1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright (c) 2010, Intel Corporation. 26 * All rights reserved. 27 */ 28 /* 29 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 30 * Copyright (c) 2014, 2015 by Delphix. All rights reserved. 31 */ 32 33 /* 34 * VM - Hardware Address Translation management for i386 and amd64 35 * 36 * Implementation of the interfaces described in <common/vm/hat.h> 37 * 38 * Nearly all the details of how the hardware is managed should not be 39 * visible outside this layer except for misc. machine specific functions 40 * that work in conjunction with this code. 41 * 42 * Routines used only inside of i86pc/vm start with hati_ for HAT Internal. 43 */ 44 45 #include <sys/machparam.h> 46 #include <sys/machsystm.h> 47 #include <sys/mman.h> 48 #include <sys/types.h> 49 #include <sys/systm.h> 50 #include <sys/cpuvar.h> 51 #include <sys/thread.h> 52 #include <sys/proc.h> 53 #include <sys/cpu.h> 54 #include <sys/kmem.h> 55 #include <sys/disp.h> 56 #include <sys/shm.h> 57 #include <sys/sysmacros.h> 58 #include <sys/machparam.h> 59 #include <sys/vmem.h> 60 #include <sys/vmsystm.h> 61 #include <sys/promif.h> 62 #include <sys/var.h> 63 #include <sys/x86_archext.h> 64 #include <sys/atomic.h> 65 #include <sys/bitmap.h> 66 #include <sys/controlregs.h> 67 #include <sys/bootconf.h> 68 #include <sys/bootsvcs.h> 69 #include <sys/bootinfo.h> 70 #include <sys/archsystm.h> 71 72 #include <vm/seg_kmem.h> 73 #include <vm/hat_i86.h> 74 #include <vm/as.h> 75 #include <vm/seg.h> 76 #include <vm/page.h> 77 #include <vm/seg_kp.h> 78 #include <vm/seg_kpm.h> 79 #include <vm/vm_dep.h> 80 #ifdef __xpv 81 #include <sys/hypervisor.h> 82 #endif 83 #include <vm/kboot_mmu.h> 84 #include <vm/seg_spt.h> 85 86 #include <sys/cmn_err.h> 87 88 /* 89 * Basic parameters for hat operation. 90 */ 91 struct hat_mmu_info mmu; 92 93 /* 94 * The page that is the kernel's top level pagetable. 95 * 96 * For 32 bit PAE support on i86pc, the kernel hat will use the 1st 4 entries 97 * on this 4K page for its top level page table. The remaining groups of 98 * 4 entries are used for per processor copies of user VLP pagetables for 99 * running threads. See hat_switch() and reload_pae32() for details. 100 * 101 * vlp_page[0..3] - level==2 PTEs for kernel HAT 102 * vlp_page[4..7] - level==2 PTEs for user thread on cpu 0 103 * vlp_page[8..11] - level==2 PTE for user thread on cpu 1 104 * etc... 105 */ 106 static x86pte_t *vlp_page; 107 108 /* 109 * forward declaration of internal utility routines 110 */ 111 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, 112 x86pte_t new); 113 114 /* 115 * The kernel address space exists in all HATs. To implement this the 116 * kernel reserves a fixed number of entries in the topmost level(s) of page 117 * tables. The values are setup during startup and then copied to every user 118 * hat created by hat_alloc(). This means that kernelbase must be: 119 * 120 * 4Meg aligned for 32 bit kernels 121 * 512Gig aligned for x86_64 64 bit kernel 122 * 123 * The hat_kernel_range_ts describe what needs to be copied from kernel hat 124 * to each user hat. 125 */ 126 typedef struct hat_kernel_range { 127 level_t hkr_level; 128 uintptr_t hkr_start_va; 129 uintptr_t hkr_end_va; /* zero means to end of memory */ 130 } hat_kernel_range_t; 131 #define NUM_KERNEL_RANGE 2 132 static hat_kernel_range_t kernel_ranges[NUM_KERNEL_RANGE]; 133 static int num_kernel_ranges; 134 135 uint_t use_boot_reserve = 1; /* cleared after early boot process */ 136 uint_t can_steal_post_boot = 0; /* set late in boot to enable stealing */ 137 138 /* 139 * enable_1gpg: controls 1g page support for user applications. 140 * By default, 1g pages are exported to user applications. enable_1gpg can 141 * be set to 0 to not export. 142 */ 143 int enable_1gpg = 1; 144 145 /* 146 * AMD shanghai processors provide better management of 1gb ptes in its tlb. 147 * By default, 1g page support will be disabled for pre-shanghai AMD 148 * processors that don't have optimal tlb support for the 1g page size. 149 * chk_optimal_1gtlb can be set to 0 to force 1g page support on sub-optimal 150 * processors. 151 */ 152 int chk_optimal_1gtlb = 1; 153 154 155 #ifdef DEBUG 156 uint_t map1gcnt; 157 #endif 158 159 160 /* 161 * A cpuset for all cpus. This is used for kernel address cross calls, since 162 * the kernel addresses apply to all cpus. 163 */ 164 cpuset_t khat_cpuset; 165 166 /* 167 * management stuff for hat structures 168 */ 169 kmutex_t hat_list_lock; 170 kcondvar_t hat_list_cv; 171 kmem_cache_t *hat_cache; 172 kmem_cache_t *hat_hash_cache; 173 kmem_cache_t *vlp_hash_cache; 174 175 /* 176 * Simple statistics 177 */ 178 struct hatstats hatstat; 179 180 /* 181 * Some earlier hypervisor versions do not emulate cmpxchg of PTEs 182 * correctly. For such hypervisors we must set PT_USER for kernel 183 * entries ourselves (normally the emulation would set PT_USER for 184 * kernel entries and PT_USER|PT_GLOBAL for user entries). pt_kern is 185 * thus set appropriately. Note that dboot/kbm is OK, as only the full 186 * HAT uses cmpxchg() and the other paths (hypercall etc.) were never 187 * incorrect. 188 */ 189 int pt_kern; 190 191 /* 192 * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's. 193 */ 194 extern void atomic_orb(uchar_t *addr, uchar_t val); 195 extern void atomic_andb(uchar_t *addr, uchar_t val); 196 197 #ifndef __xpv 198 extern pfn_t memseg_get_start(struct memseg *); 199 #endif 200 201 #define PP_GETRM(pp, rmmask) (pp->p_nrm & rmmask) 202 #define PP_ISMOD(pp) PP_GETRM(pp, P_MOD) 203 #define PP_ISREF(pp) PP_GETRM(pp, P_REF) 204 #define PP_ISRO(pp) PP_GETRM(pp, P_RO) 205 206 #define PP_SETRM(pp, rm) atomic_orb(&(pp->p_nrm), rm) 207 #define PP_SETMOD(pp) PP_SETRM(pp, P_MOD) 208 #define PP_SETREF(pp) PP_SETRM(pp, P_REF) 209 #define PP_SETRO(pp) PP_SETRM(pp, P_RO) 210 211 #define PP_CLRRM(pp, rm) atomic_andb(&(pp->p_nrm), ~(rm)) 212 #define PP_CLRMOD(pp) PP_CLRRM(pp, P_MOD) 213 #define PP_CLRREF(pp) PP_CLRRM(pp, P_REF) 214 #define PP_CLRRO(pp) PP_CLRRM(pp, P_RO) 215 #define PP_CLRALL(pp) PP_CLRRM(pp, P_MOD | P_REF | P_RO) 216 217 /* 218 * kmem cache constructor for struct hat 219 */ 220 /*ARGSUSED*/ 221 static int 222 hati_constructor(void *buf, void *handle, int kmflags) 223 { 224 hat_t *hat = buf; 225 226 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 227 bzero(hat->hat_pages_mapped, 228 sizeof (pgcnt_t) * (mmu.max_page_level + 1)); 229 hat->hat_ism_pgcnt = 0; 230 hat->hat_stats = 0; 231 hat->hat_flags = 0; 232 CPUSET_ZERO(hat->hat_cpus); 233 hat->hat_htable = NULL; 234 hat->hat_ht_hash = NULL; 235 return (0); 236 } 237 238 /* 239 * Allocate a hat structure for as. We also create the top level 240 * htable and initialize it to contain the kernel hat entries. 241 */ 242 hat_t * 243 hat_alloc(struct as *as) 244 { 245 hat_t *hat; 246 htable_t *ht; /* top level htable */ 247 uint_t use_vlp; 248 uint_t r; 249 hat_kernel_range_t *rp; 250 uintptr_t va; 251 uintptr_t eva; 252 uint_t start; 253 uint_t cnt; 254 htable_t *src; 255 256 /* 257 * Once we start creating user process HATs we can enable 258 * the htable_steal() code. 259 */ 260 if (can_steal_post_boot == 0) 261 can_steal_post_boot = 1; 262 263 ASSERT(AS_WRITE_HELD(as)); 264 hat = kmem_cache_alloc(hat_cache, KM_SLEEP); 265 hat->hat_as = as; 266 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 267 ASSERT(hat->hat_flags == 0); 268 269 #if defined(__xpv) 270 /* 271 * No VLP stuff on the hypervisor due to the 64-bit split top level 272 * page tables. On 32-bit it's not needed as the hypervisor takes 273 * care of copying the top level PTEs to a below 4Gig page. 274 */ 275 use_vlp = 0; 276 #else /* __xpv */ 277 /* 32 bit processes uses a VLP style hat when running with PAE */ 278 #if defined(__amd64) 279 use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32); 280 #elif defined(__i386) 281 use_vlp = mmu.pae_hat; 282 #endif 283 #endif /* __xpv */ 284 if (use_vlp) { 285 hat->hat_flags = HAT_VLP; 286 bzero(hat->hat_vlp_ptes, VLP_SIZE); 287 } 288 289 /* 290 * Allocate the htable hash 291 */ 292 if ((hat->hat_flags & HAT_VLP)) { 293 hat->hat_num_hash = mmu.vlp_hash_cnt; 294 hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP); 295 } else { 296 hat->hat_num_hash = mmu.hash_cnt; 297 hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP); 298 } 299 bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *)); 300 301 /* 302 * Initialize Kernel HAT entries at the top of the top level page 303 * tables for the new hat. 304 */ 305 hat->hat_htable = NULL; 306 hat->hat_ht_cached = NULL; 307 XPV_DISALLOW_MIGRATE(); 308 ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL); 309 hat->hat_htable = ht; 310 311 #if defined(__amd64) 312 if (hat->hat_flags & HAT_VLP) 313 goto init_done; 314 #endif 315 316 for (r = 0; r < num_kernel_ranges; ++r) { 317 rp = &kernel_ranges[r]; 318 for (va = rp->hkr_start_va; va != rp->hkr_end_va; 319 va += cnt * LEVEL_SIZE(rp->hkr_level)) { 320 321 if (rp->hkr_level == TOP_LEVEL(hat)) 322 ht = hat->hat_htable; 323 else 324 ht = htable_create(hat, va, rp->hkr_level, 325 NULL); 326 327 start = htable_va2entry(va, ht); 328 cnt = HTABLE_NUM_PTES(ht) - start; 329 eva = va + 330 ((uintptr_t)cnt << LEVEL_SHIFT(rp->hkr_level)); 331 if (rp->hkr_end_va != 0 && 332 (eva > rp->hkr_end_va || eva == 0)) 333 cnt = htable_va2entry(rp->hkr_end_va, ht) - 334 start; 335 336 #if defined(__i386) && !defined(__xpv) 337 if (ht->ht_flags & HTABLE_VLP) { 338 bcopy(&vlp_page[start], 339 &hat->hat_vlp_ptes[start], 340 cnt * sizeof (x86pte_t)); 341 continue; 342 } 343 #endif 344 src = htable_lookup(kas.a_hat, va, rp->hkr_level); 345 ASSERT(src != NULL); 346 x86pte_copy(src, ht, start, cnt); 347 htable_release(src); 348 } 349 } 350 351 init_done: 352 353 #if defined(__xpv) 354 /* 355 * Pin top level page tables after initializing them 356 */ 357 xen_pin(hat->hat_htable->ht_pfn, mmu.max_level); 358 #if defined(__amd64) 359 xen_pin(hat->hat_user_ptable, mmu.max_level); 360 #endif 361 #endif 362 XPV_ALLOW_MIGRATE(); 363 364 /* 365 * Put it at the start of the global list of all hats (used by stealing) 366 * 367 * kas.a_hat is not in the list but is instead used to find the 368 * first and last items in the list. 369 * 370 * - kas.a_hat->hat_next points to the start of the user hats. 371 * The list ends where hat->hat_next == NULL 372 * 373 * - kas.a_hat->hat_prev points to the last of the user hats. 374 * The list begins where hat->hat_prev == NULL 375 */ 376 mutex_enter(&hat_list_lock); 377 hat->hat_prev = NULL; 378 hat->hat_next = kas.a_hat->hat_next; 379 if (hat->hat_next) 380 hat->hat_next->hat_prev = hat; 381 else 382 kas.a_hat->hat_prev = hat; 383 kas.a_hat->hat_next = hat; 384 mutex_exit(&hat_list_lock); 385 386 return (hat); 387 } 388 389 /* 390 * process has finished executing but as has not been cleaned up yet. 391 */ 392 /*ARGSUSED*/ 393 void 394 hat_free_start(hat_t *hat) 395 { 396 ASSERT(AS_WRITE_HELD(hat->hat_as)); 397 398 /* 399 * If the hat is currently a stealing victim, wait for the stealing 400 * to finish. Once we mark it as HAT_FREEING, htable_steal() 401 * won't look at its pagetables anymore. 402 */ 403 mutex_enter(&hat_list_lock); 404 while (hat->hat_flags & HAT_VICTIM) 405 cv_wait(&hat_list_cv, &hat_list_lock); 406 hat->hat_flags |= HAT_FREEING; 407 mutex_exit(&hat_list_lock); 408 } 409 410 /* 411 * An address space is being destroyed, so we destroy the associated hat. 412 */ 413 void 414 hat_free_end(hat_t *hat) 415 { 416 kmem_cache_t *cache; 417 418 ASSERT(hat->hat_flags & HAT_FREEING); 419 420 /* 421 * must not be running on the given hat 422 */ 423 ASSERT(CPU->cpu_current_hat != hat); 424 425 /* 426 * Remove it from the list of HATs 427 */ 428 mutex_enter(&hat_list_lock); 429 if (hat->hat_prev) 430 hat->hat_prev->hat_next = hat->hat_next; 431 else 432 kas.a_hat->hat_next = hat->hat_next; 433 if (hat->hat_next) 434 hat->hat_next->hat_prev = hat->hat_prev; 435 else 436 kas.a_hat->hat_prev = hat->hat_prev; 437 mutex_exit(&hat_list_lock); 438 hat->hat_next = hat->hat_prev = NULL; 439 440 #if defined(__xpv) 441 /* 442 * On the hypervisor, unpin top level page table(s) 443 */ 444 xen_unpin(hat->hat_htable->ht_pfn); 445 #if defined(__amd64) 446 xen_unpin(hat->hat_user_ptable); 447 #endif 448 #endif 449 450 /* 451 * Make a pass through the htables freeing them all up. 452 */ 453 htable_purge_hat(hat); 454 455 /* 456 * Decide which kmem cache the hash table came from, then free it. 457 */ 458 if (hat->hat_flags & HAT_VLP) 459 cache = vlp_hash_cache; 460 else 461 cache = hat_hash_cache; 462 kmem_cache_free(cache, hat->hat_ht_hash); 463 hat->hat_ht_hash = NULL; 464 465 hat->hat_flags = 0; 466 kmem_cache_free(hat_cache, hat); 467 } 468 469 /* 470 * round kernelbase down to a supported value to use for _userlimit 471 * 472 * userlimit must be aligned down to an entry in the top level htable. 473 * The one exception is for 32 bit HAT's running PAE. 474 */ 475 uintptr_t 476 hat_kernelbase(uintptr_t va) 477 { 478 #if defined(__i386) 479 va &= LEVEL_MASK(1); 480 #endif 481 if (IN_VA_HOLE(va)) 482 panic("_userlimit %p will fall in VA hole\n", (void *)va); 483 return (va); 484 } 485 486 /* 487 * 488 */ 489 static void 490 set_max_page_level() 491 { 492 level_t lvl; 493 494 if (!kbm_largepage_support) { 495 lvl = 0; 496 } else { 497 if (is_x86_feature(x86_featureset, X86FSET_1GPG)) { 498 lvl = 2; 499 if (chk_optimal_1gtlb && 500 cpuid_opteron_erratum(CPU, 6671130)) { 501 lvl = 1; 502 } 503 if (plat_mnode_xcheck(LEVEL_SIZE(2) >> 504 LEVEL_SHIFT(0))) { 505 lvl = 1; 506 } 507 } else { 508 lvl = 1; 509 } 510 } 511 mmu.max_page_level = lvl; 512 513 if ((lvl == 2) && (enable_1gpg == 0)) 514 mmu.umax_page_level = 1; 515 else 516 mmu.umax_page_level = lvl; 517 } 518 519 /* 520 * Initialize hat data structures based on processor MMU information. 521 */ 522 void 523 mmu_init(void) 524 { 525 uint_t max_htables; 526 uint_t pa_bits; 527 uint_t va_bits; 528 int i; 529 530 /* 531 * If CPU enabled the page table global bit, use it for the kernel 532 * This is bit 7 in CR4 (PGE - Page Global Enable). 533 */ 534 if (is_x86_feature(x86_featureset, X86FSET_PGE) && 535 (getcr4() & CR4_PGE) != 0) 536 mmu.pt_global = PT_GLOBAL; 537 538 /* 539 * Detect NX and PAE usage. 540 */ 541 mmu.pae_hat = kbm_pae_support; 542 if (kbm_nx_support) 543 mmu.pt_nx = PT_NX; 544 else 545 mmu.pt_nx = 0; 546 547 /* 548 * Use CPU info to set various MMU parameters 549 */ 550 cpuid_get_addrsize(CPU, &pa_bits, &va_bits); 551 552 if (va_bits < sizeof (void *) * NBBY) { 553 mmu.hole_start = (1ul << (va_bits - 1)); 554 mmu.hole_end = 0ul - mmu.hole_start - 1; 555 } else { 556 mmu.hole_end = 0; 557 mmu.hole_start = mmu.hole_end - 1; 558 } 559 #if defined(OPTERON_ERRATUM_121) 560 /* 561 * If erratum 121 has already been detected at this time, hole_start 562 * contains the value to be subtracted from mmu.hole_start. 