new usr/src/ Makefil e.smatch

R R R R

1180 Mon Aug 5 08:37:45 2019
new usr/src/ Makefile. smatch
11506 snatch resync

R R R R

1#

2 # This file and its contents are supplied under the terms of the

3 # Common Devel opent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terns of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this

8 # source. A copy of the CDDL is also available via the Internet at
9 # http://ww.illunos.org/license/ CDDL.

10 #

11 # Copyright 2019 Joyent, Inc.

12 #

14 #

15 # smatch/ sparse checks we al ways di sable, due to too nany fal se positives (or
16 # sinply too nuch | egacy).

17 #

19 SMATCH _ARGS = --di sabl e=uninitialized, check_check_deref, unreachabl e

21 # VLAs are K by us

22 SVATCH_ARGS += -Who-vl a

23 # don't care

24 SMATCH_ARGS += - Who-one-bit-signed-bitfield

25 # there are lots of "extern void nyfunc() { ... }" around
26 SMATCH_ARGS += -Who-external -function-has-definition
27 # we have lots of legacy "void foo();" in headers

28 SMATCH_ARGS += -Who-ol d-style-definition
29 SMATCH ARGS += -Who-strict-prototypes

30 SMATCH_ARGS += --fatal -checks

31 SVATCH _ARGS += --ti neout =0

31 SMATCH_ARGS += --tineout=120

33 CERRWARN += $(SMATCH_ARGS: % - _smat ch=%

35 CERRWARN += $(SMOFF: %=- _snat ch=- - di sabl e=%
37 SMATCH_ =

38 SMATCH on =

39 SMATCH of f = -_smat ch=of f

41 CERRWARN += $(SMATCH_$(SMATCH))

new usr/src/boot/lib/libstand/ Makefile.inc

R R R R

7040 Mon Aug 5 08:37:45 2019
new usr/src/boot/lib/libstand/ Makefile.inc
11506 snatch resync

R R R R

Not es:
- We don’t use the libc strerror/sys_errlist because the string table is
quite | arge.

1#
2 # This file and its contents are supplied under the terms of the
3 # Common Devel opent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terns of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://ww.illunos.org/license/ CDDL.
10 #
12 #
13 # Copyright 2016 Toomas Soone <t soone@re. conp
14 # Copyright 2019 Joyent, Inc.
15 #
#
#
#
#
#

23 # standal one conponents and stuff we have nodified locally
24 SRCS= $(ZLI B)/gzguts h $(ZLIB)/zutil.h

25 SRCS += $(SASRC)/ __main.c $(SASRC)/assert.

26 SRCS += $(SASRC) /bcd. ¢ $(SASRC)/ envi ronnent . c

27 SRCS += $(SASRC)/getopt.c $(SASRC)/strtol.c

28 SRCS += $(SASRC)/strtoul .c $(SASRC)/random c

29 SRCS += $(SASRC)/sbrk.c $(SASRC)/twi ddle.c

30 SRCS += $(SASRC)/ zall oc.c $(SASRC)/zal |l oc_malloc.c

32 OBJS= _ nmmin.o assert.o bcd.o environnment.o \

33 getopt.o gets.o globals.o pager.o panic.o printf.o \
34 strdup.o strerror.o strtol.o strtoul.o randomo \
35 sbrk.o twiddle.o zalloc.o zalloc_malloc.o

37 # private (pruned) versions of libc string functions
38 SRCS += $(SASRC)/strcasecnp.c
39 OBJS += strcasecnp.o

41 # fromlibc
42 SRCS += $(LIBSRC)/Ilibc/ net/ntoh.c
43 OBJS += ntoh.o

45 # string functions fromlibc
46 SRCS += $(LIBSRQ)/Ilibc/string/ bcnp.c $(LIBSRC)/Iibc/string/ bcopy.c
47 SRCS += $(LIBSRC)/libc/string/bzero.c $(LIBSRC)/Ilibc/string/ffs.c
48 SRCS += $(LIBSRCO)/libc/string/fls.c $(LIBSRC)/Iibc/string/ menccpy.c
49 SRCS += $(LIBSRCO)/|ibc/string/ menchr.c $(LIBSRC)/Iibc/string/ mencnp.c
50 SRCS += $(LIBSRC)/!ibc/string/ menmcpy.c $(LIBSRC)/Ii
51 SRCS += $(LIBSRC)/|ibc/string/ menset.c $(LIBSRC)/ i
52 SRCS += $(LIBSRQ)/libc/string/strchr.c $(LIBSRC)/Ii
53 SRCS += $(LIBSRC)/|ibc/string/strcpy.c $(LIBSRC)/Ii
54 SRCS += $(LIBSRC) /i bc/string/stpncpy.c $(LIBSRC)/I
/1 RO) /|
/1 /i
/1 RC) /|
/1) /|
Al i
/1 i
/1

i
i
i c/ string/ nenmove. c
i
i
i
i
55 SRCS += $(LIBSRC)/libc/string/strlcat.c $(LIBS
i
i
i
i
i
i

b
bc/string/strcat.c
bc/string/strcnp. c
bc/ string/ stpcpy.c
i
i
b
i
i
b
b

\1\A4\/

i bc/string/strcspn.c
ibc/string/strlcpy.c

56 SRCS += $(LI BSRC) c/string/strncat.c

i
c
|
|
|
|
|
RC) /
/

ibc/string/strlen.c $(LI BSRO) / |

RC) /

/

|

|

57 SRCS += $(LIBSRC)/Ilibc/string/strncnp.c $(LIBS ibc/string/strncpy.c
58 SRCS += $(LIBSRC)/Ilibc/string/strpbrk.c $(LIBSRC)/!libc/string/strrchr.c
59 SRCS += $(LIBSRQ)/|ibc/string/strsep.c $(LIBSRC)/ c/string/strspn.c
60 SRCS += $(LIBSRC)/Iibc/string/strstr.c $(LIBSRC)/ c/string/strtok.c

61 SRCS += $(LIBSRC)/Iibc/string/swab.c

new usr/src/boot/lib/libstand/ Makefile.inc

82
83
84
85
86
87

89
90

92
93
94

96
97

99
100

102
103

105
106

108
109

111
112
113

115
116
117
118
119
120

122
123
124
125
126
127

SRCS += $(SASRC)/ qdi vrem c

OBJS += bcnp. o bcopy.o bzero.o ffs.o fls.o \
nenccpy. o nenchr.o nencnp. o mencpy.o menmove. o nmenset.o \
qdivremo strcat.o strchr.o strcnp.o strcpy.o stpcpy.o stpncpy.o \
strcspn.o strlcat.o strlcpy.o strien.o strncat.o strncnp.o strncpy.o \
strpbrk.o strrchr.o strsep.o strspn.o strstr.o strtok.o swab. o

uuid functions fromlibc

SRCS += $(LIBSRC)/Iibc/uuid/uuid_create_nil.c
SRCS += $(LIBSRQ) /i bc/ uuid/uuid_equal.c

SRCS += $(LIBSRC)/|ibc/uuid/uuid_is_nil.c

SRCS += $(SASRC)/uuid_fromstring.c
SRCS += $(SASRC)/uuid_to_string.c

OBJS += uuid_create_nil.o uuid_equal.o uuid_fromstring.o uuid_is_nil.o \
uuid_to_string.o

deconpression functionality fromlibbz2

NOTE: to actually test this functionality after |ibbz2 upgrade conpile
| oader (8) wi th LOADER BZI P2_SUPPORT defi ned

_bzlib.o _crctable.o _deconpress.o _huffman.o _randtable.o bzipfs.o \

"= CFLAGS += - DBZ_LQADER - DBZ_NO STDI O - DBZ_NO COVPRESS

SRCS += libstand_bzlib_private.h

too hairy
_inflate.o : = SMATCH=of f
SRCS += _bzlib.c _crctable.c _deconpress.c _huffman.c _randtable.c

OBJS += _bzlib.o _crctable.o _deconpress.o _huffman.o _randtable.o
CLEANFI LES += _bzlib.c _crctable.c _deconpress.c _huffnan.c _randtable.c

_bzlib.c: $(SRC)/common/ bzi p2/bzlib.c
sed "s|bzlib_private\.h|libstand_bzlib_private.h|" $" > $@

_crctable.c: $(SRC)/conmon/ bzi p2/crctable.c
sed "s|bzlib_private\.h|libstand_bzlib_private.h|l" $" > $@

_deconpress. c: $(SRC)/common/ bzi p2/ deconpr ess. c
sed "s|bzlib_private\.h|libstand_bzlib_private.h|" $* > $@

_huffman. c: $(SRC)/comon/ bzi p2/ huf f man. ¢
sed "s|bzlib_private\.h|libstand_bzlib_private.h|" $ > $@

_randtabl e.c: $(SRC)/conmmon/ bzi p2/randtabl e. c
sed "s|bzlib_private\.h|libstand_bzlib_private.h|" $" > $@

CLEANFI LES += |ibstand_bzlib_private.h
l'i bstand_bzlib_private. h: $(SRC)/conmon/ bzi p2/bzlib_private.h
sed -e 's|<stdlib.h>"stand. h"|’ $"* > $@

deconpression functionality fromzlib
adl er32.0 crc32.0 _infback.o _inffast.o
gzipfs.o gzip.o := CPPFLAGS += -|$(ZLI B)
SRCS += $(ZLIB)/adler32.c $(ZLIB)/crc32.c \

libstand_zutil.h |ibstand_gzguts.h
OBJS += adler32.0 crc32.0

_inflate.o _inftrees.o _zutil.o \

_infback.c: $(ZLIB)/infback.c
sed -e "s|zutil\.h|libstand_zutil.h]" \
-e "s|gzguts\.h|libstand_gzguts.h|" \
$" > $@

_inffast.c: $(ZLIB)/inffast.c
sed -e "s|zutil\.h|libstand_zutil.h]" \

new usr/src/boot/lib/libstand/ Makefile.inc

128 -e "s|gzguts\.h|libstand_gzguts.h|" \

129 N > 3@

130 _inflate.c: $(ZLIB)/inflate.c

131 sed -e "s|zutil\.h|libstand_zutil.h]" \

132 -e "s|gzguts\.h|libstand_gzguts.h|" \

133 N> 3

134 _inftrees.c: $(ZLIB)/inftrees.c

135 sed -e "s|zutil\.h|libstand_zutil.h]" \

136 -e "s|gzguts\.h|libstand_gzguts.h|" \

137 $" > 3@

138 _zutil.c: $(ZLIB)/zutil.c

139 sed -e "s|zutil\.h|libstand_zutil.h]" \

140 -e "s|gzguts\.h|libstand_gzguts.h|" \

141 $" > 3@

143 SRCS += _infback.c _inffast.c _inflate.c _inftrees.c _zutil.c
144 OBJS += _infback.o _inffast.o _inflate.o _inftrees.o _zutil.o
145 CLEANFILES += _infback.c _inffast.c _inflate.c _inftrees.c _zutil.c

147 # depend on stand.h being able to be included nultiple tines
148 libstand_zutil.h: $(ZLIB)/zutil.h

149 sed -e 's|<fcntl.h>"stand. h"|’ \
150 -e 's| <stddef.h>|"stand. h"|" \
151 -e 's|<string.h>|"stand. h"|’ \
152 -e 's|<stdio.h>"stand. h"|’ \
153 -e 's|<stdlib.h>"stand. h"|" \
154 $" > 3@

156 |ibstand_gzguts. h: $(ZLIB)/gzguts.h

157 sed -e 's|<fcntl.h>"stand. h"|’ \
158 -e 's|<stddef.h>|"stand. h"|" \
159 -e 's|<string. h>|"stand. h"|" \
160 -e 's|<stdio.h>"stand. h"|’
161 -e 's|<stdlib.h>"stand. h"|" \
162 $" > 3@

164 CLEANFILES += libstand_zutil.h |ibstand_gzguts.h

166 # i 0 routines
167 SRCS += $(SASRC)/cl oseal | .c $(SASRC)/dev.c \

168 $(SASRC)/ioctl.c $(SASRC)/nullfs.c \

169 $(SASRC) / stat.c $(SASRC)/fstat.c $(SASRC)/close.c \
170 $(SASRC) / | seek. c $(SASRC) / open.c $(SASRC)/read.c \
171 $(SASRC)/write.c $(SASRC)/readdir.c

173 OBJS += closeall.o dev.o ioctl.o nullfs.o stat.o fstat.o close.o | seek.o \
174 open.o read.o wite.o readdir.o

176 # network routines
177 SRCS += $(SASRC)/arp.c $(SASRC)/ether.c $(SASRC)/ip.c \

178 $(SASRC) /i net _ntoa.c $(SASRC)/in_cksumc \
179 $(SASRC) / net . ¢ $(SASRC) / udp. ¢ $(SASRC) /netif.c \
180 $(SASRC) / rpc. ¢

181 OBJS += arp.o ether.o ip.o inet_ntoa.o in_cksumo net.o udp.o netif.o rpc.o

183 # network info services:

184 SRCS += $(SASRC)/bootp.c $(SASRC)/rarp.c \
185 $(SASRC) / boot param ¢

186 OBJS += bootp.o rarp.o bootparam o

188 # boot fil esystens

189 SRCS += $(SASRC)/ufs.c
190 SRCS += $(SASRC)/nfs.c
191 SRCS += $(SASRC)/ cd9660. c
192 SRCS += $(SASRC)/tftp.c
193 SRCS += $(SASRC)/ gzi pfs.c

new usr/src/boot/lib/libstand/ Makefile.inc

194 SRCS += $(SASRC)/ bzipfs.c
195 SRCS += $(SASRC)/dosfs.c
196 OBJS += ufs.o

197 OBJS += nfs.o

198 OBJS += ¢d9660. 0

199 OBJS += tftp.o

200 OBJS += gzipfs.o

201 OBJS += bzipfs.o

202 OBJS += dosfs.o

203 #

204 . PARALLEL:

new usr/src/boot/sys/boot/ Makefile.inc

R R R R

2493 Mon Aug 5 08:37:46 2019
new usr/ src/boot/sys/boot/ Makefile.inc
11506 snatch resync

R R R R

This file and its contents are supplied under the terms of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunos.org/license/ CDDL.

Copyri ght 2017 Toonas Soone <t soone@re. con
Copyri ght 2019 Joyent, Inc.

HHFH HHBFHFHHFHHR

=
~
F*

| oader. hel p build needs better awk

18 AVK= [usr/ xpg4/ bi n/ ank

19 LD= $(GNU_ROOT) / bin/ gl d

20 OBJCOPY= $(GNU_RQOOT) / b| n/ gobj copy
21 OBJDUWP= $(GNU_ROOT) / bi n/ gobj dunp
22 GSTRI P= $(GNU_ROOT) / bin/ gstrip

24 # Default Console font setup.
25 # W want it to be the same as kernel .

26 # W build conpressed, stripped down version of the default font, so we have

27 # bare mininumfor case we can not load font fromthe OS root.

29 FONT= 8x16

30 FONT_SRC= ter-ulén. bdf

31 FONT_DI R= $(SRC)/ dat a/ consfont s
33 PNGLI TE= $(SRC)/ conmon/ pnglite
35 BOOTSRC= $(SRC) / boot / sys/ boot
36 LI BSRC= $(SRC)/ boot/Ilib

37 SASRC= $(LI BSRC)/ | i bstand

38 ZFSSRC= $(SASRC) / zf s

39 ZLIB= $(SRC)/contrib/zlib

41 # set standard val ues
42 AS_CPPFLAGS=

43 CPPFLAGS= -D_STANDALONE - _gcc=-nostdi nc

44 CFLAGS64= -_gcc=-mo-red-zone

46 CFLAGS= -_gcc=-0s -_gcc=-fPIC -_gcc=-ffreestanding -_gcc=-fno-builtin
47 CFLAGS += -_gcc=-ffunction-sections -_gcc=-fdata-sections

48 CFLAGS += - _gCC=-Mmo- nMmX -_gcc=- mMmo- 3dnow - _gcc=- NMo-Sse -_QgCcC=- Mmo- sse2
49 CFLAGS += -_gcc=-mo-sse3 -_gcc=-nsoft-fl oat

50 CFLAGCS += -_gCcCc=-mmo-avx -_gCcc=-nmo- aes

51 CFLAGS += -_gcc=-\Val |

52 CFLAGS += $(CCNOAUTOI NLI NE) $(CCNORECRDER) $(CSTD_GNU99)

53 CCASFLAGS= -fPIC -W4, --divide

54 ASFLAGS= --divide

56 SVATCH =

57 SMATCH on =

58 SMATCH of f = -_smat ch=of f

60 # smatch does not define and64 and and64
61 SMATCH and64= -_smatch=-D__anud64 -_smatch=-D__anu64__

new usr/src/boot/sys/boot/ Makefile.inc

63 # SMATCH ARGS will bring in set of -Wio-* options.

64 #CFLAGS += $(SVATCH_ARGS: %=~ _smat ch=%

65 CFLAGS += $(SMOFF: %=~ _smat ch=- - di sabl e=%

66 CFLAGS += $(SMATCH_$(NACHI NE))

67 CFLAGS += $(SMATCH_$(SMATCH))

68 CFLAGS += -_smat ch=--ti meout =0

70 COWPI LE. S= $(CC) $(SMATCH of f) $(CCASFLAGS) $(CPPFLAGS)
72 ROOT_BOOT= $(ROOT) / boot

73 ROOTBOOTPROG=$(PROG: %=$(ROOT_BOOT) / %

75 $(ROOT_BOOT)/ % %
76 $(INS. file)

78 #.if ${ MACH NE_CPUARCH} == "arni
79 # Do not generate novt/nmovw, because the relocation fixup for them does not

80 # translate to the -Bsynbolic -pie format required by self_reloc() in |oader(8).

81 # AI so, the fpu is not available in a standal one environnent.
82 #CFLAGS. cl ang+= -ml|vm -arm use- novt =0

83 #CFLAGS. cl ang+= - nf pu=none

84 #.endif

new usr/src/boot/sys/boot/efi/libefi/i386/ Makefile

R R R R

721 Mon Aug 5 08:37:47 2019
new usr/src/boot/sys/boot/efi/libefi/i386/ Makefile
11506 snatch resync

R R R R

1#

2 # This file and its contents are supplied under the terms of the

3 # Common Devel opent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terns of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://ww.illunos.org/license/ CDDL.

10 #

12 #

13 # Copyright 2016 Toomas Soonme <tsoone@re.conp

14 # Copyright 2016 RackTop Systens.

15 # Copyright 2019 Joyent, Inc.

16 #

18 MACHI NE= $(MACH)

20 all: libefi.a

22 SRCS= tine.c
23 include ../ Makefile.com

25 CFLAGS += - B2

27 # false positive only with a 64-bit smatch
28 SMOFF += uninitialized

30 CLEANFILES += machi ne x86
32 $(OBJIS): mmchi ne x86

new usr/src/boot/sys/boot/libstand/ Makefile.com

R R R R

1361 Mon Aug 5 08:37:48 2019
new usr/src/boot/sys/boot/libstand/ Makefile.com
11506 snatch resync

R R R R

1#

2 # This file and its contents are supplied under the terms of the

3 # Common Devel opent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terns of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://ww.illunos.org/license/ CDDL.

10 #

12 #

13 # Copyright 2016 Toomas Soone <t soone@re. conp

14 # Copyright 2019 Joyent, Inc.

15 #

17 include $(SRC)/ Makefil e. master
18 include $(SRC)/boot/sys/ boot/ Mkefile.inc

20 CPPFLAGS += -l../..1..1..linclude -1$(SASRC)
21 CPPFLAGS += -l -1 -1 $(SRC)/ conmon/ bzi p2

23 $(LIBRARY): $(SRCS) $(0BIS)
24 $(AR) $(ARFLAGS) $@ $(0BJIS)

26 include $(SASRC)/ Makefile.inc
27 include $(ZFSSRC)/ Makefile.inc

29 CPPFLAGS += -1 $(SRC) / ut s/ cormon

31 # needs work
32 printf.o := SMOFF += 64bit_shift

34 # too hairy
35 _inflate.o : = SMATCH=of f

37 # 64-bit smatch fal se positive :/
38 SMOFF += uninitialized

40 cl ean: cl obber

41 cl obber:

42 $(RM $(CLEANFI LES) $(OBJS) machi ne $(LI BRARY)
44 nachi ne:

45 $(RM machi ne

46 $(SYMLINK) ../../../$(MACH NE)/i nclude machine
48 x86:

49 $(RM) x86

50 $(SYMLINK) ../../../x86/include x86

52 % o: $(SASRC) / % ¢

53 $(COWPI LE. ¢) $<

55 % o: $(LIBSRC)/ i bc/net/%c

56 $(COWPI LE. c) $<

58 % o: $(LIBSRC)/1ibc/string/ %c

59 $(COWPI LE. ¢) $<

61 % o: $(LIBSRO) /i bc/uuid %c

new usr/src/boot/sys/boot/|ibstand/ Makefile.com

62 $(COWPI LE. c) $<
64 % o: $(ZLIB)/ % c
65 $(COWI LE. c) $<

new usr/src/cnd/ | s/ Makefil e.com

R R R R

1660 Mon Aug 5 08:37:48 2019
new usr/src/cnd/ | s/ Makefile.com
11506 snatch resync

R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.
7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perni ssions
11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.
15 # |f applicable, add the follow ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #

19 # CDDL HEADER END

20 #

21 #

22 # Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.

23 # Use is subject to license terns.

24 #

25 # Copyright 2019 Joyent, |Inc.

25 # cnd/ | s/ Makefile.com

26 #

28 PROG= I's

29 XPGAPROG= I's

30 XPGBPROG= I's

31 OBIS= $(PROG) .

32 SRCS= $(OoBIS: %o— .1 %c)

34 include ../../Makefile.cmd

36 LDLIBS += -lsec -lnvpair -lcndutils -Icurses
37 CFLAGS += $(CCVERBCSE)
38 $(XPG4) := CFLAGS += - DXPG4

40 # Include all XPG4 changes in the XPG5 version
41 $(XP@B) := CFLAGS += - DXPG4 - DXPGB
42 $(XPGB) := CFLAGS64 += - DXPGA - DXPG6

44 CFLAGS64 += $(CCVERBOSE)
45 CPPFLAGS += -D_FI LE_OFFSET_BI TS=64
46 LI NTFLAGS64 += -errchk=l ongptr64

47 # main() can be too hairy
48 SMATCH=of f

50 . KEEP_STATE:

52 all: $(PROG) $(XPH) $(XPE)
52 lint: i nt_SRCS

54 cl ean:

55 $(RM) $(CLEANFI LES)

57 include ../../Makefile.targ

new usr/src/cnd/ | s/ Makefil e.com

59 % xpg4: ../ %c
60 $(LINK. c) -0 $@ $< $(LDLIBS)

61 $(POST_PROCESS)

63 % xpg6: ../ %cC

64 $(LINK. c) -0 $@ $< $(LDLIBS)
65 $(POST_PROCESS)

67 % ../%c

68 $(LINK. c) -0 $@ $< $(LDLIBS)
69 $(POST_PROCESS)

new usr/src/crmd/ sgs/libl d/ Makefil e.com 1

R R R R

4894 Mon Aug 5 08:37:49 2019
new usr/src/cnmd/ sgs/libl d/ Makefile.com
11506 snatch resync

R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.

7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE

9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perni ssions

11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each

14 # file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.

15 # |f applicable, add the follow ng below this CDDL HEADER, with the

16 # fields enclosed by brackets "[]" replaced with your own identifying

17 # information: Portions Copyright [yyyy]l [nane of copyright owner]

18 #

19 # CDDL HEADER END
20 #
22 #
23 # Copyright 2010 Sun Mcrosystenms, Inc. Al rights reserved.
24 # Use is subject to license terns.
25 #
26 # Copyright 2019 Joyent, Inc.
26 # Copyright (c) 2018, Joyent, Inc.

27 # Copyright 2019 Omi OS Conmmunity Edition (Omi OSce) Association.

29 LI BRARY = libld. a
30 VERS = .4
32 COMOBIS = debug. o gl obal s. o util.o
34 COMOBJS32 = args32.0 entry32.0 exit32.0 groups32.0 \
35 | dentry32.0 I dlibs32.0 | dmachdep32. o I'dnmai n32.0 \
36 libs32. 0 files32.0 map32. o map_core32.0 \
37 map_support32. 0 map_v232.0 order32.0 outfile32.0\
38 pl ace32. 0 rel ocate32. 0 resol ve32. 0 sections32.0 \
39 sunwnmove32. o support 32. 0 synms32. 0 updat e32.0 \
40 unwi nd32. o version32. 0 wr ap32. o
42 COMOBJIS64 = ar gs64. o entry64. o exit64.0 groups64.0 \
43 | dentry64. o I dl i bs64. 0 | dmachdep64. o I'dnai n64.0 \
44 libs64.0 files64.0 nmap64. o map_core64.0 \
45 map_support 64. 0 map_v264. o order 64. 0 outfile64.0 \
46 pl ace64. o rel ocate64. o resol ve64. o sections64.0 \
a7 sunwnoveb4. o support 64. o syns64. o updat e64. 0 \
48 unwi nd64. o versi on64. o wrap64. o

50 TOOLOBJS = alist.o assfail.o findprine.o string_table.o \
51 strhash. o
52 AVLOBJ = avl .o

54 # Rel ocation engi ne objects.
55 G_MACHOBJS32 = dorel oc_sparc_32.0 dorel oc_x86_32.0
56 G_MACHOBJS64 = dorel oc_sparc_64.0 dorel oc_x86_64.0

58 # Target specific ob] ects (sparc/sparcv9)
59 L_SPARC MACHOBJS32 = machrel . sparc32.0
60 L_SPARC_MACHOBJS64 = machr el . sparc64. o

machsym sparc32. 0
machsym spar c64. o

new usr/src/cnmd/ sgs/libl d/ Makefil e.com

62 # Target specific objects (i386/and64)

63 E_X86_TOOLOBJS = | eb128. o

64 L_X86_MACHOBJS32 machrel .intel 32. 0
65 L_X86_MACHOBJS64 machr el . and64. o

67 # Al target specific objects rolled together

68 E_TOOLOBJS = $(E_SPARC_TOOLOBJS) \

69 $(E_X86 TCO.GBJS)

70 L_MACHOBJS32 = $(L_SPARC_MACHOBJS32) \

71 $(L_X86_MACHOBJIS32)

72 L_MACHOBJS64 = $(L_SPARC_MACHOBJIS64) \

73 $(L_X86_MACHOBJIS64)

76 BLTOBJ = nmsg. o

77 ELFCAPOBJ = el fcap.o

79 OBJECTS = $(BLTOBJ) $(G MACHOBIS32) $(G MACHOBIS64) \
80 $(L_MACHOBJS32) $(L_MACHOBJISE4) \

81 $(COMOBJS) $(COMOBJS32) $(COMOBIS64) \

82 $(TOOLOBIS) $(E_TOOLOBIS) $(AVLOBJ) $(ELFCAPOBJ)
84 incl ude $(SRC)/1i b/ Makefile.lib

85 incl ude $(SRC) / cnd/ sgs/ Makefil e.com

87 SRCDIR = ../ comon

89 CERRWARN += - _gcc=- Who- unused- val ue

90 CERRWARN += - _gcc=- Who- par ent heses

91 CERRWARN += -_gcc=-Who-uninitialized

92 CERRWARN += -_gcc=-Wio-switch

93 CERRWARN += - _gcc=- Who- char - subscri pts

94 CERRWARN += - _gcc=-Wio-type-limts

95 $(RELEASE_BUI LD) CERRWARN += - _gcc=- Who- unused

97 SMOFF += no_i f_bl ock

99 # Location of the shared rel ocation engi nes maintai ned under usr/src/uts.
#

101 KRTLD 1386 = $(SRCBASE)/uts/$(VAR PLAT_ i 386)/krtld

102 KRTLD AMD64 = $(SRCBASE)/ ut s/ $(VAR PLAT and64)/krt!d
103 KRTLD_SPARC = $(SRCBASE)/ ut s/ $(VAR_PLAT _sparc)/krtld

106 CPPFLAGS += -DUSE_LIBLD_MALLOC -1 $(SRCBASE)/lib/libc/inc \

107 -1 $(SRCBASE) / ut s/ common/ krtl d -1 $(SRCBASE)/ ut s/ sparc \
108 $(VAR _LI BLD CPPFLAGS)

109 LDLIBS += $(CONVLIBDIR) ${CONV_LIB) $(LDDBGLI BDIR) $(LDDBG LIB) \
110 $(ELFLIBDIR) -lelf $(DLLIB) -lc

112 DYNFLAGS += $(VERSREF) $(CC_USE_PROTO) ’-R$$SORIG N

114 native: = DYNFLAGS += $(CONVLI BDI R)
116 # too hairy

117 pics/sections32. 0 : = SMATCH=of f

118 pics/sections64.0 : = SMATCH=of f

120 BLTDEFS = msg. h

121 BLTDATA = nmsg. C

122 BLTMESG = $(SGSMSGDI R)/ 1i bl d

124 BLTFILES = $(BLTDEFS) $(BLTDATA) $(BLTMESG)

126 # Due to cross |linking support, every copy of libld contains every nessage.

new usr/src/crmd/ sgs/libl d/ Makefil e.com

127 # However, we keep target specific nessages in their own separate files for
128 # organi zational reasons.

129 #

130 SGSMSGCOM = ../comon/libld. msg

131 SGSMSGSPARC = ../ comon/libld.sparc. msg

132 SGSMSG NTEL = ../comon/libld.intel.nmsg

133 SGSMSGTARG = $(SGSMSGCOM) $(SGSMSGSPARC) $(SGSMBSG NTEL)
134 SGSMSGALL = $(SGSMSGCOM) $(SGSMSGSPARC) $(SGSMSG NTEL)

136 SGSMSGFLAGS1
137 SGSMSGFLAGS2

$(SGSMBGFLAGS) - m $(BLTMESG)
$(SGSVBGFLAGS) -h $(BLTDEFS) -d $(BLTDATA) -n Iibld_nsg

139 CHKSRCS = $(SRCBASE) / ut s/ common/ krtl d/reloc. h \
140 $(COMOBJS32: 982. o=. ./ common/ % c) \

141 $(L_MACHOBJS32: ¥82. o=. ./ common/ % c) \
142 $(L_MACHOBJS64: %64. o=. ./ common/ % c) \
143 $(KRTLD_| 386) / dorel oc. c \

144 $(KRTLD_AMD64) / dorel oc. ¢ \

145 $(KRTLD_SPARC) / dor el oc. ¢

147 LI BSRCS = $(TOOLOBIS: % 0=$(SGSTOOLS) / conmon/ % c) \
148 $(E_TOOLOBJS: % 0=%$(SGSTOOLS)/ conmon/ % c) \
149 $(COMOBIS: % o=. ./ common/ % c) \

150 $(AVLOBJS: % 0=$(VAR_AVLDI R)/ % c) \

151 $(BLTDATA)

153 CLEANFILES += $(BLTFI LES)
154 CLOBBERFI LES += $(DYNLI B) $(LI BLI NKS)

156 ROOTFS_DYNLI B = $(DYNLI B: %=$(ROOTFS_LI BDI R) / %

new

* ok kK

new
1150

* ok kK

usr/src/cnd/ svc/ confi gd/ Makefile

B R

3217 Mon Aug 5 08:37:50 2019
usr/src/cnd/ svc/ configd/ Makefile

6 smatch resync
LR R R R R RS SR EEEEEEEEEEE SRR EEEEEEEEEEEEREREEEREEEEEEEEERSES
#
CDDL HEADER START
#
The contents of this file are subject to the terns of the
Common Devel opnent and Distribution License (the "License").
You nay not use this file except in conpliance with the License.
#
You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww.opensol aris.org/os/licensing.
See the License for the specific |anguage governing pern ssions
and limtations under the License.
#
When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.
|f applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]
#
CDDL HEADER END
#
#
Copyright 2009 Sun M crosystenms, Inc. Al rights reserved.
Use is subject to license terns.
#
Copyright 2015 RackTop Systens.
#
Copyright 2019 Joyent, Inc.
#
MYPROG = svc. confi gd
MYOBJS =\
backend. o \
configd.o \
client.o \

file_object.o \
mai ndoor. o \
object.o \
rc_node.o \
snapshot. o

PROG = $(MYPROG)
BJS = $(MYOBIS)

SRCS = $(MYOBJS: % 0=% c)

include ../../Mkefile.cmd
include ../../Makefile.ctf

NATI VE_BUI LD=$(POUND_SI GN)
$(NATI VE_BUI LD) PROG = $(MYPROG %% nat i ve)
$(NATI VE_BUI LD) OBJS = $(MYOBJS: % 0=% nati ve. 0)

ROOTCVDDI R= $(ROOTN) /i b/ svel/bin

MYCPPFLAGS = -1. -Il../comon -I|../../../comon/svc \
-1 $(ROOT) / usr/include/sqlite-sys -D_REENTRANT

CPPFLAGS += $(MYCPPFLAGS)

CFLAGS += $(CCVERBOCSE)

CERRWARN += - _gcc=- Wo- par ent heses

CERRWARN += - _gcc=-Wio-type-linits

CERRWARN += -_gcc—-V\ho unused- | abel

new usr/src/cnd/ sve/ confi gd/ Makefile 2

62
63

CERRWARN += - _gcc=- Who- unused-vari abl e
CERRWARN += - _gcc=- Who- unused- functi on

64 CERRWARN += -_gcc=-Wio-uninitialized
66 # strange fal se positive

67 SMOFF += free

69 MYLDLIBS = -lumem -luutil

70
65

72

117
119
120
121

123
124

126

LDLIBS += -lsecdb -Ibsm $(MYLDLI BS)
LI NTFLAGS += -errtags -errof f =E_BAD_FORVAT_ARG TYPE2 -errof f =E_NAME_DEF_NOT_USED

CLOBBERFI LES += $(MYPROG %% nat i ve)

LI BUUTI L = $(SRO)/1ib/libuutil

LI BSCF = $(SRC)/1ib/libscf

SCRI PTFI LE = restore_repository

ROOTSCRI PTFI LE = $(ROOTCVDDI R) / $(SCRI PTFI LE)
#

Native variant (used in ../seed)
#

$(NATI VE_BUI LD) CC = $(NATI VECC)

$(NATI VE_BUI LD) LD = $(NATI VELD)

$(NATI VE_BUI LD) CFLAGS = $(NATI VE_CFLAGS)

$(NATI VE_BUI LD) CPPFLAGS = $(MYCPPFLAGS) - | $(LI BUUTI L)/ common -1 $(LI BSCF)/i nc

$(NATI VE_BUI LD) CPPFLAGS += - DNATI VE_BUI LD

$(NATI VE_BUI LD) LDFLAGS =

$(NATI VE_BUI LD) LDLI BS = - L$(ADJUNCT_PROTO) / usr/1ib - R$(ADJUNCT_PROTO)/usr/lib \
-L$(LIBUUTIL)/ native -R $(LIBUUTIL)/native $(MYLDLI BS)

DI RMODE = 0755

FI LEMODE = 0555

OBJSQLI TE =

LI BSQLI TE = -1sqlite-sys

$(NATI VE_BUI LD) OBISQLI TE = $(ROOT)/1ib/libsqglite-native.o

$(NATI VE_BUI LD) LI BSQLI TE

OBJS += $(OBISQLI TE)
LDLI BS += $(LI BSQLI TE)

install := TARGET = install
cl obber := TARGET = cl obber

. KEEP_STATE:
. PARALLEL: $(MYOBJS) $(MYOBJS: % 0=% nati ve. 0)

all: $(PROG

native: FRC
@d $(LIBUUTIL)/native; pwd; $(MAKE) $(MFLAGS) install
@NATI VE_BUI LD=" $(MAKE) $(MFLAGS) al |

$(PROG : $(OBIS)
$(LINK. c) -0 $@$(0BIS) $(LDLIBS)
$(POST_PROCESS)

% native.o: %c
$(COWPILE. c) -0 $@ $<
$(POST_PROCESS_O)

$(ROOTCVDDI R)/ % % sh
$(I'NS. renane)

install: all $(ROOTCMD) $(ROOTVARSADNFILE) $(ROOTSCRI PTFI LE)

new usr/src/cnmd/ sve/ confi gd/ Makefile

128 clean: FRC

129 $(RVM $(MYOBJS) $(MYOBIS: % 0=% nati ve. 0)
131 cl obber:
128 lint: lint_SRCS

130 | i nt _SRCS:
133 include ../../Makefile.targ
135 FRC:

new usr/src/ cnd/ sysevent d/ nodul es/ sysevent _conf _nod/ Makefil e

R R R R

1291 Mon Aug 5 08:37:50 2019
new usr/src/cnd/ sysevent d/ nodul es/ sysevent _conf _nod/ Makefil e
11506 snatch resync

R R R R

1#
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terns of the
5 # Common Devel opnent and Distribution License (the "License").
6 # You may not use this file except in conpliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.
10 # See the License for the specific |anguage governing perni ssions
11 # and limtations under the License.
12 #
13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.
15 # |f applicable, add the follow ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2008 Sun Mcrosystens, Inc. Al rights reserved.
23 # Use is subject to license terns.
24 #
25 # Copyright 2019 Joyent, Inc.

#

28 LI BRARY = sysevent _conf _nod
30 include ../ Mkefile.com

32 LDLIBS += -l nvpair
33 CPPFLAGS += -1 ../../daenons/syseventconfd
35 CERRWARN += -_gcc=-Who-uninitialized

37 # strange smatch fal se positive
38 SMOFF += al | ocati ng_enough_dat a

40 . KEEP_STATE:
42 all: $(DYNLIB)

44 install: all \
45 $(ROOTLI BSYSEVENTDI R) \
46 $(ROOTLI BDI R) \
47 $(ROOTLI BS)

49 include ../ Mkefile.targ

new usr/src/ comon/ficl/vmc

R R R R

63652 Mon Aug 5 08:37:51 2019
new usr/src/common/ficl/vmc
11506 snatch resync

R R R R

1/*

2 *vm. c

3 * Forth Inspired Conmand Language - virtual machi ne nethods

4 * Author: John Sadl er (john_sadler@lummt.edu)

5 * Created: 19 July 1997

6 * $ld: vmc,v 1.17 2010/09/13 18:43: 04 asau Exp $

7 %

8 /*

9 * This file inplenments the virtual nmachine of Ficl. Each virtual

10 * machine retains the state of an interpreter. A virtual machine

11 * owns a pair of stacks for parameters and return addresses, as

12 * well as a pile of state variables and the two dedicated registers

13 * of the interpreter.

14 */

15 /*

16 * Copyright (c) 1997-2001 John Sadler (john_sadler@lum nit.edu)

17 * Al rights reserved.

18 *

19 * Get the latest Ficl release at http://ficl.sourceforge. net
20 *
21 * | aminterested in hearing fromanyone who uses Ficl. |If you have
22 * a problem a success story, a defect, an enhancenent request, or
23 * if you would like to contribute to the Ficl rel ease, please
24 * contact me by emmil at the address above.
25 *
26 *LI CENSE and DI SCLAI MER
27 *
28 * Redistribution and use in source and binary forms, with or w thout
29 * nodification, are permtted provided that the follow ng conditions
30 * are net:
31 * 1. Redistributions of source code nmust retain the above copyright
32 * notice, this list of conditions and the follow ng disclaimer.
33 * 2. Redistributions in binary formnmust reproduce the above copyri ght
34 * notice, this list of conditions and the follow ng disclaimer in the
35 * docunentation and/or other materials provided with the distribution.
36 *
37 * THI'S SOFTWARE | S PROVI DED BY THE AUTHOR AND CONTRI BUTORS ‘‘AS | S’ AND
38 * ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIMTED TO, THE
39 * | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCOSE
40 * ARE DI SCLAI MED. | N NO EVENT SHALL THE AUTHOR OR CONTRI BUTORS BE LI ABLE
41 * FOR ANY DI RECT, | NDI RECT, | NCIDENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL
42 * DAMAGES (I NCLUDI NG, BUT NOT LIM TED TO, PROCUREMENT OF SUBSTI TUTE GOODS
43 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON)
44 * HONEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER | N CONTRACT, STRICT
45 * LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG | N ANY WAY
46 * OUT OF THE USE OF THI S SOFTWARE, EVEN | F ADVI SED OF THE PGSSI BI LI TY OF
47 * SUCH DANVAGE.
48 */
50 /*
51 * Copyright 2019 Joyent, Inc.
52 */

54 #include "ficl.h"
56 #if FICL_ROBUST >= 2

57 #define Fl CL_VM CHECK(vm) \
58 FI CL_VM_ASSERT(vm (*(vm>ip - 1)) == vm >runni ng\Wr d)
59 #el se

60 #define FI CL_VM CHECK(vn)
61 #endif

new usr/src/ comon/ficl/vmc

63 /*

64 *vmBr anchRel ati ve

65 */
66 void

67 ficlVnmBranchRel ative(ficlVm*vm int offset)

68 {
69
70 }

vm >ip += of fset;

__unchanged_portion_onitted_

2159 /*
2160
2161

2163
2164
2165 int

-~

*vmGet Wor dToPad
* Does vnCetWrd and copies the result to the pad as a NULL term nated
2162 * string. Returns the length of the string.
* to fit in the pad, it is truncated.
*

2166 ficl VmGet Wor dToPad(ficl Vm *vm)

2167 {
2168
2169
2170

2172
2173
2168
2169

2175
2176
2177
2178
2179 }

ficlString s;
char *pad = (char *)vm >pad;
s = ficl VnGetWord(vm;

if (FICL_STRING GET_LENGTH(s) >= FI CL_PAD_SI ZE)
FICL_STRI NG SET_LENGTH(s, FICL_PAD SIZE - 1);
if (FICL_STRTNG GET_LENGTH(s) > FI CL_PAD SIZE)
FI CL_STRI NG SET_LENGTH(s, FICL_PAD S| ZE);

(void) strncpy(pad, FICL_STRI NG GET_PO NTER(s),
FI CL_STRI NG GET_LENGTH(s));

pad[FI CL_STRI NG GET_LENGTH(s)] = '\0

return ((int)(FICL_STRI NG GET LENGI'H(S)))

__unchanged_portion_onitted_

If the string is too |ong

new usr/src/lib/libpctx/Mkefile.com 1 new usr/src/lib/libpctx/Makefile.com

R R R R 52 incl ude / / Makefil e targ

1330 Mon Aug 5 08:37:51 2019
new usr/src/lib/libpctx/Mkefile.com
11506 snatch resync

R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.
7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perni ssions
11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.
15 # |f applicable, add the follow ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #

19 # CDDL HEADER END

20 #

21 #

22 # Copyright 2006 Sun M crosystens, Inc. Al rights reserved.

23 # Use is subject to license terns.

24 #

25 # Copyright 2019 Joyent, |Inc.

25 # ident "%Z%4W6 % % %% SM "

26 #

28 LIBRARY = |ibpctx.a

29 VERS = .1

31 OBJECTS = libpctx.o

33 # include library definitions
34 include ../../Makefile.lib

36 LIBS = $(DYNLI B)

36 LIBS = $(DYNLIB) $(LINTLIB)

37 $(LINTLIB) := SRCS = ../comon/llib-Ipctx
37 LDLIBS += -lproc -lc

39 SRCDIR = ../ comon

41 CFLAGS += $(CCVERBCSE)

42 CPPFLAGS += - D_REENTRANT -1 $(SRCDI R)

44 # fal se positive: pctx_run() error: dereferencing freed menory ’pctx’
45 SMOFF += free

47 . KEEP_STATE:
49 all: $(LIBS)

49 # x86 and sparc have different alignment conplaints (all LINTED).
50 # Make lint shut up about suppression directive not used.

51 lint := LINTFLAGS += -errof f=E_SUPPRESSI ON_DI RECTI VE_UNUSED
52 lint := LINTFLAGS64 += -erroff=E_SUPPRESSI ON_DI RECTI VE_UNUSED
54 lint: lintcheck

51 # include library targets

new usr/src/lib/libumen Makefile.com

R R R R

4575 Mon Aug 5 08:37:52 2019
new usr/src/lib/libunment Makefile.com
11506 snatch resync

R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.

7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perni ssions

11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each

14 # file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.

15 # |f applicable, add the follow ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]

18 #

19 # CDDL HEADER END

20 #

21 #

22 # Copyright 2008 Sun Mcrosystens, Inc. Al rights reserved.

23 # Use is subject to license terns.

24 #

25 # Copyright 2019 Joyent, Inc.

25 # Copyright (c) 2019, Joyent, Inc.

26 #

28 #

29 # The build process for libumemis sightly different fromthat used by other
30 # libraries, because |ibumemnust be built in tw flavors - as a standal one
31 # for use by kndb and as a normal library. W use $(CURTYPE) to indicate the
32 # current flavor being built.

33 #

35 LIBRARY = |ibunem a

36 STANDLI BRARY = | i bst andunem so

37 VERS = .1

39 # By default, we build the shared library. Construction of the standal one
40 # is specifically requested by architecture-specific Mkefiles.

41 TYPES = library

42 CURTYPE = library

44 # This would be much prettier if a) Makefile.lib didn't regire both $(SRCS) and
45 # $(OBJECTS) to be set or b) make gave us a nice way to do basenane in pattern

46 # repl acenent definitions.

48 # Files specific to the library version of |ibunem
49 OBJECTS |ibrary =\

50 init_lib.o\

51 unmem agent _support.o \
52 umemfail.o \

53 umem fork.o \

54 umem genasm o \

55 umem update_thread. o \
56 vmem nmap. o \

57 vimem shrk. o

59 SRCS_common_library =\
60 $(1 SASRCDI R) / unem genasm ¢

new usr/src/lib/libumen Makefile.com

109

111
112

114
115
115
116

118
119

123
124
125

SRCS |ibrary = $(OBIECTS_|ibrary: % o=../common/ % c) $(SRC_comon_library)

Files specific to the standal one version of |ibunem
OBJECTS st andal one =\

init_stand.o \

stub_stand.o \

vrrem st and. o

SRCS_st andal one = $(OBJECTS_st andal one: % o=. ./ comon/ % c)

Architecture-dependent files comon to both versions of |ibumem
OBJECTS _conmon_i sadep =\
asm subr. o

SRCS_common_i sadep =\
$(1 SASRCDI R) / asm subr. s

Architecture-independent files common to both versions of |ibunmem
OBJECTS_comon_conmmon = \

envvar.o \

get pcstack.o \

malloc.o \

msc.o \

vmem base. o \

unem o \

viem o

SRCS_common_comon = $(OBJECTS_common_common: % o=. ./ common/ % c)

OBJECTS =\
$(OBJECTS_$(CURTYPE)) \
$(OBJECTS_conmon_i sadep) \
$(OBJECTS_common_conmon)

include ../../Makefile.lib
include ../../Makefile.rootfs

SRCS =\
$(SRCS_$(CURTYPE)) \
$(SRCS_commmon_conmon)

SRCDIR = ../ conmon

#

Used to verify that the standal one doesn’t have any unexpected external
dependenci es.

#

LI NKTEST_OBJ = obj s/linktest_stand.o

CLOBBERFI LES_st andal one = $(LI NKTEST_OBJ)
CLOBBERFI LES += $(CLOBBERFI LES_$(CURTYPE))

LI BS_st andal one = $(STANDLI BRARY)
LIBS_|ibrary = $(DYNLI B)
LIBS_library = $(DYNLI B) $(LI NTLIB)
LIBS = $(LI BS_$(CURTYPE))

MAPFI LE_SUPPLEMENTAL _st andal one = ../ common/ stand_mapfile
MAPFI LE_SUPPLEMENTAL = $(MAPFI LE_SUPPLEMENTAL_$(CURTYPE))

LDLI BS += -lc
LDFLAGS_st andal one = $(ZNOVERSI ON) $(BREDUCE) -M ./comon/ mapfile-vers \

- MB(MAPFI LE_SUPPLEMENTAL) -dy -r
LDFLAGS = $(LDFLAGS_$(CURTYPE))

new usr/src/lib/libumen Makefile.com

127 ASFLAGS_st andal one = - DUVEM _STANDALONE

128 ASFLAGS library =

129 ASFLAGS += -P $(ASFLAGS_$(CURTYPE)) -D_ASM

131 $(LINTLIB) := SRCS = ../common/$(LI NTSRC)

131 # W want the thread-specific errno in the library, but we don't want it in
132 # the standalone. $(DIS_ERRNO) is designed to add -D TS ERRNO to $(CPPFLAGS),
133 # in order to enable this feature. Conveniently, -D REENTRANT does the sane
134 # thing. As such, we null out $(DTS_ERRNO) to ensure that the standal one
135 # doesn't get it.

136 DTS_ERRNO=

138 # W& need to renanme sone standard functions so we can easily inplenent them
139 # in consuners.

140 STAND_RENAMED_FUNCS= \

141 atonmi c_add_64 \

142 atomi c_add_32_nv \

143 at om ¢_swap_64 \

144 snprintf \

145 vsnprint f

147 CPPFLAGS_st andal one = - DUVMEM STANDALONE $(STAND_RENAVED FUNCS: %- DY%unem %)
148 CPPFLAGS |ibrary = -D_REENTRANT

149 CPPFLAGS += -1../comon -1../../comon/inc $(CPPFLAGS_$(CURTYPE))

151 CFLAGS st andal one = $(STAND_FLAGS_32)

152 CFLAGS_conmo

153 CFLAGS += $(CFLAGS ,_$(CURTYPE)) $(CFLAGS_conmon)

155 CFLAGS64_st andal one = $(STAND_FLAGS_64)

156 CFLAGS64 += $(CCVERBOSE) $(CFLAGS64_$(CURTYPE)) $(CFLAGS64_conmon)

158 # fal se positive for umem all oc_sizes_add()

159 pics/umem o : = SMOFF += index_overfl ow

160 obj s/umem o : = SMOFF += index_overflow

160 | NSTALL_DEPS |ibrary = $(ROOTLI NKS) $(ROOTLI NT) $(ROOTLI BS)

162 | NSTALL DEPS library = $(ROOTLI NKS) $(ROOTLI BS)

162 #

163 # turn of f ptr-cast warnings, since we do themall the tine

164 #

165 LI NTFLAGS += -errof f =E_BAD_PTR_CAST_ALI GN

166 LI NTFLAGS64 += -erroff=E_BAD PTR_CAST_ALIGN

164 DYNFLAGS += $(ZI NTERPCSE)

166 . KEEP_STATE:

new

* ok kK

new
1150

* ok kK

usr/src/tool s/ smat ch/ Makefile 1

B R

5257 Mon Aug 5 08:37:52 2019
usr/src/tool s/ smat ch/ Makefile
6 smatch resync

B R R R R

This file and its contents are supplied under the terms of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at

http://ww.illunos.org/license/ CDDL.
Copyright (c) 2019, Joyent, Inc.

The src/ sub-directory is un-nodified copy of
https://github.conmillunmos/smatch/tree/0.5.1-il-4
https://github.confillunmos/smatch/tree/0.5.1-il-3

This Makefile installs just enough for us to be able to run smatch
| ocal ly.

HEHFHHHE HHHFHFHHFHFFHHR

PROG = smat ch
SPARSE_VERSION = 0.5. 1-i -
SPARSE_VERSION = 0.5. 1-i -

include ../ Makefile.tools

We have to build smatch before we can use cw
i 386_CC = $(GNUC_ROOT) / bi n/ gcc
sparc_CC = $(GNUC_ROOT) / bi n/ gcc

CFLAGS = -O -nb4 -nsave-args -D__sun -Wall -Who-unknown-pragmas -std=gnu99 -node
CFLAGS = -O -D__sun -Wall -Who-unknown-pragmas -std=gnu99 -nodefaul tlibs

SVATCHDATADI R = $(ROOTONBLDSHARE) / srmat ch

CFLAGS += - DSMATCHDATADI R=" " $(SMATCHDATADI R) "’
CFLAGS += -DGCC_BASE=""/no/ such/dir"’
CFLAGS += - DMULTI ARCH_TRI PLET=NULL

LDLIBS += -lsqglite3 -lcrypto -Im-lgcc -lc
LDFLAGS = $(MAPFI LE. NES: %=- W, - M9
LDFLAGS += - L$(NATI VE_ADJUNCT) /1l ib - R$(NATI VE_ADJUNCT)/Ilib

CPPFLAGS += -nostdinc
CPPFLAGS += -Isrc/
CPPFLAGS += -1 $(NATI VE_ADJUNCT) /i ncl ude

no install.bin
INS.file = $(RM $@ $(CP) $< $(@); $(CHVMID) $(FI LEMODE) $@
INS. dir = nkdir -p $@ $(CHVOD) $(DI RMODE) $@

SMATCH_CHECK_OBJS: sh=I s src/check_*.c |

sed -e 's+\.c+. 0+ s+src/ ++;’

OBJS = smatch. o $(SMATCH CHECK_OBJS)

OBJS += smatch_flow. o smatch_conditions.o smatch_slist.o smatch_states.o \
smat ch_hel per.o smatch_type. o smatch_hooks. o smatch_functi on_hooks. o \
smat ch_nodi fi cati on_hooks. o smatch_extra. o smatch_estate.o smatch_math. o
smatch_sval .0 smatch_ranges. o smatch_inplied. o smatch_ignore. o smatch_pr

new usr/src/tool s/ smat ch/ Makefile 2
59 smatch_var_sym o smatch_tracker.o smatch_files. o smatch_expression_stack
60 smat ch_equi v. o snat ch_buf _size.o smatch_strlen. o smatch_capped. o smatch_
61 smat ch_expressions. o smatch_returns. o smatch_parse_call _math. o \

62 smat ch_param linit.o smatch_| _param filter.o \
63 smat ch_param set.o smatch_conpari son.o smatch_param conpare_linmit.o snat
64 smatch_function_ptrs.o smatch_annotate. o smatch_string list.o \
65 smat ch_param cl eared. o smatch_start_states.o \
66 smat ch_recurse. o smatch_data_source. o smatch_type_val .o \
67 smat ch_common_f uncti ons. o smatch_struct _assignment.o \
68 smat ch_unknown_val ue. o smat ch_stored_conditions.o avl.o \
69 smatch_function_info.o smatch_links. o smatch_auto_copy.o \
70 smatch_type_links. o smatch_untracked_param o smatch_i npossible.o \
71 smatch_strings. o smatch_param used. o smatch_contai ner_of.o smatch_addres
72 smat ch_buf _conparison.o smatch_real _absol ute.o smatch_scope.o \
73 smat ch_i magi nary_absol ute. o smatch_par anet er _names. o \
74 smatch_return_to_param o smatch_passes_array_size.o \
75 smat ch_constrai nts. o smatch_constraints_required.o \
76 smatch _fn_arg_|ink.o smatch_about _fn_ptr_arg.o smatch_ntag.o \
77 smat ch_ntag_nap.o smatch_ntag_data.o \
78 smat ch_param to_ntag_data.o smatch_nem tracker.o smatch_array_val ues.o \
79 smatch_nul _term nator.o smatch_assi gned_expr.o smatch_kernel _user_data. o
80 smat ch_st at enent _count. o smatch_bits. o smatch_i nt eger_overfl ow. o
80 smat ch_st at ement _count . o
82 OBJS += target.o parse.o tokenize.o pre-process.o synbol.o lib.o scope.o \
83 expressi on. o show parse.o eval uate. o expand. o iniine.o linearize. o\
84 char.o sort.o allocate.o conpat-linux.o ptrlist.o \
85 builtin.o \
86 stats.o \
87 flow o cse.o sinplify.o nmenops.o |iveness.o storage.o unssa.o \
88 dissect.o \
89 macro_tabl e. o token_store.o hashtable.o
91 SMATCH_DATA =\
92 illumos_kernel.no_return_funcs \
93 i1l umos_ker nel . ski pped_functions \
94 illunmps_user.no_return_funcs \
95 il lumos_user. ski pped_functions
97 SMATCH DB DATA = \
98 return_states.schema \
99 call _inplies.schema \
100 type_val ue. schema \
101 param map. schema \
102 function_type_size.schema \
103 par anmet er _nane. schema \
104 fn_ptr_data_link.schema \
105 constraints. schema \
106 nt ag_about . schema \
107 type_i nfo. schema \
108 function_type_info.schema \
109 cal l er_info. schena \
110 function_type_val ue. schema \
111 return_inplies.schema \
112 type_si ze. schema \
113 constraints_required. schena \
114 fn_data_link.schenma \
115 ntag_alias.schena \
116 common_cal | er _i nfo. schema \
117 dat a_i nfo. schena \
118 function_type.schema \
119 db. schema \
120 nt ag_dat a. schena \
121 function_ptr.schema \
122 si nk_i nfo. schena \
123 | ocal _val ues. schema \

new usr/src/tool s/ smat ch/ Makefil e
124 nt ag_map. schema

126 ROOTONBLDDATAFI LES = $(SMATCH DATA: %$(SMATCHDATADI R) / smat ch_dat a/ %)
127 ROOTONBLDDATAFI LES += $(SMATCH DB _DATA: %$(SMATCHDATADI R) / smat ch_dat a/ db/ %

129 BUI LT_HEADERS = src/version.h src/check_list_local.h

131 . KEEP_STATE:

133 . PARALLEL: $(0BJS)

135 al l: $(PROG

137 install: all .WAIT $(ROOTONBLDVACHPROG) $(ROOTONBLDDATAFI LES)

139 cl ean:
140 rm-f $(O0BJS) $(BU LT_HEADERS)

142 $(ROOTONBLDDATAFI LES): $(SMATCHDATADI R) / smat ch_dat a/ db
144 $(SMATCHDATADI R)/ snat ch_data/ % src/smat ch_dat a/ %

145 $(INS.file)

147 $(SMATCHDATADI R) / smat ch_dat a/ db:

148 $(INS. dir)

150 $(SVATCHDATADI R)/ snat ch_dat a:

151 $(INS. dir)

153 $(PROG): $(OBIS)

154 $(LINK. c) $(OBJS) -0 $@ $(LDLI BS)
155 $(POST_PROCESS)

157 % o0: src/%c $(BUI LT_HEADERS)
158 $(COMPI LE. ¢) -0 $@ $<

160 % o: src/cwchash/ % c
161 $(COWILE.c) -0 $@ $<

163 src/check_list_local.h:
164 touch src/check_list_local.h

166 src/version. h:
167 echo '’ #defi ne SPARSE_VERSI ON " $(SPARSE_VERSI O\) "' > src/version.h

169 include ../ Makefile.targ

new usr/src/tool s/ smat ch/ src/ Docunent at i on/ spar se- READVE. t xt

R R R R

3019 Mon Aug 5 08:37:52 2019

new usr/src/tool s/smat ch/ src/ Docunent ati on/ spar se- README. t xt
11506 snatch resync

R R R R

2
2
3
4
5
6
7
8

57

59
60

sparse (sp™/rs), adj,., spars-er, spars-est.
sparse (sprs), adj,., spars-er, spars-est.
thinly scattered or distributed; "a sparse popul ation"
2. thin; not thick or dense: "sparse hair"
3. scanty; neager.
4. semantic parse
[fromLatin: spars(us) scattered, past participle of
spargere 'to sparge’

Ant onym abundant

Sparse is a semantic parser of source files: it’s neither a conpiler
(although it could be used as a front-end for one) nor is it a
preprocessor (although it contains as a part of it a preprocessing
phase) .

It is meant to be a small - and sinple - library. Scanty and neager,
and partly because of that easy to use. It has one mission in life:
create a semantic parse tree for sone arbitrary user for further
analysis. It’s not a tokenizer, nor is it some generic context-free
parser. In fact, context (semantics) is what it’s all about - figuring
out not just what the grouping of tokens are, but what the _types_ are
that the grouping inplies.

And no, it doesn't use lex and yacc (or flex and bison). In ny personal
opinion, the result of using | ex/yacc tends to end up just having to
fight the assunptions the tools nake.

The parsing is done in five phases:

- full-file tokenization

- pre-processing (which can cause another tokenization phase of another
file)

- semantic parsing.

- lazy type eval uation

- inline function expansion and tree sinplification

Note the "full file" part. Partly for efficiency, but nostly for ease of
use, there are no "partial results". The library conpletely parses one
whol e source file, and builds up the _conplete_ parse tree in nmenory.

Al'so note the "lazy" in the type evaluation. The semantic parsing
itself will know which synbols are typedefines (required for parsing C
correctly), but it will not have cal cul ated what the details of the
different types are. That will be done only on demand, as the back-end
requires the information.

This neans that a user of the library will literally just need to do
struct string_list *filelist = NULL;
char *file;
action(sparse_initialize(argc, argv, filelist));
FOR_EACH_PTR_NOTAG(filelist, file) {
action(sparse(file));
} END_FOR_EACH _PTR_NOTAG(file);
and he is now done - having a full C parse of the file he opened. The

l'ibrary doesn’t need any nore setup, and once done does not inpose any

new usr/src/tool s/ smat ch/ src/ Docunent at i on/ spar se- READVE. t xt

nore requi

rements. The user is free to do whatever he wants with the

parse tree that got built up, and needs not worry about the library ever

agai n.

There is no extra state, there are no parser callbacks, there is

only the parse tree that is described by the header files. The action
funtion takes a pointer to a synbol _|ist and does whatever it likes withit.

The library also contains (as an exanple user) a fewclients that do the
preprocessing, parsing and type evaluation and just print out the

results.

These clients were done to verify and debug the Iibrary, and

al so as trivial exanples of what you can do with the parse tree once it

is forned,

so that users can see how the tree is organized.

new usr/src/tool s/ smatch/src/ Makefile 1

R R R R

11978 Mon Aug 5 08:37:53 2019
new usr/src/tool s/ smatch/src/ Makefile
11506 snatch resync

R R R R

©CoONOUIR~W R

VERSI ON=0. 5. 1-il -4
VERSI ON=0. 5. 1

Generating file version.h if current version has chang

SPARSE VERSI ON: =$(shel | git describe 2>/dev/null || echo "$(VERSION) ")

VERSI ON_H : = $(shell cat version.h 2>/dev/null)
i fneq ($(! astword $(VERSION_H)), "$(SPARSE VERSI oN) ")
$(info $(shell echo GEN version. h))
$(shel |l echo ' #define SPARSE_VERSI ON " $(SPARSE VERSION) "’ > version. h)
endi f
CS = linux
ifeq ($(CO),"")
= gcc
endi f

CFLAGS += -2 -finline-functions -fno-strict-aliasing -g
CFLAGS += -Wall -Wwite-strings -Wo-sw tch

LDFLAGS += -g -Im-1Isqlite3 -Issl -lcrypto

LD = gcc

AR = ar

PKG_CONFI G = pkg-config

COMMON_CFLAGS = -2 -finline-functions -fno-strict-aliasing -g
COMMON_CFLAGS += -Wall -Wwite-strings

ALL_CFLAGS = $(COWON_CFLAGS) $(PKG CFLAGS) $(CFLAGS)
#

For debugging, put this in |ocal.nk:

#

CFLAGS += -0 - DDEBUG -g3 -gdwarf-2
#

HAVE_LI BXM.: =$(shel | $(PKG_CONFI G --exists libxnl-2.0 2>/dev/null && echo 'yes’
HAVE_GCC_DEP: =$(shel | touch .gcc-test.c && \

$(CC -c -W,-MD,.gcc-test.d .gcc-test.c 2>/dev/null && \

echo "yes’; rm-f .gcc-test.d .gcc-test.o .gcc-test.c)

GTK_VERSI ON: =3. 0
HAVE_GTK: =$(shel | $(PKG CONFI G) --exists gtk+-$(GTK_VERSI ON) 2>/ dev/null && echo
i fneq ($(HAVE_GIK), yes)

GTK_VERSI ON: =2. 0

HAVE_GTK: =$(shel | $(PKG CONFI G --exists gtk+-$(GTK_VERSI ON) 2>/dev/ nul |
endi f

LLVM CONFI G =I | vm confi g

HAVE_LLVM =$(shel|l $(LLVM CONFI G --version >/dev/null 2>&l && echo 'yes’)
GOCBASE.-$(sheII $(CC) --print-file-nane=)

COMMVON_CFLAGS - DGCC_BASE=\ " $(GCC_BASE) \ "

MULTI ARCH TRI PLET : = $(shell $(CC -print-nultiarch 2>/ dev/null)
COMMON_CFLAGS += - DMULTI ARCH_TRI PLET=\"$(MULTI ARCH_TRI PLET)\"

i feq ($(HAVE_GCC _DEP), yes)
CC)(\]/!V?\I_O:LA += - W, - ND $(@)/.$(AF).d
endi

DESTDI R=
I NSTALL_PREFI X ?=$(HOVE)
Bl NDI R=$(| NSTALL_PREFI X) / bi n

new usr/src/tool s/smatch/src/ Makefile 2

95
96

119
121
122
123

125

LI BDI R=$(| NSTALL_PREFI X) /i b

MANDI R=$(| NSTALL_PREFI X) / shar e/ man

MANLDI R=$(MANDI R) / man1

| NCLUDEDI R=$(| NSTALL_PREFI X) /i ncl ude
PKGCONFI GDI R=$(LI BDI R) / pkgconfi g
SMATCHDATADI R=$(| NSTALL_PREFI X) / shar e/ smat ch

SMATCH_FI LES=smat ch_fl ow. o smatch_conditions.o snmatch_slist.o smatch_states.o \
smat ch_hel per. o smatch_type. o smat ch_hooks. o smat ch_f uncti on_hooks. o \
smat ch_nodi fi cati on_hooks. o smatch_extra.o smatch_estate. o smatch_math. o
smatch_sval .o smatch_ranges. o smatch_i nplied. o smatch_ignore. o smatch_pr
smat ch_var_sym o smatch_tracker.o smatch_files. o smatch_expression_stack
smat ch_equiv. o smat ch_buf _si ze. o smatch_strlen. o smatch_capped. o smatch_
smat ch_expr essi ons. o smatch_returns. o smatch_parse_cal | _math.o \
smatch_param linmit.o smatch_paramfilter.o \
smat ch_param set. o smat ch_conpari son. o smat ch_param conpare_linit.o smat
smat ch_function_ptrs.o smatch_annotate.o smatch_string_list.o \
smat ch_param cl eared. o smatch_start_states.o \
smat ch_recurse. o snatch_data_source.o smatch_type_val.o \
smat ch_comon_functions. o smatch_struct_assi gnment.o \
smat ch_unknown_val ue. o smatch_stored_conditions.o avl.o \
smat ch_function_info.o smatch_links.o smatch_auto_copy.o \
smat ch_type_links. o smatch_untracked_param o smatch_i npossible.o \
smat ch_strings. o smatch_param used. o smatch_contai ner_of.o smatch_addres
smat ch_buf _conparison. o smatch_real _absol ute. o smatch_scope.o \
smat ch_i magi nary_absol ute. o smatch_par anet er _names. o \
smatch_return_to_param o snmatch_passes_array_size.o \
smatch_constraints.o smatch_constraints required.o \
smatch_fn_arg_link.o smatch_about _fn_ptr_arg.o smatch_ntag.o \
smat ch_ntag_nap. o smatch_ntag_data. o \
smatch_param to_ntag_data. o smatch_nem tracker.o smatch_array_val ues. o \
smatch_nul _term nator.o smat ch_assigned_expr.o smatch_kernel _user_data. o
smat ch_st at enent _count . o smat ch_i nteger _overflow. o smatch_bits. o
smat ch_st at enent _count .

SVATCH_CHECKS=$(shel | |s check_*.c | sed -e "s/\.c/.ol")

SMATCH_DATA=smat ch_dat a/ kernel . al | ocati on_funcs \
smat ch_dat a/ kernel . frees_argunent smatch_dat a/ kernel . puts_ar gunent \
smat ch_dat a/ ker nel . dev_queue_xnmit smatch_data/kernel .returns_err_ptr \
smat ch_dat a/ ker nel . dna_funcs smat ch_dat a/ kernel . returns_hel d_funcs \
smat ch_dat a/ kernel . no_r et urn_funcs

SMATCH_SCRI PTS=smat ch_scri pts/add_gfp_to_al | ocations.sh \
smat ch_scri pts/buil d_kernel _data.sh \
smatch_scripts/call_tree.pl smatch_scripts/filter_kernel _deref_check.sh
smat ch_scri pts/find_expanded_hol es. pl smatch_scripts/find_null _parans. sh
smat ch_scripts/fol | ow _parans. pl smatch_scripts/gen_allocation_Tist.sh \
smat ch_scripts/gen_bit_shifters.sh smatch_scripts/gen_dma_funcs. sh \
smat ch_scri pts/generisize.pl smatch_scripts/gen_err_ptr_list.sh\
smat ch_scri pts/ gen_expects_err_ptr.sh smatch_scripts/gen_frees_list.sh \
smat ch_scripts/gen_gf p_fl ags. sh smatch_scri pts/ gen_no_return_funcs.sh \
smat ch_scripts/gen_puts_list.sh smatch_scripts/gen_returns_hel d.sh \
smat ch_scri pt s/ gen_rosenberg_funcs. sh smatch_scri pts/ gen_si zeof _param sh
smat ch_scri pts/gen_unw nd_functions.sh smatch_scri pts/kchecker \
smat ch_scri pt s/ kpat ch. sh smatch_scri pts/ new_bugs. sh \
smat ch_scripts/show errs. sh smatch_scri pts/show ifs.sh \
smat ch_scri pt s/ show_unr eachabl e. sh”smat ch_scri pts/strip_whitespace. pl \
smat ch_scri pts/ sunmari ze_errs. sh smatch_scripts/test_kernel .sh \
smatch_scripts/trace_parans. pl smatch_scripts/unl ocked_paths. pl \
smat ch_scri pt s/ whitespace_only.sh smatch_scri pts/w ne_checker.sh \

PROGRAMS=t est - | exi ng test-parsing obfuscate conpile graph sparse \
test-linearize exanple test-unssa test-dissect ctags
| NST_PROGRAMS=smat ch cgcc

I NST_MANl=sparse. 1l cgcc. 1

new usr/src/tool s/ smatch/src/ Makefile 3

127
128
129
130
131
132
133
134

136
137
138
139
140
141
142
143
144
145
146
147

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

173
174
175

177
178
179
180
181
182
183
184

186
187

189
190
191

i feq ($(HAVE_LIBXM), yes)
PROGRAMS+=c2x

| NST_PRCXERAM5+=02xn1
c2xm _EXTRA_OBJS =
LI BXML_CFLAGS
el se

$(war ni ng Your system does not have |ibxm,
endi f

‘$(PKG CONFIG) --libs libxnm-2.0
1= $(shell $(PKG CONFIG --cflags |ibxni-2.0)

di sabling c2xm)

i feq ($(HAVE_GIK), yes)

GTK_ CFLAGS 1= $(shell $(PKG CONFIG --cflags gtk+-$(GTK_VERSI ON))
GTK_LI BS : = $(shell $(PKG CONFI G --1ibs gtk+ $(GTK_VERSI ON))
PROGRAMS += t est-i nspect

| NST_PROGRAMS += test -i nspect

test-i nspect_EXTRA_DEPS ;= ast-npdel .0 ast-view. o ast-inspect.o
test-inspect_OBJS := test-inspect.o $(test-inspect_EXTRA DEPS)

$(test-inspect CBJS) $(test—| nspect _OBJS:.o0=.sc): PKG CFLAGS += $(GTK_CFLAGS)
test-inspect EXTRA OBJS : = $(GTK_LIBS)

el se

$(warni ng Your system does not have gtk3/gtk2, disabling test-inspect)

endi f

ifeq ($(HAVE_LLVM, yes)

ifeq ($(shell uname -m| grep -q "\ (i386\|x86\)’" && echo ok), ok)
LLVM VERSI ON: =$(shel | $(LLVM CONFI G --versi on)

ifeq ($(she| | expr "$(LLVM VERSI ON)" "[3-9]V.7), 2)

LLVM PRCGS : = sparse-Ilvm

$(LLVM PROGS): LD := g++

LLVM LDFLAGS : = $(shel | $(LLVM CONFIG) --Idfl ags)
LLVM CFLAGS : = $(shell $(LLVM CONFIG --cflags | sed -e "s/-DNDEBUG /g" | sed -e
LLVM LIBS : = $(shell $(LLVM CONFIG) --libs

A)
LLVM LI BS += $(shell $(LLVM CONFIG --systemlibs 2>/dev/null)
PROGRAMS += $(LLVM_PROGS)
| NST_PROGRAMS += sparse-| | vm sparsec
sparse-llvmo sparse-1|| vm sc: PKG_CFLAGS += $(LLVM CFLAGS)
sparse-||vm EXTRA_OBJS : = $(LLVM LI BS) $(LLVM LDFLAGS)
el se
$(warning LLVM 3.0 or later required. Your system has version $(LLVM VERSION) in
endi f
el se
$(war ni ng sparse-11vm di sabl ed on $(shell uname -n))
endi f
el se
$(\é\a; ning Your system does not have |lvm disabling sparse-11vm
endi
LI B H= token. h parse.h l'ib.h synbol.h scope.h expression.h target.h \
linearize.h bitmap.h ident-list.h conpat.h flow h allocate.h \
storage. h ptrlist.h dissect.h

LI B_OBJS= target.o parse.o tokenize.o pre-process.o synbol.o lib.o scope.o \
expression.o show parse.o evaluate.o expand.o inline.o linearize.o \
char.o sort.o allocate.o conpat-$(0S).o ptrlist.o \
builtin.o \
stats.o \
flow o cse.o sinplify.o nenpps.o |iveness.o storage.o unssa.o \

di ssect.o \
macro_tabl e. o token_store.o cwchash/ hasht abl e. o

LI B FILE= | i bsparse. a
SLIB_FI LE= | i bspar se. so

If you add $(SLIB_FILE) to this, you also need to add -fpic to BASI C_CFLAGS ab
Doing so incurs a noticeable perfor mance hit, and Sparse does not have a
stable shared library interface, so this does not occur by default. If you

new usr/src/tool s/smatch/src/ Makefile

192
193
194
195

197
198
199
200
201
202
203
204
205
206
207
208
209

211
212

214

216
217

219

221
222
223
224

228
229

232
234

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

252
253

256

really want a shared library, you may want to build Sparse tw ce: once

without -fpic to get all the Sparse tools, and again with -fpic to get the
shared library.

LI BS=$(LI B_FI LE)

#
Pretty print

#

Y =@

Q = $(V:1=)

QU ET_CC = $(Q @@cho ' cC "$@)
QUIET_CHECK = $(Q @@cho ’ CHECK ' $<;)
QUI ET_AR = $(Q @&@cho ' AR '$@)
QUI ET_GEN = $(Q @@cho ' GEN '$@)
QU ET_LI NK = $(Q @@cho ' LI NK "$@)
We rely on the -v switch of install to print 'file -> $install_dir/file’
QU ET_INST_SH = $(Q @echo -n INSTALL ;)
QUI ET_I NST = $(Q @@cho -n I NSTALL ;)
define | NSTALL_EXEC

$(QUET_INST)install -v $1 $(DESTDIR) $2/$1 || exit 1;
endef

define | NSTALL_FILE
$(QUI ET_INST)install -v -m 644 $1 $(DESTDIR) $2/$1 || exit 1;

endef

SED_PC_CMD = 's| @ersion@ $(VERSION) | g; \
s| @refix@$(| TALL PREFI X) | 9; \
s|@ibdir@$(LIBDIRg; \
s| @ncludedir@$ (I NCLUDEDI R) | ¢’

Allow users to override build settings without dirtying their trees
-include |ocal.nk

all: $(PROGRAMS) sparse.pc snmatch

$(Q

$(foreach f, $(1 NST_PROGRAMS), $(cal | | NSTALL_EXEC, $f, $(BINDIR)))
INST_MANL) , $(cal | | NSTALL_FI LE, $f, $(MANIDI R)))

$(foreach f, $(LIBS), $(cal| I NSTALL_FI LE, $f, $(LI BDI R)))

$(foreach f,$(LIB H) $(cal | | NSTALL_FI LE, $f $(| NCLUDEDI R) / spar se))

$(call 1 NSTALL_FI LE, spar se. pc, $(PKGCONFI GDI R))

$(foreach f,$(SMATCH DATA), $(cal | | NSTALL_FI LE, $f, $(SMATCHDATADI R)))

$(f oreach f.$(SMATCH SCRI PTS), $(cal | | NSTALL_EXEC, $f , $(SVATCHDATADI R)))

all-instal labl e: $(| NST_PROGRAMS) $(LIBS) $(LIB_H) sparse.pc
install: all-installable
Qinstall -d $(DESTD R) $(BI NDI R)
$(Qinstall -d $(DESTDI R) $(LI BDI R)
$(Qinstall -d $(DESTD R) $(MANLDI R)
$(Qinstall -d $(DESTD R)$(1 NCLUDEDI R)/ spar se
$(Qinstall -d $(DESTDI R) $(PKGCONFI GDI R
$(Qinstall -d $(DESTD R) $(SVATCHDATADI R) / smat ch_dat a
install jsd $(DESTDI R) $(SMATCHDATADI R) / smat ch_scri pts
(
$(foreach f, $(
3(

sparse. pc: sparse.pc.in
$(QU ET_GEN) sed $(SED _PC CMD) sparse.pc.in > sparse. pc

conpi | e_EXTRA_DEPS = conpil e-i 386. 0

new usr/src/tool s/ smatch/src/ Makefile 5

258 $(foreach p, $(PROGRAMS), $(eval $(p): $($(p) _EXTRA_DEPS) $(LIBS)))

259 $(PROGRAMS): % : %0

260 $(QUET_LINK)$(LD) -0 $@$" $($@EXTRA OBJS) $(LDFLAGS)

262 smatch: smatch. o $(SMATCH FI LES) $(SMATCH_CHECKS) $(LI BS)

263 $(QUET_LINK)$(LD) -0 $@ $< $(SMATCH_FI LES) $(SMATCH CHECKS) $(LIBS) $(L
265 $(LIB FILE): $(LIB OBJS)

266 $(QU ET_AR) $(AR) rcs $@ $(LIB_OBIS)

268 $(SLIB_FILE): $(LIB_OBJS)

269 $(QU ET_LINK) $(CC) -W, -sonane, $@-shared -0 $@ $(LI B_OBJIS) $(LDFLAGS)
271 check_list_local.h:

272 touch check_list_local.h

274 smatch.o: smatch.c $(LIB_H) smatch.h check_list.h check_list_local.h

275 $(CC) $(CFLAGS) -c smatch.c - DSMATCHDATADI R=" " $(SMATCHDATADI R) "’
276 $(SMATCH_CHECKS): smatch.h smatch_slist.h smatch_extra.h avl.h

277 DEP_FILES : = $(wildcard .*.o.d)

279 ifneq ($(DEP_FILES),)

280 incl ude $(DEP_FI LES)

281 endif

283 c2xm .o c2xm .sc: PKG CFLAGS += $(LI BXM._CFLAGS)

285 pre-process.sc: CHECKER FLAGS += -Who-vla

287 % o: %c $(LIB_H

288 $(QUIET_CO) $(CC) -0 $@-c $(ALL_CFLAGS) $<

290 % sc: %c sparse

291 $(QU ET_CHECK) $(CHECKER) $(CHECKER _FLAGS) -c $(ALL_CFLAGS) $<

293 ALL_OBJS := $(LIB_0BIS) $(foreach p, $(PROGRAMB), $(p).o $($(p) _EXTRA DEPS))
294 sel fcheck: $(ALL OBJS: . 0=. sC)

297 cl ean: cl ean-check

298 rm-f *.[oa] .*.d *.so cwhash/*. 0 cwchash/.*.d cwchash/tester \
299 $(PROGRAMS) $(SLIB_FI LE) pre-process. h sparse.pc version.h
301 dist:

302 @f test "$(SPARSE_VERSION)" != "v$(VERSION)" ; then \

303 echo 'Update VERSION in the Makefile before running "make dist".
304 exit 1 ; \

305 fi

306 git archive --format=tar --prefix=sparse-$(VERSION)/ HEAD‘{tree} | gzip
308 check: all

309 $(Qcd validation & ./test-suite

311 cl ean-check:

312 find validation/ \(-name "*.c.output.expected" \

313 -0 -nane "*.c.output.got" \

314 -0 -nanme "*.c.output.diff" \

315 -0 -name "*.c.error.expected" \

316 -0 -nanme "*.c.error.got" \

317 -0 -name cerror diff" \

318 \) -exec rm{}

new usr/src/tool s/ smatch/src/check_64bit_shift.c

R R R R

2466 Mon Aug 5 08:37:53 2019
new usr/src/tool s/ smatch/src/check_64bit_shift.c
11506 snatch resync

R R R R

2 * Copyright (© 2012 Oracle.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any |later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of
11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
12 * GNU Ceneral Public License for nore details.

13 =

14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww. gnu. org/copyl eft/gpl
16 */

18 #i nclude "smatch. h"

19 #include "smatch_extra. h"

21 static int ny_id;

23 static void match_shift_mask(struct expression *expr)

24 {

25 struct expression *right, *shifter;

26 struct range_list *rl;

27 char *str;

29 expr = strip_expr(expr);

30 if (expr->type = EXPR BINOP || expr->op !="&)
31 return;

33 if (get_type(expr->left) !'= &ullong_ctype)

34 return;

36 if (type_bits(get_type(expr->right)) == 64)

37 return;

39 right = strip_expr(expr->right);

40 if (right->type !'= EXPR BINOP || right->op != SPECI AL_LEFTSHI FT)
41 return;

43 shifter = strip_expr(right->right);

44 get _real _absolute_rl(shifter, &l);

45 if (rl_max(rl).uvalue < 32)

46 return;

48 str = expr_to_str(expr->right);

49 smwarni ng("should ' %’ be a 64 bit type?", str);
50 free_string(str);

51 }

53 static void match_shift_assignment (struct expression *expr)
54 {

55 struct synbol *left_type, *right_type;

56 struct expression *right;

57 sval _t sval;

58 sval _t bits, shifter;

59 char *nane;

61 right = strip_expr(expr->right);

Ltxt

new usr/src/tool s/smatch/src/check_64bit_shift.c

62 if (right->type !'= EXPR BINOP || right->op != SPECI AL_LEFTSH FT)
63 return;

65 le ft_type = get _type(expr->left);

66 if (left_type !'= & long_ctype && left _type !'= &ullong_ctype)
67 return;

69 right_type = get_type(expr->right);

71 if (type_bits(right_type) == 64)

72 return;

74 if (get_value(right, &sval))

75 return;

77 get _absol ute_nmax(right->left, &bits);

78 get _absol ute_max(right->right, &shifter);

80 bits = sval _cast(&ullong_ctype, bits);

81 if (sval _cnp_val (shifter, 32) < 0)

82 sval = sval _binop(bits, SPECI AL_LEFTSH FT, shifter);
83 if (sval _cnp_val (sval, U NT_MAX) < 0)

84 return;

85 }

87 name = expr_to_str_syn(right, NULL);

88 smwar ni ng("should ' %’ be a 64 bit type?", nane);

89 free_string(nane);

90 }

92 void check_64bit_shift(int id)

93 {

94 ny_id =id;

96 add_hook(&rat ch_shi ft _assi gnnent, ASSI GNVENT_HOOK) ;

97 add_hook(&rat ch_shi ft _nmask, BI NOP_HOOK) ;

98

__unchanged_portion_omtted_

new usr/src/tool s/ smatch/src/check_buffer_too_snmall _for_struct.c

R R R R

2927 Mon Aug 5 08:37:54 2019
new usr/src/tool s/ smatch/src/check_buffer_too_snall_for_struct.c
11506 snatch resync

R R R R

2 * Copyright (© 2014 Oacle.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any |later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of
11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
12 * GNU Ceneral Public License for nore details.
13 =
14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt

*

/

18 #include "smatch. h"
20 static int nmy_id;
22 STATE(too_snall);

24 static void match_assign(struct expression *expr)

25

26 struct synbol *left_type, *right_type;

27 struct expression *size_expr;

28 sval _t mn_size;

29 int limt_type;

30 int bytes;

32 left_type = get_type(expr->left);

33 if (Ileft_type || left_type->type != SYM PTR)
34 return;

35 left_type = get_real _base_type(left_type);

36 if (Ileft_type || left_type->type != SYM STRUCT)
37 return;

39 right_type = get_type(expr->right);

40 if (!right_type || right_type->type != SYMPTR)
41 return;

42 right_type = get_real _base_type(right_type);

43 if (!right_type)

44 return;

45 if (right_type != &oid_ctype & type_bits(right_type) != 8)
46 return;

48 bytes = get_array_size_bytes(expr->right);

49 if (bytes >= type_bytes(left_type))

50 return;

52 size_expr = get_size_variabl e(expr->right, & imt_type);
46 si ze_expr = get_size_variabl e(expr->right);

53 if (!size_expr)

54 return;

55 if (limt_type !'= ELEM COUNT)

56 return;

58 get _absol ute_ni n(si ze_expr, &m n_size);

59 if (mn_size.value >= type_bytes(left_type))

60 return;

new usr/src/tool s/ smatch/src/check_buffer_too_snmall _for_struct.c

62 set_state_expr(ny_id, expr->left, & oo_small);
63 }

65 static void match_dereferences(struct expression *expr)

67 struct synbol *left_type;

68 struct expression *right;

69 struct smatch_state *state;

70 char *nane;

71 struct expression *size_expr;

72 sval _t m n_size;

73 int limt_type;

75 if (expr->type != EXPR_PREOP)

76 return;

78 expr = strip_expr(expr->unop);

79 state = get_state_expr(ny_id, expr);

80 if (state != & oo_small)

81 return;

83 left_type = get_type(expr);

84 if (Ileft_type || left_type->type != SYMPTR)
85 return;

86 left _type = get_real _base_type(left_type);

87 if ('left_type || left_type->type != SYM STRUCT)
88 return;

90 right = get_assi gned_expr (expr);

91 size_expr = get_size_variable(right, &imt_type);
82 size_expr = get_size_variable(right);

92 if (!size_expr)

93 return;

94 if (limt_type !'= ELEM COUNT)

95 return;

97 get _absol ute_m n(size_expr, &m n_size);

98 if (mn_size.value >= type_bytes(left_type))
99 return;
101 name = expr_to_str(right);
102 smwarning("is '%’ |arge enough for ’'struct %’ ? %", nane,
103 free_string(nane);
104) set_state_expr(ny_id, expr, &undefined);
105

__unchanged_portion_onitted_

new usr/src/tool s/ smatch/src/check_cm_err.c

R R R R

1352 Mon Aug 5 08:37:55 2019
new usr/src/tool s/smatch/src/check_cm_err.c
11506 snatch resync

R R R R

2 * Copyright (C) 2016 O acle.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any |later version.

8 *

9 * This programis distributed in the hope that it will be useful,

10 * but W THOUT ANY WARRANTY; without even the inplied warranty of

11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the

12 * GNU Ceneral Public License for nore details.

13 =

14 * You shoul d have received a copy of the GNU General Public License

15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt
16 *

ig :/Oopyri ght 2019 Joyent, Inc.

20 /*

21 * Heavily borrowed from check_wi ne.c: what we're doing here is teaching smatch
22 * that crm_err(CE_PANIC, ...) is noreturn.

23 */

25 #incl ude "scope. h"

26 #include "smatch. h"

27 #include "smatch_extra. h"
29 #define CE_PANIC (3)

31 void match_cmm_err(const char *fn, struct expression *expr,

32 voi d *unused)

33 {

34 struct expression *arg;

35 sval _t sval;

37 arg = get_argunent _fromcal | _expr(expr->args, 0);
38 if (!get_inplied_value(arg, &sval))

39 return;

41 if (sval.value == CE_PANI C

42 nul l'ify_path();

43 }

46 void check_cm_err(int id)

47

48 if (option_project != PRQJ_ILLUMOS_KERNEL)

49 return;

51 add_function_hook("cm_err", &match_cmm_err, NULL);

new usr/src/tool s/ smatch/ src/check_debug. c

R R R R

21157 Mon Aug 5 08:37:55 2019
new usr/src/tool s/smatch/ src/check_debug. c
11506 snatch resync

R R R R

2 * Copyright (C 2009 Dan Carpenter.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any |later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of
11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
12 * GNU Ceneral Public License for nore details.
13 =
14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt

*

-~

18 #include "smatch. h"
19 #include "smatch_slist.h"
20 #include "smatch_extra. h"

22 void show_snane_al | oc(void);

23 void show data_range_al | oc(void);
24 void show ptrlist_alloc(void);

25 void show_sm state_alloc(void);

27 int |ocal _debug;
28 static int ny_id;
29 char *trace_vari abl e;

31 static void match_all _val ues(const char *fn,

32

33 struct stree *stree;

35 stree = get_all _states_stree(SMATCH _EXTRA) ;
36 __print_stree(stree);

37 free_stree(&stree);

38

____unchanged_portion_onitted_

203 static void match_user_rl(const char *fn, struct expression *expr,

204 {

205 struct expression *arg;

206 struct range_list *rl = NULL;

201 struct range_list *rl;

207 char *nane;

209 arg = get_argunent _fromcal | _expr (expr->args, 0);
210 nane = expr_to_str(arg);

212 get _user_rl(arg, &rl);

213 smmsg("user rl: "%’ ='9%"", nanme, showrl(rl));
215 free_string(nane);

216 }

____unchanged_portion_onitted_

385 static void match_buf_size(const char *fn,
386 {

387 struct expression *arg,
388 struct range_list *rl;

struct expression *expr,

*conp;

struct expression *expr,

void *info

voi d *info)

voi d *info)

new usr/src/tool s/ smatch/src/check_debug. c 2
389 int elenents, bytes;
390 char *nane;
391 char buf[256] = "";
392 int limt_type;
393 int n;
394 sval _t sval;
396 arg = get_argunment _fromcal | _expr(expr->args, 0);
398 el ements = get_array_size(arg);
399 bytes = get_array_size_bytes_nax(arg);
400 rl = get_array_size_bytes_rl(arg);
401 conp = get_size_variable(arg, & imt_type);
395 conp = get_size_variabl e(arg);
403 name = expr_to_str(arg);
404 n = snprintf(buf, sizeof(buf), "buf size: "% % elenents, % bytes", n
405 free_string(nane);
407 if (!rl_to_sval(rl, &sval))
408 n += snprintf(buf + n, sizeof(buf) - n, " (rl = 9%)", show.rl(rl
410 if (comp) {
411 name = expr_to_str(conp);
412 snprintf(buf + n, sizeof(buf) - n, "[size_var=% 9%]", limt_typ
406 snprintf(buf + n, sizeof(buf) - n, "[size_var=%]", nane);
413 free_string(nane);
414 }
415 smnsg(" %", buf);
416 }
____unchanged_portion_onitted_
507 static void natch_debug_inplied_on(const char *fn, struct expression *expr, void
508 {
509 opti on_debug_inplied = 1;
510 }
512 static void match_debug_inplied_of f(const char *fn, struct expression *expr, Vvoi
513 {
514 opti on_debug_inplied = O;
515 }
513 static void match_about (const char *fn, struct expression *expr, void *info)
514 {
515 struct expression *arg;
516 struct smstate *sm
517 char *nane;
519 smmsg("---- about ----");
520 match_print_inplied(fn, expr, NULL);
521 mat ch_buf _si ze(fn, expr, NULL);
522 match_strlen(fn, expr, NULL);
523 mat ch_r eal _absol ute(fn, expr, NULL);
525 arg = get_argunent _fromcal | _expr(expr->args, 0);
526 name = expr_to_str(arg);
527 if (!'name) {
528 smmsg("info: not a straight forward variable.");
529 return;
530 }
532 FOR_EACH SM __get _cur_stree(), sm {
533 if (strcnp(sm >nanme, nane) != 0)
534 conti nue;
535 smnsg(" %", show sn(sn));
536 } END_FOR _EACH_SM sm);

new usr/src/tool s/ smatch/ src/check_debug. c

537 }
__unchanged_portion_onitted_
638 {stati ¢ void match_ntag(const char *fn, struct expression *expr, void
639
640 struct expression *arg;
641 char *nane;
642 nag_t tag = 0;
643 int offset = 0;
645 arg = get_argunent _fromcal | _expr (expr->args, 0);
646 name = expr_to_str(arg);
647 expr_to_ntag_of fset(arg, &tag, &offset);
648 smmsg("ntag: '%’ =>tag: %lu %", name, tag, offset);
650 get _ntag(arg, &t ag);
651 smnsg("ntag: '%’ =>tag: %Ild", nane, tag);
649 free_string(nane);
650 }

__unchanged_portion_ontted_

666 static void match_container(const char *fn, struct expression *expr,
67 {

*info)

voi d *info)

668 struct expression *container, *x;
669 char *cont, *nanme, *str;
671 contai ner = get_argunent _fromcal | _expr(expr->args, 0);
672 x = get_argunent _fromcal | _expr (expr->args, 1);
674 str = get_contai ner _nane(contai ner, Xx);
675 cont = expr_to_str(container);
676 name = expr_to_str(x);
677 smnsg("container: '%’ vs '%’ -->'9%’", cont, nanme, str);
678 free_string(cont);
679 free_string(nane);
680 }
682 {stati c void match_state_count(const char *fn, struct expression *expr, void *inf
683
684 sm msg("state_count = %\ n", smstate_counter);
685 }
__unchanged_portion_onitted_
736 voi d check_debug(int id)
737 {
738 ny_id =id,
739 add_function_hook("__smat ch_about" &rmt ch_about, NULL);
740 add_function_hook("__snmatch_all vaI ues", &match_all_val ues, NULL);
741 add_f uncti on_hook(" __smat ch_st ate", &match_st ate, NULL);
742 add_function_hook("__smat ch_st at es &mat ch_states, NULL);
743 add_f uncti on_hook("__smat ch_val ue" " amat ch_print_value, NULL);
744 add_f uncti on_hook("__smat ch_knovm", &mat ch_pri nt _known, NULL);
745 add_function_hook("__snmatch_i npl i ed" &rmt ch_print_inplied, NULL);
746 add_f uncti on_hook("__smatch_i npl i ed_ mn" &mat ch_print _i mplied_mn, NULL
747 add_f uncti on_hook("__smatch_i npl i ed_max", &match_print_inplied_max, NULL
748 add_f unction_hook("__smatch_user _rl™ &mat ch_user_rl, NULL);
749 add_function_hook("__snmat ch_capped"”, &rratch_capped, NULL) ;
750 add_function_hook("__smatch_hard max” &mat ch_print _hard_nax, NULL);
751 add_f uncti on_hook("__smatch_fuzzy_| max &mat ch_print _fuzzy_max, NULL);
752 add_f uncti on_hook("__smat ch_absol ute" &mat ch_print_absolute, NULL);
753 add_function_hook("__smat ch_absol ute_ mn®, &mat ch_print_absolute_mn, NU
754 add_functi on_hook("__smat ch_absol ute_max", &match_print_absol ute_max, NU
755 add_f uncti on_hook("__smatch_real _absol ut e &mat ch_real _absol ute, NULL);
756 add_f uncti on_hook(" —_smatch_sval _i nfo", &mat ch_sval info, NULL);
757 add_f uncti on_hook("__smat ch_nenber name &mat ch_menber _nane, NULL)
758 add_functi on_hook("__smat ch_possi bl e" &mat ch _possi bl e, NULL)
759 add_function_hook("__smatch_cur_st ree", &mat ch_cur_stree, NULL);

new usr/src/tool s/ smatch/ src/check_debug. c 4
760 add_function_hook("__smatch_strlen", &match_strlen, NULL);
761 add_f uncti on_hook("__smat ch_buf SI ze", &mat ch_buf _size, NULL);
762 add_functi on_hook("__smat ch_note" &match note, NULL);
763 add_f uncti on_hook("__smat ch_dunp_ rel ated", &match durrp rel ated, NULL);
764 add_f uncti on_hook("__smat ch_conpare", &mat ch _conpare, NULL);
765 add_functi on_hook("__smat ch_debug_on", &nmatch_debug_on, NULL)
766 add_f uncti on_hook(" __smat ch_debug_t check”, &maich _debug_check, NULL);
767 add_function_hook("__smat ch_debug_of f" &rTat ch_debug_of f, NULL);
768 add_function_hook("__smatch_| ocal debug on", &match_| ocal _debug_on, NULL
769 add_functi on_hook("__smat ch_| ocal _debug_ of f &mat ch_| ocal _debug_of f, NU
757 add_f uncti on_hook("__smat ch_debug_i npl i ed on", &mat ch_debug_i npl i ed_on,
758 add_functi on_hook(" __smat ch_debug_i npl i ed_off " &mat ch_debug_i npli ed_of f
770 add_function_hook("__smatch_intersection” &mat ch_intersection, NULL);
771 add_f unction_hook("_smatch_type", &match’ _type, NULL);
772 add_ _inplied_return _hook(" __srmtch type_rl _hel per", &match_type_rl _return
773 add_f uncti on_hook(™__smatch_nerge_tree”, &match_print_nerge_tree, NULL);
774 add_f unction_hook("__smatch_stree_i d", &mat ch _print_stree_id, NULL);
775 add_f uncti on_hook("__smatch_nt ag", &natch _ntag, NULL);
776 add_function_hook("__smatch_ntag_ data", &mat ch_m ag_dat a_of fset, NULL);
777 add_functi on_hook(" __smat ch_st at e_count , &match_state_count, NULL);
778 add_f unction_hook("__smatch_ment', &match_mem NULL);
779 add_function_hook("__smatch_exit" &mat ch_exit, NULL);
780 add_f uncti on_hook("__smat ch_cont ainer”, &mat ch_cont al ner, NULL);
782 add_hook(free_ol d_stree, AFTER FUNC HOCK) ;
783 add_hook(trace_var, STMI_HOOK_AFTER);
784 }

__unchanged_portion_onitted_

new usr/src/tool s/ smat ch/ src/check_debug. h

R R R R

2890 Mon Aug 5 08:37:56 2019
new usr/src/tool s/ smatch/ src/check_debug. h
11506 snatch resync

R R R R

__unchanged_portion_onitted_

60 #define __smatch_type_rl(type, fnt...) __smatch_type_rl_helper((type)0, fnt)
nt)

61 #define __smatch_rl(fnt...) __smatch_type_rl(long Iong,

63 static inline void __smatch_bit_info(long I ong expr){}

65 static inline void __smatch_oops(unsigned long null _val){}
67 static inline void __smatch_nerge_tree(long | ong var){}

69 static inline void __smatch_stree_id(void){}

71 static inline void __smatch_ntag(void *p){}

72 static inline void _ smatch_ntag_data(long long arg){}
73 static inline void __smatch_exit(void){}

75 static inline void __smatch_state_count(void){}

76 static inline void _ smatch_nen(void){}

78 static inline void __smatch_container(long | ong container,
79 #endif

long long x){}

new usr/src/tool s/ smatch/ src/check_dma_mappi ng_error.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
2233 Mon Aug 5 08:37:56 2019

new usr/src/tool s/smatch/src/check_dma_mappi ng_error.c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

33 static void match_assign(const char *fn, struct expression *expr,

34 {

35 struct range_list *rl;

37 if (lget_inplied_rl(expr->right, &l))

38 return;

39 if (rl_max(rl).value != 1)

40 return;

41 set_state_expr(ny_id, expr->left, &positive);
42

__unchanged_portion_onitted_

voi d *unused)

new usr/src/tool s/smatch/src/check_err_ptr_deref.c 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
6668 Mon Aug 5 08:37:56 2019

new usr/src/tool s/ smatch/src/check_err_ptr_deref.c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

214 void check_err_ptr_deref (int id)

215 {

216 if (option_project != PRQJ_KERNEL)

217 return;

219 ny_id = id,

220 return |np| ies_state("IS_ERR', 0, O, &match_checked, NULL);

221 return |rrpI|es “state("IS_ERR', 1, 1, &match_err, NULL);

222 return_inplies_state("IS_ERR_ OR_ NULL", 0, 0, &match_checked, NULL);
223 return_i nplies_ state("IS ERR_OR_NULL", 1, 1, &match_err, NULL);
224 return_inplies_state("PTR RET", 0, 0, &match_checked, NULL)

225 return_inplies_state(" PTR_RET", —4095 -1, &match_err NULL)

225 return_inplies_state("PTR_RET", -4096, - 1, &mat ch_err, NULL);

226 register_err_ptr_funcs();

227 add hook(&natch dereferences DEREF_HOCK) ;

228 add_function_hook("ERR PTR', &atch_err_ptr_positive_const, NULL);
229 add_f unct i on_hook(" ERR_PTR' &match_err_ptr, NULL);

230 add_hook(&mat ch_condi ti on, CONDI TI ON | HOOK) ;

231 add_nodi fi cation hook(ny |d &ok_to_use);

232 add_functi on_hook("kfree” &rmtch_kf ree, INT_PTR(0));

233 add_f uncti on_hook("brel se” &match_kfree, I NT_PT O))

234 add_functi on_hook("knem_cache_free", &mat ch_kfree, | NT _PTR(1));

235 add_function_hook("vfree", &match_kfree, |NT_PTR(0));

237 err_ptr_rl = clone_rl _permanent (alloc_rl (err_ptr_mn, err_ptr_max));
239 sel ect _return_i npl i es_hook(DEREFERENCE, &set _param der ef erenced);
240 }

__unchanged_portion_onitted_

new usr/src/tool s/smatch/src/check_free_strict.c

R R R R

7059 Mon Aug 5 08:37:57 2019
new usr/src/tool s/smatch/src/check_free_strict.c
11506 snatch resync

R R R R

____unchanged_portion_onitted_

294 static void nmatch_untracked(struct expression *call, int param
295 {

296 struct state_list *slist = NULL;

297 struct expression *arg;

298 struct smstate *sm

299 char *nane;

300 char buf[64];

301 int |en;

303 arg = get_argunment _fromcall _expr(call->args, param;
304 if (larg)

305 return;

307 name = expr_to_var(arg);

308 if (!nane)

309 return;

310 snprintf(buf, sizeof(buf), "%->", nane);

311 free_string(nane);

312 len = strlen(buf);

314 FOR EACH MY_SMny_id, _ get_cur_stree(), sm {

315 if (strncnp(sm >name, buf, len) == 0)

316 add_ptr_list(&slist, sm;

317 } END_FOR _EACH SM sm);

319 FOR_EACH_PTR(slist, sm

320 set_state(sm >owner, sm >pame, sm >sym &ok);
321 } END_FOR EACH PTR(sm);

323 free_slist(&slist);

324 }

326 void check_free_strict(int id)

327 {

328 ny_id = id;

330 if (option_project != PRQJ_KERNEL)

331 return;

333 add_function_hook("kfree", &match_free, |INT_PTR(0));
334 add_function_hook("knem cache_free", &match_free, INT_PTR(1));
336 if (option_spammy)

337 add_hook(&mat ch_synbol , SYM HOCK) ;

338 add_hook(&rat ch_der ef erences, DEREF_HOOK) ;

339 add_hook(&at ch_cal |, FUNCTI ON_CALL_HOCK) ;

340 add_hook(&vat ch_return, RETURN_HOOK) ;

342 add_nodi fication_hook_| ate(ny_id, &ok_to_use);

343 add_pre_nerge_hook(ny_id, &pre_nerge_hook);

345 sel ect _return_stat es_hook(PARAM FREED, &set_param freed);
346 add_untracked_par am hook(&vat ch_unt r acked) ;

347 }

____unchanged_portion_onitted_

new usr/src/tool s/smatch/src/check_hel d_dev.c 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
3457 Mon Aug 5 08:37:59 2019

new usr/src/tool s/ smatch/src/check_hel d_dev. c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

101 static void register_returns_hel d_funcs(void)

102 {

103 struct token *token;

104 const char *func;

106 token = get_tokens_file("kernel.returns_hel d_funcs");

107 if (!token)

108 return;

109 if (token_type(token) != TOKEN_STREAMBEG N)

110 return;

111 t oken = t oken->next;

112 whil e (token_type(token) != TOKEN_STREAMEND) ({

113 if (token_type(token) != TOKEN_I DENT)

114 return;

115 func = show_i dent (t oken->i dent);

116 return_inplies_state_sval (func, valid_ptr_mn_sval, valid_ptr_ma
116 return_inplies_state(func, valid_ptr_mn, valid_ptr_max,
117 &mat ch_returns_hel d, NULL);

118 return_inplies_state(func, 0, 0, &mtch_returns_null,
119 NULL) ;

120 t oken = token->next;

121 }

122 cl ear_token_al l oc();

123 }

__unchanged_portion_onitted_

new usr/src/tool s/smatch/src/check_kernel .c 1
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
12812 Mon Aug 5 08:38:00 2019
new usr/src/tool s/smatch/src/check_kernel .c
11506 snatch resync
LEEE R R R R EE SRR EEEEEEEEEEE RS SRR SRR EEEEEREREEEEEEEEESE]

1/*

2 * Copyright (C 2010 Dan Carpenter.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of
11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
12 * GNU Ceneral Public License for nore details.

13 =

14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt
16 */

18 /*

19 * This is kernel specific stuff for smatch_extra.

20 */

22 #include "scope. h"

23 #include "snatch. h"

24 #include "smatch_extra. h”

26 static sval _t err_ptr_min;

27 static sval _t err_ptr_nax;

28 static sval_t nulT_ptr;

30 static int inplied_err_cast_return(struct expression *call, void *unused, struct
31 {

32 struct expression *arg;

34 arg = get_argunent _fromcal |l _expr(call->args, 0);

35 if (!get |rrpI|ed rT(arg, rl))

36 = alloc_rl(err_ptr_mn, err_ptr_max);

37 *rI = cast_rl(get_type(arg), *rT);

38 }

31 if (lget_inplied_rl(arg, rl))

32 *rl = alToc_rl (Il _to_sval (-4095), Il _to_sval (-1));
39 return 1,

40

__unchanged_portion_onitted_

80 static void match_paramvalid_ptr(const char *fn, struct expression *call
81 struct expression *assign_expr, void *_param
82 {

83 int param = PTR_I NT(_param;

84 struct expression *arg;

85 struct smatch_state *pre_state;

86 struct smatch_state *end_state;

87 struct range_list *rl;

89 arg = get_argunent _fromcal |l _expr(cal |l _expr->args, paran;

90 pre_state = get_state_expr (SVATCH EXTRA, arg);

91 1 f (estate_rl(pre_state)) {

92 rl = estate_rl(pre_state);

93 rl = remove_range(rl, null_ptr, null_ptr);

94 rl = renove_range(rl, err_ptr_min, err_ptr_max);

95 } else {

96 rl = alloc_rl(valid_ptr_mn_sval, valid_ptr_max_sval);

_expr,

new usr/src/tool s/smatch/src/check_kernel .c 2
97
98 end_state = alloc_estate_rl(rl);
84 end_state = estate_filter_range(pre_state, |l _to_sval (-4095), |l _to_sval
99 set _extra_expr_nonod(arg, end_state);

100 }

102 static void match_paramerr_or_null (const char *fn, struct expression *call _expr
103 (struct expression *assign_expr, void *_param
104

105 int param = PTR_I NT(_param;

106 struct expression *arg;

107 struct range_list *rl;

108 struct smatch_state *pre_state;

109 struct smatch_state *end_state;

111 arg = get argumant fromcall _expr(call _expr - >ar gs, paran ;

112 pre_st ate = get_state_expr (SMATCH EXTRA, arg

113 call _results_to_rl(call_expr, &ptr_ctype, "O(4095)-(-1)", &rl);
99 rl ="alloc_rl(IT_to_sval(- 4095) Il _to_sval (0));

114 rl =rl_intersection(estate_ rI(pre state), rl);

115 rl = cast_rl(get_type(arg), rl);

101 rl = cast rl(estatetype(pre state) rl);

116 end_state = alloc_estate_rl(rl);

117 set _extra_expr_nonod(arg, end_state);

118 }

120 static void match_not_err(const char *fn, struct expression *call _expr,
121 (struct expression *assign_expr, void *unused)
122

123 struct expression *arg;

124 struct smatch_state *pre_state;

125 struct range_list *rl;

111 struct smatch_state *new state;

127 arg = get_argunent _fromcal |l _expr(call_expr->args, 0);

128 pre_state = get_state_expr(SMATCH EXTRA, arg);

129 if (estate ri(pre_state)) {

130 rl estate_rl (pre_state);

131 rI remove_range(rl, err_ptr_min, err_ptr_max);

132 } else {

133 rl = alloc_rl(valid_ptr_mn_sval, valid_ptr_max_sval);

134 }

135 rl = cast_rl(get_type(arg), rl);

136 set _extra_expr_nonod(arg, alloc estate_ rl (rl));

115 new state = estate filter_range(pre_state, sval _type_m n(& ong_ctype), |
116 set_extra_expr_nonod(arg, new state);

137 }

139 static void match_err(const char *fn, struct expression *call_expr,

140 (struct expression *assign_expr, void *unused)

141

142 struct expression *arg;

143 struct smatch_state *pre_state;

144 struct range_list *rl;

124 struct smatch_state *new_ state;

146 arg = get_argunent _fromcal |l _expr(call_expr->args, 0);

147 pre_state = get_state_expr (SMATCH EXTRA, arg);

148 rl = estate_rl(pre_state);

149 if ('rl)

150 rl-=alloc_rl(err_ptr_mn, err_ptr_max);

151 rl =rl_intersection(rl, alloc_rl (err _ptr_mn, err_ptr_rrax));

152 rl = cast_rl (get type(arg) rly;

153 set _extra_expr_nonod(arg, alloc estate rl (rl));

128 new state = estate filter_range(pre_state, sval _type_m n(& ong_ctype), |
129 new state = estate_filter_range(new state, Il _to_sval (0), sval_type_max(

new usr/src/tool s/ smatch/ src/check_kernel .c 3
130 set _extra_expr_nonod(arg, new state);
154 }
__unchanged_portion_onitted_

405 bool is_ignored_kernel _data(const char *nane)

406 {

407 if (option_project != PRQJI_KERNEL)

408 return false;

410 /*

411 * On the file | was |ooking at |ockdep was 25% of the DB.

412 */

413 if (strstr(nanme, ".dep_map."))

414 return true;

415 if (strstr(name, ".l|ockdep_map."))

416 return true;

417 return fal se;

418 }

420 void check_kernel (int id)

421 {

422 if (option_project != PRQJ_KERNEL)

423 return;

425 err_ptr_mn.type = &tr_ctype;

426 err_ptr_mn.val ue = -4095;

427 err_ptr_max.type = &ptr _ctype;

428 err_ptr_max.val ue = -

429 nulT_ptr.type = &ptr ctype

430 nul | _ptr.val ue

432 err_ptr_mn = sval _cast(&ptr_ctype, err_ptr_mn);

433 err_ptr_max = sval _cast(&ptr_ctype, err_ptr_nex);

435 add_i nplied_ret urn_hook(" ERR PTR', & nplied_err_cast_return, NULL);

436 add_i npl i ed_r et ur n_hook("ERR_CAST", & nplied_err_cast_return, NULL);

437 add_i npl i ed_r et urn_hook("PTR_ERR', &inplied_err_cast_return, NULL);

438 add_ hook(hack ERR_PTR, AFTER_DEF H(I]<)

439 return_inplies_state("IS_ERR_OR NULL", 0, 0, &match_paramvalid_ptr, (vo
440 return_inplies_state("IS_ERR OR_NULL", 1, 1, &match_param err_or nuII (
441 return_inplies_state("IS_ERR', 0, O, &r'ratch not _err, NULL);

442 return_inplies_ state("IS ERR', 1, 1, &match_err, I\ULL);

443 return_inplies_state(" tormyo_mem)ry_ok 1, 1, &mat ch_paramvalid_ptr, (
445 add_macro_assi gn_hook_extra("contai ner_of", &match_container_of_nmacro, N
446 add_hook(mat ch_cont ai ner _of, ASSI GNMENT_HOK) ;

448 add_i nplied_return_hook("find_next_bit", &match_next_bit, NULL);

449 add_i npl i ed_ret urn_hook("find_next_zero_bit", &mmatch_next_bit, NULL);
450 add_i npl i ed_return_hook("find_first_bit™, &match_next_bit, NULL);

451 add_i npl i ed_return_hook("find_first_zero_bit", &match_next_bit, NULL);
453 add_i nplied_return_hook("fls", &mtch_fls, NULL);

454 add_inplied_return hook("flsGA" &match_fls, NULL);

456 add_function_hook("__ftrace_bad_type", & match_nullify_path_hook, NULL)
457 add_function_hook("__wite_once_size", &mtch__wite_once_size, NULL);
459 add_function_hook("__read_once_size", &mtch__read_once_size, NULL);

460 add_function_hook("__read_once_si ze_nocheck", &match__read_once_size, NU
462 if (option_info)

463 add_hook(mat ch_end_file, END_FILE HOK);

464 }

__unchanged_portion_onitted_

new usr/src/tool s/ smatch/src/check_kernel _printf.c 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
54325 Mon Aug 5 08:38:00 2019

new usr/src/tool s/ smatch/src/check_kernel _printf.c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

524 static void tinme_and_date(const char *fnt, struct synbol *type, struct synbol *b

525 {

526 assert(tolower(fm[0]) =="1t");

528 if (fm[1] =="'R && !is_struct_tag(basetype, "rtc_tine"))

529 smerror(" %ptR expects argunent of type struct 'rtc_tinme', ar
530 vai dx, type_to_str(type));

531 }

533 static void check_clock(const char *fnt, struct synbol *type, struct synbol *bas
534 {

535 assert(fm[0] == ‘C)

536 if (|salnun(fm[l]) {

537 (!strchr("nr" fr'rt[l))

538 sm war ni ng("%®pC can only be followed by one of [nr]")
539 if (|salnun(fm[

540 smwar ni ng("’ %99C%’ cannot be followed by "% ", fnt[1]
541 }

542 if (!is_struct_tag(basetype, "clk"))

543 smerror (" %pC expects argunment of type 'struct clk*', argunmen
544 vai dx, type_to_str(type));

545 }

__unchanged_portion_omtted_

660 static void
661 pointer(const char *fnt, struct expression *arg, int vaidx)
2 {

663 struct synbol *type, *basetype;

665 type = get_type(arg);

666 if (ltype) {

667 smwar ni ng("could not determ ne type of argument %", vaidx);
668 return;

669 }

670 if (lis_ptr_type(type)) {

671 smerror ("% expects pointer argunment, but argument %l has type
672 vai dx, type_to_str(type));

673 return;

674 }

675 /* Just plain %, nothing to check. */

676 if (lisalnum(*fnt))

677 return;

679 basetype = get_real _base_type(type);

680 if (is_void_type(basetype))

681 return;

682 /*

683 * Passing a pointer-to-array is harmess, but nost likely one
684 * nmeant to pass pointer-to-first-el errent | f basetype is

685 * array type, we issue a notice and "dereference" the types

686 * once nore.

687 */

688 if (basetype->type == SYM ARRAY)

689 span(" not e: paSSI ng pointer-to-array; is the address-of redundan
690 type = basetype;

691 basetype = get_real _base_type(type);

692 }

694 /*

new usr/src/tool s/smatch/src/check_kernel _printf.c 2
695 * We pass both the type and the basetype to the helpers. If,
696 * for exanple, the pointer is really a decayed array which is
697 * passed to %l 4, we might want to check that it is in fact
698 * an array of four bytes. But npst are probably only
699 * interested in whether the basetype nakes sense. Also, the
700 * pointer may carry some annotation such as user which
701 * might be worth checking in the handl ers which actual ly
702 * dereference the pointer.

703 */

705 swtch (*fm) {

706 case 'b’

707 case 'F':

708 case 'f’:

709 case 'S :

710 case 's’:

711 case 'B':

712 /* Can we do anything sensible? Check that the arg is a function
713 break;

715 case 'R :

716 case 'r’:

717 resource_string(fm, type, basetype, vaidx);
718 br eak;

719 case 'M:

720 case 'm:

721 mac_address_string(fnt, type, basetype, vaidx);
722 break;

723 case 'I|’:

724 case 'i’:

725 swltch(fm[l]) {

726 cas

727 |p4(fnt type, basetype, vaidx);
728 br eak;

729 case '6’:

730 i p6(fnt, type, basetype, vaidx);
731 br eak;

732 case 'S :

733 i pS(fnt, type, basetype, vaidx);
734 break;

735 defaul t:

736 smwarni ng("’ %%’ nust be foll owed by one of [46S]", f
737 break;

738 }

739 br eak;

740 *

741 * U%E and %h can handle any valid pointer. We still check
742 * whether all the subsequent al phanunerics are valid for the
743 * particular %X conversion.

