1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright 2018, Joyent, Inc.
26 */
27
28 /*
29 * Kernel memory allocator, as described in the following two papers and a
30 * statement about the consolidator:
31 *
32 * Jeff Bonwick,
33 * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
34 * Proceedings of the Summer 1994 Usenix Conference.
35 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
36 *
37 * Jeff Bonwick and Jonathan Adams,
38 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
39 * Arbitrary Resources.
40 * Proceedings of the 2001 Usenix Conference.
41 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
42 *
43 * kmem Slab Consolidator Big Theory Statement:
44 *
45 * 1. Motivation
46 *
47 * As stated in Bonwick94, slabs provide the following advantages over other
48 * allocation structures in terms of memory fragmentation:
49 *
50 * - Internal fragmentation (per-buffer wasted space) is minimal.
51 * - Severe external fragmentation (unused buffers on the free list) is
52 * unlikely.
53 *
54 * Segregating objects by size eliminates one source of external fragmentation,
55 * and according to Bonwick:
56 *
57 * The other reason that slabs reduce external fragmentation is that all
58 * objects in a slab are of the same type, so they have the same lifetime
59 * distribution. The resulting segregation of short-lived and long-lived
60 * objects at slab granularity reduces the likelihood of an entire page being
61 * held hostage due to a single long-lived allocation [Barrett93, Hanson90].
62 *
63 * While unlikely, severe external fragmentation remains possible. Clients that
64 * allocate both short- and long-lived objects from the same cache cannot
65 * anticipate the distribution of long-lived objects within the allocator's slab
66 * implementation. Even a small percentage of long-lived objects distributed
67 * randomly across many slabs can lead to a worst case scenario where the client
68 * frees the majority of its objects and the system gets back almost none of the
69 * slabs. Despite the client doing what it reasonably can to help the system
70 * reclaim memory, the allocator cannot shake free enough slabs because of
71 * lonely allocations stubbornly hanging on. Although the allocator is in a
72 * position to diagnose the fragmentation, there is nothing that the allocator
73 * by itself can do about it. It only takes a single allocated object to prevent
74 * an entire slab from being reclaimed, and any object handed out by
75 * kmem_cache_alloc() is by definition in the client's control. Conversely,
76 * although the client is in a position to move a long-lived object, it has no
77 * way of knowing if the object is causing fragmentation, and if so, where to
78 * move it. A solution necessarily requires further cooperation between the
79 * allocator and the client.
80 *
81 * 2. Move Callback
82 *
83 * The kmem slab consolidator therefore adds a move callback to the
84 * allocator/client interface, improving worst-case external fragmentation in
85 * kmem caches that supply a function to move objects from one memory location
86 * to another. In a situation of low memory kmem attempts to consolidate all of
87 * a cache's slabs at once; otherwise it works slowly to bring external
88 * fragmentation within the 1/8 limit guaranteed for internal fragmentation,
89 * thereby helping to avoid a low memory situation in the future.
90 *
91 * The callback has the following signature:
92 *
93 * kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg)
94 *
95 * It supplies the kmem client with two addresses: the allocated object that
96 * kmem wants to move and a buffer selected by kmem for the client to use as the
97 * copy destination. The callback is kmem's way of saying "Please get off of
98 * this buffer and use this one instead." kmem knows where it wants to move the
99 * object in order to best reduce fragmentation. All the client needs to know
100 * about the second argument (void *new) is that it is an allocated, constructed
101 * object ready to take the contents of the old object. When the move function
102 * is called, the system is likely to be low on memory, and the new object
103 * spares the client from having to worry about allocating memory for the
104 * requested move. The third argument supplies the size of the object, in case a
105 * single move function handles multiple caches whose objects differ only in
106 * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional
107 * user argument passed to the constructor, destructor, and reclaim functions is
108 * also passed to the move callback.
109 *
110 * 2.1 Setting the Move Callback
111 *
112 * The client sets the move callback after creating the cache and before
113 * allocating from it:
114 *
115 * object_cache = kmem_cache_create(...);
116 * kmem_cache_set_move(object_cache, object_move);
117 *
118 * 2.2 Move Callback Return Values
119 *
120 * Only the client knows about its own data and when is a good time to move it.