563 */ 564 ASSERT(hole_start == 0 || opteron_erratum_121 != 0); 565 hole_start = mmu.hole_start - hole_start; 566 #else 567 hole_start = mmu.hole_start; 568 #endif 569 hole_end = mmu.hole_end; 570 571 mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1); 572 if (mmu.pae_hat == 0 && pa_bits > 32) 573 mmu.highest_pfn = PFN_4G - 1; 574 575 if (mmu.pae_hat) { 576 mmu.pte_size = 8; /* 8 byte PTEs */ 577 mmu.pte_size_shift = 3; 578 } else { 579 mmu.pte_size = 4; /* 4 byte PTEs */ 580 mmu.pte_size_shift = 2; 581 } 582 583 if (mmu.pae_hat && !is_x86_feature(x86_featureset, X86FSET_PAE)) 584 panic("Processor does not support PAE"); 585 586 if (!is_x86_feature(x86_featureset, X86FSET_CX8)) 587 panic("Processor does not support cmpxchg8b instruction"); 588 589 #if defined(__amd64) 590 591 mmu.num_level = 4; 592 mmu.max_level = 3; 593 mmu.ptes_per_table = 512; 594 mmu.top_level_count = 512; 595 596 mmu.level_shift[0] = 12; 597 mmu.level_shift[1] = 21; 598 mmu.level_shift[2] = 30; 599 mmu.level_shift[3] = 39; 600 601 #elif defined(__i386) 602 603 if (mmu.pae_hat) { 604 mmu.num_level = 3; 605 mmu.max_level = 2; 606 mmu.ptes_per_table = 512; 607 mmu.top_level_count = 4; 608 609 mmu.level_shift[0] = 12; 610 mmu.level_shift[1] = 21; 611 mmu.level_shift[2] = 30; 612 613 } else { 614 mmu.num_level = 2; 615 mmu.max_level = 1; 616 mmu.ptes_per_table = 1024; 617 mmu.top_level_count = 1024; 618 619 mmu.level_shift[0] = 12; 620 mmu.level_shift[1] = 22; 621 } 622 623 #endif /* __i386 */ 624 625 for (i = 0; i < mmu.num_level; ++i) { 626 mmu.level_size[i] = 1UL << mmu.level_shift[i]; 627 mmu.level_offset[i] = mmu.level_size[i] - 1; 628 mmu.level_mask[i] = ~mmu.level_offset[i]; 629 } 630 631 set_max_page_level(); 632 633 mmu_page_sizes = mmu.max_page_level + 1; 634 mmu_exported_page_sizes = mmu.umax_page_level + 1; 635 636 /* restrict legacy applications from using pagesizes 1g and above */ 637 mmu_legacy_page_sizes = 638 (mmu_exported_page_sizes > 2) ? 2 : mmu_exported_page_sizes; 639 640 641 for (i = 0; i <= mmu.max_page_level; ++i) { 642 mmu.pte_bits[i] = PT_VALID | pt_kern; 643 if (i > 0) 644 mmu.pte_bits[i] |= PT_PAGESIZE; 645 } 646 647 /* 648 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level. 649 */ 650 for (i = 1; i < mmu.num_level; ++i) 651 mmu.ptp_bits[i] = PT_PTPBITS; 652 653 #if defined(__i386) 654 mmu.ptp_bits[2] = PT_VALID; 655 #endif 656 657 /* 658 * Compute how many hash table entries to have per process for htables. 659 * We start with 1 page's worth of entries. 660 * 661 * If physical memory is small, reduce the amount need to cover it. 662 */ 663 max_htables = physmax / mmu.ptes_per_table; 664 mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *); 665 while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables) 666 mmu.hash_cnt >>= 1; 667 mmu.vlp_hash_cnt = mmu.hash_cnt; 668 669 #if defined(__amd64) 670 /* 671 * If running in 64 bits and physical memory is large, 672 * increase the size of the cache to cover all of memory for 673 * a 64 bit process. 674 */ 675 #define HASH_MAX_LENGTH 4 676 while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables) 677 mmu.hash_cnt <<= 1; 678 #endif 679 } 680 681 682 /* 683 * initialize hat data structures 684 */ 685 void 686 hat_init() 687 { 688 #if defined(__i386) 689 /* 690 * _userlimit must be aligned correctly 691 */ 692 if ((_userlimit & LEVEL_MASK(1)) != _userlimit) { 693 prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n", 694 (void *)_userlimit, (void *)LEVEL_SIZE(1)); 695 halt("hat_init(): Unable to continue"); 696 } 697 #endif 698 699 cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL); 700 701 /* 702 * initialize kmem caches 703 */ 704 htable_init(); 705 hment_init(); 706 707 hat_cache = kmem_cache_create("hat_t", 708 sizeof (hat_t), 0, hati_constructor, NULL, NULL, 709 NULL, 0, 0); 710 711 hat_hash_cache = kmem_cache_create("HatHash", 712 mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 713 NULL, 0, 0); 714 715 /* 716 * VLP hats can use a smaller hash table size on large memroy machines 717 */ 718 if (mmu.hash_cnt == mmu.vlp_hash_cnt) { 719 vlp_hash_cache = hat_hash_cache; 720 } else { 721 vlp_hash_cache = kmem_cache_create("HatVlpHash", 722 mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 723 NULL, 0, 0); 724 } 725 726 /* 727 * Set up the kernel's hat 728 */ 729 AS_LOCK_ENTER(&kas, RW_WRITER); 730 kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP); 731 mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 732 kas.a_hat->hat_as = &kas; 733 kas.a_hat->hat_flags = 0; 734 AS_LOCK_EXIT(&kas); 735 736 CPUSET_ZERO(khat_cpuset); 737 CPUSET_ADD(khat_cpuset, CPU->cpu_id); 738 739 /* 740 * The kernel hat's next pointer serves as the head of the hat list . 741 * The kernel hat's prev pointer tracks the last hat on the list for 742 * htable_steal() to use. 743 */ 744 kas.a_hat->hat_next = NULL; 745 kas.a_hat->hat_prev = NULL; 746 747 /* 748 * Allocate an htable hash bucket for the kernel 749 * XX64 - tune for 64 bit procs 750 */ 751 kas.a_hat->hat_num_hash = mmu.hash_cnt; 752 kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP); 753 bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *)); 754 755 /* 756 * zero out the top level and cached htable pointers 757 */ 758 kas.a_hat->hat_ht_cached = NULL; 759 kas.a_hat->hat_htable = NULL; 760 761 /* 762 * Pre-allocate hrm_hashtab before enabling the collection of 763 * refmod statistics. Allocating on the fly would mean us 764 * running the risk of suffering recursive mutex enters or 765 * deadlocks. 766 */ 767 hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *), 768 KM_SLEEP); 769 } 770 771 /* 772 * Prepare CPU specific pagetables for VLP processes on 64 bit kernels. 773 * 774 * Each CPU has a set of 2 pagetables that are reused for any 32 bit 775 * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and 776 * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes. 777 */ 778 /*ARGSUSED*/ 779 static void 780 hat_vlp_setup(struct cpu *cpu) 781 { 782 #if defined(__amd64) && !defined(__xpv) 783 struct hat_cpu_info *hci = cpu->cpu_hat_info; 784 pfn_t pfn; 785 786 /* 787 * allocate the level==2 page table for the bottom most 788 * 512Gig of address space (this is where 32 bit apps live) 789 */ 790 ASSERT(hci != NULL); 791 hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 792 793 /* 794 * Allocate a top level pagetable and copy the kernel's 795 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry. 796 */ 797 hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 798 hci->hci_vlp_pfn = 799 hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes); 800 ASSERT(hci->hci_vlp_pfn != PFN_INVALID); 801 bcopy(vlp_page, hci->hci_vlp_l3ptes, MMU_PAGESIZE); 802 803 pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes); 804 ASSERT(pfn != PFN_INVALID); 805 hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2); 806 #endif /* __amd64 && !__xpv */ 807 } 808 809 /*ARGSUSED*/ 810 static void 811 hat_vlp_teardown(cpu_t *cpu) 812 { 813 #if defined(__amd64) && !defined(__xpv) 814 struct hat_cpu_info *hci; 815 816 if ((hci = cpu->cpu_hat_info) == NULL) 817 return; 818 if (hci->hci_vlp_l2ptes) 819 kmem_free(hci->hci_vlp_l2ptes, MMU_PAGESIZE); 820 if (hci->hci_vlp_l3ptes) 821 kmem_free(hci->hci_vlp_l3ptes, MMU_PAGESIZE); 822 #endif 823 } 824 825 #define NEXT_HKR(r, l, s, e) { \ 826 kernel_ranges[r].hkr_level = l; \ 827 kernel_ranges[r].hkr_start_va = s; \ 828 kernel_ranges[r].hkr_end_va = e; \ 829 ++r; \ 830 } 831 832 /* 833 * Finish filling in the kernel hat. 834 * Pre fill in all top level kernel page table entries for the kernel's 835 * part of the address range. From this point on we can't use any new 836 * kernel large pages if they need PTE's at max_level 837 * 838 * create the kmap mappings. 839 */ 840 void 841 hat_init_finish(void) 842 { 843 size_t size; 844 uint_t r = 0; 845 uintptr_t va; 846 hat_kernel_range_t *rp; 847 848 849 /* 850 * We are now effectively running on the kernel hat. 851 * Clearing use_boot_reserve shuts off using the pre-allocated boot 852 * reserve for all HAT allocations. From here on, the reserves are 853 * only used when avoiding recursion in kmem_alloc(). 854 */ 855 use_boot_reserve = 0; 856 htable_adjust_reserve(); 857 858 /* 859 * User HATs are initialized with copies of all kernel mappings in 860 * higher level page tables. Ensure that those entries exist. 861 */ 862 #if defined(__amd64) 863 864 NEXT_HKR(r, 3, kernelbase, 0); 865 #if defined(__xpv) 866 NEXT_HKR(r, 3, HYPERVISOR_VIRT_START, HYPERVISOR_VIRT_END); 867 #endif 868 869 #elif defined(__i386) 870 871 #if !defined(__xpv) 872 if (mmu.pae_hat) { 873 va = kernelbase; 874 if ((va & LEVEL_MASK(2)) != va) { 875 va = P2ROUNDUP(va, LEVEL_SIZE(2)); 876 NEXT_HKR(r, 1, kernelbase, va); 877 } 878 if (va != 0) 879 NEXT_HKR(r, 2, va, 0); 880 } else 881 #endif /* __xpv */ 882 NEXT_HKR(r, 1, kernelbase, 0); 883 884 #endif /* __i386 */ 885 886 num_kernel_ranges = r; 887 888 /* 889 * Create all the kernel pagetables that will have entries 890 * shared to user HATs. 891 */ 892 for (r = 0; r < num_kernel_ranges; ++r) { 893 rp = &kernel_ranges[r]; 894 for (va = rp->hkr_start_va; va != rp->hkr_end_va; 895 va += LEVEL_SIZE(rp->hkr_level)) { 896 htable_t *ht; 897 898 if (IN_HYPERVISOR_VA(va)) 899 continue; 900 901 /* can/must skip if a page mapping already exists */ 902 if (rp->hkr_level <= mmu.max_page_level && 903 (ht = htable_getpage(kas.a_hat, va, NULL)) != 904 NULL) { 905 htable_release(ht); 906 continue; 907 } 908 909 (void) htable_create(kas.a_hat, va, rp->hkr_level - 1, 910 NULL); 911 } 912 } 913 914 /* 915 * 32 bit PAE metal kernels use only 4 of the 512 entries in the 916 * page holding the top level pagetable. We use the remainder for 917 * the "per CPU" page tables for VLP processes. 918 * Map the top level kernel pagetable into the kernel to make 919 * it easy to use bcopy access these tables. 920 */ 921 if (mmu.pae_hat) { 922 vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP); 923 hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE, 924 kas.a_hat->hat_htable->ht_pfn, 925 #if !defined(__xpv) 926 PROT_WRITE | 927 #endif 928 PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK, 929 HAT_LOAD | HAT_LOAD_NOCONSIST); 930 } 931 hat_vlp_setup(CPU); 932 933 /* 934 * Create kmap (cached mappings of kernel PTEs) 935 * for 32 bit we map from segmap_start .. ekernelheap 936 * for 64 bit we map from segmap_start .. segmap_start + segmapsize; 937 */ 938 #if defined(__i386) 939 size = (uintptr_t)ekernelheap - segmap_start; 940 #elif defined(__amd64) 941 size = segmapsize; 942 #endif 943 hat_kmap_init((uintptr_t)segmap_start, size); 944 } 945 946 /* 947 * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references 948 * are 32 bit, so for safety we must use atomic_cas_64() to install these. 949 */ 950 #ifdef __i386 951 static void 952 reload_pae32(hat_t *hat, cpu_t *cpu) 953 { 954 x86pte_t *src; 955 x86pte_t *dest; 956 x86pte_t pte; 957 int i; 958 959 /* 960 * Load the 4 entries of the level 2 page table into this 961 * cpu's range of the vlp_page and point cr3 at them. 962 */ 963 ASSERT(mmu.pae_hat); 964 src = hat->hat_vlp_ptes; 965 dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES; 966 for (i = 0; i < VLP_NUM_PTES; ++i) { 967 for (;;) { 968 pte = dest[i]; 969 if (pte == src[i]) 970 break; 971 if (atomic_cas_64(dest + i, pte, src[i]) != src[i]) 972 break; 973 } 974 } 975 } 976 #endif 977 978 /* 979 * Switch to a new active hat, maintaining bit masks to track active CPUs. 980 * 981 * On the 32-bit PAE hypervisor, %cr3 is a 64-bit value, on metal it 982 * remains a 32-bit value. 983 */ 984 void 985 hat_switch(hat_t *hat) 986 { 987 uint64_t newcr3; 988 cpu_t *cpu = CPU; 989 hat_t *old = cpu->cpu_current_hat; 990 991 /* 992 * set up this information first, so we don't miss any cross calls 993 */ 994 if (old != NULL) { 995 if (old == hat) 996 return; 997 if (old != kas.a_hat) 998 CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id); 999 } 1000 1001 /* 1002 * Add this CPU to the active set for this HAT. 1003 */ 1004 if (hat != kas.a_hat) { 1005 CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id); 1006 } 1007 cpu->cpu_current_hat = hat; 1008 1009 /* 1010 * now go ahead and load cr3 1011 */ 1012 if (hat->hat_flags & HAT_VLP) { 1013 #if defined(__amd64) 1014 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes; 1015 1016 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1017 newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn); 1018 #elif defined(__i386) 1019 reload_pae32(hat, cpu); 1020 newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) + 1021 (cpu->cpu_id + 1) * VLP_SIZE; 1022 #endif 1023 } else { 1024 newcr3 = MAKECR3((uint64_t)hat->hat_htable->ht_pfn); 1025 } 1026 #ifdef __xpv 1027 { 1028 struct mmuext_op t[2]; 1029 uint_t retcnt; 1030 uint_t opcnt = 1; 1031 1032 t[0].cmd = MMUEXT_NEW_BASEPTR; 1033 t[0].arg1.mfn = mmu_btop(pa_to_ma(newcr3)); 1034 #if defined(__amd64) 1035 /* 1036 * There's an interesting problem here, as to what to 1037 * actually specify when switching to the kernel hat. 1038 * For now we'll reuse the kernel hat again. 1039 */ 1040 t[1].cmd = MMUEXT_NEW_USER_BASEPTR; 1041 if (hat == kas.a_hat) 1042 t[1].arg1.mfn = mmu_btop(pa_to_ma(newcr3)); 1043 else 1044 t[1].arg1.mfn = pfn_to_mfn(hat->hat_user_ptable); 1045 ++opcnt; 1046 #endif /* __amd64 */ 1047 if (HYPERVISOR_mmuext_op(t, opcnt, &retcnt, DOMID_SELF) < 0) 1048 panic("HYPERVISOR_mmu_update() failed"); 1049 ASSERT(retcnt == opcnt); 1050 1051 } 1052 #else 1053 setcr3(newcr3); 1054 #endif 1055 ASSERT(cpu == CPU); 1056 } 1057 1058 /* 1059 * Utility to return a valid x86pte_t from protections, pfn, and level number 1060 */ 1061 static x86pte_t 1062 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags) 1063 { 1064 x86pte_t pte; 1065 uint_t cache_attr = attr & HAT_ORDER_MASK; 1066 1067 pte = MAKEPTE(pfn, level); 1068 1069 if (attr & PROT_WRITE) 1070 PTE_SET(pte, PT_WRITABLE); 1071 1072 if (attr & PROT_USER) 1073 PTE_SET(pte, PT_USER); 1074 1075 if (!(attr & PROT_EXEC)) 1076 PTE_SET(pte, mmu.pt_nx); 1077 1078 /* 1079 * Set the software bits used track ref/mod sync's and hments. 1080 * If not using REF/MOD, set them to avoid h/w rewriting PTEs. 1081 */ 1082 if (flags & HAT_LOAD_NOCONSIST) 1083 PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD); 1084 else if (attr & HAT_NOSYNC) 1085 PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD); 1086 1087 /* 1088 * Set the caching attributes in the PTE. The combination 1089 * of attributes are poorly defined, so we pay attention 1090 * to them in the given order. 1091 * 1092 * The test for HAT_STRICTORDER is different because it's defined 1093 * as "0" - which was a stupid thing to do, but is too late to change! 1094 */ 1095 if (cache_attr == HAT_STRICTORDER) { 1096 PTE_SET(pte, PT_NOCACHE); 1097 /*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */ 1098 } else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) { 1099 /* nothing to set */; 1100 } else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) { 1101 PTE_SET(pte, PT_NOCACHE); 1102 if (is_x86_feature(x86_featureset, X86FSET_PAT)) 1103 PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE); 1104 else 1105 PTE_SET(pte, PT_WRITETHRU); 1106 } else { 1107 panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr); 1108 } 1109 1110 return (pte); 1111 } 1112 1113 /* 1114 * Duplicate address translations of the parent to the child. 1115 * This function really isn't used anymore. 