1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2018 Joyent, Inc. All rights reserverd. 25 */ 26 27 /* 28 * To understand the present state of interrupt handling on i86pc, we must 29 * first consider the history of interrupt controllers and our way of handling 30 * interrupts. 31 * 32 * History of Interrupt Controllers on i86pc 33 * ----------------------------------------- 34 * 35 * Intel 8259 and 8259A 36 * 37 * The first interrupt controller that attained widespread use on i86pc was 38 * the Intel 8259(A) Programmable Interrupt Controller that first saw use with 39 * the 8086. It took up to 8 interrupt sources and combined them into one 40 * output wire. Up to 8 8259s could be slaved together providing up to 64 IRQs. 41 * With the switch to the 8259A, level mode interrupts became possible. For a 42 * long time on i86pc the 8259A was the only way to handle interrupts and it 43 * had its own set of quirks. The 8259A and its corresponding interval timer 44 * the 8254 are programmed using outb and inb instructions. 45 * 46 * Intel Advanced Programmable Interrupt Controller (APIC) 47 * 48 * Starting around the time of the introduction of the P6 family 49 * microarchitecture (i686) Intel introduced a new interrupt controller. 50 * Instead of having the series of slaved 8259A devices, Intel opted to outfit 51 * each processor with a Local APIC (lapic) and to outfit the system with at 52 * least one, but potentially more, I/O APICs (ioapic). The lapics and ioapics 53 * initially communicated over a dedicated bus, but this has since been 54 * replaced. Each physical core and even hyperthread currently contains its 55 * own local apic, which is not shared. There are a few exceptions for 56 * hyperthreads, but that does not usually concern us. 57 * 58 * Instead of talking directly to 8259 for status, sending End Of Interrupt 59 * (EOI), etc. a microprocessor now communicates directly to the lapic. This 60 * also allows for each microprocessor to be able to have independent controls. 61 * The programming method is different from the 8259. Consumers map the lapic 62 * registers into uncacheable memory to read and manipulate the state. 63 * 64 * The number of addressable interrupt vectors was increased to 256. However 65 * vectors 0-31 are reserved for the processor exception handling, leaving the 66 * remaining vectors for general use. In addition to hardware generated 67 * interrupts, the lapic provides a way for generating inter-processor 68 * interrupts (IPI) which are the basis for CPU cross calls and CPU pokes. 69 * 70 * AMD ended up implementing the Intel APIC architecture in lieu of their work 71 * with Cyrix. 72 * 73 * Intel x2apic 74 * 75 * The x2apic is an extension to the lapic which started showing up around the 76 * same time as the Sandy Bridge chipsets. It provides a new programming mode 77 * as well as new features. The goal of the x2apic is to solve a few problems 78 * with the previous generation of lapic and the x2apic is backwards compatible 79 * with the previous programming and model. The only downsides to using the 80 * backwards compatibility is that you are not able to take advantage of the new 81 * x2apic features. 82 * 83 * o The APIC ID is increased from an 8-bit value to a 32-bit value. This 84 * increases the maximum number of addressable physical processors beyond 85 * 256. This new ID is assembled in a similar manner as the information that 86 * is obtainable by the extended cpuid topology leaves. 87 * 88 * o A new means of generating IPIs was introduced. 89 * 90 * o Instead of memory mapping the registers, the x2apic only allows for 91 * programming it through a series of wrmsrs. This has important semantic 92 * side effects. Recall that the registers were previously all mapped to 93 * uncachable memory which meant that all operations to the local apic were 94 * serializing instructions. With the switch to using wrmsrs this has been 95 * relaxed and these operations can no longer be assumed to be serializing 96 * instructions. 97 * 98 * Note for the rest of this we are only going to concern ourselves with the 99 * apic and x2apic which practically all of i86pc has been using now for 100 * quite some time. 101 * 102 * Interrupt Priority Levels 103 * ------------------------- 104 * 105 * On i86pc systems there are a total of fifteen interrupt priority levels 106 * (ipls) which range from 1-15. Level 0 is for normal processing and 107 * non-interrupt processing. To manipulate these values the family of spl 108 * functions (which date back to UNIX on the PDP-11) are used. Specifically, 109 * splr() to raise the priority level and splx() to lower it. One should not 110 * generally call setspl() directly. 111 * 112 * Both i86pc and the supported SPARC platforms honor the same conventions for 113 * the meaning behind these IPLs. The most important IPL is the platform's 114 * LOCK_LEVEL (0xa on i86pc). If a thread is above LOCK_LEVEL it _must_ not 115 * sleep on any synchronization object. The only allowed synchronization 116 * primitive is a mutex that has been specifically initialized to be a spin 117 * lock (see mutex_init(9F)). Another important level is DISP_LEVEL (0xb on 118 * i86pc). You must be at DISP_LEVEL if you want to control the dispatcher. 119 * The XC_HI_PIL is the highest level (0xf) and is used during cross-calls. 120 * 121 * Each interrupt that is registered in the system fires at a specific IPL. 122 * Generally most interrupts fire below LOCK_LEVEL. 123 * 124 * PSM Drivers 125 * ----------- 126 * 127 * We currently have three sets of PSM (platform specific module) drivers 128 * available. uppc, pcplusmp, and apix. uppc (uni-processor PC) is the original 129 * driver that interacts with the 8259A and 8254. In general, it is not used 130 * anymore given the prevalence of the apic. 131 * 132 * The system prefers to use the apix driver over the pcplusmp driver. The apix 133 * driver requires HW support for an x2apic. If there is no x2apic HW, apix 134 * will not be used. In general we prefer using the apix driver over the 135 * pcplusmp driver because it gives us much more flexibility with respect to 136 * interrupts. In the apix driver each local apic has its own independent set 137 * of interrupts, whereas the pcplusmp driver only has a single global set of 138 * interrupts. This is why pcplusmp only supports a finite number of interrupts 139 * per IPL -- generally 16, often less. The apix driver supports using either 140 * the x2apic or the local apic programing modes. The programming mode does not 141 * change the number of interrupts available, just the number of processors 142 * that we can address. For the apix driver, the x2apic mode is enabled if the 143 * system supports interrupt re-mapping, otherwise the module manages the 144 * x2apic in local mode. 145 * 146 * When there is no x2apic present, we default back to the pcplusmp PSM driver. 147 * In general, this is not problematic unless you have more than 256 148 * processors in the machine or you do not have enough interrupts available. 