1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright 2018, Joyent, Inc. 26 */ 27 28 /* 29 * Kernel memory allocator, as described in the following two papers and a 30 * statement about the consolidator: 31 * 32 * Jeff Bonwick, 33 * The Slab Allocator: An Object-Caching Kernel Memory Allocator. 34 * Proceedings of the Summer 1994 Usenix Conference. 35 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. 36 * 37 * Jeff Bonwick and Jonathan Adams, 38 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 39 * Arbitrary Resources. 40 * Proceedings of the 2001 Usenix Conference. 41 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. 42 * 43 * kmem Slab Consolidator Big Theory Statement: 44 * 45 * 1. Motivation 46 * 47 * As stated in Bonwick94, slabs provide the following advantages over other 48 * allocation structures in terms of memory fragmentation: 49 * 50 * - Internal fragmentation (per-buffer wasted space) is minimal. 51 * - Severe external fragmentation (unused buffers on the free list) is 52 * unlikely. 53 * 54 * Segregating objects by size eliminates one source of external fragmentation, 55 * and according to Bonwick: 56 * 57 * The other reason that slabs reduce external fragmentation is that all 58 * objects in a slab are of the same type, so they have the same lifetime 59 * distribution. The resulting segregation of short-lived and long-lived 60 * objects at slab granularity reduces the likelihood of an entire page being 61 * held hostage due to a single long-lived allocation [Barrett93, Hanson90]. 62 * 63 * While unlikely, severe external fragmentation remains possible. Clients that 64 * allocate both short- and long-lived objects from the same cache cannot 65 * anticipate the distribution of long-lived objects within the allocator's slab 66 * implementation. Even a small percentage of long-lived objects distributed 67 * randomly across many slabs can lead to a worst case scenario where the client 68 * frees the majority of its objects and the system gets back almost none of the 69 * slabs. Despite the client doing what it reasonably can to help the system 70 * reclaim memory, the allocator cannot shake free enough slabs because of 71 * lonely allocations stubbornly hanging on. Although the allocator is in a 72 * position to diagnose the fragmentation, there is nothing that the allocator 73 * by itself can do about it. It only takes a single allocated object to prevent 74 * an entire slab from being reclaimed, and any object handed out by 75 * kmem_cache_alloc() is by definition in the client's control. Conversely, 76 * although the client is in a position to move a long-lived object, it has no 77 * way of knowing if the object is causing fragmentation, and if so, where to 78 * move it. A solution necessarily requires further cooperation between the 79 * allocator and the client. 80 * 81 * 2. Move Callback 82 * 83 * The kmem slab consolidator therefore adds a move callback to the 84 * allocator/client interface, improving worst-case external fragmentation in 85 * kmem caches that supply a function to move objects from one memory location 86 * to another. In a situation of low memory kmem attempts to consolidate all of 87 * a cache's slabs at once; otherwise it works slowly to bring external 88 * fragmentation within the 1/8 limit guaranteed for internal fragmentation, 89 * thereby helping to avoid a low memory situation in the future. 90 * 91 * The callback has the following signature: 92 * 93 * kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg) 94 * 95 * It supplies the kmem client with two addresses: the allocated object that 96 * kmem wants to move and a buffer selected by kmem for the client to use as the 97 * copy destination. The callback is kmem's way of saying "Please get off of 98 * this buffer and use this one instead." kmem knows where it wants to move the 99 * object in order to best reduce fragmentation. All the client needs to know 100 * about the second argument (void *new) is that it is an allocated, constructed 101 * object ready to take the contents of the old object. When the move function 102 * is called, the system is likely to be low on memory, and the new object 103 * spares the client from having to worry about allocating memory for the 104 * requested move. The third argument supplies the size of the object, in case a 105 * single move function handles multiple caches whose objects differ only in 106 * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional 107 * user argument passed to the constructor, destructor, and reclaim functions is 108 * also passed to the move callback. 109 * 110 * 2.1 Setting the Move Callback 111 * 112 * The client sets the move callback after creating the cache and before 113 * allocating from it: 114 * 115 * object_cache = kmem_cache_create(...); 116 * kmem_cache_set_move(object_cache, object_move); 117 * 118 * 2.2 Move Callback Return Values 119 * 120 * Only the client knows about its own data and when is a good time to move it. 121 * The client is cooperating with kmem to return unused memory to the system, 122 * and kmem respectfully accepts this help at the client's convenience. When 123 * asked to move an object, the client can respond with any of the following: 124 * 125 * typedef enum kmem_cbrc { 126 * KMEM_CBRC_YES, 127 * KMEM_CBRC_NO, 128 * KMEM_CBRC_LATER, 129 * KMEM_CBRC_DONT_NEED, 130 * KMEM_CBRC_DONT_KNOW 131 * } kmem_cbrc_t; 132 * 133 * The client must not explicitly kmem_cache_free() either of the objects passed 134 * to the callback, since kmem wants to free them directly to the slab layer 135 * (bypassing the per-CPU magazine layer). The response tells kmem which of the 136 * objects to free: 137 * 138 * YES: (Did it) The client moved the object, so kmem frees the old one. 139 * NO: (Never) The client refused, so kmem frees the new object (the 140 * unused copy destination). kmem also marks the slab of the old 141 * object so as not to bother the client with further callbacks for 142 * that object as long as the slab remains on the partial slab list. 143 * (The system won't be getting the slab back as long as the 144 * immovable object holds it hostage, so there's no point in moving 145 * any of its objects.) 146 * LATER: The client is using the object and cannot move it now, so kmem 147 * frees the new object (the unused copy destination). kmem still 148 * attempts to move other objects off the slab, since it expects to 149 * succeed in clearing the slab in a later callback. The client 150 * should use LATER instead of NO if the object is likely to become 151 * movable very soon. 152 * DONT_NEED: The client no longer needs the object, so kmem frees the old along 153 * with the new object (the unused copy destination). This response 154 * is the client's opportunity to be a model citizen and give back as 155 * much as it can. 156 * DONT_KNOW: The client does not know about the object because 157 * a) the client has just allocated the object and not yet put it 158 * wherever it expects to find known objects 159 * b) the client has removed the object from wherever it expects to 160 * find known objects and is about to free it, or 161 * c) the client has freed the object. 162 * In all these cases (a, b, and c) kmem frees the new object (the 163 * unused copy destination). In the first case, the object is in 164 * use and the correct action is that for LATER; in the latter two 165 * cases, we know that the object is either freed or about to be 166 * freed, in which case it is either already in a magazine or about 167 * to be in one. In these cases, we know that the object will either 168 * be reallocated and reused, or it will end up in a full magazine 169 * that will be reaped (thereby liberating the slab). Because it 170 * is prohibitively expensive to differentiate these cases, and 171 * because the defrag code is executed when we're low on memory 172 * (thereby biasing the system to reclaim full magazines) we treat 173 * all DONT_KNOW cases as LATER and rely on cache reaping to 174 * generally clean up full magazines. While we take the same action 175 * for these cases, we maintain their semantic distinction: if 176 * defragmentation is not occurring, it is useful to know if this 177 * is due to objects in use (LATER) or objects in an unknown state 178 * of transition (DONT_KNOW). 179 * 180 * 2.3 Object States 181 * 182 * Neither kmem nor the client can be assumed to know the object's whereabouts 183 * at the time of the callback. An object belonging to a kmem cache may be in 184 * any of the following states: 185 * 186 * 1. Uninitialized on the slab 187 * 2. Allocated from the slab but not constructed (still uninitialized) 188 * 3. Allocated from the slab, constructed, but not yet ready for business 189 * (not in a valid state for the move callback) 190 * 4. In use (valid and known to the client) 191 * 5. About to be freed (no longer in a valid state for the move callback) 192 * 6. Freed to a magazine (still constructed) 193 * 7. Allocated from a magazine, not yet ready for business (not in a valid 194 * state for the move callback), and about to return to state #4 195 * 8. Deconstructed on a magazine that is about to be freed 196 * 9. Freed to the slab 197 * 198 * Since the move callback may be called at any time while the object is in any 199 * of the above states (except state #1), the client needs a safe way to 200 * determine whether or not it knows about the object. Specifically, the client 201 * needs to know whether or not the object is in state #4, the only state in 202 * which a move is valid. If the object is in any other state, the client should 203 * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of 204 * the object's fields. 205 * 206 * Note that although an object may be in state #4 when kmem initiates the move 207 * request, the object may no longer be in that state by the time kmem actually 208 * calls the move function. Not only does the client free objects 209 * asynchronously, kmem itself puts move requests on a queue where thay are 210 * pending until kmem processes them from another context. Also, objects freed 211 * to a magazine appear allocated from the point of view of the slab layer, so 212 * kmem may even initiate requests for objects in a state other than state #4. 213 * 214 * 2.3.1 Magazine Layer 215 * 216 * An important insight revealed by the states listed above is that the magazine 217 * layer is populated only by kmem_cache_free(). Magazines of constructed 218 * objects are never populated directly from the slab layer (which contains raw, 219 * unconstructed objects). Whenever an allocation request cannot be satisfied 220 * from the magazine layer, the magazines are bypassed and the request is 221 * satisfied from the slab layer (creating a new slab if necessary). kmem calls 222 * the object constructor only when allocating from the slab layer, and only in 223 * response to kmem_cache_alloc() or to prepare the destination buffer passed in 224 * the move callback. kmem does not preconstruct objects in anticipation of 225 * kmem_cache_alloc(). 226 * 227 * 2.3.2 Object Constructor and Destructor 228 * 229 * If the client supplies a destructor, it must be valid to call the destructor 230 * on a newly created object (immediately after the constructor). 231 * 232 * 2.4 Recognizing Known Objects 233 * 234 * There is a simple test to determine safely whether or not the client knows 235 * about a given object in the move callback. It relies on the fact that kmem 236 * guarantees that the object of the move callback has only been touched by the 237 * client itself or else by kmem. kmem does this by ensuring that none of the 238 * cache's slabs are freed to the virtual memory (VM) subsystem while a move 239 * callback is pending. When the last object on a slab is freed, if there is a 240 * pending move, kmem puts the slab on a per-cache dead list and defers freeing 241 * slabs on that list until all pending callbacks are completed. That way, 242 * clients can be certain that the object of a move callback is in one of the 243 * states listed above, making it possible to distinguish known objects (in 244 * state #4) using the two low order bits of any pointer member (with the 245 * exception of 'char *' or 'short *' which may not be 4-byte aligned on some 246 * platforms). 247 * 248 * The test works as long as the client always transitions objects from state #4 249 * (known, in use) to state #5 (about to be freed, invalid) by setting the low 250 * order bit of the client-designated pointer member. Since kmem only writes 251 * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and 252 * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is 253 * guaranteed to set at least one of the two low order bits. Therefore, given an 254 * object with a back pointer to a 'container_t *o_container', the client can 255 * test 256 * 257 * container_t *container = object->o_container; 258 * if ((uintptr_t)container & 0x3) { 259 * return (KMEM_CBRC_DONT_KNOW); 260 * } 261 * 262 * Typically, an object will have a pointer to some structure with a list or 263 * hash where objects from the cache are kept while in use. Assuming that the 264 * client has some way of knowing that the container structure is valid and will 265 * not go away during the move, and assuming that the structure includes a lock 266 * to protect whatever collection is used, then the client would continue as 267 * follows: 268 * 269 * // Ensure that the container structure does not go away. 270 * if (container_hold(container) == 0) { 271 * return (KMEM_CBRC_DONT_KNOW); 272 * } 273 * mutex_enter(&container->c_objects_lock); 274 * if (container != object->o_container) { 275 * mutex_exit(&container->c_objects_lock); 276 * container_rele(container); 277 * return (KMEM_CBRC_DONT_KNOW); 278 * } 279 * 280 * At this point the client knows that the object cannot be freed as long as 281 * c_objects_lock is held. Note that after acquiring the lock, the client must 282 * recheck the o_container pointer in case the object was removed just before 283 * acquiring the lock. 284 * 285 * When the client is about to free an object, it must first remove that object 286 * from the list, hash, or other structure where it is kept. At that time, to 287 * mark the object so it can be distinguished from the remaining, known objects, 288 * the client sets the designated low order bit: 289 * 290 * mutex_enter(&container->c_objects_lock); 291 * object->o_container = (void *)((uintptr_t)object->o_container | 0x1); 292 * list_remove(&container->c_objects, object); 293 * mutex_exit(&container->c_objects_lock); 294 * 295 * In the common case, the object is freed to the magazine layer, where it may 296 * be reused on a subsequent allocation without the overhead of calling the 297 * constructor. While in the magazine it appears allocated from the point of 298 * view of the slab layer, making it a candidate for the move callback. Most 299 * objects unrecognized by the client in the move callback fall into this 300 * category and are cheaply distinguished from known objects by the test 301 * described earlier. Because searching magazines is prohibitively expensive 302 * for kmem, clients that do not mark freed objects (and therefore return 303 * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation 304 * efficacy reduced. 305 * 306 * Invalidating the designated pointer member before freeing the object marks 307 * the object to be avoided in the callback, and conversely, assigning a valid 308 * value to the designated pointer member after allocating the object makes the 309 * object fair game for the callback: 310 * 311 * ... allocate object ... 312 * ... set any initial state not set by the constructor ... 313 * 314 * mutex_enter(&container->c_objects_lock); 315 * list_insert_tail(&container->c_objects, object); 316 * membar_producer(); 317 * object->o_container = container; 318 * mutex_exit(&container->c_objects_lock); 319 * 320 * Note that everything else must be valid before setting o_container makes the 321 * object fair game for the move callback. The membar_producer() call ensures 322 * that all the object's state is written to memory before setting the pointer 323 * that transitions the object from state #3 or #7 (allocated, constructed, not 324 * yet in use) to state #4 (in use, valid). That's important because the move 325 * function has to check the validity of the pointer before it can safely 326 * acquire the lock protecting the collection where it expects to find known 327 * objects. 328 * 329 * This method of distinguishing known objects observes the usual symmetry: 330 * invalidating the designated pointer is the first thing the client does before 331 * freeing the object, and setting the designated pointer is the last thing the 332 * client does after allocating the object. Of course, the client is not 333 * required to use this method. Fundamentally, how the client recognizes known 334 * objects is completely up to the client, but this method is recommended as an 335 * efficient and safe way to take advantage of the guarantees made by kmem. If 336 * the entire object is arbitrary data without any markable bits from a suitable 337 * pointer member, then the client must find some other method, such as 338 * searching a hash table of known objects. 339 * 340 * 2.5 Preventing Objects From Moving 341 * 342 * Besides a way to distinguish known objects, the other thing that the client 343 * needs is a strategy to ensure that an object will not move while the client 344 * is actively using it. The details of satisfying this requirement tend to be 345 * highly cache-specific. It might seem that the same rules that let a client 346 * remove an object safely should also decide when an object can be moved 347 * safely. However, any object state that makes a removal attempt invalid is 348 * likely to be long-lasting for objects that the client does not expect to 349 * remove. kmem knows nothing about the object state and is equally likely (from 350 * the client's point of view) to request a move for any object in the cache, 351 * whether prepared for removal or not. Even a low percentage of objects stuck 352 * in place by unremovability will defeat the consolidator if the stuck objects 353 * are the same long-lived allocations likely to hold slabs hostage. 354 * Fundamentally, the consolidator is not aimed at common cases. Severe external 355 * fragmentation is a worst case scenario manifested as sparsely allocated 356 * slabs, by definition a low percentage of the cache's objects. When deciding 357 * what makes an object movable, keep in mind the goal of the consolidator: to 358 * bring worst-case external fragmentation within the limits guaranteed for 359 * internal fragmentation. Removability is a poor criterion if it is likely to 360 * exclude more than an insignificant percentage of objects for long periods of 361 * time. 362 * 363 * A tricky general solution exists, and it has the advantage of letting you 364 * move any object at almost any moment, practically eliminating the likelihood 365 * that an object can hold a slab hostage. However, if there is a cache-specific 366 * way to ensure that an object is not actively in use in the vast majority of 367 * cases, a simpler solution that leverages this cache-specific knowledge is 368 * preferred. 369 * 370 * 2.5.1 Cache-Specific Solution 371 * 372 * As an example of a cache-specific solution, the ZFS znode cache takes 373 * advantage of the fact that the vast majority of znodes are only being 374 * referenced from the DNLC. (A typical case might be a few hundred in active 375 * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS 376 * client has established that it recognizes the znode and can access its fields 377 * safely (using the method described earlier), it then tests whether the znode 378 * is referenced by anything other than the DNLC. If so, it assumes that the 379 * znode may be in active use and is unsafe to move, so it drops its locks and 380 * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere 381 * else znodes are used, no change is needed to protect against the possibility 382 * of the znode moving. The disadvantage is that it remains possible for an 383 * application to hold a znode slab hostage with an open file descriptor. 384 * However, this case ought to be rare and the consolidator has a way to deal 385 * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same 386 * object, kmem eventually stops believing it and treats the slab as if the 387 * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can 388 * then focus on getting it off of the partial slab list by allocating rather 389 * than freeing all of its objects. (Either way of getting a slab off the 390 * free list reduces fragmentation.) 391 * 392 * 2.5.2 General Solution 393 * 394 * The general solution, on the other hand, requires an explicit hold everywhere 395 * the object is used to prevent it from moving. To keep the client locking 396 * strategy as uncomplicated as possible, kmem guarantees the simplifying 397 * assumption that move callbacks are sequential, even across multiple caches. 398 * Internally, a global queue processed by a single thread supports all caches 399 * implementing the callback function. No matter how many caches supply a move 400 * function, the consolidator never moves more than one object at a time, so the 401 * client does not have to worry about tricky lock ordering involving several 402 * related objects from different kmem caches. 403 * 404 * The general solution implements the explicit hold as a read-write lock, which 405 * allows multiple readers to access an object from the cache simultaneously 406 * while a single writer is excluded from moving it. A single rwlock for the 407 * entire cache would lock out all threads from using any of the cache's objects 408 * even though only a single object is being moved, so to reduce contention, 409 * the client can fan out the single rwlock into an array of rwlocks hashed by 410 * the object address, making it probable that moving one object will not 411 * prevent other threads from using a different object. The rwlock cannot be a 412 * member of the object itself, because the possibility of the object moving 413 * makes it unsafe to access any of the object's fields until the lock is 414 * acquired. 415 * 416 * Assuming a small, fixed number of locks, it's possible that multiple objects 417 * will hash to the same lock. A thread that needs to use multiple objects in 418 * the same function may acquire the same lock multiple times. Since rwlocks are 419 * reentrant for readers, and since there is never more than a single writer at 420 * a time (assuming that the client acquires the lock as a writer only when 421 * moving an object inside the callback), there would seem to be no problem. 422 * However, a client locking multiple objects in the same function must handle 423 * one case of potential deadlock: Assume that thread A needs to prevent both 424 * object 1 and object 2 from moving, and thread B, the callback, meanwhile 425 * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the 426 * same lock, that thread A will acquire the lock for object 1 as a reader 427 * before thread B sets the lock's write-wanted bit, preventing thread A from 428 * reacquiring the lock for object 2 as a reader. Unable to make forward 429 * progress, thread A will never release the lock for object 1, resulting in 430 * deadlock. 