1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 *
25 * Copyright 2018 Joyent, Inc.
26 */
27
28 /*
29 * Libkvm Kernel Target Intel 64-bit component
30 *
31 * This file provides the ISA-dependent portion of the libkvm kernel target.
32 * For more details on the implementation refer to mdb_kvm.c.
33 */
34
35 #include <sys/types.h>
36 #include <sys/reg.h>
37 #include <sys/frame.h>
38 #include <sys/stack.h>
39 #include <sys/sysmacros.h>
40 #include <sys/panic.h>
41 #include <sys/privregs.h>
42 #include <strings.h>
43
44 #include <mdb/mdb_target_impl.h>
45 #include <mdb/mdb_disasm.h>
46 #include <mdb/mdb_modapi.h>
47 #include <mdb/mdb_conf.h>
48 #include <mdb/mdb_kreg_impl.h>
49 #include <mdb/mdb_amd64util.h>
50 #include <mdb/kvm_isadep.h>
51 #include <mdb/mdb_kvm.h>
52 #include <mdb/mdb_err.h>
53 #include <mdb/mdb_debug.h>
54 #include <mdb/mdb.h>
55
56 /*ARGSUSED*/
57 int
58 kt_regs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
59 {
60 mdb_amd64_printregs((const mdb_tgt_gregset_t *)addr);
61 return (DCMD_OK);
62 }
63
64 static int
65 kt_stack_common(uintptr_t addr, uint_t flags, int argc,
66 const mdb_arg_t *argv, mdb_tgt_stack_f *func)
67 {
68 kt_data_t *kt = mdb.m_target->t_data;
69 void *arg = (void *)(uintptr_t)mdb.m_nargs;
70 mdb_tgt_gregset_t gregs, *grp;
71
72 if (flags & DCMD_ADDRSPEC) {
73 bzero(&gregs, sizeof (gregs));
74 gregs.kregs[KREG_RBP] = addr;
75 grp = &gregs;
76 } else
77 grp = kt->k_regs;
78
79 if (argc != 0) {
80 if (argv->a_type == MDB_TYPE_CHAR || argc > 1)
81 return (DCMD_USAGE);
82
83 if (argv->a_type == MDB_TYPE_STRING)
84 arg = (void *)mdb_strtoull(argv->a_un.a_str);
85 else
86 arg = (void *)argv->a_un.a_val;
87 }
88
89 (void) mdb_amd64_kvm_stack_iter(mdb.m_target, grp, func, arg);
90 return (DCMD_OK);
91 }
92
93 int
94 kt_stack(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
95 {
96 return (kt_stack_common(addr, flags, argc, argv, mdb_amd64_kvm_frame));
97 }
98
99 int
100 kt_stackv(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
101 {
102 return (kt_stack_common(addr, flags, argc, argv, mdb_amd64_kvm_framev));
103 }
104
105 const mdb_tgt_ops_t kt_amd64_ops = {
106 kt_setflags, /* t_setflags */
107 kt_setcontext, /* t_setcontext */
108 kt_activate, /* t_activate */
109 kt_deactivate, /* t_deactivate */
110 (void (*)()) mdb_tgt_nop, /* t_periodic */
111 kt_destroy, /* t_destroy */
112 kt_name, /* t_name */
113 (const char *(*)()) mdb_conf_isa, /* t_isa */
114 kt_platform, /* t_platform */
115 kt_uname, /* t_uname */
116 kt_dmodel, /* t_dmodel */
117 kt_aread, /* t_aread */
118 kt_awrite, /* t_awrite */
119 kt_vread, /* t_vread */
120 kt_vwrite, /* t_vwrite */
121 kt_pread, /* t_pread */
122 kt_pwrite, /* t_pwrite */
123 kt_fread, /* t_fread */
124 kt_fwrite, /* t_fwrite */
125 (ssize_t (*)()) mdb_tgt_notsup, /* t_ioread */
126 (ssize_t (*)()) mdb_tgt_notsup, /* t_iowrite */
127 kt_vtop, /* t_vtop */
128 kt_lookup_by_name, /* t_lookup_by_name */
