1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2012 by Delphix. All rights reserved.
  24  * Copyright 2018 Joyent, Inc.
  25  */
  26 
  27 /*
  28  * Architecture-independent CPU control functions.
  29  */
  30 
  31 #include <sys/types.h>
  32 #include <sys/param.h>
  33 #include <sys/var.h>
  34 #include <sys/thread.h>
  35 #include <sys/cpuvar.h>
  36 #include <sys/cpu_event.h>
  37 #include <sys/kstat.h>
  38 #include <sys/uadmin.h>
  39 #include <sys/systm.h>
  40 #include <sys/errno.h>
  41 #include <sys/cmn_err.h>
  42 #include <sys/procset.h>
  43 #include <sys/processor.h>
  44 #include <sys/debug.h>
  45 #include <sys/cpupart.h>
  46 #include <sys/lgrp.h>
  47 #include <sys/pset.h>
  48 #include <sys/pghw.h>
  49 #include <sys/kmem.h>
  50 #include <sys/kmem_impl.h>        /* to set per-cpu kmem_cache offset */
  51 #include <sys/atomic.h>
  52 #include <sys/callb.h>
  53 #include <sys/vtrace.h>
  54 #include <sys/cyclic.h>
  55 #include <sys/bitmap.h>
  56 #include <sys/nvpair.h>
  57 #include <sys/pool_pset.h>
  58 #include <sys/msacct.h>
  59 #include <sys/time.h>
  60 #include <sys/archsystm.h>
  61 #include <sys/sdt.h>
  62 #if defined(__x86) || defined(__amd64)
  63 #include <sys/x86_archext.h>
  64 #endif
  65 #include <sys/callo.h>
  66 
  67 extern int      mp_cpu_start(cpu_t *);
  68 extern int      mp_cpu_stop(cpu_t *);
  69 extern int      mp_cpu_poweron(cpu_t *);
  70 extern int      mp_cpu_poweroff(cpu_t *);
  71 extern int      mp_cpu_configure(int);
  72 extern int      mp_cpu_unconfigure(int);
  73 extern void     mp_cpu_faulted_enter(cpu_t *);
  74 extern void     mp_cpu_faulted_exit(cpu_t *);
  75 
  76 extern int cmp_cpu_to_chip(processorid_t cpuid);
  77 #ifdef __sparcv9
  78 extern char *cpu_fru_fmri(cpu_t *cp);
  79 #endif
  80 
  81 static void cpu_add_active_internal(cpu_t *cp);
  82 static void cpu_remove_active(cpu_t *cp);
  83 static void cpu_info_kstat_create(cpu_t *cp);
  84 static void cpu_info_kstat_destroy(cpu_t *cp);
  85 static void cpu_stats_kstat_create(cpu_t *cp);
  86 static void cpu_stats_kstat_destroy(cpu_t *cp);
  87 
  88 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw);
  89 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw);
  90 static int cpu_stat_ks_update(kstat_t *ksp, int rw);
  91 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t);
  92 
  93 /*
  94  * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active,
  95  * max_cpu_seqid_ever, and dispatch queue reallocations.  The lock ordering with
  96  * respect to related locks is:
  97  *
  98  *      cpu_lock --> thread_free_lock  --->  p_lock  --->  thread_lock()
  99  *
 100  * Warning:  Certain sections of code do not use the cpu_lock when
 101  * traversing the cpu_list (e.g. mutex_vector_enter(), clock()).  Since
 102  * all cpus are paused during modifications to this list, a solution
 103  * to protect the list is too either disable kernel preemption while
 104  * walking the list, *or* recheck the cpu_next pointer at each
 105  * iteration in the loop.  Note that in no cases can any cached
 106  * copies of the cpu pointers be kept as they may become invalid.
 107  */
 108 kmutex_t        cpu_lock;
 109 cpu_t           *cpu_list;              /* list of all CPUs */
 110 cpu_t           *clock_cpu_list;        /* used by clock to walk CPUs */
 111 cpu_t           *cpu_active;            /* list of active CPUs */
 112 static cpuset_t cpu_available;          /* set of available CPUs */
 113 cpuset_t        cpu_seqid_inuse;        /* which cpu_seqids are in use */
 114 
 115 cpu_t           **cpu_seq;              /* ptrs to CPUs, indexed by seq_id */
 116 
 117 /*
 118  * max_ncpus keeps the max cpus the system can have. Initially
 119  * it's NCPU, but since most archs scan the devtree for cpus
 120  * fairly early on during boot, the real max can be known before
 121  * ncpus is set (useful for early NCPU based allocations).
 122  */
 123 int max_ncpus = NCPU;
 124 /*
 125  * platforms that set max_ncpus to maxiumum number of cpus that can be
 126  * dynamically added will set boot_max_ncpus to the number of cpus found
 127  * at device tree scan time during boot.
 128  */
 129 int boot_max_ncpus = -1;
 130 int boot_ncpus = -1;
 131 /*
 132  * Maximum possible CPU id.  This can never be >= NCPU since NCPU is
 133  * used to size arrays that are indexed by CPU id.
 134  */
 135 processorid_t max_cpuid = NCPU - 1;
 136 
 137 /*
 138  * Maximum cpu_seqid was given. This number can only grow and never shrink. It
 139  * can be used to optimize NCPU loops to avoid going through CPUs which were
 140  * never on-line.
 141  */
 142 processorid_t max_cpu_seqid_ever = 0;
 143 
 144 int ncpus = 1;
 145 int ncpus_online = 1;
 146 
 147 /*
 148  * CPU that we're trying to offline.  Protected by cpu_lock.
 149  */
 150 cpu_t *cpu_inmotion;
 151 
 152 /*
 153  * Can be raised to suppress further weakbinding, which are instead
 154  * satisfied by disabling preemption.  Must be raised/lowered under cpu_lock,
 155  * while individual thread weakbinding synchronization is done under thread
 156  * lock.
 157  */
 158 int weakbindingbarrier;
 159 
 160 /*
 161  * Variables used in pause_cpus().
 162  */
 163 static volatile char safe_list[NCPU];
 164 
 165 static struct _cpu_pause_info {
 166         int             cp_spl;         /* spl saved in pause_cpus() */
 167         volatile int    cp_go;          /* Go signal sent after all ready */
 168         int             cp_count;       /* # of CPUs to pause */
 169         ksema_t         cp_sem;         /* synch pause_cpus & cpu_pause */
 170         kthread_id_t    cp_paused;
 171         void            *(*cp_func)(void *);
 172 } cpu_pause_info;
 173 
 174 static kmutex_t pause_free_mutex;
 175 static kcondvar_t pause_free_cv;
 176 
 177 
 178 static struct cpu_sys_stats_ks_data {
 179         kstat_named_t cpu_ticks_idle;
 180         kstat_named_t cpu_ticks_user;
 181         kstat_named_t cpu_ticks_kernel;
 182         kstat_named_t cpu_ticks_wait;
 183         kstat_named_t cpu_nsec_idle;
 184         kstat_named_t cpu_nsec_user;
 185         kstat_named_t cpu_nsec_kernel;
 186         kstat_named_t cpu_nsec_dtrace;
 187         kstat_named_t cpu_nsec_intr;
 188         kstat_named_t cpu_load_intr;
 189         kstat_named_t wait_ticks_io;
 190         kstat_named_t dtrace_probes;
 191         kstat_named_t bread;
 192         kstat_named_t bwrite;
 193         kstat_named_t lread;
 194         kstat_named_t lwrite;
 195         kstat_named_t phread;
 196         kstat_named_t phwrite;
 197         kstat_named_t pswitch;
 198         kstat_named_t trap;
 199         kstat_named_t intr;
 200         kstat_named_t syscall;
 201         kstat_named_t sysread;
 202         kstat_named_t syswrite;
 203         kstat_named_t sysfork;
 204         kstat_named_t sysvfork;
 205         kstat_named_t sysexec;
 206         kstat_named_t readch;
 207         kstat_named_t writech;
 208         kstat_named_t rcvint;
 209         kstat_named_t xmtint;
 210         kstat_named_t mdmint;
 211         kstat_named_t rawch;
 212         kstat_named_t canch;
 213         kstat_named_t outch;
 214         kstat_named_t msg;
 215         kstat_named_t sema;
 216         kstat_named_t namei;
 217         kstat_named_t ufsiget;
 218         kstat_named_t ufsdirblk;
 219         kstat_named_t ufsipage;
 220         kstat_named_t ufsinopage;
 221         kstat_named_t procovf;
 222         kstat_named_t intrthread;
 223         kstat_named_t intrblk;
 224         kstat_named_t intrunpin;
 225         kstat_named_t idlethread;
 226         kstat_named_t inv_swtch;
 227         kstat_named_t nthreads;
 228         kstat_named_t cpumigrate;
 229         kstat_named_t xcalls;
 230         kstat_named_t mutex_adenters;
 231         kstat_named_t rw_rdfails;
 232         kstat_named_t rw_wrfails;
 233         kstat_named_t modload;
 234         kstat_named_t modunload;
 235         kstat_named_t bawrite;
 236         kstat_named_t iowait;
 237 } cpu_sys_stats_ks_data_template = {
 238         { "cpu_ticks_idle",     KSTAT_DATA_UINT64 },
 239         { "cpu_ticks_user",     KSTAT_DATA_UINT64 },
 240         { "cpu_ticks_kernel",   KSTAT_DATA_UINT64 },
 241         { "cpu_ticks_wait",     KSTAT_DATA_UINT64 },
 242         { "cpu_nsec_idle",      KSTAT_DATA_UINT64 },
 243         { "cpu_nsec_user",      KSTAT_DATA_UINT64 },
 244         { "cpu_nsec_kernel",    KSTAT_DATA_UINT64 },
 245         { "cpu_nsec_dtrace",    KSTAT_DATA_UINT64 },
 246         { "cpu_nsec_intr",      KSTAT_DATA_UINT64 },
 247         { "cpu_load_intr",      KSTAT_DATA_UINT64 },
 248         { "wait_ticks_io",      KSTAT_DATA_UINT64 },
 249         { "dtrace_probes",      KSTAT_DATA_UINT64 },
 250         { "bread",              KSTAT_DATA_UINT64 },
 251         { "bwrite",             KSTAT_DATA_UINT64 },
 252         { "lread",              KSTAT_DATA_UINT64 },
 253         { "lwrite",             KSTAT_DATA_UINT64 },
 254         { "phread",             KSTAT_DATA_UINT64 },
 255         { "phwrite",            KSTAT_DATA_UINT64 },
 256         { "pswitch",            KSTAT_DATA_UINT64 },
 257         { "trap",               KSTAT_DATA_UINT64 },
 258         { "intr",               KSTAT_DATA_UINT64 },
 259         { "syscall",            KSTAT_DATA_UINT64 },
 260         { "sysread",            KSTAT_DATA_UINT64 },
 261         { "syswrite",           KSTAT_DATA_UINT64 },
 262         { "sysfork",            KSTAT_DATA_UINT64 },
 263         { "sysvfork",           KSTAT_DATA_UINT64 },
 264         { "sysexec",            KSTAT_DATA_UINT64 },
 265         { "readch",             KSTAT_DATA_UINT64 },
 266         { "writech",            KSTAT_DATA_UINT64 },
 267         { "rcvint",             KSTAT_DATA_UINT64 },
 268         { "xmtint",             KSTAT_DATA_UINT64 },
 269         { "mdmint",             KSTAT_DATA_UINT64 },
 270         { "rawch",              KSTAT_DATA_UINT64 },
 271         { "canch",              KSTAT_DATA_UINT64 },
 272         { "outch",              KSTAT_DATA_UINT64 },
 273         { "msg",                KSTAT_DATA_UINT64 },
 274         { "sema",               KSTAT_DATA_UINT64 },
 275         { "namei",              KSTAT_DATA_UINT64 },
 276         { "ufsiget",            KSTAT_DATA_UINT64 },
 277         { "ufsdirblk",          KSTAT_DATA_UINT64 },
 278         { "ufsipage",           KSTAT_DATA_UINT64 },
 279         { "ufsinopage",         KSTAT_DATA_UINT64 },
 280         { "procovf",            KSTAT_DATA_UINT64 },
 281         { "intrthread",         KSTAT_DATA_UINT64 },
 282         { "intrblk",            KSTAT_DATA_UINT64 },
 283         { "intrunpin",          KSTAT_DATA_UINT64 },
 284         { "idlethread",         KSTAT_DATA_UINT64 },
 285         { "inv_swtch",          KSTAT_DATA_UINT64 },
 286         { "nthreads",           KSTAT_DATA_UINT64 },
 287         { "cpumigrate",         KSTAT_DATA_UINT64 },
 288         { "xcalls",             KSTAT_DATA_UINT64 },
 289         { "mutex_adenters",     KSTAT_DATA_UINT64 },
 290         { "rw_rdfails",         KSTAT_DATA_UINT64 },
 291         { "rw_wrfails",         KSTAT_DATA_UINT64 },
 292         { "modload",            KSTAT_DATA_UINT64 },
 293         { "modunload",          KSTAT_DATA_UINT64 },
 294         { "bawrite",            KSTAT_DATA_UINT64 },
 295         { "iowait",             KSTAT_DATA_UINT64 },
 296 };
 297 
 298 static struct cpu_vm_stats_ks_data {
 299         kstat_named_t pgrec;
 300         kstat_named_t pgfrec;
 301         kstat_named_t pgin;
 302         kstat_named_t pgpgin;
 303         kstat_named_t pgout;
 304         kstat_named_t pgpgout;
 305         kstat_named_t swapin;
 306         kstat_named_t pgswapin;
 307         kstat_named_t swapout;
 308         kstat_named_t pgswapout;
 309         kstat_named_t zfod;
 310         kstat_named_t dfree;
 311         kstat_named_t scan;
 312         kstat_named_t rev;
 313         kstat_named_t hat_fault;
 314         kstat_named_t as_fault;
 315         kstat_named_t maj_fault;
 316         kstat_named_t cow_fault;
 317         kstat_named_t prot_fault;
 318         kstat_named_t softlock;
 319         kstat_named_t kernel_asflt;
 320         kstat_named_t pgrrun;
 321         kstat_named_t execpgin;
 322         kstat_named_t execpgout;
 323         kstat_named_t execfree;
 324         kstat_named_t anonpgin;
 325         kstat_named_t anonpgout;
 326         kstat_named_t anonfree;
 327         kstat_named_t fspgin;
 328         kstat_named_t fspgout;
 329         kstat_named_t fsfree;
 330 } cpu_vm_stats_ks_data_template = {
 331         { "pgrec",              KSTAT_DATA_UINT64 },
 332         { "pgfrec",             KSTAT_DATA_UINT64 },
 333         { "pgin",               KSTAT_DATA_UINT64 },
 334         { "pgpgin",             KSTAT_DATA_UINT64 },
 335         { "pgout",              KSTAT_DATA_UINT64 },
 336         { "pgpgout",            KSTAT_DATA_UINT64 },
 337         { "swapin",             KSTAT_DATA_UINT64 },
 338         { "pgswapin",           KSTAT_DATA_UINT64 },
 339         { "swapout",            KSTAT_DATA_UINT64 },
 340         { "pgswapout",          KSTAT_DATA_UINT64 },
 341         { "zfod",               KSTAT_DATA_UINT64 },
 342         { "dfree",              KSTAT_DATA_UINT64 },
 343         { "scan",               KSTAT_DATA_UINT64 },
 344         { "rev",                KSTAT_DATA_UINT64 },
 345         { "hat_fault",          KSTAT_DATA_UINT64 },
 346         { "as_fault",           KSTAT_DATA_UINT64 },
 347         { "maj_fault",          KSTAT_DATA_UINT64 },
 348         { "cow_fault",          KSTAT_DATA_UINT64 },
 349         { "prot_fault",         KSTAT_DATA_UINT64 },
 350         { "softlock",           KSTAT_DATA_UINT64 },
 351         { "kernel_asflt",       KSTAT_DATA_UINT64 },
 352         { "pgrrun",             KSTAT_DATA_UINT64 },
 353         { "execpgin",           KSTAT_DATA_UINT64 },
 354         { "execpgout",          KSTAT_DATA_UINT64 },
 355         { "execfree",           KSTAT_DATA_UINT64 },
 356         { "anonpgin",           KSTAT_DATA_UINT64 },
 357         { "anonpgout",          KSTAT_DATA_UINT64 },
 358         { "anonfree",           KSTAT_DATA_UINT64 },
 359         { "fspgin",             KSTAT_DATA_UINT64 },
 360         { "fspgout",            KSTAT_DATA_UINT64 },
 361         { "fsfree",             KSTAT_DATA_UINT64 },
 362 };
 363 
 364 /*
 365  * Force the specified thread to migrate to the appropriate processor.
 366  * Called with thread lock held, returns with it dropped.
