1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2018 Joyent, Inc. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/signal.h> 31 #include <sys/stack.h> 32 #include <sys/pcb.h> 33 #include <sys/user.h> 34 #include <sys/systm.h> 35 #include <sys/sysinfo.h> 36 #include <sys/errno.h> 37 #include <sys/cmn_err.h> 38 #include <sys/cred.h> 39 #include <sys/resource.h> 40 #include <sys/task.h> 41 #include <sys/project.h> 42 #include <sys/proc.h> 43 #include <sys/debug.h> 44 #include <sys/disp.h> 45 #include <sys/class.h> 46 #include <vm/seg_kmem.h> 47 #include <vm/seg_kp.h> 48 #include <sys/machlock.h> 49 #include <sys/kmem.h> 50 #include <sys/varargs.h> 51 #include <sys/turnstile.h> 52 #include <sys/poll.h> 53 #include <sys/vtrace.h> 54 #include <sys/callb.h> 55 #include <c2/audit.h> 56 #include <sys/tnf.h> 57 #include <sys/sobject.h> 58 #include <sys/cpupart.h> 59 #include <sys/pset.h> 60 #include <sys/door.h> 61 #include <sys/spl.h> 62 #include <sys/copyops.h> 63 #include <sys/rctl.h> 64 #include <sys/brand.h> 65 #include <sys/pool.h> 66 #include <sys/zone.h> 67 #include <sys/tsol/label.h> 68 #include <sys/tsol/tndb.h> 69 #include <sys/cpc_impl.h> 70 #include <sys/sdt.h> 71 #include <sys/reboot.h> 72 #include <sys/kdi.h> 73 #include <sys/schedctl.h> 74 #include <sys/waitq.h> 75 #include <sys/cpucaps.h> 76 #include <sys/kiconv.h> 77 #include <sys/ctype.h> 78 #include <sys/ht.h> 79 80 #ifndef STACK_GROWTH_DOWN 81 #error Stacks do not grow downward; 3b2 zombie attack detected! 82 #endif 83 84 struct kmem_cache *thread_cache; /* cache of free threads */ 85 struct kmem_cache *lwp_cache; /* cache of free lwps */ 86 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */ 87 88 /* 89 * allthreads is only for use by kmem_readers. All kernel loops can use 90 * the current thread as a start/end point. 91 */ 92 kthread_t *allthreads = &t0; /* circular list of all threads */ 93 94 static kcondvar_t reaper_cv; /* synchronization var */ 95 kthread_t *thread_deathrow; /* circular list of reapable threads */ 96 kthread_t *lwp_deathrow; /* circular list of reapable threads */ 97 kmutex_t reaplock; /* protects lwp and thread deathrows */ 98 int thread_reapcnt = 0; /* number of threads on deathrow */ 99 int lwp_reapcnt = 0; /* number of lwps on deathrow */ 100 int reaplimit = 16; /* delay reaping until reaplimit */ 101 102 thread_free_lock_t *thread_free_lock; 103 /* protects tick thread from reaper */ 104 105 extern int nthread; 106 107 /* System Scheduling classes. */ 108 id_t syscid; /* system scheduling class ID */ 109 id_t sysdccid = CLASS_UNUSED; /* reset when SDC loads */ 110 111 void *segkp_thread; /* cookie for segkp pool */ 112 113 int lwp_cache_sz = 32; 114 int t_cache_sz = 8; 115 static kt_did_t next_t_id = 1; 116 117 /* Default mode for thread binding to CPUs and processor sets */ 118 int default_binding_mode = TB_ALLHARD; 119 120 /* 121 * Min/Max stack sizes for stack size parameters 122 */ 123 #define MAX_STKSIZE (32 * DEFAULTSTKSZ) 124 #define MIN_STKSIZE DEFAULTSTKSZ 125 126 /* 127 * default_stksize overrides lwp_default_stksize if it is set. 128 */ 129 int default_stksize; 130 int lwp_default_stksize; 131 132 static zone_key_t zone_thread_key; 133 134 unsigned int kmem_stackinfo; /* stackinfo feature on-off */ 135 kmem_stkinfo_t *kmem_stkinfo_log; /* stackinfo circular log */ 136 static kmutex_t kmem_stkinfo_lock; /* protects kmem_stkinfo_log */ 137 138 /* 139 * forward declarations for internal thread specific data (tsd) 140 */ 141 static void *tsd_realloc(void *, size_t, size_t); 142 143 void thread_reaper(void); 144 145 /* forward declarations for stackinfo feature */ 146 static void stkinfo_begin(kthread_t *); 147 static void stkinfo_end(kthread_t *); 148 static size_t stkinfo_percent(caddr_t, caddr_t, caddr_t); 149 150 /*ARGSUSED*/ 151 static int 152 turnstile_constructor(void *buf, void *cdrarg, int kmflags) 153 { 154 bzero(buf, sizeof (turnstile_t)); 155 return (0); 156 } 157 158 /*ARGSUSED*/ 159 static void 160 turnstile_destructor(void *buf, void *cdrarg) 161 { 162 turnstile_t *ts = buf; 163 164 ASSERT(ts->ts_free == NULL); 165 ASSERT(ts->ts_waiters == 0); 166 ASSERT(ts->ts_inheritor == NULL); 167 ASSERT(ts->ts_sleepq[0].sq_first == NULL); 168 ASSERT(ts->ts_sleepq[1].sq_first == NULL); 169 } 170 171 void 172 thread_init(void) 173 { 174 kthread_t *tp; 175 extern char sys_name[]; 176 extern void idle(); 177 struct cpu *cpu = CPU; 178 int i; 179 kmutex_t *lp; 180 181 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL)); 182 thread_free_lock = 183 kmem_alloc(sizeof (thread_free_lock_t) * THREAD_FREE_NUM, KM_SLEEP); 184 for (i = 0; i < THREAD_FREE_NUM; i++) { 185 lp = &thread_free_lock[i].tf_lock; 186 mutex_init(lp, NULL, MUTEX_DEFAULT, NULL); 187 } 188 189 #if defined(__i386) || defined(__amd64) 190 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 191 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 192 193 /* 194 * "struct _klwp" includes a "struct pcb", which includes a 195 * "struct fpu", which needs to be 64-byte aligned on amd64 196 * (and even on i386) for xsave/xrstor. 197 */ 198 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 199 64, NULL, NULL, NULL, NULL, NULL, 0); 200 #else 201 /* 202 * Allocate thread structures from static_arena. This prevents 203 * issues where a thread tries to relocate its own thread 204 * structure and touches it after the mapping has been suspended. 205 */ 206 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 207 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0); 208 209 lwp_stk_cache_init(); 210 211 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 212 0, NULL, NULL, NULL, NULL, NULL, 0); 213 #endif 214 215 turnstile_cache = kmem_cache_create("turnstile_cache", 216 sizeof (turnstile_t), 0, 217 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0); 218 219 label_init(); 220 cred_init(); 221 222 /* 223 * Initialize various resource management facilities. 224 */ 225 rctl_init(); 226 cpucaps_init(); 227 /* 228 * Zone_init() should be called before project_init() so that project ID 229 * for the first project is initialized correctly. 230 */ 231 zone_init(); 232 project_init(); 233 brand_init(); 234 kiconv_init(); 235 task_init(); 236 tcache_init(); 237 pool_init(); 238 239 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 240 241 /* 242 * Originally, we had two parameters to set default stack 243 * size: one for lwp's (lwp_default_stksize), and one for 244 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz). 245 * Now we have a third parameter that overrides both if it is 246 * set to a legal stack size, called default_stksize. 247 */ 248 249 if (default_stksize == 0) { 250 default_stksize = DEFAULTSTKSZ; 251 } else if (default_stksize % PAGESIZE != 0 || 252 default_stksize > MAX_STKSIZE || 253 default_stksize < MIN_STKSIZE) { 254 cmn_err(CE_WARN, "Illegal stack size. Using %d", 255 (int)DEFAULTSTKSZ); 256 default_stksize = DEFAULTSTKSZ; 257 } else { 258 lwp_default_stksize = default_stksize; 259 } 260 261 if (lwp_default_stksize == 0) { 262 lwp_default_stksize = default_stksize; 263 } else if (lwp_default_stksize % PAGESIZE != 0 || 264 lwp_default_stksize > MAX_STKSIZE || 265 lwp_default_stksize < MIN_STKSIZE) { 266 cmn_err(CE_WARN, "Illegal stack size. Using %d", 267 default_stksize); 268 lwp_default_stksize = default_stksize; 269 } 270 271 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz, 272 lwp_default_stksize, 273 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED)); 274 275 segkp_thread = segkp_cache_init(segkp, t_cache_sz, 276 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON); 277 278 (void) getcid(sys_name, &syscid); 279 curthread->t_cid = syscid; /* current thread is t0 */ 280 281 /* 282 * Set up the first CPU's idle thread. 