1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved. 24 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 25 * Copyright 2014 Josef "Jeff" Sipek <jeffpc@josefsipek.net> 26 */ 27 /* 28 * Copyright (c) 2010, Intel Corporation. 29 * All rights reserved. 30 */ 31 /* 32 * Portions Copyright 2009 Advanced Micro Devices, Inc. 33 */ 34 /* 35 * Copyright 2019, Joyent, Inc. 36 */ 37 38 /* 39 * CPU Identification logic 40 * 41 * The purpose of this file and its companion, cpuid_subr.c, is to help deal 42 * with the identification of CPUs, their features, and their topologies. More 43 * specifically, this file helps drive the following: 44 * 45 * 1. Enumeration of features of the processor which are used by the kernel to 46 * determine what features to enable or disable. These may be instruction set 47 * enhancements or features that we use. 48 * 49 * 2. Enumeration of instruction set architecture (ISA) additions that userland 50 * will be told about through the auxiliary vector. 51 * 52 * 3. Understanding the physical topology of the CPU such as the number of 53 * caches, how many cores it has, whether or not it supports symmetric 54 * multi-processing (SMT), etc. 55 * 56 * ------------------------ 57 * CPUID History and Basics 58 * ------------------------ 59 * 60 * The cpuid instruction was added by Intel roughly around the time that the 61 * original Pentium was introduced. The purpose of cpuid was to tell in a 62 * programmatic fashion information about the CPU that previously was guessed 63 * at. For example, an important part of cpuid is that we can know what 64 * extensions to the ISA exist. If you use an invalid opcode you would get a 65 * #UD, so this method allows a program (whether a user program or the kernel) 66 * to determine what exists without crashing or getting a SIGILL. Of course, 67 * this was also during the era of the clones and the AMD Am5x86. The vendor 68 * name shows up first in cpuid for a reason. 69 * 70 * cpuid information is broken down into ranges called a 'leaf'. Each leaf puts 71 * unique values into the registers %eax, %ebx, %ecx, and %edx and each leaf has 72 * its own meaning. The different leaves are broken down into different regions: 73 * 74 * [ 0, 7fffffff ] This region is called the 'basic' 75 * region. This region is generally defined 76 * by Intel, though some of the original 77 * portions have different meanings based 78 * on the manufacturer. These days, Intel 79 * adds most new features to this region. 80 * AMD adds non-Intel compatible 81 * information in the third, extended 82 * region. Intel uses this for everything 83 * including ISA extensions, CPU 84 * features, cache information, topology, 85 * and more. 86 * 87 * There is a hole carved out of this 88 * region which is reserved for 89 * hypervisors. 90 * 91 * [ 40000000, 4fffffff ] This region, which is found in the 92 * middle of the previous region, is 93 * explicitly promised to never be used by 94 * CPUs. Instead, it is used by hypervisors 95 * to communicate information about 96 * themselves to the operating system. The 97 * values and details are unique for each 98 * hypervisor. 99 * 100 * [ 80000000, ffffffff ] This region is called the 'extended' 101 * region. Some of the low leaves mirror 102 * parts of the basic leaves. This region 103 * has generally been used by AMD for 104 * various extensions. For example, AMD- 105 * specific information about caches, 106 * features, and topology are found in this 107 * region. 108 * 109 * To specify a range, you place the desired leaf into %eax, zero %ebx, %ecx, 110 * and %edx, and then issue the cpuid instruction. At the first leaf in each of 111 * the ranges, one of the primary things returned is the maximum valid leaf in 112 * that range. This allows for discovery of what range of CPUID is valid. 113 * 114 * The CPUs have potentially surprising behavior when using an invalid leaf or 115 * unimplemented leaf. If the requested leaf is within the valid basic or 116 * extended range, but is unimplemented, then %eax, %ebx, %ecx, and %edx will be 117 * set to zero. However, if you specify a leaf that is outside of a valid range, 118 * then instead it will be filled with the last valid _basic_ leaf. For example, 119 * if the maximum basic value is on leaf 0x3, then issuing a cpuid for leaf 4 or 120 * an invalid extended leaf will return the information for leaf 3. 121 * 122 * Some leaves are broken down into sub-leaves. This means that the value 123 * depends on both the leaf asked for in %eax and a secondary register. For 124 * example, Intel uses the value in %ecx on leaf 7 to indicate a sub-leaf to get 125 * additional information. Or when getting topology information in leaf 0xb, the 126 * initial value in %ecx changes which level of the topology that you are 127 * getting information about. 128 * 129 * cpuid values are always kept to 32 bits regardless of whether or not the 130 * program is in 64-bit mode. When executing in 64-bit mode, the upper 131 * 32 bits of the register are always set to zero so that way the values are the 132 * same regardless of execution mode. 133 * 134 * ---------------------- 135 * Identifying Processors 136 * ---------------------- 137 * 138 * We can identify a processor in two steps. The first step looks at cpuid leaf 139 * 0. Leaf 0 contains the processor's vendor information. This is done by 140 * putting a 12 character string in %ebx, %ecx, and %edx. On AMD, it is 141 * 'AuthenticAMD' and on Intel it is 'GenuineIntel'. 142 * 143 * From there, a processor is identified by a combination of three different 144 * values: 145 * 146 * 1. Family 147 * 2. Model 148 * 3. Stepping 149 * 150 * Each vendor uses the family and model to uniquely identify a processor. The 151 * way that family and model are changed depends on the vendor. For example, 152 * Intel has been using family 0x6 for almost all of their processor since the 153 * Pentium Pro/Pentium II era, often called the P6. The model is used to 154 * identify the exact processor. Different models are often used for the client 155 * (consumer) and server parts. Even though each processor often has major 156 * architectural differences, they still are considered the same family by 157 * Intel. 158 * 159 * On the other hand, each major AMD architecture generally has its own family. 160 * For example, the K8 is family 0x10, Bulldozer 0x15, and Zen 0x17. Within it 161 * the model number is used to help identify specific processors. 162 * 163 * The stepping is used to refer to a revision of a specific microprocessor. The 164 * term comes from equipment used to produce masks that are used to create 165 * integrated circuits. 166 * 167 * The information is present in leaf 1, %eax. In technical documentation you 168 * will see the terms extended model and extended family. The original family, 169 * model, and stepping fields were each 4 bits wide. If the values in either 170 * are 0xf, then one is to consult the extended model and extended family, which 171 * take previously reserved bits and allow for a larger number of models and add 172 * 0xf to them. 173 * 174 * When we process this information, we store the full family, model, and 175 * stepping in the struct cpuid_info members cpi_family, cpi_model, and 176 * cpi_step, respectively. Whenever you are performing comparisons with the 177 * family, model, and stepping, you should use these members and not the raw 178 * values from cpuid. If you must use the raw values from cpuid directly, you 179 * must make sure that you add the extended model and family to the base model 180 * and family. 181 * 182 * In general, we do not use information about the family, model, and stepping 183 * to determine whether or not a feature is present; that is generally driven by 184 * specific leaves. However, when something we care about on the processor is 185 * not considered 'architectural' meaning that it is specific to a set of 186 * processors and not promised in the architecture model to be consistent from 187 * generation to generation, then we will fall back on this information. The 188 * most common cases where this comes up is when we have to workaround errata in 189 * the processor, are dealing with processor-specific features such as CPU 190 * performance counters, or we want to provide additional information for things 191 * such as fault management. 192 * 193 * While processors also do have a brand string, which is the name that people 194 * are familiar with when buying the processor, they are not meant for 195 * programmatic consumption. That is what the family, model, and stepping are 196 * for. 197 * 198 * ------------ 199 * CPUID Passes 200 * ------------ 201 * 202 * As part of performing feature detection, we break this into several different 203 * passes. The passes are as follows: 204 * 205 * Pass 0 This is a primordial pass done in locore.s to deal with 206 * Cyrix CPUs that don't support cpuid. The reality is that 207 * we likely don't run on them any more, but there is still 208 * logic for handling them. 209 * 210 * Pass 1 This is the primary pass and is responsible for doing a 211 * large number of different things: 212 * 213 * 1. Determine which vendor manufactured the CPU and 214 * determining the family, model, and stepping information. 215 * 216 * 2. Gathering a large number of feature flags to 217 * determine which features the CPU support and which 218 * indicate things that we need to do other work in the OS 219 * to enable. Features detected this way are added to the 220 * x86_featureset which can be queried to 221 * determine what we should do. This includes processing 222 * all of the basic and extended CPU features that we care 223 * about. 224 * 225 * 3. Determining the CPU's topology. This includes 226 * information about how many cores and threads are present 227 * in the package. It also is responsible for figuring out 228 * which logical CPUs are potentially part of the same core 229 * and what other resources they might share. For more 230 * information see the 'Topology' section. 231 * 232 * 4. Determining the set of CPU security-specific features 233 * that we need to worry about and determine the 234 * appropriate set of workarounds. 235 * 236 * Pass 1 on the boot CPU occurs before KMDB is started. 237 * 238 * Pass 2 The second pass is done after startup(). Here, we check 239 * other miscellaneous features. Most of this is gathering 240 * additional basic and extended features that we'll use in 241 * later passes or for debugging support. 242 * 243 * Pass 3 The third pass occurs after the kernel memory allocator 244 * has been fully initialized. This gathers information 245 * where we might need dynamic memory available for our 246 * uses. This includes several varying width leaves that 247 * have cache information and the processor's brand string. 248 * 249 * Pass 4 The fourth and final normal pass is performed after the 250 * kernel has brought most everything online. This is 251 * invoked from post_startup(). In this pass, we go through 252 * the set of features that we have enabled and turn that 253 * into the hardware auxiliary vector features that 254 * userland receives. This is used by userland, primarily 255 * by the run-time link-editor (RTLD), though userland 256 * software could also refer to it directly. 257 * 258 * Microcode After a microcode update, we do a selective rescan of 259 * the cpuid leaves to determine what features have 260 * changed. Microcode updates can provide more details 261 * about security related features to deal with issues like 262 * Spectre and L1TF. On occasion, vendors have violated 263 * their contract and removed bits. However, we don't try 264 * to detect that because that puts us in a situation that 265 * we really can't deal with. As such, the only thing we 266 * rescan are security related features today. See 267 * cpuid_pass_ucode(). 268 * 269 * All of the passes (except pass 0) are run on all CPUs. However, for the most 270 * part we only care about what the boot CPU says about this information and use 271 * the other CPUs as a rough guide to sanity check that we have the same feature 272 * set. 273 * 274 * We do not support running multiple logical CPUs with disjoint, let alone 275 * different, feature sets. 276 * 277 * ------------------ 278 * Processor Topology 279 * ------------------ 280 * 281 * One of the important things that we need to do is to understand the topology 282 * of the underlying processor. When we say topology in this case, we're trying 283 * to understand the relationship between the logical CPUs that the operating 284 * system sees and the underlying physical layout. Different logical CPUs may 285 * share different resources which can have important consequences for the 286 * performance of the system. For example, they may share caches, execution 287 * units, and more. 288 * 289 * The topology of the processor changes from generation to generation and 290 * vendor to vendor. Along with that, different vendors use different 291 * terminology, and the operating system itself uses occasionally overlapping 292 * terminology. It's important to understand what this topology looks like so 293 * one can understand the different things that we try to calculate and 294 * determine. 295 * 296 * To get started, let's talk about a little bit of terminology that we've used 297 * so far, is used throughout this file, and is fairly generic across multiple 298 * vendors: 299 * 300 * CPU 301 * A central processing unit (CPU) refers to a logical and/or virtual 302 * entity that the operating system can execute instructions on. The 303 * underlying resources for this CPU may be shared between multiple 304 * entities; however, to the operating system it is a discrete unit. 305 * 306 * PROCESSOR and PACKAGE 307 * 308 * Generally, when we use the term 'processor' on its own, we are referring 309 * to the physical entity that one buys and plugs into a board. However, 310 * because processor has been overloaded and one might see it used to mean 311 * multiple different levels, we will instead use the term 'package' for 312 * the rest of this file. The term package comes from the electrical 313 * engineering side and refers to the physical entity that encloses the 314 * electronics inside. Strictly speaking the package can contain more than 315 * just the CPU, for example, on many processors it may also have what's 316 * called an 'integrated graphical processing unit (GPU)'. Because the 317 * package can encapsulate multiple units, it is the largest physical unit 318 * that we refer to. 319 * 320 * SOCKET 321 * 322 * A socket refers to unit on a system board (generally the motherboard) 323 * that can receive a package. A single package, or processor, is plugged 324 * into a single socket. A system may have multiple sockets. Often times, 325 * the term socket is used interchangeably with package and refers to the 326 * electrical component that has plugged in, and not the receptacle itself. 327 * 328 * CORE 329 * 330 * A core refers to the physical instantiation of a CPU, generally, with a 331 * full set of hardware resources available to it. A package may contain 332 * multiple cores inside of it or it may just have a single one. A 333 * processor with more than one core is often referred to as 'multi-core'. 334 * In illumos, we will use the feature X86FSET_CMP to refer to a system 335 * that has 'multi-core' processors. 336 * 337 * A core may expose a single logical CPU to the operating system, or it 338 * may expose multiple CPUs, which we call threads, defined below. 339 * 340 * Some resources may still be shared by cores in the same package. For 341 * example, many processors will share the level 3 cache between cores. 342 * Some AMD generations share hardware resources between cores. For more 343 * information on that see the section 'AMD Topology'. 344 * 345 * THREAD and STRAND 346 * 347 * In this file, generally a thread refers to a hardware resources and not 348 * the operating system's logical abstraction. A thread is always exposed 349 * as an independent logical CPU to the operating system. A thread belongs 350 * to a specific core. A core may have more than one thread. When that is 351 * the case, the threads that are part of the same core are often referred 352 * to as 'siblings'. 353 * 354 * When multiple threads exist, this is generally referred to as 355 * simultaneous multi-threading (SMT). When Intel introduced this in their 356 * processors they called it hyper-threading (HT). When multiple threads 357 * are active in a core, they split the resources of the core. For example, 358 * two threads may share the same set of hardware execution units. 359 * 360 * The operating system often uses the term 'strand' to refer to a thread. 361 * This helps disambiguate it from the software concept. 362 * 363 * CHIP 364 * 365 * Unfortunately, the term 'chip' is dramatically overloaded. At its most 366 * base meaning, it is used to refer to a single integrated circuit, which 367 * may or may not be the only thing in the package. In illumos, when you 368 * see the term 'chip' it is almost always referring to the same thing as 369 * the 'package'. However, many vendors may use chip to refer to one of 370 * many integrated circuits that have been placed in the package. As an 371 * example, see the subsequent definition. 372 * 373 * To try and keep things consistent, we will only use chip when referring 374 * to the entire integrated circuit package, with the exception of the 375 * definition of multi-chip module (because it is in the name) and use the 376 * term 'die' when we want the more general, potential sub-component 377 * definition. 378 * 379 * DIE 380 * 381 * A die refers to an integrated circuit. Inside of the package there may 382 * be a single die or multiple dies. This is sometimes called a 'chip' in 383 * vendor's parlance, but in this file, we use the term die to refer to a 384 * subcomponent. 385 * 386 * MULTI-CHIP MODULE 387 * 388 * A multi-chip module (MCM) refers to putting multiple distinct chips that 389 * are connected together in the same package. When a multi-chip design is 390 * used, generally each chip is manufactured independently and then joined 391 * together in the package. For example, on AMD's Zen microarchitecture 392 * (family 0x17), the package contains several dies (the second meaning of 393 * chip from above) that are connected together. 394 * 395 * CACHE 396 * 397 * A cache is a part of the processor that maintains copies of recently 398 * accessed memory. Caches are split into levels and then into types. 399 * Commonly there are one to three levels, called level one, two, and 400 * three. The lower the level, the smaller it is, the closer it is to the 401 * execution units of the CPU, and the faster it is to access. The layout 402 * and design of the cache come in many different flavors, consult other 403 * resources for a discussion of those. 404 * 405 * Caches are generally split into two types, the instruction and data 406 * cache. The caches contain what their names suggest, the instruction 407 * cache has executable program text, while the data cache has all other 408 * memory that the processor accesses. As of this writing, data is kept 409 * coherent between all of the caches on x86, so if one modifies program 410 * text before it is executed, that will be in the data cache, and the 411 * instruction cache will be synchronized with that change when the 412 * processor actually executes those instructions. This coherency also 413 * covers the fact that data could show up in multiple caches. 414 * 415 * Generally, the lowest level caches are specific to a core. However, the 416 * last layer cache is shared between some number of cores. The number of 417 * CPUs sharing this last level cache is important. This has implications 418 * for the choices that the scheduler makes, as accessing memory that might 419 * be in a remote cache after thread migration can be quite expensive. 420 * 421 * Sometimes, the word cache is abbreviated with a '$', because in US 422 * English the word cache is pronounced the same as cash. So L1D$ refers to 423 * the L1 data cache, and L2$ would be the L2 cache. This will not be used 424 * in the rest of this theory statement for clarity. 425 * 426 * MEMORY CONTROLLER 427 * 428 * The memory controller is a component that provides access to DRAM. Each 429 * memory controller can access a set number of DRAM channels. Each channel 430 * can have a number of DIMMs (sticks of memory) associated with it. A 431 * given package may have more than one memory controller. The association 432 * of the memory controller to a group of cores is important as it is 433 * cheaper to access memory on the controller that you are associated with. 434 * 435 * NUMA 436 * 437 * NUMA or non-uniform memory access, describes a way that systems are 438 * built. On x86, any processor core can address all of the memory in the 439 * system. However, When using multiple sockets or possibly within a 440 * multi-chip module, some of that memory is physically closer and some of 441 * it is further. Memory that is further away is more expensive to access. 442 * Consider the following image of multiple sockets with memory: 443 * 444 * +--------+ +--------+ 445 * | DIMM A | +----------+ +----------+ | DIMM D | 446 * +--------+-+ | | | | +-+------+-+ 447 * | DIMM B |=======| Socket 0 |======| Socket 1 |=======| DIMM E | 448 * +--------+-+ | | | | +-+------+-+ 449 * | DIMM C | +----------+ +----------+ | DIMM F | 450 * +--------+ +--------+ 451 * 452 * In this example, Socket 0 is closer to DIMMs A-C while Socket 1 is 453 * closer to DIMMs D-F. This means that it is cheaper for socket 0 to 454 * access DIMMs A-C and more expensive to access D-F as it has to go 455 * through Socket 1 to get there. The inverse is true for Socket 1. DIMMs 456 * D-F are cheaper than A-C. While the socket form is the most common, when 457 * using multi-chip modules, this can also sometimes occur. For another 458 * example of this that's more involved, see the AMD topology section. 459 * 460 * 461 * Intel Topology 462 * -------------- 463 * 464 * Most Intel processors since Nehalem, (as of this writing the current gen 465 * is Skylake / Cannon Lake) follow a fairly similar pattern. The CPU portion of 466 * the package is a single monolithic die. MCMs currently aren't used. Most 467 * parts have three levels of caches, with the L3 cache being shared between 468 * all of the cores on the package. The L1/L2 cache is generally specific to 469 * an individual core. The following image shows at a simplified level what 470 * this looks like. The memory controller is commonly part of something called 471 * the 'Uncore', that used to be separate physical chips that were not a part of 472 * the package, but are now part of the same chip. 473 * 474 * +-----------------------------------------------------------------------+ 475 * | Package | 476 * | +-------------------+ +-------------------+ +-------------------+ | 477 * | | Core | | Core | | Core | | 478 * | | +--------+ +---+ | | +--------+ +---+ | | +--------+ +---+ | | 479 * | | | Thread | | L | | | | Thread | | L | | | | Thread | | L | | | 480 * | | +--------+ | 1 | | | +--------+ | 1 | | | +--------+ | 1 | | | 481 * | | +--------+ | | | | +--------+ | | | | +--------+ | | | | 482 * | | | Thread | | | | | | Thread | | | | | | Thread | | | | | 483 * | | +--------+ +---+ | | +--------+ +---+ | | +--------+ +---+ | | 484 * | | +--------------+ | | +--------------+ | | +--------------+ | | 485 * | | | L2 Cache | | | | L2 Cache | | | | L2 Cache | | | 486 * | | +--------------+ | | +--------------+ | | +--------------+ | | 487 * | +-------------------+ +-------------------+ +-------------------+ | 488 * | +-------------------------------------------------------------------+ | 489 * | | Shared L3 Cache | | 490 * | +-------------------------------------------------------------------+ | 491 * | +-------------------------------------------------------------------+ | 492 * | | Memory Controller | | 493 * | +-------------------------------------------------------------------+ | 494 * +-----------------------------------------------------------------------+ 495 * 496 * A side effect of this current architecture is that what we care about from a 497 * scheduling and topology perspective, is simplified. In general we care about 498 * understanding which logical CPUs are part of the same core and socket. 499 * 500 * To determine the relationship between threads and cores, Intel initially used 501 * the identifier in the advanced programmable interrupt controller (APIC). They 502 * also added cpuid leaf 4 to give additional information about the number of 503 * threads and CPUs in the processor. With the addition of x2apic (which 504 * increased the number of addressable logical CPUs from 8-bits to 32-bits), an 505 * additional cpuid topology leaf 0xB was added. 506 * 507 * AMD Topology 508 * ------------ 509 * 510 * When discussing AMD topology, we want to break this into three distinct 511 * generations of topology. There's the basic topology that has been used in 512 * family 0xf+ (Opteron, Athlon64), there's the topology that was introduced 513 * with family 0x15 (Bulldozer), and there's the topology that was introduced 514 * with family 0x17 (Zen). AMD also has some additional terminology that's worth 515 * talking about. 516 * 517 * Until the introduction of family 0x17 (Zen), AMD did not implement something 518 * that they considered SMT. Whether or not the AMD processors have SMT 519 * influences many things including scheduling and reliability, availability, 520 * and serviceability (RAS) features. 521 * 522 * NODE 523 * 524 * AMD uses the term node to refer to a die that contains a number of cores 525 * and I/O resources. Depending on the processor family and model, more 526 * than one node can be present in the package. When there is more than one 527 * node this indicates a multi-chip module. Usually each node has its own 528 * access to memory and I/O devices. This is important and generally 529 * different from the corresponding Intel Nehalem-Skylake+ processors. As a 530 * result, we track this relationship in the operating system. 531 * 532 * In processors with an L3 cache, the L3 cache is generally shared across 533 * the entire node, though the way this is carved up varies from generation 534 * to generation. 