 367  */
 368 static void
 369 force_thread_migrate(kthread_id_t tp)
 370 {
 371         ASSERT(THREAD_LOCK_HELD(tp));
 372         if (tp == curthread) {
 373                 THREAD_TRANSITION(tp);
 374                 CL_SETRUN(tp);
 375                 thread_unlock_nopreempt(tp);
 376                 swtch();
 377         } else {
 378                 if (tp->t_state == TS_ONPROC) {
 379                         cpu_surrender(tp);
 380                 } else if (tp->t_state == TS_RUN) {
 381                         (void) dispdeq(tp);
 382                         setbackdq(tp);
 383                 }
 384                 thread_unlock(tp);
 385         }
 386 }
 387 
 388 /*
 389  * Set affinity for a specified CPU.
 390  *
 391  * Specifying a cpu_id of CPU_CURRENT, allowed _only_ when setting affinity for
 392  * curthread, will set affinity to the CPU on which the thread is currently
 393  * running.  For other cpu_id values, the caller must ensure that the
 394  * referenced CPU remains valid, which can be done by holding cpu_lock across
 395  * this call.
 396  *
 397  * CPU affinity is guaranteed after return of thread_affinity_set().  If a
 398  * caller setting affinity to CPU_CURRENT requires that its thread not migrate
 399  * CPUs prior to a successful return, it should take extra precautions (such as
 400  * their own call to kpreempt_disable) to ensure that safety.
 401  *
 402  * CPU_BEST can be used to pick a "best" CPU to migrate to, including
 403  * potentially the current CPU.
 404  *
 405  * A CPU affinity reference count is maintained by thread_affinity_set and
 406  * thread_affinity_clear (incrementing and decrementing it, respectively),
 407  * maintaining CPU affinity while the count is non-zero, and allowing regions
 408  * of code which require affinity to be nested.
 409  */
 410 void
 411 thread_affinity_set(kthread_id_t t, int cpu_id)
 412 {
 413         cpu_t *cp;
 414 
 415         ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL));
 416 
 417         if (cpu_id == CPU_CURRENT) {
 418                 VERIFY3P(t, ==, curthread);
 419                 kpreempt_disable();
 420                 cp = CPU;
 421         } else if (cpu_id == CPU_BEST) {
 422                 VERIFY3P(t, ==, curthread);
 423                 kpreempt_disable();
 424                 cp = disp_choose_best_cpu();
 425         } else {
 426                 /*
 427                  * We should be asserting that cpu_lock is held here, but
 428                  * the NCA code doesn't acquire it.  The following assert
 429                  * should be uncommented when the NCA code is fixed.
 430                  *
 431                  * ASSERT(MUTEX_HELD(&cpu_lock));
 432                  */
 433                 VERIFY((cpu_id >= 0) && (cpu_id < NCPU));
 434                 cp = cpu[cpu_id];
 435 
 436                 /* user must provide a good cpu_id */
 437                 VERIFY(cp != NULL);
 438         }
 439 
 440         /*
 441          * If there is already a hard affinity requested, and this affinity
 442          * conflicts with that, panic.
 443          */
 444         thread_lock(t);
 445         if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) {
 446                 panic("affinity_set: setting %p but already bound to %p",
 447                     (void *)cp, (void *)t->t_bound_cpu);
 448         }
 449         t->t_affinitycnt++;
 450         t->t_bound_cpu = cp;
 451 
 452         /*
 453          * Make sure we're running on the right CPU.
 454          */
 455         if (cp != t->t_cpu || t != curthread) {
 456                 ASSERT(cpu_id != CPU_CURRENT);
 457                 force_thread_migrate(t);        /* drops thread lock */
 458         } else {
 459                 thread_unlock(t);
 460         }
 461 
 462         if (cpu_id == CPU_CURRENT || cpu_id == CPU_BEST)
 463                 kpreempt_enable();
 464 }
 465 
 466 /*
 467  *      Wrapper for backward compatibility.
 468  */
 469 void
 470 affinity_set(int cpu_id)
 471 {
 472         thread_affinity_set(curthread, cpu_id);
 473 }
 474 
 475 /*
 476  * Decrement the affinity reservation count and if it becomes zero,
 477  * clear the CPU affinity for the current thread, or set it to the user's
 478  * software binding request.
 479  */
 480 void
 481 thread_affinity_clear(kthread_id_t t)
 482 {
 483         register processorid_t binding;
 484 
 485         thread_lock(t);
 486         if (--t->t_affinitycnt == 0) {
 487                 if ((binding = t->t_bind_cpu) == PBIND_NONE) {
 488                         /*
 489                          * Adjust disp_max_unbound_pri if necessary.
 490                          */
 491                         disp_adjust_unbound_pri(t);
 492                         t->t_bound_cpu = NULL;
 493                         if (t->t_cpu->cpu_part != t->t_cpupart) {
 494                                 force_thread_migrate(t);
 495                                 return;
 496                         }
 497                 } else {
 498                         t->t_bound_cpu = cpu[binding];
 499                         /*
 500                          * Make sure the thread is running on the bound CPU.
 501                          */
 502                         if (t->t_cpu != t->t_bound_cpu) {
 503                                 force_thread_migrate(t);
 504                                 return;         /* already dropped lock */
 505                         }
 506                 }
 507         }
 508         thread_unlock(t);
 509 }
 510 
 511 /*
 512  * Wrapper for backward compatibility.
 513  */
 514 void
 515 affinity_clear(void)
 516 {
 517         thread_affinity_clear(curthread);
 518 }
 519 
 520 /*
 521  * Weak cpu affinity.  Bind to the "current" cpu for short periods
 522  * of time during which the thread must not block (but may be preempted).
 523  * Use this instead of kpreempt_disable() when it is only "no migration"
 524  * rather than "no preemption" semantics that are required - disabling
 525  * preemption holds higher priority threads off of cpu and if the
 526  * operation that is protected is more than momentary this is not good
 527  * for realtime etc.
 528  *
 529  * Weakly bound threads will not prevent a cpu from being offlined -
 530  * we'll only run them on the cpu to which they are weakly bound but
 531  * (because they do not block) we'll always be able to move them on to
 532  * another cpu at offline time if we give them just a short moment to
 533  * run during which they will unbind.  To give a cpu a chance of offlining,
 534  * however, we require a barrier to weak bindings that may be raised for a
 535  * given cpu (offline/move code may set this and then wait a short time for
 536  * existing weak bindings to drop); the cpu_inmotion pointer is that barrier.
 537  *
 538  * There are few restrictions on the calling context of thread_nomigrate.
 539  * The caller must not hold the thread lock.  Calls may be nested.
 540  *
 541  * After weakbinding a thread must not perform actions that may block.
 542  * In particular it must not call thread_affinity_set; calling that when
 543  * already weakbound is nonsensical anyway.
 544  *
 545  * If curthread is prevented from migrating for other reasons
 546  * (kernel preemption disabled; high pil; strongly bound; interrupt thread)
 547  * then the weak binding will succeed even if this cpu is the target of an
 548  * offline/move request.
 549  */
 550 void
 551 thread_nomigrate(void)
 552 {
 553         cpu_t *cp;
 554         kthread_id_t t = curthread;
 555 
 556 again:
 557         kpreempt_disable();
 558         cp = CPU;
 559 
 560         /*
 561          * A highlevel interrupt must not modify t_nomigrate or
 562          * t_weakbound_cpu of the thread it has interrupted.  A lowlevel
 563          * interrupt thread cannot migrate and we can avoid the
 564          * thread_lock call below by short-circuiting here.  In either
 565          * case we can just return since no migration is possible and
 566          * the condition will persist (ie, when we test for these again
 567          * in thread_allowmigrate they can't have changed).   Migration
 568          * is also impossible if we're at or above DISP_LEVEL pil.
 569          */
 570         if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD ||
 571             getpil() >= DISP_LEVEL) {
 572                 kpreempt_enable();
 573                 return;
 574         }
 575 
 576         /*
 577          * We must be consistent with existing weak bindings.  Since we
 578          * may be interrupted between the increment of t_nomigrate and
 579          * the store to t_weakbound_cpu below we cannot assume that
 580          * t_weakbound_cpu will be set if t_nomigrate is.  Note that we
 581          * cannot assert t_weakbound_cpu == t_bind_cpu since that is not
 582          * always the case.
 583          */
 584         if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) {
 585                 if (!panicstr)
 586                         panic("thread_nomigrate: binding to %p but already "
 587                             "bound to %p", (void *)cp,
 588                             (void *)t->t_weakbound_cpu);
 589         }
 590 
 591         /*
 592          * At this point we have preemption disabled and we don't yet hold
 593          * the thread lock.  So it's possible that somebody else could
 594          * set t_bind_cpu here and not be able to force us across to the
 595          * new cpu (since we have preemption disabled).
 596          */
 597         thread_lock(curthread);
 598 
 599         /*
 600          * If further weak bindings are being (temporarily) suppressed then
 601          * we'll settle for disabling kernel preemption (which assures
 602          * no migration provided the thread does not block which it is
 603          * not allowed to if using thread_nomigrate).  We must remember
 604          * this disposition so we can take appropriate action in
 605          * thread_allowmigrate.  If this is a nested call and the
 606          * thread is already weakbound then fall through as normal.
 607          * We remember the decision to settle for kpreempt_disable through
 608          * negative nesting counting in t_nomigrate.  Once a thread has had one
 609          * weakbinding request satisfied in this way any further (nested)
 610          * requests will continue to be satisfied in the same way,
 611          * even if weak bindings have recommenced.
 612          */
 613         if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) {
 614                 --t->t_nomigrate;
 615                 thread_unlock(curthread);
 616                 return;         /* with kpreempt_disable still active */
 617         }
 618 
 619         /*
 620          * We hold thread_lock so t_bind_cpu cannot change.  We could,
 621          * however, be running on a different cpu to which we are t_bound_cpu
 622          * to (as explained above).  If we grant the weak binding request
 623          * in that case then the dispatcher must favour our weak binding
 624          * over our strong (in which case, just as when preemption is
 625          * disabled, we can continue to run on a cpu other than the one to
 626          * which we are strongbound; the difference in this case is that
 627          * this thread can be preempted and so can appear on the dispatch
 628          * queues of a cpu other than the one it is strongbound to).
 629          *
 630          * If the cpu we are running on does not appear to be a current
 631          * offline target (we check cpu_inmotion to determine this - since
 632          * we don't hold cpu_lock we may not see a recent store to that,
 633          * so it's possible that we at times can grant a weak binding to a
 634          * cpu that is an offline target, but that one request will not
 635          * prevent the offline from succeeding) then we will always grant
 636          * the weak binding request.  This includes the case above where
 637          * we grant a weakbinding not commensurate with our strong binding.
 638          *
 639          * If our cpu does appear to be an offline target then we're inclined
 640          * not to grant the weakbinding request just yet - we'd prefer to
 641          * migrate to another cpu and grant the request there.  The
 642          * exceptions are those cases where going through preemption code
 643          * will not result in us changing cpu:
 644          *
 645          *      . interrupts have already bypassed this case (see above)
 646          *      . we are already weakbound to this cpu (dispatcher code will
 647          *        always return us to the weakbound cpu)
 648          *      . preemption was disabled even before we disabled it above
 649          *      . we are strongbound to this cpu (if we're strongbound to
 650          *      another and not yet running there the trip through the
 651          *      dispatcher will move us to the strongbound cpu and we
 652          *      will grant the weak binding there)
 653          */
 654         if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 ||
 655             t->t_bound_cpu == cp) {
 656                 /*
 657                  * Don't be tempted to store to t_weakbound_cpu only on
 658                  * the first nested bind request - if we're interrupted
 659                  * after the increment of t_nomigrate and before the
 660                  * store to t_weakbound_cpu and the interrupt calls
 661                  * thread_nomigrate then the assertion in thread_allowmigrate
 662                  * would fail.
 663                  */
 664                 t->t_nomigrate++;
 665                 t->t_weakbound_cpu = cp;
 666                 membar_producer();
 667                 thread_unlock(curthread);
 668                 /*
 669                  * Now that we have dropped the thread_lock another thread
 670                  * can set our t_weakbound_cpu, and will try to migrate us
 671                  * to the strongbound cpu (which will not be prevented by
 672                  * preemption being disabled since we're about to enable
 673                  * preemption).  We have granted the weakbinding to the current
 674                  * cpu, so again we are in the position that is is is possible
 675                  * that our weak and strong bindings differ.  Again this
 676                  * is catered for by dispatcher code which will favour our
 677                  * weak binding.
 678                  */
 679                 kpreempt_enable();
 680         } else {
 681                 /*
 682                  * Move to another cpu before granting the request by
 683                  * forcing this thread through preemption code.  When we
 684                  * get to set{front,back}dq called from CL_PREEMPT()
 685                  * cpu_choose() will be used to select a cpu to queue
 686                  * us on - that will see cpu_inmotion and take
 687                  * steps to avoid returning us to this cpu.
 688                  */
 689                 cp->cpu_kprunrun = 1;
 690                 thread_unlock(curthread);
 691                 kpreempt_enable();      /* will call preempt() */
 692                 goto again;
 693         }
 694 }
 695 
 696 void
 697 thread_allowmigrate(void)
 698 {
 699         kthread_id_t t = curthread;
 700 
 701         ASSERT(t->t_weakbound_cpu == CPU ||
 702             (t->t_nomigrate < 0 && t->t_preempt > 0) ||
 703             CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD ||
 704             getpil() >= DISP_LEVEL);
 705 
 706         if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) ||
 707             getpil() >= DISP_LEVEL)
 708                 return;
 709 
 710         if (t->t_nomigrate < 0) {
 711                 /*
 712                  * This thread was granted "weak binding" in the
 713                  * stronger form of kernel preemption disabling.
 714                  * Undo a level of nesting for both t_nomigrate
 715                  * and t_preempt.
 716                  */
 717                 ++t->t_nomigrate;
 718                 kpreempt_enable();
 719         } else if (--t->t_nomigrate == 0) {
 720                 /*
 721                  * Time to drop the weak binding.  We need to cater
 722                  * for the case where we're weakbound to a different
 723                  * cpu than that to which we're strongbound (a very
 724                  * temporary arrangement that must only persist until
 725                  * weak binding drops).  We don't acquire thread_lock
 726                  * here so even as this code executes t_bound_cpu
 727                  * may be changing.  So we disable preemption and
 728                  * a) in the case that t_bound_cpu changes while we
 729                  * have preemption disabled kprunrun will be set
 730                  * asynchronously, and b) if before disabling
 731                  * preemption we were already on a different cpu to
 732                  * our t_bound_cpu then we set kprunrun ourselves
 733                  * to force a trip through the dispatcher when
 734                  * preemption is enabled.
 735                  */
 736                 kpreempt_disable();
 737                 if (t->t_bound_cpu &&
 738                     t->t_weakbound_cpu != t->t_bound_cpu)
 739                         CPU->cpu_kprunrun = 1;
 740                 t->t_weakbound_cpu = NULL;
 741                 membar_producer();
 742                 kpreempt_enable();
 743         }
 744 }
 745 
 746 /*
 747  * weakbinding_stop can be used to temporarily cause weakbindings made
 748  * with thread_nomigrate to be satisfied through the stronger action of
 749  * kpreempt_disable.  weakbinding_start recommences normal weakbinding.
 750  */
 751 
 752 void
 753 weakbinding_stop(void)
 754 {
 755         ASSERT(MUTEX_HELD(&cpu_lock));
 756         weakbindingbarrier = 1;
 757         membar_producer();      /* make visible before subsequent thread_lock */
 758 }
 759 
 760 void
 761 weakbinding_start(void)
 762 {
 763         ASSERT(MUTEX_HELD(&cpu_lock));
 764         weakbindingbarrier = 0;
 765 }
 766 
 767 void
 768 null_xcall(void)
 769 {
 770 }
 771 
 772 /*
 773  * This routine is called to place the CPUs in a safe place so that
 774  * one of them can be taken off line or placed on line.  What we are
 775  * trying to do here is prevent a thread from traversing the list
 776  * of active CPUs while we are changing it or from getting placed on
 777  * the run queue of a CPU that has just gone off line.  We do this by
 778  * creating a thread with the highest possible prio for each CPU and
 779  * having it call this routine.  The advantage of this method is that
 780  * we can eliminate all checks for CPU_ACTIVE in the disp routines.
 781  * This makes disp faster at the expense of making p_online() slower
 782  * which is a good trade off.
