1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright (c) 2010, Intel Corporation. 26 * All rights reserved. 27 * Copyright 2016 Joyent, Inc. 28 */ 29 30 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 31 /* All Rights Reserved */ 32 33 /* 34 * Portions of this source code were derived from Berkeley 4.3 BSD 35 * under license from the Regents of the University of California. 36 */ 37 38 /* 39 * UNIX machine dependent virtual memory support. 40 */ 41 42 #include <sys/types.h> 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/user.h> 46 #include <sys/proc.h> 47 #include <sys/kmem.h> 48 #include <sys/vmem.h> 49 #include <sys/buf.h> 50 #include <sys/cpuvar.h> 51 #include <sys/lgrp.h> 52 #include <sys/disp.h> 53 #include <sys/vm.h> 54 #include <sys/mman.h> 55 #include <sys/vnode.h> 56 #include <sys/cred.h> 57 #include <sys/exec.h> 58 #include <sys/exechdr.h> 59 #include <sys/debug.h> 60 #include <sys/vmsystm.h> 61 #include <sys/swap.h> 62 #include <sys/dumphdr.h> 63 #include <sys/random.h> 64 65 #include <vm/hat.h> 66 #include <vm/as.h> 67 #include <vm/seg.h> 68 #include <vm/seg_kp.h> 69 #include <vm/seg_vn.h> 70 #include <vm/page.h> 71 #include <vm/seg_kmem.h> 72 #include <vm/seg_kpm.h> 73 #include <vm/vm_dep.h> 74 75 #include <sys/cpu.h> 76 #include <sys/vm_machparam.h> 77 #include <sys/memlist.h> 78 #include <sys/bootconf.h> /* XXX the memlist stuff belongs in memlist_plat.h */ 79 #include <vm/hat_i86.h> 80 #include <sys/x86_archext.h> 81 #include <sys/elf_386.h> 82 #include <sys/cmn_err.h> 83 #include <sys/archsystm.h> 84 #include <sys/machsystm.h> 85 #include <sys/secflags.h> 86 87 #include <sys/vtrace.h> 88 #include <sys/ddidmareq.h> 89 #include <sys/promif.h> 90 #include <sys/memnode.h> 91 #include <sys/stack.h> 92 #include <util/qsort.h> 93 #include <sys/taskq.h> 94 95 #ifdef __xpv 96 97 #include <sys/hypervisor.h> 98 #include <sys/xen_mmu.h> 99 #include <sys/balloon_impl.h> 100 101 /* 102 * domain 0 pages usable for DMA are kept pre-allocated and kept in 103 * distinct lists, ordered by increasing mfn. 104 */ 105 static kmutex_t io_pool_lock; 106 static kmutex_t contig_list_lock; 107 static page_t *io_pool_4g; /* pool for 32 bit dma limited devices */ 108 static page_t *io_pool_16m; /* pool for 24 bit dma limited legacy devices */ 109 static long io_pool_cnt; 110 static long io_pool_cnt_max = 0; 111 #define DEFAULT_IO_POOL_MIN 128 112 static long io_pool_cnt_min = DEFAULT_IO_POOL_MIN; 113 static long io_pool_cnt_lowater = 0; 114 static long io_pool_shrink_attempts; /* how many times did we try to shrink */ 115 static long io_pool_shrinks; /* how many times did we really shrink */ 116 static long io_pool_grows; /* how many times did we grow */ 117 static mfn_t start_mfn = 1; 118 static caddr_t io_pool_kva; /* use to alloc pages when needed */ 119 120 static int create_contig_pfnlist(uint_t); 121 122 /* 123 * percentage of phys mem to hold in the i/o pool 124 */ 125 #define DEFAULT_IO_POOL_PCT 2 126 static long io_pool_physmem_pct = DEFAULT_IO_POOL_PCT; 127 static void page_io_pool_sub(page_t **, page_t *, page_t *); 128 int ioalloc_dbg = 0; 129 130 #endif /* __xpv */ 131 132 uint_t vac_colors = 1; 133 134 int largepagesupport = 0; 135 extern uint_t page_create_new; 136 extern uint_t page_create_exists; 137 extern uint_t page_create_putbacks; 138 /* 139 * Allow users to disable the kernel's use of SSE. 140 */ 141 extern int use_sse_pagecopy, use_sse_pagezero; 142 143 /* 144 * combined memory ranges from mnode and memranges[] to manage single 145 * mnode/mtype dimension in the page lists. 146 */ 147 typedef struct { 148 pfn_t mnr_pfnlo; 149 pfn_t mnr_pfnhi; 150 int mnr_mnode; 151 int mnr_memrange; /* index into memranges[] */ 152 int mnr_next; /* next lower PA mnoderange */ 153 int mnr_exists; 154 /* maintain page list stats */ 155 pgcnt_t mnr_mt_clpgcnt; /* cache list cnt */ 156 pgcnt_t mnr_mt_flpgcnt[MMU_PAGE_SIZES]; /* free list cnt per szc */ 157 pgcnt_t mnr_mt_totcnt; /* sum of cache and free lists */ 158 #ifdef DEBUG 159 struct mnr_mts { /* mnode/mtype szc stats */ 160 pgcnt_t mnr_mts_pgcnt; 161 int mnr_mts_colors; 162 pgcnt_t *mnr_mtsc_pgcnt; 163 } *mnr_mts; 164 #endif 165 } mnoderange_t; 166 167 #define MEMRANGEHI(mtype) \ 168 ((mtype > 0) ? memranges[mtype - 1] - 1: physmax) 169 #define MEMRANGELO(mtype) (memranges[mtype]) 170 171 #define MTYPE_FREEMEM(mt) (mnoderanges[mt].mnr_mt_totcnt) 172 173 /* 174 * As the PC architecture evolved memory up was clumped into several 175 * ranges for various historical I/O devices to do DMA. 176 * < 16Meg - ISA bus 177 * < 2Gig - ??? 178 * < 4Gig - PCI bus or drivers that don't understand PAE mode 179 * 180 * These are listed in reverse order, so that we can skip over unused 181 * ranges on machines with small memories. 182 * 183 * For now under the Hypervisor, we'll only ever have one memrange. 184 */ 185 #define PFN_4GIG 0x100000 186 #define PFN_16MEG 0x1000 187 /* Indices into the memory range (arch_memranges) array. */ 188 #define MRI_4G 0 189 #define MRI_2G 1 190 #define MRI_16M 2 191 #define MRI_0 3 192 static pfn_t arch_memranges[NUM_MEM_RANGES] = { 193 PFN_4GIG, /* pfn range for 4G and above */ 194 0x80000, /* pfn range for 2G-4G */ 195 PFN_16MEG, /* pfn range for 16M-2G */ 196 0x00000, /* pfn range for 0-16M */ 197 }; 198 pfn_t *memranges = &arch_memranges[0]; 199 int nranges = NUM_MEM_RANGES; 200 201 /* 202 * This combines mem_node_config and memranges into one data 203 * structure to be used for page list management. 204 */ 205 mnoderange_t *mnoderanges; 206 int mnoderangecnt; 207 int mtype4g; 208 int mtype16m; 209 int mtypetop; /* index of highest pfn'ed mnoderange */ 210 211 /* 212 * 4g memory management variables for systems with more than 4g of memory: 213 * 214 * physical memory below 4g is required for 32bit dma devices and, currently, 215 * for kmem memory. On systems with more than 4g of memory, the pool of memory 216 * below 4g can be depleted without any paging activity given that there is 217 * likely to be sufficient memory above 4g. 218 * 219 * physmax4g is set true if the largest pfn is over 4g. The rest of the 220 * 4g memory management code is enabled only when physmax4g is true. 221 * 222 * maxmem4g is the count of the maximum number of pages on the page lists 223 * with physical addresses below 4g. It can be a lot less then 4g given that 224 * BIOS may reserve large chunks of space below 4g for hot plug pci devices, 225 * agp aperture etc. 226 * 227 * freemem4g maintains the count of the number of available pages on the 228 * page lists with physical addresses below 4g. 229 * 230 * DESFREE4G specifies the desired amount of below 4g memory. It defaults to 231 * 6% (desfree4gshift = 4) of maxmem4g. 232 * 233 * RESTRICT4G_ALLOC returns true if freemem4g falls below DESFREE4G 234 * and the amount of physical memory above 4g is greater than freemem4g. 235 * In this case, page_get_* routines will restrict below 4g allocations 236 * for requests that don't specifically require it. 237 */ 238 239 #define DESFREE4G (maxmem4g >> desfree4gshift) 240 241 #define RESTRICT4G_ALLOC \ 242 (physmax4g && (freemem4g < DESFREE4G) && ((freemem4g << 1) < freemem)) 243 244 static pgcnt_t maxmem4g; 245 static pgcnt_t freemem4g; 246 static int physmax4g; 247 static int desfree4gshift = 4; /* maxmem4g shift to derive DESFREE4G */ 248 249 /* 250 * 16m memory management: 251 * 252 * reserve some amount of physical memory below 16m for legacy devices. 253 * 254 * RESTRICT16M_ALLOC returns true if an there are sufficient free pages above 255 * 16m or if the 16m pool drops below DESFREE16M. 256 * 257 * In this case, general page allocations via page_get_{free,cache}list 258 * routines will be restricted from allocating from the 16m pool. Allocations 259 * that require specific pfn ranges (page_get_anylist) and PG_PANIC allocations 260 * are not restricted. 261 */ 262 263 #define FREEMEM16M MTYPE_FREEMEM(mtype16m) 264 #define DESFREE16M desfree16m 265 #define RESTRICT16M_ALLOC(freemem, pgcnt, flags) \ 266 ((freemem != 0) && ((flags & PG_PANIC) == 0) && \ 267 ((freemem >= (FREEMEM16M)) || \ 268 (FREEMEM16M < (DESFREE16M + pgcnt)))) 269 270 static pgcnt_t desfree16m = 0x380; 271 272 /* 273 * This can be patched via /etc/system to allow old non-PAE aware device 274 * drivers to use kmem_alloc'd memory on 32 bit systems with > 4Gig RAM. 275 */ 276 int restricted_kmemalloc = 0; 277 278 #ifdef VM_STATS 279 struct { 280 ulong_t pga_alloc; 281 ulong_t pga_notfullrange; 282 ulong_t pga_nulldmaattr; 283 ulong_t pga_allocok; 284 ulong_t pga_allocfailed; 285 ulong_t pgma_alloc; 286 ulong_t pgma_allocok; 287 ulong_t pgma_allocfailed; 288 ulong_t pgma_allocempty; 289 } pga_vmstats; 290 #endif 291 292 uint_t mmu_page_sizes; 293 294 /* How many page sizes the users can see */ 295 uint_t mmu_exported_page_sizes; 296 297 /* page sizes that legacy applications can see */ 298 uint_t mmu_legacy_page_sizes; 299 300 /* 301 * Number of pages in 1 GB. Don't enable automatic large pages if we have 302 * fewer than this many pages. 303 */ 304 pgcnt_t shm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT); 305 pgcnt_t privm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT); 306 307 /* 308 * Maximum and default segment size tunables for user private 309 * and shared anon memory, and user text and initialized data. 310 * These can be patched via /etc/system to allow large pages 311 * to be used for mapping application private and shared anon memory. 312 */ 313 size_t mcntl0_lpsize = MMU_PAGESIZE; 314 size_t max_uheap_lpsize = MMU_PAGESIZE; 315 size_t default_uheap_lpsize = MMU_PAGESIZE; 316 size_t max_ustack_lpsize = MMU_PAGESIZE; 317 size_t default_ustack_lpsize = MMU_PAGESIZE; 318 size_t max_privmap_lpsize = MMU_PAGESIZE; 319 size_t max_uidata_lpsize = MMU_PAGESIZE; 320 size_t max_utext_lpsize = MMU_PAGESIZE; 321 size_t max_shm_lpsize = MMU_PAGESIZE; 322 323 324 /* 325 * initialized by page_coloring_init(). 326 */ 327 uint_t page_colors; 328 uint_t page_colors_mask; 329 uint_t page_coloring_shift; 330 int cpu_page_colors; 331 static uint_t l2_colors; 332 333 /* 334 * Page freelists and cachelists are dynamically allocated once mnoderangecnt 335 * and page_colors are calculated from the l2 cache n-way set size. Within a 336 * mnode range, the page freelist and cachelist are hashed into bins based on 337 * color. This makes it easier to search for a page within a specific memory 338 * range. 339 */ 340 #define PAGE_COLORS_MIN 16 341 342 page_t ****page_freelists; 343 page_t ***page_cachelists; 344 345 346 /* 347 * Used by page layer to know about page sizes 348 */ 349 hw_pagesize_t hw_page_array[MAX_NUM_LEVEL + 1]; 350 351 kmutex_t *fpc_mutex[NPC_MUTEX]; 352 kmutex_t *cpc_mutex[NPC_MUTEX]; 353 354 /* Lock to protect mnoderanges array for memory DR operations. */ 355 static kmutex_t mnoderange_lock; 356 357 /* 358 * Only let one thread at a time try to coalesce large pages, to 359 * prevent them from working against each other. 360 */ 361 static kmutex_t contig_lock; 362 #define CONTIG_LOCK() mutex_enter(&contig_lock); 363 #define CONTIG_UNLOCK() mutex_exit(&contig_lock); 364 365 #define PFN_16M (mmu_btop((uint64_t)0x1000000)) 366 367 /* 368 * Return the optimum page size for a given mapping 369 */ 370 /*ARGSUSED*/ 371 size_t 372 map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int memcntl) 373 { 374 level_t l = 0; 375 size_t pgsz = MMU_PAGESIZE; 376 size_t max_lpsize; 377 uint_t mszc; 378 379 ASSERT(maptype != MAPPGSZ_VA); 380 381 if (maptype != MAPPGSZ_ISM && physmem < privm_lpg_min_physmem) { 382 return (MMU_PAGESIZE); 383 } 384 385 switch (maptype) { 386 case MAPPGSZ_HEAP: 387 case MAPPGSZ_STK: 388 max_lpsize = memcntl ? mcntl0_lpsize : (maptype == 389 MAPPGSZ_HEAP ? max_uheap_lpsize : max_ustack_lpsize); 390 if (max_lpsize == MMU_PAGESIZE) { 391 return (MMU_PAGESIZE); 392 } 393 if (len == 0) { 394 len = (maptype == MAPPGSZ_HEAP) ? p->p_brkbase + 395 p->p_brksize - p->p_bssbase : p->p_stksize; 396 } 397 len = (maptype == MAPPGSZ_HEAP) ? MAX(len, 398 default_uheap_lpsize) : MAX(len, default_ustack_lpsize); 399 400 /* 401 * use the pages size that best fits len 402 */ 403 for (l = mmu.umax_page_level; l > 0; --l) { 404 if (LEVEL_SIZE(l) > max_lpsize || len < LEVEL_SIZE(l)) { 405 continue; 406 } else { 407 pgsz = LEVEL_SIZE(l); 408 } 409 break; 410 } 411 412 mszc = (maptype == MAPPGSZ_HEAP ? p->p_brkpageszc : 413 p->p_stkpageszc); 414 if (addr == 0 && (pgsz < hw_page_array[mszc].hp_size)) { 415 pgsz = hw_page_array[mszc].hp_size; 416 } 417 return (pgsz); 418 419 case MAPPGSZ_ISM: 420 for (l = mmu.umax_page_level; l > 0; --l) { 421 if (len >= LEVEL_SIZE(l)) 422 return (LEVEL_SIZE(l)); 423 } 424 return (LEVEL_SIZE(0)); 425 } 426 return (pgsz); 427 } 428 429 static uint_t 430 map_szcvec(caddr_t addr, size_t size, uintptr_t off, size_t max_lpsize, 431 size_t min_physmem) 432 { 433 caddr_t eaddr = addr + size; 434 uint_t szcvec = 0; 435 caddr_t raddr; 436 caddr_t readdr; 437 size_t pgsz; 438 int i; 439 440 if (physmem < min_physmem || max_lpsize <= MMU_PAGESIZE) { 441 return (0); 442 } 443 444 for (i = mmu_exported_page_sizes - 1; i > 0; i--) { 445 pgsz = page_get_pagesize(i); 446 if (pgsz > max_lpsize) { 447 continue; 448 } 449 raddr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 450 readdr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 451 if (raddr < addr || raddr >= readdr) { 452 continue; 453 } 454 if (P2PHASE((uintptr_t)addr ^ off, pgsz)) { 455 continue; 456 } 457 /* 458 * Set szcvec to the remaining page sizes. 459 */ 460 szcvec = ((1 << (i + 1)) - 1) & ~1; 461 break; 462 } 463 return (szcvec); 464 } 465 466 /* 467 * Return a bit vector of large page size codes that 468 * can be used to map [addr, addr + len) region. 