431 * 432 * There are two ways of avoiding the deadlock just described. The first is to 433 * use rw_tryenter() rather than rw_enter() in the callback function when 434 * attempting to acquire the lock as a writer. If tryenter discovers that the 435 * same object (or another object hashed to the same lock) is already in use, it 436 * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use 437 * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t, 438 * since it allows a thread to acquire the lock as a reader in spite of a 439 * waiting writer. This second approach insists on moving the object now, no 440 * matter how many readers the move function must wait for in order to do so, 441 * and could delay the completion of the callback indefinitely (blocking 442 * callbacks to other clients). In practice, a less insistent callback using 443 * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems 444 * little reason to use anything else. 445 * 446 * Avoiding deadlock is not the only problem that an implementation using an 447 * explicit hold needs to solve. Locking the object in the first place (to 448 * prevent it from moving) remains a problem, since the object could move 449 * between the time you obtain a pointer to the object and the time you acquire 450 * the rwlock hashed to that pointer value. Therefore the client needs to 451 * recheck the value of the pointer after acquiring the lock, drop the lock if 452 * the value has changed, and try again. This requires a level of indirection: 453 * something that points to the object rather than the object itself, that the 454 * client can access safely while attempting to acquire the lock. (The object 455 * itself cannot be referenced safely because it can move at any time.) 456 * The following lock-acquisition function takes whatever is safe to reference 457 * (arg), follows its pointer to the object (using function f), and tries as 458 * often as necessary to acquire the hashed lock and verify that the object 459 * still has not moved: 460 * 461 * object_t * 462 * object_hold(object_f f, void *arg) 463 * { 464 * object_t *op; 465 * 466 * op = f(arg); 467 * if (op == NULL) { 468 * return (NULL); 469 * } 470 * 471 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 472 * while (op != f(arg)) { 473 * rw_exit(OBJECT_RWLOCK(op)); 474 * op = f(arg); 475 * if (op == NULL) { 476 * break; 477 * } 478 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 479 * } 480 * 481 * return (op); 482 * } 483 * 484 * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The 485 * lock reacquisition loop, while necessary, almost never executes. The function 486 * pointer f (used to obtain the object pointer from arg) has the following type 487 * definition: 488 * 489 * typedef object_t *(*object_f)(void *arg); 490 * 491 * An object_f implementation is likely to be as simple as accessing a structure 492 * member: 493 * 494 * object_t * 495 * s_object(void *arg) 496 * { 497 * something_t *sp = arg; 498 * return (sp->s_object); 499 * } 500 * 501 * The flexibility of a function pointer allows the path to the object to be 502 * arbitrarily complex and also supports the notion that depending on where you 503 * are using the object, you may need to get it from someplace different. 504 * 505 * The function that releases the explicit hold is simpler because it does not 506 * have to worry about the object moving: 507 * 508 * void 509 * object_rele(object_t *op) 510 * { 511 * rw_exit(OBJECT_RWLOCK(op)); 512 * } 513 * 514 * The caller is spared these details so that obtaining and releasing an 515 * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller 516 * of object_hold() only needs to know that the returned object pointer is valid 517 * if not NULL and that the object will not move until released. 518 * 519 * Although object_hold() prevents an object from moving, it does not prevent it 520 * from being freed. The caller must take measures before calling object_hold() 521 * (afterwards is too late) to ensure that the held object cannot be freed. The 522 * caller must do so without accessing the unsafe object reference, so any lock 523 * or reference count used to ensure the continued existence of the object must 524 * live outside the object itself. 525 * 526 * Obtaining a new object is a special case where an explicit hold is impossible 527 * for the caller. Any function that returns a newly allocated object (either as 528 * a return value, or as an in-out paramter) must return it already held; after 529 * the caller gets it is too late, since the object cannot be safely accessed 530 * without the level of indirection described earlier. The following 531 * object_alloc() example uses the same code shown earlier to transition a new 532 * object into the state of being recognized (by the client) as a known object. 533 * The function must acquire the hold (rw_enter) before that state transition 534 * makes the object movable: 535 * 536 * static object_t * 537 * object_alloc(container_t *container) 538 * { 539 * object_t *object = kmem_cache_alloc(object_cache, 0); 540 * ... set any initial state not set by the constructor ... 541 * rw_enter(OBJECT_RWLOCK(object), RW_READER); 542 * mutex_enter(&container->c_objects_lock); 543 * list_insert_tail(&container->c_objects, object); 544 * membar_producer(); 545 * object->o_container = container; 546 * mutex_exit(&container->c_objects_lock); 547 * return (object); 548 * } 549 * 550 * Functions that implicitly acquire an object hold (any function that calls 551 * object_alloc() to supply an object for the caller) need to be carefully noted 552 * so that the matching object_rele() is not neglected. Otherwise, leaked holds 553 * prevent all objects hashed to the affected rwlocks from ever being moved. 554 * 555 * The pointer to a held object can be hashed to the holding rwlock even after 556 * the object has been freed. Although it is possible to release the hold 557 * after freeing the object, you may decide to release the hold implicitly in 558 * whatever function frees the object, so as to release the hold as soon as 559 * possible, and for the sake of symmetry with the function that implicitly 560 * acquires the hold when it allocates the object. Here, object_free() releases 561 * the hold acquired by object_alloc(). Its implicit object_rele() forms a 562 * matching pair with object_hold(): 563 * 564 * void 565 * object_free(object_t *object) 566 * { 567 * container_t *container; 568 * 569 * ASSERT(object_held(object)); 570 * container = object->o_container; 571 * mutex_enter(&container->c_objects_lock); 572 * object->o_container = 573 * (void *)((uintptr_t)object->o_container | 0x1); 574 * list_remove(&container->c_objects, object); 575 * mutex_exit(&container->c_objects_lock); 576 * object_rele(object); 577 * kmem_cache_free(object_cache, object); 578 * } 579 * 580 * Note that object_free() cannot safely accept an object pointer as an argument 581 * unless the object is already held. Any function that calls object_free() 582 * needs to be carefully noted since it similarly forms a matching pair with 583 * object_hold(). 584 * 585 * To complete the picture, the following callback function implements the 586 * general solution by moving objects only if they are currently unheld: 587 * 588 * static kmem_cbrc_t 589 * object_move(void *buf, void *newbuf, size_t size, void *arg) 590 * { 591 * object_t *op = buf, *np = newbuf; 592 * container_t *container; 593 * 594 * container = op->o_container; 595 * if ((uintptr_t)container & 0x3) { 596 * return (KMEM_CBRC_DONT_KNOW); 597 * } 598 * 599 * // Ensure that the container structure does not go away. 600 * if (container_hold(container) == 0) { 601 * return (KMEM_CBRC_DONT_KNOW); 602 * } 603 * 604 * mutex_enter(&container->c_objects_lock); 605 * if (container != op->o_container) { 606 * mutex_exit(&container->c_objects_lock); 607 * container_rele(container); 608 * return (KMEM_CBRC_DONT_KNOW); 609 * } 610 * 611 * if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) { 612 * mutex_exit(&container->c_objects_lock); 613 * container_rele(container); 614 * return (KMEM_CBRC_LATER); 615 * } 616 * 617 * object_move_impl(op, np); // critical section 618 * rw_exit(OBJECT_RWLOCK(op)); 619 * 620 * op->o_container = (void *)((uintptr_t)op->o_container | 0x1); 621 * list_link_replace(&op->o_link_node, &np->o_link_node); 622 * mutex_exit(&container->c_objects_lock); 623 * container_rele(container); 624 * return (KMEM_CBRC_YES); 625 * } 626 * 627 * Note that object_move() must invalidate the designated o_container pointer of 628 * the old object in the same way that object_free() does, since kmem will free 629 * the object in response to the KMEM_CBRC_YES return value. 630 * 631 * The lock order in object_move() differs from object_alloc(), which locks 632 * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the 633 * callback uses rw_tryenter() (preventing the deadlock described earlier), it's 634 * not a problem. Holding the lock on the object list in the example above 635 * through the entire callback not only prevents the object from going away, it 636 * also allows you to lock the list elsewhere and know that none of its elements 637 * will move during iteration. 638 * 639 * Adding an explicit hold everywhere an object from the cache is used is tricky 640 * and involves much more change to client code than a cache-specific solution 641 * that leverages existing state to decide whether or not an object is 642 * movable. However, this approach has the advantage that no object remains 643 * immovable for any significant length of time, making it extremely unlikely 644 * that long-lived allocations can continue holding slabs hostage; and it works 645 * for any cache. 646 * 647 * 3. Consolidator Implementation 648 * 649 * Once the client supplies a move function that a) recognizes known objects and 650 * b) avoids moving objects that are actively in use, the remaining work is up 651 * to the consolidator to decide which objects to move and when to issue 652 * callbacks. 653 * 654 * The consolidator relies on the fact that a cache's slabs are ordered by 655 * usage. Each slab has a fixed number of objects. Depending on the slab's 656 * "color" (the offset of the first object from the beginning of the slab; 657 * offsets are staggered to mitigate false sharing of cache lines) it is either 658 * the maximum number of objects per slab determined at cache creation time or 659 * else the number closest to the maximum that fits within the space remaining 660 * after the initial offset. A completely allocated slab may contribute some 661 * internal fragmentation (per-slab overhead) but no external fragmentation, so 662 * it is of no interest to the consolidator. At the other extreme, slabs whose 663 * objects have all been freed to the slab are released to the virtual memory 664 * (VM) subsystem (objects freed to magazines are still allocated as far as the 665 * slab is concerned). External fragmentation exists when there are slabs 666 * somewhere between these extremes. A partial slab has at least one but not all 667 * of its objects allocated. The more partial slabs, and the fewer allocated 668 * objects on each of them, the higher the fragmentation. Hence the 669 * consolidator's overall strategy is to reduce the number of partial slabs by 670 * moving allocated objects from the least allocated slabs to the most allocated 671 * slabs. 672 * 673 * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated 674 * slabs are kept separately in an unordered list. Since the majority of slabs 675 * tend to be completely allocated (a typical unfragmented cache may have 676 * thousands of complete slabs and only a single partial slab), separating 677 * complete slabs improves the efficiency of partial slab ordering, since the 678 * complete slabs do not affect the depth or balance of the AVL tree. This 679 * ordered sequence of partial slabs acts as a "free list" supplying objects for 680 * allocation requests. 681 * 682 * Objects are always allocated from the first partial slab in the free list, 683 * where the allocation is most likely to eliminate a partial slab (by 684 * completely allocating it). Conversely, when a single object from a completely 685 * allocated slab is freed to the slab, that slab is added to the front of the 686 * free list. Since most free list activity involves highly allocated slabs 687 * coming and going at the front of the list, slabs tend naturally toward the 688 * ideal order: highly allocated at the front, sparsely allocated at the back. 689 * Slabs with few allocated objects are likely to become completely free if they 690 * keep a safe distance away from the front of the free list. Slab misorders 691 * interfere with the natural tendency of slabs to become completely free or 692 * completely allocated. For example, a slab with a single allocated object 693 * needs only a single free to escape the cache; its natural desire is 694 * frustrated when it finds itself at the front of the list where a second 695 * allocation happens just before the free could have released it. Another slab 696 * with all but one object allocated might have supplied the buffer instead, so 697 * that both (as opposed to neither) of the slabs would have been taken off the 698 * free list. 699 * 700 * Although slabs tend naturally toward the ideal order, misorders allowed by a 701 * simple list implementation defeat the consolidator's strategy of merging 702 * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem 703 * needs another way to fix misorders to optimize its callback strategy. One 704 * approach is to periodically scan a limited number of slabs, advancing a 705 * marker to hold the current scan position, and to move extreme misorders to 706 * the front or back of the free list and to the front or back of the current 707 * scan range. By making consecutive scan ranges overlap by one slab, the least 708 * allocated slab in the current range can be carried along from the end of one 709 * scan to the start of the next. 710 * 711 * Maintaining partial slabs in an AVL tree relieves kmem of this additional 712 * task, however. Since most of the cache's activity is in the magazine layer, 713 * and allocations from the slab layer represent only a startup cost, the 714 * overhead of maintaining a balanced tree is not a significant concern compared 715 * to the opportunity of reducing complexity by eliminating the partial slab 716 * scanner just described. The overhead of an AVL tree is minimized by 717 * maintaining only partial slabs in the tree and keeping completely allocated 718 * slabs separately in a list. To avoid increasing the size of the slab 719 * structure the AVL linkage pointers are reused for the slab's list linkage, 720 * since the slab will always be either partial or complete, never stored both 721 * ways at the same time. To further minimize the overhead of the AVL tree the 722 * compare function that orders partial slabs by usage divides the range of 723 * allocated object counts into bins such that counts within the same bin are 724 * considered equal. Binning partial slabs makes it less likely that allocating 725 * or freeing a single object will change the slab's order, requiring a tree 726 * reinsertion (an avl_remove() followed by an avl_add(), both potentially 727 * requiring some rebalancing of the tree). Allocation counts closest to 728 * completely free and completely allocated are left unbinned (finely sorted) to 729 * better support the consolidator's strategy of merging slabs at either 730 * extreme. 731 * 732 * 3.1 Assessing Fragmentation and Selecting Candidate Slabs 733 * 734 * The consolidator piggybacks on the kmem maintenance thread and is called on 735 * the same interval as kmem_cache_update(), once per cache every fifteen 736 * seconds. kmem maintains a running count of unallocated objects in the slab 737 * layer (cache_bufslab). The consolidator checks whether that number exceeds 738 * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether 739 * there is a significant number of slabs in the cache (arbitrarily a minimum 740 * 101 total slabs). Unused objects that have fallen out of the magazine layer's 741 * working set are included in the assessment, and magazines in the depot are 742 * reaped if those objects would lift cache_bufslab above the fragmentation 743 * threshold. Once the consolidator decides that a cache is fragmented, it looks 744 * for a candidate slab to reclaim, starting at the end of the partial slab free 745 * list and scanning backwards. At first the consolidator is choosy: only a slab 746 * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a 747 * single allocated object, regardless of percentage). If there is difficulty 748 * finding a candidate slab, kmem raises the allocation threshold incrementally, 749 * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce 750 * external fragmentation (unused objects on the free list) below 12.5% (1/8), 751 * even in the worst case of every slab in the cache being almost 7/8 allocated. 752 * The threshold can also be lowered incrementally when candidate slabs are easy 753 * to find, and the threshold is reset to the minimum 1/8 as soon as the cache 754 * is no longer fragmented. 755 * 756 * 3.2 Generating Callbacks 757 * 758 * Once an eligible slab is chosen, a callback is generated for every allocated 759 * object on the slab, in the hope that the client will move everything off the 760 * slab and make it reclaimable. Objects selected as move destinations are 761 * chosen from slabs at the front of the free list. Assuming slabs in the ideal 762 * order (most allocated at the front, least allocated at the back) and a 763 * cooperative client, the consolidator will succeed in removing slabs from both 764 * ends of the free list, completely allocating on the one hand and completely 765 * freeing on the other. Objects selected as move destinations are allocated in 766 * the kmem maintenance thread where move requests are enqueued. A separate 767 * callback thread removes pending callbacks from the queue and calls the 768 * client. The separate thread ensures that client code (the move function) does 769 * not interfere with internal kmem maintenance tasks. A map of pending 770 * callbacks keyed by object address (the object to be moved) is checked to 771 * ensure that duplicate callbacks are not generated for the same object. 772 * Allocating the move destination (the object to move to) prevents subsequent 773 * callbacks from selecting the same destination as an earlier pending callback. 774 * 775 * Move requests can also be generated by kmem_cache_reap() when the system is 776 * desperate for memory and by kmem_cache_move_notify(), called by the client to 777 * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible. 778 * The map of pending callbacks is protected by the same lock that protects the 779 * slab layer. 780 * 781 * When the system is desperate for memory, kmem does not bother to determine 782 * whether or not the cache exceeds the fragmentation threshold, but tries to 783 * consolidate as many slabs as possible. Normally, the consolidator chews 784 * slowly, one sparsely allocated slab at a time during each maintenance 785 * interval that the cache is fragmented. When desperate, the consolidator 786 * starts at the last partial slab and enqueues callbacks for every allocated 787 * object on every partial slab, working backwards until it reaches the first 788 * partial slab. The first partial slab, meanwhile, advances in pace with the 789 * consolidator as allocations to supply move destinations for the enqueued 790 * callbacks use up the highly allocated slabs at the front of the free list. 791 * Ideally, the overgrown free list collapses like an accordion, starting at 792 * both ends and ending at the center with a single partial slab. 793 * 794 * 3.3 Client Responses 795 * 796 * When the client returns KMEM_CBRC_NO in response to the move callback, kmem 797 * marks the slab that supplied the stuck object non-reclaimable and moves it to 798 * front of the free list. The slab remains marked as long as it remains on the 799 * free list, and it appears more allocated to the partial slab compare function 800 * than any unmarked slab, no matter how many of its objects are allocated. 801 * Since even one immovable object ties up the entire slab, the goal is to 802 * completely allocate any slab that cannot be completely freed. kmem does not 803 * bother generating callbacks to move objects from a marked slab unless the 804 * system is desperate. 805 * 806 * When the client responds KMEM_CBRC_LATER, kmem increments a count for the 807 * slab. If the client responds LATER too many times, kmem disbelieves and 808 * treats the response as a NO. The count is cleared when the slab is taken off 809 * the partial slab list or when the client moves one of the slab's objects. 810 * 811 * 4. Observability 812 * 813 * A kmem cache's external fragmentation is best observed with 'mdb -k' using 814 * the ::kmem_slabs dcmd. For a complete description of the command, enter 815 * '::help kmem_slabs' at the mdb prompt. 816 */ 817 818 #include <sys/kmem_impl.h> 819 #include <sys/vmem_impl.h> 820 #include <sys/param.h> 821 #include <sys/sysmacros.h> 822 #include <sys/vm.h> 823 #include <sys/proc.h> 824 #include <sys/tuneable.h> 825 #include <sys/systm.h> 826 #include <sys/cmn_err.h> 827 #include <sys/debug.h> 828 #include <sys/sdt.h> 829 #include <sys/mutex.h> 830 #include <sys/bitmap.h> 831 #include <sys/atomic.h> 832 #include <sys/kobj.h> 833 #include <sys/disp.h> 834 #include <vm/seg_kmem.h> 835 #include <sys/log.h> 836 #include <sys/callb.h> 837 #include <sys/taskq.h> 838 #include <sys/modctl.h> 839 #include <sys/reboot.h> 840 #include <sys/id32.h> 841 #include <sys/zone.h> 842 #include <sys/netstack.h> 843 #ifdef DEBUG 844 #include <sys/random.h> 845 #endif 846 847 extern void streams_msg_init(void); 848 extern int segkp_fromheap; 849 extern void segkp_cache_free(void); 850 extern int callout_init_done; 851 852 struct kmem_cache_kstat { 853 kstat_named_t kmc_buf_size; 854 kstat_named_t kmc_align; 855 kstat_named_t kmc_chunk_size; 856 kstat_named_t kmc_slab_size; 857 kstat_named_t kmc_alloc; 858 kstat_named_t kmc_alloc_fail; 859 kstat_named_t kmc_free; 860 kstat_named_t kmc_depot_alloc; 861 kstat_named_t kmc_depot_free; 862 kstat_named_t kmc_depot_contention; 863 kstat_named_t kmc_slab_alloc; 864 kstat_named_t kmc_slab_free; 865 kstat_named_t kmc_buf_constructed; 866 kstat_named_t kmc_buf_avail; 867 kstat_named_t kmc_buf_inuse; 868 kstat_named_t kmc_buf_total; 869 kstat_named_t kmc_buf_max; 870 kstat_named_t kmc_slab_create; 871 kstat_named_t kmc_slab_destroy; 872 kstat_named_t kmc_vmem_source; 873 kstat_named_t kmc_hash_size; 874 kstat_named_t kmc_hash_lookup_depth; 875 kstat_named_t kmc_hash_rescale; 876 kstat_named_t kmc_full_magazines; 877 kstat_named_t kmc_empty_magazines; 878 kstat_named_t kmc_magazine_size; 879 kstat_named_t kmc_reap; /* number of kmem_cache_reap() calls */ 880 kstat_named_t kmc_defrag; /* attempts to defrag all partial slabs */ 881 kstat_named_t kmc_scan; /* attempts to defrag one partial slab */ 882 kstat_named_t kmc_move_callbacks; /* sum of yes, no, later, dn, dk */ 883 kstat_named_t kmc_move_yes; 884 kstat_named_t kmc_move_no; 885 kstat_named_t kmc_move_later; 886 kstat_named_t kmc_move_dont_need; 887 kstat_named_t kmc_move_dont_know; /* obj unrecognized by client ... */ 888 kstat_named_t kmc_move_hunt_found; /* ... but found in mag layer */ 889 kstat_named_t kmc_move_slabs_freed; /* slabs freed by consolidator */ 890 kstat_named_t kmc_move_reclaimable; /* buffers, if consolidator ran */ 891 } kmem_cache_kstat = { 892 { "buf_size", KSTAT_DATA_UINT64 }, 893 { "align", KSTAT_DATA_UINT64 }, 894 { "chunk_size", KSTAT_DATA_UINT64 }, 895 { "slab_size", KSTAT_DATA_UINT64 }, 896 { "alloc", KSTAT_DATA_UINT64 }, 897 { "alloc_fail", KSTAT_DATA_UINT64 }, 898 { "free", KSTAT_DATA_UINT64 }, 899 { "depot_alloc", KSTAT_DATA_UINT64 }, 900 { "depot_free", KSTAT_DATA_UINT64 }, 901 { "depot_contention", KSTAT_DATA_UINT64 }, 902 { "slab_alloc", KSTAT_DATA_UINT64 }, 903 { "slab_free", KSTAT_DATA_UINT64 }, 904 { "buf_constructed", KSTAT_DATA_UINT64 }, 905 { "buf_avail", KSTAT_DATA_UINT64 }, 906 { "buf_inuse", KSTAT_DATA_UINT64 }, 907 { "buf_total", KSTAT_DATA_UINT64 }, 908 { "buf_max", KSTAT_DATA_UINT64 }, 909 { "slab_create", KSTAT_DATA_UINT64 }, 910 { "slab_destroy", KSTAT_DATA_UINT64 }, 911 { "vmem_source", KSTAT_DATA_UINT64 }, 912 { "hash_size", KSTAT_DATA_UINT64 }, 913 { "hash_lookup_depth", KSTAT_DATA_UINT64 }, 914 { "hash_rescale", KSTAT_DATA_UINT64 }, 915 { "full_magazines", KSTAT_DATA_UINT64 }, 916 { "empty_magazines", KSTAT_DATA_UINT64 }, 917 { "magazine_size", KSTAT_DATA_UINT64 }, 918 { "reap", KSTAT_DATA_UINT64 }, 919 { "defrag", KSTAT_DATA_UINT64 }, 920 { "scan", KSTAT_DATA_UINT64 }, 921 { "move_callbacks", KSTAT_DATA_UINT64 }, 922 { "move_yes", KSTAT_DATA_UINT64 }, 923 { "move_no", KSTAT_DATA_UINT64 }, 924 { "move_later", KSTAT_DATA_UINT64 }, 925 { "move_dont_need", KSTAT_DATA_UINT64 }, 926 { "move_dont_know", KSTAT_DATA_UINT64 }, 927 { "move_hunt_found", KSTAT_DATA_UINT64 }, 928 { "move_slabs_freed", KSTAT_DATA_UINT64 }, 929 { "move_reclaimable", KSTAT_DATA_UINT64 }, 930 }; 931 932 static kmutex_t kmem_cache_kstat_lock; 933 934 /* 935 * The default set of caches to back kmem_alloc(). 