535 * 536 * BULLDOZER 537 * 538 * Starting with the Bulldozer family (0x15) and continuing until the 539 * introduction of the Zen microarchitecture, AMD introduced the idea of a 540 * compute unit. In a compute unit, two traditional cores share a number of 541 * hardware resources. Critically, they share the FPU, L1 instruction 542 * cache, and the L2 cache. Several compute units were then combined inside 543 * of a single node. Because the integer execution units, L1 data cache, 544 * and some other resources were not shared between the cores, AMD never 545 * considered this to be SMT. 546 * 547 * ZEN 548 * 549 * The Zen family (0x17) uses a multi-chip module (MCM) design, the module 550 * is called Zeppelin. These modules are similar to the idea of nodes used 551 * previously. Each of these nodes has two DRAM channels which all of the 552 * cores in the node can access uniformly. These nodes are linked together 553 * in the package, creating a NUMA environment. 554 * 555 * The Zeppelin die itself contains two different 'core complexes'. Each 556 * core complex consists of four cores which each have two threads, for a 557 * total of 8 logical CPUs per complex. Unlike other generations, 558 * where all the logical CPUs in a given node share the L3 cache, here each 559 * core complex has its own shared L3 cache. 560 * 561 * A further thing that we need to consider is that in some configurations, 562 * particularly with the Threadripper line of processors, not every die 563 * actually has its memory controllers wired up to actual memory channels. 564 * This means that some cores have memory attached to them and others 565 * don't. 566 * 567 * To put Zen in perspective, consider the following images: 568 * 569 * +--------------------------------------------------------+ 570 * | Core Complex | 571 * | +-------------------+ +-------------------+ +---+ | 572 * | | Core +----+ | | Core +----+ | | | | 573 * | | +--------+ | L2 | | | +--------+ | L2 | | | | | 574 * | | | Thread | +----+ | | | Thread | +----+ | | | | 575 * | | +--------+-+ +--+ | | +--------+-+ +--+ | | L | | 576 * | | | Thread | |L1| | | | Thread | |L1| | | 3 | | 577 * | | +--------+ +--+ | | +--------+ +--+ | | | | 578 * | +-------------------+ +-------------------+ | C | | 579 * | +-------------------+ +-------------------+ | a | | 580 * | | Core +----+ | | Core +----+ | | c | | 581 * | | +--------+ | L2 | | | +--------+ | L2 | | | h | | 582 * | | | Thread | +----+ | | | Thread | +----+ | | e | | 583 * | | +--------+-+ +--+ | | +--------+-+ +--+ | | | | 584 * | | | Thread | |L1| | | | Thread | |L1| | | | | 585 * | | +--------+ +--+ | | +--------+ +--+ | | | | 586 * | +-------------------+ +-------------------+ +---+ | 587 * | | 588 * +--------------------------------------------------------+ 589 * 590 * This first image represents a single Zen core complex that consists of four 591 * cores. 592 * 593 * 594 * +--------------------------------------------------------+ 595 * | Zeppelin Die | 596 * | +--------------------------------------------------+ | 597 * | | I/O Units (PCIe, SATA, USB, etc.) | | 598 * | +--------------------------------------------------+ | 599 * | HH | 600 * | +-----------+ HH +-----------+ | 601 * | | | HH | | | 602 * | | Core |==========| Core | | 603 * | | Complex |==========| Complex | | 604 * | | | HH | | | 605 * | +-----------+ HH +-----------+ | 606 * | HH | 607 * | +--------------------------------------------------+ | 608 * | | Memory Controller | | 609 * | +--------------------------------------------------+ | 610 * | | 611 * +--------------------------------------------------------+ 612 * 613 * This image represents a single Zeppelin Die. Note how both cores are 614 * connected to the same memory controller and I/O units. While each core 615 * complex has its own L3 cache as seen in the first image, they both have 616 * uniform access to memory. 617 * 618 * 619 * PP PP 620 * PP PP 621 * +----------PP---------------------PP---------+ 622 * | PP PP | 623 * | +-----------+ +-----------+ | 624 * | | | | | | 625 * MMMMMMMMM| Zeppelin |==========| Zeppelin |MMMMMMMMM 626 * MMMMMMMMM| Die |==========| Die |MMMMMMMMM 627 * | | | | | | 628 * | +-----------+ooo ...+-----------+ | 629 * | HH ooo ... HH | 630 * | HH oo.. HH | 631 * | HH ..oo HH | 632 * | HH ... ooo HH | 633 * | +-----------+... ooo+-----------+ | 634 * | | | | | | 635 * MMMMMMMMM| Zeppelin |==========| Zeppelin |MMMMMMMMM 636 * MMMMMMMMM| Die |==========| Die |MMMMMMMMM 637 * | | | | | | 638 * | +-----------+ +-----------+ | 639 * | PP PP | 640 * +----------PP---------------------PP---------+ 641 * PP PP 642 * PP PP 643 * 644 * This image represents a single Zen package. In this example, it has four 645 * Zeppelin dies, though some configurations only have a single one. In this 646 * example, each die is directly connected to the next. Also, each die is 647 * represented as being connected to memory by the 'M' character and connected 648 * to PCIe devices and other I/O, by the 'P' character. Because each Zeppelin 649 * die is made up of two core complexes, we have multiple different NUMA 650 * domains that we care about for these systems. 651 * 652 * CPUID LEAVES 653 * 654 * There are a few different CPUID leaves that we can use to try and understand 655 * the actual state of the world. As part of the introduction of family 0xf, AMD 656 * added CPUID leaf 0x80000008. This leaf tells us the number of logical 657 * processors that are in the system. Because families before Zen didn't have 658 * SMT, this was always the number of cores that were in the system. However, it 659 * should always be thought of as the number of logical threads to be consistent 660 * between generations. In addition we also get the size of the APIC ID that is 661 * used to represent the number of logical processors. This is important for 662 * deriving topology information. 663 * 664 * In the Bulldozer family, AMD added leaf 0x8000001E. The information varies a 665 * bit between Bulldozer and later families, but it is quite useful in 666 * determining the topology information. Because this information has changed 667 * across family generations, it's worth calling out what these mean 668 * explicitly. The registers have the following meanings: 669 * 670 * %eax The APIC ID. The entire register is defined to have a 32-bit 671 * APIC ID, even though on systems without x2apic support, it will 672 * be limited to 8 bits. 673 * 674 * %ebx On Bulldozer-era systems this contains information about the 675 * number of cores that are in a compute unit (cores that share 676 * resources). It also contains a per-package compute unit ID that 677 * identifies which compute unit the logical CPU is a part of. 678 * 679 * On Zen-era systems this instead contains the number of threads 680 * per core and the ID of the core that the logical CPU is a part 681 * of. Note, this ID is unique only to the package, it is not 682 * globally unique across the entire system. 683 * 684 * %ecx This contains the number of nodes that exist in the package. It 685 * also contains an ID that identifies which node the logical CPU 686 * is a part of. 687 * 688 * Finally, we also use cpuid leaf 0x8000001D to determine information about the 689 * cache layout to determine which logical CPUs are sharing which caches. 690 * 691 * illumos Topology 692 * ---------------- 693 * 694 * Based on the above we synthesize the information into several different 695 * variables that we store in the 'struct cpuid_info'. We'll go into the details 696 * of what each member is supposed to represent and their uniqueness. In 697 * general, there are two levels of uniqueness that we care about. We care about 698 * an ID that is globally unique. That means that it will be unique across all 699 * entities in the system. For example, the default logical CPU ID is globally 700 * unique. On the other hand, there is some information that we only care about 701 * being unique within the context of a single package / socket. Here are the 702 * variables that we keep track of and their meaning. 703 * 704 * Several of the values that are asking for an identifier, with the exception 705 * of cpi_apicid, are allowed to be synthetic. 706 * 707 * 708 * cpi_apicid 709 * 710 * This is the value of the CPU's APIC id. This should be the full 32-bit 711 * ID if the CPU is using the x2apic. Otherwise, it should be the 8-bit 712 * APIC ID. This value is globally unique between all logical CPUs across 713 * all packages. This is usually required by the APIC. 714 * 715 * cpi_chipid 716 * 717 * This value indicates the ID of the package that the logical CPU is a 718 * part of. This value is allowed to be synthetic. It is usually derived by 719 * taking the CPU's APIC ID and determining how many bits are used to 720 * represent CPU cores in the package. All logical CPUs that are part of 721 * the same package must have the same value. 722 * 723 * cpi_coreid 724 * 725 * This represents the ID of a CPU core. Two logical CPUs should only have 726 * the same cpi_coreid value if they are part of the same core. These 727 * values may be synthetic. On systems that support SMT, this value is 728 * usually derived from the APIC ID, otherwise it is often synthetic and 729 * just set to the value of the cpu_id in the cpu_t. 730 * 731 * cpi_pkgcoreid 732 * 733 * This is similar to the cpi_coreid in that logical CPUs that are part of 734 * the same core should have the same ID. The main difference is that these 735 * values are only required to be unique to a given socket. 736 * 737 * cpi_clogid 738 * 739 * This represents the logical ID of a logical CPU. This value should be 740 * unique within a given socket for each logical CPU. This is allowed to be 741 * synthetic, though it is usually based off of the CPU's apic ID. The 742 * broader system expects that logical CPUs that have are part of the same 743 * core have contiguous numbers. For example, if there were two threads per 744 * core, then the core IDs divided by two should be the same and the first 745 * modulus two should be zero and the second one. For example, IDs 4 and 5 746 * indicate two logical CPUs that are part of the same core. But IDs 5 and 747 * 6 represent two logical CPUs that are part of different cores. 748 * 749 * While it is common for the cpi_coreid and the cpi_clogid to be derived 750 * from the same source, strictly speaking, they don't have to be and the 751 * two values should be considered logically independent. One should not 752 * try to compare a logical CPU's cpi_coreid and cpi_clogid to determine 753 * some kind of relationship. While this is tempting, we've seen cases on 754 * AMD family 0xf where the system's cpu id is not related to its APIC ID. 755 * 756 * cpi_ncpu_per_chip 757 * 758 * This value indicates the total number of logical CPUs that exist in the 759 * physical package. Critically, this is not the number of logical CPUs 760 * that exist for just the single core. 761 * 762 * This value should be the same for all logical CPUs in the same package. 763 * 764 * cpi_ncore_per_chip 765 * 766 * This value indicates the total number of physical CPU cores that exist 767 * in the package. The system compares this value with cpi_ncpu_per_chip to 768 * determine if simultaneous multi-threading (SMT) is enabled. When 769 * cpi_ncpu_per_chip equals cpi_ncore_per_chip, then there is no SMT and 770 * the X86FSET_HTT feature is not set. If this value is greater than one, 771 * than we consider the processor to have the feature X86FSET_CMP, to 772 * indicate that there is support for more than one core. 773 * 774 * This value should be the same for all logical CPUs in the same package. 775 * 776 * cpi_procnodes_per_pkg 777 * 778 * This value indicates the number of 'nodes' that exist in the package. 779 * When processors are actually a multi-chip module, this represents the 780 * number of such modules that exist in the package. Currently, on Intel 781 * based systems this member is always set to 1. 782 * 783 * This value should be the same for all logical CPUs in the same package. 784 * 785 * cpi_procnodeid 786 * 787 * This value indicates the ID of the node that the logical CPU is a part 788 * of. All logical CPUs that are in the same node must have the same value 789 * here. This value must be unique across all of the packages in the 790 * system. On Intel based systems, this is currently set to the value in 791 * cpi_chipid because there is only one node. 792 * 793 * cpi_cores_per_compunit 794 * 795 * This value indicates the number of cores that are part of a compute 796 * unit. See the AMD topology section for this. This member only has real 797 * meaning currently for AMD Bulldozer family processors. For all other 798 * processors, this should currently be set to 1. 799 * 800 * cpi_compunitid 801 * 802 * This indicates the compute unit that the logical CPU belongs to. For 803 * processors without AMD Bulldozer-style compute units this should be set 804 * to the value of cpi_coreid. 805 * 806 * cpi_ncpu_shr_last_cache 807 * 808 * This indicates the number of logical CPUs that are sharing the same last 809 * level cache. This value should be the same for all CPUs that are sharing 810 * that cache. The last cache refers to the cache that is closest to memory 811 * and furthest away from the CPU. 812 * 813 * cpi_last_lvl_cacheid 814 * 815 * This indicates the ID of the last cache that the logical CPU uses. This 816 * cache is often shared between multiple logical CPUs and is the cache 817 * that is closest to memory and furthest away from the CPU. This value 818 * should be the same for a group of logical CPUs only if they actually 819 * share the same last level cache. IDs should not overlap between 820 * packages. 821 * 822 * cpi_ncore_bits 823 * 824 * This indicates the number of bits that are required to represent all of 825 * the cores in the system. As cores are derived based on their APIC IDs, 826 * we aren't guaranteed a run of APIC IDs starting from zero. It's OK for 827 * this value to be larger than the actual number of IDs that are present 828 * in the system. This is used to size tables by the CMI framework. It is 829 * only filled in for Intel and AMD CPUs. 830 * 831 * cpi_nthread_bits 832 * 833 * This indicates the number of bits required to represent all of the IDs 834 * that cover the logical CPUs that exist on a given core. It's OK for this 835 * value to be larger than the actual number of IDs that are present in the 836 * system. This is used to size tables by the CMI framework. It is 837 * only filled in for Intel and AMD CPUs. 838 * 839 * ----------- 840 * Hypervisors 841 * ----------- 842 * 843 * If trying to manage the differences between vendors wasn't bad enough, it can 844 * get worse thanks to our friend hardware virtualization. Hypervisors are given 845 * the ability to interpose on all cpuid instructions and change them to suit 846 * their purposes. In general, this is necessary as the hypervisor wants to be 847 * able to present a more uniform set of features or not necessarily give the 848 * guest operating system kernel knowledge of all features so it can be 849 * more easily migrated between systems. 850 * 851 * When it comes to trying to determine topology information, this can be a 852 * double edged sword. When a hypervisor doesn't actually implement a cpuid 853 * leaf, it'll often return all zeros. Because of that, you'll often see various 854 * checks scattered about fields being non-zero before we assume we can use 855 * them. 856 * 857 * When it comes to topology information, the hypervisor is often incentivized 858 * to lie to you about topology. This is because it doesn't always actually 859 * guarantee that topology at all. The topology path we take in the system 860 * depends on how the CPU advertises itself. If it advertises itself as an Intel 861 * or AMD CPU, then we basically do our normal path. However, when they don't 862 * use an actual vendor, then that usually turns into multiple one-core CPUs 863 * that we enumerate that are often on different sockets. The actual behavior 864 * depends greatly on what the hypervisor actually exposes to us. 865 * 866 * -------------------- 867 * Exposing Information 868 * -------------------- 869 * 870 * We expose CPUID information in three different forms in the system. 871 * 872 * The first is through the x86_featureset variable. This is used in conjunction 873 * with the is_x86_feature() function. This is queried by x86-specific functions 874 * to determine which features are or aren't present in the system and to make 875 * decisions based upon them. For example, users of this include everything from 876 * parts of the system dedicated to reliability, availability, and 877 * serviceability (RAS), to making decisions about how to handle security 878 * mitigations, to various x86-specific drivers. General purpose or 879 * architecture independent drivers should never be calling this function. 880 * 881 * The second means is through the auxiliary vector. The auxiliary vector is a 882 * series of tagged data that the kernel passes down to a user program when it 883 * begins executing. This information is used to indicate to programs what 884 * instruction set extensions are present. For example, information about the 885 * CPU supporting the machine check architecture (MCA) wouldn't be passed down 886 * since user programs cannot make use of it. However, things like the AVX 887 * instruction sets are. Programs use this information to make run-time 888 * decisions about what features they should use. As an example, the run-time 889 * link-editor (rtld) can relocate different functions depending on the hardware 890 * support available. 891 * 892 * The final form is through a series of accessor functions that all have the 893 * form cpuid_get*. This is used by a number of different subsystems in the 894 * kernel to determine more detailed information about what we're running on, 895 * topology information, etc. Some of these subsystems include processor groups 896 * (uts/common/os/pg.c.), CPU Module Interface (uts/i86pc/os/cmi.c), ACPI, 897 * microcode, and performance monitoring. These functions all ASSERT that the 898 * CPU they're being called on has reached a certain cpuid pass. If the passes 899 * are rearranged, then this needs to be adjusted. 900 */ 901 902 #include <sys/types.h> 903 #include <sys/archsystm.h> 904 #include <sys/x86_archext.h> 905 #include <sys/kmem.h> 906 #include <sys/systm.h> 907 #include <sys/cmn_err.h> 908 #include <sys/sunddi.h> 909 #include <sys/sunndi.h> 910 #include <sys/cpuvar.h> 911 #include <sys/processor.h> 912 #include <sys/sysmacros.h> 913 #include <sys/pg.h> 914 #include <sys/fp.h> 915 #include <sys/controlregs.h> 916 #include <sys/bitmap.h> 917 #include <sys/auxv_386.h> 918 #include <sys/memnode.h> 919 #include <sys/pci_cfgspace.h> 920 #include <sys/comm_page.h> 921 #include <sys/mach_mmu.h> 922 #include <sys/ucode.h> 923 #include <sys/tsc.h> 924 925 #ifdef __xpv 926 #include <sys/hypervisor.h> 927 #else 928 #include <sys/ontrap.h> 929 #endif 930 931 uint_t x86_vendor = X86_VENDOR_IntelClone; 932 uint_t x86_type = X86_TYPE_OTHER; 933 uint_t x86_clflush_size = 0; 934 935 #if defined(__xpv) 936 int x86_use_pcid = 0; 937 int x86_use_invpcid = 0; 938 #else 939 int x86_use_pcid = -1; 940 int x86_use_invpcid = -1; 941 #endif 942 943 uint_t pentiumpro_bug4046376; 944 945 uchar_t x86_featureset[BT_SIZEOFMAP(NUM_X86_FEATURES)]; 946 947 static char *x86_feature_names[NUM_X86_FEATURES] = { 948 "lgpg", 949 "tsc", 950 "msr", 951 "mtrr", 952 "pge", 953 "de", 954 "cmov", 955 "mmx", 956 "mca", 957 "pae", 958 "cv8", 959 "pat", 960 "sep", 961 "sse", 962 "sse2", 963 "htt", 964 "asysc", 965 "nx", 966 "sse3", 967 "cx16", 968 "cmp", 969 "tscp", 970 "mwait", 971 "sse4a", 972 "cpuid", 973 "ssse3", 974 "sse4_1", 975 "sse4_2", 976 "1gpg", 977 "clfsh", 978 "64", 979 "aes", 980 "pclmulqdq", 981 "xsave", 982 "avx", 983 "vmx", 984 "svm", 985 "topoext", 986 "f16c", 987 "rdrand", 988 "x2apic", 989 "avx2", 990 "bmi1", 991 "bmi2", 992 "fma", 993 "smep", 994 "smap", 995 "adx", 996 "rdseed", 997 "mpx", 998 "avx512f", 999 "avx512dq", 1000 "avx512pf", 1001 "avx512er", 1002 "avx512cd", 1003 "avx512bw", 1004 "avx512vl", 1005 "avx512fma", 1006 "avx512vbmi", 1007 "avx512_vpopcntdq", 1008 "avx512_4vnniw", 1009 "avx512_4fmaps", 1010 "xsaveopt", 1011 "xsavec", 1012 "xsaves", 1013 "sha", 1014 "umip", 1015 "pku", 1016 "ospke", 1017 "pcid", 1018 "invpcid", 1019 "ibrs", 1020 "ibpb", 1021 "stibp", 1022 "ssbd", 1023 "ssbd_virt", 1024 "rdcl_no", 1025 "ibrs_all", 1026 "rsba", 1027 "ssb_no", 1028 "stibp_all", 1029 "flush_cmd", 1030 "l1d_vmentry_no", 1031 "fsgsbase", 1032 "clflushopt", 1033 "clwb", 1034 "monitorx", 1035 "clzero", 1036 "xop", 1037 "fma4", 1038 "tbm", 1039 "avx512_vnni" 1040 }; 1041 1042 boolean_t 1043 is_x86_feature(void *featureset, uint_t feature) 1044 { 1045 ASSERT(feature < NUM_X86_FEATURES); 1046 return (BT_TEST((ulong_t *)featureset, feature)); 1047 } 1048 1049 void 1050 add_x86_feature(void *featureset, uint_t feature) 1051 { 1052 ASSERT(feature < NUM_X86_FEATURES); 1053 BT_SET((ulong_t *)featureset, feature); 1054 } 1055 1056 void 1057 remove_x86_feature(void *featureset, uint_t feature) 1058 { 1059 ASSERT(feature < NUM_X86_FEATURES); 1060 BT_CLEAR((ulong_t *)featureset, feature); 1061 } 1062 1063 boolean_t 1064 compare_x86_featureset(void *setA, void *setB) 1065 { 1066 /* 1067 * We assume that the unused bits of the bitmap are always zero. 1068 */ 1069 if (memcmp(setA, setB, BT_SIZEOFMAP(NUM_X86_FEATURES)) == 0) { 1070 return (B_TRUE); 1071 } else { 1072 return (B_FALSE); 1073 } 1074 } 1075 1076 void 1077 print_x86_featureset(void *featureset) 1078 { 1079 uint_t i; 1080 1081 for (i = 0; i < NUM_X86_FEATURES; i++) { 1082 if (is_x86_feature(featureset, i)) { 1083 cmn_err(CE_CONT, "?x86_feature: %s\n", 1084 x86_feature_names[i]); 1085 } 1086 } 1087 } 1088 1089 /* Note: This is the maximum size for the CPU, not the size of the structure. */ 1090 static size_t xsave_state_size = 0; 1091 uint64_t xsave_bv_all = (XFEATURE_LEGACY_FP | XFEATURE_SSE); 1092 boolean_t xsave_force_disable = B_FALSE; 1093 extern int disable_smap; 1094 1095 /* 1096 * This is set to platform type we are running on. 1097 */ 1098 static int platform_type = -1; 1099 1100 #if !defined(__xpv) 1101 /* 1102 * Variable to patch if hypervisor platform detection needs to be 1103 * disabled (e.g. platform_type will always be HW_NATIVE if this is 0). 1104 */ 1105 int enable_platform_detection = 1; 1106 #endif 1107 1108 /* 1109 * monitor/mwait info. 1110 * 1111 * size_actual and buf_actual are the real address and size allocated to get 1112 * proper mwait_buf alignement. buf_actual and size_actual should be passed 1113 * to kmem_free(). Currently kmem_alloc() and mwait happen to both use 1114 * processor cache-line alignment, but this is not guarantied in the furture. 1115 */ 1116 struct mwait_info { 1117 size_t mon_min; /* min size to avoid missed wakeups */ 1118 size_t mon_max; /* size to avoid false wakeups */ 1119 size_t size_actual; /* size actually allocated */ 1120 void *buf_actual; /* memory actually allocated */ 1121 uint32_t support; /* processor support of monitor/mwait */ 1122 }; 1123 1124 /* 1125 * xsave/xrestor info. 1126 * 1127 * This structure contains HW feature bits and the size of the xsave save area. 1128 * Note: the kernel declares a fixed size (AVX_XSAVE_SIZE) structure 1129 * (xsave_state) to describe the xsave layout. However, at runtime the 1130 * per-lwp xsave area is dynamically allocated based on xsav_max_size. The 1131 * xsave_state structure simply represents the legacy layout of the beginning 1132 * of the xsave area. 1133 */ 1134 struct xsave_info { 1135 uint32_t xsav_hw_features_low; /* Supported HW features */ 1136 uint32_t xsav_hw_features_high; /* Supported HW features */ 1137 size_t xsav_max_size; /* max size save area for HW features */ 1138 size_t ymm_size; /* AVX: size of ymm save area */ 1139 size_t ymm_offset; /* AVX: offset for ymm save area */ 1140 size_t bndregs_size; /* MPX: size of bndregs save area */ 1141 size_t bndregs_offset; /* MPX: offset for bndregs save area */ 1142 size_t bndcsr_size; /* MPX: size of bndcsr save area */ 1143 size_t bndcsr_offset; /* MPX: offset for bndcsr save area */ 1144 size_t opmask_size; /* AVX512: size of opmask save */ 1145 size_t opmask_offset; /* AVX512: offset for opmask save */ 1146 size_t zmmlo_size; /* AVX512: size of zmm 256 save */ 1147 size_t zmmlo_offset; /* AVX512: offset for zmm 256 save */ 1148 size_t zmmhi_size; /* AVX512: size of zmm hi reg save */ 1149 size_t zmmhi_offset; /* AVX512: offset for zmm hi reg save */ 1150 }; 1151 1152 1153 /* 1154 * These constants determine how many of the elements of the 1155 * cpuid we cache in the cpuid_info data structure; the 1156 * remaining elements are accessible via the cpuid instruction. 1157 */ 1158 1159 #define NMAX_CPI_STD 8 /* eax = 0 .. 7 */ 1160 #define NMAX_CPI_EXTD 0x1f /* eax = 0x80000000 .. 0x8000001e */ 1161 1162 /* 1163 * See the big theory statement for a more detailed explanation of what some of 1164 * these members mean. 1165 */ 1166 struct cpuid_info { 1167 uint_t cpi_pass; /* last pass completed */ 1168 /* 1169 * standard function information 1170 */ 1171 uint_t cpi_maxeax; /* fn 0: %eax */ 1172 char cpi_vendorstr[13]; /* fn 0: %ebx:%ecx:%edx */ 1173 uint_t cpi_vendor; /* enum of cpi_vendorstr */ 1174 1175 uint_t cpi_family; /* fn 1: extended family */ 1176 uint_t cpi_model; /* fn 1: extended model */ 1177 uint_t cpi_step; /* fn 1: stepping */ 1178 chipid_t cpi_chipid; /* fn 1: %ebx: Intel: chip # */ 1179 /* AMD: package/socket # */ 1180 uint_t cpi_brandid; /* fn 1: %ebx: brand ID */ 1181 int cpi_clogid; /* fn 1: %ebx: thread # */ 1182 uint_t cpi_ncpu_per_chip; /* fn 1: %ebx: logical cpu count */ 1183 uint8_t cpi_cacheinfo[16]; /* fn 2: intel-style cache desc */ 1184 uint_t cpi_ncache; /* fn 2: number of elements */ 1185 uint_t cpi_ncpu_shr_last_cache; /* fn 4: %eax: ncpus sharing cache */ 1186 id_t cpi_last_lvl_cacheid; /* fn 4: %eax: derived cache id */ 1187 uint_t cpi_cache_leaf_size; /* Number of cache elements */ 1188 /* Intel fn: 4, AMD fn: 8000001d */ 1189 struct cpuid_regs **cpi_cache_leaves; /* Acual leaves from above */ 1190 struct cpuid_regs cpi_std[NMAX_CPI_STD]; /* 0 .. 7 */ 1191 /* 1192 * extended function information 1193 */ 1194 uint_t cpi_xmaxeax; /* fn 0x80000000: %eax */ 1195 char cpi_brandstr[49]; /* fn 0x8000000[234] */ 1196 uint8_t cpi_pabits; /* fn 0x80000006: %eax */ 1197 uint8_t cpi_vabits; /* fn 0x80000006: %eax */ 1198 uint8_t cpi_fp_amd_save; /* AMD: FP error pointer save rqd. */ 1199 struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x800000XX */ 1200 1201 id_t cpi_coreid; /* same coreid => strands share core */ 1202 int cpi_pkgcoreid; /* core number within single package */ 1203 uint_t cpi_ncore_per_chip; /* AMD: fn 0x80000008: %ecx[7-0] */ 1204 /* Intel: fn 4: %eax[31-26] */ 1205 1206 /* 1207 * These values represent the number of bits that are required to store 1208 * information about the number of cores and threads. 