1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 * 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 * 29 * Copyright 2013 Joyent, Inc. All rights reserved. 30 */ 31 32 /* 33 * This file contains the functionality that mimics the boot operations 34 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems. 35 * The x86 kernel now does everything on its own. 36 */ 37 38 #include <sys/types.h> 39 #include <sys/bootconf.h> 40 #include <sys/bootsvcs.h> 41 #include <sys/bootinfo.h> 42 #include <sys/multiboot.h> 43 #include <sys/multiboot2.h> 44 #include <sys/multiboot2_impl.h> 45 #include <sys/bootvfs.h> 46 #include <sys/bootprops.h> 47 #include <sys/varargs.h> 48 #include <sys/param.h> 49 #include <sys/machparam.h> 50 #include <sys/machsystm.h> 51 #include <sys/archsystm.h> 52 #include <sys/boot_console.h> 53 #include <sys/cmn_err.h> 54 #include <sys/systm.h> 55 #include <sys/promif.h> 56 #include <sys/archsystm.h> 57 #include <sys/x86_archext.h> 58 #include <sys/kobj.h> 59 #include <sys/privregs.h> 60 #include <sys/sysmacros.h> 61 #include <sys/ctype.h> 62 #include <sys/fastboot.h> 63 #ifdef __xpv 64 #include <sys/hypervisor.h> 65 #include <net/if.h> 66 #endif 67 #include <vm/kboot_mmu.h> 68 #include <vm/hat_pte.h> 69 #include <sys/kobj.h> 70 #include <sys/kobj_lex.h> 71 #include <sys/pci_cfgspace_impl.h> 72 #include <sys/fastboot_impl.h> 73 #include <sys/acpi/acconfig.h> 74 #include <sys/acpi/acpi.h> 75 76 static int have_console = 0; /* set once primitive console is initialized */ 77 static char *boot_args = ""; 78 79 /* 80 * Debugging macros 81 */ 82 static uint_t kbm_debug = 0; 83 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); } 84 #define DBG(x) { if (kbm_debug) \ 85 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \ 86 } 87 88 #define PUT_STRING(s) { \ 89 char *cp; \ 90 for (cp = (s); *cp; ++cp) \ 91 bcons_putchar(*cp); \ 92 } 93 94 bootops_t bootop; /* simple bootops we'll pass on to kernel */ 95 struct bsys_mem bm; 96 97 /* 98 * Boot info from "glue" code in low memory. xbootp is used by: 99 * do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish(). 100 */ 101 static struct xboot_info *xbootp; 102 static uintptr_t next_virt; /* next available virtual address */ 103 static paddr_t next_phys; /* next available physical address from dboot */ 104 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */ 105 106 /* 107 * buffer for vsnprintf for console I/O 108 */ 109 #define BUFFERSIZE 512 110 static char buffer[BUFFERSIZE]; 111 112 /* 113 * stuff to store/report/manipulate boot property settings. 114 */ 115 typedef struct bootprop { 116 struct bootprop *bp_next; 117 char *bp_name; 118 uint_t bp_vlen; 119 char *bp_value; 120 } bootprop_t; 121 122 static bootprop_t *bprops = NULL; 123 static char *curr_page = NULL; /* ptr to avail bprop memory */ 124 static int curr_space = 0; /* amount of memory at curr_page */ 125 126 #ifdef __xpv 127 start_info_t *xen_info; 128 shared_info_t *HYPERVISOR_shared_info; 129 #endif 130 131 /* 132 * some allocator statistics 133 */ 134 static ulong_t total_bop_alloc_scratch = 0; 135 static ulong_t total_bop_alloc_kernel = 0; 136 137 static void build_firmware_properties(struct xboot_info *); 138 139 static int early_allocation = 1; 140 141 int force_fastreboot = 0; 142 volatile int fastreboot_onpanic = 0; 143 int post_fastreboot = 0; 144 #ifdef __xpv 145 volatile int fastreboot_capable = 0; 146 #else 147 volatile int fastreboot_capable = 1; 148 #endif 149 150 /* 151 * Information saved from current boot for fast reboot. 152 * If the information size exceeds what we have allocated, fast reboot 153 * will not be supported. 154 */ 155 multiboot_info_t saved_mbi; 156 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT]; 157 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE]; 158 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 159 int saved_cmdline_len = 0; 160 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP]; 161 162 /* 163 * Turn off fastreboot_onpanic to avoid panic loop. 164 */ 165 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 166 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0"; 167 168 /* 169 * Pointers to where System Resource Affinity Table (SRAT), System Locality 170 * Information Table (SLIT) and Maximum System Capability Table (MSCT) 171 * are mapped into virtual memory 172 */ 173 ACPI_TABLE_SRAT *srat_ptr = NULL; 174 ACPI_TABLE_SLIT *slit_ptr = NULL; 175 ACPI_TABLE_MSCT *msct_ptr = NULL; 176 177 /* 178 * Arbitrary limit on number of localities we handle; if 179 * this limit is raised to more than UINT16_MAX, make sure 180 * process_slit() knows how to handle it. 181 */ 182 #define SLIT_LOCALITIES_MAX (4096) 183 184 #define SLIT_NUM_PROPNAME "acpi-slit-localities" 185 #define SLIT_PROPNAME "acpi-slit" 186 187 /* 188 * Allocate aligned physical memory at boot time. This allocator allocates 189 * from the highest possible addresses. This avoids exhausting memory that 190 * would be useful for DMA buffers. 191 */ 192 paddr_t 193 do_bop_phys_alloc(uint64_t size, uint64_t align) 194 { 195 paddr_t pa = 0; 196 paddr_t start; 197 paddr_t end; 198 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install; 199 200 /* 201 * Be careful if high memory usage is limited in startup.c 202 * Since there are holes in the low part of the physical address 203 * space we can treat physmem as a pfn (not just a pgcnt) and 204 * get a conservative upper limit. 205 */ 206 if (physmem != 0 && high_phys > pfn_to_pa(physmem)) 207 high_phys = pfn_to_pa(physmem); 208 209 /* 210 * find the highest available memory in physinstalled 211 */ 212 size = P2ROUNDUP(size, align); 213 for (; ml; ml = ml->ml_next) { 214 start = P2ROUNDUP(ml->ml_address, align); 215 end = P2ALIGN(ml->ml_address + ml->ml_size, align); 216 if (start < next_phys) 217 start = P2ROUNDUP(next_phys, align); 218 if (end > high_phys) 219 end = P2ALIGN(high_phys, align); 220 221 if (end <= start) 222 continue; 223 if (end - start < size) 224 continue; 225 226 /* 227 * Early allocations need to use low memory, since 228 * physmem might be further limited by bootenv.rc 229 */ 230 if (early_allocation) { 231 if (pa == 0 || start < pa) 232 pa = start; 233 } else { 234 if (end - size > pa) 235 pa = end - size; 236 } 237 } 238 if (pa != 0) { 239 if (early_allocation) 240 next_phys = pa + size; 241 else 242 high_phys = pa; 243 return (pa); 244 } 245 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64 246 ") Out of memory\n", size, align); 247 /*NOTREACHED*/ 248 } 249 250 uintptr_t 251 alloc_vaddr(size_t size, paddr_t align) 252 { 253 uintptr_t rv; 254 255 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align); 256 rv = (uintptr_t)next_virt; 257 next_virt += size; 258 return (rv); 259 } 260 261 /* 262 * Allocate virtual memory. The size is always rounded up to a multiple 263 * of base pagesize. 264 */ 265 266 /*ARGSUSED*/ 267 static caddr_t 268 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 269 { 270 paddr_t a = align; /* same type as pa for masking */ 271 uint_t pgsize; 272 paddr_t pa; 273 uintptr_t va; 274 ssize_t s; /* the aligned size */ 275 uint_t level; 276 uint_t is_kernel = (virthint != 0); 277 278 if (a < MMU_PAGESIZE) 279 a = MMU_PAGESIZE; 280 else if (!ISP2(a)) 281 prom_panic("do_bsys_alloc() incorrect alignment"); 282 size = P2ROUNDUP(size, MMU_PAGESIZE); 283 284 /* 285 * Use the next aligned virtual address if we weren't given one. 286 */ 287 if (virthint == NULL) { 288 virthint = (caddr_t)alloc_vaddr(size, a); 289 total_bop_alloc_scratch += size; 290 } else { 291 total_bop_alloc_kernel += size; 292 } 293 294 /* 295 * allocate the physical memory 296 */ 297 pa = do_bop_phys_alloc(size, a); 298 299 /* 300 * Add the mappings to the page tables, try large pages first. 301 */ 302 va = (uintptr_t)virthint; 303 s = size; 304 level = 1; 305 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG; 306 if (xbootp->bi_use_largepage && a == pgsize) { 307 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) && 308 s >= pgsize) { 309 kbm_map(va, pa, level, is_kernel); 310 va += pgsize; 311 pa += pgsize; 312 s -= pgsize; 313 } 314 } 315 316 /* 317 * Map remaining pages use small mappings 318 */ 319 level = 0; 320 pgsize = MMU_PAGESIZE; 321 while (s > 0) { 322 kbm_map(va, pa, level, is_kernel); 323 va += pgsize; 324 pa += pgsize; 325 s -= pgsize; 326 } 327 return (virthint); 328 } 329 330 /* 331 * Free virtual memory - we'll just ignore these. 