936 * These sizes should be reevaluated periodically. 937 * 938 * We want allocations that are multiples of the coherency granularity 939 * (64 bytes) to be satisfied from a cache which is a multiple of 64 940 * bytes, so that it will be 64-byte aligned. For all multiples of 64, 941 * the next kmem_cache_size greater than or equal to it must be a 942 * multiple of 64. 943 * 944 * We split the table into two sections: size <= 4k and size > 4k. This 945 * saves a lot of space and cache footprint in our cache tables. 946 */ 947 static const int kmem_alloc_sizes[] = { 948 1 * 8, 949 2 * 8, 950 3 * 8, 951 4 * 8, 5 * 8, 6 * 8, 7 * 8, 952 4 * 16, 5 * 16, 6 * 16, 7 * 16, 953 4 * 32, 5 * 32, 6 * 32, 7 * 32, 954 4 * 64, 5 * 64, 6 * 64, 7 * 64, 955 4 * 128, 5 * 128, 6 * 128, 7 * 128, 956 P2ALIGN(8192 / 7, 64), 957 P2ALIGN(8192 / 6, 64), 958 P2ALIGN(8192 / 5, 64), 959 P2ALIGN(8192 / 4, 64), 960 P2ALIGN(8192 / 3, 64), 961 P2ALIGN(8192 / 2, 64), 962 }; 963 964 static const int kmem_big_alloc_sizes[] = { 965 2 * 4096, 3 * 4096, 966 2 * 8192, 3 * 8192, 967 4 * 8192, 5 * 8192, 6 * 8192, 7 * 8192, 968 8 * 8192, 9 * 8192, 10 * 8192, 11 * 8192, 969 12 * 8192, 13 * 8192, 14 * 8192, 15 * 8192, 970 16 * 8192 971 }; 972 973 #define KMEM_MAXBUF 4096 974 #define KMEM_BIG_MAXBUF_32BIT 32768 975 #define KMEM_BIG_MAXBUF 131072 976 977 #define KMEM_BIG_MULTIPLE 4096 /* big_alloc_sizes must be a multiple */ 978 #define KMEM_BIG_SHIFT 12 /* lg(KMEM_BIG_MULTIPLE) */ 979 980 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT]; 981 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT]; 982 983 #define KMEM_ALLOC_TABLE_MAX (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) 984 static size_t kmem_big_alloc_table_max = 0; /* # of filled elements */ 985 986 static kmem_magtype_t kmem_magtype[] = { 987 { 1, 8, 3200, 65536 }, 988 { 3, 16, 256, 32768 }, 989 { 7, 32, 64, 16384 }, 990 { 15, 64, 0, 8192 }, 991 { 31, 64, 0, 4096 }, 992 { 47, 64, 0, 2048 }, 993 { 63, 64, 0, 1024 }, 994 { 95, 64, 0, 512 }, 995 { 143, 64, 0, 0 }, 996 }; 997 998 static uint32_t kmem_reaping; 999 static uint32_t kmem_reaping_idspace; 1000 1001 /* 1002 * kmem tunables 1003 */ 1004 clock_t kmem_reap_interval; /* cache reaping rate [15 * HZ ticks] */ 1005 int kmem_depot_contention = 3; /* max failed tryenters per real interval */ 1006 pgcnt_t kmem_reapahead = 0; /* start reaping N pages before pageout */ 1007 int kmem_panic = 1; /* whether to panic on error */ 1008 int kmem_logging = 1; /* kmem_log_enter() override */ 1009 uint32_t kmem_mtbf = 0; /* mean time between failures [default: off] */ 1010 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */ 1011 size_t kmem_content_log_size; /* content log size [2% of memory] */ 1012 size_t kmem_failure_log_size; /* failure log [4 pages per CPU] */ 1013 size_t kmem_slab_log_size; /* slab create log [4 pages per CPU] */ 1014 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */ 1015 size_t kmem_lite_minsize = 0; /* minimum buffer size for KMF_LITE */ 1016 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */ 1017 int kmem_lite_pcs = 4; /* number of PCs to store in KMF_LITE mode */ 1018 size_t kmem_maxverify; /* maximum bytes to inspect in debug routines */ 1019 size_t kmem_minfirewall; /* hardware-enforced redzone threshold */ 1020 1021 #ifdef _LP64 1022 size_t kmem_max_cached = KMEM_BIG_MAXBUF; /* maximum kmem_alloc cache */ 1023 #else 1024 size_t kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */ 1025 #endif 1026 1027 #ifdef DEBUG 1028 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS; 1029 #else 1030 int kmem_flags = 0; 1031 #endif 1032 int kmem_ready; 1033 1034 static kmem_cache_t *kmem_slab_cache; 1035 static kmem_cache_t *kmem_bufctl_cache; 1036 static kmem_cache_t *kmem_bufctl_audit_cache; 1037 1038 static kmutex_t kmem_cache_lock; /* inter-cache linkage only */ 1039 static list_t kmem_caches; 1040 1041 static taskq_t *kmem_taskq; 1042 static kmutex_t kmem_flags_lock; 1043 static vmem_t *kmem_metadata_arena; 1044 static vmem_t *kmem_msb_arena; /* arena for metadata caches */ 1045 static vmem_t *kmem_cache_arena; 1046 static vmem_t *kmem_hash_arena; 1047 static vmem_t *kmem_log_arena; 1048 static vmem_t *kmem_oversize_arena; 1049 static vmem_t *kmem_va_arena; 1050 static vmem_t *kmem_default_arena; 1051 static vmem_t *kmem_firewall_va_arena; 1052 static vmem_t *kmem_firewall_arena; 1053 1054 /* 1055 * kmem slab consolidator thresholds (tunables) 1056 */ 1057 size_t kmem_frag_minslabs = 101; /* minimum total slabs */ 1058 size_t kmem_frag_numer = 1; /* free buffers (numerator) */ 1059 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */ 1060 /* 1061 * Maximum number of slabs from which to move buffers during a single 1062 * maintenance interval while the system is not low on memory. 1063 */ 1064 size_t kmem_reclaim_max_slabs = 1; 1065 /* 1066 * Number of slabs to scan backwards from the end of the partial slab list 1067 * when searching for buffers to relocate. 1068 */ 1069 size_t kmem_reclaim_scan_range = 12; 1070 1071 /* consolidator knobs */ 1072 boolean_t kmem_move_noreap; 1073 boolean_t kmem_move_blocked; 1074 boolean_t kmem_move_fulltilt; 1075 boolean_t kmem_move_any_partial; 1076 1077 #ifdef DEBUG 1078 /* 1079 * kmem consolidator debug tunables: 1080 * Ensure code coverage by occasionally running the consolidator even when the 1081 * caches are not fragmented (they may never be). These intervals are mean time 1082 * in cache maintenance intervals (kmem_cache_update). 1083 */ 1084 uint32_t kmem_mtb_move = 60; /* defrag 1 slab (~15min) */ 1085 uint32_t kmem_mtb_reap = 1800; /* defrag all slabs (~7.5hrs) */ 1086 #endif /* DEBUG */ 1087 1088 static kmem_cache_t *kmem_defrag_cache; 1089 static kmem_cache_t *kmem_move_cache; 1090 static taskq_t *kmem_move_taskq; 1091 1092 static void kmem_cache_scan(kmem_cache_t *); 1093 static void kmem_cache_defrag(kmem_cache_t *); 1094 static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *); 1095 1096 1097 kmem_log_header_t *kmem_transaction_log; 1098 kmem_log_header_t *kmem_content_log; 1099 kmem_log_header_t *kmem_failure_log; 1100 kmem_log_header_t *kmem_slab_log; 1101 1102 static int kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */ 1103 1104 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller) \ 1105 if ((count) > 0) { \ 1106 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \ 1107 pc_t *_e; \ 1108 /* memmove() the old entries down one notch */ \ 1109 for (_e = &_s[(count) - 1]; _e > _s; _e--) \ 1110 *_e = *(_e - 1); \ 1111 *_s = (uintptr_t)(caller); \ 1112 } 1113 1114 #define KMERR_MODIFIED 0 /* buffer modified while on freelist */ 1115 #define KMERR_REDZONE 1 /* redzone violation (write past end of buf) */ 1116 #define KMERR_DUPFREE 2 /* freed a buffer twice */ 1117 #define KMERR_BADADDR 3 /* freed a bad (unallocated) address */ 1118 #define KMERR_BADBUFTAG 4 /* buftag corrupted */ 1119 #define KMERR_BADBUFCTL 5 /* bufctl corrupted */ 1120 #define KMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ 1121 #define KMERR_BADSIZE 7 /* alloc size != free size */ 1122 #define KMERR_BADBASE 8 /* buffer base address wrong */ 1123 1124 struct { 1125 hrtime_t kmp_timestamp; /* timestamp of panic */ 1126 int kmp_error; /* type of kmem error */ 1127 void *kmp_buffer; /* buffer that induced panic */ 1128 void *kmp_realbuf; /* real start address for buffer */ 1129 kmem_cache_t *kmp_cache; /* buffer's cache according to client */ 1130 kmem_cache_t *kmp_realcache; /* actual cache containing buffer */ 1131 kmem_slab_t *kmp_slab; /* slab accoring to kmem_findslab() */ 1132 kmem_bufctl_t *kmp_bufctl; /* bufctl */ 1133 } kmem_panic_info; 1134 1135 1136 static void 1137 copy_pattern(uint64_t pattern, void *buf_arg, size_t size) 1138 { 1139 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1140 uint64_t *buf = buf_arg; 1141 1142 while (buf < bufend) 1143 *buf++ = pattern; 1144 } 1145 1146 static void * 1147 verify_pattern(uint64_t pattern, void *buf_arg, size_t size) 1148 { 1149 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1150 uint64_t *buf; 1151 1152 for (buf = buf_arg; buf < bufend; buf++) 1153 if (*buf != pattern) 1154 return (buf); 1155 return (NULL); 1156 } 1157 1158 static void * 1159 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) 1160 { 1161 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1162 uint64_t *buf; 1163 1164 for (buf = buf_arg; buf < bufend; buf++) { 1165 if (*buf != old) { 1166 copy_pattern(old, buf_arg, 1167 (char *)buf - (char *)buf_arg); 1168 return (buf); 1169 } 1170 *buf = new; 1171 } 1172 1173 return (NULL); 1174 } 1175 1176 static void 1177 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1178 { 1179 kmem_cache_t *cp; 1180 1181 mutex_enter(&kmem_cache_lock); 1182 for (cp = list_head(&kmem_caches); cp != NULL; 1183 cp = list_next(&kmem_caches, cp)) 1184 if (tq != NULL) 1185 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1186 tqflag); 1187 else 1188 func(cp); 1189 mutex_exit(&kmem_cache_lock); 1190 } 1191 1192 static void 1193 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1194 { 1195 kmem_cache_t *cp; 1196 1197 mutex_enter(&kmem_cache_lock); 1198 for (cp = list_head(&kmem_caches); cp != NULL; 1199 cp = list_next(&kmem_caches, cp)) { 1200 if (!(cp->cache_cflags & KMC_IDENTIFIER)) 1201 continue; 1202 if (tq != NULL) 1203 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1204 tqflag); 1205 else 1206 func(cp); 1207 } 1208 mutex_exit(&kmem_cache_lock); 1209 } 1210 1211 /* 1212 * Debugging support. Given a buffer address, find its slab. 1213 */ 1214 static kmem_slab_t * 1215 kmem_findslab(kmem_cache_t *cp, void *buf) 1216 { 1217 kmem_slab_t *sp; 1218 1219 mutex_enter(&cp->cache_lock); 1220 for (sp = list_head(&cp->cache_complete_slabs); sp != NULL; 1221 sp = list_next(&cp->cache_complete_slabs, sp)) { 1222 if (KMEM_SLAB_MEMBER(sp, buf)) { 1223 mutex_exit(&cp->cache_lock); 1224 return (sp); 1225 } 1226 } 1227 for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL; 1228 sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) { 1229 if (KMEM_SLAB_MEMBER(sp, buf)) { 1230 mutex_exit(&cp->cache_lock); 1231 return (sp); 1232 } 1233 } 1234 mutex_exit(&cp->cache_lock); 1235 1236 return (NULL); 1237 } 1238 1239 static void 1240 kmem_error(int error, kmem_cache_t *cparg, void *bufarg) 1241 { 1242 kmem_buftag_t *btp = NULL; 1243 kmem_bufctl_t *bcp = NULL; 1244 kmem_cache_t *cp = cparg; 1245 kmem_slab_t *sp; 1246 uint64_t *off; 1247 void *buf = bufarg; 1248 1249 kmem_logging = 0; /* stop logging when a bad thing happens */ 1250 1251 kmem_panic_info.kmp_timestamp = gethrtime(); 1252 1253 sp = kmem_findslab(cp, buf); 1254 if (sp == NULL) { 1255 for (cp = list_tail(&kmem_caches); cp != NULL; 1256 cp = list_prev(&kmem_caches, cp)) { 1257 if ((sp = kmem_findslab(cp, buf)) != NULL) 1258 break; 1259 } 1260 } 1261 1262 if (sp == NULL) { 1263 cp = NULL; 1264 error = KMERR_BADADDR; 1265 } else { 1266 if (cp != cparg) 1267 error = KMERR_BADCACHE; 1268 else 1269 buf = (char *)bufarg - ((uintptr_t)bufarg - 1270 (uintptr_t)sp->slab_base) % cp->cache_chunksize; 1271 if (buf != bufarg) 1272 error = KMERR_BADBASE; 1273 if (cp->cache_flags & KMF_BUFTAG) 1274 btp = KMEM_BUFTAG(cp, buf); 1275 if (cp->cache_flags & KMF_HASH) { 1276 mutex_enter(&cp->cache_lock); 1277 for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) 1278 if (bcp->bc_addr == buf) 1279 break; 1280 mutex_exit(&cp->cache_lock); 1281 if (bcp == NULL && btp != NULL) 1282 bcp = btp->bt_bufctl; 1283 if (kmem_findslab(cp->cache_bufctl_cache, bcp) == 1284 NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) || 1285 bcp->bc_addr != buf) { 1286 error = KMERR_BADBUFCTL; 1287 bcp = NULL; 1288 } 1289 } 1290 } 1291 1292 kmem_panic_info.kmp_error = error; 1293 kmem_panic_info.kmp_buffer = bufarg; 1294 kmem_panic_info.kmp_realbuf = buf; 1295 kmem_panic_info.kmp_cache = cparg; 1296 kmem_panic_info.kmp_realcache = cp; 1297 kmem_panic_info.kmp_slab = sp; 1298 kmem_panic_info.kmp_bufctl = bcp; 1299 1300 printf("kernel memory allocator: "); 1301 1302 switch (error) { 1303 1304 case KMERR_MODIFIED: 1305 printf("buffer modified after being freed\n"); 1306 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1307 if (off == NULL) /* shouldn't happen */ 1308 off = buf; 1309 printf("modification occurred at offset 0x%lx " 1310 "(0x%llx replaced by 0x%llx)\n", 1311 (uintptr_t)off - (uintptr_t)buf, 1312 (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off); 1313 break; 1314 1315 case KMERR_REDZONE: 1316 printf("redzone violation: write past end of buffer\n"); 1317 break; 1318 1319 case KMERR_BADADDR: 1320 printf("invalid free: buffer not in cache\n"); 1321 break; 1322 1323 case KMERR_DUPFREE: 1324 printf("duplicate free: buffer freed twice\n"); 1325 break; 1326 1327 case KMERR_BADBUFTAG: 1328 printf("boundary tag corrupted\n"); 1329 printf("bcp ^ bxstat = %lx, should be %lx\n", 1330 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, 1331 KMEM_BUFTAG_FREE); 1332 break; 1333 1334 case KMERR_BADBUFCTL: 1335 printf("bufctl corrupted\n"); 1336 break; 1337 1338 case KMERR_BADCACHE: 1339 printf("buffer freed to wrong cache\n"); 1340 printf("buffer was allocated from %s,\n", cp->cache_name); 1341 printf("caller attempting free to %s.\n", cparg->cache_name); 1342 break; 1343 1344 case KMERR_BADSIZE: 1345 printf("bad free: free size (%u) != alloc size (%u)\n", 1346 KMEM_SIZE_DECODE(((uint32_t *)btp)[0]), 1347 KMEM_SIZE_DECODE(((uint32_t *)btp)[1])); 1348 break; 1349 1350 case KMERR_BADBASE: 1351 printf("bad free: free address (%p) != alloc address (%p)\n", 1352 bufarg, buf); 1353 break; 1354 } 1355 1356 printf("buffer=%p bufctl=%p cache: %s\n", 1357 bufarg, (void *)bcp, cparg->cache_name); 1358 1359 if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) && 1360 error != KMERR_BADBUFCTL) { 1361 int d; 1362 timestruc_t ts; 1363 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp; 1364 1365 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts); 1366 printf("previous transaction on buffer %p:\n", buf); 1367 printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", 1368 (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, 1369 (void *)sp, cp->cache_name); 1370 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) { 1371 ulong_t off; 1372 char *sym = kobj_getsymname(bcap->bc_stack[d], &off); 1373 printf("%s+%lx\n", sym ? sym : "?", off); 1374 } 1375 } 1376 if (kmem_panic > 0) 1377 panic("kernel heap corruption detected"); 1378 if (kmem_panic == 0) 1379 debug_enter(NULL); 1380 kmem_logging = 1; /* resume logging */ 1381 } 1382 1383 static kmem_log_header_t * 1384 kmem_log_init(size_t logsize) 1385 { 1386 kmem_log_header_t *lhp; 1387 int nchunks = 4 * max_ncpus; 1388 size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus]; 1389 int i; 1390 1391 /* 1392 * Make sure that lhp->lh_cpu[] is nicely aligned 1393 * to prevent false sharing of cache lines. 1394 */ 1395 lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN); 1396 lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, 1397 NULL, NULL, VM_SLEEP); 1398 bzero(lhp, lhsize); 1399 1400 mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL); 1401 lhp->lh_nchunks = nchunks; 1402 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE); 1403 lhp->lh_base = vmem_alloc(kmem_log_arena, 1404 lhp->lh_chunksize * nchunks, VM_SLEEP); 1405 lhp->lh_free = vmem_alloc(kmem_log_arena, 1406 nchunks * sizeof (int), VM_SLEEP); 1407 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); 1408 1409 for (i = 0; i < max_ncpus; i++) { 1410 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; 1411 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL); 1412 clhp->clh_chunk = i; 1413 } 1414 1415 for (i = max_ncpus; i < nchunks; i++) 1416 lhp->lh_free[i] = i; 1417 1418 lhp->lh_head = max_ncpus; 1419 lhp->lh_tail = 0; 1420 1421 return (lhp); 1422 } 1423 1424 static void * 1425 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size) 1426 { 1427 void *logspace; 1428 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid]; 1429 1430 if (lhp == NULL || kmem_logging == 0 || panicstr) 1431 return (NULL); 1432 1433 mutex_enter(&clhp->clh_lock); 1434 clhp->clh_hits++; 1435 if (size > clhp->clh_avail) { 1436 mutex_enter(&lhp->lh_lock); 1437 lhp->lh_hits++; 1438 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; 1439 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; 1440 clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; 1441 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; 1442 clhp->clh_current = lhp->lh_base + 1443 clhp->clh_chunk * lhp->lh_chunksize; 1444 clhp->clh_avail = lhp->lh_chunksize; 1445 if (size > lhp->lh_chunksize) 1446 size = lhp->lh_chunksize; 1447 mutex_exit(&lhp->lh_lock); 1448 } 1449 logspace = clhp->clh_current; 1450 clhp->clh_current += size; 1451 clhp->clh_avail -= size; 1452 bcopy(data, logspace, size); 1453 mutex_exit(&clhp->clh_lock); 1454 return (logspace); 1455 } 1456 1457 #define KMEM_AUDIT(lp, cp, bcp) \ 1458 { \ 1459 kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp); \ 1460 _bcp->bc_timestamp = gethrtime(); \ 1461 _bcp->bc_thread = curthread; \ 1462 _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH); \ 1463 _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp)); \ 1464 } 1465 1466 static void 1467 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp, 1468 kmem_slab_t *sp, void *addr) 1469 { 1470 kmem_bufctl_audit_t bca; 1471 1472 bzero(&bca, sizeof (kmem_bufctl_audit_t)); 1473 bca.bc_addr = addr; 1474 bca.bc_slab = sp; 1475 bca.bc_cache = cp; 1476 KMEM_AUDIT(lp, cp, &bca); 1477 } 1478 1479 /* 1480 * Create a new slab for cache cp. 1481 */ 1482 static kmem_slab_t * 1483 kmem_slab_create(kmem_cache_t *cp, int kmflag) 1484 { 1485 size_t slabsize = cp->cache_slabsize; 1486 size_t chunksize = cp->cache_chunksize; 1487 int cache_flags = cp->cache_flags; 1488 size_t color, chunks; 1489 char *buf, *slab; 1490 kmem_slab_t *sp; 1491 kmem_bufctl_t *bcp; 1492 vmem_t *vmp = cp->cache_arena; 1493 1494 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1495 1496 color = cp->cache_color + cp->cache_align; 1497 if (color > cp->cache_maxcolor) 1498 color = cp->cache_mincolor; 1499 cp->cache_color = color; 1500 1501 slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS); 1502 1503 if (slab == NULL) 1504 goto vmem_alloc_failure; 1505 1506 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); 1507 1508 /* 1509 * Reverify what was already checked in kmem_cache_set_move(), since the 1510 * consolidator depends (for correctness) on slabs being initialized 1511 * with the 0xbaddcafe memory pattern (setting a low order bit usable by 1512 * clients to distinguish uninitialized memory from known objects). 1513 */ 1514 ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH)); 1515 if (!(cp->cache_cflags & KMC_NOTOUCH)) 1516 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize); 1517 1518 if (cache_flags & KMF_HASH) { 1519 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL) 1520 goto slab_alloc_failure; 1521 chunks = (slabsize - color) / chunksize; 1522 } else { 1523 sp = KMEM_SLAB(cp, slab); 1524 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize; 1525 } 1526 1527 sp->slab_cache = cp; 1528 sp->slab_head = NULL; 1529 sp->slab_refcnt = 0; 1530 sp->slab_base = buf = slab + color; 1531 sp->slab_chunks = chunks; 1532 sp->slab_stuck_offset = (uint32_t)-1; 1533 sp->slab_later_count = 0; 1534 sp->slab_flags = 0; 1535 1536 ASSERT(chunks > 0); 1537 while (chunks-- != 0) { 1538 if (cache_flags & KMF_HASH) { 1539 bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag); 1540 if (bcp == NULL) 1541 goto bufctl_alloc_failure; 1542 if (cache_flags & KMF_AUDIT) { 1543 kmem_bufctl_audit_t *bcap = 1544 (kmem_bufctl_audit_t *)bcp; 1545 bzero(bcap, sizeof (kmem_bufctl_audit_t)); 1546 bcap->bc_cache = cp; 1547 } 1548 bcp->bc_addr = buf; 1549 bcp->bc_slab = sp; 1550 } else { 1551 bcp = KMEM_BUFCTL(cp, buf); 1552 } 1553 if (cache_flags & KMF_BUFTAG) { 1554 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1555 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1556 btp->bt_bufctl = bcp; 1557 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1558 if (cache_flags & KMF_DEADBEEF) { 1559 copy_pattern(KMEM_FREE_PATTERN, buf, 1560 cp->cache_verify); 1561 } 1562 } 1563 bcp->bc_next = sp->slab_head; 1564 sp->slab_head = bcp; 1565 buf += chunksize; 1566 } 1567 1568 kmem_log_event(kmem_slab_log, cp, sp, slab); 1569 1570 return (sp); 1571 1572 bufctl_alloc_failure: 1573 1574 while ((bcp = sp->slab_head) != NULL) { 1575 sp->slab_head = bcp->bc_next; 1576 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1577 } 1578 kmem_cache_free(kmem_slab_cache, sp); 1579 1580 slab_alloc_failure: 1581 1582 vmem_free(vmp, slab, slabsize); 1583 1584 vmem_alloc_failure: 1585 1586 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1587 atomic_inc_64(&cp->cache_alloc_fail); 1588 1589 return (NULL); 1590 } 1591 1592 /* 1593 * Destroy a slab. 1594 */ 1595 static void 1596 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp) 1597 { 1598 vmem_t *vmp = cp->cache_arena; 1599 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); 1600 1601 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1602 ASSERT(sp->slab_refcnt == 0); 1603 1604 if (cp->cache_flags & KMF_HASH) { 1605 kmem_bufctl_t *bcp; 1606 while ((bcp = sp->slab_head) != NULL) { 1607 sp->slab_head = bcp->bc_next; 1608 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1609 } 1610 kmem_cache_free(kmem_slab_cache, sp); 1611 } 1612 vmem_free(vmp, slab, cp->cache_slabsize); 1613 } 1614 1615 static void * 1616 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill) 1617 { 1618 kmem_bufctl_t *bcp, **hash_bucket; 1619 void *buf; 1620 boolean_t new_slab = (sp->slab_refcnt == 0); 1621 1622 ASSERT(MUTEX_HELD(&cp->cache_lock)); 1623 /* 1624 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we 1625 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the 1626 * slab is newly created. 1627 */ 1628 ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) && 1629 (sp == avl_first(&cp->cache_partial_slabs)))); 1630 ASSERT(sp->slab_cache == cp); 1631 1632 cp->cache_slab_alloc++; 1633 cp->cache_bufslab--; 1634 sp->slab_refcnt++; 1635 1636 bcp = sp->slab_head; 1637 sp->slab_head = bcp->bc_next; 1638 1639 if (cp->cache_flags & KMF_HASH) { 1640 /* 1641 * Add buffer to allocated-address hash table. 