 783  */
 784 static void
 785 cpu_pause(int index)
 786 {
 787         int s;
 788         struct _cpu_pause_info *cpi = &cpu_pause_info;
 789         volatile char *safe = &safe_list[index];
 790         long    lindex = index;
 791 
 792         ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE));
 793 
 794         while (*safe != PAUSE_DIE) {
 795                 *safe = PAUSE_READY;
 796                 membar_enter();         /* make sure stores are flushed */
 797                 sema_v(&cpi->cp_sem);    /* signal requesting thread */
 798 
 799                 /*
 800                  * Wait here until all pause threads are running.  That
 801                  * indicates that it's safe to do the spl.  Until
 802                  * cpu_pause_info.cp_go is set, we don't want to spl
 803                  * because that might block clock interrupts needed
 804                  * to preempt threads on other CPUs.
 805                  */
 806                 while (cpi->cp_go == 0)
 807                         ;
 808                 /*
 809                  * Even though we are at the highest disp prio, we need
 810                  * to block out all interrupts below LOCK_LEVEL so that
 811                  * an intr doesn't come in, wake up a thread, and call
 812                  * setbackdq/setfrontdq.
 813                  */
 814                 s = splhigh();
 815                 /*
 816                  * if cp_func has been set then call it using index as the
 817                  * argument, currently only used by cpr_suspend_cpus().
 818                  * This function is used as the code to execute on the
 819                  * "paused" cpu's when a machine comes out of a sleep state
 820                  * and CPU's were powered off.  (could also be used for
 821                  * hotplugging CPU's).
 822                  */
 823                 if (cpi->cp_func != NULL)
 824                         (*cpi->cp_func)((void *)lindex);
 825 
 826                 mach_cpu_pause(safe);
 827 
 828                 splx(s);
 829                 /*
 830                  * Waiting is at an end. Switch out of cpu_pause
 831                  * loop and resume useful work.
 832                  */
 833                 swtch();
 834         }
 835 
 836         mutex_enter(&pause_free_mutex);
 837         *safe = PAUSE_DEAD;
 838         cv_broadcast(&pause_free_cv);
 839         mutex_exit(&pause_free_mutex);
 840 }
 841 
 842 /*
 843  * Allow the cpus to start running again.
 844  */
 845 void
 846 start_cpus()
 847 {
 848         int i;
 849 
 850         ASSERT(MUTEX_HELD(&cpu_lock));
 851         ASSERT(cpu_pause_info.cp_paused);
 852         cpu_pause_info.cp_paused = NULL;
 853         for (i = 0; i < NCPU; i++)
 854                 safe_list[i] = PAUSE_IDLE;
 855         membar_enter();                 /* make sure stores are flushed */
 856         affinity_clear();
 857         splx(cpu_pause_info.cp_spl);
 858         kpreempt_enable();
 859 }
 860 
 861 /*
 862  * Allocate a pause thread for a CPU.
 863  */
 864 static void
 865 cpu_pause_alloc(cpu_t *cp)
 866 {
 867         kthread_id_t    t;
 868         long            cpun = cp->cpu_id;
 869 
 870         /*
 871          * Note, v.v_nglobpris will not change value as long as I hold
 872          * cpu_lock.
 873          */
 874         t = thread_create(NULL, 0, cpu_pause, (void *)cpun,
 875             0, &p0, TS_STOPPED, v.v_nglobpris - 1);
 876         thread_lock(t);
 877         t->t_bound_cpu = cp;
 878         t->t_disp_queue = cp->cpu_disp;
 879         t->t_affinitycnt = 1;
 880         t->t_preempt = 1;
 881         thread_unlock(t);
 882         cp->cpu_pause_thread = t;
 883         /*
 884          * Registering a thread in the callback table is usually done
 885          * in the initialization code of the thread.  In this
 886          * case, we do it right after thread creation because the
 887          * thread itself may never run, and we need to register the
 888          * fact that it is safe for cpr suspend.
 889          */
 890         CALLB_CPR_INIT_SAFE(t, "cpu_pause");
 891 }
 892 
 893 /*
 894  * Free a pause thread for a CPU.
 895  */
 896 static void
 897 cpu_pause_free(cpu_t *cp)
 898 {
 899         kthread_id_t    t;
 900         int             cpun = cp->cpu_id;
 901 
 902         ASSERT(MUTEX_HELD(&cpu_lock));
 903         /*
 904          * We have to get the thread and tell it to die.
 905          */
 906         if ((t = cp->cpu_pause_thread) == NULL) {
 907                 ASSERT(safe_list[cpun] == PAUSE_IDLE);
 908                 return;
 909         }
 910         thread_lock(t);
 911         t->t_cpu = CPU;              /* disp gets upset if last cpu is quiesced. */
 912         t->t_bound_cpu = NULL;       /* Must un-bind; cpu may not be running. */
 913         t->t_pri = v.v_nglobpris - 1;
 914         ASSERT(safe_list[cpun] == PAUSE_IDLE);
 915         safe_list[cpun] = PAUSE_DIE;
 916         THREAD_TRANSITION(t);
 917         setbackdq(t);
 918         thread_unlock_nopreempt(t);
 919 
 920         /*
 921          * If we don't wait for the thread to actually die, it may try to
 922          * run on the wrong cpu as part of an actual call to pause_cpus().
 923          */
 924         mutex_enter(&pause_free_mutex);
 925         while (safe_list[cpun] != PAUSE_DEAD) {
 926                 cv_wait(&pause_free_cv, &pause_free_mutex);
 927         }
 928         mutex_exit(&pause_free_mutex);
 929         safe_list[cpun] = PAUSE_IDLE;
 930 
 931         cp->cpu_pause_thread = NULL;
 932 }
 933 
 934 /*
 935  * Initialize basic structures for pausing CPUs.
 936  */
 937 void
 938 cpu_pause_init()
 939 {
 940         sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL);
 941         /*
 942          * Create initial CPU pause thread.
 943          */
 944         cpu_pause_alloc(CPU);
 945 }
 946 
 947 /*
 948  * Start the threads used to pause another CPU.
 949  */
 950 static int
 951 cpu_pause_start(processorid_t cpu_id)
 952 {
 953         int     i;
 954         int     cpu_count = 0;
 955 
 956         for (i = 0; i < NCPU; i++) {
 957                 cpu_t           *cp;
 958                 kthread_id_t    t;
 959 
 960                 cp = cpu[i];
 961                 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) {
 962                         safe_list[i] = PAUSE_WAIT;
 963                         continue;
 964                 }
 965 
 966                 /*
 967                  * Skip CPU if it is quiesced or not yet started.
 968                  */
 969                 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) {
 970                         safe_list[i] = PAUSE_WAIT;
 971                         continue;
 972                 }
 973 
 974                 /*
 975                  * Start this CPU's pause thread.
 976                  */
 977                 t = cp->cpu_pause_thread;
 978                 thread_lock(t);
 979                 /*
 980                  * Reset the priority, since nglobpris may have
 981                  * changed since the thread was created, if someone
 982                  * has loaded the RT (or some other) scheduling
 983                  * class.
 984                  */
 985                 t->t_pri = v.v_nglobpris - 1;
 986                 THREAD_TRANSITION(t);
 987                 setbackdq(t);
 988                 thread_unlock_nopreempt(t);
 989                 ++cpu_count;
 990         }
 991         return (cpu_count);
 992 }
 993 
 994 
 995 /*
 996  * Pause all of the CPUs except the one we are on by creating a high
 997  * priority thread bound to those CPUs.
 998  *
 999  * Note that one must be extremely careful regarding code
1000  * executed while CPUs are paused.  Since a CPU may be paused
1001  * while a thread scheduling on that CPU is holding an adaptive
1002  * lock, code executed with CPUs paused must not acquire adaptive
1003  * (or low-level spin) locks.  Also, such code must not block,
1004  * since the thread that is supposed to initiate the wakeup may
1005  * never run.
1006  *
1007  * With a few exceptions, the restrictions on code executed with CPUs
1008  * paused match those for code executed at high-level interrupt
1009  * context.
1010  */
1011 void
1012 pause_cpus(cpu_t *off_cp, void *(*func)(void *))
1013 {
1014         processorid_t   cpu_id;
1015         int             i;
1016         struct _cpu_pause_info  *cpi = &cpu_pause_info;
1017 
1018         ASSERT(MUTEX_HELD(&cpu_lock));
1019         ASSERT(cpi->cp_paused == NULL);
1020         cpi->cp_count = 0;
1021         cpi->cp_go = 0;
1022         for (i = 0; i < NCPU; i++)
1023                 safe_list[i] = PAUSE_IDLE;
1024         kpreempt_disable();
1025 
1026         cpi->cp_func = func;
1027 
1028         /*
1029          * If running on the cpu that is going offline, get off it.
1030          * This is so that it won't be necessary to rechoose a CPU
1031          * when done.
1032          */
1033         if (CPU == off_cp)
1034                 cpu_id = off_cp->cpu_next_part->cpu_id;
1035         else
1036                 cpu_id = CPU->cpu_id;
1037         affinity_set(cpu_id);
1038 
1039         /*
1040          * Start the pause threads and record how many were started
1041          */
1042         cpi->cp_count = cpu_pause_start(cpu_id);
1043 
1044         /*
1045          * Now wait for all CPUs to be running the pause thread.
1046          */
1047         while (cpi->cp_count > 0) {
1048                 /*
1049                  * Spin reading the count without grabbing the disp
1050                  * lock to make sure we don't prevent the pause
1051                  * threads from getting the lock.
1052                  */
1053                 while (sema_held(&cpi->cp_sem))
1054                         ;
1055                 if (sema_tryp(&cpi->cp_sem))
1056                         --cpi->cp_count;
1057         }
1058         cpi->cp_go = 1;                      /* all have reached cpu_pause */
1059 
1060         /*
1061          * Now wait for all CPUs to spl. (Transition from PAUSE_READY
1062          * to PAUSE_WAIT.)
1063          */
1064         for (i = 0; i < NCPU; i++) {
1065                 while (safe_list[i] != PAUSE_WAIT)
1066                         ;
1067         }
1068         cpi->cp_spl = splhigh();     /* block dispatcher on this CPU */
1069         cpi->cp_paused = curthread;
1070 }
1071 
1072 /*
1073  * Check whether the current thread has CPUs paused
1074  */
1075 int
1076 cpus_paused(void)
1077 {
1078         if (cpu_pause_info.cp_paused != NULL) {
1079                 ASSERT(cpu_pause_info.cp_paused == curthread);
1080                 return (1);
1081         }
1082         return (0);
1083 }
1084 
1085 static cpu_t *
1086 cpu_get_all(processorid_t cpun)
1087 {
1088         ASSERT(MUTEX_HELD(&cpu_lock));
1089 
1090         if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun))
1091                 return (NULL);
1092         return (cpu[cpun]);
1093 }
1094 
1095 /*
1096  * Check whether cpun is a valid processor id and whether it should be
1097  * visible from the current zone. If it is, return a pointer to the
1098  * associated CPU structure.
1099  */
1100 cpu_t *
1101 cpu_get(processorid_t cpun)
1102 {
1103         cpu_t *c;
1104 
1105         ASSERT(MUTEX_HELD(&cpu_lock));
1106         c = cpu_get_all(cpun);
1107         if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() &&
1108             zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c))
1109                 return (NULL);
1110         return (c);
1111 }
1112 
1113 /*
1114  * The following functions should be used to check CPU states in the kernel.
1115  * They should be invoked with cpu_lock held.  Kernel subsystems interested
1116  * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc
1117  * states.  Those are for user-land (and system call) use only.
1118  */
1119 
1120 /*
1121  * Determine whether the CPU is online and handling interrupts.
1122  */
1123 int
1124 cpu_is_online(cpu_t *cpu)
1125 {
1126         ASSERT(MUTEX_HELD(&cpu_lock));
1127         return (cpu_flagged_online(cpu->cpu_flags));
1128 }
1129 
1130 /*
1131  * Determine whether the CPU is offline (this includes spare and faulted).
1132  */
1133 int
1134 cpu_is_offline(cpu_t *cpu)
1135 {
1136         ASSERT(MUTEX_HELD(&cpu_lock));
1137         return (cpu_flagged_offline(cpu->cpu_flags));
1138 }
1139 
1140 /*
1141  * Determine whether the CPU is powered off.
1142  */
1143 int
1144 cpu_is_poweredoff(cpu_t *cpu)
1145 {
1146         ASSERT(MUTEX_HELD(&cpu_lock));
1147         return (cpu_flagged_poweredoff(cpu->cpu_flags));
1148 }
1149 
1150 /*
1151  * Determine whether the CPU is handling interrupts.
1152  */
1153 int
1154 cpu_is_nointr(cpu_t *cpu)
1155 {
1156         ASSERT(MUTEX_HELD(&cpu_lock));
1157         return (cpu_flagged_nointr(cpu->cpu_flags));
1158 }
1159 
1160 /*
1161  * Determine whether the CPU is active (scheduling threads).
1162  */
1163 int
1164 cpu_is_active(cpu_t *cpu)
1165 {
1166         ASSERT(MUTEX_HELD(&cpu_lock));
1167         return (cpu_flagged_active(cpu->cpu_flags));
1168 }
1169 
1170 /*
1171  * Same as above, but these require cpu_flags instead of cpu_t pointers.
1172  */
1173 int
1174 cpu_flagged_online(cpu_flag_t cpu_flags)
1175 {
1176         return (cpu_flagged_active(cpu_flags) &&
1177             (cpu_flags & CPU_ENABLE));
1178 }
1179 
1180 int
1181 cpu_flagged_offline(cpu_flag_t cpu_flags)
1182 {
1183         return (((cpu_flags & CPU_POWEROFF) == 0) &&
1184             ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY));
1185 }
1186 
1187 int
1188 cpu_flagged_poweredoff(cpu_flag_t cpu_flags)
1189 {
1190         return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF);
1191 }
1192 
1193 int
1194 cpu_flagged_nointr(cpu_flag_t cpu_flags)
1195 {
1196         return (cpu_flagged_active(cpu_flags) &&
1197             (cpu_flags & CPU_ENABLE) == 0);
1198 }
1199 
1200 int
1201 cpu_flagged_active(cpu_flag_t cpu_flags)
1202 {
1203         return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) &&
1204             ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY));
1205 }
1206 
1207 /*
1208  * Bring the indicated CPU online.
1209  */
1210 int
1211 cpu_online(cpu_t *cp)
1212 {
1213         int     error = 0;
1214 
1215         /*
1216          * Handle on-line request.
1217          *      This code must put the new CPU on the active list before
1218          *      starting it because it will not be paused, and will start
1219          *      using the active list immediately.  The real start occurs
1220          *      when the CPU_QUIESCED flag is turned off.
1221          */
1222 
1223         ASSERT(MUTEX_HELD(&cpu_lock));
1224 
1225         /*
1226          * Put all the cpus into a known safe place.
1227          * No mutexes can be entered while CPUs are paused.
1228          */
1229         error = mp_cpu_start(cp);       /* arch-dep hook */
1230         if (error == 0) {
1231                 pg_cpupart_in(cp, cp->cpu_part);
1232                 pause_cpus(NULL, NULL);
1233                 cpu_add_active_internal(cp);
1234                 if (cp->cpu_flags & CPU_FAULTED) {
1235                         cp->cpu_flags &= ~CPU_FAULTED;
1236                         mp_cpu_faulted_exit(cp);
1237                 }
1238                 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN |
1239                     CPU_SPARE);
1240                 CPU_NEW_GENERATION(cp);
1241                 start_cpus();
1242                 cpu_stats_kstat_create(cp);
1243                 cpu_create_intrstat(cp);
1244                 lgrp_kstat_create(cp);
1245                 cpu_state_change_notify(cp->cpu_id, CPU_ON);
1246                 cpu_intr_enable(cp);    /* arch-dep hook */
1247                 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1248                 cpu_set_state(cp);
1249                 cyclic_online(cp);
1250                 /*
1251                  * This has to be called only after cyclic_online(). This
1252                  * function uses cyclics.
1253                  */
1254                 callout_cpu_online(cp);
1255                 poke_cpu(cp->cpu_id);
1256         }
1257 
1258         return (error);
1259 }
1260 
1261 /*
1262  * Take the indicated CPU offline.
1263  */
1264 int
1265 cpu_offline(cpu_t *cp, int flags)
1266 {
1267         cpupart_t *pp;
1268         int     error = 0;
1269         cpu_t   *ncp;
1270         int     intr_enable;
1271         int     cyclic_off = 0;
1272         int     callout_off = 0;
1273         int     loop_count;
1274         int     no_quiesce = 0;
1275         int     (*bound_func)(struct cpu *, int);
1276         kthread_t *t;
1277         lpl_t   *cpu_lpl;
1278         proc_t  *p;
1279         int     lgrp_diff_lpl;
1280         boolean_t unbind_all_threads = (flags & CPU_FORCED) != 0;
1281 
1282         ASSERT(MUTEX_HELD(&cpu_lock));
1283 
1284         /*
1285          * If we're going from faulted or spare to offline, just
1286          * clear these flags and update CPU state.
