1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright (c) 2010, Intel Corporation. 26 * All rights reserved. 27 */ 28 /* 29 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 30 * Copyright 2017 Joyent, Inc. All rights reserved. 31 * Copyright (c) 2014, 2015 by Delphix. All rights reserved. 32 */ 33 34 /* 35 * VM - Hardware Address Translation management for i386 and amd64 36 * 37 * Implementation of the interfaces described in <common/vm/hat.h> 38 * 39 * Nearly all the details of how the hardware is managed should not be 40 * visible outside this layer except for misc. machine specific functions 41 * that work in conjunction with this code. 42 * 43 * Routines used only inside of i86pc/vm start with hati_ for HAT Internal. 44 */ 45 46 #include <sys/machparam.h> 47 #include <sys/machsystm.h> 48 #include <sys/mman.h> 49 #include <sys/types.h> 50 #include <sys/systm.h> 51 #include <sys/cpuvar.h> 52 #include <sys/thread.h> 53 #include <sys/proc.h> 54 #include <sys/cpu.h> 55 #include <sys/kmem.h> 56 #include <sys/disp.h> 57 #include <sys/shm.h> 58 #include <sys/sysmacros.h> 59 #include <sys/machparam.h> 60 #include <sys/vmem.h> 61 #include <sys/vmsystm.h> 62 #include <sys/promif.h> 63 #include <sys/var.h> 64 #include <sys/x86_archext.h> 65 #include <sys/atomic.h> 66 #include <sys/bitmap.h> 67 #include <sys/controlregs.h> 68 #include <sys/bootconf.h> 69 #include <sys/bootsvcs.h> 70 #include <sys/bootinfo.h> 71 #include <sys/archsystm.h> 72 73 #include <vm/seg_kmem.h> 74 #include <vm/hat_i86.h> 75 #include <vm/as.h> 76 #include <vm/seg.h> 77 #include <vm/page.h> 78 #include <vm/seg_kp.h> 79 #include <vm/seg_kpm.h> 80 #include <vm/vm_dep.h> 81 #ifdef __xpv 82 #include <sys/hypervisor.h> 83 #endif 84 #include <vm/kboot_mmu.h> 85 #include <vm/seg_spt.h> 86 87 #include <sys/cmn_err.h> 88 89 /* 90 * Basic parameters for hat operation. 91 */ 92 struct hat_mmu_info mmu; 93 94 /* 95 * The page that is the kernel's top level pagetable. 96 * 97 * For 32 bit PAE support on i86pc, the kernel hat will use the 1st 4 entries 98 * on this 4K page for its top level page table. The remaining groups of 99 * 4 entries are used for per processor copies of user VLP pagetables for 100 * running threads. See hat_switch() and reload_pae32() for details. 101 * 102 * vlp_page[0..3] - level==2 PTEs for kernel HAT 103 * vlp_page[4..7] - level==2 PTEs for user thread on cpu 0 104 * vlp_page[8..11] - level==2 PTE for user thread on cpu 1 105 * etc... 106 */ 107 static x86pte_t *vlp_page; 108 109 /* 110 * forward declaration of internal utility routines 111 */ 112 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, 113 x86pte_t new); 114 115 /* 116 * The kernel address space exists in all HATs. To implement this the 117 * kernel reserves a fixed number of entries in the topmost level(s) of page 118 * tables. The values are setup during startup and then copied to every user 119 * hat created by hat_alloc(). This means that kernelbase must be: 120 * 121 * 4Meg aligned for 32 bit kernels 122 * 512Gig aligned for x86_64 64 bit kernel 123 * 124 * The hat_kernel_range_ts describe what needs to be copied from kernel hat 125 * to each user hat. 126 */ 127 typedef struct hat_kernel_range { 128 level_t hkr_level; 129 uintptr_t hkr_start_va; 130 uintptr_t hkr_end_va; /* zero means to end of memory */ 131 } hat_kernel_range_t; 132 #define NUM_KERNEL_RANGE 2 133 static hat_kernel_range_t kernel_ranges[NUM_KERNEL_RANGE]; 134 static int num_kernel_ranges; 135 136 uint_t use_boot_reserve = 1; /* cleared after early boot process */ 137 uint_t can_steal_post_boot = 0; /* set late in boot to enable stealing */ 138 139 /* 140 * enable_1gpg: controls 1g page support for user applications. 141 * By default, 1g pages are exported to user applications. enable_1gpg can 142 * be set to 0 to not export. 143 */ 144 int enable_1gpg = 1; 145 146 /* 147 * AMD shanghai processors provide better management of 1gb ptes in its tlb. 148 * By default, 1g page support will be disabled for pre-shanghai AMD 149 * processors that don't have optimal tlb support for the 1g page size. 150 * chk_optimal_1gtlb can be set to 0 to force 1g page support on sub-optimal 151 * processors. 152 */ 153 int chk_optimal_1gtlb = 1; 154 155 156 #ifdef DEBUG 157 uint_t map1gcnt; 158 #endif 159 160 161 /* 162 * A cpuset for all cpus. This is used for kernel address cross calls, since 163 * the kernel addresses apply to all cpus. 164 */ 165 cpuset_t khat_cpuset; 166 167 /* 168 * management stuff for hat structures 169 */ 170 kmutex_t hat_list_lock; 171 kcondvar_t hat_list_cv; 172 kmem_cache_t *hat_cache; 173 kmem_cache_t *hat_hash_cache; 174 kmem_cache_t *vlp_hash_cache; 175 176 /* 177 * Simple statistics 178 */ 179 struct hatstats hatstat; 180 181 /* 182 * Some earlier hypervisor versions do not emulate cmpxchg of PTEs 183 * correctly. For such hypervisors we must set PT_USER for kernel 184 * entries ourselves (normally the emulation would set PT_USER for 185 * kernel entries and PT_USER|PT_GLOBAL for user entries). pt_kern is 186 * thus set appropriately. Note that dboot/kbm is OK, as only the full 187 * HAT uses cmpxchg() and the other paths (hypercall etc.) were never 188 * incorrect. 189 */ 190 int pt_kern; 191 192 /* 193 * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's. 194 */ 195 extern void atomic_orb(uchar_t *addr, uchar_t val); 196 extern void atomic_andb(uchar_t *addr, uchar_t val); 197 198 #ifndef __xpv 199 extern pfn_t memseg_get_start(struct memseg *); 200 #endif 201 202 #define PP_GETRM(pp, rmmask) (pp->p_nrm & rmmask) 203 #define PP_ISMOD(pp) PP_GETRM(pp, P_MOD) 204 #define PP_ISREF(pp) PP_GETRM(pp, P_REF) 205 #define PP_ISRO(pp) PP_GETRM(pp, P_RO) 206 207 #define PP_SETRM(pp, rm) atomic_orb(&(pp->p_nrm), rm) 208 #define PP_SETMOD(pp) PP_SETRM(pp, P_MOD) 209 #define PP_SETREF(pp) PP_SETRM(pp, P_REF) 210 #define PP_SETRO(pp) PP_SETRM(pp, P_RO) 211 212 #define PP_CLRRM(pp, rm) atomic_andb(&(pp->p_nrm), ~(rm)) 213 #define PP_CLRMOD(pp) PP_CLRRM(pp, P_MOD) 214 #define PP_CLRREF(pp) PP_CLRRM(pp, P_REF) 215 #define PP_CLRRO(pp) PP_CLRRM(pp, P_RO) 216 #define PP_CLRALL(pp) PP_CLRRM(pp, P_MOD | P_REF | P_RO) 217 218 /* 219 * kmem cache constructor for struct hat 220 */ 221 /*ARGSUSED*/ 222 static int 223 hati_constructor(void *buf, void *handle, int kmflags) 224 { 225 hat_t *hat = buf; 226 227 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 228 bzero(hat->hat_pages_mapped, 229 sizeof (pgcnt_t) * (mmu.max_page_level + 1)); 230 hat->hat_ism_pgcnt = 0; 231 hat->hat_stats = 0; 232 hat->hat_flags = 0; 233 CPUSET_ZERO(hat->hat_cpus); 234 hat->hat_htable = NULL; 235 hat->hat_ht_hash = NULL; 236 return (0); 237 } 238 239 /* 240 * Allocate a hat structure for as. We also create the top level 241 * htable and initialize it to contain the kernel hat entries. 242 */ 243 hat_t * 244 hat_alloc(struct as *as) 245 { 246 hat_t *hat; 247 htable_t *ht; /* top level htable */ 248 uint_t use_vlp; 249 uint_t r; 250 hat_kernel_range_t *rp; 251 uintptr_t va; 252 uintptr_t eva; 253 uint_t start; 254 uint_t cnt; 255 htable_t *src; 256 257 /* 258 * Once we start creating user process HATs we can enable 259 * the htable_steal() code. 260 */ 261 if (can_steal_post_boot == 0) 262 can_steal_post_boot = 1; 263 264 ASSERT(AS_WRITE_HELD(as)); 265 hat = kmem_cache_alloc(hat_cache, KM_SLEEP); 266 hat->hat_as = as; 267 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 268 ASSERT(hat->hat_flags == 0); 269 270 #if defined(__xpv) 271 /* 272 * No VLP stuff on the hypervisor due to the 64-bit split top level 273 * page tables. On 32-bit it's not needed as the hypervisor takes 274 * care of copying the top level PTEs to a below 4Gig page. 275 */ 276 use_vlp = 0; 277 #else /* __xpv */ 278 /* 32 bit processes uses a VLP style hat when running with PAE */ 279 #if defined(__amd64) 280 use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32); 281 #elif defined(__i386) 282 use_vlp = mmu.pae_hat; 283 #endif 284 #endif /* __xpv */ 285 if (use_vlp) { 286 hat->hat_flags = HAT_VLP; 287 bzero(hat->hat_vlp_ptes, VLP_SIZE); 288 } 289 290 /* 291 * Allocate the htable hash 292 */ 293 if ((hat->hat_flags & HAT_VLP)) { 294 hat->hat_num_hash = mmu.vlp_hash_cnt; 295 hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP); 296 } else { 297 hat->hat_num_hash = mmu.hash_cnt; 298 hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP); 299 } 300 bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *)); 301 302 /* 303 * Initialize Kernel HAT entries at the top of the top level page 304 * tables for the new hat. 305 */ 306 hat->hat_htable = NULL; 307 hat->hat_ht_cached = NULL; 308 XPV_DISALLOW_MIGRATE(); 309 ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL); 310 hat->hat_htable = ht; 311 312 #if defined(__amd64) 313 if (hat->hat_flags & HAT_VLP) 314 goto init_done; 315 #endif 316 317 for (r = 0; r < num_kernel_ranges; ++r) { 318 rp = &kernel_ranges[r]; 319 for (va = rp->hkr_start_va; va != rp->hkr_end_va; 320 va += cnt * LEVEL_SIZE(rp->hkr_level)) { 321 322 if (rp->hkr_level == TOP_LEVEL(hat)) 323 ht = hat->hat_htable; 324 else 325 ht = htable_create(hat, va, rp->hkr_level, 326 NULL); 327 328 start = htable_va2entry(va, ht); 329 cnt = HTABLE_NUM_PTES(ht) - start; 330 eva = va + 331 ((uintptr_t)cnt << LEVEL_SHIFT(rp->hkr_level)); 332 if (rp->hkr_end_va != 0 && 333 (eva > rp->hkr_end_va || eva == 0)) 334 cnt = htable_va2entry(rp->hkr_end_va, ht) - 335 start; 336 337 #if defined(__i386) && !defined(__xpv) 338 if (ht->ht_flags & HTABLE_VLP) { 339 bcopy(&vlp_page[start], 340 &hat->hat_vlp_ptes[start], 341 cnt * sizeof (x86pte_t)); 342 continue; 343 } 344 #endif 345 src = htable_lookup(kas.a_hat, va, rp->hkr_level); 346 ASSERT(src != NULL); 347 x86pte_copy(src, ht, start, cnt); 348 htable_release(src); 349 } 350 } 351 352 init_done: 353 354 #if defined(__xpv) 355 /* 356 * Pin top level page tables after initializing them 357 */ 358 xen_pin(hat->hat_htable->ht_pfn, mmu.max_level); 359 #if defined(__amd64) 360 xen_pin(hat->hat_user_ptable, mmu.max_level); 361 #endif 362 #endif 363 XPV_ALLOW_MIGRATE(); 364 365 /* 366 * Put it at the start of the global list of all hats (used by stealing) 367 * 368 * kas.a_hat is not in the list but is instead used to find the 369 * first and last items in the list. 370 * 371 * - kas.a_hat->hat_next points to the start of the user hats. 372 * The list ends where hat->hat_next == NULL 373 * 374 * - kas.a_hat->hat_prev points to the last of the user hats. 375 * The list begins where hat->hat_prev == NULL 376 */ 377 mutex_enter(&hat_list_lock); 378 hat->hat_prev = NULL; 379 hat->hat_next = kas.a_hat->hat_next; 380 if (hat->hat_next) 381 hat->hat_next->hat_prev = hat; 382 else 383 kas.a_hat->hat_prev = hat; 384 kas.a_hat->hat_next = hat; 385 mutex_exit(&hat_list_lock); 386 387 return (hat); 388 } 389 390 /* 391 * process has finished executing but as has not been cleaned up yet. 392 */ 393 /*ARGSUSED*/ 394 void 395 hat_free_start(hat_t *hat) 396 { 397 ASSERT(AS_WRITE_HELD(hat->hat_as)); 398 399 /* 400 * If the hat is currently a stealing victim, wait for the stealing 401 * to finish. Once we mark it as HAT_FREEING, htable_steal() 402 * won't look at its pagetables anymore. 403 */ 404 mutex_enter(&hat_list_lock); 405 while (hat->hat_flags & HAT_VICTIM) 406 cv_wait(&hat_list_cv, &hat_list_lock); 407 hat->hat_flags |= HAT_FREEING; 408 mutex_exit(&hat_list_lock); 409 } 410 411 /* 412 * An address space is being destroyed, so we destroy the associated hat. 413 */ 414 void 415 hat_free_end(hat_t *hat) 416 { 417 kmem_cache_t *cache; 418 419 ASSERT(hat->hat_flags & HAT_FREEING); 420 421 /* 422 * must not be running on the given hat 423 */ 424 ASSERT(CPU->cpu_current_hat != hat); 425 426 /* 427 * Remove it from the list of HATs 428 */ 429 mutex_enter(&hat_list_lock); 430 if (hat->hat_prev) 431 hat->hat_prev->hat_next = hat->hat_next; 432 else 433 kas.a_hat->hat_next = hat->hat_next; 434 if (hat->hat_next) 435 hat->hat_next->hat_prev = hat->hat_prev; 436 else 437 kas.a_hat->hat_prev = hat->hat_prev; 438 mutex_exit(&hat_list_lock); 439 hat->hat_next = hat->hat_prev = NULL; 440 441 #if defined(__xpv) 442 /* 443 * On the hypervisor, unpin top level page table(s) 444 */ 445 xen_unpin(hat->hat_htable->ht_pfn); 446 #if defined(__amd64) 447 xen_unpin(hat->hat_user_ptable); 448 #endif 449 #endif 450 451 /* 452 * Make a pass through the htables freeing them all up. 453 */ 454 htable_purge_hat(hat); 455 456 /* 457 * Decide which kmem cache the hash table came from, then free it. 458 */ 459 if (hat->hat_flags & HAT_VLP) 460 cache = vlp_hash_cache; 461 else 462 cache = hat_hash_cache; 463 kmem_cache_free(cache, hat->hat_ht_hash); 464 hat->hat_ht_hash = NULL; 465 466 hat->hat_flags = 0; 467 kmem_cache_free(hat_cache, hat); 468 } 469 470 /* 471 * round kernelbase down to a supported value to use for _userlimit 472 * 473 * userlimit must be aligned down to an entry in the top level htable. 474 * The one exception is for 32 bit HAT's running PAE. 475 */ 476 uintptr_t 477 hat_kernelbase(uintptr_t va) 478 { 479 #if defined(__i386) 480 va &= LEVEL_MASK(1); 481 #endif 482 if (IN_VA_HOLE(va)) 483 panic("_userlimit %p will fall in VA hole\n", (void *)va); 484 return (va); 485 } 486 487 /* 488 * 489 */ 490 static void 491 set_max_page_level() 492 { 493 level_t lvl; 494 495 if (!kbm_largepage_support) { 496 lvl = 0; 497 } else { 498 if (is_x86_feature(x86_featureset, X86FSET_1GPG)) { 499 lvl = 2; 500 if (chk_optimal_1gtlb && 501 cpuid_opteron_erratum(CPU, 6671130)) { 502 lvl = 1; 503 } 504 if (plat_mnode_xcheck(LEVEL_SIZE(2) >> 505 LEVEL_SHIFT(0))) { 506 lvl = 1; 507 } 508 } else { 509 lvl = 1; 510 } 511 } 512 mmu.max_page_level = lvl; 513 514 if ((lvl == 2) && (enable_1gpg == 0)) 515 mmu.umax_page_level = 1; 516 else 517 mmu.umax_page_level = lvl; 518 } 519 520 /* 521 * Initialize hat data structures based on processor MMU information. 522 */ 523 void 524 mmu_init(void) 525 { 526 uint_t max_htables; 527 uint_t pa_bits; 528 uint_t va_bits; 529 int i; 530 531 /* 532 * If CPU enabled the page table global bit, use it for the kernel 533 * This is bit 7 in CR4 (PGE - Page Global Enable). 534 */ 535 if (is_x86_feature(x86_featureset, X86FSET_PGE) && 536 (getcr4() & CR4_PGE) != 0) 537 mmu.pt_global = PT_GLOBAL; 538 539 /* 540 * Detect NX and PAE usage. 541 */ 542 mmu.pae_hat = kbm_pae_support; 543 if (kbm_nx_support) 544 mmu.pt_nx = PT_NX; 545 else 546 mmu.pt_nx = 0; 547 548 /* 549 * Use CPU info to set various MMU parameters 550 */ 551 cpuid_get_addrsize(CPU, &pa_bits, &va_bits); 552 553 if (va_bits < sizeof (void *) * NBBY) { 554 mmu.hole_start = (1ul << (va_bits - 1)); 555 mmu.hole_end = 0ul - mmu.hole_start - 1; 556 } else { 557 mmu.hole_end = 0; 558 mmu.hole_start = mmu.hole_end - 1; 559 } 560 #if defined(OPTERON_ERRATUM_121) 561 /* 562 * If erratum 121 has already been detected at this time, hole_start 563 * contains the value to be subtracted from mmu.hole_start. 