332 */ 333 /*ARGSUSED*/ 334 static void 335 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size) 336 { 337 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n", 338 (void *)virt, size); 339 } 340 341 /* 342 * Old interface 343 */ 344 /*ARGSUSED*/ 345 static caddr_t 346 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size, 347 int align, int flags) 348 { 349 prom_panic("unsupported call to BOP_EALLOC()\n"); 350 return (0); 351 } 352 353 354 static void 355 bsetprop(char *name, int nlen, void *value, int vlen) 356 { 357 uint_t size; 358 uint_t need_size; 359 bootprop_t *b; 360 361 /* 362 * align the size to 16 byte boundary 363 */ 364 size = sizeof (bootprop_t) + nlen + 1 + vlen; 365 size = (size + 0xf) & ~0xf; 366 if (size > curr_space) { 367 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK; 368 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE); 369 curr_space = need_size; 370 } 371 372 /* 373 * use a bootprop_t at curr_page and link into list 374 */ 375 b = (bootprop_t *)curr_page; 376 curr_page += sizeof (bootprop_t); 377 curr_space -= sizeof (bootprop_t); 378 b->bp_next = bprops; 379 bprops = b; 380 381 /* 382 * follow by name and ending zero byte 383 */ 384 b->bp_name = curr_page; 385 bcopy(name, curr_page, nlen); 386 curr_page += nlen; 387 *curr_page++ = 0; 388 curr_space -= nlen + 1; 389 390 /* 391 * copy in value, but no ending zero byte 392 */ 393 b->bp_value = curr_page; 394 b->bp_vlen = vlen; 395 if (vlen > 0) { 396 bcopy(value, curr_page, vlen); 397 curr_page += vlen; 398 curr_space -= vlen; 399 } 400 401 /* 402 * align new values of curr_page, curr_space 403 */ 404 while (curr_space & 0xf) { 405 ++curr_page; 406 --curr_space; 407 } 408 } 409 410 static void 411 bsetprops(char *name, char *value) 412 { 413 bsetprop(name, strlen(name), value, strlen(value) + 1); 414 } 415 416 static void 417 bsetprop64(char *name, uint64_t value) 418 { 419 bsetprop(name, strlen(name), (void *)&value, sizeof (value)); 420 } 421 422 static void 423 bsetpropsi(char *name, int value) 424 { 425 char prop_val[32]; 426 427 (void) snprintf(prop_val, sizeof (prop_val), "%d", value); 428 bsetprops(name, prop_val); 429 } 430 431 /* 432 * to find the size of the buffer to allocate 433 */ 434 /*ARGSUSED*/ 435 int 436 do_bsys_getproplen(bootops_t *bop, const char *name) 437 { 438 bootprop_t *b; 439 440 for (b = bprops; b; b = b->bp_next) { 441 if (strcmp(name, b->bp_name) != 0) 442 continue; 443 return (b->bp_vlen); 444 } 445 return (-1); 446 } 447 448 /* 449 * get the value associated with this name 450 */ 451 /*ARGSUSED*/ 452 int 453 do_bsys_getprop(bootops_t *bop, const char *name, void *value) 454 { 455 bootprop_t *b; 456 457 for (b = bprops; b; b = b->bp_next) { 458 if (strcmp(name, b->bp_name) != 0) 459 continue; 460 bcopy(b->bp_value, value, b->bp_vlen); 461 return (0); 462 } 463 return (-1); 464 } 465 466 /* 467 * get the name of the next property in succession from the standalone 468 */ 469 /*ARGSUSED*/ 470 static char * 471 do_bsys_nextprop(bootops_t *bop, char *name) 472 { 473 bootprop_t *b; 474 475 /* 476 * A null name is a special signal for the 1st boot property 477 */ 478 if (name == NULL || strlen(name) == 0) { 479 if (bprops == NULL) 480 return (NULL); 481 return (bprops->bp_name); 482 } 483 484 for (b = bprops; b; b = b->bp_next) { 485 if (name != b->bp_name) 486 continue; 487 b = b->bp_next; 488 if (b == NULL) 489 return (NULL); 490 return (b->bp_name); 491 } 492 return (NULL); 493 } 494 495 /* 496 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~ 497 */ 498 static int 499 parse_value(char *p, uint64_t *retval) 500 { 501 int adjust = 0; 502 uint64_t tmp = 0; 503 int digit; 504 int radix = 10; 505 506 *retval = 0; 507 if (*p == '-' || *p == '~') 508 adjust = *p++; 509 510 if (*p == '0') { 511 ++p; 512 if (*p == 0) 513 return (0); 514 if (*p == 'x' || *p == 'X') { 515 radix = 16; 516 ++p; 517 } else { 518 radix = 8; 519 ++p; 520 } 521 } 522 while (*p) { 523 if ('0' <= *p && *p <= '9') 524 digit = *p - '0'; 525 else if ('a' <= *p && *p <= 'f') 526 digit = 10 + *p - 'a'; 527 else if ('A' <= *p && *p <= 'F') 528 digit = 10 + *p - 'A'; 529 else 530 return (-1); 531 if (digit >= radix) 532 return (-1); 533 tmp = tmp * radix + digit; 534 ++p; 535 } 536 if (adjust == '-') 537 tmp = -tmp; 538 else if (adjust == '~') 539 tmp = ~tmp; 540 *retval = tmp; 541 return (0); 542 } 543 544 static boolean_t 545 unprintable(char *value, int size) 546 { 547 int i; 548 549 if (size <= 0 || value[0] == '\0') 550 return (B_TRUE); 551 552 for (i = 0; i < size; i++) { 553 if (value[i] == '\0') 554 return (i != (size - 1)); 555 556 if (!isprint(value[i])) 557 return (B_TRUE); 558 } 559 return (B_FALSE); 560 } 561 562 /* 563 * Print out information about all boot properties. 564 * buffer is pointer to pre-allocated space to be used as temporary 565 * space for property values. 566 */ 567 static void 568 boot_prop_display(char *buffer) 569 { 570 char *name = ""; 571 int i, len; 572 573 bop_printf(NULL, "\nBoot properties:\n"); 574 575 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 576 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 577 (void) do_bsys_getprop(NULL, name, buffer); 578 len = do_bsys_getproplen(NULL, name); 579 bop_printf(NULL, "len=%d ", len); 580 if (!unprintable(buffer, len)) { 581 buffer[len] = 0; 582 bop_printf(NULL, "%s\n", buffer); 583 continue; 584 } 585 for (i = 0; i < len; i++) { 586 bop_printf(NULL, "%02x", buffer[i] & 0xff); 587 if (i < len - 1) 588 bop_printf(NULL, "."); 589 } 590 bop_printf(NULL, "\n"); 591 } 592 } 593 594 /* 595 * 2nd part of building the table of boot properties. This includes: 596 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 597 * 598 * lines look like one of: 599 * ^$ 600 * ^# comment till end of line 601 * setprop name 'value' 602 * setprop name value 603 * setprop name "value" 604 * 605 * we do single character I/O since this is really just looking at memory 606 */ 607 void 608 boot_prop_finish(void) 609 { 610 int fd; 611 char *line; 612 int c; 613 int bytes_read; 614 char *name; 615 int n_len; 616 char *value; 617 int v_len; 618 char *inputdev; /* these override the command line if serial ports */ 619 char *outputdev; 620 char *consoledev; 621 uint64_t lvalue; 622 int use_xencons = 0; 623 624 #ifdef __xpv 625 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 626 use_xencons = 1; 627 #endif /* __xpv */ 628 629 DBG_MSG("Opening /boot/solaris/bootenv.rc\n"); 630 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0); 631 DBG(fd); 632 633 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 634 while (fd >= 0) { 635 636 /* 637 * get a line 638 */ 639 for (c = 0; ; ++c) { 640 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1); 641 if (bytes_read == 0) { 642 if (c == 0) 643 goto done; 644 break; 645 } 646 if (line[c] == '\n') 647 break; 648 } 649 line[c] = 0; 650 651 /* 652 * ignore comment lines 653 */ 654 c = 0; 655 while (ISSPACE(line[c])) 656 ++c; 657 if (line[c] == '#' || line[c] == 0) 658 continue; 659 660 /* 661 * must have "setprop " or "setprop\t" 662 */ 663 if (strncmp(line + c, "setprop ", 8) != 0 && 664 strncmp(line + c, "setprop\t", 8) != 0) 665 continue; 666 c += 8; 667 while (ISSPACE(line[c])) 668 ++c; 669 if (line[c] == 0) 670 continue; 671 672 /* 673 * gather up the property name 674 */ 675 name = line + c; 676 n_len = 0; 677 while (line[c] && !ISSPACE(line[c])) 678 ++n_len, ++c; 679 680 /* 681 * gather up the value, if any 682 */ 683 value = ""; 684 v_len = 0; 685 while (ISSPACE(line[c])) 686 ++c; 687 if (line[c] != 0) { 688 value = line + c; 689 while (line[c] && !ISSPACE(line[c])) 690 ++v_len, ++c; 691 } 692 693 if (v_len >= 2 && value[0] == value[v_len - 1] && 694 (value[0] == '\'' || value[0] == '"')) { 695 ++value; 696 v_len -= 2; 697 } 698 name[n_len] = 0; 699 if (v_len > 0) 700 value[v_len] = 0; 701 else 702 continue; 703 704 /* 705 * ignore "boot-file" property, it's now meaningless 706 */ 707 if (strcmp(name, "boot-file") == 0) 708 continue; 709 if (strcmp(name, "boot-args") == 0 && 710 strlen(boot_args) > 0) 711 continue; 712 713 /* 714 * If a property was explicitly set on the command line 715 * it will override a setting in bootenv.rc 716 */ 717 if (do_bsys_getproplen(NULL, name) > 0) 718 continue; 719 720 bsetprop(name, n_len, value, v_len + 1); 721 } 722 done: 723 if (fd >= 0) 724 (void) BRD_CLOSE(bfs_ops, fd); 725 726 /* 727 * Check if we have to limit the boot time allocator 728 */ 729 if (do_bsys_getproplen(NULL, "physmem") != -1 && 730 do_bsys_getprop(NULL, "physmem", line) >= 0 && 731 parse_value(line, &lvalue) != -1) { 732 if (0 < lvalue && (lvalue < physmem || physmem == 0)) { 733 physmem = (pgcnt_t)lvalue; 734 DBG(physmem); 735 } 736 } 737 early_allocation = 0; 738 739 /* 740 * check to see if we have to override the default value of the console 741 */ 742 if (!use_xencons) { 743 inputdev = line; 744 v_len = do_bsys_getproplen(NULL, "input-device"); 745 if (v_len > 0) 746 (void) do_bsys_getprop(NULL, "input-device", inputdev); 747 else 748 v_len = 0; 749 inputdev[v_len] = 0; 750 751 outputdev = inputdev + v_len + 1; 752 v_len = do_bsys_getproplen(NULL, "output-device"); 753 if (v_len > 0) 754 (void) do_bsys_getprop(NULL, "output-device", 755 outputdev); 756 else 757 v_len = 0; 758 outputdev[v_len] = 0; 759 760 consoledev = outputdev + v_len + 1; 761 v_len = do_bsys_getproplen(NULL, "console"); 762 if (v_len > 0) { 763 (void) do_bsys_getprop(NULL, "console", consoledev); 764 if (post_fastreboot && 765 strcmp(consoledev, "graphics") == 0) { 766 bsetprops("console", "text"); 767 v_len = strlen("text"); 768 bcopy("text", consoledev, v_len); 769 } 770 } else { 771 v_len = 0; 772 } 773 consoledev[v_len] = 0; 774 bcons_init2(inputdev, outputdev, consoledev); 775 } else { 776 /* 777 * Ensure console property exists 778 * If not create it as "hypervisor" 779 */ 780 v_len = do_bsys_getproplen(NULL, "console"); 781 if (v_len < 0) 782 bsetprops("console", "hypervisor"); 783 inputdev = outputdev = consoledev = "hypervisor"; 784 bcons_init2(inputdev, outputdev, consoledev); 785 } 786 787 if (find_boot_prop("prom_debug") || kbm_debug) 788 boot_prop_display(line); 789 } 790 791 /* 792 * print formatted output 793 */ 794 /*PRINTFLIKE2*/ 795 /*ARGSUSED*/ 796 void 797 bop_printf(bootops_t *bop, const char *fmt, ...) 