1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 * 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 * 29 * Copyright 2018 Joyent, Inc. All rights reserved. 30 */ 31 32 /* 33 * This file contains the functionality that mimics the boot operations 34 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems. 35 * The x86 kernel now does everything on its own. 36 */ 37 38 #include <sys/types.h> 39 #include <sys/bootconf.h> 40 #include <sys/bootsvcs.h> 41 #include <sys/bootinfo.h> 42 #include <sys/multiboot.h> 43 #include <sys/multiboot2.h> 44 #include <sys/multiboot2_impl.h> 45 #include <sys/bootvfs.h> 46 #include <sys/bootprops.h> 47 #include <sys/varargs.h> 48 #include <sys/param.h> 49 #include <sys/machparam.h> 50 #include <sys/machsystm.h> 51 #include <sys/archsystm.h> 52 #include <sys/boot_console.h> 53 #include <sys/cmn_err.h> 54 #include <sys/systm.h> 55 #include <sys/promif.h> 56 #include <sys/archsystm.h> 57 #include <sys/x86_archext.h> 58 #include <sys/kobj.h> 59 #include <sys/privregs.h> 60 #include <sys/sysmacros.h> 61 #include <sys/ctype.h> 62 #include <sys/fastboot.h> 63 #ifdef __xpv 64 #include <sys/hypervisor.h> 65 #include <net/if.h> 66 #endif 67 #include <vm/kboot_mmu.h> 68 #include <vm/hat_pte.h> 69 #include <sys/kobj.h> 70 #include <sys/kobj_lex.h> 71 #include <sys/pci_cfgspace_impl.h> 72 #include <sys/fastboot_impl.h> 73 #include <sys/acpi/acconfig.h> 74 #include <sys/acpi/acpi.h> 75 76 static int have_console = 0; /* set once primitive console is initialized */ 77 static char *boot_args = ""; 78 79 /* 80 * Debugging macros 81 */ 82 static uint_t kbm_debug = 0; 83 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); } 84 #define DBG(x) { if (kbm_debug) \ 85 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \ 86 } 87 88 #define PUT_STRING(s) { \ 89 char *cp; \ 90 for (cp = (s); *cp; ++cp) \ 91 bcons_putchar(*cp); \ 92 } 93 94 bootops_t bootop; /* simple bootops we'll pass on to kernel */ 95 struct bsys_mem bm; 96 97 /* 98 * Boot info from "glue" code in low memory. xbootp is used by: 99 * do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish(). 100 */ 101 static struct xboot_info *xbootp; 102 static uintptr_t next_virt; /* next available virtual address */ 103 static paddr_t next_phys; /* next available physical address from dboot */ 104 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */ 105 106 /* 107 * buffer for vsnprintf for console I/O 108 */ 109 #define BUFFERSIZE 512 110 static char buffer[BUFFERSIZE]; 111 112 /* 113 * stuff to store/report/manipulate boot property settings. 114 */ 115 typedef struct bootprop { 116 struct bootprop *bp_next; 117 char *bp_name; 118 uint_t bp_vlen; 119 char *bp_value; 120 } bootprop_t; 121 122 static bootprop_t *bprops = NULL; 123 static char *curr_page = NULL; /* ptr to avail bprop memory */ 124 static int curr_space = 0; /* amount of memory at curr_page */ 125 126 #ifdef __xpv 127 start_info_t *xen_info; 128 shared_info_t *HYPERVISOR_shared_info; 129 #endif 130 131 /* 132 * some allocator statistics 133 */ 134 static ulong_t total_bop_alloc_scratch = 0; 135 static ulong_t total_bop_alloc_kernel = 0; 136 137 static void build_firmware_properties(struct xboot_info *); 138 139 static int early_allocation = 1; 140 141 int force_fastreboot = 0; 142 volatile int fastreboot_onpanic = 0; 143 int post_fastreboot = 0; 144 #ifdef __xpv 145 volatile int fastreboot_capable = 0; 146 #else 147 volatile int fastreboot_capable = 1; 148 #endif 149 150 /* 151 * Information saved from current boot for fast reboot. 152 * If the information size exceeds what we have allocated, fast reboot 153 * will not be supported. 154 */ 155 multiboot_info_t saved_mbi; 156 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT]; 157 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE]; 158 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 159 int saved_cmdline_len = 0; 160 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP]; 161 162 /* 163 * Turn off fastreboot_onpanic to avoid panic loop. 164 */ 165 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 166 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0"; 167 168 /* 169 * Pointers to where System Resource Affinity Table (SRAT), System Locality 170 * Information Table (SLIT) and Maximum System Capability Table (MSCT) 171 * are mapped into virtual memory 172 */ 173 ACPI_TABLE_SRAT *srat_ptr = NULL; 174 ACPI_TABLE_SLIT *slit_ptr = NULL; 175 ACPI_TABLE_MSCT *msct_ptr = NULL; 176 177 /* 178 * Arbitrary limit on number of localities we handle; if 179 * this limit is raised to more than UINT16_MAX, make sure 180 * process_slit() knows how to handle it. 181 */ 182 #define SLIT_LOCALITIES_MAX (4096) 183 184 #define SLIT_NUM_PROPNAME "acpi-slit-localities" 185 #define SLIT_PROPNAME "acpi-slit" 186 187 /* 188 * Allocate aligned physical memory at boot time. This allocator allocates 189 * from the highest possible addresses. This avoids exhausting memory that 190 * would be useful for DMA buffers. 191 */ 192 paddr_t 193 do_bop_phys_alloc(uint64_t size, uint64_t align) 194 { 195 paddr_t pa = 0; 196 paddr_t start; 197 paddr_t end; 198 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install; 199 200 /* 201 * Be careful if high memory usage is limited in startup.c 202 * Since there are holes in the low part of the physical address 203 * space we can treat physmem as a pfn (not just a pgcnt) and 204 * get a conservative upper limit. 205 */ 206 if (physmem != 0 && high_phys > pfn_to_pa(physmem)) 207 high_phys = pfn_to_pa(physmem); 208 209 /* 210 * find the highest available memory in physinstalled 211 */ 212 size = P2ROUNDUP(size, align); 213 for (; ml; ml = ml->ml_next) { 214 start = P2ROUNDUP(ml->ml_address, align); 215 end = P2ALIGN(ml->ml_address + ml->ml_size, align); 216 if (start < next_phys) 217 start = P2ROUNDUP(next_phys, align); 218 if (end > high_phys) 219 end = P2ALIGN(high_phys, align); 220 221 if (end <= start) 222 continue; 223 if (end - start < size) 224 continue; 225 226 /* 227 * Early allocations need to use low memory, since 228 * physmem might be further limited by bootenv.rc 229 */ 230 if (early_allocation) { 231 if (pa == 0 || start < pa) 232 pa = start; 233 } else { 234 if (end - size > pa) 235 pa = end - size; 236 } 237 } 238 if (pa != 0) { 239 if (early_allocation) 240 next_phys = pa + size; 241 else 242 high_phys = pa; 243 return (pa); 244 } 245 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64 246 ") Out of memory\n", size, align); 247 /*NOTREACHED*/ 248 } 249 250 uintptr_t 251 alloc_vaddr(size_t size, paddr_t align) 252 { 253 uintptr_t rv; 254 255 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align); 256 rv = (uintptr_t)next_virt; 257 next_virt += size; 258 return (rv); 259 } 260 261 /* 262 * Allocate virtual memory. The size is always rounded up to a multiple 263 * of base pagesize. 264 */ 265 266 /*ARGSUSED*/ 267 static caddr_t 268 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 269 { 270 paddr_t a = align; /* same type as pa for masking */ 271 uint_t pgsize; 272 paddr_t pa; 273 uintptr_t va; 274 ssize_t s; /* the aligned size */ 275 uint_t level; 276 uint_t is_kernel = (virthint != 0); 277 278 if (a < MMU_PAGESIZE) 279 a = MMU_PAGESIZE; 280 else if (!ISP2(a)) 281 prom_panic("do_bsys_alloc() incorrect alignment"); 282 size = P2ROUNDUP(size, MMU_PAGESIZE); 283 284 /* 285 * Use the next aligned virtual address if we weren't given one. 286 */ 287 if (virthint == NULL) { 288 virthint = (caddr_t)alloc_vaddr(size, a); 289 total_bop_alloc_scratch += size; 290 } else { 291 total_bop_alloc_kernel += size; 292 } 293 294 /* 295 * allocate the physical memory 296 */ 297 pa = do_bop_phys_alloc(size, a); 298 299 /* 300 * Add the mappings to the page tables, try large pages first. 301 */ 302 va = (uintptr_t)virthint; 303 s = size; 304 level = 1; 305 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG; 306 if (xbootp->bi_use_largepage && a == pgsize) { 307 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) && 308 s >= pgsize) { 309 kbm_map(va, pa, level, is_kernel); 310 va += pgsize; 311 pa += pgsize; 312 s -= pgsize; 313 } 314 } 315 316 /* 317 * Map remaining pages use small mappings 318 */ 319 level = 0; 320 pgsize = MMU_PAGESIZE; 321 while (s > 0) { 322 kbm_map(va, pa, level, is_kernel); 323 va += pgsize; 324 pa += pgsize; 325 s -= pgsize; 326 } 327 return (virthint); 328 } 329 330 /* 331 * Free virtual memory - we'll just ignore these. 