121 * The client is cooperating with kmem to return unused memory to the system,
122 * and kmem respectfully accepts this help at the client's convenience. When
123 * asked to move an object, the client can respond with any of the following:
124 *
125 * typedef enum kmem_cbrc {
126 * KMEM_CBRC_YES,
127 * KMEM_CBRC_NO,
128 * KMEM_CBRC_LATER,
129 * KMEM_CBRC_DONT_NEED,
130 * KMEM_CBRC_DONT_KNOW
131 * } kmem_cbrc_t;
132 *
133 * The client must not explicitly kmem_cache_free() either of the objects passed
134 * to the callback, since kmem wants to free them directly to the slab layer
135 * (bypassing the per-CPU magazine layer). The response tells kmem which of the
136 * objects to free:
137 *
138 * YES: (Did it) The client moved the object, so kmem frees the old one.
139 * NO: (Never) The client refused, so kmem frees the new object (the
140 * unused copy destination). kmem also marks the slab of the old
141 * object so as not to bother the client with further callbacks for
142 * that object as long as the slab remains on the partial slab list.
143 * (The system won't be getting the slab back as long as the
144 * immovable object holds it hostage, so there's no point in moving
145 * any of its objects.)
146 * LATER: The client is using the object and cannot move it now, so kmem
147 * frees the new object (the unused copy destination). kmem still
148 * attempts to move other objects off the slab, since it expects to
149 * succeed in clearing the slab in a later callback. The client
150 * should use LATER instead of NO if the object is likely to become
151 * movable very soon.
152 * DONT_NEED: The client no longer needs the object, so kmem frees the old along
153 * with the new object (the unused copy destination). This response
154 * is the client's opportunity to be a model citizen and give back as
155 * much as it can.
156 * DONT_KNOW: The client does not know about the object because
157 * a) the client has just allocated the object and not yet put it
158 * wherever it expects to find known objects
159 * b) the client has removed the object from wherever it expects to
160 * find known objects and is about to free it, or
161 * c) the client has freed the object.
162 * In all these cases (a, b, and c) kmem frees the new object (the
163 * unused copy destination). In the first case, the object is in
164 * use and the correct action is that for LATER; in the latter two
165 * cases, we know that the object is either freed or about to be
166 * freed, in which case it is either already in a magazine or about
167 * to be in one. In these cases, we know that the object will either
168 * be reallocated and reused, or it will end up in a full magazine
169 * that will be reaped (thereby liberating the slab). Because it
170 * is prohibitively expensive to differentiate these cases, and
171 * because the defrag code is executed when we're low on memory
172 * (thereby biasing the system to reclaim full magazines) we treat
173 * all DONT_KNOW cases as LATER and rely on cache reaping to
174 * generally clean up full magazines. While we take the same action
175 * for these cases, we maintain their semantic distinction: if
176 * defragmentation is not occurring, it is useful to know if this
177 * is due to objects in use (LATER) or objects in an unknown state
178 * of transition (DONT_KNOW).
179 *
180 * 2.3 Object States
181 *
182 * Neither kmem nor the client can be assumed to know the object's whereabouts
183 * at the time of the callback. An object belonging to a kmem cache may be in
184 * any of the following states:
185 *
186 * 1. Uninitialized on the slab
187 * 2. Allocated from the slab but not constructed (still uninitialized)
188 * 3. Allocated from the slab, constructed, but not yet ready for business
189 * (not in a valid state for the move callback)
190 * 4. In use (valid and known to the client)
191 * 5. About to be freed (no longer in a valid state for the move callback)
192 * 6. Freed to a magazine (still constructed)
193 * 7. Allocated from a magazine, not yet ready for business (not in a valid
194 * state for the move callback), and about to return to state #4
195 * 8. Deconstructed on a magazine that is about to be freed
196 * 9. Freed to the slab
197 *
198 * Since the move callback may be called at any time while the object is in any
199 * of the above states (except state #1), the client needs a safe way to
200 * determine whether or not it knows about the object. Specifically, the client
201 * needs to know whether or not the object is in state #4, the only state in
202 * which a move is valid. If the object is in any other state, the client should
203 * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of
204 * the object's fields.