798 { 799 va_list ap; 800 801 if (have_console == 0) 802 return; 803 804 va_start(ap, fmt); 805 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap); 806 va_end(ap); 807 PUT_STRING(buffer); 808 } 809 810 /* 811 * Another panic() variant; this one can be used even earlier during boot than 812 * prom_panic(). 813 */ 814 /*PRINTFLIKE1*/ 815 void 816 bop_panic(const char *fmt, ...) 817 { 818 va_list ap; 819 820 va_start(ap, fmt); 821 bop_printf(NULL, fmt, ap); 822 va_end(ap); 823 824 bop_printf(NULL, "\nPress any key to reboot.\n"); 825 (void) bcons_getchar(); 826 bop_printf(NULL, "Resetting...\n"); 827 pc_reset(); 828 } 829 830 /* 831 * Do a real mode interrupt BIOS call 832 */ 833 typedef struct bios_regs { 834 unsigned short ax, bx, cx, dx, si, di, bp, es, ds; 835 } bios_regs_t; 836 typedef int (*bios_func_t)(int, bios_regs_t *); 837 838 /*ARGSUSED*/ 839 static void 840 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp) 841 { 842 #if defined(__xpv) 843 prom_panic("unsupported call to BOP_DOINT()\n"); 844 #else /* __xpv */ 845 static int firsttime = 1; 846 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000; 847 bios_regs_t br; 848 849 /* 850 * The first time we do this, we have to copy the pre-packaged 851 * low memory bios call code image into place. 852 */ 853 if (firsttime) { 854 extern char bios_image[]; 855 extern uint32_t bios_size; 856 857 bcopy(bios_image, (void *)bios_func, bios_size); 858 firsttime = 0; 859 } 860 861 br.ax = rp->eax.word.ax; 862 br.bx = rp->ebx.word.bx; 863 br.cx = rp->ecx.word.cx; 864 br.dx = rp->edx.word.dx; 865 br.bp = rp->ebp.word.bp; 866 br.si = rp->esi.word.si; 867 br.di = rp->edi.word.di; 868 br.ds = rp->ds; 869 br.es = rp->es; 870 871 DBG_MSG("Doing BIOS call..."); 872 DBG(br.ax); 873 DBG(br.bx); 874 DBG(br.dx); 875 rp->eflags = bios_func(intnum, &br); 876 DBG_MSG("done\n"); 877 878 rp->eax.word.ax = br.ax; 879 rp->ebx.word.bx = br.bx; 880 rp->ecx.word.cx = br.cx; 881 rp->edx.word.dx = br.dx; 882 rp->ebp.word.bp = br.bp; 883 rp->esi.word.si = br.si; 884 rp->edi.word.di = br.di; 885 rp->ds = br.ds; 886 rp->es = br.es; 887 #endif /* __xpv */ 888 } 889 890 static struct boot_syscalls bop_sysp = { 891 bcons_getchar, 892 bcons_putchar, 893 bcons_ischar, 894 }; 895 896 static char *whoami; 897 898 #define BUFLEN 64 899 900 #if defined(__xpv) 901 902 static char namebuf[32]; 903 904 static void 905 xen_parse_props(char *s, char *prop_map[], int n_prop) 906 { 907 char **prop_name = prop_map; 908 char *cp = s, *scp; 909 910 do { 911 scp = cp; 912 while ((*cp != NULL) && (*cp != ':')) 913 cp++; 914 915 if ((scp != cp) && (*prop_name != NULL)) { 916 *cp = NULL; 917 bsetprops(*prop_name, scp); 918 } 919 920 cp++; 921 prop_name++; 922 n_prop--; 923 } while (n_prop > 0); 924 } 925 926 #define VBDPATHLEN 64 927 928 /* 929 * parse the 'xpv-root' property to create properties used by 930 * ufs_mountroot. 931 */ 932 static void 933 xen_vbdroot_props(char *s) 934 { 935 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@"; 936 const char lnamefix[] = "/dev/dsk/c0d"; 937 char *pnp; 938 char *prop_p; 939 char mi; 940 short minor; 941 long addr = 0; 942 943 pnp = vbdpath + strlen(vbdpath); 944 prop_p = s + strlen(lnamefix); 945 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p')) 946 addr = addr * 10 + *prop_p++ - '0'; 947 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr); 948 pnp = vbdpath + strlen(vbdpath); 949 if (*prop_p == 's') 950 mi = 'a'; 951 else if (*prop_p == 'p') 952 mi = 'q'; 953 else 954 ASSERT(0); /* shouldn't be here */ 955 prop_p++; 956 ASSERT(*prop_p != '\0'); 957 if (ISDIGIT(*prop_p)) { 958 minor = *prop_p - '0'; 959 prop_p++; 960 if (ISDIGIT(*prop_p)) { 961 minor = minor * 10 + *prop_p - '0'; 962 } 963 } else { 964 /* malformed root path, use 0 as default */ 965 minor = 0; 966 } 967 ASSERT(minor < 16); /* at most 16 partitions */ 968 mi += minor; 969 *pnp++ = ':'; 970 *pnp++ = mi; 971 *pnp++ = '\0'; 972 bsetprops("fstype", "ufs"); 973 bsetprops("bootpath", vbdpath); 974 975 DBG_MSG("VBD bootpath set to "); 976 DBG_MSG(vbdpath); 977 DBG_MSG("\n"); 978 } 979 980 /* 981 * parse the xpv-nfsroot property to create properties used by 982 * nfs_mountroot. 983 */ 984 static void 985 xen_nfsroot_props(char *s) 986 { 987 char *prop_map[] = { 988 BP_SERVER_IP, /* server IP address */ 989 BP_SERVER_NAME, /* server hostname */ 990 BP_SERVER_PATH, /* root path */ 991 }; 992 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 993 994 bsetprop("fstype", 6, "nfs", 4); 995 996 xen_parse_props(s, prop_map, n_prop); 997 998 /* 999 * If a server name wasn't specified, use a default. 1000 */ 1001 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1) 1002 bsetprops(BP_SERVER_NAME, "unknown"); 1003 } 1004 1005 /* 1006 * Extract our IP address, etc. from the "xpv-ip" property. 1007 */ 1008 static void 1009 xen_ip_props(char *s) 1010 { 1011 char *prop_map[] = { 1012 BP_HOST_IP, /* IP address */ 1013 NULL, /* NFS server IP address (ignored in */ 1014 /* favour of xpv-nfsroot) */ 1015 BP_ROUTER_IP, /* IP gateway */ 1016 BP_SUBNET_MASK, /* IP subnet mask */ 1017 "xpv-hostname", /* hostname (ignored) */ 1018 BP_NETWORK_INTERFACE, /* interface name */ 1019 "xpv-hcp", /* host configuration protocol */ 1020 }; 1021 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1022 char ifname[IFNAMSIZ]; 1023 1024 xen_parse_props(s, prop_map, n_prop); 1025 1026 /* 1027 * A Linux dom0 administrator expects all interfaces to be 1028 * called "ethX", which is not the case here. 1029 * 1030 * If the interface name specified is "eth0", presume that 1031 * this is really intended to be "xnf0" (the first domU -> 1032 * dom0 interface for this domain). 1033 */ 1034 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) && 1035 (strcmp("eth0", ifname) == 0)) { 1036 bsetprops(BP_NETWORK_INTERFACE, "xnf0"); 1037 bop_printf(NULL, 1038 "network interface name 'eth0' replaced with 'xnf0'\n"); 1039 } 1040 } 1041 1042 #else /* __xpv */ 1043 1044 static void 1045 setup_rarp_props(struct sol_netinfo *sip) 1046 { 1047 char buf[BUFLEN]; /* to hold ip/mac addrs */ 1048 uint8_t *val; 1049 1050 val = (uint8_t *)&sip->sn_ciaddr; 1051 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1052 val[0], val[1], val[2], val[3]); 1053 bsetprops(BP_HOST_IP, buf); 1054 1055 val = (uint8_t *)&sip->sn_siaddr; 1056 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1057 val[0], val[1], val[2], val[3]); 1058 bsetprops(BP_SERVER_IP, buf); 1059 1060 if (sip->sn_giaddr != 0) { 1061 val = (uint8_t *)&sip->sn_giaddr; 1062 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1063 val[0], val[1], val[2], val[3]); 1064 bsetprops(BP_ROUTER_IP, buf); 1065 } 1066 1067 if (sip->sn_netmask != 0) { 1068 val = (uint8_t *)&sip->sn_netmask; 1069 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1070 val[0], val[1], val[2], val[3]); 1071 bsetprops(BP_SUBNET_MASK, buf); 1072 } 1073 1074 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) { 1075 bop_printf(NULL, "unsupported mac type %d, mac len %d\n", 1076 sip->sn_mactype, sip->sn_maclen); 1077 } else { 1078 val = sip->sn_macaddr; 1079 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x", 1080 val[0], val[1], val[2], val[3], val[4], val[5]); 1081 bsetprops(BP_BOOT_MAC, buf); 1082 } 1083 } 1084 1085 #endif /* __xpv */ 1086 1087 static void 1088 build_panic_cmdline(const char *cmd, int cmdlen) 1089 { 1090 int proplen; 1091 size_t arglen; 1092 1093 arglen = sizeof (fastreboot_onpanic_args); 1094 /* 1095 * If we allready have fastreboot-onpanic set to zero, 1096 * don't add them again. 1097 */ 1098 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 && 1099 proplen <= sizeof (fastreboot_onpanic_cmdline)) { 1100 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC, 1101 fastreboot_onpanic_cmdline); 1102 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline)) 1103 arglen = 1; 1104 } 1105 1106 /* 1107 * construct fastreboot_onpanic_cmdline 1108 */ 1109 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) { 1110 DBG_MSG("Command line too long: clearing " 1111 FASTREBOOT_ONPANIC "\n"); 1112 fastreboot_onpanic = 0; 1113 } else { 1114 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen); 1115 if (arglen != 1) 1116 bcopy(fastreboot_onpanic_args, 1117 fastreboot_onpanic_cmdline + cmdlen, arglen); 1118 else 1119 fastreboot_onpanic_cmdline[cmdlen] = 0; 1120 } 1121 } 1122 1123 1124 #ifndef __xpv 1125 /* 1126 * Construct boot command line for Fast Reboot. The saved_cmdline 1127 * is also reported by "eeprom bootcmd". 1128 */ 1129 static void 1130 build_fastboot_cmdline(struct xboot_info *xbp) 1131 { 1132 saved_cmdline_len = strlen(xbp->bi_cmdline) + 1; 1133 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) { 1134 DBG(saved_cmdline_len); 1135 DBG_MSG("Command line too long: clearing fastreboot_capable\n"); 1136 fastreboot_capable = 0; 1137 } else { 1138 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline, 1139 saved_cmdline_len); 1140 saved_cmdline[saved_cmdline_len - 1] = '\0'; 1141 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1); 1142 } 1143 } 1144 1145 /* 1146 * Save memory layout, disk drive information, unix and boot archive sizes for 1147 * Fast Reboot. 