1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
  25  * Copyright 2017 Nexenta Systems, Inc.
  26  * Copyright 2015 Joyent, Inc.
  27  * Copyright (c) 2015 by Delphix. All rights reserved.
  28  */
  29 /*
  30  * Copyright (c) 2010, Intel Corporation.
  31  * All rights reserved.
  32  */
  33 
  34 #include <sys/types.h>
  35 #include <sys/t_lock.h>
  36 #include <sys/param.h>
  37 #include <sys/sysmacros.h>
  38 #include <sys/signal.h>
  39 #include <sys/systm.h>
  40 #include <sys/user.h>
  41 #include <sys/mman.h>
  42 #include <sys/vm.h>
  43 #include <sys/conf.h>
  44 #include <sys/avintr.h>
  45 #include <sys/autoconf.h>
  46 #include <sys/disp.h>
  47 #include <sys/class.h>
  48 #include <sys/bitmap.h>
  49 
  50 #include <sys/privregs.h>
  51 
  52 #include <sys/proc.h>
  53 #include <sys/buf.h>
  54 #include <sys/kmem.h>
  55 #include <sys/mem.h>
  56 #include <sys/kstat.h>
  57 
  58 #include <sys/reboot.h>
  59 
  60 #include <sys/cred.h>
  61 #include <sys/vnode.h>
  62 #include <sys/file.h>
  63 
  64 #include <sys/procfs.h>
  65 
  66 #include <sys/vfs.h>
  67 #include <sys/cmn_err.h>
  68 #include <sys/utsname.h>
  69 #include <sys/debug.h>
  70 #include <sys/kdi.h>
  71 
  72 #include <sys/dumphdr.h>
  73 #include <sys/bootconf.h>
  74 #include <sys/memlist_plat.h>
  75 #include <sys/varargs.h>
  76 #include <sys/promif.h>
  77 #include <sys/modctl.h>
  78 
  79 #include <sys/sunddi.h>
  80 #include <sys/sunndi.h>
  81 #include <sys/ndi_impldefs.h>
  82 #include <sys/ddidmareq.h>
  83 #include <sys/psw.h>
  84 #include <sys/regset.h>
  85 #include <sys/clock.h>
  86 #include <sys/pte.h>
  87 #include <sys/tss.h>
  88 #include <sys/stack.h>
  89 #include <sys/trap.h>
  90 #include <sys/fp.h>
  91 #include <vm/kboot_mmu.h>
  92 #include <vm/anon.h>
  93 #include <vm/as.h>
  94 #include <vm/page.h>
  95 #include <vm/seg.h>
  96 #include <vm/seg_dev.h>
  97 #include <vm/seg_kmem.h>
  98 #include <vm/seg_kpm.h>
  99 #include <vm/seg_map.h>
 100 #include <vm/seg_vn.h>
 101 #include <vm/seg_kp.h>
 102 #include <sys/memnode.h>
 103 #include <vm/vm_dep.h>
 104 #include <sys/thread.h>
 105 #include <sys/sysconf.h>
 106 #include <sys/vm_machparam.h>
 107 #include <sys/archsystm.h>
 108 #include <sys/machsystm.h>
 109 #include <vm/hat.h>
 110 #include <vm/hat_i86.h>
 111 #include <sys/pmem.h>
 112 #include <sys/smp_impldefs.h>
 113 #include <sys/x86_archext.h>
 114 #include <sys/cpuvar.h>
 115 #include <sys/segments.h>
 116 #include <sys/clconf.h>
 117 #include <sys/kobj.h>
 118 #include <sys/kobj_lex.h>
 119 #include <sys/cpc_impl.h>
 120 #include <sys/cpu_module.h>
 121 #include <sys/smbios.h>
 122 #include <sys/debug_info.h>
 123 #include <sys/bootinfo.h>
 124 #include <sys/ddi_periodic.h>
 125 #include <sys/systeminfo.h>
 126 #include <sys/multiboot.h>
 127 #include <sys/ramdisk.h>
 128 
 129 #ifdef  __xpv
 130 
 131 #include <sys/hypervisor.h>
 132 #include <sys/xen_mmu.h>
 133 #include <sys/evtchn_impl.h>
 134 #include <sys/gnttab.h>
 135 #include <sys/xpv_panic.h>
 136 #include <xen/sys/xenbus_comms.h>
 137 #include <xen/public/physdev.h>
 138 
 139 extern void xen_late_startup(void);
 140 
 141 struct xen_evt_data cpu0_evt_data;
 142 
 143 #else   /* __xpv */
 144 #include <sys/memlist_impl.h>
 145 
 146 extern void mem_config_init(void);
 147 #endif /* __xpv */
 148 
 149 extern void progressbar_init(void);
 150 extern void brand_init(void);
 151 extern void pcf_init(void);
 152 extern void pg_init(void);
 153 extern void ssp_init(void);
 154 
 155 extern int size_pse_array(pgcnt_t, int);
 156 
 157 #if defined(_SOFT_HOSTID)
 158 
 159 #include <sys/rtc.h>
 160 
 161 static int32_t set_soft_hostid(void);
 162 static char hostid_file[] = "/etc/hostid";
 163 
 164 #endif
 165 
 166 void *gfx_devinfo_list;
 167 
 168 #if defined(__amd64) && !defined(__xpv)
 169 extern void immu_startup(void);
 170 #endif
 171 
 172 /*
 173  * XXX make declaration below "static" when drivers no longer use this
 174  * interface.
 175  */
 176 extern caddr_t p0_va;   /* Virtual address for accessing physical page 0 */
 177 
 178 /*
 179  * segkp
 180  */
 181 extern int segkp_fromheap;
 182 
 183 static void kvm_init(void);
 184 static void startup_init(void);
 185 static void startup_memlist(void);
 186 static void startup_kmem(void);
 187 static void startup_modules(void);
 188 static void startup_vm(void);
 189 static void startup_end(void);
 190 static void layout_kernel_va(void);
 191 
 192 /*
 193  * Declare these as initialized data so we can patch them.
 194  */
 195 #ifdef __i386
 196 
 197 /*
 198  * Due to virtual address space limitations running in 32 bit mode, restrict
 199  * the amount of physical memory configured to a max of PHYSMEM pages (16g).
 200  *
 201  * If the physical max memory size of 64g were allowed to be configured, the
 202  * size of user virtual address space will be less than 1g. A limited user
 203  * address space greatly reduces the range of applications that can run.
 204  *
 205  * If more physical memory than PHYSMEM is required, users should preferably
 206  * run in 64 bit mode which has far looser virtual address space limitations.
 207  *
 208  * If 64 bit mode is not available (as in IA32) and/or more physical memory
 209  * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired
 210  * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase
 211  * should also be carefully tuned to balance out the need of the user
 212  * application while minimizing the risk of kernel heap exhaustion due to
 213  * kernelbase being set too high.
 214  */
 215 #define PHYSMEM 0x400000
 216 
 217 #else /* __amd64 */
 218 
 219 /*
 220  * For now we can handle memory with physical addresses up to about
 221  * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly
 222  * half the VA space for seg_kpm. When systems get bigger than 64TB this
 223  * code will need revisiting. There is an implicit assumption that there
 224  * are no *huge* holes in the physical address space too.
 225  */
 226 #define TERABYTE                (1ul << 40)
 227 #define PHYSMEM_MAX64           mmu_btop(64 * TERABYTE)
 228 #define PHYSMEM                 PHYSMEM_MAX64
 229 #define AMD64_VA_HOLE_END       0xFFFF800000000000ul
 230 
 231 #endif /* __amd64 */
 232 
 233 pgcnt_t physmem = PHYSMEM;
 234 pgcnt_t obp_pages;      /* Memory used by PROM for its text and data */
 235 
 236 char *kobj_file_buf;
 237 int kobj_file_bufsize;  /* set in /etc/system */
 238 
 239 /* Global variables for MP support. Used in mp_startup */
 240 caddr_t rm_platter_va = 0;
 241 uint32_t rm_platter_pa;
 242 
 243 int     auto_lpg_disable = 1;
 244 
 245 /*
 246  * Some CPUs have holes in the middle of the 64-bit virtual address range.
 247  */
 248 uintptr_t hole_start, hole_end;
 249 
 250 /*
 251  * kpm mapping window
 252  */
 253 caddr_t kpm_vbase;
 254 size_t  kpm_size;
 255 static int kpm_desired;
 256 #ifdef __amd64
 257 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE;
 258 #endif
 259 
 260 /*
 261  * Configuration parameters set at boot time.
 262  */
 263 
 264 caddr_t econtig;                /* end of first block of contiguous kernel */
 265 
 266 struct bootops          *bootops = 0;   /* passed in from boot */
 267 struct bootops          **bootopsp;
 268 struct boot_syscalls    *sysp;          /* passed in from boot */
 269 
 270 char bootblock_fstype[16];
 271 
 272 char kern_bootargs[OBP_MAXPATHLEN];
 273 char kern_bootfile[OBP_MAXPATHLEN];
 274 
 275 /*
 276  * ZFS zio segment.  This allows us to exclude large portions of ZFS data that
 277  * gets cached in kmem caches on the heap.  If this is set to zero, we allocate
 278  * zio buffers from their own segment, otherwise they are allocated from the
 279  * heap.  The optimization of allocating zio buffers from their own segment is
 280  * only valid on 64-bit kernels.
 281  */
 282 #if defined(__amd64)
 283 int segzio_fromheap = 0;
 284 #else
 285 int segzio_fromheap = 1;
 286 #endif
 287 
 288 /*
 289  * Give folks an escape hatch for disabling SMAP via kmdb. Doesn't work
 290  * post-boot.
 291  */
 292 int disable_smap = 0;
 293 
 294 /*
 295  * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
 296  * depends on number of BOP_ALLOC calls made and requested size, memory size
 297  * combination and whether boot.bin memory needs to be freed.
 298  */
 299 #define POSS_NEW_FRAGMENTS      12
 300 
 301 /*
 302  * VM data structures
 303  */
 304 long page_hashsz;               /* Size of page hash table (power of two) */
 305 unsigned int page_hashsz_shift; /* log2(page_hashsz) */
 306 struct page *pp_base;           /* Base of initial system page struct array */
 307 struct page **page_hash;        /* Page hash table */
 308 pad_mutex_t *pse_mutex;         /* Locks protecting pp->p_selock */
 309 size_t pse_table_size;          /* Number of mutexes in pse_mutex[] */
 310 int pse_shift;                  /* log2(pse_table_size) */
 311 struct seg ktextseg;            /* Segment used for kernel executable image */
 312 struct seg kvalloc;             /* Segment used for "valloc" mapping */
 313 struct seg kpseg;               /* Segment used for pageable kernel virt mem */
 314 struct seg kmapseg;             /* Segment used for generic kernel mappings */
 315 struct seg kdebugseg;           /* Segment used for the kernel debugger */
 316 
 317 struct seg *segkmap = &kmapseg;     /* Kernel generic mapping segment */
 318 static struct seg *segmap = &kmapseg;       /* easier to use name for in here */
 319 
 320 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */
 321 
 322 #if defined(__amd64)
 323 struct seg kvseg_core;          /* Segment used for the core heap */
 324 struct seg kpmseg;              /* Segment used for physical mapping */
 325 struct seg *segkpm = &kpmseg;       /* 64bit kernel physical mapping segment */
 326 #else
 327 struct seg *segkpm = NULL;      /* Unused on IA32 */
 328 #endif
 329 
 330 caddr_t segkp_base;             /* Base address of segkp */
 331 caddr_t segzio_base;            /* Base address of segzio */
 332 #if defined(__amd64)
 333 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */
 334 #else
 335 pgcnt_t segkpsize = 0;
 336 #endif
 337 pgcnt_t segziosize = 0;         /* size of zio segment in pages */
 338 
 339 /*
 340  * A static DR page_t VA map is reserved that can map the page structures
 341  * for a domain's entire RA space. The pages that back this space are
 342  * dynamically allocated and need not be physically contiguous.  The DR
 343  * map size is derived from KPM size.
 344  * This mechanism isn't used by x86 yet, so just stubs here.
 345  */
 346 int ppvm_enable = 0;            /* Static virtual map for page structs */
 347 page_t *ppvm_base = NULL;       /* Base of page struct map */
 348 pgcnt_t ppvm_size = 0;          /* Size of page struct map */
 349 
 350 /*
 351  * VA range available to the debugger
 352  */
 353 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
 354 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
 355 
 356 struct memseg *memseg_base;
 357 struct vnode unused_pages_vp;
 358 
 359 #define FOURGB  0x100000000LL
 360 
 361 struct memlist *memlist;
 362 
 363 caddr_t s_text;         /* start of kernel text segment */
 364 caddr_t e_text;         /* end of kernel text segment */
 365 caddr_t s_data;         /* start of kernel data segment */
 366 caddr_t e_data;         /* end of kernel data segment */
 367 caddr_t modtext;        /* start of loadable module text reserved */
 368 caddr_t e_modtext;      /* end of loadable module text reserved */
 369 caddr_t moddata;        /* start of loadable module data reserved */
 370 caddr_t e_moddata;      /* end of loadable module data reserved */
 371 
 372 struct memlist *phys_install;   /* Total installed physical memory */
 373 struct memlist *phys_avail;     /* Total available physical memory */
 374 struct memlist *bios_rsvd;      /* Bios reserved memory */
 375 
 376 /*
 377  * kphysm_init returns the number of pages that were processed
 378  */
 379 static pgcnt_t kphysm_init(page_t *, pgcnt_t);
 380 
 381 #define IO_PROP_SIZE    64      /* device property size */
 382 
 383 /*
 384  * a couple useful roundup macros
 385  */
 386 #define ROUND_UP_PAGE(x)        \
 387         ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
 388 #define ROUND_UP_LPAGE(x)       \
 389         ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
 390 #define ROUND_UP_4MEG(x)        \
 391         ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG))
 392 #define ROUND_UP_TOPLEVEL(x)    \
 393         ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
 394 
 395 /*
 396  *      32-bit Kernel's Virtual memory layout.