205 *
206 * Note that although an object may be in state #4 when kmem initiates the move
207 * request, the object may no longer be in that state by the time kmem actually
208 * calls the move function. Not only does the client free objects
209 * asynchronously, kmem itself puts move requests on a queue where thay are
210 * pending until kmem processes them from another context. Also, objects freed
211 * to a magazine appear allocated from the point of view of the slab layer, so
212 * kmem may even initiate requests for objects in a state other than state #4.
213 *
214 * 2.3.1 Magazine Layer
215 *
216 * An important insight revealed by the states listed above is that the magazine
217 * layer is populated only by kmem_cache_free(). Magazines of constructed
218 * objects are never populated directly from the slab layer (which contains raw,
219 * unconstructed objects). Whenever an allocation request cannot be satisfied
220 * from the magazine layer, the magazines are bypassed and the request is
221 * satisfied from the slab layer (creating a new slab if necessary). kmem calls
222 * the object constructor only when allocating from the slab layer, and only in
223 * response to kmem_cache_alloc() or to prepare the destination buffer passed in
224 * the move callback. kmem does not preconstruct objects in anticipation of
225 * kmem_cache_alloc().
226 *
227 * 2.3.2 Object Constructor and Destructor
228 *
229 * If the client supplies a destructor, it must be valid to call the destructor
230 * on a newly created object (immediately after the constructor).
231 *
232 * 2.4 Recognizing Known Objects
233 *
234 * There is a simple test to determine safely whether or not the client knows
235 * about a given object in the move callback. It relies on the fact that kmem
236 * guarantees that the object of the move callback has only been touched by the
237 * client itself or else by kmem. kmem does this by ensuring that none of the
238 * cache's slabs are freed to the virtual memory (VM) subsystem while a move
239 * callback is pending. When the last object on a slab is freed, if there is a
240 * pending move, kmem puts the slab on a per-cache dead list and defers freeing
241 * slabs on that list until all pending callbacks are completed. That way,
242 * clients can be certain that the object of a move callback is in one of the
243 * states listed above, making it possible to distinguish known objects (in
244 * state #4) using the two low order bits of any pointer member (with the
245 * exception of 'char *' or 'short *' which may not be 4-byte aligned on some
246 * platforms).
247 *
248 * The test works as long as the client always transitions objects from state #4
249 * (known, in use) to state #5 (about to be freed, invalid) by setting the low
250 * order bit of the client-designated pointer member. Since kmem only writes
251 * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and
252 * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is
253 * guaranteed to set at least one of the two low order bits. Therefore, given an
254 * object with a back pointer to a 'container_t *o_container', the client can
255 * test
256 *
257 * container_t *container = object->o_container;
258 * if ((uintptr_t)container & 0x3) {
259 * return (KMEM_CBRC_DONT_KNOW);
260 * }
261 *
262 * Typically, an object will have a pointer to some structure with a list or
263 * hash where objects from the cache are kept while in use. Assuming that the
264 * client has some way of knowing that the container structure is valid and will
265 * not go away during the move, and assuming that the structure includes a lock
266 * to protect whatever collection is used, then the client would continue as
267 * follows:
268 *
269 * // Ensure that the container structure does not go away.
270 * if (container_hold(container) == 0) {
271 * return (KMEM_CBRC_DONT_KNOW);
272 * }
273 * mutex_enter(&container->c_objects_lock);
274 * if (container != object->o_container) {
275 * mutex_exit(&container->c_objects_lock);
276 * container_rele(container);
277 * return (KMEM_CBRC_DONT_KNOW);
278 * }
279 *
280 * At this point the client knows that the object cannot be freed as long as
281 * c_objects_lock is held. Note that after acquiring the lock, the client must
282 * recheck the o_container pointer in case the object was removed just before
283 * acquiring the lock.