1287          */
1288         if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) {
1289                 if (cp->cpu_flags & CPU_FAULTED) {
1290                         cp->cpu_flags &= ~CPU_FAULTED;
1291                         mp_cpu_faulted_exit(cp);
1292                 }
1293                 cp->cpu_flags &= ~CPU_SPARE;
1294                 cpu_set_state(cp);
1295                 return (0);
1296         }
1297 
1298         /*
1299          * Handle off-line request.
1300          */
1301         pp = cp->cpu_part;
1302         /*
1303          * Don't offline last online CPU in partition
1304          */
1305         if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2)
1306                 return (EBUSY);
1307         /*
1308          * Unbind all soft-bound threads bound to our CPU and hard bound threads
1309          * if we were asked to.
1310          */
1311         error = cpu_unbind(cp->cpu_id, unbind_all_threads);
1312         if (error != 0)
1313                 return (error);
1314         /*
1315          * We shouldn't be bound to this CPU ourselves.
1316          */
1317         if (curthread->t_bound_cpu == cp)
1318                 return (EBUSY);
1319 
1320         /*
1321          * Tell interested parties that this CPU is going offline.
1322          */
1323         CPU_NEW_GENERATION(cp);
1324         cpu_state_change_notify(cp->cpu_id, CPU_OFF);
1325 
1326         /*
1327          * Tell the PG subsystem that the CPU is leaving the partition
1328          */
1329         pg_cpupart_out(cp, pp);
1330 
1331         /*
1332          * Take the CPU out of interrupt participation so we won't find
1333          * bound kernel threads.  If the architecture cannot completely
1334          * shut off interrupts on the CPU, don't quiesce it, but don't
1335          * run anything but interrupt thread... this is indicated by
1336          * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being
1337          * off.
1338          */
1339         intr_enable = cp->cpu_flags & CPU_ENABLE;
1340         if (intr_enable)
1341                 no_quiesce = cpu_intr_disable(cp);
1342 
1343         /*
1344          * Record that we are aiming to offline this cpu.  This acts as
1345          * a barrier to further weak binding requests in thread_nomigrate
1346          * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to
1347          * lean away from this cpu.  Further strong bindings are already
1348          * avoided since we hold cpu_lock.  Since threads that are set
1349          * runnable around now and others coming off the target cpu are
1350          * directed away from the target, existing strong and weak bindings
1351          * (especially the latter) to the target cpu stand maximum chance of
1352          * being able to unbind during the short delay loop below (if other
1353          * unbound threads compete they may not see cpu in time to unbind
1354          * even if they would do so immediately.
1355          */
1356         cpu_inmotion = cp;
1357         membar_enter();
1358 
1359         /*
1360          * Check for kernel threads (strong or weak) bound to that CPU.
1361          * Strongly bound threads may not unbind, and we'll have to return
1362          * EBUSY.  Weakly bound threads should always disappear - we've
1363          * stopped more weak binding with cpu_inmotion and existing
1364          * bindings will drain imminently (they may not block).  Nonetheless
1365          * we will wait for a fixed period for all bound threads to disappear.
1366          * Inactive interrupt threads are OK (they'll be in TS_FREE
1367          * state).  If test finds some bound threads, wait a few ticks
1368          * to give short-lived threads (such as interrupts) chance to
1369          * complete.  Note that if no_quiesce is set, i.e. this cpu
1370          * is required to service interrupts, then we take the route
1371          * that permits interrupt threads to be active (or bypassed).
1372          */
1373         bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads;
1374 
1375 again:  for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) {
1376                 if (loop_count >= 5) {
1377                         error = EBUSY;  /* some threads still bound */
1378                         break;
1379                 }
1380 
1381                 /*
1382                  * If some threads were assigned, give them
1383                  * a chance to complete or move.
1384                  *
1385                  * This assumes that the clock_thread is not bound
1386                  * to any CPU, because the clock_thread is needed to
1387                  * do the delay(hz/100).
1388                  *
1389                  * Note: we still hold the cpu_lock while waiting for
1390                  * the next clock tick.  This is OK since it isn't
1391                  * needed for anything else except processor_bind(2),
1392                  * and system initialization.  If we drop the lock,
1393                  * we would risk another p_online disabling the last
1394                  * processor.
1395                  */
1396                 delay(hz/100);
1397         }
1398 
1399         if (error == 0 && callout_off == 0) {
1400                 callout_cpu_offline(cp);
1401                 callout_off = 1;
1402         }
1403 
1404         if (error == 0 && cyclic_off == 0) {
1405                 if (!cyclic_offline(cp)) {
1406                         /*
1407                          * We must have bound cyclics...
1408                          */
1409                         error = EBUSY;
1410                         goto out;
1411                 }
1412                 cyclic_off = 1;
1413         }
1414 
1415         /*
1416          * Call mp_cpu_stop() to perform any special operations
1417          * needed for this machine architecture to offline a CPU.
1418          */
1419         if (error == 0)
1420                 error = mp_cpu_stop(cp);        /* arch-dep hook */
1421 
1422         /*
1423          * If that all worked, take the CPU offline and decrement
1424          * ncpus_online.
1425          */
1426         if (error == 0) {
1427                 /*
1428                  * Put all the cpus into a known safe place.
1429                  * No mutexes can be entered while CPUs are paused.
1430                  */
1431                 pause_cpus(cp, NULL);
1432                 /*
1433                  * Repeat the operation, if necessary, to make sure that
1434                  * all outstanding low-level interrupts run to completion
1435                  * before we set the CPU_QUIESCED flag.  It's also possible
1436                  * that a thread has weak bound to the cpu despite our raising
1437                  * cpu_inmotion above since it may have loaded that
1438                  * value before the barrier became visible (this would have
1439                  * to be the thread that was on the target cpu at the time
1440                  * we raised the barrier).
1441                  */
1442                 if ((!no_quiesce && cp->cpu_intr_actv != 0) ||
1443                     (*bound_func)(cp, 1)) {
1444                         start_cpus();
1445                         (void) mp_cpu_start(cp);
1446                         goto again;
1447                 }
1448                 ncp = cp->cpu_next_part;
1449                 cpu_lpl = cp->cpu_lpl;
1450                 ASSERT(cpu_lpl != NULL);
1451 
1452                 /*
1453                  * Remove the CPU from the list of active CPUs.
1454                  */
1455                 cpu_remove_active(cp);
1456 
1457                 /*
1458                  * Walk the active process list and look for threads
1459                  * whose home lgroup needs to be updated, or
1460                  * the last CPU they run on is the one being offlined now.
1461                  */
1462 
1463                 ASSERT(curthread->t_cpu != cp);
1464                 for (p = practive; p != NULL; p = p->p_next) {
1465 
1466                         t = p->p_tlist;
1467 
1468                         if (t == NULL)
1469                                 continue;
1470 
1471                         lgrp_diff_lpl = 0;
1472 
1473                         do {
1474                                 ASSERT(t->t_lpl != NULL);
1475                                 /*
1476                                  * Taking last CPU in lpl offline
1477                                  * Rehome thread if it is in this lpl
1478                                  * Otherwise, update the count of how many
1479                                  * threads are in this CPU's lgroup but have
1480                                  * a different lpl.
1481                                  */
1482 
1483                                 if (cpu_lpl->lpl_ncpu == 0) {
1484                                         if (t->t_lpl == cpu_lpl)
1485                                                 lgrp_move_thread(t,
1486                                                     lgrp_choose(t,
1487                                                     t->t_cpupart), 0);
1488                                         else if (t->t_lpl->lpl_lgrpid ==
1489                                             cpu_lpl->lpl_lgrpid)
1490                                                 lgrp_diff_lpl++;
1491                                 }
1492                                 ASSERT(t->t_lpl->lpl_ncpu > 0);
1493 
1494                                 /*
1495                                  * Update CPU last ran on if it was this CPU
1496                                  */
1497                                 if (t->t_cpu == cp && t->t_bound_cpu != cp)
1498                                         t->t_cpu = disp_lowpri_cpu(ncp, t,
1499                                             t->t_pri);
1500                                 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1501                                     t->t_weakbound_cpu == cp);
1502 
1503                                 t = t->t_forw;
1504                         } while (t != p->p_tlist);
1505 
1506                         /*
1507                          * Didn't find any threads in the same lgroup as this
1508                          * CPU with a different lpl, so remove the lgroup from
1509                          * the process lgroup bitmask.
1510                          */
1511 
1512                         if (lgrp_diff_lpl == 0)
1513                                 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid);
1514                 }
1515 
1516                 /*
1517                  * Walk thread list looking for threads that need to be
1518                  * rehomed, since there are some threads that are not in
1519                  * their process's p_tlist.
1520                  */
1521 
1522                 t = curthread;
1523                 do {
1524                         ASSERT(t != NULL && t->t_lpl != NULL);
1525 
1526                         /*
1527                          * Rehome threads with same lpl as this CPU when this
1528                          * is the last CPU in the lpl.
1529                          */
1530 
1531                         if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl))
1532                                 lgrp_move_thread(t,
1533                                     lgrp_choose(t, t->t_cpupart), 1);
1534 
1535                         ASSERT(t->t_lpl->lpl_ncpu > 0);
1536 
1537                         /*
1538                          * Update CPU last ran on if it was this CPU
1539                          */
1540 
1541                         if (t->t_cpu == cp && t->t_bound_cpu != cp)
1542                                 t->t_cpu = disp_lowpri_cpu(ncp, t, t->t_pri);
1543 
1544                         ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1545                             t->t_weakbound_cpu == cp);
1546                         t = t->t_next;
1547 
1548                 } while (t != curthread);
1549                 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0);
1550                 cp->cpu_flags |= CPU_OFFLINE;
1551                 disp_cpu_inactive(cp);
1552                 if (!no_quiesce)
1553                         cp->cpu_flags |= CPU_QUIESCED;
1554                 ncpus_online--;
1555                 cpu_set_state(cp);
1556                 cpu_inmotion = NULL;
1557                 start_cpus();
1558                 cpu_stats_kstat_destroy(cp);
1559                 cpu_delete_intrstat(cp);
1560                 lgrp_kstat_destroy(cp);
1561         }
1562 
1563 out:
1564         cpu_inmotion = NULL;
1565 
1566         /*
1567          * If we failed, re-enable interrupts.
1568          * Do this even if cpu_intr_disable returned an error, because
1569          * it may have partially disabled interrupts.
1570          */
1571         if (error && intr_enable)
1572                 cpu_intr_enable(cp);
1573 
1574         /*
1575          * If we failed, but managed to offline the cyclic subsystem on this
1576          * CPU, bring it back online.
1577          */
1578         if (error && cyclic_off)
1579                 cyclic_online(cp);
1580 
1581         /*
1582          * If we failed, but managed to offline callouts on this CPU,
1583          * bring it back online.
1584          */
1585         if (error && callout_off)
1586                 callout_cpu_online(cp);
1587 
1588         /*
1589          * If we failed, tell the PG subsystem that the CPU is back
1590          */
1591         pg_cpupart_in(cp, pp);
1592 
1593         /*
1594          * If we failed, we need to notify everyone that this CPU is back on.
1595          */
1596         if (error != 0) {
1597                 CPU_NEW_GENERATION(cp);
1598                 cpu_state_change_notify(cp->cpu_id, CPU_ON);
1599                 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1600         }
1601 
1602         return (error);
1603 }
1604 
1605 /*
1606  * Mark the indicated CPU as faulted, taking it offline.
1607  */
1608 int
1609 cpu_faulted(cpu_t *cp, int flags)
1610 {
1611         int     error = 0;
1612 
1613         ASSERT(MUTEX_HELD(&cpu_lock));
1614         ASSERT(!cpu_is_poweredoff(cp));
1615 
1616         if (cpu_is_offline(cp)) {
1617                 cp->cpu_flags &= ~CPU_SPARE;
1618                 cp->cpu_flags |= CPU_FAULTED;
1619                 mp_cpu_faulted_enter(cp);
1620                 cpu_set_state(cp);
1621                 return (0);
1622         }
1623 
1624         if ((error = cpu_offline(cp, flags)) == 0) {
1625                 cp->cpu_flags |= CPU_FAULTED;
1626                 mp_cpu_faulted_enter(cp);
1627                 cpu_set_state(cp);
1628         }
1629 
1630         return (error);
1631 }
1632 
1633 /*
1634  * Mark the indicated CPU as a spare, taking it offline.
1635  */
1636 int
1637 cpu_spare(cpu_t *cp, int flags)
1638 {
1639         int     error = 0;
1640 
1641         ASSERT(MUTEX_HELD(&cpu_lock));
1642         ASSERT(!cpu_is_poweredoff(cp));
1643 
1644         if (cpu_is_offline(cp)) {
1645                 if (cp->cpu_flags & CPU_FAULTED) {
1646                         cp->cpu_flags &= ~CPU_FAULTED;
1647                         mp_cpu_faulted_exit(cp);
1648                 }
1649                 cp->cpu_flags |= CPU_SPARE;
1650                 cpu_set_state(cp);
1651                 return (0);
1652         }
1653 
1654         if ((error = cpu_offline(cp, flags)) == 0) {
1655                 cp->cpu_flags |= CPU_SPARE;
1656                 cpu_set_state(cp);
1657         }
1658 
1659         return (error);
1660 }
1661 
1662 /*
1663  * Take the indicated CPU from poweroff to offline.
1664  */
1665 int
1666 cpu_poweron(cpu_t *cp)
1667 {
1668         int     error = ENOTSUP;
1669 
1670         ASSERT(MUTEX_HELD(&cpu_lock));
1671         ASSERT(cpu_is_poweredoff(cp));
1672 
1673         error = mp_cpu_poweron(cp);     /* arch-dep hook */
1674         if (error == 0)
1675                 cpu_set_state(cp);
1676 
1677         return (error);
1678 }
1679 
1680 /*
1681  * Take the indicated CPU from any inactive state to powered off.
1682  */
1683 int
1684 cpu_poweroff(cpu_t *cp)
1685 {
1686         int     error = ENOTSUP;
1687 
1688         ASSERT(MUTEX_HELD(&cpu_lock));
1689         ASSERT(cpu_is_offline(cp));
1690 
1691         if (!(cp->cpu_flags & CPU_QUIESCED))
1692                 return (EBUSY);         /* not completely idle */
1693 
1694         error = mp_cpu_poweroff(cp);    /* arch-dep hook */
1695         if (error == 0)
1696                 cpu_set_state(cp);
1697 
1698         return (error);
1699 }
1700 
1701 /*
1702  * Initialize the Sequential CPU id lookup table
1703  */
1704 void
1705 cpu_seq_tbl_init()
1706 {
1707         cpu_t   **tbl;
1708 
1709         tbl = kmem_zalloc(sizeof (struct cpu *) * max_ncpus, KM_SLEEP);
1710         tbl[0] = CPU;
1711 
1712         cpu_seq = tbl;
1713 }
1714 
1715 /*
1716  * Initialize the CPU lists for the first CPU.
1717  */
1718 void
1719 cpu_list_init(cpu_t *cp)
1720 {
1721         cp->cpu_next = cp;
1722         cp->cpu_prev = cp;
1723         cpu_list = cp;
1724         clock_cpu_list = cp;
1725 
1726         cp->cpu_next_onln = cp;
1727         cp->cpu_prev_onln = cp;
1728         cpu_active = cp;
1729 
1730         cp->cpu_seqid = 0;
1731         CPUSET_ADD(cpu_seqid_inuse, 0);
1732 
1733         /*
1734          * Bootstrap cpu_seq using cpu_list
1735          * The cpu_seq[] table will be dynamically allocated
1736          * when kmem later becomes available (but before going MP)
1737          */
1738         cpu_seq = &cpu_list;
1739 
1740         cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1741         cp_default.cp_cpulist = cp;
1742         cp_default.cp_ncpus = 1;
1743         cp->cpu_next_part = cp;
1744         cp->cpu_prev_part = cp;
1745         cp->cpu_part = &cp_default;
1746 
1747         CPUSET_ADD(cpu_available, cp->cpu_id);
1748 }
1749 
1750 /*
1751  * Insert a CPU into the list of available CPUs.
1752  */
1753 void
1754 cpu_add_unit(cpu_t *cp)
1755 {
1756         int seqid;
1757 
1758         ASSERT(MUTEX_HELD(&cpu_lock));
1759         ASSERT(cpu_list != NULL);       /* list started in cpu_list_init */
1760 
1761         lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0);
1762 
1763         /*
1764          * Note: most users of the cpu_list will grab the
1765          * cpu_lock to insure that it isn't modified.  However,
1766          * certain users can't or won't do that.  To allow this
1767          * we pause the other cpus.  Users who walk the list
1768          * without cpu_lock, must disable kernel preemption
1769          * to insure that the list isn't modified underneath
1770          * them.  Also, any cached pointers to cpu structures
1771          * must be revalidated by checking to see if the
1772          * cpu_next pointer points to itself.  This check must
1773          * be done with the cpu_lock held or kernel preemption
1774          * disabled.  This check relies upon the fact that
1775          * old cpu structures are not free'ed or cleared after
1776          * then are removed from the cpu_list.
