1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*      Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T     */
  22 /*        All Rights Reserved   */
  23 
  24 
  25 /*
  26  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
  27  * Use is subject to license terms.
  28  *
  29  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
  30  */
  31 
  32 #ifndef _SYS_SYSMACROS_H
  33 #define _SYS_SYSMACROS_H
  34 
  35 #include <sys/param.h>
  36 #include <sys/stddef.h>
  37 
  38 #ifdef  __cplusplus
  39 extern "C" {
  40 #endif
  41 
  42 /*
  43  * Some macros for units conversion
  44  */
  45 /*
  46  * Disk blocks (sectors) and bytes.
  47  */
  48 #define dtob(DD)        ((DD) << DEV_BSHIFT)
  49 #define btod(BB)        (((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
  50 #define btodt(BB)       ((BB) >> DEV_BSHIFT)
  51 #define lbtod(BB)       (((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
  52 
  53 /* common macros */
  54 #ifndef MIN
  55 #define MIN(a, b)       ((a) < (b) ? (a) : (b))
  56 #endif
  57 #ifndef MAX
  58 #define MAX(a, b)       ((a) < (b) ? (b) : (a))
  59 #endif
  60 #ifndef ABS
  61 #define ABS(a)          ((a) < 0 ? -(a) : (a))
  62 #endif
  63 #ifndef SIGNOF
  64 #define SIGNOF(a)       ((a) < 0 ? -1 : (a) > 0)
  65 #endif
  66 
  67 #ifdef _KERNEL
  68 
  69 /*
  70  * Convert a single byte to/from binary-coded decimal (BCD).
  71  */
  72 extern unsigned char byte_to_bcd[256];
  73 extern unsigned char bcd_to_byte[256];
  74 
  75 #define BYTE_TO_BCD(x)  byte_to_bcd[(x) & 0xff]
  76 #define BCD_TO_BYTE(x)  bcd_to_byte[(x) & 0xff]
  77 
  78 #endif  /* _KERNEL */
  79 
  80 /*
  81  * WARNING: The device number macros defined here should not be used by device
  82  * drivers or user software. Device drivers should use the device functions
  83  * defined in the DDI/DKI interface (see also ddi.h). Application software
  84  * should make use of the library routines available in makedev(3). A set of
  85  * new device macros are provided to operate on the expanded device number
  86  * format supported in SVR4. Macro versions of the DDI device functions are
  87  * provided for use by kernel proper routines only. Macro routines bmajor(),
  88  * major(), minor(), emajor(), eminor(), and makedev() will be removed or
  89  * their definitions changed at the next major release following SVR4.
  90  */
  91 
  92 #define O_BITSMAJOR     7       /* # of SVR3 major device bits */
  93 #define O_BITSMINOR     8       /* # of SVR3 minor device bits */
  94 #define O_MAXMAJ        0x7f    /* SVR3 max major value */
  95 #define O_MAXMIN        0xff    /* SVR3 max minor value */
  96 
  97 
  98 #define L_BITSMAJOR32   14      /* # of SVR4 major device bits */
  99 #define L_BITSMINOR32   18      /* # of SVR4 minor device bits */
 100 #define L_MAXMAJ32      0x3fff  /* SVR4 max major value */
 101 #define L_MAXMIN32      0x3ffff /* MAX minor for 3b2 software drivers. */
 102                                 /* For 3b2 hardware devices the minor is */
 103                                 /* restricted to 256 (0-255) */
 104 
 105 #ifdef _LP64
 106 #define L_BITSMAJOR     32      /* # of major device bits in 64-bit Solaris */
 107 #define L_BITSMINOR     32      /* # of minor device bits in 64-bit Solaris */
 108 #define L_MAXMAJ        0xfffffffful    /* max major value */
 109 #define L_MAXMIN        0xfffffffful    /* max minor value */
 110 #else
 111 #define L_BITSMAJOR     L_BITSMAJOR32
 112 #define L_BITSMINOR     L_BITSMINOR32
 113 #define L_MAXMAJ        L_MAXMAJ32
 114 #define L_MAXMIN        L_MAXMIN32
 115 #endif
 116 
 117 #ifdef _KERNEL
 118 
 119 /* major part of a device internal to the kernel */
 120 
 121 #define major(x)        (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
 122 #define bmajor(x)       (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
 123 
 124 /* get internal major part of expanded device number */
 125 
 126 #define getmajor(x)     (major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ)
 127 
 128 /* minor part of a device internal to the kernel */
 129 
 130 #define minor(x)        (minor_t)((x) & O_MAXMIN)
 131 
 132 /* get internal minor part of expanded device number */
 133 
 134 #define getminor(x)     (minor_t)((x) & L_MAXMIN)
 135 
 136 #else   /* _KERNEL */
 137 
 138 /* major part of a device external from the kernel (same as emajor below) */
 139 
 140 #define major(x)        (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
 141 
 142 /* minor part of a device external from the kernel  (same as eminor below) */
 143 
 144 #define minor(x)        (minor_t)((x) & O_MAXMIN)
 145 
 146 #endif  /* _KERNEL */
 147 
 148 /* create old device number */
 149 
 150 #define makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN))
 151 
 152 /* make an new device number */
 153 
 154 #define makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN))