469 */ 470 /*ARGSUSED*/ 471 uint_t 472 map_pgszcvec(caddr_t addr, size_t size, uintptr_t off, int flags, int type, 473 int memcntl) 474 { 475 size_t max_lpsize = mcntl0_lpsize; 476 477 if (mmu.max_page_level == 0) 478 return (0); 479 480 if (flags & MAP_TEXT) { 481 if (!memcntl) 482 max_lpsize = max_utext_lpsize; 483 return (map_szcvec(addr, size, off, max_lpsize, 484 shm_lpg_min_physmem)); 485 486 } else if (flags & MAP_INITDATA) { 487 if (!memcntl) 488 max_lpsize = max_uidata_lpsize; 489 return (map_szcvec(addr, size, off, max_lpsize, 490 privm_lpg_min_physmem)); 491 492 } else if (type == MAPPGSZC_SHM) { 493 if (!memcntl) 494 max_lpsize = max_shm_lpsize; 495 return (map_szcvec(addr, size, off, max_lpsize, 496 shm_lpg_min_physmem)); 497 498 } else if (type == MAPPGSZC_HEAP) { 499 if (!memcntl) 500 max_lpsize = max_uheap_lpsize; 501 return (map_szcvec(addr, size, off, max_lpsize, 502 privm_lpg_min_physmem)); 503 504 } else if (type == MAPPGSZC_STACK) { 505 if (!memcntl) 506 max_lpsize = max_ustack_lpsize; 507 return (map_szcvec(addr, size, off, max_lpsize, 508 privm_lpg_min_physmem)); 509 510 } else { 511 if (!memcntl) 512 max_lpsize = max_privmap_lpsize; 513 return (map_szcvec(addr, size, off, max_lpsize, 514 privm_lpg_min_physmem)); 515 } 516 } 517 518 /* 519 * Handle a pagefault. 520 */ 521 faultcode_t 522 pagefault( 523 caddr_t addr, 524 enum fault_type type, 525 enum seg_rw rw, 526 int iskernel) 527 { 528 struct as *as; 529 struct hat *hat; 530 struct proc *p; 531 kthread_t *t; 532 faultcode_t res; 533 caddr_t base; 534 size_t len; 535 int err; 536 int mapped_red; 537 uintptr_t ea; 538 539 ASSERT_STACK_ALIGNED(); 540 541 if (INVALID_VADDR(addr)) 542 return (FC_NOMAP); 543 544 mapped_red = segkp_map_red(); 545 546 if (iskernel) { 547 as = &kas; 548 hat = as->a_hat; 549 } else { 550 t = curthread; 551 p = ttoproc(t); 552 as = p->p_as; 553 hat = as->a_hat; 554 } 555 556 /* 557 * Dispatch pagefault. 558 */ 559 res = as_fault(hat, as, addr, 1, type, rw); 560 561 /* 562 * If this isn't a potential unmapped hole in the user's 563 * UNIX data or stack segments, just return status info. 564 */ 565 if (res != FC_NOMAP || iskernel) 566 goto out; 567 568 /* 569 * Check to see if we happened to faulted on a currently unmapped 570 * part of the UNIX data or stack segments. If so, create a zfod 571 * mapping there and then try calling the fault routine again. 572 */ 573 base = p->p_brkbase; 574 len = p->p_brksize; 575 576 if (addr < base || addr >= base + len) { /* data seg? */ 577 base = (caddr_t)p->p_usrstack - p->p_stksize; 578 len = p->p_stksize; 579 if (addr < base || addr >= p->p_usrstack) { /* stack seg? */ 580 /* not in either UNIX data or stack segments */ 581 res = FC_NOMAP; 582 goto out; 583 } 584 } 585 586 /* 587 * the rest of this function implements a 3.X 4.X 5.X compatibility 588 * This code is probably not needed anymore 589 */ 590 if (p->p_model == DATAMODEL_ILP32) { 591 592 /* expand the gap to the page boundaries on each side */ 593 ea = P2ROUNDUP((uintptr_t)base + len, MMU_PAGESIZE); 594 base = (caddr_t)P2ALIGN((uintptr_t)base, MMU_PAGESIZE); 595 len = ea - (uintptr_t)base; 596 597 as_rangelock(as); 598 if (as_gap(as, MMU_PAGESIZE, &base, &len, AH_CONTAIN, addr) == 599 0) { 600 err = as_map(as, base, len, segvn_create, zfod_argsp); 601 as_rangeunlock(as); 602 if (err) { 603 res = FC_MAKE_ERR(err); 604 goto out; 605 } 606 } else { 607 /* 608 * This page is already mapped by another thread after 609 * we returned from as_fault() above. We just fall 610 * through as_fault() below. 611 */ 612 as_rangeunlock(as); 613 } 614 615 res = as_fault(hat, as, addr, 1, F_INVAL, rw); 616 } 617 618 out: 619 if (mapped_red) 620 segkp_unmap_red(); 621 622 return (res); 623 } 624 625 void 626 map_addr(caddr_t *addrp, size_t len, offset_t off, int vacalign, uint_t flags) 627 { 628 struct proc *p = curproc; 629 caddr_t userlimit = (flags & _MAP_LOW32) ? 630 (caddr_t)_userlimit32 : p->p_as->a_userlimit; 631 632 map_addr_proc(addrp, len, off, vacalign, userlimit, curproc, flags); 633 } 634 635 /*ARGSUSED*/ 636 int 637 map_addr_vacalign_check(caddr_t addr, u_offset_t off) 638 { 639 return (0); 640 } 641 642 /* 643 * The maximum amount a randomized mapping will be slewed. We should perhaps 644 * arrange things so these tunables can be separate for mmap, mmapobj, and 645 * ld.so 646 */ 647 size_t aslr_max_map_skew = 256 * 1024 * 1024; /* 256MB */ 648 649 /* 650 * map_addr_proc() is the routine called when the system is to 651 * choose an address for the user. We will pick an address 652 * range which is the highest available below userlimit. 653 * 654 * Every mapping will have a redzone of a single page on either side of 655 * the request. This is done to leave one page unmapped between segments. 656 * This is not required, but it's useful for the user because if their 657 * program strays across a segment boundary, it will catch a fault 658 * immediately making debugging a little easier. Currently the redzone 659 * is mandatory. 660 * 661 * addrp is a value/result parameter. 662 * On input it is a hint from the user to be used in a completely 663 * machine dependent fashion. We decide to completely ignore this hint. 664 * If MAP_ALIGN was specified, addrp contains the minimal alignment, which 665 * must be some "power of two" multiple of pagesize. 666 * 667 * On output it is NULL if no address can be found in the current 668 * processes address space or else an address that is currently 669 * not mapped for len bytes with a page of red zone on either side. 670 * 671 * vacalign is not needed on x86 (it's for viturally addressed caches) 672 */ 673 /*ARGSUSED*/ 674 void 675 map_addr_proc( 676 caddr_t *addrp, 677 size_t len, 678 offset_t off, 679 int vacalign, 680 caddr_t userlimit, 681 struct proc *p, 682 uint_t flags) 683 { 684 struct as *as = p->p_as; 685 caddr_t addr; 686 caddr_t base; 687 size_t slen; 688 size_t align_amount; 689 690 ASSERT32(userlimit == as->a_userlimit); 691 692 base = p->p_brkbase; 693 #if defined(__amd64) 694 /* 695 * XX64 Yes, this needs more work. 696 */ 697 if (p->p_model == DATAMODEL_NATIVE) { 698 if (userlimit < as->a_userlimit) { 699 /* 700 * This happens when a program wants to map 701 * something in a range that's accessible to a 702 * program in a smaller address space. For example, 703 * a 64-bit program calling mmap32(2) to guarantee 704 * that the returned address is below 4Gbytes. 705 */ 706 ASSERT((uintptr_t)userlimit < ADDRESS_C(0xffffffff)); 707 708 if (userlimit > base) 709 slen = userlimit - base; 710 else { 711 *addrp = NULL; 712 return; 713 } 714 } else { 715 /* 716 * XX64 This layout is probably wrong .. but in 717 * the event we make the amd64 address space look 718 * like sparcv9 i.e. with the stack -above- the 719 * heap, this bit of code might even be correct. 720 */ 721 slen = p->p_usrstack - base - 722 ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK); 723 } 724 } else 725 #endif 726 slen = userlimit - base; 727 728 /* Make len be a multiple of PAGESIZE */ 729 len = (len + PAGEOFFSET) & PAGEMASK; 730 731 /* 732 * figure out what the alignment should be 733 * 734 * XX64 -- is there an ELF_AMD64_MAXPGSZ or is it the same???? 735 */ 736 if (len <= ELF_386_MAXPGSZ) { 737 /* 738 * Align virtual addresses to ensure that ELF shared libraries 739 * are mapped with the appropriate alignment constraints by 740 * the run-time linker. 741 */ 742 align_amount = ELF_386_MAXPGSZ; 743 } else { 744 /* 745 * For 32-bit processes, only those which have specified 746 * MAP_ALIGN and an addr will be aligned on a larger page size. 747 * Not doing so can potentially waste up to 1G of process 748 * address space. 749 */ 750 int lvl = (p->p_model == DATAMODEL_ILP32) ? 1 : 751 mmu.umax_page_level; 752 753 while (lvl && len < LEVEL_SIZE(lvl)) 754 --lvl; 755 756 align_amount = LEVEL_SIZE(lvl); 757 } 758 if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) 759 align_amount = (uintptr_t)*addrp; 760 761 ASSERT(ISP2(align_amount)); 762 ASSERT(align_amount == 0 || align_amount >= PAGESIZE); 763 764 off = off & (align_amount - 1); 765 766 /* 767 * Look for a large enough hole starting below userlimit. 768 * After finding it, use the upper part. 769 */ 770 if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount, 771 PAGESIZE, off) == 0) { 772 caddr_t as_addr; 773 774 /* 775 * addr is the highest possible address to use since we have 776 * a PAGESIZE redzone at the beginning and end. 777 */ 778 addr = base + slen - (PAGESIZE + len); 779 as_addr = addr; 780 /* 781 * Round address DOWN to the alignment amount and 782 * add the offset in. 783 * If addr is greater than as_addr, len would not be large 784 * enough to include the redzone, so we must adjust down 785 * by the alignment amount. 786 */ 787 addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1))); 788 addr += (uintptr_t)off; 789 if (addr > as_addr) { 790 addr -= align_amount; 791 } 792 793 /* 794 * If randomization is requested, slew the allocation 795 * backwards, within the same gap, by a random amount. 796 */ 797 if (flags & _MAP_RANDOMIZE) { 798 uint32_t slew; 799 800 (void) random_get_pseudo_bytes((uint8_t *)&slew, 801 sizeof (slew)); 802 803 slew = slew % MIN(aslr_max_map_skew, (addr - base)); 804 addr -= P2ALIGN(slew, align_amount); 805 } 806 807 ASSERT(addr > base); 808 ASSERT(addr + len < base + slen); 809 ASSERT(((uintptr_t)addr & (align_amount - 1)) == 810 ((uintptr_t)(off))); 811 *addrp = addr; 812 } else { 813 *addrp = NULL; /* no more virtual space */ 814 } 815 } 816 817 int valid_va_range_aligned_wraparound; 818 819 /* 820 * Determine whether [*basep, *basep + *lenp) contains a mappable range of 821 * addresses at least "minlen" long, where the base of the range is at "off" 822 * phase from an "align" boundary and there is space for a "redzone"-sized 823 * redzone on either side of the range. On success, 1 is returned and *basep 824 * and *lenp are adjusted to describe the acceptable range (including 825 * the redzone). On failure, 0 is returned. 826 */ 827 /*ARGSUSED3*/ 828 int 829 valid_va_range_aligned(caddr_t *basep, size_t *lenp, size_t minlen, int dir, 830 size_t align, size_t redzone, size_t off) 831 { 832 uintptr_t hi, lo; 833 size_t tot_len; 834 835 ASSERT(align == 0 ? off == 0 : off < align); 836 ASSERT(ISP2(align)); 837 ASSERT(align == 0 || align >= PAGESIZE); 838 839 lo = (uintptr_t)*basep; 840 hi = lo + *lenp; 841 tot_len = minlen + 2 * redzone; /* need at least this much space */ 842 843 /* 844 * If hi rolled over the top, try cutting back. 845 */ 846 if (hi < lo) { 847 *lenp = 0UL - lo - 1UL; 848 /* See if this really happens. If so, then we figure out why */ 849 valid_va_range_aligned_wraparound++; 850 hi = lo + *lenp; 851 } 852 if (*lenp < tot_len) { 853 return (0); 854 } 855 856 #if defined(__amd64) 857 /* 858 * Deal with a possible hole in the address range between 859 * hole_start and hole_end that should never be mapped. 860 */ 861 if (lo < hole_start) { 862 if (hi > hole_start) { 863 if (hi < hole_end) { 864 hi = hole_start; 865 } else { 866 /* lo < hole_start && hi >= hole_end */ 867 if (dir == AH_LO) { 868 /* 869 * prefer lowest range 870 */ 871 if (hole_start - lo >= tot_len) 872 hi = hole_start; 873 else if (hi - hole_end >= tot_len) 874 lo = hole_end; 875 else 876 return (0); 877 } else { 878 /* 879 * prefer highest range 880 */ 881 if (hi - hole_end >= tot_len) 882 lo = hole_end; 883 else if (hole_start - lo >= tot_len) 884 hi = hole_start; 885 else 886 return (0); 887 } 888 } 889 } 890 } else { 891 /* lo >= hole_start */ 892 if (hi < hole_end) 893 return (0); 894 if (lo < hole_end) 895 lo = hole_end; 896 } 897 #endif 898 899 if (hi - lo < tot_len) 900 return (0); 901 902 if (align > 1) { 903 uintptr_t tlo = lo + redzone; 904 uintptr_t thi = hi - redzone; 905 tlo = (uintptr_t)P2PHASEUP(tlo, align, off); 906 if (tlo < lo + redzone) { 907 return (0); 908 } 909 if (thi < tlo || thi - tlo < minlen) { 910 return (0); 911 } 912 } 913 914 *basep = (caddr_t)lo; 915 *lenp = hi - lo; 916 return (1); 917 } 918 919 /* 920 * Determine whether [*basep, *basep + *lenp) contains a mappable range of 921 * addresses at least "minlen" long. On success, 1 is returned and *basep 922 * and *lenp are adjusted to describe the acceptable range. On failure, 0 923 * is returned. 924 */ 925 int 926 valid_va_range(caddr_t *basep, size_t *lenp, size_t minlen, int dir) 927 { 928 return (valid_va_range_aligned(basep, lenp, minlen, dir, 0, 0, 0)); 929 } 930 931 /* 932 * Default to forbidding the first 64k of address space. This protects most 933 * reasonably sized structures from dereferences through NULL: 934 * ((foo_t *)0)->bar 935 */ 936 uintptr_t forbidden_null_mapping_sz = 0x10000; 937 938 /* 939 * Determine whether [addr, addr+len] are valid user addresses. 940 */ 941 /*ARGSUSED*/ 942 int 943 valid_usr_range(caddr_t addr, size_t len, uint_t prot, struct as *as, 944 caddr_t userlimit) 945 { 946 caddr_t eaddr = addr + len; 947 948 if (eaddr <= addr || addr >= userlimit || eaddr > userlimit) 949 return (RANGE_BADADDR); 950 951 if ((addr <= (caddr_t)forbidden_null_mapping_sz) && 952 as->a_proc != NULL && 953 secflag_enabled(as->a_proc, PROC_SEC_FORBIDNULLMAP)) 954 return (RANGE_BADADDR); 955 956 #if defined(__amd64) 957 /* 958 * Check for the VA hole 959 */ 960 if (eaddr > (caddr_t)hole_start && addr < (caddr_t)hole_end) 961 return (RANGE_BADADDR); 962 #endif 963 964 return (RANGE_OKAY); 965 } 966 967 /* 968 * Return 1 if the page frame is onboard memory, else 0. 