1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 * 29 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 30 */ 31 32 #ifndef _SYS_SYSMACROS_H 33 #define _SYS_SYSMACROS_H 34 35 #include <sys/param.h> 36 #include <sys/stddef.h> 37 38 #ifdef __cplusplus 39 extern "C" { 40 #endif 41 42 /* 43 * Some macros for units conversion 44 */ 45 /* 46 * Disk blocks (sectors) and bytes. 47 */ 48 #define dtob(DD) ((DD) << DEV_BSHIFT) 49 #define btod(BB) (((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT) 50 #define btodt(BB) ((BB) >> DEV_BSHIFT) 51 #define lbtod(BB) (((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT) 52 53 /* common macros */ 54 #ifndef MIN 55 #define MIN(a, b) ((a) < (b) ? (a) : (b)) 56 #endif 57 #ifndef MAX 58 #define MAX(a, b) ((a) < (b) ? (b) : (a)) 59 #endif 60 #ifndef ABS 61 #define ABS(a) ((a) < 0 ? -(a) : (a)) 62 #endif 63 #ifndef SIGNOF 64 #define SIGNOF(a) ((a) < 0 ? -1 : (a) > 0) 65 #endif 66 67 #ifdef _KERNEL 68 69 /* 70 * Convert a single byte to/from binary-coded decimal (BCD). 71 */ 72 extern unsigned char byte_to_bcd[256]; 73 extern unsigned char bcd_to_byte[256]; 74 75 #define BYTE_TO_BCD(x) byte_to_bcd[(x) & 0xff] 76 #define BCD_TO_BYTE(x) bcd_to_byte[(x) & 0xff] 77 78 #endif /* _KERNEL */ 79 80 /* 81 * WARNING: The device number macros defined here should not be used by device 82 * drivers or user software. Device drivers should use the device functions 83 * defined in the DDI/DKI interface (see also ddi.h). Application software 84 * should make use of the library routines available in makedev(3). A set of 85 * new device macros are provided to operate on the expanded device number 86 * format supported in SVR4. Macro versions of the DDI device functions are 87 * provided for use by kernel proper routines only. Macro routines bmajor(), 88 * major(), minor(), emajor(), eminor(), and makedev() will be removed or 89 * their definitions changed at the next major release following SVR4. 90 */ 91 92 #define O_BITSMAJOR 7 /* # of SVR3 major device bits */ 93 #define O_BITSMINOR 8 /* # of SVR3 minor device bits */ 94 #define O_MAXMAJ 0x7f /* SVR3 max major value */ 95 #define O_MAXMIN 0xff /* SVR3 max minor value */ 96 97 98 #define L_BITSMAJOR32 14 /* # of SVR4 major device bits */ 99 #define L_BITSMINOR32 18 /* # of SVR4 minor device bits */ 100 #define L_MAXMAJ32 0x3fff /* SVR4 max major value */ 101 #define L_MAXMIN32 0x3ffff /* MAX minor for 3b2 software drivers. */ 102 /* For 3b2 hardware devices the minor is */ 103 /* restricted to 256 (0-255) */ 104 105 #ifdef _LP64 106 #define L_BITSMAJOR 32 /* # of major device bits in 64-bit Solaris */ 107 #define L_BITSMINOR 32 /* # of minor device bits in 64-bit Solaris */ 108 #define L_MAXMAJ 0xfffffffful /* max major value */ 109 #define L_MAXMIN 0xfffffffful /* max minor value */ 110 #else 111 #define L_BITSMAJOR L_BITSMAJOR32 112 #define L_BITSMINOR L_BITSMINOR32 113 #define L_MAXMAJ L_MAXMAJ32 114 #define L_MAXMIN L_MAXMIN32 115 #endif 116 117 #ifdef _KERNEL 118 119 /* major part of a device internal to the kernel */ 120 121 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) 122 #define bmajor(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) 123 124 /* get internal major part of expanded device number */ 125 126 #define getmajor(x) (major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ) 127 128 /* minor part of a device internal to the kernel */ 129 130 #define minor(x) (minor_t)((x) & O_MAXMIN) 131 132 /* get internal minor part of expanded device number */ 133 134 #define getminor(x) (minor_t)((x) & L_MAXMIN) 135 136 #else /* _KERNEL */ 137 138 /* major part of a device external from the kernel (same as emajor below) */ 139 140 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) 141 142 /* minor part of a device external from the kernel (same as eminor below) */ 143 144 #define minor(x) (minor_t)((x) & O_MAXMIN) 145 146 #endif /* _KERNEL */ 147 148 /* create old device number */ 149 150 #define makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN)) 151 152 /* make an new device number */ 153 154 #define makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN)) 155 156 157 /* 158 * emajor() allows kernel/driver code to print external major numbers 159 * eminor() allows kernel/driver code to print external minor numbers 160 */ 161 162 #define emajor(x) \ 163 (major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \ 164 NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ) 165 166 #define eminor(x) \ 167 (minor_t)((x) & O_MAXMIN) 168 169 /* 170 * get external major and minor device 171 * components from expanded device number 172 */ 173 #define getemajor(x) (major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \ 174 NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ)) 175 #define geteminor(x) (minor_t)((x) & L_MAXMIN) 176 177 /* 178 * These are versions of the kernel routines for compressing and 179 * expanding long device numbers that don't return errors. 180 */ 181 #if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR) 182 183 #define DEVCMPL(x) (x) 184 #define DEVEXPL(x) (x) 185 186 #else 187 188 #define DEVCMPL(x) \ 189 (dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \ 190 ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \ 191 ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32))) 192 193 #define DEVEXPL(x) \ 194 (((x) == NODEV32) ? NODEV : \ 195 makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32)) 196 197 #endif /* L_BITSMAJOR32 ... */ 198 199 /* convert to old (SVR3.2) dev format */ 200 201 #define cmpdev(x) \ 202 (o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \ 203 ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \ 204 ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN))) 205 206 /* convert to new (SVR4) dev format */ 207 208 #define expdev(x) \ 209 (dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \ 210 ((x) & O_MAXMIN)) 211 212 /* 213 * Macro for checking power of 2 address alignment. 214 */ 215 #define IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0) 216 217 /* 218 * Macros for counting and rounding. 219 */ 220 #define howmany(x, y) (((x)+((y)-1))/(y)) 221 #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) 222 223 /* 224 * Macro to determine if value is a power of 2 225 */ 226 #define ISP2(x) (((x) & ((x) - 1)) == 0) 227 228 /* 229 * Macros for various sorts of alignment and rounding. The "align" must 230 * be a power of 2. Often times it is a block, sector, or page. 231 */ 232 233 /* 234 * return x rounded down to an align boundary 235 * eg, P2ALIGN(1200, 1024) == 1024 (1*align) 236 * eg, P2ALIGN(1024, 1024) == 1024 (1*align) 237 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align) 238 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align) 239 */ 240 #define P2ALIGN(x, align) ((x) & -(align)) 241 242 /* 243 * return x % (mod) align 244 * eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align) 245 * eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align) 246 */ 247 #define P2PHASE(x, align) ((x) & ((align) - 1)) 248 249 /* 250 * return how much space is left in this block (but if it's perfectly 251 * aligned, return 0). 252 * eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x) 253 * eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x) 254 */ 255 #define P2NPHASE(x, align) (-(x) & ((align) - 1)) 256 257 /* 258 * return x rounded up to an align boundary 259 * eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align) 260 * eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align) 261 */ 262 #define P2ROUNDUP(x, align) (-(-(x) & -(align))) 263 264 /* 265 * return the ending address of the block that x is in 266 * eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1) 267 * eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1) 268 */ 269 #define P2END(x, align) (-(~(x) & -(align))) 270 271 /* 272 * return x rounded up to the next phase (offset) within align. 273 * phase should be < align. 274 * eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase) 275 * eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase) 276 */ 277 #define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align))) 278 279 /* 280 * return TRUE if adding len to off would cause it to cross an align 281 * boundary. 