1148 */ 1149 static void 1150 save_boot_info(struct xboot_info *xbi) 1151 { 1152 multiboot_info_t *mbi = xbi->bi_mb_info; 1153 struct boot_modules *modp; 1154 int i; 1155 1156 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t)); 1157 if (mbi->mmap_length > sizeof (saved_mmap)) { 1158 DBG_MSG("mbi->mmap_length too big: clearing " 1159 "fastreboot_capable\n"); 1160 fastreboot_capable = 0; 1161 } else { 1162 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap, 1163 mbi->mmap_length); 1164 } 1165 1166 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) { 1167 if (mbi->drives_length > sizeof (saved_drives)) { 1168 DBG(mbi->drives_length); 1169 DBG_MSG("mbi->drives_length too big: clearing " 1170 "fastreboot_capable\n"); 1171 fastreboot_capable = 0; 1172 } else { 1173 bcopy((void *)(uintptr_t)mbi->drives_addr, 1174 (void *)saved_drives, mbi->drives_length); 1175 } 1176 } else { 1177 saved_mbi.drives_length = 0; 1178 saved_mbi.drives_addr = NULL; 1179 } 1180 1181 /* 1182 * Current file sizes. Used by fastboot.c to figure out how much 1183 * memory to reserve for panic reboot. 1184 * Use the module list from the dboot-constructed xboot_info 1185 * instead of the list referenced by the multiboot structure 1186 * because that structure may not be addressable now. 1187 */ 1188 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE; 1189 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules; 1190 i < xbi->bi_module_cnt; i++, modp++) { 1191 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size; 1192 } 1193 } 1194 #endif /* __xpv */ 1195 1196 /* 1197 * Import boot environment module variables as properties, applying 1198 * blacklist filter for variables we know we will not use. 1199 * 1200 * Since the environment can be relatively large, containing many variables 1201 * used only for boot loader purposes, we will use a blacklist based filter. 1202 * To keep the blacklist from growing too large, we use prefix based filtering. 1203 * This is possible because in many cases, the loader variable names are 1204 * using a structured layout. 1205 * 1206 * We will not overwrite already set properties. 1207 */ 1208 static struct bop_blacklist { 1209 const char *bl_name; 1210 int bl_name_len; 1211 } bop_prop_blacklist[] = { 1212 { "ISADIR", sizeof ("ISADIR") }, 1213 { "acpi", sizeof ("acpi") }, 1214 { "autoboot_delay", sizeof ("autoboot_delay") }, 1215 { "autoboot_delay", sizeof ("autoboot_delay") }, 1216 { "beansi_", sizeof ("beansi_") }, 1217 { "beastie", sizeof ("beastie") }, 1218 { "bemenu", sizeof ("bemenu") }, 1219 { "boot.", sizeof ("boot.") }, 1220 { "bootenv", sizeof ("bootenv") }, 1221 { "currdev", sizeof ("currdev") }, 1222 { "dhcp.", sizeof ("dhcp.") }, 1223 { "interpret", sizeof ("interpret") }, 1224 { "kernel", sizeof ("kernel") }, 1225 { "loaddev", sizeof ("loaddev") }, 1226 { "loader_", sizeof ("loader_") }, 1227 { "module_path", sizeof ("module_path") }, 1228 { "nfs.", sizeof ("nfs.") }, 1229 { "pcibios", sizeof ("pcibios") }, 1230 { "prompt", sizeof ("prompt") }, 1231 { "smbios", sizeof ("smbios") }, 1232 { "tem", sizeof ("tem") }, 1233 { "twiddle_divisor", sizeof ("twiddle_divisor") }, 1234 { "zfs_be", sizeof ("zfs_be") }, 1235 }; 1236 1237 /* 1238 * Match the name against prefixes in above blacklist. If the match was 1239 * found, this name is blacklisted. 1240 */ 1241 static boolean_t 1242 name_is_blacklisted(const char *name) 1243 { 1244 int i, n; 1245 1246 n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]); 1247 for (i = 0; i < n; i++) { 1248 if (strncmp(bop_prop_blacklist[i].bl_name, name, 1249 bop_prop_blacklist[i].bl_name_len - 1) == 0) { 1250 return (B_TRUE); 1251 } 1252 } 1253 return (B_FALSE); 1254 } 1255 1256 static void 1257 process_boot_environment(struct boot_modules *benv) 1258 { 1259 char *env, *ptr, *name, *value; 1260 uint32_t size, name_len, value_len; 1261 1262 if (benv == NULL || benv->bm_type != BMT_ENV) 1263 return; 1264 ptr = env = benv->bm_addr; 1265 size = benv->bm_size; 1266 do { 1267 name = ptr; 1268 /* find '=' */ 1269 while (*ptr != '=') { 1270 ptr++; 1271 if (ptr > env + size) /* Something is very wrong. */ 1272 return; 1273 } 1274 name_len = ptr - name; 1275 if (sizeof (buffer) <= name_len) 1276 continue; 1277 1278 (void) strncpy(buffer, name, sizeof (buffer)); 1279 buffer[name_len] = '\0'; 1280 name = buffer; 1281 1282 value_len = 0; 1283 value = ++ptr; 1284 while ((uintptr_t)ptr - (uintptr_t)env < size) { 1285 if (*ptr == '\0') { 1286 ptr++; 1287 value_len = (uintptr_t)ptr - (uintptr_t)env; 1288 break; 1289 } 1290 ptr++; 1291 } 1292 1293 /* Did we reach the end of the module? */ 1294 if (value_len == 0) 1295 return; 1296 1297 if (*value == '\0') 1298 continue; 1299 1300 /* Is this property already set? */ 1301 if (do_bsys_getproplen(NULL, name) >= 0) 1302 continue; 1303 1304 if (name_is_blacklisted(name) == B_TRUE) 1305 continue; 1306 1307 /* Create new property. */ 1308 bsetprops(name, value); 1309 1310 /* Avoid reading past the module end. */ 1311 if (size <= (uintptr_t)ptr - (uintptr_t)env) 1312 return; 1313 } while (*ptr != '\0'); 1314 } 1315 1316 /* 1317 * 1st pass at building the table of boot properties. This includes: 1318 * - values set on the command line: -B a=x,b=y,c=z .... 1319 * - known values we just compute (ie. from xbp) 1320 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 1321 * 1322 * the grub command line looked like: 1323 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args] 1324 * 1325 * whoami is the same as boot-file 1326 */ 1327 static void 1328 build_boot_properties(struct xboot_info *xbp) 1329 { 1330 char *name; 1331 int name_len; 1332 char *value; 1333 int value_len; 1334 struct boot_modules *bm, *rdbm, *benv = NULL; 1335 char *propbuf; 1336 int quoted = 0; 1337 int boot_arg_len; 1338 uint_t i, midx; 1339 char modid[32]; 1340 #ifndef __xpv 1341 static int stdout_val = 0; 1342 uchar_t boot_device; 1343 char str[3]; 1344 #endif 1345 1346 /* 1347 * These have to be done first, so that kobj_mount_root() works 1348 */ 1349 DBG_MSG("Building boot properties\n"); 1350 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0); 1351 DBG((uintptr_t)propbuf); 1352 if (xbp->bi_module_cnt > 0) { 1353 bm = xbp->bi_modules; 1354 rdbm = NULL; 1355 for (midx = i = 0; i < xbp->bi_module_cnt; i++) { 1356 if (bm[i].bm_type == BMT_ROOTFS) { 1357 rdbm = &bm[i]; 1358 continue; 1359 } 1360 if (bm[i].bm_type == BMT_HASH || bm[i].bm_name == NULL) 1361 continue; 1362 1363 if (bm[i].bm_type == BMT_ENV) { 1364 if (benv == NULL) 1365 benv = &bm[i]; 1366 else 1367 continue; 1368 } 1369 1370 (void) snprintf(modid, sizeof (modid), 1371 "module-name-%u", midx); 1372 bsetprops(modid, (char *)bm[i].bm_name); 1373 (void) snprintf(modid, sizeof (modid), 1374 "module-addr-%u", midx); 1375 bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr); 1376 (void) snprintf(modid, sizeof (modid), 1377 "module-size-%u", midx); 1378 bsetprop64(modid, (uint64_t)bm[i].bm_size); 1379 ++midx; 1380 } 1381 if (rdbm != NULL) { 1382 bsetprop64("ramdisk_start", 1383 (uint64_t)(uintptr_t)rdbm->bm_addr); 1384 bsetprop64("ramdisk_end", 1385 (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size); 1386 } 1387 } 1388 1389 /* 1390 * If there are any boot time modules or hashes present, then disable 1391 * fast reboot. 1392 */ 1393 if (xbp->bi_module_cnt > 1) { 1394 fastreboot_disable(FBNS_BOOTMOD); 1395 } 1396 1397 #ifndef __xpv 1398 /* 1399 * Disable fast reboot if we're using the Multiboot 2 boot protocol, 1400 * since we don't currently support MB2 info and module relocation. 1401 * Note that fast reboot will have already been disabled if multiple 1402 * modules are present, since the current implementation assumes that 1403 * we only have a single module, the boot_archive. 1404 */ 1405 if (xbp->bi_mb_version != 1) { 1406 fastreboot_disable(FBNS_MULTIBOOT2); 1407 } 1408 #endif 1409 1410 DBG_MSG("Parsing command line for boot properties\n"); 1411 value = xbp->bi_cmdline; 1412 1413 /* 1414 * allocate memory to collect boot_args into 1415 */ 1416 boot_arg_len = strlen(xbp->bi_cmdline) + 1; 1417 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE); 1418 boot_args[0] = 0; 1419 boot_arg_len = 0; 1420 1421 #ifdef __xpv 1422 /* 1423 * Xen puts a lot of device information in front of the kernel name 1424 * let's grab them and make them boot properties. The first 1425 * string w/o an "=" in it will be the boot-file property. 1426 */ 1427 (void) strcpy(namebuf, "xpv-"); 1428 for (;;) { 1429 /* 1430 * get to next property 1431 */ 1432 while (ISSPACE(*value)) 1433 ++value; 1434 name = value; 1435 /* 1436 * look for an "=" 1437 */ 1438 while (*value && !ISSPACE(*value) && *value != '=') { 1439 value++; 1440 } 1441 if (*value != '=') { /* no "=" in the property */ 1442 value = name; 1443 break; 1444 } 1445 name_len = value - name; 1446 value_len = 0; 1447 /* 1448 * skip over the "=" 1449 */ 1450 value++; 1451 while (value[value_len] && !ISSPACE(value[value_len])) { 1452 ++value_len; 1453 } 1454 /* 1455 * build property name with "xpv-" prefix 1456 */ 1457 if (name_len + 4 > 32) { /* skip if name too long */ 1458 value += value_len; 1459 continue; 1460 } 1461 bcopy(name, &namebuf[4], name_len); 1462 name_len += 4; 1463 namebuf[name_len] = 0; 1464 bcopy(value, propbuf, value_len); 1465 propbuf[value_len] = 0; 1466 bsetprops(namebuf, propbuf); 1467 1468 /* 1469 * xpv-root is set to the logical disk name of the xen 1470 * VBD when booting from a disk-based filesystem. 