1209 */ 1210 uint_t cpi_ncore_bits; 1211 uint_t cpi_nthread_bits; 1212 /* 1213 * supported feature information 1214 */ 1215 uint32_t cpi_support[6]; 1216 #define STD_EDX_FEATURES 0 1217 #define AMD_EDX_FEATURES 1 1218 #define TM_EDX_FEATURES 2 1219 #define STD_ECX_FEATURES 3 1220 #define AMD_ECX_FEATURES 4 1221 #define STD_EBX_FEATURES 5 1222 /* 1223 * Synthesized information, where known. 1224 */ 1225 uint32_t cpi_chiprev; /* See X86_CHIPREV_* in x86_archext.h */ 1226 const char *cpi_chiprevstr; /* May be NULL if chiprev unknown */ 1227 uint32_t cpi_socket; /* Chip package/socket type */ 1228 1229 struct mwait_info cpi_mwait; /* fn 5: monitor/mwait info */ 1230 uint32_t cpi_apicid; 1231 uint_t cpi_procnodeid; /* AMD: nodeID on HT, Intel: chipid */ 1232 uint_t cpi_procnodes_per_pkg; /* AMD: # of nodes in the package */ 1233 /* Intel: 1 */ 1234 uint_t cpi_compunitid; /* AMD: ComputeUnit ID, Intel: coreid */ 1235 uint_t cpi_cores_per_compunit; /* AMD: # of cores in the ComputeUnit */ 1236 1237 struct xsave_info cpi_xsave; /* fn D: xsave/xrestor info */ 1238 }; 1239 1240 1241 static struct cpuid_info cpuid_info0; 1242 1243 /* 1244 * These bit fields are defined by the Intel Application Note AP-485 1245 * "Intel Processor Identification and the CPUID Instruction" 1246 */ 1247 #define CPI_FAMILY_XTD(cpi) BITX((cpi)->cpi_std[1].cp_eax, 27, 20) 1248 #define CPI_MODEL_XTD(cpi) BITX((cpi)->cpi_std[1].cp_eax, 19, 16) 1249 #define CPI_TYPE(cpi) BITX((cpi)->cpi_std[1].cp_eax, 13, 12) 1250 #define CPI_FAMILY(cpi) BITX((cpi)->cpi_std[1].cp_eax, 11, 8) 1251 #define CPI_STEP(cpi) BITX((cpi)->cpi_std[1].cp_eax, 3, 0) 1252 #define CPI_MODEL(cpi) BITX((cpi)->cpi_std[1].cp_eax, 7, 4) 1253 1254 #define CPI_FEATURES_EDX(cpi) ((cpi)->cpi_std[1].cp_edx) 1255 #define CPI_FEATURES_ECX(cpi) ((cpi)->cpi_std[1].cp_ecx) 1256 #define CPI_FEATURES_XTD_EDX(cpi) ((cpi)->cpi_extd[1].cp_edx) 1257 #define CPI_FEATURES_XTD_ECX(cpi) ((cpi)->cpi_extd[1].cp_ecx) 1258 #define CPI_FEATURES_7_0_EBX(cpi) ((cpi)->cpi_std[7].cp_ebx) 1259 #define CPI_FEATURES_7_0_ECX(cpi) ((cpi)->cpi_std[7].cp_ecx) 1260 #define CPI_FEATURES_7_0_EDX(cpi) ((cpi)->cpi_std[7].cp_edx) 1261 1262 #define CPI_BRANDID(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 7, 0) 1263 #define CPI_CHUNKS(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 15, 7) 1264 #define CPI_CPU_COUNT(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 23, 16) 1265 #define CPI_APIC_ID(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 31, 24) 1266 1267 #define CPI_MAXEAX_MAX 0x100 /* sanity control */ 1268 #define CPI_XMAXEAX_MAX 0x80000100 1269 #define CPI_FN4_ECX_MAX 0x20 /* sanity: max fn 4 levels */ 1270 #define CPI_FNB_ECX_MAX 0x20 /* sanity: max fn B levels */ 1271 1272 /* 1273 * Function 4 (Deterministic Cache Parameters) macros 1274 * Defined by Intel Application Note AP-485 1275 */ 1276 #define CPI_NUM_CORES(regs) BITX((regs)->cp_eax, 31, 26) 1277 #define CPI_NTHR_SHR_CACHE(regs) BITX((regs)->cp_eax, 25, 14) 1278 #define CPI_FULL_ASSOC_CACHE(regs) BITX((regs)->cp_eax, 9, 9) 1279 #define CPI_SELF_INIT_CACHE(regs) BITX((regs)->cp_eax, 8, 8) 1280 #define CPI_CACHE_LVL(regs) BITX((regs)->cp_eax, 7, 5) 1281 #define CPI_CACHE_TYPE(regs) BITX((regs)->cp_eax, 4, 0) 1282 #define CPI_CPU_LEVEL_TYPE(regs) BITX((regs)->cp_ecx, 15, 8) 1283 1284 #define CPI_CACHE_WAYS(regs) BITX((regs)->cp_ebx, 31, 22) 1285 #define CPI_CACHE_PARTS(regs) BITX((regs)->cp_ebx, 21, 12) 1286 #define CPI_CACHE_COH_LN_SZ(regs) BITX((regs)->cp_ebx, 11, 0) 1287 1288 #define CPI_CACHE_SETS(regs) BITX((regs)->cp_ecx, 31, 0) 1289 1290 #define CPI_PREFCH_STRIDE(regs) BITX((regs)->cp_edx, 9, 0) 1291 1292 1293 /* 1294 * A couple of shorthand macros to identify "later" P6-family chips 1295 * like the Pentium M and Core. First, the "older" P6-based stuff 1296 * (loosely defined as "pre-Pentium-4"): 1297 * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon 1298 */ 1299 #define IS_LEGACY_P6(cpi) ( \ 1300 cpi->cpi_family == 6 && \ 1301 (cpi->cpi_model == 1 || \ 1302 cpi->cpi_model == 3 || \ 1303 cpi->cpi_model == 5 || \ 1304 cpi->cpi_model == 6 || \ 1305 cpi->cpi_model == 7 || \ 1306 cpi->cpi_model == 8 || \ 1307 cpi->cpi_model == 0xA || \ 1308 cpi->cpi_model == 0xB) \ 1309 ) 1310 1311 /* A "new F6" is everything with family 6 that's not the above */ 1312 #define IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi)) 1313 1314 /* Extended family/model support */ 1315 #define IS_EXTENDED_MODEL_INTEL(cpi) (cpi->cpi_family == 0x6 || \ 1316 cpi->cpi_family >= 0xf) 1317 1318 /* 1319 * Info for monitor/mwait idle loop. 1320 * 1321 * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's 1322 * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November 1323 * 2006. 1324 * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual 1325 * Documentation Updates" #33633, Rev 2.05, December 2006. 1326 */ 1327 #define MWAIT_SUPPORT (0x00000001) /* mwait supported */ 1328 #define MWAIT_EXTENSIONS (0x00000002) /* extenstion supported */ 1329 #define MWAIT_ECX_INT_ENABLE (0x00000004) /* ecx 1 extension supported */ 1330 #define MWAIT_SUPPORTED(cpi) ((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON) 1331 #define MWAIT_INT_ENABLE(cpi) ((cpi)->cpi_std[5].cp_ecx & 0x2) 1332 #define MWAIT_EXTENSION(cpi) ((cpi)->cpi_std[5].cp_ecx & 0x1) 1333 #define MWAIT_SIZE_MIN(cpi) BITX((cpi)->cpi_std[5].cp_eax, 15, 0) 1334 #define MWAIT_SIZE_MAX(cpi) BITX((cpi)->cpi_std[5].cp_ebx, 15, 0) 1335 /* 1336 * Number of sub-cstates for a given c-state. 1337 */ 1338 #define MWAIT_NUM_SUBC_STATES(cpi, c_state) \ 1339 BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state) 1340 1341 /* 1342 * XSAVE leaf 0xD enumeration 1343 */ 1344 #define CPUID_LEAFD_2_YMM_OFFSET 576 1345 #define CPUID_LEAFD_2_YMM_SIZE 256 1346 1347 /* 1348 * Common extended leaf names to cut down on typos. 1349 */ 1350 #define CPUID_LEAF_EXT_0 0x80000000 1351 #define CPUID_LEAF_EXT_8 0x80000008 1352 #define CPUID_LEAF_EXT_1d 0x8000001d 1353 #define CPUID_LEAF_EXT_1e 0x8000001e 1354 1355 /* 1356 * Functions we consune from cpuid_subr.c; don't publish these in a header 1357 * file to try and keep people using the expected cpuid_* interfaces. 1358 */ 1359 extern uint32_t _cpuid_skt(uint_t, uint_t, uint_t, uint_t); 1360 extern const char *_cpuid_sktstr(uint_t, uint_t, uint_t, uint_t); 1361 extern uint32_t _cpuid_chiprev(uint_t, uint_t, uint_t, uint_t); 1362 extern const char *_cpuid_chiprevstr(uint_t, uint_t, uint_t, uint_t); 1363 extern uint_t _cpuid_vendorstr_to_vendorcode(char *); 1364 1365 /* 1366 * Apply up various platform-dependent restrictions where the 1367 * underlying platform restrictions mean the CPU can be marked 1368 * as less capable than its cpuid instruction would imply. 1369 */ 1370 #if defined(__xpv) 1371 static void 1372 platform_cpuid_mangle(uint_t vendor, uint32_t eax, struct cpuid_regs *cp) 1373 { 1374 switch (eax) { 1375 case 1: { 1376 uint32_t mcamask = DOMAIN_IS_INITDOMAIN(xen_info) ? 1377 0 : CPUID_INTC_EDX_MCA; 1378 cp->cp_edx &= 1379 ~(mcamask | 1380 CPUID_INTC_EDX_PSE | 1381 CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE | 1382 CPUID_INTC_EDX_SEP | CPUID_INTC_EDX_MTRR | 1383 CPUID_INTC_EDX_PGE | CPUID_INTC_EDX_PAT | 1384 CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP | 1385 CPUID_INTC_EDX_PSE36 | CPUID_INTC_EDX_HTT); 1386 break; 1387 } 1388 1389 case 0x80000001: 1390 cp->cp_edx &= 1391 ~(CPUID_AMD_EDX_PSE | 1392 CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE | 1393 CPUID_AMD_EDX_MTRR | CPUID_AMD_EDX_PGE | 1394 CPUID_AMD_EDX_PAT | CPUID_AMD_EDX_PSE36 | 1395 CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP | 1396 CPUID_AMD_EDX_TSCP); 1397 cp->cp_ecx &= ~CPUID_AMD_ECX_CMP_LGCY; 1398 break; 1399 default: 1400 break; 1401 } 1402 1403 switch (vendor) { 1404 case X86_VENDOR_Intel: 1405 switch (eax) { 1406 case 4: 1407 /* 1408 * Zero out the (ncores-per-chip - 1) field 1409 */ 1410 cp->cp_eax &= 0x03fffffff; 1411 break; 1412 default: 1413 break; 1414 } 1415 break; 1416 case X86_VENDOR_AMD: 1417 switch (eax) { 1418 1419 case 0x80000001: 1420 cp->cp_ecx &= ~CPUID_AMD_ECX_CR8D; 1421 break; 1422 1423 case CPUID_LEAF_EXT_8: 1424 /* 1425 * Zero out the (ncores-per-chip - 1) field 1426 */ 1427 cp->cp_ecx &= 0xffffff00; 1428 break; 1429 default: 1430 break; 1431 } 1432 break; 1433 default: 1434 break; 1435 } 1436 } 1437 #else 1438 #define platform_cpuid_mangle(vendor, eax, cp) /* nothing */ 1439 #endif 1440 1441 /* 1442 * Some undocumented ways of patching the results of the cpuid 1443 * instruction to permit running Solaris 10 on future cpus that 1444 * we don't currently support. Could be set to non-zero values 1445 * via settings in eeprom. 1446 */ 1447 1448 uint32_t cpuid_feature_ecx_include; 1449 uint32_t cpuid_feature_ecx_exclude; 1450 uint32_t cpuid_feature_edx_include; 1451 uint32_t cpuid_feature_edx_exclude; 1452 1453 /* 1454 * Allocate space for mcpu_cpi in the machcpu structure for all non-boot CPUs. 1455 */ 1456 void 1457 cpuid_alloc_space(cpu_t *cpu) 1458 { 1459 /* 1460 * By convention, cpu0 is the boot cpu, which is set up 1461 * before memory allocation is available. All other cpus get 1462 * their cpuid_info struct allocated here. 1463 */ 1464 ASSERT(cpu->cpu_id != 0); 1465 ASSERT(cpu->cpu_m.mcpu_cpi == NULL); 1466 cpu->cpu_m.mcpu_cpi = 1467 kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP); 1468 } 1469 1470 void 1471 cpuid_free_space(cpu_t *cpu) 1472 { 1473 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 1474 int i; 1475 1476 ASSERT(cpi != NULL); 1477 ASSERT(cpi != &cpuid_info0); 1478 1479 /* 1480 * Free up any cache leaf related dynamic storage. The first entry was 1481 * cached from the standard cpuid storage, so we should not free it. 1482 */ 1483 for (i = 1; i < cpi->cpi_cache_leaf_size; i++) 1484 kmem_free(cpi->cpi_cache_leaves[i], sizeof (struct cpuid_regs)); 1485 if (cpi->cpi_cache_leaf_size > 0) 1486 kmem_free(cpi->cpi_cache_leaves, 1487 cpi->cpi_cache_leaf_size * sizeof (struct cpuid_regs *)); 1488 1489 kmem_free(cpi, sizeof (*cpi)); 1490 cpu->cpu_m.mcpu_cpi = NULL; 1491 } 1492 1493 #if !defined(__xpv) 1494 /* 1495 * Determine the type of the underlying platform. This is used to customize 1496 * initialization of various subsystems (e.g. TSC). determine_platform() must 1497 * only ever be called once to prevent two processors from seeing different 1498 * values of platform_type. Must be called before cpuid_pass1(), the earliest 1499 * consumer to execute (uses _cpuid_chiprev --> synth_amd_info --> get_hwenv). 1500 */ 1501 void 1502 determine_platform(void) 1503 { 1504 struct cpuid_regs cp; 1505 uint32_t base; 1506 uint32_t regs[4]; 1507 char *hvstr = (char *)regs; 1508 1509 ASSERT(platform_type == -1); 1510 1511 platform_type = HW_NATIVE; 1512 1513 if (!enable_platform_detection) 1514 return; 1515 1516 /* 1517 * If Hypervisor CPUID bit is set, try to determine hypervisor 1518 * vendor signature, and set platform type accordingly. 1519 * 1520 * References: 1521 * http://lkml.org/lkml/2008/10/1/246 1522 * http://kb.vmware.com/kb/1009458 1523 */ 1524 cp.cp_eax = 0x1; 1525 (void) __cpuid_insn(&cp); 1526 if ((cp.cp_ecx & CPUID_INTC_ECX_HV) != 0) { 1527 cp.cp_eax = 0x40000000; 1528 (void) __cpuid_insn(&cp); 1529 regs[0] = cp.cp_ebx; 1530 regs[1] = cp.cp_ecx; 1531 regs[2] = cp.cp_edx; 1532 regs[3] = 0; 1533 if (strcmp(hvstr, HVSIG_XEN_HVM) == 0) { 1534 platform_type = HW_XEN_HVM; 1535 return; 1536 } 1537 if (strcmp(hvstr, HVSIG_VMWARE) == 0) { 1538 platform_type = HW_VMWARE; 1539 return; 1540 } 1541 if (strcmp(hvstr, HVSIG_KVM) == 0) { 1542 platform_type = HW_KVM; 1543 return; 1544 } 1545 if (strcmp(hvstr, HVSIG_BHYVE) == 0) { 1546 platform_type = HW_BHYVE; 1547 return; 1548 } 1549 if (strcmp(hvstr, HVSIG_MICROSOFT) == 0) 1550 platform_type = HW_MICROSOFT; 1551 } else { 1552 /* 1553 * Check older VMware hardware versions. VMware hypervisor is 1554 * detected by performing an IN operation to VMware hypervisor 1555 * port and checking that value returned in %ebx is VMware 1556 * hypervisor magic value. 1557 * 1558 * References: http://kb.vmware.com/kb/1009458 1559 */ 1560 vmware_port(VMWARE_HVCMD_GETVERSION, regs); 1561 if (regs[1] == VMWARE_HVMAGIC) { 1562 platform_type = HW_VMWARE; 1563 return; 1564 } 1565 } 1566 1567 /* 1568 * Check Xen hypervisor. In a fully virtualized domain, 1569 * Xen's pseudo-cpuid function returns a string representing the 1570 * Xen signature in %ebx, %ecx, and %edx. %eax contains the maximum 1571 * supported cpuid function. We need at least a (base + 2) leaf value 1572 * to do what we want to do. Try different base values, since the 1573 * hypervisor might use a different one depending on whether Hyper-V 1574 * emulation is switched on by default or not. 1575 */ 1576 for (base = 0x40000000; base < 0x40010000; base += 0x100) { 1577 cp.cp_eax = base; 1578 (void) __cpuid_insn(&cp); 1579 regs[0] = cp.cp_ebx; 1580 regs[1] = cp.cp_ecx; 1581 regs[2] = cp.cp_edx; 1582 regs[3] = 0; 1583 if (strcmp(hvstr, HVSIG_XEN_HVM) == 0 && 1584 cp.cp_eax >= (base + 2)) { 1585 platform_type &= ~HW_NATIVE; 1586 platform_type |= HW_XEN_HVM; 1587 return; 1588 } 1589 } 1590 } 1591 1592 int 1593 get_hwenv(void) 1594 { 1595 ASSERT(platform_type != -1); 1596 return (platform_type); 1597 } 1598 1599 int 1600 is_controldom(void) 1601 { 1602 return (0); 1603 } 1604 1605 #else 1606 1607 int 1608 get_hwenv(void) 1609 { 1610 return (HW_XEN_PV); 1611 } 1612 1613 int 1614 is_controldom(void) 1615 { 1616 return (DOMAIN_IS_INITDOMAIN(xen_info)); 1617 } 1618 1619 #endif /* __xpv */ 1620 1621 /* 1622 * Make sure that we have gathered all of the CPUID leaves that we might need to 1623 * determine topology. We assume that the standard leaf 1 has already been done 1624 * and that xmaxeax has already been calculated. 1625 */ 1626 static void 1627 cpuid_gather_amd_topology_leaves(cpu_t *cpu) 1628 { 1629 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 1630 1631 if (cpi->cpi_xmaxeax >= CPUID_LEAF_EXT_8) { 1632 struct cpuid_regs *cp; 1633 1634 cp = &cpi->cpi_extd[8]; 1635 cp->cp_eax = CPUID_LEAF_EXT_8; 1636 (void) __cpuid_insn(cp); 1637 platform_cpuid_mangle(cpi->cpi_vendor, CPUID_LEAF_EXT_8, cp); 1638 } 1639 1640 if (is_x86_feature(x86_featureset, X86FSET_TOPOEXT) && 1641 cpi->cpi_xmaxeax >= CPUID_LEAF_EXT_1e) { 1642 struct cpuid_regs *cp; 1643 1644 cp = &cpi->cpi_extd[0x1e]; 1645 cp->cp_eax = CPUID_LEAF_EXT_1e; 1646 (void) __cpuid_insn(cp); 1647 } 1648 } 1649 1650 /* 1651 * Get the APIC ID for this processor. If Leaf B is present and valid, we prefer 1652 * it to everything else. If not, and we're on an AMD system where 8000001e is 1653 * valid, then we use that. Othewrise, we fall back to the default value for the 1654 * APIC ID in leaf 1. 1655 */ 1656 static uint32_t 1657 cpuid_gather_apicid(struct cpuid_info *cpi) 1658 { 1659 /* 1660 * Leaf B changes based on the arguments to it. Beacuse we don't cache 1661 * it, we need to gather it again. 1662 */ 1663 if (cpi->cpi_maxeax >= 0xB) { 1664 struct cpuid_regs regs; 1665 struct cpuid_regs *cp; 1666 1667 cp = ®s; 1668 cp->cp_eax = 0xB; 1669 cp->cp_edx = cp->cp_ebx = cp->cp_ecx = 0; 1670 (void) __cpuid_insn(cp); 1671 1672 if (cp->cp_ebx != 0) { 1673 return (cp->cp_edx); 1674 } 1675 } 1676 1677 if (cpi->cpi_vendor == X86_VENDOR_AMD && 1678 is_x86_feature(x86_featureset, X86FSET_TOPOEXT) && 1679 cpi->cpi_xmaxeax >= CPUID_LEAF_EXT_1e) { 1680 return (cpi->cpi_extd[0x1e].cp_eax); 1681 } 1682 1683 return (CPI_APIC_ID(cpi)); 1684 } 1685 1686 /* 1687 * For AMD processors, attempt to calculate the number of chips and cores that 1688 * exist. The way that we do this varies based on the generation, because the 1689 * generations themselves have changed dramatically. 1690 * 1691 * If cpuid leaf 0x80000008 exists, that generally tells us the number of cores. 1692 * However, with the advent of family 17h (Zen) it actually tells us the number 1693 * of threads, so we need to look at leaf 0x8000001e if available to determine 1694 * its value. Otherwise, for all prior families, the number of enabled cores is 1695 * the same as threads. 1696 * 1697 * If we do not have leaf 0x80000008, then we assume that this processor does 1698 * not have anything. AMD's older CPUID specification says there's no reason to 1699 * fall back to leaf 1. 1700 * 1701 * In some virtualization cases we will not have leaf 8000001e or it will be 1702 * zero. When that happens we assume the number of threads is one. 1703 */ 1704 static void 1705 cpuid_amd_ncores(struct cpuid_info *cpi, uint_t *ncpus, uint_t *ncores) 1706 { 1707 uint_t nthreads, nthread_per_core; 1708 1709 nthreads = nthread_per_core = 1; 1710 1711 if (cpi->cpi_xmaxeax >= CPUID_LEAF_EXT_8) { 1712 nthreads = BITX(cpi->cpi_extd[8].cp_ecx, 7, 0) + 1; 1713 } else if ((cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_HTT) != 0) { 1714 nthreads = CPI_CPU_COUNT(cpi); 1715 } 1716 1717 /* 1718 * For us to have threads, and know about it, we have to be at least at 1719 * family 17h and have the cpuid bit that says we have extended 1720 * topology. 1721 */ 1722 if (cpi->cpi_family >= 0x17 && 1723 is_x86_feature(x86_featureset, X86FSET_TOPOEXT) && 1724 cpi->cpi_xmaxeax >= CPUID_LEAF_EXT_1e) { 1725 nthread_per_core = BITX(cpi->cpi_extd[0x1e].cp_ebx, 15, 8) + 1; 1726 } 1727 1728 *ncpus = nthreads; 1729 *ncores = nthreads / nthread_per_core; 1730 } 1731 1732 /* 1733 * Seed the initial values for the cores and threads for an Intel based 1734 * processor. These values will be overwritten if we detect that the processor 1735 * supports CPUID leaf 0xb. 1736 */ 1737 static void 1738 cpuid_intel_ncores(struct cpuid_info *cpi, uint_t *ncpus, uint_t *ncores) 1739 { 1740 /* 1741 * Only seed the number of physical cores from the first level leaf 4 1742 * information. The number of threads there indicate how many share the 1743 * L1 cache, which may or may not have anything to do with the number of 1744 * logical CPUs per core. 1745 */ 1746 if (cpi->cpi_maxeax >= 4) { 1747 *ncores = BITX(cpi->cpi_std[4].cp_eax, 31, 26) + 1; 1748 } else { 1749 *ncores = 1; 1750 } 1751 1752 if ((cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_HTT) != 0) { 1753 *ncpus = CPI_CPU_COUNT(cpi); 1754 } else { 1755 *ncpus = *ncores; 1756 } 1757 } 1758 1759 static boolean_t 1760 cpuid_leafB_getids(cpu_t *cpu) 1761 { 1762 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 1763 struct cpuid_regs regs; 1764 struct cpuid_regs *cp; 1765 1766 if (cpi->cpi_maxeax < 0xB) 1767 return (B_FALSE); 1768 1769 cp = ®s; 1770 cp->cp_eax = 0xB; 1771 cp->cp_edx = cp->cp_ebx = cp->cp_ecx = 0; 1772 1773 (void) __cpuid_insn(cp); 1774 1775 /* 1776 * Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero, which 1777 * indicates that the extended topology enumeration leaf is 1778 * available. 1779 */ 1780 if (cp->cp_ebx != 0) { 1781 uint32_t x2apic_id = 0; 1782 uint_t coreid_shift = 0; 1783 uint_t ncpu_per_core = 1; 1784 uint_t chipid_shift = 0; 1785 uint_t ncpu_per_chip = 1; 1786 uint_t i; 1787 uint_t level; 1788 1789 for (i = 0; i < CPI_FNB_ECX_MAX; i++) { 1790 cp->cp_eax = 0xB; 1791 cp->cp_ecx = i; 1792 1793 (void) __cpuid_insn(cp); 1794 level = CPI_CPU_LEVEL_TYPE(cp); 1795 1796 if (level == 1) { 1797 x2apic_id = cp->cp_edx; 1798 coreid_shift = BITX(cp->cp_eax, 4, 0); 1799 ncpu_per_core = BITX(cp->cp_ebx, 15, 0); 1800 } else if (level == 2) { 1801 x2apic_id = cp->cp_edx; 1802 chipid_shift = BITX(cp->cp_eax, 4, 0); 1803 ncpu_per_chip = BITX(cp->cp_ebx, 15, 0); 1804 } 1805 } 1806 1807 /* 1808 * cpi_apicid is taken care of in cpuid_gather_apicid. 1809 */ 1810 cpi->cpi_ncpu_per_chip = ncpu_per_chip; 1811 cpi->cpi_ncore_per_chip = ncpu_per_chip / 1812 ncpu_per_core; 1813 cpi->cpi_chipid = x2apic_id >> chipid_shift; 1814 cpi->cpi_clogid = x2apic_id & ((1 << chipid_shift) - 1); 1815 cpi->cpi_coreid = x2apic_id >> coreid_shift; 1816 cpi->cpi_pkgcoreid = cpi->cpi_clogid >> coreid_shift; 1817 cpi->cpi_procnodeid = cpi->cpi_chipid; 1818 cpi->cpi_compunitid = cpi->cpi_coreid; 1819 1820 if (coreid_shift > 0 && chipid_shift > coreid_shift) { 1821 cpi->cpi_nthread_bits = coreid_shift; 1822 cpi->cpi_ncore_bits = chipid_shift - coreid_shift; 1823 } 1824 1825 return (B_TRUE); 1826 } else { 1827 return (B_FALSE); 1828 } 1829 } 1830 1831 static void 1832 cpuid_intel_getids(cpu_t *cpu, void *feature) 1833 { 1834 uint_t i; 1835 uint_t chipid_shift = 0; 1836 uint_t coreid_shift = 0; 1837 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 1838 1839 /* 1840 * There are no compute units or processor nodes currently on Intel. 1841 * Always set these to one. 1842 */ 1843 cpi->cpi_procnodes_per_pkg = 1; 1844 cpi->cpi_cores_per_compunit = 1; 1845 1846 /* 1847 * If cpuid Leaf B is present, use that to try and get this information. 1848 * It will be the most accurate for Intel CPUs. 1849 */ 1850 if (cpuid_leafB_getids(cpu)) 1851 return; 1852 1853 /* 1854 * In this case, we have the leaf 1 and leaf 4 values for ncpu_per_chip 1855 * and ncore_per_chip. These represent the largest power of two values 1856 * that we need to cover all of the IDs in the system. Therefore, we use 1857 * those values to seed the number of bits needed to cover information 1858 * in the case when leaf B is not available. These values will probably 1859 * be larger than required, but that's OK. 1860 */ 1861 cpi->cpi_nthread_bits = ddi_fls(cpi->cpi_ncpu_per_chip); 1862 cpi->cpi_ncore_bits = ddi_fls(cpi->cpi_ncore_per_chip); 1863 1864 for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1) 1865 chipid_shift++; 1866 1867 cpi->cpi_chipid = cpi->cpi_apicid >> chipid_shift; 1868 cpi->cpi_clogid = cpi->cpi_apicid & ((1 << chipid_shift) - 1); 1869 1870 if (is_x86_feature(feature, X86FSET_CMP)) { 1871 /* 1872 * Multi-core (and possibly multi-threaded) 1873 * processors. 1874 */ 1875 uint_t ncpu_per_core; 1876 if (cpi->cpi_ncore_per_chip == 1) 1877 ncpu_per_core = cpi->cpi_ncpu_per_chip; 1878 else if (cpi->cpi_ncore_per_chip > 1) 1879 ncpu_per_core = cpi->cpi_ncpu_per_chip / 1880 cpi->cpi_ncore_per_chip; 1881 /* 1882 * 8bit APIC IDs on dual core Pentiums 1883 * look like this: 1884 * 1885 * +-----------------------+------+------+ 1886 * | Physical Package ID | MC | HT | 1887 * +-----------------------+------+------+ 1888 * <------- chipid --------> 1889 * <------- coreid ---------------> 1890 * <--- clogid --> 1891 * <------> 1892 * pkgcoreid 1893 * 1894 * Where the number of bits necessary to 1895 * represent MC and HT fields together equals 1896 * to the minimum number of bits necessary to 1897 * store the value of cpi->cpi_ncpu_per_chip. 1898 * Of those bits, the MC part uses the number 1899 * of bits necessary to store the value of 1900 * cpi->cpi_ncore_per_chip. 1901 */ 1902 for (i = 1; i < ncpu_per_core; i <<= 1) 1903 coreid_shift++; 1904 cpi->cpi_coreid = cpi->cpi_apicid >> coreid_shift; 1905 cpi->cpi_pkgcoreid = cpi->cpi_clogid >> coreid_shift; 1906 } else if (is_x86_feature(feature, X86FSET_HTT)) { 1907 /* 1908 * Single-core multi-threaded processors. 1909 */ 1910 cpi->cpi_coreid = cpi->cpi_chipid; 1911 cpi->cpi_pkgcoreid = 0; 1912 } else { 1913 /* 1914 * Single-core single-thread processors. 1915 */ 1916 cpi->cpi_coreid = cpu->cpu_id; 1917 cpi->cpi_pkgcoreid = 0; 1918 } 1919 cpi->cpi_procnodeid = cpi->cpi_chipid; 1920 cpi->cpi_compunitid = cpi->cpi_coreid; 1921 } 1922 1923 /* 1924 * Historically, AMD has had CMP chips with only a single thread per core. 1925 * However, starting in family 17h (Zen), this has changed and they now have 1926 * multiple threads. Our internal core id needs to be a unique value. 1927 * 1928 * To determine the core id of an AMD system, if we're from a family before 17h, 1929 * then we just use the cpu id, as that gives us a good value that will be 1930 * unique for each core. If instead, we're on family 17h or later, then we need 1931 * to do something more complicated. CPUID leaf 0x8000001e can tell us 1932 * how many threads are in the system. Based on that, we'll shift the APIC ID. 1933 * We can't use the normal core id in that leaf as it's only unique within the 1934 * socket, which is perfect for cpi_pkgcoreid, but not us. 1935 */ 1936 static id_t 1937 cpuid_amd_get_coreid(cpu_t *cpu) 1938 { 1939 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 1940 1941 if (cpi->cpi_family >= 0x17 && 1942 is_x86_feature(x86_featureset, X86FSET_TOPOEXT) && 1943 cpi->cpi_xmaxeax >= CPUID_LEAF_EXT_1e) { 1944 uint_t nthreads = BITX(cpi->cpi_extd[0x1e].cp_ebx, 15, 8) + 1; 1945 if (nthreads > 1) { 1946 VERIFY3U(nthreads, ==, 2); 1947 return (cpi->cpi_apicid >> 1); 1948 } 1949 } 1950 1951 return (cpu->cpu_id); 1952 } 1953 1954 /* 1955 * IDs on AMD is a more challenging task. This is notable because of the 1956 * following two facts: 1957 * 1958 * 1. Before family 0x17 (Zen), there was no support for SMT and there was 1959 * also no way to get an actual unique core id from the system. As such, we 1960 * synthesize this case by using cpu->cpu_id. This scheme does not, 1961 * however, guarantee that sibling cores of a chip will have sequential 1962 * coreids starting at a multiple of the number of cores per chip - that is 1963 * usually the case, but if the ACPI MADT table is presented in a different 1964 * order then we need to perform a few more gymnastics for the pkgcoreid. 1965 * 1966 * 2. In families 0x15 and 16x (Bulldozer and co.) the cores came in groups 1967 * called compute units. These compute units share the L1I cache, L2 cache, 1968 * and the FPU. To deal with this, a new topology leaf was added in 1969 * 0x8000001e. However, parts of this leaf have different meanings 1970 * once we get to family 0x17. 1971 */ 1972 1973 static void 1974 cpuid_amd_getids(cpu_t *cpu, uchar_t *features) 1975 { 1976 int i, first_half, coreidsz; 1977 uint32_t nb_caps_reg; 1978 uint_t node2_1; 1979 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 1980 struct cpuid_regs *cp; 1981 1982 /* 1983 * Calculate the core id (this comes from hardware in family 0x17 if it 1984 * hasn't been stripped by virtualization). We always set the compute 1985 * unit id to the same value. Also, initialize the default number of 1986 * cores per compute unit and nodes per package. This will be 1987 * overwritten when we know information about a particular family. 1988 */ 1989 cpi->cpi_coreid = cpuid_amd_get_coreid(cpu); 1990 cpi->cpi_compunitid = cpi->cpi_coreid; 1991 cpi->cpi_cores_per_compunit = 1; 1992 cpi->cpi_procnodes_per_pkg = 1; 1993 1994 /* 1995 * To construct the logical ID, we need to determine how many APIC IDs 1996 * are dedicated to the cores and threads. This is provided for us in 1997 * 0x80000008. However, if it's not present (say due to virtualization), 1998 * then we assume it's one. This should be present on all 64-bit AMD 1999 * processors. It was added in family 0xf (Hammer). 2000 */ 2001 if (cpi->cpi_xmaxeax >= CPUID_LEAF_EXT_8) { 2002 coreidsz = BITX((cpi)->cpi_extd[8].cp_ecx, 15, 12); 2003 2004 /* 2005 * In AMD parlance chip is really a node while illumos 2006 * uses chip as equivalent to socket/package. 