8956 Implement KPTI Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com> Reviewed by: Robert Mustacchi <rm@joyent.com>
1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 * 29 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 30 * 31 * Copyright 2018 Joyent Inc. 32 */ 33 34 #ifndef _SYS_SYSMACROS_H 35 #define _SYS_SYSMACROS_H 36 37 #include <sys/param.h> 38 #include <sys/stddef.h> 39 40 #ifdef __cplusplus 41 extern "C" { 42 #endif 43 44 /* 45 * Some macros for units conversion 46 */ 47 /* 48 * Disk blocks (sectors) and bytes. 49 */ 50 #define dtob(DD) ((DD) << DEV_BSHIFT) 51 #define btod(BB) (((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT) 52 #define btodt(BB) ((BB) >> DEV_BSHIFT) 53 #define lbtod(BB) (((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT) 54 55 /* common macros */ 56 #ifndef MIN 57 #define MIN(a, b) ((a) < (b) ? (a) : (b)) 58 #endif 59 #ifndef MAX 60 #define MAX(a, b) ((a) < (b) ? (b) : (a)) 61 #endif 62 #ifndef ABS 63 #define ABS(a) ((a) < 0 ? -(a) : (a)) 64 #endif 65 #ifndef SIGNOF 66 #define SIGNOF(a) ((a) < 0 ? -1 : (a) > 0) 67 #endif 68 69 #ifdef _KERNEL 70 71 /* 72 * Convert a single byte to/from binary-coded decimal (BCD). 73 */ 74 extern unsigned char byte_to_bcd[256]; 75 extern unsigned char bcd_to_byte[256]; 76 77 #define BYTE_TO_BCD(x) byte_to_bcd[(x) & 0xff] 78 #define BCD_TO_BYTE(x) bcd_to_byte[(x) & 0xff] 79 80 #endif /* _KERNEL */ 81 82 /* 83 * WARNING: The device number macros defined here should not be used by device 84 * drivers or user software. Device drivers should use the device functions 85 * defined in the DDI/DKI interface (see also ddi.h). Application software 86 * should make use of the library routines available in makedev(3). A set of 87 * new device macros are provided to operate on the expanded device number 88 * format supported in SVR4. Macro versions of the DDI device functions are 89 * provided for use by kernel proper routines only. Macro routines bmajor(), 90 * major(), minor(), emajor(), eminor(), and makedev() will be removed or 91 * their definitions changed at the next major release following SVR4. 92 */ 93 94 #define O_BITSMAJOR 7 /* # of SVR3 major device bits */ 95 #define O_BITSMINOR 8 /* # of SVR3 minor device bits */ 96 #define O_MAXMAJ 0x7f /* SVR3 max major value */ 97 #define O_MAXMIN 0xff /* SVR3 max minor value */ 98 99 100 #define L_BITSMAJOR32 14 /* # of SVR4 major device bits */ 101 #define L_BITSMINOR32 18 /* # of SVR4 minor device bits */ 102 #define L_MAXMAJ32 0x3fff /* SVR4 max major value */ 103 #define L_MAXMIN32 0x3ffff /* MAX minor for 3b2 software drivers. */ 104 /* For 3b2 hardware devices the minor is */ 105 /* restricted to 256 (0-255) */ 106 107 #ifdef _LP64 108 #define L_BITSMAJOR 32 /* # of major device bits in 64-bit Solaris */ 109 #define L_BITSMINOR 32 /* # of minor device bits in 64-bit Solaris */ 110 #define L_MAXMAJ 0xfffffffful /* max major value */ 111 #define L_MAXMIN 0xfffffffful /* max minor value */ 112 #else 113 #define L_BITSMAJOR L_BITSMAJOR32 114 #define L_BITSMINOR L_BITSMINOR32 115 #define L_MAXMAJ L_MAXMAJ32 116 #define L_MAXMIN L_MAXMIN32 117 #endif 118 119 #ifdef _KERNEL 120 121 /* major part of a device internal to the kernel */ 122 123 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) 124 #define bmajor(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) 125 126 /* get internal major part of expanded device number */ 127 128 #define getmajor(x) (major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ) 129 130 /* minor part of a device internal to the kernel */ 131 132 #define minor(x) (minor_t)((x) & O_MAXMIN) 133 134 /* get internal minor part of expanded device number */ 135 136 #define getminor(x) (minor_t)((x) & L_MAXMIN) 137 138 #else /* _KERNEL */ 139 140 /* major part of a device external from the kernel (same as emajor below) */ 141 142 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) 143 144 /* minor part of a device external from the kernel (same as eminor below) */ 145 146 #define minor(x) (minor_t)((x) & O_MAXMIN) 147 148 #endif /* _KERNEL */ 149 150 /* create