointers(func)
357 get_caller_info(filename, ptrs, my_type)

359 def merge_values(param_names, vals, cur):
360 for txt in cur:
361 parameter = int(txt[0])
362 name = txt[1]
363 rl = txt_to_rl(txt[2])
364 if parameter in param_names:
365 name = name.replace("$", param_names[parameter])

367 if not parameter in vals:
368 vals[parameter] = {}

370 # the first item on the list is the number of rows. it’s incremented
371 # every time we call merge_values().
372 if name in vals[parameter]:
373 vals[parameter][name] = [vals[parameter][name][0] + 1, rl_union(vals
374 else:
375 vals[parameter][name] = [1, rl]

377 def get_param_names(filename, func):
378 cur = con.cursor()
379 param_names = {}
380 cur.execute("select parameter, value from parameter_name where file = ’%s’ a
381 for txt in cur:
382 parameter = int(txt[0])
383 name = txt[1]
384 param_names[parameter] = name
385 if len(param_names):
386 return param_names

388 cur.execute("select parameter, value from parameter_name where function = ’%
389 for txt in cur:

new/usr/src/tools/smatch/src/smatch_data/db/smdb.py 7

390 parameter = int(txt[0])
391 name = txt[1]
392 param_names[parameter] = name
393 return param_names

395 def get_caller_count(ptrs):
396 cur = con.cursor()
397 count = 0
398 for ptr in ptrs:
399 cur.execute("select count(distinct(call_id)) from caller_info where func
400 for txt in cur:
401 count += int(txt[0])
402 return count

404 def print_merged_caller_values(filename, func, ptrs, param_names, call_cnt):
405 cur = con.cursor()
406 vals = {}
407 for ptr in ptrs:
408 cur.execute("select parameter, key, value from caller_info where functio
409 merge_values(param_names, vals, cur);

411 for param in sorted(vals):
412 for name in sorted(vals[param]):
413 if vals[param][name][0] != call_cnt:
414 continue
415 print "%d %s -> %s" %(param, name, rl_to_txt(vals[param][name][1]))

418 def print_unmerged_caller_values(filename, func, ptrs, param_names):
419 cur = con.cursor()
420 for ptr in ptrs:
421 prev = -1
422 cur.execute("select file, caller, call_id, parameter, key, value from ca
423 for filename, caller, call_id, parameter, name, value in cur:
424 if prev != int(call_id):
425 prev = int(call_id)

427 parameter = int(parameter)
428 if parameter < len(param_names):
429 name = name.replace("$", param_names[parameter])
430 else:
431 name = name.replace("$", "$%d" %(parameter))

433 print "%s | %s | %s | %s" %(filename, caller, name, value)
434 print "=========================="

436 def print_caller_values(filename, func, ptrs):
437 param_names = get_param_names(filename, func)
438 call_cnt = get_caller_count(ptrs)

440 print_merged_caller_values(filename, func, ptrs, param_names, call_cnt)
441 print "=========================="
442 print_unmerged_caller_values(filename, func, ptrs, param_names)

444 def caller_info_values(filename, func):
445 ptrs = get_function_pointers(func)
446 print_caller_values(filename, func, ptrs)

448 def print_return_states(func):
449 cur = con.cursor()
450 cur.execute("select * from return_states where function = ’%s’;" %(func))
451 count = 0
452 for txt in cur:
453 printed = 1
454 if count == 0:
455 print "file | function | return_id | return_value | type | param | k

new/usr/src/tools/smatch/src/smatch_data/db/smdb.py 8

456 count += 1
457 print "%s | %s | %2s | %13s" %(txt[0], txt[1], txt[3], txt[4]),
458 print "| %13s |" %(type_to_str(txt[6])),
459 print " %2d | %20s | %20s |" %(txt[7], txt[8], txt[9])

461 def print_return_implies(func):
462 cur = con.cursor()
463 cur.execute("select * from return_implies where function = ’%s’;" %(func))
464 count = 0
465 for txt in cur:
466 if not count:
467 print "file | function | type | param | key | value |"
468 count += 1
469 print "%15s | %15s" %(txt[0], txt[1]),
470 print "| %15s" %(type_to_str(txt[4])),
471 print "| %3d | %s | %15s |" %(txt[5], txt[6], txt[7])

473 def print_type_size(struct_type, member):
474 cur = con.cursor()
475 cur.execute("select * from type_size where type like ’(struct %s)->%s’;" %(s
476 print "type | size"
477 for txt in cur:
478 print "%-15s | %s" %(txt[0], txt[1])

480 cur.execute("select * from function_type_size where type like ’(struct %s)->
481 print "file | function | type | size"
482 for txt in cur:
483 print "%-15s | %-15s | %-15s | %s" %(txt[0], txt[1], txt[2], txt[3])

485 def print_data_info(struct_type, member):
486 cur = con.cursor()
487 cur.execute("select * from data_info where data like ’(struct %s)->%s’;" %(s
488 print "file | data | type | value"
489 for txt in cur:
490 print "%-15s | %-15s | %-15s | %s" %(txt[0], txt[1], type_to_str(txt[2])

492 def print_fn_ptrs(func):
493 ptrs = get_function_pointers(func)
494 if not ptrs:
495 return
496 print "%s = " %(func),
497 print(ptrs)

499 def print_functions(member):
500 cur = con.cursor()
501 cur.execute("select * from function_ptr where ptr like ’%%->%s’;" %(member))
502 print "File | Pointer | Function | Static"
503 for txt in cur:
504 print "%-15s | %-15s | %-15s | %s" %(txt[0], txt[2], txt[1], txt[3])

506 def get_callers(func):
507 ret = []
508 cur = con.cursor()
509 ptrs = get_function_pointers(func)
510 for ptr in ptrs:
511 cur.execute("select distinct caller from caller_info where function = ’%
512 for row in cur:
513 ret.append(row[0])
514 return ret

516 printed_funcs = []
517 def call_tree_helper(func, indent = 0):
518 global printed_funcs
519 if func in printed_funcs:
520 return
521 print "%s%s()" %(" " * indent, func)

new/usr/src/tools/smatch/src/smatch_data/db/smdb.py 9

522 if func == "too common":
523 return
524 if indent > 6:
525 return
526 printed_funcs.append(func)
527 callers = get_callers(func)
528 if len(callers) >= 20:
529 print "Over 20 callers for %s()" %(func)
530 return
531 for caller in callers:
532 call_tree_helper(caller, indent + 2)

534 def print_call_tree(func):
535 global printed_funcs
536 printed_funcs = []
537 call_tree_helper(func)

539 def function_type_value(struct_type, member):
540 cur = con.cursor()
541 cur.execute("select * from function_type_value where type like ’(struct %s)-
542 for txt in cur:
543 print "%-30s | %-30s | %s | %s" %(txt[0], txt[1], txt[2], txt[3])

545 def trace_callers(func, param):
546 sources = []
547 prev_type = 0

549 cur = con.cursor()
550 ptrs = get_function_pointers(func)
551 for ptr in ptrs:
552 cur.execute("select type, caller, value from caller_info where function
553 for row in cur:
554 data_type = int(row[0])
555 if data_type == 1014:
556 sources.append((row[1], row[2]))
557 elif data_type == 1028:
558 sources.append(("%", row[2])) # hack...
559 elif data_type == 0 and prev_type == 0:
560 sources.append((row[1], ""))
561 prev_type = data_type
562 return sources

564 def trace_param_helper(func, param, indent = 0):
565 global printed_funcs
566 if func in printed_funcs:
567 return
568 print "%s%s(param %d)" %(" " * indent, func, param)
569 if func == "too common":
570 return
571 if indent > 20:
572 return
573 printed_funcs.append(func)
574 sources = trace_callers(func, param)
575 for path in sources:

577 if len(path[1]) and path[1][0] == ’p’ and path[1][1] == ’ ’:
578 p = int(path[1][2:])
579 trace_param_helper(path[0], p, indent + 2)
580 elif len(path[0]) and path[0][0] == ’%’:
581 print " %s%s" %(" " * indent, path[1])
582 else:
583 print "* %s%s %s" %(" " * (indent - 1), path[0], path[1])

585 def trace_param(func, param):
586 global printed_funcs
587 printed_funcs = []

new/usr/src/tools/smatch/src/smatch_data/db/smdb.py 10

588 print "tracing %s %d" %(func, param)
589 trace_param_helper(func, param)

591 def print_locals(filename):
592 cur = con.cursor()
593 cur.execute("select file,data,value from data_info where file = ’%s’ and typ
594 for txt in cur:
595 print "%s | %s | %s" %(txt[0], txt[1], txt[2])

597 def constraint(struct_type, member):
598 cur = con.cursor()
599 cur.execute("select * from constraints_required where data like ’(struct %s)
600 for txt in cur:
601 print "%-30s | %-30s | %s | %s" %(txt[0], txt[1], txt[2], txt[3])

603 if len(sys.argv) < 2:
604 usage()

606 if len(sys.argv) == 2:
607 func = sys.argv[1]
608 print_caller_info("", func)
609 elif sys.argv[1] == "info":
610 my_type = ""
611 if len(sys.argv) == 4:
612 my_type = sys.argv[3]
613 func = sys.argv[2]
614 print_caller_info("", func, my_type)
615 elif sys.argv[1] == "call_info":
616 if len(sys.argv) != 4:
617 usage()
618 filename = sys.argv[2]
619 func = sys.argv[3]
620 caller_info_values(filename, func)
621 print_caller_info(filename, func)
599 elif sys.argv[1] == "user_data":
600 func = sys.argv[2]
601 print_caller_info(filename, func, "USER_DATA")
602 elif sys.argv[1] == "param_value":
603 func = sys.argv[2]
604 print_caller_info(filename, func, "PARAM_VALUE")
622 elif sys.argv[1] == "function_ptr" or sys.argv[1] == "fn_ptr":
623 func = sys.argv[2]
624 print_fn_ptrs(func)
625 elif sys.argv[1] == "return_states":
626 func = sys.argv[2]
627 print_return_states(func)
628 print "=="
629 print_return_implies(func)
630 elif sys.argv[1] == "return_implies":
631 func = sys.argv[2]
632 print_return_implies(func)
633 elif sys.argv[1] == "type_size" or sys.argv[1] == "buf_size":
634 struct_type = sys.argv[2]
635 member = sys.argv[3]
636 print_type_size(struct_type, member)
637 elif sys.argv[1] == "data_info":
638 struct_type = sys.argv[2]
639 member = sys.argv[3]
640 print_data_info(struct_type, member)
641 elif sys.argv[1] == "call_tree":
642 func = sys.argv[2]
643 print_call_tree(func)
644 elif sys.argv[1] == "where":
645 if len(sys.argv) == 3:
646 struct_type = "%"
647 member = sys.argv[2]

new/usr/src/tools/smatch/src/smatch_data/db/smdb.py 11

648 elif len(sys.argv) == 4:
649 struct_type = sys.argv[2]
650 member = sys.argv[3]
651 function_type_value(struct_type, member)
652 elif sys.argv[1] == "local":
653 filename = sys.argv[2]
654 variable = ""
655 if len(sys.argv) == 4:
656 variable = sys.argv[3]
657 local_values(filename, variable)
658 elif sys.argv[1] == "functions":
659 member = sys.argv[2]
660 print_functions(member)
661 elif sys.argv[1] == "trace_param":
662 if len(sys.argv) != 4:
663 usage()
664 func = sys.argv[2]
665 param = int(sys.argv[3])
666 trace_param(func, param)
667 elif sys.argv[1] == "locals":
668 if len(sys.argv) != 3:
669 usage()
670 filename = sys.argv[2]
671 print_locals(filename);
672 elif sys.argv[1] == "constraint":
673 if len(sys.argv) == 3:
674 struct_type = "%"
675 member = sys.argv[2]
676 elif len(sys.argv) == 4:
677 struct_type = sys.argv[2]
678 member = sys.argv[3]
679 constraint(struct_type, member)
680 elif sys.argv[1] == "test":
681 filename = sys.argv[2]
682 func = sys.argv[3]
683 caller_info_values(filename, func)
684 else:
685 usage()

new/usr/src/tools/smatch/src/smatch_data/db/vim_smdb 1

**
 665 Mon Aug 5 08:38:25 2019
new/usr/src/tools/smatch/src/smatch_data/db/vim_smdb
11506 smatch resync
**

1 #!/bin/bash

3 # Add these lines to your .vimrc file
4 #
5 # map <C-r> :! vim_smdb return_states <cword> <CR> :execute ’edit’ system("cat ~
6 # map <C-c> :! vim_smdb <cword> <CR> :execute ’edit’ system("cat ~/.smdb_tmp/cur
7 #
8 # Now you can move your cursor over a function and hit CTRL-c to see how it’s
9 # called or CTRL-r to see what it returns. Use the ":bd" command to get back to

10 # your source.

12 DIR="$HOME/.smdb_tmp"
13 mkdir -p $DIR

15 for i in $(seq 1 100) ; do
16 if [! -e $DIR/$i] ; then
17 break
18 fi
19 done

21 if [$i == 100] ; then
22 i=1
23 fi

25 next=$(($i + 1))

27 rm -f $DIR/$next
28 rm -f $DIR/.${i}.swp
28 rm $DIR/.${i}.swp
29 smdb $* > $DIR/$i

31 echo "$DIR/$i" > $DIR/cur

new/usr/src/tools/smatch/src/smatch_data/illumos_kernel.skipped_functions 1

**
 227 Mon Aug 5 08:38:25 2019
new/usr/src/tools/smatch/src/smatch_data/illumos_kernel.skipped_functions
11506 smatch resync
**

1 /* These are "too hairy" for smatch. */
2 ECDSA_VerifyDigest
3 dtrace_disx86
4 elf32exec
5 elfexec
6 iscsi_ioctl
7 lm_idle_chk
8 ld64_sym_validate
9 luaV_settable

10 nostore_generate_key_pair
11 sadb_common_add
12 segvn_fault_vnodepages
13 tcp_input_data

new/usr/src/tools/smatch/src/smatch_data/illumos_user.skipped_functions 1

**
 698 Mon Aug 5 08:38:26 2019
new/usr/src/tools/smatch/src/smatch_data/illumos_user.skipped_functions
11506 smatch resync
**

1 /*
2 * The below functions cause smatch to fail with "turning off implications after
3 * 60 seconds" or similar, generally because they’re too large for it to handle.
4 *
5 * This will disable analysis altogether.
6 */

8 /* libast */
9 _ast_optget

10 _ast_opthelp
11 /* libcmd */
12 b_uname
13 /* libcurses */
14 _updateln
15 /* libdisasm */
16 dtrace_disx86
17 /* libld */
18 ld32_sym_process
19 ld64_sym_process
20 update_osym
21 /* libsqlite */
22 sqliteVdbeExec
23 /* cmd/acpi/iasl */
24 AslCompilerparse
25 /* cmd/fs.d/autofs */
26 nfsmount
27 /* cmd/mdb */
28 iob_doprnt
29 /* cmd/pppd */
30 lcp_nakci
31 /* cmd/cmd-crypto */
32 execute_cmd

34 /* generated code */
35 ipf_yyparse
36 ipmon_yyparse
37 ipnat_yyparse
38 ippool_yyparse
39 ndr__ndr_hdr
40 yyerror
41 yylex
42 yylook
43 yyparse
44 yywinput

new/usr/src/tools/smatch/src/smatch_data/kernel.allocation_funcs_gfp.remove 1

**
 46 Mon Aug 5 08:38:26 2019
new/usr/src/tools/smatch/src/smatch_data/kernel.allocation_funcs_gfp.remove
11506 smatch resync
**

1 acquire_group
2 acquire_group 2
3 acquire_group X

new/usr/src/tools/smatch/src/smatch_data/kernel.ignore_casted_params 1

**
 201 Mon Aug 5 08:38:26 2019
new/usr/src/tools/smatch/src/smatch_data/kernel.ignore_casted_params
11506 smatch resync
**

1 set_bit
2 clear_bit
3 __clear_bit
4 __set_bit
5 test_and_set_bit
6 find_last_bit
7 change_bit
8 xfs_next_bit
9 find_next_bit

10 find_first_bit
11 __test_and_set_bit
12 sync_set_bit
13 bitmap_weight
14 bitmap_intersects
15 bitmap_empty

new/usr/src/tools/smatch/src/smatch_data/kernel.ignore_side_effects 1

**
 1255 Mon Aug 5 08:38:26 2019
new/usr/src/tools/smatch/src/smatch_data/kernel.ignore_side_effects
11506 smatch resync
**

1 /*
2 * Manually created.
3 *
4 * Most of these have intentional side effects.
5 * Some of them like put_user() and friends, have side effects when __CHECKER__
6 * is defined but not in the compiled kernel.
7 */
8 ADD_STA_STATS
9 ARCH_DLINFO

10 AWDATA
11 ENCODE
12 ENCODE_DATA
13 ENCODE_STR
14 get_child
15 get_child_rcu
16 get_unaligned
17 get_user
18 __get_user
19 __get_user_nocheck
20 hybrid_tuner_request_state
21 iterate_bvec
22 iterate_all_kinds
23 lookup
24 lookup_rightempty
25 MAKE_RAW_BYTE
26 MAKE_RAW_BYTE_56K
27 mdelay
28 MsgHead
29 MUL64
30 NEW_AUX_ENT
31 nh_vmac_nhbytes
32 ntohl
33 OUT_RING_REG
34 poly_step
35 PUT_BYTE
36 put_short
37 put_user
38 __put_user
39 __put_user_nocheck
40 R128_WAIT_UNTIL_PAGE_FLIPPED
41 R600_CLEAR_AGE
42 R600_DISPATCH_AGE
43 R600_FRAME_AGE
44 RADEON_CLEAR_AGE
45 RADEON_DISPATCH_AGE
46 RADEON_FLUSH_CACHE
47 RADEON_FRAME_AGE
48 RADEON_PURGE_CACHE
49 RADEON_PURGE_ZCACHE
50 RADEON_WAIT_UNTIL_2D_IDLE
51 RADEON_WAIT_UNTIL_3D_IDLE
52 RADEON_WAIT_UNTIL_IDLE
53 RCU_INIT_POINTER
54 READ64
55 rtnl_dereference
56 SK_REUSEPORT_LOAD_SKB_FIELD
57 SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF
58 send_bits
59 send_code
60 SOCK_ADDR_LOAD_NESTED_FIELD
61 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF

new/usr/src/tools/smatch/src/smatch_data/kernel.ignore_side_effects 2

62 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF
63 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD
64 SOCK_OPS_GET_FIELD
65 SOCK_OPS_GET_OR_SET_FIELD
66 SOCK_OPS_GET_TCP32
67 unsafe_get_user
68 unsafe_put_user
69 VIA_OUT_RING_QW
70 WRITE64
71 Z

new/usr/src/tools/smatch/src/smatch_data/kernel.ignore_uninitialized_param 1

**
 2207 Mon Aug 5 08:38:26 2019
new/usr/src/tools/smatch/src/smatch_data/kernel.ignore_uninitialized_param
11506 smatch resync
**

1 regmap_read 2
2 regmap_fields_read 2
3 visorchannel_read 2
4 dmam_alloc_coherent 2
5 diva_pci_alloc_consistent 2
6 read_mos_reg 3
7 adp5520_read 2
8 gameport_cooked_read 2
9 max3100_sr 1

10 sata_scr_read 2
11 svia_scr_read 2
12 lp8788_read_byte 2
13 qla83xx_rd_reg 2
14 cciss_read_capacity 2
15 cciss_read_capacity 3
16 rio_mport_read_config_32 4
17 acpi_read 0
18 axi_clkgen_mmcm_read 2
19 intel_msic_irq_read 2
20 pci_user_read_config_word 2
21 ec_read 1
22 sony_call_snc_handle 2
23 pci_user_read_config_word 2
24 read_reg_fp 2
25 vid_blk_read_word 2
26 mc417_memory_read 2
27 stv06xx_read_sensor 2
28 lm90_read_reg 2
29 read_mii_word 3
30 read_eprom_word 2
31 generic_ocp_read 2
32 lan78xx_read_reg 2
33 com20020_copy_from_card 3
34 wl3501_get_from_wla 2
35 ipw_get_ordinal 2
36 generic_ocp_read 3
37 et131x_mii_read 2
38 ql_mii_read_reg 2
39 atl1c_read_phy_dbg 2
40 atl2_read_phy_reg 2
41 atl1_read_phy_reg 2
42 pch_gbe_hal_read_phy_reg 2
43 t1_tpi_read 2
44 rio_local_read_config_32 2
45 acpi_smbus_read 4
46 pci_read_config_dword 2
47 viafb_i2c_readbyte 3
48 bap_read 1
49 of_get_property 2
50 of_property_read_u32 2
51 of_property_read_u8 2
52 of_property_read_u16 2
53 of_property_read_u32_index 3
54 intel_gvt_hypervisor_read_gpa 2
55 cs5536_read 1
56 __amd64_read_pci_cfg_dword 2
57 e1e_rphy 2
58 imx_phy_reg_read 0
59 chipio_read 0
60 had_read_register 1
61 qcaspi_read_register 2

new/usr/src/tools/smatch/src/smatch_data/kernel.ignore_uninitialized_param 2

62 mv88e6xxx_g2_read 2
63 b53_read8 3
64 b53_read16 3
65 b53_read32 3
66 b53_read48 3
67 b53_read64 3
68 dvbtqam_get_acc_pkt_err 1
69 ch7xxx_readb 2
70 ivch_read 2
71 tvp7002_read 2
72 rtsx_pci_read_register 2
73 rtsx_usb_ep0_read_register 2
74 __t1_tpi_read 2
75 smsc95xx_read_reg 2
76 pci_user_read_config_dword 2
77 da903x_read 2
78 rio_read_config_8 2
79 rio_read_config_16 2
80 rio_read_config_32 2
81 __ad7280_read32 1
82 rtsx_read_cfg_dw 3
83 lola_read_param 3
84 soc_dapm_read 2
85 read_nic_byte 2
86 amd_smn_read 2
87 meson_ao_cec_read 2
88 pci_read_config_byte 2
89 pci_read_config_word 2
90 i40e_read_nvm_word 2
91 stk_camera_read_reg 2
92 cnl_get_buf_trans_edp 1
93 cnl_get_buf_trans_dp 1
94 intel_ddi_get_buf_trans_edp 1
95 intel_ddi_get_buf_trans_dp 1
96 cnl_get_buf_trans_hdmi 1
97 iosf_mbi_read 3
98 lola_codec_read 5
99 chipio_read 2
100 pcxhr_write_io_num_reg_cont 3
101 read_current_timer 0
102 pwrap_read 2
103 dibusb_read_eeprom_byte 2
104 of_fdt_unflatten_tree 2
105 pci_user_read_config_byte 2
106 gen11_gu_misc_irq_ack 2
107 vsc73xx_read 4
108 smb_hc_read 2
109 smb_word_op 5
110 atl1c_read_phy_reg 2
111 adf7242_read_reg 2

new/usr/src/tools/smatch/src/smatch_data/kernel.ignored_warnings 1

**
 35 Mon Aug 5 08:38:27 2019
new/usr/src/tools/smatch/src/smatch_data/kernel.ignored_warnings
11506 smatch resync
**

1 check_shift_to_zero overflows_type

new/usr/src/tools/smatch/src/smatch_data/kernel.no_inline_functions 1

**
 210 Mon Aug 5 08:38:27 2019
new/usr/src/tools/smatch/src/smatch_data/kernel.no_inline_functions
11506 smatch resync
**

1 __fswab16
2 __fswab32
3 __fswab64
4 __builtin_bswap16
5 __builtin_bswap32
6 __builtin_bswap64
7 __arch_hweight8
8 __arch_hweight16
9 __arch_hweight32

10 __arch_hweight64
11 __write_once_size
12 atomic_set
13 atomic_read
14 notifier_to_errno

new/usr/src/tools/smatch/src/smatch_data/kernel.no_return_funcs.add 1

**
 30 Mon Aug 5 08:38:27 2019
new/usr/src/tools/smatch/src/smatch_data/kernel.no_return_funcs.add
11506 smatch resync
**

1 YY_FATAL_ERROR
2 malformed_line

new/usr/src/tools/smatch/src/smatch_data/kernel.silenced_functions 1

**
 250 Mon Aug 5 08:38:27 2019
new/usr/src/tools/smatch/src/smatch_data/kernel.silenced_functions
11506 smatch resync
**

1 /* Don’t print anything from these functions */
2 atomic_dec_and_test
3 atomic_inc_and_test
4 atomic64_dec_and_test
5 atomic_sub_and_test
6 test_and_clear_bit
7 test_and_set_bit
7 __copy_to_user_nocheck
8 __copy_from_user_nocheck
9 arch_static_branch

10 __static_cpu_has
11 __read_once_size

new/usr/src/tools/smatch/src/smatch_data_source.c 1

**
 2765 Mon Aug 5 08:38:28 2019
new/usr/src/tools/smatch/src/smatch_data_source.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2013 Oracle.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 #include "smatch.h"
19 #include "smatch_slist.h"
20 #include "smatch_extra.h"

22 static int my_id;

24 static char *get_source_parameter(struct expression *expr)
25 {
26 struct expression *tmp;
27 const char *param_name;
28 struct symbol *sym;
29 char *name;
30 int param;
31 char *ret = NULL;
32 char buf[32];
33 int cnt = 0;
34 bool modified = false;

36 tmp = expr;
37 while ((tmp = get_assigned_expr(tmp))) {
38 expr = tmp;
39 if (cnt++ > 3)
40 break;
41 }

43 expr = strip_expr(expr);
44 if (expr->type != EXPR_SYMBOL)
45 return NULL;

47 name = expr_to_var_sym(expr, &sym);
48 if (!name || !sym)
49 goto free;
50 param = get_param_num_from_sym(sym);
51 if (param < 0)
52 goto free;
53 param_name = get_param_name_var_sym(name, sym);
54 if (!param_name)
51 if (param_was_set(expr))
55 goto free;
56 if (param_was_set_var_sym(name, sym))
57 modified = true;

59 snprintf(buf, sizeof(buf), "$%d%s%s", param, param_name + 1,
60 modified ? " [m]" : "");

new/usr/src/tools/smatch/src/smatch_data_source.c 2

54 snprintf(buf, sizeof(buf), "p %d", param);
61 ret = alloc_string(buf);

63 free:
64 free_string(name);
65 return ret;
66 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_db.c 1

**
 64159 Mon Aug 5 08:38:28 2019
new/usr/src/tools/smatch/src/smatch_db.c
11506 smatch resync
**
______unchanged_portion_omitted_
69 ALLOCATOR(db_implies_callback, "return_implies callbacks");
70 DECLARE_PTR_LIST(db_implies_cb_list, struct db_implies_callback);
71 static struct db_implies_cb_list *return_implies_cb_list;
72 static struct db_implies_cb_list *call_implies_cb_list;

74 /* silently truncates if needed. */
75 char *escape_newlines(const char *str)
76 {
77 char buf[1024] = "";
78 bool found = false;
79 int i, j;

81 for (i = 0, j = 0; str[i] != ’\0’ && j != sizeof(buf); i++, j++) {
82 if (str[i] != ’\r’ && str[i] != ’\n’) {
82 if (str[i] != ’\n’) {
83 buf[j] = str[i];
84 continue;
85 }

87 found = true;
88 buf[j++] = ’\\’;
89 if (j == sizeof(buf))
90 break;
91 buf[j] = ’n’;
92 }

94 if (!found)
95 return alloc_sname(str);

97 if (j == sizeof(buf))
98 buf[j - 1] = ’\0’;
99 return alloc_sname(buf);
100 }

______unchanged_portion_omitted_

253 void sql_insert_function_ptr(const char *fn, const char *struct_name)
254 {
255 sql_insert_or_ignore(function_ptr, "’%s’, ’%s’, ’%s’, 0",
256 get_base_file(), fn, struct_name);
255 sql_insert(function_ptr, "’%s’, ’%s’, ’%s’, 0", get_base_file(), fn,
256 struct_name);
257 }

______unchanged_portion_omitted_

329 void sql_save_constraint(const char *con)
330 {
331 if (!option_info)
332 return;

334 sm_msg("SQL: insert or ignore into constraints (str) values(’%s’);", esc
334 sm_msg("SQL: insert or ignore into constraints (str) values(’%s’);", con
335 }

______unchanged_portion_omitted_

375 void sql_insert_mtag_data(mtag_t tag, const char *var, int offset, int type, con
376 {
377 sql_insert(mtag_data, "%lld, ’%s’, %d, %d, ’%s’", tag, var, offset, type
378 }

375 void sql_insert_mtag_map(mtag_t tag, int offset, mtag_t container)

new/usr/src/tools/smatch/src/smatch_db.c 2

376 {
377 sql_insert(mtag_map, "%lld, %d, %lld", tag, offset, container);
378 }

______unchanged_portion_omitted_

748 int is_recursive_member(const char *name)
749 {
750 char buf[256];
751 const char *p, *next;
752 int size;

754 p = strchr(name, ’>’);
755 if (!p)
756 return 0;
757 p++;
758 while (true) {
759 next = strchr(p, ’>’);
760 if (!next)
761 return 0;
762 next++;

764 size = next - p;
765 if (size >= sizeof(buf))
766 return 0;
767 memcpy(buf, p, size);
768 buf[size] = ’\0’;
769 if (strstr(next, buf))
770 return 1;
771 p = next;
772 }
773 }

775 static void print_struct_members(struct expression *call, struct expression *exp
776 void (*callback)(struct expression *call, int param, char *printed_name,
777 {
778 struct sm_state *sm;
779 const char *sm_name;
780 char *name;
781 struct symbol *sym;
782 int len;
783 char printed_name[256];
784 int is_address = 0;
785 bool add_star;
786 struct symbol *type;

788 expr = strip_expr(expr);
789 if (!expr)
790 return;
791 type = get_type(expr);
792 if (type && type_bits(type) < type_bits(&ulong_ctype))
793 return;

795 if (expr->type == EXPR_PREOP && expr->op == ’&’) {
796 expr = strip_expr(expr->unop);
797 is_address = 1;
798 }

772 type = get_type(expr);
773 if (type && type_bits(type) < type_bits(&ulong_ctype))
774 return;

800 name = expr_to_var_sym(expr, &sym);
801 if (!name || !sym)
802 goto free;

804 len = strlen(name);

new/usr/src/tools/smatch/src/smatch_db.c 3

805 FOR_EACH_SM(stree, sm) {
806 if (sm->sym != sym)
807 continue;
808 sm_name = sm->name;
809 add_star = false;
810 if (sm_name[0] == ’*’) {
811 add_star = true;
812 sm_name++;
813 }
814 // FIXME: simplify?
815 if (!add_star && strcmp(name, sm_name) == 0) {
784 if (strcmp(name, sm->name) == 0) {
816 if (is_address)
817 snprintf(printed_name, sizeof(printed_name), "*$
818 else /* these are already handled. fixme: handle them he
819 continue;
820 } else if (add_star && strcmp(name, sm_name) == 0) {
821 snprintf(printed_name, sizeof(printed_name), "%s*$%s",
822 is_address ? "*" : "", show_offset(offset));
823 } else if (strncmp(name, sm_name, len) == 0) {
824 if (sm_name[len] != ’.’ && sm_name[len] != ’-’)
789 } else if (sm->name[0] == ’*’ && strcmp(name, sm->name + 1) == 0
790 snprintf(printed_name, sizeof(printed_name), "*$%s", sho
791 } else if (strncmp(name, sm->name, len) == 0) {
792 if (isalnum(sm->name[len]))
825 continue;
826 if (is_address)
827 snprintf(printed_name, sizeof(printed_name),
828 "%s$%s->%s", add_star ? "*" : "",
829 show_offset(offset), sm_name + len + 1)
795 snprintf(printed_name, sizeof(printed_name), "$%
830 else
831 snprintf(printed_name, sizeof(printed_name),
832 "%s$%s%s", add_star ? "*" : "",
833 show_offset(offset), sm_name + len);
797 snprintf(printed_name, sizeof(printed_name), "$%
834 } else {
835 continue;
836 }
837 if (is_recursive_member(printed_name))
838 continue;
839 callback(call, param, printed_name, sm);
840 } END_FOR_EACH_SM(sm);
841 free:
842 free_string(name);
843 }

______unchanged_portion_omitted_

1045 static char *get_next_ptr_name(void)
1046 {
1047 char *ptr;

1049 FOR_EACH_PTR(ptr_names, ptr) {
1050 if (!insert_string(&ptr_names_done, ptr))
1012 if (list_has_string(ptr_names_done, ptr))
1051 continue;
1014 insert_string(&ptr_names_done, ptr);
1052 return ptr;
1053 } END_FOR_EACH_PTR(ptr);
1054 return NULL;
1055 }
______unchanged_portion_omitted_

1264 static char *get_return_compare_is_param(struct expression *expr)
1227 static void print_initializer_list(struct expression_list *expr_list,
1228 struct symbol *struct_type)

new/usr/src/tools/smatch/src/smatch_db.c 4

1265 {
1266 char *var;
1267 char buf[256];
1268 int comparison;
1269 int param;
1230 struct expression *expr;
1231 struct symbol *base_type;
1232 char struct_name[256];

1271 param = get_param_num(expr);
1272 if (param < 0)
1273 return NULL;

1275 var = expr_to_var(expr);
1276 if (!var)
1277 return NULL;
1278 snprintf(buf, sizeof(buf), "%s orig", var);
1279 comparison = get_comparison_strings(var, buf);
1280 free_string(var);

1282 if (!comparison)
1283 return NULL;

1285 snprintf(buf, sizeof(buf), "[%s$%d]", show_special(comparison), param);
1286 return alloc_sname(buf);
1234 FOR_EACH_PTR(expr_list, expr) {
1235 if (expr->type == EXPR_INDEX && expr->idx_expression && expr->id
1236 print_initializer_list(expr->idx_expression->expr_list,
1237 continue;
1238 }
1239 if (expr->type != EXPR_IDENTIFIER)
1240 continue;
1241 if (!expr->expr_ident)
1242 continue;
1243 if (!expr->ident_expression || !expr->ident_expression->symbol_n
1244 continue;
1245 base_type = get_type(expr->ident_expression);
1246 if (!base_type || base_type->type != SYM_FN)
1247 continue;
1248 snprintf(struct_name, sizeof(struct_name), "(struct %s)->%s",
1249 struct_type->ident->name, expr->expr_ident->name);
1250 sql_insert_function_ptr(expr->ident_expression->symbol_name->nam
1251 struct_name);
1252 } END_FOR_EACH_PTR(expr);
1287 }

1289 static char *get_return_compare_str(struct expression *expr)
1255 static void global_variable(struct symbol *sym)
1290 {
1291 char *compare_str;
1257 struct symbol *struct_type;

1293 compare_str = get_return_compare_is_param(expr);
1294 if (compare_str)
1295 return compare_str;

1297 compare_str = expr_lte_to_param(expr, -1);
1298 if (compare_str)
1299 return compare_str;

1301 return expr_param_comparison(expr, -1);
1302 }

1304 static const char *get_return_ranges_str(struct expression *expr, struct range_l
1305 {
1306 struct range_list *rl;

new/usr/src/tools/smatch/src/smatch_db.c 5

1307 char *return_ranges;
1308 sval_t sval;
1309 char *compare_str;
1310 char *math_str;
1311 char buf[128];

1313 *rl_p = NULL;

1315 if (!expr)
1316 return alloc_sname("");

1318 if (get_implied_value(expr, &sval)) {
1319 sval = sval_cast(cur_func_return_type(), sval);
1320 *rl_p = alloc_rl(sval, sval);
1321 return sval_to_str_or_err_ptr(sval);
1259 if (!sym->ident)
1260 return;
1261 if (!sym->initializer || sym->initializer->type != EXPR_INITIALIZER)
1262 return;
1263 struct_type = get_base_type(sym);
1264 if (!struct_type)
1265 return;
1266 if (struct_type->type == SYM_ARRAY) {
1267 struct_type = get_base_type(struct_type);
1268 if (!struct_type)
1269 return;
1322 }

1324 compare_str = expr_equal_to_param(expr, -1);
1325 math_str = get_value_in_terms_of_parameter_math(expr);

1327 if (get_implied_rl(expr, &rl) && !is_whole_rl(rl)) {
1328 rl = cast_rl(cur_func_return_type(), rl);
1329 return_ranges = show_rl(rl);
1330 } else if (get_imaginary_absolute(expr, &rl)){
1331 rl = cast_rl(cur_func_return_type(), rl);
1332 return alloc_sname(show_rl(rl));
1333 } else {
1334 get_absolute_rl(expr, &rl);
1335 rl = cast_rl(cur_func_return_type(), rl);
1336 return_ranges = show_rl(rl);
1337 }
1338 *rl_p = rl;

1340 if (compare_str) {
1341 snprintf(buf, sizeof(buf), "%s%s", return_ranges, compare_str);
1342 return alloc_sname(buf);
1343 }
1344 if (math_str) {
1345 snprintf(buf, sizeof(buf), "%s[%s]", return_ranges, math_str);
1346 return alloc_sname(buf);
1347 }
1348 compare_str = get_return_compare_str(expr);
1349 if (compare_str) {
1350 snprintf(buf, sizeof(buf), "%s%s", return_ranges, compare_str);
1351 return alloc_sname(buf);
1352 }

1354 return return_ranges;
1271 if (struct_type->type != SYM_STRUCT || !struct_type->ident)
1272 return;
1273 print_initializer_list(sym->initializer->expr_list, struct_type);
1355 }
______unchanged_portion_omitted_

1362 static void call_return_state_hooks_conditional(struct expression *expr)

new/usr/src/tools/smatch/src/smatch_db.c 6

1363 {
1364 struct returned_state_callback *cb;
1365 struct range_list *rl;
1366 const char *return_ranges;
1285 char *return_ranges;
1367 int final_pass_orig = final_pass;

1369 __push_fake_cur_stree();

1371 final_pass = 0;
1372 __split_whole_condition(expr->conditional);
1373 final_pass = final_pass_orig;

1375 return_ranges = get_return_ranges_str(expr->cond_true ?: expr->condition

1294 if (get_implied_rl(expr->cond_true, &rl))
1295 rl = cast_rl(cur_func_return_type(), rl);
1296 else
1297 rl = cast_rl(cur_func_return_type(), alloc_whole_rl(get_type(exp
1298 return_ranges = show_rl(rl);
1377 set_state(RETURN_ID, "return_ranges", NULL, alloc_estate_rl(rl));

1379 return_id++;
1380 FOR_EACH_PTR(returned_state_callbacks, cb) {
1381 cb->callback(return_id, (char *)return_ranges, expr->cond_true);
1303 cb->callback(return_id, return_ranges, expr->cond_true);
1382 } END_FOR_EACH_PTR(cb);

1384 __push_true_states();
1385 __use_false_states();

1387 return_ranges = get_return_ranges_str(expr->cond_false, &rl);
1309 if (get_implied_rl(expr->cond_false, &rl))
1310 rl = cast_rl(cur_func_return_type(), rl);
1311 else
1312 rl = cast_rl(cur_func_return_type(), alloc_whole_rl(get_type(exp
1313 return_ranges = show_rl(rl);
1388 set_state(RETURN_ID, "return_ranges", NULL, alloc_estate_rl(rl));

1390 return_id++;
1391 FOR_EACH_PTR(returned_state_callbacks, cb) {
1392 cb->callback(return_id, (char *)return_ranges, expr->cond_false)
1318 cb->callback(return_id, return_ranges, expr->cond_false);
1393 } END_FOR_EACH_PTR(cb);

1395 __merge_true_states();
1396 __free_fake_cur_stree();
1397 }
______unchanged_portion_omitted_

1383 static char *get_return_compare_str(struct expression *expr)
1384 {
1385 char *compare_str;
1386 char *var;
1387 char buf[256];
1388 int comparison;
1389 int param;

1391 compare_str = expr_lte_to_param(expr, -1);
1392 if (compare_str)
1393 return compare_str;
1394 param = get_param_num(expr);
1395 if (param < 0)
1396 return NULL;

1398 var = expr_to_var(expr);

new/usr/src/tools/smatch/src/smatch_db.c 7

1399 if (!var)
1400 return NULL;
1401 snprintf(buf, sizeof(buf), "%s orig", var);
1402 comparison = get_comparison_strings(var, buf);
1403 free_string(var);

1405 if (!comparison)
1406 return NULL;

1408 snprintf(buf, sizeof(buf), "[%s$%d]", show_special(comparison), param);
1409 return alloc_sname(buf);
1410 }

1457 static int split_possible_helper(struct sm_state *sm, struct expression *expr)
1458 {
1459 struct returned_state_callback *cb;
1460 struct range_list *rl;
1461 char *return_ranges;
1462 struct sm_state *tmp;
1463 int ret = 0;
1464 int nr_possible, nr_states;
1465 char *compare_str;
1420 char *compare_str = NULL;
1466 char buf[128];
1467 struct state_list *already_handled = NULL;
1468 sval_t sval;

1470 if (!sm || !sm->merged)
1471 return 0;

1473 if (too_many_possible(sm))
1474 return 0;

1476 /* bail if it gets too complicated */
1477 nr_possible = 0;
1478 FOR_EACH_PTR(sm->possible, tmp) {
1479 if (tmp->merged)
1480 continue;
1481 nr_possible++;
1482 } END_FOR_EACH_PTR(tmp);
1431 nr_possible = ptr_list_size((struct ptr_list *)sm->possible);
1483 nr_states = get_db_state_count();
1484 if (nr_states * nr_possible >= 2000)
1485 return 0;

1487 FOR_EACH_PTR(sm->possible, tmp) {
1488 if (tmp->merged)
1489 continue;
1490 if (ptr_in_list(tmp, already_handled))
1491 continue;
1492 add_ptr_list(&already_handled, tmp);

1494 ret = 1;
1495 __push_fake_cur_stree();

1497 overwrite_states_using_pool(sm, tmp);

1499 rl = cast_rl(cur_func_return_type(), estate_rl(tmp->state));
1500 return_ranges = show_rl(rl);
1501 set_state(RETURN_ID, "return_ranges", NULL, alloc_estate_rl(clon
1502 if (!rl_to_sval(rl, &sval)) {
1503 compare_str = get_return_compare_str(expr);
1504 if (compare_str) {
1505 snprintf(buf, sizeof(buf), "%s%s", return_ranges
1506 return_ranges = alloc_sname(buf);
1507 }

new/usr/src/tools/smatch/src/smatch_db.c 8

1508 }

1510 return_id++;
1511 FOR_EACH_PTR(returned_state_callbacks, cb) {
1512 cb->callback(return_id, return_ranges, expr);
1513 } END_FOR_EACH_PTR(cb);

1515 __free_fake_cur_stree();
1516 } END_FOR_EACH_PTR(tmp);

1518 free_slist(&already_handled);

1520 return ret;
1521 }
______unchanged_portion_omitted_

1481 static const char *get_return_ranges_str(struct expression *expr, struct range_l
1482 {
1483 struct range_list *rl;
1484 char *return_ranges;
1485 sval_t sval;
1486 char *compare_str;
1487 char *math_str;
1488 char buf[128];

1490 *rl_p = NULL;

1492 if (!expr)
1493 return alloc_sname("");

1495 if (get_implied_value(expr, &sval)) {
1496 sval = sval_cast(cur_func_return_type(), sval);
1497 *rl_p = alloc_rl(sval, sval);
1498 return sval_to_str(sval);
1499 }

1501 compare_str = expr_equal_to_param(expr, -1);
1502 math_str = get_value_in_terms_of_parameter_math(expr);

1504 if (get_implied_rl(expr, &rl)) {
1505 rl = cast_rl(cur_func_return_type(), rl);
1506 return_ranges = show_rl(rl);
1507 } else if (get_imaginary_absolute(expr, &rl)){
1508 rl = cast_rl(cur_func_return_type(), rl);
1509 return alloc_sname(show_rl(rl));
1510 } else {
1511 rl = cast_rl(cur_func_return_type(), alloc_whole_rl(get_type(exp
1512 return_ranges = show_rl(rl);
1513 }
1514 *rl_p = rl;

1516 if (compare_str) {
1517 snprintf(buf, sizeof(buf), "%s%s", return_ranges, compare_str);
1518 return alloc_sname(buf);
1519 }
1520 if (math_str) {
1521 snprintf(buf, sizeof(buf), "%s[%s]", return_ranges, math_str);
1522 return alloc_sname(buf);
1523 }
1524 compare_str = get_return_compare_str(expr);
1525 if (compare_str) {
1526 snprintf(buf, sizeof(buf), "%s%s", return_ranges, compare_str);
1527 return alloc_sname(buf);
1528 }

1530 return return_ranges;

new/usr/src/tools/smatch/src/smatch_db.c 9

1531 }

1534 static bool has_possible_negative(struct sm_state *sm)
1535 {
1536 struct sm_state *tmp;

1538 FOR_EACH_PTR(sm->possible, tmp) {
1539 if (!estate_rl(tmp->state))
1540 continue;
1541 if (sval_is_negative(estate_min(tmp->state)) &&
1542 sval_is_negative(estate_max(tmp->state)))
1543 return true;
1544 } END_FOR_EACH_PTR(tmp);

1546 return false;
1547 }
______unchanged_portion_omitted_

1564 static int split_positive_from_negative(struct expression *expr)
1565 {
1566 struct sm_state *sm;
1567 struct returned_state_callback *cb;
1568 struct range_list *rl;
1569 const char *return_ranges;
1570 struct range_list *ret_rl;
1571 int undo;
1572 bool has_zero;

1574 /* We’re going to print the states 3 times */
1575 if (get_db_state_count() > 10000 / 3)
1576 return 0;

1578 if (!get_implied_rl(expr, &rl) || !rl)
1579 return 0;
1580 if (is_whole_rl(rl) || is_whole_rl_non_zero(rl))
1581 return 0;
1582 /* Forget about INT_MAX and larger */
1583 if (rl_max(rl).value <= 0)
1584 return 0;
1585 if (!sval_is_negative(rl_min(rl)))
1586 return 0;

1588 sm = get_sm_state_expr(SMATCH_EXTRA, expr);
1589 if (!sm)
1590 return 0;
1591 if (!has_possible_negative(sm))
1592 return 0;
1593 has_zero = has_possible_zero_null(sm);

1595 if (!assume(compare_expression(expr, has_zero ? ’>’ : SPECIAL_GTE, zero_
1592 if (!assume(compare_expression(expr, ’>’, zero_expr())))
1596 return 0;

1598 return_id++;
1599 return_ranges = get_return_ranges_str(expr, &ret_rl);
1600 set_state(RETURN_ID, "return_ranges", NULL, alloc_estate_rl(ret_rl));
1601 FOR_EACH_PTR(returned_state_callbacks, cb) {
1602 cb->callback(return_id, (char *)return_ranges, expr);
1603 } END_FOR_EACH_PTR(cb);

1605 end_assume();

1607 if (has_zero) {
1604 if (rl_has_sval(rl, sval_type_val(rl_type(rl), 0))) {
1608 undo = assume(compare_expression(expr, SPECIAL_EQUAL, zero_expr(

new/usr/src/tools/smatch/src/smatch_db.c 10

1610 return_id++;
1611 return_ranges = get_return_ranges_str(expr, &ret_rl);
1612 set_state(RETURN_ID, "return_ranges", NULL, alloc_estate_rl(ret_
1613 FOR_EACH_PTR(returned_state_callbacks, cb) {
1614 cb->callback(return_id, (char *)return_ranges, expr);
1615 } END_FOR_EACH_PTR(cb);

1617 if (undo)
1618 end_assume();
1619 }

1621 undo = assume(compare_expression(expr, ’<’, zero_expr()));

1623 return_id++;
1624 return_ranges = get_return_ranges_str(expr, &ret_rl);
1625 set_state(RETURN_ID, "return_ranges", NULL, alloc_estate_rl(ret_rl));
1626 FOR_EACH_PTR(returned_state_callbacks, cb) {
1627 cb->callback(return_id, (char *)return_ranges, expr);
1628 } END_FOR_EACH_PTR(cb);

1630 if (undo)
1631 end_assume();

1633 return 1;
1634 }

1636 static int call_return_state_hooks_split_null_non_null_zero(struct expression *e
1633 static int call_return_state_hooks_split_null_non_null(struct expression *expr)
1637 {
1638 struct returned_state_callback *cb;
1639 struct range_list *rl;
1640 struct range_list *nonnull_rl;
1641 sval_t null_sval;
1642 struct range_list *null_rl = NULL;
1643 char *return_ranges;
1644 struct sm_state *sm;
1645 struct smatch_state *state;
1646 int nr_states;
1647 int final_pass_orig = final_pass;

1649 if (!expr || expr_equal_to_param(expr, -1))
1650 return 0;
1651 if (expr->type == EXPR_CALL)
1652 return 0;
1650 if (!is_pointer(expr))
1651 return 0;

1654 sm = get_sm_state_expr(SMATCH_EXTRA, expr);
1655 if (!sm)
1656 return 0;
1657 if (ptr_list_size((struct ptr_list *)sm->possible) == 1)
1658 return 0;
1659 state = sm->state;
1660 if (!estate_rl(state))
1661 return 0;
1662 if (estate_min(state).value == 0 && estate_max(state).value == 0)
1663 return 0;
1664 if (!has_possible_zero_null(sm))
1665 return 0;

1667 nr_states = get_db_state_count();
1668 if (option_info && nr_states >= 1500)
1669 return 0;

1671 rl = estate_rl(state);

new/usr/src/tools/smatch/src/smatch_db.c 11

1673 __push_fake_cur_stree();

1675 final_pass = 0;
1676 __split_whole_condition(expr);
1677 final_pass = final_pass_orig;

1679 nonnull_rl = rl_filter(rl, rl_zero());
1680 return_ranges = show_rl(nonnull_rl);
1681 set_state(RETURN_ID, "return_ranges", NULL, alloc_estate_rl(nonnull_rl))

1683 return_id++;
1684 FOR_EACH_PTR(returned_state_callbacks, cb) {
1685 cb->callback(return_id, return_ranges, expr);
1686 } END_FOR_EACH_PTR(cb);

1688 __push_true_states();
1689 __use_false_states();

1691 return_ranges = alloc_sname("0");
1692 null_sval = sval_type_val(rl_type(rl), 0);
1693 add_range(&null_rl, null_sval, null_sval);
1694 set_state(RETURN_ID, "return_ranges", NULL, alloc_estate_rl(null_rl));
1695 return_id++;
1696 FOR_EACH_PTR(returned_state_callbacks, cb) {
1697 cb->callback(return_id, return_ranges, expr);
1698 } END_FOR_EACH_PTR(cb);

1700 __merge_true_states();
1701 __free_fake_cur_stree();

1703 return 1;
1704 }
______unchanged_portion_omitted_

1969 static void call_return_state_hooks(struct expression *expr)
1970 {
1971 struct returned_state_callback *cb;
1972 struct range_list *ret_rl;
1973 const char *return_ranges;
1974 int nr_states;
1975 sval_t sval;

1977 if (__path_is_null())
1978 return;

1980 expr = strip_expr(expr);
1981 expr = strip_expr_statement(expr);

1983 if (is_impossible_path())
1984 goto vanilla;

1986 if (expr && (expr->type == EXPR_COMPARE ||
1987 !get_implied_value(expr, &sval)) &&
1988 (is_condition(expr) || is_boolean(expr))) {
1989 call_return_state_hooks_compare(expr);
1990 return;
1991 } else if (is_conditional(expr)) {
1992 call_return_state_hooks_conditional(expr);
1993 return;
1994 } else if (call_return_state_hooks_split_possible(expr)) {
1995 return;
1996 } else if (split_positive_from_negative(expr)) {
1995 } else if (call_return_state_hooks_split_null_non_null(expr)) {
1997 return;
1998 } else if (call_return_state_hooks_split_null_non_null_zero(expr)) {
1999 return;

new/usr/src/tools/smatch/src/smatch_db.c 12

2000 } else if (call_return_state_hooks_split_success_fail(expr)) {
2001 return;
2002 } else if (splitable_function_call(expr)) {
2003 return;
2001 } else if (split_positive_from_negative(expr)) {
2002 return;
2004 } else if (split_by_bool_param(expr)) {
2005 } else if (split_by_null_nonnull_param(expr)) {
2006 return;
2007 }

2009 vanilla:
2010 return_ranges = get_return_ranges_str(expr, &ret_rl);
2011 set_state(RETURN_ID, "return_ranges", NULL, alloc_estate_rl(ret_rl));

2013 return_id++;
2014 nr_states = get_db_state_count();
2015 if (nr_states >= 10000) {
2016 match_return_info(return_id, (char *)return_ranges, expr);
2017 mark_all_params_untracked(return_id, (char *)return_ranges, expr
2018 return;
2019 }
2020 FOR_EACH_PTR(returned_state_callbacks, cb) {
2021 cb->callback(return_id, (char *)return_ranges, expr);
2022 } END_FOR_EACH_PTR(cb);
2023 }
______unchanged_portion_omitted_

2199 static int save_cache_data(void *_table, int argc, char **argv, char **azColName
2200 {
2201 static char buf[4096];
2202 char tmp[256];
2203 char *p = buf;
2204 char *table = _table;
2205 int i;

2208 p += snprintf(p, 4096 - (p - buf), "insert or ignore into %s values (",
2209 for (i = 0; i < argc; i++) {
2210 if (i)
2211 p += snprintf(p, 4096 - (p - buf), ", ");
2212 sqlite3_snprintf(sizeof(tmp), tmp, "%q", escape_newlines(argv[i]
2211 sqlite3_snprintf(sizeof(tmp), tmp, "%q", argv[i]);
2213 p += snprintf(p, 4096 - (p - buf), "’%s’", tmp);

2215 }
2216 p += snprintf(p, 4096 - (p - buf), ");");
2217 if (p - buf > 4096)
2218 return 0;

2220 sm_msg("SQL: %s", buf);
2221 return 0;
2222 }
______unchanged_portion_omitted_

2362 void register_definition_db_callbacks(int id)
2363 {
2364 add_hook(&match_call_info, FUNCTION_CALL_HOOK);
2364 add_hook(&global_variable, BASE_HOOK);
2365 add_hook(&global_variable, DECLARATION_HOOK);
2365 add_split_return_callback(match_return_info);
2366 add_split_return_callback(print_returned_struct_members);
2367 add_hook(&call_return_state_hooks, RETURN_HOOK);
2368 add_hook(&match_end_func_info, END_FUNC_HOOK);
2369 add_hook(&match_after_func, AFTER_FUNC_HOOK);

new/usr/src/tools/smatch/src/smatch_db.c 13

2371 add_hook(&match_data_from_db, FUNC_DEF_HOOK);
2372 add_hook(&match_call_implies, FUNC_DEF_HOOK);
2373 add_hook(&match_return_implies, CALL_HOOK_AFTER_INLINE);

2375 register_common_funcs();
2376 register_return_replacements();

2378 add_hook(&dump_cache, END_FILE_HOOK);
2379 }
______unchanged_portion_omitted_

2386 char *return_state_to_var_sym(struct expression *expr, int param, const char *ke
2387 {
2388 struct expression *arg;
2389 char *name = NULL;
2390 char member_name[256];

2392 *sym = NULL;

2394 if (param == -1) {
2395 const char *star = "";

2397 if (expr->type != EXPR_ASSIGNMENT)
2398 return NULL;
2399 if (get_type(expr->left) == &int_ctype && strcmp(key, "$") != 0)
2400 return NULL;
2401 name = expr_to_var_sym(expr->left, sym);
2402 if (!name)
2403 return NULL;
2404 if (key[0] == ’*’) {
2405 star = "*";
2406 key++;
2407 }
2408 if (strncmp(key, "$", 1) != 0)
2409 return name;
2410 snprintf(member_name, sizeof(member_name), "%s%s%s", star, name,
2411 free_string(name);
2412 return alloc_string(member_name);
2413 }

2415 while (expr->type == EXPR_ASSIGNMENT)
2416 expr = strip_expr(expr->right);
2417 if (expr->type != EXPR_CALL)
2418 return NULL;

2420 arg = get_argument_from_call_expr(expr->args, param);
2421 if (!arg)
2422 return NULL;

2424 return get_variable_from_key(arg, key, sym);
2425 }

2427 char *get_variable_from_key(struct expression *arg, const char *key, struct symb
2428 {
2429 char buf[256];
2430 char *tmp;
2431 bool add_star = false;

2433 if (!arg)
2434 return NULL;

2436 arg = strip_expr(arg);

2438 if (strcmp(key, "$") == 0)
2439 return expr_to_var_sym(arg, sym);

new/usr/src/tools/smatch/src/smatch_db.c 14

2441 if (strcmp(key, "*$") == 0) {
2442 if (arg->type == EXPR_PREOP && arg->op == ’&’) {
2443 arg = strip_expr(arg->unop);
2444 return expr_to_var_sym(arg, sym);
2445 } else {
2446 tmp = expr_to_var_sym(arg, sym);
2447 if (!tmp)
2448 return NULL;
2449 snprintf(buf, sizeof(buf), "*%s", tmp);
2450 free_string(tmp);
2451 return alloc_string(buf);
2452 }
2453 }

2455 if (key[0] == ’*’) {
2456 add_star = true;
2457 key++;
2458 }

2460 if (arg->type == EXPR_PREOP && arg->op == ’&’) {
2461 arg = strip_expr(arg->unop);
2462 tmp = expr_to_var_sym(arg, sym);
2463 if (!tmp)
2464 return NULL;
2465 snprintf(buf, sizeof(buf), "%s%s.%s",
2466 add_star ? "*" : "", tmp, key + 3);
2458 snprintf(buf, sizeof(buf), "%s.%s", tmp, key + 3);
2467 return alloc_string(buf);
2468 }

2470 tmp = expr_to_var_sym(arg, sym);
2471 if (!tmp)
2472 return NULL;
2473 snprintf(buf, sizeof(buf), "%s%s%s", add_star ? "*" : "", tmp, key + 1);
2465 snprintf(buf, sizeof(buf), "%s%s", tmp, key + 1);
2474 free_string(tmp);
2475 return alloc_string(buf);
2476 }
______unchanged_portion_omitted_

2487 const char *state_name_to_param_name(const char *state_name, const char *param_n
2488 {
2489 int name_len;
2490 static char buf[256];
2491 bool add_star = false;

2493 name_len = strlen(param_name);

2495 if (state_name[0] == ’*’) {
2496 add_star = true;
2497 state_name++;
2498 }

2500 if (strcmp(state_name, param_name) == 0) {
2501 snprintf(buf, sizeof(buf), "%s$", add_star ? "*" : "");
2502 return buf;
2503 }

2505 if (state_name[name_len] == ’-’ && /* check for ’-’ from "->" */
2487 return "$";
2488 } else if (state_name[name_len] == ’-’ && /* check for ’-’ from "->" */
2506 strncmp(state_name, param_name, name_len) == 0) {
2507 snprintf(buf, sizeof(buf), "%s$%s",
2508 add_star ? "*" : "", state_name + name_len);
2490 snprintf(buf, sizeof(buf), "$%s", state_name + name_len);
2509 return buf;

new/usr/src/tools/smatch/src/smatch_db.c 15

2492 } else if (state_name[0] == ’*’ && strcmp(state_name + 1, param_name) ==
2493 return "*$";
2510 }
2511 return NULL;
2512 }
______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_equiv.c 1

**
 6755 Mon Aug 5 08:38:29 2019
new/usr/src/tools/smatch/src/smatch_equiv.c
11506 smatch resync
**
______unchanged_portion_omitted_

105 static void debug_addition(struct related_list *rlist, const char *name)
106 {
107 struct relation *tmp;

109 if (!option_debug_related)
110 return;

112 sm_prefix();
113 sm_printf("(");
114 FOR_EACH_PTR(rlist, tmp) {
115 sm_printf("%s ", tmp->name);
116 } END_FOR_EACH_PTR(tmp);
117 sm_printf(") <-- %s\n", name);
118 }

105 static void add_related(struct related_list **rlist, const char *name, struct sy
106 {
107 struct relation *rel;
108 struct relation *new;
109 struct relation tmp = {
110 .name = (char *)name,
111 .sym = sym
112 };

129 debug_addition(*rlist, name);

114 FOR_EACH_PTR(*rlist, rel) {
115 if (cmp_relation(rel, &tmp) < 0)
116 continue;
117 if (cmp_relation(rel, &tmp) == 0)
118 return;
119 new = alloc_relation(name, sym);
120 INSERT_CURRENT(new, rel);
121 return;
122 } END_FOR_EACH_PTR(rel);
123 new = alloc_relation(name, sym);
124 add_ptr_list(rlist, new);
125 }

______unchanged_portion_omitted_

191 /*
192 * set_equiv() is only used for assignments where we set one variable
193 * equal to the other. a = b;. It’s not used for if conditions where
194 * a == b.
195 */
196 void set_equiv(struct expression *left, struct expression *right)
197 {
198 struct sm_state *right_sm, *left_sm, *other_sm;
215 struct sm_state *right_sm, *left_sm;
199 struct relation *rel;
200 char *left_name;
201 struct symbol *left_sym;
202 struct related_list *rlist;
203 char *other_name;
204 struct symbol *other_sym;

206 left_name = expr_to_var_sym(left, &left_sym);
207 if (!left_name || !left_sym)
208 goto free;

new/usr/src/tools/smatch/src/smatch_equiv.c 2

210 other_name = get_other_name_sym(left_name, left_sym, &other_sym);

212 right_sm = get_sm_state_expr(SMATCH_EXTRA, right);
213 if (!right_sm) {
214 struct range_list *rl;

216 if (!get_implied_rl(right, &rl))
217 rl = alloc_whole_rl(get_type(right));
218 right_sm = set_state_expr(SMATCH_EXTRA, right, alloc_estate_rl(r
219 }
220 if (!right_sm)
227 right_sm = set_state_expr(SMATCH_EXTRA, right, alloc_estate_whol
228 if (!right_sm)
221 goto free;

223 /* This block is because we want to preserve the implications. */
224 left_sm = clone_sm(right_sm);
225 left_sm->name = alloc_string(left_name);
226 left_sm->sym = left_sym;
227 left_sm->state = clone_estate_cast(get_type(left), right_sm->state);
228 /* FIXME: The expression we’re passing is wrong */
229 set_extra_mod_helper(left_name, left_sym, left, left_sm->state);
230 __set_sm(left_sm);

232 if (other_name && other_sym) {
233 other_sm = clone_sm(right_sm);
234 other_sm->name = alloc_string(other_name);
235 other_sm->sym = other_sym;
236 other_sm->state = clone_estate_cast(get_type(left), left_sm->sta
237 set_extra_mod_helper(other_name, other_sym, NULL, other_sm->stat
238 __set_sm(other_sm);
239 }

241 rlist = clone_related_list(estate_related(right_sm->state));
242 add_related(&rlist, right_sm->name, right_sm->sym);
243 add_related(&rlist, left_name, left_sym);
244 if (other_name && other_sym)
245 add_related(&rlist, other_name, other_sym);

247 FOR_EACH_PTR(rlist, rel) {
248 struct sm_state *old_sm, *new_sm;

250 old_sm = get_sm_state(SMATCH_EXTRA, rel->name, rel->sym);
251 if (!old_sm) /* shouldn’t happen */
252 continue;
253 new_sm = clone_sm(old_sm);
254 new_sm->state = clone_estate(old_sm->state);
255 get_dinfo(new_sm->state)->related = rlist;
256 __set_sm(new_sm);
257 } END_FOR_EACH_PTR(rel);
258 free:
259 free_string(left_name);
260 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_estate.c 1

**
 9497 Mon Aug 5 08:38:29 2019
new/usr/src/tools/smatch/src/smatch_estate.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2010 Dan Carpenter.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 /*
19 * smatch_dinfo.c has helper functions for handling data_info structs
20 *
21 */

23 #include <stdlib.h>
24 #ifndef __USE_ISOC99
25 #define __USE_ISOC99
26 #endif
27 #include <limits.h>
28 #include "parse.h"
29 #include "smatch.h"
30 #include "smatch_slist.h"
31 #include "smatch_extra.h"

33 struct smatch_state *merge_estates(struct smatch_state *s1, struct smatch_state
34 {
35 struct smatch_state *tmp;
36 struct range_list *value_ranges;
37 struct related_list *rlist;

39 if (estates_equiv(s1, s2))
40 return s1;

42 value_ranges = rl_union(estate_rl(s1), estate_rl(s2));
43 tmp = alloc_estate_rl(value_ranges);
44 rlist = get_shared_relations(estate_related(s1), estate_related(s2));
45 set_related(tmp, rlist);

47 if ((estate_has_hard_max(s1) && (!estate_rl(s2) || estate_has_hard_max(s
48 (estate_has_hard_max(s2) && (!estate_rl(s1) || estate_has_hard_max(s
46 if (estate_has_hard_max(s1) && estate_has_hard_max(s2))
49 estate_set_hard_max(tmp);

51 estate_set_fuzzy_max(tmp, sval_max(estate_get_fuzzy_max(s1), estate_get_

53 if (estate_capped(s1) && estate_capped(s2))
54 estate_set_capped(tmp);

56 return tmp;
57 }

______unchanged_portion_omitted_

142 bool estate_capped(struct smatch_state *state)

new/usr/src/tools/smatch/src/smatch_estate.c 2

143 {
144 if (!state)
145 return false;
146 /* impossible states are capped */
147 if (!estate_rl(state))
148 return true;
149 return get_dinfo(state)->capped;
150 }

152 void estate_set_capped(struct smatch_state *state)
153 {
154 get_dinfo(state)->capped = true;
155 }

157 sval_t estate_min(struct smatch_state *state)
158 {
159 return rl_min(estate_rl(state));
160 }

______unchanged_portion_omitted_

197 int estates_equiv(struct smatch_state *one, struct smatch_state *two)
198 {
199 if (!one || !two)
200 return 0;
201 if (one == two)
202 return 1;
203 if (!rlists_equiv(estate_related(one), estate_related(two)))
204 return 0;
205 if (estate_capped(one) != estate_capped(two))
206 return 0;
207 if (strcmp(one->name, two->name) == 0)
208 return 1;
209 return 0;
210 }

______unchanged_portion_omitted_

297 struct smatch_state *clone_partial_estate(struct smatch_state *state, struct ran
298 {
299 struct smatch_state *ret;

301 if (!state)
302 return NULL;

304 rl = cast_rl(estate_type(state), rl);

306 ret = alloc_estate_rl(rl);
307 set_related(ret, clone_related_list(estate_related(state)));
308 if (estate_has_hard_max(state))
309 estate_set_hard_max(ret);
310 if (estate_has_fuzzy_max(state))
311 estate_set_fuzzy_max(ret, estate_get_fuzzy_max(state));

313 return ret;
314 }

316 struct smatch_state *alloc_estate_empty(void)
317 {
318 struct smatch_state *state;
319 struct data_info *dinfo;

321 dinfo = alloc_dinfo();
322 state = __alloc_smatch_state(0);
323 state->data = dinfo;
324 state->name = "";
325 return state;
326 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_estate.c 3

368 struct smatch_state *estate_filter_range(struct smatch_state *orig,
369 sval_t filter_min, sval_t filter_max)
370 {
371 struct range_list *rl;
372 struct smatch_state *state;

374 if (!orig)
375 orig = alloc_estate_whole(filter_min.type);

377 rl = remove_range(estate_rl(orig), filter_min, filter_max);
378 state = alloc_estate_rl(rl);
379 if (estate_has_hard_max(orig))
380 estate_set_hard_max(state);
381 if (estate_has_fuzzy_max(orig))
382 estate_set_fuzzy_max(state, estate_get_fuzzy_max(orig));
383 return state;
384 }

386 struct smatch_state *estate_filter_sval(struct smatch_state *orig, sval_t sval)
387 {
388 return estate_filter_range(orig, sval, sval);
389 }

409 /*
410 * One of the complications is that smatch tries to free a bunch of data at the
411 * end of every function.
412 */
413 struct data_info *clone_dinfo_perm(struct data_info *dinfo)
414 {
415 struct data_info *ret;

417 ret = malloc(sizeof(*ret));
418 memset(ret, 0, sizeof(*ret));
419 ret->related = NULL;
420 ret->value_ranges = clone_rl_permanent(dinfo->value_ranges);
421 ret->hard_max = 0;
422 ret->fuzzy_max = dinfo->fuzzy_max;
423 return ret;
424 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_expressions.c 1

**
 5221 Mon Aug 5 08:38:30 2019
new/usr/src/tools/smatch/src/smatch_expressions.c
11506 smatch resync
**
______unchanged_portion_omitted_

165 struct expression *gen_expression_from_key(struct expression *arg, const char *k
166 {
167 struct expression *ret;
168 struct token *token, *prev, *end;
168 struct token *token, *end;
169 const char *p = key;
170 char buf[4095];
171 char *alloc;
172 size_t len;

174 /* The idea is that we can parse either $0->foo or $->foo */
175 if (key[0] != ’$’)
176 return NULL;
177 p++;
178 while (*p >= ’0’ && *p <= ’9’)
179 p++;
180 len = snprintf(buf, sizeof(buf), "%s\n", p);
181 alloc = alloc_string(buf);

183 token = tokenize_buffer(alloc, len, &end);
184 if (!token)
185 return NULL;
186 if (token_type(token) != TOKEN_STREAMBEGIN)
187 return NULL;
188 token = token->next;

190 ret = arg;
191 while (token_type(token) == TOKEN_SPECIAL &&
192 (token->special == SPECIAL_DEREFERENCE || token->special == ’.’))
193 prev = token;
192 token->special == SPECIAL_DEREFERENCE) {
194 token = token->next;
195 if (token_type(token) != TOKEN_IDENT)
196 return NULL;
197 ret = deref_expression(ret);
198 ret = member_expression(ret,
199 (prev->special == SPECIAL_DEREFERENCE) ?
200 token->ident);
197 ret = member_expression(ret, ’*’, token->ident);
201 token = token->next;
202 }

204 if (token_type(token) != TOKEN_STREAMEND)
205 return NULL;

207 return ret;
208 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_extra.c 1

**
 72935 Mon Aug 5 08:38:30 2019
new/usr/src/tools/smatch/src/smatch_extra.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2008 Dan Carpenter.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 /*
19 * smatch_extra.c is supposed to track the value of every variable.
20 *
21 */

23 #define _GNU_SOURCE
24 #include <string.h>

26 #include <stdlib.h>
27 #include <errno.h>
28 #ifndef __USE_ISOC99
29 #define __USE_ISOC99
30 #endif
31 #include <limits.h>
32 #include "parse.h"
33 #include "smatch.h"
34 #include "smatch_slist.h"
35 #include "smatch_extra.h"

37 static int my_id;
38 static int link_id;
39 extern int check_assigned_expr_id;

41 static void match_link_modify(struct sm_state *sm, struct expression *mod_expr);

43 struct string_list *__ignored_macros = NULL;
44 int in_warn_on_macro(void)
43 static int in_warn_on_macro(void)
45 {
46 struct statement *stmt;
47 char *tmp;
48 char *macro;

50 stmt = get_current_statement();
51 if (!stmt)
52 return 0;
53 macro = get_macro_name(stmt->pos);
54 if (!macro)
55 return 0;

57 FOR_EACH_PTR(__ignored_macros, tmp) {
58 if (!strcmp(tmp, macro))
59 return 1;
60 } END_FOR_EACH_PTR(tmp);

new/usr/src/tools/smatch/src/smatch_extra.c 2

61 return 0;
62 }

______unchanged_portion_omitted_

138 char *get_other_name_sym_from_chunk(const char *name, const char *chunk, int len
137 char *get_other_name_sym(const char *name, struct symbol *sym, struct symbol **n
139 {
140 struct expression *assigned;
141 char *orig_name = NULL;
142 char buf[256];
143 char *ret;
142 char *ret = NULL;
143 int skip;

145 assigned = get_assigned_expr_name_sym(chunk, sym);
145 *new_sym = NULL;

147 if (!sym || !sym->ident)
148 return NULL;

