1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 */ 29 /* 30 * Copyright 2018 Joyent, Inc. 31 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 32 */ 33 34 #include <sys/types.h> 35 #include <sys/thread.h> 36 #include <sys/cpuvar.h> 37 #include <sys/cpu.h> 38 #include <sys/t_lock.h> 39 #include <sys/param.h> 40 #include <sys/proc.h> 41 #include <sys/disp.h> 42 #include <sys/class.h> 43 #include <sys/cmn_err.h> 44 #include <sys/debug.h> 45 #include <sys/note.h> 46 #include <sys/asm_linkage.h> 47 #include <sys/x_call.h> 48 #include <sys/systm.h> 49 #include <sys/var.h> 50 #include <sys/vtrace.h> 51 #include <vm/hat.h> 52 #include <vm/as.h> 53 #include <vm/seg_kmem.h> 54 #include <vm/seg_kp.h> 55 #include <sys/segments.h> 56 #include <sys/kmem.h> 57 #include <sys/stack.h> 58 #include <sys/smp_impldefs.h> 59 #include <sys/x86_archext.h> 60 #include <sys/machsystm.h> 61 #include <sys/traptrace.h> 62 #include <sys/clock.h> 63 #include <sys/cpc_impl.h> 64 #include <sys/pg.h> 65 #include <sys/cmt.h> 66 #include <sys/dtrace.h> 67 #include <sys/archsystm.h> 68 #include <sys/fp.h> 69 #include <sys/reboot.h> 70 #include <sys/kdi_machimpl.h> 71 #include <vm/hat_i86.h> 72 #include <vm/vm_dep.h> 73 #include <sys/memnode.h> 74 #include <sys/pci_cfgspace.h> 75 #include <sys/mach_mmu.h> 76 #include <sys/sysmacros.h> 77 #if defined(__xpv) 78 #include <sys/hypervisor.h> 79 #endif 80 #include <sys/cpu_module.h> 81 #include <sys/ontrap.h> 82 83 struct cpu cpus[1] __aligned(MMU_PAGESIZE); 84 struct cpu *cpu[NCPU] = {&cpus[0]}; 85 struct cpu *cpu_free_list; 86 cpu_core_t cpu_core[NCPU]; 87 88 #define cpu_next_free cpu_prev 89 90 /* 91 * Useful for disabling MP bring-up on a MP capable system. 92 */ 93 int use_mp = 1; 94 95 /* 96 * to be set by a PSM to indicate what cpus 97 * are sitting around on the system. 98 */ 99 cpuset_t mp_cpus; 100 101 /* 102 * This variable is used by the hat layer to decide whether or not 103 * critical sections are needed to prevent race conditions. For sun4m, 104 * this variable is set once enough MP initialization has been done in 105 * order to allow cross calls. 106 */ 107 int flushes_require_xcalls; 108 109 cpuset_t cpu_ready_set; /* initialized in startup() */ 110 111 static void mp_startup_boot(void); 112 static void mp_startup_hotplug(void); 113 114 static void cpu_sep_enable(void); 115 static void cpu_sep_disable(void); 116 static void cpu_asysc_enable(void); 117 static void cpu_asysc_disable(void); 118 119 /* 120 * Init CPU info - get CPU type info for processor_info system call. 121 */ 122 void 123 init_cpu_info(struct cpu *cp) 124 { 125 processor_info_t *pi = &cp->cpu_type_info; 126 127 /* 128 * Get clock-frequency property for the CPU. 129 */ 130 pi->pi_clock = cpu_freq; 131 132 /* 133 * Current frequency in Hz. 134 */ 135 cp->cpu_curr_clock = cpu_freq_hz; 136 137 /* 138 * Supported frequencies. 139 */ 140 if (cp->cpu_supp_freqs == NULL) { 141 cpu_set_supp_freqs(cp, NULL); 142 } 143 144 (void) strcpy(pi->pi_processor_type, "i386"); 145 if (fpu_exists) 146 (void) strcpy(pi->pi_fputypes, "i387 compatible"); 147 148 cp->cpu_idstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP); 149 cp->cpu_brandstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP); 150 151 /* 152 * If called for the BSP, cp is equal to current CPU. 153 * For non-BSPs, cpuid info of cp is not ready yet, so use cpuid info 154 * of current CPU as default values for cpu_idstr and cpu_brandstr. 155 * They will be corrected in mp_startup_common() after cpuid_pass1() 156 * has been invoked on target CPU. 157 */ 158 (void) cpuid_getidstr(CPU, cp->cpu_idstr, CPU_IDSTRLEN); 159 (void) cpuid_getbrandstr(CPU, cp->cpu_brandstr, CPU_IDSTRLEN); 160 } 161 162 /* 163 * Configure syscall support on this CPU. 164 */ 165 /*ARGSUSED*/ 166 void 167 init_cpu_syscall(struct cpu *cp) 168 { 169 kpreempt_disable(); 170 171 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 172 is_x86_feature(x86_featureset, X86FSET_ASYSC)) { 173 uint64_t flags; 174 175 #if !defined(__xpv) 176 /* 177 * The syscall instruction imposes a certain ordering on 178 * segment selectors, so we double-check that ordering 179 * here. 180 */ 181 CTASSERT(KDS_SEL == KCS_SEL + 8); 182 CTASSERT(UDS_SEL == U32CS_SEL + 8); 183 CTASSERT(UCS_SEL == U32CS_SEL + 16); 184 #endif 185 186 /* 187 * Turn syscall/sysret extensions on. 188 */ 189 cpu_asysc_enable(); 190 191 /* 192 * Program the magic registers .. 193 */ 194 wrmsr(MSR_AMD_STAR, 195 ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 32); 196 if (kpti_enable == 1) { 197 wrmsr(MSR_AMD_LSTAR, 198 (uint64_t)(uintptr_t)tr_sys_syscall); 199 wrmsr(MSR_AMD_CSTAR, 200 (uint64_t)(uintptr_t)tr_sys_syscall32); 201 } else { 202 wrmsr(MSR_AMD_LSTAR, 203 (uint64_t)(uintptr_t)sys_syscall); 204 wrmsr(MSR_AMD_CSTAR, 205 (uint64_t)(uintptr_t)sys_syscall32); 206 } 207 208 /* 209 * This list of flags is masked off the incoming 210 * %rfl when we enter the kernel. 211 */ 212 flags = PS_IE | PS_T; 213 if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_TRUE) 214 flags |= PS_ACHK; 215 wrmsr(MSR_AMD_SFMASK, flags); 216 } 217 218 /* 219 * On 64-bit kernels on Nocona machines, the 32-bit syscall 220 * variant isn't available to 32-bit applications, but sysenter is. 221 */ 222 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 223 is_x86_feature(x86_featureset, X86FSET_SEP)) { 224 225 #if !defined(__xpv) 226 /* 227 * The sysenter instruction imposes a certain ordering on 228 * segment selectors, so we double-check that ordering 229 * here. See "sysenter" in Intel document 245471-012, "IA-32 230 * Intel Architecture Software Developer's Manual Volume 2: 231 * Instruction Set Reference" 232 */ 233 CTASSERT(KDS_SEL == KCS_SEL + 8); 234 235 CTASSERT(U32CS_SEL == ((KCS_SEL + 16) | 3)); 236 CTASSERT(UDS_SEL == U32CS_SEL + 8); 237 #endif 238 239 cpu_sep_enable(); 240 241 /* 242 * resume() sets this value to the base of the threads stack 243 * via a context handler. 244 */ 245 wrmsr(MSR_INTC_SEP_ESP, 0); 246 247 if (kpti_enable == 1) { 248 wrmsr(MSR_INTC_SEP_EIP, 249 (uint64_t)(uintptr_t)tr_sys_sysenter); 250 } else { 251 wrmsr(MSR_INTC_SEP_EIP, 252 (uint64_t)(uintptr_t)sys_sysenter); 253 } 254 } 255 256 kpreempt_enable(); 257 } 258 259 #if !defined(__xpv) 260 /* 261 * Configure per-cpu ID GDT 262 */ 263 static void 264 init_cpu_id_gdt(struct cpu *cp) 265 { 266 /* Write cpu_id into limit field of GDT for usermode retrieval */ 267 #if defined(__amd64) 268 set_usegd(&cp->cpu_gdt[GDT_CPUID], SDP_SHORT, NULL, cp->cpu_id, 269 SDT_MEMRODA, SEL_UPL, SDP_BYTES, SDP_OP32); 270 #elif defined(__i386) 271 set_usegd(&cp->cpu_gdt[GDT_CPUID], NULL, cp->cpu_id, SDT_MEMRODA, 272 SEL_UPL, SDP_BYTES, SDP_OP32); 273 #endif 274 } 275 #endif /* !defined(__xpv) */ 276 277 /* 278 * Multiprocessor initialization. 279 * 280 * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the 281 * startup and idle threads for the specified CPU. 282 * Parameter boot is true for boot time operations and is false for CPU 283 * DR operations. 