1471 */ 1472 if (strcmp(namebuf, "xpv-root") == 0) 1473 xen_vbdroot_props(propbuf); 1474 /* 1475 * While we're here, if we have a "xpv-nfsroot" property 1476 * then we need to set "fstype" to "nfs" so we mount 1477 * our root from the nfs server. Also parse the xpv-nfsroot 1478 * property to create the properties that nfs_mountroot will 1479 * need to find the root and mount it. 1480 */ 1481 if (strcmp(namebuf, "xpv-nfsroot") == 0) 1482 xen_nfsroot_props(propbuf); 1483 1484 if (strcmp(namebuf, "xpv-ip") == 0) 1485 xen_ip_props(propbuf); 1486 value += value_len; 1487 } 1488 #endif 1489 1490 while (ISSPACE(*value)) 1491 ++value; 1492 /* 1493 * value now points at the boot-file 1494 */ 1495 value_len = 0; 1496 while (value[value_len] && !ISSPACE(value[value_len])) 1497 ++value_len; 1498 if (value_len > 0) { 1499 whoami = propbuf; 1500 bcopy(value, whoami, value_len); 1501 whoami[value_len] = 0; 1502 bsetprops("boot-file", whoami); 1503 /* 1504 * strip leading path stuff from whoami, so running from 1505 * PXE/miniroot makes sense. 1506 */ 1507 if (strstr(whoami, "/platform/") != NULL) 1508 whoami = strstr(whoami, "/platform/"); 1509 bsetprops("whoami", whoami); 1510 } 1511 1512 /* 1513 * Values forcibly set boot properties on the command line via -B. 1514 * Allow use of quotes in values. Other stuff goes on kernel 1515 * command line. 1516 */ 1517 name = value + value_len; 1518 while (*name != 0) { 1519 /* 1520 * anything not " -B" is copied to the command line 1521 */ 1522 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') { 1523 boot_args[boot_arg_len++] = *name; 1524 boot_args[boot_arg_len] = 0; 1525 ++name; 1526 continue; 1527 } 1528 1529 /* 1530 * skip the " -B" and following white space 1531 */ 1532 name += 3; 1533 while (ISSPACE(*name)) 1534 ++name; 1535 while (*name && !ISSPACE(*name)) { 1536 value = strstr(name, "="); 1537 if (value == NULL) 1538 break; 1539 name_len = value - name; 1540 ++value; 1541 value_len = 0; 1542 quoted = 0; 1543 for (; ; ++value_len) { 1544 if (!value[value_len]) 1545 break; 1546 1547 /* 1548 * is this value quoted? 1549 */ 1550 if (value_len == 0 && 1551 (value[0] == '\'' || value[0] == '"')) { 1552 quoted = value[0]; 1553 ++value_len; 1554 } 1555 1556 /* 1557 * In the quote accept any character, 1558 * but look for ending quote. 1559 */ 1560 if (quoted) { 1561 if (value[value_len] == quoted) 1562 quoted = 0; 1563 continue; 1564 } 1565 1566 /* 1567 * a comma or white space ends the value 1568 */ 1569 if (value[value_len] == ',' || 1570 ISSPACE(value[value_len])) 1571 break; 1572 } 1573 1574 if (value_len == 0) { 1575 bsetprop(name, name_len, "true", 5); 1576 } else { 1577 char *v = value; 1578 int l = value_len; 1579 if (v[0] == v[l - 1] && 1580 (v[0] == '\'' || v[0] == '"')) { 1581 ++v; 1582 l -= 2; 1583 } 1584 bcopy(v, propbuf, l); 1585 propbuf[l] = '\0'; 1586 bsetprop(name, name_len, propbuf, 1587 l + 1); 1588 } 1589 name = value + value_len; 1590 while (*name == ',') 1591 ++name; 1592 } 1593 } 1594 1595 /* 1596 * set boot-args property 1597 * 1275 name is bootargs, so set 1598 * that too 1599 */ 1600 bsetprops("boot-args", boot_args); 1601 bsetprops("bootargs", boot_args); 1602 1603 process_boot_environment(benv); 1604 1605 #ifndef __xpv 1606 /* 1607 * Build boot command line for Fast Reboot 1608 */ 1609 build_fastboot_cmdline(xbp); 1610 1611 if (xbp->bi_mb_version == 1) { 1612 multiboot_info_t *mbi = xbp->bi_mb_info; 1613 int netboot; 1614 struct sol_netinfo *sip; 1615 1616 /* 1617 * set the BIOS boot device from GRUB 1618 */ 1619 netboot = 0; 1620 1621 /* 1622 * Save various boot information for Fast Reboot 1623 */ 1624 save_boot_info(xbp); 1625 1626 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) { 1627 boot_device = mbi->boot_device >> 24; 1628 if (boot_device == 0x20) 1629 netboot++; 1630 str[0] = (boot_device >> 4) + '0'; 1631 str[1] = (boot_device & 0xf) + '0'; 1632 str[2] = 0; 1633 bsetprops("bios-boot-device", str); 1634 } else { 1635 netboot = 1; 1636 } 1637 1638 /* 1639 * In the netboot case, drives_info is overloaded with the 1640 * dhcp ack. This is not multiboot compliant and requires 1641 * special pxegrub! 1642 */ 1643 if (netboot && mbi->drives_length != 0) { 1644 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr; 1645 if (sip->sn_infotype == SN_TYPE_BOOTP) 1646 bsetprop("bootp-response", 1647 sizeof ("bootp-response"), 1648 (void *)(uintptr_t)mbi->drives_addr, 1649 mbi->drives_length); 1650 else if (sip->sn_infotype == SN_TYPE_RARP) 1651 setup_rarp_props(sip); 1652 } 1653 } else { 1654 multiboot2_info_header_t *mbi = xbp->bi_mb_info; 1655 multiboot_tag_bootdev_t *bootdev = NULL; 1656 multiboot_tag_network_t *netdev = NULL; 1657 1658 if (mbi != NULL) { 1659 bootdev = dboot_multiboot2_find_tag(mbi, 1660 MULTIBOOT_TAG_TYPE_BOOTDEV); 1661 netdev = dboot_multiboot2_find_tag(mbi, 1662 MULTIBOOT_TAG_TYPE_NETWORK); 1663 } 1664 if (bootdev != NULL) { 1665 DBG(bootdev->mb_biosdev); 1666 boot_device = bootdev->mb_biosdev; 1667 str[0] = (boot_device >> 4) + '0'; 1668 str[1] = (boot_device & 0xf) + '0'; 1669 str[2] = 0; 1670 bsetprops("bios-boot-device", str); 1671 } 1672 if (netdev != NULL) { 1673 bsetprop("bootp-response", sizeof ("bootp-response"), 1674 (void *)(uintptr_t)netdev->mb_dhcpack, 1675 netdev->mb_size - 1676 sizeof (multiboot_tag_network_t)); 1677 } 1678 } 1679 1680 bsetprop("stdout", strlen("stdout"), 1681 &stdout_val, sizeof (stdout_val)); 1682 #endif /* __xpv */ 1683 1684 /* 1685 * more conjured up values for made up things.... 1686 */ 1687 #if defined(__xpv) 1688 bsetprops("mfg-name", "i86xpv"); 1689 bsetprops("impl-arch-name", "i86xpv"); 1690 #else 1691 bsetprops("mfg-name", "i86pc"); 1692 bsetprops("impl-arch-name", "i86pc"); 1693 #endif 1694 1695 /* 1696 * Build firmware-provided system properties 1697 */ 1698 build_firmware_properties(xbp); 1699 1700 /* 1701 * XXPV 1702 * 1703 * Find out what these are: 1704 * - cpuid_feature_ecx_include 1705 * - cpuid_feature_ecx_exclude 1706 * - cpuid_feature_edx_include 1707 * - cpuid_feature_edx_exclude 1708 * 1709 * Find out what these are in multiboot: 1710 * - netdev-path 1711 * - fstype 1712 */ 1713 } 1714 1715 #ifdef __xpv 1716 /* 1717 * Under the Hypervisor, memory usable for DMA may be scarce. One 1718 * very likely large pool of DMA friendly memory is occupied by 1719 * the boot_archive, as it was loaded by grub into low MFNs. 1720 * 1721 * Here we free up that memory by copying the boot archive to what are 1722 * likely higher MFN pages and then swapping the mfn/pfn mappings. 1723 */ 1724 #define PFN_2GIG 0x80000 1725 static void 1726 relocate_boot_archive(struct xboot_info *xbp) 1727 { 1728 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 1729 struct boot_modules *bm = xbp->bi_modules; 1730 uintptr_t va; 1731 pfn_t va_pfn; 1732 mfn_t va_mfn; 1733 caddr_t copy; 1734 pfn_t copy_pfn; 1735 mfn_t copy_mfn; 1736 size_t len; 1737 int slop; 1738 int total = 0; 1739 int relocated = 0; 1740 int mmu_update_return; 1741 mmu_update_t t[2]; 1742 x86pte_t pte; 1743 1744 /* 1745 * If all MFN's are below 2Gig, don't bother doing this. 1746 */ 1747 if (max_mfn < PFN_2GIG) 1748 return; 1749 if (xbp->bi_module_cnt < 1) { 1750 DBG_MSG("no boot_archive!"); 1751 return; 1752 } 1753 1754 DBG_MSG("moving boot_archive to high MFN memory\n"); 1755 va = (uintptr_t)bm->bm_addr; 1756 len = bm->bm_size; 1757 slop = va & MMU_PAGEOFFSET; 1758 if (slop) { 1759 va += MMU_PAGESIZE - slop; 1760 len -= MMU_PAGESIZE - slop; 1761 } 1762 len = P2ALIGN(len, MMU_PAGESIZE); 1763 1764 /* 1765 * Go through all boot_archive pages, swapping any low MFN pages 1766 * with memory at next_phys. 1767 */ 1768 while (len != 0) { 1769 ++total; 1770 va_pfn = mmu_btop(va - ONE_GIG); 1771 va_mfn = mfn_list[va_pfn]; 1772 if (mfn_list[va_pfn] < PFN_2GIG) { 1773 copy = kbm_remap_window(next_phys, 1); 1774 bcopy((void *)va, copy, MMU_PAGESIZE); 1775 copy_pfn = mmu_btop(next_phys); 1776 copy_mfn = mfn_list[copy_pfn]; 1777 1778 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID; 1779 if (HYPERVISOR_update_va_mapping(va, pte, 1780 UVMF_INVLPG | UVMF_LOCAL)) 1781 bop_panic("relocate_boot_archive(): " 1782 "HYPERVISOR_update_va_mapping() failed"); 1783 1784 mfn_list[va_pfn] = copy_mfn; 1785 mfn_list[copy_pfn] = va_mfn; 1786 1787 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE; 1788 t[0].val = va_pfn; 1789 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE; 1790 t[1].val = copy_pfn; 1791 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return, 1792 DOMID_SELF) != 0 || mmu_update_return != 2) 1793 bop_panic("relocate_boot_archive(): " 1794 "HYPERVISOR_mmu_update() failed"); 1795 1796 next_phys += MMU_PAGESIZE; 1797 ++relocated; 1798 } 1799 len -= MMU_PAGESIZE; 1800 va += MMU_PAGESIZE; 1801 } 1802 DBG_MSG("Relocated pages:\n"); 1803 DBG(relocated); 1804 DBG_MSG("Out of total pages:\n"); 1805 DBG(total); 1806 } 1807 #endif /* __xpv */ 1808 1809 #if !defined(__xpv) 1810 /* 1811 * simple description of a stack frame (args are 32 bit only currently) 1812 */ 1813 typedef struct bop_frame { 1814 struct bop_frame *old_frame; 1815 pc_t retaddr; 1816 long arg[1]; 1817 } bop_frame_t; 1818 1819 void 1820 bop_traceback(bop_frame_t *frame) 1821 { 1822 pc_t pc; 1823 int cnt; 1824 char *ksym; 1825 ulong_t off; 1826 1827 bop_printf(NULL, "Stack traceback:\n"); 1828 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */ 1829 pc = frame->retaddr; 1830 if (pc == 0) 1831 break; 1832 ksym = kobj_getsymname(pc, &off); 1833 if (ksym) 1834 bop_printf(NULL, " %s+%lx", ksym, off); 1835 else 1836 bop_printf(NULL, " 0x%lx", pc); 1837 1838 frame = frame->old_frame; 1839 if (frame == 0) { 1840 bop_printf(NULL, "\n"); 1841 break; 1842 } 1843 bop_printf(NULL, "\n"); 1844 } 1845 } 1846 1847 struct trapframe { 1848 ulong_t error_code; /* optional */ 1849 ulong_t inst_ptr; 1850 ulong_t code_seg; 1851 ulong_t flags_reg; 1852 ulong_t stk_ptr; 1853 ulong_t stk_seg; 1854 }; 1855 1856 void 1857 bop_trap(ulong_t *tfp) 1858 { 1859 struct trapframe *tf = (struct trapframe *)tfp; 1860 bop_frame_t fakeframe; 1861 static int depth = 0; 1862 1863 /* 1864 * Check for an infinite loop of traps. 