332 */ 333 /*ARGSUSED*/ 334 static void 335 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size) 336 { 337 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n", 338 (void *)virt, size); 339 } 340 341 /* 342 * Old interface 343 */ 344 /*ARGSUSED*/ 345 static caddr_t 346 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size, 347 int align, int flags) 348 { 349 prom_panic("unsupported call to BOP_EALLOC()\n"); 350 return (0); 351 } 352 353 354 static void 355 bsetprop(char *name, int nlen, void *value, int vlen) 356 { 357 uint_t size; 358 uint_t need_size; 359 bootprop_t *b; 360 361 /* 362 * align the size to 16 byte boundary 363 */ 364 size = sizeof (bootprop_t) + nlen + 1 + vlen; 365 size = (size + 0xf) & ~0xf; 366 if (size > curr_space) { 367 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK; 368 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE); 369 curr_space = need_size; 370 } 371 372 /* 373 * use a bootprop_t at curr_page and link into list 374 */ 375 b = (bootprop_t *)curr_page; 376 curr_page += sizeof (bootprop_t); 377 curr_space -= sizeof (bootprop_t); 378 b->bp_next = bprops; 379 bprops = b; 380 381 /* 382 * follow by name and ending zero byte 383 */ 384 b->bp_name = curr_page; 385 bcopy(name, curr_page, nlen); 386 curr_page += nlen; 387 *curr_page++ = 0; 388 curr_space -= nlen + 1; 389 390 /* 391 * copy in value, but no ending zero byte 392 */ 393 b->bp_value = curr_page; 394 b->bp_vlen = vlen; 395 if (vlen > 0) { 396 bcopy(value, curr_page, vlen); 397 curr_page += vlen; 398 curr_space -= vlen; 399 } 400 401 /* 402 * align new values of curr_page, curr_space 403 */ 404 while (curr_space & 0xf) { 405 ++curr_page; 406 --curr_space; 407 } 408 } 409 410 static void 411 bsetprops(char *name, char *value) 412 { 413 bsetprop(name, strlen(name), value, strlen(value) + 1); 414 } 415 416 static void 417 bsetprop64(char *name, uint64_t value) 418 { 419 bsetprop(name, strlen(name), (void *)&value, sizeof (value)); 420 } 421 422 static void 423 bsetpropsi(char *name, int value) 424 { 425 char prop_val[32]; 426 427 (void) snprintf(prop_val, sizeof (prop_val), "%d", value); 428 bsetprops(name, prop_val); 429 } 430 431 /* 432 * to find the size of the buffer to allocate 433 */ 434 /*ARGSUSED*/ 435 int 436 do_bsys_getproplen(bootops_t *bop, const char *name) 437 { 438 bootprop_t *b; 439 440 for (b = bprops; b; b = b->bp_next) { 441 if (strcmp(name, b->bp_name) != 0) 442 continue; 443 return (b->bp_vlen); 444 } 445 return (-1); 446 } 447 448 /* 449 * get the value associated with this name 450 */ 451 /*ARGSUSED*/ 452 int 453 do_bsys_getprop(bootops_t *bop, const char *name, void *value) 454 { 455 bootprop_t *b; 456 457 for (b = bprops; b; b = b->bp_next) { 458 if (strcmp(name, b->bp_name) != 0) 459 continue; 460 bcopy(b->bp_value, value, b->bp_vlen); 461 return (0); 462 } 463 return (-1); 464 } 465 466 /* 467 * get the name of the next property in succession from the standalone 468 */ 469 /*ARGSUSED*/ 470 static char * 471 do_bsys_nextprop(bootops_t *bop, char *name) 472 { 473 bootprop_t *b; 474 475 /* 476 * A null name is a special signal for the 1st boot property 477 */ 478 if (name == NULL || strlen(name) == 0) { 479 if (bprops == NULL) 480 return (NULL); 481 return (bprops->bp_name); 482 } 483 484 for (b = bprops; b; b = b->bp_next) { 485 if (name != b->bp_name) 486 continue; 487 b = b->bp_next; 488 if (b == NULL) 489 return (NULL); 490 return (b->bp_name); 491 } 492 return (NULL); 493 } 494 495 /* 496 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~ 497 */ 498 static int 499 parse_value(char *p, uint64_t *retval) 500 { 501 int adjust = 0; 502 uint64_t tmp = 0; 503 int digit; 504 int radix = 10; 505 506 *retval = 0; 507 if (*p == '-' || *p == '~') 508 adjust = *p++; 509 510 if (*p == '0') { 511 ++p; 512 if (*p == 0) 513 return (0); 514 if (*p == 'x' || *p == 'X') { 515 radix = 16; 516 ++p; 517 } else { 518 radix = 8; 519 ++p; 520 } 521 } 522 while (*p) { 523 if ('0' <= *p && *p <= '9') 524 digit = *p - '0'; 525 else if ('a' <= *p && *p <= 'f') 526 digit = 10 + *p - 'a'; 527 else if ('A' <= *p && *p <= 'F') 528 digit = 10 + *p - 'A'; 529 else 530 return (-1); 531 if (digit >= radix) 532 return (-1); 533 tmp = tmp * radix + digit; 534 ++p; 535 } 536 if (adjust == '-') 537 tmp = -tmp; 538 else if (adjust == '~') 539 tmp = ~tmp; 540 *retval = tmp; 541 return (0); 542 } 543 544 static boolean_t 545 unprintable(char *value, int size) 546 { 547 int i; 548 549 if (size <= 0 || value[0] == '\0') 550 return (B_TRUE); 551 552 for (i = 0; i < size; i++) { 553 if (value[i] == '\0') 554 return (i != (size - 1)); 555 556 if (!isprint(value[i])) 557 return (B_TRUE); 558 } 559 return (B_FALSE); 560 } 561 562 /* 563 * Print out information about all boot properties. 564 * buffer is pointer to pre-allocated space to be used as temporary 565 * space for property values. 566 */ 567 static void 568 boot_prop_display(char *buffer) 569 { 570 char *name = ""; 571 int i, len; 572 573 bop_printf(NULL, "\nBoot properties:\n"); 574 575 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 576 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 577 (void) do_bsys_getprop(NULL, name, buffer); 578 len = do_bsys_getproplen(NULL, name); 579 bop_printf(NULL, "len=%d ", len); 580 if (!unprintable(buffer, len)) { 581 buffer[len] = 0; 582 bop_printf(NULL, "%s\n", buffer); 583 continue; 584 } 585 for (i = 0; i < len; i++) { 586 bop_printf(NULL, "%02x", buffer[i] & 0xff); 587 if (i < len - 1) 588 bop_printf(NULL, "."); 589 } 590 bop_printf(NULL, "\n"); 591 } 592 } 593 594 /* 595 * 2nd part of building the table of boot properties. This includes: 596 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 597 * 598 * lines look like one of: 599 * ^$ 600 * ^# comment till end of line 601 * setprop name 'value' 602 * setprop name value 603 * setprop name "value" 604 * 605 * we do single character I/O since this is really just looking at memory 606 */ 607 void 608 boot_prop_finish(void) 609 { 610 int fd; 611 char *line; 612 int c; 613 int bytes_read; 614 char *name; 615 int n_len; 616 char *value; 617 int v_len; 618 char *inputdev; /* these override the command line if serial ports */ 619 char *outputdev; 620 char *consoledev; 621 uint64_t lvalue; 622 int use_xencons = 0; 623 624 #ifdef __xpv 625 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 626 use_xencons = 1; 627 #endif /* __xpv */ 628 629 DBG_MSG("Opening /boot/solaris/bootenv.rc\n"); 630 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0); 631 DBG(fd); 632 633 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 634 while (fd >= 0) { 635 636 /* 637 * get a line 638 */ 639 for (c = 0; ; ++c) { 640 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1); 641 if (bytes_read == 0) { 642 if (c == 0) 643 goto done; 644 break; 645 } 646 if (line[c] == '\n') 647 break; 648 } 649 line[c] = 0; 650 651 /* 652 * ignore comment lines 653 */ 654 c = 0; 655 while (ISSPACE(line[c])) 656 ++c; 657 if (line[c] == '#' || line[c] == 0) 658 continue; 659 660 /* 661 * must have "setprop " or "setprop\t" 662 */ 663 if (strncmp(line + c, "setprop ", 8) != 0 && 664 strncmp(line + c, "setprop\t", 8) != 0) 665 continue; 666 c += 8; 667 while (ISSPACE(line[c])) 668 ++c; 669 if (line[c] == 0) 670 continue; 671 672 /* 673 * gather up the property name 674 */ 675 name = line + c; 676 n_len = 0; 677 while (line[c] && !ISSPACE(line[c])) 678 ++n_len, ++c; 679 680 /* 681 * gather up the value, if any 682 */ 683 value = ""; 684 v_len = 0; 685 while (ISSPACE(line[c])) 686 ++c; 687 if (line[c] != 0) { 688 value = line + c; 689 while (line[c] && !ISSPACE(line[c])) 690 ++v_len, ++c; 691 } 692 693 if (v_len >= 2 && value[0] == value[v_len - 1] && 694 (value[0] == '\'' || value[0] == '"')) { 695 ++value; 696 v_len -= 2; 697 } 698 name[n_len] = 0; 699 if (v_len > 0) 700 value[v_len] = 0; 701 else 702 continue; 703 704 /* 705 * ignore "boot-file" property, it's now meaningless 706 */ 707 if (strcmp(name, "boot-file") == 0) 708 continue; 709 if (strcmp(name, "boot-args") == 0 && 710 strlen(boot_args) > 0) 711 continue; 712 713 /* 714 * If a property was explicitly set on the command line 715 * it will override a setting in bootenv.rc 716 */ 717 if (do_bsys_getproplen(NULL, name) > 0) 718 continue; 719 720 bsetprop(name, n_len, value, v_len + 1); 721 } 722 done: 723 if (fd >= 0) 724 (void) BRD_CLOSE(bfs_ops, fd); 725 726 /* 727 * Check if we have to limit the boot time allocator 728 */ 729 if (do_bsys_getproplen(NULL, "physmem") != -1 && 730 do_bsys_getprop(NULL, "physmem", line) >= 0 && 731 parse_value(line, &lvalue) != -1) { 732 if (0 < lvalue && (lvalue < physmem || physmem == 0)) { 733 physmem = (pgcnt_t)lvalue; 734 DBG(physmem); 735 } 736 } 737 early_allocation = 0; 738 739 /* 740 * check to see if we have to override the default value of the console 741 */ 742 if (!use_xencons) { 743 inputdev = line; 744 v_len = do_bsys_getproplen(NULL, "input-device"); 745 if (v_len > 0) 746 (void) do_bsys_getprop(NULL, "input-device", inputdev); 747 else 748 v_len = 0; 749 inputdev[v_len] = 0; 750 751 outputdev = inputdev + v_len + 1; 752 v_len = do_bsys_getproplen(NULL, "output-device"); 753 if (v_len > 0) 754 (void) do_bsys_getprop(NULL, "output-device", 755 outputdev); 756 else 757 v_len = 0; 758 outputdev[v_len] = 0; 759 760 consoledev = outputdev + v_len + 1; 761 v_len = do_bsys_getproplen(NULL, "console"); 762 if (v_len > 0) { 763 (void) do_bsys_getprop(NULL, "console", consoledev); 764 if (post_fastreboot && 765 strcmp(consoledev, "graphics") == 0) { 766 bsetprops("console", "text"); 767 v_len = strlen("text"); 768 bcopy("text", consoledev, v_len); 769 } 770 } else { 771 v_len = 0; 772 } 773 consoledev[v_len] = 0; 774 bcons_init2(inputdev, outputdev, consoledev); 775 } else { 776 /* 777 * Ensure console property exists 778 * If not create it as "hypervisor" 779 */ 780 v_len = do_bsys_getproplen(NULL, "console"); 781 if (v_len < 0) 782 bsetprops("console", "hypervisor"); 783 inputdev = outputdev = consoledev = "hypervisor"; 784 bcons_init2(inputdev, outputdev, consoledev); 785 } 786 787 if (find_boot_prop("prom_debug") || kbm_debug) 788 boot_prop_display(line); 789 } 790 791 /* 792 * print formatted output 793 */ 794 /*PRINTFLIKE2*/ 795 /*ARGSUSED*/ 796 void 797 bop_printf(bootops_t *bop, const char *fmt, ...) 