old device number */ 151 152 #define makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN)) 153 154 /* make an new device number */ 155 156 #define makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN)) 157 158 159 /* 160 * emajor() allows kernel/driver code to print external major numbers 161 * eminor() allows kernel/driver code to print external minor numbers 162 */ 163 164 #define emajor(x) \ 165 (major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \ 166 NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ) 167 168 #define eminor(x) \ 169 (minor_t)((x) & O_MAXMIN) 170 171 /* 172 * get external major and minor device 173 * components from expanded device number 174 */ 175 #define getemajor(x) (major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \ 176 NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ)) 177 #define geteminor(x) (minor_t)((x) & L_MAXMIN) 178 179 /* 180 * These are versions of the kernel routines for compressing and 181 * expanding long device numbers that don't return errors. 182 */ 183 #if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR) 184 185 #define DEVCMPL(x) (x) 186 #define DEVEXPL(x) (x) 187 188 #else 189 190 #define DEVCMPL(x) \ 191 (dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \ 192 ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \ 193 ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32))) 194 195 #define DEVEXPL(x) \ 196 (((x) == NODEV32) ? NODEV : \ 197 makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32)) 198 199 #endif /* L_BITSMAJOR32 ... */ 200 201 /* convert to old (SVR3.2) dev format */ 202 203 #define cmpdev(x) \ 204 (o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \ 205 ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \ 206 ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN))) 207 208 /* convert to new (SVR4) dev format */ 209 210 #define expdev(x) \ 211 (dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \ 212 ((x) & O_MAXMIN)) 213 214 /* 215 * Macro for checking power of 2 address alignment. 216 */ 217 #define IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0) 218 219 /* 220 * Macros for counting and rounding. 221 */ 222 #define howmany(x, y) (((x)+((y)-1))/(y)) 223 #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) 224 225 /* 226 * Macro to determine if value is a power of 2 227 */ 228 #define ISP2(x) (((x) & ((x) - 1)) == 0) 229 230 /* 231 * Macros for various sorts of alignment and rounding. The "align" must 232 * be a power of 2. Often times it is a block, sector, or page. 233 */ 234 235 /* 236 * return x rounded down to an align boundary 237 * eg, P2ALIGN(1200, 1024) == 1024 (1*align) 238 * eg, P2ALIGN(1024, 1024) == 1024 (1*align) 239 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align) 240 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align) 241 */ 242 #define P2ALIGN(x, align) ((x) & -(align)) 243 244 /* 245 * return x % (mod) align 246 * eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align) 247 * eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align) 248 */ 249 #define P2PHASE(x, align) ((x) & ((align) - 1)) 250 251 /* 252 * return how much space is left in this block (but if it's perfectly 253 * aligned, return 0). 254 * eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x) 255 * eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x) 256 */ 257 #define P2NPHASE(x, align) (-(x) & ((align) - 1)) 258 259 /* 260 * return x rounded up to an align boundary 261 * eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align) 262 * eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align) 263 */ 264 #define P2ROUNDUP(x, align) (-(-(x) & -(align))) 265 266 /* 267 * return the ending address of the block that x is in 268 * eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1) 269 * eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1) 270 */ 271 #define P2END(x, align) (-(~(x) & -(align))) 272 273 /* 274 * return x rounded up to the next phase (offset) within align. 275 * phase should be < align. 