1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2015 Joyent, Inc. 24 * Copyright (c) 2016 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/asm_linkage.h> 28 #include <sys/asm_misc.h> 29 #include <sys/regset.h> 30 #include <sys/privregs.h> 31 #include <sys/psw.h> 32 #include <sys/machbrand.h> 33 34 #if defined(__lint) 35 36 #include <sys/types.h> 37 #include <sys/thread.h> 38 #include <sys/systm.h> 39 40 #else /* __lint */ 41 42 #include <sys/segments.h> 43 #include <sys/pcb.h> 44 #include <sys/trap.h> 45 #include <sys/ftrace.h> 46 #include <sys/traptrace.h> 47 #include <sys/clock.h> 48 #include <sys/model.h> 49 #include <sys/panic.h> 50 51 #if defined(__xpv) 52 #include <sys/hypervisor.h> 53 #endif 54 55 #include "assym.h" 56 57 #endif /* __lint */ 58 59 /* 60 * We implement five flavours of system call entry points 61 * 62 * - syscall/sysretq (amd64 generic) 63 * - syscall/sysretl (i386 plus SYSC bit) 64 * - sysenter/sysexit (i386 plus SEP bit) 65 * - int/iret (i386 generic) 66 * - lcall/iret (i386 generic) 67 * 68 * The current libc included in Solaris uses int/iret as the base unoptimized 69 * kernel entry method. Older libc implementations and legacy binaries may use 70 * the lcall call gate, so it must continue to be supported. 71 * 72 * System calls that use an lcall call gate are processed in trap() via a 73 * segment-not-present trap, i.e. lcalls are extremely slow(!). 74 * 75 * The basic pattern used in the 32-bit SYSC handler at this point in time is 76 * to have the bare minimum of assembler, and get to the C handlers as 77 * quickly as possible. 78 * 79 * The 64-bit handler is much closer to the sparcv9 handler; that's 80 * because of passing arguments in registers. The 32-bit world still 81 * passes arguments on the stack -- that makes that handler substantially 82 * more complex. 83 * 84 * The two handlers share a few code fragments which are broken 85 * out into preprocessor macros below. 86 * 87 * XX64 come back and speed all this up later. The 32-bit stuff looks 88 * especially easy to speed up the argument copying part .. 89 * 90 * 91 * Notes about segment register usage (c.f. the 32-bit kernel) 92 * 93 * In the 32-bit kernel, segment registers are dutifully saved and 94 * restored on all mode transitions because the kernel uses them directly. 95 * When the processor is running in 64-bit mode, segment registers are 96 * largely ignored. 97 * 98 * %cs and %ss 99 * controlled by the hardware mechanisms that make mode transitions 100 * 101 * The remaining segment registers have to either be pointing at a valid 102 * descriptor i.e. with the 'present' bit set, or they can NULL descriptors 103 * 104 * %ds and %es 105 * always ignored 106 * 107 * %fs and %gs 108 * fsbase and gsbase are used to control the place they really point at. 109 * The kernel only depends on %gs, and controls its own gsbase via swapgs 110 * 111 * Note that loading segment registers is still costly because the GDT 112 * lookup still happens (this is because the hardware can't know that we're 113 * not setting up these segment registers for a 32-bit program). Thus we 114 * avoid doing this in the syscall path, and defer them to lwp context switch 115 * handlers, so the register values remain virtualized to the lwp. 116 */ 117 118 #if defined(SYSCALLTRACE) 119 #define ORL_SYSCALLTRACE(r32) \ 120 orl syscalltrace(%rip), r32 121 #else 122 #define ORL_SYSCALLTRACE(r32) 123 #endif 124 125 /* 126 * In the 32-bit kernel, we do absolutely nothing before getting into the 127 * brand callback checks. In 64-bit land, we do swapgs and then come here. 128 * We assume that the %rsp- and %r15-stashing fields in the CPU structure 129 * are still unused. 130 * 131 * Check if a brand_mach_ops callback is defined for the specified callback_id 132 * type. If so invoke it with the kernel's %gs value loaded and the following 133 * data on the stack: 134 * 135 * stack: -------------------------------------- 136 * 32 | callback pointer | 137 * | 24 | user (or interrupt) stack pointer | 138 * | 16 | lwp pointer | 139 * v 8 | userland return address | 140 * 0 | callback wrapper return addr | 141 * -------------------------------------- 142 * 143 * Since we're pushing the userland return address onto the kernel stack 144 * we need to get that address without accessing the user's stack (since we 145 * can't trust that data). There are different ways to get the userland 146 * return address depending on how the syscall trap was made: 147 * 148 * a) For sys_syscall and sys_syscall32 the return address is in %rcx. 149 * b) For sys_sysenter the return address is in %rdx. 150 * c) For sys_int80 and sys_syscall_int (int91), upon entry into the macro, 151 * the stack pointer points at the state saved when we took the interrupt: 152 * ------------------------ 153 * | | user's %ss | 154 * | | user's %esp | 155 * | | EFLAGS register | 156 * v | user's %cs | 157 * | user's %eip | 158 * ------------------------ 159 * 160 * The 2nd parameter to the BRAND_CALLBACK macro is either the 161 * BRAND_URET_FROM_REG or BRAND_URET_FROM_INTR_STACK macro. These macros are 162 * used to generate the proper code to get the userland return address for 163 * each syscall entry point. 