284 */ 285 static struct cpu * 286 mp_cpu_configure_common(int cpun, boolean_t boot) 287 { 288 struct cpu *cp; 289 kthread_id_t tp; 290 caddr_t sp; 291 proc_t *procp; 292 #if !defined(__xpv) 293 extern int idle_cpu_prefer_mwait; 294 extern void cpu_idle_mwait(); 295 #endif 296 extern void idle(); 297 extern void cpu_idle(); 298 299 #ifdef TRAPTRACE 300 trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun]; 301 #endif 302 303 ASSERT(MUTEX_HELD(&cpu_lock)); 304 ASSERT(cpun < NCPU && cpu[cpun] == NULL); 305 306 if (cpu_free_list == NULL) { 307 cp = kmem_zalloc(sizeof (*cp), KM_SLEEP); 308 } else { 309 cp = cpu_free_list; 310 cpu_free_list = cp->cpu_next_free; 311 } 312 313 cp->cpu_m.mcpu_istamp = cpun << 16; 314 315 /* Create per CPU specific threads in the process p0. */ 316 procp = &p0; 317 318 /* 319 * Initialize the dispatcher first. 320 */ 321 disp_cpu_init(cp); 322 323 cpu_vm_data_init(cp); 324 325 /* 326 * Allocate and initialize the startup thread for this CPU. 327 * Interrupt and process switch stacks get allocated later 328 * when the CPU starts running. 329 */ 330 tp = thread_create(NULL, 0, NULL, NULL, 0, procp, 331 TS_STOPPED, maxclsyspri); 332 333 /* 334 * Set state to TS_ONPROC since this thread will start running 335 * as soon as the CPU comes online. 336 * 337 * All the other fields of the thread structure are setup by 338 * thread_create(). 339 */ 340 THREAD_ONPROC(tp, cp); 341 tp->t_preempt = 1; 342 tp->t_bound_cpu = cp; 343 tp->t_affinitycnt = 1; 344 tp->t_cpu = cp; 345 tp->t_disp_queue = cp->cpu_disp; 346 347 /* 348 * Setup thread to start in mp_startup_common. 349 */ 350 sp = tp->t_stk; 351 tp->t_sp = (uintptr_t)(sp - MINFRAME); 352 #if defined(__amd64) 353 tp->t_sp -= STACK_ENTRY_ALIGN; /* fake a call */ 354 #endif 355 /* 356 * Setup thread start entry point for boot or hotplug. 357 */ 358 if (boot) { 359 tp->t_pc = (uintptr_t)mp_startup_boot; 360 } else { 361 tp->t_pc = (uintptr_t)mp_startup_hotplug; 362 } 363 364 cp->cpu_id = cpun; 365 cp->cpu_self = cp; 366 cp->cpu_thread = tp; 367 cp->cpu_lwp = NULL; 368 cp->cpu_dispthread = tp; 369 cp->cpu_dispatch_pri = DISP_PRIO(tp); 370 371 /* 372 * cpu_base_spl must be set explicitly here to prevent any blocking 373 * operations in mp_startup_common from causing the spl of the cpu 374 * to drop to 0 (allowing device interrupts before we're ready) in 375 * resume(). 376 * cpu_base_spl MUST remain at LOCK_LEVEL until the cpu is CPU_READY. 377 * As an extra bit of security on DEBUG kernels, this is enforced with 378 * an assertion in mp_startup_common() -- before cpu_base_spl is set 379 * to its proper value. 380 */ 381 cp->cpu_base_spl = ipltospl(LOCK_LEVEL); 382 383 /* 384 * Now, initialize per-CPU idle thread for this CPU. 385 */ 386 tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1); 387 388 cp->cpu_idle_thread = tp; 389 390 tp->t_preempt = 1; 391 tp->t_bound_cpu = cp; 392 tp->t_affinitycnt = 1; 393 tp->t_cpu = cp; 394 tp->t_disp_queue = cp->cpu_disp; 395 396 /* 397 * Bootstrap the CPU's PG data 398 */ 399 pg_cpu_bootstrap(cp); 400 401 /* 402 * Perform CPC initialization on the new CPU. 403 */ 404 kcpc_hw_init(cp); 405 406 /* 407 * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2 408 * for each CPU. 409 */ 410 setup_vaddr_for_ppcopy(cp); 411 412 /* 413 * Allocate page for new GDT and initialize from current GDT. 414 */ 415 #if !defined(__lint) 416 ASSERT((sizeof (*cp->cpu_gdt) * NGDT) <= PAGESIZE); 417 #endif 418 cp->cpu_gdt = kmem_zalloc(PAGESIZE, KM_SLEEP); 419 bcopy(CPU->cpu_gdt, cp->cpu_gdt, (sizeof (*cp->cpu_gdt) * NGDT)); 420 421 #if defined(__i386) 422 /* 423 * setup kernel %gs. 424 */ 425 set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA, 426 SEL_KPL, 0, 1); 427 #endif 428 429 /* 430 * Allocate pages for the CPU LDT. 431 */ 432 cp->cpu_m.mcpu_ldt = kmem_zalloc(LDT_CPU_SIZE, KM_SLEEP); 433 cp->cpu_m.mcpu_ldt_len = 0; 434 435 /* 436 * Allocate a per-CPU IDT and initialize the new IDT to the currently 437 * runing CPU. 438 */ 439 #if !defined(__lint) 440 ASSERT((sizeof (*CPU->cpu_idt) * NIDT) <= PAGESIZE); 441 #endif 442 cp->cpu_idt = kmem_alloc(PAGESIZE, KM_SLEEP); 443 bcopy(CPU->cpu_idt, cp->cpu_idt, PAGESIZE); 444 445 /* 446 * alloc space for cpuid info 447 */ 448 cpuid_alloc_space(cp); 449 #if !defined(__xpv) 450 if (is_x86_feature(x86_featureset, X86FSET_MWAIT) && 451 idle_cpu_prefer_mwait) { 452 cp->cpu_m.mcpu_mwait = cpuid_mwait_alloc(cp); 453 cp->cpu_m.mcpu_idle_cpu = cpu_idle_mwait; 454 } else 455 #endif 456 cp->cpu_m.mcpu_idle_cpu = cpu_idle; 457 458 init_cpu_info(cp); 459 460 #if !defined(__xpv) 461 init_cpu_id_gdt(cp); 462 #endif 463 464 /* 465 * alloc space for ucode_info 466 */ 467 ucode_alloc_space(cp); 468 xc_init_cpu(cp); 469 hat_cpu_online(cp); 470 471 #ifdef TRAPTRACE 472 /* 473 * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers 474 */ 475 ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP); 476 ttc->ttc_next = ttc->ttc_first; 477 ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize; 478 #endif 479 480 /* 481 * Record that we have another CPU. 482 */ 483 /* 484 * Initialize the interrupt threads for this CPU 485 */ 486 cpu_intr_alloc(cp, NINTR_THREADS); 487 488 cp->cpu_flags = CPU_OFFLINE | CPU_QUIESCED | CPU_POWEROFF; 489 cpu_set_state(cp); 490 491 /* 492 * Add CPU to list of available CPUs. It'll be on the active list 493 * after mp_startup_common(). 494 */ 495 cpu_add_unit(cp); 496 497 return (cp); 498 } 499 500 /* 501 * Undo what was done in mp_cpu_configure_common 502 */ 503 static void 504 mp_cpu_unconfigure_common(struct cpu *cp, int error) 505 { 506 ASSERT(MUTEX_HELD(&cpu_lock)); 507 508 /* 509 * Remove the CPU from the list of available CPUs. 510 */ 511 cpu_del_unit(cp->cpu_id); 512 513 if (error == ETIMEDOUT) { 514 /* 515 * The cpu was started, but never *seemed* to run any 516 * code in the kernel; it's probably off spinning in its 517 * own private world, though with potential references to 518 * our kmem-allocated IDTs and GDTs (for example). 519 * 520 * Worse still, it may actually wake up some time later, 521 * so rather than guess what it might or might not do, we 522 * leave the fundamental data structures intact. 523 */ 524 cp->cpu_flags = 0; 525 return; 526 } 527 528 /* 529 * At this point, the only threads bound to this CPU should 530 * special per-cpu threads: it's idle thread, it's pause threads, 531 * and it's interrupt threads. Clean these up. 532 */ 533 cpu_destroy_bound_threads(cp); 534 cp->cpu_idle_thread = NULL; 535 536 /* 537 * Free the interrupt stack. 