 397  *              +-----------------------+
 398  *              |                       |
 399  * 0xFFC00000  -|-----------------------|- ARGSBASE
 400  *              |       debugger        |
 401  * 0xFF800000  -|-----------------------|- SEGDEBUGBASE
 402  *              |      Kernel Data      |
 403  * 0xFEC00000  -|-----------------------|
 404  *              |      Kernel Text      |
 405  * 0xFE800000  -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen)
 406  *              |---       GDT       ---|- GDT page (GDT_VA)
 407  *              |---    debug info   ---|- debug info (DEBUG_INFO_VA)
 408  *              |                       |
 409  *              |   page_t structures   |
 410  *              |   memsegs, memlists,  |
 411  *              |   page hash, etc.     |
 412  * ---         -|-----------------------|- ekernelheap, valloc_base (floating)
 413  *              |                       |  (segkp is just an arena in the heap)
 414  *              |                       |
 415  *              |       kvseg           |
 416  *              |                       |
 417  *              |                       |
 418  * ---         -|-----------------------|- kernelheap (floating)
 419  *              |        Segkmap        |
 420  * 0xC3002000  -|-----------------------|- segmap_start (floating)
 421  *              |       Red Zone        |
 422  * 0xC3000000  -|-----------------------|- kernelbase / userlimit (floating)
 423  *              |                       |                       ||
 424  *              |     Shared objects    |                       \/
 425  *              |                       |
 426  *              :                       :
 427  *              |       user data       |
 428  *              |-----------------------|
 429  *              |       user text       |
 430  * 0x08048000  -|-----------------------|
 431  *              |       user stack      |
 432  *              :                       :
 433  *              |       invalid         |
 434  * 0x00000000   +-----------------------+
 435  *
 436  *
 437  *              64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
 438  *                      +-----------------------+
 439  *                      |                       |
 440  * 0xFFFFFFFF.FFC00000  |-----------------------|- ARGSBASE
 441  *                      |       debugger (?)    |
 442  * 0xFFFFFFFF.FF800000  |-----------------------|- SEGDEBUGBASE
 443  *                      |      unused           |
 444  *                      +-----------------------+
 445  *                      |      Kernel Data      |
 446  * 0xFFFFFFFF.FBC00000  |-----------------------|
 447  *                      |      Kernel Text      |
 448  * 0xFFFFFFFF.FB800000  |-----------------------|- KERNEL_TEXT
 449  *                      |---       GDT       ---|- GDT page (GDT_VA)
 450  *                      |---    debug info   ---|- debug info (DEBUG_INFO_VA)
 451  *                      |                       |
 452  *                      |      Core heap        | (used for loadable modules)
 453  * 0xFFFFFFFF.C0000000  |-----------------------|- core_base / ekernelheap
 454  *                      |        Kernel         |
 455  *                      |         heap          |
 456  * 0xFFFFFXXX.XXX00000  |-----------------------|- kernelheap (floating)
 457  *                      |        segmap         |
 458  * 0xFFFFFXXX.XXX00000  |-----------------------|- segmap_start (floating)
 459  *                      |    device mappings    |
 460  * 0xFFFFFXXX.XXX00000  |-----------------------|- toxic_addr (floating)
 461  *                      |         segzio        |
 462  * 0xFFFFFXXX.XXX00000  |-----------------------|- segzio_base (floating)
 463  *                      |         segkp         |
 464  * ---                  |-----------------------|- segkp_base (floating)
 465  *                      |   page_t structures   |  valloc_base + valloc_sz
 466  *                      |   memsegs, memlists,  |
 467  *                      |   page hash, etc.     |
 468  * 0xFFFFFF00.00000000  |-----------------------|- valloc_base (lower if >256GB)
 469  *                      |        segkpm         |
 470  * 0xFFFFFE00.00000000  |-----------------------|
 471  *                      |       Red Zone        |
 472  * 0xFFFFFD80.00000000  |-----------------------|- KERNELBASE (lower if >256GB)
 473  *                      |     User stack        |- User space memory
 474  *                      |                       |
 475  *                      | shared objects, etc   |       (grows downwards)
 476  *                      :                       :
 477  *                      |                       |
 478  * 0xFFFF8000.00000000  |-----------------------|
 479  *                      |                       |
 480  *                      | VA Hole / unused      |
 481  *                      |                       |
 482  * 0x00008000.00000000  |-----------------------|
 483  *                      |                       |
 484  *                      |                       |
 485  *                      :                       :
 486  *                      |       user heap       |       (grows upwards)
 487  *                      |                       |
 488  *                      |       user data       |
 489  *                      |-----------------------|
 490  *                      |       user text       |
 491  * 0x00000000.04000000  |-----------------------|
 492  *                      |       invalid         |
 493  * 0x00000000.00000000  +-----------------------+
 494  *
 495  * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
 496  * kernel, except that userlimit is raised to 0xfe000000
 497  *
 498  * Floating values:
 499  *
 500  * valloc_base: start of the kernel's memory management/tracking data
 501  * structures.  This region contains page_t structures for
 502  * physical memory, memsegs, memlists, and the page hash.
 503  *
 504  * core_base: start of the kernel's "core" heap area on 64-bit systems.
 505  * This area is intended to be used for global data as well as for module
 506  * text/data that does not fit into the nucleus pages.  The core heap is
 507  * restricted to a 2GB range, allowing every address within it to be
 508  * accessed using rip-relative addressing
 509  *
 510  * ekernelheap: end of kernelheap and start of segmap.
 511  *
 512  * kernelheap: start of kernel heap.  On 32-bit systems, this starts right
 513  * above a red zone that separates the user's address space from the
 514  * kernel's.  On 64-bit systems, it sits above segkp and segkpm.
 515  *
 516  * segmap_start: start of segmap. The length of segmap can be modified
 517  * through eeprom. The default length is 16MB on 32-bit systems and 64MB
 518  * on 64-bit systems.
 519  *
 520  * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
 521  * decreased by 2X the size required for page_t.  This allows the kernel
 522  * heap to grow in size with physical memory.  With sizeof(page_t) == 80
 523  * bytes, the following shows the values of kernelbase and kernel heap
 524  * sizes for different memory configurations (assuming default segmap and
 525  * segkp sizes).
 526  *
 527  *      mem     size for        kernelbase      kernel heap
 528  *      size    page_t's                        size
 529  *      ----    ---------       ----------      -----------
 530  *      1gb     0x01400000      0xd1800000      684MB
 531  *      2gb     0x02800000      0xcf000000      704MB
 532  *      4gb     0x05000000      0xca000000      744MB
 533  *      6gb     0x07800000      0xc5000000      784MB
 534  *      8gb     0x0a000000      0xc0000000      824MB
 535  *      16gb    0x14000000      0xac000000      984MB
 536  *      32gb    0x28000000      0x84000000      1304MB
 537  *      64gb    0x50000000      0x34000000      1944MB (*)
 538  *
 539  * kernelbase is less than the abi minimum of 0xc0000000 for memory
 540  * configurations above 8gb.
 541  *
 542  * (*) support for memory configurations above 32gb will require manual tuning
 543  * of kernelbase to balance out the need of user applications.
 544  */
 545 
 546 /* real-time-clock initialization parameters */
 547 extern time_t process_rtc_config_file(void);
 548 
 549 uintptr_t       kernelbase;
 550 uintptr_t       postbootkernelbase;     /* not set till boot loader is gone */
 551 uintptr_t       eprom_kernelbase;
 552 size_t          segmapsize;
 553 uintptr_t       segmap_start;
 554 int             segmapfreelists;
 555 pgcnt_t         npages;
 556 pgcnt_t         orig_npages;
 557 size_t          core_size;              /* size of "core" heap */
 558 uintptr_t       core_base;              /* base address of "core" heap */
 559 
 560 /*
 561  * List of bootstrap pages. We mark these as allocated in startup.
 562  * release_bootstrap() will free them when we're completely done with
 563  * the bootstrap.
 564  */
 565 static page_t *bootpages;
 566 
 567 /*
 568  * boot time pages that have a vnode from the ramdisk will keep that forever.
 569  */
 570 static page_t *rd_pages;
 571 
 572 /*
 573  * Lower 64K
 574  */
 575 static page_t *lower_pages = NULL;
 576 static int lower_pages_count = 0;
 577 
 578 struct system_hardware system_hardware;
 579 
 580 /*
 581  * Enable some debugging messages concerning memory usage...
 582  */
 583 static void
 584 print_memlist(char *title, struct memlist *mp)
 585 {
 586         prom_printf("MEMLIST: %s:\n", title);
 587         while (mp != NULL)  {
 588                 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
 589                     mp->ml_address, mp->ml_size);
 590                 mp = mp->ml_next;
 591         }
 592 }
 593 
 594 /*
 595  * XX64 need a comment here.. are these just default values, surely
 596  * we read the "cpuid" type information to figure this out.
 597  */
 598 int     l2cache_sz = 0x80000;
 599 int     l2cache_linesz = 0x40;
 600 int     l2cache_assoc = 1;
 601 
 602 static size_t   textrepl_min_gb = 10;
 603 
 604 /*
 605  * on 64 bit we use a predifined VA range for mapping devices in the kernel
 606  * on 32 bit the mappings are intermixed in the heap, so we use a bit map
 607  */
 608 #ifdef __amd64
 609 
 610 vmem_t          *device_arena;
 611 uintptr_t       toxic_addr = (uintptr_t)NULL;
 612 size_t          toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
 613 
 614 #else   /* __i386 */
 615 
 616 ulong_t         *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */
 617 size_t          toxic_bit_map_len = 0;  /* in bits */
 618 
 619 #endif  /* __i386 */
 620 
 621 /*
 622  * Simple boot time debug facilities
 623  */
 624 static char *prm_dbg_str[] = {
 625         "%s:%d: '%s' is 0x%x\n",
 626         "%s:%d: '%s' is 0x%llx\n"
 627 };
 628 
 629 int prom_debug;
 630 
 631 #define PRM_DEBUG(q)    if (prom_debug)         \
 632         prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
 633 #define PRM_POINT(q)    if (prom_debug)         \
 634         prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
 635 
 636 /*
 637  * This structure is used to keep track of the intial allocations
 638  * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
 639  * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
 640  */
 641 #define NUM_ALLOCATIONS 8
 642 int num_allocations = 0;
 643 struct {
 644         void **al_ptr;
 645         size_t al_size;
 646 } allocations[NUM_ALLOCATIONS];
 647 size_t valloc_sz = 0;
 648 uintptr_t valloc_base;
 649 
 650 #define ADD_TO_ALLOCATIONS(ptr, size) {                                 \
 651                 size = ROUND_UP_PAGE(size);                             \
 652                 if (num_allocations == NUM_ALLOCATIONS)                 \
 653                         panic("too many ADD_TO_ALLOCATIONS()");         \
 654                 allocations[num_allocations].al_ptr = (void**)&ptr; \
 655                 allocations[num_allocations].al_size = size;            \
 656                 valloc_sz += size;                                      \
 657                 ++num_allocations;                                      \
 658         }
 659 
 660 /*
 661  * Allocate all the initial memory needed by the page allocator.
 662  */
 663 static void
 664 perform_allocations(void)
 665 {
 666         caddr_t mem;
 667         int i;
 668         int valloc_align;
 669 
 670         PRM_DEBUG(valloc_base);
 671         PRM_DEBUG(valloc_sz);
 672         valloc_align = mmu.level_size[mmu.max_page_level > 0];
 673         mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align);
 674         if (mem != (caddr_t)valloc_base)
 675                 panic("BOP_ALLOC() failed");
 676         bzero(mem, valloc_sz);
 677         for (i = 0; i < num_allocations; ++i) {
 678                 *allocations[i].al_ptr = (void *)mem;
 679                 mem += allocations[i].al_size;
 680         }
 681 }
 682 
 683 /*
 684  * Set up and enable SMAP now before we start other CPUs, but after the kernel's
 685  * VM has been set up so we can use hot_patch_kernel_text().
 686  *
 687  * We can only patch 1, 2, or 4 bytes, but not three bytes. So instead, we
 688  * replace the four byte word at the patch point. See uts/intel/ia32/ml/copy.s
 689  * for more information on what's going on here.
 690  */
 691 static void
 692 startup_smap(void)
 693 {
 694         int i;
 695         uint32_t inst;
 696         uint8_t *instp;
 697         char sym[128];
 698 
 699         extern int _smap_enable_patch_count;
 700         extern int _smap_disable_patch_count;
 701 
 702         if (disable_smap != 0)
 703                 remove_x86_feature(x86_featureset, X86FSET_SMAP);
 704 
 705         if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_FALSE)
 706                 return;
 707 
 708         for (i = 0; i < _smap_enable_patch_count; i++) {
 709                 int sizep;
 710 
 711                 VERIFY3U(i, <, _smap_enable_patch_count);
 712                 VERIFY(snprintf(sym, sizeof (sym), "_smap_enable_patch_%d", i) <
 713                     sizeof (sym));
 714                 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep);
 715                 VERIFY(instp != 0);
 716                 inst = (instp[3] << 24) | (SMAP_CLAC_INSTR & 0x00ffffff);
 717                 hot_patch_kernel_text((caddr_t)instp, inst, 4);
 718         }
 719 
 720         for (i = 0; i < _smap_disable_patch_count; i++) {
 721                 int sizep;
 722 
 723                 VERIFY(snprintf(sym, sizeof (sym), "_smap_disable_patch_%d",
 724                     i) < sizeof (sym));
 725                 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep);
 726                 VERIFY(instp != 0);
 727                 inst = (instp[3] << 24) | (SMAP_STAC_INSTR & 0x00ffffff);
 728                 hot_patch_kernel_text((caddr_t)instp, inst, 4);
 729         }
 730 
 731         hot_patch_kernel_text((caddr_t)smap_enable, SMAP_CLAC_INSTR, 4);
 732         hot_patch_kernel_text((caddr_t)smap_disable, SMAP_STAC_INSTR, 4);
 733         setcr4(getcr4() | CR4_SMAP);
 734         smap_enable();
 735 }
 736 
 737 /*
 738  * Our world looks like this at startup time.
 739  *
 740  * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
 741  * at 0xfec00000.  On a 64-bit OS, kernel text and data are loaded at
 742  * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively.  Those
 743  * addresses are fixed in the binary at link time.
 744  *
 745  * On the text page:
 746  * unix/genunix/krtld/module text loads.
 747  *
 748  * On the data page:
 749  * unix/genunix/krtld/module data loads.
 750  *
 751  * Machine-dependent startup code
 752  */
 753 void
 754 startup(void)
 755 {
 756 #if !defined(__xpv)
 757         extern void startup_pci_bios(void);
 758 #endif
 759         extern cpuset_t cpu_ready_set;
 760 
 761         /*
 762          * Make sure that nobody tries to use sekpm until we have
 763          * initialized it properly.
 764          */
 765 #if defined(__amd64)
 766         kpm_desired = 1;
 767 #endif
 768         kpm_enable = 0;
 769         CPUSET_ONLY(cpu_ready_set, 0);  /* cpu 0 is boot cpu */
 770 
 771 #if defined(__xpv)      /* XXPV fix me! */
 772         {
 773                 extern int segvn_use_regions;
 774                 segvn_use_regions = 0;
 775         }
 776 #endif
 777         ssp_init();
 778         progressbar_init();
 779         startup_init();
 780 #if defined(__xpv)
 781         startup_xen_version();
 782 #endif
 783         startup_memlist();
 784         startup_kmem();
 785         startup_vm();
 786 #if !defined(__xpv)
 787         /*
 788          * Note we need to do this even on fast reboot in order to access
 789          * the irq routing table (used for pci labels).