283 * It runs whenever the CPU has nothing worthwhile to do. 284 */ 285 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1); 286 cpu->cpu_idle_thread = tp; 287 tp->t_preempt = 1; 288 tp->t_disp_queue = cpu->cpu_disp; 289 ASSERT(tp->t_disp_queue != NULL); 290 tp->t_bound_cpu = cpu; 291 tp->t_affinitycnt = 1; 292 293 /* 294 * Registering a thread in the callback table is usually 295 * done in the initialization code of the thread. In this 296 * case, we do it right after thread creation to avoid 297 * blocking idle thread while registering itself. It also 298 * avoids the possibility of reregistration in case a CPU 299 * restarts its idle thread. 300 */ 301 CALLB_CPR_INIT_SAFE(tp, "idle"); 302 303 /* 304 * Create the thread_reaper daemon. From this point on, exited 305 * threads will get reaped. 306 */ 307 (void) thread_create(NULL, 0, (void (*)())thread_reaper, 308 NULL, 0, &p0, TS_RUN, minclsyspri); 309 310 /* 311 * Finish initializing the kernel memory allocator now that 312 * thread_create() is available. 313 */ 314 kmem_thread_init(); 315 316 if (boothowto & RB_DEBUG) 317 kdi_dvec_thravail(); 318 } 319 320 /* 321 * Create a thread. 322 * 323 * thread_create() blocks for memory if necessary. It never fails. 324 * 325 * If stk is NULL, the thread is created at the base of the stack 326 * and cannot be swapped. 327 */ 328 kthread_t * 329 thread_create( 330 caddr_t stk, 331 size_t stksize, 332 void (*proc)(), 333 void *arg, 334 size_t len, 335 proc_t *pp, 336 int state, 337 pri_t pri) 338 { 339 kthread_t *t; 340 extern struct classfuncs sys_classfuncs; 341 turnstile_t *ts; 342 343 /* 344 * Every thread keeps a turnstile around in case it needs to block. 345 * The only reason the turnstile is not simply part of the thread 346 * structure is that we may have to break the association whenever 347 * more than one thread blocks on a given synchronization object. 348 * From a memory-management standpoint, turnstiles are like the 349 * "attached mblks" that hang off dblks in the streams allocator. 350 */ 351 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 352 353 if (stk == NULL) { 354 /* 355 * alloc both thread and stack in segkp chunk 356 */ 357 358 if (stksize < default_stksize) 359 stksize = default_stksize; 360 361 if (stksize == default_stksize) { 362 stk = (caddr_t)segkp_cache_get(segkp_thread); 363 } else { 364 stksize = roundup(stksize, PAGESIZE); 365 stk = (caddr_t)segkp_get(segkp, stksize, 366 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED)); 367 } 368 369 ASSERT(stk != NULL); 370 371 /* 372 * The machine-dependent mutex code may require that 373 * thread pointers (since they may be used for mutex owner 374 * fields) have certain alignment requirements. 375 * PTR24_ALIGN is the size of the alignment quanta. 376 * XXX - assumes stack grows toward low addresses. 377 */ 378 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN) 379 cmn_err(CE_PANIC, "thread_create: proposed stack size" 380 " too small to hold thread."); 381 #ifdef STACK_GROWTH_DOWN 382 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1); 383 stksize &= -PTR24_ALIGN; /* make thread aligned */ 384 t = (kthread_t *)(stk + stksize); 385 bzero(t, sizeof (kthread_t)); 386 if (audit_active) 387 audit_thread_create(t); 388 t->t_stk = stk + stksize; 389 t->t_stkbase = stk; 390 #else /* stack grows to larger addresses */ 391 stksize -= SA(sizeof (kthread_t)); 392 t = (kthread_t *)(stk); 393 bzero(t, sizeof (kthread_t)); 394 t->t_stk = stk + sizeof (kthread_t); 395 t->t_stkbase = stk + stksize + sizeof (kthread_t); 396 #endif /* STACK_GROWTH_DOWN */ 397 t->t_flag |= T_TALLOCSTK; 398 t->t_swap = stk; 399 } else { 400 t = kmem_cache_alloc(thread_cache, KM_SLEEP); 401 bzero(t, sizeof (kthread_t)); 402 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0); 403 if (audit_active) 404 audit_thread_create(t); 405 /* 406 * Initialize t_stk to the kernel stack pointer to use 407 * upon entry to the kernel 408 */ 409 #ifdef STACK_GROWTH_DOWN 410 t->t_stk = stk + stksize; 411 t->t_stkbase = stk; 412 #else 413 t->t_stk = stk; /* 3b2-like */ 414 t->t_stkbase = stk + stksize; 415 #endif /* STACK_GROWTH_DOWN */ 416 } 417 418 if (kmem_stackinfo != 0) { 419 stkinfo_begin(t); 420 } 421 422 t->t_ts = ts; 423 424 /* 425 * p_cred could be NULL if it thread_create is called before cred_init 426 * is called in main. 427 */ 428 mutex_enter(&pp->p_crlock); 429 if (pp->p_cred) 430 crhold(t->t_cred = pp->p_cred); 431 mutex_exit(&pp->p_crlock); 432 t->t_start = gethrestime_sec(); 433 t->t_startpc = proc; 434 t->t_procp = pp; 435 t->t_clfuncs = &sys_classfuncs.thread; 436 t->t_cid = syscid; 437 t->t_pri = pri; 438 t->t_stime = ddi_get_lbolt(); 439 t->t_schedflag = TS_LOAD | TS_DONT_SWAP; 440 t->t_bind_cpu = PBIND_NONE; 441 t->t_bindflag = (uchar_t)default_binding_mode; 442 t->t_bind_pset = PS_NONE; 443 t->t_plockp = &pp->p_lock; 444 t->t_copyops = NULL; 445 t->t_taskq = NULL; 446 t->t_anttime = 0; 447 t->t_hatdepth = 0; 448 449 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */ 450 451 CPU_STATS_ADDQ(CPU, sys, nthreads, 1); 452 #ifndef NPROBE 453 /* Kernel probe */ 454 tnf_thread_create(t); 455 #endif /* NPROBE */ 456 LOCK_INIT_CLEAR(&t->t_lock); 457 458 /* 459 * Callers who give us a NULL proc must do their own 460 * stack initialization. e.g. lwp_create() 461 */ 462 if (proc != NULL) { 463 t->t_stk = thread_stk_init(t->t_stk); 464 thread_load(t, proc, arg, len); 465 } 466 467 /* 468 * Put a hold on project0. If this thread is actually in a 469 * different project, then t_proj will be changed later in 470 * lwp_create(). All kernel-only threads must be in project 0. 471 */ 472 t->t_proj = project_hold(proj0p); 473 474 lgrp_affinity_init(&t->t_lgrp_affinity); 475 476 mutex_enter(&pidlock); 477 nthread++; 478 t->t_did = next_t_id++; 479 t->t_prev = curthread->t_prev; 480 t->t_next = curthread; 481 482 /* 483 * Add the thread to the list of all threads, and initialize 484 * its t_cpu pointer. We need to block preemption since 485 * cpu_offline walks the thread list looking for threads 486 * with t_cpu pointing to the CPU being offlined. We want 487 * to make sure that the list is consistent and that if t_cpu 488 * is set, the thread is on the list. 489 */ 490 kpreempt_disable(); 491 curthread->t_prev->t_next = t; 492 curthread->t_prev = t; 493 494 /* 495 * Threads should never have a NULL t_cpu pointer so assign it 496 * here. If the thread is being created with state TS_RUN a 497 * better CPU may be chosen when it is placed on the run queue. 498 * 499 * We need to keep kernel preemption disabled when setting all 500 * three fields to keep them in sync. Also, always create in 501 * the default partition since that's where kernel threads go 502 * (if this isn't a kernel thread, t_cpupart will be changed 503 * in lwp_create before setting the thread runnable). 504 */ 505 t->t_cpupart = &cp_default; 506 507 /* 508 * For now, affiliate this thread with the root lgroup. 509 * Since the kernel does not (presently) allocate its memory 510 * in a locality aware fashion, the root is an appropriate home. 511 * If this thread is later associated with an lwp, it will have 512 * it's lgroup re-assigned at that time. 513 */ 514 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1); 515 516 /* 517 * Inherit the current cpu. If this cpu isn't part of the chosen 518 * lgroup, a new cpu will be chosen by cpu_choose when the thread 519 * is ready to run. 520 */ 521 if (CPU->cpu_part == &cp_default) 522 t->t_cpu = CPU; 523 else 524 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t, 525 t->t_pri); 526 527 t->t_disp_queue = t->t_cpu->cpu_disp; 528 kpreempt_enable(); 529 530 /* 531 * Initialize thread state and the dispatcher lock pointer. 