1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
22 /* All Rights Reserved */
23
24
25 /*
26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 *
29 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
30 */
31
32 #ifndef _SYS_SYSMACROS_H
33 #define _SYS_SYSMACROS_H
34
35 #include <sys/param.h>
36 #include <sys/stddef.h>
37
38 #ifdef __cplusplus
39 extern "C" {
40 #endif
41
42 /*
43 * Some macros for units conversion
44 */
45 /*
46 * Disk blocks (sectors) and bytes.
47 */
48 #define dtob(DD) ((DD) << DEV_BSHIFT)
49 #define btod(BB) (((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
50 #define btodt(BB) ((BB) >> DEV_BSHIFT)
51 #define lbtod(BB) (((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
52
53 /* common macros */
54 #ifndef MIN
55 #define MIN(a, b) ((a) < (b) ? (a) : (b))
56 #endif
57 #ifndef MAX
58 #define MAX(a, b) ((a) < (b) ? (b) : (a))
59 #endif
60 #ifndef ABS
61 #define ABS(a) ((a) < 0 ? -(a) : (a))
62 #endif
63 #ifndef SIGNOF
64 #define SIGNOF(a) ((a) < 0 ? -1 : (a) > 0)
65 #endif
66
67 #ifdef _KERNEL
68
69 /*
70 * Convert a single byte to/from binary-coded decimal (BCD).
71 */
72 extern unsigned char byte_to_bcd[256];
73 extern unsigned char bcd_to_byte[256];
74
75 #define BYTE_TO_BCD(x) byte_to_bcd[(x) & 0xff]
76 #define BCD_TO_BYTE(x) bcd_to_byte[(x) & 0xff]
77
78 #endif /* _KERNEL */
79
80 /*
81 * WARNING: The device number macros defined here should not be used by device
82 * drivers or user software. Device drivers should use the device functions
83 * defined in the DDI/DKI interface (see also ddi.h). Application software
84 * should make use of the library routines available in makedev(3). A set of
85 * new device macros are provided to operate on the expanded device number
86 * format supported in SVR4. Macro versions of the DDI device functions are
87 * provided for use by kernel proper routines only. Macro routines bmajor(),
88 * major(), minor(), emajor(), eminor(), and makedev() will be removed or
89 * their definitions changed at the next major release following SVR4.
90 */
91
92 #define O_BITSMAJOR 7 /* # of SVR3 major device bits */
93 #define O_BITSMINOR 8 /* # of SVR3 minor device bits */
94 #define O_MAXMAJ 0x7f /* SVR3 max major value */
95 #define O_MAXMIN 0xff /* SVR3 max minor value */
96
97
98 #define L_BITSMAJOR32 14 /* # of SVR4 major device bits */
99 #define L_BITSMINOR32 18 /* # of SVR4 minor device bits */
100 #define L_MAXMAJ32 0x3fff /* SVR4 max major value */
101 #define L_MAXMIN32 0x3ffff /* MAX minor for 3b2 software drivers. */
102 /* For 3b2 hardware devices the minor is */
103 /* restricted to 256 (0-255) */
104
105 #ifdef _LP64
106 #define L_BITSMAJOR 32 /* # of major device bits in 64-bit Solaris */
107 #define L_BITSMINOR 32 /* # of minor device bits in 64-bit Solaris */
108 #define L_MAXMAJ 0xfffffffful /* max major value */
109 #define L_MAXMIN 0xfffffffful /* max minor value */
110 #else
111 #define L_BITSMAJOR L_BITSMAJOR32
112 #define L_BITSMINOR L_BITSMINOR32
113 #define L_MAXMAJ L_MAXMAJ32
114 #define L_MAXMIN L_MAXMIN32
115 #endif
116
117 #ifdef _KERNEL
118
119 /* major part of a device internal to the kernel */
120
121 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
122 #define bmajor(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
123
124 /* get internal major part of expanded device number */
125
126 #define getmajor(x) (major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ)
127
128 /* minor part of a device internal to the kernel */
129
130 #define minor(x) (minor_t)((x) & O_MAXMIN)
131
132 /* get internal minor part of expanded device number */
133
134 #define getminor(x) (minor_t)((x) & L_MAXMIN)
135
136 #else /* _KERNEL */
137
138 /* major part of a device external from the kernel (same as emajor below) */
139
140 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
141
142 /* minor part of a device external from the kernel (same as eminor below) */
143
144 #define minor(x) (minor_t)((x) & O_MAXMIN)
145
146 #endif /* _KERNEL */
147
148 /* create old device number */
149
150 #define makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN))
151
152 /* make an new device number */
153
154 #define makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN))
155
156
157 /*
158 * emajor() allows kernel/driver code to print external major numbers