969 */ 970 int 971 pf_is_memory(pfn_t pf) 972 { 973 if (pfn_is_foreign(pf)) 974 return (0); 975 return (address_in_memlist(phys_install, pfn_to_pa(pf), 1)); 976 } 977 978 /* 979 * return the memrange containing pfn 980 */ 981 int 982 memrange_num(pfn_t pfn) 983 { 984 int n; 985 986 for (n = 0; n < nranges - 1; ++n) { 987 if (pfn >= memranges[n]) 988 break; 989 } 990 return (n); 991 } 992 993 /* 994 * return the mnoderange containing pfn 995 */ 996 /*ARGSUSED*/ 997 int 998 pfn_2_mtype(pfn_t pfn) 999 { 1000 #if defined(__xpv) 1001 return (0); 1002 #else 1003 int n; 1004 1005 /* Always start from highest pfn and work our way down */ 1006 for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) { 1007 if (pfn >= mnoderanges[n].mnr_pfnlo) { 1008 break; 1009 } 1010 } 1011 return (n); 1012 #endif 1013 } 1014 1015 #if !defined(__xpv) 1016 /* 1017 * is_contigpage_free: 1018 * returns a page list of contiguous pages. It minimally has to return 1019 * minctg pages. Caller determines minctg based on the scatter-gather 1020 * list length. 1021 * 1022 * pfnp is set to the next page frame to search on return. 1023 */ 1024 static page_t * 1025 is_contigpage_free( 1026 pfn_t *pfnp, 1027 pgcnt_t *pgcnt, 1028 pgcnt_t minctg, 1029 uint64_t pfnseg, 1030 int iolock) 1031 { 1032 int i = 0; 1033 pfn_t pfn = *pfnp; 1034 page_t *pp; 1035 page_t *plist = NULL; 1036 1037 /* 1038 * fail if pfn + minctg crosses a segment boundary. 1039 * Adjust for next starting pfn to begin at segment boundary. 1040 */ 1041 1042 if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) { 1043 *pfnp = roundup(*pfnp, pfnseg + 1); 1044 return (NULL); 1045 } 1046 1047 do { 1048 retry: 1049 pp = page_numtopp_nolock(pfn + i); 1050 if ((pp == NULL) || IS_DUMP_PAGE(pp) || 1051 (page_trylock(pp, SE_EXCL) == 0)) { 1052 (*pfnp)++; 1053 break; 1054 } 1055 if (page_pptonum(pp) != pfn + i) { 1056 page_unlock(pp); 1057 goto retry; 1058 } 1059 1060 if (!(PP_ISFREE(pp))) { 1061 page_unlock(pp); 1062 (*pfnp)++; 1063 break; 1064 } 1065 1066 if (!PP_ISAGED(pp)) { 1067 page_list_sub(pp, PG_CACHE_LIST); 1068 page_hashout(pp, (kmutex_t *)NULL); 1069 } else { 1070 page_list_sub(pp, PG_FREE_LIST); 1071 } 1072 1073 if (iolock) 1074 page_io_lock(pp); 1075 page_list_concat(&plist, &pp); 1076 1077 /* 1078 * exit loop when pgcnt satisfied or segment boundary reached. 1079 */ 1080 1081 } while ((++i < *pgcnt) && ((pfn + i) & pfnseg)); 1082 1083 *pfnp += i; /* set to next pfn to search */ 1084 1085 if (i >= minctg) { 1086 *pgcnt -= i; 1087 return (plist); 1088 } 1089 1090 /* 1091 * failure: minctg not satisfied. 1092 * 1093 * if next request crosses segment boundary, set next pfn 1094 * to search from the segment boundary. 1095 */ 1096 if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) 1097 *pfnp = roundup(*pfnp, pfnseg + 1); 1098 1099 /* clean up any pages already allocated */ 1100 1101 while (plist) { 1102 pp = plist; 1103 page_sub(&plist, pp); 1104 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 1105 if (iolock) 1106 page_io_unlock(pp); 1107 page_unlock(pp); 1108 } 1109 1110 return (NULL); 1111 } 1112 #endif /* !__xpv */ 1113 1114 /* 1115 * verify that pages being returned from allocator have correct DMA attribute 1116 */ 1117 #ifndef DEBUG 1118 #define check_dma(a, b, c) (void)(0) 1119 #else 1120 static void 1121 check_dma(ddi_dma_attr_t *dma_attr, page_t *pp, int cnt) 1122 { 1123 if (dma_attr == NULL) 1124 return; 1125 1126 while (cnt-- > 0) { 1127 if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) < 1128 dma_attr->dma_attr_addr_lo) 1129 panic("PFN (pp=%p) below dma_attr_addr_lo", (void *)pp); 1130 if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) >= 1131 dma_attr->dma_attr_addr_hi) 1132 panic("PFN (pp=%p) above dma_attr_addr_hi", (void *)pp); 1133 pp = pp->p_next; 1134 } 1135 } 1136 #endif 1137 1138 #if !defined(__xpv) 1139 static page_t * 1140 page_get_contigpage(pgcnt_t *pgcnt, ddi_dma_attr_t *mattr, int iolock) 1141 { 1142 pfn_t pfn; 1143 int sgllen; 1144 uint64_t pfnseg; 1145 pgcnt_t minctg; 1146 page_t *pplist = NULL, *plist; 1147 uint64_t lo, hi; 1148 pgcnt_t pfnalign = 0; 1149 static pfn_t startpfn; 1150 static pgcnt_t lastctgcnt; 1151 uintptr_t align; 1152 1153 CONTIG_LOCK(); 1154 1155 if (mattr) { 1156 lo = mmu_btop((mattr->dma_attr_addr_lo + MMU_PAGEOFFSET)); 1157 hi = mmu_btop(mattr->dma_attr_addr_hi); 1158 if (hi >= physmax) 1159 hi = physmax - 1; 1160 sgllen = mattr->dma_attr_sgllen; 1161 pfnseg = mmu_btop(mattr->dma_attr_seg); 1162 1163 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 1164 if (align > MMU_PAGESIZE) 1165 pfnalign = mmu_btop(align); 1166 1167 /* 1168 * in order to satisfy the request, must minimally 1169 * acquire minctg contiguous pages 1170 */ 1171 minctg = howmany(*pgcnt, sgllen); 1172 1173 ASSERT(hi >= lo); 1174 1175 /* 1176 * start from where last searched if the minctg >= lastctgcnt 1177 */ 1178 if (minctg < lastctgcnt || startpfn < lo || startpfn > hi) 1179 startpfn = lo; 1180 } else { 1181 hi = physmax - 1; 1182 lo = 0; 1183 sgllen = 1; 1184 pfnseg = mmu.highest_pfn; 1185 minctg = *pgcnt; 1186 1187 if (minctg < lastctgcnt) 1188 startpfn = lo; 1189 } 1190 lastctgcnt = minctg; 1191 1192 ASSERT(pfnseg + 1 >= (uint64_t)minctg); 1193 1194 /* conserve 16m memory - start search above 16m when possible */ 1195 if (hi > PFN_16M && startpfn < PFN_16M) 1196 startpfn = PFN_16M; 1197 1198 pfn = startpfn; 1199 if (pfnalign) 1200 pfn = P2ROUNDUP(pfn, pfnalign); 1201 1202 while (pfn + minctg - 1 <= hi) { 1203 1204 plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock); 1205 if (plist) { 1206 page_list_concat(&pplist, &plist); 1207 sgllen--; 1208 /* 1209 * return when contig pages no longer needed 1210 */ 1211 if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) { 1212 startpfn = pfn; 1213 CONTIG_UNLOCK(); 1214 check_dma(mattr, pplist, *pgcnt); 1215 return (pplist); 1216 } 1217 minctg = howmany(*pgcnt, sgllen); 1218 } 1219 if (pfnalign) 1220 pfn = P2ROUNDUP(pfn, pfnalign); 1221 } 1222 1223 /* cannot find contig pages in specified range */ 1224 if (startpfn == lo) { 1225 CONTIG_UNLOCK(); 1226 return (NULL); 1227 } 1228 1229 /* did not start with lo previously */ 1230 pfn = lo; 1231 if (pfnalign) 1232 pfn = P2ROUNDUP(pfn, pfnalign); 1233 1234 /* allow search to go above startpfn */ 1235 while (pfn < startpfn) { 1236 1237 plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock); 1238 if (plist != NULL) { 1239 1240 page_list_concat(&pplist, &plist); 1241 sgllen--; 1242 1243 /* 1244 * return when contig pages no longer needed 1245 */ 1246 if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) { 1247 startpfn = pfn; 1248 CONTIG_UNLOCK(); 1249 check_dma(mattr, pplist, *pgcnt); 1250 return (pplist); 1251 } 1252 minctg = howmany(*pgcnt, sgllen); 1253 } 1254 if (pfnalign) 1255 pfn = P2ROUNDUP(pfn, pfnalign); 1256 } 1257 CONTIG_UNLOCK(); 1258 return (NULL); 1259 } 1260 #endif /* !__xpv */ 1261 1262 /* 1263 * mnode_range_cnt() calculates the number of memory ranges for mnode and 1264 * memranges[]. Used to determine the size of page lists and mnoderanges. 1265 */ 1266 int 1267 mnode_range_cnt(int mnode) 1268 { 1269 #if defined(__xpv) 1270 ASSERT(mnode == 0); 1271 return (1); 1272 #else /* __xpv */ 1273 int mri; 1274 int mnrcnt = 0; 1275 1276 if (mem_node_config[mnode].exists != 0) { 1277 mri = nranges - 1; 1278 1279 /* find the memranges index below contained in mnode range */ 1280 1281 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase) 1282 mri--; 1283 1284 /* 1285 * increment mnode range counter when memranges or mnode 1286 * boundary is reached. 1287 */ 1288 while (mri >= 0 && 1289 mem_node_config[mnode].physmax >= MEMRANGELO(mri)) { 1290 mnrcnt++; 1291 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri)) 1292 mri--; 1293 else 1294 break; 1295 } 1296 } 1297 ASSERT(mnrcnt <= MAX_MNODE_MRANGES); 1298 return (mnrcnt); 1299 #endif /* __xpv */ 1300 } 1301 1302 /* 1303 * mnode_range_setup() initializes mnoderanges. 1304 */ 1305 void 1306 mnode_range_setup(mnoderange_t *mnoderanges) 1307 { 1308 mnoderange_t *mp = mnoderanges; 1309 int mnode, mri; 1310 int mindex = 0; /* current index into mnoderanges array */ 1311 int i, j; 1312 pfn_t hipfn; 1313 int last, hi; 1314 1315 for (mnode = 0; mnode < max_mem_nodes; mnode++) { 1316 if (mem_node_config[mnode].exists == 0) 1317 continue; 1318 1319 mri = nranges - 1; 1320 1321 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase) 1322 mri--; 1323 1324 while (mri >= 0 && mem_node_config[mnode].physmax >= 1325 MEMRANGELO(mri)) { 1326 mnoderanges->mnr_pfnlo = MAX(MEMRANGELO(mri), 1327 mem_node_config[mnode].physbase); 1328 mnoderanges->mnr_pfnhi = MIN(MEMRANGEHI(mri), 1329 mem_node_config[mnode].physmax); 1330 mnoderanges->mnr_mnode = mnode; 1331 mnoderanges->mnr_memrange = mri; 1332 mnoderanges->mnr_exists = 1; 1333 mnoderanges++; 1334 mindex++; 1335 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri)) 1336 mri--; 1337 else 1338 break; 1339 } 1340 } 1341 1342 /* 1343 * For now do a simple sort of the mnoderanges array to fill in 1344 * the mnr_next fields. Since mindex is expected to be relatively 1345 * small, using a simple O(N^2) algorithm. 1346 */ 1347 for (i = 0; i < mindex; i++) { 1348 if (mp[i].mnr_pfnlo == 0) /* find lowest */ 1349 break; 1350 } 1351 ASSERT(i < mindex); 1352 last = i; 1353 mtype16m = last; 1354 mp[last].mnr_next = -1; 1355 for (i = 0; i < mindex - 1; i++) { 1356 hipfn = (pfn_t)(-1); 1357 hi = -1; 1358 /* find next highest mnode range */ 1359 for (j = 0; j < mindex; j++) { 1360 if (mp[j].mnr_pfnlo > mp[last].mnr_pfnlo && 1361 mp[j].mnr_pfnlo < hipfn) { 1362 hipfn = mp[j].mnr_pfnlo; 1363 hi = j; 1364 } 1365 } 1366 mp[hi].mnr_next = last; 1367 last = hi; 1368 } 1369 mtypetop = last; 1370 } 1371 1372 #ifndef __xpv 1373 /* 1374 * Update mnoderanges for memory hot-add DR operations. 1375 */ 1376 static void 1377 mnode_range_add(int mnode) 1378 { 1379 int *prev; 1380 int n, mri; 1381 pfn_t start, end; 1382 extern void membar_sync(void); 1383 1384 ASSERT(0 <= mnode && mnode < max_mem_nodes); 1385 ASSERT(mem_node_config[mnode].exists); 1386 start = mem_node_config[mnode].physbase; 1387 end = mem_node_config[mnode].physmax; 1388 ASSERT(start <= end); 1389 mutex_enter(&mnoderange_lock); 1390 1391 #ifdef DEBUG 1392 /* Check whether it interleaves with other memory nodes. */ 1393 for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) { 1394 ASSERT(mnoderanges[n].mnr_exists); 1395 if (mnoderanges[n].mnr_mnode == mnode) 1396 continue; 1397 ASSERT(start > mnoderanges[n].mnr_pfnhi || 1398 end < mnoderanges[n].mnr_pfnlo); 1399 } 1400 #endif /* DEBUG */ 1401 1402 mri = nranges - 1; 1403 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase) 1404 mri--; 1405 while (mri >= 0 && mem_node_config[mnode].physmax >= MEMRANGELO(mri)) { 1406 /* Check whether mtype already exists. */ 1407 for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) { 1408 if (mnoderanges[n].mnr_mnode == mnode && 1409 mnoderanges[n].mnr_memrange == mri) { 1410 mnoderanges[n].mnr_pfnlo = MAX(MEMRANGELO(mri), 1411 start); 1412 mnoderanges[n].mnr_pfnhi = MIN(MEMRANGEHI(mri), 1413 end); 1414 break; 1415 } 1416 } 1417 1418 /* Add a new entry if it doesn't exist yet. */ 1419 if (n == -1) { 1420 /* Try to find an unused entry in mnoderanges array. */ 1421 for (n = 0; n < mnoderangecnt; n++) { 1422 if (mnoderanges[n].mnr_exists == 0) 1423 break; 1424 } 1425 ASSERT(n < mnoderangecnt); 1426 mnoderanges[n].mnr_pfnlo = MAX(MEMRANGELO(mri), start); 1427 mnoderanges[n].mnr_pfnhi = MIN(MEMRANGEHI(mri), end); 1428 mnoderanges[n].mnr_mnode = mnode; 1429 mnoderanges[n].mnr_memrange = mri; 1430 mnoderanges[n].mnr_exists = 1; 1431 /* Page 0 should always be present. */ 1432 for (prev = &mtypetop; 1433 mnoderanges[*prev].mnr_pfnlo > start; 1434 prev = &mnoderanges[*prev].mnr_next) { 1435 ASSERT(mnoderanges[*prev].mnr_next >= 0); 1436 ASSERT(mnoderanges[*prev].mnr_pfnlo > end); 1437 } 1438 mnoderanges[n].mnr_next = *prev; 1439 membar_sync(); 1440 *prev = n; 1441 } 1442 1443 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri)) 1444 mri--; 1445 else 1446 break; 1447 } 1448 1449 mutex_exit(&mnoderange_lock); 1450 } 1451 1452 /* 1453 * Update mnoderanges for memory hot-removal DR operations. 1454 */ 1455 static void 1456 mnode_range_del(int mnode) 1457 { 1458 _NOTE(ARGUNUSED(mnode)); 1459 ASSERT(0 <= mnode && mnode < max_mem_nodes); 1460 /* TODO: support deletion operation. */ 1461 ASSERT(0); 1462 } 1463 1464 void 1465 plat_slice_add(pfn_t start, pfn_t end) 1466 { 1467 mem_node_add_slice(start, end); 1468 if (plat_dr_enabled()) { 1469 mnode_range_add(PFN_2_MEM_NODE(start)); 1470 } 1471 } 1472 1473 void 1474 plat_slice_del(pfn_t start, pfn_t end) 1475 { 1476 ASSERT(PFN_2_MEM_NODE(start) == PFN_2_MEM_NODE(end)); 1477 ASSERT(plat_dr_enabled()); 1478 mnode_range_del(PFN_2_MEM_NODE(start)); 1479 mem_node_del_slice(start, end); 1480 } 1481 #endif /* __xpv */ 1482 1483 /*ARGSUSED*/ 1484 int 1485 mtype_init(vnode_t *vp, caddr_t vaddr, uint_t *flags, size_t pgsz) 1486 { 1487 int mtype = mtypetop; 1488 1489 #if !defined(__xpv) 1490 #if defined(__i386) 1491 /* 1492 * set the mtype range 1493 * - kmem requests need to be below 4g if restricted_kmemalloc is set. 1494 * - for non kmem requests, set range to above 4g if memory below 4g 1495 * runs low. 1496 */ 1497 if (restricted_kmemalloc && VN_ISKAS(vp) && 1498 (caddr_t)(vaddr) >= kernelheap && 1499 (caddr_t)(vaddr) < ekernelheap) { 1500 ASSERT(physmax4g); 1501 mtype = mtype4g; 1502 if (RESTRICT16M_ALLOC(freemem4g - btop(pgsz), 1503 btop(pgsz), *flags)) { 1504 *flags |= PGI_MT_RANGE16M; 1505 } else { 1506 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); 1507 VM_STAT_COND_ADD((*flags & PG_PANIC), 1508 vmm_vmstats.pgpanicalloc); 1509 *flags |= PGI_MT_RANGE0; 1510 } 1511 return (mtype); 1512 } 1513 #endif /* __i386 */ 1514 1515 if (RESTRICT4G_ALLOC) { 1516 VM_STAT_ADD(vmm_vmstats.restrict4gcnt); 1517 /* here only for > 4g systems */ 1518 *flags |= PGI_MT_RANGE4G; 1519 } else if (RESTRICT16M_ALLOC(freemem, btop(pgsz), *flags)) { 1520 *flags |= PGI_MT_RANGE16M; 1521 } else { 1522 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); 1523 VM_STAT_COND_ADD((*flags & PG_PANIC), vmm_vmstats.pgpanicalloc); 1524 *flags |= PGI_MT_RANGE0; 1525 } 1526 #endif /* !