1865 */ 1866 if (++depth > 2) 1867 bop_panic("Nested trap"); 1868 1869 bop_printf(NULL, "Unexpected trap\n"); 1870 1871 /* 1872 * adjust the tf for optional error_code by detecting the code selector 1873 */ 1874 if (tf->code_seg != B64CODE_SEL) 1875 tf = (struct trapframe *)(tfp - 1); 1876 else 1877 bop_printf(NULL, "error code 0x%lx\n", 1878 tf->error_code & 0xffffffff); 1879 1880 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr); 1881 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff); 1882 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg); 1883 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr); 1884 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff); 1885 1886 /* grab %[er]bp pushed by our code from the stack */ 1887 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3); 1888 fakeframe.retaddr = (pc_t)tf->inst_ptr; 1889 bop_printf(NULL, "Attempting stack backtrace:\n"); 1890 bop_traceback(&fakeframe); 1891 bop_panic("unexpected trap in early boot"); 1892 } 1893 1894 extern void bop_trap_handler(void); 1895 1896 static gate_desc_t *bop_idt; 1897 1898 static desctbr_t bop_idt_info; 1899 1900 /* 1901 * Install a temporary IDT that lets us catch errors in the boot time code. 1902 * We shouldn't get any faults at all while this is installed, so we'll 1903 * just generate a traceback and exit. 1904 */ 1905 static void 1906 bop_idt_init(void) 1907 { 1908 int t; 1909 1910 bop_idt = (gate_desc_t *) 1911 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 1912 bzero(bop_idt, MMU_PAGESIZE); 1913 for (t = 0; t < NIDT; ++t) { 1914 /* 1915 * Note that since boot runs without a TSS, the 1916 * double fault handler cannot use an alternate stack (64-bit). 1917 */ 1918 set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL, 1919 SDT_SYSIGT, TRP_KPL, 0); 1920 } 1921 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1; 1922 bop_idt_info.dtr_base = (uintptr_t)bop_idt; 1923 wr_idtr(&bop_idt_info); 1924 } 1925 #endif /* !defined(__xpv) */ 1926 1927 /* 1928 * This is where we enter the kernel. It dummies up the boot_ops and 1929 * boot_syscalls vectors and jumps off to _kobj_boot() 1930 */ 1931 void 1932 _start(struct xboot_info *xbp) 1933 { 1934 bootops_t *bops = &bootop; 1935 extern void _kobj_boot(); 1936 1937 /* 1938 * 1st off - initialize the console for any error messages 1939 */ 1940 xbootp = xbp; 1941 #ifdef __xpv 1942 HYPERVISOR_shared_info = (void *)xbp->bi_shared_info; 1943 xen_info = xbp->bi_xen_start_info; 1944 #endif 1945 1946 #ifndef __xpv 1947 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) == 1948 FASTBOOT_MAGIC) { 1949 post_fastreboot = 1; 1950 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0; 1951 } 1952 #endif 1953 1954 bcons_init(xbp); 1955 have_console = 1; 1956 1957 /* 1958 * enable debugging 1959 */ 1960 if (find_boot_prop("kbm_debug") != NULL) 1961 kbm_debug = 1; 1962 1963 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: "); 1964 DBG_MSG((char *)xbp->bi_cmdline); 1965 DBG_MSG("\n\n\n"); 1966 1967 /* 1968 * physavail is no longer used by startup 1969 */ 1970 bm.physinstalled = xbp->bi_phys_install; 1971 bm.pcimem = xbp->bi_pcimem; 1972 bm.rsvdmem = xbp->bi_rsvdmem; 1973 bm.physavail = NULL; 1974 1975 /* 1976 * initialize the boot time allocator 1977 */ 1978 next_phys = xbp->bi_next_paddr; 1979 DBG(next_phys); 1980 next_virt = (uintptr_t)xbp->bi_next_vaddr; 1981 DBG(next_virt); 1982 DBG_MSG("Initializing boot time memory management..."); 1983 #ifdef __xpv 1984 { 1985 xen_platform_parameters_t p; 1986 1987 /* This call shouldn't fail, dboot already did it once. */ 1988 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p); 1989 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start); 1990 DBG(xen_virt_start); 1991 } 1992 #endif 1993 kbm_init(xbp); 1994 DBG_MSG("done\n"); 1995 1996 /* 1997 * Fill in the bootops vector 1998 */ 1999 bops->bsys_version = BO_VERSION; 2000 bops->boot_mem = &bm; 2001 bops->bsys_alloc = do_bsys_alloc; 2002 bops->bsys_free = do_bsys_free; 2003 bops->bsys_getproplen = do_bsys_getproplen; 2004 bops->bsys_getprop = do_bsys_getprop; 2005 bops->bsys_nextprop = do_bsys_nextprop; 2006 bops->bsys_printf = bop_printf; 2007 bops->bsys_doint = do_bsys_doint; 2008 2009 /* 2010 * BOP_EALLOC() is no longer needed 2011 */ 2012 bops->bsys_ealloc = do_bsys_ealloc; 2013 2014 #ifdef __xpv 2015 /* 2016 * On domain 0 we need to free up some physical memory that is 2017 * usable for DMA. Since GRUB loaded the boot_archive, it is 2018 * sitting in low MFN memory. We'll relocated the boot archive 2019 * pages to high PFN memory. 2020 */ 2021 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2022 relocate_boot_archive(xbp); 2023 #endif 2024 2025 #ifndef __xpv 2026 /* 2027 * Install an IDT to catch early pagefaults (shouldn't have any). 2028 * Also needed for kmdb. 2029 */ 2030 bop_idt_init(); 2031 #endif 2032 2033 /* 2034 * Start building the boot properties from the command line 2035 */ 2036 DBG_MSG("Initializing boot properties:\n"); 2037 build_boot_properties(xbp); 2038 2039 if (find_boot_prop("prom_debug") || kbm_debug) { 2040 char *value; 2041 2042 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 2043 boot_prop_display(value); 2044 } 2045 2046 /* 2047 * jump into krtld... 2048 */ 2049 _kobj_boot(&bop_sysp, NULL, bops, NULL); 2050 } 2051 2052 2053 /*ARGSUSED*/ 2054 static caddr_t 2055 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 2056 { 2057 panic("Attempt to bsys_alloc() too late\n"); 2058 return (NULL); 2059 } 2060 2061 /*ARGSUSED*/ 2062 static void 2063 no_more_free(bootops_t *bop, caddr_t virt, size_t size) 2064 { 2065 panic("Attempt to bsys_free() too late\n"); 2066 } 2067 2068 void 2069 bop_no_more_mem(void) 2070 { 2071 DBG(total_bop_alloc_scratch); 2072 DBG(total_bop_alloc_kernel); 2073 bootops->bsys_alloc = no_more_alloc; 2074 bootops->bsys_free = no_more_free; 2075 } 2076 2077 2078 /* 2079 * Set ACPI firmware properties 2080 */ 2081 2082 static caddr_t 2083 vmap_phys(size_t length, paddr_t pa) 2084 { 2085 paddr_t start, end; 2086 caddr_t va; 2087 size_t len, page; 2088 2089 #ifdef __xpv 2090 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET); 2091 #endif 2092 start = P2ALIGN(pa, MMU_PAGESIZE); 2093 end = P2ROUNDUP(pa + length, MMU_PAGESIZE); 2094 len = end - start; 2095 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE); 2096 for (page = 0; page < len; page += MMU_PAGESIZE) 2097 kbm_map((uintptr_t)va + page, start + page, 0, 0); 2098 return (va + (pa & MMU_PAGEOFFSET)); 2099 } 2100 2101 static uint8_t 2102 checksum_table(uint8_t *tp, size_t len) 2103 { 2104 uint8_t sum = 0; 2105 2106 while (len-- > 0) 2107 sum += *tp++; 2108 2109 return (sum); 2110 } 2111 2112 static int 2113 valid_rsdp(ACPI_TABLE_RSDP *rp) 2114 { 2115 2116 /* validate the V1.x checksum */ 2117 if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0) 2118 return (0); 2119 2120 /* If pre-ACPI 2.0, this is a valid RSDP */ 2121 if (rp->Revision < 2) 2122 return (1); 2123 2124 /* validate the V2.x checksum */ 2125 if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0) 2126 return (0); 2127 2128 return (1); 2129 } 2130 2131 /* 2132 * Scan memory range for an RSDP; 2133 * see ACPI 3.0 Spec, 5.2.5.1 2134 */ 2135 static ACPI_TABLE_RSDP * 2136 scan_rsdp(paddr_t start, paddr_t end) 2137 { 2138 ssize_t len = end - start; 2139 caddr_t ptr; 2140 2141 ptr = vmap_phys(len, start); 2142 while (len > 0) { 2143 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 && 2144 valid_rsdp((ACPI_TABLE_RSDP *)ptr)) 2145 return ((ACPI_TABLE_RSDP *)ptr); 2146 2147 ptr += ACPI_RSDP_SCAN_STEP; 2148 len -= ACPI_RSDP_SCAN_STEP; 2149 } 2150 2151 return (NULL); 2152 } 2153 2154 /* 2155 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function 2156 */ 2157 static ACPI_TABLE_RSDP * 2158 find_rsdp() 2159 { 2160 ACPI_TABLE_RSDP *rsdp; 2161 uint64_t rsdp_val = 0; 2162 uint16_t *ebda_seg; 2163 paddr_t ebda_addr; 2164 2165 /* check for "acpi-root-tab" property */ 2166 if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) { 