1116 */ 1117 /*ARGSUSED*/ 1118 int 1119 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag) 1120 { 1121 ASSERT((uintptr_t)addr < kernelbase); 1122 ASSERT(new != kas.a_hat); 1123 ASSERT(old != kas.a_hat); 1124 return (0); 1125 } 1126 1127 /* 1128 * Allocate any hat resources required for a process being swapped in. 1129 */ 1130 /*ARGSUSED*/ 1131 void 1132 hat_swapin(hat_t *hat) 1133 { 1134 /* do nothing - we let everything fault back in */ 1135 } 1136 1137 /* 1138 * Unload all translations associated with an address space of a process 1139 * that is being swapped out. 1140 */ 1141 void 1142 hat_swapout(hat_t *hat) 1143 { 1144 uintptr_t vaddr = (uintptr_t)0; 1145 uintptr_t eaddr = _userlimit; 1146 htable_t *ht = NULL; 1147 level_t l; 1148 1149 XPV_DISALLOW_MIGRATE(); 1150 /* 1151 * We can't just call hat_unload(hat, 0, _userlimit...) here, because 1152 * seg_spt and shared pagetables can't be swapped out. 1153 * Take a look at segspt_shmswapout() - it's a big no-op. 1154 * 1155 * Instead we'll walk through all the address space and unload 1156 * any mappings which we are sure are not shared, not locked. 1157 */ 1158 ASSERT(IS_PAGEALIGNED(vaddr)); 1159 ASSERT(IS_PAGEALIGNED(eaddr)); 1160 ASSERT(AS_LOCK_HELD(hat->hat_as)); 1161 if ((uintptr_t)hat->hat_as->a_userlimit < eaddr) 1162 eaddr = (uintptr_t)hat->hat_as->a_userlimit; 1163 1164 while (vaddr < eaddr) { 1165 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1166 if (ht == NULL) 1167 break; 1168 1169 ASSERT(!IN_VA_HOLE(vaddr)); 1170 1171 /* 1172 * If the page table is shared skip its entire range. 1173 */ 1174 l = ht->ht_level; 1175 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1176 vaddr = ht->ht_vaddr + LEVEL_SIZE(l + 1); 1177 htable_release(ht); 1178 ht = NULL; 1179 continue; 1180 } 1181 1182 /* 1183 * If the page table has no locked entries, unload this one. 1184 */ 1185 if (ht->ht_lock_cnt == 0) 1186 hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l), 1187 HAT_UNLOAD_UNMAP); 1188 1189 /* 1190 * If we have a level 0 page table with locked entries, 1191 * skip the entire page table, otherwise skip just one entry. 1192 */ 1193 if (ht->ht_lock_cnt > 0 && l == 0) 1194 vaddr = ht->ht_vaddr + LEVEL_SIZE(1); 1195 else 1196 vaddr += LEVEL_SIZE(l); 1197 } 1198 if (ht) 1199 htable_release(ht); 1200 1201 /* 1202 * We're in swapout because the system is low on memory, so 1203 * go back and flush all the htables off the cached list. 1204 */ 1205 htable_purge_hat(hat); 1206 XPV_ALLOW_MIGRATE(); 1207 } 1208 1209 /* 1210 * returns number of bytes that have valid mappings in hat. 1211 */ 1212 size_t 1213 hat_get_mapped_size(hat_t *hat) 1214 { 1215 size_t total = 0; 1216 int l; 1217 1218 for (l = 0; l <= mmu.max_page_level; l++) 1219 total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l)); 1220 total += hat->hat_ism_pgcnt; 1221 1222 return (total); 1223 } 1224 1225 /* 1226 * enable/disable collection of stats for hat. 1227 */ 1228 int 1229 hat_stats_enable(hat_t *hat) 1230 { 1231 atomic_inc_32(&hat->hat_stats); 1232 return (1); 1233 } 1234 1235 void 1236 hat_stats_disable(hat_t *hat) 1237 { 1238 atomic_dec_32(&hat->hat_stats); 1239 } 1240 1241 /* 1242 * Utility to sync the ref/mod bits from a page table entry to the page_t 1243 * We must be holding the mapping list lock when this is called. 1244 */ 1245 static void 1246 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level) 1247 { 1248 uint_t rm = 0; 1249 pgcnt_t pgcnt; 1250 1251 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 1252 return; 1253 1254 if (PTE_GET(pte, PT_REF)) 1255 rm |= P_REF; 1256 1257 if (PTE_GET(pte, PT_MOD)) 1258 rm |= P_MOD; 1259 1260 if (rm == 0) 1261 return; 1262 1263 /* 1264 * sync to all constituent pages of a large page 1265 */ 1266 ASSERT(x86_hm_held(pp)); 1267 pgcnt = page_get_pagecnt(level); 1268 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 1269 for (; pgcnt > 0; --pgcnt) { 1270 /* 1271 * hat_page_demote() can't decrease 1272 * pszc below this mapping size 1273 * since this large mapping existed after we 1274 * took mlist lock. 1275 */ 1276 ASSERT(pp->p_szc >= level); 1277 hat_page_setattr(pp, rm); 1278 ++pp; 1279 } 1280 } 1281 1282 /* 1283 * This the set of PTE bits for PFN, permissions and caching 1284 * that are allowed to change on a HAT_LOAD_REMAP 1285 */ 1286 #define PT_REMAP_BITS \ 1287 (PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU | \ 1288 PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE | PT_IGNORE | PT_REF | PT_MOD) 1289 1290 #define REMAPASSERT(EX) if (!(EX)) panic("hati_pte_map: " #EX) 1291 /* 1292 * Do the low-level work to get a mapping entered into a HAT's pagetables 1293 * and in the mapping list of the associated page_t. 1294 */ 1295 static int 1296 hati_pte_map( 1297 htable_t *ht, 1298 uint_t entry, 1299 page_t *pp, 1300 x86pte_t pte, 1301 int flags, 1302 void *pte_ptr) 1303 { 1304 hat_t *hat = ht->ht_hat; 1305 x86pte_t old_pte; 1306 level_t l = ht->ht_level; 1307 hment_t *hm; 1308 uint_t is_consist; 1309 uint_t is_locked; 1310 int rv = 0; 1311 1312 /* 1313 * Is this a consistent (ie. need mapping list lock) mapping? 1314 */ 1315 is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0); 1316 1317 /* 1318 * Track locked mapping count in the htable. Do this first, 1319 * as we track locking even if there already is a mapping present. 1320 */ 1321 is_locked = (flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat; 1322 if (is_locked) 1323 HTABLE_LOCK_INC(ht); 1324 1325 /* 1326 * Acquire the page's mapping list lock and get an hment to use. 1327 * Note that hment_prepare() might return NULL. 1328 */ 1329 if (is_consist) { 1330 x86_hm_enter(pp); 1331 hm = hment_prepare(ht, entry, pp); 1332 } 1333 1334 /* 1335 * Set the new pte, retrieving the old one at the same time. 1336 */ 1337 old_pte = x86pte_set(ht, entry, pte, pte_ptr); 1338 1339 /* 1340 * Did we get a large page / page table collision? 1341 */ 1342 if (old_pte == LPAGE_ERROR) { 1343 if (is_locked) 1344 HTABLE_LOCK_DEC(ht); 1345 rv = -1; 1346 goto done; 1347 } 1348 1349 /* 1350 * If the mapping didn't change there is nothing more to do. 1351 */ 1352 if (PTE_EQUIV(pte, old_pte)) 1353 goto done; 1354 1355 /* 1356 * Install a new mapping in the page's mapping list 1357 */ 1358 if (!PTE_ISVALID(old_pte)) { 1359 if (is_consist) { 1360 hment_assign(ht, entry, pp, hm); 1361 x86_hm_exit(pp); 1362 } else { 1363 ASSERT(flags & HAT_LOAD_NOCONSIST); 1364 } 1365 #if defined(__amd64) 1366 if (ht->ht_flags & HTABLE_VLP) { 1367 cpu_t *cpu = CPU; 1368 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes; 1369 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1370 } 1371 #endif 1372 HTABLE_INC(ht->ht_valid_cnt); 1373 PGCNT_INC(hat, l); 1374 return (rv); 1375 } 1376 1377 /* 1378 * Remap's are more complicated: 1379 * - HAT_LOAD_REMAP must be specified if changing the pfn. 1380 * We also require that NOCONSIST be specified. 1381 * - Otherwise only permission or caching bits may change. 1382 */ 1383 if (!PTE_ISPAGE(old_pte, l)) 1384 panic("non-null/page mapping pte=" FMT_PTE, old_pte); 1385 1386 if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) { 1387 REMAPASSERT(flags & HAT_LOAD_REMAP); 1388 REMAPASSERT(flags & HAT_LOAD_NOCONSIST); 1389 REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 1390 REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) == 1391 pf_is_memory(PTE2PFN(pte, l))); 1392 REMAPASSERT(!is_consist); 1393 } 1394 1395 /* 1396 * We only let remaps change the certain bits in the PTE. 1397 */ 1398 if (PTE_GET(old_pte, ~PT_REMAP_BITS) != PTE_GET(pte, ~PT_REMAP_BITS)) 1399 panic("remap bits changed: old_pte="FMT_PTE", pte="FMT_PTE"\n", 1400 old_pte, pte); 1401 1402 /* 1403 * We don't create any mapping list entries on a remap, so release 1404 * any allocated hment after we drop the mapping list lock. 1405 */ 1406 done: 1407 if (is_consist) { 1408 x86_hm_exit(pp); 1409 if (hm != NULL) 1410 hment_free(hm); 1411 } 1412 return (rv); 1413 } 1414 1415 /* 1416 * Internal routine to load a single page table entry. This only fails if 1417 * we attempt to overwrite a page table link with a large page. 1418 */ 1419 static int 1420 hati_load_common( 1421 hat_t *hat, 1422 uintptr_t va, 1423 page_t *pp, 1424 uint_t attr, 1425 uint_t flags, 1426 level_t level, 1427 pfn_t pfn) 1428 { 1429 htable_t *ht; 1430 uint_t entry; 1431 x86pte_t pte; 1432 int rv = 0; 1433 1434 /* 1435 * The number 16 is arbitrary and here to catch a recursion problem 1436 * early before we blow out the kernel stack. 1437 */ 1438 ++curthread->t_hatdepth; 1439 ASSERT(curthread->t_hatdepth < 16); 1440 1441 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); 1442 1443 if (flags & HAT_LOAD_SHARE) 1444 hat->hat_flags |= HAT_SHARED; 1445 1446 /* 1447 * Find the page table that maps this page if it already exists. 1448 */ 1449 ht = htable_lookup(hat, va, level); 1450 1451 /* 1452 * We must have HAT_LOAD_NOCONSIST if page_t is NULL. 1453 */ 1454 if (pp == NULL) 1455 flags |= HAT_LOAD_NOCONSIST; 1456 1457 if (ht == NULL) { 1458 ht = htable_create(hat, va, level, NULL); 1459 ASSERT(ht != NULL); 1460 } 1461 entry = htable_va2entry(va, ht); 1462 1463 /* 1464 * a bunch of paranoid error checking 1465 */ 1466 ASSERT(ht->ht_busy > 0); 1467 if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht)) 1468 panic("hati_load_common: bad htable %p, va %p", 1469 (void *)ht, (void *)va); 1470 ASSERT(ht->ht_level == level); 1471 1472 /* 1473 * construct the new PTE 1474 */ 1475 if (hat == kas.a_hat) 1476 attr &= ~PROT_USER; 1477 pte = hati_mkpte(pfn, attr, level, flags); 1478 if (hat == kas.a_hat && va >= kernelbase) 1479 PTE_SET(pte, mmu.pt_global); 1480 1481 /* 1482 * establish the mapping 1483 */ 1484 rv = hati_pte_map(ht, entry, pp, pte, flags, NULL); 1485 1486 /* 1487 * release the htable and any reserves 1488 */ 1489 htable_release(ht); 1490 --curthread->t_hatdepth; 1491 return (rv); 1492 } 1493 1494 /* 1495 * special case of hat_memload to deal with some kernel addrs for performance 1496 */ 1497 static void 1498 hat_kmap_load( 1499 caddr_t addr, 1500 page_t *pp, 1501 uint_t attr, 1502 uint_t flags) 1503 { 1504 uintptr_t va = (uintptr_t)addr; 1505 x86pte_t pte; 1506 pfn_t pfn = page_pptonum(pp); 1507 pgcnt_t pg_off = mmu_btop(va - mmu.kmap_addr); 1508 htable_t *ht; 1509 uint_t entry; 1510 void *pte_ptr; 1511 1512 /* 1513 * construct the requested PTE 1514 */ 1515 attr &= ~PROT_USER; 1516 attr |= HAT_STORECACHING_OK; 1517 pte = hati_mkpte(pfn, attr, 0, flags); 1518 PTE_SET(pte, mmu.pt_global); 1519 1520 /* 1521 * Figure out the pte_ptr and htable and use common code to finish up 1522 */ 1523 if (mmu.pae_hat) 1524 pte_ptr = mmu.kmap_ptes + pg_off; 1525 else 1526 pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off; 1527 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >> 1528 LEVEL_SHIFT(1)]; 1529 entry = htable_va2entry(va, ht); 1530 ++curthread->t_hatdepth; 1531 ASSERT(curthread->t_hatdepth < 16); 1532 (void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr); 1533 --curthread->t_hatdepth; 1534 } 1535 1536 /* 1537 * hat_memload() - load a translation to the given page struct 1538 * 1539 * Flags for hat_memload/hat_devload/hat_*attr. 1540 * 1541 * HAT_LOAD Default flags to load a translation to the page. 1542 * 1543 * HAT_LOAD_LOCK Lock down mapping resources; hat_map(), hat_memload(), 1544 * and hat_devload(). 1545 * 1546 * HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list. 1547 * sets PT_NOCONSIST 1548 * 1549 * HAT_LOAD_SHARE A flag to hat_memload() to indicate h/w page tables 1550 * that map some user pages (not kas) is shared by more 1551 * than one process (eg. ISM). 1552 * 1553 * HAT_LOAD_REMAP Reload a valid pte with a different page frame. 1554 * 1555 * HAT_NO_KALLOC Do not kmem_alloc while creating the mapping; at this 1556 * point, it's setting up mapping to allocate internal 1557 * hat layer data structures. This flag forces hat layer 1558 * to tap its reserves in order to prevent infinite 1559 * recursion. 1560 * 1561 * The following is a protection attribute (like PROT_READ, etc.) 1562 * 1563 * HAT_NOSYNC set PT_NOSYNC - this mapping's ref/mod bits 1564 * are never cleared. 1565 * 1566 * Installing new valid PTE's and creation of the mapping list 1567 * entry are controlled under the same lock. It's derived from the 1568 * page_t being mapped. 1569 */ 1570 static uint_t supported_memload_flags = 1571 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST | 1572 HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT; 1573 1574 void 1575 hat_memload( 1576 hat_t *hat, 1577 caddr_t addr, 1578 page_t *pp, 1579 uint_t attr, 1580 uint_t flags) 1581 { 1582 uintptr_t va = (uintptr_t)addr; 1583 level_t level = 0; 1584 pfn_t pfn = page_pptonum(pp); 1585 1586 XPV_DISALLOW_MIGRATE(); 1587 ASSERT(IS_PAGEALIGNED(va)); 1588 ASSERT(hat == kas.a_hat || va < _userlimit); 1589 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); 1590 ASSERT((flags & supported_memload_flags) == flags); 1591 1592 ASSERT(!IN_VA_HOLE(va)); 1593 ASSERT(!PP_ISFREE(pp)); 1594 1595 /* 1596 * kernel address special case for performance. 1597 */ 1598 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 1599 ASSERT(hat == kas.a_hat); 1600 hat_kmap_load(addr, pp, attr, flags); 1601 XPV_ALLOW_MIGRATE(); 1602 return; 1603 } 1604 1605 /* 1606 * This is used for memory with normal caching enabled, so 1607 * always set HAT_STORECACHING_OK. 1608 */ 1609 attr |= HAT_STORECACHING_OK; 1610 if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0) 1611 panic("unexpected hati_load_common() failure"); 1612 XPV_ALLOW_MIGRATE(); 1613 } 1614 1615 /* ARGSUSED */ 1616 void 1617 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp, 1618 uint_t attr, uint_t flags, hat_region_cookie_t rcookie) 1619 { 1620 hat_memload(hat, addr, pp, attr, flags); 1621 } 1622 1623 /* 1624 * Load the given array of page structs using large pages when possible 1625 */ 1626 void 1627 hat_memload_array( 1628 hat_t *hat, 1629 caddr_t addr, 1630 size_t len, 1631 page_t **pages, 1632 uint_t attr, 1633 uint_t flags) 1634 { 1635 uintptr_t va = (uintptr_t)addr; 1636 uintptr_t eaddr = va + len; 1637 level_t level; 1638 size_t pgsize; 1639 pgcnt_t pgindx = 0; 1640 pfn_t pfn; 1641 pgcnt_t i; 1642 1643 XPV_DISALLOW_MIGRATE(); 1644 ASSERT(IS_PAGEALIGNED(va)); 1645 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 1646 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); 1647 ASSERT((flags & supported_memload_flags) == flags); 1648 1649 /* 1650 * memload is used for memory with full caching enabled, so 1651 * set HAT_STORECACHING_OK. 1652 */ 1653 attr |= HAT_STORECACHING_OK; 1654 1655 /* 1656 * handle all pages using largest possible pagesize 1657 */ 1658 while (va < eaddr) { 1659 /* 1660 * decide what level mapping to use (ie. pagesize) 1661 */ 1662 pfn = page_pptonum(pages[pgindx]); 1663 for (level = mmu.max_page_level; ; --level) { 1664 pgsize = LEVEL_SIZE(level); 1665 if (level == 0) 1666 break; 1667 1668 if (!IS_P2ALIGNED(va, pgsize) || 1669 (eaddr - va) < pgsize || 1670 !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize)) 1671 continue; 1672 1673 /* 1674 * To use a large mapping of this size, all the 1675 * pages we are passed must be sequential subpages 1676 * of the large page. 1677 * hat_page_demote() can't change p_szc because 1678 * all pages are locked. 