744 */

745 case 'E':

746 escaped_string(fmt, type, basetype, vaidx);
747 break

748 case 'h’

749 hex strlng(fm type, basetype, vaidx);

750 br eak;

751 case 'U: /* TODO */

752 br eak;

753 case 'V :

754 va_format (fnt, type, basetype, vaidx);

755 br eak;

756 case 'K : /* TODO */

757 br eak;

758 case 'N:

759 netdev_feature(fnmt, type, basetype, vaidx);
760 br eak;

new usr/src/tool s/ smatch/src/check_kernel _printf.c

761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788

case 'a':

éddress_val (fmt, type, basetype, vaidx);
br eak;

case 'D:

case

case 't’

case 'C

case ’
case '’
case 'O

case "X’

defaul t:

}

789 }
__unchanged_porti

e

dent ry_file(fm, type, basetype, vaidx);
br eak;

ti me_and_date(fnt, type, basetype, vaidx);
br eak;

;:heck_cl ock(fmt, type, basetype, vaidx);
br eak;

g:
bl ock_devi ce(fnt, type, basetype, vaidx);

br eak;

fl ag_string(fm, type, basetype, vaidx);
br eak;

devi ce_node_string(fnt, type, basetype, vaidx);
br eak;

/* "x' is for an unhashed pointer */
br eak;

smerror("unrecogni zed %4 extension '%’, treated as

on_omtted_

nor mal

%Wp

new usr/src/tool s/smatch/src/check_list.h

R R R R

5616 Mon Aug 5 08:38:00 2019

new usr/src/tools/smatch/src/check_list.h
11506 snatch resync

R R R R

#i f ndef CK
#define CK(_x) void _x(int id);
#define __undo_CK_def

#endi f

CK(register_db_call _marker) /* always has to be first
st er_param used) /* get_state_hooks have to be registered before smat

CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
/*

* I nplications should probably be after all
np p y

st er_cont ai ner_of)
st er _cont ai ner _of 2)

ster_smatch_extra) /* smatch_extra always has to be SMATCH EXTRA */

ster_smatch_extra_l i nks)
ster_nodi ficati on_hooks)

* hooks have run.
*

*/
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi

CK(regi ster_param conpare_limt_|inks)

CK(regi

CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi
CK(regi

ster_inplications)
ster_definition_db_call backs)
ster_project)
ster_untracked_param

st er_buf _conpari son)

ster_buf _conpari son_l i nks)
ster_param conpare_limt)

ster_returns_early)

ster_smatch_i gnore)
ster_buf _si ze)
ster_strlen)

ster_strl en_equiv)

st er_capped)
ster_parse_cal | _mat h)
ster_paramlinit)
ster_paramfilter)

st er_param set)

st er _param cl ear ed)
ster_struct_assi gnnent)
st er_conpari son)
ster_conpari son_| i nks)
st er_conpari son_i nc_dec)
ster_conpari son_i nc_dec_| i nks)
ster_l ocal _val ues)
ster_function_ptrs)

st er_annot at e)
ster_start_states)
ster_type_val)
ster_data_source)

st er _comon_f uncti ons)
ster_function_info)

st er_aut o_copy)
ster_type_links)

st er _i npossi bl e)

ster_i npossi bl e_return)
ster_strings)

ster_i nteger_overfl ow)
ster_integer_overfl ow | inks)
ster_real _absol ute)

st er_i nmagi nary_absol ut e)
ster_bits)
ster_fn_arg_link)

the nodification and smatch_extra

new usr/src/tool s/smatch/src/check_list.h

CK(regi ster_paranet er_nanes)
CK(regi ster_return_to_param
CK(regi ster_return_to_param|inks)
CK(regi ster_constraints)

CK(regi ster_constraints_required)
CK(regi ster_about_fn_ptr_arg)
CK(regi ster_ntag)

CK(regi ster_ntag_nap)

CK(regi ster_ntag_dat a)

CK(regi ster_paramto_ntag_data)
CK(regi ster_array_val ues)
CK(register_nul _term nator)

CK(regi ster_nul _term nator_param set)
CK(regi ster_statenent _count)

CK(regi ster_kernel _user_data)
CK(regi ster_kernel _user_data2)
CK(regi ster_kernel _user_dat a3)

CK(check_debug)
CK(check_bogus_I oop)

CK(check_deref)
CK(check_check_der ef)
CK(check_der ef erences_par am
CK(check_i ndex_overfl ow)
CK(check_i ndex_overfl ow_| oop_nar ker)
CK(check_testing_index_after_use)
CK(check_nentpy_overfl ow)
CK(check_strcpy_overfl ow)
CK(check_sprintf_overflow)
CK(check_snprintf_overflow)
CK(check_al | ocati ng_enough_dat a)
CK(check_l eaks)
CK(check_type)

CK(check_al | ocati on_funcs)
CK(check_frees_argunent)

CK(check_der ef _check)

CK(check_si gned)

CK(check_precedence)
CK(check_unused_ret)

CK(check_dma_on_st ack)

CK(check_par am mapper)
CK(check_cal |l _tree)
CK(check_dev_queue_xnmit)

CK(check_st ack)
CK(check_no_return)
CK(check_nod_ti mer)
CK(check_return)
CK(check_resource_si ze)
CK(check_rel ease_resource)
CK(check_proc_create)
CK(check_freeing_null)
CK(check_frees_param
CK(check_free)
CK(check_frees_param strict)
CK(check_free_strict)
CK(check_no_effect)

CK(check_kunmap)
CK(check_snprintf)

CK(check_macr os)
CK(check_return_efaul t)

CK(check_gf p_dma)
CK(check_unw nd)
CK(check_kmal | oc_t o_bugon)

new usr/src/tool s/smatch/src/check_list.h 3 new usr/src/tool s/smatch/src/check_list.h 4

127 CK(check_pl at f or m devi ce_put) 193 CK(check_spectre_second_hal f)

128 CK(check_i nfo_| eak) 194 CK(check_i nplicit_dependenci es)

129 CK(check_r et urn_enomem)

130 CK(check_get _user_overfl ow) 196 /* wine specific stuff */

131 CK(check_get _user _overf | owR2) 197 CK(check_wi ne_fil ehandl es)

132 CK(check_access_ok_mat h) 198 CK(check_wi ne_W oA)

133 CK(check_cont ai ner _of)

134 CK(check_i nput _free_device) 200 /* illunos specific */

135 CK(check sel ect) 201 CK(check_all _func_returns)

136 CK(check_nenset) 202 CK(check_cmm_err)

137 CK(check_l ogi cal _i nst ead_of _bi tw se)

138 CK(check_kmal | oc_wrong_si ze) 204 #include "check_list_local.h"

139 CK(check_poi nter_mat h)

140 CK(check_bit_shift) 206 CK(regi ster_scope)

141 CK(check_macro_side_effects) 207 CK(register_stored_conditions)

142 CK(check_si zeof) 208 CK(register_stored_conditions_I|inks)

143 CK(check_return_cast) 209 CK(register_sval)

144 CK(check_or_vs_and) 210 CK(register_buf_size_late)

145 CK(check_passes_si zeof) 211 CK(register_smatch_extra_l ate)

146 CK(check_assi gn_vs_corrpar e) 212 CK(register_assigned_expr) /* This is used by smatch_extra.c so it has to conme r
147 CK(check_mi ssing_br eak) 213 CK(register_assigned_expr_|inks)

148 CK(check_array_condition) 214 CK(register_nodification_hooks_late) /* has to come after smatch_extra */
149 CK(check_struct_type) 215 CK(regi ster_conparison_late) /* has to cone after nodification_hooks_|late */
150 CK(check_64bit_shift) 216 CK(register_function_hooks)

151 CK(check_wrong_si ze_arQg) 217 CK(check_kernel) /* this Is overwiting stuff fromsmatch_extra_late */
152 CK(check_cast _assi gn) 218 CK(check_wi ne)

153 CK(check_readl _infinite_|l oops) 219 CK(register_returns)

154 CK(check_doubl e_checki ng)

155 CK(check_shift_to_zero) 221 #ifdef __undo_CK_def

156 CK(check_i ndenti ng) 222 #undef CK

157 CK(check_unreachabl e) 223 #undef __undo_CK_def

158 CK(check_no_if_bl ock) 224 #endif

159 CK(check_buffer_too_small _for_struct)
160 CK(check_uninitialized)

161 CK(check_signed_i nteger_overfl ow_check)
162 CK(check_conti nue_vs_break)

163 CK(check_i npossi bl e_mask)

164 CK(check_syscal | _arg_type)

165 CK(check_trinity_generator)

167 /* <- your test goes here */
168 /* CK(register_tenplate) */

170 /* kernel specific */

171 CK(check_kernel _printf)

172 CK(check_| ocki ng)

173 CK(check_puts_argunent)
174 CK(check_err_ptr)

175 CK(check_err_ptr_deref)

176 CK(check_expects_err_ptr)
177 CK(check_hel d_dev)

178 CK(check_return_negative_var)
179 CK(check_rosenberg)

180 CK(check_rosenberg2)

181 CK(check_wait_for_common)
182 CK(check_bogus_irqgrestore)
183 CK(check_zero_to_err_ptr)
184 CK(check_freei ng_devmm)

185 CK(check_of f_by_one_rel ative)
186 CK(check_capabl e)

187 CK(check_ns_capabl e)

188 CK(check_test_bit)

189 CK(check_dma_mappi ng_error)
190 CK(check_nospec)

191 CK(check_nospec_barrier)
192 CK(check_spectre)

new usr/src/tool s/ smatch/ src/check_| ocking. c 1 new usr/src/tool s/ smatch/ src/check_I ocking. c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 153 {" Spln unl ock bh"' UNLW, "Spln |0Ck", Ov ret any}‘
35369 Mon Aug 5 08:38:00 2019
new usr/src/tool s/ smatch/src/check_I| ocki ng. c 155 "spin_tryl ock", LOCK, "spin_lock", 0, ret_one},
11506 snatch resync 156 " _spin_tryl ock” LOCK, "spi n_|l ock", 0, ret_one},
IR E SR SR RS RS E SRR R R SRR R R SRR R R R RS EEREREEREEREEEEEEEERSE] 157 "_Spi n_tryl Ock" Lw<’ Spin |0Ck”, Ol ret_one s
__unchanged_portion_onitted_ 158 “raw_spin_tryl ock” LOCK, Spl n_|l ock", 0, ret_one},
159 "_raw_spin_tryl ock LOCK, sp| n_l ock", 0, ret_one},
48 enumreturn_type { 160 "spin_trylock_irg" LOCK, "spin_|l ock", 0, ret_one},
49 ret_any, 161 "spin_tryl ock_ |rqsave LOCK, spi n_|l ock", 0, ret_one},
50 ret_non_zero, 162 "spi n_tryl ock_bh", LOCK, spl n_|l ock", 0, ret_one},
51 ret_zero, 163 " _spin_tryl ock_bh" LOCK, spl n_|l ock", 0, ret_one},
52 ret_one, 164 " __spin_tryl ock bh" LOCK, "spin_|l ock", 0, ret_one},
53 ret_negative, 165 " raw.spin_tryl ock" LOCK, spi n_|l ock", 0, ret_one},
54 ret_positive, 166 "_atom c_dec_and_| ock” LOCK, spl n_lock", 1, ret_one},
55 }; 154 "spi n_tryl ock" LOCK, spl n_|l ock", 0, ret_non_zero
__unchanged_portion_onitted_ 155 " _spin_tryl ock" LOCK, “spin_lock", 0, ret_non_zero
156 " spin_tryl ock" LOCK, spi n_l ock", 0, ret_non_zero
104 static struct lock_info kernel _|lock_table[] = { 157 “raw_spin_tryl ock” LOCK, spl n_l ock”, 0, ret_non_zero
105 {"l ock_kernel ", LOCK, "BKL", NO ARG ret_any}, 158 "_raw_spin_tryl ock” LOCK, spl n_|l ock", 0, ret_non_zero
106 {"unl ock_kernel ", UNLOCK, "BKL", NO ARG ret_any}, 159 "spin_trylock_i rq", LOCK, "spin_| ock", 0, ret_non_zero
160 "spin_tryl ock i rgsave", LOCK, spi n_|l ock", 0, ret_non_zero
108 "spi n_| ock", LOCK, “spin_|lock", 0, ret_any}, 161 "spin_tryl ock_bh", LOCK, spl n_l ock", 0, ret_non_zero
109 "spi n_unl ock", UNLOCK, "spin_lock", 0, ret_any}, 162 " _spin_tryl ock bh" LOCK, Spl n_| ock", 0, ret_non_zero
110 "spin_l ock_nested", LOCK, "spin_lock", 0, ret_any}, 163 " _spi n_tryl ock_bh" LOCK, "spin_| ock", 0, ret_non_zero
111 " _spin_l ock", LOCK, "spi n_|l ock", 0, ret_any}, 164 " w_spi n_tryl ock" LOCK, "spin_lock", 0, ret_non_zero
112 " _spin_unl ock", UNLOCK, spi n_|l ock", 0, ret_any}, 165 " at om c_dec_and_| ock” , LOCK, "spin_lock", 1, ret_non_zero
113 "_spin_l ock_nested", LOCK, Spl n_l ock", 0, ret_any},
114 " __spin_l ock", LOCK, "spin_lock", 0, ret_any}, 168 "read_l ock", LOCK, "read_| ock", 0, ret_any},
115 " __spin_unl ock", UNLCCK, "spin_|lock", 0, ret_any}, 169 "read_unl ock", UNLOCK, "read_| ock", 0, ret_any},
116 " __spin_|lock_nested", LOCK, "spin_lock", 0, ret_any}, 170 " _read_| ock", LOCK, "read_| ock", 0, ret_any},
117 "raw_spi n_l ock", LOCK, "spin_lock", 0, ret_any}, 171 " “read_unl ock” UNLOCK, "read_l ock", 0, ret_any},
118 "raw_spi n_unl ock" UNLOCK, "spin_lock", 0, ret_any}, 172 "~ read_| ock" LOCK, "read_| ock", 0, ret_any},
119 " _raw_spi n_l ock", LOCK, "spin_lock", 0, ret_any}, 173 " __read_unl ock" UNLOCK, "read_| ock", 0, ret_any},
120 "_raw_spin "I ock_nest ed", LOCK, "spin_lock", 0, ret_any}, 174 "“raw_read_| ock" LOCK, "read_| ock", 0, ret_any},
121 " “raw_spi n_unl ock" UNLOCK, "spin_lock", 0, ret_any}, 175 " “raw_read_unl ock UNLOCK, "read_l ock", 0, ret_any},
122 " __raw_spi n_l ock" LOCK, "spin_lock", 0, ret_any}, 176 "~ raw_read_| ock" LOCK, "read_|l ock", 0, ret_any},
123 " raw_spi n_unl ock" UNLOCK, "spin_lock", 0, ret_any}, 177 " __raw_read_unl ock", UNLOCK, "read_l ock", 0, ret_any},
178 "read_l ock_irqg", LOCK, "read_| ock", 0, ret_any},
125 "spi n_lock_irqg", LOCK, spl n_|l ock", 0, ret_any}, 179 "read_unl ock_irq" , UNLOCK, "read_| ock", 0, ret_any},
126 "spi n_unl ock_i rq , UNLOCK, "spin_lock", 0, ret_any}, 180 " _read_lock_irq", LOCK, "read_l ock", 0, ret_any},
127 " _spi n_lock_i rgq" LOCK, ”spi n_l ock", 0, ret_any}, 181 " _read_unlock_irq", UNLOCK, "read_l ock", 0, ret_any},
128 " “spi n_unl ock_i rq UNLOCK, Spl n_|l ock", 0, ret_any}, 182 " __read_lock_irqg", LOCK, "read_| ock", 0, ret_any},
129 "~ spin_lock_irg" LOCK, spl n_|l ock", 0, ret_any}, 183 " __read_unlock_irq", UNLOCK, "read_|ock", 0, ret_any},
130 " __spin_unl ock_i rq , UNLOCK, "spin_lock", 0, ret_any}, 184 "read_| ock_irqgsave", LOCK, "read_|l ock", 0, ret_any},
131 "_raw Spl n_l ock_i rq, LOCK, ”spi n_l ock", 0, ret_any}, 185 "read_unl ock_irqgrestore", UNLOCK, "read_l ock", 0, ret_any},
132 "“raw_spi n_unl ock_irqg" UNLOCK, spl n_|l ock", 0, ret_any}, 186 " _read_l ock_i rgsave", LOCK, "read_| ock", 0, ret_any},
133 "~ raw_spin_unl ock_i rq , UNLOCK, spl n_|l ock", 0, ret_any}, 187 "_read_unl ock_irqrestore", UNLOCK, "read_| ock", 0, ret_any},
134 "spi n_l ock_irgqsave", LOCK, "spin_lock", 0, ret_any}, 188 " __read_l ock_irqgsave", LOCK, "read_l ock", 0, ret_any},
135 "spin_unl ock_irqgrestore”, UNLOCK, "spin_lock", 0, ret_any}, 189 " __read_unlock_irqgrestore”, UNLOCK, "read_|lock", 0, ret_any},
136 " _spin_lock_irgsave", LOCK, "spin_lock", 0, ret_any}, 190 "read_| ock_bh", LOCK, "read_| ock", 0, ret_any},
137 " _spin_unl ock_irqrestore”, UNLCCK, "spin_|lock", 0, ret_any}, 191 "read_unl ock_bh", UNLOCK, “read_| ock", 0, ret_any},
138 "__spin_lock_irqgsave", LOCK, "spin_lock", 0, ret_any}, 192 " _read_l ock_bh", LOCK, "read_| ock", 0, ret_any},
139 " __spin_unlock_irqrestore", UNLOCK, "spin_lock", 0, ret_any}, 193 " _read_unl ock_bh", UNLOCK, "read_l ock", 0, ret_any},
140 " _raw_spin_| ock_irqgsave", LOCK, "spin_lock", 0, ret_any}, 194 " __read_l ock_bh", LOCK, "read_| ock", 0, ret_any},
141 "_raw_spin_unl ock_irqgr est or e", UNLOCK, "spin_lock", 0, ret_any}, 195 "__read_unl ock_bh", UNLOCK, "read_| ock", 0, ret_any},
142 " __raw_spin_l ock_irgsave" LOCK, "spin_lock", 0, ret_any}, 196 "_raw_read_| ock_bh" LOCK, "read_| ock", 0, ret_any},
143 "~ raw spin_unlock_irqr estore” UNLOCK, "spin_lock", 0, ret_any}, 197 " “raw_read_unl ock bh" UNLOCK, "read_l ock", 0, ret_any},
144 "spin_lock_irgsave_nested", LOCK, "spin_lock", 0, ret_any}, 198 "~ raw_read_| ock_bh", LOCK, "read_| ock", 0, ret_any},
145 " _spin_|l ock_irgsave_nest ed" LOCK, "spin_lock", 0, ret_any}, 199 " raw read_unl ockfbh", UNLOCK, "read_| ock", 0, ret_any},
146 " __spin_l ock_irgsave_nest ed" LOCK, "spin_lock", 0, ret_any},
147 "“raw spi n_| ock_i rgsave_nest ed" LOCK, "spi n_l ock", 0, ret_any}, 201 "generic__raw_read_tryl ock", LOCK, "read_| ock", 0, ret_one},
148 Spl n_l ock_bh", LOG(, sp| n_l ock", 0, ret_any}, 202 "read_tryl ock", LOCK, "read_| ock", 0, ret_one},
149 "spi n_unl ock_bh", UNLOCK, spl n_| ock", 0, ret_any}, 203 " _read_tryl ock", LOCK, "read_| ock", 0, ret_one},
150 " _spin_l ock_bh" LOCK, spl n_lock", 0, ret_any}, 204 "raw_read_tryl ock", LOCK, "read_| ock", 0, ret_one},
151 " “spi n_unl ock bh" UNLOCK, "spin_lock", 0, ret_any}, 205 " _raw_read_tryl ock", LOCK, "read_| ock", 0, ret_one},
152 "~ spin_l ock_bh", LOCK, "spin_| ock", 0, ret_any}, 206 "__raw read_tryl ock", LOCK, "read_| ock", 0, ret_one},

new usr/src/tool s/ smatch/ src/check_| ocking. c

207
200
201
202
203
204
205
206

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

238
239
240
241
242
243
237
238
239
240
241
242

245
246
247
248
249

252
253
254
255
256
257
258
259

__read_tryl ock" LOCK, “read_| ock", 0, ret_one},
"generic__raw_ read _tryl ock", LOCK, "read_| ock", 0, ret_non zero}
"read_trylock™ LOCK, "read_| ock", 0, ret_non_zero},

"_read_tryl ock", LOCK, "read_| ock", 0, ret_non_zer o},
"raw_read_tryl ock", LOCK, "read_| ock", 0, ret_non_zero},
_raw_read_tryl ock", LOCK, "read_| ock", 0, ret_non_zero},
__rawread_tryl ock", LOCK, "read_|l ock", 0, ret_non_zero},
"__read_tryl ock", LOCK, "read_|l ock", 0, ret_non_zero},
"write_|l ock", LOCK, "wite_|lock", 0, ret_any},
"write _unl ock" UNLOCK, "write_lock", 0, ret_any},
" write_l ock", LOCK, "wite_lock", 0, ret_any},
"“write_unl ock" UNLOCK, “"write_l ock", 0, ret_any},
~write_l ock" LOCK, "wite_|lock", 0, ret_any},
__wite_unl ock", UNLOCK, "write_lock", 0, ret_any},
"wri te_lock_irq", LOCK, "write_lock", 0, ret_any},
"write_unlock_i rq UNLOCK, “"write_l ock", 0, ret_any},
" wite_lock _irg" LOCK, "write_|lock", 0, ret_any},
"“write_unl ock |rq , UNLOCK, "write_lock", 0, ret_any},
"~ wite_lock_irqg" LOCK, "write_lock", 0, ret_any},
"__wite_unlock_i rq UNLOCK, “"write_l ock", 0, ret_any},
"write | ock i rgsave” LOCK, "wite_|lock", 0, ret_any},
"write_unl ock i rqrest ore" UNLOCK, "write_lock", 0, ret_any},
Wi te_l ock_i rgsave” LOCK, "write_lock", 0, ret_any},
"_write_unlock_irqr est ore", UNLOCK, "wite_|lock", 0, ret_any},
__wite_lock_irgsave" LOCK, "write_lock", 0, ret_any},
“wite_unlock_i rqrestore UNLOCK, "write_lock", 0, ret_any},
"write_| ock_bh"] LOCK, "write_lock", 0, ret_any},
"write_unl ock bh" UNLOCK, "write_l ock", 0, ret_any},
" _write_l ock_bh", L , "write_lock", 0, ret_any},
"“write_unl ock bh UNLOCK, "write_lock", 0, ret_any},
~_wite_l ock_bh", LOCK, "wite_|lock", 0, ret_any},
" wite_unl ock_bh", UNLOCK, "write_l ock", 0, ret_any},
"_raw_write_| ock", LOCK, "write_lock", 0, ret_any},
rawwite|ock", LOCK, "wite_|lock", 0, ret_any},
_raw_write_unl ock", UNLOCK, "write_lock", 0, ret_any},
"_raw_write_unl ock", UNLOCK, "write_l ock", 0, ret_any},
"write_tryl ock", LOCK, "wite_|lock", 0, ret_one},
"_wite_trylock", LOCK, "wite_|lock", O, ret_one},
"raw wite_tryl ock", LOCK, "wite_lock", 0, ret_one},
"_raw write_tryl ock", LOCK, "wite_|lock", 0, ret_one},

__wite_tryl ock" LOCK, "wite_|l ock", 0, ret_one},

_rawwite_tryl ock LOCK, "wite_|lock", O, ret_one},
"write_tryl ock", LOCK, "write_|lock", 0, ret_non_zero},

"_wite_tryl ock" LOCK, "write_lock", 0, ret_non_zero},

"raw wite_tryl ock", LOCK, "write_lock", 0, ret_non_zero},
_raw wite_tryl ock", LOCK, "wite_lock", O, ret_non_zer o},
__wite_trylock", LOCK, "write_lock", 0, ret_non_zero},

"_rawwite_trylock", LOCK, "write_lock", 0, ret_non_zero},

"down", LOCK, sent, 0, ret_any},

"up", UNLOCK, "seni, 0, ret_any},

"down_tryl ock", LOCK, "sent, 0, ret_zero},

"down_ti neout " LOCK, "sent, 0, ret_zero},

"down_i nterruptible", LOCK "sem, 0, ret_zero},

"down_write", LOCK, "rw_sent, 0, ret_any},

"downgrade_write", UNLOCK, "rw_seni, 0, ret_any},

"downgrade_write", LOCK, "read_sent, 0, ret_any},

"up_wite", UNLOCK, "rw_sent, 0, ret_any},

"down_write_trylock", LOCK, "rw_sent, 0, ret_one},

"down_write_killable", LOCK, "rw_sent, 0, ret_zero},

"down_r ead", LOCK, "read_sent, 0, ret_any},

"down_read_tryl ock", LOCK, "read_sent, 0, ret_one},

new usr/src/tool s/ smatch/ src/check_| ocking. c

260
261

263
264
265
266
267

269
270
271
272

274
259

276
277
278
279
280
281
282
283
284
285
286
287
272
288
289
290
291
292
293
294
295
296
297
298
299

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
307

{"down_read_killable", LOCK, "read_sent, 0, ret_zero},
{"up_read", UNLOCK, "read_seni, 0, ret_any},

"mut ex_| ock", LOCK, "mutex", 0, ret_any},

"mut ex_| ock_i 0", LOCK, "mutex", 0, ret_any},

"mut ex_unl ock", UNLOCK, "mutex", 0, ret_any},

"mut ex_| ock_nested", LOCK, "mutex", 0, ret_any},

"mut ex_| ock_i o_nested", LOCK, "mutex", 0, ret_any},

"mut ex_| ock_i nterrupti bl e" LOCK, "mutex", 0, ret_zero},

"mut ex_| ock_i nt erruptlbl e nested", LOCK, "mutex", 0, ret_zero},

"nut ex_| ock_ki | | abl e" LOCK, "mutex", 0, ret_zero},

"mut ex_| ock_ki | | abl e_nest ed", LOCK, "mutex", 0, ret_zero},
{"mutex_tryl ock", LOCK, "mutex", 0, ret_one},
{"mutex_tryl ock", LOCK, "mutex", 0, ret_non_zero},

"raw_| ocal _i rq_di sabl e", LOCK, "irg", NOARG ret_any},

"raw_| ocal _irq_enable", UNLOCK, "irq", NO ARG ret_any},

"spi n_lock_irq", LOCK, "irq", NO ARG ret_any},

"spi n_unl ock_i rq UNLOCK, "irqg", NO ARG ret_any},

_spin_lock_irg" LOCK, "irg", NO_ARG ret_any},
“spi n_unl ock |rq , UNLOCK, "irqg", NO ARG ret_any},

— spin_lock_irq", LOCK, "irq", NO_ARG ret_any},
"__spin_unlock_irq", UNLOCK, "irqg", NO ARG ret_any},

_raw_spin_lock_irqg", LOCK, "irq", NO_ARG ret_any},

_raw_spi n_unl ock_irq" UNLOCK, "irqg", NO ARG ret_any},

"~ _raw_spi n_unl ock i rq , UNLOCK, "irqg", NO ARG ret_any},
spl n_tryl ock_i rq LOCK, "irq", NO_ARG ret_one},
"spin_trylock_irqg" LOCK, "irq", NO_ARG ret_non_zero},

"read_|l ock_irq", LOCK, "irg", NOARG ret_any},

"read_unl ock irq , UNLOCK, "irqg", NO ARG ret_any},

" _read_| ock _irg" LOCK, "irq", NO ARG ret_any},

"“read_unl ock |rq UNLOCK, "irqg", NO ARG ret_any},
“read_lock_irg" LOCK, "irg", NOARG ret_any},

__read_unl ock_i rq", UNLOCK, "irqg", NO ARG ret_any},
"wite_lock_irq", LOCK, "irg", NOARG ret_any},
"write_unlock_irq", UNLOCK, "irqg", NO ARG ret_any},
"_wite_lock_irqg", LOCK, "irg", NO_ARG ret_any},

"_write_unl ock irq , UNLOCK, "irqg", NO ARG ret_any},

"~ wite_lock _irg" LOCK, "irg", NOARG ret_any},

"—write_unl ock |rq UNLOCK, "irqg", NO_ARG ret_any},

"arch_l ocal _irq_save" LOCK, "irqsave", RETURN VAL, ret_any},

“arch_l ocal _irq_rest ore UNLCCK, "irgsave", 0, ret_any},

" _raw_|ocal _irqg_save" LOCK, "irqsave", RETURN_VAL, ret_any},

"raw_| ocal _irq_restor e", UNLOCK, "irgsave", 0, ret_any},

"spin_| ock_i rqsave_nested", LOCK, "irqsave", RETURN VAL, ret_any},

"spin_l ock_irgsave", LOCK, "irqgsave", RETURN_VAL, ret_any},

"spin_l ock_irgsave", LOCK, "irqsave", 1, ret_any},

"spin_unl ock_irqgrestore", UNLCCK, "irgsave", 1, ret_any},
_spin_lock_irgsave_nested", LOCK, irgsave", RETURN VAL, ret_any},
_spin_lock_irqgsave", LOCK, "irqgsave", RETURN_VAL, ret_any},

" _spin_lock_irqgsave", LOCK, "irgsave", 1, ret_any},

"_spin_unlock_irqrestore”, UNLCCK, "irgsave", 1, ret_any},
__spin_lock_irgsave_nested", LOCK, "irgsave", 1, ret_any},
__spin_lock_irgsave", LOCK, "irqsave", 1, ret_any},

" __spin_unlock_irqgrestore”, UNLOCK, "irgsave", 1, ret_any},
_raw_spin_l ock_i rgsave", LOCK, "irqsave", RETURN_VAL, ret_any}
_raw_spi n_| ock_i rgsave", LOCK, "irgsave", 1, ret_any},
_raw_spin_unl ock_irqgrestore", UNLOCK, "irqgsave", 1, ret_any},

"__raw_spin_|l ock_irgsave", LOCK, "irqgsave", RETURN_VAL, ret_any}

" __raw_spin_unlock_irgrestore", UNNOCK, "irgsave", 1, ret_any},

_raw_spi n_| ock irqsave nested", LOCK, "irgsave", RETURN_VAL, ret_any},
spl n_tryl ock_i rqsave LOCK, "irqgsave", 1, ret_one},

"spin_tryl ock_i rgsave" LOCK, "irgsave", 1, ret_non_zero},

new usr/src/tool s/ smatch/ src/check_| ocking. c

323 "read_| ock_i rgsave"

324 "read_| ock_i rgsave”

325 "read_unl ock_irqgr est ore"

326 " _read_| ock_irgsave"

327 " _read_l ock_i rqsave“,

328 " _read_unl ock_irqr est ore",

329 "__read_| ock_irgsave"

330 "__read_unl ock_irqr est ore"

331 "write_lock |rqsave

332 "write_| ock_irqgsave"

333 "write_unlock irqrestore",
334 " write_lock |rqsave

335 "“wite_l ock_irgsave"

336 "“wite_unlock irgr estor e",
337 "_wite_lock_irqgsave",

338 " __write_unlock_irqrestore",
340 "1 ocal _bh_di sabl e", LQOCK,
341 " _l ocal _bh_di sabl e", LOCK,
342 " __local _bh_disable", LOCK,
343 "l ocal _bh_enabl e", UNLCOCK,
344 " ocal _bh_enabl e" UNLQOCK,
345 "~ local _bh_enabl e UNLOCK,
346 "spi n_l ock_bh", LOCK,
347 "spi n_unl ock bh" UNLCOCK,
348 " _spin_| ock bh" LOCK,
349 " “spi n_unl ock bh UNLOCK,
350 " __spi n_l ock_bh", LOCK,
351 " __spi n_unl ock bh", UNLOCK,
352 "read | ock_bh"] LOCK,
353 "read_unl ock bh UNLQOCK,
354 " read_| ock_bh", LOCK,
355 " _read_unl ock bh" UNLCOCK,
356 "~ read_l ock_bh", LOCK,
357 " read_unl ock bh UNLQOCK,
358 "“raw read_| ock_bh LOCK,
359 " _raw_read_unl ock_bh", UNLOCK,
360 "write_l ock_bh", LOCK,
361 "write_unl ock _bh" UNLQOCK,
362 " write_l ock_bh" LOCK,
363 "“write_unl ock bh" UNLCOCK,
364 "~ wite_l ock_bh", LOCK,
365 "__write_unl ock_bh", UNLOCK,
366 "spin_tryl ock_bh", LOCK,
367 "_spin_trylock_bh", LOCK,
368 "__spin_tryl ock_bh", LOCK,
351 "spin_tryl ock_bh", LOCK,
352 " _spin_tryl ock_bh", LOCK,
353 " __spin_tryl ock_bh", LOCK,
370 {"ffs_nutex_| ock", LOCK,
371 };

_hnchanged_port ion_omtted_

465 static bool nestabl e(const char *nane)

466 {

467 if (strstr(name, "read_sem"))
468 return true;

469 if (strcnp(nane, "bottom hal f:'
470 return true;

471 return fal se;

472 }

474 static void do_| ock(const char *nane)
475 {
476 struct smstate *sm

LOCK, "irgsave”, RETURN_VAL,
LOCK, irgsave", 1, ret_any},
UNLCCK, "irgsave", 1, ret_any},
LOCK, "irqgsave", RETURN_VAL,
LOCK, "irqsave", 1, ret_any},
UNLOCK, "irgsave", 1, ret_any},
LOCK, "irqgsave", RETURN_ VAL,
UNLOCK, "irgsave", 1, ret_any},
LOCK, "irqsave", RETURN_VAL,
LOCK, ‘irqsave", 1, ret_any},
UNLOCK, "irgsave", 1, ret_any},
LOCK, "irgsave", RETURN VAL,
LOCK, "irqsave", 1, ret_any},
UNLOCK, "irgsave", 1, ret_any},
LOCK, "irqsave", RETURN_VAL,
UNLCCK, "irgsave", 1, ret_any},
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_any
"bottom hal f", NO ARG ret_one
"bottom hal f", NO ARG ret_one
"bottom hal f", NO ARG ret_one
"bottom hal f", NO ARG, ret_non_
"bottom hal f", NO ARG ret_non_
"bottom hal f", NO ARG ret_non
"mutex", 0, ret_zero},
') E= O)

ret _any},

ret _any},

ret_any},

ret _any},

ret_any},

ret_any},

zer o},
zero},

_zero},

new usr/src/tool s/ smatch/ src/check_I ocking. c 6
478 if (__inline_fn)
479 return;
481 sm = get_smstate(ny_id, name, NULL);
482 if (!sm
483 add_tracker (&starts_unl ocked, nmy_id, name, NULL);
484 if (sm&& slist_has_state(sm >possible, & ocked) && !nestabl e(nane))
460 if (sm&& slist_has_state(sm >possible, & ocked) &&
461 strcnp(name, “"bottomhalf:") 1= 0)
485 smerror("double lock '%’'", nane);
486 if (sm
487 func_has_transition = TRUE;
488 set_state(ny_id, nane, NULL, & ocked);
489 }
__unchanged_portion_onitted_
767 static int matches_return_type(struct range_list *rl, enumreturn_type type)
768 {
769 sval _t zero_sval = IIl_to_sval (0);
770 sval _t one_sval = Il _to_sval (1);
772 /* Al these double negatives are super ugly! */
774 switch (type) {
775 case ret_zero:
776 return !possibly_true_rl(rl, SPECI AL_NOTEQUAL, alloc_rl(zero_sva
777 case ret_one:
778 return !possibly_true_rl(rl, SPECI AL_NOTEQUAL, alloc_rl (one_sval
779 case ret_non_zero:
780 return !possibly_true_rl(rl, SPECI AL_EQUAL, alloc_rl(zero_sval,
781 case ret_negative:
782 return !'possibly_true_rl(rl, SPECIAL_GTE, alloc_rl(zero_sval, ze
783 case ret_positive:
784 return !possibly_true_rl(rl, "<, alloc_rl(zero_sval, zero_sval)
785 case ret_any:
786 defaul t:
787 return 1,
788 }
789 }
__unchanged_portion_onitted_
929 static void register_lock(int index)
930 {
931 struct lock_info *lock = & ock_tabl e[index];
932 void *idx = | NT_PTR(i ndex);
934 if (lock->return_type == ret_non_zero) {
935 return_inplies_state(lock->function, 1, INT_MAX, &match_| ock_hel
909 return_i nplies_state(l ock->function, valid_ptr_nin, valid_ptr_ma
936 return_inplies_state(lock->function, 0, 0, &mtch_|lock_failed, i
937 } else if (lock->return _type == ret_any && i ock- >arg == RETURN_VAL) {
938 add_function_assign_ hook(l ock->function, &nratch returns_| ocked,
939 } else if (Tock->return_type == ret_any) {
940 add_functi on_hook(| ock->function, &match_|ock_unlock, idx);
941 } else if (Tock->return_type == ret_zero) {
942 return_inplies_state(l ock->function, 0, 0, &match_| ock_held, idx
943 return_i nplies_state(l ock->function, -4095 -1, &match_| ock_fail
944 } else if (lock->return_type == ret_one) {
945 return_inplies_state(lock->function, 1, 1, &match_| ock_hel d, idx
946 return_i nplies_state(lock->function, 0, 0, &mtch_| ock fail ed i
947
948 }

__unchanged_portion_onitted_

new usr/src/tool s/smatch/ src/check_nacro_side_effects.c 1

R R R R

3706 Mon Aug 5 08:38:01 2019
new usr/src/tool s/ smatch/ src/check_nacro_side_effects.c
11506 snatch resync

R R R R

2 * Copyright (© 2012 Oracle.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any |later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of
11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
12 * GNU Ceneral Public License for nore details.
13 =
14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt

*

-~

18 #incl ude "scope. h"

19 #include "snatch. h"

20 #include "smatch_slist.h"

21 #include "smatch_expressi on_stacks. h"

23 static int ny_id;

25 static struct string_list *ignored_nmacros;
26 static struct position old_pos;

28 static struct smatch_state *alloc_ny_state(struct expression *expr)
{

30 struct smatch_state *state;

31 char *nane;

33 state = __alloc_smatch_state(0);
33 expr = strip_expr(expr);

34 name = expr_to_str(expr);

35 if (!nane)

36 return NULL;

38 state = __alloc_smatch_state(0);
39 state->nane = all oc_snane(nane);
40 free_string(nane);

41 state->data = expr;

42 return state;

43

__unchanged_portion_omtted_

159 void check_macro_side_effects(int id)

160 {

161 ny_id =id;

163 if (!option_spammy)

164 return;

166 set _dynami c_states(ny_id);

167 add_hook(&rat ch_unop, OP_HOXK) ;
168 add_hook(&mat ch_stnt, STMI_HOXK) ;
169 regi ster_ignored_macros();

170 }

__unchanged_portion_onitted_

new usr/src/tool s/ smatch/src/check_m ssing_break.c 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
4313 Mon Aug 5 08:38:01 2019

new usr/src/tool s/ smatch/src/check_mi ssing_break.c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

173 void check_m ssing_break(int id)

174 {

175 ny_id =id;

177 if (!option_spamy)

178 return;

180 set _dynami c_states(ny_id);

181 add_unmat ched_st at e_hook(ny_i d, &unmatched_state);
182 add_ner ge_hook(ny_id, &nmerge_hook);

184 add_hook(&rat ch_assi gn, ASSI GNVENT_HOXK) ;

185 add_hook(&vat ch_synbol , SYM HOXK) ;

186 add_hook(&mat ch_stnt, STMI_HOXK) ;

187 add_hook(&mat ch_swi t ch, STMI_HOCK) ;

188 add_hook(&rat ch_swi tch_end, STMI_HOOK_AFTER);
189 }

__unchanged_portion_omtted_

new

* ok kK

new
1150

* ok kK

usr/src/tool s/ smatch/ src/ check_no_return.c

B R

1292 Mon Aug 5 08:38:02 2019
usr/src/tool s/ smat ch/ src/ check_no_return.c
6 smatch resync

B R R R R

* Copyright (C) 2010 Dan Carpenter.

This programis free software; you can redistribute it and/or
modi fy it under the terns of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

but W THOUT ANY WARRANTY; without even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the
GNU General Public License for nore details.

*

*

*

*

*

*

* This programis distributed in the hope that it will be useful,

*

*

*

*

* You shoul d have received a copy of the GNU General Public License

* along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt
*

/

#i ncl ude "smatch. h"
#i ncl ude "smatch_slist.h"

static int ny_id,
static int returned;

static void match_return(struct expression *ret_val ue)

if (__inline_fn)
return;

if (is_reachable())
returned = 1;

}
static void match_func_end(struct synbol *syn)

if (__inline_fn)
return;
if (out_of _menory() || taking_too_long())
return;
if (!is_reachable() && !returned)
sminfo("info: add to no_return_funcs");
returned = 0;

__unchanged_portion_onitted_

new usr/src/tool s/smatch/src/check_nospec. c 1 new usr/src/tool s/smatch/src/check_nospec. c 2

R R R R

6705 Mon Aug 5 08:38:02 2019 241 static void select_return_stnt_cnt(struct expression *expr, int param char *key
new usr/src/tool s/smatch/src/check_nospec. c 242 {
11506 snatch resync 243 int cnt;
IR E SR SR RS RS E SRR R R SRR R R SRR R R R RS EEREREEREEREEEEEEEERSE]
__unchanged_portion_onitted_ 245 cnt = atoi(val ue);
246 if (cnt > 400)
97 {st atic void returned_struct_nmenbers(int return_id, char *return_ranges, struct e 247) mar k_user _dat a_as_nospec();
98 248
99 struct stree *start_states = get_start_states();
100 struct synbol *returned_sym 250 voi d check_nospec(int id)
101 struct smstate *sm 251 {
102 const char *param nane; 252 ny_id =id;
103 struct range_list *rl;
104 int param 254 add_hook(&ospec_assi gn, ASSI GNVENT_HOOK) ;
106 returned_sym = expr_to_syn(expr); 256 sel ect _cal | er _i nfo_hook(set_param nospec, NOSPEC);
257 add_unnat ched_st at e_hook(ny_i d, &unmatched_state);
108 FOR_EACH MY_SMny_id, _ get_cur_stree(), sm {
109 if (get_state_stree(start_states, ny_id, sm>nane, sm>syn) == s 259 add_hook(&mat ch_cal | _i nfo, FUNCTI ON_CALL_HOOK) ;
110 conti nue; 260 add_nenber _i nfo_cal | back(ny_id, struct_nenber_cal | back);
111 param = get _param num fromsyn{sm >synj; 261 add_split_return_cal | back(& eturned_struct_mnenbers);
112 1f (param< 0) { 262 sel ect _return_states_hook(NOSPEC, &db_returns_nospec);
113 if (!returned_sym|| returned_sym!= sm>sym 263 sel ect _return_states_hook(NOSPEC WB, &db_returns_barrier);
114 conti nue; 264 sel ect _return_stat es_hook(STMI_CNT, &sel ect_return_stnt_cnt);
115 param = -1,
116 } 266 add_hook(&rat ch_asm ASM HOX) ;
267 add_hook(&vat ch_aft er_nospec_asm STMI_HOOK_AFTER);
118 param nane = get_param name(sn); 268 }
119 i f (!param.nane) __unchanged_portion_omtted_
120 conti nue;
121 if (param!= -1 && strcnp(paramnane, "$") == 0)
122 conti nue;
124 if (!get_user_rl_var_sym(sm >nane, sm>sym &rl))
125 cont i nue;
127 sgl _insert_return_states(return_id, return_ranges, NOSPEC, param
128 } END_FOR _EACH_SM sm);
130 if (is_nospec(expr) && get_user_rl (expr, &rl))
131 sgl _insert_return_states(return_id, return_ranges, NOSPEC, -1, "
133 if (get_state(barrier_id, "barrier", NULL) == &nospec)
134) sql _insert_return_states(return_id, return_ranges, NOSPEC WB, -1
135

__unchanged_portion_onitted_

219 static void match_barrier(struct statenment *stnt)

220 {

221 char *macro;

223 macro = get_nacro_nane(stnt->pos);

224 if (!macro)

225 return;

226 if (strcrp(macro, "rnb") =0 &&

227 strcnp(macro, "snp_rnb") !'= 0 &&

228 strcnp(macro, "barrier_nospec") != 0 &&
229 strcnp(macro, "preenpt_disable") = 0)
225 strcnp(macro, "barrier_nospec") != 0)
230 return;

232 set_state(barrier_id, "barrier", NULL, &nospec);
233 mar k_user _dat a_as_nospec();

234 }

__unchanged_portion_onitted_

new usr/src/tool s/smatch/src/check_of f _by_one_relative.c

R R R R

3372 Mon Aug 5 08:38:02 2019
new usr/src/tool s/ smatch/src/check_of f_by_one_relative.c
11506 snatch resync

R R R R

2 * Copyright (© 2015 Oracle.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any later version.

8 *

9 * This programis distributed in the hope that it will be useful,

10 * but W THOUT ANY WARRANTY; without even the inplied warranty of

11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the

12 * GNU Ceneral Public License for nore details.

13 =

14 * You shoul d have received a copy of the GNU General Public License

15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt
16 */

18 /*

19 * The point here is to store that a buffer has x bytes even if we don’'t know
20 * the value of x.

21 *

22 */

24 #include "smatch. h"

25 #include "smatch_slist.h"
26 #include "snatch_extra. h"
28 static int ny_id;

30 static void array_check(struct expression *expr)

31

32 struct expression *array;

33 struct expression *size;

34 struct expression *of fset;

35 char *array_str, *offset_str;

36 int limt_type;

38 expr = strip_expr(expr);

39 if (lis_array(expr))

40 return;

42 array = get _array_base(expr);

43 si ze get _si ze_vari abl e(array, &imt_type);
44 |f('5|ze|| I|mttype'—ELEMCCUNT)

42 size = get_size_variabl e(array);

43 if (!size)

45 return;

46 of fset = get_array_of fset (expr);

47 if (!possible_conparison(size, SPECIAL_EQUAL, offset))
48 return;

50 if (buf_conparison_i ndex_ok(expr))

51 return;

53 array_str = expr_ to_str(array);

54 of fset_str = expr_to str(offset)

55 smwarni ng("potentially one past the end of array '%[%] ", array_str,
56 free_string(array_str);

57 free_string(offset str)

58 }

new usr/src/tool s/smatch/src/check_of f _by_one_relative.c

56 static int known_access_ok_conpari son(struct expression *expr)

57 {

58 struct expression *array;

59 struct expression *size;

60 struct expression *offset

61 int conparison;

63 array = get _array_base(expr);

64 size = get_size_vari abl g(array)

65 if (!size)

66 ret urn O;

67 of f set get _array_of fset (expr);

68 conpari son = get_conparison(size, offset);
69 if (conmparison == "'>" || conparison == SPECI AL_UNSI GNED_GT)
70 return 1;

72 return O;

73 }

60 static int known_access_ok_nunbers(struct expression *expr)

62 struct expression *array;

63 struct expression *of fset;

64 sval _t max;

65 int size;

67 array = get_array_base(expr);
68 of fset = get_array_of fset (expr);
70 size = get_array_size(array);
71 if (size <= 0)

72 return O;

74 get _absol ute_max(of fset, &max);
75 if (max.uval ue < size)

76 return 1;

77 return O;

78 }

80 static void array_check_data_i nfo(struct expression *expr)

82 struct expression *array;

83 struct expression *of fset;

84 struct state_list *slist;

85 struct smstate *sm

86 struct conpare_data *conp;

87 char *of f set _nane;

88 const char *equal _nane = NULL;

90 expr = strip_expr(expr);

91 if (lis_array(expr))

92 return;

94 if (known_access_ok_nunbers(expr))
95 return;

96 i f (buf_conparison_i ndex_ok(expr))
111 if (known_access_ok_conpari son(expr))
97 return;

99 array = get_array_base(expr);

100 of fset = get_array_of fset (expr);
101 of fset _nane = expr_to_var(offset);
102 if (!offset_nane)

103 return;

104 slist = get_all _possi bl e_equal _conpari sons(offset);

105 if (Islist)

new usr/src/tool s/smatch/src/check_of f _by_one_relative.c

var, conp->

array_nane,

106 goto free;

108 FOR_EACH PTR(slist, sm {

109 conp = sm >stat e->dat a;

110 if (strcnp(comp->left_var, offset_nane) == 0) {

111 if (db_var_is_array_limt(array, conp->right_
112 equal _name = conp->right_var;

113 br eak;

114 }

115 } else if (strcnp(conp->right_var, offset_name) == 0) {
116 if (db_var_is_array_limt(array, conp->left_var, conp->l
117 equal _nanme = conp->left_var;

118 br eak;

119 }

120 }

121 } END_FOR_EACH_PTR(sm);

123 if (equal _nane) {

124 char *array_name = expr_to_str(array);

126 smwarni ng("potential off by one '%[]’ limt "% ",
127 free_string(array_nane);

128 }

130 free:

131 free_slist(&slist);

132 free_string(offset_nane);

133 }

__unchanged_portion_omtted_

new usr/src/tool s/smatch/src/check_precedence. c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
3526 Mon Aug 5 08:38:03 2019

new usr/src/tool s/smatch/src/check_precedence. c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

123 static void match_nask_conpare(struct expression *expr)

124 {

125 if (expr->op I="&)

126 return;

127 if (expr->right->type != EXPR_COVPARE)

128 return;

130 sm war ni ng(" conpare has hi gher precedence than mask");
131 }

133 static void match_subtract_shift(struct expression *expr)
134 {

135 if (expr->op != SPECI AL_LEFTSHI FT)

136 return;

137 if (expr->right->type != EXPR_BI NOP)

138 return;

139 if (expr->right->op !="-")

140 return;

141 sm war ni ng("subtract is higher precedence than shift");
142 }

144 void check_precedence(int id)

145 {

146 nmy_id = id;

148 add_hook(&vat ch_condi ti on, CONDI TI ON_HOCK) ;

149 add_hook(&vat ch_bi nop, BI NOP_HOCK) ;

150 add_hook(&rat ch_nask, Bl NOP_HOK) ;

151 add_hook(&rat ch_nask_conpar e, Bl NOP_HOOK) ;

152) add_hook(&rat ch_subtract _shift, Bl NOP_HOOK);

153

__unchanged_portion_onitted_

new usr/src/tool s/ smatch/src/check_return_cast.c 1

R R R R

1418 Mon Aug 5 08:38:03 2019
new usr/src/tool s/ smatch/src/check_return_cast.c
11506 snatch resync

R R R R

2 * Copyright (© 2012 Oracle.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any |later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of

11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the

12 * GNU Ceneral Public License for nore details.

13 =

14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt
16 */

18 /*

19 * Conplains about places that return -1 instead of -ENOVEM
*/

22 #include "snatch. h"
24 static int ny_id;

26 static void match_return(struct expression *ret_val ue)

27

28 struct synbol *func_type = get_real _base_type(cur_func_sym;
29 sval _t sval;

31 if (!func_type || func_type->type != SYMFN)

32 return;

33 func_type = get_real _base_type(func_type);

34 if (!func_type)

35 return;

36 if (!type_unsigned(func_type))

37 return;

38 if (type_bits(func_type) > 16)

39 return;

40 if (lget_fuzzy_min(ret_value, &sval))

41 return;

42 if (sval_is_positive(sval) || sval _cnp_val (sval, -1) == 0)
43 return;

45 sm war ni ng("si gnedness bug returning '%’", sval _to_str(sval));
46

__unchanged_portion_onitted_

new usr/src/tool s/ smatch/src/check_rosenberg.c 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
9033 Mon Aug 5 08:38:04 2019

new usr/src/tool s/ smatch/src/check_rosenberg.c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

379 void check_rosenberg2(int id)

380 {

381 if (option_project != PRQJ_KERNEL)
382 return;

384 ny_menber _id = id;

385 set _dynam c_st at es(ny_nenber _i d);
386 add_extra_nod_hook(&xt r a_nod_hook) ;
387 }

__unchanged_portion_omtted_

new usr/src/tool s/smatch/src/check_shift_to_zero.c 1
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
2212 Mon Aug 5 08:38:04 2019
new usr/src/tool s/ smatch/src/check_shift_to_zero.c
11506 snatch resync
IR E SR SR RS RS E SRR R R SRR R R SRR R R R RS EEREREEREEREEEEEEEERSE]

1/*

2 * Copyright (© 2014 Oacle.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any |later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of
11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
12 * GNU Ceneral Public License for nore details.

13 =

14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt
16 */

18 #include "smatch. h"

20 static int nmy_id;

22 static void natch_bi nop(struct expression *expr)

23 {

24 struct synbol *type;

25 sval _t bits;

27 if (expr->op !'= SPECI AL_RI GHTSHI FT)

28 return;

30 if ('get_inplied_value(expr->right, &bits))

31 return;

33 type = get_type(expr->left);

34 if (!type)

35 return;

36 if (type_bits(type) == -1]| type_bits(type) > bits.value)
37 return;

38 if (is_ignored_expr(ny_id, expr))

39 return;

40 smwarning("right shifting nore than type allows % vs %1d", type_bits(
41

__unchanged_portion_onitted_

new usr/src/tool s/ smatch/src/check_snprintf.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
2292 Mon Aug 5 08:38:05 2019

new usr/src/tools/smatch/src/check_snprintf.c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

74 void check_snprintf(int id)

75 {

76 if (option_project != PRQJ_KERNEL)

77 return;

78 if (!option_spamy)

79 return;

81 ny_id = id,

82 set _dynami c_states(ny_id);

83 add_hook(&mat ch_cal |, FUNCTI ON_CALL_HOCK) ;
84 add_function_assi gn_hook("snprintf", &match_snprintf, NULL);
85 add_nodi fication_hook(ny_id, &k_to_use);
86

}
__unchanged_portion_omtted_

new usr/src/tool s/ smatch/src/check_spectre.c

R R R R

4707 Mon Aug 5 08:38:06 2019
new usr/src/tool s/smatch/src/check_spectre.c
11506 snatch resync

R R R R

2 * Copyright (C 2018 Oracle.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any |later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of
11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
12 * GNU Ceneral Public License for nore details.
13 =
14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt

*

-~

18 #include "smatch. h"
19 #include "smatch_extra. h"

21 static int ny_id;
22 extern int second_hal f_id;
23 extern void set_spectre_first_hal f(struct expression *expr);

25 static int suppress_nultiple = 1;

27 static int is_wite(struct expression *expr)
28 {

29 return O;

30 }

____unchanged_portion_onitted_

152 static void array_check(struct expression *expr)

153 {

154 struct expression_list *conditions;

155 struct expression *array_expr, *offset;
156 unsi gned | ong | ong mask;

157 int array_size;

158 char *nane;

160 expr = strip_expr(expr);

161 if (lis_array(expr))

162 return;

164 if (is_inpossible_path())

165 return;

166 if (is_harm ess(expr))

167 return;

169 array_expr = get_array_base(expr);

170 if (suppress_multiple & is_ignored_expr(ny_id, array_expr)) {
171 set _spectre_first_hal f(expr);
168 if (suppress_multiple & is_ignored_expr(ny_id, array_expr))
172 return;

173 }

175 of fset = get_array_of fset(expr);

176 if (lis_user_rl(offset))

177 return;

178 if (is_nospec(offset))

179 return;

new usr/src/tool s/ smatch/src/check_spectre.c
181 array_size = get_array_size(array_expr);
182 if (array_size > 0 & get_max_by_type(offset) < array_size)
183 return;
184 // bi nfo = get_bit_info(offset);
185 // if (array_size > 0 & binfo && bi nfo->possible < array_size)
186 // return;
188 mask = get _mask(of fset);
189 if (mask <= array_size)
190 return;
192 conditions = get_conditions(offset);
194 name = expr_to_str(array_expr);
195 smwar ni ng("potential spectre issue '%’ [%]%",
196 nane,
197 is_read(expr) ? "r" : "w',
198 conditions ? " (local cap)" : "");
200 set_spectre_first_half(expr);
201 if (suppress_nultiple)
202 add_i gnore_expr(nmy_id, array_expr);
203 free_string(nane);
204 }

__unchanged_portion_omtted_

new usr/src/tool s/ smatch/src/check_spectre_second_hal f.c 1

R R R R

2926 Mon Aug 5 08:38:06 2019
new usr/src/tool s/ smatch/src/check_spectre_second_hal f.c
11506 snatch resync

R R R R

1/*

2 * Copyright (C) 2018 Oracle.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any |later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of

11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the

12 * GNU Ceneral Public License for nore details.

13 =

14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt
16 */

18 #incl ude "smatch. h"
19 #include "smatch_extra. h"
20 #include "smatch_slist.h"

22 /* New chips will probably be able to specul ate further ahead */
23 #define MAX_SPEC_STMI 200

25 static int ny_id;
27 struct stree *first_halfs;
29 struct expression *recently_set;

31 void set_spectre_first_hal f(struct expression *expr)
{

32

33 char buf[64];

34 char *nane;

36 nane = expr_to_str(expr);

37 snprintf(buf, sizeof(buf), "% %", expr, nane);

38 free_string(nane);

40 set_state_stree(& irst_halfs, ny_id, buf, NULL, alloc_state_nun{get_stnt
41 }

43 void cl ear_spectre_second_hal fs(voi d)

44

45 struct smstate *sm

47 FOR EACH MY _SMny_id, _ get_cur_stree(), sm {

48 set_state(ny_id, sm>nane, sm>sym alloc_state_nun(-MAX SPEC ST
49 } END_FOR_EACH SM sm);

50 }

52 static struct smatch_state *get_spectre_first_hal f(struct expression *expr)

54 char buf[64];

55 char *nane;

57 nane = expr_to_str(expr);

58 snprintf(buf, sizeof(buf), "% %", expr, nane);
59 free_string(nane);

61 return get_state_stree(first_halfs, ny_id, buf, NULL);

new usr/src/tool s/ smatch/ src/check_spectre_second_hal f.c
62 }

64 static void nmatch_assign(struct expression *expr)

65 {

66 struct smatch_state *state;

68 if (expr->op == SPECI AL_AND_ASSI GN)

69 return;

71 state = get_spectre_first_hal f(expr->right);
72 if (state) {

73 set _state_expr(ny_id, expr->left, state);
74 recently_set = expr->left;

75 return;

76 1

77 state = get_state_expr(ny_id, expr->right);
78 if (!state)

79 return;

80 set_state_expr(ny_id, expr->left, state);

81 recently_set = expr->left;

82 }

84 static void natch_done(struct expression *expr)

85

86 struct smatch_state *state;

87 char *nane;

89 if (expr == recently_set)

90 return;

92 state = get_state_expr(ny_id, expr);

93 if (!state)

94 return;

96 if (get_stnt_cnt() - (long)state->data > MAX_SPEC_STMI)
97 return;

99 name = expr_to_str(expr);
100 sm nmsg("warn: possible spectre second half. ’'9%’", nane);
101 free_string(nane);
103 set_state_expr(ny_id, expr, alloc_state_nun(-MAX _SPEC STMI));
104 }
106 static void match_end_func(struct synbol *sym
107
108 if (__inline_fn)
109 return;
110 free_stree(&first_halfs);
111 }
113 voi d check_spectre_second_hal f(int id)
114 {
115 ny_id =id;
117 if (option_project != PRQJ_KERNEL)
118 return;
119 set _dynami c_states(ny_id);
120 add_hook(&vat ch_assi gn, ASSI GNMVENT_HOCK) ;
121 add_hook(&rat ch_done, SYM HOCK) ;
122 add_hook(&mat ch_done, DEREF_HOXK) ;
124 add_hook(&vat ch_end_f unc, END_FUNC_HOCK) ;
125 }

new usr/src/tool s/ smatch/src/check_string_len.c 1 new usr/src/tool s/smatch/src/check_string_len.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 93 p++;
5290 Mon Aug 5 08:38:06 2019 94 ret = 15;
new usr/src/tool s/smatch/src/check_string_len.c 95 goto out;
11506 snatch resync 96
LEEE R R R R EE SRR EEEEEEEEEEE RS SRR SRR EEEEEREREEEEEEEEESE] 97 If (*p == ’6’) {
__unchanged_portion_onitted_ 98 ++;
99 if (*p=="¢")
36 struct param.info zero_one = {0, 1}; 100 p++;
101 if (*eye == "1")
38 static int handl e_format (struct expression *call, char **pp, int *arg_nr, bool u 102 ret = 39;
38 static int handle_format (struct expression *call, char **pp, int *arg_nr) 103 if (*eye =="1")
39 { 104 ret = 32;
40 struct expression *arg; 105 goto out;
41 char *p = *pp; 106 }
42 int ret = 1; 107 }
43 char buf[256]; 108 if (*(p+1) =="M) {
44 sval _t sval; 109 p += 2;
44 sval _t max; 110 i1f (*p=="R || *p=="F)
111 p++;
46 p++; /* we passed it with *p == "% */ 112 ret = 17;
113 goto out;
48 if (*p=="%) { 114 }
49 p++; 115 if (*(p+1) =="nm) {
50 ret = 1; 116 p += 2;
51 goto out_no_arg; 117 if (*p =="R)
52 } 118 p++;
53 if (*p =="¢") { 119 ret = 12;
54 p++; 120 goto out;
55 ret = 1; 121 }
56 goto out; 122 }
57 }
124 arg = get_argunment _fromcall_expr(call->args, *arg_nr);
125 if (larg)
60 if (isdigit(*p) || *p ==".") { 126 goto out;
61 unsi gned | ong num
128 if (*p=="5")
63 if (*p==".") 129 ret = get_array_size_bytes(arg);
64 p++; 130 if (ret <0)
131 ret = 1;
66 num = strtoul (p, &, 10); 132 /* we don’t print the NUL here */
67 ret = num 133 ret--;
134 pt++;
69 while (*p == "1") 135 goto out;
70 p++; 136 }
71 p++; /* eat the 'd’ char */
72 goto out; 138 if (*p!="d &&*p!="i" && *p !="'x && *p !='X && *p !="U && *p
73 } 139 ret = 1;
140 p++;
75 if (*p=="1") { 141 goto out;
76 p++; 142 }
77 if (*p=="1")
78 p++; 144 if (use_max) {
79 } 145 get _absol ute_max(arg, &sval);
146 } else {
81 if (option_project == PRQJ_KERNEL && *p == 'z’) 147 get _absol ute_min(arg, &sval);
82 pt++; 148 if (sval _is_negative(sval))
149 sval . val ue = 0;
84 if (option_project == PRQU_KERNEL && *p == "p’) { 150 }
85 if (*(p+121) ="1"1] *(p+1) =="1") { 144 get _absol ute_max(arg, &nmex);
86 char *eye;
88 eye = p + 1; 153 if (*p=="x" || *p=="X || *p=="p")
89 p += 2; 154 ret = snprintf(buf, sizeof(buf), "%Ix", sval.uvalue);
90 if (*p=="h || *p="n || *p="Db0" || *p="1") 147 ret = snprintf(buf, sizeof(buf), "%Ix", nmax.uval ue);
91 p++; 155 } elseif (*p =="u
92 if (*p =="4") { 156 ret = snprintf(buf, sizeof(buf), "%Iu", sval.uvalue);

new usr/src/tool s/ smatch/src/check_string_len.c

bool use_

149 ret = snprintf(buf, sizeof(buf), "%Ilu", nmax.uval ue);
157 } else if (!lexpr_unsigned(arg)) {

158 sval _t mn;

159 int tnp;

161 ret = snprintf(buf, sizeof(buf), "%Id", sval.value);
154 ret = snprintf(buf, sizeof(buf), "%Id", nax.value);
162 get _absolute_nmin(arg, &nmn);

163 tmp = snprintf(buf, sizeof(buf), "%I1d", mn.value);
164 if (tnp > ret)

165 ret = tnp;

166 } else {

167 ret = snprintf(buf, sizeof(buf), "%Id", sval.value);
160 ret = snprintf(buf, sizeof(buf), "%Id", nmax.value);
168 1

169 p++;

171 out:

172 (*arg_nr) ++;

173 out _no_arg:

174 *pp = p;

175 return ret;

176 }

178 int get_formatted_string_size_hel per(struct expression *call, int arg,
171 int get_formatted_string_size(struct expression *call, int arg)

179 {

180 struct expression *expr;

181 char *p;

182 int count;

184 expr = get_argunent _fromcall _expr(call->args, arg);

185 if (lexpr || expr->type !'= EXPR_STRI NG

186 return -1,

188 ar g++;

189 count = 0;

190 p = expr->string->data;

191 while (*p) {

193 if (*p =="%)

194 count += handl e_format(call, &p, &arg, use_nex);
187 count += handle_format(call, &p, &arg);

195 } elseif (*p =="\\") {

196 p++;

197 telse {

198 p++;

199 count ++;

200 }

201 }

196 count++; /* count the NUL term nator */

203 return count;

204 }

206 int get_formatted_string_size(struct expression *call, int arg)

207 {

208 return get_formatted_string_size_helper(call, arg, true);
209 }

211 int get_formatted_string_m n_size(struct expression *call, int arg)
212 {

213 return get_formatted_string_size_helper(call, arg, false);
214 }

216 static void match_not _|imted(const char *fn, struct expression *call,

voi d *inf

new usr/src/tool s/smatch/src/check_string_len.c

217 {

218 struct param.info *parans = info;

219 struct range_list *rl;

220 struct expression *dest;

221 struct expression *arg;

222 int buf_size, size;

223 int user = 0;

224 int i;

225 int offset = 0;

227 dest = get_argunent _fromcall _expr(call->args, paranms->buf_or_limt);
228 dest = strip_expr(dest);

229 if (dest->type == EXPR BINOP && dest->op == '+') {
230 sval _t nax;

232 if (get_hard_max(dest->right, &max))

233 of fset = max. val ue;

234 dest = dest->left;

235 1

238 buf _size = get_array_size_bytes(dest);

239 if (buf_size <= 0)

240 return;

242 size = get_formatted_string_size(call, paranms->string);
243 if (size < 0)

227 if (size <= 0)

244 return;

245 if (size < offset)

246 size -= offset;

247 si ze++; /* add the NULL term nator */

248 if (size <= buf_size)

249 return;

251 i =0;

252 FOR_EACH PTR(cal | ->args, arg) {

253 if (i++ <= parans->string)

254 conti nue;

255 if (get_user_rl(arg, &l))

256 user = 1;

257 } END_FOR_EACH _PTR(arg);

259 smerror("format string overflow buf_size: % |ength: %%",
260) buf _size, size, user ? " [user data]": "");
261

__unchanged_portion_onitted_

new usr/src/tool s/smatch/src/check_syscall _arg_type.c 1

PR R R R R
3586 Mon Aug 5 08:38:07 2019

new usr/src/tool s/ smatch/src/check_syscall _arg_type.c
11506 snatch resync

R R R R

__unchanged_portion_onitted_

158 void check_syscall _arg_type(int id)

159 {

160 ny_id = id,

161 if (option_project != PRQJ_KERNEL)

162 return;

164 set _dynani c_states(ny_id);

165 add_nerge_hook(ny_id, &nerge_states);

166) add_function_hook("fdget", &match_fdget, NULL);
167

__unchanged_portion_onitted_

new usr/src/tool s/smatch/src/check_testing_index_after_use.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
3027 Mon Aug 5 08:38:07 2019

new usr/src/tool s/smatch/src/check_testing_index_after_use.c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

38 static int get_the_max(struct expression *expr, sval _t *sval)

39 {

40 struct range_list *rl;

42 if (get_hard_max(expr, sval))
43 return 1,

44 if (!option_spanmmy)

45 return O;

46 if (get_fuzzy_nax(expr, sval))
47 return 1,

48 if (get_user_rl(expr, &1)) {
49 *sval = rl_max(rl);
50 return 1;

51 }

52 return O;

53 }

38 static void array_check(struct expression *expr)
39 {

40 struct expression *array_expr;

41 int array_size;

42 struct expression *offset;

43 struct range_list *rl;

60 sval _t max;

45 expr = strip_expr(expr);

46 if (lis_array(expr))

47 return;

49 array_expr = get_array_base(expr);
50 array_size = get_array_size(array_expr);
51 if (larray_size || array_size == 1)
52 return;

54 of fset = get_array_of fset(expr);

55 get _absolute_rl (of fset, &rl);

56 if (rl_max(rl).uvalue < array_size)
57 return;

58 if (buf_conparison_index_ok(expr))
59 return;

72 if (!get_the_max(offset, &max)) {
61 if (getting_address())

62 return;

63 if (is_capped(offset))

64 return;

65 }set _state_expr(ny_used_id, offset, alloc_state_nun{array_size));
78

66

__unchanged_portion_onitted_

108 void check_testing_index_after_use(int id)

109 {

110 nmy_used_id = id;

111 set _dynam c_states(ny_used_id);

112 add_hook(&array_check, OP_HOOK);

113 add_hook(&rat ch_condi ti on, CONDI TI ON_HOXK) ;
114 add_nodi fi cation_hook(ny_used_id, &delete);

115 }

new usr/src/tool s/smatch/src/check_uninitialized.c 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
9286 Mon Aug 5 08:38:09 2019

new usr/src/tools/smatch/src/check_uninitialized.c

11506 snatch resync

R R R R

____unchanged_portion_onitted_

98 static void match_negative_conparison(struct expression *expr)

99 {

100 struct expression *success;

101 struct smstate *sm

102 sval _t max;

104 /*

105 * In the kernel, people don't use "if (ret) {" and "if (ret < 0) {"
106 * consistently. ldeally Smatch would know the return but often it
107 * doesn’'t.

108 *

109 */

111 if (option_project != PRQI_KERNEL)

112 return;

114 if (expr->type != EXPR_ COWARE || expr->op !|="<")

115 return;

116 if (lis_zero(expr->right))

117 return;

118 if (get_inplied_max(expr->left, &max) && max.value == 0)
119 return;

121 success = conpar e_expression(expr->left, SPECI AL_EQUAL, expr->right);
122 if (!assume(success))

123 return;

125 FOR EACH MY SMny_id, _ get_cur_stree(), sm {

126 if (sm>state == & nitialized)

127 set _true_fal se_states(ny_id, sm>nane, sm>sym NULL, &
128 } END_FOR_EACH_SM sm);

130 end_assune();

131 }

133 static int is_initialized(struct expression *expr)

134 {

135 struct smstate *sm

137 expr = strip_expr(expr);

138 if (expr->type !'= EXPR_SYMBOL)

139 return 1;

140 sm = get_smstate_expr(ny_id, expr);

141 if (!sm

142 return 1;

143 if (!slist_has_state(sm >possible, &uninitialized))

144 return 1;

145 return O;

146 }

148 static void match_dereferences(struct expression *expr)

149 {

150 char *nane;

152 if (inmplications_off || parse_error)

117 if (parse_error)

153 return;

155 if (expr->type != EXPR _PRECP)

new usr/src/tool s/ smatch/src/check_uninitialized.c

156 return;

157 if (is_inpossible_path())

158 return,

159 if (is_initialized(expr->unop))

160 return;

162 nane = expr_to_str(expr->unop);

163 smerror("potentially dereferencing uninitialized %’ .",
164 free_string(nane);

166 set _state_expr(ny_id, expr->unop, & nitialized);
167 }

169 static void match_condition(struct expression *expr)

170 {

171 char *nane;

173 if (inmplications_off || parse_error)

138 if (parse_error)

174 return;

176 if (is_inpossible_path())

177 return;

179 if (is_initialized(expr))

180 return;

182 nane = expr_to_str(expr);

183 smerror("potentially using uninitialized "%’ .", nanme);
184 free_string(nane);

186 set_state_expr(ny_id, expr, & nitialized);

187 }

____unchanged_portion_onitted_

299 static void match_synbol (struct expression *expr)

300 {

301 char *nane;

303 if (inplications_off || parse_error)

268 if (parse_error)

304 return;

306 if (is_inpossible_path())

307 return;

309 if (is_initialized(expr))

310 return;

312 if (is_being_nodified(expr))

313 return;

315 nane = expr_to_str(expr);

316 smerror("uninitialized synmbol "%’ .", nane);
317 free_string(nane);

319 set_state_expr(ny_id, expr, & nitialized);
320 }

____unchanged_portion_onitted_

383 void check_uninitialized(int id)

384 {

385 ny_id =id;

387 add_hook(&rat ch_decl ar ati ons, DECLARATI ON_HOCK) ;
388 add_extra_nod_hook(&xt ra_nod_hook) ;

nane) ;

new usr/src/tool s/smatch/src/check_uninitialized.c

389 add_hook(&vat ch_assi gn, ASSI GNMVENT_HOCK) ;

390 add_hook(&rat ch_negat i ve_conpari son, CONDI TI ON_HOOK) ;
391 add_unt racked_par am hook(&vat ch_unt r acked) ;

392 add_pre_nerge_hook(ny_id, &pre_nerge_hook);

394 add_hook(&rat ch_der ef erences, DEREF_HOOK) ;

395 add_hook(&vat ch_condi ti on, CONDI TI ON_HOCK) ;

396 add_hook(&mat ch_cal |, FUNCTI ON_CALL_HOCK) ;

397 add_hook(&mat ch_cal | _struct_nmenbers, FUNCTI ON_CALL_HOCOK) ;
398 add_hook(&rat ch_synbol , SYM HOXK) ;

400 regi ster_ignored_params_fromfile();

401 }

____unchanged_portion_onitted_

new usr/src/tool s/smatch/src/check_unwi nd. c 1

R R R R

6905 Mon Aug 5 08:38:10 2019

new usr/src/tool s/smatch/src/check_unw nd. c
11506 snatch resync

R R R R

__unchanged_portion_onitted_

184 void check_unw nd(int id)

185 {

186
187
188

190

192
193
194
195

197
197
198
199
200

202
202
203
204

206
206
207
208
209

211
211
212
213
214

216
217
218
219

221
222
223
224

226
227
228
229

231

232 }
__unchanged_portion_onitted_

if (option_project != PRQJ_KERNEL || !option_spammy)
return;
ny_id =id;

regi ster_unw nd_functions();

return_inplies_state("request_resource", 0, 0, & equest_granted, |NT_PTR
return_inplies_state("request_resource", -EBUSY, -EBUSY, & equest_denied
add_function_hook("rel ease_resource", &match_release, |NT_PTR(0));

rel ease_function_indicator("rel ease_resource");

return_inplies_state_sval ("__request regi on", valid_ptr_min_sval, valid_
return_inplies_state("__request _region", valid_ptr_mn, “valid ptr max, &
return_inplies_state("__request_region", 0, 0, & equest_denied, |NT PTR(
add_function_hook("__rel ease_regi on", &mat ch_rel ease, | NT_PTR(1))

rel ease_function_indicator("__rel ease_region");

return_inplies_state_sval ("ioremap”, valid_ptr_nin_sval, valid_ptr_max_s
return_inplies_state("ior emap", valid_ptr_mn, valid_ptr_nax, & equest_g
return_inplies_state("ioremap", 0, O, &request deni ed, |NT PTR(1));
add_function_hook("i ounnmap", &mat ch rel ease, |INT_PTR(0));

return_inplies_state sval(pci ion’ap , valid_ptr_min_sval, valid_ptr_max
return |rrp||es “state(" pci |omap valid_ptr_mn, valid_ptr_max, & equest
return_inplies_state("pci _iomap", 0, 0, &request_denied, |NT PTR(1));
add_f uncti on_hook("pci _i ounmap", " amat ch_rel ease, | NT_PTR(1)),

rel ease_function_i ndi cator ("pci _i ounnap");

return_inplies_stat e_sval ("__create_workqueue_key", valid_ptr_m n_sval,

return_inplies_state("__create_workqueue_key", valid_ptr_mn, valid_ptr_
INT_PTR(-1));

return_inplies_stat e("__create_workqueue_key", 0, 0, & equest_denied, IN

add_f uncti on_hook("destroy_workqueue", &match_rel ease, |INT_PTR(0));

return_inplies_state("request_irq", 0, 0, & equest_granted, |NT_PTR(0));
return_inplies_state("request_irq", -MAX_ERRNO, -1, &request_denied, |NT
add_function_hook("free_irq", &mat ch rel ease, INT_PTR(0));

rel ease_function_indicator("free_irq");

return_inplies_state("register_netdev", 0, 0, & equest_granted, |NT_PTR(
return_inplies_state("register_netdev", -MAX_ERRNO, -1, & equest_denied,
add_function_hook("unregister_netdev", &match_release, |INT_PTR(0));

rel ease_function_i ndi cator ("unregister_netdev");

return_inplies_state("m sc_register”, 0, 0, & equest_granted, |NT_PTR(0)
return_inplies_state("m sc_register”, -MAX_ERRNO, -1, &request_denied, |
add_functi on_hook("m sc_deregi ster", &mtch_rel ease, |NT_PTR(0));

rel ease_function_indicator("nmisc_deregister™);

add_hook(&mrat ch_return, RETURN_HOXK) ;

new usr/src/tool s/ smatch/src/check_wi ne_WoA. c 1

R R R R

1976 Mon Aug 5 08:38:10 2019
new usr/src/tool s/ smatch/src/check_wi ne_WoA. ¢
11506 snatch resync

R R R R

2 * Copyright (C 2009 Dan Carpenter.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any |later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of
11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
12 * GNU General Public License for nore details.

13 =
14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt
16 */
18 /*
19 * |dea from M chael Stefaniuc and Vincent B 'ron’s earlier WOoA
19 * |dea from M chael Stefaniuc and Vincent B@ron's earlier WOoA
20 * check.
21 *
22 * Apparently when you are coding WNE, you are not allowed to call
23 * functions that end in capital A fromfunctions that end in
24 * capital 'W
*
25 .

/

28 #include "smatch. h"
30 static int ny_id;

32 static int in_w=0;

34 static void nmatch_function_def(struct synbol *symn)
{

35

36 char *func = get_function();
37 int |en;

39 if (!func) {

40 inw=0;

41 return;

42 1

43 len = strlen(func);

44 if (func[len - 1] == "W && len > 2 & func[len - 2] !="A)
45 in_w=1;

46 el se

47 in_w=0;

48

__unchanged_portion_omtted_

new usr/src/tool s/ smatch/src/check_zero_to_err_ptr.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
4250 Mon Aug 5 08:38:11 2019

new usr/src/tool s/smatch/src/check_zero_to_err_ptr.c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

77 static int is_non_zero_int(struct range_list *rl)

78 {

79 struct data_range *tnp;

80 int cnt = -1;

82 FOR_EACH_PTR(rl, tmp) {

83 cnt ++;

85 if (cnt == 0) {

86 if (tmp->min.value == INT_MN &&
87 t np- >nmax. val ue == -1)

88 conti nue;

89 } elseif (cnt == 1) {

90 if (tmp->min.value == 1 &&

91 t np- >max. val ue == | NT_MAX)
92 return 1;

93 }

94 return 0O,

95 } END_FOR_EACH PTR(tnp);

96 return O;

97 }

99 static int is_valid_ptr(sval _t sval)

100

101 if (sval.value == INT_M N || sval.value == | NT_MAX)
79 if (sval.type == & nt_ctype &&

80 (sval .value == INT_M N || sval.value == | NT_MAX))
102 return O;

104 if (sval _cnp(valid_ptr_mn_sval, sval) <= 0 &&
105 sval _crp(valid_ptr_max_sval, sval) >= 0) {
84 sval _cnp(valid_ptr_max_sval, sval) >= 0)
106 return 1;

107 }

108 return O;

109 }

111 static int has_distinct_zero(struct range_list *rl)

113 struct data_range *tnp;

115 FOR_EACH_PTR(rl, tnp) {

116 if (tnp->min.value == 0 || tnp->nax.val ue == 0)
117 return 1;

118 } END_FOR _EACH_PTR(t np);

119 return O;

120 }

122 static void match_err_ptr(const char *fn, struct expression *expr,
123 {

124 struct expression *arg_expr;

125 struct smstate *sm *tnp;

93 sval _t sval;

127 if (is_inpossible_path())

128 return;

130 arg_expr = get_argunent _from cal |l _expr(expr->args, 0);

131 sm = get_sm state_expr (SMATCH EXTRA, arg_expr);

voi d *data)

new usr/src/tool s/smatch/src/check_zero_to_err_ptr.c

132 if (!sm

133 return;

135 if (is_conparison_call (expr))

136 return;

138 if (next_li ne_checks_l S ERR(expr, arg_expr))

139 return;

140 if (strcnp(fn "ERR PTR') == 0 &&

141 next _line_is_if(arg_expr))

142 return;

144 FOR_EACH_PTR(sm >possi bl e, tnp)

145 if (lestate_rl (tnp->state))

146 cont i nue;

147 if (is_non_zero_int(estate_rl(tnp->state)))
148 conti nue;

149 if (has_distinct zero(estate rl(tm- >state))) {
150 sm war ni ng("passing zero to '%’", fn);
151 return;

152 }

153 1f (stremp(fn, "PTR ERR') = 0)

154 conti nue;

155 if (is_valid ptr(estate mn(tnp->state)) &&
156 is_valid ptr(estate max(tnp->state)))

157 sm war ni ng("passing a valid pointer to
158 return;

159 }

117 if (!rl_to_sval (estate_rl(tnp->state), &sval))
118 conti nue;

119 if (sval.value != 0)

120 cont i nue;

121 sm war ni ng("passing zero to '%’", fn);

122 return;

160 } END_FOR EACH PTR(tnp);

161 }

__unchanged_portion_onitted_

o

fn);

new usr/src/tool s/ smatch/src/eval uate.c 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
92239 Mon Aug 5 08:38:11 2019

new usr/src/tool s/smatch/src/eval uate.c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

1949 struct synbol *find_identifier(struct ident *ident, struct synbol _list *_list, i
1949 static struct synmbol *find_identifier(struct ident *ident, struct synbol _list *_

1950 {

1951 struct ptr_list *head = (struct ptr_list *)_list;

1952 struct ptr_list *list = head;

1954 if (!head)

1955 return NULL;

1956 do {

1957 int i;

1958 for (i =0; i < list->nr; i++)

1959 struct synbol *sym = (struct symbol *) list->list[i];
1960 if (sym>ident) {

1961 if (sym>ident != ident)

1962 conti nue;

1963 *of fset = sym >of f set;

1964 return sym

1965 } else {

1966 struct synbol *ctype = sym >ctype. base_type;
1967 struct synbol *sub;

1968 if (!ctype)

1969 conti nue;

1970 if (ctype->type != SYM UNION && ctype->type != S
1971 conti nue;

1972 sub = find_identifier(ident, ctype->synbol _list,
1973 if (!sub)

1974 conti nue;

1975 *of fset += sym >of f set;

1976 return sub;

1977 }

1978 }

1979 } while ((list = 1list->next) != head);

1980 return NULL;

1981 }

__unchanged_portion_omtted_

new

* ok kK

new

usr/src/tool s/ smatch/ src/ expression. h 1

B R

8448 Mon Aug 5 08:38:11 2019
usr/src/tool s/ smat ch/ src/ expression. h

11506 snatch resync

* ok kK

B R R R R

__unchanged_portion_onitted_

247
248
249
250
251
252

254
255
256
257
258
259

261
262

/* Constant expression values */

int is_zero_constant(struct expression *);

int expr_truth_val ue(struct expression *expr);

I ong |1 ong get_expression_val ue(struct expression *);

| ong 1 ong const_expression_val ue(struct expression *);

| ong 1 ong get_expression_val ue_silent(struct expression *expr);

/* Expression parsing */

struct token *parse_expression(struct token *token, struct expression **tree);
struct token *conditional _expression(struct token *token, struct expression **tr
struct token *primary_expression(struct token *token, struct expression **tree);

struct token *parens_expression(struct token *token, struct expression **expr, c
struct token *assignnment _expression(struct token *token, struct expression **tre
extern void eval uate_synbol _list(struct synbol _Iist *list);

extern struct synbol *eval uate_statenent(struct statenment *stnt);

263 extern struct synbol *eval uate_expression(struct expression *);

264 struct synmbol *find_identifier(struct ident *ident, struct symbol _list *_list, i
266 extern int expand_synbol (struct synbol *);

268 static inline struct expression *alloc_expression(struct position pos, int type)
269 {

270 struct expression *expr = __alloc_expression(0);

271 expr->type = type;

272 expr->pos = pos,;

273 expr->flags = CEF_NONE;

274 return expr;

275

}
__unchanged_portion_onitted_

new

* ok kK

new
1150
* ok kK
1
1

usr/src/tool s/ smat ch/ src/ graph. ¢

B R

5766 Mon Aug 5 08:38:11 2019
usr/src/tool s/ smat ch/ src/ graph. ¢

6 smatch resync
LR R R R R RS SR EEEEEEEEEEE SRR EEEEEEEEEEEEREREEEREEEEEEEEERSES
/* Copyri ght International Business Machines Corp., 2006
/* Copyri ght I nternational Business Machines Corp., 2006
Adel ard LLP, 2007
Aut hor: Josh Triplett <josh@reedesktop.org>
Dan Sheridan <dj s@del ard. con»
Perm ssion is hereby granted, free of charge, to any person obtaining a copy
of this software and associ ated docunentation files (the "Software"), to deal
in the Software without restriction, including without limtation the rights

furnished to do so, subject to the follow ng conditions:

all copies or substantial portions of the Software.

* Ok ok R F Rk ok O R b ok b 3k F k % ok Xk b %

/THE SOFTWARE.

*

#i ncl ude <stdarg. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude <ctype. h>
#i ncl ude <uni std. h>
#i nclude <fcntl. h>

#i nclude "lib.h"

#i nclude "all ocate. h"
#i ncl ude "token.h"

#i ncl ude "parse.h"

#i ncl ude "synbol . h"

#i ncl ude "expression. h"
#include "linearize.h"

/* Draw t he subgraph for a given entrypoint. Includes details of
* and stores for globals, and marks return bbs */
static void graph_ep(struct entrypoint *ep)

struct basic_bl ock *bb;
struct instruction *insn;

const char *fname, *snang;

fnane = show_i dent (ep->nane- >i dent) ;
snane = stream nane(ep->entry->bb->pos. strean);

printf("subgraph cluster% {\n"
" col or =bl ue; \ n"

to use, copy, nodify, nerge, publish, distribute, sublicense, and/or sell
copies of the Software, and to pernmit persons to whomthe Software is

The above copyright notice and this permnission notice shall be included in

THE SOFTWARE IS PROVIDED "AS |1 S", WTHOUT WARRANTY OF ANY KI ND, EXPRESS OR

I MPLI ED, | NCLUDI NG BUT NOT LIM TED TO THE WARRANTI ES OF MERCHANTABI LI TY,

FI TNESS FOR A PARTI CULAR PURPOSE AND NONI NFRI NGEMENT. | N NO EVENT SHALL THE
AUTHORS OR COPYRI GHT HOLDERS BE LI ABLE FOR ANY CLAIM DAMAGES OR OTHER

LI ABILITY, WHETHER I N AN ACTI ON OF CONTRACT, TORT OR OTHERW SE, ARI SI NG FROM
OUT OF OR I N CONNECTION W TH THE SOFTWARE OR THE USE OR OTHER DEALI NGS I N

| oads

" | abel =<<TABLE BORDER=\"0\" CELLBORDER=\"O0\">\n"

" <TR><TD>%s</ TD></ TR>\ n"

<TR><TD>%s () </ FONT></ TD></ T

" </ TABLE>>; \ n”
" files\"os\";\n"

new usr/src/tool s/ smatch/src/graph.c 2

61
62
63

104
105
106
107
108
109

111

112 }
__unchanged_portion_onitted_

fun=\"os\";\n"
ep=bb%p;\ n",
ep, snane, fnane, snane, fnane, ep->entry->bb);

FOR_EACH_PTR(ep- >bbs, bb

) |
struct basic_bl ock *child;
int ret =0;
const char * s =", Is=\"[";

/* Node for the bb */
printf(" bb%p [shape=el | i pse, | abel =%, | i ne=%l, col =%",
bb, bb->pos.line, bb->pos.line, bb->pos.pos);

/* List loads and stores */
FOR_EACH_PTR(bb- >i nsns, insn) {
swi t ch(insn->opcode) {
case OP_STORE:
if (insn->synbol ->type == PSEUDO SYM
printf("% store(%)", s, show_ident(insn->sym
§ = " -

break;

case OP_LOAD:

if (insn->synbol->type == PSEUDO SYM {
printf("% load(%)", s, show_ident(insn->synb
§ =" "

br eak;

case OP_RET:
ret = 1;
br eak;

} END_FO}?_EACH_PTR(insn);

if (s[1] == 0)
printf("J\"");

if (ret)
printf(",op=ret");

printf("];\n");

/* Edges between bbs; |ower weight for upward edges */
FOR_EACH_PTR(bb->chi | dren, child)
printf(" bb% -> bb% [op=br, %];\n", bb, child,
(bb->pos.line > child->pos.line) ? "weight=5"
END_FOR_EACH_PTR(chi | d);

} END_FCZt}?_EACFi_PTR(bb) ;
printf("}\n");

new usr/src/tool s/smatch/src/smatch. c

R R R R

8798 Mon Aug 5 08:38:12 2019

new usr/src/tools/smatch/src/smatch. c
11506 snatch resync

R R R R

/*

* Copyright (C) 2006 Dan Carpenter.
This programis free software; you can redistribute it and/or
modi fy it under the terns of the GNU General Public License
as published by the Free Software Foundation; either i
of the License, or (at your option) any later version.

This programis distributed in the hope that it wll

MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE.
GNU General Public License for nore details.

You shoul d have received a copy of the GNU General Public License
along with this program if not, see http://wwm gnu. org/copyl eft/gpl

Copyri ght 2019 Joyent, Inc.
/

#i ncl ude <stdio. h>

#i ncl ude <uni std. h>

#i ncl ude <l i bgen. h>

#i ncl ude "smatch. h"

#i ncl ude "smatch_slist.h"
#i ncl ude "check_list.h"

char *option_debug_check = (char *)"";
char *option_project_str = (char *)"smatch generic";

static char *option_db file = (char *)"smat ch_db. sqllte ;

enum proj ect _type option_project = PRQJ_NONE;
char *bin_dir;

char *data_ dlr

int option_no_ data = 0;
int option_spamy = 0;
int option_info = 0;

int option_full_path = 0;
i nt option_param mapper = 0;
int option_cal I_tree = 0;
int option_no_db =

int option —enable = 0'
int option_ —disable = 0;

i nt option_debug_rel at ed;
int option_file_output;
int option_ting;

int option_nmem

char *option_datadir_str;
int option_fatal_checks;
int option_succeed;

int option_tineout = 60;
FI LE *smoutfd;

FI LE *sql _outfd;

FILE *cal l er_info_fd;

int smnr_errors;
int smnr_checks;

bool __silence_warnings_for_stnt;

const char *prognane;

*
*
*
*
*
*
*
* but W THOUT ANY WARRANTY; without even the inplied warranty of
*
*
*
*
*
*
*
*

Ltxt

new usr/src/tool s/smatch/src/smatch. c

61 typedef void (*reg_func) (int id);

62
63

67

178 #define OPTION(_x) do {

if (match_option((*argvp)[1], #_x))
if (match_option((*argvp)[i], #.x)) {
option_##_x = 1;

179
179
180
181
182

#define CK(_x)

{.nane = # x, .func = & x, .enabled = 0},

static struct reg_func_info {
const char
reg_func func;
int enabl ed;

} reg_funcs[] = {

) }
} while (0)

*nane;

__unchanged_portion_omtted_

{

——— ——

184 void parse_args(int *argcp, char ***argvp)
185 {

186

188
189
190

192
193

195
196

198
199

201
202

204
205

207
208

210
211

213
214
215
216

218
219
220
221
222

224
225
226
227
228

230
231
232
233

1 -

if

if

}

i< *argcp i++) {
(tstrenp((*argvp)[i], "--help"))
hel p();

('strcrrp((argvp)[i],
show_checks();

- -show checks"))
(!strnecnp((*argvp)[i], "-- project:", 10))
option_project_ str = (*argvp)[i] + 10;

(!'strncnp((*argvp)[i], "-p=", 3))
option_project_str = (*argvp)[i] + 3;

(!strncnp((*argvp)[i], "--db-file=", 10))
option_db_file = (*argvp)[i] + 10;
(!strncmp((*argvp)[i "--data=", 7))

1.
option_datadir_str = (*argvp)[I] + 7;
(!strncmp((*argvp)[i], '——debug— 8))

opti on_debug_ check = (* argvp)[l] + 8;

(strncp((*argvp)[i], "--trace=", 8) == 0)
trace_variable = (*argvp)[i] + 8;
(strncnmp((*argvp)[i], "--enable=", 9) ==
enabl e_di sabl e checks((argvp)[1] + 9, 1);

option_enable = 1,

(strncnp((*argvp)[i], "--disable=", 10) == 0) {
enabl e_di sabl e checks((argvp)[i] + 10, 0);
option_enable = 1;
option_disable = 1;

(!strncmp((*argvp)[i], "--timeout=", 10)) {
if (sscanf((*argvp)[i] + 10, "%",
&option_tinmeout) != 1)

smfatal ("invalid option %", (*argvp)[i]);

OPTI ON(f at al _checks);
OPTI ON(spamy) ;

OPTI ON(i nf o) ;

OPTI O\(debug) ;

new usr/src/tool s/smatch/src/smatch. c

234
235
234
235
236
237
238
239
240
241
242
243
244
245

247
248

250
251
252
253
254
255
256
257
258 }

OPTI ON(debug_i npl i ed);
OPTI ON(debug_rel at ed) ;
OPTI ON(assune_| oops) ;
OPTI ON(no_dat a) ;

OPTI ON(t wo_passes) ;
OPTI ON(ful | _path);
OPTI ON(par am_napper) ;
OPTI ON(cal | _tree);
OPTI ON(fil e_output);

OPTI ON(tine);
OPTI ON(men) ;
OPTI ON(no_db) ;
OPTI ON(succeed) ;

}

if (strcnp(option_project_str, "smatch_generic") != 0)
option_project = PROJ_UNKNOW,

if (strcnp(option_project_str, "kernel") == 0)
option_project = PRQJ_KERNEL;

else if (strcnp(option_project_str, "wine") == 0)
option_project = PRQAJI_W NE;

else if (strcnp(option_project_str, "illums_kernel") == 0)
option_project = PRQJ_TLLUMOS_KERNEL;

else if (strcnp(option_project_str, "illunmps_user") == 0)

option_project = PROJ_ILLUMOS_USER

__unchanged_portion_onitted_

321 int nmain(int argc, char **argv)

322 {
323
324
325

327
328
329

331
333

335
336

338
339

341
342

344
345
346
347
348
349

351
352
353
354
355
356
357

struct string_list *filelist = NULL;
int i;
reg_func func;

smoutfd = stdout;
sql _outfd = stdout;
caller_info_fd = stdout;

prognanme = argv[O0];
parse_args(&argc, &argv);

if (argc < 2)
hel p();

/* this gets set back to zero when we parse the first function */
final _pass = 1,

bin_dir = get_bin_dir(argv[0]);
data_dir = get_data_dir(argv[0]);

al | ocat e_hook_nenory();

al | ocat e_dynam c_st at es_array(num checks);
create_function_hook_hash();

open_smat ch_db(option_db_file);
sparse_initialize(argc, argv, &ilelist);
alloc_valid_ptr_rl();

for (i =1, i < ARRAY_SI ZE(reg_funcs); i++) {
func = reg_funcs[i].func;
/* The script IDs start at 1.
0 is used for internal stuff. */
if (loption_enable || reg_funcs[i].enabled == 1 |
(option_disable & reg_funcs[i].enabled != -1) ||
strncnp(reg_funcs[i].nane, "register_", 9) == 0)

new usr/src/tool s/smatch/src/smatch. c
358 func(i);
359 1
361 smatch(filelist);

358 smatch(argc, argv);

362 free_string(data_dir);

364 if (option_succeed)

365 return O;

366 if (smnr_errors > 0)

367 return 1;

368 if (smnr_checks > 0 & option_fatal _checks)
369 return 1,

370 return O;

371 }

__unchanged_portion_onitted_

new usr/src/tool s/smatch/src/smatch. h

R R R R

47415 Mon Aug 5 08:38:12 2019
new usr/src/tool s/smatch/src/smatch. h
11506 snatch resync
IR E SR SR RS RS E SRR R R SRR R R SRR R R R RS EEREREEREEREEEEEEEERSE]
__unchanged_portion_onitted_
" 72 DECLARE_ALLOCATOR(tracker);
73 DECLARE_PTR LI ST(tracker_ Ilst struct tracker);
74 DECLARE_PTR LI ST(stree_stack, struct stree);

76 /* The first 3 struct menbers nust match struct tracker */
77 struct smstate {

78 const char *nane;

79 struct synbol *sym

80 unsi gned short owner;

81 unsi gned short nerged: 1;

82 unsi gned short skip_inplications:1;
83 unsi gned int nr_children;

82 unsigned int line;

83 struct smatch_state *state;
84 struct stree *pool;

85 struct smstate *left;

86 struct smstate*rlght

87 struct state_list *possible;
88 };

__unchanged_portion_omitted
101 DECLARE_PTR_LI ST(constraint_list, struct constraint);

103 struct bit_info {
104 unsi gned | ong | ong set;

105 unsi gned | ong | ong possi bl e;
106 };

108 enum hook type {

109 R_HOCK,

110 STMT_HCX}(,

111 STMI_HOOK_AFTER,

112 SYM_HOCK,

113 STRI NG_HOCXK,

114 DECLARATI ON_HOCK,

115 ASS| GNVENT_HOOK,

116 ASS| GNVENT_HOOK_AFTER,
117 RAW ASS| GNVENT_HOCK,
118 GLCBAL_ASSI GNMVENT_HOCK,
119 LOG C_HOCK,

120 CONDI TI ON_HOCK,

121 PRELOOP_HOCK,

122 SELECT_HOCK,

123 WHOLE_CONDI Tl ON_HOCK,
124 FUNCTI ON_CALL_HOOK_BEFORE,
125 FUNCTI ON_CALL_HOCK,

126 CALL_HOOK_AFTER_I NLI NE,
127 FUNCTI ON_CALL_HOOK_AFTER_DB,
128 CALL_ASSI GNVENT_HOOK,
129 MACRO_ASSI GNVENT_HOOK,
130 Bl NOP_HOCK,

131 OP_HOCK,

132 DEREF_HOOK,

133 CASE_HOOK,

134 ASM_HOOK,

135 CAST_HOCK,

136 Sl ZECOF_HOK,

137 BASE_HOCK,

138 FUNC_DEF_HOCOK,

139 AFTER_DEF_HOCK,

140 END_FUNC_HOCOK,

new usr/src/tool s/smatch/src/smatch. h

141 AFTER_FUNC_HOCK,
142 RETURN_HOCK,

143 I NLI NE_FN_START,
144 I NLI NE_FN_END,
145 END_FI LE_HOOK,
146 NUM_HOOKS,

147 };

149 #define TRUE 1
150 #define FALSE 0

152 struct range_list;

154 voi d add_hook(void *func, enum hook_type type);

155 typedef struct smatch_state *(merge_func_t)(struct smatch_state *sl1l, struct smat

156 typedef struct smatch_state *(unmatched_func_t)(struct smstate *state);

157 void add_nerge_hook(int client_id, nerge_func_t *func);

158 voi d add_unmat ched_state_hook(int client_id, unmatched_func_t *func);

159 void add_pre_nerge_hook(int client_id, void (*hook)(struct smstate *sn));

160 typedef void (scope_hook)(void *data);

161 voi d add_scope_hook(scope_hook *hook, void *data);

162 typedef void (func_hook)(const char *fn, struct expression *expr, void *data);
163 typedef void (inplication_hook)(const char *fn, struct expression *call _expr,

164 struct expression *assign_expr, void *data);
165 typedef void (return_inplies_hook)(struct expression *call _expr,
166 int param char *key, char *val ue);

167 typedef int (inplied_return_hook)(struct expression *call_expr, void *info, stru

168 voi d add_function_hook(const char *1ook_for, func_hook *cal l back, voi d *data);

170 void add_function_assi gn_hook(const char *|ook_for, func_hook *cal |l _back,

171 void *info);

172 voi d add_i nplied_return_hook(const char *I ook for,

173 inplied_return_ hook *cal | _back,

174 void *info);

175 voi d add_macro_assi gn_hook(const char *I ook _for, func_hook *call _back,

176 void *info);

177 voi d add_macro_assi gn_hook_extra(const char *1 ook _for, func_hook *call _back,
178 voi d *info);

179 void return_inplies_stat e(const char *I ook for, long long start, long |long end,
180 i nplication_hook *cal i back, void *info);

181 void return_inplies_state_sval (const “char *look_for, sval t start, sval _t end,
182 inmplication_hook *call back void *info);

183 void sel ect_return_states_hook(int type, return_inplies_hook *call back);
184 void select _return_states_before(void (*fn)(void));

185 void select _return_states_after(void (*fn)(void));

186 int get inplied_return(struct expression *expr, struct range_list **rl);
187 void al |l ocate_hook_menory(void);

189 struct nodification_data {

190 struct smatch_state *prev;
191 struct expression *cur;
192 };

194 typedef void (nodification_hook)(struct smstate *sm struct expression *nod_exp

195 voi d add_nodi ficati on_hook(int owner, nodification_hook *call_back);
196 void add_nodification_hook_| ate(int owner, nodification_hook *call _back);
197 struct smatch_state *get_nodification_state(struct expression *expr);

199 int outside_of_function(void);

200 const char *get_fil ename(void);

201 const char *get_base_file(void);
202 char *get_function(void);

203 int get_lineno(void);

204 extern int final_pass;

205 extern struct symbol *cur_func_sym
206 extern int option_debug;

new usr/src/tool s/smatch/src/smatch. h

207 extern int |ocal _debug;

208 extern int option_info;

209 extern int option_spamy;

210 extern int option_tinmeout;

211 extern char *trace_vari abl e;

212 extern struct stree *gl obal _states;
213 int is_skipped_function(void);

214 int is_silenced_function(void);

215 extern bool inplications_off;

217 /* smatch_inpossible.c */
218 int is_inpossible_path(void);
219 voi d set_path_i npossi bl e(voi d);

221 extern FILE *smoutfd;

222 extern FILE *sql _outfd;

223 extern FILE *calTer_info_fd;
224 extern int smnr_checks;
225 extern int smnr_errors;
226 extern const char *prognang;

228 | *

229 * How to use these routines:

230 *

231 * smfatal(): an internal error of sone kind that should inmmediately exit
232 * smierror(): an internal error

233 * smperror(): an internal error from parsing input source

234 * smerror(): an error frominput source

235 * smwarning(): a warning frominput source

236 * sm.info(): info nessage (from option_info)

237 * smdebug(): debug nessage

238 * smnsg(): other nessage (please avoid using this)

239 */

241 #define smprintf(msg...) do { if (final_pass || option_debug || |ocal_debug) fp
243 static inline void smprefix(void)

244 {

245 smprintf("%: %:% %() ", prognanme, get_filename(), get_lineno(),
246 }

______unchanged_portion_onitted
330 #define ALTGN(x, a) (((x) * (a) - 1) & ~((a) - 1))

341 struct smatch_state *__get_state(int owner, const char *name, struct synbol

342 struct smatch_state *get_state(int owner, const char *name, struct symbol *sym;

343 struct smatch_state *get_state_expr(int owner, struct expression *expr);
344 struct state_list *get_possible_states(int owner, const char *nane,
345 struct synbol *sym);

346 struct state_list *get_possible_states_expr(int owner, struct expression *expr);

347 struct smstate *set_state(int owner, const char *nane, struct synbol *sym

348 struct smatch_state *state);
349 struct smstate *set_state_expr(int owner, struct expression *expr,
350 struct smatch_state *state);

351 void del ete_state(int owner, const char *nane, struct synbol *sym;

352 void del ete_state_expr(int owner, struct expression *expr);

353 void __delete_all_states_syn{struct synbol *sym;

354 void set_true_fal se_states(int owner, const char *nane, struct synbol *sym

355 struct smatch_state *true_state,

356 struct smatch_state *fal se_state);

357 void set_true_fal se_states_expr(int owner, struct expression *expr,
358 struct smatch state *true_state,

359 struct smatch_state *fal se state)

361 struct stree *get_all _states_fromstree(int owner, struct stree *source);
362 struct stree *get_all _states stree(int id);
363 struct stree *__get_cur_stree(void);

new usr/src/tool s/smatch/src/smatch. h

364 int is_reachabl e(void);
365 void add_get _state hook(v0| d (*fn)(int owner, const char *nane, struct synbol

367 /* smatch_hel per.c */

368 DECLARE_PTR LI ST(int_stack, int);

369 char *alloc_string(const char *str);

370 void free_string(char *str);

371 void append(char *dest, const char *data, int buff_len);
372 void renove_parens(char *str);

373 struct smatch_state *all oc_state_nun(int num;

374 struct smatch_state *all oc_state_str(const char *namne) ;

375 struct smatch_state *nerge_str_state(struct smatch_state *sl, struct smatch_stat

376 struct smatch_state *al |l oc_state_expr(struct expression *expr);
377 struct expression *get_argunent _fromcall _expr(struct expression_list *args,
378 int num;

380 char *expr_to_var(struct expression *expr);

381 struct symbol *expr_to_syn{struct expression *expr);
382 char *expr_to_str(struct expression *expr);

383 char *expr_to_str_syn(struct expression *expr,

384 struct synbol **symptr);
385 char *expr_to_var_syn(struct expression *expr,
386 struct synmbol **symptr);

387 char *expr_to_known_chunk_syn{struct expression *expr, struct synbol **sym;

388 char *expr_to_chunk_symvsl (struct expression *expr, struct synmbol **sym struct

389 int get_conplication_score(struct expression *expr);

391 int symnanme_i s(const char *nane, struct expression *expr);
392 int get_const_val ue(struct expression *expr, sval_t *sval);
393 int get_val ue(struct expression *expr, sval_t *val);

394 int get_inplied_ val ue(struct expression *expr, sval _t *val);
395 int get_inplied_min(struct expression *expr, sval _t *sval);
396 int get_inplied_max(struct expression *expr, sval_t *val);

i
i
i
i
i
i
397 int get_hard_max(struct expression *expr, sval _t *sval);
i
i
i
i
i
i
i

398 int get_fuzzy min(struct expression *expr, sval _t *min);

399 int get_fuzzy max(struct expression *expr, sval _t *max);

400 int get_absol ute_m n(struct expression *expr, sval _t *sval);

401 int get_absol ute_max(struct expression *expr, sval _t *sval);

402 int parse_call_math(struct expression *expr, char *math, sval _t *val);

403 int parse_call_math_rl (struct expression *call, const char *math, struct range
396 int parse_call _math_rl(struct expression *call, char *math, struct range_li st

404 char *get_val ue_i n_terns_of _paraneter_mat h(struct expression *expr);

405 char *get _val ue_i n_terns_of _paranet er_mat h_var_sym(const char *var, struct synbo

406 int is_zero(struct expression *expr);

407 int known_condition_true(struct expression *expr);

408 int known_condition_fal se(struct expression *expr);

409 int inplied_condition_true(struct expression *expr);

410 int inplied_condition_false(struct expression *expr);

411 int can_integer_overflow struct synbol *type, struct expression *expr);
412 void clear_math_cache(void);

414 int is_array(struct expression *expr);

415 struct expression *get_array_base(struct expression *expr);

416 struct expression *get_array_of fset(struct expression *expr);

417 const char *show_state(struct smatch_state *state);

418 struct statenent *get_expression_statenment(struct expression *expr);
419 struct expression *strip_parens(struct expression *expr);

420 struct expression *strip_expr(struct expression *expr);

421 struct expression *strip_expr_set_parent(struct expression *expr);
422 void scoped_state(int ny_id, const char *name, struct synbol *sym;
423 int is_error_return(struct expression *expr);

424 int getting_address(void);

425 int get struct _and manber(struct expression *expr, const char **type, const char

426 char *get _nmenber _name(struct expression *expr);
427 char *get _fnptr_nanme(struct expression *expr);
428 int cnp_pos(struct position posl, struct position pos2);

new usr/src/tool s/smatch/src/smatch. h 5

429
430
431
432
433

434 i
435 i

436
437

438 i
439 |

440
441
442

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

461 i
462 i

463
464

465 i
466 i

467
468
469
470
471
472
473
474

476
477
478
479
480

482
483
484
485
486
487
488
489
490
491
492
493
494

int positions_eq(struct position posi,
struct statenent *get _current _statenent (void);

struct statement *get_prev_statenent(void);

struct expression *get_|ast_expr_from expression_stnt(struct expression *expr);
int get_param num fromsyn{struct synbol *sym;

int get_param nun(struct expression *expr);
int ms_since(struct timeval *start);

int parent_i s_gone_var_syn{const char *nane,
int parent_is_gone(struct expression *expr);
i

i

i

struct position pos2);

struct synbol *sym;
nt 1nvert_op(int op);

nt op_renove_assign(int op);

int expr_equiv(struct expression *one,
voi d push_int(struct int_stack **stack,
int pop_int(struct int_stack **stack);

struct expression *two);
int nunm;

/* smatch_type.c */

struct synbol *get_real _base_type(struct synbol
int type_bytes(struct symbol *type);

int array_bytes(struct synbol *type);

struct synbol *get_pointer_type(struct expression *expr);

struct synbol *get_type(struct expression *expr);

struct symbol *get_final _type(struct expression *expr);

struct synmbol *get_pronoted_type(struct synbol *left, struct synbol
int type_signed(struct synbol *base_type);

i nt expr_unsi gned(struct expression *expr);

i nt expr_signed(struct expression *expr);

int returns_unsigned(struct synbol *base_type);

int is_pointer(struct expression *expr);

int returns_pointer(struct synbol *base_type);

sval _t sval _type_max(struct synbol *base_type);

sval _t sval _type_nmin(struct synbol *base_type);

int nr_bits(struct expression *expr);

int is_void_pointer(struct expression *expr);
int is_char_pointer(struct expression *expr);
int is_string(struct expression *expr);
i
i
i

*sym;

*right);

int is_static(struct expression *expr);

nt is_local _variabl e(struct expression *expr);
nt types_equi v(struct synbol
int fn_static(void);

const char *global _static();
struct synmbol *cur_func_return_type(void);

struct synbol *get_arg_type(struct expression *fn, int arg);
struct symbol *get_nenber_type_fromkey(struct expression *expr,
struct synbol *get_arg_type_fromkey(struct expression *fn, int
int is_struct(struct expression *expr);

*one, struct synbol *two);

const char *key
param struct ex

char *type_to_str(struct synmbol *type);

/* smatch_ignore.c */

voi d add_i gnore(int owner, const char *name, struct synbol *sym;
int is_ignored(int owner, const char *nane, struct synbol *synm);

voi d add_i gnore_expr (i nt owner,
int is_ignored_expr(int owner,

struct expression *expr);
struct expression *expr);

/* smatch_var_sym */
struct var_sym *al | oc_var_syn{const char
struct var_symlist *expr_to_vsl (struct

*var, struct synmbol
expression *expr);

*sym;

void add_var_syn(struct var_symlist **list, const char *var, struct synbol *sym
voi d add_var_sym expr(struct var_symlist **|ist, struct expression *expr);

voi d del _var_syn(struct var_symlist **list, const char *var, struct synbol *sym
int in_var_symlist(struct var_symlist *list, const char *var, struct synmbol *s

struct var_symlist *clone_var_symlist(struct var_symlist *fromuvsl);

void nmerge_var_symlist(struct var_symlist **dest, struct var_symlist *src);
struct var_sym|list *conbine_var_symlists(struct var_symlist *one, struct var_
int var_symlists_equiv(struct var_symlist *one, struct var_symlist *two);
void free_var_symlist(struct var_symlist **list);
void free_var_syns_and_list(struct var_symlist **list);

new usr/src/tool s/smatch/src/smatch. h

496
497
498
499
500
501
502
503
504
505
506

508
509

511

513
514
515
516
517
509
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

549
550
551

553
554

556
557
558
559

/* smatch_tracker */

struct tracker *alloc_tracker(int owner, const char

voi d add_tracker(struct tracker_list **list,
struct synmbol *sym;

voi d add_tracker_expr(struct tracker_list **|ist,

voi d del _tracker(struct tracker_list **list, int
struct symbol *synj;

int in_tracker_list(struct tracker list *list, int
struct symbol *sym;

void free_tracker_list(struct tracker_l i st

void free_trackers_and_list(struct tracker

*nane,
int owner,

int owner,
owner, const
owner, const

**|ist);
_list **list);

/* smatch_conditions */
int in_condition(void);

/* smatch_flow c */

extern int
extern int

_in_fake_assign;
_in_fake_paraneter_assign;

extern int __in_fake_struct_assign;

extern int in_fake_env;

void smatch (struct stri ng_list *filelist);
void smatch (int argc, char **argv);

i nt inside_|l oop(void);

int definitely_inside_|l oop(void);

struct expression *get_sw tch_expr(void);

int in_expression_statenent(void);

void __process_post _op_stack(void);

void __split_expr(struct expression *expr);
void __split_label _stnt(struct statement *stnt);
void __split_stnt(struct statenment *stnt);
extern int i n_function_def;
extern |nt opti on_assurme Ioops
extern int option_two_passes;
extern int option_no_db;
extern int option_fi Te_out put ;
extern int option_tine;

extern struct expression_list
extern struct expression_list *big_condition_stack;
extern struct statenent_list *big_statenent_stack;
int is_assigned_call(struct expression *expr);

int inlinable(struct expression *expr);

extern int inline_call;

extern struct expression *__inline_fn;

extern int __in_pre_condition;

extern int bai| _on_rest_of functi on;

extern struct statement *_ prev_stnt;

extern struct statement *__cur_stnt;

extern struct statement *__next_stnt;

void init_fake_env(void);

voi d end_fake_env(void);

int tinme_parsing_function(void);

bool taking_too_Il ong(void);

*bi g_expr essi on_st ack;

/* smatch_struct _assignment.c */
struct expression *get_faked_expression(void);
void __fake_struct_nenber_assignnents(struct expression *expr);

/* smatch_project.c */
int is_no_inline_function(const char *function);

/* smatch_conditions */

void __split_whol e_condition(struct expression *expr);
void __handl e_| ogi c(struct expression *expr);

int is_condition(struct expression *expr);

struct
const char

char

char

synbol
*nane,

*sym;

struct expression *
*nanme,

*nane,

new usr/src/tool s/smatch/src/smatch. h

560 int __handl e_condition_assigns(struct expression *expr);
561 int __handl e_sel ect _assi gns(struct expression *expr);
562 int __handl e_expr_stat enent _assi gns(struct expression *expr);

564 /* smatch_inplied.c */

556 extern int option_debug_inpli ed;
557 extern int option_debug_related;
565 struct range_list_stack;

566 void param|imt_inplications(struct expression *expr, int param char *key, cha
567 struct stree *__inplied_case_stree(struct expression *swtch_expr,

568 struct range_list *case_rl,
569 struct range_list_stack **renmini ng_cases,
570 struct stree **raw_stree);

571 void overwite_states_using_pool (struct smstate *gate_sm struct smstate *pool

572 int assume(struct expression *expr);
573 voi d end_assune(void);

574 int inpossible_assunption(struct expression *left, int op, sval_t sval);

576 /* smatch_slist.h */
577 bool has_dynam c_st at es(unsi gned short owner);
578 voi d set_dynam c_states(unsi gned short owner);

580 /* smatch_extras.c */

581 int in_warn_on_nmacro(void);

582 #define SMATCH EXTRA 5 /* this is nmy_id fromsmatch extra set
583 extern int RETURN_ID;

585 struct data_range {

586 sval _t mn;
587 sval _t max;
588 };

590 #define MIAG ALIAS BIT (1ULL << 63)
591 #define MIAG OFFSET_MASK OxfffULL
592 #define MIAG SEED Oxdead << 12

594 const extern unsigned long valid_ptr_mn;

595 extern unsigned |long valid_ptr_nax;

596 extern const sval _t valid_ptr_m n_sval;

597 extern sval _t valid_ptr_nmax_sval;

581 extern long long valid_ptr_mn, valid_ptr_max;

582 extern sval _t valid_ptr_mn_sval, valid_ptr_nax_sval;
598 extern struct range_list *valid_ptr_rl;

599 void alloc_valid_ptr_rl(void);

601 static const sval _t array_mn_sval = {
602 .type = &ptr_ctype,

603 {.val ue = 100000},

604 };

605 static const sval _t array_max_sval = {
606 .type = &ptr_ctype,

607 {.value = ULONG MAX - 4095},
590 {.value = 199999},

608 };

609 static const sval _t text_seg_mn = {
610 .type = &ptr_ctype,

611 {.val ue = 4096},

594 {.val ue = 100000000},

612 };

613 static const sval _t text_seg_nmax = {
614 .type = &ptr_ctype,

615 {.value = ULONG MAX - 4095},
598 {.value = 177777777},

616

I
617 static const sval _t data_seg_mn = {
618 .type = &ptr_ctype,

in smatch.c */

new usr/src/tool s/smatch/src/smatch. h 8
619 {.val ue = 4096},

602 {.val ue = 200000000},

620 };

621 static const sval _t data_seg_max = {
622 .type = &ptr_ctype,

623 {.value = ULONG MAX - 4095},
606 {.value = 277777777},

624 };

625 static const sval _t bss_seg_mn = {
626 .type = &ptr_ctype,

627 {.val ue = 4096},

610 {.val ue = 300000000},

628 };

629 static const sval _t bss_seg_max = {
630 .type = &ptr_ctype,

631 {.value = ULONG MAX - 4095},
614 {.value = 377777777},

632 };

633 static const sval _t stack_seg_mn = {
634 .type = &ptr_ctype,

635 {.val ue = 4096},

618 {.val ue = 400000000},

636 };

637 static const sval _t stack_seg_max = {
638 .type = &ptr_ctype,

639 {.value = ULONG MAX - 4095},
622 {.value = 477777777},

640 };

641 static const sval _t kmalloc_seg_mn = {
642 .type = &ptr_ctype,

643 {.val ue = 4096},

626 {.val ue = 500000000},

644 };

645 static const sval _t kmalloc_seg_max = {
646 .type = &ptr_ctype,

647 {.value = ULONG MAX - 4095},
630 {.value = 577777777},

648 };

649 static const sval _t vnalloc_seg_mn = {
650 .type = &ptr_ctype,

651 {.value = 4096},

634 {.val ue = 600000000},

652 };

653 static const sval _t vnalloc_seg_max = {
654 .type = &ptr_ctype,

655 {.value = ULONG MAX - 4095},
638 {.value = 677777777},

656 };

657 static const sval _t fn_ptr_mn = {
658 .type = &ptr_ctype,

659 {.val ue = 4096},

642 {.val ue = 700000000},

660 };

661 static const sval _t fn_ptr_max = {
662 .type = &ptr_ctype,

663 {.value = ULONG MAX - 4095},
646 {.value = 777777777},

664 };

666 char *get_other_nanme_syn{const char *nane, struct synmbol *sym struct synbol **n
667 char *map_cal | _to_ot her _nane_syn{const char *name, struct synbol *sym struct sy
668 char *map_l ong_to_short _nane_syn{const char *name, struct synbol *sym struct sy
651 char *map_l ong_to_short_nanme_syn{const char *name, struct synmbol *sym struct sy
652 char *map_l ong_t o_short _nane_sym nost ack(const char *name, struct symbol *sym s

670 #define STRLEN_MAX_RET 1010101

new usr/src/tool s/smatch/src/smatch. h

672 /* smatch_absolute.c */
673 int get_absol ute_m n_hel per(struct expression *expr, sval _t *sval);
674 int get_absol ute_nmax_hel per(struct expression *expr, sval_t *sval);

676 /* smatch_| ocal _val ues.c */

677 int get_local _rl(struct expression *expr, struct range_list **rl);
678 int get_| ocal _max_hel per(struct expression *expr, sval _t *sval);
679 int get_l ocal _m n_hel per(struct expression *expr, sval _t *sval);

681 /* smatch_type_value.c */

682 int get_db_type_| rl(struct expression *expr, struct range_list **rl);
*/

683 /* smatch_data_val .