532 * Need to hold onto pidlock to block allthreads walkers until 533 * the state is set. 534 */ 535 switch (state) { 536 case TS_RUN: 537 curthread->t_oldspl = splhigh(); /* get dispatcher spl */ 538 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock); 539 CL_SETRUN(t); 540 thread_unlock(t); 541 break; 542 543 case TS_ONPROC: 544 THREAD_ONPROC(t, t->t_cpu); 545 break; 546 547 case TS_FREE: 548 /* 549 * Free state will be used for intr threads. 550 * The interrupt routine must set the thread dispatcher 551 * lock pointer (t_lockp) if starting on a CPU 552 * other than the current one. 553 */ 554 THREAD_FREEINTR(t, CPU); 555 break; 556 557 case TS_STOPPED: 558 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock); 559 break; 560 561 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */ 562 cmn_err(CE_PANIC, "thread_create: invalid state %d", state); 563 } 564 mutex_exit(&pidlock); 565 return (t); 566 } 567 568 /* 569 * Move thread to project0 and take care of project reference counters. 570 */ 571 void 572 thread_rele(kthread_t *t) 573 { 574 kproject_t *kpj; 575 576 thread_lock(t); 577 578 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0); 579 kpj = ttoproj(t); 580 t->t_proj = proj0p; 581 582 thread_unlock(t); 583 584 if (kpj != proj0p) { 585 project_rele(kpj); 586 (void) project_hold(proj0p); 587 } 588 } 589 590 void 591 thread_exit(void) 592 { 593 kthread_t *t = curthread; 594 595 if ((t->t_proc_flag & TP_ZTHREAD) != 0) 596 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called"); 597 598 tsd_exit(); /* Clean up this thread's TSD */ 599 600 kcpc_passivate(); /* clean up performance counter state */ 601 602 /* 603 * No kernel thread should have called poll() without arranging 604 * calling pollcleanup() here. 605 */ 606 ASSERT(t->t_pollstate == NULL); 607 ASSERT(t->t_schedctl == NULL); 608 if (t->t_door) 609 door_slam(); /* in case thread did an upcall */ 610 611 #ifndef NPROBE 612 /* Kernel probe */ 613 if (t->t_tnf_tpdp) 614 tnf_thread_exit(); 615 #endif /* NPROBE */ 616 617 thread_rele(t); 618 t->t_preempt++; 619 620 /* 621 * remove thread from the all threads list so that 622 * death-row can use the same pointers. 623 */ 624 mutex_enter(&pidlock); 625 t->t_next->t_prev = t->t_prev; 626 t->t_prev->t_next = t->t_next; 627 ASSERT(allthreads != t); /* t0 never exits */ 628 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 629 mutex_exit(&pidlock); 630 631 if (t->t_ctx != NULL) 632 exitctx(t); 633 if (t->t_procp->p_pctx != NULL) 634 exitpctx(t->t_procp); 635 636 if (kmem_stackinfo != 0) { 637 stkinfo_end(t); 638 } 639 640 t->t_state = TS_ZOMB; /* set zombie thread */ 641 642 swtch_from_zombie(); /* give up the CPU */ 643 /* NOTREACHED */ 644 } 645 646 /* 647 * Check to see if the specified thread is active (defined as being on 648 * the thread list). This is certainly a slow way to do this; if there's 649 * ever a reason to speed it up, we could maintain a hash table of active 650 * threads indexed by their t_did. 651 */ 652 static kthread_t * 653 did_to_thread(kt_did_t tid) 654 { 655 kthread_t *t; 656 657 ASSERT(MUTEX_HELD(&pidlock)); 658 for (t = curthread->t_next; t != curthread; t = t->t_next) { 659 if (t->t_did == tid) 660 break; 661 } 662 if (t->t_did == tid) 663 return (t); 664 else 665 return (NULL); 666 } 667 668 /* 669 * Wait for specified thread to exit. Returns immediately if the thread 670 * could not be found, meaning that it has either already exited or never 671 * existed. 672 */ 673 void 674 thread_join(kt_did_t tid) 675 { 676 kthread_t *t; 677 678 ASSERT(tid != curthread->t_did); 679 ASSERT(tid != t0.t_did); 680 681 mutex_enter(&pidlock); 682 /* 683 * Make sure we check that the thread is on the thread list 684 * before blocking on it; otherwise we could end up blocking on 685 * a cv that's already been freed. In other words, don't cache 686 * the thread pointer across calls to cv_wait. 687 * 688 * The choice of loop invariant means that whenever a thread 689 * is taken off the allthreads list, a cv_broadcast must be 690 * performed on that thread's t_joincv to wake up any waiters. 691 * The broadcast doesn't have to happen right away, but it 692 * shouldn't be postponed indefinitely (e.g., by doing it in 693 * thread_free which may only be executed when the deathrow 694 * queue is processed. 695 */ 696 while (t = did_to_thread(tid)) 697 cv_wait(&t->t_joincv, &pidlock); 698 mutex_exit(&pidlock); 699 } 700 701 void 702 thread_free_prevent(kthread_t *t) 703 { 704 kmutex_t *lp; 705 706 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 707 mutex_enter(lp); 708 } 709 710 void 711 thread_free_allow(kthread_t *t) 712 { 713 kmutex_t *lp; 714 715 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 716 mutex_exit(lp); 717 } 718 719 static void 720 thread_free_barrier(kthread_t *t) 721 { 722 kmutex_t *lp; 723 724 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 725 mutex_enter(lp); 726 mutex_exit(lp); 727 } 728 729 void 730 thread_free(kthread_t *t) 731 { 732 boolean_t allocstk = (t->t_flag & T_TALLOCSTK); 733 klwp_t *lwp = t->t_lwp; 734 caddr_t swap = t->t_swap; 735 736 ASSERT(t != &t0 && t->t_state == TS_FREE); 737 ASSERT(t->t_door == NULL); 738 ASSERT(t->t_schedctl == NULL); 739 ASSERT(t->t_pollstate == NULL); 740 741 t->t_pri = 0; 742 t->t_pc = 0; 743 t->t_sp = 0; 744 t->t_wchan0 = NULL; 745 t->t_wchan = NULL; 746 if (t->t_cred != NULL) { 747 crfree(t->t_cred); 748 t->t_cred = 0; 749 } 750 if (t->t_pdmsg) { 751 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1); 752 t->t_pdmsg = NULL; 753 } 754 if (audit_active) 755 audit_thread_free(t); 756 #ifndef NPROBE 757 if (t->t_tnf_tpdp) 758 tnf_thread_free(t); 759 #endif /* NPROBE */ 760 if (t->t_cldata) { 761 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata); 762 } 763 if (t->t_rprof != NULL) { 764 kmem_free(t->t_rprof, sizeof (*t->t_rprof)); 765 t->t_rprof = NULL; 766 } 767 t->t_lockp = NULL; /* nothing should try to lock this thread now */ 768 if (lwp) 769 lwp_freeregs(lwp, 0); 770 if (t->t_ctx) 771 freectx(t, 0); 772 t->t_stk = NULL; 773 if (lwp) 774 lwp_stk_fini(lwp); 775 lock_clear(&t->t_lock); 776 777 if (t->t_ts->ts_waiters > 0) 778 panic("thread_free: turnstile still active"); 779 780 kmem_cache_free(turnstile_cache, t->t_ts); 781 782 free_afd(&t->t_activefd); 783 784 /* 785 * Barrier for the tick accounting code. The tick accounting code 786 * holds this lock to keep the thread from going away while it's 787 * looking at it. 788 */ 789 thread_free_barrier(t); 790 791 ASSERT(ttoproj(t) == proj0p); 792 project_rele(ttoproj(t)); 793 794 lgrp_affinity_free(&t->t_lgrp_affinity); 795 796 mutex_enter(&pidlock); 797 nthread--; 798 mutex_exit(&pidlock); 799 800 if (t->t_name != NULL) { 801 kmem_free(t->t_name, THREAD_NAME_MAX); 802 t->t_name = NULL; 803 } 804 805 /* 806 * Free thread, lwp and stack. This needs to be done carefully, since 807 * if T_TALLOCSTK is set, the thread is part of the stack. 808 */ 809 t->t_lwp = NULL; 810 t->t_swap = NULL; 811 812 if (swap) { 813 segkp_release(segkp, swap); 814 } 815 if (lwp) { 816 kmem_cache_free(lwp_cache, lwp); 817 } 818 if (!allocstk) { 819 kmem_cache_free(thread_cache, t); 820 } 821 } 822 823 /* 824 * Removes threads associated with the given zone from a deathrow queue. 