1777          *
1778          * Note that the clock code walks the cpu list dereferencing
1779          * the cpu_part pointer, so we need to initialize it before
1780          * adding the cpu to the list.
1781          */
1782         cp->cpu_part = &cp_default;
1783         pause_cpus(NULL, NULL);
1784         cp->cpu_next = cpu_list;
1785         cp->cpu_prev = cpu_list->cpu_prev;
1786         cpu_list->cpu_prev->cpu_next = cp;
1787         cpu_list->cpu_prev = cp;
1788         start_cpus();
1789 
1790         for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++)
1791                 continue;
1792         CPUSET_ADD(cpu_seqid_inuse, seqid);
1793         cp->cpu_seqid = seqid;
1794 
1795         if (seqid > max_cpu_seqid_ever)
1796                 max_cpu_seqid_ever = seqid;
1797 
1798         ASSERT(ncpus < max_ncpus);
1799         ncpus++;
1800         cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1801         cpu[cp->cpu_id] = cp;
1802         CPUSET_ADD(cpu_available, cp->cpu_id);
1803         cpu_seq[cp->cpu_seqid] = cp;
1804 
1805         /*
1806          * allocate a pause thread for this CPU.
1807          */
1808         cpu_pause_alloc(cp);
1809 
1810         /*
1811          * So that new CPUs won't have NULL prev_onln and next_onln pointers,
1812          * link them into a list of just that CPU.
1813          * This is so that disp_lowpri_cpu will work for thread_create in
1814          * pause_cpus() when called from the startup thread in a new CPU.
1815          */
1816         cp->cpu_next_onln = cp;
1817         cp->cpu_prev_onln = cp;
1818         cpu_info_kstat_create(cp);
1819         cp->cpu_next_part = cp;
1820         cp->cpu_prev_part = cp;
1821 
1822         init_cpu_mstate(cp, CMS_SYSTEM);
1823 
1824         pool_pset_mod = gethrtime();
1825 }
1826 
1827 /*
1828  * Do the opposite of cpu_add_unit().
1829  */
1830 void
1831 cpu_del_unit(int cpuid)
1832 {
1833         struct cpu      *cp, *cpnext;
1834 
1835         ASSERT(MUTEX_HELD(&cpu_lock));
1836         cp = cpu[cpuid];
1837         ASSERT(cp != NULL);
1838 
1839         ASSERT(cp->cpu_next_onln == cp);
1840         ASSERT(cp->cpu_prev_onln == cp);
1841         ASSERT(cp->cpu_next_part == cp);
1842         ASSERT(cp->cpu_prev_part == cp);
1843 
1844         /*
1845          * Tear down the CPU's physical ID cache, and update any
1846          * processor groups
1847          */
1848         pg_cpu_fini(cp, NULL);
1849         pghw_physid_destroy(cp);
1850 
1851         /*
1852          * Destroy kstat stuff.
1853          */
1854         cpu_info_kstat_destroy(cp);
1855         term_cpu_mstate(cp);
1856         /*
1857          * Free up pause thread.
1858          */
1859         cpu_pause_free(cp);
1860         CPUSET_DEL(cpu_available, cp->cpu_id);
1861         cpu[cp->cpu_id] = NULL;
1862         cpu_seq[cp->cpu_seqid] = NULL;
1863 
1864         /*
1865          * The clock thread and mutex_vector_enter cannot hold the
1866          * cpu_lock while traversing the cpu list, therefore we pause
1867          * all other threads by pausing the other cpus. These, and any
1868          * other routines holding cpu pointers while possibly sleeping
1869          * must be sure to call kpreempt_disable before processing the
1870          * list and be sure to check that the cpu has not been deleted
1871          * after any sleeps (check cp->cpu_next != NULL). We guarantee
1872          * to keep the deleted cpu structure around.
1873          *
1874          * Note that this MUST be done AFTER cpu_available
1875          * has been updated so that we don't waste time
1876          * trying to pause the cpu we're trying to delete.
1877          */
1878         pause_cpus(NULL, NULL);
1879 
1880         cpnext = cp->cpu_next;
1881         cp->cpu_prev->cpu_next = cp->cpu_next;
1882         cp->cpu_next->cpu_prev = cp->cpu_prev;
1883         if (cp == cpu_list)
1884                 cpu_list = cpnext;
1885 
1886         /*
1887          * Signals that the cpu has been deleted (see above).
1888          */
1889         cp->cpu_next = NULL;
1890         cp->cpu_prev = NULL;
1891 
1892         start_cpus();
1893 
1894         CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid);
1895         ncpus--;
1896         lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0);
1897 
1898         pool_pset_mod = gethrtime();
1899 }
1900 
1901 /*
1902  * Add a CPU to the list of active CPUs.
1903  *      This routine must not get any locks, because other CPUs are paused.
1904  */
1905 static void
1906 cpu_add_active_internal(cpu_t *cp)
1907 {
1908         cpupart_t       *pp = cp->cpu_part;
1909 
1910         ASSERT(MUTEX_HELD(&cpu_lock));
1911         ASSERT(cpu_list != NULL);       /* list started in cpu_list_init */
1912 
1913         ncpus_online++;
1914         cpu_set_state(cp);
1915         cp->cpu_next_onln = cpu_active;
1916         cp->cpu_prev_onln = cpu_active->cpu_prev_onln;
1917         cpu_active->cpu_prev_onln->cpu_next_onln = cp;
1918         cpu_active->cpu_prev_onln = cp;
1919 
1920         if (pp->cp_cpulist) {
1921                 cp->cpu_next_part = pp->cp_cpulist;
1922                 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part;
1923                 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp;
1924                 pp->cp_cpulist->cpu_prev_part = cp;
1925         } else {
1926                 ASSERT(pp->cp_ncpus == 0);
1927                 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp;
1928         }
1929         pp->cp_ncpus++;
1930         if (pp->cp_ncpus == 1) {
1931                 cp_numparts_nonempty++;
1932                 ASSERT(cp_numparts_nonempty != 0);
1933         }
1934 
1935         pg_cpu_active(cp);
1936         lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0);
1937 
1938         bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg));
1939 }
1940 
1941 /*
1942  * Add a CPU to the list of active CPUs.
1943  *      This is called from machine-dependent layers when a new CPU is started.
1944  */
1945 void
1946 cpu_add_active(cpu_t *cp)
1947 {
1948         pg_cpupart_in(cp, cp->cpu_part);
1949 
1950         pause_cpus(NULL, NULL);
1951         cpu_add_active_internal(cp);
1952         start_cpus();
1953 
1954         cpu_stats_kstat_create(cp);
1955         cpu_create_intrstat(cp);
1956         lgrp_kstat_create(cp);
1957         cpu_state_change_notify(cp->cpu_id, CPU_INIT);
1958 }
1959 
1960 
1961 /*
1962  * Remove a CPU from the list of active CPUs.
1963  *      This routine must not get any locks, because other CPUs are paused.
1964  */
1965 /* ARGSUSED */
1966 static void
1967 cpu_remove_active(cpu_t *cp)
1968 {
1969         cpupart_t       *pp = cp->cpu_part;
1970 
1971         ASSERT(MUTEX_HELD(&cpu_lock));
1972         ASSERT(cp->cpu_next_onln != cp);     /* not the last one */
1973         ASSERT(cp->cpu_prev_onln != cp);     /* not the last one */
1974 
1975         pg_cpu_inactive(cp);
1976 
1977         lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0);
1978 
1979         if (cp == clock_cpu_list)
1980                 clock_cpu_list = cp->cpu_next_onln;
1981 
1982         cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln;
1983         cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln;
1984         if (cpu_active == cp) {
1985                 cpu_active = cp->cpu_next_onln;
1986         }
1987         cp->cpu_next_onln = cp;
1988         cp->cpu_prev_onln = cp;
1989 
1990         cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part;
1991         cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part;
1992         if (pp->cp_cpulist == cp) {
1993                 pp->cp_cpulist = cp->cpu_next_part;
1994                 ASSERT(pp->cp_cpulist != cp);
1995         }
1996         cp->cpu_next_part = cp;
1997         cp->cpu_prev_part = cp;
1998         pp->cp_ncpus--;
1999         if (pp->cp_ncpus == 0) {
2000                 cp_numparts_nonempty--;
2001                 ASSERT(cp_numparts_nonempty != 0);
2002         }
2003 }
2004 
2005 /*
2006  * Routine used to setup a newly inserted CPU in preparation for starting
2007  * it running code.
2008  */
2009 int
2010 cpu_configure(int cpuid)
2011 {
2012         int retval = 0;
2013 
2014         ASSERT(MUTEX_HELD(&cpu_lock));
2015 
2016         /*
2017          * Some structures are statically allocated based upon
2018          * the maximum number of cpus the system supports.  Do not
2019          * try to add anything beyond this limit.
2020          */
2021         if (cpuid < 0 || cpuid >= NCPU) {
2022                 return (EINVAL);
2023         }
2024 
2025         if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) {
2026                 return (EALREADY);
2027         }
2028 
2029         if ((retval = mp_cpu_configure(cpuid)) != 0) {
2030                 return (retval);
2031         }
2032 
2033         cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF;
2034         cpu_set_state(cpu[cpuid]);
2035         retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG);
2036         if (retval != 0)
2037                 (void) mp_cpu_unconfigure(cpuid);
2038 
2039         return (retval);
2040 }
2041 
2042 /*
2043  * Routine used to cleanup a CPU that has been powered off.  This will
2044  * destroy all per-cpu information related to this cpu.
2045  */
2046 int
2047 cpu_unconfigure(int cpuid)
2048 {
2049         int error;
2050 
2051         ASSERT(MUTEX_HELD(&cpu_lock));
2052 
2053         if (cpu[cpuid] == NULL) {
2054                 return (ENODEV);
2055         }
2056 
2057         if (cpu[cpuid]->cpu_flags == 0) {
2058                 return (EALREADY);
2059         }
2060 
2061         if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) {
2062                 return (EBUSY);
2063         }
2064 
2065         if (cpu[cpuid]->cpu_props != NULL) {
2066                 (void) nvlist_free(cpu[cpuid]->cpu_props);
2067                 cpu[cpuid]->cpu_props = NULL;
2068         }
2069 
2070         error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG);
2071 
2072         if (error != 0)
2073                 return (error);
2074 
2075         return (mp_cpu_unconfigure(cpuid));
2076 }
2077 
2078 /*
2079  * Routines for registering and de-registering cpu_setup callback functions.
2080  *
2081  * Caller's context
2082  *      These routines must not be called from a driver's attach(9E) or
2083  *      detach(9E) entry point.
2084  *
2085  * NOTE: CPU callbacks should not block. They are called with cpu_lock held.
2086  */
2087 
2088 /*
2089  * Ideally, these would be dynamically allocated and put into a linked
2090  * list; however that is not feasible because the registration routine
2091  * has to be available before the kmem allocator is working (in fact,
2092  * it is called by the kmem allocator init code).  In any case, there
2093  * are quite a few extra entries for future users.
2094  */
2095 #define NCPU_SETUPS     20
2096 
2097 struct cpu_setup {
2098         cpu_setup_func_t *func;
2099         void *arg;
2100 } cpu_setups[NCPU_SETUPS];
2101 
2102 void
2103 register_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2104 {
2105         int i;
2106 
2107         ASSERT(MUTEX_HELD(&cpu_lock));
2108 
2109         for (i = 0; i < NCPU_SETUPS; i++)
2110                 if (cpu_setups[i].func == NULL)
2111                         break;
2112         if (i >= NCPU_SETUPS)
2113                 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries");
2114 
2115         cpu_setups[i].func = func;
2116         cpu_setups[i].arg = arg;
2117 }
2118 
2119 void
2120 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2121 {
2122         int i;
2123 
2124         ASSERT(MUTEX_HELD(&cpu_lock));
2125 
2126         for (i = 0; i < NCPU_SETUPS; i++)
2127                 if ((cpu_setups[i].func == func) &&
2128                     (cpu_setups[i].arg == arg))
2129                         break;
2130         if (i >= NCPU_SETUPS)
2131                 cmn_err(CE_PANIC, "Could not find cpu_setup callback to "
2132                     "deregister");
2133 
2134         cpu_setups[i].func = NULL;
2135         cpu_setups[i].arg = 0;
2136 }
2137 
2138 /*
2139  * Call any state change hooks for this CPU, ignore any errors.
2140  */
2141 void
2142 cpu_state_change_notify(int id, cpu_setup_t what)
2143 {
2144         int i;
2145 
2146         ASSERT(MUTEX_HELD(&cpu_lock));
2147 
2148         for (i = 0; i < NCPU_SETUPS; i++) {
2149                 if (cpu_setups[i].func != NULL) {
2150                         cpu_setups[i].func(what, id, cpu_setups[i].arg);
2151                 }
2152         }
2153 }
2154 
2155 /*
2156  * Call any state change hooks for this CPU, undo it if error found.
2157  */
2158 static int
2159 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo)
2160 {
2161         int i;
2162         int retval = 0;
2163 
2164         ASSERT(MUTEX_HELD(&cpu_lock));
2165 
2166         for (i = 0; i < NCPU_SETUPS; i++) {
2167                 if (cpu_setups[i].func != NULL) {
2168                         retval = cpu_setups[i].func(what, id,
2169                             cpu_setups[i].arg);
2170                         if (retval) {
2171                                 for (i--; i >= 0; i--) {
2172                                         if (cpu_setups[i].func != NULL)
2173                                                 cpu_setups[i].func(undo,
2174                                                     id, cpu_setups[i].arg);
2175                                 }
2176                                 break;
2177                         }
2178                 }
2179         }
2180         return (retval);
2181 }
2182 
2183 /*
2184  * Export information about this CPU via the kstat mechanism.
2185  */
2186 static struct {
2187         kstat_named_t ci_state;
2188         kstat_named_t ci_state_begin;
2189         kstat_named_t ci_cpu_type;
2190         kstat_named_t ci_fpu_type;
2191         kstat_named_t ci_clock_MHz;
2192         kstat_named_t ci_chip_id;
2193         kstat_named_t ci_implementation;
2194         kstat_named_t ci_brandstr;
2195         kstat_named_t ci_core_id;
2196         kstat_named_t ci_curr_clock_Hz;
2197         kstat_named_t ci_supp_freq_Hz;
2198         kstat_named_t ci_pg_id;
2199 #if defined(__sparcv9)
2200         kstat_named_t ci_device_ID;
2201         kstat_named_t ci_cpu_fru;
2202 #endif
2203 #if defined(__x86)
2204         kstat_named_t ci_vendorstr;
2205         kstat_named_t ci_family;
2206         kstat_named_t ci_model;
2207         kstat_named_t ci_step;
2208         kstat_named_t ci_clogid;
2209         kstat_named_t ci_pkg_core_id;
2210         kstat_named_t ci_ncpuperchip;
2211         kstat_named_t ci_ncoreperchip;
2212         kstat_named_t ci_max_cstates;
2213         kstat_named_t ci_curr_cstate;
2214         kstat_named_t ci_cacheid;
2215         kstat_named_t ci_sktstr;
2216 #endif
2217 } cpu_info_template = {
2218         { "state",                      KSTAT_DATA_CHAR },
2219         { "state_begin",                KSTAT_DATA_LONG },
2220         { "cpu_type",                   KSTAT_DATA_CHAR },
2221         { "fpu_type",                   KSTAT_DATA_CHAR },
2222         { "clock_MHz",                  KSTAT_DATA_LONG },
2223         { "chip_id",                    KSTAT_DATA_LONG },
2224         { "implementation",             KSTAT_DATA_STRING },
2225         { "brand",                      KSTAT_DATA_STRING },
2226         { "core_id",                    KSTAT_DATA_LONG },
2227         { "current_clock_Hz",           KSTAT_DATA_UINT64 },
2228         { "supported_frequencies_Hz",   KSTAT_DATA_STRING },
2229         { "pg_id",                      KSTAT_DATA_LONG },
2230 #if defined(__sparcv9)
2231         { "device_ID",                  KSTAT_DATA_UINT64 },
2232         { "cpu_fru",                    KSTAT_DATA_STRING },
2233 #endif
2234 #if defined(__x86)
2235         { "vendor_id",                  KSTAT_DATA_STRING },
2236         { "family",                     KSTAT_DATA_INT32 },
2237         { "model",                      KSTAT_DATA_INT32 },
2238         { "stepping",                   KSTAT_DATA_INT32 },
2239         { "clog_id",                    KSTAT_DATA_INT32 },
2240         { "pkg_core_id",                KSTAT_DATA_LONG },
2241         { "ncpu_per_chip",              KSTAT_DATA_INT32 },
2242         { "ncore_per_chip",             KSTAT_DATA_INT32 },
2243         { "supported_max_cstates",      KSTAT_DATA_INT32 },
2244         { "current_cstate",             KSTAT_DATA_INT32 },
2245         { "cache_id",                   KSTAT_DATA_INT32 },
2246         { "socket_type",                KSTAT_DATA_STRING },
2247 #endif
2248 };
2249 
2250 static kmutex_t cpu_info_template_lock;
2251 
2252 static int
2253 cpu_info_kstat_update(kstat_t *ksp, int rw)
2254 {
2255         cpu_t   *cp = ksp->ks_private;
2256         const char *pi_state;
2257 
2258         if (rw == KSTAT_WRITE)
2259                 return (EACCES);
2260 
2261 #if defined(__x86)
2262         /* Is the cpu still initialising itself? */
2263         if (cpuid_checkpass(cp, 1) == 0)
2264                 return (ENXIO);
2265 #endif
2266         switch (cp->cpu_type_info.pi_state) {
2267         case P_ONLINE:
2268                 pi_state = PS_ONLINE;
2269                 break;
2270         case P_POWEROFF:
2271                 pi_state = PS_POWEROFF;
2272                 break;
2273         case P_NOINTR:
2274                 pi_state = PS_NOINTR;
2275                 break;
2276         case P_FAULTED:
2277                 pi_state = PS_FAULTED;
2278                 break;
2279         case P_SPARE:
2280                 pi_state = PS_SPARE;
2281                 break;
2282         case P_OFFLINE:
2283                 pi_state = PS_OFFLINE;
2284                 break;
2285         default:
2286                 pi_state = "unknown";
2287         }
2288         (void) strcpy(cpu_info_template.ci_state.value.c, pi_state);
2289         cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin;
2290         (void) strncpy(cpu_info_template.ci_cpu_type.value.c,
2291             cp->cpu_type_info.pi_processor_type, 15);
2292         (void) strncpy(cpu_info_template.ci_fpu_type.value.c,
2293             cp->cpu_type_info.pi_fputypes, 15);
2294         cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock;
2295         cpu_info_template.ci_chip_id.value.l =
2296             pg_plat_hw_instance_id(cp, PGHW_CHIP);
2297         kstat_named_setstr(&cpu_info_template.ci_implementation,
2298             cp->cpu_idstr);
2299         kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr);
2300         cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp);
2301         cpu_info_template.ci_curr_clock_Hz.value.ui64 =
2302             cp->cpu_curr_clock;
2303         cpu_info_template.ci_pg_id.value.l =
2304             cp->cpu_pg && cp->cpu_pg->cmt_lineage ?