684 int get_ntag_rl (struct expression *expr, struct range_list **rl);
685 /* smatch_array_val ues.c */

686 int get_array_rl(struct expression *expr, struct range_list **rl);

688 /* smatch_states.c */

689 void __swap_cur_stree(struct stree *stree);

690 void __push_fake_cur_stree();

691 struct stree *__pop_fake_cur_stree();

692 void _ free fake_cur_stree();

693 void __set _fake_cur_stree_f ast(struct stree *stree);
694 void __pop_fake_cur_stree_fast(void);

695 void __nerge_stree_into_cur(struct stree *stree);

697 int unreachabl e(void);

698 void __set_snm(struct smstate *sm;

699 void __set_smecur_stree(struct smstate *sm;

700 void __set_smfake _stree(struct smstate *sn)

701 void __set_true_false_sn(struct smstate *true_state,
702 struct smstate *fal se state)
703 void nullify_path(void);

704 void __match_nul lify_path_hook(const char *fn, struct expression *expr,

705 voi d *unused);
706 void __unnullify_pat h(v0| d);

707 int __path_is_null(void

708 voi d save_al | _states(voi d) ;

709 void restore_al |l _states(void);

710 void free_goto_stack(void);

711 void clear_all_states(void);

713 struct smstate *get_smstate(int owner, const char *nane,
714 struct synbol *sym;

715 struct smstate *get_smstate_expr(int owner, struct expression *expr);

716 void __push_true_states(void);

717 void __use_fal se_states(void);

718 void __discard_fal se_states(void);
719 void __merge_fal se_states(void);
720 void __nerge_true_states(void);

722 void __negate_cond_stacks(void);

723 void __use_pre_cond_states(void);

724 void __use_cond_true_states(void);

725 void __use_cond_fal se_states(void);

726 void __push_cond_stacks(void);

727 void __fold_in_set_states(void);

728 void __free_set_states(void);

729 struct stree *__copy_cond_true_states(void);
730 struct stree *__copy_cond_fal se_states(void);
731 struct stree *__pop_cond_true_stack(void);
732 struct stree *__pop_cond_fal se_stack(void);
733 void __and_cond_states(void);

734 void __or_cond_states(void);

735 void save_pre_cond_stat es(v0| d);

736 void __discard_pre_cond_stat es(v0| d);

new usr/src/tool s/smatch/src/smatch. h

737
738
739
740

742
743
744
745

747
748
749
750
751

753
754
755
756
757
758
759

761
762

764
765

769
770
771
772
773
774
775
776
777
778
779
780
781

783
784
785

787
788
789
790
791
792
793
794

796
797
798

800
801
786

struct stree *__get_true_states(void);
struct stree *__get_fal se_states(void);

void __use_cond_states(void);

extern struct state_list *__|ast_base_slist;

void __push_continues(void);
void __discard_continues(void);
void __process_continues(void);
void __nerge_continues(void);

void __push_breaks(void);
void _ _process_breaks(void);
int __has_breaks(void);

void __nerge_br eaks(v0| d);
void __use_breaks(void);

void __save_sw tch_stat es(struct expression *sw tch_expr);
void __discard_switches(void
int have_renai ni ng_cases(Vvoi d)

10

void __nerge_swi tches(struct expression *switch_expr, struct range_list *case_ rl

void __push_defaul t(void);
void __set_defaul t(void);
int _ pop_default(void);

void __push_conditions(void);
void __discard_conditions(void);

void __save_gotos(const char *name, struct synbol *sym;
void __nerge_gotos(const char *name, struct synbol *sym);

void __print_cur_stree(void);

/* smat ch_hooks.c */
void __pass_to_client(void *data, enum hook_type type);
void __pass_to_client_no_data(enum hook_type type);
void __pass_case_to_client(struct expression *sw tch_expr,

struct range_list *rl);
int __has_nerge_function(int client_id);
struct smatch_state *__client_nerge_function(int owner,

struct smatch_state *sl1,

struct smatch_state *s2);
struct smatch_state *__client_unmatched_state_function(struct smstate *sn);

void call _pre_nerge_hook(struct smstate *sm;
void __push_scope_hooks(void);
void __call _scope_hooks(void);

/* smat ch_functi on_hooks.c */
void create_function_hook_hash(void);
void __match_initializer_call(struct synbol *sym;

/* smatch_db.c */

enum i nfo_type {
| NTERNAL =0,
/

* ok ok ok ¥

We select these in order by type so if the order matters,
it a nunber bel ow 100-999, 9000- 9999 ranges. */

PARAM CLEARED = 101,
PARAM LIM T = 103,
PARAM FI LTER = 104,
PARAM VALUE = 1001,
BUF_SI ZE = 1002,
USER_DATA = 1003,

Changi ng these nunbers is a pain. Don't do it. |If you ever use a
nunber it can’t be re-used right away so there nay be gaps.

new usr/src/tool s/smatch/src/smatch. h 11 new usr/src/tool s/smatch/src/smatch. h 12
802 CAPPED_DATA = 1004, 866 extern struct sqglite3 *cache_db;
803 RETURN_VALUE = 1005,
804 DEREFERENCE = 1006, 868 void db_ignore_states(int id);
805 RANGE_CAP = 1007, 869 void sel ect_caller_info_hook(void (*call back)(const char *name, struct synbol *s
806 LOCK_HELD = 1008, 870 voi d add_nenber _i nfo_cal | back(int owner, void (*callback)(struct expression *cal
807 LOCK_RELEASED = 1009, 871 void add_split_return_call back(void (*fn)(int return_id, char *return_ranges, st
808 ABSOLUTE_LIM TS = 1010, 872 voi d add_returned_nenber_cal | back(int owner, void (*callback)(int return_id, cha
809 PARAM_ADD = 1012, 873 void select_call_inplies_hook(int type, void (*cal | back) (struct expression *call
810 PARAM FREED = 1013, 874 void select_return_inplies_hook(int type, void (*callback)(struct expression *ca
811 DATA_SOURCE = 1014, 875 struct range_list *db_return_val s(struct expression *expr);
812 FUZZY_NAX = 1015, 876 struct range_|ist *db_return_vals_from 1str(const char *fn_narre);
813 HARD MAX = 2015, 877 char *return_state_to_var_sym(struct expression *expr, int param const char *ke
814 STR_LEN = 1016, 878 char *get_chunk_from key(struct expression *arg, char *key, struct synbol **sym
815 ARRAY_LEN = 1017, 879 char *get_variabl e_fromkey(struct expression *arg, const char *key, struct synb
816 CAPABLE = 1018, 880 const char *state_nane_to_param nane(const char *state_nanme, const char *paramn
817 NS_CAPABLE = 1019, 881 const char *get_param nane_var_syn(const char *nane, struct synbol *sym);
818 CONTAI NER = 1020, 882 const char *get_param nane(struct smstate *sm;
819 CASTED_CALL = 1021, 883 const char *get_ntag_nane_var_syn{const char *state_name, struct synbol *sym;
820 TYPE_LI NK = 1022, 884 const char *get_ntag_nane_expr(struct expression *expr);
821 UNTRACKED PARAM = 1023, 885 char *get_data_i nfo_nane(struct expression *expr);
822 LOST_PARAM = 2023, 886 int is_recursive_nenber(const char *param nane);
823 CULL_PATH = 1024,
824 PARAM SET = 1025, 888 char *escape_new i nes(const char *str);
825 PARAM _USED = 1026, 889 void sql _exec(struct sqglite3 *db, int (*callback)(void*, int, char**, char**), v
826 BYTE_UNI TS = 1027,
827 COVMPARE_LIMT = 1028, 891 #define sql _hel per(db, call_back, data, sql...)
828 PARAM COVPARE = 1029, 892 do {
829 CONSTRAI NT = 1031, 893 char sql _txt[1024];
830 PASSES_TYPE = 1032, 894
831 CONSTRAI NT_REQUI RED = 1033, 895 sqglite3_snprintf(sizeof(sql_txt), sql_txt, sql);
832 Bl T_I NFO = 34, 896 sm debug("debug: %s\n", sql _txt);
833 NOSPEC = 1035, 897 sql _exec(db, call_back, data, sql _txt);
834 NOSPEC_V\B = 1036, 898 } while (0)
835 STMT_CNT = 1037, ______unchanged_portion_omtted_
836 TERM NATED = 1038,
951 #define sql _insert(table, values...) sql_insert_helper(table, 0, 0, 0, values);
838 /* put randomtenporary stuff in the 7000-7999 range for testing */ 952 #define sql _insert_or_ignore(table, values...) sql_insert hel per(tabl e, 0, 1, O,
839 USER_DATA = 8017, 953 #define sql _insert_late(table, values...) sql_insert_helper(table, 0, 0, 1, valu
840 USER DATA SET = 9017, 954 #define sql _insert_cache(table, values...) sql_insert_hel per(table, cache_db, 1,
821 USER_DATA3 = 8017,
822 USER_DATA3_SET = 9017, 956 char *get_static_filter(struct synbol *syn);
841 NO_OVERFLOW = 8018,
842 NO_OVERFLOW S lvPLE = 8019, 958 void sql _insert_return_states(int return_id, const char *return_ranges,
843 LOCKED = 8020, 959 int type, int param const char *key, const char *val ue);
844 UNLCOCKED = 8021, 960 void sql _insert_caller_info(struct expression *call, int type, int param
845 SET_FS = 8022, 961 const char *key, const char *val ue);
846 ATOM C_I NC = 8023, 962 void sql _insert_function_ptr(const char *fn, const char *struct_nane);
847 ATOM C_DEC = 8024, 963 voi d sqgl _insert_return_val ues(const char *return_val ues);
848 NO_SI DE_EFFECT = 8025, 964 void sql _insert_return_inpli es(int type, int param const char *key, const char
849 FN_ARG LI NK = 8028, 965 void sqgl _insert_function_type_size(const char *menber, const char *ranges);
850 DATA VALUE = 8029, 966 void sqgl _insert_function_type_info(int type, const char *struct _type, const char
851 ARRAYSI ZE_ARG = 8033, 967 void sql _insert_type_info(int type, const char *nenber, const char *val ue);
852 S| ZEOF_ARG = 8034, 968 voi d sql _insert_| ocal _val ues(const char *nane, const char *val ue);
853 MEMORY_TAG = 8036, 969 void sqgl _insert_function_type_val ue(const char *type, const char *val ue);
854 MIAG_ASSI GN = 8035, 970 void sqgl _insert_function_type(int param const char *val ue);
855 STRI NG_VALUE = 8041, 971 void sql _insert_parameter_name(int param const char *val ue);
972 void sql _insert_data_i nfo(struct expression *data, int type, const char *val ue);
857 BYTE_COUNT = 8050, 973 void sqgl _insert_data_i nfo_var_syn{const char *var, struct symbol *sym int type,
858 ELEM_COUNT = 8051, 974 voi d sgl _save_constraint(const char *con);
859 ELEM LAST = 8052, 975 voi d sqgl _save_constrai nt _required(const char *dat a, int op, const char *linit),
860 USED_LAST = 8053, 976 voi d sqgl _copy_constraint_required(const char *new |imt, const char *old_lim t)
861 USED_COUNT = 8054, 977 void sql _insert_fn_ptr_data_link(const char *ptr, const char *data);
862 }; 978 void sql _insert_fn_data_link(struct expression *fn, int type, int param const c
979 void sql _insert_ntag_about(ntag_t tag, const char *left_name, const char *right_
864 extern struct sqlite3 *smatch_db; 955 void insert_ntag_data(sval _t sval, struct range_list *rl);
865 extern struct sqglite3 *mem.db; 980 voi d sqgl _insert_ntag_map(ntag_t tag, int offset, ntag_t container);

new usr/src/tool s/smatch/src/smatch. h

981
982
983
984
985

987
988
989
990

992

994
995
996
997

999
1000
1001
1002
1003
1004
1005
1006
1007
1008

1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020

1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

1035
1036
1037

1039
1040
1015
1041
1042
1043
1044
1020

voi d sql
int ntag_map_sel ect

_insert_ntag_alias(ntag_t orig,
container(nmag_t tag,

int mag_map_sel ect _tag(ntag_t container,

struct smatch_state *swap_ntag_| return(struct expresswn *expr,
range_Ti st *swap_ntag_seed(struct expression *expr,

struct

voi d sql

voi d sql

int

int

_sel ect

voi d open_smat ch_db(char *db_file);

/* smatch_files.c */

int open_data_file(const char *filenane);
int open_schema_file(const char *schems);
struct token *get_tokens_file(const char *filenane);

/* smatch.c */

extern
extern
extern
extern
extern
extern
extern
extern
extern

char
char
char
char
int
int
int
int
int

*opti on_debug_check;
*option_project_str;
*bin_dir;
*data_dir;
option_no data
option —full path;
opt i on_par am nmapper ;
option_call _tree;
num checks;

enum proj ect _type {
PRQJ

I

PRQJ_KERNEL,
PRQJ_W NE,

PRQJ_| LLUMOS_KERNEL,
PROJ_| LLUMOS_USER,
PRQJ_UNKNOAR]

extern enum proj ect _type option_project;

const char *check_nanme(unsi gned short

int id_fromnanme(const char *nane);

/* smat ch_buf _size.c */

int get_array_size(struct expression *expr);

int get_array_size_bytes(struct expression *expr);

int get_array_size_bytes_m n(struct expression *expr);
int get_array_size_bytes_max(struct

struct

int get
int |ast

range_l i st

/* smatch_strlen.c */

int get

_inplied_strlen(struct expression *expr,
int get_size_fromstrlen(struct expression *expr);

/* smat ch_capped.c */
int is_capped(struct expression *expr);
int is_capped_var_syn(const char *nane,

/* check_user_data.c */

int is

_user

_macro(struct expression *expr);

int is_user_data(struct expression *expr);

int is_capped_user_data(struct expression *expr);
int inplied_user_data(struct

struct stree *get_user_stree(void);
int get_user_rl(struct expression *expr,

int get_user_rl_spamy(struct expression *expr,

ntag_t alias);

struct smatch_sta
range_list *rl

_return_states(const char *cols,
(*cal | back) (void*, int, char**,
_select_call _inplies(const char *cols,
(*cal | back) (void*, int, char**,

struct expression *call,

struct expression *call,

id);

expressi on *expr);

*get _array_size_bytes_rl (struct expression *expr);
_real _array_size(struct expression *expr);

_menber _i s_resi zabl e(struct synbol

struct synbol

expressi on *expr, range_list **rl);

t range_list **rl):

new usr/src/tool s/smatch/src/smatch. h 14

1045
1046
1047
1048

1050
1051

1053
1054
1055
1056
1057
1058

1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107

1109
1110

int is_user_rl(struct expression *expr);

int get_user_rl_var_syn(const char *name struct symbol *sym struct range_li st
bool user_rl capped(struct expressi on *expr);

struct range_list *var_user_rl(struct expression *expr);

/* check_Il ocking.c */
void print_held_l ocks();

/* check_assi gned_expr.c */

struct expression *get_assi gned_expr(struct expression *expr);

struct expression *get_assi gned_expr_nane_syn{const char *nanme, struct synbol *s
/* smatch_return_to_paramc */

void __add_return_to_param mappi ng(struct expression *assign, const char *return
char *map_cal | _to_param nane_syn{(struct expression *expr, struct synmbol **sym);

/* smatch_conparison.c */
struct conpare_data {
/* The ->left and ->right expression pointers mght be NULL (1'm | azy)
struct expression *left;
const char *left_var;
struct var_symlist *left_vsl;
int conparison;
struct expression *right;
const char *right_var;
struct var_symlist *rlght vsl;

b
DECLARE_ALLOCATOR(conpar e_dat a) ;
struct smatch_state *all oc_conpare_state(
struct expression *left,
const char *left_var, struct var_symlist *left_vsl,
int conparison,
struct expression *right,
const char *right_var, struct var_symlist *right_vsl);
int filter_conparison(int orig, int op);
int merge_conparisons(int one, int two);
int conbi ne_conparisons(int |eft_conpare, int right_conpare);
int state_to_conparison(struct smatch_state *state);
struct smatch_state *nerge_conpare_states(struct smatch_state *sl, struct smatch
int get_conparison(struct expression *left, struct expression *right);
int get_conparison_no_extra(struct expression *a, struct expression *b);
int get_conparison_strings(const char *one, const char *two);
i nt possi bl e_conparison(struct expression *a, int conparison, struct expression
struct state_list *get_all _conparisons(struct expression *expr);
struct state_list *get_all_possi bl e_equal _conparisons(struct expression *expr);

void __add_return_conparison(struct expression *call, const char *range);
void __add_conparison_i nfo(struct expression *expr, struct expression *call, con
char *get_printed_param nane(struct expression *call, const char *param nane, st
char *name_sym to_param conpari son(const char *nanme, struct synbol *sym;

char *expr_equal _to_paran(struct expression *expr, int ignore);
char *expr_lte_to_paran(struct expression *expr, int ignore);
char *expr_param conparison(struct expression *expr, int ignore);
int flip_conparison(int op);
int negate_conparison(int op);
int renove_unsi gned_from comparison(int op);
int param.conpare_limt_is_inpossibl e(struct expression *expr, int left_param c
void filter_by_conpari son(struct range_list **rl, int conparison, struct range_|
struct smstate *conparison_inplication_hook(st ruct expressi on *expr
struct state_list **true_stack,
struct state_list **fal se_stack);
void __conpare_param.|imt_hook(struct expression *|left_expr, struct expression
const char *state_nane,
struct smatch_state *true_state, struct smatch_s
i nt inpossibly_high_conparison(struct expression *expr);

/* smatch_sval .c */
sval _t *sval _all oc(sval _t sval);

new usr/src/tool s/smatch/src/smatch. h 15

1111
1112
1113
1114
1115

1116 i
1117 i

1118

1119 i
1120 i
1121 i

1122

1123 i
1124 i
1125 i

1126

1127 i
1128 i

1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146

1148
1149
1150
1120
1151
1152

1154
1155

1157
1158
1159
1160

1162
1163
1164
1165
1166
1167

1169
1170
1171

1173
1174
1175

sval _t *sval _al | oc_permanent (sval _t sval);

sval _t sval _bl ank(struct expression *expr)

sval _t sval _type_val (struct synbol *type, Iong long val);
sval _t sval _fromyval (struct expression *expr, long |long val);
int sval _is_ptr(sval _t sval);

nt sval _unsigned(sval _t sval);

nt sval _signed(sval _t sval);

int sval _bits(sval _t sval);

nt sval _bits_used(sval _t sval);

nt sval _is_negative(sval _t sval);

nt sval _is_positive(sval _t sval);

nt sval _is_mn(sval _t sval);

nt sval _is_max(sval _t sval);

nt sval _is_a_mn(sval _t sval);

nt sval _is_a_max(sval _t sval);

int sval _is_negative_mn(sval _t sval);

nt sval _cnp_t(struct synbol *type, sval _t one, sval _t two);
nt sval _cnp_val (sval _t one, long long val);

sval _t sval _mn(sval _t one, sval _t two);

sval _t sval _max(sval _t one, sval _t two);

int sval _too_|owstruct synbol *type, sval _t sval);

int sval _too_high(struct symbol *type, sval _t sval);

int sval _fits(struct synbol *type, sval _t sval);

sval _t sval _cast(struct synbol *type, sval _t sval);

sval _t sval _preop(sval _t sval, int op);

sval _t sval _binop(sval _t left, int op, sval _t right);

int sval _binop_overflows(sval _t left, int op, sval _t right);
i nt sval _bi nop_overfl ows_no_si gn(sval t left, int op, sval_t right);
int find_first_zero_bit(unsigned |ong |ong uval ue);

int smfls64(unsigned | ong | ong uval ue);

unsi gned | ong long fls_mask(unsigned |ong | ong uval ue);

unsi gned long long sval _fls_mask(sval _t sval);

const char *sval _to_str(sval _t sval);

const char *sval _to_str_or_err_ptr(sval _t sval);

const char *sval _to_nunstr(sval _t sval);

sval _t Il _to_sval (long long val);

/* smatch_string_list.c */

int |ist_has_string(struct strlng list *str_list,
int insert_string(struct string_Iist **str_Tist, const char *str);
void insert_string(struct string_list **str_|list, const char *str);
struct string_list *clone_str_list(struct string_list *orig);
struct string_list *conbine_string_lists(struct string_list *one,

const char *str);

struct string_

/* smatch_start_states.c */
struct stree *get_start_states(void);

/* smatch_recurse.c */

int has_synbol (struct expression *expr, struct synbol *sym);

int has_variabl e(struct expression *expr, struct expression *var);
int has_inc_dec(struct expression *expr);

/* smatch_stored_conditions.c */

struct smatch_state *get stored_condi tion(struct expression *expr);

struct expression_|list *get_conditi ons(struct expression *expr);

struct smstate *stored_condition_inplication_hook(struct expression *expr,
“struct state_list **true_stack,
struct state_list **fal se_st ack);

/* check_string_len.c */
int get_formatted_string_size(struct expression *call, int arg);
int get_formatted_string_mn_size(struct expression *caII int arg);

/* smat ch_param set.c */
int paramwas_set (struct expression *expr);

int paramwas_set_var_synm(const char *nane, struct synbol *syn);

new usr/src/tool s/smatch/src/smatch. h 16
1176 /* smatch_paramfilter.c */

1177 int paramhas_filter_data(struct smstate *sn;

1179 /* smatch_links.c */

1180 void set_up_link_functions(int id, int linkid);

1181 struct smatch_state *merge_link_states(struct smatch_state *sl1, struct smatch_st

1182

1184
1185

1187
1188
1189
1157
1190
1191

1193
1194
1195
1196
1197

1199
1200
1201

1203
1204

1206
1207
1208
1209

1211
1212

1214
1215

1217
1218
1219
1220

1222
1223
1224
1225
1226

1228
1229
1230
1231

1233
1234
1235
1201
1202
1236
1237
1238

void store_link(int link_id, const char *name, struct synbol *sym const char *I|
/* smatch_aut o_copy.c */

voi d set_auto_copy(int owner);

/* check_buf _conparison */

const char *limt_type_str(unsigned int limt_type);

struct expression *get_size_variabl e(struct expression *buf, int *limt_type);
struct expression *get_size_variabl e(struct expression *buf);

struct expression *get_array_vari abl e(struct expression *size);

i nt buf_conpari son_i ndex_ok(struct expression *expr);

/* smatch_untracked_paramc */

voi d mark_untracked(struct expression *expr, int param const char *key, const c
voi d add_untracked_param hook(void (func)(struct expression *call, int paran));
voi d add_| ost _param hook(void (func)(struct expression *call, int param);

void mark_al |l _parans_untracked(int return_id, char *return_ranges, struct expres

/* smatch_strings.c */
struct state_list *get_strings(struct expression *expr);
struct expression *fake_string_fromntag(ntag_t tag);

/* smatch_estate.c */
int estate_get_single_value(struct smatch_state *state, sval _t *sval);

/* smatch_address.c */

int get_address_rl (struct expression *expr, struct range_list **rl);
i nt get_nenber_of fset(struct symbol *type, const char *menber_nane);
int get_menber_of fset_fromderef(struct expression *expr);

/* for nowthis is in smatch_used_paraneter.c */
void __get_state_hook(int owner, const char *name, struct synbol *sym);
/* smat ch_buf _conparison.c */

int db_var_is_array_limt(struct expression *array, const char *nane, struct var
struct stree *get_all _return_states(void);

struct stree_stack *get_all _return_strees(void);

int on_atom c_dec_path(void);
int was_inced(const char *nane, struct synbol *sym);

/* smatch_constraints.c */

char *get_constraint_str(struct expression *expr);

struct constraint_|ist *get_constraints(struct expression *expr);

char *unnet _constraint(struct expression *data, struct expression *offset);
char *get_required_constraint(const char *data_str);

/* smatch_cont ai ner _of.c */

i nt get_param from container_of (struct expression *expr);
int get_offset_fromcontainer_of (struct expression *expr);
char *get_contai ner_nane(struct expression *container, struct expression *expr);

/* smatch_ntag.c */

int get_string_ntag(struct expression *expr, ntag_t *tag);

int get_toplevel _ntag(struct synmbol *sym ntag_t *tag);

int get_ntag(struct expression *expr, ntag_t *tag);

int get_ntag_offset(struct expression *expr, ntag_t *tag, int *offset);
int create_ntag_alias(ntag_t tag, struct expression *expr, ntag_t *new)
int expr_to_ntag_of fset(struct expression *expr, ntag_t *tag, int *offset)
voi d updat e_nt ag_dat a(struct expression *expr);

new usr/src/tool s/smatch/src/smatch. h 17

1239 int get_ntag_sval (struct expression *expr, sval_t *sval);
1207 int get_ntag_addr_sval (struct expression *expr, sval _t *sval);
1241 /* Trinity fuzzer stuff */

1242 const char *get_syscall _arg_type(struct synbol *sym;
1244 |* smatch_bit_info.c */

1245 struct bit_info *get_bit_info(struct expression *expr);
1246 struct bit_info *get_bit_info_var_syn(const char *nanme, struct synbol *syn);
1247 /* smatch_mem tracker.c */

1248 extern int option_nmem

1249 unsi gned | ong get _nmem kb(void);

1250 unsi gned | ong get _max_nenory(void);

1252 /* check_i s_nospec.c */

1253 bool is_nospec(struct expression *expr);

1254 | ong get_stnt_cnt(void);

1256 /* smatch_nul _term nator.c */

1257 bool is_nul _term nated(struct expression *expr);

1258 /* check_kernel.c */

1259 bool is_ignored_kernel _data(const char *nane);

1261 static inline bool type_is_ptr(struct synmbol *type)

1262 {

1263 return type &%

1264 (type->type == SYM PTR | |

1265 type->type == SYM ARRAY ||

1266 type->type == SYM FN);

1267 }

1269 static inline int type_bits(struct synbol *type)

1270 {

1271 if (!type)

1272 return O;

1273 if (type_is_ptr(type))

1226 if (type->type == SYM PTR) /* Sparse doesn’t set this for &pointers */
1274 return bits_in_pointer;

1228 if (type->type == SYM ARRAY)

1229 return bits_in_pointer;

1275 if (!type->exam ned)

1276 exam ne_synbol _type(type);

1277 return type->bit_size;

1278 }

1235 static inline bool type_is_ptr(struct synmbol *type)

1236 {

1237 return type & (type->type == SYM PTR || type->type == SYM ARRAY);
1238 }

1280 static inline int type_unsigned(struct synbol *base_type)
1281 {

1282 if (!base_type)

1283 return O;

1284 if (is_ptr_type(base_type))

1285 return 1;

1286 if (base_type->ctype.nodifiers & MOD_UNSI GNED)
1287 return 1

1288 return O;

1289 }

1291 static inline int type_positive_bits(struct synbol *type)
1292 {

1293 if (!type)

1294 return 0

1295 if (is_ptr_type(type))

new usr/src/tool s/smatch/src/smatch. h

1296
1253
1254
1297
1298
1299
1300

return bits_in_pointer;
if (type->type == SYM ARRAY)
return bits_in_pointer -

if (type_unsigned(type))

return type_bits(type);

return type_bits(type)
}

____unchanged_portion_onmitted_

i

new usr/src/tool s/smatch/src/smatch_about _fn_ptr_arg.c

R R R R

5351 Mon Aug 5 08:38:14 2019
new usr/src/tool s/smatch/src/smatch_about _fn_ptr_arg.c
11506 snatch resync

R R R R

__unchanged_portion_onitted_

109 static char *get_data_nenber(char *fn_nmenber, struct expression *expr, struct sy

110 {

111 struct synbol *tnp_sym

112 char *fn_str;

113 char *arg_ptr = NULL;

114 char *end_type;

115 int len_ptr, len_str;

116 char buf[128];

118 *sym = NULL;

119 run_sql (get_arg_ptr, &arg_ptr,

120 "select data fromfn_ptr_data_link where fn_ptr ="'%";",
121 if (larg_ptr)

122 return NULL;

123 end_type = strchr(arg_ptr, '>');

124 if (lend_type)

125 return NULL;

126 end_t ype++;

127 fn_str = expr_to_var_syn(expr, & np_sym;

128 if (!fn_str || !tnp_sym

129 return NULL;

130 len_ptr = strlen(fn_nenber);

131 len_str = strlen(fn_str);

132 while (len_str >0 & len_ptr > 0) {

133 if (fn_str[len_str - 1] != fn_nenber[len_ptr - 1])
134 br eak;

135 if (fn_str[len_str - 1] =="'>")

136 break;

137 len_str--;

138 len_ptr--;

139 }

141 strncpy(buf, fn_str, sizeof(buf));

142 snprintf(buf + len_str, sizeof(buf) - len_str, "9%", end_type);
142 snprintf(buf + len_str, sizeof(buf) - len_str, end_type);
143 *sym = tnp_sym

144 return alloc_string(buf);

145 }

__unchanged_portion_omtted_

fn_nmem

new usr/src/tool s/smatch/src/smat ch_address. c

R R R R

7086 Mon Aug 5 08:38:17 2019
new usr/src/tool s/smatch/src/smatch_address. c
11506 snatch resync

R R R R

____unchanged_portion_onitted_

65 static bool matches_anonynmpus_union(struct synbol *sym const char *nenber_nane)

66 {

67 struct synbol *type, *tnp;

69 if (sym>ident)

70 return false;

71 type = get_real _base_type(syn);

72 if (!type || type->type !'= SYM UNI ON)
73 return false;

75 FOR_EACH PTR(type->synbol _list, tnp) {
76 if (tnp->ident &&

77 strcnp(menber _nane, tnp->ident->nane) == 0) {
78 return true;

79 }

80 } END _FOR EACH PTR(tnp);

82 return false;

83 }

85 int get_nenber_of fset(struct synbol *type, const char

*menber _nane)

87 struct synbol *tnp;

88 int offset;

89 int bits;

91 if ('type || type->type != SYM STRUCT)

92 return -1;

94 bits = 0;

95 of fset = 0;

96 FOR_EACH PTR(type->synbol _list, tnp) {

97 if (bits_to_bytes(bits + type_bits(tnp)) > tnp->ctype.alignnent)
98 of fset += bits_to_bytes(bits);

99 bits = 0;

100 }

101 of fset = ALI G\(of fset, tnp->ctype.alignnent);

102 if (tnp->ident &&

103 strcnp(menber _nane, tnp->i dent->nane) == 0) {
104 return offset;

105 }

106 i f (matches_anonynous_uni on(tnp, nenber_nane))
107 return of fset;

108 if (!(type_bits(tnp) %8) &% type_bits(tnp) / 8 == type_bytes(tm
109 of fset += type_bytes(tnp);

110 el se

111 bits += type_bits(tnp);

112 } END_FOR_EACH_PTR(tnp);

113 return -1;

114 }

116 int get_nenber_offset_fromderef(struct expression *expr)

117

118 struct synbol *type;

119 struct ident *menber;

120 int offset;

122 if (expr->type !'= EXPR_DEREF) /* hopefully, this doesn't happen */

123 return -1;

new usr/src/tool s/smatch/src/smatch_address. c

125 if (expr->menber_offset >= 0)

126 return expr->nmenber_of fset;

128 nmenber = expr->nenber;

129 if (!menber)

130 return -1;

132 type = get_type(expr->deref);

133 if (type_is_ptr(type))

134 type = get_real _base_type(type);
135 if (ltype || type->type != SYM STRUCT)
136 return -1,

138 of fset = get_nenber_of fset (type, nenber->nane);
139 if (offset >= 0)

140 expr - >menber _of f set = of f set;
141 return of fset;

142 }

111 static struct range_list *filter_unknown_negatives(struct range_list *rl)
112

113 struct data_range *first;

114 struct range_list *filter = NULL;

116 first = first_ptr_list((struct ptr_list *)rl);

118 if (sval _is_mn(first->mn) &&

119 sval _i s_negative(first->nax) &&

120 first->max.value == -1)

121 add_ptr_list(&ilter, first);

122 return rl _filter(rl, filter);

123 }

125 return rl;

126 }

144 static void add_offset_to_pointer(struct range_list **rl, int offset)

145 {

146 sval _t mn, nax, renove, sval;

147 struct range_list *orig = *rl;

149 /*

150 * Ha ha. Treating zero as a special case neans |’mcorrect at |east
151 * tiny fraction of the tine. Wich is better than nothing.

152 *

153 */

154 if (offset == 0)

155 return;

157 if (is_unknown_ptr(orig))

158 return;

160 /*

161 * This function doesn’t necessarily work how you m ght expect...

162 *

163 * Say you have s64min-(-1),1-s64max and you add 8 then | guess what
164 * we want to say is maybe sonmething |ike 9-s64max. This shows that the
165 * mnit could be is 9 which is potentially useful information.

166 * if we start with (-12),5000000-57777777 and we add 8 then we’d want
167 * the result to be (-4),5000008-57777777 but (-4),5000000-57777777 is
168 * also probably acceptable. |f you start with s64m n-s64max then the
169 * result should be 8-s64nax.

170 *

171 */

new usr/src/tool s/smatch/src/smat ch_address. c

173 /* We do the math on void pointer type, because this isn't "& + 16"
174 * is &->sixteenth_byte.

175 */

176 orig = cast_rl (&ptr_ctype, orig);

177 mn = sval _type_m n(&ptr_ctype);

178 m n. val ue = offset;

179 max = sval _type_max(&ptr_ctype);

181 if(!orig|| |s V\,holerl(orlg)){

182 *rl (mn, max);

183 ret urn

184 }

167 orig = filter_unknown_negatives(orig);

168 I*

169 * FIXME: This is not really accurate but we're a bit screwed anyway
170 * when we start doing pointer math with error pointers so it’'s probably
171 * not inportant.

172 *

173 */

174 if (sval _is_negative(rl_mn(orig)))

175 return;

186 /* no wrap around */

187 max. uval ue = rl _max(orig).uval ue;

188 if (max.uvalue > sval _type_nmax(&ptr_ctype).uvalue - offset) {
189 renove = sval _type_ rrax(&ptr_ctype);

190 renove. uval ue -= of f set

191 orig = renopve_range(ori g, renove, nex);

192 }

194 sval .type = & nt_ctype;

195 sval . val ue = of fset;

197 *rI = rl_binop(orig, '+, alloc_rl(sval, sval));

198 }

200 static struct range_list *where_allocated_rl (struct synmbol *symn)

201 {

202 if (!sym

203 return NULL;

205 return alloc_rl(valid_ptr_mn_sval, valid_ptr_nmax_sval);

196 if (sym>ctype.nodifiers & (MOD_ TOPLEVEL [MOD_STATICO)) {
197 if (sym>initializer)

198 return alloc_rl(data_seg_mn, data_seg_nex);
199 el se

200 return alloc_rl (bss_seg_min, bss_seg_nax);
201

202 return alloc_rl(stack_seg_mn, stack_seg_nex);

206 }

208 int get_address_rl(struct expression *expr, struct range_list **rl)
209 {

210 struct expression *unop;

212 expr = strip_expr(expr);

213 if (!expr)

214 return O;

216 if (expr->type == EXPR_STRING {

217 *rl = alloc_rl(valid_ptr_mn_sval, valid_ptr_max_sval);
212 *rl = alloc_rl(text_seg_mn, text_seg_nex);

218 return 1;

219 }

it

new usr/src/tool s/smatch/src/smatch_address. c

221 if (expr—>type == EXPR_PRECP && expr->op == '&)
222 expr strl p_expr (expr->unop) ;

223 el se {

224 struct synbol *type;

216 if (expr->type == EXPR _PRECP && expr->op == '&) {
217 struct expression *unop;

226 = get _type(expr);

227 |f ('type || type >type ! = SYM ARRAY)

228 n 0;

229 1

231 if (expr->type == EXPR _SYMBOL)

232 *rl = where_al l ocated_r| (expr->synbol);
219 unop = strip_ expr(expr->unop);

220 if (unop >t ype == EXPR_SYMBQL)

221 *rl wher e_al Tocat ed_r | (unop->synbol) ;
233 return 1;

234 }

236 if (is_array(expr)) {

237 struct expression *array;

238 struct expression *of fset_expr;

239 struct range_list *array_rl, *offset_rl,
240 struct synbol *type;

241 sval _t bytes;

225 if (unop->type == EXPR _DEREF)

226 int offset = get _menber _of f set _f rom der ef (unop) ;
243 array = get_array_base(expr);

244 of fset _expr = get_array_of fset(expr);

246 type = get_type(array);

247 type = get_real _base_type(type);

248 bytes.type = ssize_t_ctype;

249 byt es. uval ue = type_bytes(type);

250 bytes_rl = alloc_rl (bytes, bytes);

252 get _absolute_rl (array, &array_rl);

253 get _absolute_rl (of fset _expr, &offset_rl);

255 if (type_bytes(type)) {

256 res = rl_binop(offset_rl, **',

257 res = rl_binop(res, '+, array_rl);
258 *rl = res;

259 return true;

260 }

262 if (inplied_not_equal (array, 0) ||

263 i npl i ed_not _equal (of fset _expr, 0)) {

264 *rl = alloc_rl(valid_ptr_mn_sval,
265 return 1;

266 }

228 unop = strip_expr (unop->unop);

229 if (unop >type == EXPR_SYMBQOL)

230 wher e_al Tocat ed_r| (unop->synbol);
231 } else if (unop >type == EXPR_PREOP && unop->op == '*’)
232 unop = strip_expr(unop->unop);
233 get _absolute_rl (unop, rl);
234 } else {

268 return O;

269 }

271 if (expr->type == EXPR_DEREF && expr->nenber) ({

272 struct range_list *unop_rl;

*bytes_rl,

bytes_rl);

val i d_ptr_max_sval);

new usr/src/tool s/smatch/src/smat ch_address. c

273 int offset;

275 of fset = get_menber_of fset_from deref(expr);
276 unop = strip_expr(expr->unop);

277 if (unop- >type == EXPR_PREOP && unop->op == '*")
278 unop = strip_expr(unop->unop);

280 if (offset >= 0 &&

281 get _inplied_rl (unop, &unop_rl) &&

282 Tis_whole_rT(unop_rl)) {

283 *rl = unop_rl;

284 add_of fset _t o_poi nter(rl, offset);

285 return 1;

286 }

288 if (inpl | ed_| not _equal (unop, 0) || offset > 0) {
289 rl = alloc_rl(valid_ptr_mn_sval, valid_ptr_max_sval);
290 return 1,

291 }

293 return O;

294 }

296 if (is_ non nul | _array(expr)) {

297 rT = alloc_rl(array_nin_sval, array_max_sval);
298 return 1,

299 }

301 return O;

302 }

__unchanged_portion_onitted_

new usr/src/tool s/smatch/src/smatch_array_val ues. c 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
4541 Mon Aug 5 08:38:19 2019

new usr/src/tools/smatch/src/smatch_array_val ues. c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

159 static void match_assign(struct expression *expr)

160 {

161 struct expression *left, *array,;

162 struct range_list *orig_rl, *rl;

163 struct synbol *type;

164 char *nane;

166 type = get_type(expr->left);

166 type = get_type(expr->right);

167 if (!type || type->type !'= SYM BASETYPE)
168 return;

170 left = strip_expr(expr->left);

171 if (lis_array(left))

172 return;

173 array = get_array_base(left);

174 name = get_array_nane(array);

175 if (!'nane)

176 return;

178 if (expr->op !'="=") {

179 rl = alloc_whole_rl (get_type(expr->right));
180 rl = cast_rl(type, rl);

179 rl = alloc_whole_rl(type);

181 } else {

182 get _absolute_rl (expr->right, &rl);
183 rl = cast_rl(type, rl);

184 orig_rl = get_saved_rl (type, nane);
185 rl =rl_union(orig_rl, rl);

186 }

188 updat e_cache(nane, is_file_local (array), rl);
189 }

__unchanged_portion_onitted_

new usr/src/tool s/ smatch/ src/smatch_assi gned_expr. c

R R R R

3775 Mon Aug 5 08:38:19 2019
new usr/src/tool s/smatch/ src/smatch_assi gned_expr. c
11506 snatch resync

R R R R

2 * Copyright (C 2009 Dan Carpenter.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of

11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the

12 * GNU Ceneral Public License for nore details.

13 =

14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt
16 */

18 /*

19 * This is not a check. It just saves an struct expression pointer

23 #include "smatch. h"
24 #include "smatch_slist.h"
25 #include "smatch_extra. h"

27 int check_assi gned_expr_id;

28 static int ny_id;

29 static int Ilnk_ld;

31 static struct expression *skip_nod;

33 static void undef(struct smstate *sm struct expression *npd_expr)

34 {

35 if (mod_expr == skip_nod)

36 return;

37 set_state(ny_id, sm>nane, sm>sym &undefined);
38

__unchanged_portion_onitted_

60 static void match_assi gnnent(struct expression *expr)

61 {

62 static struct expression *ignored_expr;
63 struct synbol *left_sym *right_sym
64 char *left_name = NULL;

65 char *right_name = NULL;

67 if (expr->op !="=")

68 return;

69 if (is_fake_i call(expr—>r|ght))

70 return;

71 if (__in_fake_struct_assign) {

72 struct range_list *rl;

74 if (lget_inplied_rl(expr->right, &rl))
75 return;

76 if (is_\nhole_rl(rl))

77 return;

78 }

80 if (expr->left == ignored_expr)

20 * whenever something is assigned. This can be used later on by other scripts.
*
/

new usr/src/tool s/smatch/src/smat ch_assi gned_expr.c 2
81 return;
82 i gnored_expr = NULL;
83 if (__in_fake_paraneter_assign)
84 ignored_expr = expr->left;
86 left_name = expr_to_var_sym(expr->left, & eft_sym;
87 if (Tleft_name |T !Teft_sym
88 goto free;
89 set_state(ny_id, left_nanme, left_sym alloc_state_expr(strip_expr(expr->
91 right_name = expr_to_var_synm(expr->right, &right_syn);
92 if (!right_name || !right_sym
93 goto free;
95 store_link(link_id, right_nane, right_sym left_name, left_sym;
97 free:
98 free_string(left_nane);
99 free_string(right_nane);
100 }

102 static void record_param assi gnment (struct expression *expr, int param char *ke

104 struct expression *arg, *right;

105 struct synbol *sym

106 char *nane;

107 char *p;

108 int right_param

110 whil e (expr->type == EXPR_ASSI GNMENT)

111 expr = strip_expr(expr->right);

112 if (!expr || expr->type != EXPR _CALL)

113 return;

115 p = strstr(value, "[$");

116 if (!'p)

117 return;

119 p += 2;

120 right _param = strtol (p, &, 10);

121 if (*p!="1")

122 return;

124 arg = get_argument _fromcal | _expr(expr->args, param;
125 right = get_argunent_fromcall _expr(expr->args, ri ght _param;
126 if (!right || Targ)

127 return;

128 name = get_variabl e_fromkey(arg, key, &ym;

129 if (Inane [| !sym

130 goto free;

132 ski p_nmod = expr;

133 set_state(ny_id, name, sym alloc_state_expr(right));
134 free:

135 free_string(nane);

136 }

138 void register_assigned_expr(int id)

139 {

140 nmy_id = check_assigned_expr_id = id;

141 set _dynani c_st at es(check_assi gned_expr _i d) ;

142 add hook(&match assi gnment, ASS| GNVENT_HOOK_AFTER) ;
143 add_nodi fi cation_hook(my_i d &undef) ;

144 sel ect _return_stat es_hook(PARAM SET, &record_param assi gnment);
145 }

new usr/src/tool s/ smatch/ src/smatch_assi gned_expr. c

147 void regi ster_assigned_expr_|inks(int id)

148 {
149 link_id =id;

150 set _dynami c_states(link_id);

151 db_i gnore_states(link_id);

152 set _up_link_functions(ny_id, link_id);
153 }

____unchanged_portion_onmitted_

new usr/src/tool s/smatch/src/smatch_bits.c 1

R R R R

10625 Mon Aug 5 08:38:20 2019
new usr/src/tools/smatch/src/smatch_bits.c
11506 snatch resync

R R R R

1/*

2 * Copyright (O 2015 Oracle.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any |later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of

11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the

12 * GNU Ceneral Public License for nore details.

13 =

14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt
16 */

18 /*

19 * This is to track when variables are nasked away.

20 *

21 */

23 #include "smatch. h"
24 #include "smatch_extra. h"
25 #include "smatch_slist.h"

27 static int ny_id;

29 static const struct bit_info unknown_bit_info = {
30 . possible = -1ULL,

31}

33 ALLOCATOR(bit_info, "bit data");
34 static struct bit_info *alloc_bit_info(unsigned |ong |ong set, unsigned |ong |on

36 struct bit_info *bit_info = __alloc_bit_info(0);
38 bit_info->set = set;

39 bi t _i nf o- >possi bl e = possi bl e;

41 return bit_info;

42 '}

44 static struct smatch_state *all oc_bstate(unsigned long | ong set, unsigned long |

46 struct smatch_state *state;

47 char buf[64];

49 state = __alloc_snmatch_state(0);

50 snprintf(buf, sizeof(buf), "Ox%I|x + Ox%|x", set, possible);
51 state->nanme = al |l oc_snane(buf);

52 state->data = alloc_bit_info(set, possible);

54 return state;

55 }

57 static struct bit_info *rl_to_binfo(struct range_list *rl)
58

59 struct bit_info *ret = __alloc_bit_info(0);

60 sval _t sval;

new usr/src/tool s/smatch/src/smatch_bits.c

62 if (rl_to_sval(rl, &sval)) {

63 ret->set = sval.uval ue;

64 ret->possi bl e = sval . uval ue;

66 return ret;

67 }

69 ret->set = 0;

70 ret->possible = sval _fls_mask(rl_max(rl));
71 /1 FI XME: what about negatives?

73 return ret;

74 }

76 static int is_unknown_binfo(struct synbol *type, struct bit_info *binfo)

78 if (!type)

79 type = &ul | ong_ctype;

81 if (binfo->set != 0)

82 return O;

83 if (binfo->possible < (-1ULL >> (64 - type_bits(type))))
84 return O;

86 return 1,

87 }

89 static struct smatch_state *unmatched_state(struct smstate *sm

91 struct smatch_state *estate;

92 struct synbol *type;

93 unsi gned | ong | ong possi bl e;

94 struct bit_info *p;

96 estate = get_stat e(SMATCH EXTRA, sm >nane, sm >syn);
97 if (estate_rl(estate)) {

98 p =rl_to_binfo(estate_rl(estate));

99 return alloc_bstate(p->set, p->possible);
100 }

102 type = estate_type(estate);

103 if (!type)

104 return all oc_bstate(0, -1ULL);

106 if (type_bits(type) == 64)

107 possible = -1ULL;

108 el se

109 possible = (1ULL << type_bits(type)) - 1;
111 return alloc_bstate(0, possible);

112 }

114 static void match_nodi fy(struct smstate *sm struct expression *nod_expr)

116 /1 FIXME: we really need to store the type
118 set_state(ny_id, sm>nane, sm>sym alloc_bstate(0, -1ULL));
119 }

121 static int binfo_equiv(struct bit_info *one, struct bit_info *two)

123 if (one->set == two->set &&

124 one- >possi bl e == two- >possi bl e)
125 return 1;

126 return O;

127 }

new usr/src/tool s/smatch/src/smatch_bits.c 3
129 static struct smatch_state *merge_bstates(struct smatch_state *one_state, struct
130 {

131 struct bit_info *one, *two;

133 one = one_st at e- >dat a;

134 two = two_state->data;

136 if (binfo_equiv(one, two))

137 return one_state;

139 return alloc_bstate(one->set & two->set, one->possible | two->possible);
140 }

142 | *

143 * The conbine_bit_info() takes two bit_infos and takes creates the nost

144 * accurate picture we can assuming both are true. O it returns unknown if
145 * the information is logically inpossible.

146 *

147 * \Which neans that it takes the | of the ->set bits and the & of the possibly
148 * set bits, which is the opposite of what nerge_bstates() does.

149 *

150 */

151 static struct bit_info *conbine_bit_info(struct bit_info *one, struct bit_info *
152 {

153 struct bit_info *ret = __alloc_bit_info(0);

155 if ((one->set & two->possible) != one->set)

156 return alloc_bit_info(0, -1ULL);

157 if ((two->set & one->possible) != two->set)

158 return alloc_bit_info(0O, -1ULL);

160 ret->set = one->set | two->set;

161 ret->possi bl e = one->possi bl e & two->possi bl e;

163 return ret;

164 }

166 static struct bit_info *binfo_AND(struct bit_info *left, struct bit_info *right)
167 {

168 unsi gned | ong |long set = 0;

169 unsi gned | ong | ong possi bI e = - 1ULL;

171 if (!left & !right) {

172 /* nothing */

173 } else if (!left) {

174 possi bl e = ri ght->possi bl e;

175 } else if (!right) {

176 possible = | eft->possible;

177 } else {

178 set = left->set & right->set;

179 possible = | eft->possible & right->possi bl e;

180 }

182 return alloc_bit_info(set, possible);

183 }

185 static struct bit_info *binfo_OR(struct bit_info *left, struct bit_info *right)
186 {

187 unsi gned | ong | ong set = 0;

188 unsi gned | ong | ong possible = -1ULL;

190 if (Mleft & !right) {

191 /* nothing */

192 } else if (lleft) {

193 set = right->set;

new usr/src/tool s/smatch/src/smatch_bits.c

194 } elself ('right) {

195 et = left->set;

196 } else {

197 set = left->set | right->set;

198 possible = | eft->possible | right->possible;

199 }

201 return alloc_bit_info(set, possible);

202 }

204 struct bit_info *get_bit_info(struct expression *expr)

205 {

206 struct range_list *rl;

207 struct smatch_state *bstate;

208 struct bit_info tnp;

209 struct bit_info *extra_info;

210 struct bit_info *bit_info;

211 sval _t known;

213 expr = strip_parens(expr);

215 if (get_inplied_value(expr, &nown))

216 return alloc_bit_info(known. val ue, known.val ue);
218 if (expr->type == EXPR BI NOP) {

219 if (expr >op == ' &

220 return b| nfo_AND(get _bit_info(expr->left),
221 get _bit_info(expr->right));
222 if (expr->op == "|"

223 return binfo_OR(get_bit_info(expr->left),
224 get _bit_info(expr->right));
225 1

227 if (get_inplied_rl(expr, &l))

228 extra_info = rl_to_binfo(rl);

229 el se {

230 struct symbol *type;

232 tnp = unknown_bit _i nfo;

233 extra_info = & np;

235 type = get_type(expr);

236 if (! type)

237 ype = &ul |l ong_ctype;

238 if (type bl ts(type) == 64)

239 extra_i nfo->possible = -1ULL;

240 el se

241 extra_i nfo->possible = (1ULL << type_bits(type))
242 1

244 bstate = get_state_expr(my_id, expr);

245 if (bstate)

246 bit_info = bstate->data;

247 el se

248 bit_info = (struct bit_info *)&unknown_bit_info;
250 return conbine_bit_info(extra_info, bit_info);

251 }

253 static int is_single_bit(sval_t sval)

254 {

255 int i;

256 int count = O;

258 for (i =0; i <64; i++) {

259 if (sval.uvalue & 1ULL << i &&

new usr/src/tool s/smatch/src/smatch_bits.c 5
260 count ++)
261 return O;
262 }
263 if (count == 1)
264 return 1,
265 return O;
266 }
268 static void match_conpare(struct expression *expr)
269
270 sval _t val;
272 if (expr->type != EXPR_COVPARE)
273 return;
274 if (expr->op != SPECI AL_EQUAL &&
275 expr->op ! = SPECI AL_NOTEQUAL)
276 return;
278 if (!get_inplied_value(expr->right, &val))
279 return;
281 set _true_fal se_states_expr(ny_id, expr->left,
282 (expr->op == SPECI AL_EQUAL) ? all oc_bstate(val.uvalue, v
283 (expr->op == SPECI AL_EQUAL) ? NULL : alloc_bstate(val.uv
284 }
286 static bool is_loop_iterator(struct expression *expr)
287 {
288 struct statement *pre_stnt, *|oop_stnt;
290 pre_stnt = expr_get_parent_stnt(expr);
291 if (!pre_stnt || pre_stnt- >typel—STMT EXPRESSI ON)
292 return false;
294 | oop_stnt = stnt_get_parent_stnt(pre_stnt);
295 if (!'loop_stnt || loop_stnt->type != STMI_|I TERATOR)
296 return false;
297 if (loop_stnt->iterator_pre_statenent != pre_stnt)
298 return fal se;
300 return true;
301 }

303 static void match_assign(struct expression *expr)

al | oc_bst at e(bi nf o- >set,

bi nf o))

bi nf o- >possi b

305 struct bit_info *binfo;

307 if (expr->op I="=")

308 return;

309 if (__in_fake_assign)

310 return;

311 if (is_loop_iterator(expr))

312 return;

314 bi nfo = get_bit_info(expr->right);

315 if (!binfo)

316 return;

317 if (is_unknown_bi nfo(get_type(expr->left),
318 return;

319 set_state_expr(ny_id, expr->left,

320 }

322 static void match_condition(struct expression *expr)
323 {

324 struct bit_info *orig;

325 struct bit_info true_info;

new usr/src/tool s/smatch/src/smatch_bits.c 6
326 struct bit_info false_info;
327 sval _t right;
329 if (expr->type '—EXPR _ BINOP | |
330 expr->op !'="'&)
331 return;
333 if (!get_value(expr->right, &right))
334 return;
336 orig :ge_lt_lnfo(expr >l eft);
337 true_i fo: orig;
338 false_info = *orig
340 if (right.uvalue == 0 || is_single_bit(right))
341 true_info.set & right.uval ue;
343 true_i nfo. possi bl e & right. uval ue;
344 fal se_i nfo. possi bl e & ~ri ght. uval ue;
346 set _true_false_states_expr(ny_id, expr->left,
347 al | oc_bstate(true_info.set, true_info.possibl
348 al | oc_bstate(fal se_info. set fal se_i nfo. possi
349 }
351 static void match_call _info(struct expression *expr)
352 {
353 struct bit_info *binfo, *rl_binfo;
354 struct expression *arg;
355 struct range_list *rl;
356 char buf[64];
357 int i;
359 i =-1;
360 FOR_EACH PTR(expr->args, arg) {
361 i ++;
362 binfo = get_bit_info(arg);
363 if (!binfo)
364 conti nue;
365 if (is_unknown b| nfo(get_type(arg), binfo))
366 conti nue;
367 if (get_lrrplled_rl(arg, &l)) {
368 rl_binfo = rl_to_binfo(rl);
369 i f (binfo_equiv(rl_binfo, binfo))
370 conti nue;
371 }
372 /1 1f is just non-negative continue
373 Il 1f ->set == ->possible conti nue
374 snprintf(buf, sizeof(buf), "0x%Ix, 0x%I|x", binfo->set, binfo->p
375 sqgl _insert cal l er _inf o(expr BIT_INFO i, "$", buf);
376 } END_FOR EACH PTR(arg);
377 }
379 static void struct_nember_cal | back(struct expression *call, int param char *pri
380 {
381 struct bit_info *binfo = sm >st at e- >dat a;
382 struct smatch_state *estate;
383 struct bit_info *inplied_binfo;
384 char buf[64];
386 if (!binfo)
387 return;
389 /* This neans it can only be one value, so it’'s handled by snatch_extra.
390 if (binfo->set == binfo->possible)
391 return;

new usr/src/tool s/smatch/src/smatch_bits.c 7
393 estate = get_state(SMATCH EXTRA, sm >name, sm >synj;
394 if (is_unknown_binfo(estate_type(estate), binfo))
395 return;
397 if (estate_rl(estate)) {
398 sval _t sval;
400 if (estate_get_single_value(estate, &sval))
401 return;
403 inmplied_binfo = rl_to_binfo(estate_rl(estate));
404 if (binfo_equiv(inplied_binfo, binfo))
405 return;
406 }
408 snprintf(buf, sizeof(buf), "O0x%Ix,0x%I|x", binfo->set, binfo->possible)
409 sql _insert_caller_info(call, BIT_INFO param printed_name, buf);
410 }
412 static void set_parambits(const char *nane, struct synbol *sym char *key, char
413
414 char full nane[256] ;
415 unsi gned | ong | ong set, possible;
417 if (strcnp(key, "*$") ==
418 snprintf(full nane, sizeof (fullname), "*%", nane);
419 else if (strncnp(key, "$", 1) == 0
420 snprintf(full name, 256, "%%", name, key + 1);
421 el se
422 return;
424 set = strtoul |l (value, &value, 16);
425 if (*value I'=",")
426 return;
427 val ue++;
428 possible = strtoul |l (val ue, &val ue, 16);
430 set_state(ny_id, fullnane, sym alloc_bstate(set, possible));
431 }
433 void register_bits(int id)
434 {
435 my_id = id;
437 set _dynami c_states(ny_id);
439 add_unnat ched_st at e_hook(ny_i d, &unmatched_state);
440 add_ner ge_hook(ny_id, &merge_bstates);
442 add_hook(&vat ch_condi ti on, CONDI TI ON_HOCK) ;
443 add_hook(&rat ch_conpar e, CONDI TI ON_HOCK) ;
444 add_hook(&rat ch_assi gn, ASSI GNVENT_HOXK) ;
445 add_nodi fi cati on_hook(ny_id, &match_nodify);
447 add_hook(&mrat ch_cal | _i nfo, FUNCTI ON_CALL_HOCK) ;
448 add_nenber _i nfo_cal | back(ny_id, struct_menber_cal |l back);
449 sel ect _cal l er_i nfo_hook(set_parambits, BlIT_INFO;

450 }

new usr/src/tool s/ smatch/ src/smatch_buf _conpari son. c 1 new usr/src/tool s/ smatch/ src/smatch_buf _conpari son. c 2
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 83 "used COUnt",
20837 Mon Aug 5 08:38:20 2019 84 "used_| ast",
new usr/src/tool s/ smatch/src/smatch_buf _conparison.c 85 };
11506 snatch resync
IR E SR SR RS RS E SRR R R SRR R R SRR R R R RS EEREREEREEREEEEEEEERSE] 87 |nt State_to_limt(struct SrTHtCh_State *State)
1/* 85 static struct snmatch_state *all oc_expr_state(struct expression *expr)
2 * Copyright (© 2012 Oracle. 88 {
3 * 89 int i;
4 * This programis free software; you can redistribute it and/or
5 * nodify it under the terns of the GNU General Public License 91 if (!state || !state->data)
6 * as published by the Free Software Foundation; either version 2 92 return -1;
7 * of the License, or (at your option) any |later version.
8 * 94 for (i =0; i < ARRAY_SIZE(limt_map); i++) {
9 * This programis distributed in the hope that it will be useful, 95 if (strncnp(state->nanme, limt_map[i], strien(limt_map[i])) ==
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of 96 return i + BYTE_COUNT;
11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the 97 }
12 * GNU Ceneral Public License for nore details.
13 = 99 return -1;
14 * You shoul d have received a copy of the GNU General Public License 100 }
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt
16 */ 102 const char *limt_type_str(unsigned int limt_type)
103 {
18 /* 104 if (limt_type - BYTE_COUNT >= ARRAY SIZE(limt_map)) {
19 * The point here is to store that a buffer has x bytes even if we don't know 105 smnsg("internal: wong size type %", limt_type);
20 * the value of x. 106 return "unknown";
21 * 107 }
22 =/
109 return limt_map[limt_type - BYTE_COUNT];
24 #include "snmatch. h" 110 }
25 #include "smatch_extra. h"
26 #include "smatch_slist.h" 112 static struct smatch_state *all oc_conpare_size(int limt_type, struct expression
113 {
28 static int size_id,; 114 struct smatch_state *state;
29 static int link_id; 115 char *nane;
116 char buf [256];
31 /*
32 * There is a bunch of code which does this: 118 state = __alloc_smatch_state(0);
32 * W need this for code which does: 119 expr = strip_expr(expr);
33 * 120 name = expr_to_str(expr);
34 * if (size) 121 snprintf(buf, sizeof(buf), "% %", limt_type_str(limt_type), nane);
35 * foo = mall oc(size); 122 state->nane = al |l oc_snane(buf);
36 * 93 state->nane = al | oc_snane(nane);
37 * So if "size" is non-zero then the size of "foo" is size. But really it’s 123 free_string(nane);
38 * also true if size is zero. |It's just better to assume to not tranple over 124 state->data = expr;
39 * the data that we have by nergi ng &undefined states. 125 return state;
37 * We want to record that the size of "foo" is "size" even after the nerge. 126 }
40 * ____unchanged_portion_onitted_
41 */
42 static struct smatch_state *unmatched_state(struct smstate *sm 143 static void db_save_type_links(struct expression *array, int type_limt, struct
43 { 114 static void db_save_type_|links(struct expression *array, struct expression *size
42 struct expression *size_expr; 144 {
43 sval _t sval; 145 const char *array_naneg;
45 if (!sm>state->data) 147 array_name = get_data_i nfo_nane(array);
46 return &undefi ned; 148 if (larray_nane)
47 si ze_expr = sm >st at e- >dat a; 149 array_name = "";
48 if ('get_inplied_value(size_expr, &sval) || sval.value != 0) 150 sql _insert _data_i nfo(size, type_linmt, array_nane);
49 return &undefined; 121 sql _insert_data_i nfo(size, ARRAY_LEN, array_nane);
44 return sm>state; 151 }
45 }
____unchanged_portion_onitted_ 153 static void match_all oc_hel per(struct expression *pointer, struct expression *si
154 {
79 static const char *limt_map[] = { 155 struct expression *tnp;
80 "byte_count"”, 156 struct smstate *sm
81 "el em count™, 157 int limt_type = ELEM COUNT;
82 "elem|ast", 158 sval _t sval;

new usr/src/tool s/ smatch/ src/smatch_buf _conpari son. c 3 new usr/src/tool s/ smatch/ src/smatch_buf_conpari son. c 4
159 int cnt = 0; 232 get _val ue(arg->ri ght &sval) && sval.value == 1) {
233 arg = arg->left
161 poi nter = strip_expr(pointer); 234 limt_type = ELEM_LAST;
162 size = strip_expr(size); 235 }
163 if (!size || !pointer)
164 return; 237 db_save_type_links(pointer, limt_type, arg);
238 tnp = set_state_expr(size_id, pointer, alloc_conpare_size(limt_type, ar
166 while ((tnp = get assi gned_expr(size))) { 194 db_save_type_l i nks(pointer, arg);
167 size = strip_expr(tnp); 195 tnp = set_state_expr(size_id, pointer, alloc_expr_state(arg));
168 if (cnt++ > 5) 239 if ('tnp)
169 break; 240 return;
170 } 241 set_state_expr(link_id, arg, alloc_state_expr(pointer));
198 set_state_expr(link_id, arg, alloc_expr_state(pointer));
172 if (size->type == EXPR_BINOP && size->op == "*") { 242 }
173 struct expression *rnult_left, *nult_right;
244 struct expression *get_size_variabl e(struct expression *buf, int *limt_type)
175 mult_left = strip_expr(size->left); 201 struct expression *get_size_variabl e(struct expression *buf)
176 mult_right = strip_expr(size->right); 245 {
246 struct smatch_state *state;
178 if (get_inplied_value(nult_left, &sval) &&
179 sval . val ue == byt es_per_el ement (pointer)) 248 state = get_state_expr(size_id, buf);
180 size = mult_right; 249 if (!state)
181 else if (get_i npl ied_value(mult_right, &val) && 250 return NULL;
182 sval . val ue == bytes per el errent(pm nter)) 251 *limt_type = state_to_linmt(state);
183 size = mult_left 206 if (state)
184 el se 252 return state->data;
185 return; 208 return NULL;
186 } 253 }
__unchanged_portion_omtted_
188 /* Only save links to variables, not fixed sizes */
189 if (get_value(size, &sval)) 265 static void array_check(struct expression *expr)
190 return; 266 {
267 struct expression *array;
192 if (size->type == EXPR BINOP && size->op == '+ && 268 struct expression *size;
193 get _val ue(size->right, &val) && sval. vaI ue == 1) { 269 struct expression *of fset;
194 size = size->left; 270 char *array_str, *offset_str;
195 limt_type = ELEM_LAST; 271 int limt_type;
196 }
273 expr = strip_expr(expr);
198 db_save_type_links(pointer, limt_type, size); 274 if (lis_array(expr))
199 sm = set_state_expr(size_i d pointer, alloc_conpare_size(limt_type, siz 275 return;
162 db_save_type_l i nks(poi nter, size);
163 sm = set_state_expr(size_i d, poi nter, alloc_expr_state(size)); 277 array = get_array_base(expr);
200 if (!'sm 278 size = get_size_variable(array, &imt_type);
201 return; 233 size = get_size_variabl e(array);
202 set_state_expr(link_id, size, alloc_state_expr(pointer)); 279 if (!size)
166 set_state_expr(link_id, size, alloc_expr_state(pointer)); 280 return;
203 } 281 if (limt_type !'= ELEM COUNT)
__unchanged_portion_onitted_ 282 return;
283 of fset = get_array_of fset(expr);
216 static void match_call oc(const char *fn, struct expression *expr, void *_start_a 284 if (!possible_conparison(size, SPECH AL_EQUAL, offset))
217 { 285 return;
218 int start_arg = PTR_INT(_start_arg);
219 struct expression *pointer, *call, *arg; 287 array_str = expr_to_str(array);
220 struct smstate *tnp; 288 of fset_str = expr_to_str(offset);
221 int limt_type = ELEM COUNT; 289 smwar ni ng("potentially one past the end of array '%[%] ", array_str,
222 sval _t sval; 290 free_string(array_str);
291 free_string(offset_str);
224 poi nter = strip_expr(expr->left); 292 }
225 call = strip_expr(expr->right); ____unchanged_portion_onitted_
226 arg = get_argunment _fromcall _expr(call->args, start_arg);
227 if (get_inplied_value(arg, &sval) && 367 int buf_conparison_i ndex_ok(struct expression *expr)
228 sval . val ue == bytes_per_el ement (pointer)) 320 static int known_access_ok_conparison(struct expression *expr)
229 arg = get_argunment _fromcal | _expr(call->args, start_arg + 1); 368 {
369 struct expression *array;
231 if (arg->type == EXPR_BINOP && arg->op == '+ && 370 struct expression *size;

new usr/src/tool s/ smatch/src/smatch_buf _conpari son.c 5

371 struct expression *offset;

372 int limt_type;

373 int conparison;

375 array = get_array_base(expr);

376 size = get_size_variable(array, &imt_type);

328 size = get_size_variabl e(array);

377 if (!size)

378 return O;

379 of fset = get_array_of fset (expr);

380 conpari son = get_conpari son(offset, size);

381 if (!conparison)

382 return O;

384 if ((limt_type == ELEM COUNT || limit_type == ELEM LAST) &&
385 (conparl son == ' < || conpari son == SPECI AL_UNSI GNED_LT))
332 conpari son = get_conpari son(si ze, offset)

333 if (conmparison == "'>" || conparison == SPECI AL_UNSI GNED_GT)
386 return l;

387 if (limt_type == ELEMLAST&&

388 (comparison == = SPECI AL_LTE ||

389 conparison == SPECI AL_UNSI GNED_LTE | |

390 conparison == SPECI AL_EQUAL))

391 return 1;

393 return O;

394 }

__unchanged_portion_onitted_

416 static void array_check_data_i nfo(struct expression *expr)

417 {

418 struct expression *array;

419 struct expression *offset;

420 struct state_list *slist;

421 struct smstate *sm

422 struct conpare_data *conp;

423 char *of f set _nane;

424 const char *equal _name = NULL;

426 expr = strip_expr(expr);

427 if (lis_array(expr))

428 return;

430 if (known_access_ok_nunbers(expr))

431 return;

432 if (buf_conparison_index_ok(expr))

375 if (known_access_ok_conparison(expr))

433 return;

435 array = get_array_base(expr);

436 of fset = get_array_of fset(expr);

437 of fset _nane = expr_to_var(offset);

438 if (!offset_nane)

439 return;

440 slist = get_all_possible_equal _conparisons(offset);
441 if (!slist)

442 goto free;

444 FOR_EACH_PTR(slist, sm

445 conp = sm >state->dat a;

446 if (strcnp(conmp->left_var, offset_nane) == 0)
447 if (db_var_is_array_limt(array, conp->right_var, conp->
448 equal _name = conp->right_var;
449 break;

450

}
451 } else if (strcnp(conp->right_var, offset_name) == 0) {

new usr/src/tool s/ smatch/src/smatch_buf _conpari son.c 6
452 if (db_var_is_array_limt(array, conp->left_var, conp->l
453 equal _nane = conp->left_var;
454 br eak;

455 }
456
457 } END_FOR EACH PTR(sm);
459 if (equal _nane)
460 char *array_nane = expr_to_str(array);
462 smwar ni ng("potential off by one "%[]’ limt "% ", array_nane,
463 free_string(array_nane);
464 }
466 free:
467 free_slist(&slist);
468 free_string(offset_nane);
469 }
__unchanged_portion_onitted_
476 static int is_sizeof(struct expression *expr)
419 static char *buf_size_ param conparison(struct expression *array, struct expressi
477 {
478 const char *nane;
480 if (expr->type == EXPR_SI ZECOF)
481 return 1;
482 name = pos_i dent (expr->pos);
483 if (name && strcnp(nane, "sizeof") == 0)
484 return 1,
485 return O;
486 }
488 static int match_size_bi nop(struct expression *size, struct expression *expr, in
489 {
490 int orig_type = *limt_type;
491 struct expression *left;
492 sval _t sval;
494 left = expr->left;
495 if (lexpr_equiv(size, left))
496 return O;
498 if (expr->op == "'-' &&
499 get _val ue(expr >right, &sval) &&
500 sval .value == 1 &&
501 orig_type == ELEM COUNT)
502 *limt_type = ELEM LAST;
503 return 1;
504 }
506 if (expr->op == '+ &&
507 get _val ue(expr >right, &sval) &&
508 sval.value == 1 &&
509 orig_type == ELEM LAST) {
510 *limt_type = ELEM COUNT;
511 return 1,
512 }
514 if (expr->op =="'*" &&
515 is_si zeof(expr >right) &&
516 orig_type == ELEM COUNT) {
517 *limt_type = BYTE_COUNT;
518 return 1;
519 1

new usr/src/tool s/ smatch/ src/smatch_buf _conpari son. c

&imt_type

521 if (expr->op =="/" &&

522 is_si zeof(expr >right) &&

523 orig_type == BYTE_COUNT) {

524 *1im t_type = ELEM_COUNT;

525 return 1,

526 }

528 return O;

529 }

531 static char *buf_size_param conpari son(struct expression *array, struct expressi
532 {

533 struct expression *tnp, *arg;

421 struct expression *arg;

534 struct expression *size;

535 static char buf[32];

536 int i;

538 size = get_size_variable(array, limt_type);
426 size = get_size_variabl e(array);

539 if (!size)

540 return NULL;

542 if (*limt_type == USED_LAST)

543 *limt type = ELEM LAST;

544 if (*limt_type == USED_COUNT)

545 *Tmt_type = ELEM COUNT;

547 i =-1;

548 FOR_EACH PTR(args, tnp) {

431 FOR_EACH PTR(args, arg) {

549 i ++;

550 arg = tnp;

551 if (arg == array)

552 conti nue;

553 if (expr_equiv(arg, size) ||

554 (arg->type == EXPR_BI NOP &&

555 mat ch_si ze_bi nop(si ze, arg, limt_type))) {
435 if (lexpr_equiv(arg, size))

436 cont i nue;

556 snprintf(buf, sizeof(buf), "==$%", i);
557 return buf;

558 }

559 } END FOR EACH PTR(tnp);

439 } END_FOR_EACH_PTR(arg);

561 return NULL;

562 }

564 {st atic void match_call (struct expression *call)

565

566 struct expression *arg;

567 char *conpare;

568 int param

569 char buf[5];

570 int limt_type;

572 param = -1;

573 FOR_EACH PTR(cal | ->args, arg) {

574 par amt+;

575 i1f (lis_pointer(arg))

576 conti nue;

577 conpare = buf_size_param conparison(arg, call->args,
455 conpare = buf_si ze_param conparison(arg, call->args);
578 if (!conpare)

579 conti nue;

new usr/src/tool s/ smatch/ src/smatch_buf_conpari son. c

580 snprintf(buf, sizeof(buf), "%, limt_type);

581 sql _i nsert cal ler_inf o(call, limt_type, param conpare, buf);
458 sql _insert_caller_info(call, ARRAY_LEN, param "$", conpare);
582) } END_FOR_EACH PTR(arg);

583

__unchanged_portion_onitted_

613 static void set_param conpare(const char *array_nane,
614 {

615 struct expression *array_expr;

616 struct expression *size_expr;

617 struct synbol *size_sym

618 char *size_nane;

619 | ong param

620 struct smstate *tnp;

621 int limt_type;

623 if (strncnp(key, "==$", 3) !=0)

499 if (strncnp(value, "==%", 3) !=0)

624 return;

625 param = strtol (key + 3, NULL, 10);

501 param = strtol (value + 3, NULL, 10);

626 1 f (!get_paranmparam &size_nane, &size_sym)
627 return;

628 array_expr = synbol _expression(array_sym;
629 si ze_expr = synbol _expression(size_sym;
630 limt_type = strtol (val ue, NULL, 10);

632 tnp = set_state_expr(size_id, array_expr,
507 tnp = set_state_expr(size_id, array_expr,
633 if ('tnp)

634 return;

635 set_state_expr(link_id, size_expr,

510 set_state_expr(link_id, size_expr, alloc_expr
636 }

638 static void set_inplied(struct expression *call,
513 static void set_arraysize_arg(const char *array_nane,
639 {

515 struct expression *array_expr;

640 struct expression *size_expr;

641 struct synbol *size_sym

642 char *size_naneg;

643 | ong param

644 struct smstate *tnp;

645 int limt_type;

647 if (strncnp(key, "==$", 3) != 0)

648 return;

649 param = strtol (key + 3, NULL, 10);

522 param = strtol (key, NULL, 10);

650 1 f (!get_param param &size_nane, &size_sym)
651 return;

525 array_expr = synbol _expression(array_sym;
652 si ze_expr = synbol _expression(size_sym;
654 limt_type = strtol (value, NULL, 10);

655 tnp = set_state_expr(size_id, array_expr,
528 tnp = set_state_expr(size_id, array_expr,
656 if ('tnp)

657 return;

658 set _state_expr(link_id, size_expr,

531 set_state_expr(link_id, size_expr, alloc_expr
659 }

__unchanged_portion_onitted_

struct synbol *array_sym

al | oc_conpare_size(limt_type,
al | oc_expr_state(size_expr));

al | oc_state_expr(array_expr));
_state(array_expr));

struct expression *array_expr,

struct synbol *array_sym

al | oc_conpare_size(limt_type,
al | oc_expr_state(size_expr));

al | oc_state_expr(array_expr));
_state(array_expr));

new usr/src/tool s/ smatch/src/smatch_buf _conpari son.c 9 new usr/src/tool s/ smatch/src/smatch_buf _conparison.c 10

690 static void set_used(struct expression *expr) 756 if (!'tnp)
691 { 757 return O;
692 struct expression *parent; 758 set_state_expr(link_id, expr->left, alloc_state_expr(array));
693 struct expression *array; 759 return 1;
694 struct expression *offset; 760 }
695 struct smstate *tnp;
696 int limt_type; 762 static void nmatch_assign(struct expression *expr)
763 {
698 if (expr->op != SPECI AL_I NCREMENT) 764 if (expr->op !'="'"=")
699 return; 765 return;
701 limt_type = USED LAST; 767 if (match_assign_array(expr))
702 if (expr->type == EXPR_POSTOP) 768 return;
703 limt_type = USED_COUNT; 769 mat ch_assi gn_si ze(expr);
770 }
705 parent = expr_get_parent_expr(expr);
706 If (!parent || parent->type != EXPR_BI NOP) 772 static void match_copy(const char *fn, struct expression *expr, void *unused)
707 return; 773 {
708 parent = expr_get_parent_expr(parent); 774 struct expression *src, *size;
709 1f (!parent || !is_array(parent)) 775 int src_param size_param
710 return;
777 src = get_argunent _from cal | _expr (expr->args, 1);
712 array = get_array_base(parent); 778 size = get_argunent _from cal |l _expr (expr->args, 2);
713 of fset = get_array_of fset (parent); 779 src = strl p_expr(src);
714 if (offset !'= expr) 780 size = strip_expr(si ze)
715 return; 781 if (!src || !size)
782 return;
717 tnp = set_state_expr(size_id, array, alloc_conpare_size(limt_type, offs 783 if (src->type = EXPR_SYMBOL || size->type != EXPR_SYMBOL)
718 if (!tnp) 784 return;
719 return;
720 set _state_expr(link_id, offset->unop, alloc_state_expr(array)); 786 src_param = get _param num from syn(src->synbol) ;
721 } 787 si ze_param = get _param num from syn{(si ze- >synbol) ;
788 if (src_param< 0 || size_param < 0)
723 static int match_assign_array(struct expression *expr) 789 return;
724 {
725 /1 FI XVE: inpl enent 791 sql _insert_cache(call _inplies, ""%', '%’', 0, %, %, %, '==%%', "%
726 return O; 792 get _base flle() get _function(), fn statlc()
727 } 793 BYTE_COUNT, src_param size_param BYTE C&JNT);
794 }
729 static int match_assign_size(struct expression *expr)
730 { 796 voi d regi ster_buf_conparison(int id)
731 struct expression *right, *size, *array; 797 {
732 struct smatch_state *state; 798 int i;
733 struct smstate *tnp;
734 int limt_type; 800 size_id = id;
736 right = expr->right; 802 set _dynami c_states(size_id);
737 size = right;
738 if (size- >type == EXPR_BI NOP) 804 add_unnat ched_st at e_hook(si ze_i d, &unmatched_state);
739 size = size->left;
806 add_al | ocati on_function("malloc", &mtch_alloc, 0);
741 array = get_array_vari abl e(si ze); 807 add_al | ocati on_function("nendup", &match_alloc, 1);
742 if (larray) 808 add_al | ocation_function("realloc", &mtch_alloc, 1);
743 return O; 809 if (option_project == PRQJ_KERNEL) ({
744 state = get_state_expr(size_id, array); 810 add_al | ocati on_function("kmal | oc", &match_alloc, 0);
745 if (!state || !state->data) 811 add_al | ocati on_function("kzal |l oc", &mwatch_alloc, 0);
746 return O; 812 add_al | ocati on_function("vnall oc", &match_alloc, 0);
813 add_al | ocati on_function("__vnalloc", &match_alloc, 0);
748 limt_type = state_to_linmit(state); 814 add_al | ocati on_function("sock_kmal |l oc", &mtch_alloc, 1);
749 if (ITmt_type < 0) 815 add_al | ocati on_function("knmendup", &match_alloc, 1);
750 return O; 816 add_al | ocati on_functi on("knmendup_user", &match_alloc, 1);
817 add_al | ocation_function("dma_al |l oc_attrs" &Tat ch_al i oc, 1);
752 if (right->type == EXPR_BI NOP && ! match_si ze_bi nop(size, right, & imt_t 818 add_al | ocati on_functi on(" pci _al | oc_consi stent”, &match all oc, 1)
753 return O; 819 add_al | ocati on_function("pci_alloc coherent amat ch_alloc, 1);
820 add_al | ocation_function("devm kmal Toc", &mat ch_al loc, 1);

755 tnp = set_state_expr(size_id, array, alloc_conpare_size(limt_type, expr 821 add_al | ocati on_function("devm kzal | oc", &mtch_alloc, 1);

new usr/src/tool s/ smatch/src/smatch_buf _conpari son.c 11

822 add_al | ocati on_function("kcal | oc" &rrat ch_cal loc, 0);

823 add_al | ocation_functi on("devm kcal | oc”, &mat ch_calloc, 1);
824 add_al | ocati on_function("kmal I oc array , &match_calloc, 0);
825 add_al | ocati on_function("kreal | oc", &mtch_alloc, 1);

827 add_functi on_hook("copy_fromuser" &natch_copy, NULL) ;
828) add_f uncti on_hook("__copy_fr om_user , &match_copy, NULL);
829

831 add_hook(&rray_check, OP_HOXK);

832 add_hook(&rray_check_data_i nfo, OP_HOXK);

833 add_hook(&set _used, OP_HOK);

835 add_hook(&mat ch_cal I, FUNCTI ON_CALL_HOOK) ;

595 sel ect _caller_info hook(set _param conpare, ARRAY_LEN);

596 sel ect _cal l er_i nfo_hook(set_arraysi ze_arg, ARRAYSI ZE ARG)

836 add_hook(&runge_start_states, AFTER DEF_HOXK) ;

838 add_hook(&rat ch_assi gn, ASSI GNVENT_HOK) ;

840 for (i = BYTE_COUNT; i <= USED_COUNT; i++) {

841 sel ect_cal | _i nplies _hook(i, &set_inplied);

842 sel ect _cal l er _i nf o_hook(set _param conpare, i);

843 sel ect _return_i nplies_hook(i, &set_inplied);

844 }

845 }

847 void regi ster_buf_conparison_links(int id)

848 {

849 link_id = id;

850 set _dynami c_states(link_id);

851 add_mer ge_hook(1ink_id, &rrerge i nks);

852) add_nodi fication hook(l ink_id, &match_link_nodify);

853

__unchanged_portion_onitted_

new usr/src/tool s/ smatch/src/smatch_buf _size.c 1 new usr/src/tool s/smatch/src/smatch_buf _size.c 2

R R R R

21796 Mon Aug 5 08:38:20 2019 507 size = get_stored_size_end_struct_bytes(expr);
new usr/src/tool s/ smatch/src/smatch_buf_size.c 508 if (size)
11506 snatch resync 509 return alloc_int_rl(size);
LEEE R R R R EE SRR EEEEEEEEEEE RS SRR SRR EEEEEREREEEEEEEEESE]
____unchanged_portion_onitted_ 511 /* buf[4] */
512 size = get_real _array_size(expr);
328 static int get_bytes_fromaddress(struct expression *expr) 513 if (size)
329 { 514 return alloc_int_rl (el ements_to_bytes(expr, size));
330 struct synbol *type;
331 int ret; 516 /* buf = malloc(1024); */
517 ret = get_stored_size_bytes(expr);
333 if (!option_spammy) 518 if (ret)
334 return O; 519 return ret;
333 if (expr->type != EXPR PRECP || expr->op !="'&)
334 return O; 519 size = get_stored_size_end_struct_bytes(expr);
335 type = get_type(expr); 520 if (size)
336 if (ltype) 521 return alloc_int_rl(size);
337 return O;
521 /* char *foo = "BAR' */
339 if (type->type == SYM PTR) 522 size = get_size_from.initializer(expr);
340 type = get_base_type(type); 523 if (size)
524 return alloc_int_rl (el ements_to_bytes(expr, size));
342 ret = type_bytes(type);
343 if (ret == 1 526 size = get_bytes_from address(expr);
344 return 0; /* ignore char pointers */ 527 if (size)
528 return alloc_int_rl(size);
346 return ret;
347 } 530 ret = size_fromdb(expr);
____unchanged_portion_onitted_ 531 if (ret)
532 return ret;
471 struct range_list *get_array_size_ bytes_rl (struct expression *expr)
472 { 534 return NULL;
473 struct range_|list *ret = NULL; 535 }
474 int size; ____unchanged_portion_onitted_
476 expr = renove_addr _fl uff(expr); 709 static void nmatch_call oc(const char *fn, struct expression *expr, void *unused)
477 if (!expr) 710 {
478 return NULL; 711 struct expression *right;
712 struct expression *size, *nr, *nult;
480 /* "BAR' */ 713 struct range_list *rl;
481 if (expr->type == EXPR_STRI NG 714 struct expression *arg;
482 return alloc_int_rl (expr->string->length); 715 sval _t el enents;
716 sval _t size;
484 if (expr->type == EXPR BINOP && expr->op == "+) {
485 sval _t offset; 715 right = strip_expr(expr->right);
486 struct synbol *type; 716 nr = get_argunent _fromcall _expr(right->args, 0);
487 int bytes; 717 size = get_argunent _fromcall _expr(right->args, 1);
718 mult = bi nop_expression(nr, '*', size);
489 if (!get_inplied_value(expr->right, &offset)) 719 if (get_inplied_rl(mlt, &l))
490 return NULL; 720 store_all oc(expr->left, rl);
491 type = get_type(expr->left); 719 arg = get_argunent _fromcal |l _expr(right->args, 0);
492 if (!type) 720 if (lget_inplied_value(arg, &elenents))
493 return NULL; 721 return; // FIXVE!!
494 if (type->type != SYM ARRAY && type->type != SYM PTR) 722 arg = get_argunment _fromcal |l _expr(right->args, 1);
495 return NULL; 723 if (get_inplied_value(arg, &size))
496 type = get_real _base_type(type); 724 store_all oc(expr->left, size_to_rl (el ements.value * size.value))
497 bytes = type_bytes(type); 721 el se
498 if (bytes == 0) 722 store_al l oc(expr->left, size_ to_rl(-1));
499 return NULL; 723 }
500 of fset.val ue *= bytes; __unchanged_portion_onitted_
501 size = get_array_size_bytes(expr->left);
502 if (size <= 0) 868 void register_buf_size(int id)
503 return NULL; 869 {
504 return alloc_int_rl(size - offset.value); 870 ny_size_id = id;

505 }

new usr/src/tool s/ smatch/ src/smatch_buf_size.c

872
874
876
877
878

880

925
926

927 }
__unchanged_portion_onitted_

set _dynami c_states(my_size_id);
add_unnat ched_st at e_hook(ny_si ze_i d, &unmatched_si ze_state);

sel ect _cal | er _i nfo_hook(set_param buf _si ze, BUF_SI ZE);
sel ect _return_states_hook(BUF_SI ZE, &db_returns_buf_size);
add_split_return_cal Thack(print_returned_all ocations);

al | ocation_funcs = create_functi i on hasht abl e(100) ;

add_al | ocati on funct ion("malloc", &match_all oc, O),

add_al | ocation_function("call oc &mat ch_cal l oc, 0);

add_al | ocati on_functi on(" nmendup’ . &mat ch_al l oc, 1);

add_al | ocation_function("realloc", &mtch_alloc, 1);

if (option_project == PRQJ KERNEL) {
add_al | ocation_function("kmal | oc", &match_alloc, 0);
add_al | ocati on_function("kmal | oc_node", &match_all oc,
add_al | ocati on_function("kzal | oc", &match_alloc, 0);
add_al | ocati on_function("kzal | oc_node", &nmatch_all oc,
add_al | ocati on_function("vnalloc", &match_alloc, 0);

add_al | ocati on_function("__vnalloc", &match_alloc, 0);

add_al | ocati on_function("kcal | oc", &mat ch_calloc, 0);

add_al | ocation_function("kmal | oc_array", &match cal i oc,
add_al | ocation_function("drm mal loc_ab", &match_calloc,

0);
0);

0);
0);

add_al | ocation_function("drmcalloc_I arge", &match_cal i oc, 0);

add_al | ocati on_function("sock_kmal | oc", &mmatch_all oc,
add_al | ocati on_function("kmendup”, &match_alloc, 1);
add_al | ocati on_functi on("kmendup_user", &nmatch_all oc,

1);
1);

add_al | ocation_function("dma_al loc_attrs", &mtch_alloc, 1);
add_al | ocati on_function("pci_alloc_consistent”, &mtch_alloc, 1)
add_al | ocati on_function("pci_all oc_coherent", &mtch_alloc, 1);

add_al | ocati on_functi on("devm knal | oc", &match_all oc,
add_al | ocati on_function("devm kzal | oc", &match_all oc,
add_al | ocati on_functi on("kr eal l oc", &match_alloc, 1);

1);
1);

add_al | ocati on_function("__al | oc_boot ment, &mat ch_all oc, 0);

add_al | ocation_function("all oc_boot ment', &mat ch_all oc,
add_al | ocati on_function("kmap", &rmtch_page 0);

add_al | ocati on_function("get_zeroed_page", &mat ch_page,
add_al | ocati on_function("alloc_page", &match_page, 0);
0);
_page, 0);

add_al | ocati on_function("page_address", &match_page,
add_al | ocati on_function("| ownem page_address", &match

0);
0);

add_al | ocati on_function("all oc_pages", &match_alloc_pages, 1);

add_al | ocati on_function("alloc_pages_current", &nmatch

_al | oc_page

add_al | ocati on_function("__get_free_pages", &mtch_alloc_pages,

}

add_al | ocati on_function("strndup”, match_strndup, 0);
if (option_project == PRQJ KERNEL)

add_al | ocati on_function("kstrndup", match_strndup, 0);

add_nodi fi cati on_hook(ny_size_id, &set_size_undefined);
add_ner ge_hook(ny_size_id, &nerge_size_func);

if (option_info)
add_hook(record_gl obal _si ze, BASE_HOK) ;

new usr/src/tool s/ smatch/ src/smatch_capped. ¢ 1 new usr/src/tool s/ smatch/ src/smatch_capped. ¢ 2

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 114 SVa| |S negatlve(” mn(flght rl)))
8275 Mon Aug 5 08:38:21 2019 115 return O;
new usr/src/tool s/smatch/src/smatch_capped. c 116 }
11506 snatch resync 117 return 1;
IR E SR SR RS RS E SRR R R SRR R R SRR R R R RS EEREREEREEREEEEEEEERSE] 118 }
____unchanged_portion_onitted_ 119 if (get_state_expr(nmy_id, expr) == &capped)
120 return 1;
41 {stati c struct smatch_state *unmatched_state(struct smstate *sm 121) return O;
42 122
43 struct smatch_state *state; ____unchanged_portion_onitted_
45 state = __get_stat e(SMATCH EXTRA, sm >nane, sm >syn); 141 static void match_condition(struct expression *expr)
45 state = get_state(SMATCH EXTRA, sm >nanme, sm >syn); 142 {
46 if (state & !estate_is_whol e(state)) 143 struct expression *left, *right;
47 return &capped; 144 struct smatch_state *left_true = NULL;
48 return &uncapped; 145 struct smatch_state *left_false = NULL;
49 } 146 struct smatch_state *right_true = NULL;
____unchanged_portion_onitted_ 147 struct smatch_state *right_fal se = NULL;
148 sval _t sval;
69 i{nt i s_capped(struct expression *expr)
70
71 struct synbol *type; 151 if (expr->type != EXPR_COWARE)
72 sval _t dumy; 152 return;
74 expr = strip_expr(expr); 154 left = strip_expr(expr->left);
75 while (expr &% expr->type == EXPR _POSTOP) { 155 right = strip_expr(expr->right);
76 expr = strip_expr(expr->unop);
77 } 157 while (left->type == EXPR_ASSI GNMVENT)
78 if (lexpr) 158 left = strip_expr(left->left);
79 return O;
160 /* 1f we're dealing with known expressions, that’'s for smatch_extra.c */
81 type = get_type(expr); 161 if (get_inplied_value(left, &sval) ||
82 if (is_ptr_type(type)) 162 get _inplied_value(right, &sval))
83 return O; 163 return;
84 if (type == &bool _ctype)
85 return O; 165 switch (expr->op) {
86 if (type_bits(type) >= 0 && type_bits(type) <= 2) 166 case '<':
87 return O; 167 case SPECI AL_LTE:
168 case SPECI AL_UNSI GNED_LT:
89 if (get_hard_max(expr, &dummy)) 169 case SPECI AL_UNSI GNED _LTE:
90 return 1; 170 left_true = &capped;
171 right_fal se = &capped;
92 if (is_capped_macro(expr)) 172 br eak;
93 return 1; 173 case '>':
174 case SPECI AL_GTE:
95 if (expr->type == EXPR _BINOP) { 175 case SPECI AL_UNSI GNED GT:
96 struct range_list *left_rl, *right_rl; 176 case SPECI AL_UNSI GNED_GTE:
177 left_fal se = &apped;
98 if (expr->op == '&) 178 right_true = &capped;
99 return 1; 179 br eak;
100 if (expr->op == SPECI AL_RI GHTSHI FT) 180 case SPECI AL_EQUAL:
101 return 1; 181 left_true = &capped;
102 if (expr->op == '% && is_capped(expr->right)) 182 right_true = &capped;
103 return 1; 183 br eak;
93 if (expr->op == "'%) 184 case SPECI AL_NOTEQUAL:
94 return is_capped(expr->right); 185 left_fal se = &capped;
104 if (!is_capped(expr->left)) 186 right_fal se = &capped;
105 return O; 187 br eak;
106 if (expr->op =="'/")
107 return 1; 189 defaul t:
108 if (!is_capped(expr->right)) 190 return;
109 return O; 191 }
110 if (expr->op == "*")
111 get _absolute_rl (expr->left, & eft_rl); 193 set _true_fal se_states_expr(ny_id, left, left_true, left_false);
112 get _absolute_rl (expr->right, &ight _rl); 194 set _true_false_states_expr(my_id, right, right_true, right_false);
113 iIf (sval _is_negative(rl_mn(left_rl)) || 171 set _true_fal se_states_expr(ny_id, expr->left, left_true, left_false);

new usr/src/tool s/ smatch/src/smatch_capped. c 3
172 set _true_false_states_expr(ny_id, expr->right, right_true, right_false);
195 }

197 static void match_assign(struct expression *expr)

198 {

199 struct synbol *type;

201 type = get_type(expr);

202 if (is_ptr_type(type))

203 return;

204 if (type == &bool _ctype)

205 return;

206 if (type_bits(type) >= 0 && type_bits(type) <= 2)

207 return;

209 if (is_capped(expr->right)) {

210 set_state_expr(ny_id, expr->left, &capped);

211 } else {

212 if (get_state_expr(my_id, expr->left))

213 set _state_expr(ny_id, expr->left, &uncapped);
214 }

215 }

____unchanged_portion_onitted_

234 static void struct_nenber_cal | back(struct expression *call, int param char *pri
235 {

236 struct smatch_state *estate;

237 sval _t sval;

239 if (sm>state != &capped)

240 return;

241 estate = __get_state(SMATCH EXTRA, sm >nane, sm >syn);

209 estate = get_state(SMATCH EXTRA, sm >npame, sm >syn);

242 if (estate_get_single_value(estate, &sval))

243 return;

244 sql _insert_caller_info(call, CAPPED DATA, param printed_nane,
245 }

247 static void print_return_inplies_capped(int return_id, char *return_ranges, stru
248 {

249 struct smatch_state *orig, *estate;

250 struct smstate *sm

251 struct synbol *ret_sym

252 const char *param nane;

253 char *return_str;

254 int param

255 sval _t sval;

256 bool return_found = fal se;

258 expr = strip_expr(expr);

259 return_str = expr_to_str(expr);

260 ret_sym = expr_to_synm(expr);

262 FOR_EACH MY_SMny_id, __get_cur_stree(), sm {

263 if (sm>state != &capped)

264 conti nue;

266 param = get _param num fromsyn(sm >sym;

267 if (param < 0)

268 conti nue;

270 estate = __get_state(SMATCH EXTRA, sm >nane, sm >synj;
238 estate = get_state(SMATCH EXTRA, sm >nanme, sm >syn);
271 if (estate_get_single_value(estate, &sval))

272 conti nue;

new usr/src/tool s/ smatch/src/smatch_capped. c

4

274 orig = get_state_stree(get_start_states(), ny_id, sm>nane, sm>
275 if (orig == &capped && ! param was_set _var_syn{sm >nane, sm >sym)
243 if (orig == &capped)

276 conti nue;

278 param nanme = get_param nane(sn;

279 i1 f (!param.nane)

280 conti nue;

282 sql _insert_return_states(return_id, return_ranges, CAPPED DATA,
283 param param nanme, "1");

284 } END_FOR_EACH_SM sm);

286 FOR_EACH MY_SMny_id, _ get_cur_stree(), sm {

287 if ('ret_sym

288 br eak;

289 if (sm>state != &capped)

290 conti nue;

291 if (ret_sym!= sm>sym

292 conti nue;

294 estate = __get_state(SMATCH EXTRA, sm >nane, sm >syn);

295 if (estate_get_single_value(estate, &sval))

296 conti nue;

298 param nane = state_nane_to_param nanme(sm >nanme, return_str);
299 1 f (!param nane)

300 conti nue;

301 if (strcnp(paramnane, "$") == 0)

302 return_found = true;

303 sql _insert_return_states(return_id, return_ranges, CAPPED DATA,
304 -1, paramnane, "1");

305 } END_FOR_EACH_SM sm);

307 if (return_found)

308 goto free_string;

310 if (option_project == PRQJ_KERNEL && get_function() &&

311 strstr(get_function(), "nla_get_"))

312 sql _insert_return_states(return_id, return_ranges, CAPPED DATA,
313 -1, "$", "1Y);

315 free_string:

316 free_string(return_str);

317 }

____unchanged_portion_onitted_

new usr/src/tool s/ smatch/ src/smatch_conparison. c

R R R R

62964 Mon Aug 5 08:38:21 2019
new usr/src/tool s/ smatch/ src/smatch_conparison.c
11506 snatch resync

R R R R

__unchanged_portion_onitted_

644 static void match_inc(struct smstate *sm bool preserve)
644 static void match_inc(struct smstate *sm

645 {

646 struct string_list *links;

647 struct smatch_state *state, *new

648 struct conpare_data *data;

649 char *tnp;

650 int flip;

651 int op;

653 links = sm >st at e->dat a;

655 FOR_EACH_PTR(| | nks, tnp) {

656 state = get_state(conpare_id, tnp, NULL);

657 if (!state)

658 conti nue;

659 data = state->data;

660 if (!data)

661 conti nue;

663 flip = 0;

664 if (strncnp(sm >nanme, tnp, strlen(sm>nane)) != 0 ||
665 trrp[strlen(sm>name)] =)

666 flip =

668 op = state_to_conparison(state);

670 switch (flip ? flip_conparison(op) : op) {

671 case SPECI AL_EQUAL:

672 case SPECI AL_GTE:

673 case SPECI AL_UNSI GNED_GTE:

674 case ' >’

675 case SPECI AL_UNSI GNED_GT:

676 if (preserve)

677 br eak;

678 new = al | oc_conpare_st at e(

679 data->l eft, data->left_var,
680 fI|p’7'<'-'>',

681 dat a- >ri ght, data->right_var,
682 set_state(conpare_id, tnp, NULL, new);

683 break;

684 case '<':

685 case SPECI AL_UNSI GNED_LT:

686 new = al | oc_conpare_st at e(

687 data->l eft, data->left_var,
688 flip ? SPECI AL_GIE :

689 dat a- >ri ght, data->right_var,
690 set_state(conpare_id, tnp, NULL, new);

691 break;

692 defaul t:

693) set _state(conpare_id, tnp, NULL, &undefined);
694

695 } END_FOR EACH PTR(tnp);

696 }

698 static void match_dec(struct smstate *sm bool preserve)
696 static void match_dec(struct smstate *sn

699 {

700 struct string_list *links;

data->left_v

dat a->ri gh

data->left_v
SPECI AL_LTE,

data->ri gh

new usr/src/tool s/smatch/src/smatch_conpari son.c 2
701 struct smatch_state *state;

702 char *tnp;

704 links = sm>state->dat a;

706 FOR_EACH_PTR(1 i nks, tnp)

707 state = get_state(conpare_id, tnp, NULL);

709 switch (state_to conparison(state)) {

710 case SPECI AL_EQUAL:

711 case SPECI AL_LTE:

712 case SPECI AL_UNSI GNED_LTE:

713 case ' <':

714 case SPECI AL_UNSI GNED LT: {

715 struct conpare_data *data = state->data;

716 struct smatch_state *new,

718 if (preserve)

719 br eak;

721 new = al | oc_conpare_st at e(

722 data >l eft, data->left_var, data->left_v
723

724 data >right, data->right_var, data->righ
725 set _state(conpare_id, tnp, NULL, new) ;

726 br eak;

727

728 defaul t:

729 set _state(conpare_id, tnp, NULL, &undefined);
730 }

731 } END_FOR EACH PTR(tnp);

732 }

734 static void reset_sn(struct smstate *sm

735 {

736 struct string_list *links;

737 char *tnp;

739 links = sm >st at e- >dat a;

741 FOR_EACH PTR(li nks, tmp) {

742 set_state(conpare_id, tnp, NULL, &undefined);

743 } END_FOR EACH PTR(tnp);

744 set_state(link_id, sm>nane, sm>sym &undefined);

745 }

747 static bool match_add_sub_assign(struct smstate *sm struct expression *expr)
748 {

749 struct range_list *rl;

750 sval _t zero = { .type = & nt_ctype };

752 if (lexpr || expr->type != EXPR_ASSI GNMENT)

753 return false;

754 if (expr->op != SPECI AL _ADD_ASSI GN && expr->op ! = SPECI AL_SUB_ASSI GN)
755 return fal se;

757 get _absolute_rl (expr->right, &rl);

758 if (sval _is_negative(rl_mn(rl))) {

759 reset_sn(sm;

760 return fal se;

761 1

763 if (expr->op == SPECI AL_ADD ASSI GN)

764 natch_l nc(sm rl_has_sval (rl, zero));

765 el se

766 mat ch_dec(sm rl _has_sval (rl, zero));

new usr/src/tool s/ smatch/ src/smatch_conparison. c 3

767 return true;

768 }

770 {stati ¢ void match_inc_dec(struct smstate *sm struct expression *nod_expr)
771

772 /*

773 * if (foo > bar) then ++foo is also > bar.

774 *

775 if (!nmod_expr)

776 return;

777 if (match_add_sub_assi gn(sm nod_expr))

778 return;

779 if (rmod_expr->type ! = EXPR_PREOP && nod_expr->type ! = EXPR_POSTOP)
780 return;

782 if (rmod_expr->op == SPECI AL_| NCREMENT)

783 mat ch_i nc(sm fal se);

740 mat ch_i nc(sm;

784 else if (nod_expr->op == SPECI AL_DECREMENT)

785 mat ch_dec(sm fal se);

742 mat ch_dec(sm;

786 }

__unchanged_portion_onitted_

795 static void match_nodify(struct smstate *sm struct expression *nod_expr)
796 {

754 struct string_list *links;

755 char *tnp;

797 if (rmod_expr && is_sel f_assign(nod_expr))

798 return;

800 /* handl ed by match_inc_dec()

801 if (nod_expr &&

802 ((rmod_expr->type == EXPR_PRECP || nod_expr->type == EXPR_POSTOP) &&
803 (mod_expr->op == SPECI AL_I NCREMENT || nod_expr->op == SPEC| AL_DECRE
804 return;

805 if (nod_expr && nod_expr->type == EXPR_ASSI GNVENT &&

806 (mod_expr->o0p == SPECI AL_ADD_ASSI CN || nod_expr->op == SPECI AL_SUB_A
807 return;

809 reset_sn(sm;

766 links = sm >st at e- >dat a;

768 FOR_EACH_PTR(links, tmp) {

769 set_state(conpare_id, tnp, NULL, &undefined);

770 } END_FOR EACH PTR(tnp);

771 set_state(link_id, sm>nane, sm>sym &undefined);

810 }

__unchanged_portion_omtted_

1645 static int get_conparison_hel per(struct expression *a, struct expression *b, boo
1607 int get_conparison(struct expression *a, struct expression *b)

1646 {

1647 char *one = NULL;

1648 char *two = NULL;

1649 int ret = 0;

1651 if (ta]] !'b)

1652 return O;

1654 a = strip_parens(a);

1655 b = strip_parens(b);

1657 nmove_plus_to_m nus(&a, &b);

new usr/src/tool s/ smatch/ src/smatch_conparison. c

struct

expr essi on

1659 one = chunk_to_var(a);

1660 if (!one)

1661 goto free;

1662 two = chunk_to_var(b);

1663 if (!'two)

1664 goto free;

1666 ret = get_conparison_strings(one, two);

1667 if (ret)

1668 goto free;

1670 if (is_plus_one(a) || is_mnus_one(a)) {

1671 free_string(one);

1672 one = chunk_to_var(a->left);

1673 ret = get_conparison_strings(one, two);
1674 } else if (is_plus_one(b) || is_minus_one(b)) {
1675 free_string(two);

1676 two = chunk_to var(b >l eft);

1677 ret = get_conparison_stri ngs(one, two) ;
1678 }

1680 if (lret)

1681 goto free;

1683 if ((is_ pI us one(a) || is_mnus_one(b)) & ret == '<")
1684 et SPECI AL_LTE;

1685 else if ((| s_m nus_one(a) || is_plus_one(b)) & ret ==
1686 ret = SPECI AL_GTE;

1687 el se

1688 ret = 0;

1690 free:

1691 free_string(one);

1692 free_string(two);

1694 if (!ret & use_extra)

1656 if ('ret)

1695 return conparison_fromextra(a, b);
1696 return ret;

1697 }

1699 int get_conparison(struct expression *a, struct expression *b)
1700 {

1701 return get_conparison_hel per(a, b, true);

1702 }

1704 int get_conparison_no_extra(struct expression *a, struct expression *b)
1705 {

1706 return get_conparison_hel per(a, b, false);

1707 }

1709 int possible_conparison(struct expression *a, int conparison,
1710 {

1711 char *one = NULL;

1712 char *two = NULL;

1713 int ret = 0;

1714 char buf[256];

1715 struct smstate *sm

1716 int saved;

1718 one = chunk_to_var(a);

1719 if (!one)

1720 goto free;

1721 two = chunk_to_var(b);

1722 if (!two)

1723 goto free;

new usr/src/tool s/ smatch/ src/smatch_conparison. c 5

1726 if (strcnp(one, two) == 0 && conparison == SPECI AL_EQUAL) {
1727 ret = 1;

1728 goto free;

1729 }

1731 if (strcnp(one two) > O) {

1732 char *tnp = one;

1734 one = two;

1735 two = tnp;

1736 conparison = flip_conparison(conparison);
1737 1

1739 snprintf(buf, sizeof(buf), "% vs %", one, two);
1740 sm = get_sm state(conpare_id, buf, NULL);

1741 if (!sm

1742 goto free;

1744 FOR_EACH _PTR(sm >possi bl e, sm {

1745 i1f (!'sm>state->data)

1746 conti nue;

1747 saved = ((struct conpare_data *)sm >st at e- >dat a) - >conpari son;
1748 if (saved == conparl son)

1749 ret = 1;

1750 if (conparison == SPECI AL_EQUAL &&

1751 (saved == SPECI AL_LTE |

1752 saved == SPECI AL_GTE | |

1753 saved == SPECI AL_UNSI GNED_LTE ||
1754 saved == SPECI AL_UNSI GNED_GTE))

1755 ret = 1;

1756 if (ret ==

1757 goto free;

1758 } END_FOR EACH PTR(sm);

1760 return ret;

1761 free:

1762 free_string(one);

1763 free_string(two);

1764 return ret;

1765 }

__unchanged_portion_onitted_

2370 static int split_op_paramkey(char *value, int *op, int *param char **key)

2371 {

2372 static char buf[256];

2373 char *p;

2375 if (!parse_conparison(&val ue, op))
2376 return O;

2378 snprintf(buf, sizeof(buf), "%", value);
2330 snprintf(buf, sizeof(buf), value);
2380 p = buf;

2381 if (*p++ 1=$)

2382 return O;

2384 *param = atoi (p);

2385 if (*param< 0 || *param > 99)
2386 return O;

2387 p++;

2388 1 f (*param > 9)

2389 p++;

2390 p--;

new usr/src/tool s/ smatch/ src/smatch_conparison.c

2391 *p='¢,
2392 *key = p;
2394 return 1;
2395 }

__unchanged_portion_onitted_

2543 void regi ster_conparison(int id)

2544 {

2545 conpare_id = id;

2546 set _dynam c_st at es(conpare_id);

2547 add_hook(&save_start_stat es, AFTER DEF - HOOK) ;

2548 add_unmat ched_st ate hook(cor’rpare id, unrratched_conpari son);
2549 add_pre_nerge_hook(conpare_id, &pre_nerge_hook);

2550 add_ner ge_hook(conpare_i d, &nerge conpare_; stat es)

2551 add_hook(& ree_dat a, AFTER FUNC_|

2552 add_hook(&mat ch_cal I_| nfo, FUNCTI ON_ CALL _HOCOK) ;

2553 add_split_return_cal | back(&print_return_conparison);

2555 sel ect _return_st at es_hook(PARAM COVPARE, &db_r et urn_conpari son);
2556 add_hook(&vat ch_preop, OP_HOXK);

2557 }

__unchanged_portion_onitted_

2564 void register_conparison_|inks(int id)

2565 {

2566 link_id =id;

2567 db_i gnore_states(link_id);

2568 set _dynami c_states(link_id);

2569 add_ner ge_hook(1ink_id, &merg I'i nks);

2570 add_modi fication hook(l ink_id, &natch nodi fy);

2571 add_rodi fication_hook_|late(link_id, match_i nc_dec);

2573 add_nenber _i nfo_cal | back(link_id, struct_menber_call back);
2574 }

__unchanged_portion_onitted_

2582 void register_conparison_inc_dec_|inks(int id)

2583 {

2584 inc_dec_link_id =id

2585 set _dynam c_states(inc_dec_link_id)

2586 set _up_link_functions(inc_dec_id, inc_dec_link_id)
2587 }

__unchanged_portion_onitted_

new usr/src/tool s/smatch/src/smatch_conditions.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
19182 Mon Aug 5 08:38:21 2019

new usr/src/tool s/ smatch/src/smatch_conditions.c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

395 static void split_conditions(struct expression *expr)

396 {

397 if (option_debug) {

398 char *cond = expr_to_str(expr);

400 smneg("% in split_conditions (%)", get_lineno(),

401 free_string(cond);

402 1

404 expr = strip_expr_set_parent(expr);

405 if (texpr) {

406 _ fold_in_set_states();

407 return;

408 }

410 I*

411 * On fast paths (and also | guess some people think it's cool) people
412 * sonetinmes use | instead of ||. It works the sanme basically except
413 * that || inplies a menory barrier between conditions. The easiest way
414 * to handle it is by pretending that | also has a barrier and re-using
415 * all the nornmal condition code. This potentially hides some bugs,
416 * people who wite code like this should just be careful

417 * deserve bugs.

418 *

419 * We could potentially treat boolean bitwise & this way but that seens
420 * too conplicated to deal wth

421 */

422 if (expr->type == EXPR_BINOP && expr->op == "|")

423 expr_set par ent _expr (expr->left, expr);

424 expr_set _parent _expr (expr->ri ght expr);

425 handl e_| ogi cal (expr);

426 return;

427 1

429 switch (expr—>type) {

430 case EXPR _LOG CAL:

431 expr_set _parent _expr (expr->left, expr);

432 expr_set _parent _expr (expr->right, expr);

433 __pass_to_client(expr, LOJ C_HOX);

434 handl e_| ogi cal (expr);

435 return;

436 case EXPR_COVPARE:

437 expr_set _parent _expr(expr->left, expr);

438 expr_set _parent _expr (expr->right, expr);

439 hackup_unsi gned_conpar es(expr);

440 if (handl e_zero_conparisons(expr))

441 return;

442 br eak;

443 case EXPR_CALL:

444 if (ignore_builtin_expect(expr))

445 return;

446 br eak;

447 case EXPR_PREOP:

448 expr_set _parent _expr (expr->unop, expr);

449 if (handl e_preop(expr))

450 return;

451 br eak;

452 case EXPR_CONDI TI ONAL:

453 case EXPR_SELECT:

new usr/src/tool s/smatch/src/smatch_conditions.c

454 expr _set _par ent _expr (expr->condi tional, expr);
455 expr_set_parent _expr(expr->cond_true, expr);
456 expr_set _parent _expr (expr->cond_f al se, expr);
457 handl'e_sel ect (expr);

458 return;

459 case EXPR_COMVA:

460 expr_set _parent _expr(expr->left, expr);
461 expr_set _parent _expr (expr->right, expr);
462 handl e_conmma(expr);

463 return;

464 1

466 /* fixme: this should be in smatch_flowc

467 but because of the funny stuff we do with conditions
468 it’s awkward to put it there. W would need to
469 , call CONDI TION HOK in smatch_flow as wel | .

470 *

471 push_expressi on(&i g_expr essi on_stack, expr);

472 push_expressi on(&i g_condi ti on_stack, expr);

474 if (expr->type == EXPR_COWPARE) {

475 if (expr- >I eft->type ! = EXPR_POSTOP)

476 __split_expr(expr->left);

477 if (expr->right->type I= EXPR_POSTCP)

478 __split_expr(expr->right);

479 } else if (expr->type != EXPR _POSTOP) {

480 __split_expr(expr);

481 }

482 do_condi ti on(expr);

483 if (expr->type == EXPR_COWPARE) {

484 if (expr->left->type == EXPR_POSTOP)

485 _split expr(expr >left);

486 if (expr->right->type == EXPR POSTCP)

487 __split_expr(expr->right);

488 } else if (expr->type == EXPR_POSTOP) {

489 __split_expr(expr);

490 }

491 __push_fake_cur_stree();

492 __process_post _op_stack();

493 _ fold_in_set_states();

494 pop_expressi on(&i g_condi ti on_stack);

495 pop_expr essi on(&bi g_expr essi on_st ack) ;

496 }

__unchanged_portion_ontted_

new usr/src/tool s/smatch/src/smatch_constraints.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
12703 Mon Aug 5 08:38:22 2019

new usr/src/tool s/smatch/src/smatch_constraints.c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

195 char *get_constraint_str(struct expression *expr)

196 {

197 char *nane;

199 expr = strip_expr(expr);

200 if (!expr)

201 return NULL;

202 if (expr->type == PR _CALL)

203 return get_func_constraint(expr);
204 if (expr->type == EXPR_BI NOP)

205 return expr_to_str(expr);
206 name = get_topl evel _nane(expr);
207 if (name)

208 return nane;

209 return get_menber_name(expr);

210 }

__unchanged_portion_onitted_

342 struct string_list *saved_constraints;
343 static void save_new_constraint(const char *con)

344 {

345 f (linsert_string(&aved_constraints, con))

344 if (list_has_string(saved_constraints, con))

346 return;

346 insert_string(&saved_constraints, con);

347 sql _save_constrai nt (con);

348 }

350 static void handl e_conparison(struct expression *left, int op, struct expression
351 {

352 struct constraint_list *constraints;

353 struct smatch_state *state;

354 char *constraint;

355 int constraint_id;

356 int orig_op = op;

357 sval _t sval;

359 /* known values are handled in smatch extra */

360 if (get_value(left, &sval) || get_value(right, &sval))
361 return;

363 if (local_debug)

364 sm nsg(" COMPARE: % % %", expr_to_str(left), show special (op),
363 constraint = get_constraint_str(right);

364 if (lconstraint)

365 return;

369 if (local _debug)

370 sm nsg("EXPR % CONSTRAINT %", expr_to_str(right),
366 constraint_id = constraint_str_to_id(constraint);

372 if (local _debug)

373 sm neg(" CONSTRAINT I D %", constraint_id);

367 if (constraint_id < 0)

368 save_new_constraint(constraint);

369 free_string(constraint);

370 if (constraint_id < 0)

371 return;

373 constraints = get_constraints(left);

new usr/src/tool s/smatch/src/smatch_constraints.c 2
374 constraints = clone_constraint_list(constraints);
375 op = negate_gt(orig_op);
376 add_constraint (&onstraints, renove_unsigned_from conparison(op), constr
377 state = alloc_constraint_state(constraints);
379 if (op == orig_op)
386 if (op == orig_op) {
387 if (local _debug)
388 sm nsg("SETTING % true %", expr_to_str(left), state->n
380 set _true_fal se_states_expr(ny_id, left, state, NULL);
381 el se
390 } else {
391 if (local _debug)
392 sm msg("SETTING % fal se %", expr_to_str(left), state->
382 set _true_fal se_states_expr(ny_id, left, NULL, state);
395 }
383 }

__unchanged_portion_onitted_

515 void register_constraints(int id)
{

516

517 nmy_id = id;

519 set _dynami c_states(ny_id);

520 add_ner ge_hook(ny_id, &nmerge_func);

521 add_hook(&rat ch_condi ti on, CONDI TI ON_HOXK) ;

523 add_hook(&mat ch_cal | er _i nfo, FUNCTI ON_CALL_HOCK) ;

524 add_nenber _i nfo_cal | back(ny_id, struct_nenber_cal | back);

525 sel ect _cal | er _i nfo_hook(&set _param constrai ned, CONSTRAI NT);
527 add_split_return_call back(print_return_inplies_constrained);
528 sel ect _return_stat es_hook(CONSTRAI NT, &db_returns_constrai ned);
529 }

____unchanged_portion_onitted_

new usr/src/tool s/ smatch/src/smatch_constraints_required.c 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
12381 Mon Aug 5 08:38:22 2019

new usr/src/tool s/smatch/src/smatch_constraints_required. c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

281 static void natch_assi gn_has_buf_conparison(struct expression *expr)

282 {

283 struct expression *size;

284 int limt_type;

286 if (expr->op !'="=")

287 return;

288 if (expr->right->type == EXPR_CALL)

289 return;

290 size = get_size_variable(expr->right, & imt_type);
289 size = get_size_vari abl e(expr->right);
291 if (!size)

292 return;

293 if (limt_type !'= ELEM COUNT)

294 return;

295 mat ch_al | oc_hel per (expr->left, size, 1);
296 }

__unchanged_portion_omtted_

457 void register_constraints_required(int id)

458 {

459 ny_id = id;

461 set _dynami c_states(ny_id);

462 add_hook(&rat ch_assi gn_si ze, ASSI GNVENT_HOOK) ;

463 add_hook(&vat ch_assi gn_dat a, ASSI GNVENT_HOK) ;

464 add_hook(&vat ch_assi gn_has_buf _conpari son, ASSI GNVENT_HOXK) ;

466 add_hook(&rat ch_assi gn_ARRAY_SI ZE, ASSI GNVENT_HOCK) ;

467 add_hook(&rat ch_assi gn_ARRAY_SI ZE, GLOBAL_ASSI GNVENT_HOOK) ;

468 add_hook(&vat ch_assi gn_buf _conpari son, ASSI GNMVENT_HOCK) ;

469 add_hook(&rat ch_assi gn_constrai nt, ASSI GNVENT_HOCK) ;

471 add_al | ocation_function("nmalloc", &match_alloc, 0);

472 add_al | ocati on_functi on("mendup”, &match_alloc, 1);

473 add_al | ocation_function("realloc", &match_alloc, 1);

474 add_al | ocation_function("realloc", &match_calloc, 0);

475 if (option_project == PRQJ_KERNEL) ({

476 add_al | ocati on_function("kmal | oc", &match_alloc, 0);

477 add_al | ocati on_function("kzal |l oc", &match_alloc, 0);

478 add_al | ocati on_function("vnalloc", &match_alloc, 0);

479 add_al | ocati on_function("__vnalloc", &match_alloc, 0);

480 add_al | ocati on_function("vzal | oc", &match_alloc, 0);

481 add_al | ocati on_function("sock_kmal | oc", &mtch_alloc, 1);
482 add_al | ocati on_function("knmendup", &match_alloc, 1);

483 add_al | ocati on_function("kmendup_user", &mmatch_alloc, 1);
484 add_al | ocation_function("dma_all oc_attrs", &mtch_alloc, 1);
485 add_al | ocati on_function("pci_all oc_consistent”, &mtch_alloc, 1)
486 add_al | ocati on_function("pci_alloc_coherent", &match_alloc, 1);
487 add_al | ocati on_functi on("devm knal | oc", &match_alloc, 1);
488 add_al | ocati on_function("devm kzal | oc", &mmatch_alloc, 1);
489 add_al | ocati on_function("kcal l oc", &match_calloc, 0);

490 add_al | ocati on_function("kmal | oc_array", &match_calloc, 0);
491 add_al | ocati on_function("devm kcal | oc", &match_calloc, 1);
492 add_al | ocation_function("krealloc", &mtch_alloc, 1);

493 }

494 }

__unchanged_portion_onitted_

new usr/src/tool s/ smatch/ src/smatch_cont ai ner_of.c

R R R R

15722 Mon Aug 5 08:38:22 2019
new usr/src/tool s/ smatch/src/smatch_contai ner_of.c
11506 snatch resync

R R R R

__unchanged_portion_onitted_

115 static char
115 static char

116
117 static char buf[256];
118 const char *nane;
120 name = get_param name(sm;
121 if (!nane)
122 return NULL;
124 if (name[0] =="9%")
125 snprintf(buf, sizeof(buf), "$(-%)%", offset, name + 1);
126 else if (namg[0] == wo name[1] == "¢
127 snpri ntf(buf si zeof (buf), "*$(-%l)%", offset, nane + 2);
128 el se
129 return NULL;
131 return buf;
132 }
__unchanged_portion_onitted_
165 static void process_states(void)
166 {
167 struct smstate *tnp;
168 int arg, offset;
169 const char *nane;
171 FOR_EACH SM used_stree, tnp) {
172 arg = get cont ai ner _ar g(t np->sy
173 of fset = get_contai ner offset(tnp >sym ;
174 if (arg < 0| offset < 0)
175 cont i nue;
176 nanme = get_contai ner_nane_sn{tnp, offset);
176 name = get_contai ner_nane(tnp, offset);
177 if (!nane)
178 conti nue;
179 sql _insert_return_inplies(CONTAI NER, arg, nanme, "");
180 } END_FOR EACH SMtnp);
182 free_stree(&used_stree);
183 }

__unchanged_portion_onitted_

252 static int get_deref_count(struct expression *expr)
252 static int get_shared_cnt(const char *one, const char *two)

253 {

254 int cnt = 0;

254 int i;

255 int on_end = fal se;

256 while (expr &% expr->type == EXPR_DEREF) {
257 expr = expr->deref;

258 if (expr->type == EXPR_PREOP && expr->op ==
259 expr = expr->unop;

260 cnt ++;

261 if (cnt > 100)

262 return -1;

257 i

i = 0;
258 while (true) {

*get _contai ner_nane_sn(struct smstate *sm int offset)
*get _contai ner_name(struct smstate *sm int offset)

new usr/src/tool s/smatch/src/smatch_container_of.c 2
259 if (lone[i] || ltwo[l]) {

260 on_end = true

261 br eak;

263

264 return cnt;

265 }

267 {static struct expression *get_partial _deref(struct expression *expr, int cnt)
268

269 while (--cnt >= 0)

270 if (lexpr || expr->type != EXPR _DEREF)

271 return expr;

272 expr = expr->deref;

273 if (expr->type == EXPR_PREOP && expr->op == '*")

274 expr = expr->unop;

263 if (one[i] !'=two[i])

264 br eak;

265 i++;

275

276 return expr;

277 }

279 static int partial _deref_to_offset_str(struct expression *expr, int cnt, char op
280 {

281 int n, offset;

283 if (cnt == 0)

284 return snprintf(buf, size, "%0", op);

286 n =0;

287 while (--cnt >= 0)

288 of fset = get_menber_of f set _from deref (expr);

289 if (offset < 0)

290 return -1;

291 n += snprintf(buf + n, size - n, "%%", op, offset);
292 if (expr->type != EXPR _DEREF)

293 return -1;

294 expr = expr->deref;

295 if (expr->type == EXPR_PREOP && expr->op == '*")

296 expr = expr->unop;

267 if (i ==0)

268 return O;

269 i--

270 whlle (i >0 & (one[i] == "> || one[i] =="-" || one[i] ==".")) {
271 on_end = true;

272 IEEE

297 }

274 if (!on_end)

275 return O;

299 return n;

277 return i + 1;

300 }

302 static char *get_shared_str(struct expression *container, struct expression *exp
280 static int build_offset_str(struct expression *expr, const char *nane,
281 int shared, char *buf, int size, int op)
303 {

304 struct expression *one, *two;

305 int cont, exp, mn, ret, n;

306 static char buf[48];

283 int chop = 0;

284 int offset;

285 int i;

308 cont = get_deref_count (contai ner);

new usr/src/tool s/ smatch/ src/smatch_cont ai ner_of.c

3
n, '-', buf, sizeo
, buf + ret, sizeo

expressi on *expr)

309 exp = get_deref_count (expr);

310 if (cont <0 || exp <0)

311 return NULL;

313 mn = (cont < exp) ? cont : exp;

314 while (mn >= 0)

315 one = get_partlal _deref(container, cont - mn);
316 two = get_partial _deref(expr, exp - mn);
317 if (expr_equiv(one, two))

318 goto found;

319 mn--;

287 i = shared;

288 V\hlle(nane[l]) {

289 if (name[i] =="." || nanme[i] == "-")
290 chop++;

291 i++;

320 }

322 return NULL;

294 /I FIXME: Handle nore chops

295 if (chop > 1)

296 return O;

324 found:

325 ret = partial_deref_to_offset_str(container, cont - m
326 if (ret <0

327 return NULL;

328 n =ret;

329 ret = partial_deref_to_offset_str(expr, exp - mn, '+
330 if (ret <0)

331 return NULL;

332 n += ret;

333 if (n >= sizeof (buf))

334 return NULL;

336 return buf;

337 }

339 char *get_contai ner_nane(struct expression *container, struct
340 {

341 struct synbol *container_sym *sym

342 struct expression *tnp;

343 static char buf[64];

344 char *shared;

345 bool star;

346 int cnt;

348 cont ai ner_sym = expr _t o_syn{ cont ai ner);

349 sym = expr_to_syn{expr);

350 if (container_sym & contai ner_sym == syn)

351 goto found;

358 cnt = 0;

354 while ((tnmp = get_assigned_expr(expr))) {

355 expr = tnp;

356 if (cnt++ > 3)

357 br eak;

298 if (chop == 0) {

299 of fset = 0;

300 } else {

301 of fset = get_menber_of f set _from deref (expr);
302 if (offset < 0)

303 return O;

358 }

360 cnt = 0;

new usr/src/tool s/ smatch/ src/smatch_cont ai ner_of.c

361 while ((tnmp = get_assigned_expr(container))) {

362 contai ner = tnp;

363 if (cnt++ > 3)

364 br eak;

365 }

367 found:

368 expr = stri p expr (expr);

369 star = tru

370 if (expr—>type == EXPR_PRECP && expr->op == '&) {
371 expr = strip_expr(expr->unop);

372 star = fal se;

373 }

375 cont ai ner_sym = expr _t o_syn{ cont ai ner);

376 if (!container_sym

377 return NULL;

378 sym = expr_to_syn(expr);

379 if (!sym]|]| container_sym!= sym

380 return NULL;

382 shared = get_shared_str(container, expr);

383 if (star)

384 snprintf(buf, sizeof(buf), "*(%)", shared);
385 el se

386 snprintf(buf, sizeof(buf), "%", shared);
388 return buf;

306 snprintf(buf, size, "%%", (op =='+) ? '+ : '-', offset);
307 return 1,

389 }

391 {st atic void match_call (struct expression *call)

392

393 struct expression *fn, *arg;

394 char *nane;

395 int param

313 char *fn_nane, *arg_nane;

314 int param shared;

315 char m nus_str[64];

316 char plus_str[64];

317 char offset_str[64];

318 bool star;

397 /*

398 * We're trying to link the function with the paranmeter. There are a
399 * coupl e ways this can be passed:

400 * foo->func(foo, ...);

401 * foo->func(foo->x, ...);

402 * foo->bar. func(&f oo- >bar R

403 * foo->bar->baz->func(foo, ...);

404 *

405 * So the method is basically to subtract the offsets until we get to
406 * the common bit, then add the nenber offsets to get the paraneter.
407 *

408 * If we're taking an address then the offset math is not stared,
409 * otherwise it is. Starred nmeans dereferenced.
410 */

411 fn = strip_expr(call->fn);

335 fn_nane = expr_to_var(fn);

336 if (!fn narre)

337 return;

413 param = -1;

414 FOR_EACH PTR(cal | ->args, arg) {

415 par am++;

new usr/src/tool s/ smatch/ src/smatch_cont ai ner_of.c 5 new usr/src/tool s/ smatch/ src/smatch_contai ner_of.c 6
417 name = get_contai ner_nanme(fn, arg); 604 static void | oad_contai ner_data(struct synmbol *arg, const char *info)
418 if (!nane) 577 static void handl e_passed_cont ai ner(struct synbol *syn)

419 conti nue; 605 {
343 arg = strip_expr(arg); 606 ntag_t cur_tag, container tag, arg_tag;
344 star = true; 607 int container_offset, arg_offset;
345 if (arg- >type == EXPR_PRECP && arg->op == '&) { 608 char *p = (char *)info;
346 arg = strl p_ expr(arg >unop) ; 579 struct synbol *arg;
347 star = fals 580 struct smatch_state *state;
348 } 609 struct smstate *sm
610 struct stree *stree;
421 sql _insert_caller_info(call, CONTAINER, param nane, "$(-1)"); 611 bool star = 0;
350 arg_name = expr_to_var(arg); 583 ntag_t fn_tag, container_tag, arg_tag;
351 if (!larg_nane) 584 sval _t offset;
352 cont i nue; 585 int container_offset, arg_offset;
353 shared = get_shared_cnt (fn_nane, arg_nane); 586 int star;
354 if (!shared)
355 goto free_arg_naneg; 613 if (p[0] =="*") {
356 if (!bui I d of fset_str(fn, fn_nane, shared, mnus_str, sizeof(mnmin 614 star = 1;
357 to free_arg_nane; 615 p += 2;
358 if (!bui I d of fset_str(arg, arg_nane, shared, plus_str, sizeof(pl 616
359 goto free_arg_nane; 588 FOR_EACH PTR(cur _func_sym >ct ype. base_t ype- >argunents, arg) {
360 if (star) 589 state = get_state(param.id, arg->ident->nanme, arg);
361 snprintf(offset_str, sizeof(offset_str), "*(%%)", mnu 590 if (state)
362 el se 591 goto found;
363 snprintf(offset_str, sizeof(offset_str), "%%", mnus_s 592 } END_FOR_EACH_PTR(arg);
364 sgl _insert_caller_info(call, CONTAINER, param offset_str, "$(-1
365 free_arg_nane: 618 if (!get topl evel _ntag(cur_func_sym &cur_tag))
366 free_string(arg_nane); 619 return;
422 } END_FOR_EACH PTR(arg);
621 while (true)
369 free_string(fn_nane); 622 container_offset = strtoul (p, &, 0);
423 } 623 if (local _debug)
624 smnmsg("%: cur_tag = %lu container_offset = %",
425 static void db_passed_container(const char *name, struct synbol *sym char *key, 625 func__, cur_tag, container offset)
426 { 626 if (!nmag_map_sel ect_container(cur_tag, contai ner_offset, &cont a
427 set_state(param.id, nane, sym alloc_state_str(key)); 595 found:
374 sval _t offset = { 596 if (lestate_get_single_value(state, &offset))
375 .type = & nt_ctype, 627 return;
376 }s 628 cur_tag = container_tag;
377 const char *arg_of fset; 629 if (local _debug)
378 int star = 0; 630 smnsg("%: container_tag = %lup ="%"",
379 int val; 631 _ func__, container_tag, p);
632 if (!p)
381 if (key[0] =="*") { 633 return;
382 star =1, 634 if (p[0] !'="-")
383 key += 2; 635 br eak;
384 } 636 p++;
637 }
386 val = atoi(key); 598 container_offset = -(offset.value & Oxffff);
387 if (val < -4095 || val > 0) 599 arg_of fset = (offset.value & Oxfff0000) >> 16;
388 return; 600 star = !l (offset.value & (1ULL << 31));
389 of fset.value = -val;
390 arg_of fset = strchr(key, '+); 639 if (p[0] '="+")
391 if (larg_offset) 602 if (!get_toplevel _ntag(cur_func_sym &f n_tag))
392 return; 640 return;
393 val = atoi(arg_offset + 1);
394 if (val > 4095 || val < 0) 642 p++;
395 return; 643 arg_of fset = strtoul (p, &p, 0);
396 of fset.value | = val << 16; 644 if (p & *p && *p I=
397 if (star) 604 if (!'mag_map_sel ect_container(fn_tag, container_offset, &container_tag)
398 of fset.value | = 1ULL << 31; 645 return;
400 set _state(param.id, nane, sym alloc_estate_sval (offset)); 647 if (targ_off set || star)
428 } 648 arg_tag = contal ner_tag;
__unchanged_portion_onitted_ 649 } else {

new usr/src/tool s/ smatch/ src/smatch_cont ai ner_of.c

650 if (!mag_map_sel ect_tag(container_tag, -arg_offset,
651 return;

652 }

654 stree = load_tag_info syn"(arg tag, arg, arg_offset, star);
655 FOR_ EACH | SM(stree, sm

656 set _stat e(sm >owner sm >nanme, sm>sym sm>state);
657 } END_FOR_EACH_SMsm);

658 free_stree(&stree);

659 }

661 static void handl e_passed_cont ai ner(struct synbol *syn)

662 {

663 struct synbol *arg;

664 struct smatch_state *state;

666 FOR_EACH_PTR(cur _func_sym >ctype. base_t ype- >argunents, arg) {
667 state = get_state(param.id, arg->ident->nanme, arg);
668 if (Istate [| state == &rrerged)

669 conti nue;

670 | oad_cont ai ner _data(arg, state->nane);

671 } END_FOR _EACH PTR(arg);

672 }

674 void register_container_of(int id)

675 {

676 ny_id = id,

678 add_hook(&vat ch_f unction_def, FUNC_DEF_HOOK) ;

680 add_get _st at e_hook(&get _st at e_hook) ;

682 add_hook(&mat ch_save_states, | NLI NE_FN_START);

683 add_hook(&mat ch_restore_states, |NLINE_FN_END);

685 sel ect _return_i nplies_hook(CONTAI NER, &set_param used);

686 al | _return_states_hook(&process_states);

688 add_split_return_cal | back(&print_returns_container_of);

689 sel ect _return_stat es_hook(CONTAI NER, &returns_contai ner_of);
691 add_hook(&mat ch_cal |, FUNCTI ON_CALL_HOCK) ;

692 }

640 static struct smatch_state *unnmatched_state(struct smstate *sm
641 {

642 return alloc_estate_whol e(estate_type(sm >state));

643 }

694 void register_container_of2(int id)

695 {

696 param.id = id;

698 set _dynami c_states(param.id);

699 sel ect _cal | er _i nf o_hook(db_passed_cont ai ner, CONTAI NER);
700 add_mer ge_hook(param.id, &mer ge_str_state);

701 add_hook(&andl e_passed_cont ai ner, AFTER DEF - HOOK) ;

651 add_unmat ched_st at e_hook(param.i d, &unmat ched_st at e)

652 add_nerge_hook(param.id, &nmerge_estates);

702 }

__unchanged_portion_onitted_

&arg_tag))

new usr/src/tool s/ smatch/ src/smatch_dat a/ db/ appl y_return_fixes. sh

R R R R

456 Mon Aug 5 08:38:23 2019
new usr/src/tool s/smatch/ src/smatch_dat a/ db/ appl y_return_fixes. sh
11506 snatch resync

R R R R

1 #!/bin/bash

3 if echo $1 | grep -q "*-p’ ; then

4 PROJ=$(echo $1 | cut -d = -f 2)

5 shift

6 fi

8 bi n_dir=$(di rname $0)

9 db_file=$1

10 if ["$db_file" ==""] ; then

11 echo "usage: $0 -p=<project> <db_file>"
12 exit

13 fi

15 test -e ${bin_dir}/${PRQA}.return_fixes && \

16 cat ${bin_dir}/${PRQAJ}.return_fixes

17 while read func old new ; do

18 echo "update return_states set return = '$new where function = '$func
19 done

new usr/src/tool s/ smatch/src/smatch_dat a/ db/ creat e_db. sh 1

R R R R

1645 Mon Aug 5 08:38:23 2019
new usr/src/tool s/smatch/src/smatch_dat a/ db/ create_db. sh
11506 snatch resync

R R R R

1 #!/bin/bash

3 if echo $1 | grep -q '*-p’ ; then
4 PRQJ=$(echo $1 | cut -d = -f 2)
5 shift

6 fi

8 info file=$1

10 if [["$info_file" ="" 1] ; then

11 echo "Usage: $0 -p=<project> <file with smatch nessages>"
12 exit 1

13 fi

15 bi n_di r=$(di rname $0)
16 db_file=smatch_db. sqlite. new

18 rm-f $db_file
20 for i in ${bin_dir}/*.schema ; do

21 cat $i | sqlite3 $db_file

22 done

24 ${bin_dir}/init_constraints.pl "$PRQAI" $info_file $db_file

25 ${bin_dir}/init_constrai nts reqwred pl "$PRQI" S$info_file $db_file
26 ${bin_dir}/fill_db_sql.pl $PRO] $info_file $db_file

27 if [-e ${info file}.sql] ;

28f ${bin_dir}/fill_db_sql.pl "$PRQ]" ${info_file}.sqgl $db_file

29 fi

30 ${bin_dir}/fill_db_caller_info.pl "$PRQAJ" $info_file $db_file

31 if [-e ${info file}.caller_info] ; then

32 ${bin_dir}7fill_db_caller_info.pl "$PRQI" ${info_file}.caller_info $db_file
33 fi

34 ${bin_dir}/build_early_index.sh $db_file

36 ${bin_dir}/fill _db_type_value.pl "$PRQI" $info file $db_file

37 ${bin_dir}/fill_db_type_size.pl "$PRQJ" $info file $db_file

38 ${bi n_di r}/copy required_constraints.pl "$PRQJ" $info_file $db_file
39 ${bin_dir}/buiid_late_index.sh $db _file

41 ${bin_ dlr}/flxup aII sh $db_file

42 if ["$PRQI" !=] ; then

43 ${bin_dir}/fixup_${PRQJ}.sh $db_file

44 fi

46 ${bin_dir}/renove_m xed_up_poi nter_parans.pl $db_file

47 ${bin_dir}/del ete_too_comon_fn_ptr.sh $db_file

48 ${bin_dir}/mark_function_ptrs_searchable.pl $db_file

50 # delete duplicate entrees and speed things up
51 echo "delete fromfunction_ptr where rowid not in (select min(rowid) fromfuncti

53 ${bin_dir}/apply_return_fixes.sh -p=${PROJ} $db_file

52 test -e ${bin_dir}/${PRQAJ}.return_fixes && \

53 cat ${bin_dir}/${PRQJ}.return_fixes | \

54 while read func old new ; do

55 g echo "update return_states set return = '$new where function = '$func’ and
56 done

55 mv $db_file smatch_db.sqlite

new usr/src/tool s/smatch/src/smat ch_dat a/ db/ del et e_t oo_common_f n_ptr. sh 1

R R R R

331 Mon Aug 5 08:38:23 2019
new usr/src/tool s/smatch/src/smatch_dat a/ db/ del et e_t oo_common_f n_ptr. sh
11506 snatch resync

R R R R

1 #!/bin/bash

3 db_file=$1

5 | FS="|"

6 echo "sel ect count(function), function fromfunction_ptr group by function;" | \
7 sglite3 $db_file | sort -n | tail -n 100 |

9 while read cnt func ; do

10 if [$cnt -1t 200] ; then

11 conti nue

12 fi

13 echo "delete fromfunction_ptr where function = '$func’;" | sqlite3 $db_file

14 done

new usr/src/tool s/smatch/src/smat ch_dat a/ db/ fi xup_kernel . sh 1

R R R R

13929 Mon Aug 5 08:38:23 2019
new usr/src/tool s/smatch/ src/smatch_data/ db/ fixup_kernel . sh
11506 snatch resync

R R R R

#!'/ bi n/ bash

db_file=$1

cat << EOF | sqlite3 $db_file

/* we only care about the main ->read/wite() functions.
delete fromcaller_info where function
del ete fromcaller_info where function
delete fromcaller_info where function
del ete fromcaller_info where function
del ete fromfunction_ptr where function
del ete fromfunction_ptr where function
del ete fromcaller_info where function
del ete fromcaller_info where function
del ete fromcaller_info where function
delete fromcaller_info where function

/* delete these function pointers which cause fal se positives

del ete fromcaller_info where function
delete fromcaller_info where function
del ete fromcaller_info where function
del ete fromcaller_info where function
delete fromcaller_info where function
delete fromcaller_info where function
del ete fromcaller_info where function
/* 8017 is USER DATA and 9017 is USER

*/

= '(struct file_operations)->read and fi
= '(struct file_operations)->wite’ and f
= '(struct file_operations)->read’ and ca
= '(struct file_operations)->wite’ and c

"(struct file_operations)->read’;
"(struct file_operations)->wite’;

="' _ vis_wite and caller '="'vfs wite’

="'__vfs_read and caller !="vfs_read ;

= '(struct file_operations)->wite and c

= 'do_splice_from and caller = "direct_s
*/

" (struct
"(struct
"(struct
"(struct
" (struct
"(struct
" (struct

file_operations)->open and ty
noti fier_bl ock)->notifier_call
m SDNchannel) - >send’ and type
irqg_router)->get’ and type !=
irg_router)->set’ and type !=
net _devi ce_ops) - >ndo_change_nt
timer_list)->function’ and typ

DATA_SET */

delete fromcaller_info where function = 'dev_hard_start_xmt’ and type = 8017;
/* type 1003 is USER DATA */

del ete fromcaller_info where caller = 'hid_input_report’ and type = 1003;
delete fromcaller_info where caller = 'nes_process_iwarp_aege’ and type = 1003;
delete fromcaller_info where caller = 'o0z_process_ep0_urb’ and type = 1003;
delete fromcaller_info where function = "dev_hard_start_xmt’ and key = '\$ an
del ete fromcaller_info where function like '% >ndo_start_xmt’ and key = '\$ a
delete fromcaller_info where caller = 'packet_rcv_fanout’ and function = ' (stru
delete fromcaller_info where caller = 'hptiop_probe’ and type = 1003;

delete fromcaller_info where caller = 'p9_fd_poll’ and function = ' (struct file
del ete fromcaller_info where caller = 'proc_reg_poll’ and function = "proc_reg_
delete fromcaller_info where function = bl kdev_ioctl’ and type = 1003 and para
/* 9017 is USER DATA3_SET */

delete fromreturn_states where function="vscnprintf’ and type = 9017,

delete fromreturn_states where function="scnprintf’ and type = 9017;

del ete fromreturn_states where function="vsnprintf’ and type = 9017;

delete fromreturn_states where function="snprintf’ and type = 9017;

delete fromreturn_states where function="sprintf’ and type = 9017;

del ete fromreturn_states where function="vscnprintf’ and type = 8017;

del ete fromreturn_states where function="scnprintf’ and type = 8017;

delete fromreturn_states where function="vsnprintf’ and type = 8017;

delete fromreturn_states where function="snprintf’ and type = 8017;

delete fromreturn_states where function="sprintf’ and type = 8017;

/* There is something setting skb->sk->sk_mark and friends to user_data and */

/* because of recursion it
delete fromcaller_info
delete fromcaller_info
delete fromcaller_info
delete fromcaller_info
delete fromcaller_info where caller
delete fromcaller_info where caller
/* conparison doesn’t deal w th chunks,

gets passed
where function
where function
where function
where function

delete fromreturn_states where function="get_tty_driver’

delete fromcaller_info where caller =
delete fromcaller_info where caller

to everything and is inpossible to debug
= '__dev_queue_xnmit’ and type = 8017,
__netdev_start_xmt’ and type = 8017;
(struct packet_type)->func’ and type =
"(struct bio)->bi_end_io and type = 80
NF_HOOK_COND' ~ and type = 8017;

"NF_HOOK and type = 8017;

| guess. */

and type = 8017,
"snd_ctl_elemwite’ and function =
"snd_ctl_elemread and function =

T (str
"(stru

new usr/src/tool s/smatch/ src/smatch_dat a/ db/ fi xup_kernel . sh

50
51
52

2

del ete fromcaller_info where function = 'nf_tabl es_newexpr’ and type = 8017 and
delete fromcaller_info where caller = 'fb_set_var’ and function = '(struct fb_o
delete fromreturn_states where function = "tty_| ookup_driver’ and parameter = 2
insert into caller_info values ('userspace’, '’', 'conpat_sys_ioctl’, 0, 0, 8017,
insert into caller_info values (’userspace’, , 'conpat_sys_ioctl’, 0, 0, 8017,
insert into caller_info values (’userspace’, '’', 'conpat_sys_ioctl’, 0, 0, 8017,
insert into caller_info values (’userspace’, '’', 'conpat_sys_ioctl’, 0, 0, 1003,
insert into caller_info values ('userspace’, '', 'conpat_sys_ioctl’, 0, 0, 1003,
insert into caller_info values (’userspace’, , 'conpat_sys_ioctl’, 0, 0, 1003,
delete fromcaller_info where function = ' (struct timer_list)->function’ and par
/*

* rwoverify area is a very central function for the kernel. The 1000000000

* isn't accurate but 1’'ve picked it so that we can add "pos + count" without

* wrapping on 32 bits.