 790          */
 791         startup_pci_bios();
 792         startup_smap();
 793 #endif
 794 #if defined(__xpv)
 795         startup_xen_mca();
 796 #endif
 797         startup_modules();
 798 
 799         startup_end();
 800 }
 801 
 802 static void
 803 startup_init()
 804 {
 805         PRM_POINT("startup_init() starting...");
 806 
 807         /*
 808          * Complete the extraction of cpuid data
 809          */
 810         cpuid_pass2(CPU);
 811 
 812         (void) check_boot_version(BOP_GETVERSION(bootops));
 813 
 814         /*
 815          * Check for prom_debug in boot environment
 816          */
 817         if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
 818                 ++prom_debug;
 819                 PRM_POINT("prom_debug found in boot enviroment");
 820         }
 821 
 822         /*
 823          * Collect node, cpu and memory configuration information.
 824          */
 825         get_system_configuration();
 826 
 827         /*
 828          * Halt if this is an unsupported processor.
 829          */
 830         if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
 831                 printf("\n486 processor (\"%s\") detected.\n",
 832                     CPU->cpu_brandstr);
 833                 halt("This processor is not supported by this release "
 834                     "of Solaris.");
 835         }
 836 
 837         PRM_POINT("startup_init() done");
 838 }
 839 
 840 /*
 841  * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
 842  * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
 843  * also filters out physical page zero.  There is some reliance on the
 844  * boot loader allocating only a few contiguous physical memory chunks.
 845  */
 846 static void
 847 avail_filter(uint64_t *addr, uint64_t *size)
 848 {
 849         uintptr_t va;
 850         uintptr_t next_va;
 851         pfn_t pfn;
 852         uint64_t pfn_addr;
 853         uint64_t pfn_eaddr;
 854         uint_t prot;
 855         size_t len;
 856         uint_t change;
 857 
 858         if (prom_debug)
 859                 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
 860                     *addr, *size);
 861 
 862         /*
 863          * page zero is required for BIOS.. never make it available
 864          */
 865         if (*addr == 0) {
 866                 *addr += MMU_PAGESIZE;
 867                 *size -= MMU_PAGESIZE;
 868         }
 869 
 870         /*
 871          * First we trim from the front of the range. Since kbm_probe()
 872          * walks ranges in virtual order, but addr/size are physical, we need
 873          * to the list until no changes are seen.  This deals with the case
 874          * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
 875          * but w < v.
 876          */
 877         do {
 878                 change = 0;
 879                 for (va = KERNEL_TEXT;
 880                     *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
 881                     va = next_va) {
 882 
 883                         next_va = va + len;
 884                         pfn_addr = pfn_to_pa(pfn);
 885                         pfn_eaddr = pfn_addr + len;
 886 
 887                         if (pfn_addr <= *addr && pfn_eaddr > *addr) {
 888                                 change = 1;
 889                                 while (*size > 0 && len > 0) {
 890                                         *addr += MMU_PAGESIZE;
 891                                         *size -= MMU_PAGESIZE;
 892                                         len -= MMU_PAGESIZE;
 893                                 }
 894                         }
 895                 }
 896                 if (change && prom_debug)
 897                         prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
 898                             *addr, *size);
 899         } while (change);
 900 
 901         /*
 902          * Trim pages from the end of the range.
 903          */
 904         for (va = KERNEL_TEXT;
 905             *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
 906             va = next_va) {
 907 
 908                 next_va = va + len;
 909                 pfn_addr = pfn_to_pa(pfn);
 910 
 911                 if (pfn_addr >= *addr && pfn_addr < *addr + *size)
 912                         *size = pfn_addr - *addr;
 913         }
 914 
 915         if (prom_debug)
 916                 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
 917                     *addr, *size);
 918 }
 919 
 920 static void
 921 kpm_init()
 922 {
 923         struct segkpm_crargs b;
 924 
 925         /*
 926          * These variables were all designed for sfmmu in which segkpm is
 927          * mapped using a single pagesize - either 8KB or 4MB.  On x86, we
 928          * might use 2+ page sizes on a single machine, so none of these
 929          * variables have a single correct value.  They are set up as if we
 930          * always use a 4KB pagesize, which should do no harm.  In the long
 931          * run, we should get rid of KPM's assumption that only a single
 932          * pagesize is used.
 933          */
 934         kpm_pgshft = MMU_PAGESHIFT;
 935         kpm_pgsz =  MMU_PAGESIZE;
 936         kpm_pgoff = MMU_PAGEOFFSET;
 937         kpmp2pshft = 0;
 938         kpmpnpgs = 1;
 939         ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
 940 
 941         PRM_POINT("about to create segkpm");
 942         rw_enter(&kas.a_lock, RW_WRITER);
 943 
 944         if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
 945                 panic("cannot attach segkpm");
 946 
 947         b.prot = PROT_READ | PROT_WRITE;
 948         b.nvcolors = 1;
 949 
 950         if (segkpm_create(segkpm, (caddr_t)&b) != 0)
 951                 panic("segkpm_create segkpm");
 952 
 953         rw_exit(&kas.a_lock);
 954 }
 955 
 956 /*
 957  * The debug info page provides enough information to allow external
 958  * inspectors (e.g. when running under a hypervisor) to bootstrap
 959  * themselves into allowing full-blown kernel debugging.
 960  */
 961 static void
 962 init_debug_info(void)
 963 {
 964         caddr_t mem;
 965         debug_info_t *di;
 966 
 967 #ifndef __lint
 968         ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE);
 969 #endif
 970 
 971         mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE,
 972             MMU_PAGESIZE);
 973 
 974         if (mem != (caddr_t)DEBUG_INFO_VA)
 975                 panic("BOP_ALLOC() failed");
 976         bzero(mem, MMU_PAGESIZE);
 977 
 978         di = (debug_info_t *)mem;
 979 
 980         di->di_magic = DEBUG_INFO_MAGIC;
 981         di->di_version = DEBUG_INFO_VERSION;
 982         di->di_modules = (uintptr_t)&modules;
 983         di->di_s_text = (uintptr_t)s_text;
 984         di->di_e_text = (uintptr_t)e_text;
 985         di->di_s_data = (uintptr_t)s_data;
 986         di->di_e_data = (uintptr_t)e_data;
 987         di->di_hat_htable_off = offsetof(hat_t, hat_htable);
 988         di->di_ht_pfn_off = offsetof(htable_t, ht_pfn);
 989 }
 990 
 991 /*
 992  * Build the memlists and other kernel essential memory system data structures.
 993  * This is everything at valloc_base.
 994  */
 995 static void
 996 startup_memlist(void)
 997 {
 998         size_t memlist_sz;
 999         size_t memseg_sz;
1000         size_t pagehash_sz;
1001         size_t pp_sz;
1002         uintptr_t va;
1003         size_t len;
1004         uint_t prot;
1005         pfn_t pfn;
1006         int memblocks;
1007         pfn_t rsvd_high_pfn;
1008         pgcnt_t rsvd_pgcnt;
1009         size_t rsvdmemlist_sz;
1010         int rsvdmemblocks;
1011         caddr_t pagecolor_mem;
1012         size_t pagecolor_memsz;
1013         caddr_t page_ctrs_mem;
1014         size_t page_ctrs_size;
1015         size_t pse_table_alloc_size;
1016         struct memlist *current;
1017         extern void startup_build_mem_nodes(struct memlist *);
1018 
1019         /* XX64 fix these - they should be in include files */
1020         extern size_t page_coloring_init(uint_t, int, int);
1021         extern void page_coloring_setup(caddr_t);
1022 
1023         PRM_POINT("startup_memlist() starting...");
1024 
1025         /*
1026          * Use leftover large page nucleus text/data space for loadable modules.
1027          * Use at most MODTEXT/MODDATA.
1028          */
1029         len = kbm_nucleus_size;
1030         ASSERT(len > MMU_PAGESIZE);
1031 
1032         moddata = (caddr_t)ROUND_UP_PAGE(e_data);
1033         e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len);
1034         if (e_moddata - moddata > MODDATA)
1035                 e_moddata = moddata + MODDATA;
1036 
1037         modtext = (caddr_t)ROUND_UP_PAGE(e_text);
1038         e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len);
1039         if (e_modtext - modtext > MODTEXT)
1040                 e_modtext = modtext + MODTEXT;
1041 
1042         econtig = e_moddata;
1043 
1044         PRM_DEBUG(modtext);
1045         PRM_DEBUG(e_modtext);
1046         PRM_DEBUG(moddata);
1047         PRM_DEBUG(e_moddata);
1048         PRM_DEBUG(econtig);
1049 
1050         /*
1051          * Examine the boot loader physical memory map to find out:
1052          * - total memory in system - physinstalled
1053          * - the max physical address - physmax
1054          * - the number of discontiguous segments of memory.
1055          */
1056         if (prom_debug)
1057                 print_memlist("boot physinstalled",
1058                     bootops->boot_mem->physinstalled);
1059         installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax,
1060             &physinstalled, &memblocks);
1061         PRM_DEBUG(physmax);
1062         PRM_DEBUG(physinstalled);
1063         PRM_DEBUG(memblocks);
1064 
1065         /*
1066          * Compute maximum physical address for memory DR operations.
1067          * Memory DR operations are unsupported on xpv or 32bit OSes.
1068          */
1069 #ifdef  __amd64
1070         if (plat_dr_support_memory()) {
1071                 if (plat_dr_physmax == 0) {
1072                         uint_t pabits = UINT_MAX;
1073 
1074                         cpuid_get_addrsize(CPU, &pabits, NULL);
1075                         plat_dr_physmax = btop(1ULL << pabits);
1076                 }
1077                 if (plat_dr_physmax > PHYSMEM_MAX64)
1078                         plat_dr_physmax = PHYSMEM_MAX64;
1079         } else
1080 #endif
1081                 plat_dr_physmax = 0;
1082 
1083         /*
1084          * Examine the bios reserved memory to find out:
1085          * - the number of discontiguous segments of memory.
1086          */
1087         if (prom_debug)
1088                 print_memlist("boot reserved mem",
1089                     bootops->boot_mem->rsvdmem);
1090         installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn,
1091             &rsvd_pgcnt, &rsvdmemblocks);
1092         PRM_DEBUG(rsvd_high_pfn);
1093         PRM_DEBUG(rsvd_pgcnt);
1094         PRM_DEBUG(rsvdmemblocks);
1095 
1096         /*
1097          * Initialize hat's mmu parameters.
1098          * Check for enforce-prot-exec in boot environment. It's used to
1099          * enable/disable support for the page table entry NX bit.
1100          * The default is to enforce PROT_EXEC on processors that support NX.
1101          * Boot seems to round up the "len", but 8 seems to be big enough.
1102          */
1103         mmu_init();
1104 
1105 #ifdef  __i386
1106         /*
1107          * physmax is lowered if there is more memory than can be
1108          * physically addressed in 32 bit (PAE/non-PAE) modes.
1109          */
1110         if (mmu.pae_hat) {
1111                 if (PFN_ABOVE64G(physmax)) {
1112                         physinstalled -= (physmax - (PFN_64G - 1));
1113                         physmax = PFN_64G - 1;
1114                 }
1115         } else {
1116                 if (PFN_ABOVE4G(physmax)) {
1117                         physinstalled -= (physmax - (PFN_4G - 1));
1118                         physmax = PFN_4G - 1;
1119                 }
1120         }
1121 #endif
1122 
1123         startup_build_mem_nodes(bootops->boot_mem->physinstalled);
1124 
1125         if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
1126                 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
1127                 char value[8];
1128 
1129                 if (len < 8)
1130                         (void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
1131                 else
1132                         (void) strcpy(value, "");
1133                 if (strcmp(value, "off") == 0)
1134                         mmu.pt_nx = 0;
1135         }
1136         PRM_DEBUG(mmu.pt_nx);
1137 
1138         /*
1139          * We will need page_t's for every page in the system, except for
1140          * memory mapped at or above above the start of the kernel text segment.
1141          *
1142          * pages above e_modtext are attributed to kernel debugger (obp_pages)
1143          */
1144         npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
1145         obp_pages = 0;
1146         va = KERNEL_TEXT;
1147         while (kbm_probe(&va, &len, &pfn, &prot) != 0) {
1148                 npages -= len >> MMU_PAGESHIFT;
1149                 if (va >= (uintptr_t)e_moddata)
1150                         obp_pages += len >> MMU_PAGESHIFT;
1151                 va += len;
1152         }
1153         PRM_DEBUG(npages);
1154         PRM_DEBUG(obp_pages);
1155 
1156         /*
1157          * If physmem is patched to be non-zero, use it instead of the computed
1158          * value unless it is larger than the actual amount of memory on hand.
1159          */
1160         if (physmem == 0 || physmem > npages) {
1161                 physmem = npages;
1162         } else if (physmem < npages) {
1163                 orig_npages = npages;
1164                 npages = physmem;
1165         }
1166         PRM_DEBUG(physmem);
1167 
1168         /*
1169          * We now compute the sizes of all the  initial allocations for
1170          * structures the kernel needs in order do kmem_alloc(). These
1171          * include:
1172          *      memsegs
1173          *      memlists
1174          *      page hash table
1175          *      page_t's
1176          *      page coloring data structs
1177          */
1178         memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
1179         ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
1180         PRM_DEBUG(memseg_sz);
1181 
1182         /*
1183          * Reserve space for memlists. There's no real good way to know exactly
1184          * how much room we'll need, but this should be a good upper bound.
1185          */
1186         memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1187             (memblocks + POSS_NEW_FRAGMENTS));
1188         ADD_TO_ALLOCATIONS(memlist, memlist_sz);
1189         PRM_DEBUG(memlist_sz);
1190 
1191         /*
1192          * Reserve space for bios reserved memlists.
1193          */
1194         rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1195             (rsvdmemblocks + POSS_NEW_FRAGMENTS));
1196         ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz);
1197         PRM_DEBUG(rsvdmemlist_sz);
1198 
1199         /* LINTED */
1200         ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), sizeof (struct page)));
1201         /*
1202          * The page structure hash table size is a power of 2
1203          * such that the average hash chain length is PAGE_HASHAVELEN.
1204          */
1205         page_hashsz = npages / PAGE_HASHAVELEN;
1206         page_hashsz_shift = highbit(page_hashsz);
1207         page_hashsz = 1 << page_hashsz_shift;
1208         pagehash_sz = sizeof (struct page *) * page_hashsz;
1209         ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
1210         PRM_DEBUG(pagehash_sz);
1211 
1212         /*
1213          * Set aside room for the page structures themselves.