798 { 799 va_list ap; 800 801 if (have_console == 0) 802 return; 803 804 va_start(ap, fmt); 805 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap); 806 va_end(ap); 807 PUT_STRING(buffer); 808 } 809 810 /* 811 * Another panic() variant; this one can be used even earlier during boot than 812 * prom_panic(). 813 */ 814 /*PRINTFLIKE1*/ 815 void 816 bop_panic(const char *fmt, ...) 817 { 818 va_list ap; 819 820 va_start(ap, fmt); 821 bop_printf(NULL, fmt, ap); 822 va_end(ap); 823 824 bop_printf(NULL, "\nPress any key to reboot.\n"); 825 (void) bcons_getchar(); 826 bop_printf(NULL, "Resetting...\n"); 827 pc_reset(); 828 } 829 830 /* 831 * Do a real mode interrupt BIOS call 832 */ 833 typedef struct bios_regs { 834 unsigned short ax, bx, cx, dx, si, di, bp, es, ds; 835 } bios_regs_t; 836 typedef int (*bios_func_t)(int, bios_regs_t *); 837 838 /*ARGSUSED*/ 839 static void 840 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp) 841 { 842 #if defined(__xpv) 843 prom_panic("unsupported call to BOP_DOINT()\n"); 844 #else /* __xpv */ 845 static int firsttime = 1; 846 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000; 847 bios_regs_t br; 848 849 /* 850 * We're about to disable paging; we shouldn't be PCID enabled. 851 */ 852 if (getcr4() & CR4_PCIDE) 853 prom_panic("do_bsys_doint() with PCID enabled\n"); 854 855 /* 856 * The first time we do this, we have to copy the pre-packaged 857 * low memory bios call code image into place. 858 */ 859 if (firsttime) { 860 extern char bios_image[]; 861 extern uint32_t bios_size; 862 863 bcopy(bios_image, (void *)bios_func, bios_size); 864 firsttime = 0; 865 } 866 867 br.ax = rp->eax.word.ax; 868 br.bx = rp->ebx.word.bx; 869 br.cx = rp->ecx.word.cx; 870 br.dx = rp->edx.word.dx; 871 br.bp = rp->ebp.word.bp; 872 br.si = rp->esi.word.si; 873 br.di = rp->edi.word.di; 874 br.ds = rp->ds; 875 br.es = rp->es; 876 877 DBG_MSG("Doing BIOS call..."); 878 DBG(br.ax); 879 DBG(br.bx); 880 DBG(br.dx); 881 rp->eflags = bios_func(intnum, &br); 882 DBG_MSG("done\n"); 883 884 rp->eax.word.ax = br.ax; 885 rp->ebx.word.bx = br.bx; 886 rp->ecx.word.cx = br.cx; 887 rp->edx.word.dx = br.dx; 888 rp->ebp.word.bp = br.bp; 889 rp->esi.word.si = br.si; 890 rp->edi.word.di = br.di; 891 rp->ds = br.ds; 892 rp->es = br.es; 893 #endif /* __xpv */ 894 } 895 896 static struct boot_syscalls bop_sysp = { 897 bcons_getchar, 898 bcons_putchar, 899 bcons_ischar, 900 }; 901 902 static char *whoami; 903 904 #define BUFLEN 64 905 906 #if defined(__xpv) 907 908 static char namebuf[32]; 909 910 static void 911 xen_parse_props(char *s, char *prop_map[], int n_prop) 912 { 913 char **prop_name = prop_map; 914 char *cp = s, *scp; 915 916 do { 917 scp = cp; 918 while ((*cp != NULL) && (*cp != ':')) 919 cp++; 920 921 if ((scp != cp) && (*prop_name != NULL)) { 922 *cp = NULL; 923 bsetprops(*prop_name, scp); 924 } 925 926 cp++; 927 prop_name++; 928 n_prop--; 929 } while (n_prop > 0); 930 } 931 932 #define VBDPATHLEN 64 933 934 /* 935 * parse the 'xpv-root' property to create properties used by 936 * ufs_mountroot. 937 */ 938 static void 939 xen_vbdroot_props(char *s) 940 { 941 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@"; 942 const char lnamefix[] = "/dev/dsk/c0d"; 943 char *pnp; 944 char *prop_p; 945 char mi; 946 short minor; 947 long addr = 0; 948 949 pnp = vbdpath + strlen(vbdpath); 950 prop_p = s + strlen(lnamefix); 951 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p')) 952 addr = addr * 10 + *prop_p++ - '0'; 953 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr); 954 pnp = vbdpath + strlen(vbdpath); 955 if (*prop_p == 's') 956 mi = 'a'; 957 else if (*prop_p == 'p') 958 mi = 'q'; 959 else 960 ASSERT(0); /* shouldn't be here */ 961 prop_p++; 962 ASSERT(*prop_p != '\0'); 963 if (ISDIGIT(*prop_p)) { 964 minor = *prop_p - '0'; 965 prop_p++; 966 if (ISDIGIT(*prop_p)) { 967 minor = minor * 10 + *prop_p - '0'; 968 } 969 } else { 970 /* malformed root path, use 0 as default */ 971 minor = 0; 972 } 973 ASSERT(minor < 16); /* at most 16 partitions */ 974 mi += minor; 975 *pnp++ = ':'; 976 *pnp++ = mi; 977 *pnp++ = '\0'; 978 bsetprops("fstype", "ufs"); 979 bsetprops("bootpath", vbdpath); 980 981 DBG_MSG("VBD bootpath set to "); 982 DBG_MSG(vbdpath); 983 DBG_MSG("\n"); 984 } 985 986 /* 987 * parse the xpv-nfsroot property to create properties used by 988 * nfs_mountroot. 989 */ 990 static void 991 xen_nfsroot_props(char *s) 992 { 993 char *prop_map[] = { 994 BP_SERVER_IP, /* server IP address */ 995 BP_SERVER_NAME, /* server hostname */ 996 BP_SERVER_PATH, /* root path */ 997 }; 998 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 999 1000 bsetprop("fstype", 6, "nfs", 4); 1001 1002 xen_parse_props(s, prop_map, n_prop); 1003 1004 /* 1005 * If a server name wasn't specified, use a default. 1006 */ 1007 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1) 1008 bsetprops(BP_SERVER_NAME, "unknown"); 1009 } 1010 1011 /* 1012 * Extract our IP address, etc. from the "xpv-ip" property. 1013 */ 1014 static void 1015 xen_ip_props(char *s) 1016 { 1017 char *prop_map[] = { 1018 BP_HOST_IP, /* IP address */ 1019 NULL, /* NFS server IP address (ignored in */ 1020 /* favour of xpv-nfsroot) */ 1021 BP_ROUTER_IP, /* IP gateway */ 1022 BP_SUBNET_MASK, /* IP subnet mask */ 1023 "xpv-hostname", /* hostname (ignored) */ 1024 BP_NETWORK_INTERFACE, /* interface name */ 1025 "xpv-hcp", /* host configuration protocol */ 1026 }; 1027 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1028 char ifname[IFNAMSIZ]; 1029 1030 xen_parse_props(s, prop_map, n_prop); 1031 1032 /* 1033 * A Linux dom0 administrator expects all interfaces to be 1034 * called "ethX", which is not the case here. 1035 * 1036 * If the interface name specified is "eth0", presume that 1037 * this is really intended to be "xnf0" (the first domU -> 1038 * dom0 interface for this domain). 1039 */ 1040 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) && 1041 (strcmp("eth0", ifname) == 0)) { 1042 bsetprops(BP_NETWORK_INTERFACE, "xnf0"); 1043 bop_printf(NULL, 1044 "network interface name 'eth0' replaced with 'xnf0'\n"); 1045 } 1046 } 1047 1048 #else /* __xpv */ 1049 1050 static void 1051 setup_rarp_props(struct sol_netinfo *sip) 1052 { 1053 char buf[BUFLEN]; /* to hold ip/mac addrs */ 1054 uint8_t *val; 1055 1056 val = (uint8_t *)&sip->sn_ciaddr; 1057 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1058 val[0], val[1], val[2], val[3]); 1059 bsetprops(BP_HOST_IP, buf); 1060 1061 val = (uint8_t *)&sip->sn_siaddr; 1062 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1063 val[0], val[1], val[2], val[3]); 1064 bsetprops(BP_SERVER_IP, buf); 1065 1066 if (sip->sn_giaddr != 0) { 1067 val = (uint8_t *)&sip->sn_giaddr; 1068 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1069 val[0], val[1], val[2], val[3]); 1070 bsetprops(BP_ROUTER_IP, buf); 1071 } 1072 1073 if (sip->sn_netmask != 0) { 1074 val = (uint8_t *)&sip->sn_netmask; 1075 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1076 val[0], val[1], val[2], val[3]); 1077 bsetprops(BP_SUBNET_MASK, buf); 1078 } 1079 1080 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) { 1081 bop_printf(NULL, "unsupported mac type %d, mac len %d\n", 1082 sip->sn_mactype, sip->sn_maclen); 1083 } else { 1084 val = sip->sn_macaddr; 1085 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x", 1086 val[0], val[1], val[2], val[3], val[4], val[5]); 1087 bsetprops(BP_BOOT_MAC, buf); 1088 } 1089 } 1090 1091 #endif /* __xpv */ 1092 1093 static void 1094 build_panic_cmdline(const char *cmd, int cmdlen) 1095 { 1096 int proplen; 1097 size_t arglen; 1098 1099 arglen = sizeof (fastreboot_onpanic_args); 1100 /* 1101 * If we allready have fastreboot-onpanic set to zero, 1102 * don't add them again. 1103 */ 1104 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 && 1105 proplen <= sizeof (fastreboot_onpanic_cmdline)) { 1106 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC, 1107 fastreboot_onpanic_cmdline); 1108 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline)) 1109 arglen = 1; 1110 } 1111 1112 /* 1113 * construct fastreboot_onpanic_cmdline 1114 */ 1115 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) { 1116 DBG_MSG("Command line too long: clearing " 1117 FASTREBOOT_ONPANIC "\n"); 1118 fastreboot_onpanic = 0; 1119 } else { 1120 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen); 1121 if (arglen != 1) 1122 bcopy(fastreboot_onpanic_args, 1123 fastreboot_onpanic_cmdline + cmdlen, arglen); 1124 else 1125 fastreboot_onpanic_cmdline[cmdlen] = 0; 1126 } 1127 } 1128 1129 1130 #ifndef __xpv 1131 /* 1132 * Construct boot command line for Fast Reboot. The saved_cmdline 1133 * is also reported by "eeprom bootcmd". 1134 */ 1135 static void 1136 build_fastboot_cmdline(struct xboot_info *xbp) 1137 { 1138 saved_cmdline_len = strlen(xbp->bi_cmdline) + 1; 1139 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) { 1140 DBG(saved_cmdline_len); 1141 DBG_MSG("Command line too long: clearing fastreboot_capable\n"); 1142 fastreboot_capable = 0; 1143 } else { 1144 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline, 1145 saved_cmdline_len); 1146 saved_cmdline[saved_cmdline_len - 1] = '\0'; 1147 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1); 1148 } 1149 } 1150 1151 /* 1152 * Save memory layout, disk drive information, unix and boot archive sizes for 1153 * Fast Reboot. 