164 * 165 * The interface to the brand callbacks on the 64-bit kernel assumes %r15 166 * is available as a scratch register within the callback. If the callback 167 * returns within the kernel then this macro will restore %r15. If the 168 * callback is going to return directly to userland then it should restore 169 * %r15 before returning to userland. 170 */ 171 #define BRAND_URET_FROM_REG(rip_reg) \ 172 pushq rip_reg /* push the return address */ 173 174 /* 175 * The interrupt stack pointer we saved on entry to the BRAND_CALLBACK macro 176 * is currently pointing at the user return address (%eip). 177 */ 178 #define BRAND_URET_FROM_INTR_STACK() \ 179 movq %gs:CPU_RTMP_RSP, %r15 /* grab the intr. stack pointer */ ;\ 180 pushq (%r15) /* push the return address */ 181 182 #define BRAND_CALLBACK(callback_id, push_userland_ret) \ 183 movq %rsp, %gs:CPU_RTMP_RSP /* save the stack pointer */ ;\ 184 movq %r15, %gs:CPU_RTMP_R15 /* save %r15 */ ;\ 185 movq %gs:CPU_THREAD, %r15 /* load the thread pointer */ ;\ 186 movq T_STACK(%r15), %rsp /* switch to the kernel stack */ ;\ 187 subq $16, %rsp /* save space for 2 pointers */ ;\ 188 pushq %r14 /* save %r14 */ ;\ 189 movq %gs:CPU_RTMP_RSP, %r14 ;\ 190 movq %r14, 8(%rsp) /* stash the user stack pointer */ ;\ 191 popq %r14 /* restore %r14 */ ;\ 192 movq T_LWP(%r15), %r15 /* load the lwp pointer */ ;\ 193 pushq %r15 /* push the lwp pointer */ ;\ 194 movq LWP_PROCP(%r15), %r15 /* load the proc pointer */ ;\ 195 movq P_BRAND(%r15), %r15 /* load the brand pointer */ ;\ 196 movq B_MACHOPS(%r15), %r15 /* load the machops pointer */ ;\ 197 movq _CONST(_MUL(callback_id, CPTRSIZE))(%r15), %r15 ;\ 198 cmpq $0, %r15 ;\ 199 je 1f ;\ 200 movq %r15, 16(%rsp) /* save the callback pointer */ ;\ 201 push_userland_ret /* push the return address */ ;\ 202 call *24(%rsp) /* call callback */ ;\ 203 1: movq %gs:CPU_RTMP_R15, %r15 /* restore %r15 */ ;\ 204 movq %gs:CPU_RTMP_RSP, %rsp /* restore the stack pointer */ 205 206 #define MSTATE_TRANSITION(from, to) \ 207 movl $from, %edi; \ 208 movl $to, %esi; \ 209 call syscall_mstate 210 211 /* 212 * Check to see if a simple (direct) return is possible i.e. 213 * 214 * if (t->t_post_sys_ast | syscalltrace | 215 * lwp->lwp_pcb.pcb_rupdate == 1) 216 * do full version ; 217 * 218 * Preconditions: 219 * - t is curthread 220 * Postconditions: 221 * - condition code NE is set if post-sys is too complex 222 * - rtmp is zeroed if it isn't (we rely on this!) 223 * - ltmp is smashed 224 */ 225 #define CHECK_POSTSYS_NE(t, ltmp, rtmp) \ 226 movq T_LWP(t), ltmp; \ 227 movzbl PCB_RUPDATE(ltmp), rtmp; \ 228 ORL_SYSCALLTRACE(rtmp); \ 229 orl T_POST_SYS_AST(t), rtmp; \ 230 cmpl $0, rtmp 231 232 /* 233 * Fix up the lwp, thread, and eflags for a successful return 234 * 235 * Preconditions: 236 * - zwreg contains zero 237 */ 238 #define SIMPLE_SYSCALL_POSTSYS(t, lwp, zwreg) \ 239 movb $LWP_USER, LWP_STATE(lwp); \ 240 movw zwreg, T_SYSNUM(t); \ 241 andb $_CONST(0xffff - PS_C), REGOFF_RFL(%rsp) 242 243 /* 244 * ASSERT(lwptoregs(lwp) == rp); 245 * 246 * This may seem obvious, but very odd things happen if this 247 * assertion is false 248 * 249 * Preconditions: 250 * (%rsp is ready for normal call sequence) 251 * Postconditions (if assertion is true): 252 * %r11 is smashed 253 * 254 * ASSERT(rp->r_cs == descnum) 255 * 256 * The code selector is written into the regs structure when the 257 * lwp stack is created. We use this ASSERT to validate that 258 * the regs structure really matches how we came in. 259 * 260 * Preconditions: 261 * (%rsp is ready for normal call sequence) 262 * Postconditions (if assertion is true): 263 * -none- 264 * 265 * ASSERT(lwp->lwp_pcb.pcb_rupdate == 0); 266 * 267 * If this is false, it meant that we returned to userland without 268 * updating the segment registers as we were supposed to. 269 * 270 * Note that we must ensure no interrupts or other traps intervene 271 * between entering privileged mode and performing the assertion, 272 * otherwise we may perform a context switch on the thread, which 273 * will end up setting pcb_rupdate to 1 again. 274 */ 275 #if defined(DEBUG) 276 277 #if !defined(__lint) 278 279 __lwptoregs_msg: 280 .string "syscall_asm_amd64.s:%d lwptoregs(%p) [%p] != rp [%p]" 281 282 __codesel_msg: 283 .string "syscall_asm_amd64.s:%d rp->r_cs [%ld] != %ld" 284 285 __no_rupdate_msg: 286 .string "syscall_asm_amd64.s:%d lwp %p, pcb_rupdate != 0" 287 288 #endif /* !__lint */ 289 290 #define ASSERT_LWPTOREGS(lwp, rp) \ 291 movq LWP_REGS(lwp), %r11; \ 292 cmpq rp, %r11; \ 293 je 7f; \ 294 leaq __lwptoregs_msg(%rip), %rdi; \ 295 movl $__LINE__, %esi; \ 296 movq lwp, %rdx; \ 297 movq %r11, %rcx; \ 298 movq rp, %r8; \ 299 xorl %eax, %eax; \ 300 call panic; \ 301 7: 302 303 #define ASSERT_NO_RUPDATE_PENDING(lwp) \ 304 testb $0x1, PCB_RUPDATE(lwp); \ 305 je 8f; \ 306 movq lwp, %rdx; \ 307 leaq __no_rupdate_msg(%rip), %rdi; \ 308 movl $__LINE__, %esi; \ 309 xorl %eax, %eax; \ 310 call panic; \ 311 8: 312 313 #else 314 #define ASSERT_LWPTOREGS(lwp, rp) 315 #define ASSERT_NO_RUPDATE_PENDING(lwp) 316 #endif 317 318 /* 319 * Do the traptrace thing and restore any registers we used 320 * in situ. Assumes that %rsp is pointing at the base of 321 * the struct regs, obviously .. 