__xpv */ 1527 return (mtype); 1528 } 1529 1530 1531 /* mtype init for page_get_replacement_page */ 1532 /*ARGSUSED*/ 1533 int 1534 mtype_pgr_init(int *flags, page_t *pp, int mnode, pgcnt_t pgcnt) 1535 { 1536 int mtype = mtypetop; 1537 #if !defined(__xpv) 1538 if (RESTRICT16M_ALLOC(freemem, pgcnt, *flags)) { 1539 *flags |= PGI_MT_RANGE16M; 1540 } else { 1541 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); 1542 *flags |= PGI_MT_RANGE0; 1543 } 1544 #endif 1545 return (mtype); 1546 } 1547 1548 /* 1549 * Determine if the mnode range specified in mtype contains memory belonging 1550 * to memory node mnode. If flags & PGI_MT_RANGE is set then mtype contains 1551 * the range from high pfn to 0, 16m or 4g. 1552 * 1553 * Return first mnode range type index found otherwise return -1 if none found. 1554 */ 1555 int 1556 mtype_func(int mnode, int mtype, uint_t flags) 1557 { 1558 if (flags & PGI_MT_RANGE) { 1559 int mnr_lim = MRI_0; 1560 1561 if (flags & PGI_MT_NEXT) { 1562 mtype = mnoderanges[mtype].mnr_next; 1563 } 1564 if (flags & PGI_MT_RANGE4G) 1565 mnr_lim = MRI_4G; /* exclude 0-4g range */ 1566 else if (flags & PGI_MT_RANGE16M) 1567 mnr_lim = MRI_16M; /* exclude 0-16m range */ 1568 while (mtype != -1 && 1569 mnoderanges[mtype].mnr_memrange <= mnr_lim) { 1570 if (mnoderanges[mtype].mnr_mnode == mnode) 1571 return (mtype); 1572 mtype = mnoderanges[mtype].mnr_next; 1573 } 1574 } else if (mnoderanges[mtype].mnr_mnode == mnode) { 1575 return (mtype); 1576 } 1577 return (-1); 1578 } 1579 1580 /* 1581 * Update the page list max counts with the pfn range specified by the 1582 * input parameters. 1583 */ 1584 void 1585 mtype_modify_max(pfn_t startpfn, long cnt) 1586 { 1587 int mtype; 1588 pgcnt_t inc; 1589 spgcnt_t scnt = (spgcnt_t)(cnt); 1590 pgcnt_t acnt = ABS(scnt); 1591 pfn_t endpfn = startpfn + acnt; 1592 pfn_t pfn, lo; 1593 1594 if (!physmax4g) 1595 return; 1596 1597 mtype = mtypetop; 1598 for (pfn = endpfn; pfn > startpfn; ) { 1599 ASSERT(mtype != -1); 1600 lo = mnoderanges[mtype].mnr_pfnlo; 1601 if (pfn > lo) { 1602 if (startpfn >= lo) { 1603 inc = pfn - startpfn; 1604 } else { 1605 inc = pfn - lo; 1606 } 1607 if (mnoderanges[mtype].mnr_memrange != MRI_4G) { 1608 if (scnt > 0) 1609 maxmem4g += inc; 1610 else 1611 maxmem4g -= inc; 1612 } 1613 pfn -= inc; 1614 } 1615 mtype = mnoderanges[mtype].mnr_next; 1616 } 1617 } 1618 1619 int 1620 mtype_2_mrange(int mtype) 1621 { 1622 return (mnoderanges[mtype].mnr_memrange); 1623 } 1624 1625 void 1626 mnodetype_2_pfn(int mnode, int mtype, pfn_t *pfnlo, pfn_t *pfnhi) 1627 { 1628 _NOTE(ARGUNUSED(mnode)); 1629 ASSERT(mnoderanges[mtype].mnr_mnode == mnode); 1630 *pfnlo = mnoderanges[mtype].mnr_pfnlo; 1631 *pfnhi = mnoderanges[mtype].mnr_pfnhi; 1632 } 1633 1634 size_t 1635 plcnt_sz(size_t ctrs_sz) 1636 { 1637 #ifdef DEBUG 1638 int szc, colors; 1639 1640 ctrs_sz += mnoderangecnt * sizeof (struct mnr_mts) * mmu_page_sizes; 1641 for (szc = 0; szc < mmu_page_sizes; szc++) { 1642 colors = page_get_pagecolors(szc); 1643 ctrs_sz += mnoderangecnt * sizeof (pgcnt_t) * colors; 1644 } 1645 #endif 1646 return (ctrs_sz); 1647 } 1648 1649 caddr_t 1650 plcnt_init(caddr_t addr) 1651 { 1652 #ifdef DEBUG 1653 int mt, szc, colors; 1654 1655 for (mt = 0; mt < mnoderangecnt; mt++) { 1656 mnoderanges[mt].mnr_mts = (struct mnr_mts *)addr; 1657 addr += (sizeof (struct mnr_mts) * mmu_page_sizes); 1658 for (szc = 0; szc < mmu_page_sizes; szc++) { 1659 colors = page_get_pagecolors(szc); 1660 mnoderanges[mt].mnr_mts[szc].mnr_mts_colors = colors; 1661 mnoderanges[mt].mnr_mts[szc].mnr_mtsc_pgcnt = 1662 (pgcnt_t *)addr; 1663 addr += (sizeof (pgcnt_t) * colors); 1664 } 1665 } 1666 #endif 1667 return (addr); 1668 } 1669 1670 void 1671 plcnt_inc_dec(page_t *pp, int mtype, int szc, long cnt, int flags) 1672 { 1673 _NOTE(ARGUNUSED(pp)); 1674 #ifdef DEBUG 1675 int bin = PP_2_BIN(pp); 1676 1677 atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mts_pgcnt, cnt); 1678 atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mtsc_pgcnt[bin], 1679 cnt); 1680 #endif 1681 ASSERT(mtype == PP_2_MTYPE(pp)); 1682 if (physmax4g && mnoderanges[mtype].mnr_memrange != MRI_4G) 1683 atomic_add_long(&freemem4g, cnt); 1684 if (flags & PG_CACHE_LIST) 1685 atomic_add_long(&mnoderanges[mtype].mnr_mt_clpgcnt, cnt); 1686 else 1687 atomic_add_long(&mnoderanges[mtype].mnr_mt_flpgcnt[szc], cnt); 1688 atomic_add_long(&mnoderanges[mtype].mnr_mt_totcnt, cnt); 1689 } 1690 1691 /* 1692 * Returns the free page count for mnode 1693 */ 1694 int 1695 mnode_pgcnt(int mnode) 1696 { 1697 int mtype = mtypetop; 1698 int flags = PGI_MT_RANGE0; 1699 pgcnt_t pgcnt = 0; 1700 1701 mtype = mtype_func(mnode, mtype, flags); 1702 1703 while (mtype != -1) { 1704 pgcnt += MTYPE_FREEMEM(mtype); 1705 mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT); 1706 } 1707 return (pgcnt); 1708 } 1709 1710 /* 1711 * Initialize page coloring variables based on the l2 cache parameters. 1712 * Calculate and return memory needed for page coloring data structures. 1713 */ 1714 size_t 1715 page_coloring_init(uint_t l2_sz, int l2_linesz, int l2_assoc) 1716 { 1717 _NOTE(ARGUNUSED(l2_linesz)); 1718 size_t colorsz = 0; 1719 int i; 1720 int colors; 1721 1722 #if defined(__xpv) 1723 /* 1724 * Hypervisor domains currently don't have any concept of NUMA. 1725 * Hence we'll act like there is only 1 memrange. 1726 */ 1727 i = memrange_num(1); 1728 #else /* !__xpv */ 1729 /* 1730 * Reduce the memory ranges lists if we don't have large amounts 1731 * of memory. This avoids searching known empty free lists. 1732 * To support memory DR operations, we need to keep memory ranges 1733 * for possible memory hot-add operations. 1734 */ 1735 if (plat_dr_physmax > physmax) 1736 i = memrange_num(plat_dr_physmax); 1737 else 1738 i = memrange_num(physmax); 1739 #if defined(__i386) 1740 if (i > MRI_4G) 1741 restricted_kmemalloc = 0; 1742 #endif 1743 /* physmax greater than 4g */ 1744 if (i == MRI_4G) 1745 physmax4g = 1; 1746 #endif /* !__xpv */ 1747 memranges += i; 1748 nranges -= i; 1749 1750 ASSERT(mmu_page_sizes <= MMU_PAGE_SIZES); 1751 1752 ASSERT(ISP2(l2_linesz)); 1753 ASSERT(l2_sz > MMU_PAGESIZE); 1754 1755 /* l2_assoc is 0 for fully associative l2 cache */ 1756 if (l2_assoc) 1757 l2_colors = MAX(1, l2_sz / (l2_assoc * MMU_PAGESIZE)); 1758 else 1759 l2_colors = 1; 1760 1761 ASSERT(ISP2(l2_colors)); 1762 1763 /* for scalability, configure at least PAGE_COLORS_MIN color bins */ 1764 page_colors = MAX(l2_colors, PAGE_COLORS_MIN); 1765 1766 /* 1767 * cpu_page_colors is non-zero when a page color may be spread across 1768 * multiple bins. 1769 */ 1770 if (l2_colors < page_colors) 1771 cpu_page_colors = l2_colors; 1772 1773 ASSERT(ISP2(page_colors)); 1774 1775 page_colors_mask = page_colors - 1; 1776 1777 ASSERT(ISP2(CPUSETSIZE())); 1778 page_coloring_shift = lowbit(CPUSETSIZE()); 1779 1780 /* initialize number of colors per page size */ 1781 for (i = 0; i <= mmu.max_page_level; i++) { 1782 hw_page_array[i].hp_size = LEVEL_SIZE(i); 1783 hw_page_array[i].hp_shift = LEVEL_SHIFT(i); 1784 hw_page_array[i].hp_pgcnt = LEVEL_SIZE(i) >> LEVEL_SHIFT(0); 1785 hw_page_array[i].hp_colors = (page_colors_mask >> 1786 (hw_page_array[i].hp_shift - hw_page_array[0].hp_shift)) 1787 + 1; 1788 colorequivszc[i] = 0; 1789 } 1790 1791 /* 1792 * The value of cpu_page_colors determines if additional color bins 1793 * need to be checked for a particular color in the page_get routines. 1794 */ 1795 if (cpu_page_colors != 0) { 1796 1797 int a = lowbit(page_colors) - lowbit(cpu_page_colors); 1798 ASSERT(a > 0); 1799 ASSERT(a < 16); 1800 1801 for (i = 0; i <= mmu.max_page_level; i++) { 1802 if ((colors = hw_page_array[i].hp_colors) <= 1) { 1803 colorequivszc[i] = 0; 1804 continue; 1805 } 1806 while ((colors >> a) == 0) 1807 a--; 1808 ASSERT(a >= 0); 1809 1810 /* higher 4 bits encodes color equiv mask */ 1811 colorequivszc[i] = (a << 4); 1812 } 1813 } 1814 1815 /* factor in colorequiv to check additional 'equivalent' bins. */ 1816 if (colorequiv > 1) { 1817 1818 int a = lowbit(colorequiv) - 1; 1819 if (a > 15) 1820 a = 15; 1821 1822 for (i = 0; i <= mmu.max_page_level; i++) { 1823 if ((colors = hw_page_array[i].hp_colors) <= 1) { 1824 continue; 1825 } 1826 while ((colors >> a) == 0) 1827 a--; 1828 if ((a << 4) > colorequivszc[i]) { 1829 colorequivszc[i] = (a << 4); 1830 } 1831 } 1832 } 1833 1834 /* size for mnoderanges */ 1835 for (mnoderangecnt = 0, i = 0; i < max_mem_nodes; i++) 1836 mnoderangecnt += mnode_range_cnt(i); 1837 if (plat_dr_support_memory()) { 1838 /* 1839 * Reserve enough space for memory DR operations. 1840 * Two extra mnoderanges for possbile fragmentations, 1841 * one for the 2G boundary and the other for the 4G boundary. 1842 * We don't expect a memory board crossing the 16M boundary 1843 * for memory hot-add operations on x86 platforms. 1844 */ 1845 mnoderangecnt += 2 + max_mem_nodes - lgrp_plat_node_cnt; 1846 } 1847 colorsz = mnoderangecnt * sizeof (mnoderange_t); 1848 1849 /* size for fpc_mutex and cpc_mutex */ 1850 colorsz += (2 * max_mem_nodes * sizeof (kmutex_t) * NPC_MUTEX); 1851 1852 /* size of page_freelists */ 1853 colorsz += mnoderangecnt * sizeof (page_t ***); 1854 colorsz += mnoderangecnt * mmu_page_sizes * sizeof (page_t **); 1855 1856 for (i = 0; i < mmu_page_sizes; i++) { 1857 colors = page_get_pagecolors(i); 1858 colorsz += mnoderangecnt * colors * sizeof (page_t *); 1859 } 1860 1861 /* size of page_cachelists */ 1862 colorsz += mnoderangecnt * sizeof (page_t **); 1863 colorsz += mnoderangecnt * page_colors * sizeof (page_t *); 1864 1865 return (colorsz); 1866 } 1867 1868 /* 1869 * Called once at startup to configure page_coloring data structures and 1870 * does the 1st page_free()/page_freelist_add(). 1871 */ 1872 void 1873 page_coloring_setup(caddr_t pcmemaddr) 1874 { 1875 int i; 1876 int j; 1877 int k; 1878 caddr_t addr; 1879 int colors; 1880 1881 /* 1882 * do page coloring setup 1883 */ 1884 addr = pcmemaddr; 1885 1886 mnoderanges = (mnoderange_t *)addr; 1887 addr += (mnoderangecnt * sizeof (mnoderange_t)); 1888 1889 mnode_range_setup(mnoderanges); 1890 1891 if (physmax4g) 1892 mtype4g = pfn_2_mtype(0xfffff); 1893 1894 for (k = 0; k < NPC_MUTEX; k++) { 1895 fpc_mutex[k] = (kmutex_t *)addr; 1896 addr += (max_mem_nodes * sizeof (kmutex_t)); 1897 } 1898 for (k = 0; k < NPC_MUTEX; k++) { 1899 cpc_mutex[k] = (kmutex_t *)addr; 1900 addr += (max_mem_nodes * sizeof (kmutex_t)); 1901 } 1902 page_freelists = (page_t ****)addr; 1903 addr += (mnoderangecnt * sizeof (page_t ***)); 1904 1905 page_cachelists = (page_t ***)addr; 1906 addr += (mnoderangecnt * sizeof (page_t **)); 1907 1908 for (i = 0; i < mnoderangecnt; i++) { 1909 page_freelists[i] = (page_t ***)addr; 1910 addr += (mmu_page_sizes * sizeof (page_t **)); 1911 1912 for (j = 0; j < mmu_page_sizes; j++) { 1913 colors = page_get_pagecolors(j); 1914 page_freelists[i][j] = (page_t **)addr; 1915 addr += (colors * sizeof (page_t *)); 1916 } 1917 page_cachelists[i] = (page_t **)addr; 1918 addr += (page_colors * sizeof (page_t *)); 1919 } 1920 } 1921 1922 #if defined(__xpv) 1923 /* 1924 * Give back 10% of the io_pool pages to the free list. 1925 * Don't shrink the pool below some absolute minimum. 1926 */ 1927 static void 1928 page_io_pool_shrink() 1929 { 1930 int retcnt; 1931 page_t *pp, *pp_first, *pp_last, **curpool; 1932 mfn_t mfn; 1933 int bothpools = 0; 1934 1935 mutex_enter(&io_pool_lock); 1936 io_pool_shrink_attempts++; /* should be a kstat? */ 1937 retcnt = io_pool_cnt / 10; 1938 if (io_pool_cnt - retcnt < io_pool_cnt_min) 1939 retcnt = io_pool_cnt - io_pool_cnt_min; 1940 if (retcnt <= 0) 1941 goto done; 1942 io_pool_shrinks++; /* should be a kstat? */ 1943 curpool = &io_pool_4g; 1944 domore: 1945 /* 1946 * Loop through taking pages from the end of the list 1947 * (highest mfns) till amount to return reached. 1948 */ 1949 for (pp = *curpool; pp && retcnt > 0; ) { 1950 pp_first = pp_last = pp->p_prev; 1951 if (pp_first == *curpool) 1952 break; 1953 retcnt--; 1954 io_pool_cnt--; 1955 page_io_pool_sub(curpool, pp_first, pp_last); 1956 if ((mfn = pfn_to_mfn(pp->p_pagenum)) < start_mfn) 1957 start_mfn = mfn; 1958 page_free(pp_first, 1); 1959 pp = *curpool; 1960 } 1961 if (retcnt != 0 && !bothpools) { 1962 /* 1963 * If not enough found in less constrained pool try the 1964 * more constrained one. 1965 */ 1966 curpool = &io_pool_16m; 1967 bothpools = 1; 1968 goto domore; 1969 } 1970 done: 1971 mutex_exit(&io_pool_lock); 1972 } 1973 1974 #endif /* __xpv */ 1975 1976 uint_t 1977 page_create_update_flags_x86(uint_t flags) 1978 { 1979 #if defined(__xpv) 1980 /* 1981 * Check this is an urgent allocation and free pages are depleted. 1982 */ 1983 if (!(flags & PG_WAIT) && freemem < desfree) 1984 page_io_pool_shrink(); 1985 #else /* !__xpv */ 1986 /* 1987 * page_create_get_something may call this because 4g memory may be 1988 * depleted. Set flags to allow for relocation of base page below 1989 * 4g if necessary. 