1214          */
1215         PRM_DEBUG(npages);
1216         pp_sz = sizeof (struct page) * npages;
1217         ADD_TO_ALLOCATIONS(pp_base, pp_sz);
1218         PRM_DEBUG(pp_sz);
1219 
1220         /*
1221          * determine l2 cache info and memory size for page coloring
1222          */
1223         (void) getl2cacheinfo(CPU,
1224             &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
1225         pagecolor_memsz =
1226             page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
1227         ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
1228         PRM_DEBUG(pagecolor_memsz);
1229 
1230         page_ctrs_size = page_ctrs_sz();
1231         ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
1232         PRM_DEBUG(page_ctrs_size);
1233 
1234         /*
1235          * Allocate the array that protects pp->p_selock.
1236          */
1237         pse_shift = size_pse_array(physmem, max_ncpus);
1238         pse_table_size = 1 << pse_shift;
1239         pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t);
1240         ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size);
1241 
1242 #if defined(__amd64)
1243         valloc_sz = ROUND_UP_LPAGE(valloc_sz);
1244         valloc_base = VALLOC_BASE;
1245 
1246         /*
1247          * The default values of VALLOC_BASE and SEGKPM_BASE should work
1248          * for values of physmax up to 256GB (1/4 TB). They need adjusting when
1249          * memory is at addresses above 256GB. When adjusted, segkpm_base must
1250          * be aligned on KERNEL_REDZONE_SIZE boundary (span of top level pte).
1251          *
1252          * In the general case (>256GB), we use (4 * physmem) for the
1253          * kernel's virtual addresses, which is divided approximately
1254          * as follows:
1255          *  - 1 * physmem for segkpm
1256          *  - 1.5 * physmem for segzio
1257          *  - 1.5 * physmem for heap
1258          * Total: 4.0 * physmem
1259          *
1260          * Note that the segzio and heap sizes are more than physmem so that
1261          * VA fragmentation does not prevent either of them from being
1262          * able to use nearly all of physmem.  The value of 1.5x is determined
1263          * experimentally and may need to change if the workload changes.
1264          */
1265         if (physmax + 1 > mmu_btop(TERABYTE / 4) ||
1266             plat_dr_physmax > mmu_btop(TERABYTE / 4)) {
1267                 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1);
1268 
1269                 if (kpm_resv_amount < mmu_ptob(plat_dr_physmax)) {
1270                         kpm_resv_amount = mmu_ptob(plat_dr_physmax);
1271                 }
1272 
1273                 /*
1274                  * This is what actually controls the KVA : UVA split.
1275                  * The kernel uses high VA, and this is lowering the
1276                  * boundary, thus increasing the amount of VA for the kernel.
1277                  * This gives the kernel 4 * (amount of physical memory) VA.
1278                  *
1279                  * The maximum VA is UINT64_MAX and we are using
1280                  * 64-bit 2's complement math, so e.g. if you have 512GB
1281                  * of memory, segkpm_base = -(4 * 512GB) == -2TB ==
1282                  * UINT64_MAX - 2TB (approximately).  So the kernel's
1283                  * VA is [UINT64_MAX-2TB to UINT64_MAX].
1284                  */
1285                 segkpm_base = -(P2ROUNDUP((4 * kpm_resv_amount),
1286                     KERNEL_REDZONE_SIZE));
1287 
1288                 /* make sure we leave some space for user apps above hole */
1289                 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE);
1290                 if (segkpm_base > SEGKPM_BASE)
1291                         segkpm_base = SEGKPM_BASE;
1292                 PRM_DEBUG(segkpm_base);
1293 
1294                 valloc_base = segkpm_base + P2ROUNDUP(kpm_resv_amount, ONE_GIG);
1295                 if (valloc_base < segkpm_base)
1296                         panic("not enough kernel VA to support memory size");
1297                 PRM_DEBUG(valloc_base);
1298         }
1299 #else   /* __i386 */
1300         valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz);
1301         valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]);
1302         PRM_DEBUG(valloc_base);
1303 #endif  /* __i386 */
1304 
1305         /*
1306          * do all the initial allocations
1307          */
1308         perform_allocations();
1309 
1310         /*
1311          * Build phys_install and phys_avail in kernel memspace.
1312          * - phys_install should be all memory in the system.
1313          * - phys_avail is phys_install minus any memory mapped before this
1314          *    point above KERNEL_TEXT.
1315          */
1316         current = phys_install = memlist;
1317         copy_memlist_filter(bootops->boot_mem->physinstalled, &current, NULL);
1318         if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1319                 panic("physinstalled was too big!");
1320         if (prom_debug)
1321                 print_memlist("phys_install", phys_install);
1322 
1323         phys_avail = current;
1324         PRM_POINT("Building phys_avail:\n");
1325         copy_memlist_filter(bootops->boot_mem->physinstalled, &current,
1326             avail_filter);
1327         if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1328                 panic("physavail was too big!");
1329         if (prom_debug)
1330                 print_memlist("phys_avail", phys_avail);
1331 #ifndef __xpv
1332         /*
1333          * Free unused memlist items, which may be used by memory DR driver
1334          * at runtime.
1335          */
1336         if ((caddr_t)current < (caddr_t)memlist + memlist_sz) {
1337                 memlist_free_block((caddr_t)current,
1338                     (caddr_t)memlist + memlist_sz - (caddr_t)current);
1339         }
1340 #endif
1341 
1342         /*
1343          * Build bios reserved memspace
1344          */
1345         current = bios_rsvd;
1346         copy_memlist_filter(bootops->boot_mem->rsvdmem, &current, NULL);
1347         if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz)
1348                 panic("bios_rsvd was too big!");
1349         if (prom_debug)
1350                 print_memlist("bios_rsvd", bios_rsvd);
1351 #ifndef __xpv
1352         /*
1353          * Free unused memlist items, which may be used by memory DR driver
1354          * at runtime.
1355          */
1356         if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) {
1357                 memlist_free_block((caddr_t)current,
1358                     (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current);
1359         }
1360 #endif
1361 
1362         /*
1363          * setup page coloring
1364          */
1365         page_coloring_setup(pagecolor_mem);
1366         page_lock_init();       /* currently a no-op */
1367 
1368         /*
1369          * free page list counters
1370          */
1371         (void) page_ctrs_alloc(page_ctrs_mem);
1372 
1373         /*
1374          * Size the pcf array based on the number of cpus in the box at
1375          * boot time.
1376          */
1377 
1378         pcf_init();
1379 
1380         /*
1381          * Initialize the page structures from the memory lists.
1382          */
1383         availrmem_initial = availrmem = freemem = 0;
1384         PRM_POINT("Calling kphysm_init()...");
1385         npages = kphysm_init(pp_base, npages);
1386         PRM_POINT("kphysm_init() done");
1387         PRM_DEBUG(npages);
1388 
1389         init_debug_info();
1390 
1391         /*
1392          * Now that page_t's have been initialized, remove all the
1393          * initial allocation pages from the kernel free page lists.
1394          */
1395         boot_mapin((caddr_t)valloc_base, valloc_sz);
1396         boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE);
1397         PRM_POINT("startup_memlist() done");
1398 
1399         PRM_DEBUG(valloc_sz);
1400 
1401 #if defined(__amd64)
1402         if ((availrmem >> (30 - MMU_PAGESHIFT)) >=
1403             textrepl_min_gb && l2cache_sz <= 2 << 20) {
1404                 extern size_t textrepl_size_thresh;
1405                 textrepl_size_thresh = (16 << 20) - 1;
1406         }
1407 #endif
1408 }
1409 
1410 /*
1411  * Layout the kernel's part of address space and initialize kmem allocator.
1412  */
1413 static void
1414 startup_kmem(void)
1415 {
1416         extern void page_set_colorequiv_arr(void);
1417 
1418         PRM_POINT("startup_kmem() starting...");
1419 
1420 #if defined(__amd64)
1421         if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
1422                 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
1423                     "systems.");
1424         kernelbase = segkpm_base - KERNEL_REDZONE_SIZE;
1425         core_base = (uintptr_t)COREHEAP_BASE;
1426         core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE;
1427 #else   /* __i386 */
1428         /*
1429          * We configure kernelbase based on:
1430          *
1431          * 1. user specified kernelbase via eeprom command. Value cannot exceed
1432          *    KERNELBASE_MAX. we large page align eprom_kernelbase
1433          *
1434          * 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
1435          *    On large memory systems we must lower kernelbase to allow
1436          *    enough room for page_t's for all of memory.
1437          *
1438          * The value set here, might be changed a little later.
1439          */
1440         if (eprom_kernelbase) {
1441                 kernelbase = eprom_kernelbase & mmu.level_mask[1];
1442                 if (kernelbase > KERNELBASE_MAX)
1443                         kernelbase = KERNELBASE_MAX;
1444         } else {
1445                 kernelbase = (uintptr_t)KERNELBASE;
1446                 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
1447         }
1448         ASSERT((kernelbase & mmu.level_offset[1]) == 0);
1449         core_base = valloc_base;
1450         core_size = 0;
1451 #endif  /* __i386 */
1452 
1453         PRM_DEBUG(core_base);
1454         PRM_DEBUG(core_size);
1455         PRM_DEBUG(kernelbase);
1456 
1457 #if defined(__i386)
1458         segkp_fromheap = 1;
1459 #endif  /* __i386 */
1460 
1461         ekernelheap = (char *)core_base;
1462         PRM_DEBUG(ekernelheap);
1463 
1464         /*
1465          * Now that we know the real value of kernelbase,
1466          * update variables that were initialized with a value of
1467          * KERNELBASE (in common/conf/param.c).
1468          *
1469          * XXX  The problem with this sort of hackery is that the
1470          *      compiler just may feel like putting the const declarations
1471          *      (in param.c) into the .text section.  Perhaps they should
1472          *      just be declared as variables there?
1473          */
1474 
1475         *(uintptr_t *)&_kernelbase = kernelbase;
1476         *(uintptr_t *)&_userlimit = kernelbase;
1477 #if defined(__amd64)
1478         *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT;
1479 #else
1480         *(uintptr_t *)&_userlimit32 = _userlimit;
1481 #endif
1482         PRM_DEBUG(_kernelbase);
1483         PRM_DEBUG(_userlimit);
1484         PRM_DEBUG(_userlimit32);
1485 
1486         layout_kernel_va();
1487 
1488 #if defined(__i386)
1489         /*
1490          * If segmap is too large we can push the bottom of the kernel heap
1491          * higher than the base.  Or worse, it could exceed the top of the
1492          * VA space entirely, causing it to wrap around.
1493          */
1494         if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
1495                 panic("too little address space available for kernelheap,"
1496                     " use eeprom for lower kernelbase or smaller segmapsize");
1497 #endif  /* __i386 */
1498 
1499         /*
1500          * Initialize the kernel heap. Note 3rd argument must be > 1st.
1501          */
1502         kernelheap_init(kernelheap, ekernelheap,
1503             kernelheap + MMU_PAGESIZE,
1504             (void *)core_base, (void *)(core_base + core_size));
1505 
1506 #if defined(__xpv)
1507         /*
1508          * Link pending events struct into cpu struct
1509          */
1510         CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data;
1511 #endif
1512         /*
1513          * Initialize kernel memory allocator.
1514          */
1515         kmem_init();
1516 
1517         /*
1518          * Factor in colorequiv to check additional 'equivalent' bins
1519          */
1520         page_set_colorequiv_arr();
1521 
1522         /*
1523          * print this out early so that we know what's going on
1524          */
1525         print_x86_featureset(x86_featureset);
1526 
1527         /*
1528          * Initialize bp_mapin().
1529          */
1530         bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
1531 
1532         /*
1533          * orig_npages is non-zero if physmem has been configured for less
1534          * than the available memory.
1535          */
1536         if (orig_npages) {
1537                 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages",
1538                     (npages == PHYSMEM ? "Due to virtual address space " : ""),
1539                     npages, orig_npages);
1540         }
1541 #if defined(__i386)
1542         if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
1543                 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
1544                     "System using 0x%lx",
1545                     (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
1546 #endif
1547 
1548 #ifdef  KERNELBASE_ABI_MIN
1549         if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
1550                 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
1551                     "i386 ABI compliant.", (uintptr_t)kernelbase);
1552         }
1553 #endif
1554 
1555 #ifndef __xpv
1556         if (plat_dr_support_memory()) {
1557                 mem_config_init();
1558         }
1559 #else   /* __xpv */
1560         /*
1561          * Some of the xen start information has to be relocated up
1562          * into the kernel's permanent address space.
1563          */
1564         PRM_POINT("calling xen_relocate_start_info()");
1565         xen_relocate_start_info();
1566         PRM_POINT("xen_relocate_start_info() done");
1567 
1568         /*
1569          * (Update the vcpu pointer in our cpu structure to point into
1570          * the relocated shared info.)
1571          */
1572         CPU->cpu_m.mcpu_vcpu_info =
1573             &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id];
1574 #endif  /* __xpv */
1575 
1576         PRM_POINT("startup_kmem() done");
1577 }
1578 
1579 #ifndef __xpv
1580 /*
1581  * If we have detected that we are running in an HVM environment, we need
1582  * to prepend the PV driver directory to the module search path.
1583  */
1584 #define HVM_MOD_DIR "/platform/i86hvm/kernel"
1585 static void
1586 update_default_path()
1587 {
1588         char *current, *newpath;
1589         int newlen;
1590 
1591         /*
1592          * We are about to resync with krtld.  krtld will reset its
1593          * internal module search path iff Solaris has set default_path.
1594          * We want to be sure we're prepending this new directory to the
1595          * right search path.
1596          */
1597         current = (default_path == NULL) ? kobj_module_path : default_path;
1598 
1599         newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2;
1600         newpath = kmem_alloc(newlen, KM_SLEEP);
1601         (void) strcpy(newpath, HVM_MOD_DIR);
1602         (void) strcat(newpath, " ");
1603         (void) strcat(newpath, current);
1604 
1605         default_path = newpath;
1606 }
1607 #endif
1608 
1609 static void
1610 startup_modules(void)
1611 {
1612         int cnt;
1613         extern void prom_setup(void);
1614         int32_t v, h;
1615         char d[11];
1616         char *cp;
1617         cmi_hdl_t hdl;
1618 
1619         PRM_POINT("startup_modules() starting...");
1620 
1621 #ifndef __xpv
1622         /*
1623          * Initialize ten-micro second timer so that drivers will
1624          * not get short changed in their init phase. This was
1625          * not getting called until clkinit which, on fast cpu's
1626          * caused the drv_usecwait to be way too short.
1627          */
1628         microfind();
1629 
1630         if ((get_hwenv() & HW_XEN_HVM) != 0)
1631                 update_default_path();
1632 #endif
1633 
1634         /*
1635          * Read the GMT lag from /etc/rtc_config.