149 * 150 * Controlling Interrupt Generation on i86pc 151 * ----------------------------------------- 152 * 153 * There are two different ways to manipulate which interrupts will be 154 * generated on i86pc. Each offers different degrees of control. 155 * 156 * The first is through the flags register (eflags and rflags on i386 and amd64 157 * respectively). The IF bit determines whether or not interrupts are enabled 158 * or disabled. This is manipulated in one of several ways. The most common way 159 * is through the cli and sti instructions. These clear the IF flag and set it, 160 * respectively, for the current processor. The other common way is through the 161 * use of the intr_clear and intr_restore functions. 162 * 163 * Assuming interrupts are not blocked by the IF flag, then the second form is 164 * through the Processor-Priority Register (PPR). The PPR is used to determine 165 * whether or not a pending interrupt should be delivered. If the ipl of the 166 * new interrupt is higher than the current value in the PPR, then the lapic 167 * will either deliver it immediately (if interrupts are not in progress) or it 168 * will deliver it once the current interrupt processing has issued an EOI. The 169 * highest unmasked interrupt will be the one delivered. 170 * 171 * The PPR register is based upon the max of the following two registers in the 172 * lapic, the TPR register (also known as CR8 on amd64) that can be used to 173 * mask interrupt levels, and the current vector. Because the pcplusmp module 174 * always sets TPR appropriately early in the do_interrupt path, we can usually 175 * just think that the PPR is the TPR. The pcplusmp module also issues an EOI 176 * once it has set the TPR, so higher priority interrupts can come in while 177 * we're servicing a lower priority interrupt. 178 * 179 * Handling Interrupts 180 * ------------------- 181 * 182 * Interrupts can be broken down into three categories based on priority and 183 * source: 184 * 185 * o High level interrupts 186 * o Low level hardware interrupts 187 * o Low level software interrupts 188 * 189 * High Level Interrupts 190 * 191 * High level interrupts encompasses both hardware-sourced and software-sourced 192 * interrupts. Examples of high level hardware interrupts include the serial 193 * console. High level software-sourced interrupts are still delivered through 194 * the local apic through IPIs. This is primarily cross calls. 195 * 196 * When a high level interrupt comes in, we will raise the SPL and then pin the 197 * current lwp to the processor. We will use its lwp, but our own interrupt 198 * stack and process the high level interrupt in-situ. These handlers are 199 * designed to be very short in nature and cannot go to sleep, only block on a 200 * spin lock. If the interrupt has a lot of work to do, it must generate a 201 * low-priority software interrupt that will be processed later. 202 * 203 * Low level hardware interrupts 204 * 205 * Low level hardware interrupts start off like their high-level cousins. The 206 * current CPU contains a number of kernel threads (kthread_t) that can be used 207 * to process low level interrupts. These are shared between both low level 208 * hardware and software interrupts. Note that while we run with our 209 * kthread_t, we borrow the pinned threads lwp_t until such a time as we hit a 210 * synchronization object. If we hit one and need to sleep, then the scheduler 211 * will instead create the rest of what we need. 212 * 213 * Low level software interrupts 214 * 215 * Low level software interrupts are handled in a similar way as hardware 216 * interrupts, but the notification vector is different. Each CPU has a bitmask 217 * of pending software interrupts. We can notify a CPU to process software 218 * interrupts through a specific trap vector as well as through several 219 * checks that are performed throughout the code. These checks will look at 220 * processing software interrupts as we lower our spl. 221 * 222 * We attempt to process the highest pending software interrupt that we can 223 * which is greater than our current IPL. If none currently exist, then we move 224 * on. We process a software interrupt in a similar fashion to a hardware 225 * interrupt. 226 * 227 * Traditional Interrupt Flow 228 * -------------------------- 229 * 230 * The following diagram tracks the flow of the traditional uppc and pcplusmp 231 * interrupt handlers. The apix driver has its own version of do_interrupt(). 232 * We come into the interrupt handler with all interrupts masked by the IF 233 * flag. This is because we set up the handler using an interrupt-gate, which 234 * is defined architecturally to have cleared the IF flag for us. 235 * 236 * +--------------+ +----------------+ +-----------+ 237 * | _interrupt() |--->| do_interrupt() |--->| *setlvl() | 238 * +--------------+ +----------------+ +-----------+ 239 * | | | 240 * | | | 241 * low-level| | | softint 242 * HW int | | +---------------------------------------+ 243 * +--------------+ | | | 244 * | intr_thread_ |<-----+ | hi-level int | 245 * | prolog() | | +----------+ | 246 * +--------------+ +--->| hilevel_ | Not on intr stack | 247 * | | intr_ |-----------------+ | 248 * | | prolog() | | | 249 * +------------+ +----------+ | | 250 * | switch_sp_ | | On intr v | 251 * | and_call() | | Stack +------------+ | 252 * +------------+ | | switch_sp_ | | 253 * | v | and_call() | | 254 * v +-----------+ +------------+ | 255 * +-----------+ | dispatch_ | | | 256 * | dispatch_ | +-------------------| hilevel() |<------------+ | 257 * | hardint() | | +-----------+ | 258 * +-----------+ | | 259 * | v | 260 * | +-----+ +----------------------+ +-----+ hi-level | 261 * +---->| sti |->| av_dispatch_autovect |->| cli |---------+ | 262 * +-----+ +----------------------+ +-----+ | | 263 * | | | | 264 * v | | | 265 * +----------+ | | | 266 * | for each | | | | 267 * | handler | | | | 268 * | *intr() | | v | 269 * +--------------+ +----------+ | +----------------+ | 270 * | intr_thread_ | low-level | | hilevel_intr_ | | 271 * | epilog() |<-------------------------------+ | epilog() | | 272 * +--------------+ +----------------+ | 273 * | | | | 274 * | +----------------------v v---------------------+ | 275 * | +------------+ | 276 * | +---------------------->| *setlvlx() | | 277 * | | +------------+ | 278 * | | | | 279 * | | v | 280 * | | +--------+ +------------------+ +-------------+ | 281 * | | | return |<----| softint pending? |----->| dosoftint() |<-----+ 282 * | | +--------+ no +------------------+ yes +-------------+ 283 * | | ^ | | 284 * | | | softint pil too low | | 285 * | | +--------------------------------------+ | 286 * | | v 287 * | | +-----------+ +------------+ +-----------+ 288 * | | | dispatch_ |<-----| switch_sp_ |<---------| *setspl() | 289 * | | | softint() | | and_call() | +-----------+ 290 * | | +-----------+ +------------+ 291 * | | | 292 * | | v 293 * | | +-----+ +----------------------+ +-----+ +------------+ 294 * | | | sti |->| av_dispatch_autovect |->| cli |->| dosoftint_ | 295 * | | +-----+ +----------------------+ +-----+ | epilog() | 296 * | | +------------+ 297 * | | | | 298 * | +----------------------------------------------------+ | 299 * v | 300 * +-----------+ | 301 * | interrupt | | 302 * | thread |<---------------------------------------------------+ 303 * | blocked | 304 * +-----------+ 305 * | 306 * v 307 * +----------------+ +------------+ +-----------+ +-------+ +---------+ 308 * | set_base_spl() |->| *setlvlx() |->| splhigh() |->| sti() |->| swtch() | 309 * +----------------+ +------------+ +-----------+ +-------+ +---------+ 310 * 311 * Calls made on Interrupt Stacks and Epilogue routines 312 * 313 * We use the switch_sp_and_call() assembly routine to switch our sp to the 314 * interrupt stacks and then call the appropriate dispatch function. In the 315 * case of interrupts which may block, softints and hardints, we always ensure 316 * that we are still on the interrupt thread when we call the epilog routine. 