1679 */ 1680 if (pages[pgindx]->p_szc >= level) { 1681 for (i = 0; i < mmu_btop(pgsize); ++i) { 1682 if (pfn + i != 1683 page_pptonum(pages[pgindx + i])) 1684 break; 1685 ASSERT(pages[pgindx + i]->p_szc >= 1686 level); 1687 ASSERT(pages[pgindx] + i == 1688 pages[pgindx + i]); 1689 } 1690 if (i == mmu_btop(pgsize)) { 1691 #ifdef DEBUG 1692 if (level == 2) 1693 map1gcnt++; 1694 #endif 1695 break; 1696 } 1697 } 1698 } 1699 1700 /* 1701 * Load this page mapping. If the load fails, try a smaller 1702 * pagesize. 1703 */ 1704 ASSERT(!IN_VA_HOLE(va)); 1705 while (hati_load_common(hat, va, pages[pgindx], attr, 1706 flags, level, pfn) != 0) { 1707 if (level == 0) 1708 panic("unexpected hati_load_common() failure"); 1709 --level; 1710 pgsize = LEVEL_SIZE(level); 1711 } 1712 1713 /* 1714 * move to next page 1715 */ 1716 va += pgsize; 1717 pgindx += mmu_btop(pgsize); 1718 } 1719 XPV_ALLOW_MIGRATE(); 1720 } 1721 1722 /* ARGSUSED */ 1723 void 1724 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len, 1725 struct page **pps, uint_t attr, uint_t flags, 1726 hat_region_cookie_t rcookie) 1727 { 1728 hat_memload_array(hat, addr, len, pps, attr, flags); 1729 } 1730 1731 /* 1732 * void hat_devload(hat, addr, len, pf, attr, flags) 1733 * load/lock the given page frame number 1734 * 1735 * Advisory ordering attributes. Apply only to device mappings. 1736 * 1737 * HAT_STRICTORDER: the CPU must issue the references in order, as the 1738 * programmer specified. This is the default. 1739 * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds 1740 * of reordering; store or load with store or load). 1741 * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores 1742 * to consecutive locations (for example, turn two consecutive byte 1743 * stores into one halfword store), and it may batch individual loads 1744 * (for example, turn two consecutive byte loads into one halfword load). 1745 * This also implies re-ordering. 1746 * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it 1747 * until another store occurs. The default is to fetch new data 1748 * on every load. This also implies merging. 1749 * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to 1750 * the device (perhaps with other data) at a later time. The default is 1751 * to push the data right away. This also implies load caching. 1752 * 1753 * Equivalent of hat_memload(), but can be used for device memory where 1754 * there are no page_t's and we support additional flags (write merging, etc). 1755 * Note that we can have large page mappings with this interface. 1756 */ 1757 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK | 1758 HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK | 1759 HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK; 1760 1761 void 1762 hat_devload( 1763 hat_t *hat, 1764 caddr_t addr, 1765 size_t len, 1766 pfn_t pfn, 1767 uint_t attr, 1768 int flags) 1769 { 1770 uintptr_t va = ALIGN2PAGE(addr); 1771 uintptr_t eva = va + len; 1772 level_t level; 1773 size_t pgsize; 1774 page_t *pp; 1775 int f; /* per PTE copy of flags - maybe modified */ 1776 uint_t a; /* per PTE copy of attr */ 1777 1778 XPV_DISALLOW_MIGRATE(); 1779 ASSERT(IS_PAGEALIGNED(va)); 1780 ASSERT(hat == kas.a_hat || eva <= _userlimit); 1781 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); 1782 ASSERT((flags & supported_devload_flags) == flags); 1783 1784 /* 1785 * handle all pages 1786 */ 1787 while (va < eva) { 1788 1789 /* 1790 * decide what level mapping to use (ie. pagesize) 1791 */ 1792 for (level = mmu.max_page_level; ; --level) { 1793 pgsize = LEVEL_SIZE(level); 1794 if (level == 0) 1795 break; 1796 if (IS_P2ALIGNED(va, pgsize) && 1797 (eva - va) >= pgsize && 1798 IS_P2ALIGNED(pfn, mmu_btop(pgsize))) { 1799 #ifdef DEBUG 1800 if (level == 2) 1801 map1gcnt++; 1802 #endif 1803 break; 1804 } 1805 } 1806 1807 /* 1808 * If this is just memory then allow caching (this happens 1809 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used 1810 * to override that. If we don't have a page_t then make sure 1811 * NOCONSIST is set. 1812 */ 1813 a = attr; 1814 f = flags; 1815 if (!pf_is_memory(pfn)) 1816 f |= HAT_LOAD_NOCONSIST; 1817 else if (!(a & HAT_PLAT_NOCACHE)) 1818 a |= HAT_STORECACHING_OK; 1819 1820 if (f & HAT_LOAD_NOCONSIST) 1821 pp = NULL; 1822 else 1823 pp = page_numtopp_nolock(pfn); 1824 1825 /* 1826 * Check to make sure we are really trying to map a valid 1827 * memory page. The caller wishing to intentionally map 1828 * free memory pages will have passed the HAT_LOAD_NOCONSIST 1829 * flag, then pp will be NULL. 1830 */ 1831 if (pp != NULL) { 1832 if (PP_ISFREE(pp)) { 1833 panic("hat_devload: loading " 1834 "a mapping to free page %p", (void *)pp); 1835 } 1836 1837 if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) { 1838 panic("hat_devload: loading a mapping " 1839 "to an unlocked page %p", 1840 (void *)pp); 1841 } 1842 } 1843 1844 /* 1845 * load this page mapping 1846 */ 1847 ASSERT(!IN_VA_HOLE(va)); 1848 while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) { 1849 if (level == 0) 1850 panic("unexpected hati_load_common() failure"); 1851 --level; 1852 pgsize = LEVEL_SIZE(level); 1853 } 1854 1855 /* 1856 * move to next page 1857 */ 1858 va += pgsize; 1859 pfn += mmu_btop(pgsize); 1860 } 1861 XPV_ALLOW_MIGRATE(); 1862 } 1863 1864 /* 1865 * void hat_unlock(hat, addr, len) 1866 * unlock the mappings to a given range of addresses 1867 * 1868 * Locks are tracked by ht_lock_cnt in the htable. 1869 */ 1870 void 1871 hat_unlock(hat_t *hat, caddr_t addr, size_t len) 1872 { 1873 uintptr_t vaddr = (uintptr_t)addr; 1874 uintptr_t eaddr = vaddr + len; 1875 htable_t *ht = NULL; 1876 1877 /* 1878 * kernel entries are always locked, we don't track lock counts 1879 */ 1880 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 1881 ASSERT(IS_PAGEALIGNED(vaddr)); 1882 ASSERT(IS_PAGEALIGNED(eaddr)); 1883 if (hat == kas.a_hat) 1884 return; 1885 if (eaddr > _userlimit) 1886 panic("hat_unlock() address out of range - above _userlimit"); 1887 1888 XPV_DISALLOW_MIGRATE(); 1889 ASSERT(AS_LOCK_HELD(hat->hat_as)); 1890 while (vaddr < eaddr) { 1891 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1892 if (ht == NULL) 1893 break; 1894 1895 ASSERT(!IN_VA_HOLE(vaddr)); 1896 1897 if (ht->ht_lock_cnt < 1) 1898 panic("hat_unlock(): lock_cnt < 1, " 1899 "htable=%p, vaddr=%p\n", (void *)ht, (void *)vaddr); 1900 HTABLE_LOCK_DEC(ht); 1901 1902 vaddr += LEVEL_SIZE(ht->ht_level); 1903 } 1904 if (ht) 1905 htable_release(ht); 1906 XPV_ALLOW_MIGRATE(); 1907 } 1908 1909 /* ARGSUSED */ 1910 void 1911 hat_unlock_region(struct hat *hat, caddr_t addr, size_t len, 1912 hat_region_cookie_t rcookie) 1913 { 1914 panic("No shared region support on x86"); 1915 } 1916 1917 #if !defined(__xpv) 1918 /* 1919 * Cross call service routine to demap a virtual page on 1920 * the current CPU or flush all mappings in TLB. 1921 */ 1922 /*ARGSUSED*/ 1923 static int 1924 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3) 1925 { 1926 hat_t *hat = (hat_t *)a1; 1927 caddr_t addr = (caddr_t)a2; 1928 size_t len = (size_t)a3; 1929 1930 /* 1931 * If the target hat isn't the kernel and this CPU isn't operating 1932 * in the target hat, we can ignore the cross call. 1933 */ 1934 if (hat != kas.a_hat && hat != CPU->cpu_current_hat) 1935 return (0); 1936 1937 /* 1938 * For a normal address, we flush a range of contiguous mappings 1939 */ 1940 if ((uintptr_t)addr != DEMAP_ALL_ADDR) { 1941 for (size_t i = 0; i < len; i += MMU_PAGESIZE) 1942 mmu_tlbflush_entry(addr + i); 1943 return (0); 1944 } 1945 1946 /* 1947 * Otherwise we reload cr3 to effect a complete TLB flush. 1948 * 1949 * A reload of cr3 on a VLP process also means we must also recopy in 1950 * the pte values from the struct hat 1951 */ 1952 if (hat->hat_flags & HAT_VLP) { 1953 #if defined(__amd64) 1954 x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes; 1955 1956 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1957 #elif defined(__i386) 1958 reload_pae32(hat, CPU); 1959 #endif 1960 } 1961 reload_cr3(); 1962 return (0); 1963 } 1964 1965 /* 1966 * Flush all TLB entries, including global (ie. kernel) ones. 1967 */ 1968 static void 1969 flush_all_tlb_entries(void) 1970 { 1971 ulong_t cr4 = getcr4(); 1972 1973 if (cr4 & CR4_PGE) { 1974 setcr4(cr4 & ~(ulong_t)CR4_PGE); 1975 setcr4(cr4); 1976 1977 /* 1978 * 32 bit PAE also needs to always reload_cr3() 1979 */ 1980 if (mmu.max_level == 2) 1981 reload_cr3(); 1982 } else { 1983 reload_cr3(); 1984 } 1985 } 1986 1987 #define TLB_CPU_HALTED (01ul) 1988 #define TLB_INVAL_ALL (02ul) 1989 #define CAS_TLB_INFO(cpu, old, new) \ 1990 atomic_cas_ulong((ulong_t *)&(cpu)->cpu_m.mcpu_tlb_info, (old), (new)) 1991 1992 /* 1993 * Record that a CPU is going idle 1994 */ 1995 void 1996 tlb_going_idle(void) 1997 { 1998 atomic_or_ulong((ulong_t *)&CPU->cpu_m.mcpu_tlb_info, TLB_CPU_HALTED); 1999 } 2000 2001 /* 2002 * Service a delayed TLB flush if coming out of being idle. 2003 * It will be called from cpu idle notification with interrupt disabled. 2004 */ 2005 void 2006 tlb_service(void) 2007 { 2008 ulong_t tlb_info; 2009 ulong_t found; 2010 2011 /* 2012 * We only have to do something if coming out of being idle. 2013 */ 2014 tlb_info = CPU->cpu_m.mcpu_tlb_info; 2015 if (tlb_info & TLB_CPU_HALTED) { 2016 ASSERT(CPU->cpu_current_hat == kas.a_hat); 2017 2018 /* 2019 * Atomic clear and fetch of old state. 2020 */ 2021 while ((found = CAS_TLB_INFO(CPU, tlb_info, 0)) != tlb_info) { 2022 ASSERT(found & TLB_CPU_HALTED); 2023 tlb_info = found; 2024 SMT_PAUSE(); 2025 } 2026 if (tlb_info & TLB_INVAL_ALL) 2027 flush_all_tlb_entries(); 2028 } 2029 } 2030 #endif /* !__xpv */ 2031 2032 /* 2033 * Internal routine to do cross calls to invalidate a range of pages on 2034 * all CPUs using a given hat. 2035 */ 2036 void 2037 hat_tlb_inval_range(hat_t *hat, uintptr_t va, size_t len) 2038 { 2039 extern int flushes_require_xcalls; /* from mp_startup.c */ 2040 cpuset_t justme; 2041 cpuset_t cpus_to_shootdown; 2042 #ifndef __xpv 2043 cpuset_t check_cpus; 2044 cpu_t *cpup; 2045 int c; 2046 #endif 2047 2048 /* 2049 * If the hat is being destroyed, there are no more users, so 2050 * demap need not do anything. 2051 */ 2052 if (hat->hat_flags & HAT_FREEING) 2053 return; 2054 2055 /* 2056 * If demapping from a shared pagetable, we best demap the 2057 * entire set of user TLBs, since we don't know what addresses 2058 * these were shared at. 2059 */ 2060 if (hat->hat_flags & HAT_SHARED) { 2061 hat = kas.a_hat; 2062 va = DEMAP_ALL_ADDR; 2063 } 2064 2065 /* 2066 * if not running with multiple CPUs, don't use cross calls 2067 */ 2068 if (panicstr || !flushes_require_xcalls) { 2069 #ifdef __xpv 2070 if (va == DEMAP_ALL_ADDR) { 2071 xen_flush_tlb(); 2072 } else { 2073 for (size_t i = 0; i < len; i += MMU_PAGESIZE) 2074 xen_flush_va((caddr_t)(va + i)); 2075 } 2076 #else 2077 (void) hati_demap_func((xc_arg_t)hat, 2078 (xc_arg_t)va, (xc_arg_t)len); 2079 #endif 2080 return; 2081 } 2082 2083 2084 /* 2085 * Determine CPUs to shootdown. Kernel changes always do all CPUs. 2086 * Otherwise it's just CPUs currently executing in this hat. 2087 */ 2088 kpreempt_disable(); 2089 CPUSET_ONLY(justme, CPU->cpu_id); 2090 if (hat == kas.a_hat) 2091 cpus_to_shootdown = khat_cpuset; 2092 else 2093 cpus_to_shootdown = hat->hat_cpus; 2094 2095 #ifndef __xpv 2096 /* 2097 * If any CPUs in the set are idle, just request a delayed flush 2098 * and avoid waking them up. 2099 */ 2100 check_cpus = cpus_to_shootdown; 2101 for (c = 0; c < NCPU && !CPUSET_ISNULL(check_cpus); ++c) { 2102 ulong_t tlb_info; 2103 2104 if (!CPU_IN_SET(check_cpus, c)) 2105 continue; 2106 CPUSET_DEL(check_cpus, c); 2107 cpup = cpu[c]; 2108 if (cpup == NULL) 2109 continue; 2110 2111 tlb_info = cpup->cpu_m.mcpu_tlb_info; 2112 while (tlb_info == TLB_CPU_HALTED) { 2113 (void) CAS_TLB_INFO(cpup, TLB_CPU_HALTED, 2114 TLB_CPU_HALTED | TLB_INVAL_ALL); 2115 SMT_PAUSE(); 2116 tlb_info = cpup->cpu_m.mcpu_tlb_info; 2117 } 2118 if (tlb_info == (TLB_CPU_HALTED | TLB_INVAL_ALL)) { 2119 HATSTAT_INC(hs_tlb_inval_delayed); 2120 CPUSET_DEL(cpus_to_shootdown, c); 2121 } 2122 } 2123 #endif 2124 2125 if (CPUSET_ISNULL(cpus_to_shootdown) || 2126 CPUSET_ISEQUAL(cpus_to_shootdown, justme)) { 2127 2128 #ifdef __xpv 2129 if (va == DEMAP_ALL_ADDR) { 2130 xen_flush_tlb(); 2131 } else { 2132 for (size_t i = 0; i < len; i += MMU_PAGESIZE) 2133 xen_flush_va((caddr_t)(va + i)); 2134 } 2135 #else 2136 (void) hati_demap_func((xc_arg_t)hat, 2137 (xc_arg_t)va, (xc_arg_t)len); 2138 #endif 2139 2140 } else { 2141 2142 CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id); 2143 #ifdef __xpv 2144 if (va == DEMAP_ALL_ADDR) { 2145 xen_gflush_tlb(cpus_to_shootdown); 2146 } else { 2147 for (size_t i = 0; i < len; i += MMU_PAGESIZE) { 2148 xen_gflush_va((caddr_t)(va + i), 2149 cpus_to_shootdown); 2150 } 2151 } 2152 #else 2153 xc_call((xc_arg_t)hat, (xc_arg_t)va, (xc_arg_t)len, 2154 CPUSET2BV(cpus_to_shootdown), hati_demap_func); 2155 #endif 2156 2157 } 2158 kpreempt_enable(); 2159 } 2160 2161 void 2162 hat_tlb_inval(hat_t *hat, uintptr_t va) 2163 { 2164 hat_tlb_inval_range(hat, va, MMU_PAGESIZE); 2165 } 2166 2167 /* 2168 * Interior routine for HAT_UNLOADs from hat_unload_callback(), 2169 * hat_kmap_unload() OR from hat_steal() code. This routine doesn't 2170 * handle releasing of the htables. 2171 */ 2172 void 2173 hat_pte_unmap( 2174 htable_t *ht, 2175 uint_t entry, 2176 uint_t flags, 2177 x86pte_t old_pte, 2178 void *pte_ptr, 2179 boolean_t tlb) 2180 { 2181 hat_t *hat = ht->ht_hat; 2182 hment_t *hm = NULL; 2183 page_t *pp = NULL; 2184 level_t l = ht->ht_level; 2185 pfn_t pfn; 2186 2187 /* 2188 * We always track the locking counts, even if nothing is unmapped 2189 */ 2190 if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) { 2191 ASSERT(ht->ht_lock_cnt > 0); 2192 HTABLE_LOCK_DEC(ht); 2193 } 2194 2195 /* 2196 * Figure out which page's mapping list lock to acquire using the PFN 2197 * passed in "old" PTE. We then attempt to invalidate the PTE. 2198 * If another thread, probably a hat_pageunload, has asynchronously 2199 * unmapped/remapped this address we'll loop here. 2200 */ 2201 ASSERT(ht->ht_busy > 0); 2202 while (PTE_ISVALID(old_pte)) { 2203 pfn = PTE2PFN(old_pte, l); 2204 if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) { 2205 pp = NULL; 2206 } else { 2207 #ifdef __xpv 2208 if (pfn == PFN_INVALID) 2209 panic("Invalid PFN, but not PT_NOCONSIST"); 2210 #endif 2211 pp = page_numtopp_nolock(pfn); 2212 if (pp == NULL) { 2213 panic("no page_t, not NOCONSIST: old_pte=" 2214 FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx", 2215 old_pte, (uintptr_t)ht, entry, 2216 (uintptr_t)pte_ptr); 2217 } 2218 x86_hm_enter(pp); 2219 } 2220 2221 old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr, tlb); 2222 2223 /* 2224 * If the page hadn't changed we've unmapped it and can proceed 2225 */ 2226 if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn) 2227 break; 2228 2229 /* 2230 * Otherwise, we'll have to retry with the current old_pte. 2231 * Drop the hment lock, since the pfn may have changed. 