1636          */
1637         sgmtl(process_rtc_config_file());
1638 
1639         /*
1640          * Calculate default settings of system parameters based upon
1641          * maxusers, yet allow to be overridden via the /etc/system file.
1642          */
1643         param_calc(0);
1644 
1645         mod_setup();
1646 
1647         /*
1648          * Initialize system parameters.
1649          */
1650         param_init();
1651 
1652         /*
1653          * Initialize the default brands
1654          */
1655         brand_init();
1656 
1657         /*
1658          * maxmem is the amount of physical memory we're playing with.
1659          */
1660         maxmem = physmem;
1661 
1662         /*
1663          * Initialize segment management stuff.
1664          */
1665         seg_init();
1666 
1667         if (modload("fs", "specfs") == -1)
1668                 halt("Can't load specfs");
1669 
1670         if (modload("fs", "devfs") == -1)
1671                 halt("Can't load devfs");
1672 
1673         if (modload("fs", "dev") == -1)
1674                 halt("Can't load dev");
1675 
1676         if (modload("fs", "procfs") == -1)
1677                 halt("Can't load procfs");
1678 
1679         (void) modloadonly("sys", "lbl_edition");
1680 
1681         dispinit();
1682 
1683         /* Read cluster configuration data. */
1684         clconf_init();
1685 
1686 #if defined(__xpv)
1687         (void) ec_init();
1688         gnttab_init();
1689         (void) xs_early_init();
1690 #endif /* __xpv */
1691 
1692         /*
1693          * Create a kernel device tree. First, create rootnex and
1694          * then invoke bus specific code to probe devices.
1695          */
1696         setup_ddi();
1697 
1698 #ifdef __xpv
1699         if (DOMAIN_IS_INITDOMAIN(xen_info))
1700 #endif
1701         {
1702                 id_t smid;
1703                 smbios_system_t smsys;
1704                 smbios_info_t sminfo;
1705                 char *mfg;
1706                 /*
1707                  * Load the System Management BIOS into the global ksmbios
1708                  * handle, if an SMBIOS is present on this system.
1709                  * Also set "si-hw-provider" property, if not already set.
1710                  */
1711                 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
1712                 if (ksmbios != NULL &&
1713                     ((smid = smbios_info_system(ksmbios, &smsys)) != SMB_ERR) &&
1714                     (smbios_info_common(ksmbios, smid, &sminfo)) != SMB_ERR) {
1715                         mfg = (char *)sminfo.smbi_manufacturer;
1716                         if (BOP_GETPROPLEN(bootops, "si-hw-provider") < 0) {
1717                                 extern char hw_provider[];
1718                                 int i;
1719                                 for (i = 0; i < SYS_NMLN; i++) {
1720                                         if (isprint(mfg[i]))
1721                                                 hw_provider[i] = mfg[i];
1722                                         else {
1723                                                 hw_provider[i] = '\0';
1724                                                 break;
1725                                         }
1726                                 }
1727                                 hw_provider[SYS_NMLN - 1] = '\0';
1728                         }
1729                 }
1730         }
1731 
1732 
1733         /*
1734          * Originally clconf_init() apparently needed the hostid.  But
1735          * this no longer appears to be true - it uses its own nodeid.
1736          * By placing the hostid logic here, we are able to make use of
1737          * the SMBIOS UUID.
1738          */
1739         if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) {
1740                 cmn_err(CE_WARN, "Unable to set hostid");
1741         } else {
1742                 for (v = h, cnt = 0; cnt < 10; cnt++) {
1743                         d[cnt] = (char)(v % 10);
1744                         v /= 10;
1745                         if (v == 0)
1746                                 break;
1747                 }
1748                 for (cp = hw_serial; cnt >= 0; cnt--)
1749                         *cp++ = d[cnt] + '0';
1750                 *cp = 0;
1751         }
1752 
1753         /*
1754          * Set up the CPU module subsystem for the boot cpu in the native
1755          * case, and all physical cpu resource in the xpv dom0 case.
1756          * Modifies the device tree, so this must be done after
1757          * setup_ddi().
1758          */
1759 #ifdef __xpv
1760         /*
1761          * If paravirtualized and on dom0 then we initialize all physical
1762          * cpu handles now;  if paravirtualized on a domU then do not
1763          * initialize.
1764          */
1765         if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1766                 xen_mc_lcpu_cookie_t cpi;
1767 
1768                 for (cpi = xen_physcpu_next(NULL); cpi != NULL;
1769                     cpi = xen_physcpu_next(cpi)) {
1770                         if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA,
1771                             xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi),
1772                             xen_physcpu_strandid(cpi))) != NULL &&
1773                             is_x86_feature(x86_featureset, X86FSET_MCA))
1774                                 cmi_mca_init(hdl);
1775                 }
1776         }
1777 #else
1778         /*
1779          * Initialize a handle for the boot cpu - others will initialize
1780          * as they startup.
1781          */
1782         if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1783             cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) {
1784                 if (is_x86_feature(x86_featureset, X86FSET_MCA))
1785                         cmi_mca_init(hdl);
1786                 CPU->cpu_m.mcpu_cmi_hdl = hdl;
1787         }
1788 #endif  /* __xpv */
1789 
1790         /*
1791          * Fake a prom tree such that /dev/openprom continues to work
1792          */
1793         PRM_POINT("startup_modules: calling prom_setup...");
1794         prom_setup();
1795         PRM_POINT("startup_modules: done");
1796 
1797         /*
1798          * Load all platform specific modules
1799          */
1800         PRM_POINT("startup_modules: calling psm_modload...");
1801         psm_modload();
1802 
1803         PRM_POINT("startup_modules() done");
1804 }
1805 
1806 /*
1807  * claim a "setaside" boot page for use in the kernel
1808  */
1809 page_t *
1810 boot_claim_page(pfn_t pfn)
1811 {
1812         page_t *pp;
1813 
1814         pp = page_numtopp_nolock(pfn);
1815         ASSERT(pp != NULL);
1816 
1817         if (PP_ISBOOTPAGES(pp)) {
1818                 if (pp->p_next != NULL)
1819                         pp->p_next->p_prev = pp->p_prev;
1820                 if (pp->p_prev == NULL)
1821                         bootpages = pp->p_next;
1822                 else
1823                         pp->p_prev->p_next = pp->p_next;
1824         } else {
1825                 /*
1826                  * htable_attach() expects a base pagesize page
1827                  */
1828                 if (pp->p_szc != 0)
1829                         page_boot_demote(pp);
1830                 pp = page_numtopp(pfn, SE_EXCL);
1831         }
1832         return (pp);
1833 }
1834 
1835 /*
1836  * Walk through the pagetables looking for pages mapped in by boot.  If the
1837  * setaside flag is set the pages are expected to be returned to the
1838  * kernel later in boot, so we add them to the bootpages list.
1839  */
1840 static void
1841 protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
1842 {
1843         uintptr_t va = low;
1844         size_t len;
1845         uint_t prot;
1846         pfn_t pfn;
1847         page_t *pp;
1848         pgcnt_t boot_protect_cnt = 0;
1849 
1850         while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
1851                 if (va + len >= high)
1852                         panic("0x%lx byte mapping at 0x%p exceeds boot's "
1853                             "legal range.", len, (void *)va);
1854 
1855                 while (len > 0) {
1856                         pp = page_numtopp_alloc(pfn);
1857                         if (pp != NULL) {
1858                                 if (setaside == 0)
1859                                         panic("Unexpected mapping by boot.  "
1860                                             "addr=%p pfn=%lx\n",
1861                                             (void *)va, pfn);
1862 
1863                                 pp->p_next = bootpages;
1864                                 pp->p_prev = NULL;
1865                                 PP_SETBOOTPAGES(pp);
1866                                 if (bootpages != NULL) {
1867                                         bootpages->p_prev = pp;
1868                                 }
1869                                 bootpages = pp;
1870                                 ++boot_protect_cnt;
1871                         }
1872 
1873                         ++pfn;
1874                         len -= MMU_PAGESIZE;
1875                         va += MMU_PAGESIZE;
1876                 }
1877         }
1878         PRM_DEBUG(boot_protect_cnt);
1879 }
1880 
1881 /*
1882  *
1883  */
1884 static void
1885 layout_kernel_va(void)
1886 {
1887         PRM_POINT("layout_kernel_va() starting...");
1888         /*
1889          * Establish the final size of the kernel's heap, size of segmap,
1890          * segkp, etc.
1891          */
1892 
1893 #if defined(__amd64)
1894 
1895         kpm_vbase = (caddr_t)segkpm_base;
1896         if (physmax + 1 < plat_dr_physmax) {
1897                 kpm_size = ROUND_UP_LPAGE(mmu_ptob(plat_dr_physmax));
1898         } else {
1899                 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1));
1900         }
1901         if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base)
1902                 panic("not enough room for kpm!");
1903         PRM_DEBUG(kpm_size);
1904         PRM_DEBUG(kpm_vbase);
1905 
1906         /*
1907          * By default we create a seg_kp in 64 bit kernels, it's a little
1908          * faster to access than embedding it in the heap.
1909          */
1910         segkp_base = (caddr_t)valloc_base + valloc_sz;
1911         if (!segkp_fromheap) {
1912                 size_t sz = mmu_ptob(segkpsize);
1913 
1914                 /*
1915                  * determine size of segkp
1916                  */
1917                 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
1918                         sz = SEGKPDEFSIZE;
1919                         cmn_err(CE_WARN, "!Illegal value for segkpsize. "
1920                             "segkpsize has been reset to %ld pages",
1921                             mmu_btop(sz));
1922                 }
1923                 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
1924 
1925                 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
1926         }
1927         PRM_DEBUG(segkp_base);
1928         PRM_DEBUG(segkpsize);
1929 
1930         /*
1931          * segzio is used for ZFS cached data. It uses a distinct VA
1932          * segment (from kernel heap) so that we can easily tell not to
1933          * include it in kernel crash dumps on 64 bit kernels. The trick is
1934          * to give it lots of VA, but not constrain the kernel heap.
1935          * We can use 1.5x physmem for segzio, leaving approximately
1936          * another 1.5x physmem for heap.  See also the comment in
1937          * startup_memlist().
1938          */
1939         segzio_base = segkp_base + mmu_ptob(segkpsize);
1940         if (segzio_fromheap) {
1941                 segziosize = 0;
1942         } else {
1943                 size_t physmem_size = mmu_ptob(physmem);
1944                 size_t size = (segziosize == 0) ?
1945                     physmem_size * 3 / 2 : mmu_ptob(segziosize);
1946 
1947                 if (size < SEGZIOMINSIZE)
1948                         size = SEGZIOMINSIZE;
1949                 segziosize = mmu_btop(ROUND_UP_LPAGE(size));
1950         }
1951         PRM_DEBUG(segziosize);
1952         PRM_DEBUG(segzio_base);
1953 
1954         /*
1955          * Put the range of VA for device mappings next, kmdb knows to not
1956          * grep in this range of addresses.
1957          */
1958         toxic_addr =
1959             ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize));
1960         PRM_DEBUG(toxic_addr);
1961         segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size);
1962 #else /* __i386 */
1963         segmap_start = ROUND_UP_LPAGE(kernelbase);
1964 #endif /* __i386 */
1965         PRM_DEBUG(segmap_start);
1966 
1967         /*
1968          * Users can change segmapsize through eeprom. If the variable
1969          * is tuned through eeprom, there is no upper bound on the
1970          * size of segmap.
1971          */
1972         segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
1973 
1974 #if defined(__i386)
1975         /*
1976          * 32-bit systems don't have segkpm or segkp, so segmap appears at
1977          * the bottom of the kernel's address range.  Set aside space for a
1978          * small red zone just below the start of segmap.
1979          */
1980         segmap_start += KERNEL_REDZONE_SIZE;
1981         segmapsize -= KERNEL_REDZONE_SIZE;
1982 #endif
1983 
1984         PRM_DEBUG(segmap_start);
1985         PRM_DEBUG(segmapsize);
1986         kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize);
1987         PRM_DEBUG(kernelheap);
1988         PRM_POINT("layout_kernel_va() done...");
1989 }
1990 
1991 /*
1992  * Finish initializing the VM system, now that we are no longer
1993  * relying on the boot time memory allocators.
1994  */
1995 static void
1996 startup_vm(void)
1997 {
1998         struct segmap_crargs a;
1999 
2000         extern int use_brk_lpg, use_stk_lpg;
2001 
2002         PRM_POINT("startup_vm() starting...");
2003 
2004         /*
2005          * Initialize the hat layer.
2006          */
2007         hat_init();
2008 
2009         /*
2010          * Do final allocations of HAT data structures that need to
2011          * be allocated before quiescing the boot loader.
2012          */
2013         PRM_POINT("Calling hat_kern_alloc()...");
2014         hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap);
2015         PRM_POINT("hat_kern_alloc() done");
2016 
2017 #ifndef __xpv
2018         /*
2019          * Setup Page Attribute Table
2020          */
2021         pat_sync();
2022 #endif
2023 
2024         /*
2025          * The next two loops are done in distinct steps in order
2026          * to be sure that any page that is doubly mapped (both above
2027          * KERNEL_TEXT and below kernelbase) is dealt with correctly.
2028          * Note this may never happen, but it might someday.
2029          */
2030         bootpages = NULL;
2031         PRM_POINT("Protecting boot pages");
2032 
2033         /*
2034          * Protect any pages mapped above KERNEL_TEXT that somehow have
2035          * page_t's. This can only happen if something weird allocated
2036          * in this range (like kadb/kmdb).
2037          */
2038         protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
2039 
2040         /*
2041          * Before we can take over memory allocation/mapping from the boot
2042          * loader we must remove from our free page lists any boot allocated
2043          * pages that stay mapped until release_bootstrap().
2044          */
2045         protect_boot_range(0, kernelbase, 1);
2046 
2047 
2048         /*
2049          * Switch to running on regular HAT (not boot_mmu)
2050          */
2051         PRM_POINT("Calling hat_kern_setup()...");
2052         hat_kern_setup();
2053 
2054         /*
2055          * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
2056          */
2057         bop_no_more_mem();
2058 
2059         PRM_POINT("hat_kern_setup() done");
2060 
2061         hat_cpu_online(CPU);
2062 
2063         /*
2064          * Initialize VM system
2065          */
2066         PRM_POINT("Calling kvm_init()...");
2067         kvm_init();
2068         PRM_POINT("kvm_init() done");
2069 
2070         /*
2071          * Tell kmdb that the VM system is now working
2072          */
2073         if (boothowto & RB_DEBUG)
2074                 kdi_dvec_vmready();
2075 
2076 #if defined(__xpv)
2077         /*
2078          * Populate the I/O pool on domain 0
2079          */
2080         if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2081                 extern long populate_io_pool(void);
2082                 long init_io_pool_cnt;
2083 
2084                 PRM_POINT("Populating reserve I/O page pool");
2085                 init_io_pool_cnt = populate_io_pool();
2086                 PRM_DEBUG(init_io_pool_cnt);
2087         }
2088 #endif
2089         /*
2090          * Mangle the brand string etc.