150 ret = get_pointed_at(name, sym, new_sym);
151 if (ret)
152 return ret;

154 skip = strlen(sym->ident->name);
155 if (name[skip] != ’-’ || name[skip + 1] != ’>’)
156 return NULL;
157 skip += 2;

159 assigned = get_assigned_expr_name_sym(sym->ident->name, sym);
146 if (!assigned)
147 return NULL;
148 if (assigned->type == EXPR_CALL)
149 return map_call_to_other_name_sym(name, sym, new_sym);
150 if (assigned->type == EXPR_PREOP && assigned->op == ’&’) {
164 if (assigned->type == EXPR_PREOP || assigned->op == ’&’) {

152 orig_name = expr_to_var_sym(assigned, new_sym);
153 if (!orig_name || !*new_sym)
154 goto free;

156 snprintf(buf, sizeof(buf), "%s.%s", orig_name + 1, name + len);
170 snprintf(buf, sizeof(buf), "%s.%s", orig_name + 1, name + skip);
157 ret = alloc_string(buf);
158 free_string(orig_name);
159 return ret;
160 }

176 if (assigned->type != EXPR_DEREF)
177 goto free;

162 orig_name = expr_to_var_sym(assigned, new_sym);
163 if (!orig_name || !*new_sym)
164 goto free;

166 snprintf(buf, sizeof(buf), "%s->%s", orig_name, name + len);
183 snprintf(buf, sizeof(buf), "%s->%s", orig_name, name + skip);
167 ret = alloc_string(buf);
168 free_string(orig_name);
169 return ret;

170 free:
171 free_string(orig_name);
172 return NULL;
173 }

new/usr/src/tools/smatch/src/smatch_extra.c 3

175 static char *get_long_name_sym(const char *name, struct symbol *sym, struct symb
176 {
177 struct expression *tmp;
178 struct sm_state *sm;
179 char buf[256];

181 /*
182 * Just prepend the name with a different name/sym and return that.
183 * For example, if we set "foo->bar = bar;" then we clamp "bar->baz",
184 * that also clamps "foo->bar->baz".
185 *
186 */

188 FOR_EACH_MY_SM(check_assigned_expr_id, __get_cur_stree(), sm) {
189 tmp = sm->state->data;
190 if (!tmp || tmp->type != EXPR_SYMBOL)
191 continue;
192 if (tmp->symbol == sym)
193 goto found;
194 } END_FOR_EACH_SM(sm);

196 return NULL;

198 found:
199 snprintf(buf, sizeof(buf), "%s%s", sm->name, name + tmp->symbol->ident->
200 *new_sym = sm->sym;
201 return alloc_string(buf);
202 }

204 char *get_other_name_sym_helper(const char *name, struct symbol *sym, struct sym
205 {
206 char buf[256];
207 char *ret;
208 int len;

210 *new_sym = NULL;

212 if (!sym || !sym->ident)
213 return NULL;

215 ret = get_pointed_at(name, sym, new_sym);
216 if (ret)
217 return ret;

219 ret = map_long_to_short_name_sym(name, sym, new_sym, use_stack);
220 if (ret)
221 return ret;

223 len = snprintf(buf, sizeof(buf), "%s", name);
224 if (len >= sizeof(buf) - 2)
225 return NULL;

227 while (len >= 1) {
228 if (buf[len] == ’>’ && buf[len - 1] == ’-’) {
229 len--;
230 buf[len] = ’\0’;
231 ret = get_other_name_sym_from_chunk(name, buf, len + 2,
232 if (ret)
233 return ret;
234 }
235 len--;
236 }

238 ret = get_long_name_sym(name, sym, new_sym);
239 if (ret)
240 return ret;

new/usr/src/tools/smatch/src/smatch_extra.c 4

242 return NULL;
243 }

245 char *get_other_name_sym(const char *name, struct symbol *sym, struct symbol **n
246 {
247 return get_other_name_sym_helper(name, sym, new_sym, true);
248 }

250 char *get_other_name_sym_nostack(const char *name, struct symbol *sym, struct sy
251 {
252 return get_other_name_sym_helper(name, sym, new_sym, false);
253 }

255 void set_extra_mod(const char *name, struct symbol *sym, struct expression *expr
256 {
257 char *new_name;
258 struct symbol *new_sym;

260 set_extra_mod_helper(name, sym, expr, state);
261 new_name = get_other_name_sym(name, sym, &new_sym);
262 if (new_name && new_sym)
263 set_extra_mod_helper(new_name, new_sym, expr, state);
264 free_string(new_name);
265 }

______unchanged_portion_omitted_

339 void set_extra_nomod(const char *name, struct symbol *sym, struct expression *ex
340 {
341 char *new_name;
342 struct symbol *new_sym;
343 struct relation *rel;
344 struct smatch_state *orig_state;

346 orig_state = get_state(SMATCH_EXTRA, name, sym);

348 /* don’t save unknown states if leaving it blank is the same */
349 if (!orig_state && estate_is_unknown(state))
350 return;

352 new_name = get_other_name_sym(name, sym, &new_sym);
353 if (new_name && new_sym)
354 set_extra_nomod_helper(new_name, new_sym, expr, state);
355 free_string(new_name);

357 if (!estate_related(orig_state)) {
358 set_extra_nomod_helper(name, sym, expr, state);
359 return;
360 }

362 set_related(state, estate_related(orig_state));
363 FOR_EACH_PTR(estate_related(orig_state), rel) {
364 struct smatch_state *estate;

304 if (option_debug_related)
305 sm_msg("%s updating related %s to %s", name, rel->name,
366 estate = get_state(SMATCH_EXTRA, rel->name, rel->sym);
367 if (!estate)
368 continue;
369 set_extra_nomod_helper(rel->name, rel->sym, expr, clone_estate_c
370 } END_FOR_EACH_PTR(rel);
371 }

______unchanged_portion_omitted_

543 static struct sm_state *handle_canonical_while_count_down(struct statement *loop
544 {

new/usr/src/tools/smatch/src/smatch_extra.c 5

545 struct expression *iter_var;
546 struct expression *condition, *unop;
547 struct symbol *type;
548 struct sm_state *sm;
549 struct smatch_state *estate;
550 int op;
551 sval_t start, right;

553 right.type = &int_ctype;
554 right.value = 0;

556 condition = strip_expr(loop->iterator_pre_condition);
557 if (!condition)
558 return NULL;

560 if (!get_countdown_info(condition, &unop, &op, &right))
561 return NULL;

563 iter_var = unop->unop;

565 sm = get_sm_state_expr(SMATCH_EXTRA, iter_var);
566 if (!sm)
567 return NULL;
568 if (sval_cmp(estate_min(sm->state), right) < 0)
569 return NULL;
570 start = estate_max(sm->state);

572 type = get_type(iter_var);
573 right = sval_cast(type, right);
574 start = sval_cast(type, start);

576 if (sval_cmp(start, right) <= 0)
577 return NULL;
578 if (!sval_is_max(start))
579 start.value--;

581 if (op == SPECIAL_GTE)
582 right.value--;

584 if (unop->type == EXPR_PREOP) {
585 right.value++;
586 estate = alloc_estate_range(right, start);
587 if (estate_has_hard_max(sm->state))
588 estate_set_hard_max(estate);
589 estate_copy_fuzzy_max(estate, sm->state);
590 set_extra_expr_mod(iter_var, estate);
591 }
592 if (unop->type == EXPR_POSTOP) {
593 estate = alloc_estate_range(right, start);
594 if (estate_has_hard_max(sm->state))
595 estate_set_hard_max(estate);
596 estate_copy_fuzzy_max(estate, sm->state);
597 set_extra_expr_mod(iter_var, estate);
598 }
599 return get_sm_state_expr(SMATCH_EXTRA, iter_var);
600 }

602 static struct sm_state *handle_canonical_for_inc(struct expression *iter_expr,
603 struct expression *condition)
604 {
605 struct expression *iter_var;
606 struct sm_state *sm;
607 struct smatch_state *estate;
608 sval_t start, end, max;
609 struct symbol *type;

new/usr/src/tools/smatch/src/smatch_extra.c 6

611 iter_var = iter_expr->unop;
612 sm = get_sm_state_expr(SMATCH_EXTRA, iter_var);
613 if (!sm)
614 return NULL;
615 if (!estate_get_single_value(sm->state, &start))
616 return NULL;
617 if (!get_implied_value(condition->right, &end))
618 return NULL;
550 if (get_implied_max(condition->right, &end))
551 end = sval_cast(get_type(iter_var), end);
552 else
553 end = sval_type_max(get_type(iter_var));

620 if (get_sm_state_expr(SMATCH_EXTRA, condition->left) != sm)
621 return NULL;

623 switch (condition->op) {
624 case SPECIAL_UNSIGNED_LT:
625 case SPECIAL_NOTEQUAL:
626 case ’<’:
627 if (!sval_is_min(end))
628 end.value--;
629 break;
630 case SPECIAL_UNSIGNED_LTE:
631 case SPECIAL_LTE:
632 break;
633 default:
634 return NULL;
635 }
636 if (sval_cmp(end, start) < 0)
637 return NULL;
638 type = get_type(iter_var);
639 start = sval_cast(type, start);
640 end = sval_cast(type, end);
641 estate = alloc_estate_range(start, end);
642 if (get_hard_max(condition->right, &max)) {
643 if (!get_macro_name(condition->pos))
644 estate_set_hard_max(estate);
645 if (condition->op == ’<’ ||
646 condition->op == SPECIAL_UNSIGNED_LT ||
647 condition->op == SPECIAL_NOTEQUAL)
648 max.value--;
649 max = sval_cast(type, max);
650 estate_set_fuzzy_max(estate, max);
651 }
652 set_extra_expr_mod(iter_var, estate);
653 return get_sm_state_expr(SMATCH_EXTRA, iter_var);
654 }

656 static struct sm_state *handle_canonical_for_dec(struct expression *iter_expr,
657 struct expression *condition)
658 {
659 struct expression *iter_var;
660 struct sm_state *sm;
661 struct smatch_state *estate;
662 sval_t start, end;

664 iter_var = iter_expr->unop;
665 sm = get_sm_state_expr(SMATCH_EXTRA, iter_var);
666 if (!sm)
667 return NULL;
668 if (!estate_get_single_value(sm->state, &start))
669 return NULL;
670 if (!get_implied_min(condition->right, &end))
671 end = sval_type_min(get_type(iter_var));
672 end = sval_cast(estate_type(sm->state), end);

new/usr/src/tools/smatch/src/smatch_extra.c 7

673 if (get_sm_state_expr(SMATCH_EXTRA, condition->left) != sm)
674 return NULL;

676 switch (condition->op) {
677 case SPECIAL_NOTEQUAL:
678 case ’>’:
679 if (!sval_is_max(end))
608 if (!sval_is_min(end) && !sval_is_max(end))
680 end.value++;
681 break;
682 case SPECIAL_GTE:
683 break;
684 default:
685 return NULL;
686 }
687 if (sval_cmp(end, start) > 0)
688 return NULL;
689 estate = alloc_estate_range(end, start);
690 estate_set_hard_max(estate);
691 estate_set_fuzzy_max(estate, estate_get_fuzzy_max(estate));
692 set_extra_expr_mod(iter_var, estate);
693 return get_sm_state_expr(SMATCH_EXTRA, iter_var);
694 }

______unchanged_portion_omitted_

764 void __extra_pre_loop_hook_after(struct sm_state *sm,
765 struct statement *iterator,
766 struct expression *condition)
767 {
768 struct expression *iter_expr;
769 sval_t limit;
770 struct smatch_state *state;

772 if (!iterator) {
773 while_count_down_after(sm, condition);
774 return;
775 }

777 iter_expr = iterator->expression;

779 if (condition->type != EXPR_COMPARE)
780 return;
781 if (iter_expr->op == SPECIAL_INCREMENT) {
782 limit = sval_binop(estate_max(sm->state), ’+’,
783 sval_type_val(estate_type(sm->state), 1));
784 } else {
785 limit = sval_binop(estate_min(sm->state), ’-’,
786 sval_type_val(estate_type(sm->state), 1));
787 }
788 limit = sval_cast(estate_type(sm->state), limit);
789 if (!estate_has_hard_max(sm->state) && !__has_breaks()) {
790 if (iter_expr->op == SPECIAL_INCREMENT)
791 state = alloc_estate_range(estate_min(sm->state), limit)
792 else
793 state = alloc_estate_range(limit, estate_max(sm->state))
794 } else {
795 state = alloc_estate_sval(limit);
796 }
797 if (!estate_has_hard_max(sm->state)) {
798 estate_clear_hard_max(state);
799 }
800 if (estate_has_fuzzy_max(sm->state)) {
801 sval_t hmax = estate_get_fuzzy_max(sm->state);
802 sval_t max = estate_max(sm->state);

804 if (sval_cmp(hmax, max) != 0)

new/usr/src/tools/smatch/src/smatch_extra.c 8

805 estate_clear_fuzzy_max(state);
806 } else if (!estate_has_fuzzy_max(sm->state)) {
807 estate_clear_fuzzy_max(state);
808 }

810 set_extra_mod(sm->name, sm->sym, iter_expr, state);
811 }

813 static bool get_global_rl(const char *name, struct symbol *sym, struct range_lis
814 {
815 struct expression *expr;

817 if (!sym || !(sym->ctype.modifiers & MOD_TOPLEVEL) || !sym->ident)
818 return false;
819 if (strcmp(sym->ident->name, name) != 0)
820 return false;

822 expr = symbol_expression(sym);
823 return get_implied_rl(expr, rl);
824 }

826 static struct stree *unmatched_stree;
827 static struct smatch_state *unmatched_state(struct sm_state *sm)
828 {
829 struct smatch_state *state;
830 struct range_list *rl;

832 if (unmatched_stree) {
833 state = get_state_stree(unmatched_stree, SMATCH_EXTRA, sm->name,
834 if (state)
835 return state;
836 }
837 if (parent_is_gone_var_sym(sm->name, sm->sym))
838 return alloc_estate_empty();
839 if (get_global_rl(sm->name, sm->sym, &rl))
840 return alloc_estate_rl(rl);
841 return alloc_estate_whole(estate_type(sm->state));
842 }

______unchanged_portion_omitted_

906 int values_fit_type(struct expression *left, struct expression *right)
818 static int values_fit_type(struct expression *left, struct expression *right)
907 {
908 struct range_list *rl;
909 struct symbol *type;

911 type = get_type(left);
912 if (!type)
913 return 0;
914 get_absolute_rl(right, &rl);
915 if (type == rl_type(rl))
916 return 1;
917 if (type_unsigned(type) && sval_is_negative(rl_min(rl)))
918 return 0;
919 if (sval_cmp(sval_type_min(type), rl_min(rl)) > 0)
920 return 0;
921 if (sval_cmp(sval_type_max(type), rl_max(rl)) < 0)
922 return 0;
923 return 1;
924 }

______unchanged_portion_omitted_

973 static void match_vanilla_assign(struct expression *left, struct expression *rig
974 {
975 struct range_list *orig_rl = NULL;
976 struct range_list *rl = NULL;

new/usr/src/tools/smatch/src/smatch_extra.c 9

977 struct symbol *right_sym;
978 struct symbol *left_type;
979 struct symbol *right_type;
980 char *right_name = NULL;
981 struct symbol *sym;
982 char *name;
983 sval_t sval, max;
984 struct smatch_state *state;
985 int comparison;

987 if (is_struct(left))
988 return;

990 save_chunk_info(left, right);

992 name = expr_to_var_sym(left, &sym);
993 if (!name) {
994 if (chunk_has_array(left))
995 do_array_assign(left, ’=’, right);
996 return;
997 }

999 left_type = get_type(left);
1000 right_type = get_type(right);

1002 right_name = expr_to_var_sym(right, &right_sym);

1004 if (!__in_fake_assign &&
1005 !(right->type == EXPR_PREOP && right->op == ’&’) &&
1006 right_name && right_sym &&
1007 values_fit_type(left, strip_expr(right)) &&
1008 !has_symbol(right, sym)) {
1009 set_equiv(left, right);
1010 goto free;
1011 }

1013 if (is_pointer(right) && get_address_rl(right, &rl)) {
1014 state = alloc_estate_rl(rl);
1015 goto done;
1016 }

1018 if (get_implied_value(right, &sval)) {
1019 state = alloc_estate_sval(sval_cast(left_type, sval));
1020 goto done;
1021 }

1023 if (__in_fake_assign) {
1024 struct smatch_state *right_state;
1025 sval_t sval;

1027 if (get_value(right, &sval)) {
1028 sval = sval_cast(left_type, sval);
1029 state = alloc_estate_sval(sval);
1030 goto done;
1031 }

1033 right_state = get_state(SMATCH_EXTRA, right_name, right_sym);
1034 if (right_state) {
1035 /* simple assignment */
1036 state = clone_estate(right_state);
1037 goto done;
1038 }

1040 state = alloc_estate_rl(alloc_whole_rl(left_type));
1041 goto done;
1042 }

new/usr/src/tools/smatch/src/smatch_extra.c 10

1044 comparison = get_comparison_no_extra(left, right);
954 comparison = get_comparison(left, right);
1045 if (comparison) {
1046 comparison = flip_comparison(comparison);
1047 get_implied_rl(left, &orig_rl);
1048 }

1050 if (get_implied_rl(right, &rl)) {
1051 rl = cast_rl(left_type, rl);
1052 if (orig_rl)
1053 filter_by_comparison(&rl, comparison, orig_rl);
1054 state = alloc_estate_rl(rl);
1055 if (get_hard_max(right, &max)) {
1056 estate_set_hard_max(state);
1057 estate_set_fuzzy_max(state, max);
1058 }
1059 } else {
1060 rl = alloc_whole_rl(right_type);
1061 rl = cast_rl(left_type, rl);
1062 if (orig_rl)
1063 filter_by_comparison(&rl, comparison, orig_rl);
1064 state = alloc_estate_rl(rl);
1065 }

1067 done:
1068 set_extra_mod(name, sym, left, state);
1069 free:
1070 free_string(right_name);
1071 }

983 static int op_remove_assign(int op)
984 {
985 switch (op) {
986 case SPECIAL_ADD_ASSIGN:
987 return ’+’;
988 case SPECIAL_SUB_ASSIGN:
989 return ’-’;
990 case SPECIAL_MUL_ASSIGN:
991 return ’*’;
992 case SPECIAL_DIV_ASSIGN:
993 return ’/’;
994 case SPECIAL_MOD_ASSIGN:
995 return ’%’;
996 case SPECIAL_AND_ASSIGN:
997 return ’&’;
998 case SPECIAL_OR_ASSIGN:
999 return ’|’;

1000 case SPECIAL_XOR_ASSIGN:
1001 return ’^’;
1002 case SPECIAL_SHL_ASSIGN:
1003 return SPECIAL_LEFTSHIFT;
1004 case SPECIAL_SHR_ASSIGN:
1005 return SPECIAL_RIGHTSHIFT;
1006 default:
1007 return op;
1008 }
1009 }

1073 static void match_assign(struct expression *expr)
1074 {
1075 struct range_list *rl = NULL;
1076 struct expression *left;
1077 struct expression *right;
1078 struct expression *binop_expr;
1079 struct symbol *left_type;

new/usr/src/tools/smatch/src/smatch_extra.c 11

1080 struct symbol *sym;
1081 char *name;
1020 sval_t left_min, left_max;
1021 sval_t right_min, right_max;
1022 sval_t res_min, res_max;

1083 left = strip_expr(expr->left);

1085 right = strip_parens(expr->right);
1086 if (right->type == EXPR_CALL && sym_name_is("__builtin_expect", right->f
1087 right = get_argument_from_call_expr(right->args, 0);
1088 while (right->type == EXPR_ASSIGNMENT && right->op == ’=’)
1089 right = strip_parens(right->left);

1091 if (expr->op == ’=’ && is_condition(expr->right))
1092 return; /* handled in smatch_condition.c */
1093 if (expr->op == ’=’ && right->type == EXPR_CALL)
1094 return; /* handled in smatch_function_hooks.c */
1095 if (expr->op == ’=’) {
1096 match_vanilla_assign(left, right);
1097 return;
1098 }

1100 name = expr_to_var_sym(left, &sym);
1101 if (!name)
1102 return;

1104 left_type = get_type(left);

1047 res_min = sval_type_min(left_type);
1048 res_max = sval_type_max(left_type);

1106 switch (expr->op) {
1107 case SPECIAL_ADD_ASSIGN:
1052 get_absolute_max(left, &left_max);
1053 get_absolute_max(right, &right_max);
1054 if (sval_binop_overflows(left_max, ’+’, sval_cast(left_type, rig
1055 break;
1056 if (get_implied_min(left, &left_min) &&
1057 !sval_is_negative_min(left_min) &&
1058 get_implied_min(right, &right_min) &&
1059 !sval_is_negative_min(right_min)) {
1060 res_min = sval_binop(left_min, ’+’, right_min);
1061 res_min = sval_cast(left_type, res_min);
1062 }
1063 if (inside_loop()) /* we are assuming loops don’t lead to wrapp
1064 break;
1065 res_max = sval_binop(left_max, ’+’, right_max);
1066 res_max = sval_cast(left_type, res_max);
1067 break;
1108 case SPECIAL_SUB_ASSIGN:
1069 if (get_implied_max(left, &left_max) &&
1070 !sval_is_max(left_max) &&
1071 get_implied_min(right, &right_min) &&
1072 !sval_is_min(right_min)) {
1073 res_max = sval_binop(left_max, ’-’, right_min);
1074 res_max = sval_cast(left_type, res_max);
1075 }
1076 if (inside_loop())
1077 break;
1078 if (get_implied_min(left, &left_min) &&
1079 !sval_is_min(left_min) &&
1080 get_implied_max(right, &right_max) &&
1081 !sval_is_max(right_max)) {
1082 res_min = sval_binop(left_min, ’-’, right_max);
1083 res_min = sval_cast(left_type, res_min);

new/usr/src/tools/smatch/src/smatch_extra.c 12

1084 }
1085 break;
1109 case SPECIAL_AND_ASSIGN:
1110 case SPECIAL_MOD_ASSIGN:
1111 case SPECIAL_SHL_ASSIGN:
1112 case SPECIAL_SHR_ASSIGN:
1113 case SPECIAL_OR_ASSIGN:
1114 case SPECIAL_XOR_ASSIGN:
1115 case SPECIAL_MUL_ASSIGN:
1116 case SPECIAL_DIV_ASSIGN:
1117 binop_expr = binop_expression(expr->left,
1118 op_remove_assign(expr->op),
1119 expr->right);
1120 get_absolute_rl(binop_expr, &rl);
1097 if (get_absolute_rl(binop_expr, &rl)) {
1121 rl = cast_rl(left_type, rl);
1122 if (inside_loop()) {
1123 if (expr->op == SPECIAL_ADD_ASSIGN)
1124 add_range(&rl, rl_max(rl), sval_type_max(rl_type

1126 if (expr->op == SPECIAL_SUB_ASSIGN &&
1127 !sval_is_negative(rl_min(rl))) {
1128 sval_t zero = { .type = rl_type(rl) };

1130 add_range(&rl, rl_min(rl), zero);
1131 }
1132 }
1133 set_extra_mod(name, sym, left, alloc_estate_rl(rl));
1134 goto free;
1135 }
1136 set_extra_mod(name, sym, left, alloc_estate_whole(left_type));
1102 break;
1103 }
1104 rl = cast_rl(left_type, alloc_rl(res_min, res_max));
1105 set_extra_mod(name, sym, left, alloc_estate_rl(rl));
1137 free:
1138 free_string(name);
1139 }
______unchanged_portion_omitted_

1251 static void check_dereference(struct expression *expr)
1252 {
1253 struct smatch_state *state;

1255 if (__in_fake_assign)
1256 return;
1257 if (outside_of_function())
1258 return;
1259 state = get_extra_state(expr);
1260 if (state) {
1261 struct range_list *rl;

1263 rl = rl_intersection(estate_rl(state), valid_ptr_rl);
1264 if (rl_equiv(rl, estate_rl(state)))
1265 return;
1266 set_extra_expr_nomod(expr, alloc_estate_rl(rl));
1267 } else {
1268 struct range_list *rl;

1270 if (get_mtag_rl(expr, &rl))
1271 rl = rl_intersection(rl, valid_ptr_rl);
1272 else
1273 rl = clone_rl(valid_ptr_rl);

1275 set_extra_expr_nomod(expr, alloc_estate_rl(rl));
1237 set_extra_expr_nomod(expr, alloc_estate_range(valid_ptr_min_sval

new/usr/src/tools/smatch/src/smatch_extra.c 13

1276 }
1277 }
______unchanged_portion_omitted_

1338 static int handle_postop_inc(struct expression *left, int op, struct expression
1339 {
1340 struct statement *stmt;
1341 struct expression *cond;
1342 struct smatch_state *true_state, *false_state;
1343 struct symbol *type;
1344 sval_t start;
1345 sval_t limit;

1347 /*
1348 * If we’re decrementing here then that’s a canonical while count down
1349 * so it’s handled already. We’re only handling loops like:
1350 * i = 0;
1351 * do { ... } while (i++ < 3);
1352 */

1354 if (left->type != EXPR_POSTOP || left->op != SPECIAL_INCREMENT)
1355 return 0;

1357 stmt = __cur_stmt->parent;
1358 if (!stmt)
1359 return 0;
1360 if (stmt->type == STMT_COMPOUND)
1361 stmt = stmt->parent;
1362 if (!stmt || stmt->type != STMT_ITERATOR || !stmt->iterator_post_conditi
1363 return 0;

1365 cond = strip_expr(stmt->iterator_post_condition);
1366 if (cond->type != EXPR_COMPARE || cond->op != op)
1367 return 0;
1368 if (left != strip_expr(cond->left) || right != strip_expr(cond->right))
1369 return 0;

1371 if (!get_implied_value(left->unop, &start))
1372 return 0;
1373 if (!get_implied_value(right, &limit))
1374 return 0;
1375 type = get_type(left->unop);
1376 limit = sval_cast(type, limit);

1377 if (sval_cmp(start, limit) > 0)
1378 return 0;

1380 switch (op) {
1381 case ’<’:
1382 case SPECIAL_UNSIGNED_LT:
1383 break;
1384 case SPECIAL_LTE:
1385 case SPECIAL_UNSIGNED_LTE:
1386 limit = add_one(limit);
1387 default:
1388 return 0;

1390 }

1392 true_state = alloc_estate_range(add_one(start), limit);
1393 false_state = alloc_estate_range(add_one(limit), add_one(limit));

1395 /* Currently we just discard the false state but when two passes is
1396 * implimented correctly then it will use it.
1397 */

new/usr/src/tools/smatch/src/smatch_extra.c 14

1399 set_extra_expr_true_false(left->unop, true_state, false_state);

1401 return 1;
1402 }
______unchanged_portion_omitted_

1414 static bool in_macro(struct expression *left, struct expression *right)
1415 {
1416 if (!left || !right)
1417 return 0;
1418 if (left->pos.line != right->pos.line || left->pos.pos != right->pos.pos
1419 return 0;
1420 if (get_macro_name(left->pos))
1421 return 1;
1422 return 0;
1423 }

1425 static void handle_comparison(struct symbol *type, struct expression *left, int
1426 {
1427 struct range_list *left_orig;
1428 struct range_list *left_true;
1429 struct range_list *left_false;
1430 struct range_list *right_orig;
1431 struct range_list *right_true;
1432 struct range_list *right_false;
1433 struct smatch_state *left_true_state;
1434 struct smatch_state *left_false_state;
1435 struct smatch_state *right_true_state;
1436 struct smatch_state *right_false_state;
1437 sval_t dummy, hard_max;
1438 int left_postop = 0;
1439 int right_postop = 0;

1441 if (left->op == SPECIAL_INCREMENT || left->op == SPECIAL_DECREMENT) {
1442 if (left->type == EXPR_POSTOP) {
1443 left->smatch_flags |= Handled;
1444 left_postop = left->op;
1445 if (handle_postop_inc(left, op, right))
1446 return;
1447 }
1448 left = strip_parens(left->unop);
1449 }
1450 while (left->type == EXPR_ASSIGNMENT)
1451 left = strip_parens(left->left);

1453 if (right->op == SPECIAL_INCREMENT || right->op == SPECIAL_DECREMENT) {
1454 if (right->type == EXPR_POSTOP) {
1455 right->smatch_flags |= Handled;
1456 right_postop = right->op;
1457 }
1458 right = strip_parens(right->unop);
1459 }

1461 if (is_impossible_variable(left) || is_impossible_variable(right))
1462 return;

1464 get_real_absolute_rl(left, &left_orig);
1465 left_orig = cast_rl(type, left_orig);

1467 get_real_absolute_rl(right, &right_orig);
1468 right_orig = cast_rl(type, right_orig);

1470 split_comparison_rl(left_orig, op, right_orig, &left_true, &left_false,

1472 left_true = rl_truncate_cast(get_type(strip_expr(left)), left_true);
1473 left_false = rl_truncate_cast(get_type(strip_expr(left)), left_false);

new/usr/src/tools/smatch/src/smatch_extra.c 15

1474 right_true = rl_truncate_cast(get_type(strip_expr(right)), right_true);
1475 right_false = rl_truncate_cast(get_type(strip_expr(right)), right_false)

1477 if (!left_true || !left_false) {
1478 struct range_list *tmp_true, *tmp_false;

1480 split_comparison_rl(alloc_whole_rl(type), op, right_orig, &tmp_t
1481 tmp_true = rl_truncate_cast(get_type(strip_expr(left)), tmp_true
1482 tmp_false = rl_truncate_cast(get_type(strip_expr(left)), tmp_fal
1483 if (tmp_true && tmp_false)
1484 __save_imaginary_state(left, tmp_true, tmp_false);
1485 }

1487 if (!right_true || !right_false) {
1488 struct range_list *tmp_true, *tmp_false;

1490 split_comparison_rl(alloc_whole_rl(type), op, right_orig, NULL,
1491 tmp_true = rl_truncate_cast(get_type(strip_expr(right)), tmp_tru
1492 tmp_false = rl_truncate_cast(get_type(strip_expr(right)), tmp_fa
1493 if (tmp_true && tmp_false)
1494 __save_imaginary_state(right, tmp_true, tmp_false);
1495 }

1497 left_true_state = alloc_estate_rl(left_true);
1498 left_false_state = alloc_estate_rl(left_false);
1499 right_true_state = alloc_estate_rl(right_true);
1500 right_false_state = alloc_estate_rl(right_false);

1502 switch (op) {
1503 case ’<’:
1504 case SPECIAL_UNSIGNED_LT:
1505 case SPECIAL_UNSIGNED_LTE:
1506 case SPECIAL_LTE:
1507 if (get_implied_value(right, &dummy) && !in_macro(left, right))
1456 if (get_hard_max(right, &dummy))
1508 estate_set_hard_max(left_true_state);
1509 if (get_implied_value(left, &dummy) && !in_macro(left, right))
1458 if (get_hard_max(left, &dummy))
1510 estate_set_hard_max(right_false_state);
1511 break;
1512 case ’>’:
1513 case SPECIAL_UNSIGNED_GT:
1514 case SPECIAL_UNSIGNED_GTE:
1515 case SPECIAL_GTE:
1516 if (get_implied_value(left, &dummy) && !in_macro(left, right))
1465 if (get_hard_max(left, &dummy))
1517 estate_set_hard_max(right_true_state);
1518 if (get_implied_value(right, &dummy) && !in_macro(left, right))
1467 if (get_hard_max(right, &dummy))
1519 estate_set_hard_max(left_false_state);
1520 break;
1521 }

1523 switch (op) {
1524 case ’<’:
1525 case SPECIAL_UNSIGNED_LT:
1526 case SPECIAL_UNSIGNED_LTE:
1527 case SPECIAL_LTE:
1528 if (get_hard_max(right, &hard_max)) {
1529 if (op == ’<’ || op == SPECIAL_UNSIGNED_LT)
1530 hard_max.value--;
1531 estate_set_fuzzy_max(left_true_state, hard_max);
1532 }
1533 if (get_implied_value(right, &hard_max)) {
1534 if (op == SPECIAL_UNSIGNED_LTE ||
1535 op == SPECIAL_LTE)

new/usr/src/tools/smatch/src/smatch_extra.c 16

1536 hard_max.value++;
1537 estate_set_fuzzy_max(left_false_state, hard_max);
1538 }
1539 if (get_hard_max(left, &hard_max)) {
1540 if (op == SPECIAL_UNSIGNED_LTE ||
1541 op == SPECIAL_LTE)
1542 hard_max.value--;
1543 estate_set_fuzzy_max(right_false_state, hard_max);
1544 }
1545 if (get_implied_value(left, &hard_max)) {
1546 if (op == ’<’ || op == SPECIAL_UNSIGNED_LT)
1547 hard_max.value++;
1548 estate_set_fuzzy_max(right_true_state, hard_max);
1549 }
1550 break;
1551 case ’>’:
1552 case SPECIAL_UNSIGNED_GT:
1553 case SPECIAL_UNSIGNED_GTE:
1554 case SPECIAL_GTE:
1555 if (get_hard_max(left, &hard_max)) {
1556 if (op == ’>’ || op == SPECIAL_UNSIGNED_GT)
1557 hard_max.value--;
1558 estate_set_fuzzy_max(right_true_state, hard_max);
1559 }
1560 if (get_implied_value(left, &hard_max)) {
1561 if (op == SPECIAL_UNSIGNED_GTE ||
1562 op == SPECIAL_GTE)
1563 hard_max.value++;
1564 estate_set_fuzzy_max(right_false_state, hard_max);
1565 }
1566 if (get_hard_max(right, &hard_max)) {
1567 if (op == SPECIAL_UNSIGNED_LTE ||
1568 op == SPECIAL_LTE)
1569 hard_max.value--;
1570 estate_set_fuzzy_max(left_false_state, hard_max);
1571 }
1572 if (get_implied_value(right, &hard_max)) {
1573 if (op == ’>’ ||
1574 op == SPECIAL_UNSIGNED_GT)
1575 hard_max.value++;
1576 estate_set_fuzzy_max(left_true_state, hard_max);
1577 }
1578 break;
1579 case SPECIAL_EQUAL:
1580 if (get_hard_max(left, &hard_max))
1581 estate_set_fuzzy_max(right_true_state, hard_max);
1582 if (get_hard_max(right, &hard_max))
1583 estate_set_fuzzy_max(left_true_state, hard_max);
1584 break;
1585 }

1587 if (get_hard_max(left, &hard_max)) {
1588 estate_set_hard_max(left_true_state);
1589 estate_set_hard_max(left_false_state);
1590 }
1591 if (get_hard_max(right, &hard_max)) {
1592 estate_set_hard_max(right_true_state);
1593 estate_set_hard_max(right_false_state);
1594 }

1596 if (left_postop == SPECIAL_INCREMENT) {
1597 left_true_state = increment_state(left_true_state);
1598 left_false_state = increment_state(left_false_state);
1599 }
1600 if (left_postop == SPECIAL_DECREMENT) {
1601 left_true_state = decrement_state(left_true_state);

new/usr/src/tools/smatch/src/smatch_extra.c 17

1602 left_false_state = decrement_state(left_false_state);
1603 }
1604 if (right_postop == SPECIAL_INCREMENT) {
1605 right_true_state = increment_state(right_true_state);
1606 right_false_state = increment_state(right_false_state);
1607 }
1608 if (right_postop == SPECIAL_DECREMENT) {
1609 right_true_state = decrement_state(right_true_state);
1610 right_false_state = decrement_state(right_false_state);
1611 }

1613 if (estate_rl(left_true_state) && estates_equiv(left_true_state, left_fa
1614 left_true_state = NULL;
1615 left_false_state = NULL;
1616 }

1618 if (estate_rl(right_true_state) && estates_equiv(right_true_state, right
1619 right_true_state = NULL;
1620 right_false_state = NULL;
1621 }

1623 /* Don’t introduce new states for known true/false conditions */
1624 if (rl_equiv(left_orig, estate_rl(left_true_state)))
1625 left_true_state = NULL;
1626 if (rl_equiv(left_orig, estate_rl(left_false_state)))
1627 left_false_state = NULL;
1628 if (rl_equiv(right_orig, estate_rl(right_true_state)))
1629 right_true_state = NULL;
1630 if (rl_equiv(right_orig, estate_rl(right_false_state)))
1631 right_false_state = NULL;

1633 set_extra_expr_true_false(left, left_true_state, left_false_state);
1634 set_extra_expr_true_false(right, right_true_state, right_false_state);
1635 }
______unchanged_portion_omitted_

1652 static int flip_op(int op)
1653 {
1654 /* We only care about simple math */
1655 switch (op) {
1656 case ’+’:
1657 return ’-’;
1658 case ’-’:
1659 return ’+’;
1660 case ’*’:
1661 return ’/’;
1662 }
1663 return 0;
1664 }

1666 static void move_known_to_rl(struct expression **expr_p, struct range_list **rl_
1667 {
1668 struct expression *expr = *expr_p;
1669 struct range_list *rl = *rl_p;
1670 sval_t sval;

1672 if (!is_simple_math(expr))
1673 return;

1675 if (get_implied_value(expr->right, &sval)) {
1676 *expr_p = expr->left;
1677 *rl_p = rl_binop(rl, flip_op(expr->op), alloc_rl(sval, sval));
1678 move_known_to_rl(expr_p, rl_p);
1679 return;
1680 }
1681 if (expr->op == ’-’)

new/usr/src/tools/smatch/src/smatch_extra.c 18

1682 return;
1683 if (get_implied_value(expr->left, &sval)) {
1684 *expr_p = expr->right;
1685 *rl_p = rl_binop(rl, flip_op(expr->op), alloc_rl(sval, sval));
1686 move_known_to_rl(expr_p, rl_p);
1687 return;
1688 }
1689 }

1691 static void move_known_values(struct expression **left_p, struct expression **ri
1692 {
1693 struct expression *left = *left_p;
1694 struct expression *right = *right_p;
1695 sval_t sval, dummy;

1697 if (get_implied_value(left, &sval)) {
1698 if (!is_simple_math(right))
1699 return;
1700 if (get_implied_value(right, &dummy))
1701 return;
1702 if (right->op == ’*’) {
1703 sval_t divisor;

1705 if (!get_value(right->right, &divisor))
1706 return;
1707 if (divisor.value == 0)
1708 return;
1709 *left_p = binop_expression(left, invert_op(right->op), r
1710 *right_p = right->left;
1711 return;
1712 }
1713 if (right->op == ’+’ && get_value(right->left, &sval)) {
1714 *left_p = binop_expression(left, invert_op(right->op), r
1715 *right_p = right->right;
1716 return;
1717 }
1718 if (get_value(right->right, &sval)) {
1719 *left_p = binop_expression(left, invert_op(right->op), r
1720 *right_p = right->left;
1721 return;
1722 }
1723 return;
1724 }
1725 if (get_implied_value(right, &sval)) {
1726 if (!is_simple_math(left))
1727 return;
1728 if (get_implied_value(left, &dummy))
1729 return;
1730 if (left->op == ’*’) {
1731 sval_t divisor;

1733 if (!get_value(left->right, &divisor))
1734 return;
1735 if (divisor.value == 0)
1736 return;
1737 *right_p = binop_expression(right, invert_op(left->op),
1738 *left_p = left->left;
1739 return;
1740 }
1741 if (left->op == ’+’ && get_value(left->left, &sval)) {
1742 *right_p = binop_expression(right, invert_op(left->op),
1743 *left_p = left->right;
1744 return;
1745 }

1747 if (get_value(left->right, &sval)) {

new/usr/src/tools/smatch/src/smatch_extra.c 19

1748 *right_p = binop_expression(right, invert_op(left->op),
1749 *left_p = left->left;
1750 return;
1751 }
1752 return;
1753 }
1754 }
______unchanged_portion_omitted_

1795 static int match_func_comparison(struct expression *expr)
1796 {
1797 struct expression *left = strip_expr(expr->left);
1798 struct expression *right = strip_expr(expr->right);
1709 sval_t sval;

1800 if (left->type == EXPR_CALL || right->type == EXPR_CALL) {
1711 /*
1712 * fixme: think about this harder. We should always be trying to limit
1713 * the non-call side as well. If we can’t determine the limitter does
1714 * that mean we aren’t querying the database and are missing important
1715 * information?
1716 */

1718 if (left->type == EXPR_CALL) {
1719 if (get_implied_value(left, &sval)) {
1720 handle_comparison(get_type(expr), left, expr->op, right)
1721 return 1;
1722 }
1801 function_comparison(left, expr->op, right);
1802 return 1;
1803 }

1727 if (right->type == EXPR_CALL) {
1728 if (get_implied_value(right, &sval)) {
1729 handle_comparison(get_type(expr), left, expr->op, right)
1730 return 1;
1731 }
1732 function_comparison(left, expr->op, right);
1733 return 1;
1734 }

1805 return 0;
1806 }

1808 /* Handle conditions like "if (foo + bar < foo) {" */
1809 static int handle_integer_overflow_test(struct expression *expr)
1810 {
1811 struct expression *left, *right;
1812 struct symbol *type;
1813 sval_t left_min, right_min, min, max;

1815 if (expr->op != ’<’ && expr->op != SPECIAL_UNSIGNED_LT)
1816 return 0;

1818 left = strip_parens(expr->left);
1819 right = strip_parens(expr->right);

1821 if (left->op != ’+’)
1822 return 0;

1824 type = get_type(expr);
1825 if (!type)
1826 return 0;
1827 if (type_positive_bits(type) == 32) {
1828 max.type = &uint_ctype;
1829 max.uvalue = (unsigned int)-1;

new/usr/src/tools/smatch/src/smatch_extra.c 20

1830 } else if (type_positive_bits(type) == 64) {
1831 max.type = &ulong_ctype;
1832 max.value = (unsigned long long)-1;
1833 } else {
1834 return 0;
1835 }

1837 if (!expr_equiv(left->left, right) && !expr_equiv(left->right, right))
1838 return 0;

1840 get_absolute_min(left->left, &left_min);
1841 get_absolute_min(left->right, &right_min);
1842 min = sval_binop(left_min, ’+’, right_min);

1844 type = get_type(left);
1845 min = sval_cast(type, min);
1846 max = sval_cast(type, max);

1848 set_extra_chunk_true_false(left, NULL, alloc_estate_range(min, max));
1849 return 1;
1850 }
______unchanged_portion_omitted_

1946 static bool handle_bit_test(struct expression *expr)
1947 {
1948 struct range_list *orig_rl, *rl;
1949 struct expression *shift, *mask, *var;
1950 struct bit_info *bit_info;
1951 sval_t sval;
1952 sval_t high = { .type = &int_ctype };
1953 sval_t low = { .type = &int_ctype };

1955 shift = strip_expr(expr->right);
1956 mask = strip_expr(expr->left);
1957 if (shift->type != EXPR_BINOP || shift->op != SPECIAL_LEFTSHIFT) {
1958 shift = strip_expr(expr->left);
1959 mask = strip_expr(expr->right);
1960 if (shift->type != EXPR_BINOP || shift->op != SPECIAL_LEFTSHIFT)
1961 return false;
1962 }
1963 if (!get_implied_value(shift->left, &sval) || sval.value != 1)
1964 return false;
1965 var = strip_expr(shift->right);

1967 bit_info = get_bit_info(mask);
1968 if (!bit_info)
1969 return false;
1970 if (!bit_info->possible)
1971 return false;

1973 get_absolute_rl(var, &orig_rl);
1974 if (sval_is_negative(rl_min(orig_rl)) ||
1975 rl_max(orig_rl).uvalue > type_bits(get_type(shift->left)))
1976 return false;

1978 low.value = ffsll(bit_info->possible);
1979 high.value = sm_fls64(bit_info->possible);
1980 rl = alloc_rl(low, high);
1981 rl = cast_rl(get_type(var), rl);
1982 rl = rl_intersection(orig_rl, rl);
1983 if (!rl)
1984 return false;

1986 set_extra_expr_true_false(shift->right, alloc_estate_rl(rl), NULL);

1988 return true;

new/usr/src/tools/smatch/src/smatch_extra.c 21

1989 }

1991 static void handle_AND_op(struct expression *var, sval_t known)
1992 {
1993 struct range_list *orig_rl;
1994 struct range_list *true_rl = NULL;
1995 struct range_list *false_rl = NULL;
1996 int bit;
1997 sval_t low_mask = known;
1998 sval_t high_mask;
1999 sval_t max;

2001 get_absolute_rl(var, &orig_rl);

2003 if (known.value > 0) {
2004 bit = ffsll(known.value) - 1;
2005 low_mask.uvalue = (1ULL << bit) - 1;
2006 true_rl = remove_range(orig_rl, sval_type_val(known.type, 0), lo
2007 }
2008 high_mask = get_high_mask(known);
2009 if (high_mask.value) {
2010 bit = ffsll(high_mask.value) - 1;
2011 low_mask.uvalue = (1ULL << bit) - 1;

2013 false_rl = orig_rl;
2014 if (sval_is_negative(rl_min(orig_rl)))
2015 false_rl = remove_range(false_rl, sval_type_min(known.ty
2016 false_rl = remove_range(false_rl, low_mask, sval_type_max(known.
2017 if (type_signed(high_mask.type) && type_unsigned(rl_type(false_r
2018 false_rl = remove_range(false_rl,
2019 sval_type_val(rl_type(false_rl),
2020 sval_type_val(rl_type(false_rl), -1));
2021 }
2022 } else if (known.value == 1 &&
2023 get_hard_max(var, &max) &&
2024 sval_cmp(max, rl_max(orig_rl)) == 0 &&
2025 max.value & 1) {
2026 false_rl = remove_range(orig_rl, max, max);
2027 }
2028 set_extra_expr_true_false(var,
2029 true_rl ? alloc_estate_rl(true_rl) : NULL,
2030 false_rl ? alloc_estate_rl(false_rl) : NULL);
2031 }

2033 static void handle_AND_condition(struct expression *expr)
2034 {
2035 sval_t known;

2037 if (handle_bit_test(expr))
2038 return;

2040 if (get_implied_value(expr->left, &known))
2041 handle_AND_op(expr->right, known);
2042 else if (get_implied_value(expr->right, &known))
2043 handle_AND_op(expr->left, known);
2044 }

2046 static void handle_MOD_condition(struct expression *expr)
2047 {
2048 struct range_list *orig_rl;
2049 struct range_list *true_rl;
2050 struct range_list *false_rl = NULL;
2051 sval_t right;
2052 sval_t zero = { 0, };
1931 sval_t zero;

new/usr/src/tools/smatch/src/smatch_extra.c 22

2054 if (!get_implied_value(expr->right, &right) || right.value == 0)
2055 return;
2056 get_absolute_rl(expr->left, &orig_rl);

2058 zero.value = 0;
2059 zero.type = rl_type(orig_rl);

2061 /* We’re basically dorking around the min and max here */
2062 true_rl = remove_range(orig_rl, zero, zero);
2063 if (!sval_is_max(rl_max(true_rl)) &&
2064 !(rl_max(true_rl).value % right.value))
2065 true_rl = remove_range(true_rl, rl_max(true_rl), rl_max(true_rl)

2067 if (rl_equiv(true_rl, orig_rl))
2068 true_rl = NULL;

2070 if (sval_is_positive(rl_min(orig_rl)) &&
2071 (rl_max(orig_rl).value - rl_min(orig_rl).value) / right.value < 5) {
2072 sval_t add;
2073 int i;

2075 add = rl_min(orig_rl);
2076 add.value += right.value - (add.value % right.value);
2077 add.value -= right.value;

2079 for (i = 0; i < 5; i++) {
2080 add.value += right.value;
2081 if (add.value > rl_max(orig_rl).value)
2082 break;
2083 add_range(&false_rl, add, add);
2084 }
2085 } else {
2086 if (rl_min(orig_rl).uvalue != 0 &&
2087 rl_min(orig_rl).uvalue < right.uvalue) {
2088 sval_t chop = right;
2089 chop.value--;
2090 false_rl = remove_range(orig_rl, zero, chop);
2091 }

2093 if (!sval_is_max(rl_max(orig_rl)) &&
2094 (rl_max(orig_rl).value % right.value)) {
2095 sval_t chop = rl_max(orig_rl);
2096 chop.value -= chop.value % right.value;
2097 chop.value++;
2098 if (!false_rl)
2099 false_rl = clone_rl(orig_rl);
2100 false_rl = remove_range(false_rl, chop, rl_max(orig_rl))
2101 }
2102 }

2104 set_extra_expr_true_false(expr->left,
2105 true_rl ? alloc_estate_rl(true_rl) : NULL,
2106 false_rl ? alloc_estate_rl(false_rl) : NULL);
2107 }

2109 /* this is actually hooked from smatch_implied.c... it’s hacky, yes */
2110 void __extra_match_condition(struct expression *expr)
2111 {
1991 struct smatch_state *pre_state;
1992 struct smatch_state *true_state;
1993 struct smatch_state *false_state;
1994 struct range_list *pre_rl;

2112 expr = strip_expr(expr);
2113 switch (expr->type) {
2114 case EXPR_CALL:

new/usr/src/tools/smatch/src/smatch_extra.c 23

2115 function_comparison(expr, SPECIAL_NOTEQUAL, zero_expr());
2116 return;
2117 case EXPR_PREOP:
2118 case EXPR_SYMBOL:
2119 case EXPR_DEREF:
2120 handle_comparison(get_type(expr), expr, SPECIAL_NOTEQUAL, zero_e
2003 case EXPR_DEREF: {
2004 sval_t zero;

2006 zero = sval_blank(expr);
2007 zero.value = 0;

2009 pre_state = get_extra_state(expr);
2010 if (estate_is_empty(pre_state))
2121 return;
2012 if (pre_state)
2013 pre_rl = estate_rl(pre_state);
2014 else
2015 get_absolute_rl(expr, &pre_rl);
2016 if (possibly_true_rl(pre_rl, SPECIAL_EQUAL, rl_zero()))
2017 false_state = alloc_estate_sval(zero);
2018 else
2019 false_state = alloc_estate_empty();
2020 true_state = alloc_estate_rl(remove_range(pre_rl, zero, zero));
2021 set_extra_expr_true_false(expr, true_state, false_state);
2022 return;
2023 }
2122 case EXPR_COMPARE:
2123 match_comparison(expr);
2124 return;
2125 case EXPR_ASSIGNMENT:
2126 __extra_match_condition(expr->left);
2127 return;
2128 case EXPR_BINOP:
2129 if (expr->op == ’&’)
2130 handle_AND_condition(expr);
2131 if (expr->op == ’%’)
2132 handle_MOD_condition(expr);
2133 return;
2134 }
2135 }
______unchanged_portion_omitted_

2254 static int is_kzalloc_info(struct sm_state *sm)
2156 static int filter_unused_kzalloc_info(struct expression *call, int param, char *
2255 {
2256 sval_t sval;

2258 /*
2259 * kzalloc() information is treated as special because so there is just
2260 * a lot of stuff initialized to zero and it makes building the database
2261 * take hours and hours.
2262 *
2263 * In theory, we should just remove this line and not pass any unused
2264 * information, but I’m not sure enough that this code works so I want
2265 * to hold off on that for now.
2266 */
2267 if (!estate_get_single_value(sm->state, &sval))
2268 return 0;
2269 if (sval.value != 0)
2270 return 0;
2271 return 1;
2272 }

2274 static int is_really_long(struct sm_state *sm)
2275 {

new/usr/src/tools/smatch/src/smatch_extra.c 24

2276 const char *p;
2277 int cnt = 0;

2279 p = sm->name;
2280 while ((p = strstr(p, "->"))) {
2281 p += 2;
2282 cnt++;
2283 }

2285 if (cnt < 3 ||
2286 strlen(sm->name) < 40)
2287 return 0;
2288 return 1;
2289 }

2291 static int filter_unused_param_value_info(struct expression *call, int param, ch
2292 {
2293 int found = 0;

2295 /* for function pointers assume everything is used */
2296 if (call->fn->type != EXPR_SYMBOL)
2297 return 0;

2299 /*
2300 * This is to handle __builtin_mul_overflow(). In an ideal world we
2301 * would only need this for invalid code.
2302 *
2303 */
2304 if (!call->fn->symbol)
2305 return 0;

2307 if (!is_kzalloc_info(sm) && !is_really_long(sm))
2173 /*
2174 * kzalloc() information is treated as special because so there is just
2175 * a lot of stuff initialized to zero and it makes building the database
2176 * take hours and hours.
2177 *
2178 * In theory, we should just remove this line and not pass any unused
2179 * information, but I’m not sure enough that this code works so I want
2180 * to hold off on that for now.
2181 */
2182 if (!estate_get_single_value(sm->state, &sval) || sval.value != 0)
2308 return 0;

2310 run_sql(¶m_used_callback, &found,
2311 "select * from return_implies where %s and type = %d and paramet
2312 get_static_filter(call->fn->symbol), PARAM_USED, param, printed_
2313 if (found)
2314 return 0;

2316 /* If the database is not built yet, then assume everything is used */
2317 run_sql(¶m_used_callback, &found,
2318 "select * from return_implies where %s and type = %d;",
2319 get_static_filter(call->fn->symbol), PARAM_USED);
2320 if (!found)
2321 return 0;

2323 return 1;
2324 }
______unchanged_portion_omitted_

2371 static void struct_member_callback(struct expression *call, int param, char *pri
2372 {
2373 struct range_list *rl;
2374 sval_t dummy;

new/usr/src/tools/smatch/src/smatch_extra.c 25

2376 if (estate_is_whole(sm->state))
2377 return;
2378 if (filter_unused_param_value_info(call, param, printed_name, sm))
2252 if (filter_unused_kzalloc_info(call, param, printed_name, sm))
2379 return;
2380 rl = estate_rl(sm->state);
2381 rl = intersect_with_real_abs_var_sym(sm->name, sm->sym, rl);
2382 sql_insert_caller_info(call, PARAM_VALUE, param, printed_name, show_rl(r
2383 if (!estate_get_single_value(sm->state, &dummy)) {
2384 if (estate_has_hard_max(sm->state))
2385 sql_insert_caller_info(call, HARD_MAX, param, printed_na
2386 sval_to_str(estate_max(sm->state)
2387 if (estate_has_fuzzy_max(sm->state))
2388 sql_insert_caller_info(call, FUZZY_MAX, param, printed_n
2389 sval_to_str(estate_get_fuzzy_max(
2390 }
2391 }

2393 static void returned_struct_members(int return_id, char *return_ranges, struct e
2394 {
2395 struct symbol *returned_sym;
2396 char *returned_name;
2397 struct sm_state *sm;
2266 const char *param_name;
2398 char *compare_str;
2399 char name_buf[256];
2400 char val_buf[256];
2401 int len;
2268 char buf[256];

2403 // FIXME handle *$

2405 if (!is_pointer(expr))
2270 returned_sym = expr_to_sym(expr);
2271 if (!returned_sym)
2406 return;

2408 returned_name = expr_to_var_sym(expr, &returned_sym);
2409 if (!returned_name || !returned_sym)
2410 goto free;
2411 len = strlen(returned_name);

2413 FOR_EACH_MY_SM(my_id, __get_cur_stree(), sm) {
2414 if (!estate_rl(sm->state))
2415 continue;
2416 if (returned_sym != sm->sym)
2417 continue;
2418 if (strncmp(returned_name, sm->name, len) != 0)

2280 param_name = get_param_name(sm);
2281 if (!param_name)
2419 continue;
2420 if (sm->name[len] != ’-’)
2283 if (strcmp(param_name, "$") == 0)
2421 continue;

2423 snprintf(name_buf, sizeof(name_buf), "$%s", sm->name + len);

2425 compare_str = name_sym_to_param_comparison(sm->name, sm->sym);
2426 if (!compare_str && estate_is_whole(sm->state))
2427 continue;
2428 snprintf(val_buf, sizeof(val_buf), "%s%s", sm->state->name, comp
2288 snprintf(buf, sizeof(buf), "%s%s", sm->state->name, compare_str

2430 sql_insert_return_states(return_id, return_ranges, PARAM_VALUE,
2431 -1, name_buf, val_buf);

new/usr/src/tools/smatch/src/smatch_extra.c 26

2291 -1, param_name, buf);
2432 } END_FOR_EACH_SM(sm);

2434 free:
2435 free_string(returned_name);
2436 }
______unchanged_portion_omitted_

2305 static int rl_fits_in_type(struct range_list *rl, struct symbol *type)
2306 {
2307 if (type_bits(rl_type(rl)) <= type_bits(type))
2308 return 1;
2309 if (sval_cmp(rl_max(rl), sval_type_max(type)) > 0)
2310 return 0;
2311 if (sval_is_negative(rl_min(rl)) &&
2312 sval_cmp(rl_min(rl), sval_type_min(type)) < 0)
2313 return 0;
2314 return 1;
2315 }

2448 static int basically_the_same(struct range_list *orig, struct range_list *new)
2449 {
2450 if (rl_equiv(orig, new))
2451 return 1;

2453 /*
2454 * The whole range is essentially the same as 0,4096-27777777777 so
2455 * don’t overwrite the implications just to store that.
2456 *
2457 */
2458 if (rl_type(orig)->type == SYM_PTR &&
2459 is_whole_rl(orig) &&
2460 rl_min(new).value == 0 &&
2461 rl_max(new).value == valid_ptr_max)
2462 return 1;
2463 return 0;
2464 }
______unchanged_portion_omitted_

2486 static void db_param_limit_filter(struct expression *expr, int param, char *key,
2487 {
2488 struct expression *arg;
2489 char *name;
2490 struct symbol *sym;
2491 struct var_sym_list *vsl = NULL;
2492 struct sm_state *sm;
2493 struct symbol *compare_type, *var_type;
2494 struct range_list *rl;
2495 struct range_list *limit;
2496 struct range_list *new;
2497 char *other_name;
2498 struct symbol *other_sym;
2366 char *tmp_name;
2367 struct symbol *tmp_sym;

2500 while (expr->type == EXPR_ASSIGNMENT)
2501 expr = strip_expr(expr->right);
2502 if (expr->type != EXPR_CALL)
2503 return;

2505 arg = get_argument_from_call_expr(expr->args, param);
2506 if (!arg)
2507 return;

2509 if (strcmp(key, "$") == 0)
2510 compare_type = get_arg_type(expr->fn, param);

new/usr/src/tools/smatch/src/smatch_extra.c 27

2511 else
2512 compare_type = get_member_type_from_key(arg, key);

2514 call_results_to_rl(expr, compare_type, value, &limit);
2515 if (strcmp(key, "$") == 0)
2516 move_known_to_rl(&arg, &limit);
2517 name = get_chunk_from_key(arg, key, &sym, &vsl);
2518 if (!name)
2519 return;
2520 if (op != PARAM_LIMIT && !sym)
2521 goto free;

2384 if (strcmp(key, "$") == 0)
2385 compare_type = get_arg_type(expr->fn, param);
2386 else
2387 compare_type = get_member_type_from_key(arg, key);

2523 sm = get_sm_state(SMATCH_EXTRA, name, sym);
2524 if (sm)
2525 rl = estate_rl(sm->state);
2526 else
2527 rl = alloc_whole_rl(compare_type);

2529 if (op == PARAM_LIMIT && !rl_fits_in_type(rl, compare_type))
2530 goto free;

2398 call_results_to_rl(expr, compare_type, value, &limit);
2532 new = rl_intersection(rl, limit);

2534 var_type = get_member_type_from_key(arg, key);
2535 new = cast_rl(var_type, new);

2537 /* We want to preserve the implications here */
2538 if (sm && basically_the_same(rl, new))
2405 if (sm && basically_the_same(estate_rl(sm->state), new))
2539 goto free;
2540 other_name = get_other_name_sym(name, sym, &other_sym);
2407 tmp_name = map_long_to_short_name_sym(name, sym, &tmp_sym);
2408 if (tmp_name && tmp_sym) {
2409 free_string(name);
2410 name = tmp_name;
2411 sym = tmp_sym;
2412 }

2542 if (op == PARAM_LIMIT)
2543 set_extra_nomod_vsl(name, sym, vsl, NULL, alloc_estate_rl(new));
2544 else
2545 set_extra_mod(name, sym, NULL, alloc_estate_rl(new));

2547 if (other_name && other_sym) {
2548 if (op == PARAM_LIMIT)
2549 set_extra_nomod_vsl(other_name, other_sym, vsl, NULL, al
2550 else
2551 set_extra_mod(other_name, other_sym, NULL, alloc_estate_
2552 }

2554 if (op == PARAM_LIMIT && arg->type == EXPR_BINOP)
2555 db_param_limit_binops(arg, key, new);
2556 free:
2557 free_string(name);
2558 }
______unchanged_portion_omitted_

2570 static void db_param_add_set(struct expression *expr, int param, char *key, char
2571 {
2572 struct expression *arg;

new/usr/src/tools/smatch/src/smatch_extra.c 28

2573 char *name;
2574 char *other_name = NULL;
2575 struct symbol *sym, *other_sym;
2438 char *name, *tmp_name;
2439 struct symbol *sym, *tmp_sym;
2576 struct symbol *param_type, *arg_type;
2577 struct smatch_state *state;
2578 struct range_list *new = NULL;
2579 struct range_list *added = NULL;

2581 while (expr->type == EXPR_ASSIGNMENT)
2582 expr = strip_expr(expr->right);
2583 if (expr->type != EXPR_CALL)
2584 return;

2586 arg = get_argument_from_call_expr(expr->args, param);
2587 if (!arg)
2588 return;

2590 arg_type = get_arg_type_from_key(expr->fn, param, arg, key);
2591 param_type = get_member_type_from_key(arg, key);
2592 name = get_variable_from_key(arg, key, &sym);
2593 if (!name || !sym)
2594 goto free;

2596 state = get_state(SMATCH_EXTRA, name, sym);
2597 if (state)
2598 new = estate_rl(state);

2600 call_results_to_rl(expr, arg_type, value, &added);
2601 added = cast_rl(param_type, added);
2602 if (op == PARAM_SET)
2603 new = added;
2604 else
2605 new = rl_union(new, added);

2607 other_name = get_other_name_sym_nostack(name, sym, &other_sym);
2471 tmp_name = map_long_to_short_name_sym_nostack(name, sym, &tmp_sym);
2472 if (tmp_name && tmp_sym) {
2473 free_string(name);
2474 name = tmp_name;
2475 sym = tmp_sym;
2476 }
2608 set_extra_mod(name, sym, NULL, alloc_estate_rl(new));
2609 if (other_name && other_sym)
2610 set_extra_mod(other_name, other_sym, NULL, alloc_estate_rl(new))
2611 free:
2612 free_string(other_name);
2613 free_string(name);
2614 }
______unchanged_portion_omitted_

2630 static void match_lost_param(struct expression *call, int param)
2631 {
2632 struct expression *arg;

2634 if (is_const_param(call->fn, param))
2635 return;

2637 arg = get_argument_from_call_expr(call->args, param);
2638 if (!arg)
2639 return;

2641 arg = strip_expr(arg);
2642 if (arg->type == EXPR_PREOP && arg->op == ’&’)
2643 set_extra_expr_mod(arg->unop, alloc_estate_whole(get_type(arg->u

new/usr/src/tools/smatch/src/smatch_extra.c 29

2644 else
2645 ; /* if pointer then set struct members, maybe?*/
2646 }

2648 static void db_param_value(struct expression *expr, int param, char *key, char *
2649 {
2650 struct expression *call;
2651 char *name;
2652 struct symbol *sym;
2653 struct symbol *type;
2654 struct range_list *rl = NULL;

2656 if (param != -1)
2657 return;

2659 call = expr;
2660 while (call->type == EXPR_ASSIGNMENT)
2661 call = strip_expr(call->right);
2662 if (call->type != EXPR_CALL)
2663 return;

2665 type = get_member_type_from_key(expr->left, key);
2666 name = get_variable_from_key(expr->left, key, &sym);
2667 if (!name || !sym)
2668 goto free;

2670 call_results_to_rl(call, type, value, &rl);

2672 set_extra_mod(name, sym, NULL, alloc_estate_rl(rl));
2673 free:
2674 free_string(name);
2675 }

2677 static void match_call_info(struct expression *expr)
2678 {
2679 struct smatch_state *state;
2680 struct range_list *rl = NULL;
2681 struct expression *arg;
2682 struct symbol *type;
2683 sval_t dummy;
2684 int i = 0;

2686 FOR_EACH_PTR(expr->args, arg) {
2687 type = get_arg_type(expr->fn, i);

2689 get_absolute_rl(arg, &rl);
2690 rl = cast_rl(type, rl);

2692 if (!is_whole_rl(rl)) {
2693 rl = intersect_with_real_abs_expr(arg, rl);
2694 sql_insert_caller_info(expr, PARAM_VALUE, i, "$", show_r
2695 }
2696 state = get_state_expr(SMATCH_EXTRA, arg);
2697 if (!estate_get_single_value(state, &dummy) && estate_has_hard_m
2698 sql_insert_caller_info(expr, HARD_MAX, i, "$",
2699 sval_to_str(estate_max(state)));
2700 }
2701 if (estate_has_fuzzy_max(state)) {
2702 sql_insert_caller_info(expr, FUZZY_MAX, i, "$",
2703 sval_to_str(estate_get_fuzzy_max(
2704 }
2705 i++;
2706 } END_FOR_EACH_PTR(arg);
2707 }

2709 static void set_param_value(const char *name, struct symbol *sym, char *key, cha

new/usr/src/tools/smatch/src/smatch_extra.c 30

2710 {
2711 struct expression *expr;
2712 struct range_list *rl = NULL;
2713 struct smatch_state *state;
2714 struct symbol *type;
2715 char fullname[256];
2716 char *key_orig = key;
2717 bool add_star = false;
2718 sval_t dummy;

2720 if (key[0] == ’*’) {
2721 add_star = true;
2722 key++;
2723 }
2560 if (strcmp(key, "*$") == 0)
2561 snprintf(fullname, sizeof(fullname), "*%s", name);
2562 else if (strncmp(key, "$", 1) == 0)
2563 snprintf(fullname, 256, "%s%s", name, key + 1);
2564 else
2565 return;

2725 snprintf(fullname, 256, "%s%s%s", add_star ? "*" : "", name, key + 1);

2727 expr = symbol_expression(sym);
2728 type = get_member_type_from_key(expr, key_orig);
2567 type = get_member_type_from_key(symbol_expression(sym), key);
2729 str_to_rl(type, value, &rl);
2730 state = alloc_estate_rl(rl);
2731 if (estate_get_single_value(state, &dummy))
2732 estate_set_hard_max(state);
2733 set_state(SMATCH_EXTRA, fullname, sym, state);
2734 }

2736 static void set_param_fuzzy_max(const char *name, struct symbol *sym, char *key,
2575 static void set_param_hard_max(const char *name, struct symbol *sym, char *key,
2737 {
2738 struct range_list *rl = NULL;
2739 struct smatch_state *state;
2740 struct symbol *type;
2741 char fullname[256];
2742 sval_t max;

2744 if (strcmp(key, "*$") == 0)
2745 snprintf(fullname, sizeof(fullname), "*%s", name);
2746 else if (strncmp(key, "$", 1) == 0)
2747 snprintf(fullname, 256, "%s%s", name, key + 1);
2748 else
2749 return;

2751 state = get_state(SMATCH_EXTRA, fullname, sym);
2752 if (!state)
2753 return;
2754 type = estate_type(state);
2593 type = get_member_type_from_key(symbol_expression(sym), key);
2755 str_to_rl(type, value, &rl);
2756 if (!rl_to_sval(rl, &max))
2757 return;
2758 estate_set_fuzzy_max(state, max);
2759 }

2761 static void set_param_hard_max(const char *name, struct symbol *sym, char *key,
2762 {
2763 struct smatch_state *state;
2764 char fullname[256];

2766 if (strcmp(key, "*$") == 0)

new/usr/src/tools/smatch/src/smatch_extra.c 31

2767 snprintf(fullname, sizeof(fullname), "*%s", name);
2768 else if (strncmp(key, "$", 1) == 0)
2769 snprintf(fullname, 256, "%s%s", name, key + 1);
2770 else
2771 return;

2773 state = get_state(SMATCH_EXTRA, fullname, sym);
2774 if (!state)
2775 return;
2776 estate_set_hard_max(state);
2777 }

2779 struct sm_state *get_extra_sm_state(struct expression *expr)
2780 {
2781 char *name;
2782 struct symbol *sym;
2783 struct sm_state *ret = NULL;

2785 name = expr_to_known_chunk_sym(expr, &sym);
2786 if (!name)
2787 goto free;

2789 ret = get_sm_state(SMATCH_EXTRA, name, sym);
2790 free:
2791 free_string(name);
2792 return ret;
2793 }
______unchanged_portion_omitted_

2805 void register_smatch_extra(int id)
2806 {
2807 my_id = id;

2809 set_dynamic_states(my_id);
2810 add_merge_hook(my_id, &merge_estates);
2811 add_unmatched_state_hook(my_id, &unmatched_state);
2812 select_caller_info_hook(set_param_value, PARAM_VALUE);
2813 select_caller_info_hook(set_param_fuzzy_max, FUZZY_MAX);
2814 select_caller_info_hook(set_param_hard_max, HARD_MAX);
2633 select_caller_info_hook(set_param_hard_max, FUZZY_MAX);
2815 select_return_states_before(&db_limited_before);
2816 select_return_states_hook(PARAM_LIMIT, &db_param_limit);
2817 select_return_states_hook(PARAM_FILTER, &db_param_filter);
2818 select_return_states_hook(PARAM_ADD, &db_param_add);
2819 select_return_states_hook(PARAM_SET, &db_param_set);
2820 add_lost_param_hook(&match_lost_param);
2821 select_return_states_hook(PARAM_VALUE, &db_param_value);
2822 select_return_states_after(&db_limited_after);
2823 }
______unchanged_portion_omitted_

2845 void register_smatch_extra_links(int id)
2846 {
2847 link_id = id;
2848 set_dynamic_states(link_id);
2849 }
______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_extra.h 1

**
 11815 Mon Aug 5 08:38:31 2019
new/usr/src/tools/smatch/src/smatch_extra.h
11506 smatch resync
**
______unchanged_portion_omitted_

26 DECLARE_PTR_LIST(related_list, struct relation);

28 struct data_info {
29 struct related_list *related;
30 struct range_list *value_ranges;
31 sval_t fuzzy_max;
32 unsigned int hard_max:1;
33 unsigned int capped:1;
34 };
35 DECLARE_ALLOCATOR(data_info);

37 extern struct string_list *__ignored_macros;

39 /* these are implemented in smatch_ranges.c */
40 struct range_list *rl_zero(void);
41 struct range_list *rl_one(void);
42 char *show_rl(struct range_list *list);
43 int str_to_comparison_arg(const char *c, struct expression *call, int *compariso
44 void str_to_rl(struct symbol *type, char *value, struct range_list **rl);
45 void call_results_to_rl(struct expression *call, struct symbol *type, const char
44 void call_results_to_rl(struct expression *call, struct symbol *type, char *valu

47 struct data_range *alloc_range(sval_t min, sval_t max);
48 struct data_range *alloc_range_perm(sval_t min, sval_t max);

50 int rl_fits_in_type(struct range_list *rl, struct symbol *type);

52 struct range_list *alloc_rl(sval_t min, sval_t max);
53 struct range_list *clone_rl(struct range_list *list);
54 struct range_list *clone_rl_permanent(struct range_list *list);
55 struct range_list *alloc_whole_rl(struct symbol *type);

57 void add_range(struct range_list **list, sval_t min, sval_t max);
58 struct range_list *remove_range(struct range_list *list, sval_t min, sval_t max)
59 void tack_on(struct range_list **list, struct data_range *drange);

61 int true_comparison_range(struct data_range *left, int comparison, struct data_r
62 int true_comparison_range_LR(int comparison, struct data_range *var, struct data
63 int false_comparison_range_LR(int comparison, struct data_range *var, struct dat