129 kt_lookup_by_addr, /* t_lookup_by_addr */
130 kt_symbol_iter, /* t_symbol_iter */
131 kt_mapping_iter, /* t_mapping_iter */
132 kt_object_iter, /* t_object_iter */
133 kt_addr_to_map, /* t_addr_to_map */
134 kt_name_to_map, /* t_name_to_map */
135 kt_addr_to_ctf, /* t_addr_to_ctf */
136 kt_name_to_ctf, /* t_name_to_ctf */
137 kt_status, /* t_status */
138 (int (*)()) mdb_tgt_notsup, /* t_run */
139 (int (*)()) mdb_tgt_notsup, /* t_step */
140 (int (*)()) mdb_tgt_notsup, /* t_step_out */
141 (int (*)()) mdb_tgt_notsup, /* t_next */
142 (int (*)()) mdb_tgt_notsup, /* t_cont */
143 (int (*)()) mdb_tgt_notsup, /* t_signal */
144 (int (*)()) mdb_tgt_null, /* t_add_vbrkpt */
145 (int (*)()) mdb_tgt_null, /* t_add_sbrkpt */
146 (int (*)()) mdb_tgt_null, /* t_add_pwapt */
147 (int (*)()) mdb_tgt_null, /* t_add_vwapt */
148 (int (*)()) mdb_tgt_null, /* t_add_iowapt */
149 (int (*)()) mdb_tgt_null, /* t_add_sysenter */
150 (int (*)()) mdb_tgt_null, /* t_add_sysexit */
151 (int (*)()) mdb_tgt_null, /* t_add_signal */
152 (int (*)()) mdb_tgt_null, /* t_add_fault */
153 kt_getareg, /* t_getareg */
154 kt_putareg, /* t_putareg */
155 mdb_amd64_kvm_stack_iter, /* t_stack_iter */
156 (int (*)()) mdb_tgt_notsup /* t_auxv */
157 };
158
159 void
160 kt_regs_to_kregs(struct regs *regs, mdb_tgt_gregset_t *gregs)
161 {
162 gregs->kregs[KREG_SAVFP] = regs->r_savfp;
163 gregs->kregs[KREG_SAVPC] = regs->r_savpc;
164 gregs->kregs[KREG_RDI] = regs->r_rdi;
165 gregs->kregs[KREG_RSI] = regs->r_rsi;
166 gregs->kregs[KREG_RDX] = regs->r_rdx;
167 gregs->kregs[KREG_RCX] = regs->r_rcx;
168 gregs->kregs[KREG_R8] = regs->r_r8;
169 gregs->kregs[KREG_R9] = regs->r_r9;
170 gregs->kregs[KREG_RAX] = regs->r_rax;
171 gregs->kregs[KREG_RBX] = regs->r_rbx;
172 gregs->kregs[KREG_RBP] = regs->r_rbp;
173 gregs->kregs[KREG_R10] = regs->r_r10;
174 gregs->kregs[KREG_R11] = regs->r_r11;
175 gregs->kregs[KREG_R12] = regs->r_r12;
176 gregs->kregs[KREG_R13] = regs->r_r13;
177 gregs->kregs[KREG_R14] = regs->r_r14;
178 gregs->kregs[KREG_R15] = regs->r_r15;
179 gregs->kregs[KREG_DS] = regs->r_ds;
180 gregs->kregs[KREG_ES] = regs->r_es;
181 gregs->kregs[KREG_FS] = regs->r_fs;
182 gregs->kregs[KREG_GS] = regs->r_gs;
183 gregs->kregs[KREG_TRAPNO] = regs->r_trapno;
184 gregs->kregs[KREG_ERR] = regs->r_err;
185 gregs->kregs[KREG_RIP] = regs->r_rip;
186 gregs->kregs[KREG_CS] = regs->r_cs;
187 gregs->kregs[KREG_RFLAGS] = regs->r_rfl;
188 gregs->kregs[KREG_RSP] = regs->r_rsp;
189 gregs->kregs[KREG_SS] = regs->r_ss;
190 }
191
192 void
193 kt_amd64_init(mdb_tgt_t *t)
194 {
195 kt_data_t *kt = t->t_data;
196 panic_data_t pd;
197 struct regs regs;
198 uintptr_t addr;
199
200 /*
201 * Initialize the machine-dependent parts of the kernel target
202 * structure. Once this is complete and we fill in the ops
203 * vector, the target is now fully constructed and we can use
204 * the target API itself to perform the rest of our initialization.