2007 */ 2008 if (coreidsz == 0) { 2009 /* Use legacy method */ 2010 for (i = 1; i < cpi->cpi_ncore_per_chip; i <<= 1) 2011 coreidsz++; 2012 if (coreidsz == 0) 2013 coreidsz = 1; 2014 } 2015 } else { 2016 /* Assume single-core part */ 2017 coreidsz = 1; 2018 } 2019 cpi->cpi_clogid = cpi->cpi_apicid & ((1 << coreidsz) - 1); 2020 2021 /* 2022 * The package core ID varies depending on the family. For family 17h, 2023 * we can get this directly from leaf CPUID_LEAF_EXT_1e. Otherwise, we 2024 * can use the clogid as is. When family 17h is virtualized, the clogid 2025 * should be sufficient as if we don't have valid data in the leaf, then 2026 * we won't think we have SMT, in which case the cpi_clogid should be 2027 * sufficient. 2028 */ 2029 if (cpi->cpi_family >= 0x17 && 2030 is_x86_feature(x86_featureset, X86FSET_TOPOEXT) && 2031 cpi->cpi_xmaxeax >= CPUID_LEAF_EXT_1e && 2032 cpi->cpi_extd[0x1e].cp_ebx != 0) { 2033 cpi->cpi_pkgcoreid = BITX(cpi->cpi_extd[0x1e].cp_ebx, 7, 0); 2034 } else { 2035 cpi->cpi_pkgcoreid = cpi->cpi_clogid; 2036 } 2037 2038 /* 2039 * Obtain the node ID and compute unit IDs. If we're on family 0x15 2040 * (bulldozer) or newer, then we can derive all of this from leaf 2041 * CPUID_LEAF_EXT_1e. Otherwise, the method varies by family. 2042 */ 2043 if (is_x86_feature(x86_featureset, X86FSET_TOPOEXT) && 2044 cpi->cpi_xmaxeax >= CPUID_LEAF_EXT_1e) { 2045 cp = &cpi->cpi_extd[0x1e]; 2046 2047 cpi->cpi_procnodes_per_pkg = BITX(cp->cp_ecx, 10, 8) + 1; 2048 cpi->cpi_procnodeid = BITX(cp->cp_ecx, 7, 0); 2049 2050 /* 2051 * For Bulldozer-era CPUs, recalculate the compute unit 2052 * information. 2053 */ 2054 if (cpi->cpi_family >= 0x15 && cpi->cpi_family < 0x17) { 2055 cpi->cpi_cores_per_compunit = 2056 BITX(cp->cp_ebx, 15, 8) + 1; 2057 cpi->cpi_compunitid = BITX(cp->cp_ebx, 7, 0) + 2058 (cpi->cpi_ncore_per_chip / 2059 cpi->cpi_cores_per_compunit) * 2060 (cpi->cpi_procnodeid / 2061 cpi->cpi_procnodes_per_pkg); 2062 } 2063 } else if (cpi->cpi_family == 0xf || cpi->cpi_family >= 0x11) { 2064 cpi->cpi_procnodeid = (cpi->cpi_apicid >> coreidsz) & 7; 2065 } else if (cpi->cpi_family == 0x10) { 2066 /* 2067 * See if we are a multi-node processor. 2068 * All processors in the system have the same number of nodes 2069 */ 2070 nb_caps_reg = pci_getl_func(0, 24, 3, 0xe8); 2071 if ((cpi->cpi_model < 8) || BITX(nb_caps_reg, 29, 29) == 0) { 2072 /* Single-node */ 2073 cpi->cpi_procnodeid = BITX(cpi->cpi_apicid, 5, 2074 coreidsz); 2075 } else { 2076 2077 /* 2078 * Multi-node revision D (2 nodes per package 2079 * are supported) 2080 */ 2081 cpi->cpi_procnodes_per_pkg = 2; 2082 2083 first_half = (cpi->cpi_pkgcoreid <= 2084 (cpi->cpi_ncore_per_chip/2 - 1)); 2085 2086 if (cpi->cpi_apicid == cpi->cpi_pkgcoreid) { 2087 /* We are BSP */ 2088 cpi->cpi_procnodeid = (first_half ? 0 : 1); 2089 } else { 2090 2091 /* We are AP */ 2092 /* NodeId[2:1] bits to use for reading F3xe8 */ 2093 node2_1 = BITX(cpi->cpi_apicid, 5, 4) << 1; 2094 2095 nb_caps_reg = 2096 pci_getl_func(0, 24 + node2_1, 3, 0xe8); 2097 2098 /* 2099 * Check IntNodeNum bit (31:30, but bit 31 is 2100 * always 0 on dual-node processors) 2101 */ 2102 if (BITX(nb_caps_reg, 30, 30) == 0) 2103 cpi->cpi_procnodeid = node2_1 + 2104 !first_half; 2105 else 2106 cpi->cpi_procnodeid = node2_1 + 2107 first_half; 2108 } 2109 } 2110 } else { 2111 cpi->cpi_procnodeid = 0; 2112 } 2113 2114 cpi->cpi_chipid = 2115 cpi->cpi_procnodeid / cpi->cpi_procnodes_per_pkg; 2116 2117 cpi->cpi_ncore_bits = coreidsz; 2118 cpi->cpi_nthread_bits = ddi_fls(cpi->cpi_ncpu_per_chip / 2119 cpi->cpi_ncore_per_chip); 2120 } 2121 2122 static void 2123 spec_l1d_flush_noop(void) 2124 { 2125 } 2126 2127 static void 2128 spec_l1d_flush_msr(void) 2129 { 2130 wrmsr(MSR_IA32_FLUSH_CMD, IA32_FLUSH_CMD_L1D); 2131 } 2132 2133 void (*spec_l1d_flush)(void) = spec_l1d_flush_noop; 2134 2135 static void 2136 cpuid_scan_security(cpu_t *cpu, uchar_t *featureset) 2137 { 2138 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 2139 2140 if (cpi->cpi_vendor == X86_VENDOR_AMD && 2141 cpi->cpi_xmaxeax >= CPUID_LEAF_EXT_8) { 2142 if (cpi->cpi_extd[8].cp_ebx & CPUID_AMD_EBX_IBPB) 2143 add_x86_feature(featureset, X86FSET_IBPB); 2144 if (cpi->cpi_extd[8].cp_ebx & CPUID_AMD_EBX_IBRS) 2145 add_x86_feature(featureset, X86FSET_IBRS); 2146 if (cpi->cpi_extd[8].cp_ebx & CPUID_AMD_EBX_STIBP) 2147 add_x86_feature(featureset, X86FSET_STIBP); 2148 if (cpi->cpi_extd[8].cp_ebx & CPUID_AMD_EBX_IBRS_ALL) 2149 add_x86_feature(featureset, X86FSET_IBRS_ALL); 2150 if (cpi->cpi_extd[8].cp_ebx & CPUID_AMD_EBX_STIBP_ALL) 2151 add_x86_feature(featureset, X86FSET_STIBP_ALL); 2152 if (cpi->cpi_extd[8].cp_ebx & CPUID_AMD_EBX_PREFER_IBRS) 2153 add_x86_feature(featureset, X86FSET_RSBA); 2154 if (cpi->cpi_extd[8].cp_ebx & CPUID_AMD_EBX_SSBD) 2155 add_x86_feature(featureset, X86FSET_SSBD); 2156 if (cpi->cpi_extd[8].cp_ebx & CPUID_AMD_EBX_VIRT_SSBD) 2157 add_x86_feature(featureset, X86FSET_SSBD_VIRT); 2158 if (cpi->cpi_extd[8].cp_ebx & CPUID_AMD_EBX_SSB_NO) 2159 add_x86_feature(featureset, X86FSET_SSB_NO); 2160 } else if (cpi->cpi_vendor == X86_VENDOR_Intel && 2161 cpi->cpi_maxeax >= 7) { 2162 struct cpuid_regs *ecp; 2163 ecp = &cpi->cpi_std[7]; 2164 2165 if (ecp->cp_edx & CPUID_INTC_EDX_7_0_SPEC_CTRL) { 2166 add_x86_feature(featureset, X86FSET_IBRS); 2167 add_x86_feature(featureset, X86FSET_IBPB); 2168 } 2169 2170 if (ecp->cp_edx & CPUID_INTC_EDX_7_0_STIBP) { 2171 add_x86_feature(featureset, X86FSET_STIBP); 2172 } 2173 2174 /* 2175 * Don't read the arch caps MSR on xpv where we lack the 2176 * on_trap(). 2177 */ 2178 #ifndef __xpv 2179 if (ecp->cp_edx & CPUID_INTC_EDX_7_0_ARCH_CAPS) { 2180 on_trap_data_t otd; 2181 2182 /* 2183 * Be paranoid and assume we'll get a #GP. 2184 */ 2185 if (!on_trap(&otd, OT_DATA_ACCESS)) { 2186 uint64_t reg; 2187 2188 reg = rdmsr(MSR_IA32_ARCH_CAPABILITIES); 2189 if (reg & IA32_ARCH_CAP_RDCL_NO) { 2190 add_x86_feature(featureset, 2191 X86FSET_RDCL_NO); 2192 } 2193 if (reg & IA32_ARCH_CAP_IBRS_ALL) { 2194 add_x86_feature(featureset, 2195 X86FSET_IBRS_ALL); 2196 } 2197 if (reg & IA32_ARCH_CAP_RSBA) { 2198 add_x86_feature(featureset, 2199 X86FSET_RSBA); 2200 } 2201 if (reg & IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) { 2202 add_x86_feature(featureset, 2203 X86FSET_L1D_VM_NO); 2204 } 2205 if (reg & IA32_ARCH_CAP_SSB_NO) { 2206 add_x86_feature(featureset, 2207 X86FSET_SSB_NO); 2208 } 2209 } 2210 no_trap(); 2211 } 2212 #endif /* !__xpv */ 2213 2214 if (ecp->cp_edx & CPUID_INTC_EDX_7_0_SSBD) 2215 add_x86_feature(featureset, X86FSET_SSBD); 2216 2217 if (ecp->cp_edx & CPUID_INTC_EDX_7_0_FLUSH_CMD) 2218 add_x86_feature(featureset, X86FSET_FLUSH_CMD); 2219 } 2220 2221 if (cpu->cpu_id != 0) 2222 return; 2223 2224 /* 2225 * We're the boot CPU, so let's figure out our L1TF status. 2226 * 2227 * First, if this is a RDCL_NO CPU, then we are not vulnerable: we don't 2228 * need to exclude with ht_acquire(), and we don't need to flush. 2229 */ 2230 if (is_x86_feature(featureset, X86FSET_RDCL_NO)) { 2231 extern int ht_exclusion; 2232 ht_exclusion = 0; 2233 spec_l1d_flush = spec_l1d_flush_noop; 2234 membar_producer(); 2235 return; 2236 } 2237 2238 /* 2239 * If HT is enabled, we will need HT exclusion, as well as the flush on 2240 * VM entry. If HT isn't enabled, we still need at least the flush for 2241 * the L1TF sequential case. 2242 * 2243 * However, if X86FSET_L1D_VM_NO is set, we're most likely running 2244 * inside a VM ourselves, and we don't need the flush. 2245 * 2246 * If we don't have the FLUSH_CMD available at all, we'd better just 2247 * hope HT is disabled. 2248 */ 2249 if (is_x86_feature(featureset, X86FSET_FLUSH_CMD) && 2250 !is_x86_feature(featureset, X86FSET_L1D_VM_NO)) { 2251 spec_l1d_flush = spec_l1d_flush_msr; 2252 } else { 2253 spec_l1d_flush = spec_l1d_flush_noop; 2254 } 2255 2256 membar_producer(); 2257 } 2258 2259 /* 2260 * Setup XFeature_Enabled_Mask register. Required by xsave feature. 2261 */ 2262 void 2263 setup_xfem(void) 2264 { 2265 uint64_t flags = XFEATURE_LEGACY_FP; 2266 2267 ASSERT(is_x86_feature(x86_featureset, X86FSET_XSAVE)); 2268 2269 if (is_x86_feature(x86_featureset, X86FSET_SSE)) 2270 flags |= XFEATURE_SSE; 2271 2272 if (is_x86_feature(x86_featureset, X86FSET_AVX)) 2273 flags |= XFEATURE_AVX; 2274 2275 if (is_x86_feature(x86_featureset, X86FSET_AVX512F)) 2276 flags |= XFEATURE_AVX512; 2277 2278 set_xcr(XFEATURE_ENABLED_MASK, flags); 2279 2280 xsave_bv_all = flags; 2281 } 2282 2283 static void 2284 cpuid_pass1_topology(cpu_t *cpu, uchar_t *featureset) 2285 { 2286 struct cpuid_info *cpi; 2287 2288 cpi = cpu->cpu_m.mcpu_cpi; 2289 2290 if (cpi->cpi_vendor == X86_VENDOR_AMD) { 2291 cpuid_gather_amd_topology_leaves(cpu); 2292 } 2293 2294 cpi->cpi_apicid = cpuid_gather_apicid(cpi); 2295 2296 /* 2297 * Before we can calculate the IDs that we should assign to this 2298 * processor, we need to understand how many cores and threads it has. 2299 */ 2300 switch (cpi->cpi_vendor) { 2301 case X86_VENDOR_Intel: 2302 cpuid_intel_ncores(cpi, &cpi->cpi_ncpu_per_chip, 2303 &cpi->cpi_ncore_per_chip); 2304 break; 2305 case X86_VENDOR_AMD: 2306 cpuid_amd_ncores(cpi, &cpi->cpi_ncpu_per_chip, 2307 &cpi->cpi_ncore_per_chip); 2308 break; 2309 default: 2310 /* 2311 * If we have some other x86 compatible chip, it's not clear how 2312 * they would behave. The most common case is virtualization 2313 * today, though there are also 64-bit VIA chips. Assume that 2314 * all we can get is the basic Leaf 1 HTT information. 2315 */ 2316 if ((cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_HTT) != 0) { 2317 cpi->cpi_ncore_per_chip = 1; 2318 cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi); 2319 } 2320 break; 2321 } 2322 2323 /* 2324 * Based on the calculated number of threads and cores, potentially 2325 * assign the HTT and CMT features. 2326 */ 2327 if (cpi->cpi_ncore_per_chip > 1) { 2328 add_x86_feature(featureset, X86FSET_CMP); 2329 } 2330 2331 if (cpi->cpi_ncpu_per_chip > 1 && 2332 cpi->cpi_ncpu_per_chip != cpi->cpi_ncore_per_chip) { 2333 add_x86_feature(featureset, X86FSET_HTT); 2334 } 2335 2336 /* 2337 * Now that has been set up, we need to go through and calculate all of 2338 * the rest of the parameters that exist. If we think the CPU doesn't 2339 * have either SMT (HTT) or CMP, then we basically go through and fake 2340 * up information in some way. The most likely case for this is 2341 * virtualization where we have a lot of partial topology information. 2342 */ 2343 if (!is_x86_feature(featureset, X86FSET_HTT) && 2344 !is_x86_feature(featureset, X86FSET_CMP)) { 2345 /* 2346 * This is a single core, single-threaded processor. 2347 */ 2348 cpi->cpi_procnodes_per_pkg = 1; 2349 cpi->cpi_cores_per_compunit = 1; 2350 cpi->cpi_compunitid = 0; 2351 cpi->cpi_chipid = -1; 2352 cpi->cpi_clogid = 0; 2353 cpi->cpi_coreid = cpu->cpu_id; 2354 cpi->cpi_pkgcoreid = 0; 2355 if (cpi->cpi_vendor == X86_VENDOR_AMD) { 2356 cpi->cpi_procnodeid = BITX(cpi->cpi_apicid, 3, 0); 2357 } else { 2358 cpi->cpi_procnodeid = cpi->cpi_chipid; 2359 } 2360 } else { 2361 switch (cpi->cpi_vendor) { 2362 case X86_VENDOR_Intel: 2363 cpuid_intel_getids(cpu, featureset); 2364 break; 2365 case X86_VENDOR_AMD: 2366 cpuid_amd_getids(cpu, featureset); 2367 break; 2368 default: 2369 /* 2370 * In this case, it's hard to say what we should do. 2371 * We're going to model them to the OS as single core 2372 * threads. We don't have a good identifier for them, so 2373 * we're just going to use the cpu id all on a single 2374 * chip. 2375 * 2376 * This case has historically been different from the 2377 * case above where we don't have HTT or CMP. While they 2378 * could be combined, we've opted to keep it separate to 2379 * minimize the risk of topology changes in weird cases. 2380 */ 2381 cpi->cpi_procnodes_per_pkg = 1; 2382 cpi->cpi_cores_per_compunit = 1; 2383 cpi->cpi_chipid = 0; 2384 cpi->cpi_coreid = cpu->cpu_id; 2385 cpi->cpi_clogid = cpu->cpu_id; 2386 cpi->cpi_pkgcoreid = cpu->cpu_id; 2387 cpi->cpi_procnodeid = cpi->cpi_chipid; 2388 cpi->cpi_compunitid = cpi->cpi_coreid; 2389 break; 2390 } 2391 } 2392 } 2393 2394 void 2395 cpuid_pass1(cpu_t *cpu, uchar_t *featureset) 2396 { 2397 uint32_t mask_ecx, mask_edx; 2398 struct cpuid_info *cpi; 2399 struct cpuid_regs *cp; 2400 int xcpuid; 2401 #if !defined(__xpv) 2402 extern int idle_cpu_prefer_mwait; 2403 #endif 2404 2405 /* 2406 * Space statically allocated for BSP, ensure pointer is set 2407 */ 2408 if (cpu->cpu_id == 0) { 2409 if (cpu->cpu_m.mcpu_cpi == NULL) 2410 cpu->cpu_m.mcpu_cpi = &cpuid_info0; 2411 } 2412 2413 add_x86_feature(featureset, X86FSET_CPUID); 2414 2415 cpi = cpu->cpu_m.mcpu_cpi; 2416 ASSERT(cpi != NULL); 2417 cp = &cpi->cpi_std[0]; 2418 cp->cp_eax = 0; 2419 cpi->cpi_maxeax = __cpuid_insn(cp); 2420 { 2421 uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr; 2422 *iptr++ = cp->cp_ebx; 2423 *iptr++ = cp->cp_edx; 2424 *iptr++ = cp->cp_ecx; 2425 *(char *)&cpi->cpi_vendorstr[12] = '\0'; 2426 } 2427 2428 cpi->cpi_vendor = _cpuid_vendorstr_to_vendorcode(cpi->cpi_vendorstr); 2429 x86_vendor = cpi->cpi_vendor; /* for compatibility */ 2430 2431 /* 2432 * Limit the range in case of weird hardware 2433 */ 2434 if (cpi->cpi_maxeax > CPI_MAXEAX_MAX) 2435 cpi->cpi_maxeax = CPI_MAXEAX_MAX; 2436 if (cpi->cpi_maxeax < 1) 2437 goto pass1_done; 2438 2439 cp = &cpi->cpi_std[1]; 2440 cp->cp_eax = 1; 2441 (void) __cpuid_insn(cp); 2442 2443 /* 2444 * Extract identifying constants for easy access. 2445 */ 2446 cpi->cpi_model = CPI_MODEL(cpi); 2447 cpi->cpi_family = CPI_FAMILY(cpi); 2448 2449 if (cpi->cpi_family == 0xf) 2450 cpi->cpi_family += CPI_FAMILY_XTD(cpi); 2451 2452 /* 2453 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf. 2454 * Intel, and presumably everyone else, uses model == 0xf, as 2455 * one would expect (max value means possible overflow). Sigh. 2456 */ 2457 2458 switch (cpi->cpi_vendor) { 2459 case X86_VENDOR_Intel: 2460 if (IS_EXTENDED_MODEL_INTEL(cpi)) 2461 cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4; 2462 break; 2463 case X86_VENDOR_AMD: 2464 if (CPI_FAMILY(cpi) == 0xf) 2465 cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4; 2466 break; 2467 default: 2468 if (cpi->cpi_model == 0xf) 2469 cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4; 2470 break; 2471 } 2472 2473 cpi->cpi_step = CPI_STEP(cpi); 2474 cpi->cpi_brandid = CPI_BRANDID(cpi); 2475 2476 /* 2477 * *default* assumptions: 2478 * - believe %edx feature word 2479 * - ignore %ecx feature word 2480 * - 32-bit virtual and physical addressing 2481 */ 2482 mask_edx = 0xffffffff; 2483 mask_ecx = 0; 2484 2485 cpi->cpi_pabits = cpi->cpi_vabits = 32; 2486 2487 switch (cpi->cpi_vendor) { 2488 case X86_VENDOR_Intel: 2489 if (cpi->cpi_family == 5) 2490 x86_type = X86_TYPE_P5; 2491 else if (IS_LEGACY_P6(cpi)) { 2492 x86_type = X86_TYPE_P6; 2493 pentiumpro_bug4046376 = 1; 2494 /* 2495 * Clear the SEP bit when it was set erroneously 2496 */ 2497 if (cpi->cpi_model < 3 && cpi->cpi_step < 3) 2498 cp->cp_edx &= ~CPUID_INTC_EDX_SEP; 2499 } else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) { 2500 x86_type = X86_TYPE_P4; 2501 /* 2502 * We don't currently depend on any of the %ecx 2503 * features until Prescott, so we'll only check 2504 * this from P4 onwards. We might want to revisit 2505 * that idea later. 2506 */ 2507 mask_ecx = 0xffffffff; 2508 } else if (cpi->cpi_family > 0xf) 2509 mask_ecx = 0xffffffff; 2510 /* 2511 * We don't support MONITOR/MWAIT if leaf 5 is not available 2512 * to obtain the monitor linesize. 2513 */ 2514 if (cpi->cpi_maxeax < 5) 2515 mask_ecx &= ~CPUID_INTC_ECX_MON; 2516 break; 2517 case X86_VENDOR_IntelClone: 2518 default: 2519 break; 2520 case X86_VENDOR_AMD: 2521 #if defined(OPTERON_ERRATUM_108) 2522 if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) { 2523 cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0; 2524 cpi->cpi_model = 0xc; 2525 } else 2526 #endif 2527 if (cpi->cpi_family == 5) { 2528 /* 2529 * AMD K5 and K6 2530 * 2531 * These CPUs have an incomplete implementation 2532 * of MCA/MCE which we mask away. 2533 */ 2534 mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA); 2535 2536 /* 2537 * Model 0 uses the wrong (APIC) bit 2538 * to indicate PGE. Fix it here. 2539 */ 2540 if (cpi->cpi_model == 0) { 2541 if (cp->cp_edx & 0x200) { 2542 cp->cp_edx &= ~0x200; 2543 cp->cp_edx |= CPUID_INTC_EDX_PGE; 2544 } 2545 } 2546 2547 /* 2548 * Early models had problems w/ MMX; disable. 2549 */ 2550 if (cpi->cpi_model < 6) 2551 mask_edx &= ~CPUID_INTC_EDX_MMX; 2552 } 2553 2554 /* 2555 * For newer families, SSE3 and CX16, at least, are valid; 2556 * enable all 2557 */ 2558 if (cpi->cpi_family >= 0xf) 2559 mask_ecx = 0xffffffff; 2560 /* 2561 * We don't support MONITOR/MWAIT if leaf 5 is not available 2562 * to obtain the monitor linesize. 2563 */ 2564 if (cpi->cpi_maxeax < 5) 2565 mask_ecx &= ~CPUID_INTC_ECX_MON; 2566 2567 #if !defined(__xpv) 2568 /* 2569 * AMD has not historically used MWAIT in the CPU's idle loop. 2570 * Pre-family-10h Opterons do not have the MWAIT instruction. We 2571 * know for certain that in at least family 17h, per AMD, mwait 2572 * is preferred. Families in-between are less certain. 2573 */ 2574 if (cpi->cpi_family < 0x17) { 2575 idle_cpu_prefer_mwait = 0; 2576 } 2577 #endif 2578 2579 break; 2580 case X86_VENDOR_TM: 2581 /* 2582 * workaround the NT workaround in CMS 4.1 2583 */ 2584 if (cpi->cpi_family == 5 && cpi->cpi_model == 4 && 2585 (cpi->cpi_step == 2 || cpi->cpi_step == 3)) 2586 cp->cp_edx |= CPUID_INTC_EDX_CX8; 2587 break; 2588 case X86_VENDOR_Centaur: 2589 /* 2590 * workaround the NT workarounds again 2591 */ 2592 if (cpi->cpi_family == 6) 2593 cp->cp_edx |= CPUID_INTC_EDX_CX8; 2594 break; 2595 case X86_VENDOR_Cyrix: 2596 /* 2597 * We rely heavily on the probing in locore 2598 * to actually figure out what parts, if any, 2599 * of the Cyrix cpuid instruction to believe. 2600 */ 2601 switch (x86_type) { 2602 case X86_TYPE_CYRIX_486: 2603 mask_edx = 0; 2604 break; 2605 case X86_TYPE_CYRIX_6x86: 2606 mask_edx = 0; 2607 break; 2608 case X86_TYPE_CYRIX_6x86L: 2609 mask_edx = 2610 CPUID_INTC_EDX_DE | 2611 CPUID_INTC_EDX_CX8; 2612 break; 2613 case X86_TYPE_CYRIX_6x86MX: 2614 mask_edx = 2615 CPUID_INTC_EDX_DE | 2616 CPUID_INTC_EDX_MSR | 2617 CPUID_INTC_EDX_CX8 | 2618 CPUID_INTC_EDX_PGE | 2619 CPUID_INTC_EDX_CMOV | 2620 CPUID_INTC_EDX_MMX; 2621 break; 2622 case X86_TYPE_CYRIX_GXm: 2623 mask_edx = 2624 CPUID_INTC_EDX_MSR | 2625 CPUID_INTC_EDX_CX8 | 2626 CPUID_INTC_EDX_CMOV | 2627 CPUID_INTC_EDX_MMX; 2628 break; 2629 case X86_TYPE_CYRIX_MediaGX: 2630 break; 2631 case X86_TYPE_CYRIX_MII: 2632 case X86_TYPE_VIA_CYRIX_III: 2633 mask_edx = 2634 CPUID_INTC_EDX_DE | 2635 CPUID_INTC_EDX_TSC | 2636 CPUID_INTC_EDX_MSR | 2637 CPUID_INTC_EDX_CX8 | 2638 CPUID_INTC_EDX_PGE | 2639 CPUID_INTC_EDX_CMOV | 2640 CPUID_INTC_EDX_MMX; 2641 break; 2642 default: 2643 break; 2644 } 2645 break; 2646 } 2647 2648 #if defined(__xpv) 2649 /* 2650 * Do not support MONITOR/MWAIT under a hypervisor 2651 */ 2652 mask_ecx &= ~CPUID_INTC_ECX_MON; 2653 /* 2654 * Do not support XSAVE under a hypervisor for now 2655 */ 2656 xsave_force_disable = B_TRUE; 2657 2658 #endif /* __xpv */ 2659 2660 if (xsave_force_disable) { 2661 mask_ecx &= ~CPUID_INTC_ECX_XSAVE; 2662 mask_ecx &= ~CPUID_INTC_ECX_AVX; 2663 mask_ecx &= ~CPUID_INTC_ECX_F16C; 2664 mask_ecx &= ~CPUID_INTC_ECX_FMA; 2665 } 2666 2667 /* 2668 * Now we've figured out the masks that determine 2669 * which bits we choose to believe, apply the masks 2670 * to the feature words, then map the kernel's view 2671 * of these feature words into its feature word. 2672 */ 2673 cp->cp_edx &= mask_edx; 2674 cp->cp_ecx &= mask_ecx; 2675 2676 /* 2677 * apply any platform restrictions (we don't call this 2678 * immediately after __cpuid_insn here, because we need the 2679 * workarounds applied above first) 2680 */ 2681 platform_cpuid_mangle(cpi->cpi_vendor, 1, cp); 2682 2683 /* 2684 * In addition to ecx and edx, Intel and AMD are storing a bunch of 2685 * instruction set extensions in leaf 7's ebx, ecx, and edx. 2686 */ 2687 if (cpi->cpi_maxeax >= 7) { 2688 struct cpuid_regs *ecp; 2689 ecp = &cpi->cpi_std[7]; 2690 ecp->cp_eax = 7; 2691 ecp->cp_ecx = 0; 2692 (void) __cpuid_insn(ecp); 2693 2694 /* 2695 * If XSAVE has been disabled, just ignore all of the 2696 * extended-save-area dependent flags here. 2697 */ 2698 if (xsave_force_disable) { 2699 ecp->cp_ebx &= ~CPUID_INTC_EBX_7_0_BMI1; 2700 ecp->cp_ebx &= ~CPUID_INTC_EBX_7_0_BMI2; 2701 ecp->cp_ebx &= ~CPUID_INTC_EBX_7_0_AVX2; 2702 ecp->cp_ebx &= ~CPUID_INTC_EBX_7_0_MPX; 2703 ecp->cp_ebx &= ~CPUID_INTC_EBX_7_0_ALL_AVX512; 2704 ecp->cp_ecx &= ~CPUID_INTC_ECX_7_0_ALL_AVX512; 2705 ecp->cp_edx &= ~CPUID_INTC_EDX_7_0_ALL_AVX512; 2706 } 2707 2708 if (ecp->cp_ebx & CPUID_INTC_EBX_7_0_SMEP) 2709 add_x86_feature(featureset, X86FSET_SMEP); 2710 2711 /* 2712 * We check disable_smap here in addition to in startup_smap() 2713 * to ensure CPUs that aren't the boot CPU don't accidentally 2714 * include it in the feature set and thus generate a mismatched 2715 * x86 feature set across CPUs. 2716 */ 2717 if (ecp->cp_ebx & CPUID_INTC_EBX_7_0_SMAP && 2718 disable_smap == 0) 2719 add_x86_feature(featureset, X86FSET_SMAP); 2720 2721 if (ecp->cp_ebx & CPUID_INTC_EBX_7_0_RDSEED) 2722 add_x86_feature(featureset, X86FSET_RDSEED); 2723 2724 if (ecp->cp_ebx & CPUID_INTC_EBX_7_0_ADX) 2725 add_x86_feature(featureset, X86FSET_ADX); 2726 2727 if (ecp->cp_ebx & CPUID_INTC_EBX_7_0_FSGSBASE) 2728 add_x86_feature(featureset, X86FSET_FSGSBASE); 2729 2730 if (ecp->cp_ebx & CPUID_INTC_EBX_7_0_CLFLUSHOPT) 2731 add_x86_feature(featureset, X86FSET_CLFLUSHOPT); 2732 2733 if (cpi->cpi_vendor == X86_VENDOR_Intel) { 2734 if (ecp->cp_ebx & CPUID_INTC_EBX_7_0_INVPCID) 2735 add_x86_feature(featureset, X86FSET_INVPCID); 2736 2737 if (ecp->cp_ebx & CPUID_INTC_EBX_7_0_MPX) 2738 add_x86_feature(featureset, X86FSET_MPX); 2739 2740 if (ecp->cp_ebx & CPUID_INTC_EBX_7_0_CLWB) 2741 add_x86_feature(featureset, X86FSET_CLWB); 2742 } 2743 } 2744 2745 /* 2746 * fold in overrides from the "eeprom" mechanism 2747 */ 2748 cp->cp_edx |= cpuid_feature_edx_include; 2749 cp->cp_edx &= ~cpuid_feature_edx_exclude; 2750 2751 cp->cp_ecx |= cpuid_feature_ecx_include; 2752 cp->cp_ecx &= ~cpuid_feature_ecx_exclude; 2753 2754 if (cp->cp_edx & CPUID_INTC_EDX_PSE) { 2755 add_x86_feature(featureset, X86FSET_LARGEPAGE); 2756 } 2757 if (cp->cp_edx & CPUID_INTC_EDX_TSC) { 2758 add_x86_feature(featureset, X86FSET_TSC); 2759 } 2760 if (cp->cp_edx & CPUID_INTC_EDX_MSR) { 2761 add_x86_feature(featureset, X86FSET_MSR); 2762 } 2763 if (cp->cp_edx & CPUID_INTC_EDX_MTRR) { 2764 add_x86_feature(featureset, X86FSET_MTRR); 2765 } 2766 if (cp->cp_edx & CPUID_INTC_EDX_PGE) { 2767 add_x86_feature(featureset, X86FSET_PGE); 2768 } 2769 if (cp->cp_edx & CPUID_INTC_EDX_CMOV) { 2770 add_x86_feature(featureset, X86FSET_CMOV); 2771 } 2772 if (cp->cp_edx & CPUID_INTC_EDX_MMX) { 2773 add_x86_feature(featureset, X86FSET_MMX); 2774 } 2775 if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 && 2776 (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0) { 2777 add_x86_feature(featureset, X86FSET_MCA); 2778 } 2779 if (cp->cp_edx & CPUID_INTC_EDX_PAE) { 2780 add_x86_feature(featureset, X86FSET_PAE); 2781 } 2782 if (cp->cp_edx & CPUID_INTC_EDX_CX8) { 2783 add_x86_feature(featureset, X86FSET_CX8); 2784 } 2785 if (cp->cp_ecx & CPUID_INTC_ECX_CX16) { 2786 add_x86_feature(featureset, X86FSET_CX16); 2787 } 2788 if (cp->cp_edx & CPUID_INTC_EDX_PAT) { 2789 add_x86_feature(featureset, X86FSET_PAT); 2790 } 2791 if (cp->cp_edx & CPUID_INTC_EDX_SEP) { 2792 add_x86_feature(featureset, X86FSET_SEP); 2793 } 2794 if (cp->cp_edx & CPUID_INTC_EDX_FXSR) { 2795 /* 2796 * In our implementation, fxsave/fxrstor 2797 * are prerequisites before we'll even 2798 * try and do SSE things. 2799 */ 2800 if (cp->cp_edx & CPUID_INTC_EDX_SSE) { 2801 add_x86_feature(featureset, X86FSET_SSE); 2802 } 2803 if (cp->cp_edx & CPUID_INTC_EDX_SSE2) { 2804 add_x86_feature(featureset, X86FSET_SSE2); 2805 } 2806 if (cp->cp_ecx & CPUID_INTC_ECX_SSE3) { 2807 add_x86_feature(featureset, X86FSET_SSE3); 2808 } 2809 if (cp->cp_ecx & CPUID_INTC_ECX_SSSE3) { 2810 add_x86_feature(featureset, X86FSET_SSSE3); 2811 } 2812 if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_1) { 2813 add_x86_feature(featureset, X86FSET_SSE4_1); 2814 } 2815 if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_2) { 2816 add_x86_feature(featureset, X86FSET_SSE4_2); 2817 } 2818 if (cp->cp_ecx & CPUID_INTC_ECX_AES) { 2819 add_x86_feature(featureset, X86FSET_AES); 2820 } 2821 if (cp->cp_ecx & CPUID_INTC_ECX_PCLMULQDQ) { 2822 add_x86_feature(featureset, X86FSET_PCLMULQDQ); 2823 } 2824 2825 if (cpi->cpi_std[7].cp_ebx & CPUID_INTC_EBX_7_0_SHA) 2826 add_x86_feature(featureset, X86FSET_SHA); 2827 2828 if (cpi->cpi_std[7].cp_ecx & CPUID_INTC_ECX_7_0_UMIP) 2829 add_x86_feature(featureset, X86FSET_UMIP); 2830 if (cpi->cpi_std[7].cp_ecx & CPUID_INTC_ECX_7_0_PKU) 2831 add_x86_feature(featureset, X86FSET_PKU); 2832 if (cpi->cpi_std[7].cp_ecx & CPUID_INTC_ECX_7_0_OSPKE) 2833 add_x86_feature(featureset, X86FSET_OSPKE); 2834 2835 if (cp->cp_ecx & CPUID_INTC_ECX_XSAVE) { 2836 add_x86_feature(featureset, X86FSET_XSAVE); 2837 2838 /* We only test AVX & AVX512 when there is XSAVE */ 2839 2840 if (cp->cp_ecx & CPUID_INTC_ECX_AVX) { 2841 add_x86_feature(featureset, 2842 X86FSET_AVX); 2843 2844 /* 2845 * Intel says we can't check these without also 2846 * checking AVX. 2847 */ 2848 if (cp->cp_ecx & CPUID_INTC_ECX_F16C) 2849 add_x86_feature(featureset, 2850 X86FSET_F16C); 2851 2852 if (cp->cp_ecx & CPUID_INTC_ECX_FMA) 2853 add_x86_feature(featureset, 2854 X86FSET_FMA); 2855 2856 if (cpi->cpi_std[7].cp_ebx & 2857 CPUID_INTC_EBX_7_0_BMI1) 2858 add_x86_feature(featureset, 2859 X86FSET_BMI1); 2860 2861 if (cpi->cpi_std[7].cp_ebx & 2862 CPUID_INTC_EBX_7_0_BMI2) 2863 add_x86_feature(featureset, 2864 X86FSET_BMI2); 2865 2866 if (cpi->cpi_std[7].cp_ebx & 2867 CPUID_INTC_EBX_7_0_AVX2) 2868 add_x86_feature(featureset, 2869 X86FSET_AVX2); 2870 } 2871 2872 if (cpi->cpi_vendor == X86_VENDOR_Intel && 2873 (cpi->cpi_std[7].cp_ebx & 2874 CPUID_INTC_EBX_7_0_AVX512F) != 0) { 2875 add_x86_feature(featureset, X86FSET_AVX512F); 2876 2877 if (cpi->cpi_std[7].cp_ebx & 2878 CPUID_INTC_EBX_7_0_AVX512DQ) 2879 add_x86_feature(featureset, 2880 X86FSET_AVX512DQ); 2881 if (cpi->cpi_std[7].cp_ebx & 2882 CPUID_INTC_EBX_7_0_AVX512IFMA) 2883 add_x86_feature(featureset, 2884 X86FSET_AVX512FMA); 2885 if (cpi->cpi_std[7].cp_ebx & 2886 CPUID_INTC_EBX_7_0_AVX512PF) 2887 add_x86_feature(featureset, 2888 X86FSET_AVX512PF); 2889 if (cpi->cpi_std[7].cp_ebx & 2890 CPUID_INTC_EBX_7_0_AVX512ER) 2891 add_x86_feature(featureset, 2892 X86FSET_AVX512ER); 2893 if (cpi->cpi_std[7].cp_ebx & 2894 CPUID_INTC_EBX_7_0_AVX512CD) 2895 add_x86_feature(featureset, 2896 X86FSET_AVX512CD); 2897 if (cpi->cpi_std[7].cp_ebx & 2898 CPUID_INTC_EBX_7_0_AVX512BW) 2899 add_x86_feature(featureset, 2900 X86FSET_AVX512BW); 2901 if (cpi->cpi_std[7].cp_ebx & 2902 CPUID_INTC_EBX_7_0_AVX512VL) 2903 add_x86_feature(featureset, 2904 X86FSET_AVX512VL); 2905 2906 if (cpi->cpi_std[7].cp_ecx & 2907 CPUID_INTC_ECX_7_0_AVX512VBMI) 2908 add_x86_feature(featureset, 2909 X86FSET_AVX512VBMI); 2910 if (cpi->cpi_std[7].cp_ecx & 2911 CPUID_INTC_ECX_7_0_AVX512VNNI) 2912 add_x86_feature(featureset, 2913 X86FSET_AVX512VNNI); 2914 if (cpi->cpi_std[7].cp_ecx & 2915 CPUID_INTC_ECX_7_0_AVX512VPOPCDQ) 2916 add_x86_feature(featureset, 2917 X86FSET_AVX512VPOPCDQ); 2918 2919 if (cpi->cpi_std[7].cp_edx & 2920 CPUID_INTC_EDX_7_0_AVX5124NNIW) 2921 add_x86_feature(featureset, 2922 X86FSET_AVX512NNIW); 2923 if (cpi->cpi_std[7].cp_edx & 2924 CPUID_INTC_EDX_7_0_AVX5124FMAPS) 2925 add_x86_feature(featureset, 2926 X86FSET_AVX512FMAPS); 2927 } 2928 } 2929 } 2930 2931 if (cpi->cpi_vendor == X86_VENDOR_Intel) { 2932 if (cp->cp_ecx & CPUID_INTC_ECX_PCID) { 2933 add_x86_feature(featureset, X86FSET_PCID); 2934 } 2935 } 2936 2937 if (cp->cp_ecx & CPUID_INTC_ECX_X2APIC) { 2938 add_x86_feature(featureset, X86FSET_X2APIC); 2939 } 2940 if (cp->cp_edx & CPUID_INTC_EDX_DE) { 2941 add_x86_feature(featureset, X86FSET_DE); 2942 } 2943 #if !defined(__xpv) 2944 if (cp->cp_ecx & CPUID_INTC_ECX_MON) { 2945 2946 /* 2947 * We require the CLFLUSH instruction for erratum workaround 2948 * to use MONITOR/MWAIT. 