65 int possibly_true(struct expression *left, int comparison, struct expression *ri
66 int possibly_true_rl(struct range_list *left_ranges, int comparison, struct rang
67 int possibly_true_rl_LR(int comparison, struct range_list *a, struct range_list

69 int possibly_false(struct expression *left, int comparison, struct expression *r
70 int possibly_false_rl(struct range_list *left_ranges, int comparison, struct ran
71 int possibly_false_rl_LR(int comparison, struct range_list *a, struct range_list

73 int rl_has_sval(struct range_list *rl, sval_t sval);
74 int ranges_equiv(struct data_range *one, struct data_range *two);

76 int rl_equiv(struct range_list *one, struct range_list *two);
77 int is_whole_rl(struct range_list *rl);
78 int is_unknown_ptr(struct range_list *rl);
79 int is_whole_rl_non_zero(struct range_list *rl);
80 int estate_is_unknown(struct smatch_state *state);

82 sval_t rl_min(struct range_list *rl);
83 sval_t rl_max(struct range_list *rl);

new/usr/src/tools/smatch/src/smatch_extra.h 2

84 int rl_to_sval(struct range_list *rl, sval_t *sval);
85 struct symbol *rl_type(struct range_list *rl);

83 struct range_list *rl_invert(struct range_list *orig);
87 struct range_list *rl_filter(struct range_list *rl, struct range_list *filter);
88 struct range_list *rl_intersection(struct range_list *one, struct range_list *tw
89 struct range_list *rl_union(struct range_list *one, struct range_list *two);
90 struct range_list *rl_binop(struct range_list *left, int op, struct range_list *

92 void push_rl(struct range_list_stack **rl_stack, struct range_list *rl);
93 struct range_list *pop_rl(struct range_list_stack **rl_stack);
94 struct range_list *top_rl(struct range_list_stack *rl_stack);
95 void filter_top_rl(struct range_list_stack **rl_stack, struct range_list *filter

97 struct range_list *rl_truncate_cast(struct symbol *type, struct range_list *rl);
98 struct range_list *cast_rl(struct symbol *type, struct range_list *rl);
99 int get_implied_rl(struct expression *expr, struct range_list **rl);
100 int get_absolute_rl(struct expression *expr, struct range_list **rl);
101 int get_real_absolute_rl(struct expression *expr, struct range_list **rl);
102 struct range_list *var_to_absolute_rl(struct expression *expr);
103 int custom_get_absolute_rl(struct expression *expr,
104 struct range_list *(*fn)(struct expression *expr),
105 struct range_list **rl);
106 int get_implied_rl_var_sym(const char *var, struct symbol *sym, struct range_lis
107 void split_comparison_rl(struct range_list *left_orig, int op, struct range_list
108 struct range_list **left_true_rl, struct range_list **left_false
109 struct range_list **right_true_rl, struct range_list **right_fal

111 void free_data_info_allocs(void);
112 void free_all_rl(void);

114 /* smatch_estate.c */

116 struct smatch_state *alloc_estate_empty(void);
117 struct smatch_state *alloc_estate_sval(sval_t sval);
118 struct smatch_state *alloc_estate_range(sval_t min, sval_t max);
119 struct smatch_state *alloc_estate_rl(struct range_list *rl);
120 struct smatch_state *alloc_estate_whole(struct symbol *type);
121 struct smatch_state *clone_estate(struct smatch_state *state);
122 struct smatch_state *clone_estate_cast(struct symbol *type, struct smatch_state
123 struct smatch_state *clone_partial_estate(struct smatch_state *state, struct ran

125 struct smatch_state *merge_estates(struct smatch_state *s1, struct smatch_state

127 int estates_equiv(struct smatch_state *one, struct smatch_state *two);
128 int estate_is_whole(struct smatch_state *state);
129 int estate_is_empty(struct smatch_state *state);

131 struct range_list *estate_rl(struct smatch_state *state);
132 struct related_list *estate_related(struct smatch_state *state);

134 sval_t estate_min(struct smatch_state *state);
135 sval_t estate_max(struct smatch_state *state);
136 struct symbol *estate_type(struct smatch_state *state);

138 int estate_has_fuzzy_max(struct smatch_state *state);
139 sval_t estate_get_fuzzy_max(struct smatch_state *state);
140 void estate_set_fuzzy_max(struct smatch_state *state, sval_t max);
141 void estate_copy_fuzzy_max(struct smatch_state *new, struct smatch_state *old);
142 void estate_clear_fuzzy_max(struct smatch_state *state);
143 int estate_has_hard_max(struct smatch_state *state);
144 void estate_set_hard_max(struct smatch_state *state);
145 void estate_clear_hard_max(struct smatch_state *state);
146 int estate_get_hard_max(struct smatch_state *state, sval_t *sval);
147 bool estate_capped(struct smatch_state *state);
148 void estate_set_capped(struct smatch_state *state);

new/usr/src/tools/smatch/src/smatch_extra.h 3

150 int estate_get_single_value(struct smatch_state *state, sval_t *sval);
151 struct smatch_state *get_implied_estate(struct expression *expr);

153 struct smatch_state *estate_filter_sval(struct smatch_state *orig, sval_t filter
148 struct smatch_state *estate_filter_range(struct smatch_state *orig, sval_t filte
154 struct data_info *clone_dinfo_perm(struct data_info *dinfo);
155 struct smatch_state *clone_estate_perm(struct smatch_state *state);

157 /* smatch_extra.c */
158 bool is_impossible_variable(struct expression *expr);
159 struct sm_state *get_extra_sm_state(struct expression *expr);
160 struct smatch_state *get_extra_state(struct expression *expr);
161 void call_extra_mod_hooks(const char *name, struct symbol *sym, struct expressio
162 void set_extra_mod(const char *name, struct symbol *sym, struct expression *expr
163 void set_extra_expr_mod(struct expression *expr, struct smatch_state *state);
164 void set_extra_nomod(const char *name, struct symbol *sym, struct expression *ex
165 void set_extra_nomod_vsl(const char *name, struct symbol *sym, struct var_sym_li
166 void set_extra_expr_nomod(struct expression *expr, struct smatch_state *state);
167 void set_extra_mod_helper(const char *name, struct symbol *sym, struct expressio

169 struct data_info *get_dinfo(struct smatch_state *state);

171 void add_extra_mod_hook(void (*fn)(const char *name, struct symbol *sym, struct
172 void add_extra_nomod_hook(void (*fn)(const char *name, struct symbol *sym, struc
173 int implied_not_equal(struct expression *expr, long long val);
174 int implied_not_equal_name_sym(char *name, struct symbol *sym, long long val);
175 int parent_is_null_var_sym(const char *name, struct symbol *sym);
176 int parent_is_null(struct expression *expr);
177 int parent_is_free_var_sym_strict(const char *name, struct symbol *sym);
178 int parent_is_free_var_sym(const char *name, struct symbol *sym);
179 int parent_is_free(struct expression *expr);

181 struct sm_state *__extra_handle_canonical_loops(struct statement *loop, struct s
182 int __iterator_unchanged(struct sm_state *sm);
183 void __extra_pre_loop_hook_after(struct sm_state *sm,
184 struct statement *iterator,
185 struct expression *condition);

187 /* smatch_equiv.c */
188 void set_equiv(struct expression *left, struct expression *right);
189 void set_related(struct smatch_state *estate, struct related_list *rlist);
190 struct related_list *get_shared_relations(struct related_list *one,
191 struct related_list *two);
192 struct related_list *clone_related_list(struct related_list *related);
193 void remove_from_equiv(const char *name, struct symbol *sym);
194 void remove_from_equiv_expr(struct expression *expr);
195 void set_equiv_state_expr(int id, struct expression *expr, struct smatch_state *

197 /* smatch_function_hooks.c */
198 void function_comparison(struct expression *left, int comparison, struct express

200 /* smatch_expressions.c */
201 struct expression *zero_expr();
202 struct expression *value_expr(long long val);
203 struct expression *member_expression(struct expression *deref, int op, struct id
204 struct expression *preop_expression(struct expression *expr, int op);
205 struct expression *deref_expression(struct expression *expr);
206 struct expression *assign_expression(struct expression *left, int op, struct exp
207 struct expression *binop_expression(struct expression *left, int op, struct expr
208 struct expression *array_element_expression(struct expression *array, struct exp
209 struct expression *symbol_expression(struct symbol *sym);
210 struct expression *string_expression(char *str);
211 struct expression *compare_expression(struct expression *left, int op, struct ex
212 struct expression *unknown_value_expression(struct expression *expr);
213 int is_fake_call(struct expression *expr);

new/usr/src/tools/smatch/src/smatch_extra.h 4

214 struct expression *gen_expression_from_key(struct expression *arg, const char *k
215 void free_tmp_expressions(void);
216 void expr_set_parent_expr(struct expression *expr, struct expression *parent);
217 void expr_set_parent_stmt(struct expression *expr, struct statement *parent);
218 struct expression *expr_get_parent_expr(struct expression *expr);
219 struct statement *expr_get_parent_stmt(struct expression *expr);

221 /* smatch_param_limit.c */
222 struct smatch_state *get_orig_estate(const char *name, struct symbol *sym);

224 /* smatch_real_absolute.c */
225 struct smatch_state *get_real_absolute_state(struct expression *expr);
226 struct smatch_state *get_real_absolute_state_var_sym(const char *name, struct sy

228 /* smatch_imaginary_absolute.c */
229 void __save_imaginary_state(struct expression *expr, struct range_list *true_rl,
230 int get_imaginary_absolute(struct expression *expr, struct range_list **rl);

new/usr/src/tools/smatch/src/smatch_flow.c 1

**
 47355 Mon Aug 5 08:38:31 2019
new/usr/src/tools/smatch/src/smatch_flow.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2006,2008 Dan Carpenter.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 #define _GNU_SOURCE 1
19 #include <unistd.h>
20 #include <stdio.h>
21 #include "token.h"
22 #include "scope.h"
23 #include "smatch.h"
24 #include "smatch_expression_stacks.h"
25 #include "smatch_extra.h"
26 #include "smatch_slist.h"

28 int __in_fake_assign;
29 int __in_fake_struct_assign;
30 int in_fake_env;
31 int final_pass;
32 int __inline_call;
33 struct expression *__inline_fn;

35 static int __smatch_lineno = 0;

37 static char *base_file;
38 static const char *filename;
39 static char *pathname;
40 static char *full_filename;
41 static char *full_base_file;
42 static char *cur_func;
43 static unsigned int loop_count;
44 static int last_goto_statement_handled;
45 int __expr_stmt_count;
46 int __in_function_def;
47 static struct expression_list *switch_expr_stack = NULL;
48 static struct expression_list *post_op_stack = NULL;

50 static struct ptr_list *backup;

52 struct expression_list *big_expression_stack;
53 struct statement_list *big_statement_stack;
54 struct statement *__prev_stmt;
55 struct statement *__cur_stmt;
56 struct statement *__next_stmt;
57 int __in_pre_condition = 0;
58 int __bail_on_rest_of_function = 0;
59 static struct timeval fn_start_time;
60 static struct timeval outer_fn_start_time;
61 char *get_function(void) { return cur_func; }

new/usr/src/tools/smatch/src/smatch_flow.c 2

62 int get_lineno(void) { return __smatch_lineno; }
63 int inside_loop(void) { return !!loop_count; }
64 int definitely_inside_loop(void) { return !!(loop_count & ~0x08000000); }
65 struct expression *get_switch_expr(void) { return top_expression(switch_expr_sta
66 int in_expression_statement(void) { return !!__expr_stmt_count; }

68 static void split_symlist(struct symbol_list *sym_list);
69 static void split_declaration(struct symbol_list *sym_list);
70 static void split_expr_list(struct expression_list *expr_list, struct expression
71 static void add_inline_function(struct symbol *sym);
72 static void parse_inline(struct expression *expr);

74 int option_assume_loops = 0;
75 int option_two_passes = 0;
76 struct symbol *cur_func_sym = NULL;
77 struct stree *global_states;

79 const unsigned long valid_ptr_min = 4096;
80 unsigned long valid_ptr_max = ULONG_MAX & ~(MTAG_OFFSET_MASK);
81 const sval_t valid_ptr_min_sval = {
79 long long valid_ptr_min = 4096;
80 long long valid_ptr_max = 2117777777;
81 sval_t valid_ptr_min_sval = {
82 .type = &ptr_ctype,
83 {.value = 4096},
84 };
85 sval_t valid_ptr_max_sval = {
86 .type = &ptr_ctype,
87 {.value = ULONG_MAX & ~(MTAG_OFFSET_MASK)},
87 {.value = LONG_MAX - 100000},
88 };
89 struct range_list *valid_ptr_rl;

91 void alloc_valid_ptr_rl(void)
91 static void set_valid_ptr_max(void)
92 {
93 valid_ptr_max = sval_type_max(&ulong_ctype).value & ~(MTAG_OFFSET_MASK);
93 if (type_bits(&ptr_ctype) == 32)
94 valid_ptr_max = 2117777777;
95 else if (type_bits(&ptr_ctype) == 64)
96 valid_ptr_max = 2117777777777777777LL;

94 valid_ptr_max_sval.value = valid_ptr_max;
99 }

101 static void alloc_valid_ptr_rl(void)
102 {
96 valid_ptr_rl = alloc_rl(valid_ptr_min_sval, valid_ptr_max_sval);
97 valid_ptr_rl = cast_rl(&ptr_ctype, valid_ptr_rl);
98 valid_ptr_rl = clone_rl_permanent(valid_ptr_rl);
99 }

______unchanged_portion_omitted_

364 void __split_expr(struct expression *expr)
365 {
366 if (!expr)
367 return;

369 // sm_msg(" Debug expr_type %d %s", expr->type, show_special(expr->op));

371 if (__in_fake_assign && expr->type != EXPR_ASSIGNMENT)
372 return;
373 if (__in_fake_assign >= 4) /* don’t allow too much nesting */
374 return;

376 push_expression(&big_expression_stack, expr);

new/usr/src/tools/smatch/src/smatch_flow.c 3

377 set_position(expr->pos);
378 __pass_to_client(expr, EXPR_HOOK);

380 switch (expr->type) {
381 case EXPR_PREOP:
382 expr_set_parent_expr(expr->unop, expr);

384 if (expr->op == ’*’ &&
385 !prev_expression_is_getting_address(expr))
386 __pass_to_client(expr, DEREF_HOOK);
387 __split_expr(expr->unop);
388 __pass_to_client(expr, OP_HOOK);
389 break;
390 case EXPR_POSTOP:
391 expr_set_parent_expr(expr->unop, expr);

393 __split_expr(expr->unop);
394 push_expression(&post_op_stack, expr);
395 break;
396 case EXPR_STATEMENT:
397 __expr_stmt_count++;
398 if (expr->statement && !expr->statement) {
399 stmt_set_parent_stmt(expr->statement,
400 last_ptr_list((struct ptr_list *)big_sta
401 }
402 __split_stmt(expr->statement);
403 __expr_stmt_count--;
404 break;
405 case EXPR_LOGICAL:
406 case EXPR_COMPARE:
407 expr_set_parent_expr(expr->left, expr);
408 expr_set_parent_expr(expr->right, expr);

410 __pass_to_client(expr, LOGIC_HOOK);
411 __handle_logic(expr);
412 break;
413 case EXPR_BINOP:
414 expr_set_parent_expr(expr->left, expr);
415 expr_set_parent_expr(expr->right, expr);

417 __pass_to_client(expr, BINOP_HOOK);
418 case EXPR_COMMA:
419 expr_set_parent_expr(expr->left, expr);
420 expr_set_parent_expr(expr->right, expr);

422 __split_expr(expr->left);
423 __process_post_op_stack();
424 __split_expr(expr->right);
425 break;
426 case EXPR_ASSIGNMENT: {
427 struct expression *right;

429 expr_set_parent_expr(expr->left, expr);
430 expr_set_parent_expr(expr->right, expr);

432 right = strip_expr(expr->right);
433 if (!right)
434 break;

436 __pass_to_client(expr, RAW_ASSIGNMENT_HOOK);

438 /* foo = !bar() */
439 if (__handle_condition_assigns(expr))
440 break;
441 /* foo = (x < 5 ? foo : 5); */
442 if (__handle_select_assigns(expr))

new/usr/src/tools/smatch/src/smatch_flow.c 4

443 break;
444 /* foo = ({frob(); frob(); frob(); 1;}) */
445 if (__handle_expr_statement_assigns(expr))
446 break;
447 /* foo = (3, 4); */
448 if (handle_comma_assigns(expr))
449 break;
450 if (handle_postop_assigns(expr))
451 break;
452 if (handle__builtin_choose_expr_assigns(expr))
453 break;

455 __split_expr(expr->right);
456 if (outside_of_function())
457 __pass_to_client(expr, GLOBAL_ASSIGNMENT_HOOK);
458 else
459 __pass_to_client(expr, ASSIGNMENT_HOOK);

461 __fake_struct_member_assignments(expr);

463 if (expr->op == ’=’ && right->type == EXPR_CALL)
464 __pass_to_client(expr, CALL_ASSIGNMENT_HOOK);

466 if (get_macro_name(right->pos) &&
467 get_macro_name(expr->pos) != get_macro_name(right->pos))
468 __pass_to_client(expr, MACRO_ASSIGNMENT_HOOK);

470 __pass_to_client(expr, ASSIGNMENT_HOOK_AFTER);

472 __split_expr(expr->left);
473 break;
474 }
475 case EXPR_DEREF:
476 expr_set_parent_expr(expr->deref, expr);

478 __pass_to_client(expr, DEREF_HOOK);
479 __split_expr(expr->deref);
480 break;
481 case EXPR_SLICE:
482 expr_set_parent_expr(expr->base, expr);

484 __split_expr(expr->base);
485 break;
486 case EXPR_CAST:
487 case EXPR_FORCE_CAST:
488 expr_set_parent_expr(expr->cast_expression, expr);

490 __pass_to_client(expr, CAST_HOOK);
491 __split_expr(expr->cast_expression);
492 break;
493 case EXPR_SIZEOF:
494 if (expr->cast_expression)
495 __pass_to_client(strip_parens(expr->cast_expression),
496 SIZEOF_HOOK);
497 break;
498 case EXPR_OFFSETOF:
499 case EXPR_ALIGNOF:
507 evaluate_expression(expr);
500 break;
501 case EXPR_CONDITIONAL:
502 case EXPR_SELECT:
503 expr_set_parent_expr(expr->conditional, expr);
504 expr_set_parent_expr(expr->cond_true, expr);
505 expr_set_parent_expr(expr->cond_false, expr);

507 if (known_condition_true(expr->conditional)) {

new/usr/src/tools/smatch/src/smatch_flow.c 5

508 __split_expr(expr->cond_true);
509 break;
510 }
511 if (known_condition_false(expr->conditional)) {
512 __split_expr(expr->cond_false);
513 break;
514 }
515 __pass_to_client(expr, SELECT_HOOK);
516 __split_whole_condition(expr->conditional);
517 __split_expr(expr->cond_true);
518 __push_true_states();
519 __use_false_states();
520 __split_expr(expr->cond_false);
521 __merge_true_states();
522 break;
523 case EXPR_CALL:
524 expr_set_parent_expr(expr->fn, expr);

526 if (sym_name_is("__builtin_constant_p", expr->fn))
527 break;
528 if (handle__builtin_choose_expr(expr))
529 break;
530 split_expr_list(expr->args, expr);
531 __split_expr(expr->fn);
532 if (is_inline_func(expr->fn))
533 add_inline_function(expr->fn->symbol);
534 if (inlinable(expr->fn))
535 __inline_call = 1;
536 __process_post_op_stack();
537 __pass_to_client(expr, FUNCTION_CALL_HOOK_BEFORE);
538 __pass_to_client(expr, FUNCTION_CALL_HOOK);
539 __inline_call = 0;
540 if (inlinable(expr->fn)) {
541 parse_inline(expr);
542 }
543 __pass_to_client(expr, CALL_HOOK_AFTER_INLINE);
544 if (is_noreturn_func(expr->fn))
545 nullify_path();
546 handle_builtin_overflow_func(expr);
547 break;
548 case EXPR_INITIALIZER:
549 split_expr_list(expr->expr_list, expr);
550 break;
551 case EXPR_IDENTIFIER:
552 expr_set_parent_expr(expr->ident_expression, expr);
553 __split_expr(expr->ident_expression);
554 break;
555 case EXPR_INDEX:
556 expr_set_parent_expr(expr->idx_expression, expr);
557 __split_expr(expr->idx_expression);
558 break;
559 case EXPR_POS:
560 expr_set_parent_expr(expr->init_expr, expr);
561 __split_expr(expr->init_expr);
562 break;
563 case EXPR_SYMBOL:
564 __pass_to_client(expr, SYM_HOOK);
565 break;
566 case EXPR_STRING:
567 __pass_to_client(expr, STRING_HOOK);
568 break;
569 default:
570 break;
571 };
572 pop_expression(&big_expression_stack);
573 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_flow.c 6

873 /*
874 * This defaults to 60 * 5 == 5 minutes, so we’ll just multiply
875 * whatever we’re given by 5.
876 */
877 bool taking_too_long(void)
881 static int taking_too_long(void)
878 {
879 if (option_timeout &&
880 (ms_since(&outer_fn_start_time) / 1000) > option_timeout * 5)
883 if ((ms_since(&outer_fn_start_time) / 1000) > 60 * 5) /* five minutes */
881 return 1;
882 return 0;
883 }

______unchanged_portion_omitted_

1908 void smatch(struct string_list *filelist)
1911 void smatch(int argc, char **argv)
1909 {
1913 struct string_list *filelist = NULL;
1910 struct symbol_list *sym_list;
1911 struct timeval stop, start;
1912 char *path;
1913 int len;

1915 gettimeofday(&start, NULL);

1921 sparse_initialize(argc, argv, &filelist);
1922 set_valid_ptr_max();
1923 alloc_valid_ptr_rl();
1917 FOR_EACH_PTR_NOTAG(filelist, base_file) {
1918 path = getcwd(NULL, 0);
1919 free(full_base_file);
1920 if (path) {
1921 len = strlen(path) + 1 + strlen(base_file) + 1;
1922 full_base_file = malloc(len);
1923 snprintf(full_base_file, len, "%s/%s", path, base_file);
1924 } else {
1925 full_base_file = alloc_string(base_file);
1926 }
1927 if (option_file_output)
1928 open_output_files(base_file);
1929 sym_list = sparse_keep_tokens(base_file);
1930 split_c_file_functions(sym_list);
1931 } END_FOR_EACH_PTR_NOTAG(base_file);

1933 gettimeofday(&stop, NULL);

1935 set_position(last_pos);
1936 final_pass = 1;
1937 if (option_time)
1938 sm_msg("time: %lu", stop.tv_sec - start.tv_sec);
1939 if (option_mem)
1940 sm_msg("mem: %luKb", get_max_memory());
1941 }
______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_function_hooks.c 1

**
 31805 Mon Aug 5 08:38:31 2019
new/usr/src/tools/smatch/src/smatch_function_hooks.c
11506 smatch resync
**
______unchanged_portion_omitted_

142 void return_implies_state_sval(const char *look_for, sval_t start, sval_t end,
143 implication_hook *call_back, void *info)
144 {
145 struct fcall_back *cb;

147 cb = alloc_fcall_back(RANGED_CALL, call_back, info);
148 cb->range = alloc_range_perm(start, end);
149 add_callback(func_hash, look_for, cb);
150 }

152 void select_return_states_hook(int type, return_implies_hook *callback)
153 {
154 struct return_implies_callback *cb = __alloc_return_implies_callback(0);

156 cb->type = type;
157 cb->callback = callback;
158 add_ptr_list(&db_return_states_list, cb);
159 }

______unchanged_portion_omitted_

247 static int assign_ranged_funcs(const char *fn, struct expression *expr,
248 struct call_back_list *call_backs)
249 {
250 struct fcall_back *tmp;
251 struct sm_state *sm;
252 char *var_name;
253 struct symbol *sym;
254 struct smatch_state *estate;
255 struct stree *tmp_stree;
256 struct stree *final_states = NULL;
257 struct range_list *handled_ranges = NULL;
258 struct call_back_list *same_range_call_backs = NULL;
259 struct range_list *rl;
260 int handled = 0;

262 if (!call_backs)
263 return 0;

265 var_name = expr_to_var_sym(expr->left, &sym);
266 if (!var_name || !sym)
267 goto free;

269 FOR_EACH_PTR(call_backs, tmp) {
270 if (tmp->type != RANGED_CALL)
271 continue;

273 if (in_list_exact_sval(handled_ranges, tmp->range))
274 continue;
275 __push_fake_cur_stree();
276 tack_on(&handled_ranges, tmp->range);

278 same_range_call_backs = get_same_ranged_call_backs(call_backs, t
279 call_ranged_call_backs(same_range_call_backs, fn, expr->right, e
280 __free_ptr_list((struct ptr_list **)&same_range_call_backs);

282 rl = alloc_rl(tmp->range->min, tmp->range->max);
283 rl = cast_rl(get_type(expr->left), rl);
284 estate = alloc_estate_rl(rl);
271 estate = alloc_estate_range(tmp->range->min, tmp->range->max);

new/usr/src/tools/smatch/src/smatch_function_hooks.c 2

285 set_extra_mod(var_name, sym, expr->left, estate);

287 tmp_stree = __pop_fake_cur_stree();
288 merge_fake_stree(&final_states, tmp_stree);
289 free_stree(&tmp_stree);
290 handled = 1;
291 } END_FOR_EACH_PTR(tmp);

293 FOR_EACH_SM(final_states, sm) {
294 __set_sm(sm);
295 } END_FOR_EACH_SM(sm);

297 free_stree(&final_states);
298 free:
299 free_string(var_name);
300 return handled;
301 }

______unchanged_portion_omitted_

376 static bool fake_a_param_assignment(struct expression *expr, const char *return_
377 {
378 struct expression *arg, *left, *right, *tmp, *fake_assign;
365 struct expression *arg, *left, *right, *fake_assign;
379 char *p;
380 int param;
381 char buf[256];
382 char *str;

384 if (expr->type != EXPR_ASSIGNMENT || expr->op != ’=’)
385 return false;
386 left = expr->left;
387 right = expr->right;

389 while (right->type == EXPR_ASSIGNMENT)
390 right = strip_expr(right->right);
391 if (!right || right->type != EXPR_CALL)
392 return false;

394 p = strchr(return_str, ’[’);
395 if (!p)
396 return false;

398 p++;
399 if (p[0] == ’=’ && p[1] == ’=’)
400 p += 2;
401 if (p[0] != ’$’)
402 return false;

404 snprintf(buf, sizeof(buf), "%s", p);

406 p = buf;
407 p += 1;
408 param = strtol(p, &p, 10);

410 p = strchr(p, ’]’);
411 if (!p || *p != ’]’)
412 return false;
413 *p = ’\0’;

415 arg = get_argument_from_call_expr(right->args, param);
416 if (!arg)
417 return false;

419 /* There should be a get_other_name() function which returns an expr */
420 tmp = get_assigned_expr(arg);
421 if (tmp)

new/usr/src/tools/smatch/src/smatch_function_hooks.c 3

422 arg = tmp;

424 /*
425 * This is a sanity check to prevent side effects from evaluating stuff
426 * twice.
427 */
428 str = expr_to_chunk_sym_vsl(arg, NULL, NULL);
429 if (!str)
430 return false;
431 free_string(str);

433 right = gen_expression_from_key(arg, buf);
434 if (!right) /* Mostly fails for binops like [$0 + 4032] */
435 return false;
436 fake_assign = assign_expression(left, ’=’, right);
437 __in_fake_parameter_assign++;
438 __split_expr(fake_assign);
439 __in_fake_parameter_assign--;
440 return true;
441 }

443 static void set_return_assign_state(struct db_callback_info *db_info)
424 static void set_return_state(struct expression *expr, struct db_callback_info *d
444 {
445 struct expression *expr = db_info->expr->left;
446 struct smatch_state *state;

448 if (!db_info->ret_state)
449 return;

451 state = alloc_estate_rl(cast_rl(get_type(expr), clone_rl(estate_rl(db_in
452 set_extra_expr_mod(expr, state);
453 db_info->ret_state = NULL;
454 fake_a_param_assignment(db_info->expr, db_info->ret_str);
455 db_info->ret_str = NULL;
456 }

458 static void set_other_side_state(struct db_callback_info *db_info)
459 {
460 struct expression *expr = db_info->var_expr;
461 struct smatch_state *state;

463 if (!db_info->ret_state)
464 return;

466 state = alloc_estate_rl(cast_rl(get_type(expr), clone_rl(estate_rl(db_in
467 set_extra_expr_nomod(expr, state);
468 db_info->ret_state = NULL;
469 db_info->ret_str = NULL;
470 }

472 static void handle_ret_equals_param(char *ret_string, struct range_list *rl, str
473 {
474 char *str;
475 long long param;
476 struct expression *arg;
477 struct range_list *orig;

479 str = strstr(ret_string, "==$");
480 if (!str)
481 return;
482 str += 3;
483 param = strtoll(str, NULL, 10);
484 arg = get_argument_from_call_expr(call->args, param);
485 if (!arg)
486 return;

new/usr/src/tools/smatch/src/smatch_function_hooks.c 4

487 get_absolute_rl(arg, &orig);
488 rl = rl_intersection(orig, rl);
489 if (!rl)
490 return;
491 set_extra_expr_nomod(arg, alloc_estate_rl(rl));
492 }

______unchanged_portion_omitted_

592 static int db_compare_callback(void *_info, int argc, char **argv, char **azColN
593 {
594 struct db_callback_info *db_info = _info;
595 struct range_list *var_rl = db_info->rl;
596 struct range_list *ret_range;
597 int type, param;
598 char *ret_str, *key, *value;
564 char *key, *value;
599 struct return_implies_callback *tmp;
600 struct stree *stree;
601 int return_id;
602 int comparison;

604 if (argc != 6)
605 return 0;

607 return_id = atoi(argv[0]);
608 ret_str = argv[1];
609 type = atoi(argv[2]);
610 param = atoi(argv[3]);
611 key = argv[4];
612 value = argv[5];

614 db_info->has_states = 1;
615 if (db_info->prev_return_id != -1 && type == INTERNAL) {
616 set_other_side_state(db_info);
581 set_return_state(db_info->var_expr, db_info);
617 stree = __pop_fake_cur_stree();

619 if (!db_info->cull)
620 merge_fake_stree(&db_info->stree, stree);
621 free_stree(&stree);
622 __push_fake_cur_stree();
623 db_info->cull = 0;
624 }
625 db_info->prev_return_id = return_id;

627 if (type == INTERNAL && func_type_mismatch(db_info->expr, value))
628 db_info->cull = 1;
629 if (db_info->cull)
630 return 0;
631 if (type == CULL_PATH) {
632 db_info->cull = 1;
633 return 0;
634 }

636 if (is_impossible_data(type, db_info->expr, param, key, value)) {
637 db_info->cull = 1;
638 return 0;
639 }

641 call_results_to_rl(db_info->expr, get_type(strip_expr(db_info->expr)), r
606 call_results_to_rl(db_info->expr, get_type(strip_expr(db_info->expr)), a
642 ret_range = cast_rl(get_type(db_info->expr), ret_range);
643 if (!ret_range)
644 ret_range = alloc_whole_rl(get_type(db_info->expr));

646 comparison = db_info->comparison;

new/usr/src/tools/smatch/src/smatch_function_hooks.c 5

647 if (db_info->left)
648 comparison = flip_comparison(comparison);

650 if (db_info->true_side) {
651 if (!possibly_true_rl(var_rl, comparison, ret_range))
652 return 0;
653 if (type == PARAM_LIMIT)
654 param_limit_implications(db_info->expr, param, key, valu
655 filter_by_comparison(&var_rl, comparison, ret_range);
656 filter_by_comparison(&ret_range, flip_comparison(comparison), va
657 } else {
658 if (!possibly_false_rl(var_rl, comparison, ret_range))
659 return 0;
660 if (type == PARAM_LIMIT)
661 param_limit_implications(db_info->expr, param, key, valu
662 filter_by_comparison(&var_rl, negate_comparison(comparison), ret
663 filter_by_comparison(&ret_range, flip_comparison(negate_comparis
664 }

666 handle_ret_equals_param(ret_str, ret_range, db_info->expr);
631 handle_ret_equals_param(argv[1], ret_range, db_info->expr);

668 if (type == INTERNAL) {
669 set_state(-1, "unnull_path", NULL, &true_state);
670 __add_return_comparison(strip_expr(db_info->expr), ret_str);
671 __add_return_to_param_mapping(db_info->expr, ret_str);
672 store_return_state(db_info, ret_str, alloc_estate_rl(clone_rl(va
635 __add_return_comparison(strip_expr(db_info->expr), argv[1]);
636 __add_return_to_param_mapping(db_info->expr, argv[1]);
637 store_return_state(db_info, argv[1], alloc_estate_rl(clone_rl(va
673 }

675 FOR_EACH_PTR(db_info->callbacks, tmp) {
676 if (tmp->type == type)
677 tmp->callback(db_info->expr, param, key, value);
678 } END_FOR_EACH_PTR(tmp);

680 return 0;
681 }

683 static void compare_db_return_states_callbacks(struct expression *left, int comp
684 {
685 struct stree *orig_states;
686 struct stree *stree;
687 struct stree *true_states;
688 struct stree *false_states;
689 struct sm_state *sm;
690 struct db_callback_info db_info = {};
691 struct expression *var_expr;
692 struct expression *call_expr;
693 struct range_list *rl;
694 int call_on_left;

696 orig_states = clone_stree(__get_cur_stree());

698 /* legacy cruft. need to fix call_implies_callbacks(). */
699 call_on_left = 1;
700 call_expr = left;
701 var_expr = right;
702 if (left->type != EXPR_CALL) {
703 call_on_left = 0;
704 call_expr = right;
705 var_expr = left;
706 }

708 get_absolute_rl(var_expr, &rl);

new/usr/src/tools/smatch/src/smatch_function_hooks.c 6

710 db_info.comparison = comparison;
711 db_info.expr = call_expr;
712 db_info.rl = rl;
713 db_info.left = call_on_left;
714 db_info.callbacks = db_return_states_list;
715 db_info.var_expr = var_expr;

717 call_return_states_before_hooks();

719 db_info.true_side = 1;
720 db_info.stree = NULL;
721 db_info.prev_return_id = -1;
722 __push_fake_cur_stree();
723 sql_select_return_states("return_id, return, type, parameter, key, value
724 call_expr, db_compare_callback, &db_info);
725 set_other_side_state(&db_info);
690 set_return_state(db_info.var_expr, &db_info);
726 stree = __pop_fake_cur_stree();
727 if (!db_info.cull)
692 if (!db_info.cull) {
693 set_return_state(db_info.var_expr, &db_info);
728 merge_fake_stree(&db_info.stree, stree);
695 }
729 free_stree(&stree);
730 true_states = db_info.stree;
731 if (!true_states && db_info.has_states) {
732 __push_fake_cur_stree();
733 set_path_impossible();
734 true_states = __pop_fake_cur_stree();
735 }

737 nullify_path();
738 __unnullify_path();
739 FOR_EACH_SM(orig_states, sm) {
740 __set_sm_cur_stree(sm);
741 } END_FOR_EACH_SM(sm);

743 db_info.true_side = 0;
744 db_info.stree = NULL;
745 db_info.prev_return_id = -1;
746 db_info.cull = 0;
747 __push_fake_cur_stree();
748 sql_select_return_states("return_id, return, type, parameter, key, value
749 db_compare_callback, &db_info);
750 set_other_side_state(&db_info);
751 stree = __pop_fake_cur_stree();
752 if (!db_info.cull)
718 if (!db_info.cull) {
719 set_return_state(db_info.var_expr, &db_info);
753 merge_fake_stree(&db_info.stree, stree);
721 }
754 free_stree(&stree);
755 false_states = db_info.stree;
756 if (!false_states && db_info.has_states) {
757 __push_fake_cur_stree();
758 set_path_impossible();
759 false_states = __pop_fake_cur_stree();
760 }

762 nullify_path();
763 __unnullify_path();
764 FOR_EACH_SM(orig_states, sm) {
765 __set_sm_cur_stree(sm);
766 } END_FOR_EACH_SM(sm);

new/usr/src/tools/smatch/src/smatch_function_hooks.c 7

768 free_stree(&orig_states);

770 FOR_EACH_SM(true_states, sm) {
771 __set_true_false_sm(sm, NULL);
772 } END_FOR_EACH_SM(sm);
773 FOR_EACH_SM(false_states, sm) {
774 __set_true_false_sm(NULL, sm);
775 } END_FOR_EACH_SM(sm);

777 free_stree(&true_states);
778 free_stree(&false_states);

780 call_return_states_after_hooks(call_expr);

782 FOR_EACH_SM(implied_true, sm) {
783 __set_true_false_sm(sm, NULL);
784 } END_FOR_EACH_SM(sm);
785 FOR_EACH_SM(implied_false, sm) {
786 __set_true_false_sm(NULL, sm);
787 } END_FOR_EACH_SM(sm);
788 }

______unchanged_portion_omitted_

823 static void call_ranged_return_hooks(struct db_callback_info *db_info)
824 {
825 struct call_back_list *call_backs;
826 struct expression *expr;
827 struct fcall_back *tmp;
828 char *fn;

830 expr = strip_expr(db_info->expr);
831 while (expr->type == EXPR_ASSIGNMENT)
832 expr = strip_expr(expr->right);
833 if (expr->type != EXPR_CALL ||
834 expr->fn->type != EXPR_SYMBOL)
835 return;

837 fn = expr->fn->symbol_name->name;

839 call_backs = search_callback(func_hash, fn);
840 FOR_EACH_PTR(call_backs, tmp) {
841 struct range_list *range_rl;
809 struct range_list *range_rl = NULL;

843 if (tmp->type != RANGED_CALL)
844 continue;
845 range_rl = alloc_rl(tmp->range->min, tmp->range->max);
813 add_range(&range_rl, tmp->range->min, tmp->range->max);
846 range_rl = cast_rl(estate_type(db_info->ret_state), range_rl);
847 if (possibly_true_rl(range_rl, SPECIAL_EQUAL, estate_rl(db_info-
815 if (possibly_true_rl(range_rl, SPECIAL_EQUAL, estate_rl(db_info-
816 if (!possibly_true_rl(rl_invert(range_rl), SPECIAL_EQUAL
848 (tmp->u.ranged)(fn, expr, db_info->expr, tmp->info);
818 else
819 db_info->handled = -1;
820 }
849 } END_FOR_EACH_PTR(tmp);
850 }

852 static int db_assign_return_states_callback(void *_info, int argc, char **argv,
853 {
854 struct db_callback_info *db_info = _info;
855 struct range_list *ret_range;
856 int type, param;
857 char *ret_str, *key, *value;
829 char *key, *value;

new/usr/src/tools/smatch/src/smatch_function_hooks.c 8

858 struct return_implies_callback *tmp;
859 struct stree *stree;
860 int return_id;

862 if (argc != 6)
863 return 0;

865 return_id = atoi(argv[0]);
866 ret_str = argv[1];
867 type = atoi(argv[2]);
868 param = atoi(argv[3]);
869 key = argv[4];
870 value = argv[5];

872 if (db_info->prev_return_id != -1 && type == INTERNAL) {
873 call_ranged_return_hooks(db_info);
874 set_return_assign_state(db_info);
845 set_return_state(db_info->expr->left, db_info);
875 stree = __pop_fake_cur_stree();
876 if (!db_info->cull)
877 merge_fake_stree(&db_info->stree, stree);
878 free_stree(&stree);
879 __push_fake_cur_stree();
880 db_info->cull = 0;
881 }
882 db_info->prev_return_id = return_id;

884 if (type == INTERNAL && func_type_mismatch(db_info->expr, value))
885 db_info->cull = 1;
886 if (db_info->cull)
887 return 0;
888 if (type == CULL_PATH) {
889 db_info->cull = 1;
890 return 0;
891 }
892 if (is_impossible_data(type, db_info->expr, param, key, value)) {
893 db_info->cull = 1;
894 return 0;
895 }

897 if (type == PARAM_LIMIT)
898 param_limit_implications(db_info->expr, param, key, value);

900 db_info->handled = 1;
901 call_results_to_rl(db_info->expr->right, get_type(strip_expr(db_info->ex
872 call_results_to_rl(db_info->expr->right, get_type(strip_expr(db_info->ex
902 if (!ret_range)
903 ret_range = alloc_whole_rl(get_type(strip_expr(db_info->expr->ri
904 ret_range = cast_rl(get_type(db_info->expr->right), ret_range);

906 if (type == INTERNAL) {
907 set_state(-1, "unnull_path", NULL, &true_state);
908 __add_return_comparison(strip_expr(db_info->expr->right), ret_st
909 __add_comparison_info(db_info->expr->left, strip_expr(db_info->e
910 __add_return_to_param_mapping(db_info->expr, ret_str);
911 store_return_state(db_info, ret_str, alloc_estate_rl(ret_range))
879 __add_return_comparison(strip_expr(db_info->expr->right), argv[1
880 __add_comparison_info(db_info->expr->left, strip_expr(db_info->e
881 __add_return_to_param_mapping(db_info->expr, argv[1]);
882 store_return_state(db_info, argv[1], alloc_estate_rl(ret_range))
912 }

914 FOR_EACH_PTR(db_return_states_list, tmp) {
915 if (tmp->type == type)
916 tmp->callback(db_info->expr, param, key, value);
917 } END_FOR_EACH_PTR(tmp);

new/usr/src/tools/smatch/src/smatch_function_hooks.c 9

919 return 0;
920 }

922 static int db_return_states_assign(struct expression *expr)
923 {
924 struct expression *right;
925 struct sm_state *sm;
926 struct stree *stree;
927 struct db_callback_info db_info = {};

929 right = strip_expr(expr->right);

931 db_info.prev_return_id = -1;
932 db_info.expr = expr;
933 db_info.stree = NULL;
934 db_info.handled = 0;

936 call_return_states_before_hooks();

938 __push_fake_cur_stree();
939 sql_select_return_states("return_id, return, type, parameter, key, value
940 right, db_assign_return_states_callback, &db_info);
941 if (option_debug) {
942 sm_msg("%s return_id %d return_ranges %s",
943 db_info.cull ? "culled" : "merging",
944 db_info.prev_return_id,
945 db_info.ret_state ? db_info.ret_state->name : "’<empty>’
946 }
947 if (db_info.handled)
948 call_ranged_return_hooks(&db_info);
949 set_return_assign_state(&db_info);
920 set_return_state(db_info.expr->left, &db_info);
950 stree = __pop_fake_cur_stree();
951 if (!db_info.cull)
952 merge_fake_stree(&db_info.stree, stree);
953 free_stree(&stree);

955 if (!db_info.stree && db_info.cull) { /* this means we culled everything
956 set_extra_expr_mod(expr->left, alloc_estate_whole(get_type(expr-
957 set_path_impossible();
958 }
959 FOR_EACH_SM(db_info.stree, sm) {
960 __set_sm(sm);
961 } END_FOR_EACH_SM(sm);

963 free_stree(&db_info.stree);
964 call_return_states_after_hooks(right);

966 return db_info.handled;
967 }

______unchanged_portion_omitted_

1038 static int db_return_states_callback(void *_info, int argc, char **argv, char **
1039 {
1040 struct db_callback_info *db_info = _info;
1041 struct range_list *ret_range;
1042 int type, param;
1043 char *ret_str, *key, *value;
1014 char *key, *value;
1044 struct return_implies_callback *tmp;
1045 struct stree *stree;
1046 int return_id;
1047 char buf[64];

1049 if (argc != 6)

new/usr/src/tools/smatch/src/smatch_function_hooks.c 10

1050 return 0;

1052 return_id = atoi(argv[0]);
1053 ret_str = argv[1];
1054 type = atoi(argv[2]);
1055 param = atoi(argv[3]);
1056 key = argv[4];
1057 value = argv[5];

1059 if (db_info->prev_return_id != -1 && type == INTERNAL) {
1060 stree = __pop_fake_cur_stree();
1061 if (!db_info->cull)
1062 merge_fake_stree(&db_info->stree, stree);
1063 free_stree(&stree);
1064 __push_fake_cur_stree();
1065 __unnullify_path();
1066 db_info->cull = 0;
1067 }
1068 db_info->prev_return_id = return_id;

1070 if (type == INTERNAL && func_type_mismatch(db_info->expr, value))
1071 db_info->cull = 1;
1072 if (db_info->cull)
1073 return 0;
1074 if (type == CULL_PATH) {
1075 db_info->cull = 1;
1076 return 0;
1077 }
1078 if (is_impossible_data(type, db_info->expr, param, key, value)) {
1079 db_info->cull = 1;
1080 return 0;
1081 }

1083 if (type == PARAM_LIMIT)
1084 param_limit_implications(db_info->expr, param, key, value);

1086 call_results_to_rl(db_info->expr, get_type(strip_expr(db_info->expr)), r
1056 call_results_to_rl(db_info->expr, get_type(strip_expr(db_info->expr)), a
1087 ret_range = cast_rl(get_type(db_info->expr), ret_range);

1089 if (type == INTERNAL) {
1090 set_state(-1, "unnull_path", NULL, &true_state);
1091 __add_return_comparison(strip_expr(db_info->expr), ret_str);
1092 __add_return_to_param_mapping(db_info->expr, ret_str);
1061 __add_return_comparison(strip_expr(db_info->expr), argv[1]);
1062 __add_return_to_param_mapping(db_info->expr, argv[1]);
1093 }

1096 FOR_EACH_PTR(db_return_states_list, tmp) {
1097 if (tmp->type == type)
1098 tmp->callback(db_info->expr, param, key, value);
1099 } END_FOR_EACH_PTR(tmp);

1101 /*
1102 * We want to store the return values so that we can split the strees
1103 * in smatch_db.c. This uses set_state() directly because it’s not a
1104 * real smatch_extra state.
1105 */
1106 snprintf(buf, sizeof(buf), "return %p", db_info->expr);
1107 set_state(SMATCH_EXTRA, buf, NULL, alloc_estate_rl(ret_range));

1109 return 0;
1110 }
______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_function_ptrs.c 1

**
 9444 Mon Aug 5 08:38:32 2019
new/usr/src/tools/smatch/src/smatch_function_ptrs.c
11506 smatch resync
**
______unchanged_portion_omitted_

140 char *get_fnptr_name(struct expression *expr)
141 {
142 char *name;

144 if (is_zero(expr))
145 return NULL;

147 expr = strip_expr(expr);

149 /* (*ptrs[0])(a, b, c) is the same as ptrs[0](a, b, c); */
150 if (expr->type == EXPR_PREOP && expr->op == ’*’)
151 expr = strip_expr(expr->unop);

153 name = get_from__symbol_get(expr);
154 if (name)
155 return name;

157 name = get_array_ptr(expr);
158 if (name)
159 return name;

161 name = get_returned_ptr(expr);
162 if (name)
163 return name;

165 name = get_member_name(expr);
166 if (name)
167 return name;

169 if (expr->type == EXPR_SYMBOL) {
170 int param;
171 char buf[256];
172 struct symbol *sym;
173 struct symbol *type;

175 param = get_param_num_from_sym(expr->symbol);
176 if (param >= 0) {
177 snprintf(buf, sizeof(buf), "%s param %d", get_function()
178 return alloc_string(buf);
179 }

181 name = expr_to_var_sym(expr, &sym);
182 if (!name)
183 return NULL;
184 type = get_type(expr);
185 if (type && type->type == SYM_PTR) {
186 snprintf(buf, sizeof(buf), "%s %s", ptr_prefix(sym), nam
187 free_string(name);
188 return alloc_string(buf);
189 }
190 return name;
191 }
192 return expr_to_var(expr);
193 }

______unchanged_portion_omitted_

351 static void print_initializer_list(struct expression_list *expr_list,
352 struct symbol *struct_type)
353 {

new/usr/src/tools/smatch/src/smatch_function_ptrs.c 2

354 struct expression *expr;
355 struct symbol *base_type;
356 char struct_name[256];

358 FOR_EACH_PTR(expr_list, expr) {
359 if (expr->type == EXPR_INDEX && expr->idx_expression && expr->id
360 print_initializer_list(expr->idx_expression->expr_list,
361 continue;
362 }
363 if (expr->type != EXPR_IDENTIFIER)
364 continue;
365 if (!expr->expr_ident)
366 continue;
367 if (!expr->ident_expression ||
368 expr->ident_expression->type != EXPR_SYMBOL ||
369 !expr->ident_expression->symbol_name)
370 continue;
371 base_type = get_type(expr->ident_expression);
372 if (!base_type || base_type->type != SYM_FN)
373 continue;
374 snprintf(struct_name, sizeof(struct_name), "(struct %s)->%s",
375 struct_type->ident->name, expr->expr_ident->name);
376 sql_insert_function_ptr(expr->ident_expression->symbol_name->nam
377 struct_name);
378 } END_FOR_EACH_PTR(expr);
379 }

381 static void global_variable(struct symbol *sym)
382 {
383 struct symbol *struct_type;

385 if (!sym->ident)
386 return;
387 if (!sym->initializer || sym->initializer->type != EXPR_INITIALIZER)
388 return;
389 struct_type = get_base_type(sym);
390 if (!struct_type)
391 return;
392 if (struct_type->type == SYM_ARRAY) {
393 struct_type = get_base_type(struct_type);
394 if (!struct_type)
395 return;
396 }
397 if (struct_type->type != SYM_STRUCT || !struct_type->ident)
398 return;
399 print_initializer_list(sym->initializer->expr_list, struct_type);
400 }

402 void register_function_ptrs(int id)
403 {
404 my_id = id;

406 if (!option_info)
407 return;

409 add_hook(&global_variable, BASE_HOOK);
410 add_hook(&global_variable, DECLARATION_HOOK);
411 add_hook(&match_passes_function_pointer, FUNCTION_CALL_HOOK);
412 add_hook(&match_returns_function_pointer, RETURN_HOOK);
413 add_hook(&match_function_assign, ASSIGNMENT_HOOK);
414 add_hook(&match_function_assign, GLOBAL_ASSIGNMENT_HOOK);
415 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_helper.c 1

**
 25477 Mon Aug 5 08:38:33 2019
new/usr/src/tools/smatch/src/smatch_helper.c
11506 smatch resync
**
______unchanged_portion_omitted_

84 struct smatch_state *merge_str_state(struct smatch_state *s1, struct smatch_stat
85 {
86 if (!s1->name || !s2->name)
87 return &merged;
88 if (strcmp(s1->name, s2->name) == 0)
89 return s1;
90 return &merged;
91 }

93 struct smatch_state *alloc_state_expr(struct expression *expr)
94 {
95 struct smatch_state *state;
96 char *name;

89 state = __alloc_smatch_state(0);
98 expr = strip_expr(expr);
99 name = expr_to_str(expr);
100 if (!name)
101 return NULL;

103 state = __alloc_smatch_state(0);
104 state->name = alloc_sname(name);
105 free_string(name);
106 state->data = expr;
107 return state;
108 }

______unchanged_portion_omitted_

162 static void __get_variable_from_expr(struct symbol **sym_ptr, char *buf,
163 struct expression *expr, int len,
164 int *complicated, int no_parens)
165 {

168 if (!expr) {
169 /* can’t happen on valid code */
170 *complicated = 1;
171 return;
172 }

174 switch (expr->type) {
175 case EXPR_DEREF: {
176 struct expression *deref;
177 int op;

179 deref = expr->deref;
180 op = deref->op;
181 if (deref->type == EXPR_PREOP && op == ’*’) {
169 if (op == ’*’) {
182 struct expression *unop = strip_expr(deref->unop);

184 if (unop->type == EXPR_PREOP && unop->op == ’&’) {
185 deref = unop->unop;
186 op = ’.’;
187 } else {
188 if (!is_pointer(deref) && !is_pointer(deref->uno
189 op = ’.’;
190 deref = deref->unop;
177 if (!is_pointer(deref))

new/usr/src/tools/smatch/src/smatch_helper.c 2

178 op = ’.’;
191 }
192 }

194 __get_variable_from_expr(sym_ptr, buf, deref, len, complicated,

196 if (op == ’*’)
197 append(buf, "->", len);
198 else
199 append(buf, ".", len);

201 if (expr->member)
202 append(buf, expr->member->name, len);
203 else
204 append(buf, "unknown_member", len);

206 return;
207 }
208 case EXPR_SYMBOL:
209 if (expr->symbol_name)
210 append(buf, expr->symbol_name->name, len);
211 if (sym_ptr) {
212 if (*sym_ptr)
213 *complicated = 1;
214 *sym_ptr = expr->symbol;
215 }
216 return;
217 case EXPR_PREOP: {
218 const char *tmp;

220 if (get_expression_statement(expr)) {
221 *complicated = 2;
222 return;
223 }

225 if (expr->op == ’(’) {
226 if (!no_parens && expr->unop->type != EXPR_SYMBOL)
227 append(buf, "(", len);
228 } else if (expr->op != ’*’ || !get_array_expr(expr->unop)) {
229 tmp = show_special(expr->op);
230 append(buf, tmp, len);
231 }
232 __get_variable_from_expr(sym_ptr, buf, expr->unop,
233 len, complicated, no_parens);

235 if (expr->op == ’(’ && !no_parens && expr->unop->type != EXPR_SY
236 append(buf, ")", len);

238 if (expr->op == SPECIAL_DECREMENT ||
239 expr->op == SPECIAL_INCREMENT)
240 *complicated = 1;

242 return;
243 }
244 case EXPR_POSTOP: {
245 const char *tmp;

247 __get_variable_from_expr(sym_ptr, buf, expr->unop,
248 len, complicated, no_parens);
249 tmp = show_special(expr->op);
250 append(buf, tmp, len);

252 if (expr->op == SPECIAL_DECREMENT || expr->op == SPECIAL_INCREME
253 *complicated = 1;
254 return;
255 }

new/usr/src/tools/smatch/src/smatch_helper.c 3

256 case EXPR_ASSIGNMENT:
257 case EXPR_COMPARE:
258 case EXPR_LOGICAL:
259 case EXPR_BINOP: {
260 char tmp[10];
261 struct expression *array_expr;

263 *complicated = 1;
264 array_expr = get_array_expr(expr);
265 if (array_expr) {
266 __get_variable_from_expr(sym_ptr, buf, array_expr, len,
267 append(buf, "[", len);
268 } else {
269 __get_variable_from_expr(sym_ptr, buf, expr->left, len,
270 snprintf(tmp, sizeof(tmp), " %s ", show_special(expr->op
271 append(buf, tmp, len);
272 }
273 __get_variable_from_expr(NULL, buf, expr->right, len, complicate
274 if (array_expr)
275 append(buf, "]", len);
276 return;
277 }
278 case EXPR_VALUE: {
279 char tmp[25];

281 *complicated = 1;
282 snprintf(tmp, 25, "%lld", expr->value);
283 append(buf, tmp, len);
284 return;
285 }
286 case EXPR_STRING:
287 append(buf, "\"", len);
288 if (expr->string)
289 append(buf, expr->string->data, len);
290 append(buf, "\"", len);
291 return;
292 case EXPR_CALL: {
293 struct expression *tmp;
294 int i;

296 *complicated = 1;
297 __get_variable_from_expr(NULL, buf, expr->fn, len, complicated,
298 append(buf, "(", len);
299 i = 0;
300 FOR_EACH_PTR(expr->args, tmp) {
301 if (i++)
302 append(buf, ", ", len);
303 __get_variable_from_expr(NULL, buf, tmp, len, complicate
304 } END_FOR_EACH_PTR(tmp);
305 append(buf, ")", len);
306 return;
307 }
308 case EXPR_CAST:
309 case EXPR_FORCE_CAST:
310 __get_variable_from_expr(sym_ptr, buf,
311 expr->cast_expression, len,
312 complicated, no_parens);
313 return;
314 case EXPR_SIZEOF: {
315 sval_t sval;
316 int size;
317 char tmp[25];

319 if (expr->cast_type && get_base_type(expr->cast_type)) {
320 size = type_bytes(get_base_type(expr->cast_type));
321 snprintf(tmp, 25, "%d", size);

new/usr/src/tools/smatch/src/smatch_helper.c 4

322 append(buf, tmp, len);
323 } else if (get_value(expr, &sval)) {
324 snprintf(tmp, 25, "%s", sval_to_str(sval));
325 append(buf, tmp, len);
326 }
327 return;
328 }
329 case EXPR_IDENTIFIER:
330 *complicated = 1;
331 if (expr->expr_ident)
332 append(buf, expr->expr_ident->name, len);
333 return;
334 default:
335 *complicated = 1;
336 //printf("unknown type = %d\n", expr->type);
337 return;
338 }
339 }

______unchanged_portion_omitted_

521 char *expr_to_chunk_helper(struct expression *expr, struct symbol **sym, struct
522 {
523 struct var_sym_list *tmp_vsl;
524 char *name;
525 struct symbol *tmp;
526 int score;

528 if (vsl)
529 *vsl = NULL;
530 if (sym)
531 *sym = NULL;

533 expr = strip_parens(expr);
534 if (!expr)
535 return NULL;

537 name = expr_to_var_sym(expr, &tmp);
538 if (name && tmp) {
539 if (sym)
540 *sym = tmp;
541 if (vsl)
542 add_var_sym(vsl, name, tmp);
530 *vsl = expr_to_vsl(expr);
543 return name;
544 }
545 free_string(name);

547 score = get_complication_score(expr);
548 if (score <= 0 || score > 2)
549 return NULL;

551 tmp_vsl = expr_to_vsl(expr);
552 if (vsl) {
553 *vsl = tmp_vsl;
554 if (!*vsl)
555 return NULL;
556 }
557 if (sym) {
558 if (ptr_list_size((struct ptr_list *)tmp_vsl) == 1) {
559 struct var_sym *vs;

561 vs = first_ptr_list((struct ptr_list *)tmp_vsl);
562 *sym = vs->sym;
563 }
564 }

new/usr/src/tools/smatch/src/smatch_helper.c 5

566 expr = reorder_expr_alphabetically(expr);

568 return expr_to_str(expr);
569 }

______unchanged_portion_omitted_

864 char *get_member_name(struct expression *expr)
865 {
866 char buf[256];
867 struct symbol *sym;

869 expr = strip_expr(expr);
870 if (!expr || expr->type != EXPR_DEREF)
871 return NULL;
872 if (!expr->member)
873 return NULL;

875 sym = get_type(expr->deref);
876 if (!sym)
877 return NULL;
878 if (sym->type == SYM_UNION) {
879 snprintf(buf, sizeof(buf), "(union %s)->%s",
880 sym->ident ? sym->ident->name : "anonymous",
881 expr->member->name);
882 return alloc_string(buf);
883 }
884 if (!sym->ident) {
885 struct expression *deref;
886 char *full, *outer;
887 int len;

889 /*
890 * If we’re in an anonymous struct then maybe we can find an
891 * outer struct name to use as a name. This code should be
892 * recursive and cleaner. I am not very proud of it.
893 *
894 */

896 deref = expr->deref;
897 if (deref->type != EXPR_DEREF || !deref->member)
872 if (!sym->ident)
898 return NULL;
899 sym = get_type(deref->deref);
900 if (!sym || sym->type != SYM_STRUCT || !sym->ident)
901 return NULL;

903 full = expr_to_str(expr);
904 if (!full)
905 return NULL;
906 deref = deref->deref;
907 if (deref->type == EXPR_PREOP && deref->op == ’*’)
908 deref = deref->unop;
909 outer = expr_to_str(deref);
910 if (!outer) {
911 free_string(full);
912 return NULL;
913 }
914 len = strlen(outer);
915 if (strncmp(outer, full, len) != 0) {
916 free_string(full);
917 free_string(outer);
918 return NULL;
919 }
920 if (full[len] == ’-’ && full[len + 1] == ’>’)
921 len += 2;
922 if (full[len] == ’.’)

new/usr/src/tools/smatch/src/smatch_helper.c 6

923 len++;
924 snprintf(buf, sizeof(buf), "(struct %s)->%s", sym->ident->name,
925 free_string(outer);
926 free_string(full);

928 return alloc_string(buf);
929 }
930 snprintf(buf, sizeof(buf), "(struct %s)->%s", sym->ident->name, expr->me
931 return alloc_string(buf);
932 }

______unchanged_portion_omitted_

1113 int op_remove_assign(int op)
1114 {
1115 switch (op) {
1116 case SPECIAL_ADD_ASSIGN:
1117 return ’+’;
1118 case SPECIAL_SUB_ASSIGN:
1119 return ’-’;
1120 case SPECIAL_MUL_ASSIGN:
1121 return ’*’;
1122 case SPECIAL_DIV_ASSIGN:
1123 return ’/’;
1124 case SPECIAL_MOD_ASSIGN:
1125 return ’%’;
1126 case SPECIAL_AND_ASSIGN:
1127 return ’&’;
1128 case SPECIAL_OR_ASSIGN:
1129 return ’|’;
1130 case SPECIAL_XOR_ASSIGN:
1131 return ’^’;
1132 case SPECIAL_SHL_ASSIGN:
1133 return SPECIAL_LEFTSHIFT;
1134 case SPECIAL_SHR_ASSIGN:
1135 return SPECIAL_RIGHTSHIFT;
1136 default:
1137 return op;
1138 }
1139 }

1141 int expr_equiv(struct expression *one, struct expression *two)
1142 {
1143 struct symbol *one_sym = NULL;
1144 struct symbol *two_sym = NULL;
1145 char *one_name = NULL;
1146 char *two_name = NULL;
1147 int ret = 0;

1149 if (!one || !two)
1150 return 0;
1151 if (one->type != two->type)
1152 return 0;
1153 if (is_fake_call(one) || is_fake_call(two))
1154 return 0;

1156 one_name = expr_to_str_sym(one, &one_sym);
1157 if (!one_name)
1158 goto free;
1159 two_name = expr_to_str_sym(two, &two_sym);
1160 if (!two_name)
1161 goto free;
1162 if (one_sym != two_sym)
1163 goto free;
1164 /*
1165 * This is a terrible hack because expr_to_str() sometimes gives up in
1166 * the middle and just returns what it has. If you see a () you know

new/usr/src/tools/smatch/src/smatch_helper.c 7

1167 * the string is bogus.
1168 */
1169 if (strstr(one_name, "()"))
1170 goto free;
1171 if (strcmp(one_name, two_name) == 0)
1172 ret = 1;
1173 free:
1174 free_string(one_name);
1175 free_string(two_name);
1176 return ret;
1177 }
______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_ignore.c 1

**
 2687 Mon Aug 5 08:38:34 2019
new/usr/src/tools/smatch/src/smatch_ignore.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2009 Dan Carpenter.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 #include "smatch.h"
19 #include "smatch_slist.h"

21 STATE(ignore);
22 static struct stree *ignored;
23 static struct stree *ignored_from_file;

25 void add_ignore(int owner, const char *name, struct symbol *sym)
26 {
27 set_state_stree(&ignored, owner, name, sym, &ignore);
28 }

______unchanged_portion_omitted_

47 int is_ignored_expr(int owner, struct expression *expr)
48 {
49 struct symbol *sym;
50 char *name;
51 int ret;

53 name = expr_to_str_sym(expr, &sym);
54 if (!name && !sym)
55 return 0;
56 ret = is_ignored(owner, name, sym);
57 free_string(name);
58 if (ret)
59 return true;

61 name = get_macro_name(expr->pos);
62 if (name && get_state_stree(ignored_from_file, owner, name, NULL))
63 return true;

65 name = get_function();
66 if (name && get_state_stree(ignored_from_file, owner, name, NULL))
67 return true;

69 return false;
57 return ret;
70 }

______unchanged_portion_omitted_

79 static void load_ignores(void)
80 {
81 struct token *token;
82 const char *name, *str;

new/usr/src/tools/smatch/src/smatch_ignore.c 2

83 int owner;
84 char buf[64];

86 snprintf(buf, sizeof(buf), "%s.ignored_warnings", option_project_str);
87 token = get_tokens_file(buf);
88 if (!token)
89 return;
90 if (token_type(token) != TOKEN_STREAMBEGIN)
91 return;
92 token = token->next;
93 while (token_type(token) != TOKEN_STREAMEND) {
94 if (token_type(token) != TOKEN_IDENT)
95 break;
96 name = show_ident(token->ident);
97 token = token->next;
98 owner = id_from_name(name);

100 if (token_type(token) != TOKEN_IDENT)
101 break;
102 str = show_ident(token->ident);
103 token = token->next;

105 set_state_stree_perm(&ignored_from_file, owner, str, NULL, &igno
106 }
107 clear_token_alloc();
108 }

110 void register_smatch_ignore(int id)
111 {
112 add_hook(&clear_ignores, AFTER_FUNC_HOOK);
113 load_ignores();
114 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_imaginary_absolute.c 1

**
 2250 Mon Aug 5 08:38:34 2019
new/usr/src/tools/smatch/src/smatch_imaginary_absolute.c
11506 smatch resync
**
______unchanged_portion_omitted_

54 void __save_imaginary_state(struct expression *expr, struct range_list *true_rl,
55 {
56 if (__in_pre_condition)
57 return;
58 set_true_false_states_expr(my_id, expr, alloc_estate_rl(true_rl), alloc_
59 }

______unchanged_portion_omitted_

75 void register_imaginary_absolute(int id)
76 {
77 my_id = id;

79 set_dynamic_states(my_id);
80 add_unmatched_state_hook(my_id, &empty_state);
81 add_merge_hook(my_id, &merge_is_empty);
82 add_modification_hook(my_id, &reset);
83 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_implied.c 1

**
 30977 Mon Aug 5 08:38:35 2019
new/usr/src/tools/smatch/src/smatch_implied.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2008 Dan Carpenter.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 *
17 * Copyright 2019 Joyent, Inc.
18 */

20 /*
21 * Imagine we have this code:
22 * foo = 1;
23 * if (bar)
24 * foo = 99;
25 * else
26 * frob();
27 * // <-- point #1
28 * if (foo == 99) // <-- point #2
29 * bar->baz; // <-- point #3
30 *
31 *
32 * At point #3 bar is non null and can be dereferenced.
33 *
34 * It’s smatch_implied.c which sets bar to non null at point #2.
35 *
36 * At point #1 merge_slist() stores the list of states from both
37 * the true and false paths. On the true path foo == 99 and on
38 * the false path foo == 1. merge_slist() sets their pool
39 * list to show the other states which were there when foo == 99.
40 *
41 * When it comes to the if (foo == 99) the smatch implied hook
42 * looks for all the pools where foo was not 99. It makes a list
43 * of those.
44 *
45 * Then for bar (and all the other states) it says, ok bar is a
46 * merged state that came from these previous states. We’ll
47 * chop out all the states where it came from a pool where
48 * foo != 99 and merge it all back together.
49 *
50 * That is the implied state of bar.
51 *
52 * merge_slist() sets up ->pool. An sm_state only has one ->pool and
53 * that is the pool where it was first set. The my pool gets set when
54 * code paths merge. States that have been set since the last merge do
55 * not have a ->pool.
56 * merge_sm_state() sets ->left and ->right. (These are the states which were
57 * merged to form the current state.)
58 * a pool: a pool is an slist that has been merged with another slist.
59 */

61 #include <sys/time.h>

new/usr/src/tools/smatch/src/smatch_implied.c 2

62 #include <time.h>
63 #include "smatch.h"
64 #include "smatch_slist.h"
65 #include "smatch_extra.h"

67 char *implied_debug_msg;
68 #define DIMPLIED(msg...) do { if (option_debug_implied || option_debug) printf(m

69 bool implications_off;
70 int option_debug_implied = 0;

71 #define implied_debug 0
72 #define DIMPLIED(msg...) do { if (implied_debug) printf(msg); } while (0)

74 /*
75 * tmp_range_list():
76 * It messes things up to free range list allocations. This helper fuction
77 * lets us reuse memory instead of doing new allocations.
78 */
79 static struct range_list *tmp_range_list(struct symbol *type, long long num)
80 {
81 static struct range_list *my_list = NULL;
82 static struct data_range *my_range;

84 __free_ptr_list((struct ptr_list **)&my_list);
85 my_range = alloc_range(ll_to_sval(num), ll_to_sval(num));
86 add_ptr_list(&my_list, my_range);
87 return my_list;
88 }

90 static void print_debug_tf(struct sm_state *sm, int istrue, int isfalse)
91 {
92 if (!implied_debug && !option_debug)
90 if (!option_debug_implied && !option_debug)
93 return;

95 if (istrue && isfalse) {
96 printf("%s: %d: does not exist.\n", show_sm(sm), sm->line);
97 } else if (istrue) {
98 printf("’%s = %s’ from %d is true. %s[stree %d]\n", sm->name, sh
99 sm->line, sm->merged ? "[merged]" : "[leaf]",
100 get_stree_id(sm->pool));
101 } else if (isfalse) {
102 printf("’%s = %s’ from %d is false. %s[stree %d]\n", sm->name, s
103 sm->line,
104 sm->merged ? "[merged]" : "[leaf]",
105 get_stree_id(sm->pool));
106 } else {
107 printf("’%s = %s’ from %d could be true or false. %s[stree %d]\n
108 show_state(sm->state), sm->line,
109 sm->merged ? "[merged]" : "[leaf]",
110 get_stree_id(sm->pool));
111 }
112 }

114 static int create_fake_history(struct sm_state *sm, int comparison, struct range
115 {
116 struct range_list *orig_rl;
117 struct range_list *true_rl, *false_rl;
118 struct stree *true_stree, *false_stree;
119 struct sm_state *true_sm, *false_sm;
120 sval_t sval;

122 if (is_merged(sm) || sm->left || sm->right)
123 return 0;
124 if (!rl_to_sval(rl, &sval))

new/usr/src/tools/smatch/src/smatch_implied.c 3

125 return 0;
126 if (!estate_rl(sm->state))
127 return 0;

129 orig_rl = cast_rl(rl_type(rl), estate_rl(sm->state));
130 split_comparison_rl(orig_rl, comparison, rl, &true_rl, &false_rl, NULL,

132 true_rl = rl_truncate_cast(estate_type(sm->state), true_rl);
133 false_rl = rl_truncate_cast(estate_type(sm->state), false_rl);
134 if (is_whole_rl(true_rl) || is_whole_rl(false_rl) ||
135 !true_rl || !false_rl ||
136 rl_equiv(orig_rl, true_rl) || rl_equiv(orig_rl, false_rl) ||
137 rl_equiv(estate_rl(sm->state), true_rl) || rl_equiv(estate_rl(sm->st
138 return 0;

140 if (rl_intersection(true_rl, false_rl)) {
141 sm_perror("parsing (%s (%s) %s %s)",
142 sm->name, sm->state->name, show_special(comparison), sho
143 sm_msg("true_rl = %s false_rl = %s intersection = %s",
144 show_rl(true_rl), show_rl(false_rl), show_rl(rl_intersect
145 return 0;
146 }

148 if (implied_debug)
149 sm_msg("fake_history: %s vs %s. %s %s %s. --> T: %s F: %s",
146 if (option_debug)
147 sm_info("fake_history: %s vs %s. %s %s %s. --> T: %s F: %s",
150 sm->name, show_rl(rl), sm->state->name, show_special(comp
151 show_rl(true_rl), show_rl(false_rl));

153 true_sm = clone_sm(sm);
154 false_sm = clone_sm(sm);

156 true_sm->state = clone_partial_estate(sm->state, true_rl);
154 true_sm->state = alloc_estate_rl(cast_rl(estate_type(sm->state), true_rl
157 free_slist(&true_sm->possible);
158 add_possible_sm(true_sm, true_sm);
159 false_sm->state = clone_partial_estate(sm->state, false_rl);
157 false_sm->state = alloc_estate_rl(cast_rl(estate_type(sm->state), false_
160 free_slist(&false_sm->possible);
161 add_possible_sm(false_sm, false_sm);

163 true_stree = clone_stree(sm->pool);
164 false_stree = clone_stree(sm->pool);