1154 */ 1155 static void 1156 save_boot_info(struct xboot_info *xbi) 1157 { 1158 multiboot_info_t *mbi = xbi->bi_mb_info; 1159 struct boot_modules *modp; 1160 int i; 1161 1162 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t)); 1163 if (mbi->mmap_length > sizeof (saved_mmap)) { 1164 DBG_MSG("mbi->mmap_length too big: clearing " 1165 "fastreboot_capable\n"); 1166 fastreboot_capable = 0; 1167 } else { 1168 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap, 1169 mbi->mmap_length); 1170 } 1171 1172 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) { 1173 if (mbi->drives_length > sizeof (saved_drives)) { 1174 DBG(mbi->drives_length); 1175 DBG_MSG("mbi->drives_length too big: clearing " 1176 "fastreboot_capable\n"); 1177 fastreboot_capable = 0; 1178 } else { 1179 bcopy((void *)(uintptr_t)mbi->drives_addr, 1180 (void *)saved_drives, mbi->drives_length); 1181 } 1182 } else { 1183 saved_mbi.drives_length = 0; 1184 saved_mbi.drives_addr = NULL; 1185 } 1186 1187 /* 1188 * Current file sizes. Used by fastboot.c to figure out how much 1189 * memory to reserve for panic reboot. 1190 * Use the module list from the dboot-constructed xboot_info 1191 * instead of the list referenced by the multiboot structure 1192 * because that structure may not be addressable now. 1193 */ 1194 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE; 1195 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules; 1196 i < xbi->bi_module_cnt; i++, modp++) { 1197 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size; 1198 } 1199 } 1200 #endif /* __xpv */ 1201 1202 /* 1203 * Import boot environment module variables as properties, applying 1204 * blacklist filter for variables we know we will not use. 1205 * 1206 * Since the environment can be relatively large, containing many variables 1207 * used only for boot loader purposes, we will use a blacklist based filter. 1208 * To keep the blacklist from growing too large, we use prefix based filtering. 1209 * This is possible because in many cases, the loader variable names are 1210 * using a structured layout. 1211 * 1212 * We will not overwrite already set properties. 1213 */ 1214 static struct bop_blacklist { 1215 const char *bl_name; 1216 int bl_name_len; 1217 } bop_prop_blacklist[] = { 1218 { "ISADIR", sizeof ("ISADIR") }, 1219 { "acpi", sizeof ("acpi") }, 1220 { "autoboot_delay", sizeof ("autoboot_delay") }, 1221 { "autoboot_delay", sizeof ("autoboot_delay") }, 1222 { "beansi_", sizeof ("beansi_") }, 1223 { "beastie", sizeof ("beastie") }, 1224 { "bemenu", sizeof ("bemenu") }, 1225 { "boot.", sizeof ("boot.") }, 1226 { "bootenv", sizeof ("bootenv") }, 1227 { "currdev", sizeof ("currdev") }, 1228 { "dhcp.", sizeof ("dhcp.") }, 1229 { "interpret", sizeof ("interpret") }, 1230 { "kernel", sizeof ("kernel") }, 1231 { "loaddev", sizeof ("loaddev") }, 1232 { "loader_", sizeof ("loader_") }, 1233 { "module_path", sizeof ("module_path") }, 1234 { "nfs.", sizeof ("nfs.") }, 1235 { "pcibios", sizeof ("pcibios") }, 1236 { "prompt", sizeof ("prompt") }, 1237 { "smbios", sizeof ("smbios") }, 1238 { "tem", sizeof ("tem") }, 1239 { "twiddle_divisor", sizeof ("twiddle_divisor") }, 1240 { "zfs_be", sizeof ("zfs_be") }, 1241 }; 1242 1243 /* 1244 * Match the name against prefixes in above blacklist. If the match was 1245 * found, this name is blacklisted. 1246 */ 1247 static boolean_t 1248 name_is_blacklisted(const char *name) 1249 { 1250 int i, n; 1251 1252 n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]); 1253 for (i = 0; i < n; i++) { 1254 if (strncmp(bop_prop_blacklist[i].bl_name, name, 1255 bop_prop_blacklist[i].bl_name_len - 1) == 0) { 1256 return (B_TRUE); 1257 } 1258 } 1259 return (B_FALSE); 1260 } 1261 1262 static void 1263 process_boot_environment(struct boot_modules *benv) 1264 { 1265 char *env, *ptr, *name, *value; 1266 uint32_t size, name_len, value_len; 1267 1268 if (benv == NULL || benv->bm_type != BMT_ENV) 1269 return; 1270 ptr = env = benv->bm_addr; 1271 size = benv->bm_size; 1272 do { 1273 name = ptr; 1274 /* find '=' */ 1275 while (*ptr != '=') { 1276 ptr++; 1277 if (ptr > env + size) /* Something is very wrong. */ 1278 return; 1279 } 1280 name_len = ptr - name; 1281 if (sizeof (buffer) <= name_len) 1282 continue; 1283 1284 (void) strncpy(buffer, name, sizeof (buffer)); 1285 buffer[name_len] = '\0'; 1286 name = buffer; 1287 1288 value_len = 0; 1289 value = ++ptr; 1290 while ((uintptr_t)ptr - (uintptr_t)env < size) { 1291 if (*ptr == '\0') { 1292 ptr++; 1293 value_len = (uintptr_t)ptr - (uintptr_t)env; 1294 break; 1295 } 1296 ptr++; 1297 } 1298 1299 /* Did we reach the end of the module? */ 1300 if (value_len == 0) 1301 return; 1302 1303 if (*value == '\0') 1304 continue; 1305 1306 /* Is this property already set? */ 1307 if (do_bsys_getproplen(NULL, name) >= 0) 1308 continue; 1309 1310 if (name_is_blacklisted(name) == B_TRUE) 1311 continue; 1312 1313 /* Create new property. */ 1314 bsetprops(name, value); 1315 1316 /* Avoid reading past the module end. */ 1317 if (size <= (uintptr_t)ptr - (uintptr_t)env) 1318 return; 1319 } while (*ptr != '\0'); 1320 } 1321 1322 /* 1323 * 1st pass at building the table of boot properties. This includes: 1324 * - values set on the command line: -B a=x,b=y,c=z .... 1325 * - known values we just compute (ie. from xbp) 1326 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 1327 * 1328 * the grub command line looked like: 1329 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args] 1330 * 1331 * whoami is the same as boot-file 1332 */ 1333 static void 1334 build_boot_properties(struct xboot_info *xbp) 1335 { 1336 char *name; 1337 int name_len; 1338 char *value; 1339 int value_len; 1340 struct boot_modules *bm, *rdbm, *benv = NULL; 1341 char *propbuf; 1342 int quoted = 0; 1343 int boot_arg_len; 1344 uint_t i, midx; 1345 char modid[32]; 1346 #ifndef __xpv 1347 static int stdout_val = 0; 1348 uchar_t boot_device; 1349 char str[3]; 1350 #endif 1351 1352 /* 1353 * These have to be done first, so that kobj_mount_root() works 1354 */ 1355 DBG_MSG("Building boot properties\n"); 1356 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0); 1357 DBG((uintptr_t)propbuf); 1358 if (xbp->bi_module_cnt > 0) { 1359 bm = xbp->bi_modules; 1360 rdbm = NULL; 1361 for (midx = i = 0; i < xbp->bi_module_cnt; i++) { 1362 if (bm[i].bm_type == BMT_ROOTFS) { 1363 rdbm = &bm[i]; 1364 continue; 1365 } 1366 if (bm[i].bm_type == BMT_HASH || bm[i].bm_name == NULL) 1367 continue; 1368 1369 if (bm[i].bm_type == BMT_ENV) { 1370 if (benv == NULL) 1371 benv = &bm[i]; 1372 else 1373 continue; 1374 } 1375 1376 (void) snprintf(modid, sizeof (modid), 1377 "module-name-%u", midx); 1378 bsetprops(modid, (char *)bm[i].bm_name); 1379 (void) snprintf(modid, sizeof (modid), 1380 "module-addr-%u", midx); 1381 bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr); 1382 (void) snprintf(modid, sizeof (modid), 1383 "module-size-%u", midx); 1384 bsetprop64(modid, (uint64_t)bm[i].bm_size); 1385 ++midx; 1386 } 1387 if (rdbm != NULL) { 1388 bsetprop64("ramdisk_start", 1389 (uint64_t)(uintptr_t)rdbm->bm_addr); 1390 bsetprop64("ramdisk_end", 1391 (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size); 1392 } 1393 } 1394 1395 /* 1396 * If there are any boot time modules or hashes present, then disable 1397 * fast reboot. 1398 */ 1399 if (xbp->bi_module_cnt > 1) { 1400 fastreboot_disable(FBNS_BOOTMOD); 1401 } 1402 1403 #ifndef __xpv 1404 /* 1405 * Disable fast reboot if we're using the Multiboot 2 boot protocol, 1406 * since we don't currently support MB2 info and module relocation. 1407 * Note that fast reboot will have already been disabled if multiple 1408 * modules are present, since the current implementation assumes that 1409 * we only have a single module, the boot_archive. 1410 */ 1411 if (xbp->bi_mb_version != 1) { 1412 fastreboot_disable(FBNS_MULTIBOOT2); 1413 } 1414 #endif 1415 1416 DBG_MSG("Parsing command line for boot properties\n"); 1417 value = xbp->bi_cmdline; 1418 1419 /* 1420 * allocate memory to collect boot_args into 1421 */ 1422 boot_arg_len = strlen(xbp->bi_cmdline) + 1; 1423 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE); 1424 boot_args[0] = 0; 1425 boot_arg_len = 0; 1426 1427 #ifdef __xpv 1428 /* 1429 * Xen puts a lot of device information in front of the kernel name 1430 * let's grab them and make them boot properties. The first 1431 * string w/o an "=" in it will be the boot-file property. 1432 */ 1433 (void) strcpy(namebuf, "xpv-"); 1434 for (;;) { 1435 /* 1436 * get to next property 1437 */ 1438 while (ISSPACE(*value)) 1439 ++value; 1440 name = value; 1441 /* 1442 * look for an "=" 1443 */ 1444 while (*value && !ISSPACE(*value) && *value != '=') { 1445 value++; 1446 } 1447 if (*value != '=') { /* no "=" in the property */ 1448 value = name; 1449 break; 1450 } 1451 name_len = value - name; 1452 value_len = 0; 1453 /* 1454 * skip over the "=" 1455 */ 1456 value++; 1457 while (value[value_len] && !ISSPACE(value[value_len])) { 1458 ++value_len; 1459 } 1460 /* 1461 * build property name with "xpv-" prefix 1462 */ 1463 if (name_len + 4 > 32) { /* skip if name too long */ 1464 value += value_len; 1465 continue; 1466 } 1467 bcopy(name, &namebuf[4], name_len); 1468 name_len += 4; 1469 namebuf[name_len] = 0; 1470 bcopy(value, propbuf, value_len); 1471 propbuf[value_len] = 0; 1472 bsetprops(namebuf, propbuf); 1473 1474 /* 1475 * xpv-root is set to the logical disk name of the xen 1476 * VBD when booting from a disk-based filesystem. 