276 * eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase) 277 * eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase) 278 */ 279 #define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align))) 280 281 /* 282 * return TRUE if adding len to off would cause it to cross an align 283 * boundary. 284 * eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314) 285 * eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284) 286 */ 287 #define P2BOUNDARY(off, len, align) \ 288 (((off) ^ ((off) + (len) - 1)) > (align) - 1) 289 290 /* 291 * Return TRUE if they have the same highest bit set. 292 * eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000) 293 * eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000) 294 */ 295 #define P2SAMEHIGHBIT(x, y) (((x) ^ (y)) < ((x) & (y))) 296 297 /* 298 * Typed version of the P2* macros. These macros should be used to ensure 299 * that the result is correctly calculated based on the data type of (x), 300 * which is passed in as the last argument, regardless of the data 301 * type of the alignment. For example, if (x) is of type uint64_t, 302 * and we want to round it up to a page boundary using "PAGESIZE" as 303 * the alignment, we can do either 304 * P2ROUNDUP(x, (uint64_t)PAGESIZE) 305 * or 306 * P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t) 307 */ 308 #define P2ALIGN_TYPED(x, align, type) \ 309 ((type)(x) & -(type)(align)) 310 #define P2PHASE_TYPED(x, align, type) \ 311 ((type)(x) & ((type)(align) - 1)) 312 #define P2NPHASE_TYPED(x, align, type) \ 313 (-(type)(x) & ((type)(align) - 1)) 314 #define P2ROUNDUP_TYPED(x, align, type) \ 315 (-(-(type)(x) & -(type)(align))) 316 #define P2END_TYPED(x, align, type) \ 317 (-(~(type)(x) & -(type)(align))) 318 #define P2PHASEUP_TYPED(x, align, phase, type) \ 319 ((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align))) 320 #define P2CROSS_TYPED(x, y, align, type) \ 321 (((type)(x) ^ (type)(y)) > (type)(align) - 1) 322 #define P2SAMEHIGHBIT_TYPED(x, y, type) \ 323 (((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y))) 324 325 /* 326 * Macros to atomically increment/decrement a variable. mutex and var 327 * must be pointers. 328 */ 329 #define INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex) 330 #define DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex) 331 332 /* 333 * Macros to declare bitfields - the order in the parameter list is 334 * Low to High - that is, declare bit 0 first. We only support 8-bit bitfields 335 * because if a field crosses a byte boundary it's not likely to be meaningful 336 * without reassembly in its nonnative endianness. 337 */ 338 #if defined(_BIT_FIELDS_LTOH) 339 #define DECL_BITFIELD2(_a, _b) \ 340 uint8_t _a, _b 341 #define DECL_BITFIELD3(_a, _b, _c) \ 342 uint8_t _a, _b, _c 343 #define DECL_BITFIELD4(_a, _b, _c, _d) \ 344 uint8_t _a, _b, _c, _d 345 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \ 346 uint8_t _a, _b, _c, _d, _e 347 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \ 348 uint8_t _a, _b, _c, _d, _e, _f 349 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \ 350 uint8_t _a, _b, _c, _d, _e, _f, _g 351 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \ 352 uint8_t _a, _b, _c, _d, _e, _f, _g, _h 353 #elif defined(_BIT_FIELDS_HTOL) 354 #define DECL_BITFIELD2(_a, _b) \ 355 uint8_t _b, _a 356 #define DECL_BITFIELD3(_a, _b, _c) \ 357 uint8_t _c, _b, _a 358 #define DECL_BITFIELD4(_a, _b, _c, _d) \ 359 uint8_t _d, _c, _b, _a 360 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \ 361 uint8_t _e, _d, _c, _b, _a 362 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \ 363 uint8_t _f, _e, _d, _c, _b, _a 364 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \ 365 uint8_t _g, _f, _e, _d, _c, _b, _a 366 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \ 367 uint8_t _h, _g, _f, _e, _d, _c, _b, _a 368 #else 369 #error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined 370 #endif /* _BIT_FIELDS_LTOH */ 371 372 #if !defined(ARRAY_SIZE) 373 #define ARRAY_SIZE(x) (sizeof (x) / sizeof (x[0])) 374 #endif 375 376 #ifdef __cplusplus 377 } 378 #endif 379 380 #endif /* _SYS_SYSMACROS_H */ --- EOF ---