2305             cp->cpu_pg->cmt_lineage->pg_id : -1;
2306         kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz,
2307             cp->cpu_supp_freqs);
2308 #if defined(__sparcv9)
2309         cpu_info_template.ci_device_ID.value.ui64 =
2310             cpunodes[cp->cpu_id].device_id;
2311         kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp));
2312 #endif
2313 #if defined(__x86)
2314         kstat_named_setstr(&cpu_info_template.ci_vendorstr,
2315             cpuid_getvendorstr(cp));
2316         cpu_info_template.ci_family.value.l = cpuid_getfamily(cp);
2317         cpu_info_template.ci_model.value.l = cpuid_getmodel(cp);
2318         cpu_info_template.ci_step.value.l = cpuid_getstep(cp);
2319         cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp);
2320         cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp);
2321         cpu_info_template.ci_ncoreperchip.value.l =
2322             cpuid_get_ncore_per_chip(cp);
2323         cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp);
2324         cpu_info_template.ci_max_cstates.value.l = cp->cpu_m.max_cstates;
2325         cpu_info_template.ci_curr_cstate.value.l = cpu_idle_get_cpu_state(cp);
2326         cpu_info_template.ci_cacheid.value.i32 = cpuid_get_cacheid(cp);
2327         kstat_named_setstr(&cpu_info_template.ci_sktstr,
2328             cpuid_getsocketstr(cp));
2329 #endif
2330 
2331         return (0);
2332 }
2333 
2334 static void
2335 cpu_info_kstat_create(cpu_t *cp)
2336 {
2337         zoneid_t zoneid;
2338 
2339         ASSERT(MUTEX_HELD(&cpu_lock));
2340 
2341         if (pool_pset_enabled())
2342                 zoneid = GLOBAL_ZONEID;
2343         else
2344                 zoneid = ALL_ZONES;
2345         if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id,
2346             NULL, "misc", KSTAT_TYPE_NAMED,
2347             sizeof (cpu_info_template) / sizeof (kstat_named_t),
2348             KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE, zoneid)) != NULL) {
2349                 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN;
2350 #if defined(__sparcv9)
2351                 cp->cpu_info_kstat->ks_data_size +=
2352                     strlen(cpu_fru_fmri(cp)) + 1;
2353 #endif
2354 #if defined(__x86)
2355                 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN;
2356 #endif
2357                 if (cp->cpu_supp_freqs != NULL)
2358                         cp->cpu_info_kstat->ks_data_size +=
2359                             strlen(cp->cpu_supp_freqs) + 1;
2360                 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock;
2361                 cp->cpu_info_kstat->ks_data = &cpu_info_template;
2362                 cp->cpu_info_kstat->ks_private = cp;
2363                 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update;
2364                 kstat_install(cp->cpu_info_kstat);
2365         }
2366 }
2367 
2368 static void
2369 cpu_info_kstat_destroy(cpu_t *cp)
2370 {
2371         ASSERT(MUTEX_HELD(&cpu_lock));
2372 
2373         kstat_delete(cp->cpu_info_kstat);
2374         cp->cpu_info_kstat = NULL;
2375 }
2376 
2377 /*
2378  * Create and install kstats for the boot CPU.
2379  */
2380 void
2381 cpu_kstat_init(cpu_t *cp)
2382 {
2383         mutex_enter(&cpu_lock);
2384         cpu_info_kstat_create(cp);
2385         cpu_stats_kstat_create(cp);
2386         cpu_create_intrstat(cp);
2387         cpu_set_state(cp);
2388         mutex_exit(&cpu_lock);
2389 }
2390 
2391 /*
2392  * Make visible to the zone that subset of the cpu information that would be
2393  * initialized when a cpu is configured (but still offline).
2394  */
2395 void
2396 cpu_visibility_configure(cpu_t *cp, zone_t *zone)
2397 {
2398         zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2399 
2400         ASSERT(MUTEX_HELD(&cpu_lock));
2401         ASSERT(pool_pset_enabled());
2402         ASSERT(cp != NULL);
2403 
2404         if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2405                 zone->zone_ncpus++;
2406                 ASSERT(zone->zone_ncpus <= ncpus);
2407         }
2408         if (cp->cpu_info_kstat != NULL)
2409                 kstat_zone_add(cp->cpu_info_kstat, zoneid);
2410 }
2411 
2412 /*
2413  * Make visible to the zone that subset of the cpu information that would be
2414  * initialized when a previously configured cpu is onlined.
2415  */
2416 void
2417 cpu_visibility_online(cpu_t *cp, zone_t *zone)
2418 {
2419         kstat_t *ksp;
2420         char name[sizeof ("cpu_stat") + 10];    /* enough for 32-bit cpuids */
2421         zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2422         processorid_t cpun;
2423 
2424         ASSERT(MUTEX_HELD(&cpu_lock));
2425         ASSERT(pool_pset_enabled());
2426         ASSERT(cp != NULL);
2427         ASSERT(cpu_is_active(cp));
2428 
2429         cpun = cp->cpu_id;
2430         if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2431                 zone->zone_ncpus_online++;
2432                 ASSERT(zone->zone_ncpus_online <= ncpus_online);
2433         }
2434         (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2435         if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2436             != NULL) {
2437                 kstat_zone_add(ksp, zoneid);
2438                 kstat_rele(ksp);
2439         }
2440         if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2441                 kstat_zone_add(ksp, zoneid);
2442                 kstat_rele(ksp);
2443         }
2444         if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2445                 kstat_zone_add(ksp, zoneid);
2446                 kstat_rele(ksp);
2447         }
2448         if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2449             NULL) {
2450                 kstat_zone_add(ksp, zoneid);
2451                 kstat_rele(ksp);
2452         }
2453 }
2454 
2455 /*
2456  * Update relevant kstats such that cpu is now visible to processes
2457  * executing in specified zone.
2458  */
2459 void
2460 cpu_visibility_add(cpu_t *cp, zone_t *zone)
2461 {
2462         cpu_visibility_configure(cp, zone);
2463         if (cpu_is_active(cp))
2464                 cpu_visibility_online(cp, zone);
2465 }
2466 
2467 /*
2468  * Make invisible to the zone that subset of the cpu information that would be
2469  * torn down when a previously offlined cpu is unconfigured.
2470  */
2471 void
2472 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone)
2473 {
2474         zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2475 
2476         ASSERT(MUTEX_HELD(&cpu_lock));
2477         ASSERT(pool_pset_enabled());
2478         ASSERT(cp != NULL);
2479 
2480         if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2481                 ASSERT(zone->zone_ncpus != 0);
2482                 zone->zone_ncpus--;
2483         }
2484         if (cp->cpu_info_kstat)
2485                 kstat_zone_remove(cp->cpu_info_kstat, zoneid);
2486 }
2487 
2488 /*
2489  * Make invisible to the zone that subset of the cpu information that would be
2490  * torn down when a cpu is offlined (but still configured).
2491  */
2492 void
2493 cpu_visibility_offline(cpu_t *cp, zone_t *zone)
2494 {
2495         kstat_t *ksp;
2496         char name[sizeof ("cpu_stat") + 10];    /* enough for 32-bit cpuids */
2497         zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2498         processorid_t cpun;
2499 
2500         ASSERT(MUTEX_HELD(&cpu_lock));
2501         ASSERT(pool_pset_enabled());
2502         ASSERT(cp != NULL);
2503         ASSERT(cpu_is_active(cp));
2504 
2505         cpun = cp->cpu_id;
2506         if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2507                 ASSERT(zone->zone_ncpus_online != 0);
2508                 zone->zone_ncpus_online--;
2509         }
2510 
2511         if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2512             NULL) {
2513                 kstat_zone_remove(ksp, zoneid);
2514                 kstat_rele(ksp);
2515         }
2516         if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2517                 kstat_zone_remove(ksp, zoneid);
2518                 kstat_rele(ksp);
2519         }
2520         if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2521                 kstat_zone_remove(ksp, zoneid);
2522                 kstat_rele(ksp);
2523         }
2524         (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2525         if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2526             != NULL) {
2527                 kstat_zone_remove(ksp, zoneid);
2528                 kstat_rele(ksp);
2529         }
2530 }
2531 
2532 /*
2533  * Update relevant kstats such that cpu is no longer visible to processes
2534  * executing in specified zone.
2535  */
2536 void
2537 cpu_visibility_remove(cpu_t *cp, zone_t *zone)
2538 {
2539         if (cpu_is_active(cp))
2540                 cpu_visibility_offline(cp, zone);
2541         cpu_visibility_unconfigure(cp, zone);
2542 }
2543 
2544 /*
2545  * Bind a thread to a CPU as requested.
2546  */
2547 int
2548 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind,
2549     int *error)
2550 {
2551         processorid_t   binding;
2552         cpu_t           *cp = NULL;
2553 
2554         ASSERT(MUTEX_HELD(&cpu_lock));
2555         ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock));
2556 
2557         thread_lock(tp);
2558 
2559         /*
2560          * Record old binding, but change the obind, which was initialized
2561          * to PBIND_NONE, only if this thread has a binding.  This avoids
2562          * reporting PBIND_NONE for a process when some LWPs are bound.
2563          */
2564         binding = tp->t_bind_cpu;
2565         if (binding != PBIND_NONE)
2566                 *obind = binding;       /* record old binding */
2567 
2568         switch (bind) {
2569         case PBIND_QUERY:
2570                 /* Just return the old binding */
2571                 thread_unlock(tp);
2572                 return (0);
2573 
2574         case PBIND_QUERY_TYPE:
2575                 /* Return the binding type */
2576                 *obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD;
2577                 thread_unlock(tp);
2578                 return (0);
2579 
2580         case PBIND_SOFT:
2581                 /*
2582                  *  Set soft binding for this thread and return the actual
2583                  *  binding
2584                  */
2585                 TB_CPU_SOFT_SET(tp);
2586                 thread_unlock(tp);
2587                 return (0);
2588 
2589         case PBIND_HARD:
2590                 /*
2591                  *  Set hard binding for this thread and return the actual
2592                  *  binding
2593                  */
2594                 TB_CPU_HARD_SET(tp);
2595                 thread_unlock(tp);
2596                 return (0);
2597 
2598         default:
2599                 break;
2600         }
2601 
2602         /*
2603          * If this thread/LWP cannot be bound because of permission
2604          * problems, just note that and return success so that the
2605          * other threads/LWPs will be bound.  This is the way
2606          * processor_bind() is defined to work.
2607          *
2608          * Binding will get EPERM if the thread is of system class
2609          * or hasprocperm() fails.
2610          */
2611         if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) {
2612                 *error = EPERM;
2613                 thread_unlock(tp);
2614                 return (0);
2615         }
2616 
2617         binding = bind;
2618         if (binding != PBIND_NONE) {
2619                 cp = cpu_get((processorid_t)binding);
2620                 /*
2621                  * Make sure binding is valid and is in right partition.
2622                  */
2623                 if (cp == NULL || tp->t_cpupart != cp->cpu_part) {
2624                         *error = EINVAL;
2625                         thread_unlock(tp);
2626                         return (0);
2627                 }
2628         }
2629         tp->t_bind_cpu = binding;    /* set new binding */
2630 
2631         /*
2632          * If there is no system-set reason for affinity, set
2633          * the t_bound_cpu field to reflect the binding.
2634          */
2635         if (tp->t_affinitycnt == 0) {
2636                 if (binding == PBIND_NONE) {
2637                         /*
2638                          * We may need to adjust disp_max_unbound_pri
2639                          * since we're becoming unbound.
2640                          */
2641                         disp_adjust_unbound_pri(tp);
2642 
2643                         tp->t_bound_cpu = NULL;      /* set new binding */
2644 
2645                         /*
2646                          * Move thread to lgroup with strongest affinity
2647                          * after unbinding
2648                          */
2649                         if (tp->t_lgrp_affinity)
2650                                 lgrp_move_thread(tp,
2651                                     lgrp_choose(tp, tp->t_cpupart), 1);
2652 
2653                         if (tp->t_state == TS_ONPROC &&
2654                             tp->t_cpu->cpu_part != tp->t_cpupart)
2655                                 cpu_surrender(tp);
2656                 } else {
2657                         lpl_t   *lpl;
2658 
2659                         tp->t_bound_cpu = cp;
2660                         ASSERT(cp->cpu_lpl != NULL);
2661 
2662                         /*
2663                          * Set home to lgroup with most affinity containing CPU
2664                          * that thread is being bound or minimum bounding
2665                          * lgroup if no affinities set
2666                          */
2667                         if (tp->t_lgrp_affinity)
2668                                 lpl = lgrp_affinity_best(tp, tp->t_cpupart,
2669                                     LGRP_NONE, B_FALSE);
2670                         else
2671                                 lpl = cp->cpu_lpl;
2672 
2673                         if (tp->t_lpl != lpl) {
2674                                 /* can't grab cpu_lock */
2675                                 lgrp_move_thread(tp, lpl, 1);
2676                         }
2677 
2678                         /*
2679                          * Make the thread switch to the bound CPU.
2680                          * If the thread is runnable, we need to
2681                          * requeue it even if t_cpu is already set
2682                          * to the right CPU, since it may be on a
2683                          * kpreempt queue and need to move to a local
2684                          * queue.  We could check t_disp_queue to
2685                          * avoid unnecessary overhead if it's already
2686                          * on the right queue, but since this isn't
2687                          * a performance-critical operation it doesn't
2688                          * seem worth the extra code and complexity.
2689                          *
2690                          * If the thread is weakbound to the cpu then it will
2691                          * resist the new binding request until the weak
2692                          * binding drops.  The cpu_surrender or requeueing
2693                          * below could be skipped in such cases (since it
2694                          * will have no effect), but that would require
2695                          * thread_allowmigrate to acquire thread_lock so
2696                          * we'll take the very occasional hit here instead.
2697                          */
2698                         if (tp->t_state == TS_ONPROC) {
2699                                 cpu_surrender(tp);
2700                         } else if (tp->t_state == TS_RUN) {
2701                                 cpu_t *ocp = tp->t_cpu;
2702 
2703                                 (void) dispdeq(tp);
2704                                 setbackdq(tp);
2705                                 /*
2706                                  * Either on the bound CPU's disp queue now,
2707                                  * or swapped out or on the swap queue.