564 */ 565 ASSERT(hole_start == 0 || opteron_erratum_121 != 0); 566 hole_start = mmu.hole_start - hole_start; 567 #else 568 hole_start = mmu.hole_start; 569 #endif 570 hole_end = mmu.hole_end; 571 572 mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1); 573 if (mmu.pae_hat == 0 && pa_bits > 32) 574 mmu.highest_pfn = PFN_4G - 1; 575 576 if (mmu.pae_hat) { 577 mmu.pte_size = 8; /* 8 byte PTEs */ 578 mmu.pte_size_shift = 3; 579 } else { 580 mmu.pte_size = 4; /* 4 byte PTEs */ 581 mmu.pte_size_shift = 2; 582 } 583 584 if (mmu.pae_hat && !is_x86_feature(x86_featureset, X86FSET_PAE)) 585 panic("Processor does not support PAE"); 586 587 if (!is_x86_feature(x86_featureset, X86FSET_CX8)) 588 panic("Processor does not support cmpxchg8b instruction"); 589 590 #if defined(__amd64) 591 592 mmu.num_level = 4; 593 mmu.max_level = 3; 594 mmu.ptes_per_table = 512; 595 mmu.top_level_count = 512; 596 597 mmu.level_shift[0] = 12; 598 mmu.level_shift[1] = 21; 599 mmu.level_shift[2] = 30; 600 mmu.level_shift[3] = 39; 601 602 #elif defined(__i386) 603 604 if (mmu.pae_hat) { 605 mmu.num_level = 3; 606 mmu.max_level = 2; 607 mmu.ptes_per_table = 512; 608 mmu.top_level_count = 4; 609 610 mmu.level_shift[0] = 12; 611 mmu.level_shift[1] = 21; 612 mmu.level_shift[2] = 30; 613 614 } else { 615 mmu.num_level = 2; 616 mmu.max_level = 1; 617 mmu.ptes_per_table = 1024; 618 mmu.top_level_count = 1024; 619 620 mmu.level_shift[0] = 12; 621 mmu.level_shift[1] = 22; 622 } 623 624 #endif /* __i386 */ 625 626 for (i = 0; i < mmu.num_level; ++i) { 627 mmu.level_size[i] = 1UL << mmu.level_shift[i]; 628 mmu.level_offset[i] = mmu.level_size[i] - 1; 629 mmu.level_mask[i] = ~mmu.level_offset[i]; 630 } 631 632 set_max_page_level(); 633 634 mmu_page_sizes = mmu.max_page_level + 1; 635 mmu_exported_page_sizes = mmu.umax_page_level + 1; 636 637 /* restrict legacy applications from using pagesizes 1g and above */ 638 mmu_legacy_page_sizes = 639 (mmu_exported_page_sizes > 2) ? 2 : mmu_exported_page_sizes; 640 641 642 for (i = 0; i <= mmu.max_page_level; ++i) { 643 mmu.pte_bits[i] = PT_VALID | pt_kern; 644 if (i > 0) 645 mmu.pte_bits[i] |= PT_PAGESIZE; 646 } 647 648 /* 649 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level. 650 */ 651 for (i = 1; i < mmu.num_level; ++i) 652 mmu.ptp_bits[i] = PT_PTPBITS; 653 654 #if defined(__i386) 655 mmu.ptp_bits[2] = PT_VALID; 656 #endif 657 658 /* 659 * Compute how many hash table entries to have per process for htables. 660 * We start with 1 page's worth of entries. 661 * 662 * If physical memory is small, reduce the amount need to cover it. 663 */ 664 max_htables = physmax / mmu.ptes_per_table; 665 mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *); 666 while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables) 667 mmu.hash_cnt >>= 1; 668 mmu.vlp_hash_cnt = mmu.hash_cnt; 669 670 #if defined(__amd64) 671 /* 672 * If running in 64 bits and physical memory is large, 673 * increase the size of the cache to cover all of memory for 674 * a 64 bit process. 675 */ 676 #define HASH_MAX_LENGTH 4 677 while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables) 678 mmu.hash_cnt <<= 1; 679 #endif 680 } 681 682 683 /* 684 * initialize hat data structures 685 */ 686 void 687 hat_init() 688 { 689 #if defined(__i386) 690 /* 691 * _userlimit must be aligned correctly 692 */ 693 if ((_userlimit & LEVEL_MASK(1)) != _userlimit) { 694 prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n", 695 (void *)_userlimit, (void *)LEVEL_SIZE(1)); 696 halt("hat_init(): Unable to continue"); 697 } 698 #endif 699 700 cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL); 701 702 /* 703 * initialize kmem caches 704 */ 705 htable_init(); 706 hment_init(); 707 708 hat_cache = kmem_cache_create("hat_t", 709 sizeof (hat_t), 0, hati_constructor, NULL, NULL, 710 NULL, 0, 0); 711 712 hat_hash_cache = kmem_cache_create("HatHash", 713 mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 714 NULL, 0, 0); 715 716 /* 717 * VLP hats can use a smaller hash table size on large memroy machines 718 */ 719 if (mmu.hash_cnt == mmu.vlp_hash_cnt) { 720 vlp_hash_cache = hat_hash_cache; 721 } else { 722 vlp_hash_cache = kmem_cache_create("HatVlpHash", 723 mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 724 NULL, 0, 0); 725 } 726 727 /* 728 * Set up the kernel's hat 729 */ 730 AS_LOCK_ENTER(&kas, RW_WRITER); 731 kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP); 732 mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 733 kas.a_hat->hat_as = &kas; 734 kas.a_hat->hat_flags = 0; 735 AS_LOCK_EXIT(&kas); 736 737 CPUSET_ZERO(khat_cpuset); 738 CPUSET_ADD(khat_cpuset, CPU->cpu_id); 739 740 /* 741 * The kernel hat's next pointer serves as the head of the hat list . 742 * The kernel hat's prev pointer tracks the last hat on the list for 743 * htable_steal() to use. 744 */ 745 kas.a_hat->hat_next = NULL; 746 kas.a_hat->hat_prev = NULL; 747 748 /* 749 * Allocate an htable hash bucket for the kernel 750 * XX64 - tune for 64 bit procs 751 */ 752 kas.a_hat->hat_num_hash = mmu.hash_cnt; 753 kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP); 754 bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *)); 755 756 /* 757 * zero out the top level and cached htable pointers 758 */ 759 kas.a_hat->hat_ht_cached = NULL; 760 kas.a_hat->hat_htable = NULL; 761 762 /* 763 * Pre-allocate hrm_hashtab before enabling the collection of 764 * refmod statistics. Allocating on the fly would mean us 765 * running the risk of suffering recursive mutex enters or 766 * deadlocks. 767 */ 768 hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *), 769 KM_SLEEP); 770 } 771 772 /* 773 * Prepare CPU specific pagetables for VLP processes on 64 bit kernels. 774 * 775 * Each CPU has a set of 2 pagetables that are reused for any 32 bit 776 * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and 777 * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes. 778 */ 779 /*ARGSUSED*/ 780 static void 781 hat_vlp_setup(struct cpu *cpu) 782 { 783 #if defined(__amd64) && !defined(__xpv) 784 struct hat_cpu_info *hci = cpu->cpu_hat_info; 785 pfn_t pfn; 786 787 /* 788 * allocate the level==2 page table for the bottom most 789 * 512Gig of address space (this is where 32 bit apps live) 790 */ 791 ASSERT(hci != NULL); 792 hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 793 794 /* 795 * Allocate a top level pagetable and copy the kernel's 796 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry. 797 */ 798 hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 799 hci->hci_vlp_pfn = 800 hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes); 801 ASSERT(hci->hci_vlp_pfn != PFN_INVALID); 802 bcopy(vlp_page, hci->hci_vlp_l3ptes, MMU_PAGESIZE); 803 804 pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes); 805 ASSERT(pfn != PFN_INVALID); 806 hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2); 807 #endif /* __amd64 && !__xpv */ 808 } 809 810 /*ARGSUSED*/ 811 static void 812 hat_vlp_teardown(cpu_t *cpu) 813 { 814 #if defined(__amd64) && !defined(__xpv) 815 struct hat_cpu_info *hci; 816 817 if ((hci = cpu->cpu_hat_info) == NULL) 818 return; 819 if (hci->hci_vlp_l2ptes) 820 kmem_free(hci->hci_vlp_l2ptes, MMU_PAGESIZE); 821 if (hci->hci_vlp_l3ptes) 822 kmem_free(hci->hci_vlp_l3ptes, MMU_PAGESIZE); 823 #endif 824 } 825 826 #define NEXT_HKR(r, l, s, e) { \ 827 kernel_ranges[r].hkr_level = l; \ 828 kernel_ranges[r].hkr_start_va = s; \ 829 kernel_ranges[r].hkr_end_va = e; \ 830 ++r; \ 831 } 832 833 /* 834 * Finish filling in the kernel hat. 835 * Pre fill in all top level kernel page table entries for the kernel's 836 * part of the address range. From this point on we can't use any new 837 * kernel large pages if they need PTE's at max_level 838 * 839 * create the kmap mappings. 840 */ 841 void 842 hat_init_finish(void) 843 { 844 size_t size; 845 uint_t r = 0; 846 uintptr_t va; 847 hat_kernel_range_t *rp; 848 849 850 /* 851 * We are now effectively running on the kernel hat. 852 * Clearing use_boot_reserve shuts off using the pre-allocated boot 853 * reserve for all HAT allocations. From here on, the reserves are 854 * only used when avoiding recursion in kmem_alloc(). 855 */ 856 use_boot_reserve = 0; 857 htable_adjust_reserve(); 858 859 /* 860 * User HATs are initialized with copies of all kernel mappings in 861 * higher level page tables. Ensure that those entries exist. 862 */ 863 #if defined(__amd64) 864 865 NEXT_HKR(r, 3, kernelbase, 0); 866 #if defined(__xpv) 867 NEXT_HKR(r, 3, HYPERVISOR_VIRT_START, HYPERVISOR_VIRT_END); 868 #endif 869 870 #elif defined(__i386) 871 872 #if !defined(__xpv) 873 if (mmu.pae_hat) { 874 va = kernelbase; 875 if ((va & LEVEL_MASK(2)) != va) { 876 va = P2ROUNDUP(va, LEVEL_SIZE(2)); 877 NEXT_HKR(r, 1, kernelbase, va); 878 } 879 if (va != 0) 880 NEXT_HKR(r, 2, va, 0); 881 } else 882 #endif /* __xpv */ 883 NEXT_HKR(r, 1, kernelbase, 0); 884 885 #endif /* __i386 */ 886 887 num_kernel_ranges = r; 888 889 /* 890 * Create all the kernel pagetables that will have entries 891 * shared to user HATs. 892 */ 893 for (r = 0; r < num_kernel_ranges; ++r) { 894 rp = &kernel_ranges[r]; 895 for (va = rp->hkr_start_va; va != rp->hkr_end_va; 896 va += LEVEL_SIZE(rp->hkr_level)) { 897 htable_t *ht; 898 899 if (IN_HYPERVISOR_VA(va)) 900 continue; 901 902 /* can/must skip if a page mapping already exists */ 903 if (rp->hkr_level <= mmu.max_page_level && 904 (ht = htable_getpage(kas.a_hat, va, NULL)) != 905 NULL) { 906 htable_release(ht); 907 continue; 908 } 909 910 (void) htable_create(kas.a_hat, va, rp->hkr_level - 1, 911 NULL); 912 } 913 } 914 915 /* 916 * 32 bit PAE metal kernels use only 4 of the 512 entries in the 917 * page holding the top level pagetable. We use the remainder for 918 * the "per CPU" page tables for VLP processes. 919 * Map the top level kernel pagetable into the kernel to make 920 * it easy to use bcopy access these tables. 921 */ 922 if (mmu.pae_hat) { 923 vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP); 924 hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE, 925 kas.a_hat->hat_htable->ht_pfn, 926 #if !defined(__xpv) 927 PROT_WRITE | 928 #endif 929 PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK, 930 HAT_LOAD | HAT_LOAD_NOCONSIST); 931 } 932 hat_vlp_setup(CPU); 933 934 /* 935 * Create kmap (cached mappings of kernel PTEs) 936 * for 32 bit we map from segmap_start .. ekernelheap 937 * for 64 bit we map from segmap_start .. segmap_start + segmapsize; 938 */ 939 #if defined(__i386) 940 size = (uintptr_t)ekernelheap - segmap_start; 941 #elif defined(__amd64) 942 size = segmapsize; 943 #endif 944 hat_kmap_init((uintptr_t)segmap_start, size); 945 } 946 947 /* 948 * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references 949 * are 32 bit, so for safety we must use atomic_cas_64() to install these. 950 */ 951 #ifdef __i386 952 static void 953 reload_pae32(hat_t *hat, cpu_t *cpu) 954 { 955 x86pte_t *src; 956 x86pte_t *dest; 957 x86pte_t pte; 958 int i; 959 960 /* 961 * Load the 4 entries of the level 2 page table into this 962 * cpu's range of the vlp_page and point cr3 at them. 963 */ 964 ASSERT(mmu.pae_hat); 965 src = hat->hat_vlp_ptes; 966 dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES; 967 for (i = 0; i < VLP_NUM_PTES; ++i) { 968 for (;;) { 969 pte = dest[i]; 970 if (pte == src[i]) 971 break; 972 if (atomic_cas_64(dest + i, pte, src[i]) != src[i]) 973 break; 974 } 975 } 976 } 977 #endif 978 979 /* 980 * Switch to a new active hat, maintaining bit masks to track active CPUs. 981 * 982 * On the 32-bit PAE hypervisor, %cr3 is a 64-bit value, on metal it 983 * remains a 32-bit value. 984 */ 985 void 986 hat_switch(hat_t *hat) 987 { 988 uint64_t newcr3; 989 cpu_t *cpu = CPU; 990 hat_t *old = cpu->cpu_current_hat; 991 992 /* 993 * set up this information first, so we don't miss any cross calls 994 */ 995 if (old != NULL) { 996 if (old == hat) 997 return; 998 if (old != kas.a_hat) 999 CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id); 1000 } 1001 1002 /* 1003 * Add this CPU to the active set for this HAT. 1004 */ 1005 if (hat != kas.a_hat) { 1006 CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id); 1007 } 1008 cpu->cpu_current_hat = hat; 1009 1010 /* 1011 * now go ahead and load cr3 1012 */ 1013 if (hat->hat_flags & HAT_VLP) { 1014 #if defined(__amd64) 1015 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes; 1016 1017 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1018 newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn); 1019 #elif defined(__i386) 1020 reload_pae32(hat, cpu); 1021 newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) + 1022 (cpu->cpu_id + 1) * VLP_SIZE; 1023 #endif 1024 } else { 1025 newcr3 = MAKECR3((uint64_t)hat->hat_htable->ht_pfn); 1026 } 1027 #ifdef __xpv 1028 { 1029 struct mmuext_op t[2]; 1030 uint_t retcnt; 1031 uint_t opcnt = 1; 1032 1033 t[0].cmd = MMUEXT_NEW_BASEPTR; 1034 t[0].arg1.mfn = mmu_btop(pa_to_ma(newcr3)); 1035 #if defined(__amd64) 1036 /* 1037 * There's an interesting problem here, as to what to 1038 * actually specify when switching to the kernel hat. 1039 * For now we'll reuse the kernel hat again. 1040 */ 1041 t[1].cmd = MMUEXT_NEW_USER_BASEPTR; 1042 if (hat == kas.a_hat) 1043 t[1].arg1.mfn = mmu_btop(pa_to_ma(newcr3)); 1044 else 1045 t[1].arg1.mfn = pfn_to_mfn(hat->hat_user_ptable); 1046 ++opcnt; 1047 #endif /* __amd64 */ 1048 if (HYPERVISOR_mmuext_op(t, opcnt, &retcnt, DOMID_SELF) < 0) 1049 panic("HYPERVISOR_mmu_update() failed"); 1050 ASSERT(retcnt == opcnt); 1051 1052 } 1053 #else 1054 setcr3(newcr3); 1055 #endif 1056 ASSERT(cpu == CPU); 1057 } 1058 1059 /* 1060 * Utility to return a valid x86pte_t from protections, pfn, and level number 1061 */ 1062 static x86pte_t 1063 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags) 1064 { 1065 x86pte_t pte; 1066 uint_t cache_attr = attr & HAT_ORDER_MASK; 1067 1068 pte = MAKEPTE(pfn, level); 1069 1070 if (attr & PROT_WRITE) 1071 PTE_SET(pte, PT_WRITABLE); 1072 1073 if (attr & PROT_USER) 1074 PTE_SET(pte, PT_USER); 1075 1076 if (!(attr & PROT_EXEC)) 1077 PTE_SET(pte, mmu.pt_nx); 1078 1079 /* 1080 * Set the software bits used track ref/mod sync's and hments. 1081 * If not using REF/MOD, set them to avoid h/w rewriting PTEs. 1082 */ 1083 if (flags & HAT_LOAD_NOCONSIST) 1084 PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD); 1085 else if (attr & HAT_NOSYNC) 1086 PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD); 1087 1088 /* 1089 * Set the caching attributes in the PTE. The combination 1090 * of attributes are poorly defined, so we pay attention 1091 * to them in the given order. 1092 * 1093 * The test for HAT_STRICTORDER is different because it's defined 1094 * as "0" - which was a stupid thing to do, but is too late to change! 1095 */ 1096 if (cache_attr == HAT_STRICTORDER) { 1097 PTE_SET(pte, PT_NOCACHE); 1098 /*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */ 1099 } else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) { 1100 /* nothing to set */; 1101 } else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) { 1102 PTE_SET(pte, PT_NOCACHE); 1103 if (is_x86_feature(x86_featureset, X86FSET_PAT)) 1104 PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE); 1105 else 1106 PTE_SET(pte, PT_WRITETHRU); 1107 } else { 1108 panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr); 1109 } 1110 1111 return (pte); 1112 } 1113 1114 /* 1115 * Duplicate address translations of the parent to the child. 1116 * This function really isn't used anymore. 