*/
delete fromreturn_states where function = "rw verify_area’;

insert into return_states values ('faked', 'rw.verify_ area’, 0, 1, ’'0-1000000000
insert into return_states values ('faked’, 'rw.verify_area, 0, 1, ’'0-1000000000
insert into return_states values ('faked', 'rw.verify_area’, 0, 1, ’'0-1000000000
insert into return_states values ('faked', 'rw.verify_ area’, 0, 2, '(-4095)-(-1)
delete fromreturn_states where function = 'is_kernel _rodata’;

insert into return_states values ('faked, 'is_kernel_rodata’, 0, 1, '1', 0, O,
insert into return_states values ('faked', 'is_kernel _rodata’, 0, 1, '1', 0, 103
insert into return_states values (’'faked, 'is_kernel_rodata’, 0, 1, 1", 0, 103
insert into return_states values ('faked, 'is_kernel _rodata’, 0, 2, '0’, 0, O,
/*

* | ama bad person for doing this to _ kmalloc() which is a very deep function

* and can easily be renmoved instead of to kmalloc(). But knmalloc() is an

* inline function so it ends up being recorded thousands of tines in the

* database. Doing this is easier.

*

*/
delete fromreturn_states where function = ' __kmalloc’;

insert into return_states values (’'faked', '__kmalloc’, 0, 1, '16’, O, 0, -1
insert into return_states values ('faked', '__kmalloc’, 0, 1, '16’, 0, 103, 0,
insert into return_states values ('faked', '__kmalloc’, 0, 2, ’'0,500000000-57777
insert into return_states values ('faked’, '__kmalloc’, 0, 2, '0,500000000-57777
insert into return_states values ('faked', '__knmalloc’, 0, 2, '0,500000000-57777
insert into return_states values ('faked', '__kmalloc’, 0, 3, '0', O, 0, -1,
insert into return_states values ('faked', '__kmalloc’, 0, 3, '0', O, 103, O
/*

* Other knall oc hacking.

*/

update return_states set return = '0,500000000-577777777" where function = 'kmal
update return_states set return = '0,500000000-577777777" where function = 'slab
update return_states set return = '0,500000000-577777777 where function = ' kmal
update return_states set return = '0,500000000-577777777 where function = ' kmal
del ete fromreturn_states where function = 'vmalloc’;

insert into return_states values (’'faked', 'vnalloc’, 0, 1, ’'4096-ptr_max', O,
insert into return_states values ('faked', 'vmalloc’, 0, 1, '4096-ptr_max’, 0, 1
insert into return_states values (’'faked’, 'vmalloc’, 0, 1, ’'0, 600000000-6777777
insert into return_states values ('faked’, 'vmalloc’, 0, 1, ’'0,600000000-6777777
insert into return_states values (’'faked', 'vmalloc’, 0, 2, '0', O, o, -1, °
delete fromreturn_states where function = 'ksize’;

insert into return_states values ('faked , 'ksize', 0, 1, '0', O, o, -1, ',
insert into return_states values ('faked , 'ksize', 0, 1, '0', 0, 103, 0, '\%,
insert into return_states values ('faked', 'ksize', 0, 2, '1-4000000", O, 0,

new usr/src/tool s/ smatch/ src/smatch_dat a/ db/ fi xup_kernel . sh

89 /* store a bunch of capped functions */

90 update return_states set return = ' 0-u32nax[<=\$2]' where function = 'copy_to_us
91 update return_states set return = ' 0-u32nax[<=\$2]' where function ="' _copy_to_u
92 update return_states set return = ’0-u32nmax[<=\$2]’ where function ="' __copy_to_
93 update return_states set return = '0-u32nmax[<=\$2]' where function = 'copy_from_
94 update return_states set return = '0-u32max[<=\$2]’' where function ="' _copy_from
95 update return_states set return = '0-u32nax[<=\$2]' where function ="' __copy_fro
97 update return_states set return = '0-8 where function = ' __arch_hwei ght8’;

98 update return_states set return = '0-16" where function = 7__arch_hwei ght 16’

99 update return_states set return = ’0-32" where function = '__arch_hwei ght 32"
100 update return_states set return = '0-64’ where function = ' __arch_hwei ght 64’

102 /*

103 * Preserve the value across byte swapping. By the tine we use it for math it
104 */wi Il be byte swapped back to CPU endi an.

105 *

106 update return_states set return = '0-u64nmax[==\$0]' where function = ' __fswab64’
107 update return_states set return = '0-u32nmax[==\$0]' where function ="' __fswab32
108 update return_states set return = '0-ul6nmax|[==\$0]"' where function = ' _ fswabl6’
109 update return_states set return = '0-u64max[==\$0]' where function ="' __builtin_
110 update return_states set return =’ 0-u32max[==\$0]" where function = '_ builtin_
111 update return_states set return = '0-ul6max[==\$0]" where function ='_ builtin_
113 delete fromreturn_states where function = 'bitmap_allocate_region’ and return =
114 /* Just delete a lot of returns that everyone ignores */

115 delete fromreturn_states where file "drivers/pci/access.c’ and (return >= 129
144 update return_states set return = ' (-4095)-s32max[<=\$1]' where function = 'get_
145 update return_states set return = ' (-4095)-s64max[<=\$1]' where function = ’'get_
117 /* Smatch can’t parse wait_for_conpletion() */

118 update return_states set return = ' (-108),(-22),0" where function ="' __spi_sync’
120 delete fromcaller_info where caller = ' _ kernel _wite’;

122 /* W sonetinmes use pre-allocated 4097 byte buffers for performance critical cod
123 update caller_info set value = 4096 where caller="kernfs_file_direct_read and f
124 /* let’s pretend firewire doesn’t exist */

125 delete fromcaller_info where caller="init_fw attribute_group’ and function=" (st
126 /* and let's fake the next dev_attr_show() call entirely */

127 delete fromcaller_info where caller=sysfs_kf_seq_show and function="(struct s
128 insert into caller_info values ('fake', 'sysfs_kf_seq_show , ’(struct sysfs_ops)
158 insert into caller_info values ('fake', 'sysfs_kf_seq_show , ’(struct sysfs_ops)
129 insert into caller_info values ('fake', 'sysfs_kf_seq_show , '(struct sysfs_ops)
130 insert into caller_info values (’fake', ’'sysfs_kf_seq_show,b ’'(struct sysfs_ops)
160 insert into caller_info values (’fake', ’'sysfs_kf_seq_show, '(struct sysfs_ops)
131 insert into caller_info values (’fake , 'sysfs kf_seq_show, '(struct sysfs_ops)
132 /* config fs confuses smatch a little */

133 update caller_info set value = 4096 where caller="fill_read_buffer’ and function
135 /* smatch sees the nmenset () but not t he subsequent changes */

136 update return_states set value = "" where function = "gfs2_ea find and return =
138 del ete fromtype_val ue where type = '(struct fd)- le;

139 delete fromtype_val ue where type = '(struct fd)- ags’;

141 /* This is sonmetines an enumor a u64 */

142 del ete fromtype_val ue where type = ' (struct nct_cnd_header)->status’;

144 /* this is handled in check_kernel.c */
145 delete fromreturn_states where function =

__wite_on

147 update return_states set value = "s32m n-s32max[\$1]"

149 /* handled in the check itself */

ce_size";

where function =

"atom c_s

new usr/src/tool s/ smatch/ src/smatch_dat a/ db/ fi xup_kernel . sh

150 del ete fromreturn_states where function = "atom c_inc_return’ and (type
151 delete fromreturn_states where function = ’atonic_add _return’ and (type
152 delete fromreturn_states where function = ’atonic_sub_return’ and (type
153 delete fromreturn_states where function = ’atonic_sub_and_test’ and (ty
154 delete fromreturn_states where function = 'atom c_dec_and_test’ and (ty
155 delete fromreturn_states where function = "atonic_dec’ and (type = 8023
156 delete fromreturn_states where function = "atomc_inc’ and (type = 8023
157 delete fromreturn_states where function = 'atom c_sub’ and (type = 8023
158 delete fromreturn_states where function = 'refcount_add_not_zero’ and (
159 delete fromreturn_states where function = 'refcount_inc_not_zero’ and (
160 delete fromreturn_states where function = 'refcount_sub_and_test’ and (
162 update return_states set return = '0-32,2147483648- 2147483690’ where fun
163 update return_states set value = '0- ub4max’ where function = _parse_int

165 /* del ete sonme function pointers which are sonetines byte units */
166 delete fromcaller_info where function = ' (struct

168 /* this if from READ ONCE(). W can’t know anything about the data. */

i 2c_al gorithmn)->master_:

4

8023
8023
= 8023
pe = 802
pe = 802
or type
or type
or type
type =

type 8
type 8

cti on =
eger’ an

xfer’ a

d return

$id, O,
$id, O,

n="'cle

= "SI

t rtl_ha
do

ike 'dri

struct r

169 delete fromtype_info where key = '(union anonynous)->_ val’;

171 /* This is R O BAD SIZE */

172 delete fromreturn_states where file = ’"drivers/rapidio/rio-access.c’ an
174 /* Smatch sucks at |oops */

175 delete fromreturn_states where function = 'ata_dev_next’ and type = 103;
177 EOF

179 # fixme: this is totally broken

180 cal | _i d=$(echo "select distinct call_id fromcaller_info where function
181 for id in $call_id ; do

182 echo "insert into caller_info values ('fake’, ', '__kernel _wite’,
206 echo "insert into caller_info values ('fake', '', '__kernel_wite’,
183 done

185 for i in $(echo "select distinct return fromreturn_states where functio
186 echo "update return_states set return = \"$i[<=\$1]\" where return
187 done

189 echo "select distinct file, function f om function_ptr where ptr= (struc
190 | sqlite3 $db_file | sed -e "s/|/ /' | while read file function ;
192 drv=$(echo $file | perl -ne "s/.*\/rtIwifi\/(.*?)\/sw.c/$1/; print’)
193 if [$drv =""] ; then

194 conti nue

195 fi

197 echo "update caller_info

198 set function = '$drv (struct rtl_hal _ops)->set_hw reg’

199 where function = ' (struct rtl_hal _ops)->set_hwreg’ and file |
200 | sqlite3 $db_file

202 echo "insert into function_ptr values ('$file’, '$function’, "$drv (
203 | sqlite3 $db_file

204 done

207 for func in __kmalloc _ _kmalloc_track caller ; do

209 cat << EOF | sqlite3 $db_file

210 delete fromreturn_states where function = ’$func’;

211 insert into return_states values (' faked, '$func’, 0, 1, '16’, O, 0,
212 insert into return_states values (’'faked, ’'$func’, O, 1, '16’, 0, 103,
213 insert into return_states values (' faked', '$func’, 0, 2, '4096-ptr_max’,
214 insert into return_states values ('faked , ’'$func’, 0, 2, ’'4096-ptr_max’,

new usr/src/tool s/ smatch/ src/smatch_dat a/ db/ fi xup_kernel . sh 5

215 insert into return_states values (' faked, ’'$func’, 0, 2, '4096-ptr_max’, 0, 103
216 insert into return_states values (' faked , '$func’, 0, 3, '0, O, o, -1, ',
217 insert into return_states values (' faked, '$func’, 0, 3, '0', O, 103, 0, '\
218 EOF

219 done

new usr/src/tool s/smatch/src/smat ch_dat a/ db/ function_ptr.schema 1

R R R R

181 Mon Aug 5 08:38:24 2019
new usr/src/tool s/ smatch/ src/smatch_data/db/function_ptr.schena
11506 snatch resync
LEEE R R R R EE SRR EEEEEEEEEEE RS SRR SRR EEEEEREREEEEEEEEESE]
1 CREATE TABLE function_ptr (
2 file varchar(128),

3 function varchar(64),

4 ptr varchar (256),

5 sear chabl e i nteger,

7 CONSTRAI NT function_ptr_constraint UNIQUE (file, function, ptr)

8);

1 CREATE TABLE function_ptr (file varchar(128), function varchar(64), ptr varchar(

new

* ok kK

new
1150

* ok kK

usr/src/tool s/smatch/src/smatch_data/db/init_constraints. pl 1

B R

1721 Mon Aug 5 08:38:24 2019
usr/src/tool s/ smat ch/ src/smatch_data/ db/init_constraints. pl
6 smatch resync

B R R R R

__unchanged_portion_onitted_

43 sub | oad_manual _constrai nt s($$)

44 {

45 ny $full_path = shift;

46 ny $project = shift;

47 ny $dir = dirnane($full _path);

49 if ($project =~ /7$/) {

50 return;

51 }

53 open(FILE, "$dir/$project.constraints");

54 while (<FILE>) {

55 s/\n//;

56 $db- >do("insert or ignore into constraints (str) values ("$_)");
57

58 cl ose(FILE);

60 open(FILE, "$dir/$project.constraints_required");
61 while (<FILE>) {

62 ny $linmt;

63 ny $dummy;

65 ($dumy, $dummy, $limt) = split(/,/);

66 $limt =~ s/™ +//;

67 $limt =~ s/\n//;

68 try {

69 $db->do("insert or ignore into constraints (str) values ("$limt’)")
70 } catch {}

71

72 cl ose(FI LE);

74 $db- >commi t () ;

75

}
__unchanged_portion_onitted_

new usr/src/tool s/smatch/src/smatch_data/db/init_constraints_required.pl

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]

1178 Mon Aug 5 08:38:24 2019
new usr/src/tool s/smatch/src/smatch_data/db/init_constraints_required.pl
11506 snatch resync

R R R R

__unchanged_portion_onitted_

30 sub | oad_manual _constrai nt s($$)

31

32 ny $full_path = shift;

33 ny $project = shift;

34 ny $dir = dirnane($full _path);

35 ny ($data, $op, $limt);

37 if ($project =~ /"$/) {

38 return;

39

41 open(FILE, "$dir/$project.constraints_required");
42 while (<FILE>) {

43 ($data, $op, $linmit) =split(/,/);

44 $op =~ s/ /lg;

45 $limt =~ s/ +//;

46 $linmt =~ s/\n//;

47 $db- >do("insert into constraints_required values (?, ?, ?);", undef,
48

49 cl ose(FILE);

51 $db- >comi t () ;

52

__unchanged_portion_onitted_

$da

new usr/src/tool s/ smatch/ src/smatch_dat a/ db/ kernel . return_fi xes 1

R R R R

2704 Mon Aug 5 08:38:24 2019
new usr/src/tool s/smatch/ src/smatch_dat a/ db/ kernel . return_fixes
11506 snatch resync
LEEE R R R R EE SRR EEEEEEEEEEE RS SRR SRR EEEEEREREEEEEEEEESE]
i 2c_master _recv s32m n-s32max 1- s32max[<=$2]
i 2c_mast er _recv s32min-0, 2-s32max 1- s32max[<=$2]
hi d_hw_out put _report s32m n-s32max 1-s32max[<=$2]
_regmap_read s32m n-(-1), 1-s32max (-4095)-(-1)
regnap_bul k_read s32m n- (1), 1-s32max (-4095)-(-1)
scnprintf s32min-s32max O- s32rmx[<$l]
scnprintf s32min-(-2),0-2147483646[<$1] 0-s32max[<$1]
scnprintf s32min-(-2),0-2147483646 0-s32max[<$1]
scnprintf s32m n-s32nmax|[<=$1] 0-s32max[<$1]
scnprintf 0-s32max 0-s32max[<$1]
vscnprintf s32min-(-2), 0-s32max| <$1] 0- 532max[<$1]
down_i nterruptible $32m n- s32max (-62),
sock_create s32min-(-1), 1-s32nmax (- 4095)
“sock_create s32nmin-(- 90) (-88)-(-1), 1- 532rmx (-4095)-(-90),(-88)-(-1)
sock_create_kern s32mn-(- l) 1-s32max (-4095)-(-1)
sock_create_kern s32min-(- 90) (-88)-(-1),1-s32max (-4095)-(-90), (-88)-(-1)
nilfs_cpfile_get_checkpoi nt bl ock s32ni n- (-18), (-16)-s32max (- 4095) (- 18) (-16)-
nilfs_cpfil e_get_checkpoint_bl ock s32mi n-(-18), (- 16) (-3),(-1),1-s32max (-4095)-
ni | fs_ndt_i nsert_new bl ock s32mi n-(-23), (-21)- (1), - s32max (- 4095) (-23),(-21)-
sinmple_wite_to_buffer s64m n-s64nax 0—532nax[<=$1]
21 atomc_read s32ni n-s32max s32ni n- s32max[==$0- >count er]
22 notifier_to_errno (-2147483646)-(-1) (-4095)-(-1)
23 nt_status_to_error s32m n-s32max (-4095)-0
22 dne_fence_wait_tinmeout s64m n-s64nmax (-4095)-s64max
23 dna_fence_wait_timeout s32m n-s32max (- 4095) - s32nmax
24 fls s32m n-s32max 0-32
25 f1s64 s64m n-s64max 0- 64
26 __bitmap_wei ght s32m n-s32max 0- s32max[<=$1]
27 __bitmap_wei ght 0-s32max 0-s32max[<=$1]
28 ffs 0-u64max 0-63
29 ~—_ffs 0-u32max 0-31
30 find_last_bit 0-u64max 0-u32max[<=$1]
31 __spi_sync (-524),(-115),(-108),(-22) (-4095)-0
32 tpmtis_spi_read_bytes s32nmi n-s32max (-4095)-0
33 __irq_donmin_activate_irqg s32m n-s32max (-4095)-0
34 get _user_pages_fast s32mi n-s32max 1-s32max[<=$1]
35 get _user_pages s32mi n-s32max (-4095) - s32max[<=$1]
36 get_user_pages s64mni n-s64max (-4095) - s64max| <=$1]
37 get _user_pages_renpte 1-s64max 1-s64max|[<=$3]
38 get _user_pages_renote (-133), (-14), (-12), 1-s64max (-133),(-14),(-12), 1-s64nmax[<=
33 get _user_pages_fast s32m n-s32nmax 1- s32nmax[<$1]
39 __nci_request s32m n-s32max (-4095)-0
40 wait_for_common s64m n-s64max 0- s64max[<=$1]
41 wait_for_comon 64m n-(-1), 1-s64max 1-s64max[<=$1]
42 dne_fence_wait_timeout s64mn-(-1),1-s64max (-4095)-(-1), 1-s32max[<=2]
43 dme_fence_wait _ti meout s64m n-s64nmax (-4095) - s32max
44 dme_fence_wait _tineout s32m n-s32max (-4095) - s32max
45 _ fw state_wait_comon s32m n-s32nmax (-4095)-(-1)
46 __ilog2_u32 s32m n-s32max 0-31
47 __ilog2_u64 s32m n-s32max 0-63
48 driver_attach s32ni n-s32max (-4095)-0
49 nbox_post _sync_cmd 255 0- 255
50 mmt_i o_rw_ext ended s32min-(-1), 1-s32max (-4095)-(-1)
51 kernel _read s64nin-s64max (- 4095) 1000000000
52 security_kernel post _read file s32nmin-(-1), 1-s32max (-4095)-(-1)
53 array_i ndex_nask_nospec 0-u64max u64max
54 array_i ndex_nask_nospec 0-u32max u32max
55 nla_len (-4)-65531[$0->nla_len\ -\ 4] 0-65531[$0->nla_len\ -\ 4]

new usr/src/tool s/smatch/src/smat ch_dat a/ db/ sndb. py 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
21229 Mon Aug 5 08:38:25 2019

new usr/src/tool s/ smatch/src/smatch_dat a/ db/ smdb. py

11506 snatch resync

R R R R

1 #!/usr/bin/python
3 # Copyright (C) 2013 Oracle.
#

IN

5 # Licensed under the Open Software License version 1.1

7 import sqlite3

8 inport sys

9 inmport re

11 try:

12 con = sqglite3.connect (' smatch_db.sqlite’)

13 except sqllte3 Error, e:

14 print "Error %: " % e. ar gs[0]

15 sys.exit(1)

17 def usage()

18 print "9%" 9%sys.argv[O0])

19 print "<function> - how a function is called"

20 print "info <type> - how a function is called, filtered by type"

21 print “"return_states <function> - what a function returns”

22 print "call_tree <function> - show the call tree"

23 print "where <struct_type> <nenber> - where a struct nenber is set"

24 print "type_size <struct_type> <nmenber> - how a struct nenber is allocated"
25 print "data_info <struct_type> <menber> - information about a given data typ
26 print “function_ptr <function> - which function pointers point to this"

27 print "trace_param <functi on> <paran® - trace where a paraneter cane fronf
28 print "locals <file> - print the local values in a file."

29 sys.exit(1)

31 function_ptrs [1
32 searched_ptrs]
33 def get_function_pointers_hel per(func):

34 cur = con. cursor()

35 cur. execute(sel ect distinct ptr fromfunction_ptr where function ='9%’ %
36 for rowin cur:

37 ptr = row 0]

38 1f ptr in function_ptrs:

39 conti nue

40 function_ptrs. append(ptr)

41 if not ptr in searched_ptrs:
42 sear ched_ptrs. append(ptr
43 get _function_poi nters_hel per(ptr)
45 def get_function_pointers(func):

46 gl obal function_ptrs

47 gl obal searched_ptrs

48 function_ptrs = [func]

49 searched_ptrs = [func]

50 get _function_poi nters_hel per(func)
51 return function_ptrs

53 db_types = { 0: "INTERNAL",

54 101: " PARAM CLEARED',

55 103: "PARAM LIM T",

56 104: "PARAM FI LTER',

57 1001: " PARAM VALUE",

58 1002: "BUF_SI ZE",

58 1003: " USER_DATA",

59 1004: " CAPPED_DATA",

60 1005: " RETURN_VALUE",

new usr/src/tool s/ smat ch/ src/smat ch_dat a/ db/ smdb. py

61 1006: " DEREFERENCE",
62 1007: " RANGE_CAP",
63 1008: "LOCK_HELD',
64 1009: "LOCK_RELEASED',
65 1010: "ABSOLUTE_LIM TS",
66 1012: " PARAM ADD',
67 1013: " PARAM FREED",
68 1014: "DATA SOURCE",
69 1015: " FUZZY_MAX",
70 1016: "STR_LEN',
71 1017: "ARRAY_LEN',
72 1018: " CAPABLE",
73 1019: "NS_CAPABLE",
74 1022: "TYPE_LI NK",
75 1023: " UNTRACKED_PARAM',
76 1024: " CULL_PATH",
77 1025: " PARAM SET",
78 1026: " PARAM USED',
79 1027: "BYTE_UNI TS",
80 1028: "COWPARE_LIM T",
81 1029: " PARAM COVPARE",
82 1030: "EXPECTS_TYPE",
83 1031: " CONSTRAI NT",
84 1032: "PASSES TYPE",
85 1033: "CONSTRAI NT_REQUI RED',
86 1034: "BIT_I NFO',
87 1035: " NGSPEC',
88 1036: "NOSPEC WB",
89 1037: " STMI_CNT",
90 1038: "TERM NATED'
91 1039: " SLEEP",
92 1040: "NO_ SLEEP CNT"
93 1041: "SMALLI SH,
94 1042: " FRESH_MTAG' ,
96 8017: "USER DATA",
97 9017: "USER DATA_ SET",
82 8017: "USER DATA2",
98 8018: " NO OVERFLOW,
99 8019: "NO_OVERFLOW S| MPLE",
100 8020: "LOCKED',
101 8021: " UNLOCKED",
102 8023: "ATOM C_I NC',
103 8024: "ATOM C_DEC',
104 };
106 def add_range(rl, min_val, max_val):
107 check_next = 0
108 done = 0
109 ret =[]
110 idx =
112 if len(rl) == 0:
113 return [[mn_val, max_val]]
115 for idx in range(len(rl)):
116 cur_mn = rl[idx][0]
117 cur_max = rl[idx][1]
119 # we al ready nmerged the new range but we might need to change |ater
120 # ranges if they over lap with nore than one
121 if check_next:
122 # join with added range
123 if max_val + 1 == cur_nin:
124 ret[len(ret) - 1][1] = cur_max
125 done = 1

new usr/src/tool s/ smat ch/ src/smat ch_dat a/ db/ smdb. py

126 br eak

127 # don't overlap

128 if max_val < cur_mn:

129 ret.append([cur_mn, cur_max])
130 done = 1

131 br eak

132 # partially overlap

133 if max_val < cur_max:

134 ret[Ien(ret) - 1]1[1] = cur_max
135 done =

136 br eak

137 # conpl etely overlap

138 continue

140 # join 2 ranges into one

141 if max_val + 1 == cur_min:

142 ret. append([m n_val, cur_nax])

143 done =

144 break

145 # range is entirely below

146 if max_val < cur_mn:

147 ret. append([m n_val, max_val])

148 ret. append([cur “nin, cur_max])
149 done =

150 br eak

151 # range is partially bel ow

152 if mn_val < cur_mn:

153 if max_val <= cur_nmax:

154 ret. append([m n_val, cur_max])
155 don

156 break

157 el se:

158 ret.append([m n_val, nmax_val])
159 check_next =1

160 conti nue

161 # range al ready included

162 if max_val <= cur_max:

163 ret.append([cur_mn, cur_max])

164 done = 1

165 break;

166 # range partially above

167 if min_val <= cur_max:

168 ret.append([cur_mn, max_val])

169 check_next =1

170 continue

171 # join 2 ranges on the other side

172 if mn_val - 1 == cur_max:

173 ret. append([cur mn, max_val])

174 check_next =

175 continue

176 # range i s above

177 ret.append([cur_mn, cur_mex])

179 if ide + 1 <len(rl): # we hit a break statenent
180 ret =ret + rl[idx + 1:]

181 elif done: # we hit a break on the |ast
182 pass

183 elif not check_next: # it’s past the end of the rl
184 ret.append([mn_val, max_val])

186 return ret;

188 def rl_union(rl1, rl2):

189 ret =[]

190 for r inrll:

191 ret = add_range(ret, r[0], r[1])

iteration

new usr/src/tool s/ smat ch/ src/smat ch_dat a/ db/ smdb. py

192 for r inrl2:

193 ret = add_range(ret, r[0], r[1])
195 if (rllor rl2) and not ret:
196 print "bug: merging % + % gives enpty" %rl1,
198 return ret

200 def txt_to vaI(txt)

201 if txt == "s64mn"

202 return -(2**63)
203 elif txt == "s32m n":
204 return -(2**31)
205 elif txt == "sl6m n":
206 return -(2**15)
207 elif txt == "s64max":
208 return 2**63 - 1
209 elif txt == "s32max":
210 return 2**31 - 1
211 elif txt == "sl6max":
212 return 2**15 - 1
213 elif txt == "u64max":
214 return 2**64 -1
215 elif txt == "ptr_nmax":
216 return 2**64 1
217 elif txt == "u32max":
218 return 2**32 - 1
219 elif txt == "ul6max":
220 return 2**16 - 1
221 el se:

222 try:

223 return int(txt)
224 except Val ueError:
225 return 0

227 def val _to_txt(val):

228 if val == -(2**63):

229 return "sé64mn"

230 elif val == -(2**31):
231 return "s32mn"

232 elif val == -(2**15):
233 return "sl6ém n"

234 elif val == 2**63 - 1:
235 return "s64max"
236 elif val == 2**31 - 1:
237 return "s32max"
238 elif val == 2**15 - 1
239 return "slémax"
240 elif val == 2**64 - 1:
241 return "u64max"
242 elif val == 2**32 - 1:
243 return "u32max"
244 elif val == 2**16 - 1
245 return "ul6max"
246 elif val < O:

247 return "(%l)" %val)
248 el se:

249 return "o%d" %val)
251 def get_next_str(txt):

252 val =""

253 parsed =

255 if txt[0] =="(":

256 parsed += 1

257 for char in txt[1:]:

rl2)

new usr/src/tool s/smatch/src/smat ch_dat a/ db/ sndb. py 5 new usr/src/tool s/smatch/src/smat ch_dat a/ db/ sndb. py 6
258 if char == ")": 324 if db types[k] == type_string:
259 br eak 325 return
260 parsed += 1 326 return -1
261 val = txt[1: parsed]
262 parsed += 1 328 def display_caller_info(printed, cur, param nanes):
263 elif txt[0] =="'s" or txt[0] == "u": 329 for txt in cur:
264 parsed += 6 330 if not printed:
265 val = txt[: parsed] 331 print "file | caller | function | type | parameter | key | value |"
266 el se: 332 printed = 1
267 if txt[0] == "-":
268 parsed += 1 334 parameter = int(txt[6])
269 for char in txt[parsed]: 335 key = txt[7]
270 if char == 336 if len(param nanes) and paraneter in paramnanes:
271 br eak 337 key = key.replace("$", param nanmes[paraneter])
272 parsed += 1
273 val = txt[: parsed] 339 print "920s | 9%®0s | 9%®0s |" 9%txt[0], txt[1], txt[2]),
274 return [parsed, val] 340 print " 9%0s |" %type_to_str(txt[5])),
341 print " % | % | %" % paranmeter, key, txt[8])
276 def txt_to_rl(txt): 342 return printed
277 if len(txt) == 0O:
278 return [] 344 def get_caller_info(filenane, ptrs, ny_type):
345 cur = con.cursor()
280 ret =[] 346 par am_names = get_param nanes(fil ename, func)
281 pairs = txt.split(",") 347 printed = 0
282 for pair in pairs: 348 type_filter =""
283 cnt, mn_str = get_next_str(pair) 349 if my_type = "":
284 if cnt == len(pair): 350 type_filter = "and type = %" %type_to_int(ny_type))
285 max_str = mn_str 351 for ptr in ptrs:
286 el se: 352 cur.execute("select * fromcaller_info where function ="' %’ %;" %ptr,
287 cnt, max_str = get_next_str(pair[cnt + 1:]) 353 printed = display_caller_info(printed, cur, paramnanes)
288 m n_val :txt _to_val (mn_str)
289 max_val = txt_to_val (max_str) 355 def print_caller_info(filenane, func, ny_type = ""):
290 ret. append([min_val, max_val]) 356 ptrs = get_function_pointers(func)
357 get_cal ler_info(filenane, ptrs, nmy_type)
292 # Hm .. Smatch won’t call INT_MAX s32maex if the variable is unsigned.
293 # if txt I'=rl_to_txt(ret): 359 def merge_val ues(param nanes, vals, cur):
294 # print "bug: converting: text = % rl = % internal = %" %txt, rl_to_t 360 for txt in cur:
361 parameter = int(txt[0])
296 return ret 362 name = txt[1
363 rl = txt_to_rl(txt[2])
298 def rl_to_txt(rl): 364 if parameter in paramnanes:
299 ret ="" 365 name = nane.replace("$", param nanes[paraneter])
300 for |dX|nrange(Ien(rI)):
301 cur_mn = rl[idx][0] 367 if not paranmeter in vals:
302 cur_nmax = r [idx][1] 368 val s[paraneter] = {}
304 if idx I'=0: 370 # the first itemon the list is the nunber of rows. it’s increnmented
305 ret +="," 371 # every tinme we call merge_val ues().
372 if name in val s[paraneter]:
307 if cur_min == cur_max: 373 val s[paraneter][nane] = [val s[paranmeter][name][0] + 1, rl_union(vals
308 ret += val _to_txt(cur_mn) 374 el se:
309 el se: 375 val s[paraneter][nane] = [1, rl]
310 ret += val _to_txt(cur_mn)
311 ret +="-" 377 def get_param nanmes(filenane, func):
312 ret += val _to_txt(cur_nmax) 378 cur = con.cursor()
313 return ret 379 param nanmes = {}
380 cur.execute("sel ect paraneter, value from paraneter_nanme where file = '%’ a
315 def type_to_str(type_int): 381 for txt in cur:
382 parameter = int(txt[0])
317 t = int(type_int) 383 name = txt[1]
318 if db_types. has_key(t): 384 param nanes[paraneter] = nane
319 return db_types[t] 385 if |en(paramnanes):
320 return type_int 386 return param names
322 def type_to_int(type_string): 388 cur.execute("sel ect paraneter, value from paraneter_nanme where function = '%
323 for k in db_types. keys(): 389 for txt in cur:

new usr/src/tool s/smatch/src/smat ch_dat a/ db/ sndb. py 7
390 parameter = int(txt[0])

391 name = txt[1]

392 param nanes[paranmeter] = nane

393 return paramnames

395 def get_caller_count(ptrs):

396 cur = con.cursor()

397 count = 0

398 for ptr in ptrs:

399 cur. execute("sel ect count(distinct(call_id)) fromcaller_info where func
400 for txt in cur:

401 count += int(txt[0])

402 return count

404 def print_nerged_caller_values(filenanme, func, ptrs, paramnanes, call_cnt):
405 cur = con.cursor()

406 vals = {}

407 for ptr in ptrs:

408 cur.execute("sel ect paraneter, key, value fromcaller_info where functio
409 mer ge_val ues(param nanes, vals, cur);

411 for paramin sorted(vals):

412 for nane in sorted(val s[parani):

413 if vals[paran]i[nanme][0] != call_cnt:

414 conti nue

415 print "% % -> %" 9% param nane, rl_to_txt(vals[parani[nanme][1]))
418 def print_unnmerged_call er_values(filenane, func, ptrs, paramnanes):

419 cur = con.cursor()

420 for ptr in ptrs

421 prev = -1

422 cur.execute("select file, caller, call_id, parameter, key, value fromca
423 for filename, caller, call_id, paranmeter, nane, value in cur:

424 if prev !=int(call_id):

425 prev = int(call_id)

427 paraneter = int(paraneter)

428 1 f paranmeter < | en(paramnanes):

429 nane = nane.replace("$", param nanes|paraneter])

430 el se:

431 nane = nane.replace("$", "$%" 9 paraneter))

433 print "% | % | % | %" %filenane, caller, nane, val ue)

434 print " "

436 def print_caller_values(filenanme, func, ptrs):

437 param nanmes = get_param nanes(fil enanme, func)

438 call _cnt = get_caller_count(ptrs)

440 print_nerged_cal | er_val ues(filenane, func, ptrs, paramnanes, call_cnt)

441 print " "

442 print_unnerged_cal |l er_val ues(fil enane, func, ptrs, param nanes)

444 def caller_info_values(filename, func):

445 ptrs = get_function_pointers(func)

446 print_caller_values(filenanme, func, ptrs)

448 def print_return_states(func):

449 cur = con.cursor()

450 cur.execute("select * fromreturn_states where function ='%’';" %func))
451 count = 0

452 for txt in cur:

453 printed = 1

454 1f count == 0:

455 print "file | function | return_id | return_value | type | param| k

new usr/src/tool s/smatch/src/ smat ch_dat a/ db/ sndb. py 8

456
457
458
459

461
462
463
464
465
466
467
468
469
470
471

473
474
475
476
477
478

480
481
482
483

485
486
487
488
489
490

492
493
494
495
496
497

499
500
501
502
503
504

506
507
508
509
510
511
512
513
514

516
517
518
519
520
521

def

def

def

def

def

def

count += 1

print "% | % | 9%®s | %3s" %txt[O0], txt[1], txt[3], txt[4]),
print "| %3s |" %type_to_str(txt[6])),
print " 9%d | 9%®0s | 9%0s |" %txt[7], txt[8], txt[9])
print_return_inplies(func):
cur = con. cursor()
cur.execute("select * fromreturn_inplies where function ='%’ ;" %func))
count = 0
for txt in cur:
if not count:
print "file | function | type | param| key | value |"
count += 1
print "%5s | %5s" 9%txt[0], txt[1]),
print "| %5s" %type_to_str(txt[4])),
print "| 98d | % | %5s |" 9%txt[5], txt[6], txt[7])

print_type_size(struct_type,
cur = con.cursor()
cur.execute("select * fromtype_size where type like ’'(struct

menber) :

9%8)->%" ;" %s

print "type | size"
for txt in cur:
print "% 15s | %" %txt[0], txt[1])
cur.execute("select * fromfunction_type_size where type like ’(struct %)->
print “file | function | type | size"
for txt in cur:
print "% 15s | % 15s | % 15s | %" 9%txt[O], txt[1], txt[2], txt[3])

print_data_i nfo(struct_type,
cur = con.cursor()
cur.execute("select * fromdata_info where data |like ' (struct

nenber) :
%8)->%" ;" %Us

print "file | data | type | value"
for txt in cur:
print "%15s | %15s | % 15s | %" 9%{txt[O0], txt[1l], type_to_str(txt[2])
print_fn_ptrs(func):
ptrs = get_function_pointers(func)
If not ptrs:
return
print "% =" %func),
print(ptrs)
print_functions(menber):
cur = con. cursor()
cur.execute("select * fromfunction_ptr where ptr like '9%6>%" ;" % nenber))
print "File | Pointer | Function | Static"
for txt in cur:
print "%15s | % 15s | % 15s | %" 9{txt[0], txt[2], txt[1], txt[3])

get _cal l ers(func):
ret =[]
cur = con.cursor()
ptrs = get_function_pointers(func)
for ptr in ptrs:
cur.execute("select distinct caller fromcaller_info where function ='%
for rowin cur:
ret.append(row 0])
return ret

printed_funcs =[]

def

cal | _tree_hel per(func,

gl obal printed_funcs

if func in printed_funcs:
return

print "%%()" %" " * indent,

indent = 0):

func)

new usr/src/tool s/ smat ch/ src/smat ch_dat a/ db/ smdb. py

%8) -

522 if func == "too comon":

523 return

524 if indent > 6:

525 return

526 printed_ funcs append(func)

527 callers = get_callers(func)

528 if len(caller s) >= 20:

529 print "Over 20 callers for %()" 9%func)

530 return

531 for caller in callers:

532 call _tree_hel per(caller, indent + 2)

534 def print_call_tree(func):

535 gl obal printed_funcs

536 printed_funcs = []

537 cal |l _tree_hel per (func)

539 def funct ion_type_val ue(struct_type, menber):

540 cur = con. cursor()

541 cur. execute("select * fromfunction_type_value where type like '(struct
542 for txt in cur:

543 print "%30s | %30s | % | %" %txt[O0], txt[1], txt[2], txt[3])
545 def trace_callers(func, paran):

546 sources = []

547 prev_type = 0

549 cur = con.cursor ()

550 ptrs = get_function_pointers(func)

551 for ptr in ptrs:

552 cur.execute("select type, caller, value fromcaller_info where function
553 for rowin cur:

554 data_type = i nt(row{ 0])

555 if data_type ==

556 sour ces. append((rom{ 1], row 2]))

557 elif data_type ==

558 sour ces. append(("% row 2])) # hack...
559 elif data_type == 0 and prev_type == O:

560 sources. append((rowf 1], ""))

561 prev_type = data_type

562 return sources

564 def trace_param hel per(func, param indent = 0):

565 gl obal printed_funcs

566 if func in printed_funcs:

567 return

568 print "%%(param %l)" %" " * indent, func, param
569 1f func == "too comon":

570 return

571 if indent > 20:

572 return

573 printed_funcs. append(func)

574 sources = trace_call ers(func, paran

575 for path in sources:

577 if len(path[1]) and path[1][0] == 'p' and path[1][1] =="
578 p = int(path[1][2:])

579 trace_param hel per(path[0], p, i ndent + 2)
580 elif len(path[0]) and pat h[0][0] == "%:

581 print " 9%%" %" * ndent, pat h[1])

582 el se:

583 print "* %% %" %" " * (indent - 1), path[0], path[1])
585 def trace_paran(func, param:

586 gl obal printed_funcs
587 printed_funcs =[]

new usr/src/tool s/smatch/src/smat ch_dat a/ db/ sndb. py 10
588 print "tracing % %" %func, param
589 trace_param hel per (func, paramn
591 def print_local s(filenane):
592 cur = con.cursor
593 cur.execute("select file,data,value fromdata_info where file ='%’ and typ
594 for txt in cur:
595 print "% | % | %" %txt[0], txt[1], txt[2])
597 def constraint(struct_type, nenber):
598 cur = con. cursor()
599 cur.execute("select * fromconstraints_required where data like '(struct %)
600 for txt in cur:
601 print "%30s | %30s | % | %" %txt[O0], txt[1], txt[2], txt[3])
603 if len(sys.argv) < 2:
604 usage()
606 if |len(sys.argv) ==
607 func = sys.argv[1]
608 print_caller_inf o(" func)
609 elif sys. argv[l] == "jinfo"
610 ny_type = ""
611 if len(sys.argv) ==
612 ny_type = sys argv[3]
613 func = sys.argv|2]
614 print_caller_inf o(, func, ny_type)
615 elif sys.argv[1] == cal | _info":
616 if len(sys. argv) 1= 4
617 usage()
618 filenane = sys.argv[2]
619 func = sys.argv[3]
620 caller_info_val ues(filenare, func)
621 print_caller_info(filename, func)
599 elif sys.argv[1l] == "user_data":
600 func = sys.argv[2]
601 print_caller_inf o(fl | enane, func, " USER_DATA")
602 elif sys.argv[1] == "paramval ue":
603 func = sys. argv[2]
604 print_caller_info(filename, func, "PARAM VALUE")
622 elif sys.argv[1] == "function_ptr" or sys.argv[1l] == "fn_ptr":
623 func = sys.argv[2]
624 print_fn_ptrs(func)
625 elif sys.argv[1l] == "return_states":
626 func = sys.argv[2]
627 print_return_states(func)
628 print
629 print_return_inplies(func)
630 elif sys.argv[1] == "return_inplies":
631 func = sys.argv[2]
632 print_return_inplies(func)
633 elif sys.argv[1l] == "type_size" or sys.argv[1l] == "buf_size":
634 struct _type = sys.argv[2]
635 nenber = sys. argv[3]
636 print_type_size(struct_type, nenber)
637 elif sys.argv[1l] == "data_info":
638 struct _type = sys.argv[2]
639 nenber = sys. argv[3]
640 print_data_i nfo(struct_type, nenber)
641 elif sys.argv[1l] == "call _tree":
642 func = sys.argv[2]
643 print_call_tree(func)
644 elif sys.argv[1l] == "where":
645 if len(sys.argv) == 3:
646 struct_type = "%
647 nmenber = sys.argv[2]

new usr/src/tool s/ smat ch/ src/smat ch_dat a/ db/ smdb. py

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685

elif len(sys.argv) == 4:
struct _type = sys.argv[2]
menber = sys. argv[3]
function type val ue(sltruct _type, nenber)

elif sys. argv[1] =="lo
filenane = sys. ar gv[2]
variable =

if len(sys. argv) == 4:
variabl e = sys. argv|[3]
| ocal _val ues(fil ename varl abI e)
elif sys.argv[1] == "functi ons”
menber = sys. argv[2]
print_functi ons(nEnber)

elif sys.argv[1l] == "trace_parani:
if len(sys.argv) != 4:
usage()

func = sys.argv[2]
param = i nt(sys.argv[3])
trace paran(func, par amn

elif sys.argv[1] "l ocal s":
if len(sys. argv) 1= 3:
usage()

filenane = sys.argv[2]
print_local s(fil ename) ;
elif sys.argv[1l] == "constraint":
if len(sys.argv) == 3:
struct_type = "%
menber = sys. argv[2]
elif len(sys.argv) ==
struct _type = sys. argv[2]
menber = sys. argv[3]
constrai nt(struct type menber)
elif sys. argv[l] == "test":
filenanme = sys. argv[2]
func = sys.argv[3]
cal | er_i nfo_val ues(fil ename, func)

11

new usr/src/tool s/ smatch/src/smatch_dat a/ db/ vi m sndb 1

R R R R

665 Mon Aug 5 08:38:25 2019
new usr/src/tool s/ smatch/src/smatch_dat a/ db/ vi m sndb
11506 snatch resync

R R R R

1 #!/bin/bash

3 # Add these lines to your .vinrc file

4 #

5 # map <C-r> :! vimsndb return_states <cword> <CR> :execute 'edit’ system("cat ~
6 # map <C-c> :! vimsndb <cword> <CR> :execute 'edit’ systen("cat ~/.sndb_tnp/cur
7 #

8 # Now you can nove your cursor over a function and hit CTRL-c to see howit’'s

9 # called or CTRL-r to see what it returns. Use the ":bd" command to get back to
10 # your source.

12 DI R="$HOME/ . smdb_t np”
13 nkdir -p $DIR

15 for i in $(seq 1 100) ; do
if [! -e DDR'i] ; then
17 br eak
18 fi
19 done

21 if [$i == 100] ; then
22 i=1

23 fi

25 next=$(($i + 1))

27 rm-f $DI R/ $next

28 rm-f $DIR/ .${i}.sw
28 rm $DI R . ${i}.swp

29 smdb $* > $DI R/ $i

31 echo "$DIR/ i " > $DI R/ cur

new usr/src/tool s/smatch/src/smatch_data/ill unmpbs_kernel . ski pped_f uncti ons

R R R R

227 Mon Aug 5 08:38:25 2019
new usr/src/tools/smatch/src/smatch_data/ill unms_kernel . ski pped_f uncti ons
11506 snatch resync
LEEE R R R R EE SRR EEEEEEEEEEE RS SRR SRR EEEEEREREEEEEEEEESE]
1 /* These are "too hairy" for smatch. */
2 ECDSA VerifyDi gest
3 dtrace_di sx86
4 el f 32exec
5 el fexec
6 iscsi_ioctl
7 I midle_chk
8 | d64_sym val i date
9 luaV_settabl e
10 nostore_generate_key_pair
11 sadb_conmmon_add
12 segvn_faul t _vnodepages
13 tcp_i nput _data

new usr/src/tool s/smatch/src/smatch_data/ill ums_user. ski pped_functions

R R R R

698 Mon Aug 5 08:38:26 2019
new usr/src/tools/smatch/src/smatch_data/ill ums_user. ski pped_functions
11506 snatch resync

R R R R

/*

* The bel ow functions cause smatch to fail with "turning off inplications after

* 60 seconds" or simlar,
*

general |y because they're too large for it to handle.

* This will disable analysis altogether.

*/

/* 1ibast */

_ast _optget
_ast_opthel p

/* 1ibcrmd */
b_unane

/* libcurses */
_updateln

/* 1ibdi sasm */
dtrace_di sx86

/* libld */

| d32_sym process

| d64_sym process
updat e_osym

/* libsqglite */

sql i t eVdbeExec

/* cnd/ acpi/iasl */
Asl| Conpi | er par se

/* cmd/fs.dl autofs */

nf smount

/* cmd/ mdb */
i ob_dopr nt

/* cmd/ pppd */
| cp_nakcli

/* cnd/ cnd-crypto */
execut e_cnd

/* generated code */
i pf _yyparse

i pnon_yypar se
i pnat _yypar se
i ppool _yypar se
ndr __ndr _hdr
yyerror

yyl ex

yyl ook

yypar se

yyW nput

new usr/src/tool s/ smatch/ src/smatch_dat a/ kernel . al | ocati on_funcs_gf p. renove

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
46 Mon Aug 5 08:38:26 2019

new usr/src/tool s/smatch/ src/smatch_dat a/ kernel . al | ocati on_funcs_gf p. renove
11506 snatch resync
LEEE R R R R EE SRR EEEEEEEEEEE RS SRR SRR EEEEEREREEEEEEEEESE]

1 acquire_group

2 acquire_group 2

3 acquire_group X

new usr/src/tool s/ smatch/src/smat ch_dat a/ kernel . i gnore_cast ed_par ans

R R R R

201 Mon Aug 5 08:38:26 2019

new usr/src/tool s/smatch/src/smatch_dat a/ kernel . i gnore_cast ed_par ans
11506 snatch resync
IR E SR SR RS RS E SRR R R SRR R R SRR R R R RS EEREREEREEREEEEEEEERSE]

1 set_bit

2 clear_bit

3 __clear_bit
4 __set_bit
5 test_and_set_bit
6 find_last_bit
7 change_bit
8 xfs_next_bit
9 find_next_bit
10 find_first_bit
11 _ test_and_set_bit
12 sync_set_bit
13 bi t map_wei ght
14 bitmap_intersects
15 bitmap_enpty

new usr/src/tool s/smatch/src/smatch_dat a/ kernel .ignore_side_effects

R R R R

1255 Mon Aug 5 08:38:26 2019
new usr/src/tool s/smatch/ src/smatch_dat a/ kernel . i gnore_si de_effects
11506 snatch resync

R R R R

1/*

2 * Manually created.

3 *

4 * Mpst of these have intentional side effects.
5 * Some of themlike put_user() and friends, have side effects when
6 * is defined but not in the conpiled kernel.
7 *

8 ADD_STA_STATS

9 ARCH_DLI NFO

10 AWDATA

11 ENCODE

12 ENCODE_DATA
13 ENCODE_STR
14 get_child
15 get_child_rcu
16 get_unal i gned
17 get_user
18 __get _user
19 _ get_user_nocheck
20 hybrid_tuner_request_state
21 iterate_bvec
22 iterate_all _kinds
23 | ookup
24 | ookup_rightenpty
MAKE_RAW BYTE
26 MAKE_RAW BYTE_56K
27 ndel ay
28 MsgHead
29 MJL64
30 NEW AUX_ENT
31 nh_vmac_nhbytes
32 ntohl
33 QUT_RI NG_REG
34 poly_step
35 PUT_BYTE
36 put_short
37 put _user
38 __put_user
39 _ put_user_nocheck
40 R128_WWAI T_UNTI L_PAGE_FLI PPED
41 R600_CLEAR ACGE
42 R600_DI SPATCH_AGE
43 R600_FRAVE AGE
44 RADEON_CLEAR _AGE
45 RADEON_DI SPATCH_AGE
46 RADEON_FLUSH_CACHE
47 RADEON FRAVE_AGE
48 RADEON_PURGE_CACHE
49 RADEON_PURGE_ZCACHE
50 RADEON _WAI T_UNTI L_2D_| DLE
51 RADEON WAI T_UNTI L 3D I DLE
52 RADEON WAI T_UNTI L_I DLE
53 RCU_I NI T_PO NTER
54 READ64
55 rtnl _dereference
56 SK_REUSEPORT LOAD SKB_FI ELD
57 SK_REUSEPORT_LOAD SK_FI ELD_SI ZE_CFF
58 send_bits
59 send_code
60 SOCK_ADDR LOAD NESTED FI ELD
61 SOCK_ADDR_LOAD_NESTED Fl ELD_SI ZE_OFF

__CHECKER _

new usr/src/tool s/smatch/ src/smat ch_dat a/ kernel . i gnore_side_effects

62 SOCK_ADDR _LOAD OR_STORE_NESTED FI ELD Sl ZE_OFF
63 SOCK_ADDR_LOAD_OR_STORE_NESTED Fl ELD

64 SOCK_OPS _GET_FI ELD

65 SOCK_OPS_GET_OR_SET_FI ELD

66 SOCK_OPS_GET_TCP32

67 unsafe_get_user

68 unsafe_put _user

69 VIA OUT_RI NG QW

70 WRI TE64

71 Z

new usr/src/tool s/ smatch/ src/smatch_dat a/ kernel .ignore_uninitialized_param

R R R R

2207 Mon Aug 5 08:38:26 2019
new usr/src/tool s/smatch/src/smatch_data/ kernel .ignore_uninitialized_param
11506 snatch resync
LEEE R R R R EE SRR EEEEEEEEEEE RS SRR SRR EEEEEREREEEEEEEEESE]

1 regmap_read 2
2 regmap_fields_read 2
3 visorchannel _read 2
4 dmam al | oc_coherent 2
5 diva_pci_all oc_consistent 2
6 read_nos_reg 3
7 adp5520_read 2
8 ganeport_cooked_read 2
9 max3100_sr 1
10 sata_scr_read 2
11 svia_scr_read 2
12 | p8788_read_byte 2
13 gl a83xx_rd_reg 2
14 cciss_read_capacity 2
15 cciss_read_capacity 3
16 rio_nport_read_config_32 4
17 acpi_read 0
18 axi _cl kgen_metmread 2
19 intel _nsic_irq_read 2
20 pci _user_read_config_word 2
21 ec_read 1
22 sony_cal | _snc_handl e 2
23 pci_user_read_config_word 2
24 read_reg_fp 2
25 vid_bl k_read_word 2
26 nc4l7_nenory_read 2
27 stvO06xx_read_sensor 2
28 | mB0_read_reg 2
29 read_mi_word 3
30 read_epromword 2
31 generic_ocp_read 2
32 lan78xx_read_reg 2
33 conR0020_copy_fromcard 3
34 w 3501_get _fromwa 2
35 ipw_get _ordinal 2
36 generic_ocp_read 3
37 et131x_mi _read 2
38 gl _mii_read_reg 2
39 atl 1c_read_phy_dbg 2
40 atl2_read_phy_reg 2
41 atl1_read_phy_reg 2
42 pch_gbe_hal _read_phy_reg 2
43 t1_tpi_read 2
44 rio_l ocal _read_config_32 2
45 acpi _snbus_read 4
46 pci _read_config_dword 2
47 viafb_i 2c_readbyte 3
48 bap_read 1
49 of _get_property 2
50 of _property_read_u32 2
51 of _property_read_u8 2
52 of _property_read_ul6 2
53 of _property_read_u32_i ndex 3
54 intel _gvt_hypervisor_read_gpa 2
55 ¢s5536_read 1
56 __and64_read_pci _cfg_dword 2
57 ele_rphy 2
58 inx_phy_reg_read 0
59 chipio_read 0
60 had_read_register 1
61 gcaspi _read_register 2

new usr/src/tool s/smatch/ src/smatch_data/ kernel .ignore_uninitialized_param

62 nmv88ebxxx_g2_read 2

63 b53_read8 3

64 b53_readl6 3

65 b53_read32 3

66 b53_read48 3

67 b53_read64 3

68 dvbtgam get _acc_pkt_err 1

69 ch7xxx_readb 2

70 ivch_read 2

71 tvp7002_read 2

72 rtsx_pci_read_register 2

73 rtsx_usb_epO_read_register 2
74 __t1_ tpi_read 2

75 smec95xx_read_reg 2

76 pci_user_read_config_dword 2
77 da903x_read 2

78 rio_read_config_8 2

79 rio_read_config_16 2

80 rio_read_config_32 2

81 __ad7280_read32 1

82 rtsx_read_cfg_dw 3

83 lola_read_param 3

84 soc_dapmread 2

85 read_nic_byte 2

86 and_smm_read 2

87 neson_ao_cec_read 2

88 pci_read_config_byte 2

89 pci_read_config_word 2

90 1 40e_read_nvmword 2

91 stk_canera_read_reg 2

92 cnl _get _buf _trans_edp 1

93 cnl _get _buf _trans_dp 1

94 intel _ddi _get_buf_trans_edp 1
95 intel _ddi _get_buf_trans_dp 1
96 cnl _get _buf _trans_hdm 1

97 iosf_nbi _read 3

98 lola_codec_read 5

99 chipio_read 2

100 pcxhr_write_io_numreg_cont 3
101 read_current_timer

102 pwap_read 2

103 di busb_read_eeprom byte 2
104 of _fdt_unflatten_tree 2

105 pci _user_read_config_byte 2
106 genll_gu_nisc_irqg_ack 2

107 vsc73xx_read 4

108 snb_hc_read 2

109 snmb_word_op 5

110 atl 1c_read_phy_reg 2

111 adf 7242_read_reg 2

new usr/src/tool s/ smatch/ src/smat ch_dat a/ ker nel . i gnor ed_war ni ngs

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]

35 Mon Aug 5 08:38:27 2019
new usr/src/tool s/smatch/ src/smatch_dat a/ kernel . i gnored_war ni ngs
11506 snatch resync

LEEE R R R R EE SRR EEEEEEEEEEE RS SRR SRR EEEEEREREEEEEEEEESE]
1 check_shift_to_zero overfl ows_type

new usr/src/tool s/ smatch/ src/smatch_dat a/ kernel . no_i nl'i ne_functi ons

R R R R

210 Mon Aug 5 08:38:27 2019

new usr/src/tool s/smatch/ src/smatch_dat a/ kernel . no_i nl'i ne_functi ons
11506 snatch resync
LEEE R R R R EE SRR EEEEEEEEEEE RS SRR SRR EEEEEREREEEEEEEEESE]
_ _fswabl6
__fswab32
__fswab64
__builtin_bswapl6
__builtin_bswap32
__builtin_bswap64
_arch_hwei ght 8
_arch_hwei ght 16

__arch_hwei ght 32
10 __arch_hwei ght 64
11 __wite_once_size
12 atom c_set
13 atom c_read
14 notifier_to_errno

O©CONOUITAWNE

new usr/src/tool s/smatch/src/smat ch_dat a/ kernel . no_return_funcs. add

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]

30 Mon Aug 5 08:38:27 2019
new usr/src/tool s/ smatch/src/smat ch_dat a/ kernel . no_return_funcs. add
11506 snatch resync

R R R R

1 YY_FATAL_ERROR
2 mal formed_line

new usr/src/tool s/ smatch/ src/smatch_dat a/ kernel . sil enced_functi ons

R R R R

250 Mon Aug 5 08:38:27 2019
new usr/src/tool s/ smatch/ src/smatch_dat a/ kernel . sil enced_functi ons
11506 snatch resync
LEEE R R R R EE SRR EEEEEEEEEEE RS SRR SRR EEEEEREREEEEEEEEESE]
/* Don’t print anything fromthese functions */
at om c_dec_and_t est
atom c_i nc_and_t est
at om c64_dec_and_t est
at om c_sub_and_t est
test _and_clear_bit
test _and_set _bit
__copy_to_user_nocheck
__copy_from_user_nocheck
arch_static_branch
__static_cpu_has
__read_once_si ze

RPOOONNOUAWNE

e

new usr/src/tool s/smatch/src/smatch_dat a_source. c 1

R R R R

2765 Mon Aug 5 08:38:28 2019
new usr/src/tool s/smatch/src/smatch_dat a_source. c
11506 snatch resync

R R R R

2 * Copyright (© 2013 Oacle.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any |later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of
11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
12 * GNU Ceneral Public License for nore details.
13 =
14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt

*

/

18 #include "smatch. h"

19 #include "smatch_slist.h"
20 #include "smatch_extra. h"
22 static int ny_id,

24 static char *get_source_paraneter(struct expression *expr)

25

26 struct expression *tnp;

27 const char *param nane;

28 struct symbol *sym

29 char *nane;

30 int param

31 char *ret = NULL;

32 char buf[32];

33 int cnt = 0O;

34 bool nodified = fal se;

36 tmp = expr;

37 while ((tnmp = get_assigned_expr(tnp))) {
38 expr = tnp;

39 if (cnt++ > 3)

40 br eak;

41 }

43 expr = strip_expr(expr);

44 if (expr->type != EXPR_SYMBOL)

45 return NULL;

a7 name = expr_to_var_sym(expr, &sym;
48 if (Inane [| !sym

49 goto free;

50 param = get _param num fromsyn(syn);
51 1 f (param < 0)

52 goto free;

53 param nane = get_param nanme_var_syn{nanme, syn);
54 i1 f (!param.nane)

51 if (paramwas_set (expr))

55 goto free;

56 if (paramwas_set_var_sym(name, sym)
57 nodi fied = true;

59 snprintf(buf, sizeof(buf), "$%%%", param paramnane + 1,
60 nodi fied 2 " [m" : "");

new usr/src/tool s/smatch/src/smat ch_dat a_source. c

54 snprintf(buf, sizeof(buf), "p %", param;
61 ret = alloc_string(buf);

63 free:

64 free_string(nane);

65 return ret;

66 }

__unchanged_portion_omtted_

new usr/src/tool s/smatch/src/smatch_db. c 1

R R R R

64159 Mon Aug 5 08:38:28 2019
new usr/src/tools/smatch/src/smatch_db. c
11506 snatch resync
LEEE R R R R EE SRR EEEEEEEEEEE RS SRR SRR EEEEEREREEEEEEEEESE]
______unchanged_portion_omnitted
69 ALLOCATOR(db_i nplies_cal | back, "return_inplies callbacks");
70 DECLARE_PTR_LI ST(db_inplies cb list, struct db_inplies_callback);
71 static struct db_inplies_cb_|ist *retur n_inplies_cb_list;
72 static struct db_inplies_cb_list *call _inplies_cb_list;

74 |* silently truncates if needed. */
75 char *escape_new i nes(const char *str)
{

76

77 char buf[1024] = "";

78 bool found = false;

79 int i, j;

81 for (i =0, j =0; str[i] !'="\0 &&j != sizeof(buf); i++ j++) {
82 if (str[i] !'="\r" && str[i] !="'\n")
82 if (str[i] '="\n") {
83 buf[j] = str[i];
84 cont i nue;

85 }

87 found = true;

88 buf[j++] = e

89 if (] == si zeof(buf))
90 br eak

91 buf[j] ='n";

92 }

94 if (!found)

95 return alloc_snanme(str);
97 if (j == S|zeof(buf))

98 buf[]j 1] ='\0";

99 return aIIoc_snar’re(buf)

100

__unchanged_portion_onitted_

253 void sql _insert_function_ptr(const char *fn, const char *struct_nane)

254 {

255 sql _insert _or_ignore(function_ptr, ""9%’', "%, '%', 0",

256 get _base_file(), fn struct _nane);

255 sqgl _insert(function_ptr, "' %, '%’, X7y , 0", get_base_file(), fn,
256 struct _nane);

257 }

__unchanged_portion_onitted_

329 void sql _save_constraint(const char *con)

330 {

331 if (loption_info)

332 return;

334 smneg("SQ.: insert or ignore into constraints (str) values('%’);", esc
334 smnsg("SQL: insert or ignore into constraints (str) values('%’);", con
335 }

__unchanged_portion_omtted_

375 void sql _insert_ntag_data(ntag_t tag, const char *var, int offset, int type, con
376 {
377 sql _insert(ntag_data, "%!d, '%’', %, %, '%’ ", tag, var, offset, type
378 }

375 void sql _insert_ntag_nmap(ntag_t tag, int offset, ntag_t container)

new usr/src/tool s/smatch/src/smatch_db. c

376 {
377 sql _insert(ntag_nap, "%Id, %, %I1d", tag, offset, container);
378 }

__unchanged_portion_omtted_

748 int is_recursive_nenber(const char *nane)

749 {

750 char buf[256];

751 const char *p, *next;

752 int size;

754 p = strchr(nanme, '>");

755 if (!p

756 return O;

757 p++;

758 while (true) {

759 next = strchr(p, '>");

760 if (!next)

761 return O;

762 next ++;

764 size = next - p;

765 if (size >= sizeof (buf))

766 return O;

767 mencpy(buf, p, size);

768 buf[size] ='\0";

769 if (strstr(next, buf))

770 return 1;

771 p = next;

772 }

773 }

775 static void print_struct_nenbers(struct expression *call, struct expression *exp
776 voi d (*cal | back) (struct expression *call, int param char *printed_nane,
777 {

778 struct smstate *sm

779 const char *sm nane;

780 char *nane;

781 struct synbol *sym

782 int |en;

783 char printed nama[256] ;

784 int is_address = 0;

785 bool add_star;

786 struct synbol *type;

788 expr = strip_expr(expr);

789 if (!expr)

790 return;

791 type = get_type(expr);

792 if (type && type_bits(type) < type_bits(&ulong_ctype))
793 return;

795 if (expr->type == EXPR_PRECP && expr->op == '&) {
796 expr = strip_expr(expr->unop);
797 is_address = 1;

798 }

772 type = get_type(expr);

773 if (type && type blts(type) < type_bits(&ul ong_ctype))
774 return

800 name = expr_to_var_synm(expr, &sym;
801 if (!nane || !sym

802 goto free;

804 len = strlen(nane);

new usr/src/tool s/smatch/src/smatch_db. c 3
805 FOR_EACH SM stree, sm {

806 if (sm>sym!= sym

807 conti nue;

808 sm . nane = sm >nane;

809 add_star = fal se;

810 if (smname[0] == "*") {

811 add_star = true;

812 sm name++;

813 }

814 /1 FIXME: sinplify?

815 if (ladd_star && strcnp(nane, smnane) == 0) {

784 if (strcnp(name, sm>nane) == 0) {

816 it (is_address)

817 snprintf(printed_name, sizeof(printed_nanme), "*$
818 el se /* these are already handl ed. fixme: handle t hem he
819 conti nue;

820 } else if (add_star && strcrrp(name, smnanme) == 0)

821 snprintf(printed_nane, si zeof(prl nted_name), "%*$%",

822 i s_address ? "*" show offset(offset))

823 } else |f (strncnrp(name, smnane, Ien) == 0) {

824 (smnama[len] =", && smnane[len] !="-"

789 } else |f (sm>nanme[0] == "*' && strcnp(name, sm>nane + 1) == 0
790 snprintf(printed_nanme, sizeof(printed_nane), "*$%", sho
791 } else if (strncnp(nane, sm >nane, |en) == 0)

792 if (isalnumsm>nane[len]))

825 conti nue;

826 if (is_address)

827 snprintf(printed_name, sizeof(printed name)

828 "8$%->9", add_star ? "*" T "

829 show_offset(offset) smname + len + 1)
795 snprintf(printed_nane, si zeof(prl nted_nane), "$%
830 el se

831 snprintf(printed_name, si zeof(prl nt ed nane)

832 "o6$9695", add_star ? "*"

833 show_offset(offset) sm_nane + en);
797 snprintf(printed_nane, si zeof(pri nt ed_nane), "$%
834 } else {

835 conti nue;

836 }

837 1f (is_recursive_nenber(printed_nane))

838 conti nue;

839 cal I back(call, param printed_name, sm;

840 } END_FOR_EACH SM sn);

841 free:

842 free_string(nane);

843 }

__unchanged_portion_onitted_

1045 static char *get_next_ptr_nane(void)

1046 {

1047 char *ptr;

1049 FOR_EACH_PTR(ptr_nanes, ptr) {

1050 if (!insert_string(&ptr_names_done, ptr))
1012 if (list_has_string(ptr_names_done, ptr))
1051 cont i nue;

1014 insert_string(&tr_nanes_done, ptr);

1052 return ptr;

1053 } END_FOR _EACH PTR(ptr);

1054 return NULL;

1055 }

__unchanged_portion_onitted_

1264 static char *get_return_conpare_is_paran(struct expression *expr)
1227 static void print_initializer_|ist(struct expression_list *expr_list,
1228 struct synbol *struct_type)

new usr/src/tool s/smatch/src/smatch_db. c 4
1265 {

1266 char *var;

1267 char buf[256];

1268 int conparison;

1269 int param

1230 struct expression *expr;

1231 struct synbol *base_type;

1232 char struct_nane[256] ;

1271 param = get _par am nun(expr);

1272 1 f (param < 0)

1273 return NULL;

1275 var = expr_to_var(expr);

1276 if (!var)

1277 return NULL;

1278 snpri ntf(buf si zeof(buf) "% orig", var);

1279 conpari son = get_conparison_strings(var, buf)

1280 free_string(var);

1282 if (!conparison)

1283 return NULL;

1285 snprintf(buf, si zeof(buf) "[%$%] ", show_speci al (conparison), paran);
1286 return alloc_sname(buf);

1234 FOR_EACH _PTR(expr _l i st, expr) {

1235 if (expr->type == EXPR | NDEX && expr->i dx_expression & expr->id
1236 print_ini t| al i zer_list(expr->i dx_expression->expr_list,
1237 cont i nue;

1238 }

1239 if (expr->type != EXPR_| DENTI FI ER)

1240 cont i nue;

1241 if (!expr->expr_ident)

1242 conti nue;

1243 if (!expr->ident_expression || !expr->ident_expression->synbol _n
1244 cont i nue;

1245 base_type = get_type(expr->i dent_expression);

1246 if (!'base_type || base_type->type != SYM FN

1247 cont i nue;

1248 snprintf(struct_nane, sizeof(struct_nane), "(struct %)->%",
1249 struct _t ype->i dent - >nane, expr->expr_i dent->nane);
1250 sqgl _insert_function_ptr(expr->i dent_expressi on- >synbol _nane- >nam
1251 struct _nane);

1252 } END_FOR EACH PTR(expr)

1287 }

1289 static char *get_return_conpare_str(struct expression *expr)

1255 static void global variabl e(struct symbol *sym

1290 {

1291 char *conpare_str;

1257 struct synbol *struct_type;

1293 conpare_str = get_return_conpare_i s_paramn(expr);

1294 if (conpare_str)

1295 return conpare_str;

1297 conpare_str = expr_lte_to_paran{expr, -1);

1298 if (conpare_str)

1299 return conpare_str;

1301 return expr_param conparison(expr, -1);

1302 }

1304 static const char *get_return_ranges_str(struct expression *expr, struct range_l
1305 {

1306 struct range_list *rl;

new usr/src/tool s/smatch/src/smatch_db. c

1307 char *return_ranges;

1308 sval _t sval;

1309 char *conpare_str;

1310 char *math_str;

1311 char buf[128];

1313 *rl_p = NULL;

1315 if (!expr)

1316 return alloc_sname("");

1318 if (get_inpli ed_val ue(expr, &sval)) {

1319 sval = sval cast(cur func_return_type(), sval);
1320 *rl_p = alloc_rl(sval, sval);

1321 return sval _to_str_or_err_ptr(sval);

1259 if (!'sym>ident)

1260 return;

1261 if (!'sym>initializer || sym>initializer->type != EXPR_| N Tl ALI ZER)
1262 return;

1263 struct _type = get_base_type(sym;

1264 if (!struct_type)

1265 return;

1266 if (struct_type->type == SYM ARRAY) {

1267 struct _type = get_base_type(struct_type);

1268 if (!struct_type)

1269 return;

1322 }

1324 conpare_str = expr_equal _to_paran(expr, -1);

1325 math_str = get_val ue_i n_terms_of _paraneter_nat h(expr);

1327 if(getlrrplledrl(expr &rl)&&lismholer(l){

1328 = cast rl(cur func_return_type(), rl);

1329 return _ranges = show rl(rl);

1330 } else if (get_imagi nary_absol ute(expr &l)){

1331 rl = cast_rl (cur_func returntype() rl);

1332 return alToc_sname(show rl (rT));

1333 } else {

1334 get _absolute_rl (expr, &l);

1335 rl = cast rl(cur func returntype() rl);

1336 return_ranges = show rl(rl);

1337 }

1338 *rl_p =rl;

1340 if (conpare_str)

1341 snpri ntf(buf si zeof (buf), "%%", return_ranges, conpare_str);
1342 return all oc_snane(buf);

1343 1

1344 if (math_str) {

1345 snprintf(buf, sizeof(buf), "%[%]", return_ranges, math_str);
1346 return alloc_snanme(buf);

1347 1

1348 conpare_str = get_return_conpare_str(expr);

1349 if (conpare_str)

1350 snprintf(buf, sizeof(buf), "%%", return_ranges, conpare_str);
1351 return all oc_snanme(buf);

1352 1

1354 return return_ranges;

1271 if (struct_type->type != SYM STRUCT || !struct_type->ident)
1272 return;

1273 print_initializer_list(sym>initializer->expr_list, struct_type);
1355 }

__unchanged_portion_onitted_

1362 static void call _return_state_hooks_conditional (struct expression *expr)

new usr/src/tool s/smatch/src/smatch_db. c

1363 {

1364 struct returned_state_call back *cb;

1365 struct range_list *rl;

1366 const char *return_ranges;

1285 char *return_ranges;

1367 int final_pass_orig = final_pass;

1369 __push_fake_cur_stree();

1371 final _pass = 0;

1372 __split_whol e_condition(expr->conditional);

1373 final _pass = final_pass_orig;

1375 return_ranges = get_return_ranges_str(expr->cond_true ?: expr->condition
1294 if (get_inplied_rl(expr->cond_true, &l))

1295 rl = cast_rl(cur_func_return_type(), rl);

1296 el se

1297 rl = cast_rl (cur_func_return_type(), alloc_whole_rl(get_type(exp
1298 return_ranges —showrl(rl)

1377 set _state(RETURN_ID, "return_ranges", NULL, alloc_estate_rl(rl));

1379 return_i d++;

1380 FOR_EACH PTR(returned_state_cal | backs, cb) {

1381 cbh->cal | back(return_id, (char *)return_ranges, expr->cond_true);
1303 cb->cal | back(return_id, return_ranges, expr->cond_true);

1382 } END_FOR_EACH PTR(cb);

1384 __push_true_states();

1385 __use_false_states();

1387 return_ranges = get_return_ranges_str(expr->cond_false, &l);

1309 if (get_inplied_rl(expr->cond_false, &l))

1310 rl = cast_rl (cur_func_return_type(), rl);

1311 el se

1312 rl = cast_rl (cur_func_return_type(), alloc_whole_rl(get_type(exp
1313 return_ranges —showrl(rl)

1388 set _state(RETURN_ID, "return_ranges", NULL, alloc_estate_rl(rl));

1390 return_id++;

1391 FOR_EACH PTR(retur ned_st ate_cal | backs, cb)

1392 cb->cal | back(return_id, (char *)return_ranges, expr->cond_false)
1318 ch->cal | back(return_id, return_ranges, expr->cond_false);

1393 } END_FOR EACH PTR(cb)

1395 __nmerge_true_states();

1396 __free_fake_cur_stree();

1397 }

__unchanged_portion_onitted_

1383 static char *get_return_conpare_str(struct expression *expr)

1384 {

1385 char *conpare_str;

1386 char *var;

1387 char buf[256];

1388 int conparison;

1389 int param

1391 conpare_str = expr_|lte_to_paran(expr, -1);
1392 if (conpare_str)

1393 return conpare_str;
1394 param = get _param nun{ expr);
1395 I f (param < 0)

1396 return NULL;

1398 var = expr_to_var(expr);

new usr/src/tool s/smatch/src/smatch_db. c

1399 if (lvar)

1400 return NULL;

1401 snprintf(buf, sizeof(buf), "% orig", var);

1402 conpari son = get_conparison_strings(var, buf);

1403 free_string(var);

1405 if (!conparison)

1406 return NULL;

1408 snprintf(buf, sizeof(buf), "[%$%]", show special (conparison),
1409 return all oc_snanme(buf);

1410 }

1457 static int split_possible_helper(struct smstate *sm struct expression *expr)
1458 {

1459 struct returned_state_call back *cb;

1460 struct range_list *rl;

1461 char *return_ranges;

1462 struct smstate *tnp;

1463 int ret = 0;

1464 int nr_possible, nr_states;

1465 char *conpare_str;

1420 char *conpare_str = NULL;

1466 char buf[128];

1467 struct state_list *al ready_handl ed = NULL;

1468 sval _t sval;

1470 if (Ism]|| !'sm>nerged)

1471 return O;

1473 if (too_many_possible(sm)

1474 return O;

1476 /* bail if it gets too conplicated */

1477 _possible = 0;

1478 F(R EACH PTR(sm >possible, tnmp) {

1479 if (tnp- >ner ged)

1480 conti nue;

1481 nr_possi bl e++;

1482 } END_FOR EACH | PTR(t ;

1431 nr_possible = ptr_list 5| ze((struct ptr_list *)sm >possible);
1483 nr_states = get_db_state_count();

1484 if (nr_states * nr_possible >= 2000)

1485 return O;

1487 FOR_EACH _PTR(sm >possi bl e, tnp) {

1488 1 f (tnp->merged)

1489 cont i nue;

1490 if (ptr_in_list(tnp, already_handl ed))

1491 conti nue;

1492 add_ptr_list(&already_handl ed, tnp);

1494 ret = 1;

1495 __push_fake_cur_stree();

1497 overw ite_states_using_pool (sm tnp);

1499 rl = cast_rl(cur_func_return_type(), estate_rl(tnp->state));
1500 return_ranges = show rl(rl);

1501 set _state(RETURN_I D, "return_ranges", NULL, alloc_estate_rl(clon
1502 if (!rl_to_sval(rl, &sval)) {

1503 conpar e_str = get_return_conpare_str(expr);
1504 if (conpare_str)

1505 snprintf(buf, sizeof(buf), "%%", return_ranges
1506 return_ranges = alloc_snane(buf);

1507 }

new usr/src/tool s/smatch/src/smatch_db. c 8
1508 }

1510 return_i d++;

1511 FOR_EACH_PTR(returned_state_cal | backs, cb)

1512 ch->cal | back(return_id, return_ranges, expr);
1513 } END_FOR EACH PTR(cbh);

1515 __free_fake_cur_stree();

1516 } END_FOR_EACH PTR(Tnp);

1518 free_slist(&already_handl ed);

1520 return ret;

1521 }

__unchanged_portion_onitted_

1481 static const char *get_return_ranges_str(struct expression *expr, struct range_l

1482 {

1483 struct range_list *rl;

1484 char *return_ranges;

1485 sval _t sval;

1486 char *conpare_str;

1487 char *math_str;

1488 char buf[128];

1490 *rl_p = NULL;

1492 if (lexpr)

1493 return alloc_snane("");

1495 if (get_inplied_value(expr, &sval))

1496 sval = sval cast(cur func_return_type(), sval);
1497 *rl_p = alloc_rl(sval, sval);

1498 return sval _to_str(sval);

1499 }

1501 conpare_str = expr_equal _to_paran(expr, -1);

1502 math_str = get_val ue_i n_terms_of _paraneter_nat h(expr);
1504 if (get |an|edrI(expr &l)) {

1505 = cast (cur func_return_type(), rl);

1506 ret urn_r anges = show rl(rl);

1507 } else if (get_imaginary_absol ut e(expr &rl)){

1508 rl = cast_rl (cur_func returntype() rl);

1509 return alToc_sname(show rl (rT));

1510 } else {

1511 rl = cast_rl(cur_func_return_type(), alloc_whole_rl(get_type(exp
1512 return_ranges = show. rl(rl);

1513 }

1514 *rl_p =rl;

1516 if (conmpare_str) {

1517 snprintf(buf, sizeof(buf), "%%", return_ranges, conpare_str);
1518 return alloc_snane(buf);

1519 }

1520 if (math_str)

1521 snprintf(buf, sizeof(buf), "%[%]", return_ranges, math_str);
1522 return alloc_snane(buf);

1523

1524 conpare_str = get_return_conpare_str(expr);

1525 if (conpare_! st r)

1526 snprintf(buf, sizeof(buf), "%%", return_ranges, conpare_str);
1527 return alloc_snanme(buf);

1528 }

1530 return return_ranges;

new usr/src/tool s/smatch/src/smatch_db. c 9 new usr/src/tool s/smatch/src/smatch_db. c 10
1531 } 1610 return_i d++;
1611 return_ranges = get_return_ranges_str(expr, &et_rl);
1534 static bool has_possible_negative(struct smstate *sm 1612 set_state(RETURN_ID, "return_ranges", NULL, alloc_estate_rl(ret_
1535 { 1613 FOR_EACH_PTR(returned_state_cal | backs, cb)
1536 struct smstate *tnp; 1614 ch->cal | back(return_id, (char *)return_ranges, expr);
1615 } END_FOR EACH PTR(cbh);
1538 FOR_EACH PTR(sm >possi ble, tnp) {
1539 if (lestate_rl (tnp->state)) 1617 if (undo)
1540 conti nue; 1618 end_assune();
1541 if (sval _is_negative(estate_m n(tnp->state)) && 1619 }
1542 sval _i s_negative(estate_max(tnp->state)))
1543 return true; 1621 undo = assune(conpare_expression(expr, '<', zero_expr()));
1544 } END_FOR_EACH_PTR(tnp);
1623 return_id++;
1546 return false; 1624 return_ranges = get_| return _ranges_ str(expr, &et_rl);
1547 } 1625 set_state(RETURN_ID, "return_ranges", NULL, alloc_estate_rl(ret_rl));
__unchanged_portion_omtted_ 1626 FOR_EACH PTR(returned_state_cal | backs ch)
1627 cb->cal | back(return_id, (char *)return_ranges, expr);
1564 static int split_positive_fromnegative(struct expression *expr) 1628 } END_FOR_EACH PTR(cbh);
1565 {
1566 struct smstate *sm 1630 if (undo)
1567 struct returned_state_call back *cb; 1631 end_assune();
1568 struct range_list *rl;
1569 const char *return_ranges; 1633 return 1;
1570 struct range_list *ret_rl; 1634 }
1571 int undo;
1572 bool has_zero; 1636 static int call_return_state_hooks_split_null_non_null_zero(struct expression *e
1633 static int call_return_state_hooks_split_null_non_null(struct expression *expr)
1574 /* We're going to print the states 3 tines */ 1637 {
1575 if (get_db_state_count() > 10000 / 3) 1638 struct returned_state_call back *cb;
1576 return 0; 1639 struct range_list *rl;
1640 struct range_list *nonnull _rl;
1578 if (!get |np||ed rl(expr, &l) || !'rl) 1641 sval _t null_sval;
1579 return O; 1642 struct range_list *null_rl = NULL;
1580 if (is_whole_rl(rl) || is_whole_rl_non_zero(rl)) 1643 char *return_ranges;
1581 return O; 1644 struct smstate *sm
1582 /* Forget about | NT_MAX and | arger */ 1645 struct smatch_state *state;
1583 if (rl_max(rl).value <= 0) 1646 int nr_states;
1584 return O; 1647 int final_pass_orig = final_pass;
1585 if (!sval _is_negative(rl_mn(rl)))
1586 return O; 1649 if (lexpr || expr_equal _to_paranm(expr, -1))
1650 return O;
1588 sm = get _sm st at e_expr (SMATCH_EXTRA, expr); 1651 if (expr->type == EXPR_CALL)
1589 if (!'sm 1652 return O;
1590 return O; 1650 if (!is_pointer(expr))
1591 if (!has_possible_negative(sm) 1651 return O;
1592 return O;
1593 has_zero = has_possible_zero_null (sm; 1654 sm = get _sm st at e_expr (SMATCH_EXTRA, expr);
1655 if (!sm
1595 if (!assune(conpare_expression(expr, has_zero ? '> : SPECI AL_GTE, zero_ 1656 return O;
1592 if (!assunme(conpare_expression(expr, >, zero_expr()))) 1657 if (ptr_list_size((struct ptr_list *)sm>possible) == 1)
1596 return O; 1658 return O;
1659 state = sm>state;
1598 return_i d++; 1660 if (lestate_rl(state))
1599 return_ranges = get_| return _ranges str(expr &ret_rl); 1661 return O;
1600 set _state(REl'URN ID, "return_ranges", NULL, alloc_estate_ rl(ret_rl)); 1662 if (estate_mn(state).value == 0 && estate_nax(state).value == 0)
1601 FOR_EACH PTR(returned_state_call backs cb) { 1663 return O;
1602 ch->cal | back(return_id, (char *)return_ranges, expr); 1664 if (!has_possible_zero_null(sm)
1603 } END_FOR_EACH_PTR(cb); 1665 return O;
1605 end_assune(); 1667 nr_states = get_db_state_count();
1668 if (option_info & nr_states >= 1500)
1607 if (has zero) { 1669 return 0;
1604 if (rl_has_sval (rl, sval _type_val (rl_type(rl), 0))) {
1608 undo = assurre(corrpare expressi on(expr, SPECI AL_EQUAL, zero_expr (1671 rl = estate_rl(state);

new usr/src/tool s/smatch/src/smatch_db. c

1673

1675
1676
1677

1679
1680
1681

1683
1684
1685
1686

1688
1689

1691
1692
1693
1694
1695
1696
1697
1698

1700
1701

1703
1704 }

__push_fake_cur_stree();

final _pass = 0;
__split_whole condi ti on(expr);
final _pass = final _pass_orig;

nonnul | _rl :rI _filter(rl, rl_zero());
return_ranges = show rI(nonnuII _rl);
set_state(RETURN_I D, "return_ranges",

return_i d++;

FOR_EACH PTR(returned_state_cal | backs, cb)
cb->cal | back(return_id, return_ranges,

} END_FOR EACH PTR(ch);

__push_true_states();
__use_false_states();

return_ranges = alloc_sname("0");

nul | _sval = sval _type_val (rl type(rl), 0);

add_range(&null _rl, null_sval, null _sval);

set_state(RETURN_I D, "return_ranges”,

return_id++;

FOR_EACH _PTR(returned_state_cal | backs, cb)
cb->cal | back(return_id, return_ranges,

} END_FOR_EACH PTR(ch);

__nerge_true_states();
__free_fake_cur stree()

return 1;

__unchanged_portion_omtted_

1969 static void call

1970 {
1971
1972
1973
1974
1975

1977
1978

1980
1981

1983
1984

1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1995
1997
1998
1999

_return_state_hooks(struct expression *expr)

struct returned_state_call back *cb;
struct range_list *ret_rl;

const char *return_ranges;

int nr_states;

sval _t sval;

if (path is_null())

turn;
expr = strip_expr(expr);

expr = strip_expr_statenent (expr);
if (is_inpossible_path())

goto vanilla;

if (expr && (expr->type == EXPR_COWPARE | |

''get _i nplied_val ue(expr, &sval)) &&
(i s_condition(expr) || is_bool ean(expr))) {
“cal | _return_state_hooks_conpar e(expr)

return;
} else if (is_conditional (expr)) {
call _return_state_hooks_conditional (expr);

expr);

expr);

11

NULL, alloc_estate_rl(nonnull_rl))

l\ULi_, alloc_estate_rl(null_rl));

_zero(expr)) {

return;

} else if (call_return_state_hooks_split_possible(expr)) {
return;

} else if (split_positive_fromnegative(expr)) {

} else if (call_return_state_hooks_split_null_non_null (expr)) {
return;

} else if (call_return_state_hooks_split_null_non_null
return;

new usr/src/tool s/smatch/src/smatch_db. c

2000 } else if (call_return_state_hooks_split_success_fail (expr))
2001 return;

2002 } else if (splitable_function_call(expr)) {

2003 return;

2001 } else if (split_positive_fromnegative(expr)) {

2002 return;

2004 } else if (split_by_bool_param(expr)) {

2005 } else if (split_by_null_nonnull _paran({expr)) {

2006 return;

2007 }

2009 vanilla:

12
{

2010 return_ranges = get_return_ranges str(expr &ret_rl);

2011 set _state(RETURN_I D, "return_ranges", NULL, alloc_estate_rl(ret_rl));
2013 return_i d++;

2014 nr_states = get_db_state_count();

2015 if (nr_states >= 10000) {

2016 mat ch_return_info(return_id, (char *)return_ranges, expr);
2017 mark_al | _params_untracked(return_id, (char *)return_ranges, expr
2018 return;

2019 }

2020 FOR_EACH PTR(returned_state_cal | backs, cb)

2021 cb->cal | back(return_id, (char *)return_ranges, expr);

2022 } END_FOR_EACH_PTR(cb);

2023 }

__unchanged_portion_onitted_

**azCol Nane

escape_hevw ines(argv[i]

2199 {stati c int save_cache_data(void *_table, int argc, char **argv, char
2200

2201 static char buf[4096];

2202 char tnp[256];

2203 char *p = buf,

2204 char *table = _table;

2205 int i;

2208 p += snprintf(p, 4096 - (p - buf), "insert or ignore into % values ("
2209 for (i =0; i <argc; i++) {

2210 if (i)

2211 p += snprintf(p, 4096 - (p - buf), ", ")
2212 sglite3_snprintf(sizeof(tnp), tnp, "%q",

2211 sqlite3_snprintf(sizeof(tnp), tnmp, "%", argv[i]);
2213 p += snprintf(p, 4096 - (p - buf), "%’ ", tnp);
2215 }

2216 p += snprintf(p, 4096 - (p - buf), ");");

2217 if (p - buf > 4096)

2218 return O;

2220 smnsg("SQ: %", buf);

2221 return O;

2222 }

__unchanged_portion_omtted_

2362 void register_definition_db_callbacks(int id)

2363 {

2364 add_hook(&mat ch_cal | _i nfo, FUNCTI ON_ CALL _HOCOK) ;

2364 add_hook(&gl obal _vari abl e, BASE

2365 add_hook(&gl obal _vari abl e, DECLARATI o |_HOOK) ;

2365 add_split_return_call back(rrat ch_return_info);

2366 add_split_return_cal |l back(print_returned_struct_nenbers);
2367 add_hook(&cal | _return_state_hooks, RETURN_HOOK);

2368 add_hook(&rat ch_end_f unc_i nfo, END_FUNC_HOOK) ;

2369 add_hook(&mat ch_after _func, AFTER _FUNC HOXK) ;

new usr/src/tool s/smatch/src/smatch_db. c 13 new usr/src/tool s/smatch/src/smatch_db. c 14

2371 add_hook(&rat ch_dat a_from db, FUNC _DEF_HOOK) ; 2441 if (strcnp(key, "*$") == 0) {
2372 add_hook(&rat ch_cal | |an i es, FUNC_DEF_HOK); 2442 if (arg- >type == EXPR_PRECP && arg->op == "'&) {
2373 add_hook(&mat ch_return_i nplies, CALL_HOOK . AFTER I NLI NE) ; 2443 arg = strip_expr(arg->unop);
2444 return expr_to_var_syn(arg, sym;
2375 regi ster_common_funcs(); 2445 } else {
2376 regi ster_return_repl acenents() 2446 tnp = expr_to_var_syn(arg, sym;
2447 if (!'tnp)
2378 add_hook(&unp_cache, END_FI LE_HOOK) ; 2448 return NULL
2379 } 2449 snprintf(buf, si zeof(buf) "*Os", tnp);
__unchanged_portion_onitted_ 2450 free_stri ng(t nmp) ;
2451 return alloc_string(buf);
2386 char *return_state_to_var_syn(struct expression *expr, int param const char *ke 2452 }
2387 { 2453 }
2388 struct expression *arg;
2389 char *nanme = NULL; 2455 if (key[0] =="*") {
2390 char menber _nane[256] ; 2456 add_star = true
2457 key++;
2392 *sym = NULL; 2458 }
2394 if (param== -1) { 2460 if (arg->type == EXPR_PRECP && arg->op == '&') {
2395 const char *star = ""; 2461 g stri p_expr (arg->unop);
2462 = expr_to_var_syn(arg, syn);
2397 if (expr->type != EXPR_ASSI GNMENT) 2463 | f (I t mp)
2398 return NULL; 2464 return NULL
2399 if (get_type(expr->left) == & nt_ctype && strcnp(key, "$") != 0) 2465 snpri ntf(buf si zeof (buf) "%, %6,
2400 return NULL; 2466 add_star ? " , tmp, key + 3);
2401 name = expr_to_var_synm(expr->left, sym; 2458 snprintf(buf, si zeof(buf) "Us. %", tnp, key + 3);
2402 if (!nane) 2467 return alloc_string(buf);
2403 return NULL; 2468 }
2404 if (key[0] == "*") {
2405 star = "*"; 2470 tnp = expr_to_var_sym(arg, sym;
2406 key++; 2471 if (!tnp)
2407 } 2472 return NULL;
2408 if (strncmp(key, "$", 1) != 0) 2473 snprintf(buf, sizeof(buf), "%%%", add_star ? "*" : "" tnp, key + 1);
2409 return nane; 2465 snprintf(buf, sizeof(buf), "%%", tnp, key + 1);
2410 snprintf(menber _nane, sizeof (nenber_nane), "%%%", star, nane, 2474 free_stri ng(t nmp) ;
2411 free_string(name); 2475 return alloc_string(buf);
2412 return alloc_string(nmenber_nane); 2476 }
2413 } ____unchanged_portion_onitted_
2415 whil e (expr- >type == EXPR_ASSI GNMVENT) 2487 const char *state_nane_to_param nane(const char *state_name, const char *paramn
2416 expr = strip_t expr(expr—>r| ght); 2488 {
2417 if (expr->type !'= EXPR_CALL) 2489 int name_| en;
2418 return NULL; 2490 static char buf[256];
2491 bool add_star = fal se;
2420 arg = get_argunent _fromcal | _expr (expr->args, paran);
2421 if (larg) 2493 name_l en = strlen(paramnane);
2422 return NULL;
2495 if (state_nanme[0] == "*") {
2424 return get_variabl e_fromkey(arg, key, sym; 2496 add_star = true;
2425 } 2497 stat e_nanme++;
2498 }
2427 char *get_variabl e_fromkey(struct expression *arg, const char *key, struct synb
2428 { 2500 if (strcnp(state_name, paramnanme) == 0) {
2429 char buf[256]; 2501 snprintf(buf, sizeof(buf), "%$", add_star ? "*" : "");
2430 char *tnp; 2502 return buf;
2431 bool add_star = fal se; 2503 }
2433 if (larg) 2505 if (state_nanme[nanme_len] == "'-' && /* check for '-' from"->" */
2434 return NULL; 2487 return "$";
2488 } else if (state_nanme[nane_len] =="'-' && /* check for '-' from"->" */
2436 arg = strip_expr(arg); 2506 strncnp(state_nane, paramnane, nane_len) == 0) {
2507 snprintf (buf, S|zeof(buf) "°/6$°/s"
2438 if (strcnp(key, "$") == 0) 2508 add_s ?" "", state_name + nanme_|en);
2439 return expr_to_var_sym(arg, sym; 2490 snprintf (buf, SI zeof(buf) $°/s state_name + nane Ien)

2509 return buf;

new usr/src/tool s/smatch/src/smatch_db. c 15

2492 } else if (state_nane[0] == '*' && strcnp(state_nanme + 1, paramnane) ==
2493 return "*$";

2510 }

2511 return NULL;

2512 }

____unchanged_portion_onitted_

new usr/src/tool s/smatch/src/smatch_equiv.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
6755 Mon Aug 5 08:38:29 2019

new usr/src/tool s/smatch/src/smatch_equiv.c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

105 static void debug_addition(struct related_list *rlist,

106 {
107 struct relation *tnp;
109 if (!option_debug_rel ated)
110 return;
112 sm prefix();
113 smprintf("(");
114 FOR_EACH PTR(rlist, t {
115 smprintf("% ", tnp->nane)
116 } END_FOR _EACH _PTR(t np);
117 smprintf(") <-- 9%\n", nane)
118 }
105 static void add_rel ated(struct related_list **rlist, const char *nane,
106 {
107 struct relation *rel;
108 struct relation *new,
109 struct relation tnp = {
110 .name = (char *)nane,
111 .Sym = sym
112 }
129 debug_addi tion(*rlist, nane);
114 FOR_EACH PTR(*rlist, rel)
115 if (cnp_relation(rel, &np) < 0)
116 conti nue;
117 if (cnp_relation(rel, &np) == 0)
118 return;
119 new = al |l oc_rel ati on(nane, sym;
120 | NSERT_CURRENT(new, rel);
121 return;
122 } END_FOR _EACH PTR(rel);
123 new = alloc_relati on(nane sym;
124 add_ptr_list(rlist, new;
125 }
__unchanged_portion_omtted_
191 /*

192 * set_equiv() is only used for assignments where we set one variable
193 * equal to the other. a =b;. |It's not used for if conditions where
194 * a == b.

195 */

196 }/oi d set_equiv(struct expression *left, struct expression *right)
197

198 struct smstate *right_sm *left_sm *other_sm
215 struct smstate *right_sm *left_sm

199 struct relation *rel;

200 char *|eft_naneg;

201 struct synbol *left_sym

202 struct related_list *rlist;

203 char *ot her_nane;

204 struct synbol *other_sym

206 left_name = expr_to_var_sym(left, & eft_sym;
207 if (Tleft_name |T !Teft_sym

208 goto free;

const char *nane)

struct sy

new usr/src/tool s/ smatch/src/smatch_equiv.c

210 ot her _nanme = get _ot her _nane_syn{(l eft_nane, |eft_sym &other_sym;
212 ght sm = get_sm state_expr (SMATCH EXTRA, right);

213 f (!'right_sm

214 struct range_list *rl;

216 if (!get_inplied_rl(right, &rl))

217 rl = alloc Wnolerl(get _type(right));

218 ri ght_sm = set_state_expr (SMATCH EXTRA, ri ght all oc_estate_rl(r
219 1

220 if ('rlght _sm

227 i ght _sm = set_state_expr (SMATCH EXTRA, right, alloc_estate_whol
228 if (!right_srr)

221 goto free;

223 /* This block is because we want to preserve the inplications. */
224 left_sm= clone_sn(right_sn);

225 left_sm>nanme = alloc_string(left_nane);

226 left_sm>sym = I eft_sym

227 left_sm>state = clone_estate_cast(get_type(l eft) right_sm>state);
228 /* FIXME: The expression we're passing is wong *

229 set _extra_nod_hel per(left_nane, left_sym left, | eft_sm >state);
230 __set_sn(left_sm;

232 if (other_name && other_syn) {

233 ot her_sm = cl one_sn{right_sm;

234 other_sm>name = al | oc_stri ng(ot her _nane) ;

235 ot her_sm >sym = ot her _sym

236 other_sm>state = clone_estate_cast(get_type(left),

237 set _extra_nod_hel per (ot her _nanme, other_sym NULL, other_sm >stat
238 __set_sm(other_sm;

239 }

241 rlist = clone_related_list(estate_related(right_sm>state));

242 add_rel ated(&list, right_sm>nane, right_sm>syn);

243 add_rel ated(&list, left_nane, | eft _sym;

244 if (other_name && other_syn

245 add_rel ated(&list, other_nanme, other_sym;

247 FOR_EACH PTR(rlist, rel) {

248 struct smstate *old_sm *new_sm

250 ol d_sm = get_sm st at e(SMATCH EXTRA, rel ->nane, rel->syn;
251 if (lold_sm~ /* shouldn’t happen */

252 conti nue;

253 new_sm = cl one sn(ol d_s

254 new sm>state = cl one_est at e(ol d_sm >stat e)

255 get _di nfo(new_sm>state)->related = rlist

256 __set_snm(new_sm;

257 } END_FOR_EACH PTR(rel);

258 free:

259 free_string(left_nane);

260 }

__unchanged_portion_omtted_

left_sm>sta

new

* ok kK

new usr/src/tool s/smatch/src/smatch_estate. c
11506 snatch resync
IR E SR SR RS RS E SRR R R SRR R R SRR R R R RS EEREREEREEREEEEEEEERSE]
1/*
2 * Copyright (C 2010 Dan Carpenter.
3 *
4 * This programis free software; you can redistribute it and/or
5 * nodify it under the terns of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any |later version.
8 *
9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of
11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
12 * GNU Ceneral Public License for nore details.
13 =
14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt
16 */
18 /*
19 * smatch_dinfo.c has hel per functions for handling data_info structs
20 *
21 */
23 #include <stdlib.h>
24 #ifndef __USE_| SOC99
25 #define __USE_| SOC99
26 #endif
27 #include <limts.h>
28 #include "parse. h"
29 #include "smatch. h"
30 #include "smatch_slist.h"
31 #include "smatch_extra. h"
33 struct smatch_state *nerge_estates(struct smatch_state *sl1, struct smatch_state
34 {
35 struct smatch_state *tnp;
36 struct range_list *val ue_ranges;
37 struct related_list *rlist;
39 if (estates_equiv(sl, s2))
40 return si;
42 value_ranges = rl_union(estate_rl(sl), estate_rl(s2));
43 tnp = alloc_estate_rl (val ue_ranges);
44 rlist = get_shared_relations(estate_related(sl), estate_related(s2));
45 set_related(tnp, rlist);
47 if ((estate_has_hard_max(sl) && (!estate_rl(s2) || estate_has_hard_max(s
48 (estate_has_hard_max(s2) && (!estate_rl(sl) || estate_has_hard_max(s
46 if (estate_has_hard_nax(sl) && estate_has_hard_nax(s2))
49 estate_set _hard_max(tnp);
51 estate_set_fuzzy_nmax(tnp, sval _nmax(estate_get_fuzzy max(sl), estate_get_
53 if (estate_capped(sl) && estate_capped(s2))
54 estate_set_capped(tnp);
56 return tnp;
57 }
____unchanged_portion_onitted_
142 bool estate_capped(struct smatch_state *state)

usr/src/tool s/smatch/src/smatch_estate.c 1

B R

9497 Mon Aug 5 08:38:29 2019

new usr/src/tool s/smatch/src/smatch_estate.c

143 {

144 if (!state)

145 return false;

146 /* inpossible states are capped */
147 if (lestate_rl(state))

148 return true;

149 return get_dinfo(state)->capped;

150 }

152 void estate_set_capped(struct smatch_state *state)
153 {

154 get _di nf o(state)->capped = true;

155 }

157 sval _t estate_m n(struct smatch_state *state)
158 {

159 return rl _mn(estate_rl(state));

160 }

____unchanged_portion_ontted_

197 int estates_equiv(struct smatch_state *one, struct smatch_state *two)
198 {

199 if (tone || !two)

200 return O;

201 if (one == two)

202 return 1;

203 if (!'rlists_equiv(estate_related(one), estate_related(two)))
204 return O;

205 if (estate_capped(one) != estate_capped(two))

206 return O;

207 if (strcnp(one->nanme, two->nane) == 0)

208 return 1;

209 return O;

210 }

____unchanged_portion_onitted_

297 struct smatch_state *clone_partial _estate(struct smatch_state *state, struct
298 {

299 struct smatch_state *ret;

301 if (!state)

302 return NULL;

304 rl = cast_rl(estate_type(state), rl);

306 ret = alloc_estate_rl(rl);

307 set_related(ret, clone_related_|ist(estate_related(state)));
308 if (estate_has_hard_nax(state))

309 estate_set_hard_max(ret);

310 if (estate_has_fuzzy_nax(state))

311 estate_set _fuzzy_max(ret, estate_get_fuzzy_max(state));
313 return ret;

314 }

316 struct smatch_state *all oc_estate_enpty(void)

317 {

318 struct smatch_state *state;

319 struct data_info *dinfo;

321 dinfo = alloc_dinfo();

322 state = __alloc_smatch_state(0);

323 state->data = dinfo;

324 state->nane = "";

325 return state;

326 }

____unchanged_portion_onitted_

ran

new usr/src/tool s/smatch/src/smatch_estate.c

368 struct smatch_state *estate_filter_range(struct smatch_state *orig,

369 sval _t filter_min, sval_t filter_max)
370 {

371 struct range_list *rl;

372 struct smatch_state *state;

374 if (lorig)

375 orig = alloc_estate_whole(filter_mn.type);

377 rl = renove_range(estate_rl(orig), filter_mn, filter_nax);

378 state = alloc_estate_rl(rl);

379 if (estate_has_hard_nex(orig))

380 estate_set_hard_max(state);

381 if (estate_has_fuzzy max(orig))

382 estate_set_fuzzy max(state, estate_get_fuzzy_max(orig));
383 return state;

384 }

386 struct smatch_state *estate_filter_sval (struct smatch_state *orig, sval _t sval)
387 {

388 return estate_filter_range(orig, sval, sval);

389 }

409 /*

410 * One of the conplications is that smatch tries to free a bunch of data at the

411 * end of every function.

412 */

413 {struct data_i nfo *cl one_di nfo_pern(struct data_info *di nfo)
414

415 struct data_info *ret;

417 ret = malloc(sizeof (*ret));

418 nenset (ret, 0, sizeof(*ret));

419 ret->related = NULL;

420 ret->val ue_ranges = clone_rl| _permanent (di nf o- >val ue_r anges) ;
421 ret->hard_nmax = 0;

422 ret->fuzzy_max = dinfo->fuzzy_max;

423 return ret;

424 }

____unchanged_portion_onitted_

new

* ok kK

new
1150

* ok kK

usr/src/tool s/ smat ch/ src/ smat ch_expressions. ¢

B R

5221 Mon Aug 5 08:38:30 2019
usr/src/tool s/ smat ch/ src/ smat ch_expressions. ¢
6 smatch resync

B R R R R

__unchanged_portion_onitted_

165 {struct expressi on *gen_expression_fromkey(struct expression *arg, const char *k
166

167 struct expression *ret;

168 struct token *token, *prev, *end;

168 struct token *token, *end;

169 const char *p = key;

170 char buf[4095];

171 char *alloc;

172 size_t len;

174 /* The idea is that we can parse either $0->foo or $->foo */
175 if (key[O] !'="9")

176 return NULL;

177 p++;

178 while (*p >='0 && *p <='9")

179 pH+;

180 len = snprintf(buf, sizeof(buf), "%\n", p);

181 alloc = alloc_string(buf);

183 token = tokenize_buffer(alloc, len, &end);

184 if (!token)

185 return NULL;

186 if (token_type(token) != TOKEN_STREAMBEG N)

187 return NULL;

188 t oken = t oken->next;

190 ret = arg;

191 whil e (token_type(token) == TOKEN_SPECI AL &&

192 (token->speci al == SPECI AL_DEREFERENCE || token->special =="."))
193 prev = token;

192 t oken->speci al == SPECI AL_DEREFERENCE) {

194 t oken = token->next;

195 if (token_type(token) != TOKEN_I DENT)

196 return NULL;

197 ret = deref_expression(ret);

198 ret = menber_expression(ret,

199 (prev->speci al == SPECI AL_DEREFERENCE) ?
200 t oken->i dent);

197 ret = menber_expression(ret, '*', token->ident);
201 t oken = token->next;

202 1

204 if (token_type(token) != TOKEN_STREAMEND)

205 return NULL;

207 return ret;

208 }

__unchanged_portion_omtted_

new usr/src/tool s/smatch/src/smatch_extra.c

R R R R

72935 Mon Aug 5 08:38:30 2019
new usr/src/tool s/smatch/src/smatch_extra.c
11506 snatch resync

R R R R

*
*

*/

Copyright (C) 2008 Dan Carpenter.

This programis free software; you can redistribute it and/or
modi fy it under the terns of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This programis distributed in the hope that it will be useful,

but W THOUT ANY WARRANTY; without even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the
GNU General Public License for nore details.

You shoul d have received a copy of the GNU General Public License
along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt

smatch_extra.c is supposed to track the value of every variable.

#def i ne _GNU_SOURCE
#i ncl ude <string. h>

#i ncl ude <stdlib. h>
#i ncl ude <errno. h>

#i f

ndef __USE | SOC99

#def i ne __USE_I SOC99
#endi f

#include <limts. h>

#i ncl ude "parse.h"

#i ncl ude "smatch. h"

#i ncl ude "smatch_slist.h"
#i ncl ude "smatch_extra. h"

static int ny_id,;
static int link_id;
extern int check_assi gned_expr_id;

static void match_link_nodify(struct smstate *sm struct expression *nod_expr);

struct string_list *__ignored_nacros = NULL;
int in_warn_on_macro(voi d)
static int in_warn_on_nacro(void)

struct statement
char *tnp;
char *macro;

*stnt;

stm = get_current_statenent();
if (!stnt)
return O;
macro = get_macro_nane(stnt->pos);
if (!macro)
return O;

FOR_EACH _PTR(__ignored_macros, tnp) {
if (!'strcnp(tnmp, macro))
return 1;
} END_FOR_EACH_PTR(tnp);

new usr/src/tool s/smatch/src/smatch_extra.c

61 return O;

62 }
____unchanged_portion_onitted_
char *nane, const char
struct synbol

138 char *get_ot her _name_sym from chunk(const
137 char *get_ot her_nanme_syn(const char *nane,

*chunk,

139 {

140 struct expression *assigned;

141 char *orig_name = NULL;

142 char buf [256];

143 char *ret;

142 char *ret = NULL;

143 int skip;

145 assi gned = get _assi gned_expr _nane_syn{(chunk, syn);

145 *new_sym = NULL;

147 if (!'sym]|| !sym>ident)

148 return NULL;

150 ret = get_pointed_at(name, sym new_syn);

151 if (ret)

152 return ret;

154 skip = strlen(sym >i dent->nane);

155 if (name[skip] '="-" name[skip + 1] !'="'>")

156 return NULL;

157 skip += 2;

159 assi gned = get_assi gned_expr_nanme_syn(sym >i dent - >nanme, sym;
146 if (lassigned)

147 return NULL;

148 if (assigned->type == EXPR_CALL)

149 return map_cal |l _to_ot her _nane_sym(nanme, sym new_sym;
150 if (assigned->type == EXPR_PREOP && assigned->op == '&) {
164 if (assigned->type == EXPR_PRECP || assigned->op =="'&) {
152 orig_name = expr_to_var_syn(assi gned, new sym;

153 if (torig_name || !*new_sym

154 goto free;

156 snprintf(buf, sizeof(buf), "%.%", orig_nane + 1, name
170 snprintf(buf, sizeof(buf), "%.%", orig_name + 1, nane
157 ret = alloc_string(buf);

158 free_string(orig_nane);

159 return ret;

160 }

176 if (assigned->type != EXPR_DEREF)

177 goto free;

162 orig_name = expr_to_var_syn{assigned, new_syn);

163 if (lorig_name || !*new_sym

164 goto free;

166 snprintf(buf, sizeof(buf), "%->%", orig_nanme, name + |len);
183 snprintf(buf, sizeof(buf), "%->%", orig_nane, name + skip);
167 ret = alloc_string(buf);

168 free_string(orig_nane);

169 return ret;

170 free:

171 free_string(orig_nane);

172 return NULL;

173 }

int len

*sym struct synbol **n

+ len);
+ skip);

new usr/src/tool s/smatch/src/smatch_extra.c

175 static char *get_l ong_name_syn{const char *name, struct synbol

3
*sym struct synb

return that.

then we clanp "bar->baz",

sm {

nane + tnp->synbol - >i dent->

*sym struct sym

len + 2,

176 {

177 struct expression *tnp;

178 struct smstate *sm

179 char buf[256];

181 /*

182 * Just prepend the nane with a different name/sym and
183 * For exanple, if we set "foo->bar = bar;"

184 * that also clanps "foo->bar->baz".

185 *

186 */

188 FOR_EACH MY_SM check_assi gned_expr_id, __get_cur_stree(),
189 tnp = sm >st at e- >dat a;

190 if (!tmp || tnp->type != EXPR_SYMBOL)

191 conti nue;

192 if (tnp->synbol == sym

193 goto found;

194 } END_FOR_EACH SMsn);

196 return NULL;

198 found:

199 snprintf(buf, sizeof(buf), "%%", sm >nane,

200 *new_sym = sm >sym

201 return alloc_string(buf);

202 }

204 char *get_ot her_nane_sym hel per (const char *nanme, struct synbol
205 {

206 char buf[256];

207 char *ret;

208 int len;

210 *new_sym = NULL;

212 if (!'sym]|| !sym>ident)

213 return NULL;

215 ret = get_pointed_at(name, sym new_sym;

216 if (ret)

217 return ret;

219 ret = map_l ong_to_short_nane_synm(nane, sym new_sym use_stack);
220 if (ret)

221 return ret;

223 len = snprintf(buf, sizeof(buf), "%", nane);

224 if (len >= sizeof (buf) - 2)

225 return NULL;

227 while (len >= 1) {

228 if (buf[len] =="> && buf[len - 1] =="-") {
229 | en--;

230 buf[len] ="'\0";

231 ret = get_other_nanme_sym from chunk(nane, buf,
232 if (ret)

233 return ret;

234

235 len--;

236 }

238 ret = get_l ong_name_sym(nanme, sym new_syn);

239 if (ret)

240 return ret;

new usr/src/tool s/smatch/src/smatch_extra.c

242
243 }

return NULL;

245 char *get_ot her _nane_syn{const char *nane, struct synbol *sym struct synbol **n
246 {

struct synbol

*sym struct

sym &new_sym;

sym new_sym true);

*sym struct sy

sym new sym false);

expressi on *expr

247 return get_other_name_sym hel per (nane,

248 }

250 char *get_ot her _nane_sym nost ack(const char *nane,
251 {

252 return get_ot her_name_sym hel per (nane,

253 }

255 voi d set_extra_nod(const char *nane, struct synbol
256 {

257 char *new_narne;

258 struct synmbol *new_sym

260 set _extra_nod_hel per (nane, sym expr, state);
261 new_nane = get_ot her_name_syn{ nane,

262 if (new_name && new_sym

263 set _extra_nod_hel per (new_nane, new sym expr, state);
264 free_string(new_nane);

265 }

____unchanged_portion_onitted_

339 void set_extra_nonpd(const char *name, struct symbol *sym struct expression *ex
340 {

341 char *new_nane;

342 struct synbol *new_sym

343 struct relation *rel;

344 struct smatch_state *orig_state;

346 orig_state = get_state(SVATCH EXTRA, nane, symn);

348 /* don’t save unknown states if leaving it blank is the sane */

349 if (lorig_state & estate_is_unknown(state))

350 return;

352 new_nane = get_other_name_sym(nanme, sym &new_sym;

353 if (new_name && new_sym

354 set _extra_nonod_hel per (new_nane, new sym expr, state);

355 free_string(new_nane);

357 if (lestate_related(orig_state)) {

358 set _extra_nonod_hel per (nane, sym expr, state);

359 return;

360 }

362 set_related(state, estate_related(orig_state));

363 FOR_EACH PTR(estate_rel ated(orig_state), rel) {

364 struct smatch_state *estate;

304 if (option_debug_rel ated)

305 smmsg("% updating related % to %", nane, rel->nane,
366 estate = get_state(SVMATCH EXTRA, rel ->nane, rel->syn);

367 if (lestate)

368 conti nue;

369 set _extra_nonod_hel per(rel ->nane, rel->sym expr, clone_estate_c
370 } END _FOR EACH PTR(rel);

371 }

____unchanged_portion_onitted_

543 static struct smstate *handl e_canoni cal _whil e_count_down(struct statenent

544 {

*| oop

new usr/src/tool s/smatch/src/smatch_extra.c

545
546
547
548
549
550
551

553
554

556
557
558

560
561

563

565
566
567
568
569
570

572
573
574

576
577
578
579

581
582

584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600

602
603
604
605
606
607
608
609

}

static struct smstate *handl e_canonical _for_inc(struct expression *iter_expr,

{

struct expression *iter_var;

struct expression *condition, *unop;
struct synbol *type;

struct smstate *sm

struct smatch_state *estate;

int op;

sval _t start, right;

right.type = & nt_ctype;
right.value = 0;

condition = strip_expr(loop->iterator_pre_condition);
if (!condition)
return NULL;

if (!get_countdown_info(condition, &unop, &op, &right))
return NULL;

iter_var = unop->unop;

sm = get_sm state_expr (SMATCH EXTRA, iter_var);
if (!sm
return NULL;
if (sval _cnp(estate_m n(sm>state), right) < 0)
return NULL;
start = estate_max(sm >state);

type = get_type(iter_var);

right = sval _cast(type, right);

start = sval _cast(type, start);

if (sval_cnp(start, right) <= 0)
return NULL;

if (!sval _is_max(start))
start.val ue--;

if (op == SPECI AL_GTE)
right.val ue--;

if (unop->type == EXPR_PRECP) {
right. vaI ue++;
estate = alloc_estate_range(right, start);
if (estate_has_hard_max(sm >state))
estate_set_hard_nax(estate);
estate_copy_fuzzy_max(estate, sm>state);
set_extra_expr_nod(iter_var, estate);

}
if (unop->type == EXPR_POSTOP)
estate = alloc_estate_range(right, start);
if (estate_has_hard_max(sm >state))
estate_set _hard_nax(estate);
estate_copy_fuzzy_max(estate, sm>state);
set _extra_expr_nod(iter_var, estate);

}
return get_sm state_expr(SMATCH EXTRA, iter_var);

struct expression *condition)

struct expression *iter_var;
struct smstate *sm

struct smatch_state *estate;
sval _t start, end, nax;
struct synbol *type;

new usr/src/tool s/smatch/src/smatch_extra.c

611
612
613
614
615
616
617
618
550
551
552
553

620
621

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

656
657
658
659
660
661
662

664
665
666
667
668
669
670
671
672

}

iter_var = iter_expr->unop;
sm = get_sm state_expr (SMATCH EXTRA, iter_var);
if (Ism

return NULL;
if (lestate_get_single_value(sm>state, &start))
return NULL;
if (lget_inplied_value(condition->right, &end))
return NULL;
if (get_i npl ied max(condl tion->right, &end))
= sval _cast(get _type(iter_var), end);
el se
end = sval _type_nax(get_type(iter_var));

if (get_smstate_expr(SMATCH EXTRA, condition->left) != sm
return NULL;

switch (condition->op) {
case SPECI AL_UNSI GNED_LT:
case SPECI AL_NOTEQUAL:
case '<':
if (!sval _is_mn(end))
end. val ue- -;
br eak;
case SPECI AL_UNSI GNED_LTE:
case SPECIAL_LTE:
br eak;
defaul t:
return NULL;

}
if (sval _cnp(end, start) < 0)
return NULL;
type = get_type(iter_var);
start = sval _cast(type, start);
end = sval _cast(type, end);
estate = alloc_estate_range(start, end),
if (get_ hard _max(condition->right, &max)) {
if (Tget_macro nama(condltl on- >pos))
estate_set hard _nmax(estate);
if (condition->op == "< ||
condi ti on->op == SPECI AL_UNSI GNED LT ||
condi ti on->op == SPECI AL_NOTEQUAL)
max. val ue--;
max = sval _cast(type, mex);
estate_set_fuzzy_max(estate, nax);

set_extra_expr_nod(iter_var, estate);
return get_sm state_expr(SMATCH EXTRA, iter_var);

static struct smstate *handl e_canoni cal _for_dec(struct expression *iter_expr,

{

struct expression *condition)

struct expression *iter_var;
struct smstate *sm

struct smatch_state *estate;
sval _t start, end,

iter_var = iter_expr->unop;
sm = get_sm state_expr (SMATCH EXTRA, iter_var);
if (!sm

return NULL;

if (!estate_get_single_value(sm>state, &start))
return NULL;

if ('get_inplied_mn(condition->right, &end))
end = sval _type_m n(get_type(iter_var));

end = sval _cast(estate_type(sm>state), end);

new usr/src/tool s/smatch/src/smatch_extra.c 7
673 if (get_smstate_expr(SMATCH EXTRA, condition->left) !
674 return NULL;
676 switch (condition->op) {
677 case SPECI AL_NOTEQUAL:
678 case '>':
679 if (!sval _is_max(end))
608 if (!sval _is_mn(end) & !sval _i s_nmax(end))
680 end. val ue++;
681 br eak;
682 case SPECI AL_GTE:
683 br eak;
684 defaul t:
685 return NULL;
686 1
687 if (sval _cnp(end, start) > 0)
688 return NULL;
689 estate = alloc_estate_range(end, start);
690 estate_set _hard_nax(estate);
691 estate_set_fuzzy_nex(estate, estate_get_fuzzy max(estate));
692 set_extra_expr_nod(iter_var, estate);
693 return get_sm state_expr(SMATCH EXTRA, iter_var);
694 }
__unchanged_portion_onitted_
764 void __extra_pre_|l oop_hook_after(struct smstate *sm
765 struct statenent *iterator,
766 struct expression *condition)
767 {
768 struct expression *iter_expr;
769 sval _t limt;
770 struct smatch_state *state;
772 if (literator) {
773 whi | e_count _down_after(sm condition);
774 return;
775 }
777 iter_expr = iterator->expression;
779 if (condition->type != EXPR_COVPARE)
780 return;
781 if (iter_expr->op == SPECI AL_| NCREMENT)
782 limt = sval _binop(estate_max(sm>state), '+
783 sval _type_val (estate_ type(sm >state), 1));
784 } else {
785 limt = sval _binop(estate_mi n(sm>state), '-’
786 sval _type_val (estate_ type(sm >state), 1));
787 1
788 limt = sval _cast(estate_type(sm>state), limt);
789 if (!estate_has_hard_max(sm >state) && ! has_breaks()) {
790 if (iter expr—>op == SPECI AL_| NCREMEI
791 state = alloc_estate range(estate mn(sm>state), limt)
792 el se
793 state = alloc_estate_range(limt, estate_max(sm >state))
794 } else {
795 state = alloc_estate_sval (limt);
796 }
797 if (lestate_has_hard_nmax(sm >state)) {
798 estate_cl ear_hard_max(state);
799
800 if (estate_has_fuzzy_max(sm>state)) {
801 sval _t hmax = estate_get_fuzzy_nax(sm >state);
802 sval _t nax = estate_nax(sm >state);

804 if (sval _cnp(hmax, max) != 0)

new usr/src/tool s/smatch/src/smatch_extra.c 8
805 estate_cl ear_fuzzy_max(state);

806 } else if (lestate_has_fuzzy_max(sm >state)) {

807 estate_cl ear_fuzzy_max(state);

808 }

810 set _extra_nod(sm >nane, sm>sym iter_expr, state);

811 }

813 static bool get_global _rl(const char *name, struct synmbol *sym struct range_lis
814 {

815 struct expression *expr;

817 if (Isym]|]| ! (sym>ctype nodi fiers & MOD_TOPLEVEL) || !sym >ident)

818 return fal se;

819 if (strenp(sym >| dent - >npanme, nane) != 0)

820 return false;

822 expr = synbol _expression(synm;

823 return get_inplied_rl(expr, rl);

824 }

826 static struct stree *unnmatched_stree;
827 static struct smatch_state *unnatched_state(struct smstate *sm

828 {

829 struct smatch_state *state;

830 struct range_list *rl;

832 if (unmatched_stree)

833 state = get_state_stree(unmatched_stree, SMATCH_EXTRA,
834 if (state)

835 return state;

836 1

837 if (parent_is_gone_var_syn(sm >nane, sm >symn))

838 return alloc_estate_enpty();

839 if (get_global _rl(sm>nanme, sm>sym &rl))

840 return alloc_estate_rl(rl);

841) return alloc_estate_whol e(estate_type(sm >state));
842

__unchanged_portion_onitted_

906 int values_fit_type(struct expression *left, struct expression *ri

ght)

sm >nane,

818 static int values_fit_type(struct expression *left, struct expression *right)

907 {

908 struct range_list *rl;

909 struct synbol *type;

911 type = get_type(left);

912 if (ltype)

913 return O;

914 get _absolute_rl (right, &l);

915 if (type == rl_type(rl))

916 retur ;

917 if (type_unsigned(type) && sval _is_negative(rl_min(rl)))
918 return O;

919 if (sval _cnmp(sval _type_mn(type), rl_mn(rl)) > 0)
920 return O;

921 if (sval_cnp(sval _type_max(type), rl_nmax(rl)) < 0)
922 return O;

923 return 1,

924 }

__unchanged_portion_onitted_

973 static void match_vanilla_assign(struct expression *left, struct expression *rig

974 {
975 struct range_list *orig_rl = NULL;
976 struct range_list *rl = NULL;

new usr/src/tool s/smatch/src/smatch_extra.c

977
978
979
980
981
982
983
984
985

987
988

990

992
993
994
995
996
997

999
1000

1002

1004
1005
1006
1007
1008
1009
1010
1011

1013
1014
1015
1016

1018
1019
1020
1021

1023
1024
1025

1027
1028
1029
1030
1031

1033
1034
1035
1036
1037
1038

1040
1041
1042

struct synbol *right_sym
struct synbol *left_type;
struct synbol *right_type;
char *right_name = NULL;
struct synbol *sym

char *nane;

sval _t sval, nax;

struct smatch_state *state;
int conparison;

if (is_struct(left))
return;

save_chunk_info(left, right);

name = expr_to_var_syn(left, &ym;
if (!nane)
if (chunk_has_array(left))
do_array_assign(left, "=, right);
return;

}

left_type
ri ght _type

= get_type(left);
= get_type(right);

ri ght_name = expr_to_var_syn(right, &ight_symn);

if (!__in_fake_assign &&
I (right->type == EXPR_PREOP && right->op == ' &) &&
right_nane && right_sym &&
values_fit_type(left, strip_expr(right)) &%
I has_synbol (right, sym)
set_equiv(left, right);
goto free;

}

if (is_pointer(right) && get_address_rl(right, &l)) {
state = alloc_estate_rl(rl);
got o done;

}

if (get_inplied_value(right, &sval))
state = alloc_estate_sval (sva
got o done;

{
|

}

if (__in_fake_assign)
struct smatch_state *right_state;
sval _t sval;

if (get_value(right, &sval))

sval = sval _cast(left_type, sval);
state = alloc_estate_sval (sval);
goto done;
}
right_state = get_state(SMATCH EXTRA, right_nane,

if (right_state) {
/* sinple assignment */
state = clone_estate(right_state);
got o done;

}

_cast(left_type, sval));

right_syn;

state = alloc_estate_rl (alloc_whole_rl(left_type));

got o done;

new usr/src/tool s/smatch/src/smatch_extra.c

1044 conpari son = get_conparison_no_extra(left, right);
954 conpari son = get_conparison(left, right);
1045 if (conparison) {

1046 conparison = flip_conpari son(conparl son);
1047 get |rrp||edr|(ft, &orig_rl
1048 }

1050 if (get |np||edr|(r| ht, &l)) {

1051 = cast_rl(left_type, rl);

1052 |f (0r| _rl)

1053 ilter_by_conpari son(&rl conparison, orig_rl);
1054 state = alloc_estate_rl(rl);

1055 if (get_hard_max(right, &rrax)) {
1056 estate_set_har d_rmx(st ate);
1057 estate_set_fuzzy_max(state, nmax);
1058

1059 } else {

1060 r = alloc_whole_rl(right_type);
1061 = cast_rl(left_type, rl);

1062 |f (orlg rl)

1063 filter_by_conparison(&l, conparison, orig_rl);
1064 state = alloc_estate_rl(rl);

1065 }

1067 done:

1068 set _extra_nod(nane, sym left, state);
1069 free:

1070 free_string(right_nane);

1071 }

983 static int op_renove_assign(int op)

984 {

985 switch (op) {

986 case SPECI AL_ADD ASSI G\:

987 return '+ ;

988 case SPECI AL_SUB_ ASSI GN:

989 return ' -’ ;

990 case SPECI AL_MJL_ASSI GN:

991 return ' ¥ ;

992 case SPECI AL DI V_ASSI G\

993 return ' 7 ;

994 case SPECI AL_MOD _ASSI GN:

995 return ' %;

996 case SPECI AL AND ASSI GN:

997 return ' & ;

998 case SPECIAL_CR ASSI G\:

999 return 7|’ ;

1000 case SPECI AL_XOR_ASSI G\:

1001 return ' ;

1002 case SPECI AL_SHL_ASSI GN:

1003 return SPECI AL _LEFTSHI FT;

1004 case SPECI AL_SHR ASSI G\:

1005 return SPECI AL_RI GHTSHI FT;

1006 defaul t:

1007 return op;

1008 1

1009 }

1073 static void match_assign(struct expression *expr)
1074 {

1075 struct range_list *rl = NULL;

1076 struct expression *left;

1077 struct expression *right;

1078 struct expression *binop_expr;

1079 struct synbol *left_type;

new usr/src/tool s/smatch/src/smatch_extra.c 11 new usr/src/tool s/ smatch/src/smatch_extra.c 12
1080 struct synbol *sym 1084 }
1081 char *nane; 1085 br eak;
1020 sval _t left_mn, left_nax; 1109 case SPECI AL_AND_ASSI GN:
1021 sval _t right_mn, right_nax; 1110 case SPECI AL_MOD _ASSI GN:
1022 sval _t res_mn, res_nax; 1111 case SPECI AL_SHL_ASSI GN:
1112 case SPECI AL_SHR_ASSI G\:
1083 left = strip_expr(expr->left); 1113 case SPECI AL_OR ASSI G\:
1114 case SPECI AL_XOR_ASSI G\:
1085 right = strip_parens(expr->right); 1115 case SPECI AL_MJL_ASSI G\:
1086 if (right- >type == EXPR_CALL && sym nane_is("__builtin_expect", right->f 1116 case SPECIAL_DIV_ ASSI G\
1087 right get _ ar gunent _from cal | _expr (right->ar gs 0); 1117 bi nop_expr = bi nop_expr essi on(expr->left,
1088 whil e (r| ght - >type == EXPR_ASSI GNVENT && right->op =="'=") 1118 op_renove_assi gn(expr - >op),
1089 right = strip_parens(right->left); 1119 expr->right);
1120 get _absol ute_r| (bi nop_expr, &l);
1091 if (expr->op =="'=" && is_condition(expr->right)) 1097 i f (get _absolute_rl (binop_expr, &l)) {
1092 return; /* handled in smatch_condition.c */ 1121 rl = cast_rl(left_type, rl);
1093 if (expr->op == '=" && right->type == EXPR _CALL) 1122 if (insi de 1 oop())
1094 return; /* handled in smatch_function_hooks.c */ 1123 i f (expr->op == SPECI AL_ADD ASSI GN)
1095 if (expr->op =="'=") { 1124 add_range(& |, rl_max(rl), sval _type_max(rl_type
1096 mat ch_vani |l a_assign(left, right);
1097 return; 1126 if (expr->op == SPECI AL_SUB_ASSI GN &&
1098 } 1127 I'sval _is_negative(rl_nmin(rl)))
1128 sval _t zero = { .type = rl_type(rl) };
1100 nane = expr_to_var_syn(left, &syn);
1101 if (!'nane) 1130 add_range(& |, rl_mn(rl), zero);
1102 return; 1131 }
1132 }
1104 left_type = get_type(left); 1133 set _extra_nod(nane, sym left, alloc_estate_rl(rl));
1134 goto free;
1047 res_mn = sval _type_mn(left_type); 1135
1048 res_max = sval _type_max(left_type); 1136 set _extra_nod(nane, sym left, alloc_estate_whol e(left_type));
1102 br eak;
1106 switch (expr->op) { 1103 }
1107 case SPECI AL_ADD ASSI GN: 1104 rl = cast_rl(left_type, alloc_rl(res_mn, res_max));
1052 get _absol ute_max(left, & eft_nax); 1105 set _extra_nod(nanme, sym left, alloc_estate rT(rl));
1053 get _absol ute_max(right, &right_nax); 1137 free:
1054 if (sval _binop_overflows(left_max, '+, sval _cast(left_type, rig 1138 free_string(nane);
1055 br eak; 1139 }
1056 if (get_inplied_mn(left, &eft_mn) && ____unchanged_portion_onitted_
1057 I'sval _Iis_negative_mn(left_mn) &&
1058 get _inplied_mn(right, &ight_mn) && 1251 static void check_dereference(struct expression *expr)
1059 I'sval _is_negative_mn(right_mn)) { 1252 {
1060 res_mn = sval _binop(left_mn, '+, right_min); 1253 struct smatch_state *state;
1061 res_mn = sval _cast(left_type, res_mn);
1062 } 1255 if (__in_fake_assign)
1063 if (inside_loop()) /* we are assuming |loops don't |lead to wapp 1256 return;
1064 br eak; 1257 if (outside_of _function())
1065 res_max = sval _bi nop(left_max, '+, right_max); 1258 return;
1066 res_max = sval _cast(left_type, res_max); 1259 state = get_extra_state(expr);
1067 br eak; 1260 if (state) {
1108 case SPECI AL_SUB_ASSI G\: 1261 struct range_list *rl;
1069 if (get |rrp||ed max(left, & eft_max) &&
1070 T'sval _i's_max(| eft_max) && 1263 rl = rl_intersection(estate_rl(state), valid_ptr_rl);
1071 get_inplied_mn(right, &ight_mn) & 1264 if (rl_equiv(rl, estate_rl(state)))
1072 I'sval _is_mn(right_mn)) { 1265 return;
1073 res_max = sval _binop(left_max, '-', right_min); 1266 set _extra_expr_nonod(expr, alloc_estate_rl(rl));
1074 res_max = sval cast(left_type, res_max); 1267 } else {
1075 } 1268 struct range_list *rl;
1076 i f (|n5|de 1 oop())
1077 br eak; 1270 if (get mag rI (expr, &l))
1078 if (get |rrpI|ed mn(left, &eft_mn) && 1271 |ntersect|on(rl valid_ptr_rl);
1079 I'sval _is_nmin(left_m n) && 1272 el se
1080 get _i npl i ed_max(right, &right_max) && 1273 rl = clone_rl(valid_ptr_rl);
1081 I'sval _is nax(rl ght rrax))
1082 res_mn = sval _binop(left_nin, ’-', right_max); 1275 set _extra_expr_nonod(expr, alloc_estate rl(rl));
1083 res_mn = sval _cast(left_type, res_nmin); 1237 set _extra_expr_nonod(expr, alloc_estate_range(valid_ptr_mi n_sval

new usr/src/tool s/smatch/src/smatch_extra.c

1276
1277 }

}

__unchanged_portion_onitted_

1338 static int handl e_postop_inc(struct expression *left,

1339 {
1340
1341
1342
1343
1344
1345

1347
1348
1349
1350
1351
1352

1354
1355

1357
1358
1359
1360
1361
1362
1363

1365
1366
1367
1368
1369

1371
1372
1373
1374
1375
1376

1377
1378

1380
1381
1382
1383
1384
1385
1386
1387
1388

1390

1392
1393

1395
1396
1397

struct statement *stnt;
struct expression *cond;

13

int op, struct expression

struct smatch_state *true_state, *fal se_state;

struct synbol *type;
sval _t start;
sval _t limt;
/

so |t s handl ed al ready.