317 * This is not just important, it's necessary. If the interrupt thread blocked, 318 * we won't return from our switch_sp_and_call() function and instead we'll go 319 * through and set ourselves up to swtch() directly. 320 * 321 * New Interrupt Flow 322 * ------------------ 323 * 324 * The apix module has its own interrupt path. This is done for various 325 * reasons. The first is that rather than having global interrupt vectors, we 326 * now have per-cpu vectors. 327 * 328 * The other substantial change is that the apix design does not use the TPR to 329 * mask interrupts below the current level. In fact, except for one special 330 * case, it does not use the TPR at all. Instead, it only uses the IF flag 331 * (cli/sti) to either block all interrupts or allow any interrupts to come in. 332 * The design is such that when interrupts are allowed to come in, if we are 333 * currently servicing a higher priority interupt, the new interrupt is treated 334 * as pending and serviced later. Specifically, in the pcplusmp module's 335 * apic_intr_enter() the code masks interrupts at or below the current 336 * IPL using the TPR before sending EOI, whereas the apix module's 337 * apix_intr_enter() simply sends EOI. 338 * 339 * The one special case where the apix code uses the TPR is when it calls 340 * through the apic_reg_ops function pointer apic_write_task_reg in 341 * apix_init_intr() to initially mask all levels and then finally to enable all 342 * levels. 343 * 344 * Recall that we come into the interrupt handler with all interrupts masked 345 * by the IF flag. This is because we set up the handler using an 346 * interrupt-gate which is defined architecturally to have cleared the IF flag 347 * for us. 348 * 349 * +--------------+ +---------------------+ 350 * | _interrupt() |--->| apix_do_interrupt() | 351 * +--------------+ +---------------------+ 352 * | 353 * hard int? +----+--------+ softint? 354 * | | (but no low-level looping) 355 * +-----------+ | 356 * | *setlvl() | | 357 * +---------+ +-----------+ +----------------------------------+ 358 * |apix_add_| check IPL | | 359 * |pending_ |<-------------+------+----------------------+ | 360 * |hardint()| low-level int| hi-level int| | 361 * +---------+ v v | 362 * | check IPL +-----------------+ +---------------+ | 363 * +--+-----+ | apix_intr_ | | apix_hilevel_ | | 364 * | | | thread_prolog() | | intr_prolog() | | 365 * | return +-----------------+ +---------------+ | 366 * | | | On intr | 367 * | +------------+ | stack? +------------+ | 368 * | | switch_sp_ | +---------| switch_sp_ | | 369 * | | and_call() | | | and_call() | | 370 * | +------------+ | +------------+ | 371 * | | | | | 372 * | +----------------+ +----------------+ | 373 * | | apix_dispatch_ | | apix_dispatch_ | | 374 * | | lowlevel() | | hilevel() | | 375 * | +----------------+ +----------------+ | 376 * | | | | 377 * | v v | 378 * | +-------------------------+ | 379 * | |apix_dispatch_by_vector()|----+ | 380 * | +-------------------------+ | | 381 * | !XC_HI_PIL| | | | | 382 * | +---+ +-------+ +---+ | | 383 * | |sti| |*intr()| |cli| | | 384 * | +---+ +-------+ +---+ | hi-level? | 385 * | +---------------------------+----+ | 386 * | v low-level? v | 387 * | +----------------+ +----------------+ | 388 * | | apix_intr_ | | apix_hilevel_ | | 389 * | | thread_epilog()| | intr_epilog() | | 390 * | +----------------+ +----------------+ | 391 * | | | | 392 * | v-----------------+--------------------------------+ | 393 * | +------------+ | 394 * | | *setlvlx() | +----------------------------------------------------+ 395 * | +------------+ | 396 * | | | +--------------------------------+ low 397 * v v v------+ v | level 398 * +------------------+ +------------------+ +-----------+ | pending? 399 * | apix_do_pending_ |----->| apix_do_pending_ |----->| apix_do_ |--+ 400 * | hilevel() | | hardint() | | softint() | | 401 * +------------------+ +------------------+ +-----------+ return 402 * | | | 403 * | while pending | while pending | while pending 404 * | hi-level | low-level | softint 405 * | | | 406 * +---------------+ +-----------------+ +-----------------+ 407 * | apix_hilevel_ | | apix_intr_ | | apix_do_ | 408 * | intr_prolog() | | thread_prolog() | | softint_prolog()| 409 * +---------------+ +-----------------+ +-----------------+ 410 * | On intr | | 411 * | stack? +------------+ +------------+ +------------+ 412 * +--------| switch_sp_ | | switch_sp_ | | switch_sp_ | 413 * | | and_call() | | and_call() | | and_call() | 414 * | +------------+ +------------+ +------------+ 415 * | | | | 416 * +------------------+ +------------------+ +------------------------+ 417 * | apix_dispatch_ | | apix_dispatch_ | | apix_dispatch_softint()| 418 * | pending_hilevel()| | pending_hardint()| +------------------------+ 419 * +------------------+ +------------------+ | | | | 420 * | | | | | | | | 421 * | +----------------+ | +----------------+ | | | | 422 * | | apix_hilevel_ | | | apix_intr_ | | | | | 423 * | | intr_epilog() | | | thread_epilog()| | | | | 424 * | +----------------+ | +----------------+ | | | | 425 * | | | | | | | | 426 * | +------------+ | +----------+ +------+ | | | 427 * | | *setlvlx() | | |*setlvlx()| | | | | 428 * | +------------+ | +----------+ | +----------+ | +---------+ 429 * | | +---+ |av_ | +---+ |apix_do_ | 430 * +---------------------------------+ |sti| |dispatch_ | |cli| |softint_ | 431 * | apix_dispatch_pending_autovect()| +---+ |softvect()| +---+ |epilog() | 432 * +---------------------------------+ +----------+ +---------+ 433 * |!XC_HI_PIL | | | | 434 * +---+ +-------+ +---+ +----------+ +-------+ 435 * |sti| |*intr()| |cli| |apix_post_| |*intr()| 436 * +---+ +-------+ +---+ |hardint() | +-------+ 437 * +----------+ 438 */ 439 440 #include <sys/cpuvar.h> 441 #include <sys/cpu_event.h> 442 #include <sys/regset.h> 443 #include <sys/psw.h> 444 #include <sys/types.h> 445 #include <sys/thread.h> 446 #include <sys/systm.h> 447 #include <sys/segments.h> 448 #include <sys/pcb.h> 449 #include <sys/trap.h> 450 #include <sys/ftrace.h> 451 #include <sys/traptrace.h> 452 #include <sys/clock.h> 453 #include <sys/panic.h> 454 #include <sys/disp.h> 455 #include <vm/seg_kp.h> 456 #include <sys/stack.h> 457 #include <sys/sysmacros.h> 458 #include <sys/cmn_err.h> 459 #include <sys/kstat.h> 460 #include <sys/smp_impldefs.h> 461 #include <sys/pool_pset.h> 462 #include <sys/zone.h> 463 #include <sys/bitmap.h> 464 #include <sys/archsystm.h> 465 #include <sys/machsystm.h> 466 #include <sys/ontrap.h> 467 #include <sys/x86_archext.h> 468 #include <sys/promif.h> 469 #include <sys/ht.h> 470 #include <vm/hat_i86.h> 471 #if defined(__xpv) 472 #include <sys/hypervisor.h> 473 #endif 474 475 /* If these fail, then the padding numbers in machcpuvar.h are wrong. */ 476 #if !defined(__xpv) 477 #define MCOFF(member) \ 478 (offsetof(cpu_t, cpu_m) + offsetof(struct machcpu, member)) 479 CTASSERT(MCOFF(mcpu_pad) == MACHCPU_SIZE); 480 CTASSERT(MCOFF(mcpu_pad2) == MMU_PAGESIZE); 481 CTASSERT((MCOFF(mcpu_kpti) & 0xF) == 0); 482 CTASSERT(((sizeof (struct kpti_frame)) & 0xF) == 0); 483 CTASSERT((offsetof(struct kpti_frame, kf_tr_rsp) & 0xF) == 0); 484 CTASSERT(MCOFF(mcpu_pad3) < 2 * MMU_PAGESIZE); 485 #endif 486 487 #if defined(__xpv) && defined(DEBUG) 488 489 /* 490 * This panic message is intended as an aid to interrupt debugging. 