2232 */ 2233 if (pp != NULL) { 2234 x86_hm_exit(pp); 2235 pp = NULL; 2236 } else { 2237 ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 2238 } 2239 } 2240 2241 /* 2242 * If the old mapping wasn't valid, there's nothing more to do 2243 */ 2244 if (!PTE_ISVALID(old_pte)) { 2245 if (pp != NULL) 2246 x86_hm_exit(pp); 2247 return; 2248 } 2249 2250 /* 2251 * Take care of syncing any MOD/REF bits and removing the hment. 2252 */ 2253 if (pp != NULL) { 2254 if (!(flags & HAT_UNLOAD_NOSYNC)) 2255 hati_sync_pte_to_page(pp, old_pte, l); 2256 hm = hment_remove(pp, ht, entry); 2257 x86_hm_exit(pp); 2258 if (hm != NULL) 2259 hment_free(hm); 2260 } 2261 2262 /* 2263 * Handle book keeping in the htable and hat 2264 */ 2265 ASSERT(ht->ht_valid_cnt > 0); 2266 HTABLE_DEC(ht->ht_valid_cnt); 2267 PGCNT_DEC(hat, l); 2268 } 2269 2270 /* 2271 * very cheap unload implementation to special case some kernel addresses 2272 */ 2273 static void 2274 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags) 2275 { 2276 uintptr_t va = (uintptr_t)addr; 2277 uintptr_t eva = va + len; 2278 pgcnt_t pg_index; 2279 htable_t *ht; 2280 uint_t entry; 2281 x86pte_t *pte_ptr; 2282 x86pte_t old_pte; 2283 2284 for (; va < eva; va += MMU_PAGESIZE) { 2285 /* 2286 * Get the PTE 2287 */ 2288 pg_index = mmu_btop(va - mmu.kmap_addr); 2289 pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index); 2290 old_pte = GET_PTE(pte_ptr); 2291 2292 /* 2293 * get the htable / entry 2294 */ 2295 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) 2296 >> LEVEL_SHIFT(1)]; 2297 entry = htable_va2entry(va, ht); 2298 2299 /* 2300 * use mostly common code to unmap it. 2301 */ 2302 hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr, B_TRUE); 2303 } 2304 } 2305 2306 2307 /* 2308 * unload a range of virtual address space (no callback) 2309 */ 2310 void 2311 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2312 { 2313 uintptr_t va = (uintptr_t)addr; 2314 2315 XPV_DISALLOW_MIGRATE(); 2316 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 2317 2318 /* 2319 * special case for performance. 2320 */ 2321 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 2322 ASSERT(hat == kas.a_hat); 2323 hat_kmap_unload(addr, len, flags); 2324 } else { 2325 hat_unload_callback(hat, addr, len, flags, NULL); 2326 } 2327 XPV_ALLOW_MIGRATE(); 2328 } 2329 2330 /* 2331 * Do the callbacks for ranges being unloaded. 2332 */ 2333 typedef struct range_info { 2334 uintptr_t rng_va; 2335 ulong_t rng_cnt; 2336 level_t rng_level; 2337 } range_info_t; 2338 2339 /* 2340 * Invalidate the TLB, and perform the callback to the upper level VM system, 2341 * for the specified ranges of contiguous pages. 2342 */ 2343 static void 2344 handle_ranges(hat_t *hat, hat_callback_t *cb, uint_t cnt, range_info_t *range) 2345 { 2346 while (cnt > 0) { 2347 size_t len; 2348 2349 --cnt; 2350 len = range[cnt].rng_cnt << LEVEL_SHIFT(range[cnt].rng_level); 2351 hat_tlb_inval_range(hat, (uintptr_t)range[cnt].rng_va, len); 2352 2353 if (cb != NULL) { 2354 cb->hcb_start_addr = (caddr_t)range[cnt].rng_va; 2355 cb->hcb_end_addr = cb->hcb_start_addr; 2356 cb->hcb_end_addr += len; 2357 cb->hcb_function(cb); 2358 } 2359 } 2360 } 2361 2362 /* 2363 * Unload a given range of addresses (has optional callback) 2364 * 2365 * Flags: 2366 * define HAT_UNLOAD 0x00 2367 * define HAT_UNLOAD_NOSYNC 0x02 2368 * define HAT_UNLOAD_UNLOCK 0x04 2369 * define HAT_UNLOAD_OTHER 0x08 - not used 2370 * define HAT_UNLOAD_UNMAP 0x10 - same as HAT_UNLOAD 2371 */ 2372 #define MAX_UNLOAD_CNT (8) 2373 void 2374 hat_unload_callback( 2375 hat_t *hat, 2376 caddr_t addr, 2377 size_t len, 2378 uint_t flags, 2379 hat_callback_t *cb) 2380 { 2381 uintptr_t vaddr = (uintptr_t)addr; 2382 uintptr_t eaddr = vaddr + len; 2383 htable_t *ht = NULL; 2384 uint_t entry; 2385 uintptr_t contig_va = (uintptr_t)-1L; 2386 range_info_t r[MAX_UNLOAD_CNT]; 2387 uint_t r_cnt = 0; 2388 x86pte_t old_pte; 2389 2390 XPV_DISALLOW_MIGRATE(); 2391 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2392 ASSERT(IS_PAGEALIGNED(vaddr)); 2393 ASSERT(IS_PAGEALIGNED(eaddr)); 2394 2395 /* 2396 * Special case a single page being unloaded for speed. This happens 2397 * quite frequently, COW faults after a fork() for example. 2398 */ 2399 if (cb == NULL && len == MMU_PAGESIZE) { 2400 ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0); 2401 if (ht != NULL) { 2402 if (PTE_ISVALID(old_pte)) { 2403 hat_pte_unmap(ht, entry, flags, old_pte, 2404 NULL, B_TRUE); 2405 } 2406 htable_release(ht); 2407 } 2408 XPV_ALLOW_MIGRATE(); 2409 return; 2410 } 2411 2412 while (vaddr < eaddr) { 2413 old_pte = htable_walk(hat, &ht, &vaddr, eaddr); 2414 if (ht == NULL) 2415 break; 2416 2417 ASSERT(!IN_VA_HOLE(vaddr)); 2418 2419 if (vaddr < (uintptr_t)addr) 2420 panic("hat_unload_callback(): unmap inside large page"); 2421 2422 /* 2423 * We'll do the call backs for contiguous ranges 2424 */ 2425 if (vaddr != contig_va || 2426 (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) { 2427 if (r_cnt == MAX_UNLOAD_CNT) { 2428 handle_ranges(hat, cb, r_cnt, r); 2429 r_cnt = 0; 2430 } 2431 r[r_cnt].rng_va = vaddr; 2432 r[r_cnt].rng_cnt = 0; 2433 r[r_cnt].rng_level = ht->ht_level; 2434 ++r_cnt; 2435 } 2436 2437 /* 2438 * Unload one mapping (for a single page) from the page tables. 2439 * Note that we do not remove the mapping from the TLB yet, 2440 * as indicated by the tlb=FALSE argument to hat_pte_unmap(). 2441 * handle_ranges() will clear the TLB entries with one call to 2442 * hat_tlb_inval_range() per contiguous range. This is 2443 * safe because the page can not be reused until the 2444 * callback is made (or we return). 2445 */ 2446 entry = htable_va2entry(vaddr, ht); 2447 hat_pte_unmap(ht, entry, flags, old_pte, NULL, B_FALSE); 2448 ASSERT(ht->ht_level <= mmu.max_page_level); 2449 vaddr += LEVEL_SIZE(ht->ht_level); 2450 contig_va = vaddr; 2451 ++r[r_cnt - 1].rng_cnt; 2452 } 2453 if (ht) 2454 htable_release(ht); 2455 2456 /* 2457 * handle last range for callbacks 2458 */ 2459 if (r_cnt > 0) 2460 handle_ranges(hat, cb, r_cnt, r); 2461 XPV_ALLOW_MIGRATE(); 2462 } 2463 2464 /* 2465 * Invalidate a virtual address translation on a slave CPU during 2466 * panic() dumps. 2467 */ 2468 void 2469 hat_flush_range(hat_t *hat, caddr_t va, size_t size) 2470 { 2471 ssize_t sz; 2472 caddr_t endva = va + size; 2473 2474 while (va < endva) { 2475 sz = hat_getpagesize(hat, va); 2476 if (sz < 0) { 2477 #ifdef __xpv 2478 xen_flush_tlb(); 2479 #else 2480 flush_all_tlb_entries(); 2481 #endif 2482 break; 2483 } 2484 #ifdef __xpv 2485 xen_flush_va(va); 2486 #else 2487 mmu_tlbflush_entry(va); 2488 #endif 2489 va += sz; 2490 } 2491 } 2492 2493 /* 2494 * synchronize mapping with software data structures 2495 * 2496 * This interface is currently only used by the working set monitor 2497 * driver. 2498 */ 2499 /*ARGSUSED*/ 2500 void 2501 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2502 { 2503 uintptr_t vaddr = (uintptr_t)addr; 2504 uintptr_t eaddr = vaddr + len; 2505 htable_t *ht = NULL; 2506 uint_t entry; 2507 x86pte_t pte; 2508 x86pte_t save_pte; 2509 x86pte_t new; 2510 page_t *pp; 2511 2512 ASSERT(!IN_VA_HOLE(vaddr)); 2513 ASSERT(IS_PAGEALIGNED(vaddr)); 2514 ASSERT(IS_PAGEALIGNED(eaddr)); 2515 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2516 2517 XPV_DISALLOW_MIGRATE(); 2518 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2519 try_again: 2520 pte = htable_walk(hat, &ht, &vaddr, eaddr); 2521 if (ht == NULL) 2522 break; 2523 entry = htable_va2entry(vaddr, ht); 2524 2525 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 2526 PTE_GET(pte, PT_REF | PT_MOD) == 0) 2527 continue; 2528 2529 /* 2530 * We need to acquire the mapping list lock to protect 2531 * against hat_pageunload(), hat_unload(), etc. 2532 */ 2533 pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level)); 2534 if (pp == NULL) 2535 break; 2536 x86_hm_enter(pp); 2537 save_pte = pte; 2538 pte = x86pte_get(ht, entry); 2539 if (pte != save_pte) { 2540 x86_hm_exit(pp); 2541 goto try_again; 2542 } 2543 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 2544 PTE_GET(pte, PT_REF | PT_MOD) == 0) { 2545 x86_hm_exit(pp); 2546 continue; 2547 } 2548 2549 /* 2550 * Need to clear ref or mod bits. We may compete with 2551 * hardware updating the R/M bits and have to try again. 2552 */ 2553 if (flags == HAT_SYNC_ZERORM) { 2554 new = pte; 2555 PTE_CLR(new, PT_REF | PT_MOD); 2556 pte = hati_update_pte(ht, entry, pte, new); 2557 if (pte != 0) { 2558 x86_hm_exit(pp); 2559 goto try_again; 2560 } 2561 } else { 2562 /* 2563 * sync the PTE to the page_t 2564 */ 2565 hati_sync_pte_to_page(pp, save_pte, ht->ht_level); 2566 } 2567 x86_hm_exit(pp); 2568 } 2569 if (ht) 2570 htable_release(ht); 2571 XPV_ALLOW_MIGRATE(); 2572 } 2573 2574 /* 2575 * void hat_map(hat, addr, len, flags) 2576 */ 2577 /*ARGSUSED*/ 2578 void 2579 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2580 { 2581 /* does nothing */ 2582 } 2583 2584 /* 2585 * uint_t hat_getattr(hat, addr, *attr) 2586 * returns attr for <hat,addr> in *attr. returns 0 if there was a 2587 * mapping and *attr is valid, nonzero if there was no mapping and 2588 * *attr is not valid. 2589 */ 2590 uint_t 2591 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr) 2592 { 2593 uintptr_t vaddr = ALIGN2PAGE(addr); 2594 htable_t *ht = NULL; 2595 x86pte_t pte; 2596 2597 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2598 2599 if (IN_VA_HOLE(vaddr)) 2600 return ((uint_t)-1); 2601 2602 ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level); 2603 if (ht == NULL) 2604 return ((uint_t)-1); 2605 2606 if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) { 2607 htable_release(ht); 2608 return ((uint_t)-1); 2609 } 2610 2611 *attr = PROT_READ; 2612 if (PTE_GET(pte, PT_WRITABLE)) 2613 *attr |= PROT_WRITE; 2614 if (PTE_GET(pte, PT_USER)) 2615 *attr |= PROT_USER; 2616 if (!PTE_GET(pte, mmu.pt_nx)) 2617 *attr |= PROT_EXEC; 2618 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 2619 *attr |= HAT_NOSYNC; 2620 htable_release(ht); 2621 return (0); 2622 } 2623 2624 /* 2625 * hat_updateattr() applies the given attribute change to an existing mapping 2626 */ 2627 #define HAT_LOAD_ATTR 1 2628 #define HAT_SET_ATTR 2 2629 #define HAT_CLR_ATTR 3 2630 2631 static void 2632 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what) 2633 { 2634 uintptr_t vaddr = (uintptr_t)addr; 2635 uintptr_t eaddr = (uintptr_t)addr + len; 2636 htable_t *ht = NULL; 2637 uint_t entry; 2638 x86pte_t oldpte, newpte; 2639 page_t *pp; 2640 2641 XPV_DISALLOW_MIGRATE(); 2642 ASSERT(IS_PAGEALIGNED(vaddr)); 2643 ASSERT(IS_PAGEALIGNED(eaddr)); 2644 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); 2645 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2646 try_again: 2647 oldpte = htable_walk(hat, &ht, &vaddr, eaddr); 2648 if (ht == NULL) 2649 break; 2650 if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST) 2651 continue; 2652 2653 pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level)); 2654 if (pp == NULL) 2655 continue; 2656 x86_hm_enter(pp); 2657 2658 newpte = oldpte; 2659 /* 2660 * We found a page table entry in the desired range, 2661 * figure out the new attributes. 2662 */ 2663 if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) { 2664 if ((attr & PROT_WRITE) && 2665 !PTE_GET(oldpte, PT_WRITABLE)) 2666 newpte |= PT_WRITABLE; 2667 2668 if ((attr & HAT_NOSYNC) && 2669 PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC) 2670 newpte |= PT_NOSYNC; 2671 2672 if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx)) 2673 newpte &= ~mmu.pt_nx; 2674 } 2675 2676 if (what == HAT_LOAD_ATTR) { 2677 if (!(attr & PROT_WRITE) && 2678 PTE_GET(oldpte, PT_WRITABLE)) 2679 newpte &= ~PT_WRITABLE; 2680 2681 if (!(attr & HAT_NOSYNC) && 2682 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 2683 newpte &= ~PT_SOFTWARE; 2684 2685 if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2686 newpte |= mmu.pt_nx; 2687 } 2688 2689 if (what == HAT_CLR_ATTR) { 2690 if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE)) 2691 newpte &= ~PT_WRITABLE; 2692 2693 if ((attr & HAT_NOSYNC) && 2694 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 2695 newpte &= ~PT_SOFTWARE; 2696 2697 if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2698 newpte |= mmu.pt_nx; 2699 } 2700 2701 /* 2702 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set. 2703 * x86pte_set() depends on this. 2704 */ 2705 if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC) 2706 newpte |= PT_REF | PT_MOD; 2707 2708 /* 2709 * what about PROT_READ or others? this code only handles: 2710 * EXEC, WRITE, NOSYNC 2711 */ 2712 2713 /* 2714 * If new PTE really changed, update the table. 2715 */ 2716 if (newpte != oldpte) { 2717 entry = htable_va2entry(vaddr, ht); 2718 oldpte = hati_update_pte(ht, entry, oldpte, newpte); 2719 if (oldpte != 0) { 2720 x86_hm_exit(pp); 2721 goto try_again; 2722 } 2723 } 2724 x86_hm_exit(pp); 2725 } 2726 if (ht) 2727 htable_release(ht); 2728 XPV_ALLOW_MIGRATE(); 2729 } 2730 2731 /* 2732 * Various wrappers for hat_updateattr() 2733 */ 2734 void 2735 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2736 { 2737 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2738 hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR); 2739 } 2740 2741 void 2742 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2743 { 2744 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2745 hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR); 2746 } 2747 2748 void 2749 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2750 { 2751 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2752 hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR); 2753 } 2754 2755 void 2756 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot) 2757 { 2758 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2759 hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR); 2760 } 2761 2762 /* 2763 * size_t hat_getpagesize(hat, addr) 2764 * returns pagesize in bytes for <hat, addr>. returns -1 of there is 2765 * no mapping. This is an advisory call. 2766 */ 2767 ssize_t 2768 hat_getpagesize(hat_t *hat, caddr_t addr) 2769 { 2770 uintptr_t vaddr = ALIGN2PAGE(addr); 2771 htable_t *ht; 2772 size_t pagesize; 2773 2774 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2775 if (IN_VA_HOLE(vaddr)) 2776 return (-1); 2777 ht = htable_getpage(hat, vaddr, NULL); 2778 if (ht == NULL) 2779 return (-1); 2780 pagesize = LEVEL_SIZE(ht->ht_level); 2781 htable_release(ht); 2782 return (pagesize); 2783 } 2784 2785 2786 2787 /* 2788 * pfn_t hat_getpfnum(hat, addr) 2789 * returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid. 2790 */ 2791 pfn_t 2792 hat_getpfnum(hat_t *hat, caddr_t addr) 2793 { 2794 uintptr_t vaddr = ALIGN2PAGE(addr); 2795 htable_t *ht; 2796 uint_t entry; 2797 pfn_t pfn = PFN_INVALID; 2798 2799 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2800 if (khat_running == 0) 2801 return (PFN_INVALID); 2802 2803 if (IN_VA_HOLE(vaddr)) 2804 return (PFN_INVALID); 2805 2806 XPV_DISALLOW_MIGRATE(); 2807 /* 2808 * A very common use of hat_getpfnum() is from the DDI for kernel pages. 