R

/do 1 ﬁ.. } while (i++ < 3)

if (left->type !=
return O;

stnt = __cur_stnt->parent;

if (!stnt)
return O;

if (stnt->type == STMI_COVPCOUND)
stnt = stnt->parent;

if (Istnt || stnt->type !=
return O;

EXPR_PCSTOP || left->op !=

If we're decrenenting here then that’s a canonical while count down
We’'re only handling | oops like:

SPECI AL_| NCREMENT)

STMT_I TERATOR || !stnt->iterator_post_conditi

cond = strip_expr(stnt->iterator_post_condition);
if (cond->type |= EXPR_COWARE || cond->op != op)

return O;

right !'= strip_expr(cond->right))

if (left !'= strip_expr(cond->left) ||
return O;

if (!get_inplied_value(left->unop, &start))
return O;

if (lget_inplied_value(right, &init))
return O;

type = get_type(left->unop);

limt = sval _cast(type, limt);

if (sval _cnp(start, limt) > 0)

return O;

switch (op) {
case ' <
case SPECI AL_UNSI GNED_LT:
br eak;
case SPECIAL_LTE:
case SPECI AL_UNSI GNED_LTE:
limt = add_one(limt);
defaul t:
return O;

}

true_state = alloc_estate_range(add_one(start), lim
false_state = all oc_estate_range(add_ one(l|mt)

add ZJne(I|mt))

/* Currently we just discard the fal se state but when two passes is

* inplinented correctly then it wll
*/

use it.

new usr/src/tool s/smatch/src/smatch_extra.c 14
1399 set_extra_expr_true_fal se(l eft->unop, true_state, false_state);
1401 return 1;
1402 }
__unchanged_portion_omtted_
1414 static bool in_nacro(struct expression *left, struct expression *right)
1415 {
1416 if (Mleft || !right)
1417 return 0;
1418 if (left->pos.line !=right->pos.line || left->pos.pos != right->pos. pos
1419 return O;
1420 if (get_macro_nane(left->pos))
1421 return 1;
1422 return O;
1423 }
1425 static void handl e_conparison(struct synbol *type, struct expression *left, int
1426 {
1427 struct range_list *left_orig;
1428 struct range_|list *left_true;
1429 struct range_list *left_false;
1430 struct range_list *right_orig;
1431 struct range_list *right_true;
1432 struct range_|list *right_false;
1433 struct smatch_state *ieft_true_state;
1434 struct smatch_state *left_fal se_state;
1435 struct smatch_state *right_true_state;
1436 struct smatch_state *right_fal se_state;
1437 sval _t dummy, hard max;
1438 int Teft_postop =
1439 int right_postop =
1441 if (left->op == SPECI AL_I NCREMENT || |eft->op == SPECI AL_DECREMENT) {
1442 if (left->type == EXPR_POSTOP)
1443 left->smatch_flags | = Handl ed;
1444 | eft_postop = left->op;
1445 if (handl e_postop_inc(left, op, right))
1446 return;
1447
1448 left = strip_parens(left->unop);
1449 }
1450 while (I eft—>type == EXPR_ASSI GNMENT)
1451 left = strip_parens(left->left);
1453 if (right->op == SPECI AL_I NCREMENT || right->op == SPECI AL_DECREMENT) {
1454 if (right->type == EXPR_POSTOP)
1455 right->smatch_flags | = Handl ed;
1456 ri ght_postop = right->op;
1457 }
1458 right = strip_parens(right->unop);
1459 1
1461 if (is_inpossible_variable(left) || is_inpossible_variable(right))
1462 return;
1464 get _real _absolute_rl(left, & eft_orig);
1465 left_orig = cast_rl(type, left_orig);
1467 get _real _absolute_rl(right, &ight_orig);
1468 right_orig = cast_rl(type, right_orig);
1470 split_conparison_rl(left_orig, op, right_orig, & eft_true, & eft_false,
1472 left_true = rl_truncate_cast(get_type(strip_expr(left)), left_true);
1473 left_false = rl_truncate_cast(get_type(stri p_expr(ft)), left_false);

new usr/src/tool s/smatch/src/smatch_extra.c 15
1474 right_true = rl _truncate_cast(get_type(strip_expr(right)), right_true);
1475 right _false = rl_truncate_cast(get_type(strip_expr(right)), right_false)
1477 if (!left_true || !left_false) {

1478 struct range_list *tnp_true, *tnp_false;

1480 split_conparison_rl(alloc_whole_rl(type), op, right_orig, & np_t
1481 tnp_true = rl_truncate_cast(get_type(strip_expr(left)), tnp_true
1482 tmp_false = rl_truncate_cast(get_type(strip_expr(left)), tnp_fal
1483 if (tnp_true && tnp_false)

1484 __save_imaginary_state(left, tnp_true, tnp_false);

1485 }

1487 if ('right_true || !right_false) {

1488 struct range_list *tnp_true, *tnp_false;

1490 split_conparison_rl(alloc_whole_rl(type), op, right_orig, NULL,
1491 tnp_true = rI truncat e_cast (get_type(strip_expr(right)), tnp_tru
1492 tnp_false = rl_truncate_cast (get _type(strip_ expr(rlght)) tnp_fa
1493 if (tnp_true &&tnpfalse)

1494 __save_inmmginary_state(right, tnp_true, tnp_false);

1495 }

1497 left_true_state = alloc_estate_rl(left_true);

1498 left_false_state = alloc_estate_rl (left_false);

1499 rlght true_state = alloc_estate_rl(right_true);

1500 right_false_state = alloc_estate_rl(right_false);

1502 SW tch (op) {

1503 case ' <

1504 case SPECIAL_UNSIGNEELLT:

1505 case SPECI AL_UNSI GNED_LTE

1506 case SPECI AL_LTE:

1507 if (get_inplied_value(right, &Jumy) && !in_macro(left, right))
1456 if (get_hard_max(right, &Jummy))

1508 estate_set_hard_max(left_true_state);

1509 if (get_inplied_value(left, &umy) && !in_macro(left, right))
1458 if (get_hard_max(left, &Jummy))

1510 estate_set _hard_max(right_fal se_state);

1511 br eak;

1512 case '>':

1513 case SPECI AL_UNSI GNED_GT:

1514 case SPECI AL_UNSI GNED_GTE:

1515 case SPECI AL_GTE:

1516 if (get_inplied_value(left, &umy) && !in_macro(left, right))
1465 if (get_hard_max(left, &Jummy))

1517 estate_set _hard_max(right_true_state);

1518 if (get_inplied_value(right, &umy) && !in_nmacro(left, right))
1467 if (get_hard_max(right, &Jummy))

1519 estate_set_hard_nax(left_fal se_state);

1520 br eak;

1521 1

1523 switch (op) {

1524 case '<':

1525 case SPECIAL UNSI GNED_LT:

1526 case SPECI AL_UNSI GNED_LTE:

1527 case SPECIAL_LTE:

1528 if (get_hard_max(right, &ard_max)) {

1529 if (op =='<" || op == SPECI AL_UNSI GNED_LT)

1530 har d_max. val ue- - ;

1531) estate_set_fuzzy_max(left_true_state, hard_max);

1532

1533 1f (get_i npl i ed_val ue(right, &hard_max))

1534 if (op == SPECI AL_UNSI GNED_LTE ||

1535 op == SPECI AL_LTE)

new usr/src/tool s/smatch/src/smatch_extra.c

1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585

1587
1588
1589
1590
1591
1592
1593
1594

1596
1597
1598
1599
1600
1601

har d_max. val ue++;
estate_set _fuzzy_max(left_fal se_state, hard_nmax);

}
if (get_hard_max(left, &hard_nax)) {
if (op == SPECI AL_UNSI GNED_LTE ||
op == SPECI AL_LTE)
har d_max. val ue- - ;

estate_set_fuzzy_nex(right_fal se_state, hard_max);

}
1f (get_inplied_value(left, &ard_nmax)) {
if (op =='< || op == SPECI AL_UNSI GNED LT)
har d_nax. val ue++;
estate_set _fuzzy_max(ri ght_t rue_state, hard_max);

br eak;
case '>':
case SPECI AL_UNSI GNED_GT:
case SPECI AL_UNSI GNED_GTE:
case SPECI AL_GTE:
if (get_hard max(l eft &hard_max)) {
if (op =="'> op == SPECI AL_UNSI GNED_GT)
har d_max. val ue- - ;
estate_set _fuzzy_max(right_true_state, hard_nax);

}
1f (get_ | rrpl i ed_val ue(left, &hard_nax))
f (op == SPECI AL_UNSI GNED_GTE | |
op == SPECI AL_GTE)
har d_max. val ue++;

estate_set_fuzzy_nmax(right_false_state, hard_max);

}
1f (get_hard nax(rlght &hard_max)) {
if (op == SPECI AL_UNST GNED_LTE ||
op == SPECI AL_LTE)
har d_max. val ue--;
estate_set _fuzzy_max(left_fal se_state, hard_nmax);

}
if (get_inplied val ue(rl ght, &hard_max)) {
if (op ==
op == SPECI AL_UNSI GNED_GT)
har d_max. val ue++;
estate_set _fuzzy_max(left_true_state, hard_max);

br eak;
case SPECI AL EQJAL
if (get_hard_nmax(left, &hard_max))
estate_set _f uzzy_rrax(right_true_state, hard_max);
if (get_hard_max(right, &hard_mex))
estate_set _fuzzy_nax(left_true_state, hard_max);
br eak;

}

if (get_hard_max(left, &hard_nax))
estate_set hard _max(Teft_true_state);
estate_set _hard_max(l eft_fal se state)

}

if (get_hard_max(right, &hard_mex))
estate_set har d _max(right_true_state);
estate_set _hard_nmax(right _fal se_stat e)

}

if (left_postop == SPECI AL_I NCREMENT) {
left_true_state = increnment_state(left_true_state);
left_false_state = increment_state(left_false_state);

}
if (left_postop == SPECI AL_DECREMENT)
left_true_state = decrenent_state(left_true_state);

16

new usr/src/tool s/smatch/src/smatch_extra.c 17
1602 left_false_state = decrenment_state(left_false_state);

1603 1

1604 if (right_postop == SPECI AL_I NCREMENT) {

1605 right_true_state = increment_state(right_true_state);

1606 right_false_state = increnment_state(right_fal se_state);

1607

1608 if (right_postop == SPECI AL_DECREMENT) {

1609 right_true_state = decrenment_state(right_true_state);

1610 right_fal se_state = decrenent_state(right_fal se_state);

1611 }

1613 if (estate_rl(left_true_state) && estates_equiv(left_true_state, left_fa
1614 left_true_state = NULL;

1615 left_fal se_state = NULL;

1616 1

1618 if (estate_rl(right_true_state) &% estates_equiv(right_true_state, right
1619 right_true_state = NULL;

1620 right_false_state = NULL

1621 }

1623 /* Don’t introduce new states for known true/false conditions */

1624 if (rl_equiv(left_orig, estat e_rI (left_true_state)))

1625 left_true_state = NULL

1626 if (rl_equiv(left_orig, estate ri(left_false_state)))

1627 left_fal se_state = NULL;

1628 if (rl_equiv(right_orig, estate rl(right_true_state)))

1629 right _true_state = NULL;

1630 if (rl_equi v(right_orig, estate_rl(right_false_state)))

1631 right_false_state = NULL;

1633 set_extra_expr_true_false(left, left_true_state, left_false_state);
1634 set_extra_expr_true_false(right, right_true_state, right_false_state);
1635 }

__unchanged_portion_onitted_

1652 static int flip_op(int op)
{

1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664 }

1666 static void nmove_known_to_rl (struct expression **expr_p,

1667 {
1668
1669
1670

1672
1673

1675
1676
1677
1678
1679
1680
1681

/* W only care about sinple math */
swtch (op) {
case '+
return -’
case '-':
return B
case '*':
return '/’;

}
return O;

struct expression *expr = *expr_p;
struct range_list *rl = *rl_p;
sval _t sval;

if (!is_sinple_math(expr))
return;

if (get_inplied_val ue(expr->right,
*expr_p = expr->left;
*rI_p = rl_binop(rl, flip_op(expr->op),
move_known_to_rl (expr_p, rl_p);
return;

&sval)) {

alloc_rl(sval, sval));

if (expr->op == "-")

struct range_list **rl_

new usr/src/tool s/ smatch/src/smatch_extra.c

sval));

i nvert_op(right->op),
,)) {
i nvert_op(right->op),

i nvert_op(right->op),

invert_op(left->op),

{
invert_op(left->op),

18

r

r

r

1682 retu

1683 if (get_inpl | ed _val ue(expr->left, &val)) {

1684 *expr_p = expr->right;

1685 *rI_p = rl_binop(rl, fllp op(expr->op), alloc_rl(sval,
1686 nmove_known_t o rI(expr _p, rl_p);

1687 return;

1688 }

1689 }

1691 static void nove_known_val ues(struct expression **|eft_p, struct expression **ri
1692 {

1693 struct expression *left = *left_p;

1694 struct expression *right = *right_p;

1695 sval _t sval, dummy;

1697 if (get_inplied_value(left, &sval))

1698 if ('is_sinple_ nath(rlght))

1699 return;

1700 if (get_inpli ed_val ue(right, &Jummy))

1701 return;

1702 if (rlght >op ——’*’)

1703 al _t divisor;

1705 if (!get_value(right->right, &divisor))
1706 return;

1707 if (divisor. val ue == 0)

1708 return;

1709 *left_p = bi nop_expr e35| on(left,
1710 *right_p = right->left

1711 return;

1712 }

1713 if (right->op == '+ && get_value(right->left, &sval)
1714 *left_p = binop_expression(left,
1715 *right _p = right->right;

1716 return;

1717 }

1718 i1f (get_value(ri ght >right, &sval)) {

1719 *|l eft_p = binop_expression(left,
1720 *right_p = right->left;

1721 return;

1722 }

1723 return;

1724 1

1725 if (get_| | npl ied_value(right, &sval)) {

1726 (Vis_sinple_ math(left))

1727 return;

1728 if (get_inpli ed_val ue(left, &Jummy))

1729 return;

1730 if (left->op =="'%*")

1731 sval _t divisor;

1733 if (!'get_value(left->right, &divisor))
1734 return;

1735 if (divisor.value == 0)

1736 return;

1737 *right _p = binop_expression(right,
1738 *left_p = left->left;

1739 return;

1740 }

1741 if (left->op == '+ && get_value(left->left, &sval))
1742 *right _p = binop_expression(right,
1743 *left_p = left->right;

1744 return;

1745 }

1747 if (get_value(left->right, &sval)) {

new usr/src/tool s/smatch/src/smatch_extra.c 19 new usr/src/tool s/smatch/src/smatch_extra.c 20
1748 *right_p = bi nop expression(right, invert_op(left->op), 1830 } else if (type_positive_bits(type) == 64) {
1749 *left_p = left->left; 1831 max. type = &ul ong_ctype;
1750 return; 1832 max. val ue = (unsigned | ong |ong)-1;
1751 } 1833 } else {
1752 return; 1834 return O;
1753 } 1835 }
1754 }
__unchanged_portion_onitted_ 1837 if (lexpr_equiv(left->left, right) & !expr_equiv(left->right, right))
1838 return O;
1795 static int match_func_conparison(struct expression *expr)
1796 { 1840 get _absolute_nmin(left->left, & eft_mn);
1797 struct expression *left = strip_expr(expr->left); 1841 get _ absol ute_mn(left->ri ght & ight_mn);
1798 struct expression *right = strip_expr(expr->right); 1842 mn = sval _binop(left_min, ’ v , right_mn);
1709 sval _t sval;
1844 type = get_type(left);
1800 if (left->type == EXPR CALL || right->type == EXPR_CALL) { 1845 mn = sval _cast(type, mn);
1711 /* 1846 max = sval _cast(type, nmex);
1712 * fixme: think about this harder. W should always be trying to limt
1713 * the non-call side as well. |If we can’t determne the limtter does 1848 set _extra_chunk_true_fal se(left, NULL, alloc_estate_range(mn, max));
1714 * that nean we aren’'t querying the database and are mi ssing inportant 1849 return 1;
1715 * information? 1850 }
1716 */ ____unchanged_portion_onitted_
1718 if (left->type == EXPR_CALL) { 1946 static bool handl e_bit_test(struct expression *expr)
1719 if (get_i rrpl i ed_val ue(left, &sval)) { 1947 {
1720 handl e_conpari son(get _type(expr), left, expr->op, right) 1948 struct range_list *orig_rl, *rl;
1721 return 1; 1949 struct expression *shift, *mask, *var;
1722 } 1950 struct bit_info *bit_info;
1801 function_conparison(left, expr->op, right); 1951 sval _t sval;
1802 return 1; 1952 sval _t high = { .type = & nt_ctype };
1803 } 1953 sval _t low = { .type = & nt_ctype };
1727 if (right->type == EXPR CALL) { 1955 shift = strip_expr(expr->right);
1728 if (get_i an i ed_val ue(right, &sval)) { 1956 mask = strip_expr(expr->left);
1729 handl e_conpari son(get _type(expr), left, expr->op, right) 1957 if (shift->type = EXPR BINOP || shift->op != SPECI AL_LEFTSHI FT) {
1730 return 1; 1958 shift = strip_expr(expr->left);
1731 } 1959 mask = strip_expr(expr->right);
1732 function_conparison(left, expr->op, right); 1960 if (shift->type != EXPR BINOP || shift->op != SPECI AL_LEFTSHI FT)
1733 return 1; 1961 return fal se;
1734 } 1962 1
1963 if (lget_inplied_value(shift->left, &val) || sval.value != 1)
1805 return O; 1964 return fal se;
1806 } 1965 var = strip_expr(shift->right);
1808 /* Handl e conditions like "if (foo + bar < foo) {" */ 1967 bit_info = get_bit_info(mask);
1809 static int handl e_integer_overflow test(struct expression *expr) 1968 if (!bit_info)
1810 { 1969 return fal se;
1811 struct expression *left, *right; 1970 if (!bit_info->possi bl e)
1812 struct synbol *type; 1971 return false;
1813 sval _t left_mn, right_mn, mn, max;
1973 get _absolute_rl (var, &orig_rl);
1815 if (expr->op !'="'< && expr->op ! = SPECI AL_UNSI GNED_LT) 1974 if (sval _is_negative(rl_mmn(orig_rl)) ||
1816 return O; 1975 rl_max(orig_rl).uvalue > type_bits(get_type(shift->left)))
1976 return false;
1818 left = strip_parens(expr->left);
1819 right = strip_parens(expr->right); 1978 | ow. val ue = ffsll (bit_info->possible);
1979 hi gh. val ue = sm fls64(bit_info->possible);
1821 if (left->op I="+") 1980 rl "= alloc_rl(low high);
1822 return O; 1981 rl = cast rl(get_type(var), rl);
1982 rl =rl _intersection(orig_rl, rl);
1824 type = get_type(expr); 1983 if (!rl)
1825 if (!type) 1984 return false;
1826 return O;
1827 if (type_positive_bits(type) == 32) { 1986 set _extra_expr_true_fal se(shift->right, alloc_estate_ rl(rl), NULL);
1828 max. type = &uint_ctype;
1829 max. uval ue = (unsigned int)-1; 1988 return true;

new usr/src/tool s/smatch/src/smatch_extra.c 21 new usr/src/tool s/smatch/src/smatch_extra.c 22

1989 } 2054 if (!get_inplied_value(expr->right, &ight) || right.value == 0)
2055 return;

1991 {st atic void handl e_AND op(struct expression *var, sval _t known) 2056 get _absol ut e_rI (expr->left, &orig_rl);

1992

1993 struct range_list *orig_rl; 2058 zero.value = 0;

1994 struct range_list *true_rl = NULL; 2059 zero.type = rl_type(orig_rl);

1995 struct range_list *false_rl = NULL;

1996 int bit; 2061 I* W' re basi cal |y dorking around the mn and max here */

1997 sval _t | ow_mask = known; 2062 true_rl = renopve_range(orig_rl, zero, zero);

1998 sval _t hi gh_mask; 2063 if (Tsval _is_max(rl _max(true_| rl)) &&

1999 sval _t max; 2064 I(rl _max(true_rT).value %right.val ue))
2065 true_rl = renove_range(true_rl, rl_max(true_rl), rl_max(true_rl)

2001 get _absolute_rl (var, &orig_rl);
2067 if (rl_equiv(true_rl, orig_rl))

2003 if (known. vaI ue > 0) { 2068 true_rl = NULL;

2004 bi t ffsll (known value) - 1;

2005 | ow_| rmsk uvalue = (1ULL << bit) - 1; 2070 if (sval _is_positive(rl_m n(orl g ri)) &&

2006 true_rl = renove_range(orig_rl, sval type_ val (known.type, 0), lo 2071 (rl _max(orig_rl).value - n(orig_rl).value) / right.value < 5) {

2007 1 2072 sval _t add;

2008 hi gh_| r‘rask = get _hi gh_mask(known); 2073 int i;

2009 i f (high_nask. val ue)

2010 bit = ffsll(high_mask.value) - 1; 2075 add = rl_mn(orig_rl);

2011 | ow_mask. uval ue = (1ULL << bit) - 1; 2076 add. val ue += right.value - (add.value %right.val ue);
2077 add. val ue -= right.val ue;

2013 false_rl = orig_rl;

2014 if (sval _is_negative(rl_mn(orig_rl))) 2079 for (i =0; i <5; i++) {

2015 false_rl = renpve_range(false_rl, sval_type_m n(known.ty 2080 add. val ue += right. val ue;

2016 false_rl = renpve_range(false_rl, |ow mask, sval_type_max(known. 2081 if (add.value > rl_max(orig_rl).value)

2017 if (type_si gned(hl gh_mask. t ype) 8& type_unsi gned(rl _type(fal se_r 2082 br eak;

2018 false_rl = renove_range(false_rl, 2083 add_range(&f al se_rl, add, add);

2019 sval type val (rl _type(false_rl), 2084

2020 sval _type_val (rl_type(false_rl), -1)); 2085 } else {

2021 } 2086 if (rl_mn(orig_rl).uvalue '= 0 &&

2022 } else if (known.value == 1 && 2087 rl_mn(orig_rl).uvalue < right.uval ue) {

2023 get _hard_max(var, &max) && 2088 sval _t chop = right;

2024 sval _cnp(max, rl_nmax(orig_rl)) == 0 && 2089 chop. val ue- -;

2025 max. value & 1) { 2090 false_rl = renove_range(orig_rl, zero, chop);

2026 false_rl = renmove_range(orig_rl, max, nmex); 2091 }

2027 }

2028 set _extra_expr_true_fal se(var, 2093 if (!sval _is_max(rl_max(orig_rl)) &&

2029 true_rl ? alloc_estate_rl(true_rl) : NULL, 2094 (rl _max(orig_rl). val ue %right.value)) {

2030 false_rl ? alloc_estate_rl(false_rl) : NULL); 2095 sval _t chop = rl _max(orig_rl);

2031 } 2096 chop. val ue -= chop. val ue %right. val ue;
2097 chop. val ue++;

2033 static void handl e_AND condi tion(struct expression *expr) 2098 if (!false_rl)

2034 { 2099 false_rl = clone_rl(orig_rl);

2035 sval _t known; 2100 false_rl = renove_range(false_rl, chop, rl_max(orig_rl))
2101 }

2037 if (handle_bit_test(expr)) 2102 }

2038 return;
2104 set _extra_expr_true_fal se(expr->left,

2040 if (get_inplied_value(expr->left, &nown)) 2105 true_rl ? alloc_estate_rl(true_rl) : NULL,

2041 handl e_AND_op(expr->ri ght, known); 2106 false_rl ? alloc_estate_rl(false_rl) : NULL);

2042 else if (get_inplied_value(expr->right, &mnown)) 2107 }

2043 handl e_AND_op(expr->left, known);

2044 } 2109 /* this is actually hooked fromsmatch_inplied.c. it’s hacky, yes */
2110 void __extra_natch_condition(struct expression *expr)

2046 static void handl e_MOD condition(struct expression *expr) 2111 {

2047 { 1991 struct smatch_state *pre_state;

2048 struct range_list *orig_rl; 1992 struct smatch_state *true_state;

2049 struct range_list *true_rl; 1993 struct smatch_state *fal se_state;

2050 struct range_list *false_rl = NULL; 1994 struct range_list *pre_rl;

2051 sval _t right;

2052 sval _t zero = { 0, }; 2112 expr = strip_expr(expr);

1931 sval _t zero; 2113 swtch (expr->type) {
2114 case EXPR_CALL:

new usr/src/tool s/smatch/src/smatch_extra.c 23

2115
2116
2117
2118
2119
2120
2003
2004

2006
2007

2009
2010
2121
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135 }

function_conparison(expr, SPECI AL_NOTEQUAL, zero_expr());
return;
case EXPR_PRECP:
case EXPR_SYMBOL:
case EXPR_DEREF:
handl e_conpari son(get _type(expr), expr, SPECI AL_NOTEQUAL, zero_e
case EXPR_DEREF: {
sval _t zero;

zero = sval _bl ank(expr);
zero.value = 0;

pre_state = get_extra_state(expr);
I1f (estate_is_enpty(pre_state))

return;
if (pre_state)

pre_rl = estate_rl(pre_state);
el se

get _absolute_rl (expr, &pre_rl);
if (possibly_true_rl(pre_rl, SPECIAL_EQUAL, rl_zero()))

fal se_state = alloc_estate_sval (zero);
el se

fal se_state = alloc_estate_enpty();
true_state = alloc_estate_rl (renobve_range(pre_rl, zero, zero));
set_extra_expr_true_fal se(expr, true_state, false_state);
return;

}
case EXPR_COVPARE
mat ch_conpari son(expr);
return;
case EXPR_ASSI GNMENT:
__extra_match_condition(expr->left);
return;
case EXPR_BI NOP:
if (expr->op =="'&)
handl e_AND condi ti on(expr);
if (expr->op == '%)
handl e_MOD_condi ti on(expr);
return;

}

____unchanged_portion_onitted_

2254 static i

2156 static
2255 {
2256

2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272 }

i s_kzalloc_info(struct smstate *sm

nt
int filter_unused_kzalloc_info(struct expression *call, int param char *

sval _t sval;

/*
* kzalloc() information is treated as special because so there is just
* a lot of stuff initialized to zero and it nakes buil ding the database
* take hours and hours.
*
* In theory, we should just renpve this line and not pass any unused
* information, but |I'’mnot sure enough that this code works so | want
* to hold off on that for now
*
/
if (lestate_get_single_value(sm>state, &sval))
return O;
if (sval.value !'= 0)
return O;
return 1;

2274 static int is_really_long(struct smstate *sn)

2275 {

new usr/src/tool s/smatch/src/smatch_extra.c 24

2276

const char *p;

2277 int cnt = 0;
2279 p = sm >nane;
2280 while ((p = strstr(p, "->"))) {
2281 p += 2;
2282 cnt ++;
2283 }
2285 if (cnt <3 ||
2286 strlen(sm >nanme) < 40)
2287 return O;
2288 return 1;
2289 }
2291 {st atic int filter_unused_paramval ue_i nfo(struct expression *call, int param ch
2292
2293 int found = 0;
2295 /* for function pointers assune everything is used */
2296 if (call->fn->type != EXPR_SYMBOL)
2297 return O;
2299 /*
2300 * This is to handle __builtin_nul _overflowm). In an ideal world we
2301 * would only need this for invalid code.
2302 *
2303 *
2304 if (!call->fn->synbol)
2305 return O;
2307 if (lis_kzalloc_info(sm && lis_really_long(sm)
2173 /*
2174 * kzalloc() information is treated as special because so there is just
2175 * alot of stuff initialized to zero and it makes buil di ng the database
2176 * take hours and hours.
2177 *
2178 * |In theory, we should just renpve this |ine and not pass any unused
2179 * information, but 1’'mnot sure enough that this code works so | want
2180 * to hold off on that for now
2181 *
2182 if (lestate_get_single_value(sm>state, &sval) || sval.value != 0)
2308 return O;
2310 run_sql (¶m used_cal | back, &f ound,
2311 "select * fromreturn_inplies where % and type = %l and paranet
2312 get _static_filter(call->fn->synbol), PARAM USED, param printed_
2313 if (found)
2314 return O;
2316 /* |f the database is not built yet, then assune everything is used */
2317 run_sql (¶m used_cal | back, &found,
2318 "select * fromreturn_inplies where % and type = %l; ",
2319 get_static_filter(call->fn->synbol), PARAM USED);
2320 if (!found)
2321 return O;
2323 return 1;
2324 }
____unchanged_portion_onitted_
2371 {st atic void struct_nenber_cal | back(struct expression *call, int param char *pri
2372
2373 struct range_list *rl;
2374 sval _t dumy;

new usr/src/tool s/smatch/src/smatch_extra.c 25 new usr/src/tool s/ smatch/src/smatch_extra.c 26
2376 if (estate_is_whol e(sm>state)) 2291 -1, param nane, buf);
2377 return; 2432 } END_FOR _EACH SM'sn);
2378 if (filter_unused_paramvalue_info(call, param printed_nane, sn))
2252 if (filter_unused_kzalloc_info(call, param printed_nane, sn)) 2434 free:
2379 return; 2435 free_string(returned_nane);
2380 rl = estate_rl(sm>state); 2436 }
2381 rl = intersect_w th_real _abs_var_syn(sm >name, sm>sym rl); __unchanged_portion_onitted_
2382 sql _insert_calTer_info(call, PARAM VALUE, param printed_name, show rl(r
2383 if (!estate_get_single_val ue(sm >state, &Jumy)) { 2305 static int rl_fits_in_type(struct range_list *rl, struct symbol *type)
2384 if (estate_has_hard_max(sm >state)) 2306 {
2385 sql _insert_caller_info(call, HARD MAX, param printed_na 2307 if (type_bits(rl_type(rl)) <= type_bits(type))
2386 sval _to_str(estate_max(sm >state) 2308 return 1;
2387 if (estate_has_fuzzy_max(sm >st at e)) 2309 if (sval _cmp(rl _max(rl), sval _type_nmax(type)) > 0)
2388 sql _insert_caller_info(call, FUZZY_MAX, param printed_n 2310 return O;
2389 sval _t o_str(estate_get_fuzzy_max(2311 if (sval_is_negative(rl_mn(rl)) &&
2390 } 2312 sval _crmp(ri_nmin(rl), sval _type_nmin(type)) < 0)
2391 } 2313 return O;
2314 return 1;
2393 static void returned_struct_nenbers(int return_id, char *return_ranges, struct e 2315 }
2394 {
2395 struct synbol *returned_sym 2448 static int basically_the_same(struct range_list *orig, struct range_list *new)
2396 char *returned_naneg; 2449
2397 struct smstate *sm 2450 if (rl_equiv(orig, new))
2266 const char *param nane; 2451 return 1;
2398 char *conpare_str;
2399 char nane_buf [256] ; 2453 /*
2400 char val _buf [256] ; 2454 * The whole range is essentially the same as 0, 4096- 27777777777 soO
2401 int len; 2455 * don't overwite the inplications just to store that.
2268 char buf [256] ; 2456 *
2457 */
2403 /1 FIXME handle *$ 2458 if (rl_type(orig)->type == SYM PTR &&
2459 is_whole_rl(orig) &&
2405 if (!is_pointer(expr)) 2460 rl_mn(new).value == 0 &&
2270 returned_sym = expr_to_syn(expr); 2461 rl _max(new).val ue == valid_ptr_max)
2271 if (!returned_sym 2462 return 1;
2406 return; 2463 return O;
2464 }
2408 returned_name = expr_to_var_symexpr, & eturned_sym; ______unchanged_portion_omtted_
2409 if (!returned_name || !returned_sym
2410 goto free; 2486 static void db_paramlimt_filter(struct expression *expr, int param char *key,
2411 len = strlen(returned_nane); 2487 {
2488 struct expression *arg;
2413 FOR_EACH MY_SMny_id, _ get_cur_stree(), sm { 2489 char *nane;
2414 if (lestate_rl(sm>state)) 2490 struct synbol *sym
2415 conti nue; 2491 struct var_symlist *vsl = NULL;
2416 if (returned_sym!= sm>syn) 2492 struct smstate *sm
2417 continue; 2493 struct synbol *conpare_type, *var_type;
2418 if (strncnp(returned_nanme, sm >nane, len) != 0) 2494 struct range_list *rl;
2495 struct range_list *limt;
2280 param nane = get_param nanme(sn); 2496 struct range_|ist *new,
2281 i f (!param.nane) 2497 char *other_nane;
2419 conti nue; 2498 struct synbol *other_sym
2420 if (sm>nane[len] I="-") 2366 char *tnp_nane;
2283 if (strcnp(paramnanme, "$") == 0) 2367 struct synbol *tnp_sym
2421 conti nue;
2500 whi | e (expr->type == EXPR_ASSI GNMENT)
2423 snprintf(nane_buf, sizeof(name_buf), "$%", sm>nane + len); 2501 expr = strip_i expr(expr->r| ght);
2502 if (expr->type != EXPR_CALL)
2425 conpare_str = name_sym to_param conpari son(sm >nane, sm >syn); 2503 return;
2426 if (!conpare_str && estate_is_whol e(sm>state))
2427 continue; 2505 arg = get_argunent _from cal | _expr (expr->args, paran);
2428 snprintf(val _buf, sizeof(val_buf), "%%", sm >state->nanme, conp 2506 if (larg)
2288 snprintf(buf, sizeof(buf), "%%", sm>state->nanme, conpare_str 2507 return;
2430 sql _insert_return_states(return_id, return_ranges, PARAM VALUE, 2509 if (strcnp(key, "$") == 0)
2431 -1, nanme_buf, val _buf); 2510 conpare_type = get_arg_type(expr->fn, param;

new usr/src/tool s/smatch/src/smatch_extra.c 27

2511
2512

2514
2515
2516
2517
2518
2519
2520
2521

2384
2385
2386
2387

2523
2524
2525
2526
2527

2529
2530

2398
2532

2534
2535

2537
2538
2405
2539
2540
2407
2408
2409
2410
2411
2412

2542
2543
2544
2545

2547
2548
2549
2550
2551
2552

2554

2555

2556 free:
2557

2558 }

el se
conpare_type = get_nenber _type_fromkey(arg, key);

call _results_to_rl (expr, conmpare_type, value, & inmt);
if (strcnp(key, "$") == 0

move_known_to_rl (&rg, &imt);
nane = get_chunk_fromkey(arg, key, &ym &vsl);

if (!nane)
return;

if (op !'= PARAMLIMT && !sym
goto free;

if (strcnp(key, "$") == 0)
conpare_type = get_arg_type(expr->fn, param;
el se
conpare_type = get_nenber _type_fromkey(arg, key);

sm = get _sm st at e(SMATCH_EXTRA, nane, syn);
if (sm

el se

rl = estate_rl(sm>state);
rl = alloc_whol e_rl (conpare_type);

if (op == PARAMLIMT && !rl _fits_in_type(rl, conpare_type))
goto free;

call _results_to_rl (expr, conpare_type, value, & imt);
new = rl _intersection(rl, limt);

var_type = get_nenber_type_fromkey(arg, key);
new = cast_rl (var_type, new);

/* We want to preserve the inplications here */
if (sm&& basically_the_same(rl, new))
if (sm&& basically_the_sane(estate_rl(sm>state), new))
goto free;
ot her _nane = get_ot her _nane_syn{nane, sym &other_syn);
tnp_nane = map_| ong_to_short_nane_syn(nanme, sym & np_syn);
if (tnmp_name && tnp_sym {
free_string(nane);
nane = tnp_nane;
sym = tnp_sym
}

if (op == PARAM LIMT)

set _extra_nonod_vsl (name, sym vsl, NULL, alloc_estate_rl(new));
el se

set _extra_nod(nane, sym NULL, alloc_estate_rl(new));

if (other_name && other_syn) {
if (op == PARAM_LIM T)
set _extra_nonod_vsl (ot her _nane, other_sym vsl, NULL, al
el se

set _extra_nod(ot her_nane, other_sym NULL, alloc_estate_

}

if (op == PARAMLIMT && arg->type == EXPR_BI NOP)
db_param |imt_binops(arg, key, new;

free_string(nane);

____unchanged_portion_onitted_

2570 static void db_param add_set (struct expression *expr, int param char *key, char

2571 {
2572

struct expression *arg;

new usr/src/tool s/smatch/src/smatch_extra.c
2573 char *nane;
2574 char *other_nane = NULL;
2575 struct synbol *sym *other_sym
2438 char *nanme, *tnp_nane;
2439 struct synbol *sym *tnp_sym
2576 struct synbol *paramtype, *arg_type;
2577 struct smatch_state *state;
2578 struct range_|ist *new = NULL;
2579 struct range_|ist *added = NULL;
2581 whil e (expr->type == EXPR_ASSI GNVENT)
2582 expr = strip_expr(expr->right);
2583 if (expr->type != EXPR _CALL)
2584 return;
2586 arg = get_argunent _fromcal | _expr (expr->args, paran);
2587 if (larg)
2588 return;
2590 arg_type = get_arg_type_fromkey(expr->fn, param arg, key);
2591 param type = get_nenber _type_fromkey(arg, key);
2592 name = get_variable_fromkey(arg, key, &sym;
2593 if (!'name || !sym
2594 goto free;
2596 state = get_state(SMATCH EXTRA, nane, syn);
2597 if (state)
2598 new = estate_rl(state);
2600 call _results_to_rl(expr, arg_type, value, &added);
2601 added = cast_rl (paramtype, added);
2602 if (op == PARAM SET)
2603 new = added;
2604 el se
2605 new = rl _uni on(new, added);
2607 ot her _nanme = get _ot her _nane_sym nost ack(nane, sym &other_syn);
2471 tp_nanme = map_| ong_t o_short_nane_sym nostack(name, sym &t np_syn);
2472 if (tnmp_name && tnp_sym {
2473 free_string(nane);
2474 nane = tnp_nane;
2475 sym = tnp_sym
2476
2608 set _extra_nod(nane, sym NULL, alloc_estate_rl(new));
2609 if (other_nanme && other_sym
2610 set_extra_nod(ot her_name, other_sym NULL, alloc_estate_rl(new))
2611 free:
2612 free_string(other_nane);
2613 free_string(nane);
2614 }
____unchanged_portion_onitted_
2630 {st atic void match_| ost _paran{struct expression *call, int param
2631
2632 struct expression *arg;
2634 if (is_const_param(call->fn, param)
2635 return;
2637 arg = get_argunent _fromcal |l _expr(call->args, paran);
2638 if (larg)
2639 return;
2641 arg = strip_expr(arg);
2642 if (arg->type == EXPR_PRECP && arg->op == '&)
2643 set _extra_expr_nod(arg->unop, alloc_estate_whol e(get_type(arg->u

new usr/src/tool s/smatch/src/smatch_extra.c 29

2644 el se

2645 ; /* if pointer then set struct nmenbers, maybe?*/
2646 }

2648 static void db_param val ue(struct expression *expr, int param char *key, char *
2649 {

2650 struct expression *call;

2651 char *nane;

2652 struct synbol *sym

2653 struct synbol *type;

2654 struct range_list *rl = NULL;

2656 if (param!= -1)

2657 return;

2659 call = expr;

2660 whi | e (cal | ->type == EXPR_ASS| GNVENT)

2661 call = stri p_expr(cal | ->right);

2662 if (call->type !'= EXPR CALL)

2663 return;

2665 type = get_nenber_type_from key(expr->left, key);

2666 name = get_variabl e_fromkey(expr->left, key, &ym;

2667 if (Inane [| !sym

2668 goto free;

2670 call _results_to_rl(call, type, value, &l);

2672 set _extra_nod(nane, sym NULL, alloc_estate_rl(rl));

2673 free:

2674 free_string(nane);

2675 }

2677 static void match_call_info(struct expression *expr)

2678 {

2679 struct smatch_state *state;

2680 struct range_list *rl = NULL;

2681 struct expression *arg;

2682 struct synbol *type;

2683 sval _t dumy;

2684 int i =0;

2686 FOR_EACH PTR(expr->args, arg) {

2687 type = get_arg_type(expr->fn, i);

2689 get _absolute_rl(arg, &l);

2690 rl = cast_rl(type, rl);

2692 if (lis_whole_rl(rl)) {

2693 rl = intersect_wi th_real _abs_expr(arg, rl);
2694 sql _insert_cal l'er_i nfo(expr, PARAM VALUE, i, "$", show_r
2695 }

2696 state = get_state_expr (SMATCH EXTRA, arg);

2697 if (!estate_get_single_value(state, &durmy) && est ate_| has_hard_m
2698 sql _insert_calTer_info(expr, HARD MAX, i, "
2699 sval _to_str(estate nax(stat e)));
2700

2701 1f (estate_has_fuzzy_nax(state))

2702 sql _insert_cal ler_info(expr, FUZZY_MAX, i, "$",
2703 sval _to_str(estate_get fuzzy max (
2704

2705 I ++;

2706 } END_FOR_EACH _PTR(arg);

2707 }

2709 static void set_paramval ue(const char *nane,

struct synmbol *sym char *key, cha

new usr/src/tool s/smatch/src/smatch_extra.c 30
2710 {

2711 struct expression *expr;

2712 struct range_list *rl = NULL;

2713 struct smatch_state *state;

2714 struct synbol *type;

2715 char full nane[256] ;

2716 char *key_orig = key;

2717 bool add_star = fal se;

2718 sval _t dummy;

2720 if (key[O] == "*") {

2721 add_star = true;

2722 key++;

2723

2560 if (strcnp(key, "*$") ==

2561 snprintf(fullname, sizeof(fullnanme), "*%", nane);
2562 else if (strncnp(key, "$", 1) == 0)

2563 snprintf(full nane, 256, "%%", nanme, key + 1);

2564 el se

2565 return;

2725 snprintf(full nane, 256, "%%%", add_star ? "*" : """, npanme, key + 1);
2727 expr = synbol _expression(syn);

2728 type = get_nenber _type_fromkey(expr, key_orig);

2567 type = get_nenber_type_from key(synbol _expressi on(syn) key);
2729 str_to_rl(type, value, &l);

2730 state = alloc_estate_rl(rl);

2731 if (estate_get_single_value(state, &Jummy))

2732 estate_set _hard_nax(stat e)

2733 set _stat e(SMATCH_EXTRA, ful | nane, sym state);

2734 }

2736 static void set_param fuzzy_max(const char *name, struct synbol *sym char *key,
2575 static void set_param hard_max(const char *name, struct synbol *sym char *key,
2737 {

2738 struct range_list *rl = NULL;

2739 struct smatch_state *state;

2740 struct synbol *type;

2741 char full nane[256] ;

2742 sval _t max;

2744 if (strcnp(key, "*$") == 0)

2745 snprintf(fullnane, sizeof (fullnanme), "*%", nane);
2746 else if (strncnp(key, "$", 1) == 0

2747 snprintf(full name, 256, "%%", name, key + 1);

2748 el se

2749 return;

2751 state = get_state(SMATCH EXTRA, fullnanme, sym;

2752 if (!state)

2753 return;

2754 type = estate_type(state);

2593 type = get_nenber_type_from key(synbol _expression(sym, key);
2755 str_to_rl(type, value, &rl);

2756 if (!'rl_to_sval(rl, &mex))

2757 return;

2758 estate_set_fuzzy_nex(state, max);

2759 }

2761 static void set_param hard_nmax(const char *name, struct synbol *sym char *key,
2762 {

2763 struct smatch_state *state;

2764 char ful |l nane[256] ;

2766 if (strcnp(key, "*$") == 0)

new usr/src/tool s/smatch/src/smatch_extra.c

2767
2768
2769
2770
2771

2773
2774
2775
2776
2777 }

snprintf(fullname, sizeof(fullnanme), "*%", nanme);
else if (strncnp(key, "$", 1) == 0
snprintf(full nane, 256, "%%", nane, key + 1);

el se

return;
state = get_state(SMATCH EXTRA, fullname, sym;
if (Istate)

return;

estate_set _hard_nax(state);

2779 struct smstate *get_extra_smstate(struct expression *expr)

2780 {
2781
2782
2783

2785
2786
2787

2789

2790 free
2791

2792

2793 }

char *nane;
struct synbol *sym
struct smstate *ret = NULL;

name = expr_to_known_chunk_sym(expr, &sym;
if (!'nane)

goto free;
ret = get_sm state(SMATCH EXTRA, nane, sym;

free_string(nane);
return ret;

__unchanged_portion_onitted_

2805 void register_smatch_extra(int id)

2806 {
2807

2809
2810
2811
2812
2813
2814
2633
2815
2816
2817
2818
2819
2820
2821
2822
2823 }

nmyid=id

set _dynami c_states(my_id);

add_ner ge_hook(ny_id, &mrerge_estates);

add_unnat ched_st at e_hook(ny_i d, &unmatched_state);

sel ect _cal | er _i nf o_hook(set _param val ue, PARAM VALUE) ;
sel ect _cal | er_i nfo_hook(set_param fuzzy_max, FUZZY_MAX);
sel ect _cal | er _i nf o_hook(set _param hard_max, HARD MAX) ;
sel ect _cal | er _i nf o_hook(set _param hard_max, FUZZY_MAX);
sel ect _return_states_before(&b_|inited_before);

sel ect _return_states_hook(PARAM LIM T, &db_param|limt);
sel ect _return_states_hook(PARAM FI LTER, &db_paramfilter);
sel ect _return_states_hook(PARAM ADD, &db_param add) ;

sel ect _return_states_hook(PARAM SET, &db_param set);

add_| ost _param hook(&mat ch_| ost _paran);

sel ect _return_stat es_hook(PARAM VALUE, &db_par am val ue);
select _return_states_after(&b_limted_after);

__unchanged_portion_omtted_

2845 void register_smatch_extra_links(int id)

2846 {
2847
2848
2849 }

link_id =id;
set _dynami c_states(link_id);

__unchanged_portion_onitted_

new usr/src/tool s/smatch/src/smatch_extra. h

R R R R

11815 Mon Aug 5 08:38:31 2019
new usr/src/tool s/smatch/src/smatch_extra. h

new usr/src/tool s/ smatch/src/smatch_extra. h

84 int rl_to_sval (struct range_list *rl, sval _t *sval);
85 struct symbol *rl_type(struct range_llst *rl);

11506 snatch resync

R R R R

__unchanged_portion_onitted_

DECLARE_PTR LI ST(rel ated_list, struct relation);

struct data_info {

29 struct related_list *rel ated;

30 struct range_list *val ue_ranges;

31 sval _t fuzzy_max;

32 unsi gned i nt har d_max: 1;

33 unsi gned int capped: 1;

34 };

35 DECLARE_ALLOCATOR(dat a_i nfo);

37 extern struct string_list *__ignored_nmacros;
39 /* these are inplemented in smatch_ranges.c */
40 struct range_list *rl_zero(void);

41 struct range_list *rl_one(void);

42 char *show_rl (struct range_list *list)

43 int str_to_conparison_arg(const char *E:, struct expression *call, int *conpariso
44 void str_to_rl(struct synmbol *type, char *value, struct range_list **rl);

45 void call _results_to_rl(struct expression *call, struct synbol *type, const char
44 void call _results_to_rl(struct expression *call, struct synbol *type, char *valu
47 struct data_range *alloc_range(sval _t mn, sval _t max);

48 struct data_range *alloc_range_pern(sval _t mn, sval_t max);

50 int rl_fits_in_type(struct range_list *rl, struct synbol *type);

52 struct range_list *alloc_rl(sval _t mn, sval_t max),

struct range_list *clone_rl(struct range_list *Ili st)
struct range_list *clone_rl_permanent (struct range_list *list);
struct range_list *alloc_whole_rl(struct synbol *type);

voi d add_range(struct range_list **list, sval_t mn, sval_t max);
struct range_list *renove_range(struct range_list *list, sval _t mn, sval_t max)
void tack_on(struct range_list **list, struct data_range *drange);

61 int true_conparison_range(struct data_range *left, int conparison, struct data_r
62 int true_conparison_range_LR(int conparison, struct data_range *var, struct data
63 int false_conparison_range_LR(int conparison, struct data_range *var, struct dat
65 int possibly_true(struct expression *left, int conparison, struct expression *ri
66 int possibly true_rl(struct range_list *left_ranges, int conparison, struct rang
67 int possibly_true_rl_LR(int conparison, struct range_list *a, struct range_list
69 int possibly_false(struct expression *left, int conparison, struct expression *r
70 int possibly_false_rl(struct range_list *left_ranges, int conparison, struct ran
71 int possibly_false_rl_LR(int conparison, struct range_|list *a, struct range_list
73 int rl_has_sval (struct range_list *rl, sval _t sval);

74 int ranges_equiv(struct data_range *one, struct data_range *two);

76 int rl_equiv(struct range_list *one, struct range_list *two);

77 int is_whole_rl(struct range_list *rl);

78 int is_unknown_ptr(struct range_list *rl);

79 int is_whole_rl_non_zero(struct range_list *rl);

80 int estate_is_unknown(struct smatch_state *state);

82 sval _t rl_min(struct range_list *rl);

sval _t rl_max(struct range_li st *rI);

123

127
128
129

131
132

134
135
136

138
139
140
141
142
143
144
145
146
147
148

struct range_list *rl_invert(struct range_list *orig);

struct range_list *rl f||ter(struct range_list *rl, struct range_list *filter);
struct range_list *rl_intersection(struct range_|list *one, struct range_list *tw
struct range_list *rl_union(struct range_list *one, struct range_list *two);
struct range_list *rl_binop(struct range_list *left, int op, struct range_list *

voi d push_rl(struct range_|ist_stack **rl|_stack, struct range_list *rl);

struct range_list *pop_rl(struct range_list_stack **rl_stack);

struct range_list *top_rl(struct range_l|ist_stack *rl_stack);

void filter_top_rl(struct range_|list_stack **rl_stack, struct range_list *filter

struct range_list *rl_truncate_cast(struct synmbol *type, struct range_list *rl);
struct range_list *cast_rl(struct synbol *type, struct range_list *rl);
int get_inplied_rl(struct expression *expr, struct range_list **rl);
int get_absolute_rl (struct expression *expr, struct range_list **rl);
int get_real _absolute_rl(struct expression *expr, struct range_list **rl);
struct range_list *var_to_absolute_rl (struct expression *expr);
int custom get_absol ute_rT(struct expression *expr,
struct range_list *(*fn)(struct expression *expr),
struct range_list **rl);
int get_inplied_rl_var_syn(const char *var, struct synbol *sym struct range_lis
void split_conparison_rl(struct range_list *left_orig, int op, struct range_list
struct range_list **left_true_rl, struct range_list **left_fal se
struct range_list **ri ght_true_rl struct range_list **right_fal

void free_data_info aIIocs(v0| d);
void free_all _rl(void

/* smatch_estate.c */

struct smatch_state *all oc_estate_enpty(void);

struct smatch_state *alloc_estate_sval (sval _t sval);

struct smatch_state *alloc_estate_range(sval _t min, sval _t max);

struct smatch_state *alloc_estate_rl (struct range_| Iist *Tly;

struct smatch_state *al |l oc_estate_whol e(struct synbol *type)

struct smatch_state *clone_estate(struct smatch_state *stat e);

struct smatch_state *clone_estate_cast(struct synmbol *type, struct smatch_state
struct smatch_state *clone_partial _estate(struct smatch_state *state, struct ran

struct smatch_state *nerge_estates(struct smatch_state *sl1, struct smatch_state

int estates_equiv(struct smatch_state *one, struct smatch_state *two);
int estate_is_whol e(struct smatch_state *state);
int estate_is_enpty(struct smatch_state *state);

struct range_list *estate_rl(struct smatch_state *state);
struct related_|list *estate_related(struct smatch_state *state);

sval _t estate_min(struct snatch_state *state);
sval _t estate_max(struct smatch_state *state);
struct synbol *estate_type(struct smatch_state *state);

int estate_has_fuzzy_max(struct smatch_state *state);

sval _t estate_get fuzzy_max(struct smatch_state *state);

voi d estate_set_fuzzy_max(struct smatch_state *state, sval _t max);
voi d estate_copy_fuzzy max(struct smatch_state *new, struct smatch_state *old);
void estate_clear_fuzzy_max(struct smatch_state *state);

int estate_has_hard_max(struct smatch_state *state);

void estate_set_hard_max(struct smatch_state *state);

void estate_cl ear_hard_max(struct smatch_state *state);

int estate_get_hard_max(struct smatch_state *state, sval _t *sval);
bool estate_capped(struct smatch_state *state);

voi d estate_set_capped(struct smatch_state *state);

new usr/src/tool s/smatch/src/smatch_extra. h 3
150 int estate_get_single_value(struct smatch_state *state, sval _t *sval);
151 struct smatch_state *get_inplied_estate(struct expression *expr);
153 struct smatch_state *estate_filter_sval (struct smatch_state *orig, sval _t filter
148 struct smatch_state *estate_filter_range(struct smatch_state *orig, sval _t filte

154
155

157
158
159
160
161
162
163
164
165
166
167

169

171
172
173
174
175
176
177
178
179

181
182
183
184
185

187
188
189
190
191
192
193
194
195

197
198

200
201
202
203
204
205
206
207
208
209
210
211
212
213

struct data_info *clone_dinfo_pern{struct data_info *dinfo);
struct smatch_state *clone_estate_pern(struct smatch_state *state);

/* smatch_extra.c */

bool is_inpossible_variable(struct expression *expr);

struct smstate *get_extra_sm state(struct expression *expr);

struct smatch_state *get_extra_state(struct expression *expr);

void cal |l _extra_npd_hooks(const char *name, struct symbol *sym struct expressio
voi d set_extra_nod(const char *name, struct synbol *sym struct expression *expr
voi d set_extra_expr_nod(struct expression *expr, struct smatch_state *state);
voi d set_extra_nonod(const char *name, struct symbol *sym struct expression *ex
voi d set_extra_nonod_vsl (const char *nanme, struct synmbol *sym struct var_symli
void set_extra_expr_nonod(struct expression *expr, struct smatch_state *state);
voi d set_extra_nod_hel per(const char *nanme, struct symbol *sym struct expressio

struct data_info *get_dinfo(struct smatch_state *state);

voi d add_extra_nod_hook(void (*fn)(const char *name, struct synbol *sym struct
voi d add_extra_nonod_hook(void (*fn)(const char *nane, struct synbol *sym struc
int inplied_not_equal (struct expression *expr, long long val);
int inplied_not_equal _name_sym(char *nane, struct synbol *sym long long val);
int parent_is_null_var_syn{const char *nane, struct synbol *sym);
int parent_is_null (struct expression *expr);
int parent_is_free_var_symstrict(const char *nanme, struct synbol *sym;
int parent_is_free_var_syn(const char *name, struct synbol *sym;
int parent_is_free(struct expression *expr);
struct smstate *__extra_handl e_canoni cal _| oops(struct statenment *loop, struct s
int _ iterator_unchanged(struct smstate *sn;
void __extra_pre_|l oop_hook_after(struct smstate *sm

struct statement *iterator,

struct expression *condition);

/* smatch_equiv.c */
voi d set_equi v(struct expression *left, struct expression *right);
void set_related(struct smatch_state *estate, struct related_list *rlist);
struct related_list *get_shared_relations(struct related_|list *one,
struct related_list *two);
struct related_list *clone_related_list(struct related_list *related);
voi d renmove_from equi v(const char *nane, struct synbol *sym;
voi d renove_from equi v_expr(struct expression *expr);
void set_equiv_state_expr(int id, struct expression *expr, struct smatch_state *

/* smat ch_function_hooks.c */
void function_conparison(struct expression *left, int conparison, struct express

/* smat ch_expressions.c */

struct expression *zero_expr();

struct expression *val ue_expr(long long val);

struct expression *nenber_expression(struct expression *deref, int op, struct id
struct expression *preop_expression(struct expression *expr, int op);

struct expression *deref_expression(struct expression *expr);

struct expression *assign_expression(struct expression *left, int op, struct exp
struct expression *bi nop_expression(struct expression *left, int op, struct expr
struct expression *array_el enent _expression(struct expression *array, struct exp
struct expression *synbol _expression(struct synbol *syn);

struct expression *string_expression(char *str);

struct expression *conpare_expression(struct expression *left, int op, struct ex
struct expression *unknown_val ue_expressi on(struct expression *expr);

int is_fake_call(struct expression *expr);

new usr/src/tool s/smatch/src/smatch_extra. h 4

214
215
216
217
218
219

221
222

224
225
226

228
229
230

struct expression *gen_expression_fromkey(struct expression *arg, const char *k
void free_t np_expressions(void);

voi d expr_set_parent_expr(struct expression *expr, struct expression *parent);
voi d expr_set_parent_stnt(struct expression *expr, struct statenent *parent);
struct expression *expr_get_parent_expr(struct expression *expr);

struct statement *expr_get_parent_stnt(struct expression *expr);

/* smatch_paramlimt.c */
struct smatch_state *get_orig_estate(const char *name, struct synbol *sym);

/* smatch_real _absolute.c */
struct smatch_state *get_real _absol ute_state(struct expression *expr);
struct smatch_state *get_real _absol ute_state_var_sym(const char *nanme, struct sy

/* smatch_i nagi nary_absol ute.c */
void __save_i magi nary_state(struct expression *expr, struct range_list *true_rl,
int get_imaginary_absol ute(struct expression *expr, struct range_list **rl);

new usr/src/tool s/smatch/src/smatch_fl ow c

R R R R

47355 Mon Aug 5 08:38:31 2019
new usr/src/tools/smatch/src/smatch_fl ow c
11506 snatch resync

R R R R

2 * Copyright (C 2006,2008 Dan Carpenter.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of
11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
12 * GNU Ceneral Public License for nore details.
13 =
14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww. gnu. org/copyl eft/gpl

*

/
18 #define _GNU_SOURCE 1

19 #include <unistd. h>

20 #include <stdio. h>

21 #include "token.h"

22 #include "scope. h"

23 #include "smatch. h"

24 #include "smatch_expressi on_stacks. h"
25 #include "smatch_extra.h

26 #include "smatch_slist.h"

28 int __in_fake_assign;

29 int __in_fake_struct_assign;

30 int in_fake_env;

31 int final_pass;

32 int __inline_call;

33 struct expression *__inline_fn;

35 static int __smatch_lineno = 0;

37 static char *base_file;

38 static const char *fil enane;
39 static char *pathnaneg;

40 static char *full _fil enane;

41 static char *full_base_file;

42 static char *cur_func;

43 static unsigned int |oop_count;

c

44 static int |ast_goto_statenent_handl ed;

45 int __expr_stnt_count;

46 int in_function_def;

c struct expression_|list *swtch_expr_stack = NULL;
ic struct expression_list *post_op_stack = NULL;

50 static struct ptr_list *backup;

52 struct expression_list *big_expression_stack;
53 struct statenment _list *big_statenent_stack;
54 struct statenent *__prev_stnt;

55 struct statement *__cur_stnt;

56 struct statement *__next stm

57 int in_pre_condition = 0;

58 int _ _bail_on_rest_of _functl on = 0;

59 static struct tineval fn_start_tine;

60 static struct timeval outer_fn_start_tineg;

61 char *get_function(void) { return cur_func; }

Ltxt

new usr/src/tool s/smatch/src/smatch_flow c 2

62
63
64
65
66

102

364
365
366
367

369
371
372
373
374

376

int get_lineno(void) { return __smatch_lineno; }

int inside_loop(void) { return !'lloop_count; }

int definitely_inside_loop(void) { return !!(loop_count & ~0x08000000); }

struct expression *get_sw tch_expr(void) { return top_expression(sw tch_expr_sta

int in_expression_statenment(void) { return !'!__expr_stnt_count;

static void split_symist(struct synbol _list *symlist);

static void split_declaration(struct synmbol _list *symlist);

static void split_expr_list(struct expression_list *expr_list, struct expression
static void add_inline_function(struct synmbol *sym);

static void parse_inline(struct expression *expr);

i nt option_assune_| oops = 0;

int option_two_passes = O;

struct synmbol *cur_func_sym = NULL;
struct stree *gl obal _states;

const unsigned long valid_ptr_nin = 4096;
unsi gned long valid_ptr_max = ULCNG MAX & ~(MITAG_OFFSET_MASK) ;
const sval _t valid_ptr_mn_sval = {

long long valid_ptr_mn = 4096;
long long valid_ptr_max = 2117777777,
sval _t valid ptr m n_sval = {
&ptr _ctype,
{ val ue = 4096},
sval _t vaI i d ptr max_sval = {
. &ptr _ctype,
{ val ue = ULONG MAX & ~(MITAG_OFFSET_MASK) },
{.val ue = LONG_MAX - 100000},
struct range_list *valid_ptr_rl;

void alloc_valid_ptr_rl(void)
static void set_valid_ptr_nmax(void)
{
valid_ptr_max = sval _type_nmax(&ul ong_ctype).val ue & ~(MTAG_OFFSET_MASK) ;
if (type_bits(&ptr_ctype) == 32
valid_ptr_max = 2117777777,
else if (type_bits(&ptr_ctype) == 64)
valid_ptr_max = 2117777777777777777LL;

val i d_ptr_max_sval . val ue = valid_ptr_nmax;

}

static void alloc_valid_ptr_rl(void)
{

valid_ptr_rl = alloc_rl(valid_ptr_mn_sval, valid_ptr_nax_sval);
valid_ptr_rl = cast_rl(&ptr_ctype, valid_ptr_rl);

valid_ptr_rl = clone_rl_permanent (valid_ptr_rl

|
|
)

__unchanged_portion_onitted_

void __split_expr(struct expression *expr)
{
if (!expr)
return;

/1 smnmsg(" Debug expr_type % %", expr->type, show special (expr->op));
if (__in_fake_assign & expr->type != EXPR_ASSI GNVENT)

return;
if (__in_fake_assign >= 4) /* don't allow too nuch nesting */

return;

push_expressi on(&i g_expressi on_stack, expr);

new usr/src/tool s/smatch/src/smatch_fl ow c

377 set _posi tion(expr->pos);

378 __pass_to_client(expr, EXPR_HOOK);

380 switch (expr->type) {

381 case EXPR_PI

382 expr_set _parent _expr (expr->unop, expr);
384 if (expr->op =="*" &&

385 I prev_ expr ession_i s_getting_addr ess(expr))
386 _“pass_to_client(expr, DEREF_HOX);
387 __split_expr(expr->unop);

388 __pass_to_client(expr, CP_HOOO;

389 br eak;

390 case EXPR_POSTOP:

391 expr_set _parent _expr (expr->unop, expr);
393 __split_expr(expr->unop);

394 push_expr essi on(&ost _op_stack, expr);

395 br eak;

396 case EXPR_STATEMENT:

397 __expr_stnt_count ++;

398 If (expr->statement && !expr->statenent) {
399 stnt_set _parent _stnt (expr->statenent,
400 last _ptr_list((struct
401

402 __split_stnt(expr->statenent);

403 __expr_stnt_count--;

404 break;

405 case EXPR_LOGQ CAL:

406 case EXPR_COWPARE:

407 expr_set_parent _expr(expr->left, expr);
408 expr_set _parent _expr(expr->right, expr);
410 __pass_to_client(expr, LOJ C_HOX);

411 __handl e_I ogi c(expr);

412 break;

413 case EXPR_BI NOP:

414 expr_set _parent _expr(expr->left, expr);
415 expr_set _parent _expr(expr->right, expr);
417 __pass_to_client(expr, Bl NOP_HOX);

418 case EXPR_COWA:

419 expr_set_parent _expr(expr->left, expr);
420 expr_set _parent _expr(expr->right, expr);
422 __split_expr(expr->left);

423 __process_post _op_stack();

424 spl it_expr(expr->right);

425 eak;

426 case EXPR ASSI GNMENT: {

427 struct expression *right;

429 expr_set _parent _expr(expr->left, expr);
430 expr_set _parent _expr (expr->right, expr);
432 right = strip_expr(expr->right);

433 if (!right)

434 br eak;

436 __pass_to_client(expr, RAW ASSI GNMVENT_HOCK) ;
438 /* foo = lbar() */

439 if (__handl e_condition_assigns(expr))

440 break;

441 /* foo = (x <5 ? foo : 5); */

442 if (__handl e_sel ect _assi gns(expr))

ptr_|

l'ist

*)big_sta

new usr/src/tool s/smatch/src/smatch_fl ow c

443 br ak;

444 /* foo = ({frob(); frob(); frob(); 1;}) */
445 if (__handl e_expr_statenent_assi gns(expr))
446 br eak;

447 /* foo = (3, 4) */

448 if (handl e_comra_assi gns(expr))

449 br eak;

450 if

(handlbe post op_assi gns(expr))
re

451 al

452 if (handle bui I ti n_choose_expr_assi gns(expr))

453 br eak;

455 __split_expr(expr->right);

456 if (outside_of _function())

457 __pass_to_client(expr, GLOBAL_ASSI GNMENT_HOCK) ;
458 el se

459 __pass_to_client(expr, ASSI GNMENT_HOCK) ;

461 _ fake_struct_nmenber_assi gnment s(expr);

463 if (expr->op == '=" && right->type == EXPR _CALL)

464 __pass_to_client(expr, CALL_ASSI GNMVENT_HOCK) ;
466 if (get_nmacro_nane(right->pos) &&

467 get _macro_nane(expr->pos) != get_macro_nane(ri ght->pos))
468 __pass_to_client(expr, MACRO ASSI GNMENT_HOOK) ;
470 __pass_to_client(expr, ASSI GNVENT_HOOK_AFTER) ;

472 __split_expr(expr->left);

473 break;

474 1

475 case EXPR_DEREF:

476 expr_set _parent _expr (expr->deref, expr);

478 __pass_to_client(expr, DEREF_HOOK);

479 __split_expr(expr->deref);

480 br eak;

481 case EXPR_SLI CE:

482 expr_set _parent _expr (expr->base, expr);

484 __split_expr(expr->base);

485 break;

486 case EXPR_CAST:

487 case EXPR_FORCE_CAST:

488 expr_set _par ent _expr (expr->cast _expressi on, expr);
490 __pass_to_client(expr, CAST_HOX);

491 __split_expr(expr->cast_expression);

492 br eak;

493 case EXPR_SI ZECF:

494 if (expr->cast_expression)

495 __pass_to_client(strip_parens(expr->cast_expression),
496 SI ZEOF_HOK) ;

497 br eak;

498 case EXPR_OFFSETCF:

499 case EXPR_ALI GNOF:

507 eval uat e_expr essi on(expr);

500 br eak;

501 case EXPR_CONDI Tl ONAL:

502 case EXPR_SELECT:

503 expr_set _parent _expr (expr->conditional, expr);

504 expr_set _parent _expr (expr->cond_true, expr);

505 expr_set_parent _expr(expr->cond_fal se, expr);

507 if (known_condition_true(expr->conditional)) {

new usr/src/tool s/smatch/src/smatch_fl ow c 5 new usr/src/tool s/smatch/src/smatch_fl ow c 6
508 __split_expr(expr->cond_true);
509 break; 873 /| *
510 } 874 * This defaults to 60 * 5 == 5 minutes, so we'll just multiply
511 if (known_condition_fal se(expr->conditional)) { 875 * whatever we’'re given by 5.
512 _“split_expr(expr->cond_false); 876 */
513 br eak; 877 bool taking_too_| ong(void)
514 } 881 static int taking_too_long(void)
515 __pass_to_client(expr, SELECT_HOOX); 878 {
516 “split_whol e_conditi on(expr— >condi tional); 879 if (option_tinmeout &&
517 “split_expr(expr->cond_true); 880 (ms_since(&outer_fn_start_tine) / 1000) > option_tinmeout * 5)
518 __push_true_states(); 883 if ((ms_since(&uter _fn_start _time) / 1000) > 60 * 5) /* five minutes */
519 __use_false_states(); 881 return 1;
520 __split_expr(expr->cond_false); 882 return O;
521 __nerge_true_states(); 883 }
522 br eak; __unchanged_portion_onitted_
523 case EXPR_CALL:
524 expr_set _parent _expr (expr->fn, expr); 1908 void smatch(struct string_list *filelist)
1911 void smatch(int argc, char **argv)
526 if (sym| nama i s("__builtin_constant_p", expr->fn)) 1909 {
527 bre 1913 struct string_list *filelist = NULL;
528 if (handle bUI Itin_choose_expr(expr)) 1910 struct synbol _list *symlist;
529 break; 1911 struct timeval stop, start;
530 split_expr_li st (expr->args, expr); 1912 char *path;
531 __split_expr(expr->fn); 1913 int len;
532 if (is_ |n||nefunc(expr >fn))
533 add_i nl i ne_function(expr->fn->synbol); 1915 gettimeof day(&start, NULL);
534 if (inlinable(expr->fn))
535 __inline_call = 1; 1921 sparse_initialize(argc, argv, &filelist);
536 __process post _op_stack(); 1922 set _valid_ptr_max();
537 __pass_to_client(expr, FUNCTI ON_CALL_HOOK __ BEFORE) ; 1923 alloc_valid_ptr_rl ()
538 __pass_to —client(expr, FUNCTI ON_CALL_HOOK); 1917 FOR_EACH PTR NOTAG(fl lelist, base_file) {
539 __Inline call = 0; 1918 path = getcwd(NULL, 0);
540 if (inlinabl e(expr->f n)) { 1919 free(full _base_file);
541 parse_inline(expr); 1920 if (path) {
542 } 1921 len = strlen(path) + 1 + strlen(base_file) + 1;
543 __pass_to_client(expr, CALL_HOOK AFTER_I NLI NE); 1922 full _base_file = malloc(len);
544 if (is_noreturn_func(expr->fn)) 1923 snprintf(full _base file, len, "%/%", path, base file);
545 nul l'ify_path(); 1924 } else {
546 handl e_bui | tin_overfl ow_func(expr); 1925 full _base_file = alloc_string(base_file);
547 br eak; 1926 }
548 case EXPR | NI Tl ALl ZER 1927 if (option_file_output)
549 split_expr_list(expr->expr_list, expr); 1928 open_out put _files(base_file);
550 br eak; 1929 sym|ist = sparse_keep_tokens(base_file);
551 case EXPR_I DENTI FI ER: 1930 split_c f| le_functions(symlist);
552 expr_set _parent _expr (expr->i dent _expression, expr); 1931 } END_FOR_EACH PTR _NOTAG base_file);
553 __split_expr(expr->ident_expression);
554 br eak; 1933 getti meof day(&stop, NULL);
555 case EXPR_I NDEX:
556 expr_set _parent _expr (expr->i dx_expression, expr); 1935 set _posi tion(last_pos);
557 __split_expr(expr->idx_expression); 1936 final _pass = 1;
558 br eak; 1937 if (opti on _ti ne)
559 case EXPR_PCSs: 1938 mmsg(“time: %u", stop.tv_sec - start.tv_sec);
560 expr_set _parent _expr (expr->init_expr, expr); 1939 if (opti on _nmem
561 __split_expr(expr->init_expr); 1940 smsg("mem % ukb", get_max_menory());
562 br eak; 1941 }
563 case EXPR_SYMBCOL: __unchanged_portion_onitted_
564 __pass_to_client(expr, SYMHOX);
565 br eak;
566 case EXPR_STRI NG
567 __pass_to_client(expr, STRI NG HOCK);
568 break;
569 defaul t:
570 br eak;
571 };
572 pop_expr essi on(&i g_expressi on_st ack) ;
573 }
__unchanged_portion_omtted_

t
e

new usr/src/tool s/smatch/ src/smatch_function_hooks. c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
31805 Mon Aug 5 08:38:31 2019
new usr/src/tool s/smatch/src/smatch_function_hooks.c
11506 snatch resync
LEEE R R R R EE SRR EEEEEEEEEEE RS SRR SRR EEEEEREREEEEEEEEESE]
__unchanged_portion_onitted_
142 void return_inplies_state_sval (const char *look_for, sval_t start, sval _t end,
143 inplication_hook *call back voi d *info)
144 {
145 struct fcall_back *cb;
147 cb = alloc_fcall_back(RANGED CALL, call _back, info);
148 cb->range = all oc_range_pern(start, end);
149 add_cal | back(func_hash, |ook_for, cb);
150 }
152 void select_return_states_hook(int type, return_inplies_hook *call back)
153 {
154 struct return_inplies_callback *cb = __alloc_return_inplies_callback(0);
156 ch->type = type;
157 cbh->cal | back = call back;
158 add_ptr_list(&b_return_states_list, cb);
159 }
__unchanged_portion_omtted_
247 static int assign_ranged_funcs(const char *fn, struct expression *expr,
248 struct call_back_list *call_backs)
249 {
250 struct fcall_back *tnp;
251 struct smstate *sm
252 char *var_naneg;
253 struct synbol *sym
254 struct smatch_state *estate;
255 struct stree *tnp_stree;
256 struct stree *final _states = NULL;
257 struct range_|ist *handl ed_ranges = NULL;
258 struct call_back_list *sane_range_cal | _backs = NULL;
259 struct range_list *rl;
260 int handled = 0;
262 if (!call_backs)
263 return O;
265 var_nanme = expr_to_var_syn{expr->left, &ymn;
266 if (tvar_name || !sym
267 goto free;
269 FOR_EACH PTR(cal | _backs, tnp) {
270 if (tnp->type != RANGED CALL)
271 cont i nue;
273 if (in_list_exact_sval (handl ed_ranges, tnp->range))
274 conti nue;
275 __push_fake_cur_stree();
276 tack_on(&handl ed_r anges, tnp->range);
278 sanme_range_cal | _backs = get_sane_ranged_cal | _backs(cal | _backs,
279 cal |l _ranged_cal T _backs(sane_| range_cal | _backs, fn, expr->right,
280 __free_ptr _Tist((struct ptr_list **)&sane_range_cal | _backs);
282 rl = alloc_rl (tnp->range->nin, tnp->range->nmax);
283 rl = cast_rl (get type(expr—>|eft) rl);
284 estate = alloc_estate_rl(rl);
271 estate = alloc_estate_r ange(t np- >r ange- >ni n, tnp->range- >mex);

new usr/src/tool s/smatch/ src/smatch_function_hooks. c

285 set_extra_nod(var_name, sym expr->left, estate);
287 tnp_stree = _ pop_fake_cur_stree();

288 nmerge_fake_stree(& inal _states, tnp_stree);
289 free_stree(& np_stree);

290 handl ed = 1;

291 } END_FOR_EACH PTR(tnp);

293 FOR_EACH SMfinal _states, sm {

294 __set_snm(sm;

295 } END_FOR EACH SMsm) ;

297 free_stree(&final_states);

298 free:

299 free_string(var_nane);

300 return handl ed;

301 }

__unchanged_portion_onitted_

376 static bool fake_a_param assignnent(struct expression *expr, const char *return_

377 {

378 struct expression *arg, *left, *right, *tnp, *fake_assign;
365 struct expression *arg, *left, *right, *fake_assign;
379 char *p;

380 int param

381 char buf[256];

382 char *str;

384 if (expr->type != EXPR_ASSI GNMENT || expr->op !="'"=")
385 return fal se;

386 left = expr->left;

387 right = expr->right;

389 while (right->type == EXPR_ASS| GNMENT)

390 right = strip_expr(right->right);

391 if ('right || right->type = EXPR_CALL)

392 return false;

394 p = strchr(return_str, '[");

395 if (!'p)

396 return false;

398 p++;

399 if (p[0] =='=" && p[1] =="=")

400 p += 2;

401 if (p[0] !="9%")

402 return fal se;

404 snprintf(buf, sizeof(buf), "%", p);

406 p = buf;

407 p +=1;

408 param = strtol (p, &, 10);

410 p = strchr(p, '1")

411 if (tp |l *p!="]

412 return false;

413 *p = ’\0‘ ;

415 arg = get_argunent _from.cal |l _expr(right->args, paran;
416 if (larg)

417 return false;

419 /* There should be a get_other_nanme() function which returns an expr */
420 tnp = get_assigned_expr(arg);

421 if (tmp)

new usr/src/tool s/smatch/ src/smatch_function_hooks. c 3 new usr/src/tool s/smatch/ src/smatch_function_hooks. c 4
422 arg = tnp; 487 get _absolute_rl (arg, &orig);
488 rl =rl_intersection(orig, rl);
424 /* 489 |f (rrl)
425 * This is a sanity check to prevent side effects from evaluating stuff 490 return;
426 * twice. 491 set_extra_expr_nonod(arg, alloc_estate_rl(rl));
427 */ 492 }
428 str = expr_to_chunk_symvsl (arg, NULL, NULL); ______unchanged_portion_omtted_
429 if (!str)
430 return false; 592 static int db_conpare_call back(void *_info, int argc, char **argv, char **azCol N
431 free_string(str); 593 {
594 struct db_cal I back_i nfo *db_i nfo = _info;
433 i ght = gen_expression_fromkey(arg, buf); 595 struct range_l|ist *var_rl db_info->rl;
434 |f ('rlght) /* Mostly fails for binops i ke [$0 + 4032] */ 596 struct range_list *ret range
435 return false; 597 int type, param
436 fake_assign = assign_expression(left, "=, right); 598 char *ret_str, *key, *val ue;
437 __in_fake_paranet er_assi gn++; 564 char *key, *val ue;
438 __split_expr(fake_assign); 599 struct return_inplies_callback *tnp;
439 " in_fake_paraneter_assign--; 600 struct stree *stree;
440 return true; 601 int return_id;
441 } 602 int conparison;
443 static void set_return_assign_state(struct db_call back_info *db_i nfo) 604 if (argc !'= 6)
424 static void set_return_state(struct expression *expr, struct db_callback_info *d 605 return O;
444 {
445 struct expression *expr = db_info->expr->left; 607 return_id = atoi (ar gv[0]);
446 struct smatch_state *state; 608 ret_str = argv[1l
609 type = at0|(argv[2]),
448 if (!db_info->ret_state) 610 param = atoi (argv[3]);
449 return; 611 key = argv[4];
612 val ue = argv[5];
451 state = alloc_estate_rl (cast_rl(get_type(expr), clone_rl(estate_rl(db_in
452 set _extra_expr_nod(expr, state); 614 db_i nfo->has_states = 1;
453 db_info->ret_state = NULL; 615 i f(db_i nfo- >prevreturn|dl--1&&type == | NTERNAL) {
454 f ake_a_par am assi gnnent (db i nf o->expr, db_info->ret_str); 616 set _ot her_side_state(db_info);
455 db_info->ret_str = NULL; 581 set _return_state(db_i nfo->var_expr, db_info);
456 } 617 stree = __pop_fake_cur_stree();
458 static void set_other_side_state(struct db_callback_i nfo *db_i nf o) 619 if (!db_info->cull)
459 { 620 mer ge_f ake_stree(&db_i nfo->stree, stree);
460 struct expression *expr = db_info->var_expr; 621 free_stree(&stree);
461 struct smatch_state *state; 622 __push_fake_cur stree()
623 db_i nfo->cull = 0;
463 if (!db_info->ret_state) 624 }
464 return; 625 db_info->prev_return_id = return_id;
466 state = alloc_estate_rl (cast_rl(get_type(expr), clone_rl(estate_rl(db_in 627 if (type == | NTERNAL && func_type_mi smatch(db_i nf o->expr, val ue))
467 set _extra_expr_nonod(expr, state); 628 db_i nfo->cull = 1;
468 db_info->ret_state = NULL; 629 if (db_info->cull)
469 db_info->ret_str = NULL; 630 return O;
470 } 631 if (type == CULL_PATH {
632 db_info->cul | = 1;
472 static void handl e_ret_equal s_paran(char *ret_string, struct range_list *rl, str 633 return 0;
473 { 634 }
474 char *str;
475 I ong | ong param 636 if (is_inpossible_data(type, db_info->expr, param key, value)) {
476 struct expression *arg; 637 db_info->cull = 1;
477 struct range_list *orig; 638 return 0;
639 }
479 str = strstr(ret_string, "==$");
480 if (!str) 641 call _results_to_rl(db_info->expr, get_type(strip_expr(db_info->expr)), r
481 return; 606 call _results_to_rl(db_info->expr, get_type(strip_expr(db_info->expr)), a
482 str += 3; 642 ret_range = cast_rl (get_type(db_info->expr), ret_range);
483 param = strtoll(str, NULL, 10); 643 if (!ret_range)
484 arg = get_argunent _fromcal |l _expr(call->args, paran); 644 ret_range = alloc_whole_rl (get_type(db_info->expr));
485 if (larg)
486 return; 646 conpari son = db_i nf o- >conpari son;

new usr/src/tool s/smatch/ src/smatch_function_hooks. c

647 if (db_info->left)

648 conparison = flip_conparison(conparison);

650 if (db_info->true_side) {

651 if (!possibly_true_rl(var_rl, conparison, ret_range))

652 return O;

653 if (type == PARAM LIMT)

654 param | i mt_inplications(db_info->expr, param key, valu
655 filter_by_conparison(&ar_rl, conparison, ret_range);

656 filter_by_conparison(& et_range, flip_conparison(conparison), va
657 } else {

658 if (!possibly_false_rl(var_rl, conparison, ret_range))

659 return O;

660 if (type == PARAMLIMT)

661 param|limt_inplications(db_info->expr, param key, valu
662 filter_by_conparison(&ar_rl, negate_conparison(conparison), ret
663 filter_by_conparison(&et_range, flip_conparison(negate_conparis
664 }

666 handl e_ret_equal s_paranm(ret_str, ret_range, db_info->expr);

631 handl e_r et _equal s_paran(argv[1], ret_range, db_info->expr);

668 if (type == | NTERNAL)

669 set_state(-1, "unnull_path", NULL, & rue_state);

670 __add_return_conparison(strip_expr(db_info->expr), ret_str);

671 __add_return_to_param mappi ng(db_i nf o- >expr, ret_str);

672 store_return_state(db_info, ret_str, alloc_estate_rl(clone_rl(va
635 __add_return_conparison(strip_expr(db_info->expr), argv[1]);

636 —_add_return_t o_param mappi ng(db_i nf o->expr, argv[l])

637 store_return_state(db_info, argv[1], alloc_estate rl (cI one_rl (va
673 }

675 FOR_EACH _PTR(db_i nf o- >cal | backs, tnp) {

676 if (tnmp->type == type)

677 t np- >cal | back(db_i nf o- >expr, param key, value);

678 } END_FOR EACH PTR(tnp);

680 return O;

681 }

683 {st atic void conpare_db_return_states_call backs(struct expression *left, int conp
684

685 struct stree *orig_states;

686 struct stree *stree;

687 struct stree *true_states;

688 struct stree *fal se_states;

689 struct smstate *sm

690 struct db_cal | back_info db_info = {};

691 struct expression *var_expr;

692 struct expression *call _expr;

693 struct range_list *rl;

694 int call_on_left;

696 orig_states = clone_stree(__get_cur_stree());

698 /* legacy cruft. need to fix call_inplies_callbacks(). */

699 call _on_left = 1;

700 call _expr = left;

701 var_expr = right;

702 if (left->type !'= EXPR_CALL) {

703 call _on_left =0

704 cal | _expr = right;

705 var_expr = left;

706 }

708 get _absolute_rl (var_expr, &rl);

new usr/src/tool s/smatch/src/smatch_function_hooks. c

710 db_i nfo. conpari son = conpari son;

711 db_i nfo. expr = call _expr;

712 db_info.rl =rl;

713 db_info.left = call_on_left;

714 db_info.cal |l backs = db_return_states_|list;

715 db_i nfo. var_expr = var_expr;

717 call _return_states_before_hooks();

719 db_info.true_side = 1;

720 db_i nfo.stree = NULL;

721 db_info.prev_return_id = -1;

722 __push_fake_cur_stree();

723 sql _select _return_states("return_id, return, type, paraneter,
724 cal |l _expr, db_conpare_call back, &db_info);
725 set _ot her_si de_state(&db_info);

690 set_r et urn_state(db_info.var_expr, &db_info);
726 stree = _ pop_fake_cur_stree();

727 if (!db_info.cull)

692 if (!db_info.cull)

693 set _return_state(db_info.var_expr, &db_info);
728 mer ge_f ake_stree(&db_i nfo. stree, stree);
695 }

729 free_stree(&stree);

730 true states-dblnfo stree;

731 if (Ttrue_states & db_info. has_states) {

732 _“push_fake_cur_stree();

733 set _pat h_i npossi bl e();

734 true_states = __pop_fake_cur_stree();
735 }

737 nul lify_path();

738 _unnul l'i fy_path();

739 FOR_EACH SMorig_states, sm {

740 set_smocur_stree e(sm;

741 } END_FOR_EACH_SMsm);

743 db_info.true_side = 0;

744 db_i nfo.stree = NULL;

745 db_info.prev_return_id = -1;

746 db_info.cull = 0;

747 __push_fake_cur_stree();

748 sql _select _return_states("return_id, return, type, paraneter,
749 db_conpare_cal | back, &db_info);
750 set _ot her_si de_state(&db_info);

751 stree = __pop_fake _cur_stree();

752 if ('dblnfo cull)

718 if (!db_info.cull) {

719 set_return_state(db_info.var_expr, &db_info);
753 nmerge_f ake_stree(&db_i nfo.stree, stree);
721 }

754 free_stree(&stree);

755 fal se_states = db_info.stree;

756 if (!fTal se_states & db_info. has_states) {

757 __push_fake_cur_stree();

758 set _pat h_i npossi bl e();

759 fal se_states = __pop_fake_cur_stree();
760 }

762 nullify_path();

763 _unnul l'i fy_path();

764 FOR_EACH SMorig_states, sm {

765 set_smcur_stree(sm;

766 } END_FOR EACH SMsm) ;

key,

key,

val ue

val ue

new usr/src/tool s/ smatch/src/smatch_function_hooks. c 7

768

770
771
772
773
774
775

777
778

780

782
783
784
785
786
787
788 }

free_stree(&orig_states);

FOR_EACH SMtrue_states, sn) {
__set_true_ faI se_snm(sm NULL);
} END_FOR_EACH SM's
FOR_EACH SM f al se stat es, sm
set _true_fal se_sm(NULL, sm);
} END_FOR_EACH SMsm);

free_stree(&rue_states);
free_stree(&fal se_states);

call _return_states_after_hooks(cal |l _expr);

FOR_EACH SMinplied_true, sm {

set _true_fal se_sm(sm NULL);
} END_FOR_EACH 1 SM sm;
FOR_EACH SMi npl i ed fal se, sm {

set _true_fal se sn(NULL sm;
} END_FOR_EACH SMsn) ;

__unchanged_portion_onitted_

823 static void call_ranged_return_hooks(struct db_callback_i nfo *db_i nf o)

824 {
825
826
827
828

830
831
832
833
834
835

837

839
840
841
809

843
844
845
813
846
847
815
816
848
818
819
820
849
850 }

852 static i
853 {

854

855

856

857

829

struct call _back_list *call_backs;
struct expression *expr;

struct fcall_back *tnp;

char *fn;

expr = strip_expr(db_info->expr);
whi |l e (expr->type == EXPR_ASSI GNMVENT)
expr = strip_expr(expr->right);
if (expr->type != EXPR_CALL
expr->fn->type ! = EXPR_SYMBOL)
return;

fn = expr->fn->synbol _nane->nane;
cal | _backs = search_cal | back(func_hash, fn);
{

FOR_EACH PTR(cal | _backs, tnp)
struct range_|list *range_rl;

struct range_list *range_rl = NULL;
if (tnp->type != RANGED CALL)
conti nue;
range_rl = alloc_rl (tnp->range->nin, tnp->range->nex);
add_r ange(& ange_rl, tnp->range->nin, tnp->range->nax);
range_r| = cast rI(estate type(db_| i nf o- >r et _state), range_rl);

if (possibly_true_rl(range_rl, SPECI AL_EQUAL, estate_rl (db_info-
if (possibly_true_rl(range_rl, SPECI AL_EQUAL, estate_rl (db_info-
if (!possibly_true_| rI(rI _invert(range_rl), SPECI AL_EQUAL
(tnp->u.ranged) (fn, expr, db_info->expr, trrp->info);
el se
db_i nf o- >handl ed = -

} END_FO}?_EACH_PTR(t np) ;

nt db_assign_return_states_cal |l back(void *_info, int argc, char **argv,

struct db_call back_info *db_info = _info;
struct range_|list *ret_range;

int type, param

char *ret_str, *key, *val ue;

char *key, *val ue;

new usr/src/tool s/smatch/ src/smatch_function_hooks. c 8

858
859
860

862
863

865
866
867
868
869
870

872
873
874
845
875
876
877
878
879
880
881
882

884
885
886
887
888
889
890
891
892
893
894
895

897
898

900
901
872
902
903
904

906
907
908
909
910
911
879
880
881
882
912

914
915
916
917

struct return_inplies_callback *tnp;
struct stree *stree;
int return_id;

if (argc !'= 6)
return O;

return_ id = at0|(argv[0])
ret_str = argv[1

type = at0|(argv[2])
param = at0|(argv[3])
key = argv[4];

val ue = argv[5];

if (db_info->prev_return_id != -1 && type == | NTERNAL) {
cal | _ranged_return_hooks(db_i nfo);
set_return_assi gn_state(db_info);
set _return_state(db_i nfo->expr->left, db_info);
stree = _ pop_fake_cur_stree();
if (!db_info->cull)
nerge_f ake_stree(&db_i nfo->stree, stree);
free_stree(&stree);
__push_fake_cur_stree();
db_i nfo->cull = 0;
}
db_i nfo->prev_return_id = return_id;
if (type == I NTERNAL && func_type_mi smat ch(db_i nf o->expr, val ue))
db info->cull = 1;
if (db_info->cull)
return O;
if (type == CULL_PATH) {
db_info->cull = 1;
return O;

}
if (is_inpossible_dat a(type db_i nf o->expr, param key, value)) {
db_info->cull = 1;
return 0;

}

if (type == PARAM LIMT)
param|imt_inplications(db_info->expr, param key, value);

db_i nf o- >handl ed =
call _results_to_rl(
call _results_to_rl(
if (!'ret_range)

ret_range = alloc_whole_rl(get_type(strip_expr(db_info->expr->ri
ret_range = cast_rl (get_type(db_i nfo->expr->right), ret_range);

1
db_i nf o->expr->right, get_type(strip_expr(db_info->ex
db_i nf o- >expr->right, get_type(strip_expr(db_info->ex

if (type == | NTERNAL)
set_state(-1, "unnull_path", NULL, & rue_state);
__add_return_conparison(strip_expr(db_info->expr->right), ret_st
__add_conpari son_i nfo(db_i nfo->expr->left, strip_expr(db_info->e
add_return_to_param mappi ng(db_i nf o->expr, ret_str)
store_return state(db info, ret_str, alloc_estate_rl(ret_range))
__add_retur n_conpari son(strip_expr (db_i nfo->expr->right), argv[1l
__add_conpari son_i nfo(db_i nfo->expr->left, strip_expr(db_info->e
add_return_to_param mappi ng(db_i nfo->expr, argv[1]);
store_return_state(db_info, argv[1], alloc_estate_rl(ret_range))

}

FOR_EACH PTR(db_return states list, tmp) {
if (tnmp->type == type)
t np- >cal | back(db_i nf o- >expr, param key, value);
} END_FOR_EACH_PTR(tnp);

new usr/src/tool s/smatch/ src/smatch_function_hooks. c 9
919 return O;
920 }

922 static int db_return_states_assign(struct expression *expr)
923 {

924
925
926
927

929

931
932
933
934

936

938
939
940
941
942
943
944
945
946
947
948
949
920
950
951
952
953

955
956
957
958
959
960
961

963
964

966
967 }

struct expression *right;

struct smstate *sm

struct stree *stre

struct db_ callback info db_info = {};

right = strip_expr(expr->right);

db_info.prev_return_id = -1,
db_i nfo. expr = expr;

db_i nfo.stree = NULL;

db_i nfo. handl ed = 0;

cal |l _return_states_before_hooks();

__push_fake_cur_stree();
sql _sel ect _return_states("return_id, return, type, paraneter, key, value
right, db_assign_return_states_call back, &db_info);
if (option_debug)
smnsg("% return_id % return _ranges %"
db_info.cull ? "culled™ : nerging ,
db_info.prev_return_id,
db_info.ret_state ? db_info.ret_state->name : "’ <enpty>’

}
if (db_info.handl ed)
cal | _ranged_return_hooks(&db_i nfo);
set _return_assign_state(&b_info);
set_return_state(db_info.expr->left, &b_info);
stree = __pop_fake_cur_stree();
if (tdb_info.cull)
nmerge_fake_stree(&db_info.stree, stree);
free_stree(&stree);

if (!db_info.stree & db_info.cull) { /* this neans we culled everything
set _extra_expr_nod(expr->left, alloc_estate_whol e(get_type(expr-
) set _pat h_i npossi bl e();
FOR_EACH SM db_i nfo.stree, sm {
set_sn(sm;
} END_FOR_EACH_SM sn)

free_stree(&b_info.stree);
call _return_states_after_hooks(right);

return db_info. handl ed;

__unchanged_portion_onitted_

1038 static int db_return_states_callback(void *_info, int argc, char **argv, char **

1039 {
1040
1041
1042
1043
1014
1044
1045
1046
1047

1049

struct db_cal | back_info *db_info = _info;
struct range_list *ret_range;

int type, param

char *ret_str, *key, *value;

char *key, *val ue;

struct return_inplies_callback *tnp;
struct stree *stree;

int return_id;

char buf[64];

if (argc !'= 6)

new usr/src/tool s/smatch/ src/smatch_function_hooks. c

1050

1052
1053
1054
1055
1056
1057

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081

1083
1084

1086
1056
1087

1089
1090
1091
1092
1061
1062
1093

1096
1097
1098
1099

1101
1102
1103
1104
1105
1106
1107

1109

1110 }
__unchanged_portion_onitted_

return O;

return_id = atoi (argv[0]);
ret_str = argv[1];

type = atoi(argv[2]);
param = atoi (argv[3]);
key = argv[4];

value = argv[5];

if (db_info->prev_return_id = -1 & type == | NTERNAL) {
stree = __pop_fake_cur_stree();
if (!db_info->cull)
nerge_f ake_stree(&db_i nfo->stree, stree);
free_stree(&stree);
__push_fake_cur_stree();
unnul li fy_path();
db_i nfo->cull = 0;

db_info->prev_return_id = return_id;

if (type == I NTERNAL && func_type_m smatch(db_i nf o->expr, val ue))
b info->cull = 1;
if (db_info->cull)
return 0;
if (type == CULL PATH) {
db_info->cull = 1;
return O;

}
if (is_inpossible_dat a(type db_i nf o- >expr, param key, value)) {
db_info->cull =
return O;

}

if (type == PARAM LIMT)
param |init_inplications(db_info->expr, param key, value);

call _results_to_rl (db_info->expr, get_type(strip_expr(db_info->expr)),
call _results_to_rl(db_info->expr, get_type(strip_expr(db_info->expr)),

ret_range = cast_rl (get_type(db_info->expr), ret_range);

if (type == | NTERNAL)
set_state(-1, "unnull_path", NULL, &rue_state);
add_return_conparison(strip_expr(db_info->expr), ret_str);
~add_return_t o_param mappi ng(db_i nf o->expr, ret_str);
—add_return conparlson(stnp expr (db_i nf o- >expr) argv[1]);
—_add_return_t o_param mappi ng(db_i nf o->expr, ar gv[;

FOR_EACH PTR(db_return_states_list, tnp) {
if (tmp->type == type)
t np- >cal | back(db_i nf o- >expr, param key, value);
} END_FOR_EACH_PTR(tnp);

/*

* W want to store the return values so that we can split the strees
* in smatch_db.c. This uses set_state() directly because it's not a
* real smatch_extra state.

*/

snprintf(buf, sizeof(buf), "return %", db_info->expr);

set _stat e(SMATCH EXTRA, buf, NULL, alloc_estate rl(ret_range));

return O;

10

r
a

new usr/src/tool s/ smatch/src/smatch_function_ptrs.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
9444 Mon Aug 5 08:38:32 2019

new usr/src/tool s/ smatch/src/smatch_function_ptrs.c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

140 char *get _fnptr_nane(struct expression *expr)

141 {

142 char *nane;

144 if (is_zero(expr))

145 return NULL;

147 expr = strip_expr(expr);

149 /* (*ptrs[0])(a, b, c) is the sane as ptrs[O](a, b, c);
150 if (expr->type == EXPR_PRECP && expr->op == ")
151 expr = strip_expr(expr->unop);

153 name = get _from _synbol _get (expr);

154 if (name)

155 return nane;

157 nane = get_array_ptr(expr);

158 if (name)

159 return nane;

161 nane = get_returned_ptr(expr);

162 if (nanme)

163 return nane;

165 nane = get_menber _nane(expr);

166 if (name)

167 return nane;

169 if (expr->type == EXPR_SYMBOL) {

170 int param

171 char buf[256];

172 struct synbol *sym

173 struct synbol *type;

175 param = get _param num from syn(expr->synbol);
176 1f (param >= 0) {

177 snprintf(buf, sizeof(buf), "% param %"
178 return alloc_string(buf);

179 }

181 name = expr_to_var_syn(expr, &sym;

182 if (!nane)

183 return NULL;

184 type = get_type(expr);

185 if (type & type->type == SYM PTR)

186 snprintf(buf, sizeof(buf), "% %", ptr
187 free_string(name);

188 return alloc_string(buf);

189

190 return name;

191 }

192 return expr_to_var(expr);

193 }

__unchanged_portion_onitted_

351 static void print_initializer_list(struct expression_|list *expr_|

352 struct synbol *struct_type)
353 {

*/

get _function()

_prefix(sym, nam

list,

new usr/src/tool s/ smatch/src/smatch_function_ptrs.c

354 struct expression *expr;

355 struct synbol *base_type;

356 char struct_nane[256] ;

358 FOR_EACH _PTR(expr_l i st, expr) {

359 if (expr- >type == EXPR_I NDEX && expr->i dx_expression && expr->id
360 print_initializer_list(expr->i dx_expression->expr_
361 conti nue;

362 }

363 if (expr->type != EXPR_| DENTI FI ER)

364 cont i nue;

365 if (!expr->expr_ident)

366 conti nue;

367 if (!expr->ident_expression ||

368 expr - >i dent _expressi on->type != EXPR_SYMBOL | |

369 I expr->i dent _expressi on- >synbol _nane)

370 conti nue;

371 base_type = get_type(expr->i dent_expression);

372 if (!base_type || base_type->type != SYMFN)

373 conti nue;

374 snprintf(struct_nane, sizeof(struct_nane), "(struct %)->%",
375 struct _type->i dent - >nane, expr->expr_ident->nane);
376 sql _insert _function_ptr (expr->i dent_expressi on- >synbol _|
377 struct_nane);

378 } END_FOR_EACH_PTR(expr);

379 }

381 {stat ic void global _variable(struct synbol *sym

382

383 struct synbol *struct_type;

385 if (!sym>ident)

386 return;

387 if (!sym>initializer || sym>initializer->type != EXPR_IN Tl ALI ZER)
388 return;

389 struct _type = get_base_type(sym;

390 if (!struct_type)

391 return;

392 if (struct_type->type == SYM ARRAY) {

393 struct _type = get_base_type(struct_type);

394 if (!struct_type)

395 return;

396 }

397 if (struct_type->type = SYM STRUCT || !struct_type->ident)

398 return;

399 print_initiali zer_I ist(sym>initializer->expr_list, struct_type);
400 }

402 void register_function_ptrs(int id)

403

404 ny_id = id,

406 if (loption_info)

407 return;

409 add_hook(&gl obal _vari abl e, BASE_HOXK) ;

410 add_hook(&gl obal _vari abl e, DECLARATI ON_HOCK) ;

411 add_hook(&mat ch_passes_ function _poi nter, FUNCTI ON_CALL_HOCK) ;
412 add_hook(&mat ch_returns_function_poi nter, RETURN HOCK);

413 add_hook(&rat ch_f uncti on_assi gn, ASSI GNIVENT_HOCK);

414 add_hook(&at ch_f uncti on_assi gn, GLOBAL_ASSI GNVENT_HOK) ;

415 }

__unchanged_portion_omtted_

new usr/src/tool s/smatch/src/smatch_hel per.c 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
25477 Mon Aug 5 08:38:33 2019

new usr/src/tool s/smatch/ src/smatch_hel per.c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

84 struct smatch_state *nerge_str_state(struct smatch_state *sl1l, struct smatch_stat

86 if (!'sl->name || !s2->nane)

87 return &merged;

88 if (strcnp(sl->name, s2->nane) == 0)
89 return si;

90 return &nmerged;

91 }

93 struct smatch_state *all oc_state_expr(struct expression *expr)
94 {

95 struct smatch_state *state;

96 char *nane;

89 state = __alloc_smatch_state(0);
98 expr = strip_expr(expr);

99 nane = expr_to_str(expr);

100 if (!nane)

101 return NULL;

103 state = __alloc_smatch_state(0);
104 state->nane = al |l oc_snane(nane);
105 free_string(nane);

106 state->data = expr;

107 return state;

108 }

__unchanged_portion_omtted_

162 static void __get_variable_fromexpr(struct synbol **symptr, char *buf,

163 struct expression *expr, int len,

164 int *conplicated, int no_parens)

165 {

168 if (lexpr) {

169 /* can't happen on valid code */

170 *conplicated = 1;

171 return;

172 }

174 switch (expr—>type) {

175 case EXPR _DEREF: {

176 struct expressi on *deref;

177 int op;

179 deref = expr->deref;

180 op = deref->op;

181 if (deref >type == EXPR_PRECP && op == "*") {

169 if (op =

182 struct expression *unop = strip_expr(deref->unop);
184 if (unop->type == EXPR_PREOP && unop->op == '&) {
185 eref = unop->unop;

186 op = .

187 } else {

188 if (!is_poi nter(deref) && i s_poi nter (deref->uno
189 op =

190 deref = deref- >unop,

177 if (!is_pointer(deref))

new usr/src/tool s/smatch/src/smatch_hel per.c 2
178 op =".";
191 }
192 }
194 __get_variable_fromexpr(symptr, buf, deref, len, conplicated,
196 if (op =="*")
197 append(buf, "->", len);
198 el se
199 append(buf, ".", len);
201 if (expr->nmenber)
202 append(buf, expr->nmenber->nane, |en);
203 el se
204 append(buf, "unknown_nenber", len);
206 return;
207 }
208 case EXPR_SYMBOL:
209 i T (expr->synbol _nane)
210 append(buf, expr->synbol _nane->name, |en);
211 if (symptr)
212 if (*symptr)
213 *conplicated = 1;
214 *symptr = expr->synbol ;
215 }
216 return;
217 case EXPR_PRECP:
218 const char *tnp;
220 if (get_expression_statenment(expr)) {
221 *conplicated = 2;
222 return;
223 }
225 if (expr->op =="("
226 if (!'no parens && expr->unop- >type ! = EXPR_SYMBQOL)
227 append(buf, "(", len);
228 } else |f (expr->op !'="*" || !get array_expr(expr—>unop)) {
229 = show_speci al (expr->op);
230 append(buf tnp, len);
231
232 __get_variable_fromexpr(symptr, buf, expr->unop,
233 len, conplicated, no_parens);
235 if (expr->op == ' (' && !no_parens && expr->unop->type != EXPR _SY
236 append(buf, ")", len);
238 if (expr->op == SPECI AL_DECREMENT ||
239 expr->op == SPECI AL_| NCREMENT)
240 *conplicated = 1;
242 return;
243 }
244 case EXPR_POSTOP:
245 const char *tnp;
247 __get_variable_fromexpr(symptr, buf, expr->unop,
248 I en, conplicated, no_parens);
249 tnp = show_speci al (expr->op);
250 append(buf, tmp, len);
252 if (expr->op == SPECI AL_DECREMENT || expr->op == SPECI AL_I NCREME
253 *conplicated = 1,
254 return;
255

new usr/src/tool s/ smatch/ src/smatch_hel per.c 3 new usr/src/tool s/ smatch/ src/smatch_hel per.c
256 case EXPR_ASSI GNMVENT: 322 append(buf, tnp, len);
257 case EXPR_COWPARE: 323 } else if (get_value(expr, &sval)) {
258 case EXPR LOAQ CAL: 324 snprintf(tnp, 25, "%", sval _to_str(sval));
259 case EXPR_BI NOP: { 325 append(buf, tnmp, len);
260 char tnp[10]; 326
261 struct expression *array_expr; 327 return;
328 }
263 *conplicated = 1; 329 case EXPR_| DENTI FI ER:
264 array_expr = get_array_expr(expr); 330 *conplicated = 1;
265 if (array_expr) { 331 if (expr->expr_ident)
266 __get_variable_fromexpr(symptr, buf, array_expr, len, 332 append(buf, expr->expr_ident->nane, |en);
267 append(buf, "[", len); 333 return;
268 } else { 334 defaul t:
269 __get_variable_fromexpr(symptr, buf, expr->left, len, 335 *conplicated = 1;
270 snprintf(tnp, sizeof(tnp), " % ", show speci al (expr->o0p 336 [1printf("unknown type = %l\n", expr->type);
271 append(buf, tnp, len); 337 return;
272 } 338 }
273 __get_variable_fromexpr(NULL, buf, expr->right, len, conplicate 339 }
274 if (array_expr) __unchanged_portion_onitted_
275 append(buf, "1", len);
276 return; 521 char *expr_to_chunk_hel per(struct expression *expr, struct symbol **sym struct
277 } 522 {
278 case EXPR _VALUE: { 523 struct var_symlist *tnp_vsl;
279 char tnp[25]; 524 char *nane;
525 struct synbol *tnp;
281 *conplicated = 1; 526 int score;
282 snprintf(tnp, 25, "%I1d", expr->value);
283 append(buf, tmp, len); 528 if (vsl)
284 return; 529 *vsl = NULL;
285 } 530 if (sym
286 case EXPR_STRI NG 531 *sym = NULL;
287 append(buf, "\"", len);
288 if (expr->string) 533 expr = strip_parens(expr);
289 append(buf, expr->string->data, |en); 534 if (!expr)
290 append(buf, "\"", len); 535 return NULL;
291 return;
292 case EXPR_CALL: { 537 name = expr_to_var_sym(expr, & np);
293 struct expression *tnp; 538 if (name && tnp) {
294 int i; 539 if (sym
540 *sym = tnp;
296 *conplicated = 1; 541 if (vsl)
297 __get_variabl e_fromexpr (NULL, buf, expr->fn, len, conplicated, 542 add_var_syn(vsl, name, tnp);
298 append(buf, "(", len); 530 *vsl = expr_to_vsl (expr);
299 i =0; 543 return nane;
300 FOR_EACH PTR(expr->args, tmp) { 544 }
301 if (i++) 545 free_string(nane);
302 append(buf, ", ", len);
303 __get_variable_fromexpr(NULL, buf, tnp, len, conplicate 547 score = get_conplication_score(expr);
304 } END_FOR_EACH PTR(tnp); 548 if (score <= 0 || score > 2
305 append(buf, ")", len); 549 return NULL;
306 return;
307 } 551 tnp_vsl = expr_to_vsl (expr);
308 case EXPR_CAST: 552 if (vsl) {
309 case EXPR_FORCE_CAST: 553 *vsl = tnp_vsl;
310 __get_variable_fromexpr(symptr, buf, 554 if (!*vsl)
311 expr->cast _expression, len, 555 return NULL;
312 conpl i cated, no_parens); 556 }
313 return; 557 if (sym {
314 case EXPR_SI ZEOF: { 558 if (ptr_list_size((struct ptr_list *)tnp_vsl) == 1) {
315 sval _t sval; 559 struct var_sym *vs;
316 int size;
317 char tnp[25]; 561 vs = first_ptr_list((struct ptr_list *)tnp_vsl);
562 *sym = vs->sym
319 if (expr->cast_type && get_base_type(expr->cast_type)) { 563 }
320 size = type_bytes(get_base_type(expr->cast_type)); 564 }
321 snprintf(tnp, 25, "%", size);

new usr/src/tool s/ smatch/ src/smatch_hel per.c

566 expr = reorder_expr_al phabetical | y(expr);
568 return expr_to_str(expr);
569 }

__unchanged_portion_omtted_

864 char *get_menber_nane(struct expression *expr)

865 {

866 char buf[256];

867 struct synbol *sym

869 expr = strip_expr(expr);

870 if (lexpr || expr->type != EXPR_DEREF)

871 return NULL;

872 if (!expr->nmenber)

873 return NULL;

875 sym = get _type(expr->deref);

876 if (!sym

877 return NULL

878 if (sym>type == SYMUNION) {

879 snprintf(buf, sizeof(buf), "(union %)->%",

880 sym >i dent ? sym >ident->name : "anonynous",
881 expr - >menber - >nane) ;

882 return alloc_string(buf);

883 }

884 if (!sym>ident)

885 struct expression *deref;

886 char *full, *outer;

887 int len;

889 /*

890 * |f we’'re in an anonynous struct then maybe we can find an
891 * outer struct nane to use as a name. This code should be
892 * recursive and cleaner. | amnot very proud of it.
893 *

894 */

896 deref = expr->deref;

897 if (deref->type != EXPR _DEREF || !deref->nenber)
872 if (!sym>ident)

898 return NULL;

899 sym = get _t ype(deref->deref);

900 if (!sym]|| sym>type !|= SYM STRUCT || !sym >ident)
901 return NULL;

903 full = expr_to_str(expr);

904 if (Mfull)

905 return NULL;

906 deref = deref->deref;

907 if (deref->type == EXPR_PRECP && deref->op == "*")
908 deref = deref->unop;

909 outer = expr_to_str(deref);

910 if (louter) {

911 free_string(full);

912 return NULL;

913

914 len = strlen(outer);

915 if (strncnp(outer, full, len) = 0) {

916 free_string(full);

917 free_string(outer);

918 return NULL;

919 }

920 if (full[len] =="-" & full[len + 1] == "'>")

921 len += 2;

922 if (full[len] ==".")

new usr/src/tool s/ smatch/ src/smatch_hel per.c

923 | en++;

924 snprintf(buf, sizeof(buf),
925 free_stri ng(out er);

926 free_string(full);

928 return alloc_string(buf);
929 }

930 snprintf(buf, sizeof(buf),

931 return alloc_string(buf);

932 }

__unchanged_portion_onitted_

1113 int op_renpve_assign(int op)

"(struct

"(struct 9%)->%",

%) - >%", sym >i dent->naneg,

sym >i dent - >nanme, expr->ne

1114 {

1115 switch (op) {

1116 case SPECI AL ADD ASSI GN:

1117 retu R

1118 case SPECI AL SUB ASS| GN:

1119 return ' -’ ;

1120 case SPECI AL_MJL_ASSI GN:

1121 return '*;

1122 case SPECI AL_DI V_ASS| G\:

1123 return 7’ ;

1124 case SPECI AL_MOD_ASSI GN:

1125 return ' 9%;

1126 case SPECI AL_AND_ASSI GN:

1127 return ' & ;

1128 case SPECI AL CR ASSI G\

1129 i

1130 case SPECI AL XO? ASSI GN;

1131 return '~ ;

1132 case SPECI AL_SHL ASSI GN:

1133 return SPECI AL_LEFTSHI FT;

1134 case SPECI AL_SHR_ASS| G\

1135 return SPECI AL_RI GHTSHI FT;

1136 defaul t:

1137 return op;

1138 }

1139 }

1141 i{nt expr_equi v(struct expression *one, struct expression *two)
1142

1143 struct synbol *one_sym = NULL;

1144 struct synbol *two_sym = NULL;

1145 char *one_nane = NULL;

1146 char *two_nanme = NULL;

1147 int ret = 0;

1149 if (lone || !'two)

1150 return O;

1151 if (one- >type 1= two->type)

1152 return

1153 if (is_fake call(one) || is_fake_call (two))
1154 return O;

1156 one_nane = expr_to_str_syn(one, &one_syn);
1157 i f (!one_nane)

1158 got o free;

1159 two_nanme = expr_to_str_syn(two, & wo_sym);
1160 if (!two_nane)

1161 goto free;

1162 if (one_sym!= two_sym

1163 goto free;

1164 I*

1165 * This is a terrible hack because expr_to_str() sonmetinmes gives up in
1166 * the mddle and just returns what it has. |f you see a () you know

new

1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177

usr/src/tool s/ smat ch/ src/ smat ch_hel per.c
* the string is bogus.
*/

if (strstr(one_nane, "()"))
goto free;

if (strcnp(one_nanme, two_nane) == 0)
ret = 1;

free:
free_string(one_nane);
free_string(two_nane);
return ret;

}

___unchanged_portion_onitted_

new usr/src/tool s/ smatch/src/smatch_i gnore. c

R R R R

2687 Mon Aug 5 08:38:34 2019
new usr/src/tools/smatch/src/smatch_i gnore. c
11506 snatch resync

R R R R

2 * Copyright (C 2009 Dan Carpenter.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any |later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of
11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
12 * GNU Ceneral Public License for nore details.
13 =
14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt

*

-~

18 #include "smatch. h"
19 #include "smatch_slist.h"

21 STATE(ignore);

22 static struct stree *ignored,

23 static struct stree *ignored_fromfile;

25 void add_ignore(int owner, const char *nanme, struct synbol *symn)
{

27 set_state_stree(& gnored, owner, nane, sym & gnore);

____unchanged_portion_onitted_

47 int is_ignored_expr(int owner, struct expression *expr)

48 {

49 struct synbol *sym

50 char *nane;

51 int ret;

53 name = expr_to_str_syn(expr, &syn);

54 if (!'name && !'sym

55 return O;

56 ret = is_ignored(owner, name, sym;

57 free_string(nane);

58 if (ret)

59 return true;

61 nanme = get_nacro_nane(expr->pos);

62 if (name && get_state_stree(ignored_fromfile, owner, name, NULL))
63 return true;

65 name = get_function();

66 if (name && get_state_stree(ignored_fromfile, owner, name, NULL))
67 return true;

69 return false;

57 return ret;

70

}
____unchanged_portion_onitted_

79 static void | oad_i gnores(void)
80 {

81 struct token *token;
82 const char *name, *str;

new usr/src/tool s/smatch/src/smatch_ignore.c 2
83 int owner;
84 char buf[64];
86 snprintf(buf, sizeof(buf), "%.ignored_warnings", option_project_str);
87 token = get_tokens_file(buf);
88 if (!token)
89 return;
90 if (token_type(token) != TOKEN_STREAMBEG N)
91 return;
92 t oken = t oken->next;
93 whil e (token_type(token) != TOKEN_STREAMEND) ({
94 if (token_type(token) != TOKEN_I DENT)
95 br eak;
96 name = show_i dent (t oken->i dent);
97 t oken = t oken->next;
98 owner = id_from name(nane);
100 if (token_type(token) != TOKEN_I DENT)
101 break;
102 str = show_i dent (t oken->i dent);
103 token = token->next;
105 set_state_stree_pern(& gnored_fromfile, owner, str, NULL, & gno
106 }
107 clear_token_alloc();
108 }
110 void register_smatch_ignore(int id)
111
112 add_hook(&cl ear _i gnores, AFTER_FUNC_HOCK) ;
113 | oad_i gnores();
114 }

____unchanged_portion_onmitted_

new usr/src/tool s/smatch/src/smatch_i nagi nary_absol ute. c 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
2250 Mon Aug 5 08:38:34 2019

new usr/src/tool s/ smatch/src/smatch_i nagi nary_absol ute. c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

54 void __save_inmgi nary_state(struct expression *expr, struct range_list *true_rl,

56 if (__in_pre_condition)

57 return;

58 set _true_fal se_states_expr(ny_id, expr, alloc_estate_rl(true_rl), alloc_
59

__unchanged_portion_onitted_

75 voi d register_imginary_absolute(int id)
{

76

77 nmy_id = id;

79 set _dynami c_states(ny_id);

80 add_unmat ched_st at e_hook(ny_i d, &enpty_state);
81 add_mer ge_hook(ny_id, &nrerge_is_enpty);

82 add_nodi fication_hook(ny_id, &reset);

83

}
__unchanged_portion_omtted_

new usr/src/tool s/smatch/src/smatch_inplied.c 1 new usr/src/tools/smatch/src/smatch_inplied. c 2
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 62 #I ncl ude <t| nme. h>
30977 Mon Aug 5 08:38:35 2019 63 #include "smatch. h"
new usr/src/tool s/smatch/src/smatch_inplied.c 64 #include "smatch_slist.h"
11506 snatch resync 65 #include "smatch_extra. h"
LEEE R R R R EE SRR EEEEEEEEEEE RS SRR SRR EEEEEREREEEEEEEEESE]
1/* 67 char *inplied_debug_mnsg;
2 * Copyright (C) 2008 Dan Carpenter. 68 #define DIMPLIED(nmsg...) do { if (option_debug_inplied || option_debug) printf(m
3 *
4 * This programis free software; you can redistribute it and/or 69 bool inplications_off;
5 * nodify it under the terns of the GNU General Public License 70 int option_debug_inplied = 0;
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any |later version. 71 #define inplied_debug O
8 * 72 #define DIMPLIED(nsg...) do { if (inplied_debug) printf(nmsg); } while (0)
9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of 74 |*
11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the 75 * tnp_range_list():
12 * GNU General Public License for nore details. 76 * |t nesses things up to free range list allocations. This helper fuction
13 = 77 * lets us reuse nenory instead of doing new allocations.
14 * You shoul d have received a copy of the GNU General Public License 78 *
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt 79 {stati c struct range_list *tnp_range_list(struct synbol *type, long |long num
16 * 80
17 * Copyright 2019 Joyent, Inc. 81 static struct range_list *my_list = NULL;
18 */ 82 static struct data_range *ny_range;
20 /* 84 __free_ptr_list((struct ptr_list **)&nmy_list);
21 * Imagi ne we have this code: 85 ny_range = alloc_range(ll_to_sval (num, Il_to_sval (num);
22 * foo = 1; 86 add_ptr_list(&wy_list, ny_range);
23 * if (bar) 87 return ny_list;
24 = foo = 99; 88 }
25 * else
26 * frob(); 90 static void print_debug_tf(struct smstate *sm int istrue, int isfalse)
27 % Il <-- point #1 91 {
28 * if (foo == 99) /Il <-- point #2 92 if (!inplied_debug && !option_debug)
29 = bar->baz; // <-- point #3 90 if (!option_debug_inplied & !option_debug)
30 * 93 return;
31 *
32 * At point #3 bar is non null and can be dereferenced. 95 if (istrue & isfalse) {
33 * 96 printf("%: %l: does not exist.\n", show sn(sm, sm>line);
34 * |t's smatch_inplied.c which sets bar to non null at point #2. 97 } else if (istrue)
35 * 98 printf("" % = %' from% is true. %[stree %] \n", sm >nane, sh
36 * At point #1 nerge_slist() stores the list of states from both 99 sm>line, sm>nmerged ? "[nmerged]” : "[leaf]",
37 * the true and false paths. On the true path foo == 99 and on 100 get _stree_i d(sm >pool));
38 * the false path foo == 1. nerge_slist() sets their pool 101 } else if (isfalse)
39 * |list to show the other states which were there when foo == 99. 102 printf("" % = %' from% is false. %[stree %d]\n", sm >nane, s
40 * 103 sm >l i ne,
41 * When it cones to the if (foo == 99) the smatch inplied hook 104 sm>nerged ? "[nerged]" : "[leaf]"”,
42 * | ooks for all the pools where foo was not 99. It makes a |ist 105 get _stree_i d(sm >pool));
43 * of those. 106 } else {
44 = 107 printf(" % = %’ from%l could be true or false. %[stree %l]\n
45 * Then for bar (and all the other states) it says, ok bar is a 108 show_state(sm >state), sm>line,
46 * nmerged state that came fromthese previous states. We'll 109 sm>nerged ? “[nerged]" : “"[leaf]",
47 * chop out all the states where it came froma pool where 110 get _stree_i d(sm >pool));
48 * foo != 99 and nerge it all back together. 111 }
49 * 112 }
50 * That is the inplied state of bar.
51 * 114 static int create_fake_history(struct smstate *sm int conparison, struct range
52 * nmerge_slist() sets up ->pool. An smstate only has one ->pool and 115 {
53 * that is the pool where it was first set. The ny pool gets set when 116 struct range_list *orig_rl;
54 = code paths nerge. States that have been set since the |ast nerge do 117 struct range_list *true_rl, *false_rl;
55 * not have a ->pool. 118 struct stree *true_stree, *fal se_stree;
56 * nmerge_smstate() sets ->left and ->right. (These are the states which were 119 struct smstate *true_sm *false_sm
57 * merged to formthe current state.) 120 sval _t sval;
58 * a pool: a pool is an slist that has been nerged with another slist.
59 */ 122 if (is_merged(sm || sm>left || sm>right)
123 return O;
61 #include <sys/tinme. h> 124 if (!rl_to_sval(rl, &sval))

new usr/src/tool s/smatch/src/smatch_inplied.c 3

125
126
127

129
130

132
133
134
135
136
137
138

140
141
142
143
144
145
146

148
149
146
147
150
151

153
154

156
154
157
158
159
157
160
161

163
164

166
167

169
170

172
173
174

176
177 }

return O;
if (lestate_rl(sm>state))
return O;
orig_rl = cast_rl(rl_type(rl), estate_rl(sm>state));

split_conparison_rl(orig_rl, conparison, rl, &rue_rl, & alse_rl, NULL,

true_rl = rl_truncate_cast(estate_type(sm >state), true_rl);

false_rl = rl_truncate_cast(estate_type(sm >state), false_rl);

if (is_whole_rl(true_rl) || is_whole_rl(false_rl) ||
Itrue_rl || !false_rl ||
rl_equiv(orig_rl, true_rl) || rl_equiv(orig_rl, false_rl) |]
rl_equiv(estate_rl (sm>state), true_rl) || rl_equiv(estate_rl(sm >st

return O;

if (rl_intersection(true_rl, false_rl)) {
smperror("parsing (% (%) % %)",
sm >nanme, sm >state->nane, show_speci al (conparison), sho

smnsg("true_rl = % false_rl = % intersection = %",
show rl (true_rl), showrl(false_rl), showrl(rl_intersect
return O;
}
if (inplied_debug)
sm nsg("fake_history: % vs %. % % %. -->T:. % F %",
if (option_debug)
sm.info("fake_history: % vs %6. % % %. -->T: % F. %",

sm >nane, show rl(rl), sm >state->nanme, show special (conp
show rl (true_rl), showrl(false_rl));

true_sm = clone_sn(sn);
fal se_sm = clone_sn(sn;

true_sm>state = clone_partial _estate(sm>state, true_rl);
true_sm>state = alloc_estate_rl(cast_rl(estate_type(sm>state), true_rl
free_slist(&rue_sm>possible);

add_possi bl e_sn(true_sm true_sn);

fal se_sm>state = clone_partial _estate(sm>state, false_rl);
false_sm>state = alloc_estate rl(cast_rl (estate_type(sm>state), false_
free_slist(&fal se_sm>possible);

add_possi bl e_sn(fal se_sm false_sn);

true_stree = clone_stree(sm >pool);
fal se_stree = clone_stree(sm >pool);

overwite_smstate_stree(&rue_stree, true_sm;
overwite_smstate_stree(& al se_stree, false_sm;

true_sm >pool = true_stree;
fal se_sm >pool = false_stree;

sm>nmerged = 1;
sm>left = true_sm
sm>right = fal se_sm

return 1;

__unchanged_portion_omtted_

229 [*
230 *
231 *

232 */

"foo’ == 99 add it that pool to the true pools. |If it's false, add it to
false pools. |If we're not sure, then we don’t add it to either.