166 overwrite_sm_state_stree(&true_stree, true_sm);
167 overwrite_sm_state_stree(&false_stree, false_sm);

169 true_sm->pool = true_stree;
170 false_sm->pool = false_stree;

172 sm->merged = 1;
173 sm->left = true_sm;
174 sm->right = false_sm;

176 return 1;
177 }

______unchanged_portion_omitted_

229 /*
230 * If ’foo’ == 99 add it that pool to the true pools. If it’s false, add it to
231 * the false pools. If we’re not sure, then we don’t add it to either.
232 */
233 static void do_compare(struct sm_state *sm, int comparison, struct range_list *r
234 struct state_list **true_stack,
235 struct state_list **maybe_stack,

new/usr/src/tools/smatch/src/smatch_implied.c 4

236 struct state_list **false_stack,
237 int *mixed, struct sm_state *gate_sm)
238 {
239 int istrue;
240 int isfalse;
241 struct range_list *var_rl;

243 if (!sm->pool)
244 return;

246 var_rl = cast_rl(rl_type(rl), estate_rl(sm->state));

248 istrue = !possibly_false_rl(var_rl, comparison, rl);
249 isfalse = !possibly_true_rl(var_rl, comparison, rl);

251 print_debug_tf(sm, istrue, isfalse);

253 /* give up if we have borrowed implications (smatch_equiv.c) */
254 if (sm->sym != gate_sm->sym ||
255 strcmp(sm->name, gate_sm->name) != 0) {
256 if (mixed)
257 *mixed = 1;
258 }

260 if (mixed && !*mixed && !is_merged(sm) && !istrue && !isfalse) {
261 if (!create_fake_history(sm, comparison, rl))
262 *mixed = 1;
263 }

265 if (istrue)
266 add_pool(true_stack, sm);
267 else if (isfalse)
268 add_pool(false_stack, sm);
269 else
270 add_pool(maybe_stack, sm);

271 }
______unchanged_portion_omitted_

284 /*
285 * separate_pools():
286 * Example code: if (foo == 99) {
287 *
288 * Say ’foo’ is a merged state that has many possible values. It is the combina
289 * of merges. separate_pools() iterates through the pools recursively and calls
290 * do_compare() for each time ’foo’ was set.
291 */
292 static void __separate_pools(struct sm_state *sm, int comparison, struct range_l
293 struct state_list **true_stack,
294 struct state_list **maybe_stack,
295 struct state_list **false_stack,
296 struct state_list **checked, int *mixed, struct sm_state
297 struct timeval *start_time)
295 struct state_list **checked, int *mixed, struct sm_state
298 {
299 int free_checked = 0;
300 struct state_list *checked_states = NULL;
301 struct timeval now;

303 if (!sm)
304 return;

306 gettimeofday(&now, NULL);
307 if (now.tv_usec - start_time->tv_usec > 1000000) {
308 if (implied_debug) {
309 sm_msg("debug: %s: implications taking too long. (%s %s

new/usr/src/tools/smatch/src/smatch_implied.c 5

310 __func__, sm->state->name, show_special(compariso
311 }
312 if (mixed)
303 /*
304 * If it looks like this is going to take too long as-is, then don’t
305 * create even more fake history.
306 */
307 if (mixed && sm->nr_children > 100)
313 *mixed = 1;

310 /*
311 Sometimes the implications are just too big to deal with
312 so we bail. Theoretically, bailing out here can cause more false
313 positives but won’t hide actual bugs.
314 */
315 if (sm->nr_children > 4000) {
316 if (option_debug || option_debug_implied) {
317 static char buf[1028];
318 snprintf(buf, sizeof(buf), "debug: %s: nr_children over
319 __func__, sm->nr_children, sm->name, show_state
320 implied_debug_msg = buf;
314 }
322 return;
323 }

316 if (checked == NULL) {
317 checked = &checked_states;
318 free_checked = 1;
319 }
320 if (is_checked(*checked, sm))
321 return;
322 add_ptr_list(checked, sm);

324 do_compare(sm, comparison, rl, true_stack, maybe_stack, false_stack, mix

326 __separate_pools(sm->left, comparison, rl, true_stack, maybe_stack, fals
327 __separate_pools(sm->right, comparison, rl, true_stack, maybe_stack, fal
335 __separate_pools(sm->left, comparison, rl, true_stack, maybe_stack, fals
336 __separate_pools(sm->right, comparison, rl, true_stack, maybe_stack, fal
328 if (free_checked)
329 free_slist(checked);
330 }

332 static void separate_pools(struct sm_state *sm, int comparison, struct range_lis
333 struct state_list **true_stack,
334 struct state_list **false_stack,
335 struct state_list **checked, int *mixed)
336 {
337 struct state_list *maybe_stack = NULL;
338 struct sm_state *tmp;
339 struct timeval start_time;

349 __separate_pools(sm, comparison, rl, true_stack, &maybe_stack, false_sta

342 gettimeofday(&start_time, NULL);
343 __separate_pools(sm, comparison, rl, true_stack, &maybe_stack, false_sta

345 if (implied_debug) {
351 if (option_debug) {
346 struct sm_state *sm;

348 FOR_EACH_PTR(*true_stack, sm) {
349 sm_msg("TRUE %s [stree %d]", show_sm(sm), get_stree_id(s
350 } END_FOR_EACH_PTR(sm);

352 FOR_EACH_PTR(maybe_stack, sm) {

new/usr/src/tools/smatch/src/smatch_implied.c 6

353 sm_msg("MAYBE %s %s[stree %d]",
354 show_sm(sm), sm->merged ? "(merged) ": "", get_st
359 sm_msg("MAYBE %s [stree %d]", show_sm(sm), get_stree_id(
355 } END_FOR_EACH_PTR(sm);

357 FOR_EACH_PTR(*false_stack, sm) {
358 sm_msg("FALSE %s [stree %d]", show_sm(sm), get_stree_id(
359 } END_FOR_EACH_PTR(sm);
360 }
361 /* if it’s a maybe then remove it */
362 FOR_EACH_PTR(maybe_stack, tmp) {
363 remove_pool(false_stack, tmp->pool);
364 remove_pool(true_stack, tmp->pool);
365 } END_FOR_EACH_PTR(tmp);

367 /* if it’s both true and false remove it from both */
368 FOR_EACH_PTR(*true_stack, tmp) {
369 if (remove_pool(false_stack, tmp->pool))
370 DELETE_CURRENT_PTR(tmp);
371 } END_FOR_EACH_PTR(tmp);
372 }

______unchanged_portion_omitted_

390 static int going_too_slow(void)
395 static int taking_too_long(void)
391 {
392 static void *printed;

394 if (out_of_memory()) {
395 implications_off = true;
399 if (out_of_memory())
396 return 1;
397 }

399 if (!option_timeout || time_parsing_function() < option_timeout) {
400 implications_off = false;
402 if (time_parsing_function() < option_timeout)
401 return 0;
402 }

404 if (!__inline_fn && printed != cur_func_sym) {
405 if (!is_skipped_function())
406 sm_perror("turning off implications after %d seconds", o
407 sm_perror("turning off implications after 60 seconds");
407 printed = cur_func_sym;
408 }
409 implications_off = true;
410 return 1;
411 }

413 static char *sm_state_info(struct sm_state *sm)
414 {
415 static char buf[512];
416 int n = 0;

418 n += snprintf(buf + n, sizeof(buf) - n, "[stree %d line %d] ",
419 get_stree_id(sm->pool), sm->line);
420 if (n >= sizeof(buf))
421 return buf;
422 n += snprintf(buf + n, sizeof(buf) - n, "%s ", show_sm(sm));
423 if (n >= sizeof(buf))
424 return buf;
425 n += snprintf(buf + n, sizeof(buf) - n, "left = %s [stree %d] ",
426 sm->left ? sm->left->state->name : "<none>",
427 sm->left ? get_stree_id(sm->left->pool) : -1);
428 if (n >= sizeof(buf))

new/usr/src/tools/smatch/src/smatch_implied.c 7

429 return buf;
430 n += snprintf(buf + n, sizeof(buf) - n, "right = %s [stree %d]",
431 sm->right ? sm->right->state->name : "<none>",
432 sm->right ? get_stree_id(sm->right->pool) : -1);
433 return buf;
434 }

436 /*
437 * NOTE: If a state is in both the keep stack and the remove stack then that is
438 * a bug. Only add states which are definitely true or definitely false. If
439 * you have a leaf state that could be both true and false, then create a fake
440 * split history where one side is true and one side is false. Otherwise, if
441 * you can’t do that, then don’t add it to either list.
442 */
443 #define RECURSE_LIMIT 300
444 struct sm_state *filter_pools(struct sm_state *sm,
445 const struct state_list *remove_stack,
446 const struct state_list *keep_stack,
447 int *modified, int *recurse_cnt,
448 struct timeval *start, int *skip, int *bail)
424 struct timeval *start)
449 {
450 struct sm_state *ret = NULL;
451 struct sm_state *left;
452 struct sm_state *right;
453 int removed = 0;
454 struct timeval now;

456 if (!sm)
457 return NULL;
458 if (*bail)
459 return NULL;
434 if (sm->skip_implications)
435 return sm;
436 if (taking_too_long())
437 return sm;

460 gettimeofday(&now, NULL);
461 if (now.tv_usec - start->tv_usec > 3000000) {
462 DIMPLIED("%s: implications taking too long: %s\n", __func__, sm_
463 *bail = 1;
464 return NULL;
440 if ((*recurse_cnt)++ > 1000 || now.tv_sec - start->tv_sec > 5) {
441 if (local_debug || option_debug_implied) {
442 static char buf[1028];
443 snprintf(buf, sizeof(buf), "debug: %s: nr_children over
444 __func__, sm->nr_children, sm->name, show_state
445 implied_debug_msg = buf;
465 }
466 if ((*recurse_cnt)++ > RECURSE_LIMIT) {
467 DIMPLIED("%s: recursed too far: %s\n", __func__, sm_state_info(
468 *skip = 1;
469 return NULL;
447 sm->skip_implications = 1;
448 return sm;
470 }

472 if (pool_in_pools(sm->pool, remove_stack)) {
473 DIMPLIED("%s: remove: %s\n", __func__, sm_state_info(sm));
452 DIMPLIED("removed [stree %d] %s from %d\n", get_stree_id(sm->poo
474 *modified = 1;
475 return NULL;
476 }

478 if (!is_merged(sm) || pool_in_pools(sm->pool, keep_stack) || sm_in_keep_
479 DIMPLIED("%s: keep %s (%s, %s, %s): %s\n", __func__, sm->state->

new/usr/src/tools/smatch/src/smatch_implied.c 8

458 DIMPLIED("kept [stree %d] %s from %d. %s. %s. %s.\n", get_stree_
480 is_merged(sm) ? "merged" : "not merged",
481 pool_in_pools(sm->pool, keep_stack) ? "not in keep pools
482 sm_in_keep_leafs(sm, keep_stack) ? "reachable keep leaf"
483 sm_state_info(sm));
461 sm_in_keep_leafs(sm, keep_stack) ? "reachable keep leaf"
484 return sm;
485 }

487 left = filter_pools(sm->left, remove_stack, keep_stack, &removed, recurs
488 right = filter_pools(sm->right, remove_stack, keep_stack, &removed, recu
489 if (*bail || *skip)
490 return NULL;
465 DIMPLIED("checking [stree %d] %s from %d (%d) left = %s [stree %d] right
466 get_stree_id(sm->pool),
467 show_sm(sm), sm->line, sm->nr_children,
468 sm->left ? sm->left->state->name : "<none>", sm->left ? get_str
469 sm->right ? sm->right->state->name : "<none>", sm->right ? get_
470 left = filter_pools(sm->left, remove_stack, keep_stack, &removed, recurs
471 right = filter_pools(sm->right, remove_stack, keep_stack, &removed, recu
491 if (!removed) {
492 DIMPLIED("%s: kept all: %s\n", __func__, sm_state_info(sm));
473 DIMPLIED("kept [stree %d] %s from %d\n", get_stree_id(sm->pool),
493 return sm;
494 }
495 *modified = 1;
496 if (!left && !right) {
497 DIMPLIED("%s: removed all: %s\n", __func__, sm_state_info(sm));
478 DIMPLIED("removed [stree %d] %s from %d <none>\n", get_stree_id(
498 return NULL;
499 }

501 if (!left) {
502 ret = clone_sm(right);
503 ret->merged = 1;
504 ret->right = right;
505 ret->left = NULL;
506 } else if (!right) {
507 ret = clone_sm(left);
508 ret->merged = 1;
509 ret->left = left;
510 ret->right = NULL;
511 } else {
512 if (left->sym != sm->sym || strcmp(left->name, sm->name) != 0) {
513 left = clone_sm(left);
514 left->sym = sm->sym;
515 left->name = sm->name;
516 }
517 if (right->sym != sm->sym || strcmp(right->name, sm->name) != 0)
518 right = clone_sm(right);
519 right->sym = sm->sym;
520 right->name = sm->name;
521 }
522 ret = merge_sm_states(left, right);
523 }

525 ret->pool = sm->pool;

527 DIMPLIED("%s: partial: %s\n", __func__, sm_state_info(sm));
508 DIMPLIED("partial %s => ", show_sm(sm));
509 DIMPLIED("%s from %d [stree %d]\n", show_sm(ret), sm->line, get_stree_id
528 return ret;
529 }

531 static struct stree *filter_stack(struct sm_state *gate_sm,
532 struct stree *pre_stree,

new/usr/src/tools/smatch/src/smatch_implied.c 9

533 const struct state_list *remove_stack,
534 const struct state_list *keep_stack)
535 {
536 struct stree *ret = NULL;
537 struct sm_state *tmp;
538 struct sm_state *filtered_sm;
539 int modified;
540 int recurse_cnt;
541 struct timeval start;
542 int skip;
543 int bail = 0;

545 if (!remove_stack)
546 return NULL;

548 gettimeofday(&start, NULL);
528 if (taking_too_long())
529 return NULL;

549 FOR_EACH_SM(pre_stree, tmp) {
550 if (!tmp->merged || sm_in_keep_leafs(tmp, keep_stack))
532 if (option_debug)
533 sm_msg("%s: %s", __func__, show_sm(tmp));
534 if (!tmp->merged)
551 continue;
536 if (sm_in_keep_leafs(tmp, keep_stack))
537 continue;
552 modified = 0;
553 recurse_cnt = 0;
554 skip = 0;
555 filtered_sm = filter_pools(tmp, remove_stack, keep_stack, &modif
556 if (going_too_slow())
557 return NULL;
558 if (bail)
559 return ret; /* Return the implications we figured out b

562 if (skip || !filtered_sm || !modified)
540 gettimeofday(&start, NULL);
541 filtered_sm = filter_pools(tmp, remove_stack, keep_stack, &modif
542 if (!filtered_sm || !modified)
563 continue;
564 /* the assignments here are for borrowed implications */
565 filtered_sm->name = tmp->name;
566 filtered_sm->sym = tmp->sym;
567 avl_insert(&ret, filtered_sm);
548 if (out_of_memory() || taking_too_long())
549 return NULL;

568 } END_FOR_EACH_SM(tmp);
569 return ret;
570 }

572 static void separate_and_filter(struct sm_state *sm, int comparison, struct rang
573 struct stree *pre_stree,
574 struct stree **true_states,
575 struct stree **false_states,
576 int *mixed)
577 {
578 struct state_list *true_stack = NULL;
579 struct state_list *false_stack = NULL;
580 struct timeval time_before;
581 struct timeval time_after;
582 int sec;

584 gettimeofday(&time_before, NULL);

new/usr/src/tools/smatch/src/smatch_implied.c 10

586 DIMPLIED("checking implications: (%s (%s) %s %s)\n",
587 sm->name, sm->state->name, show_special(comparison), show_rl(rl

589 if (!is_merged(sm)) {
590 DIMPLIED("%d ’%s’ from line %d is not merged.\n", get_lineno(),
570 DIMPLIED("%d ’%s’ is not merged.\n", get_lineno(), sm->name);
591 return;
592 }

574 if (option_debug_implied || option_debug) {
575 sm_msg("checking implications: (%s %s %s)",
576 sm->name, show_special(comparison), show_rl(rl));
577 }

594 separate_pools(sm, comparison, rl, &true_stack, &false_stack, NULL, mixe

596 DIMPLIED("filtering true stack.\n");
597 *true_states = filter_stack(sm, pre_stree, false_stack, true_stack);
598 DIMPLIED("filtering false stack.\n");
599 *false_states = filter_stack(sm, pre_stree, true_stack, false_stack);
600 free_slist(&true_stack);
601 free_slist(&false_stack);
602 if (implied_debug) {
603 printf("These are the implied states for the true path: (%s (%s)
604 sm->name, sm->state->name, show_special(comparison), show
587 if (option_debug_implied || option_debug) {
588 printf("These are the implied states for the true path: (%s %s %
589 sm->name, show_special(comparison), show_rl(rl));
605 __print_stree(*true_states);
606 printf("These are the implied states for the false path: (%s (%s
607 sm->name, sm->state->name, show_special(comparison), show
591 printf("These are the implied states for the false path: (%s %s
592 sm->name, show_special(comparison), show_rl(rl));
608 __print_stree(*false_states);
609 }

611 gettimeofday(&time_after, NULL);
612 sec = time_after.tv_sec - time_before.tv_sec;
613 if (option_timeout && sec > option_timeout) {
598 if (sec > option_timeout) {
599 sm->nr_children = 4000;
614 sm_perror("Function too hairy. Ignoring implications after %d s
615 }
616 }

______unchanged_portion_omitted_

817 static int found_implications;
831 static struct stree *saved_implied_true;
832 static struct stree *saved_implied_false;
833 static struct stree *extra_saved_implied_true;
834 static struct stree *extra_saved_implied_false;

836 static void separate_extra_states(struct stree **implied_true,
837 struct stree **implied_false)
838 {
839 struct sm_state *sm;

841 /* We process extra states later to preserve the implications. */
842 FOR_EACH_SM(*implied_true, sm) {
843 if (sm->owner == SMATCH_EXTRA)
844 overwrite_sm_state_stree(&extra_saved_implied_true, sm);
845 } END_FOR_EACH_SM(sm);
846 FOR_EACH_SM(extra_saved_implied_true, sm) {
847 delete_state_stree(implied_true, sm->owner, sm->name, sm->sym);
848 } END_FOR_EACH_SM(sm);

new/usr/src/tools/smatch/src/smatch_implied.c 11

850 FOR_EACH_SM(*implied_false, sm) {
851 if (sm->owner == SMATCH_EXTRA)
852 overwrite_sm_state_stree(&extra_saved_implied_false, sm)
853 } END_FOR_EACH_SM(sm);
854 FOR_EACH_SM(extra_saved_implied_false, sm) {
855 delete_state_stree(implied_false, sm->owner, sm->name, sm->sym);
856 } END_FOR_EACH_SM(sm);
857 }

859 static void get_tf_states(struct expression *expr,
860 struct stree **implied_true,
861 struct stree **implied_false)
862 {
863 if (handled_by_comparison_hook(expr, implied_true, implied_false))
864 return;
851 goto found;

866 if (handled_by_extra_states(expr, implied_true, implied_false)) {
867 separate_extra_states(implied_true, implied_false);
868 return;
855 goto found;
869 }

871 if (handled_by_stored_conditions(expr, implied_true, implied_false))
859 goto found;

872 return;
862 found:
863 found_implications = 1;
873 }

875 static void save_implications_hook(struct expression *expr)
876 {
877 if (going_too_slow())
868 if (taking_too_long())
878 return;
879 get_tf_states(expr, &saved_implied_true, &saved_implied_false);
880 }

______unchanged_portion_omitted_

906 void param_limit_implications(struct expression *expr, int param, char *key, cha
907 {
908 struct expression *arg;
909 struct symbol *compare_type;
910 char *name;
911 struct symbol *sym;
912 struct sm_state *sm;
913 struct sm_state *tmp;
914 struct stree *implied_true = NULL;
915 struct stree *implied_false = NULL;
916 struct range_list *orig, *limit;

918 if (time_parsing_function() > 40)
919 return;

921 while (expr->type == EXPR_ASSIGNMENT)
922 expr = strip_expr(expr->right);
923 if (expr->type != EXPR_CALL)
924 return;

926 arg = get_argument_from_call_expr(expr->args, param);
927 if (!arg)
928 return;

930 arg = strip_parens(arg);

new/usr/src/tools/smatch/src/smatch_implied.c 12

931 while (arg->type == EXPR_ASSIGNMENT && arg->op == ’=’)
932 arg = strip_parens(arg->left);

934 name = get_variable_from_key(arg, key, &sym);
935 if (!name || !sym)
936 goto free;

938 sm = get_sm_state(SMATCH_EXTRA, name, sym);
939 if (!sm || !sm->merged)
940 goto free;

942 if (strcmp(key, "$") == 0)
943 compare_type = get_arg_type(expr->fn, param);
944 else
945 compare_type = get_member_type_from_key(arg, key);

947 orig = estate_rl(sm->state);
948 orig = cast_rl(compare_type, orig);

950 call_results_to_rl(expr, compare_type, value, &limit);

952 separate_and_filter(sm, SPECIAL_EQUAL, limit, __get_cur_stree(), &implie

954 FOR_EACH_SM(implied_true, tmp) {
955 __set_sm_fake_stree(tmp);
956 } END_FOR_EACH_SM(tmp);

958 free_stree(&implied_true);
959 free_stree(&implied_false);
960 free:
961 free_string(name);
962 }

______unchanged_portion_omitted_

1080 int assume(struct expression *expr)
1081 {
1082 int orig_final_pass = final_pass;

1084 in_fake_env++;
1085 final_pass = 0;
1086 __push_fake_cur_stree();
1075 found_implications = 0;
1087 __split_whole_condition(expr);
1088 final_pass = orig_final_pass;
1089 in_fake_env--;

1091 return 1;
1092 }
______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_integer_overflow.c 1

**
 6258 Mon Aug 5 08:38:35 2019
new/usr/src/tools/smatch/src/smatch_integer_overflow.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2015 Oracle.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 #include "smatch.h"
19 #include "smatch_slist.h"
20 #include "smatch_extra.h"

22 static int my_id;
23 static int link_id;

25 static struct smatch_state *safe_state(struct expression *expr)
26 {
27 struct smatch_state *state;

29 state = __alloc_smatch_state(0);
30 expr = strip_expr(expr);
31 state->name = alloc_sname("safe");
32 state->data = expr;
33 return state;
34 }

36 static char *save_links(struct expression *expr, struct symbol **sym, struct var
37 {
38 struct var_sym *vs;
39 char *name;

41 name = expr_to_chunk_sym_vsl(expr, sym, vsl);
42 if (!name || !*vsl) {
43 free_string(name);
44 return NULL;
45 }

47 FOR_EACH_PTR(*vsl, vs) {
48 store_link(link_id, vs->var, vs->sym, name, *sym);
49 } END_FOR_EACH_PTR(vs);

51 return name;
52 }

54 static void match_divide(struct expression *expr)
55 {
56 struct expression *left, *right, *binop;
57 struct symbol *type;
58 char *name;
59 struct symbol *sym;
60 struct var_sym_list *vsl;
61 sval_t max;

new/usr/src/tools/smatch/src/smatch_integer_overflow.c 2

63 if (expr->type != EXPR_COMPARE)
64 return;
65 if (expr->op != ’>’ && expr->op != SPECIAL_UNSIGNED_GT &&
66 expr->op != SPECIAL_GTE && expr->op != SPECIAL_UNSIGNED_GTE)
67 return;

69 left = strip_parens(expr->left);
70 right = strip_parens(expr->right);

72 if (right->type != EXPR_BINOP || right->op != ’/’)
73 return;
74 if (!get_value(right->left, &max))
75 return;
76 if (max.value != INT_MAX && max.value != UINT_MAX &&
77 max.value != LLONG_MAX && max.uvalue != ULLONG_MAX)
78 return;

80 type = get_type(expr);
81 if (!type)
82 return;
83 if (type_bits(type) != 32 && type_bits(type) != 64)
84 return;

87 binop = binop_expression(left, ’*’, right->right);

89 name = save_links(binop, &sym, &vsl);
90 if (!name)
91 return;
92 set_true_false_states(my_id, name, sym, NULL, safe_state(binop));
93 free_string(name);
94 }

96 static void match_overflow_to_less_than(struct expression *expr)
97 {
98 struct expression *left, *right;
99 struct symbol *type;
100 char *name;
101 struct symbol *sym;
102 struct var_sym_list *vsl;

104 if (expr->type != EXPR_COMPARE)
105 return;
106 if (expr->op != ’<’ && expr->op != SPECIAL_UNSIGNED_LT)
107 return;

109 left = strip_parens(expr->left);
110 right = strip_parens(expr->right);

112 if (left->op != ’+’)
113 return;

115 type = get_type(expr);
116 if (!type)
117 return;
118 if (type_bits(type) != 32 && type_bits(type) != 64)
119 return;

121 if (!expr_equiv(left->left, right) && !expr_equiv(left->right, right))
122 return;

124 name = save_links(left, &sym, &vsl);
125 if (!name)
126 return;
127 set_true_false_states(my_id, name, sym, NULL, safe_state(left));

new/usr/src/tools/smatch/src/smatch_integer_overflow.c 3

128 free_string(name);
129 }

131 static void match_condition(struct expression *expr)
132 {
133 match_overflow_to_less_than(expr);
134 match_divide(expr);
135 }

137 int can_integer_overflow(struct symbol *type, struct expression *expr)
138 {
139 int op;
140 sval_t lmax, rmax, res;

142 if (!type)
143 type = &int_ctype;

145 expr = strip_expr(expr);

147 if (expr->type == EXPR_ASSIGNMENT) {
148 switch(expr->op) {
149 case SPECIAL_MUL_ASSIGN:
150 op = ’*’;
151 break;
152 case SPECIAL_ADD_ASSIGN:
153 op = ’+’;
154 break;
155 case SPECIAL_SHL_ASSIGN:
156 op = SPECIAL_LEFTSHIFT;
157 break;
158 default:
159 return 0;
160 }
161 } else if (expr->type == EXPR_BINOP) {
162 if (expr->op != ’*’ && expr->op != ’+’ && expr->op != SPECIAL_LE
163 return 0;
164 op = expr->op;
165 } else {
166 return 0;
167 }

169 get_absolute_max(expr->left, &lmax);
170 get_absolute_max(expr->right, &rmax);

172 if (sval_binop_overflows(lmax, op, rmax))
173 return 1;

175 res = sval_binop(lmax, op, rmax);
176 if (sval_cmp(res, sval_type_max(type)) > 0)
177 return 1;
178 return 0;
179 }

181 int can_integer_overflow_expr(struct expression *expr)
182 {
183 struct symbol *type;
184 struct smatch_state *state;
185 char *name;
186 struct symbol *sym;
187 int ret;

189 type = get_type(expr);
190 if (!type)
191 return 0;

193 if (!can_integer_overflow(type, expr))

new/usr/src/tools/smatch/src/smatch_integer_overflow.c 4

194 return 0;

196 name = expr_to_known_chunk_sym(expr, &sym);
197 if (!name || !sym)
198 goto free;

200 state = get_state(my_id, name, sym);
201 if (state && state->data)
202 ret = 0;
203 free:
204 free_string(name);
205 return ret;
206 }

208 static int get_arg_nr(struct expression *call, struct expression *expr)
209 {
210 struct expression *arg;
211 int i;

213 i = -1;
214 FOR_EACH_PTR(call->args, arg) {
215 i++;
216 if (expr_equiv(arg, expr))
217 return i;
218 } END_FOR_EACH_PTR(arg);

220 return -1;
221 }

223 static void check_links(struct expression *call, struct expression *arg, int nr,
224 {
225 struct var_sym_list *vsl = _vsl;
226 struct var_sym *vs;
227 struct smatch_state *state;
228 struct expression *expr;
229 int left = -1;
230 int right = -1;

232 FOR_EACH_PTR(vsl, vs) {
233 state = get_state(my_id, vs->var, vs->sym);
234 if (!state || !state->data)
235 continue;

237 expr = state->data;

239 if (expr_equiv(arg, expr->left)) {
240 left = nr;
241 right = get_arg_nr(call, expr->right);
242 } else if (expr_equiv(arg, expr->right)) {
243 left = get_arg_nr(call, expr->left);
244 right = nr;
245 }

247 if (left == -1 || right == -1)
248 continue;

250 left = -1;
251 right = -1;
252 } END_FOR_EACH_PTR(vs);
253 }

255 static void match_call_info(struct expression *call)
256 {
257 struct expression *arg;
258 struct sm_state *link;
259 struct stree *done = NULL;

new/usr/src/tools/smatch/src/smatch_integer_overflow.c 5

260 int i;

262 i = -1;
263 FOR_EACH_PTR(call->args, arg) {
264 i++;

266 link = get_sm_state_expr(link_id, arg);
267 if (!link)
268 continue;

270 if (get_state_stree(done, my_id, link->state->name, NULL))
271 continue;
272 // set_state_stree(&done, my_id, link->state->name, NULL, &undefine

274 check_links(call, arg, i, link, link->state->data);
275 } END_FOR_EACH_PTR(arg);

277 free_stree(&done);
278 }

280 void register_integer_overflow(int id)
281 {
282 my_id = id;
283 set_dynamic_states(my_id);
284 add_hook(&match_condition, CONDITION_HOOK);
285 add_hook(&match_call_info, FUNCTION_CALL_HOOK);
286 }

288 void register_integer_overflow_links(int id)
289 {
290 link_id = id;
291 set_up_link_functions(my_id, link_id);
292 }

new/usr/src/tools/smatch/src/smatch_kernel_user_data.c 1

**
 36844 Mon Aug 5 08:38:35 2019
new/usr/src/tools/smatch/src/smatch_kernel_user_data.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2011 Dan Carpenter.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 /*
19 * There are a couple checks that try to see if a variable
20 * comes from the user. It would be better to unify them
21 * into one place. Also it we should follow the data down
22 * the call paths. Hence this file.
23 */

25 #include "smatch.h"
26 #include "smatch_slist.h"
27 #include "smatch_extra.h"

29 static int my_id;
30 static int my_call_id;

32 STATE(called);
33 static bool func_gets_user_data;

35 static const char *kstr_funcs[] = {
35 static const char * kstr_funcs[] = {
36 "kstrtoull", "kstrtoll", "kstrtoul", "kstrtol", "kstrtouint",
37 "kstrtoint", "kstrtou64", "kstrtos64", "kstrtou32", "kstrtos32",
38 "kstrtou16", "kstrtos16", "kstrtou8", "kstrtos8", "kstrtoull_from_user"
39 "kstrtoll_from_user", "kstrtoul_from_user", "kstrtol_from_user",
40 "kstrtouint_from_user", "kstrtoint_from_user", "kstrtou16_from_user",
41 "kstrtos16_from_user", "kstrtou8_from_user", "kstrtos8_from_user",
42 "kstrtou64_from_user", "kstrtos64_from_user", "kstrtou32_from_user",
43 "kstrtos32_from_user",
44 };

46 static const char *returns_user_data[] = {
47 "simple_strtol", "simple_strtoll", "simple_strtoul", "simple_strtoull",
48 "kvm_register_read",
48 "kvm_register_read", "nlmsg_data", "nla_data", "memdup_user",
49 "kmap_atomic", "skb_network_header",
49 };

51 static const char *returns_pointer_to_user_data[] = {
52 "nlmsg_data", "nla_data", "memdup_user", "kmap_atomic", "skb_network_hea
53 };

55 static void set_points_to_user_data(struct expression *expr);

57 static struct stree *start_states;
58 static struct stree_stack *saved_stack;

new/usr/src/tools/smatch/src/smatch_kernel_user_data.c 2

59 static void save_start_states(struct statement *stmt)
60 {
61 start_states = clone_stree(__get_cur_stree());
62 }

______unchanged_portion_omitted_

86 static void pre_merge_hook(struct sm_state *sm)
87 {
88 struct smatch_state *user;
89 struct smatch_state *extra;
90 struct smatch_state *state;
91 struct range_list *rl;
92 sval_t dummy;
93 sval_t sval_100;

95 sval_100.value = 100;
96 sval_100.type = &int_ctype;

98 user = __get_state(my_id, sm->name, sm->sym);
99 if (!user || !estate_rl(user))
94 user = get_state(my_id, sm->name, sm->sym);
95 if (!user)
100 return;
101 extra = __get_state(SMATCH_EXTRA, sm->name, sm->sym);
102 if (!extra)
97 if (!__in_function_def && !estate_rl(sm->state)) {
98 /*
99 * If the one side is capped and the other side is empty then
100 * let’s just mark it as not-user data because the information
101 * isn’t going to be useful. How this looks is:
102 *
103 * if (user_var > trusted)
104 * user_var = trusted; <-- empty state
105 * else
106 * <-- capped
107 *
108 * The problem is that sometimes things are capped to a literal
109 * and we’d like to keep the state in that case... Ugh. I’ve
110 * added a check which assumes that everything less than 100 is
111 * probably capped against a literal.
112 *
113 */
114 if (is_capped_var_sym(sm->name, sm->sym) &&
115 sval_cmp(estate_max(user), sval_100) > 0)
116 set_state(my_id, sm->name, sm->sym, alloc_estate_empty()
103 return;
118 }
119 extra = get_state(SMATCH_EXTRA, sm->name, sm->sym);
120 if (!extra || !estate_rl(extra))
121 return;
104 rl = rl_intersection(estate_rl(user), estate_rl(extra));
105 if (rl_to_sval(rl, &dummy))
106 rl = NULL;
107 state = alloc_estate_rl(clone_rl(rl));
108 if (estate_capped(user) || is_capped_var_sym(sm->name, sm->sym))
109 estate_set_capped(state);
110 set_state(my_id, sm->name, sm->sym, state);
125 set_state(my_id, sm->name, sm->sym, alloc_estate_rl(clone_rl(rl)));
111 }

113 static void extra_nomod_hook(const char *name, struct symbol *sym, struct expres
114 {
115 struct smatch_state *user, *new;
130 struct smatch_state *user;
116 struct range_list *rl;

new/usr/src/tools/smatch/src/smatch_kernel_user_data.c 3

118 user = __get_state(my_id, name, sym);
133 user = get_state(my_id, name, sym);
119 if (!user)
120 return;
121 rl = rl_intersection(estate_rl(user), estate_rl(state));
122 if (rl_equiv(rl, estate_rl(user)))
123 return;
124 new = alloc_estate_rl(rl);
125 if (estate_capped(user))
126 estate_set_capped(new);
127 set_state(my_id, name, sym, new);
139 set_state(my_id, name, sym, alloc_estate_rl(rl));
128 }

130 static bool binop_capped(struct expression *expr)
131 {
132 struct range_list *left_rl;
133 int comparison;

135 if (expr->op == ’-’ && get_user_rl(expr->left, &left_rl)) {
136 if (user_rl_capped(expr->left))
137 return true;
138 comparison = get_comparison(expr->left, expr->right);
139 if (comparison && show_special(comparison)[0] == ’>’)
140 return true;
141 return false;
142 }

144 if (expr->op == ’&’ || expr->op == ’%’) {
145 if (is_capped(expr->left) || is_capped(expr->right))
146 return true;
147 if (user_rl_capped(expr->left) || user_rl_capped(expr->right))
148 return true;
149 return false;
150 }

152 if (user_rl_capped(expr->left) &&
153 user_rl_capped(expr->right))
154 return true;
155 return false;
156 }

158 bool user_rl_capped(struct expression *expr)
159 {
160 struct smatch_state *state;
161 struct range_list *rl;
162 sval_t sval;

164 expr = strip_expr(expr);
165 if (!expr)
166 return false;
167 if (get_value(expr, &sval))
168 return true;
169 if (expr->type == EXPR_BINOP)
170 return binop_capped(expr);
171 if ((expr->type == EXPR_PREOP || expr->type == EXPR_POSTOP) &&
172 (expr->op == SPECIAL_INCREMENT || expr->op == SPECIAL_DECREMENT))
173 return user_rl_capped(expr->unop);
174 state = get_state_expr(my_id, expr);
175 if (state)
176 return estate_capped(state);

178 if (get_user_rl(expr, &rl))
179 return false; /* uncapped user data */

181 return true; /* not actually user data */

new/usr/src/tools/smatch/src/smatch_kernel_user_data.c 4

182 }

184 static void tag_inner_struct_members(struct expression *expr, struct symbol *mem
185 {
186 struct expression *edge_member;
187 struct symbol *base = get_real_base_type(member);
188 struct symbol *tmp;

190 if (member->ident)
191 expr = member_expression(expr, ’.’, member->ident);

193 FOR_EACH_PTR(base->symbol_list, tmp) {
194 struct symbol *type;

196 type = get_real_base_type(tmp);
197 if (!type)
198 continue;

200 if (type->type == SYM_UNION || type->type == SYM_STRUCT) {
201 tag_inner_struct_members(expr, tmp);
202 continue;
203 }

205 if (!tmp->ident)
206 continue;

208 edge_member = member_expression(expr, ’.’, tmp->ident);
209 set_state_expr(my_id, edge_member, alloc_estate_whole(type));
210 } END_FOR_EACH_PTR(tmp);
211 }

______unchanged_portion_omitted_

392 static bool is_points_to_user_data_fn(struct expression *expr)
393 {
394 int i;

396 expr = strip_expr(expr);
397 if (expr->type != EXPR_CALL || expr->fn->type != EXPR_SYMBOL ||
398 !expr->fn->symbol)
399 return false;
400 expr = expr->fn;
401 for (i = 0; i < ARRAY_SIZE(returns_pointer_to_user_data); i++) {
402 if (sym_name_is(returns_pointer_to_user_data[i], expr))
403 return true;
404 }
405 return false;
406 }

408 static int get_rl_from_function(struct expression *expr, struct range_list **rl)
409 {
410 int i;

412 if (expr->type != EXPR_CALL || expr->fn->type != EXPR_SYMBOL ||
413 !expr->fn->symbol_name || !expr->fn->symbol_name->name)
414 return 0;

416 for (i = 0; i < ARRAY_SIZE(returns_user_data); i++) {
417 if (strcmp(expr->fn->symbol_name->name, returns_user_data[i]) ==
418 *rl = alloc_whole_rl(get_type(expr));
419 return 1;
420 }
421 }
422 return 0;
423 }

425 int points_to_user_data(struct expression *expr)

new/usr/src/tools/smatch/src/smatch_kernel_user_data.c 5

426 {
427 struct smatch_state *state;
428 struct range_list *rl;
429 char buf[256];
430 struct symbol *sym;
431 char *name;
432 int ret = 0;

434 expr = strip_expr(expr);
435 if (!expr)
436 return 0;
437 if (is_skb_data(expr))
438 return 1;
439 if (is_points_to_user_data_fn(expr))
440 return 1;
441 if (get_rl_from_function(expr, &rl))
442 return 1;

444 if (expr->type == EXPR_BINOP && expr->op == ’+’) {
445 if (points_to_user_data(expr->left))
446 return 1;
447 if (points_to_user_data(expr->right))
448 return 1;
449 return 0;
450 }

452 name = expr_to_var_sym(expr, &sym);
453 if (!name || !sym)
454 goto free;
455 snprintf(buf, sizeof(buf), "*%s", name);
456 state = __get_state(my_id, buf, sym);
396 state = get_state(my_id, buf, sym);
457 if (state && estate_rl(state))
458 ret = 1;
459 free:
460 free_string(name);
461 return ret;
462 }

464 static void set_points_to_user_data(struct expression *expr)
465 {
466 char *name;
467 struct symbol *sym;
468 char buf[256];
469 struct symbol *type;

471 name = expr_to_var_sym(expr, &sym);
472 if (!name || !sym)
473 goto free;
474 snprintf(buf, sizeof(buf), "*%s", name);
475 type = get_type(expr);
476 if (type && type->type == SYM_PTR)
477 type = get_real_base_type(type);
478 if (!type || type->type != SYM_BASETYPE)
479 type = &llong_ctype;
480 set_state(my_id, buf, sym, alloc_estate_whole(type));
414 set_state(my_id, buf, sym, alloc_estate_whole(&llong_ctype));
481 free:
482 free_string(name);
483 }

______unchanged_portion_omitted_

558 static bool handle_op_assign(struct expression *expr)
559 {
560 struct expression *binop_expr;
561 struct smatch_state *state;

new/usr/src/tools/smatch/src/smatch_kernel_user_data.c 6

562 struct range_list *rl;

564 switch (expr->op) {
565 case SPECIAL_ADD_ASSIGN:
566 case SPECIAL_SUB_ASSIGN:
567 case SPECIAL_AND_ASSIGN:
568 case SPECIAL_MOD_ASSIGN:
569 case SPECIAL_SHL_ASSIGN:
570 case SPECIAL_SHR_ASSIGN:
571 case SPECIAL_OR_ASSIGN:
572 case SPECIAL_XOR_ASSIGN:
573 case SPECIAL_MUL_ASSIGN:
574 case SPECIAL_DIV_ASSIGN:
575 binop_expr = binop_expression(expr->left,
576 op_remove_assign(expr->op),
577 expr->right);
578 if (!get_user_rl(binop_expr, &rl))
579 return true;

581 rl = cast_rl(get_type(expr->left), rl);
582 state = alloc_estate_rl(rl);
583 if (user_rl_capped(binop_expr))
584 estate_set_capped(state);
585 set_state_expr(my_id, expr->left, state);
586 return true;
587 }
588 return false;
589 }

591 static void match_assign(struct expression *expr)
592 {
593 struct range_list *rl;
594 static struct expression *handled;
595 struct smatch_state *state;
596 struct expression *faked;

598 faked = get_faked_expression();
599 if (faked && faked == handled)
600 return;
601 if (is_fake_call(expr->right))
602 goto clear_old_state;
603 if (handle_get_user(expr))
604 return;
605 if (points_to_user_data(expr->right)) {
606 handled = expr;
500 if (points_to_user_data(expr->right))
607 set_points_to_user_data(expr->left);
608 }
609 if (handle_struct_assignment(expr))
610 return;

612 if (handle_op_assign(expr))
613 return;
614 if (expr->op != ’=’)
615 goto clear_old_state;

617 /* Handled by DB code */
618 if (expr->right->type == EXPR_CALL || __in_fake_parameter_assign)
619 return;

621 if (!get_user_rl(expr->right, &rl))
622 goto clear_old_state;

624 rl = cast_rl(get_type(expr->left), rl);
625 state = alloc_estate_rl(rl);
626 if (user_rl_capped(expr->right))

new/usr/src/tools/smatch/src/smatch_kernel_user_data.c 7

627 estate_set_capped(state);
628 set_state_expr(my_id, expr->left, state);
509 set_state_expr(my_id, expr->left, alloc_estate_rl(rl));

630 return;

632 clear_old_state:
633 if (get_state_expr(my_id, expr->left))
634 set_state_expr(my_id, expr->left, alloc_estate_empty());
635 }

______unchanged_portion_omitted_

660 static struct range_list *strip_negatives(struct range_list *rl)
541 static void handle_unsigned_lt_gt(struct expression *expr)
661 {
662 sval_t min = rl_min(rl);
663 sval_t minus_one;
664 sval_t over;
665 sval_t max = sval_type_max(rl_type(rl));

667 minus_one.type = rl_type(rl);
668 minus_one.value = INT_MAX + 1ULL;
669 over.type = rl_type(rl);
670 over.value = -1;

672 if (!rl)
673 return NULL;

675 if (type_unsigned(rl_type(rl)) && type_bits(rl_type(rl)) > 31)
676 return remove_range(rl, over, max);

678 return remove_range(rl, min, minus_one);
679 }

681 static void handle_compare(struct expression *expr)
682 {
683 struct expression *left, *right;
684 struct range_list *left_rl = NULL;
685 struct range_list *right_rl = NULL;
686 struct range_list *user_rl;
687 struct smatch_state *capped_state;
688 struct smatch_state *left_true = NULL;
689 struct smatch_state *left_false = NULL;
690 struct smatch_state *right_true = NULL;
691 struct smatch_state *right_false = NULL;
692 struct symbol *type;
693 sval_t sval;
544 struct range_list *left;
545 struct range_list *right;
546 struct range_list *non_negative;
547 sval_t min, minus_one;

695 left = strip_expr(expr->left);
696 right = strip_expr(expr->right);

698 while (left->type == EXPR_ASSIGNMENT)
699 left = strip_expr(left->left);

701 /*
702 * Conditions are mostly handled by smatch_extra.c, but there are some
703 * times where the exact values are not known so we can’t do that.
550 * conditions are mostly handled by smatch_extra.c. The special case
551 * here is that say you have if (user_int < unknown_u32) {
552 * In Smatch extra we say that, We have no idea what value
553 * unknown_u32 is so the only thin we can say for sure is that
554 * user_int is not -1 (UINT_MAX). But in check_user_data2.c we should

new/usr/src/tools/smatch/src/smatch_kernel_user_data.c 8

555 * assume that unless unknown_u32 is user data, it’s probably less than
556 * INT_MAX.
704 *
705 * Normally, we might consider using smatch_capped.c to supliment smatch
706 * extra but that doesn’t work when we merge unknown uncapped kernel
707 * data with unknown capped user data. The result is uncapped user
708 * data. We need to keep it separate and say that the user data is
709 * capped. In the past, I would have marked this as just regular
710 * kernel data (not user data) but we can’t do that these days because
711 * we need to track user data for Spectre.
712 *
713 * The other situation which we have to handle is when we do have an
714 * int and we compare against an unknown unsigned kernel variable. In
715 * that situation we assume that the kernel data is less than INT_MAX.
716 * Otherwise then we get all sorts of array underflow false positives.
717 *
718 */

720 /* Handled in smatch_extra.c */
721 if (get_implied_value(left, &sval) ||
722 get_implied_value(right, &sval))
560 type = get_type(expr);
561 if (!type_unsigned(type))
723 return;

725 get_user_rl(left, &left_rl);
726 get_user_rl(right, &right_rl);

728 /* nothing to do */
729 if (!left_rl && !right_rl)
564 /*
565 * Assume if (user < trusted) { ... because I am lazy and because this
566 * is the correct way to write code.
567 */
568 if (!get_user_rl(expr->left, &left))
730 return;
731 /* if both sides are user data that’s not a good limit */
732 if (left_rl && right_rl)
570 if (get_user_rl(expr->right, &right))
733 return;

735 if (left_rl)
736 user_rl = left_rl;
737 else
738 user_rl = right_rl;
573 if (!sval_is_negative(rl_min(left)))
574 return;
575 min = rl_min(left);
576 minus_one.type = rl_type(left);
577 minus_one.value = -1;
578 non_negative = remove_range(left, min, minus_one);

740 type = get_type(expr);
741 if (type_unsigned(type))
742 user_rl = strip_negatives(user_rl);
743 capped_state = alloc_estate_rl(user_rl);
744 estate_set_capped(capped_state);

746 switch (expr->op) {
747 case ’<’:
748 case SPECIAL_UNSIGNED_LT:
749 case SPECIAL_LTE:
750 case SPECIAL_UNSIGNED_LTE:
751 if (left_rl)
752 left_true = capped_state;
753 else

new/usr/src/tools/smatch/src/smatch_kernel_user_data.c 9

754 right_false = capped_state;
585 set_true_false_states_expr(my_id, expr->left,
586 alloc_estate_rl(non_negative), NULL);
755 break;
756 case ’>’:
757 case SPECIAL_UNSIGNED_GT:
758 case SPECIAL_GTE:
759 case SPECIAL_UNSIGNED_GTE:
760 if (left_rl)
761 left_false = capped_state;
762 else
763 right_true = capped_state;
592 set_true_false_states_expr(my_id, expr->left,
593 NULL, alloc_estate_rl(non_negative));
764 break;
765 }

767 set_true_false_states_expr(my_id, left, left_true, left_false);
768 set_true_false_states_expr(my_id, right, right_true, right_false);
769 }

771 static void match_condition(struct expression *expr)
772 {
773 if (expr->type != EXPR_COMPARE)
774 return;

776 if (expr->op == SPECIAL_EQUAL ||
777 expr->op == SPECIAL_NOTEQUAL) {
778 handle_eq_noteq(expr);
779 return;
780 }

782 handle_compare(expr);
609 handle_unsigned_lt_gt(expr);
783 }

______unchanged_portion_omitted_

657 struct db_info {
658 struct range_list *rl;
659 struct expression *call;
660 };
661 static int returned_rl_callback(void *_info, int argc, char **argv, char **azCol
662 {
663 struct db_info *db_info = _info;
664 struct range_list *rl;
665 char *return_ranges = argv[0];
666 char *user_ranges = argv[1];
667 struct expression *arg;
668 int comparison;

670 if (argc != 2)
671 return 0;

673 call_results_to_rl(db_info->call, get_type(db_info->call), user_ranges,
674 if (str_to_comparison_arg(return_ranges, db_info->call, &comparison, &ar
675 comparison == SPECIAL_EQUAL) {
676 struct range_list *orig_rl;

678 if (!get_user_rl(arg, &orig_rl))
679 return 0;
680 rl = rl_intersection(rl, orig_rl);
681 if (!rl)
682 return 0;
683 }
684 db_info->rl = rl_union(db_info->rl, rl);

new/usr/src/tools/smatch/src/smatch_kernel_user_data.c 10

686 return 0;
687 }

830 static int has_user_data(struct symbol *sym)
831 {
832 struct sm_state *tmp;

834 FOR_EACH_MY_SM(my_id, __get_cur_stree(), tmp) {
835 if (tmp->sym == sym)
836 return 1;
837 } END_FOR_EACH_SM(tmp);
838 return 0;
839 }

______unchanged_portion_omitted_

857 static int db_returned_user_rl(struct expression *call, struct range_list **rl)
858 {
859 struct smatch_state *state;
860 char buf[48];
718 struct db_info db_info = {};

720 /* for function pointers assume everything is used */
721 if (call->fn->type != EXPR_SYMBOL)
722 return 0;
862 if (is_fake_call(call))
863 return 0;
864 snprintf(buf, sizeof(buf), "return %p", call);
865 state = get_state(my_id, buf, NULL);
866 if (!state || !estate_rl(state))

726 db_info.call = call;
727 run_sql(&returned_rl_callback, &db_info,
728 "select return, value from return_states where %s and type = %d
729 get_static_filter(call->fn->symbol), USER_DATA3_SET);
730 if (db_info.rl) {
731 func_gets_user_data = true;
732 *rl = db_info.rl;
733 return 1;
734 }

736 run_sql(&returned_rl_callback, &db_info,
737 "select return, value from return_states where %s and type = %d
738 get_static_filter(call->fn->symbol), USER_DATA3);
739 if (db_info.rl) {
740 if (!we_pass_user_data(call))
867 return 0;
868 *rl = estate_rl(state);
742 *rl = db_info.rl;
869 return 1;
744 }

746 return 0;
870 }

______unchanged_portion_omitted_

877 static int user_data_flag;
878 static int no_user_data_flag;
879 struct range_list *var_user_rl(struct expression *expr)
756 static struct range_list *var_user_rl(struct expression *expr)
880 {
881 struct smatch_state *state;
882 struct range_list *rl;
883 struct range_list *absolute_rl;

885 if (expr->type == EXPR_PREOP && expr->op == ’&’) {
886 no_user_data_flag = 1;

new/usr/src/tools/smatch/src/smatch_kernel_user_data.c 11

887 return NULL;
888 }

890 if (expr->type == EXPR_BINOP && expr->op == ’%’) {
891 struct range_list *left, *right;

893 if (!get_user_rl(expr->right, &right))
894 return NULL;
895 get_absolute_rl(expr->left, &left);
896 rl = rl_binop(left, ’%’, right);
897 goto found;
898 }

900 if (expr->type == EXPR_BINOP && expr->op == ’/’) {
772 if (!option_spammy && expr->type == EXPR_BINOP && expr->op == ’/’) {
901 struct range_list *left = NULL;
902 struct range_list *right = NULL;
903 struct range_list *abs_right;

905 /*
906 * The specific bug I’m dealing with is:
907 *
908 * foo = capped_user / unknown;
909 *
910 * Instead of just saying foo is now entirely user_rl we should
911 * probably say instead that it is not at all user data.
912 *
913 */

915 get_user_rl(expr->left, &left);
916 get_user_rl(expr->right, &right);
917 get_absolute_rl(expr->right, &abs_right);

919 if (left && !right) {
920 rl = rl_binop(left, ’/’, abs_right);
921 if (sval_cmp(rl_max(left), rl_max(rl)) < 0)
922 no_user_data_flag = 1;
923 }

925 return NULL;
926 }

928 if (get_rl_from_function(expr, &rl))
929 goto found;

931 if (get_user_macro_rl(expr, &rl))
932 goto found;

934 if (comes_from_skb_data(expr)) {
935 rl = alloc_whole_rl(get_type(expr));
936 goto found;
937 }

939 state = get_state_expr(my_id, expr);
940 if (state && estate_rl(state)) {
941 rl = estate_rl(state);
942 goto found;
943 }

945 if (expr->type == EXPR_CALL && db_returned_user_rl(expr, &rl))
946 goto found;

948 if (is_array(expr)) {
949 struct expression *array = get_array_base(expr);

951 if (!get_state_expr(my_id, array)) {

new/usr/src/tools/smatch/src/smatch_kernel_user_data.c 12

952 no_user_data_flag = 1;
953 return NULL;
954 }
955 }

957 if (expr->type == EXPR_PREOP && expr->op == ’*’ &&
958 is_user_rl(expr->unop)) {
959 rl = var_to_absolute_rl(expr);
960 goto found;
961 }

963 return NULL;
964 found:
965 user_data_flag = 1;
966 absolute_rl = var_to_absolute_rl(expr);
967 return clone_rl(rl_intersection(rl, absolute_rl));
968 }

970 static bool is_ptr_subtract(struct expression *expr)
971 {
972 expr = strip_expr(expr);
973 if (!expr)
974 return false;
975 if (expr->type == EXPR_BINOP && expr->op == ’-’ &&
976 type_is_ptr(get_type(expr->left))) {
977 return true;
978 }
979 return false;
980 }

982 int get_user_rl(struct expression *expr, struct range_list **rl)
983 {
984 if (is_ptr_subtract(expr))
985 return 0;

987 user_data_flag = 0;
988 no_user_data_flag = 0;
989 custom_get_absolute_rl(expr, &var_user_rl, rl);
990 if (!user_data_flag || no_user_data_flag)
991 *rl = NULL;

993 return !!*rl;
994 }

853 int get_user_rl_spammy(struct expression *expr, struct range_list **rl)
854 {
855 int ret;

857 option_spammy++;
858 ret = get_user_rl(expr, rl);
859 option_spammy--;

861 return ret;
862 }

996 int is_user_rl(struct expression *expr)
997 {
998 struct range_list *tmp;

1000 return !!get_user_rl(expr, &tmp);
868 return get_user_rl_spammy(expr, &tmp);
1001 }
______unchanged_portion_omitted_

1015 static char *get_user_rl_str(struct expression *expr, struct symbol *type)
1016 {

new/usr/src/tools/smatch/src/smatch_kernel_user_data.c 13

1017 struct range_list *rl;
1018 static char buf[64];

1020 if (!get_user_rl(expr, &rl))
1021 return NULL;
1022 rl = cast_rl(type, rl);
1023 snprintf(buf, sizeof(buf), "%s%s",
1024 show_rl(rl), user_rl_capped(expr) ? "[c]" : "");
1025 return buf;
1026 }

1028 static void match_call_info(struct expression *expr)
1029 {
885 struct range_list *rl;
1030 struct expression *arg;
1031 struct symbol *type;
1032 char *str;
1033 int i;
888 int i = 0;

1035 i = -1;
1036 FOR_EACH_PTR(expr->args, arg) {
1037 i++;
1038 type = get_arg_type(expr->fn, i);
1039 str = get_user_rl_str(arg, type);
1040 if (!str)

895 if (!get_user_rl(arg, &rl))
1041 continue;

1043 sql_insert_caller_info(expr, USER_DATA, i, "$", str);
898 rl = cast_rl(type, rl);
899 sql_insert_caller_info(expr, USER_DATA3, i, "$", show_rl(rl));
1044 } END_FOR_EACH_PTR(arg);
1045 }
______unchanged_portion_omitted_

1062 static void struct_member_callback(struct expression *call, int param, char *pri
1063 {
1064 struct smatch_state *state;
1065 struct range_list *rl;
1066 struct symbol *type;
1067 char buf[64];

1069 /*
1070 * Smatch uses a hack where if we get an unsigned long we say it’s
1071 * both user data and it points to user data. But if we pass it to a
1072 * function which takes an int, then it’s just user data. There’s not
1073 * enough bytes for it to be a pointer.
1074 *
1075 */
1076 type = get_arg_type(call->fn, param);
1077 if (type && type_bits(type) < type_bits(&ptr_ctype))
1078 return;

1080 if (strcmp(sm->state->name, "") == 0)
1081 return;

1083 if (strcmp(printed_name, "*$") == 0 &&
1084 is_struct_ptr(sm->sym))
1085 return;

1087 state = __get_state(SMATCH_EXTRA, sm->name, sm->sym);
942 state = get_state(SMATCH_EXTRA, sm->name, sm->sym);
1088 if (!state || !estate_rl(state))
1089 rl = estate_rl(sm->state);

new/usr/src/tools/smatch/src/smatch_kernel_user_data.c 14

1090 else
1091 rl = rl_intersection(estate_rl(sm->state), estate_rl(state));

1093 if (!rl)
1094 return;

1096 snprintf(buf, sizeof(buf), "%s%s", show_rl(rl),
1097 estate_capped(sm->state) ? "[c]" : "");
1098 sql_insert_caller_info(call, USER_DATA, param, printed_name, buf);
948 sql_insert_caller_info(call, USER_DATA3, param, printed_name, show_rl(rl
1099 }

1101 static void db_param_set(struct expression *expr, int param, char *key, char *va
1102 {
1103 struct expression *arg;
1104 char *name;
1105 struct symbol *sym;
1106 struct smatch_state *state;

1108 while (expr->type == EXPR_ASSIGNMENT)
1109 expr = strip_expr(expr->right);
1110 if (expr->type != EXPR_CALL)
1111 return;

1113 arg = get_argument_from_call_expr(expr->args, param);
1114 if (!arg)
1115 return;
1116 name = get_variable_from_key(arg, key, &sym);
1117 if (!name || !sym)
1118 goto free;

1120 state = get_state(my_id, name, sym);
1121 if (!state)
1122 goto free;

1124 set_state(my_id, name, sym, alloc_estate_empty());
1125 free:
1126 free_string(name);
1127 }

1129 static bool param_data_capped(const char *value)
1130 {
1131 if (strstr(value, ",c") || strstr(value, "[c"))
1132 return true;
1133 return false;
1134 }

1136 static void set_param_user_data(const char *name, struct symbol *sym, char *key,
1137 {
1138 struct range_list *rl = NULL;
1139 struct smatch_state *state;
1140 struct expression *expr;
1141 struct symbol *type;
1142 char fullname[256];
1143 char *key_orig = key;
1144 bool add_star = false;

1146 if (strcmp(key, "**$") == 0) {
1147 snprintf(fullname, sizeof(fullname), "**%s", name);
1148 } else {
1149 if (key[0] == ’*’) {
1150 add_star = true;
1151 key++;
1152 }
958 if (strcmp(key, "*$") == 0)
959 snprintf(fullname, sizeof(fullname), "*%s", name);

new/usr/src/tools/smatch/src/smatch_kernel_user_data.c 15

960 else if (strncmp(key, "$", 1) == 0)
961 snprintf(fullname, 256, "%s%s", name, key + 1);
962 else
963 return;

1154 snprintf(fullname, 256, "%s%s%s", add_star ? "*" : "", name, key
1155 }
965 type = get_member_type_from_key(symbol_expression(sym), key);

1157 expr = symbol_expression(sym);
1158 type = get_member_type_from_key(expr, key_orig);
967 /* if the caller passes a void pointer with user data */
968 if (strcmp(key, "*$") == 0 && type && type != &void_ctype) {
969 struct expression *expr = symbol_expression(sym);

1160 /*
1161 * Say this function takes a struct ponter but the caller passes
1162 * this_function(skb->data). We have two options, we could pass *$
1163 * as user data or we could pass foo->bar, foo->baz as user data.
1164 * The second option is easier to implement so we do that.
1165 *
1166 */
1167 if (strcmp(key_orig, "*$") == 0) {
1168 struct symbol *tmp = type;

1170 while (tmp && tmp->type == SYM_PTR)
1171 tmp = get_real_base_type(tmp);

1173 if (tmp && (tmp->type == SYM_STRUCT || tmp->type == SYM_UNION))
1174 tag_as_user_data(symbol_expression(sym));
971 tag_as_user_data(expr);
972 set_points_to_user_data(expr);
1175 return;
1176 }
1177 }

1179 str_to_rl(type, value, &rl);
1180 state = alloc_estate_rl(rl);
1181 if (param_data_capped(value) || is_capped(expr))
1182 estate_set_capped(state);
1183 set_state(my_id, fullname, sym, state);
1184 }
______unchanged_portion_omitted_

1221 static void store_user_data_return(struct expression *expr, char *key, char *val
1222 {
1223 struct range_list *rl;
1224 struct symbol *type;
1225 char buf[48];

1227 if (strcmp(key, "$") != 0)
1228 return;

1230 type = get_type(expr);
1231 snprintf(buf, sizeof(buf), "return %p", expr);
1232 call_results_to_rl(expr, type, value, &rl);

1234 set_state(my_id, buf, NULL, alloc_estate_rl(rl));
1235 }

1237 static void set_to_user_data(struct expression *expr, char *key, char *value)
1238 {
1239 struct smatch_state *state;
1240 char *name;
1241 struct symbol *sym;
1242 struct symbol *type;

new/usr/src/tools/smatch/src/smatch_kernel_user_data.c 16

1243 struct range_list *rl = NULL;

1245 type = get_member_type_from_key(expr, key);
1246 name = get_variable_from_key(expr, key, &sym);
1247 if (!name || !sym)
1248 goto free;

1250 call_results_to_rl(expr, type, value, &rl);

1252 state = alloc_estate_rl(rl);
1253 if (param_data_capped(value))
1254 estate_set_capped(state);
1255 set_state(my_id, name, sym, state);
1029 set_state(my_id, name, sym, alloc_estate_rl(rl));
1256 free:
1257 free_string(name);

1258 }

1260 static void returns_param_user_data(struct expression *expr, int param, char *ke
1261 {
1262 struct expression *arg;
1263 struct expression *call;

1265 call = expr;
1266 while (call->type == EXPR_ASSIGNMENT)
1267 call = strip_expr(call->right);
1268 if (call->type != EXPR_CALL)
1269 return;

1271 if (!we_pass_user_data(call))
1272 return;

1274 if (param == -1) {
1275 if (expr->type != EXPR_ASSIGNMENT) {
1276 store_user_data_return(expr, key, value);
1050 if (expr->type != EXPR_ASSIGNMENT)
1277 return;
1278 }
1279 set_to_user_data(expr->left, key, value);
1280 return;
1281 }

1283 arg = get_argument_from_call_expr(call->args, param);
1284 if (!arg)
1285 return;
1286 set_to_user_data(arg, key, value);
1287 }

1289 static void returns_param_user_data_set(struct expression *expr, int param, char
1290 {
1291 struct expression *arg;

1293 func_gets_user_data = true;

1295 if (param == -1) {
1296 if (expr->type != EXPR_ASSIGNMENT) {
1297 store_user_data_return(expr, key, value);
1069 if (expr->type != EXPR_ASSIGNMENT)
1298 return;
1299 }
1300 if (strcmp(key, "*$") == 0) {
1301 set_points_to_user_data(expr->left);
1302 tag_as_user_data(expr->left);
1303 } else {
1304 set_to_user_data(expr->left, key, value);

new/usr/src/tools/smatch/src/smatch_kernel_user_data.c 17

1305 }
1306 return;
1307 }

1309 while (expr->type == EXPR_ASSIGNMENT)
1310 expr = strip_expr(expr->right);
1311 if (expr->type != EXPR_CALL)
1312 return;

1314 arg = get_argument_from_call_expr(expr->args, param);
1315 if (!arg)
1316 return;
1317 set_to_user_data(arg, key, value);
1318 }

1091 static int has_empty_state(struct sm_state *sm)
1092 {
1093 struct sm_state *tmp;

1095 FOR_EACH_PTR(sm->possible, tmp) {
1096 if (!estate_rl(tmp->state))
1097 return 1;
1098 } END_FOR_EACH_PTR(tmp);

1100 return 0;
1101 }

1320 static void param_set_to_user_data(int return_id, char *return_ranges, struct ex
1321 {
1322 struct sm_state *sm;
1323 struct smatch_state *start_state;
1324 struct range_list *rl;
1325 int param;
1326 char *return_str;
1327 const char *param_name;
1328 struct symbol *ret_sym;
1329 bool return_found = false;
1330 bool pointed_at_found = false;
1331 char buf[64];

1333 expr = strip_expr(expr);
1334 return_str = expr_to_str(expr);
1335 ret_sym = expr_to_sym(expr);

1337 FOR_EACH_MY_SM(my_id, __get_cur_stree(), sm) {
1119 if (has_empty_state(sm))
1120 continue;

1338 param = get_param_num_from_sym(sm->sym);
1339 if (param < 0)
1340 continue;

1342 if (!param_was_set_var_sym(sm->name, sm->sym))
1343 continue;

1345 /* The logic here was that if we were passed in a user data then
1346 * we don’t record that. It’s like the difference between
1347 * param_filter and param_set. When I think about it, I’m not
1348 * sure it actually works. It’s probably harmless because we
1349 * checked earlier that we’re not returning a parameter...
1350 * Let’s mark this as a TODO.
1351 */
1352 start_state = get_state_stree(start_states, my_id, sm->name, sm-
1353 if (start_state && rl_equiv(estate_rl(sm->state), estate_rl(star
1354 continue;

new/usr/src/tools/smatch/src/smatch_kernel_user_data.c 18

1356 param_name = get_param_name(sm);
1357 if (!param_name)
1358 continue;
1359 if (strcmp(param_name, "$") == 0) /* The -1 param is handled af
1360 continue;

1362 snprintf(buf, sizeof(buf), "%s%s",
1363 show_rl(estate_rl(sm->state)),
1364 estate_capped(sm->state) ? "[c]" : "");
1365 sql_insert_return_states(return_id, return_ranges,
1366 func_gets_user_data ? USER_DATA_SET : U
1367 param, param_name, buf);
1144 func_gets_user_data ? USER_DATA3_SET :
1145 param, param_name, show_rl(estate_rl(sm
1368 } END_FOR_EACH_SM(sm);

1370 /* This if for "return foo;" where "foo->bar" is user data. */
1148 if (points_to_user_data(expr)) {
1149 sql_insert_return_states(return_id, return_ranges,
1150 (is_skb_data(expr) || !func_gets_user_d
1151 USER_DATA3_SET : USER_DATA3,
1152 -1, "*$", "");
1153 goto free_string;
1154 }

1371 FOR_EACH_MY_SM(my_id, __get_cur_stree(), sm) {
1372 if (!ret_sym)
1373 break;
1374 if (ret_sym != sm->sym)
1375 continue;

1377 param_name = state_name_to_param_name(sm->name, return_str);
1378 if (!param_name)
1379 continue;
1380 if (strcmp(param_name, "$") == 0)
1381 return_found = true;
1382 if (strcmp(param_name, "*$") == 0)
1383 pointed_at_found = true;
1384 snprintf(buf, sizeof(buf), "%s%s",
1385 show_rl(estate_rl(sm->state)),
1386 estate_capped(sm->state) ? "[c]" : "");
1387 sql_insert_return_states(return_id, return_ranges,
1388 func_gets_user_data ? USER_DATA_SET : U
1389 -1, param_name, buf);
1169 func_gets_user_data ? USER_DATA3_SET :
1170 -1, param_name, show_rl(estate_rl(sm->s
1390 } END_FOR_EACH_SM(sm);

1392 /* This if for "return ntohl(foo);" */

1393 if (!return_found && get_user_rl(expr, &rl)) {
1394 snprintf(buf, sizeof(buf), "%s%s",
1395 show_rl(rl), user_rl_capped(expr) ? "[c]" : "");
1396 sql_insert_return_states(return_id, return_ranges,
1397 func_gets_user_data ? USER_DATA_SET : U
1398 -1, "$", buf);
1176 func_gets_user_data ? USER_DATA3_SET :
1177 -1, "$", show_rl(rl));
1178 goto free_string;
1399 }

1401 /*
1402 * This is to handle things like return skb->data where we don’t set a
1403 * state for that.
1404 */

new/usr/src/tools/smatch/src/smatch_kernel_user_data.c 19

1405 if (!pointed_at_found && points_to_user_data(expr)) {
1406 sql_insert_return_states(return_id, return_ranges,
1407 (is_skb_data(expr) || func_gets_user_da
1408 USER_DATA_SET : USER_DATA,
1409 -1, "*$", "s64min-s64max");
1410 }

1181 free_string:
1412 free_string(return_str);
1413 }

1415 static void returns_param_capped(struct expression *expr, int param, char *key,
1416 {
1417 struct smatch_state *state, *new;
1418 struct symbol *sym;
1419 char *name;

1421 name = return_state_to_var_sym(expr, param, key, &sym);
1422 if (!name || !sym)
1423 goto free;

1425 state = get_state(my_id, name, sym);
1426 if (!state || estate_capped(state))
1427 goto free;

1429 new = clone_estate(state);
1430 estate_set_capped(new);

1432 set_state(my_id, name, sym, new);
1433 free:
1434 free_string(name);
1435 }

1437 static struct int_stack *gets_data_stack;
1438 static void match_function_def(struct symbol *sym)
1439 {
1440 func_gets_user_data = false;
1441 }
______unchanged_portion_omitted_

1453 void register_kernel_user_data(int id)
1201 void register_kernel_user_data2(int id)
1454 {
1455 int i;

1457 my_id = id;

1459 if (option_project != PROJ_KERNEL)
1460 return;

1462 set_dynamic_states(my_id);

1464 add_hook(&match_function_def, FUNC_DEF_HOOK);
1465 add_hook(&match_inline_start, INLINE_FN_START);
1466 add_hook(&match_inline_end, INLINE_FN_END);

1468 add_hook(&save_start_states, AFTER_DEF_HOOK);
1469 add_hook(&free_start_states, AFTER_FUNC_HOOK);
1470 add_hook(&match_save_states, INLINE_FN_START);
1471 add_hook(&match_restore_states, INLINE_FN_END);

1473 add_unmatched_state_hook(my_id, &empty_state);
1474 add_extra_nomod_hook(&extra_nomod_hook);
1475 add_pre_merge_hook(my_id, &pre_merge_hook);
1476 add_merge_hook(my_id, &merge_estates);

new/usr/src/tools/smatch/src/smatch_kernel_user_data.c 20

1478 add_function_hook("copy_from_user", &match_user_copy, INT_PTR(0));
1479 add_function_hook("__copy_from_user", &match_user_copy, INT_PTR(0));
1480 add_function_hook("memcpy_fromiovec", &match_user_copy, INT_PTR(0));
1481 for (i = 0; i < ARRAY_SIZE(kstr_funcs); i++)
1482 add_function_hook(kstr_funcs[i], &match_user_copy, INT_PTR(2));
1483 add_function_hook("usb_control_msg", &match_user_copy, INT_PTR(6));

1485 for (i = 0; i < ARRAY_SIZE(returns_user_data); i++) {
1486 add_function_assign_hook(returns_user_data[i], &match_user_assig
1487 add_function_hook(returns_user_data[i], &match_returns_user_rl,
1488 }

1490 add_function_hook("sscanf", &match_sscanf, NULL);

1492 add_hook(&match_syscall_definition, AFTER_DEF_HOOK);

1494 add_hook(&match_assign, ASSIGNMENT_HOOK);
1495 select_return_states_hook(PARAM_SET, &db_param_set);
1496 add_hook(&match_condition, CONDITION_HOOK);