2949 */ 2950 if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) { 2951 cpi->cpi_mwait.support |= MWAIT_SUPPORT; 2952 add_x86_feature(featureset, X86FSET_MWAIT); 2953 } else { 2954 extern int idle_cpu_assert_cflush_monitor; 2955 2956 /* 2957 * All processors we are aware of which have 2958 * MONITOR/MWAIT also have CLFLUSH. 2959 */ 2960 if (idle_cpu_assert_cflush_monitor) { 2961 ASSERT((cp->cp_ecx & CPUID_INTC_ECX_MON) && 2962 (cp->cp_edx & CPUID_INTC_EDX_CLFSH)); 2963 } 2964 } 2965 } 2966 #endif /* __xpv */ 2967 2968 if (cp->cp_ecx & CPUID_INTC_ECX_VMX) { 2969 add_x86_feature(featureset, X86FSET_VMX); 2970 } 2971 2972 if (cp->cp_ecx & CPUID_INTC_ECX_RDRAND) 2973 add_x86_feature(featureset, X86FSET_RDRAND); 2974 2975 /* 2976 * Only need it first time, rest of the cpus would follow suit. 2977 * we only capture this for the bootcpu. 2978 */ 2979 if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) { 2980 add_x86_feature(featureset, X86FSET_CLFSH); 2981 x86_clflush_size = (BITX(cp->cp_ebx, 15, 8) * 8); 2982 } 2983 if (is_x86_feature(featureset, X86FSET_PAE)) 2984 cpi->cpi_pabits = 36; 2985 2986 if (cpi->cpi_maxeax >= 0xD && !xsave_force_disable) { 2987 struct cpuid_regs r, *ecp; 2988 2989 ecp = &r; 2990 ecp->cp_eax = 0xD; 2991 ecp->cp_ecx = 1; 2992 ecp->cp_edx = ecp->cp_ebx = 0; 2993 (void) __cpuid_insn(ecp); 2994 2995 if (ecp->cp_eax & CPUID_INTC_EAX_D_1_XSAVEOPT) 2996 add_x86_feature(featureset, X86FSET_XSAVEOPT); 2997 if (ecp->cp_eax & CPUID_INTC_EAX_D_1_XSAVEC) 2998 add_x86_feature(featureset, X86FSET_XSAVEC); 2999 if (ecp->cp_eax & CPUID_INTC_EAX_D_1_XSAVES) 3000 add_x86_feature(featureset, X86FSET_XSAVES); 3001 } 3002 3003 /* 3004 * Work on the "extended" feature information, doing 3005 * some basic initialization for cpuid_pass2() 3006 */ 3007 xcpuid = 0; 3008 switch (cpi->cpi_vendor) { 3009 case X86_VENDOR_Intel: 3010 /* 3011 * On KVM we know we will have proper support for extended 3012 * cpuid. 3013 */ 3014 if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf || 3015 (get_hwenv() == HW_KVM && cpi->cpi_family == 6 && 3016 (cpi->cpi_model == 6 || cpi->cpi_model == 2))) 3017 xcpuid++; 3018 break; 3019 case X86_VENDOR_AMD: 3020 if (cpi->cpi_family > 5 || 3021 (cpi->cpi_family == 5 && cpi->cpi_model >= 1)) 3022 xcpuid++; 3023 break; 3024 case X86_VENDOR_Cyrix: 3025 /* 3026 * Only these Cyrix CPUs are -known- to support 3027 * extended cpuid operations. 3028 */ 3029 if (x86_type == X86_TYPE_VIA_CYRIX_III || 3030 x86_type == X86_TYPE_CYRIX_GXm) 3031 xcpuid++; 3032 break; 3033 case X86_VENDOR_Centaur: 3034 case X86_VENDOR_TM: 3035 default: 3036 xcpuid++; 3037 break; 3038 } 3039 3040 if (xcpuid) { 3041 cp = &cpi->cpi_extd[0]; 3042 cp->cp_eax = CPUID_LEAF_EXT_0; 3043 cpi->cpi_xmaxeax = __cpuid_insn(cp); 3044 } 3045 3046 if (cpi->cpi_xmaxeax & CPUID_LEAF_EXT_0) { 3047 3048 if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX) 3049 cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX; 3050 3051 switch (cpi->cpi_vendor) { 3052 case X86_VENDOR_Intel: 3053 case X86_VENDOR_AMD: 3054 if (cpi->cpi_xmaxeax < 0x80000001) 3055 break; 3056 cp = &cpi->cpi_extd[1]; 3057 cp->cp_eax = 0x80000001; 3058 (void) __cpuid_insn(cp); 3059 3060 if (cpi->cpi_vendor == X86_VENDOR_AMD && 3061 cpi->cpi_family == 5 && 3062 cpi->cpi_model == 6 && 3063 cpi->cpi_step == 6) { 3064 /* 3065 * K6 model 6 uses bit 10 to indicate SYSC 3066 * Later models use bit 11. Fix it here. 3067 */ 3068 if (cp->cp_edx & 0x400) { 3069 cp->cp_edx &= ~0x400; 3070 cp->cp_edx |= CPUID_AMD_EDX_SYSC; 3071 } 3072 } 3073 3074 platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp); 3075 3076 /* 3077 * Compute the additions to the kernel's feature word. 3078 */ 3079 if (cp->cp_edx & CPUID_AMD_EDX_NX) { 3080 add_x86_feature(featureset, X86FSET_NX); 3081 } 3082 3083 /* 3084 * Regardless whether or not we boot 64-bit, 3085 * we should have a way to identify whether 3086 * the CPU is capable of running 64-bit. 3087 */ 3088 if (cp->cp_edx & CPUID_AMD_EDX_LM) { 3089 add_x86_feature(featureset, X86FSET_64); 3090 } 3091 3092 /* 1 GB large page - enable only for 64 bit kernel */ 3093 if (cp->cp_edx & CPUID_AMD_EDX_1GPG) { 3094 add_x86_feature(featureset, X86FSET_1GPG); 3095 } 3096 3097 if ((cpi->cpi_vendor == X86_VENDOR_AMD) && 3098 (cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_FXSR) && 3099 (cp->cp_ecx & CPUID_AMD_ECX_SSE4A)) { 3100 add_x86_feature(featureset, X86FSET_SSE4A); 3101 } 3102 3103 /* 3104 * It's really tricky to support syscall/sysret in 3105 * the i386 kernel; we rely on sysenter/sysexit 3106 * instead. In the amd64 kernel, things are -way- 3107 * better. 3108 */ 3109 if (cp->cp_edx & CPUID_AMD_EDX_SYSC) { 3110 add_x86_feature(featureset, X86FSET_ASYSC); 3111 } 3112 3113 /* 3114 * While we're thinking about system calls, note 3115 * that AMD processors don't support sysenter 3116 * in long mode at all, so don't try to program them. 3117 */ 3118 if (x86_vendor == X86_VENDOR_AMD) { 3119 remove_x86_feature(featureset, X86FSET_SEP); 3120 } 3121 3122 if (cp->cp_edx & CPUID_AMD_EDX_TSCP) { 3123 add_x86_feature(featureset, X86FSET_TSCP); 3124 } 3125 3126 if (cp->cp_ecx & CPUID_AMD_ECX_SVM) { 3127 add_x86_feature(featureset, X86FSET_SVM); 3128 } 3129 3130 if (cp->cp_ecx & CPUID_AMD_ECX_TOPOEXT) { 3131 add_x86_feature(featureset, X86FSET_TOPOEXT); 3132 } 3133 3134 if (cp->cp_ecx & CPUID_AMD_ECX_XOP) { 3135 add_x86_feature(featureset, X86FSET_XOP); 3136 } 3137 3138 if (cp->cp_ecx & CPUID_AMD_ECX_FMA4) { 3139 add_x86_feature(featureset, X86FSET_FMA4); 3140 } 3141 3142 if (cp->cp_ecx & CPUID_AMD_ECX_TBM) { 3143 add_x86_feature(featureset, X86FSET_TBM); 3144 } 3145 3146 if (cp->cp_ecx & CPUID_AMD_ECX_MONITORX) { 3147 add_x86_feature(featureset, X86FSET_MONITORX); 3148 } 3149 break; 3150 default: 3151 break; 3152 } 3153 3154 /* 3155 * Get CPUID data about processor cores and hyperthreads. 3156 */ 3157 switch (cpi->cpi_vendor) { 3158 case X86_VENDOR_Intel: 3159 if (cpi->cpi_maxeax >= 4) { 3160 cp = &cpi->cpi_std[4]; 3161 cp->cp_eax = 4; 3162 cp->cp_ecx = 0; 3163 (void) __cpuid_insn(cp); 3164 platform_cpuid_mangle(cpi->cpi_vendor, 4, cp); 3165 } 3166 /*FALLTHROUGH*/ 3167 case X86_VENDOR_AMD: 3168 if (cpi->cpi_xmaxeax < CPUID_LEAF_EXT_8) 3169 break; 3170 cp = &cpi->cpi_extd[8]; 3171 cp->cp_eax = CPUID_LEAF_EXT_8; 3172 (void) __cpuid_insn(cp); 3173 platform_cpuid_mangle(cpi->cpi_vendor, CPUID_LEAF_EXT_8, 3174 cp); 3175 3176 /* 3177 * AMD uses ebx for some extended functions. 3178 */ 3179 if (cpi->cpi_vendor == X86_VENDOR_AMD) { 3180 /* 3181 * While we're here, check for the AMD "Error 3182 * Pointer Zero/Restore" feature. This can be 3183 * used to setup the FP save handlers 3184 * appropriately. 3185 */ 3186 if (cp->cp_ebx & CPUID_AMD_EBX_ERR_PTR_ZERO) { 3187 cpi->cpi_fp_amd_save = 0; 3188 } else { 3189 cpi->cpi_fp_amd_save = 1; 3190 } 3191 3192 if (cp->cp_ebx & CPUID_AMD_EBX_CLZERO) { 3193 add_x86_feature(featureset, 3194 X86FSET_CLZERO); 3195 } 3196 } 3197 3198 /* 3199 * Virtual and physical address limits from 3200 * cpuid override previously guessed values. 3201 */ 3202 cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0); 3203 cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8); 3204 break; 3205 default: 3206 break; 3207 } 3208 3209 /* 3210 * Get CPUID data about TSC Invariance in Deep C-State. 3211 */ 3212 switch (cpi->cpi_vendor) { 3213 case X86_VENDOR_Intel: 3214 case X86_VENDOR_AMD: 3215 if (cpi->cpi_maxeax >= 7) { 3216 cp = &cpi->cpi_extd[7]; 3217 cp->cp_eax = 0x80000007; 3218 cp->cp_ecx = 0; 3219 (void) __cpuid_insn(cp); 3220 } 3221 break; 3222 default: 3223 break; 3224 } 3225 } 3226 3227 cpuid_pass1_topology(cpu, featureset); 3228 3229 /* 3230 * Synthesize chip "revision" and socket type 3231 */ 3232 cpi->cpi_chiprev = _cpuid_chiprev(cpi->cpi_vendor, cpi->cpi_family, 3233 cpi->cpi_model, cpi->cpi_step); 3234 cpi->cpi_chiprevstr = _cpuid_chiprevstr(cpi->cpi_vendor, 3235 cpi->cpi_family, cpi->cpi_model, cpi->cpi_step); 3236 cpi->cpi_socket = _cpuid_skt(cpi->cpi_vendor, cpi->cpi_family, 3237 cpi->cpi_model, cpi->cpi_step); 3238 3239 if (cpi->cpi_vendor == X86_VENDOR_AMD) { 3240 if (cpi->cpi_xmaxeax >= CPUID_LEAF_EXT_8 && 3241 cpi->cpi_extd[8].cp_ebx & CPUID_AMD_EBX_ERR_PTR_ZERO) { 3242 /* Special handling for AMD FP not necessary. */ 3243 cpi->cpi_fp_amd_save = 0; 3244 } else { 3245 cpi->cpi_fp_amd_save = 1; 3246 } 3247 } 3248 3249 /* 3250 * Check the processor leaves that are used for security features. 3251 */ 3252 cpuid_scan_security(cpu, featureset); 3253 3254 pass1_done: 3255 cpi->cpi_pass = 1; 3256 } 3257 3258 /* 3259 * Make copies of the cpuid table entries we depend on, in 3260 * part for ease of parsing now, in part so that we have only 3261 * one place to correct any of it, in part for ease of 3262 * later export to userland, and in part so we can look at 3263 * this stuff in a crash dump. 3264 */ 3265 3266 /*ARGSUSED*/ 3267 void 3268 cpuid_pass2(cpu_t *cpu) 3269 { 3270 uint_t n, nmax; 3271 int i; 3272 struct cpuid_regs *cp; 3273 uint8_t *dp; 3274 uint32_t *iptr; 3275 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 3276 3277 ASSERT(cpi->cpi_pass == 1); 3278 3279 if (cpi->cpi_maxeax < 1) 3280 goto pass2_done; 3281 3282 if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD) 3283 nmax = NMAX_CPI_STD; 3284 /* 3285 * (We already handled n == 0 and n == 1 in pass 1) 3286 */ 3287 for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) { 3288 cp->cp_eax = n; 3289 3290 /* 3291 * n == 7 was handled in pass 1 3292 */ 3293 if (n == 7) 3294 continue; 3295 3296 /* 3297 * CPUID function 4 expects %ecx to be initialized 3298 * with an index which indicates which cache to return 3299 * information about. The OS is expected to call function 4 3300 * with %ecx set to 0, 1, 2, ... until it returns with 3301 * EAX[4:0] set to 0, which indicates there are no more 3302 * caches. 3303 * 3304 * Here, populate cpi_std[4] with the information returned by 3305 * function 4 when %ecx == 0, and do the rest in cpuid_pass3() 3306 * when dynamic memory allocation becomes available. 3307 * 3308 * Note: we need to explicitly initialize %ecx here, since 3309 * function 4 may have been previously invoked. 3310 */ 3311 if (n == 4) 3312 cp->cp_ecx = 0; 3313 3314 (void) __cpuid_insn(cp); 3315 platform_cpuid_mangle(cpi->cpi_vendor, n, cp); 3316 switch (n) { 3317 case 2: 3318 /* 3319 * "the lower 8 bits of the %eax register 3320 * contain a value that identifies the number 3321 * of times the cpuid [instruction] has to be 3322 * executed to obtain a complete image of the 3323 * processor's caching systems." 3324 * 3325 * How *do* they make this stuff up? 3326 */ 3327 cpi->cpi_ncache = sizeof (*cp) * 3328 BITX(cp->cp_eax, 7, 0); 3329 if (cpi->cpi_ncache == 0) 3330 break; 3331 cpi->cpi_ncache--; /* skip count byte */ 3332 3333 /* 3334 * Well, for now, rather than attempt to implement 3335 * this slightly dubious algorithm, we just look 3336 * at the first 15 .. 3337 */ 3338 if (cpi->cpi_ncache > (sizeof (*cp) - 1)) 3339 cpi->cpi_ncache = sizeof (*cp) - 1; 3340 3341 dp = cpi->cpi_cacheinfo; 3342 if (BITX(cp->cp_eax, 31, 31) == 0) { 3343 uint8_t *p = (void *)&cp->cp_eax; 3344 for (i = 1; i < 4; i++) 3345 if (p[i] != 0) 3346 *dp++ = p[i]; 3347 } 3348 if (BITX(cp->cp_ebx, 31, 31) == 0) { 3349 uint8_t *p = (void *)&cp->cp_ebx; 3350 for (i = 0; i < 4; i++) 3351 if (p[i] != 0) 3352 *dp++ = p[i]; 3353 } 3354 if (BITX(cp->cp_ecx, 31, 31) == 0) { 3355 uint8_t *p = (void *)&cp->cp_ecx; 3356 for (i = 0; i < 4; i++) 3357 if (p[i] != 0) 3358 *dp++ = p[i]; 3359 } 3360 if (BITX(cp->cp_edx, 31, 31) == 0) { 3361 uint8_t *p = (void *)&cp->cp_edx; 3362 for (i = 0; i < 4; i++) 3363 if (p[i] != 0) 3364 *dp++ = p[i]; 3365 } 3366 break; 3367 3368 case 3: /* Processor serial number, if PSN supported */ 3369 break; 3370 3371 case 4: /* Deterministic cache parameters */ 3372 break; 3373 3374 case 5: /* Monitor/Mwait parameters */ 3375 { 3376 size_t mwait_size; 3377 3378 /* 3379 * check cpi_mwait.support which was set in cpuid_pass1 3380 */ 3381 if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT)) 3382 break; 3383 3384 /* 3385 * Protect ourself from insane mwait line size. 3386 * Workaround for incomplete hardware emulator(s). 3387 */ 3388 mwait_size = (size_t)MWAIT_SIZE_MAX(cpi); 3389 if (mwait_size < sizeof (uint32_t) || 3390 !ISP2(mwait_size)) { 3391 #if DEBUG 3392 cmn_err(CE_NOTE, "Cannot handle cpu %d mwait " 3393 "size %ld", cpu->cpu_id, (long)mwait_size); 3394 #endif 3395 break; 3396 } 3397 3398 cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi); 3399 cpi->cpi_mwait.mon_max = mwait_size; 3400 if (MWAIT_EXTENSION(cpi)) { 3401 cpi->cpi_mwait.support |= MWAIT_EXTENSIONS; 3402 if (MWAIT_INT_ENABLE(cpi)) 3403 cpi->cpi_mwait.support |= 3404 MWAIT_ECX_INT_ENABLE; 3405 } 3406 break; 3407 } 3408 default: 3409 break; 3410 } 3411 } 3412 3413 /* 3414 * XSAVE enumeration 3415 */ 3416 if (cpi->cpi_maxeax >= 0xD) { 3417 struct cpuid_regs regs; 3418 boolean_t cpuid_d_valid = B_TRUE; 3419 3420 cp = ®s; 3421 cp->cp_eax = 0xD; 3422 cp->cp_edx = cp->cp_ebx = cp->cp_ecx = 0; 3423 3424 (void) __cpuid_insn(cp); 3425 3426 /* 3427 * Sanity checks for debug 3428 */ 3429 if ((cp->cp_eax & XFEATURE_LEGACY_FP) == 0 || 3430 (cp->cp_eax & XFEATURE_SSE) == 0) { 3431 cpuid_d_valid = B_FALSE; 3432 } 3433 3434 cpi->cpi_xsave.xsav_hw_features_low = cp->cp_eax; 3435 cpi->cpi_xsave.xsav_hw_features_high = cp->cp_edx; 3436 cpi->cpi_xsave.xsav_max_size = cp->cp_ecx; 3437 3438 /* 3439 * If the hw supports AVX, get the size and offset in the save 3440 * area for the ymm state. 3441 */ 3442 if (cpi->cpi_xsave.xsav_hw_features_low & XFEATURE_AVX) { 3443 cp->cp_eax = 0xD; 3444 cp->cp_ecx = 2; 3445 cp->cp_edx = cp->cp_ebx = 0; 3446 3447 (void) __cpuid_insn(cp); 3448 3449 if (cp->cp_ebx != CPUID_LEAFD_2_YMM_OFFSET || 3450 cp->cp_eax != CPUID_LEAFD_2_YMM_SIZE) { 3451 cpuid_d_valid = B_FALSE; 3452 } 3453 3454 cpi->cpi_xsave.ymm_size = cp->cp_eax; 3455 cpi->cpi_xsave.ymm_offset = cp->cp_ebx; 3456 } 3457 3458 /* 3459 * If the hw supports MPX, get the size and offset in the 3460 * save area for BNDREGS and BNDCSR. 3461 */ 3462 if (cpi->cpi_xsave.xsav_hw_features_low & XFEATURE_MPX) { 3463 cp->cp_eax = 0xD; 3464 cp->cp_ecx = 3; 3465 cp->cp_edx = cp->cp_ebx = 0; 3466 3467 (void) __cpuid_insn(cp); 3468 3469 cpi->cpi_xsave.bndregs_size = cp->cp_eax; 3470 cpi->cpi_xsave.bndregs_offset = cp->cp_ebx; 3471 3472 cp->cp_eax = 0xD; 3473 cp->cp_ecx = 4; 3474 cp->cp_edx = cp->cp_ebx = 0; 3475 3476 (void) __cpuid_insn(cp); 3477 3478 cpi->cpi_xsave.bndcsr_size = cp->cp_eax; 3479 cpi->cpi_xsave.bndcsr_offset = cp->cp_ebx; 3480 } 3481 3482 /* 3483 * If the hw supports AVX512, get the size and offset in the 3484 * save area for the opmask registers and zmm state. 3485 */ 3486 if (cpi->cpi_xsave.xsav_hw_features_low & XFEATURE_AVX512) { 3487 cp->cp_eax = 0xD; 3488 cp->cp_ecx = 5; 3489 cp->cp_edx = cp->cp_ebx = 0; 3490 3491 (void) __cpuid_insn(cp); 3492 3493 cpi->cpi_xsave.opmask_size = cp->cp_eax; 3494 cpi->cpi_xsave.opmask_offset = cp->cp_ebx; 3495 3496 cp->cp_eax = 0xD; 3497 cp->cp_ecx = 6; 3498 cp->cp_edx = cp->cp_ebx = 0; 3499 3500 (void) __cpuid_insn(cp); 3501 3502 cpi->cpi_xsave.zmmlo_size = cp->cp_eax; 3503 cpi->cpi_xsave.zmmlo_offset = cp->cp_ebx; 3504 3505 cp->cp_eax = 0xD; 3506 cp->cp_ecx = 7; 3507 cp->cp_edx = cp->cp_ebx = 0; 3508 3509 (void) __cpuid_insn(cp); 3510 3511 cpi->cpi_xsave.zmmhi_size = cp->cp_eax; 3512 cpi->cpi_xsave.zmmhi_offset = cp->cp_ebx; 3513 } 3514 3515 if (is_x86_feature(x86_featureset, X86FSET_XSAVE)) { 3516 xsave_state_size = 0; 3517 } else if (cpuid_d_valid) { 3518 xsave_state_size = cpi->cpi_xsave.xsav_max_size; 3519 } else { 3520 /* Broken CPUID 0xD, probably in HVM */ 3521 cmn_err(CE_WARN, "cpu%d: CPUID.0xD returns invalid " 3522 "value: hw_low = %d, hw_high = %d, xsave_size = %d" 3523 ", ymm_size = %d, ymm_offset = %d\n", 3524 cpu->cpu_id, cpi->cpi_xsave.xsav_hw_features_low, 3525 cpi->cpi_xsave.xsav_hw_features_high, 3526 (int)cpi->cpi_xsave.xsav_max_size, 3527 (int)cpi->cpi_xsave.ymm_size, 3528 (int)cpi->cpi_xsave.ymm_offset); 3529 3530 if (xsave_state_size != 0) { 3531 /* 3532 * This must be a non-boot CPU. We cannot 3533 * continue, because boot cpu has already 3534 * enabled XSAVE. 3535 */ 3536 ASSERT(cpu->cpu_id != 0); 3537 cmn_err(CE_PANIC, "cpu%d: we have already " 3538 "enabled XSAVE on boot cpu, cannot " 3539 "continue.", cpu->cpu_id); 3540 } else { 3541 /* 3542 * If we reached here on the boot CPU, it's also 3543 * almost certain that we'll reach here on the 3544 * non-boot CPUs. When we're here on a boot CPU 3545 * we should disable the feature, on a non-boot 3546 * CPU we need to confirm that we have. 3547 */ 3548 if (cpu->cpu_id == 0) { 3549 remove_x86_feature(x86_featureset, 3550 X86FSET_XSAVE); 3551 remove_x86_feature(x86_featureset, 3552 X86FSET_AVX); 3553 remove_x86_feature(x86_featureset, 3554 X86FSET_F16C); 3555 remove_x86_feature(x86_featureset, 3556 X86FSET_BMI1); 3557 remove_x86_feature(x86_featureset, 3558 X86FSET_BMI2); 3559 remove_x86_feature(x86_featureset, 3560 X86FSET_FMA); 3561 remove_x86_feature(x86_featureset, 3562 X86FSET_AVX2); 3563 remove_x86_feature(x86_featureset, 3564 X86FSET_MPX); 3565 remove_x86_feature(x86_featureset, 3566 X86FSET_AVX512F); 3567 remove_x86_feature(x86_featureset, 3568 X86FSET_AVX512DQ); 3569 remove_x86_feature(x86_featureset, 3570 X86FSET_AVX512PF); 3571 remove_x86_feature(x86_featureset, 3572 X86FSET_AVX512ER); 3573 remove_x86_feature(x86_featureset, 3574 X86FSET_AVX512CD); 3575 remove_x86_feature(x86_featureset, 3576 X86FSET_AVX512BW); 3577 remove_x86_feature(x86_featureset, 3578 X86FSET_AVX512VL); 3579 remove_x86_feature(x86_featureset, 3580 X86FSET_AVX512FMA); 3581 remove_x86_feature(x86_featureset, 3582 X86FSET_AVX512VBMI); 3583 remove_x86_feature(x86_featureset, 3584 X86FSET_AVX512VNNI); 3585 remove_x86_feature(x86_featureset, 3586 X86FSET_AVX512VPOPCDQ); 3587 remove_x86_feature(x86_featureset, 3588 X86FSET_AVX512NNIW); 3589 remove_x86_feature(x86_featureset, 3590 X86FSET_AVX512FMAPS); 3591 3592 CPI_FEATURES_ECX(cpi) &= 3593 ~CPUID_INTC_ECX_XSAVE; 3594 CPI_FEATURES_ECX(cpi) &= 3595 ~CPUID_INTC_ECX_AVX; 3596 CPI_FEATURES_ECX(cpi) &= 3597 ~CPUID_INTC_ECX_F16C; 3598 CPI_FEATURES_ECX(cpi) &= 3599 ~CPUID_INTC_ECX_FMA; 3600 CPI_FEATURES_7_0_EBX(cpi) &= 3601 ~CPUID_INTC_EBX_7_0_BMI1; 3602 CPI_FEATURES_7_0_EBX(cpi) &= 3603 ~CPUID_INTC_EBX_7_0_BMI2; 3604 CPI_FEATURES_7_0_EBX(cpi) &= 3605 ~CPUID_INTC_EBX_7_0_AVX2; 3606 CPI_FEATURES_7_0_EBX(cpi) &= 3607 ~CPUID_INTC_EBX_7_0_MPX; 3608 CPI_FEATURES_7_0_EBX(cpi) &= 3609 ~CPUID_INTC_EBX_7_0_ALL_AVX512; 3610 3611 CPI_FEATURES_7_0_ECX(cpi) &= 3612 ~CPUID_INTC_ECX_7_0_ALL_AVX512; 3613 3614 CPI_FEATURES_7_0_EDX(cpi) &= 3615 ~CPUID_INTC_EDX_7_0_ALL_AVX512; 3616 3617 xsave_force_disable = B_TRUE; 3618 } else { 3619 VERIFY(is_x86_feature(x86_featureset, 3620 X86FSET_XSAVE) == B_FALSE); 3621 } 3622 } 3623 } 3624 } 3625 3626 3627 if ((cpi->cpi_xmaxeax & CPUID_LEAF_EXT_0) == 0) 3628 goto pass2_done; 3629 3630 if ((nmax = cpi->cpi_xmaxeax - CPUID_LEAF_EXT_0 + 1) > NMAX_CPI_EXTD) 3631 nmax = NMAX_CPI_EXTD; 3632 /* 3633 * Copy the extended properties, fixing them as we go. 3634 * (We already handled n == 0 and n == 1 in pass 1) 3635 */ 3636 iptr = (void *)cpi->cpi_brandstr; 3637 for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) { 3638 cp->cp_eax = CPUID_LEAF_EXT_0 + n; 3639 (void) __cpuid_insn(cp); 3640 platform_cpuid_mangle(cpi->cpi_vendor, CPUID_LEAF_EXT_0 + n, 3641 cp); 3642 switch (n) { 3643 case 2: 3644 case 3: 3645 case 4: 3646 /* 3647 * Extract the brand string 3648 */ 3649 *iptr++ = cp->cp_eax; 3650 *iptr++ = cp->cp_ebx; 3651 *iptr++ = cp->cp_ecx; 3652 *iptr++ = cp->cp_edx; 3653 break; 3654 case 5: 3655 switch (cpi->cpi_vendor) { 3656 case X86_VENDOR_AMD: 3657 /* 3658 * The Athlon and Duron were the first 3659 * parts to report the sizes of the 3660 * TLB for large pages. Before then, 3661 * we don't trust the data. 3662 */ 3663 if (cpi->cpi_family < 6 || 3664 (cpi->cpi_family == 6 && 3665 cpi->cpi_model < 1)) 3666 cp->cp_eax = 0; 3667 break; 3668 default: 3669 break; 3670 } 3671 break; 3672 case 6: 3673 switch (cpi->cpi_vendor) { 3674 case X86_VENDOR_AMD: 3675 /* 3676 * The Athlon and Duron were the first 3677 * AMD parts with L2 TLB's. 3678 * Before then, don't trust the data. 3679 */ 3680 if (cpi->cpi_family < 6 || 3681 cpi->cpi_family == 6 && 3682 cpi->cpi_model < 1) 3683 cp->cp_eax = cp->cp_ebx = 0; 3684 /* 3685 * AMD Duron rev A0 reports L2 3686 * cache size incorrectly as 1K 3687 * when it is really 64K 3688 */ 3689 if (cpi->cpi_family == 6 && 3690 cpi->cpi_model == 3 && 3691 cpi->cpi_step == 0) { 3692 cp->cp_ecx &= 0xffff; 3693 cp->cp_ecx |= 0x400000; 3694 } 3695 break; 3696 case X86_VENDOR_Cyrix: /* VIA C3 */ 3697 /* 3698 * VIA C3 processors are a bit messed 3699 * up w.r.t. encoding cache sizes in %ecx 3700 */ 3701 if (cpi->cpi_family != 6) 3702 break; 3703 /* 3704 * model 7 and 8 were incorrectly encoded 3705 * 3706 * xxx is model 8 really broken? 3707 */ 3708 if (cpi->cpi_model == 7 || 3709 cpi->cpi_model == 8) 3710 cp->cp_ecx = 3711 BITX(cp->cp_ecx, 31, 24) << 16 | 3712 BITX(cp->cp_ecx, 23, 16) << 12 | 3713 BITX(cp->cp_ecx, 15, 8) << 8 | 3714 BITX(cp->cp_ecx, 7, 0); 3715 /* 3716 * model 9 stepping 1 has wrong associativity 3717 */ 3718 if (cpi->cpi_model == 9 && cpi->cpi_step == 1) 3719 cp->cp_ecx |= 8 << 12; 3720 break; 3721 case X86_VENDOR_Intel: 3722 /* 3723 * Extended L2 Cache features function. 3724 * First appeared on Prescott. 3725 */ 3726 default: 3727 break; 3728 } 3729 break; 3730 default: 3731 break; 3732 } 3733 } 3734 3735 pass2_done: 3736 cpi->cpi_pass = 2; 3737 } 3738 3739 static const char * 3740 intel_cpubrand(const struct cpuid_info *cpi) 3741 { 3742 int i; 3743 3744 if (!is_x86_feature(x86_featureset, X86FSET_CPUID) || 3745 cpi->cpi_maxeax < 1 || cpi->cpi_family < 5) 3746 return ("i486"); 3747 3748 switch (cpi->cpi_family) { 3749 case 5: 3750 return ("Intel Pentium(r)"); 3751 case 6: 3752 switch (cpi->cpi_model) { 3753 uint_t celeron, xeon; 3754 const struct cpuid_regs *cp; 3755 case 0: 3756 case 1: 3757 case 2: 3758 return ("Intel Pentium(r) Pro"); 3759 case 3: 3760 case 4: 3761 return ("Intel Pentium(r) II"); 3762 case 6: 3763 return ("Intel Celeron(r)"); 3764 case 5: 3765 case 7: 3766 celeron = xeon = 0; 3767 cp = &cpi->cpi_std[2]; /* cache info */ 3768 3769 for (i = 1; i < 4; i++) { 3770 uint_t tmp; 3771 3772 tmp = (cp->cp_eax >> (8 * i)) & 0xff; 3773 if (tmp == 0x40) 3774 celeron++; 3775 if (tmp >= 0x44 && tmp <= 0x45) 3776 xeon++; 3777 } 3778 3779 for (i = 0; i < 2; i++) { 3780 uint_t tmp; 3781 3782 tmp = (cp->cp_ebx >> (8 * i)) & 0xff; 3783 if (tmp == 0x40) 3784 celeron++; 3785 else if (tmp >= 0x44 && tmp <= 0x45) 3786 xeon++; 3787 } 3788 3789 for (i = 0; i < 4; i++) { 3790 uint_t tmp; 3791 3792 tmp = (cp->cp_ecx >> (8 * i)) & 0xff; 3793 if (tmp == 0x40) 3794 celeron++; 3795 else if (tmp >= 0x44 && tmp <= 0x45) 3796 xeon++; 3797 } 3798 3799 for (i = 0; i < 4; i++) { 3800 uint_t tmp; 3801 3802 tmp = (cp->cp_edx >> (8 * i)) & 0xff; 3803 if (tmp == 0x40) 3804 celeron++; 3805 else if (tmp >= 0x44 && tmp <= 0x45) 3806 xeon++; 3807 } 3808 3809 if (celeron) 3810 return ("Intel Celeron(r)"); 3811 if (xeon) 3812 return (cpi->cpi_model == 5 ? 3813 "Intel Pentium(r) II Xeon(tm)" : 3814 "Intel Pentium(r) III Xeon(tm)"); 3815 return (cpi->cpi_model == 5 ? 3816 "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" : 3817 "Intel Pentium(r) III or Pentium(r) III Xeon(tm)"); 3818 default: 3819 break; 3820 } 3821 default: 3822 break; 3823 } 3824 3825 /* BrandID is present if the field is nonzero */ 3826 if (cpi->cpi_brandid != 0) { 3827 static const struct { 3828 uint_t bt_bid; 3829 const char *bt_str; 3830 } brand_tbl[] = { 3831 { 0x1, "Intel(r) Celeron(r)" }, 3832 { 0x2, "Intel(r) Pentium(r) III" }, 3833 { 0x3, "Intel(r) Pentium(r) III Xeon(tm)" }, 3834 { 0x4, "Intel(r) Pentium(r) III" }, 3835 { 0x6, "Mobile Intel(r) Pentium(r) III" }, 3836 { 0x7, "Mobile Intel(r) Celeron(r)" }, 3837 { 0x8, "Intel(r) Pentium(r) 4" }, 3838 { 0x9, "Intel(r) Pentium(r) 4" }, 3839 { 0xa, "Intel(r) Celeron(r)" }, 3840 { 0xb, "Intel(r) Xeon(tm)" }, 3841 { 0xc, "Intel(r) Xeon(tm) MP" }, 3842 { 0xe, "Mobile Intel(r) Pentium(r) 4" }, 3843 { 0xf, "Mobile Intel(r) Celeron(r)" }, 3844 { 0x11, "Mobile Genuine Intel(r)" }, 3845 { 0x12, "Intel(r) Celeron(r) M" }, 3846 { 0x13, "Mobile Intel(r) Celeron(r)" }, 3847 { 0x14, "Intel(r) Celeron(r)" }, 3848 { 0x15, "Mobile Genuine Intel(r)" }, 3849 { 0x16, "Intel(r) Pentium(r) M" }, 3850 { 0x17, "Mobile Intel(r) Celeron(r)" } 3851 }; 3852 uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]); 3853 uint_t sgn; 3854 3855 sgn = (cpi->cpi_family << 8) | 3856 (cpi->cpi_model << 4) | cpi->cpi_step; 3857 3858 for (i = 0; i < btblmax; i++) 3859 if (brand_tbl[i].bt_bid == cpi->cpi_brandid) 3860 break; 3861 if (i < btblmax) { 3862 if (sgn == 0x6b1 && cpi->cpi_brandid == 3) 3863 return ("Intel(r) Celeron(r)"); 3864 if (sgn < 0xf13 && cpi->cpi_brandid == 0xb) 3865 return ("Intel(r) Xeon(tm) MP"); 3866 if (sgn < 0xf13 && cpi->cpi_brandid == 0xe) 3867 return ("Intel(r) Xeon(tm)"); 3868 return (brand_tbl[i].bt_str); 3869 } 3870 } 3871 3872 return (NULL); 3873 } 3874 3875 static const char * 3876 amd_cpubrand(const struct cpuid_info *cpi) 3877 { 3878 if (!is_x86_feature(x86_featureset, X86FSET_CPUID) || 3879 cpi->cpi_maxeax < 1 || cpi->cpi_family < 5) 3880 return ("i486 compatible"); 3881 3882 switch (cpi->cpi_family) { 3883 case 5: 3884 switch (cpi->cpi_model) { 3885 case 0: 3886 case 1: 3887 case 2: 3888 case 3: 3889 case 4: 3890 case 5: 3891 return ("AMD-K5(r)"); 3892 case 6: 3893 case 7: 3894 return ("AMD-K6(r)"); 3895 case 8: 3896 return ("AMD-K6(r)-2"); 3897 case 9: 3898 return ("AMD-K6(r)-III"); 3899 default: 3900 return ("AMD (family 5)"); 3901 } 3902 case 6: 3903 switch (cpi->cpi_model) { 3904 case 1: 3905 return ("AMD-K7(tm)"); 3906 case 0: 3907 case 2: 3908 case 4: 3909 return ("AMD Athlon(tm)"); 3910 case 3: 3911 case 7: 3912 return ("AMD Duron(tm)"); 3913 case 6: 3914 case 8: 3915 case 10: 3916 /* 3917 * Use the L2 cache size to distinguish 3918 */ 3919 return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ? 