491 * 492 * The associated assertion tests the condition of enabling 493 * events when events are already enabled. The implication 494 * being that whatever code the programmer thought was 495 * protected by having events disabled until the second 496 * enable happened really wasn't protected at all .. 497 */ 498 499 int stistipanic = 1; /* controls the debug panic check */ 500 const char *stistimsg = "stisti"; 501 ulong_t laststi[NCPU]; 502 503 /* 504 * This variable tracks the last place events were disabled on each cpu 505 * it assists in debugging when asserts that interrupts are enabled trip. 506 */ 507 ulong_t lastcli[NCPU]; 508 509 #endif 510 511 void do_interrupt(struct regs *rp, trap_trace_rec_t *ttp); 512 513 void (*do_interrupt_common)(struct regs *, trap_trace_rec_t *) = do_interrupt; 514 uintptr_t (*get_intr_handler)(int, short) = NULL; 515 516 /* 517 * Set cpu's base SPL level to the highest active interrupt level 518 */ 519 void 520 set_base_spl(void) 521 { 522 struct cpu *cpu = CPU; 523 uint16_t active = (uint16_t)cpu->cpu_intr_actv; 524 525 cpu->cpu_base_spl = active == 0 ? 0 : bsrw_insn(active); 526 } 527 528 /* 529 * Do all the work necessary to set up the cpu and thread structures 530 * to dispatch a high-level interrupt. 531 * 532 * Returns 0 if we're -not- already on the high-level interrupt stack, 533 * (and *must* switch to it), non-zero if we are already on that stack. 534 * 535 * Called with interrupts masked. 536 * The 'pil' is already set to the appropriate level for rp->r_trapno. 537 */ 538 static int 539 hilevel_intr_prolog(struct cpu *cpu, uint_t pil, uint_t oldpil, struct regs *rp) 540 { 541 struct machcpu *mcpu = &cpu->cpu_m; 542 uint_t mask; 543 hrtime_t intrtime; 544 hrtime_t now = tsc_read(); 545 546 ASSERT(pil > LOCK_LEVEL); 547 548 if (pil == CBE_HIGH_PIL) { 549 cpu->cpu_profile_pil = oldpil; 550 if (USERMODE(rp->r_cs)) { 551 cpu->cpu_profile_pc = 0; 552 cpu->cpu_profile_upc = rp->r_pc; 553 cpu->cpu_cpcprofile_pc = 0; 554 cpu->cpu_cpcprofile_upc = rp->r_pc; 555 } else { 556 cpu->cpu_profile_pc = rp->r_pc; 557 cpu->cpu_profile_upc = 0; 558 cpu->cpu_cpcprofile_pc = rp->r_pc; 559 cpu->cpu_cpcprofile_upc = 0; 560 } 561 } 562 563 mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 564 if (mask != 0) { 565 int nestpil; 566 567 /* 568 * We have interrupted another high-level interrupt. 569 * Load starting timestamp, compute interval, update 570 * cumulative counter. 571 */ 572 nestpil = bsrw_insn((uint16_t)mask); 573 ASSERT(nestpil < pil); 574 intrtime = now - 575 mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)]; 576 mcpu->intrstat[nestpil][0] += intrtime; 577 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 578 /* 579 * Another high-level interrupt is active below this one, so 580 * there is no need to check for an interrupt thread. That 581 * will be done by the lowest priority high-level interrupt 582 * active. 583 */ 584 } else { 585 kthread_t *t = cpu->cpu_thread; 586 587 /* 588 * See if we are interrupting a low-level interrupt thread. 589 * If so, account for its time slice only if its time stamp 590 * is non-zero. 591 */ 592 if ((t->t_flag & T_INTR_THREAD) != 0 && t->t_intr_start != 0) { 593 intrtime = now - t->t_intr_start; 594 mcpu->intrstat[t->t_pil][0] += intrtime; 595 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 596 t->t_intr_start = 0; 597 } 598 } 599 600 ht_begin_intr(pil); 601 602 /* 603 * Store starting timestamp in CPU structure for this PIL. 604 */ 605 mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] = now; 606 607 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 608 609 if (pil == 15) { 610 /* 611 * To support reentrant level 15 interrupts, we maintain a 612 * recursion count in the top half of cpu_intr_actv. Only 613 * when this count hits zero do we clear the PIL 15 bit from 614 * the lower half of cpu_intr_actv. 615 */ 616 uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 617 (*refcntp)++; 618 } 619 620 mask = cpu->cpu_intr_actv; 621 622 cpu->cpu_intr_actv |= (1 << pil); 623 624 return (mask & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 625 } 626 627 /* 628 * Does most of the work of returning from a high level interrupt. 629 * 630 * Returns 0 if there are no more high level interrupts (in which 631 * case we must switch back to the interrupted thread stack) or 632 * non-zero if there are more (in which case we should stay on it). 633 * 634 * Called with interrupts masked 635 */ 636 static int 637 hilevel_intr_epilog(struct cpu *cpu, uint_t pil, uint_t oldpil, uint_t vecnum) 638 { 639 struct machcpu *mcpu = &cpu->cpu_m; 640 uint_t mask; 641 hrtime_t intrtime; 642 hrtime_t now = tsc_read(); 643 644 ASSERT(mcpu->mcpu_pri == pil); 645 646 cpu->cpu_stats.sys.intr[pil - 1]++; 647 648 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 649 650 if (pil == 15) { 651 /* 652 * To support reentrant level 15 interrupts, we maintain a 653 * recursion count in the top half of cpu_intr_actv. Only 654 * when this count hits zero do we clear the PIL 15 bit from 655 * the lower half of cpu_intr_actv. 656 */ 657 uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 658 659 ASSERT(*refcntp > 0); 660 661 if (--(*refcntp) == 0) 662 cpu->cpu_intr_actv &= ~(1 << pil); 663 } else { 664 cpu->cpu_intr_actv &= ~(1 << pil); 665 } 666 667 ASSERT(mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] != 0); 668 669 intrtime = now - mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)]; 670 mcpu->intrstat[pil][0] += intrtime; 671 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 672 673 /* 674 * Check for lower-pil nested high-level interrupt beneath 675 * current one. If so, place a starting timestamp in its 676 * pil_high_start entry. 677 */ 678 mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 679 if (mask != 0) { 680 int nestpil; 681 682 /* 683 * find PIL of nested interrupt 684 */ 685 nestpil = bsrw_insn((uint16_t)mask); 686 ASSERT(nestpil < pil); 687 mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)] = now; 688 /* 689 * (Another high-level interrupt is active below this one, 690 * so there is no need to check for an interrupt 691 * thread. That will be done by the lowest priority 692 * high-level interrupt active.) 