1498 add_hook(&match_call_info, FUNCTION_CALL_HOOK);
1499 add_member_info_callback(my_id, struct_member_callback);
1500 select_caller_info_hook(set_param_user_data, USER_DATA);
1501 select_return_states_hook(USER_DATA, &returns_param_user_data);
1502 select_return_states_hook(USER_DATA_SET, &returns_param_user_data_set);
1503 select_return_states_hook(CAPPED_DATA, &returns_param_capped);
1245 select_caller_info_hook(set_param_user_data, USER_DATA3);
1246 select_return_states_hook(USER_DATA3, &returns_param_user_data);
1247 select_return_states_hook(USER_DATA3_SET, &returns_param_user_data_set);
1504 add_split_return_callback(¶m_set_to_user_data);
1505 }

1507 void register_kernel_user_data2(int id)
1251 void register_kernel_user_data3(int id)
1508 {
1509 my_call_id = id;

1511 if (option_project != PROJ_KERNEL)
1512 return;
1513 select_caller_info_hook(set_called, INTERNAL);
1514 }

new/usr/src/tools/smatch/src/smatch_links.c 1

**
 2738 Mon Aug 5 08:38:36 2019
new/usr/src/tools/smatch/src/smatch_links.c
11506 smatch resync
**
______unchanged_portion_omitted_

100 void set_up_link_functions(int id, int link_id)
101 {
102 if (id + 1 != link_id)
103 sm_fatal("FATAL ERROR: links need to be registered directly afte

105 set_dynamic_states(link_id);
106 add_merge_hook(link_id, &merge_link_states);
107 add_modification_hook(link_id, &match_link_modify);
108 // free link at the end of function
109 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_local_values.c 1

**
 6072 Mon Aug 5 08:38:36 2019
new/usr/src/tools/smatch/src/smatch_local_values.c
11506 smatch resync
**
______unchanged_portion_omitted_

230 void register_local_values(int id)
231 {
232 my_id = id;

234 if (!option_info)
235 return;

237 set_dynamic_states(my_id);
238 add_extra_mod_hook(&extra_mod_hook);
239 add_unmatched_state_hook(my_id, &unmatched_state);
240 add_merge_hook(my_id, &merge_estates);
241 all_return_states_hook(&process_states);
242 add_hook(match_end_file, END_FILE_HOOK);
243 mem_sql(NULL, NULL, "alter table local_values add column symbol integer;
244 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_math.c 1

**
 45236 Mon Aug 5 08:38:36 2019
new/usr/src/tools/smatch/src/smatch_math.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2010 Dan Carpenter.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 #include "symbol.h"
19 #include "smatch.h"
20 #include "smatch_slist.h"
21 #include "smatch_extra.h"

23 static bool get_rl_sval(struct expression *expr, int implied, int *recurse_cnt,
24 static bool get_rl_internal(struct expression *expr, int implied, int *recurse_c
25 static bool handle_variable(struct expression *expr, int implied, int *recurse_c
23 static struct range_list *_get_rl(struct expression *expr, int implied, int *rec
24 static struct range_list *handle_variable(struct expression *expr, int implied,
26 static struct range_list *(*custom_handle_variable)(struct expression *expr);

28 static bool get_implied_value_internal(struct expression *expr, int *recurse_cnt
27 static int get_implied_value_internal(struct expression *expr, sval_t *sval, int
29 static int get_absolute_rl_internal(struct expression *expr, struct range_list *

31 static sval_t zero = {.type = &int_ctype, {.value = 0} };
32 static sval_t one = {.type = &int_ctype, {.value = 1} };

34 struct range_list *rl_zero(void)
35 {
36 static struct range_list *zero_perm;

38 if (!zero_perm)
39 zero_perm = clone_rl_permanent(alloc_rl(zero, zero));
40 return zero_perm;
41 }

______unchanged_portion_omitted_

62 static bool last_stmt_rl(struct statement *stmt, int implied, int *recurse_cnt,
61 static struct range_list *last_stmt_rl(struct statement *stmt, int implied, int
63 {
64 struct expression *expr;

66 if (!stmt)
67 return false;
66 return NULL;

69 stmt = last_ptr_list((struct ptr_list *)stmt->stmts);
70 if (stmt->type == STMT_LABEL) {
71 if (stmt->label_statement &&
72 stmt->label_statement->type == STMT_EXPRESSION)
73 expr = stmt->label_statement->expression;
74 else

new/usr/src/tools/smatch/src/smatch_math.c 2

75 return false;
74 return NULL;
76 } else if (stmt->type == STMT_EXPRESSION) {
77 expr = stmt->expression;
78 } else {
79 return false;
78 return NULL;
80 }
81 return get_rl_sval(expr, implied, recurse_cnt, res, res_sval);
80 return _get_rl(expr, implied, recurse_cnt);
82 }

84 static bool handle_expression_statement_rl(struct expression *expr, int implied,
85 int *recurse_cnt, struct range_list **res, sval_t *res_sval)
83 static struct range_list *handle_expression_statement_rl(struct expression *expr
86 {
87 return last_stmt_rl(get_expression_statement(expr), implied, recurse_cnt
85 return last_stmt_rl(get_expression_statement(expr), implied, recurse_cnt
88 }

90 static bool handle_address(struct expression *expr, int implied, int *recurse_cn
88 static struct range_list *handle_ampersand_rl(struct expression *expr, int impli
91 {
92 struct range_list *rl;
93 static int recursed;
94 sval_t sval;

96 if (recursed > 10)
97 return false;
98 if (implied == RL_EXACT)
99 return false;

101 if (custom_handle_variable) {
102 rl = custom_handle_variable(expr);
103 if (rl) {
104 *res = rl;
105 return true;
106 }
107 }

109 recursed++;
110 if (get_mtag_sval(expr, &sval)) {
111 recursed--;
112 *res_sval = sval;
113 return true;
114 }

116 if (get_address_rl(expr, res)) {
117 recursed--;
118 return true;
119 }
120 recursed--;
121 return 0;
93 if (implied == RL_EXACT || implied == RL_HARD)
94 return NULL;
95 if (get_mtag_sval(expr, &sval))
96 return alloc_rl(sval, sval);
97 if (get_address_rl(expr, &rl))
98 return rl;
99 return alloc_rl(valid_ptr_min_sval, valid_ptr_max_sval);
122 }

124 static bool handle_ampersand_rl(struct expression *expr, int implied, int *recur
102 static struct range_list *handle_negate_rl(struct expression *expr, int implied,
125 {
126 return handle_address(expr, implied, recurse_cnt, res, res_sval);

new/usr/src/tools/smatch/src/smatch_math.c 3

127 }
104 if (known_condition_true(expr->unop))
105 return rl_zero();
106 if (known_condition_false(expr->unop))
107 return rl_one();

129 static bool handle_negate_rl(struct expression *expr, int implied, int *recurse_
130 {
131 if (known_condition_true(expr->unop)) {
132 *res_sval = zero;
133 return true;
134 }
135 if (known_condition_false(expr->unop)) {
136 *res_sval = one;
137 return true;
138 }

140 if (implied == RL_EXACT)
141 return false;
110 return NULL;

143 if (implied_condition_true(expr->unop)) {
144 *res_sval = zero;
145 return true;
146 }
147 if (implied_condition_false(expr->unop)) {
148 *res_sval = one;
149 return true;
150 }

152 *res = alloc_rl(zero, one);
153 return true;
112 if (implied_condition_true(expr->unop))
113 return rl_zero();
114 if (implied_condition_false(expr->unop))
115 return rl_one();
116 return alloc_rl(zero, one);
154 }

156 static bool handle_bitwise_negate(struct expression *expr, int implied, int *rec
119 static struct range_list *handle_bitwise_negate(struct expression *expr, int imp
157 {
158 struct range_list *rl;
159 sval_t sval = {};
122 sval_t sval;

161 if (!get_rl_sval(expr->unop, implied, recurse_cnt, &rl, &sval))
162 return false;
163 if (!sval.type && !rl_to_sval(rl, &sval))
164 return false;
124 rl = _get_rl(expr->unop, implied, recurse_cnt);
125 if (!rl_to_sval(rl, &sval))
126 return NULL;
165 sval = sval_preop(sval, ’~’);
166 sval_cast(get_type(expr->unop), sval);
167 *res_sval = sval;
168 return true;
129 return alloc_rl(sval, sval);
169 }

171 static bool untrusted_type_min(struct expression *expr)
132 static struct range_list *handle_minus_preop(struct expression *expr, int implie
172 {
173 struct range_list *rl;
135 sval_t min, max;

new/usr/src/tools/smatch/src/smatch_math.c 4

175 rl = var_user_rl(expr);
176 return rl && sval_is_min(rl_min(rl));
137 rl = _get_rl(expr->unop, implied, recurse_cnt);
138 min = sval_preop(rl_max(rl), ’-’);
139 max = sval_preop(rl_min(rl), ’-’);
140 return alloc_rl(min, max);
177 }

179 static bool handle_minus_preop(struct expression *expr, int implied, int *recurs
143 static struct range_list *handle_preop_rl(struct expression *expr, int implied,
180 {
181 struct range_list *rl;
182 struct range_list *ret = NULL;
183 struct symbol *type;
184 sval_t neg_one = { 0 };
185 sval_t zero = { 0 };
186 sval_t sval = {};

188 neg_one.value = -1;
189 zero.value = 0;

191 if (!get_rl_sval(expr->unop, implied, recurse_cnt, &rl, &sval))
192 return false;
193 if (sval.type) {
194 *res_sval = sval_preop(sval, ’-’);
195 return true;
196 }
197 /*
198 * One complication is that -INT_MIN is still INT_MIN because of integer
199 * overflows... But how many times do we set a time out to INT_MIN?
200 * So normally when we call abs() then it does return a positive value.
201 *
202 */
203 type = rl_type(rl);
204 neg_one.type = zero.type = type;

206 if (sval_is_negative(rl_min(rl))) {
207 struct range_list *neg;
208 struct data_range *drange;
209 sval_t new_min, new_max;

211 neg = alloc_rl(sval_type_min(type), neg_one);
212 neg = rl_intersection(rl, neg);

214 if (sval_is_min(rl_min(neg)) && !sval_is_min(rl_max(neg)))
215 neg = remove_range(neg, sval_type_min(type), sval_type_m

217 FOR_EACH_PTR(neg, drange) {
218 new_min = drange->max;
219 new_min.value = -new_min.value;
220 new_max = drange->min;
221 new_max.value = -new_max.value;
222 add_range(&ret, new_min, new_max);
223 } END_FOR_EACH_PTR(drange);

225 if (untrusted_type_min(expr))
226 add_range(&ret, sval_type_min(type), sval_type_min(type)
227 }

229 if (!sval_is_negative(rl_max(rl))) {
230 struct range_list *pos;
231 struct data_range *drange;
232 sval_t new_min, new_max;

234 pos = alloc_rl(zero, sval_type_max(type));
235 pos = rl_intersection(rl, pos);

new/usr/src/tools/smatch/src/smatch_math.c 5

237 FOR_EACH_PTR(pos, drange) {
238 new_min = drange->max;
239 new_min.value = -new_min.value;
240 new_max = drange->min;
241 new_max.value = -new_max.value;
242 add_range(&ret, new_min, new_max);
243 } END_FOR_EACH_PTR(drange);
244 }

246 *res = ret;
247 return true;
248 }

250 static bool handle_preop_rl(struct expression *expr, int implied, int *recurse_c
251 {
252 switch (expr->op) {
253 case ’&’:
254 return handle_ampersand_rl(expr, implied, recurse_cnt, res, res_
147 return handle_ampersand_rl(expr, implied, recurse_cnt);
255 case ’!’:
256 return handle_negate_rl(expr, implied, recurse_cnt, res, res_sva
149 return handle_negate_rl(expr, implied, recurse_cnt);
257 case ’~’:
258 return handle_bitwise_negate(expr, implied, recurse_cnt, res_sva
151 return handle_bitwise_negate(expr, implied, recurse_cnt);
259 case ’-’:
260 return handle_minus_preop(expr, implied, recurse_cnt, res, res_s
153 return handle_minus_preop(expr, implied, recurse_cnt);
261 case ’*’:
262 return handle_variable(expr, implied, recurse_cnt, res, res_sval
155 return handle_variable(expr, implied, recurse_cnt);
263 case ’(’:
264 return handle_expression_statement_rl(expr, implied, recurse_cnt
157 return handle_expression_statement_rl(expr, implied, recurse_cnt
265 default:
266 return false;
159 return NULL;
267 }
268 }

270 static bool handle_divide_rl(struct expression *expr, int implied, int *recurse_
163 static struct range_list *handle_divide_rl(struct expression *expr, int implied,
271 {
272 struct range_list *left_rl = NULL;
273 struct range_list *right_rl = NULL;
165 struct range_list *left_rl, *right_rl;
274 struct symbol *type;

276 type = get_type(expr);

278 get_rl_internal(expr->left, implied, recurse_cnt, &left_rl);
170 left_rl = _get_rl(expr->left, implied, recurse_cnt);
279 left_rl = cast_rl(type, left_rl);
280 get_rl_internal(expr->right, implied, recurse_cnt, &right_rl);
172 right_rl = _get_rl(expr->right, implied, recurse_cnt);
281 right_rl = cast_rl(type, right_rl);

283 if (!left_rl || !right_rl)
284 return false;
176 return NULL;

286 if (implied != RL_REAL_ABSOLUTE) {
287 if (is_whole_rl(left_rl) || is_whole_rl(right_rl))
288 return false;
180 return NULL;

new/usr/src/tools/smatch/src/smatch_math.c 6

289 }

291 *res = rl_binop(left_rl, ’/’, right_rl);
292 return true;
183 return rl_binop(left_rl, ’/’, right_rl);
293 }

______unchanged_portion_omitted_

336 static bool handle_subtract_rl(struct expression *expr, int implied, int *recurs
227 static struct range_list *handle_subtract_rl(struct expression *expr, int implie
337 {
338 struct symbol *type;
339 struct range_list *left_orig, *right_orig;
340 struct range_list *left_rl, *right_rl;
341 sval_t min, max, tmp;
232 sval_t max, min, tmp;
342 int comparison;
343 int offset;

345 type = get_type(expr);

347 offset = handle_offset_subtraction(expr);
348 if (offset >= 0) {
349 tmp.type = type;
350 tmp.value = offset;

352 *res = alloc_rl(tmp, tmp);
353 return true;
243 return alloc_rl(tmp, tmp);
354 }

356 comparison = get_comparison(expr->left, expr->right);

358 left_orig = NULL;
359 get_rl_internal(expr->left, implied, recurse_cnt, &left_orig);
248 left_orig = _get_rl(expr->left, implied, recurse_cnt);
360 left_rl = cast_rl(type, left_orig);
361 right_orig = NULL;
362 get_rl_internal(expr->right, implied, recurse_cnt, &right_orig);
250 right_orig = _get_rl(expr->right, implied, recurse_cnt);
363 right_rl = cast_rl(type, right_orig);

365 if ((!left_rl || !right_rl) &&
366 (implied == RL_EXACT || implied == RL_HARD || implied == RL_FUZZY))
367 return false;
255 return NULL;

369 if (!left_rl)
370 left_rl = alloc_whole_rl(type);
371 if (!right_rl)
372 right_rl = alloc_whole_rl(type);

374 /* negative values complicate everything fix this later */
375 if (sval_is_negative(rl_min(right_rl)))
376 return false;
264 return NULL;
377 max = rl_max(left_rl);
378 min = sval_type_min(type);

380 switch (comparison) {
381 case ’>’:
382 case SPECIAL_UNSIGNED_GT:
383 min = sval_type_val(type, 1);
384 max = rl_max(left_rl);
385 break;
386 case SPECIAL_GTE:

new/usr/src/tools/smatch/src/smatch_math.c 7

387 case SPECIAL_UNSIGNED_GTE:
388 min = sval_type_val(type, 0);
389 max = rl_max(left_rl);
390 break;
391 case SPECIAL_EQUAL:
392 min = sval_type_val(type, 0);
393 max = sval_type_val(type, 0);
394 break;
395 case ’<’:
396 case SPECIAL_UNSIGNED_LT:
397 max = sval_type_val(type, -1);
398 break;
399 case SPECIAL_LTE:
400 case SPECIAL_UNSIGNED_LTE:
401 max = sval_type_val(type, 0);
402 break;
403 default:
404 if (!left_orig || !right_orig)
405 return false;
406 *res = rl_binop(left_rl, ’-’, right_rl);
407 return true;
293 return NULL;
294 return rl_binop(left_rl, ’-’, right_rl);
408 }

410 if (!sval_binop_overflows(rl_min(left_rl), ’-’, rl_max(right_rl))) {
411 tmp = sval_binop(rl_min(left_rl), ’-’, rl_max(right_rl));
412 if (sval_cmp(tmp, min) > 0)
413 min = tmp;
414 }

416 if (!sval_is_max(rl_max(left_rl))) {
417 tmp = sval_binop(rl_max(left_rl), ’-’, rl_min(right_rl));
418 if (sval_cmp(tmp, max) < 0)
419 max = tmp;
420 }

422 if (sval_is_min(min) && sval_is_max(max))
423 return false;
310 return NULL;

425 *res = cast_rl(type, alloc_rl(min, max));
426 return true;
312 return cast_rl(type, alloc_rl(min, max));
427 }

429 static bool handle_mod_rl(struct expression *expr, int implied, int *recurse_cnt
315 static struct range_list *handle_mod_rl(struct expression *expr, int implied, in
430 {
431 struct range_list *rl;
432 sval_t left, right, sval;

434 if (implied == RL_EXACT) {
435 if (!get_implied_value(expr->right, &right))
436 return false;
322 return NULL;
437 if (!get_implied_value(expr->left, &left))
438 return false;
324 return NULL;
439 sval = sval_binop(left, ’%’, right);
440 *res = alloc_rl(sval, sval);
441 return true;
326 return alloc_rl(sval, sval);
442 }
443 /* if we can’t figure out the right side it’s probably hopeless */
444 if (!get_implied_value_internal(expr->right, recurse_cnt, &right))

new/usr/src/tools/smatch/src/smatch_math.c 8

445 return false;
329 if (!get_implied_value_internal(expr->right, &right, recurse_cnt))
330 return NULL;

447 right = sval_cast(get_type(expr), right);
448 right.value--;

450 if (get_rl_internal(expr->left, implied, recurse_cnt, &rl) && rl &&
451 rl_max(rl).uvalue < right.uvalue)
335 rl = _get_rl(expr->left, implied, recurse_cnt);
336 if (rl && rl_max(rl).uvalue < right.uvalue)
452 right.uvalue = rl_max(rl).uvalue;

454 *res = alloc_rl(sval_cast(right.type, zero), right);
455 return true;
339 return alloc_rl(sval_cast(right.type, zero), right);
456 }

458 static bool handle_bitwise_AND(struct expression *expr, int implied, int *recurs
342 static sval_t sval_lowest_set_bit(sval_t sval)
459 {
344 int i;
345 int found = 0;

347 for (i = 0; i < 64; i++) {
348 if (sval.uvalue & 1ULL << i) {
349 if (!found++)
350 continue;
351 sval.uvalue &= ~(1ULL << i);
352 }
353 }
354 return sval;
355 }

357 static struct range_list *handle_bitwise_AND(struct expression *expr, int implie
358 {
460 struct symbol *type;
461 struct range_list *left_rl, *right_rl;
361 sval_t known;
462 int new_recurse;

464 if (implied != RL_IMPLIED && implied != RL_ABSOLUTE && implied != RL_REA
465 return false;
365 return NULL;

467 type = get_type(expr);

469 if (!get_rl_internal(expr->left, implied, recurse_cnt, &left_rl))
470 left_rl = alloc_whole_rl(type);
369 if (get_implied_value_internal(expr->left, &known, recurse_cnt)) {
370 sval_t min;

372 min = sval_lowest_set_bit(known);
373 left_rl = alloc_rl(min, known);
471 left_rl = cast_rl(type, left_rl);
375 add_range(&left_rl, sval_type_val(type, 0), sval_type_val(type,
376 } else {
377 left_rl = _get_rl(expr->left, implied, recurse_cnt);
378 if (left_rl) {
379 left_rl = cast_rl(type, left_rl);
380 left_rl = alloc_rl(sval_type_val(type, 0), rl_max(left_r
381 } else {
382 if (implied == RL_HARD)
383 return NULL;
384 left_rl = alloc_whole_rl(type);
385 }

new/usr/src/tools/smatch/src/smatch_math.c 9

386 }

473 new_recurse = *recurse_cnt;
474 if (*recurse_cnt >= 200)
475 new_recurse = 100; /* Let’s try super hard to get the mask */
476 if (!get_rl_internal(expr->right, implied, &new_recurse, &right_rl))
477 right_rl = alloc_whole_rl(type);
478 right_rl = cast_rl(type, right_rl);
391 if (get_implied_value_internal(expr->right, &known, &new_recurse)) {
392 sval_t min, left_max, mod;

479 *recurse_cnt = new_recurse;

481 *res = rl_binop(left_rl, ’&’, right_rl);
482 return true;
396 min = sval_lowest_set_bit(known);
397 right_rl = alloc_rl(min, known);
398 right_rl = cast_rl(type, right_rl);
399 add_range(&right_rl, sval_type_val(type, 0), sval_type_val(type,

401 if (min.value != 0) {
402 left_max = rl_max(left_rl);
403 mod = sval_binop(left_max, ’%’, min);
404 if (mod.value) {
405 left_max = sval_binop(left_max, ’-’, mod);
406 left_max.value++;
407 if (left_max.value > 0 && sval_cmp(left_max, rl_
408 left_rl = remove_range(left_rl, left_max
409 }
410 }
411 } else {
412 right_rl = _get_rl(expr->right, implied, recurse_cnt);
413 if (right_rl) {
414 right_rl = cast_rl(type, right_rl);
415 right_rl = alloc_rl(sval_type_val(type, 0), rl_max(right
416 } else {
417 if (implied == RL_HARD)
418 return NULL;
419 right_rl = alloc_whole_rl(type);
420 }
421 }

423 return rl_intersection(left_rl, right_rl);
483 }

485 static bool use_rl_binop(struct expression *expr, int implied, int *recurse_cnt,
426 static struct range_list *use_rl_binop(struct expression *expr, int implied, int
486 {
487 struct symbol *type;
488 struct range_list *left_rl, *right_rl;

490 if (implied != RL_IMPLIED && implied != RL_ABSOLUTE && implied != RL_REA
491 return false;
432 return NULL;

493 type = get_type(expr);

495 get_absolute_rl_internal(expr->left, &left_rl, recurse_cnt);
496 get_absolute_rl_internal(expr->right, &right_rl, recurse_cnt);
497 left_rl = cast_rl(type, left_rl);
498 right_rl = cast_rl(type, right_rl);
499 if (!left_rl || !right_rl)
500 return false;
441 return NULL;

502 *res = rl_binop(left_rl, expr->op, right_rl);

new/usr/src/tools/smatch/src/smatch_math.c 10

503 return true;
443 return rl_binop(left_rl, expr->op, right_rl);
504 }

506 static bool handle_right_shift(struct expression *expr, int implied, int *recurs
446 static struct range_list *handle_right_shift(struct expression *expr, int implie
507 {
508 struct range_list *left_rl, *right_rl;
448 struct range_list *left_rl;
449 sval_t right;
509 sval_t min, max;

511 if (implied == RL_EXACT || implied == RL_HARD)
512 return false;
453 return NULL;

514 if (get_rl_internal(expr->left, implied, recurse_cnt, &left_rl)) {
455 left_rl = _get_rl(expr->left, implied, recurse_cnt);
456 if (left_rl) {
515 max = rl_max(left_rl);
516 min = rl_min(left_rl);
517 } else {
518 if (implied == RL_FUZZY)
519 return false;
461 return NULL;
520 max = sval_type_max(get_type(expr->left));
521 min = sval_type_val(get_type(expr->left), 0);
522 }

524 if (get_rl_internal(expr->right, implied, recurse_cnt, &right_rl) &&
525 !sval_is_negative(rl_min(right_rl))) {
526 min = sval_binop(min, SPECIAL_RIGHTSHIFT, rl_max(right_rl));
527 max = sval_binop(max, SPECIAL_RIGHTSHIFT, rl_min(right_rl));
466 if (get_implied_value_internal(expr->right, &right, recurse_cnt)) {
467 min = sval_binop(min, SPECIAL_RIGHTSHIFT, right);
468 max = sval_binop(max, SPECIAL_RIGHTSHIFT, right);
528 } else if (!sval_is_negative(min)) {
529 min.value = 0;
530 max = sval_type_max(max.type);
531 } else {
532 return false;
473 return NULL;
533 }

535 *res = alloc_rl(min, max);
536 return true;
476 return alloc_rl(min, max);
537 }

539 static bool handle_left_shift(struct expression *expr, int implied, int *recurse
479 static struct range_list *handle_left_shift(struct expression *expr, int implied
540 {
541 struct range_list *left_rl, *rl;
481 struct range_list *left_rl, *res;
542 sval_t right;
483 sval_t min, max;
484 int add_zero = 0;

544 if (implied == RL_EXACT || implied == RL_HARD)
545 return false;
487 return NULL;
546 /* this is hopeless without the right side */
547 if (!get_implied_value_internal(expr->right, recurse_cnt, &right))
548 return false;
549 if (!get_rl_internal(expr->left, implied, recurse_cnt, &left_rl)) {
489 if (!get_implied_value_internal(expr->right, &right, recurse_cnt))

new/usr/src/tools/smatch/src/smatch_math.c 11

490 return NULL;
491 left_rl = _get_rl(expr->left, implied, recurse_cnt);
492 if (left_rl) {
493 max = rl_max(left_rl);
494 min = rl_min(left_rl);
495 if (min.value == 0) {
496 min.value = 1;
497 add_zero = 1;
498 }
499 } else {
550 if (implied == RL_FUZZY)
551 return false;
552 left_rl = alloc_whole_rl(get_type(expr->left));
501 return NULL;
502 max = sval_type_max(get_type(expr->left));
503 min = sval_type_val(get_type(expr->left), 1);
504 add_zero = 1;
553 }

555 rl = rl_binop(left_rl, SPECIAL_LEFTSHIFT, alloc_rl(right, right));
556 if (!rl)
557 return false;
558 *res = rl;
559 return true;
507 max = sval_binop(max, SPECIAL_LEFTSHIFT, right);
508 min = sval_binop(min, SPECIAL_LEFTSHIFT, right);
509 res = alloc_rl(min, max);
510 if (add_zero)
511 res = rl_union(res, rl_zero());
512 return res;
560 }

562 static bool handle_known_binop(struct expression *expr, sval_t *res)
515 static struct range_list *handle_known_binop(struct expression *expr)
563 {
564 sval_t left, right;

566 if (!get_value(expr->left, &left))
567 return false;
520 return NULL;
568 if (!get_value(expr->right, &right))
569 return false;
570 *res = sval_binop(left, expr->op, right);
571 return true;
522 return NULL;
523 left = sval_binop(left, expr->op, right);
524 return alloc_rl(left, left);
572 }

______unchanged_portion_omitted_

616 static bool handle_binop_rl_helper(struct expression *expr, int implied, int *re
569 static struct range_list *handle_binop_rl(struct expression *expr, int implied,
617 {
571 struct smatch_state *state;
618 struct symbol *type;
619 struct range_list *left_rl = NULL;
620 struct range_list *right_rl = NULL;
621 struct range_list *rl;
573 struct range_list *left_rl, *right_rl, *rl;
622 sval_t min, max;

624 type = get_promoted_type(get_type(expr->left), get_type(expr->right));
625 get_rl_internal(expr->left, implied, recurse_cnt, &left_rl);
576 rl = handle_known_binop(expr);
577 if (rl)
578 return rl;

new/usr/src/tools/smatch/src/smatch_math.c 12

579 if (implied == RL_EXACT)
580 return NULL;

582 if (custom_handle_variable) {
583 rl = custom_handle_variable(expr);
584 if (rl)
585 return rl;
586 }

588 state = get_extra_state(expr);
589 if (state && !is_whole_rl(estate_rl(state))) {
590 if (implied != RL_HARD || estate_has_hard_max(state))
591 return clone_rl(estate_rl(state));
592 }

594 type = get_type(expr);
595 left_rl = _get_rl(expr->left, implied, recurse_cnt);
626 left_rl = cast_rl(type, left_rl);
627 get_rl_internal(expr->right, implied, recurse_cnt, &right_rl);
597 right_rl = _get_rl(expr->right, implied, recurse_cnt);
628 right_rl = cast_rl(type, right_rl);

629 if (!left_rl && !right_rl)
630 return false;
601 return NULL;

632 rl = handle_implied_binop(left_rl, expr->op, right_rl);
633 if (rl) {
634 *res = rl;
635 return true;
636 }
604 if (rl)
605 return rl;

638 switch (expr->op) {
639 case ’%’:
640 return handle_mod_rl(expr, implied, recurse_cnt, res);
609 return handle_mod_rl(expr, implied, recurse_cnt);
641 case ’&’:
642 return handle_bitwise_AND(expr, implied, recurse_cnt, res);
611 return handle_bitwise_AND(expr, implied, recurse_cnt);
643 case ’|’:
644 case ’^’:
645 return use_rl_binop(expr, implied, recurse_cnt, res);
614 return use_rl_binop(expr, implied, recurse_cnt);
646 case SPECIAL_RIGHTSHIFT:
647 return handle_right_shift(expr, implied, recurse_cnt, res);
616 return handle_right_shift(expr, implied, recurse_cnt);
648 case SPECIAL_LEFTSHIFT:
649 return handle_left_shift(expr, implied, recurse_cnt, res);
618 return handle_left_shift(expr, implied, recurse_cnt);
650 case ’-’:
651 return handle_subtract_rl(expr, implied, recurse_cnt, res);
620 return handle_subtract_rl(expr, implied, recurse_cnt);
652 case ’/’:
653 return handle_divide_rl(expr, implied, recurse_cnt, res);
622 return handle_divide_rl(expr, implied, recurse_cnt);
654 }

656 if (!left_rl || !right_rl)
657 return false;
626 return NULL;

659 if (sval_binop_overflows(rl_min(left_rl), expr->op, rl_min(right_rl)))
660 return false;
629 return NULL;

new/usr/src/tools/smatch/src/smatch_math.c 13

661 if (sval_binop_overflows(rl_max(left_rl), expr->op, rl_max(right_rl)))
662 return false;
631 return NULL;

664 min = sval_binop(rl_min(left_rl), expr->op, rl_min(right_rl));
665 max = sval_binop(rl_max(left_rl), expr->op, rl_max(right_rl));

667 *res = alloc_rl(min, max);
668 return true;

636 return alloc_rl(min, max);
670 }

672 static bool handle_binop_rl(struct expression *expr, int implied, int *recurse_c
673 {
674 struct smatch_state *state;
675 struct range_list *rl;
676 sval_t val;

678 if (handle_known_binop(expr, &val)) {
679 *res_sval = val;
680 return true;
681 }
682 if (implied == RL_EXACT)
683 return false;

685 if (custom_handle_variable) {
686 rl = custom_handle_variable(expr);
687 if (rl) {
688 *res = rl;
689 return true;
690 }
691 }

693 state = get_extra_state(expr);
694 if (state && !is_whole_rl(estate_rl(state))) {
695 if (implied != RL_HARD || estate_has_hard_max(state)) {
696 *res = clone_rl(estate_rl(state));
697 return true;
698 }
699 }

701 return handle_binop_rl_helper(expr, implied, recurse_cnt, res, res_sval)
702 }

704 static int do_comparison(struct expression *expr)
705 {
706 struct range_list *left_ranges = NULL;
707 struct range_list *right_ranges = NULL;
708 int poss_true, poss_false;
709 struct symbol *type;

711 type = get_type(expr);
712 get_absolute_rl(expr->left, &left_ranges);
713 get_absolute_rl(expr->right, &right_ranges);

715 left_ranges = cast_rl(type, left_ranges);
716 right_ranges = cast_rl(type, right_ranges);

718 poss_true = possibly_true_rl(left_ranges, expr->op, right_ranges);
719 poss_false = possibly_false_rl(left_ranges, expr->op, right_ranges);

721 if (!poss_true && !poss_false)
722 return 0x0;
723 if (poss_true && !poss_false)
724 return 0x1;

new/usr/src/tools/smatch/src/smatch_math.c 14

725 if (!poss_true && poss_false)
726 return 0x2;
727 return 0x3;
728 }

730 static bool handle_comparison_rl(struct expression *expr, int implied, int *recu
665 static struct range_list *handle_comparison_rl(struct expression *expr, int impl
731 {
732 sval_t left, right;
733 int cmp;
668 int res;

735 if (expr->op == SPECIAL_EQUAL && expr->left->type == EXPR_TYPE) {
736 struct symbol *left, *right;

738 if (expr->right->type != EXPR_TYPE)
739 return false;

741 left = get_real_base_type(expr->left->symbol);
742 right = get_real_base_type(expr->right->symbol);
743 if (type_bits(left) == type_bits(right) &&
744 type_positive_bits(left) == type_positive_bits(right))
745 *res_sval = one;
746 else
747 *res_sval = zero;
748 return true;
674 right = get_real_base_type(expr->left->symbol);
675 if (left == right)
676 return rl_one();
677 return rl_zero();
749 }

751 if (get_value(expr->left, &left) && get_value(expr->right, &right)) {
752 struct data_range tmp_left, tmp_right;

754 tmp_left.min = left;
755 tmp_left.max = left;
756 tmp_right.min = right;
757 tmp_right.max = right;
758 if (true_comparison_range(&tmp_left, expr->op, &tmp_right))
759 *res_sval = one;
760 else
761 *res_sval = zero;
762 return true;
688 return rl_one();
689 return rl_zero();
763 }

765 if (implied == RL_EXACT)
766 return false;
693 return NULL;

768 cmp = do_comparison(expr);
769 if (cmp == 1) {
770 *res_sval = one;
771 return true;
772 }
773 if (cmp == 2) {
774 *res_sval = zero;
775 return true;
776 }
695 res = do_comparison(expr);
696 if (res == 1)
697 return rl_one();
698 if (res == 2)
699 return rl_zero();

new/usr/src/tools/smatch/src/smatch_math.c 15

778 *res = alloc_rl(zero, one);
779 return true;
701 return alloc_rl(zero, one);
780 }

782 static bool handle_logical_rl(struct expression *expr, int implied, int *recurse
704 static struct range_list *handle_logical_rl(struct expression *expr, int implied
783 {
784 sval_t left, right;
785 int left_known = 0;
786 int right_known = 0;

788 if (implied == RL_EXACT) {
789 if (get_value(expr->left, &left))
790 left_known = 1;
791 if (get_value(expr->right, &right))
792 right_known = 1;
793 } else {
794 if (get_implied_value_internal(expr->left, recurse_cnt, &left))
716 if (get_implied_value_internal(expr->left, &left, recurse_cnt))
795 left_known = 1;
796 if (get_implied_value_internal(expr->right, recurse_cnt, &right)
718 if (get_implied_value_internal(expr->right, &right, recurse_cnt)
797 right_known = 1;
798 }

800 switch (expr->op) {
801 case SPECIAL_LOGICAL_OR:
802 if (left_known && left.value)
803 goto one;
725 return rl_one();
804 if (right_known && right.value)
805 goto one;
727 return rl_one();
806 if (left_known && right_known)
807 goto zero;
729 return rl_zero();
808 break;
809 case SPECIAL_LOGICAL_AND:
810 if (left_known && right_known) {
811 if (left.value && right.value)
812 goto one;
813 goto zero;
734 return rl_one();
735 return rl_zero();
814 }
815 break;
816 default:
817 return false;
739 return NULL;
818 }

820 if (implied == RL_EXACT)
821 return false;
743 return NULL;

823 *res = alloc_rl(zero, one);
824 return true;

826 zero:
827 *res_sval = zero;
828 return true;
829 one:
830 *res_sval = one;
831 return true;

new/usr/src/tools/smatch/src/smatch_math.c 16

745 return alloc_rl(zero, one);
832 }

834 static bool handle_conditional_rl(struct expression *expr, int implied, int *rec
748 static struct range_list *handle_conditional_rl(struct expression *expr, int imp
835 {
836 struct expression *cond_true;
837 struct range_list *true_rl, *false_rl;
838 struct symbol *type;
839 int final_pass_orig = final_pass;

841 cond_true = expr->cond_true;
842 if (!cond_true)
843 cond_true = expr->conditional;

845 if (known_condition_true(expr->conditional))
846 return get_rl_sval(cond_true, implied, recurse_cnt, res, res_sva
760 return _get_rl(cond_true, implied, recurse_cnt);
847 if (known_condition_false(expr->conditional))
848 return get_rl_sval(expr->cond_false, implied, recurse_cnt, res,
762 return _get_rl(expr->cond_false, implied, recurse_cnt);

850 if (implied == RL_EXACT)
851 return false;
765 return NULL;

853 if (implied_condition_true(expr->conditional))
854 return get_rl_sval(cond_true, implied, recurse_cnt, res, res_sva
768 return _get_rl(cond_true, implied, recurse_cnt);
855 if (implied_condition_false(expr->conditional))
856 return get_rl_sval(expr->cond_false, implied, recurse_cnt, res,
770 return _get_rl(expr->cond_false, implied, recurse_cnt);

858 /* this becomes a problem with deeply nested conditional statements */
859 if (low_on_memory())
860 return false;
775 return NULL;

862 type = get_type(expr);

864 __push_fake_cur_stree();
865 final_pass = 0;
866 __split_whole_condition(expr->conditional);
867 true_rl = NULL;
868 get_rl_internal(cond_true, implied, recurse_cnt, &true_rl);
782 true_rl = _get_rl(cond_true, implied, recurse_cnt);
869 __push_true_states();
870 __use_false_states();
871 false_rl = NULL;
872 get_rl_internal(expr->cond_false, implied, recurse_cnt, &false_rl);
785 false_rl = _get_rl(expr->cond_false, implied, recurse_cnt);
873 __merge_true_states();
874 __free_fake_cur_stree();
875 final_pass = final_pass_orig;

877 if (!true_rl || !false_rl)
878 return false;
791 return NULL;
879 true_rl = cast_rl(type, true_rl);
880 false_rl = cast_rl(type, false_rl);

882 *res = rl_union(true_rl, false_rl);
883 return true;
795 return rl_union(true_rl, false_rl);
884 }

new/usr/src/tools/smatch/src/smatch_math.c 17

886 static bool get_fuzzy_max_helper(struct expression *expr, sval_t *max)
798 static int get_fuzzy_max_helper(struct expression *expr, sval_t *max)
887 {
888 struct smatch_state *state;
889 sval_t sval;

891 if (get_hard_max(expr, &sval)) {
892 *max = sval;
893 return true;
805 return 1;
894 }

896 state = get_extra_state(expr);
897 if (!state || !estate_has_fuzzy_max(state))
898 return false;
810 return 0;
899 *max = sval_cast(get_type(expr), estate_get_fuzzy_max(state));
900 return true;
812 return 1;
901 }

903 static bool get_fuzzy_min_helper(struct expression *expr, sval_t *min)
815 static int get_fuzzy_min_helper(struct expression *expr, sval_t *min)
904 {
905 struct smatch_state *state;
906 sval_t sval;

908 state = get_extra_state(expr);
909 if (!state || !estate_rl(state))
910 return false;
822 return 0;

912 sval = estate_min(state);
913 if (sval_is_negative(sval) && sval_is_min(sval))
914 return false;
826 return 0;

916 if (sval_is_max(sval))
917 return false;
829 return 0;

919 *min = sval_cast(get_type(expr), sval);
920 return true;
832 return 1;
921 }

______unchanged_portion_omitted_

964 static bool handle_variable(struct expression *expr, int implied, int *recurse_c
876 static struct range_list *handle_variable(struct expression *expr, int implied,
965 {
966 struct smatch_state *state;
967 struct range_list *rl;
968 sval_t sval, min, max;
969 struct symbol *type;

971 if (get_const_value(expr, &sval)) {
972 *res_sval = sval;
973 return true;
974 }
883 if (get_const_value(expr, &sval))
884 return alloc_rl(sval, sval);

976 if (implied == RL_EXACT)
977 return false;

new/usr/src/tools/smatch/src/smatch_math.c 18

979 if (custom_handle_variable) {
980 rl = custom_handle_variable(expr);
981 if (rl) {
982 if (!rl_to_sval(rl, res_sval))
983 *res = rl;
984 } else {
985 *res = var_to_absolute_rl(expr);
888 if (!rl)
889 return var_to_absolute_rl(expr);
890 return rl;
986 }
987 return true;
988 }

990 if (get_mtag_sval(expr, &sval)) {
991 *res_sval = sval;
992 return true;
993 }
893 if (implied == RL_EXACT)
894 return NULL;

896 if (get_mtag_sval(expr, &sval))
897 return alloc_rl(sval, sval);

995 type = get_type(expr);
996 if (type &&
997 (type->type == SYM_ARRAY ||
998 type->type == SYM_FN))
999 return handle_address(expr, implied, recurse_cnt, res, res_sval)
900 if (type && type->type == SYM_FN)
901 return alloc_rl(fn_ptr_min, fn_ptr_max);

1001 /* FIXME: call rl_to_sval() on the results */

1003 switch (implied) {
1004 case RL_HARD:
1005 case RL_IMPLIED:
1006 case RL_ABSOLUTE:
1007 state = get_extra_state(expr);
1008 if (!state) {
908 if (!state || !state->data) {
1009 if (implied == RL_HARD)
1010 return false;
1011 if (get_local_rl(expr, res))
1012 return true;
1013 if (get_mtag_rl(expr, res))
1014 return true;
1015 if (get_db_type_rl(expr, res))
1016 return true;
1017 if (is_array(expr) && get_array_rl(expr, res))
1018 return true;
1019 return false;
910 return NULL;
911 if (get_local_rl(expr, &rl))
912 return rl;
913 if (get_mtag_rl(expr, &rl))
914 return rl;
915 if (get_db_type_rl(expr, &rl))
916 return rl;
917 if (is_array(expr) && get_array_rl(expr, &rl))
918 return rl;
919 return NULL;
1020 }
1021 if (implied == RL_HARD && !estate_has_hard_max(state))
1022 return false;
1023 *res = clone_rl(estate_rl(state));

new/usr/src/tools/smatch/src/smatch_math.c 19

1024 return true;
922 return NULL;
923 return clone_rl(estate_rl(state));
1025 case RL_REAL_ABSOLUTE: {
1026 struct smatch_state *abs_state;

1028 state = get_extra_state(expr);
1029 abs_state = get_real_absolute_state(expr);

1031 if (estate_rl(state) && estate_rl(abs_state)) {
1032 *res = clone_rl(rl_intersection(estate_rl(state),
931 return clone_rl(rl_intersection(estate_rl(state),
1033 estate_rl(abs_state)));
1034 return true;
1035 } else if (estate_rl(state)) {
1036 *res = clone_rl(estate_rl(state));
1037 return true;
934 return clone_rl(estate_rl(state));
1038 } else if (estate_is_empty(state)) {
1039 /*
1040 * FIXME: we don’t handle empty extra states correctly.
1041 *
1042 * The real abs rl is supposed to be filtered by the
1043 * extra state if there is one. We don’t bother keeping
1044 * the abs state in sync all the time because we know it
1045 * will be filtered later.
1046 *
1047 * It’s not totally obvious to me how they should be
1048 * handled. Perhaps we should take the whole rl and
1049 * filter by the imaginary states. Perhaps we should
1050 * just go with the empty state.
1051 *
1052 * Anyway what we currently do is return NULL here and
1053 * that gets translated into the whole range in
1054 * get_real_absolute_rl().
1055 *
1056 */
1057 return false;
954 return NULL;
1058 } else if (estate_rl(abs_state)) {
1059 *res = clone_rl(estate_rl(abs_state));
1060 return true;
956 return clone_rl(estate_rl(abs_state));
1061 }

1063 if (get_local_rl(expr, res))
1064 return true;
1065 if (get_mtag_rl(expr, res))
1066 return true;
1067 if (get_db_type_rl(expr, res))
1068 return true;
1069 if (is_array(expr) && get_array_rl(expr, res))
1070 return true;
1071 return false;
959 if (get_local_rl(expr, &rl))
960 return rl;
961 if (get_mtag_rl(expr, &rl))
962 return rl;
963 if (get_db_type_rl(expr, &rl))
964 return rl;
965 if (is_array(expr) && get_array_rl(expr, &rl))
966 return rl;
967 return NULL;
1072 }
1073 case RL_FUZZY:
1074 if (!get_fuzzy_min_helper(expr, &min))

new/usr/src/tools/smatch/src/smatch_math.c 20

1075 min = sval_type_min(get_type(expr));
1076 if (!get_fuzzy_max_helper(expr, &max))
1077 return false;
973 return NULL;
1078 /* fuzzy ranges are often inverted */
1079 if (sval_cmp(min, max) > 0) {
1080 sval = min;
1081 min = max;
1082 max = sval;
1083 }
1084 *res = alloc_rl(min, max);
1085 return true;
980 return alloc_rl(min, max);
1086 }
1087 return false;
982 return NULL;
1088 }
______unchanged_portion_omitted_

1134 static bool handle_strlen(struct expression *expr, int implied, int *recurse_cnt
1029 static struct range_list *handle_strlen(struct expression *expr, int implied, in
1135 {
1031 struct range_list *rl;
1136 struct expression *arg, *tmp;
1137 sval_t tag;
1138 sval_t ret = { .type = &ulong_ctype };
1139 struct range_list *rl;

1036 if (implied == RL_EXACT)
1037 return NULL;

1141 arg = get_argument_from_call_expr(expr->args, 0);
1142 if (!arg)
1143 return false;
1041 return NULL;
1144 if (arg->type == EXPR_STRING) {
1145 ret.value = arg->string->length - 1;
1146 *res_sval = ret;
1147 return true;
1044 return alloc_rl(ret, ret);
1148 }
1149 if (implied == RL_EXACT)
1150 return false;
1151 if (get_implied_value(arg, &tag) &&
1152 (tmp = fake_string_from_mtag(tag.uvalue))) {
1153 ret.value = tmp->string->length - 1;
1154 *res_sval = ret;
1155 return true;
1049 return alloc_rl(ret, ret);
1156 }

1158 if (implied == RL_HARD || implied == RL_FUZZY)
1159 return false;
1053 return NULL;

1161 if (get_implied_return(expr, &rl)) {
1162 *res = rl;
1163 return true;
1164 }
1055 if (get_implied_return(expr, &rl))
1056 return rl;

1166 return false;
1058 return NULL;
1167 }

new/usr/src/tools/smatch/src/smatch_math.c 21

1169 static bool handle_builtin_constant_p(struct expression *expr, int implied, int
1061 static struct range_list *handle_builtin_constant_p(struct expression *expr, int
1170 {
1171 struct expression *arg;
1172 struct range_list *rl;
1065 sval_t sval;

1174 arg = get_argument_from_call_expr(expr->args, 0);
1175 if (get_rl_internal(arg, RL_EXACT, recurse_cnt, &rl))
1176 *res_sval = one;
1177 else
1178 *res_sval = zero;
1179 return true;
1068 rl = _get_rl(arg, RL_EXACT, recurse_cnt);
1069 if (rl_to_sval(rl, &sval))
1070 return rl_one();
1071 return rl_zero();
1180 }

1182 static bool handle__builtin_choose_expr(struct expression *expr, int implied, in
1074 static struct range_list *handle__builtin_choose_expr(struct expression *expr, i
1183 {
1184 struct expression *const_expr, *expr1, *expr2;
1185 sval_t sval;

1187 const_expr = get_argument_from_call_expr(expr->args, 0);
1188 expr1 = get_argument_from_call_expr(expr->args, 1);
1189 expr2 = get_argument_from_call_expr(expr->args, 2);

1191 if (!get_value(const_expr, &sval) || !expr1 || !expr2)
1192 return false;
1084 return NULL;
1193 if (sval.value)
1194 return get_rl_sval(expr1, implied, recurse_cnt, res, res_sval);
1195 else
1196 return get_rl_sval(expr2, implied, recurse_cnt, res, res_sval);
1086 return _get_rl(expr1, implied, recurse_cnt);
1087 return _get_rl(expr2, implied, recurse_cnt);
1197 }

1199 static bool handle_call_rl(struct expression *expr, int implied, int *recurse_cn
1090 static struct range_list *handle_call_rl(struct expression *expr, int implied, i
1200 {
1201 struct range_list *rl;

1203 if (sym_name_is("__builtin_constant_p", expr->fn))
1204 return handle_builtin_constant_p(expr, implied, recurse_cnt, res
1095 return handle_builtin_constant_p(expr, implied, recurse_cnt);

1206 if (sym_name_is("__builtin_choose_expr", expr->fn))
1207 return handle__builtin_choose_expr(expr, implied, recurse_cnt, r
1098 return handle__builtin_choose_expr(expr, implied, recurse_cnt);

1209 if (sym_name_is("__builtin_expect", expr->fn) ||
1210 sym_name_is("__builtin_bswap16", expr->fn) ||
1211 sym_name_is("__builtin_bswap32", expr->fn) ||
1212 sym_name_is("__builtin_bswap64", expr->fn)) {
1213 struct expression *arg;

1215 arg = get_argument_from_call_expr(expr->args, 0);
1216 return get_rl_sval(arg, implied, recurse_cnt, res, res_sval);
1107 return _get_rl(arg, implied, recurse_cnt);
1217 }

1219 if (sym_name_is("strlen", expr->fn))
1220 return handle_strlen(expr, implied, recurse_cnt, res, res_sval);

new/usr/src/tools/smatch/src/smatch_math.c 22

1111 return handle_strlen(expr, implied, recurse_cnt);

1222 if (implied == RL_EXACT || implied == RL_HARD || implied == RL_FUZZY)
1223 return false;
1114 return NULL;

1225 if (custom_handle_variable) {
1226 rl = custom_handle_variable(expr);
1227 if (rl) {
1228 *res = rl;
1229 return true;
1118 if (rl)
1119 return rl;
1230 }
1231 }

1233 /* Ugh... get_implied_return() sets *rl to NULL on failure */
1234 if (get_implied_return(expr, &rl)) {
1235 *res = rl;
1236 return true;
1237 }
1238 rl = db_return_vals(expr);
1239 if (rl) {
1240 *res = rl;
1241 return true;
1242 }
1243 return false;
1122 if (get_implied_return(expr, &rl))
1123 return rl;
1124 return db_return_vals(expr);
1244 }

1246 static bool handle_cast(struct expression *expr, int implied, int *recurse_cnt,
1127 static struct range_list *handle_cast(struct expression *expr, int implied, int
1247 {
1248 struct range_list *rl;
1249 struct symbol *type;
1250 sval_t sval = {};

1252 type = get_type(expr);
1253 if (get_rl_sval(expr->cast_expression, implied, recurse_cnt, &rl, &sval)
1254 if (sval.type)
1255 *res_sval = sval_cast(type, sval);
1256 else
1257 *res = cast_rl(type, rl);
1258 return true;
1259 }
1260 if (implied == RL_ABSOLUTE || implied == RL_REAL_ABSOLUTE) {
1261 *res = alloc_whole_rl(type);
1262 return true;
1263 }
1133 rl = _get_rl(expr->cast_expression, implied, recurse_cnt);
1134 if (rl)
1135 return cast_rl(type, rl);
1136 if (implied == RL_ABSOLUTE || implied == RL_REAL_ABSOLUTE)
1137 return alloc_whole_rl(type);
1264 if (implied == RL_IMPLIED && type &&
1265 type_bits(type) > 0 && type_bits(type) < 32) {
1266 *res = alloc_whole_rl(type);
1267 return true;
1268 }
1269 return false;
1139 type_bits(type) > 0 && type_bits(type) < 32)
1140 return alloc_whole_rl(type);
1141 return NULL;
1270 }

new/usr/src/tools/smatch/src/smatch_math.c 23

1272 static bool get_offset_from_down(struct expression *expr, int implied, int *recu
1144 static struct range_list *_get_rl(struct expression *expr, int implied, int *rec
1273 {
1274 struct expression *index;
1275 struct symbol *type = expr->in;
1276 struct range_list *rl;
1277 struct symbol *field;
1278 int offset = 0;
1279 sval_t sval = { .type = ssize_t_ctype };
1280 sval_t tmp_sval = {};

1282 /*
1283 * FIXME: I don’t really know what I’m doing here. I wish that I
1284 * could just get rid of the __builtin_offset() function and use:
1285 * "&((struct bpf_prog *)NULL)->insns[fprog->len]" instead...
1286 * Anyway, I have done the minimum ammount of work to get that
1287 * expression to work.
1288 *
1289 */

1291 if (expr->op != ’.’ || !expr->down ||
1292 expr->down->type != EXPR_OFFSETOF ||
1293 expr->down->op != ’[’ ||
1294 !expr->down->index)
1295 return false;

1297 index = expr->down->index;

1299 examine_symbol_type(type);
1300 type = get_real_base_type(type);
1301 if (!type)
1302 return false;
1303 field = find_identifier(expr->ident, type->symbol_list, &offset);
1304 if (!field)
1305 return false;

1307 type = get_real_base_type(field);
1308 if (!type || type->type != SYM_ARRAY)
1309 return false;
1310 type = get_real_base_type(type);

1312 if (get_implied_value_internal(index, recurse_cnt, &sval)) {
1313 res_sval->type = ssize_t_ctype;
1314 res_sval->value = offset + sval.value * type_bytes(type);
1315 return true;
1316 }

1318 if (!get_rl_sval(index, implied, recurse_cnt, &rl, &tmp_sval))
1319 return false;

1321 /*
1322 * I’m not sure why get_rl_sval() would return an sval when
1323 * get_implied_value_internal() failed but it does when I
1324 * parse drivers/net/ethernet/mellanox/mlx5/core/en/monitor_stats.c
1325 *
1326 */
1327 if (tmp_sval.type) {
1328 res_sval->type = ssize_t_ctype;
1329 res_sval->value = offset + sval.value * type_bytes(type);
1330 return true;
1331 }

1333 sval.value = type_bytes(type);
1334 rl = rl_binop(rl, ’*’, alloc_rl(sval, sval));
1335 sval.value = offset;

new/usr/src/tools/smatch/src/smatch_math.c 24

1336 *res = rl_binop(rl, ’+’, alloc_rl(sval, sval));
1337 return true;
1338 }

1340 static bool get_offset_from_in(struct expression *expr, int implied, int *recurs
1341 {
1342 struct symbol *type = get_real_base_type(expr->in);
1343 struct symbol *field;
1344 int offset = 0;

1346 if (expr->op != ’.’ || !type || !expr->ident)
1347 return false;

1349 field = find_identifier(expr->ident, type->symbol_list, &offset);
1350 if (!field)
1351 return false;

1353 res_sval->type = size_t_ctype;
1354 res_sval->value = offset;

1356 return true;
1357 }

1359 static bool handle_offsetof_rl(struct expression *expr, int implied, int *recurs
1360 {
1361 if (get_offset_from_down(expr, implied, recurse_cnt, res, res_sval))
1362 return true;

1364 if (get_offset_from_in(expr, implied, recurse_cnt, res, res_sval))
1365 return true;

1367 evaluate_expression(expr);
1368 if (expr->type == EXPR_VALUE) {
1369 *res_sval = sval_from_val(expr, expr->value);
1370 return true;
1371 }
1372 return false;
1373 }

1375 static bool get_rl_sval(struct expression *expr, int implied, int *recurse_cnt,
1376 {
1377 struct range_list *rl = (void *)-1UL;
1378 struct symbol *type;
1379 sval_t sval = {};
1148 sval_t sval;

1381 type = get_type(expr);
1382 expr = strip_parens(expr);
1383 if (!expr)
1384 return false;
1153 return NULL;

1386 if (++(*recurse_cnt) >= 200)
1387 return false;
1156 return NULL;

1389 switch(expr->type) {
1390 case EXPR_CAST:
1391 case EXPR_FORCE_CAST:
1392 case EXPR_IMPLIED_CAST:
1393 handle_cast(expr, implied, recurse_cnt, &rl, &sval);
1162 rl = handle_cast(expr, implied, recurse_cnt);
1394 goto out_cast;
1395 }

1397 expr = strip_expr(expr);

new/usr/src/tools/smatch/src/smatch_math.c 25

1398 if (!expr)
1399 return false;
1168 return NULL;

1401 switch (expr->type) {
1402 case EXPR_VALUE:
1403 sval = sval_from_val(expr, expr->value);
1173 rl = alloc_rl(sval, sval);
1404 break;
1405 case EXPR_PREOP:
1406 handle_preop_rl(expr, implied, recurse_cnt, &rl, &sval);
1176 rl = handle_preop_rl(expr, implied, recurse_cnt);
1407 break;
1408 case EXPR_POSTOP:
1409 get_rl_sval(expr->unop, implied, recurse_cnt, &rl, &sval);
1179 rl = _get_rl(expr->unop, implied, recurse_cnt);
1410 break;
1411 case EXPR_BINOP:
1412 handle_binop_rl(expr, implied, recurse_cnt, &rl, &sval);
1182 rl = handle_binop_rl(expr, implied, recurse_cnt);
1413 break;
1414 case EXPR_COMPARE:
1415 handle_comparison_rl(expr, implied, recurse_cnt, &rl, &sval);
1185 rl = handle_comparison_rl(expr, implied, recurse_cnt);
1416 break;
1417 case EXPR_LOGICAL:
1418 handle_logical_rl(expr, implied, recurse_cnt, &rl, &sval);
1188 rl = handle_logical_rl(expr, implied, recurse_cnt);
1419 break;
1420 case EXPR_PTRSIZEOF:
1421 case EXPR_SIZEOF:
1422 sval = handle_sizeof(expr);
1193 rl = alloc_rl(sval, sval);
1423 break;
1424 case EXPR_SELECT:
1425 case EXPR_CONDITIONAL:
1426 handle_conditional_rl(expr, implied, recurse_cnt, &rl, &sval);
1197 rl = handle_conditional_rl(expr, implied, recurse_cnt);
1427 break;
1428 case EXPR_CALL:
1429 handle_call_rl(expr, implied, recurse_cnt, &rl, &sval);
1200 rl = handle_call_rl(expr, implied, recurse_cnt);
1430 break;
1431 case EXPR_STRING:
1203 rl = NULL;
1432 if (get_mtag_sval(expr, &sval))
1205 rl = alloc_rl(sval, sval);
1433 break;
1434 if (implied == RL_EXACT)
1435 break;
1436 rl = alloc_rl(valid_ptr_min_sval, valid_ptr_max_sval);
1437 break;
1438 case EXPR_OFFSETOF:
1439 handle_offsetof_rl(expr, implied, recurse_cnt, &rl, &sval);
1440 break;
1441 case EXPR_ALIGNOF:
1442 evaluate_expression(expr);
1443 if (expr->type == EXPR_VALUE)
1444 sval = sval_from_val(expr, expr->value);
1445 break;
1446 default:
1447 handle_variable(expr, implied, recurse_cnt, &rl, &sval);
1208 rl = handle_variable(expr, implied, recurse_cnt);
1448 }

1450 out_cast:

new/usr/src/tools/smatch/src/smatch_math.c 26

1451 if (rl == (void *)-1UL)
1452 rl = NULL;

1454 if (sval.type || (rl && rl_to_sval(rl, &sval))) {
1455 *sval_res = sval;
1456 return true;
1457 }
1458 if (implied == RL_EXACT)
1459 return false;

1461 if (rl) {
1462 *res = rl;
1463 return true;
1464 }
1465 if (type && (implied == RL_ABSOLUTE || implied == RL_REAL_ABSOLUTE)) {
1466 *res = alloc_whole_rl(type);
1467 return true;
1468 }
1469 return false;
1212 if (rl)
1213 return rl;
1214 if (type && (implied == RL_ABSOLUTE || implied == RL_REAL_ABSOLUTE))
1215 return alloc_whole_rl(type);
1216 return NULL;
1470 }

1472 static bool get_rl_internal(struct expression *expr, int implied, int *recurse_c
1473 {
1474 struct range_list *rl = NULL;
1475 sval_t sval = {};

1477 if (!get_rl_sval(expr, implied, recurse_cnt, &rl, &sval))
1478 return false;

1480 if (sval.type)
1481 *res = alloc_rl(sval, sval);
1482 else
1483 *res = rl;
1484 return true;
1485 }

1487 static bool get_rl_helper(struct expression *expr, int implied, struct range_lis
1488 {
1489 struct range_list *rl = NULL;
1490 sval_t sval = {};
1491 int recurse_cnt = 0;

1493 if (get_value(expr, &sval)) {
1494 *res = alloc_rl(sval, sval);
1495 return true;
1496 }

1498 if (!get_rl_sval(expr, implied, &recurse_cnt, &rl, &sval))
1499 return false;

1501 if (sval.type)
1502 *res = alloc_rl(sval, sval);
1503 else
1504 *res = rl;
1505 return true;
1506 }

1508 struct {
1509 struct expression *expr;
1510 sval_t sval;
1221 struct range_list *rl;

new/usr/src/tools/smatch/src/smatch_math.c 27

1511 } cached_results[24];
______unchanged_portion_omitted_

1519 /*
1520 * Don’t cache EXPR_VALUE because values are fast already.
1521 *
1522 */
1523 static bool get_value_literal(struct expression *expr, sval_t *res_sval)
1524 {
1525 struct expression *tmp;
1526 int recurse_cnt = 0;

1528 tmp = strip_expr(expr);
1529 if (!tmp || tmp->type != EXPR_VALUE)
1530 return false;

1532 return get_rl_sval(expr, RL_EXACT, &recurse_cnt, NULL, res_sval);
1533 }

1535 /* returns 1 if it can get a value literal or else returns 0 */
1536 int get_value(struct expression *expr, sval_t *res_sval)
1231 int get_value(struct expression *expr, sval_t *sval)
1537 {
1538 struct range_list *(*orig_custom_fn)(struct expression *expr);
1234 struct range_list *rl;
1539 int recurse_cnt = 0;
1540 sval_t sval = {};
1236 sval_t tmp;
1541 int i;

1543 if (get_value_literal(expr, res_sval))
1544 return 1;

1546 /*
1547 * This only handles RL_EXACT because other expr statements can be
1548 * different at different points. Like the list iterator, for example.
1549 */
1550 for (i = 0; i < ARRAY_SIZE(cached_results); i++) {
1551 if (expr == cached_results[i].expr) {
1552 if (cached_results[i].sval.type) {
1553 *res_sval = cached_results[i].sval;
1554 return true;
1244 if (expr == cached_results[i].expr)
1245 return rl_to_sval(cached_results[i].rl, sval);
1555 }
1556 return false;
1557 }
1558 }

1560 orig_custom_fn = custom_handle_variable;
1561 custom_handle_variable = NULL;
1562 get_rl_sval(expr, RL_EXACT, &recurse_cnt, NULL, &sval);

1250 rl = _get_rl(expr, RL_EXACT, &recurse_cnt);
1251 if (!rl_to_sval(rl, &tmp))
1252 rl = NULL;
1564 custom_handle_variable = orig_custom_fn;

1566 cached_results[cache_idx].expr = expr;
1567 cached_results[cache_idx].sval = sval;
1256 cached_results[cache_idx].rl = rl;
1568 cache_idx = (cache_idx + 1) % ARRAY_SIZE(cached_results);

1570 if (!sval.type)
1259 if (!rl)
1571 return 0;

new/usr/src/tools/smatch/src/smatch_math.c 28

1573 *res_sval = sval;
1262 *sval = tmp;
1574 return 1;
1575 }

1577 static bool get_implied_value_internal(struct expression *expr, int *recurse_cnt
1266 static int get_implied_value_internal(struct expression *expr, sval_t *sval, int
1578 {
1579 struct range_list *rl;

1581 res_sval->type = NULL;

1583 if (!get_rl_sval(expr, RL_IMPLIED, recurse_cnt, &rl, res_sval))
1584 return false;
1585 if (!res_sval->type && !rl_to_sval(rl, res_sval))
1586 return false;
1587 return true;
1270 rl = _get_rl(expr, RL_IMPLIED, recurse_cnt);
1271 if (!rl_to_sval(rl, sval))
1272 return 0;
1273 return 1;
1588 }

1590 int get_implied_value(struct expression *expr, sval_t *sval)
1591 {
1592 struct range_list *rl;
1279 int recurse_cnt = 0;

1594 if (!get_rl_helper(expr, RL_IMPLIED, &rl) ||
1595 !rl_to_sval(rl, sval))
1281 rl = _get_rl(expr, RL_IMPLIED, &recurse_cnt);
1282 if (!rl_to_sval(rl, sval))
1596 return 0;
1597 return 1;
1598 }

1600 int get_implied_min(struct expression *expr, sval_t *sval)
1601 {
1602 struct range_list *rl;
1290 int recurse_cnt = 0;

1604 if (!get_rl_helper(expr, RL_IMPLIED, &rl) || !rl)
1292 rl = _get_rl(expr, RL_IMPLIED, &recurse_cnt);
1293 if (!rl)
1605 return 0;
1606 *sval = rl_min(rl);
1607 return 1;
1608 }

1610 int get_implied_max(struct expression *expr, sval_t *sval)
1611 {
1612 struct range_list *rl;
1302 int recurse_cnt = 0;

1614 if (!get_rl_helper(expr, RL_IMPLIED, &rl) || !rl)
1304 rl = _get_rl(expr, RL_IMPLIED, &recurse_cnt);
1305 if (!rl)
1615 return 0;
1616 *sval = rl_max(rl);
1617 return 1;
1618 }

1620 int get_implied_rl(struct expression *expr, struct range_list **rl)
1621 {
1622 if (!get_rl_helper(expr, RL_IMPLIED, rl) || !*rl)

new/usr/src/tools/smatch/src/smatch_math.c 29

1623 return 0;
1313 int recurse_cnt = 0;

1315 *rl = _get_rl(expr, RL_IMPLIED, &recurse_cnt);
1316 if (*rl)
1624 return 1;
1318 return 0;
1625 }

1627 static int get_absolute_rl_internal(struct expression *expr, struct range_list *
1628 {
1629 *rl = NULL;
1630 get_rl_internal(expr, RL_ABSOLUTE, recurse_cnt, rl);
1323 *rl = _get_rl(expr, RL_ABSOLUTE, recurse_cnt);
1631 if (!*rl)
1632 *rl = alloc_whole_rl(get_type(expr));
1633 return 1;
1634 }

1636 int get_absolute_rl(struct expression *expr, struct range_list **rl)
1637 {
1638 *rl = NULL;
1639 get_rl_helper(expr, RL_ABSOLUTE, rl);
1331 int recurse_cnt = 0;

1333 *rl = _get_rl(expr, RL_ABSOLUTE, &recurse_cnt);
1640 if (!*rl)
1641 *rl = alloc_whole_rl(get_type(expr));
1642 return 1;
1643 }

1645 int get_real_absolute_rl(struct expression *expr, struct range_list **rl)
1646 {
1647 *rl = NULL;
1648 get_rl_helper(expr, RL_REAL_ABSOLUTE, rl);
1341 int recurse_cnt = 0;

1343 *rl = _get_rl(expr, RL_REAL_ABSOLUTE, &recurse_cnt);
1649 if (!*rl)
1650 *rl = alloc_whole_rl(get_type(expr));
1651 return 1;
1652 }

1654 int custom_get_absolute_rl(struct expression *expr,
1655 struct range_list *(*fn)(struct expression *expr),
1656 struct range_list **rl)
1657 {
1658 int ret;
1353 int recurse_cnt = 0;

1660 *rl = NULL;
1661 custom_handle_variable = fn;
1662 ret = get_rl_helper(expr, RL_REAL_ABSOLUTE, rl);
1357 *rl = _get_rl(expr, RL_REAL_ABSOLUTE, &recurse_cnt);
1663 custom_handle_variable = NULL;
1664 return ret;
1359 return 1;
1665 }
______unchanged_portion_omitted_

1678 int get_hard_max(struct expression *expr, sval_t *sval)
1679 {
1680 struct range_list *rl;
1376 int recurse_cnt = 0;

1682 if (!get_rl_helper(expr, RL_HARD, &rl) || !rl)

new/usr/src/tools/smatch/src/smatch_math.c 30

1378 rl = _get_rl(expr, RL_HARD, &recurse_cnt);
1379 if (!rl)
1683 return 0;
1684 *sval = rl_max(rl);
1685 return 1;
1686 }

1688 int get_fuzzy_min(struct expression *expr, sval_t *sval)
1689 {
1690 struct range_list *rl;
1691 sval_t tmp;
1389 int recurse_cnt = 0;

1693 if (!get_rl_helper(expr, RL_FUZZY, &rl) || !rl)
1391 rl = _get_rl(expr, RL_FUZZY, &recurse_cnt);
1392 if (!rl)
1694 return 0;
1695 tmp = rl_min(rl);
1696 if (sval_is_negative(tmp) && sval_is_min(tmp))
1697 return 0;
1698 *sval = tmp;
1699 return 1;
1700 }

1702 int get_fuzzy_max(struct expression *expr, sval_t *sval)
1703 {
1704 struct range_list *rl;
1705 sval_t max;
1405 int recurse_cnt = 0;

1707 if (!get_rl_helper(expr, RL_FUZZY, &rl) || !rl)
1407 rl = _get_rl(expr, RL_FUZZY, &recurse_cnt);
1408 if (!rl)
1708 return 0;
1709 max = rl_max(rl);
1710 if (max.uvalue > INT_MAX - 10000)
1711 return 0;
1712 *sval = max;
1713 return 1;
1714 }

1716 int get_absolute_min(struct expression *expr, sval_t *sval)
1717 {
1718 struct range_list *rl;
1719 struct symbol *type;
1421 int recurse_cnt = 0;

1721 type = get_type(expr);
1722 if (!type)
1723 type = &llong_ctype; // FIXME: this is wrong but places assume
1724 rl = NULL;
1725 get_rl_helper(expr, RL_REAL_ABSOLUTE, &rl);
1426 rl = _get_rl(expr, RL_REAL_ABSOLUTE, &recurse_cnt);
1726 if (rl)
1727 *sval = rl_min(rl);
1728 else
1729 *sval = sval_type_min(type);

1731 if (sval_cmp(*sval, sval_type_min(type)) < 0)
1732 *sval = sval_type_min(type);
1733 return 1;
1734 }

1736 int get_absolute_max(struct expression *expr, sval_t *sval)
1737 {
1738 struct range_list *rl;

new/usr/src/tools/smatch/src/smatch_math.c 31

1739 struct symbol *type;
1441 int recurse_cnt = 0;

1741 type = get_type(expr);
1742 if (!type)
1743 type = &llong_ctype;
1744 rl = NULL;
1745 get_rl_helper(expr, RL_REAL_ABSOLUTE, &rl);
1446 rl = _get_rl(expr, RL_REAL_ABSOLUTE, &recurse_cnt);
1746 if (rl)
1747 *sval = rl_max(rl);
1748 else
1749 *sval = sval_type_max(type);

1751 if (sval_cmp(sval_type_max(type), *sval) < 0)
1752 *sval = sval_type_max(type);
1753 return 1;
1754 }
______unchanged_portion_omitted_

1555 int can_integer_overflow(struct symbol *type, struct expression *expr)
1556 {
1557 int op;
1558 sval_t lmax, rmax, res;

1560 if (!type)
1561 type = &int_ctype;

1563 expr = strip_expr(expr);

1565 if (expr->type == EXPR_ASSIGNMENT) {
1566 switch(expr->op) {
1567 case SPECIAL_MUL_ASSIGN:
1568 op = ’*’;
1569 break;
1570 case SPECIAL_ADD_ASSIGN:
1571 op = ’+’;
1572 break;
1573 case SPECIAL_SHL_ASSIGN:
1574 op = SPECIAL_LEFTSHIFT;
1575 break;
1576 default:
1577 return 0;
1578 }
1579 } else if (expr->type == EXPR_BINOP) {
1580 if (expr->op != ’*’ && expr->op != ’+’ && expr->op != SPECIAL_LE
1581 return 0;
1582 op = expr->op;
1583 } else {
1584 return 0;
1585 }