322 */ 323 #ifdef TRAPTRACE 324 #define SYSCALL_TRAPTRACE(ttype) \ 325 TRACE_PTR(%rdi, %rbx, %ebx, %rcx, ttype); \ 326 TRACE_REGS(%rdi, %rsp, %rbx, %rcx); \ 327 TRACE_STAMP(%rdi); /* rdtsc clobbers %eax, %edx */ \ 328 movq REGOFF_RAX(%rsp), %rax; \ 329 movq REGOFF_RBX(%rsp), %rbx; \ 330 movq REGOFF_RCX(%rsp), %rcx; \ 331 movq REGOFF_RDX(%rsp), %rdx; \ 332 movl %eax, TTR_SYSNUM(%rdi); \ 333 movq REGOFF_RDI(%rsp), %rdi 334 335 #define SYSCALL_TRAPTRACE32(ttype) \ 336 SYSCALL_TRAPTRACE(ttype); \ 337 /* paranoia: clean the top 32-bits of the registers */ \ 338 orl %eax, %eax; \ 339 orl %ebx, %ebx; \ 340 orl %ecx, %ecx; \ 341 orl %edx, %edx; \ 342 orl %edi, %edi 343 #else /* TRAPTRACE */ 344 #define SYSCALL_TRAPTRACE(ttype) 345 #define SYSCALL_TRAPTRACE32(ttype) 346 #endif /* TRAPTRACE */ 347 348 /* 349 * The 64-bit libc syscall wrapper does this: 350 * 351 * fn(<args>) 352 * { 353 * movq %rcx, %r10 -- because syscall smashes %rcx 354 * movl $CODE, %eax 355 * syscall 356 * <error processing> 357 * } 358 * 359 * Thus when we come into the kernel: 360 * 361 * %rdi, %rsi, %rdx, %r10, %r8, %r9 contain first six args 362 * %rax is the syscall number 363 * %r12-%r15 contain caller state 364 * 365 * The syscall instruction arranges that: 366 * 367 * %rcx contains the return %rip 368 * %r11d contains bottom 32-bits of %rflags 369 * %rflags is masked (as determined by the SFMASK msr) 370 * %cs is set to UCS_SEL (as determined by the STAR msr) 371 * %ss is set to UDS_SEL (as determined by the STAR msr) 372 * %rip is set to sys_syscall (as determined by the LSTAR msr) 373 * 374 * Or in other words, we have no registers available at all. 375 * Only swapgs can save us! 376 * 377 * Under the hypervisor, the swapgs has happened already. However, the 378 * state of the world is very different from that we're familiar with. 379 * 380 * In particular, we have a stack structure like that for interrupt 381 * gates, except that the %cs and %ss registers are modified for reasons 382 * that are not entirely clear. Critically, the %rcx/%r11 values do 383 * *not* reflect the usage of those registers under a 'real' syscall[1]; 384 * the stack, therefore, looks like this: 385 * 386 * 0x0(rsp) potentially junk %rcx 387 * 0x8(rsp) potentially junk %r11 388 * 0x10(rsp) user %rip 389 * 0x18(rsp) modified %cs 390 * 0x20(rsp) user %rflags 391 * 0x28(rsp) user %rsp 392 * 0x30(rsp) modified %ss 393 * 394 * 395 * and before continuing on, we must load the %rip into %rcx and the 396 * %rflags into %r11. 397 * 398 * [1] They used to, and we relied on it, but this was broken in 3.1.1. 399 * Sigh. 400 */ 401 #if defined(__xpv) 402 #define XPV_SYSCALL_PROD \ 403 movq 0x10(%rsp), %rcx; \ 404 movq 0x20(%rsp), %r11; \ 405 movq 0x28(%rsp), %rsp 406 #else 407 #define XPV_SYSCALL_PROD /* nothing */ 408 #endif 409 410 #if defined(__lint) 411 412 /*ARGSUSED*/ 413 void 414 sys_syscall() 415 {} 416 417 void 418 _allsyscalls() 419 {} 420 421 size_t _allsyscalls_size; 422 423 #else /* __lint */ 424 425 ENTRY_NP2(brand_sys_syscall,_allsyscalls) 426 SWAPGS /* kernel gsbase */ 427 XPV_SYSCALL_PROD 428 BRAND_CALLBACK(BRAND_CB_SYSCALL, BRAND_URET_FROM_REG(%rcx)) 429 jmp noprod_sys_syscall 430 431 ALTENTRY(sys_syscall) 432 SWAPGS /* kernel gsbase */ 433 XPV_SYSCALL_PROD 434 435 noprod_sys_syscall: 436 movq %r15, %gs:CPU_RTMP_R15 437 movq %rsp, %gs:CPU_RTMP_RSP 438 439 movq %gs:CPU_THREAD, %r15 440 movq T_STACK(%r15), %rsp /* switch from user to kernel stack */ 441 442 ASSERT_UPCALL_MASK_IS_SET 443 444 movl $UCS_SEL, REGOFF_CS(%rsp) 445 movq %rcx, REGOFF_RIP(%rsp) /* syscall: %rip -> %rcx */ 446 movq %r11, REGOFF_RFL(%rsp) /* syscall: %rfl -> %r11d */ 447 movl $UDS_SEL, REGOFF_SS(%rsp) 448 449 movl %eax, %eax /* wrapper: sysc# -> %eax */ 450 movq %rdi, REGOFF_RDI(%rsp) 451 movq %rsi, REGOFF_RSI(%rsp) 452 movq %rdx, REGOFF_RDX(%rsp) 453 movq %r10, REGOFF_RCX(%rsp) /* wrapper: %rcx -> %r10 */ 454 movq %r10, %rcx /* arg[3] for direct calls */ 455 456 movq %r8, REGOFF_R8(%rsp) 457 movq %r9, REGOFF_R9(%rsp) 458 movq %rax, REGOFF_RAX(%rsp) 459 movq %rbx, REGOFF_RBX(%rsp) 460 461 movq %rbp, REGOFF_RBP(%rsp) 462 movq %r10, REGOFF_R10(%rsp) 463 movq %gs:CPU_RTMP_RSP, %r11 464 movq %r11, REGOFF_RSP(%rsp) 465 movq %r12, REGOFF_R12(%rsp) 466 467 movq %r13, REGOFF_R13(%rsp) 468 movq %r14, REGOFF_R14(%rsp) 469 movq %gs:CPU_RTMP_R15, %r10 470 movq %r10, REGOFF_R15(%rsp) 471 movq $0, REGOFF_SAVFP(%rsp) 472 movq $0, REGOFF_SAVPC(%rsp) 473 474 /* 475 * Copy these registers here in case we end up stopped with 476 * someone (like, say, /proc) messing with our register state. 477 * We don't -restore- them unless we have to in update_sregs. 