2091          */
2092         cpuid_pass3(CPU);
2093 
2094 #if defined(__amd64)
2095 
2096         /*
2097          * Create the device arena for toxic (to dtrace/kmdb) mappings.
2098          */
2099         device_arena = vmem_create("device", (void *)toxic_addr,
2100             toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
2101 
2102 #else   /* __i386 */
2103 
2104         /*
2105          * allocate the bit map that tracks toxic pages
2106          */
2107         toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase));
2108         PRM_DEBUG(toxic_bit_map_len);
2109         toxic_bit_map =
2110             kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
2111         ASSERT(toxic_bit_map != NULL);
2112         PRM_DEBUG(toxic_bit_map);
2113 
2114 #endif  /* __i386 */
2115 
2116 
2117         /*
2118          * Now that we've got more VA, as well as the ability to allocate from
2119          * it, tell the debugger.
2120          */
2121         if (boothowto & RB_DEBUG)
2122                 kdi_dvec_memavail();
2123 
2124         /*
2125          * The following code installs a special page fault handler (#pf)
2126          * to work around a pentium bug.
2127          */
2128 #if !defined(__amd64) && !defined(__xpv)
2129         if (x86_type == X86_TYPE_P5) {
2130                 desctbr_t idtr;
2131                 gate_desc_t *newidt;
2132 
2133                 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL)
2134                         panic("failed to install pentium_pftrap");
2135 
2136                 bcopy(idt0, newidt, NIDT * sizeof (*idt0));
2137                 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap,
2138                     KCS_SEL, SDT_SYSIGT, TRP_KPL, 0);
2139 
2140                 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE,
2141                     PROT_READ | PROT_EXEC);
2142 
2143                 CPU->cpu_idt = newidt;
2144                 idtr.dtr_base = (uintptr_t)CPU->cpu_idt;
2145                 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1;
2146                 wr_idtr(&idtr);
2147         }
2148 #endif  /* !__amd64 */
2149 
2150 #if !defined(__xpv)
2151         /*
2152          * Map page pfn=0 for drivers, such as kd, that need to pick up
2153          * parameters left there by controllers/BIOS.
2154          */
2155         PRM_POINT("setup up p0_va");
2156         p0_va = i86devmap(0, 1, PROT_READ);
2157         PRM_DEBUG(p0_va);
2158 #endif
2159 
2160         cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
2161             physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
2162 
2163         /*
2164          * disable automatic large pages for small memory systems or
2165          * when the disable flag is set.
2166          *
2167          * Do not yet consider page sizes larger than 2m/4m.
2168          */
2169         if (!auto_lpg_disable && mmu.max_page_level > 0) {
2170                 max_uheap_lpsize = LEVEL_SIZE(1);
2171                 max_ustack_lpsize = LEVEL_SIZE(1);
2172                 max_privmap_lpsize = LEVEL_SIZE(1);
2173                 max_uidata_lpsize = LEVEL_SIZE(1);
2174                 max_utext_lpsize = LEVEL_SIZE(1);
2175                 max_shm_lpsize = LEVEL_SIZE(1);
2176         }
2177         if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 ||
2178             auto_lpg_disable) {
2179                 use_brk_lpg = 0;
2180                 use_stk_lpg = 0;
2181         }
2182         mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level);
2183 
2184         PRM_POINT("Calling hat_init_finish()...");
2185         hat_init_finish();
2186         PRM_POINT("hat_init_finish() done");
2187 
2188         /*
2189          * Initialize the segkp segment type.
2190          */
2191         rw_enter(&kas.a_lock, RW_WRITER);
2192         PRM_POINT("Attaching segkp");
2193         if (segkp_fromheap) {
2194                 segkp->s_as = &kas;
2195         } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
2196             segkp) < 0) {
2197                 panic("startup: cannot attach segkp");
2198                 /*NOTREACHED*/
2199         }
2200         PRM_POINT("Doing segkp_create()");
2201         if (segkp_create(segkp) != 0) {
2202                 panic("startup: segkp_create failed");
2203                 /*NOTREACHED*/
2204         }
2205         PRM_DEBUG(segkp);
2206         rw_exit(&kas.a_lock);
2207 
2208         /*
2209          * kpm segment
2210          */
2211         segmap_kpm = 0;
2212         if (kpm_desired) {
2213                 kpm_init();
2214                 kpm_enable = 1;
2215         }
2216 
2217         /*
2218          * Now create segmap segment.
2219          */
2220         rw_enter(&kas.a_lock, RW_WRITER);
2221         if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) {
2222                 panic("cannot attach segmap");
2223                 /*NOTREACHED*/
2224         }
2225         PRM_DEBUG(segmap);
2226 
2227         a.prot = PROT_READ | PROT_WRITE;
2228         a.shmsize = 0;
2229         a.nfreelist = segmapfreelists;
2230 
2231         if (segmap_create(segmap, (caddr_t)&a) != 0)
2232                 panic("segmap_create segmap");
2233         rw_exit(&kas.a_lock);
2234 
2235         setup_vaddr_for_ppcopy(CPU);
2236 
2237         segdev_init();
2238 #if defined(__xpv)
2239         if (DOMAIN_IS_INITDOMAIN(xen_info))
2240 #endif
2241                 pmem_init();
2242 
2243         PRM_POINT("startup_vm() done");
2244 }
2245 
2246 /*
2247  * Load a tod module for the non-standard tod part found on this system.
2248  */
2249 static void
2250 load_tod_module(char *todmod)
2251 {
2252         if (modload("tod", todmod) == -1)
2253                 halt("Can't load TOD module");
2254 }
2255 
2256 static void
2257 startup_end(void)
2258 {
2259         int i;
2260         extern void setx86isalist(void);
2261         extern void cpu_event_init(void);
2262 
2263         PRM_POINT("startup_end() starting...");
2264 
2265         /*
2266          * Perform tasks that get done after most of the VM
2267          * initialization has been done but before the clock
2268          * and other devices get started.
2269          */
2270         kern_setup1();
2271 
2272         /*
2273          * Perform CPC initialization for this CPU.
2274          */
2275         kcpc_hw_init(CPU);
2276 
2277         /*
2278          * Initialize cpu event framework.
2279          */
2280         cpu_event_init();
2281 
2282 #if defined(OPTERON_WORKAROUND_6323525)
2283         if (opteron_workaround_6323525)
2284                 patch_workaround_6323525();
2285 #endif
2286         /*
2287          * If needed, load TOD module now so that ddi_get_time(9F) etc. work
2288          * (For now, "needed" is defined as set tod_module_name in /etc/system)
2289          */
2290         if (tod_module_name != NULL) {
2291                 PRM_POINT("load_tod_module()");
2292                 load_tod_module(tod_module_name);
2293         }
2294 
2295 #if defined(__xpv)
2296         /*
2297          * Forceload interposing TOD module for the hypervisor.
2298          */
2299         PRM_POINT("load_tod_module()");
2300         load_tod_module("xpvtod");
2301 #endif
2302 
2303         /*
2304          * Configure the system.
2305          */
2306         PRM_POINT("Calling configure()...");
2307         configure();            /* set up devices */
2308         PRM_POINT("configure() done");
2309 
2310         /*
2311          * We can now setup for XSAVE because fpu_probe is done in configure().
2312          */
2313         if (fp_save_mech == FP_XSAVE) {
2314                 xsave_setup_msr(CPU);
2315         }
2316 
2317         /*
2318          * Set the isa_list string to the defined instruction sets we
2319          * support.
2320          */
2321         setx86isalist();
2322         cpu_intr_alloc(CPU, NINTR_THREADS);
2323         psm_install();
2324 
2325         /*
2326          * We're done with bootops.  We don't unmap the bootstrap yet because
2327          * we're still using bootsvcs.
2328          */
2329         PRM_POINT("NULLing out bootops");
2330         *bootopsp = (struct bootops *)NULL;
2331         bootops = (struct bootops *)NULL;
2332 
2333 #if defined(__xpv)
2334         ec_init_debug_irq();
2335         xs_domu_init();
2336 #endif
2337 
2338 #if defined(__amd64) && !defined(__xpv)
2339         /*
2340          * Intel IOMMU has been setup/initialized in ddi_impl.c
2341          * Start it up now.
2342          */
2343         immu_startup();
2344 #endif
2345 
2346         PRM_POINT("Enabling interrupts");
2347         (*picinitf)();
2348         sti();
2349 #if defined(__xpv)
2350         ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0);
2351         xen_late_startup();
2352 #endif
2353 
2354         (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
2355             "softlevel1", NULL, NULL); /* XXX to be moved later */
2356 
2357         /*
2358          * Register software interrupt handlers for ddi_periodic_add(9F).
2359          * Software interrupts up to the level 10 are supported.
2360          */
2361         for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
2362                 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i,
2363                     (avfunc)ddi_periodic_softintr, "ddi_periodic",
2364                     (caddr_t)(uintptr_t)i, NULL);
2365         }
2366 
2367 #if !defined(__xpv)
2368         if (modload("drv", "amd_iommu") < 0) {
2369                 PRM_POINT("No AMD IOMMU present\n");
2370         } else if (ddi_hold_installed_driver(ddi_name_to_major(
2371             "amd_iommu")) == NULL) {
2372                 prom_printf("ERROR: failed to attach AMD IOMMU\n");
2373         }
2374 #endif
2375         post_startup_cpu_fixups();
2376 
2377         PRM_POINT("startup_end() done");
2378 }
2379 
2380 /*
2381  * Don't remove the following 2 variables.  They are necessary
2382  * for reading the hostid from the legacy file (/kernel/misc/sysinit).
2383  */
2384 char *_hs1107 = hw_serial;
2385 ulong_t  _bdhs34;
2386 
2387 void
2388 post_startup(void)
2389 {
2390         extern void cpupm_init(cpu_t *);
2391         extern void cpu_event_init_cpu(cpu_t *);
2392 
2393         /*
2394          * Set the system wide, processor-specific flags to be passed
2395          * to userland via the aux vector for performance hints and
2396          * instruction set extensions.
2397          */
2398         bind_hwcap();
2399 
2400 #ifdef __xpv
2401         if (DOMAIN_IS_INITDOMAIN(xen_info))
2402 #endif
2403         {
2404 #if defined(__xpv)
2405                 xpv_panic_init();
2406 #else
2407                 /*
2408                  * Startup the memory scrubber.
2409                  * XXPV This should be running somewhere ..
2410                  */
2411                 if ((get_hwenv() & HW_VIRTUAL) == 0)
2412                         memscrub_init();
2413 #endif
2414         }
2415 
2416         /*
2417          * Complete CPU module initialization
2418          */
2419         cmi_post_startup();
2420 
2421         /*
2422          * Perform forceloading tasks for /etc/system.
2423          */
2424         (void) mod_sysctl(SYS_FORCELOAD, NULL);
2425 
2426         /*
2427          * ON4.0: Force /proc module in until clock interrupt handle fixed
2428          * ON4.0: This must be fixed or restated in /etc/systems.
2429          */
2430         (void) modload("fs", "procfs");
2431 
2432         (void) i_ddi_attach_hw_nodes("pit_beep");
2433 
2434 #if defined(__i386)
2435         /*
2436          * Check for required functional Floating Point hardware,
2437          * unless FP hardware explicitly disabled.
2438          */
2439         if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
2440                 halt("No working FP hardware found");
2441 #endif
2442 
2443         maxmem = freemem;
2444 
2445         cpu_event_init_cpu(CPU);
2446         cpupm_init(CPU);
2447         (void) mach_cpu_create_device_node(CPU, NULL);
2448 
2449         pg_init();
2450 }
2451 
2452 static int
2453 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr)
2454 {
2455         return ((pp->p_pagenum >= btop(low_addr)) &&
2456             (pp->p_pagenum < btopr(high_addr)));
2457 }
2458 
2459 static int
2460 pp_in_module(page_t *pp, const rd_existing_t *modranges)
2461 {
2462         uint_t i;
2463 
2464         for (i = 0; modranges[i].phys != 0; i++) {
2465                 if (pp_in_range(pp, modranges[i].phys,
2466                     modranges[i].phys + modranges[i].size))
2467                         return (1);
2468         }
2469 
2470         return (0);
2471 }
2472 
2473 void
2474 release_bootstrap(void)
2475 {
2476         int root_is_ramdisk;
2477         page_t *pp;
2478         extern void kobj_boot_unmountroot(void);
2479         extern dev_t rootdev;
2480         uint_t i;
2481         char propname[32];
2482         rd_existing_t *modranges;
2483 #if !defined(__xpv)
2484         pfn_t   pfn;
2485 #endif
2486 
2487         /*
2488          * Save the bootfs module ranges so that we can reserve them below
2489          * for the real bootfs.
2490          */
2491         modranges = kmem_alloc(sizeof (rd_existing_t) * MAX_BOOT_MODULES,
2492             KM_SLEEP);
2493         for (i = 0; ; i++) {
2494                 uint64_t start, size;
2495 
2496                 modranges[i].phys = 0;
2497 
2498                 (void) snprintf(propname, sizeof (propname),
2499                     "module-addr-%u", i);
2500                 if (do_bsys_getproplen(NULL, propname) <= 0)
2501                         break;
2502                 (void) do_bsys_getprop(NULL, propname, &start);
2503 
2504                 (void) snprintf(propname, sizeof (propname),
2505                     "module-size-%u", i);
2506                 if (do_bsys_getproplen(NULL, propname) <= 0)
2507                         break;
2508                 (void) do_bsys_getprop(NULL, propname, &size);
2509 
2510                 modranges[i].phys = start;
2511                 modranges[i].size = size;
2512         }
2513 
2514         /* unmount boot ramdisk and release kmem usage */
2515         kobj_boot_unmountroot();
2516 
2517         /*
2518          * We're finished using the boot loader so free its pages.
2519          */
2520         PRM_POINT("Unmapping lower boot pages");
2521 
2522         clear_boot_mappings(0, _userlimit);
2523 
2524         postbootkernelbase = kernelbase;
2525 
2526         /*
2527          * If root isn't on ramdisk, destroy the hardcoded
2528          * ramdisk node now and release the memory. Else,
2529          * ramdisk memory is kept in rd_pages.