693 */ 694 } else { 695 /* 696 * Check to see if there is a low-level interrupt active. 697 * If so, place a starting timestamp in the thread 698 * structure. 699 */ 700 kthread_t *t = cpu->cpu_thread; 701 702 if (t->t_flag & T_INTR_THREAD) 703 t->t_intr_start = now; 704 } 705 706 ht_end_intr(); 707 708 mcpu->mcpu_pri = oldpil; 709 (void) (*setlvlx)(oldpil, vecnum); 710 711 return (cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 712 } 713 714 /* 715 * Set up the cpu, thread and interrupt thread structures for 716 * executing an interrupt thread. The new stack pointer of the 717 * interrupt thread (which *must* be switched to) is returned. 718 */ 719 static caddr_t 720 intr_thread_prolog(struct cpu *cpu, caddr_t stackptr, uint_t pil) 721 { 722 struct machcpu *mcpu = &cpu->cpu_m; 723 kthread_t *t, *volatile it; 724 hrtime_t now = tsc_read(); 725 726 ASSERT(pil > 0); 727 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 728 cpu->cpu_intr_actv |= (1 << pil); 729 730 /* 731 * Get set to run an interrupt thread. 732 * There should always be an interrupt thread, since we 733 * allocate one for each level on each CPU. 734 * 735 * t_intr_start could be zero due to cpu_intr_swtch_enter. 736 */ 737 t = cpu->cpu_thread; 738 if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) { 739 hrtime_t intrtime = now - t->t_intr_start; 740 mcpu->intrstat[t->t_pil][0] += intrtime; 741 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 742 t->t_intr_start = 0; 743 } 744 745 ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 746 747 t->t_sp = (uintptr_t)stackptr; /* mark stack in curthread for resume */ 748 749 /* 750 * unlink the interrupt thread off the cpu 751 * 752 * Note that the code in kcpc_overflow_intr -relies- on the 753 * ordering of events here - in particular that t->t_lwp of 754 * the interrupt thread is set to the pinned thread *before* 755 * curthread is changed. 756 */ 757 it = cpu->cpu_intr_thread; 758 cpu->cpu_intr_thread = it->t_link; 759 it->t_intr = t; 760 it->t_lwp = t->t_lwp; 761 762 /* 763 * (threads on the interrupt thread free list could have state 764 * preset to TS_ONPROC, but it helps in debugging if 765 * they're TS_FREE.) 766 */ 767 it->t_state = TS_ONPROC; 768 769 cpu->cpu_thread = it; /* new curthread on this cpu */ 770 ht_begin_intr(pil); 771 772 it->t_pil = (uchar_t)pil; 773 it->t_pri = intr_pri + (pri_t)pil; 774 it->t_intr_start = now; 775 776 return (it->t_stk); 777 } 778 779 780 #ifdef DEBUG 781 int intr_thread_cnt; 782 #endif 783 784 /* 785 * Called with interrupts disabled 786 */ 787 static void 788 intr_thread_epilog(struct cpu *cpu, uint_t vec, uint_t oldpil) 789 { 790 struct machcpu *mcpu = &cpu->cpu_m; 791 kthread_t *t; 792 kthread_t *it = cpu->cpu_thread; /* curthread */ 793 uint_t pil, basespl; 794 hrtime_t intrtime; 795 hrtime_t now = tsc_read(); 796 797 pil = it->t_pil; 798 cpu->cpu_stats.sys.intr[pil - 1]++; 799 800 ASSERT(it->t_intr_start != 0); 801 intrtime = now - it->t_intr_start; 802 mcpu->intrstat[pil][0] += intrtime; 803 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 804 805 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 806 cpu->cpu_intr_actv &= ~(1 << pil); 807 808 /* 809 * If there is still an interrupted thread underneath this one 810 * then the interrupt was never blocked and the return is 811 * fairly simple. Otherwise it isn't. 812 */ 813 if ((t = it->t_intr) == NULL) { 814 /* 815 * The interrupted thread is no longer pinned underneath 816 * the interrupt thread. This means the interrupt must 817 * have blocked, and the interrupted thread has been 818 * unpinned, and has probably been running around the 819 * system for a while. 820 * 821 * Since there is no longer a thread under this one, put 822 * this interrupt thread back on the CPU's free list and 823 * resume the idle thread which will dispatch the next 824 * thread to run. 825 */ 826 #ifdef DEBUG 827 intr_thread_cnt++; 828 #endif 829 cpu->cpu_stats.sys.intrblk++; 830 /* 831 * Set CPU's base SPL based on active interrupts bitmask 832 */ 833 set_base_spl(); 834 basespl = cpu->cpu_base_spl; 835 mcpu->mcpu_pri = basespl; 836 (*setlvlx)(basespl, vec); 837 (void) splhigh(); 838 sti(); 839 it->t_state = TS_FREE; 840 /* 841 * Return interrupt thread to pool 842 */ 843 it->t_link = cpu->cpu_intr_thread; 844 cpu->cpu_intr_thread = it; 845 swtch(); 846 panic("intr_thread_epilog: swtch returned"); 847 /*NOTREACHED*/ 848 } 849 850 /* 851 * Return interrupt thread to the pool 852 */ 853 it->t_link = cpu->cpu_intr_thread; 854 cpu->cpu_intr_thread = it; 855 it->t_state = TS_FREE; 856 857 basespl = cpu->cpu_base_spl; 858 pil = MAX(oldpil, basespl); 859 mcpu->mcpu_pri = pil; 860 (*setlvlx)(pil, vec); 861 t->t_intr_start = now; 862 ht_end_intr(); 863 cpu->cpu_thread = t; 864 } 865 866 /* 867 * intr_get_time() is a resource for interrupt handlers to determine how 868 * much time has been spent handling the current interrupt. Such a function 869 * is needed because higher level interrupts can arrive during the 870 * processing of an interrupt. intr_get_time() only returns time spent in the 871 * current interrupt handler. 872 * 873 * The caller must be calling from an interrupt handler running at a pil 874 * below or at lock level. Timings are not provided for high-level 875 * interrupts. 876 * 877 * The first time intr_get_time() is called while handling an interrupt, 878 * it returns the time since the interrupt handler was invoked. Subsequent 879 * calls will return the time since the prior call to intr_get_time(). Time 880 * is returned as ticks. Use scalehrtimef() to convert ticks to nsec. 881 * 882 * Theory Of Intrstat[][]: 883 * 884 * uint64_t intrstat[pil][0..1] is an array indexed by pil level, with two 885 * uint64_ts per pil. 886 * 887 * intrstat[pil][0] is a cumulative count of the number of ticks spent 888 * handling all interrupts at the specified pil on this CPU. It is 889 * exported via kstats to the user. 890 * 891 * intrstat[pil][1] is always a count of ticks less than or equal to the 892 * value in [0]. The difference between [1] and [0] is the value returned 893 * by a call to intr_get_time(). At the start of interrupt processing, 894 * [0] and [1] will be equal (or nearly so). As the interrupt consumes 895 * time, [0] will increase, but [1] will remain the same. A call to 896 * intr_get_time() will return the difference, then update [1] to be the 897 * same as [0]. Future calls will return the time since the last call. 898 * Finally, when the interrupt completes, [1] is updated to the same as [0]. 899 * 900 * Implementation: 901 * 902 * intr_get_time() works much like a higher level interrupt arriving. It 903 * "checkpoints" the timing information by incrementing intrstat[pil][0] 904 * to include elapsed running time, and by setting t_intr_start to rdtsc. 905 * It then sets the return value to intrstat[pil][0] - intrstat[pil][1], 906 * and updates intrstat[pil][1] to be the same as the new value of 907 * intrstat[pil][0]. 