478 * 479 * Since userland -can't- change fsbase or gsbase directly, 480 * and capturing them involves two serializing instructions, 481 * we don't bother to capture them here. 482 */ 483 xorl %ebx, %ebx 484 movw %ds, %bx 485 movq %rbx, REGOFF_DS(%rsp) 486 movw %es, %bx 487 movq %rbx, REGOFF_ES(%rsp) 488 movw %fs, %bx 489 movq %rbx, REGOFF_FS(%rsp) 490 movw %gs, %bx 491 movq %rbx, REGOFF_GS(%rsp) 492 493 /* 494 * Machine state saved in the regs structure on the stack 495 * First six args in %rdi, %rsi, %rdx, %rcx, %r8, %r9 496 * %eax is the syscall number 497 * %rsp is the thread's stack, %r15 is curthread 498 * REG_RSP(%rsp) is the user's stack 499 */ 500 501 SYSCALL_TRAPTRACE($TT_SYSC64) 502 503 movq %rsp, %rbp 504 505 movq T_LWP(%r15), %r14 506 ASSERT_NO_RUPDATE_PENDING(%r14) 507 ENABLE_INTR_FLAGS 508 509 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM) 510 movl REGOFF_RAX(%rsp), %eax /* (%rax damaged by mstate call) */ 511 512 ASSERT_LWPTOREGS(%r14, %rsp) 513 514 movb $LWP_SYS, LWP_STATE(%r14) 515 incq LWP_RU_SYSC(%r14) 516 movb $NORMALRETURN, LWP_EOSYS(%r14) 517 518 incq %gs:CPU_STATS_SYS_SYSCALL 519 520 movw %ax, T_SYSNUM(%r15) 521 movzbl T_PRE_SYS(%r15), %ebx 522 ORL_SYSCALLTRACE(%ebx) 523 testl %ebx, %ebx 524 jne _syscall_pre 525 526 _syscall_invoke: 527 movq REGOFF_RDI(%rbp), %rdi 528 movq REGOFF_RSI(%rbp), %rsi 529 movq REGOFF_RDX(%rbp), %rdx 530 movq REGOFF_RCX(%rbp), %rcx 531 movq REGOFF_R8(%rbp), %r8 532 movq REGOFF_R9(%rbp), %r9 533 534 cmpl $NSYSCALL, %eax 535 jae _syscall_ill 536 shll $SYSENT_SIZE_SHIFT, %eax 537 leaq sysent(%rax), %rbx 538 539 call *SY_CALLC(%rbx) 540 541 movq %rax, %r12 542 movq %rdx, %r13 543 544 /* 545 * If the handler returns two ints, then we need to split the 546 * 64-bit return value into two 32-bit values. 547 */ 548 testw $SE_32RVAL2, SY_FLAGS(%rbx) 549 je 5f 550 movq %r12, %r13 551 shrq $32, %r13 /* upper 32-bits into %edx */ 552 movl %r12d, %r12d /* lower 32-bits into %eax */ 553 5: 554 /* 555 * Optimistically assume that there's no post-syscall 556 * work to do. (This is to avoid having to call syscall_mstate() 557 * with interrupts disabled) 558 */ 559 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER) 560 561 /* 562 * We must protect ourselves from being descheduled here; 563 * If we were, and we ended up on another cpu, or another 564 * lwp got in ahead of us, it could change the segment 565 * registers without us noticing before we return to userland. 566 */ 567 CLI(%r14) 568 CHECK_POSTSYS_NE(%r15, %r14, %ebx) 569 jne _syscall_post 570 571 /* 572 * We need to protect ourselves against non-canonical return values 573 * because Intel doesn't check for them on sysret (AMD does). Canonical 574 * addresses on current amd64 processors only use 48-bits for VAs; an 575 * address is canonical if all upper bits (47-63) are identical. If we 576 * find a non-canonical %rip, we opt to go through the full 577 * _syscall_post path which takes us into an iretq which is not 578 * susceptible to the same problems sysret is. 579 * 580 * We're checking for a canonical address by first doing an arithmetic 581 * shift. This will fill in the remaining bits with the value of bit 63. 582 * If the address were canonical, the register would now have either all 583 * zeroes or all ones in it. Therefore we add one (inducing overflow) 584 * and compare against 1. A canonical address will either be zero or one 585 * at this point, hence the use of ja. 586 * 587 * At this point, r12 and r13 have the return value so we can't use 588 * those registers. 589 */ 590 movq REGOFF_RIP(%rsp), %rcx 591 sarq $47, %rcx 592 incq %rcx 593 cmpq $1, %rcx 594 ja _syscall_post 595 596 597 SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx) 598 599 movq %r12, REGOFF_RAX(%rsp) 600 movq %r13, REGOFF_RDX(%rsp) 601 602 /* 603 * To get back to userland, we need the return %rip in %rcx and 604 * the return %rfl in %r11d. The sysretq instruction also arranges 605 * to fix up %cs and %ss; everything else is our responsibility. 606 */ 607 movq REGOFF_RDI(%rsp), %rdi 608 movq REGOFF_RSI(%rsp), %rsi 609 movq REGOFF_RDX(%rsp), %rdx 610 /* %rcx used to restore %rip value */ 611 612 movq REGOFF_R8(%rsp), %r8 613 movq REGOFF_R9(%rsp), %r9 614 movq REGOFF_RAX(%rsp), %rax 615 movq REGOFF_RBX(%rsp), %rbx 616 617 movq REGOFF_RBP(%rsp), %rbp 618 movq REGOFF_R10(%rsp), %r10 619 /* %r11 used to restore %rfl value */ 620 movq REGOFF_R12(%rsp), %r12 621 622 movq REGOFF_R13(%rsp), %r13 623 movq REGOFF_R14(%rsp), %r14 624 movq REGOFF_R15(%rsp), %r15 625 626 movq REGOFF_RIP(%rsp), %rcx 627 movl REGOFF_RFL(%rsp), %r11d 628 629 #if defined(__xpv) 630 addq $REGOFF_RIP, %rsp 631 #else 632 movq REGOFF_RSP(%rsp), %rsp 633 #endif 634 635 /* 636 * There can be no instructions between the ALTENTRY below and 637 * SYSRET or we could end up breaking brand support. See label usage 638 * in sn1_brand_syscall_callback for an example. 