1990 */ 1991 if (physmax4g) 1992 flags |= (PGI_PGCPSZC0 | PGI_PGCPHIPRI); 1993 #endif /* __xpv */ 1994 return (flags); 1995 } 1996 1997 /*ARGSUSED*/ 1998 int 1999 bp_color(struct buf *bp) 2000 { 2001 return (0); 2002 } 2003 2004 #if defined(__xpv) 2005 2006 /* 2007 * Take pages out of an io_pool 2008 */ 2009 static void 2010 page_io_pool_sub(page_t **poolp, page_t *pp_first, page_t *pp_last) 2011 { 2012 if (*poolp == pp_first) { 2013 *poolp = pp_last->p_next; 2014 if (*poolp == pp_first) 2015 *poolp = NULL; 2016 } 2017 pp_first->p_prev->p_next = pp_last->p_next; 2018 pp_last->p_next->p_prev = pp_first->p_prev; 2019 pp_first->p_prev = pp_last; 2020 pp_last->p_next = pp_first; 2021 } 2022 2023 /* 2024 * Put a page on the io_pool list. The list is ordered by increasing MFN. 2025 */ 2026 static void 2027 page_io_pool_add(page_t **poolp, page_t *pp) 2028 { 2029 page_t *look; 2030 mfn_t mfn = mfn_list[pp->p_pagenum]; 2031 2032 if (*poolp == NULL) { 2033 *poolp = pp; 2034 pp->p_next = pp; 2035 pp->p_prev = pp; 2036 return; 2037 } 2038 2039 /* 2040 * Since we try to take pages from the high end of the pool 2041 * chances are good that the pages to be put on the list will 2042 * go at or near the end of the list. so start at the end and 2043 * work backwards. 2044 */ 2045 look = (*poolp)->p_prev; 2046 while (mfn < mfn_list[look->p_pagenum]) { 2047 look = look->p_prev; 2048 if (look == (*poolp)->p_prev) 2049 break; /* backed all the way to front of list */ 2050 } 2051 2052 /* insert after look */ 2053 pp->p_prev = look; 2054 pp->p_next = look->p_next; 2055 pp->p_next->p_prev = pp; 2056 look->p_next = pp; 2057 if (mfn < mfn_list[(*poolp)->p_pagenum]) { 2058 /* 2059 * we inserted a new first list element 2060 * adjust pool pointer to newly inserted element 2061 */ 2062 *poolp = pp; 2063 } 2064 } 2065 2066 /* 2067 * Add a page to the io_pool. Setting the force flag will force the page 2068 * into the io_pool no matter what. 2069 */ 2070 static void 2071 add_page_to_pool(page_t *pp, int force) 2072 { 2073 page_t *highest; 2074 page_t *freep = NULL; 2075 2076 mutex_enter(&io_pool_lock); 2077 /* 2078 * Always keep the scarce low memory pages 2079 */ 2080 if (mfn_list[pp->p_pagenum] < PFN_16MEG) { 2081 ++io_pool_cnt; 2082 page_io_pool_add(&io_pool_16m, pp); 2083 goto done; 2084 } 2085 if (io_pool_cnt < io_pool_cnt_max || force || io_pool_4g == NULL) { 2086 ++io_pool_cnt; 2087 page_io_pool_add(&io_pool_4g, pp); 2088 } else { 2089 highest = io_pool_4g->p_prev; 2090 if (mfn_list[pp->p_pagenum] < mfn_list[highest->p_pagenum]) { 2091 page_io_pool_sub(&io_pool_4g, highest, highest); 2092 page_io_pool_add(&io_pool_4g, pp); 2093 freep = highest; 2094 } else { 2095 freep = pp; 2096 } 2097 } 2098 done: 2099 mutex_exit(&io_pool_lock); 2100 if (freep) 2101 page_free(freep, 1); 2102 } 2103 2104 2105 int contig_pfn_cnt; /* no of pfns in the contig pfn list */ 2106 int contig_pfn_max; /* capacity of the contig pfn list */ 2107 int next_alloc_pfn; /* next position in list to start a contig search */ 2108 int contig_pfnlist_updates; /* pfn list update count */ 2109 int contig_pfnlist_builds; /* how many times have we (re)built list */ 2110 int contig_pfnlist_buildfailed; /* how many times has list build failed */ 2111 int create_contig_pending; /* nonzero means taskq creating contig list */ 2112 pfn_t *contig_pfn_list = NULL; /* list of contig pfns in ascending mfn order */ 2113 2114 /* 2115 * Function to use in sorting a list of pfns by their underlying mfns. 2116 */ 2117 static int 2118 mfn_compare(const void *pfnp1, const void *pfnp2) 2119 { 2120 mfn_t mfn1 = mfn_list[*(pfn_t *)pfnp1]; 2121 mfn_t mfn2 = mfn_list[*(pfn_t *)pfnp2]; 2122 2123 if (mfn1 > mfn2) 2124 return (1); 2125 if (mfn1 < mfn2) 2126 return (-1); 2127 return (0); 2128 } 2129 2130 /* 2131 * Compact the contig_pfn_list by tossing all the non-contiguous 2132 * elements from the list. 2133 */ 2134 static void 2135 compact_contig_pfn_list(void) 2136 { 2137 pfn_t pfn, lapfn, prev_lapfn; 2138 mfn_t mfn; 2139 int i, newcnt = 0; 2140 2141 prev_lapfn = 0; 2142 for (i = 0; i < contig_pfn_cnt - 1; i++) { 2143 pfn = contig_pfn_list[i]; 2144 lapfn = contig_pfn_list[i + 1]; 2145 mfn = mfn_list[pfn]; 2146 /* 2147 * See if next pfn is for a contig mfn 2148 */ 2149 if (mfn_list[lapfn] != mfn + 1) 2150 continue; 2151 /* 2152 * pfn and lookahead are both put in list 2153 * unless pfn is the previous lookahead. 2154 */ 2155 if (pfn != prev_lapfn) 2156 contig_pfn_list[newcnt++] = pfn; 2157 contig_pfn_list[newcnt++] = lapfn; 2158 prev_lapfn = lapfn; 2159 } 2160 for (i = newcnt; i < contig_pfn_cnt; i++) 2161 contig_pfn_list[i] = 0; 2162 contig_pfn_cnt = newcnt; 2163 } 2164 2165 /*ARGSUSED*/ 2166 static void 2167 call_create_contiglist(void *arg) 2168 { 2169 (void) create_contig_pfnlist(PG_WAIT); 2170 } 2171 2172 /* 2173 * Create list of freelist pfns that have underlying 2174 * contiguous mfns. The list is kept in ascending mfn order. 2175 * returns 1 if list created else 0. 2176 */ 2177 static int 2178 create_contig_pfnlist(uint_t flags) 2179 { 2180 pfn_t pfn; 2181 page_t *pp; 2182 int ret = 1; 2183 2184 mutex_enter(&contig_list_lock); 2185 if (contig_pfn_list != NULL) 2186 goto out; 2187 contig_pfn_max = freemem + (freemem / 10); 2188 contig_pfn_list = kmem_zalloc(contig_pfn_max * sizeof (pfn_t), 2189 (flags & PG_WAIT) ? KM_SLEEP : KM_NOSLEEP); 2190 if (contig_pfn_list == NULL) { 2191 /* 2192 * If we could not create the contig list (because 2193 * we could not sleep for memory). Dispatch a taskq that can 2194 * sleep to get the memory. 2195 */ 2196 if (!create_contig_pending) { 2197 if (taskq_dispatch(system_taskq, call_create_contiglist, 2198 NULL, TQ_NOSLEEP) != NULL) 2199 create_contig_pending = 1; 2200 } 2201 contig_pfnlist_buildfailed++; /* count list build failures */ 2202 ret = 0; 2203 goto out; 2204 } 2205 create_contig_pending = 0; 2206 ASSERT(contig_pfn_cnt == 0); 2207 for (pfn = 0; pfn < mfn_count; pfn++) { 2208 pp = page_numtopp_nolock(pfn); 2209 if (pp == NULL || !PP_ISFREE(pp)) 2210 continue; 2211 contig_pfn_list[contig_pfn_cnt] = pfn; 2212 if (++contig_pfn_cnt == contig_pfn_max) 2213 break; 2214 } 2215 /* 2216 * Sanity check the new list. 2217 */ 2218 if (contig_pfn_cnt < 2) { /* no contig pfns */ 2219 contig_pfn_cnt = 0; 2220 contig_pfnlist_buildfailed++; 2221 kmem_free(contig_pfn_list, contig_pfn_max * sizeof (pfn_t)); 2222 contig_pfn_list = NULL; 2223 contig_pfn_max = 0; 2224 ret = 0; 2225 goto out; 2226 } 2227 qsort(contig_pfn_list, contig_pfn_cnt, sizeof (pfn_t), mfn_compare); 2228 compact_contig_pfn_list(); 2229 /* 2230 * Make sure next search of the newly created contiguous pfn 2231 * list starts at the beginning of the list. 2232 */ 2233 next_alloc_pfn = 0; 2234 contig_pfnlist_builds++; /* count list builds */ 2235 out: 2236 mutex_exit(&contig_list_lock); 2237 return (ret); 2238 } 2239 2240 2241 /* 2242 * Toss the current contig pfnlist. Someone is about to do a massive 2243 * update to pfn<->mfn mappings. So we have them destroy the list and lock 2244 * it till they are done with their update. 2245 */ 2246 void 2247 clear_and_lock_contig_pfnlist() 2248 { 2249 pfn_t *listp = NULL; 2250 size_t listsize; 2251 2252 mutex_enter(&contig_list_lock); 2253 if (contig_pfn_list != NULL) { 2254 listp = contig_pfn_list; 2255 listsize = contig_pfn_max * sizeof (pfn_t); 2256 contig_pfn_list = NULL; 2257 contig_pfn_max = contig_pfn_cnt = 0; 2258 } 2259 if (listp != NULL) 2260 kmem_free(listp, listsize); 2261 } 2262 2263 /* 2264 * Unlock the contig_pfn_list. The next attempted use of it will cause 2265 * it to be re-created. 2266 */ 2267 void 2268 unlock_contig_pfnlist() 2269 { 2270 mutex_exit(&contig_list_lock); 2271 } 2272 2273 /* 2274 * Update the contiguous pfn list in response to a pfn <-> mfn reassignment 2275 */ 2276 void 2277 update_contig_pfnlist(pfn_t pfn, mfn_t oldmfn, mfn_t newmfn) 2278 { 2279 int probe_hi, probe_lo, probe_pos, insert_after, insert_point; 2280 pfn_t probe_pfn; 2281 mfn_t probe_mfn; 2282 int drop_lock = 0; 2283 2284 if (mutex_owner(&contig_list_lock) != curthread) { 2285 drop_lock = 1; 2286 mutex_enter(&contig_list_lock); 2287 } 2288 if (contig_pfn_list == NULL) 2289 goto done; 2290 contig_pfnlist_updates++; 2291 /* 2292 * Find the pfn in the current list. Use a binary chop to locate it. 2293 */ 2294 probe_hi = contig_pfn_cnt - 1; 2295 probe_lo = 0; 2296 probe_pos = (probe_hi + probe_lo) / 2; 2297 while ((probe_pfn = contig_pfn_list[probe_pos]) != pfn) { 2298 if (probe_pos == probe_lo) { /* pfn not in list */ 2299 probe_pos = -1; 2300 break; 2301 } 2302 if (pfn_to_mfn(probe_pfn) <= oldmfn) 2303 probe_lo = probe_pos; 2304 else 2305 probe_hi = probe_pos; 2306 probe_pos = (probe_hi + probe_lo) / 2; 2307 } 2308 if (probe_pos >= 0) { 2309 /* 2310 * Remove pfn from list and ensure next alloc 2311 * position stays in bounds. 2312 */ 2313 if (--contig_pfn_cnt <= next_alloc_pfn) 2314 next_alloc_pfn = 0; 2315 if (contig_pfn_cnt < 2) { /* no contig pfns */ 2316 contig_pfn_cnt = 0; 2317 kmem_free(contig_pfn_list, 2318 contig_pfn_max * sizeof (pfn_t)); 2319 contig_pfn_list = NULL; 2320 contig_pfn_max = 0; 2321 goto done; 2322 } 2323 ovbcopy(&contig_pfn_list[probe_pos + 1], 2324 &contig_pfn_list[probe_pos], 2325 (contig_pfn_cnt - probe_pos) * sizeof (pfn_t)); 2326 } 2327 if (newmfn == MFN_INVALID) 2328 goto done; 2329 /* 2330 * Check if new mfn has adjacent mfns in the list 2331 */ 2332 probe_hi = contig_pfn_cnt - 1; 2333 probe_lo = 0; 2334 insert_after = -2; 2335 do { 2336 probe_pos = (probe_hi + probe_lo) / 2; 2337 probe_mfn = pfn_to_mfn(contig_pfn_list[probe_pos]); 2338 if (newmfn == probe_mfn + 1) 2339 insert_after = probe_pos; 2340 else if (newmfn == probe_mfn - 1) 2341 insert_after = probe_pos - 1; 2342 if (probe_pos == probe_lo) 2343 break; 2344 if (probe_mfn <= newmfn) 2345 probe_lo = probe_pos; 2346 else 2347 probe_hi = probe_pos; 2348 } while (insert_after == -2); 2349 /* 2350 * If there is space in the list and there are adjacent mfns 2351 * insert the pfn in to its proper place in the list. 2352 */ 2353 if (insert_after != -2 && contig_pfn_cnt + 1 <= contig_pfn_max) { 2354 insert_point = insert_after + 1; 2355 ovbcopy(&contig_pfn_list[insert_point], 2356 &contig_pfn_list[insert_point + 1], 2357 (contig_pfn_cnt - insert_point) * sizeof (pfn_t)); 2358 contig_pfn_list[insert_point] = pfn; 2359 contig_pfn_cnt++; 2360 } 2361 done: 2362 if (drop_lock) 2363 mutex_exit(&contig_list_lock); 2364 } 2365 2366 /* 2367 * Called to (re-)populate the io_pool from the free page lists. 2368 */ 2369 long 2370 populate_io_pool(void) 2371 { 2372 pfn_t pfn; 2373 mfn_t mfn, max_mfn; 2374 page_t *pp; 2375 2376 /* 2377 * Figure out the bounds of the pool on first invocation. 2378 * We use a percentage of memory for the io pool size. 2379 * we allow that to shrink, but not to less than a fixed minimum 2380 */ 2381 if (io_pool_cnt_max == 0) { 2382 io_pool_cnt_max = physmem / (100 / io_pool_physmem_pct); 2383 io_pool_cnt_lowater = io_pool_cnt_max; 2384 /* 2385 * This is the first time in populate_io_pool, grab a va to use 2386 * when we need to allocate pages. 2387 */ 2388 io_pool_kva = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP); 2389 } 2390 /* 2391 * If we are out of pages in the pool, then grow the size of the pool 2392 */ 2393 if (io_pool_cnt == 0) { 2394 /* 2395 * Grow the max size of the io pool by 5%, but never more than 2396 * 25% of physical memory. 2397 */ 2398 if (io_pool_cnt_max < physmem / 4) 2399 io_pool_cnt_max += io_pool_cnt_max / 20; 2400 } 2401 io_pool_grows++; /* should be a kstat? */ 2402 2403 /* 2404 * Get highest mfn on this platform, but limit to the 32 bit DMA max. 2405 */ 2406 (void) mfn_to_pfn(start_mfn); 2407 max_mfn = MIN(cached_max_mfn, PFN_4GIG); 2408 for (mfn = start_mfn; mfn < max_mfn; start_mfn = ++mfn) { 2409 pfn = mfn_to_pfn(mfn); 2410 if (pfn & PFN_IS_FOREIGN_MFN) 2411 continue; 2412 /* 2413 * try to allocate it from free pages 2414 */ 2415 pp = page_numtopp_alloc(pfn); 2416 if (pp == NULL) 2417 continue; 2418 PP_CLRFREE(pp); 2419 add_page_to_pool(pp, 1); 2420 if (io_pool_cnt >= io_pool_cnt_max) 2421 break; 2422 } 2423 2424 return (io_pool_cnt); 2425 } 2426 2427 /* 2428 * Destroy a page that was being used for DMA I/O. It may or 2429 * may not actually go back to the io_pool. 2430 */ 2431 void 2432 page_destroy_io(page_t *pp) 2433 { 2434 mfn_t mfn = mfn_list[pp->p_pagenum]; 2435 2436 /* 2437 * When the page was alloc'd a reservation was made, release it now 2438 */ 2439 page_unresv(1); 2440 /* 2441 * Unload translations, if any, then hash out the 2442 * page to erase its identity. 2443 */ 2444 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 2445 page_hashout(pp, NULL); 2446 2447 /* 2448 * If the page came from the free lists, just put it back to them. 2449 * DomU pages always go on the free lists as well. 2450 */ 2451 if (!DOMAIN_IS_INITDOMAIN(xen_info) || mfn >= PFN_4GIG) { 2452 page_free(pp, 1); 2453 return; 2454 } 2455 2456 add_page_to_pool(pp, 0); 2457 } 2458 2459 2460 long contig_searches; /* count of times contig pages requested */ 2461 long contig_search_restarts; /* count of contig ranges tried */ 2462 long contig_search_failed; /* count of contig alloc failures */ 2463 2464 /* 2465 * Free partial page list 2466 */ 2467 static void 2468 free_partial_list(page_t **pplist) 2469 { 2470 page_t *pp; 2471 2472 while (*pplist != NULL) { 2473 pp = *pplist; 2474 page_io_pool_sub(pplist, pp, pp); 2475 page_free(pp, 1); 2476 } 2477 } 2478 2479 /* 2480 * Look thru the contiguous pfns that are not part of the io_pool for 2481 * contiguous free pages. Return a list of the found pages or NULL. 2482 */ 2483 page_t * 2484 find_contig_free(uint_t npages, uint_t flags, uint64_t pfnseg, 2485 pgcnt_t pfnalign) 2486 { 2487 page_t *pp, *plist = NULL; 2488 mfn_t mfn, prev_mfn, start_mfn; 2489 pfn_t pfn; 2490 int pages_needed, pages_requested; 2491 int search_start; 2492 2493 /* 2494 * create the contig pfn list if not already done 2495 */ 2496 retry: 2497 mutex_enter(&contig_list_lock); 2498 if (contig_pfn_list == NULL) { 2499 mutex_exit(&contig_list_lock); 2500 if (!create_contig_pfnlist(flags)) { 2501 return (NULL); 2502 } 2503 goto retry; 2504 } 2505 contig_searches++; 2506 /* 2507 * Search contiguous pfn list for physically contiguous pages not in 2508 * the io_pool. Start the search where the last search left off. 2509 */ 2510 pages_requested = pages_needed = npages; 2511 search_start = next_alloc_pfn; 2512 start_mfn = prev_mfn = 0; 2513 while (pages_needed) { 2514 pfn = contig_pfn_list[next_alloc_pfn]; 2515 mfn = pfn_to_mfn(pfn); 2516 /* 2517 * Check if mfn is first one or contig to previous one and 2518 * if page corresponding to mfn is free and that mfn 2519 * range is not crossing a segment boundary. 