 155 
 156 
 157 /*
 158  * emajor() allows kernel/driver code to print external major numbers
 159  * eminor() allows kernel/driver code to print external minor numbers
 160  */
 161 
 162 #define emajor(x) \
 163         (major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \
 164             NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ)
 165 
 166 #define eminor(x) \
 167         (minor_t)((x) & O_MAXMIN)
 168 
 169 /*
 170  * get external major and minor device
 171  * components from expanded device number
 172  */
 173 #define getemajor(x)    (major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \
 174                             NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ))
 175 #define geteminor(x)    (minor_t)((x) & L_MAXMIN)
 176 
 177 /*
 178  * These are versions of the kernel routines for compressing and
 179  * expanding long device numbers that don't return errors.
 180  */
 181 #if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR)
 182 
 183 #define DEVCMPL(x)      (x)
 184 #define DEVEXPL(x)      (x)
 185 
 186 #else
 187 
 188 #define DEVCMPL(x)      \
 189         (dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \
 190             ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \
 191             ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32)))
 192 
 193 #define DEVEXPL(x)      \
 194         (((x) == NODEV32) ? NODEV : \
 195         makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32))
 196 
 197 #endif /* L_BITSMAJOR32 ... */
 198 
 199 /* convert to old (SVR3.2) dev format */
 200 
 201 #define cmpdev(x) \
 202         (o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \
 203             ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \
 204             ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN)))
 205 
 206 /* convert to new (SVR4) dev format */
 207 
 208 #define expdev(x) \
 209         (dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \
 210             ((x) & O_MAXMIN))
 211 
 212 /*
 213  * Macro for checking power of 2 address alignment.
 214  */
 215 #define IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0)
 216 
 217 /*
 218  * Macros for counting and rounding.
 219  */
 220 #define howmany(x, y)   (((x)+((y)-1))/(y))
 221 #define roundup(x, y)   ((((x)+((y)-1))/(y))*(y))
 222 
 223 /*
 224  * Macro to determine if value is a power of 2
 225  */
 226 #define ISP2(x)         (((x) & ((x) - 1)) == 0)
 227 
 228 /*
 229  * Macros for various sorts of alignment and rounding.  The "align" must
 230  * be a power of 2.  Often times it is a block, sector, or page.
 231  */
 232 
 233 /*
 234  * return x rounded down to an align boundary
 235  * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
 236  * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
 237  * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
 238  * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
 239  */
 240 #define P2ALIGN(x, align)               ((x) & -(align))
 241 
 242 /*
 243  * return x % (mod) align
 244  * eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align)
 245  * eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align)
 246  */
 247 #define P2PHASE(x, align)               ((x) & ((align) - 1))
 248 
 249 /*
 250  * return how much space is left in this block (but if it's perfectly
 251  * aligned, return 0).
 252  * eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x)
 253  * eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x)
 254  */
 255 #define P2NPHASE(x, align)              (-(x) & ((align) - 1))
 256 
 257 /*
 258  * return x rounded up to an align boundary
 259  * eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align)
 260  * eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align)
 261  */
 262 #define P2ROUNDUP(x, align)             (-(-(x) & -(align)))
 263 
 264 /*
 265  * return the ending address of the block that x is in
 266  * eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1)
 267  * eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1)
 268  */
 269 #define P2END(x, align)                 (-(~(x) & -(align)))
 270 
 271 /*
 272  * return x rounded up to the next phase (offset) within align.
 273  * phase should be < align.
 274  * eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase)
 275  * eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase)
 276  */
 277 #define P2PHASEUP(x, align, phase)      ((phase) - (((phase) - (x)) & -(align)))
 278 
 279 /*
 280  * return TRUE if adding len to off would cause it to cross an align
 281  * boundary.
 282  * eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314)
 283  * eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284)
 284  */
 285 #define P2BOUNDARY(off, len, align) \
 286         (((off) ^ ((off) + (len) - 1)) > (align) - 1)
 287 
 288 /*
 289  * Return TRUE if they have the same highest bit set.