639 */ 640 ASSERT_UPCALL_MASK_IS_SET 641 #if defined(__xpv) 642 SYSRETQ 643 ALTENTRY(nopop_sys_syscall_swapgs_sysretq) 644 645 /* 646 * We can only get here after executing a brand syscall 647 * interposition callback handler and simply need to 648 * "sysretq" back to userland. On the hypervisor this 649 * involves the iret hypercall which requires us to construct 650 * just enough of the stack needed for the hypercall. 651 * (rip, cs, rflags, rsp, ss). 652 */ 653 movq %rsp, %gs:CPU_RTMP_RSP /* save user's rsp */ 654 movq %gs:CPU_THREAD, %r11 655 movq T_STACK(%r11), %rsp 656 657 movq %rcx, REGOFF_RIP(%rsp) 658 movl $UCS_SEL, REGOFF_CS(%rsp) 659 movq %gs:CPU_RTMP_RSP, %r11 660 movq %r11, REGOFF_RSP(%rsp) 661 pushfq 662 popq %r11 /* hypercall enables ints */ 663 movq %r11, REGOFF_RFL(%rsp) 664 movl $UDS_SEL, REGOFF_SS(%rsp) 665 addq $REGOFF_RIP, %rsp 666 /* 667 * XXPV: see comment in SYSRETQ definition for future optimization 668 * we could take. 669 */ 670 ASSERT_UPCALL_MASK_IS_SET 671 SYSRETQ 672 #else 673 ALTENTRY(nopop_sys_syscall_swapgs_sysretq) 674 SWAPGS /* user gsbase */ 675 SYSRETQ 676 #endif 677 /*NOTREACHED*/ 678 SET_SIZE(nopop_sys_syscall_swapgs_sysretq) 679 680 _syscall_pre: 681 call pre_syscall 682 movl %eax, %r12d 683 testl %eax, %eax 684 jne _syscall_post_call 685 /* 686 * Didn't abort, so reload the syscall args and invoke the handler. 687 */ 688 movzwl T_SYSNUM(%r15), %eax 689 jmp _syscall_invoke 690 691 _syscall_ill: 692 call nosys 693 movq %rax, %r12 694 movq %rdx, %r13 695 jmp _syscall_post_call 696 697 _syscall_post: 698 STI 699 /* 700 * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM 701 * so that we can account for the extra work it takes us to finish. 702 */ 703 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM) 704 _syscall_post_call: 705 movq %r12, %rdi 706 movq %r13, %rsi 707 call post_syscall 708 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER) 709 jmp _sys_rtt 710 SET_SIZE(sys_syscall) 711 SET_SIZE(brand_sys_syscall) 712 713 #endif /* __lint */ 714 715 #if defined(__lint) 716 717 /*ARGSUSED*/ 718 void 719 sys_syscall32() 720 {} 721 722 #else /* __lint */ 723 724 ENTRY_NP(brand_sys_syscall32) 725 SWAPGS /* kernel gsbase */ 726 XPV_TRAP_POP 727 BRAND_CALLBACK(BRAND_CB_SYSCALL32, BRAND_URET_FROM_REG(%rcx)) 728 jmp nopop_sys_syscall32 729 730 ALTENTRY(sys_syscall32) 731 SWAPGS /* kernel gsbase */ 732 XPV_TRAP_POP 733 734 nopop_sys_syscall32: 735 movl %esp, %r10d 736 movq %gs:CPU_THREAD, %r15 737 movq T_STACK(%r15), %rsp 738 movl %eax, %eax 739 740 movl $U32CS_SEL, REGOFF_CS(%rsp) 741 movl %ecx, REGOFF_RIP(%rsp) /* syscall: %rip -> %rcx */ 742 movq %r11, REGOFF_RFL(%rsp) /* syscall: %rfl -> %r11d */ 743 movq %r10, REGOFF_RSP(%rsp) 744 movl $UDS_SEL, REGOFF_SS(%rsp) 745 746 _syscall32_save: 747 movl %edi, REGOFF_RDI(%rsp) 748 movl %esi, REGOFF_RSI(%rsp) 749 movl %ebp, REGOFF_RBP(%rsp) 750 movl %ebx, REGOFF_RBX(%rsp) 751 movl %edx, REGOFF_RDX(%rsp) 752 movl %ecx, REGOFF_RCX(%rsp) 753 movl %eax, REGOFF_RAX(%rsp) /* wrapper: sysc# -> %eax */ 754 movq $0, REGOFF_SAVFP(%rsp) 755 movq $0, REGOFF_SAVPC(%rsp) 756 757 /* 758 * Copy these registers here in case we end up stopped with 759 * someone (like, say, /proc) messing with our register state. 760 * We don't -restore- them unless we have to in update_sregs. 761 * 762 * Since userland -can't- change fsbase or gsbase directly, 763 * we don't bother to capture them here. 764 */ 765 xorl %ebx, %ebx 766 movw %ds, %bx 767 movq %rbx, REGOFF_DS(%rsp) 768 movw %es, %bx 769 movq %rbx, REGOFF_ES(%rsp) 770 movw %fs, %bx 771 movq %rbx, REGOFF_FS(%rsp) 772 movw %gs, %bx 773 movq %rbx, REGOFF_GS(%rsp) 774 775 /* 776 * Application state saved in the regs structure on the stack 777 * %eax is the syscall number 778 * %rsp is the thread's stack, %r15 is curthread 779 * REG_RSP(%rsp) is the user's stack 780 */ 781 782 SYSCALL_TRAPTRACE32($TT_SYSC) 783 784 movq %rsp, %rbp 785 786 movq T_LWP(%r15), %r14 787 ASSERT_NO_RUPDATE_PENDING(%r14) 788 789 ENABLE_INTR_FLAGS 790 791 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM) 792 movl REGOFF_RAX(%rsp), %eax /* (%rax damaged by mstate call) */ 793 794 ASSERT_LWPTOREGS(%r14, %rsp) 795 796 incq %gs:CPU_STATS_SYS_SYSCALL 797 798 /* 799 * Make some space for MAXSYSARGS (currently 8) 32-bit args placed 800 * into 64-bit (long) arg slots, maintaining 16 byte alignment. Or 801 * more succinctly: 802 * 803 * SA(MAXSYSARGS * sizeof (long)) == 64 804 */ 805 #define SYS_DROP 64 /* drop for args */ 806 subq $SYS_DROP, %rsp 807 movb $LWP_SYS, LWP_STATE(%r14) 808 movq %r15, %rdi 809 movq %rsp, %rsi 810 call syscall_entry 811 812 /* 813 * Fetch the arguments copied onto the kernel stack and put 814 * them in the right registers to invoke a C-style syscall handler. 815 * %rax contains the handler address. 816 * 817 * Ideas for making all this go faster of course include simply 818 * forcibly fetching 6 arguments from the user stack under lofault 819 * protection, reverting to copyin_args only when watchpoints 820 * are in effect. 