538 */ 539 segkp_release(segkp, 540 cp->cpu_intr_stack - (INTR_STACK_SIZE - SA(MINFRAME))); 541 cp->cpu_intr_stack = NULL; 542 543 #ifdef TRAPTRACE 544 /* 545 * Discard the trap trace buffer 546 */ 547 { 548 trap_trace_ctl_t *ttc = &trap_trace_ctl[cp->cpu_id]; 549 550 kmem_free((void *)ttc->ttc_first, trap_trace_bufsize); 551 ttc->ttc_first = NULL; 552 } 553 #endif 554 555 hat_cpu_offline(cp); 556 557 ucode_free_space(cp); 558 559 /* Free CPU ID string and brand string. */ 560 if (cp->cpu_idstr) { 561 kmem_free(cp->cpu_idstr, CPU_IDSTRLEN); 562 cp->cpu_idstr = NULL; 563 } 564 if (cp->cpu_brandstr) { 565 kmem_free(cp->cpu_brandstr, CPU_IDSTRLEN); 566 cp->cpu_brandstr = NULL; 567 } 568 569 #if !defined(__xpv) 570 if (cp->cpu_m.mcpu_mwait != NULL) { 571 cpuid_mwait_free(cp); 572 cp->cpu_m.mcpu_mwait = NULL; 573 } 574 #endif 575 cpuid_free_space(cp); 576 577 if (cp->cpu_idt != CPU->cpu_idt) 578 kmem_free(cp->cpu_idt, PAGESIZE); 579 cp->cpu_idt = NULL; 580 581 kmem_free(cp->cpu_m.mcpu_ldt, LDT_CPU_SIZE); 582 cp->cpu_m.mcpu_ldt = NULL; 583 cp->cpu_m.mcpu_ldt_len = 0; 584 585 kmem_free(cp->cpu_gdt, PAGESIZE); 586 cp->cpu_gdt = NULL; 587 588 if (cp->cpu_supp_freqs != NULL) { 589 size_t len = strlen(cp->cpu_supp_freqs) + 1; 590 kmem_free(cp->cpu_supp_freqs, len); 591 cp->cpu_supp_freqs = NULL; 592 } 593 594 teardown_vaddr_for_ppcopy(cp); 595 596 kcpc_hw_fini(cp); 597 598 cp->cpu_dispthread = NULL; 599 cp->cpu_thread = NULL; /* discarded by cpu_destroy_bound_threads() */ 600 601 cpu_vm_data_destroy(cp); 602 603 xc_fini_cpu(cp); 604 disp_cpu_fini(cp); 605 606 ASSERT(cp != CPU0); 607 bzero(cp, sizeof (*cp)); 608 cp->cpu_next_free = cpu_free_list; 609 cpu_free_list = cp; 610 } 611 612 /* 613 * Apply workarounds for known errata, and warn about those that are absent. 614 * 615 * System vendors occasionally create configurations which contain different 616 * revisions of the CPUs that are almost but not exactly the same. At the 617 * time of writing, this meant that their clock rates were the same, their 618 * feature sets were the same, but the required workaround were -not- 619 * necessarily the same. So, this routine is invoked on -every- CPU soon 620 * after starting to make sure that the resulting system contains the most 621 * pessimal set of workarounds needed to cope with *any* of the CPUs in the 622 * system. 623 * 624 * workaround_errata is invoked early in mlsetup() for CPU 0, and in 625 * mp_startup_common() for all slave CPUs. Slaves process workaround_errata 626 * prior to acknowledging their readiness to the master, so this routine will 627 * never be executed by multiple CPUs in parallel, thus making updates to 628 * global data safe. 629 * 630 * These workarounds are based on Rev 3.57 of the Revision Guide for 631 * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005. 632 */ 633 634 #if defined(OPTERON_ERRATUM_88) 635 int opteron_erratum_88; /* if non-zero -> at least one cpu has it */ 636 #endif 637 638 #if defined(OPTERON_ERRATUM_91) 639 int opteron_erratum_91; /* if non-zero -> at least one cpu has it */ 640 #endif 641 642 #if defined(OPTERON_ERRATUM_93) 643 int opteron_erratum_93; /* if non-zero -> at least one cpu has it */ 644 #endif 645 646 #if defined(OPTERON_ERRATUM_95) 647 int opteron_erratum_95; /* if non-zero -> at least one cpu has it */ 648 #endif 649 650 #if defined(OPTERON_ERRATUM_100) 651 int opteron_erratum_100; /* if non-zero -> at least one cpu has it */ 652 #endif 653 654 #if defined(OPTERON_ERRATUM_108) 655 int opteron_erratum_108; /* if non-zero -> at least one cpu has it */ 656 #endif 657 658 #if defined(OPTERON_ERRATUM_109) 659 int opteron_erratum_109; /* if non-zero -> at least one cpu has it */ 660 #endif 661 662 #if defined(OPTERON_ERRATUM_121) 663 int opteron_erratum_121; /* if non-zero -> at least one cpu has it */ 664 #endif 665 666 #if defined(OPTERON_ERRATUM_122) 667 int opteron_erratum_122; /* if non-zero -> at least one cpu has it */ 668 #endif 669 670 #if defined(OPTERON_ERRATUM_123) 671 int opteron_erratum_123; /* if non-zero -> at least one cpu has it */ 672 #endif 673 674 #if defined(OPTERON_ERRATUM_131) 675 int opteron_erratum_131; /* if non-zero -> at least one cpu has it */ 676 #endif 677 678 #if defined(OPTERON_WORKAROUND_6336786) 679 int opteron_workaround_6336786; /* non-zero -> WA relevant and applied */ 680 int opteron_workaround_6336786_UP = 0; /* Not needed for UP */ 681 #endif 682 683 #if defined(OPTERON_WORKAROUND_6323525) 684 int opteron_workaround_6323525; /* if non-zero -> at least one cpu has it */ 685 #endif 686 687 #if defined(OPTERON_ERRATUM_298) 688 int opteron_erratum_298; 689 #endif 690 691 #if defined(OPTERON_ERRATUM_721) 692 int opteron_erratum_721; 693 #endif 694 695 static void 696 workaround_warning(cpu_t *cp, uint_t erratum) 697 { 698 cmn_err(CE_WARN, "cpu%d: no workaround for erratum %u", 699 cp->cpu_id, erratum); 700 } 701 702 static void 703 workaround_applied(uint_t erratum) 704 { 705 if (erratum > 1000000) 706 cmn_err(CE_CONT, "?workaround applied for cpu issue #%d\n", 707 erratum); 708 else 709 cmn_err(CE_CONT, "?workaround applied for cpu erratum #%d\n", 710 erratum); 711 } 712 713 static void 714 msr_warning(cpu_t *cp, const char *rw, uint_t msr, int error) 715 { 716 cmn_err(CE_WARN, "cpu%d: couldn't %smsr 0x%x, error %d", 717 cp->cpu_id, rw, msr, error); 718 } 719 720 /* 721 * Determine the number of nodes in a Hammer / Greyhound / Griffin family 722 * system. 723 */ 724 static uint_t 725 opteron_get_nnodes(void) 726 { 727 static uint_t nnodes = 0; 728 729 if (nnodes == 0) { 730 #ifdef DEBUG 731 uint_t family; 732 733 /* 734 * This routine uses a PCI config space based mechanism 735 * for retrieving the number of nodes in the system. 736 * Device 24, function 0, offset 0x60 as used here is not 737 * AMD processor architectural, and may not work on processor 738 * families other than those listed below. 739 * 740 * Callers of this routine must ensure that we're running on 741 * a processor which supports this mechanism. 742 * The assertion below is meant to catch calls on unsupported 743 * processors. 744 */ 745 family = cpuid_getfamily(CPU); 746 ASSERT(family == 0xf || family == 0x10 || family == 0x11); 747 #endif /* DEBUG */ 748 749 /* 750 * Obtain the number of nodes in the system from 751 * bits [6:4] of the Node ID register on node 0. 752 * 753 * The actual node count is NodeID[6:4] + 1 754 * 755 * The Node ID register is accessed via function 0, 756 * offset 0x60. Node 0 is device 24. 757 */ 758 nnodes = ((pci_getl_func(0, 24, 0, 0x60) & 0x70) >> 4) + 1; 759 } 760 return (nnodes); 761 } 762 763 uint_t 764 do_erratum_298(struct cpu *cpu) 765 { 766 static int osvwrc = -3; 767 extern int osvw_opteron_erratum(cpu_t *, uint_t); 768 769 /* 770 * L2 Eviction May Occur During Processor Operation To Set 771 * Accessed or Dirty Bit. 772 */ 773 if (osvwrc == -3) { 774 osvwrc = osvw_opteron_erratum(cpu, 298); 775 } else { 776 /* osvw return codes should be consistent for all cpus */ 777 ASSERT(osvwrc == osvw_opteron_erratum(cpu, 298)); 778 } 779 780 switch (osvwrc) { 781 case 0: /* erratum is not present: do nothing */ 782 break; 783 case 1: /* erratum is present: BIOS workaround applied */ 784 /* 785 * check if workaround is actually in place and issue warning 786 * if not. 787 */ 788 if (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) || 789 ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0)) { 790 #if defined(OPTERON_ERRATUM_298) 791 opteron_erratum_298++; 792 #else 793 workaround_warning(cpu, 298); 794 return (1); 795 #endif 796 } 797 break; 798 case -1: /* cannot determine via osvw: check cpuid */ 799 if ((cpuid_opteron_erratum(cpu, 298) > 0) && 800 (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) || 801 ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0))) { 802 #if defined(OPTERON_ERRATUM_298) 803 opteron_erratum_298++; 804 #else 805 workaround_warning(cpu, 298); 