2520 */ 2521 if ((prev_mfn == 0 || mfn == prev_mfn + 1) && 2522 (pp = page_numtopp_alloc(pfn)) != NULL && 2523 !((mfn & pfnseg) < (start_mfn & pfnseg))) { 2524 PP_CLRFREE(pp); 2525 page_io_pool_add(&plist, pp); 2526 pages_needed--; 2527 if (prev_mfn == 0) { 2528 if (pfnalign && 2529 mfn != P2ROUNDUP(mfn, pfnalign)) { 2530 /* 2531 * not properly aligned 2532 */ 2533 contig_search_restarts++; 2534 free_partial_list(&plist); 2535 pages_needed = pages_requested; 2536 start_mfn = prev_mfn = 0; 2537 goto skip; 2538 } 2539 start_mfn = mfn; 2540 } 2541 prev_mfn = mfn; 2542 } else { 2543 contig_search_restarts++; 2544 free_partial_list(&plist); 2545 pages_needed = pages_requested; 2546 start_mfn = prev_mfn = 0; 2547 } 2548 skip: 2549 if (++next_alloc_pfn == contig_pfn_cnt) 2550 next_alloc_pfn = 0; 2551 if (next_alloc_pfn == search_start) 2552 break; /* all pfns searched */ 2553 } 2554 mutex_exit(&contig_list_lock); 2555 if (pages_needed) { 2556 contig_search_failed++; 2557 /* 2558 * Failed to find enough contig pages. 2559 * free partial page list 2560 */ 2561 free_partial_list(&plist); 2562 } 2563 return (plist); 2564 } 2565 2566 /* 2567 * Search the reserved io pool pages for a page range with the 2568 * desired characteristics. 2569 */ 2570 page_t * 2571 page_io_pool_alloc(ddi_dma_attr_t *mattr, int contig, pgcnt_t minctg) 2572 { 2573 page_t *pp_first, *pp_last; 2574 page_t *pp, **poolp; 2575 pgcnt_t nwanted, pfnalign; 2576 uint64_t pfnseg; 2577 mfn_t mfn, tmfn, hi_mfn, lo_mfn; 2578 int align, attempt = 0; 2579 2580 if (minctg == 1) 2581 contig = 0; 2582 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo); 2583 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi); 2584 pfnseg = mmu_btop(mattr->dma_attr_seg); 2585 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 2586 if (align > MMU_PAGESIZE) 2587 pfnalign = mmu_btop(align); 2588 else 2589 pfnalign = 0; 2590 2591 try_again: 2592 /* 2593 * See if we want pages for a legacy device 2594 */ 2595 if (hi_mfn < PFN_16MEG) 2596 poolp = &io_pool_16m; 2597 else 2598 poolp = &io_pool_4g; 2599 try_smaller: 2600 /* 2601 * Take pages from I/O pool. We'll use pages from the highest 2602 * MFN range possible. 2603 */ 2604 pp_first = pp_last = NULL; 2605 mutex_enter(&io_pool_lock); 2606 nwanted = minctg; 2607 for (pp = *poolp; pp && nwanted > 0; ) { 2608 pp = pp->p_prev; 2609 2610 /* 2611 * skip pages above allowable range 2612 */ 2613 mfn = mfn_list[pp->p_pagenum]; 2614 if (hi_mfn < mfn) 2615 goto skip; 2616 2617 /* 2618 * stop at pages below allowable range 2619 */ 2620 if (lo_mfn > mfn) 2621 break; 2622 restart: 2623 if (pp_last == NULL) { 2624 /* 2625 * Check alignment 2626 */ 2627 tmfn = mfn - (minctg - 1); 2628 if (pfnalign && tmfn != P2ROUNDUP(tmfn, pfnalign)) 2629 goto skip; /* not properly aligned */ 2630 /* 2631 * Check segment 2632 */ 2633 if ((mfn & pfnseg) < (tmfn & pfnseg)) 2634 goto skip; /* crosses seg boundary */ 2635 /* 2636 * Start building page list 2637 */ 2638 pp_first = pp_last = pp; 2639 nwanted--; 2640 } else { 2641 /* 2642 * check physical contiguity if required 2643 */ 2644 if (contig && 2645 mfn_list[pp_first->p_pagenum] != mfn + 1) { 2646 /* 2647 * not a contiguous page, restart list. 2648 */ 2649 pp_last = NULL; 2650 nwanted = minctg; 2651 goto restart; 2652 } else { /* add page to list */ 2653 pp_first = pp; 2654 nwanted--; 2655 } 2656 } 2657 skip: 2658 if (pp == *poolp) 2659 break; 2660 } 2661 2662 /* 2663 * If we didn't find memory. Try the more constrained pool, then 2664 * sweep free pages into the DMA pool and try again. 2665 */ 2666 if (nwanted != 0) { 2667 mutex_exit(&io_pool_lock); 2668 /* 2669 * If we were looking in the less constrained pool and 2670 * didn't find pages, try the more constrained pool. 2671 */ 2672 if (poolp == &io_pool_4g) { 2673 poolp = &io_pool_16m; 2674 goto try_smaller; 2675 } 2676 kmem_reap(); 2677 if (++attempt < 4) { 2678 /* 2679 * Grab some more io_pool pages 2680 */ 2681 (void) populate_io_pool(); 2682 goto try_again; /* go around and retry */ 2683 } 2684 return (NULL); 2685 } 2686 /* 2687 * Found the pages, now snip them from the list 2688 */ 2689 page_io_pool_sub(poolp, pp_first, pp_last); 2690 io_pool_cnt -= minctg; 2691 /* 2692 * reset low water mark 2693 */ 2694 if (io_pool_cnt < io_pool_cnt_lowater) 2695 io_pool_cnt_lowater = io_pool_cnt; 2696 mutex_exit(&io_pool_lock); 2697 return (pp_first); 2698 } 2699 2700 page_t * 2701 page_swap_with_hypervisor(struct vnode *vp, u_offset_t off, caddr_t vaddr, 2702 ddi_dma_attr_t *mattr, uint_t flags, pgcnt_t minctg) 2703 { 2704 uint_t kflags; 2705 int order, extra, extpages, i, contig, nbits, extents; 2706 page_t *pp, *expp, *pp_first, **pplist = NULL; 2707 mfn_t *mfnlist = NULL; 2708 2709 contig = flags & PG_PHYSCONTIG; 2710 if (minctg == 1) 2711 contig = 0; 2712 flags &= ~PG_PHYSCONTIG; 2713 kflags = flags & PG_WAIT ? KM_SLEEP : KM_NOSLEEP; 2714 /* 2715 * Hypervisor will allocate extents, if we want contig 2716 * pages extent must be >= minctg 2717 */ 2718 if (contig) { 2719 order = highbit(minctg) - 1; 2720 if (minctg & ((1 << order) - 1)) 2721 order++; 2722 extpages = 1 << order; 2723 } else { 2724 order = 0; 2725 extpages = minctg; 2726 } 2727 if (extpages > minctg) { 2728 extra = extpages - minctg; 2729 if (!page_resv(extra, kflags)) 2730 return (NULL); 2731 } 2732 pp_first = NULL; 2733 pplist = kmem_alloc(extpages * sizeof (page_t *), kflags); 2734 if (pplist == NULL) 2735 goto balloon_fail; 2736 mfnlist = kmem_alloc(extpages * sizeof (mfn_t), kflags); 2737 if (mfnlist == NULL) 2738 goto balloon_fail; 2739 pp = page_create_va(vp, off, minctg * PAGESIZE, flags, &kvseg, vaddr); 2740 if (pp == NULL) 2741 goto balloon_fail; 2742 pp_first = pp; 2743 if (extpages > minctg) { 2744 /* 2745 * fill out the rest of extent pages to swap 2746 * with the hypervisor 2747 */ 2748 for (i = 0; i < extra; i++) { 2749 expp = page_create_va(vp, 2750 (u_offset_t)(uintptr_t)io_pool_kva, 2751 PAGESIZE, flags, &kvseg, io_pool_kva); 2752 if (expp == NULL) 2753 goto balloon_fail; 2754 (void) hat_pageunload(expp, HAT_FORCE_PGUNLOAD); 2755 page_io_unlock(expp); 2756 page_hashout(expp, NULL); 2757 page_io_lock(expp); 2758 /* 2759 * add page to end of list 2760 */ 2761 expp->p_prev = pp_first->p_prev; 2762 expp->p_next = pp_first; 2763 expp->p_prev->p_next = expp; 2764 pp_first->p_prev = expp; 2765 } 2766 2767 } 2768 for (i = 0; i < extpages; i++) { 2769 pplist[i] = pp; 2770 pp = pp->p_next; 2771 } 2772 nbits = highbit(mattr->dma_attr_addr_hi); 2773 extents = contig ? 1 : minctg; 2774 if (balloon_replace_pages(extents, pplist, nbits, order, 2775 mfnlist) != extents) { 2776 if (ioalloc_dbg) 2777 cmn_err(CE_NOTE, "request to hypervisor" 2778 " for %d pages, maxaddr %" PRIx64 " failed", 2779 extpages, mattr->dma_attr_addr_hi); 2780 goto balloon_fail; 2781 } 2782 2783 kmem_free(pplist, extpages * sizeof (page_t *)); 2784 kmem_free(mfnlist, extpages * sizeof (mfn_t)); 2785 /* 2786 * Return any excess pages to free list 2787 */ 2788 if (extpages > minctg) { 2789 for (i = 0; i < extra; i++) { 2790 pp = pp_first->p_prev; 2791 page_sub(&pp_first, pp); 2792 page_io_unlock(pp); 2793 page_unresv(1); 2794 page_free(pp, 1); 2795 } 2796 } 2797 return (pp_first); 2798 balloon_fail: 2799 /* 2800 * Return pages to free list and return failure 2801 */ 2802 while (pp_first != NULL) { 2803 pp = pp_first; 2804 page_sub(&pp_first, pp); 2805 page_io_unlock(pp); 2806 if (pp->p_vnode != NULL) 2807 page_hashout(pp, NULL); 2808 page_free(pp, 1); 2809 } 2810 if (pplist) 2811 kmem_free(pplist, extpages * sizeof (page_t *)); 2812 if (mfnlist) 2813 kmem_free(mfnlist, extpages * sizeof (mfn_t)); 2814 page_unresv(extpages - minctg); 2815 return (NULL); 2816 } 2817 2818 static void 2819 return_partial_alloc(page_t *plist) 2820 { 2821 page_t *pp; 2822 2823 while (plist != NULL) { 2824 pp = plist; 2825 page_sub(&plist, pp); 2826 page_io_unlock(pp); 2827 page_destroy_io(pp); 2828 } 2829 } 2830 2831 static page_t * 2832 page_get_contigpages( 2833 struct vnode *vp, 2834 u_offset_t off, 2835 int *npagesp, 2836 uint_t flags, 2837 caddr_t vaddr, 2838 ddi_dma_attr_t *mattr) 2839 { 2840 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 2841 page_t *plist; /* list to return */ 2842 page_t *pp, *mcpl; 2843 int contig, anyaddr, npages, getone = 0; 2844 mfn_t lo_mfn; 2845 mfn_t hi_mfn; 2846 pgcnt_t pfnalign = 0; 2847 int align, sgllen; 2848 uint64_t pfnseg; 2849 pgcnt_t minctg; 2850 2851 npages = *npagesp; 2852 ASSERT(mattr != NULL); 2853 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo); 2854 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi); 2855 sgllen = mattr->dma_attr_sgllen; 2856 pfnseg = mmu_btop(mattr->dma_attr_seg); 2857 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 2858 if (align > MMU_PAGESIZE) 2859 pfnalign = mmu_btop(align); 2860 2861 contig = flags & PG_PHYSCONTIG; 2862 if (npages == -1) { 2863 npages = 1; 2864 pfnalign = 0; 2865 } 2866 /* 2867 * Clear the contig flag if only one page is needed. 2868 */ 2869 if (npages == 1) { 2870 getone = 1; 2871 contig = 0; 2872 } 2873 2874 /* 2875 * Check if any page in the system is fine. 2876 */ 2877 anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn; 2878 if (!contig && anyaddr && !pfnalign) { 2879 flags &= ~PG_PHYSCONTIG; 2880 plist = page_create_va(vp, off, npages * MMU_PAGESIZE, 2881 flags, &kvseg, vaddr); 2882 if (plist != NULL) { 2883 *npagesp = 0; 2884 return (plist); 2885 } 2886 } 2887 plist = NULL; 2888 minctg = howmany(npages, sgllen); 2889 while (npages > sgllen || getone) { 2890 if (minctg > npages) 2891 minctg = npages; 2892 mcpl = NULL; 2893 /* 2894 * We could want contig pages with no address range limits. 2895 */ 2896 if (anyaddr && contig) { 2897 /* 2898 * Look for free contig pages to satisfy the request. 2899 */ 2900 mcpl = find_contig_free(minctg, flags, pfnseg, 2901 pfnalign); 2902 } 2903 /* 2904 * Try the reserved io pools next 2905 */ 2906 if (mcpl == NULL) 2907 mcpl = page_io_pool_alloc(mattr, contig, minctg); 2908 if (mcpl != NULL) { 2909 pp = mcpl; 2910 do { 2911 if (!page_hashin(pp, vp, off, NULL)) { 2912 panic("page_get_contigpages:" 2913 " hashin failed" 2914 " pp %p, vp %p, off %llx", 2915 (void *)pp, (void *)vp, off); 2916 } 2917 off += MMU_PAGESIZE; 2918 PP_CLRFREE(pp); 2919 PP_CLRAGED(pp); 2920 page_set_props(pp, P_REF); 2921 page_io_lock(pp); 2922 pp = pp->p_next; 2923 } while (pp != mcpl); 2924 } else { 2925 /* 2926 * Hypervisor exchange doesn't handle segment or 2927 * alignment constraints 2928 */ 2929 if (mattr->dma_attr_seg < mattr->dma_attr_addr_hi || 2930 pfnalign) 2931 goto fail; 2932 /* 2933 * Try exchanging pages with the hypervisor 2934 */ 2935 mcpl = page_swap_with_hypervisor(vp, off, vaddr, mattr, 2936 flags, minctg); 2937 if (mcpl == NULL) 2938 goto fail; 2939 off += minctg * MMU_PAGESIZE; 2940 } 2941 check_dma(mattr, mcpl, minctg); 2942 /* 2943 * Here with a minctg run of contiguous pages, add them to the 2944 * list we will return for this request. 2945 */ 2946 page_list_concat(&plist, &mcpl); 2947 npages -= minctg; 2948 *npagesp = npages; 2949 sgllen--; 2950 if (getone) 2951 break; 2952 } 2953 return (plist); 2954 fail: 2955 return_partial_alloc(plist); 2956 return (NULL); 2957 } 2958 2959 /* 2960 * Allocator for domain 0 I/O pages. We match the required 2961 * DMA attributes and contiguity constraints. 2962 */ 2963 /*ARGSUSED*/ 2964 page_t * 2965 page_create_io( 2966 struct vnode *vp, 2967 u_offset_t off, 2968 uint_t bytes, 2969 uint_t flags, 2970 struct as *as, 2971 caddr_t vaddr, 2972 ddi_dma_attr_t *mattr) 2973 { 2974 page_t *plist = NULL, *pp; 2975 int npages = 0, contig, anyaddr, pages_req; 2976 mfn_t lo_mfn; 2977 mfn_t hi_mfn; 2978 pgcnt_t pfnalign = 0; 2979 int align; 2980 int is_domu = 0; 2981 int dummy, bytes_got; 2982 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 2983 2984 ASSERT(mattr != NULL); 2985 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo); 2986 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi); 2987 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 2988 if (align > MMU_PAGESIZE) 2989 pfnalign = mmu_btop(align); 2990 2991 /* 2992 * Clear the contig flag if only one page is needed or the scatter 2993 * gather list length is >= npages. 2994 */ 2995 pages_req = npages = mmu_btopr(bytes); 2996 contig = (flags & PG_PHYSCONTIG); 2997 bytes = P2ROUNDUP(bytes, MMU_PAGESIZE); 2998 if (bytes == MMU_PAGESIZE || mattr->dma_attr_sgllen >= npages) 2999 contig = 0; 3000 3001 /* 3002 * Check if any old page in the system is fine. 3003 * DomU should always go down this path. 3004 */ 3005 is_domu = !DOMAIN_IS_INITDOMAIN(xen_info); 3006 anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn && !pfnalign; 3007 if ((!contig && anyaddr) || is_domu) { 3008 flags &= ~PG_PHYSCONTIG; 3009 plist = page_create_va(vp, off, bytes, flags, &kvseg, vaddr); 3010 if (plist != NULL) 3011 return (plist); 3012 else if (is_domu) 3013 return (NULL); /* no memory available */ 3014 } 3015 /* 3016 * DomU should never reach here 3017 */ 3018 if (contig) { 3019 plist = page_get_contigpages(vp, off, &npages, flags, vaddr, 3020 mattr); 3021 if (plist == NULL) 3022 goto fail; 3023 bytes_got = (pages_req - npages) << MMU_PAGESHIFT; 3024 vaddr += bytes_got; 3025 off += bytes_got; 3026 /* 3027 * We now have all the contiguous pages we need, but 3028 * we may still need additional non-contiguous pages. 