2809 * Use the kmap_ptes (which also covers the 32 bit heap) to speed 2810 * this up. 2811 */ 2812 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2813 x86pte_t pte; 2814 pgcnt_t pg_index; 2815 2816 pg_index = mmu_btop(vaddr - mmu.kmap_addr); 2817 pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index)); 2818 if (PTE_ISVALID(pte)) 2819 /*LINTED [use of constant 0 causes a lint warning] */ 2820 pfn = PTE2PFN(pte, 0); 2821 XPV_ALLOW_MIGRATE(); 2822 return (pfn); 2823 } 2824 2825 ht = htable_getpage(hat, vaddr, &entry); 2826 if (ht == NULL) { 2827 XPV_ALLOW_MIGRATE(); 2828 return (PFN_INVALID); 2829 } 2830 ASSERT(vaddr >= ht->ht_vaddr); 2831 ASSERT(vaddr <= HTABLE_LAST_PAGE(ht)); 2832 pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level); 2833 if (ht->ht_level > 0) 2834 pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level)); 2835 htable_release(ht); 2836 XPV_ALLOW_MIGRATE(); 2837 return (pfn); 2838 } 2839 2840 /* 2841 * int hat_probe(hat, addr) 2842 * return 0 if no valid mapping is present. Faster version 2843 * of hat_getattr in certain architectures. 2844 */ 2845 int 2846 hat_probe(hat_t *hat, caddr_t addr) 2847 { 2848 uintptr_t vaddr = ALIGN2PAGE(addr); 2849 uint_t entry; 2850 htable_t *ht; 2851 pgcnt_t pg_off; 2852 2853 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2854 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); 2855 if (IN_VA_HOLE(vaddr)) 2856 return (0); 2857 2858 /* 2859 * Most common use of hat_probe is from segmap. We special case it 2860 * for performance. 2861 */ 2862 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2863 pg_off = mmu_btop(vaddr - mmu.kmap_addr); 2864 if (mmu.pae_hat) 2865 return (PTE_ISVALID(mmu.kmap_ptes[pg_off])); 2866 else 2867 return (PTE_ISVALID( 2868 ((x86pte32_t *)mmu.kmap_ptes)[pg_off])); 2869 } 2870 2871 ht = htable_getpage(hat, vaddr, &entry); 2872 htable_release(ht); 2873 return (ht != NULL); 2874 } 2875 2876 /* 2877 * Find out if the segment for hat_share()/hat_unshare() is DISM or locked ISM. 2878 */ 2879 static int 2880 is_it_dism(hat_t *hat, caddr_t va) 2881 { 2882 struct seg *seg; 2883 struct shm_data *shmd; 2884 struct spt_data *sptd; 2885 2886 seg = as_findseg(hat->hat_as, va, 0); 2887 ASSERT(seg != NULL); 2888 ASSERT(seg->s_base <= va); 2889 shmd = (struct shm_data *)seg->s_data; 2890 ASSERT(shmd != NULL); 2891 sptd = (struct spt_data *)shmd->shm_sptseg->s_data; 2892 ASSERT(sptd != NULL); 2893 if (sptd->spt_flags & SHM_PAGEABLE) 2894 return (1); 2895 return (0); 2896 } 2897 2898 /* 2899 * Simple implementation of ISM. hat_share() is similar to hat_memload_array(), 2900 * except that we use the ism_hat's existing mappings to determine the pages 2901 * and protections to use for this hat. If we find a full properly aligned 2902 * and sized pagetable, we will attempt to share the pagetable itself. 2903 */ 2904 /*ARGSUSED*/ 2905 int 2906 hat_share( 2907 hat_t *hat, 2908 caddr_t addr, 2909 hat_t *ism_hat, 2910 caddr_t src_addr, 2911 size_t len, /* almost useless value, see below.. */ 2912 uint_t ismszc) 2913 { 2914 uintptr_t vaddr_start = (uintptr_t)addr; 2915 uintptr_t vaddr; 2916 uintptr_t eaddr = vaddr_start + len; 2917 uintptr_t ism_addr_start = (uintptr_t)src_addr; 2918 uintptr_t ism_addr = ism_addr_start; 2919 uintptr_t e_ism_addr = ism_addr + len; 2920 htable_t *ism_ht = NULL; 2921 htable_t *ht; 2922 x86pte_t pte; 2923 page_t *pp; 2924 pfn_t pfn; 2925 level_t l; 2926 pgcnt_t pgcnt; 2927 uint_t prot; 2928 int is_dism; 2929 int flags; 2930 2931 /* 2932 * We might be asked to share an empty DISM hat by as_dup() 2933 */ 2934 ASSERT(hat != kas.a_hat); 2935 ASSERT(eaddr <= _userlimit); 2936 if (!(ism_hat->hat_flags & HAT_SHARED)) { 2937 ASSERT(hat_get_mapped_size(ism_hat) == 0); 2938 return (0); 2939 } 2940 XPV_DISALLOW_MIGRATE(); 2941 2942 /* 2943 * The SPT segment driver often passes us a size larger than there are 2944 * valid mappings. That's because it rounds the segment size up to a 2945 * large pagesize, even if the actual memory mapped by ism_hat is less. 2946 */ 2947 ASSERT(IS_PAGEALIGNED(vaddr_start)); 2948 ASSERT(IS_PAGEALIGNED(ism_addr_start)); 2949 ASSERT(ism_hat->hat_flags & HAT_SHARED); 2950 is_dism = is_it_dism(hat, addr); 2951 while (ism_addr < e_ism_addr) { 2952 /* 2953 * use htable_walk to get the next valid ISM mapping 2954 */ 2955 pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr); 2956 if (ism_ht == NULL) 2957 break; 2958 2959 /* 2960 * First check to see if we already share the page table. 2961 */ 2962 l = ism_ht->ht_level; 2963 vaddr = vaddr_start + (ism_addr - ism_addr_start); 2964 ht = htable_lookup(hat, vaddr, l); 2965 if (ht != NULL) { 2966 if (ht->ht_flags & HTABLE_SHARED_PFN) 2967 goto shared; 2968 htable_release(ht); 2969 goto not_shared; 2970 } 2971 2972 /* 2973 * Can't ever share top table. 2974 */ 2975 if (l == mmu.max_level) 2976 goto not_shared; 2977 2978 /* 2979 * Avoid level mismatches later due to DISM faults. 2980 */ 2981 if (is_dism && l > 0) 2982 goto not_shared; 2983 2984 /* 2985 * addresses and lengths must align 2986 * table must be fully populated 2987 * no lower level page tables 2988 */ 2989 if (ism_addr != ism_ht->ht_vaddr || 2990 (vaddr & LEVEL_OFFSET(l + 1)) != 0) 2991 goto not_shared; 2992 2993 /* 2994 * The range of address space must cover a full table. 2995 */ 2996 if (e_ism_addr - ism_addr < LEVEL_SIZE(l + 1)) 2997 goto not_shared; 2998 2999 /* 3000 * All entries in the ISM page table must be leaf PTEs. 3001 */ 3002 if (l > 0) { 3003 int e; 3004 3005 /* 3006 * We know the 0th is from htable_walk() above. 3007 */ 3008 for (e = 1; e < HTABLE_NUM_PTES(ism_ht); ++e) { 3009 x86pte_t pte; 3010 pte = x86pte_get(ism_ht, e); 3011 if (!PTE_ISPAGE(pte, l)) 3012 goto not_shared; 3013 } 3014 } 3015 3016 /* 3017 * share the page table 3018 */ 3019 ht = htable_create(hat, vaddr, l, ism_ht); 3020 shared: 3021 ASSERT(ht->ht_flags & HTABLE_SHARED_PFN); 3022 ASSERT(ht->ht_shares == ism_ht); 3023 hat->hat_ism_pgcnt += 3024 (ism_ht->ht_valid_cnt - ht->ht_valid_cnt) << 3025 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT); 3026 ht->ht_valid_cnt = ism_ht->ht_valid_cnt; 3027 htable_release(ht); 3028 ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(l + 1); 3029 htable_release(ism_ht); 3030 ism_ht = NULL; 3031 continue; 3032 3033 not_shared: 3034 /* 3035 * Unable to share the page table. Instead we will 3036 * create new mappings from the values in the ISM mappings. 3037 * Figure out what level size mappings to use; 3038 */ 3039 for (l = ism_ht->ht_level; l > 0; --l) { 3040 if (LEVEL_SIZE(l) <= eaddr - vaddr && 3041 (vaddr & LEVEL_OFFSET(l)) == 0) 3042 break; 3043 } 3044 3045 /* 3046 * The ISM mapping might be larger than the share area, 3047 * be careful to truncate it if needed. 3048 */ 3049 if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) { 3050 pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level)); 3051 } else { 3052 pgcnt = mmu_btop(eaddr - vaddr); 3053 l = 0; 3054 } 3055 3056 pfn = PTE2PFN(pte, ism_ht->ht_level); 3057 ASSERT(pfn != PFN_INVALID); 3058 while (pgcnt > 0) { 3059 /* 3060 * Make a new pte for the PFN for this level. 3061 * Copy protections for the pte from the ISM pte. 3062 */ 3063 pp = page_numtopp_nolock(pfn); 3064 ASSERT(pp != NULL); 3065 3066 prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK; 3067 if (PTE_GET(pte, PT_WRITABLE)) 3068 prot |= PROT_WRITE; 3069 if (!PTE_GET(pte, PT_NX)) 3070 prot |= PROT_EXEC; 3071 3072 flags = HAT_LOAD; 3073 if (!is_dism) 3074 flags |= HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST; 3075 while (hati_load_common(hat, vaddr, pp, prot, flags, 3076 l, pfn) != 0) { 3077 if (l == 0) 3078 panic("hati_load_common() failure"); 3079 --l; 3080 } 3081 3082 vaddr += LEVEL_SIZE(l); 3083 ism_addr += LEVEL_SIZE(l); 3084 pfn += mmu_btop(LEVEL_SIZE(l)); 3085 pgcnt -= mmu_btop(LEVEL_SIZE(l)); 3086 } 3087 } 3088 if (ism_ht != NULL) 3089 htable_release(ism_ht); 3090 XPV_ALLOW_MIGRATE(); 3091 return (0); 3092 } 3093 3094 3095 /* 3096 * hat_unshare() is similar to hat_unload_callback(), but 3097 * we have to look for empty shared pagetables. Note that 3098 * hat_unshare() is always invoked against an entire segment. 3099 */ 3100 /*ARGSUSED*/ 3101 void 3102 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc) 3103 { 3104 uint64_t vaddr = (uintptr_t)addr; 3105 uintptr_t eaddr = vaddr + len; 3106 htable_t *ht = NULL; 3107 uint_t need_demaps = 0; 3108 int flags = HAT_UNLOAD_UNMAP; 3109 level_t l; 3110 3111 ASSERT(hat != kas.a_hat); 3112 ASSERT(eaddr <= _userlimit); 3113 ASSERT(IS_PAGEALIGNED(vaddr)); 3114 ASSERT(IS_PAGEALIGNED(eaddr)); 3115 XPV_DISALLOW_MIGRATE(); 3116 3117 /* 3118 * First go through and remove any shared pagetables. 3119 * 3120 * Note that it's ok to delay the TLB shootdown till the entire range is 3121 * finished, because if hat_pageunload() were to unload a shared 3122 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate. 3123 */ 3124 l = mmu.max_page_level; 3125 if (l == mmu.max_level) 3126 --l; 3127 for (; l >= 0; --l) { 3128 for (vaddr = (uintptr_t)addr; vaddr < eaddr; 3129 vaddr = (vaddr & LEVEL_MASK(l + 1)) + LEVEL_SIZE(l + 1)) { 3130 ASSERT(!IN_VA_HOLE(vaddr)); 3131 /* 3132 * find a pagetable that maps the current address 3133 */ 3134 ht = htable_lookup(hat, vaddr, l); 3135 if (ht == NULL) 3136 continue; 3137 if (ht->ht_flags & HTABLE_SHARED_PFN) { 3138 /* 3139 * clear page count, set valid_cnt to 0, 3140 * let htable_release() finish the job 3141 */ 3142 hat->hat_ism_pgcnt -= ht->ht_valid_cnt << 3143 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT); 3144 ht->ht_valid_cnt = 0; 3145 need_demaps = 1; 3146 } 3147 htable_release(ht); 3148 } 3149 } 3150 3151 /* 3152 * flush the TLBs - since we're probably dealing with MANY mappings 3153 * we do just one CR3 reload. 3154 */ 3155 if (!(hat->hat_flags & HAT_FREEING) && need_demaps) 3156 hat_tlb_inval(hat, DEMAP_ALL_ADDR); 3157 3158 /* 3159 * Now go back and clean up any unaligned mappings that 3160 * couldn't share pagetables. 3161 */ 3162 if (!is_it_dism(hat, addr)) 3163 flags |= HAT_UNLOAD_UNLOCK; 3164 hat_unload(hat, addr, len, flags); 3165 XPV_ALLOW_MIGRATE(); 3166 } 3167 3168 3169 /* 3170 * hat_reserve() does nothing 3171 */ 3172 /*ARGSUSED*/ 3173 void 3174 hat_reserve(struct as *as, caddr_t addr, size_t len) 3175 { 3176 } 3177 3178 3179 /* 3180 * Called when all mappings to a page should have write permission removed. 3181 * Mostly stolen from hat_pagesync() 3182 */ 3183 static void 3184 hati_page_clrwrt(struct page *pp) 3185 { 3186 hment_t *hm = NULL; 3187 htable_t *ht; 3188 uint_t entry; 3189 x86pte_t old; 3190 x86pte_t new; 3191 uint_t pszc = 0; 3192 3193 XPV_DISALLOW_MIGRATE(); 3194 next_size: 3195 /* 3196 * walk thru the mapping list clearing write permission 3197 */ 3198 x86_hm_enter(pp); 3199 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 3200 if (ht->ht_level < pszc) 3201 continue; 3202 old = x86pte_get(ht, entry); 3203 3204 for (;;) { 3205 /* 3206 * Is this mapping of interest? 3207 */ 3208 if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum || 3209 PTE_GET(old, PT_WRITABLE) == 0) 3210 break; 3211 3212 /* 3213 * Clear ref/mod writable bits. This requires cross 3214 * calls to ensure any executing TLBs see cleared bits. 3215 */ 3216 new = old; 3217 PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE); 3218 old = hati_update_pte(ht, entry, old, new); 3219 if (old != 0) 3220 continue; 3221 3222 break; 3223 } 3224 } 3225 x86_hm_exit(pp); 3226 while (pszc < pp->p_szc) { 3227 page_t *tpp; 3228 pszc++; 3229 tpp = PP_GROUPLEADER(pp, pszc); 3230 if (pp != tpp) { 3231 pp = tpp; 3232 goto next_size; 3233 } 3234 } 3235 XPV_ALLOW_MIGRATE(); 3236 } 3237 3238 /* 3239 * void hat_page_setattr(pp, flag) 3240 * void hat_page_clrattr(pp, flag) 3241 * used to set/clr ref/mod bits. 3242 */ 3243 void 3244 hat_page_setattr(struct page *pp, uint_t flag) 3245 { 3246 vnode_t *vp = pp->p_vnode; 3247 kmutex_t *vphm = NULL; 3248 page_t **listp; 3249 int noshuffle; 3250 3251 noshuffle = flag & P_NSH; 3252 flag &= ~P_NSH; 3253 3254 if (PP_GETRM(pp, flag) == flag) 3255 return; 3256 3257 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) && 3258 !noshuffle) { 3259 vphm = page_vnode_mutex(vp); 3260 mutex_enter(vphm); 3261 } 3262 3263 PP_SETRM(pp, flag); 3264 3265 if (vphm != NULL) { 3266 3267 /* 3268 * Some File Systems examine v_pages for NULL w/o 3269 * grabbing the vphm mutex. Must not let it become NULL when 3270 * pp is the only page on the list. 3271 */ 3272 if (pp->p_vpnext != pp) { 3273 page_vpsub(&vp->v_pages, pp); 3274 if (vp->v_pages != NULL) 3275 listp = &vp->v_pages->p_vpprev->p_vpnext; 3276 else 3277 listp = &vp->v_pages; 3278 page_vpadd(listp, pp); 3279 } 3280 mutex_exit(vphm); 3281 } 3282 } 3283 3284 void 3285 hat_page_clrattr(struct page *pp, uint_t flag) 3286 { 3287 vnode_t *vp = pp->p_vnode; 3288 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 3289 3290 /* 3291 * Caller is expected to hold page's io lock for VMODSORT to work 3292 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod 3293 * bit is cleared. 3294 * We don't have assert to avoid tripping some existing third party 3295 * code. The dirty page is moved back to top of the v_page list 3296 * after IO is done in pvn_write_done(). 3297 */ 3298 PP_CLRRM(pp, flag); 3299 3300 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 3301 3302 /* 3303 * VMODSORT works by removing write permissions and getting 3304 * a fault when a page is made dirty. At this point 3305 * we need to remove write permission from all mappings 3306 * to this page. 3307 */ 3308 hati_page_clrwrt(pp); 3309 } 3310 } 3311 3312 /* 3313 * If flag is specified, returns 0 if attribute is disabled 3314 * and non zero if enabled. If flag specifes multiple attributes 3315 * then returns 0 if ALL attributes are disabled. This is an advisory 3316 * call. 3317 */ 3318 uint_t 3319 hat_page_getattr(struct page *pp, uint_t flag) 3320 { 3321 return (PP_GETRM(pp, flag)); 3322 } 3323 3324 3325 /* 3326 * common code used by hat_pageunload() and hment_steal() 3327 */ 3328 hment_t * 3329 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry) 3330 { 3331 x86pte_t old_pte; 3332 pfn_t pfn = pp->p_pagenum; 3333 hment_t *hm; 3334 3335 /* 3336 * We need to acquire a hold on the htable in order to 3337 * do the invalidate. We know the htable must exist, since 3338 * unmap's don't release the htable until after removing any 3339 * hment. Having x86_hm_enter() keeps that from proceeding. 3340 */ 3341 htable_acquire(ht); 3342 3343 /* 3344 * Invalidate the PTE and remove the hment. 3345 */ 3346 old_pte = x86pte_inval(ht, entry, 0, NULL, B_TRUE); 3347 if (PTE2PFN(old_pte, ht->ht_level) != pfn) { 3348 panic("x86pte_inval() failure found PTE = " FMT_PTE 3349 " pfn being unmapped is %lx ht=0x%lx entry=0x%x", 3350 old_pte, pfn, (uintptr_t)ht, entry); 3351 } 3352 3353 /* 3354 * Clean up all the htable information for this mapping 3355 */ 3356 ASSERT(ht->ht_valid_cnt > 0); 3357 HTABLE_DEC(ht->ht_valid_cnt); 3358 PGCNT_DEC(ht->ht_hat, ht->ht_level); 3359 3360 /* 3361 * sync ref/mod bits to the page_t 3362 */ 3363 if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC) 3364 hati_sync_pte_to_page(pp, old_pte, ht->ht_level); 3365 3366 /* 3367 * Remove the mapping list entry for this page. 3368 */ 3369 hm = hment_remove(pp, ht, entry); 3370 3371 /* 3372 * drop the mapping list lock so that we might free the 3373 * hment and htable. 