806 return (1); 807 #endif 808 } 809 break; 810 } 811 return (0); 812 } 813 814 uint_t 815 workaround_errata(struct cpu *cpu) 816 { 817 uint_t missing = 0; 818 819 ASSERT(cpu == CPU); 820 821 /*LINTED*/ 822 if (cpuid_opteron_erratum(cpu, 88) > 0) { 823 /* 824 * SWAPGS May Fail To Read Correct GS Base 825 */ 826 #if defined(OPTERON_ERRATUM_88) 827 /* 828 * The workaround is an mfence in the relevant assembler code 829 */ 830 opteron_erratum_88++; 831 #else 832 workaround_warning(cpu, 88); 833 missing++; 834 #endif 835 } 836 837 if (cpuid_opteron_erratum(cpu, 91) > 0) { 838 /* 839 * Software Prefetches May Report A Page Fault 840 */ 841 #if defined(OPTERON_ERRATUM_91) 842 /* 843 * fix is in trap.c 844 */ 845 opteron_erratum_91++; 846 #else 847 workaround_warning(cpu, 91); 848 missing++; 849 #endif 850 } 851 852 if (cpuid_opteron_erratum(cpu, 93) > 0) { 853 /* 854 * RSM Auto-Halt Restart Returns to Incorrect RIP 855 */ 856 #if defined(OPTERON_ERRATUM_93) 857 /* 858 * fix is in trap.c 859 */ 860 opteron_erratum_93++; 861 #else 862 workaround_warning(cpu, 93); 863 missing++; 864 #endif 865 } 866 867 /*LINTED*/ 868 if (cpuid_opteron_erratum(cpu, 95) > 0) { 869 /* 870 * RET Instruction May Return to Incorrect EIP 871 */ 872 #if defined(OPTERON_ERRATUM_95) 873 #if defined(_LP64) 874 /* 875 * Workaround this by ensuring that 32-bit user code and 876 * 64-bit kernel code never occupy the same address 877 * range mod 4G. 878 */ 879 if (_userlimit32 > 0xc0000000ul) 880 *(uintptr_t *)&_userlimit32 = 0xc0000000ul; 881 882 /*LINTED*/ 883 ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u); 884 opteron_erratum_95++; 885 #endif /* _LP64 */ 886 #else 887 workaround_warning(cpu, 95); 888 missing++; 889 #endif 890 } 891 892 if (cpuid_opteron_erratum(cpu, 100) > 0) { 893 /* 894 * Compatibility Mode Branches Transfer to Illegal Address 895 */ 896 #if defined(OPTERON_ERRATUM_100) 897 /* 898 * fix is in trap.c 899 */ 900 opteron_erratum_100++; 901 #else 902 workaround_warning(cpu, 100); 903 missing++; 904 #endif 905 } 906 907 /*LINTED*/ 908 if (cpuid_opteron_erratum(cpu, 108) > 0) { 909 /* 910 * CPUID Instruction May Return Incorrect Model Number In 911 * Some Processors 912 */ 913 #if defined(OPTERON_ERRATUM_108) 914 /* 915 * (Our cpuid-handling code corrects the model number on 916 * those processors) 917 */ 918 #else 919 workaround_warning(cpu, 108); 920 missing++; 921 #endif 922 } 923 924 /*LINTED*/ 925 if (cpuid_opteron_erratum(cpu, 109) > 0) do { 926 /* 927 * Certain Reverse REP MOVS May Produce Unpredictable Behavior 928 */ 929 #if defined(OPTERON_ERRATUM_109) 930 /* 931 * The "workaround" is to print a warning to upgrade the BIOS 932 */ 933 uint64_t value; 934 const uint_t msr = MSR_AMD_PATCHLEVEL; 935 int err; 936 937 if ((err = checked_rdmsr(msr, &value)) != 0) { 938 msr_warning(cpu, "rd", msr, err); 939 workaround_warning(cpu, 109); 940 missing++; 941 } 942 if (value == 0) 943 opteron_erratum_109++; 944 #else 945 workaround_warning(cpu, 109); 946 missing++; 947 #endif 948 /*CONSTANTCONDITION*/ 949 } while (0); 950 951 /*LINTED*/ 952 if (cpuid_opteron_erratum(cpu, 121) > 0) { 953 /* 954 * Sequential Execution Across Non_Canonical Boundary Caused 955 * Processor Hang 956 */ 957 #if defined(OPTERON_ERRATUM_121) 958 #if defined(_LP64) 959 /* 960 * Erratum 121 is only present in long (64 bit) mode. 961 * Workaround is to include the page immediately before the 962 * va hole to eliminate the possibility of system hangs due to 963 * sequential execution across the va hole boundary. 964 */ 965 if (opteron_erratum_121) 966 opteron_erratum_121++; 967 else { 968 if (hole_start) { 969 hole_start -= PAGESIZE; 970 } else { 971 /* 972 * hole_start not yet initialized by 973 * mmu_init. Initialize hole_start 974 * with value to be subtracted. 975 */ 976 hole_start = PAGESIZE; 977 } 978 opteron_erratum_121++; 979 } 980 #endif /* _LP64 */ 981 #else 982 workaround_warning(cpu, 121); 983 missing++; 984 #endif 985 } 986 987 /*LINTED*/ 988 if (cpuid_opteron_erratum(cpu, 122) > 0) do { 989 /* 990 * TLB Flush Filter May Cause Coherency Problem in 991 * Multiprocessor Systems 992 */ 993 #if defined(OPTERON_ERRATUM_122) 994 uint64_t value; 995 const uint_t msr = MSR_AMD_HWCR; 996 int error; 997 998 /* 999 * Erratum 122 is only present in MP configurations (multi-core 1000 * or multi-processor). 1001 */ 1002 #if defined(__xpv) 1003 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 1004 break; 1005 if (!opteron_erratum_122 && xpv_nr_phys_cpus() == 1) 1006 break; 1007 #else 1008 if (!opteron_erratum_122 && opteron_get_nnodes() == 1 && 1009 cpuid_get_ncpu_per_chip(cpu) == 1) 1010 break; 1011 #endif 1012 /* disable TLB Flush Filter */ 1013 1014 if ((error = checked_rdmsr(msr, &value)) != 0) { 1015 msr_warning(cpu, "rd", msr, error); 1016 workaround_warning(cpu, 122); 1017 missing++; 1018 } else { 1019 value |= (uint64_t)AMD_HWCR_FFDIS; 1020 if ((error = checked_wrmsr(msr, value)) != 0) { 1021 msr_warning(cpu, "wr", msr, error); 1022 workaround_warning(cpu, 122); 1023 missing++; 1024 } 1025 } 1026 opteron_erratum_122++; 1027 #else 1028 workaround_warning(cpu, 122); 1029 missing++; 1030 #endif 1031 /*CONSTANTCONDITION*/ 1032 } while (0); 1033 1034 /*LINTED*/ 1035 if (cpuid_opteron_erratum(cpu, 123) > 0) do { 1036 /* 1037 * Bypassed Reads May Cause Data Corruption of System Hang in 1038 * Dual Core Processors 1039 */ 1040 #if defined(OPTERON_ERRATUM_123) 1041 uint64_t value; 1042 const uint_t msr = MSR_AMD_PATCHLEVEL; 1043 int err; 1044 1045 /* 1046 * Erratum 123 applies only to multi-core cpus. 1047 */ 1048 if (cpuid_get_ncpu_per_chip(cpu) < 2) 1049 break; 1050 #if defined(__xpv) 1051 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 1052 break; 1053 #endif 1054 /* 1055 * The "workaround" is to print a warning to upgrade the BIOS 1056 */ 1057 if ((err = checked_rdmsr(msr, &value)) != 0) { 1058 msr_warning(cpu, "rd", msr, err); 1059 workaround_warning(cpu, 123); 1060 missing++; 1061 } 1062 if (value == 0) 1063 opteron_erratum_123++; 1064 #else 1065 workaround_warning(cpu, 123); 1066 missing++; 1067 1068 #endif 1069 /*CONSTANTCONDITION*/ 1070 } while (0); 1071 1072 /*LINTED*/ 1073 if (cpuid_opteron_erratum(cpu, 131) > 0) do { 1074 /* 1075 * Multiprocessor Systems with Four or More Cores May Deadlock 1076 * Waiting for a Probe Response 1077 */ 1078 #if defined(OPTERON_ERRATUM_131) 1079 uint64_t nbcfg; 1080 const uint_t msr = MSR_AMD_NB_CFG; 1081 const uint64_t wabits = 1082 AMD_NB_CFG_SRQ_HEARTBEAT | AMD_NB_CFG_SRQ_SPR; 1083 int error; 1084 1085 /* 1086 * Erratum 131 applies to any system with four or more cores. 1087 */ 1088 if (opteron_erratum_131) 1089 break; 1090 #if defined(__xpv) 1091 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 1092 break; 1093 if (xpv_nr_phys_cpus() < 4) 1094 break; 1095 #else 1096 if (opteron_get_nnodes() * cpuid_get_ncpu_per_chip(cpu) < 4) 1097 break; 1098 #endif 1099 /* 1100 * Print a warning if neither of the workarounds for 1101 * erratum 131 is present. 