284 *
285 * When the client is about to free an object, it must first remove that object
286 * from the list, hash, or other structure where it is kept. At that time, to
287 * mark the object so it can be distinguished from the remaining, known objects,
288 * the client sets the designated low order bit:
289 *
290 * mutex_enter(&container->c_objects_lock);
291 * object->o_container = (void *)((uintptr_t)object->o_container | 0x1);
292 * list_remove(&container->c_objects, object);
293 * mutex_exit(&container->c_objects_lock);
294 *
295 * In the common case, the object is freed to the magazine layer, where it may
296 * be reused on a subsequent allocation without the overhead of calling the
297 * constructor. While in the magazine it appears allocated from the point of
298 * view of the slab layer, making it a candidate for the move callback. Most
299 * objects unrecognized by the client in the move callback fall into this
300 * category and are cheaply distinguished from known objects by the test
301 * described earlier. Because searching magazines is prohibitively expensive
302 * for kmem, clients that do not mark freed objects (and therefore return
303 * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation
304 * efficacy reduced.
305 *
306 * Invalidating the designated pointer member before freeing the object marks
307 * the object to be avoided in the callback, and conversely, assigning a valid
308 * value to the designated pointer member after allocating the object makes the
309 * object fair game for the callback:
310 *
311 * ... allocate object ...
312 * ... set any initial state not set by the constructor ...
313 *
314 * mutex_enter(&container->c_objects_lock);
315 * list_insert_tail(&container->c_objects, object);
316 * membar_producer();
317 * object->o_container = container;
318 * mutex_exit(&container->c_objects_lock);
319 *
320 * Note that everything else must be valid before setting o_container makes the
321 * object fair game for the move callback. The membar_producer() call ensures
322 * that all the object's state is written to memory before setting the pointer
323 * that transitions the object from state #3 or #7 (allocated, constructed, not
324 * yet in use) to state #4 (in use, valid). That's important because the move
325 * function has to check the validity of the pointer before it can safely
326 * acquire the lock protecting the collection where it expects to find known
327 * objects.
328 *
329 * This method of distinguishing known objects observes the usual symmetry:
330 * invalidating the designated pointer is the first thing the client does before
331 * freeing the object, and setting the designated pointer is the last thing the
332 * client does after allocating the object. Of course, the client is not
333 * required to use this method. Fundamentally, how the client recognizes known
334 * objects is completely up to the client, but this method is recommended as an
335 * efficient and safe way to take advantage of the guarantees made by kmem. If
336 * the entire object is arbitrary data without any markable bits from a suitable
337 * pointer member, then the client must find some other method, such as
338 * searching a hash table of known objects.
339 *
340 * 2.5 Preventing Objects From Moving
341 *
342 * Besides a way to distinguish known objects, the other thing that the client
343 * needs is a strategy to ensure that an object will not move while the client
344 * is actively using it. The details of satisfying this requirement tend to be
345 * highly cache-specific. It might seem that the same rules that let a client
346 * remove an object safely should also decide when an object can be moved
347 * safely. However, any object state that makes a removal attempt invalid is
348 * likely to be long-lasting for objects that the client does not expect to
349 * remove. kmem knows nothing about the object state and is equally likely (from
350 * the client's point of view) to request a move for any object in the cache,
351 * whether prepared for removal or not. Even a low percentage of objects stuck
352 * in place by unremovability will defeat the consolidator if the stuck objects
353 * are the same long-lived allocations likely to hold slabs hostage.
354 * Fundamentally, the consolidator is not aimed at common cases. Severe external
355 * fragmentation is a worst case scenario manifested as sparsely allocated
356 * slabs, by definition a low percentage of the cache's objects. When deciding
357 * what makes an object movable, keep in mind the goal of the consolidator: to
358 * bring worst-case external fragmentation within the limits guaranteed for
359 * internal fragmentation. Removability is a poor criterion if it is likely to
360 * exclude more than an insignificant percentage of objects for long periods of
361 * time.
362 *
363 * A tricky general solution exists, and it has the advantage of letting you
364 * move any object at almost any moment, practically eliminating the likelihood
365 * that an object can hold a slab hostage. However, if there is a cache-specific
366 * way to ensure that an object is not actively in use in the vast majority of
367 * cases, a simpler solution that leverages this cache-specific knowledge is
368 * preferred.