159 * eminor() allows kernel/driver code to print external minor numbers
160 */
161
162 #define emajor(x) \
163 (major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \
164 NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ)
165
166 #define eminor(x) \
167 (minor_t)((x) & O_MAXMIN)
168
169 /*
170 * get external major and minor device
171 * components from expanded device number
172 */
173 #define getemajor(x) (major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \
174 NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ))
175 #define geteminor(x) (minor_t)((x) & L_MAXMIN)
176
177 /*
178 * These are versions of the kernel routines for compressing and
179 * expanding long device numbers that don't return errors.
180 */
181 #if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR)
182
183 #define DEVCMPL(x) (x)
184 #define DEVEXPL(x) (x)
185
186 #else
187
188 #define DEVCMPL(x) \
189 (dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \
190 ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \
191 ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32)))
192
193 #define DEVEXPL(x) \
194 (((x) == NODEV32) ? NODEV : \
195 makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32))
196
197 #endif /* L_BITSMAJOR32 ... */
198
199 /* convert to old (SVR3.2) dev format */
200
201 #define cmpdev(x) \
202 (o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \
203 ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \
204 ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN)))
205
206 /* convert to new (SVR4) dev format */
207
208 #define expdev(x) \
209 (dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \
210 ((x) & O_MAXMIN))
211
212 /*
213 * Macro for checking power of 2 address alignment.
214 */
215 #define IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0)
216
217 /*
218 * Macros for counting and rounding.
219 */
220 #define howmany(x, y) (((x)+((y)-1))/(y))
221 #define roundup(x, y) ((((x)+((y)-1))/(y))*(y))
222
223 /*
224 * Macro to determine if value is a power of 2
225 */
226 #define ISP2(x) (((x) & ((x) - 1)) == 0)
227
228 /*
229 * Macros for various sorts of alignment and rounding. The "align" must
230 * be a power of 2. Often times it is a block, sector, or page.
231 */
232
233 /*
234 * return x rounded down to an align boundary
235 * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
236 * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
237 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
238 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
239 */
240 #define P2ALIGN(x, align) ((x) & -(align))
241
242 /*
243 * return x % (mod) align
244 * eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align)
245 * eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align)
246 */
247 #define P2PHASE(x, align) ((x) & ((align) - 1))
248
249 /*
250 * return how much space is left in this block (but if it's perfectly
251 * aligned, return 0).
252 * eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x)
253 * eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x)
254 */
255 #define P2NPHASE(x, align) (-(x) & ((align) - 1))
256
257 /*
258 * return x rounded up to an align boundary
259 * eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align)
260 * eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align)
261 */
262 #define P2ROUNDUP(x, align) (-(-(x) & -(align)))
263
264 /*
265 * return the ending address of the block that x is in
266 * eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1)
267 * eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1)
268 */
269 #define P2END(x, align) (-(~(x) & -(align)))
270
271 /*
272 * return x rounded up to the next phase (offset) within align.
273 * phase should be < align.
274 * eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase)
275 * eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase)
276 */
277 #define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align)))
278
279 /*
280 * return TRUE if adding len to off would cause it to cross an align
281 * boundary.
282 * eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314)
283 * eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284)
284 */
285 #define P2BOUNDARY(off, len, align) \
286 (((off) ^ ((off) + (len) - 1)) > (align) - 1)
287
288 /*
289 * Return TRUE if they have the same highest bit set.