1102 */ 1103 if ((error = checked_rdmsr(msr, &nbcfg)) != 0) { 1104 msr_warning(cpu, "rd", msr, error); 1105 workaround_warning(cpu, 131); 1106 missing++; 1107 } else if ((nbcfg & wabits) == 0) { 1108 opteron_erratum_131++; 1109 } else { 1110 /* cannot have both workarounds set */ 1111 ASSERT((nbcfg & wabits) != wabits); 1112 } 1113 #else 1114 workaround_warning(cpu, 131); 1115 missing++; 1116 #endif 1117 /*CONSTANTCONDITION*/ 1118 } while (0); 1119 1120 /* 1121 * This isn't really an erratum, but for convenience the 1122 * detection/workaround code lives here and in cpuid_opteron_erratum. 1123 */ 1124 if (cpuid_opteron_erratum(cpu, 6336786) > 0) { 1125 #if defined(OPTERON_WORKAROUND_6336786) 1126 /* 1127 * Disable C1-Clock ramping on multi-core/multi-processor 1128 * K8 platforms to guard against TSC drift. 1129 */ 1130 if (opteron_workaround_6336786) { 1131 opteron_workaround_6336786++; 1132 #if defined(__xpv) 1133 } else if ((DOMAIN_IS_INITDOMAIN(xen_info) && 1134 xpv_nr_phys_cpus() > 1) || 1135 opteron_workaround_6336786_UP) { 1136 /* 1137 * XXPV Hmm. We can't walk the Northbridges on 1138 * the hypervisor; so just complain and drive 1139 * on. This probably needs to be fixed in 1140 * the hypervisor itself. 1141 */ 1142 opteron_workaround_6336786++; 1143 workaround_warning(cpu, 6336786); 1144 #else /* __xpv */ 1145 } else if ((opteron_get_nnodes() * 1146 cpuid_get_ncpu_per_chip(cpu) > 1) || 1147 opteron_workaround_6336786_UP) { 1148 1149 uint_t node, nnodes; 1150 uint8_t data; 1151 1152 nnodes = opteron_get_nnodes(); 1153 for (node = 0; node < nnodes; node++) { 1154 /* 1155 * Clear PMM7[1:0] (function 3, offset 0x87) 1156 * Northbridge device is the node id + 24. 1157 */ 1158 data = pci_getb_func(0, node + 24, 3, 0x87); 1159 data &= 0xFC; 1160 pci_putb_func(0, node + 24, 3, 0x87, data); 1161 } 1162 opteron_workaround_6336786++; 1163 #endif /* __xpv */ 1164 } 1165 #else 1166 workaround_warning(cpu, 6336786); 1167 missing++; 1168 #endif 1169 } 1170 1171 /*LINTED*/ 1172 /* 1173 * Mutex primitives don't work as expected. 1174 */ 1175 if (cpuid_opteron_erratum(cpu, 6323525) > 0) { 1176 #if defined(OPTERON_WORKAROUND_6323525) 1177 /* 1178 * This problem only occurs with 2 or more cores. If bit in 1179 * MSR_AMD_BU_CFG set, then not applicable. The workaround 1180 * is to patch the semaphone routines with the lfence 1181 * instruction to provide necessary load memory barrier with 1182 * possible subsequent read-modify-write ops. 1183 * 1184 * It is too early in boot to call the patch routine so 1185 * set erratum variable to be done in startup_end(). 1186 */ 1187 if (opteron_workaround_6323525) { 1188 opteron_workaround_6323525++; 1189 #if defined(__xpv) 1190 } else if (is_x86_feature(x86_featureset, X86FSET_SSE2)) { 1191 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1192 /* 1193 * XXPV Use dom0_msr here when extended 1194 * operations are supported? 1195 */ 1196 if (xpv_nr_phys_cpus() > 1) 1197 opteron_workaround_6323525++; 1198 } else { 1199 /* 1200 * We have no way to tell how many physical 1201 * cpus there are, or even if this processor 1202 * has the problem, so enable the workaround 1203 * unconditionally (at some performance cost). 1204 */ 1205 opteron_workaround_6323525++; 1206 } 1207 #else /* __xpv */ 1208 } else if (is_x86_feature(x86_featureset, X86FSET_SSE2) && 1209 ((opteron_get_nnodes() * 1210 cpuid_get_ncpu_per_chip(cpu)) > 1)) { 1211 if ((xrdmsr(MSR_AMD_BU_CFG) & (UINT64_C(1) << 33)) == 0) 1212 opteron_workaround_6323525++; 1213 #endif /* __xpv */ 1214 } 1215 #else 1216 workaround_warning(cpu, 6323525); 1217 missing++; 1218 #endif 1219 } 1220 1221 missing += do_erratum_298(cpu); 1222 1223 if (cpuid_opteron_erratum(cpu, 721) > 0) { 1224 #if defined(OPTERON_ERRATUM_721) 1225 on_trap_data_t otd; 1226 1227 if (!on_trap(&otd, OT_DATA_ACCESS)) 1228 wrmsr(MSR_AMD_DE_CFG, 1229 rdmsr(MSR_AMD_DE_CFG) | AMD_DE_CFG_E721); 1230 no_trap(); 1231 1232 opteron_erratum_721++; 1233 #else 1234 workaround_warning(cpu, 721); 1235 missing++; 1236 #endif 1237 } 1238 1239 #ifdef __xpv 1240 return (0); 1241 #else 1242 return (missing); 1243 #endif 1244 } 1245 1246 void 1247 workaround_errata_end() 1248 { 1249 #if defined(OPTERON_ERRATUM_88) 1250 if (opteron_erratum_88) 1251 workaround_applied(88); 1252 #endif 1253 #if defined(OPTERON_ERRATUM_91) 1254 if (opteron_erratum_91) 1255 workaround_applied(91); 1256 #endif 1257 #if defined(OPTERON_ERRATUM_93) 1258 if (opteron_erratum_93) 1259 workaround_applied(93); 1260 #endif 1261 #if defined(OPTERON_ERRATUM_95) 1262 if (opteron_erratum_95) 1263 workaround_applied(95); 1264 #endif 1265 #if defined(OPTERON_ERRATUM_100) 1266 if (opteron_erratum_100) 1267 workaround_applied(100); 1268 #endif 1269 #if defined(OPTERON_ERRATUM_108) 1270 if (opteron_erratum_108) 1271 workaround_applied(108); 1272 #endif 1273 #if defined(OPTERON_ERRATUM_109) 1274 if (opteron_erratum_109) { 1275 cmn_err(CE_WARN, 1276 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1277 " processor\nerratum 109 was not detected; updating your" 1278 " system's BIOS to a version\ncontaining this" 1279 " microcode patch is HIGHLY recommended or erroneous" 1280 " system\noperation may occur.\n"); 1281 } 1282 #endif 1283 #if defined(OPTERON_ERRATUM_121) 1284 if (opteron_erratum_121) 1285 workaround_applied(121); 1286 #endif 1287 #if defined(OPTERON_ERRATUM_122) 1288 if (opteron_erratum_122) 1289 workaround_applied(122); 1290 #endif 1291 #if defined(OPTERON_ERRATUM_123) 1292 if (opteron_erratum_123) { 1293 cmn_err(CE_WARN, 1294 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1295 " processor\nerratum 123 was not detected; updating your" 1296 " system's BIOS to a version\ncontaining this" 1297 " microcode patch is HIGHLY recommended or erroneous" 1298 " system\noperation may occur.\n"); 1299 } 1300 #endif 1301 #if defined(OPTERON_ERRATUM_131) 1302 if (opteron_erratum_131) { 1303 cmn_err(CE_WARN, 1304 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1305 " processor\nerratum 131 was not detected; updating your" 1306 " system's BIOS to a version\ncontaining this" 1307 " microcode patch is HIGHLY recommended or erroneous" 1308 " system\noperation may occur.\n"); 1309 } 1310 #endif 1311 #if defined(OPTERON_WORKAROUND_6336786) 1312 if (opteron_workaround_6336786) 1313 workaround_applied(6336786); 1314 #endif 1315 #if defined(OPTERON_WORKAROUND_6323525) 1316 if (opteron_workaround_6323525) 1317 workaround_applied(6323525); 1318 #endif 1319 #if defined(OPTERON_ERRATUM_298) 1320 if (opteron_erratum_298) { 1321 cmn_err(CE_WARN, 1322 "BIOS microcode patch for AMD 64/Opteron(tm)" 1323 " processor\nerratum 298 was not detected; updating your" 1324 " system's BIOS to a version\ncontaining this" 1325 " microcode patch is HIGHLY recommended or erroneous" 1326 " system\noperation may occur.