825 * tp is a pointer to the head of the deathrow queue, and countp is a 826 * pointer to the current deathrow count. Returns a linked list of 827 * threads removed from the list. 828 */ 829 static kthread_t * 830 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid) 831 { 832 kthread_t *tmp, *list = NULL; 833 cred_t *cr; 834 835 ASSERT(MUTEX_HELD(&reaplock)); 836 while (*tp != NULL) { 837 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) { 838 tmp = *tp; 839 *tp = tmp->t_forw; 840 tmp->t_forw = list; 841 list = tmp; 842 (*countp)--; 843 } else { 844 tp = &(*tp)->t_forw; 845 } 846 } 847 return (list); 848 } 849 850 static void 851 thread_reap_list(kthread_t *t) 852 { 853 kthread_t *next; 854 855 while (t != NULL) { 856 next = t->t_forw; 857 thread_free(t); 858 t = next; 859 } 860 } 861 862 /* ARGSUSED */ 863 static void 864 thread_zone_destroy(zoneid_t zoneid, void *unused) 865 { 866 kthread_t *t, *l; 867 868 mutex_enter(&reaplock); 869 /* 870 * Pull threads and lwps associated with zone off deathrow lists. 871 */ 872 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid); 873 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid); 874 mutex_exit(&reaplock); 875 876 /* 877 * Guard against race condition in mutex_owner_running: 878 * thread=owner(mutex) 879 * <interrupt> 880 * thread exits mutex 881 * thread exits 882 * thread reaped 883 * thread struct freed 884 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE. 885 * A cross call to all cpus will cause the interrupt handler 886 * to reset the PC if it is in mutex_owner_running, refreshing 887 * stale thread pointers. 888 */ 889 mutex_sync(); /* sync with mutex code */ 890 891 /* 892 * Reap threads 893 */ 894 thread_reap_list(t); 895 896 /* 897 * Reap lwps 898 */ 899 thread_reap_list(l); 900 } 901 902 /* 903 * cleanup zombie threads that are on deathrow. 904 */ 905 void 906 thread_reaper() 907 { 908 kthread_t *t, *l; 909 callb_cpr_t cprinfo; 910 911 /* 912 * Register callback to clean up threads when zone is destroyed. 913 */ 914 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy); 915 916 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper"); 917 for (;;) { 918 mutex_enter(&reaplock); 919 while (thread_deathrow == NULL && lwp_deathrow == NULL) { 920 CALLB_CPR_SAFE_BEGIN(&cprinfo); 921 cv_wait(&reaper_cv, &reaplock); 922 CALLB_CPR_SAFE_END(&cprinfo, &reaplock); 923 } 924 /* 925 * mutex_sync() needs to be called when reaping, but 926 * not too often. We limit reaping rate to once 927 * per second. Reaplimit is max rate at which threads can 928 * be freed. Does not impact thread destruction/creation. 929 */ 930 t = thread_deathrow; 931 l = lwp_deathrow; 932 thread_deathrow = NULL; 933 lwp_deathrow = NULL; 934 thread_reapcnt = 0; 935 lwp_reapcnt = 0; 936 mutex_exit(&reaplock); 937 938 /* 939 * Guard against race condition in mutex_owner_running: 940 * thread=owner(mutex) 941 * <interrupt> 942 * thread exits mutex 943 * thread exits 944 * thread reaped 945 * thread struct freed 946 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE. 947 * A cross call to all cpus will cause the interrupt handler 948 * to reset the PC if it is in mutex_owner_running, refreshing 949 * stale thread pointers. 950 */ 951 mutex_sync(); /* sync with mutex code */ 952 /* 953 * Reap threads 954 */ 955 thread_reap_list(t); 956 957 /* 958 * Reap lwps 959 */ 960 thread_reap_list(l); 961 delay(hz); 962 } 963 } 964 965 /* 966 * This is called by lwpcreate, etc.() to put a lwp_deathrow thread onto 967 * thread_deathrow. The thread's state is changed already TS_FREE to indicate 968 * that is reapable. The thread already holds the reaplock, and was already 969 * freed. 970 */ 971 void 972 reapq_move_lq_to_tq(kthread_t *t) 973 { 974 ASSERT(t->t_state == TS_FREE); 975 ASSERT(MUTEX_HELD(&reaplock)); 976 t->t_forw = thread_deathrow; 977 thread_deathrow = t; 978 thread_reapcnt++; 979 if (lwp_reapcnt + thread_reapcnt > reaplimit) 980 cv_signal(&reaper_cv); /* wake the reaper */ 981 } 982 983 /* 984 * This is called by resume() to put a zombie thread onto deathrow. 985 * The thread's state is changed to TS_FREE to indicate that is reapable. 986 * This is called from the idle thread so it must not block - just spin. 987 */ 988 void 989 reapq_add(kthread_t *t) 990 { 991 mutex_enter(&reaplock); 992 993 /* 994 * lwp_deathrow contains threads with lwp linkage and 995 * swappable thread stacks which have the default stacksize. 996 * These threads' lwps and stacks may be reused by lwp_create(). 997 * 998 * Anything else goes on thread_deathrow(), where it will eventually 999 * be thread_free()d. 1000 */ 1001 if (t->t_flag & T_LWPREUSE) { 1002 ASSERT(ttolwp(t) != NULL); 1003 t->t_forw = lwp_deathrow; 1004 lwp_deathrow = t; 1005 lwp_reapcnt++; 1006 } else { 1007 t->t_forw = thread_deathrow; 1008 thread_deathrow = t; 1009 thread_reapcnt++; 1010 } 1011 if (lwp_reapcnt + thread_reapcnt > reaplimit) 1012 cv_signal(&reaper_cv); /* wake the reaper */ 1013 t->t_state = TS_FREE; 1014 lock_clear(&t->t_lock); 1015 1016 /* 1017 * Before we return, we need to grab and drop the thread lock for 1018 * the dead thread. At this point, the current thread is the idle 1019 * thread, and the dead thread's CPU lock points to the current 1020 * CPU -- and we must grab and drop the lock to synchronize with 1021 * a racing thread walking a blocking chain that the zombie thread 1022 * was recently in. By this point, that blocking chain is (by 1023 * definition) stale: the dead thread is not holding any locks, and 1024 * is therefore not in any blocking chains -- but if we do not regrab 1025 * our lock before freeing the dead thread's data structures, the 1026 * thread walking the (stale) blocking chain will die on memory 1027 * corruption when it attempts to drop the dead thread's lock. We 1028 * only need do this once because there is no way for the dead thread 1029 * to ever again be on a blocking chain: once we have grabbed and 1030 * dropped the thread lock, we are guaranteed that anyone that could 1031 * have seen this thread in a blocking chain can no longer see it. 1032 */ 1033 thread_lock(t); 1034 thread_unlock(t); 1035 1036 mutex_exit(&reaplock); 1037 } 1038 1039 /* 1040 * Install thread context ops for the current thread. 1041 */ 1042 void 1043 installctx( 1044 kthread_t *t, 1045 void *arg, 1046 void (*save)(void *), 1047 void (*restore)(void *), 1048 void (*fork)(void *, void *), 1049 void (*lwp_create)(void *, void *), 1050 void (*exit)(void *), 1051 void (*free)(void *, int)) 1052 { 1053 struct ctxop *ctx; 1054 1055 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP); 1056 ctx->save_op = save; 1057 ctx->restore_op = restore; 1058 ctx->fork_op = fork; 1059 ctx->lwp_create_op = lwp_create; 1060 ctx->exit_op = exit; 1061 ctx->free_op = free; 1062 ctx->arg = arg; 1063 ctx->next = t->t_ctx; 1064 t->t_ctx = ctx; 1065 } 1066 1067 /* 1068 * Remove the thread context ops from a thread. 1069 */ 1070 int 1071 removectx( 1072 kthread_t *t, 1073 void *arg, 1074 void (*save)(void *), 1075 void (*restore)(void *), 1076 void (*fork)(void *, void *), 1077 void (*lwp_create)(void *, void *), 1078 void (*exit)(void *), 1079 void (*free)(void *, int)) 1080 { 1081 struct ctxop *ctx, *prev_ctx; 1082 1083 /* 1084 * The incoming kthread_t (which is the thread for which the 1085 * context ops will be removed) should be one of the following: 1086 * 1087 * a) the current thread, 1088 * 1089 * b) a thread of a process that's being forked (SIDL), 1090 * 1091 * c) a thread that belongs to the same process as the current 1092 * thread and for which the current thread is the agent thread, 1093 * 1094 * d) a thread that is TS_STOPPED which is indicative of it 1095 * being (if curthread is not an agent) a thread being created 1096 * as part of an lwp creation. 