233 static void do_conpare(struct smstate *sm int conparison, struct range_list *r

234
235

struct state_list **true_stack,
struct state_list **maybe_st ack,

new usr/src/tool s/smatch/src/smatch_inplied. c 4
236 struct state_list **fal se_stack,
237 int *mxed, struct smstate *gate_sm
238 {
239 int istrue;
240 int isfalse;
241 struct range_list *var_rl;
243 if (!sm>pool)
244 return;
246 var_rl = cast_rl(rl_type(rl), estate_rl(sm>state));
248 istrue = !possibly_false_rl(var_rl, conparison, rl);
249 isfalse = Ipossibly_true_rl(var_rl, conparison, rl);
251 print_debug_tf(sm istrue, isfalse);
253 /* give up if we have borrowed inplications (smatch_equiv.c) */
254 if (sm>sym!= gate_sm>sym||
255 strcnp(sm >nane, gate_sm>nane) != 0) {
256 if (mxed)
257 *m xed = 1;
258 }
260 if (mxed & !*mi xed & !is_nerged(sm && !istrue & !isfalse) {
261 if (!create_fake_history(sm conparison, rl))
262 *m xed = 1;
263 }
265 if (istrue)
266 add_pool (true_stack, sm;
267 else if (isfalse)
268 add_pool (fal se_stack, sm;
269 el se
270 add_pool (maybe_stack, sm;
271 }
__unchanged_portion_omtted_
284 | *
285 * separate_pool s():
286 * Exanple code: if (foo == 99) {
287 *
288 * Say 'foo’ is a nerged state that has many possible values. It is the conbina
289 * of merges. separate_pools() iterates through the pools recursively and calls
290 * do_conpare() for each time 'foo’ was set.
291 =/
292 static void __separate_pool s(struct smstate *sm int conparison, struct range_|
293 struct state_list **true_stack,
294 struct state_list **maybe_stack,
295 struct state_list **fal se_stack,
296 struct state_list **checked, int *m xed, struct smstate
297 struct tineval *start_tine)
295 (struct state_list **checked, int *m xed, struct smstate
298
299 int free_checked = 0;
300 struct state_list *checked_states = NULL;
301 struct tineval now
303 if (!sm
304 return;
306 getti meof day(&ow, NULL);
307 if (now tv_usec - start_tinme->tv_usec > 1000000) {
308 if (inplied_debug) {
309 sm nmeg("debug: %: inplications taking too long. (% %

new usr/src/tool s/smatch/src/smatch_inplied.c

5

310 __func__, sm>state->nanme, show speci al (conmpari so
311 }

312 if (mixed)

303 /*

304 * |f it looks like this is going to take too long as-is, then don't
305 * create even nore fake history.

306 */

307 if (mxed & sm>nr_children > 100)

313 *mixed = 1;

310 I*

311 Sonetinmes the inplications are just too big to deal with

312 so we bail. Theoretically, bailing out here can cause nore false
313 positives but won't hide actual bugs.

314 */

315 if (sm>nr_children > 4000) {

316 if (option_debug | | option debug inplied) {

317 static char buf[1028];

318 snpri ntf(buf si zeof(buf) "debug: %: nr_children over

319 nc__ sm >nr _children, sm >nane,
320 inplied debug nmeg =

314 }

322 return;

323 }

316 if (checked == NULL)

317 checked = &checked_st at es;

318 free_checked = 1;

319 }

320 if (is_checked(*checked, sm))

321 return;

322 add_ptr_list(checked, sm;

324 do_conpare(sm conparison, rl, true_stack, maybe_stack, false_
326 __separate_pool s(sm >l eft, conparison, rl, true_stack,

show_st ate

stack, mx

maybe_stack, fals

327 __separate_pool s(sm>right, conparison, rl, true_stack, maybe_stack, fal
335 __separate_pool s(sm>left, conparison, rl, true_stack, maybe_stack, fals
336 __separate_pool s(sm >right, conparison, rl, true_stack, naybe_stack, fal
328 if (free_checked)

329 free_slist(checked);

330 }

332 static void separate_pool s(struct smstate *sm int conparison, struct range_lis
333 struct state_list **true_stack,

334 struct state_list **fal se_stack,

335 struct state_list **checked, int *m xed)

336 {

337 struct state_list *maybe_stack = NULL;

338 struct smstate *tnp;

339 struct tineval start_ting;

349 __separate_pool s(sm conparison, rl, true_stack, &mybe_stack, false_sta
342 gettinmeof day(&start_tinme, NULL);

343 __separate_pool s(sm conparison, rl, true_stack, &maybe_stack, false_sta
345 if (inplied_debug) {

351 if (option_debug)

346 struct smstate *sm

348 FOR_EACH PTR(*true_stack, sm {

349 sm meg(" TRUE % [stree %] ", show sn(sn), get_stree_id(s

350 } END_FOR_EACH PTR(sM);

352 FOR_EACH PTR(maybe_stack, sm {

new usr/src/tools/smatch/src/smatch_inplied.c 6
353 sm nsg("MAYBE % Ys[stree %] "
354 show_sm(sm), sm >merged ? "(merged) ' ', get_st
359 sm nmsg("MAYBE % [stree %d]", show sn(sn), get stree_id(
355 } END_FOR_EACH PTR(sm);
357 FOR_EACH PTR(*faI se_stack, sm {
358 sm meg(" FALSE % [st ree %] ", show_ sm(sn), get_stree_id(
359 } END_FOR EACH PTR(sm);
360
361 /* if it’s a maybe then renove it */
362 FOR_EACH PTR(maybe_st ack, tnp) {
363 renove_pool (fal se_stack, tnp->pool);
364 renove_pool (true_stack, tnp->pool);
365 } END_FOR_EACH_PTR(t np);
367 /* if it’s both true and false renove it fromboth */
368 FOR_EACH PTR(*true_stack, tnp)
369 if (renmove_pool (fal se_stack, tnp->pool))
370 DELETE_CURRENT_PTR(t np) ;
371 } END_FOR_EACH PTR(t np);
372 }
__unchanged_portion_onitted_
390 static int going_too_slow void)
395 static int taking_too_long(void)
391 {
392 static void *printed;
394 if (out_of _menory()) {
395 inplications_off = true;
399 if (out_of_nmenory())
396 return 1;
397 }
399 if (loption_timeout || time_parsing_function() < option_tineout) {
400 inplications_off = false;
402 if (time_parsing_function() < option_tinmeout)
401 return O;
402 }
404 if (!__inline_fn & printed !'= cur_func_sym {
405 if (!is_skipped_function())
406 smperror("turning off inplications after % seconds", o
407 smperror("turning off inplications after 60 seconds");
407 printed = cur_func_sym
408 }
409 inplications_off = true;
410 return 1;
411 }
413 static char *smstate_info(struct smstate *sn
414 {
415 static char buf[512];
416 int n=0;
418 n += snprintf(buf + n, sizeof(buf) - n, "[stree %l line %l]
419 get _ stree id(sm>pool), sm>line);
420 if (n >= sizeof (buf))
421 return buf;
422 n += snprintf(buf + n, sizeof(buf) - n, "% ", show sn(sn));
423 if (n >= sizeof (buf))
424 return buf;
425 n += snprintf(buf + n, sizeof(buf) - n, "left = % [stree %]
426 sm>left ?2 sm>left->state->nane : "<none>",
427 sm>left ? get_stree_id(sm>left->pool) : -1);
428 if (n >= sizeof (buf))

new usr/src/tool s/smatch/src/smatch_inplied.c

429 return buf;

430 n += snprintf(buf + n, sizeof(buf) - n, "right = % [stree %]",

431 sm>right ? sm>right->state->name : "<none>",

432 sm>right ? get_stree_id(sm>right->pool) : -1);

433 return buf;

434 }

436 /*

437 * NOTE: If a state is in both the keep stack and the renmove stack then that
438 * a bug. Only add states which are definitely true or definitely false.
439 * you have a leaf state that could be both true and false, then create a fake
440 * split history where one side is true and one side is false. Oherw se, i
441 * you can’t do that, then don’t add it to either |ist.

442 */

443 #define RECURSE_LIM T 300
444 struct smstate *filter_pool s(struct smstate *sm

445 const struct state_list *renobve_stack,

446 const struct state_list *keep_stack,

447 int *modified, int *recurse_cnt,

448 struct timeval *start, int *skip, int *bail)
424 struct tineval *start)

449 {

450 struct smstate *ret = NULL;

451 struct smstate *left;

452 struct sm st ate *ri ght

453 int renoved =

454 struct tineval now,

456 if (Ism

457 return NULL;

458 if (*bail)

459 return NULL;

434 if (sm>skip_inplications)

435 return sm

436 if (taki ng too_l ong())

437 return sm

460 getti meof day(&ow, NULL);

461 if (now tv_usec - start->tv_usec > 3000000) ({

462 DIVPLI ED("%s: inplications taking too | ong: %\n",

463 *bail = 1;

464 return NULL;

440 if ((*recurse_cnt)++ > 1000 || now.tv_sec - start->tv_sec > 5) {
441 if (local _debug || option_debug_inplied) {

442 static char buf[1028];

443 snprintf(buf, si zeof(buf), "debug: %: nr_children over
444 func __, sm>nr_children, sm >naneg,

445 i npl i ed_debug_nsg = buf;

465 }

466 if ((*recur se_cnt)++ > RECURSE_LIMT) {

467 DI MPLI ED(" %s: recursed too far: 9%\n", _ func__, smstate_info(
468 *skip = 1,

469 return NULL;

447 sm >ski p_i npl ications = 1;

448 return sm

470 }

472 if (pool _in_pools(sm>pool, renove_stack)) {

473 DI MPLI ED(" %s: renove: %\n", func__, smstate info(sm);
452 DI MPLI ED("renoved [stree %] % from %l\n™, get_stree_i d(sm >poo
474 *nodi fied = 1;

475 return NULL;

476 }

478 if (lis_nerged(sm || pool _in_pools(sm>pool, keep_stack) ||

479 DI MPLI ED(" ¥%s: keep % (%, %, %): %\n", _ func__,

new usr/src/tools/smatch/src/smatch_inplied. c

8

in keep pools

458 DI MPLI ED("kept [stree %] % from%. %. %. %.\n",

480 i s_nmerged(snm ? "nerged” @ "not nerged”,

481 pool _i n_pool s(sm >pool , keep_stack) ? "not

482 sm.in_keep_| eaf s(sm keep stack) ? "reachabl e keep |eaf"
483 smstate_info(sm);

461 sm.in_keep_| Ieafs(sm keep_stack) ? "reachabl e keep | eaf"
484 return sm

485 }

487 left = fi

i
488 right = f

Ite r pools(sm>| eft, renmove_stack, keep_stack, & enpved,
ilt

recurs
recu

right

_str

recurs
recu

get _stree_l d(

1=0) {

1= 0)

get _stree_id

_pool s(sm>ri ght, renove_st ack, keep_stack, &renoved,
489 if (*bail || *ski p)
490 return NULL;
465 DI MPLI ED(" checking [stree %] % from% (%) left = % [stree %]
466 get _stree_i d(sm >pool),
467 show_sm(sn), sm>line, sm>nr_children,
468 sm>left 2 sm>left->state->nane : "<none>", sm>|eft
469 sm>right ? sm>right->state->nane : "<none>", sm>ri ght ? get _
470 left = filter_pools(sm>left, renove_stack, keep_stack, & enpved,
471 right = filter_pool s(sm>right, renpve_stack, keep_stack, &reaned
491 if (!'renpved) {
492 DI MPLI ED(" ¥%s: kept all: %\n" func__, smstate_info(sm);
473 DI MPLI ED(" kept [stree %] % from %\ n" get _stree_i d(sm >pool),
493 return sm
494 }
495 *nmodified = 1;
496 if ('left & !right) {
497 DI MPLI ED("%s: renoved all: 9%\n" func__, sm_ state _info(sm);
478 DI MPLI ED("renpved [stree %d] % from % <none>\n"
498 return NULL;
499 }
501 if (!left) {
502 ret = clone_sn(right);
503 ret->nmerged = 1;
504 ret->right = right;
505 ret->left = NULL;
506 } elseif (!'right) {
507 ret = clone_sn(left);
508 ret->nmerged = 1;
509 ret->left = left;
510 ret->right = NULL;
511 } else {
512 if (left->sym!=sm>sym|| st rcrrp(l eft->name, sm >nane)
513 left = clone_sn{left
514 left->sym= sm>sym
515 | eft->nanme = sm >nane;
516 }
517 1f (right->sym!= sm>sym|]| strcnp(right->name, sm >nane)
518 right = clone_sn(right);
519 right->sym= sm>sym
520 ri ght->name = sm >nane;
521
522 ret = merge_smstates(left, right);
523 }
525 ret->pool = sm>pool;
527 DI MPLI ED("%: partial: %\n", _ func__, smstate_info(sm);
508 DI MPLI ED("partial % => ", show n(sn));
509 DIMPLIED("% from %l [stree %l]\n", show sn(ret), sm>line,
528 return ret;
529 }

531 static struct stree *filter_stack(struct smstate *gate_sm
532 struct stree *pre_stree,

new usr/src/tool s/smatch/src/smatch_inplied.c 9

533
534
535
536
537
538
539
540
541
542
543

545
546

548
528
529

549
550
532
533
534
551
536
537
552
553
554
555
556
557
558
559

562
540
541
542
563
564
565
566
567
548
549

568
569
570

572
573
574
575
576
577
578
579
580
581
582

584

static void separate_and_filter(struct smstate *sm int conparison,

const struct state_|ist *renmpve_stack,
const struct state_list *keep_stack)

struct stree *ret = NULL;
struct smstate *trrp

struct smstate *filtered_sm
int nodified,;

int recurse_cnt;

struct tineval start;

int skip;

int bail = 0;

if (!renpve_stack)
return NULL;

getti meof day(&start, NULL);
iIf (taking_too_long())
return NULL;

FOR_EACH SM pre_stree, tnp) {
if (!tnp- >rrerged || sm.in_keep_|eafs(tnp, keep_stack))
if (opti on debug)

mmeg("%: %", _ func__, show sn(tnp));

if (ltnp >ner ged)

conti nue;
if (sm.in_keep_|leafs(tnp, keep_stack))

cont i nue;
nodi fied = 0O;
recurse_cnt = 0;
skip =0

filter ed;sm = filter_pool s(tnp, renove_stack,
if (going_too_slow))
return NULL;

keep_st ack, &modif

if (bail)
return ret; /* Return the inplications we figured out b
if (skip || !filtered_sm || !nodified)
gettimeof day(&start, NULL);
filtered_sm= fllter_pool s(tnmp, renove_stack, keep_stack, &nodif
if (!filtered_sm || Tnodified)
conti nue;
/* the assignnents here are for borrowed inplications */
filtered_sm >nane = tnp->nane;
filtered_sm>sym = tnp->sym
avl _insert(&et, filtered_sm;
if (out_of nennry() || taking_too_long())
return NULL;

} END_FOR_EACH SM(tnp) ;
return ret;

struct rang
struct stree *pre_stree,

struct stree **true_states,

struct stree **fal se_states,

int *m xed)

struct state_list *true_stack = NULL;
struct state_list *false_stack = NULL;
struct tinmeval tine_before;

struct tinmeval tinme_after;

int sec;

getti meof day(&ti me_before, NULL);

new usr/src/tool s/smatch/src/smatch_inplied.c 10
586 DI MPLI ED(" checki ng inplications: (% (%) % %)\n",
587 sm >name, sm >state->nane, show_special (conparison), show.rl(rl
589 if (lis_ marged(srr)) {
590 MPLIED("% ' %' fromline %l is not nmerged.\n", get_lineno(),
570 DI MPLIED("%l "%’ is not nmerged.\n", get_lineno(), sm>nane);
591 return;
592 }
574 if (option_debug_inplied || option_debug) {
575 sm nsg("checking inplications: (% % %)",
576 sm >nanme, show_speci al (conparison), show.rl(rl));
577 }
594 separ at e_pool s(sm conparison, rl, &rue_stack, &false_stack, NULL, m xe
596 DI MPLIED("filtering true stack.\n");
597 *true_states = filter_stack(sm pre_stree, false_stack, true_stack);
598 DI MPLIED("filtering false stack.\n");
599 *fal se_states = filter_stack(sm pre_stree, true_stack, false_stack);
600 free_slist (& rue_stack);
601 free_slist(&fal se_stack);
602 if (inplied_debug)
603 printf("These are the inplied states for the true path: (% (%)
604 sm >nanme, sm >state->nane, show_speci al (conparison), show
587 if (option_debug_inplied || option_debug)
588 printf("These are the inplied states for the true path: (% % %
589 sm >nanme, show_speci al (conparison), show.rl(rl));
605 __print stree(*true states);
606 printf("These are the |np||ed states for the false path: (% (%
607 sm >nane, sm >state->nane, show speci al (conparison), show
591 printf("These are the inplied states for the false path: (% %
592 sm >nanme, show_speci al (conparison), show.rl(rl));
608 __print_stree(*fal se_states);
609 }
611 gettinmeof day(& ine_after, NULL);
612 sec = time_after.tv_sec - tine_before.tv_sec;
613 if (option_tinmeout &% sec > option_tineout) {
598 if (sec > option_tinmeout) {
599 sm>nr _children = 4000;
614 smperror("Function too hairy. lgnoring inplications after %l s
615 }
616 }
__unchanged_portion_omtted_
817 static int found_inplications;
831 static struct stree *saved_inplied_true;
832 static struct stree *saved_inplied_fal se;
833 static struct stree *extra_saved_inplied_true;
834 static struct stree *extra_saved_inplied_fal se;
836 static void separate_extra_states(struct stree **inplied_true,
837 struct stree **inplied_false)
838 {
839 struct smstate *sm
841 /* We process extra states later to preserve the inplications. */
842 FOR_EACH SM *i npl i ed true sm
843 if (sm>owner == SMATCH | EXTRA)
844 overwite_smstate_stree(&extra_saved_i nplied_true, sn;
845 } END_FOR_EACH SM'sm);
846 FOR_EACH SM extra_. saved _inplied_true, sm
847 del ete_state_stree(i np Ted_true, sm>owner, sm>name, sm >syn;
848 } END_FOR _EACH SM'sm);

new usr/src/tool s/smatch/src/smatch_inplied.c 11
850 FOR_EACH SM *inplied_false, sm {
851 if (sm>owner == SMATCH_EXTRA)
852 overwrl te smstate_stree(&extra_saved_i nplied_false, sm
853 } END_FOR _EACH_SM s
854 FOR_EACH SM extra_ saved_i np false, sm
855 delete_state_stree(i ied_fal se, sm>owner, sm>nanme, sm >syn;
856 } END_FOR_EACH SMsm);
857 }
859 static void get_tf_states(struct expression *expr,
860 struct stree **inplied_true,
861 struct stree **inplied_fal se)
862 {
863 if (handl ed_by_conpari son_hook(expr, inplied_true, inplied_false))
864 return;
851 goto found;
866 if (handl ed_by_extra_states(expr, inplied_true, inplied_false)) {
867 separate_extra_states(i npl ied_true, inplied_false);
868 return;
855 goto found;
869 1
871 if (handl ed_by_stored_conditions(expr, inplied_true, inplied_false))
859 goto found;
872 return;
862 found:
863 found_inplications = 1;
873 }
875 static void save_inplications_hook(struct expression *expr)
876 {
877 if (going_too_slow))
868 if (taking_too_long())
878 return;
879 get _tf_states(expr, &saved_inplied_true, &saved_inplied_false);
880 }
__unchanged_portion_onitted_
906 void param|imt_inplications(struct expression *expr, int param char *key, cha
907 {
908 struct expression *arg;
909 struct synbol *conpare_type;
910 char *nane;
911 struct synmbol *sym
912 struct smstate *sm
913 struct smstate *tnp;
914 struct stree *inplied_true = NULL;
915 struct stree *inplied_false = NULL;
916 struct range_list *orig, *limt;
918 if (tinme_parsing_function() > 40)
919 return;
921 while (expr- >type == EXPR_ASSI GNMENT)
922 expr = strip_i expr(expr->r| ght);
923 if (expr->type != EXPR _CALL)
924 return;
926 arg = get_argunent _fromcal | _expr (expr->args, paran);
927 if (larg)
928 return;

930 arg = strip_parens(arg);

new usr/src/tool s/smatch/src/smatch_inplied. c

931 while (arg->type == EXPR_ASSI GNMENT && arg->op == '=')
932 arg = strip_parens(arg->left);

934 = get _variabl e_fromkey(arg, key, &sym;

935 |f ('name|| Isym

936 goto free;

938 sm = get sm st at e(SMATCH_EXTRA, nane, syn;

939 if (!sm[| Tsm>nerged)

940 goto free;

942 if (strcnp(key, "$") == 0)

943 conpare_type = get_arg_type(expr->fn, param;
944 el se

945 conpare_type = get_nenber_type_fromkey(arg, key);
947 orig = estate_rl (sm>state);

948 orig = cast_rl(conpare_type, orig);

950 call _results_to_rl(expr, conpare_type, value, &imt);
952 separate_and_filter(sm SPECI AL_EQUAL, limt, _ get_cur_stree(),
954 FOR_EACH_SMi npl i ed_true, tnp) {

955 __set_smfake_stree(tnp);

956 } END_FOR_EACH SMt np);

958 free_stree(& nplied_true);

959 free_stree(& nplied_fal se);

960 free:

961 free_string(nane);

962 }

__unchanged_portion_omtted_

1080 int assume(struct expression *expr)

1081 {

1082 int orig_final_pass = final_pass;
1084 in_f ake env++;

1085 final _pass = O'

1086 _push fake_cur_stree();

1075 found_inplications = 0;

1087 spl it_whol e_condi tion(expr);
1088 final _pass = orig_final _pass;
1089 in_fake_env--;

1091 return 1;

1092 }

__unchanged_portion_onitted_

12

& nplie

new usr/src/tool s/smatch/src/smatch_i nteger_overflow c 1

R R R R

6258 Mon Aug 5 08:38:35 2019
new usr/src/tool s/smatch/src/smatch_i nteger_overflow c
11506 snatch resync

R R R R

2 * Copyright (O 2015 Oracle.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any |later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of
11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
12 * GNU Ceneral Public License for nore details.
13 =
14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt

*

/

18 #include "smatch. h"

19 #include "smatch_slist.h"
20 #include "smatch_extra. h"

22 static int ny_id,
23 static int link_id;

25 static struct smatch_state *safe_state(struct expression *expr)

27 struct smatch_state *state;

29 state = __alloc_smatch_state(0);
30 expr = strip_expr(expr);

31 state->nane = all oc_snane("safe");
32 state->data = expr;

33 return state;

34}

36 static char *save_links(struct expression *expr, struct symbol **sym struct var

38 struct var_sym *vs;

39 char *nane;

41 name = expr_to_chunk_symvsl (expr, sym vsl);
42 if (!nane || !*vsl)

43 free_string(nane);

44 return NULL;

45 }

47 FOR_EACH PTR(*vsl, vs) {

48 store_link(link_id, vs->var, vs->sym name, *syn);
49 } END_FOR_EACH PTR(VS);

51 return nane;

52 }

54 static void match_divide(struct expression *expr)

55

56 struct expression *left, *right, *binop;

57 struct synbol *type;

58 char *nane;

59 struct synmbol *sym

60 struct var_symlist *vsl;

61 sval _t max;

new usr/src/tool s/ smatch/ src/smatch_i nteger _overflow c

63 if (expr->type != EXPR_COWPARE)

64 return;

65 if (expr->op !'= "> && expr->op != SPECI AL_UNSI GNED_GT &&
66 expr->op ! = SPECI AL_GTE && expr->op != SPECI AL_UNSI GNED_GTE)
67 return;

69 left = strip_parens(expr->left);

70 right = strip_parens(expr->right);

72 if (right->type = EXPR BINOP || right->op !="/")

73 return;

74 if (!get_value(right->left, &max))

75 return;

76 if (max.value !'= I NT_MAX && max.val ue != U NT_MAX &&

77 max. val ue ! = LLONG MAX && max. uval ue ! = ULLONG_MAX)
78 return;

80 type = get_type(expr);

81 if (ltype)

82 return;

83 if (type_bits(type) != 32 && type_bits(type) != 64)

84 return;

87 bi nop = binop_expression(left, '*', right->right);

89 nane = save_links(binop, &ym &vsl);

90 if (!nane)

91 return;

92 set _true_fal se_states(ny_id, nane, sym NULL, safe_state(binop));
93 free_string(nane);

94 }

96 static void match_overflow to_| ess_than(struct expression *expr)

98 struct expression *left, *right;

99 struct synbol *type;

100 char *nane;

101 struct synbol *sym

102 struct var_symlist *vsl;

104 if (expr->type != EXPR_COWARE)

105 return;

106 if (expr->op != "< && expr->op != SPECI AL_UNSI GNED_LT)
107 return;

109 left = strip_parens(expr->left);

110 right = strip_parens(expr->right);

112 if (left->op !'="+")

113 return;

115 type = get_type(expr);

116 if (!type)

117 return;

118 if (type_bits(type) != 32 && type_bits(type) != 64)
119 return;

121 if (lexpr_equiv(left->left, right) && !expr_equiv(left->right, right))
122 return;

124 name = save_links(left, &ym &vsl);

125 if (!nane)

126 return;

127 set _true_fal se_states(ny_id, nane, sym NULL, safe_state(left));

new usr/src/tool s/ smatch/src/smatch_i nteger _overflow c

128 free_string(nane);

129 }

131 static void match_condition(struct expression *expr)
132 {

133 mat ch_overfl ow to_| ess_t han(expr);

134 mat ch_di vi de(expr);

135 }

137 int can_integer_overflowstruct synbol *type, struct expression *expr)
138 {

139 int op;

140 sval _t | max, rmax, res;

142 if (!type)

143 type = & nt_ctype;

145 expr = strip_expr(expr);

147 if (expr->type == EXPR_ASSI GNMENT) {

148 swtch(expr—>op) {

149 case SPECI AL_| MJL _ASSI GN:

150 op = '*';

151 bre

152 case SPECI AL ADD ASSI GN:

153 op = pe

154 break;

155 case SPECI AL_SHL_ASSI GN:

156 op = SPECI AL_LEFTSHI FT;
157 br eak;

158 defaul t:

159 return O;

160 }

161 } else if (expr->type == EXPR_BI NOP) {
162 if (expr->op !="*" && expr->op !="+
163 return O;

164 0op = expr->op;

165 } else {

166 return O;

167 }

169 get _absol ute_max(expr->left, & max);

170 get _absol ut e_nmax(expr->right, & nmax);

172 if (sval _binop_overflows(lmax, op, rmex))
173 return 1,

175 res = sval _binop(l max, op, rmex);

176 if (sval_cnp(res, sval _type_ max(type)) > 0)
177 return 1,

178 return O;

179 }

181 int can_integer_overflow expr(struct expression *expr)
182 {

183 struct synbol *type;

184 struct smatch_state *state;

185 char *nane;

186 struct synbol *sym

187 int ret;

189 type = get_type(expr);

190 if (!type)

191 return O;

193 if (lcan_integer_overflowtype, expr))

&& expr->op != SPECI AL_LE

new usr/src/tool s/ smatch/src/smatch_i nteger _overflow c

194 return 0;

196 name = expr_t o_known_chunk_synm(expr, &sym;

197 if (!nane || !sym

198 goto free;

200 state = get_state(ny_id, nane, syn);

201 if (state && st at e- >data)

202 ret = 0;

203 free:

204 free_string(nane);

205 return ret;

206 }

208 static int get_arg_nr(struct expression *call, struct expression *expr)
209 {

210 struct expression *arg;

211 int i;

213 i =-1;

214 FOR_EACH PTR(cal | ->args, arg) {

215 | ++;

216 if (expr_equiv(arg, expr))

217 return i;

218 } END_FOR _EACH PTR(arg);

220 return -1;

221 }

223 static void check_links(struct expression *call, struct expression *arg,
224 {

225 struct var_symlist *vsl = _vsl;

226 struct var_sym *vs;

227 struct smatch_state *state;

228 struct expression *expr;

229 int left = -1;

230 int right = -1;

232 FOR_EACH PTR(vsl, vs)

233 state = get_state(ny_id, vs->var, vs->syn);
234 if (Istate || !state->data)

235 conti nue;

237 expr = state->data;

239 if (expr_equi v(arg, expr->left)) {

240 Ie ft = nr;

241 ght get _arg_nr(call, expr->right);
242 } else |f (expr _equiv(arg, expr->r|ght)) {
243 left = get_arg_nr(call, expr->left);
244 right = nr;

245 }

247 if (left ==-1 || right == -1)

248 conti nue;

250 left = -1;

251 right = -1;

252 } END_FOR_EACH_PTR(vs);

253 }

255 static void match_call _info(struct expression *call)

256 {

257 struct expression *arg;

258 struct smstate *link;

259 struct stree *done = NULL;

int

nr,

new usr/src/tool s/ smatch/src/smatch_i nteger _overflow c 5
260 int i;
262 i =-1;
263 FOR_EACH PTR(cal | ->args, arg) {
264 i ++;
266 link = get_smstate_expr(link_id, arg);
267 if ('1ink)
268 conti nue;
270 if (get_state_stree(done, ny_id, |ink->state->nane, NULL))
271 conti nue;
272 |1 set_state_stree(&done, ny_id, |ink->state->nane, NULL, &undefine
274 check_links(call, arg, i, link, link->state->data);
275 } END_FOR_EACH PTR(arg);
277 free_stree(&done);
278 }
280 void register_integer_overflow(int id)
281 {
282 nmy_id = id;
283 set _dynam c_states(ny_id);
284 add_hook(&vat ch_condi ti on, CONDI TI ON_HOCK) ;
285 add_hook(&mat ch_cal | _i nfo, FUNCTI ON_CALL_HOXK) ;
286 }
288 void register_integer_overflow_|inks(int id)
289 {
290 link_id =id;
291 set _up_link_functions(ny_id, link_id);

292 }

new usr/src/tool s/smatch/src/smatch_kernel _user_data.c

R R R R

36844 Mon Aug 5 08:38:35 2019

new usr/src/tool s/smatch/src/smatch_kernel _user_data.c
11506 snatch resync

R R R R

1/*

2 * Copyright (C 2011 Dan Carpenter.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any |later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of
11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
12 * GNU Ceneral Public License for nore details.

13 =

14 * You shoul d have received a copy of the GNU General Public License

15 */al ong with this program if not, see http://ww.gnu.org/copyleft/gpl.txt
16 *

18 /*

19 * There are a couple checks that try to see if a variable

20 * cones fromthe user. It would be better to unify them

21 * into one place. Also it we should follow the data down

22 * the call paths. Hence this file.

23 */

25 #include "smatch. h"
26 #include "smatch_slist.h"
27 #include "smatch_extra. h"
29 static int ny_id;
30 static int

32 STATE(cal | ed);
33 static bool func_gets_user_data;

35 static const char *kstr_funcs[] = {
35 static const char * kstr_funcs[] = {

36 "kstrtoull", "kstrtoll", "kstrtoul", "kstrtol", "kstrtouint",

37 "kstrtoint", "kstrtou64", "kstrtos64", "kstrtou32", "kstrtos32",

38 "kstrtoulé", "kstrtosl6", "kstrtou8", "kstrtos8", "kstrtoull _fromuser"
39 "kstrtoll _fromuser", "kstrtoul _fromuser", "kstrtol _fromuser",

40 "kstrtouint_fromuser", "kstrtoint_fromuser", "kstrtoul6 fromuser",
41 "kstrtosl6_fromuser", "kstrtou8_fromuser", "kstrtos8_ fromuser",

42 "kstrtou64_fromuser", "kstrtos64_fromuser", "kstrtou32_fromuser",

43 "kstrtos32_fromuser",

44 1},

46 static const char *returns_user_data[] = {

47 "sinple_strtol", "sinple_strtoll", "sinple_strtoul", "sinple_strtoull",
48 "kvm register_read",

48 "kvmregister_read", "nlnsg_data", "nla_data", "nmendup_user",

49 "kmap_at onmi c", "skb_network_header",

49 };

51 static const char *returns_pointer_to_user_data[] = {

52 "nl msg_data", "nla_data", "nendup_user", "kmap_atom c", "skb_network_hea
53 };

55 static void set_points_to_user_data(struct expression *expr);

57 static struct stree *start_states;
58 static struct stree_stack *saved_stack;

new usr/src/tool s/smatch/src/smatch_kernel _user_data.c 2

59 static void save_start_states(struct statement *stnt)
60 {

61

62 }
____unchanged_portion_onmitted_

start_states = clone_stree(__get_cur_stree());

86 static void pre_nmerge_hook(struct smstate *sn

87

116

{

}

struct smatch_state *user;
struct smatch_state *extra;
struct smatch_state *state;
struct range_list *rl;

sval _t dummy;

sval _t sval _100;

sval _100. val ue = 100;
sval _100.type = & nt_ctype;

user = __get_state(ny_id, sm>name, sm>syn);
if (luser || 'estate_rl(user))
user = get_state(ny_id, sm>nanme, sm >synj;
if (luser)
return;
a = __get_state(SMATCH EXTRA, sm >nane, sm >syn);
lextra
! __in_function_def && !estate_rl(sm>state)) {

extr
if(
if(

~5 =

* ok % ok ok ok ok 3k Ok k% ok F

If the one side is capped and the other side is enpty then
let’s just mark it as not-user data because the infornation
isn"t going to be useful. How this |ooks is:

if (user_var > trusted)

user _var = trusted; <-- enpty state
el se

<-- capped

The problemis that sonetines things are capped to a literal
and we’'d like to keep the state in that case... Ugh. 1|’ve
added a check which assunes that everything |less than 100 is
probably capped against a literal.

*

*/
if (is_capped_var_syn(sm >nane, sm >syn) &&
sval _cnp(estate_max(user), sval _100) > 0)
set _state(ny_id, sm>nane, sm>sym alloc_estate_enpty()

return;
}
extra = get_state(SMATCH EXTRA, sm >nane, sm >syn);
if (lextra || 'estate_rl(extra))
return;
rl =rl_intersection(estate_rl(user), estate_rl(extra));

if (rl_to_sval(rl, &Jumy))
rl = NULL;

state = alloc_estate_rl(clone_rl(rl));

if (estate_capped(user) || is_capped_var_sym sm >nanme, sm >sym))
estate_set_capped(state);

set_state(ny_id, sm>nane, sm >sym state);

set_state(ny_id, sm>nane, sm>sym alloc_estate_rl(clone_rl(rl)));

static void extra_nonod_hook(const char *nanme, struct synbol *sym struct expres

struct smatch_state *user, *new,
struct smatch_state *user;
struct range_list *rl;

new usr/src/tool s/smatch/src/smatch_kernel _user_data.c

118 user = __get_state(ny_id, nanme, sym;

133 user = get_state(ny_id, name, sym;

119 if (luser)

120 return;

121 rl =rl_intersection(estate_rl(user), estate_rl(state));

122 if (rl_equiv(rl, estate_rl(user)))

123 return;

124 new = alloc_estate_rl(rl);

125 if (estate_capped(user))

126 estate_set_capped(new);

127 set_state(ny_id, nane, sym new);

139 set_state(ny_id, name, sym alloc_estate_rl(rl));

128 }

130 static bool binop_capped(struct expression *expr)

131 {

132 struct range_list *left_rl;

133 int conparison;

135 if (expr->op == '-' && get_user_rl (expr->left, &@eft_rl)) {
136 if (user_rl_capped(expr->left))

137 return true;

138 conpari son = get_conparison(expr->left, expr->right);
139 if (conparison && show_speci al (conparison)[0] == ">’
140 return true;

141 return false;

142 }

144 if (expr->op ==& || expr->op == "%) {

145 if (is_capped(expr->left) || is_capped(expr->right))
146 return true;

147 if (user_rl_capped(expr->left) || user_rl_capped(expr->right))
148 return true;

149 return fal se;

150 }

152 if (user_rl_capped(expr->left) &&

153 user _r| _capped(expr->right))

154 return true;

155 return fal se;

156 }

158 bool wuser_rl_capped(struct expression *expr)

159 {

160 struct smatch_state *state;

161 struct range_list *rl;

162 sval _t sval;

164 expr = strip_expr(expr);

165 if (lexpr)

166 return fal se;

167 if (get_value(expr, &sval))

168 return true;

169 if (expr->type == EXPR_BI NOP)

170 return bi nop_capped(expr);

171 if ((expr->type == EXPR PREOP || expr->type == EXPR _POSTCOP) &&
172 (expr->o0p == SPECI AL_I NCREMENT || expr->op == SPECI AL_DECREMENT))
173 return user_rl_capped(expr->unop);

174 state = get_state_expr(ny_id, expr);

175 if (state)

176 return estate_capped(state);

178 if (get_user_rl(expr, &rl))

179 return false; /* uncapped user data */

181 return true; /* not actually user data */

new usr/src/tool s/smatch/src/smatch_kernel _user_data.c 4
182 }
184 static void tag_inner_struct_menbers(struct expression *expr, struct synbol *nmem
185 {
186 struct expression *edge_nenber;
187 struct synbol *base = get_real _base_type(nenber);
188 struct synbol *tnp;
190 if (menber->ident)
191 expr = menber_expression(expr, '.', nenber->ident);
193 FOR_EACH PTR(base->synbol _list, tnp) {
194 struct synmbol *type;
196 type = get_real _base_type(tnp);
197 if (!type)
198 conti nue;
200 if (type->type == SYMUNION || type->type == SYM STRUCT) {
201 tag_i nner_struct _nenbers(expr, tnp);
202 conti nue;
203 }
205 if (!tnp->ident)
206 conti nue;
208 edge_nenber = menber _expression(expr, '.', tnp->ident);
209 set_state_expr(my_id, edge_nenber, alloc_estate_whol e(type));
210 } END_FOR_EACH PTR(tnp);
211 }
____unchanged_portion_onitted_
392 static bool is_points_to_user_data_fn(struct expression *expr)
393 {
394 int i;
396 expr = strip_expr(expr);
397 if (expr->type != EXPR CALL || expr->fn->type != EXPR SYMBOL ||
398 I expr - >f n- >synbol)
399 return fal se;
400 expr = expr->fn;
401 for (i = 0; i < ARRAY_SI ZE(returns_poi nter_to_user_data); i++) {
402 if (symname_is(returns_pointer_to_user_datal[i], expr))
403 return true;
404 1
405 return fal se;
406 }
408 static int get_rl_fromfunction(struct expression *expr, struct range_list **rl)
409
410 int i;
412 if (expr->type != EXPR CALL || expr->fn->type != EXPR _SYMBOL ||
413 I expr->f n->synbol _narme || !expr->fn->synbol _name- >nane)
414 return O;
416 for (i = 0; i < ARRAY_SI ZE(returns_user_data); i++) {
417 if (strcnp(expr->fn->synbol _nanme->nane, returns_user_datal[i]) ==
418 *rl = alloc_whol e_rl(get_type(expr));
419 return 1;
420 }
421 }
422 return O;
423 }

425 int points_to_user_data(struct expression *expr)

new usr/src/tool s/smatch/src/smatch_kernel _user_data.c

426 {

427 struct smatch_state *state;

428 struct range_list *rl;

429 char buf[256];

430 struct synbol *sym

431 char *nane;

432 int ret =0;

434 expr = strip_expr(expr);

435 if (!expr)

436 return O;

437 if (is_skb data(expr))

438 return 1,

439 if (is_points_to_user_data_fn(expr))

440 return 1;

441 if (get_rl_fromfunction(expr, &l))

442 return 1,

444 if (expr->type == EXPR_BINOP && expr->op == "+") {
445 if (p0|ntst0 user data(expr->|eft))
446 return 1;

447 if (points_t o_user_dat a(expr->right))
448 return 1;

449 return O;

450 }

452 name = expr_to_var_sym(expr, &sym;

453 if (I'nane || !syn’)

454 goto fr

455 snprintf(buf, si zeof(buf) "*os", nane);

456 state = __get_state(ny_id, buf, sym;

396 state = get_state(ny_id, buf, sym;

457 if (state & estate_rl(state))

458 ret = 1;

459 free:

460 free_string(nane);

461 return ret;

462 }

464 static void set_points_to_user_data(struct expression *expr)
465 {

466 char *nane;

467 struct synbol *sym

468 char buf[256];

469 struct synbol *type;

471 name = expr_to_var_sym(expr, &sym;

472 if (!'name || !sym

473 goto free;

474 snprintf(buf, sizeof(buf), "*%", nane);
475 type = get_type(expr);

476 if (type && type >type == SYM PTR)

477 pe = get_real base _type(type);

478 if ('type || type->type != SYM_BASETYPE)
479 type = & |l ong_ctype;

480 set_state(ny_id, buf, sym alloc_estate_whol e(t y pe));
414 set_state(ny_id, buf, sym alloc_estate_whol e(& | ong_ctype));
481 free:

482 free_string(nane);

483 }

__unchanged_portion_onitted_

558 static bool handl e_op_assign(struct expression *expr)

559 {
560 struct expression *binop_expr;
561 struct smatch_state *state;

new usr/src/tool s/smatch/src/smatch_kernel _user_data.c

562 struct range_list *rl;

564 switch (expr->op) {

565 case SPECI AL_ADD_ASSI| G\:

566 case SPECI AL_SUB_ASS| G\:

567 case SPECI AL_AND_ASSI G\:

568 case SPECI AL_MOD_ASSI G\:

569 case SPECI AL_SHL_ASSI GN:

570 case SPECI AL_SHR ASSI G\:

571 case SPECI AL_OR ASS| G\:

572 case SPECI AL_XOR ASSI G\:

573 case SPECI AL_MJL_ASSI G\:

574 case SPECI AL_DI V_ASSI G\:

575 bi nop_expr = bi nop_expression(expr->left,
576 op_renove_assi gn(expr->op),
577 expr->right);
578 if (!get_user_rl(binop_expr, &rl))

579 return true;

581 rl = cast_rl(get_type(expr->left), rl);
582 state = alloc_estate_rl(rl);

583 if (user_rl_capped(binop_ expr))

584 estate_set _capped(state);

585 set _state_expr(ny_id, expr->left, state);
586 return true;

587

588 return fal se;

589 }

591 static void match_assign(struct expression *expr)

592 {

593 struct range_list *rl;

594 static struct expression *handl ed;

595 struct smatch_state *state;

596 struct expression *faked;

598 faked = get_faked expre55| on();

599 if (faked & faked == handl ed)

600 return;

601 if (is_f ake_cal | (expr->right))

602 goto clear_old_state;

603 if (handl e_get_user(expr))

604 return;

605 if (points_to_user_data(expr->right)) {

606 handl ed = expr;

500 if (points_to_user_data(expr->right))

607 set_points_to_user_data(expr->left);
608

609 i f (handl e_struct_assi gnment (expr))

610 return;

612 if (handl e_op_. aSSI gn(expr))

613 return

614 if (expr->op '—’=’)

615 goto clear_old_state;

617 /* Handl ed by DB code */

618 if (expr->right->type == EXPR CALL || __in_fake_paraneter_assign)
619 return;

621 if (!get_user_rl(expr->right, &l))

622 goto clear_old_state;

624 rl = cast_rl(get_type(expr->left), rl);

625 state = alloc_estate_rl(rl);

626 if (user_rl_capped(expr->right))

new usr/src/tool s/smatch/src/smatch_kernel _user_data.c

627
628
509

630

estate_set _capped(state);
set_state_expr(ny_id, expr->left, state);
set_state_expr(ny_id, expr->l| eft, alloc_estate_rl(rl));

return;

632 clear_ol d_state:

633
634
635 }

if (get_state_expr(ny_id, expr->left))
set _state_expr(ny_id, expr->left, alloc_estate_enpty());

__unchanged_portion_onitted_

660 static struct range_list *strip_negatives(struct range_list *rl)
541 static void handl e_unsigned_It_gt(struct expression *expr)

661 {
662
663
664
665

667
668
669
670

672
673

675
676

678
679 }

sval _t min=rl_mn(rl);

sval _t m nus_one;

sval _t over;

sval _t max = sval _type_max(rl _type(rl));

m nus_one. type = rI type(rl)

m nus_one. vaI ue = + 1ULL;
over.type = rl _ pe(rl)

over.val ue = 1

if ('rl)

return NULL;

if (type_unsigned(rl_type(rl)) && type_bits(rl_type(rl)) > 31)
return renove_range(rl, over, max);

return renove_range(rl, mn, mnus_one);

681 static void handl e_conpare(struct expression *expr)

682 {
683
684
685
686
687
688
689
690
691
692
693
544
545
546
547

695
696

698
699

701
702
703
550
55118
552
553
554

struct expression *left, *right;
struct range_list *left_rl = NULL;
struct range_list *right_rl = NULL,;
struct range_list *user_rl;

struct smatch_state *capped_state;
struct smatch_state *left_true = NULL;
struct smatch_state *left_fal se = NULL;
struct smatch_state *right_true = NULL;
struct smatch_state *right_fal se = NULL;
struct synbol *type;

sval _t sval;

struct range_list *left;

struct range_|list *right;

struct range_|ist *non_negative;

sval _t mn, mnus_one;

left = strip_expr(expr->left);
right = strip_expr(expr->right);

while (I eft->type == EXPR_ASSI GNMENT)
left = str|p expr(left->left);

conditions are nostly handl ed by smatch_extra.c. The speci al
here is that say you have if (user_int < unknown_u32) {

In Smatch extra we say that, W have no idea what val ue
unknown_u32 is so the only thin we can say for sure is that

* Ok ok ok k ok ko

Condi tions are nostly handl ed by smatch_extra.c, but there are sone
tinmes where the exact values are not known so we can’t do that.

case

user_int is not -1 (UNT_MAX). But in check_user_data2.c we should

new usr/src/tool s/smatch/src/smatch_kernel _user_data.c 8
555 * assunme that unless unknown_u32 is user data, it's probably |ess than
556 * | NT_MAX.

704 *

705 * Nornmally, we might consider using smatch_capped.c to suplinment smatch
706 * extra but that doesn’t work when we nerge unknown uncapped kernel
707 * data with unknown capped user data. The result is uncapped user
708 * data. We need to keep it separate and say that the user data is
709 * capped. In the past, | would have narked this as just regul ar

710 * kernel data (not user data) but we can’t do that these days because
711 * we need to track user data for Spectre.

712 *

713 * The other situation which we have to handle is when we do have an
714 * int and we conpare agai nst an unknown unsi gned kernel variable. In
715 * that situation we assune that the kernel data is |ess than | NT_MAX
716 * Otherwise then we get all sorts of array underflow fal se positives.
717 *

718 */

720 /* Handl ed in smatch_extra.c */

721 if (get_inplied_value(left, &sval) ||

722 _inplied_value(right, &sval))

560 type = get_type(expr);

561 if (!type_unsi gned(type))

723 retur

725 get _user_rl(left, & eft_rl);

726 get _user_rl(right, &ight_rl);

728 /* nothing to do */

729 if (Mleft_rl & !right_rl)

564 /*

565 * Assune if (user < trusted) { because | amlazy and because this
566 * is the correct way to wite code.

567 */

568 if (!get_user_rl(expr->left, &eft))

730 return;

731 /* if both sides are user data that's not a good limt */

732 if (left_rl & right_rl)

570 if (get_user_rl(expr->right, &ight))

733 return;

735 if (left_rl)

736 user_rl = left_rl;

737 el se

738 user_rl =right_rl;

573 if (!sval_is negatlve(rl mn(Ieft)))

574 return;

575 mn = rl mn(Ieft)

576 m nus onetype—rl _type(left);

577 m nus_one. val ue = -1;

578 non_negative = renove_range(left, mn, mnus_one);

740 type = get_type(expr);

741 if (type_unsigned(type))

742 user_rl = strip_negatives(user_rl);

743 capped_state = alloc_estate_rl (user_rl);

744 estat e_set _capped(capped_state);

746 svmtch (expr—>op) {

747 case '<

748 case SPECI AL_UNSI GNED_LT:

749 case SPECIAL_LTE:

750 case SPECI AL_UNSI GNED_LTE:

751 if (left_rl)

752 left_true = capped_state;

753 el se

new usr/src/tool s/smatch/src/smatch_kernel _user_data.c

754
585
586
755
756
757
758
759
760
761
762
763
592
593
764
765

767
768
769 }

right_false = capped_state;
set _true_fal se_states_expr(ny_id, expr->left,
al loc_estate_rl (non_negative), NULL);
br eak;
case '>':
case SPECI AL_UNSI GNED_GT:
case SPECI AL_GTE:
case SPECI AL_UNSI GNED_GTE:
if (left_rl)
left_false = capped_state;
el se
right _true = capped_state;
set_true_fal se_states_expr(ny_id, expr->left,
NULL, alloc_estate_rl (non_negative));
br eak;

}

set _true_fal se_states_expr(ny

)| left, left_true, left_false);
set _true_fal se_states_expr(ny

id,
~id, right, right_true, right_false);

771 static void match_condition(struct expression *expr)

772 {
773
774

776
777
778
779
780

782
609
783 }

if (expr->type != EXPR_COVPARE)
return;

if (expr->op == SPECI AL_EQUAL ||
expr->op == SPECI AL_NOTEQUAL) {
handl e_eq_not eq(expr);
return;

}

handl e_conpar e(expr) ;
handl e_unsi gned_| t _gt (expr);

____unchanged_portion_onitted_

657 struct db_info {

658
659
660 };
661 static i
662 {
663
664
665
666
667
668

670
671

673
674
675
676

678
679
680
681
682
683
684

struct range_list *rl;
struct expression *call;

nt returned_rl_call back(void *_info, int argc, char **argv, char **azCol

struct db_info *db_info = _info;
struct range_list *rl;

char *return_ranges = argv[O0];
char *user_ranges = argv[1];
struct expression *arg;

int conparison;

if (argc !'= 2)

return O;
call _results_to_rl(db_info->call, get_type(db_info->call), user_ranges,
if (str_to_conparison_arg(return_ranges, db_info->call, &conparison, &ar

conpari son == SPECI AL_EQUAL) {
struct range_list *orig_rl;

if (!get_user_rl(arg, &orig_rl))

return O;
rl =rl_intersection(rl, orig_rl);
if ('rl)
return O;
}
db_info->rl = rl_union(db_info->rl, rl);

new usr/src/tool s/ smatch/src/smatch_kernel _user_data.c 10
686 return O;
687 }
830 {stati c int has_user_data(struct synbol *sym
831
832 struct smstate *tnp;
834 FOR_EACH MY_SMny_id, __get_cur_stree(), tnp) {
835 if (tnp->sym == sym
836 return 1;
837 } END_FOR EACH SM tnp);
838 return O;
839 }
____unchanged_portion_onitted_
857 {st atic int db_returned_user_rl (struct expression *call, struct range_list **rl)
858
859 struct smatch_state *state;
860 char buf[48];
718 struct db_info db_info = {};
720 /* for function pointers assume everything is used */
721 if (call->fn->type != EXPR_SYMBOL)
722 return O;
862 if (is_fake_call(call))
863 return O;
864 snprintf(buf, sizeof(buf), "return %", call);
865 state = get_state(ny_id, buf, NULL);
866 if (Istate || 'estate_rl(state))
726 db_info.call = call;
727 run_sql (& eturned_rl _cal | back, &db_info,
728 "select return, value fromreturn_states where % and type = %
729 get _static_filter(call->fn->synbol), USER DATA3_SET);
730 if (db_info.rl)
731 func_gets_user_data = true;
732 *rl = db_info.rl;
733 return 1,
734 }
736 run_sql (& eturned_rl _cal | back, &db_info,
737 "select return, value fromreturn_states where % and type = %
738 get_static_filter(call->fn->synbol), USER DATA3);
739 if (db_info.rl)
740 if (!we_pass_user_data(call))
867 return O;
868 *rl = estate_rl(state);
742 *rl = db_info.rl;
869 return 1;
744
746 return O;
870 }

____unchanged_portion_onitted_

877 static int user_data_flag;
878 static int no_user_data_flag;

879 struct

range_list *var_user_rl (struct expression *expr)

756 static struct range_list *var_user_rl (struct expression *expr)

880 {
881
882
883

885
886

struct smatch_state *state;
struct range_list *rl;
struct range_|ist *absolute_rl;

if (expr->type == EXPR PRECP && expr->op == '&) {
no_user_data_flag = 1;

new usr/src/tool s/smatch/src/smatch_kernel _user_data.c 11

887
888

890
891

893
894
895
896
897
898

900
772
901
902
903

905
906
907
908
909
910
911
912
913

915
916
917

919
920
921
922
923

925
926

928
929

931
932

934
935
936
937

939
940
941
942
943

945
946

948
949

return NULL;

if (expr->type == EXPR _BINOP && expr->op == %) {
struct range_|ist *left, *right;

if (!get_user_rl(expr->right, &right))
return NULL;

get _absol ute rl(expr—>left &l eft);

rl = rl_binop(left, ' %, rlgt)

got o found;

if (expr->type == EXPR BINOP && expr->op == "/") {

if (!option_spamy && expr->type == EXPR BI NOP && expr->op == "/") {
struct range_list *left = NULL;
struct range_list *right = NULL;
struct range_list *abs_right;

/
The specific bug I'’mdealing with is:

foo = capped_user / unknown;

Instead of just saying foo is now entirely user_rl we should
probably say instead that it is not at all user data.

/

* ok % ok % bk ok %

get _user_rl (expr->left, &eft);
get _user_rl (expr->right, &right);
get _absolute_rl (expr->right, &abs_right);

if (left & !right) {
rl = rl_binop(left, "/’
|f (sval _cnp(rl rmx(lef
no_user _data_fl

, abs_right);

t), rI max(rl)) < 0)
ag = 1,

}

return NULL;

if (get_rl_fromfunction(expr, &rl))
goto found;

if (get_user_macro_rl (expr, &rl))
goto found;

if (comes_fromskb_data(expr)) {
rl = alloc_whole_rl (get_type(expr));
goto found;

}
state = get_state_expr(ny_id, expr);
if (state & estate_rl(state))

rl = estate_rl(state);

goto found;

}

if (expr->type == EXPR_CALL && db_returned_user_rl (expr, &rl))
goto found;

if (is_array(expr)) {

struct expression *array = get_array_base(expr);

if (!get_state_expr(ny_id, array)) {

new usr/src/tool s/ smatch/src/smatch_kernel _user_data.c

952 no_user _data_flag = 1;

953 return NULL;

954 }

955 }

957 if (expr->type == EXPR_PREOP && expr->op == '*' &&
958 is_user_rl (expr->unop))

959 rl = var_to_absolute_rl (expr);

960 goto found;

961 }

963 return NULL;

964 found:

965 user_data_flag =

966 absolute_rl = var_to_absolute_rl (expr);

967 return clone_rl (rl_intersection(rl, absolute_rl));
968 }

970 static bool is_ptr_subtract(struct expression *expr)
971 {

972 expr = strip_expr(expr);

973 if (!expr)

974 return false;

975 if (expr->type == EXPR Bl NOP &% expr->op == T &&
976 type_is_ptr(get_type(expr->left))) {

977 return true;

978 }

979 return false;

980 }

982 int get_user_rl(struct expression *expr, struct range_list **rl)
983 {

984 if (is_ptr subtract(expr))

985 return O;

987 user_data_flag = 0;

988 no_user_data_flag = 0;

989 custom get _absol ute_rl (expr, &var_user_rl, rl);
990 if (luser_data_flag || no_user_data_flag)

991 *rl = NULL;

993 return '1*rl;

994 }

853 int get_user_rl_spamy(struct expression *expr, struct range_list **rl)
854 {

855 int ret;

857 opti on_spamy++;

858 ret = get_user_rl(expr, rl);

859 opti on_spamy- - ;

861 return ret;

862 }

996 int is_user_rl(struct expression *expr)

997 {

998 struct range_|list *tnp;

1000 return !!get_user_rl (expr, & np);

868 return get_user_rl_spamy(expr, &t np);

1001 }

__unchanged_portion_omtted_

1015 static char *get_user_rl _str(struct expression *expr, struct synbol *type)

1016 {

12

new usr/src/tool s/smatch/src/smatch_kernel _user_data.c
1017 struct range_list *rl;
1018 static char buf[64];
1020 if (lget_user_rl(expr, &l))
1021 return NULL;
1022 rl = cast_rl(type, rl);
1023 snprintf(buf, si zeof(buf) "Y%s%s",
1024 show_rl (rl), user_rl_capped(expr)
1025 return buf;
1026 }
1028 static void match_call _info(struct expression *exp
1029 {
885 struct range_list *rl;
1030 struct expression *arg;
1031 struct synbol *type;
1032 char *str;
1033 int i;
888 int i =0;
1035 i =-1;
1036 FOR_EACH PTR(expr->args, arg) {
1037 1 ++;
1038 type = get_arg_type(expr->fn, i);
1039 str = get_user_rl_str(arg, type);
1040 if (!str)
895 if (!get_user_rl(arg, &l))
1041 conti nue;
1043 sql _insert_call er_info(expr, USER_
898 rI = cast_rl(type, rl);
899 | insert_caller_inf o(expr USER |
1044 } END_ FCR EACH_PTR(arg);
1045 }
__unchanged_portion_onitted_
1062 static void struct_nenber_cal | back(struct expressi

1063 {
1064
1065
1066
1067

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

1080
1081

1083
1084
1085

1087

942
1088
1089

struct smatch_state *state;

struct range_list *rl;
struct synbol *type;
char buf[64];

/*

* Smatch uses a hack where if we get an u

* both user data and it points to user data. But
then it’s just

function which takes an int,

enough bytes for it to be a pointer.

*/
type = get_arg_type(call->fn,
it

param ;
type && type_bits(type) < type_ blts(&p
return;
if (strcnp(sm>state->nanme, "") == 0)
return;

if (strcenp(printed_name, "*$") == 0 &&
is_struct_ptr(sm>sym)

return;
state = __get_stat e(SMATCH EXTRA, sm >nane,
state = get_stat e(SMATCH _EXTRA, sm >nane,
if (!state || lestate_rl(state))

rl = estate_rT(sm>state);

13

2])
r

DATA, i, "$", str);

DATA3, i, "$", show.rl(rl));
on *call, int param char *pri

nsigned long we say it’s
if we pass it to a
user data. There’'s not

tr_ctype))

sm>sym;
sm >sym;

new usr/src/tool s/ smatch/src/smatch_kernel _user_data.c 14
1090 el se

1091 rl =rl_intersection(estate_rl(sm>state), estate_rl(state));
1093 if ('rl)

1094 return;

1096 snprintf(buf, sizeof(buf), "%%", showrl(rl),

1097 estate capped(sm >st at e) ? "[e]" o "

1098 sqgl _insert_caller_info(call, USER DATA par am pr| nted_nane, buf);
948 sql _insert_caller_info(call, USER _DATA3, param printed_nane, show rl(rl
1099 }

1101 static void db_param set(struct expression *expr, int param char *key, char *va
1102 {

1103 struct expression *arg;

1104 char *nane;

1105 struct synbol *sym

1106 struct smatch_state *state;

1108 while (expr->t type == EXPR_ASSI GNVENT)

1109 expr = strip_t expr(expr—>r| ght);

1110 if (expr->type !'= EXPR_CALL)

1111 return;

1113 arg = get_argunent _fromcal | _expr (expr->args, paran);

1114 if (larg)

1115 return;

1116 name = get_variable_fromkey(arg, key, &ym;

1117 if (!nane || !sym

1118 goto free;

1120 state = get_state(ny_id, nane, syn);

1121 if (Istate)

1122 goto free;

1124 set_state(ny_id, nane, sym alloc_estate_enpty());

1125 free:

1126 free_string(nane);

1127 }

1129 static bool param data_capped(const char *val ue)

1130 {

1131 if (strstr(value, ",c") || strstr(value, "[c"))

1132 return true;

1133 return fal se;

1134 }

1136 static void set_paramuser_data(const char *nane, struct synbol *sym char *key,
1137 {

1138 struct range_list *rl = NULL;

1139 struct smatch_state *state;

1140 struct expression *expr;

1141 struct synbol *type;

1142 char full nane[256] ;

1143 char *key_orig = key;

1144 bool add_star = fal se;

1146 if (strcop(key, "**$") == 0) {

1147 snprintf(fullname, sizeof(fullnanme), "**%", nane);

1148 } else {

1149 if (key[0] == "*")

1150 add_star = true;

1151 key++;

1152 }

958 if (strcmp(key, "*$") == 0)

959 snprintf(full nane, sizeof (fullnanme), "*%", nane);

new usr/src/tool s/smatch/src/smatch_kernel _user_data.c 15
960 else if (strncnp(key, "$", 1) == 0)

961 snprintf(full nane, 256, "%%", nane, key + 1);

962 el se

963 return;

1154 snprintf(full nane, 256, "%%%", add_star ? "*" : "", name, key
1155 }

965 type = get_nenber_type_from key(synbol _expression(sym, key);

1157 expr = synbol _expression(synm;

1158 type = get_nenber_type_from key(expr key_orig);

967 /* if the caller passes a voi d pointer with user data */

968 if (strcnp(key, "*$") == 0 && type && type != &void_ctype) {

969 struct expression *expr = synbol _expression(syn);

1160 /*

1161 * Say this function takes a struct ponter but the caller passes
1162 * this_function(skb->data). W have two options, we could pass *$
1163 * as user data or we could pass foo->bar, foo->baz as user data.
1164 * The second option is easier to inpl enent so we do that.

1165 *

1166 */

1167 if (strcnp(key_orig, "*$") == 0) {

1168 struct synbol *tnp = type;

1170 while (tnmp && tnmp->type == SYM PTR)

1171 tnp = get_real _base_type(tnp);

1173 if (tnp && (tnp->type == SYM STRUCT || tnp->type == SYM UNI ON))
1174 tag_as_user_dat a(synbol _expressi on(sym);

971 tag_as_user _dat a(expr);

972 set _poi nts_to_user_dat a(expr);

1175 return;

1176 }

1177 }

1179 str_to_rl(type, value, &rl);

1180 state = alloc_estate_rl(rl);

1181 if (param data_capped(value) || is_capped(expr))

1182 estate_set_capped(state);

1183 set_state(ny_id, fullname, sym state);

1184 }

__unchanged_portion_onitted_

1221 static void store_user_data_return(struct expression *expr, char *key, char *val
1222 {

1223 struct range_list *rl;

1224 struct synbol *type;

1225 char buf[48];

1227 if (strcnp(key, "$") != 0)

1228 return;

1230 type = get_type(expr);

1231 snprintf(buf, sizeof(buf), "return %", expr);

1232 call _results_to_rl(expr, type, value, &l);

1234 set_state(ny_id, buf, NULL, alloc_estate_rl(rl));

1235 }

1237 static void set_to_user_data(struct expression *expr, char *key, char *val ue)
1238 {

1239 struct smatch_state *state;

1240 char *nane;

1241 struct synbol *sym

1242 struct synbol *type;

new usr/src/tool s/ smatch/ src/smatch_ker nel

1243 struct range_list *rl = NULL;

1245 type = get_nenber_type_fromkey(expr, key);

1246 nane = get_variabl e_from key(expr, key, &sym;

1247 if (!nane || !sym

1248 goto free;

1250 call _results_to_rl(expr, type, value, &l);

1252 state = alloc_estate_rl(rl);

1253 if (param data_capped(val ue))

1254 estate_set _capped(state);

1255 set_state(ny_id, name, sym state);

1029 set_state(ny_id, nane, sym alloc_estate_rl(rl));
1256 free:

1257 free_string(nane);

1258 }

1260 static void returns_paramuser_data(struct expression *expr,
1261 {

1262 struct expression *arg;

1263 struct expression *call;

1265 call = expr;

1266 while (call->type == EXPR_ASSI GNMENT)

1267 call = strip_expr(call->right);

1268 if (call->type !'= EXPR_CALL)

1269 return;

1271 if (!we_pass_user_data(call))

1272 return;

1274 if (param== -1) {

1275 if (expr->type != EXPR_ASSI GNMENT)

1276 store_user_data_return(expr, key, value);
1050 if (expr->type != EXPR_ASS|I GNMENT)

1277 return;

1278

1279 set _to_user_data(expr->left, key, value);
1280 return;

1281 }

1283 arg = get_argunment _fromcall _expr(call->args, param;
1284 if (larg)

1285 return;

1286 set _to_user_data(arg, key, value);

1287 }

1289 static void returns_paramuser_data_set(struct expression *expr,
1290 {

1291 struct expression *arg;

1293 func_gets_user_data = true;

1295 if (param== -1) {

1296 if (expr->type != EXPR _ASSI GNVENT) {

1297 store_user_data_return(expr, key, value);
1069 if (expr->type != EXPR_ASSI GNMVENT)

1298 return;

1299 }

1300 if (strcnp(key, "*$") == 0)

1301 set _poi nts_to_user_data(expr->left);
1302 tag_as_user _dat a(expr->left);

1303 } else {

1304 set _to_user_data(expr->left, key, value);

_user_data.c

int

16

int param char *ke

param char

new usr/src/tool s/smatch/src/smatch_kernel _user_data.c 17

1305
1306
1307

1309
1310
1311
1312

1314
1315
1316
1317
1318

1091
1093

1095
1096
1097
1098

1100
1101

1320

1322
1323
1324
1325
1326
1327
1328
1329
1330
1331

1333
1334
1335

1337
1119
1120

1338
1339
1340

1342
1343

1345
1346
1347
1348
1349
1350
1351
1352
1353
1354

return;

}

whil e (expr—>type == EXPR_ASSI GNVENT)
expr = stri p expr (expr->right);
if (expr->type != EXPR _CALL)
return;

arg = get_argunent _from cal | _expr (expr->args, paran);
if (larg)

return;
set _to_user_data(arg, key, value);

static int has_enpty_state(struct smstate *sm
1092 {

struct smstate *tnp;

FOR_EACH PTR(sm >possi ble, tnmp) {
if (lestate_rl (tnp->state))
return 1;
} END_FOR EACH PTR(tnp);

return O;

static void paramset_to_user_data(int return_id, char *return_ranges, struct ex
1321 {

struct smstate *sm

struct smatch_state *start_state;
struct range_list *rl;

int param

char *return_str;

const char *param nane;

struct synbol *ret_sym

bool return_found = fal se;

bool pointed_at_found = fal se;
char buf[64];

expr = strip_expr(expr);
return_str = expr_to_str(expr);
ret_sym = expr_to_sym(expr);

FOR_EACH MY_SMny_id, _ get_cur_stree(), sm {
if (has_enpty_state(sm)
conti nue;

param = get _param. num fromsyn(sm >symn);
1f (param < 0)

conti nue;
if (!paramwas_set_var_syn(sm >nane, sm >syn))
conti nue;
/* The logic here was that if we were passed in a user data then
* we don’t record that. |It’s like the difference between
* paramfilter and paramset. Wen | think about it, |’ mnot
* sure it actually works. |t's probably harnl ess because we
* checked earlier that we’'re not returning a paraneter...
* Let’s mark this as a TODQ
*/

start_state = get_state_stree(start_states, ny_id, sm>nane, sm
if (start_state & rl_equiv(estate_rl(sm>state), estate_rl(star
cont i nue;

new usr/src/tool s/smatch/src/smatch_kernel _user_data.c 18
1356 param nane = get_param nanme(sn);

1357 1 f (!param nane)

1358 conti nue;

1359 if (strcnp(paramnane, "$") == 0) /* The -1 paramis handl ed af
1360 conti nue;

1362 snprintf(buf, sizeof(buf), "%%",

1363 show rl (estate_rl (sm>state)),

1364 estate_capped(sm >state) ? “[c] oo

1365 sql _insert_return_states(return_id, return ranges

1366 func_gets_user_data ? USER DATA SET : U
1367 param param nane, buf);

1144 func_gets_user data ? USER DATA3_SET :
1145 param param name, show rl (estat e_rl(sm
1368 } END_FOR EACH SMsm);

1370 /* This if for "return foo;" where "foo->bar" is user data. */

1148 if (points_to_user_data(expr)) {

1149 sql _insert _return_states(return_id, return_ranges,

1150 (i s_skb_dat a(expr) || !func_gets_user_d
1151 USER | DATA3 SET USER_DATAS3,

1152 -1, TE$, T,

1153 goto free_string;

1154 }

1371 FOR_EACH MY_SMny_id, _ get_cur_stree(), sm {

1372 if (lret_sym

1373 br eak;

1374 if (ret_sym!= sm>sym

1375 conti nue;

1377 param nane = state_nane_to_param nane(sm >nanme, return_str);
1378 i f (!param.nane)

1379 conti nue;

1380 if (strcnp(paramnane, "$") == 0)

1381 return_found = true;

1382 if (strcnp(paramnane, "*$") == 0)

1383 poi nted_at_found = true;

1384 snprintf(buf, sizeof(buf), "%%",

1385 show rl (estate_rl (sm>state)),

1386 estate_capped(sm >state) ? "[c]" : "");

1387 sql _insert_return_states(return_id, return_ranges,

1388 func_gets_user_data ? USER DATA SET : U
1389 -1, paramnane, buf);

1169 func_gets_user_data ? USER DATA3_SET :
1170 -1, paramnanme, show rl (estate_rl(sm>s
1390 } END_FOR EACH SMsm);

1392 /* This if for "return ntohl (foo);" */

1393 if (!return_found && get_user rl(expr &rl)) {

1394 snprintf (buf, “sizeof (buf), "%%

1395 show_rl (rl), user_rl_capped(expr) R o I T

1396 sql _insert_return_states(return_id, return_ranges,

1397 func_gets_user_data ? USER DATA SET : U
1398 -1, "$", buf);

1176 func_get s_user _data ? USER DATA3_SET :
1177 -1, "$", showrl(rl));

1178 goto free_string;

1399 1

1401 /*

1402 * This is to handle things |ike return skb->data where we don't set a
1403 * state for that.

1404 */

new usr/src/tool s/smatch/src/smatch_kernel _user_data.c 19
1405 if (!pointed_at_found && points_to_user_data(expr)) {

1406 sql _insert_return_states(return_id, return_ranges,

1407 (i s_skb dat a(expr) || func_gets_user_da
1408 USER_DATA SET : USER DATA,

1409 -1, "rg", "s64ni n- s64max");

1410 1

1181 free_string:

1412 free_string(return_str);

1413 }

1415 static void returns_param capped(struct expression *expr, int param char *key,
1416 {

1417 struct smatch_state *state, *new,

1418 struct synbol *sym

1419 char *nane;

1421 name = return_state_to_var_sym(expr, param Kkey, &sym;

1422 if (!'name || !'sym

1423 goto free;

1425 state = get_state(ny_id, nane, sym;

1426 if (!state || estat e_capped(st ate))

1427 goto free;

1429 new = clone_estate(state);

1430 est at e_set _capped(new) ;

1432 set_state(ny_id, name, sym new);

1433 free:

1434 free_string(nane);

1435 }

1437 static struct int_stack *gets_data_stack;
1438 static void match_function_def(struct synbol *sym
1439 {
1440 func_gets_user_data = fal se;
1441 }
__unchanged_portion_onitted_

1453 voi d register_kernel _user_data(int id)
1201 voi d register_kernel _user_data2(int id)

1454 {

1455 int i;

1457 ny_id = id,

1459 if (option_project != PRQJ_KERNEL)

1460 return;

1462 set _dynami c_states(my_id);

1464 add_hook(&rat ch_functi on_def, FUNC DEF_HOOK) ;
1465 add_hook(&mat ch_i nline_start, |NLINE_FN START)
1466 add_hook(&mat ch_i nline_end, | NLI NE_FN_END);
1468 add_hook(&save_start_states, AFTER DEF_HOOK);
1469 add_hook(& ree_start_states, AFTER_FUNC HOCK)
1470 add_hook(&mat ch_save_states, |NLI NE_FN START);
1471 add_hook(&t ch_restore_states, |NLTNE_FN END)
1473 add_unmat ched_st at e_hook(ny_i d, &enpty_state);
1474 add_ext ra_nonod_hook(&xtra_nonod_hook) ;

1475 add_pre_nerge_hook(ny_id, &pre_nerge_hook);

1476 add_nerge_hook(ny_id, &erge_estates);

new usr/src/tool s/smatch/src/smatch_kernel _user_data.c 20
1478 add_function_hook("copy_fromuser", &match_user_copy, |NT_PTR(0));

1479 add_functi on_hook("__copy_from user”, &mat ch_user_copy, INT_PTR(0));
1480 add_ functlon —hook(" mencpy_froni ovec" &mat ch_user _copy, |NT_PTR(0));
1481 for (i = 0; T < ARRAY_SI ZE(kstr funcs) i ++)

1482 add_f uncti on _hook(kstr funcs[l] &mat ch_user _copy, |INT_PTR(2));
1483 add_functi on_hook("usb_control _nmsg", &rratch_user copy, I NT_PTR(6));
1485 for (i = 0; i < ARRAY_SI ZE(returns_user _data); i++) {

1486 add_function_assi gn_hook(returns_user_data[i], &match_user_assig
1487 add_function_hook(returns_user_data[i], &wmatch_returns_user_rl,
1488 1

1490 add_function_hook("sscanf", &mmatch_sscanf, NULL);

1492 add_hook(&rat ch_syscal | _definition, AFTER DEF_HOCOK) ;

1494 add_hook(&vat ch_assi gn, ASSI GNMVENT_HOCK) ;

1495 sel ect _return_states_hook(PARAM SET, &db_param set);

1496 add_hook(&at ch_conditi on, CONDI TI ON_HOCK) ;

1498 add_hook(&mat ch_cal | _i nfo, FUNCTI ON_CALL_HOOK) ;

1499 add_nenber _i nfo_cal | back(ny_i d, struct_nember cal | back) ;

1500 sel ect _cal Ter_i nfo_hook(set_param user_data, USER DATA);

1501 sel ect _return_stat es_hook(USER_DATA, &returns_param user_data);

1502 sel ect _return_stat es_hook(USER DATA SET, &returns_param user_data_set);
1503 sel ect _return_stat es_hook(CAPPED_DATA, &returns_param capped);

1245 sel ect _cal | er_i nf o_hook(set _param user_data, USER DATA3);

1246 sel ect _return_states_hook(USER_DATA3, &returns_par am_user_dat a);

1247 sel ect _return_stat es_hook(USER _DATA3_SET, &returns_param user_data_set);
1504 add_split_return_cal |l back(&aram set_to_user_data);

1505 }

1507 void register_kernel _user_data2(int id)
1251 void register_kernel _user_data3(int id)

1508 {
1509

1511
1512
1513
1514 }

nmy_cal | _

id=id,

if (option_project != PRQI_KERNEL)

sel ect

return;

_caller_info_hook(set_called, |NTERNAL);

new

* ok kK

new
1150

* ok kK

usr/src/tool s/smatch/src/smatch_links.c 1

B R

2738 Mon Aug 5 08:38:36 2019
usr/src/tool s/ smatch/ src/smatch_links. c
6 smatch resync

B R R R R

__unchanged_portion_onitted_

100 void set_up_link_functions(int id, int link_id)

101 {

102 if (id+ 1!=1link_id)

103 sm fatal ("FATAL ERROR |inks need to be registered directly afte
105 set _dynami c_states(link_id);

106 add_ner ge_hook(link_id, &erge_link_states);

107 add_nodi fication_hook(link_id, &match_|ink_nodify);

108 /Il free link at the end of function

109 }

__unchanged_portion_onitted_

new usr/src/tool s/smatch/src/smatch_| ocal _val ues. c 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
6072 Mon Aug 5 08:38:36 2019

new usr/src/tools/smatch/src/smatch_| ocal _val ues. c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

230 void register_|l ocal _values(int id)

231 {

232 ny_id = id,

234 if (loption_info)

235 return;

237 set _dynami c_states(ny_id);

238 add_extra_nod_hook(&xt ra_nod_hook) ;

239 add_unmat ched_st at e_hook(ny_i d, &unmatched_state);
240 add_ner ge_hook(ny_id, &rerge_estates);

241 al |l _return_states_hook(&process_states);

242 add_hook(match_end_file, END FILE_ ;

243) mem sqgl (NULL, NULL, "alter table Iocal_values add col unmm synbol integer;
244

__unchanged_portion_onitted_

new

* ok kK

4
new

usr/src/tool s/smatch/src/smatch_nmath. c 1

B R

5236 Mon Aug 5 08:38:36 2019
usr/src/tool s/ smatch/ src/ smatch_math. ¢

11506 snatch resync
LEEE R R R R EE SRR EEEEEEEEEEE RS SRR SRR EEEEEREREEEEEEEEESE]

1/*

2 * Copyright (C 2010 Dan Carpenter.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any |later version.

8 *

9 * This programis distributed in the hope that it will be useful,

10 * but W THOUT ANY WARRANTY; without even the inplied warranty of

11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the

12 * GNU Ceneral Public License for nore details.

13 =

14 * You shoul d have received a copy of the GNU General Public License

15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt

16 */

18 #incl ude "synbol . h"

19 #include "snatch. h"

20 #include "smatch_slist.h"

21 #include "smatch_extra. h"

23 static bool get_rl_sval (struct expression *expr, int inplied, int *recurse_cnt,
24 static bool get_rl_internal (struct expression *expr, int inplied, int *recurse_c
25 static bool handl e_variabl e(struct expression *expr, int inplied, int *recurse_c
23 static struct range_list *_get_rl(struct expression *expr, Int inplied, int *rec
24 static struct range_list *handl e_variabl e(struct expression *expr, int inplied,
26 static struct range_list *(*custom handl e_variable)(struct expression *expr);

28 static bool get_inplied_value_internal (struct expression *expr, int *recurse_cnt
27 static int get_inplied_value_internal (struct expression *expr, sval _t *sval, int
29 static int get_absolute_rl_internal (struct expression *expr, struct range_list *
31 static sval _t zero = {.type = & nt_ctype, {.value = 0} };

32 static sval _t one = {.type = & nt_ctype, {.value = 1} };

34 struct range_list *rl_zero(void)

35 {

36 static struct range_list *zero_perm

38 if (!zero_perm

39 zero_perm = clone_rl _permanent(alloc_rl (zero, zero));

40 return zero_perm

41
____unchanged_portion_onitted_

62 static bool last_stnt_rl(struct statement *stnt, int inplied, int *recurse_cnt,
61 static struct range_list *last_stnt_rl(struct statement *stnt, int inplied, int
63 {

64 struct expression *expr;

66 if (!stnt)

67 return false;

66 return NULL;

69 stm = last_ptr_list((struct ptr_list *)stnt->stnts);

70 if (stnmt->type == STMI_LABEL) {

71 if (stnt->label _statenent &&

72 stnt - >| abel _st at ement - >t ype == STMI_EXPRESSI ON)

73 expr = stmt->| abel _stat enent - >expr essi on;

74 el se

new usr/src/tool s/smatch/src/smatch_math. c 2
75 return false;
74 return NULL;
76 } else if (stnt->type == STMI_EXPRESSI ON) {
77 expr = stnt->expression;
78 } else {
79 return fal se;
78 return NULL;
80
81 return get_rl_sval (expr, inplied, recurse_cnt, res, res_sval);
80 return _get_rl(expr, I1nplied, recurse_cnt);
82 }
84 static bool handl e_expression_statenment_rl (struct expression *expr, int inplied,
85 int *recurse_cnt, struct range_list **res, sval _t *res_sval)
83 static struct range_list *handl e_expression_statenment_rl (struct expression *expr
86
87 return |ast_stnt_rl (get_expression_statenent(expr), inplied, recurse_cnt
85 return last_stmt_rl (get_expression_statenent(expr), inplied, recurse_cnt
88 }
90 static bool handl e_address(struct expression *expr, int inplied, int *recurse_cn

107
109

static struct range_list *handl e_anpersand_rl| (struct expression *expr, int inpli

struct range_list *rl;
static int recursed;
sval _t sval;

if (recursed > 10)
return false;

if (inmplied == RL_EXA
return false;

if (custom handl e_variable) {
rl = custom handl e_vari abl e(expr);
if (rl) {
*res =rl;
return true;

}

recur sed++;

if (get_ntag_sval (expr, &sval)) {
recursed--;
*res_sval = sval;
return true;

}

if (get_address_rl (expr,
recursed- -;
return true;

res)) {

recursed--;

return O;

if (inmplied == RL_EXACT ||
return NULL;

if (get_ntag_sval (expr, &sval))
return alloc_rl(sval, sval);

if (get_address_rl (expr, &l))
return rl;

return alloc_rl(valid_ptr_mn_sval, valid_ptr_nmax_sval);

implied == RL_HARD)

}

static bool handl e_anpersand_rl (struct expression *expr, int inplied, int *recur
static struct range_list *handl e_negate_rl| (struct expression *expr, int inplied,

return handl e_address(expr, inplied, recurse_cnt, res, res_sval);

new usr/src/tool s/smatch/src/smatch_math. c 3

127 }

104 i f (known_condition_true(expr->unop))

105 return rl_zero();

106 if (known_condition_fal se(expr->unop))

107 return rl _one();

129 static bool handle_negate_rl(struct expression *expr, int inplied, int *recurse_
130 {

131 if (known_condition_true(expr->unop)) {

132 *res_sval = zero;

133 return true;

134 }

135 if (known_condition_fal se(expr->unop)) {

136 *res_sval = one;

137 return true;

138 }

140 if (inmplied == RL_EXACT)

141 return false;

110 return NULL;

143 if (inplied_condition_true(expr->unop)) {

144 *res_sval = zero;

145 return true;

146 }

147 if (inplied_condition_false(expr->unop)) {

148 *res_sval = one;

149 return true;

150 }

152 *res = alloc_rl(zero, one);

153 return true;

112 if (inplied_condition_true(expr->unop))

113 return rl_zero();

114 if (inplied_condition_fal se(expr->unop))

115 return rl_one();

116 return alloc_rl(zero, one);

154 }

156 static bool handl e_bitw se_negate(struct expression *expr, int inplied, int *rec
119 {st atic struct range_list *handl e_bitw se_negate(struct expression *expr, int inp
157

158 struct range_list *rl;

159 sval _t sval = {};

122 sval _t sval;

161 if (!get_rl_sval (expr->unop, inplied, recurse_cnt, &I, &sval))
162 return fal se;

163 if (!sval.type & !rl _to_sval(rl, &sval))

164 return fal se;

124 rl = _get_rl (expr->unop, inplied, recurse_cnt);
125 if (!'rl_to_sval(rl, &sval))

126 return NULL;

165 sval = sval _pr eop(sval =),

166 sval _cast (get _type(expr- >unop) sval);

167 *res_sval = sval;

168 return true;

129 return all oc_rI (sval, sval);

169 }

171 static bool untrusted_type_m n(struct expression *expr)
132 {st atic struct range_list *handl e_m nus_preop(struct expression *expr, int inplie
172

173 struct range_list *rl;

135 sval _t min, nex;

new usr/src/tool s/smatch/src/smatch_math. c

175
176
137
138
139
140
177

179

rl = var_user_rl (expr);
return rT & sval _is mn(rl_mn(rl)),
rl = _get_rl(expr->unop, inplied, recurse_cnt);
mn = sval _preop(rl_max(rl), "-");
max = sval _preop(rl_mn(rl), "-");
return alloc_rl (mn, max);
}
static bool handl e_m nus_preop(struct expression *expr, int

inplied, int *recurs

143 static struct range_list *handl e_preop_rl (struct expression *expr, int inplied,
180 {

181 struct range_list *rl;

182 struct range_list *ret = NULL;

183 struct synbol *type;

184 sval _t neg_one = { 0 };

185 sval _t zero = { 0 };

186 sval _t sval = {};

188 neg_one.value = -1;

189 zero.value = 0;

191 if ('get_rl_sval (expr->unop, inplied, recurse_cnt, &I, &sval))

192 return fal se;

193 if (sval.type)

194 *res_sval = sval _preop(sval, '-");

195 return true;

196 }

197 /*

198 * One conplication is that -INT_MNis still INT_MN because of |nteger
199 * overflows... But how nany tines do we set a tinme out to INT_MN?
200 * So normally when we call abs() then it does return a positive val ue.
201 *

202 */

203 type = rl_type(rl);

204 neg_one.type = zero.type = type;

206 if (sval_is_negative(rl_mn(rl))) {

207 struct range_|list *neg;

208 struct data_range *drange;

209 sval _t new_m n, new_nax;

211 neg = alloc_rl(sval _type_m n(type), neg_one);

212 neg = rl_intersection(rl, neg);

214 if (sval _is_mn(rl_mn(neg)) && !sval _is_mn(rl_nax(negq)))

215 neg = renove_range(neg, sval _type_min(type), sval _type_m
217 FOR_EACH PTR(neg, drange) {

218 new_m n = drange- >nmax;

219 new_min.val ue = -new_ni n. val ue;

220 new_max = drange->mnin;

221 new_max. val ue = -new_max. val ue;

222 add_range(& et, new min, new max);

223 } END_FOR_EACH_PTR(dr ange)

225 if (untrusted_type_m n(expr))

226 add_range(& et, sval _type_m n(type), sval _type_m n(type)
227 }

229 if (!sval _is_negative(rl_max(rl))) {

230 struct range_list *pos;

231 struct data_range *drange;

232 sval _t new_m n, new_nax;

234 pos = alloc_rl (zero, sval _type_nax(type));

235 pos = rl _intersection(rl, pos);

new usr/src/tool s/smatch/src/smatch_math. c

237 FOR_EACH_PTR(pos, drange) {

238 new_m n drange >max;

239 new_mi n. val ue = -new_m n.val ue;
240 new_max = drange->mnin;

241 new_max. val ue = -new_nax. val ue;
242 add_range(& et, new min, new_max);
243 } END_FOR_EACH_PTR(dr ange)

244 }

246 *res = ret;

247 return true;

248 }

250 static bool handl e_preop_rl (struct expression *expr, int inplied, int
251 {

*recurse_c

252 SW tch (expr—>op) {

253 case

254 return handl e_anpersand_rl (expr, inplied, recurse_cnt, res, res_
147 return handl e_anpersand_rl (expr, inplied, recurse_cnt);

255 case '!’:

256 return handl e_negate_rl (expr, inplied, recurse_cnt, res, res_sva
149 return handl e_negate_rl (expr, inplied, recurse_cnt);

257 case '~

258 return handl e_bi tw se_negate(expr, inplied, recurse_cnt, res_sva
151 return handl e_bi tw se_negate(expr, inplied, recurse_cnt);

259 case '-':

260 return handl e_m nus_preop(expr, inplied, recurse_cnt, res, res_s
153 return handl e_m nus_preop(expr, inplied, recurse_cnt);

261 case '*’':

262 return handl e_vari abl e(expr, inplied, recurse_cnt, res, res_sval
155 return handl e_vari abl e(expr, inplied, recurse_cnt);

263 case ' (:

264 return handl e_expression_statenment _rl (expr, inplied, recurse_cnt
157 return handl e_expression_statenent _rl (expr, inplied, recurse_cnt
265 defaul t:

266 return false;

159 return NULL;

267 }

268 }

270 static bool handle_divide_rl(struct expression *expr, int inplied, int

*recurse_

163 static struct range_list *handl e_divide_rl(struct expression *expr, int inplied,

271 {

272 struct range_list *left_rl = NULL;

273 struct range_list *right_rl = NULL;

165 struct range_list *left_rl, *right_rl;

274 struct synbol *type;

276 type = get_type(expr);

278 get _rl _internal (expr->left, npl recurse_cnt, &eft_rl);
170 left_rl = _get_rl(expr->left, rrplled recurse_cnt);

279 left_rl = cast_rl(type, left_rl);

280 get _rl_internal (expr->right, inplied, recurse_cnt, &ight_rl);
172 right_rl = _get rl(expr—>r|ght, inplied, recurse_cnt);

281 right _rl = cast_rl(type, right_rl);

283 if (left_rl || 'right_rl)

284 return fal se;

176 return NULL;

286 if (inmplied != RL_REAL_ABSOLUTE)

287 if (is_whole_rT(left_rl) || is_whole_rl(right_rl))
288 return fal se;

180 return NULL;

new usr/src/tool s/smatch/src/smatch_math. c

289 }

291 *res = rl_binop(left_rl, */’, right_rl);
292 return true;

183 return rl _binop(left_rl, "/, right_rl);
293 }

__unchanged_portion_onitted_

336 static bool handle_subtract_rl(struct expression *expr, int inplied,
227 static struct range_list *handl e_subtract_rl (struct expression *expr,

6
int *recurs
int inplie

9);

RL_FUZZY))

337 {

338 struct synbol *type;

339 struct range_list *left_orig, *right_orig;

340 struct range_list *left_rl, *right_rl;

341 sval _t min, max, tnp;

232 sval _t max, mn, tnp;

342 int conparison;

343 int offset;

345 type = get_type(expr);

347 of fset = handl e_of f set _subtraction(expr);

348 if (offset >= 0) {

349 tnp.type = type;

350 tnp. val ue = of f set;

352 *res = alloc_rl(tnp, tnp);

353 return true;

243 return alloc_rl(tnmp, tnp);

354 }

356 conpari son = get_conpari son(expr->left, expr->right);
358 left_orig = NULL;

359 get_rl_internal (expr->left, inplied, recurse_cnt, & eft_orig);
248 left_orig = _get_rl(expr->left, inplied, recurse_cnt);
360 left_rl = cast rI(type left_orig);

361 right. _orig = NULL

362 get_rl _internal (expr >right, inplied, recurse_cnt, &ight_ori
250 right_orig = _get_rl (expr->right, inplied, recurse_cnt);
363 right_rl = cast_rl(type, right_orig);

365 if ((Mleft_rl || !'right_rl) &&

366 (inmplied == RL_EXACT || inplied == RL_HARD || inplied ==
367 return fal se;

255 return NULL;

369 if (Mleft_rl)

370 left_rl = alloc_whole_rl(type);

371 if (!right_rl)

372 right_rl = alloc_whole_rl(type);

374 /* negative val ues conplicate everything fix this later */
375 if (sval _is_negative(rl_mn(right_rl)))

376 return fal se;

264 return NULL;

377 max = rl_max(left_rl);

378 mn = sval _type_m n(type);

380 switch (conparison) {

381 case '>':

382 case SPECI AL_UNSI GNED_GT:

383 mn = sval _type_val (type, 1);

384 max = rl_max(left_rl);

385 br eak;

386 case SPECI AL_GTE:

new usr/src/tool s/smatch/src/smatch_math. c

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
293
294
408

410
411
412
413
414

416
417
418
419
420

422
423
310

425
426
312
427

429
315

431
432

434
435
436
322
437
438
324
439
440
441
326
442
443
444

case SPECI AL_UNSI GNED_GTE:
mn = sval _type_val (type, 0);
max = rl_max(left_rl);
br eak;
case SPECI AL_EQUAL:
mn = sval _type_val (type, 0);
max = sval _type_val (type, 0);
br eak;
case '<':
case SPECI AL_UNSI GNED_LT:
max = sval _type_val (type, -1);
br eak;
case SPECI AL_LTE:
case SPECI AL_UNSI GNED_LTE:
max = sval _type_val (type, 0);
br eak;
defaul t:
if (!left_orig || !right_orig)
return fal se;
*res = rl_binop(left_rl, "-’, right_rl);
return true;
return NULL;
return rl_binop(left_rl, "-", right_rl);
}

if (!sval _binop_overflows(rl_m
tnp = sval _bi nop(rl _
if (sval _cnp(tnp, m

mn = tnp;

23l

}

if (!sval _is_max(rl_max(left_rl)
= sval _bi nop(r !l _max(
if (sval _cnp(tnp, max) <

max = tnp;

_rl), "=, rl_mn(right_rl));

}

if (sval _is_mn(mn) &% sval _i s_max(max))
return fal se;
return NULL;

*res = cast_rl(type, alloc_rl(mn, max));
return true;
return cast_rl(type, alloc_rl(mn, max));

}

static bool handle_nod_rl (struct expression *expr, int inplied, int *recurse_cnt

static struct range_list *handle_nod_rl (struct expression *expr, int inplied,

struct range_list *rl;
sval _t left, right, sval;

if (inplied == RL_EXACT) {

if (lget_inplied_value(expr->right, &right))
return fal se;
return NULL;

if (lget_inplied_value(expr->left, &eft))
return fal se;
return NULL;

sval sval _binop(left, "%, right);

*res = alloc_rl(sval, sval);

return true;

return alloc_rl(sval, sval);

}
/* if we can't figure out the right side it’s probably hopel ess */
if (!get_inplied_value_internal (expr->right, recurse_cnt, &right))

in

new usr/src/tool s/smatch/src/smatch_math. c 8
445 return false;
329 if (!get_inplied_value_internal (expr->right, &ight, recurse_cnt))
330 return NULL;
447 right = sval _cast(get_type(expr), right);
448 right.val ue--;
450 if (get_rl_internal (expr->left, inplied, recurse_cnt, &) && rl &&
451 rl _max(rl).uvalue < right.uval ue)
335 rl = _get_rl(expr->left, inplied, recurse_cnt);
336 if (rl & rl_max(rl).uvalue < right.uval ue)
452 right.uvalue = rl_max(rl).uval ue;
454 *res = alloc_rl(sval _cast(right.type, zero), right);
455 return true;
339 return alloc_rl(sval _cast(right.type, zero), right);
456 }
458 static bool handl e_bitw se_AND(struct expression *expr, int inplied, int *recurs

342

344
345

347
348
349
350
351
352
353
354
355

357

460
461
361
462

464
465
365

467

469
470
369
370

372
373
471
375
376
377
378
379
380
381
382
383
384
385

static sval _t sval _| owest _set _bit(sval _t sval)
459 {

}

int i;
int found = 0O;
for (i =0; i < 64; i++) {
if (sval.uvalue & 1ULL << i) {
if (!found++)
conti nue;
sval .uval ue & ~(1ULL << i);

}

return sval;

static struct range_list *handl e_bitw se_AND(struct expression *expr, int inplie
358 {

struct synbol *type;

struct range_list *left_rl, *right_rl;
sval _t known;

int new_recurse;

if (inplied !'= RL_IMPLIED & inplied != RL_ABSOLUTE && inplied != RL_REA

return fal se;
return NULL;

type = get_type(expr);

if (lget_rl_internal (expr->left, inplied, recurse_cnt, &eft_rl))
left_rl = alloc_whole_rl(type);

if (get_inplied_value_internal (expr->left, &mnown, recurse_cnt)) {
sval _t mn;

mn = sval _| owest _set _bi t (known);

left_rl = alloc_rl(mn, known);
left_rl = cast_rl(type, left_rl);

add_range(& eft_rl, sval _type_val (type, 0), sval _type_val (type,
} else {

left_rl = _get_rl(expr->left, inplied, recurse_cnt);
if (left_rl)

left_rl = cast_rl(type, left_rl);

left_rl = alloc_rl(sval _type_val (type, 0), rl_nmax(left_r
} else {

if (implied == RL_HARD)
return NULL;
left_rl = alloc_whole_rl(type);

new usr/src/tool s/smatch/src/smatch_math. c 9

386

473
474
475
476
477
478
391
392

479

481
482
396
397
398
399

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

423
483

485
426

487
488

490
491
432

493

495
496
497
498
499
500
441

502

}

}

new_recurse = *recurse_cnt;
if (*recurse_cnt >= 200)
new recurse = 100; /* Let’s try super hard to get the mask */
if (lget_rl |nternal(expr—>r|ght inplied, &ew_recurse, &ight_rl))
right_rl = alloc_whol e rl(type)
right_rl = cast_rl(type, right_rl);
if (get_inplied_val ue |nterna|(expr >right,
sval _t min, left_max, nod;

&known, &new_recurse)) {

*recurse_cnt = new._recurse;

*res = rl_binop(left_rl, &, right_rl);
return true;
mn = sval _| onest _set _bi t (known);
right_rl =alloc_rl(mn, known);
right_rl = cast I(type right_rl);
add_range(&right_rl, sval type_ val (type, 0), sval type_ val (type,

if (mn.value != 0)
left_max = rl_max(left_rl);
nmod = sval _binop(left_max, "%, mn);
if (nod.value) {
left _max = sval _binop(left_nax, '-', nod);
| ef t _max. val ue++;
if (left_max.value > 0 && sval _cnp(left_nax, rl

left_rl = renmove_range(left_rl, l'eft _max
}
} else {
right_rl = _get_rl(expr->right, inplied, recurse_cnt);
if (right_rl) {
right_rl = cast_rl(type, right_rl);
right_rl = alloc_rl(sval _type_val (type, 0), rl_nmax(right
} else {
if (implied == RL_HARD)
return NULL;
right_rl = alloc_whole_rl(type);
}
}

return rl_intersection(left_rl, right_rl);

static bool use_rl_binop(struct expression *expr, int inplied, int *recurse_cnt,
static struct range_list *use_rl_binop(struct expression *expr, int inplied, int
486 {

struct synbol *type;
struct range_list *left_rl, *right_rl;

if (inplied '= RL_IMPLIED & inplied != RL_ABSOLUTE && inplied != RL_REA
return false;
return NULL;

type = get_type(expr);

get _absolute_rl_in
get _absol ute_rl _i nternal (expr->right,
left_rl = cast_rl(type, left_rl);
right_rl = cast_rl(type, right_rl);
if (!left_rl || 'right_rl)

return fal se;

return NULL;

ternal (expr->left, & eft_rl, recurse_cnt);
&ight_rl, recurse_cnt);

*res = rl_binop(left_rl, expr->op, right_rl);

new usr/src/tool s/smatch/src/smatch_math. c 10
503 return true;
443 return rl_binop(left_rl, expr->op, right_rl);
504 }
506 static bool handle_right_shift(struct expression *expr, int inplied, int *recurs
446 static struct range_list *handl e_right_shift(struct expression *expr, int inplie
507 {
508 struct range_list *left_rl, *right_rl;
448 struct range_list *left_rl;
449 sval _t right;
509 sval _t mn, nax;
511 if (implied == RL_EXACT || inplied == RL_HARD)
512 return false;
453 return NULL;
514 if (get_rl_internal (expr->left, inplied, recurse_cnt, & eft_rl)) {
455 left _rl = “get_rl(expr->left, inplied, recurse_cnt);
456 if (lTeft_rl) {
515 max = rl_max(left_rl);
516 mn=rl_mn(left_rl);
517 } else {
518 if (inplied == RL_FUZZY)
519 return false;
461 return NULL;
520 max = sval _type_max(get _type(expr->left));
521 mn = sval _type_val (get_type(expr->left), 0);
522 }
524 if (get_rl_internal (expr->right, inplied, recurse_cnt, &ight_rl) &&
525 I'sval is_negative(rl mn(rlght_rl)))
526 mn = sval _binop(mn, SPECIAL_RI GHTSHI FT, rl _max(right_rl));
527 max = sval _bi nop(nmax, SPECI AL_RI GHTSHI FT, rl_min(right_rl));
466 if (get_inplied_value_internal (expr->right, &ight, recurse_cnt)) {
467 m n = sval _bi nop(m n, SPECI AL_RI GHTSHI FT, right);
468 max = sval _bi nop(max, SPECI AL_RI GHTSHI FT, ri ght);
528 } else if (!sval_is_negative(nmn)) {
529 mn.value = 0;
530 max = sval _type_max(nmax.type);
531 } else {
532 return false;
473 return NULL;
533 }
535 *res = alloc_rl(mn, max);
536 return true;
476 return alloc_rl(mn, max);
537 }
539 static bool handle_left_shift(struct expression *expr, int inplied, int *recurse

479

541
481
542
483
484

544
545
487
546
547
548
549
489

static struct range_list *handle_left_shift(struct expression *expr, int inplied
540 {

struct range_list *left_rl, *rl;
struct range_list *left_rl, *res;
sval _t right;

sval _t min, nex;

int add_zero = 0;

if (inmplied == RL_EXACT || inplied == RL_HARD)
return false;
return NULL;
/* this is hopeless w thout the right side */
if (!get_inplied_value_internal (expr->right,
return fal se;
if (lget_rl_internal (expr->left,
if (lget_inplied_value_internal (expr->right,

recurse_cnt, &right))

implied, recurse_cnt, &eft_rl)) {
& ight, recurse_cnt))

new usr/src/tool s/smatch/src/smatch_math. c 11 new usr/src/tool s/smatch/src/smatch_math. c 12
490 return NULL; 579 if (inmplied == RL_EXACT)
491 left_rl = _get_rl (expr >l eft, inplied, recurse_cnt); 580 return NULL;
492 if (lTeft_rl) {
493 max = rl_max(left_rl); 582 if (custom handl e_variable) {
494 mn=rl_mn(left_rl); 583 rl = custom handl e_vari abl e(expr);
495 if (mn.value == 0) { 584 if (rl)
496 mn.value = 1; 585 return rl;
497 add_zero = 1; 586 }
498 }
499 } else { 588 state = get_extra_state(expr);
550 if (inplied == RL_FUZZY) 589 if (state & !is_whole_rl(estate_rl(state))) {
551 return false; 590 if (inplied = RL_HARD || estate_has_hard_nex(state))
552 left_rl = alloc_whole_rl(get_type(expr->left)); 591 return clone_rl (estate_rT(state));
501 return NULL; 592 }
502 max = sval _type_nax(get _type(expr->left));
503 mn = sval _type_val (get_type(expr->left), 1); 594 type = get_type(expr);
504 add_zero = 1; 595 left_rl = _get_rl(expr->left, inplied, recurse_cnt);
553 } 626 left_rl = cast_rl(type, left_rl);
627 get _rl _internal (expr->right, inplied, recurse_cnt, &ight _rl);
555 rl = rl_binop(left_rl, SPECIAL_LEFTSHI FT, alloc_rl(right, right)); 597 right_rl = _get_rl (expr->ri ght, inplied, recurse_cnt);
556 if ('rl) 628 right_rl = cast_rl(type, right_rl);
557 return fal se;
558 *res =rl; 629 if (Mleft_rl & & !'right_rl)
559 return true; 630 return fal se;
507 max = sval _bi nop(max, SPECI AL_LEFTSHI FT, right); 601 return NULL;
508 mn = sval _bi nop(m n, SPECI AL_LEFTSHI FT, right);
509 res = alloc_rl(mn, max); 632 rl = handl e_i nplied_binop(left_rl, expr->op, right_rl);
510 if (add_zero) 633 if (rl) {
511 res = rl_union(res, rl_zero()); 634 *res =rl;
512 return res; 635 return true;
560 } 636 }
604 if (rl)
562 static bool handl e_known_bi nop(struct expression *expr, sval _t *res) 605 return rl;
515 static struct range_list *handl e_known_bi nop(struct expression *expr)
563 { 638 SW tch (expr—>op) {
564 sval _t left, right; 639 case
640 ret urn handl e_nod_rl (expr, inplied, recurse_cnt, res);
566 if (!get_value(expr->left, &eft)) 609 return handl e_nod_rl (expr, inplied, recurse_cnt);
567 return fal se; 641 case '&:
520 return NULL; 642 return handl e_bi twi se_AND(expr, inplied, recurse_cnt, res);
568 if (!get_value(expr->right, &ight)) 611 return handl e_bi tw se_AND(expr, inplied, recurse_cnt);
569 return false; 643 case '|’:
570 *res = sval _binop(left, expr->op, right); 644 case "N
571 return true; 645 return use_rl _binop(expr, inplied, recurse_cnt, res);
522 return NULL; 614 return use_rl b| nop(expr, inplied, recurse_cnt);
523 left = sval _binop(left, expr->op, right); 646 case SPECI AL_RI GHTSHI F
524 return alloc_rl(left, left); 647 return handl e_rlght_shlft(expr, inplied, recurse_cnt, res);
572 } 616 return handl e_right_shift(expr, inplied, recurse_cnt);
__unchanged_portion_onitted_ 648 case SPECI AL_LEFTSHI FT:
649 return handle_l eft_shift(expr, inplied, recurse_cnt, res);
616 static bool handl e_binop_rl _hel per(struct expression *expr, int inplied, int *re 618 return handle_l eft_shift(expr, inplied, recurse_cnt);
569 static struct range_list *handl e_binop_rl (struct expression *expr, int inplied, 650 case '-':
617 { 651 return handl e_subtract _rl (expr, inplied, recurse_cnt, res);
571 struct smatch_state *state; 620 return handl e_subtract _rl (expr, inplied, recurse_cnt);
618 struct synbol *type; 652 case '/’:
619 struct range_list *left_rl = NULL; 653 return handl e_divide_rl (expr, inplied, recurse_cnt, res);
620 struct range_list *right_rl = NULL; 622 return handl e_divide_rl (expr, inplied, recurse_cnt);
621 struct range_list *rl; 654 }
573 struct range_list *left_rl, *right_rl, *rl;
622 sval _t min, nex; 656 if (tleft_rl || !'right_rl)
657 return false;
624 type = get_pronoted_type(get_type(expr->left), get type(expr->r| ght)); 626 return NULL;
625 get_rl_internal (expr->left, inplied, recurse_cnt, & eft_rl);
576 rl = handl e_known_bi nop(expr); 659 if (sval_binop_overflows(rl_mn(left_rl), expr->op, rl_mn(right_rl)))
577 if (rl) 660 return false;
578 return rl; 629 return NULL;

new usr/src/tool s/smatch/src/smatch_nmath. c 13

661
662
631

664
665

667
668

636
670

672

}

static bool

673 {

674
675
676

678
679
680
681
682
683

685
686
687
688
689
690
691

693
694
695
696
697
698
699

701
702

704

}

static i

705 {

706
707
708
709

711
712
713

715
716

718
719

721
722
723
724

if (sval _binop_overflows(rl_max(left_rl), expr->op, rl_max(right_rl)))
return fal se;
return NULL;

mn = sval _bi nop(rl mn(rl), expr->op, rl_mn(right_rl));

max = sval _binop(rl_max(le rl), expr->op, rl_max(right_rl));

*res = alloc_rl(mn, nax);

return true;

return alloc_rl(mn, max);

handl e_bi nop_r| (struct expression *expr, int inplied, int *recurse_c
struct smatch_state *state;
struct range_list *rl;

sval _t val;

i f (handl e_known_bi nop(expr
*res_sval = val
return true;

aval)) {

}
if (inplied == RL_EXACT)
return false

if (custom handl e_vari abl e)
rl = custom handl e_vari abl e(expr);
if (rl)
*res =rl;
return true;

}

state = get_extra_state(expr);
if (state & !is_whole_rl(estate_rl(state))) {
if (inplied = RL_HARD || estate_has_hard_nex(state)) {
*res = clone_rl (estate_rl(state));
return true;

}
}
return handl e_bi nop_r| _hel per(expr, inplied, recurse_cnt, res, res_sval)
nt do_conparison(struct expression *expr)
struct range_list *left_ranges = NULL;
struct range_|list *right_ranges = NULL;
int poss_true, poss_false;
struct synbol *type;
type = get_type(expr);
get _absolute_rl (expr->left, & eft_ranges);
get _absol ute_rl (expr->right, &right_ranges);
left_ranges = cast_rl (type, left_ranges);
right_ranges = cast_rl(type, right_ranges);
poss_true = possibly_true_rl (lef ranges expr->op, right_ranges);
poss_fal se = possibly false_rl (_ranges, expr->op, right_ranges);

if (!poss_true & !poss_false)
return 0xO0;

if (poss_true && !poss_false)
return Ox1;

new usr/src/tool s/smatch/src/smatch_nmath. c 14

725

if (!poss_true && poss_fal se)

726 return 0x2;

727 return 0x3;

728 }

730 static bool handl e_conparison_rl (struct expression *expr, int inplied, int *recu
665 static struct range_list *handl e_conparison_rl(struct expression *expr, int inpl
731 {

732 sval _t left, right;

733 int cnp;

668 int res;

735 if (expr->op == SPECI AL_EQUAL && expr->left->type == EXPR_TYPE) {
736 struct synbol *left, *right;

738 if (expr->right->type != EXPR_TYPE)

739 return false;

741 I eft = get_real _base_type(expr->left->synbol);

742 i ght = get _real base_type(expr->right- >syrrbo|)

743 |f (type_ blts(left) == type_bits(right) &&

744 type_positive_bits(left) == type_positive_bits(right))
745 *res_sval = one;

746 el se

747 *res_sval = zero;

748 return true;

674 right = get_real _base_type(expr->left->synbol);

675 if (left == right

676 return rl_one();

677 return rl_zero();

749 }

751 if (get_value(expr->left, & eft) & get_value(expr->right, &right)) {
752 struct data_range tnp_left, tnp_right;

754 tnp_left.mn = left;

755 tnp_left.mx = left;

756 tmp_right.mn = right;

757 tnp_right.max = right;

758 if (true_conparison_range(& np_|l eft, expr->op, & np_right))
759 *res_sval = one;

760 el se

761 *res_sval = zero;

762 return true;

688 return rl_one();

689 return rl_zero();

763 }

765 if (inplied == RL_EXACT)

766 return fal se;

693 return NULL;

768 cmp = do conrparl son(expr);

769 if (cmp == 1) {

770 *res_sval = one;

771 return true;

772 1

773 if (cmp ==

774 *res_sval = zero;

775 return true;

776

695 res = do_conparison(expr);

696 if (res ==

697 return rl_one();

698 if (res ==

699 return rl_zero();

new usr/src/tool s/smatch/src/smatch_nmath. c 15

778
779
701
780

782
704

784
785
786

788
789
790
791
792
793
794
716
795
796
718
797
798

800
801
802
803
725
804
805
727
806
807
729
808
809
810
811
812
813
734
735
814
815
816
817
739
818

820
821
743

823
824

826
827
828
829
830
831

}

*res = alloc_rl(zero, one);
return true;
return alloc_rl(zero, one);

static bool handle_logical _rl(struct expression *expr, int inplied, int *recurse
static struct range_list *handl e_l ogical _rl(struct expression *expr, int inplied
783 {

zer o:

one:

sval _t left, right;
int left_known = 0;
int right_known = 0;

if (inmplied == RL_EXACT) {
if (get_val ue(expr->|eft &left))
I eft _known = 1;
if (get_val ue(expr—>r|ght &right))
ri ght _known = 1;

} else {
if (get_inplied_value_internal (expr->left, recurse_cnt, & eft))
if (get_inplied_value_internal (expr->left, & eft, recurse_cnt))
I eft _known = 1,
if (get_inpli ied val ue_i nternal (expr->right, recurse_cnt, &right)
if (get_inplied_value_internal (expr->right, &ight, recurse_cnt)
) ri ght_known = 1,

switch (expr->op) {
case SPECIAL_LOG CAL_OR:
if (Teft_known & left.val ue)
got o one;
return rl _one();
if (right_known && ri ght val ue)
got o one;
return rl_one();
if (left_known && right_known)
goto zero;
return rl_zero();
br eak;
case SPECIAL_LOG CAL_AND:
if (Teft_known & right_known) {
if (left.value & right.val ue)
got o one;
goto zero;
return rl_one();
return rl_zero();

br eak;
defaul t:
return false;
return NULL;
}

if (inplied == RL_EXACT)
return false;
return NULL;

*res = alloc_rl(zero, one);
return true;
*res_sval = zero;

return true;

*res_sval = one;
return true;

new usr/src/tool s/smatch/src/smatch_math. c 16

745
832 }

return alloc_rl(zero, one);

834 static bool handle_conditional _rl(struct expression *expr, int inplied, int *rec
748 static struct range_list *handl e_conditional _rl(struct expression *expr, int inp

835 {
836
837
838
839

841
842
843

845
846
760
847
848
762

850
851
765

853
854
768
855
856
770

858
859
860
775

862

864
865
866
867
868
782
869
870
871
872
785
873
874
875

877
878
791
879
880

882
883
795
884 }

struct expression *cond_true;

struct range_list *true_rl, *false_rl;
struct synbol *type;

int final_pass_orig = final_pass;

cond_true = expr->cond_true;
if (Tcond_true)
cond_true = expr->conditional;

if (known_condition_true(expr->conditional))
return get_rl_sval (cond_true, inplied, recurse_cnt, res, res_sva
return _get_rl(cond_true, inplied, recurse _cnt);

if (known_condition_fal se(expr—>cond| tional))
return get_rl_sval (expr->cond_fal se, inplied, recurse_cnt, res,
return _get_rl (expr->cond_false, i rrpl ied, recurse_cnt);

if (inplied == RL_EXACT)
return false;
return NULL;

if (inplied_condition_true(expr->conditional))
return get_rl _sval (cond_true, inplied, recurse_cnt, res, res_sva
return _get_ rT(cond_true, |rrp| ied, recurse_cnt);

if (inmplied_condition_fal se(expr—>cond| ti onal))
return get _rl_sval (expr->cond_fal se, inplied, recurse_cnt, res,
return _get_rl (expr->cond_false, i rrpl ied, recurse_cnt);

/*

this becones a problemw th deeply nested conditional statenents */
if (I

ow_on_nenory())
return false;
return NULL;

type = get_type(expr);
__push_fake_cur_stree();

final _pass = 0;
__split_whol e_condition(expr->conditional);

true rl = NULL
get_rl_internal (cond_true, inplied, recurse_cnt, &rue_rl);
true_rl = _get_rl(cond_true, inplied, recurse_cnt);

__push_true_states();
use_fal se_states();
false_rl = NULL;
get _rl _internal (expr->cond_false, inplied, recurse_cnt, &alse_rl);
false_rl = _get_rl (expr->cond_false, inplied, recurse_cnt);
__nerge_true_states();
__free_fake_cur_stree();
final _pass = final_pass_orig;

if (Ytrue_rl || !false_rl)

return false;

return NULL;
true_rl = cast_rl(type, true_rl);
false_rl = cast_rl(type, false_rl);
*res = rl_union(true_rl, false_rl);
return true;
return rl_union(true_rl, false_rl);

new usr/src/tool s/smatch/src/smatch_math. c 17 new usr/src/tool s/smatch/src/smatch_math. c 18
979 if (custom handl e_variable) {
886 static bool get_fuzzy_nax_hel per(struct expression *expr, sval_t *max) 980 rl = custom handl e_vari abl e(expr);
798 static int get_fuzzy_max_hel per(struct expression *expr, sval _t *nax) 981 if (rl) {
887 { 982 if (!'rl_to_sval(rl, res_sval))
888 struct smatch_state *state; 983 *res =rl;
889 sval _t sval; 984 } else {
985 *res = var_to_absolute_rl (expr);
891 if (get_| hard max(expr &sval)) { 888 if ('rl)
892 *max = sval; 889 return var_to_absolute_rl (expr);
893 return true; 890 return rl;
805 return 1; 986 }
894 } 987 return true;
988 }
896 state = get_extra_state(expr);
897 if (!state || !estate_has_fuzzy_max(state)) 990 if (get_ntag_sval (expr, &sval)) {
898 return false; 991 *res_sval = sval;
810 return O; 992 return true;
899 *max = sval _cast(get_type(expr), estate_get_fuzzy_max(state)); 993 }
900 return true; 893 if (inplied == RL_EXACT)
812 return 1; 894 return NULL;
901 }
896 if (get_ntag_sval (expr, &sval))
903 static bool get_fuzzy_min_hel per(struct expression *expr, sval_t *mn) 897 return alloc_rl(sval, sval);
815 static int get_fuzzy_m n_hel per(struct expression *expr, sval _t *mn)
904 { 995 type = get _type(expr);
905 struct smatch_state *state; 996 if (type
906 sval _t sval; 997 (type- >type == SYM ARRAY | |
998 type->type == SYM FN))
908 state = get_extra_state(expr); 999 return handl e_address(expr, inplied, recurse_cnt, res, res_sval)
909 if (Istate || 'estate_rl(state)) 900 if (type && type->type == SYM FN)
910 return false; 901 return alloc_rl (fn_ptr_mn, fn_ptr_nax);
822 return O;
1001 /* FIXME: call rl_to_sval() on the results */
912 sval = estate_min(state);
913 if (sval_is_negative(sval) && sval _is_min(sval)) 1003 switch (inplied) {
914 return false; 1004 case RL_HARD:
826 return O; 1005 case RL_I MPLI ED:
1006 case RL_ABSOLUTE:
916 if (sval_is_max(sval)) 1007 state = get_extra_state(expr);
917 return false; 1008 if (!state) {
829 return O; 908 if (Istate || !state->data) {
1009 if (implied == RL_HARD)
919 *mn = sval _cast(get_type(expr), sval); 1010 return fal se;
920 return true; 1011 if (get_local_rl(expr, res))
832 return 1; 1012 return true;
921 } 1013 if (get_ntag_rl(expr, res))
__unchanged_portion_onitted_ 1014 return true;
1015 if (get_db_type_rl(expr, res))
964 static bool handle_variabl e(struct expression *expr, int inplied, int *recurse_c 1016 return true;
876 static struct range_list *handl e_variabl e(struct expression *expr, int inplied, 1017 if (is_array(expr) && get_array_rl (expr, res))
965 { 1018 return true;
966 struct smatch_state *state; 1019 return fal se;
967 struct range_list *rl; 910 return NULL;
968 sval _t sval, mn, nax; 911 if (get_local _rl(expr, &l))
969 struct synbol *type; 912 return rl;
913 if (get_ntag_rl (expr, &l))
971 if (get_const_val ue(expr, &sval)) { 914 return rl;
972 *res_sval = sval; 915 if (get_db_type_rl (expr, &rl))
973 return true; 916 return rl;
974 } 917 if (is_array(expr) &% get_array_rl (expr, &rl))
883 if (get_const_val ue(expr, &sval)) 918 return rl;
884 return alloc_rl(sval, sval); 919) return NULL;
1020
976 if (inmplied == RL_EXACT) 1021 1f (inplied == RL_HARD && ! estate_has_hard_nax(state))
977 return false; 1022 return false;
1023 *res = clone_rl(estate_rl(state));

new usr/src/tool s/smatch/src/smatch_math. c

1024
922
923

1025

1026

1028
1029

1031
1032

931
1033
1034
1035
1036
1037

934
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057

954
1058
1059
1060

956
1061

1063
1064
1065
1066
1067
1068
1069
1070
1071
959
960
961
962
963
964
965
966
967
1072
1073
1074

return true;
return NULL;
return clone_rl (estate_rl(state));
case RL_REAL_ABSOLUTE:
struct smatch_state *abs_state;

state = get_extra_state(expr);
abs_state = get_real _absol ute_state(expr);

if (estate_rl(state) && estate_rl (abs_state)) {
*res = clone_rl (rl_intersection(estate_rl(state),
return clone_rl(rl_intersection(estate_rl(state)

estate_rl (abs_st at e)));

return true;
} else if (estate_rl(state))
*res = clone_rl (estate_rl (state));
return true;
return clone_rl (estate_rl(state));
} else if (estate_is_enpty(state)) {
/

FI XME: we don’t handle enpty extra states correctly.

The real abs rl is supposed to be filtered by the

extra state if there is one. W don’t bother keeping
the abs state in sync all the tinme because we know it

will be filtered later.

handl ed. Perhaps we shoul d take the whole rl and
filter by the imaginary states. Perhaps we should
just go with the enpty state.