282 * eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314) 283 * eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284) 284 */ 285 #define P2BOUNDARY(off, len, align) \ 286 (((off) ^ ((off) + (len) - 1)) > (align) - 1) 287 288 /* 289 * Return TRUE if they have the same highest bit set. 290 * eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000) 291 * eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000) 292 */ 293 #define P2SAMEHIGHBIT(x, y) (((x) ^ (y)) < ((x) & (y))) 294 295 /* 296 * Typed version of the P2* macros. These macros should be used to ensure 297 * that the result is correctly calculated based on the data type of (x), 298 * which is passed in as the last argument, regardless of the data 299 * type of the alignment. For example, if (x) is of type uint64_t, 300 * and we want to round it up to a page boundary using "PAGESIZE" as 301 * the alignment, we can do either 302 * P2ROUNDUP(x, (uint64_t)PAGESIZE) 303 * or 304 * P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t) 305 */ 306 #define P2ALIGN_TYPED(x, align, type) \ 307 ((type)(x) & -(type)(align)) 308 #define P2PHASE_TYPED(x, align, type) \ 309 ((type)(x) & ((type)(align) - 1)) 310 #define P2NPHASE_TYPED(x, align, type) \ 311 (-(type)(x) & ((type)(align) - 1)) 312 #define P2ROUNDUP_TYPED(x, align, type) \ 313 (-(-(type)(x) & -(type)(align))) 314 #define P2END_TYPED(x, align, type) \ 315 (-(~(type)(x) & -(type)(align))) 316 #define P2PHASEUP_TYPED(x, align, phase, type) \ 317 ((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align))) 318 #define P2CROSS_TYPED(x, y, align, type) \ 319 (((type)(x) ^ (type)(y)) > (type)(align) - 1) 320 #define P2SAMEHIGHBIT_TYPED(x, y, type) \ 321 (((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y))) 322 323 /* 324 * Macros to atomically increment/decrement a variable. mutex and var 325 * must be pointers. 326 */ 327 #define INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex) 328 #define DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex) 329 330 /* 331 * Macros to declare bitfields - the order in the parameter list is 332 * Low to High - that is, declare bit 0 first. We only support 8-bit bitfields 333 * because if a field crosses a byte boundary it's not likely to be meaningful 334 * without reassembly in its nonnative endianness. 335 */ 336 #if defined(_BIT_FIELDS_LTOH) 337 #define DECL_BITFIELD2(_a, _b) \ 338 uint8_t _a, _b 339 #define DECL_BITFIELD3(_a, _b, _c) \ 340 uint8_t _a, _b, _c 341 #define DECL_BITFIELD4(_a, _b, _c, _d) \ 342 uint8_t _a, _b, _c, _d 343 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \ 344 uint8_t _a, _b, _c, _d, _e 345 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \ 346 uint8_t _a, _b, _c, _d, _e, _f 347 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \ 348 uint8_t _a, _b, _c, _d, _e, _f, _g 349 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \ 350 uint8_t _a, _b, _c, _d, _e, _f, _g, _h 351 #elif defined(_BIT_FIELDS_HTOL) 352 #define DECL_BITFIELD2(_a, _b) \ 353 uint8_t _b, _a 354 #define DECL_BITFIELD3(_a, _b, _c) \ 355 uint8_t _c, _b, _a 356 #define DECL_BITFIELD4(_a, _b, _c, _d) \ 357 uint8_t _d, _c, _b, _a 358 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \ 359 uint8_t _e, _d, _c, _b, _a 360 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \ 361 uint8_t _f, _e, _d, _c, _b, _a 362 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \ 363 uint8_t _g, _f, _e, _d, _c, _b, _a 364 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \ 365 uint8_t _h, _g, _f, _e, _d, _c, _b, _a 366 #else 367 #error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined 368 #endif /* _BIT_FIELDS_LTOH */ 369 370 /* avoid any possibility of clashing with <stddef.h> version */ 371 #if (defined(_KERNEL) || defined(_FAKE_KERNEL)) && !defined(_KMEMUSER) 372 373 #define ARRAY_SIZE(x) (sizeof (x) / sizeof (x[0])) 374 375 #endif /* _KERNEL, !_KMEMUSER */ 376 377 #ifdef __cplusplus 378 } 379 #endif 380 381 #endif /* _SYS_SYSMACROS_H */