2708                                  */
2709                                 ASSERT(tp->t_disp_queue == cp->cpu_disp ||
2710                                     tp->t_weakbound_cpu == ocp ||
2711                                     (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ))
2712                                     != TS_LOAD);
2713                         }
2714                 }
2715         }
2716 
2717         /*
2718          * Our binding has changed; set TP_CHANGEBIND.
2719          */
2720         tp->t_proc_flag |= TP_CHANGEBIND;
2721         aston(tp);
2722 
2723         thread_unlock(tp);
2724 
2725         return (0);
2726 }
2727 
2728 #if CPUSET_WORDS > 1
2729 
2730 /*
2731  * Functions for implementing cpuset operations when a cpuset is more
2732  * than one word.  On platforms where a cpuset is a single word these
2733  * are implemented as macros in cpuvar.h.
2734  */
2735 
2736 void
2737 cpuset_all(cpuset_t *s)
2738 {
2739         int i;
2740 
2741         for (i = 0; i < CPUSET_WORDS; i++)
2742                 s->cpub[i] = ~0UL;
2743 }
2744 
2745 void
2746 cpuset_all_but(cpuset_t *s, uint_t cpu)
2747 {
2748         cpuset_all(s);
2749         CPUSET_DEL(*s, cpu);
2750 }
2751 
2752 void
2753 cpuset_only(cpuset_t *s, uint_t cpu)
2754 {
2755         CPUSET_ZERO(*s);
2756         CPUSET_ADD(*s, cpu);
2757 }
2758 
2759 int
2760 cpuset_isnull(cpuset_t *s)
2761 {
2762         int i;
2763 
2764         for (i = 0; i < CPUSET_WORDS; i++)
2765                 if (s->cpub[i] != 0)
2766                         return (0);
2767         return (1);
2768 }
2769 
2770 int
2771 cpuset_cmp(cpuset_t *s1, cpuset_t *s2)
2772 {
2773         int i;
2774 
2775         for (i = 0; i < CPUSET_WORDS; i++)
2776                 if (s1->cpub[i] != s2->cpub[i])
2777                         return (0);
2778         return (1);
2779 }
2780 
2781 uint_t
2782 cpuset_find(cpuset_t *s)
2783 {
2784 
2785         uint_t  i;
2786         uint_t  cpu = (uint_t)-1;
2787 
2788         /*
2789          * Find a cpu in the cpuset
2790          */
2791         for (i = 0; i < CPUSET_WORDS; i++) {
2792                 cpu = (uint_t)(lowbit(s->cpub[i]) - 1);
2793                 if (cpu != (uint_t)-1) {
2794                         cpu += i * BT_NBIPUL;
2795                         break;
2796                 }
2797         }
2798         return (cpu);
2799 }
2800 
2801 void
2802 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid)
2803 {
2804         int     i, j;
2805         uint_t  bit;
2806 
2807         /*
2808          * First, find the smallest cpu id in the set.
2809          */
2810         for (i = 0; i < CPUSET_WORDS; i++) {
2811                 if (s->cpub[i] != 0) {
2812                         bit = (uint_t)(lowbit(s->cpub[i]) - 1);
2813                         ASSERT(bit != (uint_t)-1);
2814                         *smallestid = bit + (i * BT_NBIPUL);
2815 
2816                         /*
2817                          * Now find the largest cpu id in
2818                          * the set and return immediately.
2819                          * Done in an inner loop to avoid
2820                          * having to break out of the first
2821                          * loop.
2822                          */
2823                         for (j = CPUSET_WORDS - 1; j >= i; j--) {
2824                                 if (s->cpub[j] != 0) {
2825                                         bit = (uint_t)(highbit(s->cpub[j]) - 1);
2826                                         ASSERT(bit != (uint_t)-1);
2827                                         *largestid = bit + (j * BT_NBIPUL);
2828                                         ASSERT(*largestid >= *smallestid);
2829                                         return;
2830                                 }
2831                         }
2832 
2833                         /*
2834                          * If this code is reached, a
2835                          * smallestid was found, but not a
2836                          * largestid. The cpuset must have
2837                          * been changed during the course
2838                          * of this function call.
2839                          */
2840                         ASSERT(0);
2841                 }
2842         }
2843         *smallestid = *largestid = CPUSET_NOTINSET;
2844 }
2845 
2846 #endif  /* CPUSET_WORDS */
2847 
2848 /*
2849  * Unbind threads bound to specified CPU.
2850  *
2851  * If `unbind_all_threads' is true, unbind all user threads bound to a given
2852  * CPU. Otherwise unbind all soft-bound user threads.
2853  */
2854 int
2855 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads)
2856 {
2857         processorid_t obind;
2858         kthread_t *tp;
2859         int ret = 0;
2860         proc_t *pp;
2861         int err, berr = 0;
2862 
2863         ASSERT(MUTEX_HELD(&cpu_lock));
2864 
2865         mutex_enter(&pidlock);
2866         for (pp = practive; pp != NULL; pp = pp->p_next) {
2867                 mutex_enter(&pp->p_lock);
2868                 tp = pp->p_tlist;
2869                 /*
2870                  * Skip zombies, kernel processes, and processes in
2871                  * other zones, if called from a non-global zone.
2872                  */
2873                 if (tp == NULL || (pp->p_flag & SSYS) ||
2874                     !HASZONEACCESS(curproc, pp->p_zone->zone_id)) {
2875                         mutex_exit(&pp->p_lock);
2876                         continue;
2877                 }
2878                 do {
2879                         if (tp->t_bind_cpu != cpu)
2880                                 continue;
2881                         /*
2882                          * Skip threads with hard binding when
2883                          * `unbind_all_threads' is not specified.
2884                          */
2885                         if (!unbind_all_threads && TB_CPU_IS_HARD(tp))
2886                                 continue;
2887                         err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr);
2888                         if (ret == 0)
2889                                 ret = err;
2890                 } while ((tp = tp->t_forw) != pp->p_tlist);
2891                 mutex_exit(&pp->p_lock);
2892         }
2893         mutex_exit(&pidlock);
2894         if (ret == 0)
2895                 ret = berr;
2896         return (ret);
2897 }
2898 
2899 
2900 /*
2901  * Destroy all remaining bound threads on a cpu.
2902  */
2903 void
2904 cpu_destroy_bound_threads(cpu_t *cp)
2905 {
2906         extern id_t syscid;
2907         register kthread_id_t   t, tlist, tnext;
2908 
2909         /*
2910          * Destroy all remaining bound threads on the cpu.  This
2911          * should include both the interrupt threads and the idle thread.
2912          * This requires some care, since we need to traverse the
2913          * thread list with the pidlock mutex locked, but thread_free
2914          * also locks the pidlock mutex.  So, we collect the threads
2915          * we're going to reap in a list headed by "tlist", then we
2916          * unlock the pidlock mutex and traverse the tlist list,
2917          * doing thread_free's on the thread's.  Simple, n'est pas?
2918          * Also, this depends on thread_free not mucking with the
2919          * t_next and t_prev links of the thread.
2920          */
2921 
2922         if ((t = curthread) != NULL) {
2923 
2924                 tlist = NULL;
2925                 mutex_enter(&pidlock);
2926                 do {
2927                         tnext = t->t_next;
2928                         if (t->t_bound_cpu == cp) {
2929 
2930                                 /*
2931                                  * We've found a bound thread, carefully unlink
2932                                  * it out of the thread list, and add it to
2933                                  * our "tlist".  We "know" we don't have to
2934                                  * worry about unlinking curthread (the thread
2935                                  * that is executing this code).
2936                                  */
2937                                 t->t_next->t_prev = t->t_prev;
2938                                 t->t_prev->t_next = t->t_next;
2939                                 t->t_next = tlist;
2940                                 tlist = t;
2941                                 ASSERT(t->t_cid == syscid);
2942                                 /* wake up anyone blocked in thread_join */
2943                                 cv_broadcast(&t->t_joincv);
2944                                 /*
2945                                  * t_lwp set by interrupt threads and not
2946                                  * cleared.
2947                                  */
2948                                 t->t_lwp = NULL;
2949                                 /*
2950                                  * Pause and idle threads always have
2951                                  * t_state set to TS_ONPROC.
2952                                  */
2953                                 t->t_state = TS_FREE;
2954                                 t->t_prev = NULL;    /* Just in case */
2955                         }
2956 
2957                 } while ((t = tnext) != curthread);
2958 
2959                 mutex_exit(&pidlock);
2960 
2961                 mutex_sync();
2962                 for (t = tlist; t != NULL; t = tnext) {
2963                         tnext = t->t_next;
2964                         thread_free(t);
2965                 }
2966         }
2967 }
2968 
2969 /*
2970  * Update the cpu_supp_freqs of this cpu. This information is returned
2971  * as part of cpu_info kstats. If the cpu_info_kstat exists already, then
2972  * maintain the kstat data size.
2973  */
2974 void
2975 cpu_set_supp_freqs(cpu_t *cp, const char *freqs)
2976 {
2977         char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */
2978         const char *lfreqs = clkstr;
2979         boolean_t kstat_exists = B_FALSE;
2980         kstat_t *ksp;
2981         size_t len;
2982 
2983         /*
2984          * A NULL pointer means we only support one speed.
2985          */
2986         if (freqs == NULL)
2987                 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64,
2988                     cp->cpu_curr_clock);
2989         else
2990                 lfreqs = freqs;
2991 
2992         /*
2993          * Make sure the frequency doesn't change while a snapshot is
2994          * going on. Of course, we only need to worry about this if
2995          * the kstat exists.
2996          */
2997         if ((ksp = cp->cpu_info_kstat) != NULL) {
2998                 mutex_enter(ksp->ks_lock);
2999                 kstat_exists = B_TRUE;
3000         }
3001 
3002         /*
3003          * Free any previously allocated string and if the kstat
3004          * already exists, then update its data size.
3005          */
3006         if (cp->cpu_supp_freqs != NULL) {
3007                 len = strlen(cp->cpu_supp_freqs) + 1;
3008                 kmem_free(cp->cpu_supp_freqs, len);
3009                 if (kstat_exists)
3010                         ksp->ks_data_size -= len;
3011         }
3012 
3013         /*
3014          * Allocate the new string and set the pointer.
3015          */
3016         len = strlen(lfreqs) + 1;
3017         cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP);
3018         (void) strcpy(cp->cpu_supp_freqs, lfreqs);
3019 
3020         /*
3021          * If the kstat already exists then update the data size and
3022          * free the lock.
3023          */
3024         if (kstat_exists) {
3025                 ksp->ks_data_size += len;
3026                 mutex_exit(ksp->ks_lock);
3027         }
3028 }
3029 
3030 /*
3031  * Indicate the current CPU's clock freqency (in Hz).
3032  * The calling context must be such that CPU references are safe.
3033  */
3034 void
3035 cpu_set_curr_clock(uint64_t new_clk)
3036 {
3037         uint64_t old_clk;
3038 
3039         old_clk = CPU->cpu_curr_clock;
3040         CPU->cpu_curr_clock = new_clk;
3041 
3042         /*
3043          * The cpu-change-speed DTrace probe exports the frequency in Hz
3044          */
3045         DTRACE_PROBE3(cpu__change__speed, processorid_t, CPU->cpu_id,
3046             uint64_t, old_clk, uint64_t, new_clk);
3047 }
3048 
3049 /*
3050  * processor_info(2) and p_online(2) status support functions
3051  *   The constants returned by the cpu_get_state() and cpu_get_state_str() are
3052  *   for use in communicating processor state information to userland.  Kernel
3053  *   subsystems should only be using the cpu_flags value directly.  Subsystems
3054  *   modifying cpu_flags should record the state change via a call to the
3055  *   cpu_set_state().
3056  */
3057 
3058 /*
3059  * Update the pi_state of this CPU.  This function provides the CPU status for
3060  * the information returned by processor_info(2).
3061  */
3062 void
3063 cpu_set_state(cpu_t *cpu)
3064 {
3065         ASSERT(MUTEX_HELD(&cpu_lock));
3066         cpu->cpu_type_info.pi_state = cpu_get_state(cpu);
3067         cpu->cpu_state_begin = gethrestime_sec();
3068         pool_cpu_mod = gethrtime();
3069 }
3070 
3071 /*
3072  * Return offline/online/other status for the indicated CPU.  Use only for
3073  * communication with user applications; cpu_flags provides the in-kernel
3074  * interface.
3075  */
3076 int
3077 cpu_get_state(cpu_t *cpu)
3078 {
3079         ASSERT(MUTEX_HELD(&cpu_lock));
3080         if (cpu->cpu_flags & CPU_POWEROFF)
3081                 return (P_POWEROFF);
3082         else if (cpu->cpu_flags & CPU_FAULTED)
3083                 return (P_FAULTED);
3084         else if (cpu->cpu_flags & CPU_SPARE)
3085                 return (P_SPARE);
3086         else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)
3087                 return (P_OFFLINE);
3088         else if (cpu->cpu_flags & CPU_ENABLE)
3089                 return (P_ONLINE);
3090         else
3091                 return (P_NOINTR);
3092 }
3093 
3094 /*
3095  * Return processor_info(2) state as a string.
3096  */
3097 const char *
3098 cpu_get_state_str(cpu_t *cpu)
3099 {
3100         const char *string;
3101 
3102         switch (cpu_get_state(cpu)) {
3103         case P_ONLINE:
3104                 string = PS_ONLINE;
3105                 break;
3106         case P_POWEROFF:
3107                 string = PS_POWEROFF;
3108                 break;
3109         case P_NOINTR:
3110                 string = PS_NOINTR;
3111                 break;
3112         case P_SPARE:
3113                 string = PS_SPARE;
3114                 break;
3115         case P_FAULTED:
3116                 string = PS_FAULTED;
3117                 break;
3118         case P_OFFLINE:
3119                 string = PS_OFFLINE;
3120                 break;
3121         default:
3122                 string = "unknown";
3123                 break;
3124         }
3125         return (string);
3126 }
3127 
3128 /*
3129  * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named
3130  * kstats, respectively.  This is done when a CPU is initialized or placed
3131  * online via p_online(2).
3132  */
3133 static void
3134 cpu_stats_kstat_create(cpu_t *cp)
3135 {
3136         int     instance = cp->cpu_id;
3137         char    *module = "cpu";
3138         char    *class = "misc";
3139         kstat_t *ksp;
3140         zoneid_t zoneid;
3141 
3142         ASSERT(MUTEX_HELD(&cpu_lock));
3143 
3144         if (pool_pset_enabled())
3145                 zoneid = GLOBAL_ZONEID;
3146         else
3147                 zoneid = ALL_ZONES;
3148         /*
3149          * Create named kstats
3150          */
3151 #define CPU_STATS_KS_CREATE(name, tsize, update_func)                    \
3152         ksp = kstat_create_zone(module, instance, (name), class,         \
3153             KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0,       \
3154             zoneid);                                                     \
3155         if (ksp != NULL) {                                               \
3156                 ksp->ks_private = cp;                                    \
3157                 ksp->ks_update = (update_func);                          \
3158                 kstat_install(ksp);                                      \
3159         } else                                                           \
3160                 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \
3161                     module, instance, (name));
3162 
3163         CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template),
3164             cpu_sys_stats_ks_update);
3165         CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template),
3166             cpu_vm_stats_ks_update);
3167 
3168         /*
3169          * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat.
3170          */
3171         ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL,
3172             "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid);
3173         if (ksp != NULL) {
3174                 ksp->ks_update = cpu_stat_ks_update;
3175                 ksp->ks_private = cp;
3176                 kstat_install(ksp);
3177         }
3178 }
3179 
3180 static void
3181 cpu_stats_kstat_destroy(cpu_t *cp)
3182 {
3183         char ks_name[KSTAT_STRLEN];
3184 
3185         (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id);
3186         kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name);
3187 
3188         kstat_delete_byname("cpu", cp->cpu_id, "sys");
3189         kstat_delete_byname("cpu", cp->cpu_id, "vm");
3190 }
3191 
3192 static int
3193 cpu_sys_stats_ks_update(kstat_t *ksp, int rw)
3194 {
3195         cpu_t *cp = (cpu_t *)ksp->ks_private;
3196         struct cpu_sys_stats_ks_data *csskd;
3197         cpu_sys_stats_t *css;
3198         hrtime_t msnsecs[NCMSTATES];
3199         int     i;
3200 
3201         if (rw == KSTAT_WRITE)
3202                 return (EACCES);
3203 
3204         csskd = ksp->ks_data;
3205         css = &cp->cpu_stats.sys;
3206 
3207         /*
3208          * Read CPU mstate, but compare with the last values we
3209          * received to make sure that the returned kstats never
3210          * decrease.