1117 */ 1118 /*ARGSUSED*/ 1119 int 1120 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag) 1121 { 1122 ASSERT((uintptr_t)addr < kernelbase); 1123 ASSERT(new != kas.a_hat); 1124 ASSERT(old != kas.a_hat); 1125 return (0); 1126 } 1127 1128 /* 1129 * Allocate any hat resources required for a process being swapped in. 1130 */ 1131 /*ARGSUSED*/ 1132 void 1133 hat_swapin(hat_t *hat) 1134 { 1135 /* do nothing - we let everything fault back in */ 1136 } 1137 1138 /* 1139 * Unload all translations associated with an address space of a process 1140 * that is being swapped out. 1141 */ 1142 void 1143 hat_swapout(hat_t *hat) 1144 { 1145 uintptr_t vaddr = (uintptr_t)0; 1146 uintptr_t eaddr = _userlimit; 1147 htable_t *ht = NULL; 1148 level_t l; 1149 1150 XPV_DISALLOW_MIGRATE(); 1151 /* 1152 * We can't just call hat_unload(hat, 0, _userlimit...) here, because 1153 * seg_spt and shared pagetables can't be swapped out. 1154 * Take a look at segspt_shmswapout() - it's a big no-op. 1155 * 1156 * Instead we'll walk through all the address space and unload 1157 * any mappings which we are sure are not shared, not locked. 1158 */ 1159 ASSERT(IS_PAGEALIGNED(vaddr)); 1160 ASSERT(IS_PAGEALIGNED(eaddr)); 1161 ASSERT(AS_LOCK_HELD(hat->hat_as)); 1162 if ((uintptr_t)hat->hat_as->a_userlimit < eaddr) 1163 eaddr = (uintptr_t)hat->hat_as->a_userlimit; 1164 1165 while (vaddr < eaddr) { 1166 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1167 if (ht == NULL) 1168 break; 1169 1170 ASSERT(!IN_VA_HOLE(vaddr)); 1171 1172 /* 1173 * If the page table is shared skip its entire range. 1174 */ 1175 l = ht->ht_level; 1176 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1177 vaddr = ht->ht_vaddr + LEVEL_SIZE(l + 1); 1178 htable_release(ht); 1179 ht = NULL; 1180 continue; 1181 } 1182 1183 /* 1184 * If the page table has no locked entries, unload this one. 1185 */ 1186 if (ht->ht_lock_cnt == 0) 1187 hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l), 1188 HAT_UNLOAD_UNMAP); 1189 1190 /* 1191 * If we have a level 0 page table with locked entries, 1192 * skip the entire page table, otherwise skip just one entry. 1193 */ 1194 if (ht->ht_lock_cnt > 0 && l == 0) 1195 vaddr = ht->ht_vaddr + LEVEL_SIZE(1); 1196 else 1197 vaddr += LEVEL_SIZE(l); 1198 } 1199 if (ht) 1200 htable_release(ht); 1201 1202 /* 1203 * We're in swapout because the system is low on memory, so 1204 * go back and flush all the htables off the cached list. 1205 */ 1206 htable_purge_hat(hat); 1207 XPV_ALLOW_MIGRATE(); 1208 } 1209 1210 /* 1211 * returns number of bytes that have valid mappings in hat. 1212 */ 1213 size_t 1214 hat_get_mapped_size(hat_t *hat) 1215 { 1216 size_t total = 0; 1217 int l; 1218 1219 for (l = 0; l <= mmu.max_page_level; l++) 1220 total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l)); 1221 total += hat->hat_ism_pgcnt; 1222 1223 return (total); 1224 } 1225 1226 /* 1227 * enable/disable collection of stats for hat. 1228 */ 1229 int 1230 hat_stats_enable(hat_t *hat) 1231 { 1232 atomic_inc_32(&hat->hat_stats); 1233 return (1); 1234 } 1235 1236 void 1237 hat_stats_disable(hat_t *hat) 1238 { 1239 atomic_dec_32(&hat->hat_stats); 1240 } 1241 1242 /* 1243 * Utility to sync the ref/mod bits from a page table entry to the page_t 1244 * We must be holding the mapping list lock when this is called. 1245 */ 1246 static void 1247 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level) 1248 { 1249 uint_t rm = 0; 1250 pgcnt_t pgcnt; 1251 1252 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 1253 return; 1254 1255 if (PTE_GET(pte, PT_REF)) 1256 rm |= P_REF; 1257 1258 if (PTE_GET(pte, PT_MOD)) 1259 rm |= P_MOD; 1260 1261 if (rm == 0) 1262 return; 1263 1264 /* 1265 * sync to all constituent pages of a large page 1266 */ 1267 ASSERT(x86_hm_held(pp)); 1268 pgcnt = page_get_pagecnt(level); 1269 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 1270 for (; pgcnt > 0; --pgcnt) { 1271 /* 1272 * hat_page_demote() can't decrease 1273 * pszc below this mapping size 1274 * since this large mapping existed after we 1275 * took mlist lock. 1276 */ 1277 ASSERT(pp->p_szc >= level); 1278 hat_page_setattr(pp, rm); 1279 ++pp; 1280 } 1281 } 1282 1283 /* 1284 * This the set of PTE bits for PFN, permissions and caching 1285 * that are allowed to change on a HAT_LOAD_REMAP 1286 */ 1287 #define PT_REMAP_BITS \ 1288 (PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU | \ 1289 PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE | PT_IGNORE | PT_REF | PT_MOD) 1290 1291 #define REMAPASSERT(EX) if (!(EX)) panic("hati_pte_map: " #EX) 1292 /* 1293 * Do the low-level work to get a mapping entered into a HAT's pagetables 1294 * and in the mapping list of the associated page_t. 1295 */ 1296 static int 1297 hati_pte_map( 1298 htable_t *ht, 1299 uint_t entry, 1300 page_t *pp, 1301 x86pte_t pte, 1302 int flags, 1303 void *pte_ptr) 1304 { 1305 hat_t *hat = ht->ht_hat; 1306 x86pte_t old_pte; 1307 level_t l = ht->ht_level; 1308 hment_t *hm; 1309 uint_t is_consist; 1310 uint_t is_locked; 1311 int rv = 0; 1312 1313 /* 1314 * Is this a consistent (ie. need mapping list lock) mapping? 1315 */ 1316 is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0); 1317 1318 /* 1319 * Track locked mapping count in the htable. Do this first, 1320 * as we track locking even if there already is a mapping present. 1321 */ 1322 is_locked = (flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat; 1323 if (is_locked) 1324 HTABLE_LOCK_INC(ht); 1325 1326 /* 1327 * Acquire the page's mapping list lock and get an hment to use. 1328 * Note that hment_prepare() might return NULL. 1329 */ 1330 if (is_consist) { 1331 x86_hm_enter(pp); 1332 hm = hment_prepare(ht, entry, pp); 1333 } 1334 1335 /* 1336 * Set the new pte, retrieving the old one at the same time. 1337 */ 1338 old_pte = x86pte_set(ht, entry, pte, pte_ptr); 1339 1340 /* 1341 * Did we get a large page / page table collision? 1342 */ 1343 if (old_pte == LPAGE_ERROR) { 1344 if (is_locked) 1345 HTABLE_LOCK_DEC(ht); 1346 rv = -1; 1347 goto done; 1348 } 1349 1350 /* 1351 * If the mapping didn't change there is nothing more to do. 1352 */ 1353 if (PTE_EQUIV(pte, old_pte)) 1354 goto done; 1355 1356 /* 1357 * Install a new mapping in the page's mapping list 1358 */ 1359 if (!PTE_ISVALID(old_pte)) { 1360 if (is_consist) { 1361 hment_assign(ht, entry, pp, hm); 1362 x86_hm_exit(pp); 1363 } else { 1364 ASSERT(flags & HAT_LOAD_NOCONSIST); 1365 } 1366 #if defined(__amd64) 1367 if (ht->ht_flags & HTABLE_VLP) { 1368 cpu_t *cpu = CPU; 1369 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes; 1370 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1371 } 1372 #endif 1373 HTABLE_INC(ht->ht_valid_cnt); 1374 PGCNT_INC(hat, l); 1375 return (rv); 1376 } 1377 1378 /* 1379 * Remap's are more complicated: 1380 * - HAT_LOAD_REMAP must be specified if changing the pfn. 1381 * We also require that NOCONSIST be specified. 1382 * - Otherwise only permission or caching bits may change. 1383 */ 1384 if (!PTE_ISPAGE(old_pte, l)) 1385 panic("non-null/page mapping pte=" FMT_PTE, old_pte); 1386 1387 if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) { 1388 REMAPASSERT(flags & HAT_LOAD_REMAP); 1389 REMAPASSERT(flags & HAT_LOAD_NOCONSIST); 1390 REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 1391 REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) == 1392 pf_is_memory(PTE2PFN(pte, l))); 1393 REMAPASSERT(!is_consist); 1394 } 1395 1396 /* 1397 * We only let remaps change the certain bits in the PTE. 1398 */ 1399 if (PTE_GET(old_pte, ~PT_REMAP_BITS) != PTE_GET(pte, ~PT_REMAP_BITS)) 1400 panic("remap bits changed: old_pte="FMT_PTE", pte="FMT_PTE"\n", 1401 old_pte, pte); 1402 1403 /* 1404 * We don't create any mapping list entries on a remap, so release 1405 * any allocated hment after we drop the mapping list lock. 1406 */ 1407 done: 1408 if (is_consist) { 1409 x86_hm_exit(pp); 1410 if (hm != NULL) 1411 hment_free(hm); 1412 } 1413 return (rv); 1414 } 1415 1416 /* 1417 * Internal routine to load a single page table entry. This only fails if 1418 * we attempt to overwrite a page table link with a large page. 1419 */ 1420 static int 1421 hati_load_common( 1422 hat_t *hat, 1423 uintptr_t va, 1424 page_t *pp, 1425 uint_t attr, 1426 uint_t flags, 1427 level_t level, 1428 pfn_t pfn) 1429 { 1430 htable_t *ht; 1431 uint_t entry; 1432 x86pte_t pte; 1433 int rv = 0; 1434 1435 /* 1436 * The number 16 is arbitrary and here to catch a recursion problem 1437 * early before we blow out the kernel stack. 1438 */ 1439 ++curthread->t_hatdepth; 1440 ASSERT(curthread->t_hatdepth < 16); 1441 1442 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); 1443 1444 if (flags & HAT_LOAD_SHARE) 1445 hat->hat_flags |= HAT_SHARED; 1446 1447 /* 1448 * Find the page table that maps this page if it already exists. 1449 */ 1450 ht = htable_lookup(hat, va, level); 1451 1452 /* 1453 * We must have HAT_LOAD_NOCONSIST if page_t is NULL. 1454 */ 1455 if (pp == NULL) 1456 flags |= HAT_LOAD_NOCONSIST; 1457 1458 if (ht == NULL) { 1459 ht = htable_create(hat, va, level, NULL); 1460 ASSERT(ht != NULL); 1461 } 1462 entry = htable_va2entry(va, ht); 1463 1464 /* 1465 * a bunch of paranoid error checking 1466 */ 1467 ASSERT(ht->ht_busy > 0); 1468 if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht)) 1469 panic("hati_load_common: bad htable %p, va %p", 1470 (void *)ht, (void *)va); 1471 ASSERT(ht->ht_level == level); 1472 1473 /* 1474 * construct the new PTE 1475 */ 1476 if (hat == kas.a_hat) 1477 attr &= ~PROT_USER; 1478 pte = hati_mkpte(pfn, attr, level, flags); 1479 if (hat == kas.a_hat && va >= kernelbase) 1480 PTE_SET(pte, mmu.pt_global); 1481 1482 /* 1483 * establish the mapping 1484 */ 1485 rv = hati_pte_map(ht, entry, pp, pte, flags, NULL); 1486 1487 /* 1488 * release the htable and any reserves 1489 */ 1490 htable_release(ht); 1491 --curthread->t_hatdepth; 1492 return (rv); 1493 } 1494 1495 /* 1496 * special case of hat_memload to deal with some kernel addrs for performance 1497 */ 1498 static void 1499 hat_kmap_load( 1500 caddr_t addr, 1501 page_t *pp, 1502 uint_t attr, 1503 uint_t flags) 1504 { 1505 uintptr_t va = (uintptr_t)addr; 1506 x86pte_t pte; 1507 pfn_t pfn = page_pptonum(pp); 1508 pgcnt_t pg_off = mmu_btop(va - mmu.kmap_addr); 1509 htable_t *ht; 1510 uint_t entry; 1511 void *pte_ptr; 1512 1513 /* 1514 * construct the requested PTE 1515 */ 1516 attr &= ~PROT_USER; 1517 attr |= HAT_STORECACHING_OK; 1518 pte = hati_mkpte(pfn, attr, 0, flags); 1519 PTE_SET(pte, mmu.pt_global); 1520 1521 /* 1522 * Figure out the pte_ptr and htable and use common code to finish up 1523 */ 1524 if (mmu.pae_hat) 1525 pte_ptr = mmu.kmap_ptes + pg_off; 1526 else 1527 pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off; 1528 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >> 1529 LEVEL_SHIFT(1)]; 1530 entry = htable_va2entry(va, ht); 1531 ++curthread->t_hatdepth; 1532 ASSERT(curthread->t_hatdepth < 16); 1533 (void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr); 1534 --curthread->t_hatdepth; 1535 } 1536 1537 /* 1538 * hat_memload() - load a translation to the given page struct 1539 * 1540 * Flags for hat_memload/hat_devload/hat_*attr. 1541 * 1542 * HAT_LOAD Default flags to load a translation to the page. 1543 * 1544 * HAT_LOAD_LOCK Lock down mapping resources; hat_map(), hat_memload(), 1545 * and hat_devload(). 1546 * 1547 * HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list. 1548 * sets PT_NOCONSIST 1549 * 1550 * HAT_LOAD_SHARE A flag to hat_memload() to indicate h/w page tables 1551 * that map some user pages (not kas) is shared by more 1552 * than one process (eg. ISM). 1553 * 1554 * HAT_LOAD_REMAP Reload a valid pte with a different page frame. 1555 * 1556 * HAT_NO_KALLOC Do not kmem_alloc while creating the mapping; at this 1557 * point, it's setting up mapping to allocate internal 1558 * hat layer data structures. This flag forces hat layer 1559 * to tap its reserves in order to prevent infinite 1560 * recursion. 1561 * 1562 * The following is a protection attribute (like PROT_READ, etc.) 1563 * 1564 * HAT_NOSYNC set PT_NOSYNC - this mapping's ref/mod bits 1565 * are never cleared. 1566 * 1567 * Installing new valid PTE's and creation of the mapping list 1568 * entry are controlled under the same lock. It's derived from the 1569 * page_t being mapped. 1570 */ 1571 static uint_t supported_memload_flags = 1572 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST | 1573 HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT; 1574 1575 void 1576 hat_memload( 1577 hat_t *hat, 1578 caddr_t addr, 1579 page_t *pp, 1580 uint_t attr, 1581 uint_t flags) 1582 { 1583 uintptr_t va = (uintptr_t)addr; 1584 level_t level = 0; 1585 pfn_t pfn = page_pptonum(pp); 1586 1587 XPV_DISALLOW_MIGRATE(); 1588 ASSERT(IS_PAGEALIGNED(va)); 1589 ASSERT(hat == kas.a_hat || va < _userlimit); 1590 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); 1591 ASSERT((flags & supported_memload_flags) == flags); 1592 1593 ASSERT(!IN_VA_HOLE(va)); 1594 ASSERT(!PP_ISFREE(pp)); 1595 1596 /* 1597 * kernel address special case for performance. 1598 */ 1599 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 1600 ASSERT(hat == kas.a_hat); 1601 hat_kmap_load(addr, pp, attr, flags); 1602 XPV_ALLOW_MIGRATE(); 1603 return; 1604 } 1605 1606 /* 1607 * This is used for memory with normal caching enabled, so 1608 * always set HAT_STORECACHING_OK. 1609 */ 1610 attr |= HAT_STORECACHING_OK; 1611 if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0) 1612 panic("unexpected hati_load_common() failure"); 1613 XPV_ALLOW_MIGRATE(); 1614 } 1615 1616 /* ARGSUSED */ 1617 void 1618 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp, 1619 uint_t attr, uint_t flags, hat_region_cookie_t rcookie) 1620 { 1621 hat_memload(hat, addr, pp, attr, flags); 1622 } 1623 1624 /* 1625 * Load the given array of page structs using large pages when possible 1626 */ 1627 void 1628 hat_memload_array( 1629 hat_t *hat, 1630 caddr_t addr, 1631 size_t len, 1632 page_t **pages, 1633 uint_t attr, 1634 uint_t flags) 1635 { 1636 uintptr_t va = (uintptr_t)addr; 1637 uintptr_t eaddr = va + len; 1638 level_t level; 1639 size_t pgsize; 1640 pgcnt_t pgindx = 0; 1641 pfn_t pfn; 1642 pgcnt_t i; 1643 1644 XPV_DISALLOW_MIGRATE(); 1645 ASSERT(IS_PAGEALIGNED(va)); 1646 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 1647 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); 1648 ASSERT((flags & supported_memload_flags) == flags); 1649 1650 /* 1651 * memload is used for memory with full caching enabled, so 1652 * set HAT_STORECACHING_OK. 1653 */ 1654 attr |= HAT_STORECACHING_OK; 1655 1656 /* 1657 * handle all pages using largest possible pagesize 1658 */ 1659 while (va < eaddr) { 1660 /* 1661 * decide what level mapping to use (ie. pagesize) 1662 */ 1663 pfn = page_pptonum(pages[pgindx]); 1664 for (level = mmu.max_page_level; ; --level) { 1665 pgsize = LEVEL_SIZE(level); 1666 if (level == 0) 1667 break; 1668 1669 if (!IS_P2ALIGNED(va, pgsize) || 1670 (eaddr - va) < pgsize || 1671 !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize)) 1672 continue; 1673 1674 /* 1675 * To use a large mapping of this size, all the 1676 * pages we are passed must be sequential subpages 1677 * of the large page. 1678 * hat_page_demote() can't change p_szc because 1679 * all pages are locked. 