3920 "AMD Athlon(tm)" : "AMD Duron(tm)"); 3921 default: 3922 return ("AMD (family 6)"); 3923 } 3924 default: 3925 break; 3926 } 3927 3928 if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 && 3929 cpi->cpi_brandid != 0) { 3930 switch (BITX(cpi->cpi_brandid, 7, 5)) { 3931 case 3: 3932 return ("AMD Opteron(tm) UP 1xx"); 3933 case 4: 3934 return ("AMD Opteron(tm) DP 2xx"); 3935 case 5: 3936 return ("AMD Opteron(tm) MP 8xx"); 3937 default: 3938 return ("AMD Opteron(tm)"); 3939 } 3940 } 3941 3942 return (NULL); 3943 } 3944 3945 static const char * 3946 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type) 3947 { 3948 if (!is_x86_feature(x86_featureset, X86FSET_CPUID) || 3949 cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 || 3950 type == X86_TYPE_CYRIX_486) 3951 return ("i486 compatible"); 3952 3953 switch (type) { 3954 case X86_TYPE_CYRIX_6x86: 3955 return ("Cyrix 6x86"); 3956 case X86_TYPE_CYRIX_6x86L: 3957 return ("Cyrix 6x86L"); 3958 case X86_TYPE_CYRIX_6x86MX: 3959 return ("Cyrix 6x86MX"); 3960 case X86_TYPE_CYRIX_GXm: 3961 return ("Cyrix GXm"); 3962 case X86_TYPE_CYRIX_MediaGX: 3963 return ("Cyrix MediaGX"); 3964 case X86_TYPE_CYRIX_MII: 3965 return ("Cyrix M2"); 3966 case X86_TYPE_VIA_CYRIX_III: 3967 return ("VIA Cyrix M3"); 3968 default: 3969 /* 3970 * Have another wild guess .. 3971 */ 3972 if (cpi->cpi_family == 4 && cpi->cpi_model == 9) 3973 return ("Cyrix 5x86"); 3974 else if (cpi->cpi_family == 5) { 3975 switch (cpi->cpi_model) { 3976 case 2: 3977 return ("Cyrix 6x86"); /* Cyrix M1 */ 3978 case 4: 3979 return ("Cyrix MediaGX"); 3980 default: 3981 break; 3982 } 3983 } else if (cpi->cpi_family == 6) { 3984 switch (cpi->cpi_model) { 3985 case 0: 3986 return ("Cyrix 6x86MX"); /* Cyrix M2? */ 3987 case 5: 3988 case 6: 3989 case 7: 3990 case 8: 3991 case 9: 3992 return ("VIA C3"); 3993 default: 3994 break; 3995 } 3996 } 3997 break; 3998 } 3999 return (NULL); 4000 } 4001 4002 /* 4003 * This only gets called in the case that the CPU extended 4004 * feature brand string (0x80000002, 0x80000003, 0x80000004) 4005 * aren't available, or contain null bytes for some reason. 4006 */ 4007 static void 4008 fabricate_brandstr(struct cpuid_info *cpi) 4009 { 4010 const char *brand = NULL; 4011 4012 switch (cpi->cpi_vendor) { 4013 case X86_VENDOR_Intel: 4014 brand = intel_cpubrand(cpi); 4015 break; 4016 case X86_VENDOR_AMD: 4017 brand = amd_cpubrand(cpi); 4018 break; 4019 case X86_VENDOR_Cyrix: 4020 brand = cyrix_cpubrand(cpi, x86_type); 4021 break; 4022 case X86_VENDOR_NexGen: 4023 if (cpi->cpi_family == 5 && cpi->cpi_model == 0) 4024 brand = "NexGen Nx586"; 4025 break; 4026 case X86_VENDOR_Centaur: 4027 if (cpi->cpi_family == 5) 4028 switch (cpi->cpi_model) { 4029 case 4: 4030 brand = "Centaur C6"; 4031 break; 4032 case 8: 4033 brand = "Centaur C2"; 4034 break; 4035 case 9: 4036 brand = "Centaur C3"; 4037 break; 4038 default: 4039 break; 4040 } 4041 break; 4042 case X86_VENDOR_Rise: 4043 if (cpi->cpi_family == 5 && 4044 (cpi->cpi_model == 0 || cpi->cpi_model == 2)) 4045 brand = "Rise mP6"; 4046 break; 4047 case X86_VENDOR_SiS: 4048 if (cpi->cpi_family == 5 && cpi->cpi_model == 0) 4049 brand = "SiS 55x"; 4050 break; 4051 case X86_VENDOR_TM: 4052 if (cpi->cpi_family == 5 && cpi->cpi_model == 4) 4053 brand = "Transmeta Crusoe TM3x00 or TM5x00"; 4054 break; 4055 case X86_VENDOR_NSC: 4056 case X86_VENDOR_UMC: 4057 default: 4058 break; 4059 } 4060 if (brand) { 4061 (void) strcpy((char *)cpi->cpi_brandstr, brand); 4062 return; 4063 } 4064 4065 /* 4066 * If all else fails ... 4067 */ 4068 (void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr), 4069 "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family, 4070 cpi->cpi_model, cpi->cpi_step); 4071 } 4072 4073 /* 4074 * This routine is called just after kernel memory allocation 4075 * becomes available on cpu0, and as part of mp_startup() on 4076 * the other cpus. 4077 * 4078 * Fixup the brand string, and collect any information from cpuid 4079 * that requires dynamically allocated storage to represent. 4080 */ 4081 /*ARGSUSED*/ 4082 void 4083 cpuid_pass3(cpu_t *cpu) 4084 { 4085 int i, max, shft, level, size; 4086 struct cpuid_regs regs; 4087 struct cpuid_regs *cp; 4088 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 4089 4090 ASSERT(cpi->cpi_pass == 2); 4091 4092 /* 4093 * Deterministic cache parameters 4094 * 4095 * Intel uses leaf 0x4 for this, while AMD uses leaf 0x8000001d. The 4096 * values that are present are currently defined to be the same. This 4097 * means we can use the same logic to parse it as long as we use the 4098 * appropriate leaf to get the data. If you're updating this, make sure 4099 * you're careful about which vendor supports which aspect. 4100 * 4101 * Take this opportunity to detect the number of threads sharing the 4102 * last level cache, and construct a corresponding cache id. The 4103 * respective cpuid_info members are initialized to the default case of 4104 * "no last level cache sharing". 4105 */ 4106 cpi->cpi_ncpu_shr_last_cache = 1; 4107 cpi->cpi_last_lvl_cacheid = cpu->cpu_id; 4108 4109 if ((cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) || 4110 (cpi->cpi_vendor == X86_VENDOR_AMD && 4111 cpi->cpi_xmaxeax >= CPUID_LEAF_EXT_1d && 4112 is_x86_feature(x86_featureset, X86FSET_TOPOEXT))) { 4113 uint32_t leaf; 4114 4115 if (cpi->cpi_vendor == X86_VENDOR_Intel) { 4116 leaf = 4; 4117 } else { 4118 leaf = CPUID_LEAF_EXT_1d; 4119 } 4120 4121 /* 4122 * Find the # of elements (size) returned by the leaf and along 4123 * the way detect last level cache sharing details. 4124 */ 4125 bzero(®s, sizeof (regs)); 4126 cp = ®s; 4127 for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) { 4128 cp->cp_eax = leaf; 4129 cp->cp_ecx = i; 4130 4131 (void) __cpuid_insn(cp); 4132 4133 if (CPI_CACHE_TYPE(cp) == 0) 4134 break; 4135 level = CPI_CACHE_LVL(cp); 4136 if (level > max) { 4137 max = level; 4138 cpi->cpi_ncpu_shr_last_cache = 4139 CPI_NTHR_SHR_CACHE(cp) + 1; 4140 } 4141 } 4142 cpi->cpi_cache_leaf_size = size = i; 4143 4144 /* 4145 * Allocate the cpi_cache_leaves array. The first element 4146 * references the regs for the corresponding leaf with %ecx set 4147 * to 0. This was gathered in cpuid_pass2(). 4148 */ 4149 if (size > 0) { 4150 cpi->cpi_cache_leaves = 4151 kmem_alloc(size * sizeof (cp), KM_SLEEP); 4152 if (cpi->cpi_vendor == X86_VENDOR_Intel) { 4153 cpi->cpi_cache_leaves[0] = &cpi->cpi_std[4]; 4154 } else { 4155 cpi->cpi_cache_leaves[0] = &cpi->cpi_extd[0x1d]; 4156 } 4157 4158 /* 4159 * Allocate storage to hold the additional regs 4160 * for the leaf, %ecx == 1 .. cpi_cache_leaf_size. 4161 * 4162 * The regs for the leaf, %ecx == 0 has already 4163 * been allocated as indicated above. 4164 */ 4165 for (i = 1; i < size; i++) { 4166 cp = cpi->cpi_cache_leaves[i] = 4167 kmem_zalloc(sizeof (regs), KM_SLEEP); 4168 cp->cp_eax = leaf; 4169 cp->cp_ecx = i; 4170 4171 (void) __cpuid_insn(cp); 4172 } 4173 } 4174 /* 4175 * Determine the number of bits needed to represent 4176 * the number of CPUs sharing the last level cache. 4177 * 4178 * Shift off that number of bits from the APIC id to 4179 * derive the cache id. 4180 */ 4181 shft = 0; 4182 for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1) 4183 shft++; 4184 cpi->cpi_last_lvl_cacheid = cpi->cpi_apicid >> shft; 4185 } 4186 4187 /* 4188 * Now fixup the brand string 4189 */ 4190 if ((cpi->cpi_xmaxeax & CPUID_LEAF_EXT_0) == 0) { 4191 fabricate_brandstr(cpi); 4192 } else { 4193 4194 /* 4195 * If we successfully extracted a brand string from the cpuid 4196 * instruction, clean it up by removing leading spaces and 4197 * similar junk. 4198 */ 4199 if (cpi->cpi_brandstr[0]) { 4200 size_t maxlen = sizeof (cpi->cpi_brandstr); 4201 char *src, *dst; 4202 4203 dst = src = (char *)cpi->cpi_brandstr; 4204 src[maxlen - 1] = '\0'; 4205 /* 4206 * strip leading spaces 4207 */ 4208 while (*src == ' ') 4209 src++; 4210 /* 4211 * Remove any 'Genuine' or "Authentic" prefixes 4212 */ 4213 if (strncmp(src, "Genuine ", 8) == 0) 4214 src += 8; 4215 if (strncmp(src, "Authentic ", 10) == 0) 4216 src += 10; 4217 4218 /* 4219 * Now do an in-place copy. 4220 * Map (R) to (r) and (TM) to (tm). 4221 * The era of teletypes is long gone, and there's 4222 * -really- no need to shout. 4223 */ 4224 while (*src != '\0') { 4225 if (src[0] == '(') { 4226 if (strncmp(src + 1, "R)", 2) == 0) { 4227 (void) strncpy(dst, "(r)", 3); 4228 src += 3; 4229 dst += 3; 4230 continue; 4231 } 4232 if (strncmp(src + 1, "TM)", 3) == 0) { 4233 (void) strncpy(dst, "(tm)", 4); 4234 src += 4; 4235 dst += 4; 4236 continue; 4237 } 4238 } 4239 *dst++ = *src++; 4240 } 4241 *dst = '\0'; 4242 4243 /* 4244 * Finally, remove any trailing spaces 4245 */ 4246 while (--dst > cpi->cpi_brandstr) 4247 if (*dst == ' ') 4248 *dst = '\0'; 4249 else 4250 break; 4251 } else 4252 fabricate_brandstr(cpi); 4253 } 4254 cpi->cpi_pass = 3; 4255 } 4256 4257 /* 4258 * This routine is called out of bind_hwcap() much later in the life 4259 * of the kernel (post_startup()). The job of this routine is to resolve 4260 * the hardware feature support and kernel support for those features into 4261 * what we're actually going to tell applications via the aux vector. 4262 */ 4263 void 4264 cpuid_pass4(cpu_t *cpu, uint_t *hwcap_out) 4265 { 4266 struct cpuid_info *cpi; 4267 uint_t hwcap_flags = 0, hwcap_flags_2 = 0; 4268 4269 if (cpu == NULL) 4270 cpu = CPU; 4271 cpi = cpu->cpu_m.mcpu_cpi; 4272 4273 ASSERT(cpi->cpi_pass == 3); 4274 4275 if (cpi->cpi_maxeax >= 1) { 4276 uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES]; 4277 uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES]; 4278 uint32_t *ebx = &cpi->cpi_support[STD_EBX_FEATURES]; 4279 4280 *edx = CPI_FEATURES_EDX(cpi); 4281 *ecx = CPI_FEATURES_ECX(cpi); 4282 *ebx = CPI_FEATURES_7_0_EBX(cpi); 4283 4284 /* 4285 * [these require explicit kernel support] 4286 */ 4287 if (!is_x86_feature(x86_featureset, X86FSET_SEP)) 4288 *edx &= ~CPUID_INTC_EDX_SEP; 4289 4290 if (!is_x86_feature(x86_featureset, X86FSET_SSE)) 4291 *edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE); 4292 if (!is_x86_feature(x86_featureset, X86FSET_SSE2)) 4293 *edx &= ~CPUID_INTC_EDX_SSE2; 4294 4295 if (!is_x86_feature(x86_featureset, X86FSET_HTT)) 4296 *edx &= ~CPUID_INTC_EDX_HTT; 4297 4298 if (!is_x86_feature(x86_featureset, X86FSET_SSE3)) 4299 *ecx &= ~CPUID_INTC_ECX_SSE3; 4300 4301 if (!is_x86_feature(x86_featureset, X86FSET_SSSE3)) 4302 *ecx &= ~CPUID_INTC_ECX_SSSE3; 4303 if (!is_x86_feature(x86_featureset, X86FSET_SSE4_1)) 4304 *ecx &= ~CPUID_INTC_ECX_SSE4_1; 4305 if (!is_x86_feature(x86_featureset, X86FSET_SSE4_2)) 4306 *ecx &= ~CPUID_INTC_ECX_SSE4_2; 4307 if (!is_x86_feature(x86_featureset, X86FSET_AES)) 4308 *ecx &= ~CPUID_INTC_ECX_AES; 4309 if (!is_x86_feature(x86_featureset, X86FSET_PCLMULQDQ)) 4310 *ecx &= ~CPUID_INTC_ECX_PCLMULQDQ; 4311 if (!is_x86_feature(x86_featureset, X86FSET_XSAVE)) 4312 *ecx &= ~(CPUID_INTC_ECX_XSAVE | 4313 CPUID_INTC_ECX_OSXSAVE); 4314 if (!is_x86_feature(x86_featureset, X86FSET_AVX)) 4315 *ecx &= ~CPUID_INTC_ECX_AVX; 4316 if (!is_x86_feature(x86_featureset, X86FSET_F16C)) 4317 *ecx &= ~CPUID_INTC_ECX_F16C; 4318 if (!is_x86_feature(x86_featureset, X86FSET_FMA)) 4319 *ecx &= ~CPUID_INTC_ECX_FMA; 4320 if (!is_x86_feature(x86_featureset, X86FSET_BMI1)) 4321 *ebx &= ~CPUID_INTC_EBX_7_0_BMI1; 4322 if (!is_x86_feature(x86_featureset, X86FSET_BMI2)) 4323 *ebx &= ~CPUID_INTC_EBX_7_0_BMI2; 4324 if (!is_x86_feature(x86_featureset, X86FSET_AVX2)) 4325 *ebx &= ~CPUID_INTC_EBX_7_0_AVX2; 4326 if (!is_x86_feature(x86_featureset, X86FSET_RDSEED)) 4327 *ebx &= ~CPUID_INTC_EBX_7_0_RDSEED; 4328 if (!is_x86_feature(x86_featureset, X86FSET_ADX)) 4329 *ebx &= ~CPUID_INTC_EBX_7_0_ADX; 4330 4331 /* 4332 * [no explicit support required beyond x87 fp context] 4333 */ 4334 if (!fpu_exists) 4335 *edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX); 4336 4337 /* 4338 * Now map the supported feature vector to things that we 4339 * think userland will care about. 4340 */ 4341 if (*edx & CPUID_INTC_EDX_SEP) 4342 hwcap_flags |= AV_386_SEP; 4343 if (*edx & CPUID_INTC_EDX_SSE) 4344 hwcap_flags |= AV_386_FXSR | AV_386_SSE; 4345 if (*edx & CPUID_INTC_EDX_SSE2) 4346 hwcap_flags |= AV_386_SSE2; 4347 if (*ecx & CPUID_INTC_ECX_SSE3) 4348 hwcap_flags |= AV_386_SSE3; 4349 if (*ecx & CPUID_INTC_ECX_SSSE3) 4350 hwcap_flags |= AV_386_SSSE3; 4351 if (*ecx & CPUID_INTC_ECX_SSE4_1) 4352 hwcap_flags |= AV_386_SSE4_1; 4353 if (*ecx & CPUID_INTC_ECX_SSE4_2) 4354 hwcap_flags |= AV_386_SSE4_2; 4355 if (*ecx & CPUID_INTC_ECX_MOVBE) 4356 hwcap_flags |= AV_386_MOVBE; 4357 if (*ecx & CPUID_INTC_ECX_AES) 4358 hwcap_flags |= AV_386_AES; 4359 if (*ecx & CPUID_INTC_ECX_PCLMULQDQ) 4360 hwcap_flags |= AV_386_PCLMULQDQ; 4361 if ((*ecx & CPUID_INTC_ECX_XSAVE) && 4362 (*ecx & CPUID_INTC_ECX_OSXSAVE)) { 4363 hwcap_flags |= AV_386_XSAVE; 4364 4365 if (*ecx & CPUID_INTC_ECX_AVX) { 4366 uint32_t *ecx_7 = &CPI_FEATURES_7_0_ECX(cpi); 4367 uint32_t *edx_7 = &CPI_FEATURES_7_0_EDX(cpi); 4368 4369 hwcap_flags |= AV_386_AVX; 4370 if (*ecx & CPUID_INTC_ECX_F16C) 4371 hwcap_flags_2 |= AV_386_2_F16C; 4372 if (*ecx & CPUID_INTC_ECX_FMA) 4373 hwcap_flags_2 |= AV_386_2_FMA; 4374 4375 if (*ebx & CPUID_INTC_EBX_7_0_BMI1) 4376 hwcap_flags_2 |= AV_386_2_BMI1; 4377 if (*ebx & CPUID_INTC_EBX_7_0_BMI2) 4378 hwcap_flags_2 |= AV_386_2_BMI2; 4379 if (*ebx & CPUID_INTC_EBX_7_0_AVX2) 4380 hwcap_flags_2 |= AV_386_2_AVX2; 4381 if (*ebx & CPUID_INTC_EBX_7_0_AVX512F) 4382 hwcap_flags_2 |= AV_386_2_AVX512F; 4383 if (*ebx & CPUID_INTC_EBX_7_0_AVX512DQ) 4384 hwcap_flags_2 |= AV_386_2_AVX512DQ; 4385 if (*ebx & CPUID_INTC_EBX_7_0_AVX512IFMA) 4386 hwcap_flags_2 |= AV_386_2_AVX512IFMA; 4387 if (*ebx & CPUID_INTC_EBX_7_0_AVX512PF) 4388 hwcap_flags_2 |= AV_386_2_AVX512PF; 4389 if (*ebx & CPUID_INTC_EBX_7_0_AVX512ER) 4390 hwcap_flags_2 |= AV_386_2_AVX512ER; 4391 if (*ebx & CPUID_INTC_EBX_7_0_AVX512CD) 4392 hwcap_flags_2 |= AV_386_2_AVX512CD; 4393 if (*ebx & CPUID_INTC_EBX_7_0_AVX512BW) 4394 hwcap_flags_2 |= AV_386_2_AVX512BW; 4395 if (*ebx & CPUID_INTC_EBX_7_0_AVX512VL) 4396 hwcap_flags_2 |= AV_386_2_AVX512VL; 4397 4398 if (*ecx_7 & CPUID_INTC_ECX_7_0_AVX512VBMI) 4399 hwcap_flags_2 |= AV_386_2_AVX512VBMI; 4400 if (*ecx_7 & CPUID_INTC_ECX_7_0_AVX512VNNI) 4401 hwcap_flags_2 |= AV_386_2_AVX512_VNNI; 4402 if (*ecx_7 & CPUID_INTC_ECX_7_0_AVX512VPOPCDQ) 4403 hwcap_flags_2 |= AV_386_2_AVX512VPOPCDQ; 4404 4405 if (*edx_7 & CPUID_INTC_EDX_7_0_AVX5124NNIW) 4406 hwcap_flags_2 |= AV_386_2_AVX512_4NNIW; 4407 if (*edx_7 & CPUID_INTC_EDX_7_0_AVX5124FMAPS) 4408 hwcap_flags_2 |= AV_386_2_AVX512_4FMAPS; 4409 } 4410 } 4411 if (*ecx & CPUID_INTC_ECX_VMX) 4412 hwcap_flags |= AV_386_VMX; 4413 if (*ecx & CPUID_INTC_ECX_POPCNT) 4414 hwcap_flags |= AV_386_POPCNT; 4415 if (*edx & CPUID_INTC_EDX_FPU) 4416 hwcap_flags |= AV_386_FPU; 4417 if (*edx & CPUID_INTC_EDX_MMX) 4418 hwcap_flags |= AV_386_MMX; 4419 4420 if (*edx & CPUID_INTC_EDX_TSC) 4421 hwcap_flags |= AV_386_TSC; 4422 if (*edx & CPUID_INTC_EDX_CX8) 4423 hwcap_flags |= AV_386_CX8; 4424 if (*edx & CPUID_INTC_EDX_CMOV) 4425 hwcap_flags |= AV_386_CMOV; 4426 if (*ecx & CPUID_INTC_ECX_CX16) 4427 hwcap_flags |= AV_386_CX16; 4428 4429 if (*ecx & CPUID_INTC_ECX_RDRAND) 4430 hwcap_flags_2 |= AV_386_2_RDRAND; 4431 if (*ebx & CPUID_INTC_EBX_7_0_ADX) 4432 hwcap_flags_2 |= AV_386_2_ADX; 4433 if (*ebx & CPUID_INTC_EBX_7_0_RDSEED) 4434 hwcap_flags_2 |= AV_386_2_RDSEED; 4435 if (*ebx & CPUID_INTC_EBX_7_0_SHA) 4436 hwcap_flags_2 |= AV_386_2_SHA; 4437 if (*ebx & CPUID_INTC_EBX_7_0_FSGSBASE) 4438 hwcap_flags_2 |= AV_386_2_FSGSBASE; 4439 if (*ebx & CPUID_INTC_EBX_7_0_CLWB) 4440 hwcap_flags_2 |= AV_386_2_CLWB; 4441 if (*ebx & CPUID_INTC_EBX_7_0_CLFLUSHOPT) 4442 hwcap_flags_2 |= AV_386_2_CLFLUSHOPT; 4443 4444 } 4445 /* 4446 * Check a few miscilaneous features. 4447 */ 4448 if (is_x86_feature(x86_featureset, X86FSET_CLZERO)) 4449 hwcap_flags_2 |= AV_386_2_CLZERO; 4450 4451 if (cpi->cpi_xmaxeax < 0x80000001) 4452 goto pass4_done; 4453 4454 switch (cpi->cpi_vendor) { 4455 struct cpuid_regs cp; 4456 uint32_t *edx, *ecx; 4457 4458 case X86_VENDOR_Intel: 4459 /* 4460 * Seems like Intel duplicated what we necessary 4461 * here to make the initial crop of 64-bit OS's work. 4462 * Hopefully, those are the only "extended" bits 4463 * they'll add. 4464 */ 4465 /*FALLTHROUGH*/ 4466 4467 case X86_VENDOR_AMD: 4468 edx = &cpi->cpi_support[AMD_EDX_FEATURES]; 4469 ecx = &cpi->cpi_support[AMD_ECX_FEATURES]; 4470 4471 *edx = CPI_FEATURES_XTD_EDX(cpi); 4472 *ecx = CPI_FEATURES_XTD_ECX(cpi); 4473 4474 /* 4475 * [these features require explicit kernel support] 4476 */ 4477 switch (cpi->cpi_vendor) { 4478 case X86_VENDOR_Intel: 4479 if (!is_x86_feature(x86_featureset, X86FSET_TSCP)) 4480 *edx &= ~CPUID_AMD_EDX_TSCP; 4481 break; 4482 4483 case X86_VENDOR_AMD: 4484 if (!is_x86_feature(x86_featureset, X86FSET_TSCP)) 4485 *edx &= ~CPUID_AMD_EDX_TSCP; 4486 if (!is_x86_feature(x86_featureset, X86FSET_SSE4A)) 4487 *ecx &= ~CPUID_AMD_ECX_SSE4A; 4488 break; 4489 4490 default: 4491 break; 4492 } 4493 4494 /* 4495 * [no explicit support required beyond 4496 * x87 fp context and exception handlers] 4497 */ 4498 if (!fpu_exists) 4499 *edx &= ~(CPUID_AMD_EDX_MMXamd | 4500 CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx); 4501 4502 if (!is_x86_feature(x86_featureset, X86FSET_NX)) 4503 *edx &= ~CPUID_AMD_EDX_NX; 4504 #if !defined(__amd64) 4505 *edx &= ~CPUID_AMD_EDX_LM; 4506 #endif 4507 /* 4508 * Now map the supported feature vector to 4509 * things that we think userland will care about. 4510 */ 4511 #if defined(__amd64) 4512 if (*edx & CPUID_AMD_EDX_SYSC) 4513 hwcap_flags |= AV_386_AMD_SYSC; 4514 #endif 4515 if (*edx & CPUID_AMD_EDX_MMXamd) 4516 hwcap_flags |= AV_386_AMD_MMX; 4517 if (*edx & CPUID_AMD_EDX_3DNow) 4518 hwcap_flags |= AV_386_AMD_3DNow; 4519 if (*edx & CPUID_AMD_EDX_3DNowx) 4520 hwcap_flags |= AV_386_AMD_3DNowx; 4521 if (*ecx & CPUID_AMD_ECX_SVM) 4522 hwcap_flags |= AV_386_AMD_SVM; 4523 4524 switch (cpi->cpi_vendor) { 4525 case X86_VENDOR_AMD: 4526 if (*edx & CPUID_AMD_EDX_TSCP) 4527 hwcap_flags |= AV_386_TSCP; 4528 if (*ecx & CPUID_AMD_ECX_AHF64) 4529 hwcap_flags |= AV_386_AHF; 4530 if (*ecx & CPUID_AMD_ECX_SSE4A) 4531 hwcap_flags |= AV_386_AMD_SSE4A; 4532 if (*ecx & CPUID_AMD_ECX_LZCNT) 4533 hwcap_flags |= AV_386_AMD_LZCNT; 4534 if (*ecx & CPUID_AMD_ECX_MONITORX) 4535 hwcap_flags_2 |= AV_386_2_MONITORX; 4536 break; 4537 4538 case X86_VENDOR_Intel: 4539 if (*edx & CPUID_AMD_EDX_TSCP) 4540 hwcap_flags |= AV_386_TSCP; 4541 /* 4542 * Aarrgh. 4543 * Intel uses a different bit in the same word. 4544 */ 4545 if (*ecx & CPUID_INTC_ECX_AHF64) 4546 hwcap_flags |= AV_386_AHF; 4547 break; 4548 4549 default: 4550 break; 4551 } 4552 break; 4553 4554 case X86_VENDOR_TM: 4555 cp.cp_eax = 0x80860001; 4556 (void) __cpuid_insn(&cp); 4557 cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx; 4558 break; 4559 4560 default: 4561 break; 4562 } 4563 4564 pass4_done: 4565 cpi->cpi_pass = 4; 4566 if (hwcap_out != NULL) { 4567 hwcap_out[0] = hwcap_flags; 4568 hwcap_out[1] = hwcap_flags_2; 4569 } 4570 } 4571 4572 4573 /* 4574 * Simulate the cpuid instruction using the data we previously 4575 * captured about this CPU. We try our best to return the truth 4576 * about the hardware, independently of kernel support. 4577 */ 4578 uint32_t 4579 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp) 4580 { 4581 struct cpuid_info *cpi; 4582 struct cpuid_regs *xcp; 4583 4584 if (cpu == NULL) 4585 cpu = CPU; 4586 cpi = cpu->cpu_m.mcpu_cpi; 4587 4588 ASSERT(cpuid_checkpass(cpu, 3)); 4589 4590 /* 4591 * CPUID data is cached in two separate places: cpi_std for standard 4592 * CPUID leaves , and cpi_extd for extended CPUID leaves. 4593 */ 4594 if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD) { 4595 xcp = &cpi->cpi_std[cp->cp_eax]; 4596 } else if (cp->cp_eax >= CPUID_LEAF_EXT_0 && 4597 cp->cp_eax <= cpi->cpi_xmaxeax && 4598 cp->cp_eax < CPUID_LEAF_EXT_0 + NMAX_CPI_EXTD) { 4599 xcp = &cpi->cpi_extd[cp->cp_eax - CPUID_LEAF_EXT_0]; 4600 } else { 4601 /* 4602 * The caller is asking for data from an input parameter which 4603 * the kernel has not cached. In this case we go fetch from 4604 * the hardware and return the data directly to the user. 4605 */ 4606 return (__cpuid_insn(cp)); 4607 } 4608 4609 cp->cp_eax = xcp->cp_eax; 4610 cp->cp_ebx = xcp->cp_ebx; 4611 cp->cp_ecx = xcp->cp_ecx; 4612 cp->cp_edx = xcp->cp_edx; 4613 return (cp->cp_eax); 4614 } 4615 4616 int 4617 cpuid_checkpass(cpu_t *cpu, int pass) 4618 { 4619 return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL && 4620 cpu->cpu_m.mcpu_cpi->cpi_pass >= pass); 4621 } 4622 4623 int 4624 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n) 4625 { 4626 ASSERT(cpuid_checkpass(cpu, 3)); 4627 4628 return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr)); 4629 } 4630 4631 int 4632 cpuid_is_cmt(cpu_t *cpu) 4633 { 4634 if (cpu == NULL) 4635 cpu = CPU; 4636 4637 ASSERT(cpuid_checkpass(cpu, 1)); 4638 4639 return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0); 4640 } 4641 4642 /* 4643 * AMD and Intel both implement the 64-bit variant of the syscall 4644 * instruction (syscallq), so if there's -any- support for syscall, 4645 * cpuid currently says "yes, we support this". 4646 * 4647 * However, Intel decided to -not- implement the 32-bit variant of the 4648 * syscall instruction, so we provide a predicate to allow our caller 4649 * to test that subtlety here. 4650 * 4651 * XXPV Currently, 32-bit syscall instructions don't work via the hypervisor, 4652 * even in the case where the hardware would in fact support it. 4653 */ 4654 /*ARGSUSED*/ 4655 int 4656 cpuid_syscall32_insn(cpu_t *cpu) 4657 { 4658 ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1)); 4659 4660 #if !defined(__xpv) 4661 if (cpu == NULL) 4662 cpu = CPU; 4663 4664 /*CSTYLED*/ 4665 { 4666 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 4667 4668 if (cpi->cpi_vendor == X86_VENDOR_AMD && 4669 cpi->cpi_xmaxeax >= 0x80000001 && 4670 (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC)) 4671 return (1); 4672 } 4673 #endif 4674 return (0); 4675 } 4676 4677 int 4678 cpuid_getidstr(cpu_t *cpu, char *s, size_t n) 4679 { 4680 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 4681 4682 static const char fmt[] = 4683 "x86 (%s %X family %d model %d step %d clock %d MHz)"; 4684 static const char fmt_ht[] = 4685 "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)"; 4686 4687 ASSERT(cpuid_checkpass(cpu, 1)); 4688 4689 if (cpuid_is_cmt(cpu)) 4690 return (snprintf(s, n, fmt_ht, cpi->cpi_chipid, 4691 cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax, 4692 cpi->cpi_family, cpi->cpi_model, 4693 cpi->cpi_step, cpu->cpu_type_info.pi_clock)); 4694 return (snprintf(s, n, fmt, 4695 cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax, 4696 cpi->cpi_family, cpi->cpi_model, 4697 cpi->cpi_step, cpu->cpu_type_info.pi_clock)); 4698 } 4699 4700 const char * 4701 cpuid_getvendorstr(cpu_t *cpu) 4702 { 4703 ASSERT(cpuid_checkpass(cpu, 1)); 4704 return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr); 4705 } 4706 4707 uint_t 4708 cpuid_getvendor(cpu_t *cpu) 4709 { 4710 ASSERT(cpuid_checkpass(cpu, 1)); 4711 return (cpu->cpu_m.mcpu_cpi->cpi_vendor); 4712 } 4713 4714 uint_t 4715 cpuid_getfamily(cpu_t *cpu) 4716 { 4717 ASSERT(cpuid_checkpass(cpu, 1)); 4718 return (cpu->cpu_m.mcpu_cpi->cpi_family); 4719 } 4720 4721 uint_t 4722 cpuid_getmodel(cpu_t *cpu) 4723 { 4724 ASSERT(cpuid_checkpass(cpu, 1)); 4725 return (cpu->cpu_m.mcpu_cpi->cpi_model); 4726 } 4727 4728 uint_t 4729 cpuid_get_ncpu_per_chip(cpu_t *cpu) 4730 { 4731 ASSERT(cpuid_checkpass(cpu, 1)); 4732 return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip); 4733 } 4734 4735 uint_t 4736 cpuid_get_ncore_per_chip(cpu_t *cpu) 4737 { 4738 ASSERT(cpuid_checkpass(cpu, 1)); 4739 return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip); 4740 } 4741 4742 uint_t 4743 cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu) 4744 { 4745 ASSERT(cpuid_checkpass(cpu, 2)); 4746 return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache); 4747 } 4748 4749 id_t 4750 cpuid_get_last_lvl_cacheid(cpu_t *cpu) 4751 { 4752 ASSERT(cpuid_checkpass(cpu, 2)); 4753 return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid); 4754 } 4755 4756 uint_t 4757 cpuid_getstep(cpu_t *cpu) 4758 { 4759 ASSERT(cpuid_checkpass(cpu, 1)); 4760 return (cpu->cpu_m.mcpu_cpi->cpi_step); 4761 } 4762 4763 uint_t 4764 cpuid_getsig(struct cpu *cpu) 4765 { 4766 ASSERT(cpuid_checkpass(cpu, 1)); 4767 return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax); 4768 } 4769 4770 uint32_t 4771 cpuid_getchiprev(struct cpu *cpu) 4772 { 4773 ASSERT(cpuid_checkpass(cpu, 1)); 4774 return (cpu->cpu_m.mcpu_cpi->cpi_chiprev); 4775 } 4776 4777 const char * 4778 cpuid_getchiprevstr(struct cpu *cpu) 4779 { 4780 ASSERT(cpuid_checkpass(cpu, 1)); 4781 return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr); 4782 } 4783 4784 uint32_t 4785 cpuid_getsockettype(struct cpu *cpu) 4786 { 4787 ASSERT(cpuid_checkpass(cpu, 1)); 4788 return (cpu->cpu_m.mcpu_cpi->cpi_socket); 4789 } 4790 4791 const char * 4792 cpuid_getsocketstr(cpu_t *cpu) 4793 { 4794 static const char *socketstr = NULL; 4795 struct cpuid_info *cpi; 4796 4797 ASSERT(cpuid_checkpass(cpu, 1)); 4798 cpi = cpu->cpu_m.mcpu_cpi; 4799 4800 /* Assume that socket types are the same across the system */ 4801 if (socketstr == NULL) 4802 socketstr = _cpuid_sktstr(cpi->cpi_vendor, cpi->cpi_family, 4803 cpi->cpi_model, cpi->cpi_step); 4804 4805 4806 return (socketstr); 4807 } 4808 4809 int 4810 cpuid_get_chipid(cpu_t *cpu) 4811 { 4812 ASSERT(cpuid_checkpass(cpu, 1)); 4813 4814 if (cpuid_is_cmt(cpu)) 4815 return (cpu->cpu_m.mcpu_cpi->cpi_chipid); 4816 return (cpu->cpu_id); 4817 } 4818 4819 id_t 4820 cpuid_get_coreid(cpu_t *cpu) 4821 { 4822 ASSERT(cpuid_checkpass(cpu, 1)); 4823 return (cpu->cpu_m.mcpu_cpi->cpi_coreid); 4824 } 4825 4826 int 4827 cpuid_get_pkgcoreid(cpu_t *cpu) 4828 { 4829 ASSERT(cpuid_checkpass(cpu, 1)); 4830 return (cpu->cpu_m.mcpu_cpi->cpi_pkgcoreid); 4831 } 4832 4833 int 4834 cpuid_get_clogid(cpu_t *cpu) 4835 { 4836 ASSERT(cpuid_checkpass(cpu, 1)); 4837 return (cpu->cpu_m.mcpu_cpi->cpi_clogid); 4838 } 4839 4840 int 4841 cpuid_get_cacheid(cpu_t *cpu) 4842 { 4843 ASSERT(cpuid_checkpass(cpu, 1)); 4844 return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid); 4845 } 4846 4847 uint_t 4848 cpuid_get_procnodeid(cpu_t *cpu) 4849 { 4850 ASSERT(cpuid_checkpass(cpu, 1)); 4851 return (cpu->cpu_m.mcpu_cpi->cpi_procnodeid); 4852 } 4853 4854 uint_t 4855 cpuid_get_procnodes_per_pkg(cpu_t *cpu) 4856 { 4857 ASSERT(cpuid_checkpass(cpu, 1)); 4858 return (cpu->cpu_m.mcpu_cpi->cpi_procnodes_per_pkg); 4859 } 4860 4861 uint_t 4862 cpuid_get_compunitid(cpu_t *cpu) 4863 { 4864 ASSERT(cpuid_checkpass(cpu, 1)); 4865 return (cpu->cpu_m.mcpu_cpi->cpi_compunitid); 4866 } 4867 4868 uint_t 4869 cpuid_get_cores_per_compunit(cpu_t *cpu) 4870 { 4871 ASSERT(cpuid_checkpass(cpu, 1)); 4872 return (cpu->cpu_m.mcpu_cpi->cpi_cores_per_compunit); 4873 } 4874 4875 /*ARGSUSED*/ 4876 int 4877 cpuid_have_cr8access(cpu_t *cpu) 4878 { 4879 #if defined(__amd64) 4880 return (1); 4881 #else 4882 struct cpuid_info *cpi; 4883 4884 ASSERT(cpu != NULL); 4885 cpi = cpu->cpu_m.mcpu_cpi; 4886 if (cpi->cpi_vendor == X86_VENDOR_AMD && cpi->cpi_maxeax >= 1 && 4887 (CPI_FEATURES_XTD_ECX(cpi) & CPUID_AMD_ECX_CR8D) != 0) 4888 return (1); 4889 return (0); 4890 #endif 4891 } 4892 4893 uint32_t 4894 cpuid_get_apicid(cpu_t *cpu) 4895 { 4896 ASSERT(cpuid_checkpass(cpu, 1)); 4897 if (cpu->cpu_m.mcpu_cpi->cpi_maxeax < 1) { 4898 return (UINT32_MAX); 4899 } else { 4900 return (cpu->cpu_m.mcpu_cpi->cpi_apicid); 4901 } 4902 } 4903 4904 void 4905 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits) 4906 { 4907 struct cpuid_info *cpi; 4908 4909 if (cpu == NULL) 4910 cpu = CPU; 4911 cpi = cpu->cpu_m.mcpu_cpi; 4912 4913 ASSERT(cpuid_checkpass(cpu, 1)); 4914 4915 if (pabits) 4916 *pabits = cpi->cpi_pabits; 4917 if (vabits) 4918 *vabits = cpi->cpi_vabits; 4919 } 4920 4921 size_t 4922 cpuid_get_xsave_size() 4923 { 4924 return (MAX(cpuid_info0.cpi_xsave.xsav_max_size, 4925 sizeof (struct xsave_state))); 4926 } 4927 4928 /* 4929 * Return true if the CPUs on this system require 'pointer clearing' for the 4930 * floating point error pointer exception handling. In the past, this has been 4931 * true for all AMD K7 & K8 CPUs, although newer AMD CPUs have been changed to 4932 * behave the same as Intel. This is checked via the CPUID_AMD_EBX_ERR_PTR_ZERO 4933 * feature bit and is reflected in the cpi_fp_amd_save member. 