3211          */
3212 
3213         get_cpu_mstate(cp, msnsecs);
3214         if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE])
3215                 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64;
3216         if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER])
3217                 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64;
3218         if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM])
3219                 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64;
3220 
3221         bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data,
3222             sizeof (cpu_sys_stats_ks_data_template));
3223 
3224         csskd->cpu_ticks_wait.value.ui64 = 0;
3225         csskd->wait_ticks_io.value.ui64 = 0;
3226 
3227         csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE];
3228         csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER];
3229         csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM];
3230         csskd->cpu_ticks_idle.value.ui64 =
3231             NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64);
3232         csskd->cpu_ticks_user.value.ui64 =
3233             NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64);
3234         csskd->cpu_ticks_kernel.value.ui64 =
3235             NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64);
3236         csskd->cpu_nsec_dtrace.value.ui64 = cp->cpu_dtrace_nsec;
3237         csskd->dtrace_probes.value.ui64 = cp->cpu_dtrace_probes;
3238         csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast;
3239         csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload;
3240         csskd->bread.value.ui64 = css->bread;
3241         csskd->bwrite.value.ui64 = css->bwrite;
3242         csskd->lread.value.ui64 = css->lread;
3243         csskd->lwrite.value.ui64 = css->lwrite;
3244         csskd->phread.value.ui64 = css->phread;
3245         csskd->phwrite.value.ui64 = css->phwrite;
3246         csskd->pswitch.value.ui64 = css->pswitch;
3247         csskd->trap.value.ui64 = css->trap;
3248         csskd->intr.value.ui64 = 0;
3249         for (i = 0; i < PIL_MAX; i++)
3250                 csskd->intr.value.ui64 += css->intr[i];
3251         csskd->syscall.value.ui64 = css->syscall;
3252         csskd->sysread.value.ui64 = css->sysread;
3253         csskd->syswrite.value.ui64 = css->syswrite;
3254         csskd->sysfork.value.ui64 = css->sysfork;
3255         csskd->sysvfork.value.ui64 = css->sysvfork;
3256         csskd->sysexec.value.ui64 = css->sysexec;
3257         csskd->readch.value.ui64 = css->readch;
3258         csskd->writech.value.ui64 = css->writech;
3259         csskd->rcvint.value.ui64 = css->rcvint;
3260         csskd->xmtint.value.ui64 = css->xmtint;
3261         csskd->mdmint.value.ui64 = css->mdmint;
3262         csskd->rawch.value.ui64 = css->rawch;
3263         csskd->canch.value.ui64 = css->canch;
3264         csskd->outch.value.ui64 = css->outch;
3265         csskd->msg.value.ui64 = css->msg;
3266         csskd->sema.value.ui64 = css->sema;
3267         csskd->namei.value.ui64 = css->namei;
3268         csskd->ufsiget.value.ui64 = css->ufsiget;
3269         csskd->ufsdirblk.value.ui64 = css->ufsdirblk;
3270         csskd->ufsipage.value.ui64 = css->ufsipage;
3271         csskd->ufsinopage.value.ui64 = css->ufsinopage;
3272         csskd->procovf.value.ui64 = css->procovf;
3273         csskd->intrthread.value.ui64 = 0;
3274         for (i = 0; i < LOCK_LEVEL - 1; i++)
3275                 csskd->intrthread.value.ui64 += css->intr[i];
3276         csskd->intrblk.value.ui64 = css->intrblk;
3277         csskd->intrunpin.value.ui64 = css->intrunpin;
3278         csskd->idlethread.value.ui64 = css->idlethread;
3279         csskd->inv_swtch.value.ui64 = css->inv_swtch;
3280         csskd->nthreads.value.ui64 = css->nthreads;
3281         csskd->cpumigrate.value.ui64 = css->cpumigrate;
3282         csskd->xcalls.value.ui64 = css->xcalls;
3283         csskd->mutex_adenters.value.ui64 = css->mutex_adenters;
3284         csskd->rw_rdfails.value.ui64 = css->rw_rdfails;
3285         csskd->rw_wrfails.value.ui64 = css->rw_wrfails;
3286         csskd->modload.value.ui64 = css->modload;
3287         csskd->modunload.value.ui64 = css->modunload;
3288         csskd->bawrite.value.ui64 = css->bawrite;
3289         csskd->iowait.value.ui64 = css->iowait;
3290 
3291         return (0);
3292 }
3293 
3294 static int
3295 cpu_vm_stats_ks_update(kstat_t *ksp, int rw)
3296 {
3297         cpu_t *cp = (cpu_t *)ksp->ks_private;
3298         struct cpu_vm_stats_ks_data *cvskd;
3299         cpu_vm_stats_t *cvs;
3300 
3301         if (rw == KSTAT_WRITE)
3302                 return (EACCES);
3303 
3304         cvs = &cp->cpu_stats.vm;
3305         cvskd = ksp->ks_data;
3306 
3307         bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data,
3308             sizeof (cpu_vm_stats_ks_data_template));
3309         cvskd->pgrec.value.ui64 = cvs->pgrec;
3310         cvskd->pgfrec.value.ui64 = cvs->pgfrec;
3311         cvskd->pgin.value.ui64 = cvs->pgin;
3312         cvskd->pgpgin.value.ui64 = cvs->pgpgin;
3313         cvskd->pgout.value.ui64 = cvs->pgout;
3314         cvskd->pgpgout.value.ui64 = cvs->pgpgout;
3315         cvskd->swapin.value.ui64 = cvs->swapin;
3316         cvskd->pgswapin.value.ui64 = cvs->pgswapin;
3317         cvskd->swapout.value.ui64 = cvs->swapout;
3318         cvskd->pgswapout.value.ui64 = cvs->pgswapout;
3319         cvskd->zfod.value.ui64 = cvs->zfod;
3320         cvskd->dfree.value.ui64 = cvs->dfree;
3321         cvskd->scan.value.ui64 = cvs->scan;
3322         cvskd->rev.value.ui64 = cvs->rev;
3323         cvskd->hat_fault.value.ui64 = cvs->hat_fault;
3324         cvskd->as_fault.value.ui64 = cvs->as_fault;
3325         cvskd->maj_fault.value.ui64 = cvs->maj_fault;
3326         cvskd->cow_fault.value.ui64 = cvs->cow_fault;
3327         cvskd->prot_fault.value.ui64 = cvs->prot_fault;
3328         cvskd->softlock.value.ui64 = cvs->softlock;
3329         cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt;
3330         cvskd->pgrrun.value.ui64 = cvs->pgrrun;
3331         cvskd->execpgin.value.ui64 = cvs->execpgin;
3332         cvskd->execpgout.value.ui64 = cvs->execpgout;
3333         cvskd->execfree.value.ui64 = cvs->execfree;
3334         cvskd->anonpgin.value.ui64 = cvs->anonpgin;
3335         cvskd->anonpgout.value.ui64 = cvs->anonpgout;
3336         cvskd->anonfree.value.ui64 = cvs->anonfree;
3337         cvskd->fspgin.value.ui64 = cvs->fspgin;
3338         cvskd->fspgout.value.ui64 = cvs->fspgout;
3339         cvskd->fsfree.value.ui64 = cvs->fsfree;
3340 
3341         return (0);
3342 }
3343 
3344 static int
3345 cpu_stat_ks_update(kstat_t *ksp, int rw)
3346 {
3347         cpu_stat_t *cso;
3348         cpu_t *cp;
3349         int i;
3350         hrtime_t msnsecs[NCMSTATES];
3351 
3352         cso = (cpu_stat_t *)ksp->ks_data;
3353         cp = (cpu_t *)ksp->ks_private;
3354 
3355         if (rw == KSTAT_WRITE)
3356                 return (EACCES);
3357 
3358         /*
3359          * Read CPU mstate, but compare with the last values we
3360          * received to make sure that the returned kstats never
3361          * decrease.
3362          */
3363 
3364         get_cpu_mstate(cp, msnsecs);
3365         msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]);
3366         msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]);
3367         msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]);
3368         if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE])
3369                 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE];
3370         if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER])
3371                 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER];
3372         if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM])
3373                 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM];
3374         cso->cpu_sysinfo.cpu[CPU_WAIT]       = 0;
3375         cso->cpu_sysinfo.wait[W_IO]  = 0;
3376         cso->cpu_sysinfo.wait[W_SWAP]        = 0;
3377         cso->cpu_sysinfo.wait[W_PIO] = 0;
3378         cso->cpu_sysinfo.bread               = CPU_STATS(cp, sys.bread);
3379         cso->cpu_sysinfo.bwrite      = CPU_STATS(cp, sys.bwrite);
3380         cso->cpu_sysinfo.lread               = CPU_STATS(cp, sys.lread);
3381         cso->cpu_sysinfo.lwrite      = CPU_STATS(cp, sys.lwrite);
3382         cso->cpu_sysinfo.phread      = CPU_STATS(cp, sys.phread);
3383         cso->cpu_sysinfo.phwrite     = CPU_STATS(cp, sys.phwrite);
3384         cso->cpu_sysinfo.pswitch     = CPU_STATS(cp, sys.pswitch);
3385         cso->cpu_sysinfo.trap                = CPU_STATS(cp, sys.trap);
3386         cso->cpu_sysinfo.intr                = 0;
3387         for (i = 0; i < PIL_MAX; i++)
3388                 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]);
3389         cso->cpu_sysinfo.syscall     = CPU_STATS(cp, sys.syscall);
3390         cso->cpu_sysinfo.sysread     = CPU_STATS(cp, sys.sysread);
3391         cso->cpu_sysinfo.syswrite    = CPU_STATS(cp, sys.syswrite);
3392         cso->cpu_sysinfo.sysfork     = CPU_STATS(cp, sys.sysfork);
3393         cso->cpu_sysinfo.sysvfork    = CPU_STATS(cp, sys.sysvfork);
3394         cso->cpu_sysinfo.sysexec     = CPU_STATS(cp, sys.sysexec);
3395         cso->cpu_sysinfo.readch              = CPU_STATS(cp, sys.readch);
3396         cso->cpu_sysinfo.writech     = CPU_STATS(cp, sys.writech);
3397         cso->cpu_sysinfo.rcvint              = CPU_STATS(cp, sys.rcvint);
3398         cso->cpu_sysinfo.xmtint              = CPU_STATS(cp, sys.xmtint);
3399         cso->cpu_sysinfo.mdmint              = CPU_STATS(cp, sys.mdmint);
3400         cso->cpu_sysinfo.rawch               = CPU_STATS(cp, sys.rawch);
3401         cso->cpu_sysinfo.canch               = CPU_STATS(cp, sys.canch);
3402         cso->cpu_sysinfo.outch               = CPU_STATS(cp, sys.outch);
3403         cso->cpu_sysinfo.msg         = CPU_STATS(cp, sys.msg);
3404         cso->cpu_sysinfo.sema                = CPU_STATS(cp, sys.sema);
3405         cso->cpu_sysinfo.namei               = CPU_STATS(cp, sys.namei);
3406         cso->cpu_sysinfo.ufsiget     = CPU_STATS(cp, sys.ufsiget);
3407         cso->cpu_sysinfo.ufsdirblk   = CPU_STATS(cp, sys.ufsdirblk);
3408         cso->cpu_sysinfo.ufsipage    = CPU_STATS(cp, sys.ufsipage);
3409         cso->cpu_sysinfo.ufsinopage  = CPU_STATS(cp, sys.ufsinopage);
3410         cso->cpu_sysinfo.inodeovf    = 0;
3411         cso->cpu_sysinfo.fileovf     = 0;
3412         cso->cpu_sysinfo.procovf     = CPU_STATS(cp, sys.procovf);
3413         cso->cpu_sysinfo.intrthread  = 0;
3414         for (i = 0; i < LOCK_LEVEL - 1; i++)
3415                 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]);
3416         cso->cpu_sysinfo.intrblk     = CPU_STATS(cp, sys.intrblk);
3417         cso->cpu_sysinfo.idlethread  = CPU_STATS(cp, sys.idlethread);
3418         cso->cpu_sysinfo.inv_swtch   = CPU_STATS(cp, sys.inv_swtch);
3419         cso->cpu_sysinfo.nthreads    = CPU_STATS(cp, sys.nthreads);
3420         cso->cpu_sysinfo.cpumigrate  = CPU_STATS(cp, sys.cpumigrate);
3421         cso->cpu_sysinfo.xcalls              = CPU_STATS(cp, sys.xcalls);
3422         cso->cpu_sysinfo.mutex_adenters      = CPU_STATS(cp, sys.mutex_adenters);
3423         cso->cpu_sysinfo.rw_rdfails  = CPU_STATS(cp, sys.rw_rdfails);
3424         cso->cpu_sysinfo.rw_wrfails  = CPU_STATS(cp, sys.rw_wrfails);
3425         cso->cpu_sysinfo.modload     = CPU_STATS(cp, sys.modload);
3426         cso->cpu_sysinfo.modunload   = CPU_STATS(cp, sys.modunload);
3427         cso->cpu_sysinfo.bawrite     = CPU_STATS(cp, sys.bawrite);
3428         cso->cpu_sysinfo.rw_enters   = 0;
3429         cso->cpu_sysinfo.win_uo_cnt  = 0;
3430         cso->cpu_sysinfo.win_uu_cnt  = 0;
3431         cso->cpu_sysinfo.win_so_cnt  = 0;
3432         cso->cpu_sysinfo.win_su_cnt  = 0;
3433         cso->cpu_sysinfo.win_suo_cnt = 0;
3434 
3435         cso->cpu_syswait.iowait              = CPU_STATS(cp, sys.iowait);
3436         cso->cpu_syswait.swap                = 0;
3437         cso->cpu_syswait.physio              = 0;
3438 
3439         cso->cpu_vminfo.pgrec                = CPU_STATS(cp, vm.pgrec);
3440         cso->cpu_vminfo.pgfrec               = CPU_STATS(cp, vm.pgfrec);
3441         cso->cpu_vminfo.pgin         = CPU_STATS(cp, vm.pgin);
3442         cso->cpu_vminfo.pgpgin               = CPU_STATS(cp, vm.pgpgin);
3443         cso->cpu_vminfo.pgout                = CPU_STATS(cp, vm.pgout);
3444         cso->cpu_vminfo.pgpgout              = CPU_STATS(cp, vm.pgpgout);
3445         cso->cpu_vminfo.swapin               = CPU_STATS(cp, vm.swapin);
3446         cso->cpu_vminfo.pgswapin     = CPU_STATS(cp, vm.pgswapin);
3447         cso->cpu_vminfo.swapout              = CPU_STATS(cp, vm.swapout);
3448         cso->cpu_vminfo.pgswapout    = CPU_STATS(cp, vm.pgswapout);
3449         cso->cpu_vminfo.zfod         = CPU_STATS(cp, vm.zfod);
3450         cso->cpu_vminfo.dfree                = CPU_STATS(cp, vm.dfree);
3451         cso->cpu_vminfo.scan         = CPU_STATS(cp, vm.scan);
3452         cso->cpu_vminfo.rev          = CPU_STATS(cp, vm.rev);
3453         cso->cpu_vminfo.hat_fault    = CPU_STATS(cp, vm.hat_fault);
3454         cso->cpu_vminfo.as_fault     = CPU_STATS(cp, vm.as_fault);
3455         cso->cpu_vminfo.maj_fault    = CPU_STATS(cp, vm.maj_fault);
3456         cso->cpu_vminfo.cow_fault    = CPU_STATS(cp, vm.cow_fault);
3457         cso->cpu_vminfo.prot_fault   = CPU_STATS(cp, vm.prot_fault);
3458         cso->cpu_vminfo.softlock     = CPU_STATS(cp, vm.softlock);
3459         cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt);
3460         cso->cpu_vminfo.pgrrun               = CPU_STATS(cp, vm.pgrrun);
3461         cso->cpu_vminfo.execpgin     = CPU_STATS(cp, vm.execpgin);
3462         cso->cpu_vminfo.execpgout    = CPU_STATS(cp, vm.execpgout);
3463         cso->cpu_vminfo.execfree     = CPU_STATS(cp, vm.execfree);
3464         cso->cpu_vminfo.anonpgin     = CPU_STATS(cp, vm.anonpgin);
3465         cso->cpu_vminfo.anonpgout    = CPU_STATS(cp, vm.anonpgout);
3466         cso->cpu_vminfo.anonfree     = CPU_STATS(cp, vm.anonfree);
3467         cso->cpu_vminfo.fspgin               = CPU_STATS(cp, vm.fspgin);
3468         cso->cpu_vminfo.fspgout              = CPU_STATS(cp, vm.fspgout);
3469         cso->cpu_vminfo.fsfree               = CPU_STATS(cp, vm.fsfree);
3470 
3471         return (0);
3472 }