\n"); 1327 } 1328 #endif 1329 #if defined(OPTERON_ERRATUM_721) 1330 if (opteron_erratum_721) 1331 workaround_applied(721); 1332 #endif 1333 } 1334 1335 /* 1336 * The procset_slave and procset_master are used to synchronize 1337 * between the control CPU and the target CPU when starting CPUs. 1338 */ 1339 static cpuset_t procset_slave, procset_master; 1340 1341 static void 1342 mp_startup_wait(cpuset_t *sp, processorid_t cpuid) 1343 { 1344 cpuset_t tempset; 1345 1346 for (tempset = *sp; !CPU_IN_SET(tempset, cpuid); 1347 tempset = *(volatile cpuset_t *)sp) { 1348 SMT_PAUSE(); 1349 } 1350 CPUSET_ATOMIC_DEL(*(cpuset_t *)sp, cpuid); 1351 } 1352 1353 static void 1354 mp_startup_signal(cpuset_t *sp, processorid_t cpuid) 1355 { 1356 cpuset_t tempset; 1357 1358 CPUSET_ATOMIC_ADD(*(cpuset_t *)sp, cpuid); 1359 for (tempset = *sp; CPU_IN_SET(tempset, cpuid); 1360 tempset = *(volatile cpuset_t *)sp) { 1361 SMT_PAUSE(); 1362 } 1363 } 1364 1365 int 1366 mp_start_cpu_common(cpu_t *cp, boolean_t boot) 1367 { 1368 _NOTE(ARGUNUSED(boot)); 1369 1370 void *ctx; 1371 int delays; 1372 int error = 0; 1373 cpuset_t tempset; 1374 processorid_t cpuid; 1375 #ifndef __xpv 1376 extern void cpupm_init(cpu_t *); 1377 #endif 1378 1379 ASSERT(cp != NULL); 1380 cpuid = cp->cpu_id; 1381 ctx = mach_cpucontext_alloc(cp); 1382 if (ctx == NULL) { 1383 cmn_err(CE_WARN, 1384 "cpu%d: failed to allocate context", cp->cpu_id); 1385 return (EAGAIN); 1386 } 1387 error = mach_cpu_start(cp, ctx); 1388 if (error != 0) { 1389 cmn_err(CE_WARN, 1390 "cpu%d: failed to start, error %d", cp->cpu_id, error); 1391 mach_cpucontext_free(cp, ctx, error); 1392 return (error); 1393 } 1394 1395 for (delays = 0, tempset = procset_slave; !CPU_IN_SET(tempset, cpuid); 1396 delays++) { 1397 if (delays == 500) { 1398 /* 1399 * After five seconds, things are probably looking 1400 * a bit bleak - explain the hang. 1401 */ 1402 cmn_err(CE_NOTE, "cpu%d: started, " 1403 "but not running in the kernel yet", cpuid); 1404 } else if (delays > 2000) { 1405 /* 1406 * We waited at least 20 seconds, bail .. 1407 */ 1408 error = ETIMEDOUT; 1409 cmn_err(CE_WARN, "cpu%d: timed out", cpuid); 1410 mach_cpucontext_free(cp, ctx, error); 1411 return (error); 1412 } 1413 1414 /* 1415 * wait at least 10ms, then check again.. 1416 */ 1417 delay(USEC_TO_TICK_ROUNDUP(10000)); 1418 tempset = *((volatile cpuset_t *)&procset_slave); 1419 } 1420 CPUSET_ATOMIC_DEL(procset_slave, cpuid); 1421 1422 mach_cpucontext_free(cp, ctx, 0); 1423 1424 #ifndef __xpv 1425 if (tsc_gethrtime_enable) 1426 tsc_sync_master(cpuid); 1427 #endif 1428 1429 if (dtrace_cpu_init != NULL) { 1430 (*dtrace_cpu_init)(cpuid); 1431 } 1432 1433 /* 1434 * During CPU DR operations, the cpu_lock is held by current 1435 * (the control) thread. We can't release the cpu_lock here 1436 * because that will break the CPU DR logic. 1437 * On the other hand, CPUPM and processor group initialization 1438 * routines need to access the cpu_lock. So we invoke those 1439 * routines here on behalf of mp_startup_common(). 1440 * 1441 * CPUPM and processor group initialization routines depend 1442 * on the cpuid probing results. Wait for mp_startup_common() 1443 * to signal that cpuid probing is done. 1444 */ 1445 mp_startup_wait(&procset_slave, cpuid); 1446 #ifndef __xpv 1447 cpupm_init(cp); 1448 #endif 1449 (void) pg_cpu_init(cp, B_FALSE); 1450 cpu_set_state(cp); 1451 mp_startup_signal(&procset_master, cpuid); 1452 1453 return (0); 1454 } 1455 1456 /* 1457 * Start a single cpu, assuming that the kernel context is available 1458 * to successfully start another cpu. 1459 * 1460 * (For example, real mode code is mapped into the right place 1461 * in memory and is ready to be run.) 1462 */ 1463 int 1464 start_cpu(processorid_t who) 1465 { 1466 cpu_t *cp; 1467 int error = 0; 1468 cpuset_t tempset; 1469 1470 ASSERT(who != 0); 1471 1472 /* 1473 * Check if there's at least a Mbyte of kmem available 1474 * before attempting to start the cpu. 1475 */ 1476 if (kmem_avail() < 1024 * 1024) { 1477 /* 1478 * Kick off a reap in case that helps us with 1479 * later attempts .. 1480 */ 1481 kmem_reap(); 1482 return (ENOMEM); 1483 } 1484 1485 /* 1486 * First configure cpu. 1487 */ 1488 cp = mp_cpu_configure_common(who, B_TRUE); 1489 ASSERT(cp != NULL); 1490 1491 /* 1492 * Then start cpu. 1493 */ 1494 error = mp_start_cpu_common(cp, B_TRUE); 1495 if (error != 0) { 1496 mp_cpu_unconfigure_common(cp, error); 1497 return (error); 1498 } 1499 1500 mutex_exit(&cpu_lock); 1501 tempset = cpu_ready_set; 1502 while (!CPU_IN_SET(tempset, who)) { 1503 drv_usecwait(1); 1504 tempset = *((volatile cpuset_t *)&cpu_ready_set); 1505 } 1506 mutex_enter(&cpu_lock); 1507 1508 return (0); 1509 } 1510 1511 void 1512 start_other_cpus(int cprboot) 1513 { 1514 _NOTE(ARGUNUSED(cprboot)); 1515 1516 uint_t who; 1517 uint_t bootcpuid = 0; 1518 1519 /* 1520 * Initialize our own cpu_info. 1521 */ 1522 init_cpu_info(CPU); 1523 1524 #if !defined(__xpv) 1525 init_cpu_id_gdt(CPU); 1526 #endif 1527 1528 cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_idstr); 1529 cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_brandstr); 1530 1531 /* 1532 * Initialize our syscall handlers 1533 */ 1534 init_cpu_syscall(CPU); 1535 1536 /* 1537 * Take the boot cpu out of the mp_cpus set because we know 1538 * it's already running. Add it to the cpu_ready_set for 1539 * precisely the same reason. 1540 */ 1541 CPUSET_DEL(mp_cpus, bootcpuid); 1542 CPUSET_ADD(cpu_ready_set, bootcpuid); 1543 1544 /* 1545 * skip the rest of this if 1546 * . only 1 cpu dectected and system isn't hotplug-capable 1547 * . not using MP 1548 */ 1549 if ((CPUSET_ISNULL(mp_cpus) && plat_dr_support_cpu() == 0) || 1550 use_mp == 0) { 1551 if (use_mp == 0) 1552 cmn_err(CE_CONT, "?***** Not in MP mode\n"); 1553 goto done; 1554 } 1555 1556 /* 1557 * perform such initialization as is needed 1558 * to be able to take CPUs on- and off-line. 1559 */ 1560 cpu_pause_init(); 1561 1562 xc_init_cpu(CPU); /* initialize processor crosscalls */ 1563 1564 if (mach_cpucontext_init() != 0) 1565 goto done; 1566 1567 flushes_require_xcalls = 1; 1568 1569 /* 1570 * We lock our affinity to the master CPU to ensure that all slave CPUs 1571 * do their TSC syncs with the same CPU. 1572 */ 1573 affinity_set(CPU_CURRENT); 1574 1575 for (who = 0; who < NCPU; who++) { 1576 if (!CPU_IN_SET(mp_cpus, who)) 1577 continue; 1578 ASSERT(who != bootcpuid); 1579 1580 mutex_enter(&cpu_lock); 1581 if (start_cpu(who) != 0) 1582 CPUSET_DEL(mp_cpus, who); 1583 cpu_state_change_notify(who, CPU_SETUP); 1584 mutex_exit(&cpu_lock); 1585 } 1586 1587 /* Free the space allocated to hold the microcode file */ 1588 ucode_cleanup(); 1589 1590 affinity_clear(); 1591 1592 mach_cpucontext_fini(); 1593 1594 done: 1595 if (get_hwenv() == HW_NATIVE) 1596 workaround_errata_end(); 1597 cmi_post_mpstartup(); 1598 1599 if (use_mp && ncpus != boot_max_ncpus) { 1600 cmn_err(CE_NOTE, 1601 "System detected %d cpus, but " 1602 "only %d cpu(s) were enabled during boot.", 1603 boot_max_ncpus, ncpus); 1604 cmn_err(CE_NOTE, 1605 "Use \"boot-ncpus\" parameter to enable more CPU(s). " 1606 "See eeprom(1M)."); 1607 } 1608 } 1609 1610 int 1611 mp_cpu_configure(int cpuid) 1612 { 1613 cpu_t *cp; 1614 1615 if (use_mp == 0 || plat_dr_support_cpu() == 0) { 1616 return (ENOTSUP); 1617 } 1618 1619 cp = cpu_get(cpuid); 1620 if (cp != NULL) { 1621 return (EALREADY); 1622 } 1623 1624 /* 1625 * Check if there's at least a Mbyte of kmem available 1626 * before attempting to start the cpu. 1627 */ 1628 if (kmem_avail() < 1024 * 1024) { 1629 /* 1630 * Kick off a reap in case that helps us with 1631 * later attempts .. 