2167 (void) do_bsys_getprop(NULL, "acpi-root-tab", &rsdp_val); 2168 if (rsdp_val != 0) { 2169 rsdp = scan_rsdp(rsdp_val, rsdp_val + sizeof (*rsdp)); 2170 if (rsdp != NULL) { 2171 if (kbm_debug) { 2172 bop_printf(NULL, 2173 "Using RSDP from bootloader: " 2174 "0x%p\n", (void *)rsdp); 2175 } 2176 return (rsdp); 2177 } 2178 } 2179 } 2180 2181 /* 2182 * Get the EBDA segment and scan the first 1K 2183 */ 2184 ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), 2185 ACPI_EBDA_PTR_LOCATION); 2186 ebda_addr = *ebda_seg << 4; 2187 rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE); 2188 if (rsdp == NULL) 2189 /* if EBDA doesn't contain RSDP, look in BIOS memory */ 2190 rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE, 2191 ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE); 2192 return (rsdp); 2193 } 2194 2195 static ACPI_TABLE_HEADER * 2196 map_fw_table(paddr_t table_addr) 2197 { 2198 ACPI_TABLE_HEADER *tp; 2199 size_t len = MAX(sizeof (*tp), MMU_PAGESIZE); 2200 2201 /* 2202 * Map at least a page; if the table is larger than this, remap it 2203 */ 2204 tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr); 2205 if (tp->Length > len) 2206 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr); 2207 return (tp); 2208 } 2209 2210 static ACPI_TABLE_HEADER * 2211 find_fw_table(char *signature) 2212 { 2213 static int revision = 0; 2214 static ACPI_TABLE_XSDT *xsdt; 2215 static int len; 2216 paddr_t xsdt_addr; 2217 ACPI_TABLE_RSDP *rsdp; 2218 ACPI_TABLE_HEADER *tp; 2219 paddr_t table_addr; 2220 int n; 2221 2222 if (strlen(signature) != ACPI_NAME_SIZE) 2223 return (NULL); 2224 2225 /* 2226 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help 2227 * understand this code. If we haven't already found the RSDT/XSDT, 2228 * revision will be 0. Find the RSDP and check the revision 2229 * to find out whether to use the RSDT or XSDT. If revision is 2230 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2, 2231 * use the XSDT. If the XSDT address is 0, though, fall back to 2232 * revision 1 and use the RSDT. 2233 */ 2234 if (revision == 0) { 2235 if ((rsdp = find_rsdp()) != NULL) { 2236 revision = rsdp->Revision; 2237 /* 2238 * ACPI 6.0 states that current revision is 2 2239 * from acpi_table_rsdp definition: 2240 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+ 2241 */ 2242 if (revision > 2) 2243 revision = 2; 2244 switch (revision) { 2245 case 2: 2246 /* 2247 * Use the XSDT unless BIOS is buggy and 2248 * claims to be rev 2 but has a null XSDT 2249 * address 2250 */ 2251 xsdt_addr = rsdp->XsdtPhysicalAddress; 2252 if (xsdt_addr != 0) 2253 break; 2254 /* FALLTHROUGH */ 2255 case 0: 2256 /* treat RSDP rev 0 as revision 1 internally */ 2257 revision = 1; 2258 /* FALLTHROUGH */ 2259 case 1: 2260 /* use the RSDT for rev 0/1 */ 2261 xsdt_addr = rsdp->RsdtPhysicalAddress; 2262 break; 2263 default: 2264 /* unknown revision */ 2265 revision = 0; 2266 break; 2267 } 2268 } 2269 if (revision == 0) 2270 return (NULL); 2271 2272 /* cache the XSDT info */ 2273 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr); 2274 len = (xsdt->Header.Length - sizeof (xsdt->Header)) / 2275 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t)); 2276 } 2277 2278 /* 2279 * Scan the table headers looking for a signature match 2280 */ 2281 for (n = 0; n < len; n++) { 2282 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt; 2283 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] : 2284 xsdt->TableOffsetEntry[n]; 2285 2286 if (table_addr == 0) 2287 continue; 2288 tp = map_fw_table(table_addr); 2289 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) { 2290 return (tp); 2291 } 2292 } 2293 return (NULL); 2294 } 2295 2296 static void 2297 process_mcfg(ACPI_TABLE_MCFG *tp) 2298 { 2299 ACPI_MCFG_ALLOCATION *cfg_baap; 2300 char *cfg_baa_endp; 2301 int64_t ecfginfo[4]; 2302 2303 cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp)); 2304 cfg_baa_endp = ((char *)tp) + tp->Header.Length; 2305 while ((char *)cfg_baap < cfg_baa_endp) { 2306 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) { 2307 ecfginfo[0] = cfg_baap->Address; 2308 ecfginfo[1] = cfg_baap->PciSegment; 2309 ecfginfo[2] = cfg_baap->StartBusNumber; 2310 ecfginfo[3] = cfg_baap->EndBusNumber; 2311 bsetprop(MCFG_PROPNAME, strlen(MCFG_PROPNAME), 2312 ecfginfo, sizeof (ecfginfo)); 2313 break; 2314 } 2315 cfg_baap++; 2316 } 2317 } 2318 2319 #ifndef __xpv 2320 static void 2321 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp, 2322 uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array) 2323 { 2324 ACPI_SUBTABLE_HEADER *item, *end; 2325 uint32_t cpu_count = 0; 2326 uint32_t cpu_possible_count = 0; 2327 2328 /* 2329 * Determine number of CPUs and keep track of "final" APIC ID 2330 * for each CPU by walking through ACPI MADT processor list 2331 */ 2332 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2333 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2334 2335 while (item < end) { 2336 switch (item->Type) { 2337 case ACPI_MADT_TYPE_LOCAL_APIC: { 2338 ACPI_MADT_LOCAL_APIC *cpu = 2339 (ACPI_MADT_LOCAL_APIC *) item; 2340 2341 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2342 if (cpu_apicid_array != NULL) 2343 cpu_apicid_array[cpu_count] = cpu->Id; 2344 cpu_count++; 2345 } 2346 cpu_possible_count++; 2347 break; 2348 } 2349 case ACPI_MADT_TYPE_LOCAL_X2APIC: { 2350 ACPI_MADT_LOCAL_X2APIC *cpu = 2351 (ACPI_MADT_LOCAL_X2APIC *) item; 2352 2353 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2354 if (cpu_apicid_array != NULL) 2355 cpu_apicid_array[cpu_count] = 2356 cpu->LocalApicId; 2357 cpu_count++; 2358 } 2359 cpu_possible_count++; 2360 break; 2361 } 2362 default: 2363 if (kbm_debug) 2364 bop_printf(NULL, "MADT type %d\n", item->Type); 2365 break; 2366 } 2367 2368 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length); 2369 } 2370 if (cpu_countp) 2371 *cpu_countp = cpu_count; 2372 if (cpu_possible_countp) 2373 *cpu_possible_countp = cpu_possible_count; 2374 } 2375 2376 static void 2377 process_madt(ACPI_TABLE_MADT *tp) 2378 { 2379 uint32_t cpu_count = 0; 2380 uint32_t cpu_possible_count = 0; 2381 uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */ 2382 2383 if (tp != NULL) { 2384 /* count cpu's */ 2385 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL); 2386 2387 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL, 2388 cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE); 2389 if (cpu_apicid_array == NULL) 2390 bop_panic("Not enough memory for APIC ID array"); 2391 2392 /* copy IDs */ 2393 process_madt_entries(tp, NULL, NULL, cpu_apicid_array); 2394 2395 /* 2396 * Make boot property for array of "final" APIC IDs for each 2397 * CPU 2398 */ 2399 bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY), 2400 cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array)); 2401 } 2402 2403 /* 2404 * Check whether property plat-max-ncpus is already set. 2405 */ 2406 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2407 /* 2408 * Set plat-max-ncpus to number of maximum possible CPUs given 2409 * in MADT if it hasn't been set. 2410 * There's no formal way to detect max possible CPUs supported 2411 * by platform according to ACPI spec3.0b. So current CPU 2412 * hotplug implementation expects that all possible CPUs will 2413 * have an entry in MADT table and set plat-max-ncpus to number 2414 * of entries in MADT. 2415 * With introducing of ACPI4.0, Maximum System Capability Table 2416 * (MSCT) provides maximum number of CPUs supported by platform. 2417 * If MSCT is unavailable, fall back to old way. 2418 */ 2419 if (tp != NULL) 2420 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count); 2421 } 2422 2423 /* 2424 * Set boot property boot-max-ncpus to number of CPUs existing at 2425 * boot time. boot-max-ncpus is mainly used for optimization. 2426 */ 2427 if (tp != NULL) 2428 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count); 2429 2430 /* 2431 * User-set boot-ncpus overrides firmware count 2432 */ 2433 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2434 return; 2435 2436 /* 2437 * Set boot property boot-ncpus to number of active CPUs given in MADT 2438 * if it hasn't been set yet. 2439 */ 2440 if (tp != NULL) 2441 bsetpropsi(BOOT_NCPUS_NAME, cpu_count); 2442 } 2443 2444 static void 2445 process_srat(ACPI_TABLE_SRAT *tp) 2446 { 2447 ACPI_SUBTABLE_HEADER *item, *end; 2448 int i; 2449 int proc_num, mem_num; 2450 #pragma pack(1) 2451 struct { 2452 uint32_t domain; 2453 uint32_t apic_id; 2454 uint32_t sapic_id; 2455 } processor; 2456 struct { 2457 uint32_t domain; 2458 uint32_t x2apic_id; 2459 } x2apic; 2460 struct { 2461 uint32_t domain; 2462 uint64_t addr; 2463 uint64_t length; 2464 uint32_t flags; 2465 } memory; 2466 #pragma pack() 2467 char prop_name[30]; 2468 uint64_t maxmem = 0; 2469 2470 if (tp == NULL) 2471 return; 2472 2473 proc_num = mem_num = 0; 2474 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2475 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2476 while (item < end) { 2477 switch (item->Type) { 2478 case ACPI_SRAT_TYPE_CPU_AFFINITY: { 2479 ACPI_SRAT_CPU_AFFINITY *cpu = 2480 (ACPI_SRAT_CPU_AFFINITY *) item; 2481 2482 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2483 break; 2484 processor.domain = cpu->ProximityDomainLo; 2485 for (i = 0; i < 3; i++) 2486 processor.domain += 2487 cpu->ProximityDomainHi[i] << ((i + 1) * 8); 2488 processor.apic_id = cpu->ApicId; 2489 processor.sapic_id = cpu->LocalSapicEid; 2490 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2491 proc_num); 2492 bsetprop(prop_name, strlen(prop_name), &processor, 2493 sizeof (processor)); 2494 proc_num++; 2495 break; 2496 } 2497 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: { 2498 ACPI_SRAT_MEM_AFFINITY *mem = 2499 (ACPI_SRAT_MEM_AFFINITY *)item; 2500 2501 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED)) 2502 break; 2503 memory.domain = mem->ProximityDomain; 2504 memory.addr = mem->BaseAddress; 2505 memory.length = mem->Length; 2506 memory.flags = mem->Flags; 2507 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d", 2508 mem_num); 2509 bsetprop(prop_name, strlen(prop_name), &memory, 2510 sizeof (memory)); 2511 if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) && 2512 (memory.addr + memory.length > maxmem)) { 2513 maxmem = memory.addr + memory.length; 2514 } 2515 mem_num++; 2516 break; 2517 } 2518 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: { 2519 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu = 2520 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item; 2521 2522 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2523 break; 2524 x2apic.domain = x2cpu->ProximityDomain; 2525 x2apic.x2apic_id = x2cpu->ApicId; 2526 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2527 proc_num); 2528 bsetprop(prop_name, strlen(prop_name), &x2apic, 2529 sizeof (x2apic)); 2530 proc_num++; 2531 break; 2532 } 2533 default: 2534 if (kbm_debug) 2535 bop_printf(NULL, "SRAT type %d\n", item->Type); 2536 break; 2537 } 2538 2539 item = (ACPI_SUBTABLE_HEADER *) 2540 (item->Length + (uintptr_t)item); 2541 } 2542 2543 /* 2544 * The maximum physical address calculated from the SRAT table is more 2545 * accurate than that calculated from the MSCT table. 2546 */ 2547 if (maxmem != 0) { 2548 plat_dr_physmax = btop(maxmem); 2549 } 2550 } 2551 2552 static void 2553 process_slit(ACPI_TABLE_SLIT *tp) 2554 { 2555 2556 /* 2557 * Check the number of localities; if it's too huge, we just 2558 * return and locality enumeration code will handle this later, 2559 * if possible. 2560 * 2561 * Note that the size of the table is the square of the 2562 * number of localities; if the number of localities exceeds 2563 * UINT16_MAX, the table size may overflow an int when being 2564 * passed to bsetprop() below. 2565 */ 2566 if (tp->LocalityCount >= SLIT_LOCALITIES_MAX) 2567 return; 2568 2569 bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME), 2570 &tp->LocalityCount, sizeof (tp->LocalityCount)); 2571 bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry, 2572 tp->LocalityCount * tp->LocalityCount); 2573 } 2574 2575 static ACPI_TABLE_MSCT * 2576 process_msct(ACPI_TABLE_MSCT *tp) 2577 { 2578 int last_seen = 0; 2579 int proc_num = 0; 2580 ACPI_MSCT_PROXIMITY *item, *end; 2581 extern uint64_t plat_dr_options; 2582 2583 ASSERT(tp != NULL); 2584 2585 end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp); 2586 for (item = (void *)((uintptr_t)tp + tp->ProximityOffset); 2587 item < end; 2588 item = (void *)(item->Length + (uintptr_t)item)) { 2589 /* 2590 * Sanity check according to section 5.2.19.1 of ACPI 4.0. 2591 * Revision 1 2592 * Length 22 2593 */ 2594 if (item->Revision != 1 || item->Length != 22) { 2595 cmn_err(CE_CONT, 2596 "?boot: unknown proximity domain structure in MSCT " 2597 "with Revision(%d), Length(%d).\n", 2598 (int)item->Revision, (int)item->Length); 2599 return (NULL); 2600 } else if (item->RangeStart > item->RangeEnd) { 2601 cmn_err(CE_CONT, 2602 "?boot: invalid proximity domain structure in MSCT " 2603 "with RangeStart(%u), RangeEnd(%u).\n", 2604 item->RangeStart, item->RangeEnd); 2605 return (NULL); 2606 } else if (item->RangeStart != last_seen) { 2607 /* 2608 * Items must be organized in ascending order of the 2609 * proximity domain enumerations. 2610 */ 2611 cmn_err(CE_CONT, 2612 "?boot: invalid proximity domain structure in MSCT," 2613 " items are not orginized in ascending order.\n"); 2614 return (NULL); 2615 } 2616 2617 /* 2618 * If ProcessorCapacity is 0 then there would be no CPUs in this 2619 * domain. 2620 */ 2621 if (item->ProcessorCapacity != 0) { 2622 proc_num += (item->RangeEnd - item->RangeStart + 1) * 2623 item->ProcessorCapacity; 2624 } 2625 2626 last_seen = item->RangeEnd - item->RangeStart + 1; 2627 /* 2628 * Break out if all proximity domains have been processed. 2629 * Some BIOSes may have unused items at the end of MSCT table. 2630 */ 2631 if (last_seen > tp->MaxProximityDomains) { 2632 break; 2633 } 2634 } 2635 if (last_seen != tp->MaxProximityDomains + 1) { 2636 cmn_err(CE_CONT, 2637 "?boot: invalid proximity domain structure in MSCT, " 2638 "proximity domain count doesn't match.\n"); 2639 return (NULL); 2640 } 2641 2642 /* 2643 * Set plat-max-ncpus property if it hasn't been set yet. 2644 */ 2645 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2646 if (proc_num != 0) { 2647 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num); 2648 } 2649 } 2650 2651 /* 2652 * Use Maximum Physical Address from the MSCT table as upper limit for 2653 * memory hot-adding by default. It may be overridden by value from 2654 * the SRAT table or the "plat-dr-physmax" boot option. 2655 */ 2656 plat_dr_physmax = btop(tp->MaxAddress + 1); 2657 2658 /* 2659 * Existence of MSCT implies CPU/memory hotplug-capability for the 2660 * platform. 2661 */ 2662 plat_dr_options |= PLAT_DR_FEATURE_CPU; 2663 plat_dr_options |= PLAT_DR_FEATURE_MEMORY; 2664 2665 return (tp); 2666 } 2667 2668 #else /* __xpv */ 2669 static void 2670 enumerate_xen_cpus() 2671 { 2672 processorid_t id, max_id; 2673 2674 /* 2675 * User-set boot-ncpus overrides enumeration 2676 */ 2677 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2678 return; 2679 2680 /* 2681 * Probe every possible virtual CPU id and remember the 2682 * highest id present; the count of CPUs is one greater 2683 * than this. This tacitly assumes at least cpu 0 is present. 2684 */ 2685 max_id = 0; 2686 for (id = 0; id < MAX_VIRT_CPUS; id++) 2687 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0) 2688 max_id = id; 2689 2690 bsetpropsi(BOOT_NCPUS_NAME, max_id+1); 2691 2692 } 2693 #endif /* __xpv */ 2694 2695 /*ARGSUSED*/ 2696 static void 2697 build_firmware_properties(struct xboot_info *xbp) 2698 { 2699 ACPI_TABLE_HEADER *tp = NULL; 2700 2701 #ifndef __xpv 2702 if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) { 2703 bsetprops("efi-systype", "64"); 2704 bsetprop64("efi-systab", 2705 (uint64_t)(uintptr_t)xbp->bi_uefi_systab); 2706 if (kbm_debug) 2707 bop_printf(NULL, "64-bit UEFI detected.\n"); 2708 } else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) { 2709 bsetprops("efi-systype", "32"); 2710 bsetprop64("efi-systab", 2711 (uint64_t)(uintptr_t)xbp->bi_uefi_systab); 2712 if (kbm_debug) 2713 bop_printf(NULL, "32-bit UEFI detected.\n"); 2714 } 2715 2716 if (xbp->bi_acpi_rsdp != NULL) { 2717 bsetprop64("acpi-root-tab", 2718 (uint64_t)(uintptr_t)xbp->bi_acpi_rsdp); 2719 } 2720 2721 if (xbp->bi_smbios != NULL) { 2722 bsetprop64("smbios-address", 2723 (uint64_t)(uintptr_t)xbp->bi_smbios); 2724 } 2725 2726 if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL) 2727 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp); 2728 else 2729 msct_ptr = NULL; 2730 2731 if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL) 2732 process_madt((ACPI_TABLE_MADT *)tp); 2733 2734 if ((srat_ptr = (ACPI_TABLE_SRAT *) 2735 find_fw_table(ACPI_SIG_SRAT)) != NULL) 2736 process_srat(srat_ptr); 2737 2738 if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT)) 2739 process_slit(slit_ptr); 2740 2741 tp = find_fw_table(ACPI_SIG_MCFG); 2742 #else /* __xpv */ 2743 enumerate_xen_cpus(); 2744 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2745 tp = find_fw_table(ACPI_SIG_MCFG); 2746 #endif /* __xpv */ 2747 if (tp != NULL) 2748 process_mcfg((ACPI_TABLE_MCFG *)tp); 2749 } 2750 2751 /* 2752 * fake up a boot property for deferred early console output 2753 * this is used by both graphical boot and the (developer only) 2754 * USB serial console 2755 */ 2756 void * 2757 defcons_init(size_t size) 2758 { 2759 static char *p = NULL; 2760 2761 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE); 2762 *p = 0; 2763 bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1, 2764 &p, sizeof (p)); 2765 return (p); 2766 } 2767 2768 /*ARGSUSED*/ 2769 int 2770 boot_compinfo(int fd, struct compinfo *cbp) 2771 { 2772 cbp->iscmp = 0; 2773 cbp->blksize = MAXBSIZE; 2774 return (0); 2775 } 2776 2777 #define BP_MAX_STRLEN 32 2778 2779 /* 2780 * Get value for given boot property 2781 */ 2782 int 2783 bootprop_getval(const char *prop_name, u_longlong_t *prop_value) 2784 { 2785 int boot_prop_len; 2786 char str[BP_MAX_STRLEN]; 2787 u_longlong_t value; 2788 2789 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name); 2790 if (boot_prop_len < 0 || boot_prop_len > sizeof (str) || 2791 BOP_GETPROP(bootops, prop_name, str) < 0 || 2792 kobj_getvalue(str, &value) == -1) 2793 return (-1); 2794 2795 if (prop_value) 2796 *prop_value = value; 2797 2798 return (0); 2799 }