369 *
370 * 2.5.1 Cache-Specific Solution
371 *
372 * As an example of a cache-specific solution, the ZFS znode cache takes
373 * advantage of the fact that the vast majority of znodes are only being
374 * referenced from the DNLC. (A typical case might be a few hundred in active
375 * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS
376 * client has established that it recognizes the znode and can access its fields
377 * safely (using the method described earlier), it then tests whether the znode
378 * is referenced by anything other than the DNLC. If so, it assumes that the
379 * znode may be in active use and is unsafe to move, so it drops its locks and
380 * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere
381 * else znodes are used, no change is needed to protect against the possibility
382 * of the znode moving. The disadvantage is that it remains possible for an
383 * application to hold a znode slab hostage with an open file descriptor.
384 * However, this case ought to be rare and the consolidator has a way to deal
385 * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same
386 * object, kmem eventually stops believing it and treats the slab as if the
387 * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can
388 * then focus on getting it off of the partial slab list by allocating rather
389 * than freeing all of its objects. (Either way of getting a slab off the
390 * free list reduces fragmentation.)
391 *
392 * 2.5.2 General Solution
393 *
394 * The general solution, on the other hand, requires an explicit hold everywhere
395 * the object is used to prevent it from moving. To keep the client locking
396 * strategy as uncomplicated as possible, kmem guarantees the simplifying
397 * assumption that move callbacks are sequential, even across multiple caches.
398 * Internally, a global queue processed by a single thread supports all caches
399 * implementing the callback function. No matter how many caches supply a move
400 * function, the consolidator never moves more than one object at a time, so the
401 * client does not have to worry about tricky lock ordering involving several
402 * related objects from different kmem caches.
403 *
404 * The general solution implements the explicit hold as a read-write lock, which
405 * allows multiple readers to access an object from the cache simultaneously
406 * while a single writer is excluded from moving it. A single rwlock for the
407 * entire cache would lock out all threads from using any of the cache's objects
408 * even though only a single object is being moved, so to reduce contention,
409 * the client can fan out the single rwlock into an array of rwlocks hashed by
410 * the object address, making it probable that moving one object will not
411 * prevent other threads from using a different object. The rwlock cannot be a
412 * member of the object itself, because the possibility of the object moving
413 * makes it unsafe to access any of the object's fields until the lock is
414 * acquired.
415 *
416 * Assuming a small, fixed number of locks, it's possible that multiple objects
417 * will hash to the same lock. A thread that needs to use multiple objects in
418 * the same function may acquire the same lock multiple times. Since rwlocks are
419 * reentrant for readers, and since there is never more than a single writer at
420 * a time (assuming that the client acquires the lock as a writer only when
421 * moving an object inside the callback), there would seem to be no problem.
422 * However, a client locking multiple objects in the same function must handle
423 * one case of potential deadlock: Assume that thread A needs to prevent both
424 * object 1 and object 2 from moving, and thread B, the callback, meanwhile
425 * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the
426 * same lock, that thread A will acquire the lock for object 1 as a reader
427 * before thread B sets the lock's write-wanted bit, preventing thread A from
428 * reacquiring the lock for object 2 as a reader. Unable to make forward
429 * progress, thread A will never release the lock for object 1, resulting in
430 * deadlock.
431 *
432 * There are two ways of avoiding the deadlock just described. The first is to
433 * use rw_tryenter() rather than rw_enter() in the callback function when
434 * attempting to acquire the lock as a writer. If tryenter discovers that the
435 * same object (or another object hashed to the same lock) is already in use, it
436 * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use
437 * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t,
438 * since it allows a thread to acquire the lock as a reader in spite of a
439 * waiting writer. This second approach insists on moving the object now, no
440 * matter how many readers the move function must wait for in order to do so,
441 * and could delay the completion of the callback indefinitely (blocking
442 * callbacks to other clients). In practice, a less insistent callback using
443 * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems
444 * little reason to use anything else.
445 *
446 * Avoiding deadlock is not the only problem that an implementation using an
447 * explicit hold needs to solve. Locking the object in the first place (to
448 * prevent it from moving) remains a problem, since the object could move
449 * between the time you obtain a pointer to the object and the time you acquire
450 * the rwlock hashed to that pointer value. Therefore the client needs to
451 * recheck the value of the pointer after acquiring the lock, drop the lock if
452 * the value has changed, and try again. This requires a level of indirection:
453 * something that points to the object rather than the object itself, that the
454 * client can access safely while attempting to acquire the lock. (The object
455 * itself cannot be referenced safely because it can move at any time.)