4934 */ 4935 boolean_t 4936 cpuid_need_fp_excp_handling() 4937 { 4938 return (cpuid_info0.cpi_vendor == X86_VENDOR_AMD && 4939 cpuid_info0.cpi_fp_amd_save != 0); 4940 } 4941 4942 /* 4943 * Returns the number of data TLB entries for a corresponding 4944 * pagesize. If it can't be computed, or isn't known, the 4945 * routine returns zero. If you ask about an architecturally 4946 * impossible pagesize, the routine will panic (so that the 4947 * hat implementor knows that things are inconsistent.) 4948 */ 4949 uint_t 4950 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize) 4951 { 4952 struct cpuid_info *cpi; 4953 uint_t dtlb_nent = 0; 4954 4955 if (cpu == NULL) 4956 cpu = CPU; 4957 cpi = cpu->cpu_m.mcpu_cpi; 4958 4959 ASSERT(cpuid_checkpass(cpu, 1)); 4960 4961 /* 4962 * Check the L2 TLB info 4963 */ 4964 if (cpi->cpi_xmaxeax >= 0x80000006) { 4965 struct cpuid_regs *cp = &cpi->cpi_extd[6]; 4966 4967 switch (pagesize) { 4968 4969 case 4 * 1024: 4970 /* 4971 * All zero in the top 16 bits of the register 4972 * indicates a unified TLB. Size is in low 16 bits. 4973 */ 4974 if ((cp->cp_ebx & 0xffff0000) == 0) 4975 dtlb_nent = cp->cp_ebx & 0x0000ffff; 4976 else 4977 dtlb_nent = BITX(cp->cp_ebx, 27, 16); 4978 break; 4979 4980 case 2 * 1024 * 1024: 4981 if ((cp->cp_eax & 0xffff0000) == 0) 4982 dtlb_nent = cp->cp_eax & 0x0000ffff; 4983 else 4984 dtlb_nent = BITX(cp->cp_eax, 27, 16); 4985 break; 4986 4987 default: 4988 panic("unknown L2 pagesize"); 4989 /*NOTREACHED*/ 4990 } 4991 } 4992 4993 if (dtlb_nent != 0) 4994 return (dtlb_nent); 4995 4996 /* 4997 * No L2 TLB support for this size, try L1. 4998 */ 4999 if (cpi->cpi_xmaxeax >= 0x80000005) { 5000 struct cpuid_regs *cp = &cpi->cpi_extd[5]; 5001 5002 switch (pagesize) { 5003 case 4 * 1024: 5004 dtlb_nent = BITX(cp->cp_ebx, 23, 16); 5005 break; 5006 case 2 * 1024 * 1024: 5007 dtlb_nent = BITX(cp->cp_eax, 23, 16); 5008 break; 5009 default: 5010 panic("unknown L1 d-TLB pagesize"); 5011 /*NOTREACHED*/ 5012 } 5013 } 5014 5015 return (dtlb_nent); 5016 } 5017 5018 /* 5019 * Return 0 if the erratum is not present or not applicable, positive 5020 * if it is, and negative if the status of the erratum is unknown. 5021 * 5022 * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm) 5023 * Processors" #25759, Rev 3.57, August 2005 5024 */ 5025 int 5026 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum) 5027 { 5028 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 5029 uint_t eax; 5030 5031 /* 5032 * Bail out if this CPU isn't an AMD CPU, or if it's 5033 * a legacy (32-bit) AMD CPU. 5034 */ 5035 if (cpi->cpi_vendor != X86_VENDOR_AMD || 5036 cpi->cpi_family == 4 || cpi->cpi_family == 5 || 5037 cpi->cpi_family == 6) { 5038 return (0); 5039 } 5040 5041 eax = cpi->cpi_std[1].cp_eax; 5042 5043 #define SH_B0(eax) (eax == 0xf40 || eax == 0xf50) 5044 #define SH_B3(eax) (eax == 0xf51) 5045 #define B(eax) (SH_B0(eax) || SH_B3(eax)) 5046 5047 #define SH_C0(eax) (eax == 0xf48 || eax == 0xf58) 5048 5049 #define SH_CG(eax) (eax == 0xf4a || eax == 0xf5a || eax == 0xf7a) 5050 #define DH_CG(eax) (eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0) 5051 #define CH_CG(eax) (eax == 0xf82 || eax == 0xfb2) 5052 #define CG(eax) (SH_CG(eax) || DH_CG(eax) || CH_CG(eax)) 5053 5054 #define SH_D0(eax) (eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70) 5055 #define DH_D0(eax) (eax == 0x10fc0 || eax == 0x10ff0) 5056 #define CH_D0(eax) (eax == 0x10f80 || eax == 0x10fb0) 5057 #define D0(eax) (SH_D0(eax) || DH_D0(eax) || CH_D0(eax)) 5058 5059 #define SH_E0(eax) (eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70) 5060 #define JH_E1(eax) (eax == 0x20f10) /* JH8_E0 had 0x20f30 */ 5061 #define DH_E3(eax) (eax == 0x20fc0 || eax == 0x20ff0) 5062 #define SH_E4(eax) (eax == 0x20f51 || eax == 0x20f71) 5063 #define BH_E4(eax) (eax == 0x20fb1) 5064 #define SH_E5(eax) (eax == 0x20f42) 5065 #define DH_E6(eax) (eax == 0x20ff2 || eax == 0x20fc2) 5066 #define JH_E6(eax) (eax == 0x20f12 || eax == 0x20f32) 5067 #define EX(eax) (SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \ 5068 SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \ 5069 DH_E6(eax) || JH_E6(eax)) 5070 5071 #define DR_AX(eax) (eax == 0x100f00 || eax == 0x100f01 || eax == 0x100f02) 5072 #define DR_B0(eax) (eax == 0x100f20) 5073 #define DR_B1(eax) (eax == 0x100f21) 5074 #define DR_BA(eax) (eax == 0x100f2a) 5075 #define DR_B2(eax) (eax == 0x100f22) 5076 #define DR_B3(eax) (eax == 0x100f23) 5077 #define RB_C0(eax) (eax == 0x100f40) 5078 5079 switch (erratum) { 5080 case 1: 5081 return (cpi->cpi_family < 0x10); 5082 case 51: /* what does the asterisk mean? */ 5083 return (B(eax) || SH_C0(eax) || CG(eax)); 5084 case 52: 5085 return (B(eax)); 5086 case 57: 5087 return (cpi->cpi_family <= 0x11); 5088 case 58: 5089 return (B(eax)); 5090 case 60: 5091 return (cpi->cpi_family <= 0x11); 5092 case 61: 5093 case 62: 5094 case 63: 5095 case 64: 5096 case 65: 5097 case 66: 5098 case 68: 5099 case 69: 5100 case 70: 5101 case 71: 5102 return (B(eax)); 5103 case 72: 5104 return (SH_B0(eax)); 5105 case 74: 5106 return (B(eax)); 5107 case 75: 5108 return (cpi->cpi_family < 0x10); 5109 case 76: 5110 return (B(eax)); 5111 case 77: 5112 return (cpi->cpi_family <= 0x11); 5113 case 78: 5114 return (B(eax) || SH_C0(eax)); 5115 case 79: 5116 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); 5117 case 80: 5118 case 81: 5119 case 82: 5120 return (B(eax)); 5121 case 83: 5122 return (B(eax) || SH_C0(eax) || CG(eax)); 5123 case 85: 5124 return (cpi->cpi_family < 0x10); 5125 case 86: 5126 return (SH_C0(eax) || CG(eax)); 5127 case 88: 5128 #if !defined(__amd64) 5129 return (0); 5130 #else 5131 return (B(eax) || SH_C0(eax)); 5132 #endif 5133 case 89: 5134 return (cpi->cpi_family < 0x10); 5135 case 90: 5136 return (B(eax) || SH_C0(eax) || CG(eax)); 5137 case 91: 5138 case 92: 5139 return (B(eax) || SH_C0(eax)); 5140 case 93: 5141 return (SH_C0(eax)); 5142 case 94: 5143 return (B(eax) || SH_C0(eax) || CG(eax)); 5144 case 95: 5145 #if !defined(__amd64) 5146 return (0); 5147 #else 5148 return (B(eax) || SH_C0(eax)); 5149 #endif 5150 case 96: 5151 return (B(eax) || SH_C0(eax) || CG(eax)); 5152 case 97: 5153 case 98: 5154 return (SH_C0(eax) || CG(eax)); 5155 case 99: 5156 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 5157 case 100: 5158 return (B(eax) || SH_C0(eax)); 5159 case 101: 5160 case 103: 5161 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 5162 case 104: 5163 return (SH_C0(eax) || CG(eax) || D0(eax)); 5164 case 105: 5165 case 106: 5166 case 107: 5167 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 5168 case 108: 5169 return (DH_CG(eax)); 5170 case 109: 5171 return (SH_C0(eax) || CG(eax) || D0(eax)); 5172 case 110: 5173 return (D0(eax) || EX(eax)); 5174 case 111: 5175 return (CG(eax)); 5176 case 112: 5177 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); 5178 case 113: 5179 return (eax == 0x20fc0); 5180 case 114: 5181 return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax)); 5182 case 115: 5183 return (SH_E0(eax) || JH_E1(eax)); 5184 case 116: 5185 return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax)); 5186 case 117: 5187 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 5188 case 118: 5189 return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) || 5190 JH_E6(eax)); 5191 case 121: 5192 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); 5193 case 122: 5194 return (cpi->cpi_family < 0x10 || cpi->cpi_family == 0x11); 5195 case 123: 5196 return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax)); 5197 case 131: 5198 return (cpi->cpi_family < 0x10); 5199 case 6336786: 5200 5201 /* 5202 * Test for AdvPowerMgmtInfo.TscPStateInvariant 5203 * if this is a K8 family or newer processor. We're testing for 5204 * this 'erratum' to determine whether or not we have a constant 5205 * TSC. 5206 * 5207 * Our current fix for this is to disable the C1-Clock ramping. 5208 * However, this doesn't work on newer processor families nor 5209 * does it work when virtualized as those devices don't exist. 5210 */ 5211 if (cpi->cpi_family >= 0x12 || get_hwenv() != HW_NATIVE) { 5212 return (0); 5213 } 5214 5215 if (CPI_FAMILY(cpi) == 0xf) { 5216 struct cpuid_regs regs; 5217 regs.cp_eax = 0x80000007; 5218 (void) __cpuid_insn(®s); 5219 return (!(regs.cp_edx & 0x100)); 5220 } 5221 return (0); 5222 case 6323525: 5223 /* 5224 * This erratum (K8 #147) is not present on family 10 and newer. 5225 */ 5226 if (cpi->cpi_family >= 0x10) { 5227 return (0); 5228 } 5229 return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) | 5230 (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40); 5231 5232 case 6671130: 5233 /* 5234 * check for processors (pre-Shanghai) that do not provide 5235 * optimal management of 1gb ptes in its tlb. 5236 */ 5237 return (cpi->cpi_family == 0x10 && cpi->cpi_model < 4); 5238 5239 case 298: 5240 return (DR_AX(eax) || DR_B0(eax) || DR_B1(eax) || DR_BA(eax) || 5241 DR_B2(eax) || RB_C0(eax)); 5242 5243 case 721: 5244 #if defined(__amd64) 5245 return (cpi->cpi_family == 0x10 || cpi->cpi_family == 0x12); 5246 #else 5247 return (0); 5248 #endif 5249 5250 default: 5251 return (-1); 5252 5253 } 5254 } 5255 5256 /* 5257 * Determine if specified erratum is present via OSVW (OS Visible Workaround). 5258 * Return 1 if erratum is present, 0 if not present and -1 if indeterminate. 5259 */ 5260 int 5261 osvw_opteron_erratum(cpu_t *cpu, uint_t erratum) 5262 { 5263 struct cpuid_info *cpi; 5264 uint_t osvwid; 5265 static int osvwfeature = -1; 5266 uint64_t osvwlength; 5267 5268 5269 cpi = cpu->cpu_m.mcpu_cpi; 5270 5271 /* confirm OSVW supported */ 5272 if (osvwfeature == -1) { 5273 osvwfeature = cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW; 5274 } else { 5275 /* assert that osvw feature setting is consistent on all cpus */ 5276 ASSERT(osvwfeature == 5277 (cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW)); 5278 } 5279 if (!osvwfeature) 5280 return (-1); 5281 5282 osvwlength = rdmsr(MSR_AMD_OSVW_ID_LEN) & OSVW_ID_LEN_MASK; 5283 5284 switch (erratum) { 5285 case 298: /* osvwid is 0 */ 5286 osvwid = 0; 5287 if (osvwlength <= (uint64_t)osvwid) { 5288 /* osvwid 0 is unknown */ 5289 return (-1); 5290 } 5291 5292 /* 5293 * Check the OSVW STATUS MSR to determine the state 5294 * of the erratum where: 5295 * 0 - fixed by HW 5296 * 1 - BIOS has applied the workaround when BIOS 5297 * workaround is available. (Or for other errata, 5298 * OS workaround is required.) 5299 * For a value of 1, caller will confirm that the 5300 * erratum 298 workaround has indeed been applied by BIOS. 5301 * 5302 * A 1 may be set in cpus that have a HW fix 5303 * in a mixed cpu system. Regarding erratum 298: 5304 * In a multiprocessor platform, the workaround above 5305 * should be applied to all processors regardless of 5306 * silicon revision when an affected processor is 5307 * present. 5308 */ 5309 5310 return (rdmsr(MSR_AMD_OSVW_STATUS + 5311 (osvwid / OSVW_ID_CNT_PER_MSR)) & 5312 (1ULL << (osvwid % OSVW_ID_CNT_PER_MSR))); 5313 5314 default: 5315 return (-1); 5316 } 5317 } 5318 5319 static const char assoc_str[] = "associativity"; 5320 static const char line_str[] = "line-size"; 5321 static const char size_str[] = "size"; 5322 5323 static void 5324 add_cache_prop(dev_info_t *devi, const char *label, const char *type, 5325 uint32_t val) 5326 { 5327 char buf[128]; 5328 5329 /* 5330 * ndi_prop_update_int() is used because it is desirable for 5331 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set. 5332 */ 5333 if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf)) 5334 (void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val); 5335 } 5336 5337 /* 5338 * Intel-style cache/tlb description 5339 * 5340 * Standard cpuid level 2 gives a randomly ordered 5341 * selection of tags that index into a table that describes 5342 * cache and tlb properties. 5343 */ 5344 5345 static const char l1_icache_str[] = "l1-icache"; 5346 static const char l1_dcache_str[] = "l1-dcache"; 5347 static const char l2_cache_str[] = "l2-cache"; 5348 static const char l3_cache_str[] = "l3-cache"; 5349 static const char itlb4k_str[] = "itlb-4K"; 5350 static const char dtlb4k_str[] = "dtlb-4K"; 5351 static const char itlb2M_str[] = "itlb-2M"; 5352 static const char itlb4M_str[] = "itlb-4M"; 5353 static const char dtlb4M_str[] = "dtlb-4M"; 5354 static const char dtlb24_str[] = "dtlb0-2M-4M"; 5355 static const char itlb424_str[] = "itlb-4K-2M-4M"; 5356 static const char itlb24_str[] = "itlb-2M-4M"; 5357 static const char dtlb44_str[] = "dtlb-4K-4M"; 5358 static const char sl1_dcache_str[] = "sectored-l1-dcache"; 5359 static const char sl2_cache_str[] = "sectored-l2-cache"; 5360 static const char itrace_str[] = "itrace-cache"; 5361 static const char sl3_cache_str[] = "sectored-l3-cache"; 5362 static const char sh_l2_tlb4k_str[] = "shared-l2-tlb-4k"; 5363 5364 static const struct cachetab { 5365 uint8_t ct_code; 5366 uint8_t ct_assoc; 5367 uint16_t ct_line_size; 5368 size_t ct_size; 5369 const char *ct_label; 5370 } intel_ctab[] = { 5371 /* 5372 * maintain descending order! 5373 * 5374 * Codes ignored - Reason 5375 * ---------------------- 5376 * 40H - intel_cpuid_4_cache_info() disambiguates l2/l3 cache 5377 * f0H/f1H - Currently we do not interpret prefetch size by design 5378 */ 5379 { 0xe4, 16, 64, 8*1024*1024, l3_cache_str}, 5380 { 0xe3, 16, 64, 4*1024*1024, l3_cache_str}, 5381 { 0xe2, 16, 64, 2*1024*1024, l3_cache_str}, 5382 { 0xde, 12, 64, 6*1024*1024, l3_cache_str}, 5383 { 0xdd, 12, 64, 3*1024*1024, l3_cache_str}, 5384 { 0xdc, 12, 64, ((1*1024*1024)+(512*1024)), l3_cache_str}, 5385 { 0xd8, 8, 64, 4*1024*1024, l3_cache_str}, 5386 { 0xd7, 8, 64, 2*1024*1024, l3_cache_str}, 5387 { 0xd6, 8, 64, 1*1024*1024, l3_cache_str}, 5388 { 0xd2, 4, 64, 2*1024*1024, l3_cache_str}, 5389 { 0xd1, 4, 64, 1*1024*1024, l3_cache_str}, 5390 { 0xd0, 4, 64, 512*1024, l3_cache_str}, 5391 { 0xca, 4, 0, 512, sh_l2_tlb4k_str}, 5392 { 0xc0, 4, 0, 8, dtlb44_str }, 5393 { 0xba, 4, 0, 64, dtlb4k_str }, 5394 { 0xb4, 4, 0, 256, dtlb4k_str }, 5395 { 0xb3, 4, 0, 128, dtlb4k_str }, 5396 { 0xb2, 4, 0, 64, itlb4k_str }, 5397 { 0xb0, 4, 0, 128, itlb4k_str }, 5398 { 0x87, 8, 64, 1024*1024, l2_cache_str}, 5399 { 0x86, 4, 64, 512*1024, l2_cache_str}, 5400 { 0x85, 8, 32, 2*1024*1024, l2_cache_str}, 5401 { 0x84, 8, 32, 1024*1024, l2_cache_str}, 5402 { 0x83, 8, 32, 512*1024, l2_cache_str}, 5403 { 0x82, 8, 32, 256*1024, l2_cache_str}, 5404 { 0x80, 8, 64, 512*1024, l2_cache_str}, 5405 { 0x7f, 2, 64, 512*1024, l2_cache_str}, 5406 { 0x7d, 8, 64, 2*1024*1024, sl2_cache_str}, 5407 { 0x7c, 8, 64, 1024*1024, sl2_cache_str}, 5408 { 0x7b, 8, 64, 512*1024, sl2_cache_str}, 5409 { 0x7a, 8, 64, 256*1024, sl2_cache_str}, 5410 { 0x79, 8, 64, 128*1024, sl2_cache_str}, 5411 { 0x78, 8, 64, 1024*1024, l2_cache_str}, 5412 { 0x73, 8, 0, 64*1024, itrace_str}, 5413 { 0x72, 8, 0, 32*1024, itrace_str}, 5414 { 0x71, 8, 0, 16*1024, itrace_str}, 5415 { 0x70, 8, 0, 12*1024, itrace_str}, 5416 { 0x68, 4, 64, 32*1024, sl1_dcache_str}, 5417 { 0x67, 4, 64, 16*1024, sl1_dcache_str}, 5418 { 0x66, 4, 64, 8*1024, sl1_dcache_str}, 5419 { 0x60, 8, 64, 16*1024, sl1_dcache_str}, 5420 { 0x5d, 0, 0, 256, dtlb44_str}, 5421 { 0x5c, 0, 0, 128, dtlb44_str}, 5422 { 0x5b, 0, 0, 64, dtlb44_str}, 5423 { 0x5a, 4, 0, 32, dtlb24_str}, 5424 { 0x59, 0, 0, 16, dtlb4k_str}, 5425 { 0x57, 4, 0, 16, dtlb4k_str}, 5426 { 0x56, 4, 0, 16, dtlb4M_str}, 5427 { 0x55, 0, 0, 7, itlb24_str}, 5428 { 0x52, 0, 0, 256, itlb424_str}, 5429 { 0x51, 0, 0, 128, itlb424_str}, 5430 { 0x50, 0, 0, 64, itlb424_str}, 5431 { 0x4f, 0, 0, 32, itlb4k_str}, 5432 { 0x4e, 24, 64, 6*1024*1024, l2_cache_str}, 5433 { 0x4d, 16, 64, 16*1024*1024, l3_cache_str}, 5434 { 0x4c, 12, 64, 12*1024*1024, l3_cache_str}, 5435 { 0x4b, 16, 64, 8*1024*1024, l3_cache_str}, 5436 { 0x4a, 12, 64, 6*1024*1024, l3_cache_str}, 5437 { 0x49, 16, 64, 4*1024*1024, l3_cache_str}, 5438 { 0x48, 12, 64, 3*1024*1024, l2_cache_str}, 5439 { 0x47, 8, 64, 8*1024*1024, l3_cache_str}, 5440 { 0x46, 4, 64, 4*1024*1024, l3_cache_str}, 5441 { 0x45, 4, 32, 2*1024*1024, l2_cache_str}, 5442 { 0x44, 4, 32, 1024*1024, l2_cache_str}, 5443 { 0x43, 4, 32, 512*1024, l2_cache_str}, 5444 { 0x42, 4, 32, 256*1024, l2_cache_str}, 5445 { 0x41, 4, 32, 128*1024, l2_cache_str}, 5446 { 0x3e, 4, 64, 512*1024, sl2_cache_str}, 5447 { 0x3d, 6, 64, 384*1024, sl2_cache_str}, 5448 { 0x3c, 4, 64, 256*1024, sl2_cache_str}, 5449 { 0x3b, 2, 64, 128*1024, sl2_cache_str}, 5450 { 0x3a, 6, 64, 192*1024, sl2_cache_str}, 5451 { 0x39, 4, 64, 128*1024, sl2_cache_str}, 5452 { 0x30, 8, 64, 32*1024, l1_icache_str}, 5453 { 0x2c, 8, 64, 32*1024, l1_dcache_str}, 5454 { 0x29, 8, 64, 4096*1024, sl3_cache_str}, 5455 { 0x25, 8, 64, 2048*1024, sl3_cache_str}, 5456 { 0x23, 8, 64, 1024*1024, sl3_cache_str}, 5457 { 0x22, 4, 64, 512*1024, sl3_cache_str}, 5458 { 0x0e, 6, 64, 24*1024, l1_dcache_str}, 5459 { 0x0d, 4, 32, 16*1024, l1_dcache_str}, 5460 { 0x0c, 4, 32, 16*1024, l1_dcache_str}, 5461 { 0x0b, 4, 0, 4, itlb4M_str}, 5462 { 0x0a, 2, 32, 8*1024, l1_dcache_str}, 5463 { 0x08, 4, 32, 16*1024, l1_icache_str}, 5464 { 0x06, 4, 32, 8*1024, l1_icache_str}, 5465 { 0x05, 4, 0, 32, dtlb4M_str}, 5466 { 0x04, 4, 0, 8, dtlb4M_str}, 5467 { 0x03, 4, 0, 64, dtlb4k_str}, 5468 { 0x02, 4, 0, 2, itlb4M_str}, 5469 { 0x01, 4, 0, 32, itlb4k_str}, 5470 { 0 } 5471 }; 5472 5473 static const struct cachetab cyrix_ctab[] = { 5474 { 0x70, 4, 0, 32, "tlb-4K" }, 5475 { 0x80, 4, 16, 16*1024, "l1-cache" }, 5476 { 0 } 5477 }; 5478 5479 /* 5480 * Search a cache table for a matching entry 5481 */ 5482 static const struct cachetab * 5483 find_cacheent(const struct cachetab *ct, uint_t code) 5484 { 5485 if (code != 0) { 5486 for (; ct->ct_code != 0; ct++) 5487 if (ct->ct_code <= code) 5488 break; 5489 if (ct->ct_code == code) 5490 return (ct); 5491 } 5492 return (NULL); 5493 } 5494 5495 /* 5496 * Populate cachetab entry with L2 or L3 cache-information using 5497 * cpuid function 4. This function is called from intel_walk_cacheinfo() 5498 * when descriptor 0x49 is encountered. It returns 0 if no such cache 5499 * information is found. 5500 */ 5501 static int 5502 intel_cpuid_4_cache_info(struct cachetab *ct, struct cpuid_info *cpi) 5503 { 5504 uint32_t level, i; 5505 int ret = 0; 5506 5507 for (i = 0; i < cpi->cpi_cache_leaf_size; i++) { 5508 level = CPI_CACHE_LVL(cpi->cpi_cache_leaves[i]); 5509 5510 if (level == 2 || level == 3) { 5511 ct->ct_assoc = 5512 CPI_CACHE_WAYS(cpi->cpi_cache_leaves[i]) + 1; 5513 ct->ct_line_size = 5514 CPI_CACHE_COH_LN_SZ(cpi->cpi_cache_leaves[i]) + 1; 5515 ct->ct_size = ct->ct_assoc * 5516 (CPI_CACHE_PARTS(cpi->cpi_cache_leaves[i]) + 1) * 5517 ct->ct_line_size * 5518 (cpi->cpi_cache_leaves[i]->cp_ecx + 1); 5519 5520 if (level == 2) { 5521 ct->ct_label = l2_cache_str; 5522 } else if (level == 3) { 5523 ct->ct_label = l3_cache_str; 5524 } 5525 ret = 1; 5526 } 5527 } 5528 5529 return (ret); 5530 } 5531 5532 /* 5533 * Walk the cacheinfo descriptor, applying 'func' to every valid element 5534 * The walk is terminated if the walker returns non-zero. 5535 */ 5536 static void 5537 intel_walk_cacheinfo(struct cpuid_info *cpi, 5538 void *arg, int (*func)(void *, const struct cachetab *)) 5539 { 5540 const struct cachetab *ct; 5541 struct cachetab des_49_ct, des_b1_ct; 5542 uint8_t *dp; 5543 int i; 5544 5545 if ((dp = cpi->cpi_cacheinfo) == NULL) 5546 return; 5547 for (i = 0; i < cpi->cpi_ncache; i++, dp++) { 5548 /* 5549 * For overloaded descriptor 0x49 we use cpuid function 4 5550 * if supported by the current processor, to create 5551 * cache information. 5552 * For overloaded descriptor 0xb1 we use X86_PAE flag 5553 * to disambiguate the cache information. 5554 */ 5555 if (*dp == 0x49 && cpi->cpi_maxeax >= 0x4 && 5556 intel_cpuid_4_cache_info(&des_49_ct, cpi) == 1) { 5557 ct = &des_49_ct; 5558 } else if (*dp == 0xb1) { 5559 des_b1_ct.ct_code = 0xb1; 5560 des_b1_ct.ct_assoc = 4; 5561 des_b1_ct.ct_line_size = 0; 5562 if (is_x86_feature(x86_featureset, X86FSET_PAE)) { 5563 des_b1_ct.ct_size = 8; 5564 des_b1_ct.ct_label = itlb2M_str; 5565 } else { 5566 des_b1_ct.ct_size = 4; 5567 des_b1_ct.ct_label = itlb4M_str; 5568 } 5569 ct = &des_b1_ct; 5570 } else { 5571 if ((ct = find_cacheent(intel_ctab, *dp)) == NULL) { 5572 continue; 5573 } 5574 } 5575 5576 if (func(arg, ct) != 0) { 5577 break; 5578 } 5579 } 5580 } 5581 5582 /* 5583 * (Like the Intel one, except for Cyrix CPUs) 5584 */ 5585 static void 5586 cyrix_walk_cacheinfo(struct cpuid_info *cpi, 5587 void *arg, int (*func)(void *, const struct cachetab *)) 5588 { 5589 const struct cachetab *ct; 5590 uint8_t *dp; 5591 int i; 5592 5593 if ((dp = cpi->cpi_cacheinfo) == NULL) 5594 return; 5595 for (i = 0; i < cpi->cpi_ncache; i++, dp++) { 5596 /* 5597 * Search Cyrix-specific descriptor table first .. 5598 */ 5599 if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) { 5600 if (func(arg, ct) != 0) 5601 break; 5602 continue; 5603 } 5604 /* 5605 * .. else fall back to the Intel one 5606 */ 5607 if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) { 5608 if (func(arg, ct) != 0) 5609 break; 5610 continue; 5611 } 5612 } 5613 } 5614 5615 /* 5616 * A cacheinfo walker that adds associativity, line-size, and size properties 5617 * to the devinfo node it is passed as an argument. 5618 */ 5619 static int 5620 add_cacheent_props(void *arg, const struct cachetab *ct) 5621 { 5622 dev_info_t *devi = arg; 5623 5624 add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc); 5625 if (ct->ct_line_size != 0) 5626 add_cache_prop(devi, ct->ct_label, line_str, 5627 ct->ct_line_size); 5628 add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size); 5629 return (0); 5630 } 5631 5632 5633 static const char fully_assoc[] = "fully-associative?"; 5634 5635 /* 5636 * AMD style cache/tlb description 5637 * 5638 * Extended functions 5 and 6 directly describe properties of 5639 * tlbs and various cache levels. 