3374 */ 3375 x86_hm_exit(pp); 3376 htable_release(ht); 3377 return (hm); 3378 } 3379 3380 extern int vpm_enable; 3381 /* 3382 * Unload all translations to a page. If the page is a subpage of a large 3383 * page, the large page mappings are also removed. 3384 * 3385 * The forceflags are unused. 3386 */ 3387 3388 /*ARGSUSED*/ 3389 static int 3390 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag) 3391 { 3392 page_t *cur_pp = pp; 3393 hment_t *hm; 3394 hment_t *prev; 3395 htable_t *ht; 3396 uint_t entry; 3397 level_t level; 3398 3399 XPV_DISALLOW_MIGRATE(); 3400 3401 /* 3402 * prevent recursion due to kmem_free() 3403 */ 3404 ++curthread->t_hatdepth; 3405 ASSERT(curthread->t_hatdepth < 16); 3406 3407 #if defined(__amd64) 3408 /* 3409 * clear the vpm ref. 3410 */ 3411 if (vpm_enable) { 3412 pp->p_vpmref = 0; 3413 } 3414 #endif 3415 /* 3416 * The loop with next_size handles pages with multiple pagesize mappings 3417 */ 3418 next_size: 3419 for (;;) { 3420 3421 /* 3422 * Get a mapping list entry 3423 */ 3424 x86_hm_enter(cur_pp); 3425 for (prev = NULL; ; prev = hm) { 3426 hm = hment_walk(cur_pp, &ht, &entry, prev); 3427 if (hm == NULL) { 3428 x86_hm_exit(cur_pp); 3429 3430 /* 3431 * If not part of a larger page, we're done. 3432 */ 3433 if (cur_pp->p_szc <= pg_szcd) { 3434 ASSERT(curthread->t_hatdepth > 0); 3435 --curthread->t_hatdepth; 3436 XPV_ALLOW_MIGRATE(); 3437 return (0); 3438 } 3439 3440 /* 3441 * Else check the next larger page size. 3442 * hat_page_demote() may decrease p_szc 3443 * but that's ok we'll just take an extra 3444 * trip discover there're no larger mappings 3445 * and return. 3446 */ 3447 ++pg_szcd; 3448 cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd); 3449 goto next_size; 3450 } 3451 3452 /* 3453 * If this mapping size matches, remove it. 3454 */ 3455 level = ht->ht_level; 3456 if (level == pg_szcd) 3457 break; 3458 } 3459 3460 /* 3461 * Remove the mapping list entry for this page. 3462 * Note this does the x86_hm_exit() for us. 3463 */ 3464 hm = hati_page_unmap(cur_pp, ht, entry); 3465 if (hm != NULL) 3466 hment_free(hm); 3467 } 3468 } 3469 3470 int 3471 hat_pageunload(struct page *pp, uint_t forceflag) 3472 { 3473 ASSERT(PAGE_EXCL(pp)); 3474 return (hati_pageunload(pp, 0, forceflag)); 3475 } 3476 3477 /* 3478 * Unload all large mappings to pp and reduce by 1 p_szc field of every large 3479 * page level that included pp. 3480 * 3481 * pp must be locked EXCL. Even though no other constituent pages are locked 3482 * it's legal to unload large mappings to pp because all constituent pages of 3483 * large locked mappings have to be locked SHARED. therefore if we have EXCL 3484 * lock on one of constituent pages none of the large mappings to pp are 3485 * locked. 3486 * 3487 * Change (always decrease) p_szc field starting from the last constituent 3488 * page and ending with root constituent page so that root's pszc always shows 3489 * the area where hat_page_demote() may be active. 3490 * 3491 * This mechanism is only used for file system pages where it's not always 3492 * possible to get EXCL locks on all constituent pages to demote the size code 3493 * (as is done for anonymous or kernel large pages). 3494 */ 3495 void 3496 hat_page_demote(page_t *pp) 3497 { 3498 uint_t pszc; 3499 uint_t rszc; 3500 uint_t szc; 3501 page_t *rootpp; 3502 page_t *firstpp; 3503 page_t *lastpp; 3504 pgcnt_t pgcnt; 3505 3506 ASSERT(PAGE_EXCL(pp)); 3507 ASSERT(!PP_ISFREE(pp)); 3508 ASSERT(page_szc_lock_assert(pp)); 3509 3510 if (pp->p_szc == 0) 3511 return; 3512 3513 rootpp = PP_GROUPLEADER(pp, 1); 3514 (void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD); 3515 3516 /* 3517 * all large mappings to pp are gone 3518 * and no new can be setup since pp is locked exclusively. 3519 * 3520 * Lock the root to make sure there's only one hat_page_demote() 3521 * outstanding within the area of this root's pszc. 3522 * 3523 * Second potential hat_page_demote() is already eliminated by upper 3524 * VM layer via page_szc_lock() but we don't rely on it and use our 3525 * own locking (so that upper layer locking can be changed without 3526 * assumptions that hat depends on upper layer VM to prevent multiple 3527 * hat_page_demote() to be issued simultaneously to the same large 3528 * page). 3529 */ 3530 again: 3531 pszc = pp->p_szc; 3532 if (pszc == 0) 3533 return; 3534 rootpp = PP_GROUPLEADER(pp, pszc); 3535 x86_hm_enter(rootpp); 3536 /* 3537 * If root's p_szc is different from pszc we raced with another 3538 * hat_page_demote(). Drop the lock and try to find the root again. 3539 * If root's p_szc is greater than pszc previous hat_page_demote() is 3540 * not done yet. Take and release mlist lock of root's root to wait 3541 * for previous hat_page_demote() to complete. 3542 */ 3543 if ((rszc = rootpp->p_szc) != pszc) { 3544 x86_hm_exit(rootpp); 3545 if (rszc > pszc) { 3546 /* p_szc of a locked non free page can't increase */ 3547 ASSERT(pp != rootpp); 3548 3549 rootpp = PP_GROUPLEADER(rootpp, rszc); 3550 x86_hm_enter(rootpp); 3551 x86_hm_exit(rootpp); 3552 } 3553 goto again; 3554 } 3555 ASSERT(pp->p_szc == pszc); 3556 3557 /* 3558 * Decrement by 1 p_szc of every constituent page of a region that 3559 * covered pp. For example if original szc is 3 it gets changed to 2 3560 * everywhere except in region 2 that covered pp. Region 2 that 3561 * covered pp gets demoted to 1 everywhere except in region 1 that 3562 * covered pp. The region 1 that covered pp is demoted to region 3563 * 0. It's done this way because from region 3 we removed level 3 3564 * mappings, from region 2 that covered pp we removed level 2 mappings 3565 * and from region 1 that covered pp we removed level 1 mappings. All 3566 * changes are done from from high pfn's to low pfn's so that roots 3567 * are changed last allowing one to know the largest region where 3568 * hat_page_demote() is stil active by only looking at the root page. 3569 * 3570 * This algorithm is implemented in 2 while loops. First loop changes 3571 * p_szc of pages to the right of pp's level 1 region and second 3572 * loop changes p_szc of pages of level 1 region that covers pp 3573 * and all pages to the left of level 1 region that covers pp. 3574 * In the first loop p_szc keeps dropping with every iteration 3575 * and in the second loop it keeps increasing with every iteration. 3576 * 3577 * First loop description: Demote pages to the right of pp outside of 3578 * level 1 region that covers pp. In every iteration of the while 3579 * loop below find the last page of szc region and the first page of 3580 * (szc - 1) region that is immediately to the right of (szc - 1) 3581 * region that covers pp. From last such page to first such page 3582 * change every page's szc to szc - 1. Decrement szc and continue 3583 * looping until szc is 1. If pp belongs to the last (szc - 1) region 3584 * of szc region skip to the next iteration. 3585 */ 3586 szc = pszc; 3587 while (szc > 1) { 3588 lastpp = PP_GROUPLEADER(pp, szc); 3589 pgcnt = page_get_pagecnt(szc); 3590 lastpp += pgcnt - 1; 3591 firstpp = PP_GROUPLEADER(pp, (szc - 1)); 3592 pgcnt = page_get_pagecnt(szc - 1); 3593 if (lastpp - firstpp < pgcnt) { 3594 szc--; 3595 continue; 3596 } 3597 firstpp += pgcnt; 3598 while (lastpp != firstpp) { 3599 ASSERT(lastpp->p_szc == pszc); 3600 lastpp->p_szc = szc - 1; 3601 lastpp--; 3602 } 3603 firstpp->p_szc = szc - 1; 3604 szc--; 3605 } 3606 3607 /* 3608 * Second loop description: 3609 * First iteration changes p_szc to 0 of every 3610 * page of level 1 region that covers pp. 3611 * Subsequent iterations find last page of szc region 3612 * immediately to the left of szc region that covered pp 3613 * and first page of (szc + 1) region that covers pp. 3614 * From last to first page change p_szc of every page to szc. 3615 * Increment szc and continue looping until szc is pszc. 3616 * If pp belongs to the fist szc region of (szc + 1) region 3617 * skip to the next iteration. 3618 * 3619 */ 3620 szc = 0; 3621 while (szc < pszc) { 3622 firstpp = PP_GROUPLEADER(pp, (szc + 1)); 3623 if (szc == 0) { 3624 pgcnt = page_get_pagecnt(1); 3625 lastpp = firstpp + (pgcnt - 1); 3626 } else { 3627 lastpp = PP_GROUPLEADER(pp, szc); 3628 if (firstpp == lastpp) { 3629 szc++; 3630 continue; 3631 } 3632 lastpp--; 3633 pgcnt = page_get_pagecnt(szc); 3634 } 3635 while (lastpp != firstpp) { 3636 ASSERT(lastpp->p_szc == pszc); 3637 lastpp->p_szc = szc; 3638 lastpp--; 3639 } 3640 firstpp->p_szc = szc; 3641 if (firstpp == rootpp) 3642 break; 3643 szc++; 3644 } 3645 x86_hm_exit(rootpp); 3646 } 3647 3648 /* 3649 * get hw stats from hardware into page struct and reset hw stats 3650 * returns attributes of page 3651 * Flags for hat_pagesync, hat_getstat, hat_sync 3652 * 3653 * define HAT_SYNC_ZERORM 0x01 3654 * 3655 * Additional flags for hat_pagesync 3656 * 3657 * define HAT_SYNC_STOPON_REF 0x02 3658 * define HAT_SYNC_STOPON_MOD 0x04 3659 * define HAT_SYNC_STOPON_RM 0x06 3660 * define HAT_SYNC_STOPON_SHARED 0x08 3661 */ 3662 uint_t 3663 hat_pagesync(struct page *pp, uint_t flags) 3664 { 3665 hment_t *hm = NULL; 3666 htable_t *ht; 3667 uint_t entry; 3668 x86pte_t old, save_old; 3669 x86pte_t new; 3670 uchar_t nrmbits = P_REF|P_MOD|P_RO; 3671 extern ulong_t po_share; 3672 page_t *save_pp = pp; 3673 uint_t pszc = 0; 3674 3675 ASSERT(PAGE_LOCKED(pp) || panicstr); 3676 3677 if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD)) 3678 return (pp->p_nrm & nrmbits); 3679 3680 if ((flags & HAT_SYNC_ZERORM) == 0) { 3681 3682 if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp)) 3683 return (pp->p_nrm & nrmbits); 3684 3685 if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp)) 3686 return (pp->p_nrm & nrmbits); 3687 3688 if ((flags & HAT_SYNC_STOPON_SHARED) != 0 && 3689 hat_page_getshare(pp) > po_share) { 3690 if (PP_ISRO(pp)) 3691 PP_SETREF(pp); 3692 return (pp->p_nrm & nrmbits); 3693 } 3694 } 3695 3696 XPV_DISALLOW_MIGRATE(); 3697 next_size: 3698 /* 3699 * walk thru the mapping list syncing (and clearing) ref/mod bits. 3700 */ 3701 x86_hm_enter(pp); 3702 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 3703 if (ht->ht_level < pszc) 3704 continue; 3705 old = x86pte_get(ht, entry); 3706 try_again: 3707 3708 ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum); 3709 3710 if (PTE_GET(old, PT_REF | PT_MOD) == 0) 3711 continue; 3712 3713 save_old = old; 3714 if ((flags & HAT_SYNC_ZERORM) != 0) { 3715 3716 /* 3717 * Need to clear ref or mod bits. Need to demap 3718 * to make sure any executing TLBs see cleared bits. 3719 */ 3720 new = old; 3721 PTE_CLR(new, PT_REF | PT_MOD); 3722 old = hati_update_pte(ht, entry, old, new); 3723 if (old != 0) 3724 goto try_again; 3725 3726 old = save_old; 3727 } 3728 3729 /* 3730 * Sync the PTE 3731 */ 3732 if (!(flags & HAT_SYNC_ZERORM) && 3733 PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC) 3734 hati_sync_pte_to_page(pp, old, ht->ht_level); 3735 3736 /* 3737 * can stop short if we found a ref'd or mod'd page 3738 */ 3739 if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) || 3740 (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) { 3741 x86_hm_exit(pp); 3742 goto done; 3743 } 3744 } 3745 x86_hm_exit(pp); 3746 while (pszc < pp->p_szc) { 3747 page_t *tpp; 3748 pszc++; 3749 tpp = PP_GROUPLEADER(pp, pszc); 3750 if (pp != tpp) { 3751 pp = tpp; 3752 goto next_size; 3753 } 3754 } 3755 done: 3756 XPV_ALLOW_MIGRATE(); 3757 return (save_pp->p_nrm & nrmbits); 3758 } 3759 3760 /* 3761 * returns approx number of mappings to this pp. A return of 0 implies 3762 * there are no mappings to the page. 3763 */ 3764 ulong_t 3765 hat_page_getshare(page_t *pp) 3766 { 3767 uint_t cnt; 3768 cnt = hment_mapcnt(pp); 3769 #if defined(__amd64) 3770 if (vpm_enable && pp->p_vpmref) { 3771 cnt += 1; 3772 } 3773 #endif 3774 return (cnt); 3775 } 3776 3777 /* 3778 * Return 1 the number of mappings exceeds sh_thresh. Return 0 3779 * otherwise. 3780 */ 3781 int 3782 hat_page_checkshare(page_t *pp, ulong_t sh_thresh) 3783 { 3784 return (hat_page_getshare(pp) > sh_thresh); 3785 } 3786 3787 /* 3788 * hat_softlock isn't supported anymore 3789 */ 3790 /*ARGSUSED*/ 3791 faultcode_t 3792 hat_softlock( 3793 hat_t *hat, 3794 caddr_t addr, 3795 size_t *len, 3796 struct page **page_array, 3797 uint_t flags) 3798 { 3799 return (FC_NOSUPPORT); 3800 } 3801 3802 3803 3804 /* 3805 * Routine to expose supported HAT features to platform independent code. 3806 */ 3807 /*ARGSUSED*/ 3808 int 3809 hat_supported(enum hat_features feature, void *arg) 3810 { 3811 switch (feature) { 3812 3813 case HAT_SHARED_PT: /* this is really ISM */ 3814 return (1); 3815 3816 case HAT_DYNAMIC_ISM_UNMAP: 3817 return (0); 3818 3819 case HAT_VMODSORT: 3820 return (1); 3821 3822 case HAT_SHARED_REGIONS: 3823 return (0); 3824 3825 default: 3826 panic("hat_supported() - unknown feature"); 3827 } 3828 return (0); 3829 } 3830 3831 /* 3832 * Called when a thread is exiting and has been switched to the kernel AS 3833 */ 3834 void 3835 hat_thread_exit(kthread_t *thd) 3836 { 3837 ASSERT(thd->t_procp->p_as == &kas); 3838 XPV_DISALLOW_MIGRATE(); 3839 hat_switch(thd->t_procp->p_as->a_hat); 3840 XPV_ALLOW_MIGRATE(); 3841 } 3842 3843 /* 3844 * Setup the given brand new hat structure as the new HAT on this cpu's mmu. 3845 */ 3846 /*ARGSUSED*/ 3847 void 3848 hat_setup(hat_t *hat, int flags) 3849 { 3850 XPV_DISALLOW_MIGRATE(); 3851 kpreempt_disable(); 3852 3853 hat_switch(hat); 3854 3855 kpreempt_enable(); 3856 XPV_ALLOW_MIGRATE(); 3857 } 3858 3859 /* 3860 * Prepare for a CPU private mapping for the given address. 3861 * 3862 * The address can only be used from a single CPU and can be remapped 3863 * using hat_mempte_remap(). Return the address of the PTE. 3864 * 3865 * We do the htable_create() if necessary and increment the valid count so 3866 * the htable can't disappear. We also hat_devload() the page table into 3867 * kernel so that the PTE is quickly accessed. 3868 */ 3869 hat_mempte_t 3870 hat_mempte_setup(caddr_t addr) 3871 { 3872 uintptr_t va = (uintptr_t)addr; 3873 htable_t *ht; 3874 uint_t entry; 3875 x86pte_t oldpte; 3876 hat_mempte_t p; 3877 3878 ASSERT(IS_PAGEALIGNED(va)); 3879 ASSERT(!IN_VA_HOLE(va)); 3880 ++curthread->t_hatdepth; 3881 XPV_DISALLOW_MIGRATE(); 3882 ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0); 3883 if (ht == NULL) { 3884 ht = htable_create(kas.a_hat, va, 0, NULL); 3885 entry = htable_va2entry(va, ht); 3886 ASSERT(ht->ht_level == 0); 3887 oldpte = x86pte_get(ht, entry); 3888 } 3889 if (PTE_ISVALID(oldpte)) 3890 panic("hat_mempte_setup(): address already mapped" 3891 "ht=%p, entry=%d, pte=" FMT_PTE, (void *)ht, entry, oldpte); 3892 3893 /* 3894 * increment ht_valid_cnt so that the pagetable can't disappear 3895 */ 3896 HTABLE_INC(ht->ht_valid_cnt); 3897 3898 /* 3899 * return the PTE physical address to the caller. 3900 */ 3901 htable_release(ht); 3902 XPV_ALLOW_MIGRATE(); 3903 p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry); 3904 --curthread->t_hatdepth; 3905 return (p); 3906 } 3907 3908 /* 3909 * Release a CPU private mapping for the given address. 3910 * We decrement the htable valid count so it might be destroyed. 