1097 */ 1098 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL || 1099 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1100 1101 /* 1102 * Serialize modifications to t->t_ctx to prevent the agent thread 1103 * and the target thread from racing with each other during lwp exit. 1104 */ 1105 mutex_enter(&t->t_ctx_lock); 1106 prev_ctx = NULL; 1107 kpreempt_disable(); 1108 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) { 1109 if (ctx->save_op == save && ctx->restore_op == restore && 1110 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create && 1111 ctx->exit_op == exit && ctx->free_op == free && 1112 ctx->arg == arg) { 1113 if (prev_ctx) 1114 prev_ctx->next = ctx->next; 1115 else 1116 t->t_ctx = ctx->next; 1117 mutex_exit(&t->t_ctx_lock); 1118 if (ctx->free_op != NULL) 1119 (ctx->free_op)(ctx->arg, 0); 1120 kmem_free(ctx, sizeof (struct ctxop)); 1121 kpreempt_enable(); 1122 return (1); 1123 } 1124 prev_ctx = ctx; 1125 } 1126 mutex_exit(&t->t_ctx_lock); 1127 kpreempt_enable(); 1128 1129 return (0); 1130 } 1131 1132 void 1133 savectx(kthread_t *t) 1134 { 1135 struct ctxop *ctx; 1136 1137 ASSERT(t == curthread); 1138 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1139 if (ctx->save_op != NULL) 1140 (ctx->save_op)(ctx->arg); 1141 } 1142 1143 void 1144 restorectx(kthread_t *t) 1145 { 1146 struct ctxop *ctx; 1147 1148 ASSERT(t == curthread); 1149 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1150 if (ctx->restore_op != NULL) 1151 (ctx->restore_op)(ctx->arg); 1152 } 1153 1154 void 1155 forkctx(kthread_t *t, kthread_t *ct) 1156 { 1157 struct ctxop *ctx; 1158 1159 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1160 if (ctx->fork_op != NULL) 1161 (ctx->fork_op)(t, ct); 1162 } 1163 1164 /* 1165 * Note that this operator is only invoked via the _lwp_create 1166 * system call. The system may have other reasons to create lwps 1167 * e.g. the agent lwp or the doors unreferenced lwp. 1168 */ 1169 void 1170 lwp_createctx(kthread_t *t, kthread_t *ct) 1171 { 1172 struct ctxop *ctx; 1173 1174 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1175 if (ctx->lwp_create_op != NULL) 1176 (ctx->lwp_create_op)(t, ct); 1177 } 1178 1179 /* 1180 * exitctx is called from thread_exit() and lwp_exit() to perform any actions 1181 * needed when the thread/LWP leaves the processor for the last time. This 1182 * routine is not intended to deal with freeing memory; freectx() is used for 1183 * that purpose during thread_free(). This routine is provided to allow for 1184 * clean-up that can't wait until thread_free(). 1185 */ 1186 void 1187 exitctx(kthread_t *t) 1188 { 1189 struct ctxop *ctx; 1190 1191 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1192 if (ctx->exit_op != NULL) 1193 (ctx->exit_op)(t); 1194 } 1195 1196 /* 1197 * freectx is called from thread_free() and exec() to get 1198 * rid of old thread context ops. 1199 */ 1200 void 1201 freectx(kthread_t *t, int isexec) 1202 { 1203 struct ctxop *ctx; 1204 1205 kpreempt_disable(); 1206 while ((ctx = t->t_ctx) != NULL) { 1207 t->t_ctx = ctx->next; 1208 if (ctx->free_op != NULL) 1209 (ctx->free_op)(ctx->arg, isexec); 1210 kmem_free(ctx, sizeof (struct ctxop)); 1211 } 1212 kpreempt_enable(); 1213 } 1214 1215 /* 1216 * freectx_ctx is called from lwp_create() when lwp is reused from 1217 * lwp_deathrow and its thread structure is added to thread_deathrow. 1218 * The thread structure to which this ctx was attached may be already 1219 * freed by the thread reaper so free_op implementations shouldn't rely 1220 * on thread structure to which this ctx was attached still being around. 1221 */ 1222 void 1223 freectx_ctx(struct ctxop *ctx) 1224 { 1225 struct ctxop *nctx; 1226 1227 ASSERT(ctx != NULL); 1228 1229 kpreempt_disable(); 1230 do { 1231 nctx = ctx->next; 1232 if (ctx->free_op != NULL) 1233 (ctx->free_op)(ctx->arg, 0); 1234 kmem_free(ctx, sizeof (struct ctxop)); 1235 } while ((ctx = nctx) != NULL); 1236 kpreempt_enable(); 1237 } 1238 1239 /* 1240 * Set the thread running; arrange for it to be swapped in if necessary. 1241 */ 1242 void 1243 setrun_locked(kthread_t *t) 1244 { 1245 ASSERT(THREAD_LOCK_HELD(t)); 1246 if (t->t_state == TS_SLEEP) { 1247 /* 1248 * Take off sleep queue. 1249 */ 1250 SOBJ_UNSLEEP(t->t_sobj_ops, t); 1251 } else if (t->t_state & (TS_RUN | TS_ONPROC)) { 1252 /* 1253 * Already on dispatcher queue. 1254 */ 1255 return; 1256 } else if (t->t_state == TS_WAIT) { 1257 waitq_setrun(t); 1258 } else if (t->t_state == TS_STOPPED) { 1259 /* 1260 * All of the sending of SIGCONT (TC_XSTART) and /proc 1261 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have 1262 * requested that the thread be run. 1263 * Just calling setrun() is not sufficient to set a stopped 1264 * thread running. TP_TXSTART is always set if the thread 1265 * is not stopped by a jobcontrol stop signal. 1266 * TP_TPSTART is always set if /proc is not controlling it. 1267 * TP_TCSTART is always set if lwp_suspend() didn't stop it. 1268 * The thread won't be stopped unless one of these 1269 * three mechanisms did it. 1270 * 1271 * These flags must be set before calling setrun_locked(t). 1272 * They can't be passed as arguments because the streams 1273 * code calls setrun() indirectly and the mechanism for 1274 * doing so admits only one argument. Note that the 1275 * thread must be locked in order to change t_schedflags. 1276 */ 1277 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART) 1278 return; 1279 /* 1280 * Process is no longer stopped (a thread is running). 1281 */ 1282 t->t_whystop = 0; 1283 t->t_whatstop = 0; 1284 /* 1285 * Strictly speaking, we do not have to clear these 1286 * flags here; they are cleared on entry to stop(). 1287 * However, they are confusing when doing kernel 1288 * debugging or when they are revealed by ps(1). 1289 */ 1290 t->t_schedflag &= ~TS_ALLSTART; 1291 THREAD_TRANSITION(t); /* drop stopped-thread lock */ 1292 ASSERT(t->t_lockp == &transition_lock); 1293 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 1294 /* 1295 * Let the class put the process on the dispatcher queue. 1296 */ 1297 CL_SETRUN(t); 1298 } 1299 } 1300 1301 void 1302 setrun(kthread_t *t) 1303 { 1304 thread_lock(t); 1305 setrun_locked(t); 1306 thread_unlock(t); 1307 } 1308 1309 /* 1310 * Unpin an interrupted thread. 1311 * When an interrupt occurs, the interrupt is handled on the stack 1312 * of an interrupt thread, taken from a pool linked to the CPU structure. 1313 * 1314 * When swtch() is switching away from an interrupt thread because it 1315 * blocked or was preempted, this routine is called to complete the 1316 * saving of the interrupted thread state, and returns the interrupted 1317 * thread pointer so it may be resumed. 1318 * 1319 * Called by swtch() only at high spl. 1320 */ 1321 kthread_t * 1322 thread_unpin() 1323 { 1324 kthread_t *t = curthread; /* current thread */ 1325 kthread_t *itp; /* interrupted thread */ 1326 int i; /* interrupt level */ 1327 extern int intr_passivate(); 1328 1329 ASSERT(t->t_intr != NULL); 1330 1331 itp = t->t_intr; /* interrupted thread */ 1332 t->t_intr = NULL; /* clear interrupt ptr */ 1333 1334 ht_end_intr(); 1335 1336 /* 1337 * Get state from interrupt thread for the one 1338 * it interrupted. 1339 */ 1340 1341 i = intr_passivate(t, itp); 1342 1343 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE, 1344 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)", 1345 i, t, t, itp, itp); 1346 1347 /* 1348 * Dissociate the current thread from the interrupted thread's LWP. 1349 */ 1350 t->t_lwp = NULL; 1351 1352 /* 1353 * Interrupt handlers above the level that spinlocks block must 1354 * not block. 1355 */ 1356 #if DEBUG 1357 if (i < 0 || i > LOCK_LEVEL) 1358 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i); 1359 #endif 1360 1361 /* 1362 * Compute the CPU's base interrupt level based on the active 1363 * interrupts. 