3029 */ 3030 } 3031 /* 3032 * now loop collecting the requested number of pages, these do 3033 * not have to be contiguous pages but we will use the contig 3034 * page alloc code to get the pages since it will honor any 3035 * other constraints the pages may have. 3036 */ 3037 while (npages--) { 3038 dummy = -1; 3039 pp = page_get_contigpages(vp, off, &dummy, flags, vaddr, mattr); 3040 if (pp == NULL) 3041 goto fail; 3042 page_add(&plist, pp); 3043 vaddr += MMU_PAGESIZE; 3044 off += MMU_PAGESIZE; 3045 } 3046 return (plist); 3047 fail: 3048 /* 3049 * Failed to get enough pages, return ones we did get 3050 */ 3051 return_partial_alloc(plist); 3052 return (NULL); 3053 } 3054 3055 /* 3056 * Lock and return the page with the highest mfn that we can find. last_mfn 3057 * holds the last one found, so the next search can start from there. We 3058 * also keep a counter so that we don't loop forever if the machine has no 3059 * free pages. 3060 * 3061 * This is called from the balloon thread to find pages to give away. new_high 3062 * is used when new mfn's have been added to the system - we will reset our 3063 * search if the new mfn's are higher than our current search position. 3064 */ 3065 page_t * 3066 page_get_high_mfn(mfn_t new_high) 3067 { 3068 static mfn_t last_mfn = 0; 3069 pfn_t pfn; 3070 page_t *pp; 3071 ulong_t loop_count = 0; 3072 3073 if (new_high > last_mfn) 3074 last_mfn = new_high; 3075 3076 for (; loop_count < mfn_count; loop_count++, last_mfn--) { 3077 if (last_mfn == 0) { 3078 last_mfn = cached_max_mfn; 3079 } 3080 3081 pfn = mfn_to_pfn(last_mfn); 3082 if (pfn & PFN_IS_FOREIGN_MFN) 3083 continue; 3084 3085 /* See if the page is free. If so, lock it. */ 3086 pp = page_numtopp_alloc(pfn); 3087 if (pp == NULL) 3088 continue; 3089 PP_CLRFREE(pp); 3090 3091 ASSERT(PAGE_EXCL(pp)); 3092 ASSERT(pp->p_vnode == NULL); 3093 ASSERT(!hat_page_is_mapped(pp)); 3094 last_mfn--; 3095 return (pp); 3096 } 3097 return (NULL); 3098 } 3099 3100 #else /* !__xpv */ 3101 3102 /* 3103 * get a page from any list with the given mnode 3104 */ 3105 static page_t * 3106 page_get_mnode_anylist(ulong_t origbin, uchar_t szc, uint_t flags, 3107 int mnode, int mtype, ddi_dma_attr_t *dma_attr) 3108 { 3109 kmutex_t *pcm; 3110 int i; 3111 page_t *pp; 3112 page_t *first_pp; 3113 uint64_t pgaddr; 3114 ulong_t bin; 3115 int mtypestart; 3116 int plw_initialized; 3117 page_list_walker_t plw; 3118 3119 VM_STAT_ADD(pga_vmstats.pgma_alloc); 3120 3121 ASSERT((flags & PG_MATCH_COLOR) == 0); 3122 ASSERT(szc == 0); 3123 ASSERT(dma_attr != NULL); 3124 3125 MTYPE_START(mnode, mtype, flags); 3126 if (mtype < 0) { 3127 VM_STAT_ADD(pga_vmstats.pgma_allocempty); 3128 return (NULL); 3129 } 3130 3131 mtypestart = mtype; 3132 3133 bin = origbin; 3134 3135 /* 3136 * check up to page_colors + 1 bins - origbin may be checked twice 3137 * because of BIN_STEP skip 3138 */ 3139 do { 3140 plw_initialized = 0; 3141 3142 for (plw.plw_count = 0; 3143 plw.plw_count < page_colors; plw.plw_count++) { 3144 3145 if (PAGE_FREELISTS(mnode, szc, bin, mtype) == NULL) 3146 goto nextfreebin; 3147 3148 pcm = PC_BIN_MUTEX(mnode, bin, PG_FREE_LIST); 3149 mutex_enter(pcm); 3150 pp = PAGE_FREELISTS(mnode, szc, bin, mtype); 3151 first_pp = pp; 3152 while (pp != NULL) { 3153 if (IS_DUMP_PAGE(pp) || page_trylock(pp, 3154 SE_EXCL) == 0) { 3155 pp = pp->p_next; 3156 if (pp == first_pp) { 3157 pp = NULL; 3158 } 3159 continue; 3160 } 3161 3162 ASSERT(PP_ISFREE(pp)); 3163 ASSERT(PP_ISAGED(pp)); 3164 ASSERT(pp->p_vnode == NULL); 3165 ASSERT(pp->p_hash == NULL); 3166 ASSERT(pp->p_offset == (u_offset_t)-1); 3167 ASSERT(pp->p_szc == szc); 3168 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode); 3169 /* check if page within DMA attributes */ 3170 pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum)); 3171 if ((pgaddr >= dma_attr->dma_attr_addr_lo) && 3172 (pgaddr + MMU_PAGESIZE - 1 <= 3173 dma_attr->dma_attr_addr_hi)) { 3174 break; 3175 } 3176 3177 /* continue looking */ 3178 page_unlock(pp); 3179 pp = pp->p_next; 3180 if (pp == first_pp) 3181 pp = NULL; 3182 3183 } 3184 if (pp != NULL) { 3185 ASSERT(mtype == PP_2_MTYPE(pp)); 3186 ASSERT(pp->p_szc == 0); 3187 3188 /* found a page with specified DMA attributes */ 3189 page_sub(&PAGE_FREELISTS(mnode, szc, bin, 3190 mtype), pp); 3191 page_ctr_sub(mnode, mtype, pp, PG_FREE_LIST); 3192 3193 if ((PP_ISFREE(pp) == 0) || 3194 (PP_ISAGED(pp) == 0)) { 3195 cmn_err(CE_PANIC, "page %p is not free", 3196 (void *)pp); 3197 } 3198 3199 mutex_exit(pcm); 3200 check_dma(dma_attr, pp, 1); 3201 VM_STAT_ADD(pga_vmstats.pgma_allocok); 3202 return (pp); 3203 } 3204 mutex_exit(pcm); 3205 nextfreebin: 3206 if (plw_initialized == 0) { 3207 page_list_walk_init(szc, 0, bin, 1, 0, &plw); 3208 ASSERT(plw.plw_ceq_dif == page_colors); 3209 plw_initialized = 1; 3210 } 3211 3212 if (plw.plw_do_split) { 3213 pp = page_freelist_split(szc, bin, mnode, 3214 mtype, 3215 mmu_btop(dma_attr->dma_attr_addr_lo), 3216 mmu_btop(dma_attr->dma_attr_addr_hi + 1), 3217 &plw); 3218 if (pp != NULL) { 3219 check_dma(dma_attr, pp, 1); 3220 return (pp); 3221 } 3222 } 3223 3224 bin = page_list_walk_next_bin(szc, bin, &plw); 3225 } 3226 3227 MTYPE_NEXT(mnode, mtype, flags); 3228 } while (mtype >= 0); 3229 3230 /* failed to find a page in the freelist; try it in the cachelist */ 3231 3232 /* reset mtype start for cachelist search */ 3233 mtype = mtypestart; 3234 ASSERT(mtype >= 0); 3235 3236 /* start with the bin of matching color */ 3237 bin = origbin; 3238 3239 do { 3240 for (i = 0; i <= page_colors; i++) { 3241 if (PAGE_CACHELISTS(mnode, bin, mtype) == NULL) 3242 goto nextcachebin; 3243 pcm = PC_BIN_MUTEX(mnode, bin, PG_CACHE_LIST); 3244 mutex_enter(pcm); 3245 pp = PAGE_CACHELISTS(mnode, bin, mtype); 3246 first_pp = pp; 3247 while (pp != NULL) { 3248 if (IS_DUMP_PAGE(pp) || page_trylock(pp, 3249 SE_EXCL) == 0) { 3250 pp = pp->p_next; 3251 if (pp == first_pp) 3252 pp = NULL; 3253 continue; 3254 } 3255 ASSERT(pp->p_vnode); 3256 ASSERT(PP_ISAGED(pp) == 0); 3257 ASSERT(pp->p_szc == 0); 3258 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode); 3259 3260 /* check if page within DMA attributes */ 3261 3262 pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum)); 3263 if ((pgaddr >= dma_attr->dma_attr_addr_lo) && 3264 (pgaddr + MMU_PAGESIZE - 1 <= 3265 dma_attr->dma_attr_addr_hi)) { 3266 break; 3267 } 3268 3269 /* continue looking */ 3270 page_unlock(pp); 3271 pp = pp->p_next; 3272 if (pp == first_pp) 3273 pp = NULL; 3274 } 3275 3276 if (pp != NULL) { 3277 ASSERT(mtype == PP_2_MTYPE(pp)); 3278 ASSERT(pp->p_szc == 0); 3279 3280 /* found a page with specified DMA attributes */ 3281 page_sub(&PAGE_CACHELISTS(mnode, bin, 3282 mtype), pp); 3283 page_ctr_sub(mnode, mtype, pp, PG_CACHE_LIST); 3284 3285 mutex_exit(pcm); 3286 ASSERT(pp->p_vnode); 3287 ASSERT(PP_ISAGED(pp) == 0); 3288 check_dma(dma_attr, pp, 1); 3289 VM_STAT_ADD(pga_vmstats.pgma_allocok); 3290 return (pp); 3291 } 3292 mutex_exit(pcm); 3293 nextcachebin: 3294 bin += (i == 0) ? BIN_STEP : 1; 3295 bin &= page_colors_mask; 3296 } 3297 MTYPE_NEXT(mnode, mtype, flags); 3298 } while (mtype >= 0); 3299 3300 VM_STAT_ADD(pga_vmstats.pgma_allocfailed); 3301 return (NULL); 3302 } 3303 3304 /* 3305 * This function is similar to page_get_freelist()/page_get_cachelist() 3306 * but it searches both the lists to find a page with the specified 3307 * color (or no color) and DMA attributes. The search is done in the 3308 * freelist first and then in the cache list within the highest memory 3309 * range (based on DMA attributes) before searching in the lower 3310 * memory ranges. 3311 * 3312 * Note: This function is called only by page_create_io(). 3313 */ 3314 /*ARGSUSED*/ 3315 static page_t * 3316 page_get_anylist(struct vnode *vp, u_offset_t off, struct as *as, caddr_t vaddr, 3317 size_t size, uint_t flags, ddi_dma_attr_t *dma_attr, lgrp_t *lgrp) 3318 { 3319 uint_t bin; 3320 int mtype; 3321 page_t *pp; 3322 int n; 3323 int m; 3324 int szc; 3325 int fullrange; 3326 int mnode; 3327 int local_failed_stat = 0; 3328 lgrp_mnode_cookie_t lgrp_cookie; 3329 3330 VM_STAT_ADD(pga_vmstats.pga_alloc); 3331 3332 /* only base pagesize currently supported */ 3333 if (size != MMU_PAGESIZE) 3334 return (NULL); 3335 3336 /* 3337 * If we're passed a specific lgroup, we use it. Otherwise, 3338 * assume first-touch placement is desired. 3339 */ 3340 if (!LGRP_EXISTS(lgrp)) 3341 lgrp = lgrp_home_lgrp(); 3342 3343 /* LINTED */ 3344 AS_2_BIN(as, seg, vp, vaddr, bin, 0); 3345 3346 /* 3347 * Only hold one freelist or cachelist lock at a time, that way we 3348 * can start anywhere and not have to worry about lock 3349 * ordering. 3350 */ 3351 if (dma_attr == NULL) { 3352 n = mtype16m; 3353 m = mtypetop; 3354 fullrange = 1; 3355 VM_STAT_ADD(pga_vmstats.pga_nulldmaattr); 3356 } else { 3357 pfn_t pfnlo = mmu_btop(dma_attr->dma_attr_addr_lo); 3358 pfn_t pfnhi = mmu_btop(dma_attr->dma_attr_addr_hi); 3359 3360 /* 3361 * We can guarantee alignment only for page boundary. 3362 */ 3363 if (dma_attr->dma_attr_align > MMU_PAGESIZE) 3364 return (NULL); 3365 3366 /* Sanity check the dma_attr */ 3367 if (pfnlo > pfnhi) 3368 return (NULL); 3369 3370 n = pfn_2_mtype(pfnlo); 3371 m = pfn_2_mtype(pfnhi); 3372 3373 fullrange = ((pfnlo == mnoderanges[n].mnr_pfnlo) && 3374 (pfnhi >= mnoderanges[m].mnr_pfnhi)); 3375 } 3376 VM_STAT_COND_ADD(fullrange == 0, pga_vmstats.pga_notfullrange); 3377 3378 szc = 0; 3379 3380 /* cylcing thru mtype handled by RANGE0 if n == mtype16m */ 3381 if (n == mtype16m) { 3382 flags |= PGI_MT_RANGE0; 3383 n = m; 3384 } 3385 3386 /* 3387 * Try local memory node first, but try remote if we can't 3388 * get a page of the right color. 3389 */ 3390 LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp, LGRP_SRCH_HIER); 3391 while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) { 3392 /* 3393 * allocate pages from high pfn to low. 3394 */ 3395 mtype = m; 3396 do { 3397 if (fullrange != 0) { 3398 pp = page_get_mnode_freelist(mnode, 3399 bin, mtype, szc, flags); 3400 if (pp == NULL) { 3401 pp = page_get_mnode_cachelist( 3402 bin, flags, mnode, mtype); 3403 } 3404 } else { 3405 pp = page_get_mnode_anylist(bin, szc, 3406 flags, mnode, mtype, dma_attr); 3407 } 3408 if (pp != NULL) { 3409 VM_STAT_ADD(pga_vmstats.pga_allocok); 3410 check_dma(dma_attr, pp, 1); 3411 return (pp); 3412 } 3413 } while (mtype != n && 3414 (mtype = mnoderanges[mtype].mnr_next) != -1); 3415 if (!local_failed_stat) { 3416 lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_ALLOC_FAIL, 1); 3417 local_failed_stat = 1; 3418 } 3419 } 3420 VM_STAT_ADD(pga_vmstats.pga_allocfailed); 3421 3422 return (NULL); 3423 } 3424 3425 /* 3426 * page_create_io() 3427 * 3428 * This function is a copy of page_create_va() with an additional 3429 * argument 'mattr' that specifies DMA memory requirements to 3430 * the page list functions. This function is used by the segkmem 3431 * allocator so it is only to create new pages (i.e PG_EXCL is 3432 * set). 3433 * 3434 * Note: This interface is currently used by x86 PSM only and is 3435 * not fully specified so the commitment level is only for 3436 * private interface specific to x86. This interface uses PSM 3437 * specific page_get_anylist() interface. 3438 */ 3439 3440 #define PAGE_HASH_SEARCH(index, pp, vp, off) { \ 3441 for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \ 3442 if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \ 3443 break; \ 3444 } \ 3445 } 3446 3447 3448 page_t * 3449 page_create_io( 3450 struct vnode *vp, 3451 u_offset_t off, 3452 uint_t bytes, 3453 uint_t flags, 3454 struct as *as, 3455 caddr_t vaddr, 3456 ddi_dma_attr_t *mattr) /* DMA memory attributes if any */ 3457 { 3458 page_t *plist = NULL; 3459 uint_t plist_len = 0; 3460 pgcnt_t npages; 3461 page_t *npp = NULL; 3462 uint_t pages_req; 3463 page_t *pp; 3464 kmutex_t *phm = NULL; 3465 uint_t index; 3466 3467 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START, 3468 "page_create_start:vp %p off %llx bytes %u flags %x", 3469 vp, off, bytes, flags); 3470 3471 ASSERT((flags & ~(PG_EXCL | PG_WAIT | PG_PHYSCONTIG)) == 0); 3472 3473 pages_req = npages = mmu_btopr(bytes); 3474 3475 /* 3476 * Do the freemem and pcf accounting. 3477 */ 3478 if (!page_create_wait(npages, flags)) { 3479 return (NULL); 3480 } 3481 3482 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS, 3483 "page_create_success:vp %p off %llx", vp, off); 3484 3485 /* 3486 * If satisfying this request has left us with too little 3487 * memory, start the wheels turning to get some back. The 3488 * first clause of the test prevents waking up the pageout 3489 * daemon in situations where it would decide that there's 3490 * nothing to do. 3491 */ 3492 if (nscan < desscan && freemem < minfree) { 3493 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL, 3494 "pageout_cv_signal:freemem %ld", freemem); 3495 cv_signal(&proc_pageout->p_cv); 3496 } 3497 3498 if (flags & PG_PHYSCONTIG) { 3499 3500 plist = page_get_contigpage(&npages, mattr, 1); 3501 if (plist == NULL) { 3502 page_create_putback(npages); 3503 return (NULL); 3504 } 3505 3506 pp = plist; 3507 3508 do { 3509 if (!page_hashin(pp, vp, off, NULL)) { 3510 panic("pg_creat_io: hashin failed %p %p %llx", 3511 (void *)pp, (void *)vp, off); 3512 } 3513 VM_STAT_ADD(page_create_new); 3514 off += MMU_PAGESIZE; 3515 PP_CLRFREE(pp); 3516 PP_CLRAGED(pp); 3517 page_set_props(pp, P_REF); 3518 pp = pp->p_next; 3519 } while (pp != plist); 3520 3521 if (!npages) { 3522 check_dma(mattr, plist, pages_req); 3523 return (plist); 3524 } else { 3525 vaddr += (pages_req - npages) << MMU_PAGESHIFT; 3526 } 3527 3528 /* 3529 * fall-thru: 3530 * 3531 * page_get_contigpage returns when npages <= sgllen. 