1632 */ 1633 kmem_reap(); 1634 return (ENOMEM); 1635 } 1636 1637 cp = mp_cpu_configure_common(cpuid, B_FALSE); 1638 ASSERT(cp != NULL && cpu_get(cpuid) == cp); 1639 1640 return (cp != NULL ? 0 : EAGAIN); 1641 } 1642 1643 int 1644 mp_cpu_unconfigure(int cpuid) 1645 { 1646 cpu_t *cp; 1647 1648 if (use_mp == 0 || plat_dr_support_cpu() == 0) { 1649 return (ENOTSUP); 1650 } else if (cpuid < 0 || cpuid >= max_ncpus) { 1651 return (EINVAL); 1652 } 1653 1654 cp = cpu_get(cpuid); 1655 if (cp == NULL) { 1656 return (ENODEV); 1657 } 1658 mp_cpu_unconfigure_common(cp, 0); 1659 1660 return (0); 1661 } 1662 1663 /* 1664 * Startup function for 'other' CPUs (besides boot cpu). 1665 * Called from real_mode_start. 1666 * 1667 * WARNING: until CPU_READY is set, mp_startup_common and routines called by 1668 * mp_startup_common should not call routines (e.g. kmem_free) that could call 1669 * hat_unload which requires CPU_READY to be set. 1670 */ 1671 static void 1672 mp_startup_common(boolean_t boot) 1673 { 1674 cpu_t *cp = CPU; 1675 uchar_t new_x86_featureset[BT_SIZEOFMAP(NUM_X86_FEATURES)]; 1676 extern void cpu_event_init_cpu(cpu_t *); 1677 1678 /* 1679 * We need to get TSC on this proc synced (i.e., any delta 1680 * from cpu0 accounted for) as soon as we can, because many 1681 * many things use gethrtime/pc_gethrestime, including 1682 * interrupts, cmn_err, etc. Before we can do that, we want to 1683 * clear TSC if we're on a buggy Sandy/Ivy Bridge CPU, so do that 1684 * right away. 1685 */ 1686 bzero(new_x86_featureset, BT_SIZEOFMAP(NUM_X86_FEATURES)); 1687 cpuid_pass1(cp, new_x86_featureset); 1688 1689 if (boot && get_hwenv() == HW_NATIVE && 1690 cpuid_getvendor(CPU) == X86_VENDOR_Intel && 1691 cpuid_getfamily(CPU) == 6 && 1692 (cpuid_getmodel(CPU) == 0x2d || cpuid_getmodel(CPU) == 0x3e) && 1693 is_x86_feature(new_x86_featureset, X86FSET_TSC)) { 1694 (void) wrmsr(REG_TSC, 0UL); 1695 } 1696 1697 /* Let the control CPU continue into tsc_sync_master() */ 1698 mp_startup_signal(&procset_slave, cp->cpu_id); 1699 1700 #ifndef __xpv 1701 if (tsc_gethrtime_enable) 1702 tsc_sync_slave(); 1703 #endif 1704 1705 /* 1706 * Once this was done from assembly, but it's safer here; if 1707 * it blocks, we need to be able to swtch() to and from, and 1708 * since we get here by calling t_pc, we need to do that call 1709 * before swtch() overwrites it. 1710 */ 1711 (void) (*ap_mlsetup)(); 1712 1713 #ifndef __xpv 1714 /* 1715 * Program this cpu's PAT 1716 */ 1717 pat_sync(); 1718 #endif 1719 1720 /* 1721 * Set up TSC_AUX to contain the cpuid for this processor 1722 * for the rdtscp instruction. 1723 */ 1724 if (is_x86_feature(x86_featureset, X86FSET_TSCP)) 1725 (void) wrmsr(MSR_AMD_TSCAUX, cp->cpu_id); 1726 1727 /* 1728 * Initialize this CPU's syscall handlers 1729 */ 1730 init_cpu_syscall(cp); 1731 1732 /* 1733 * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the 1734 * highest level at which a routine is permitted to block on 1735 * an adaptive mutex (allows for cpu poke interrupt in case 1736 * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks 1737 * device interrupts that may end up in the hat layer issuing cross 1738 * calls before CPU_READY is set. 1739 */ 1740 splx(ipltospl(LOCK_LEVEL)); 1741 sti(); 1742 1743 /* 1744 * Do a sanity check to make sure this new CPU is a sane thing 1745 * to add to the collection of processors running this system. 1746 * 1747 * XXX Clearly this needs to get more sophisticated, if x86 1748 * systems start to get built out of heterogenous CPUs; as is 1749 * likely to happen once the number of processors in a configuration 1750 * gets large enough. 1751 */ 1752 if (compare_x86_featureset(x86_featureset, new_x86_featureset) == 1753 B_FALSE) { 1754 cmn_err(CE_CONT, "cpu%d: featureset\n", cp->cpu_id); 1755 print_x86_featureset(new_x86_featureset); 1756 cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id); 1757 } 1758 1759 /* 1760 * There exists a small subset of systems which expose differing 1761 * MWAIT/MONITOR support between CPUs. If MWAIT support is absent from 1762 * the boot CPU, but is found on a later CPU, the system continues to 1763 * operate as if no MWAIT support is available. 1764 * 1765 * The reverse case, where MWAIT is available on the boot CPU but not 1766 * on a subsequently initialized CPU, is not presently allowed and will 1767 * result in a panic. 1768 */ 1769 if (is_x86_feature(x86_featureset, X86FSET_MWAIT) != 1770 is_x86_feature(new_x86_featureset, X86FSET_MWAIT)) { 1771 if (!is_x86_feature(x86_featureset, X86FSET_MWAIT)) { 1772 remove_x86_feature(new_x86_featureset, X86FSET_MWAIT); 1773 } else { 1774 panic("unsupported mixed cpu mwait support detected"); 1775 } 1776 } 1777 1778 /* 1779 * We could be more sophisticated here, and just mark the CPU 1780 * as "faulted" but at this point we'll opt for the easier 1781 * answer of dying horribly. Provided the boot cpu is ok, 1782 * the system can be recovered by booting with use_mp set to zero. 1783 */ 1784 if (workaround_errata(cp) != 0) 1785 panic("critical workaround(s) missing for cpu%d", cp->cpu_id); 1786 1787 /* 1788 * We can touch cpu_flags here without acquiring the cpu_lock here 1789 * because the cpu_lock is held by the control CPU which is running 1790 * mp_start_cpu_common(). 1791 * Need to clear CPU_QUIESCED flag before calling any function which 1792 * may cause thread context switching, such as kmem_alloc() etc. 1793 * The idle thread checks for CPU_QUIESCED flag and loops for ever if 1794 * it's set. So the startup thread may have no chance to switch back 1795 * again if it's switched away with CPU_QUIESCED set. 1796 */ 1797 cp->cpu_flags &= ~(CPU_POWEROFF | CPU_QUIESCED); 1798 1799 enable_pcid(); 1800 1801 /* 1802 * Setup this processor for XSAVE. 1803 */ 1804 if (fp_save_mech == FP_XSAVE) { 1805 xsave_setup_msr(cp); 1806 } 1807 1808 cpuid_pass2(cp); 1809 cpuid_pass3(cp); 1810 cpuid_pass4(cp, NULL); 1811 1812 /* 1813 * Correct cpu_idstr and cpu_brandstr on target CPU after 1814 * cpuid_pass1() is done. 1815 */ 1816 (void) cpuid_getidstr(cp, cp->cpu_idstr, CPU_IDSTRLEN); 1817 (void) cpuid_getbrandstr(cp, cp->cpu_brandstr, CPU_IDSTRLEN); 1818 1819 cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS; 1820 1821 post_startup_cpu_fixups(); 1822 1823 cpu_event_init_cpu(cp); 1824 1825 /* 1826 * Enable preemption here so that contention for any locks acquired 1827 * later in mp_startup_common may be preempted if the thread owning 1828 * those locks is continuously executing on other CPUs (for example, 1829 * this CPU must be preemptible to allow other CPUs to pause it during 1830 * their startup phases). It's safe to enable preemption here because 1831 * the CPU state is pretty-much fully constructed. 1832 */ 1833 curthread->t_preempt = 0; 1834 1835 /* The base spl should still be at LOCK LEVEL here */ 1836 ASSERT(cp->cpu_base_spl == ipltospl(LOCK_LEVEL)); 1837 set_base_spl(); /* Restore the spl to its proper value */ 1838 1839 pghw_physid_create(cp); 1840 /* 1841 * Delegate initialization tasks, which need to access the cpu_lock, 1842 * to mp_start_cpu_common() because we can't acquire the cpu_lock here 1843 * during CPU DR operations. 