1364 */ 1365 ASSERT(CPU->cpu_intr_actv & (1 << i)); 1366 set_base_spl(); 1367 1368 return (itp); 1369 } 1370 1371 /* 1372 * Create and initialize an interrupt thread. 1373 * Returns non-zero on error. 1374 * Called at spl7() or better. 1375 */ 1376 void 1377 thread_create_intr(struct cpu *cp) 1378 { 1379 kthread_t *tp; 1380 1381 tp = thread_create(NULL, 0, 1382 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0); 1383 1384 /* 1385 * Set the thread in the TS_FREE state. The state will change 1386 * to TS_ONPROC only while the interrupt is active. Think of these 1387 * as being on a private free list for the CPU. Being TS_FREE keeps 1388 * inactive interrupt threads out of debugger thread lists. 1389 * 1390 * We cannot call thread_create with TS_FREE because of the current 1391 * checks there for ONPROC. Fix this when thread_create takes flags. 1392 */ 1393 THREAD_FREEINTR(tp, cp); 1394 1395 /* 1396 * Nobody should ever reference the credentials of an interrupt 1397 * thread so make it NULL to catch any such references. 1398 */ 1399 tp->t_cred = NULL; 1400 tp->t_flag |= T_INTR_THREAD; 1401 tp->t_cpu = cp; 1402 tp->t_bound_cpu = cp; 1403 tp->t_disp_queue = cp->cpu_disp; 1404 tp->t_affinitycnt = 1; 1405 tp->t_preempt = 1; 1406 1407 /* 1408 * Don't make a user-requested binding on this thread so that 1409 * the processor can be offlined. 1410 */ 1411 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */ 1412 tp->t_bind_pset = PS_NONE; 1413 1414 #if defined(__i386) || defined(__amd64) 1415 tp->t_stk -= STACK_ALIGN; 1416 *(tp->t_stk) = 0; /* terminate intr thread stack */ 1417 #endif 1418 1419 /* 1420 * Link onto CPU's interrupt pool. 1421 */ 1422 tp->t_link = cp->cpu_intr_thread; 1423 cp->cpu_intr_thread = tp; 1424 } 1425 1426 /* 1427 * TSD -- THREAD SPECIFIC DATA 1428 */ 1429 static kmutex_t tsd_mutex; /* linked list spin lock */ 1430 static uint_t tsd_nkeys; /* size of destructor array */ 1431 /* per-key destructor funcs */ 1432 static void (**tsd_destructor)(void *); 1433 /* list of tsd_thread's */ 1434 static struct tsd_thread *tsd_list; 1435 1436 /* 1437 * Default destructor 1438 * Needed because NULL destructor means that the key is unused 1439 */ 1440 /* ARGSUSED */ 1441 void 1442 tsd_defaultdestructor(void *value) 1443 {} 1444 1445 /* 1446 * Create a key (index into per thread array) 1447 * Locks out tsd_create, tsd_destroy, and tsd_exit 1448 * May allocate memory with lock held 1449 */ 1450 void 1451 tsd_create(uint_t *keyp, void (*destructor)(void *)) 1452 { 1453 int i; 1454 uint_t nkeys; 1455 1456 /* 1457 * if key is allocated, do nothing 1458 */ 1459 mutex_enter(&tsd_mutex); 1460 if (*keyp) { 1461 mutex_exit(&tsd_mutex); 1462 return; 1463 } 1464 /* 1465 * find an unused key 1466 */ 1467 if (destructor == NULL) 1468 destructor = tsd_defaultdestructor; 1469 1470 for (i = 0; i < tsd_nkeys; ++i) 1471 if (tsd_destructor[i] == NULL) 1472 break; 1473 1474 /* 1475 * if no unused keys, increase the size of the destructor array 1476 */ 1477 if (i == tsd_nkeys) { 1478 if ((nkeys = (tsd_nkeys << 1)) == 0) 1479 nkeys = 1; 1480 tsd_destructor = 1481 (void (**)(void *))tsd_realloc((void *)tsd_destructor, 1482 (size_t)(tsd_nkeys * sizeof (void (*)(void *))), 1483 (size_t)(nkeys * sizeof (void (*)(void *)))); 1484 tsd_nkeys = nkeys; 1485 } 1486 1487 /* 1488 * allocate the next available unused key 1489 */ 1490 tsd_destructor[i] = destructor; 1491 *keyp = i + 1; 1492 mutex_exit(&tsd_mutex); 1493 } 1494 1495 /* 1496 * Destroy a key -- this is for unloadable modules 1497 * 1498 * Assumes that the caller is preventing tsd_set and tsd_get 1499 * Locks out tsd_create, tsd_destroy, and tsd_exit 1500 * May free memory with lock held 1501 */ 1502 void 1503 tsd_destroy(uint_t *keyp) 1504 { 1505 uint_t key; 1506 struct tsd_thread *tsd; 1507 1508 /* 1509 * protect the key namespace and our destructor lists 1510 */ 1511 mutex_enter(&tsd_mutex); 1512 key = *keyp; 1513 *keyp = 0; 1514 1515 ASSERT(key <= tsd_nkeys); 1516 1517 /* 1518 * if the key is valid 1519 */ 1520 if (key != 0) { 1521 uint_t k = key - 1; 1522 /* 1523 * for every thread with TSD, call key's destructor 1524 */ 1525 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) { 1526 /* 1527 * no TSD for key in this thread 1528 */ 1529 if (key > tsd->ts_nkeys) 1530 continue; 1531 /* 1532 * call destructor for key 1533 */ 1534 if (tsd->ts_value[k] && tsd_destructor[k]) 1535 (*tsd_destructor[k])(tsd->ts_value[k]); 1536 /* 1537 * reset value for key 1538 */ 1539 tsd->ts_value[k] = NULL; 1540 } 1541 /* 1542 * actually free the key (NULL destructor == unused) 1543 */ 1544 tsd_destructor[k] = NULL; 1545 } 1546 1547 mutex_exit(&tsd_mutex); 1548 } 1549 1550 /* 1551 * Quickly return the per thread value that was stored with the specified key 1552 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1553 */ 1554 void * 1555 tsd_get(uint_t key) 1556 { 1557 return (tsd_agent_get(curthread, key)); 1558 } 1559 1560 /* 1561 * Set a per thread value indexed with the specified key 1562 */ 1563 int 1564 tsd_set(uint_t key, void *value) 1565 { 1566 return (tsd_agent_set(curthread, key, value)); 1567 } 1568 1569 /* 1570 * Like tsd_get(), except that the agent lwp can get the tsd of 1571 * another thread in the same process (the agent thread only runs when the 1572 * process is completely stopped by /proc), or syslwp is creating a new lwp. 1573 */ 1574 void * 1575 tsd_agent_get(kthread_t *t, uint_t key) 1576 { 1577 struct tsd_thread *tsd = t->t_tsd; 1578 1579 ASSERT(t == curthread || 1580 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1581 1582 if (key && tsd != NULL && key <= tsd->ts_nkeys) 1583 return (tsd->ts_value[key - 1]); 1584 return (NULL); 1585 } 1586 1587 /* 1588 * Like tsd_set(), except that the agent lwp can set the tsd of 1589 * another thread in the same process, or syslwp can set the tsd 1590 * of a thread it's in the middle of creating. 1591 * 1592 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1593 * May lock out tsd_destroy (and tsd_create), may allocate memory with 1594 * lock held 1595 */ 1596 int 1597 tsd_agent_set(kthread_t *t, uint_t key, void *value) 1598 { 1599 struct tsd_thread *tsd = t->t_tsd; 1600 1601 ASSERT(t == curthread || 1602 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1603 1604 if (key == 0) 1605 return (EINVAL); 1606 if (tsd == NULL) 1607 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1608 if (key <= tsd->ts_nkeys) { 1609 tsd->ts_value[key - 1] = value; 1610 return (0); 1611 } 1612 1613 ASSERT(key <= tsd_nkeys); 1614 1615 /* 1616 * lock out tsd_destroy() 1617 */ 1618 mutex_enter(&tsd_mutex); 1619 if (tsd->ts_nkeys == 0) { 1620 /* 1621 * Link onto list of threads with TSD 1622 */ 1623 if ((tsd->ts_next = tsd_list) != NULL) 1624 tsd_list->ts_prev = tsd; 1625 tsd_list = tsd; 1626 } 1627 1628 /* 1629 * Allocate thread local storage and set the value for key 1630 */ 1631 tsd->ts_value = tsd_realloc(tsd->ts_value, 1632 tsd->ts_nkeys * sizeof (void *), 1633 key * sizeof (void *)); 1634 tsd->ts_nkeys = key; 1635 tsd->ts_value[key - 1] = value; 1636 mutex_exit(&tsd_mutex); 1637 1638 return (0); 1639 } 1640 1641 1642 /* 1643 * Return the per thread value that was stored with the specified key 1644 * If necessary, create the key and the value 1645 * Assumes the caller is protecting *keyp from tsd_destroy 1646 */ 1647 void * 1648 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void)) 1649 { 1650 void *value; 1651 uint_t key = *keyp; 1652 struct tsd_thread *tsd = curthread->t_tsd; 1653 1654 if (tsd == NULL) 1655 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1656 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1])) 1657 return (value); 1658 if (key == 0) 1659 tsd_create(keyp, destroy); 1660 (void) tsd_set(*keyp, value = (*allocate)()); 1661 1662 return (value); 1663 } 1664 1665 /* 1666 * Called from thread_exit() to run the destructor function for each tsd 1667 * Locks out tsd_create and tsd_destroy 1668 * Assumes that the destructor *DOES NOT* use tsd 1669 */ 1670 void 1671 tsd_exit(void) 1672 { 1673 int i; 1674 struct tsd_thread *tsd = curthread->t_tsd; 1675 1676 if (tsd == NULL) 1677 return; 1678 1679 if (tsd->ts_nkeys == 0) { 1680 kmem_free(tsd, sizeof (*tsd)); 1681 curthread->t_tsd = NULL; 1682 return; 1683 } 1684 1685 /* 1686 * lock out tsd_create and tsd_destroy, call 1687 * the destructor, and mark the value as destroyed. 