290 * eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000)
291 * eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000)
292 */
293 #define P2SAMEHIGHBIT(x, y) (((x) ^ (y)) < ((x) & (y)))
294
295 /*
296 * Typed version of the P2* macros. These macros should be used to ensure
297 * that the result is correctly calculated based on the data type of (x),
298 * which is passed in as the last argument, regardless of the data
299 * type of the alignment. For example, if (x) is of type uint64_t,
300 * and we want to round it up to a page boundary using "PAGESIZE" as
301 * the alignment, we can do either
302 * P2ROUNDUP(x, (uint64_t)PAGESIZE)
303 * or
304 * P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t)
305 */
306 #define P2ALIGN_TYPED(x, align, type) \
307 ((type)(x) & -(type)(align))
308 #define P2PHASE_TYPED(x, align, type) \
309 ((type)(x) & ((type)(align) - 1))
310 #define P2NPHASE_TYPED(x, align, type) \
311 (-(type)(x) & ((type)(align) - 1))
312 #define P2ROUNDUP_TYPED(x, align, type) \
313 (-(-(type)(x) & -(type)(align)))
314 #define P2END_TYPED(x, align, type) \
315 (-(~(type)(x) & -(type)(align)))
316 #define P2PHASEUP_TYPED(x, align, phase, type) \
317 ((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align)))
318 #define P2CROSS_TYPED(x, y, align, type) \
319 (((type)(x) ^ (type)(y)) > (type)(align) - 1)
320 #define P2SAMEHIGHBIT_TYPED(x, y, type) \
321 (((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y)))
322
323 /*
324 * Macros to atomically increment/decrement a variable. mutex and var
325 * must be pointers.
326 */
327 #define INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex)
328 #define DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex)
329
330 /*
331 * Macros to declare bitfields - the order in the parameter list is
332 * Low to High - that is, declare bit 0 first. We only support 8-bit bitfields
333 * because if a field crosses a byte boundary it's not likely to be meaningful
334 * without reassembly in its nonnative endianness.
335 */
336 #if defined(_BIT_FIELDS_LTOH)
337 #define DECL_BITFIELD2(_a, _b) \
338 uint8_t _a, _b
339 #define DECL_BITFIELD3(_a, _b, _c) \
340 uint8_t _a, _b, _c
341 #define DECL_BITFIELD4(_a, _b, _c, _d) \
342 uint8_t _a, _b, _c, _d
343 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \
344 uint8_t _a, _b, _c, _d, _e
345 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \
346 uint8_t _a, _b, _c, _d, _e, _f
347 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \
348 uint8_t _a, _b, _c, _d, _e, _f, _g
349 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \
350 uint8_t _a, _b, _c, _d, _e, _f, _g, _h
351 #elif defined(_BIT_FIELDS_HTOL)
352 #define DECL_BITFIELD2(_a, _b) \
353 uint8_t _b, _a
354 #define DECL_BITFIELD3(_a, _b, _c) \
355 uint8_t _c, _b, _a
356 #define DECL_BITFIELD4(_a, _b, _c, _d) \
357 uint8_t _d, _c, _b, _a
358 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \
359 uint8_t _e, _d, _c, _b, _a
360 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \
361 uint8_t _f, _e, _d, _c, _b, _a
362 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \
363 uint8_t _g, _f, _e, _d, _c, _b, _a
364 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \
365 uint8_t _h, _g, _f, _e, _d, _c, _b, _a
366 #else
367 #error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
368 #endif /* _BIT_FIELDS_LTOH */
369
370 /* avoid any possibility of clashing with <stddef.h> version */
371 #if (defined(_KERNEL) || defined(_FAKE_KERNEL)) && !defined(_KMEMUSER)
372
373 #define ARRAY_SIZE(x) (sizeof (x) / sizeof (x[0]))
374
375 #endif /* _KERNEL, !_KMEMUSER */
376
377 #ifdef __cplusplus
378 }
379 #endif
380
381 #endif /* _SYS_SYSMACROS_H */