3532 * Grab the rest of the non-contig pages below from anylist. 3533 */ 3534 } 3535 3536 /* 3537 * Loop around collecting the requested number of pages. 3538 * Most of the time, we have to `create' a new page. With 3539 * this in mind, pull the page off the free list before 3540 * getting the hash lock. This will minimize the hash 3541 * lock hold time, nesting, and the like. If it turns 3542 * out we don't need the page, we put it back at the end. 3543 */ 3544 while (npages--) { 3545 phm = NULL; 3546 3547 index = PAGE_HASH_FUNC(vp, off); 3548 top: 3549 ASSERT(phm == NULL); 3550 ASSERT(index == PAGE_HASH_FUNC(vp, off)); 3551 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 3552 3553 if (npp == NULL) { 3554 /* 3555 * Try to get the page of any color either from 3556 * the freelist or from the cache list. 3557 */ 3558 npp = page_get_anylist(vp, off, as, vaddr, MMU_PAGESIZE, 3559 flags & ~PG_MATCH_COLOR, mattr, NULL); 3560 if (npp == NULL) { 3561 if (mattr == NULL) { 3562 /* 3563 * Not looking for a special page; 3564 * panic! 3565 */ 3566 panic("no page found %d", (int)npages); 3567 } 3568 /* 3569 * No page found! This can happen 3570 * if we are looking for a page 3571 * within a specific memory range 3572 * for DMA purposes. If PG_WAIT is 3573 * specified then we wait for a 3574 * while and then try again. The 3575 * wait could be forever if we 3576 * don't get the page(s) we need. 3577 * 3578 * Note: XXX We really need a mechanism 3579 * to wait for pages in the desired 3580 * range. For now, we wait for any 3581 * pages and see if we can use it. 3582 */ 3583 3584 if ((mattr != NULL) && (flags & PG_WAIT)) { 3585 delay(10); 3586 goto top; 3587 } 3588 goto fail; /* undo accounting stuff */ 3589 } 3590 3591 if (PP_ISAGED(npp) == 0) { 3592 /* 3593 * Since this page came from the 3594 * cachelist, we must destroy the 3595 * old vnode association. 3596 */ 3597 page_hashout(npp, (kmutex_t *)NULL); 3598 } 3599 } 3600 3601 /* 3602 * We own this page! 3603 */ 3604 ASSERT(PAGE_EXCL(npp)); 3605 ASSERT(npp->p_vnode == NULL); 3606 ASSERT(!hat_page_is_mapped(npp)); 3607 PP_CLRFREE(npp); 3608 PP_CLRAGED(npp); 3609 3610 /* 3611 * Here we have a page in our hot little mits and are 3612 * just waiting to stuff it on the appropriate lists. 3613 * Get the mutex and check to see if it really does 3614 * not exist. 3615 */ 3616 phm = PAGE_HASH_MUTEX(index); 3617 mutex_enter(phm); 3618 PAGE_HASH_SEARCH(index, pp, vp, off); 3619 if (pp == NULL) { 3620 VM_STAT_ADD(page_create_new); 3621 pp = npp; 3622 npp = NULL; 3623 if (!page_hashin(pp, vp, off, phm)) { 3624 /* 3625 * Since we hold the page hash mutex and 3626 * just searched for this page, page_hashin 3627 * had better not fail. If it does, that 3628 * means somethread did not follow the 3629 * page hash mutex rules. Panic now and 3630 * get it over with. As usual, go down 3631 * holding all the locks. 3632 */ 3633 ASSERT(MUTEX_HELD(phm)); 3634 panic("page_create: hashin fail %p %p %llx %p", 3635 (void *)pp, (void *)vp, off, (void *)phm); 3636 3637 } 3638 ASSERT(MUTEX_HELD(phm)); 3639 mutex_exit(phm); 3640 phm = NULL; 3641 3642 /* 3643 * Hat layer locking need not be done to set 3644 * the following bits since the page is not hashed 3645 * and was on the free list (i.e., had no mappings). 3646 * 3647 * Set the reference bit to protect 3648 * against immediate pageout 3649 * 3650 * XXXmh modify freelist code to set reference 3651 * bit so we don't have to do it here. 3652 */ 3653 page_set_props(pp, P_REF); 3654 } else { 3655 ASSERT(MUTEX_HELD(phm)); 3656 mutex_exit(phm); 3657 phm = NULL; 3658 /* 3659 * NOTE: This should not happen for pages associated 3660 * with kernel vnode 'kvp'. 3661 */ 3662 /* XX64 - to debug why this happens! */ 3663 ASSERT(!VN_ISKAS(vp)); 3664 if (VN_ISKAS(vp)) 3665 cmn_err(CE_NOTE, 3666 "page_create: page not expected " 3667 "in hash list for kernel vnode - pp 0x%p", 3668 (void *)pp); 3669 VM_STAT_ADD(page_create_exists); 3670 goto fail; 3671 } 3672 3673 /* 3674 * Got a page! It is locked. Acquire the i/o 3675 * lock since we are going to use the p_next and 3676 * p_prev fields to link the requested pages together. 3677 */ 3678 page_io_lock(pp); 3679 page_add(&plist, pp); 3680 plist = plist->p_next; 3681 off += MMU_PAGESIZE; 3682 vaddr += MMU_PAGESIZE; 3683 } 3684 3685 check_dma(mattr, plist, pages_req); 3686 return (plist); 3687 3688 fail: 3689 if (npp != NULL) { 3690 /* 3691 * Did not need this page after all. 3692 * Put it back on the free list. 3693 */ 3694 VM_STAT_ADD(page_create_putbacks); 3695 PP_SETFREE(npp); 3696 PP_SETAGED(npp); 3697 npp->p_offset = (u_offset_t)-1; 3698 page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL); 3699 page_unlock(npp); 3700 } 3701 3702 /* 3703 * Give up the pages we already got. 3704 */ 3705 while (plist != NULL) { 3706 pp = plist; 3707 page_sub(&plist, pp); 3708 page_io_unlock(pp); 3709 plist_len++; 3710 /*LINTED: constant in conditional ctx*/ 3711 VN_DISPOSE(pp, B_INVAL, 0, kcred); 3712 } 3713 3714 /* 3715 * VN_DISPOSE does freemem accounting for the pages in plist 3716 * by calling page_free. So, we need to undo the pcf accounting 3717 * for only the remaining pages. 3718 */ 3719 VM_STAT_ADD(page_create_putbacks); 3720 page_create_putback(pages_req - plist_len); 3721 3722 return (NULL); 3723 } 3724 #endif /* !__xpv */ 3725 3726 3727 /* 3728 * Copy the data from the physical page represented by "frompp" to 3729 * that represented by "topp". ppcopy uses CPU->cpu_caddr1 and 3730 * CPU->cpu_caddr2. It assumes that no one uses either map at interrupt 3731 * level and no one sleeps with an active mapping there. 3732 * 3733 * Note that the ref/mod bits in the page_t's are not affected by 3734 * this operation, hence it is up to the caller to update them appropriately. 3735 */ 3736 int 3737 ppcopy(page_t *frompp, page_t *topp) 3738 { 3739 caddr_t pp_addr1; 3740 caddr_t pp_addr2; 3741 hat_mempte_t pte1; 3742 hat_mempte_t pte2; 3743 kmutex_t *ppaddr_mutex; 3744 label_t ljb; 3745 int ret = 1; 3746 3747 ASSERT_STACK_ALIGNED(); 3748 ASSERT(PAGE_LOCKED(frompp)); 3749 ASSERT(PAGE_LOCKED(topp)); 3750 3751 if (kpm_enable) { 3752 pp_addr1 = hat_kpm_page2va(frompp, 0); 3753 pp_addr2 = hat_kpm_page2va(topp, 0); 3754 kpreempt_disable(); 3755 } else { 3756 /* 3757 * disable pre-emption so that CPU can't change 3758 */ 3759 kpreempt_disable(); 3760 3761 pp_addr1 = CPU->cpu_caddr1; 3762 pp_addr2 = CPU->cpu_caddr2; 3763 pte1 = CPU->cpu_caddr1pte; 3764 pte2 = CPU->cpu_caddr2pte; 3765 3766 ppaddr_mutex = &CPU->cpu_ppaddr_mutex; 3767 mutex_enter(ppaddr_mutex); 3768 3769 hat_mempte_remap(page_pptonum(frompp), pp_addr1, pte1, 3770 PROT_READ | HAT_STORECACHING_OK, HAT_LOAD_NOCONSIST); 3771 hat_mempte_remap(page_pptonum(topp), pp_addr2, pte2, 3772 PROT_READ | PROT_WRITE | HAT_STORECACHING_OK, 3773 HAT_LOAD_NOCONSIST); 3774 } 3775 3776 if (on_fault(&ljb)) { 3777 ret = 0; 3778 goto faulted; 3779 } 3780 if (use_sse_pagecopy) 3781 #ifdef __xpv 3782 page_copy_no_xmm(pp_addr2, pp_addr1); 3783 #else 3784 hwblkpagecopy(pp_addr1, pp_addr2); 3785 #endif 3786 else 3787 bcopy(pp_addr1, pp_addr2, PAGESIZE); 3788 3789 no_fault(); 3790 faulted: 3791 if (!kpm_enable) { 3792 #ifdef __xpv 3793 /* 3794 * We can't leave unused mappings laying about under the 3795 * hypervisor, so blow them away. 3796 */ 3797 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr1, 0, 3798 UVMF_INVLPG | UVMF_LOCAL) < 0) 3799 panic("HYPERVISOR_update_va_mapping() failed"); 3800 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0, 3801 UVMF_INVLPG | UVMF_LOCAL) < 0) 3802 panic("HYPERVISOR_update_va_mapping() failed"); 3803 #endif 3804 mutex_exit(ppaddr_mutex); 3805 } 3806 kpreempt_enable(); 3807 return (ret); 3808 } 3809 3810 void 3811 pagezero(page_t *pp, uint_t off, uint_t len) 3812 { 3813 ASSERT(PAGE_LOCKED(pp)); 3814 pfnzero(page_pptonum(pp), off, len); 3815 } 3816 3817 /* 3818 * Zero the physical page from off to off + len given by pfn 3819 * without changing the reference and modified bits of page. 3820 * 3821 * We use this using CPU private page address #2, see ppcopy() for more info. 3822 * pfnzero() must not be called at interrupt level. 3823 */ 3824 void 3825 pfnzero(pfn_t pfn, uint_t off, uint_t len) 3826 { 3827 caddr_t pp_addr2; 3828 hat_mempte_t pte2; 3829 kmutex_t *ppaddr_mutex = NULL; 3830 3831 ASSERT_STACK_ALIGNED(); 3832 ASSERT(len <= MMU_PAGESIZE); 3833 ASSERT(off <= MMU_PAGESIZE); 3834 ASSERT(off + len <= MMU_PAGESIZE); 3835 3836 if (kpm_enable && !pfn_is_foreign(pfn)) { 3837 pp_addr2 = hat_kpm_pfn2va(pfn); 3838 kpreempt_disable(); 3839 } else { 3840 kpreempt_disable(); 3841 3842 pp_addr2 = CPU->cpu_caddr2; 3843 pte2 = CPU->cpu_caddr2pte; 3844 3845 ppaddr_mutex = &CPU->cpu_ppaddr_mutex; 3846 mutex_enter(ppaddr_mutex); 3847 3848 hat_mempte_remap(pfn, pp_addr2, pte2, 3849 PROT_READ | PROT_WRITE | HAT_STORECACHING_OK, 3850 HAT_LOAD_NOCONSIST); 3851 } 3852 3853 if (use_sse_pagezero) { 3854 #ifdef __xpv 3855 uint_t rem; 3856 3857 /* 3858 * zero a byte at a time until properly aligned for 3859 * block_zero_no_xmm(). 3860 */ 3861 while (!P2NPHASE(off, ((uint_t)BLOCKZEROALIGN)) && len-- > 0) 3862 pp_addr2[off++] = 0; 3863 3864 /* 3865 * Now use faster block_zero_no_xmm() for any range 3866 * that is properly aligned and sized. 3867 */ 3868 rem = P2PHASE(len, ((uint_t)BLOCKZEROALIGN)); 3869 len -= rem; 3870 if (len != 0) { 3871 block_zero_no_xmm(pp_addr2 + off, len); 3872 off += len; 3873 } 3874 3875 /* 3876 * zero remainder with byte stores. 3877 */ 3878 while (rem-- > 0) 3879 pp_addr2[off++] = 0; 3880 #else 3881 hwblkclr(pp_addr2 + off, len); 3882 #endif 3883 } else { 3884 bzero(pp_addr2 + off, len); 3885 } 3886 3887 if (!kpm_enable || pfn_is_foreign(pfn)) { 3888 #ifdef __xpv 3889 /* 3890 * On the hypervisor this page might get used for a page 3891 * table before any intervening change to this mapping, 3892 * so blow it away. 3893 */ 3894 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0, 3895 UVMF_INVLPG) < 0) 3896 panic("HYPERVISOR_update_va_mapping() failed"); 3897 #endif 3898 mutex_exit(ppaddr_mutex); 3899 } 3900 3901 kpreempt_enable(); 3902 } 3903 3904 /* 3905 * Platform-dependent page scrub call. 3906 */ 3907 void 3908 pagescrub(page_t *pp, uint_t off, uint_t len) 3909 { 3910 /* 3911 * For now, we rely on the fact that pagezero() will 3912 * always clear UEs. 3913 */ 3914 pagezero(pp, off, len); 3915 } 3916 3917 /* 3918 * set up two private addresses for use on a given CPU for use in ppcopy() 3919 */ 3920 void 3921 setup_vaddr_for_ppcopy(struct cpu *cpup) 3922 { 3923 void *addr; 3924 hat_mempte_t pte_pa; 3925 3926 addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP); 3927 pte_pa = hat_mempte_setup(addr); 3928 cpup->cpu_caddr1 = addr; 3929 cpup->cpu_caddr1pte = pte_pa; 3930 3931 addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP); 3932 pte_pa = hat_mempte_setup(addr); 3933 cpup->cpu_caddr2 = addr; 3934 cpup->cpu_caddr2pte = pte_pa; 3935 3936 mutex_init(&cpup->cpu_ppaddr_mutex, NULL, MUTEX_DEFAULT, NULL); 3937 } 3938 3939 /* 3940 * Undo setup_vaddr_for_ppcopy 3941 */ 3942 void 3943 teardown_vaddr_for_ppcopy(struct cpu *cpup) 3944 { 3945 mutex_destroy(&cpup->cpu_ppaddr_mutex); 3946 3947 hat_mempte_release(cpup->cpu_caddr2, cpup->cpu_caddr2pte); 3948 cpup->cpu_caddr2pte = 0; 3949 vmem_free(heap_arena, cpup->cpu_caddr2, mmu_ptob(1)); 3950 cpup->cpu_caddr2 = 0; 3951 3952 hat_mempte_release(cpup->cpu_caddr1, cpup->cpu_caddr1pte); 3953 cpup->cpu_caddr1pte = 0; 3954 vmem_free(heap_arena, cpup->cpu_caddr1, mmu_ptob(1)); 3955 cpup->cpu_caddr1 = 0; 3956 } 3957 3958 /* 3959 * Function for flushing D-cache when performing module relocations 3960 * to an alternate mapping. Unnecessary on Intel / AMD platforms. 3961 */ 3962 void 3963 dcache_flushall() 3964 {} 3965 3966 /* 3967 * Allocate a memory page. The argument 'seed' can be any pseudo-random 3968 * number to vary where the pages come from. This is quite a hacked up 3969 * method -- it works for now, but really needs to be fixed up a bit. 3970 * 3971 * We currently use page_create_va() on the kvp with fake offsets, 3972 * segments and virt address. This is pretty bogus, but was copied from the 3973 * old hat_i86.c code. A better approach would be to specify either mnode 3974 * random or mnode local and takes a page from whatever color has the MOST 3975 * available - this would have a minimal impact on page coloring. 3976 */ 3977 page_t * 3978 page_get_physical(uintptr_t seed) 3979 { 3980 page_t *pp; 3981 u_offset_t offset; 3982 static struct seg tmpseg; 3983 static uintptr_t ctr = 0; 3984 3985 /* 3986 * This code is gross, we really need a simpler page allocator. 3987 * 3988 * We need to assign an offset for the page to call page_create_va() 3989 * To avoid conflicts with other pages, we get creative with the offset. 3990 * For 32 bits, we need an offset > 4Gig 3991 * For 64 bits, need an offset somewhere in the VA hole. 3992 */ 3993 offset = seed; 3994 if (offset > kernelbase) 3995 offset -= kernelbase; 3996 offset <<= MMU_PAGESHIFT; 3997 #if defined(__amd64) 3998 offset += mmu.hole_start; /* something in VA hole */ 3999 #else 4000 offset += 1ULL << 40; /* something > 4 Gig */ 4001 #endif 4002 4003 if (page_resv(1, KM_NOSLEEP) == 0) 4004 return (NULL); 4005 4006 #ifdef DEBUG 4007 pp = page_exists(&kvp, offset); 4008 if (pp != NULL) 4009 panic("page already exists %p", (void *)pp); 4010 #endif 4011 4012 pp = page_create_va(&kvp, offset, MMU_PAGESIZE, PG_EXCL, 4013 &tmpseg, (caddr_t)(ctr += MMU_PAGESIZE)); /* changing VA usage */ 4014 if (pp != NULL) { 4015 page_io_unlock(pp); 4016 page_downgrade(pp); 4017 } 4018 return (pp); 4019 }