1642 */ 1643 buf = bcp->bc_addr; 1644 hash_bucket = KMEM_HASH(cp, buf); 1645 bcp->bc_next = *hash_bucket; 1646 *hash_bucket = bcp; 1647 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1648 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1649 } 1650 } else { 1651 buf = KMEM_BUF(cp, bcp); 1652 } 1653 1654 ASSERT(KMEM_SLAB_MEMBER(sp, buf)); 1655 1656 if (sp->slab_head == NULL) { 1657 ASSERT(KMEM_SLAB_IS_ALL_USED(sp)); 1658 if (new_slab) { 1659 ASSERT(sp->slab_chunks == 1); 1660 } else { 1661 ASSERT(sp->slab_chunks > 1); /* the slab was partial */ 1662 avl_remove(&cp->cache_partial_slabs, sp); 1663 sp->slab_later_count = 0; /* clear history */ 1664 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 1665 sp->slab_stuck_offset = (uint32_t)-1; 1666 } 1667 list_insert_head(&cp->cache_complete_slabs, sp); 1668 cp->cache_complete_slab_count++; 1669 return (buf); 1670 } 1671 1672 ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 1673 /* 1674 * Peek to see if the magazine layer is enabled before 1675 * we prefill. We're not holding the cpu cache lock, 1676 * so the peek could be wrong, but there's no harm in it. 1677 */ 1678 if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) && 1679 (KMEM_CPU_CACHE(cp)->cc_magsize != 0)) { 1680 kmem_slab_prefill(cp, sp); 1681 return (buf); 1682 } 1683 1684 if (new_slab) { 1685 avl_add(&cp->cache_partial_slabs, sp); 1686 return (buf); 1687 } 1688 1689 /* 1690 * The slab is now more allocated than it was, so the 1691 * order remains unchanged. 1692 */ 1693 ASSERT(!avl_update(&cp->cache_partial_slabs, sp)); 1694 return (buf); 1695 } 1696 1697 /* 1698 * Allocate a raw (unconstructed) buffer from cp's slab layer. 1699 */ 1700 static void * 1701 kmem_slab_alloc(kmem_cache_t *cp, int kmflag) 1702 { 1703 kmem_slab_t *sp; 1704 void *buf; 1705 boolean_t test_destructor; 1706 1707 mutex_enter(&cp->cache_lock); 1708 test_destructor = (cp->cache_slab_alloc == 0); 1709 sp = avl_first(&cp->cache_partial_slabs); 1710 if (sp == NULL) { 1711 ASSERT(cp->cache_bufslab == 0); 1712 1713 /* 1714 * The freelist is empty. Create a new slab. 1715 */ 1716 mutex_exit(&cp->cache_lock); 1717 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) { 1718 return (NULL); 1719 } 1720 mutex_enter(&cp->cache_lock); 1721 cp->cache_slab_create++; 1722 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) 1723 cp->cache_bufmax = cp->cache_buftotal; 1724 cp->cache_bufslab += sp->slab_chunks; 1725 } 1726 1727 buf = kmem_slab_alloc_impl(cp, sp, B_TRUE); 1728 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1729 (cp->cache_complete_slab_count + 1730 avl_numnodes(&cp->cache_partial_slabs) + 1731 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1732 mutex_exit(&cp->cache_lock); 1733 1734 if (test_destructor && cp->cache_destructor != NULL) { 1735 /* 1736 * On the first kmem_slab_alloc(), assert that it is valid to 1737 * call the destructor on a newly constructed object without any 1738 * client involvement. 1739 */ 1740 if ((cp->cache_constructor == NULL) || 1741 cp->cache_constructor(buf, cp->cache_private, 1742 kmflag) == 0) { 1743 cp->cache_destructor(buf, cp->cache_private); 1744 } 1745 copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf, 1746 cp->cache_bufsize); 1747 if (cp->cache_flags & KMF_DEADBEEF) { 1748 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1749 } 1750 } 1751 1752 return (buf); 1753 } 1754 1755 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *); 1756 1757 /* 1758 * Free a raw (unconstructed) buffer to cp's slab layer. 1759 */ 1760 static void 1761 kmem_slab_free(kmem_cache_t *cp, void *buf) 1762 { 1763 kmem_slab_t *sp; 1764 kmem_bufctl_t *bcp, **prev_bcpp; 1765 1766 ASSERT(buf != NULL); 1767 1768 mutex_enter(&cp->cache_lock); 1769 cp->cache_slab_free++; 1770 1771 if (cp->cache_flags & KMF_HASH) { 1772 /* 1773 * Look up buffer in allocated-address hash table. 1774 */ 1775 prev_bcpp = KMEM_HASH(cp, buf); 1776 while ((bcp = *prev_bcpp) != NULL) { 1777 if (bcp->bc_addr == buf) { 1778 *prev_bcpp = bcp->bc_next; 1779 sp = bcp->bc_slab; 1780 break; 1781 } 1782 cp->cache_lookup_depth++; 1783 prev_bcpp = &bcp->bc_next; 1784 } 1785 } else { 1786 bcp = KMEM_BUFCTL(cp, buf); 1787 sp = KMEM_SLAB(cp, buf); 1788 } 1789 1790 if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) { 1791 mutex_exit(&cp->cache_lock); 1792 kmem_error(KMERR_BADADDR, cp, buf); 1793 return; 1794 } 1795 1796 if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) { 1797 /* 1798 * If this is the buffer that prevented the consolidator from 1799 * clearing the slab, we can reset the slab flags now that the 1800 * buffer is freed. (It makes sense to do this in 1801 * kmem_cache_free(), where the client gives up ownership of the 1802 * buffer, but on the hot path the test is too expensive.) 1803 */ 1804 kmem_slab_move_yes(cp, sp, buf); 1805 } 1806 1807 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1808 if (cp->cache_flags & KMF_CONTENTS) 1809 ((kmem_bufctl_audit_t *)bcp)->bc_contents = 1810 kmem_log_enter(kmem_content_log, buf, 1811 cp->cache_contents); 1812 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1813 } 1814 1815 bcp->bc_next = sp->slab_head; 1816 sp->slab_head = bcp; 1817 1818 cp->cache_bufslab++; 1819 ASSERT(sp->slab_refcnt >= 1); 1820 1821 if (--sp->slab_refcnt == 0) { 1822 /* 1823 * There are no outstanding allocations from this slab, 1824 * so we can reclaim the memory. 1825 */ 1826 if (sp->slab_chunks == 1) { 1827 list_remove(&cp->cache_complete_slabs, sp); 1828 cp->cache_complete_slab_count--; 1829 } else { 1830 avl_remove(&cp->cache_partial_slabs, sp); 1831 } 1832 1833 cp->cache_buftotal -= sp->slab_chunks; 1834 cp->cache_bufslab -= sp->slab_chunks; 1835 /* 1836 * Defer releasing the slab to the virtual memory subsystem 1837 * while there is a pending move callback, since we guarantee 1838 * that buffers passed to the move callback have only been 1839 * touched by kmem or by the client itself. Since the memory 1840 * patterns baddcafe (uninitialized) and deadbeef (freed) both 1841 * set at least one of the two lowest order bits, the client can 1842 * test those bits in the move callback to determine whether or 1843 * not it knows about the buffer (assuming that the client also 1844 * sets one of those low order bits whenever it frees a buffer). 1845 */ 1846 if (cp->cache_defrag == NULL || 1847 (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) && 1848 !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) { 1849 cp->cache_slab_destroy++; 1850 mutex_exit(&cp->cache_lock); 1851 kmem_slab_destroy(cp, sp); 1852 } else { 1853 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 1854 /* 1855 * Slabs are inserted at both ends of the deadlist to 1856 * distinguish between slabs freed while move callbacks 1857 * are pending (list head) and a slab freed while the 1858 * lock is dropped in kmem_move_buffers() (list tail) so 1859 * that in both cases slab_destroy() is called from the 1860 * right context. 1861 */ 1862 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 1863 list_insert_tail(deadlist, sp); 1864 } else { 1865 list_insert_head(deadlist, sp); 1866 } 1867 cp->cache_defrag->kmd_deadcount++; 1868 mutex_exit(&cp->cache_lock); 1869 } 1870 return; 1871 } 1872 1873 if (bcp->bc_next == NULL) { 1874 /* Transition the slab from completely allocated to partial. */ 1875 ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1)); 1876 ASSERT(sp->slab_chunks > 1); 1877 list_remove(&cp->cache_complete_slabs, sp); 1878 cp->cache_complete_slab_count--; 1879 avl_add(&cp->cache_partial_slabs, sp); 1880 } else { 1881 (void) avl_update_gt(&cp->cache_partial_slabs, sp); 1882 } 1883 1884 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1885 (cp->cache_complete_slab_count + 1886 avl_numnodes(&cp->cache_partial_slabs) + 1887 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1888 mutex_exit(&cp->cache_lock); 1889 } 1890 1891 /* 1892 * Return -1 if kmem_error, 1 if constructor fails, 0 if successful. 1893 */ 1894 static int 1895 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct, 1896 caddr_t caller) 1897 { 1898 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1899 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1900 uint32_t mtbf; 1901 1902 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1903 kmem_error(KMERR_BADBUFTAG, cp, buf); 1904 return (-1); 1905 } 1906 1907 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC; 1908 1909 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 1910 kmem_error(KMERR_BADBUFCTL, cp, buf); 1911 return (-1); 1912 } 1913 1914 if (cp->cache_flags & KMF_DEADBEEF) { 1915 if (!construct && (cp->cache_flags & KMF_LITE)) { 1916 if (*(uint64_t *)buf != KMEM_FREE_PATTERN) { 1917 kmem_error(KMERR_MODIFIED, cp, buf); 1918 return (-1); 1919 } 1920 if (cp->cache_constructor != NULL) 1921 *(uint64_t *)buf = btp->bt_redzone; 1922 else 1923 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN; 1924 } else { 1925 construct = 1; 1926 if (verify_and_copy_pattern(KMEM_FREE_PATTERN, 1927 KMEM_UNINITIALIZED_PATTERN, buf, 1928 cp->cache_verify)) { 1929 kmem_error(KMERR_MODIFIED, cp, buf); 1930 return (-1); 1931 } 1932 } 1933 } 1934 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1935 1936 if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 && 1937 gethrtime() % mtbf == 0 && 1938 (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) { 1939 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1940 if (!construct && cp->cache_destructor != NULL) 1941 cp->cache_destructor(buf, cp->cache_private); 1942 } else { 1943 mtbf = 0; 1944 } 1945 1946 if (mtbf || (construct && cp->cache_constructor != NULL && 1947 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) { 1948 atomic_inc_64(&cp->cache_alloc_fail); 1949 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1950 if (cp->cache_flags & KMF_DEADBEEF) 1951 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1952 kmem_slab_free(cp, buf); 1953 return (1); 1954 } 1955 1956 if (cp->cache_flags & KMF_AUDIT) { 1957 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1958 } 1959 1960 if ((cp->cache_flags & KMF_LITE) && 1961 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 1962 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 1963 } 1964 1965 return (0); 1966 } 1967 1968 static int 1969 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller) 1970 { 1971 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1972 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1973 kmem_slab_t *sp; 1974 1975 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) { 1976 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1977 kmem_error(KMERR_DUPFREE, cp, buf); 1978 return (-1); 1979 } 1980 sp = kmem_findslab(cp, buf); 1981 if (sp == NULL || sp->slab_cache != cp) 1982 kmem_error(KMERR_BADADDR, cp, buf); 1983 else 1984 kmem_error(KMERR_REDZONE, cp, buf); 1985 return (-1); 1986 } 1987 1988 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1989 1990 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 1991 kmem_error(KMERR_BADBUFCTL, cp, buf); 1992 return (-1); 1993 } 1994 1995 if (btp->bt_redzone != KMEM_REDZONE_PATTERN) { 1996 kmem_error(KMERR_REDZONE, cp, buf); 1997 return (-1); 1998 } 1999 2000 if (cp->cache_flags & KMF_AUDIT) { 2001 if (cp->cache_flags & KMF_CONTENTS) 2002 bcp->bc_contents = kmem_log_enter(kmem_content_log, 2003 buf, cp->cache_contents); 2004 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 2005 } 2006 2007 if ((cp->cache_flags & KMF_LITE) && 2008 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 2009 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 2010 } 2011 2012 if (cp->cache_flags & KMF_DEADBEEF) { 2013 if (cp->cache_flags & KMF_LITE) 2014 btp->bt_redzone = *(uint64_t *)buf; 2015 else if (cp->cache_destructor != NULL) 2016 cp->cache_destructor(buf, cp->cache_private); 2017 2018 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 2019 } 2020 2021 return (0); 2022 } 2023 2024 /* 2025 * Free each object in magazine mp to cp's slab layer, and free mp itself. 2026 */ 2027 static void 2028 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds) 2029 { 2030 int round; 2031 2032 ASSERT(!list_link_active(&cp->cache_link) || 2033 taskq_member(kmem_taskq, curthread)); 2034 2035 for (round = 0; round < nrounds; round++) { 2036 void *buf = mp->mag_round[round]; 2037 2038 if (cp->cache_flags & KMF_DEADBEEF) { 2039 if (verify_pattern(KMEM_FREE_PATTERN, buf, 2040 cp->cache_verify) != NULL) { 2041 kmem_error(KMERR_MODIFIED, cp, buf); 2042 continue; 2043 } 2044 if ((cp->cache_flags & KMF_LITE) && 2045 cp->cache_destructor != NULL) { 2046 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2047 *(uint64_t *)buf = btp->bt_redzone; 2048 cp->cache_destructor(buf, cp->cache_private); 2049 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2050 } 2051 } else if (cp->cache_destructor != NULL) { 2052 cp->cache_destructor(buf, cp->cache_private); 2053 } 2054 2055 kmem_slab_free(cp, buf); 2056 } 2057 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2058 kmem_cache_free(cp->cache_magtype->mt_cache, mp); 2059 } 2060 2061 /* 2062 * Allocate a magazine from the depot. 2063 */ 2064 static kmem_magazine_t * 2065 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp) 2066 { 2067 kmem_magazine_t *mp; 2068 2069 /* 2070 * If we can't get the depot lock without contention, 2071 * update our contention count. We use the depot 2072 * contention rate to determine whether we need to 2073 * increase the magazine size for better scalability. 2074 */ 2075 if (!mutex_tryenter(&cp->cache_depot_lock)) { 2076 mutex_enter(&cp->cache_depot_lock); 2077 cp->cache_depot_contention++; 2078 } 2079 2080 if ((mp = mlp->ml_list) != NULL) { 2081 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2082 mlp->ml_list = mp->mag_next; 2083 if (--mlp->ml_total < mlp->ml_min) 2084 mlp->ml_min = mlp->ml_total; 2085 mlp->ml_alloc++; 2086 } 2087 2088 mutex_exit(&cp->cache_depot_lock); 2089 2090 return (mp); 2091 } 2092 2093 /* 2094 * Free a magazine to the depot. 2095 */ 2096 static void 2097 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp) 2098 { 2099 mutex_enter(&cp->cache_depot_lock); 2100 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2101 mp->mag_next = mlp->ml_list; 2102 mlp->ml_list = mp; 2103 mlp->ml_total++; 2104 mutex_exit(&cp->cache_depot_lock); 2105 } 2106 2107 /* 2108 * Update the working set statistics for cp's depot. 2109 */ 2110 static void 2111 kmem_depot_ws_update(kmem_cache_t *cp) 2112 { 2113 mutex_enter(&cp->cache_depot_lock); 2114 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; 2115 cp->cache_full.ml_min = cp->cache_full.ml_total; 2116 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; 2117 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 2118 mutex_exit(&cp->cache_depot_lock); 2119 } 2120 2121 /* 2122 * Set the working set statistics for cp's depot to zero. (Everything is 2123 * eligible for reaping.) 2124 */ 2125 static void 2126 kmem_depot_ws_zero(kmem_cache_t *cp) 2127 { 2128 mutex_enter(&cp->cache_depot_lock); 2129 cp->cache_full.ml_reaplimit = cp->cache_full.ml_total; 2130 cp->cache_full.ml_min = cp->cache_full.ml_total; 2131 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total; 2132 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 2133 mutex_exit(&cp->cache_depot_lock); 2134 } 2135 2136 /* 2137 * The number of bytes to reap before we call kpreempt(). The default (1MB) 2138 * causes us to preempt reaping up to hundreds of times per second. Using a 2139 * larger value (1GB) causes this to have virtually no effect. 2140 */ 2141 size_t kmem_reap_preempt_bytes = 1024 * 1024; 2142 2143 /* 2144 * Reap all magazines that have fallen out of the depot's working set. 2145 */ 2146 static void 2147 kmem_depot_ws_reap(kmem_cache_t *cp) 2148 { 2149 size_t bytes = 0; 2150 long reap; 2151 kmem_magazine_t *mp; 2152 2153 ASSERT(!list_link_active(&cp->cache_link) || 2154 taskq_member(kmem_taskq, curthread)); 2155 2156 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 2157 while (reap-- && 2158 (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) { 2159 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); 2160 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize; 2161 if (bytes > kmem_reap_preempt_bytes) { 2162 kpreempt(KPREEMPT_SYNC); 2163 bytes = 0; 2164 } 2165 } 2166 2167 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); 2168 while (reap-- && 2169 (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) { 2170 kmem_magazine_destroy(cp, mp, 0); 2171 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize; 2172 if (bytes > kmem_reap_preempt_bytes) { 2173 kpreempt(KPREEMPT_SYNC); 2174 bytes = 0; 2175 } 2176 } 2177 } 2178 2179 static void 2180 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds) 2181 { 2182 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || 2183 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); 2184 ASSERT(ccp->cc_magsize > 0); 2185 2186 ccp->cc_ploaded = ccp->cc_loaded; 2187 ccp->cc_prounds = ccp->cc_rounds; 2188 ccp->cc_loaded = mp; 2189 ccp->cc_rounds = rounds; 2190 } 2191 2192 /* 2193 * Intercept kmem alloc/free calls during crash dump in order to avoid 2194 * changing kmem state while memory is being saved to the dump device. 2195 * Otherwise, ::kmem_verify will report "corrupt buffers". Note that 2196 * there are no locks because only one CPU calls kmem during a crash 2197 * dump. To enable this feature, first create the associated vmem 2198 * arena with VMC_DUMPSAFE. 2199 */ 2200 static void *kmem_dump_start; /* start of pre-reserved heap */ 2201 static void *kmem_dump_end; /* end of heap area */ 2202 static void *kmem_dump_curr; /* current free heap pointer */ 2203 static size_t kmem_dump_size; /* size of heap area */ 2204 2205 /* append to each buf created in the pre-reserved heap */ 2206 typedef struct kmem_dumpctl { 2207 void *kdc_next; /* cache dump free list linkage */ 2208 } kmem_dumpctl_t; 2209 2210 #define KMEM_DUMPCTL(cp, buf) \ 2211 ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \ 2212 sizeof (void *))) 2213 2214 /* set non zero for full report */ 2215 uint_t kmem_dump_verbose = 0; 2216 2217 /* stats for overize heap */ 2218 uint_t kmem_dump_oversize_allocs = 0; 2219 uint_t kmem_dump_oversize_max = 0; 2220 2221 static void 2222 kmem_dumppr(char **pp, char *e, const char *format, ...) 2223 { 2224 char *p = *pp; 2225 2226 if (p < e) { 2227 int n; 2228 va_list ap; 2229 2230 va_start(ap, format); 2231 n = vsnprintf(p, e - p, format, ap); 2232 va_end(ap); 2233 *pp = p + n; 2234 } 2235 } 2236 2237 /* 2238 * Called when dumpadm(1M) configures dump parameters. 2239 */ 2240 void 2241 kmem_dump_init(size_t size) 2242 { 2243 /* Our caller ensures size is always set. */ 2244 ASSERT3U(size, >, 0); 2245 2246 if (kmem_dump_start != NULL) 2247 kmem_free(kmem_dump_start, kmem_dump_size); 2248 2249 kmem_dump_start = kmem_alloc(size, KM_SLEEP); 2250 kmem_dump_size = size; 2251 kmem_dump_curr = kmem_dump_start; 2252 kmem_dump_end = (void *)((char *)kmem_dump_start + size); 2253 copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size); 2254 } 2255 2256 /* 2257 * Set flag for each kmem_cache_t if is safe to use alternate dump 2258 * memory. Called just before panic crash dump starts. Set the flag 2259 * for the calling CPU. 2260 */ 2261 void 2262 kmem_dump_begin(void) 2263 { 2264 kmem_cache_t *cp; 2265 2266 ASSERT(panicstr != NULL); 2267 2268 for (cp = list_head(&kmem_caches); cp != NULL; 2269 cp = list_next(&kmem_caches, cp)) { 2270 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2271 2272 if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) { 2273 cp->cache_flags |= KMF_DUMPDIVERT; 2274 ccp->cc_flags |= KMF_DUMPDIVERT; 2275 ccp->cc_dump_rounds = ccp->cc_rounds; 2276 ccp->cc_dump_prounds = ccp->cc_prounds; 2277 ccp->cc_rounds = ccp->cc_prounds = -1; 2278 } else { 2279 cp->cache_flags |= KMF_DUMPUNSAFE; 2280 ccp->cc_flags |= KMF_DUMPUNSAFE; 2281 } 2282 } 2283 } 2284 2285 /* 2286 * finished dump intercept 2287 * print any warnings on the console 2288 * return verbose information to dumpsys() in the given buffer 2289 */ 2290 size_t 2291 kmem_dump_finish(char *buf, size_t size) 2292 { 2293 int percent = 0; 2294 size_t used; 2295 char *e = buf + size; 2296 char *p = buf; 2297 2298 if (kmem_dump_curr == kmem_dump_end) { 2299 cmn_err(CE_WARN, "exceeded kmem_dump space of %lu " 2300 "bytes: kmem state in dump may be inconsistent", 2301 kmem_dump_size); 2302 } 2303 2304 if (kmem_dump_verbose == 0) 2305 return (0); 2306 2307 used = (char *)kmem_dump_curr - (char *)kmem_dump_start; 2308 percent = (used * 100) / kmem_dump_size; 2309 2310 kmem_dumppr(&p, e, "%% heap used,%d\n", percent); 2311 kmem_dumppr(&p, e, "used bytes,%ld\n", used); 2312 kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size); 2313 kmem_dumppr(&p, e, "Oversize allocs,%d\n", 2314 kmem_dump_oversize_allocs); 2315 kmem_dumppr(&p, e, "Oversize max size,%ld\n", 2316 kmem_dump_oversize_max); 2317 2318 /* return buffer size used */ 2319 if (p < e) 2320 bzero(p, e - p); 2321 return (p - buf); 2322 } 2323 2324 /* 2325 * Allocate a constructed object from alternate dump memory. 2326 */ 2327 void * 2328 kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag) 2329 { 2330 void *buf; 2331 void *curr; 2332 char *bufend; 2333 2334 /* return a constructed object */ 2335 if ((buf = cp->cache_dump.kd_freelist) != NULL) { 2336 cp->cache_dump.kd_freelist = KMEM_DUMPCTL(cp, buf)->kdc_next; 2337 return (buf); 2338 } 2339 2340 /* create a new constructed object */ 2341 curr = kmem_dump_curr; 2342 buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align); 2343 bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t); 2344 2345 /* hat layer objects cannot cross a page boundary */ 2346 if (cp->cache_align < PAGESIZE) { 2347 char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE); 2348 if (bufend > page) { 2349 bufend += page - (char *)buf; 2350 buf = (void *)page; 2351 } 2352 } 2353 2354 /* fall back to normal alloc if reserved area is used up */ 2355 if (bufend > (char *)kmem_dump_end) { 2356 kmem_dump_curr = kmem_dump_end; 2357 cp->cache_dump.kd_alloc_fails++; 2358 return (NULL); 2359 } 2360 2361 /* 2362 * Must advance curr pointer before calling a constructor that 2363 * may also allocate memory. 2364 */ 2365 kmem_dump_curr = bufend; 2366 2367 /* run constructor */ 2368 if (cp->cache_constructor != NULL && 2369 cp->cache_constructor(buf, cp->cache_private, kmflag) 2370 != 0) { 2371 #ifdef DEBUG 2372 printf("name='%s' cache=0x%p: kmem cache constructor failed\n", 2373 cp->cache_name, (void *)cp); 2374 #endif 2375 /* reset curr pointer iff no allocs were done */ 2376 if (kmem_dump_curr == bufend) 2377 kmem_dump_curr = curr; 2378 2379 cp->cache_dump.kd_alloc_fails++; 2380 /* fall back to normal alloc if the constructor fails */ 2381 return (NULL); 2382 } 2383 2384 return (buf); 2385 } 2386 2387 /* 2388 * Free a constructed object in alternate dump memory. 2389 */ 2390 int 2391 kmem_cache_free_dump(kmem_cache_t *cp, void *buf) 2392 { 2393 /* save constructed buffers for next time */ 2394 if ((char *)buf >= (char *)kmem_dump_start && 2395 (char *)buf < (char *)kmem_dump_end) { 2396 KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dump.kd_freelist; 2397 cp->cache_dump.kd_freelist = buf; 2398 return (0); 2399 } 2400 2401 /* just drop buffers that were allocated before dump started */ 2402 if (kmem_dump_curr < kmem_dump_end) 2403 return (0); 2404 2405 /* fall back to normal free if reserved area is used up */ 2406 return (1); 2407 } 2408 2409 /* 2410 * Allocate a constructed object from cache cp. 2411 */ 2412 void * 2413 kmem_cache_alloc(kmem_cache_t *cp, int kmflag) 2414 { 2415 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2416 kmem_magazine_t *fmp; 2417 void *buf; 2418 2419 mutex_enter(&ccp->cc_lock); 2420 for (;;) { 2421 /* 2422 * If there's an object available in the current CPU's 2423 * loaded magazine, just take it and return. 