1680 */ 1681 if (pages[pgindx]->p_szc >= level) { 1682 for (i = 0; i < mmu_btop(pgsize); ++i) { 1683 if (pfn + i != 1684 page_pptonum(pages[pgindx + i])) 1685 break; 1686 ASSERT(pages[pgindx + i]->p_szc >= 1687 level); 1688 ASSERT(pages[pgindx] + i == 1689 pages[pgindx + i]); 1690 } 1691 if (i == mmu_btop(pgsize)) { 1692 #ifdef DEBUG 1693 if (level == 2) 1694 map1gcnt++; 1695 #endif 1696 break; 1697 } 1698 } 1699 } 1700 1701 /* 1702 * Load this page mapping. If the load fails, try a smaller 1703 * pagesize. 1704 */ 1705 ASSERT(!IN_VA_HOLE(va)); 1706 while (hati_load_common(hat, va, pages[pgindx], attr, 1707 flags, level, pfn) != 0) { 1708 if (level == 0) 1709 panic("unexpected hati_load_common() failure"); 1710 --level; 1711 pgsize = LEVEL_SIZE(level); 1712 } 1713 1714 /* 1715 * move to next page 1716 */ 1717 va += pgsize; 1718 pgindx += mmu_btop(pgsize); 1719 } 1720 XPV_ALLOW_MIGRATE(); 1721 } 1722 1723 /* ARGSUSED */ 1724 void 1725 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len, 1726 struct page **pps, uint_t attr, uint_t flags, 1727 hat_region_cookie_t rcookie) 1728 { 1729 hat_memload_array(hat, addr, len, pps, attr, flags); 1730 } 1731 1732 /* 1733 * void hat_devload(hat, addr, len, pf, attr, flags) 1734 * load/lock the given page frame number 1735 * 1736 * Advisory ordering attributes. Apply only to device mappings. 1737 * 1738 * HAT_STRICTORDER: the CPU must issue the references in order, as the 1739 * programmer specified. This is the default. 1740 * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds 1741 * of reordering; store or load with store or load). 1742 * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores 1743 * to consecutive locations (for example, turn two consecutive byte 1744 * stores into one halfword store), and it may batch individual loads 1745 * (for example, turn two consecutive byte loads into one halfword load). 1746 * This also implies re-ordering. 1747 * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it 1748 * until another store occurs. The default is to fetch new data 1749 * on every load. This also implies merging. 1750 * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to 1751 * the device (perhaps with other data) at a later time. The default is 1752 * to push the data right away. This also implies load caching. 1753 * 1754 * Equivalent of hat_memload(), but can be used for device memory where 1755 * there are no page_t's and we support additional flags (write merging, etc). 1756 * Note that we can have large page mappings with this interface. 1757 */ 1758 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK | 1759 HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK | 1760 HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK; 1761 1762 void 1763 hat_devload( 1764 hat_t *hat, 1765 caddr_t addr, 1766 size_t len, 1767 pfn_t pfn, 1768 uint_t attr, 1769 int flags) 1770 { 1771 uintptr_t va = ALIGN2PAGE(addr); 1772 uintptr_t eva = va + len; 1773 level_t level; 1774 size_t pgsize; 1775 page_t *pp; 1776 int f; /* per PTE copy of flags - maybe modified */ 1777 uint_t a; /* per PTE copy of attr */ 1778 1779 XPV_DISALLOW_MIGRATE(); 1780 ASSERT(IS_PAGEALIGNED(va)); 1781 ASSERT(hat == kas.a_hat || eva <= _userlimit); 1782 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); 1783 ASSERT((flags & supported_devload_flags) == flags); 1784 1785 /* 1786 * handle all pages 1787 */ 1788 while (va < eva) { 1789 1790 /* 1791 * decide what level mapping to use (ie. pagesize) 1792 */ 1793 for (level = mmu.max_page_level; ; --level) { 1794 pgsize = LEVEL_SIZE(level); 1795 if (level == 0) 1796 break; 1797 if (IS_P2ALIGNED(va, pgsize) && 1798 (eva - va) >= pgsize && 1799 IS_P2ALIGNED(pfn, mmu_btop(pgsize))) { 1800 #ifdef DEBUG 1801 if (level == 2) 1802 map1gcnt++; 1803 #endif 1804 break; 1805 } 1806 } 1807 1808 /* 1809 * If this is just memory then allow caching (this happens 1810 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used 1811 * to override that. If we don't have a page_t then make sure 1812 * NOCONSIST is set. 1813 */ 1814 a = attr; 1815 f = flags; 1816 if (!pf_is_memory(pfn)) 1817 f |= HAT_LOAD_NOCONSIST; 1818 else if (!(a & HAT_PLAT_NOCACHE)) 1819 a |= HAT_STORECACHING_OK; 1820 1821 if (f & HAT_LOAD_NOCONSIST) 1822 pp = NULL; 1823 else 1824 pp = page_numtopp_nolock(pfn); 1825 1826 /* 1827 * Check to make sure we are really trying to map a valid 1828 * memory page. The caller wishing to intentionally map 1829 * free memory pages will have passed the HAT_LOAD_NOCONSIST 1830 * flag, then pp will be NULL. 1831 */ 1832 if (pp != NULL) { 1833 if (PP_ISFREE(pp)) { 1834 panic("hat_devload: loading " 1835 "a mapping to free page %p", (void *)pp); 1836 } 1837 1838 if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) { 1839 panic("hat_devload: loading a mapping " 1840 "to an unlocked page %p", 1841 (void *)pp); 1842 } 1843 } 1844 1845 /* 1846 * load this page mapping 1847 */ 1848 ASSERT(!IN_VA_HOLE(va)); 1849 while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) { 1850 if (level == 0) 1851 panic("unexpected hati_load_common() failure"); 1852 --level; 1853 pgsize = LEVEL_SIZE(level); 1854 } 1855 1856 /* 1857 * move to next page 1858 */ 1859 va += pgsize; 1860 pfn += mmu_btop(pgsize); 1861 } 1862 XPV_ALLOW_MIGRATE(); 1863 } 1864 1865 /* 1866 * void hat_unlock(hat, addr, len) 1867 * unlock the mappings to a given range of addresses 1868 * 1869 * Locks are tracked by ht_lock_cnt in the htable. 1870 */ 1871 void 1872 hat_unlock(hat_t *hat, caddr_t addr, size_t len) 1873 { 1874 uintptr_t vaddr = (uintptr_t)addr; 1875 uintptr_t eaddr = vaddr + len; 1876 htable_t *ht = NULL; 1877 1878 /* 1879 * kernel entries are always locked, we don't track lock counts 1880 */ 1881 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 1882 ASSERT(IS_PAGEALIGNED(vaddr)); 1883 ASSERT(IS_PAGEALIGNED(eaddr)); 1884 if (hat == kas.a_hat) 1885 return; 1886 if (eaddr > _userlimit) 1887 panic("hat_unlock() address out of range - above _userlimit"); 1888 1889 XPV_DISALLOW_MIGRATE(); 1890 ASSERT(AS_LOCK_HELD(hat->hat_as)); 1891 while (vaddr < eaddr) { 1892 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1893 if (ht == NULL) 1894 break; 1895 1896 ASSERT(!IN_VA_HOLE(vaddr)); 1897 1898 if (ht->ht_lock_cnt < 1) 1899 panic("hat_unlock(): lock_cnt < 1, " 1900 "htable=%p, vaddr=%p\n", (void *)ht, (void *)vaddr); 1901 HTABLE_LOCK_DEC(ht); 1902 1903 vaddr += LEVEL_SIZE(ht->ht_level); 1904 } 1905 if (ht) 1906 htable_release(ht); 1907 XPV_ALLOW_MIGRATE(); 1908 } 1909 1910 /* ARGSUSED */ 1911 void 1912 hat_unlock_region(struct hat *hat, caddr_t addr, size_t len, 1913 hat_region_cookie_t rcookie) 1914 { 1915 panic("No shared region support on x86"); 1916 } 1917 1918 /* 1919 * A range of virtual pages for purposes of demapping. 1920 */ 1921 typedef struct range_info { 1922 uintptr_t rng_va; /* address of page */ 1923 ulong_t rng_cnt; /* number of pages in range */ 1924 level_t rng_level; /* page table level */ 1925 } range_info_t; 1926 1927 #if !defined(__xpv) 1928 /* 1929 * Cross call service routine to demap a range of virtual 1930 * pages on the current CPU or flush all mappings in TLB. 1931 */ 1932 /*ARGSUSED*/ 1933 static int 1934 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3) 1935 { 1936 hat_t *hat = (hat_t *)a1; 1937 range_info_t *range = (range_info_t *)a2; 1938 size_t len = (size_t)a3; 1939 caddr_t addr = (caddr_t)range->rng_va; 1940 size_t pgsz = LEVEL_SIZE(range->rng_level); 1941 1942 /* 1943 * If the target hat isn't the kernel and this CPU isn't operating 1944 * in the target hat, we can ignore the cross call. 1945 */ 1946 if (hat != kas.a_hat && hat != CPU->cpu_current_hat) 1947 return (0); 1948 1949 /* 1950 * For a normal address, we flush a range of contiguous mappings 1951 */ 1952 if ((uintptr_t)addr != DEMAP_ALL_ADDR) { 1953 for (size_t i = 0; i < len; i += pgsz) 1954 mmu_tlbflush_entry(addr + i); 1955 return (0); 1956 } 1957 1958 /* 1959 * Otherwise we reload cr3 to effect a complete TLB flush. 1960 * 1961 * A reload of cr3 on a VLP process also means we must also recopy in 1962 * the pte values from the struct hat 1963 */ 1964 if (hat->hat_flags & HAT_VLP) { 1965 #if defined(__amd64) 1966 x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes; 1967 1968 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1969 #elif defined(__i386) 1970 reload_pae32(hat, CPU); 1971 #endif 1972 } 1973 reload_cr3(); 1974 return (0); 1975 } 1976 1977 /* 1978 * Flush all TLB entries, including global (ie. kernel) ones. 1979 */ 1980 static void 1981 flush_all_tlb_entries(void) 1982 { 1983 ulong_t cr4 = getcr4(); 1984 1985 if (cr4 & CR4_PGE) { 1986 setcr4(cr4 & ~(ulong_t)CR4_PGE); 1987 setcr4(cr4); 1988 1989 /* 1990 * 32 bit PAE also needs to always reload_cr3() 1991 */ 1992 if (mmu.max_level == 2) 1993 reload_cr3(); 1994 } else { 1995 reload_cr3(); 1996 } 1997 } 1998 1999 #define TLB_CPU_HALTED (01ul) 2000 #define TLB_INVAL_ALL (02ul) 2001 #define CAS_TLB_INFO(cpu, old, new) \ 2002 atomic_cas_ulong((ulong_t *)&(cpu)->cpu_m.mcpu_tlb_info, (old), (new)) 2003 2004 /* 2005 * Record that a CPU is going idle 2006 */ 2007 void 2008 tlb_going_idle(void) 2009 { 2010 atomic_or_ulong((ulong_t *)&CPU->cpu_m.mcpu_tlb_info, TLB_CPU_HALTED); 2011 } 2012 2013 /* 2014 * Service a delayed TLB flush if coming out of being idle. 2015 * It will be called from cpu idle notification with interrupt disabled. 2016 */ 2017 void 2018 tlb_service(void) 2019 { 2020 ulong_t tlb_info; 2021 ulong_t found; 2022 2023 /* 2024 * We only have to do something if coming out of being idle. 2025 */ 2026 tlb_info = CPU->cpu_m.mcpu_tlb_info; 2027 if (tlb_info & TLB_CPU_HALTED) { 2028 ASSERT(CPU->cpu_current_hat == kas.a_hat); 2029 2030 /* 2031 * Atomic clear and fetch of old state. 2032 */ 2033 while ((found = CAS_TLB_INFO(CPU, tlb_info, 0)) != tlb_info) { 2034 ASSERT(found & TLB_CPU_HALTED); 2035 tlb_info = found; 2036 SMT_PAUSE(); 2037 } 2038 if (tlb_info & TLB_INVAL_ALL) 2039 flush_all_tlb_entries(); 2040 } 2041 } 2042 #endif /* !__xpv */ 2043 2044 /* 2045 * Internal routine to do cross calls to invalidate a range of pages on 2046 * all CPUs using a given hat. 2047 */ 2048 void 2049 hat_tlb_inval_range(hat_t *hat, range_info_t *range) 2050 { 2051 extern int flushes_require_xcalls; /* from mp_startup.c */ 2052 cpuset_t justme; 2053 cpuset_t cpus_to_shootdown; 2054 uintptr_t va = range->rng_va; 2055 size_t len = range->rng_cnt << LEVEL_SHIFT(range->rng_level); 2056 #ifndef __xpv 2057 cpuset_t check_cpus; 2058 cpu_t *cpup; 2059 int c; 2060 #endif 2061 2062 /* 2063 * If the hat is being destroyed, there are no more users, so 2064 * demap need not do anything. 2065 */ 2066 if (hat->hat_flags & HAT_FREEING) 2067 return; 2068 2069 /* 2070 * If demapping from a shared pagetable, we best demap the 2071 * entire set of user TLBs, since we don't know what addresses 2072 * these were shared at. 2073 */ 2074 if (hat->hat_flags & HAT_SHARED) { 2075 hat = kas.a_hat; 2076 va = DEMAP_ALL_ADDR; 2077 } 2078 2079 /* 2080 * if not running with multiple CPUs, don't use cross calls 2081 */ 2082 if (panicstr || !flushes_require_xcalls) { 2083 #ifdef __xpv 2084 if (va == DEMAP_ALL_ADDR) { 2085 xen_flush_tlb(); 2086 } else { 2087 for (size_t i = 0; i < len; i += MMU_PAGESIZE) 2088 xen_flush_va((caddr_t)(va + i)); 2089 } 2090 #else 2091 (void) hati_demap_func((xc_arg_t)hat, 2092 (xc_arg_t)range, (xc_arg_t)len); 2093 #endif 2094 return; 2095 } 2096 2097 2098 /* 2099 * Determine CPUs to shootdown. Kernel changes always do all CPUs. 2100 * Otherwise it's just CPUs currently executing in this hat. 2101 */ 2102 kpreempt_disable(); 2103 CPUSET_ONLY(justme, CPU->cpu_id); 2104 if (hat == kas.a_hat) 2105 cpus_to_shootdown = khat_cpuset; 2106 else 2107 cpus_to_shootdown = hat->hat_cpus; 2108 2109 #ifndef __xpv 2110 /* 2111 * If any CPUs in the set are idle, just request a delayed flush 2112 * and avoid waking them up. 2113 */ 2114 check_cpus = cpus_to_shootdown; 2115 for (c = 0; c < NCPU && !CPUSET_ISNULL(check_cpus); ++c) { 2116 ulong_t tlb_info; 2117 2118 if (!CPU_IN_SET(check_cpus, c)) 2119 continue; 2120 CPUSET_DEL(check_cpus, c); 2121 cpup = cpu[c]; 2122 if (cpup == NULL) 2123 continue; 2124 2125 tlb_info = cpup->cpu_m.mcpu_tlb_info; 2126 while (tlb_info == TLB_CPU_HALTED) { 2127 (void) CAS_TLB_INFO(cpup, TLB_CPU_HALTED, 2128 TLB_CPU_HALTED | TLB_INVAL_ALL); 2129 SMT_PAUSE(); 2130 tlb_info = cpup->cpu_m.mcpu_tlb_info; 2131 } 2132 if (tlb_info == (TLB_CPU_HALTED | TLB_INVAL_ALL)) { 2133 HATSTAT_INC(hs_tlb_inval_delayed); 2134 CPUSET_DEL(cpus_to_shootdown, c); 2135 } 2136 } 2137 #endif 2138 2139 if (CPUSET_ISNULL(cpus_to_shootdown) || 2140 CPUSET_ISEQUAL(cpus_to_shootdown, justme)) { 2141 2142 #ifdef __xpv 2143 if (va == DEMAP_ALL_ADDR) { 2144 xen_flush_tlb(); 2145 } else { 2146 for (size_t i = 0; i < len; i += MMU_PAGESIZE) 2147 xen_flush_va((caddr_t)(va + i)); 2148 } 2149 #else 2150 (void) hati_demap_func((xc_arg_t)hat, 2151 (xc_arg_t)range, (xc_arg_t)len); 2152 #endif 2153 2154 } else { 2155 2156 CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id); 2157 #ifdef __xpv 2158 if (va == DEMAP_ALL_ADDR) { 2159 xen_gflush_tlb(cpus_to_shootdown); 2160 } else { 2161 for (size_t i = 0; i < len; i += MMU_PAGESIZE) { 2162 xen_gflush_va((caddr_t)(va + i), 2163 cpus_to_shootdown); 2164 } 2165 } 2166 #else 2167 xc_call((xc_arg_t)hat, (xc_arg_t)range, (xc_arg_t)len, 2168 CPUSET2BV(cpus_to_shootdown), hati_demap_func); 2169 #endif 2170 2171 } 2172 kpreempt_enable(); 2173 } 2174 2175 void 2176 hat_tlb_inval(hat_t *hat, uintptr_t va) 2177 { 2178 /* 2179 * Create range for a single page. 2180 */ 2181 range_info_t range; 2182 range.rng_va = va; 2183 range.rng_cnt = 1; /* one page */ 2184 range.rng_level = MIN_PAGE_LEVEL; /* pages are MMU_PAGESIZE */ 2185 2186 hat_tlb_inval_range(hat, &range); 2187 } 2188 2189 /* 2190 * Interior routine for HAT_UNLOADs from hat_unload_callback(), 2191 * hat_kmap_unload() OR from hat_steal() code. This routine doesn't 2192 * handle releasing of the htables. 2193 */ 2194 void 2195 hat_pte_unmap( 2196 htable_t *ht, 2197 uint_t entry, 2198 uint_t flags, 2199 x86pte_t old_pte, 2200 void *pte_ptr, 2201 boolean_t tlb) 2202 { 2203 hat_t *hat = ht->ht_hat; 2204 hment_t *hm = NULL; 2205 page_t *pp = NULL; 2206 level_t l = ht->ht_level; 2207 pfn_t pfn; 2208 2209 /* 2210 * We always track the locking counts, even if nothing is unmapped 2211 */ 2212 if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) { 2213 ASSERT(ht->ht_lock_cnt > 0); 2214 HTABLE_LOCK_DEC(ht); 2215 } 2216 2217 /* 2218 * Figure out which page's mapping list lock to acquire using the PFN 2219 * passed in "old" PTE. We then attempt to invalidate the PTE. 2220 * If another thread, probably a hat_pageunload, has asynchronously 2221 * unmapped/remapped this address we'll loop here. 2222 */ 2223 ASSERT(ht->ht_busy > 0); 2224 while (PTE_ISVALID(old_pte)) { 2225 pfn = PTE2PFN(old_pte, l); 2226 if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) { 2227 pp = NULL; 2228 } else { 2229 #ifdef __xpv 2230 if (pfn == PFN_INVALID) 2231 panic("Invalid PFN, but not PT_NOCONSIST"); 2232 #endif 2233 pp = page_numtopp_nolock(pfn); 2234 if (pp == NULL) { 2235 panic("no page_t, not NOCONSIST: old_pte=" 2236 FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx", 2237 old_pte, (uintptr_t)ht, entry, 2238 (uintptr_t)pte_ptr); 2239 } 2240 x86_hm_enter(pp); 2241 } 2242 2243 old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr, tlb); 2244 2245 /* 2246 * If the page hadn't changed we've unmapped it and can proceed 2247 */ 2248 if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn) 2249 break; 2250 2251 /* 2252 * Otherwise, we'll have to retry with the current old_pte. 2253 * Drop the hment lock, since the pfn may have changed. 