 290  * eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000)
 291  * eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000)
 292  */
 293 #define P2SAMEHIGHBIT(x, y)             (((x) ^ (y)) < ((x) & (y)))
 294 
 295 /*
 296  * Typed version of the P2* macros.  These macros should be used to ensure
 297  * that the result is correctly calculated based on the data type of (x),
 298  * which is passed in as the last argument, regardless of the data
 299  * type of the alignment.  For example, if (x) is of type uint64_t,
 300  * and we want to round it up to a page boundary using "PAGESIZE" as
 301  * the alignment, we can do either
 302  *      P2ROUNDUP(x, (uint64_t)PAGESIZE)
 303  * or
 304  *      P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t)
 305  */
 306 #define P2ALIGN_TYPED(x, align, type)   \
 307         ((type)(x) & -(type)(align))
 308 #define P2PHASE_TYPED(x, align, type)   \
 309         ((type)(x) & ((type)(align) - 1))
 310 #define P2NPHASE_TYPED(x, align, type)  \
 311         (-(type)(x) & ((type)(align) - 1))
 312 #define P2ROUNDUP_TYPED(x, align, type) \
 313         (-(-(type)(x) & -(type)(align)))
 314 #define P2END_TYPED(x, align, type)     \
 315         (-(~(type)(x) & -(type)(align)))
 316 #define P2PHASEUP_TYPED(x, align, phase, type)  \
 317         ((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align)))
 318 #define P2CROSS_TYPED(x, y, align, type)        \
 319         (((type)(x) ^ (type)(y)) > (type)(align) - 1)
 320 #define P2SAMEHIGHBIT_TYPED(x, y, type) \
 321         (((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y)))
 322 
 323 /*
 324  * Macros to atomically increment/decrement a variable.  mutex and var
 325  * must be pointers.
 326  */
 327 #define INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex)
 328 #define DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex)
 329 
 330 /*
 331  * Macros to declare bitfields - the order in the parameter list is
 332  * Low to High - that is, declare bit 0 first.  We only support 8-bit bitfields
 333  * because if a field crosses a byte boundary it's not likely to be meaningful
 334  * without reassembly in its nonnative endianness.
 335  */
 336 #if defined(_BIT_FIELDS_LTOH)
 337 #define DECL_BITFIELD2(_a, _b)                          \
 338         uint8_t _a, _b
 339 #define DECL_BITFIELD3(_a, _b, _c)                      \
 340         uint8_t _a, _b, _c
 341 #define DECL_BITFIELD4(_a, _b, _c, _d)                  \
 342         uint8_t _a, _b, _c, _d
 343 #define DECL_BITFIELD5(_a, _b, _c, _d, _e)              \
 344         uint8_t _a, _b, _c, _d, _e
 345 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f)          \
 346         uint8_t _a, _b, _c, _d, _e, _f
 347 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g)      \
 348         uint8_t _a, _b, _c, _d, _e, _f, _g
 349 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h)  \
 350         uint8_t _a, _b, _c, _d, _e, _f, _g, _h
 351 #elif defined(_BIT_FIELDS_HTOL)
 352 #define DECL_BITFIELD2(_a, _b)                          \
 353         uint8_t _b, _a
 354 #define DECL_BITFIELD3(_a, _b, _c)                      \
 355         uint8_t _c, _b, _a
 356 #define DECL_BITFIELD4(_a, _b, _c, _d)                  \
 357         uint8_t _d, _c, _b, _a
 358 #define DECL_BITFIELD5(_a, _b, _c, _d, _e)              \
 359         uint8_t _e, _d, _c, _b, _a
 360 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f)          \
 361         uint8_t _f, _e, _d, _c, _b, _a
 362 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g)      \
 363         uint8_t _g, _f, _e, _d, _c, _b, _a
 364 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h)  \
 365         uint8_t _h, _g, _f, _e, _d, _c, _b, _a
 366 #else
 367 #error  One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
 368 #endif  /* _BIT_FIELDS_LTOH */
 369 
 370 /* avoid any possibility of clashing with <stddef.h> version */
 371 #if (defined(_KERNEL) || defined(_FAKE_KERNEL)) && !defined(_KMEMUSER)
 372 
 373 #define ARRAY_SIZE(x)   (sizeof (x) / sizeof (x[0]))
 374 
 375 #endif /* _KERNEL, !_KMEMUSER */
 376 
 377 #ifdef  __cplusplus
 378 }
 379 #endif
 380 
 381 #endif  /* _SYS_SYSMACROS_H */