821 * 822 * (If we do this, make sure that exec and libthread leave 823 * enough space at the top of the stack to ensure that we'll 824 * never do a fetch from an invalid page.) 825 * 826 * Lots of ideas here, but they won't really help with bringup B-) 827 * Correctness can't wait, performance can wait a little longer .. 828 */ 829 830 movq %rax, %rbx 831 movl 0(%rsp), %edi 832 movl 8(%rsp), %esi 833 movl 0x10(%rsp), %edx 834 movl 0x18(%rsp), %ecx 835 movl 0x20(%rsp), %r8d 836 movl 0x28(%rsp), %r9d 837 838 call *SY_CALLC(%rbx) 839 840 movq %rbp, %rsp /* pop the args */ 841 842 /* 843 * amd64 syscall handlers -always- return a 64-bit value in %rax. 844 * On the 32-bit kernel, they always return that value in %eax:%edx 845 * as required by the 32-bit ABI. 846 * 847 * Simulate the same behaviour by unconditionally splitting the 848 * return value in the same way. 849 */ 850 movq %rax, %r13 851 shrq $32, %r13 /* upper 32-bits into %edx */ 852 movl %eax, %r12d /* lower 32-bits into %eax */ 853 854 /* 855 * Optimistically assume that there's no post-syscall 856 * work to do. (This is to avoid having to call syscall_mstate() 857 * with interrupts disabled) 858 */ 859 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER) 860 861 /* 862 * We must protect ourselves from being descheduled here; 863 * If we were, and we ended up on another cpu, or another 864 * lwp got in ahead of us, it could change the segment 865 * registers without us noticing before we return to userland. 866 */ 867 CLI(%r14) 868 CHECK_POSTSYS_NE(%r15, %r14, %ebx) 869 jne _full_syscall_postsys32 870 SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx) 871 872 /* 873 * To get back to userland, we need to put the return %rip in %rcx and 874 * the return %rfl in %r11d. The sysret instruction also arranges 875 * to fix up %cs and %ss; everything else is our responsibility. 876 */ 877 878 movl %r12d, %eax /* %eax: rval1 */ 879 movl REGOFF_RBX(%rsp), %ebx 880 /* %ecx used for return pointer */ 881 movl %r13d, %edx /* %edx: rval2 */ 882 movl REGOFF_RBP(%rsp), %ebp 883 movl REGOFF_RSI(%rsp), %esi 884 movl REGOFF_RDI(%rsp), %edi 885 886 movl REGOFF_RFL(%rsp), %r11d /* %r11 -> eflags */ 887 movl REGOFF_RIP(%rsp), %ecx /* %ecx -> %eip */ 888 movl REGOFF_RSP(%rsp), %esp 889 890 ASSERT_UPCALL_MASK_IS_SET 891 ALTENTRY(nopop_sys_syscall32_swapgs_sysretl) 892 SWAPGS /* user gsbase */ 893 SYSRETL 894 SET_SIZE(nopop_sys_syscall32_swapgs_sysretl) 895 /*NOTREACHED*/ 896 897 _full_syscall_postsys32: 898 STI 899 /* 900 * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM 901 * so that we can account for the extra work it takes us to finish. 902 */ 903 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM) 904 movq %r15, %rdi 905 movq %r12, %rsi /* rval1 - %eax */ 906 movq %r13, %rdx /* rval2 - %edx */ 907 call syscall_exit 908 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER) 909 jmp _sys_rtt 910 SET_SIZE(sys_syscall32) 911 SET_SIZE(brand_sys_syscall32) 912 913 #endif /* __lint */ 914 915 /* 916 * System call handler via the sysenter instruction 917 * Used only for 32-bit system calls on the 64-bit kernel. 918 * 919 * The caller in userland has arranged that: 920 * 921 * - %eax contains the syscall number 922 * - %ecx contains the user %esp 923 * - %edx contains the return %eip 924 * - the user stack contains the args to the syscall 925 * 926 * Hardware and (privileged) initialization code have arranged that by 927 * the time the sysenter instructions completes: 928 * 929 * - %rip is pointing to sys_sysenter (below). 930 * - %cs and %ss are set to kernel text and stack (data) selectors. 931 * - %rsp is pointing at the lwp's stack 932 * - interrupts have been disabled. 933 * 934 * Note that we are unable to return both "rvals" to userland with 935 * this call, as %edx is used by the sysexit instruction. 936 * 937 * One final complication in this routine is its interaction with 938 * single-stepping in a debugger. For most of the system call mechanisms, 939 * the CPU automatically clears the single-step flag before we enter the 940 * kernel. The sysenter mechanism does not clear the flag, so a user 941 * single-stepping through a libc routine may suddenly find themself 942 * single-stepping through the kernel. To detect this, kmdb compares the 943 * trap %pc to the [brand_]sys_enter addresses on each single-step trap. 944 * If it finds that we have single-stepped to a sysenter entry point, it 945 * explicitly clears the flag and executes the sys_sysenter routine. 946 * 947 * One final complication in this final complication is the fact that we 948 * have two different entry points for sysenter: brand_sys_sysenter and 949 * sys_sysenter. If we enter at brand_sys_sysenter and start single-stepping 950 * through the kernel with kmdb, we will eventually hit the instruction at 951 * sys_sysenter. kmdb cannot distinguish between that valid single-step 952 * and the undesirable one mentioned above. To avoid this situation, we 953 * simply add a jump over the instruction at sys_sysenter to make it 954 * impossible to single-step to it. 955 */ 956 #if defined(__lint) 957 958 void 959 sys_sysenter() 960 {} 961 962 #else /* __lint */ 963 964 ENTRY_NP(brand_sys_sysenter) 965 SWAPGS /* kernel gsbase */ 966 ALTENTRY(_brand_sys_sysenter_post_swapgs) 967 BRAND_CALLBACK(BRAND_CB_SYSENTER, BRAND_URET_FROM_REG(%rdx)) 968 /* 969 * Jump over sys_sysenter to allow single-stepping as described 970 * above. 