Anyway what we currently do is return NULL here and

*
*
*
*
*
*
*
*
* |t’s not totally obvious to ne how they shoul d be
*
*
*
*
*
* that gets translated into the whole range in
* get_real _absolute_rl ().
*

*/

return fal se;

return NULL;
} else if (estate_rl(abs_state)) {

*res = clone_rl (estate_rl (abs_state));

return true;

return clone_rl (estate_rl (abs_state));

}

if (get_local_rl(expr, res))
return true;
if (get_ntag_rl (expr, res))
return true;
if (get_db_type_rl(expr, res))
return true;
if (is_array(expr) && get_array_rl (expr, res))
return true;
return false;
if (get_local _rl(expr, &l))
return rl;
if (get_ntag_rl (expr, &l))
return rl;
if (get_db_type_rl(expr, &l))
return rl;
if (is_array(expr) && get_array_rl (expr, &rl))
return rl;
return NULL;

}
case RL_FUZZY:
if (!get_fuzzy_min_hel per(expr, &rn))

new usr/src/tool s/smatch/src/smatch_math. c

1075
1076
1077
973
1078
1079
1080
1081
1082
1083
1084
1085
980
1086
1087
982
1088 }

mn = sval _type_m n(get type(expr))
if (!get_fuzzy_max_hel per(expr, &nmax)
return fal se;
return NULL;
/* fuzzy ranges are often inverted */
if (sval_cnp(mn, max) > 0) {

sval = mn;
mn = nax;
max = sval ;

*res = alloc_rl(mn, max);
return true;)
return alloc_rl(mn, nmax);

return false;
return NULL

__unchanged_portion_onitted_

20

1134 static bool handle_strlen(struct expression *expr, int inplied, int *recurse_cnt
1029 static struct range_list *handl e_strlen(struct expression *expr, int inplied,

1135 {
1031
1136
1137
1138
1139

1036
1037

1141
1142
1143
1041
1144
1145
1146
1147
1044
1148
1149
1150
1151
1152
1153
1154
1155
1049
1156

1158
1159
1053

1161
1162
1163
1164
1055
1056

1166
1058
1167 }

struct range_list *rl;

struct expression *arg, *tnp;

sval _t tag;

sval _t ret = { .type = &ulong_ctype };
struct range_list *rl;

if (inmplied == RL_EXACT)
return NULL;

arg = get_argunent _fromcal |l _expr (expr->args, 0);
if (larg)
return fal se;
return NULL;
if (arg->type == EXPR_STRING {
ret.value = arg->string->length - 1;
*res_sval = ret;
return true;
return alloc_rl(ret, ret);

}
if (inplied == RL_EXACT)
return false;
if (get_i nplied val ue(arg, &tag) &&

(tmp = fake strlng fromntag(tag.uvalue))) {
ret.value = tnp->string->length - 1;
*res_sval = ret;
return true;
return alloc_rl(ret, ret);

}

if (inmplied == RL_HARD || inplied == RL_FUZZY)
return fal se;
return NULL;

if (get |np||ed return(expr, &l)) {
*res =rl;
return true;

}
1f (get_inplied_return(expr, &l))
return rl;

return false;
return NULL;

in

new usr/src/tool s/smatch/src/smatch_nmath. c 21

1169 static bool handl e_builtin_constant_p(struct expression *expr, int inplied, int
1061 static struct range_list *handl e_builtin_constant_p(struct expression *expr, int

1170
1171
1172
1065

1174
1175
1176
1177
1178
1179
1068
1069
1070
1071
1180

1182
1074

1184
1185

1187
1188
1189

1191
1192
1084
1193
1194
1195
1196
1086
1087
1197

1199
1090

1201

1203
1204
1095

1206
1207
1098

1209
1210
1211
1212
1213

1215
1216
1107
1217

1219
1220

{

}

struct expression *arg;
struct range_list *rl;
sval _t sval;

arg = get_argunment _fromcal | _expr(expr->args, 0);
if (get_rl_internal (arg, RL_EXACT, recurse_cnt, &rl))

*res_sval = one;
el se
*res_sval = zero;
return true;
rl = _get_rl(arg, RL_EXACT, recurse_cnt);

if (rT_to_sval(rl, &sval))
return rl_one();
return rl_zero();

static bool handl e__builtin_choose_expr(struct expression *expr, int inplied, in
static struct range_list *handl e__builtin_choose_expr(struct expression *expr,
1183 {

}

struct expression *const_expr, *exprl, *expr2;
sval _t sval;

const _expr = get _argunent _from cal | _expr (expr->args, 0);
exprl = get_argunent _fromcal |l _expr(expr->args, 1);
expr2 = get_argunent _fromcal |l _expr(expr->args, 2);

if (!get_value(const_expr, &sval) || !exprl || !expr2)
return fal se;
return NULL
if (sval.value)
return get_rl_sval (exprl, inplied, recurse_cnt, res, res_sval);
el se
return get_rl_sval (expr2, inplied, recurse_cnt, res, res_sval);
return _get_rT (exprl, inplied, recurse _cnt);
return _get rl(expr2, inplied, recurse_cnt);

static bool handle_call _rl(struct expression *expr, int inplied, int *recurse_cn
static struct range_list *handle_call_rl(struct expression *expr, int inplied,
1200 {

struct range_list *rl;

if (symname_is("__builtin_constant_p", expr->fn))
return handl e_builtin_constant _p(expr, inplied, recurse_cnt, res
return handl e_builtin_constant_p(expr, inplied, recurse_cnt);

return handl e__builtin_choose_expr (expr,

if (symname_is("__builtin_choose_expr", expr->fn))
i
return handl e__buil tin_choose_expr(expr, i

lied, recurse_cnt, r
lied, recurse_cnt);

33

if (symnanme_is("__builtin_expect", expr->fn) |

|
symname_is("__builtin bswaplG expr->fn) ||
sym name_i s("__builtin_bswap32", expr->fn) ||
sym name_i s("__builtin_bswap64", expr->fn)) {

struct expression *arg;

arg = get_argunent _from cal | _expr(expr->args, 0);
return get_ri_sval (arg, inplied, recurse cnt, res, res_sval);
return _get _rl(arg, inplied, recurse _cnt);

}

if (symnane_is("strlen", expr->fn))
return handl e_strlen(expr, inplied, recurse_cnt, res, res_sval);

new usr/src/tool s/smatch/src/smatch_math. c

1111

1222
1223
1114

1225
1226
1227
1228
1229
1118
1119
1230
1231

1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1122
1123
1124
1244 }

22
return handl e_strlen(expr, inplied, recurse_cnt);

if (inplied == RL_EXACT || inplied == RL_HARD || inplied == RL_FUZZY)
return false;
return NULL;

if (custom handl e_vari abl e)
rl = custom handl e_vari abl e(expr);
if (rl) {
*res =rl;
return true;
if (rl)

}

return rl;

}

/* Ugh... get_inplied_return() sets *rl to NULL on failure */
if (get |rrp||ed_return(expr &l)) {
*res = rI
) return tr
rl = db_return_val s(expr);
if (rl) {
*res =rl;
return true;

return fal se;

if (get_inplied_return(expr, &l))
return rl;

return db_return_val s(expr);

1246 static bool handl e_cast(struct expression *expr, int inplied, int *recurse_cnt,
1127 static struct range_list *handl e_cast(struct expression *expr, int inplied, int

1247 {
1248
1249
1250

1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1133
1134
1135
1136
1137
1264
1265
1266
1267
1268
1269
1139
1140
1141
1270 }

struct range_list *rl;
struct synbol *type;
sval _t sval = {};

type = get_type(expr);
if (get _rl_sval (expr- >cast_expressi on, inplied, recurse_cnt, &, &sval)
if (sval.type)
*res_sval = sval _cast(type, sval);
el se
*res = cast_rl(type, rl);
return true;

}

if (inplied == RL_ABSOLUTE || inplied == RL_REAL_ABSOLUTE) {
*res = alloc_whole_rl(type);
return true;

| = _get_rl (expr->cast_expression, inplied, recurse_cnt);
if (rl)
return cast_rl (type, rl);
if (implied == RL_ABSOLUTE || inp
return alloc_whole_rl (type
if (inmplied == RL II\/PLIED&&type
type_bits(type) > 0 & type_b
*res = alloc_whole_rl(ty
return true;

lied == RL_REAL_ABSOLUTE)
DB

&&

I§S(type) < 32) {

return false;
type_bits(type) > 0 &&
return all oc_whol e

return NULL;

|ts(type) < 32)

_<
"‘U

new usr/src/tool s/smatch/src/smatch_math. c

1272 static bool get_offset_fromdown(struct expression *expr, int inplied, int
1144 static struct range_list *_get_rl(struct expression *expr, int inplied, int

1273 {
1274
1275
1276
1277
1278
1279
1280

1282
1283
1284
1285
1286
1287
1288
1289

1291
1292
1293
1294
1295

1297

1299
1300
1301
1302
1303
1304
1305

1307
1308
1309
1310

1312
1313
1314
1315
1316

1318
1319

1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331

1333
1334
1335

struct expression *index;

struct synbol *type = expr->in;

struct range_list *rl;

struct synbol *field;

int offset = 0;

sval _t sval = { .type = ssize_t_ctype };
sval _t tnp_sval = {};

/*
* FIXME: | don’t really know what |’ mdoing here. | wsh that |
* could just get rid of the _ builtin_offset() function and use:
* "&((struct bpf_prog *)NULL)->i nsns[fprog->len]" instead...
* Anyway, | have done the mi ni num amount of work to get that
* expression to work.
*
*/
if (expr->op !'="." || !expr->down ||
expr - >down- >t ype ! = EXPR_OFFSETOF | |
expr->down->op !="[" ||

! expr - >down- > ndex)
return false;

i ndex = expr->down- >i ndex;

exam ne_synbol _type(type);
type = get_real _base_type(type);
if (!type)
return false;
field = find_identifier(expr->ident, type->synbol_list, &offset);
if (!field)
return false;

type = get_real _base_type(field);

if (!type || type->type ! = SYM ARRAY)
return fal se;

type = get_real _base_type(type);

if (get_inplied_value_internal (index, recurse_cnt, &sval)) {
res_sval ->type = ssize_t_ctype;
res_sval ->val ue = offset + sval.value * type_bytes(type);
return true;

}

if (lget_rl_sval (index, inplied, recurse_cnt, &l, &np_sval))
return false;

/*
* |”mnot sure why get_rl_sval () would return an sval when
* get_inplied_value_internal () failed but it does when |
* parse drivers/net/ethernet/ mellanox/m x5/ core/en/ nonitor_stats.c
*

*

/

if (tmp_sval.type) {
res_sval ->type = ssize_t_ctype;
res_sval ->val ue = offset + sval.value * type_bytes(type);
return true;

}
sval . val ue = type_bytes(type);
rl =rl_binop(rl, "*, alloc_rl(sval, sval));

sval . val ue = of fset;

23

*recu
*rec

new usr/src/tool s/smatch/src/smatch_math. c

rl(sval,

sval));

I expr->i dent)

24

nplied, int *recurs

dent, type->synbol _|ist, &offset);

inplied,

recurse_cnt,

recurse_cnt,

*res_sval = sval _fromval (expr, expr->val ue);

int inplied,

ed, recurse_cnt, &rl,

i mpl i ed

recurse_cnt);

1336 *res = rl_binop(rl, "+, alloc_

1337 return true;

1338 }

1340 static bool get_offset_from.in(struct expression *expr, int i
1341 {

1342 struct synbol *type = get_real _base_type(expr->in);
1343 struct synbol *field;

1344 int offset = 0;

1346 if (expr->op !'="." || !type ||

1347 return false;

1349 field = find_identifier(expr->i

1350 if (!'field)

1351 return false;

1353 res_sval - >type = size_t_ctype;

1354 res_sval - >val ue = offset;

1356 return true;

1357 }

1359 static bool handl e_of fsetof _rl(struct expression *expr, int i
1360

1361 if (get_offset_fromdown(expr,

1362 return true;

1364 if (get_offset_from.in(expr, inplied,
1365 return true;

1367 eval uat e_expr essi on(expr) ;

1368 if (expr->type == EXPR_VALUE)

1369

1370 return true;

1371 1

1372 return false;

1373 }

1375 static bool get_rl_sval (struct expression *expr,
1376 {

1377 struct range_list *rl = (void *)-1UL;
1378 struct synbol *type;

1379 sval _t sval = {};

1148 sval _t sval;

1381 type = get_type(expr);

1382 expr = strip_parens(expr);

1383 if (!expr)

1384 return fal se;

1153 return NULL;

1386 if (++(*recurse_cnt) >= 200)

1387 return false;

1156 return NULL;

1389 swi tch(expr->type) {

1390 case EXPR_CAST:

1391 case EXPR_FORCE_CAST:

1392 case EXPR_| MPLI ED_CAST:

1393 handl e_cast (expr, inpli

1162 rl = handl e_cast (expr,

1394 goto out_cast;

1395 }

1397 expr = strip_expr(expr);

nplied, int *recurs

res, res_sval))

res, res_sval))

int *recurse_cnt,

&sval) ;

new usr/src/tool s/smatch/src/smatch_math. c

1398
1399
1168

1401
1402
1403
1173
1404
1405
1406
1176
1407
1408
1409
1179
1410
1411
1412
1182
1413
1414
1415
1185
1416
1417
1418
1188
1419
1420
1421
1422
1193
1423
1424
1425
1426
1197
1427
1428
1429
1200
1430
1431
1203
1432
1205
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1208
1448

if (!expr)
return false;
return NULL;

switch (expr->type) {
case EXPR_VALUE:

sval = sval _fromval (expr, expr->val ue);
rl = alloc_rl(sval, sval)
br eak;
case EXPR_PREOP:
handl e_preop_rl (expr, inplied, recurse_cnt, &l, &sval);
rl = handl e_preop_rl (expr, inplied, recurse_cnt);
br eak;
case EXPR_POSTOP:
get _rl _sval (expr->unop, inplied, recurse_cnt, &l, &sval);
rl = _get_rl (expr->unop, inplied, recurse_cnt);
br eak;
case EXPR_BI NOP:
handl e_bi nop_rl (expr, inplied, recurse_cnt, &, &sval);
rl = handl e_binop_rl (expr, inplied, recurse_cnt);
br eak;
case EXPR_COWPARE:
handl e_conparison_rl (expr, inplied, recurse_cnt, &, &sval);
rbl :khandl e_conparison_rl (expr, inplied, recurse_cnt);
reak;
case EXPR _LOGQ CAL:
handl e_l ogi cal _rl (expr, inplied, recurse_cnt, &, &sval);
rl = handle_l ogical _rl (expr, inplied, recurse_cnt);
br eak;
case EXPR_PTRSI ZECF:
case EXPR_SI ZECF:
sval = handl e_si zeof (expr);
rl = alloc_rl(sval, sval)
br eak;
case EXPR_SELECT:
case EXPR_CONDI TI ONAL:
handl e_condi tional _rl (expr, inplied, recurse_cnt, &l, &sval);
rl = handl e_conditional _rl (expr, inplied, recurse_cnt);
br eak;
case EXPR CALL:
handl e_call _rl (expr, inplied, recurse_cnt, &, &sval);
rl = handle_call _rl (expr, inplied, recurse_cnt);
br eak;
case EXPR_STRI NG
rl = NULL;
if (get_ntag_sval (expr, &sval))
rl = alloc_rl(sval, sval);
break;
if (inplied == RL_EXACT)
br eak;
rl = alloc_rl(valid_ptr_mn_sval, valid_ptr_max_sval);
br eak;
case EXPR _OFFSETOF
BandLe_offset of _rl(expr, inplied, recurse_cnt, &, &sval);
reak;
case EXPR_ALI GNOF:
eval uat e_expr essi on(expr);
if (expr->type == EXPR_VALUE)
sval = sval _fromval (expr, expr->val ue);
br eak;
defaul t:
handl e_vari abl e(expr, inplied, recurse_cnt, &l, &sval);
rl = handl e_vari abl e(expr, inplied, recurse_cnt);
}

1450 out _cast:

25

new usr/src/tool s/smatch/src/smatch_math. c

26

*recurse_c

range_lis

1451 if (rl == (void *)-1UL)

1452 rl = NULL;

1454 if (sval.type || (rl &% rl_to_sval(rl, &sval))) {

1455 *sval _res = sval;

1456 return true;

1457 1

1458 if (inplied == RL_EXACT)

1459 return fal se;

1461 if (rl) {

1462 *res =rl;

1463 return true;

1464 1

1465 if (type & (inplied == RL_ABSOLUTE || inplied == RL_REAL_ABSOLUTE)) {
1466 *res = alloc_whole_rl (type);

1467 return true;

1468

1469 return fal se;

1212 if (rl)

1213 return rl;

1214 if (type & (inplied == RL_ABSOLUTE || inplied == RL_REAL_ABSOLUTE))
1215 return alloc_whole_rl(type);

1216 return NULL;

1470 }

1472 static bool get_rl_internal (struct expression *expr, int inplied, int
1473 {

1474 struct range_list *rl = NULL;

1475 sval _t sval = {};

1477 if ('get_rl_sval (expr, inplied, recurse_cnt, &, &sval))
1478 return false;

1480 if (sval.type)

1481 *res = alloc_rl(sval, sval);

1482 el se

1483 *res =rl;

1484 return true;

1485 }

1487 static bool get_rl_hel per(struct expression *expr, int inplied, struct
1488 {

1489 struct range_list *rl = NULL;

1490 sval _t sval = ;

1491 int recurse_cnt = 0;

1493 if (get_value(expr, &sval)) {

1494 *res = alloc_rl(sval, sval);

1495 return true;

1496 }

1498 if (lget_rl_sval (expr, inplied, & ecurse_cnt, &l, &sval))
1499 return false;

1501 if (sval.type)

1502 *res = alloc_rl(sval, sval);

1503 el se

1504 *res =rl;

1505 return true;

1506 }

1508 struct {

1509 struct expression *expr;

1510 sval _t sval;

1221 struct range_list *rl;

new usr/src/tool s/smatch/src/smatch_nmath. c 27

1511 } cached_resul ts[24];
__unchanged_portion_onitted_

1519 /*

1520 * Don’t cache EXPR_VALUE because val ues are fast already.

1521 *

1522 */

1523 static bool get_value_literal (struct expression *expr, sval _t *res_sval)
1524 {

1525 struct expression *tnp;

1526 int recurse_cnt = 0;

1528 = strip_expr(expr);

1529 |f ('tnp || tmp->type != EXPR_VALUE)

1530 return false;

1532 return get_rl_sval (expr, RL_EXACT, &recurse_cnt, NULL, res_sval);
1533 }

1535 /* returns 1 if it can get a value literal or else returns 0 */
1536 int get_val ue(struct expression *expr, sval _t *res_sval)
1231 int get_val ue(struct expression *expr, sval _t *sval)

1537 {

1538 struct range_|list *(*orig_customfn)(struct expression *expr);
1234 struct range_list *rl;

1539 int recurse_cnt = 0;

1540 sval _t sval = {};

1236 sval _t tnmp;

1541 int i;

1543 if (get_value_literal (expr, res_sval))

1544 return 1;

1546 /*

1547 * This only handl es RL_EXACT because other expr statenments can be
1548 * different at different points. Like the list iterator, for exanple.
1549

1550 for (i = 0; i < ARRAY_SI ZE(cached_results); i++) {

1551 if (expr == cached_results[i].expr) {

1552 if (cached_results[i].sval.type) {

1553 *res_sval = cached_results[i].sval;
1554 return true;

1244 if (expr == cached_results[i].expr)

1245 return rl_to_sval (cached_results[i].rl, sval);
1555

1556 return false;

1557 }

1558 1

1560 orig_customfn = custom handl e_vari abl e;

1561 custom handl e_vari abl e = NULL;

1562 get _rl _sval (expr, RL_EXACT, &recurse_cnt, NULL, &sval);

1250 rl = _get_rl(expr, RL_EXACT, &recurse_cnt);

1251 if (!'rl_to sval(rl &t np))

1252 “rl 7= NULL;

1564 custom handl e_variable = orig_customfn;

1566 cached_resul t s[cache_i dx] . expr = expr;

1567 cached_resul ts[cache_i dx].sval = sval;

1256 cached_resul ts[cache_idx].rl =rl;

1568 cache_idx = (cache_idx + 1) % ARRAY_SI ZE(cached_results);

1570 if (!sval.type)

1259 if ('rl)

1571 return O;

new usr/src/tool s/smatch/src/smatch_nmath. c 28
1573 *res_sval = sval;

1262 *sval = tnp;

1574 return 1,

1575 }

1577 static bool get_inplied_value_internal (struct expression *expr, int *recurse_cnt
1266 static int get_inplied_value_internal (struct expression *expr, sval _t *sval, int
1578 {

1579 struct range_list *rl;

1581 res_sval ->type = NULL;

1583 if ('get_rl_sval (expr, RL_IMPLIED, recurse_cnt, &, res_sval))
1584 return fal se;

1585 if (!res_sval->type & !rl_to_sval(rl, res_sval))
1586 return fal se;

1587 return true;

1270 rl = _get_rl(expr, RL_IMPLIED, recurse_cnt);

1271 if (!'rl_to sval(rl sval))

1272 return O;

1273 return 1,

1588 }

1590 int get_inplied_val ue(struct expression *expr, sval _t *sval)
1591 {

1592 struct range_list *rl;

1279 int recurse_cnt = 0;

1594 if (!get_rl_helper(expr, RL_IMPLIED, &) ||

1595 Irl _to_sval (rl, sval))

1281 rl = _get_rl(expr, RL_IMPLIED, &recurse_cnt);

1282 if (Irl_to sval(rl sval))

1596 return O;

1597 return 1,

1598 }

1600 int get_inplied_m n(struct expression *expr, sval _t *sval)
1601 {

1602 struct range_list *rl;

1290 int recurse_cnt = 0;

1604 if ('get_rl_helper(expr, RL_IMPLIED, &) || !rl)
1292 rl = _get_rl(expr, RL_IMPLIED, &recurse_cnt);

1293 if (Irl)

1605 return O,

1606 *sval = rl_min(rl);

1607 return 1;

1608 }

1610 int get_inplied_max(struct expression *expr, sval _t *sval)
1611 {

1612 struct range_list *rl;

1302 int recurse_cnt = 0;

1614 if ('get_rl_helper(expr, RL_IMPLIED, &) || !rl)
1304 rl = _get_rl(expr, RL_IMPLIED, &recurse_cnt);

1305 if ('rl)

1615 return O;

1616 *sval = rl_max(rl);

1617 return 1;

1618 }

1620 int get_inplied_rl(struct expression *expr, struct range_|list **rl)
1621 {

1622 if (lget_rl_helper(expr, RL_IMPLIED, rl) || !*rl)

new usr/src/tool s/smatch/src/smatch_nmath. c 29 new usr/src/tool s/smatch/src/smatch_math. c 30

1623 return O; 1378 rl = _get_rl(expr, RL_HARD, &recurse_cnt);
1313 int recurse_cnt = 0; 1379 if (!rl)
1683 return O;
1315 *rl = _get_rl(expr, RL_IMPLIED, & ecurse_cnt); 1684 *sval = rl_max(rl);
1316 if (*rl) 1685 return 1;
1624 return 1; 1686 }
1318 return O;
1625 } 1688 i{nt get _fuzzy_min(struct expression *expr, sval _t *sval)
1689
1627 static int get_absolute_rl_internal (struct expression *expr, struct range_list * 1690 struct range_list *rl;
1628 { 1691 sval t tnp
1629 *rl = NULL; 1389 int recurse_cnt = 0;
1630 get _rl_internal (expr, RL_ABSOLUTE, recurse_cnt, rl);
1323 *rl = _get_rl(expr, RL_ABSOLUTE, recurse_cnt); 1693 if ('get_rl_hel per(expr, RL_FUZZY, &) || !rl)
1631 if (1*rl) 1391 rl = _get_rl(expr, RL_FUZZY, &recurse_cnt);
1632 *rl = alloc_whole_rl(get_type(expr)); 1392 if (irl)
1633 return 1, 1694 return 0O;
1634 } 1695 tnp = rl_mn(rl);
1696 if (sval_is_negative(tnp) && sval _is_min(tnp))
1636 int get_absolute_rl (struct expression *expr, struct range_list **rl) 1697 return O;
1637 { 1698 *sval = tnp;
1638 *rl = NULL; 1699 return 1;
1639 get _rl _hel per(expr, RL_ABSOLUTE, rl); 1700 }
1331 int recurse_cnt = 0;
1702 int get_fuzzy_max(struct expression *expr, sval _t *sval)
1333 *rl = _get_rl(expr, RL_ABSOLUTE, &recurse_cnt); 1703 {
1640 if (1*rl) 1704 struct range_list *rl;
1641 *rI = alloc_whole_rl(get_type(expr)); 1705 sval _t max;
1642 return 1; 1405 int recurse_cnt = 0;
1643 }
1707 if (lget_rl_hel per(expr, RL_FUZZY, &) || !rl)
1645 int get_real _absolute_rl(struct expression *expr, struct range_list **rl) 1407 rl = _get_rl(expr, RL_FUZZY, &recurse_cnt);
1646 { 1408 if ('rl)
1647 *rl = NULL; 1708 return 0O;
1648 get _rl _hel per (expr, RL_REAL_ABSOLUTE, rl); 1709 max = rl_max(rl);
1341 int recurse_cnt = 0; 1710 if (max.uvalue > I NT_MAX - 10000)
1711 return O;
1343 *rl = _get_rl (expr, RL_REAL_ABSCLUTE, &recurse_cnt); 1712 *sval = nax;
1649 if (1*rl) 1713 return 1;
1650 *rl = alloc_whole_rl(get_type(expr)); 1714 }
1651 return 1;
1652 } 1716 int get_absol ute_mi n(struct expression *expr, sval _t *sval)
1717 {
1654 int custom get_absolute_rl (struct expression *expr, 1718 struct range_list *rl;
1655 struct range_list *(*fn)(struct expression *expr), 1719 struct synbol *type;
1656 struct range_list **rl) 1421 int recurse_cnt = 0;
1657 {
1658 int ret; 1721 type = get_type(expr);
1353 int recurse_cnt = 0; 1722 if (ltype)
1723 type = & long_ctype; // FIXME this is wong but places assunme
1660 *rl = NULL; 1724 rl = NULL;
1661 custom handl e_variable = fn; 1725 get _rl _hel per (expr, RL_REAL_ABSOLUTE, &rl);
1662 ret = get_rl_hel per(expr, RL_REAL_ABSOLUTE, rl); 1426 rl = _get_rl(expr, RL_REAL_ABSOLUTE, &recurse_cnt);
1357 *rI = _get_rl(expr, RL_REAL_ABSOLUTE, &recurse_cnt); 1726 if (rl)
1663 custom handl e_vari abl e = NULL; 1727 *sval =rl_mn(rl);
1664 return ret; 1728 el se
1359 return 1; 1729 *sval = sval _type_m n(type);
1665 }
____unchanged_portion_onitted_ 1731 if (sval _cnp(*sval, sval _type_mn(type)) < 0)
1732 *sval = sval _type_mn(type);
1678 int get_hard_max(struct expression *expr, sval _t *sval) 1733 return 1;
1679 { 1734 }
1680 struct range_list *rl;
1376 int recurse_cnt = 0; 1736 int get_absol ute_max(struct expression *expr, sval _t *sval)
1737 {

1682 if (lget_rl_helper(expr, RL_HARD, &rl) || !rl) 1738 struct range_list *rl;

new usr/src/tool s/smatch/src/smatch_nmath. c 31

1739 struct synbol *type;

1441 int recurse_cnt = 0;

1741 type = get_type(expr);

1742 if (!type)

1743 type = &l ong_ctype;

1744 rl = NULL;

1745 get _rl _hel per (expr, RL_REAL_ABSCLUTE, &rl);
1446 rl = _get_rl (expr, RL_REAL_ABSOLUTE, &recurse_cnt);
1746 if (rl)

1747 *sval = rl_max(rl);

1748 el se

1749 *sval = sval _type_nmax(type);

1751 if (sval _cnp(sval _type_max(type), *sval) < 0)
1752 *sval = sval _type_nmax(type);

1753 return 1,

1754 }

____unchanged_portion_onitted_

1555 int can_integer_overflow(struct synmbol *type, struct expression *expr)

1556 {

1557 int op;

1558 sval _t | max, rmex, res;

1560 if (!type)

1561 type = & nt_ctype;

1563 expr = strip_expr(expr);

1565 if (expr->type == EXPR_ASSI GNMENT) {
1566 swi t ch(expr->op) {

1567 case SPECI AL_MJL_ASSI GN:

1568 op = "*";

1569 break;

1570 case SPECI AL_ADD_ASSI G\:

1571 op = '+ ;

1572 br eak;

1573 case SPECI AL_SHL_ASSI G\:

1574 op = SPECI AL_LEFTSHI FT;
1575 br eak;

1576 defaul t:

1577 return O;

1578 }

1579 } else if (expr->type == EXPR_BINOP) {
1580 if (expr->op !='*" && expr->op != "+ && expr->op != SPECIAL_LE
1581 return O;

1582 op = expr->op;

1583 } else {

1584 return O;

1585 }

1587 get _absol ute_nmax(expr->left, & max);
1588 get _absol ute_max(expr->right, & max);
1590 if (sval _binop_overflows(lmax, op, rmex))
1591 return 1;

1593 res = sval _bi nop(l max, op, rmex);

1594 if (sval_cnp(res, sval _type_max(type)) > 0)
1595 return 1;

1596 return O;

1597 }

new usr/src/tool s/smatch/src/smatch_mem tracker.c

R R R R

1391 Mon Aug 5 08:38:37 2019
new usr/src/tools/smatch/src/smatch_nmem tracker.c
11506 snatch resync

R R R R

2 * Copyright (C 2018 Oracle.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of
11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
12 * GNU Ceneral Public License for nore details.
13 =
14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt

*

/

18 #include "smatch. h"
19 #include <unistd. h>

21 static int ny_id;
23 static unsigned | ong nax_si ze;

25 unsi gned | ong get _nmem kb(voi d)
25 static void natch_end_func(struct synbol *sym)

26 {

27 FILE *file;

28 char buf[1024];

29 unsi gned | ong si ze;

31 f||e=fopen("/proc/self/statm', "r");
32 if (Ifile)

33 return 0;

33 retu

34 fread(buf, l, 5|zeof(buf) file);

35 fclose(file);

37 size = strtoul (buf, NULL, 10);

38 size = size * sysconf(SC PAGESI ZE) |/ 1024;
39 return size;

40 }

42 static void match_end_func(struct synbol *syn)
43

44 unsi gned | ong si ze;

46 if (option_ ms-n) {

47 size = get_memkb();

48 if (size > max_si ze)

49 max_si ze = size;

50 1

51

__unchanged_portion_omtted_

new usr/src/tool s/smatch/src/smatch_nodi fication_hooks.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
7239 Mon Aug 5 08:38:37 2019

new usr/src/tools/smatch/src/smatch_nodi fication_hooks.c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

43 static nodification_hook **hooks;
44 static nodification_hook **hooks_| ate;
46 ALLOCATOR(nodification_data, "nodification data");

48 static int ny_id;
49 static struct smatch_state *alloc_mny_state(struct expression *expr,

50 {

51 struct smatch_state *state;

52 struct nodification_data *data;
53 char *nane;

55 state = __alloc_smatch_state(0);
55 expr = strip_expr(expr);

56 name = expr_to_str(expr);

57 if (!nane)

58 return NULL;

60 state = __alloc_smatch_state(0);
61 state->nane = all oc_snane(nane);
62 free_string(nane);

64 data = __alloc_nodification_data(0);
65 data->prev = prev;

66 dat a- >cur = expr;

67 state->data = data;

69 return state;

70

__unchanged_portion_onitted_

157 static void db_param add(struct expression *expr, int param char *key,

158 {

159 struct expression *arg, *gen_expr;

160 char *nane, *other_nane;

161 struct synbol *sym *other_sym

163 while (expr- >type == EXPR_ASSI GNVENT)

164 expr = strip_t expr(expr—>r| ght);

165 if (expr->type !'= EXPR_CALL)

166 return;

168 arg = get_argunment _fromcal | _expr(expr->args, paran;
169 if (larg)

170 return;

172 gen_expr = gen_expression_fromkey(arg, key);

173 I f (gen_expr)

174 updat e_nt ag_dat a(gen_expr);

176 nane = get_variable_fromkey(arg, key, &sym;

177 if (!nane || !sym

178 goto free;

180 __in_fake_assi gn++;

181 cal | _nodification_hooks_name_synm(nane, sym expr, BOTH);
182 __in_fake_assign--;

184 ot her _nane = get _ot her _nane_syn{nane, sym &other_syn);

struct smatc

char *va

new usr/src/tool s/smatch/ src/smatch_nodi fication_hooks.c

_sym expr,

181 ot her _name = map_| ong_to_short_nanme_sym(nane, sym &other_syn);
185 if (other _nane) {
186 __in_fake_assign++;
187 cal | _nodi i cati on_hooks_name_syn{ ot her _name, ot her
188 __in_fake_assign--;
189 free_string(other name)
190 }
192 free:
193 free_string(nane);
194 }
__unchanged_portion_onitted_
281 voi d regi ster_nodification_hooks(int id)
282 {
283 ny_id =id,
285 set _dynani c_states(ny_id);
287 hooks = mall oc((numchecks + 1) * sizeof (*hooks));
288 nenset (hooks, 0, (numchecks + 1) * S|zeof(*hooks))
289 hooks_l ate = mall oc((num checks + 1) * si zeof(*hooks))
290 menset (hooks_late, 0, (numchecks + 1) * si zeof(*hooks));
292 add_hook(&vat ch_assi gn_ear|ly, ASSI GNVENT_HOXK) ;
293 add_hook(&nop_expr _early, > HOOK) ;
294 add_hook(&sm expr _early, ASM HOXK);
295 }

__unchanged_portion_omtted_

BO

new usr/src/tool s/smatch/src/smatch_ntag.c

R R R R

11413 Mon Aug 5 08:38:38 2019
new usr/src/tools/smatch/src/smatch_ntag.c
11506 snatch resync

R R R R

2 * Copyright (© 2017 Oracle. Al rights reserved.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any later version.

8 *

9 * This programis distributed in the hope that it will be useful,

10 * but W THOUT ANY WARRANTY; without even the inplied warranty of

11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the

12 * GNU Ceneral Public License for nore details.

13 =

14 * You shoul d have received a copy of the GNU General Public License

15 * along with this program if not, see http://wwm gnu.org/copyl eft/gpl.

16 */

18 /*

19 * One problemthat | have is that it’s really hard to track how pointers are
20 * passed around. For exanple, it would be nice to know that the probe() and
21 * renove() functions get the sanme pci_dev pointer. It would be good to know
22 * what pointers we're passing to the open() and close() functions.

23 * information gets lost in a call tree full of function pointer calls.

24 *

25 * | think the first step is to start nam ng specific pointers. So when a

26 * pointer is allocated, then it gets a tag. So calls to kmalloc() generate a
27 * tag. But we mght not use that, because there nm ght be a better i

28 * franebuffer_alloc(). The franebuffer_alloc() is interesting because there is
29 * one per driver and it's passed around to all the file operations.

30 *

31 * Perhaps we could make a list of functions |ike framebuffer_alloc() which take
32 * a size and say that those are the interesting alloc functions.

33 *

34 * Another place where we woul d maybe name the pointer is when they are passed
35 * to the probe(). Because that’'s an inportant pointer, since there is one
36 * per driver (sort of).

37 *

38 * My vision is that you could take a pointer and trace it back to a gl obal.
39 * I'mgoing to track that pointer_tag - 28 bytes takes you to another pointer
40 * tag. You could follow that one back and so on. Al so when we pass a pointer
41 * to a function that would be recorded as sort of a link or path or sonething.
42~

43 */

45 #include "smatch. h"

46 #include "smatch_slist.h"
47 #include "snatch_extra. h"
49 #include <openssl/nd5. h>
51 static int nmy_id;

53 static struct smatch_state *alloc_tag_state(ntag_t tag)

54 {

55) struct smatch_state *state;

56 char buf[64];

58 state = __alloc_smatch_state(0);

59 snprintf(buf, sizeof(buf), "%I1d", tag);
60 state->nane = al |l oc_snane(buf);

61 state->data = mall oc(sizeof(ntag_t));

new usr/src/tool s/smatch/src/smatch_ntag.c 2
62 *(ntag_t *)state->data = tag;
64 return state;
65 }
53 static ntag_t str_to_tag(const char *str)
54
55 unsi gned char c[MD5_DI GEST_LENGTH] ;
56 unsigned long long *tag = (unsi gned | ong long *)&c;
57 MD5_CTX ndCont ext ;
58 int len;
60 len = strlen(str);
61 MD5 Inlt(&ndContext)
62 MD5_Updat e(&rdCont ext, str, len);
63 MD5_Fi nal (¢, &nmdCont ext);
65 *tag & ~MIAG ALI AS BI T,
66 *tag & ~MIAG_OFFSET_MASK;
68 return *tag;
69 }
71 const struct {
72 const char *nane;
73 int size_ar g,
74 } aIIocator _info[] {
75 { "kmalloc", 0},
76 { "kzalloc", 0},
77 { "devm kmal | oc 1},
78 { "devm kzal l oc", 1},
79}
81 static bool is_ntag_call (struct expression *expr)
85 static void alloc_assign(const char *fn, struct expression *expr, void *unused)
82
83 struct expression *arg;
84 int i;
85 sval _t sval;
87 if (expr->type != EXPR CALL ||
88 expr->fn->type ! = EXPR_SYMBOL | |
89 I expr - >f n- >synbol)
90 return fal se;
92 for (i = 0; i < ARRAY_SIZE(al l ocator_info); i++) {
93 if (strcnp(expr->fn->synbol ->i dent->nanme, allocator_info[i].nanme
94 break;
95 }
96 if (i == ARRAY_SI ZE(al | ocator _i nfo))
97 return fal se;
99 arg = get_argunment _fromcal | _expr(expr->args, allocator_info[i].size_arg
100 if (lget_inplied_value(arg, &sval))
101 return fal se;
103 return true;
104 }
106 struct smatch_state *swap_ntag_return(struct expression *expr, struct smatch_sta
107 {
108 struct expression *left, *right;
109 char *left_name, *right_nane;
110 struct synbol *left_sym
111 struct range_list *rl;
112 char buf[256];

new usr/src/tool s/smatch/src/smatch_ntag.c 3 new usr/src/tool s/smatch/src/smatch_ntag.c 4

113 ntag_t tag; 191 if (get_toplevel _ntag(sym tag))
114 sval _t tag_sval; 192 return true;
167 if (!get_ntag(expr->unop, &container_tag))
116 if (lexpr || expr->type !'= EXPR_ASSIGNVENT || expr->op !="=") 168 return O;
117 return state;
194 if (get_paramnumfromsyn(sym) >= 0)
119 if (lestate_rl(state) || strcnp(state->nane, "0, 4096-ptr_max") != 0) 195 return false;
120 return state; 170 of fset = get_nenber_of fset _from deref (expr);
94 /1 FIXME: This should only happen when the size is not a paranter of 171 if (offset < 0)
95 /Il the caller 172 return 0;
96 return;
197 snprintf(buf, sizeof(buf), "% % %",
98 if (expr->type != EXPR_ASSI GNMENT || expr->op !='=") 198 get _filenane(), get_function(), sym >ident->nane);
99 return; 199 *tag = str_to_tag(buf);
122 left = strip_expr(expr->left); 200 return true;
123 right = strip_expr(expr->right); 174 if (!mag_nmap_sel ect_tag(container_tag, -offset, &menber_tag))
102 if (right->type != EXPR_ CALL || right->fn->type != EXPR SYMBOL) 175 return O;
103 return;
177 *tag = nenber _tag;
125 if (lis_ntag_call(right)) 178 return 1;
126 return state; 201 }
____unchanged_portion_onitted_
128 left_name = expr_to_str_sym(left, & eft_sym;
129 if (Ileft_name || !left_sym 193 static void db_returns_buf_size(struct expression *expr, int param char *unused
130 return state; 194 {
131 right_name = expr_to_str(right); 195 struct expression *call;
196 struct range_list *rl;
133 snprintf(buf, sizeof(buf), "% % % %", get_filename(), get_function()
134 I eft _nane, right_nane); 198 if (expr->type != EXPR_ASSI GNMENT)
135 tag = str_to_tag(buf); 199 return;
136 tag_sval .type = estate_type(state); 200 call = strip_expr(expr->right);
137 tag_sval . uval ue = tag;
202 if (!parse_call _math_rl(call, math, &l))
139 rl =rl_filter(estate_rl(state), valid_ptr_rl); 203 return;
140 rl = clone_rl(rl); 204 // rl = cast_rl (& nt_ctype, rl);
141 add_range(& |, tag_sval, tag_sval); 205 // set _state_expr(ny_size_id, expr->left, alloc_estate_rl(rl));
112 sql _insert _ntag_about (tag, |eft_nane, right_nane); 206 }
143 sql _i nsert _ntag_about (tag, |eft_nane, buf); 208 static void db_returns_nenory_tag(struct expression *expr, int param char *key,
114 if (left_name & left_sym 209 {
115 set_state(ny_id, left_nane, left_sym alloc_tag_state(tag)); 210 struct expression *call, *arg;
211 ntag_t tag, alias;
145 free_string(left_nane); 212 char *nane;
146 free_string(right_nane); 213 struct synbol *sym
148 return alloc_estate_rl(rl); 215 call = strip_expr(expr);
149 } 216 while (call->type == EXPR_ASSI GNMENT)
____unchanged_portion_onitted_ 217 call = strip_expr(call->right);
218 if (call->type != EXPR _CALL)
184 bool get_synbol _ntag(struct synbol *sym ntag_t *tag) 219 return;
154 int get_deref_ntag(struct expression *expr, ntag_t *tag)
185 { 221 tag = strtoul (val ue, NULL, 10);
186 char buf[256];
156 ntag_t container_tag, nenber_tag; 223 if (lcreate_ntag_alias(tag, call, &alias))
157 int offset; 224 return;
188 if (!'sym]|]| !sym>ident) 226 arg = get_argunent _fromcal |l _expr(call->args, paran);
189 return false; 227 if (larg)
159 /* 228 return;
160 * |"’mnot totally sure what |’ mdoing...
161 * 230 name = get_variabl e_fromkey(arg, key, &ym;
162 * This is supposed to get sonething like "global _var->ptr", but | don’t 231 if (Inane [| !sym
163 * feel like it's conplete at all. 232 goto free;
164 *
165 */ 234 set_state(ny_id, nane, sym alloc_tag_state(alias));

235 free:

new usr/src/tool s/smatch/src/smatch_ntag.c

236 free_string(nane);

237 }

239 static void nmatch_call _info(struct expression *expr)
240 {

241 struct smatch_state *state;

242 struct expression *arg;

243 int i =-1;

245 FOR_EACH PTR(expr->args, arg) {

246 i ++;

247 state = get_state_expr(ny_id, arg);

248 if (!state || !state->data)

249 conti nue;

250 sql _i nsert caller _info(expr, MEMORY_TAG i, "$",
251 } END_FOR EACH PTR{arg);

252 }

254 static void save_caller_info(const char *name, struct synbol
255 {

256 struct smatch_state *state;

257 char ful |l name[256] ;

258 ntag_t tag;

260 if (strncnp(key, "$", 1) !=0)

261 return;

263 tag = atoll (val ue);

264 snprintf(fullname, 256, "%%", name, key + 1);
265 state = alloc_tag_ state(tag)

266 set_state(ny_id, fullnane, sym state);

267 }

215 static int get_array_ntag_of fset(struct expression *expr, ntag_t
216 {

217 struct expression *array, *offset_expr;

218 struct synbol *type;

219 sval _t sval;

220 int start_offset;

222 if (lis_array(expr))

223 return O;

225 array = get_array_base(expr);

226 if (larray)

227 return O;

228 type = get_type(array);

229 if ('type || type >type ! = SYM ARRAY)

230 return O;

231 type = get_real _base_type(type);

232 if ('type bytes(type))

233 return O;

235 if (lexpr_to_ntag_offset(array, tag, &start_offset))
288 if (!get_ntag(array, tag))

236 return O;

238 of fset _expr = get_array_of fset (expr);

239 if (!get_value(offset_expr, &sval))

240 return O;

241 *of fset = start_offset + sval.value * type_bytes(type);
294 *of fset = sval.value * type_bytes(type);

243 return 1;

244 }

st at e- >nane) ;

*tag,

int

*sym char *key, ch

*offs

new usr/src/tool s/smatch/src/smatch_ntag.c 6
246 struct range_list *swap_ntag_seed(struct expression *expr, struct range_list *rl
299 static int get_inplied_ntag_offset(struct expression *expr, ntag_t *tag, int *of
247 {

248 char buf[256];

249 char *nane;

301 struct smatch_state *state;

302 struct synbol *type;

250 sval _t sval;

251 ntag_t tag;

253 if (!'rl_to_sval(rl, &sval))

254 return rl;

255 if (sval.type->type !'= SYM PTR || sval.uvalue != MIAG_SEED)
256 return rl;

305 type = get_type(expr);

306 if (!type_is_| ptr(type))

307 return O;

308 state = get _ext ra_state(expr);

309 if (!st ate || !estate_get_single_value(state, &sval) || sval.value == 0)
310 return O;

258 name = expr_to_str(expr);

259 snprintf(buf, si zeof(buf), "% % %", get_filenane(), get_function(), n
260 free_stri ng(name

261 tag = str totag(buf)

262 sval . val ue = tag;

263 return all oc_rI (sval, sval);

312 *tag = sval .uval ue & ~MTAG_OFFSET_MASK;

313 *of fset = sval.uval ue & MIAG_OFFSET_MASK;

314 return 1,

264 }

317 static int get_ntag_cnt;

318 int get_ntag(struct expression *expr, ntag_t *tag)
319 {

320 struct smatch_state *state;

321 int ret = 0;

323 expr = strip_expr(expr);

324 if (!expr)

325 return O;

327 if (get_ntag_cnt > 0)

328 return O;

330 get _nmtag_cnt ++;

332 swi tch (expr—>type) {

3838 case EXPR_STRI

334 it (get strlng mag(expr tag)) {
335 et =

336 goto dec _cnt;

337

338 br eak;

339 case EXPR_SYMBCOL:

340 if (get_toplevel _ntag(expr->synbol,

341 ret = 1;

342 goto dec_cnt;

343

344 br eak;

345 case EXPR_DEREF:

346 if (get_deref_ntag(expr, tag)) {
347 ret = 1;

348 goto dec_cnt;

349

350 br eak;

tag)) {

new usr/src/tool s/smatch/src/smatch_ntag.c

351 }

353 state = get_state_expr(ny_id, expr);

354 if (!state)

355 goto dec_cnt;

356 if (state >data) {

357 *tag = *(ntag_t *)state->data;

358 ret = 1;

359 goto dec _cnt;

360 }

362 dec_cnt:

363 get _nmtag_cnt--;

364 return ret;

365 }

367 int get_ntag_offset(struct expression *expr, ntag_t *tag, int *offset)
368 {

369 int val;

371 if (lexpr)

372 return O;

373 if (expr->type == EXPR_PRECP && expr->op == '*')

374 return get _ntag_of f set (expr- >unop, ag, offset);
375 if (get_inplied_ntag_offset(expr, tag, off s t))

376 return 1,

377 if (!get mag(expr tag))

378 return O;

379 expr = strip_expr(expr);

380 if (expr->type == EXPR_SYMBOL) {

381 *of fset = 0;

382 return 1;

383

384 val = get_menber_of fset_from deref(expr);

385 if (val < 0)

386 return O;

387 *of fset = val;

388 return 1,

389 }

266 i{nt create_ntag_alias(ntag_t tag, struct expression *expr, ntag_t *new)
267

268 char buf[256];

269 int lines_fromstart;

270 char *str;

272 /*

273 * W need the alias to be unique. |It’s not totally required that it
274 * be the sane fromone DB build to then next, but it makes debuggi ng
275 * a bit sinpler.

276 *

277 */

279 if (!cur_func_sym

280 return O;

282 lines_fromstart = expr->pos.line - cur_func_sym >pos.|ine;
283 str = expr_to_str(expr);

284 snprintf(buf, sizeof(buf), "%Ild % %", tag, lines_fromstart, str);
285 free_string(str);

287 *new = str_to_tag(buf);

288 sgl _insert_ntag_alias(tag, *new);

290 return 1;

291 }

new usr/src/tool s/smatch/src/smatch_ntag.c 8
293 static int get_inplied_ntag_offset(struct expression *expr, ntag_t *tag, int *of
294 {

295 struct smatch_state *state;

296 struct synbol “*type;

297 sval _t sval

299 = get _type(expr);

300 |f ('typels ptr(type))

301 return 0;

302 state = get _ext ra_state(expr);

303 if (!st ate || !estate_get_single_value(state, &sval) || sval.value == 0)
304 return O;

306 *tag = sval .uval ue & ~MTAG_OFFSET_MASK;

307 *of fset = sval.uval ue & MIAG OFFSET_MASK;

308 return 1,

309 }

311 /*

312 * The point of this function is to give you the ntag and the of fset so

313 * you can look up the data in the DB. It takes an expression.

314 *

315 * So say you give it "foo->bar" Then it would give you the offset of "bar"
316 * and the inplied value of "foo". O if you |ookup "*foo" then the offset is
317 * zero and we |l ook up the inplied value of "foo. But if the expression is
318 * foo, then if "foo" is a global variable, then we get the ntag and the of fset
319 * is zero. |If "foo" is a local variable, then there is nothing to look up in
320 * the ntag_data table because that’s handled by smatch_extra.c to this returns
321 * fal se.

322 *

323 */

324 i{nt expr_to_ntag_of fset(struct expression *expr, ntag_t *tag, int *offset)
325

326 *tag = O;

327 *of fset = 0;

329 if (bits_in_pointer != 64)

330 return O;

332 expr = strip_expr(expr);

333 if (!expr)

334 return O;

336 if (is_array(expr))

337 return get_array_ntag_of fset(expr, tag, offset);

339 if (expr->type == EXPR_PREOP && expr->op == '*") {

340 expr = stri p_expr(expr->unop)

341 return get_inplied_nt ag_offset(expr, tag, offset);

342 } else if (expr->type == EXPR_DEREF) {

343 int tnp, tnp_offset = O;

345 while (expr->type == EXPR_DEREF) {

346 tmp = get_nenber_of fset _from deref (expr);

347 if (tmp < 0)

429 if (expr->type == EXPR_DEREF)

430 *of fset = get_menber _of f set _from deref (expr);

431 if (*offset < 0)

348 return O;

349 tnp_of fset += tnp;

350 expr = expr->deref;

433 return get_ntag(expr->deref, tag);

351 }

352 *of fset = tnp_of fset;

353 if (expr->type == EXPR_PREOP && expr->op == "*") {

new usr/src/tool s/smatch/src/smatch_ntag.c 9 new usr/src/tool s/ smatch/src/smatch_ntag. c 10
354 expr = strip_expr(expr->unop); 410 if (expr->type == EXPR_STRI NG && get _string_ntag(expr, & ag))
411 goto found;
356 if (get_inplied_ntag_offset(expr, tag, & np_offset)) {
357 /1 FIXME: look it up recursively? 413 if (expr->type == EXPR_SYMBOL &&
358 if (tnmp_offset) 414 (type- >type == SYM_ARRAY || type->type == SYM FN) &&
359 return O; 415 get _t opl evel _m ag(expr->synbol , &tag))
436 if (get_inplied_ntag_offset(expr, tag, offset)) 471 if (type->type == SYM ARRAY && get _topl evel _nt ag(expr->synbol, & ag))
360 return 1; 416 goto found;
361 }
362 return O; 418 if (expr->type == EXPR_PREOP && expr->op == '&') {
363 } else if (expr->type == EXPR _SYMBOL) { 419 expr = strip_expr(expr->unop);
364 return get_synbol _ntag(expr->synbol, tag); 420 if (expr_to_ntag_offset(expr, & ag, &offset))
365 } 421 goto found;
366 return O; 422 return O;
367 } else if (expr->type == EXPR_SYMBOL) { 423 }
368 return get_synbol _ntag(expr->synbol, tag);
369 } 425 if (get_inplied_ntag_offset(expr, & ag, &offset))
370 return O; 426 goto found;
439 return get_ntag(expr, tag); 477 if (expr->type != EXPR PRECP || expr->op !="&)
371 } 428 return O;
429 found:
373 /* 430 if (offset >= MIAG OFFSET_MASK)
374 * This function takes an address and returns an sval. Let’s take sone 479 expr = strip_expr(expr->unop);
375 * exanpl e things you might pass to it:
376 * foo->bar: 481 if (!expr_to_ntag_offset(expr, & ag, &offset))
377 * If we were only called fromsmatch_math, we wouldn’t need to bother with 431 return O;
378 * this because it’s already been | ooked up in smatch_extra.c but this is 483 if (offset > MTAG OFFSET_MASK)
379 * faI so called fromother places so we have to check smatch_extra.c. 484 of fset = MIAG OFFSET_MASK;
380 * &foo
381 * If "foo" is global return the ntag for "foo". 486 found:
382 * &foo.bar 433 sval ->type = type
383 * If "foo" is global return the ntag for "foo" + the offset of ".bar". 434 sval - >uval ue = tag | offset;
384 * |t also handles string literals.
385 * 436 return 1;
386 */ 437 }
387 int get_ntag_sval (struct expression *expr, sval _t *sval)
388 { 493 static struct expression *renpve_dereference(struct expression *expr)
389 struct synbol *type; 494 {
390 ntag_t tag; 495 expr = strip_expr(expr);
391 int offset = 0;
497 if (expr->type == EXPR _PRECP && expr->op == '*')
393 if (bits_in_pointer != 64) 498 return strip_expr(expr->unop);
394 return O; 499 return preop_expression(expr, '&);
500 }
396 expr = strip_expr(expr);
502 int get_ntag_addr_sval (struct expression *expr, sval _t *sval)
398 type = get _type(expr); 503 {
399 (!type_is ptr(type)) 504 return get_ntag_sval (remove_dereference(expr), sval);
400 return O; 505 }
401 /*
402 * There are several options: 507 static void print_stored_to_ntag(int return_id, char *return_ranges, struct expr
457 * There are only three options: 508 {
403 * 509 struct smstate *sm
404 * |f the expr is a string literal, that’'s an address/ntag. 510 char buf[256];
405 * SYM ARRAY and SYM FN are ntags. There are "&f 00" type addresses. 511 const char *param nane;
406 * And there are saved pointers "p = & 00;" 512 int param
459 * 1) An array address:
460 * p = array; 514 FOR_EACH MY_SMny_id, __get_cur_stree(), sm {
461 * 2) An address |like so: 515 if (!sm>state->data)
462 * p = &my_struct->nmenber; 516 conti nue;
463 * 3) A pointer:
464 * p = pointer; 518 param = get _param num fromsyn(sm >sym;
407 * 519 1 f (param < 0)
408 */ 520 cont i nue;
521 param nanme = get_param nane(sm;

new usr/src/tool s/smatch/src/smatch_ntag.c 11

522 if (!param.nane)

523 cont i nue;

524 if (strcnp(paramnane, "$") == 0)

525 conti nue;

527 snprintf(buf, sizeof(buf), "%1d", *(ntag_t *)sm >state->data);
528 sgl _insert_return_states(return_id, return_ranges, MEMORY_TAG p
529 } END_FOR_EACH SM'sm);

530 }

439 void register_ntag(int id)

440 {

441 ny_id = id,

444 /*

445 * The ntag stuff only works on 64 systens because we store the
446 * information in the pointer itself.

447 * bit 63 : set for alias ntags

448 * bit 62-12: nmtag hash

449 * bit 11-0 : offset

450 *

451 */

545 if (bits_in_pointer != 64)

546 return;

453 add_hook(&gl obal _vari abl e, BASE_HOXK) ;

550 add_function_assi gn_hook("kmal | oc", &alloc_assign, NULL);

551 add_function_assi gn_hook("kzal | oc", &alloc_assign, NULL);

553 sel ect _return_states_hook(BUF_SI ZE, &db_returns_buf_si ze);

555 add_hook(&mat ch_cal | _i nfo, FUNCTI ON_CALL_HOXK) ;

556 sel ect _cal | er _i nfo_hook(save_cal |l er _i nfo, MEMORY_TAQG) ;

557 add_split_return_cal | back(&print_stored_to_ntag);

558 sel ect _return_states_hook(MEMORY_TAG, db_returns_nenory_tag);
454 }

____unchanged_portion_onitted_

new usr/src/tool s/smatch/src/smatch_ntag_data.c 1

R R R R

5770 Mon Aug 5 08:38:38 2019
new usr/src/tool s/smatch/src/smatch_ntag_data.c
11506 snatch resync

R R R R

____unchanged_portion_onitted_

39 static struct range_list *select_orig(ntag_t tag, int offset)
39 static struct range_list *select_orig_rl(sval _t sval)
{

40

41 struct range_list *rl = NULL;

42 ntag_t tag = sval.uval ue & ~MIAG OFFSET_MASK;

43 int offset = sval.uval ue & MTAG OFFSET_MASK;

43 mem sql (&save_rl, &, "select value fromntag_data where tag = %1d and
a4 tag, offset);

45 return rl;

46

____unchanged_portion_ontted_

72 static void insert_ntag_data(ntag_t tag, int offset, struct range_list *rl)
74 void insert_ntag_data(sval _t sval, struct range_list *rl)

73 {

76 ntag_t tag = sval.uval ue & ~MIAG OFFSET_MASK;

77 int offset = sval.uval ue & MTAG OFFSET_MASK;

74 rl = clone_rl _permanent(rl);

76 mem sqgl (NULL, NULL, "delete fromntag_data where tag = %1d and offset =
77 tag, offset, DATA VALUE);

78 mem sqgl (NULL, NULL, "insert into ntag_data values (%1d, %, %, "%u);
79 tag, offset, DATA VALUE, (unsigned long)rl);
80 }

82 voi d update_ntag_data(struct expression *expr)

83 {

84 struct range_list *orig, *new, *rl;

85 struct synbol *type;

86 char *nane;

87 ntag_t tag;

88 int offset;

91 sval _t sval;

90 name = expr_to_var(expr);

91 if (is_kernel_param nanme)) {

92 free_string(nane);

93 return;

94 }

95 free_string(nane);

97 if (!expr_to_ntag_offset(expr, & ag, &offset))

100 if (!get_ntag_addr_sval (expr, &sval))

98 return;

100 type = get_type(expr);

101 if ((offset == 0) &&

102 ('type || type == &oid_ctype ||

103 type->type == SYM STRUCT || type->type == SYM UNION || type->type =
104 return;

106 get _absolute_rl (expr, &rl);

108 orig = select_orig(tag, offset);

105 orig = select_orig_rl(sval);

9
109 new = rl_union(orig, rl);
110 insert_ntag_data(tag, offset, new);

new usr/src/tool s/smatch/src/smatch_ntag_data.c

107 insert_ntag_data(sval, new);

111 }

113 static void match_gl obal _assign(struct expression *expr)
114 {

115 struct range_list *rl;

116 ntag_t tag;

117 int offset;

113 sval _t sval;

118 char *nane;

120 nane = expr_to_var(expr->left);

121 if (is_kernel_paran(nane))

122 free_string(nane);

123 return;

124 1

125 free_string(nane);

127 if (lexpr_to_ntag_offset(expr->left, & ag, &offset))
123 if (!get_ntag_addr_sval (expr->left, &sval))
128 return;

130 get _absolute_rl (expr->right, &l);

131 insert_ntag_data(tag, offset, rl);

127 insert_ntag_data(sval, rl);

132 }

____unchanged_portion_onitted_

177 struct db_cache_results {
178

ntag_t tag;
174 sval _t sval;
179 struct range_list *rl;
180 };

181 static struct db_cache_results cached_results[8];

183 static int get_rl_fromntag_offset(nmag_t tag, int offset, struct synbol *type,

179 static int get_rl_fromntag_sval (sval _t sval, struct synbol *type,

184 {

185 struct db_info db_info = {};

186 ntag_t nerged = tag | offset;

182 mag_t tag;

183 int offset;

187 static int idx;

188 int ret;

189 int i;

191 if (!type || type == &oid_ctype ||

192 (type->type == SYM STRUCT || type->type == SYM ARRAY ||
193 return O;

195 for (i = 0; i < ARRAY_SI ZE(cached_results); i++) {
196 if (merged == cached_results[i].tag) {

189 if (sval.uvalue == cached_results[i].sval.uvalue) {
197 if (cached_results[i].rl) {

198 *rl = cached_results[i].rl;
199 return 1;

200 }

201 return O;

202 }

203 }

198 tag = sval .uval ue & ~MIAG _OFFSET_NMASK;

199 of fset = sval .uval ue & MIAG_OFFSET_MASK;

200 if (offset == MIAG OFFSET_MASK) {

201 ret = 0;

202 got o updat e_cache;

struct range_

type->type =

new usr/src/tool s/smatch/src/smatch_ntag_data.c

203 }

205 db_i nfo.type = type;

207 run_sql (get _val s, &db_info,

208 "select value fromntag_data where tag = %1d and of f set
209 tag, offset, DATA VALUE);

210 if (tdb_info.rl || is_whole_rl(db_info.rl)) {
211 db_info.rl = NULL;

212 ret = 0;

213 got o updat e_cache;

214 1

216 *rl = db_info.rl;

217 ret = 1;

219 updat e_cache:

220 cached_resul ts[idx].tag = merged;

219 cached_resul ts[idx].sval = sval;

221 cached_results[idx].rl = db_info.rl;

222 idx = (idx + 1) % ARRAY_SI ZE(cached_resul ts);
224 return ret;

225 }
__unchanged_portion_onitted_

232 int get_ntag_rl (struct expression *expr, struct range_list **rl)

233 {

234 struct synbol *type;

235 ntag_t tag;

236 int offset;

234 sval _t sval;

238 if (lexpr_to_ntag_offset(expr, & ag, &offset))
236 if (!get_ntag_addr_sval (expr, &sval))

239 return O;

240 if (offset >= MIAG OFFSET_MASK)

241 return O;

243 type = get_type(expr);

244 if (!type)

245 return O;

247 return get_rl_fromntag_offset(tag, offset, type, rl);
243 return get_rl_fromntag_sval (sval, type, rl);
248 }

__unchanged_portion_omtted_

= % an

new usr/src/tool s/smatch/src/smatch_ntag_nap. c 1

R R R R

1625 Mon Aug 5 08:38:39 2019
new usr/src/tool s/smatch/src/smatch_ntag_nap. c
11506 snatch resync

R R R R

2 * Copyright (© 2017 Oracle. Al rights reserved.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of

11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the

12 * GNU Ceneral Public License for nore details.

13 =

14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt
16 */

18 /*

19 * This basically stores when a pointer is stored as a struct nenber.
*

21 */

23 #include "smatch. h"

24 #include "smatch_slist.h"

25 #include "smatch_extra. h"

27 static int ny_id;

29 static void match_assign(struct expression *expr)

30

31 struct expression *left, *right;

32 ntag_t left_tag;

32 ntag_t left_tag, right_tag;

33 int offset;

34 sval _t sval;

36 if (expr->op !'="=")

37 return;

39 left = strip_expr(expr->left);

40 right = strip_expr(expr->right);

42 if (!type_is_ptr(get type(rlght)))

41 if (left->type != EXPR _DEREF)

43 return;

44 if (lget_inpli ed_val ue(right, &sval))

44 of fset = get_nenber_of fset _fromderef(left);
45 if (offset < 0)

45 return;

46 if (sval_cnp(sval, valid_ptr_min_sval) <0 |]
a7 sval _cnp(sval, valid_ptr_nax_sval) > 0)
48 if (lget_ntag(left->deref, & eft_tag))

48 return;

49 if (sval.uval ue & MIAG OFFSET_NASK)

50 if (!get_ntag(right, &ight_tag))

50 return;

52 if (lexpr_to_ntag_offset(left, & eft_tag, &offset))

53 return;

new usr/src/tool s/ smatch/ src/smatch_ntag_nap. c

55 sql _i nsert _ntag_nap(sval . uval ue, -offset,
53 sqgl _insert_ntag_nmap(right_tag, -offset,
56 }

__unchanged_portion_omtted_

left_tag);
left_tag);

new usr/src/tool s/smatch/src/smatch_nul _term nator.c 1

R R R R

6995 Mon Aug 5 08:38:39 2019

new usr/src/tools/smatch/src/smatch_nul _termnator.c
11506 snatch resync

R R R R

____unchanged_portion_onitted_

250 static void match_strnlen_test(struct expression *expr)

251 {

252
253

255
256
257
258

260
261
262
263
264
265
266

268
269
270
271
272
273
274
275
276
277
278
279
280

282
284

286
287

289
290
291

293
294

296

297 }

struct expression *left, *tnp, *arg;
int cnt;

if (expr->type != EXPR_COVPARE)
return;

if (expr->op !'= SPECI AL_EQUAL && expr->op != SPECI AL_NOTEQUAL)
return;

left = strip_expr(expr->left);
cnt = 0;
while ((tnp = get_assigned_expr(left))) {
if (cnt++ > 3)
break;
left = tnp;
}

if (left->type != EXPR _CALL)
return;
if (!I'symname_is("strnlen", left->fn))
return;
arg = get_argunent _fromcall _expr(left->args, 0);
set _true_fal se_states_expr(ny_id, arg,
(expr->op == SPECI AL_EQUAL) ? &term nated : NULL,
(expr->op == SPECI AL_NOTEQUAL) ? & erminated : NULL);
if (get_paramnnun(arg) >= 0)
set _true_fal se_states_expr(paramset_id, arg,
(expr->op == SPECI AL_EQUAL) ? & erminated : NULL
(expr->op == SPECI AL_NOTEQUAL) ? &termnated : N

void register_nul _termnator(int id)
283 {

ny_id =id;

add_hook(&rat ch_nul _assi gn, ASSI GNVENT_HOOK) ;
add_hook(&rat ch_string_assi gn, ASSI GNVENT_HOOK) ;

add_hook(&mrat ch_cal | _i nfo, FUNCTI ON_CALL_HOCK) ;
add_nenber _i nfo_cal | back(ny_id, struct_menber_call back);
add_split_return_call back(&split_return_info);

sel ect _cal l er_i nfo_hook(cal l er _info_term nated, TERM NATED);
sel ect _return_states_hook(TERM NATED, return_info_term nated);

add_hook(&mat ch_strnl en_test, CONDI TI ON_HOXK) ;

____unchanged_portion_onitted_

new usr/src/tool s/smatch/src/smatch_param conpare_linmt.c 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
9433 Mon Aug 5 08:38:39 2019

new usr/src/tool s/smatch/src/smatch_param conpare_limt.c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

174 static void print_return_conparison(int return_id, char *return_ranges, struct e

175 {

176 struct smstate *tnp;

177 struct string_list *links;

178 char *Ilink;

179 struct smstate *sm

180 struct conpare_data *dat a;

181 struct var_sym*left, *right;

182 int |eft_param right_param

183 static char |eft_buf[248];

184 static char right_buf[248];

183 static char |eft_buf[256];

184 static char right buf[256]

185 static char info_buf[256];

186 const char *tnp_naneg;

188 FOR_EACH MY_SMlink_id, __get_cur_stree(), tnp) {

189 I'inks = tnp->st at e->dat a;

190 FOR_EACH_PTR(Ilinks, link) {

191 sm = get_smstate(conpare_id, link, NULL);

192 if (!sm

193 continue;

194 data = sm >state->data;

195 if (!data || !data->conparison)

196 conti nue;

197 if (ptr_list_size((struct ptr_list *)data->left_vsl) !=
198 ptr_list_size((struct ptr_list *)data->right_vsl) !=
199 conti nue;

200 left = first_ptr_list((struct ptr_list *)data->left_vsl)
201 right = first_ptr_list((struct ptr_list *)data->right_vs
202 if (left->sym== right->sym &&

203 strcnp(l eft->var, right->var) == 0)

204 conti nue;

205 /*

206 * Both paraneters link to this conparison so only

207 * record the first one.

208 *

209 if (left->sym!= tnmp->sym||

210 strcenp(l eft->var, tnp->nanme) != 0)

211 conti nue;

213 | eft_param = get_param num fromsyn(l eft->sym;

214 ri ght_param = get_param num fromsyn(right->syn);

215 if (left_param< 0 || right_param< 0) /* can’t happen h
216 conti nue;

218 tnp_nane = get_param nane_var_syn(left->var, left->sym;
219 if (!tnp_nane)

220 conti nue;

221 snprintf(left_buf, sizeof(left_buf), "%", tnp_nane);
223 tnp_nane = get_param nane_var syn"(rl ght->var, right->sym
224 if (!tnp_nane || tnp_nane[0] T=

225 conti nue;

226 snprintf(right _buf, si zeof (right_buf), "$%%", right_pa
228 snprintf(info_buf, sizeof(info_buf), "% %", show_ speci
229 sql _insert_return_states(return_id, return ranges

230 COMPARE_LIMT, | eft_par am |eft_buf, inf

new usr/src/tool s/smatch/ src/smatch_param conpare_linmt.c

231 } END_FOR_EACH PTR(! i nk);
233 } END_FOR EACH SM tnp);
234 }

__unchanged_portion_omtted_

279 static int split_op_paramkey(char *value, int *op, int *param char **key)

280 {

281 static char buf[256];

282 char *p;

284 if (!parse_conparison(&alue, op))
285 return O;

287 snprintf(buf, sizeof(buf), "%", value);
287 snprintf(buf, sizeof(buf), value);
289 p = buf;

290 if (*p++ 1="9)

291 return O;

293 param = atoi(p);

294 if (*param< 0 || *param > 99)
295 return O;

296 p++

297 I f (param > 9)

298 p++;

299 p--;

300 *p='¢,

301 *key = p;

303 return 1;

304 }

__unchanged_portion_omtted_

356 void register_paramconpare_limt(int id)

357 {

358 conpare_id = id;

360 set _dynami c_st at es(conpare_i d);

361 add_nerge_ hook(conpare_i d, &rTerge conpar e_st at es) ;
362 add_split_return_call back(&prl nt _return_conpari son);
364 sel ect _return_states_hook(COVWPARE_LI M T, &db_ret urn_conpari son);
365 }

367 void register_paramconpare_linmit_links(int id)

368 {

369 link_id =id;

371 set _dynani c_states(link_id);

372 add_mer ge_hook(link_id, &erge_links);

373 }

__unchanged_portion_omtted_

new usr/src/tool s/smatch/src/smatch_paramfilter.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
5256 Mon Aug 5 08:38:40 2019

new usr/src/tools/smatch/src/smatch_paramfilter.c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

136 static void print_one_nod_paran(int return_id, char *return_ranges,

137 int param struct smstate *sm struct string_list **tot
138 {

139 const char *param nane;

141 param nanme = get_param nanme(sn;

142 1 f (!param nane)

143 return;

144 if (is_whole_rl(estate_rl(sm>state)))

145 return;

146 if (lestate_rl(sm>state))

147 insert_string(totally_filtered, (char *)sm >nane);

148 return;

149 }

151 if (is_ignored_kernel _data(paramnane)) {

152 insert_string(totally_ filtered, (char *)sm >nane);

153 return;

154 }

156 sql _insert_return_states(return_id, return_ranges, PARAM FILTER, param
157 param nane, show_ rl (estate_rl(sm>state)));

158 }

__unchanged_portion_onitted_

202 void register_paramfilter(int id)

203 {

204 ny_id =id;

206 set _dynami c_states(ny_id);

207 add_hook(&save_start_states, AFTER DEF_HOOK) ;

208 add_hook(&f ree_start_states, AFTER_FUNC_HOOK) ;

210 add_extra_nod_hook(&xt ra_nod_hook) ;

211 add_unmat ched_st at e_hook(ny_i d, &unmatched_state);
212 add_pre_nerge_hook(ny_id, &pre_nerge_hook);

213 add_nerge_hook(ny_id, &merge_estates);

215 add_hook(&mat ch_save_states, | NLI NE_FN_START);

216 add_hook(&mrat ch_restore_states, |NLI NE_FN_END);
218 add_split_return_cal |l back(&print_return_val ue_paran);
219 }

__unchanged_portion_omtted_

new

* ok kK

new
1150

* ok kK

usr/src/tool s/ smatch/ src/smatch_paramlimt.c

B R

5733 Mon Aug 5 08:38:40 2019
usr/src/tool s/ smatch/ src/smatch_paramlimt.c
6 smatch resync

B R R R R

__unchanged_portion_onitted_

134 static void print_return_value_paran(int return_id, char *return_ranges,
135 {
136 struct smatch_state *state, *old;
137 struct smstate *tnp;
138 struct range_list *rl;
139 const char *param nane;
140 int param
142 FOR_EACH MY_SM SMATCH EXTRA, _ get_cur_stree(), tnp) {
143 param = get _param num fromsyn(tnmp->symn;
144 1f (param < 0)
145 cont i nue;
147 param nane = get_param nanme(tnp);
148 1 f (!param nane)
149 cont i nue;
151 state = __get_state(ny_id, tnp->nanme, tnp->synm;
152 if (!state)
153 state = tnp->state;
155 if (estate_is_whole(state) || estate_is_enpty(state))
156 conti nue;
157 old = get_state_stree(start_states, SMATCH EXTRA,
158 if (old & rl_equiv(estate_rl(old), estate_rl(state)))
159 conti nue;
161 if (is_ignored_kernel _data(param nane))
162 cont i nue;
164 rl = generify_ntag_range(state);
165 sql _insert_return_states(return_id, return_ranges,
166 param param nane, show_rl(rl));
167 } END_FOR_EACH SMt) ;
168 }
__unchanged_portion_onitted_
195 void register_paramlimt(int id)
196 {
197 ny_id =id;
199 set _dynami c_states(ny_id);
200 add_hook(&save_start_states, AFTER DEF_HOOK) ;
201 add_hook(&f ree_start_states, AFTER_FUNC_HOXK) ;
203 add_extra_nod_hook(&xt ra_nod_hook) ;
204 add_unmat ched_st at e_hook(ny_i d, &unmatched_state);
205 add_ner ge_hook(ny_id, &nerge_estates);
207 add_hook(&mat ch_save_states, | NLI NE_FN_START);
208 add_hook(&mat ch_restore_states, |NLINE_FN _END);
210 add_split_return_cal |l back(&print_return_val ue_paran;
211 }

__unchanged_portion_onitted_

struct

t np- >nane, tnp

PARAM LIM T,

new usr/src/tool s/smatch/src/smatch_param set.c 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
6249 Mon Aug 5 08:38:40 2019

new usr/src/tool s/smatch/src/smatch_param set.c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

157 static void print_return_value_paran(int return_id, char *return_ranges, struct

158 {

159 struct smstate *sm

160 struct smatch_state *extra,;

161 int param

162 struct range_list *rl;

163 const char *param nane;

164 struct string_list *set_list = NULL;

165 char *math_str;

166 char buf[256];

167 sval _t sval;

168 FOR_ EACH MY_SMny_id, _ get_cur_stree(), sm {

169 if (lestate_rl(sm>state))

170 conti nue;

171 extra = get_state(SMATCH EXTRA, sm >nane, sm >synj;

172 if (extra) {

173 rl =rl_intersection(estate_rl(sm>state), estate_rl (ext
174 if ('rl)

175 conti nue;

176 } else {

177 rl = estate_rl(sm>state);

178 }

180 param = get _param num fromsyn{sm >syn);

181 if (param < 0)

182 conti nue;

183 param nanme = get_param nane(snm;

184 1 f (!paramnane)

185 conti nue;

186 if (strcnp(paramnane, "$") == 0) {

187 insert_string(&set_list, (char *)sm >nane);

188 cont i nue;

189

190 if (is_recursive_nmenber(paramnane)) {

191 insert_string(&set_list, (char *)sm >nane);

192 cont i nue;

193 }

195 if (is_ignored_kernel _data(paramnane)) {

192 if (rl_to_sval(rl, &sval))

196 insert_string(&set_list, (char *)sm >nane);

194 sql _insert_return_states(return_id, return_ranges,
195 param has_filter_data(sm ? PARAM ADD :
196 param param nanme, show rl(rl));
197 conti nue;

198 }

200 mat h_str = get_val ue_i n_terns_of _paraneter_nmat h_var_syn(sm >nane
201 if (math_str) {

202 snprintf(buf, sizeof(buf), "9%[%]", showrl(rl), math_s
203 insert_string(&et_list, (char *)sm >nane);

204 sql _insert_return_states(return_id, return_ranges,
205 param has_filter_data(sm ? PARAM ADD :
206 param param nane, buf);

207 conti nue;

208 }

210 /* no useful information here. */

new usr/src/tool s/smatch/src/smatch_param set.c

211
212
213

215
216
217
219

221
222 }

if (is_whole_rl(rl) && parent_set(set_list, sm>nane))
cont i nue;
insert_string(&set_list, (char *)sm>nane);

sql _insert_return_states(return_id, return_ranges,
param has_filter_data(sm ? PARAM ADD :
param paramnane, show_rl(rl));
} END_FOR _EACH_SM sm);

free_ptr_list((struct ptr_list **)&set_list);

__unchanged_portion_omtted_

259 void register_paramset(int id)

260 {
261

263
264
265
266
267
268
269 }

ny_id =id;

set _dynami c_states(ny_id);

add_extra_nod_hook(&xt ra_nod_hook) ;

add_hook(mat ch_array_assi gnment, ASSI GNMENT_HOOK) ;
add_unnat ched_st at e_hook(ny_i d, &unmatched_state);
add_nerge_hook(ny_id, &mrerge_estates);
add_split_return_cal | back(&print_return_val ue_paran;

__unchanged_portion_omtted_

new usr/src/tool s/smatch/src/smatch_paramto_ntag_data.c

R R R R

5853 Mon Aug 5 08:38:41 2019
new usr/src/tool s/smatch/src/smatch_paramto_ntag_data.c
11506 snatch resync

R R R R

____unchanged_portion_onitted_

79 static bool is_local_var(struct expression *expr)

80 {

81 struct synmbol *sym

83 if (lexpr || expr->type != EXPR _SYMBOL)

84 return fal se;

85 sym = expr->synbol ;

86 if (!(sym>ctype.nodifiers & MOD_TOPLEVEL))

87 return true;

88 return fal se;

89 }

91 static void match_assign(struct expression *expr)

92

93 struct expression *left;

94 struct synbol *right_sym

95 char *nane;

96 nag_t tag;

97 int offset;

98 int param

100 if (expr->op !="=")

101 return;

102 left = strip_expr(expr->left);

103 if (is_local_var(left))

104 return;

105 ri ght_sym = expr_to_syn(expr->right);

106 if ('right_sym

107 return;

109 param = get _param num fromsyn(right_syn);

110 1 f (param < 0)

111 return;

112 /1 FIXME: nodify paramhas_filter_data() to take a name/sym
113 if (lexpr_to_ntag_offset(left, & ag, &offset))
114 return;

115 name = expr_to_str(left);

116 if (!'nane)

117 return;

118 set_state_expr(ny_id, expr->right, alloc_tag_data_state(tag,
119 free_string(nane);

120 }

108 #if O

109 static void save_ntag_to_map(struct expression *expr, ntag_t tag,
110 {

111 struct expression *arg, *gen_expr;

112 ntag_t arg_tag;

114 arg = get_argunent _from cal | _expr(expr->args, paranm;
115 if (larg)

116 return;

118 gen_expr = gen_expression_fromkey(arg, key);
119 if (!gen_expr)

120 return;

122 if (!get_ntag(gen_expr, &arg_tag))

123 arg_tag = 0;

nane,

of fse

int offset, in

new usr/src/tool s/smatch/src/smatch_paramto_ntag_data.c 2
125 if (local_debug)
126 smnsg("finding ntag for '%" %Ild", expr_to_str(gen_expr), arg_
127 }
128 #endi f
122 static void propogate_assi gnnent(struct expression *expr, ntag_t tag, int offset
123 {
124 struct expression *arg;
125 int orig_param
126 char buf[32];
127 char *nane;
128 struct synbol *sym
130 arg = get_argunment _from cal | _expr(expr->args, paranm;
131 if (larg)
132 return;
133 name = get_variabl e_fromkey(arg, key, &sym;
134 if (!name || !sym
135 goto free;
137 ori g_param = get _param num fromsyn(sym;
138 if (orig_param< 0)
139 goto free;
141 snprintf(buf, sizeof(buf), "$->[%l]", offset);
142 set_state(ny_id, nane, sym alloc_tag_data_state(tag, buf, offset));
143 free:
144 free_string(nane);
145 }
147 static void assign_to_alias(struct expression *expr, int param ntag_t tag, int
148 {
149 struct expression *arg, *gen_expr;
150 struct range_list *rl;
151 ntag_t arg_tag;
152 ntag_t alias;
153 int arg_offset;
155 arg = get_argunent _from cal | _expr(expr->args, param;
156 if (larg)
157 return;
159 gen_expr = gen_expression_fromkey(arg, key);
160 if (!gen_expr)
161 return;
163 get _absolute_rl (gen_expr, &rl);
165 if (lcreate_ntag_alias(tag, expr, &alias))
166 return;
168 // insert_ntag_data(alias, offset, rl);
170 /Il FIXME: is arg_offset handled correctly?
171 if (expr_to_ntag_offset(gen_expr, &rg_tag, &arg_offset) &% arg_offset =
177 if (get_ntag(gen_expr, &arg_tag))
172 sql _insert_ntag_map(arg_tag, -offset, alias);
173 }
____unchanged_portion_onitted_
222 void register_paramto_ntag_data(int id)

223
224

226

{ _ .
nmy_id = id;

set _dynami c_states(ny_id);

new usr/src/tool s/smatch/src/smatch_paramto_ntag_data.c

227 add_hook(&vat ch_assi gn, ASSI GNMVENT_HOCK) ;

228 sel ect _return_states_hook(MTAG_ASSI GN, &cal | _does_nt ag_assi gn);
229 add_ner ge_hook(ny_id, &merge_tag_info);

230) add_split_return_cal | back(&print_stored_to_ntag);

231

____unchanged_portion_onitted_

new usr/src/tool s/ smatch/ src/smatch_param used. c 1
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
2652 Mon Aug 5 08:38:41 2019
new usr/src/tool s/ smatch/src/smatch_param used. c
11506 snatch resync
IR E SR SR RS RS E SRR R R SRR R R SRR R R R RS EEREREEREEREEEEEEEERSE]
1/*
2 * Copyright (© 2015 Oracle.
3 *
4 * This programis free software; you can redistribute it and/or
5 * nodify it under the terns of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any |later version.
8 *
9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of
11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
12 * GNU General Public License for nore details.
13 =
14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt
16 */
18 #include "smatch. h"
19 #include "smatch_slist.h"
21 static int ny_id;
23 static struct stree *used_stree;
24 static struct stree_stack *saved_stack;
26 STATE(used);
28 static void get_state_hook(int owner, const char *nane, struct synbol *sym
29
30 int arg;
32 if (loption_info)
33 return;
34 if (__in_fake_assign || __in_fake_paraneter_assign || __in_function_def)
34 if (__in_fake_assign)
35 return;
37 arg = get_param num fromsyn(syn);
38 if (arg >= 0)
39 set _state_stree(&used_stree, ny_id, name, sym &used);
40 }
42 static void set_param used(struct expression *call, struct expression *arg, char
43
44 struct synbol *sym
45 char *nane;
46 int arg_nr;
48 nane = get_variable_fromkey(arg, key, &sym;
49 if (!nane || !sym
50 goto free;
52 arg_nr = get_paramnumfromsyn{syn);
53 if (arg_nr >= 0)
54 set _state_stree(&used_stree, ny_id, name, sym &used);
54 set_state(ny_id, nane, sym &used);
55 free:
56 free_string(nane);
57 }

59 static void process_states(void)

new usr/src/tool s/ smatch/src/smatch_param used. c

60 {

61 struct smstate *tnp;

62 int arg;

63 const char *nane;

65 FOR_EACH SM used_stree, tnp)

66 arg = get_param num fromsyn(tnp->syn);
67 if (arg < 0)

68 conti nue;

69 name = get_param nanme(tnp);

70 if (!nane)

71 conti nue;

72 if (is_recursive_nmenber(nane))

73 conti nue;

75 if (is_ignored_kernel _data(nane))

76 conti nue;

78 sql _insert_return_i npli es(PARAM USED, arg,
79 } END_FOR_EACH SMtnmp);

81 free_stree(&used_stree);

82

__unchanged_portion_onitted_

nane,

")

new usr/src/tool s/smatch/src/smatch_parse_call _math.c 1

R R R R

13407 Mon Aug 5 08:38:41 2019
new usr/src/tool s/ smatch/src/smatch_parse_call _nath.c
11506 snatch resync

R R R R

__unchanged_portion_onitted_

117 static int read_rl_fromuvar(struct expression *call, const char *p, const char *
117 static int read_rl_fromvar(struct expression *call, char *p, char **end, struct
118

119 struct expression *arg;

120 struct smatch_state *state;

121 | ong param

122 char *nane;

123 struct synbol *sym

124 char buf[256];

125 int star;

127 p++;

128 param = strtol (p, (char **)&p, 10);

128 param = strtol (p, &p, 10);

130 arg = get_argunment _fromcall _expr(call->args, param;

131 if (larg)

132 return O;

134 if (*p!="-" & *p !=". {

135 get _absolute_rl(arg, rl);

136 *end = p;

137 return 1,

138 }

140 *end = strchr(p, ' ");

142 if (arg->type == EXPR_PRECP && arg->op == '&') {

143 arg = strip_expr(arg->unop);

144 star = 0O;

145 pt++;

146 } else {

147 star = 1;

148 p += 2;

149 }

151 name = expr_to_var_sym(arg, &sym;

152 if (!'nane)

153 return O;

154 snprintf(buf, sizeof(buf), "%%", name, star ? "->" : ".");
155 free_string(nane);

157 if (*end - p + strlen(buf) >= sizeof (buf))

158 return O;

159 strncat (buf, p, *end - p);

161 state = get_state(SMATCH EXTRA, buf, sym;

162 if (!state)

163 return O;

164 *rl = estate_rl(state);

165 return 1;

166 }

168 static int read_var_nun(struct expression *call, const char *p, const char **end
168 {static int read_var_nun(struct expression *call, char *p, char **end, struct ran
169

170 sval _t sval;

172 while (*p ="' ")

new usr/src/tool s/ smatch/src/smatch_parse_cal | _nath.c

173 pt++;

175 if (*p=="89")

176 return read_rl _fromvar(call, p, end, rl);
178 sval .type = & | ong_ctype;

179 sval .value = strtoll (p, (char **)end, 10);
179 sval .value = strtoll (p, end, 10);

180 if (*end == p)

181 return O;

182 *rl = alloc_rl(sval, sval);

183 return 1;

184 }

186 static const char *read_op(const char *p)
186 static char *read_op(char *p)

187 {

188 while (*p ==" ")

189 p++;

191 switch (*p) {

192 case '+ :

193 case '-':

194 case ' *':

195 case '/’

196 return p;

197 defaul t:

198 return NULL;

199 }

200 }

202 int parse_call _math_rl(struct expression *call, const char *math, struct range_|
202 int parse_call_math_rl (struct expression *call, char *math, struct range_|list **
203 {

204 struct range_list *tnp;

205 const char *c;

205 char *c;

207 /* try to inplement shunting yard algorithm */

209 ¢ = nmath;

209 c = (char *)math;

210 while (1)

211 1 f (option_debug)

212 sm nsg("parsing %", c);

214 /* read a nunmber and push it onto the nunber stack */
215 if (!read_var_num(call, c, &, &tnp))

216 goto fail;

217 push_rl (&I _stack, tnp);

219 if (option_debug)

220 smnsg("val = % remaining = %", show.rl(tnp), c);
222 if (1*c)

223 break;

224 if (*c =="]" & *(c + 1) =="'\0")

225 br eak;

227 ¢ = read_op(c);

228 if (c)

229 goto fail;

231 if (option_debug)

232 smmsg("op = % renmining = %", c);

new usr/src/tool s/ smatch/src/smatch_parse_cal | _nath.c

234 rl_pop_until (*c);
235 push_op(*c);

236 C++,

237 }

239 rl_pop_until (0);

240 *rI = pop_rl (&1 _stack);
241 return 1;

242 fail:

243 rl_discard_stacks();

244 return O;

245 }

__unchanged_portion_omtted_

347 static int is_ntag_sval (sval _t sval)

348 {

349 if (lis_ptr_type(sval.type))

350 return O;

351 if (sval _cnp(sval, valid_ptr_mn_sval) >= 0 &&
352 sval _cnp(sval, valid_ptr_nmax_sval) <= 0)
353 return 1;

354 return O;

355 }

357 static int format_expr_hel per(char *buf, int remaining, struct expression *expr)
58 {

359 sval _t sval;

360 int ret;

361 char *cur;

363 if (!expr)

364 return O;

366 cur = buf;

368 if (expr->type == EXPR_BINOP) {

369 ret = format_expr_hel per(cur, renuining, expr->left);
370 if (ret == 0)

371 return O;

372 remaining -= ret;

373 if (remaining <= 0)

374 return O;

375 cur +=ret;

377 ret = snprintf(cur, remaining, " % ", show special (expr->op));
378 remaining -= ret;

379 if (remaining <= 0)

380 return O;

381 cur +=ret;

383 ret = format_expr_hel per(cur, remining, expr->right);
384 if (ret == 0)

385 return O;

386 renaining -= ret;

387 if (remaining <= 0)

388 return O;

389 cur +=ret;

390 return cur - buf;

391 }

393 if (!paramwas_set(expr) && get_inplied_val ue(expr, &sval) && !'is_ntag_s
383 if (get_inplied_value(expr, &sval)) {

394 ret = snprintf(cur, renmaining, "%", sval _to_str(sval));
395 remaining -= ret;

396 if (remaining <= 0)

397 return O;

443 {

444 struct expression *tnp, *expr;
445 char buf[256] = "";
446 int ret;
447 int cnt = 0;
448 sval _t sval;
450 expr = get_assi gned_expr_nane_syn(nane, syn);
451 if (lexpr)
452 return NULL;
453 while ((tnp = get_assigned_expr(expr))) {
454 expr = strip_expr(tnp);
455 if (++cnt > 3)
456 br eak;
457 }
459 if (get_inplied_value(expr, &sval))
460 return NULL;
462 ret = format_expr_hel per(buf, sizeof(buf), expr);
463 if (ret == 0
464 return NULL;
466 return alloc_snanme(buf);
468 }
__unchanged_portion_omtted_
486 static char *swap_format(struct expression *call, char *fornat)
487 {
488 char buf[256];
489 sval _t sval;
490 | ong param
491 struct expression *arg;
492 char *p;
493 char *out;
494 int ret;
496 if (format[0] =='9$ && format[2] == "\0")
497 param = strtol (format + 1, NULL, 10);
498 arg = get_argunent _fromcal |l _expr(call->args, param;
499 if (larg)
500 return NULL;
501 return format_expr(arg);
502 }
504 buf[0] ="'\0";
505 p = format;
506 out = buf;
507 while (*p) {
508 if (*p="9) {
509 p++;
510 param = strtol (p, (char **)&p, 10);

496 param = strtol (p, &, 10);
511 arg = get_argunent _fromcal |l _expr(call->args,

new usr/src/tool s/ smatch/src/smatch_parse_cal | _nath.c 4
398 return ret;
399 }
401 if (expr->type == EXPR_CALL)
402 return format_cal | _to_param nmappi ng(cur, remaining, expr);
404 return format_vari abl e_hel per(cur, remaining, expr);
405 }
__unchanged_portion_omtted_
442 char *get _val ue_i n_terns_of _paraneter_math_var_sym(const char *nane, struct synb

paran ;

new usr/src/tool s/ smatch/src/smatch_parse_cal | _nath.c 5

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

537 }

if (targ)
return NULL;
param = get _arg_nunber (arg);
i f (param >= 0)
ret = snprintf(out, buf + sizeof(buf) - out, "$%
out += ret;
if (out >= buf + sizeof(buf))
return NULL;
} else if (get_inplied_value(arg, &sval)) {
ret = snprintf(out, buf + sizeof(buf) - out, "%
out += ret;
if (out >= buf + sizeof(buf))
return NULL;

} else {
return NULL;
}
*out = *p;
p++;
out ++;
}
if (buf{0] =="\0")
return NULL;
*out = '\0";

return all o&_sname(buf);

__unchanged_portion_onitted_

654 void regi ster_parse_call _math(int id)
655 {

656
658
660

662
663
664
665
666

667 }

int i;
ny_id =id;
set _dynani c_states(ny_id);
for (i = 0; i < ARRAY_SI ZE(al | oc_functions); i++)
add_function_assi gn_hook(al l oc_functions[i].func, &mtch_alloc,
I NT_PTR(al l oc_functions[i].param);

add_hook(&at ch_cal | _assi gnment, CALL_ASSI GNVENT_HOOK) ;
add_split_return_cal I back(print_returned_allocations);

__unchanged_portion_onitted_

__unchanged_portion_onitted_

new usr/src/tool s/ smatch/ src/smatch_passes_array_si ze.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
2172 Mon Aug 5 08:38:42 2019
new usr/src/tool s/ smatch/ src/smatch_passes_array_si ze.c
11506 snatch resync
LEEE R R R R EE SRR EEEEEEEEEEE RS SRR SRR EEEEEREREEEEEEEEESE]
__unchanged_portion_onitted_
39 {st atic void match_call (struct expression *expr)
40
41 struct expression *arg;
42 struct synbol *type, *arg_type;
42 struct synbol *type;
43 int size, bytes;
44 int i, nr;
45 char buf[16];
46 char el em count[8];
a7 char byte_count[8];
49 snprintf(el emcount, sizeof(elemcount), "%", ELEM COUNT);
50 snprintf(byte_count, sizeof(byte_count), "9%", BYTE_COUNT);
52 i =-1;
53 FOR_EACH PTR(expr->args, arg) {
54 i++;
55 type = get_type(arg);
56 if (!type || (type->type != SYM PTR && type->type != SYM ARRAY))
57 cont i nue;
58 arg_type = get_arg_type(expr->fn, i);
59 if (arg_type != type)
60 conti nue;
62 size = get_array_size(arg);
63 if (size >0) {
64 nr = find_param eq(expr, size);
65 if (nr >=0)
66 snprintf(buf, sizeof(buf), "==$%", nr);
67 sqgl _insert_caller_info(expr, ELEM COUNT, i, buf,
58 snprintf(buf, sizeof(buf), "%", nr);
59 sql _insert _cal | er _i nfo(expr, ARRAYSIZE ARG, i, b
68 conti nue;
69 }
70 }
71 bytes = get_array_size_bytes(arg);
72 if (bytes > 0)
73 nr = find_param eq(expr, bytes);
74 if (nr >=0)
75 snprintf(buf, sizeof(buf), "==%$%", nr);
76 sql _insert_cal l er _i nfo(expr, BYTE_COUNT, i, buf,
67 snprintf(buf, sizeof(buf), "%", nr);
68 sqgl _insert_caller_info(expr, SIZEOF_ARG i, buf,
77 conti nue;
78 }
79
80 } END_FOR_EACH_PTR(arg);
81

new usr/src/tool s/smatch/ src/smatch_ranges. c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
53282 Mon Aug 5 08:38:42 2019
new usr/src/tool s/smatch/src/smatch_ranges. c
11506 snatch resync
IR E SR SR RS RS E SRR R R SRR R R SRR R R R RS EEREREEREEREEEEEEEERSE]
1/*
2 * Copyright (C 2009 Dan Carpenter.
3 *
4 * This programis free software; you can redistribute it and/or
5 * nodify it under the terns of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any |later version.
8 *
9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of
11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
12 * GNU Ceneral Public License for nore details.
13 =
14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt
16 */
18 #incl ude "parse. h"
19 #include "snatch. h"
20 #include "smatch_extra. h"
21 #include "smatch_slist.h"
23 ALLOCATOR(data_info, "smatch extra data");
24 ALLOCATOR(dat a_range, "data range");
25 __ DO ALLOCATOR(struct data_range, sizeof(struct data_range), __alignof__(struct

26 "permanent ranges", permdata_range);
27 _ DECLARE ALLOCATOR(struct ptr_list, rl_ptrlist);

29 static bool is_err_ptr(sval _t sval)

30 {

31 if (option_project != PRQJ_KERNEL)
32 return false;

33 if (!type_is_ptr(sval.type))

34 return fal se;

35 if (sval.uvalue < -4095ULL)

36 return false;

37 return true;

38 }

40 static char *get_err_pointer_str(struct data_range *drange)

42 static char buf[20];

44 /*

45 * The kernel has error pointers where you do essentially:

46 *

47 * return (void *)(unsigned |ong)-12;

48 *

49 * But what | want here is to print -12 instead of the unsigned version
50 * of that.

51 *

52 */

53 if (lis_err_ptr(drange->mn))

54 return NULL;

56 if (drange->m n.val ue == drange- >nmax. val ue)

57 snprintf(buf, sizeof(buf), "(%1d)", drange->nin.value);

58 el se

59 snprintf(buf, sizeof(buf), "(%1d)-(%1d)", drange->nin.value,
60 return buf;

d

new usr/src/tool s/ smatch/src/smatch_ranges. c 2

63 char *show rl (struct range_list *list)

64 {

65 struct data_range *prev_drange = NULL;

66 struct data_range *tnp;

67 char full[255];

68 char *p = full;

69 char *prev = full;

70 char *err_ptr;

71 int remin;

32 char full[512];

72 int i =0;

74 full[0] ="'\0";

36 full[sizeof (full) - 1] ="'\0";

76 FOR_EACH _PTR(list, tnp) {

77 remain = full + sizeof(full) - p;

78 if (remain < 48) {

79 snprintf(prev, full + sizeof(full) - prev, ", %-%",
80 sval _to_str(prev_drange->mn),

81 sval _to_str(sval _type_nmax(prev_drange->m n.type
82 break;

38 if (i+4)

39 strncat (full, ",", 254 - strlen(full));

40 if (sval _cnp(tnp->mn, tnp->nax) == 0)

41 strncat (full, sval _to_str(tnp->nmin), 254 - strlen(full))
42 conti nue;

83 }

84 prev_drange = tnp;

85 prev = p;

87 err_ptr = get_err_pointer_str(tnp);

88 if (err_ptr) {

89 p += snprintf(p, remain, "%%", i++ ? ", " : "" err_ptr
90 } else if (sval _cnp(tnp->mn, tnp->max) == {

91 p += snprintf(p, remain, "%%", i++ 2?2 ", " ;. "",
92 sval _to_str(tnmp->nin));

93 } else {

94 p += snprintf(p, remain, "%%-%", i++ 2?2 ", " : "",
95 sval _to_str(tnp->mn),

96 sval _to_str(tnmp->nex));

97 }

44 strncat (full, sval _to_str(tnp->mn), 254 - strlen(full));
45 strncat(full, "-", 254 - strlen(full));

46 strncat (full, sval _to_str(tnp->nax), 254 - strlen(full));
98 } END_FOR_EACH PTR(tnp);

48 if (strlen(full) == sizeof (full) - 1)

49 full[sizeof (full) - 2] ="+

100 return alloc_sname(full);

101 }

____unchanged_portion_onitted_

132 static int truncates_nicely(struct synbol *type, sval_t mn, sval_t nax)

133 {

134 unsi gned | ong | ong mask;

135 int bits = type_bits(type);

137 if (bits >= type_bits(min.type))

138 return O;

140 mask = -1ULL << bits;

141 return (mn.uval ue & mask) == (nmax.uval ue & nask);
142 }

new usr/src/tool s/ smatch/ src/smatch_ranges. c

144 static void add_range_t(struct symbol *type, struct range_list **rl,

145 {

146 /* If we're just adding a nunmber, cast it and add it */

147 if (sval _cmp(min, max) == 0) {

148 add_range(rl, sval _cast(type, mn), sval_cast(type, max));
149 return;

150 }

152 /* If the range is within the type range then add it */

153 if (sval _fits(type, mn) & sval _fits(type, nax))

154 add_range(rl, sval _cast(type, mn), sval _cast(type, max));
155 return;

156 }

158 if (truncates_nicely(type, mn, max)) {

159 add_range(rl, sval _cast(type, min), sval _cast(type, nmax));
160 return;

161 }

163 /*

164 * |f the range we are adding has nore bits than the range type then
165 * add the whol e range type. Eg:

166 * 0x8000000000000000 - 0xf 000000000000000 -> cast to int

167 *

100 */This isn't totally the right thing to do. W could be nore granular.
168 *

169 if (sval_too_big(type, min) || sval _too_big(type, max)) {

170 add_range(rl, sval _type_min(type), sval _type_nmax(type));
171 return;

172 }

174 /* Cast negative values to high positive values */

175 if (sval_is_negative(nmn) & type_unsigned(type)) {

176 if (sval _is_positive(max)) {

177 if (sval _too_high(type, max)) {

178 add_range(rl, sval _type_m n(type), sval _type_max
179 return;

180 }

181 add_range(rl, sval _type_val (type, 0), sval _cast(type, ma
182 max = sval _type_max(type);

183 } else {

184 max = sval _cast(type, max);

185

186 mn = sval _cast(type, mn);

187 add_range(rl, mn, max);

188 }

190 /* Cast high positive nunbers to negative */

191 if (sval _unsigned(nmax) && sval _is_negative(sval _cast(type, max))) {
192 if (!sval _is_negative(sval _cast(type, mn))) {

193 add_range(rl, sval _cast(type, min), sval _type_nax(type))
194 mn = sval type mn(type);

195 } else {

196 mn = sval _cast(type, mn);

197

198 max = sval _cast(type, max);

199 add_range(rl, mn, max);

200 }

202 add_range(rl, sval _cast(type, min), sval_cast(type, max));

203 return;

204 }

206 static int str_to_conparison_arg_hel per(const char *str,
207 struct expression *call, int *conparison,
208 struct expression **arg, const char **endp)

3

sval _t mn,

new usr/src/tool s/ smatch/ src/smatch_ranges. c

141 struct expression **arg, char **endp)
209 {

210 int param

211 const char *c = str;

144 char *c = (char *)str;

213 if (*c!="1")

214 return O;

215 C++;

217 if (*c =='<) {

218 C++;

219 if (*c =="'=")

220 *conparison = SPECI AL_LTE;
221 c++;

222 } else {

223 *conparison = '<';

224 }

225 } else if (*c =="=") {

226 C++;

227 C++;

228 *conpari son = SPECI AL_EQUAL;

229 } else if (*c ==">") {

230 C++;

231 if (*c =="'=")

232 *conpari son = SPECI AL_GTE;
233 C++;

234 } else {

235 *conparison = '>";

236 }

237 } else if (*c =="1") {

238 C++;

239 c++;

240 *conpari son = SPECI AL_NOTEQUAL;
241 } elseif (*c =="'9") {

242 *conpari son = SPECI AL_EQUAL;

243 } else {

244 return O;

245 }

247 if (*c!="9")

248 return O;

249 CH++;

251 param = strtol I (c, (char **)&c 10) ;

252 I1f (*c=="," || *c =="]")

182 param = strtoll(c, &, 10);

183 if (*c=="]")

253 c++; /* skip the ']’ character */
254 if (endp)

255 *endp = (char *)c;

257 if (lcall)

258 return O;

259 *arg = get_argunent _fromcall _expr(call->args, param;
260 if (!*arg)

261 return O;

262 if (*c =='-" & *(c + 1) =="'>") {

263 char buf[256];

264 int n;

266 n = snprintf(buf, sizeof(buf), "$%", c);
267 if (n >= sizeof (buf))

268 return O;

269 if (buf[n - 1] =="1")

270 buf[n - 1] ="'\0";

new usr/src/tool s/ smatch/ src/smatch_ranges. c

271 *arg = gen_expression_from
272 while (*c & *c !="]7)
273 C++,

274 }

275 return 1,

276 }

__unchanged_portion_omtted_

290 static int get_val _fromkey(int use_max, st
221 static int get_val _fromkey(int use_nax, st

1 key(*arg, buf);

ruct synbol *type, const char *c, str
ruct symbol *type, char *c, struct ex

291 {

292 struct expression *arg;

293 int conparison;

294 sval _t ret, tnp;

296 if (use_max)

297 ret = sval _type_nmax(type);

298 el se

299 ret = sval _type_m n(type);

301 if (!str_to_conparison_arg_hel per(c, call, &conparison, &arg, endp)) {
302 *sval = ret;

303 return O;

304 }

306 if (use_max && get_inplied_nmax(arg, & nmp)) {
307 ret = tnp;

308 if (conmparison =="'<")

309 tnp. value = 1;

310 ret = sval _binop(ret, '-', tnp);
311 }

312 1

313 if (luse_max && get_inplied_mn(arg, & np)) {
314 ret = tnp;

315 if (conparison == ’>‘) {

316 tnp. value = 1;

317 ret = sval bl nop(ret, '+, tnp);
318 }

319 }

321 *sval = ret;

322 return 1,

323 }

__unchanged_portion_onitted_

390 static struct range_list *filter_by_conpari
321 static struct range_list *filter_by_conpari

son_cal | (const char *c, struct expres
son_cal | (char *c, struct expression *

391 {

392 struct synbol *type;

393 struct expression *arg;

394 struct range_|list *casted_start, *right_orig;

395 int conparison;

397 if (!str_to_conparison_arg_helper(c, call, &conparison, &arg, endp))
398 return start_rl;

400 if (lget_inplied_rl(arg, &ight_orig))

401 return start_rl;

403 type = & nt_ctype;

404 if (type_positive_bits(rl_type(start_rl)) > type_positive_bits(type))
405 type = rl_type(start_rl);

406 if (type_positive_bits(rl type(rlght _orig)) > type_positive_bits(type))
407 type = rl_type(right_orig);

409 casted_start = cast_rl(type, start_rl);

new usr/src/tool s/ smatch/ src/smatch_ranges. c

410 right_orig = cast_rl(type, right_orig);

412 filter_by_conparison(&casted_start, conparison, right_orig);
413 return cast_rl(rl_type(start_rl), casted_start);

414 }

416 static sval _t parse_val (int use_max,
347 static sval _t parse_val (i nt use_nax,

struct expression *call,
struct expression *call,

417 {

418 const char *start = c;

349 char *start = c;

419 sval _t ret;

421 if (!strncr’r’p(start, "max", 3)) {

422 ret = sval _type_max(type);

423 c += 3'

424 } elseif ('strncrrp(st art, "u6d4max", 6)) {
425 ret = sval _type_val(type, ULLONG_MAX) ;
426 c += 6;

427 } elseif (!strncnp(start, "s64max", 6)) {
428 ret = sval _type_val (type, LLONG MAX);
429 c += 6;

430 } else if (!strncnp(start, "u32max", 6)) {
431 ret = sval _type_val (type, U NT_MAX);
432 C += 6;

433 } else if (!strncnp(start, "s32max", 6)) {
434 ret = sval _type_val (type, | NT_MAX);
435 c += 6;

436 } elseif ('strncrrp(st art, "ulémax", 6)) {
437 ret = sval _type_val (type, USHRT_MAX);
438 c += 6;

439 } else if (!strncnp(start, "sl6max", 6))

440 ret = sval _type_val (type, SHRT NAX)
441 C += 6;

442 } else if (!strncnp(start, "mn", 3)) {

443 ret = sval _type_m n(type);

444 c += 3;

445 } elseif (!strncrrp(starh "s64mn", 6)) {
446 ret = sval _type_val (type, LLONG MN);
447 c += 6;

448 } elseif ('strncnp(start "s32mn", 6))

449 ret = sval _type_val (type, INT_M N)
450 c += 6;

451 } else if (!strncnp(start, "sl6mn", 6)) {
452 ret = sval _type_val (type, SHRT_MN);
453 C += 6;

454 } else if (!strncnmp(start, "long_mn", 8)) {
455 ret = sval _type_val (type, LONGMN);
456 c += 8;

457 } elseif (!strncrrp(start, "long_max", 8)) {
458 ret = sval _type_val (type, LONG MAX);
459 c += 8

460 } elseif ('strncnrp(start "ul ong_max", 9)) {
461 ret = sval _type_val (type, ULONG 5 MAX) ;
462 c +=9;

463 } elseif ('strncrrp(start "ptr_max", 7)) {
464 ret = sval _type_ val (type, valid _ptr_max);
465 c +=7;

466 } else if (start[0] =="[")

467 /* this parses [==p0] conparisons */
468 get _val _fromkey(1, type, start, call, &, &ret);
469 } else if (type_positive_bits(type) == 64)

470 ret = sval _type_val (type, strtoull(start, (char **)&c, 0));
401 ret = sval _type_val (type, strtoull(start, &, 0));
471 } else {

472 ret = sval _type_val (type, strtoll(start, (char **)&c, 0));

struct synbol
struct synbol

*typ
*typ

new usr/src/tool s/ smatch/src/smatch_ranges. c 7 new usr/src/tool s/smatch/src/smatch_ranges. c 8
403 ret = sval _type_val (type, strtoll(start, &, 0)); 460 mn = sval _type_max(type);
473 1 533 CH+;
474 *endp = c; 534 if (*c="0"[] *c ="\0)
475 return ret; 535 br eak;
476 } 536 }
537 if (*c!="-"){
478 static const char *junp_to_call_math(const char *val ue) 538 sm nsg("debug XXX: trouble parsing % ¢ = %", str, c);
409 static char *junp_to_call_nath(char *val ue) 539 br eak;
479 { 540 }
480 const char *c = val ue; 541 C++;
411 char *c = val ue; 542 if (c="(")
543 c++;
482 while (*c & *c !'="[") 544 max = parse_val (1, call, type, c, &c);
483 C++; 545 if (!sval _fits(type, max))
546 max = sval _type_max(type);
485 if (1*c) 547 if (*c =="'+)
486 return NULL; 548 max = sval _type_max(type);
487 Cct++; 549 add_range_t(type, &l _tnp, min, nax);
488 |f(c——'<’ || *¢c === || *c =="> || *c =="1") 550 C++;
489 return NULL; 551 if (*¢=="0" 1] *c =="\0)
552 br eak;
491 return c; 553 }
492 } 554 prev_mn = max;
555 add range t(type &1 _tnp, mn, max);
494 static void str_to_rl_hel per(struct expression *call, struct symbol *type, const 556 if (*c ==")")
425 static void str_to_rl_hel per(struct expression *call, struct symbol *type, char 557 c++;
495 { 558 if (*c ==",")
496 struct range_list *rl_tnp = NULL; 559 C++;
497 sval _t prev_mn, mn, nax; 560 }
498 const char *c;
428 sval _t mn, nex; 562 *rl =rl_tnp;
429 char *c; 563 *endp = c;
564 }
500 prev_mn = sval _type_m n(type);
501 mn = sval _type_mn(type); 566 static void str_to_dinfo(struct expression *call, struct symbol *type, const cha
502 mex = sval _type_max(type); 488 static void str_to_dinfo(struct expression *call, struct synbol *type, char *val
503 c = st 567 {
504 Wmle(c!="\0 && *c '="]") { 568 struct range_list *math_rl;
505 if (*c¢ =="+) { 569 const char *cal |l _nat h;
506 i f (sval _cnp(mn, sval _type_mn(type)) != 0) 570 const char *c;
507 mn = max; 491 char *cal | _nat h;
508 max = sval _type_max(type); 492 char *c;
509 add_range_t(type, &l _tnp, min, nax); 571 struct range_list *rl = NULL;
510 break;
511 } 573 if (ltype)
512 if (*c =="(") 574 type = & long_ctype;
513 C++;
514 mn = parse_val (0, call, type, c, &c); 576 if (strcnp(value, "enpty") == 0)
515 if (lsval _fits(type, min)) 577 return;
516 mn = sval _type_mn(type);
517 max = mn; 579 if (strncnp(value, "[== 4) == 0) {
518 if (*c ==)) 580 struct expressmn *arg,
519 c+ 581 int conparison;
520 |f(c==’\0‘ |l *c =="[")
521 add_range_t(type, &Il _tnp, mn, mn); 583 if (!str to conpari son_arg(value, call, &conparison, &arg))
522 break; 584
523 } 585 if (!get |an|edrI(arg, &rl))
524 if (*c¢ ==",") { 586 return;
525 add_range_t(type, &l _tnp, mn, mn); 587 goto cast;
526 C++; 588 }
527 conti nue;
528 } 590 str_to_rl_helper(call, type, value, &, &rl);
529 if (*c =="+) { 591 if (*c =="\0
530 mn = prev_mn; 592 goto cast;
531 max = sval type max(type);
532 add_range_t(type, &l _tnp, mn, nax); 594 call _math = junp_to_call _nmath(val ue);

new usr/src/tool s/ smatch/ src/smatch_ranges. c

595 if (call_math & parse_call_math_rl(call, call_math, &math_rl)) {
596 rl =rl_intersection(rl, nmath_rl);

597 goto cast;

598 }

600 /*

601 * For nowif we already tried to handle the call math and couldn’t
602 * figure it out then bail.

603 */

604 if (jump_to_call_math(c) == c + 1)

605 goto cast;

607 rl = filter_by_conparison_call(c, call, &, rl);
609 cast:

610 rl = cast_rl(type, rl);

611 di nf o- >val ue_ranges = rl

612 }

614 static int rl_is_sane(struct range_list *rl)

615 {

616 struct data_range *tnp;

617 struct synbol *type;

619 type = rl_type(rl);

620 FOR_EACH PTR(rl, tnp)

621 if (!sval _fits(type, tnp->nmin))

622 return O;

623 if (!sval _fits(type, tnp->max))

624 return O;

625 if (sval _cnp(tnp->mn, tnp->max) > 0)

626 return O;

627 } END_FOR_EACH _PTR(tnp);

629 return 1;

630 }

632 void str_to_rl(struct synbol *type, char *value, struct range_list **rl)
633 {

634 struct data_info dinfo = {};

636 str_to_dinfo(NULL, type, value, &dinfo);

637 if (!'rl_is_sane(dinfo.val ue_ranges))

638 di nf o. val ue_ranges = all oc_whol e_rl (type);
639 *r| = dinfo.val ue_ranges;

640 }

642 void call _results_to_rl(struct expression *expr, struct synbol

544 void call _results_to_rl(struct expression *expr, struct symbol *type, char *valu

643 {

644 struct data_info dinfo = {};

646 str_to_dinfo(strip_expr(expr), type, value, &dinfo);
647 *rl = dinfo.val ue_ranges;

648 }

____unchanged_portion_onitted_

662 int is_unknown_ptr(struct range_list *rl)

663 {

664 struct data_range *drange;
665 int cnt = 0;

667 if (is_whole_rl(rl))

668 return 1;

670 FOR_EACH PTR(rl, drange) {

new usr/src/tool s/ smatch/src/smatch_ranges. c 10
671 if (++cnt >= 3)
672 return O;
673 if (sval _cnp(drange->mn, valid_ptr_mn_sval) == 0 &&
674 sval _cnp(drange->nmax, valid_ptr_max_sval) == 0)
675 return 1;
676 } END_FOR_EACH PTR(drange);
678 return O;
679 }
681 int is_whole_rl_non_zero(struct range_list *rl)
682 {
683 struct data_range *drange;
685 if (ptr_list_enmpty(rl))
686 return O;
687 drange = first_ptr_list((struct ptr_list *)rl);
688 if (sval _unsigned(drange->nin) &&
689 drange->mn.value == 1 &&
690 sval _i s_max(drange- >nax))
691 return 1,
692 if (!sval_is_mn(drange->nin) || drange->nex.value != -1)
693 return O;
694 drange = last_ptr_list((struct ptr_list *)rl);
695 if (drange->min.value !'=1 || !sval _i s_max(drange->max))
696 return O;
697 return 1;
698 }
____unchanged_portion_onitted_
792 static bool collapse_pointer_rl(struct range_list **rl, sval _t mn, sval_t nax)
793 {
794 struct range_list *new.rl = NULL;
795 struct data_range *tnp;
796 static bool recurse;
797 bool ret = false;
798 int cnt = 0;
800 /*
801 * Wth the ntag work, then we end up getting huge lists of ntags.
802 * That seens cool, but the problemis that we can only store about
803 * 8-10 ntags in the DB before we truncate the list. Al so the ntags
804 * aren't really used at all so it’'s a waste of resources for now...
805 * In the future, we maybe will revisit this code.
806 *
807 */
809 if (recurse)
810 return false;
811 recurse = true,
812 if (!type_is_ptr(mn.type))
813 goto out;
815 if (ptr_list_size((struct ptr_list *)*rl) < 8)
816 goto out;
817 FOR_EACH PTR(*rl, tnp) {
818 if (lis_err_ptr(tnp->mn))
819 cnt ++;
820 } END_FOR_EACH_PTR(t np);
821 if (cnt < 8)
822 goto out;
824 FOR_EACH_PTR(*rl, tnp)
825 if (sval _cnp(tnp->min, valid_ptr_min_sval) >= 0 &&
826 sval _cnp(tnp->max, valid_ptr_nmax_sval) <= 0)
827 add_range(&new rl, valid_ptr_min_sval, valid_ptr_nax_sva

new usr/src/tool s/ smatch/src/smatch_ranges. c 11

828
829
830

832

834
835
836
837
838
839

841
842

844
845
846

848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

876
877
878
879

881
882

884
885
886
887
888
889
890
891
892
893

out :

}

el se
add_range(&ew_rl, tnp->nin, tnp->nax);
} END_FOR_EACH_PTR(t np);

add_range(&ew rl, mn, nmex);

*rl = new_rl;
ret = true;

recurse = fal se;
return ret;

extern int rl_ptrlist_hack;
voi d add_range(struct range_list **list, sval _t mn, sval_t nax)
843 {

struct data_range *tnp;
struct data _range *new = NULL;
int check_next = 0;

/
There is at |least on valid reason why the types might be confusing

and that’s when you have a void pointer and on sone paths you treat
it as a u8 pointer and on other paths you treat it as a ul6 pointer.
This case is hard to deal with.

There are other cases where we probably should be nore specific about
the types than we are. For exanple, we end up nmerging a |ot of ulong
with pointers and | have not figured out why we do that.

But this hack works for both cases, | think.
or we use the bigger size.