456 * The following lock-acquisition function takes whatever is safe to reference
457 * (arg), follows its pointer to the object (using function f), and tries as
458 * often as necessary to acquire the hashed lock and verify that the object
459 * still has not moved:
460 *
461 * object_t *
462 * object_hold(object_f f, void *arg)
463 * {
464 * object_t *op;
465 *
466 * op = f(arg);
467 * if (op == NULL) {
468 * return (NULL);
469 * }
470 *
471 * rw_enter(OBJECT_RWLOCK(op), RW_READER);
472 * while (op != f(arg)) {
473 * rw_exit(OBJECT_RWLOCK(op));
474 * op = f(arg);
475 * if (op == NULL) {
476 * break;
477 * }
478 * rw_enter(OBJECT_RWLOCK(op), RW_READER);
479 * }
480 *
481 * return (op);
482 * }
483 *
484 * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The
485 * lock reacquisition loop, while necessary, almost never executes. The function
486 * pointer f (used to obtain the object pointer from arg) has the following type
487 * definition:
488 *
489 * typedef object_t *(*object_f)(void *arg);
490 *
491 * An object_f implementation is likely to be as simple as accessing a structure
492 * member:
493 *
494 * object_t *
495 * s_object(void *arg)
496 * {
497 * something_t *sp = arg;
498 * return (sp->s_object);
499 * }
500 *
501 * The flexibility of a function pointer allows the path to the object to be
502 * arbitrarily complex and also supports the notion that depending on where you
503 * are using the object, you may need to get it from someplace different.
504 *
505 * The function that releases the explicit hold is simpler because it does not
506 * have to worry about the object moving:
507 *
508 * void
509 * object_rele(object_t *op)
510 * {
511 * rw_exit(OBJECT_RWLOCK(op));
512 * }
513 *
514 * The caller is spared these details so that obtaining and releasing an
515 * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller
516 * of object_hold() only needs to know that the returned object pointer is valid
517 * if not NULL and that the object will not move until released.
518 *
519 * Although object_hold() prevents an object from moving, it does not prevent it
520 * from being freed. The caller must take measures before calling object_hold()
521 * (afterwards is too late) to ensure that the held object cannot be freed. The
522 * caller must do so without accessing the unsafe object reference, so any lock
523 * or reference count used to ensure the continued existence of the object must
524 * live outside the object itself.
525 *
526 * Obtaining a new object is a special case where an explicit hold is impossible
527 * for the caller. Any function that returns a newly allocated object (either as
528 * a return value, or as an in-out paramter) must return it already held; after
529 * the caller gets it is too late, since the object cannot be safely accessed
530 * without the level of indirection described earlier. The following
531 * object_alloc() example uses the same code shown earlier to transition a new
532 * object into the state of being recognized (by the client) as a known object.
533 * The function must acquire the hold (rw_enter) before that state transition
534 * makes the object movable:
535 *
536 * static object_t *
537 * object_alloc(container_t *container)
538 * {
539 * object_t *object = kmem_cache_alloc(object_cache, 0);
540 * ... set any initial state not set by the constructor ...
541 * rw_enter(OBJECT_RWLOCK(object), RW_READER);
542 * mutex_enter(&container->c_objects_lock);
543 * list_insert_tail(&container->c_objects, object);
544 * membar_producer();
545 * object->o_container = container;
546 * mutex_exit(&container->c_objects_lock);
547 * return (object);
548 * }
549 *
550 * Functions that implicitly acquire an object hold (any function that calls
551 * object_alloc() to supply an object for the caller) need to be carefully noted
552 * so that the matching object_rele() is not neglected. Otherwise, leaked holds
553 * prevent all objects hashed to the affected rwlocks from ever being moved.