908 * 909 * In the normal handling of interrupts, after an interrupt handler returns 910 * and the code in intr_thread() updates intrstat[pil][0], it then sets 911 * intrstat[pil][1] to the new value of intrstat[pil][0]. When [0] == [1], 912 * the timings are reset, i.e. intr_get_time() will return [0] - [1] which 913 * is 0. 914 * 915 * Whenever interrupts arrive on a CPU which is handling a lower pil 916 * interrupt, they update the lower pil's [0] to show time spent in the 917 * handler that they've interrupted. This results in a growing discrepancy 918 * between [0] and [1], which is returned the next time intr_get_time() is 919 * called. Time spent in the higher-pil interrupt will not be returned in 920 * the next intr_get_time() call from the original interrupt, because 921 * the higher-pil interrupt's time is accumulated in intrstat[higherpil][]. 922 */ 923 uint64_t 924 intr_get_time(void) 925 { 926 struct cpu *cpu; 927 struct machcpu *mcpu; 928 kthread_t *t; 929 uint64_t time, delta, ret; 930 uint_t pil; 931 932 cli(); 933 cpu = CPU; 934 mcpu = &cpu->cpu_m; 935 t = cpu->cpu_thread; 936 pil = t->t_pil; 937 ASSERT((cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK) == 0); 938 ASSERT(t->t_flag & T_INTR_THREAD); 939 ASSERT(pil != 0); 940 ASSERT(t->t_intr_start != 0); 941 942 time = tsc_read(); 943 delta = time - t->t_intr_start; 944 t->t_intr_start = time; 945 946 time = mcpu->intrstat[pil][0] + delta; 947 ret = time - mcpu->intrstat[pil][1]; 948 mcpu->intrstat[pil][0] = time; 949 mcpu->intrstat[pil][1] = time; 950 cpu->cpu_intracct[cpu->cpu_mstate] += delta; 951 952 sti(); 953 return (ret); 954 } 955 956 static caddr_t 957 dosoftint_prolog( 958 struct cpu *cpu, 959 caddr_t stackptr, 960 uint32_t st_pending, 961 uint_t oldpil) 962 { 963 kthread_t *t, *volatile it; 964 struct machcpu *mcpu = &cpu->cpu_m; 965 uint_t pil; 966 hrtime_t now; 967 968 top: 969 ASSERT(st_pending == mcpu->mcpu_softinfo.st_pending); 970 971 pil = bsrw_insn((uint16_t)st_pending); 972 if (pil <= oldpil || pil <= cpu->cpu_base_spl) 973 return (0); 974 975 /* 976 * XX64 Sigh. 977 * 978 * This is a transliteration of the i386 assembler code for 979 * soft interrupts. One question is "why does this need 980 * to be atomic?" One possible race is -other- processors 981 * posting soft interrupts to us in set_pending() i.e. the 982 * CPU might get preempted just after the address computation, 983 * but just before the atomic transaction, so another CPU would 984 * actually set the original CPU's st_pending bit. However, 985 * it looks like it would be simpler to disable preemption there. 986 * Are there other races for which preemption control doesn't work? 987 * 988 * The i386 assembler version -also- checks to see if the bit 989 * being cleared was actually set; if it wasn't, it rechecks 990 * for more. This seems a bit strange, as the only code that 991 * ever clears the bit is -this- code running with interrupts 992 * disabled on -this- CPU. This code would probably be cheaper: 993 * 994 * atomic_and_32((uint32_t *)&mcpu->mcpu_softinfo.st_pending, 995 * ~(1 << pil)); 996 * 997 * and t->t_preempt--/++ around set_pending() even cheaper, 998 * but at this point, correctness is critical, so we slavishly 999 * emulate the i386 port. 1000 */ 1001 if (atomic_btr32((uint32_t *) 1002 &mcpu->mcpu_softinfo.st_pending, pil) == 0) { 1003 st_pending = mcpu->mcpu_softinfo.st_pending; 1004 goto top; 1005 } 1006 1007 mcpu->mcpu_pri = pil; 1008 (*setspl)(pil); 1009 1010 now = tsc_read(); 1011 1012 /* 1013 * Get set to run interrupt thread. 1014 * There should always be an interrupt thread since we 1015 * allocate one for each level on the CPU. 1016 */ 1017 it = cpu->cpu_intr_thread; 1018 cpu->cpu_intr_thread = it->t_link; 1019 1020 /* t_intr_start could be zero due to cpu_intr_swtch_enter. */ 1021 t = cpu->cpu_thread; 1022 if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) { 1023 hrtime_t intrtime = now - t->t_intr_start; 1024 mcpu->intrstat[pil][0] += intrtime; 1025 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 1026 t->t_intr_start = 0; 1027 } 1028 1029 /* 1030 * Note that the code in kcpc_overflow_intr -relies- on the 1031 * ordering of events here - in particular that t->t_lwp of 1032 * the interrupt thread is set to the pinned thread *before* 1033 * curthread is changed. 1034 */ 1035 it->t_lwp = t->t_lwp; 1036 it->t_state = TS_ONPROC; 1037 1038 /* 1039 * Push interrupted thread onto list from new thread. 1040 * Set the new thread as the current one. 1041 * Set interrupted thread's T_SP because if it is the idle thread, 1042 * resume() may use that stack between threads. 1043 */ 1044 1045 ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 1046 t->t_sp = (uintptr_t)stackptr; 1047 1048 it->t_intr = t; 1049 cpu->cpu_thread = it; 1050 ht_begin_intr(pil); 1051 1052 /* 1053 * Set bit for this pil in CPU's interrupt active bitmask. 1054 */ 1055 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 1056 cpu->cpu_intr_actv |= (1 << pil); 1057 1058 /* 1059 * Initialize thread priority level from intr_pri 1060 */ 1061 it->t_pil = (uchar_t)pil; 1062 it->t_pri = (pri_t)pil + intr_pri; 1063 it->t_intr_start = now; 1064 1065 return (it->t_stk); 1066 } 1067 1068 static void 1069 dosoftint_epilog(struct cpu *cpu, uint_t oldpil) 1070 { 1071 struct machcpu *mcpu = &cpu->cpu_m; 1072 kthread_t *t, *it; 1073 uint_t pil, basespl; 1074 hrtime_t intrtime; 1075 hrtime_t now = tsc_read(); 1076 1077 it = cpu->cpu_thread; 1078 pil = it->t_pil; 1079 1080 cpu->cpu_stats.sys.intr[pil - 1]++; 1081 1082 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 1083 cpu->cpu_intr_actv &= ~(1 << pil); 1084 intrtime = now - it->t_intr_start; 1085 mcpu->intrstat[pil][0] += intrtime; 1086 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 1087 1088 /* 1089 * If there is still an interrupted thread underneath this one 1090 * then the interrupt was never blocked and the return is 1091 * fairly simple. Otherwise it isn't. 1092 */ 1093 if ((t = it->t_intr) == NULL) { 1094 /* 1095 * Put thread back on the interrupt thread list. 1096 * This was an interrupt thread, so set CPU's base SPL. 1097 */ 1098 set_base_spl(); 1099 it->t_state = TS_FREE; 1100 it->t_link = cpu->cpu_intr_thread; 1101 cpu->cpu_intr_thread = it; 1102 (void) splhigh(); 1103 sti(); 1104 swtch(); 1105 /*NOTREACHED*/ 1106 panic("dosoftint_epilog: swtch returned"); 1107 } 1108 it->t_link = cpu->cpu_intr_thread; 1109 cpu->cpu_intr_thread = it; 1110 it->t_state = TS_FREE; 1111 ht_end_intr(); 1112 cpu->cpu_thread = t; 1113 1114 if (t->t_flag & T_INTR_THREAD) 1115 t->t_intr_start = now; 1116 basespl = cpu->cpu_base_spl; 1117 pil = MAX(oldpil, basespl); 1118 mcpu->mcpu_pri = pil; 1119 (*setspl)(pil); 1120 } 1121 1122 1123 /* 1124 * Make the interrupted thread 'to' be runnable. 1125 * 1126 * Since t->t_sp has already been saved, t->t_pc is all 1127 * that needs to be set in this function. 1128 * 1129 * Returns the interrupt level of the interrupt thread. 