1844 */ 1845 mp_startup_signal(&procset_slave, cp->cpu_id); 1846 mp_startup_wait(&procset_master, cp->cpu_id); 1847 pg_cmt_cpu_startup(cp); 1848 1849 if (boot) { 1850 mutex_enter(&cpu_lock); 1851 cp->cpu_flags &= ~CPU_OFFLINE; 1852 cpu_enable_intr(cp); 1853 cpu_add_active(cp); 1854 mutex_exit(&cpu_lock); 1855 } 1856 1857 /* Enable interrupts */ 1858 (void) spl0(); 1859 1860 /* 1861 * Fill out cpu_ucode_info. Update microcode if necessary. 1862 */ 1863 ucode_check(cp); 1864 1865 #ifndef __xpv 1866 { 1867 /* 1868 * Set up the CPU module for this CPU. This can't be done 1869 * before this CPU is made CPU_READY, because we may (in 1870 * heterogeneous systems) need to go load another CPU module. 1871 * The act of attempting to load a module may trigger a 1872 * cross-call, which will ASSERT unless this cpu is CPU_READY. 1873 */ 1874 cmi_hdl_t hdl; 1875 1876 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1877 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) { 1878 if (is_x86_feature(x86_featureset, X86FSET_MCA)) 1879 cmi_mca_init(hdl); 1880 cp->cpu_m.mcpu_cmi_hdl = hdl; 1881 } 1882 } 1883 #endif /* __xpv */ 1884 1885 if (boothowto & RB_DEBUG) 1886 kdi_cpu_init(); 1887 1888 /* 1889 * Setting the bit in cpu_ready_set must be the last operation in 1890 * processor initialization; the boot CPU will continue to boot once 1891 * it sees this bit set for all active CPUs. 1892 */ 1893 CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id); 1894 1895 (void) mach_cpu_create_device_node(cp, NULL); 1896 1897 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr); 1898 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr); 1899 cmn_err(CE_CONT, "?cpu%d initialization complete - online\n", 1900 cp->cpu_id); 1901 1902 /* 1903 * Now we are done with the startup thread, so free it up. 1904 */ 1905 thread_exit(); 1906 panic("mp_startup: cannot return"); 1907 /*NOTREACHED*/ 1908 } 1909 1910 /* 1911 * Startup function for 'other' CPUs at boot time (besides boot cpu). 1912 */ 1913 static void 1914 mp_startup_boot(void) 1915 { 1916 mp_startup_common(B_TRUE); 1917 } 1918 1919 /* 1920 * Startup function for hotplug CPUs at runtime. 1921 */ 1922 void 1923 mp_startup_hotplug(void) 1924 { 1925 mp_startup_common(B_FALSE); 1926 } 1927 1928 /* 1929 * Start CPU on user request. 1930 */ 1931 /* ARGSUSED */ 1932 int 1933 mp_cpu_start(struct cpu *cp) 1934 { 1935 ASSERT(MUTEX_HELD(&cpu_lock)); 1936 return (0); 1937 } 1938 1939 /* 1940 * Stop CPU on user request. 1941 */ 1942 int 1943 mp_cpu_stop(struct cpu *cp) 1944 { 1945 extern int cbe_psm_timer_mode; 1946 ASSERT(MUTEX_HELD(&cpu_lock)); 1947 1948 #ifdef __xpv 1949 /* 1950 * We can't offline vcpu0. 1951 */ 1952 if (cp->cpu_id == 0) 1953 return (EBUSY); 1954 #endif 1955 1956 /* 1957 * If TIMER_PERIODIC mode is used, CPU0 is the one running it; 1958 * can't stop it. (This is true only for machines with no TSC.) 1959 */ 1960 1961 if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0)) 1962 return (EBUSY); 1963 1964 return (0); 1965 } 1966 1967 /* 1968 * Take the specified CPU out of participation in interrupts. 1969 */ 1970 int 1971 cpu_disable_intr(struct cpu *cp) 1972 { 1973 if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS) 1974 return (EBUSY); 1975 1976 cp->cpu_flags &= ~CPU_ENABLE; 1977 return (0); 1978 } 1979 1980 /* 1981 * Allow the specified CPU to participate in interrupts. 1982 */ 1983 void 1984 cpu_enable_intr(struct cpu *cp) 1985 { 1986 ASSERT(MUTEX_HELD(&cpu_lock)); 1987 cp->cpu_flags |= CPU_ENABLE; 1988 psm_enable_intr(cp->cpu_id); 1989 } 1990 1991 void 1992 mp_cpu_faulted_enter(struct cpu *cp) 1993 { 1994 #ifdef __xpv 1995 _NOTE(ARGUNUSED(cp)); 1996 #else 1997 cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl; 1998 1999 if (hdl != NULL) { 2000 cmi_hdl_hold(hdl); 2001 } else { 2002 hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp), 2003 cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp)); 2004 } 2005 if (hdl != NULL) { 2006 cmi_faulted_enter(hdl); 2007 cmi_hdl_rele(hdl); 2008 } 2009 #endif 2010 } 2011 2012 void 2013 mp_cpu_faulted_exit(struct cpu *cp) 2014 { 2015 #ifdef __xpv 2016 _NOTE(ARGUNUSED(cp)); 2017 #else 2018 cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl; 2019 2020 if (hdl != NULL) { 2021 cmi_hdl_hold(hdl); 2022 } else { 2023 hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp), 2024 cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp)); 2025 } 2026 if (hdl != NULL) { 2027 cmi_faulted_exit(hdl); 2028 cmi_hdl_rele(hdl); 2029 } 2030 #endif 2031 } 2032 2033 /* 2034 * The following two routines are used as context operators on threads belonging 2035 * to processes with a private LDT (see sysi86). Due to the rarity of such 2036 * processes, these routines are currently written for best code readability and 2037 * organization rather than speed. We could avoid checking x86_featureset at 2038 * every context switch by installing different context ops, depending on 2039 * x86_featureset, at LDT creation time -- one for each combination of fast 2040 * syscall features. 2041 */ 2042 2043 /*ARGSUSED*/ 2044 void 2045 cpu_fast_syscall_disable(void *arg) 2046 { 2047 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 2048 is_x86_feature(x86_featureset, X86FSET_SEP)) 2049 cpu_sep_disable(); 2050 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 2051 is_x86_feature(x86_featureset, X86FSET_ASYSC)) 2052 cpu_asysc_disable(); 2053 } 2054 2055 /*ARGSUSED*/ 2056 void 2057 cpu_fast_syscall_enable(void *arg) 2058 { 2059 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 2060 is_x86_feature(x86_featureset, X86FSET_SEP)) 2061 cpu_sep_enable(); 2062 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 2063 is_x86_feature(x86_featureset, X86FSET_ASYSC)) 2064 cpu_asysc_enable(); 2065 } 2066 2067 static void 2068 cpu_sep_enable(void) 2069 { 2070 ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP)); 2071 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 2072 2073 wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL); 2074 } 2075 2076 static void 2077 cpu_sep_disable(void) 2078 { 2079 ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP)); 2080 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 2081 2082 /* 2083 * Setting the SYSENTER_CS_MSR register to 0 causes software executing 2084 * the sysenter or sysexit instruction to trigger a #gp fault. 2085 */ 2086 wrmsr(MSR_INTC_SEP_CS, 0); 2087 } 2088 2089 static void 2090 cpu_asysc_enable(void) 2091 { 2092 ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC)); 2093 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 2094 2095 wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) | 2096 (uint64_t)(uintptr_t)AMD_EFER_SCE); 2097 } 2098 2099 static void 2100 cpu_asysc_disable(void) 2101 { 2102 ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC)); 2103 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 2104 2105 /* 2106 * Turn off the SCE (syscall enable) bit in the EFER register. Software 2107 * executing syscall or sysret with this bit off will incur a #ud trap. 2108 */ 2109 wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) & 2110 ~((uint64_t)(uintptr_t)AMD_EFER_SCE)); 2111 }