971 */ 972 jmp _sys_sysenter_post_swapgs 973 974 ALTENTRY(sys_sysenter) 975 SWAPGS /* kernel gsbase */ 976 977 ALTENTRY(_sys_sysenter_post_swapgs) 978 movq %gs:CPU_THREAD, %r15 979 980 movl $U32CS_SEL, REGOFF_CS(%rsp) 981 movl %ecx, REGOFF_RSP(%rsp) /* wrapper: %esp -> %ecx */ 982 movl %edx, REGOFF_RIP(%rsp) /* wrapper: %eip -> %edx */ 983 pushfq 984 popq %r10 985 movl $UDS_SEL, REGOFF_SS(%rsp) 986 987 /* 988 * Set the interrupt flag before storing the flags to the 989 * flags image on the stack so we can return to user with 990 * interrupts enabled if we return via sys_rtt_syscall32 991 */ 992 orq $PS_IE, %r10 993 movq %r10, REGOFF_RFL(%rsp) 994 995 movl %edi, REGOFF_RDI(%rsp) 996 movl %esi, REGOFF_RSI(%rsp) 997 movl %ebp, REGOFF_RBP(%rsp) 998 movl %ebx, REGOFF_RBX(%rsp) 999 movl %edx, REGOFF_RDX(%rsp) 1000 movl %ecx, REGOFF_RCX(%rsp) 1001 movl %eax, REGOFF_RAX(%rsp) /* wrapper: sysc# -> %eax */ 1002 movq $0, REGOFF_SAVFP(%rsp) 1003 movq $0, REGOFF_SAVPC(%rsp) 1004 1005 /* 1006 * Copy these registers here in case we end up stopped with 1007 * someone (like, say, /proc) messing with our register state. 1008 * We don't -restore- them unless we have to in update_sregs. 1009 * 1010 * Since userland -can't- change fsbase or gsbase directly, 1011 * we don't bother to capture them here. 1012 */ 1013 xorl %ebx, %ebx 1014 movw %ds, %bx 1015 movq %rbx, REGOFF_DS(%rsp) 1016 movw %es, %bx 1017 movq %rbx, REGOFF_ES(%rsp) 1018 movw %fs, %bx 1019 movq %rbx, REGOFF_FS(%rsp) 1020 movw %gs, %bx 1021 movq %rbx, REGOFF_GS(%rsp) 1022 1023 /* 1024 * Application state saved in the regs structure on the stack 1025 * %eax is the syscall number 1026 * %rsp is the thread's stack, %r15 is curthread 1027 * REG_RSP(%rsp) is the user's stack 1028 */ 1029 1030 SYSCALL_TRAPTRACE($TT_SYSENTER) 1031 1032 movq %rsp, %rbp 1033 1034 movq T_LWP(%r15), %r14 1035 ASSERT_NO_RUPDATE_PENDING(%r14) 1036 1037 ENABLE_INTR_FLAGS 1038 1039 /* 1040 * Catch 64-bit process trying to issue sysenter instruction 1041 * on Nocona based systems. 1042 */ 1043 movq LWP_PROCP(%r14), %rax 1044 cmpq $DATAMODEL_ILP32, P_MODEL(%rax) 1045 je 7f 1046 1047 /* 1048 * For a non-32-bit process, simulate a #ud, since that's what 1049 * native hardware does. The traptrace entry (above) will 1050 * let you know what really happened. 1051 */ 1052 movq $T_ILLINST, REGOFF_TRAPNO(%rsp) 1053 movq REGOFF_CS(%rsp), %rdi 1054 movq %rdi, REGOFF_ERR(%rsp) 1055 movq %rsp, %rdi 1056 movq REGOFF_RIP(%rsp), %rsi 1057 movl %gs:CPU_ID, %edx 1058 call trap 1059 jmp _sys_rtt 1060 7: 1061 1062 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM) 1063 movl REGOFF_RAX(%rsp), %eax /* (%rax damaged by mstate calls) */ 1064 1065 ASSERT_LWPTOREGS(%r14, %rsp) 1066 1067 incq %gs:CPU_STATS_SYS_SYSCALL 1068 1069 /* 1070 * Make some space for MAXSYSARGS (currently 8) 32-bit args 1071 * placed into 64-bit (long) arg slots, plus one 64-bit 1072 * (long) arg count, maintaining 16 byte alignment. 1073 */ 1074 subq $SYS_DROP, %rsp 1075 movb $LWP_SYS, LWP_STATE(%r14) 1076 movq %r15, %rdi 1077 movq %rsp, %rsi 1078 call syscall_entry 1079 1080 /* 1081 * Fetch the arguments copied onto the kernel stack and put 1082 * them in the right registers to invoke a C-style syscall handler. 1083 * %rax contains the handler address. 1084 */ 1085 movq %rax, %rbx 1086 movl 0(%rsp), %edi 1087 movl 8(%rsp), %esi 1088 movl 0x10(%rsp), %edx 1089 movl 0x18(%rsp), %ecx 1090 movl 0x20(%rsp), %r8d 1091 movl 0x28(%rsp), %r9d 1092 1093 call *SY_CALLC(%rbx) 1094 1095 movq %rbp, %rsp /* pop the args */ 1096 1097 /* 1098 * amd64 syscall handlers -always- return a 64-bit value in %rax. 1099 * On the 32-bit kernel, the always return that value in %eax:%edx 1100 * as required by the 32-bit ABI. 1101 * 1102 * Simulate the same behaviour by unconditionally splitting the 1103 * return value in the same way. 1104 */ 1105 movq %rax, %r13 1106 shrq $32, %r13 /* upper 32-bits into %edx */ 1107 movl %eax, %r12d /* lower 32-bits into %eax */ 1108 1109 /* 1110 * Optimistically assume that there's no post-syscall 1111 * work to do. (This is to avoid having to call syscall_mstate() 1112 * with interrupts disabled) 1113 */ 1114 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER) 1115 1116 /* 1117 * We must protect ourselves from being descheduled here; 1118 * If we were, and we ended up on another cpu, or another 1119 * lwp got int ahead of us, it could change the segment 1120 * registers without us noticing before we return to userland. 