1130 */ 1131 int 1132 intr_passivate( 1133 kthread_t *it, /* interrupt thread */ 1134 kthread_t *t) /* interrupted thread */ 1135 { 1136 extern void _sys_rtt(); 1137 1138 ASSERT(it->t_flag & T_INTR_THREAD); 1139 ASSERT(SA(t->t_sp) == t->t_sp); 1140 1141 t->t_pc = (uintptr_t)_sys_rtt; 1142 return (it->t_pil); 1143 } 1144 1145 /* 1146 * Create interrupt kstats for this CPU. 1147 */ 1148 void 1149 cpu_create_intrstat(cpu_t *cp) 1150 { 1151 int i; 1152 kstat_t *intr_ksp; 1153 kstat_named_t *knp; 1154 char name[KSTAT_STRLEN]; 1155 zoneid_t zoneid; 1156 1157 ASSERT(MUTEX_HELD(&cpu_lock)); 1158 1159 if (pool_pset_enabled()) 1160 zoneid = GLOBAL_ZONEID; 1161 else 1162 zoneid = ALL_ZONES; 1163 1164 intr_ksp = kstat_create_zone("cpu", cp->cpu_id, "intrstat", "misc", 1165 KSTAT_TYPE_NAMED, PIL_MAX * 2, 0, zoneid); 1166 1167 /* 1168 * Initialize each PIL's named kstat 1169 */ 1170 if (intr_ksp != NULL) { 1171 intr_ksp->ks_update = cpu_kstat_intrstat_update; 1172 knp = (kstat_named_t *)intr_ksp->ks_data; 1173 intr_ksp->ks_private = cp; 1174 for (i = 0; i < PIL_MAX; i++) { 1175 (void) snprintf(name, KSTAT_STRLEN, "level-%d-time", 1176 i + 1); 1177 kstat_named_init(&knp[i * 2], name, KSTAT_DATA_UINT64); 1178 (void) snprintf(name, KSTAT_STRLEN, "level-%d-count", 1179 i + 1); 1180 kstat_named_init(&knp[(i * 2) + 1], name, 1181 KSTAT_DATA_UINT64); 1182 } 1183 kstat_install(intr_ksp); 1184 } 1185 } 1186 1187 /* 1188 * Delete interrupt kstats for this CPU. 1189 */ 1190 void 1191 cpu_delete_intrstat(cpu_t *cp) 1192 { 1193 kstat_delete_byname_zone("cpu", cp->cpu_id, "intrstat", ALL_ZONES); 1194 } 1195 1196 /* 1197 * Convert interrupt statistics from CPU ticks to nanoseconds and 1198 * update kstat. 1199 */ 1200 int 1201 cpu_kstat_intrstat_update(kstat_t *ksp, int rw) 1202 { 1203 kstat_named_t *knp = ksp->ks_data; 1204 cpu_t *cpup = (cpu_t *)ksp->ks_private; 1205 int i; 1206 hrtime_t hrt; 1207 1208 if (rw == KSTAT_WRITE) 1209 return (EACCES); 1210 1211 for (i = 0; i < PIL_MAX; i++) { 1212 hrt = (hrtime_t)cpup->cpu_m.intrstat[i + 1][0]; 1213 scalehrtimef(&hrt); 1214 knp[i * 2].value.ui64 = (uint64_t)hrt; 1215 knp[(i * 2) + 1].value.ui64 = cpup->cpu_stats.sys.intr[i]; 1216 } 1217 1218 return (0); 1219 } 1220 1221 /* 1222 * An interrupt thread is ending a time slice, so compute the interval it 1223 * ran for and update the statistic for its PIL. 1224 */ 1225 void 1226 cpu_intr_swtch_enter(kthread_id_t t) 1227 { 1228 uint64_t interval; 1229 uint64_t start; 1230 cpu_t *cpu; 1231 1232 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 1233 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 1234 1235 /* 1236 * We could be here with a zero timestamp. This could happen if: 1237 * an interrupt thread which no longer has a pinned thread underneath 1238 * it (i.e. it blocked at some point in its past) has finished running 1239 * its handler. intr_thread() updated the interrupt statistic for its 1240 * PIL and zeroed its timestamp. Since there was no pinned thread to 1241 * return to, swtch() gets called and we end up here. 1242 * 1243 * Note that we use atomic ops below (atomic_cas_64 and 1244 * atomic_add_64), which we don't use in the functions above, 1245 * because we're not called with interrupts blocked, but the 1246 * epilog/prolog functions are. 1247 */ 1248 if (t->t_intr_start) { 1249 do { 1250 start = t->t_intr_start; 1251 interval = tsc_read() - start; 1252 } while (atomic_cas_64(&t->t_intr_start, start, 0) != start); 1253 cpu = CPU; 1254 cpu->cpu_m.intrstat[t->t_pil][0] += interval; 1255 1256 atomic_add_64((uint64_t *)&cpu->cpu_intracct[cpu->cpu_mstate], 1257 interval); 1258 } else 1259 ASSERT(t->t_intr == NULL); 1260 } 1261 1262 /* 1263 * An interrupt thread is returning from swtch(). Place a starting timestamp 1264 * in its thread structure. 1265 */ 1266 void 1267 cpu_intr_swtch_exit(kthread_id_t t) 1268 { 1269 uint64_t ts; 1270 1271 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 1272 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 1273 1274 do { 1275 ts = t->t_intr_start; 1276 } while (atomic_cas_64(&t->t_intr_start, ts, tsc_read()) != ts); 1277 } 1278 1279 /* 1280 * Dispatch a hilevel interrupt (one above LOCK_LEVEL) 1281 */ 1282 /*ARGSUSED*/ 1283 static void 1284 dispatch_hilevel(uint_t vector, uint_t arg2) 1285 { 1286 sti(); 1287 av_dispatch_autovect(vector); 1288 cli(); 1289 } 1290 1291 /* 1292 * Dispatch a soft interrupt 1293 */ 1294 /*ARGSUSED*/ 1295 static void 1296 dispatch_softint(uint_t oldpil, uint_t arg2) 1297 { 1298 struct cpu *cpu = CPU; 1299 1300 sti(); 1301 av_dispatch_softvect((int)cpu->cpu_thread->t_pil); 1302 cli(); 1303 1304 /* 1305 * Must run softint_epilog() on the interrupt thread stack, since 1306 * there may not be a return from it if the interrupt thread blocked. 1307 */ 1308 dosoftint_epilog(cpu, oldpil); 1309 } 1310 1311 /* 1312 * Dispatch a normal interrupt 1313 */ 1314 static void 1315 dispatch_hardint(uint_t vector, uint_t oldipl) 1316 { 1317 struct cpu *cpu = CPU; 1318 1319 sti(); 1320 av_dispatch_autovect(vector); 1321 cli(); 1322 1323 /* 1324 * Must run intr_thread_epilog() on the interrupt thread stack, since 1325 * there may not be a return from it if the interrupt thread blocked. 1326 */ 1327 intr_thread_epilog(cpu, vector, oldipl); 1328 } 1329 1330 /* 1331 * Deliver any softints the current interrupt priority allows. 1332 * Called with interrupts disabled. 1333 */ 1334 void 1335 dosoftint(struct regs *regs) 1336 { 1337 struct cpu *cpu = CPU; 1338 int oldipl; 1339 caddr_t newsp; 1340 1341 while (cpu->cpu_softinfo.st_pending) { 1342 oldipl = cpu->cpu_pri; 1343 newsp = dosoftint_prolog(cpu, (caddr_t)regs, 1344 cpu->cpu_softinfo.st_pending, oldipl); 1345 /* 1346 * If returned stack pointer is NULL, priority is too high 1347 * to run any of the pending softints now. 1348 * Break out and they will be run later. 1349 */ 1350 if (newsp == NULL) 1351 break; 1352 switch_sp_and_call(newsp, dispatch_softint, oldipl, 0); 1353 } 1354 } 1355 1356 /* 1357 * Interrupt service routine, called with interrupts disabled. 1358 */ 1359 /*ARGSUSED*/ 1360 void 1361 do_interrupt(struct regs *rp, trap_trace_rec_t *ttp) 1362 { 1363 struct cpu *cpu = CPU; 1364 int newipl, oldipl = cpu->cpu_pri; 1365 uint_t vector; 1366 caddr_t newsp; 1367 1368 #ifdef TRAPTRACE 1369 ttp->ttr_marker = TT_INTERRUPT; 1370 ttp->ttr_ipl = 0xff; 1371 ttp->ttr_pri = oldipl; 1372 ttp->ttr_spl = cpu->cpu_base_spl; 1373 ttp->ttr_vector = 0xff; 1374 #endif /* TRAPTRACE */ 1375 1376 cpu_idle_exit(CPU_IDLE_CB_FLAG_INTR); 1377 1378 ++*(uint16_t *)&cpu->cpu_m.mcpu_istamp; 1379 1380 /* 1381 * If it's a softint go do it now. 1382 */ 1383 if (rp->r_trapno == T_SOFTINT) { 1384 dosoftint(rp); 1385 ASSERT(!interrupts_enabled()); 1386 return; 1387 } 1388 1389 /* 1390 * Raise the interrupt priority. 1391 */ 1392 newipl = (*setlvl)(oldipl, (int *)&rp->r_trapno); 1393 #ifdef TRAPTRACE 1394 ttp->ttr_ipl = newipl; 1395 #endif /* TRAPTRACE */ 1396 1397 /* 1398 * Bail if it is a spurious interrupt 1399 */ 1400 if (newipl == -1) 1401 return; 1402 cpu->cpu_pri = newipl; 1403 vector = rp->r_trapno; 1404 #ifdef TRAPTRACE 1405 ttp->ttr_vector = vector; 1406 #endif /* TRAPTRACE */ 1407 if (newipl > LOCK_LEVEL) { 1408 /* 1409 * High priority interrupts run on this cpu's interrupt stack. 