2530          */
2531         root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
2532         if (!root_is_ramdisk) {
2533                 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
2534                 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
2535                 ndi_rele_devi(dip);     /* held from ddi_find_devinfo */
2536                 (void) ddi_remove_child(dip, 0);
2537         }
2538 
2539         PRM_POINT("Releasing boot pages");
2540         while (bootpages) {
2541                 extern uint64_t ramdisk_start, ramdisk_end;
2542                 pp = bootpages;
2543                 bootpages = pp->p_next;
2544 
2545 
2546                 /* Keep pages for the lower 64K */
2547                 if (pp_in_range(pp, 0, 0x40000)) {
2548                         pp->p_next = lower_pages;
2549                         lower_pages = pp;
2550                         lower_pages_count++;
2551                         continue;
2552                 }
2553 
2554                 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start,
2555                     ramdisk_end) || pp_in_module(pp, modranges)) {
2556                         pp->p_next = rd_pages;
2557                         rd_pages = pp;
2558                         continue;
2559                 }
2560                 pp->p_next = (struct page *)0;
2561                 pp->p_prev = (struct page *)0;
2562                 PP_CLRBOOTPAGES(pp);
2563                 page_free(pp, 1);
2564         }
2565         PRM_POINT("Boot pages released");
2566 
2567         kmem_free(modranges, sizeof (rd_existing_t) * 99);
2568 
2569 #if !defined(__xpv)
2570 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */
2571         /*
2572          * Find 1 page below 1 MB so that other processors can boot up or
2573          * so that any processor can resume.
2574          * Make sure it has a kernel VA as well as a 1:1 mapping.
2575          * We should have just free'd one up.
2576          */
2577 
2578         /*
2579          * 0x10 pages is 64K.  Leave the bottom 64K alone
2580          * for BIOS.
2581          */
2582         for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) {
2583                 if (page_numtopp_alloc(pfn) == NULL)
2584                         continue;
2585                 rm_platter_va = i86devmap(pfn, 1,
2586                     PROT_READ | PROT_WRITE | PROT_EXEC);
2587                 rm_platter_pa = ptob(pfn);
2588                 break;
2589         }
2590         if (pfn == btop(1*1024*1024) && use_mp)
2591                 panic("No page below 1M available for starting "
2592                     "other processors or for resuming from system-suspend");
2593 #endif  /* !__xpv */
2594 }
2595 
2596 /*
2597  * Initialize the platform-specific parts of a page_t.
2598  */
2599 void
2600 add_physmem_cb(page_t *pp, pfn_t pnum)
2601 {
2602         pp->p_pagenum = pnum;
2603         pp->p_mapping = NULL;
2604         pp->p_embed = 0;
2605         pp->p_share = 0;
2606         pp->p_mlentry = 0;
2607 }
2608 
2609 /*
2610  * kphysm_init() initializes physical memory.
2611  */
2612 static pgcnt_t
2613 kphysm_init(
2614         page_t *pp,
2615         pgcnt_t npages)
2616 {
2617         struct memlist  *pmem;
2618         struct memseg   *cur_memseg;
2619         pfn_t           base_pfn;
2620         pfn_t           end_pfn;
2621         pgcnt_t         num;
2622         pgcnt_t         pages_done = 0;
2623         uint64_t        addr;
2624         uint64_t        size;
2625         extern pfn_t    ddiphysmin;
2626         extern int      mnode_xwa;
2627         int             ms = 0, me = 0;
2628 
2629         ASSERT(page_hash != NULL && page_hashsz != 0);
2630 
2631         cur_memseg = memseg_base;
2632         for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) {
2633                 /*
2634                  * In a 32 bit kernel can't use higher memory if we're
2635                  * not booting in PAE mode. This check takes care of that.
2636                  */
2637                 addr = pmem->ml_address;
2638                 size = pmem->ml_size;
2639                 if (btop(addr) > physmax)
2640                         continue;
2641 
2642                 /*
2643                  * align addr and size - they may not be at page boundaries
2644                  */
2645                 if ((addr & MMU_PAGEOFFSET) != 0) {
2646                         addr += MMU_PAGEOFFSET;
2647                         addr &= ~(uint64_t)MMU_PAGEOFFSET;
2648                         size -= addr - pmem->ml_address;
2649                 }
2650 
2651                 /* only process pages below or equal to physmax */
2652                 if ((btop(addr + size) - 1) > physmax)
2653                         size = ptob(physmax - btop(addr) + 1);
2654 
2655                 num = btop(size);
2656                 if (num == 0)
2657                         continue;
2658 
2659                 if (num > npages)
2660                         num = npages;
2661 
2662                 npages -= num;
2663                 pages_done += num;
2664                 base_pfn = btop(addr);
2665 
2666                 if (prom_debug)
2667                         prom_printf("MEMSEG addr=0x%" PRIx64
2668                             " pgs=0x%lx pfn 0x%lx-0x%lx\n",
2669                             addr, num, base_pfn, base_pfn + num);
2670 
2671                 /*
2672                  * Ignore pages below ddiphysmin to simplify ddi memory
2673                  * allocation with non-zero addr_lo requests.
2674                  */
2675                 if (base_pfn < ddiphysmin) {
2676                         if (base_pfn + num <= ddiphysmin)
2677                                 continue;
2678                         pp += (ddiphysmin - base_pfn);
2679                         num -= (ddiphysmin - base_pfn);
2680                         base_pfn = ddiphysmin;
2681                 }
2682 
2683                 /*
2684                  * mnode_xwa is greater than 1 when large pages regions can
2685                  * cross memory node boundaries. To prevent the formation
2686                  * of these large pages, configure the memsegs based on the
2687                  * memory node ranges which had been made non-contiguous.
2688                  */
2689                 if (mnode_xwa > 1) {
2690 
2691                         end_pfn = base_pfn + num - 1;
2692                         ms = PFN_2_MEM_NODE(base_pfn);
2693                         me = PFN_2_MEM_NODE(end_pfn);
2694 
2695                         if (ms != me) {
2696                                 /*
2697                                  * current range spans more than 1 memory node.
2698                                  * Set num to only the pfn range in the start
2699                                  * memory node.
2700                                  */
2701                                 num = mem_node_config[ms].physmax - base_pfn
2702                                     + 1;
2703                                 ASSERT(end_pfn > mem_node_config[ms].physmax);
2704                         }
2705                 }
2706 
2707                 for (;;) {
2708                         /*
2709                          * Build the memsegs entry
2710                          */
2711                         cur_memseg->pages = pp;
2712                         cur_memseg->epages = pp + num;
2713                         cur_memseg->pages_base = base_pfn;
2714                         cur_memseg->pages_end = base_pfn + num;
2715 
2716                         /*
2717                          * Insert into memseg list in decreasing pfn range
2718                          * order. Low memory is typically more fragmented such
2719                          * that this ordering keeps the larger ranges at the
2720                          * front of the list for code that searches memseg.
2721                          * This ASSERTS that the memsegs coming in from boot
2722                          * are in increasing physical address order and not
2723                          * contiguous.
2724                          */
2725                         if (memsegs != NULL) {
2726                                 ASSERT(cur_memseg->pages_base >=
2727                                     memsegs->pages_end);
2728                                 cur_memseg->next = memsegs;
2729                         }
2730                         memsegs = cur_memseg;
2731 
2732                         /*
2733                          * add_physmem() initializes the PSM part of the page
2734                          * struct by calling the PSM back with add_physmem_cb().
2735                          * In addition it coalesces pages into larger pages as
2736                          * it initializes them.
2737                          */
2738                         add_physmem(pp, num, base_pfn);
2739                         cur_memseg++;
2740                         availrmem_initial += num;
2741                         availrmem += num;
2742 
2743                         pp += num;
2744                         if (ms >= me)
2745                                 break;
2746 
2747                         /* process next memory node range */
2748                         ms++;
2749                         base_pfn = mem_node_config[ms].physbase;
2750                         num = MIN(mem_node_config[ms].physmax,
2751                             end_pfn) - base_pfn + 1;
2752                 }
2753         }
2754 
2755         PRM_DEBUG(availrmem_initial);
2756         PRM_DEBUG(availrmem);
2757         PRM_DEBUG(freemem);
2758         build_pfn_hash();
2759         return (pages_done);
2760 }
2761 
2762 /*
2763  * Kernel VM initialization.
2764  */
2765 static void
2766 kvm_init(void)
2767 {
2768         ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
2769 
2770         /*
2771          * Put the kernel segments in kernel address space.
2772          */
2773         rw_enter(&kas.a_lock, RW_WRITER);
2774         as_avlinit(&kas);
2775 
2776         (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
2777         (void) segkmem_create(&ktextseg);
2778 
2779         (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
2780         (void) segkmem_create(&kvalloc);
2781 
2782         (void) seg_attach(&kas, kernelheap,
2783             ekernelheap - kernelheap, &kvseg);
2784         (void) segkmem_create(&kvseg);
2785 
2786         if (core_size > 0) {
2787                 PRM_POINT("attaching kvseg_core");
2788                 (void) seg_attach(&kas, (caddr_t)core_base, core_size,
2789                     &kvseg_core);
2790                 (void) segkmem_create(&kvseg_core);
2791         }
2792 
2793         if (segziosize > 0) {
2794                 PRM_POINT("attaching segzio");
2795                 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2796                     &kzioseg);
2797                 (void) segkmem_zio_create(&kzioseg);
2798 
2799                 /* create zio area covering new segment */
2800                 segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2801         }
2802 
2803         (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2804         (void) segkmem_create(&kdebugseg);
2805 
2806         rw_exit(&kas.a_lock);
2807 
2808         /*
2809          * Ensure that the red zone at kernelbase is never accessible.
2810          */
2811         PRM_POINT("protecting redzone");
2812         (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
2813 
2814         /*
2815          * Make the text writable so that it can be hot patched by DTrace.
2816          */
2817         (void) as_setprot(&kas, s_text, e_modtext - s_text,
2818             PROT_READ | PROT_WRITE | PROT_EXEC);
2819 
2820         /*
2821          * Make data writable until end.
2822          */
2823         (void) as_setprot(&kas, s_data, e_moddata - s_data,
2824             PROT_READ | PROT_WRITE | PROT_EXEC);
2825 }
2826 
2827 #ifndef __xpv
2828 /*
2829  * Solaris adds an entry for Write Combining caching to the PAT
2830  */
2831 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
2832 
2833 void
2834 pat_sync(void)
2835 {
2836         ulong_t cr0, cr0_orig, cr4;
2837 
2838         if (!is_x86_feature(x86_featureset, X86FSET_PAT))
2839                 return;
2840         cr0_orig = cr0 = getcr0();
2841         cr4 = getcr4();
2842 
2843         /* disable caching and flush all caches and TLBs */
2844         cr0 |= CR0_CD;
2845         cr0 &= ~CR0_NW;
2846         setcr0(cr0);
2847         invalidate_cache();
2848         if (cr4 & CR4_PGE) {
2849                 setcr4(cr4 & ~(ulong_t)CR4_PGE);
2850                 setcr4(cr4);
2851         } else {
2852                 reload_cr3();
2853         }
2854 
2855         /* add our entry to the PAT */
2856         wrmsr(REG_PAT, pat_attr_reg);
2857 
2858         /* flush TLBs and cache again, then reenable cr0 caching */
2859         if (cr4 & CR4_PGE) {
2860                 setcr4(cr4 & ~(ulong_t)CR4_PGE);
2861                 setcr4(cr4);
2862         } else {
2863                 reload_cr3();
2864         }
2865         invalidate_cache();
2866         setcr0(cr0_orig);
2867 }
2868 
2869 #endif /* !__xpv */
2870 
2871 #if defined(_SOFT_HOSTID)
2872 /*
2873  * On platforms that do not have a hardware serial number, attempt
2874  * to set one based on the contents of /etc/hostid.  If this file does
2875  * not exist, assume that we are to generate a new hostid and set
2876  * it in the kernel, for subsequent saving by a userland process
2877  * once the system is up and the root filesystem is mounted r/w.
2878  *
2879  * In order to gracefully support upgrade on OpenSolaris, if
2880  * /etc/hostid does not exist, we will attempt to get a serial number
2881  * using the legacy method (/kernel/misc/sysinit).
2882  *
2883  * If that isn't present, we attempt to use an SMBIOS UUID, which is
2884  * a hardware serial number.  Note that we don't automatically trust
2885  * all SMBIOS UUIDs (some older platforms are defective and ship duplicate
2886  * UUIDs in violation of the standard), we check against a blacklist.
2887  *
2888  * In an attempt to make the hostid less prone to abuse
2889  * (for license circumvention, etc), we store it in /etc/hostid
2890  * in rot47 format.
2891  */
2892 extern volatile unsigned long tenmicrodata;
2893 static int atoi(char *);
2894 
2895 /*
2896  * Set this to non-zero in /etc/system if you think your SMBIOS returns a
2897  * UUID that is not unique. (Also report it so that the smbios_uuid_blacklist
2898  * array can be updated.)
2899  */
2900 int smbios_broken_uuid = 0;
2901 
2902 /*
2903  * List of known bad UUIDs.  This is just the lower 32-bit values, since
2904  * that's what we use for the host id.  If your hostid falls here, you need
2905  * to contact your hardware OEM for a fix for your BIOS.
2906  */
2907 static unsigned char
2908 smbios_uuid_blacklist[][16] = {
2909 
2910         {       /* Reported bad UUID (Google search) */
2911                 0x00, 0x02, 0x00, 0x03, 0x00, 0x04, 0x00, 0x05,
2912                 0x00, 0x06, 0x00, 0x07, 0x00, 0x08, 0x00, 0x09,
2913         },
2914         {       /* Known bad DELL UUID */
2915                 0x4C, 0x4C, 0x45, 0x44, 0x00, 0x00, 0x20, 0x10,
2916                 0x80, 0x20, 0x80, 0xC0, 0x4F, 0x20, 0x20, 0x20,
2917         },
2918         {       /* Uninitialized flash */
2919                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
2920                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2921         },
2922         {       /* All zeros */
2923                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2924                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
2925         },
2926 };
2927 
2928 static int32_t
2929 uuid_to_hostid(const uint8_t *uuid)
2930 {
2931         /*
2932          * Although the UUIDs are 128-bits, they may not distribute entropy
2933          * evenly.  We would like to use SHA or MD5, but those are located
2934          * in loadable modules and not available this early in boot.  As we
2935          * don't need the values to be cryptographically strong, we just
2936          * generate 32-bit vaue by xor'ing the various sequences together,
2937          * which ensures that the entire UUID contributes to the hostid.