1688 */ 1689 mutex_enter(&tsd_mutex); 1690 1691 for (i = 0; i < tsd->ts_nkeys; i++) { 1692 if (tsd->ts_value[i] && tsd_destructor[i]) 1693 (*tsd_destructor[i])(tsd->ts_value[i]); 1694 tsd->ts_value[i] = NULL; 1695 } 1696 1697 /* 1698 * remove from linked list of threads with TSD 1699 */ 1700 if (tsd->ts_next) 1701 tsd->ts_next->ts_prev = tsd->ts_prev; 1702 if (tsd->ts_prev) 1703 tsd->ts_prev->ts_next = tsd->ts_next; 1704 if (tsd_list == tsd) 1705 tsd_list = tsd->ts_next; 1706 1707 mutex_exit(&tsd_mutex); 1708 1709 /* 1710 * free up the TSD 1711 */ 1712 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *)); 1713 kmem_free(tsd, sizeof (struct tsd_thread)); 1714 curthread->t_tsd = NULL; 1715 } 1716 1717 /* 1718 * realloc 1719 */ 1720 static void * 1721 tsd_realloc(void *old, size_t osize, size_t nsize) 1722 { 1723 void *new; 1724 1725 new = kmem_zalloc(nsize, KM_SLEEP); 1726 if (old) { 1727 bcopy(old, new, osize); 1728 kmem_free(old, osize); 1729 } 1730 return (new); 1731 } 1732 1733 /* 1734 * Return non-zero if an interrupt is being serviced. 1735 */ 1736 int 1737 servicing_interrupt() 1738 { 1739 int onintr = 0; 1740 1741 /* Are we an interrupt thread */ 1742 if (curthread->t_flag & T_INTR_THREAD) 1743 return (1); 1744 /* Are we servicing a high level interrupt? */ 1745 if (CPU_ON_INTR(CPU)) { 1746 kpreempt_disable(); 1747 onintr = CPU_ON_INTR(CPU); 1748 kpreempt_enable(); 1749 } 1750 return (onintr); 1751 } 1752 1753 1754 /* 1755 * Change the dispatch priority of a thread in the system. 1756 * Used when raising or lowering a thread's priority. 1757 * (E.g., priority inheritance) 1758 * 1759 * Since threads are queued according to their priority, we 1760 * we must check the thread's state to determine whether it 1761 * is on a queue somewhere. If it is, we've got to: 1762 * 1763 * o Dequeue the thread. 1764 * o Change its effective priority. 1765 * o Enqueue the thread. 1766 * 1767 * Assumptions: The thread whose priority we wish to change 1768 * must be locked before we call thread_change_(e)pri(). 1769 * The thread_change(e)pri() function doesn't drop the thread 1770 * lock--that must be done by its caller. 1771 */ 1772 void 1773 thread_change_epri(kthread_t *t, pri_t disp_pri) 1774 { 1775 uint_t state; 1776 1777 ASSERT(THREAD_LOCK_HELD(t)); 1778 1779 /* 1780 * If the inherited priority hasn't actually changed, 1781 * just return. 1782 */ 1783 if (t->t_epri == disp_pri) 1784 return; 1785 1786 state = t->t_state; 1787 1788 /* 1789 * If it's not on a queue, change the priority with impunity. 1790 */ 1791 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1792 t->t_epri = disp_pri; 1793 if (state == TS_ONPROC) { 1794 cpu_t *cp = t->t_disp_queue->disp_cpu; 1795 1796 if (t == cp->cpu_dispthread) 1797 cp->cpu_dispatch_pri = DISP_PRIO(t); 1798 } 1799 } else if (state == TS_SLEEP) { 1800 /* 1801 * Take the thread out of its sleep queue. 1802 * Change the inherited priority. 1803 * Re-enqueue the thread. 1804 * Each synchronization object exports a function 1805 * to do this in an appropriate manner. 1806 */ 1807 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri); 1808 } else if (state == TS_WAIT) { 1809 /* 1810 * Re-enqueue a thread on the wait queue if its 1811 * effective priority needs to change. 1812 */ 1813 if (disp_pri != t->t_epri) 1814 waitq_change_pri(t, disp_pri); 1815 } else { 1816 /* 1817 * The thread is on a run queue. 1818 * Note: setbackdq() may not put the thread 1819 * back on the same run queue where it originally 1820 * resided. 1821 */ 1822 (void) dispdeq(t); 1823 t->t_epri = disp_pri; 1824 setbackdq(t); 1825 } 1826 schedctl_set_cidpri(t); 1827 } 1828 1829 /* 1830 * Function: Change the t_pri field of a thread. 1831 * Side Effects: Adjust the thread ordering on a run queue 1832 * or sleep queue, if necessary. 1833 * Returns: 1 if the thread was on a run queue, else 0. 1834 */ 1835 int 1836 thread_change_pri(kthread_t *t, pri_t disp_pri, int front) 1837 { 1838 uint_t state; 1839 int on_rq = 0; 1840 1841 ASSERT(THREAD_LOCK_HELD(t)); 1842 1843 state = t->t_state; 1844 THREAD_WILLCHANGE_PRI(t, disp_pri); 1845 1846 /* 1847 * If it's not on a queue, change the priority with impunity. 1848 */ 1849 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1850 t->t_pri = disp_pri; 1851 1852 if (state == TS_ONPROC) { 1853 cpu_t *cp = t->t_disp_queue->disp_cpu; 1854 1855 if (t == cp->cpu_dispthread) 1856 cp->cpu_dispatch_pri = DISP_PRIO(t); 1857 } 1858 } else if (state == TS_SLEEP) { 1859 /* 1860 * If the priority has changed, take the thread out of 1861 * its sleep queue and change the priority. 1862 * Re-enqueue the thread. 1863 * Each synchronization object exports a function 1864 * to do this in an appropriate manner. 1865 */ 1866 if (disp_pri != t->t_pri) 1867 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri); 1868 } else if (state == TS_WAIT) { 1869 /* 1870 * Re-enqueue a thread on the wait queue if its 1871 * priority needs to change. 1872 */ 1873 if (disp_pri != t->t_pri) 1874 waitq_change_pri(t, disp_pri); 1875 } else { 1876 /* 1877 * The thread is on a run queue. 1878 * Note: setbackdq() may not put the thread 1879 * back on the same run queue where it originally 1880 * resided. 1881 * 1882 * We still requeue the thread even if the priority 1883 * is unchanged to preserve round-robin (and other) 1884 * effects between threads of the same priority. 1885 */ 1886 on_rq = dispdeq(t); 1887 ASSERT(on_rq); 1888 t->t_pri = disp_pri; 1889 if (front) { 1890 setfrontdq(t); 1891 } else { 1892 setbackdq(t); 1893 } 1894 } 1895 schedctl_set_cidpri(t); 1896 return (on_rq); 1897 } 1898 1899 /* 1900 * Tunable kmem_stackinfo is set, fill the kernel thread stack with a 1901 * specific pattern. 1902 */ 1903 static void 1904 stkinfo_begin(kthread_t *t) 1905 { 1906 caddr_t start; /* stack start */ 1907 caddr_t end; /* stack end */ 1908 uint64_t *ptr; /* pattern pointer */ 1909 1910 /* 1911 * Stack grows up or down, see thread_create(), 1912 * compute stack memory area start and end (start < end). 1913 */ 1914 if (t->t_stk > t->t_stkbase) { 1915 /* stack grows down */ 1916 start = t->t_stkbase; 1917 end = t->t_stk; 1918 } else { 1919 /* stack grows up */ 1920 start = t->t_stk; 1921 end = t->t_stkbase; 1922 } 1923 1924 /* 1925 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes 1926 * alignement for start and end in stack area boundaries 1927 * (protection against corrupt t_stkbase/t_stk data). 1928 */ 1929 if ((((uintptr_t)start) & 0x7) != 0) { 1930 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8); 1931 } 1932 end = (caddr_t)(((uintptr_t)end) & (~0x7)); 1933 1934 if ((end <= start) || (end - start) > (1024 * 1024)) { 1935 /* negative or stack size > 1 meg, assume bogus */ 1936 return; 1937 } 1938 1939 /* fill stack area with a pattern (instead of zeros) */ 1940 ptr = (uint64_t *)((void *)start); 1941 while (ptr < (uint64_t *)((void *)end)) { 1942 *ptr++ = KMEM_STKINFO_PATTERN; 1943 } 1944 } 1945 1946 1947 /* 1948 * Tunable kmem_stackinfo is set, create stackinfo log if doesn't already exist, 1949 * compute the percentage of kernel stack really used, and set in the log 1950 * if it's the latest highest percentage. 