2254 */ 2255 if (pp != NULL) { 2256 x86_hm_exit(pp); 2257 pp = NULL; 2258 } else { 2259 ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 2260 } 2261 } 2262 2263 /* 2264 * If the old mapping wasn't valid, there's nothing more to do 2265 */ 2266 if (!PTE_ISVALID(old_pte)) { 2267 if (pp != NULL) 2268 x86_hm_exit(pp); 2269 return; 2270 } 2271 2272 /* 2273 * Take care of syncing any MOD/REF bits and removing the hment. 2274 */ 2275 if (pp != NULL) { 2276 if (!(flags & HAT_UNLOAD_NOSYNC)) 2277 hati_sync_pte_to_page(pp, old_pte, l); 2278 hm = hment_remove(pp, ht, entry); 2279 x86_hm_exit(pp); 2280 if (hm != NULL) 2281 hment_free(hm); 2282 } 2283 2284 /* 2285 * Handle book keeping in the htable and hat 2286 */ 2287 ASSERT(ht->ht_valid_cnt > 0); 2288 HTABLE_DEC(ht->ht_valid_cnt); 2289 PGCNT_DEC(hat, l); 2290 } 2291 2292 /* 2293 * very cheap unload implementation to special case some kernel addresses 2294 */ 2295 static void 2296 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags) 2297 { 2298 uintptr_t va = (uintptr_t)addr; 2299 uintptr_t eva = va + len; 2300 pgcnt_t pg_index; 2301 htable_t *ht; 2302 uint_t entry; 2303 x86pte_t *pte_ptr; 2304 x86pte_t old_pte; 2305 2306 for (; va < eva; va += MMU_PAGESIZE) { 2307 /* 2308 * Get the PTE 2309 */ 2310 pg_index = mmu_btop(va - mmu.kmap_addr); 2311 pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index); 2312 old_pte = GET_PTE(pte_ptr); 2313 2314 /* 2315 * get the htable / entry 2316 */ 2317 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) 2318 >> LEVEL_SHIFT(1)]; 2319 entry = htable_va2entry(va, ht); 2320 2321 /* 2322 * use mostly common code to unmap it. 2323 */ 2324 hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr, B_TRUE); 2325 } 2326 } 2327 2328 2329 /* 2330 * unload a range of virtual address space (no callback) 2331 */ 2332 void 2333 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2334 { 2335 uintptr_t va = (uintptr_t)addr; 2336 2337 XPV_DISALLOW_MIGRATE(); 2338 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 2339 2340 /* 2341 * special case for performance. 2342 */ 2343 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 2344 ASSERT(hat == kas.a_hat); 2345 hat_kmap_unload(addr, len, flags); 2346 } else { 2347 hat_unload_callback(hat, addr, len, flags, NULL); 2348 } 2349 XPV_ALLOW_MIGRATE(); 2350 } 2351 2352 /* 2353 * Invalidate the TLB, and perform the callback to the upper level VM system, 2354 * for the specified ranges of contiguous pages. 2355 */ 2356 static void 2357 handle_ranges(hat_t *hat, hat_callback_t *cb, uint_t cnt, range_info_t *range) 2358 { 2359 while (cnt > 0) { 2360 --cnt; 2361 hat_tlb_inval_range(hat, &range[cnt]); 2362 2363 if (cb != NULL) { 2364 cb->hcb_start_addr = (caddr_t)range[cnt].rng_va; 2365 cb->hcb_end_addr = cb->hcb_start_addr; 2366 cb->hcb_end_addr += range[cnt].rng_cnt << 2367 LEVEL_SHIFT(range[cnt].rng_level); 2368 cb->hcb_function(cb); 2369 } 2370 } 2371 } 2372 2373 /* 2374 * Unload a given range of addresses (has optional callback) 2375 * 2376 * Flags: 2377 * define HAT_UNLOAD 0x00 2378 * define HAT_UNLOAD_NOSYNC 0x02 2379 * define HAT_UNLOAD_UNLOCK 0x04 2380 * define HAT_UNLOAD_OTHER 0x08 - not used 2381 * define HAT_UNLOAD_UNMAP 0x10 - same as HAT_UNLOAD 2382 */ 2383 #define MAX_UNLOAD_CNT (8) 2384 void 2385 hat_unload_callback( 2386 hat_t *hat, 2387 caddr_t addr, 2388 size_t len, 2389 uint_t flags, 2390 hat_callback_t *cb) 2391 { 2392 uintptr_t vaddr = (uintptr_t)addr; 2393 uintptr_t eaddr = vaddr + len; 2394 htable_t *ht = NULL; 2395 uint_t entry; 2396 uintptr_t contig_va = (uintptr_t)-1L; 2397 range_info_t r[MAX_UNLOAD_CNT]; 2398 uint_t r_cnt = 0; 2399 x86pte_t old_pte; 2400 2401 XPV_DISALLOW_MIGRATE(); 2402 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2403 ASSERT(IS_PAGEALIGNED(vaddr)); 2404 ASSERT(IS_PAGEALIGNED(eaddr)); 2405 2406 /* 2407 * Special case a single page being unloaded for speed. This happens 2408 * quite frequently, COW faults after a fork() for example. 2409 */ 2410 if (cb == NULL && len == MMU_PAGESIZE) { 2411 ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0); 2412 if (ht != NULL) { 2413 if (PTE_ISVALID(old_pte)) { 2414 hat_pte_unmap(ht, entry, flags, old_pte, 2415 NULL, B_TRUE); 2416 } 2417 htable_release(ht); 2418 } 2419 XPV_ALLOW_MIGRATE(); 2420 return; 2421 } 2422 2423 while (vaddr < eaddr) { 2424 old_pte = htable_walk(hat, &ht, &vaddr, eaddr); 2425 if (ht == NULL) 2426 break; 2427 2428 ASSERT(!IN_VA_HOLE(vaddr)); 2429 2430 if (vaddr < (uintptr_t)addr) 2431 panic("hat_unload_callback(): unmap inside large page"); 2432 2433 /* 2434 * We'll do the call backs for contiguous ranges 2435 */ 2436 if (vaddr != contig_va || 2437 (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) { 2438 if (r_cnt == MAX_UNLOAD_CNT) { 2439 handle_ranges(hat, cb, r_cnt, r); 2440 r_cnt = 0; 2441 } 2442 r[r_cnt].rng_va = vaddr; 2443 r[r_cnt].rng_cnt = 0; 2444 r[r_cnt].rng_level = ht->ht_level; 2445 ++r_cnt; 2446 } 2447 2448 /* 2449 * Unload one mapping (for a single page) from the page tables. 2450 * Note that we do not remove the mapping from the TLB yet, 2451 * as indicated by the tlb=FALSE argument to hat_pte_unmap(). 2452 * handle_ranges() will clear the TLB entries with one call to 2453 * hat_tlb_inval_range() per contiguous range. This is 2454 * safe because the page can not be reused until the 2455 * callback is made (or we return). 2456 */ 2457 entry = htable_va2entry(vaddr, ht); 2458 hat_pte_unmap(ht, entry, flags, old_pte, NULL, B_FALSE); 2459 ASSERT(ht->ht_level <= mmu.max_page_level); 2460 vaddr += LEVEL_SIZE(ht->ht_level); 2461 contig_va = vaddr; 2462 ++r[r_cnt - 1].rng_cnt; 2463 } 2464 if (ht) 2465 htable_release(ht); 2466 2467 /* 2468 * handle last range for callbacks 2469 */ 2470 if (r_cnt > 0) 2471 handle_ranges(hat, cb, r_cnt, r); 2472 XPV_ALLOW_MIGRATE(); 2473 } 2474 2475 /* 2476 * Invalidate a virtual address translation on a slave CPU during 2477 * panic() dumps. 2478 */ 2479 void 2480 hat_flush_range(hat_t *hat, caddr_t va, size_t size) 2481 { 2482 ssize_t sz; 2483 caddr_t endva = va + size; 2484 2485 while (va < endva) { 2486 sz = hat_getpagesize(hat, va); 2487 if (sz < 0) { 2488 #ifdef __xpv 2489 xen_flush_tlb(); 2490 #else 2491 flush_all_tlb_entries(); 2492 #endif 2493 break; 2494 } 2495 #ifdef __xpv 2496 xen_flush_va(va); 2497 #else 2498 mmu_tlbflush_entry(va); 2499 #endif 2500 va += sz; 2501 } 2502 } 2503 2504 /* 2505 * synchronize mapping with software data structures 2506 * 2507 * This interface is currently only used by the working set monitor 2508 * driver. 2509 */ 2510 /*ARGSUSED*/ 2511 void 2512 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2513 { 2514 uintptr_t vaddr = (uintptr_t)addr; 2515 uintptr_t eaddr = vaddr + len; 2516 htable_t *ht = NULL; 2517 uint_t entry; 2518 x86pte_t pte; 2519 x86pte_t save_pte; 2520 x86pte_t new; 2521 page_t *pp; 2522 2523 ASSERT(!IN_VA_HOLE(vaddr)); 2524 ASSERT(IS_PAGEALIGNED(vaddr)); 2525 ASSERT(IS_PAGEALIGNED(eaddr)); 2526 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2527 2528 XPV_DISALLOW_MIGRATE(); 2529 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2530 try_again: 2531 pte = htable_walk(hat, &ht, &vaddr, eaddr); 2532 if (ht == NULL) 2533 break; 2534 entry = htable_va2entry(vaddr, ht); 2535 2536 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 2537 PTE_GET(pte, PT_REF | PT_MOD) == 0) 2538 continue; 2539 2540 /* 2541 * We need to acquire the mapping list lock to protect 2542 * against hat_pageunload(), hat_unload(), etc. 2543 */ 2544 pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level)); 2545 if (pp == NULL) 2546 break; 2547 x86_hm_enter(pp); 2548 save_pte = pte; 2549 pte = x86pte_get(ht, entry); 2550 if (pte != save_pte) { 2551 x86_hm_exit(pp); 2552 goto try_again; 2553 } 2554 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 2555 PTE_GET(pte, PT_REF | PT_MOD) == 0) { 2556 x86_hm_exit(pp); 2557 continue; 2558 } 2559 2560 /* 2561 * Need to clear ref or mod bits. We may compete with 2562 * hardware updating the R/M bits and have to try again. 2563 */ 2564 if (flags == HAT_SYNC_ZERORM) { 2565 new = pte; 2566 PTE_CLR(new, PT_REF | PT_MOD); 2567 pte = hati_update_pte(ht, entry, pte, new); 2568 if (pte != 0) { 2569 x86_hm_exit(pp); 2570 goto try_again; 2571 } 2572 } else { 2573 /* 2574 * sync the PTE to the page_t 2575 */ 2576 hati_sync_pte_to_page(pp, save_pte, ht->ht_level); 2577 } 2578 x86_hm_exit(pp); 2579 } 2580 if (ht) 2581 htable_release(ht); 2582 XPV_ALLOW_MIGRATE(); 2583 } 2584 2585 /* 2586 * void hat_map(hat, addr, len, flags) 2587 */ 2588 /*ARGSUSED*/ 2589 void 2590 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2591 { 2592 /* does nothing */ 2593 } 2594 2595 /* 2596 * uint_t hat_getattr(hat, addr, *attr) 2597 * returns attr for <hat,addr> in *attr. returns 0 if there was a 2598 * mapping and *attr is valid, nonzero if there was no mapping and 2599 * *attr is not valid. 2600 */ 2601 uint_t 2602 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr) 2603 { 2604 uintptr_t vaddr = ALIGN2PAGE(addr); 2605 htable_t *ht = NULL; 2606 x86pte_t pte; 2607 2608 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2609 2610 if (IN_VA_HOLE(vaddr)) 2611 return ((uint_t)-1); 2612 2613 ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level); 2614 if (ht == NULL) 2615 return ((uint_t)-1); 2616 2617 if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) { 2618 htable_release(ht); 2619 return ((uint_t)-1); 2620 } 2621 2622 *attr = PROT_READ; 2623 if (PTE_GET(pte, PT_WRITABLE)) 2624 *attr |= PROT_WRITE; 2625 if (PTE_GET(pte, PT_USER)) 2626 *attr |= PROT_USER; 2627 if (!PTE_GET(pte, mmu.pt_nx)) 2628 *attr |= PROT_EXEC; 2629 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 2630 *attr |= HAT_NOSYNC; 2631 htable_release(ht); 2632 return (0); 2633 } 2634 2635 /* 2636 * hat_updateattr() applies the given attribute change to an existing mapping 2637 */ 2638 #define HAT_LOAD_ATTR 1 2639 #define HAT_SET_ATTR 2 2640 #define HAT_CLR_ATTR 3 2641 2642 static void 2643 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what) 2644 { 2645 uintptr_t vaddr = (uintptr_t)addr; 2646 uintptr_t eaddr = (uintptr_t)addr + len; 2647 htable_t *ht = NULL; 2648 uint_t entry; 2649 x86pte_t oldpte, newpte; 2650 page_t *pp; 2651 2652 XPV_DISALLOW_MIGRATE(); 2653 ASSERT(IS_PAGEALIGNED(vaddr)); 2654 ASSERT(IS_PAGEALIGNED(eaddr)); 2655 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); 2656 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2657 try_again: 2658 oldpte = htable_walk(hat, &ht, &vaddr, eaddr); 2659 if (ht == NULL) 2660 break; 2661 if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST) 2662 continue; 2663 2664 pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level)); 2665 if (pp == NULL) 2666 continue; 2667 x86_hm_enter(pp); 2668 2669 newpte = oldpte; 2670 /* 2671 * We found a page table entry in the desired range, 2672 * figure out the new attributes. 2673 */ 2674 if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) { 2675 if ((attr & PROT_WRITE) && 2676 !PTE_GET(oldpte, PT_WRITABLE)) 2677 newpte |= PT_WRITABLE; 2678 2679 if ((attr & HAT_NOSYNC) && 2680 PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC) 2681 newpte |= PT_NOSYNC; 2682 2683 if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx)) 2684 newpte &= ~mmu.pt_nx; 2685 } 2686 2687 if (what == HAT_LOAD_ATTR) { 2688 if (!(attr & PROT_WRITE) && 2689 PTE_GET(oldpte, PT_WRITABLE)) 2690 newpte &= ~PT_WRITABLE; 2691 2692 if (!(attr & HAT_NOSYNC) && 2693 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 2694 newpte &= ~PT_SOFTWARE; 2695 2696 if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2697 newpte |= mmu.pt_nx; 2698 } 2699 2700 if (what == HAT_CLR_ATTR) { 2701 if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE)) 2702 newpte &= ~PT_WRITABLE; 2703 2704 if ((attr & HAT_NOSYNC) && 2705 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 2706 newpte &= ~PT_SOFTWARE; 2707 2708 if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2709 newpte |= mmu.pt_nx; 2710 } 2711 2712 /* 2713 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set. 2714 * x86pte_set() depends on this. 2715 */ 2716 if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC) 2717 newpte |= PT_REF | PT_MOD; 2718 2719 /* 2720 * what about PROT_READ or others? this code only handles: 2721 * EXEC, WRITE, NOSYNC 2722 */ 2723 2724 /* 2725 * If new PTE really changed, update the table. 2726 */ 2727 if (newpte != oldpte) { 2728 entry = htable_va2entry(vaddr, ht); 2729 oldpte = hati_update_pte(ht, entry, oldpte, newpte); 2730 if (oldpte != 0) { 2731 x86_hm_exit(pp); 2732 goto try_again; 2733 } 2734 } 2735 x86_hm_exit(pp); 2736 } 2737 if (ht) 2738 htable_release(ht); 2739 XPV_ALLOW_MIGRATE(); 2740 } 2741 2742 /* 2743 * Various wrappers for hat_updateattr() 2744 */ 2745 void 2746 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2747 { 2748 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2749 hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR); 2750 } 2751 2752 void 2753 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2754 { 2755 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2756 hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR); 2757 } 2758 2759 void 2760 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2761 { 2762 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2763 hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR); 2764 } 2765 2766 void 2767 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot) 2768 { 2769 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2770 hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR); 2771 } 2772 2773 /* 2774 * size_t hat_getpagesize(hat, addr) 2775 * returns pagesize in bytes for <hat, addr>. returns -1 of there is 2776 * no mapping. This is an advisory call. 2777 */ 2778 ssize_t 2779 hat_getpagesize(hat_t *hat, caddr_t addr) 2780 { 2781 uintptr_t vaddr = ALIGN2PAGE(addr); 2782 htable_t *ht; 2783 size_t pagesize; 2784 2785 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2786 if (IN_VA_HOLE(vaddr)) 2787 return (-1); 2788 ht = htable_getpage(hat, vaddr, NULL); 2789 if (ht == NULL) 2790 return (-1); 2791 pagesize = LEVEL_SIZE(ht->ht_level); 2792 htable_release(ht); 2793 return (pagesize); 2794 } 2795 2796 2797 2798 /* 2799 * pfn_t hat_getpfnum(hat, addr) 2800 * returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid. 2801 */ 2802 pfn_t 2803 hat_getpfnum(hat_t *hat, caddr_t addr) 2804 { 2805 uintptr_t vaddr = ALIGN2PAGE(addr); 2806 htable_t *ht; 2807 uint_t entry; 2808 pfn_t pfn = PFN_INVALID; 2809 2810 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2811 if (khat_running == 0) 2812 return (PFN_INVALID); 2813 2814 if (IN_VA_HOLE(vaddr)) 2815 return (PFN_INVALID); 2816 2817 XPV_DISALLOW_MIGRATE(); 2818 /* 2819 * A very common use of hat_getpfnum() is from the DDI for kernel pages. 