2424 */ 2425 if (ccp->cc_rounds > 0) { 2426 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; 2427 ccp->cc_alloc++; 2428 mutex_exit(&ccp->cc_lock); 2429 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) { 2430 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2431 ASSERT(!(ccp->cc_flags & 2432 KMF_DUMPDIVERT)); 2433 cp->cache_dump.kd_unsafe++; 2434 } 2435 if ((ccp->cc_flags & KMF_BUFTAG) && 2436 kmem_cache_alloc_debug(cp, buf, kmflag, 0, 2437 caller()) != 0) { 2438 if (kmflag & KM_NOSLEEP) 2439 return (NULL); 2440 mutex_enter(&ccp->cc_lock); 2441 continue; 2442 } 2443 } 2444 return (buf); 2445 } 2446 2447 /* 2448 * The loaded magazine is empty. If the previously loaded 2449 * magazine was full, exchange them and try again. 2450 */ 2451 if (ccp->cc_prounds > 0) { 2452 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2453 continue; 2454 } 2455 2456 /* 2457 * Return an alternate buffer at dump time to preserve 2458 * the heap. 2459 */ 2460 if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { 2461 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2462 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); 2463 /* log it so that we can warn about it */ 2464 cp->cache_dump.kd_unsafe++; 2465 } else { 2466 if ((buf = kmem_cache_alloc_dump(cp, kmflag)) != 2467 NULL) { 2468 mutex_exit(&ccp->cc_lock); 2469 return (buf); 2470 } 2471 break; /* fall back to slab layer */ 2472 } 2473 } 2474 2475 /* 2476 * If the magazine layer is disabled, break out now. 2477 */ 2478 if (ccp->cc_magsize == 0) 2479 break; 2480 2481 /* 2482 * Try to get a full magazine from the depot. 2483 */ 2484 fmp = kmem_depot_alloc(cp, &cp->cache_full); 2485 if (fmp != NULL) { 2486 if (ccp->cc_ploaded != NULL) 2487 kmem_depot_free(cp, &cp->cache_empty, 2488 ccp->cc_ploaded); 2489 kmem_cpu_reload(ccp, fmp, ccp->cc_magsize); 2490 continue; 2491 } 2492 2493 /* 2494 * There are no full magazines in the depot, 2495 * so fall through to the slab layer. 2496 */ 2497 break; 2498 } 2499 mutex_exit(&ccp->cc_lock); 2500 2501 /* 2502 * We couldn't allocate a constructed object from the magazine layer, 2503 * so get a raw buffer from the slab layer and apply its constructor. 2504 */ 2505 buf = kmem_slab_alloc(cp, kmflag); 2506 2507 if (buf == NULL) 2508 return (NULL); 2509 2510 if (cp->cache_flags & KMF_BUFTAG) { 2511 /* 2512 * Make kmem_cache_alloc_debug() apply the constructor for us. 2513 */ 2514 int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller()); 2515 if (rc != 0) { 2516 if (kmflag & KM_NOSLEEP) 2517 return (NULL); 2518 /* 2519 * kmem_cache_alloc_debug() detected corruption 2520 * but didn't panic (kmem_panic <= 0). We should not be 2521 * here because the constructor failed (indicated by a 2522 * return code of 1). Try again. 2523 */ 2524 ASSERT(rc == -1); 2525 return (kmem_cache_alloc(cp, kmflag)); 2526 } 2527 return (buf); 2528 } 2529 2530 if (cp->cache_constructor != NULL && 2531 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) { 2532 atomic_inc_64(&cp->cache_alloc_fail); 2533 kmem_slab_free(cp, buf); 2534 return (NULL); 2535 } 2536 2537 return (buf); 2538 } 2539 2540 /* 2541 * The freed argument tells whether or not kmem_cache_free_debug() has already 2542 * been called so that we can avoid the duplicate free error. For example, a 2543 * buffer on a magazine has already been freed by the client but is still 2544 * constructed. 2545 */ 2546 static void 2547 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed) 2548 { 2549 if (!freed && (cp->cache_flags & KMF_BUFTAG)) 2550 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2551 return; 2552 2553 /* 2554 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not, 2555 * kmem_cache_free_debug() will have already applied the destructor. 2556 */ 2557 if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF && 2558 cp->cache_destructor != NULL) { 2559 if (cp->cache_flags & KMF_DEADBEEF) { /* KMF_LITE implied */ 2560 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2561 *(uint64_t *)buf = btp->bt_redzone; 2562 cp->cache_destructor(buf, cp->cache_private); 2563 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2564 } else { 2565 cp->cache_destructor(buf, cp->cache_private); 2566 } 2567 } 2568 2569 kmem_slab_free(cp, buf); 2570 } 2571 2572 /* 2573 * Used when there's no room to free a buffer to the per-CPU cache. 2574 * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the 2575 * caller should try freeing to the per-CPU cache again. 2576 * Note that we don't directly install the magazine in the cpu cache, 2577 * since its state may have changed wildly while the lock was dropped. 2578 */ 2579 static int 2580 kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp) 2581 { 2582 kmem_magazine_t *emp; 2583 kmem_magtype_t *mtp; 2584 2585 ASSERT(MUTEX_HELD(&ccp->cc_lock)); 2586 ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize || 2587 ((uint_t)ccp->cc_rounds == -1)) && 2588 ((uint_t)ccp->cc_prounds == ccp->cc_magsize || 2589 ((uint_t)ccp->cc_prounds == -1))); 2590 2591 emp = kmem_depot_alloc(cp, &cp->cache_empty); 2592 if (emp != NULL) { 2593 if (ccp->cc_ploaded != NULL) 2594 kmem_depot_free(cp, &cp->cache_full, 2595 ccp->cc_ploaded); 2596 kmem_cpu_reload(ccp, emp, 0); 2597 return (1); 2598 } 2599 /* 2600 * There are no empty magazines in the depot, 2601 * so try to allocate a new one. We must drop all locks 2602 * across kmem_cache_alloc() because lower layers may 2603 * attempt to allocate from this cache. 2604 */ 2605 mtp = cp->cache_magtype; 2606 mutex_exit(&ccp->cc_lock); 2607 emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP); 2608 mutex_enter(&ccp->cc_lock); 2609 2610 if (emp != NULL) { 2611 /* 2612 * We successfully allocated an empty magazine. 2613 * However, we had to drop ccp->cc_lock to do it, 2614 * so the cache's magazine size may have changed. 2615 * If so, free the magazine and try again. 2616 */ 2617 if (ccp->cc_magsize != mtp->mt_magsize) { 2618 mutex_exit(&ccp->cc_lock); 2619 kmem_cache_free(mtp->mt_cache, emp); 2620 mutex_enter(&ccp->cc_lock); 2621 return (1); 2622 } 2623 2624 /* 2625 * We got a magazine of the right size. Add it to 2626 * the depot and try the whole dance again. 2627 */ 2628 kmem_depot_free(cp, &cp->cache_empty, emp); 2629 return (1); 2630 } 2631 2632 /* 2633 * We couldn't allocate an empty magazine, 2634 * so fall through to the slab layer. 2635 */ 2636 return (0); 2637 } 2638 2639 /* 2640 * Free a constructed object to cache cp. 2641 */ 2642 void 2643 kmem_cache_free(kmem_cache_t *cp, void *buf) 2644 { 2645 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2646 2647 /* 2648 * The client must not free either of the buffers passed to the move 2649 * callback function. 2650 */ 2651 ASSERT(cp->cache_defrag == NULL || 2652 cp->cache_defrag->kmd_thread != curthread || 2653 (buf != cp->cache_defrag->kmd_from_buf && 2654 buf != cp->cache_defrag->kmd_to_buf)); 2655 2656 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { 2657 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2658 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); 2659 /* log it so that we can warn about it */ 2660 cp->cache_dump.kd_unsafe++; 2661 } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) { 2662 return; 2663 } 2664 if (ccp->cc_flags & KMF_BUFTAG) { 2665 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2666 return; 2667 } 2668 } 2669 2670 mutex_enter(&ccp->cc_lock); 2671 /* 2672 * Any changes to this logic should be reflected in kmem_slab_prefill() 2673 */ 2674 for (;;) { 2675 /* 2676 * If there's a slot available in the current CPU's 2677 * loaded magazine, just put the object there and return. 2678 */ 2679 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2680 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; 2681 ccp->cc_free++; 2682 mutex_exit(&ccp->cc_lock); 2683 return; 2684 } 2685 2686 /* 2687 * The loaded magazine is full. If the previously loaded 2688 * magazine was empty, exchange them and try again. 2689 */ 2690 if (ccp->cc_prounds == 0) { 2691 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2692 continue; 2693 } 2694 2695 /* 2696 * If the magazine layer is disabled, break out now. 2697 */ 2698 if (ccp->cc_magsize == 0) 2699 break; 2700 2701 if (!kmem_cpucache_magazine_alloc(ccp, cp)) { 2702 /* 2703 * We couldn't free our constructed object to the 2704 * magazine layer, so apply its destructor and free it 2705 * to the slab layer. 2706 */ 2707 break; 2708 } 2709 } 2710 mutex_exit(&ccp->cc_lock); 2711 kmem_slab_free_constructed(cp, buf, B_TRUE); 2712 } 2713 2714 static void 2715 kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp) 2716 { 2717 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2718 int cache_flags = cp->cache_flags; 2719 2720 kmem_bufctl_t *next, *head; 2721 size_t nbufs; 2722 2723 /* 2724 * Completely allocate the newly created slab and put the pre-allocated 2725 * buffers in magazines. Any of the buffers that cannot be put in 2726 * magazines must be returned to the slab. 2727 */ 2728 ASSERT(MUTEX_HELD(&cp->cache_lock)); 2729 ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL); 2730 ASSERT(cp->cache_constructor == NULL); 2731 ASSERT(sp->slab_cache == cp); 2732 ASSERT(sp->slab_refcnt == 1); 2733 ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt); 2734 ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL); 2735 2736 head = sp->slab_head; 2737 nbufs = (sp->slab_chunks - sp->slab_refcnt); 2738 sp->slab_head = NULL; 2739 sp->slab_refcnt += nbufs; 2740 cp->cache_bufslab -= nbufs; 2741 cp->cache_slab_alloc += nbufs; 2742 list_insert_head(&cp->cache_complete_slabs, sp); 2743 cp->cache_complete_slab_count++; 2744 mutex_exit(&cp->cache_lock); 2745 mutex_enter(&ccp->cc_lock); 2746 2747 while (head != NULL) { 2748 void *buf = KMEM_BUF(cp, head); 2749 /* 2750 * If there's a slot available in the current CPU's 2751 * loaded magazine, just put the object there and 2752 * continue. 2753 */ 2754 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2755 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = 2756 buf; 2757 ccp->cc_free++; 2758 nbufs--; 2759 head = head->bc_next; 2760 continue; 2761 } 2762 2763 /* 2764 * The loaded magazine is full. If the previously 2765 * loaded magazine was empty, exchange them and try 2766 * again. 2767 */ 2768 if (ccp->cc_prounds == 0) { 2769 kmem_cpu_reload(ccp, ccp->cc_ploaded, 2770 ccp->cc_prounds); 2771 continue; 2772 } 2773 2774 /* 2775 * If the magazine layer is disabled, break out now. 2776 */ 2777 2778 if (ccp->cc_magsize == 0) { 2779 break; 2780 } 2781 2782 if (!kmem_cpucache_magazine_alloc(ccp, cp)) 2783 break; 2784 } 2785 mutex_exit(&ccp->cc_lock); 2786 if (nbufs != 0) { 2787 ASSERT(head != NULL); 2788 2789 /* 2790 * If there was a failure, return remaining objects to 2791 * the slab 2792 */ 2793 while (head != NULL) { 2794 ASSERT(nbufs != 0); 2795 next = head->bc_next; 2796 head->bc_next = NULL; 2797 kmem_slab_free(cp, KMEM_BUF(cp, head)); 2798 head = next; 2799 nbufs--; 2800 } 2801 } 2802 ASSERT(head == NULL); 2803 ASSERT(nbufs == 0); 2804 mutex_enter(&cp->cache_lock); 2805 } 2806 2807 void * 2808 kmem_zalloc(size_t size, int kmflag) 2809 { 2810 size_t index; 2811 void *buf; 2812 2813 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 2814 kmem_cache_t *cp = kmem_alloc_table[index]; 2815 buf = kmem_cache_alloc(cp, kmflag); 2816 if (buf != NULL) { 2817 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { 2818 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2819 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2820 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2821 2822 if (cp->cache_flags & KMF_LITE) { 2823 KMEM_BUFTAG_LITE_ENTER(btp, 2824 kmem_lite_count, caller()); 2825 } 2826 } 2827 bzero(buf, size); 2828 } 2829 } else { 2830 buf = kmem_alloc(size, kmflag); 2831 if (buf != NULL) 2832 bzero(buf, size); 2833 } 2834 return (buf); 2835 } 2836 2837 void * 2838 kmem_alloc(size_t size, int kmflag) 2839 { 2840 size_t index; 2841 kmem_cache_t *cp; 2842 void *buf; 2843 2844 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 2845 cp = kmem_alloc_table[index]; 2846 /* fall through to kmem_cache_alloc() */ 2847 2848 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2849 kmem_big_alloc_table_max) { 2850 cp = kmem_big_alloc_table[index]; 2851 /* fall through to kmem_cache_alloc() */ 2852 2853 } else { 2854 if (size == 0) 2855 return (NULL); 2856 2857 buf = vmem_alloc(kmem_oversize_arena, size, 2858 kmflag & KM_VMFLAGS); 2859 if (buf == NULL) 2860 kmem_log_event(kmem_failure_log, NULL, NULL, 2861 (void *)size); 2862 else if (KMEM_DUMP(kmem_slab_cache)) { 2863 /* stats for dump intercept */ 2864 kmem_dump_oversize_allocs++; 2865 if (size > kmem_dump_oversize_max) 2866 kmem_dump_oversize_max = size; 2867 } 2868 return (buf); 2869 } 2870 2871 buf = kmem_cache_alloc(cp, kmflag); 2872 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) { 2873 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2874 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2875 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2876 2877 if (cp->cache_flags & KMF_LITE) { 2878 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller()); 2879 } 2880 } 2881 return (buf); 2882 } 2883 2884 void 2885 kmem_free(void *buf, size_t size) 2886 { 2887 size_t index; 2888 kmem_cache_t *cp; 2889 2890 if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) { 2891 cp = kmem_alloc_table[index]; 2892 /* fall through to kmem_cache_free() */ 2893 2894 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2895 kmem_big_alloc_table_max) { 2896 cp = kmem_big_alloc_table[index]; 2897 /* fall through to kmem_cache_free() */ 2898 2899 } else { 2900 EQUIV(buf == NULL, size == 0); 2901 if (buf == NULL && size == 0) 2902 return; 2903 vmem_free(kmem_oversize_arena, buf, size); 2904 return; 2905 } 2906 2907 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { 2908 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2909 uint32_t *ip = (uint32_t *)btp; 2910 if (ip[1] != KMEM_SIZE_ENCODE(size)) { 2911 if (*(uint64_t *)buf == KMEM_FREE_PATTERN) { 2912 kmem_error(KMERR_DUPFREE, cp, buf); 2913 return; 2914 } 2915 if (KMEM_SIZE_VALID(ip[1])) { 2916 ip[0] = KMEM_SIZE_ENCODE(size); 2917 kmem_error(KMERR_BADSIZE, cp, buf); 2918 } else { 2919 kmem_error(KMERR_REDZONE, cp, buf); 2920 } 2921 return; 2922 } 2923 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) { 2924 kmem_error(KMERR_REDZONE, cp, buf); 2925 return; 2926 } 2927 btp->bt_redzone = KMEM_REDZONE_PATTERN; 2928 if (cp->cache_flags & KMF_LITE) { 2929 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, 2930 caller()); 2931 } 2932 } 2933 kmem_cache_free(cp, buf); 2934 } 2935 2936 void * 2937 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) 2938 { 2939 size_t realsize = size + vmp->vm_quantum; 2940 void *addr; 2941 2942 /* 2943 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding 2944 * vm_quantum will cause integer wraparound. Check for this, and 2945 * blow off the firewall page in this case. Note that such a 2946 * giant allocation (the entire kernel address space) can never 2947 * be satisfied, so it will either fail immediately (VM_NOSLEEP) 2948 * or sleep forever (VM_SLEEP). Thus, there is no need for a 2949 * corresponding check in kmem_firewall_va_free(). 2950 */ 2951 if (realsize < size) 2952 realsize = size; 2953 2954 /* 2955 * While boot still owns resource management, make sure that this 2956 * redzone virtual address allocation is properly accounted for in 2957 * OBPs "virtual-memory" "available" lists because we're 2958 * effectively claiming them for a red zone. If we don't do this, 2959 * the available lists become too fragmented and too large for the 2960 * current boot/kernel memory list interface. 2961 */ 2962 addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT); 2963 2964 if (addr != NULL && kvseg.s_base == NULL && realsize != size) 2965 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum); 2966 2967 return (addr); 2968 } 2969 2970 void 2971 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) 2972 { 2973 ASSERT((kvseg.s_base == NULL ? 2974 va_to_pfn((char *)addr + size) : 2975 hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID); 2976 2977 vmem_free(vmp, addr, size + vmp->vm_quantum); 2978 } 2979 2980 /* 2981 * Try to allocate at least `size' bytes of memory without sleeping or 2982 * panicking. Return actual allocated size in `asize'. If allocation failed, 2983 * try final allocation with sleep or panic allowed. 2984 */ 2985 void * 2986 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag) 2987 { 2988 void *p; 2989 2990 *asize = P2ROUNDUP(size, KMEM_ALIGN); 2991 do { 2992 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC); 2993 if (p != NULL) 2994 return (p); 2995 *asize += KMEM_ALIGN; 2996 } while (*asize <= PAGESIZE); 2997 2998 *asize = P2ROUNDUP(size, KMEM_ALIGN); 2999 return (kmem_alloc(*asize, kmflag)); 3000 } 3001 3002 /* 3003 * Reclaim all unused memory from a cache. 3004 */ 3005 static void 3006 kmem_cache_reap(kmem_cache_t *cp) 3007 { 3008 ASSERT(taskq_member(kmem_taskq, curthread)); 3009 cp->cache_reap++; 3010 3011 /* 3012 * Ask the cache's owner to free some memory if possible. 3013 * The idea is to handle things like the inode cache, which 3014 * typically sits on a bunch of memory that it doesn't truly 3015 * *need*. Reclaim policy is entirely up to the owner; this 3016 * callback is just an advisory plea for help. 3017 */ 3018 if (cp->cache_reclaim != NULL) { 3019 long delta; 3020 3021 /* 3022 * Reclaimed memory should be reapable (not included in the 3023 * depot's working set). 3024 */ 3025 delta = cp->cache_full.ml_total; 3026 cp->cache_reclaim(cp->cache_private); 3027 delta = cp->cache_full.ml_total - delta; 3028 if (delta > 0) { 3029 mutex_enter(&cp->cache_depot_lock); 3030 cp->cache_full.ml_reaplimit += delta; 3031 cp->cache_full.ml_min += delta; 3032 mutex_exit(&cp->cache_depot_lock); 3033 } 3034 } 3035 3036 kmem_depot_ws_reap(cp); 3037 3038 if (cp->cache_defrag != NULL && !kmem_move_noreap) { 3039 kmem_cache_defrag(cp); 3040 } 3041 } 3042 3043 static void 3044 kmem_reap_timeout(void *flag_arg) 3045 { 3046 uint32_t *flag = (uint32_t *)flag_arg; 3047 3048 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 3049 *flag = 0; 3050 } 3051 3052 static void 3053 kmem_reap_done(void *flag) 3054 { 3055 if (!callout_init_done) { 3056 /* can't schedule a timeout at this point */ 3057 kmem_reap_timeout(flag); 3058 } else { 3059 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval); 3060 } 3061 } 3062 3063 static void 3064 kmem_reap_start(void *flag) 3065 { 3066 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 3067 3068 if (flag == &kmem_reaping) { 3069 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 3070 /* 3071 * if we have segkp under heap, reap segkp cache. 3072 */ 3073 if (segkp_fromheap) 3074 segkp_cache_free(); 3075 } 3076 else 3077 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 3078 3079 /* 3080 * We use taskq_dispatch() to schedule a timeout to clear 3081 * the flag so that kmem_reap() becomes self-throttling: 3082 * we won't reap again until the current reap completes *and* 3083 * at least kmem_reap_interval ticks have elapsed. 3084 */ 3085 if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP)) 3086 kmem_reap_done(flag); 3087 } 3088 3089 static void 3090 kmem_reap_common(void *flag_arg) 3091 { 3092 uint32_t *flag = (uint32_t *)flag_arg; 3093 3094 if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL || 3095 atomic_cas_32(flag, 0, 1) != 0) 3096 return; 3097 3098 /* 3099 * It may not be kosher to do memory allocation when a reap is called 3100 * (for example, if vmem_populate() is in the call chain). So we 3101 * start the reap going with a TQ_NOALLOC dispatch. If the dispatch 3102 * fails, we reset the flag, and the next reap will try again. 3103 */ 3104 if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC)) 3105 *flag = 0; 3106 } 3107 3108 /* 3109 * Reclaim all unused memory from all caches. Called from the VM system 3110 * when memory gets tight. 3111 */ 3112 void 3113 kmem_reap(void) 3114 { 3115 kmem_reap_common(&kmem_reaping); 3116 } 3117 3118 /* 3119 * Reclaim all unused memory from identifier arenas, called when a vmem 3120 * arena not back by memory is exhausted. Since reaping memory-backed caches 3121 * cannot help with identifier exhaustion, we avoid both a large amount of 3122 * work and unwanted side-effects from reclaim callbacks. 3123 */ 3124 void 3125 kmem_reap_idspace(void) 3126 { 3127 kmem_reap_common(&kmem_reaping_idspace); 3128 } 3129 3130 /* 3131 * Purge all magazines from a cache and set its magazine limit to zero. 3132 * All calls are serialized by the kmem_taskq lock, except for the final 3133 * call from kmem_cache_destroy(). 3134 */ 3135 static void 3136 kmem_cache_magazine_purge(kmem_cache_t *cp) 3137 { 3138 kmem_cpu_cache_t *ccp; 3139 kmem_magazine_t *mp, *pmp; 3140 int rounds, prounds, cpu_seqid; 3141 3142 ASSERT(!list_link_active(&cp->cache_link) || 3143 taskq_member(kmem_taskq, curthread)); 3144 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 3145 3146 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3147 ccp = &cp->cache_cpu[cpu_seqid]; 3148 3149 mutex_enter(&ccp->cc_lock); 3150 mp = ccp->cc_loaded; 3151 pmp = ccp->cc_ploaded; 3152 rounds = ccp->cc_rounds; 3153 prounds = ccp->cc_prounds; 3154 ccp->cc_loaded = NULL; 3155 ccp->cc_ploaded = NULL; 3156 ccp->cc_rounds = -1; 3157 ccp->cc_prounds = -1; 3158 ccp->cc_magsize = 0; 3159 mutex_exit(&ccp->cc_lock); 3160 3161 if (mp) 3162 kmem_magazine_destroy(cp, mp, rounds); 3163 if (pmp) 3164 kmem_magazine_destroy(cp, pmp, prounds); 3165 } 3166 3167 kmem_depot_ws_zero(cp); 3168 kmem_depot_ws_reap(cp); 3169 } 3170 3171 /* 3172 * Enable per-cpu magazines on a cache. 3173 */ 3174 static void 3175 kmem_cache_magazine_enable(kmem_cache_t *cp) 3176 { 3177 int cpu_seqid; 3178 3179 if (cp->cache_flags & KMF_NOMAGAZINE) 3180 return; 3181 3182 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3183 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3184 mutex_enter(&ccp->cc_lock); 3185 ccp->cc_magsize = cp->cache_magtype->mt_magsize; 3186 mutex_exit(&ccp->cc_lock); 3187 } 3188 3189 } 3190 3191 /* 3192 * Allow our caller to determine if there are running reaps. 3193 * 3194 * This call is very conservative and may return B_TRUE even when 3195 * reaping activity isn't active. If it returns B_FALSE, then reaping 3196 * activity is definitely inactive. 3197 */ 3198 boolean_t 3199 kmem_cache_reap_active(void) 3200 { 3201 return (!taskq_empty(kmem_taskq)); 3202 } 3203 3204 /* 3205 * Reap (almost) everything soon. 3206 * 3207 * Note: this does not wait for the reap-tasks to complete. Caller 3208 * should use kmem_cache_reap_active() (above) and/or moderation to 3209 * avoid scheduling too many reap-tasks. 3210 */ 3211 void 3212 kmem_cache_reap_soon(kmem_cache_t *cp) 3213 { 3214 ASSERT(list_link_active(&cp->cache_link)); 3215 3216 kmem_depot_ws_zero(cp); 3217 3218 (void) taskq_dispatch(kmem_taskq, 3219 (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP); 3220 } 3221 3222 /* 3223 * Recompute a cache's magazine size. The trade-off is that larger magazines 3224 * provide a higher transfer rate with the depot, while smaller magazines 3225 * reduce memory consumption. Magazine resizing is an expensive operation; 3226 * it should not be done frequently. 