We cast it to pointers

* ok ok ok ok ok k ok kb F o

*

*/
if (*list & rl_type(*list) = nmin.type) {

if (rl_type(*list)->type == SYMPTR) {
mn = sval _cast(rl_type(*list), mn);
max = sval _cast(rl_type(*list), max);

} else if (mn.type->type == SYM PTR) {

*list = cast_rl(mn.type, *list);

} else if (type_bits(rl_type(*list)) >= type_bits(nmin.type)) {
min = sval _cast(rl_type(*list), mn);
max = sval _cast(rl_type(*list), max);

} else {

) *list = cast_rl(mn.type, *list);

}

if (sval _cnmp(min, max) > 0) {
mn = sval _type_mn(m
max = sval _type_max(m

535
-
<<
T T
® @
~—

}

if (collapse_pointer_rl(list, mn, nax))
return;

/*
* FIXME: This has a problemmerging a range_list like: mn-0,3-max
* with a range like 1-2. You end up with mn-2,3-nax instead of
* just mn-nax.
*/
FOR_EACH PTR(*list, tnp) {
if (check_next) {
/* Sonetinmes we overlap with nore than one range
so we have to delete or nodify the next range. */
if (!sval _is_max(max) && max.value + 1 == tnp->nin.val ue

new usr/src/tool s/smatch/src/smatch_ranges.c 12

894
895
896
897
898

900
901
902

904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958

/* join 2 ranges here */
new >max = t np- >max;
DELETE_CURRENT_PTR(t np) ;
return;

}

/* Doesn’t overlap with the next one. */
if (sval _cnp(max, tnp->min) < 0)
return;

if (sval _cnp(max, tnp->max) <= 0)
/* Partially overlaps the next one. */
new >max = tnp->nex;
DELETE_CURRENT_PTR(t np) ;
return;

} else {
/* Conpl etely overlaps the next one. */
DELETE CURRENT_PTR(t np) ;
/* there could be nore ranges to delete */
conti nue;

}

1f (!sval _is_max(max) && nax.value + 1 == tnp->mn.value) {
/* join 2 ranges into a big range */
new = al l oc_range(mnin, tnp->nex);
REPLACE_CURRENT_PTR(t np, new);
return;

}

if (sval _cnp(max, tmp->min) < 0) { /* newrange entirely bel ow *
new = al |l oc_range(mnmin, max);
| NSERT_CURRENT(new, tnp);
return;

}
if (sval _cnp(min, tmp->nmin) < 0) { /* newrange partially bel ow
if (sval _cnmp(max, tnp->max) < 0)
max = tnp->max;
el se
check_next = 1;
new = al l oc_range(min, max);
REPLACE_CURRENT_PTR(tnp, new);
if (!check_next)
return;
conti nue;

}

if (sval _cnp(mex, tnp->max) <= 0) /* new range al ready included
return,

if (sval crrp(mn tmp->nmax) <= 0) { /* new range partially above
mn = tnp->mn;
new = al |l oc range(m n, max);
REPLACE_CURRENT PTR(trrp new):
check_next = 1;
cont i nue;

}

if (!sval _is_min(mn) & mn.value - 1 == tnp->max. value) {
/* join 2 ranges into a big range */
new = al |l oc_range(tnp->mn, max);
REPLACE_CURRENT_PTR(t p, new) ;
check_next = 1;
conti nue;

/* the new range is entirely above the existing ranges */
} END_FOR_EACH_PTR(t np);
if (check_next)

return;
new = all oc_range(m n, mex);

new usr/src/tool s/ smatch/src/smatch_ranges. c 13 new usr/src/tool s/ smatch/src/smatch_ranges. c 14

960 rl_ptrlist_hack = 1343 struct range_list *rl_filter(struct range_list *rl, struct range_list *filter)
961 add_pt r_list(list, new); 1488 {
962 rl_ptrlist_hack = 0; 1489 struct data_range *one, *two;
963 } 1490 struct range_list *ret = NULL;
__unchanged_portion_omtted_ 1345 struct data_range *tnp;
1391 int rl_fits_in_type(struct range_list *rl, struct symbol *type) 1347 FOR_EACH PTR(filter, tnp)
1222 static int rl_is_sane(struct range_list *rl) 1348 rl = renmove_range(rl, tnp->mn, tnp->max);
1392 { 1349 } END_FOR_EACH_PTR(t np);
1393 if (type_bits(rl_type(rl)) <= type_bits(type))
1394 return 1; 1493 PREPARE_PTR_LI ST(one_rl, one);
1395 if (sval _cp(rl_max(rl), sval _type_nax(type)) > 0) 1494 PREPARE_PTR_LI ST(two_rl, two);
1224 struct data_range *tnp;
1225 struct synbol *type; 1496 while (true)
1497 if (lone || !two)
1227 type = rl_type(rl) 1498 br eak;
1228 FOR_EACH PTR(rl, tmp) { 1499 if (sval _cnp(one->max, two->nmin) < 0) {
1229 if (! sval f 1ts(type, tnmp->nin)) 1500 NEXT_PTR_LI ST(one) ;
1396 return O; 1501 cont i nue;
1397 if (sval _is_negative(rl_mn(rl)) && 1502 }
1398 sval _crmp(rl_mn(rl), sval _type_m n(type)) < 0) 1503 if (sval _cnp(one->mn, two->nin) < 0 & sval _cnp(one->nax, two->
1231 if (!sval _fits(type, tnp->na 1504 add_range(& et, two->nin, one->nax);
1399 return O; 1505 NEXT_PTR LI ST(one) ;
1233 if (sval _cnp(tnp->mn, tnp->max) > 0) 1506 conti nue;
1234 return O; 1507 }
1235 } END_FOR_EACH_PTR(tnp); 1508 if (sval _cnp(one->mn, two->nin) >= 0 & sval _cnp(one->nmax, two-
1509 add_r ange(& et, one->nin, one->nax);
1400 return 1; 1510 NEXT_PTR_LI ST(one) ;
1401 } 1511 conti nue;
__unchanged_portion_om tted_ 1512 }
1513 1f (sval _cnp(one->min, two->nmin) < 0 & sval _cnp(one->max, two->
1476 struct range_list *rl_filter(struct range_list *rl, struct range_list *filter) 1514 add_range(& et, two->min, two->nax);
1313 struct range_list *rl_invert(struct range_list *orig) 1515 NEXT_PTR_LI ST(two) ;
1477 { 1516 conti nue;
1315 struct range_list *ret = NULL; 1517 1
1478 struct data_range *tnp; 1518 1f (sval _cnp(one->mn, two->max) <= 0 && sval _cnp(one->max, two-
1317 sval _t gap_m n, abs_nax, sval; 1519 add_range(& et, one->mn, two->nax);
1520 NEXT_PTR_LI ST(two) ;
1480 FOR_EACH PTR(filter, tnp) { 1521 conti nue;
1481 rl = renove_range(rl, tnp->nmn, tnp->nax); 1522 }
1319 if (lorig) 1523 if (sval _cnp(one->mn, two->nax) <= 0)
1320 return NULL; 1524 smfatal ("error calculating intersection of '% and '%
1321 if (type_bits(rl type(orlg)) < 0) /* void type nostly */ 1525 return NULL;
1322 return NULL 1526 }
1527 NEXT_PTR_LI ST(two) ;
1324 gap_mn = sval _type_mn(rl_mn(orig).type); 1528 }
1325 abs_max = sval _type_max(rl _max(orig).type);
1530 FINI SH PTR LI ST(two) ;
1327 FOR_EACH PTR(orig, tnp) { 1531 FI NI SH_PTR_LI ST(one) ;
1328 if (sval _cnp(tnp->mn, gap_mn) > 0)
1329 sval = sval _type_val (tnp->mn.type, tnp->mn.value - 1); 1533 return ret;
1330 add_range(&et, gap_min, sval); 1351 return rl;
1331 } 1534 }
1332 1f (sval _cnp(tnp->max, abs_max) == 0)
1333 ret urn ret; 1536 struct range_list *rl_intersection(struct range_|list *one, struct range_list *tw
1334 gap_mn = sval type val (t np- >nex. type, tnp->nax.value + 1); 1537 {
1482 } END_FOR_EACH_PTR(t np); 1356 struct range_list *one_orig;
1357 struct range_|ist *two_orig;
1484 return rl; 1538 struct range_list *ret;
1337 if (sval _cnp(gap_mn, abs_max) <= 0) 1539 struct synbol *ret_type;
1338 add_range(& et, gap_mn, abs_nax); 1540 struct synbol *snall _type;
1541 struct synbol *Ilarge_type;
1340 return ret;
1485 } 1543 if (lone || !two)
1363 if (!two)

1487 struct range_list *do_intersection(struct range_list *one_rl, struct range_list 1544 return NULL;

new usr/src/tool s/ smatch/ src/smatch_ranges. c 15 new usr/src/tool s/ smatch/ src/smatch_ranges. c 16
1365 if (!one) 1708 static struct range_list *handle_add_nult_rl(struct range_list *left, int op, st
1366 return NULL; 1709 {
1710 sval _t mn, nax;
1368 one_orig = one;
1369 two_orig = two; 1712 if (type_is_ptr(rl_type(left)) || type_is_ptr(rl_type(right)))
1713 return ptr_add_mult(left, op, right);
1546 ret_type = rl_type(one);
1547 smal | _type = rl_type(one); 1715 if (sval _binop_overflows(rl_mn(left), op, rl_mn(right)))
1548 large_type = rl _type(two); 1716 return NULL;
1717 mn = sval _binop(rl_mn(left), op, rl_mn(right));
1550 if (type_bits(rl_type(two)) < type_bits(snall_type)) {
1551 smal | _type = rl _type(two); 1719 if (sval_binop_overflows(rl_max(left), op, rl_max(right)))
1552 large_type = rl _type(one); 1720 return NULL;
1553 } 1721 max = sval _binop(rl_max(left), op, rl_max(right));
1555 one = cast_rl(large_type, one); 1723 return alloc_rl(mn, max);
1556 two = cast_rl(large_type, two); 1724 }
____unchanged_portion_onitted_
1558 ret = do_intersection(one, two);
1383 ret = one; 1836 static sval _t sval _| owest_set_bit(sval _t sval)
1384 one = rl_invert(one); 1837 {
1385 two = rl_invert(two); 1838 sval _t ret = { .type = sval.type };
1839 int i;
1387 ret =rl_filter(ret, one);
1388 ret =rl_filter(ret, two); 1841 for (i =0; i < 64; i++) {
1842 if (sval.uvalue & 1ULL << i) {
1390 one = cast_rl(snall _type, one_orig); 1843 ret.uvalue = (1ULL << i);
1391 two = cast_rl(small_type, two_orig); 1844 return ret;
1845 }
1393 one = rl_invert(one); 1846 }
1394 two = rl_invert(two); 1847 return ret;
1848 }
1396 ret = cast_rl(snall_type, ret);
1397 ret =rl_filter(ret, one); 1850 static struct range_list *handl e_AND rl _sval (struct range_list *rl, sval _t sval)
1398 ret =rl_filter(ret, two); 1851 {
1852 struct range_list *known_rl;
1559 return cast_rl(ret_type, ret); 1853 sval _t zero = { 0 };
1560 } 1854 sval _t mn;
____unchanged_portion_onitted_
1856 zero.type = sval.type;
1682 {st atic struct range_list *ptr_add_nult(struct range_list *left, int op, struct r 1857 zero.val ue = 0;
1683
1684 struct range_list *ret; 1859 if (smfls64(rl_max(rl).uvalue) < find_first_zero_bit(sval.uval ue) &&
1685 sval _t | _sval, r_sval, res; 1860 smfls64(rl _mn(rl).uvalue) < find_first_zero_bit(sval.uval ue))
1861 return rl;
1687 /*
1688 * This function is sort of the wong APl because it takes two pointer 1863 mn = sval _| owest _set _bit(sval);
1689 * and adds themtogether. The caller is expected to figure out
1690 * alignment. Neither of those are the correct things to do. 1865 if (mn.value !'=0) {
1691 tJ 1866 sval _t max, nod;
1692 * Really this function is quite bogus...
1693 */ 1868 max = rl_max(rl);
1869 mod = sval _bi nop(max, "%, mn);
1695 if (rl_to_sval (left, & _sval) && rl_to_sval (right, & _sval)) { 1870 if (rod.value) {
1696 res = sval _binop(l_sval, op, r_sval); 1871 max = sval _bi nop(max, '-', nod);
1697 return alloc_rl(res, res); 1872 max. val ue++;
1698 } 1873 if (max.value > 0 & sval _cnp(max, rl_max(rl)) < 0)
1874 rl = renove_range(rl, max, rl_max(rl));
1700 if (rl_mn(left).value !'=0 || rl_max(right).value != 0) { 1875 }
1701 ret = alloc_rl(valid_ptr_mn_sval, valid_ptr_nax_sval); 1876 }
1702 return cast_rl(rl_type(left), ret);
1703 } 1878 known_rl = alloc_rl(mn, sval);
1705 return alloc_whole_rl(rl_type(left)); 1880 rl = rl_intersection(rl, known_rl);
1706 } 1881 zero = rl_mn(rl);
1882 zero.value = 0;

new usr/src/tool s/ smatch/src/smatch_ranges. c 17

1883 add_range(&r |, zero, zero);

1885 return rl;

1886 }

1888 static struct range_list *fudge_AND rl (struct range_list *rl)
1889 {

1890 struct range_list *ret;

1891 sval _t mn;

1893 mn = sval _|l owest_set_bit(rl_mn(rl));

1894 ret = clone_rl(rl);

1895 add_range(&et, mn, rl_mn(rl));

1897 return ret;

1898 }

1900 static struct range_list *handl e_AND_ rl (struct range_list *left, struct range_li
1901 {

1902 sval _t sval, zero;

1903 struct range_list *rl;

1650 unsigned long long |left_set, |eft_naybe;

1651 unsi gned long long right_set, right_naybe;

1652 sval _t zero, nax;

1905 if (rl_to_sval (left, &sval))

1906 return handl e_AND rl _sval (right, sval);
1907 if (rl_to_sval (right, &sval))

1908 return handl e_AND rl _sval (left, sval);
1910 left = fudge_AND_rl (left);

1911 right = fudge_AND rl (right);

1913 rl =rl_intersection(left, right);

1914 zero = rl mn(rl)

1915 zero.value = 0;

1916 add_range(& |, zero, zero);

1918 return rl;

1919 }

1921 static struct range_list *handle_lshift(struct range_list *left_orig, struct ran
1922 {

1923 struct range_list *left;

1924 struct data_range *tnp;

1925 struct range_list *ret = NULL;

1926 sval _t zero = { .type =rl_type(left_orig), };
1927 sval _t shift, mn, nax;

1928 bool add_zero = fal se;

1930 if (!'rl_to_sval(right_orig, &shift) || sval _is_negative(shift))
1931 return NULL;

1932 if (shift.value == 0)

1933 return left_orig;

1935 /* Cast to unsigned for easier left shift math */
1936 if (type_posi t ive_bits(rl_type(left_orig)) < 32)
1937 left = cast_rl (&uint_ctype, left_orig);
1938 el se i f(type positive_bits(rl_type(left_orig)) == 63)
1939 left = cast_rl (&ullong_ctype, left_orig);
1940 el se

1941 left = left_orig;

1656 left_set = rl_bits_always_set(left);

1657 I eft_maybe = rl _bits_maybe_set(le t) ;

1943 FOR EACH PTR(left, tnp) {

new usr/src/tool s/ smatch/src/smatch_ranges. c 18
1944 mn = tnp->mn;

1945 max = tnp->max;

1659 right_set = rl_bits_always_set(right);

1660 right _maybe = rl _bits_naybe_set(right);

1947 if (mn.value == 0 || nax val ue > sval _type_nmax(nmax.type). uval ue
1948 add_zero =tr

1949 if (mn.value == 0 && max.val ue == 0)

1950 conti nue;

1951 if (mn.value == 0

1952 mn.value = 1;

1953 mn = sval _bi nop(m n, SPECI AL_LEFTSH FT, shift);

1954 max = sval _bi nop(max, SPECI AL_LEFTSHI FT, shift);

1955 add_range(&et, nin, max);

1956 } END_FOR_EACH_PTR(t np) ;

1662 zero = max = rl mn(left)

1663 zero. uval ue = 0;

1664 max. uval ue = fls_mask((l eft_maybe | right_naybe) ~ (left_set & right_set
1958 if (Irl_fits_in type(ret rl _type(left_orig)))

1959 add_zero = true

1960 ret = cast_rl(rl type(left _orig), ret);

1961 if (add_zero)

1962 add_range(& et, zero, zero);

1964 return ret;

1666 return cast_rl(rl_type(left), alloc_rl(zero, nex));

1965 }

1967 static struct range_list *handle_rshift(struct range_list *left_orig, struct ran
1968 {

1969 struct data_range *tnp;

1970 struct range_|list *ret = NULL;

1971 sval _t shift, mn, max;

1973 if (!'rl_to_sval(right_orig, &hift) || sval _is_negative(shift))

1974 return NULL;

1975 if (shift.value == 0)

1976 return left_orig;

1978 FOR_EACH PTR(l eft __orig, tnp) {

1979 m n = sval _bi nop(tnp->mn, SPECIAL_RI GHTSHI FT, shift);

1980 max = sval _bi nop(tnp->max, SPECI AL_RI GHTSHI FT, shlft),

1981 add_range(&et, min, max);

1982 } END_FOR_EACH_PTR(t np)

1984 return ret;

1985 }

1987 struct range_list *rl_binop(struct range_list *left, int op, struct range_list *
1988 {

1989 struct synbol *cast_type;

1990 sval _t left_sval, right_sval;

1991 struct range_list *ret = NULL;

1993 cast _type = rl_type(left);

1994 if (sval _type_max(rl_type(left)).uvalue < sval _type_nmax(rl_type(right)).
1995 cast_type = rl _type(right);

1996 if (sval _type_neax(cast_type).uval ue < | NT_MAX)

1997 cast_type = & nt_ctype;

1999 left = cast_rl(cast_type, left);

2000 right = cast_rl(cast_type, right);

2002 if (!left & !right)

2003 return NULL;

new usr/src/tool s/ smatch/src/smatch_ranges. c 19

2005 if (rl_to_sval(left, & eft_sval) & rl_to_sval (right, &right_sval)) {
2006 sval _t val = sval _binop(left_sval, op, right_sval);
2007 return alloc_rl(val, val);

2008 }

2010 switch (op) {

2011 case '%:

2012 ret = handle_nmod_rl (left, right);
2013 br eak;

2014 case '/’:

2015 ret = handle_divide_rl(left, right);
2016 br eak;

2017 case '*’':

2018 case '+ :

2019 ret = handle_add_mult_rl(left, op, right);
2020 br eak;

2021 case '|’':

2022 ret = handle_OR rl(left, right);
2023 br eak;

2024 case "M

2025 ret = handle_XOR rl (left, right);
2026 br eak;

2027 case '&:

2028 ret = handle_AND rl (left, right);
2029 br eak;

2030 case '-':

2031 ret = handle_sub_rl(left, right);
2032 br eak;

1715 /* FIXME: Do the rest as well */

2033 case SPECI AL_RI GHTSHI FT:

2034 return handle_rshift(left, right);
2035 case SPECI AL_LEFTSHI FT:

2036 return handle_|l shift(left, right);
1718 br eak;

2037 1

2039 return ret;

2040 }

__unchanged_portion_onitted_

new usr/src/tool s/smatch/src/smatch_real _absol ute.c

R R R R

3750 Mon Aug 5 08:38:43 2019

new usr/src/tool s/smatch/src/smatch_real _absol ute.c
11506 snatch resync

R R R R

__unchanged_portion_onitted_

88 static void match_assign(struct expression *expr)

108

110
111
112
113
114
115

117

118 }

struct range_list *rl;
struct synbol *type;
sval _t sval;

if (expr->op I="=")
return;

if (is_fake_call (expr->right))
return;

if (in_iterator_pre_statenent())
return;

get _real _absolute_rl (expr->right, &rl);

type = get_type(expr->left);
if (ltype)
return;
if (type->type != SYM PTR && type->type != SYM BASETYPE &&
type->type != SYM ENUM

return;

rl = cast_rl(type, rl);

if (is_whole_rl(rl) &% !get_state_expr(ny_id, expr->left))
return;

/* These are handl ed by smatch_extra.c */
if (rl_to_sval(rl, &sval) && !get_state_expr(ny_id, expr->left))
return;

set_state_expr(ny_id, expr->left, alloc_estate_rl(clone_rl(rl)));

__unchanged_portion_onitted_

130 void register_real _absolute(int id)

131 {

132

134
135
136
137
138

140

141 }

my_id = id;

set _dynami c_states(ny_id);
add_pre_nerge_hook(ny_id, &pre_nerge_hook);
add_unnat ched_st at e_hook(ny_i d, &enpty_state);
add_ner ge_hook(ny_id, &mrerge_estates);
add_nodi ficati on_hook(ny_id, &reset);

add_hook(&mat ch_assi gn, ASSI GNMVENT_HOCK) ;

__unchanged_portion_onitted_

new usr/src/tool s/smatch/src/smatch_return_to_paramc

R R R R

5971 Mon Aug 5 08:38:43 2019
new usr/src/tools/smatch/src/smatch_return_to_paramc
11506 snatch resync

R R R R

____unchanged_portion_onitted_

52 char *map_cal | _to_ot her _nane_syn(const char *nane,

53 {
54
55
56

58
59
59

61
62
63

struct smatch_state *state;
int skip;
char buf[256];

struct synmbol *sym struct sy

/* skip 'foo-> . This was checked in the caller. */

skip = sym>ident->len + 2;
skip = strlen(sym >i dent->nane) + 2;

state = get_state(ny_id, sym >ident->nanme, syn);

if (!state || !state->data)
return NULL;

snprintf(buf, sizeof(buf), "%->%", state->name, name + skip);

*new_sym = st at e- >dat a;
return alloc_string(buf);

____unchanged_portion_onitted_

90 static char *nmap_assignnent _| ong_to_short(struct smstate *sm const char *nane,

109

111
112
113
114
115

117
118
119

121
122
123
124
125
126
127
128 }

struct expression *orig_expr;
struct synbol *orig_sym

int |en;

char buf[256];

orig_expr = sm>state->data;
if (lorig_expr)
return NULL;

Say we have an assignnent |ike:
f oo->bar->ny_ptr = ny_ptr;

* ok kb F ok

shorter name. That’s not a long to short

*

/

if (orig_expr->type == EXPR_SYMBQOL)
return NULL;

orig_sym = expr_to_syn(orig_expr);
if (lorig_sym

return NULL;
if (sym!= orig_sym

return NULL;

len = strlen(sm >state->nane);

if (strncnp(name, sm >state->nane, len) != 0)
return NULL;

if (nane[len] ==".")
return NULL;

if (!stack & nane[len] !="-")

return NULL;
snprintf(buf, sizeof(buf), "%%", sm >nane,
*new_sym = sm >sym
return alloc_string(buf);

We still expect the function to carry on using "ny_ptr" as the

mappi ng.

nane + len);

new usr/src/tool s/smatch/src/smatch_return_to_paramc 2
90 /*
91 * Nornamlly, we expect people to consistently refer to variables by the shortest
92 * pame. So they use "b->a" instead of "foo->bar.a" when both point to the
93 * sanme nenory |ocation. However, when we're dealing across function boundaries
94 * then sonetines we pass frob(foo) which sets foo->bar.a. In that case, we
95 * translate it to the shorter nane. Smatch extra updates the shorter nane,
96 * which in turn updates the | onger nane.
97 *
98 */
99 char *map_l ong_to_short_nane_syn{const char *nanme, struct synbol *sym struct sy
139 static char *map_l ong_to_short_name_sym hel per (const char *nane, struct synbol *
100
101 char *ret;
102 struct smstate *sm
104 *new_sym = NULL;
106 FOR EACH SM __get _cur_stree(), sm {
107 if (sm>owner == ny_id) {
108 ret = map_ny_state_long_to_short(sm nane, sym new sym
109 if (ret)
110 if (local_debug)
111 smneg("%: nmy_state: nane = '%’ sm="
112 __func__, nane, show sm(sm);
148 ret = map_ny_state_long_to_short(sm nane, sym new sym
149 if (ret)
113 return ret;
151 conti nue;
114
153 if (sm>owner == check_assi gned_expr _id)
154 ret = map_assignnment_l ong_to_short(sm nane, sym new_sy
155 if (ret)
156 return ret;
115 conti nue;
116 }
117 } END_FOR _EACH SM'sm);
119 return NULL;
120 }
164 char *map_l ong_to_short_nanme_syn(const char *name, struct synbol *sym struct sy
165 {
166 return map_l ong_t o_short_name_sym hel per (nane, sym new sym 1);
167 }
169 char *map_l ong_to_short_nanme_sym nost ack(const char *nane, struct synbol *sym s
170 {
171 return map_l ong_t o_short_nanme_sym hel per (nane, sym new sym O0);
172 }
122 char *map_cal | _to_param name_sym(struct expression *expr, struct synbol **sym)
123 {
124 char *nane;
125 struct synbol *start_sym
126 struct smatch_state *state;
128 *sym = NULL;
130 name = expr_to_str_sym(expr, &start_sym;
131 if (!nane)
132 return NULL;
133 if (expr->type == EXPR_CALL)
134 start_sym = expr_to_syn(expr->fn);
136 state = get_state(ny_id, nane, start_syn);

new usr/src/tool s/smatch/src/smatch_return_to_paramc

137 free_string(nane);

138 if (I'state || !state->data)

139 return NULL;

141 *sym = st at e- >dat a;

142 return alloc_string(state->nane);
143 }

____unchanged_portion_onmitted_

228 void register_return_to_paran(int id)
229 {

230 ny_id =id,

231 set _dynami c_states(ny_id);

232 add_nodi fi cation_hook(ny_id, &undef);
233 }

____unchanged_portion_onitted_

new usr/src/tool s/smatch/src/smatch_returns.c 1

PR R R R R
3755 Mon Aug 5 08:38:44 2019

new usr/src/tools/smatch/src/smatch_returns. c
11506 snatch resync

R R R R

__unchanged_portion_onitted_

129 void register_returns_early(int id)

130 {

131 RETURN_ID = id;

133 set _dynami c_states(RETURN_I D) ;

134 add_split_return_call back(match_return);
135 }

__unchanged_portion_onitted_

new

* ok kK

new
1150

* ok kK

usr/src/tool s/ smatch/src/smatch_scripts/build_kernel _data.sh 1

B R

1310 Mon Aug 5 08:38:44 2019
usr/src/tool s/ smat ch/ src/ smatch_scri pts/ buil d_kernel _data. sh
6 smatch resync

B R R R R

__unchanged_portion_onitted_

13
14
15

if ["$1" = "-h"] [| [“$1" = "--help"] ; then
usage;
fi

SCRI PT_DI R=$(di r namre $0)
if [-e $SCRPT_ DIR ../smatch -a -d kernel -a -d fs] ; then
CVD=$SCRI PT_DI R/ . ./ smat ch
DATA DI R=$SCRI PT_DI R/ ../ smat ch_dat a
el se
echo "This script should be located in the smatch_scripts/ subdirectory of t
echo "It should be run fromthe root of a kernel source tree."
exit 1
fi

| f soneone is building the database for the first tinme then nake sure all the

required packages are installed
if [! -e smatch_db.sqglite] ; then
[-e smatch_warns.txt] || touch snmatch_warns.txt

i f ! $DATA DI R/ db/create_db. sh -p=kernel snmatch_warns.txt ; then
echo "Hm .. Not working. WMake sure you have all the sqglite3 packages”
echo "And the sqlite3 libraries for Perl and Python"
exit 1
fi
fi
BUI LD _STATUS=0
$SCRI PT_DI R/'test _kernel .sh --call-tree --info --param mapper --spammy --data=$DA
$SCRI PT_DI R/'test_kernel .sh --call-tree --info --param mapper --spammy --data=$DA

for i in $SCRI PT_DI R/ gen_* ; do
$i smatch_warns. txt -p=kernel
done
mv ${ PRQJECT}. * $DATA DI R
$DATA DI R/ db/ creat e_db. sh - p=kernel snatch_warns. txt

exit $BU LD_STATUS

new usr/src/tool s/ smatch/src/smatch_scripts/kpatch. sh

R R R R

2634 Mon Aug 5 08:38:44 2019
new usr/src/tool s/smatch/src/smatch_scripts/kpatch. sh
11506 snatch resync

R R R R

1 #!/bin/bash -e
3 TMP_DIR=/tnp

5 hel p()

6 {

7 echo "Usage: $0 [--no-conpile|--amend] <filename>"

7 echo "Usage: $0 [--no-conpile|--ammend] <filename>"

8 echo "You nust be at the base of the kernel tree to run this."
9 exit 1

10 }
____unchanged_portion_onitted_

33 NO_COWPI LE=f al se

34 AMEND=""

36 while true ; do

37 if [["$1" == "--no-conpile”]] ; then
38 NO_COWPI LE=t r ue

39 shift

40 elif [["$1" == "--anend"]] ; then
40 elif [["$1" == "--ammend"]] ; then
41 AMEND=" - - amend"

42 shift

43 el se

44 br eak

45 fi

46 done

48 if [! -f $1] ; then

49 hel p

50 fi

52 ful | name=$1
53 fil ename=$(basenane $ful | nane)
54 onanme=$(echo ${full nane/.c/.o})

56 MSG FI LE=$TMP_DI R/ ${fi | enane}. nsg
57 MAIL_FILE=$TMP_DI R/ ${fi | enane}. mai |
56 MAIL_FI LE=$TMP_DI R/ ${fi | ename}. nsg

59 # heat up the disk cache
60 #git log --oneline $fullname | head -n 10 > /dev/null &

62 echo "QC checklist"
63 gqc "Have you handled all the errors properly?"
64 if git diff $fullname | grep "+ | grep -qi alloc ; then

65 gqc "Have you freed all your nmallocs?"

66 fi

67 if git diff $fullnanme | grep ~+ | grep -qi alloc ; then
68 gqc "Have you check all your nallocs for NULL returns?"
69 fi

71 if ["$NO_COWPILE" !'= "true"] ; then

72 kchecker --spamy $ful | nane

73 kchecker --sparse --endian $ful |l nane

74 # rm $onane

75 # make C=1 CHECK="scri pts/cocci check" $onanme

76 fi

78 for file in $(grep -1 $fullnane ~/var/mail/sent-*) ; do

new usr/src/tool s/smatch/src/smatch_scri pt s/ kpatch. sh 2

79 grepnai |l $fullname $file | grep -i ~subject || echo -n ""
80 done
74 grepmail $fullname ~/var/mail/sent* | grep -i “subject || echo -n ""

81 gc "Looks OK?"

77 git log --oneline $fullname | head -n 10

78 echo "Copy and paste one of these subjects?"
79 read unused

83 git add $ful |l name
82 git commit --signoff $AMEND

85 cat /dev/null > $MSG FI LE

86 if ["SAMEND' !=] ; then

87 git format-patch HEAD" --stdout >> $MSG FI LE

88 el se

89 echo "" >> $MSG FI LE

90 echo "Signed-of f-by: Dan Carpenter <dan.carpenter@racle.com" >> $MSG FI LE
91 echo "" >> $MSG FI LE

92 echo "# $smerr" >> $MSG FI LE

93 fi

94 git log -10 --oneline $fullname | sed -e 's/*/# /' >> $MSG FI LE
95 vi m $MSG_FI LE

97 grep -v '# $MSG FILE > $MSG FI LE. 1
98 mv $MBG FI LE. 1 $MBG FILE

100 git commit $AMEND - F $MSG_FI LE

102 to_addr=$(./scripts/get_maintainer.pl -f --noroles --norolestats $fullname | hea
103 cc_addr=$(./scripts/get_maintainer.pl -f --noroles --norolestats $fullname | ta
104 perl -ne 's/\n$/, /; print’)

105 cc_addr="$cc_addr, kernel-janitors@ager.kernel.org"

107 echo -n "To: * > $MAIL_FILE

108 echo "$to_addr" >> $MAIL_FILE

109 echo -n "CC:. " >> $MAIL_FILE

110 echo "$cc_addr" >> $MAIL_FI LE

111 echo "X-Muiler: git-send-email haha only kidding" >> $MAIL_FILE
113 git format-patch HEAD" --stdout >> $MAIL_FILE

115 ./scripts/checkpatch. pl $MAIL_FILE || continue_yn

117 echo "Press ENTER to conti nue"
118 read unused

120 nutt -H $MAIL_FILE

new usr/src/tool s/smatch/src/smatch_scripts/test_kernel.sh 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
1996 Mon Aug 5 08:38:45 2019

new usr/src/tools/smatch/src/smatch_scripts/test_kernel.sh

11506 snatch resync

R R R R

__unchanged_portion_onitted_

21 while true ; do

22 if [["$1" == "--endian"]] ; then
23 ENDI AN=" CF=- D__CHECK_ENDI AN__"
24 shift

25 elif [["$1" == "--target"]] ; then
26 shift

27 TARGET="$1

28 shift

29 elif [["$1" == "--1l0g"]] ; then
30 shift

31 LOG="$1

32 shift

33 elif [["$1" == "--wog"]] ; then
34 shift

35 W.OG="$1

36 shift

37 elif [["$1" == "--help"]] ; then
38 usage

39 el se

40 br eak

41 fi

42 done

44 # receive paraneters from environnent, which override
45 [-z "${SMATCH ENV_TARCET: -}" || TARGET="$SMATCH ENV_TARCET"
46 [-z "${SMATCH ENV_BU LD _PARAM -}"] || BU LD_PARAM:="$SMATCH ENV_BU LD_PARAM'

48 SCRI PT_DI R=$(di r name $0)
49 if [-e $SCRIPT_DIR/ ../smatch] ; then

50 cp $SCRIPT_DI R/ ../smatch $SCRIPT_DI R/ ../ bak. smatch
51 CVD=$SCRI PT_DI R/ . . / bak. smat ch

52 elif which smatch | grep smatch > /dev/null ; then

53 CMD=smat ch

54 el se

55 echo "Smatch binary not found."

56 exit 1

57 fi

59 neke cl ean
60 find -name *.c.smatch -exec rm\{\} \;
61 nmake -j ${NR_CPU} $ENDI AN - k CHECK="$CMD - p=kernel --file-output --succeed $*" \

62 C=1 $BU LD PARAM $TARGET 2>&1 | tee $LOG

63 BUI LD_STATUS=${ P| PESTATUS] 0] }

58 C=1 $TARGET 2>&1 | tee $LOG

64 find -name *.c.smatch -exec cat \{\} \; -exec rm\{\} \; > $W.OG

fi
65 find -name *.c.smatch.sql -exec cat \{\} \; -exec rm\{\} \; > $W.OG sql
find -name *.c.smatch.caller_info -exec cat \{\} \; -exec rm\{\} \; > $WOG ca

68 echo "Done. Build with status $BU LD_STATUS. The warnings are saved to $W.OG'
69 exit $BU LD STATUS
63 echo "Done. The warnings are saved to $W.OG'

new usr/src/tool s/smatch/src/smatch_slist.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
24609 Mon Aug 5 08:38:45 2019

new usr/src/tools/smatch/src/smatch_slist.c

11506 snatch resync

R R R R

____unchanged_portion_onitted_

87 /* NULL states go at the end to sinplify nerge_slist */

88 int cnp_tracker(const struct smstate *a, const struct smstate *b)
89 {

90 int ret;
92 if (a ==0b)
93 return O;
94 if (!b)
95 return -1;
96 if (la)
97 return 1;
99 if (a->owner < b->owner)
100 return -1;
101 if (a->owner > b->owner)
100 return -1;
101 if (a->owner < b->owner)
102 return 1;
104 ret = strcnp(a->nanme, b->nane);
105 if (ret <0)
106 return -1;
107 if (ret >0)
108 return 1;
110 if (!b->sym && a->sym
111 return -1;
112 if (!a->sym && b->sym
113 return 1;
114 if (a->sym< b->sym
115 return -1;
116 if (a->sym> b->sym
117 return 1;
119 return O;
120 }

122 int *dynani c_states;
123 void al |l ocate_dynam c_states_array(int num checks)

122 static int cnp_smstates(const struct smstate *a, const struct smstate *b,

124 {
125 dynami c_states = call oc(num checks + 1, sizeof(int));
126 }

128 voi d set_dynani c_states(unsi gned short owner)
129 {

130 dynami c_st at es[owner] = true;

131 }

133 bool has_dynani c_st at es(unsi gned short owner)
134 {

135 if (owner >= num checks)

136 return fal se;

137 return dynam c_st at es[owner] ;

138 }

140 static int cnp_possible_sm(const struct smstate *a, const struct smstate *b,

141 {
142 int ret;

int

new usr/src/tool s/smatch/src/smatch_slist.c 2
144 if (a ==Dhb)

145 return O;

126 ret = cnp_tracker(a, b);

127 if (ret)

128 return ret;

147 if (!has_dynam c_states(a->owner)) {

130 /* todo: add hook for smatch_extra.c */

148 if (a->state > b->state)

149 return -1;

150 if (a->state < b->state)

151 return 1;

152 return 0;

153 1

155 if (a->owner == SMATCH EXTRA) {

156 /*

157 * In Smatch extra you can have borrowed inplications.

135 /* This is obviously a massive disgusting hack but we need to preserve
136 * the unnmerged states for smatch extra because we use themin

137 * smatch_db.c. Meanwhile if we preserve all the other unmerged states
138 * then it uses a lot of nenory and we don’t use it. Hence this hack.
158 *

159 * FIXME: review how borrowed inplications work and if they
160 * are the best way. See also smatch_inplied.c.

161 *

140 * Al'so sonetines even just preserving every possible SVMATCH EXTRA state
141 * takes too nuch resources so we have to cap that. Capping is probably
142 * not often a problemin real life.

162 */

163 ret = cnp_tracker(a, b);

164 if (ret)

165 return ret;

167 /*

168 * W want to preserve leaf states. They' re use to split

169 * returns in smatch_db. c.

170 *

171 */

172 if (preserve) {

173 if (a->nerged && !b->nerged)

144 if (a->owner == SMATCH EXTRA && preserve) {

145 if (a==Dhb)

146 return O;

147 if (a->merged == 1 && b->nmerged == 0)

174 return -1;

175 if (!a->merged)

149 if (a->nmerged == 0)

176 return 1,

177 }

178 }

179 if (la->state->name || !b->state->nane)

180 return O;

182 return strcnp(a->state->nane, b->state->nane);

153 return O;

183 }

185 struct smstate *alloc_smstate(int owner, const char *nane,

186 struct synbol *sym struct smatch_state *state)
187 {

188 struct smstate *smstate = __alloc_smstate(0);

190 sm st at e_count er ++;

new usr/src/tool s/smatch/src/smatch_slist.c 3

192
193
194
195
196
197
198
199
200
172
201
202
203
204 }

sm state->nanme = al |l oc_snanme(nane);
sm st at e- >owner = owner;

sm st ate->sym = sym

sm state->state = state;
smstate->line = get_lineno();

sm st ate->nmerged = O;

sm st at e- >pool = NULL;
smstate->left = NULL;
smstate->right = NULL;

sm state->nr_children = 1,

sm st at e- >possi bl e = NULL;
add_ptr_list(&m state->possible, smstate);
return smstate;

____unchanged_portion_onitted_

224 void add_possible_sn(struct smstate *to, struct smstate *new)
225 {

226
227
228

230
231

233
234
235
205
236
237
207
238
239
240
241
242
243
244
245 }

struct smstate *tnp;
int preserve = 1;
int cnp;

if (too_many_possible(to))
preserve = 0;

FOR_EACH PTR(t o->possi ble, tnp) {
cnp = cnp_possi bl e_sn(tnp, new, preserve);

if (cnp < 0)
if (cnp_smstates(tnp, new, preserve) < 0)
conti nue;
else if (cnp == 0) {
else if (cnp_smstates(tnp, new, preserve) == 0) {
return;
} else {
| NSERT_CURRENT(new, tnp);
return;

}
} END_FOR_EACH_PTR(tnp);
add_ptr_|ist(& o->possible, new;

247 static void copy_possibles(struct smstate *to, struct smstate *one, struct sm_
217 static void copy_possibles(struct smstate *to, struct smstate *from

248 {
249
250
251

253
254
255
256
257

259
260
261
262
263

265
266
267
221
268
269

struct smstate *large = one;
struct smstate *snmall = two;
struct smstate *tnp;

/
We spend a lot of time copying the possible lists. 1’'ve tried to

optim ze the process a bit.

/

* ok ok ok ¥

if (ptr_list_size((struct ptr_list *)two->possible) >
ptr_list_size((struct ptr_list *)one->possible)) {
large = two;
smal |l = one;

}

t o- >possi bl e = cl one_slist (| arge->possible);

add_possi bl e_sn(to, to);

FOR_EACH PTR(snal | - >possi bl e, tnp) {

FOR_EACH PTR(from >possible, tnmp) {
add_possi bl e_snm(to, tnp);

} END_FOR_EACH_PTR(tmp);

new usr/src/tool s/smatch/src/smatch_slist.c

270 }
____unchanged_portion_onitted_

283 static struct symbol *oom func;

284 static int oomlimt = 3000000; /* Start with a 3G limt */

285 int out_of _menory(void)

286 {

287 if (oomfunc)

288 return 1;

290 I*

291 * | decided to use 50M here based on trial and error.

292 * |t works out OK for the kernel and so it shoul d work

293 * for nost other projects as well.

294 */

295 if (smstate_counter * sizeof(struct smstate) >= 100000000)
296 return 1;

298 /*

299 * W're reading fromstatmto figure out how nmuch nenory we
300 * are using. The problemis that at the end of the function
301 * we release the nenory, so that it can be re-used but it
302 * stays in cache, it's not released to the OS. So then if
303 * we allocate nenory for different purposes we can easily
304 * hit the 3G limt on the next function, so that’'s why | give
305 * the next function an extra 100MB to work with.

306 *

307 */

308 if (get_nmemkb() > oomlimt) {

309 oom func = cur_func_sym

310 final _pass++;

311 smperror("OOM % uKb sm state_count = %", get_nemkb(),
312 final _pass--;

313 return 1;

314 }

316 return O;

317 }

____unchanged_portion_onitted_

348 /* At the end of every function we free all the smstates */
349 void free_every_singl e_smstate(void)

350 {

351 struct allocator_struct *desc = &m state_all ocator;
352 struct allocation_blob *bl ob = desc->bl obs;
354 desc->bl obs = NULL;

355 desc->al | ocations = 0;

356 desc->total _bytes = 0;

357 desc->useful _bytes = 0;

358 desc->freelist = NULL;

359 whi |l e (bl ob)

360 struct allocation_blob *next = bl ob->next;
361 free_all _sm states(bl ob);

362 bl ob_free(bl ob, desc->chunking);
363 bl ob = next;

364

365 cl ear_snane_al |l oc();

366 clear_smatch_state_al |l oc();

368 free_stack_and_strees(&all_pools);

369 smstate_counter = 0;

370 if (oomfunc) {

371 oomlimt += 100000;

372 oom func = NULL;

373 }

smsta

new usr/src/tool s/smatch/src/smatch_slist.c 5

374 }
__unchanged_portion_onitted_

381 struct smstate *clone_sn{struct smstate *s)

382 {

383 struct smstate *ret;

385 ret = alloc_state_no_nanme(s->owner, s->nane, s->sym s->state);
386 ret->nmerged = s->nerged;

387 ret->line = s->line;

388 /* clone_sn() doesn’t copy the pools. Each state needs to have
389 only one pool. */

390 ret->possible = clone_slist(s->possible);

391 ret->left = s->left;

392 ret->right = s->right;

319 ret->nr_children = s->nr_children;

393 return ret;

394 }

__unchanged_portion_ontted_

450 struct smstate *merge_sm states(struct smstate *one, struct smstate *two)

451 {

452 struct smatch_state *s;

453 struct smstate *result;

454 static int warned;

456 if (one == two)

457 return one;

458 if (out_ of mam)ry()) {

459 if (!warned)

460 sm war ni ng("Function too hairy. No nore nerges.");

461 warned = 1;

462 return one;

463 }

464 war ned = O;

465 s = nerge_states(one->owner, one->nane, one->sym one->state, two->state
466 result = alloc_st ate no nama(one >owner, one->nane, one->sym S);

467 resul t- >nerged =

468 result->left = one

469 result->right = two;

397 result->nr_children = one->nr_children + two->nr_children;

398 copy_possi bl es(result, one);

399 copy_possi bl es(result, two);

471 copy_possi bl es(result, one, two);

473 /*

474 * The ->line information is used by deref_check where we conpl ai n about
475 * checking pointers that have already been dereferenced. Let’s say we
476 * dereference a pointer on both the true and fal se paths and then nerge
477 * the states here. The result state is &erefed, but the ->line nunber
478 * is on the line where the pointer is nmerged not where it was

479 * dereferenced. .

480 *

481 * So in that case, let’s just pick one dereference and set the ->line
482 * to point at it.

483 *

484 */

486 if (result->state == one->state)

487 result->line = one->line;

488 if (result->state == two->state)

489 result->line = two->line;

491 if (option_debug ||

492 strcnp(check_nanme(one->owner), option_debug_check) == 0) {

new usr/src/tool s/smatch/src/smatch_slist.c

493 struct smstate *tnp;
494 int i =0;
496 printf("%:% %() merge [%] ' %' %(L %) + %(L %) => % (",
497 get _filenanme(), get_lineno(), get_function(),
498 check_nane(one->owner), one->narme,
499 show_st at e(one->state), one->line,
500 show_st at e(two->state), two->line,
501 show state(s));
503 FOR_EACH PTR(result->possible, tnmp) {
504 if (i++)
505 printf(", "
506 printf("%" show state(tnp >state));
507 } END FOR_EACH_PTR(t np) ;
508 printf(")\'n");
509 }
511 return result;
512 }
__unchanged_portion_omtted_
780 int _ _stree_id;
782 [*
783 * merge_slist() is called whenever paths nmerge, such as after
784 * an if statement. It takes the two slists and creates one.
785 */
786 static void __nmerge_stree(struct stree **to, struct stree *stree,
787 {
788 struct stree *results = NULL;
789 struct stree *inplied_one = NULL;
790 struct stree *inplied_two = NULL;
791 Avl lter one_iter;
792 Avllter two_iter;
793 struct smstate *one, *two, *res;
721 struct smstate *tnp_sm
795 if (out_of _menory())
796 return;
798 /* merging a null and nonnull path gives you only the nonnull path */
799 if (!stree)
800 return;
801 if (*to == stree)
802 return;
804 if (1*to) {
805 *to = clone_stree(stree);
806 return;
807 }
809 implied_one = clone_stree(*to);
810 inplied_two = clone_stree(stree);
812 mat ch_states_stree(& nplied_one, rrpl i ed_two);
813 cal | _pre_nerge_hooks(& nplied_one, rrp ed_two);
815 if (add_pool) {
816 cl one_pool _havers_stree(& nplied_one);
817 cl one_pool _havers_stree(& nplied_two);
819 set_stree_id(& nplied_one, ++_ stree_id);
820 set_stree_id(& nplied_two, ++__stree_id);
821 if (inplied_one->base_stree)
822 set _stree_i d(& nplied_one->base_stree,

++

i nt add_pool)

__stree_id);

new usr/src/tool s/smatch/src/smatch_slist.c

823 if (inplied_two->base_stree)

824 set_stree_i d(& nplied_two->base_stree, ++__
825 }

827 push_stree(&al | _pools, inplied_one);

828 push_stree(&all _pools, inplied_two);

830 avl _iter_begin(&one_iter, inplied_one, FORWARD);
831 avl _iter_begin(& wo_iter, inplied_tw, FORWARD);
833 for (;;) {

834 if (lone_iter.sm|| !two_iter.sm

835 br eak;

837 one one_iter.sm

838 t wo two_iter.sm

840 if (one == two) {

841 avl _insert(&esults, one);

842 got 0 next ;

843 }

845 if (add_pool) {

846 one->pool = inplied_one;

764 if (crrptracker(onelter sm two_iter.snm < 0) {
765 smperror(" in %" func_);

766 avl _i ter_next (&one iter);

767 } else if (cnp_tracker(one_iter.sm two_iter.sm
768 if (add_pool &% one_iter.sm!= two_iter.s
769 one_iter.sm>pool = inplied_one;
847 if (inplied_one- >base stree)

848 one->pool = inplied_one->base_str
849 two- >pool = inplied_two;

771 one_iter.sm>pool = inpli
772 two_iter.sm >pool = inplied_two;
850 if (inplied_two->base_stree)

851 two- >pool = inplied_two->base_str
774 two_iter.sm>pool = inpli
852

853 res = nerge_sm states(one, two);

854 add_possi bl e_snm(res, one);

855 add_possi bl e_sn{res, two);

856 avl _insert(&esults, res);

857 next:

776 tnp_sm = merge_sm states(one_iter.sm two
777 add_possi bl e_sn(tnp_sm one_iter.sm;

778 add_possi bl e_sn(tnp_sm two_iter.sm;

779 avl _Insert(&esults, tnp_sm;

858 avl _i ter_next (&one_ iter);

859 avl _iter_next(& wo_iter);

782 } else {

783 smperror(" in %", _ func_);

784 avl _iter_next(& wo_iter);

860 }

786 }

862 free_stree(to);

863 *to = results;

864 }

__unchanged_portion_onitted_

stree_id);

== 0) {
m {

ee;

ed_one- >base_st

ee;

ed_t wo- >base_st

_iter.sm;

new usr/src/tool s/smatch/src/smatch_slist.h 1

R R R R

3758 Mon Aug 5 08:38:46 2019

new usr/src/tool s/smatch/src/smatch_slist.h
11506 snatch resync

R R R R

unchanged_portion_om tted_

13 DECLARE_ALLOCATOR(named_stree);

14

17
18
19

DECLARE_PTR LI ST(naned_stree_stack, struct named_stree);

extern struct state_list_stack *inplied_pools;
extern int __stree_id;
extern int smstate_counter;

const char *show_sn(struct smstate *sm;
void __print_stree(struct stree *stree);
void add_hi story(struct smstate *smn);
int cnp_tracker(const struct smstate *a,
char *all oc_snanme(const char *str);
struct smstate *alloc_smstate(int owner, const char *nane,

struct synbol *sym struct smatch_state *state);

const struct smstate *b);

void free_every_single_smstate(void);

struct smstate *clone_sn(struct smstate *s);

int is_nerged(struct smstate *sn;

int is_leaf(struct smstate *snm;

struct state_list *clone_slist(struct state_|list *fromslist);

int slist_has_state(struct state_list *slist, struct smatch_state *state);
int too_many_possible(struct smstate *sm;

voi d add_possi bl e_sn(struct smstate *to, struct smstate *new);

struct smstate *nmerge_smstates(struct smstate *one, struct smstate *two);

struct smatch_state *get_state_stree(struct stree *stree, int owner, const char
struct symbol *sym;
struct smstate *get_smstate_stree(struct stree *stree, int owner, const char *

struct synbol *sym;

void overwite_smstate_stree(struct stree **stree, struct smstate *sm;

void overwite_smstate_stree_stack(struct stree_stack **stack, struct smstate

struct smstate *set_state_stree(struct stree **stree, int owner, const char *na
struct synbol *sym struct smatch_state *state);

void set_state_stree_pern(struct stree **stree, int owner, const char
struct synbol *sym struct smatch_state *state);

*nane,

void del ete_state_stree(struct stree **stree, int owner, const char *nane,
struct symbol *synm;

void delete_state_stree_stack(struct stree_stack **stack, int owner, const char
struct synbol *sym;

voi d push_stree(struct stree_stack **list_stack, struct stree *stree);

struct stree *pop_stree(struct stree_stack **|ist_stack);
struct stree *top_stree(struct stree_stack *stack);

void free_slist(struct state_|list **slist);

void free_stree_stack(struct stree_stack **stack);

void free_stack_and_strees(struct stree_stack **stree_stack);
unsi gned | ong get_pool _count (void);

struct smstate *set_state_stree_stack(struct stree_stack **stack, int owner, co
struct synbol *sym struct smatch_state *state);
struct smstate *get_smstate_stree_stack(struct stree_stack *stack,

const char

*sym;

i nt owner,
struct synbol

*nane,

new usr/src/tool s/smatch/src/smatch_slist.h

73
74

struct smatch_state *get_state_stree_stack(struct stree_stack *stack,
const char *nane, struct synbol *syn);

int out_of _menory(void);

int | ow on_nenory(void);

void nerge_stree(struct stree **to, struct stree *stree);

void nerge_stree_no_pool s(struct stree **to, struct stree *stree);
void nerge_stree(struct stree **to, struct stree *right);

void nerge_fake_stree(struct stree **to, struct stree *stree);
void filter_stree(struct stree **stree, struct stree *filter);
void and_stree_stack(struct stree_stack **stree_stack);

void or_stree_stack(struct stree_stack **pre_conds,
struct stree *cur_stree,
struct stree_stack **stack);
struct stree **get_naned_stree(struct named_stree_stack *stack,
const char *nane,
struct synmbol *sym;
void overwite_stree(struct stree *from struct stree **to);
/* add stuff smatch_returns.c here */
void all _return_states_hook(void (*callback)(void));

void all ocate_dynam c_states_array(i nt num checks);

int

2

owner ,

new

* ok kK

new
1150

* ok kK

usr/src/tool s/smatch/ src/ smat ch_st at enent _count . c

B R

2133 Mon Aug 5 08:38:46 2019
usr/src/tool s/ smat ch/ src/ smat ch_st at ement _count . c
6 smatch resync

B R R R R

__unchanged_portion_onitted_

78
79
80

82
83
84

voi d regi ster_statenent_count (int id)
{
nmy_id = id;
set _dynami c_states(ny_id);
add_hook(mat ch_st atement, STMI_HOOK) ;
add_ner ge_hook(ny_id, &nerge_states);

add_split_return_cal |l back(& nsert_return_info);
sel ect _return_states_hook(STMI_CNT, &sel ect_return_info);

__unchanged_portion_onitted_

new usr/src/tool s/smatch/src/smatch_states.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
25946 Mon Aug 5 08:38:46 2019

new usr/src/tools/smatch/src/smatch_states. c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

83 struct smstate *set_state(int owner, const char *nane,

84 {

85 struct smstate *ret;

87 if (Inane || !state)

87 if (!nane)

88 return NULL;

90 if (read_only)

91 smoperror("cur_stree is read only.");

93 if (option_debug || strcnp(check_nane(owner), option_debug_check)
94 struct smatch_state *s;

96 s = __get_state(owner, nanme, syn);

96 s = get_state(owner, nane, sym;

97 if (!s)

98 smnsg("% new [%] "%’ %", __func
99 check_nane(owner), nane,

100 el se

101 smmeg("% change [%8] '%' % => %",
102 _ _func__, check_nane(owner),
103 show_state(state));

104 }

106 if (owner != -1 &% unreachable())

107 return NULL;

109 if (fake_cur_stree_stack)

110 set _state_stree_stack(&f ake_cur_stree_stack,
112 ret = set_state_stree(&cur_stree, owner, nane,

114 return ret;

115 }

__unchanged_portion_onitted_

190 void __set_sn(struct smstate *sm

191 {

192 if (read_only)

193 smperror("cur_stree is read only.");

195 if (option_debug ||

196 strcnp(check_name(sm >owner), option_debug_check)
197 struct snmatch_state *s;

199 s = __get_state(sm >owner, sm >pame, sSm >synj;
199 s = get_state(sm >owner, sm >nanme, sm >syn);
200 if (I's

201 smmeg("% new %", _ func__, show sn(sm);
202 el se

203 sm nsg("% change % (was %)",

204 show state(s));

205 1

207 if (unreachable())

208 return;

210 if (fake_cur_stree_stack)

struct synbol

show_state(state));

show_state(s)

new usr/src/tool s/smatch/src/smatch_states.c

211
213

214 }

overwite_smstate_stree_stack(& ake_cur_stree_stack, sm;

overwite_smstate_stree(&cur_stree, snm;

216 void __set_smcur_stree(struct smstate *sn)

217 {

218
219

221
222
223

225
225
226
227
228
229
230
231

233
234

236

237 }

if (read_only)
smoperror(“cur_stree is read only.");

if (option_debug ||
strcnp(check_name(sm >owner), option_debug_check) == 0) {
struct smatch_state *s;
S __get_state(sm >owner, sm >name, Sm >syn);
S get _state(sm >owner, sm >nane, Sm >sym);
if (I's)

smmsg("% new %", _ func__, show_ sn(sm);
el se
smmeg("% change % (was %)",
_ func__, show_sm(sm, show state(s));

}

if (unreachable())
return;

overwite_smstate_stree(&cur_stree, sm;

239 void __set_smfake_stree(struct smstate *sm

240 {

241
242

244
245
246

248
248
249
250
251
252
253
254

256
257

259

260 }
__unchanged_portion_onitted_

if (read_only)
smperror("cur_stree is read only.");

if (option_debug ||
strcnp(check_nane(sm >owner), option_debug_check) == 0) {
struct smatch_state *s;
S __get_state(sm >owner, sm >name, sSm >syn);
S get _state(sm >owner, sm>nanme, Sm >sym;
if (I's)

smnsg("% new %", _ func__, show sn(sm);
el se
sm meg("% change % (was %)",
_ func__, show sn(sm), show state(s));

}

if (unreachable())
return;

overwite_smstate_stree_stack(& ake_cur_stree_stack, sm;

470 void set_true_fal se_states(int owner, const char *nane, struct synbol *sym

471
472

473 {

474
475

477
478

480
480

struct smatch_state *true_state,
struct smatch_state *fal se_state)

if (read_only)
smperror("cur_stree is read only.");

if (option_debug || strcnp(check_nane(owner), option_debug_check) == 0)
struct smatch_state *tnp;

tnp = __get_state(owner, nanme, syn);
tnp = get_state(owner, nane, syn);

new usr/src/tool s/smatch/src/smatch_states.c 3

481
482
483
484

486
487

489
490
491
492

494
495
496
497
498 }

smneg("% [%] '%'. Was %. Now T:% F: %", _ func__,
check_nane(owner), nane, show state(tnp),
show_state(true_state), show state(false_state));

}

if (unreachable())
return;

if (!cond_false_stack || !cond_true_stack) {
smperror("mssing true/fal se stacks");
return;

}

if (true_state)

set _state_stree_stack(&cond_true_stack, owner, nane, sym true_s
if (false_state)

set_state_stree_stack(&cond_fal se_stack, owner, nane, sym false

__unchanged_portion_onitted_

516 void __set_true_false_sn(struct smstate *true_sm struct smstate *fal se_sm

517 {
518
519
520

522
523

525
526

528
529
530
531
532

534
534
535
536
537
538
539

541
542
543
544

546
547
548
549
550 }

int owner;
const char *nane;
struct synbol *sym

if (true_sm&& !false_sm
return;

if (unreachable())
return;

owner = true_sm ? true_sm >owner : fal se_sm >owner;

name = true_sm ? true_sm >nane : fal se_sm >nane;

sym = true_sm? true_sm>sym: fal se_sm>sym

if (option_debug || strcnp(check_nane(owner), option_debug_check) == 0)
struct smatch_state *tnp;

tnp = __get_state(owner, nanme, syn);
tnp = get_state(owner, nane, syn);
smneg("% [%] '%’'. Was ¥%. Now T: % F: %", _ func__,

check_name(owner), nane, show state(tnp),
show_state(true_sm? true_sm>state : NULL),
show state(fal se_sm? false_sm>state : NULL));

}
if (!cond_false_stack || !cond_true_stack) {
smperror("mssing true/fal se stacks");
return;
}
if (true_sm
overwite_smstate_stree_stack(&cond_true_stack, true_smn;
if (false_sm

overwite_smstate_stree_stack(&cond_fal se_stack, false_sm;

__unchanged_portion_onitted_

788 void __negate_cond_stacks(void)

789 {
790

792
792
793
794

struct stree *old_false, *old_true;

__use_cond_st ack(&cond_f al se_st ack);

ol d_fal se = pop_stree(&cond_fal se_st ack);
ol d_true = pop_stree(&cond_true_stack);
push_stree(&cond_fal se_stack, old_true);

new usr/src/tool s/smatch/src/smatch_states.c

795

push_stree(&cond_true_stack,

796 }

__unchanged_portion_onitted_

ol d_fal se);

new usr/src/tool s/smatch/src/smatch_stored_conditions.c 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
7241 Mon Aug 5 08:38:47 2019

new usr/src/tools/smatch/src/smatch_stored_conditions.c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

238 void register_stored_conditions(int id)

239 {

240 ny_id = id,

241 set _dynami c_states(ny_id);

242 }

244 void register_stored_conditions_links(int id)
245 {

246 link_id = id;

247 db_i gnore_states(link_id);

248 set _dynam c_states(link_id);

249 add_nerge_hook(link_id, &erge_links);
250) add_nodi ficati on_hook(link_id, &match_link_nodify);
251

__unchanged_portion_onitted_

new usr/src/tool s/smatch/src/smatch_string_list.c 1

R R R R

1863 Mon Aug 5 08:38:47 2019
new usr/src/tools/smatch/src/smatch_string_list.c
11506 snatch resync

R R R R

2 * Copyright (© 2013 Oacle.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any |later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of
11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
12 * GNU Ceneral Public License for nore details.
13 =
14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt

*

/
18 #include "smatch. h"

20 int list_has_string(struct string_list *str_list, const char *str)

22 char *tnp;

23 int cnp;

25 if (!str)

26 return O;

28 FOR_EACH PTR(str_list, tnmp) {

29 cnp = strcnp(tnp, str);
30 if (cnmp < 0)

28 if (strenp(tnmp, str) < 0)
31 conti nue;

32 if (cnmp == 0)

30 if (stremp(tnp, str) == 0)
33 return 1;

34 return O;

35 } END_FOR_EACH_PTR(t np);

36 return O;

37 }

39 int insert_string(struct string_list **str_|list, const char *_new)
37 void insert_string(struct string_list **str_list, const char *_new)

41 char *new = (char *)_new,

42 char *tnp;

43 int cnp;

45 FOR_EACH PTR(*str_list, tmp) {

46 cnp = strcnp(tnp, new;

a7 if (cnmp < 0)

43 if (strecnmp(tnp, new) < 0)

48 cont i nue;

49 else if (cnp == 0) {

50 return O;

45 else if (strcmp(tnmp, new) == 0) {
46 return;

51 } else {

52 | NSERT_CURRENT(al | oc_string(new), tnp);
53 return 1;

49 return;

new usr/src/tool s/smatch/src/smatch_string_list.c

55 } END_FOR _EACH_PTR(tnp);

56 new = all oc_string(new);

57 add_ptr_list(str_list, new);
58 return 1,

59

__unchanged_portion_onitted_

new usr/src/tool s/smatch/src/smatch_strlen.c

R R R R

8938 Mon Aug 5 08:38:47 2019

new usr/src/tools/smatch/src/smatch_strlen.c
11506 snatch resync

R R R R

__unchanged_portion_onitted_

332 void register_strlen(int id)
333 {

334
336
338

340
341

343
344
345
346
347

349

351
352
353
354

356

358
359
360
361

}

my_strlen_id = id;
set _dynami c_states(ny_strlen_id);
add_unmat ched_st at e_hook(ny_strlen_id, &unmatched_strlen_state);

sel ect _cal I er _i nfo_hook(set _param strlen, STR LEN);
add_hook(&mat ch_st i ng_assi gnment, ASSI GNVENT H(X]<)

add_nodi fication_hook(ny_strlen_id, &set_strlen_undefined);
add_mer ge_hook(ny_strlen_id, &nErge est at es)

add_hook(&t ch_cal I, FUNCTI ON_CALL_

add_nenber _i nfo_cal | back(my_strlen_id, st ruct_nEnber_caI | back) ;
add_hook(&at ch_strl en_conditi on, TONDI TI ON_HOCK) ;

add_function_hook("snprintf", &mwatch_snprintf, NULL);
add_function_hook("strlcpy", &match_strlcpycat, NULL);

add_function_hook("strlcat", &mmtch_strlcpycat, NULL);
add_function_hook("strcpy", &match_strcpy, NULL);

void register_strlen_equiv(int id)
357 {

362 }

ny_equiv_id = id;

set _dynami c_states(my_ equiv id);

add_f uncti on_assi gn_hook("strlen", &mmatch_strlen, NULL);
add_rodi fi cati on_hook(ny_equi v_i d &set _strlen_equiv undefl ned) ;

__unchanged_portion_onitted_

new usr/src/tool s/smatch/src/smatch_struct _assignnent.c 1

R R R R

13960 Mon Aug 5 08:38:48 2019
new usr/src/tool s/ smatch/src/smatch_struct _assignment.c
11506 snatch resync

R R R R

__unchanged_portion_onitted_

448 static void match_mendup(const char *fn, struct expression *call_expr,

449
450 {
451

453
454

456
457

459
460
461
462
463 }

466
467

469
470
471 }

struct expression *expr, void *_unused)
struct expression *left, *right, *arg;

if (lexpr || expr->type != EXPR_ASSI GNVENT)
return;

left = strip_expr(expr->left);
right = strip_expr(expr->right);

if (right->type != EXPR_CALL)

return;
arg = get_argunment _fromcall _expr(right->args, 0);
__struct _nenber s_copy(COPY_MEMCPY, expr, left, arg);

465 static void match_mencpy_unknown(const char *fn, struct expression *expr, void *
{

struct expression *dest;

dest = get_argunent _fromcal |l _expr(expr->args, 0);
__struct _nmenbers_copy(COPY_MEMCPY, expr, renpve_addr(dest), NULL);

__unchanged_portion_onitted_

558 void register_struct_assignment (int id)

559 {
560
561

563
564
565
566

568
569

571
573
574
575

577
578 }

add_function_hook("nenset", &match_nenset, NULL);
add_function_hook("__nenset", &match_nenset, NULL);

add_function_hook("nentpy", &match_nencpy, |NT_PTR(0));
add_functi on_hook("nemmove", &match_nencpy, |NT_PTR(0));
add_function_hook("__nenctpy", &match_nencpy, |NT_PTR(0));
add_function_hook("__menmove", &match_nmencpy, |NT_PTR(0));

if (option_project == PRQJ_KERNEL)
return_inplies_state_sval ("knendup", valid_ptr_mn_sval, valid_p

add_function_hook("sscanf", &match_sscanf, NULL);

add_hook(&unop_expr, OP_HOXK);

regi ster_cl ears_paran();

sel ect _return_stat es_hook(PARAM CLEARED, &db_param cl eared);

sel ect _return_stat es_hook(CONTAI NER, &returns_contai ner_of);

__unchanged_portion_omtted_

new usr/src/tool s/smatch/src/smatch_sval .c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
14551 Mon Aug 5 08:38:48 2019

new usr/src/tools/smatch/src/smatch_sval .c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

65 sval _t sval _type_val (struct synbol *type, long |long val)

66 {

67 sval _t ret;

69 if (!type)

70 type = & |l ong_ctype;
70 type = & nt_ctype;
72 ret.type = type;

73 ret.value = val;

74 return ret;

75 }

__unchanged_portion_onitted_

95 int sval _unsigned(sval _t sval)

96

97 if (is_ptr type(sval type))

98 return true;

99 return type_unsi gned(sval .type);
100

__unchanged_portion_onitted_

431 static sval _t ptr_binop(struct synbol *type, sval _t left, int op, sval
432 {

433 sval _t ret;

434 int align;

436 if (op!="+ & op!="-")
437 return sval _bi nop_unsi gned(type, left, op, right);

439 ret.type = type

440 if (type >type == SYM _PTR)

441 ype = get_real base_type(type);
442 align = type >ctype. al i gnnent ;

443 if (align <= 0)

444 align = 1;

446 if (op =="+") {

447 if (type_is_ptr(left.type))

448 ret.value = left.value + right.value * align;
449 el se

450 ret.val ue
451 } else {

452 if (Itype_is_ptr(left.type)) {

453 left.value = -left.val ue;

454 ret = ptr_binop(type, left, '+,
455 } elseif (!type_is_ptr(right.type)) {
456 right.value = -right.val ue;

457 ret = ptr_binop(type, left, "+,
458 } else {

459 ret.val ue
460 }

461 }

= left.value * align + right.val ue;

right);

right);

= (left.value - right.value) / align;

463 if (op =="-")
464 ret.type = ssize_t_ctype;
465 return ret;
466 }
__unchanged_portion_onitted_

_t

right)

new usr/src/tool s/smatch/src/smatch_sval .c

590 int find_first_zero_bit(unsigned | ong | ong uval ue)

586 unsigned |long Tong fls_mask(unsigned | ong | ong uval ue)
591 {

592 int i;

588 unsi gned long long high_bit = 0;

594 for (i =0; i < 64; i++) {

595 if ('(uvalue&(lULL <<i)))
596 return i;

597 1

598 return i;

599 }

601 int smfls64(unsigned | ong | ong uval ue)
602 {
603 int high_bit = 0;

605 whil e (uval ue) {

606 uval ue >>= 1;
607 hi gh_bi t ++;
608 }

610 return high_bit;
611 }

613 unsi gned |l ong | ong fls_nask(unsigned | ong | ong uval ue)
614 {

615 int high_bit = 0;

617 high_bit = smfls64(uval ue);

618 if (high_bit ==

619 return O;

621 return ((unsigned long long)-1) >> (64 - high_bit);
622 }

__unchanged_portion_onitted_

629 const char *sval _to_str(sval _t sval)

630 {

631 char buf[30];

633 if (sval_is_ptr(sval) && sval.value == valid_ptr_nax)
634 return "ptr_max";

635 if (sval _unsi gned(sval) && sval .val ue == ULLONG_MAX)
636 return "u64max"

637 if (sval _unsigned(sval) && sval . val ue == Ul NT_NAX)
638 return "u32max";

639 if (sval.value == USHRT_MAX)

640 return "ulémax";

642 if (sval _signed(sval) && sval.value == LLONG MAX)
643 return "s64max";

644 if (sval.value == I NT_

645 return "s32max";

646 if (sval.value == SHRT_MAX)

647 return "sl6max";

649 if (sval _si gned(sval) && sval . val ue == SHRT_M N)
650 return "s16mn

651 if (sval _signed(sval) && sval . val ue == | NT_M N)
652 return "s32mn";

653 if (sval _signed(sval) && sval.value == LLONG M N)
654 return “"s64mn";

656 if (sval _unsigned(sval))

new usr/src/tool s/smatch/src/smatch_sval .c

657
658
659
660
661

663
664

666
668

670
671
672

674
675
676
677

679
680

682
684

686
687
688
689
690
691

693

}

snprintf(buf, sizeof(buf), "%Iu", sval.value);
else if (sval.value < 0)

snprintf(buf, sizeof(buf), "(%I1d)", sval.value);
el se

snprintf(buf, sizeof(buf), "%I1d", sval.value);

return all oc_sname(buf);

const char *sval _to_str_or_err_ptr(sval _t sval)
667 {

}

char buf[12];

if (option_project != PRQJ_KERNEL ||
lis_ptr_type(sval.type))
return sval _to_str(sval);

if (sval.uvalue >= -4905ULL) ({
snprintf(buf, sizeof(buf), "(%1d)", sval.value);
return alloc_snane(buf);

}

return sval _to_str(sval);

const char *sval _to_nunstr(sval _t sval)
683 {

694 }
____unchanged_portion_onitted_

char buf[30];

if (sval _unsigned(sval))

snprintf(buf, sizeof(buf), "%Iu", sval.value);
else if (sval.value <0

snprintf(buf, sizeof(buf), "(%I1d)", sval.value);
el se

snprintf(buf, sizeof(buf), "%1d", sval.value);

return alloc_snane(buf);

new usr/src/tool s/smatch/src/smatch_type.c

R R R R

16744 Mon Aug 5 08:38:49 2019
new usr/src/tools/smatch/src/smatch_type.c
11506 snatch resync

R R R R

2 * Copyright (C 2009 Dan Carpenter.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of

11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the

12 * GNU Ceneral Public License for nore details.

13 =

14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww. gnu. org/copyl eft/gpl
16 */

18 /*

19 * The idea here is that you have an expression and you
20 * want to know what the type is for that.
21 */

23 #include "snmatch. h"
24 #include "smatch_slist.h"

26 struct synbol *get_real _base_type(struct synbol *sym
{

28 struct synbol *ret;

30 if (!sym

31 return NULL;

32 if (sym>type == SYM BASETYPE)

33 return sym

34 ret = get_base_type(sym;

35 if (lret)

36 return NULL

37 if (ret->type == SYM RESTRICT || ret->type == SYM NODE)
38 return get_real base_type(ret);
39 return ret;

40

__unchanged_portion_omtted_

62 static struct synmbol *get_bi nop_type(struct expression *expr)
63 {

64 struct synbol *left, *right;

66 left = get _type(expr->left);

67 if (!le

68 r eturn NULL;

70 if (expr->op == SPECI AL_LEFTSH FT ||
71 expr->op == SPECI AL_RI GHTSHI FT)
72 if (type_positive_bits(left) < 31)
73 return & nt_ctype;
74 return left;

75 1

76 right = get_type(expr->right);

77 if (!right)

78 return NULL;

80 if (expr->op =="-" &&

Ltxt

new usr/src/tool s/smatch/src/smatch_type.c

81 (is_ptr_type(left) &% is_ptr_type(right)))

82 return ssize_t_ctype;

84 if (left->type == SYMPTR || left->type == SYM ARRAY)

85 return left;

86 if (right->type == SYM PTR || right->type == SYM ARRAY)
87 return right;

89 if (type_positive_bits(left) < 31 & type_positive_bits(right)
90 return & nt_ctype;

92 if (type_positive_| blts(left) > type_positive_bits(right))
93 return left

94 return right;

95

__unchanged_portion_onitted_

220 static struct synbol *get_type_hel per(struct expression *expr)

221 {

222 struct synbol *ret;

224 expr = strip_parens(expr);

225 if (!expr)

226 return NULL;

228 if (expr->ctype)

229 return expr->ctype;

231 switch (expr->type) {

232 case

233 ret = &strl ng_ctype;

234 br eak;

235 case EXPR_SYMBCOL:

236 ret = get_type_synbol (expr);

237 br eak;

238 case EXPR_DEREF:

239 ret = get_synbol _fromderef(expr);
240 br eak;

241 case EXPR_PREOP:

242 case EXPR_POSTOP:

243 if (expr- >0p == T &)

244 ret = fake p0| nter _sym(expr);
245 else if (expr—>op ==

246 ret get _poi nter _type(expr->unop);
247 el se

248 ret = get_type(expr->unop);
249 br eak;

250 case EXPR_ASSI GNMENT:

251 ret = get_type(expr->left);

252 br eak;

253 case EXPR_CAST:

254 case EXPR _FORCE_CAST:

255 case EXPRI NPLI ED_CAST:

256 ret = get_real _base_type(expr->cast_type);
257 br eak;

258 case EXPR_COWPARE:

259 case EXPR_BI NOP:

260 ret = get_binop_type(expr);

261 br eak;

262 case EXPR_CALL:

263 ret = get_return_type(expr);

264 br eak;

265 case EXPR_STATEMENT:

266 ret = get_expr_stmt _type(expr->statenent);
267 br eak;

268 case EXPR_CONDI TI ONAL:

< 31)

new usr/src/tool s/smatch/src/smatch_type.c

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

285
286

288
289
290

292

294
295
296
297
298
286
299
288
289
290
291
292
293
294
295
296
300

302
303
304

306
303
304
307
306
307

309
309

312
313
314
315
316
317

319

}

case EXPR_SELECT:
ret = get_sel ect_type(expr);
br eak;

case EXPR_SI ZEOF:
ret = &ul ong_ctype;
br eak;

case EXPR_LOG CAL:
ret = & nt_ctype;
br eak;

case EXPR_OFFSETCF:
ret = &ul ong_ctype;
br eak;

defaul t:

}

if (ret & ret->type == SYM TYPECF)
ret = get_type(ret->initializer);

return NULL;

expr->ctype = ret;
return ret;

static struct synbol *get_final _type_hel per(struct expression *expr)
293 {

310 }

/
The problemis that | wote a bunch of Smatch to think that
you could do get_type() on an expression and it would give
you what the conparison was type pronmbted to. This is wong
but fixing it is a big of work... Hence this horrible hack.
I"mnot totally positive | understand types...

So, when you’re doing pointer math, and you do a subtraction, then
the sval _bi nop() and whatever need to know the type of the pointer
so they can figure out the alignment. But the result is going to be
and ssize_t. So get_operation type() gi ves you the pointer type
and get _type() gives you ssize_t.

Most of the time the operation type and the final type are the same
but this just handles the few places where they are different.

/

* % ok ko ok % ok k OF kb k ok F ok ok

expr = strip_parens(expr);
if (lexpr)
return NULL;

if (expr->type == EXPR_COWPARE)
switch (expr->type) {
case EXPR_COVPARE
return & nt_ctype;
case EXPR_BI NOP:
struct synbol *left, *right;

if (expr->op !="-")
return NULL;

left get _type(expr->left);

right = get_type(expr- >r|ght)

if (type_is_ptr(left) |] type_ls_ptr(right))
return ssize_t_ctype;

}

}
return NULL;

__unchanged_portion_omtted_

new usr/src/tool s/smatch/src/smatch_type.c

388 int is_pointer(struct expression *expr)

389 {

390 return type_is ptr(get _type(expr));
400 struct synbol *sy

402 sym = get _type(expr);

403 if ('sym

404 return O;

405 if (sym== &string_ctype)
406 return O;

407 if (sym>type == SYM PTR)
408 return 1,

409 return O;

391 }

__unchanged_portion_onitted_

418 sval _t sval _type_m n(struct synbol *base_type)

419 {

420 sval _t ret;

422 if (!'base_type || !type_bits(base_type))

423 base_type = & | ong_ctype;

424 ret.type = base_type;

426 if (type_unsigned(base_type) || is_ptr_type(base_type)) {
445 if (type_unsigned(base_type)) {

427 ret.value = 0;

428 return ret;

429 }

431 ret.value = (~0ULL) << type_positive_bits(base_type);
433 return ret;

434 }

__unchanged_portion_onitted_

581 static struct synmbol *get_nenber_fromstring(struct synbol _list *synbol _I|ist,

582 {

583 struct synbol *tnp, *sub;

584 int chunk_len;

586 if (strncmp(name, ".", 1) == 0)

587 nane += 1;

588 else if (strncnp(nane, "->", 2) == 0)

607 if (strncnp(nane, "->", 2) == 0)

589 nane += 2;

591 FOR_EACH_PTR(synbol _list, tnp) {

592 if (!'tmp->ident) {

593 sub = get_real _base_type(tnp

594 sub = get _nenber_fromstri ng(sub >synbol _|ist, nane);
595 if (sub)

596 return sub;

597 conti nue;

598 }

600 if (strcnp(tnp->ident->name, name) == 0)

601 return tnp;

603 chunk_l en = tnp->i dent->l en;

622 chunk_l en = strlen(tnp->i dent->name);

604 if (strncnp(tnp->ident- >nane, nane, chunk Ien) =0 &&
605 (nane[chunk len] ==" | nane[chunk len] =="-")) {
606 sub = get_real base _type(tnp);

607 if (sub->type == SYM PTR)

co

773 n = snprintf(buf, size, "node {");

new usr/src/tool s/smatch/src/smatch_type.c 5
608 sub = get_real _base_type(sub);
609 return get_nenber_fromstring(sub->synbol _list, nane + c
610 }
612 } END_FOR_EACH_PTR(tnp);
614 return NULL;
615 }
__unchanged_portion_omtted_
719 static int type_str_hel per(char *buf, int size, struct synbol *type)
720 {
721 int n;
723 if (ltype)
724 return snprintf(buf, size, "<unknown>");
726 if (type->type == SYM BASETYPE) {
727 return snprintf(buf, size, "%", base_type_str(type));
744 return snprintf(buf, size, base_type_str(type));
728 } else if (type->type == SYM PTR)
729 type = get_real _base_type(type);
730 n = type_str_hel per(buf, size, type);
731 if (n > size)
732 return n;
733 return n + snprintf(buf + n, size - n, "*");
734 } else if (type->type == SYM ARRAY) {
735 type = get_real _base_type(type);
736 n = type_str_hel per(buf, size, type);
737 if (n > size)
738 return n;
739 return n + snprintf(buf + n, size - n, "[1");
740 } else if (type->type == SYM STRUCT)
741 return snprintf(buf, size, "struct %", type->ident ? type->iden
742 } else if (type->type == SYM.UNION) {
743 if (type->ident)
744 return snprintf(buf, size, "union %", type->ident->nane
745 el se
746 return snprintf(buf, size, "anonynous union");
747 } else if (type->type == SYM FN) {
748 struct synmbol *arg, *return_type, *arg_type;
749 int i;
751 return_type = get_real _base_type(type);
752 n = type_str_hel per(buf, size, return_type);
753 if (n > size)
754 return n;
755 n += snprintf(buf + n, size - n, "(*)(");
756 if (n > size)
757 return n;
759 i =0;
760 FOR_EACH PTR(type->argunents, arg) {
761 if (i++)
762 n += snprintf(buf + n, size - n, ", ");
763 if (n > size)
764 return n;
765 arg_type = get_real _base_type(arg);
766 n += type_str_hel per(buf + n, size - n, arg_type);
767 if (n > size)
768 return n;
769 } END_FOR_EACH_PTR(arg);
771 return n + snprintf(buf + n, size - n, ")");
772 } else if (type->type == SYM NODE)

new usr/src/tool s/ smatch/src/smatch_type.c

774 if (n > size)

775 return n;

776 type = get_real _base_type(type);

777 n += type_str_hel per(buf + n, size - n, type);

778 if (n > size)

779 return n;

780 return n + snprintf(buf + n, size - n, "}");

781 } else if (type->type == SYM ENUM ({

782 return snprintf(buf, size, "enum %", type->ident ? type->ident-
783 } else {

784 return snprintf(buf, size, "<type %>", type->type);
785 }

786 }

__unchanged_portion_onitted_

new usr/src/tool s/smatch/src/smatch_type_val . c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
14152 Mon Aug 5 08:38:49 2019

new usr/src/tools/smatch/src/smatch_type_val.c

11506 snatch resync

R R R R

__unchanged_portion_onitted_

389 static void match_assign_val ue(struct expression *expr)

390 {

391 char *menber, *right_nenber;

392 struct range_list *rl;

393 struct synbol *type;

395 if (!cur_func_sym

396 return;

398 type = get_type(expr->left);

399 if (type & type->type == SYM STRUCT)

400 return;

399 nmenber = get_nenber_nane(expr->left);

400 if (!menber)

401 return;

403 /* if we're saying foo->ntu = bar->ntu then that doesn’t add infornmation
404 ri ght _menber = get_nenber_nanme(expr->right);

405 if (right_menber && strcnp(right_nenber, nenber) == 0)
406 goto free;

408 if (is_fake_call (expr->right)) {

409 if (is_ignored_macro())

410 goto free;

411 if (is_ignored_function())

412 goto free;

413 if (is_uncasted_pointer_assign())

414 goto free;

415 if (is_uncasted_fn_paramfromadb())

416 goto free;

417 if (is_container_of())

418 goto free;

419 add_f ake_type_val (menber, alloc_whole_rl (get_type(expr->left)),
420 goto free;

421 }

423 if (expr->op =="=") {

424 get _absol ute_rl (expr->right, &rl);

425 rl = cast_rl(type, rl);

426 } else {

427 *

428 * This is a bit cheating. W order it so this will already be
429 * by smatch_extra.c and we just | ook up the val ue.
430 */

431 get _absolute_rl (expr->left, &l);

432 }

433 add_t ype_val (menber, rl);

434 free:

435 free_string(right_nenber);

436 free_string(nenber);

437 }

__unchanged_portion_onitted_

new usr/src/tool s/ smatch/ src/smatch_unt racked_param ¢

R R R R

7570 Mon Aug 5 08:38:49 2019
new usr/src/tool s/ smatch/src/smatch_untracked_param c
11506 snatch resync

R R R R

2 * Copyright (© 2014 Oacle.

3 *

4 * This programis free software; you can redistribute it and/or

5 * nodify it under the terns of the GNU General Public License

6 * as published by the Free Software Foundation; either version 2

7 * of the License, or (at your option) any later version.

8 *

9 * This programis distributed in the hope that it will be useful,
10 * but W THOUT ANY WARRANTY; without even the inplied warranty of
11 * MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
12 * GNU Ceneral Public License for nore details.
13 =
14 * You shoul d have received a copy of the GNU General Public License
15 * along with this program if not, see http://ww.gnu.org/copyleft/gpl.txt
16 */
18 /*
19 * Sometimes we aren’t able to track a variable through a function call. This
20 * usual ly happens because a function changes too nany variables so we give up.
21 * Another reason this happens is because we call a function pointer and there
22 * are too many functions which inplenent that function pointer so we give up.
23 * Also maybe we don’t have the database enabl ed.
24 *
25 * The goal here is to make a call back so what if we call:
26 *
27 * frob(&f oo);
28 *
29 * but we're not able to say what happens to "foo", then let’'s assume that we
30 * don’t know anything about "foo" if it’s an untracked call.
31 *

*

/

34 #include "smatch. h"
35 #include "smatch_slist.h"
36 #include "smatch_extra. h"

38 static int ny_id,
39 static int tracked;

41 STATE(untracked);
42 STATE(l ost);

44 typedef void (untracked_hook) (struct expression *call, int param;
45 DECLARE_PTR_LI ST(untracked_hook_list, untracked_hook *);

46 static struct untracked_hook_|ist *untracked_hooks;

47 static struct untracked_hook_list *|ost_hooks;

49 struct int_stack *tracked_stack;

51 void add_untracked_param hook(void (func)(struct expression *call, int param)
52
53 untracked_hook **p = nall oc(sizeof (untracked_hook *));
54 *p = func;
55 add_ptr_list(&ntracked_hooks, p);
56
__unchanged_portion_onitted_
67 void add_| ost _param hook(void (func)(struct expression *call, int param)
68 {

69 untracked_hook **p = mal | oc(si zeof (untracked_hook *));

new usr/src/tool s/ smatch/ src/smatch_unt racked_param c

70 *p = func;

71 add_ptr_list(& ost_hooks, p);

72}

74 static void call_|lost_callbacks(struct expression *expr, int param
75 {

76 unt racked_hook **fn;

78 FOR_EACH _PTR(| ost _hooks, fn) {

79 (*fn)(expr, param;

80 } END_FOR EACH PTR(fn);

81 }

83 static void assune_tracked(struct expression *call_expr, int param char *key, c
84

85 tracked =

86 }

88 static char *get_array_fromkey(struct expression *expr, int param const char *

70 void mark_untracked(struct expression *expr, int param const

char *key,

90 struct expression *arg;

92 arg = get_argunent _from cal | _expr (expr->args, paran);
93 if (larg)

94 return NULL;

95 if (arg- >type'—EXPR PRECP || arg->op !="&)

96 return NULL;

97 = arg- >unop;

98 |f ('|s array(arg))

99 return NULL;

100 arg = get _array_base(ar 9);

102 return expr_to_var_syn(arg, sym;

103 }

105 static void mark_untracked_| ost (struct expression *expr, int param
106

107 char *nane;

108 struct synbol *sym

110 whil e (expr->type == EXPR_ASSI GNMENT)

111 expr = strip_expr(expr->right);

112 if (expr->type !'= EXPR_CALL)

113 return;

115 name = return_state_to_var_sym(expr, param Kkey, &sym;
116 if (!name || !'sym

117 name = get_array_fromkey(expr, param key, &syn);
118 if (!name || !sym

119 goto free;

120 }

122 if (type == LOST_PARAM

123 call _l ost_cal | backs(expr, param;

124 cal | _untracked_cal | backs(expr, param;

125 set_state(ny_id, name, sym &untracked);

126 free:

127 free_string(nane);

129 }

131 void mark_untracked(struct expression *expr, int param const char *key,
132 {

133 mar k_untracked_| ost (expr, param key, UNTRACKED PARAM ;

134 }

const ¢

const char *

const c

new usr/src/tool s/ smatch/ src/smatch_unt racked_param ¢ 3

136 void mark_| ost(struct expression *expr, int param const char *key, const char *
137 {

138 mar k_untracked_| ost (expr, param key, LOST_PARAM ;
139 }

141 static int lost_in_va_args(struct expression *expr)
142 {

143 struct synbol *fn;

144 char *nane;

145 int is_lost;

147 fn = get_type(expr->fn);

148 if ('fn]| !'fn- >var|ad|c)

149 return O;

151 is_lost = 1;

152 name = expr_to_var(expr->fn);

153 if (name && strstr(name, "print"))

154 is_lost = 0;

155 free_string(nane);

157 return is_|lost;

158 }

__unchanged_portion_omtted_

188 static void mark_all_params(int return_id, char *return_ranges, int type)
136 void mark_al | _params_untracked(int return_id, char *return_ranges, struct expres

189 {

190 struct synbol *arg;

191 int param

193 param = -1;

194 FOR_EACH PTR(cur _func_sym >ct ype. base_t ype- >argunents, arg) {
195 par am++;

197 if (!arg->ident)

198 conti nue;

199 sql _insert_return_states(return_id, return_ranges,
200 type, param "$", "");

148 UNTRACKED_PARAM par am "$",)i
201 } END_FOR_EACH PTR(arg);

202 }

205 void mark_al | _parans_untracked(int return_id, char *return_ranges, struct expres
206 {

207 mark_al | _paranms(return_id, return_ranges, UNTRACKED PARAM ;

208 }

210 void mark_al |l _parans_lost(int return_id, char *return_ranges, struct expression
211 {

212 mark_al | _parans(return_id, return_ranges, LOST_PARAMV;

213 }

215 static void print_untracked_parans(int return_id, char *return_ranges, struct ex
216 {

217 struct smstate *sm

218 struct synbol *arg;

219 int param

220 int type;

222 param = -1;

223 FOR_EACH PTR(cur _func_sym >ct ype. base_t ype- >argunents, arg) {

224 par am++;

new usr/src/tool s/ smatch/ src/smatch_untracked_param c

226 if (larg->ident)

227 conti nue;

229 if (__bail_on_rest_of_function) {

230 /* hairy functions are |ost */

231 type = LOST_PARAM

232 } else if ((sm= get_smstate(ny_id, arg->ident->nane, arg))) {
233 if (slist_has_state(sm >possible, & ost))

234 type = LOST_PARAM

235 el se

236 type = UNTRACKED_PARAM

237 } else {

163 1f (lget_state(ny_id, arg->ident->nane, arg) &&

164 ! __bail _on_rest_of _function) /* hairy functions are untrack
238 conti nue;

239 }

241 sql _insert_return_states(return_id, return_ranges,

242 type, param "$", "");

168 UNTRACKED_PARAM param “"$", "");

243 } END_FOR _EACH PTR(arg);

244 }

__unchanged_portion_onitted_

308 void register_untracked_paran(int id)

309 {

310 ny_id =id,

312 sel ect _return_states_hook(| NTERNAL, &assune_tracked);
313 sel ect _return_stat es_hook(UNTRACKED_PARAM &mar k untracked);
314 sel ect _return_states_hook(LOST_PARAM &mark_| ost);

315 add_hook(&match_after_cal |, FUNCTI ON_CALL_HOOK_, AFTER _ DB) ;
317 add_split_return_cal |l back(&print_untracked_parans);

319 add_hook(&rat ch_par am assi gn, ASSI GNVENT_HOOK) ;

320 add_hook(&rat ch_par am assi gn_i n_asm ASM HOK) ;

322 add_hook(&match_inline_start, |NLI NE_FN _START);

323 add_hook(&rat ch_i nl i ne_end, I NLI NE_FN_END) ;

324 }

__unchanged_portion_onitted_

new usr/src/tool s/smatch/src/validation/smbitw sel.c

R R R R

533 Mon Aug 5 08:38:50 2019

new usr/src/tool s/smatch/src/validation/smbitw sel.c
11506 snatch resync

R R R R

__unchanged_portion_onitted_

12

/ *

* check-nane: smatch bitwi se #1

* check-command: smatch -1.. smbitw sel.c
*

* check-out put-start
sm bitw sel.c:6 test()
smbitw sel.c:7 test()
smbitw sel.c:8 test()
smbitw sel.c:9 test()
sm bitw sel.c:9 test()

* check- out put - end

*

/

X X X X X

"0, 256- 4294967040’
0, 256- 4294967040’
' 0- 4294967040’

—_——< o0
niininNe

new usr/src/tool s/smatch/src/validation/smequivl.c 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
777 Mon Aug 5 08:38:50 2019

new usr/src/tool s/smatch/src/validation/smequivl.c

11506 snatch resync

R R R R

__unchanged_portion_onitted_
/*

27 * check-name: smatch equival ent variables #1
28 * check-command: smatch -1.. -nmb4 smequivl.c
*

30 * check-output-start

31 smequivl.c:13 func() one 1
32 smequivl.c:14 func() two 1
33 sm equivl.c: 16 func() one 0- u64max
34 sm equivl.c: 17 func() two 0- u64max

s64m n- s64max
s64ni n- s64max
2

33 smequi v1.
34 sm equivl.
35 sm equi v1.

36 sm equivl.c:20 func() two 2
37 smequivl.c:22 func() one = 0-u64nax
38 smequivl.c:23 func() two = 0-ub4nax

s64m n- s64nmax
s64m n- s64nmax

37 sm equi v1.
38 sm equivl.c:23 func() two
39 * check- out put - end

*/

000000000000
e
©o~
—-—
cc
53
o0
LS
_
o~
S
23
L A VO I (O I O T O I B T A 1

new usr/src/tool s/smatch/src/validation/sminplied.c 1

R R R R

487 Mon Aug 5 08:38:50 2019
new usr/src/tools/smatch/src/validation/sminplied.c
11506 snatch resync

R R R R

__unchanged_portion_onitted_
/*

24 * check-name: Smatch inplied #1

25 * check-command: smatch --spamy sm.inplied.c
26 *

27 * check-output-start

28 sminplied.c:20 func() error: potenti
29 sminplied.c:20 func() error: potenti
30 * check- out put-end

31 */

Ily dereferencing uninitialized "aa’.
Ily dereferencing uninitialized "aa’.

Lo

new usr/src/tool s/smatch/src/validation/sminpliedl0.c 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
672 Mon Aug 5 08:38:51 2019

new usr/src/tool s/smatch/src/validation/sm.inpliedl0.c

11506 snatch resync

R R R R

1 #include "check_debug. h"
voi d frob(void){}
int x[10];

3

5

6 int offset;

7 void func(int *y)
8

9 if (({int test2 = 11(ly || t*y); frob(); frob(); frob(); test2;}))
10 __smatch_val ue("y");

11 el se

12 __smatch_val ue("y");

14 if (({int test2 = !l (offset >= 10u || x[offset] == 1); frob(); frob(); f
14 if (({int test2 = !!(offset >= 10 || x[offset] == 1); frob(); frob(); fr
15 __smatch_val ue("of fset");

16 el se

17 __smatch_val ue("offset");

19 }

20 /*

21 * check-nane: snmatch inplied #10

22 * check-command: smatch -1.. -n64 sm.inpliedl0.c

23 *

24 * check-output-start
25 sm i nplied10.c: 10 func(
26 sm.inpliedl0.c: 12 func(4096- pt r _nmax

27 sm.inpliedl0.c: 15 func(set = s32m n-s32nmax

) 0, 4096- pt r _max
c)
c)
25 sm.inpliedl0.c:10 func() y = 0,4096-2117777777777777777
c)
c)
)

o<
=
=

26 sm.inpliedl0.c: 12 func() y = 4096-2117777777777777777
27 sm.inpliedl0.c: 15 func() offset = 0-s32max
28 sm.inpliedl0.c: 17 func() offset = 0-9
29 * check-out put-end
*
/

new usr/src/tool s/smatch/src/validation/sminpliedll.c 1

R R R R

456 Mon Aug 5 08:38:51 2019
new usr/src/tool s/smatch/src/validation/sminpliedll.c
11506 snatch resync

R R R R

__unchanged_portion_onitted_
/*

28 * check-nane: smatch inplied #11

29 * check-command: smatch -1.. -nmb4 sm.inpliedll.c
30 *

31 * check-output-start

32 sm.inpliedll. c:25 ad_agg_sel ection_logic() inplied

32 sm.inpliedll.c:25 ad_agg_sel ection_logic() inplied: foo
33 * check- out put - end

34 */

foo = '0,4096- ptr_max
= '0, 4096-21177777777777

new usr/src/tool s/smatch/src/validation/sminpliedl2.c 1

R R R R

485 Mon Aug 5 08:38:51 2019
new usr/src/tools/smatch/src/validation/sminpliedl2. c
11506 snatch resync

R R R R

__unchanged_portion_onitted_
/*

32 * check-nane: smatch inplied #12

33 * check-command: smatch -1.. -nmb4 sm.inpliedl2.c

34 *

35 * check-output-start

36 sm.inpliedl2.c:28 ad_agg_sel ection_logic() inplied: foo = '0,4096-ptr_max

36 sm.inpliedl2.c:28 ad_agg_sel ection_logic() inplied: foo = '0,4096-21177777777777
37 * check- out put - end

38 */

new usr/src/tool s/smatch/src/validation/sm.inplied2.c 1

R R R R

641 Mon Aug 5 08:38:52 2019
new usr/src/tool s/ smatch/src/validation/sminplied2.c
11506 snatch resync

R R R R

__unchanged_portion_onitted_
/*

35 * check-nane: Smatch inplied #2

36 * check-command: smatch --spamy sm.inplied2.c
37 *

38 * check-output-start

39 sm.inplied2.c:28 func() error: potenti
40 sm.inplied2.c:28 func() error: potenti
41 * check- out put - end

42 */

Iy dereferencing uninitialized "aa’.
Il'y dereferencing uninitialized "aa’.

Lo

new usr/src/tool s/smatch/src/validation/sm.inplieds5.c 1

R R R R

478 Mon Aug 5 08:38:52 2019
new usr/src/tools/smatch/src/validation/sminplied5.c
11506 snatch resync

R R R R

__unchanged_portion_onitted_
/*

21 * check-name: Smatch inplied #5

22 * check-command: smatch --spamy sm.inplied5.c
23 *

24 * check-output-start

25 sminplied5.c:18 func() error: potenti
26 sm.inplied5.c:18 func() error: potenti
27 * check- out put - end

28 */

Iy dereferencing uninitialized "aa’.
Il'y dereferencing uninitialized "aa’.

Lo

new usr/src/tool s/smatch/src/validation/smnenory.c 1

R R R R

466 Mon Aug 5 08:38:53 2019
new usr/src/tool s/smatch/src/validation/smmenory.c
11506 snatch resync

R R R R

__unchanged_portion_onitted_
/*

28 * check-nanme: |eak test #1

29 * check-command: smatch sm nenory.c

30 *

31 * check-output-start

32 smnenory. c: 22 func() warn: possible menory |eak of ’ac’
33 smnenory.c:22 func() error: nmenory |eak of 'ac’

33 * check- out put - end

34 */

new usr/src/tool s/smatch/src/validation/smnull_deref.c 1

R R R R

904 Mon Aug 5 08:38:53 2019
new usr/src/tools/smatch/src/validation/smnull_deref.c
11506 snatch resync

R R R R

__unchanged_portion_onitted_
/*

42 * check-name: Null Dereferences
43 * check-command: smatch --spamy -1.. smnull_deref.c
*

45 * check-output-start
46 smnul | _deref.c:18 func() error: potentially dereferencing uninitialized 'aa’
47 smnul | _deref.c:18 func() error: potentially dereferencing uninitialized ’aa’
48 smnul | _deref.c:23 func() error: we previously assunmed 'a could be null (see |
49 smnul | _deref.c:25 func() warn: variable dereferenced before check 'a' (see line
50 smnul |l _deref.c:30 func() error: we previously assuned 'b’ could be null (see |
51 * check-out put-end

*

/

new usr/src/tool s/ smatch/src/validation/smselect5.c 1

R R R R

519 Mon Aug 5 08:38:54 2019
new usr/src/tools/smatch/src/validation/smselect5.c
11506 snatch resync

R R R R

__unchanged_portion_onitted_

22 | *

23 * check-nanme: smatch sel ect #5

24 * check-comand: smatch -1.. smselect5.c
25 *

26 * check-output-start

27 smselect5.c:15 test() inplied: ret ="' (-12)’

28 smselect5.c:16 test() inplied: a = 's32min-(-1), 4-s32max’
28 smselect5.c:16 test() inplied: a =’ s32m n-s32max’

29 smselect5.c:18 test() inplied: a = '0-3

30 * check-out put-end
*
/

new usr/src/uts/i86pc/unix/ Mkefile

R R R R

5450 Mon Aug 5 08:38:54 2019
new usr/src/uts/i86pc/unix/ Makefile
11506 snatch resync

R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.
7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perni ssions
11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.
15 # |f applicable, add the follow ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #

19 # CDDL HEADER END

20 #

21 # Copyright 2008 Sun M crosystens, Inc. Al rights reserved.

22 # Use is subject to license terns.

23 #

24 # Copyright 2019 Joyent, Inc.

24 # Copyright (c) 2018, Joyent, Inc.

25 # Copyright 2019 Omi CS Community Edition (Omi OSce) Associ ation.
27 #

28 # Path to the base of the uts directory tree (usually /usr/src/uts).
29 #

30 UTSBASE = .. /..

32 #

33 # Define the nodul e and object file sets.

34 #

35 UNI X = uni x

36 DBOOT = dboot

38 OBJECTS = $(SPECI AL_OBJS: %$(OBIS DI R)/% \

39 $(CORE_OBJS: %=$(OBJS_DIR)/% \

40 $(KRTLD_OBJS: %=$(OBJS DIR) /% \

41 $(MACH_NOT_YET_KMODS: %$(0BJS DI R)/ %

43 ROOTMODULE = $(ROOT_PSM _KERN DI R) / $(UNI X)

45 UNI X_BIN = $(0BJS_ DIR)/ $(UNI X)

47 LI BS = $(GENLI B)

49 GENUNI X genuni x

50 GENUNI X_DI R 1. lintel /$(GENUNI X)

52 LI BOPTS = -L $(GENUNIX_DIR)/$(OBIS_DIR) -1 $(GENUNI X)
54 COMMP_CTF_SRC = $(0BJS DI R)/comm page_ctf.c
56 CTFEXTRAOBJS = $(OBIS_ DIR)/vers.o $(OBIJS DI R /conm page_ctf.o

58 DBOOT_OBJS_DI R
59 DBOOT_OBJECTS
60 DBOOT_BI N

dboot / $(OBJS_DI R)
$(DBOOT_OBJS! %=$(DBOOT_CBJS DI R)/ %)
$(DBOOT_OBJS DI R) / $(DBOOT)

new usr/src/uts/i86pc/unix/ Mkefile

61
62

106

108
109
110

114
115
116

118
119
120
121
122

124
126

DBOOT_O = (OBJS DI R)/ $(DBOOT) . o
DBOOT_S = $(DBOOT_QO % 0=% s)

#

I ncl ude common rul es.

#
i ncl ude $(UTSBASE) /i 86pc/ Makefile.i86pc

#
Define targets
#
ALL_TARGET = $(UNI X_BI N)
I NSTALL_TARGET = (UNI X_BI N) $(ROOTMODULE)
#
This is UNNX_DIR Use a short path.
#
UNI X_DIR = .
#
Overri des
#
CLEANFI LES += \
$(UNI X_ O $(MODSTUBS_O) \
$(OBIS DIR)/vers.c \
$(OBIS_DIR)/dtracestubs.s \
$(DTRACESTUBS_O) $(DTRACESTUBS) \
$(CTFEXTRAOBJS) \
$(COWP_CTF_SRC)

CLEANFI LES += \
$(DBOOT_O $(DBOOT_S) \
$(DBOOT_OBJECTS)
$(OBIS_ DIR)/blos call_src.o \
$(OBIS_DIR)/bios_call _src \
$(CBJS DIR)/bios_call.s \

$(DBOOT_BI N)

—

CLEANFI LES +=
$(DBOOT_OBJS DI R)/$(FONT) ¢\
$(0BJS DI R)/ $(FONT) . ¢

CLEANFI LES + \

CLEANFI LES +=\
$(ZLI B_OBJS: % 0=$(OBJS DI R)/ % 0) \
$(ZLI BZOBJS: % 0=$(OBJS_DI R)/ % | n)

CLOBBERFILES = $(CLEANFI LES) $(UNI X_BI N)

instr_size needs a special header

$(OBIS_DIR)/instr_size.o : = EXTRA_OPTIONS = -1$(SRC)/comon/ di s/ i 386
$(OBIS_ DIR)/instr_size.ln := EXTRA_OPTIONS = -1$(SRC)/comon/ di s/ i 386
#

When perform ng shadow studio builds, the pre-processed comm page
output fromgcc can end up confusing studio.
#

$(OBIJS_DIR)/comm page_ctf.o := CERRWARN += -_cc=-errof f =E_TKNS_| GNORED_AT_END O

CFLAGS += - DDl S_MEM
#

new usr/src/uts/i86pc/unix/ Mkefile

127 # For now, disable these checks; maintainers should endeavor
128 # to investigate and renove these for maximm cover age.

129 # Please do not carry these forward to new Makefiles.

130 #

131 CERRWARN += -_gcc=- Who- par ent heses

132 CERRWARN += -_gcc=-Who-uninitialized

133 CERRWARN += -_gcc=-Who-char-subscripts

134 CERRWARN += -_gcc=- Who- unused-vari abl e

135 CERRWARN += -_gcc=- Who- unused- function

136 CERRWARN += -_gcc=- Who- unused- | abel

137 CERRWARN += -_gcc=-Wio-type-linits

138 CERRWARN += -_gcc=- Who- cl obber ed

139 CERRWARN += -_gcc=- Who- enpt y- body

140 CERRWARN += -_gcc=- Who- unused- val ue

142 # fal se positives

143 SMOFF += index_overfl ow

145 # needs work

146 SMOFF += al | _func_returns, deref_check, si gned

148 $(OBJS_DI R)/fmsnb. o ;= SMOFF += indenting

149 $(OBIS_ DIR)/zutil.o := SMOFF += indenting

150 $(OBJS DI R)/bootrd_ cpi 0.0 := SMOFF += al |l ocati ng_enough_dat a
152 # too hairy

153 $(OBIS_DIR)/inflate.o := SMATCH=of f

155 #

156 # Default build targets.

157 #

158 . KEEP_STATE:

160 def: $(DEF_DEPS)

162 al | : $(ALL_DEPS)

164 cl ean: $(CLEAN_DEPS)

166 cl obber: $(CLOBBER DEPS)

168 install: $(1NSTALL_DEPS)

170 MAPFI LE_32 = $(MAPFI LE)

171 MAPFI LE 64 = $(MAPFI LE). and64

173 MAPFI LE_NAME = $(MAPFI LE_$(CLASS))

175 $(UNI X_BIN): $(UNI X_O $(MODSTUBS_O $(MAPFI LE_NAME) \
176 $(GENLTB) $(DTRACESTUBS) $(DBOOT_O)

177 $(LD) -dy -b -0 $@-e dboot _i mage -znointerp - M $(MAPFI LE_NAME) \
178 $(UNI X_O $(DBOOT_O) $(MODSTUBS_O) $(LIBOPTS) \
179 $(DTRACESTUBS)

180 $(MBH_PATCH) $(UNI X_BI N

181 $(CTFMERGE_UNI QUI FY_AGAI NST_GENUNI X)

182 $(POST_PROCESS)

184 $(UNI X _O: $(OBJECTS) $(CTFEXTRAOBIS)

185 $(LD) -r -0 $@ $(OBJECTS) $(OBIJS DIR)/vers.o

187 $(DBOOT_BIN): $(DBOOT_OBJS DIR) $(DBOOT_OBJECTS) dboot/ Mapfil e. dboot
188 $(LD) -dn -e _start -M dboot/Mapfile.dboot \

189 -0 $(DBOOT_BIN) $(DBOOT_OBJECTS)

191 $(DBOOT_O): $(DBOOT_BI N)

192 @cho " .data" > $(DBOOT_S)

new usr/src/uts/i86pc/unix/ Mkefile

193
194
195
196

@cho " .globl dboot _image"

@cho ' dboot _i mage:

$(ELFEXTRACT) $(DBOOT_BI N)

$(COWPI LE. s) -0 $(DBOOT_O) $(DBOOT_S)

>> $(DBOOT_S)
>> $(DBOOT_S)
>> $(DBOOT_S)

198 $(DBOOT_OBJS DIR):

199

201 $(COWP_CTF_SRQ) :

202

204 $(O0BJS_DI R)/comm page_ctf. o:

205

-@kdir -p $@2> /dev/null

$(UTSBASE) / i 86pc/ nl / conm page
$(COWPI LE. cpp) -D _GENCTF -0 $@ $(UTSBASE) /i 86pc/ nl / conm page. s

$(COWP_CTF_SRQ)
$(COWPI LE. ¢) -0 $@ $<

206 $(CTFCONVERT_O)

208 #

209 # Speci al rules for generating assymh for inclusion in assenbly files.
210 #

211 $(DSF_DIR)/$(0BJS DIR)/assymh $(DSF_DI R)/$(0BJS DI R)/kdi _assym h: FRC
212 @d $(DSF_DIR); $(MAKE) all.targ

214 #

215 # I ncl ude common targets.

216 #

217 include $(UTSBASE)/i 86pc/ Makefile.targ

new usr/src/uts/intel/em xs/ Makefile

R R R R

2983 Mon Aug 5 08:38:54 2019
new usr/src/uts/intel/em xs/ Makefile
11506 snatch resync

R R R R

39 ROOTMODULE
40 CONF_SRCDI R

$(ROOT_DRV_DI R) / $(MODULE)
$(UTSBASE) / cormon/ i o/ fi bre-channel / f ca/ enl xs

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.

7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perni ssions
11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.
15 # |f applicable, add the follow ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #

19 # CDDL HEADER END

20 #

21 #

22 # Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.

23 # Use is subject to license terns.

24 # Copyright (c) 2011 Bayard G Bell. Al rights reserved.

25 # Copyright 2019 Joyent, Inc.

25 # Copyright (c) 2018, Joyent, Inc.

26 #

27 # This nekefile drives the production of the enlxs driver kernel nodule.
28 #

29 # Path to the base of the uts directory tree (usually /usr/src/uts).
30 #

31 UTSBASE =../..1

32 COMMON_BASE =../../../comon

34 #

35 # Define the nodul e and object file sets.

36 #

37 MODULE = enl xs

38 OBJECTS = $(EMLXS_OBIS: %=$(0BIJS DIR)/ %

39 LINTS = $(EMLXS_OBJS: % 0=$(LINTS DIR)/ % | n)

42 #

43 # I ncl ude common rul es.
44 #

45 ARCHDI R = intel

46 include ../ Mkefile.$(ARCHDI R)

48 #

49 # Define targets

50 #

51 ALL_TARGET $(Bl NARY) $(SRC_CONFI LE)
$(MODULE) . | i nt

53 LI NT_TARGET
52 | NSTALL_TARGET = $(BI NARY) $(ROOTMODULE) $(ROOT_CONFFI LE)

54 EMLXS_FLAGS
55 EMLXS_FLAGS
56 EMLXS_FLAGS
57 EMLXS_FLAGS
58 EMXS_CFLAGS

- DEMLXS_| 386

-Ds11

- DVERSI ON=\ " 11\

- DVACHE\ " $(MACH) \ "
$(EMLXS_FLAGS)

In+++1
o

new usr/src/uts/intel/em xs/ Makefile

59
60
63

105

EMLXS_LFLAGS = $(EMLXS_FLAGS)

CFLAGS += $(EMLXS_CFLAGS) - DEMLXS_ARCH=\ " $(CLASS) \ "
LI NTTAGS += $(EMLXS_LFLAGS) - DEMLXS_ARCH=\ " $(CLASS) \ "
#

Overrides and depends_on

#

I NC_PATH += -1 $(ROOT) / usr/incl ude

| NC_PATH += - | $(UTSBASE) / cormon/ sys

| NC_PATH += -1 $(COMVON_BASE) / bi gnum

| NC_PATH += - | $(UTSBASE) / common/ sys/ f i br e- channel

| NC_PATH += -1 $(UTSBASE) / common/ sys/ fi bre-channel / f ca

| NC_PATH += - | $(UTSBASE) / common/ sys/ fi bre- channel / f ca/ enl xs
| NC_PATH += -1 $(UTSBASE) / common/ sys/ fi bre-channel /i npl

| NC_PATH += -1 $(UTSBASE) / common/ sys/ fi br e- channel / ul p

#

m sc/fctl required because #ifdef MODSYM LOAD code

triggered by -DS11; uses DDl calls to | oad FCA synbol s

#

LDFLAGS += -dy -Nm sc/nmd5 - Nm sc/shal

LDFLAGS += - Nm sc/ bi gnum - Nmi sc/fctl

#

For now, disable these |int checks; maintainers shoul d endeavor

to investigate and renove these for maxi mumlint coverage.
#

LI NTTAGS
LI NTTAGS
LI NTTAGS
LI NTTAGS
LI NTTAGS

CERRWARN
CERRWARN
CERRWARN

needs work

+= -errof f =E_BAD_PTR_CAST_ALI GN

+= -errof f =E_STATI C_UNUSED

+= -errof f =E_ASSI GN_NARROW CONV

+= -errof f =E_SUSPI Cl OUS_COVPARI SON
+= -errof f=E_| NCONS_VAL_TYPE_DECL2

+= -_gcc=- Who- par ent heses
+= -_gcc=- Who- unused- | abel
+= -_gcc=-Who-uninitialized

SMOFF += i ndenting, deref _check, al | _func_returns, i ndex_overfl ow
SMOFF += i ndenting, deref _check, al | _func_returns

seens definitely wong
$(OBIS DIR)/em xs_fcf.o := SMOFF += | ogi cal _i nst ead_of _bi t wi se

#

Def aul t

#KEEP_STATE:
def:

all:

cl ean:

cl obber:
lint:
modlintlib:
clean.lint:

install:

build targets.

$(DEF_DEPS)

$(ALL_DEPS)

$(CLEAN_DEPS)

$(CLOBBER_DEPS)

$(LI NT_DEPS)

$(MODLI NTLI B_DEPS)
$(CLEAN_LI NT_DEPS)
$(1 NSTALL_DEPS)

new usr/src/uts/intel/em xs/ Makefile

107 #

108 # I ncl ude common targets.
109 #

110 include ../ Makefile.targ

new usr/src/uts/intel/genunix/ Makefile

R R R R

4224 Mon Aug 5 08:38:55 2019
new usr/src/uts/intel/genunix/ Makefile
11506 snatch resync

R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.
7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perni ssions
11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.
15 # |f applicable, add the follow ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #

19 # CDDL HEADER END

20 #

22 #

23 # Copyright 2009 Sun M crosystens, Inc. Al rights reserved.

24 # Use is subject to license terns.

25 #

26 # Copyright 2019 Joyent, Inc.

26 # Copyright (c) 2018, Joyent, Inc.

27 #

29 # This makefile drives the production of the generic

30 # uni x kernel nodul e.

31 #

32 # x86 i npl enentation architecture dependent

33 #

29 #

30 # Path to the base of the uts directory tree (usually /usr/src/uts).
31 #

32 UTSBASE = .. /..

34 #

35 # Define the nodul e and object file sets.

36 #

37 MODULE = genuni x

38 GENUNI X = $(0BJS_DI R)/ $(MODULE)

40 OBJECTS = $(GENUNI X_OBJS: %$(OBIS DIR) /% \

41 $(NOT_VYET_KMODS: %$(OBJS_DI R)/ %

49 LINTS = $(GENUNI X_OBJS: % 0=$(LINTS DIR)/ % I n) \

50 $(NOT_VYET_KMODS: % 0=$(LI NTS_DIR)/ % | n)

43 ROOTMODULE

$(ROOT_KERN_DI R) / $(MODULE)

45 LI BGEN = $(OBIS_DIR)/Iibgenuni x. so

46 LI BSTUBS = $(GENSTUBS OBJS: %$(OBIS DIR)/ %
48 #

49 # I ncl ude common rul es.

50

#
51 include $(UTSBASE)/intel/Mkefile.intel

new usr/src/uts/intel/genunix/ Makefile 2
53 #
54 # Define targets
55 #
56 ALL_TARGET = $(LI BGEN) $(GENUNI X)
66 LI NT_TARGET = $(MODULE) . | i nt
57 INSTALL_TARGET = $(LIBGEN) $(GENUNI X) $(ROOTMODULE)
59 #
60 # Overrides
61 #
62 CLOBBERFI LES += $(GENUNI X)
63 CLEANFI LES += $(LI BSTUBS) $(LI BGEN)
64 Bl NARY =
66 #
67 # Non-patch genunix builds nmerge a version of the ip nodule called ipctf. This
68 # is to ensure that the comon network-rel ated types are included in genunix and
69 # can thus be uniquified out of other nodules. W don't want to do this for
70 # patch builds, since we can’t guarantee that ip and genunix will be in the same
71 # patch.
72 #
73 | PCTF_TARGET = $(1 PCTF)
74 $(PATCH_BUI LD) | PCTF_TARGET =
76 CPPFLAGS += -1 $(SRC)/ conmon
77 CPPFLAGS += -1 $(SRC)/ ut's/ common/ fs/ zfs
79 CPPFLAGS += -1 $(UTSBASE) / i 86pc
91 #
92 # For now, disable these lint checks; nmintainers should endeavor

to investigate and renmove these for nmaxi mumlint coverage.
Please do not carry these forward to new Makefiles.
#

LI NTTAGS += -errof f =E_SUSPI Cl QUS_COWPARI SON
LI NTTAGS += -errof f=E_BAD_PTR CAST_ALI GN

LI NTTAGS += -errof f =E_SUPPRESSI ON_DI RECTI VE_UNUSED
LI NTTAGS += -errof f =E_STATI C_UNUSED

LI NTTAGS += -errof f =E_PTRDI FF_OVERFLOW

LI NTTAGS += -errof f =E_ASSI GN_NARROW CONV
CERRWARN += -_gcc=- Who- unused- | abel

CERRWARN += -_gcc=- Who- unused-vari abl e
CERRWARN += -_gcc=- Who- unused- val ue
CERRWARN += -_gcc=- Who- unused- function
CERRWARN += -_gcc=- Who- par ent heses

CERRWARN += -_gcc=-Who-sw tch

CERRWARN += -_gcc=-Wio-type-linmts

CERRVWARN += -_gcc=-Who-uninitialized
CERRWARN += -_gcc=- Who- cl obber ed

CERRWARN += -_gcc=- Who- enpty- body

very hairy

$(O0BIS_DIR)/u8_textprep.o : = SMATCH=of f

fal se positives

SMOFF += i ndex_overfl ow

$(OBJS_DIR)/seg_vn.o := SMOFF += deref_check
$(OBIS_ DIR)/ddi _intr_irmo := SMOFF += deref_check

need work still

SMOFF += signed, indenting,all_func_returns

$(OBIS_DI R)/cl ock_hi ghres.o : = SMOFF += si gned_i nt eger _overfl ow _check
$(O0BJS_DIR)/evchannel s. o0 : = SMOFF += al | ocati ng_enough_dat a

$(OBIS_ DI R)/klpd.o := SMOFF += cast_assi gn

new usr/src/uts/intel/genunix/ Makefile 3 new usr/src/uts/intel/genunix/ Makefile

105 $(OBIS_DI R /| ookup. o := SMOFF += strcpy_overfl ow 159 include $(UTSBASE)/i 86pc/ Makefi | e. wor kar ounds
106 $(OBJS_DI R)/process.o := SMOFF += or_vs_and
107 $(0OBJS_DIR)/sunpci.o := SMOFF += deref_check 161 ALL_DEFS += $(WORKAROUND_DEFS)
108 $(OBIJS_DIR)/timers.o : = SMOFF += signed_i nteger_overfl ow_check

194 #
110 # definitely wong 195 # Overri de.
111 $(OBIS_DIR)/acl _common.o := SMOFF += or_vs_and 196 #

197 $(MODULE).lint := GEN_LINT_LIB =
113 #

133 # Ensure that lint sees 'struct cpu’ containing a fully declared
134 # enmbedded ’struct machcpu’

135 #

136 LI NTFLAGS += -D_MACHDEP -1../../i86pc
138 #

114 # Default build targets.

115 #

116 . KEEP_STATE:

118 def: $(DEF_DEPS)

120 all : $(ALL_DEPS)

122 cl ean: $(CLEAN_DEPS)

124 cl obber: $(CLOBBER_DEPS)
151 lint: $(LI NT_DEPS)

153 nodlintlib: $(MODLI NTLI B_DEPS)
155 clean.lint: $(CLEAN_LI NT_DEPS)
126 install: $(| NSTALL_DEPS)

128 # Due to what seens to be an issue in GCC 4 generated DWARF cont ai ni ng

129 # synbolic relocations agai nst non-allocatable .debug sections, |ibgenunix.so
130 # nust be built froma stripped object, thus we create an internediary

131 # |ibgenuni x.o we can safely strip.

132 LI BGENUNI X_O = $(OBJS DIR)/1ibgenunix. o

133 CLEANFI LES += $(LI BGENUNI X_O)

135 $(LI BGENUNI X_O): $(OBJECTS)

136 $(LD) -r -0 $(OBIS_DI R)/Iibgenunix.o $(OBIECTS)
137 $(STRIP) -x $(OBIS_DIR)/Iibgenunix.o

139 $(LIBGEN): $(LI BGENUNI X_O) $(LI BSTUBS)

140 $(BU LD. SO $(LIBGENUNI X_O $(LIBSTUBS)

142 $(1 PCTF_TARGET) ipctf_target: FRC

143 @d $(IPDRV_DIR); pwd; $(MAKE) ipctf.$(0BIS_DR)
144 @wd

146 $(GENUNI X): $(| PCTF_TARGET) $(OBJECTS)

147 $(LD) -r $(LDFLAGS) -0 $@ $(OBJECTS)

148 $(CTFMERGE_CGENUNI X_NERGE)

149 $(POST_PROCESS)

151 #

152 # I ncl ude common targets.

153 #

154 include $(UTSBASE)/intel/Makefile.targ

156 #

157 # Sof t war e wor karounds for hardware "features".
158 #

new usr/src/uts/intel/mega_sas/ Makefile 1

R R R R

1829 Mon Aug 5 08:38:55 2019

new usr/src/uts/intel/nega_sas/ Makefile
11506 snatch resync

R R R R

HHHF HHFHBFHHTF HHHHHBHFHBHFHHFHFHFF TR

CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governi ng perm ssions

and limtations under the License.

When di stributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]
CDDL HEADER END

Copyri ght 2008 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license termns.

Copyri ght 2019 Joyent, Inc.
Copyright (c) 2018, Joyent, Inc.
uts/intel/ mega_sas/ Makefile
This makefile drives the production of the mega_sas driver kernel nodul e

intel inplementation architecture dependent

Path to the base of the uts directory tree (usually /usr/src/uts).

UTSBASE = .. /..

#

Define the nodule and object file sets.

#

MODULE = nega_sas

OBJECTS = $(MEGA_SAS_OBJS: %$(O0BIJS DIR) /%
LI NTS = $(MEGA_SAS_OBJS: % 0=$(LINTS DIR)/ % | n)
ROOTMODULE = $(ROOT_DRV_DI R) / $(MODULE)
CONF_SRCDI R = $(UTSBASE) / common/ i o/ nega_sas

#

I ncl ude comon rul es.

#
include $(UTSBASE)/intel/Makefile.intel

#

Define targets

#

ALL_TARGET = $(BI NARY) $(CONFMOD)
LI NT_TARGET = $(MODULE) . | i nt

| NSTALL_TARGET

#

$(BI NARY) $(ROOTMODULE) $(ROOT_CONFFI LE)

new usr/src/uts/intel/mega_sas/ Makefile

52 # Kernel Mbdul e Dependenci es

53 #

54 LDFLAGS += -dy - Nm sc/scsi

56 CERRWARN += -_gcc=-Who-uninitialized
58 # needs work

59 $(OBJS DI R)/nmegaraid_sas.o := SMOFF += snprintf_overflow,
68 $(OBJS DI R)/ nmegaraid_sas.o := SMOFF += snprintf_overflow,
61 #

62 # Default build targets.

63 #

64 . KEEP_STATE:

66 def: $(DEF_DEPS)

68 all: $(ALL_DEPS)

70 cl ean: $(CLEAN_DEPS)

72 cl obber: $(CLOBBER_DEPS)

83 lint: $(LI NT_DEPS)

85 nodlintlib: $(MODLI NTLI B_DEPS)

87 clean.lint: $(CLEAN_LI NT_DEPS)

74 install: $(1 NSTALL_DEPS)

76 #

77 # I ncl ude common targets.

78

#
include $(UTSBASE)/intel/Mkefile.targ

all _f
al | °f

unc_returns,index_
unc_returns

new usr/src/uts/intel/simet/Mkefile

R R R R

1820 Mon Aug 5 08:38:56 2019
new usr/src/uts/intel/simet/Mkefile
11506 snatch resync

R R R R

$(ROOT_DRV_DI R) / $(MODULE)
$(UTSBASE) / common/ i o/ $(MODULE)

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.
7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perni ssions
11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.
15 # |f applicable, add the follow ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #

19 # CDDL HEADER END

20 #

21 #

22 # Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.

23 # Use is subject to license terns.

24 #

25 # Copyright 2019 Joyent, Inc.

26 #

28 #

29 # Path to the base of the uts directory tree (usually /usr/src/uts).
30 #

31 UTSBASE = .. /..

33 #

34 # Define the nodul e and object file sets.

35

36 MODULE = simet

37 OBJECTS = $(SI MNET_OBJS: %=$(OBJS_ DI R)/ %

35 LINTS = $(SI MNET_OBJS: % 0=$(LINTS_DIR)/ % | n)

42 # I nclude comon rul es.
43 #
44 include $(UTSBASE)/intel/Makefile.intel

46 #

47 # Define targets
48 #

49 ALL_TARGET

48 LI NT_TARCGET

50 | NSTALL_TARGET

$(Bl NARY) $(SRC_CONFI LE)
$(MODULE) . | i nt
$(BI NARY) $(ROOTMODULE) $(ROOT_CONFFI LE)

52 #

53 # Overrides

54 #

55 CFLAGS += $(CCVERBOSE)

56 LDFLAGS += -dy -Ndrv/dld -Nmsc/mac -Nmsc/dls -Ndrv/random

58 CERRWARN += -_gcc=-Who-sw tch

new usr/src/uts/intel/simet/Mkefile

60
61

needs work
$(OBIS_DIR)/simet.o := SMOFF += index_overfl| ow

#
Default build targets.

#
. KEEP_STATE:

def: $(DEF_DEPS)

all: $(ALL_DEPS)

cl ean: $(CLEAN_DEPS)

cl obber: $(CLOBBER_DEPS)
lint: $(LI NT_DEPS)

nodl i ntlib: $(MODLI NTLI B_DEPS)
clean.lint: $(CLEAN_LI NT_DEPS)
install: $(1 NSTALL_DEPS)

#

I ncl ude common targets.

#
include $(UTSBASE)/intel/Makefile.targ

new usr/src/uts/intel/spppconp/ Makefile

R R R R

2087 Mon Aug 5 08:38:56 2019
new usr/src/uts/intel/spppconp/ Makefile
11506 snatch resync

R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.
7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perni ssions
11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.
15 # |f applicable, add the follow ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #

19 # CDDL HEADER END

20 #

21 #

22 # uts/intel/spppconp/ Makefile

23 #

24 # Copyright 2007 Sun M crosystens, Inc. Al rights reserved.

25 # Use is subject to license terns.

26 # Copyright (c) 2011 Bayard G Bell. Al rights reserved.

27 #

28 # Copyright 2019 Joyent, Inc.

29 #

28 # Copyright (c) 2018, Joyent, Inc.

31 #

32 # Path to the base of the uts directory tree (usually /usr/src/uts).
33 #

34 UTSBASE = .. /..

36 #

37 # Define the nodul e and object file sets.

38 #

39 MODULE = spppconp

40 OBJECTS = $(SPPPCOVP_OBJS: %$(OBJS DI R)/ %

40 LINTS = $(SPPPCOVP_OBJS: % 0=$(LI NTS DI R)/ % | n)

41 ROOTMODULE = $(USR_STRMOD DI R) / $(MODULE)

43 #

44 # I ncl ude comon rul es.

45 #

46 include $(UTSBASE)/intel/Makefile.intel

48 #

49 # Define targets

50 #

51 ALL_TARGET
52 LI NT_TARCGET
52 | NSTALL_TARGET

$(Bl NARY)
$(MODULE) . | i nt
$(Bl NARY) $(ROOTMODULE)

54 #

55 # Internal build definitions

56 #

57 CPPFLAGS += - DI NTERNAL_BUI LD - DSOL2 - DMUX_FRAME

new usr/src/uts/intel/spppconp/ Makefile

59 #

60 # Addi tional conpiler definitions

61 #

62 | NC_PATH += -1 $(UTSBASE) / comrmon/ i o/ ppp/ conmon
65 #

66 # For now, disable these Iint checks; maintainers should endeavor
67 # to investigate and renpve these for maximumlint coverage.
68 # Pl ease do not carry these forward to new Makefil es.

#

70 LI NTTAGS += -errof f =E_BAD PTR CAST_ALI GN
71 LI NTTAGS += -errof f=E_PTRDI FF_OVERFLOW
72 LI NTTAGS += -errof f =E_ASSI GN_NARROW CONV
64 CERRWARN += -_gcc=- Wo- par ent heses

65 CERRWARN += -_gcc=-Who-uninitialized

67 # needs work
68 SMOFF += indenting, i ndex_overfl ow
78 SMOFF += indenting

70 #

71 # Depends on sppp

72 #

73 LDFLAGS += -dy -N drv/sppp

75 #

76 # Default build targets.

77 #

78 . KEEP_STATE:

80 def: $(DEF_DEPS)

82 all: $(ALL_DEPS)

84 cl ean: $(CLEAN_DEPS)

86 cl obber: $(CLOBBER_DEPS)

98 lint: $(LI NT_DEPS)

100 nodlintlib: $(MODLI NTLI B_DEPS)

102 clean.lint: $(CLEAN_LI NT_DEPS)

88 install: $(| NSTALL_DEPS)

106 $(LINTS_DIR)/% I n: $(UTSBASE) / cormon/ i o/ ppp/ spppconp/ % c
107 @ $(LHEAD) $(LINT.c) $< $(LTAIL))
90 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ ppp/ spppconp/ % c
91 $(COWPILE.c) -0 $@ $<

92 $(CTFCONVERT_O)

94 #

95 # I ncl ude common targets.

96 #

97 include $(UTSBASE)/intel/Makefile.targ

new usr/src/uts/intel/xgel/ Makefile 1

R R R R

3034 Mon Aug 5 08:38:56 2019
new usr/src/uts/intel/xgel/ Makefile
11506 snatch resync

R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.
7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perni ssions
11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.
15 # |f applicable, add the follow ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #

19 # CDDL HEADER END

20 #

22 #

23 # Copyright 2008 Sun Mcrosystenms, Inc. Al rights reserved.

24 # Use is subject to license terns.

25 #

26 # Copyright 2019 Joyent, Inc.

27 #

26 # Copyright (c) 2018, Joyent, Inc.

29 #

30 # Paths to the base of the uts directory trees

31 #

32 UTSBASE = ../..

34 #

35 # Define the nodul e and object file sets.

36 #

37 MODULE = xge

38 OBJECTS :$(x HAL_OBJS: %=$(OBJS DIR)/ % $(XGE_OBJS: %=$(OBJS DI R)/ %
38 LINTS = $(XGE_HAL_OBJS: % 0=$(LINTS_DIR)/ % | n) $(XGE_OBIS: % 0=$(LI NTS_D
39 ROOTMODULE = $(ROOT_DRV_DI R) / $(MODULE)

41 #

42 # I ncl ude common rul es.

43 #

44 include $(UTSBASE)/intel/Makefile.intel

46 #

a7 # Define targets

48 #

49 ALL_TARGET
50 LI NT_TARCET
50 I NSTALL_TARGET

$(Bl NARY)
$(MODULE) . | i nt
$(BI NARY) $(ROOTMODULE)

52 #

53 # GENERAL PURPOUSE HAL FLAGS: Tuning HAL for Solaris specific nodes
54 #

55 HAL_CFLAGS = - DXGE_HAL_USE_MGMI_AUX

57 #

58 #

TRACE SECTI ON: Possi bl e val ues for MODULE, TRACE and ERR nasks:

new usr/src/uts/intel/xgel/ Makefile

109

#

XGE_COVPONENT_HAL_CONFI G 0x1

XGE_COVPONENT_HAL_FI FO 0x2

XGE_COVPONENT_HAL_RI NG 0x4

XGE_COVPONENT_HAL_ CHANNEL 0x8

XGE_COVPONENT_HAL_DEVI CE 0x10

XGE_COVPONENT_HAL_MM 0x20

XGE_COVPONENT_HAL_QUEUE 0x40

XGE_COVPONENT_HAL_STATS 0x100

XGE_COVPONENT_OSDEP 0x1000

XGE_COVPONENT_LL 0x2000

XGE_COVPONENT_TOE 0x4000

XGE_COVPONENT_RDVA 0x8000

XGE_COVPONENT_ALL Oxffffffff

#TRACE_CFLAGS = - DXGE_DEBUG MODULE NMASK=Oxffffffff \

- DXGE_DEBUG_TRACE _NASK=0xf fffffff \

- DXGE_DEBUG_ERR_MASK=0xffffffff

TRACE_CFLAGS = - DXGE_DEBUG_MODULE_MASK=0x00003010 \
- DXGE_DEBUG_TRACE_NMASK=0x00000000 \
- DXGE_DEBUG_ERR_MASK=0x00003010

XGE_CFLAGS = $(HAL_CFLAGS) $(TRACE_CFLAGS) $(CCVERBOSE) \
-1 $(UTSBASE) / cormon/ i o/ xge/ hal /i ncl ude \
-1 $(UTSBASE) / common/ i o/ xge/ hal / xgehal \
-1 $(UTSBASE) / comrmon/ i o/ xge/ drv - DSOLARI S

CFLAGS += $(XGE_CFLAGS) -xO4 -xcrossfile

CFLAGS64 += $(XGE_CFLAGS) -xO4 -xcrossfile

#

Driver depends on MAC & IP

#

LDFLAGS += -dy -N msc/mac -Ndrv/ip

Lint flag

#

LI NTFLAGS += $(XGE_CFLAGS) - Xc99=%al |

#

For now, disable these |lint checks; maintainers should endeavor

to investigate and renpve these for maxi mumlint coverage.

Please do not carry these forward to new Makefiles.
#

LI NTTAGS += -errof f =E_BAD_PTR_CAST_ALI GN
LI NTTAGS += -errof f =E_STATI C_UNUSED

LI NTTAGS += -errof f=E_PTRDI FF_OVERFLOW
CERRWARN += -_gcc=- Wo- par ent heses
CERRWARN += -_gcc=-Wio- unused-vari abl e
CERRVWARN += -_gcc=- Who- unused- | abel
CERRWARN += -_gcc=- Who- enpt y- body
CERRWARN += -_gcc=-Who-uninitialized

needs work

SMOFF += i ndenting

SMOFF += al | _func_returns
SMOFF += no_i f_bl ock

SMOFF += al Tocat i ng_enough_dat a

SMOFF += indenting,all_func_returns, no_if_bl ock
#

#

Default build targets.

#

. KEEP_STATE:

new usr/src/uts/intel/xgel/ Makefile

111
113
115
117
130
132
134
119
121
122

123
124

def:
all:

cl ean:
cl obber:
lint:
nodl i ntl
clean.li
install
#

#

#
i ncl ude

$(DEF_DEPS)

$(ALL_DEPS)

$(CLEAN_DEPS)

$(CLOBBER_DEPS)

$(LI NT_DEPS)
i b $(MODLI NTLI B_DEPS)
nt: $(CLEAN_LI NT_DEPS)

$(1 NSTALL_DEPS)

I ncl ude common targets

$(UTSBASE) /i ntel / Makefile.targ