1477 */ 1478 if (strcmp(namebuf, "xpv-root") == 0) 1479 xen_vbdroot_props(propbuf); 1480 /* 1481 * While we're here, if we have a "xpv-nfsroot" property 1482 * then we need to set "fstype" to "nfs" so we mount 1483 * our root from the nfs server. Also parse the xpv-nfsroot 1484 * property to create the properties that nfs_mountroot will 1485 * need to find the root and mount it. 1486 */ 1487 if (strcmp(namebuf, "xpv-nfsroot") == 0) 1488 xen_nfsroot_props(propbuf); 1489 1490 if (strcmp(namebuf, "xpv-ip") == 0) 1491 xen_ip_props(propbuf); 1492 value += value_len; 1493 } 1494 #endif 1495 1496 while (ISSPACE(*value)) 1497 ++value; 1498 /* 1499 * value now points at the boot-file 1500 */ 1501 value_len = 0; 1502 while (value[value_len] && !ISSPACE(value[value_len])) 1503 ++value_len; 1504 if (value_len > 0) { 1505 whoami = propbuf; 1506 bcopy(value, whoami, value_len); 1507 whoami[value_len] = 0; 1508 bsetprops("boot-file", whoami); 1509 /* 1510 * strip leading path stuff from whoami, so running from 1511 * PXE/miniroot makes sense. 1512 */ 1513 if (strstr(whoami, "/platform/") != NULL) 1514 whoami = strstr(whoami, "/platform/"); 1515 bsetprops("whoami", whoami); 1516 } 1517 1518 /* 1519 * Values forcibly set boot properties on the command line via -B. 1520 * Allow use of quotes in values. Other stuff goes on kernel 1521 * command line. 1522 */ 1523 name = value + value_len; 1524 while (*name != 0) { 1525 /* 1526 * anything not " -B" is copied to the command line 1527 */ 1528 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') { 1529 boot_args[boot_arg_len++] = *name; 1530 boot_args[boot_arg_len] = 0; 1531 ++name; 1532 continue; 1533 } 1534 1535 /* 1536 * skip the " -B" and following white space 1537 */ 1538 name += 3; 1539 while (ISSPACE(*name)) 1540 ++name; 1541 while (*name && !ISSPACE(*name)) { 1542 value = strstr(name, "="); 1543 if (value == NULL) 1544 break; 1545 name_len = value - name; 1546 ++value; 1547 value_len = 0; 1548 quoted = 0; 1549 for (; ; ++value_len) { 1550 if (!value[value_len]) 1551 break; 1552 1553 /* 1554 * is this value quoted? 1555 */ 1556 if (value_len == 0 && 1557 (value[0] == '\'' || value[0] == '"')) { 1558 quoted = value[0]; 1559 ++value_len; 1560 } 1561 1562 /* 1563 * In the quote accept any character, 1564 * but look for ending quote. 1565 */ 1566 if (quoted) { 1567 if (value[value_len] == quoted) 1568 quoted = 0; 1569 continue; 1570 } 1571 1572 /* 1573 * a comma or white space ends the value 1574 */ 1575 if (value[value_len] == ',' || 1576 ISSPACE(value[value_len])) 1577 break; 1578 } 1579 1580 if (value_len == 0) { 1581 bsetprop(name, name_len, "true", 5); 1582 } else { 1583 char *v = value; 1584 int l = value_len; 1585 if (v[0] == v[l - 1] && 1586 (v[0] == '\'' || v[0] == '"')) { 1587 ++v; 1588 l -= 2; 1589 } 1590 bcopy(v, propbuf, l); 1591 propbuf[l] = '\0'; 1592 bsetprop(name, name_len, propbuf, 1593 l + 1); 1594 } 1595 name = value + value_len; 1596 while (*name == ',') 1597 ++name; 1598 } 1599 } 1600 1601 /* 1602 * set boot-args property 1603 * 1275 name is bootargs, so set 1604 * that too 1605 */ 1606 bsetprops("boot-args", boot_args); 1607 bsetprops("bootargs", boot_args); 1608 1609 process_boot_environment(benv); 1610 1611 #ifndef __xpv 1612 /* 1613 * Build boot command line for Fast Reboot 1614 */ 1615 build_fastboot_cmdline(xbp); 1616 1617 if (xbp->bi_mb_version == 1) { 1618 multiboot_info_t *mbi = xbp->bi_mb_info; 1619 int netboot; 1620 struct sol_netinfo *sip; 1621 1622 /* 1623 * set the BIOS boot device from GRUB 1624 */ 1625 netboot = 0; 1626 1627 /* 1628 * Save various boot information for Fast Reboot 1629 */ 1630 save_boot_info(xbp); 1631 1632 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) { 1633 boot_device = mbi->boot_device >> 24; 1634 if (boot_device == 0x20) 1635 netboot++; 1636 str[0] = (boot_device >> 4) + '0'; 1637 str[1] = (boot_device & 0xf) + '0'; 1638 str[2] = 0; 1639 bsetprops("bios-boot-device", str); 1640 } else { 1641 netboot = 1; 1642 } 1643 1644 /* 1645 * In the netboot case, drives_info is overloaded with the 1646 * dhcp ack. This is not multiboot compliant and requires 1647 * special pxegrub! 1648 */ 1649 if (netboot && mbi->drives_length != 0) { 1650 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr; 1651 if (sip->sn_infotype == SN_TYPE_BOOTP) 1652 bsetprop("bootp-response", 1653 sizeof ("bootp-response"), 1654 (void *)(uintptr_t)mbi->drives_addr, 1655 mbi->drives_length); 1656 else if (sip->sn_infotype == SN_TYPE_RARP) 1657 setup_rarp_props(sip); 1658 } 1659 } else { 1660 multiboot2_info_header_t *mbi = xbp->bi_mb_info; 1661 multiboot_tag_bootdev_t *bootdev = NULL; 1662 multiboot_tag_network_t *netdev = NULL; 1663 1664 if (mbi != NULL) { 1665 bootdev = dboot_multiboot2_find_tag(mbi, 1666 MULTIBOOT_TAG_TYPE_BOOTDEV); 1667 netdev = dboot_multiboot2_find_tag(mbi, 1668 MULTIBOOT_TAG_TYPE_NETWORK); 1669 } 1670 if (bootdev != NULL) { 1671 DBG(bootdev->mb_biosdev); 1672 boot_device = bootdev->mb_biosdev; 1673 str[0] = (boot_device >> 4) + '0'; 1674 str[1] = (boot_device & 0xf) + '0'; 1675 str[2] = 0; 1676 bsetprops("bios-boot-device", str); 1677 } 1678 if (netdev != NULL) { 1679 bsetprop("bootp-response", sizeof ("bootp-response"), 1680 (void *)(uintptr_t)netdev->mb_dhcpack, 1681 netdev->mb_size - 1682 sizeof (multiboot_tag_network_t)); 1683 } 1684 } 1685 1686 bsetprop("stdout", strlen("stdout"), 1687 &stdout_val, sizeof (stdout_val)); 1688 #endif /* __xpv */ 1689 1690 /* 1691 * more conjured up values for made up things.... 1692 */ 1693 #if defined(__xpv) 1694 bsetprops("mfg-name", "i86xpv"); 1695 bsetprops("impl-arch-name", "i86xpv"); 1696 #else 1697 bsetprops("mfg-name", "i86pc"); 1698 bsetprops("impl-arch-name", "i86pc"); 1699 #endif 1700 1701 /* 1702 * Build firmware-provided system properties 1703 */ 1704 build_firmware_properties(xbp); 1705 1706 /* 1707 * XXPV 1708 * 1709 * Find out what these are: 1710 * - cpuid_feature_ecx_include 1711 * - cpuid_feature_ecx_exclude 1712 * - cpuid_feature_edx_include 1713 * - cpuid_feature_edx_exclude 1714 * 1715 * Find out what these are in multiboot: 1716 * - netdev-path 1717 * - fstype 1718 */ 1719 } 1720 1721 #ifdef __xpv 1722 /* 1723 * Under the Hypervisor, memory usable for DMA may be scarce. One 1724 * very likely large pool of DMA friendly memory is occupied by 1725 * the boot_archive, as it was loaded by grub into low MFNs. 1726 * 1727 * Here we free up that memory by copying the boot archive to what are 1728 * likely higher MFN pages and then swapping the mfn/pfn mappings. 1729 */ 1730 #define PFN_2GIG 0x80000 1731 static void 1732 relocate_boot_archive(struct xboot_info *xbp) 1733 { 1734 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 1735 struct boot_modules *bm = xbp->bi_modules; 1736 uintptr_t va; 1737 pfn_t va_pfn; 1738 mfn_t va_mfn; 1739 caddr_t copy; 1740 pfn_t copy_pfn; 1741 mfn_t copy_mfn; 1742 size_t len; 1743 int slop; 1744 int total = 0; 1745 int relocated = 0; 1746 int mmu_update_return; 1747 mmu_update_t t[2]; 1748 x86pte_t pte; 1749 1750 /* 1751 * If all MFN's are below 2Gig, don't bother doing this. 1752 */ 1753 if (max_mfn < PFN_2GIG) 1754 return; 1755 if (xbp->bi_module_cnt < 1) { 1756 DBG_MSG("no boot_archive!"); 1757 return; 1758 } 1759 1760 DBG_MSG("moving boot_archive to high MFN memory\n"); 1761 va = (uintptr_t)bm->bm_addr; 1762 len = bm->bm_size; 1763 slop = va & MMU_PAGEOFFSET; 1764 if (slop) { 1765 va += MMU_PAGESIZE - slop; 1766 len -= MMU_PAGESIZE - slop; 1767 } 1768 len = P2ALIGN(len, MMU_PAGESIZE); 1769 1770 /* 1771 * Go through all boot_archive pages, swapping any low MFN pages 1772 * with memory at next_phys. 1773 */ 1774 while (len != 0) { 1775 ++total; 1776 va_pfn = mmu_btop(va - ONE_GIG); 1777 va_mfn = mfn_list[va_pfn]; 1778 if (mfn_list[va_pfn] < PFN_2GIG) { 1779 copy = kbm_remap_window(next_phys, 1); 1780 bcopy((void *)va, copy, MMU_PAGESIZE); 1781 copy_pfn = mmu_btop(next_phys); 1782 copy_mfn = mfn_list[copy_pfn]; 1783 1784 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID; 1785 if (HYPERVISOR_update_va_mapping(va, pte, 1786 UVMF_INVLPG | UVMF_LOCAL)) 1787 bop_panic("relocate_boot_archive(): " 1788 "HYPERVISOR_update_va_mapping() failed"); 1789 1790 mfn_list[va_pfn] = copy_mfn; 1791 mfn_list[copy_pfn] = va_mfn; 1792 1793 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE; 1794 t[0].val = va_pfn; 1795 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE; 1796 t[1].val = copy_pfn; 1797 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return, 1798 DOMID_SELF) != 0 || mmu_update_return != 2) 1799 bop_panic("relocate_boot_archive(): " 1800 "HYPERVISOR_mmu_update() failed"); 1801 1802 next_phys += MMU_PAGESIZE; 1803 ++relocated; 1804 } 1805 len -= MMU_PAGESIZE; 1806 va += MMU_PAGESIZE; 1807 } 1808 DBG_MSG("Relocated pages:\n"); 1809 DBG(relocated); 1810 DBG_MSG("Out of total pages:\n"); 1811 DBG(total); 1812 } 1813 #endif /* __xpv */ 1814 1815 #if !defined(__xpv) 1816 /* 1817 * simple description of a stack frame (args are 32 bit only currently) 1818 */ 1819 typedef struct bop_frame { 1820 struct bop_frame *old_frame; 1821 pc_t retaddr; 1822 long arg[1]; 1823 } bop_frame_t; 1824 1825 void 1826 bop_traceback(bop_frame_t *frame) 1827 { 1828 pc_t pc; 1829 int cnt; 1830 char *ksym; 1831 ulong_t off; 1832 1833 bop_printf(NULL, "Stack traceback:\n"); 1834 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */ 1835 pc = frame->retaddr; 1836 if (pc == 0) 1837 break; 1838 ksym = kobj_getsymname(pc, &off); 1839 if (ksym) 1840 bop_printf(NULL, " %s+%lx", ksym, off); 1841 else 1842 bop_printf(NULL, " 0x%lx", pc); 1843 1844 frame = frame->old_frame; 1845 if (frame == 0) { 1846 bop_printf(NULL, "\n"); 1847 break; 1848 } 1849 bop_printf(NULL, "\n"); 1850 } 1851 } 1852 1853 struct trapframe { 1854 ulong_t error_code; /* optional */ 1855 ulong_t inst_ptr; 1856 ulong_t code_seg; 1857 ulong_t flags_reg; 1858 ulong_t stk_ptr; 1859 ulong_t stk_seg; 1860 }; 1861 1862 void 1863 bop_trap(ulong_t *tfp) 1864 { 1865 struct trapframe *tf = (struct trapframe *)tfp; 1866 bop_frame_t fakeframe; 1867 static int depth = 0; 1868 1869 /* 1870 * Check for an infinite loop of traps. 