1587 get_absolute_max(expr->left, &lmax);
1588 get_absolute_max(expr->right, &rmax);

1590 if (sval_binop_overflows(lmax, op, rmax))
1591 return 1;

1593 res = sval_binop(lmax, op, rmax);
1594 if (sval_cmp(res, sval_type_max(type)) > 0)
1595 return 1;
1596 return 0;
1597 }

new/usr/src/tools/smatch/src/smatch_mem_tracker.c 1

**
 1391 Mon Aug 5 08:38:37 2019
new/usr/src/tools/smatch/src/smatch_mem_tracker.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2018 Oracle.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 #include "smatch.h"
19 #include <unistd.h>

21 static int my_id;

23 static unsigned long max_size;

25 unsigned long get_mem_kb(void)
25 static void match_end_func(struct symbol *sym)
26 {
27 FILE *file;
28 char buf[1024];
29 unsigned long size;

31 file = fopen("/proc/self/statm", "r");
32 if (!file)
33 return 0;
33 return;
34 fread(buf, 1, sizeof(buf), file);
35 fclose(file);

37 size = strtoul(buf, NULL, 10);
38 size = size * sysconf(_SC_PAGESIZE) / 1024;
39 return size;
40 }

42 static void match_end_func(struct symbol *sym)
43 {
44 unsigned long size;

46 if (option_mem) {
47 size = get_mem_kb();
48 if (size > max_size)
49 max_size = size;
50 }
51 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_modification_hooks.c 1

**
 7239 Mon Aug 5 08:38:37 2019
new/usr/src/tools/smatch/src/smatch_modification_hooks.c
11506 smatch resync
**
______unchanged_portion_omitted_

43 static modification_hook **hooks;
44 static modification_hook **hooks_late;

46 ALLOCATOR(modification_data, "modification data");

48 static int my_id;
49 static struct smatch_state *alloc_my_state(struct expression *expr, struct smatc
50 {
51 struct smatch_state *state;
52 struct modification_data *data;
53 char *name;

55 state = __alloc_smatch_state(0);
55 expr = strip_expr(expr);
56 name = expr_to_str(expr);
57 if (!name)
58 return NULL;

60 state = __alloc_smatch_state(0);
61 state->name = alloc_sname(name);
62 free_string(name);

64 data = __alloc_modification_data(0);
65 data->prev = prev;
66 data->cur = expr;
67 state->data = data;

69 return state;
70 }

______unchanged_portion_omitted_

157 static void db_param_add(struct expression *expr, int param, char *key, char *va
158 {
159 struct expression *arg, *gen_expr;
160 char *name, *other_name;
161 struct symbol *sym, *other_sym;

163 while (expr->type == EXPR_ASSIGNMENT)
164 expr = strip_expr(expr->right);
165 if (expr->type != EXPR_CALL)
166 return;

168 arg = get_argument_from_call_expr(expr->args, param);
169 if (!arg)
170 return;

172 gen_expr = gen_expression_from_key(arg, key);
173 if (gen_expr)
174 update_mtag_data(gen_expr);

176 name = get_variable_from_key(arg, key, &sym);
177 if (!name || !sym)
178 goto free;

180 __in_fake_assign++;
181 call_modification_hooks_name_sym(name, sym, expr, BOTH);
182 __in_fake_assign--;

184 other_name = get_other_name_sym(name, sym, &other_sym);

new/usr/src/tools/smatch/src/smatch_modification_hooks.c 2

181 other_name = map_long_to_short_name_sym(name, sym, &other_sym);
185 if (other_name) {
186 __in_fake_assign++;
187 call_modification_hooks_name_sym(other_name, other_sym, expr, BO
188 __in_fake_assign--;
189 free_string(other_name);
190 }

192 free:
193 free_string(name);
194 }

______unchanged_portion_omitted_

281 void register_modification_hooks(int id)
282 {
283 my_id = id;

285 set_dynamic_states(my_id);

287 hooks = malloc((num_checks + 1) * sizeof(*hooks));
288 memset(hooks, 0, (num_checks + 1) * sizeof(*hooks));
289 hooks_late = malloc((num_checks + 1) * sizeof(*hooks));
290 memset(hooks_late, 0, (num_checks + 1) * sizeof(*hooks));

292 add_hook(&match_assign_early, ASSIGNMENT_HOOK);
293 add_hook(&unop_expr_early, OP_HOOK);
294 add_hook(&asm_expr_early, ASM_HOOK);
295 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_mtag.c 1

**
 11413 Mon Aug 5 08:38:38 2019
new/usr/src/tools/smatch/src/smatch_mtag.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2017 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 /*
19 * One problem that I have is that it’s really hard to track how pointers are
20 * passed around. For example, it would be nice to know that the probe() and
21 * remove() functions get the same pci_dev pointer. It would be good to know
22 * what pointers we’re passing to the open() and close() functions. But that
23 * information gets lost in a call tree full of function pointer calls.
24 *
25 * I think the first step is to start naming specific pointers. So when a
26 * pointer is allocated, then it gets a tag. So calls to kmalloc() generate a
27 * tag. But we might not use that, because there might be a better name like
28 * framebuffer_alloc(). The framebuffer_alloc() is interesting because there is
29 * one per driver and it’s passed around to all the file operations.
30 *
31 * Perhaps we could make a list of functions like framebuffer_alloc() which take
32 * a size and say that those are the interesting alloc functions.
33 *
34 * Another place where we would maybe name the pointer is when they are passed
35 * to the probe(). Because that’s an important pointer, since there is one
36 * per driver (sort of).
37 *
38 * My vision is that you could take a pointer and trace it back to a global. So
39 * I’m going to track that pointer_tag - 28 bytes takes you to another pointer
40 * tag. You could follow that one back and so on. Also when we pass a pointer
41 * to a function that would be recorded as sort of a link or path or something.
42 *
43 */

45 #include "smatch.h"
46 #include "smatch_slist.h"
47 #include "smatch_extra.h"

49 #include <openssl/md5.h>

51 static int my_id;

53 static struct smatch_state *alloc_tag_state(mtag_t tag)
54 {
55 struct smatch_state *state;
56 char buf[64];

58 state = __alloc_smatch_state(0);
59 snprintf(buf, sizeof(buf), "%lld", tag);
60 state->name = alloc_sname(buf);
61 state->data = malloc(sizeof(mtag_t));

new/usr/src/tools/smatch/src/smatch_mtag.c 2

62 *(mtag_t *)state->data = tag;

64 return state;
65 }

53 static mtag_t str_to_tag(const char *str)
54 {
55 unsigned char c[MD5_DIGEST_LENGTH];
56 unsigned long long *tag = (unsigned long long *)&c;
57 MD5_CTX mdContext;
58 int len;

60 len = strlen(str);
61 MD5_Init(&mdContext);
62 MD5_Update(&mdContext, str, len);
63 MD5_Final(c, &mdContext);

65 *tag &= ~MTAG_ALIAS_BIT;
66 *tag &= ~MTAG_OFFSET_MASK;

68 return *tag;
69 }

71 const struct {
72 const char *name;
73 int size_arg;
74 } allocator_info[] = {
75 { "kmalloc", 0 },
76 { "kzalloc", 0 },
77 { "devm_kmalloc", 1},
78 { "devm_kzalloc", 1},
79 };

81 static bool is_mtag_call(struct expression *expr)
85 static void alloc_assign(const char *fn, struct expression *expr, void *unused)
82 {
83 struct expression *arg;
84 int i;
85 sval_t sval;

87 if (expr->type != EXPR_CALL ||
88 expr->fn->type != EXPR_SYMBOL ||
89 !expr->fn->symbol)
90 return false;

92 for (i = 0; i < ARRAY_SIZE(allocator_info); i++) {
93 if (strcmp(expr->fn->symbol->ident->name, allocator_info[i].name
94 break;
95 }
96 if (i == ARRAY_SIZE(allocator_info))
97 return false;

99 arg = get_argument_from_call_expr(expr->args, allocator_info[i].size_arg
100 if (!get_implied_value(arg, &sval))
101 return false;

103 return true;
104 }

106 struct smatch_state *swap_mtag_return(struct expression *expr, struct smatch_sta
107 {
108 struct expression *left, *right;
109 char *left_name, *right_name;
110 struct symbol *left_sym;
111 struct range_list *rl;
112 char buf[256];

new/usr/src/tools/smatch/src/smatch_mtag.c 3

113 mtag_t tag;
114 sval_t tag_sval;

116 if (!expr || expr->type != EXPR_ASSIGNMENT || expr->op != ’=’)
117 return state;

119 if (!estate_rl(state) || strcmp(state->name, "0,4096-ptr_max") != 0)
120 return state;
94 // FIXME: This should only happen when the size is not a paramter of
95 // the caller
96 return;

98 if (expr->type != EXPR_ASSIGNMENT || expr->op != ’=’)
99 return;
122 left = strip_expr(expr->left);
123 right = strip_expr(expr->right);
102 if (right->type != EXPR_CALL || right->fn->type != EXPR_SYMBOL)
103 return;

125 if (!is_mtag_call(right))
126 return state;

128 left_name = expr_to_str_sym(left, &left_sym);
129 if (!left_name || !left_sym)
130 return state;
131 right_name = expr_to_str(right);

133 snprintf(buf, sizeof(buf), "%s %s %s %s", get_filename(), get_function()
134 left_name, right_name);
135 tag = str_to_tag(buf);
136 tag_sval.type = estate_type(state);
137 tag_sval.uvalue = tag;

139 rl = rl_filter(estate_rl(state), valid_ptr_rl);
140 rl = clone_rl(rl);
141 add_range(&rl, tag_sval, tag_sval);
112 sql_insert_mtag_about(tag, left_name, right_name);

143 sql_insert_mtag_about(tag, left_name, buf);
114 if (left_name && left_sym)
115 set_state(my_id, left_name, left_sym, alloc_tag_state(tag));

145 free_string(left_name);
146 free_string(right_name);

148 return alloc_estate_rl(rl);
149 }

______unchanged_portion_omitted_

184 bool get_symbol_mtag(struct symbol *sym, mtag_t *tag)
154 int get_deref_mtag(struct expression *expr, mtag_t *tag)
185 {
186 char buf[256];
156 mtag_t container_tag, member_tag;
157 int offset;

188 if (!sym || !sym->ident)
189 return false;
159 /*
160 * I’m not totally sure what I’m doing...
161 *
162 * This is supposed to get something like "global_var->ptr", but I don’t
163 * feel like it’s complete at all.
164 *
165 */

new/usr/src/tools/smatch/src/smatch_mtag.c 4

191 if (get_toplevel_mtag(sym, tag))
192 return true;
167 if (!get_mtag(expr->unop, &container_tag))
168 return 0;

194 if (get_param_num_from_sym(sym) >= 0)
195 return false;
170 offset = get_member_offset_from_deref(expr);
171 if (offset < 0)
172 return 0;

197 snprintf(buf, sizeof(buf), "%s %s %s",
198 get_filename(), get_function(), sym->ident->name);
199 *tag = str_to_tag(buf);
200 return true;
174 if (!mtag_map_select_tag(container_tag, -offset, &member_tag))
175 return 0;

177 *tag = member_tag;
178 return 1;
201 }

______unchanged_portion_omitted_

193 static void db_returns_buf_size(struct expression *expr, int param, char *unused
194 {
195 struct expression *call;
196 struct range_list *rl;

198 if (expr->type != EXPR_ASSIGNMENT)
199 return;
200 call = strip_expr(expr->right);

202 if (!parse_call_math_rl(call, math, &rl))
203 return;
204 // rl = cast_rl(&int_ctype, rl);
205 // set_state_expr(my_size_id, expr->left, alloc_estate_rl(rl));
206 }

208 static void db_returns_memory_tag(struct expression *expr, int param, char *key,
209 {
210 struct expression *call, *arg;
211 mtag_t tag, alias;
212 char *name;
213 struct symbol *sym;

215 call = strip_expr(expr);
216 while (call->type == EXPR_ASSIGNMENT)
217 call = strip_expr(call->right);
218 if (call->type != EXPR_CALL)
219 return;

221 tag = strtoul(value, NULL, 10);

223 if (!create_mtag_alias(tag, call, &alias))
224 return;

226 arg = get_argument_from_call_expr(call->args, param);
227 if (!arg)
228 return;

230 name = get_variable_from_key(arg, key, &sym);
231 if (!name || !sym)
232 goto free;

234 set_state(my_id, name, sym, alloc_tag_state(alias));
235 free:

new/usr/src/tools/smatch/src/smatch_mtag.c 5

236 free_string(name);
237 }

239 static void match_call_info(struct expression *expr)
240 {
241 struct smatch_state *state;
242 struct expression *arg;
243 int i = -1;

245 FOR_EACH_PTR(expr->args, arg) {
246 i++;
247 state = get_state_expr(my_id, arg);
248 if (!state || !state->data)
249 continue;
250 sql_insert_caller_info(expr, MEMORY_TAG, i, "$", state->name);
251 } END_FOR_EACH_PTR(arg);
252 }

254 static void save_caller_info(const char *name, struct symbol *sym, char *key, ch
255 {
256 struct smatch_state *state;
257 char fullname[256];
258 mtag_t tag;

260 if (strncmp(key, "$", 1) != 0)
261 return;

263 tag = atoll(value);
264 snprintf(fullname, 256, "%s%s", name, key + 1);
265 state = alloc_tag_state(tag);
266 set_state(my_id, fullname, sym, state);
267 }

215 static int get_array_mtag_offset(struct expression *expr, mtag_t *tag, int *offs
216 {
217 struct expression *array, *offset_expr;
218 struct symbol *type;
219 sval_t sval;
220 int start_offset;

222 if (!is_array(expr))
223 return 0;

225 array = get_array_base(expr);
226 if (!array)
227 return 0;
228 type = get_type(array);
229 if (!type || type->type != SYM_ARRAY)
230 return 0;
231 type = get_real_base_type(type);
232 if (!type_bytes(type))
233 return 0;

235 if (!expr_to_mtag_offset(array, tag, &start_offset))
288 if (!get_mtag(array, tag))
236 return 0;

238 offset_expr = get_array_offset(expr);
239 if (!get_value(offset_expr, &sval))
240 return 0;
241 *offset = start_offset + sval.value * type_bytes(type);
294 *offset = sval.value * type_bytes(type);

243 return 1;
244 }

new/usr/src/tools/smatch/src/smatch_mtag.c 6

246 struct range_list *swap_mtag_seed(struct expression *expr, struct range_list *rl
299 static int get_implied_mtag_offset(struct expression *expr, mtag_t *tag, int *of
247 {
248 char buf[256];
249 char *name;
301 struct smatch_state *state;
302 struct symbol *type;
250 sval_t sval;
251 mtag_t tag;

253 if (!rl_to_sval(rl, &sval))
254 return rl;
255 if (sval.type->type != SYM_PTR || sval.uvalue != MTAG_SEED)
256 return rl;
305 type = get_type(expr);
306 if (!type_is_ptr(type))
307 return 0;
308 state = get_extra_state(expr);
309 if (!state || !estate_get_single_value(state, &sval) || sval.value == 0)
310 return 0;

258 name = expr_to_str(expr);
259 snprintf(buf, sizeof(buf), "%s %s %s", get_filename(), get_function(), n
260 free_string(name);
261 tag = str_to_tag(buf);
262 sval.value = tag;
263 return alloc_rl(sval, sval);
312 *tag = sval.uvalue & ~MTAG_OFFSET_MASK;
313 *offset = sval.uvalue & MTAG_OFFSET_MASK;
314 return 1;
264 }

317 static int get_mtag_cnt;
318 int get_mtag(struct expression *expr, mtag_t *tag)
319 {
320 struct smatch_state *state;
321 int ret = 0;

323 expr = strip_expr(expr);
324 if (!expr)
325 return 0;

327 if (get_mtag_cnt > 0)
328 return 0;

330 get_mtag_cnt++;

332 switch (expr->type) {
333 case EXPR_STRING:
334 if (get_string_mtag(expr, tag)) {
335 ret = 1;
336 goto dec_cnt;
337 }
338 break;
339 case EXPR_SYMBOL:
340 if (get_toplevel_mtag(expr->symbol, tag)) {
341 ret = 1;
342 goto dec_cnt;
343 }
344 break;
345 case EXPR_DEREF:
346 if (get_deref_mtag(expr, tag)) {
347 ret = 1;
348 goto dec_cnt;
349 }
350 break;

new/usr/src/tools/smatch/src/smatch_mtag.c 7

351 }

353 state = get_state_expr(my_id, expr);
354 if (!state)
355 goto dec_cnt;
356 if (state->data) {
357 *tag = *(mtag_t *)state->data;
358 ret = 1;
359 goto dec_cnt;
360 }

362 dec_cnt:
363 get_mtag_cnt--;
364 return ret;
365 }

367 int get_mtag_offset(struct expression *expr, mtag_t *tag, int *offset)
368 {
369 int val;

371 if (!expr)
372 return 0;
373 if (expr->type == EXPR_PREOP && expr->op == ’*’)
374 return get_mtag_offset(expr->unop, tag, offset);
375 if (get_implied_mtag_offset(expr, tag, offset))
376 return 1;
377 if (!get_mtag(expr, tag))
378 return 0;
379 expr = strip_expr(expr);
380 if (expr->type == EXPR_SYMBOL) {
381 *offset = 0;
382 return 1;
383 }
384 val = get_member_offset_from_deref(expr);
385 if (val < 0)
386 return 0;
387 *offset = val;
388 return 1;
389 }

266 int create_mtag_alias(mtag_t tag, struct expression *expr, mtag_t *new)
267 {
268 char buf[256];
269 int lines_from_start;
270 char *str;

272 /*
273 * We need the alias to be unique. It’s not totally required that it
274 * be the same from one DB build to then next, but it makes debugging
275 * a bit simpler.
276 *
277 */

279 if (!cur_func_sym)
280 return 0;

282 lines_from_start = expr->pos.line - cur_func_sym->pos.line;
283 str = expr_to_str(expr);
284 snprintf(buf, sizeof(buf), "%lld %d %s", tag, lines_from_start, str);
285 free_string(str);

287 *new = str_to_tag(buf);
288 sql_insert_mtag_alias(tag, *new);

290 return 1;
291 }

new/usr/src/tools/smatch/src/smatch_mtag.c 8

293 static int get_implied_mtag_offset(struct expression *expr, mtag_t *tag, int *of
294 {
295 struct smatch_state *state;
296 struct symbol *type;
297 sval_t sval;

299 type = get_type(expr);
300 if (!type_is_ptr(type))
301 return 0;
302 state = get_extra_state(expr);
303 if (!state || !estate_get_single_value(state, &sval) || sval.value == 0)
304 return 0;

306 *tag = sval.uvalue & ~MTAG_OFFSET_MASK;
307 *offset = sval.uvalue & MTAG_OFFSET_MASK;
308 return 1;
309 }

311 /*
312 * The point of this function is to give you the mtag and the offset so
313 * you can look up the data in the DB. It takes an expression.
314 *
315 * So say you give it "foo->bar". Then it would give you the offset of "bar"
316 * and the implied value of "foo". Or if you lookup "*foo" then the offset is
317 * zero and we look up the implied value of "foo. But if the expression is
318 * foo, then if "foo" is a global variable, then we get the mtag and the offset
319 * is zero. If "foo" is a local variable, then there is nothing to look up in
320 * the mtag_data table because that’s handled by smatch_extra.c to this returns
321 * false.
322 *
323 */
324 int expr_to_mtag_offset(struct expression *expr, mtag_t *tag, int *offset)
325 {
326 *tag = 0;
327 *offset = 0;

329 if (bits_in_pointer != 64)
330 return 0;

332 expr = strip_expr(expr);
333 if (!expr)
334 return 0;

336 if (is_array(expr))
337 return get_array_mtag_offset(expr, tag, offset);

339 if (expr->type == EXPR_PREOP && expr->op == ’*’) {
340 expr = strip_expr(expr->unop);
341 return get_implied_mtag_offset(expr, tag, offset);
342 } else if (expr->type == EXPR_DEREF) {
343 int tmp, tmp_offset = 0;

345 while (expr->type == EXPR_DEREF) {
346 tmp = get_member_offset_from_deref(expr);
347 if (tmp < 0)
429 if (expr->type == EXPR_DEREF) {
430 *offset = get_member_offset_from_deref(expr);
431 if (*offset < 0)
348 return 0;
349 tmp_offset += tmp;
350 expr = expr->deref;
433 return get_mtag(expr->deref, tag);
351 }
352 *offset = tmp_offset;
353 if (expr->type == EXPR_PREOP && expr->op == ’*’) {

new/usr/src/tools/smatch/src/smatch_mtag.c 9

354 expr = strip_expr(expr->unop);

356 if (get_implied_mtag_offset(expr, tag, &tmp_offset)) {
357 // FIXME: look it up recursively?
358 if (tmp_offset)
359 return 0;
436 if (get_implied_mtag_offset(expr, tag, offset))
360 return 1;
361 }
362 return 0;
363 } else if (expr->type == EXPR_SYMBOL) {
364 return get_symbol_mtag(expr->symbol, tag);
365 }
366 return 0;
367 } else if (expr->type == EXPR_SYMBOL) {
368 return get_symbol_mtag(expr->symbol, tag);
369 }
370 return 0;

439 return get_mtag(expr, tag);
371 }

373 /*
374 * This function takes an address and returns an sval. Let’s take some
375 * example things you might pass to it:
376 * foo->bar:
377 * If we were only called from smatch_math, we wouldn’t need to bother with
378 * this because it’s already been looked up in smatch_extra.c but this is
379 * also called from other places so we have to check smatch_extra.c.
380 * &foo
381 * If "foo" is global return the mtag for "foo".
382 * &foo.bar
383 * If "foo" is global return the mtag for "foo" + the offset of ".bar".
384 * It also handles string literals.
385 *
386 */
387 int get_mtag_sval(struct expression *expr, sval_t *sval)
388 {
389 struct symbol *type;
390 mtag_t tag;
391 int offset = 0;

393 if (bits_in_pointer != 64)
394 return 0;

396 expr = strip_expr(expr);

398 type = get_type(expr);
399 if (!type_is_ptr(type))
400 return 0;
401 /*
402 * There are several options:
457 * There are only three options:
403 *
404 * If the expr is a string literal, that’s an address/mtag.
405 * SYM_ARRAY and SYM_FN are mtags. There are "&foo" type addresses.
406 * And there are saved pointers "p = &foo;"
459 * 1) An array address:
460 * p = array;
461 * 2) An address like so:
462 * p = &my_struct->member;
463 * 3) A pointer:
464 * p = pointer;
407 *
408 */

new/usr/src/tools/smatch/src/smatch_mtag.c 10

410 if (expr->type == EXPR_STRING && get_string_mtag(expr, &tag))
411 goto found;

413 if (expr->type == EXPR_SYMBOL &&
414 (type->type == SYM_ARRAY || type->type == SYM_FN) &&
415 get_toplevel_mtag(expr->symbol, &tag))
471 if (type->type == SYM_ARRAY && get_toplevel_mtag(expr->symbol, &tag))
416 goto found;

418 if (expr->type == EXPR_PREOP && expr->op == ’&’) {
419 expr = strip_expr(expr->unop);
420 if (expr_to_mtag_offset(expr, &tag, &offset))
421 goto found;
422 return 0;
423 }

425 if (get_implied_mtag_offset(expr, &tag, &offset))
426 goto found;

477 if (expr->type != EXPR_PREOP || expr->op != ’&’)
428 return 0;
429 found:
430 if (offset >= MTAG_OFFSET_MASK)
479 expr = strip_expr(expr->unop);

481 if (!expr_to_mtag_offset(expr, &tag, &offset))
431 return 0;
483 if (offset > MTAG_OFFSET_MASK)
484 offset = MTAG_OFFSET_MASK;

486 found:
433 sval->type = type;
434 sval->uvalue = tag | offset;

436 return 1;
437 }

493 static struct expression *remove_dereference(struct expression *expr)
494 {
495 expr = strip_expr(expr);

497 if (expr->type == EXPR_PREOP && expr->op == ’*’)
498 return strip_expr(expr->unop);
499 return preop_expression(expr, ’&’);
500 }

502 int get_mtag_addr_sval(struct expression *expr, sval_t *sval)
503 {
504 return get_mtag_sval(remove_dereference(expr), sval);
505 }

507 static void print_stored_to_mtag(int return_id, char *return_ranges, struct expr
508 {
509 struct sm_state *sm;
510 char buf[256];
511 const char *param_name;
512 int param;

514 FOR_EACH_MY_SM(my_id, __get_cur_stree(), sm) {
515 if (!sm->state->data)
516 continue;

518 param = get_param_num_from_sym(sm->sym);
519 if (param < 0)
520 continue;
521 param_name = get_param_name(sm);

new/usr/src/tools/smatch/src/smatch_mtag.c 11

522 if (!param_name)
523 continue;
524 if (strcmp(param_name, "$") == 0)
525 continue;

527 snprintf(buf, sizeof(buf), "%lld", *(mtag_t *)sm->state->data);
528 sql_insert_return_states(return_id, return_ranges, MEMORY_TAG, p
529 } END_FOR_EACH_SM(sm);
530 }

439 void register_mtag(int id)
440 {
441 my_id = id;

444 /*
445 * The mtag stuff only works on 64 systems because we store the
446 * information in the pointer itself.
447 * bit 63 : set for alias mtags
448 * bit 62-12: mtag hash
449 * bit 11-0 : offset
450 *
451 */
545 if (bits_in_pointer != 64)
546 return;

453 add_hook(&global_variable, BASE_HOOK);

550 add_function_assign_hook("kmalloc", &alloc_assign, NULL);
551 add_function_assign_hook("kzalloc", &alloc_assign, NULL);

553 select_return_states_hook(BUF_SIZE, &db_returns_buf_size);

555 add_hook(&match_call_info, FUNCTION_CALL_HOOK);
556 select_caller_info_hook(save_caller_info, MEMORY_TAG);
557 add_split_return_callback(&print_stored_to_mtag);
558 select_return_states_hook(MEMORY_TAG, db_returns_memory_tag);
454 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_mtag_data.c 1

**
 5770 Mon Aug 5 08:38:38 2019
new/usr/src/tools/smatch/src/smatch_mtag_data.c
11506 smatch resync
**
______unchanged_portion_omitted_

39 static struct range_list *select_orig(mtag_t tag, int offset)
39 static struct range_list *select_orig_rl(sval_t sval)
40 {
41 struct range_list *rl = NULL;
42 mtag_t tag = sval.uvalue & ~MTAG_OFFSET_MASK;
43 int offset = sval.uvalue & MTAG_OFFSET_MASK;

43 mem_sql(&save_rl, &rl, "select value from mtag_data where tag = %lld and
44 tag, offset);
45 return rl;
46 }

______unchanged_portion_omitted_

72 static void insert_mtag_data(mtag_t tag, int offset, struct range_list *rl)
74 void insert_mtag_data(sval_t sval, struct range_list *rl)
73 {
76 mtag_t tag = sval.uvalue & ~MTAG_OFFSET_MASK;
77 int offset = sval.uvalue & MTAG_OFFSET_MASK;

74 rl = clone_rl_permanent(rl);

76 mem_sql(NULL, NULL, "delete from mtag_data where tag = %lld and offset =
77 tag, offset, DATA_VALUE);
78 mem_sql(NULL, NULL, "insert into mtag_data values (%lld, %d, %d, ’%lu’);
79 tag, offset, DATA_VALUE, (unsigned long)rl);
80 }

82 void update_mtag_data(struct expression *expr)
83 {
84 struct range_list *orig, *new, *rl;
85 struct symbol *type;
86 char *name;
87 mtag_t tag;
88 int offset;
91 sval_t sval;

90 name = expr_to_var(expr);
91 if (is_kernel_param(name)) {
92 free_string(name);
93 return;
94 }
95 free_string(name);

97 if (!expr_to_mtag_offset(expr, &tag, &offset))
100 if (!get_mtag_addr_sval(expr, &sval))
98 return;

100 type = get_type(expr);
101 if ((offset == 0) &&
102 (!type || type == &void_ctype ||
103 type->type == SYM_STRUCT || type->type == SYM_UNION || type->type =
104 return;

106 get_absolute_rl(expr, &rl);

108 orig = select_orig(tag, offset);
105 orig = select_orig_rl(sval);
109 new = rl_union(orig, rl);
110 insert_mtag_data(tag, offset, new);

new/usr/src/tools/smatch/src/smatch_mtag_data.c 2

107 insert_mtag_data(sval, new);
111 }

113 static void match_global_assign(struct expression *expr)
114 {
115 struct range_list *rl;
116 mtag_t tag;
117 int offset;
113 sval_t sval;
118 char *name;

120 name = expr_to_var(expr->left);
121 if (is_kernel_param(name)) {
122 free_string(name);
123 return;
124 }
125 free_string(name);

127 if (!expr_to_mtag_offset(expr->left, &tag, &offset))
123 if (!get_mtag_addr_sval(expr->left, &sval))
128 return;

130 get_absolute_rl(expr->right, &rl);
131 insert_mtag_data(tag, offset, rl);
127 insert_mtag_data(sval, rl);
132 }

______unchanged_portion_omitted_

177 struct db_cache_results {
178 mtag_t tag;
174 sval_t sval;
179 struct range_list *rl;
180 };
181 static struct db_cache_results cached_results[8];

183 static int get_rl_from_mtag_offset(mtag_t tag, int offset, struct symbol *type,
179 static int get_rl_from_mtag_sval(sval_t sval, struct symbol *type, struct range_
184 {
185 struct db_info db_info = {};
186 mtag_t merged = tag | offset;
182 mtag_t tag;
183 int offset;
187 static int idx;
188 int ret;
189 int i;

191 if (!type || type == &void_ctype ||
192 (type->type == SYM_STRUCT || type->type == SYM_ARRAY || type->type =
193 return 0;

195 for (i = 0; i < ARRAY_SIZE(cached_results); i++) {
196 if (merged == cached_results[i].tag) {
189 if (sval.uvalue == cached_results[i].sval.uvalue) {
197 if (cached_results[i].rl) {
198 *rl = cached_results[i].rl;
199 return 1;
200 }
201 return 0;
202 }
203 }

198 tag = sval.uvalue & ~MTAG_OFFSET_MASK;
199 offset = sval.uvalue & MTAG_OFFSET_MASK;
200 if (offset == MTAG_OFFSET_MASK) {
201 ret = 0;
202 goto update_cache;

new/usr/src/tools/smatch/src/smatch_mtag_data.c 3

203 }
205 db_info.type = type;

207 run_sql(get_vals, &db_info,
208 "select value from mtag_data where tag = %lld and offset = %d an
209 tag, offset, DATA_VALUE);
210 if (!db_info.rl || is_whole_rl(db_info.rl)) {
211 db_info.rl = NULL;
212 ret = 0;
213 goto update_cache;
214 }

216 *rl = db_info.rl;
217 ret = 1;

219 update_cache:
220 cached_results[idx].tag = merged;
219 cached_results[idx].sval = sval;
221 cached_results[idx].rl = db_info.rl;
222 idx = (idx + 1) % ARRAY_SIZE(cached_results);

224 return ret;
225 }

______unchanged_portion_omitted_

232 int get_mtag_rl(struct expression *expr, struct range_list **rl)
233 {
234 struct symbol *type;
235 mtag_t tag;
236 int offset;
234 sval_t sval;

238 if (!expr_to_mtag_offset(expr, &tag, &offset))
236 if (!get_mtag_addr_sval(expr, &sval))
239 return 0;
240 if (offset >= MTAG_OFFSET_MASK)
241 return 0;

243 type = get_type(expr);
244 if (!type)
245 return 0;

247 return get_rl_from_mtag_offset(tag, offset, type, rl);
243 return get_rl_from_mtag_sval(sval, type, rl);
248 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_mtag_map.c 1

**
 1625 Mon Aug 5 08:38:39 2019
new/usr/src/tools/smatch/src/smatch_mtag_map.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2017 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 /*
19 * This basically stores when a pointer is stored as a struct member.
20 *
21 */

23 #include "smatch.h"
24 #include "smatch_slist.h"
25 #include "smatch_extra.h"

27 static int my_id;

29 static void match_assign(struct expression *expr)
30 {
31 struct expression *left, *right;
32 mtag_t left_tag;
32 mtag_t left_tag, right_tag;
33 int offset;
34 sval_t sval;

36 if (expr->op != ’=’)
37 return;

39 left = strip_expr(expr->left);
40 right = strip_expr(expr->right);

42 if (!type_is_ptr(get_type(right)))
41 if (left->type != EXPR_DEREF)
43 return;
44 if (!get_implied_value(right, &sval))

44 offset = get_member_offset_from_deref(left);
45 if (offset < 0)
45 return;
46 if (sval_cmp(sval, valid_ptr_min_sval) < 0 ||
47 sval_cmp(sval, valid_ptr_max_sval) > 0)

48 if (!get_mtag(left->deref, &left_tag))
48 return;
49 if (sval.uvalue & MTAG_OFFSET_MASK)
50 if (!get_mtag(right, &right_tag))
50 return;

52 if (!expr_to_mtag_offset(left, &left_tag, &offset))
53 return;

new/usr/src/tools/smatch/src/smatch_mtag_map.c 2

55 sql_insert_mtag_map(sval.uvalue, -offset, left_tag);
53 sql_insert_mtag_map(right_tag, -offset, left_tag);
56 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_nul_terminator.c 1

**
 6995 Mon Aug 5 08:38:39 2019
new/usr/src/tools/smatch/src/smatch_nul_terminator.c
11506 smatch resync
**
______unchanged_portion_omitted_

250 static void match_strnlen_test(struct expression *expr)
251 {
252 struct expression *left, *tmp, *arg;
253 int cnt;

255 if (expr->type != EXPR_COMPARE)
256 return;
257 if (expr->op != SPECIAL_EQUAL && expr->op != SPECIAL_NOTEQUAL)
258 return;

260 left = strip_expr(expr->left);
261 cnt = 0;
262 while ((tmp = get_assigned_expr(left))) {
263 if (cnt++ > 3)
264 break;
265 left = tmp;
266 }

268 if (left->type != EXPR_CALL)
269 return;
270 if (!sym_name_is("strnlen", left->fn))
271 return;
272 arg = get_argument_from_call_expr(left->args, 0);
273 set_true_false_states_expr(my_id, arg,
274 (expr->op == SPECIAL_EQUAL) ? &terminated : NULL,
275 (expr->op == SPECIAL_NOTEQUAL) ? &terminated : NULL);
276 if (get_param_num(arg) >= 0)
277 set_true_false_states_expr(param_set_id, arg,
278 (expr->op == SPECIAL_EQUAL) ? &terminated : NULL
279 (expr->op == SPECIAL_NOTEQUAL) ? &terminated : N
280 }

282 void register_nul_terminator(int id)
283 {
284 my_id = id;

286 add_hook(&match_nul_assign, ASSIGNMENT_HOOK);
287 add_hook(&match_string_assign, ASSIGNMENT_HOOK);

289 add_hook(&match_call_info, FUNCTION_CALL_HOOK);
290 add_member_info_callback(my_id, struct_member_callback);
291 add_split_return_callback(&split_return_info);

293 select_caller_info_hook(caller_info_terminated, TERMINATED);
294 select_return_states_hook(TERMINATED, return_info_terminated);

296 add_hook(&match_strnlen_test, CONDITION_HOOK);
297 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_param_compare_limit.c 1

**
 9433 Mon Aug 5 08:38:39 2019
new/usr/src/tools/smatch/src/smatch_param_compare_limit.c
11506 smatch resync
**
______unchanged_portion_omitted_

174 static void print_return_comparison(int return_id, char *return_ranges, struct e
175 {
176 struct sm_state *tmp;
177 struct string_list *links;
178 char *link;
179 struct sm_state *sm;
180 struct compare_data *data;
181 struct var_sym *left, *right;
182 int left_param, right_param;
183 static char left_buf[248];
184 static char right_buf[248];
183 static char left_buf[256];
184 static char right_buf[256];
185 static char info_buf[256];
186 const char *tmp_name;

188 FOR_EACH_MY_SM(link_id, __get_cur_stree(), tmp) {
189 links = tmp->state->data;
190 FOR_EACH_PTR(links, link) {
191 sm = get_sm_state(compare_id, link, NULL);
192 if (!sm)
193 continue;
194 data = sm->state->data;
195 if (!data || !data->comparison)
196 continue;
197 if (ptr_list_size((struct ptr_list *)data->left_vsl) !=
198 ptr_list_size((struct ptr_list *)data->right_vsl) !=
199 continue;
200 left = first_ptr_list((struct ptr_list *)data->left_vsl)
201 right = first_ptr_list((struct ptr_list *)data->right_vs
202 if (left->sym == right->sym &&
203 strcmp(left->var, right->var) == 0)
204 continue;
205 /*
206 * Both parameters link to this comparison so only
207 * record the first one.
208 */
209 if (left->sym != tmp->sym ||
210 strcmp(left->var, tmp->name) != 0)
211 continue;

213 left_param = get_param_num_from_sym(left->sym);
214 right_param = get_param_num_from_sym(right->sym);
215 if (left_param < 0 || right_param < 0) /* can’t happen h
216 continue;

218 tmp_name = get_param_name_var_sym(left->var, left->sym);
219 if (!tmp_name)
220 continue;
221 snprintf(left_buf, sizeof(left_buf), "%s", tmp_name);

223 tmp_name = get_param_name_var_sym(right->var, right->sym
224 if (!tmp_name || tmp_name[0] != ’$’)
225 continue;
226 snprintf(right_buf, sizeof(right_buf), "$%d%s", right_pa

228 snprintf(info_buf, sizeof(info_buf), "%s %s", show_speci
229 sql_insert_return_states(return_id, return_ranges,
230 COMPARE_LIMIT, left_param, left_buf, inf

new/usr/src/tools/smatch/src/smatch_param_compare_limit.c 2

231 } END_FOR_EACH_PTR(link);

233 } END_FOR_EACH_SM(tmp);
234 }

______unchanged_portion_omitted_

279 static int split_op_param_key(char *value, int *op, int *param, char **key)
280 {
281 static char buf[256];
282 char *p;

284 if (!parse_comparison(&value, op))
285 return 0;

287 snprintf(buf, sizeof(buf), "%s", value);
287 snprintf(buf, sizeof(buf), value);

289 p = buf;
290 if (*p++ != ’$’)
291 return 0;

293 *param = atoi(p);
294 if (*param < 0 || *param > 99)
295 return 0;
296 p++;
297 if (*param > 9)
298 p++;
299 p--;
300 *p = ’$’;
301 *key = p;

303 return 1;
304 }

______unchanged_portion_omitted_

356 void register_param_compare_limit(int id)
357 {
358 compare_id = id;

360 set_dynamic_states(compare_id);
361 add_merge_hook(compare_id, &merge_compare_states);
362 add_split_return_callback(&print_return_comparison);

364 select_return_states_hook(COMPARE_LIMIT, &db_return_comparison);
365 }

367 void register_param_compare_limit_links(int id)
368 {
369 link_id = id;

371 set_dynamic_states(link_id);
372 add_merge_hook(link_id, &merge_links);

373 }
______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_param_filter.c 1

**
 5256 Mon Aug 5 08:38:40 2019
new/usr/src/tools/smatch/src/smatch_param_filter.c
11506 smatch resync
**
______unchanged_portion_omitted_

136 static void print_one_mod_param(int return_id, char *return_ranges,
137 int param, struct sm_state *sm, struct string_list **tot
138 {
139 const char *param_name;

141 param_name = get_param_name(sm);
142 if (!param_name)
143 return;
144 if (is_whole_rl(estate_rl(sm->state)))
145 return;
146 if (!estate_rl(sm->state)) {
147 insert_string(totally_filtered, (char *)sm->name);
148 return;
149 }

151 if (is_ignored_kernel_data(param_name)) {
152 insert_string(totally_filtered, (char *)sm->name);
153 return;
154 }

156 sql_insert_return_states(return_id, return_ranges, PARAM_FILTER, param,
157 param_name, show_rl(estate_rl(sm->state)));
158 }

______unchanged_portion_omitted_

202 void register_param_filter(int id)
203 {
204 my_id = id;

206 set_dynamic_states(my_id);
207 add_hook(&save_start_states, AFTER_DEF_HOOK);
208 add_hook(&free_start_states, AFTER_FUNC_HOOK);

210 add_extra_mod_hook(&extra_mod_hook);
211 add_unmatched_state_hook(my_id, &unmatched_state);
212 add_pre_merge_hook(my_id, &pre_merge_hook);
213 add_merge_hook(my_id, &merge_estates);

215 add_hook(&match_save_states, INLINE_FN_START);
216 add_hook(&match_restore_states, INLINE_FN_END);

218 add_split_return_callback(&print_return_value_param);
219 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_param_limit.c 1

**
 5733 Mon Aug 5 08:38:40 2019
new/usr/src/tools/smatch/src/smatch_param_limit.c
11506 smatch resync
**
______unchanged_portion_omitted_

134 static void print_return_value_param(int return_id, char *return_ranges, struct
135 {
136 struct smatch_state *state, *old;
137 struct sm_state *tmp;
138 struct range_list *rl;
139 const char *param_name;
140 int param;

142 FOR_EACH_MY_SM(SMATCH_EXTRA, __get_cur_stree(), tmp) {
143 param = get_param_num_from_sym(tmp->sym);
144 if (param < 0)
145 continue;

147 param_name = get_param_name(tmp);
148 if (!param_name)
149 continue;

151 state = __get_state(my_id, tmp->name, tmp->sym);
152 if (!state)
153 state = tmp->state;

155 if (estate_is_whole(state) || estate_is_empty(state))
156 continue;
157 old = get_state_stree(start_states, SMATCH_EXTRA, tmp->name, tmp
158 if (old && rl_equiv(estate_rl(old), estate_rl(state)))
159 continue;

161 if (is_ignored_kernel_data(param_name))
162 continue;

164 rl = generify_mtag_range(state);
165 sql_insert_return_states(return_id, return_ranges, PARAM_LIMIT,
166 param, param_name, show_rl(rl));
167 } END_FOR_EACH_SM(tmp);
168 }

______unchanged_portion_omitted_

195 void register_param_limit(int id)
196 {
197 my_id = id;

199 set_dynamic_states(my_id);
200 add_hook(&save_start_states, AFTER_DEF_HOOK);
201 add_hook(&free_start_states, AFTER_FUNC_HOOK);

203 add_extra_mod_hook(&extra_mod_hook);
204 add_unmatched_state_hook(my_id, &unmatched_state);
205 add_merge_hook(my_id, &merge_estates);

207 add_hook(&match_save_states, INLINE_FN_START);
208 add_hook(&match_restore_states, INLINE_FN_END);

210 add_split_return_callback(&print_return_value_param);
211 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_param_set.c 1

**
 6249 Mon Aug 5 08:38:40 2019
new/usr/src/tools/smatch/src/smatch_param_set.c
11506 smatch resync
**
______unchanged_portion_omitted_

157 static void print_return_value_param(int return_id, char *return_ranges, struct
158 {
159 struct sm_state *sm;
160 struct smatch_state *extra;
161 int param;
162 struct range_list *rl;
163 const char *param_name;
164 struct string_list *set_list = NULL;
165 char *math_str;
166 char buf[256];
167 sval_t sval;

168 FOR_EACH_MY_SM(my_id, __get_cur_stree(), sm) {
169 if (!estate_rl(sm->state))
170 continue;
171 extra = get_state(SMATCH_EXTRA, sm->name, sm->sym);
172 if (extra) {
173 rl = rl_intersection(estate_rl(sm->state), estate_rl(ext
174 if (!rl)
175 continue;
176 } else {
177 rl = estate_rl(sm->state);
178 }

180 param = get_param_num_from_sym(sm->sym);
181 if (param < 0)
182 continue;
183 param_name = get_param_name(sm);
184 if (!param_name)
185 continue;
186 if (strcmp(param_name, "$") == 0) {
187 insert_string(&set_list, (char *)sm->name);
188 continue;
189 }
190 if (is_recursive_member(param_name)) {
191 insert_string(&set_list, (char *)sm->name);
192 continue;
193 }

195 if (is_ignored_kernel_data(param_name)) {
192 if (rl_to_sval(rl, &sval)) {
196 insert_string(&set_list, (char *)sm->name);
194 sql_insert_return_states(return_id, return_ranges,
195 param_has_filter_data(sm) ? PARAM_ADD :
196 param, param_name, show_rl(rl));
197 continue;
198 }

200 math_str = get_value_in_terms_of_parameter_math_var_sym(sm->name
201 if (math_str) {
202 snprintf(buf, sizeof(buf), "%s[%s]", show_rl(rl), math_s
203 insert_string(&set_list, (char *)sm->name);
204 sql_insert_return_states(return_id, return_ranges,
205 param_has_filter_data(sm) ? PARAM_ADD :
206 param, param_name, buf);
207 continue;
208 }

210 /* no useful information here. */

new/usr/src/tools/smatch/src/smatch_param_set.c 2

211 if (is_whole_rl(rl) && parent_set(set_list, sm->name))
212 continue;
213 insert_string(&set_list, (char *)sm->name);

215 sql_insert_return_states(return_id, return_ranges,
216 param_has_filter_data(sm) ? PARAM_ADD :
217 param, param_name, show_rl(rl));

219 } END_FOR_EACH_SM(sm);

221 free_ptr_list((struct ptr_list **)&set_list);
222 }

______unchanged_portion_omitted_

259 void register_param_set(int id)
260 {
261 my_id = id;

263 set_dynamic_states(my_id);
264 add_extra_mod_hook(&extra_mod_hook);
265 add_hook(match_array_assignment, ASSIGNMENT_HOOK);
266 add_unmatched_state_hook(my_id, &unmatched_state);
267 add_merge_hook(my_id, &merge_estates);
268 add_split_return_callback(&print_return_value_param);
269 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_param_to_mtag_data.c 1

**
 5853 Mon Aug 5 08:38:41 2019
new/usr/src/tools/smatch/src/smatch_param_to_mtag_data.c
11506 smatch resync
**
______unchanged_portion_omitted_

79 static bool is_local_var(struct expression *expr)
80 {
81 struct symbol *sym;

83 if (!expr || expr->type != EXPR_SYMBOL)
84 return false;
85 sym = expr->symbol;
86 if (!(sym->ctype.modifiers & MOD_TOPLEVEL))
87 return true;
88 return false;
89 }

91 static void match_assign(struct expression *expr)
92 {
93 struct expression *left;
94 struct symbol *right_sym;
95 char *name;
96 mtag_t tag;
97 int offset;
98 int param;

100 if (expr->op != ’=’)
101 return;
102 left = strip_expr(expr->left);
103 if (is_local_var(left))
104 return;
105 right_sym = expr_to_sym(expr->right);
106 if (!right_sym)
107 return;

109 param = get_param_num_from_sym(right_sym);
110 if (param < 0)
111 return;
112 // FIXME: modify param_has_filter_data() to take a name/sym
113 if (!expr_to_mtag_offset(left, &tag, &offset))
114 return;
115 name = expr_to_str(left);
116 if (!name)
117 return;
118 set_state_expr(my_id, expr->right, alloc_tag_data_state(tag, name, offse
119 free_string(name);
120 }

108 #if 0
109 static void save_mtag_to_map(struct expression *expr, mtag_t tag, int offset, in
110 {
111 struct expression *arg, *gen_expr;
112 mtag_t arg_tag;

114 arg = get_argument_from_call_expr(expr->args, param);
115 if (!arg)
116 return;

118 gen_expr = gen_expression_from_key(arg, key);
119 if (!gen_expr)
120 return;

122 if (!get_mtag(gen_expr, &arg_tag))
123 arg_tag = 0;

new/usr/src/tools/smatch/src/smatch_param_to_mtag_data.c 2

125 if (local_debug)
126 sm_msg("finding mtag for ’%s’ %lld", expr_to_str(gen_expr), arg_
127 }
128 #endif

122 static void propogate_assignment(struct expression *expr, mtag_t tag, int offset
123 {
124 struct expression *arg;
125 int orig_param;
126 char buf[32];
127 char *name;
128 struct symbol *sym;

130 arg = get_argument_from_call_expr(expr->args, param);
131 if (!arg)
132 return;
133 name = get_variable_from_key(arg, key, &sym);
134 if (!name || !sym)
135 goto free;

137 orig_param = get_param_num_from_sym(sym);
138 if (orig_param < 0)
139 goto free;

141 snprintf(buf, sizeof(buf), "$->[%d]", offset);
142 set_state(my_id, name, sym, alloc_tag_data_state(tag, buf, offset));
143 free:
144 free_string(name);
145 }

147 static void assign_to_alias(struct expression *expr, int param, mtag_t tag, int
148 {
149 struct expression *arg, *gen_expr;
150 struct range_list *rl;
151 mtag_t arg_tag;
152 mtag_t alias;
153 int arg_offset;

155 arg = get_argument_from_call_expr(expr->args, param);
156 if (!arg)
157 return;

159 gen_expr = gen_expression_from_key(arg, key);
160 if (!gen_expr)
161 return;

163 get_absolute_rl(gen_expr, &rl);

165 if (!create_mtag_alias(tag, expr, &alias))
166 return;

168 // insert_mtag_data(alias, offset, rl);

170 // FIXME: is arg_offset handled correctly?
171 if (expr_to_mtag_offset(gen_expr, &arg_tag, &arg_offset) && arg_offset =
177 if (get_mtag(gen_expr, &arg_tag))
172 sql_insert_mtag_map(arg_tag, -offset, alias);
173 }

______unchanged_portion_omitted_

222 void register_param_to_mtag_data(int id)
223 {
224 my_id = id;

226 set_dynamic_states(my_id);

new/usr/src/tools/smatch/src/smatch_param_to_mtag_data.c 3

227 add_hook(&match_assign, ASSIGNMENT_HOOK);
228 select_return_states_hook(MTAG_ASSIGN, &call_does_mtag_assign);
229 add_merge_hook(my_id, &merge_tag_info);
230 add_split_return_callback(&print_stored_to_mtag);
231 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_param_used.c 1

**
 2652 Mon Aug 5 08:38:41 2019
new/usr/src/tools/smatch/src/smatch_param_used.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2015 Oracle.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 #include "smatch.h"
19 #include "smatch_slist.h"

21 static int my_id;

23 static struct stree *used_stree;
24 static struct stree_stack *saved_stack;

26 STATE(used);

28 static void get_state_hook(int owner, const char *name, struct symbol *sym)
29 {
30 int arg;

32 if (!option_info)
33 return;
34 if (__in_fake_assign || __in_fake_parameter_assign || __in_function_def)
34 if (__in_fake_assign)
35 return;

37 arg = get_param_num_from_sym(sym);
38 if (arg >= 0)
39 set_state_stree(&used_stree, my_id, name, sym, &used);
40 }

42 static void set_param_used(struct expression *call, struct expression *arg, char
43 {
44 struct symbol *sym;
45 char *name;
46 int arg_nr;

48 name = get_variable_from_key(arg, key, &sym);
49 if (!name || !sym)
50 goto free;

52 arg_nr = get_param_num_from_sym(sym);
53 if (arg_nr >= 0)
54 set_state_stree(&used_stree, my_id, name, sym, &used);
54 set_state(my_id, name, sym, &used);
55 free:
56 free_string(name);
57 }

59 static void process_states(void)

new/usr/src/tools/smatch/src/smatch_param_used.c 2

60 {
61 struct sm_state *tmp;
62 int arg;
63 const char *name;

65 FOR_EACH_SM(used_stree, tmp) {
66 arg = get_param_num_from_sym(tmp->sym);
67 if (arg < 0)
68 continue;
69 name = get_param_name(tmp);
70 if (!name)
71 continue;
72 if (is_recursive_member(name))
73 continue;

75 if (is_ignored_kernel_data(name))
76 continue;

78 sql_insert_return_implies(PARAM_USED, arg, name, "");
79 } END_FOR_EACH_SM(tmp);

81 free_stree(&used_stree);
82 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_parse_call_math.c 1

**
 13407 Mon Aug 5 08:38:41 2019
new/usr/src/tools/smatch/src/smatch_parse_call_math.c
11506 smatch resync
**
______unchanged_portion_omitted_

117 static int read_rl_from_var(struct expression *call, const char *p, const char *
117 static int read_rl_from_var(struct expression *call, char *p, char **end, struct
118 {
119 struct expression *arg;
120 struct smatch_state *state;
121 long param;
122 char *name;
123 struct symbol *sym;
124 char buf[256];
125 int star;

127 p++;
128 param = strtol(p, (char **)&p, 10);
128 param = strtol(p, &p, 10);

130 arg = get_argument_from_call_expr(call->args, param);
131 if (!arg)
132 return 0;

134 if (*p != ’-’ && *p != ’.’) {
135 get_absolute_rl(arg, rl);
136 *end = p;
137 return 1;
138 }

140 *end = strchr(p, ’ ’);

142 if (arg->type == EXPR_PREOP && arg->op == ’&’) {
143 arg = strip_expr(arg->unop);
144 star = 0;
145 p++;
146 } else {
147 star = 1;
148 p += 2;
149 }

151 name = expr_to_var_sym(arg, &sym);
152 if (!name)
153 return 0;
154 snprintf(buf, sizeof(buf), "%s%s", name, star ? "->" : ".");
155 free_string(name);

157 if (*end - p + strlen(buf) >= sizeof(buf))
158 return 0;
159 strncat(buf, p, *end - p);

161 state = get_state(SMATCH_EXTRA, buf, sym);
162 if (!state)
163 return 0;
164 *rl = estate_rl(state);
165 return 1;
166 }

168 static int read_var_num(struct expression *call, const char *p, const char **end
168 static int read_var_num(struct expression *call, char *p, char **end, struct ran
169 {
170 sval_t sval;

172 while (*p == ’ ’)

new/usr/src/tools/smatch/src/smatch_parse_call_math.c 2

173 p++;

175 if (*p == ’$’)
176 return read_rl_from_var(call, p, end, rl);

178 sval.type = &llong_ctype;
179 sval.value = strtoll(p, (char **)end, 10);
179 sval.value = strtoll(p, end, 10);
180 if (*end == p)
181 return 0;
182 *rl = alloc_rl(sval, sval);
183 return 1;
184 }

186 static const char *read_op(const char *p)
186 static char *read_op(char *p)
187 {
188 while (*p == ’ ’)
189 p++;

191 switch (*p) {
192 case ’+’:
193 case ’-’:
194 case ’*’:
195 case ’/’:
196 return p;
197 default:
198 return NULL;
199 }
200 }

202 int parse_call_math_rl(struct expression *call, const char *math, struct range_l
202 int parse_call_math_rl(struct expression *call, char *math, struct range_list **
203 {
204 struct range_list *tmp;
205 const char *c;
205 char *c;

207 /* try to implement shunting yard algorithm. */

209 c = math;
209 c = (char *)math;
210 while (1) {
211 if (option_debug)
212 sm_msg("parsing %s", c);

214 /* read a number and push it onto the number stack */
215 if (!read_var_num(call, c, &c, &tmp))
216 goto fail;
217 push_rl(&rl_stack, tmp);

219 if (option_debug)
220 sm_msg("val = %s remaining = %s", show_rl(tmp), c);

222 if (!*c)
223 break;
224 if (*c == ’]’ && *(c + 1) == ’\0’)
225 break;

227 c = read_op(c);
228 if (!c)
229 goto fail;

231 if (option_debug)
232 sm_msg("op = %c remaining = %s", *c, c);

new/usr/src/tools/smatch/src/smatch_parse_call_math.c 3

234 rl_pop_until(*c);
235 push_op(*c);
236 c++;
237 }

239 rl_pop_until(0);
240 *rl = pop_rl(&rl_stack);
241 return 1;
242 fail:
243 rl_discard_stacks();
244 return 0;
245 }

______unchanged_portion_omitted_

347 static int is_mtag_sval(sval_t sval)
348 {
349 if (!is_ptr_type(sval.type))
350 return 0;
351 if (sval_cmp(sval, valid_ptr_min_sval) >= 0 &&
352 sval_cmp(sval, valid_ptr_max_sval) <= 0)
353 return 1;
354 return 0;
355 }

357 static int format_expr_helper(char *buf, int remaining, struct expression *expr)
358 {
359 sval_t sval;
360 int ret;
361 char *cur;

363 if (!expr)
364 return 0;

366 cur = buf;

368 if (expr->type == EXPR_BINOP) {
369 ret = format_expr_helper(cur, remaining, expr->left);
370 if (ret == 0)
371 return 0;
372 remaining -= ret;
373 if (remaining <= 0)
374 return 0;
375 cur += ret;

377 ret = snprintf(cur, remaining, " %s ", show_special(expr->op));
378 remaining -= ret;
379 if (remaining <= 0)
380 return 0;
381 cur += ret;

383 ret = format_expr_helper(cur, remaining, expr->right);
384 if (ret == 0)
385 return 0;
386 remaining -= ret;
387 if (remaining <= 0)
388 return 0;
389 cur += ret;
390 return cur - buf;
391 }

393 if (!param_was_set(expr) && get_implied_value(expr, &sval) && !is_mtag_s
383 if (get_implied_value(expr, &sval)) {
394 ret = snprintf(cur, remaining, "%s", sval_to_str(sval));
395 remaining -= ret;
396 if (remaining <= 0)
397 return 0;

new/usr/src/tools/smatch/src/smatch_parse_call_math.c 4

398 return ret;
399 }

401 if (expr->type == EXPR_CALL)
402 return format_call_to_param_mapping(cur, remaining, expr);

404 return format_variable_helper(cur, remaining, expr);
405 }

______unchanged_portion_omitted_

442 char *get_value_in_terms_of_parameter_math_var_sym(const char *name, struct symb
443 {
444 struct expression *tmp, *expr;
445 char buf[256] = "";
446 int ret;
447 int cnt = 0;
448 sval_t sval;

450 expr = get_assigned_expr_name_sym(name, sym);
451 if (!expr)
452 return NULL;
453 while ((tmp = get_assigned_expr(expr))) {
454 expr = strip_expr(tmp);
455 if (++cnt > 3)
456 break;
457 }

459 if (get_implied_value(expr, &sval))
460 return NULL;

462 ret = format_expr_helper(buf, sizeof(buf), expr);
463 if (ret == 0)
464 return NULL;

466 return alloc_sname(buf);

468 }
______unchanged_portion_omitted_

486 static char *swap_format(struct expression *call, char *format)
487 {
488 char buf[256];
489 sval_t sval;
490 long param;
491 struct expression *arg;
492 char *p;
493 char *out;
494 int ret;

496 if (format[0] == ’$’ && format[2] == ’\0’) {
497 param = strtol(format + 1, NULL, 10);
498 arg = get_argument_from_call_expr(call->args, param);
499 if (!arg)
500 return NULL;
501 return format_expr(arg);
502 }

504 buf[0] = ’\0’;
505 p = format;
506 out = buf;
507 while (*p) {
508 if (*p == ’$’) {
509 p++;
510 param = strtol(p, (char **)&p, 10);
496 param = strtol(p, &p, 10);
511 arg = get_argument_from_call_expr(call->args, param);

new/usr/src/tools/smatch/src/smatch_parse_call_math.c 5

512 if (!arg)
513 return NULL;
514 param = get_arg_number(arg);
515 if (param >= 0) {
516 ret = snprintf(out, buf + sizeof(buf) - out, "$%
517 out += ret;
518 if (out >= buf + sizeof(buf))
519 return NULL;
520 } else if (get_implied_value(arg, &sval)) {
521 ret = snprintf(out, buf + sizeof(buf) - out, "%s
522 out += ret;
523 if (out >= buf + sizeof(buf))
524 return NULL;
525 } else {
526 return NULL;
527 }
528 }
529 *out = *p;
530 p++;
531 out++;
532 }
533 if (buf[0] == ’\0’)
534 return NULL;
535 *out = ’\0’;
536 return alloc_sname(buf);
537 }

______unchanged_portion_omitted_

654 void register_parse_call_math(int id)
655 {
656 int i;

658 my_id = id;

660 set_dynamic_states(my_id);

662 for (i = 0; i < ARRAY_SIZE(alloc_functions); i++)
663 add_function_assign_hook(alloc_functions[i].func, &match_alloc,
664 INT_PTR(alloc_functions[i].param));
665 add_hook(&match_call_assignment, CALL_ASSIGNMENT_HOOK);
666 add_split_return_callback(print_returned_allocations);
667 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_passes_array_size.c 1

**
 2172 Mon Aug 5 08:38:42 2019
new/usr/src/tools/smatch/src/smatch_passes_array_size.c
11506 smatch resync
**
______unchanged_portion_omitted_

39 static void match_call(struct expression *expr)
40 {
41 struct expression *arg;
42 struct symbol *type, *arg_type;
42 struct symbol *type;
43 int size, bytes;
44 int i, nr;
45 char buf[16];
46 char elem_count[8];
47 char byte_count[8];

49 snprintf(elem_count, sizeof(elem_count), "%d", ELEM_COUNT);
50 snprintf(byte_count, sizeof(byte_count), "%d", BYTE_COUNT);

52 i = -1;
53 FOR_EACH_PTR(expr->args, arg) {
54 i++;
55 type = get_type(arg);
56 if (!type || (type->type != SYM_PTR && type->type != SYM_ARRAY))
57 continue;
58 arg_type = get_arg_type(expr->fn, i);
59 if (arg_type != type)
60 continue;

62 size = get_array_size(arg);
63 if (size > 0) {
64 nr = find_param_eq(expr, size);
65 if (nr >= 0) {
66 snprintf(buf, sizeof(buf), "==$%d", nr);
67 sql_insert_caller_info(expr, ELEM_COUNT, i, buf,
58 snprintf(buf, sizeof(buf), "%d", nr);
59 sql_insert_caller_info(expr, ARRAYSIZE_ARG, i, b
68 continue;
69 }
70 }
71 bytes = get_array_size_bytes(arg);
72 if (bytes > 0) {
73 nr = find_param_eq(expr, bytes);
74 if (nr >= 0) {
75 snprintf(buf, sizeof(buf), "==$%d", nr);
76 sql_insert_caller_info(expr, BYTE_COUNT, i, buf,
67 snprintf(buf, sizeof(buf), "%d", nr);
68 sql_insert_caller_info(expr, SIZEOF_ARG, i, buf,
77 continue;
78 }
79 }
80 } END_FOR_EACH_PTR(arg);
81 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_ranges.c 1

**
 53282 Mon Aug 5 08:38:42 2019
new/usr/src/tools/smatch/src/smatch_ranges.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2009 Dan Carpenter.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 #include "parse.h"
19 #include "smatch.h"
20 #include "smatch_extra.h"
21 #include "smatch_slist.h"

23 ALLOCATOR(data_info, "smatch extra data");
24 ALLOCATOR(data_range, "data range");
25 __DO_ALLOCATOR(struct data_range, sizeof(struct data_range), __alignof__(struct
26 "permanent ranges", perm_data_range);
27 __DECLARE_ALLOCATOR(struct ptr_list, rl_ptrlist);

29 static bool is_err_ptr(sval_t sval)
30 {
31 if (option_project != PROJ_KERNEL)
32 return false;
33 if (!type_is_ptr(sval.type))
34 return false;
35 if (sval.uvalue < -4095ULL)
36 return false;
37 return true;
38 }

40 static char *get_err_pointer_str(struct data_range *drange)
41 {
42 static char buf[20];

44 /*
45 * The kernel has error pointers where you do essentially:
46 *
47 * return (void *)(unsigned long)-12;
48 *
49 * But what I want here is to print -12 instead of the unsigned version
50 * of that.
51 *
52 */
53 if (!is_err_ptr(drange->min))
54 return NULL;

56 if (drange->min.value == drange->max.value)
57 snprintf(buf, sizeof(buf), "(%lld)", drange->min.value);
58 else
59 snprintf(buf, sizeof(buf), "(%lld)-(%lld)", drange->min.value, d
60 return buf;
61 }

new/usr/src/tools/smatch/src/smatch_ranges.c 2

63 char *show_rl(struct range_list *list)
64 {
65 struct data_range *prev_drange = NULL;
66 struct data_range *tmp;
67 char full[255];
68 char *p = full;
69 char *prev = full;
70 char *err_ptr;
71 int remain;
32 char full[512];
72 int i = 0;

74 full[0] = ’\0’;

36 full[sizeof(full) - 1] = ’\0’;
76 FOR_EACH_PTR(list, tmp) {
77 remain = full + sizeof(full) - p;
78 if (remain < 48) {
79 snprintf(prev, full + sizeof(full) - prev, ",%s-%s",
80 sval_to_str(prev_drange->min),
81 sval_to_str(sval_type_max(prev_drange->min.type
82 break;
38 if (i++)
39 strncat(full, ",", 254 - strlen(full));
40 if (sval_cmp(tmp->min, tmp->max) == 0) {
41 strncat(full, sval_to_str(tmp->min), 254 - strlen(full))
42 continue;
83 }
84 prev_drange = tmp;
85 prev = p;

87 err_ptr = get_err_pointer_str(tmp);
88 if (err_ptr) {
89 p += snprintf(p, remain, "%s%s", i++ ? "," : "", err_ptr
90 } else if (sval_cmp(tmp->min, tmp->max) == 0) {
91 p += snprintf(p, remain, "%s%s", i++ ? "," : "",
92 sval_to_str(tmp->min));
93 } else {
94 p += snprintf(p, remain, "%s%s-%s", i++ ? "," : "",
95 sval_to_str(tmp->min),
96 sval_to_str(tmp->max));
97 }
44 strncat(full, sval_to_str(tmp->min), 254 - strlen(full));
45 strncat(full, "-", 254 - strlen(full));
46 strncat(full, sval_to_str(tmp->max), 254 - strlen(full));
98 } END_FOR_EACH_PTR(tmp);

48 if (strlen(full) == sizeof(full) - 1)
49 full[sizeof(full) - 2] = ’+’;
100 return alloc_sname(full);
101 }

______unchanged_portion_omitted_

132 static int truncates_nicely(struct symbol *type, sval_t min, sval_t max)
133 {
134 unsigned long long mask;
135 int bits = type_bits(type);

137 if (bits >= type_bits(min.type))
138 return 0;

140 mask = -1ULL << bits;
141 return (min.uvalue & mask) == (max.uvalue & mask);
142 }

new/usr/src/tools/smatch/src/smatch_ranges.c 3

144 static void add_range_t(struct symbol *type, struct range_list **rl, sval_t min,
145 {
146 /* If we’re just adding a number, cast it and add it */
147 if (sval_cmp(min, max) == 0) {
148 add_range(rl, sval_cast(type, min), sval_cast(type, max));
149 return;
150 }

152 /* If the range is within the type range then add it */
153 if (sval_fits(type, min) && sval_fits(type, max)) {
154 add_range(rl, sval_cast(type, min), sval_cast(type, max));
155 return;
156 }

158 if (truncates_nicely(type, min, max)) {
159 add_range(rl, sval_cast(type, min), sval_cast(type, max));
160 return;
161 }

163 /*
164 * If the range we are adding has more bits than the range type then
165 * add the whole range type. Eg:
166 * 0x8000000000000000 - 0xf000000000000000 -> cast to int
167 *
100 * This isn’t totally the right thing to do. We could be more granular.
168 */
169 if (sval_too_big(type, min) || sval_too_big(type, max)) {
170 add_range(rl, sval_type_min(type), sval_type_max(type));
171 return;
172 }

174 /* Cast negative values to high positive values */
175 if (sval_is_negative(min) && type_unsigned(type)) {
176 if (sval_is_positive(max)) {
177 if (sval_too_high(type, max)) {
178 add_range(rl, sval_type_min(type), sval_type_max
179 return;
180 }
181 add_range(rl, sval_type_val(type, 0), sval_cast(type, ma
182 max = sval_type_max(type);
183 } else {
184 max = sval_cast(type, max);
185 }
186 min = sval_cast(type, min);
187 add_range(rl, min, max);
188 }

190 /* Cast high positive numbers to negative */
191 if (sval_unsigned(max) && sval_is_negative(sval_cast(type, max))) {
192 if (!sval_is_negative(sval_cast(type, min))) {
193 add_range(rl, sval_cast(type, min), sval_type_max(type))
194 min = sval_type_min(type);
195 } else {
196 min = sval_cast(type, min);
197 }
198 max = sval_cast(type, max);
199 add_range(rl, min, max);
200 }

202 add_range(rl, sval_cast(type, min), sval_cast(type, max));
203 return;
204 }

206 static int str_to_comparison_arg_helper(const char *str,
207 struct expression *call, int *comparison,
208 struct expression **arg, const char **endp)

new/usr/src/tools/smatch/src/smatch_ranges.c 4

141 struct expression **arg, char **endp)
209 {
210 int param;
211 const char *c = str;
144 char *c = (char *)str;

213 if (*c != ’[’)
214 return 0;
215 c++;

217 if (*c == ’<’) {
218 c++;
219 if (*c == ’=’) {
220 *comparison = SPECIAL_LTE;
221 c++;
222 } else {
223 *comparison = ’<’;
224 }
225 } else if (*c == ’=’) {
226 c++;
227 c++;
228 *comparison = SPECIAL_EQUAL;
229 } else if (*c == ’>’) {
230 c++;
231 if (*c == ’=’) {
232 *comparison = SPECIAL_GTE;
233 c++;
234 } else {
235 *comparison = ’>’;
236 }
237 } else if (*c == ’!’) {
238 c++;
239 c++;
240 *comparison = SPECIAL_NOTEQUAL;
241 } else if (*c == ’$’) {
242 *comparison = SPECIAL_EQUAL;
243 } else {
244 return 0;
245 }

247 if (*c != ’$’)
248 return 0;
249 c++;

251 param = strtoll(c, (char **)&c, 10);
252 if (*c == ’,’ || *c == ’]’)
182 param = strtoll(c, &c, 10);
183 if (*c == ’]’)
253 c++; /* skip the ’]’ character */
254 if (endp)
255 *endp = (char *)c;

257 if (!call)
258 return 0;
259 *arg = get_argument_from_call_expr(call->args, param);
260 if (!*arg)
261 return 0;
262 if (*c == ’-’ && *(c + 1) == ’>’) {
263 char buf[256];
264 int n;

266 n = snprintf(buf, sizeof(buf), "$%s", c);
267 if (n >= sizeof(buf))
268 return 0;
269 if (buf[n - 1] == ’]’)
270 buf[n - 1] = ’\0’;

new/usr/src/tools/smatch/src/smatch_ranges.c 5

271 *arg = gen_expression_from_key(*arg, buf);
272 while (*c && *c != ’]’)
273 c++;
274 }
275 return 1;
276 }

______unchanged_portion_omitted_

290 static int get_val_from_key(int use_max, struct symbol *type, const char *c, str
221 static int get_val_from_key(int use_max, struct symbol *type, char *c, struct ex
291 {
292 struct expression *arg;
293 int comparison;
294 sval_t ret, tmp;

296 if (use_max)
297 ret = sval_type_max(type);
298 else
299 ret = sval_type_min(type);

301 if (!str_to_comparison_arg_helper(c, call, &comparison, &arg, endp)) {
302 *sval = ret;
303 return 0;
304 }

306 if (use_max && get_implied_max(arg, &tmp)) {
307 ret = tmp;
308 if (comparison == ’<’) {
309 tmp.value = 1;
310 ret = sval_binop(ret, ’-’, tmp);
311 }
312 }
313 if (!use_max && get_implied_min(arg, &tmp)) {
314 ret = tmp;
315 if (comparison == ’>’) {
316 tmp.value = 1;
317 ret = sval_binop(ret, ’+’, tmp);
318 }
319 }