554 *
555 * The pointer to a held object can be hashed to the holding rwlock even after
556 * the object has been freed. Although it is possible to release the hold
557 * after freeing the object, you may decide to release the hold implicitly in
558 * whatever function frees the object, so as to release the hold as soon as
559 * possible, and for the sake of symmetry with the function that implicitly
560 * acquires the hold when it allocates the object. Here, object_free() releases
561 * the hold acquired by object_alloc(). Its implicit object_rele() forms a
562 * matching pair with object_hold():
563 *
564 * void
565 * object_free(object_t *object)
566 * {
567 * container_t *container;
568 *
569 * ASSERT(object_held(object));
570 * container = object->o_container;
571 * mutex_enter(&container->c_objects_lock);
572 * object->o_container =
573 * (void *)((uintptr_t)object->o_container | 0x1);
574 * list_remove(&container->c_objects, object);
575 * mutex_exit(&container->c_objects_lock);
576 * object_rele(object);
577 * kmem_cache_free(object_cache, object);
578 * }
579 *
580 * Note that object_free() cannot safely accept an object pointer as an argument
581 * unless the object is already held. Any function that calls object_free()
582 * needs to be carefully noted since it similarly forms a matching pair with
583 * object_hold().
584 *
585 * To complete the picture, the following callback function implements the
586 * general solution by moving objects only if they are currently unheld:
587 *
588 * static kmem_cbrc_t
589 * object_move(void *buf, void *newbuf, size_t size, void *arg)
590 * {
591 * object_t *op = buf, *np = newbuf;
592 * container_t *container;
593 *
594 * container = op->o_container;
595 * if ((uintptr_t)container & 0x3) {
596 * return (KMEM_CBRC_DONT_KNOW);
597 * }
598 *
599 * // Ensure that the container structure does not go away.
600 * if (container_hold(container) == 0) {
601 * return (KMEM_CBRC_DONT_KNOW);
602 * }
603 *
604 * mutex_enter(&container->c_objects_lock);
605 * if (container != op->o_container) {
606 * mutex_exit(&container->c_objects_lock);
607 * container_rele(container);
608 * return (KMEM_CBRC_DONT_KNOW);
609 * }
610 *
611 * if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) {
612 * mutex_exit(&container->c_objects_lock);
613 * container_rele(container);
614 * return (KMEM_CBRC_LATER);
615 * }
616 *
617 * object_move_impl(op, np); // critical section
618 * rw_exit(OBJECT_RWLOCK(op));
619 *
620 * op->o_container = (void *)((uintptr_t)op->o_container | 0x1);
621 * list_link_replace(&op->o_link_node, &np->o_link_node);
622 * mutex_exit(&container->c_objects_lock);
623 * container_rele(container);
624 * return (KMEM_CBRC_YES);
625 * }
626 *
627 * Note that object_move() must invalidate the designated o_container pointer of
628 * the old object in the same way that object_free() does, since kmem will free
629 * the object in response to the KMEM_CBRC_YES return value.
630 *
631 * The lock order in object_move() differs from object_alloc(), which locks
632 * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the
633 * callback uses rw_tryenter() (preventing the deadlock described earlier), it's
634 * not a problem. Holding the lock on the object list in the example above
635 * through the entire callback not only prevents the object from going away, it
636 * also allows you to lock the list elsewhere and know that none of its elements
637 * will move during iteration.
638 *
639 * Adding an explicit hold everywhere an object from the cache is used is tricky
640 * and involves much more change to client code than a cache-specific solution
641 * that leverages existing state to decide whether or not an object is
642 * movable. However, this approach has the advantage that no object remains
643 * immovable for any significant length of time, making it extremely unlikely
644 * that long-lived allocations can continue holding slabs hostage; and it works
645 * for any cache.
646 *
647 * 3. Consolidator Implementation
648 *
649 * Once the client supplies a move function that a) recognizes known objects and
650 * b) avoids moving objects that are actively in use, the remaining work is up
651 * to the consolidator to decide which objects to move and when to issue
652 * callbacks.