1121 */ 1122 cli 1123 CHECK_POSTSYS_NE(%r15, %r14, %ebx) 1124 jne _full_syscall_postsys32 1125 SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx) 1126 1127 /* 1128 * To get back to userland, load up the 32-bit registers and 1129 * sysexit back where we came from. 1130 */ 1131 1132 /* 1133 * Interrupts will be turned on by the 'sti' executed just before 1134 * sysexit. The following ensures that restoring the user's rflags 1135 * doesn't enable interrupts too soon. 1136 */ 1137 andq $_BITNOT(PS_IE), REGOFF_RFL(%rsp) 1138 1139 /* 1140 * (There's no point in loading up %edx because the sysexit 1141 * mechanism smashes it.) 1142 */ 1143 movl %r12d, %eax 1144 movl REGOFF_RBX(%rsp), %ebx 1145 movl REGOFF_RBP(%rsp), %ebp 1146 movl REGOFF_RSI(%rsp), %esi 1147 movl REGOFF_RDI(%rsp), %edi 1148 1149 movl REGOFF_RIP(%rsp), %edx /* sysexit: %edx -> %eip */ 1150 pushq REGOFF_RFL(%rsp) 1151 popfq 1152 movl REGOFF_RSP(%rsp), %ecx /* sysexit: %ecx -> %esp */ 1153 ALTENTRY(sys_sysenter_swapgs_sysexit) 1154 swapgs 1155 sti 1156 sysexit 1157 SET_SIZE(sys_sysenter_swapgs_sysexit) 1158 SET_SIZE(sys_sysenter) 1159 SET_SIZE(_sys_sysenter_post_swapgs) 1160 SET_SIZE(brand_sys_sysenter) 1161 1162 #endif /* __lint */ 1163 1164 /* 1165 * This is the destination of the "int $T_SYSCALLINT" interrupt gate, used by 1166 * the generic i386 libc to do system calls. We do a small amount of setup 1167 * before jumping into the existing sys_syscall32 path. 1168 */ 1169 #if defined(__lint) 1170 1171 /*ARGSUSED*/ 1172 void 1173 sys_syscall_int() 1174 {} 1175 1176 #else /* __lint */ 1177 1178 ENTRY_NP(brand_sys_syscall_int) 1179 SWAPGS /* kernel gsbase */ 1180 XPV_TRAP_POP 1181 call smap_enable 1182 BRAND_CALLBACK(BRAND_CB_INT91, BRAND_URET_FROM_INTR_STACK()) 1183 jmp nopop_syscall_int 1184 1185 ALTENTRY(sys_syscall_int) 1186 SWAPGS /* kernel gsbase */ 1187 XPV_TRAP_POP 1188 call smap_enable 1189 1190 nopop_syscall_int: 1191 movq %gs:CPU_THREAD, %r15 1192 movq T_STACK(%r15), %rsp 1193 movl %eax, %eax 1194 /* 1195 * Set t_post_sys on this thread to force ourselves out via the slow 1196 * path. It might be possible at some later date to optimize this out 1197 * and use a faster return mechanism. 1198 */ 1199 movb $1, T_POST_SYS(%r15) 1200 CLEAN_CS 1201 jmp _syscall32_save 1202 /* 1203 * There should be no instructions between this label and SWAPGS/IRET 1204 * or we could end up breaking branded zone support. See the usage of 1205 * this label in lx_brand_int80_callback and sn1_brand_int91_callback 1206 * for examples. 1207 */ 1208 ALTENTRY(sys_sysint_swapgs_iret) 1209 SWAPGS /* user gsbase */ 1210 IRET 1211 /*NOTREACHED*/ 1212 SET_SIZE(sys_sysint_swapgs_iret) 1213 SET_SIZE(sys_syscall_int) 1214 SET_SIZE(brand_sys_syscall_int) 1215 1216 #endif /* __lint */ 1217 1218 /* 1219 * Legacy 32-bit applications and old libc implementations do lcalls; 1220 * we should never get here because the LDT entry containing the syscall 1221 * segment descriptor has the "segment present" bit cleared, which means 1222 * we end up processing those system calls in trap() via a not-present trap. 1223 * 1224 * We do it this way because a call gate unhelpfully does -nothing- to the 1225 * interrupt flag bit, so an interrupt can run us just after the lcall 1226 * completes, but just before the swapgs takes effect. Thus the INTR_PUSH and 1227 * INTR_POP paths would have to be slightly more complex to dance around 1228 * this problem, and end up depending explicitly on the first 1229 * instruction of this handler being either swapgs or cli. 1230 */ 1231 1232 #if defined(__lint) 1233 1234 /*ARGSUSED*/ 1235 void 1236 sys_lcall32() 1237 {} 1238 1239 #else /* __lint */ 1240 1241 ENTRY_NP(sys_lcall32) 1242 SWAPGS /* kernel gsbase */ 1243 pushq $0 1244 pushq %rbp 1245 movq %rsp, %rbp 1246 leaq __lcall_panic_str(%rip), %rdi 1247 xorl %eax, %eax 1248 call panic 1249 SET_SIZE(sys_lcall32) 1250 1251 __lcall_panic_str: 1252 .string "sys_lcall32: shouldn't be here!" 1253 1254 /* 1255 * Declare a uintptr_t which covers the entire pc range of syscall 1256 * handlers for the stack walkers that need this. 1257 */ 1258 .align CPTRSIZE 1259 .globl _allsyscalls_size 1260 .type _allsyscalls_size, @object 1261 _allsyscalls_size: 1262 .NWORD . - _allsyscalls 1263 SET_SIZE(_allsyscalls_size) 1264 1265 #endif /* __lint */ 1266 1267 /* 1268 * These are the thread context handlers for lwps using sysenter/sysexit. 1269 */ 1270 1271 #if defined(__lint) 1272 1273 /*ARGSUSED*/ 1274 void 1275 sep_save(void *ksp) 1276 {} 1277 1278 /*ARGSUSED*/ 1279 void 1280 sep_restore(void *ksp) 1281 {} 1282 1283 #else /* __lint */ 1284 1285 /* 1286 * setting this value to zero as we switch away causes the 1287 * stack-pointer-on-sysenter to be NULL, ensuring that we 1288 * don't silently corrupt another (preempted) thread stack 1289 * when running an lwp that (somehow) didn't get sep_restore'd 1290 */ 1291 ENTRY_NP(sep_save) 1292 xorl %edx, %edx 1293 xorl %eax, %eax 1294 movl $MSR_INTC_SEP_ESP, %ecx 1295 wrmsr 1296 ret 1297 SET_SIZE(sep_save) 1298 1299 /* 1300 * Update the kernel stack pointer as we resume onto this cpu. 1301 */ 1302 ENTRY_NP(sep_restore) 1303 movq %rdi, %rdx 1304 shrq $32, %rdx 1305 movl %edi, %eax 1306 movl $MSR_INTC_SEP_ESP, %ecx 1307 wrmsr 1308 ret 1309 SET_SIZE(sep_restore) 1310 1311 #endif /* __lint */