3227 * 3228 * Changes to the magazine size are serialized by the kmem_taskq lock. 3229 * 3230 * Note: at present this only grows the magazine size. It might be useful 3231 * to allow shrinkage too. 3232 */ 3233 static void 3234 kmem_cache_magazine_resize(kmem_cache_t *cp) 3235 { 3236 kmem_magtype_t *mtp = cp->cache_magtype; 3237 3238 ASSERT(taskq_member(kmem_taskq, curthread)); 3239 3240 if (cp->cache_chunksize < mtp->mt_maxbuf) { 3241 kmem_cache_magazine_purge(cp); 3242 mutex_enter(&cp->cache_depot_lock); 3243 cp->cache_magtype = ++mtp; 3244 cp->cache_depot_contention_prev = 3245 cp->cache_depot_contention + INT_MAX; 3246 mutex_exit(&cp->cache_depot_lock); 3247 kmem_cache_magazine_enable(cp); 3248 } 3249 } 3250 3251 /* 3252 * Rescale a cache's hash table, so that the table size is roughly the 3253 * cache size. We want the average lookup time to be extremely small. 3254 */ 3255 static void 3256 kmem_hash_rescale(kmem_cache_t *cp) 3257 { 3258 kmem_bufctl_t **old_table, **new_table, *bcp; 3259 size_t old_size, new_size, h; 3260 3261 ASSERT(taskq_member(kmem_taskq, curthread)); 3262 3263 new_size = MAX(KMEM_HASH_INITIAL, 3264 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); 3265 old_size = cp->cache_hash_mask + 1; 3266 3267 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 3268 return; 3269 3270 new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *), 3271 VM_NOSLEEP); 3272 if (new_table == NULL) 3273 return; 3274 bzero(new_table, new_size * sizeof (void *)); 3275 3276 mutex_enter(&cp->cache_lock); 3277 3278 old_size = cp->cache_hash_mask + 1; 3279 old_table = cp->cache_hash_table; 3280 3281 cp->cache_hash_mask = new_size - 1; 3282 cp->cache_hash_table = new_table; 3283 cp->cache_rescale++; 3284 3285 for (h = 0; h < old_size; h++) { 3286 bcp = old_table[h]; 3287 while (bcp != NULL) { 3288 void *addr = bcp->bc_addr; 3289 kmem_bufctl_t *next_bcp = bcp->bc_next; 3290 kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr); 3291 bcp->bc_next = *hash_bucket; 3292 *hash_bucket = bcp; 3293 bcp = next_bcp; 3294 } 3295 } 3296 3297 mutex_exit(&cp->cache_lock); 3298 3299 vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *)); 3300 } 3301 3302 /* 3303 * Perform periodic maintenance on a cache: hash rescaling, depot working-set 3304 * update, magazine resizing, and slab consolidation. 3305 */ 3306 static void 3307 kmem_cache_update(kmem_cache_t *cp) 3308 { 3309 int need_hash_rescale = 0; 3310 int need_magazine_resize = 0; 3311 3312 ASSERT(MUTEX_HELD(&kmem_cache_lock)); 3313 3314 /* 3315 * If the cache has become much larger or smaller than its hash table, 3316 * fire off a request to rescale the hash table. 3317 */ 3318 mutex_enter(&cp->cache_lock); 3319 3320 if ((cp->cache_flags & KMF_HASH) && 3321 (cp->cache_buftotal > (cp->cache_hash_mask << 1) || 3322 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && 3323 cp->cache_hash_mask > KMEM_HASH_INITIAL))) 3324 need_hash_rescale = 1; 3325 3326 mutex_exit(&cp->cache_lock); 3327 3328 /* 3329 * Update the depot working set statistics. 3330 */ 3331 kmem_depot_ws_update(cp); 3332 3333 /* 3334 * If there's a lot of contention in the depot, 3335 * increase the magazine size. 3336 */ 3337 mutex_enter(&cp->cache_depot_lock); 3338 3339 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && 3340 (int)(cp->cache_depot_contention - 3341 cp->cache_depot_contention_prev) > kmem_depot_contention) 3342 need_magazine_resize = 1; 3343 3344 cp->cache_depot_contention_prev = cp->cache_depot_contention; 3345 3346 mutex_exit(&cp->cache_depot_lock); 3347 3348 if (need_hash_rescale) 3349 (void) taskq_dispatch(kmem_taskq, 3350 (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP); 3351 3352 if (need_magazine_resize) 3353 (void) taskq_dispatch(kmem_taskq, 3354 (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP); 3355 3356 if (cp->cache_defrag != NULL) 3357 (void) taskq_dispatch(kmem_taskq, 3358 (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP); 3359 } 3360 3361 static void kmem_update(void *); 3362 3363 static void 3364 kmem_update_timeout(void *dummy) 3365 { 3366 (void) timeout(kmem_update, dummy, kmem_reap_interval); 3367 } 3368 3369 static void 3370 kmem_update(void *dummy) 3371 { 3372 kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP); 3373 3374 /* 3375 * We use taskq_dispatch() to reschedule the timeout so that 3376 * kmem_update() becomes self-throttling: it won't schedule 3377 * new tasks until all previous tasks have completed. 3378 */ 3379 if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP)) 3380 kmem_update_timeout(NULL); 3381 } 3382 3383 static int 3384 kmem_cache_kstat_update(kstat_t *ksp, int rw) 3385 { 3386 struct kmem_cache_kstat *kmcp = &kmem_cache_kstat; 3387 kmem_cache_t *cp = ksp->ks_private; 3388 uint64_t cpu_buf_avail; 3389 uint64_t buf_avail = 0; 3390 int cpu_seqid; 3391 long reap; 3392 3393 ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock)); 3394 3395 if (rw == KSTAT_WRITE) 3396 return (EACCES); 3397 3398 mutex_enter(&cp->cache_lock); 3399 3400 kmcp->kmc_alloc_fail.value.ui64 = cp->cache_alloc_fail; 3401 kmcp->kmc_alloc.value.ui64 = cp->cache_slab_alloc; 3402 kmcp->kmc_free.value.ui64 = cp->cache_slab_free; 3403 kmcp->kmc_slab_alloc.value.ui64 = cp->cache_slab_alloc; 3404 kmcp->kmc_slab_free.value.ui64 = cp->cache_slab_free; 3405 3406 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3407 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3408 3409 mutex_enter(&ccp->cc_lock); 3410 3411 cpu_buf_avail = 0; 3412 if (ccp->cc_rounds > 0) 3413 cpu_buf_avail += ccp->cc_rounds; 3414 if (ccp->cc_prounds > 0) 3415 cpu_buf_avail += ccp->cc_prounds; 3416 3417 kmcp->kmc_alloc.value.ui64 += ccp->cc_alloc; 3418 kmcp->kmc_free.value.ui64 += ccp->cc_free; 3419 buf_avail += cpu_buf_avail; 3420 3421 mutex_exit(&ccp->cc_lock); 3422 } 3423 3424 mutex_enter(&cp->cache_depot_lock); 3425 3426 kmcp->kmc_depot_alloc.value.ui64 = cp->cache_full.ml_alloc; 3427 kmcp->kmc_depot_free.value.ui64 = cp->cache_empty.ml_alloc; 3428 kmcp->kmc_depot_contention.value.ui64 = cp->cache_depot_contention; 3429 kmcp->kmc_full_magazines.value.ui64 = cp->cache_full.ml_total; 3430 kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total; 3431 kmcp->kmc_magazine_size.value.ui64 = 3432 (cp->cache_flags & KMF_NOMAGAZINE) ? 3433 0 : cp->cache_magtype->mt_magsize; 3434 3435 kmcp->kmc_alloc.value.ui64 += cp->cache_full.ml_alloc; 3436 kmcp->kmc_free.value.ui64 += cp->cache_empty.ml_alloc; 3437 buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize; 3438 3439 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 3440 reap = MIN(reap, cp->cache_full.ml_total); 3441 3442 mutex_exit(&cp->cache_depot_lock); 3443 3444 kmcp->kmc_buf_size.value.ui64 = cp->cache_bufsize; 3445 kmcp->kmc_align.value.ui64 = cp->cache_align; 3446 kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize; 3447 kmcp->kmc_slab_size.value.ui64 = cp->cache_slabsize; 3448 kmcp->kmc_buf_constructed.value.ui64 = buf_avail; 3449 buf_avail += cp->cache_bufslab; 3450 kmcp->kmc_buf_avail.value.ui64 = buf_avail; 3451 kmcp->kmc_buf_inuse.value.ui64 = cp->cache_buftotal - buf_avail; 3452 kmcp->kmc_buf_total.value.ui64 = cp->cache_buftotal; 3453 kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax; 3454 kmcp->kmc_slab_create.value.ui64 = cp->cache_slab_create; 3455 kmcp->kmc_slab_destroy.value.ui64 = cp->cache_slab_destroy; 3456 kmcp->kmc_hash_size.value.ui64 = (cp->cache_flags & KMF_HASH) ? 3457 cp->cache_hash_mask + 1 : 0; 3458 kmcp->kmc_hash_lookup_depth.value.ui64 = cp->cache_lookup_depth; 3459 kmcp->kmc_hash_rescale.value.ui64 = cp->cache_rescale; 3460 kmcp->kmc_vmem_source.value.ui64 = cp->cache_arena->vm_id; 3461 kmcp->kmc_reap.value.ui64 = cp->cache_reap; 3462 3463 if (cp->cache_defrag == NULL) { 3464 kmcp->kmc_move_callbacks.value.ui64 = 0; 3465 kmcp->kmc_move_yes.value.ui64 = 0; 3466 kmcp->kmc_move_no.value.ui64 = 0; 3467 kmcp->kmc_move_later.value.ui64 = 0; 3468 kmcp->kmc_move_dont_need.value.ui64 = 0; 3469 kmcp->kmc_move_dont_know.value.ui64 = 0; 3470 kmcp->kmc_move_hunt_found.value.ui64 = 0; 3471 kmcp->kmc_move_slabs_freed.value.ui64 = 0; 3472 kmcp->kmc_defrag.value.ui64 = 0; 3473 kmcp->kmc_scan.value.ui64 = 0; 3474 kmcp->kmc_move_reclaimable.value.ui64 = 0; 3475 } else { 3476 int64_t reclaimable; 3477 3478 kmem_defrag_t *kd = cp->cache_defrag; 3479 kmcp->kmc_move_callbacks.value.ui64 = kd->kmd_callbacks; 3480 kmcp->kmc_move_yes.value.ui64 = kd->kmd_yes; 3481 kmcp->kmc_move_no.value.ui64 = kd->kmd_no; 3482 kmcp->kmc_move_later.value.ui64 = kd->kmd_later; 3483 kmcp->kmc_move_dont_need.value.ui64 = kd->kmd_dont_need; 3484 kmcp->kmc_move_dont_know.value.ui64 = kd->kmd_dont_know; 3485 kmcp->kmc_move_hunt_found.value.ui64 = 0; 3486 kmcp->kmc_move_slabs_freed.value.ui64 = kd->kmd_slabs_freed; 3487 kmcp->kmc_defrag.value.ui64 = kd->kmd_defrags; 3488 kmcp->kmc_scan.value.ui64 = kd->kmd_scans; 3489 3490 reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1); 3491 reclaimable = MAX(reclaimable, 0); 3492 reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 3493 kmcp->kmc_move_reclaimable.value.ui64 = reclaimable; 3494 } 3495 3496 mutex_exit(&cp->cache_lock); 3497 return (0); 3498 } 3499 3500 /* 3501 * Return a named statistic about a particular cache. 3502 * This shouldn't be called very often, so it's currently designed for 3503 * simplicity (leverages existing kstat support) rather than efficiency. 3504 */ 3505 uint64_t 3506 kmem_cache_stat(kmem_cache_t *cp, char *name) 3507 { 3508 int i; 3509 kstat_t *ksp = cp->cache_kstat; 3510 kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat; 3511 uint64_t value = 0; 3512 3513 if (ksp != NULL) { 3514 mutex_enter(&kmem_cache_kstat_lock); 3515 (void) kmem_cache_kstat_update(ksp, KSTAT_READ); 3516 for (i = 0; i < ksp->ks_ndata; i++) { 3517 if (strcmp(knp[i].name, name) == 0) { 3518 value = knp[i].value.ui64; 3519 break; 3520 } 3521 } 3522 mutex_exit(&kmem_cache_kstat_lock); 3523 } 3524 return (value); 3525 } 3526 3527 /* 3528 * Return an estimate of currently available kernel heap memory. 3529 * On 32-bit systems, physical memory may exceed virtual memory, 3530 * we just truncate the result at 1GB. 3531 */ 3532 size_t 3533 kmem_avail(void) 3534 { 3535 spgcnt_t rmem = availrmem - tune.t_minarmem; 3536 spgcnt_t fmem = freemem - minfree; 3537 3538 return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0), 3539 1 << (30 - PAGESHIFT)))); 3540 } 3541 3542 /* 3543 * Return the maximum amount of memory that is (in theory) allocatable 3544 * from the heap. This may be used as an estimate only since there 3545 * is no guarentee this space will still be available when an allocation 3546 * request is made, nor that the space may be allocated in one big request 3547 * due to kernel heap fragmentation. 3548 */ 3549 size_t 3550 kmem_maxavail(void) 3551 { 3552 spgcnt_t pmem = availrmem - tune.t_minarmem; 3553 spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE)); 3554 3555 return ((size_t)ptob(MAX(MIN(pmem, vmem), 0))); 3556 } 3557 3558 /* 3559 * Indicate whether memory-intensive kmem debugging is enabled. 3560 */ 3561 int 3562 kmem_debugging(void) 3563 { 3564 return (kmem_flags & (KMF_AUDIT | KMF_REDZONE)); 3565 } 3566 3567 /* binning function, sorts finely at the two extremes */ 3568 #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift) \ 3569 ((((sp)->slab_refcnt <= (binshift)) || \ 3570 (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift))) \ 3571 ? -(sp)->slab_refcnt \ 3572 : -((binshift) + ((sp)->slab_refcnt >> (binshift)))) 3573 3574 /* 3575 * Minimizing the number of partial slabs on the freelist minimizes 3576 * fragmentation (the ratio of unused buffers held by the slab layer). There are 3577 * two ways to get a slab off of the freelist: 1) free all the buffers on the 3578 * slab, and 2) allocate all the buffers on the slab. It follows that we want 3579 * the most-used slabs at the front of the list where they have the best chance 3580 * of being completely allocated, and the least-used slabs at a safe distance 3581 * from the front to improve the odds that the few remaining buffers will all be 3582 * freed before another allocation can tie up the slab. For that reason a slab 3583 * with a higher slab_refcnt sorts less than than a slab with a lower 3584 * slab_refcnt. 3585 * 3586 * However, if a slab has at least one buffer that is deemed unfreeable, we 3587 * would rather have that slab at the front of the list regardless of 3588 * slab_refcnt, since even one unfreeable buffer makes the entire slab 3589 * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move() 3590 * callback, the slab is marked unfreeable for as long as it remains on the 3591 * freelist. 3592 */ 3593 static int 3594 kmem_partial_slab_cmp(const void *p0, const void *p1) 3595 { 3596 const kmem_cache_t *cp; 3597 const kmem_slab_t *s0 = p0; 3598 const kmem_slab_t *s1 = p1; 3599 int w0, w1; 3600 size_t binshift; 3601 3602 ASSERT(KMEM_SLAB_IS_PARTIAL(s0)); 3603 ASSERT(KMEM_SLAB_IS_PARTIAL(s1)); 3604 ASSERT(s0->slab_cache == s1->slab_cache); 3605 cp = s1->slab_cache; 3606 ASSERT(MUTEX_HELD(&cp->cache_lock)); 3607 binshift = cp->cache_partial_binshift; 3608 3609 /* weight of first slab */ 3610 w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift); 3611 if (s0->slab_flags & KMEM_SLAB_NOMOVE) { 3612 w0 -= cp->cache_maxchunks; 3613 } 3614 3615 /* weight of second slab */ 3616 w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift); 3617 if (s1->slab_flags & KMEM_SLAB_NOMOVE) { 3618 w1 -= cp->cache_maxchunks; 3619 } 3620 3621 if (w0 < w1) 3622 return (-1); 3623 if (w0 > w1) 3624 return (1); 3625 3626 /* compare pointer values */ 3627 if ((uintptr_t)s0 < (uintptr_t)s1) 3628 return (-1); 3629 if ((uintptr_t)s0 > (uintptr_t)s1) 3630 return (1); 3631 3632 return (0); 3633 } 3634 3635 /* 3636 * It must be valid to call the destructor (if any) on a newly created object. 3637 * That is, the constructor (if any) must leave the object in a valid state for 3638 * the destructor. 3639 */ 3640 kmem_cache_t * 3641 kmem_cache_create( 3642 char *name, /* descriptive name for this cache */ 3643 size_t bufsize, /* size of the objects it manages */ 3644 size_t align, /* required object alignment */ 3645 int (*constructor)(void *, void *, int), /* object constructor */ 3646 void (*destructor)(void *, void *), /* object destructor */ 3647 void (*reclaim)(void *), /* memory reclaim callback */ 3648 void *private, /* pass-thru arg for constr/destr/reclaim */ 3649 vmem_t *vmp, /* vmem source for slab allocation */ 3650 int cflags) /* cache creation flags */ 3651 { 3652 int cpu_seqid; 3653 size_t chunksize; 3654 kmem_cache_t *cp; 3655 kmem_magtype_t *mtp; 3656 size_t csize = KMEM_CACHE_SIZE(max_ncpus); 3657 3658 #ifdef DEBUG 3659 /* 3660 * Cache names should conform to the rules for valid C identifiers 3661 */ 3662 if (!strident_valid(name)) { 3663 cmn_err(CE_CONT, 3664 "kmem_cache_create: '%s' is an invalid cache name\n" 3665 "cache names must conform to the rules for " 3666 "C identifiers\n", name); 3667 } 3668 #endif /* DEBUG */ 3669 3670 if (vmp == NULL) 3671 vmp = kmem_default_arena; 3672 3673 /* 3674 * If this kmem cache has an identifier vmem arena as its source, mark 3675 * it such to allow kmem_reap_idspace(). 3676 */ 3677 ASSERT(!(cflags & KMC_IDENTIFIER)); /* consumer should not set this */ 3678 if (vmp->vm_cflags & VMC_IDENTIFIER) 3679 cflags |= KMC_IDENTIFIER; 3680 3681 /* 3682 * Get a kmem_cache structure. We arrange that cp->cache_cpu[] 3683 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent 3684 * false sharing of per-CPU data. 3685 */ 3686 cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE, 3687 P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP); 3688 bzero(cp, csize); 3689 list_link_init(&cp->cache_link); 3690 3691 if (align == 0) 3692 align = KMEM_ALIGN; 3693 3694 /* 3695 * If we're not at least KMEM_ALIGN aligned, we can't use free 3696 * memory to hold bufctl information (because we can't safely 3697 * perform word loads and stores on it). 3698 */ 3699 if (align < KMEM_ALIGN) 3700 cflags |= KMC_NOTOUCH; 3701 3702 if (!ISP2(align) || align > vmp->vm_quantum) 3703 panic("kmem_cache_create: bad alignment %lu", align); 3704 3705 mutex_enter(&kmem_flags_lock); 3706 if (kmem_flags & KMF_RANDOMIZE) 3707 kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) | 3708 KMF_RANDOMIZE; 3709 cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG; 3710 mutex_exit(&kmem_flags_lock); 3711 3712 /* 3713 * Make sure all the various flags are reasonable. 3714 */ 3715 ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH)); 3716 3717 if (cp->cache_flags & KMF_LITE) { 3718 if (bufsize >= kmem_lite_minsize && 3719 align <= kmem_lite_maxalign && 3720 P2PHASE(bufsize, kmem_lite_maxalign) != 0) { 3721 cp->cache_flags |= KMF_BUFTAG; 3722 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3723 } else { 3724 cp->cache_flags &= ~KMF_DEBUG; 3725 } 3726 } 3727 3728 if (cp->cache_flags & KMF_DEADBEEF) 3729 cp->cache_flags |= KMF_REDZONE; 3730 3731 if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT)) 3732 cp->cache_flags |= KMF_NOMAGAZINE; 3733 3734 if (cflags & KMC_NODEBUG) 3735 cp->cache_flags &= ~KMF_DEBUG; 3736 3737 if (cflags & KMC_NOTOUCH) 3738 cp->cache_flags &= ~KMF_TOUCH; 3739 3740 if (cflags & KMC_PREFILL) 3741 cp->cache_flags |= KMF_PREFILL; 3742 3743 if (cflags & KMC_NOHASH) 3744 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3745 3746 if (cflags & KMC_NOMAGAZINE) 3747 cp->cache_flags |= KMF_NOMAGAZINE; 3748 3749 if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH)) 3750 cp->cache_flags |= KMF_REDZONE; 3751 3752 if (!(cp->cache_flags & KMF_AUDIT)) 3753 cp->cache_flags &= ~KMF_CONTENTS; 3754 3755 if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall && 3756 !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH)) 3757 cp->cache_flags |= KMF_FIREWALL; 3758 3759 if (vmp != kmem_default_arena || kmem_firewall_arena == NULL) 3760 cp->cache_flags &= ~KMF_FIREWALL; 3761 3762 if (cp->cache_flags & KMF_FIREWALL) { 3763 cp->cache_flags &= ~KMF_BUFTAG; 3764 cp->cache_flags |= KMF_NOMAGAZINE; 3765 ASSERT(vmp == kmem_default_arena); 3766 vmp = kmem_firewall_arena; 3767 } 3768 3769 /* 3770 * Set cache properties. 3771 */ 3772 (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN); 3773 strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1); 3774 cp->cache_bufsize = bufsize; 3775 cp->cache_align = align; 3776 cp->cache_constructor = constructor; 3777 cp->cache_destructor = destructor; 3778 cp->cache_reclaim = reclaim; 3779 cp->cache_private = private; 3780 cp->cache_arena = vmp; 3781 cp->cache_cflags = cflags; 3782 3783 /* 3784 * Determine the chunk size. 3785 */ 3786 chunksize = bufsize; 3787 3788 if (align >= KMEM_ALIGN) { 3789 chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN); 3790 cp->cache_bufctl = chunksize - KMEM_ALIGN; 3791 } 3792 3793 if (cp->cache_flags & KMF_BUFTAG) { 3794 cp->cache_bufctl = chunksize; 3795 cp->cache_buftag = chunksize; 3796 if (cp->cache_flags & KMF_LITE) 3797 chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count); 3798 else 3799 chunksize += sizeof (kmem_buftag_t); 3800 } 3801 3802 if (cp->cache_flags & KMF_DEADBEEF) { 3803 cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify); 3804 if (cp->cache_flags & KMF_LITE) 3805 cp->cache_verify = sizeof (uint64_t); 3806 } 3807 3808 cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave); 3809 3810 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align); 3811 3812 /* 3813 * Now that we know the chunk size, determine the optimal slab size. 3814 */ 3815 if (vmp == kmem_firewall_arena) { 3816 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum); 3817 cp->cache_mincolor = cp->cache_slabsize - chunksize; 3818 cp->cache_maxcolor = cp->cache_mincolor; 3819 cp->cache_flags |= KMF_HASH; 3820 ASSERT(!(cp->cache_flags & KMF_BUFTAG)); 3821 } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) && 3822 !(cp->cache_flags & KMF_AUDIT) && 3823 chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) { 3824 cp->cache_slabsize = vmp->vm_quantum; 3825 cp->cache_mincolor = 0; 3826 cp->cache_maxcolor = 3827 (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize; 3828 ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize); 3829 ASSERT(!(cp->cache_flags & KMF_AUDIT)); 3830 } else { 3831 size_t chunks, bestfit, waste, slabsize; 3832 size_t minwaste = LONG_MAX; 3833 3834 for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) { 3835 slabsize = P2ROUNDUP(chunksize * chunks, 3836 vmp->vm_quantum); 3837 chunks = slabsize / chunksize; 3838 waste = (slabsize % chunksize) / chunks; 3839 if (waste < minwaste) { 3840 minwaste = waste; 3841 bestfit = slabsize; 3842 } 3843 } 3844 if (cflags & KMC_QCACHE) 3845 bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max); 3846 cp->cache_slabsize = bestfit; 3847 cp->cache_mincolor = 0; 3848 cp->cache_maxcolor = bestfit % chunksize; 3849 cp->cache_flags |= KMF_HASH; 3850 } 3851 3852 cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize); 3853 cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1; 3854 3855 /* 3856 * Disallowing prefill when either the DEBUG or HASH flag is set or when 3857 * there is a constructor avoids some tricky issues with debug setup 3858 * that may be revisited later. We cannot allow prefill in a 3859 * metadata cache because of potential recursion. 3860 */ 3861 if (vmp == kmem_msb_arena || 3862 cp->cache_flags & (KMF_HASH | KMF_BUFTAG) || 3863 cp->cache_constructor != NULL) 3864 cp->cache_flags &= ~KMF_PREFILL; 3865 3866 if (cp->cache_flags & KMF_HASH) { 3867 ASSERT(!(cflags & KMC_NOHASH)); 3868 cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ? 3869 kmem_bufctl_audit_cache : kmem_bufctl_cache; 3870 } 3871 3872 if (cp->cache_maxcolor >= vmp->vm_quantum) 3873 cp->cache_maxcolor = vmp->vm_quantum - 1; 3874 3875 cp->cache_color = cp->cache_mincolor; 3876 3877 /* 3878 * Initialize the rest of the slab layer. 3879 */ 3880 mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL); 3881 3882 avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp, 3883 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3884 /* LINTED: E_TRUE_LOGICAL_EXPR */ 3885 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 3886 /* reuse partial slab AVL linkage for complete slab list linkage */ 3887 list_create(&cp->cache_complete_slabs, 3888 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3889 3890 if (cp->cache_flags & KMF_HASH) { 3891 cp->cache_hash_table = vmem_alloc(kmem_hash_arena, 3892 KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP); 3893 bzero(cp->cache_hash_table, 3894 KMEM_HASH_INITIAL * sizeof (void *)); 3895 cp->cache_hash_mask = KMEM_HASH_INITIAL - 1; 3896 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1; 3897 } 3898 3899 /* 3900 * Initialize the depot. 3901 */ 3902 mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL); 3903 3904 for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++) 3905 continue; 3906 3907 cp->cache_magtype = mtp; 3908 3909 /* 3910 * Initialize the CPU layer. 3911 */ 3912 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3913 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3914 mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL); 3915 ccp->cc_flags = cp->cache_flags; 3916 ccp->cc_rounds = -1; 3917 ccp->cc_prounds = -1; 3918 } 3919 3920 /* 3921 * Create the cache's kstats. 3922 */ 3923 if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name, 3924 "kmem_cache", KSTAT_TYPE_NAMED, 3925 sizeof (kmem_cache_kstat) / sizeof (kstat_named_t), 3926 KSTAT_FLAG_VIRTUAL)) != NULL) { 3927 cp->cache_kstat->ks_data = &kmem_cache_kstat; 3928 cp->cache_kstat->ks_update = kmem_cache_kstat_update; 3929 cp->cache_kstat->ks_private = cp; 3930 cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock; 3931 kstat_install(cp->cache_kstat); 3932 } 3933 3934 /* 3935 * Add the cache to the global list. This makes it visible 3936 * to kmem_update(), so the cache must be ready for business. 