2820 * Use the kmap_ptes (which also covers the 32 bit heap) to speed 2821 * this up. 2822 */ 2823 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2824 x86pte_t pte; 2825 pgcnt_t pg_index; 2826 2827 pg_index = mmu_btop(vaddr - mmu.kmap_addr); 2828 pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index)); 2829 if (PTE_ISVALID(pte)) 2830 /*LINTED [use of constant 0 causes a lint warning] */ 2831 pfn = PTE2PFN(pte, 0); 2832 XPV_ALLOW_MIGRATE(); 2833 return (pfn); 2834 } 2835 2836 ht = htable_getpage(hat, vaddr, &entry); 2837 if (ht == NULL) { 2838 XPV_ALLOW_MIGRATE(); 2839 return (PFN_INVALID); 2840 } 2841 ASSERT(vaddr >= ht->ht_vaddr); 2842 ASSERT(vaddr <= HTABLE_LAST_PAGE(ht)); 2843 pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level); 2844 if (ht->ht_level > 0) 2845 pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level)); 2846 htable_release(ht); 2847 XPV_ALLOW_MIGRATE(); 2848 return (pfn); 2849 } 2850 2851 /* 2852 * int hat_probe(hat, addr) 2853 * return 0 if no valid mapping is present. Faster version 2854 * of hat_getattr in certain architectures. 2855 */ 2856 int 2857 hat_probe(hat_t *hat, caddr_t addr) 2858 { 2859 uintptr_t vaddr = ALIGN2PAGE(addr); 2860 uint_t entry; 2861 htable_t *ht; 2862 pgcnt_t pg_off; 2863 2864 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2865 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); 2866 if (IN_VA_HOLE(vaddr)) 2867 return (0); 2868 2869 /* 2870 * Most common use of hat_probe is from segmap. We special case it 2871 * for performance. 2872 */ 2873 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2874 pg_off = mmu_btop(vaddr - mmu.kmap_addr); 2875 if (mmu.pae_hat) 2876 return (PTE_ISVALID(mmu.kmap_ptes[pg_off])); 2877 else 2878 return (PTE_ISVALID( 2879 ((x86pte32_t *)mmu.kmap_ptes)[pg_off])); 2880 } 2881 2882 ht = htable_getpage(hat, vaddr, &entry); 2883 htable_release(ht); 2884 return (ht != NULL); 2885 } 2886 2887 /* 2888 * Find out if the segment for hat_share()/hat_unshare() is DISM or locked ISM. 2889 */ 2890 static int 2891 is_it_dism(hat_t *hat, caddr_t va) 2892 { 2893 struct seg *seg; 2894 struct shm_data *shmd; 2895 struct spt_data *sptd; 2896 2897 seg = as_findseg(hat->hat_as, va, 0); 2898 ASSERT(seg != NULL); 2899 ASSERT(seg->s_base <= va); 2900 shmd = (struct shm_data *)seg->s_data; 2901 ASSERT(shmd != NULL); 2902 sptd = (struct spt_data *)shmd->shm_sptseg->s_data; 2903 ASSERT(sptd != NULL); 2904 if (sptd->spt_flags & SHM_PAGEABLE) 2905 return (1); 2906 return (0); 2907 } 2908 2909 /* 2910 * Simple implementation of ISM. hat_share() is similar to hat_memload_array(), 2911 * except that we use the ism_hat's existing mappings to determine the pages 2912 * and protections to use for this hat. If we find a full properly aligned 2913 * and sized pagetable, we will attempt to share the pagetable itself. 2914 */ 2915 /*ARGSUSED*/ 2916 int 2917 hat_share( 2918 hat_t *hat, 2919 caddr_t addr, 2920 hat_t *ism_hat, 2921 caddr_t src_addr, 2922 size_t len, /* almost useless value, see below.. */ 2923 uint_t ismszc) 2924 { 2925 uintptr_t vaddr_start = (uintptr_t)addr; 2926 uintptr_t vaddr; 2927 uintptr_t eaddr = vaddr_start + len; 2928 uintptr_t ism_addr_start = (uintptr_t)src_addr; 2929 uintptr_t ism_addr = ism_addr_start; 2930 uintptr_t e_ism_addr = ism_addr + len; 2931 htable_t *ism_ht = NULL; 2932 htable_t *ht; 2933 x86pte_t pte; 2934 page_t *pp; 2935 pfn_t pfn; 2936 level_t l; 2937 pgcnt_t pgcnt; 2938 uint_t prot; 2939 int is_dism; 2940 int flags; 2941 2942 /* 2943 * We might be asked to share an empty DISM hat by as_dup() 2944 */ 2945 ASSERT(hat != kas.a_hat); 2946 ASSERT(eaddr <= _userlimit); 2947 if (!(ism_hat->hat_flags & HAT_SHARED)) { 2948 ASSERT(hat_get_mapped_size(ism_hat) == 0); 2949 return (0); 2950 } 2951 XPV_DISALLOW_MIGRATE(); 2952 2953 /* 2954 * The SPT segment driver often passes us a size larger than there are 2955 * valid mappings. That's because it rounds the segment size up to a 2956 * large pagesize, even if the actual memory mapped by ism_hat is less. 2957 */ 2958 ASSERT(IS_PAGEALIGNED(vaddr_start)); 2959 ASSERT(IS_PAGEALIGNED(ism_addr_start)); 2960 ASSERT(ism_hat->hat_flags & HAT_SHARED); 2961 is_dism = is_it_dism(hat, addr); 2962 while (ism_addr < e_ism_addr) { 2963 /* 2964 * use htable_walk to get the next valid ISM mapping 2965 */ 2966 pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr); 2967 if (ism_ht == NULL) 2968 break; 2969 2970 /* 2971 * First check to see if we already share the page table. 2972 */ 2973 l = ism_ht->ht_level; 2974 vaddr = vaddr_start + (ism_addr - ism_addr_start); 2975 ht = htable_lookup(hat, vaddr, l); 2976 if (ht != NULL) { 2977 if (ht->ht_flags & HTABLE_SHARED_PFN) 2978 goto shared; 2979 htable_release(ht); 2980 goto not_shared; 2981 } 2982 2983 /* 2984 * Can't ever share top table. 2985 */ 2986 if (l == mmu.max_level) 2987 goto not_shared; 2988 2989 /* 2990 * Avoid level mismatches later due to DISM faults. 2991 */ 2992 if (is_dism && l > 0) 2993 goto not_shared; 2994 2995 /* 2996 * addresses and lengths must align 2997 * table must be fully populated 2998 * no lower level page tables 2999 */ 3000 if (ism_addr != ism_ht->ht_vaddr || 3001 (vaddr & LEVEL_OFFSET(l + 1)) != 0) 3002 goto not_shared; 3003 3004 /* 3005 * The range of address space must cover a full table. 3006 */ 3007 if (e_ism_addr - ism_addr < LEVEL_SIZE(l + 1)) 3008 goto not_shared; 3009 3010 /* 3011 * All entries in the ISM page table must be leaf PTEs. 3012 */ 3013 if (l > 0) { 3014 int e; 3015 3016 /* 3017 * We know the 0th is from htable_walk() above. 3018 */ 3019 for (e = 1; e < HTABLE_NUM_PTES(ism_ht); ++e) { 3020 x86pte_t pte; 3021 pte = x86pte_get(ism_ht, e); 3022 if (!PTE_ISPAGE(pte, l)) 3023 goto not_shared; 3024 } 3025 } 3026 3027 /* 3028 * share the page table 3029 */ 3030 ht = htable_create(hat, vaddr, l, ism_ht); 3031 shared: 3032 ASSERT(ht->ht_flags & HTABLE_SHARED_PFN); 3033 ASSERT(ht->ht_shares == ism_ht); 3034 hat->hat_ism_pgcnt += 3035 (ism_ht->ht_valid_cnt - ht->ht_valid_cnt) << 3036 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT); 3037 ht->ht_valid_cnt = ism_ht->ht_valid_cnt; 3038 htable_release(ht); 3039 ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(l + 1); 3040 htable_release(ism_ht); 3041 ism_ht = NULL; 3042 continue; 3043 3044 not_shared: 3045 /* 3046 * Unable to share the page table. Instead we will 3047 * create new mappings from the values in the ISM mappings. 3048 * Figure out what level size mappings to use; 3049 */ 3050 for (l = ism_ht->ht_level; l > 0; --l) { 3051 if (LEVEL_SIZE(l) <= eaddr - vaddr && 3052 (vaddr & LEVEL_OFFSET(l)) == 0) 3053 break; 3054 } 3055 3056 /* 3057 * The ISM mapping might be larger than the share area, 3058 * be careful to truncate it if needed. 3059 */ 3060 if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) { 3061 pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level)); 3062 } else { 3063 pgcnt = mmu_btop(eaddr - vaddr); 3064 l = 0; 3065 } 3066 3067 pfn = PTE2PFN(pte, ism_ht->ht_level); 3068 ASSERT(pfn != PFN_INVALID); 3069 while (pgcnt > 0) { 3070 /* 3071 * Make a new pte for the PFN for this level. 3072 * Copy protections for the pte from the ISM pte. 3073 */ 3074 pp = page_numtopp_nolock(pfn); 3075 ASSERT(pp != NULL); 3076 3077 prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK; 3078 if (PTE_GET(pte, PT_WRITABLE)) 3079 prot |= PROT_WRITE; 3080 if (!PTE_GET(pte, PT_NX)) 3081 prot |= PROT_EXEC; 3082 3083 flags = HAT_LOAD; 3084 if (!is_dism) 3085 flags |= HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST; 3086 while (hati_load_common(hat, vaddr, pp, prot, flags, 3087 l, pfn) != 0) { 3088 if (l == 0) 3089 panic("hati_load_common() failure"); 3090 --l; 3091 } 3092 3093 vaddr += LEVEL_SIZE(l); 3094 ism_addr += LEVEL_SIZE(l); 3095 pfn += mmu_btop(LEVEL_SIZE(l)); 3096 pgcnt -= mmu_btop(LEVEL_SIZE(l)); 3097 } 3098 } 3099 if (ism_ht != NULL) 3100 htable_release(ism_ht); 3101 XPV_ALLOW_MIGRATE(); 3102 return (0); 3103 } 3104 3105 3106 /* 3107 * hat_unshare() is similar to hat_unload_callback(), but 3108 * we have to look for empty shared pagetables. Note that 3109 * hat_unshare() is always invoked against an entire segment. 3110 */ 3111 /*ARGSUSED*/ 3112 void 3113 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc) 3114 { 3115 uint64_t vaddr = (uintptr_t)addr; 3116 uintptr_t eaddr = vaddr + len; 3117 htable_t *ht = NULL; 3118 uint_t need_demaps = 0; 3119 int flags = HAT_UNLOAD_UNMAP; 3120 level_t l; 3121 3122 ASSERT(hat != kas.a_hat); 3123 ASSERT(eaddr <= _userlimit); 3124 ASSERT(IS_PAGEALIGNED(vaddr)); 3125 ASSERT(IS_PAGEALIGNED(eaddr)); 3126 XPV_DISALLOW_MIGRATE(); 3127 3128 /* 3129 * First go through and remove any shared pagetables. 3130 * 3131 * Note that it's ok to delay the TLB shootdown till the entire range is 3132 * finished, because if hat_pageunload() were to unload a shared 3133 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate. 3134 */ 3135 l = mmu.max_page_level; 3136 if (l == mmu.max_level) 3137 --l; 3138 for (; l >= 0; --l) { 3139 for (vaddr = (uintptr_t)addr; vaddr < eaddr; 3140 vaddr = (vaddr & LEVEL_MASK(l + 1)) + LEVEL_SIZE(l + 1)) { 3141 ASSERT(!IN_VA_HOLE(vaddr)); 3142 /* 3143 * find a pagetable that maps the current address 3144 */ 3145 ht = htable_lookup(hat, vaddr, l); 3146 if (ht == NULL) 3147 continue; 3148 if (ht->ht_flags & HTABLE_SHARED_PFN) { 3149 /* 3150 * clear page count, set valid_cnt to 0, 3151 * let htable_release() finish the job 3152 */ 3153 hat->hat_ism_pgcnt -= ht->ht_valid_cnt << 3154 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT); 3155 ht->ht_valid_cnt = 0; 3156 need_demaps = 1; 3157 } 3158 htable_release(ht); 3159 } 3160 } 3161 3162 /* 3163 * flush the TLBs - since we're probably dealing with MANY mappings 3164 * we do just one CR3 reload. 3165 */ 3166 if (!(hat->hat_flags & HAT_FREEING) && need_demaps) 3167 hat_tlb_inval(hat, DEMAP_ALL_ADDR); 3168 3169 /* 3170 * Now go back and clean up any unaligned mappings that 3171 * couldn't share pagetables. 3172 */ 3173 if (!is_it_dism(hat, addr)) 3174 flags |= HAT_UNLOAD_UNLOCK; 3175 hat_unload(hat, addr, len, flags); 3176 XPV_ALLOW_MIGRATE(); 3177 } 3178 3179 3180 /* 3181 * hat_reserve() does nothing 3182 */ 3183 /*ARGSUSED*/ 3184 void 3185 hat_reserve(struct as *as, caddr_t addr, size_t len) 3186 { 3187 } 3188 3189 3190 /* 3191 * Called when all mappings to a page should have write permission removed. 3192 * Mostly stolen from hat_pagesync() 3193 */ 3194 static void 3195 hati_page_clrwrt(struct page *pp) 3196 { 3197 hment_t *hm = NULL; 3198 htable_t *ht; 3199 uint_t entry; 3200 x86pte_t old; 3201 x86pte_t new; 3202 uint_t pszc = 0; 3203 3204 XPV_DISALLOW_MIGRATE(); 3205 next_size: 3206 /* 3207 * walk thru the mapping list clearing write permission 3208 */ 3209 x86_hm_enter(pp); 3210 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 3211 if (ht->ht_level < pszc) 3212 continue; 3213 old = x86pte_get(ht, entry); 3214 3215 for (;;) { 3216 /* 3217 * Is this mapping of interest? 3218 */ 3219 if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum || 3220 PTE_GET(old, PT_WRITABLE) == 0) 3221 break; 3222 3223 /* 3224 * Clear ref/mod writable bits. This requires cross 3225 * calls to ensure any executing TLBs see cleared bits. 3226 */ 3227 new = old; 3228 PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE); 3229 old = hati_update_pte(ht, entry, old, new); 3230 if (old != 0) 3231 continue; 3232 3233 break; 3234 } 3235 } 3236 x86_hm_exit(pp); 3237 while (pszc < pp->p_szc) { 3238 page_t *tpp; 3239 pszc++; 3240 tpp = PP_GROUPLEADER(pp, pszc); 3241 if (pp != tpp) { 3242 pp = tpp; 3243 goto next_size; 3244 } 3245 } 3246 XPV_ALLOW_MIGRATE(); 3247 } 3248 3249 /* 3250 * void hat_page_setattr(pp, flag) 3251 * void hat_page_clrattr(pp, flag) 3252 * used to set/clr ref/mod bits. 3253 */ 3254 void 3255 hat_page_setattr(struct page *pp, uint_t flag) 3256 { 3257 vnode_t *vp = pp->p_vnode; 3258 kmutex_t *vphm = NULL; 3259 page_t **listp; 3260 int noshuffle; 3261 3262 noshuffle = flag & P_NSH; 3263 flag &= ~P_NSH; 3264 3265 if (PP_GETRM(pp, flag) == flag) 3266 return; 3267 3268 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) && 3269 !noshuffle) { 3270 vphm = page_vnode_mutex(vp); 3271 mutex_enter(vphm); 3272 } 3273 3274 PP_SETRM(pp, flag); 3275 3276 if (vphm != NULL) { 3277 3278 /* 3279 * Some File Systems examine v_pages for NULL w/o 3280 * grabbing the vphm mutex. Must not let it become NULL when 3281 * pp is the only page on the list. 3282 */ 3283 if (pp->p_vpnext != pp) { 3284 page_vpsub(&vp->v_pages, pp); 3285 if (vp->v_pages != NULL) 3286 listp = &vp->v_pages->p_vpprev->p_vpnext; 3287 else 3288 listp = &vp->v_pages; 3289 page_vpadd(listp, pp); 3290 } 3291 mutex_exit(vphm); 3292 } 3293 } 3294 3295 void 3296 hat_page_clrattr(struct page *pp, uint_t flag) 3297 { 3298 vnode_t *vp = pp->p_vnode; 3299 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 3300 3301 /* 3302 * Caller is expected to hold page's io lock for VMODSORT to work 3303 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod 3304 * bit is cleared. 3305 * We don't have assert to avoid tripping some existing third party 3306 * code. The dirty page is moved back to top of the v_page list 3307 * after IO is done in pvn_write_done(). 3308 */ 3309 PP_CLRRM(pp, flag); 3310 3311 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 3312 3313 /* 3314 * VMODSORT works by removing write permissions and getting 3315 * a fault when a page is made dirty. At this point 3316 * we need to remove write permission from all mappings 3317 * to this page. 3318 */ 3319 hati_page_clrwrt(pp); 3320 } 3321 } 3322 3323 /* 3324 * If flag is specified, returns 0 if attribute is disabled 3325 * and non zero if enabled. If flag specifes multiple attributes 3326 * then returns 0 if ALL attributes are disabled. This is an advisory 3327 * call. 3328 */ 3329 uint_t 3330 hat_page_getattr(struct page *pp, uint_t flag) 3331 { 3332 return (PP_GETRM(pp, flag)); 3333 } 3334 3335 3336 /* 3337 * common code used by hat_pageunload() and hment_steal() 3338 */ 3339 hment_t * 3340 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry) 3341 { 3342 x86pte_t old_pte; 3343 pfn_t pfn = pp->p_pagenum; 3344 hment_t *hm; 3345 3346 /* 3347 * We need to acquire a hold on the htable in order to 3348 * do the invalidate. We know the htable must exist, since 3349 * unmap's don't release the htable until after removing any 3350 * hment. Having x86_hm_enter() keeps that from proceeding. 3351 */ 3352 htable_acquire(ht); 3353 3354 /* 3355 * Invalidate the PTE and remove the hment. 3356 */ 3357 old_pte = x86pte_inval(ht, entry, 0, NULL, B_TRUE); 3358 if (PTE2PFN(old_pte, ht->ht_level) != pfn) { 3359 panic("x86pte_inval() failure found PTE = " FMT_PTE 3360 " pfn being unmapped is %lx ht=0x%lx entry=0x%x", 3361 old_pte, pfn, (uintptr_t)ht, entry); 3362 } 3363 3364 /* 3365 * Clean up all the htable information for this mapping 3366 */ 3367 ASSERT(ht->ht_valid_cnt > 0); 3368 HTABLE_DEC(ht->ht_valid_cnt); 3369 PGCNT_DEC(ht->ht_hat, ht->ht_level); 3370 3371 /* 3372 * sync ref/mod bits to the page_t 3373 */ 3374 if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC) 3375 hati_sync_pte_to_page(pp, old_pte, ht->ht_level); 3376 3377 /* 3378 * Remove the mapping list entry for this page. 3379 */ 3380 hm = hment_remove(pp, ht, entry); 3381 3382 /* 3383 * drop the mapping list lock so that we might free the 3384 * hment and htable. 