321 *sval = ret;
322 return 1;
323 }

______unchanged_portion_omitted_

390 static struct range_list *filter_by_comparison_call(const char *c, struct expres
321 static struct range_list *filter_by_comparison_call(char *c, struct expression *
391 {
392 struct symbol *type;
393 struct expression *arg;
394 struct range_list *casted_start, *right_orig;
395 int comparison;

397 if (!str_to_comparison_arg_helper(c, call, &comparison, &arg, endp))
398 return start_rl;

400 if (!get_implied_rl(arg, &right_orig))
401 return start_rl;

403 type = &int_ctype;
404 if (type_positive_bits(rl_type(start_rl)) > type_positive_bits(type))
405 type = rl_type(start_rl);
406 if (type_positive_bits(rl_type(right_orig)) > type_positive_bits(type))
407 type = rl_type(right_orig);

409 casted_start = cast_rl(type, start_rl);

new/usr/src/tools/smatch/src/smatch_ranges.c 6

410 right_orig = cast_rl(type, right_orig);

412 filter_by_comparison(&casted_start, comparison, right_orig);
413 return cast_rl(rl_type(start_rl), casted_start);
414 }

416 static sval_t parse_val(int use_max, struct expression *call, struct symbol *typ
347 static sval_t parse_val(int use_max, struct expression *call, struct symbol *typ
417 {
418 const char *start = c;
349 char *start = c;
419 sval_t ret;

421 if (!strncmp(start, "max", 3)) {
422 ret = sval_type_max(type);
423 c += 3;
424 } else if (!strncmp(start, "u64max", 6)) {
425 ret = sval_type_val(type, ULLONG_MAX);
426 c += 6;
427 } else if (!strncmp(start, "s64max", 6)) {
428 ret = sval_type_val(type, LLONG_MAX);
429 c += 6;
430 } else if (!strncmp(start, "u32max", 6)) {
431 ret = sval_type_val(type, UINT_MAX);
432 c += 6;
433 } else if (!strncmp(start, "s32max", 6)) {
434 ret = sval_type_val(type, INT_MAX);
435 c += 6;
436 } else if (!strncmp(start, "u16max", 6)) {
437 ret = sval_type_val(type, USHRT_MAX);
438 c += 6;
439 } else if (!strncmp(start, "s16max", 6)) {
440 ret = sval_type_val(type, SHRT_MAX);
441 c += 6;
442 } else if (!strncmp(start, "min", 3)) {
443 ret = sval_type_min(type);
444 c += 3;
445 } else if (!strncmp(start, "s64min", 6)) {
446 ret = sval_type_val(type, LLONG_MIN);
447 c += 6;
448 } else if (!strncmp(start, "s32min", 6)) {
449 ret = sval_type_val(type, INT_MIN);
450 c += 6;
451 } else if (!strncmp(start, "s16min", 6)) {
452 ret = sval_type_val(type, SHRT_MIN);
453 c += 6;
454 } else if (!strncmp(start, "long_min", 8)) {
455 ret = sval_type_val(type, LONG_MIN);
456 c += 8;
457 } else if (!strncmp(start, "long_max", 8)) {
458 ret = sval_type_val(type, LONG_MAX);
459 c += 8;
460 } else if (!strncmp(start, "ulong_max", 9)) {
461 ret = sval_type_val(type, ULONG_MAX);
462 c += 9;
463 } else if (!strncmp(start, "ptr_max", 7)) {
464 ret = sval_type_val(type, valid_ptr_max);
465 c += 7;
466 } else if (start[0] == ’[’) {
467 /* this parses [==p0] comparisons */
468 get_val_from_key(1, type, start, call, &c, &ret);
469 } else if (type_positive_bits(type) == 64) {
470 ret = sval_type_val(type, strtoull(start, (char **)&c, 0));
401 ret = sval_type_val(type, strtoull(start, &c, 0));
471 } else {
472 ret = sval_type_val(type, strtoll(start, (char **)&c, 0));

new/usr/src/tools/smatch/src/smatch_ranges.c 7

403 ret = sval_type_val(type, strtoll(start, &c, 0));
473 }
474 *endp = c;
475 return ret;
476 }

478 static const char *jump_to_call_math(const char *value)
409 static char *jump_to_call_math(char *value)
479 {
480 const char *c = value;
411 char *c = value;

482 while (*c && *c != ’[’)
483 c++;

485 if (!*c)
486 return NULL;
487 c++;
488 if (*c == ’<’ || *c == ’=’ || *c == ’>’ || *c == ’!’)
489 return NULL;

491 return c;
492 }

494 static void str_to_rl_helper(struct expression *call, struct symbol *type, const
425 static void str_to_rl_helper(struct expression *call, struct symbol *type, char
495 {
496 struct range_list *rl_tmp = NULL;
497 sval_t prev_min, min, max;
498 const char *c;
428 sval_t min, max;
429 char *c;

500 prev_min = sval_type_min(type);
501 min = sval_type_min(type);
502 max = sval_type_max(type);
503 c = str;
504 while (*c != ’\0’ && *c != ’[’) {
505 if (*c == ’+’) {
506 if (sval_cmp(min, sval_type_min(type)) != 0)
507 min = max;
508 max = sval_type_max(type);
509 add_range_t(type, &rl_tmp, min, max);
510 break;
511 }
512 if (*c == ’(’)
513 c++;
514 min = parse_val(0, call, type, c, &c);
515 if (!sval_fits(type, min))
516 min = sval_type_min(type);
517 max = min;
518 if (*c == ’)’)
519 c++;
520 if (*c == ’\0’ || *c == ’[’) {
521 add_range_t(type, &rl_tmp, min, min);
522 break;
523 }
524 if (*c == ’,’) {
525 add_range_t(type, &rl_tmp, min, min);
526 c++;
527 continue;
528 }
529 if (*c == ’+’) {
530 min = prev_min;
531 max = sval_type_max(type);
532 add_range_t(type, &rl_tmp, min, max);

new/usr/src/tools/smatch/src/smatch_ranges.c 8

460 min = sval_type_max(type);
533 c++;
534 if (*c == ’[’ || *c == ’\0’)
535 break;
536 }
537 if (*c != ’-’) {
538 sm_msg("debug XXX: trouble parsing %s c = %s", str, c);
539 break;
540 }
541 c++;
542 if (*c == ’(’)
543 c++;
544 max = parse_val(1, call, type, c, &c);
545 if (!sval_fits(type, max))
546 max = sval_type_max(type);
547 if (*c == ’+’) {
548 max = sval_type_max(type);
549 add_range_t(type, &rl_tmp, min, max);
550 c++;
551 if (*c == ’[’ || *c == ’\0’)
552 break;
553 }
554 prev_min = max;
555 add_range_t(type, &rl_tmp, min, max);
556 if (*c == ’)’)
557 c++;
558 if (*c == ’,’)
559 c++;
560 }

562 *rl = rl_tmp;
563 *endp = c;
564 }

566 static void str_to_dinfo(struct expression *call, struct symbol *type, const cha
488 static void str_to_dinfo(struct expression *call, struct symbol *type, char *val
567 {
568 struct range_list *math_rl;
569 const char *call_math;
570 const char *c;
491 char *call_math;
492 char *c;
571 struct range_list *rl = NULL;

573 if (!type)
574 type = &llong_ctype;

576 if (strcmp(value, "empty") == 0)
577 return;

579 if (strncmp(value, "[==$", 4) == 0) {
580 struct expression *arg;
581 int comparison;

583 if (!str_to_comparison_arg(value, call, &comparison, &arg))
584 return;
585 if (!get_implied_rl(arg, &rl))
586 return;
587 goto cast;
588 }

590 str_to_rl_helper(call, type, value, &c, &rl);
591 if (*c == ’\0’)
592 goto cast;

594 call_math = jump_to_call_math(value);

new/usr/src/tools/smatch/src/smatch_ranges.c 9

595 if (call_math && parse_call_math_rl(call, call_math, &math_rl)) {
596 rl = rl_intersection(rl, math_rl);
597 goto cast;
598 }

600 /*
601 * For now if we already tried to handle the call math and couldn’t
602 * figure it out then bail.
603 */
604 if (jump_to_call_math(c) == c + 1)
605 goto cast;

607 rl = filter_by_comparison_call(c, call, &c, rl);

609 cast:
610 rl = cast_rl(type, rl);
611 dinfo->value_ranges = rl;
612 }

614 static int rl_is_sane(struct range_list *rl)
615 {
616 struct data_range *tmp;
617 struct symbol *type;

619 type = rl_type(rl);
620 FOR_EACH_PTR(rl, tmp) {
621 if (!sval_fits(type, tmp->min))
622 return 0;
623 if (!sval_fits(type, tmp->max))
624 return 0;
625 if (sval_cmp(tmp->min, tmp->max) > 0)
626 return 0;
627 } END_FOR_EACH_PTR(tmp);

629 return 1;
630 }

632 void str_to_rl(struct symbol *type, char *value, struct range_list **rl)
633 {
634 struct data_info dinfo = {};

636 str_to_dinfo(NULL, type, value, &dinfo);
637 if (!rl_is_sane(dinfo.value_ranges))
638 dinfo.value_ranges = alloc_whole_rl(type);
639 *rl = dinfo.value_ranges;
640 }

642 void call_results_to_rl(struct expression *expr, struct symbol *type, const char
544 void call_results_to_rl(struct expression *expr, struct symbol *type, char *valu
643 {
644 struct data_info dinfo = {};

646 str_to_dinfo(strip_expr(expr), type, value, &dinfo);
647 *rl = dinfo.value_ranges;
648 }

______unchanged_portion_omitted_

662 int is_unknown_ptr(struct range_list *rl)
663 {
664 struct data_range *drange;
665 int cnt = 0;

667 if (is_whole_rl(rl))
668 return 1;

670 FOR_EACH_PTR(rl, drange) {

new/usr/src/tools/smatch/src/smatch_ranges.c 10

671 if (++cnt >= 3)
672 return 0;
673 if (sval_cmp(drange->min, valid_ptr_min_sval) == 0 &&
674 sval_cmp(drange->max, valid_ptr_max_sval) == 0)
675 return 1;
676 } END_FOR_EACH_PTR(drange);

678 return 0;
679 }

681 int is_whole_rl_non_zero(struct range_list *rl)
682 {
683 struct data_range *drange;

685 if (ptr_list_empty(rl))
686 return 0;
687 drange = first_ptr_list((struct ptr_list *)rl);
688 if (sval_unsigned(drange->min) &&
689 drange->min.value == 1 &&
690 sval_is_max(drange->max))
691 return 1;
692 if (!sval_is_min(drange->min) || drange->max.value != -1)
693 return 0;
694 drange = last_ptr_list((struct ptr_list *)rl);
695 if (drange->min.value != 1 || !sval_is_max(drange->max))
696 return 0;
697 return 1;
698 }

______unchanged_portion_omitted_

792 static bool collapse_pointer_rl(struct range_list **rl, sval_t min, sval_t max)
793 {
794 struct range_list *new_rl = NULL;
795 struct data_range *tmp;
796 static bool recurse;
797 bool ret = false;
798 int cnt = 0;

800 /*
801 * With the mtag work, then we end up getting huge lists of mtags.
802 * That seems cool, but the problem is that we can only store about
803 * 8-10 mtags in the DB before we truncate the list. Also the mtags
804 * aren’t really used at all so it’s a waste of resources for now...
805 * In the future, we maybe will revisit this code.
806 *
807 */

809 if (recurse)
810 return false;
811 recurse = true;
812 if (!type_is_ptr(min.type))
813 goto out;

815 if (ptr_list_size((struct ptr_list *)*rl) < 8)
816 goto out;
817 FOR_EACH_PTR(*rl, tmp) {
818 if (!is_err_ptr(tmp->min))
819 cnt++;
820 } END_FOR_EACH_PTR(tmp);
821 if (cnt < 8)
822 goto out;

824 FOR_EACH_PTR(*rl, tmp) {
825 if (sval_cmp(tmp->min, valid_ptr_min_sval) >= 0 &&
826 sval_cmp(tmp->max, valid_ptr_max_sval) <= 0)
827 add_range(&new_rl, valid_ptr_min_sval, valid_ptr_max_sva

new/usr/src/tools/smatch/src/smatch_ranges.c 11

828 else
829 add_range(&new_rl, tmp->min, tmp->max);
830 } END_FOR_EACH_PTR(tmp);

832 add_range(&new_rl, min, max);

834 *rl = new_rl;
835 ret = true;
836 out:
837 recurse = false;
838 return ret;
839 }

841 extern int rl_ptrlist_hack;
842 void add_range(struct range_list **list, sval_t min, sval_t max)
843 {
844 struct data_range *tmp;
845 struct data_range *new = NULL;
846 int check_next = 0;

848 /*
849 * There is at least on valid reason why the types might be confusing
850 * and that’s when you have a void pointer and on some paths you treat
851 * it as a u8 pointer and on other paths you treat it as a u16 pointer.
852 * This case is hard to deal with.
853 *
854 * There are other cases where we probably should be more specific about
855 * the types than we are. For example, we end up merging a lot of ulong
856 * with pointers and I have not figured out why we do that.
857 *
858 * But this hack works for both cases, I think. We cast it to pointers
859 * or we use the bigger size.
860 *
861 */
862 if (*list && rl_type(*list) != min.type) {
863 if (rl_type(*list)->type == SYM_PTR) {
864 min = sval_cast(rl_type(*list), min);
865 max = sval_cast(rl_type(*list), max);
866 } else if (min.type->type == SYM_PTR) {
867 *list = cast_rl(min.type, *list);
868 } else if (type_bits(rl_type(*list)) >= type_bits(min.type)) {
869 min = sval_cast(rl_type(*list), min);
870 max = sval_cast(rl_type(*list), max);
871 } else {
872 *list = cast_rl(min.type, *list);
873 }
874 }

876 if (sval_cmp(min, max) > 0) {
877 min = sval_type_min(min.type);
878 max = sval_type_max(min.type);
879 }

881 if (collapse_pointer_rl(list, min, max))
882 return;

884 /*
885 * FIXME: This has a problem merging a range_list like: min-0,3-max
886 * with a range like 1-2. You end up with min-2,3-max instead of
887 * just min-max.
888 */
889 FOR_EACH_PTR(*list, tmp) {
890 if (check_next) {
891 /* Sometimes we overlap with more than one range
892 so we have to delete or modify the next range. */
893 if (!sval_is_max(max) && max.value + 1 == tmp->min.value

new/usr/src/tools/smatch/src/smatch_ranges.c 12

894 /* join 2 ranges here */
895 new->max = tmp->max;
896 DELETE_CURRENT_PTR(tmp);
897 return;
898 }

900 /* Doesn’t overlap with the next one. */
901 if (sval_cmp(max, tmp->min) < 0)
902 return;

904 if (sval_cmp(max, tmp->max) <= 0) {
905 /* Partially overlaps the next one. */
906 new->max = tmp->max;
907 DELETE_CURRENT_PTR(tmp);
908 return;
909 } else {
910 /* Completely overlaps the next one. */
911 DELETE_CURRENT_PTR(tmp);
912 /* there could be more ranges to delete */
913 continue;
914 }
915 }
916 if (!sval_is_max(max) && max.value + 1 == tmp->min.value) {
917 /* join 2 ranges into a big range */
918 new = alloc_range(min, tmp->max);
919 REPLACE_CURRENT_PTR(tmp, new);
920 return;
921 }
922 if (sval_cmp(max, tmp->min) < 0) { /* new range entirely below *
923 new = alloc_range(min, max);
924 INSERT_CURRENT(new, tmp);
925 return;
926 }
927 if (sval_cmp(min, tmp->min) < 0) { /* new range partially below
928 if (sval_cmp(max, tmp->max) < 0)
929 max = tmp->max;
930 else
931 check_next = 1;
932 new = alloc_range(min, max);
933 REPLACE_CURRENT_PTR(tmp, new);
934 if (!check_next)
935 return;
936 continue;
937 }
938 if (sval_cmp(max, tmp->max) <= 0) /* new range already included
939 return;
940 if (sval_cmp(min, tmp->max) <= 0) { /* new range partially above
941 min = tmp->min;
942 new = alloc_range(min, max);
943 REPLACE_CURRENT_PTR(tmp, new);
944 check_next = 1;
945 continue;
946 }
947 if (!sval_is_min(min) && min.value - 1 == tmp->max.value) {
948 /* join 2 ranges into a big range */
949 new = alloc_range(tmp->min, max);
950 REPLACE_CURRENT_PTR(tmp, new);
951 check_next = 1;
952 continue;
953 }
954 /* the new range is entirely above the existing ranges */
955 } END_FOR_EACH_PTR(tmp);
956 if (check_next)
957 return;
958 new = alloc_range(min, max);

new/usr/src/tools/smatch/src/smatch_ranges.c 13

960 rl_ptrlist_hack = 1;
961 add_ptr_list(list, new);
962 rl_ptrlist_hack = 0;
963 }

______unchanged_portion_omitted_

1391 int rl_fits_in_type(struct range_list *rl, struct symbol *type)
1222 static int rl_is_sane(struct range_list *rl)
1392 {
1393 if (type_bits(rl_type(rl)) <= type_bits(type))
1394 return 1;
1395 if (sval_cmp(rl_max(rl), sval_type_max(type)) > 0)
1224 struct data_range *tmp;
1225 struct symbol *type;

1227 type = rl_type(rl);
1228 FOR_EACH_PTR(rl, tmp) {
1229 if (!sval_fits(type, tmp->min))
1396 return 0;
1397 if (sval_is_negative(rl_min(rl)) &&
1398 sval_cmp(rl_min(rl), sval_type_min(type)) < 0)
1231 if (!sval_fits(type, tmp->max))
1399 return 0;
1233 if (sval_cmp(tmp->min, tmp->max) > 0)
1234 return 0;
1235 } END_FOR_EACH_PTR(tmp);

1400 return 1;
1401 }
______unchanged_portion_omitted_

1476 struct range_list *rl_filter(struct range_list *rl, struct range_list *filter)
1313 struct range_list *rl_invert(struct range_list *orig)
1477 {
1315 struct range_list *ret = NULL;
1478 struct data_range *tmp;
1317 sval_t gap_min, abs_max, sval;

1480 FOR_EACH_PTR(filter, tmp) {
1481 rl = remove_range(rl, tmp->min, tmp->max);
1319 if (!orig)
1320 return NULL;
1321 if (type_bits(rl_type(orig)) < 0) /* void type mostly */
1322 return NULL;

1324 gap_min = sval_type_min(rl_min(orig).type);
1325 abs_max = sval_type_max(rl_max(orig).type);

1327 FOR_EACH_PTR(orig, tmp) {
1328 if (sval_cmp(tmp->min, gap_min) > 0) {
1329 sval = sval_type_val(tmp->min.type, tmp->min.value - 1);
1330 add_range(&ret, gap_min, sval);
1331 }
1332 if (sval_cmp(tmp->max, abs_max) == 0)
1333 return ret;
1334 gap_min = sval_type_val(tmp->max.type, tmp->max.value + 1);
1482 } END_FOR_EACH_PTR(tmp);

1484 return rl;
1337 if (sval_cmp(gap_min, abs_max) <= 0)
1338 add_range(&ret, gap_min, abs_max);

1340 return ret;
1485 }

1487 struct range_list *do_intersection(struct range_list *one_rl, struct range_list

new/usr/src/tools/smatch/src/smatch_ranges.c 14

1343 struct range_list *rl_filter(struct range_list *rl, struct range_list *filter)
1488 {
1489 struct data_range *one, *two;
1490 struct range_list *ret = NULL;
1345 struct data_range *tmp;

1347 FOR_EACH_PTR(filter, tmp) {
1348 rl = remove_range(rl, tmp->min, tmp->max);
1349 } END_FOR_EACH_PTR(tmp);

1493 PREPARE_PTR_LIST(one_rl, one);
1494 PREPARE_PTR_LIST(two_rl, two);

1496 while (true) {
1497 if (!one || !two)
1498 break;
1499 if (sval_cmp(one->max, two->min) < 0) {
1500 NEXT_PTR_LIST(one);
1501 continue;
1502 }
1503 if (sval_cmp(one->min, two->min) < 0 && sval_cmp(one->max, two->
1504 add_range(&ret, two->min, one->max);
1505 NEXT_PTR_LIST(one);
1506 continue;
1507 }
1508 if (sval_cmp(one->min, two->min) >= 0 && sval_cmp(one->max, two-
1509 add_range(&ret, one->min, one->max);
1510 NEXT_PTR_LIST(one);
1511 continue;
1512 }
1513 if (sval_cmp(one->min, two->min) < 0 && sval_cmp(one->max, two->
1514 add_range(&ret, two->min, two->max);
1515 NEXT_PTR_LIST(two);
1516 continue;
1517 }
1518 if (sval_cmp(one->min, two->max) <= 0 && sval_cmp(one->max, two-
1519 add_range(&ret, one->min, two->max);
1520 NEXT_PTR_LIST(two);
1521 continue;
1522 }
1523 if (sval_cmp(one->min, two->max) <= 0) {
1524 sm_fatal("error calculating intersection of ’%s’ and ’%s
1525 return NULL;
1526 }
1527 NEXT_PTR_LIST(two);
1528 }

1530 FINISH_PTR_LIST(two);
1531 FINISH_PTR_LIST(one);

1533 return ret;
1351 return rl;
1534 }

1536 struct range_list *rl_intersection(struct range_list *one, struct range_list *tw
1537 {
1356 struct range_list *one_orig;
1357 struct range_list *two_orig;
1538 struct range_list *ret;
1539 struct symbol *ret_type;
1540 struct symbol *small_type;
1541 struct symbol *large_type;

1543 if (!one || !two)
1363 if (!two)
1544 return NULL;

new/usr/src/tools/smatch/src/smatch_ranges.c 15

1365 if (!one)
1366 return NULL;

1368 one_orig = one;
1369 two_orig = two;

1546 ret_type = rl_type(one);
1547 small_type = rl_type(one);
1548 large_type = rl_type(two);

1550 if (type_bits(rl_type(two)) < type_bits(small_type)) {
1551 small_type = rl_type(two);
1552 large_type = rl_type(one);
1553 }

1555 one = cast_rl(large_type, one);
1556 two = cast_rl(large_type, two);

1558 ret = do_intersection(one, two);
1383 ret = one;
1384 one = rl_invert(one);
1385 two = rl_invert(two);

1387 ret = rl_filter(ret, one);
1388 ret = rl_filter(ret, two);

1390 one = cast_rl(small_type, one_orig);
1391 two = cast_rl(small_type, two_orig);

1393 one = rl_invert(one);
1394 two = rl_invert(two);

1396 ret = cast_rl(small_type, ret);
1397 ret = rl_filter(ret, one);
1398 ret = rl_filter(ret, two);

1559 return cast_rl(ret_type, ret);
1560 }
______unchanged_portion_omitted_

1682 static struct range_list *ptr_add_mult(struct range_list *left, int op, struct r
1683 {
1684 struct range_list *ret;
1685 sval_t l_sval, r_sval, res;

1687 /*
1688 * This function is sort of the wrong API because it takes two pointer
1689 * and adds them together. The caller is expected to figure out
1690 * alignment. Neither of those are the correct things to do.
1691 *
1692 * Really this function is quite bogus...
1693 */

1695 if (rl_to_sval(left, &l_sval) && rl_to_sval(right, &r_sval)) {
1696 res = sval_binop(l_sval, op, r_sval);
1697 return alloc_rl(res, res);
1698 }

1700 if (rl_min(left).value != 0 || rl_max(right).value != 0) {
1701 ret = alloc_rl(valid_ptr_min_sval, valid_ptr_max_sval);
1702 return cast_rl(rl_type(left), ret);
1703 }

1705 return alloc_whole_rl(rl_type(left));
1706 }

new/usr/src/tools/smatch/src/smatch_ranges.c 16

1708 static struct range_list *handle_add_mult_rl(struct range_list *left, int op, st
1709 {
1710 sval_t min, max;

1712 if (type_is_ptr(rl_type(left)) || type_is_ptr(rl_type(right)))
1713 return ptr_add_mult(left, op, right);

1715 if (sval_binop_overflows(rl_min(left), op, rl_min(right)))
1716 return NULL;
1717 min = sval_binop(rl_min(left), op, rl_min(right));

1719 if (sval_binop_overflows(rl_max(left), op, rl_max(right)))
1720 return NULL;
1721 max = sval_binop(rl_max(left), op, rl_max(right));

1723 return alloc_rl(min, max);
1724 }
______unchanged_portion_omitted_

1836 static sval_t sval_lowest_set_bit(sval_t sval)
1837 {
1838 sval_t ret = { .type = sval.type };
1839 int i;

1841 for (i = 0; i < 64; i++) {
1842 if (sval.uvalue & 1ULL << i) {
1843 ret.uvalue = (1ULL << i);
1844 return ret;
1845 }
1846 }
1847 return ret;
1848 }

1850 static struct range_list *handle_AND_rl_sval(struct range_list *rl, sval_t sval)
1851 {
1852 struct range_list *known_rl;
1853 sval_t zero = { 0 };
1854 sval_t min;

1856 zero.type = sval.type;
1857 zero.value = 0;

1859 if (sm_fls64(rl_max(rl).uvalue) < find_first_zero_bit(sval.uvalue) &&
1860 sm_fls64(rl_min(rl).uvalue) < find_first_zero_bit(sval.uvalue))
1861 return rl;

1863 min = sval_lowest_set_bit(sval);

1865 if (min.value != 0) {
1866 sval_t max, mod;

1868 max = rl_max(rl);
1869 mod = sval_binop(max, ’%’, min);
1870 if (mod.value) {
1871 max = sval_binop(max, ’-’, mod);
1872 max.value++;
1873 if (max.value > 0 && sval_cmp(max, rl_max(rl)) < 0)
1874 rl = remove_range(rl, max, rl_max(rl));
1875 }
1876 }

1878 known_rl = alloc_rl(min, sval);

1880 rl = rl_intersection(rl, known_rl);
1881 zero = rl_min(rl);
1882 zero.value = 0;

new/usr/src/tools/smatch/src/smatch_ranges.c 17

1883 add_range(&rl, zero, zero);

1885 return rl;
1886 }

1888 static struct range_list *fudge_AND_rl(struct range_list *rl)
1889 {
1890 struct range_list *ret;
1891 sval_t min;

1893 min = sval_lowest_set_bit(rl_min(rl));
1894 ret = clone_rl(rl);
1895 add_range(&ret, min, rl_min(rl));

1897 return ret;
1898 }

1900 static struct range_list *handle_AND_rl(struct range_list *left, struct range_li
1901 {
1902 sval_t sval, zero;
1903 struct range_list *rl;
1650 unsigned long long left_set, left_maybe;
1651 unsigned long long right_set, right_maybe;
1652 sval_t zero, max;

1905 if (rl_to_sval(left, &sval))
1906 return handle_AND_rl_sval(right, sval);
1907 if (rl_to_sval(right, &sval))
1908 return handle_AND_rl_sval(left, sval);

1910 left = fudge_AND_rl(left);
1911 right = fudge_AND_rl(right);

1913 rl = rl_intersection(left, right);
1914 zero = rl_min(rl);
1915 zero.value = 0;
1916 add_range(&rl, zero, zero);

1918 return rl;
1919 }

1921 static struct range_list *handle_lshift(struct range_list *left_orig, struct ran
1922 {
1923 struct range_list *left;
1924 struct data_range *tmp;
1925 struct range_list *ret = NULL;
1926 sval_t zero = { .type = rl_type(left_orig), };
1927 sval_t shift, min, max;
1928 bool add_zero = false;

1930 if (!rl_to_sval(right_orig, &shift) || sval_is_negative(shift))
1931 return NULL;
1932 if (shift.value == 0)
1933 return left_orig;

1935 /* Cast to unsigned for easier left shift math */
1936 if (type_positive_bits(rl_type(left_orig)) < 32)
1937 left = cast_rl(&uint_ctype, left_orig);
1938 else if(type_positive_bits(rl_type(left_orig)) == 63)
1939 left = cast_rl(&ullong_ctype, left_orig);
1940 else
1941 left = left_orig;
1656 left_set = rl_bits_always_set(left);
1657 left_maybe = rl_bits_maybe_set(left);

1943 FOR_EACH_PTR(left, tmp) {

new/usr/src/tools/smatch/src/smatch_ranges.c 18

1944 min = tmp->min;
1945 max = tmp->max;
1659 right_set = rl_bits_always_set(right);
1660 right_maybe = rl_bits_maybe_set(right);

1947 if (min.value == 0 || max.value > sval_type_max(max.type).uvalue
1948 add_zero = true;
1949 if (min.value == 0 && max.value == 0)
1950 continue;
1951 if (min.value == 0)
1952 min.value = 1;
1953 min = sval_binop(min, SPECIAL_LEFTSHIFT, shift);
1954 max = sval_binop(max, SPECIAL_LEFTSHIFT, shift);
1955 add_range(&ret, min, max);
1956 } END_FOR_EACH_PTR(tmp);
1662 zero = max = rl_min(left);
1663 zero.uvalue = 0;
1664 max.uvalue = fls_mask((left_maybe | right_maybe) ^ (left_set & right_set

1958 if (!rl_fits_in_type(ret, rl_type(left_orig)))
1959 add_zero = true;
1960 ret = cast_rl(rl_type(left_orig), ret);
1961 if (add_zero)
1962 add_range(&ret, zero, zero);

1964 return ret;
1666 return cast_rl(rl_type(left), alloc_rl(zero, max));
1965 }

1967 static struct range_list *handle_rshift(struct range_list *left_orig, struct ran
1968 {
1969 struct data_range *tmp;
1970 struct range_list *ret = NULL;
1971 sval_t shift, min, max;

1973 if (!rl_to_sval(right_orig, &shift) || sval_is_negative(shift))
1974 return NULL;
1975 if (shift.value == 0)
1976 return left_orig;

1978 FOR_EACH_PTR(left_orig, tmp) {
1979 min = sval_binop(tmp->min, SPECIAL_RIGHTSHIFT, shift);
1980 max = sval_binop(tmp->max, SPECIAL_RIGHTSHIFT, shift);
1981 add_range(&ret, min, max);
1982 } END_FOR_EACH_PTR(tmp);

1984 return ret;
1985 }

1987 struct range_list *rl_binop(struct range_list *left, int op, struct range_list *
1988 {
1989 struct symbol *cast_type;
1990 sval_t left_sval, right_sval;
1991 struct range_list *ret = NULL;

1993 cast_type = rl_type(left);
1994 if (sval_type_max(rl_type(left)).uvalue < sval_type_max(rl_type(right)).
1995 cast_type = rl_type(right);
1996 if (sval_type_max(cast_type).uvalue < INT_MAX)
1997 cast_type = &int_ctype;

1999 left = cast_rl(cast_type, left);
2000 right = cast_rl(cast_type, right);

2002 if (!left && !right)
2003 return NULL;

new/usr/src/tools/smatch/src/smatch_ranges.c 19

2005 if (rl_to_sval(left, &left_sval) && rl_to_sval(right, &right_sval)) {
2006 sval_t val = sval_binop(left_sval, op, right_sval);
2007 return alloc_rl(val, val);
2008 }

2010 switch (op) {
2011 case ’%’:
2012 ret = handle_mod_rl(left, right);
2013 break;
2014 case ’/’:
2015 ret = handle_divide_rl(left, right);
2016 break;
2017 case ’*’:
2018 case ’+’:
2019 ret = handle_add_mult_rl(left, op, right);
2020 break;
2021 case ’|’:
2022 ret = handle_OR_rl(left, right);
2023 break;
2024 case ’^’:
2025 ret = handle_XOR_rl(left, right);
2026 break;
2027 case ’&’:
2028 ret = handle_AND_rl(left, right);
2029 break;
2030 case ’-’:
2031 ret = handle_sub_rl(left, right);
2032 break;
1715 /* FIXME: Do the rest as well */
2033 case SPECIAL_RIGHTSHIFT:
2034 return handle_rshift(left, right);
2035 case SPECIAL_LEFTSHIFT:
2036 return handle_lshift(left, right);
1718 break;
2037 }

2039 return ret;
2040 }
______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_real_absolute.c 1

**
 3750 Mon Aug 5 08:38:43 2019
new/usr/src/tools/smatch/src/smatch_real_absolute.c
11506 smatch resync
**
______unchanged_portion_omitted_

88 static void match_assign(struct expression *expr)
89 {
90 struct range_list *rl;
91 struct symbol *type;
92 sval_t sval;

94 if (expr->op != ’=’)
95 return;
96 if (is_fake_call(expr->right))
97 return;
98 if (in_iterator_pre_statement())
99 return;

101 get_real_absolute_rl(expr->right, &rl);

103 type = get_type(expr->left);
104 if (!type)
105 return;
106 if (type->type != SYM_PTR && type->type != SYM_BASETYPE &&
107 type->type != SYM_ENUM)
108 return;

110 rl = cast_rl(type, rl);
111 if (is_whole_rl(rl) && !get_state_expr(my_id, expr->left))
112 return;
113 /* These are handled by smatch_extra.c */
114 if (rl_to_sval(rl, &sval) && !get_state_expr(my_id, expr->left))
115 return;

117 set_state_expr(my_id, expr->left, alloc_estate_rl(clone_rl(rl)));
118 }

______unchanged_portion_omitted_

130 void register_real_absolute(int id)
131 {
132 my_id = id;

134 set_dynamic_states(my_id);
135 add_pre_merge_hook(my_id, &pre_merge_hook);
136 add_unmatched_state_hook(my_id, &empty_state);
137 add_merge_hook(my_id, &merge_estates);
138 add_modification_hook(my_id, &reset);

140 add_hook(&match_assign, ASSIGNMENT_HOOK);
141 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_return_to_param.c 1

**
 5971 Mon Aug 5 08:38:43 2019
new/usr/src/tools/smatch/src/smatch_return_to_param.c
11506 smatch resync
**
______unchanged_portion_omitted_

52 char *map_call_to_other_name_sym(const char *name, struct symbol *sym, struct sy
53 {
54 struct smatch_state *state;
55 int skip;
56 char buf[256];

58 /* skip ’foo->’. This was checked in the caller. */
59 skip = sym->ident->len + 2;
59 skip = strlen(sym->ident->name) + 2;

61 state = get_state(my_id, sym->ident->name, sym);
62 if (!state || !state->data)
63 return NULL;

65 snprintf(buf, sizeof(buf), "%s->%s", state->name, name + skip);
66 *new_sym = state->data;
67 return alloc_string(buf);
68 }

______unchanged_portion_omitted_

90 static char *map_assignment_long_to_short(struct sm_state *sm, const char *name,
91 {
92 struct expression *orig_expr;
93 struct symbol *orig_sym;
94 int len;
95 char buf[256];

97 orig_expr = sm->state->data;
98 if (!orig_expr)
99 return NULL;

101 /*
102 * Say we have an assignment like:
103 * foo->bar->my_ptr = my_ptr;
104 * We still expect the function to carry on using "my_ptr" as the
105 * shorter name. That’s not a long to short mapping.
106 *
107 */
108 if (orig_expr->type == EXPR_SYMBOL)
109 return NULL;

111 orig_sym = expr_to_sym(orig_expr);
112 if (!orig_sym)
113 return NULL;
114 if (sym != orig_sym)
115 return NULL;

117 len = strlen(sm->state->name);
118 if (strncmp(name, sm->state->name, len) != 0)
119 return NULL;

121 if (name[len] == ’.’)
122 return NULL;
123 if (!stack && name[len] != ’-’)
124 return NULL;
125 snprintf(buf, sizeof(buf), "%s%s", sm->name, name + len);
126 *new_sym = sm->sym;
127 return alloc_string(buf);
128 }

new/usr/src/tools/smatch/src/smatch_return_to_param.c 2

90 /*
91 * Normally, we expect people to consistently refer to variables by the shortest
92 * name. So they use "b->a" instead of "foo->bar.a" when both point to the
93 * same memory location. However, when we’re dealing across function boundaries
94 * then sometimes we pass frob(foo) which sets foo->bar.a. In that case, we
95 * translate it to the shorter name. Smatch extra updates the shorter name,
96 * which in turn updates the longer name.
97 *
98 */
99 char *map_long_to_short_name_sym(const char *name, struct symbol *sym, struct sy
139 static char *map_long_to_short_name_sym_helper(const char *name, struct symbol *
100 {
101 char *ret;
102 struct sm_state *sm;

104 *new_sym = NULL;

106 FOR_EACH_SM(__get_cur_stree(), sm) {
107 if (sm->owner == my_id) {
108 ret = map_my_state_long_to_short(sm, name, sym, new_sym,
109 if (ret) {
110 if (local_debug)
111 sm_msg("%s: my_state: name = ’%s’ sm = ’
112 __func__, name, show_sm(sm));
148 ret = map_my_state_long_to_short(sm, name, sym, new_sym,
149 if (ret)
113 return ret;
151 continue;
114 }
153 if (sm->owner == check_assigned_expr_id) {
154 ret = map_assignment_long_to_short(sm, name, sym, new_sy
155 if (ret)
156 return ret;
115 continue;
116 }
117 } END_FOR_EACH_SM(sm);

119 return NULL;
120 }

164 char *map_long_to_short_name_sym(const char *name, struct symbol *sym, struct sy
165 {
166 return map_long_to_short_name_sym_helper(name, sym, new_sym, 1);
167 }

169 char *map_long_to_short_name_sym_nostack(const char *name, struct symbol *sym, s
170 {
171 return map_long_to_short_name_sym_helper(name, sym, new_sym, 0);
172 }

122 char *map_call_to_param_name_sym(struct expression *expr, struct symbol **sym)
123 {
124 char *name;
125 struct symbol *start_sym;
126 struct smatch_state *state;

128 *sym = NULL;

130 name = expr_to_str_sym(expr, &start_sym);
131 if (!name)
132 return NULL;
133 if (expr->type == EXPR_CALL)
134 start_sym = expr_to_sym(expr->fn);

136 state = get_state(my_id, name, start_sym);

new/usr/src/tools/smatch/src/smatch_return_to_param.c 3

137 free_string(name);
138 if (!state || !state->data)
139 return NULL;

141 *sym = state->data;
142 return alloc_string(state->name);
143 }

______unchanged_portion_omitted_

228 void register_return_to_param(int id)
229 {
230 my_id = id;
231 set_dynamic_states(my_id);
232 add_modification_hook(my_id, &undef);
233 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_returns.c 1

**
 3755 Mon Aug 5 08:38:44 2019
new/usr/src/tools/smatch/src/smatch_returns.c
11506 smatch resync
**
______unchanged_portion_omitted_

129 void register_returns_early(int id)
130 {
131 RETURN_ID = id;

133 set_dynamic_states(RETURN_ID);
134 add_split_return_callback(match_return);
135 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_scripts/build_kernel_data.sh 1

**
 1310 Mon Aug 5 08:38:44 2019
new/usr/src/tools/smatch/src/smatch_scripts/build_kernel_data.sh
11506 smatch resync
**
______unchanged_portion_omitted_

13 if ["$1" = "-h"] || ["$1" = "--help"] ; then
14 usage;
15 fi

17 SCRIPT_DIR=$(dirname $0)
18 if [-e $SCRIPT_DIR/../smatch -a -d kernel -a -d fs] ; then
19 CMD=$SCRIPT_DIR/../smatch
20 DATA_DIR=$SCRIPT_DIR/../smatch_data
21 else
22 echo "This script should be located in the smatch_scripts/ subdirectory of t
23 echo "It should be run from the root of a kernel source tree."
24 exit 1
25 fi

27 # If someone is building the database for the first time then make sure all the
28 # required packages are installed
29 if [! -e smatch_db.sqlite] ; then
30 [-e smatch_warns.txt] || touch smatch_warns.txt
31 if ! $DATA_DIR/db/create_db.sh -p=kernel smatch_warns.txt ; then
32 echo "Hm... Not working. Make sure you have all the sqlite3 packages"
33 echo "And the sqlite3 libraries for Perl and Python"
34 exit 1
35 fi
36 fi

38 BUILD_STATUS=0
39 $SCRIPT_DIR/test_kernel.sh --call-tree --info --param-mapper --spammy --data=$DA
38 $SCRIPT_DIR/test_kernel.sh --call-tree --info --param-mapper --spammy --data=$DA

41 for i in $SCRIPT_DIR/gen_* ; do
42 $i smatch_warns.txt -p=kernel
43 done

45 mv ${PROJECT}.* $DATA_DIR

47 $DATA_DIR/db/create_db.sh -p=kernel smatch_warns.txt

49 exit $BUILD_STATUS

new/usr/src/tools/smatch/src/smatch_scripts/kpatch.sh 1

**
 2634 Mon Aug 5 08:38:44 2019
new/usr/src/tools/smatch/src/smatch_scripts/kpatch.sh
11506 smatch resync
**

1 #!/bin/bash -e

3 TMP_DIR=/tmp

5 help()
6 {
7 echo "Usage: $0 [--no-compile|--amend] <filename>"
7 echo "Usage: $0 [--no-compile|--ammend] <filename>"
8 echo "You must be at the base of the kernel tree to run this."
9 exit 1

10 }
______unchanged_portion_omitted_

33 NO_COMPILE=false
34 AMEND=""

36 while true ; do
37 if [["$1" == "--no-compile"]] ; then
38 NO_COMPILE=true
39 shift
40 elif [["$1" == "--amend"]] ; then
40 elif [["$1" == "--ammend"]] ; then
41 AMEND="--amend"
42 shift
43 else
44 break
45 fi
46 done

48 if [! -f $1] ; then
49 help
50 fi

52 fullname=$1
53 filename=$(basename $fullname)
54 oname=$(echo ${fullname/.c/.o})

56 MSG_FILE=$TMP_DIR/${filename}.msg
57 MAIL_FILE=$TMP_DIR/${filename}.mail
56 MAIL_FILE=$TMP_DIR/${filename}.msg

59 # heat up the disk cache
60 #git log --oneline $fullname | head -n 10 > /dev/null &

62 echo "QC checklist"
63 qc "Have you handled all the errors properly?"
64 if git diff $fullname | grep ^+ | grep -qi alloc ; then
65 qc "Have you freed all your mallocs?"
66 fi
67 if git diff $fullname | grep ^+ | grep -qi alloc ; then
68 qc "Have you check all your mallocs for NULL returns?"
69 fi

71 if ["$NO_COMPILE" != "true"] ; then
72 kchecker --spammy $fullname
73 kchecker --sparse --endian $fullname
74 # rm $oname
75 # make C=1 CHECK="scripts/coccicheck" $oname
76 fi

78 for file in $(grep -l $fullname ~/var/mail/sent-*) ; do

new/usr/src/tools/smatch/src/smatch_scripts/kpatch.sh 2

79 grepmail $fullname $file | grep -i ^subject || echo -n ""
80 done
74 grepmail $fullname ~/var/mail/sent* | grep -i ^subject || echo -n ""
81 qc "Looks OK?"

77 git log --oneline $fullname | head -n 10
78 echo "Copy and paste one of these subjects?"
79 read unused

83 git add $fullname
82 git commit --signoff $AMEND

85 cat /dev/null > $MSG_FILE
86 if ["$AMEND" != ""] ; then
87 git format-patch HEAD^ --stdout >> $MSG_FILE
88 else
89 echo "" >> $MSG_FILE
90 echo "Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>" >> $MSG_FILE
91 echo "" >> $MSG_FILE
92 echo "# $sm_err" >> $MSG_FILE
93 fi
94 git log -10 --oneline $fullname | sed -e ’s/^/# /’ >> $MSG_FILE
95 vim $MSG_FILE

97 grep -v ’^#’ $MSG_FILE > $MSG_FILE.1
98 mv $MSG_FILE.1 $MSG_FILE

100 git commit $AMEND -F $MSG_FILE

102 to_addr=$(./scripts/get_maintainer.pl -f --noroles --norolestats $fullname | hea
103 cc_addr=$(./scripts/get_maintainer.pl -f --noroles --norolestats $fullname | tai
104 perl -ne ’s/\n$/, /; print’)
105 cc_addr="$cc_addr, kernel-janitors@vger.kernel.org"

107 echo -n "To: " > $MAIL_FILE
108 echo "$to_addr" >> $MAIL_FILE
109 echo -n "CC: " >> $MAIL_FILE
110 echo "$cc_addr" >> $MAIL_FILE
111 echo "X-Mailer: git-send-email haha only kidding" >> $MAIL_FILE

113 git format-patch HEAD^ --stdout >> $MAIL_FILE

115 ./scripts/checkpatch.pl $MAIL_FILE || continue_yn

117 echo "Press ENTER to continue"
118 read unused

120 mutt -H $MAIL_FILE

new/usr/src/tools/smatch/src/smatch_scripts/test_kernel.sh 1

**
 1996 Mon Aug 5 08:38:45 2019
new/usr/src/tools/smatch/src/smatch_scripts/test_kernel.sh
11506 smatch resync
**
______unchanged_portion_omitted_

21 while true ; do
22 if [["$1" == "--endian"]] ; then
23 ENDIAN="CF=-D__CHECK_ENDIAN__"
24 shift
25 elif [["$1" == "--target"]] ; then
26 shift
27 TARGET="$1"
28 shift
29 elif [["$1" == "--log"]] ; then
30 shift
31 LOG="$1"
32 shift
33 elif [["$1" == "--wlog"]] ; then
34 shift
35 WLOG="$1"
36 shift
37 elif [["$1" == "--help"]] ; then
38 usage
39 else
40 break
41 fi
42 done

44 # receive parameters from environment, which override
45 [-z "${SMATCH_ENV_TARGET:-}"] || TARGET="$SMATCH_ENV_TARGET"
46 [-z "${SMATCH_ENV_BUILD_PARAM:-}"] || BUILD_PARAM="$SMATCH_ENV_BUILD_PARAM"

48 SCRIPT_DIR=$(dirname $0)
49 if [-e $SCRIPT_DIR/../smatch] ; then
50 cp $SCRIPT_DIR/../smatch $SCRIPT_DIR/../bak.smatch
51 CMD=$SCRIPT_DIR/../bak.smatch
52 elif which smatch | grep smatch > /dev/null ; then
53 CMD=smatch
54 else
55 echo "Smatch binary not found."
56 exit 1
57 fi

59 make clean
60 find -name *.c.smatch -exec rm \{\} \;
61 make -j${NR_CPU} $ENDIAN -k CHECK="$CMD -p=kernel --file-output --succeed $*" \
62 C=1 $BUILD_PARAM $TARGET 2>&1 | tee $LOG
63 BUILD_STATUS=${PIPESTATUS[0]}
58 C=1 $TARGET 2>&1 | tee $LOG
64 find -name *.c.smatch -exec cat \{\} \; -exec rm \{\} \; > $WLOG
65 find -name *.c.smatch.sql -exec cat \{\} \; -exec rm \{\} \; > $WLOG.sql
66 find -name *.c.smatch.caller_info -exec cat \{\} \; -exec rm \{\} \; > $WLOG.ca

68 echo "Done. Build with status $BUILD_STATUS. The warnings are saved to $WLOG"
69 exit $BUILD_STATUS
63 echo "Done. The warnings are saved to $WLOG"

new/usr/src/tools/smatch/src/smatch_slist.c 1

**
 24609 Mon Aug 5 08:38:45 2019
new/usr/src/tools/smatch/src/smatch_slist.c
11506 smatch resync
**
______unchanged_portion_omitted_

87 /* NULL states go at the end to simplify merge_slist */
88 int cmp_tracker(const struct sm_state *a, const struct sm_state *b)
89 {
90 int ret;

92 if (a == b)
93 return 0;
94 if (!b)
95 return -1;
96 if (!a)
97 return 1;

99 if (a->owner < b->owner)
100 return -1;
101 if (a->owner > b->owner)
100 return -1;
101 if (a->owner < b->owner)
102 return 1;

104 ret = strcmp(a->name, b->name);
105 if (ret < 0)
106 return -1;
107 if (ret > 0)
108 return 1;

110 if (!b->sym && a->sym)
111 return -1;
112 if (!a->sym && b->sym)
113 return 1;
114 if (a->sym < b->sym)
115 return -1;
116 if (a->sym > b->sym)
117 return 1;

119 return 0;
120 }

122 int *dynamic_states;
123 void allocate_dynamic_states_array(int num_checks)
122 static int cmp_sm_states(const struct sm_state *a, const struct sm_state *b, int
124 {
125 dynamic_states = calloc(num_checks + 1, sizeof(int));
126 }

128 void set_dynamic_states(unsigned short owner)
129 {
130 dynamic_states[owner] = true;
131 }

133 bool has_dynamic_states(unsigned short owner)
134 {
135 if (owner >= num_checks)
136 return false;
137 return dynamic_states[owner];
138 }

140 static int cmp_possible_sm(const struct sm_state *a, const struct sm_state *b, i
141 {
142 int ret;

new/usr/src/tools/smatch/src/smatch_slist.c 2

144 if (a == b)
145 return 0;
126 ret = cmp_tracker(a, b);
127 if (ret)
128 return ret;

147 if (!has_dynamic_states(a->owner)) {
130 /* todo: add hook for smatch_extra.c */
148 if (a->state > b->state)
149 return -1;
150 if (a->state < b->state)
151 return 1;
152 return 0;
153 }

155 if (a->owner == SMATCH_EXTRA) {
156 /*
157 * In Smatch extra you can have borrowed implications.
135 /* This is obviously a massive disgusting hack but we need to preserve
136 * the unmerged states for smatch extra because we use them in
137 * smatch_db.c. Meanwhile if we preserve all the other unmerged states
138 * then it uses a lot of memory and we don’t use it. Hence this hack.
158 *
159 * FIXME: review how borrowed implications work and if they
160 * are the best way. See also smatch_implied.c.
161 *
140 * Also sometimes even just preserving every possible SMATCH_EXTRA state
141 * takes too much resources so we have to cap that. Capping is probably
142 * not often a problem in real life.
162 */
163 ret = cmp_tracker(a, b);
164 if (ret)
165 return ret;

167 /*
168 * We want to preserve leaf states. They’re use to split
169 * returns in smatch_db.c.
170 *
171 */
172 if (preserve) {
173 if (a->merged && !b->merged)
144 if (a->owner == SMATCH_EXTRA && preserve) {
145 if (a == b)
146 return 0;
147 if (a->merged == 1 && b->merged == 0)
174 return -1;
175 if (!a->merged)
149 if (a->merged == 0)
176 return 1;
177 }
178 }
179 if (!a->state->name || !b->state->name)
180 return 0;

182 return strcmp(a->state->name, b->state->name);
153 return 0;
183 }

185 struct sm_state *alloc_sm_state(int owner, const char *name,
186 struct symbol *sym, struct smatch_state *state)
187 {
188 struct sm_state *sm_state = __alloc_sm_state(0);

190 sm_state_counter++;

new/usr/src/tools/smatch/src/smatch_slist.c 3

192 sm_state->name = alloc_sname(name);
193 sm_state->owner = owner;
194 sm_state->sym = sym;
195 sm_state->state = state;
196 sm_state->line = get_lineno();
197 sm_state->merged = 0;
198 sm_state->pool = NULL;
199 sm_state->left = NULL;
200 sm_state->right = NULL;
172 sm_state->nr_children = 1;
201 sm_state->possible = NULL;
202 add_ptr_list(&sm_state->possible, sm_state);
203 return sm_state;
204 }

______unchanged_portion_omitted_

224 void add_possible_sm(struct sm_state *to, struct sm_state *new)
225 {
226 struct sm_state *tmp;
227 int preserve = 1;
228 int cmp;

230 if (too_many_possible(to))
231 preserve = 0;

233 FOR_EACH_PTR(to->possible, tmp) {
234 cmp = cmp_possible_sm(tmp, new, preserve);
235 if (cmp < 0)
205 if (cmp_sm_states(tmp, new, preserve) < 0)
236 continue;
237 else if (cmp == 0) {
207 else if (cmp_sm_states(tmp, new, preserve) == 0) {
238 return;
239 } else {
240 INSERT_CURRENT(new, tmp);
241 return;
242 }
243 } END_FOR_EACH_PTR(tmp);
244 add_ptr_list(&to->possible, new);
245 }

247 static void copy_possibles(struct sm_state *to, struct sm_state *one, struct sm_
217 static void copy_possibles(struct sm_state *to, struct sm_state *from)
248 {
249 struct sm_state *large = one;
250 struct sm_state *small = two;
251 struct sm_state *tmp;

253 /*
254 * We spend a lot of time copying the possible lists. I’ve tried to
255 * optimize the process a bit.
256 *
257 */

259 if (ptr_list_size((struct ptr_list *)two->possible) >
260 ptr_list_size((struct ptr_list *)one->possible)) {
261 large = two;
262 small = one;
263 }

265 to->possible = clone_slist(large->possible);
266 add_possible_sm(to, to);
267 FOR_EACH_PTR(small->possible, tmp) {
221 FOR_EACH_PTR(from->possible, tmp) {
268 add_possible_sm(to, tmp);
269 } END_FOR_EACH_PTR(tmp);

new/usr/src/tools/smatch/src/smatch_slist.c 4

270 }
______unchanged_portion_omitted_

283 static struct symbol *oom_func;
284 static int oom_limit = 3000000; /* Start with a 3GB limit */
285 int out_of_memory(void)
286 {
287 if (oom_func)
288 return 1;

290 /*
291 * I decided to use 50M here based on trial and error.
292 * It works out OK for the kernel and so it should work
293 * for most other projects as well.
294 */
295 if (sm_state_counter * sizeof(struct sm_state) >= 100000000)
296 return 1;

298 /*
299 * We’re reading from statm to figure out how much memory we
300 * are using. The problem is that at the end of the function
301 * we release the memory, so that it can be re-used but it
302 * stays in cache, it’s not released to the OS. So then if
303 * we allocate memory for different purposes we can easily
304 * hit the 3GB limit on the next function, so that’s why I give
305 * the next function an extra 100MB to work with.
306 *
307 */
308 if (get_mem_kb() > oom_limit) {
309 oom_func = cur_func_sym;
310 final_pass++;
311 sm_perror("OOM: %luKb sm_state_count = %d", get_mem_kb(), sm_sta
312 final_pass--;
313 return 1;
314 }

316 return 0;
317 }

______unchanged_portion_omitted_

348 /* At the end of every function we free all the sm_states */
349 void free_every_single_sm_state(void)
350 {
351 struct allocator_struct *desc = &sm_state_allocator;
352 struct allocation_blob *blob = desc->blobs;

354 desc->blobs = NULL;
355 desc->allocations = 0;
356 desc->total_bytes = 0;
357 desc->useful_bytes = 0;
358 desc->freelist = NULL;
359 while (blob) {
360 struct allocation_blob *next = blob->next;
361 free_all_sm_states(blob);
362 blob_free(blob, desc->chunking);
363 blob = next;
364 }
365 clear_sname_alloc();
366 clear_smatch_state_alloc();

368 free_stack_and_strees(&all_pools);
369 sm_state_counter = 0;
370 if (oom_func) {
371 oom_limit += 100000;
372 oom_func = NULL;
373 }

new/usr/src/tools/smatch/src/smatch_slist.c 5

374 }
______unchanged_portion_omitted_

381 struct sm_state *clone_sm(struct sm_state *s)
382 {
383 struct sm_state *ret;

385 ret = alloc_state_no_name(s->owner, s->name, s->sym, s->state);
386 ret->merged = s->merged;
387 ret->line = s->line;
388 /* clone_sm() doesn’t copy the pools. Each state needs to have
389 only one pool. */
390 ret->possible = clone_slist(s->possible);
391 ret->left = s->left;
392 ret->right = s->right;
319 ret->nr_children = s->nr_children;
393 return ret;
394 }

______unchanged_portion_omitted_

450 struct sm_state *merge_sm_states(struct sm_state *one, struct sm_state *two)
451 {
452 struct smatch_state *s;
453 struct sm_state *result;
454 static int warned;

456 if (one == two)
457 return one;
458 if (out_of_memory()) {
459 if (!warned)
460 sm_warning("Function too hairy. No more merges.");
461 warned = 1;
462 return one;
463 }
464 warned = 0;
465 s = merge_states(one->owner, one->name, one->sym, one->state, two->state
466 result = alloc_state_no_name(one->owner, one->name, one->sym, s);
467 result->merged = 1;
468 result->left = one;
469 result->right = two;
397 result->nr_children = one->nr_children + two->nr_children;
398 copy_possibles(result, one);
399 copy_possibles(result, two);

471 copy_possibles(result, one, two);

473 /*
474 * The ->line information is used by deref_check where we complain about
475 * checking pointers that have already been dereferenced. Let’s say we
476 * dereference a pointer on both the true and false paths and then merge
477 * the states here. The result state is &derefed, but the ->line number
478 * is on the line where the pointer is merged not where it was
479 * dereferenced..
480 *
481 * So in that case, let’s just pick one dereference and set the ->line
482 * to point at it.
483 *
484 */

486 if (result->state == one->state)
487 result->line = one->line;
488 if (result->state == two->state)
489 result->line = two->line;

491 if (option_debug ||
492 strcmp(check_name(one->owner), option_debug_check) == 0) {

new/usr/src/tools/smatch/src/smatch_slist.c 6

493 struct sm_state *tmp;
494 int i = 0;

496 printf("%s:%d %s() merge [%s] ’%s’ %s(L %d) + %s(L %d) => %s (",
497 get_filename(), get_lineno(), get_function(),
498 check_name(one->owner), one->name,
499 show_state(one->state), one->line,
500 show_state(two->state), two->line,
501 show_state(s));

503 FOR_EACH_PTR(result->possible, tmp) {
504 if (i++)
505 printf(", ");
506 printf("%s", show_state(tmp->state));
507 } END_FOR_EACH_PTR(tmp);
508 printf(")\n");
509 }

511 return result;
512 }

______unchanged_portion_omitted_

780 int __stree_id;

782 /*
783 * merge_slist() is called whenever paths merge, such as after
784 * an if statement. It takes the two slists and creates one.
785 */
786 static void __merge_stree(struct stree **to, struct stree *stree, int add_pool)
787 {
788 struct stree *results = NULL;
789 struct stree *implied_one = NULL;
790 struct stree *implied_two = NULL;
791 AvlIter one_iter;
792 AvlIter two_iter;
793 struct sm_state *one, *two, *res;
721 struct sm_state *tmp_sm;

795 if (out_of_memory())
796 return;

798 /* merging a null and nonnull path gives you only the nonnull path */
799 if (!stree)
800 return;
801 if (*to == stree)
802 return;

804 if (!*to) {
805 *to = clone_stree(stree);
806 return;
807 }

809 implied_one = clone_stree(*to);
810 implied_two = clone_stree(stree);

812 match_states_stree(&implied_one, &implied_two);
813 call_pre_merge_hooks(&implied_one, &implied_two);

815 if (add_pool) {
816 clone_pool_havers_stree(&implied_one);
817 clone_pool_havers_stree(&implied_two);

819 set_stree_id(&implied_one, ++__stree_id);
820 set_stree_id(&implied_two, ++__stree_id);
821 if (implied_one->base_stree)
822 set_stree_id(&implied_one->base_stree, ++__stree_id);

new/usr/src/tools/smatch/src/smatch_slist.c 7

823 if (implied_two->base_stree)
824 set_stree_id(&implied_two->base_stree, ++__stree_id);
825 }

827 push_stree(&all_pools, implied_one);
828 push_stree(&all_pools, implied_two);

830 avl_iter_begin(&one_iter, implied_one, FORWARD);
831 avl_iter_begin(&two_iter, implied_two, FORWARD);

833 for (;;) {
834 if (!one_iter.sm || !two_iter.sm)
835 break;

837 one = one_iter.sm;
838 two = two_iter.sm;

840 if (one == two) {
841 avl_insert(&results, one);
842 goto next;
843 }

845 if (add_pool) {
846 one->pool = implied_one;
764 if (cmp_tracker(one_iter.sm, two_iter.sm) < 0) {
765 sm_perror(" in %s", __func__);
766 avl_iter_next(&one_iter);
767 } else if (cmp_tracker(one_iter.sm, two_iter.sm) == 0) {
768 if (add_pool && one_iter.sm != two_iter.sm) {
769 one_iter.sm->pool = implied_one;
847 if (implied_one->base_stree)
848 one->pool = implied_one->base_stree;
849 two->pool = implied_two;
771 one_iter.sm->pool = implied_one->base_st
772 two_iter.sm->pool = implied_two;
850 if (implied_two->base_stree)
851 two->pool = implied_two->base_stree;
774 two_iter.sm->pool = implied_two->base_st
852 }
853 res = merge_sm_states(one, two);
854 add_possible_sm(res, one);
855 add_possible_sm(res, two);
856 avl_insert(&results, res);
857 next:
776 tmp_sm = merge_sm_states(one_iter.sm, two_iter.sm);
777 add_possible_sm(tmp_sm, one_iter.sm);
778 add_possible_sm(tmp_sm, two_iter.sm);
779 avl_insert(&results, tmp_sm);
858 avl_iter_next(&one_iter);
859 avl_iter_next(&two_iter);
782 } else {
783 sm_perror(" in %s", __func__);
784 avl_iter_next(&two_iter);
860 }
786 }

862 free_stree(to);
863 *to = results;
864 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_slist.h 1

**
 3758 Mon Aug 5 08:38:46 2019
new/usr/src/tools/smatch/src/smatch_slist.h
11506 smatch resync
**
______unchanged_portion_omitted_
13 DECLARE_ALLOCATOR(named_stree);
14 DECLARE_PTR_LIST(named_stree_stack, struct named_stree);

17 extern struct state_list_stack *implied_pools;
18 extern int __stree_id;
19 extern int sm_state_counter;

21 const char *show_sm(struct sm_state *sm);
22 void __print_stree(struct stree *stree);
23 void add_history(struct sm_state *sm);
24 int cmp_tracker(const struct sm_state *a, const struct sm_state *b);
25 char *alloc_sname(const char *str);
26 struct sm_state *alloc_sm_state(int owner, const char *name,
27 struct symbol *sym, struct smatch_state *state);

29 void free_every_single_sm_state(void);
30 struct sm_state *clone_sm(struct sm_state *s);
31 int is_merged(struct sm_state *sm);
32 int is_leaf(struct sm_state *sm);
33 struct state_list *clone_slist(struct state_list *from_slist);

35 int slist_has_state(struct state_list *slist, struct smatch_state *state);

37 int too_many_possible(struct sm_state *sm);
38 void add_possible_sm(struct sm_state *to, struct sm_state *new);
39 struct sm_state *merge_sm_states(struct sm_state *one, struct sm_state *two);
40 struct smatch_state *get_state_stree(struct stree *stree, int owner, const char
41 struct symbol *sym);

43 struct sm_state *get_sm_state_stree(struct stree *stree, int owner, const char *
44 struct symbol *sym);

46 void overwrite_sm_state_stree(struct stree **stree, struct sm_state *sm);
47 void overwrite_sm_state_stree_stack(struct stree_stack **stack, struct sm_state
48 struct sm_state *set_state_stree(struct stree **stree, int owner, const char *na
49 struct symbol *sym, struct smatch_state *state);
50 void set_state_stree_perm(struct stree **stree, int owner, const char *name,
51 struct symbol *sym, struct smatch_state *state);
52 void delete_state_stree(struct stree **stree, int owner, const char *name,
53 struct symbol *sym);

55 void delete_state_stree_stack(struct stree_stack **stack, int owner, const char
56 struct symbol *sym);

58 void push_stree(struct stree_stack **list_stack, struct stree *stree);
59 struct stree *pop_stree(struct stree_stack **list_stack);
60 struct stree *top_stree(struct stree_stack *stack);

62 void free_slist(struct state_list **slist);
63 void free_stree_stack(struct stree_stack **stack);
64 void free_stack_and_strees(struct stree_stack **stree_stack);
65 unsigned long get_pool_count(void);

67 struct sm_state *set_state_stree_stack(struct stree_stack **stack, int owner, co
68 struct symbol *sym, struct smatch_state *state);

70 struct sm_state *get_sm_state_stree_stack(struct stree_stack *stack,
71 int owner, const char *name,
72 struct symbol *sym);

new/usr/src/tools/smatch/src/smatch_slist.h 2

73 struct smatch_state *get_state_stree_stack(struct stree_stack *stack, int owner,
74 const char *name, struct symbol *sym);

76 int out_of_memory(void);
77 int low_on_memory(void);
78 void merge_stree(struct stree **to, struct stree *stree);
79 void merge_stree_no_pools(struct stree **to, struct stree *stree);
80 void merge_stree(struct stree **to, struct stree *right);
81 void merge_fake_stree(struct stree **to, struct stree *stree);
82 void filter_stree(struct stree **stree, struct stree *filter);
83 void and_stree_stack(struct stree_stack **stree_stack);

85 void or_stree_stack(struct stree_stack **pre_conds,
86 struct stree *cur_stree,
87 struct stree_stack **stack);

89 struct stree **get_named_stree(struct named_stree_stack *stack,
90 const char *name,
91 struct symbol *sym);

93 void overwrite_stree(struct stree *from, struct stree **to);

95 /* add stuff smatch_returns.c here */

97 void all_return_states_hook(void (*callback)(void));

99 void allocate_dynamic_states_array(int num_checks);

new/usr/src/tools/smatch/src/smatch_statement_count.c 1

**
 2133 Mon Aug 5 08:38:46 2019
new/usr/src/tools/smatch/src/smatch_statement_count.c
11506 smatch resync
**
______unchanged_portion_omitted_

78 void register_statement_count(int id)
79 {
80 my_id = id;

82 set_dynamic_states(my_id);
83 add_hook(match_statement, STMT_HOOK);
84 add_merge_hook(my_id, &merge_states);

86 add_split_return_callback(&insert_return_info);
87 select_return_states_hook(STMT_CNT, &select_return_info);
88 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_states.c 1

**
 25946 Mon Aug 5 08:38:46 2019
new/usr/src/tools/smatch/src/smatch_states.c
11506 smatch resync
**
______unchanged_portion_omitted_

83 struct sm_state *set_state(int owner, const char *name, struct symbol *sym, stru
84 {
85 struct sm_state *ret;

87 if (!name || !state)
87 if (!name)
88 return NULL;

90 if (read_only)
91 sm_perror("cur_stree is read only.");

93 if (option_debug || strcmp(check_name(owner), option_debug_check) == 0)
94 struct smatch_state *s;

96 s = __get_state(owner, name, sym);
96 s = get_state(owner, name, sym);
97 if (!s)
98 sm_msg("%s new [%s] ’%s’ %s", __func__,
99 check_name(owner), name, show_state(state));
100 else
101 sm_msg("%s change [%s] ’%s’ %s => %s",
102 __func__, check_name(owner), name, show_state(s)
103 show_state(state));
104 }

106 if (owner != -1 && unreachable())
107 return NULL;

109 if (fake_cur_stree_stack)
110 set_state_stree_stack(&fake_cur_stree_stack, owner, name, sym, s

112 ret = set_state_stree(&cur_stree, owner, name, sym, state);

114 return ret;
115 }

______unchanged_portion_omitted_

190 void __set_sm(struct sm_state *sm)
191 {
192 if (read_only)
193 sm_perror("cur_stree is read only.");

195 if (option_debug ||
196 strcmp(check_name(sm->owner), option_debug_check) == 0) {
197 struct smatch_state *s;

199 s = __get_state(sm->owner, sm->name, sm->sym);
199 s = get_state(sm->owner, sm->name, sm->sym);
200 if (!s)
201 sm_msg("%s new %s", __func__, show_sm(sm));
202 else
203 sm_msg("%s change %s (was %s)", __func__, show_sm(sm),
204 show_state(s));
205 }

207 if (unreachable())
208 return;

210 if (fake_cur_stree_stack)

new/usr/src/tools/smatch/src/smatch_states.c 2

211 overwrite_sm_state_stree_stack(&fake_cur_stree_stack, sm);

213 overwrite_sm_state_stree(&cur_stree, sm);
214 }

216 void __set_sm_cur_stree(struct sm_state *sm)
217 {
218 if (read_only)
219 sm_perror("cur_stree is read only.");

221 if (option_debug ||
222 strcmp(check_name(sm->owner), option_debug_check) == 0) {
223 struct smatch_state *s;

225 s = __get_state(sm->owner, sm->name, sm->sym);
225 s = get_state(sm->owner, sm->name, sm->sym);
226 if (!s)
227 sm_msg("%s new %s", __func__, show_sm(sm));
228 else
229 sm_msg("%s change %s (was %s)",
230 __func__, show_sm(sm), show_state(s));
231 }

233 if (unreachable())
234 return;

236 overwrite_sm_state_stree(&cur_stree, sm);
237 }

239 void __set_sm_fake_stree(struct sm_state *sm)
240 {
241 if (read_only)
242 sm_perror("cur_stree is read only.");

244 if (option_debug ||
245 strcmp(check_name(sm->owner), option_debug_check) == 0) {
246 struct smatch_state *s;

248 s = __get_state(sm->owner, sm->name, sm->sym);
248 s = get_state(sm->owner, sm->name, sm->sym);
249 if (!s)
250 sm_msg("%s new %s", __func__, show_sm(sm));
251 else
252 sm_msg("%s change %s (was %s)",
253 __func__, show_sm(sm), show_state(s));
254 }

256 if (unreachable())
257 return;

259 overwrite_sm_state_stree_stack(&fake_cur_stree_stack, sm);
260 }

______unchanged_portion_omitted_

470 void set_true_false_states(int owner, const char *name, struct symbol *sym,
471 struct smatch_state *true_state,
472 struct smatch_state *false_state)
473 {
474 if (read_only)
475 sm_perror("cur_stree is read only.");

477 if (option_debug || strcmp(check_name(owner), option_debug_check) == 0)
478 struct smatch_state *tmp;

480 tmp = __get_state(owner, name, sym);
480 tmp = get_state(owner, name, sym);

new/usr/src/tools/smatch/src/smatch_states.c 3

481 sm_msg("%s [%s] ’%s’. Was %s. Now T:%s F:%s", __func__,
482 check_name(owner), name, show_state(tmp),
483 show_state(true_state), show_state(false_state));
484 }

486 if (unreachable())
487 return;

489 if (!cond_false_stack || !cond_true_stack) {
490 sm_perror("missing true/false stacks");
491 return;
492 }

494 if (true_state)
495 set_state_stree_stack(&cond_true_stack, owner, name, sym, true_s
496 if (false_state)
497 set_state_stree_stack(&cond_false_stack, owner, name, sym, false
498 }

______unchanged_portion_omitted_

516 void __set_true_false_sm(struct sm_state *true_sm, struct sm_state *false_sm)
517 {
518 int owner;
519 const char *name;
520 struct symbol *sym;

522 if (!true_sm && !false_sm)
523 return;

525 if (unreachable())
526 return;

528 owner = true_sm ? true_sm->owner : false_sm->owner;
529 name = true_sm ? true_sm->name : false_sm->name;
530 sym = true_sm ? true_sm->sym : false_sm->sym;
531 if (option_debug || strcmp(check_name(owner), option_debug_check) == 0)
532 struct smatch_state *tmp;

534 tmp = __get_state(owner, name, sym);
534 tmp = get_state(owner, name, sym);
535 sm_msg("%s [%s] ’%s’. Was %s. Now T:%s F:%s", __func__,
536 check_name(owner), name, show_state(tmp),
537 show_state(true_sm ? true_sm->state : NULL),
538 show_state(false_sm ? false_sm->state : NULL));
539 }

541 if (!cond_false_stack || !cond_true_stack) {
542 sm_perror("missing true/false stacks");
543 return;
544 }

546 if (true_sm)
547 overwrite_sm_state_stree_stack(&cond_true_stack, true_sm);
548 if (false_sm)
549 overwrite_sm_state_stree_stack(&cond_false_stack, false_sm);
550 }

______unchanged_portion_omitted_

788 void __negate_cond_stacks(void)
789 {
790 struct stree *old_false, *old_true;