3911 */ 3912 /*ARGSUSED1*/ 3913 void 3914 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa) 3915 { 3916 htable_t *ht; 3917 3918 XPV_DISALLOW_MIGRATE(); 3919 /* 3920 * invalidate any left over mapping and decrement the htable valid count 3921 */ 3922 #ifdef __xpv 3923 if (HYPERVISOR_update_va_mapping((uintptr_t)addr, 0, 3924 UVMF_INVLPG | UVMF_LOCAL)) 3925 panic("HYPERVISOR_update_va_mapping() failed"); 3926 #else 3927 { 3928 x86pte_t *pteptr; 3929 3930 pteptr = x86pte_mapin(mmu_btop(pte_pa), 3931 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 3932 if (mmu.pae_hat) 3933 *pteptr = 0; 3934 else 3935 *(x86pte32_t *)pteptr = 0; 3936 mmu_tlbflush_entry(addr); 3937 x86pte_mapout(); 3938 } 3939 #endif 3940 3941 ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0); 3942 if (ht == NULL) 3943 panic("hat_mempte_release(): invalid address"); 3944 ASSERT(ht->ht_level == 0); 3945 HTABLE_DEC(ht->ht_valid_cnt); 3946 htable_release(ht); 3947 XPV_ALLOW_MIGRATE(); 3948 } 3949 3950 /* 3951 * Apply a temporary CPU private mapping to a page. We flush the TLB only 3952 * on this CPU, so this ought to have been called with preemption disabled. 3953 */ 3954 void 3955 hat_mempte_remap( 3956 pfn_t pfn, 3957 caddr_t addr, 3958 hat_mempte_t pte_pa, 3959 uint_t attr, 3960 uint_t flags) 3961 { 3962 uintptr_t va = (uintptr_t)addr; 3963 x86pte_t pte; 3964 3965 /* 3966 * Remap the given PTE to the new page's PFN. Invalidate only 3967 * on this CPU. 3968 */ 3969 #ifdef DEBUG 3970 htable_t *ht; 3971 uint_t entry; 3972 3973 ASSERT(IS_PAGEALIGNED(va)); 3974 ASSERT(!IN_VA_HOLE(va)); 3975 ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0); 3976 ASSERT(ht != NULL); 3977 ASSERT(ht->ht_level == 0); 3978 ASSERT(ht->ht_valid_cnt > 0); 3979 ASSERT(ht->ht_pfn == mmu_btop(pte_pa)); 3980 htable_release(ht); 3981 #endif 3982 XPV_DISALLOW_MIGRATE(); 3983 pte = hati_mkpte(pfn, attr, 0, flags); 3984 #ifdef __xpv 3985 if (HYPERVISOR_update_va_mapping(va, pte, UVMF_INVLPG | UVMF_LOCAL)) 3986 panic("HYPERVISOR_update_va_mapping() failed"); 3987 #else 3988 { 3989 x86pte_t *pteptr; 3990 3991 pteptr = x86pte_mapin(mmu_btop(pte_pa), 3992 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 3993 if (mmu.pae_hat) 3994 *(x86pte_t *)pteptr = pte; 3995 else 3996 *(x86pte32_t *)pteptr = (x86pte32_t)pte; 3997 mmu_tlbflush_entry(addr); 3998 x86pte_mapout(); 3999 } 4000 #endif 4001 XPV_ALLOW_MIGRATE(); 4002 } 4003 4004 4005 4006 /* 4007 * Hat locking functions 4008 * XXX - these two functions are currently being used by hatstats 4009 * they can be removed by using a per-as mutex for hatstats. 4010 */ 4011 void 4012 hat_enter(hat_t *hat) 4013 { 4014 mutex_enter(&hat->hat_mutex); 4015 } 4016 4017 void 4018 hat_exit(hat_t *hat) 4019 { 4020 mutex_exit(&hat->hat_mutex); 4021 } 4022 4023 /* 4024 * HAT part of cpu initialization. 4025 */ 4026 void 4027 hat_cpu_online(struct cpu *cpup) 4028 { 4029 if (cpup != CPU) { 4030 x86pte_cpu_init(cpup); 4031 hat_vlp_setup(cpup); 4032 } 4033 CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id); 4034 } 4035 4036 /* 4037 * HAT part of cpu deletion. 4038 * (currently, we only call this after the cpu is safely passivated.) 4039 */ 4040 void 4041 hat_cpu_offline(struct cpu *cpup) 4042 { 4043 ASSERT(cpup != CPU); 4044 4045 CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id); 4046 hat_vlp_teardown(cpup); 4047 x86pte_cpu_fini(cpup); 4048 } 4049 4050 /* 4051 * Function called after all CPUs are brought online. 4052 * Used to remove low address boot mappings. 4053 */ 4054 void 4055 clear_boot_mappings(uintptr_t low, uintptr_t high) 4056 { 4057 uintptr_t vaddr = low; 4058 htable_t *ht = NULL; 4059 level_t level; 4060 uint_t entry; 4061 x86pte_t pte; 4062 4063 /* 4064 * On 1st CPU we can unload the prom mappings, basically we blow away 4065 * all virtual mappings under _userlimit. 4066 */ 4067 while (vaddr < high) { 4068 pte = htable_walk(kas.a_hat, &ht, &vaddr, high); 4069 if (ht == NULL) 4070 break; 4071 4072 level = ht->ht_level; 4073 entry = htable_va2entry(vaddr, ht); 4074 ASSERT(level <= mmu.max_page_level); 4075 ASSERT(PTE_ISPAGE(pte, level)); 4076 4077 /* 4078 * Unload the mapping from the page tables. 4079 */ 4080 (void) x86pte_inval(ht, entry, 0, NULL, B_TRUE); 4081 ASSERT(ht->ht_valid_cnt > 0); 4082 HTABLE_DEC(ht->ht_valid_cnt); 4083 PGCNT_DEC(ht->ht_hat, ht->ht_level); 4084 4085 vaddr += LEVEL_SIZE(ht->ht_level); 4086 } 4087 if (ht) 4088 htable_release(ht); 4089 } 4090 4091 /* 4092 * Atomically update a new translation for a single page. If the 4093 * currently installed PTE doesn't match the value we expect to find, 4094 * it's not updated and we return the PTE we found. 4095 * 4096 * If activating nosync or NOWRITE and the page was modified we need to sync 4097 * with the page_t. Also sync with page_t if clearing ref/mod bits. 4098 */ 4099 static x86pte_t 4100 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new) 4101 { 4102 page_t *pp; 4103 uint_t rm = 0; 4104 x86pte_t replaced; 4105 4106 if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC && 4107 PTE_GET(expected, PT_MOD | PT_REF) && 4108 (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) || 4109 !PTE_GET(new, PT_MOD | PT_REF))) { 4110 4111 ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level))); 4112 pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level)); 4113 ASSERT(pp != NULL); 4114 if (PTE_GET(expected, PT_MOD)) 4115 rm |= P_MOD; 4116 if (PTE_GET(expected, PT_REF)) 4117 rm |= P_REF; 4118 PTE_CLR(new, PT_MOD | PT_REF); 4119 } 4120 4121 replaced = x86pte_update(ht, entry, expected, new); 4122 if (replaced != expected) 4123 return (replaced); 4124 4125 if (rm) { 4126 /* 4127 * sync to all constituent pages of a large page 4128 */ 4129 pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level); 4130 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 4131 while (pgcnt-- > 0) { 4132 /* 4133 * hat_page_demote() can't decrease 4134 * pszc below this mapping size 4135 * since large mapping existed after we 4136 * took mlist lock. 4137 */ 4138 ASSERT(pp->p_szc >= ht->ht_level); 4139 hat_page_setattr(pp, rm); 4140 ++pp; 4141 } 4142 } 4143 4144 return (0); 4145 } 4146 4147 /* ARGSUSED */ 4148 void 4149 hat_join_srd(struct hat *hat, vnode_t *evp) 4150 { 4151 } 4152 4153 /* ARGSUSED */ 4154 hat_region_cookie_t 4155 hat_join_region(struct hat *hat, 4156 caddr_t r_saddr, 4157 size_t r_size, 4158 void *r_obj, 4159 u_offset_t r_objoff, 4160 uchar_t r_perm, 4161 uchar_t r_pgszc, 4162 hat_rgn_cb_func_t r_cb_function, 4163 uint_t flags) 4164 { 4165 panic("No shared region support on x86"); 4166 return (HAT_INVALID_REGION_COOKIE); 4167 } 4168 4169 /* ARGSUSED */ 4170 void 4171 hat_leave_region(struct hat *hat, hat_region_cookie_t rcookie, uint_t flags) 4172 { 4173 panic("No shared region support on x86"); 4174 } 4175 4176 /* ARGSUSED */ 4177 void 4178 hat_dup_region(struct hat *hat, hat_region_cookie_t rcookie) 4179 { 4180 panic("No shared region support on x86"); 4181 } 4182 4183 4184 /* 4185 * Kernel Physical Mapping (kpm) facility 4186 * 4187 * Most of the routines needed to support segkpm are almost no-ops on the 4188 * x86 platform. We map in the entire segment when it is created and leave 4189 * it mapped in, so there is no additional work required to set up and tear 4190 * down individual mappings. All of these routines were created to support 4191 * SPARC platforms that have to avoid aliasing in their virtually indexed 4192 * caches. 4193 * 4194 * Most of the routines have sanity checks in them (e.g. verifying that the 4195 * passed-in page is locked). We don't actually care about most of these 4196 * checks on x86, but we leave them in place to identify problems in the 4197 * upper levels. 4198 */ 4199 4200 /* 4201 * Map in a locked page and return the vaddr. 4202 */ 4203 /*ARGSUSED*/ 4204 caddr_t 4205 hat_kpm_mapin(struct page *pp, struct kpme *kpme) 4206 { 4207 caddr_t vaddr; 4208 4209 #ifdef DEBUG 4210 if (kpm_enable == 0) { 4211 cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n"); 4212 return ((caddr_t)NULL); 4213 } 4214 4215 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 4216 cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n"); 4217 return ((caddr_t)NULL); 4218 } 4219 #endif 4220 4221 vaddr = hat_kpm_page2va(pp, 1); 4222 4223 return (vaddr); 4224 } 4225 4226 /* 4227 * Mapout a locked page. 4228 */ 4229 /*ARGSUSED*/ 4230 void 4231 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr) 4232 { 4233 #ifdef DEBUG 4234 if (kpm_enable == 0) { 4235 cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n"); 4236 return; 4237 } 4238 4239 if (IS_KPM_ADDR(vaddr) == 0) { 4240 cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n"); 4241 return; 4242 } 4243 4244 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 4245 cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n"); 4246 return; 4247 } 4248 #endif 4249 } 4250 4251 /* 4252 * hat_kpm_mapin_pfn is used to obtain a kpm mapping for physical 4253 * memory addresses that are not described by a page_t. It can 4254 * also be used for normal pages that are not locked, but beware 4255 * this is dangerous - no locking is performed, so the identity of 4256 * the page could change. hat_kpm_mapin_pfn is not supported when 4257 * vac_colors > 1, because the chosen va depends on the page identity, 4258 * which could change. 4259 * The caller must only pass pfn's for valid physical addresses; violation 4260 * of this rule will cause panic. 4261 */ 4262 caddr_t 4263 hat_kpm_mapin_pfn(pfn_t pfn) 4264 { 4265 caddr_t paddr, vaddr; 4266 4267 if (kpm_enable == 0) 4268 return ((caddr_t)NULL); 4269 4270 paddr = (caddr_t)ptob(pfn); 4271 vaddr = (uintptr_t)kpm_vbase + paddr; 4272 4273 return ((caddr_t)vaddr); 4274 } 4275 4276 /*ARGSUSED*/ 4277 void 4278 hat_kpm_mapout_pfn(pfn_t pfn) 4279 { 4280 /* empty */ 4281 } 4282 4283 /* 4284 * Return the kpm virtual address for a specific pfn 4285 */ 4286 caddr_t 4287 hat_kpm_pfn2va(pfn_t pfn) 4288 { 4289 uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn); 4290 4291 ASSERT(!pfn_is_foreign(pfn)); 4292 return ((caddr_t)vaddr); 4293 } 4294 4295 /* 4296 * Return the kpm virtual address for the page at pp. 4297 */ 4298 /*ARGSUSED*/ 4299 caddr_t 4300 hat_kpm_page2va(struct page *pp, int checkswap) 4301 { 4302 return (hat_kpm_pfn2va(pp->p_pagenum)); 4303 } 4304 4305 /* 4306 * Return the page frame number for the kpm virtual address vaddr. 4307 */ 4308 pfn_t 4309 hat_kpm_va2pfn(caddr_t vaddr) 4310 { 4311 pfn_t pfn; 4312 4313 ASSERT(IS_KPM_ADDR(vaddr)); 4314 4315 pfn = (pfn_t)btop(vaddr - kpm_vbase); 4316 4317 return (pfn); 4318 } 4319 4320 4321 /* 4322 * Return the page for the kpm virtual address vaddr. 4323 */ 4324 page_t * 4325 hat_kpm_vaddr2page(caddr_t vaddr) 4326 { 4327 pfn_t pfn; 4328 4329 ASSERT(IS_KPM_ADDR(vaddr)); 4330 4331 pfn = hat_kpm_va2pfn(vaddr); 4332 4333 return (page_numtopp_nolock(pfn)); 4334 } 4335 4336 /* 4337 * hat_kpm_fault is called from segkpm_fault when we take a page fault on a 4338 * KPM page. This should never happen on x86 4339 */ 4340 int 4341 hat_kpm_fault(hat_t *hat, caddr_t vaddr) 4342 { 4343 panic("pagefault in seg_kpm. hat: 0x%p vaddr: 0x%p", 4344 (void *)hat, (void *)vaddr); 4345 4346 return (0); 4347 } 4348 4349 /*ARGSUSED*/ 4350 void 4351 hat_kpm_mseghash_clear(int nentries) 4352 {} 4353 4354 /*ARGSUSED*/ 4355 void 4356 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp) 4357 {} 4358 4359 #ifndef __xpv 4360 void 4361 hat_kpm_addmem_mseg_update(struct memseg *msp, pgcnt_t nkpmpgs, 4362 offset_t kpm_pages_off) 4363 { 4364 _NOTE(ARGUNUSED(nkpmpgs, kpm_pages_off)); 4365 pfn_t base, end; 4366 4367 /* 4368 * kphysm_add_memory_dynamic() does not set nkpmpgs 4369 * when page_t memory is externally allocated. That 4370 * code must properly calculate nkpmpgs in all cases 4371 * if nkpmpgs needs to be used at some point. 4372 */ 4373 4374 /* 4375 * The meta (page_t) pages for dynamically added memory are allocated 4376 * either from the incoming memory itself or from existing memory. 4377 * In the former case the base of the incoming pages will be different 4378 * than the base of the dynamic segment so call memseg_get_start() to 4379 * get the actual base of the incoming memory for each case. 4380 */ 4381 4382 base = memseg_get_start(msp); 4383 end = msp->pages_end; 4384 4385 hat_devload(kas.a_hat, kpm_vbase + mmu_ptob(base), 4386 mmu_ptob(end - base), base, PROT_READ | PROT_WRITE, 4387 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 4388 } 4389 4390 void 4391 hat_kpm_addmem_mseg_insert(struct memseg *msp) 4392 { 4393 _NOTE(ARGUNUSED(msp)); 4394 } 4395 4396 void 4397 hat_kpm_addmem_memsegs_update(struct memseg *msp) 4398 { 4399 _NOTE(ARGUNUSED(msp)); 4400 } 4401 4402 /* 4403 * Return end of metadata for an already setup memseg. 4404 * X86 platforms don't need per-page meta data to support kpm. 4405 */ 4406 caddr_t 4407 hat_kpm_mseg_reuse(struct memseg *msp) 4408 { 4409 return ((caddr_t)msp->epages); 4410 } 4411 4412 void 4413 hat_kpm_delmem_mseg_update(struct memseg *msp, struct memseg **mspp) 4414 { 4415 _NOTE(ARGUNUSED(msp, mspp)); 4416 ASSERT(0); 4417 } 4418 4419 void 4420 hat_kpm_split_mseg_update(struct memseg *msp, struct memseg **mspp, 4421 struct memseg *lo, struct memseg *mid, struct memseg *hi) 4422 { 4423 _NOTE(ARGUNUSED(msp, mspp, lo, mid, hi)); 4424 ASSERT(0); 4425 } 4426 4427 /* 4428 * Walk the memsegs chain, applying func to each memseg span. 4429 */ 4430 void 4431 hat_kpm_walk(void (*func)(void *, void *, size_t), void *arg) 4432 { 4433 pfn_t pbase, pend; 4434 void *base; 4435 size_t size; 4436 struct memseg *msp; 4437 4438 for (msp = memsegs; msp; msp = msp->next) { 4439 pbase = msp->pages_base; 4440 pend = msp->pages_end; 4441 base = ptob(pbase) + kpm_vbase; 4442 size = ptob(pend - pbase); 4443 func(arg, base, size); 4444 } 4445 } 4446 4447 #else /* __xpv */ 4448 4449 /* 4450 * There are specific Hypervisor calls to establish and remove mappings 4451 * to grant table references and the privcmd driver. We have to ensure 4452 * that a page table actually exists. 4453 */ 4454 void 4455 hat_prepare_mapping(hat_t *hat, caddr_t addr, uint64_t *pte_ma) 4456 { 4457 maddr_t base_ma; 4458 htable_t *ht; 4459 uint_t entry; 4460 4461 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE)); 4462 XPV_DISALLOW_MIGRATE(); 4463 ht = htable_create(hat, (uintptr_t)addr, 0, NULL); 4464 4465 /* 4466 * if an address for pte_ma is passed in, return the MA of the pte 4467 * for this specific address. This address is only valid as long 4468 * as the htable stays locked. 4469 */ 4470 if (pte_ma != NULL) { 4471 entry = htable_va2entry((uintptr_t)addr, ht); 4472 base_ma = pa_to_ma(ptob(ht->ht_pfn)); 4473 *pte_ma = base_ma + (entry << mmu.pte_size_shift); 4474 } 4475 XPV_ALLOW_MIGRATE(); 4476 } 4477 4478 void 4479 hat_release_mapping(hat_t *hat, caddr_t addr) 4480 { 4481 htable_t *ht; 4482 4483 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE)); 4484 XPV_DISALLOW_MIGRATE(); 4485 ht = htable_lookup(hat, (uintptr_t)addr, 0); 4486 ASSERT(ht != NULL); 4487 ASSERT(ht->ht_busy >= 2); 4488 htable_release(ht); 4489 htable_release(ht); 4490 XPV_ALLOW_MIGRATE(); 4491 } 4492 #endif /* __xpv */