3385 */ 3386 x86_hm_exit(pp); 3387 htable_release(ht); 3388 return (hm); 3389 } 3390 3391 extern int vpm_enable; 3392 /* 3393 * Unload all translations to a page. If the page is a subpage of a large 3394 * page, the large page mappings are also removed. 3395 * 3396 * The forceflags are unused. 3397 */ 3398 3399 /*ARGSUSED*/ 3400 static int 3401 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag) 3402 { 3403 page_t *cur_pp = pp; 3404 hment_t *hm; 3405 hment_t *prev; 3406 htable_t *ht; 3407 uint_t entry; 3408 level_t level; 3409 3410 XPV_DISALLOW_MIGRATE(); 3411 3412 /* 3413 * prevent recursion due to kmem_free() 3414 */ 3415 ++curthread->t_hatdepth; 3416 ASSERT(curthread->t_hatdepth < 16); 3417 3418 #if defined(__amd64) 3419 /* 3420 * clear the vpm ref. 3421 */ 3422 if (vpm_enable) { 3423 pp->p_vpmref = 0; 3424 } 3425 #endif 3426 /* 3427 * The loop with next_size handles pages with multiple pagesize mappings 3428 */ 3429 next_size: 3430 for (;;) { 3431 3432 /* 3433 * Get a mapping list entry 3434 */ 3435 x86_hm_enter(cur_pp); 3436 for (prev = NULL; ; prev = hm) { 3437 hm = hment_walk(cur_pp, &ht, &entry, prev); 3438 if (hm == NULL) { 3439 x86_hm_exit(cur_pp); 3440 3441 /* 3442 * If not part of a larger page, we're done. 3443 */ 3444 if (cur_pp->p_szc <= pg_szcd) { 3445 ASSERT(curthread->t_hatdepth > 0); 3446 --curthread->t_hatdepth; 3447 XPV_ALLOW_MIGRATE(); 3448 return (0); 3449 } 3450 3451 /* 3452 * Else check the next larger page size. 3453 * hat_page_demote() may decrease p_szc 3454 * but that's ok we'll just take an extra 3455 * trip discover there're no larger mappings 3456 * and return. 3457 */ 3458 ++pg_szcd; 3459 cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd); 3460 goto next_size; 3461 } 3462 3463 /* 3464 * If this mapping size matches, remove it. 3465 */ 3466 level = ht->ht_level; 3467 if (level == pg_szcd) 3468 break; 3469 } 3470 3471 /* 3472 * Remove the mapping list entry for this page. 3473 * Note this does the x86_hm_exit() for us. 3474 */ 3475 hm = hati_page_unmap(cur_pp, ht, entry); 3476 if (hm != NULL) 3477 hment_free(hm); 3478 } 3479 } 3480 3481 int 3482 hat_pageunload(struct page *pp, uint_t forceflag) 3483 { 3484 ASSERT(PAGE_EXCL(pp)); 3485 return (hati_pageunload(pp, 0, forceflag)); 3486 } 3487 3488 /* 3489 * Unload all large mappings to pp and reduce by 1 p_szc field of every large 3490 * page level that included pp. 3491 * 3492 * pp must be locked EXCL. Even though no other constituent pages are locked 3493 * it's legal to unload large mappings to pp because all constituent pages of 3494 * large locked mappings have to be locked SHARED. therefore if we have EXCL 3495 * lock on one of constituent pages none of the large mappings to pp are 3496 * locked. 3497 * 3498 * Change (always decrease) p_szc field starting from the last constituent 3499 * page and ending with root constituent page so that root's pszc always shows 3500 * the area where hat_page_demote() may be active. 3501 * 3502 * This mechanism is only used for file system pages where it's not always 3503 * possible to get EXCL locks on all constituent pages to demote the size code 3504 * (as is done for anonymous or kernel large pages). 3505 */ 3506 void 3507 hat_page_demote(page_t *pp) 3508 { 3509 uint_t pszc; 3510 uint_t rszc; 3511 uint_t szc; 3512 page_t *rootpp; 3513 page_t *firstpp; 3514 page_t *lastpp; 3515 pgcnt_t pgcnt; 3516 3517 ASSERT(PAGE_EXCL(pp)); 3518 ASSERT(!PP_ISFREE(pp)); 3519 ASSERT(page_szc_lock_assert(pp)); 3520 3521 if (pp->p_szc == 0) 3522 return; 3523 3524 rootpp = PP_GROUPLEADER(pp, 1); 3525 (void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD); 3526 3527 /* 3528 * all large mappings to pp are gone 3529 * and no new can be setup since pp is locked exclusively. 3530 * 3531 * Lock the root to make sure there's only one hat_page_demote() 3532 * outstanding within the area of this root's pszc. 3533 * 3534 * Second potential hat_page_demote() is already eliminated by upper 3535 * VM layer via page_szc_lock() but we don't rely on it and use our 3536 * own locking (so that upper layer locking can be changed without 3537 * assumptions that hat depends on upper layer VM to prevent multiple 3538 * hat_page_demote() to be issued simultaneously to the same large 3539 * page). 3540 */ 3541 again: 3542 pszc = pp->p_szc; 3543 if (pszc == 0) 3544 return; 3545 rootpp = PP_GROUPLEADER(pp, pszc); 3546 x86_hm_enter(rootpp); 3547 /* 3548 * If root's p_szc is different from pszc we raced with another 3549 * hat_page_demote(). Drop the lock and try to find the root again. 3550 * If root's p_szc is greater than pszc previous hat_page_demote() is 3551 * not done yet. Take and release mlist lock of root's root to wait 3552 * for previous hat_page_demote() to complete. 3553 */ 3554 if ((rszc = rootpp->p_szc) != pszc) { 3555 x86_hm_exit(rootpp); 3556 if (rszc > pszc) { 3557 /* p_szc of a locked non free page can't increase */ 3558 ASSERT(pp != rootpp); 3559 3560 rootpp = PP_GROUPLEADER(rootpp, rszc); 3561 x86_hm_enter(rootpp); 3562 x86_hm_exit(rootpp); 3563 } 3564 goto again; 3565 } 3566 ASSERT(pp->p_szc == pszc); 3567 3568 /* 3569 * Decrement by 1 p_szc of every constituent page of a region that 3570 * covered pp. For example if original szc is 3 it gets changed to 2 3571 * everywhere except in region 2 that covered pp. Region 2 that 3572 * covered pp gets demoted to 1 everywhere except in region 1 that 3573 * covered pp. The region 1 that covered pp is demoted to region 3574 * 0. It's done this way because from region 3 we removed level 3 3575 * mappings, from region 2 that covered pp we removed level 2 mappings 3576 * and from region 1 that covered pp we removed level 1 mappings. All 3577 * changes are done from from high pfn's to low pfn's so that roots 3578 * are changed last allowing one to know the largest region where 3579 * hat_page_demote() is stil active by only looking at the root page. 3580 * 3581 * This algorithm is implemented in 2 while loops. First loop changes 3582 * p_szc of pages to the right of pp's level 1 region and second 3583 * loop changes p_szc of pages of level 1 region that covers pp 3584 * and all pages to the left of level 1 region that covers pp. 3585 * In the first loop p_szc keeps dropping with every iteration 3586 * and in the second loop it keeps increasing with every iteration. 3587 * 3588 * First loop description: Demote pages to the right of pp outside of 3589 * level 1 region that covers pp. In every iteration of the while 3590 * loop below find the last page of szc region and the first page of 3591 * (szc - 1) region that is immediately to the right of (szc - 1) 3592 * region that covers pp. From last such page to first such page 3593 * change every page's szc to szc - 1. Decrement szc and continue 3594 * looping until szc is 1. If pp belongs to the last (szc - 1) region 3595 * of szc region skip to the next iteration. 3596 */ 3597 szc = pszc; 3598 while (szc > 1) { 3599 lastpp = PP_GROUPLEADER(pp, szc); 3600 pgcnt = page_get_pagecnt(szc); 3601 lastpp += pgcnt - 1; 3602 firstpp = PP_GROUPLEADER(pp, (szc - 1)); 3603 pgcnt = page_get_pagecnt(szc - 1); 3604 if (lastpp - firstpp < pgcnt) { 3605 szc--; 3606 continue; 3607 } 3608 firstpp += pgcnt; 3609 while (lastpp != firstpp) { 3610 ASSERT(lastpp->p_szc == pszc); 3611 lastpp->p_szc = szc - 1; 3612 lastpp--; 3613 } 3614 firstpp->p_szc = szc - 1; 3615 szc--; 3616 } 3617 3618 /* 3619 * Second loop description: 3620 * First iteration changes p_szc to 0 of every 3621 * page of level 1 region that covers pp. 3622 * Subsequent iterations find last page of szc region 3623 * immediately to the left of szc region that covered pp 3624 * and first page of (szc + 1) region that covers pp. 3625 * From last to first page change p_szc of every page to szc. 3626 * Increment szc and continue looping until szc is pszc. 3627 * If pp belongs to the fist szc region of (szc + 1) region 3628 * skip to the next iteration. 3629 * 3630 */ 3631 szc = 0; 3632 while (szc < pszc) { 3633 firstpp = PP_GROUPLEADER(pp, (szc + 1)); 3634 if (szc == 0) { 3635 pgcnt = page_get_pagecnt(1); 3636 lastpp = firstpp + (pgcnt - 1); 3637 } else { 3638 lastpp = PP_GROUPLEADER(pp, szc); 3639 if (firstpp == lastpp) { 3640 szc++; 3641 continue; 3642 } 3643 lastpp--; 3644 pgcnt = page_get_pagecnt(szc); 3645 } 3646 while (lastpp != firstpp) { 3647 ASSERT(lastpp->p_szc == pszc); 3648 lastpp->p_szc = szc; 3649 lastpp--; 3650 } 3651 firstpp->p_szc = szc; 3652 if (firstpp == rootpp) 3653 break; 3654 szc++; 3655 } 3656 x86_hm_exit(rootpp); 3657 } 3658 3659 /* 3660 * get hw stats from hardware into page struct and reset hw stats 3661 * returns attributes of page 3662 * Flags for hat_pagesync, hat_getstat, hat_sync 3663 * 3664 * define HAT_SYNC_ZERORM 0x01 3665 * 3666 * Additional flags for hat_pagesync 3667 * 3668 * define HAT_SYNC_STOPON_REF 0x02 3669 * define HAT_SYNC_STOPON_MOD 0x04 3670 * define HAT_SYNC_STOPON_RM 0x06 3671 * define HAT_SYNC_STOPON_SHARED 0x08 3672 */ 3673 uint_t 3674 hat_pagesync(struct page *pp, uint_t flags) 3675 { 3676 hment_t *hm = NULL; 3677 htable_t *ht; 3678 uint_t entry; 3679 x86pte_t old, save_old; 3680 x86pte_t new; 3681 uchar_t nrmbits = P_REF|P_MOD|P_RO; 3682 extern ulong_t po_share; 3683 page_t *save_pp = pp; 3684 uint_t pszc = 0; 3685 3686 ASSERT(PAGE_LOCKED(pp) || panicstr); 3687 3688 if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD)) 3689 return (pp->p_nrm & nrmbits); 3690 3691 if ((flags & HAT_SYNC_ZERORM) == 0) { 3692 3693 if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp)) 3694 return (pp->p_nrm & nrmbits); 3695 3696 if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp)) 3697 return (pp->p_nrm & nrmbits); 3698 3699 if ((flags & HAT_SYNC_STOPON_SHARED) != 0 && 3700 hat_page_getshare(pp) > po_share) { 3701 if (PP_ISRO(pp)) 3702 PP_SETREF(pp); 3703 return (pp->p_nrm & nrmbits); 3704 } 3705 } 3706 3707 XPV_DISALLOW_MIGRATE(); 3708 next_size: 3709 /* 3710 * walk thru the mapping list syncing (and clearing) ref/mod bits. 3711 */ 3712 x86_hm_enter(pp); 3713 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 3714 if (ht->ht_level < pszc) 3715 continue; 3716 old = x86pte_get(ht, entry); 3717 try_again: 3718 3719 ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum); 3720 3721 if (PTE_GET(old, PT_REF | PT_MOD) == 0) 3722 continue; 3723 3724 save_old = old; 3725 if ((flags & HAT_SYNC_ZERORM) != 0) { 3726 3727 /* 3728 * Need to clear ref or mod bits. Need to demap 3729 * to make sure any executing TLBs see cleared bits. 3730 */ 3731 new = old; 3732 PTE_CLR(new, PT_REF | PT_MOD); 3733 old = hati_update_pte(ht, entry, old, new); 3734 if (old != 0) 3735 goto try_again; 3736 3737 old = save_old; 3738 } 3739 3740 /* 3741 * Sync the PTE 3742 */ 3743 if (!(flags & HAT_SYNC_ZERORM) && 3744 PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC) 3745 hati_sync_pte_to_page(pp, old, ht->ht_level); 3746 3747 /* 3748 * can stop short if we found a ref'd or mod'd page 3749 */ 3750 if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) || 3751 (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) { 3752 x86_hm_exit(pp); 3753 goto done; 3754 } 3755 } 3756 x86_hm_exit(pp); 3757 while (pszc < pp->p_szc) { 3758 page_t *tpp; 3759 pszc++; 3760 tpp = PP_GROUPLEADER(pp, pszc); 3761 if (pp != tpp) { 3762 pp = tpp; 3763 goto next_size; 3764 } 3765 } 3766 done: 3767 XPV_ALLOW_MIGRATE(); 3768 return (save_pp->p_nrm & nrmbits); 3769 } 3770 3771 /* 3772 * returns approx number of mappings to this pp. A return of 0 implies 3773 * there are no mappings to the page. 3774 */ 3775 ulong_t 3776 hat_page_getshare(page_t *pp) 3777 { 3778 uint_t cnt; 3779 cnt = hment_mapcnt(pp); 3780 #if defined(__amd64) 3781 if (vpm_enable && pp->p_vpmref) { 3782 cnt += 1; 3783 } 3784 #endif 3785 return (cnt); 3786 } 3787 3788 /* 3789 * Return 1 the number of mappings exceeds sh_thresh. Return 0 3790 * otherwise. 3791 */ 3792 int 3793 hat_page_checkshare(page_t *pp, ulong_t sh_thresh) 3794 { 3795 return (hat_page_getshare(pp) > sh_thresh); 3796 } 3797 3798 /* 3799 * hat_softlock isn't supported anymore 3800 */ 3801 /*ARGSUSED*/ 3802 faultcode_t 3803 hat_softlock( 3804 hat_t *hat, 3805 caddr_t addr, 3806 size_t *len, 3807 struct page **page_array, 3808 uint_t flags) 3809 { 3810 return (FC_NOSUPPORT); 3811 } 3812 3813 3814 3815 /* 3816 * Routine to expose supported HAT features to platform independent code. 3817 */ 3818 /*ARGSUSED*/ 3819 int 3820 hat_supported(enum hat_features feature, void *arg) 3821 { 3822 switch (feature) { 3823 3824 case HAT_SHARED_PT: /* this is really ISM */ 3825 return (1); 3826 3827 case HAT_DYNAMIC_ISM_UNMAP: 3828 return (0); 3829 3830 case HAT_VMODSORT: 3831 return (1); 3832 3833 case HAT_SHARED_REGIONS: 3834 return (0); 3835 3836 default: 3837 panic("hat_supported() - unknown feature"); 3838 } 3839 return (0); 3840 } 3841 3842 /* 3843 * Called when a thread is exiting and has been switched to the kernel AS 3844 */ 3845 void 3846 hat_thread_exit(kthread_t *thd) 3847 { 3848 ASSERT(thd->t_procp->p_as == &kas); 3849 XPV_DISALLOW_MIGRATE(); 3850 hat_switch(thd->t_procp->p_as->a_hat); 3851 XPV_ALLOW_MIGRATE(); 3852 } 3853 3854 /* 3855 * Setup the given brand new hat structure as the new HAT on this cpu's mmu. 3856 */ 3857 /*ARGSUSED*/ 3858 void 3859 hat_setup(hat_t *hat, int flags) 3860 { 3861 XPV_DISALLOW_MIGRATE(); 3862 kpreempt_disable(); 3863 3864 hat_switch(hat); 3865 3866 kpreempt_enable(); 3867 XPV_ALLOW_MIGRATE(); 3868 } 3869 3870 /* 3871 * Prepare for a CPU private mapping for the given address. 3872 * 3873 * The address can only be used from a single CPU and can be remapped 3874 * using hat_mempte_remap(). Return the address of the PTE. 3875 * 3876 * We do the htable_create() if necessary and increment the valid count so 3877 * the htable can't disappear. We also hat_devload() the page table into 3878 * kernel so that the PTE is quickly accessed. 3879 */ 3880 hat_mempte_t 3881 hat_mempte_setup(caddr_t addr) 3882 { 3883 uintptr_t va = (uintptr_t)addr; 3884 htable_t *ht; 3885 uint_t entry; 3886 x86pte_t oldpte; 3887 hat_mempte_t p; 3888 3889 ASSERT(IS_PAGEALIGNED(va)); 3890 ASSERT(!IN_VA_HOLE(va)); 3891 ++curthread->t_hatdepth; 3892 XPV_DISALLOW_MIGRATE(); 3893 ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0); 3894 if (ht == NULL) { 3895 ht = htable_create(kas.a_hat, va, 0, NULL); 3896 entry = htable_va2entry(va, ht); 3897 ASSERT(ht->ht_level == 0); 3898 oldpte = x86pte_get(ht, entry); 3899 } 3900 if (PTE_ISVALID(oldpte)) 3901 panic("hat_mempte_setup(): address already mapped" 3902 "ht=%p, entry=%d, pte=" FMT_PTE, (void *)ht, entry, oldpte); 3903 3904 /* 3905 * increment ht_valid_cnt so that the pagetable can't disappear 3906 */ 3907 HTABLE_INC(ht->ht_valid_cnt); 3908 3909 /* 3910 * return the PTE physical address to the caller. 3911 */ 3912 htable_release(ht); 3913 XPV_ALLOW_MIGRATE(); 3914 p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry); 3915 --curthread->t_hatdepth; 3916 return (p); 3917 } 3918 3919 /* 3920 * Release a CPU private mapping for the given address. 