792 __use_cond_stack(&cond_false_stack);
792 old_false = pop_stree(&cond_false_stack);
793 old_true = pop_stree(&cond_true_stack);
794 push_stree(&cond_false_stack, old_true);

new/usr/src/tools/smatch/src/smatch_states.c 4

795 push_stree(&cond_true_stack, old_false);
796 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_stored_conditions.c 1

**
 7241 Mon Aug 5 08:38:47 2019
new/usr/src/tools/smatch/src/smatch_stored_conditions.c
11506 smatch resync
**
______unchanged_portion_omitted_

238 void register_stored_conditions(int id)
239 {
240 my_id = id;
241 set_dynamic_states(my_id);
242 }

244 void register_stored_conditions_links(int id)
245 {
246 link_id = id;
247 db_ignore_states(link_id);
248 set_dynamic_states(link_id);
249 add_merge_hook(link_id, &merge_links);
250 add_modification_hook(link_id, &match_link_modify);
251 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_string_list.c 1

**
 1863 Mon Aug 5 08:38:47 2019
new/usr/src/tools/smatch/src/smatch_string_list.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2013 Oracle.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 #include "smatch.h"

20 int list_has_string(struct string_list *str_list, const char *str)
21 {
22 char *tmp;
23 int cmp;

25 if (!str)
26 return 0;

28 FOR_EACH_PTR(str_list, tmp) {
29 cmp = strcmp(tmp, str);
30 if (cmp < 0)
28 if (strcmp(tmp, str) < 0)
31 continue;
32 if (cmp == 0)
30 if (strcmp(tmp, str) == 0)
33 return 1;
34 return 0;
35 } END_FOR_EACH_PTR(tmp);
36 return 0;
37 }

39 int insert_string(struct string_list **str_list, const char *_new)
37 void insert_string(struct string_list **str_list, const char *_new)
40 {
41 char *new = (char *)_new;
42 char *tmp;
43 int cmp;

45 FOR_EACH_PTR(*str_list, tmp) {
46 cmp = strcmp(tmp, new);
47 if (cmp < 0)
43 if (strcmp(tmp, new) < 0)
48 continue;
49 else if (cmp == 0) {
50 return 0;
45 else if (strcmp(tmp, new) == 0) {
46 return;
51 } else {
52 INSERT_CURRENT(alloc_string(new), tmp);
53 return 1;
49 return;
54 }

new/usr/src/tools/smatch/src/smatch_string_list.c 2

55 } END_FOR_EACH_PTR(tmp);
56 new = alloc_string(new);
57 add_ptr_list(str_list, new);
58 return 1;
59 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_strlen.c 1

**
 8938 Mon Aug 5 08:38:47 2019
new/usr/src/tools/smatch/src/smatch_strlen.c
11506 smatch resync
**
______unchanged_portion_omitted_

332 void register_strlen(int id)
333 {
334 my_strlen_id = id;

336 set_dynamic_states(my_strlen_id);

338 add_unmatched_state_hook(my_strlen_id, &unmatched_strlen_state);

340 select_caller_info_hook(set_param_strlen, STR_LEN);
341 add_hook(&match_string_assignment, ASSIGNMENT_HOOK);

343 add_modification_hook(my_strlen_id, &set_strlen_undefined);
344 add_merge_hook(my_strlen_id, &merge_estates);
345 add_hook(&match_call, FUNCTION_CALL_HOOK);
346 add_member_info_callback(my_strlen_id, struct_member_callback);
347 add_hook(&match_strlen_condition, CONDITION_HOOK);

349 add_function_hook("snprintf", &match_snprintf, NULL);

351 add_function_hook("strlcpy", &match_strlcpycat, NULL);
352 add_function_hook("strlcat", &match_strlcpycat, NULL);
353 add_function_hook("strcpy", &match_strcpy, NULL);
354 }

356 void register_strlen_equiv(int id)
357 {
358 my_equiv_id = id;
359 set_dynamic_states(my_equiv_id);
360 add_function_assign_hook("strlen", &match_strlen, NULL);
361 add_modification_hook(my_equiv_id, &set_strlen_equiv_undefined);
362 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_struct_assignment.c 1

**
 13960 Mon Aug 5 08:38:48 2019
new/usr/src/tools/smatch/src/smatch_struct_assignment.c
11506 smatch resync
**
______unchanged_portion_omitted_

448 static void match_memdup(const char *fn, struct expression *call_expr,
449 struct expression *expr, void *_unused)
450 {
451 struct expression *left, *right, *arg;

453 if (!expr || expr->type != EXPR_ASSIGNMENT)
454 return;

456 left = strip_expr(expr->left);
457 right = strip_expr(expr->right);

459 if (right->type != EXPR_CALL)
460 return;
461 arg = get_argument_from_call_expr(right->args, 0);
462 __struct_members_copy(COPY_MEMCPY, expr, left, arg);
463 }

465 static void match_memcpy_unknown(const char *fn, struct expression *expr, void *
466 {
467 struct expression *dest;

469 dest = get_argument_from_call_expr(expr->args, 0);
470 __struct_members_copy(COPY_MEMCPY, expr, remove_addr(dest), NULL);
471 }

______unchanged_portion_omitted_

558 void register_struct_assignment(int id)
559 {
560 add_function_hook("memset", &match_memset, NULL);
561 add_function_hook("__memset", &match_memset, NULL);

563 add_function_hook("memcpy", &match_memcpy, INT_PTR(0));
564 add_function_hook("memmove", &match_memcpy, INT_PTR(0));
565 add_function_hook("__memcpy", &match_memcpy, INT_PTR(0));
566 add_function_hook("__memmove", &match_memcpy, INT_PTR(0));

568 if (option_project == PROJ_KERNEL)
569 return_implies_state_sval("kmemdup", valid_ptr_min_sval, valid_p

571 add_function_hook("sscanf", &match_sscanf, NULL);

573 add_hook(&unop_expr, OP_HOOK);
574 register_clears_param();
575 select_return_states_hook(PARAM_CLEARED, &db_param_cleared);

577 select_return_states_hook(CONTAINER, &returns_container_of);
578 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_sval.c 1

**
 14551 Mon Aug 5 08:38:48 2019
new/usr/src/tools/smatch/src/smatch_sval.c
11506 smatch resync
**
______unchanged_portion_omitted_

65 sval_t sval_type_val(struct symbol *type, long long val)
66 {
67 sval_t ret;

69 if (!type)
70 type = &llong_ctype;
70 type = &int_ctype;

72 ret.type = type;
73 ret.value = val;
74 return ret;
75 }

______unchanged_portion_omitted_

95 int sval_unsigned(sval_t sval)
96 {
97 if (is_ptr_type(sval.type))
98 return true;
99 return type_unsigned(sval.type);
100 }

______unchanged_portion_omitted_

431 static sval_t ptr_binop(struct symbol *type, sval_t left, int op, sval_t right)
432 {
433 sval_t ret;
434 int align;

436 if (op != ’+’ && op != ’-’)
437 return sval_binop_unsigned(type, left, op, right);

439 ret.type = type;
440 if (type->type == SYM_PTR)
441 type = get_real_base_type(type);
442 align = type->ctype.alignment;
443 if (align <= 0)
444 align = 1;

446 if (op == ’+’) {
447 if (type_is_ptr(left.type))
448 ret.value = left.value + right.value * align;
449 else
450 ret.value = left.value * align + right.value;
451 } else {
452 if (!type_is_ptr(left.type)) {
453 left.value = -left.value;
454 ret = ptr_binop(type, left, ’+’, right);
455 } else if (!type_is_ptr(right.type)) {
456 right.value = -right.value;
457 ret = ptr_binop(type, left, ’+’, right);
458 } else {
459 ret.value = (left.value - right.value) / align;
460 }
461 }

463 if (op == ’-’)
464 ret.type = ssize_t_ctype;
465 return ret;
466 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_sval.c 2

590 int find_first_zero_bit(unsigned long long uvalue)
586 unsigned long long fls_mask(unsigned long long uvalue)
591 {
592 int i;
588 unsigned long long high_bit = 0;

594 for (i = 0; i < 64; i++) {
595 if (!(uvalue & (1ULL << i)))
596 return i;
597 }
598 return i;
599 }

601 int sm_fls64(unsigned long long uvalue)
602 {
603 int high_bit = 0;

605 while (uvalue) {
606 uvalue >>= 1;
607 high_bit++;
608 }

610 return high_bit;
611 }

613 unsigned long long fls_mask(unsigned long long uvalue)
614 {
615 int high_bit = 0;

617 high_bit = sm_fls64(uvalue);
618 if (high_bit == 0)
619 return 0;

621 return ((unsigned long long)-1) >> (64 - high_bit);
622 }

______unchanged_portion_omitted_

629 const char *sval_to_str(sval_t sval)
630 {
631 char buf[30];

633 if (sval_is_ptr(sval) && sval.value == valid_ptr_max)
634 return "ptr_max";
635 if (sval_unsigned(sval) && sval.value == ULLONG_MAX)
636 return "u64max";
637 if (sval_unsigned(sval) && sval.value == UINT_MAX)
638 return "u32max";
639 if (sval.value == USHRT_MAX)
640 return "u16max";

642 if (sval_signed(sval) && sval.value == LLONG_MAX)
643 return "s64max";
644 if (sval.value == INT_MAX)
645 return "s32max";
646 if (sval.value == SHRT_MAX)
647 return "s16max";

649 if (sval_signed(sval) && sval.value == SHRT_MIN)
650 return "s16min";
651 if (sval_signed(sval) && sval.value == INT_MIN)
652 return "s32min";
653 if (sval_signed(sval) && sval.value == LLONG_MIN)
654 return "s64min";

656 if (sval_unsigned(sval))

new/usr/src/tools/smatch/src/smatch_sval.c 3

657 snprintf(buf, sizeof(buf), "%llu", sval.value);
658 else if (sval.value < 0)
659 snprintf(buf, sizeof(buf), "(%lld)", sval.value);
660 else
661 snprintf(buf, sizeof(buf), "%lld", sval.value);

663 return alloc_sname(buf);
664 }

666 const char *sval_to_str_or_err_ptr(sval_t sval)
667 {
668 char buf[12];

670 if (option_project != PROJ_KERNEL ||
671 !is_ptr_type(sval.type))
672 return sval_to_str(sval);

674 if (sval.uvalue >= -4905ULL) {
675 snprintf(buf, sizeof(buf), "(%lld)", sval.value);
676 return alloc_sname(buf);
677 }

679 return sval_to_str(sval);
680 }

682 const char *sval_to_numstr(sval_t sval)
683 {
684 char buf[30];

686 if (sval_unsigned(sval))
687 snprintf(buf, sizeof(buf), "%llu", sval.value);
688 else if (sval.value < 0)
689 snprintf(buf, sizeof(buf), "(%lld)", sval.value);
690 else
691 snprintf(buf, sizeof(buf), "%lld", sval.value);

693 return alloc_sname(buf);
694 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_type.c 1

**
 16744 Mon Aug 5 08:38:49 2019
new/usr/src/tools/smatch/src/smatch_type.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2009 Dan Carpenter.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 /*
19 * The idea here is that you have an expression and you
20 * want to know what the type is for that.
21 */

23 #include "smatch.h"
24 #include "smatch_slist.h"

26 struct symbol *get_real_base_type(struct symbol *sym)
27 {
28 struct symbol *ret;

30 if (!sym)
31 return NULL;
32 if (sym->type == SYM_BASETYPE)
33 return sym;
34 ret = get_base_type(sym);
35 if (!ret)
36 return NULL;
37 if (ret->type == SYM_RESTRICT || ret->type == SYM_NODE)
38 return get_real_base_type(ret);
39 return ret;
40 }

______unchanged_portion_omitted_

62 static struct symbol *get_binop_type(struct expression *expr)
63 {
64 struct symbol *left, *right;

66 left = get_type(expr->left);
67 if (!left)
68 return NULL;

70 if (expr->op == SPECIAL_LEFTSHIFT ||
71 expr->op == SPECIAL_RIGHTSHIFT) {
72 if (type_positive_bits(left) < 31)
73 return &int_ctype;
74 return left;
75 }
76 right = get_type(expr->right);
77 if (!right)
78 return NULL;

80 if (expr->op == ’-’ &&

new/usr/src/tools/smatch/src/smatch_type.c 2

81 (is_ptr_type(left) && is_ptr_type(right)))
82 return ssize_t_ctype;

84 if (left->type == SYM_PTR || left->type == SYM_ARRAY)
85 return left;
86 if (right->type == SYM_PTR || right->type == SYM_ARRAY)
87 return right;

89 if (type_positive_bits(left) < 31 && type_positive_bits(right) < 31)
90 return &int_ctype;

92 if (type_positive_bits(left) > type_positive_bits(right))
93 return left;
94 return right;
95 }

______unchanged_portion_omitted_

220 static struct symbol *get_type_helper(struct expression *expr)
221 {
222 struct symbol *ret;

224 expr = strip_parens(expr);
225 if (!expr)
226 return NULL;

228 if (expr->ctype)
229 return expr->ctype;

231 switch (expr->type) {
232 case EXPR_STRING:
233 ret = &string_ctype;
234 break;
235 case EXPR_SYMBOL:
236 ret = get_type_symbol(expr);
237 break;
238 case EXPR_DEREF:
239 ret = get_symbol_from_deref(expr);
240 break;
241 case EXPR_PREOP:
242 case EXPR_POSTOP:
243 if (expr->op == ’&’)
244 ret = fake_pointer_sym(expr);
245 else if (expr->op == ’*’)
246 ret = get_pointer_type(expr->unop);
247 else
248 ret = get_type(expr->unop);
249 break;
250 case EXPR_ASSIGNMENT:
251 ret = get_type(expr->left);
252 break;
253 case EXPR_CAST:
254 case EXPR_FORCE_CAST:
255 case EXPR_IMPLIED_CAST:
256 ret = get_real_base_type(expr->cast_type);
257 break;
258 case EXPR_COMPARE:
259 case EXPR_BINOP:
260 ret = get_binop_type(expr);
261 break;
262 case EXPR_CALL:
263 ret = get_return_type(expr);
264 break;
265 case EXPR_STATEMENT:
266 ret = get_expr_stmt_type(expr->statement);
267 break;
268 case EXPR_CONDITIONAL:

new/usr/src/tools/smatch/src/smatch_type.c 3

269 case EXPR_SELECT:
270 ret = get_select_type(expr);
271 break;
272 case EXPR_SIZEOF:
273 ret = &ulong_ctype;
274 break;
275 case EXPR_LOGICAL:
276 ret = &int_ctype;
277 break;
278 case EXPR_OFFSETOF:
279 ret = &ulong_ctype;
280 break;
281 default:
282 return NULL;
283 }

285 if (ret && ret->type == SYM_TYPEOF)
286 ret = get_type(ret->initializer);

288 expr->ctype = ret;
289 return ret;
290 }

292 static struct symbol *get_final_type_helper(struct expression *expr)
293 {
294 /*
295 * The problem is that I wrote a bunch of Smatch to think that
296 * you could do get_type() on an expression and it would give
297 * you what the comparison was type promoted to. This is wrong
298 * but fixing it is a big of work... Hence this horrible hack.
286 * I’m not totally positive I understand types...
299 *
288 * So, when you’re doing pointer math, and you do a subtraction, then
289 * the sval_binop() and whatever need to know the type of the pointer
290 * so they can figure out the alignment. But the result is going to be
291 * and ssize_t. So get_operation_type() gives you the pointer type
292 * and get_type() gives you ssize_t.
293 *
294 * Most of the time the operation type and the final type are the same
295 * but this just handles the few places where they are different.
296 *
300 */

302 expr = strip_parens(expr);
303 if (!expr)
304 return NULL;

306 if (expr->type == EXPR_COMPARE)
303 switch (expr->type) {
304 case EXPR_COMPARE:
307 return &int_ctype;
306 case EXPR_BINOP: {
307 struct symbol *left, *right;

309 if (expr->op != ’-’)
309 return NULL;

312 left = get_type(expr->left);
313 right = get_type(expr->right);
314 if (type_is_ptr(left) || type_is_ptr(right))
315 return ssize_t_ctype;
316 }
317 }

319 return NULL;
310 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_type.c 4

388 int is_pointer(struct expression *expr)
389 {
390 return type_is_ptr(get_type(expr));
400 struct symbol *sym;

402 sym = get_type(expr);
403 if (!sym)
404 return 0;
405 if (sym == &string_ctype)
406 return 0;
407 if (sym->type == SYM_PTR)
408 return 1;
409 return 0;
391 }

______unchanged_portion_omitted_

418 sval_t sval_type_min(struct symbol *base_type)
419 {
420 sval_t ret;

422 if (!base_type || !type_bits(base_type))
423 base_type = &llong_ctype;
424 ret.type = base_type;

426 if (type_unsigned(base_type) || is_ptr_type(base_type)) {
445 if (type_unsigned(base_type)) {
427 ret.value = 0;
428 return ret;
429 }

431 ret.value = (~0ULL) << type_positive_bits(base_type);

433 return ret;
434 }

______unchanged_portion_omitted_

581 static struct symbol *get_member_from_string(struct symbol_list *symbol_list, co
582 {
583 struct symbol *tmp, *sub;
584 int chunk_len;

586 if (strncmp(name, ".", 1) == 0)
587 name += 1;
588 else if (strncmp(name, "->", 2) == 0)
607 if (strncmp(name, "->", 2) == 0)
589 name += 2;

591 FOR_EACH_PTR(symbol_list, tmp) {
592 if (!tmp->ident) {
593 sub = get_real_base_type(tmp);
594 sub = get_member_from_string(sub->symbol_list, name);
595 if (sub)
596 return sub;
597 continue;
598 }

600 if (strcmp(tmp->ident->name, name) == 0)
601 return tmp;

603 chunk_len = tmp->ident->len;
622 chunk_len = strlen(tmp->ident->name);
604 if (strncmp(tmp->ident->name, name, chunk_len) == 0 &&
605 (name[chunk_len] == ’.’ || name[chunk_len] == ’-’)) {
606 sub = get_real_base_type(tmp);
607 if (sub->type == SYM_PTR)

new/usr/src/tools/smatch/src/smatch_type.c 5

608 sub = get_real_base_type(sub);
609 return get_member_from_string(sub->symbol_list, name + c
610 }

612 } END_FOR_EACH_PTR(tmp);

614 return NULL;
615 }

______unchanged_portion_omitted_

719 static int type_str_helper(char *buf, int size, struct symbol *type)
720 {
721 int n;

723 if (!type)
724 return snprintf(buf, size, "<unknown>");

726 if (type->type == SYM_BASETYPE) {
727 return snprintf(buf, size, "%s", base_type_str(type));
744 return snprintf(buf, size, base_type_str(type));
728 } else if (type->type == SYM_PTR) {
729 type = get_real_base_type(type);
730 n = type_str_helper(buf, size, type);
731 if (n > size)
732 return n;
733 return n + snprintf(buf + n, size - n, "*");
734 } else if (type->type == SYM_ARRAY) {
735 type = get_real_base_type(type);
736 n = type_str_helper(buf, size, type);
737 if (n > size)
738 return n;
739 return n + snprintf(buf + n, size - n, "[]");
740 } else if (type->type == SYM_STRUCT) {
741 return snprintf(buf, size, "struct %s", type->ident ? type->iden
742 } else if (type->type == SYM_UNION) {
743 if (type->ident)
744 return snprintf(buf, size, "union %s", type->ident->name
745 else
746 return snprintf(buf, size, "anonymous union");
747 } else if (type->type == SYM_FN) {
748 struct symbol *arg, *return_type, *arg_type;
749 int i;

751 return_type = get_real_base_type(type);
752 n = type_str_helper(buf, size, return_type);
753 if (n > size)
754 return n;
755 n += snprintf(buf + n, size - n, "(*)(");
756 if (n > size)
757 return n;

759 i = 0;
760 FOR_EACH_PTR(type->arguments, arg) {
761 if (i++)
762 n += snprintf(buf + n, size - n, ", ");
763 if (n > size)
764 return n;
765 arg_type = get_real_base_type(arg);
766 n += type_str_helper(buf + n, size - n, arg_type);
767 if (n > size)
768 return n;
769 } END_FOR_EACH_PTR(arg);

771 return n + snprintf(buf + n, size - n, ")");
772 } else if (type->type == SYM_NODE) {
773 n = snprintf(buf, size, "node {");

new/usr/src/tools/smatch/src/smatch_type.c 6

774 if (n > size)
775 return n;
776 type = get_real_base_type(type);
777 n += type_str_helper(buf + n, size - n, type);
778 if (n > size)
779 return n;
780 return n + snprintf(buf + n, size - n, "}");
781 } else if (type->type == SYM_ENUM) {
782 return snprintf(buf, size, "enum %s", type->ident ? type->ident-
783 } else {
784 return snprintf(buf, size, "<type %d>", type->type);
785 }
786 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_type_val.c 1

**
 14152 Mon Aug 5 08:38:49 2019
new/usr/src/tools/smatch/src/smatch_type_val.c
11506 smatch resync
**
______unchanged_portion_omitted_

389 static void match_assign_value(struct expression *expr)
390 {
391 char *member, *right_member;
392 struct range_list *rl;
393 struct symbol *type;

395 if (!cur_func_sym)
396 return;

398 type = get_type(expr->left);
399 if (type && type->type == SYM_STRUCT)
400 return;

399 member = get_member_name(expr->left);
400 if (!member)
401 return;

403 /* if we’re saying foo->mtu = bar->mtu then that doesn’t add information
404 right_member = get_member_name(expr->right);
405 if (right_member && strcmp(right_member, member) == 0)
406 goto free;

408 if (is_fake_call(expr->right)) {
409 if (is_ignored_macro())
410 goto free;
411 if (is_ignored_function())
412 goto free;
413 if (is_uncasted_pointer_assign())
414 goto free;
415 if (is_uncasted_fn_param_from_db())
416 goto free;
417 if (is_container_of())
418 goto free;
419 add_fake_type_val(member, alloc_whole_rl(get_type(expr->left)),
420 goto free;
421 }

423 if (expr->op == ’=’) {
424 get_absolute_rl(expr->right, &rl);
425 rl = cast_rl(type, rl);
426 } else {
427 /*
428 * This is a bit cheating. We order it so this will already be
429 * by smatch_extra.c and we just look up the value.
430 */
431 get_absolute_rl(expr->left, &rl);
432 }
433 add_type_val(member, rl);
434 free:
435 free_string(right_member);
436 free_string(member);
437 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/smatch_untracked_param.c 1

**
 7570 Mon Aug 5 08:38:49 2019
new/usr/src/tools/smatch/src/smatch_untracked_param.c
11506 smatch resync
**

1 /*
2 * Copyright (C) 2014 Oracle.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see http://www.gnu.org/copyleft/gpl.txt
16 */

18 /*
19 * Sometimes we aren’t able to track a variable through a function call. This
20 * usually happens because a function changes too many variables so we give up.
21 * Another reason this happens is because we call a function pointer and there
22 * are too many functions which implement that function pointer so we give up.
23 * Also maybe we don’t have the database enabled.
24 *
25 * The goal here is to make a call back so what if we call:
26 *
27 * frob(&foo);
28 *
29 * but we’re not able to say what happens to "foo", then let’s assume that we
30 * don’t know anything about "foo" if it’s an untracked call.
31 *
32 */

34 #include "smatch.h"
35 #include "smatch_slist.h"
36 #include "smatch_extra.h"

38 static int my_id;
39 static int tracked;

41 STATE(untracked);
42 STATE(lost);

44 typedef void (untracked_hook)(struct expression *call, int param);
45 DECLARE_PTR_LIST(untracked_hook_list, untracked_hook *);
46 static struct untracked_hook_list *untracked_hooks;
47 static struct untracked_hook_list *lost_hooks;

49 struct int_stack *tracked_stack;

51 void add_untracked_param_hook(void (func)(struct expression *call, int param))
52 {
53 untracked_hook **p = malloc(sizeof(untracked_hook *));
54 *p = func;
55 add_ptr_list(&untracked_hooks, p);
56 }

______unchanged_portion_omitted_

67 void add_lost_param_hook(void (func)(struct expression *call, int param))
68 {
69 untracked_hook **p = malloc(sizeof(untracked_hook *));

new/usr/src/tools/smatch/src/smatch_untracked_param.c 2

70 *p = func;
71 add_ptr_list(&lost_hooks, p);
72 }

74 static void call_lost_callbacks(struct expression *expr, int param)
75 {
76 untracked_hook **fn;

78 FOR_EACH_PTR(lost_hooks, fn) {
79 (*fn)(expr, param);
80 } END_FOR_EACH_PTR(fn);
81 }

83 static void assume_tracked(struct expression *call_expr, int param, char *key, c
84 {
85 tracked = 1;
86 }

88 static char *get_array_from_key(struct expression *expr, int param, const char *
70 void mark_untracked(struct expression *expr, int param, const char *key, const c
89 {
90 struct expression *arg;

92 arg = get_argument_from_call_expr(expr->args, param);
93 if (!arg)
94 return NULL;
95 if (arg->type != EXPR_PREOP || arg->op != ’&’)
96 return NULL;
97 arg = arg->unop;
98 if (!is_array(arg))
99 return NULL;
100 arg = get_array_base(arg);

102 return expr_to_var_sym(arg, sym);
103 }

105 static void mark_untracked_lost(struct expression *expr, int param, const char *
106 {
107 char *name;
108 struct symbol *sym;

110 while (expr->type == EXPR_ASSIGNMENT)
111 expr = strip_expr(expr->right);
112 if (expr->type != EXPR_CALL)
113 return;

115 name = return_state_to_var_sym(expr, param, key, &sym);
116 if (!name || !sym) {
117 name = get_array_from_key(expr, param, key, &sym);
118 if (!name || !sym)
119 goto free;
120 }

122 if (type == LOST_PARAM)
123 call_lost_callbacks(expr, param);
124 call_untracked_callbacks(expr, param);
125 set_state(my_id, name, sym, &untracked);
126 free:
127 free_string(name);

129 }

131 void mark_untracked(struct expression *expr, int param, const char *key, const c
132 {
133 mark_untracked_lost(expr, param, key, UNTRACKED_PARAM);
134 }

new/usr/src/tools/smatch/src/smatch_untracked_param.c 3

136 void mark_lost(struct expression *expr, int param, const char *key, const char *
137 {
138 mark_untracked_lost(expr, param, key, LOST_PARAM);
139 }

141 static int lost_in_va_args(struct expression *expr)
142 {
143 struct symbol *fn;
144 char *name;
145 int is_lost;

147 fn = get_type(expr->fn);
148 if (!fn || !fn->variadic)
149 return 0;

151 is_lost = 1;
152 name = expr_to_var(expr->fn);
153 if (name && strstr(name, "print"))
154 is_lost = 0;
155 free_string(name);

157 return is_lost;
158 }

______unchanged_portion_omitted_

188 static void mark_all_params(int return_id, char *return_ranges, int type)
136 void mark_all_params_untracked(int return_id, char *return_ranges, struct expres
189 {
190 struct symbol *arg;
191 int param;

193 param = -1;
194 FOR_EACH_PTR(cur_func_sym->ctype.base_type->arguments, arg) {
195 param++;

197 if (!arg->ident)
198 continue;
199 sql_insert_return_states(return_id, return_ranges,
200 type, param, "$", "");
148 UNTRACKED_PARAM, param, "$", "");
201 } END_FOR_EACH_PTR(arg);
202 }

205 void mark_all_params_untracked(int return_id, char *return_ranges, struct expres
206 {
207 mark_all_params(return_id, return_ranges, UNTRACKED_PARAM);
208 }

210 void mark_all_params_lost(int return_id, char *return_ranges, struct expression
211 {
212 mark_all_params(return_id, return_ranges, LOST_PARAM);
213 }

215 static void print_untracked_params(int return_id, char *return_ranges, struct ex
216 {
217 struct sm_state *sm;
218 struct symbol *arg;
219 int param;
220 int type;

222 param = -1;
223 FOR_EACH_PTR(cur_func_sym->ctype.base_type->arguments, arg) {
224 param++;

new/usr/src/tools/smatch/src/smatch_untracked_param.c 4

226 if (!arg->ident)
227 continue;

229 if (__bail_on_rest_of_function) {
230 /* hairy functions are lost */
231 type = LOST_PARAM;
232 } else if ((sm = get_sm_state(my_id, arg->ident->name, arg))) {
233 if (slist_has_state(sm->possible, &lost))
234 type = LOST_PARAM;
235 else
236 type = UNTRACKED_PARAM;
237 } else {
163 if (!get_state(my_id, arg->ident->name, arg) &&
164 !__bail_on_rest_of_function) /* hairy functions are untrack
238 continue;
239 }

241 sql_insert_return_states(return_id, return_ranges,
242 type, param, "$", "");
168 UNTRACKED_PARAM, param, "$", "");
243 } END_FOR_EACH_PTR(arg);
244 }

______unchanged_portion_omitted_

308 void register_untracked_param(int id)
309 {
310 my_id = id;

312 select_return_states_hook(INTERNAL, &assume_tracked);
313 select_return_states_hook(UNTRACKED_PARAM, &mark_untracked);
314 select_return_states_hook(LOST_PARAM, &mark_lost);
315 add_hook(&match_after_call, FUNCTION_CALL_HOOK_AFTER_DB);

317 add_split_return_callback(&print_untracked_params);

319 add_hook(&match_param_assign, ASSIGNMENT_HOOK);
320 add_hook(&match_param_assign_in_asm, ASM_HOOK);

322 add_hook(&match_inline_start, INLINE_FN_START);
323 add_hook(&match_inline_end, INLINE_FN_END);
324 }

______unchanged_portion_omitted_

new/usr/src/tools/smatch/src/validation/sm_bitwise1.c 1

**
 533 Mon Aug 5 08:38:50 2019
new/usr/src/tools/smatch/src/validation/sm_bitwise1.c
11506 smatch resync
**
______unchanged_portion_omitted_

12 /*
13 * check-name: smatch bitwise #1
14 * check-command: smatch -I.. sm_bitwise1.c
15 *
16 * check-output-start
17 sm_bitwise1.c:6 test() implied: x & 1 = ’0-1’
18 sm_bitwise1.c:7 test() implied: x & 2 = ’0,2’
19 sm_bitwise1.c:8 test() implied: x & ~(255) = ’0,256-4294967040’
20 sm_bitwise1.c:9 test() implied: x & ~(255) = ’0,256-4294967040’
20 sm_bitwise1.c:9 test() implied: x & ~(255) = ’0-4294967040’
21 * check-output-end
22 */

new/usr/src/tools/smatch/src/validation/sm_equiv1.c 1

**
 777 Mon Aug 5 08:38:50 2019
new/usr/src/tools/smatch/src/validation/sm_equiv1.c
11506 smatch resync
**
______unchanged_portion_omitted_
26 /*
27 * check-name: smatch equivalent variables #1
28 * check-command: smatch -I.. -m64 sm_equiv1.c
29 *
30 * check-output-start
31 sm_equiv1.c:13 func() one = 1
32 sm_equiv1.c:14 func() two = 1
33 sm_equiv1.c:16 func() one = 0-u64max
34 sm_equiv1.c:17 func() two = 0-u64max
33 sm_equiv1.c:16 func() one = s64min-s64max
34 sm_equiv1.c:17 func() two = s64min-s64max
35 sm_equiv1.c:19 func() one = 2
36 sm_equiv1.c:20 func() two = 2
37 sm_equiv1.c:22 func() one = 0-u64max
38 sm_equiv1.c:23 func() two = 0-u64max
37 sm_equiv1.c:22 func() one = s64min-s64max
38 sm_equiv1.c:23 func() two = s64min-s64max
39 * check-output-end
40 */

new/usr/src/tools/smatch/src/validation/sm_implied.c 1

**
 487 Mon Aug 5 08:38:50 2019
new/usr/src/tools/smatch/src/validation/sm_implied.c
11506 smatch resync
**
______unchanged_portion_omitted_
23 /*
24 * check-name: Smatch implied #1
25 * check-command: smatch --spammy sm_implied.c
26 *
27 * check-output-start
28 sm_implied.c:20 func() error: potentially dereferencing uninitialized ’aa’.
29 sm_implied.c:20 func() error: potentially dereferencing uninitialized ’aa’.
30 * check-output-end
31 */

new/usr/src/tools/smatch/src/validation/sm_implied10.c 1

**
 672 Mon Aug 5 08:38:51 2019
new/usr/src/tools/smatch/src/validation/sm_implied10.c
11506 smatch resync
**

1 #include "check_debug.h"

3 void frob(void){}

5 int x[10];
6 int offset;
7 void func(int *y)
8 {
9 if (({int test2 = !!(!y || !*y); frob(); frob(); frob(); test2;}))

10 __smatch_value("y");
11 else
12 __smatch_value("y");

14 if (({int test2 = !!(offset >= 10u || x[offset] == 1); frob(); frob(); f
14 if (({int test2 = !!(offset >= 10 || x[offset] == 1); frob(); frob(); fr
15 __smatch_value("offset");
16 else
17 __smatch_value("offset");

19 }
20 /*
21 * check-name: smatch implied #10
22 * check-command: smatch -I.. -m64 sm_implied10.c
23 *
24 * check-output-start
25 sm_implied10.c:10 func() y = 0,4096-ptr_max
26 sm_implied10.c:12 func() y = 4096-ptr_max
27 sm_implied10.c:15 func() offset = s32min-s32max
25 sm_implied10.c:10 func() y = 0,4096-2117777777777777777
26 sm_implied10.c:12 func() y = 4096-2117777777777777777
27 sm_implied10.c:15 func() offset = 0-s32max
28 sm_implied10.c:17 func() offset = 0-9
29 * check-output-end
30 */

new/usr/src/tools/smatch/src/validation/sm_implied11.c 1

**
 456 Mon Aug 5 08:38:51 2019
new/usr/src/tools/smatch/src/validation/sm_implied11.c
11506 smatch resync
**
______unchanged_portion_omitted_
27 /*
28 * check-name: smatch implied #11
29 * check-command: smatch -I.. -m64 sm_implied11.c
30 *
31 * check-output-start
32 sm_implied11.c:25 ad_agg_selection_logic() implied: foo = ’0,4096-ptr_max’
32 sm_implied11.c:25 ad_agg_selection_logic() implied: foo = ’0,4096-21177777777777
33 * check-output-end
34 */

new/usr/src/tools/smatch/src/validation/sm_implied12.c 1

**
 485 Mon Aug 5 08:38:51 2019
new/usr/src/tools/smatch/src/validation/sm_implied12.c
11506 smatch resync
**
______unchanged_portion_omitted_
31 /*
32 * check-name: smatch implied #12
33 * check-command: smatch -I.. -m64 sm_implied12.c
34 *
35 * check-output-start
36 sm_implied12.c:28 ad_agg_selection_logic() implied: foo = ’0,4096-ptr_max’
36 sm_implied12.c:28 ad_agg_selection_logic() implied: foo = ’0,4096-21177777777777
37 * check-output-end
38 */

new/usr/src/tools/smatch/src/validation/sm_implied2.c 1

**
 641 Mon Aug 5 08:38:52 2019
new/usr/src/tools/smatch/src/validation/sm_implied2.c
11506 smatch resync
**
______unchanged_portion_omitted_
34 /*
35 * check-name: Smatch implied #2
36 * check-command: smatch --spammy sm_implied2.c
37 *
38 * check-output-start
39 sm_implied2.c:28 func() error: potentially dereferencing uninitialized ’aa’.
40 sm_implied2.c:28 func() error: potentially dereferencing uninitialized ’aa’.
41 * check-output-end
42 */

new/usr/src/tools/smatch/src/validation/sm_implied5.c 1

**
 478 Mon Aug 5 08:38:52 2019
new/usr/src/tools/smatch/src/validation/sm_implied5.c
11506 smatch resync
**
______unchanged_portion_omitted_
20 /*
21 * check-name: Smatch implied #5
22 * check-command: smatch --spammy sm_implied5.c
23 *
24 * check-output-start
25 sm_implied5.c:18 func() error: potentially dereferencing uninitialized ’aa’.
26 sm_implied5.c:18 func() error: potentially dereferencing uninitialized ’aa’.
27 * check-output-end
28 */

new/usr/src/tools/smatch/src/validation/sm_memory.c 1

**
 466 Mon Aug 5 08:38:53 2019
new/usr/src/tools/smatch/src/validation/sm_memory.c
11506 smatch resync
**
______unchanged_portion_omitted_
27 /*
28 * check-name: leak test #1
29 * check-command: smatch sm_memory.c
30 *
31 * check-output-start
32 sm_memory.c:22 func() warn: possible memory leak of ’ac’
33 sm_memory.c:22 func() error: memory leak of ’ac’
33 * check-output-end
34 */

new/usr/src/tools/smatch/src/validation/sm_null_deref.c 1

**
 904 Mon Aug 5 08:38:53 2019
new/usr/src/tools/smatch/src/validation/sm_null_deref.c
11506 smatch resync
**
______unchanged_portion_omitted_
41 /*
42 * check-name: Null Dereferences
43 * check-command: smatch --spammy -I.. sm_null_deref.c
44 *
45 * check-output-start
46 sm_null_deref.c:18 func() error: potentially dereferencing uninitialized ’aa’.
47 sm_null_deref.c:18 func() error: potentially dereferencing uninitialized ’aa’.
48 sm_null_deref.c:23 func() error: we previously assumed ’a’ could be null (see li
49 sm_null_deref.c:25 func() warn: variable dereferenced before check ’a’ (see line
50 sm_null_deref.c:30 func() error: we previously assumed ’b’ could be null (see li
51 * check-output-end
52 */

new/usr/src/tools/smatch/src/validation/sm_select5.c 1

**
 519 Mon Aug 5 08:38:54 2019
new/usr/src/tools/smatch/src/validation/sm_select5.c
11506 smatch resync
**
______unchanged_portion_omitted_

22 /*
23 * check-name: smatch select #5
24 * check-command: smatch -I.. sm_select5.c
25 *
26 * check-output-start
27 sm_select5.c:15 test() implied: ret = ’(-12)’
28 sm_select5.c:16 test() implied: a = ’s32min-(-1),4-s32max’
28 sm_select5.c:16 test() implied: a = ’s32min-s32max’
29 sm_select5.c:18 test() implied: a = ’0-3’
30 * check-output-end
31 */

new/usr/src/uts/i86pc/unix/Makefile 1

**
 5450 Mon Aug 5 08:38:54 2019
new/usr/src/uts/i86pc/unix/Makefile
11506 smatch resync
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # Copyright 2019 Joyent, Inc.
24 # Copyright (c) 2018, Joyent, Inc.
25 # Copyright 2019 OmniOS Community Edition (OmniOSce) Association.

27 #
28 # Path to the base of the uts directory tree (usually /usr/src/uts).
29 #
30 UTSBASE = ../..

32 #
33 # Define the module and object file sets.
34 #
35 UNIX = unix
36 DBOOT = dboot

38 OBJECTS = $(SPECIAL_OBJS:%=$(OBJS_DIR)/%) \
39 $(CORE_OBJS:%=$(OBJS_DIR)/%) \
40 $(KRTLD_OBJS:%=$(OBJS_DIR)/%) \
41 $(MACH_NOT_YET_KMODS:%=$(OBJS_DIR)/%)

43 ROOTMODULE = $(ROOT_PSM_KERN_DIR)/$(UNIX)

45 UNIX_BIN = $(OBJS_DIR)/$(UNIX)

47 LIBS = $(GENLIB)

49 GENUNIX = genunix
50 GENUNIX_DIR = ../../intel/$(GENUNIX)

52 LIBOPTS = -L $(GENUNIX_DIR)/$(OBJS_DIR) -l $(GENUNIX)

54 COMMP_CTF_SRC = $(OBJS_DIR)/comm_page_ctf.c

56 CTFEXTRAOBJS = $(OBJS_DIR)/vers.o $(OBJS_DIR)/comm_page_ctf.o

58 DBOOT_OBJS_DIR = dboot/$(OBJS_DIR)
59 DBOOT_OBJECTS = $(DBOOT_OBJS:%=$(DBOOT_OBJS_DIR)/%)
60 DBOOT_BIN = $(DBOOT_OBJS_DIR)/$(DBOOT)

new/usr/src/uts/i86pc/unix/Makefile 2

61 DBOOT_O = $(OBJS_DIR)/$(DBOOT).o
62 DBOOT_S = $(DBOOT_O:%.o=%.s)

64 #
65 # Include common rules.
66 #
67 include $(UTSBASE)/i86pc/Makefile.i86pc

69 #
70 # Define targets
71 #
72 ALL_TARGET = $(UNIX_BIN)
73 INSTALL_TARGET = $(UNIX_BIN) $(ROOTMODULE)

75 #
76 # This is UNIX_DIR. Use a short path.
77 #
78 UNIX_DIR = .

80 #
81 # Overrides
82 #
83 CLEANFILES += \
84 $(UNIX_O) $(MODSTUBS_O) \
85 $(OBJS_DIR)/vers.c \
86 $(OBJS_DIR)/dtracestubs.s \
87 $(DTRACESTUBS_O) $(DTRACESTUBS) \
88 $(CTFEXTRAOBJS) \
89 $(COMMP_CTF_SRC)

91 CLEANFILES += \
92 $(DBOOT_O) $(DBOOT_S) \
93 $(DBOOT_OBJECTS) \
94 $(OBJS_DIR)/bios_call_src.o \
95 $(OBJS_DIR)/bios_call_src \
96 $(OBJS_DIR)/bios_call.s \
97 $(DBOOT_BIN)

99 CLEANFILES += \
100 $(DBOOT_OBJS_DIR)/$(FONT).c \
101 $(OBJS_DIR)/$(FONT).c

103 CLEANFILES += \
104 $(OBJS_DIR)/fb_swtch_src.o \
105 $(OBJS_DIR)/fb_swtch_src \
106 $(OBJS_DIR)/fb_swtch.s

108 CLEANFILES += \
109 $(ZLIB_OBJS:%.o=$(OBJS_DIR)/%.o) \
110 $(ZLIB_OBJS:%.o=$(OBJS_DIR)/%.ln)

112 CLOBBERFILES = $(CLEANFILES) $(UNIX_BIN)

114 # instr_size needs a special header
115 $(OBJS_DIR)/instr_size.o := EXTRA_OPTIONS = -I$(SRC)/common/dis/i386
116 $(OBJS_DIR)/instr_size.ln := EXTRA_OPTIONS = -I$(SRC)/common/dis/i386

118 #
119 # When performing shadow studio builds, the pre-processed comm page
120 # output from gcc can end up confusing studio.
121 #
122 $(OBJS_DIR)/comm_page_ctf.o := CERRWARN += -_cc=-erroff=E_TKNS_IGNORED_AT_END_O

124 CFLAGS += -DDIS_MEM

126 #

new/usr/src/uts/i86pc/unix/Makefile 3

127 # For now, disable these checks; maintainers should endeavor
128 # to investigate and remove these for maximum coverage.
129 # Please do not carry these forward to new Makefiles.
130 #
131 CERRWARN += -_gcc=-Wno-parentheses
132 CERRWARN += -_gcc=-Wno-uninitialized
133 CERRWARN += -_gcc=-Wno-char-subscripts
134 CERRWARN += -_gcc=-Wno-unused-variable
135 CERRWARN += -_gcc=-Wno-unused-function
136 CERRWARN += -_gcc=-Wno-unused-label
137 CERRWARN += -_gcc=-Wno-type-limits
138 CERRWARN += -_gcc=-Wno-clobbered
139 CERRWARN += -_gcc=-Wno-empty-body
140 CERRWARN += -_gcc=-Wno-unused-value

142 # false positives
143 SMOFF += index_overflow

145 # needs work
146 SMOFF += all_func_returns,deref_check,signed

148 $(OBJS_DIR)/fmsmb.o := SMOFF += indenting
149 $(OBJS_DIR)/zutil.o := SMOFF += indenting
150 $(OBJS_DIR)/bootrd_cpio.o := SMOFF += allocating_enough_data

152 # too hairy
153 $(OBJS_DIR)/inflate.o := SMATCH=off

155 #
156 # Default build targets.
157 #
158 .KEEP_STATE:

160 def: $(DEF_DEPS)

162 all: $(ALL_DEPS)

164 clean: $(CLEAN_DEPS)

166 clobber: $(CLOBBER_DEPS)

168 install: $(INSTALL_DEPS)

170 MAPFILE_32 = $(MAPFILE)
171 MAPFILE_64 = $(MAPFILE).amd64

173 MAPFILE_NAME = $(MAPFILE_$(CLASS))

175 $(UNIX_BIN): $(UNIX_O) $(MODSTUBS_O) $(MAPFILE_NAME) \
176 $(GENLIB) $(DTRACESTUBS) $(DBOOT_O)
177 $(LD) -dy -b -o $@ -e dboot_image -znointerp -M $(MAPFILE_NAME) \
178 $(UNIX_O) $(DBOOT_O) $(MODSTUBS_O) $(LIBOPTS) \
179 $(DTRACESTUBS)
180 $(MBH_PATCH) $(UNIX_BIN)
181 $(CTFMERGE_UNIQUIFY_AGAINST_GENUNIX)
182 $(POST_PROCESS)

184 $(UNIX_O): $(OBJECTS) $(CTFEXTRAOBJS)
185 $(LD) -r -o $@ $(OBJECTS) $(OBJS_DIR)/vers.o

187 $(DBOOT_BIN): $(DBOOT_OBJS_DIR) $(DBOOT_OBJECTS) dboot/Mapfile.dboot
188 $(LD) -dn -e _start -M dboot/Mapfile.dboot \
189 -o $(DBOOT_BIN) $(DBOOT_OBJECTS)

191 $(DBOOT_O): $(DBOOT_BIN)
192 @echo " .data" > $(DBOOT_S)

new/usr/src/uts/i86pc/unix/Makefile 4

193 @echo " .globl dboot_image" >> $(DBOOT_S)
194 @echo "dboot_image:" >> $(DBOOT_S)
195 $(ELFEXTRACT) $(DBOOT_BIN) >> $(DBOOT_S)
196 $(COMPILE.s) -o $(DBOOT_O) $(DBOOT_S)

198 $(DBOOT_OBJS_DIR):
199 -@mkdir -p $@ 2> /dev/null

201 $(COMMP_CTF_SRC): $(UTSBASE)/i86pc/ml/comm_page.s
202 $(COMPILE.cpp) -D_GENCTF -o $@ $(UTSBASE)/i86pc/ml/comm_page.s

204 $(OBJS_DIR)/comm_page_ctf.o: $(COMMP_CTF_SRC)
205 $(COMPILE.c) -o $@ $<
206 $(CTFCONVERT_O)

208 #
209 # Special rules for generating assym.h for inclusion in assembly files.
210 #
211 $(DSF_DIR)/$(OBJS_DIR)/assym.h $(DSF_DIR)/$(OBJS_DIR)/kdi_assym.h: FRC
212 @cd $(DSF_DIR); $(MAKE) all.targ

214 #
215 # Include common targets.
216 #
217 include $(UTSBASE)/i86pc/Makefile.targ

new/usr/src/uts/intel/emlxs/Makefile 1

**
 2983 Mon Aug 5 08:38:54 2019
new/usr/src/uts/intel/emlxs/Makefile
11506 smatch resync
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 # Copyright (c) 2011 Bayard G. Bell. All rights reserved.
25 # Copyright 2019 Joyent, Inc.
25 # Copyright (c) 2018, Joyent, Inc.
26 #
27 # This makefile drives the production of the emlxs driver kernel module.
28 #
29 # Path to the base of the uts directory tree (usually /usr/src/uts).
30 #
31 UTSBASE = ../../
32 COMMON_BASE = ../../../common

34 #
35 # Define the module and object file sets.
36 #
37 MODULE = emlxs
38 OBJECTS = $(EMLXS_OBJS:%=$(OBJS_DIR)/%)
39 LINTS = $(EMLXS_OBJS:%.o=$(LINTS_DIR)/%.ln)
39 ROOTMODULE = $(ROOT_DRV_DIR)/$(MODULE)
40 CONF_SRCDIR = $(UTSBASE)/common/io/fibre-channel/fca/emlxs

42 #
43 # Include common rules.
44 #
45 ARCHDIR = intel
46 include ../Makefile.$(ARCHDIR)

48 #
49 # Define targets
50 #
51 ALL_TARGET = $(BINARY) $(SRC_CONFILE)
53 LINT_TARGET = $(MODULE).lint
52 INSTALL_TARGET = $(BINARY) $(ROOTMODULE) $(ROOT_CONFFILE)

54 EMLXS_FLAGS = -DEMLXS_I386
55 EMLXS_FLAGS += -DS11
56 EMLXS_FLAGS += -DVERSION=\"11\"
57 EMLXS_FLAGS += -DMACH=\"$(MACH)\"
58 EMLXS_CFLAGS = $(EMLXS_FLAGS)

new/usr/src/uts/intel/emlxs/Makefile 2

59 EMLXS_LFLAGS = $(EMLXS_FLAGS)
60 CFLAGS += $(EMLXS_CFLAGS) -DEMLXS_ARCH=\"$(CLASS)\"
63 LINTTAGS += $(EMLXS_LFLAGS) -DEMLXS_ARCH=\"$(CLASS)\"

63 #
64 # Overrides and depends_on
65 #
66 INC_PATH += -I$(ROOT)/usr/include
67 INC_PATH += -I$(UTSBASE)/common/sys
68 INC_PATH += -I$(COMMON_BASE)/bignum
69 INC_PATH += -I$(UTSBASE)/common/sys/fibre-channel
70 INC_PATH += -I$(UTSBASE)/common/sys/fibre-channel/fca
71 INC_PATH += -I$(UTSBASE)/common/sys/fibre-channel/fca/emlxs
72 INC_PATH += -I$(UTSBASE)/common/sys/fibre-channel/impl
73 INC_PATH += -I$(UTSBASE)/common/sys/fibre-channel/ulp

75 #
76 # misc/fctl required because #ifdef MODSYM_LOAD code
77 # triggered by -DS11; uses DDI calls to load FCA symbols
78 #
79 LDFLAGS += -dy -Nmisc/md5 -Nmisc/sha1
80 LDFLAGS += -Nmisc/bignum -Nmisc/fctl

85 #
86 # For now, disable these lint checks; maintainers should endeavor
87 # to investigate and remove these for maximum lint coverage.
88 #
89 LINTTAGS += -erroff=E_BAD_PTR_CAST_ALIGN
90 LINTTAGS += -erroff=E_STATIC_UNUSED
91 LINTTAGS += -erroff=E_ASSIGN_NARROW_CONV
92 LINTTAGS += -erroff=E_SUSPICIOUS_COMPARISON
93 LINTTAGS += -erroff=E_INCONS_VAL_TYPE_DECL2

82 CERRWARN += -_gcc=-Wno-parentheses
83 CERRWARN += -_gcc=-Wno-unused-label
84 CERRWARN += -_gcc=-Wno-uninitialized

86 # needs work
87 SMOFF += indenting,deref_check,all_func_returns,index_overflow
99 SMOFF += indenting,deref_check,all_func_returns

89 # seems definitely wrong
90 $(OBJS_DIR)/emlxs_fcf.o := SMOFF += logical_instead_of_bitwise

92 #
93 # Default build targets.
94 #
95 .KEEP_STATE:

97 def: $(DEF_DEPS)

99 all: $(ALL_DEPS)

101 clean: $(CLEAN_DEPS)

103 clobber: $(CLOBBER_DEPS)

117 lint: $(LINT_DEPS)

119 modlintlib: $(MODLINTLIB_DEPS)

121 clean.lint: $(CLEAN_LINT_DEPS)

105 install: $(INSTALL_DEPS)

new/usr/src/uts/intel/emlxs/Makefile 3

107 #
108 # Include common targets.
109 #
110 include ../Makefile.targ

new/usr/src/uts/intel/genunix/Makefile 1

**
 4224 Mon Aug 5 08:38:55 2019
new/usr/src/uts/intel/genunix/Makefile
11506 smatch resync
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # Copyright 2019 Joyent, Inc.
26 # Copyright (c) 2018, Joyent, Inc.

27 #
29 # This makefile drives the production of the generic
30 # unix kernel module.
31 #
32 # x86 implementation architecture dependent
33 #

29 #
30 # Path to the base of the uts directory tree (usually /usr/src/uts).
31 #
32 UTSBASE = ../..

34 #
35 # Define the module and object file sets.
36 #
37 MODULE = genunix
38 GENUNIX = $(OBJS_DIR)/$(MODULE)

40 OBJECTS = $(GENUNIX_OBJS:%=$(OBJS_DIR)/%) \
41 $(NOT_YET_KMODS:%=$(OBJS_DIR)/%)

49 LINTS = $(GENUNIX_OBJS:%.o=$(LINTS_DIR)/%.ln) \
50 $(NOT_YET_KMODS:%.o=$(LINTS_DIR)/%.ln)

43 ROOTMODULE = $(ROOT_KERN_DIR)/$(MODULE)

45 LIBGEN = $(OBJS_DIR)/libgenunix.so
46 LIBSTUBS = $(GENSTUBS_OBJS:%=$(OBJS_DIR)/%)

48 #
49 # Include common rules.
50 #
51 include $(UTSBASE)/intel/Makefile.intel

new/usr/src/uts/intel/genunix/Makefile 2

53 #
54 # Define targets
55 #
56 ALL_TARGET = $(LIBGEN) $(GENUNIX)
66 LINT_TARGET = $(MODULE).lint
57 INSTALL_TARGET = $(LIBGEN) $(GENUNIX) $(ROOTMODULE)

59 #
60 # Overrides
61 #
62 CLOBBERFILES += $(GENUNIX)
63 CLEANFILES += $(LIBSTUBS) $(LIBGEN)
64 BINARY =

66 #
67 # Non-patch genunix builds merge a version of the ip module called ipctf. This
68 # is to ensure that the common network-related types are included in genunix and
69 # can thus be uniquified out of other modules. We don’t want to do this for
70 # patch builds, since we can’t guarantee that ip and genunix will be in the same
71 # patch.
72 #
73 IPCTF_TARGET = $(IPCTF)
74 $(PATCH_BUILD)IPCTF_TARGET =

76 CPPFLAGS += -I$(SRC)/common
77 CPPFLAGS += -I$(SRC)/uts/common/fs/zfs

79 CPPFLAGS += -I$(UTSBASE)/i86pc

91 #
92 # For now, disable these lint checks; maintainers should endeavor
93 # to investigate and remove these for maximum lint coverage.
94 # Please do not carry these forward to new Makefiles.
95 #
96 LINTTAGS += -erroff=E_SUSPICIOUS_COMPARISON
97 LINTTAGS += -erroff=E_BAD_PTR_CAST_ALIGN
98 LINTTAGS += -erroff=E_SUPPRESSION_DIRECTIVE_UNUSED
99 LINTTAGS += -erroff=E_STATIC_UNUSED
100 LINTTAGS += -erroff=E_PTRDIFF_OVERFLOW
101 LINTTAGS += -erroff=E_ASSIGN_NARROW_CONV

81 CERRWARN += -_gcc=-Wno-unused-label
82 CERRWARN += -_gcc=-Wno-unused-variable
83 CERRWARN += -_gcc=-Wno-unused-value
84 CERRWARN += -_gcc=-Wno-unused-function
85 CERRWARN += -_gcc=-Wno-parentheses
86 CERRWARN += -_gcc=-Wno-switch
87 CERRWARN += -_gcc=-Wno-type-limits
88 CERRWARN += -_gcc=-Wno-uninitialized
89 CERRWARN += -_gcc=-Wno-clobbered
90 CERRWARN += -_gcc=-Wno-empty-body

92 # very hairy
93 $(OBJS_DIR)/u8_textprep.o := SMATCH=off

95 # false positives
96 SMOFF += index_overflow
97 $(OBJS_DIR)/seg_vn.o := SMOFF += deref_check
98 $(OBJS_DIR)/ddi_intr_irm.o := SMOFF += deref_check

100 # need work still
101 SMOFF += signed,indenting,all_func_returns
102 $(OBJS_DIR)/clock_highres.o := SMOFF += signed_integer_overflow_check
103 $(OBJS_DIR)/evchannels.o := SMOFF += allocating_enough_data
104 $(OBJS_DIR)/klpd.o := SMOFF += cast_assign

new/usr/src/uts/intel/genunix/Makefile 3

105 $(OBJS_DIR)/lookup.o := SMOFF += strcpy_overflow
106 $(OBJS_DIR)/process.o := SMOFF += or_vs_and
107 $(OBJS_DIR)/sunpci.o := SMOFF += deref_check
108 $(OBJS_DIR)/timers.o := SMOFF += signed_integer_overflow_check

110 # definitely wrong
111 $(OBJS_DIR)/acl_common.o := SMOFF += or_vs_and

113 #
133 # Ensure that lint sees ’struct cpu’ containing a fully declared
134 # embedded ’struct machcpu’
135 #
136 LINTFLAGS += -D_MACHDEP -I../../i86pc

138 #
114 # Default build targets.
115 #
116 .KEEP_STATE:

118 def: $(DEF_DEPS)

120 all: $(ALL_DEPS)

122 clean: $(CLEAN_DEPS)

124 clobber: $(CLOBBER_DEPS)

151 lint: $(LINT_DEPS)

153 modlintlib: $(MODLINTLIB_DEPS)

155 clean.lint: $(CLEAN_LINT_DEPS)

126 install: $(INSTALL_DEPS)

128 # Due to what seems to be an issue in GCC 4 generated DWARF containing
129 # symbolic relocations against non-allocatable .debug sections, libgenunix.so
130 # must be built from a stripped object, thus we create an intermediary
131 # libgenunix.o we can safely strip.
132 LIBGENUNIX_O = $(OBJS_DIR)/libgenunix.o
133 CLEANFILES += $(LIBGENUNIX_O)

135 $(LIBGENUNIX_O): $(OBJECTS)
136 $(LD) -r -o $(OBJS_DIR)/libgenunix.o $(OBJECTS)
137 $(STRIP) -x $(OBJS_DIR)/libgenunix.o

139 $(LIBGEN): $(LIBGENUNIX_O) $(LIBSTUBS)
140 $(BUILD.SO) $(LIBGENUNIX_O) $(LIBSTUBS)

142 $(IPCTF_TARGET) ipctf_target: FRC
143 @cd $(IPDRV_DIR); pwd; $(MAKE) ipctf.$(OBJS_DIR)
144 @pwd

146 $(GENUNIX): $(IPCTF_TARGET) $(OBJECTS)
147 $(LD) -r $(LDFLAGS) -o $@ $(OBJECTS)
148 $(CTFMERGE_GENUNIX_MERGE)
149 $(POST_PROCESS)

151 #
152 # Include common targets.
153 #
154 include $(UTSBASE)/intel/Makefile.targ

156 #
157 # Software workarounds for hardware "features".
158 #

new/usr/src/uts/intel/genunix/Makefile 4

159 include $(UTSBASE)/i86pc/Makefile.workarounds

161 ALL_DEFS += $(WORKAROUND_DEFS)

194 #
195 # Override.
196 #
197 $(MODULE).lint := GEN_LINT_LIB =

new/usr/src/uts/intel/mega_sas/Makefile 1

**
 1829 Mon Aug 5 08:38:55 2019
new/usr/src/uts/intel/mega_sas/Makefile
11506 smatch resync
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # Copyright 2019 Joyent, Inc.
24 # Copyright (c) 2018, Joyent, Inc.

25 #
27 # uts/intel/mega_sas/Makefile
28 #
29 # This makefile drives the production of the mega_sas driver kernel module
30 #
31 # intel implementation architecture dependent
32 #

27 #
28 # Path to the base of the uts directory tree (usually /usr/src/uts).
29 #
30 UTSBASE = ../..

32 #
33 # Define the module and object file sets.
34 #
35 MODULE = mega_sas
36 OBJECTS = $(MEGA_SAS_OBJS:%=$(OBJS_DIR)/%)
44 LINTS = $(MEGA_SAS_OBJS:%.o=$(LINTS_DIR)/%.ln)
37 ROOTMODULE = $(ROOT_DRV_DIR)/$(MODULE)
38 CONF_SRCDIR = $(UTSBASE)/common/io/mega_sas

40 #
41 # Include common rules.
42 #
43 include $(UTSBASE)/intel/Makefile.intel

45 #
46 # Define targets
47 #
48 ALL_TARGET = $(BINARY) $(CONFMOD)
57 LINT_TARGET = $(MODULE).lint
49 INSTALL_TARGET = $(BINARY) $(ROOTMODULE) $(ROOT_CONFFILE)

51 #

new/usr/src/uts/intel/mega_sas/Makefile 2

52 # Kernel Module Dependencies
53 #
54 LDFLAGS += -dy -Nmisc/scsi

56 CERRWARN += -_gcc=-Wno-uninitialized

58 # needs work
59 $(OBJS_DIR)/megaraid_sas.o := SMOFF += snprintf_overflow,all_func_returns,index_
68 $(OBJS_DIR)/megaraid_sas.o := SMOFF += snprintf_overflow,all_func_returns

61 #
62 # Default build targets.
63 #
64 .KEEP_STATE:

66 def: $(DEF_DEPS)

68 all: $(ALL_DEPS)

70 clean: $(CLEAN_DEPS)

72 clobber: $(CLOBBER_DEPS)

83 lint: $(LINT_DEPS)

85 modlintlib: $(MODLINTLIB_DEPS)

87 clean.lint: $(CLEAN_LINT_DEPS)

74 install: $(INSTALL_DEPS)

76 #
77 # Include common targets.
78 #
79 include $(UTSBASE)/intel/Makefile.targ

new/usr/src/uts/intel/simnet/Makefile 1

**
 1820 Mon Aug 5 08:38:56 2019
new/usr/src/uts/intel/simnet/Makefile
11506 smatch resync
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # Copyright 2019 Joyent, Inc.
26 #

28 #
29 # Path to the base of the uts directory tree (usually /usr/src/uts).
30 #
31 UTSBASE = ../..

33 #
34 # Define the module and object file sets.
35 #
36 MODULE = simnet
37 OBJECTS = $(SIMNET_OBJS:%=$(OBJS_DIR)/%)
35 LINTS = $(SIMNET_OBJS:%.o=$(LINTS_DIR)/%.ln)
38 ROOTMODULE = $(ROOT_DRV_DIR)/$(MODULE)
39 CONF_SRCDIR = $(UTSBASE)/common/io/$(MODULE)

41 #
42 # Include common rules.
43 #
44 include $(UTSBASE)/intel/Makefile.intel

46 #
47 # Define targets
48 #
49 ALL_TARGET = $(BINARY) $(SRC_CONFILE)
48 LINT_TARGET = $(MODULE).lint
50 INSTALL_TARGET = $(BINARY) $(ROOTMODULE) $(ROOT_CONFFILE)

52 #
53 # Overrides
54 #
55 CFLAGS += $(CCVERBOSE)
56 LDFLAGS += -dy -Ndrv/dld -Nmisc/mac -Nmisc/dls -Ndrv/random

58 CERRWARN += -_gcc=-Wno-switch

new/usr/src/uts/intel/simnet/Makefile 2

60 # needs work
61 $(OBJS_DIR)/simnet.o := SMOFF += index_overflow

63 #
64 # Default build targets.
65 #
66 .KEEP_STATE:

68 def: $(DEF_DEPS)

70 all: $(ALL_DEPS)

72 clean: $(CLEAN_DEPS)

74 clobber: $(CLOBBER_DEPS)

72 lint: $(LINT_DEPS)

74 modlintlib: $(MODLINTLIB_DEPS)

76 clean.lint: $(CLEAN_LINT_DEPS)

76 install: $(INSTALL_DEPS)

78 #
79 # Include common targets.
80 #
81 include $(UTSBASE)/intel/Makefile.targ

new/usr/src/uts/intel/spppcomp/Makefile 1

**
 2087 Mon Aug 5 08:38:56 2019
new/usr/src/uts/intel/spppcomp/Makefile
11506 smatch resync
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # uts/intel/spppcomp/Makefile
23 #
24 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
25 # Use is subject to license terms.
26 # Copyright (c) 2011 Bayard G. Bell. All rights reserved.
27 #
28 # Copyright 2019 Joyent, Inc.
29 #
28 # Copyright (c) 2018, Joyent, Inc.

31 #
32 # Path to the base of the uts directory tree (usually /usr/src/uts).
33 #
34 UTSBASE = ../..

36 #
37 # Define the module and object file sets.
38 #
39 MODULE = spppcomp
40 OBJECTS = $(SPPPCOMP_OBJS:%=$(OBJS_DIR)/%)
40 LINTS = $(SPPPCOMP_OBJS:%.o=$(LINTS_DIR)/%.ln)
41 ROOTMODULE = $(USR_STRMOD_DIR)/$(MODULE)

43 #
44 # Include common rules.
45 #
46 include $(UTSBASE)/intel/Makefile.intel

48 #
49 # Define targets
50 #
51 ALL_TARGET = $(BINARY)
52 LINT_TARGET = $(MODULE).lint
52 INSTALL_TARGET = $(BINARY) $(ROOTMODULE)

54 #
55 # Internal build definitions
56 #
57 CPPFLAGS += -DINTERNAL_BUILD -DSOL2 -DMUX_FRAME

new/usr/src/uts/intel/spppcomp/Makefile 2

59 #
60 # Additional compiler definitions
61 #
62 INC_PATH += -I$(UTSBASE)/common/io/ppp/common

65 #
66 # For now, disable these lint checks; maintainers should endeavor
67 # to investigate and remove these for maximum lint coverage.
68 # Please do not carry these forward to new Makefiles.
69 #
70 LINTTAGS += -erroff=E_BAD_PTR_CAST_ALIGN
71 LINTTAGS += -erroff=E_PTRDIFF_OVERFLOW
72 LINTTAGS += -erroff=E_ASSIGN_NARROW_CONV

64 CERRWARN += -_gcc=-Wno-parentheses
65 CERRWARN += -_gcc=-Wno-uninitialized

67 # needs work
68 SMOFF += indenting,index_overflow
78 SMOFF += indenting

70 #
71 # Depends on sppp
72 #
73 LDFLAGS += -dy -N drv/sppp

75 #
76 # Default build targets.
77 #
78 .KEEP_STATE:

80 def: $(DEF_DEPS)

82 all: $(ALL_DEPS)

84 clean: $(CLEAN_DEPS)

86 clobber: $(CLOBBER_DEPS)

98 lint: $(LINT_DEPS)

100 modlintlib: $(MODLINTLIB_DEPS)

102 clean.lint: $(CLEAN_LINT_DEPS)

88 install: $(INSTALL_DEPS)

106 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ppp/spppcomp/%.c
107 @($(LHEAD) $(LINT.c) $< $(LTAIL))

90 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ppp/spppcomp/%.c
91 $(COMPILE.c) -o $@ $<
92 $(CTFCONVERT_O)

94 #
95 # Include common targets.
96 #
97 include $(UTSBASE)/intel/Makefile.targ

new/usr/src/uts/intel/xge/Makefile 1

**
 3034 Mon Aug 5 08:38:56 2019
new/usr/src/uts/intel/xge/Makefile
11506 smatch resync
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # Copyright 2019 Joyent, Inc.
27 #
26 # Copyright (c) 2018, Joyent, Inc.

29 #
30 # Paths to the base of the uts directory trees
31 #
32 UTSBASE = ../..

34 #
35 # Define the module and object file sets.
36 #
37 MODULE = xge
38 OBJECTS = $(XGE_HAL_OBJS:%=$(OBJS_DIR)/%) $(XGE_OBJS:%=$(OBJS_DIR)/%)
38 LINTS = $(XGE_HAL_OBJS:%.o=$(LINTS_DIR)/%.ln) $(XGE_OBJS:%.o=$(LINTS_D
39 ROOTMODULE = $(ROOT_DRV_DIR)/$(MODULE)

41 #
42 # Include common rules.
43 #
44 include $(UTSBASE)/intel/Makefile.intel

46 #
47 # Define targets
48 #
49 ALL_TARGET = $(BINARY)
50 LINT_TARGET = $(MODULE).lint
50 INSTALL_TARGET = $(BINARY) $(ROOTMODULE)

52 #
53 # GENERAL PURPOUSE HAL FLAGS: Tuning HAL for Solaris specific modes
54 #
55 HAL_CFLAGS = -DXGE_HAL_USE_MGMT_AUX

57 #
58 # TRACE SECTION: Possible values for MODULE, TRACE and ERR masks:

new/usr/src/uts/intel/xge/Makefile 2

59 #
60 # XGE_COMPONENT_HAL_CONFIG 0x1
61 # XGE_COMPONENT_HAL_FIFO 0x2
62 # XGE_COMPONENT_HAL_RING 0x4
63 # XGE_COMPONENT_HAL_CHANNEL 0x8
64 # XGE_COMPONENT_HAL_DEVICE 0x10
65 # XGE_COMPONENT_HAL_MM 0x20
66 # XGE_COMPONENT_HAL_QUEUE 0x40
67 # XGE_COMPONENT_HAL_STATS 0x100
68 # XGE_COMPONENT_OSDEP 0x1000
69 # XGE_COMPONENT_LL 0x2000
70 # XGE_COMPONENT_TOE 0x4000
71 # XGE_COMPONENT_RDMA 0x8000
72 # XGE_COMPONENT_ALL 0xffffffff
73 #TRACE_CFLAGS = -DXGE_DEBUG_MODULE_MASK=0xffffffff \
74 # -DXGE_DEBUG_TRACE_MASK=0xffffffff \
75 # -DXGE_DEBUG_ERR_MASK=0xffffffff
76 TRACE_CFLAGS = -DXGE_DEBUG_MODULE_MASK=0x00003010 \
77 -DXGE_DEBUG_TRACE_MASK=0x00000000 \
78 -DXGE_DEBUG_ERR_MASK=0x00003010

80 XGE_CFLAGS = $(HAL_CFLAGS) $(TRACE_CFLAGS) $(CCVERBOSE) \
81 -I$(UTSBASE)/common/io/xge/hal/include \
82 -I$(UTSBASE)/common/io/xge/hal/xgehal \
83 -I$(UTSBASE)/common/io/xge/drv -DSOLARIS

85 CFLAGS += $(XGE_CFLAGS) -xO4 -xcrossfile
86 CFLAGS64 += $(XGE_CFLAGS) -xO4 -xcrossfile

88 #
89 # Driver depends on MAC & IP
90 #
91 LDFLAGS += -dy -N misc/mac -N drv/ip

94 # Lint flag
95 #
96 LINTFLAGS += $(XGE_CFLAGS) -Xc99=%all

98 #
99 # For now, disable these lint checks; maintainers should endeavor
100 # to investigate and remove these for maximum lint coverage.
101 # Please do not carry these forward to new Makefiles.
102 #
103 LINTTAGS += -erroff=E_BAD_PTR_CAST_ALIGN
104 LINTTAGS += -erroff=E_STATIC_UNUSED
105 LINTTAGS += -erroff=E_PTRDIFF_OVERFLOW

93 CERRWARN += -_gcc=-Wno-parentheses
94 CERRWARN += -_gcc=-Wno-unused-variable
95 CERRWARN += -_gcc=-Wno-unused-label
96 CERRWARN += -_gcc=-Wno-empty-body
97 CERRWARN += -_gcc=-Wno-uninitialized

99 # needs work
100 SMOFF += indenting
101 SMOFF += all_func_returns
102 SMOFF += no_if_block
103 SMOFF += allocating_enough_data
114 SMOFF += indenting,all_func_returns,no_if_block

105 #
106 #
107 # Default build targets.
108 #
109 .KEEP_STATE:

new/usr/src/uts/intel/xge/Makefile 3

111 def: $(DEF_DEPS)

113 all: $(ALL_DEPS)

115 clean: $(CLEAN_DEPS)

117 clobber: $(CLOBBER_DEPS)

130 lint: $(LINT_DEPS)

132 modlintlib: $(MODLINTLIB_DEPS)

134 clean.lint: $(CLEAN_LINT_DEPS)

119 install: $(INSTALL_DEPS)

121 #
122 # Include common targets.
123 #
124 include $(UTSBASE)/intel/Makefile.targ