2938          */
2939         uint32_t        id = 0;
2940 
2941         /* first check against the blacklist */
2942         for (int i = 0; i < (sizeof (smbios_uuid_blacklist) / 16); i++) {
2943                 if (bcmp(smbios_uuid_blacklist[0], uuid, 16) == 0) {
2944                         cmn_err(CE_CONT, "?Broken SMBIOS UUID. "
2945                             "Contact BIOS manufacturer for repair.\n");
2946                         return ((int32_t)HW_INVALID_HOSTID);
2947                 }
2948         }
2949 
2950         for (int i = 0; i < 16; i++)
2951                 id ^= ((uuid[i]) << (8 * (i % sizeof (id))));
2952 
2953         /* Make sure return value is positive */
2954         return (id & 0x7fffffff);
2955 }
2956 
2957 static int32_t
2958 set_soft_hostid(void)
2959 {
2960         struct _buf *file;
2961         char tokbuf[MAXNAMELEN];
2962         token_t token;
2963         int done = 0;
2964         u_longlong_t tmp;
2965         int i;
2966         int32_t hostid = (int32_t)HW_INVALID_HOSTID;
2967         unsigned char *c;
2968         hrtime_t tsc;
2969         smbios_system_t smsys;
2970 
2971         /*
2972          * If /etc/hostid file not found, we'd like to get a pseudo
2973          * random number to use at the hostid.  A nice way to do this
2974          * is to read the real time clock.  To remain xen-compatible,
2975          * we can't poke the real hardware, so we use tsc_read() to
2976          * read the real time clock.  However, there is an ominous
2977          * warning in tsc_read that says it can return zero, so we
2978          * deal with that possibility by falling back to using the
2979          * (hopefully random enough) value in tenmicrodata.
2980          */
2981 
2982         if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) {
2983                 /*
2984                  * hostid file not found - try to load sysinit module
2985                  * and see if it has a nonzero hostid value...use that
2986                  * instead of generating a new hostid here if so.
2987                  */
2988                 if ((i = modload("misc", "sysinit")) != -1) {
2989                         if (strlen(hw_serial) > 0)
2990                                 hostid = (int32_t)atoi(hw_serial);
2991                         (void) modunload(i);
2992                 }
2993 
2994                 /*
2995                  * We try to use the SMBIOS UUID. But not if it is blacklisted
2996                  * in /etc/system.
2997                  */
2998                 if ((hostid == HW_INVALID_HOSTID) &&
2999                     (smbios_broken_uuid == 0) &&
3000                     (ksmbios != NULL) &&
3001                     (smbios_info_system(ksmbios, &smsys) != SMB_ERR) &&
3002                     (smsys.smbs_uuidlen >= 16)) {
3003                         hostid = uuid_to_hostid(smsys.smbs_uuid);
3004                 }
3005 
3006                 /*
3007                  * Generate a "random" hostid using the clock.  These
3008                  * hostids will change on each boot if the value is not
3009                  * saved to a persistent /etc/hostid file.
3010                  */
3011                 if (hostid == HW_INVALID_HOSTID) {
3012                         tsc = tsc_read();
3013                         if (tsc == 0)   /* tsc_read can return zero sometimes */
3014                                 hostid = (int32_t)tenmicrodata & 0x0CFFFFF;
3015                         else
3016                                 hostid = (int32_t)tsc & 0x0CFFFFF;
3017                 }
3018         } else {
3019                 /* hostid file found */
3020                 while (!done) {
3021                         token = kobj_lex(file, tokbuf, sizeof (tokbuf));
3022 
3023                         switch (token) {
3024                         case POUND:
3025                                 /*
3026                                  * skip comments
3027                                  */
3028                                 kobj_find_eol(file);
3029                                 break;
3030                         case STRING:
3031                                 /*
3032                                  * un-rot47 - obviously this
3033                                  * nonsense is ascii-specific
3034                                  */
3035                                 for (c = (unsigned char *)tokbuf;
3036                                     *c != '\0'; c++) {
3037                                         *c += 47;
3038                                         if (*c > '~')
3039                                                 *c -= 94;
3040                                         else if (*c < '!')
3041                                                 *c += 94;
3042                                 }
3043                                 /*
3044                                  * now we should have a real number
3045                                  */
3046 
3047                                 if (kobj_getvalue(tokbuf, &tmp) != 0)
3048                                         kobj_file_err(CE_WARN, file,
3049                                             "Bad value %s for hostid",
3050                                             tokbuf);
3051                                 else
3052                                         hostid = (int32_t)tmp;
3053 
3054                                 break;
3055                         case EOF:
3056                                 done = 1;
3057                                 /* FALLTHROUGH */
3058                         case NEWLINE:
3059                                 kobj_newline(file);
3060                                 break;
3061                         default:
3062                                 break;
3063 
3064                         }
3065                 }
3066                 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */
3067                         kobj_file_err(CE_WARN, file,
3068                             "hostid missing or corrupt");
3069 
3070                 kobj_close_file(file);
3071         }
3072         /*
3073          * hostid is now the value read from /etc/hostid, or the
3074          * new hostid we generated in this routine or HW_INVALID_HOSTID if not
3075          * set.
3076          */
3077         return (hostid);
3078 }
3079 
3080 static int
3081 atoi(char *p)
3082 {
3083         int i = 0;
3084 
3085         while (*p != '\0')
3086                 i = 10 * i + (*p++ - '0');
3087 
3088         return (i);
3089 }
3090 
3091 #endif /* _SOFT_HOSTID */
3092 
3093 void
3094 get_system_configuration(void)
3095 {
3096         char    prop[32];
3097         u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
3098 
3099         if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) ||
3100             BOP_GETPROP(bootops, "nodes", prop) < 0 ||
3101             kobj_getvalue(prop, &nodes_ll) == -1 ||
3102             nodes_ll > MAXNODES ||
3103             BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) ||
3104             BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 ||
3105             kobj_getvalue(prop, &cpus_pernode_ll) == -1) {
3106                 system_hardware.hd_nodes = 1;
3107                 system_hardware.hd_cpus_per_node = 0;
3108         } else {
3109                 system_hardware.hd_nodes = (int)nodes_ll;
3110                 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
3111         }
3112 
3113         if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) ||
3114             BOP_GETPROP(bootops, "kernelbase", prop) < 0 ||
3115             kobj_getvalue(prop, &lvalue) == -1)
3116                 eprom_kernelbase = NULL;
3117         else
3118                 eprom_kernelbase = (uintptr_t)lvalue;
3119 
3120         if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) ||
3121             BOP_GETPROP(bootops, "segmapsize", prop) < 0 ||
3122             kobj_getvalue(prop, &lvalue) == -1)
3123                 segmapsize = SEGMAPDEFAULT;
3124         else
3125                 segmapsize = (uintptr_t)lvalue;
3126 
3127         if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) ||
3128             BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 ||
3129             kobj_getvalue(prop, &lvalue) == -1)
3130                 segmapfreelists = 0;    /* use segmap driver default */
3131         else
3132                 segmapfreelists = (int)lvalue;
3133 
3134         /* physmem used to be here, but moved much earlier to fakebop.c */
3135 }
3136 
3137 /*
3138  * Add to a memory list.
3139  * start = start of new memory segment
3140  * len = length of new memory segment in bytes
3141  * new = pointer to a new struct memlist
3142  * memlistp = memory list to which to add segment.
3143  */
3144 void
3145 memlist_add(
3146         uint64_t start,
3147         uint64_t len,
3148         struct memlist *new,
3149         struct memlist **memlistp)
3150 {
3151         struct memlist *cur;
3152         uint64_t end = start + len;
3153 
3154         new->ml_address = start;
3155         new->ml_size = len;
3156 
3157         cur = *memlistp;
3158 
3159         while (cur) {
3160                 if (cur->ml_address >= end) {
3161                         new->ml_next = cur;
3162                         *memlistp = new;
3163                         new->ml_prev = cur->ml_prev;
3164                         cur->ml_prev = new;
3165                         return;
3166                 }
3167                 ASSERT(cur->ml_address + cur->ml_size <= start);
3168                 if (cur->ml_next == NULL) {
3169                         cur->ml_next = new;
3170                         new->ml_prev = cur;
3171                         new->ml_next = NULL;
3172                         return;
3173                 }
3174                 memlistp = &cur->ml_next;
3175                 cur = cur->ml_next;
3176         }
3177 }
3178 
3179 void
3180 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3181 {
3182         size_t tsize = e_modtext - modtext;
3183         size_t dsize = e_moddata - moddata;
3184 
3185         *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
3186             1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
3187         *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
3188             1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3189 }
3190 
3191 caddr_t
3192 kobj_text_alloc(vmem_t *arena, size_t size)
3193 {
3194         return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
3195 }
3196 
3197 /*ARGSUSED*/
3198 caddr_t
3199 kobj_texthole_alloc(caddr_t addr, size_t size)
3200 {
3201         panic("unexpected call to kobj_texthole_alloc()");
3202         /*NOTREACHED*/
3203         return (0);
3204 }
3205 
3206 /*ARGSUSED*/
3207 void
3208 kobj_texthole_free(caddr_t addr, size_t size)
3209 {
3210         panic("unexpected call to kobj_texthole_free()");
3211 }
3212 
3213 /*
3214  * This is called just after configure() in startup().
3215  *
3216  * The ISALIST concept is a bit hopeless on Intel, because
3217  * there's no guarantee of an ever-more-capable processor
3218  * given that various parts of the instruction set may appear
3219  * and disappear between different implementations.
3220  *
3221  * While it would be possible to correct it and even enhance
3222  * it somewhat, the explicit hardware capability bitmask allows
3223  * more flexibility.
3224  *
3225  * So, we just leave this alone.
3226  */
3227 void
3228 setx86isalist(void)
3229 {
3230         char *tp;
3231         size_t len;
3232         extern char *isa_list;
3233 
3234 #define TBUFSIZE        1024
3235 
3236         tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
3237         *tp = '\0';
3238 
3239 #if defined(__amd64)
3240         (void) strcpy(tp, "amd64 ");
3241 #endif
3242 
3243         switch (x86_vendor) {
3244         case X86_VENDOR_Intel:
3245         case X86_VENDOR_AMD:
3246         case X86_VENDOR_TM:
3247                 if (is_x86_feature(x86_featureset, X86FSET_CMOV)) {
3248                         /*
3249                          * Pentium Pro or later
3250                          */
3251                         (void) strcat(tp, "pentium_pro");
3252                         (void) strcat(tp,
3253                             is_x86_feature(x86_featureset, X86FSET_MMX) ?
3254                             "+mmx pentium_pro " : " ");
3255                 }
3256                 /*FALLTHROUGH*/
3257         case X86_VENDOR_Cyrix:
3258                 /*
3259                  * The Cyrix 6x86 does not have any Pentium features
3260                  * accessible while not at privilege level 0.
3261                  */
3262                 if (is_x86_feature(x86_featureset, X86FSET_CPUID)) {
3263                         (void) strcat(tp, "pentium");
3264                         (void) strcat(tp,
3265                             is_x86_feature(x86_featureset, X86FSET_MMX) ?
3266                             "+mmx pentium " : " ");
3267                 }
3268                 break;
3269         default:
3270                 break;
3271         }
3272         (void) strcat(tp, "i486 i386 i86");
3273         len = strlen(tp) + 1;   /* account for NULL at end of string */
3274         isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
3275         kmem_free(tp, TBUFSIZE);
3276 
3277 #undef TBUFSIZE
3278 }
3279 
3280 
3281 #ifdef __amd64
3282 
3283 void *
3284 device_arena_alloc(size_t size, int vm_flag)
3285 {
3286         return (vmem_alloc(device_arena, size, vm_flag));
3287 }
3288 
3289 void
3290 device_arena_free(void *vaddr, size_t size)
3291 {
3292         vmem_free(device_arena, vaddr, size);
3293 }
3294 
3295 #else /* __i386 */
3296 
3297 void *
3298 device_arena_alloc(size_t size, int vm_flag)
3299 {
3300         caddr_t vaddr;
3301         uintptr_t v;
3302         size_t  start;
3303         size_t  end;
3304 
3305         vaddr = vmem_alloc(heap_arena, size, vm_flag);
3306         if (vaddr == NULL)
3307                 return (NULL);
3308 
3309         v = (uintptr_t)vaddr;
3310         ASSERT(v >= kernelbase);
3311         ASSERT(v + size <= valloc_base);
3312 
3313         start = btop(v - kernelbase);
3314         end = btop(v + size - 1 - kernelbase);
3315         ASSERT(start < toxic_bit_map_len);
3316         ASSERT(end < toxic_bit_map_len);
3317 
3318         while (start <= end) {
3319                 BT_ATOMIC_SET(toxic_bit_map, start);
3320                 ++start;
3321         }
3322         return (vaddr);
3323 }
3324 
3325 void
3326 device_arena_free(void *vaddr, size_t size)
3327 {
3328         uintptr_t v = (uintptr_t)vaddr;
3329         size_t  start;
3330         size_t  end;
3331 
3332         ASSERT(v >= kernelbase);
3333         ASSERT(v + size <= valloc_base);
3334 
3335         start = btop(v - kernelbase);
3336         end = btop(v + size - 1 - kernelbase);
3337         ASSERT(start < toxic_bit_map_len);
3338         ASSERT(end < toxic_bit_map_len);
3339 
3340         while (start <= end) {
3341                 ASSERT(BT_TEST(toxic_bit_map, start) != 0);
3342                 BT_ATOMIC_CLEAR(toxic_bit_map, start);
3343                 ++start;
3344         }
3345         vmem_free(heap_arena, vaddr, size);
3346 }
3347 
3348 /*
3349  * returns 1st address in range that is in device arena, or NULL
3350  * if len is not NULL it returns the length of the toxic range
3351  */
3352 void *
3353 device_arena_contains(void *vaddr, size_t size, size_t *len)
3354 {
3355         uintptr_t v = (uintptr_t)vaddr;
3356         uintptr_t eaddr = v + size;
3357         size_t start;
3358         size_t end;
3359 
3360         /*
3361          * if called very early by kmdb, just return NULL
3362          */
3363         if (toxic_bit_map == NULL)
3364                 return (NULL);
3365 
3366         /*
3367          * First check if we're completely outside the bitmap range.
3368          */
3369         if (v >= valloc_base || eaddr < kernelbase)
3370                 return (NULL);
3371 
3372         /*
3373          * Trim ends of search to look at only what the bitmap covers.
3374          */
3375         if (v < kernelbase)
3376                 v = kernelbase;
3377         start = btop(v - kernelbase);
3378         end = btop(eaddr - kernelbase);
3379         if (end >= toxic_bit_map_len)
3380                 end = toxic_bit_map_len;
3381 
3382         if (bt_range(toxic_bit_map, &start, &end, end) == 0)
3383                 return (NULL);
3384 
3385         v = kernelbase + ptob(start);
3386         if (len != NULL)
3387                 *len = ptob(end - start);
3388         return ((void *)v);
3389 }
3390 
3391 #endif  /* __i386 */