5640 */ 5641 static void 5642 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc) 5643 { 5644 switch (assoc) { 5645 case 0: /* reserved; ignore */ 5646 break; 5647 default: 5648 add_cache_prop(devi, label, assoc_str, assoc); 5649 break; 5650 case 0xff: 5651 add_cache_prop(devi, label, fully_assoc, 1); 5652 break; 5653 } 5654 } 5655 5656 static void 5657 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size) 5658 { 5659 if (size == 0) 5660 return; 5661 add_cache_prop(devi, label, size_str, size); 5662 add_amd_assoc(devi, label, assoc); 5663 } 5664 5665 static void 5666 add_amd_cache(dev_info_t *devi, const char *label, 5667 uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size) 5668 { 5669 if (size == 0 || line_size == 0) 5670 return; 5671 add_amd_assoc(devi, label, assoc); 5672 /* 5673 * Most AMD parts have a sectored cache. Multiple cache lines are 5674 * associated with each tag. A sector consists of all cache lines 5675 * associated with a tag. For example, the AMD K6-III has a sector 5676 * size of 2 cache lines per tag. 5677 */ 5678 if (lines_per_tag != 0) 5679 add_cache_prop(devi, label, "lines-per-tag", lines_per_tag); 5680 add_cache_prop(devi, label, line_str, line_size); 5681 add_cache_prop(devi, label, size_str, size * 1024); 5682 } 5683 5684 static void 5685 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc) 5686 { 5687 switch (assoc) { 5688 case 0: /* off */ 5689 break; 5690 case 1: 5691 case 2: 5692 case 4: 5693 add_cache_prop(devi, label, assoc_str, assoc); 5694 break; 5695 case 6: 5696 add_cache_prop(devi, label, assoc_str, 8); 5697 break; 5698 case 8: 5699 add_cache_prop(devi, label, assoc_str, 16); 5700 break; 5701 case 0xf: 5702 add_cache_prop(devi, label, fully_assoc, 1); 5703 break; 5704 default: /* reserved; ignore */ 5705 break; 5706 } 5707 } 5708 5709 static void 5710 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size) 5711 { 5712 if (size == 0 || assoc == 0) 5713 return; 5714 add_amd_l2_assoc(devi, label, assoc); 5715 add_cache_prop(devi, label, size_str, size); 5716 } 5717 5718 static void 5719 add_amd_l2_cache(dev_info_t *devi, const char *label, 5720 uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size) 5721 { 5722 if (size == 0 || assoc == 0 || line_size == 0) 5723 return; 5724 add_amd_l2_assoc(devi, label, assoc); 5725 if (lines_per_tag != 0) 5726 add_cache_prop(devi, label, "lines-per-tag", lines_per_tag); 5727 add_cache_prop(devi, label, line_str, line_size); 5728 add_cache_prop(devi, label, size_str, size * 1024); 5729 } 5730 5731 static void 5732 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi) 5733 { 5734 struct cpuid_regs *cp; 5735 5736 if (cpi->cpi_xmaxeax < 0x80000005) 5737 return; 5738 cp = &cpi->cpi_extd[5]; 5739 5740 /* 5741 * 4M/2M L1 TLB configuration 5742 * 5743 * We report the size for 2M pages because AMD uses two 5744 * TLB entries for one 4M page. 5745 */ 5746 add_amd_tlb(devi, "dtlb-2M", 5747 BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16)); 5748 add_amd_tlb(devi, "itlb-2M", 5749 BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0)); 5750 5751 /* 5752 * 4K L1 TLB configuration 5753 */ 5754 5755 switch (cpi->cpi_vendor) { 5756 uint_t nentries; 5757 case X86_VENDOR_TM: 5758 if (cpi->cpi_family >= 5) { 5759 /* 5760 * Crusoe processors have 256 TLB entries, but 5761 * cpuid data format constrains them to only 5762 * reporting 255 of them. 5763 */ 5764 if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255) 5765 nentries = 256; 5766 /* 5767 * Crusoe processors also have a unified TLB 5768 */ 5769 add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24), 5770 nentries); 5771 break; 5772 } 5773 /*FALLTHROUGH*/ 5774 default: 5775 add_amd_tlb(devi, itlb4k_str, 5776 BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16)); 5777 add_amd_tlb(devi, dtlb4k_str, 5778 BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0)); 5779 break; 5780 } 5781 5782 /* 5783 * data L1 cache configuration 5784 */ 5785 5786 add_amd_cache(devi, l1_dcache_str, 5787 BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16), 5788 BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0)); 5789 5790 /* 5791 * code L1 cache configuration 5792 */ 5793 5794 add_amd_cache(devi, l1_icache_str, 5795 BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16), 5796 BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0)); 5797 5798 if (cpi->cpi_xmaxeax < 0x80000006) 5799 return; 5800 cp = &cpi->cpi_extd[6]; 5801 5802 /* Check for a unified L2 TLB for large pages */ 5803 5804 if (BITX(cp->cp_eax, 31, 16) == 0) 5805 add_amd_l2_tlb(devi, "l2-tlb-2M", 5806 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 5807 else { 5808 add_amd_l2_tlb(devi, "l2-dtlb-2M", 5809 BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16)); 5810 add_amd_l2_tlb(devi, "l2-itlb-2M", 5811 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 5812 } 5813 5814 /* Check for a unified L2 TLB for 4K pages */ 5815 5816 if (BITX(cp->cp_ebx, 31, 16) == 0) { 5817 add_amd_l2_tlb(devi, "l2-tlb-4K", 5818 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 5819 } else { 5820 add_amd_l2_tlb(devi, "l2-dtlb-4K", 5821 BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16)); 5822 add_amd_l2_tlb(devi, "l2-itlb-4K", 5823 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 5824 } 5825 5826 add_amd_l2_cache(devi, l2_cache_str, 5827 BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12), 5828 BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0)); 5829 } 5830 5831 /* 5832 * There are two basic ways that the x86 world describes it cache 5833 * and tlb architecture - Intel's way and AMD's way. 5834 * 5835 * Return which flavor of cache architecture we should use 5836 */ 5837 static int 5838 x86_which_cacheinfo(struct cpuid_info *cpi) 5839 { 5840 switch (cpi->cpi_vendor) { 5841 case X86_VENDOR_Intel: 5842 if (cpi->cpi_maxeax >= 2) 5843 return (X86_VENDOR_Intel); 5844 break; 5845 case X86_VENDOR_AMD: 5846 /* 5847 * The K5 model 1 was the first part from AMD that reported 5848 * cache sizes via extended cpuid functions. 5849 */ 5850 if (cpi->cpi_family > 5 || 5851 (cpi->cpi_family == 5 && cpi->cpi_model >= 1)) 5852 return (X86_VENDOR_AMD); 5853 break; 5854 case X86_VENDOR_TM: 5855 if (cpi->cpi_family >= 5) 5856 return (X86_VENDOR_AMD); 5857 /*FALLTHROUGH*/ 5858 default: 5859 /* 5860 * If they have extended CPU data for 0x80000005 5861 * then we assume they have AMD-format cache 5862 * information. 5863 * 5864 * If not, and the vendor happens to be Cyrix, 5865 * then try our-Cyrix specific handler. 5866 * 5867 * If we're not Cyrix, then assume we're using Intel's 5868 * table-driven format instead. 5869 */ 5870 if (cpi->cpi_xmaxeax >= 0x80000005) 5871 return (X86_VENDOR_AMD); 5872 else if (cpi->cpi_vendor == X86_VENDOR_Cyrix) 5873 return (X86_VENDOR_Cyrix); 5874 else if (cpi->cpi_maxeax >= 2) 5875 return (X86_VENDOR_Intel); 5876 break; 5877 } 5878 return (-1); 5879 } 5880 5881 void 5882 cpuid_set_cpu_properties(void *dip, processorid_t cpu_id, 5883 struct cpuid_info *cpi) 5884 { 5885 dev_info_t *cpu_devi; 5886 int create; 5887 5888 cpu_devi = (dev_info_t *)dip; 5889 5890 /* device_type */ 5891 (void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi, 5892 "device_type", "cpu"); 5893 5894 /* reg */ 5895 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 5896 "reg", cpu_id); 5897 5898 /* cpu-mhz, and clock-frequency */ 5899 if (cpu_freq > 0) { 5900 long long mul; 5901 5902 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 5903 "cpu-mhz", cpu_freq); 5904 if ((mul = cpu_freq * 1000000LL) <= INT_MAX) 5905 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 5906 "clock-frequency", (int)mul); 5907 } 5908 5909 if (!is_x86_feature(x86_featureset, X86FSET_CPUID)) { 5910 return; 5911 } 5912 5913 /* vendor-id */ 5914 (void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi, 5915 "vendor-id", cpi->cpi_vendorstr); 5916 5917 if (cpi->cpi_maxeax == 0) { 5918 return; 5919 } 5920 5921 /* 5922 * family, model, and step 5923 */ 5924 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 5925 "family", CPI_FAMILY(cpi)); 5926 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 5927 "cpu-model", CPI_MODEL(cpi)); 5928 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 5929 "stepping-id", CPI_STEP(cpi)); 5930 5931 /* type */ 5932 switch (cpi->cpi_vendor) { 5933 case X86_VENDOR_Intel: 5934 create = 1; 5935 break; 5936 default: 5937 create = 0; 5938 break; 5939 } 5940 if (create) 5941 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 5942 "type", CPI_TYPE(cpi)); 5943 5944 /* ext-family */ 5945 switch (cpi->cpi_vendor) { 5946 case X86_VENDOR_Intel: 5947 case X86_VENDOR_AMD: 5948 create = cpi->cpi_family >= 0xf; 5949 break; 5950 default: 5951 create = 0; 5952 break; 5953 } 5954 if (create) 5955 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 5956 "ext-family", CPI_FAMILY_XTD(cpi)); 5957 5958 /* ext-model */ 5959 switch (cpi->cpi_vendor) { 5960 case X86_VENDOR_Intel: 5961 create = IS_EXTENDED_MODEL_INTEL(cpi); 5962 break; 5963 case X86_VENDOR_AMD: 5964 create = CPI_FAMILY(cpi) == 0xf; 5965 break; 5966 default: 5967 create = 0; 5968 break; 5969 } 5970 if (create) 5971 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 5972 "ext-model", CPI_MODEL_XTD(cpi)); 5973 5974 /* generation */ 5975 switch (cpi->cpi_vendor) { 5976 case X86_VENDOR_AMD: 5977 /* 5978 * AMD K5 model 1 was the first part to support this 5979 */ 5980 create = cpi->cpi_xmaxeax >= 0x80000001; 5981 break; 5982 default: 5983 create = 0; 5984 break; 5985 } 5986 if (create) 5987 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 5988 "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8)); 5989 5990 /* brand-id */ 5991 switch (cpi->cpi_vendor) { 5992 case X86_VENDOR_Intel: 5993 /* 5994 * brand id first appeared on Pentium III Xeon model 8, 5995 * and Celeron model 8 processors and Opteron 5996 */ 5997 create = cpi->cpi_family > 6 || 5998 (cpi->cpi_family == 6 && cpi->cpi_model >= 8); 5999 break; 6000 case X86_VENDOR_AMD: 6001 create = cpi->cpi_family >= 0xf; 6002 break; 6003 default: 6004 create = 0; 6005 break; 6006 } 6007 if (create && cpi->cpi_brandid != 0) { 6008 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 6009 "brand-id", cpi->cpi_brandid); 6010 } 6011 6012 /* chunks, and apic-id */ 6013 switch (cpi->cpi_vendor) { 6014 /* 6015 * first available on Pentium IV and Opteron (K8) 6016 */ 6017 case X86_VENDOR_Intel: 6018 create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf; 6019 break; 6020 case X86_VENDOR_AMD: 6021 create = cpi->cpi_family >= 0xf; 6022 break; 6023 default: 6024 create = 0; 6025 break; 6026 } 6027 if (create) { 6028 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 6029 "chunks", CPI_CHUNKS(cpi)); 6030 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 6031 "apic-id", cpi->cpi_apicid); 6032 if (cpi->cpi_chipid >= 0) { 6033 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 6034 "chip#", cpi->cpi_chipid); 6035 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 6036 "clog#", cpi->cpi_clogid); 6037 } 6038 } 6039 6040 /* cpuid-features */ 6041 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 6042 "cpuid-features", CPI_FEATURES_EDX(cpi)); 6043 6044 6045 /* cpuid-features-ecx */ 6046 switch (cpi->cpi_vendor) { 6047 case X86_VENDOR_Intel: 6048 create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf; 6049 break; 6050 case X86_VENDOR_AMD: 6051 create = cpi->cpi_family >= 0xf; 6052 break; 6053 default: 6054 create = 0; 6055 break; 6056 } 6057 if (create) 6058 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 6059 "cpuid-features-ecx", CPI_FEATURES_ECX(cpi)); 6060 6061 /* ext-cpuid-features */ 6062 switch (cpi->cpi_vendor) { 6063 case X86_VENDOR_Intel: 6064 case X86_VENDOR_AMD: 6065 case X86_VENDOR_Cyrix: 6066 case X86_VENDOR_TM: 6067 case X86_VENDOR_Centaur: 6068 create = cpi->cpi_xmaxeax >= 0x80000001; 6069 break; 6070 default: 6071 create = 0; 6072 break; 6073 } 6074 if (create) { 6075 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 6076 "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi)); 6077 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 6078 "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi)); 6079 } 6080 6081 /* 6082 * Brand String first appeared in Intel Pentium IV, AMD K5 6083 * model 1, and Cyrix GXm. On earlier models we try and 6084 * simulate something similar .. so this string should always 6085 * same -something- about the processor, however lame. 6086 */ 6087 (void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi, 6088 "brand-string", cpi->cpi_brandstr); 6089 6090 /* 6091 * Finally, cache and tlb information 6092 */ 6093 switch (x86_which_cacheinfo(cpi)) { 6094 case X86_VENDOR_Intel: 6095 intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props); 6096 break; 6097 case X86_VENDOR_Cyrix: 6098 cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props); 6099 break; 6100 case X86_VENDOR_AMD: 6101 amd_cache_info(cpi, cpu_devi); 6102 break; 6103 default: 6104 break; 6105 } 6106 } 6107 6108 struct l2info { 6109 int *l2i_csz; 6110 int *l2i_lsz; 6111 int *l2i_assoc; 6112 int l2i_ret; 6113 }; 6114 6115 /* 6116 * A cacheinfo walker that fetches the size, line-size and associativity 6117 * of the L2 cache 6118 */ 6119 static int 6120 intel_l2cinfo(void *arg, const struct cachetab *ct) 6121 { 6122 struct l2info *l2i = arg; 6123 int *ip; 6124 6125 if (ct->ct_label != l2_cache_str && 6126 ct->ct_label != sl2_cache_str) 6127 return (0); /* not an L2 -- keep walking */ 6128 6129 if ((ip = l2i->l2i_csz) != NULL) 6130 *ip = ct->ct_size; 6131 if ((ip = l2i->l2i_lsz) != NULL) 6132 *ip = ct->ct_line_size; 6133 if ((ip = l2i->l2i_assoc) != NULL) 6134 *ip = ct->ct_assoc; 6135 l2i->l2i_ret = ct->ct_size; 6136 return (1); /* was an L2 -- terminate walk */ 6137 } 6138 6139 /* 6140 * AMD L2/L3 Cache and TLB Associativity Field Definition: 6141 * 6142 * Unlike the associativity for the L1 cache and tlb where the 8 bit 6143 * value is the associativity, the associativity for the L2 cache and 6144 * tlb is encoded in the following table. The 4 bit L2 value serves as 6145 * an index into the amd_afd[] array to determine the associativity. 6146 * -1 is undefined. 0 is fully associative. 6147 */ 6148 6149 static int amd_afd[] = 6150 {-1, 1, 2, -1, 4, -1, 8, -1, 16, -1, 32, 48, 64, 96, 128, 0}; 6151 6152 static void 6153 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i) 6154 { 6155 struct cpuid_regs *cp; 6156 uint_t size, assoc; 6157 int i; 6158 int *ip; 6159 6160 if (cpi->cpi_xmaxeax < 0x80000006) 6161 return; 6162 cp = &cpi->cpi_extd[6]; 6163 6164 if ((i = BITX(cp->cp_ecx, 15, 12)) != 0 && 6165 (size = BITX(cp->cp_ecx, 31, 16)) != 0) { 6166 uint_t cachesz = size * 1024; 6167 assoc = amd_afd[i]; 6168 6169 ASSERT(assoc != -1); 6170 6171 if ((ip = l2i->l2i_csz) != NULL) 6172 *ip = cachesz; 6173 if ((ip = l2i->l2i_lsz) != NULL) 6174 *ip = BITX(cp->cp_ecx, 7, 0); 6175 if ((ip = l2i->l2i_assoc) != NULL) 6176 *ip = assoc; 6177 l2i->l2i_ret = cachesz; 6178 } 6179 } 6180 6181 int 6182 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc) 6183 { 6184 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 6185 struct l2info __l2info, *l2i = &__l2info; 6186 6187 l2i->l2i_csz = csz; 6188 l2i->l2i_lsz = lsz; 6189 l2i->l2i_assoc = assoc; 6190 l2i->l2i_ret = -1; 6191 6192 switch (x86_which_cacheinfo(cpi)) { 6193 case X86_VENDOR_Intel: 6194 intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo); 6195 break; 6196 case X86_VENDOR_Cyrix: 6197 cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo); 6198 break; 6199 case X86_VENDOR_AMD: 6200 amd_l2cacheinfo(cpi, l2i); 6201 break; 6202 default: 6203 break; 6204 } 6205 return (l2i->l2i_ret); 6206 } 6207 6208 #if !defined(__xpv) 6209 6210 uint32_t * 6211 cpuid_mwait_alloc(cpu_t *cpu) 6212 { 6213 uint32_t *ret; 6214 size_t mwait_size; 6215 6216 ASSERT(cpuid_checkpass(CPU, 2)); 6217 6218 mwait_size = CPU->cpu_m.mcpu_cpi->cpi_mwait.mon_max; 6219 if (mwait_size == 0) 6220 return (NULL); 6221 6222 /* 6223 * kmem_alloc() returns cache line size aligned data for mwait_size 6224 * allocations. mwait_size is currently cache line sized. Neither 6225 * of these implementation details are guarantied to be true in the 6226 * future. 6227 * 6228 * First try allocating mwait_size as kmem_alloc() currently returns 6229 * correctly aligned memory. If kmem_alloc() does not return 6230 * mwait_size aligned memory, then use mwait_size ROUNDUP. 6231 * 6232 * Set cpi_mwait.buf_actual and cpi_mwait.size_actual in case we 6233 * decide to free this memory. 6234 */ 6235 ret = kmem_zalloc(mwait_size, KM_SLEEP); 6236 if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) { 6237 cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret; 6238 cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size; 6239 *ret = MWAIT_RUNNING; 6240 return (ret); 6241 } else { 6242 kmem_free(ret, mwait_size); 6243 ret = kmem_zalloc(mwait_size * 2, KM_SLEEP); 6244 cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret; 6245 cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size * 2; 6246 ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size); 6247 *ret = MWAIT_RUNNING; 6248 return (ret); 6249 } 6250 } 6251 6252 void 6253 cpuid_mwait_free(cpu_t *cpu) 6254 { 6255 if (cpu->cpu_m.mcpu_cpi == NULL) { 6256 return; 6257 } 6258 6259 if (cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual != NULL && 6260 cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual > 0) { 6261 kmem_free(cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual, 6262 cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual); 6263 } 6264 6265 cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = NULL; 6266 cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = 0; 6267 } 6268 6269 void 6270 patch_tsc_read(int flag) 6271 { 6272 size_t cnt; 6273 6274 switch (flag) { 6275 case TSC_NONE: 6276 cnt = &_no_rdtsc_end - &_no_rdtsc_start; 6277 (void) memcpy((void *)tsc_read, (void *)&_no_rdtsc_start, cnt); 6278 break; 6279 case TSC_RDTSC_MFENCE: 6280 cnt = &_tsc_mfence_end - &_tsc_mfence_start; 6281 (void) memcpy((void *)tsc_read, 6282 (void *)&_tsc_mfence_start, cnt); 6283 break; 6284 case TSC_RDTSC_LFENCE: 6285 cnt = &_tsc_lfence_end - &_tsc_lfence_start; 6286 (void) memcpy((void *)tsc_read, 6287 (void *)&_tsc_lfence_start, cnt); 6288 break; 6289 case TSC_TSCP: 6290 cnt = &_tscp_end - &_tscp_start; 6291 (void) memcpy((void *)tsc_read, (void *)&_tscp_start, cnt); 6292 break; 6293 default: 6294 /* Bail for unexpected TSC types. (TSC_NONE covers 0) */ 6295 cmn_err(CE_PANIC, "Unrecogized TSC type: %d", flag); 6296 break; 6297 } 6298 tsc_type = flag; 6299 } 6300 6301 int 6302 cpuid_deep_cstates_supported(void) 6303 { 6304 struct cpuid_info *cpi; 6305 struct cpuid_regs regs; 6306 6307 ASSERT(cpuid_checkpass(CPU, 1)); 6308 6309 cpi = CPU->cpu_m.mcpu_cpi; 6310 6311 if (!is_x86_feature(x86_featureset, X86FSET_CPUID)) 6312 return (0); 6313 6314 switch (cpi->cpi_vendor) { 6315 case X86_VENDOR_Intel: 6316 if (cpi->cpi_xmaxeax < 0x80000007) 6317 return (0); 6318 6319 /* 6320 * TSC run at a constant rate in all ACPI C-states? 6321 */ 6322 regs.cp_eax = 0x80000007; 6323 (void) __cpuid_insn(®s); 6324 return (regs.cp_edx & CPUID_TSC_CSTATE_INVARIANCE); 6325 6326 default: 6327 return (0); 6328 } 6329 } 6330 6331 #endif /* !__xpv */ 6332 6333 void 6334 post_startup_cpu_fixups(void) 6335 { 6336 #ifndef __xpv 6337 /* 6338 * Some AMD processors support C1E state. Entering this state will 6339 * cause the local APIC timer to stop, which we can't deal with at 6340 * this time. 6341 */ 6342 if (cpuid_getvendor(CPU) == X86_VENDOR_AMD) { 6343 on_trap_data_t otd; 6344 uint64_t reg; 6345 6346 if (!on_trap(&otd, OT_DATA_ACCESS)) { 6347 reg = rdmsr(MSR_AMD_INT_PENDING_CMP_HALT); 6348 /* Disable C1E state if it is enabled by BIOS */ 6349 if ((reg >> AMD_ACTONCMPHALT_SHIFT) & 6350 AMD_ACTONCMPHALT_MASK) { 6351 reg &= ~(AMD_ACTONCMPHALT_MASK << 6352 AMD_ACTONCMPHALT_SHIFT); 6353 wrmsr(MSR_AMD_INT_PENDING_CMP_HALT, reg); 6354 } 6355 } 6356 no_trap(); 6357 } 6358 #endif /* !__xpv */ 6359 } 6360 6361 void 6362 enable_pcid(void) 6363 { 6364 if (x86_use_pcid == -1) 6365 x86_use_pcid = is_x86_feature(x86_featureset, X86FSET_PCID); 6366 6367 if (x86_use_invpcid == -1) { 6368 x86_use_invpcid = is_x86_feature(x86_featureset, 6369 X86FSET_INVPCID); 6370 } 6371 6372 if (!x86_use_pcid) 6373 return; 6374 6375 /* 6376 * Intel say that on setting PCIDE, it immediately starts using the PCID 6377 * bits; better make sure there's nothing there. 6378 */ 6379 ASSERT((getcr3() & MMU_PAGEOFFSET) == PCID_NONE); 6380 6381 setcr4(getcr4() | CR4_PCIDE); 6382 } 6383 6384 /* 6385 * Setup necessary registers to enable XSAVE feature on this processor. 6386 * This function needs to be called early enough, so that no xsave/xrstor 6387 * ops will execute on the processor before the MSRs are properly set up. 6388 * 6389 * Current implementation has the following assumption: 6390 * - cpuid_pass1() is done, so that X86 features are known. 6391 * - fpu_probe() is done, so that fp_save_mech is chosen. 6392 */ 6393 void 6394 xsave_setup_msr(cpu_t *cpu) 6395 { 6396 ASSERT(fp_save_mech == FP_XSAVE); 6397 ASSERT(is_x86_feature(x86_featureset, X86FSET_XSAVE)); 6398 6399 /* Enable OSXSAVE in CR4. */ 6400 setcr4(getcr4() | CR4_OSXSAVE); 6401 /* 6402 * Update SW copy of ECX, so that /dev/cpu/self/cpuid will report 6403 * correct value. 6404 */ 6405 cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_ecx |= CPUID_INTC_ECX_OSXSAVE; 6406 setup_xfem(); 6407 } 6408 6409 /* 6410 * Starting with the Westmere processor the local 6411 * APIC timer will continue running in all C-states, 6412 * including the deepest C-states. 6413 */ 6414 int 6415 cpuid_arat_supported(void) 6416 { 6417 struct cpuid_info *cpi; 6418 struct cpuid_regs regs; 6419 6420 ASSERT(cpuid_checkpass(CPU, 1)); 6421 ASSERT(is_x86_feature(x86_featureset, X86FSET_CPUID)); 6422 6423 cpi = CPU->cpu_m.mcpu_cpi; 6424 6425 switch (cpi->cpi_vendor) { 6426 case X86_VENDOR_Intel: 6427 /* 6428 * Always-running Local APIC Timer is 6429 * indicated by CPUID.6.EAX[2]. 6430 */ 6431 if (cpi->cpi_maxeax >= 6) { 6432 regs.cp_eax = 6; 6433 (void) cpuid_insn(NULL, ®s); 6434 return (regs.cp_eax & CPUID_CSTATE_ARAT); 6435 } else { 6436 return (0); 6437 } 6438 default: 6439 return (0); 6440 } 6441 } 6442 6443 /* 6444 * Check support for Intel ENERGY_PERF_BIAS feature 6445 */ 6446 int 6447 cpuid_iepb_supported(struct cpu *cp) 6448 { 6449 struct cpuid_info *cpi = cp->cpu_m.mcpu_cpi; 6450 struct cpuid_regs regs; 6451 6452 ASSERT(cpuid_checkpass(cp, 1)); 6453 6454 if (!(is_x86_feature(x86_featureset, X86FSET_CPUID)) || 6455 !(is_x86_feature(x86_featureset, X86FSET_MSR))) { 6456 return (0); 6457 } 6458 6459 /* 6460 * Intel ENERGY_PERF_BIAS MSR is indicated by 6461 * capability bit CPUID.6.ECX.3 6462 */ 6463 if ((cpi->cpi_vendor != X86_VENDOR_Intel) || (cpi->cpi_maxeax < 6)) 6464 return (0); 6465 6466 regs.cp_eax = 0x6; 6467 (void) cpuid_insn(NULL, ®s); 6468 return (regs.cp_ecx & CPUID_EPB_SUPPORT); 6469 } 6470 6471 /* 6472 * Check support for TSC deadline timer 6473 * 6474 * TSC deadline timer provides a superior software programming 6475 * model over local APIC timer that eliminates "time drifts". 6476 * Instead of specifying a relative time, software specifies an 6477 * absolute time as the target at which the processor should 6478 * generate a timer event. 6479 */ 6480 int 6481 cpuid_deadline_tsc_supported(void) 6482 { 6483 struct cpuid_info *cpi = CPU->cpu_m.mcpu_cpi; 6484 struct cpuid_regs regs; 6485 6486 ASSERT(cpuid_checkpass(CPU, 1)); 6487 ASSERT(is_x86_feature(x86_featureset, X86FSET_CPUID)); 6488 6489 switch (cpi->cpi_vendor) { 6490 case X86_VENDOR_Intel: 6491 if (cpi->cpi_maxeax >= 1) { 6492 regs.cp_eax = 1; 6493 (void) cpuid_insn(NULL, ®s); 6494 return (regs.cp_ecx & CPUID_DEADLINE_TSC); 6495 } else { 6496 return (0); 6497 } 6498 default: 6499 return (0); 6500 } 6501 } 6502 6503 #if defined(__amd64) && !defined(__xpv) 6504 /* 6505 * Patch in versions of bcopy for high performance Intel Nhm processors 6506 * and later... 6507 */ 6508 void 6509 patch_memops(uint_t vendor) 6510 { 6511 size_t cnt, i; 6512 caddr_t to, from; 6513 6514 if ((vendor == X86_VENDOR_Intel) && 6515 is_x86_feature(x86_featureset, X86FSET_SSE4_2)) { 6516 cnt = &bcopy_patch_end - &bcopy_patch_start; 6517 to = &bcopy_ck_size; 6518 from = &bcopy_patch_start; 6519 for (i = 0; i < cnt; i++) { 6520 *to++ = *from++; 6521 } 6522 } 6523 } 6524 #endif /* __amd64 && !__xpv */ 6525 6526 /* 6527 * We're being asked to tell the system how many bits are required to represent 6528 * the various thread and strand IDs. While it's tempting to derive this based 6529 * on the values in cpi_ncore_per_chip and cpi_ncpu_per_chip, that isn't quite 6530 * correct. Instead, this needs to be based on the number of bits that the APIC 6531 * allows for these different configurations. We only update these to a larger 6532 * value if we find one. 6533 */ 6534 void 6535 cpuid_get_ext_topo(cpu_t *cpu, uint_t *core_nbits, uint_t *strand_nbits) 6536 { 6537 struct cpuid_info *cpi; 6538 6539 VERIFY(cpuid_checkpass(CPU, 1)); 6540 cpi = cpu->cpu_m.mcpu_cpi; 6541 6542 if (cpi->cpi_ncore_bits > *core_nbits) { 6543 *core_nbits = cpi->cpi_ncore_bits; 6544 } 6545 6546 if (cpi->cpi_nthread_bits > *strand_nbits) { 6547 *strand_nbits = cpi->cpi_nthread_bits; 6548 } 6549 } 6550 6551 void 6552 cpuid_pass_ucode(cpu_t *cpu, uchar_t *fset) 6553 { 6554 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 6555 struct cpuid_regs cp; 6556 6557 /* 6558 * Reread the CPUID portions that we need for various security 6559 * information. 6560 */ 6561 if (cpi->cpi_vendor == X86_VENDOR_Intel) { 6562 /* 6563 * Check if we now have leaf 7 available to us. 6564 */ 6565 if (cpi->cpi_maxeax < 7) { 6566 bzero(&cp, sizeof (cp)); 6567 cp.cp_eax = 0; 6568 cpi->cpi_maxeax = __cpuid_insn(&cp); 6569 if (cpi->cpi_maxeax < 7) 6570 return; 6571 } 6572 6573 bzero(&cp, sizeof (cp)); 6574 cp.cp_eax = 7; 6575 cp.cp_ecx = 0; 6576 (void) __cpuid_insn(&cp); 6577 cpi->cpi_std[7] = cp; 6578 } else if (cpi->cpi_vendor == X86_VENDOR_AMD) { 6579 /* No xcpuid support */ 6580 if (cpi->cpi_family < 5 || 6581 (cpi->cpi_family == 5 && cpi->cpi_model < 1)) 6582 return; 6583 6584 if (cpi->cpi_xmaxeax < CPUID_LEAF_EXT_8) { 6585 bzero(&cp, sizeof (cp)); 6586 cp.cp_eax = CPUID_LEAF_EXT_0; 6587 cpi->cpi_xmaxeax = __cpuid_insn(&cp); 6588 if (cpi->cpi_xmaxeax < CPUID_LEAF_EXT_8) { 6589 return; 6590 } 6591 } 6592 6593 bzero(&cp, sizeof (cp)); 6594 cp.cp_eax = CPUID_LEAF_EXT_8; 6595 (void) __cpuid_insn(&cp); 6596 platform_cpuid_mangle(cpi->cpi_vendor, CPUID_LEAF_EXT_8, &cp); 6597 cpi->cpi_extd[8] = cp; 6598 } else { 6599 /* 6600 * Nothing to do here. Return an empty set which has already 6601 * been zeroed for us. 6602 */ 6603 return; 6604 } 6605 cpuid_scan_security(cpu, fset); 6606 } 6607 6608 /* ARGSUSED */ 6609 static int 6610 cpuid_post_ucodeadm_xc(xc_arg_t arg0, xc_arg_t arg1, xc_arg_t arg2) 6611 { 6612 uchar_t *fset; 6613 6614 fset = (uchar_t *)(arg0 + sizeof (x86_featureset) * CPU->cpu_id); 6615 cpuid_pass_ucode(CPU, fset); 6616 6617 return (0); 6618 } 6619 6620 /* 6621 * After a microcode update where the version has changed, then we need to 6622 * rescan CPUID. To do this we check every CPU to make sure that they have the 6623 * same microcode. Then we perform a cross call to all such CPUs. It's the 6624 * caller's job to make sure that no one else can end up doing an update while 6625 * this is going on. 6626 * 6627 * We assume that the system is microcode capable if we're called. 6628 */ 6629 void 6630 cpuid_post_ucodeadm(void) 6631 { 6632 uint32_t rev; 6633 int i; 6634 struct cpu *cpu; 6635 cpuset_t cpuset; 6636 void *argdata; 6637 uchar_t *f0; 6638 6639 argdata = kmem_zalloc(sizeof (x86_featureset) * NCPU, KM_SLEEP); 6640 6641 mutex_enter(&cpu_lock); 6642 cpu = cpu_get(0); 6643 rev = cpu->cpu_m.mcpu_ucode_info->cui_rev; 6644 CPUSET_ONLY(cpuset, 0); 6645 for (i = 1; i < max_ncpus; i++) { 6646 if ((cpu = cpu_get(i)) == NULL) 6647 continue; 6648 6649 if (cpu->cpu_m.mcpu_ucode_info->cui_rev != rev) { 6650 panic("post microcode update CPU %d has differing " 6651 "microcode revision (%u) from CPU 0 (%u)", 6652 i, cpu->cpu_m.mcpu_ucode_info->cui_rev, rev); 6653 } 6654 CPUSET_ADD(cpuset, i); 6655 } 6656 6657 kpreempt_disable(); 6658 xc_sync((xc_arg_t)argdata, 0, 0, CPUSET2BV(cpuset), 6659 cpuid_post_ucodeadm_xc); 6660 kpreempt_enable(); 6661 6662 /* 6663 * OK, now look at each CPU and see if their feature sets are equal. 6664 */ 6665 f0 = argdata; 6666 for (i = 1; i < max_ncpus; i++) { 6667 uchar_t *fset; 6668 if (!CPU_IN_SET(cpuset, i)) 6669 continue; 6670 6671 fset = (uchar_t *)((uintptr_t)argdata + 6672 sizeof (x86_featureset) * i); 6673 6674 if (!compare_x86_featureset(f0, fset)) { 6675 panic("Post microcode update CPU %d has " 6676 "differing security feature (%p) set from CPU 0 " 6677 "(%p), not appending to feature set", i, 6678 (void *)fset, (void *)f0); 6679 } 6680 } 6681 6682 mutex_exit(&cpu_lock); 6683 6684 for (i = 0; i < NUM_X86_FEATURES; i++) { 6685 cmn_err(CE_CONT, "?post-ucode x86_feature: %s\n", 6686 x86_feature_names[i]); 6687 if (is_x86_feature(f0, i)) { 6688 add_x86_feature(x86_featureset, i); 6689 } 6690 } 6691 kmem_free(argdata, sizeof (x86_featureset) * NCPU); 6692 }