1410 */ 1411 if (hilevel_intr_prolog(cpu, newipl, oldipl, rp) == 0) { 1412 newsp = cpu->cpu_intr_stack; 1413 switch_sp_and_call(newsp, dispatch_hilevel, vector, 0); 1414 } else { /* already on the interrupt stack */ 1415 dispatch_hilevel(vector, 0); 1416 } 1417 (void) hilevel_intr_epilog(cpu, newipl, oldipl, vector); 1418 } else { 1419 /* 1420 * Run this interrupt in a separate thread. 1421 */ 1422 newsp = intr_thread_prolog(cpu, (caddr_t)rp, newipl); 1423 switch_sp_and_call(newsp, dispatch_hardint, vector, oldipl); 1424 } 1425 1426 #if !defined(__xpv) 1427 /* 1428 * Deliver any pending soft interrupts. 1429 */ 1430 if (cpu->cpu_softinfo.st_pending) 1431 dosoftint(rp); 1432 #endif /* !__xpv */ 1433 } 1434 1435 1436 /* 1437 * Common tasks always done by _sys_rtt, called with interrupts disabled. 1438 * Returns 1 if returning to userland, 0 if returning to system mode. 1439 */ 1440 int 1441 sys_rtt_common(struct regs *rp) 1442 { 1443 kthread_t *tp; 1444 extern void mutex_exit_critical_start(); 1445 extern long mutex_exit_critical_size; 1446 extern void mutex_owner_running_critical_start(); 1447 extern long mutex_owner_running_critical_size; 1448 1449 loop: 1450 1451 /* 1452 * Check if returning to user 1453 */ 1454 tp = CPU->cpu_thread; 1455 if (USERMODE(rp->r_cs)) { 1456 pcb_t *pcb; 1457 1458 /* 1459 * Check if AST pending. 1460 */ 1461 if (tp->t_astflag) { 1462 /* 1463 * Let trap() handle the AST 1464 */ 1465 sti(); 1466 rp->r_trapno = T_AST; 1467 trap(rp, (caddr_t)0, CPU->cpu_id); 1468 cli(); 1469 goto loop; 1470 } 1471 1472 pcb = &tp->t_lwp->lwp_pcb; 1473 1474 /* 1475 * Check to see if we need to initialize the FPU for this 1476 * thread. This should be an uncommon occurrence, but may happen 1477 * in the case where the system creates an lwp through an 1478 * abnormal path such as the agent lwp. Make sure that we still 1479 * happen to have the FPU in a good state. 1480 */ 1481 if ((pcb->pcb_fpu.fpu_flags & FPU_EN) == 0) { 1482 kpreempt_disable(); 1483 fp_seed(); 1484 kpreempt_enable(); 1485 PCB_SET_UPDATE_FPU(pcb); 1486 } 1487 1488 /* 1489 * We are done if segment registers do not need updating. 1490 */ 1491 if (!PCB_NEED_UPDATE(pcb)) 1492 return (1); 1493 1494 if (PCB_NEED_UPDATE_SEGS(pcb) && update_sregs(rp, tp->t_lwp)) { 1495 /* 1496 * 1 or more of the selectors is bad. 1497 * Deliver a SIGSEGV. 1498 */ 1499 proc_t *p = ttoproc(tp); 1500 1501 sti(); 1502 mutex_enter(&p->p_lock); 1503 tp->t_lwp->lwp_cursig = SIGSEGV; 1504 mutex_exit(&p->p_lock); 1505 psig(); 1506 tp->t_sig_check = 1; 1507 cli(); 1508 } 1509 PCB_CLEAR_UPDATE_SEGS(pcb); 1510 1511 if (PCB_NEED_UPDATE_FPU(pcb)) { 1512 fprestore_ctxt(&pcb->pcb_fpu); 1513 } 1514 PCB_CLEAR_UPDATE_FPU(pcb); 1515 1516 ASSERT0(PCB_NEED_UPDATE(pcb)); 1517 1518 return (1); 1519 } 1520 1521 #if !defined(__xpv) 1522 /* 1523 * Assert that we're not trying to return into the syscall return 1524 * trampolines. Things will go baaaaad if we try to do that. 1525 * 1526 * Note that none of these run with interrupts on, so this should 1527 * never happen (even in the sysexit case the STI doesn't take effect 1528 * until after sysexit finishes). 1529 */ 1530 extern void tr_sysc_ret_start(); 1531 extern void tr_sysc_ret_end(); 1532 ASSERT(!(rp->r_pc >= (uintptr_t)tr_sysc_ret_start && 1533 rp->r_pc <= (uintptr_t)tr_sysc_ret_end)); 1534 #endif 1535 1536 /* 1537 * Here if we are returning to supervisor mode. 1538 * Check for a kernel preemption request. 1539 */ 1540 if (CPU->cpu_kprunrun && (rp->r_ps & PS_IE)) { 1541 1542 /* 1543 * Do nothing if already in kpreempt 1544 */ 1545 if (!tp->t_preempt_lk) { 1546 tp->t_preempt_lk = 1; 1547 sti(); 1548 kpreempt(1); /* asynchronous kpreempt call */ 1549 cli(); 1550 tp->t_preempt_lk = 0; 1551 } 1552 } 1553 1554 /* 1555 * If we interrupted the mutex_exit() critical region we must 1556 * reset the PC back to the beginning to prevent missed wakeups 1557 * See the comments in mutex_exit() for details. 1558 */ 1559 if ((uintptr_t)rp->r_pc - (uintptr_t)mutex_exit_critical_start < 1560 mutex_exit_critical_size) { 1561 rp->r_pc = (greg_t)mutex_exit_critical_start; 1562 } 1563 1564 /* 1565 * If we interrupted the mutex_owner_running() critical region we 1566 * must reset the PC back to the beginning to prevent dereferencing 1567 * of a freed thread pointer. See the comments in mutex_owner_running 1568 * for details. 1569 */ 1570 if ((uintptr_t)rp->r_pc - 1571 (uintptr_t)mutex_owner_running_critical_start < 1572 mutex_owner_running_critical_size) { 1573 rp->r_pc = (greg_t)mutex_owner_running_critical_start; 1574 } 1575 1576 return (0); 1577 } 1578 1579 void 1580 send_dirint(int cpuid, int int_level) 1581 { 1582 (*send_dirintf)(cpuid, int_level); 1583 } 1584 1585 #define IS_FAKE_SOFTINT(flag, newpri) \ 1586 (((flag) & PS_IE) && \ 1587 (((*get_pending_spl)() > (newpri)) || \ 1588 bsrw_insn((uint16_t)cpu->cpu_softinfo.st_pending) > (newpri))) 1589 1590 /* 1591 * do_splx routine, takes new ipl to set 1592 * returns the old ipl. 1593 * We are careful not to set priority lower than CPU->cpu_base_pri, 1594 * even though it seems we're raising the priority, it could be set 1595 * higher at any time by an interrupt routine, so we must block interrupts 1596 * and look at CPU->cpu_base_pri 1597 */ 1598 int 1599 do_splx(int newpri) 1600 { 1601 ulong_t flag; 1602 cpu_t *cpu; 1603 int curpri, basepri; 1604 1605 flag = intr_clear(); 1606 cpu = CPU; /* ints are disabled, now safe to cache cpu ptr */ 1607 curpri = cpu->cpu_m.mcpu_pri; 1608 basepri = cpu->cpu_base_spl; 1609 if (newpri < basepri) 1610 newpri = basepri; 1611 cpu->cpu_m.mcpu_pri = newpri; 1612 (*setspl)(newpri); 1613 /* 1614 * If we are going to reenable interrupts see if new priority level 1615 * allows pending softint delivery. 1616 */ 1617 if (IS_FAKE_SOFTINT(flag, newpri)) 1618 fakesoftint(); 1619 ASSERT(!interrupts_enabled()); 1620 intr_restore(flag); 1621 return (curpri); 1622 } 1623 1624 /* 1625 * Common spl raise routine, takes new ipl to set 1626 * returns the old ipl, will not lower ipl. 1627 */ 1628 int 1629 splr(int newpri) 1630 { 1631 ulong_t flag; 1632 cpu_t *cpu; 1633 int curpri, basepri; 1634 1635 flag = intr_clear(); 1636 cpu = CPU; /* ints are disabled, now safe to cache cpu ptr */ 1637 curpri = cpu->cpu_m.mcpu_pri; 1638 /* 1639 * Only do something if new priority is larger 1640 */ 1641 if (newpri > curpri) { 1642 basepri = cpu->cpu_base_spl; 1643 if (newpri < basepri) 1644 newpri = basepri; 1645 cpu->cpu_m.mcpu_pri = newpri; 1646 (*setspl)(newpri); 1647 /* 1648 * See if new priority level allows pending softint delivery 1649 */ 1650 if (IS_FAKE_SOFTINT(flag, newpri)) 1651 fakesoftint(); 1652 } 1653 intr_restore(flag); 1654 return (curpri); 1655 } 1656 1657 int 1658 getpil(void) 1659 { 1660 return (CPU->cpu_m.mcpu_pri); 1661 } 1662 1663 int 1664 spl_xcall(void) 1665 { 1666 return (splr(ipltospl(XCALL_PIL))); 1667 } 1668 1669 int 1670 interrupts_enabled(void) 1671 { 1672 ulong_t flag; 1673 1674 flag = getflags(); 1675 return ((flag & PS_IE) == PS_IE); 1676 } 1677 1678 #ifdef DEBUG 1679 void 1680 assert_ints_enabled(void) 1681 { 1682 ASSERT(!interrupts_unleashed || interrupts_enabled()); 1683 } 1684 #endif /* DEBUG */