1871 */ 1872 if (++depth > 2) 1873 bop_panic("Nested trap"); 1874 1875 bop_printf(NULL, "Unexpected trap\n"); 1876 1877 /* 1878 * adjust the tf for optional error_code by detecting the code selector 1879 */ 1880 if (tf->code_seg != B64CODE_SEL) 1881 tf = (struct trapframe *)(tfp - 1); 1882 else 1883 bop_printf(NULL, "error code 0x%lx\n", 1884 tf->error_code & 0xffffffff); 1885 1886 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr); 1887 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff); 1888 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg); 1889 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr); 1890 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff); 1891 1892 /* grab %[er]bp pushed by our code from the stack */ 1893 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3); 1894 fakeframe.retaddr = (pc_t)tf->inst_ptr; 1895 bop_printf(NULL, "Attempting stack backtrace:\n"); 1896 bop_traceback(&fakeframe); 1897 bop_panic("unexpected trap in early boot"); 1898 } 1899 1900 extern void bop_trap_handler(void); 1901 1902 static gate_desc_t *bop_idt; 1903 1904 static desctbr_t bop_idt_info; 1905 1906 /* 1907 * Install a temporary IDT that lets us catch errors in the boot time code. 1908 * We shouldn't get any faults at all while this is installed, so we'll 1909 * just generate a traceback and exit. 1910 */ 1911 static void 1912 bop_idt_init(void) 1913 { 1914 int t; 1915 1916 bop_idt = (gate_desc_t *) 1917 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 1918 bzero(bop_idt, MMU_PAGESIZE); 1919 for (t = 0; t < NIDT; ++t) { 1920 /* 1921 * Note that since boot runs without a TSS, the 1922 * double fault handler cannot use an alternate stack (64-bit). 1923 */ 1924 set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL, 1925 SDT_SYSIGT, TRP_KPL, 0); 1926 } 1927 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1; 1928 bop_idt_info.dtr_base = (uintptr_t)bop_idt; 1929 wr_idtr(&bop_idt_info); 1930 } 1931 #endif /* !defined(__xpv) */ 1932 1933 /* 1934 * This is where we enter the kernel. It dummies up the boot_ops and 1935 * boot_syscalls vectors and jumps off to _kobj_boot() 1936 */ 1937 void 1938 _start(struct xboot_info *xbp) 1939 { 1940 bootops_t *bops = &bootop; 1941 extern void _kobj_boot(); 1942 1943 /* 1944 * 1st off - initialize the console for any error messages 1945 */ 1946 xbootp = xbp; 1947 #ifdef __xpv 1948 HYPERVISOR_shared_info = (void *)xbp->bi_shared_info; 1949 xen_info = xbp->bi_xen_start_info; 1950 #endif 1951 1952 #ifndef __xpv 1953 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) == 1954 FASTBOOT_MAGIC) { 1955 post_fastreboot = 1; 1956 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0; 1957 } 1958 #endif 1959 1960 bcons_init(xbp); 1961 have_console = 1; 1962 1963 /* 1964 * enable debugging 1965 */ 1966 if (find_boot_prop("kbm_debug") != NULL) 1967 kbm_debug = 1; 1968 1969 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: "); 1970 DBG_MSG((char *)xbp->bi_cmdline); 1971 DBG_MSG("\n\n\n"); 1972 1973 /* 1974 * physavail is no longer used by startup 1975 */ 1976 bm.physinstalled = xbp->bi_phys_install; 1977 bm.pcimem = xbp->bi_pcimem; 1978 bm.rsvdmem = xbp->bi_rsvdmem; 1979 bm.physavail = NULL; 1980 1981 /* 1982 * initialize the boot time allocator 1983 */ 1984 next_phys = xbp->bi_next_paddr; 1985 DBG(next_phys); 1986 next_virt = (uintptr_t)xbp->bi_next_vaddr; 1987 DBG(next_virt); 1988 DBG_MSG("Initializing boot time memory management..."); 1989 #ifdef __xpv 1990 { 1991 xen_platform_parameters_t p; 1992 1993 /* This call shouldn't fail, dboot already did it once. */ 1994 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p); 1995 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start); 1996 DBG(xen_virt_start); 1997 } 1998 #endif 1999 kbm_init(xbp); 2000 DBG_MSG("done\n"); 2001 2002 /* 2003 * Fill in the bootops vector 2004 */ 2005 bops->bsys_version = BO_VERSION; 2006 bops->boot_mem = &bm; 2007 bops->bsys_alloc = do_bsys_alloc; 2008 bops->bsys_free = do_bsys_free; 2009 bops->bsys_getproplen = do_bsys_getproplen; 2010 bops->bsys_getprop = do_bsys_getprop; 2011 bops->bsys_nextprop = do_bsys_nextprop; 2012 bops->bsys_printf = bop_printf; 2013 bops->bsys_doint = do_bsys_doint; 2014 2015 /* 2016 * BOP_EALLOC() is no longer needed 2017 */ 2018 bops->bsys_ealloc = do_bsys_ealloc; 2019 2020 #ifdef __xpv 2021 /* 2022 * On domain 0 we need to free up some physical memory that is 2023 * usable for DMA. Since GRUB loaded the boot_archive, it is 2024 * sitting in low MFN memory. We'll relocated the boot archive 2025 * pages to high PFN memory. 2026 */ 2027 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2028 relocate_boot_archive(xbp); 2029 #endif 2030 2031 #ifndef __xpv 2032 /* 2033 * Install an IDT to catch early pagefaults (shouldn't have any). 2034 * Also needed for kmdb. 2035 */ 2036 bop_idt_init(); 2037 #endif 2038 2039 /* 2040 * Start building the boot properties from the command line 2041 */ 2042 DBG_MSG("Initializing boot properties:\n"); 2043 build_boot_properties(xbp); 2044 2045 if (find_boot_prop("prom_debug") || kbm_debug) { 2046 char *value; 2047 2048 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 2049 boot_prop_display(value); 2050 } 2051 2052 /* 2053 * jump into krtld... 2054 */ 2055 _kobj_boot(&bop_sysp, NULL, bops, NULL); 2056 } 2057 2058 2059 /*ARGSUSED*/ 2060 static caddr_t 2061 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 2062 { 2063 panic("Attempt to bsys_alloc() too late\n"); 2064 return (NULL); 2065 } 2066 2067 /*ARGSUSED*/ 2068 static void 2069 no_more_free(bootops_t *bop, caddr_t virt, size_t size) 2070 { 2071 panic("Attempt to bsys_free() too late\n"); 2072 } 2073 2074 void 2075 bop_no_more_mem(void) 2076 { 2077 DBG(total_bop_alloc_scratch); 2078 DBG(total_bop_alloc_kernel); 2079 bootops->bsys_alloc = no_more_alloc; 2080 bootops->bsys_free = no_more_free; 2081 } 2082 2083 2084 /* 2085 * Set ACPI firmware properties 2086 */ 2087 2088 static caddr_t 2089 vmap_phys(size_t length, paddr_t pa) 2090 { 2091 paddr_t start, end; 2092 caddr_t va; 2093 size_t len, page; 2094 2095 #ifdef __xpv 2096 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET); 2097 #endif 2098 start = P2ALIGN(pa, MMU_PAGESIZE); 2099 end = P2ROUNDUP(pa + length, MMU_PAGESIZE); 2100 len = end - start; 2101 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE); 2102 for (page = 0; page < len; page += MMU_PAGESIZE) 2103 kbm_map((uintptr_t)va + page, start + page, 0, 0); 2104 return (va + (pa & MMU_PAGEOFFSET)); 2105 } 2106 2107 static uint8_t 2108 checksum_table(uint8_t *tp, size_t len) 2109 { 2110 uint8_t sum = 0; 2111 2112 while (len-- > 0) 2113 sum += *tp++; 2114 2115 return (sum); 2116 } 2117 2118 static int 2119 valid_rsdp(ACPI_TABLE_RSDP *rp) 2120 { 2121 2122 /* validate the V1.x checksum */ 2123 if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0) 2124 return (0); 2125 2126 /* If pre-ACPI 2.0, this is a valid RSDP */ 2127 if (rp->Revision < 2) 2128 return (1); 2129 2130 /* validate the V2.x checksum */ 2131 if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0) 2132 return (0); 2133 2134 return (1); 2135 } 2136 2137 /* 2138 * Scan memory range for an RSDP; 2139 * see ACPI 3.0 Spec, 5.2.5.1 2140 */ 2141 static ACPI_TABLE_RSDP * 2142 scan_rsdp(paddr_t start, paddr_t end) 2143 { 2144 ssize_t len = end - start; 2145 caddr_t ptr; 2146 2147 ptr = vmap_phys(len, start); 2148 while (len > 0) { 2149 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 && 2150 valid_rsdp((ACPI_TABLE_RSDP *)ptr)) 2151 return ((ACPI_TABLE_RSDP *)ptr); 2152 2153 ptr += ACPI_RSDP_SCAN_STEP; 2154 len -= ACPI_RSDP_SCAN_STEP; 2155 } 2156 2157 return (NULL); 2158 } 2159 2160 /* 2161 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function 2162 */ 2163 static ACPI_TABLE_RSDP * 2164 find_rsdp() 2165 { 2166 ACPI_TABLE_RSDP *rsdp; 2167 uint64_t rsdp_val = 0; 2168 uint16_t *ebda_seg; 2169 paddr_t ebda_addr; 2170 2171 /* check for "acpi-root-tab" property */ 2172 if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) { 2173 (void) do_bsys_getprop(NULL, "acpi-root-tab", &rsdp_val); 2174 if (rsdp_val != 0) { 2175 rsdp = scan_rsdp(rsdp_val, rsdp_val + sizeof (*rsdp)); 2176 if (rsdp != NULL) { 2177 if (kbm_debug) { 2178 bop_printf(NULL, 2179 "Using RSDP from bootloader: " 2180 "0x%p\n", (void *)rsdp); 2181 } 2182 return (rsdp); 2183 } 2184 } 2185 } 2186 2187 /* 2188 * Get the EBDA segment and scan the first 1K 2189 */ 2190 ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), 2191 ACPI_EBDA_PTR_LOCATION); 2192 ebda_addr = *ebda_seg << 4; 2193 rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE); 2194 if (rsdp == NULL) 2195 /* if EBDA doesn't contain RSDP, look in BIOS memory */ 2196 rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE, 2197 ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE); 2198 return (rsdp); 2199 } 2200 2201 static ACPI_TABLE_HEADER * 2202 map_fw_table(paddr_t table_addr) 2203 { 2204 ACPI_TABLE_HEADER *tp; 2205 size_t len = MAX(sizeof (*tp), MMU_PAGESIZE); 2206 2207 /* 2208 * Map at least a page; if the table is larger than this, remap it 2209 */ 2210 tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr); 2211 if (tp->Length > len) 2212 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr); 2213 return (tp); 2214 } 2215 2216 static ACPI_TABLE_HEADER * 2217 find_fw_table(char *signature) 2218 { 2219 static int revision = 0; 2220 static ACPI_TABLE_XSDT *xsdt; 2221 static int len; 2222 paddr_t xsdt_addr; 2223 ACPI_TABLE_RSDP *rsdp; 2224 ACPI_TABLE_HEADER *tp; 2225 paddr_t table_addr; 2226 int n; 2227 2228 if (strlen(signature) != ACPI_NAME_SIZE) 2229 return (NULL); 2230 2231 /* 2232 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help 2233 * understand this code. If we haven't already found the RSDT/XSDT, 2234 * revision will be 0. Find the RSDP and check the revision 2235 * to find out whether to use the RSDT or XSDT. If revision is 2236 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2, 2237 * use the XSDT. If the XSDT address is 0, though, fall back to 2238 * revision 1 and use the RSDT. 2239 */ 2240 if (revision == 0) { 2241 if ((rsdp = find_rsdp()) != NULL) { 2242 revision = rsdp->Revision; 2243 /* 2244 * ACPI 6.0 states that current revision is 2 2245 * from acpi_table_rsdp definition: 2246 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+ 2247 */ 2248 if (revision > 2) 2249 revision = 2; 2250 switch (revision) { 2251 case 2: 2252 /* 2253 * Use the XSDT unless BIOS is buggy and 2254 * claims to be rev 2 but has a null XSDT 2255 * address 2256 */ 2257 xsdt_addr = rsdp->XsdtPhysicalAddress; 2258 if (xsdt_addr != 0) 2259 break; 2260 /* FALLTHROUGH */ 2261 case 0: 2262 /* treat RSDP rev 0 as revision 1 internally */ 2263 revision = 1; 2264 /* FALLTHROUGH */ 2265 case 1: 2266 /* use the RSDT for rev 0/1 */ 2267 xsdt_addr = rsdp->RsdtPhysicalAddress; 2268 break; 2269 default: 2270 /* unknown revision */ 2271 revision = 0; 2272 break; 2273 } 2274 } 2275 if (revision == 0) 2276 return (NULL); 2277 2278 /* cache the XSDT info */ 2279 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr); 2280 len = (xsdt->Header.Length - sizeof (xsdt->Header)) / 2281 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t)); 2282 } 2283 2284 /* 2285 * Scan the table headers looking for a signature match 2286 */ 2287 for (n = 0; n < len; n++) { 2288 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt; 2289 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] : 2290 xsdt->TableOffsetEntry[n]; 2291 2292 if (table_addr == 0) 2293 continue; 2294 tp = map_fw_table(table_addr); 2295 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) { 2296 return (tp); 2297 } 2298 } 2299 return (NULL); 2300 } 2301 2302 static void 2303 process_mcfg(ACPI_TABLE_MCFG *tp) 2304 { 2305 ACPI_MCFG_ALLOCATION *cfg_baap; 2306 char *cfg_baa_endp; 2307 int64_t ecfginfo[4]; 2308 2309 cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp)); 2310 cfg_baa_endp = ((char *)tp) + tp->Header.Length; 2311 while ((char *)cfg_baap < cfg_baa_endp) { 2312 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) { 2313 ecfginfo[0] = cfg_baap->Address; 2314 ecfginfo[1] = cfg_baap->PciSegment; 2315 ecfginfo[2] = cfg_baap->StartBusNumber; 2316 ecfginfo[3] = cfg_baap->EndBusNumber; 2317 bsetprop(MCFG_PROPNAME, strlen(MCFG_PROPNAME), 2318 ecfginfo, sizeof (ecfginfo)); 2319 break; 2320 } 2321 cfg_baap++; 2322 } 2323 } 2324 2325 #ifndef __xpv 2326 static void 2327 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp, 2328 uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array) 2329 { 2330 ACPI_SUBTABLE_HEADER *item, *end; 2331 uint32_t cpu_count = 0; 2332 uint32_t cpu_possible_count = 0; 2333 2334 /* 2335 * Determine number of CPUs and keep track of "final" APIC ID 2336 * for each CPU by walking through ACPI MADT processor list 2337 */ 2338 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2339 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2340 2341 while (item < end) { 2342 switch (item->Type) { 2343 case ACPI_MADT_TYPE_LOCAL_APIC: { 2344 ACPI_MADT_LOCAL_APIC *cpu = 2345 (ACPI_MADT_LOCAL_APIC *) item; 2346 2347 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2348 if (cpu_apicid_array != NULL) 2349 cpu_apicid_array[cpu_count] = cpu->Id; 2350 cpu_count++; 2351 } 2352 cpu_possible_count++; 2353 break; 2354 } 2355 case ACPI_MADT_TYPE_LOCAL_X2APIC: { 2356 ACPI_MADT_LOCAL_X2APIC *cpu = 2357 (ACPI_MADT_LOCAL_X2APIC *) item; 2358 2359 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2360 if (cpu_apicid_array != NULL) 2361 cpu_apicid_array[cpu_count] = 2362 cpu->LocalApicId; 2363 cpu_count++; 2364 } 2365 cpu_possible_count++; 2366 break; 2367 } 2368 default: 2369 if (kbm_debug) 2370 bop_printf(NULL, "MADT type %d\n", item->Type); 2371 break; 2372 } 2373 2374 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length); 2375 } 2376 if (cpu_countp) 2377 *cpu_countp = cpu_count; 2378 if (cpu_possible_countp) 2379 *cpu_possible_countp = cpu_possible_count; 2380 } 2381 2382 static void 2383 process_madt(ACPI_TABLE_MADT *tp) 2384 { 2385 uint32_t cpu_count = 0; 2386 uint32_t cpu_possible_count = 0; 2387 uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */ 2388 2389 if (tp != NULL) { 2390 /* count cpu's */ 2391 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL); 2392 2393 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL, 2394 cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE); 2395 if (cpu_apicid_array == NULL) 2396 bop_panic("Not enough memory for APIC ID array"); 2397 2398 /* copy IDs */ 2399 process_madt_entries(tp, NULL, NULL, cpu_apicid_array); 2400 2401 /* 2402 * Make boot property for array of "final" APIC IDs for each 2403 * CPU 2404 */ 2405 bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY), 2406 cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array)); 2407 } 2408 2409 /* 2410 * Check whether property plat-max-ncpus is already set. 2411 */ 2412 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2413 /* 2414 * Set plat-max-ncpus to number of maximum possible CPUs given 2415 * in MADT if it hasn't been set. 2416 * There's no formal way to detect max possible CPUs supported 2417 * by platform according to ACPI spec3.0b. So current CPU 2418 * hotplug implementation expects that all possible CPUs will 2419 * have an entry in MADT table and set plat-max-ncpus to number 2420 * of entries in MADT. 2421 * With introducing of ACPI4.0, Maximum System Capability Table 2422 * (MSCT) provides maximum number of CPUs supported by platform. 2423 * If MSCT is unavailable, fall back to old way. 2424 */ 2425 if (tp != NULL) 2426 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count); 2427 } 2428 2429 /* 2430 * Set boot property boot-max-ncpus to number of CPUs existing at 2431 * boot time. boot-max-ncpus is mainly used for optimization. 2432 */ 2433 if (tp != NULL) 2434 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count); 2435 2436 /* 2437 * User-set boot-ncpus overrides firmware count 2438 */ 2439 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2440 return; 2441 2442 /* 2443 * Set boot property boot-ncpus to number of active CPUs given in MADT 2444 * if it hasn't been set yet. 2445 */ 2446 if (tp != NULL) 2447 bsetpropsi(BOOT_NCPUS_NAME, cpu_count); 2448 } 2449 2450 static void 2451 process_srat(ACPI_TABLE_SRAT *tp) 2452 { 2453 ACPI_SUBTABLE_HEADER *item, *end; 2454 int i; 2455 int proc_num, mem_num; 2456 #pragma pack(1) 2457 struct { 2458 uint32_t domain; 2459 uint32_t apic_id; 2460 uint32_t sapic_id; 2461 } processor; 2462 struct { 2463 uint32_t domain; 2464 uint32_t x2apic_id; 2465 } x2apic; 2466 struct { 2467 uint32_t domain; 2468 uint64_t addr; 2469 uint64_t length; 2470 uint32_t flags; 2471 } memory; 2472 #pragma pack() 2473 char prop_name[30]; 2474 uint64_t maxmem = 0; 2475 2476 if (tp == NULL) 2477 return; 2478 2479 proc_num = mem_num = 0; 2480 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2481 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2482 while (item < end) { 2483 switch (item->Type) { 2484 case ACPI_SRAT_TYPE_CPU_AFFINITY: { 2485 ACPI_SRAT_CPU_AFFINITY *cpu = 2486 (ACPI_SRAT_CPU_AFFINITY *) item; 2487 2488 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2489 break; 2490 