3937 */ 3938 mutex_enter(&kmem_cache_lock); 3939 list_insert_tail(&kmem_caches, cp); 3940 mutex_exit(&kmem_cache_lock); 3941 3942 if (kmem_ready) 3943 kmem_cache_magazine_enable(cp); 3944 3945 return (cp); 3946 } 3947 3948 static int 3949 kmem_move_cmp(const void *buf, const void *p) 3950 { 3951 const kmem_move_t *kmm = p; 3952 uintptr_t v1 = (uintptr_t)buf; 3953 uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf; 3954 return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0)); 3955 } 3956 3957 static void 3958 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd) 3959 { 3960 kmd->kmd_reclaim_numer = 1; 3961 } 3962 3963 /* 3964 * Initially, when choosing candidate slabs for buffers to move, we want to be 3965 * very selective and take only slabs that are less than 3966 * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate 3967 * slabs, then we raise the allocation ceiling incrementally. The reclaim 3968 * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no 3969 * longer fragmented. 3970 */ 3971 static void 3972 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction) 3973 { 3974 if (direction > 0) { 3975 /* make it easier to find a candidate slab */ 3976 if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) { 3977 kmd->kmd_reclaim_numer++; 3978 } 3979 } else { 3980 /* be more selective */ 3981 if (kmd->kmd_reclaim_numer > 1) { 3982 kmd->kmd_reclaim_numer--; 3983 } 3984 } 3985 } 3986 3987 void 3988 kmem_cache_set_move(kmem_cache_t *cp, 3989 kmem_cbrc_t (*move)(void *, void *, size_t, void *)) 3990 { 3991 kmem_defrag_t *defrag; 3992 3993 ASSERT(move != NULL); 3994 /* 3995 * The consolidator does not support NOTOUCH caches because kmem cannot 3996 * initialize their slabs with the 0xbaddcafe memory pattern, which sets 3997 * a low order bit usable by clients to distinguish uninitialized memory 3998 * from known objects (see kmem_slab_create). 3999 */ 4000 ASSERT(!(cp->cache_cflags & KMC_NOTOUCH)); 4001 ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER)); 4002 4003 /* 4004 * We should not be holding anyone's cache lock when calling 4005 * kmem_cache_alloc(), so allocate in all cases before acquiring the 4006 * lock. 4007 */ 4008 defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP); 4009 4010 mutex_enter(&cp->cache_lock); 4011 4012 if (KMEM_IS_MOVABLE(cp)) { 4013 if (cp->cache_move == NULL) { 4014 ASSERT(cp->cache_slab_alloc == 0); 4015 4016 cp->cache_defrag = defrag; 4017 defrag = NULL; /* nothing to free */ 4018 bzero(cp->cache_defrag, sizeof (kmem_defrag_t)); 4019 avl_create(&cp->cache_defrag->kmd_moves_pending, 4020 kmem_move_cmp, sizeof (kmem_move_t), 4021 offsetof(kmem_move_t, kmm_entry)); 4022 /* LINTED: E_TRUE_LOGICAL_EXPR */ 4023 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 4024 /* reuse the slab's AVL linkage for deadlist linkage */ 4025 list_create(&cp->cache_defrag->kmd_deadlist, 4026 sizeof (kmem_slab_t), 4027 offsetof(kmem_slab_t, slab_link)); 4028 kmem_reset_reclaim_threshold(cp->cache_defrag); 4029 } 4030 cp->cache_move = move; 4031 } 4032 4033 mutex_exit(&cp->cache_lock); 4034 4035 if (defrag != NULL) { 4036 kmem_cache_free(kmem_defrag_cache, defrag); /* unused */ 4037 } 4038 } 4039 4040 void 4041 kmem_cache_destroy(kmem_cache_t *cp) 4042 { 4043 int cpu_seqid; 4044 4045 /* 4046 * Remove the cache from the global cache list so that no one else 4047 * can schedule tasks on its behalf, wait for any pending tasks to 4048 * complete, purge the cache, and then destroy it. 4049 */ 4050 mutex_enter(&kmem_cache_lock); 4051 list_remove(&kmem_caches, cp); 4052 mutex_exit(&kmem_cache_lock); 4053 4054 if (kmem_taskq != NULL) 4055 taskq_wait(kmem_taskq); 4056 4057 if (kmem_move_taskq != NULL && cp->cache_defrag != NULL) 4058 taskq_wait(kmem_move_taskq); 4059 4060 kmem_cache_magazine_purge(cp); 4061 4062 mutex_enter(&cp->cache_lock); 4063 if (cp->cache_buftotal != 0) 4064 cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty", 4065 cp->cache_name, (void *)cp); 4066 if (cp->cache_defrag != NULL) { 4067 avl_destroy(&cp->cache_defrag->kmd_moves_pending); 4068 list_destroy(&cp->cache_defrag->kmd_deadlist); 4069 kmem_cache_free(kmem_defrag_cache, cp->cache_defrag); 4070 cp->cache_defrag = NULL; 4071 } 4072 /* 4073 * The cache is now dead. There should be no further activity. We 4074 * enforce this by setting land mines in the constructor, destructor, 4075 * reclaim, and move routines that induce a kernel text fault if 4076 * invoked. 4077 */ 4078 cp->cache_constructor = (int (*)(void *, void *, int))1; 4079 cp->cache_destructor = (void (*)(void *, void *))2; 4080 cp->cache_reclaim = (void (*)(void *))3; 4081 cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4; 4082 mutex_exit(&cp->cache_lock); 4083 4084 kstat_delete(cp->cache_kstat); 4085 4086 if (cp->cache_hash_table != NULL) 4087 vmem_free(kmem_hash_arena, cp->cache_hash_table, 4088 (cp->cache_hash_mask + 1) * sizeof (void *)); 4089 4090 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) 4091 mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock); 4092 4093 mutex_destroy(&cp->cache_depot_lock); 4094 mutex_destroy(&cp->cache_lock); 4095 4096 vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus)); 4097 } 4098 4099 /*ARGSUSED*/ 4100 static int 4101 kmem_cpu_setup(cpu_setup_t what, int id, void *arg) 4102 { 4103 ASSERT(MUTEX_HELD(&cpu_lock)); 4104 if (what == CPU_UNCONFIG) { 4105 kmem_cache_applyall(kmem_cache_magazine_purge, 4106 kmem_taskq, TQ_SLEEP); 4107 kmem_cache_applyall(kmem_cache_magazine_enable, 4108 kmem_taskq, TQ_SLEEP); 4109 } 4110 return (0); 4111 } 4112 4113 static void 4114 kmem_alloc_caches_create(const int *array, size_t count, 4115 kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift) 4116 { 4117 char name[KMEM_CACHE_NAMELEN + 1]; 4118 size_t table_unit = (1 << shift); /* range of one alloc_table entry */ 4119 size_t size = table_unit; 4120 int i; 4121 4122 for (i = 0; i < count; i++) { 4123 size_t cache_size = array[i]; 4124 size_t align = KMEM_ALIGN; 4125 kmem_cache_t *cp; 4126 4127 /* if the table has an entry for maxbuf, we're done */ 4128 if (size > maxbuf) 4129 break; 4130 4131 /* cache size must be a multiple of the table unit */ 4132 ASSERT(P2PHASE(cache_size, table_unit) == 0); 4133 4134 /* 4135 * If they allocate a multiple of the coherency granularity, 4136 * they get a coherency-granularity-aligned address. 4137 */ 4138 if (IS_P2ALIGNED(cache_size, 64)) 4139 align = 64; 4140 if (IS_P2ALIGNED(cache_size, PAGESIZE)) 4141 align = PAGESIZE; 4142 (void) snprintf(name, sizeof (name), 4143 "kmem_alloc_%lu", cache_size); 4144 cp = kmem_cache_create(name, cache_size, align, 4145 NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC); 4146 4147 while (size <= cache_size) { 4148 alloc_table[(size - 1) >> shift] = cp; 4149 size += table_unit; 4150 } 4151 } 4152 4153 ASSERT(size > maxbuf); /* i.e. maxbuf <= max(cache_size) */ 4154 } 4155 4156 static void 4157 kmem_cache_init(int pass, int use_large_pages) 4158 { 4159 int i; 4160 size_t maxbuf; 4161 kmem_magtype_t *mtp; 4162 4163 for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) { 4164 char name[KMEM_CACHE_NAMELEN + 1]; 4165 4166 mtp = &kmem_magtype[i]; 4167 (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize); 4168 mtp->mt_cache = kmem_cache_create(name, 4169 (mtp->mt_magsize + 1) * sizeof (void *), 4170 mtp->mt_align, NULL, NULL, NULL, NULL, 4171 kmem_msb_arena, KMC_NOHASH); 4172 } 4173 4174 kmem_slab_cache = kmem_cache_create("kmem_slab_cache", 4175 sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL, 4176 kmem_msb_arena, KMC_NOHASH); 4177 4178 kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache", 4179 sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL, 4180 kmem_msb_arena, KMC_NOHASH); 4181 4182 kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache", 4183 sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL, 4184 kmem_msb_arena, KMC_NOHASH); 4185 4186 if (pass == 2) { 4187 kmem_va_arena = vmem_create("kmem_va", 4188 NULL, 0, PAGESIZE, 4189 vmem_alloc, vmem_free, heap_arena, 4190 8 * PAGESIZE, VM_SLEEP); 4191 4192 if (use_large_pages) { 4193 kmem_default_arena = vmem_xcreate("kmem_default", 4194 NULL, 0, PAGESIZE, 4195 segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena, 4196 0, VMC_DUMPSAFE | VM_SLEEP); 4197 } else { 4198 kmem_default_arena = vmem_create("kmem_default", 4199 NULL, 0, PAGESIZE, 4200 segkmem_alloc, segkmem_free, kmem_va_arena, 4201 0, VMC_DUMPSAFE | VM_SLEEP); 4202 } 4203 4204 /* Figure out what our maximum cache size is */ 4205 maxbuf = kmem_max_cached; 4206 if (maxbuf <= KMEM_MAXBUF) { 4207 maxbuf = 0; 4208 kmem_max_cached = KMEM_MAXBUF; 4209 } else { 4210 size_t size = 0; 4211 size_t max = 4212 sizeof (kmem_big_alloc_sizes) / sizeof (int); 4213 /* 4214 * Round maxbuf up to an existing cache size. If maxbuf 4215 * is larger than the largest cache, we truncate it to 4216 * the largest cache's size. 4217 */ 4218 for (i = 0; i < max; i++) { 4219 size = kmem_big_alloc_sizes[i]; 4220 if (maxbuf <= size) 4221 break; 4222 } 4223 kmem_max_cached = maxbuf = size; 4224 } 4225 4226 /* 4227 * The big alloc table may not be completely overwritten, so 4228 * we clear out any stale cache pointers from the first pass. 4229 */ 4230 bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table)); 4231 } else { 4232 /* 4233 * During the first pass, the kmem_alloc_* caches 4234 * are treated as metadata. 4235 */ 4236 kmem_default_arena = kmem_msb_arena; 4237 maxbuf = KMEM_BIG_MAXBUF_32BIT; 4238 } 4239 4240 /* 4241 * Set up the default caches to back kmem_alloc() 4242 */ 4243 kmem_alloc_caches_create( 4244 kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int), 4245 kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT); 4246 4247 kmem_alloc_caches_create( 4248 kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int), 4249 kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT); 4250 4251 kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT; 4252 } 4253 4254 void 4255 kmem_init(void) 4256 { 4257 kmem_cache_t *cp; 4258 int old_kmem_flags = kmem_flags; 4259 int use_large_pages = 0; 4260 size_t maxverify, minfirewall; 4261 4262 kstat_init(); 4263 4264 /* 4265 * Don't do firewalled allocations if the heap is less than 1TB 4266 * (i.e. on a 32-bit kernel) 4267 * The resulting VM_NEXTFIT allocations would create too much 4268 * fragmentation in a small heap. 4269 */ 4270 #if defined(_LP64) 4271 maxverify = minfirewall = PAGESIZE / 2; 4272 #else 4273 maxverify = minfirewall = ULONG_MAX; 4274 #endif 4275 4276 /* LINTED */ 4277 ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE); 4278 4279 list_create(&kmem_caches, sizeof (kmem_cache_t), 4280 offsetof(kmem_cache_t, cache_link)); 4281 4282 kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE, 4283 vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE, 4284 VM_SLEEP | VMC_NO_QCACHE); 4285 4286 kmem_msb_arena = vmem_create("kmem_msb", NULL, 0, 4287 PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, 4288 VMC_DUMPSAFE | VM_SLEEP); 4289 4290 kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN, 4291 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 4292 4293 kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN, 4294 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 4295 4296 kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN, 4297 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4298 4299 kmem_firewall_va_arena = vmem_create("kmem_firewall_va", 4300 NULL, 0, PAGESIZE, 4301 kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena, 4302 0, VM_SLEEP); 4303 4304 kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE, 4305 segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0, 4306 VMC_DUMPSAFE | VM_SLEEP); 4307 4308 /* temporary oversize arena for mod_read_system_file */ 4309 kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE, 4310 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4311 4312 kmem_reap_interval = 15 * hz; 4313 4314 /* 4315 * Read /etc/system. This is a chicken-and-egg problem because 4316 * kmem_flags may be set in /etc/system, but mod_read_system_file() 4317 * needs to use the allocator. The simplest solution is to create 4318 * all the standard kmem caches, read /etc/system, destroy all the 4319 * caches we just created, and then create them all again in light 4320 * of the (possibly) new kmem_flags and other kmem tunables. 4321 */ 4322 kmem_cache_init(1, 0); 4323 4324 mod_read_system_file(boothowto & RB_ASKNAME); 4325 4326 while ((cp = list_tail(&kmem_caches)) != NULL) 4327 kmem_cache_destroy(cp); 4328 4329 vmem_destroy(kmem_oversize_arena); 4330 4331 if (old_kmem_flags & KMF_STICKY) 4332 kmem_flags = old_kmem_flags; 4333 4334 if (!(kmem_flags & KMF_AUDIT)) 4335 vmem_seg_size = offsetof(vmem_seg_t, vs_thread); 4336 4337 if (kmem_maxverify == 0) 4338 kmem_maxverify = maxverify; 4339 4340 if (kmem_minfirewall == 0) 4341 kmem_minfirewall = minfirewall; 4342 4343 /* 4344 * give segkmem a chance to figure out if we are using large pages 4345 * for the kernel heap 4346 */ 4347 use_large_pages = segkmem_lpsetup(); 4348 4349 /* 4350 * To protect against corruption, we keep the actual number of callers 4351 * KMF_LITE records seperate from the tunable. We arbitrarily clamp 4352 * to 16, since the overhead for small buffers quickly gets out of 4353 * hand. 4354 * 4355 * The real limit would depend on the needs of the largest KMC_NOHASH 4356 * cache. 4357 */ 4358 kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16); 4359 kmem_lite_pcs = kmem_lite_count; 4360 4361 /* 4362 * Normally, we firewall oversized allocations when possible, but 4363 * if we are using large pages for kernel memory, and we don't have 4364 * any non-LITE debugging flags set, we want to allocate oversized 4365 * buffers from large pages, and so skip the firewalling. 4366 */ 4367 if (use_large_pages && 4368 ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) { 4369 kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0, 4370 PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena, 4371 0, VMC_DUMPSAFE | VM_SLEEP); 4372 } else { 4373 kmem_oversize_arena = vmem_create("kmem_oversize", 4374 NULL, 0, PAGESIZE, 4375 segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX? 4376 kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE | 4377 VM_SLEEP); 4378 } 4379 4380 kmem_cache_init(2, use_large_pages); 4381 4382 if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) { 4383 if (kmem_transaction_log_size == 0) 4384 kmem_transaction_log_size = kmem_maxavail() / 50; 4385 kmem_transaction_log = kmem_log_init(kmem_transaction_log_size); 4386 } 4387 4388 if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) { 4389 if (kmem_content_log_size == 0) 4390 kmem_content_log_size = kmem_maxavail() / 50; 4391 kmem_content_log = kmem_log_init(kmem_content_log_size); 4392 } 4393 4394 kmem_failure_log = kmem_log_init(kmem_failure_log_size); 4395 4396 kmem_slab_log = kmem_log_init(kmem_slab_log_size); 4397 4398 /* 4399 * Initialize STREAMS message caches so allocb() is available. 4400 * This allows us to initialize the logging framework (cmn_err(9F), 4401 * strlog(9F), etc) so we can start recording messages. 4402 */ 4403 streams_msg_init(); 4404 4405 /* 4406 * Initialize the ZSD framework in Zones so modules loaded henceforth 4407 * can register their callbacks. 4408 */ 4409 zone_zsd_init(); 4410 4411 log_init(); 4412 taskq_init(); 4413 4414 /* 4415 * Warn about invalid or dangerous values of kmem_flags. 4416 * Always warn about unsupported values. 4417 */ 4418 if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | 4419 KMF_CONTENTS | KMF_LITE)) != 0) || 4420 ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE)) 4421 cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. " 4422 "See the Solaris Tunable Parameters Reference Manual.", 4423 kmem_flags); 4424 4425 #ifdef DEBUG 4426 if ((kmem_flags & KMF_DEBUG) == 0) 4427 cmn_err(CE_NOTE, "kmem debugging disabled."); 4428 #else 4429 /* 4430 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE, 4431 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled 4432 * if KMF_AUDIT is set). We should warn the user about the performance 4433 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE 4434 * isn't set (since that disables AUDIT). 4435 */ 4436 if (!(kmem_flags & KMF_LITE) && 4437 (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0) 4438 cmn_err(CE_WARN, "High-overhead kmem debugging features " 4439 "enabled (kmem_flags = 0x%x). Performance degradation " 4440 "and large memory overhead possible. See the Solaris " 4441 "Tunable Parameters Reference Manual.", kmem_flags); 4442 #endif /* not DEBUG */ 4443 4444 kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP); 4445 4446 kmem_ready = 1; 4447 4448 /* 4449 * Initialize the platform-specific aligned/DMA memory allocator. 4450 */ 4451 ka_init(); 4452 4453 /* 4454 * Initialize 32-bit ID cache. 4455 */ 4456 id32_init(); 4457 4458 /* 4459 * Initialize the networking stack so modules loaded can 4460 * register their callbacks. 4461 */ 4462 netstack_init(); 4463 } 4464 4465 static void 4466 kmem_move_init(void) 4467 { 4468 kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache", 4469 sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL, 4470 kmem_msb_arena, KMC_NOHASH); 4471 kmem_move_cache = kmem_cache_create("kmem_move_cache", 4472 sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL, 4473 kmem_msb_arena, KMC_NOHASH); 4474 4475 /* 4476 * kmem guarantees that move callbacks are sequential and that even 4477 * across multiple caches no two moves ever execute simultaneously. 4478 * Move callbacks are processed on a separate taskq so that client code 4479 * does not interfere with internal maintenance tasks. 4480 */ 4481 kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1, 4482 minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE); 4483 } 4484 4485 void 4486 kmem_thread_init(void) 4487 { 4488 kmem_move_init(); 4489 kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri, 4490 300, INT_MAX, TASKQ_PREPOPULATE); 4491 } 4492 4493 void 4494 kmem_mp_init(void) 4495 { 4496 mutex_enter(&cpu_lock); 4497 register_cpu_setup_func(kmem_cpu_setup, NULL); 4498 mutex_exit(&cpu_lock); 4499 4500 kmem_update_timeout(NULL); 4501 4502 taskq_mp_init(); 4503 } 4504 4505 /* 4506 * Return the slab of the allocated buffer, or NULL if the buffer is not 4507 * allocated. This function may be called with a known slab address to determine 4508 * whether or not the buffer is allocated, or with a NULL slab address to obtain 4509 * an allocated buffer's slab. 4510 */ 4511 static kmem_slab_t * 4512 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf) 4513 { 4514 kmem_bufctl_t *bcp, *bufbcp; 4515 4516 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4517 ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf)); 4518 4519 if (cp->cache_flags & KMF_HASH) { 4520 for (bcp = *KMEM_HASH(cp, buf); 4521 (bcp != NULL) && (bcp->bc_addr != buf); 4522 bcp = bcp->bc_next) { 4523 continue; 4524 } 4525 ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1); 4526 return (bcp == NULL ? NULL : bcp->bc_slab); 4527 } 4528 4529 if (sp == NULL) { 4530 sp = KMEM_SLAB(cp, buf); 4531 } 4532 bufbcp = KMEM_BUFCTL(cp, buf); 4533 for (bcp = sp->slab_head; 4534 (bcp != NULL) && (bcp != bufbcp); 4535 bcp = bcp->bc_next) { 4536 continue; 4537 } 4538 return (bcp == NULL ? sp : NULL); 4539 } 4540 4541 static boolean_t 4542 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags) 4543 { 4544 long refcnt = sp->slab_refcnt; 4545 4546 ASSERT(cp->cache_defrag != NULL); 4547 4548 /* 4549 * For code coverage we want to be able to move an object within the 4550 * same slab (the only partial slab) even if allocating the destination 4551 * buffer resulted in a completely allocated slab. 4552 */ 4553 if (flags & KMM_DEBUG) { 4554 return ((flags & KMM_DESPERATE) || 4555 ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0)); 4556 } 4557 4558 /* If we're desperate, we don't care if the client said NO. */ 4559 if (flags & KMM_DESPERATE) { 4560 return (refcnt < sp->slab_chunks); /* any partial */ 4561 } 4562 4563 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4564 return (B_FALSE); 4565 } 4566 4567 if ((refcnt == 1) || kmem_move_any_partial) { 4568 return (refcnt < sp->slab_chunks); 4569 } 4570 4571 /* 4572 * The reclaim threshold is adjusted at each kmem_cache_scan() so that 4573 * slabs with a progressively higher percentage of used buffers can be 4574 * reclaimed until the cache as a whole is no longer fragmented. 4575 * 4576 * sp->slab_refcnt kmd_reclaim_numer 4577 * --------------- < ------------------ 4578 * sp->slab_chunks KMEM_VOID_FRACTION 4579 */ 4580 return ((refcnt * KMEM_VOID_FRACTION) < 4581 (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer)); 4582 } 4583 4584 /* 4585 * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(), 4586 * or when the buffer is freed. 4587 */ 4588 static void 4589 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4590 { 4591 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4592 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4593 4594 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4595 return; 4596 } 4597 4598 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4599 if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) { 4600 avl_remove(&cp->cache_partial_slabs, sp); 4601 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 4602 sp->slab_stuck_offset = (uint32_t)-1; 4603 avl_add(&cp->cache_partial_slabs, sp); 4604 } 4605 } else { 4606 sp->slab_later_count = 0; 4607 sp->slab_stuck_offset = (uint32_t)-1; 4608 } 4609 } 4610 4611 static void 4612 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4613 { 4614 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4615 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4616 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4617 4618 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4619 return; 4620 } 4621 4622 avl_remove(&cp->cache_partial_slabs, sp); 4623 sp->slab_later_count = 0; 4624 sp->slab_flags |= KMEM_SLAB_NOMOVE; 4625 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf); 4626 avl_add(&cp->cache_partial_slabs, sp); 4627 } 4628 4629 static void kmem_move_end(kmem_cache_t *, kmem_move_t *); 4630 4631 /* 4632 * The move callback takes two buffer addresses, the buffer to be moved, and a 4633 * newly allocated and constructed buffer selected by kmem as the destination. 4634 * It also takes the size of the buffer and an optional user argument specified 4635 * at cache creation time. kmem guarantees that the buffer to be moved has not 4636 * been unmapped by the virtual memory subsystem. Beyond that, it cannot 4637 * guarantee the present whereabouts of the buffer to be moved, so it is up to 4638 * the client to safely determine whether or not it is still using the buffer. 4639 * The client must not free either of the buffers passed to the move callback, 4640 * since kmem wants to free them directly to the slab layer. The client response 4641 * tells kmem which of the two buffers to free: 4642 * 4643 * YES kmem frees the old buffer (the move was successful) 4644 * NO kmem frees the new buffer, marks the slab of the old buffer 4645 * non-reclaimable to avoid bothering the client again 4646 * LATER kmem frees the new buffer, increments slab_later_count 4647 * DONT_KNOW kmem frees the new buffer 4648 * DONT_NEED kmem frees both the old buffer and the new buffer 4649 * 4650 * The pending callback argument now being processed contains both of the 4651 * buffers (old and new) passed to the move callback function, the slab of the 4652 * old buffer, and flags related to the move request, such as whether or not the 4653 * system was desperate for memory. 