205 */
206 kt->k_rds = mdb_amd64_kregs;
207 kt->k_regs = mdb_zalloc(sizeof (mdb_tgt_gregset_t), UM_SLEEP);
208 kt->k_regsize = sizeof (mdb_tgt_gregset_t);
209 kt->k_dcmd_regs = kt_regs;
210 kt->k_dcmd_stack = kt_stack;
211 kt->k_dcmd_stackv = kt_stackv;
212 kt->k_dcmd_stackr = kt_stackv;
213 kt->k_dcmd_cpustack = kt_cpustack;
214 kt->k_dcmd_cpuregs = kt_cpuregs;
215
216 t->t_ops = &kt_amd64_ops;
217
218 (void) mdb_dis_select("amd64");
219
220 /*
221 * Lookup the symbols corresponding to subroutines in locore.s where
222 * we expect a saved regs structure to be pushed on the stack. When
223 * performing stack tracebacks we will attempt to detect interrupt
224 * frames by comparing the %eip value to these symbols.
225 */
226 (void) mdb_tgt_lookup_by_name(t, MDB_TGT_OBJ_EXEC,
227 "cmnint", &kt->k_intr_sym, NULL);
228
229 (void) mdb_tgt_lookup_by_name(t, MDB_TGT_OBJ_EXEC,
230 "cmntrap", &kt->k_trap_sym, NULL);
231
232 /*
233 * Don't attempt to load any thread or register information if
234 * we're examining the live operating system.
235 */
236 if (kt->k_symfile != NULL && strcmp(kt->k_symfile, "/dev/ksyms") == 0)
237 return;
238
239 /*
240 * If the panicbuf symbol is present and we can consume a panicbuf
241 * header of the appropriate version from this address, then we can
242 * initialize our current register set based on its contents.
243 * Prior to the re-structuring of panicbuf, our only register data
244 * was the panic_regs label_t, into which a setjmp() was performed,
245 * or the panic_reg register pointer, which was only non-zero if
246 * the system panicked as a result of a trap calling die().
247 */
248 if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &pd, sizeof (pd),
249 MDB_TGT_OBJ_EXEC, "panicbuf") == sizeof (pd) &&
250 pd.pd_version == PANICBUFVERS) {
251
252 size_t pd_size = MIN(PANICBUFSIZE, pd.pd_msgoff);
253 panic_data_t *pdp = mdb_zalloc(pd_size, UM_SLEEP);
254 uint_t i, n;
255
256 (void) mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, pdp, pd_size,
257 MDB_TGT_OBJ_EXEC, "panicbuf");
258
259 n = (pd_size - (sizeof (panic_data_t) -
260 sizeof (panic_nv_t))) / sizeof (panic_nv_t);
261
262 for (i = 0; i < n; i++) {
263 (void) kt_putareg(t, kt->k_tid,
264 pdp->pd_nvdata[i].pnv_name,
265 pdp->pd_nvdata[i].pnv_value);
266 }
267
268 mdb_free(pdp, pd_size);
269
270 return;
271 };
272
273 if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &addr, sizeof (addr),
274 MDB_TGT_OBJ_EXEC, "panic_reg") == sizeof (addr) && addr != NULL &&
275 mdb_tgt_vread(t, ®s, sizeof (regs), addr) == sizeof (regs)) {
276 kt_regs_to_kregs(®s, kt->k_regs);
277 return;
278 }
279
280 /*
281 * If we can't read any panic regs, then our final try is for any CPU
282 * context that may have been stored (for example, in Xen core dumps).
283 */
284 if (kt_kvmregs(t, 0, kt->k_regs) == 0)
285 return;
286
287 warn("failed to read panicbuf and panic_reg -- "
288 "current register set will be unavailable\n");
289 }