processor.domain = cpu->ProximityDomainLo; 2491 for (i = 0; i < 3; i++) 2492 processor.domain += 2493 cpu->ProximityDomainHi[i] << ((i + 1) * 8); 2494 processor.apic_id = cpu->ApicId; 2495 processor.sapic_id = cpu->LocalSapicEid; 2496 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2497 proc_num); 2498 bsetprop(prop_name, strlen(prop_name), &processor, 2499 sizeof (processor)); 2500 proc_num++; 2501 break; 2502 } 2503 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: { 2504 ACPI_SRAT_MEM_AFFINITY *mem = 2505 (ACPI_SRAT_MEM_AFFINITY *)item; 2506 2507 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED)) 2508 break; 2509 memory.domain = mem->ProximityDomain; 2510 memory.addr = mem->BaseAddress; 2511 memory.length = mem->Length; 2512 memory.flags = mem->Flags; 2513 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d", 2514 mem_num); 2515 bsetprop(prop_name, strlen(prop_name), &memory, 2516 sizeof (memory)); 2517 if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) && 2518 (memory.addr + memory.length > maxmem)) { 2519 maxmem = memory.addr + memory.length; 2520 } 2521 mem_num++; 2522 break; 2523 } 2524 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: { 2525 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu = 2526 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item; 2527 2528 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2529 break; 2530 x2apic.domain = x2cpu->ProximityDomain; 2531 x2apic.x2apic_id = x2cpu->ApicId; 2532 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2533 proc_num); 2534 bsetprop(prop_name, strlen(prop_name), &x2apic, 2535 sizeof (x2apic)); 2536 proc_num++; 2537 break; 2538 } 2539 default: 2540 if (kbm_debug) 2541 bop_printf(NULL, "SRAT type %d\n", item->Type); 2542 break; 2543 } 2544 2545 item = (ACPI_SUBTABLE_HEADER *) 2546 (item->Length + (uintptr_t)item); 2547 } 2548 2549 /* 2550 * The maximum physical address calculated from the SRAT table is more 2551 * accurate than that calculated from the MSCT table. 2552 */ 2553 if (maxmem != 0) { 2554 plat_dr_physmax = btop(maxmem); 2555 } 2556 } 2557 2558 static void 2559 process_slit(ACPI_TABLE_SLIT *tp) 2560 { 2561 2562 /* 2563 * Check the number of localities; if it's too huge, we just 2564 * return and locality enumeration code will handle this later, 2565 * if possible. 2566 * 2567 * Note that the size of the table is the square of the 2568 * number of localities; if the number of localities exceeds 2569 * UINT16_MAX, the table size may overflow an int when being 2570 * passed to bsetprop() below. 2571 */ 2572 if (tp->LocalityCount >= SLIT_LOCALITIES_MAX) 2573 return; 2574 2575 bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME), 2576 &tp->LocalityCount, sizeof (tp->LocalityCount)); 2577 bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry, 2578 tp->LocalityCount * tp->LocalityCount); 2579 } 2580 2581 static ACPI_TABLE_MSCT * 2582 process_msct(ACPI_TABLE_MSCT *tp) 2583 { 2584 int last_seen = 0; 2585 int proc_num = 0; 2586 ACPI_MSCT_PROXIMITY *item, *end; 2587 extern uint64_t plat_dr_options; 2588 2589 ASSERT(tp != NULL); 2590 2591 end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp); 2592 for (item = (void *)((uintptr_t)tp + tp->ProximityOffset); 2593 item < end; 2594 item = (void *)(item->Length + (uintptr_t)item)) { 2595 /* 2596 * Sanity check according to section 5.2.19.1 of ACPI 4.0. 2597 * Revision 1 2598 * Length 22 2599 */ 2600 if (item->Revision != 1 || item->Length != 22) { 2601 cmn_err(CE_CONT, 2602 "?boot: unknown proximity domain structure in MSCT " 2603 "with Revision(%d), Length(%d).\n", 2604 (int)item->Revision, (int)item->Length); 2605 return (NULL); 2606 } else if (item->RangeStart > item->RangeEnd) { 2607 cmn_err(CE_CONT, 2608 "?boot: invalid proximity domain structure in MSCT " 2609 "with RangeStart(%u), RangeEnd(%u).\n", 2610 item->RangeStart, item->RangeEnd); 2611 return (NULL); 2612 } else if (item->RangeStart != last_seen) { 2613 /* 2614 * Items must be organized in ascending order of the 2615 * proximity domain enumerations. 2616 */ 2617 cmn_err(CE_CONT, 2618 "?boot: invalid proximity domain structure in MSCT," 2619 " items are not orginized in ascending order.\n"); 2620 return (NULL); 2621 } 2622 2623 /* 2624 * If ProcessorCapacity is 0 then there would be no CPUs in this 2625 * domain. 2626 */ 2627 if (item->ProcessorCapacity != 0) { 2628 proc_num += (item->RangeEnd - item->RangeStart + 1) * 2629 item->ProcessorCapacity; 2630 } 2631 2632 last_seen = item->RangeEnd - item->RangeStart + 1; 2633 /* 2634 * Break out if all proximity domains have been processed. 2635 * Some BIOSes may have unused items at the end of MSCT table. 2636 */ 2637 if (last_seen > tp->MaxProximityDomains) { 2638 break; 2639 } 2640 } 2641 if (last_seen != tp->MaxProximityDomains + 1) { 2642 cmn_err(CE_CONT, 2643 "?boot: invalid proximity domain structure in MSCT, " 2644 "proximity domain count doesn't match.\n"); 2645 return (NULL); 2646 } 2647 2648 /* 2649 * Set plat-max-ncpus property if it hasn't been set yet. 2650 */ 2651 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2652 if (proc_num != 0) { 2653 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num); 2654 } 2655 } 2656 2657 /* 2658 * Use Maximum Physical Address from the MSCT table as upper limit for 2659 * memory hot-adding by default. It may be overridden by value from 2660 * the SRAT table or the "plat-dr-physmax" boot option. 2661 */ 2662 plat_dr_physmax = btop(tp->MaxAddress + 1); 2663 2664 /* 2665 * Existence of MSCT implies CPU/memory hotplug-capability for the 2666 * platform. 2667 */ 2668 plat_dr_options |= PLAT_DR_FEATURE_CPU; 2669 plat_dr_options |= PLAT_DR_FEATURE_MEMORY; 2670 2671 return (tp); 2672 } 2673 2674 #else /* __xpv */ 2675 static void 2676 enumerate_xen_cpus() 2677 { 2678 processorid_t id, max_id; 2679 2680 /* 2681 * User-set boot-ncpus overrides enumeration 2682 */ 2683 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2684 return; 2685 2686 /* 2687 * Probe every possible virtual CPU id and remember the 2688 * highest id present; the count of CPUs is one greater 2689 * than this. This tacitly assumes at least cpu 0 is present. 2690 */ 2691 max_id = 0; 2692 for (id = 0; id < MAX_VIRT_CPUS; id++) 2693 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0) 2694 max_id = id; 2695 2696 bsetpropsi(BOOT_NCPUS_NAME, max_id+1); 2697 2698 } 2699 #endif /* __xpv */ 2700 2701 /*ARGSUSED*/ 2702 static void 2703 build_firmware_properties(struct xboot_info *xbp) 2704 { 2705 ACPI_TABLE_HEADER *tp = NULL; 2706 2707 #ifndef __xpv 2708 if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) { 2709 bsetprops("efi-systype", "64"); 2710 bsetprop64("efi-systab", 2711 (uint64_t)(uintptr_t)xbp->bi_uefi_systab); 2712 if (kbm_debug) 2713 bop_printf(NULL, "64-bit UEFI detected.\n"); 2714 } else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) { 2715 bsetprops("efi-systype", "32"); 2716 bsetprop64("efi-systab", 2717 (uint64_t)(uintptr_t)xbp->bi_uefi_systab); 2718 if (kbm_debug) 2719 bop_printf(NULL, "32-bit UEFI detected.\n"); 2720 } 2721 2722 if (xbp->bi_acpi_rsdp != NULL) { 2723 bsetprop64("acpi-root-tab", 2724 (uint64_t)(uintptr_t)xbp->bi_acpi_rsdp); 2725 } 2726 2727 if (xbp->bi_smbios != NULL) { 2728 bsetprop64("smbios-address", 2729 (uint64_t)(uintptr_t)xbp->bi_smbios); 2730 } 2731 2732 if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL) 2733 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp); 2734 else 2735 msct_ptr = NULL; 2736 2737 if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL) 2738 process_madt((ACPI_TABLE_MADT *)tp); 2739 2740 if ((srat_ptr = (ACPI_TABLE_SRAT *) 2741 find_fw_table(ACPI_SIG_SRAT)) != NULL) 2742 process_srat(srat_ptr); 2743 2744 if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT)) 2745 process_slit(slit_ptr); 2746 2747 tp = find_fw_table(ACPI_SIG_MCFG); 2748 #else /* __xpv */ 2749 enumerate_xen_cpus(); 2750 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2751 tp = find_fw_table(ACPI_SIG_MCFG); 2752 #endif /* __xpv */ 2753 if (tp != NULL) 2754 process_mcfg((ACPI_TABLE_MCFG *)tp); 2755 } 2756 2757 /* 2758 * fake up a boot property for deferred early console output 2759 * this is used by both graphical boot and the (developer only) 2760 * USB serial console 2761 */ 2762 void * 2763 defcons_init(size_t size) 2764 { 2765 static char *p = NULL; 2766 2767 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE); 2768 *p = 0; 2769 bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1, 2770 &p, sizeof (p)); 2771 return (p); 2772 } 2773 2774 /*ARGSUSED*/ 2775 int 2776 boot_compinfo(int fd, struct compinfo *cbp) 2777 { 2778 cbp->iscmp = 0; 2779 cbp->blksize = MAXBSIZE; 2780 return (0); 2781 } 2782 2783 #define BP_MAX_STRLEN 32 2784 2785 /* 2786 * Get value for given boot property 2787 */ 2788 int 2789 bootprop_getval(const char *prop_name, u_longlong_t *prop_value) 2790 { 2791 int boot_prop_len; 2792 char str[BP_MAX_STRLEN]; 2793 u_longlong_t value; 2794 2795 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name); 2796 if (boot_prop_len < 0 || boot_prop_len > sizeof (str) || 2797 BOP_GETPROP(bootops, prop_name, str) < 0 || 2798 kobj_getvalue(str, &value) == -1) 2799 return (-1); 2800 2801 if (prop_value) 2802 *prop_value = value; 2803 2804 return (0); 2805 }