4654 * 4655 * Slabs are not freed while there is a pending callback, but instead are kept 4656 * on a deadlist, which is drained after the last callback completes. This means 4657 * that slabs are safe to access until kmem_move_end(), no matter how many of 4658 * their buffers have been freed. Once slab_refcnt reaches zero, it stays at 4659 * zero for as long as the slab remains on the deadlist and until the slab is 4660 * freed. 4661 */ 4662 static void 4663 kmem_move_buffer(kmem_move_t *callback) 4664 { 4665 kmem_cbrc_t response; 4666 kmem_slab_t *sp = callback->kmm_from_slab; 4667 kmem_cache_t *cp = sp->slab_cache; 4668 boolean_t free_on_slab; 4669 4670 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4671 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4672 ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf)); 4673 4674 /* 4675 * The number of allocated buffers on the slab may have changed since we 4676 * last checked the slab's reclaimability (when the pending move was 4677 * enqueued), or the client may have responded NO when asked to move 4678 * another buffer on the same slab. 4679 */ 4680 if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) { 4681 kmem_slab_free(cp, callback->kmm_to_buf); 4682 kmem_move_end(cp, callback); 4683 return; 4684 } 4685 4686 /* 4687 * Checking the slab layer is easy, so we might as well do that here 4688 * in case we can avoid bothering the client. 4689 */ 4690 mutex_enter(&cp->cache_lock); 4691 free_on_slab = (kmem_slab_allocated(cp, sp, 4692 callback->kmm_from_buf) == NULL); 4693 mutex_exit(&cp->cache_lock); 4694 4695 if (free_on_slab) { 4696 kmem_slab_free(cp, callback->kmm_to_buf); 4697 kmem_move_end(cp, callback); 4698 return; 4699 } 4700 4701 if (cp->cache_flags & KMF_BUFTAG) { 4702 /* 4703 * Make kmem_cache_alloc_debug() apply the constructor for us. 4704 */ 4705 if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf, 4706 KM_NOSLEEP, 1, caller()) != 0) { 4707 kmem_move_end(cp, callback); 4708 return; 4709 } 4710 } else if (cp->cache_constructor != NULL && 4711 cp->cache_constructor(callback->kmm_to_buf, cp->cache_private, 4712 KM_NOSLEEP) != 0) { 4713 atomic_inc_64(&cp->cache_alloc_fail); 4714 kmem_slab_free(cp, callback->kmm_to_buf); 4715 kmem_move_end(cp, callback); 4716 return; 4717 } 4718 4719 cp->cache_defrag->kmd_callbacks++; 4720 cp->cache_defrag->kmd_thread = curthread; 4721 cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf; 4722 cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf; 4723 DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *, 4724 callback); 4725 4726 response = cp->cache_move(callback->kmm_from_buf, 4727 callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private); 4728 4729 DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *, 4730 callback, kmem_cbrc_t, response); 4731 cp->cache_defrag->kmd_thread = NULL; 4732 cp->cache_defrag->kmd_from_buf = NULL; 4733 cp->cache_defrag->kmd_to_buf = NULL; 4734 4735 if (response == KMEM_CBRC_YES) { 4736 cp->cache_defrag->kmd_yes++; 4737 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4738 /* slab safe to access until kmem_move_end() */ 4739 if (sp->slab_refcnt == 0) 4740 cp->cache_defrag->kmd_slabs_freed++; 4741 mutex_enter(&cp->cache_lock); 4742 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4743 mutex_exit(&cp->cache_lock); 4744 kmem_move_end(cp, callback); 4745 return; 4746 } 4747 4748 switch (response) { 4749 case KMEM_CBRC_NO: 4750 cp->cache_defrag->kmd_no++; 4751 mutex_enter(&cp->cache_lock); 4752 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4753 mutex_exit(&cp->cache_lock); 4754 break; 4755 case KMEM_CBRC_LATER: 4756 cp->cache_defrag->kmd_later++; 4757 mutex_enter(&cp->cache_lock); 4758 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4759 mutex_exit(&cp->cache_lock); 4760 break; 4761 } 4762 4763 if (++sp->slab_later_count >= KMEM_DISBELIEF) { 4764 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4765 } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) { 4766 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, 4767 callback->kmm_from_buf); 4768 } 4769 mutex_exit(&cp->cache_lock); 4770 break; 4771 case KMEM_CBRC_DONT_NEED: 4772 cp->cache_defrag->kmd_dont_need++; 4773 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4774 if (sp->slab_refcnt == 0) 4775 cp->cache_defrag->kmd_slabs_freed++; 4776 mutex_enter(&cp->cache_lock); 4777 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4778 mutex_exit(&cp->cache_lock); 4779 break; 4780 case KMEM_CBRC_DONT_KNOW: 4781 /* 4782 * If we don't know if we can move this buffer or not, we'll 4783 * just assume that we can't: if the buffer is in fact free, 4784 * then it is sitting in one of the per-CPU magazines or in 4785 * a full magazine in the depot layer. Either way, because 4786 * defrag is induced in the same logic that reaps a cache, 4787 * it's likely that full magazines will be returned to the 4788 * system soon (thereby accomplishing what we're trying to 4789 * accomplish here: return those magazines to their slabs). 4790 * Given this, any work that we might do now to locate a buffer 4791 * in a magazine is wasted (and expensive!) work; we bump 4792 * a counter in this case and otherwise assume that we can't 4793 * move it. 4794 */ 4795 cp->cache_defrag->kmd_dont_know++; 4796 break; 4797 default: 4798 panic("'%s' (%p) unexpected move callback response %d\n", 4799 cp->cache_name, (void *)cp, response); 4800 } 4801 4802 kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE); 4803 kmem_move_end(cp, callback); 4804 } 4805 4806 /* Return B_FALSE if there is insufficient memory for the move request. */ 4807 static boolean_t 4808 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags) 4809 { 4810 void *to_buf; 4811 avl_index_t index; 4812 kmem_move_t *callback, *pending; 4813 ulong_t n; 4814 4815 ASSERT(taskq_member(kmem_taskq, curthread)); 4816 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4817 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 4818 4819 callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP); 4820 4821 if (callback == NULL) 4822 return (B_FALSE); 4823 4824 callback->kmm_from_slab = sp; 4825 callback->kmm_from_buf = buf; 4826 callback->kmm_flags = flags; 4827 4828 mutex_enter(&cp->cache_lock); 4829 4830 n = avl_numnodes(&cp->cache_partial_slabs); 4831 if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) { 4832 mutex_exit(&cp->cache_lock); 4833 kmem_cache_free(kmem_move_cache, callback); 4834 return (B_TRUE); /* there is no need for the move request */ 4835 } 4836 4837 pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index); 4838 if (pending != NULL) { 4839 /* 4840 * If the move is already pending and we're desperate now, 4841 * update the move flags. 4842 */ 4843 if (flags & KMM_DESPERATE) { 4844 pending->kmm_flags |= KMM_DESPERATE; 4845 } 4846 mutex_exit(&cp->cache_lock); 4847 kmem_cache_free(kmem_move_cache, callback); 4848 return (B_TRUE); 4849 } 4850 4851 to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs), 4852 B_FALSE); 4853 callback->kmm_to_buf = to_buf; 4854 avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index); 4855 4856 mutex_exit(&cp->cache_lock); 4857 4858 if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer, 4859 callback, TQ_NOSLEEP)) { 4860 mutex_enter(&cp->cache_lock); 4861 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4862 mutex_exit(&cp->cache_lock); 4863 kmem_slab_free(cp, to_buf); 4864 kmem_cache_free(kmem_move_cache, callback); 4865 return (B_FALSE); 4866 } 4867 4868 return (B_TRUE); 4869 } 4870 4871 static void 4872 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback) 4873 { 4874 avl_index_t index; 4875 4876 ASSERT(cp->cache_defrag != NULL); 4877 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4878 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4879 4880 mutex_enter(&cp->cache_lock); 4881 VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending, 4882 callback->kmm_from_buf, &index) != NULL); 4883 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4884 if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) { 4885 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 4886 kmem_slab_t *sp; 4887 4888 /* 4889 * The last pending move completed. Release all slabs from the 4890 * front of the dead list except for any slab at the tail that 4891 * needs to be released from the context of kmem_move_buffers(). 4892 * kmem deferred unmapping the buffers on these slabs in order 4893 * to guarantee that buffers passed to the move callback have 4894 * been touched only by kmem or by the client itself. 4895 */ 4896 while ((sp = list_remove_head(deadlist)) != NULL) { 4897 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 4898 list_insert_tail(deadlist, sp); 4899 break; 4900 } 4901 cp->cache_defrag->kmd_deadcount--; 4902 cp->cache_slab_destroy++; 4903 mutex_exit(&cp->cache_lock); 4904 kmem_slab_destroy(cp, sp); 4905 mutex_enter(&cp->cache_lock); 4906 } 4907 } 4908 mutex_exit(&cp->cache_lock); 4909 kmem_cache_free(kmem_move_cache, callback); 4910 } 4911 4912 /* 4913 * Move buffers from least used slabs first by scanning backwards from the end 4914 * of the partial slab list. Scan at most max_scan candidate slabs and move 4915 * buffers from at most max_slabs slabs (0 for all partial slabs in both cases). 4916 * If desperate to reclaim memory, move buffers from any partial slab, otherwise 4917 * skip slabs with a ratio of allocated buffers at or above the current 4918 * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the 4919 * scan is aborted) so that the caller can adjust the reclaimability threshold 4920 * depending on how many reclaimable slabs it finds. 4921 * 4922 * kmem_move_buffers() drops and reacquires cache_lock every time it issues a 4923 * move request, since it is not valid for kmem_move_begin() to call 4924 * kmem_cache_alloc() or taskq_dispatch() with cache_lock held. 4925 */ 4926 static int 4927 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs, 4928 int flags) 4929 { 4930 kmem_slab_t *sp; 4931 void *buf; 4932 int i, j; /* slab index, buffer index */ 4933 int s; /* reclaimable slabs */ 4934 int b; /* allocated (movable) buffers on reclaimable slab */ 4935 boolean_t success; 4936 int refcnt; 4937 int nomove; 4938 4939 ASSERT(taskq_member(kmem_taskq, curthread)); 4940 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4941 ASSERT(kmem_move_cache != NULL); 4942 ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL); 4943 ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) : 4944 avl_numnodes(&cp->cache_partial_slabs) > 1); 4945 4946 if (kmem_move_blocked) { 4947 return (0); 4948 } 4949 4950 if (kmem_move_fulltilt) { 4951 flags |= KMM_DESPERATE; 4952 } 4953 4954 if (max_scan == 0 || (flags & KMM_DESPERATE)) { 4955 /* 4956 * Scan as many slabs as needed to find the desired number of 4957 * candidate slabs. 4958 */ 4959 max_scan = (size_t)-1; 4960 } 4961 4962 if (max_slabs == 0 || (flags & KMM_DESPERATE)) { 4963 /* Find as many candidate slabs as possible. */ 4964 max_slabs = (size_t)-1; 4965 } 4966 4967 sp = avl_last(&cp->cache_partial_slabs); 4968 ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 4969 for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) && 4970 ((sp != avl_first(&cp->cache_partial_slabs)) || 4971 (flags & KMM_DEBUG)); 4972 sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) { 4973 4974 if (!kmem_slab_is_reclaimable(cp, sp, flags)) { 4975 continue; 4976 } 4977 s++; 4978 4979 /* Look for allocated buffers to move. */ 4980 for (j = 0, b = 0, buf = sp->slab_base; 4981 (j < sp->slab_chunks) && (b < sp->slab_refcnt); 4982 buf = (((char *)buf) + cp->cache_chunksize), j++) { 4983 4984 if (kmem_slab_allocated(cp, sp, buf) == NULL) { 4985 continue; 4986 } 4987 4988 b++; 4989 4990 /* 4991 * Prevent the slab from being destroyed while we drop 4992 * cache_lock and while the pending move is not yet 4993 * registered. Flag the pending move while 4994 * kmd_moves_pending may still be empty, since we can't 4995 * yet rely on a non-zero pending move count to prevent 4996 * the slab from being destroyed. 4997 */ 4998 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 4999 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 5000 /* 5001 * Recheck refcnt and nomove after reacquiring the lock, 5002 * since these control the order of partial slabs, and 5003 * we want to know if we can pick up the scan where we 5004 * left off. 5005 */ 5006 refcnt = sp->slab_refcnt; 5007 nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE); 5008 mutex_exit(&cp->cache_lock); 5009 5010 success = kmem_move_begin(cp, sp, buf, flags); 5011 5012 /* 5013 * Now, before the lock is reacquired, kmem could 5014 * process all pending move requests and purge the 5015 * deadlist, so that upon reacquiring the lock, sp has 5016 * been remapped. Or, the client may free all the 5017 * objects on the slab while the pending moves are still 5018 * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING 5019 * flag causes the slab to be put at the end of the 5020 * deadlist and prevents it from being destroyed, since 5021 * we plan to destroy it here after reacquiring the 5022 * lock. 5023 */ 5024 mutex_enter(&cp->cache_lock); 5025 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 5026 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 5027 5028 if (sp->slab_refcnt == 0) { 5029 list_t *deadlist = 5030 &cp->cache_defrag->kmd_deadlist; 5031 list_remove(deadlist, sp); 5032 5033 if (!avl_is_empty( 5034 &cp->cache_defrag->kmd_moves_pending)) { 5035 /* 5036 * A pending move makes it unsafe to 5037 * destroy the slab, because even though 5038 * the move is no longer needed, the 5039 * context where that is determined 5040 * requires the slab to exist. 5041 * Fortunately, a pending move also 5042 * means we don't need to destroy the 5043 * slab here, since it will get 5044 * destroyed along with any other slabs 5045 * on the deadlist after the last 5046 * pending move completes. 5047 */ 5048 list_insert_head(deadlist, sp); 5049 return (-1); 5050 } 5051 5052 /* 5053 * Destroy the slab now if it was completely 5054 * freed while we dropped cache_lock and there 5055 * are no pending moves. Since slab_refcnt 5056 * cannot change once it reaches zero, no new 5057 * pending moves from that slab are possible. 5058 */ 5059 cp->cache_defrag->kmd_deadcount--; 5060 cp->cache_slab_destroy++; 5061 mutex_exit(&cp->cache_lock); 5062 kmem_slab_destroy(cp, sp); 5063 mutex_enter(&cp->cache_lock); 5064 /* 5065 * Since we can't pick up the scan where we left 5066 * off, abort the scan and say nothing about the 5067 * number of reclaimable slabs. 5068 */ 5069 return (-1); 5070 } 5071 5072 if (!success) { 5073 /* 5074 * Abort the scan if there is not enough memory 5075 * for the request and say nothing about the 5076 * number of reclaimable slabs. 5077 */ 5078 return (-1); 5079 } 5080 5081 /* 5082 * The slab's position changed while the lock was 5083 * dropped, so we don't know where we are in the 5084 * sequence any more. 5085 */ 5086 if (sp->slab_refcnt != refcnt) { 5087 /* 5088 * If this is a KMM_DEBUG move, the slab_refcnt 5089 * may have changed because we allocated a 5090 * destination buffer on the same slab. In that 5091 * case, we're not interested in counting it. 5092 */ 5093 return (-1); 5094 } 5095 if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove) 5096 return (-1); 5097 5098 /* 5099 * Generating a move request allocates a destination 5100 * buffer from the slab layer, bumping the first partial 5101 * slab if it is completely allocated. If the current 5102 * slab becomes the first partial slab as a result, we 5103 * can't continue to scan backwards. 5104 * 5105 * If this is a KMM_DEBUG move and we allocated the 5106 * destination buffer from the last partial slab, then 5107 * the buffer we're moving is on the same slab and our 5108 * slab_refcnt has changed, causing us to return before 5109 * reaching here if there are no partial slabs left. 5110 */ 5111 ASSERT(!avl_is_empty(&cp->cache_partial_slabs)); 5112 if (sp == avl_first(&cp->cache_partial_slabs)) { 5113 /* 5114 * We're not interested in a second KMM_DEBUG 5115 * move. 5116 */ 5117 goto end_scan; 5118 } 5119 } 5120 } 5121 end_scan: 5122 5123 return (s); 5124 } 5125 5126 typedef struct kmem_move_notify_args { 5127 kmem_cache_t *kmna_cache; 5128 void *kmna_buf; 5129 } kmem_move_notify_args_t; 5130 5131 static void 5132 kmem_cache_move_notify_task(void *arg) 5133 { 5134 kmem_move_notify_args_t *args = arg; 5135 kmem_cache_t *cp = args->kmna_cache; 5136 void *buf = args->kmna_buf; 5137 kmem_slab_t *sp; 5138 5139 ASSERT(taskq_member(kmem_taskq, curthread)); 5140 ASSERT(list_link_active(&cp->cache_link)); 5141 5142 kmem_free(args, sizeof (kmem_move_notify_args_t)); 5143 mutex_enter(&cp->cache_lock); 5144 sp = kmem_slab_allocated(cp, NULL, buf); 5145 5146 /* Ignore the notification if the buffer is no longer allocated. */ 5147 if (sp == NULL) { 5148 mutex_exit(&cp->cache_lock); 5149 return; 5150 } 5151 5152 /* Ignore the notification if there's no reason to move the buffer. */ 5153 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 5154 /* 5155 * So far the notification is not ignored. Ignore the 5156 * notification if the slab is not marked by an earlier refusal 5157 * to move a buffer. 5158 */ 5159 if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) && 5160 (sp->slab_later_count == 0)) { 5161 mutex_exit(&cp->cache_lock); 5162 return; 5163 } 5164 5165 kmem_slab_move_yes(cp, sp, buf); 5166 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 5167 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 5168 mutex_exit(&cp->cache_lock); 5169 /* see kmem_move_buffers() about dropping the lock */ 5170 (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY); 5171 mutex_enter(&cp->cache_lock); 5172 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 5173 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 5174 if (sp->slab_refcnt == 0) { 5175 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 5176 list_remove(deadlist, sp); 5177 5178 if (!avl_is_empty( 5179 &cp->cache_defrag->kmd_moves_pending)) { 5180 list_insert_head(deadlist, sp); 5181 mutex_exit(&cp->cache_lock); 5182 return; 5183 } 5184 5185 cp->cache_defrag->kmd_deadcount--; 5186 cp->cache_slab_destroy++; 5187 mutex_exit(&cp->cache_lock); 5188 kmem_slab_destroy(cp, sp); 5189 return; 5190 } 5191 } else { 5192 kmem_slab_move_yes(cp, sp, buf); 5193 } 5194 mutex_exit(&cp->cache_lock); 5195 } 5196 5197 void 5198 kmem_cache_move_notify(kmem_cache_t *cp, void *buf) 5199 { 5200 kmem_move_notify_args_t *args; 5201 5202 args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP); 5203 if (args != NULL) { 5204 args->kmna_cache = cp; 5205 args->kmna_buf = buf; 5206 if (!taskq_dispatch(kmem_taskq, 5207 (task_func_t *)kmem_cache_move_notify_task, args, 5208 TQ_NOSLEEP)) 5209 kmem_free(args, sizeof (kmem_move_notify_args_t)); 5210 } 5211 } 5212 5213 static void 5214 kmem_cache_defrag(kmem_cache_t *cp) 5215 { 5216 size_t n; 5217 5218 ASSERT(cp->cache_defrag != NULL); 5219 5220 mutex_enter(&cp->cache_lock); 5221 n = avl_numnodes(&cp->cache_partial_slabs); 5222 if (n > 1) { 5223 /* kmem_move_buffers() drops and reacquires cache_lock */ 5224 cp->cache_defrag->kmd_defrags++; 5225 (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE); 5226 } 5227 mutex_exit(&cp->cache_lock); 5228 } 5229 5230 /* Is this cache above the fragmentation threshold? */ 5231 static boolean_t 5232 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree) 5233 { 5234 /* 5235 * nfree kmem_frag_numer 5236 * ------------------ > --------------- 5237 * cp->cache_buftotal kmem_frag_denom 5238 */ 5239 return ((nfree * kmem_frag_denom) > 5240 (cp->cache_buftotal * kmem_frag_numer)); 5241 } 5242 5243 static boolean_t 5244 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap) 5245 { 5246 boolean_t fragmented; 5247 uint64_t nfree; 5248 5249 ASSERT(MUTEX_HELD(&cp->cache_lock)); 5250 *doreap = B_FALSE; 5251 5252 if (kmem_move_fulltilt) { 5253 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 5254 return (B_TRUE); 5255 } 5256 } else { 5257 if ((cp->cache_complete_slab_count + avl_numnodes( 5258 &cp->cache_partial_slabs)) < kmem_frag_minslabs) { 5259 return (B_FALSE); 5260 } 5261 } 5262 5263 nfree = cp->cache_bufslab; 5264 fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) && 5265 kmem_cache_frag_threshold(cp, nfree)); 5266 5267 /* 5268 * Free buffers in the magazine layer appear allocated from the point of 5269 * view of the slab layer. We want to know if the slab layer would 5270 * appear fragmented if we included free buffers from magazines that 5271 * have fallen out of the working set. 5272 */ 5273 if (!fragmented) { 5274 long reap; 5275 5276 mutex_enter(&cp->cache_depot_lock); 5277 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 5278 reap = MIN(reap, cp->cache_full.ml_total); 5279 mutex_exit(&cp->cache_depot_lock); 5280 5281 nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 5282 if (kmem_cache_frag_threshold(cp, nfree)) { 5283 *doreap = B_TRUE; 5284 } 5285 } 5286 5287 return (fragmented); 5288 } 5289 5290 /* Called periodically from kmem_taskq */ 5291 static void 5292 kmem_cache_scan(kmem_cache_t *cp) 5293 { 5294 boolean_t reap = B_FALSE; 5295 kmem_defrag_t *kmd; 5296 5297 ASSERT(taskq_member(kmem_taskq, curthread)); 5298 5299 mutex_enter(&cp->cache_lock); 5300 5301 kmd = cp->cache_defrag; 5302 if (kmd->kmd_consolidate > 0) { 5303 kmd->kmd_consolidate--; 5304 mutex_exit(&cp->cache_lock); 5305 kmem_cache_reap(cp); 5306 return; 5307 } 5308 5309 if (kmem_cache_is_fragmented(cp, &reap)) { 5310 size_t slabs_found; 5311 5312 /* 5313 * Consolidate reclaimable slabs from the end of the partial 5314 * slab list (scan at most kmem_reclaim_scan_range slabs to find 5315 * reclaimable slabs). Keep track of how many candidate slabs we 5316 * looked for and how many we actually found so we can adjust 5317 * the definition of a candidate slab if we're having trouble 5318 * finding them. 5319 * 5320 * kmem_move_buffers() drops and reacquires cache_lock. 5321 */ 5322 kmd->kmd_scans++; 5323 slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range, 5324 kmem_reclaim_max_slabs, 0); 5325 if (slabs_found >= 0) { 5326 kmd->kmd_slabs_sought += kmem_reclaim_max_slabs; 5327 kmd->kmd_slabs_found += slabs_found; 5328 } 5329 5330 if (++kmd->kmd_tries >= kmem_reclaim_scan_range) { 5331 kmd->kmd_tries = 0; 5332 5333 /* 5334 * If we had difficulty finding candidate slabs in 5335 * previous scans, adjust the threshold so that 5336 * candidates are easier to find. 5337 */ 5338 if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) { 5339 kmem_adjust_reclaim_threshold(kmd, -1); 5340 } else if ((kmd->kmd_slabs_found * 2) < 5341 kmd->kmd_slabs_sought) { 5342 kmem_adjust_reclaim_threshold(kmd, 1); 5343 } 5344 kmd->kmd_slabs_sought = 0; 5345 kmd->kmd_slabs_found = 0; 5346 } 5347 } else { 5348 kmem_reset_reclaim_threshold(cp->cache_defrag); 5349 #ifdef DEBUG 5350 if (!avl_is_empty(&cp->cache_partial_slabs)) { 5351 /* 5352 * In a debug kernel we want the consolidator to 5353 * run occasionally even when there is plenty of 5354 * memory. 5355 */ 5356 uint16_t debug_rand; 5357 5358 (void) random_get_bytes((uint8_t *)&debug_rand, 2); 5359 if (!kmem_move_noreap && 5360 ((debug_rand % kmem_mtb_reap) == 0)) { 5361 mutex_exit(&cp->cache_lock); 5362 kmem_cache_reap(cp); 5363 return; 5364 } else if ((debug_rand % kmem_mtb_move) == 0) { 5365 kmd->kmd_scans++; 5366 (void) kmem_move_buffers(cp, 5367 kmem_reclaim_scan_range, 1, KMM_DEBUG); 5368 } 5369 } 5370 #endif /* DEBUG */ 5371 } 5372 5373 mutex_exit(&cp->cache_lock); 5374 5375 if (reap) 5376 kmem_depot_ws_reap(cp); 5377 }