3921 * We decrement the htable valid count so it might be destroyed. 3922 */ 3923 /*ARGSUSED1*/ 3924 void 3925 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa) 3926 { 3927 htable_t *ht; 3928 3929 XPV_DISALLOW_MIGRATE(); 3930 /* 3931 * invalidate any left over mapping and decrement the htable valid count 3932 */ 3933 #ifdef __xpv 3934 if (HYPERVISOR_update_va_mapping((uintptr_t)addr, 0, 3935 UVMF_INVLPG | UVMF_LOCAL)) 3936 panic("HYPERVISOR_update_va_mapping() failed"); 3937 #else 3938 { 3939 x86pte_t *pteptr; 3940 3941 pteptr = x86pte_mapin(mmu_btop(pte_pa), 3942 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 3943 if (mmu.pae_hat) 3944 *pteptr = 0; 3945 else 3946 *(x86pte32_t *)pteptr = 0; 3947 mmu_tlbflush_entry(addr); 3948 x86pte_mapout(); 3949 } 3950 #endif 3951 3952 ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0); 3953 if (ht == NULL) 3954 panic("hat_mempte_release(): invalid address"); 3955 ASSERT(ht->ht_level == 0); 3956 HTABLE_DEC(ht->ht_valid_cnt); 3957 htable_release(ht); 3958 XPV_ALLOW_MIGRATE(); 3959 } 3960 3961 /* 3962 * Apply a temporary CPU private mapping to a page. We flush the TLB only 3963 * on this CPU, so this ought to have been called with preemption disabled. 3964 */ 3965 void 3966 hat_mempte_remap( 3967 pfn_t pfn, 3968 caddr_t addr, 3969 hat_mempte_t pte_pa, 3970 uint_t attr, 3971 uint_t flags) 3972 { 3973 uintptr_t va = (uintptr_t)addr; 3974 x86pte_t pte; 3975 3976 /* 3977 * Remap the given PTE to the new page's PFN. Invalidate only 3978 * on this CPU. 3979 */ 3980 #ifdef DEBUG 3981 htable_t *ht; 3982 uint_t entry; 3983 3984 ASSERT(IS_PAGEALIGNED(va)); 3985 ASSERT(!IN_VA_HOLE(va)); 3986 ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0); 3987 ASSERT(ht != NULL); 3988 ASSERT(ht->ht_level == 0); 3989 ASSERT(ht->ht_valid_cnt > 0); 3990 ASSERT(ht->ht_pfn == mmu_btop(pte_pa)); 3991 htable_release(ht); 3992 #endif 3993 XPV_DISALLOW_MIGRATE(); 3994 pte = hati_mkpte(pfn, attr, 0, flags); 3995 #ifdef __xpv 3996 if (HYPERVISOR_update_va_mapping(va, pte, UVMF_INVLPG | UVMF_LOCAL)) 3997 panic("HYPERVISOR_update_va_mapping() failed"); 3998 #else 3999 { 4000 x86pte_t *pteptr; 4001 4002 pteptr = x86pte_mapin(mmu_btop(pte_pa), 4003 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 4004 if (mmu.pae_hat) 4005 *(x86pte_t *)pteptr = pte; 4006 else 4007 *(x86pte32_t *)pteptr = (x86pte32_t)pte; 4008 mmu_tlbflush_entry(addr); 4009 x86pte_mapout(); 4010 } 4011 #endif 4012 XPV_ALLOW_MIGRATE(); 4013 } 4014 4015 4016 4017 /* 4018 * Hat locking functions 4019 * XXX - these two functions are currently being used by hatstats 4020 * they can be removed by using a per-as mutex for hatstats. 4021 */ 4022 void 4023 hat_enter(hat_t *hat) 4024 { 4025 mutex_enter(&hat->hat_mutex); 4026 } 4027 4028 void 4029 hat_exit(hat_t *hat) 4030 { 4031 mutex_exit(&hat->hat_mutex); 4032 } 4033 4034 /* 4035 * HAT part of cpu initialization. 4036 */ 4037 void 4038 hat_cpu_online(struct cpu *cpup) 4039 { 4040 if (cpup != CPU) { 4041 x86pte_cpu_init(cpup); 4042 hat_vlp_setup(cpup); 4043 } 4044 CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id); 4045 } 4046 4047 /* 4048 * HAT part of cpu deletion. 4049 * (currently, we only call this after the cpu is safely passivated.) 4050 */ 4051 void 4052 hat_cpu_offline(struct cpu *cpup) 4053 { 4054 ASSERT(cpup != CPU); 4055 4056 CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id); 4057 hat_vlp_teardown(cpup); 4058 x86pte_cpu_fini(cpup); 4059 } 4060 4061 /* 4062 * Function called after all CPUs are brought online. 4063 * Used to remove low address boot mappings. 4064 */ 4065 void 4066 clear_boot_mappings(uintptr_t low, uintptr_t high) 4067 { 4068 uintptr_t vaddr = low; 4069 htable_t *ht = NULL; 4070 level_t level; 4071 uint_t entry; 4072 x86pte_t pte; 4073 4074 /* 4075 * On 1st CPU we can unload the prom mappings, basically we blow away 4076 * all virtual mappings under _userlimit. 4077 */ 4078 while (vaddr < high) { 4079 pte = htable_walk(kas.a_hat, &ht, &vaddr, high); 4080 if (ht == NULL) 4081 break; 4082 4083 level = ht->ht_level; 4084 entry = htable_va2entry(vaddr, ht); 4085 ASSERT(level <= mmu.max_page_level); 4086 ASSERT(PTE_ISPAGE(pte, level)); 4087 4088 /* 4089 * Unload the mapping from the page tables. 4090 */ 4091 (void) x86pte_inval(ht, entry, 0, NULL, B_TRUE); 4092 ASSERT(ht->ht_valid_cnt > 0); 4093 HTABLE_DEC(ht->ht_valid_cnt); 4094 PGCNT_DEC(ht->ht_hat, ht->ht_level); 4095 4096 vaddr += LEVEL_SIZE(ht->ht_level); 4097 } 4098 if (ht) 4099 htable_release(ht); 4100 } 4101 4102 /* 4103 * Atomically update a new translation for a single page. If the 4104 * currently installed PTE doesn't match the value we expect to find, 4105 * it's not updated and we return the PTE we found. 4106 * 4107 * If activating nosync or NOWRITE and the page was modified we need to sync 4108 * with the page_t. Also sync with page_t if clearing ref/mod bits. 4109 */ 4110 static x86pte_t 4111 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new) 4112 { 4113 page_t *pp; 4114 uint_t rm = 0; 4115 x86pte_t replaced; 4116 4117 if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC && 4118 PTE_GET(expected, PT_MOD | PT_REF) && 4119 (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) || 4120 !PTE_GET(new, PT_MOD | PT_REF))) { 4121 4122 ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level))); 4123 pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level)); 4124 ASSERT(pp != NULL); 4125 if (PTE_GET(expected, PT_MOD)) 4126 rm |= P_MOD; 4127 if (PTE_GET(expected, PT_REF)) 4128 rm |= P_REF; 4129 PTE_CLR(new, PT_MOD | PT_REF); 4130 } 4131 4132 replaced = x86pte_update(ht, entry, expected, new); 4133 if (replaced != expected) 4134 return (replaced); 4135 4136 if (rm) { 4137 /* 4138 * sync to all constituent pages of a large page 4139 */ 4140 pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level); 4141 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 4142 while (pgcnt-- > 0) { 4143 /* 4144 * hat_page_demote() can't decrease 4145 * pszc below this mapping size 4146 * since large mapping existed after we 4147 * took mlist lock. 4148 */ 4149 ASSERT(pp->p_szc >= ht->ht_level); 4150 hat_page_setattr(pp, rm); 4151 ++pp; 4152 } 4153 } 4154 4155 return (0); 4156 } 4157 4158 /* ARGSUSED */ 4159 void 4160 hat_join_srd(struct hat *hat, vnode_t *evp) 4161 { 4162 } 4163 4164 /* ARGSUSED */ 4165 hat_region_cookie_t 4166 hat_join_region(struct hat *hat, 4167 caddr_t r_saddr, 4168 size_t r_size, 4169 void *r_obj, 4170 u_offset_t r_objoff, 4171 uchar_t r_perm, 4172 uchar_t r_pgszc, 4173 hat_rgn_cb_func_t r_cb_function, 4174 uint_t flags) 4175 { 4176 panic("No shared region support on x86"); 4177 return (HAT_INVALID_REGION_COOKIE); 4178 } 4179 4180 /* ARGSUSED */ 4181 void 4182 hat_leave_region(struct hat *hat, hat_region_cookie_t rcookie, uint_t flags) 4183 { 4184 panic("No shared region support on x86"); 4185 } 4186 4187 /* ARGSUSED */ 4188 void 4189 hat_dup_region(struct hat *hat, hat_region_cookie_t rcookie) 4190 { 4191 panic("No shared region support on x86"); 4192 } 4193 4194 4195 /* 4196 * Kernel Physical Mapping (kpm) facility 4197 * 4198 * Most of the routines needed to support segkpm are almost no-ops on the 4199 * x86 platform. We map in the entire segment when it is created and leave 4200 * it mapped in, so there is no additional work required to set up and tear 4201 * down individual mappings. All of these routines were created to support 4202 * SPARC platforms that have to avoid aliasing in their virtually indexed 4203 * caches. 4204 * 4205 * Most of the routines have sanity checks in them (e.g. verifying that the 4206 * passed-in page is locked). We don't actually care about most of these 4207 * checks on x86, but we leave them in place to identify problems in the 4208 * upper levels. 4209 */ 4210 4211 /* 4212 * Map in a locked page and return the vaddr. 4213 */ 4214 /*ARGSUSED*/ 4215 caddr_t 4216 hat_kpm_mapin(struct page *pp, struct kpme *kpme) 4217 { 4218 caddr_t vaddr; 4219 4220 #ifdef DEBUG 4221 if (kpm_enable == 0) { 4222 cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n"); 4223 return ((caddr_t)NULL); 4224 } 4225 4226 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 4227 cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n"); 4228 return ((caddr_t)NULL); 4229 } 4230 #endif 4231 4232 vaddr = hat_kpm_page2va(pp, 1); 4233 4234 return (vaddr); 4235 } 4236 4237 /* 4238 * Mapout a locked page. 4239 */ 4240 /*ARGSUSED*/ 4241 void 4242 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr) 4243 { 4244 #ifdef DEBUG 4245 if (kpm_enable == 0) { 4246 cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n"); 4247 return; 4248 } 4249 4250 if (IS_KPM_ADDR(vaddr) == 0) { 4251 cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n"); 4252 return; 4253 } 4254 4255 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 4256 cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n"); 4257 return; 4258 } 4259 #endif 4260 } 4261 4262 /* 4263 * hat_kpm_mapin_pfn is used to obtain a kpm mapping for physical 4264 * memory addresses that are not described by a page_t. It can 4265 * also be used for normal pages that are not locked, but beware 4266 * this is dangerous - no locking is performed, so the identity of 4267 * the page could change. hat_kpm_mapin_pfn is not supported when 4268 * vac_colors > 1, because the chosen va depends on the page identity, 4269 * which could change. 4270 * The caller must only pass pfn's for valid physical addresses; violation 4271 * of this rule will cause panic. 4272 */ 4273 caddr_t 4274 hat_kpm_mapin_pfn(pfn_t pfn) 4275 { 4276 caddr_t paddr, vaddr; 4277 4278 if (kpm_enable == 0) 4279 return ((caddr_t)NULL); 4280 4281 paddr = (caddr_t)ptob(pfn); 4282 vaddr = (uintptr_t)kpm_vbase + paddr; 4283 4284 return ((caddr_t)vaddr); 4285 } 4286 4287 /*ARGSUSED*/ 4288 void 4289 hat_kpm_mapout_pfn(pfn_t pfn) 4290 { 4291 /* empty */ 4292 } 4293 4294 /* 4295 * Return the kpm virtual address for a specific pfn 4296 */ 4297 caddr_t 4298 hat_kpm_pfn2va(pfn_t pfn) 4299 { 4300 uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn); 4301 4302 ASSERT(!pfn_is_foreign(pfn)); 4303 return ((caddr_t)vaddr); 4304 } 4305 4306 /* 4307 * Return the kpm virtual address for the page at pp. 4308 */ 4309 /*ARGSUSED*/ 4310 caddr_t 4311 hat_kpm_page2va(struct page *pp, int checkswap) 4312 { 4313 return (hat_kpm_pfn2va(pp->p_pagenum)); 4314 } 4315 4316 /* 4317 * Return the page frame number for the kpm virtual address vaddr. 4318 */ 4319 pfn_t 4320 hat_kpm_va2pfn(caddr_t vaddr) 4321 { 4322 pfn_t pfn; 4323 4324 ASSERT(IS_KPM_ADDR(vaddr)); 4325 4326 pfn = (pfn_t)btop(vaddr - kpm_vbase); 4327 4328 return (pfn); 4329 } 4330 4331 4332 /* 4333 * Return the page for the kpm virtual address vaddr. 4334 */ 4335 page_t * 4336 hat_kpm_vaddr2page(caddr_t vaddr) 4337 { 4338 pfn_t pfn; 4339 4340 ASSERT(IS_KPM_ADDR(vaddr)); 4341 4342 pfn = hat_kpm_va2pfn(vaddr); 4343 4344 return (page_numtopp_nolock(pfn)); 4345 } 4346 4347 /* 4348 * hat_kpm_fault is called from segkpm_fault when we take a page fault on a 4349 * KPM page. This should never happen on x86 4350 */ 4351 int 4352 hat_kpm_fault(hat_t *hat, caddr_t vaddr) 4353 { 4354 panic("pagefault in seg_kpm. hat: 0x%p vaddr: 0x%p", 4355 (void *)hat, (void *)vaddr); 4356 4357 return (0); 4358 } 4359 4360 /*ARGSUSED*/ 4361 void 4362 hat_kpm_mseghash_clear(int nentries) 4363 {} 4364 4365 /*ARGSUSED*/ 4366 void 4367 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp) 4368 {} 4369 4370 #ifndef __xpv 4371 void 4372 hat_kpm_addmem_mseg_update(struct memseg *msp, pgcnt_t nkpmpgs, 4373 offset_t kpm_pages_off) 4374 { 4375 _NOTE(ARGUNUSED(nkpmpgs, kpm_pages_off)); 4376 pfn_t base, end; 4377 4378 /* 4379 * kphysm_add_memory_dynamic() does not set nkpmpgs 4380 * when page_t memory is externally allocated. That 4381 * code must properly calculate nkpmpgs in all cases 4382 * if nkpmpgs needs to be used at some point. 4383 */ 4384 4385 /* 4386 * The meta (page_t) pages for dynamically added memory are allocated 4387 * either from the incoming memory itself or from existing memory. 4388 * In the former case the base of the incoming pages will be different 4389 * than the base of the dynamic segment so call memseg_get_start() to 4390 * get the actual base of the incoming memory for each case. 4391 */ 4392 4393 base = memseg_get_start(msp); 4394 end = msp->pages_end; 4395 4396 hat_devload(kas.a_hat, kpm_vbase + mmu_ptob(base), 4397 mmu_ptob(end - base), base, PROT_READ | PROT_WRITE, 4398 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 4399 } 4400 4401 void 4402 hat_kpm_addmem_mseg_insert(struct memseg *msp) 4403 { 4404 _NOTE(ARGUNUSED(msp)); 4405 } 4406 4407 void 4408 hat_kpm_addmem_memsegs_update(struct memseg *msp) 4409 { 4410 _NOTE(ARGUNUSED(msp)); 4411 } 4412 4413 /* 4414 * Return end of metadata for an already setup memseg. 4415 * X86 platforms don't need per-page meta data to support kpm. 4416 */ 4417 caddr_t 4418 hat_kpm_mseg_reuse(struct memseg *msp) 4419 { 4420 return ((caddr_t)msp->epages); 4421 } 4422 4423 void 4424 hat_kpm_delmem_mseg_update(struct memseg *msp, struct memseg **mspp) 4425 { 4426 _NOTE(ARGUNUSED(msp, mspp)); 4427 ASSERT(0); 4428 } 4429 4430 void 4431 hat_kpm_split_mseg_update(struct memseg *msp, struct memseg **mspp, 4432 struct memseg *lo, struct memseg *mid, struct memseg *hi) 4433 { 4434 _NOTE(ARGUNUSED(msp, mspp, lo, mid, hi)); 4435 ASSERT(0); 4436 } 4437 4438 /* 4439 * Walk the memsegs chain, applying func to each memseg span. 4440 */ 4441 void 4442 hat_kpm_walk(void (*func)(void *, void *, size_t), void *arg) 4443 { 4444 pfn_t pbase, pend; 4445 void *base; 4446 size_t size; 4447 struct memseg *msp; 4448 4449 for (msp = memsegs; msp; msp = msp->next) { 4450 pbase = msp->pages_base; 4451 pend = msp->pages_end; 4452 base = ptob(pbase) + kpm_vbase; 4453 size = ptob(pend - pbase); 4454 func(arg, base, size); 4455 } 4456 } 4457 4458 #else /* __xpv */ 4459 4460 /* 4461 * There are specific Hypervisor calls to establish and remove mappings 4462 * to grant table references and the privcmd driver. We have to ensure 4463 * that a page table actually exists. 4464 */ 4465 void 4466 hat_prepare_mapping(hat_t *hat, caddr_t addr, uint64_t *pte_ma) 4467 { 4468 maddr_t base_ma; 4469 htable_t *ht; 4470 uint_t entry; 4471 4472 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE)); 4473 XPV_DISALLOW_MIGRATE(); 4474 ht = htable_create(hat, (uintptr_t)addr, 0, NULL); 4475 4476 /* 4477 * if an address for pte_ma is passed in, return the MA of the pte 4478 * for this specific address. This address is only valid as long 4479 * as the htable stays locked. 4480 */ 4481 if (pte_ma != NULL) { 4482 entry = htable_va2entry((uintptr_t)addr, ht); 4483 base_ma = pa_to_ma(ptob(ht->ht_pfn)); 4484 *pte_ma = base_ma + (entry << mmu.pte_size_shift); 4485 } 4486 XPV_ALLOW_MIGRATE(); 4487 } 4488 4489 void 4490 hat_release_mapping(hat_t *hat, caddr_t addr) 4491 { 4492 htable_t *ht; 4493 4494 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE)); 4495 XPV_DISALLOW_MIGRATE(); 4496 ht = htable_lookup(hat, (uintptr_t)addr, 0); 4497 ASSERT(ht != NULL); 4498 ASSERT(ht->ht_busy >= 2); 4499 htable_release(ht); 4500 htable_release(ht); 4501 XPV_ALLOW_MIGRATE(); 4502 } 4503 #endif /* __xpv */