1951 */ 1952 static void 1953 stkinfo_end(kthread_t *t) 1954 { 1955 caddr_t start; /* stack start */ 1956 caddr_t end; /* stack end */ 1957 uint64_t *ptr; /* pattern pointer */ 1958 size_t stksz; /* stack size */ 1959 size_t smallest = 0; 1960 size_t percent = 0; 1961 uint_t index = 0; 1962 uint_t i; 1963 static size_t smallest_percent = (size_t)-1; 1964 static uint_t full = 0; 1965 1966 /* create the stackinfo log, if doesn't already exist */ 1967 mutex_enter(&kmem_stkinfo_lock); 1968 if (kmem_stkinfo_log == NULL) { 1969 kmem_stkinfo_log = (kmem_stkinfo_t *) 1970 kmem_zalloc(KMEM_STKINFO_LOG_SIZE * 1971 (sizeof (kmem_stkinfo_t)), KM_NOSLEEP); 1972 if (kmem_stkinfo_log == NULL) { 1973 mutex_exit(&kmem_stkinfo_lock); 1974 return; 1975 } 1976 } 1977 mutex_exit(&kmem_stkinfo_lock); 1978 1979 /* 1980 * Stack grows up or down, see thread_create(), 1981 * compute stack memory area start and end (start < end). 1982 */ 1983 if (t->t_stk > t->t_stkbase) { 1984 /* stack grows down */ 1985 start = t->t_stkbase; 1986 end = t->t_stk; 1987 } else { 1988 /* stack grows up */ 1989 start = t->t_stk; 1990 end = t->t_stkbase; 1991 } 1992 1993 /* stack size as found in kthread_t */ 1994 stksz = end - start; 1995 1996 /* 1997 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes 1998 * alignement for start and end in stack area boundaries 1999 * (protection against corrupt t_stkbase/t_stk data). 2000 */ 2001 if ((((uintptr_t)start) & 0x7) != 0) { 2002 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8); 2003 } 2004 end = (caddr_t)(((uintptr_t)end) & (~0x7)); 2005 2006 if ((end <= start) || (end - start) > (1024 * 1024)) { 2007 /* negative or stack size > 1 meg, assume bogus */ 2008 return; 2009 } 2010 2011 /* search until no pattern in the stack */ 2012 if (t->t_stk > t->t_stkbase) { 2013 /* stack grows down */ 2014 #if defined(__i386) || defined(__amd64) 2015 /* 2016 * 6 longs are pushed on stack, see thread_load(). Skip 2017 * them, so if kthread has never run, percent is zero. 2018 * 8 bytes alignement is preserved for a 32 bit kernel, 2019 * 6 x 4 = 24, 24 is a multiple of 8. 2020 * 2021 */ 2022 end -= (6 * sizeof (long)); 2023 #endif 2024 ptr = (uint64_t *)((void *)start); 2025 while (ptr < (uint64_t *)((void *)end)) { 2026 if (*ptr != KMEM_STKINFO_PATTERN) { 2027 percent = stkinfo_percent(end, 2028 start, (caddr_t)ptr); 2029 break; 2030 } 2031 ptr++; 2032 } 2033 } else { 2034 /* stack grows up */ 2035 ptr = (uint64_t *)((void *)end); 2036 ptr--; 2037 while (ptr >= (uint64_t *)((void *)start)) { 2038 if (*ptr != KMEM_STKINFO_PATTERN) { 2039 percent = stkinfo_percent(start, 2040 end, (caddr_t)ptr); 2041 break; 2042 } 2043 ptr--; 2044 } 2045 } 2046 2047 DTRACE_PROBE3(stack__usage, kthread_t *, t, 2048 size_t, stksz, size_t, percent); 2049 2050 if (percent == 0) { 2051 return; 2052 } 2053 2054 mutex_enter(&kmem_stkinfo_lock); 2055 if (full == KMEM_STKINFO_LOG_SIZE && percent < smallest_percent) { 2056 /* 2057 * The log is full and already contains the highest values 2058 */ 2059 mutex_exit(&kmem_stkinfo_lock); 2060 return; 2061 } 2062 2063 /* keep a log of the highest used stack */ 2064 for (i = 0; i < KMEM_STKINFO_LOG_SIZE; i++) { 2065 if (kmem_stkinfo_log[i].percent == 0) { 2066 index = i; 2067 full++; 2068 break; 2069 } 2070 if (smallest == 0) { 2071 smallest = kmem_stkinfo_log[i].percent; 2072 index = i; 2073 continue; 2074 } 2075 if (kmem_stkinfo_log[i].percent < smallest) { 2076 smallest = kmem_stkinfo_log[i].percent; 2077 index = i; 2078 } 2079 } 2080 2081 if (percent >= kmem_stkinfo_log[index].percent) { 2082 kmem_stkinfo_log[index].kthread = (caddr_t)t; 2083 kmem_stkinfo_log[index].t_startpc = (caddr_t)t->t_startpc; 2084 kmem_stkinfo_log[index].start = start; 2085 kmem_stkinfo_log[index].stksz = stksz; 2086 kmem_stkinfo_log[index].percent = percent; 2087 kmem_stkinfo_log[index].t_tid = t->t_tid; 2088 kmem_stkinfo_log[index].cmd[0] = '\0'; 2089 if (t->t_tid != 0) { 2090 stksz = strlen((t->t_procp)->p_user.u_comm); 2091 if (stksz >= KMEM_STKINFO_STR_SIZE) { 2092 stksz = KMEM_STKINFO_STR_SIZE - 1; 2093 kmem_stkinfo_log[index].cmd[stksz] = '\0'; 2094 } else { 2095 stksz += 1; 2096 } 2097 (void) memcpy(kmem_stkinfo_log[index].cmd, 2098 (t->t_procp)->p_user.u_comm, stksz); 2099 } 2100 if (percent < smallest_percent) { 2101 smallest_percent = percent; 2102 } 2103 } 2104 mutex_exit(&kmem_stkinfo_lock); 2105 } 2106 2107 /* 2108 * Tunable kmem_stackinfo is set, compute stack utilization percentage. 2109 */ 2110 static size_t 2111 stkinfo_percent(caddr_t t_stk, caddr_t t_stkbase, caddr_t sp) 2112 { 2113 size_t percent; 2114 size_t s; 2115 2116 if (t_stk > t_stkbase) { 2117 /* stack grows down */ 2118 if (sp > t_stk) { 2119 return (0); 2120 } 2121 if (sp < t_stkbase) { 2122 return (100); 2123 } 2124 percent = t_stk - sp + 1; 2125 s = t_stk - t_stkbase + 1; 2126 } else { 2127 /* stack grows up */ 2128 if (sp < t_stk) { 2129 return (0); 2130 } 2131 if (sp > t_stkbase) { 2132 return (100); 2133 } 2134 percent = sp - t_stk + 1; 2135 s = t_stkbase - t_stk + 1; 2136 } 2137 percent = ((100 * percent) / s) + 1; 2138 if (percent > 100) { 2139 percent = 100; 2140 } 2141 return (percent); 2142 } 2143 2144 /* 2145 * NOTE: This will silently truncate a name > THREAD_NAME_MAX - 1 characters 2146 * long. It is expected that callers (acting on behalf of userland clients) 2147 * will perform any required checks to return the correct error semantics. 2148 * It is also expected callers on behalf of userland clients have done 2149 * any necessary permission checks. 2150 */ 2151 int 2152 thread_setname(kthread_t *t, const char *name) 2153 { 2154 char *buf = NULL; 2155 2156 /* 2157 * We optimistically assume that a thread's name will only be set 2158 * once and so allocate memory in preparation of setting t_name. 2159 * If it turns out a name has already been set, we just discard (free) 2160 * the buffer we just allocated and reuse the current buffer 2161 * (as all should be THREAD_NAME_MAX large). 2162 * 2163 * Such an arrangement means over the lifetime of a kthread_t, t_name 2164 * is either NULL or has one value (the address of the buffer holding 2165 * the current thread name). The assumption is that most kthread_t 2166 * instances will not have a name assigned, so dynamically allocating 2167 * the memory should minimize the footprint of this feature, but by 2168 * having the buffer persist for the life of the thread, it simplifies 2169 * usage in highly constrained situations (e.g. dtrace). 2170 */ 2171 if (name != NULL && name[0] != '\0') { 2172 for (size_t i = 0; name[i] != '\0'; i++) { 2173 if (!isprint(name[i])) 2174 return (EINVAL); 2175 } 2176 2177 buf = kmem_zalloc(THREAD_NAME_MAX, KM_SLEEP); 2178 (void) strlcpy(buf, name, THREAD_NAME_MAX); 2179 } 2180 2181 mutex_enter(&ttoproc(t)->p_lock); 2182 if (t->t_name == NULL) { 2183 t->t_name = buf; 2184 } else { 2185 if (buf != NULL) { 2186 (void) strlcpy(t->t_name, name, THREAD_NAME_MAX); 2187 kmem_free(buf, THREAD_NAME_MAX); 2188 } else { 2189 bzero(t->t_name, THREAD_NAME_MAX); 2190 } 2191 } 2192 mutex_exit(&ttoproc(t)->p_lock); 2193 return (0); 2194 } 2195 2196 int 2197 thread_vsetname(kthread_t *t, const char *fmt, ...) 2198 { 2199 char name[THREAD_NAME_MAX]; 2200 va_list va; 2201 int rc; 2202 2203 va_start(va, fmt); 2204 rc = vsnprintf(name, sizeof (name), fmt, va); 2205 va_end(va); 2206 2207 if (rc < 0) 2208 return (EINVAL); 2209 2210 if (rc >= sizeof (name)) 2211 return (ENAMETOOLONG); 2212 2213 return (thread_setname(t, name)); 2214 }