653 *
654 * The consolidator relies on the fact that a cache's slabs are ordered by
655 * usage. Each slab has a fixed number of objects. Depending on the slab's
656 * "color" (the offset of the first object from the beginning of the slab;
657 * offsets are staggered to mitigate false sharing of cache lines) it is either
658 * the maximum number of objects per slab determined at cache creation time or
659 * else the number closest to the maximum that fits within the space remaining
660 * after the initial offset. A completely allocated slab may contribute some
661 * internal fragmentation (per-slab overhead) but no external fragmentation, so
662 * it is of no interest to the consolidator. At the other extreme, slabs whose
663 * objects have all been freed to the slab are released to the virtual memory
664 * (VM) subsystem (objects freed to magazines are still allocated as far as the
665 * slab is concerned). External fragmentation exists when there are slabs
666 * somewhere between these extremes. A partial slab has at least one but not all
667 * of its objects allocated. The more partial slabs, and the fewer allocated
668 * objects on each of them, the higher the fragmentation. Hence the
669 * consolidator's overall strategy is to reduce the number of partial slabs by
670 * moving allocated objects from the least allocated slabs to the most allocated
671 * slabs.
672 *
673 * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated
674 * slabs are kept separately in an unordered list. Since the majority of slabs
675 * tend to be completely allocated (a typical unfragmented cache may have
676 * thousands of complete slabs and only a single partial slab), separating
677 * complete slabs improves the efficiency of partial slab ordering, since the
678 * complete slabs do not affect the depth or balance of the AVL tree. This
679 * ordered sequence of partial slabs acts as a "free list" supplying objects for
680 * allocation requests.
681 *
682 * Objects are always allocated from the first partial slab in the free list,
683 * where the allocation is most likely to eliminate a partial slab (by
684 * completely allocating it). Conversely, when a single object from a completely
685 * allocated slab is freed to the slab, that slab is added to the front of the
686 * free list. Since most free list activity involves highly allocated slabs
687 * coming and going at the front of the list, slabs tend naturally toward the
688 * ideal order: highly allocated at the front, sparsely allocated at the back.
689 * Slabs with few allocated objects are likely to become completely free if they
690 * keep a safe distance away from the front of the free list. Slab misorders
691 * interfere with the natural tendency of slabs to become completely free or
692 * completely allocated. For example, a slab with a single allocated object
693 * needs only a single free to escape the cache; its natural desire is
694 * frustrated when it finds itself at the front of the list where a second
695 * allocation happens just before the free could have released it. Another slab
696 * with all but one object allocated might have supplied the buffer instead, so
697 * that both (as opposed to neither) of the slabs would have been taken off the
698 * free list.
699 *
700 * Although slabs tend naturally toward the ideal order, misorders allowed by a
701 * simple list implementation defeat the consolidator's strategy of merging
702 * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem
703 * needs another way to fix misorders to optimize its callback strategy. One
704 * approach is to periodically scan a limited number of slabs, advancing a
705 * marker to hold the current scan position, and to move extreme misorders to
706 * the front or back of the free list and to the front or back of the current
707 * scan range. By making consecutive scan ranges overlap by one slab, the least
708 * allocated slab in the current range can be carried along from the end of one
709 * scan to the start of the next.
710 *
711 * Maintaining partial slabs in an AVL tree relieves kmem of this additional
712 * task, however. Since most of the cache's activity is in the magazine layer,
713 * and allocations from the slab layer represent only a startup cost, the
714 * overhead of maintaining a balanced tree is not a significant concern compared
715 * to the opportunity of reducing complexity by eliminating the partial slab
716 * scanner just described. The overhead of an AVL tree is minimized by
717 * maintaining only partial slabs in the tree and keeping completely allocated
718 * slabs separately in a list. To avoid increasing the size of the slab
719 * structure the AVL linkage pointers are reused for the slab's list linkage,
720 * since the slab will always be either partial or complete, never stored both
721 * ways at the same time. To further minimize the overhead of the AVL tree the
722 * compare function that orders partial slabs by usage divides the range of
723 * allocated object counts into bins such that counts within the same bin are
724 * considered equal. Binning partial slabs makes it less likely that allocating
725 * or freeing a single object will change the slab's order, requiring a tree
726 * reinsertion (an avl_remove() followed by an avl_add(), both potentially
727 * requiring some rebalancing of the tree). Allocation counts closest to
728 * completely free and completely allocated are left unbinned (finely sorted) to
729 * better support the consolidator's strategy of merging slabs at either
730 * extreme.
731 *
732 * 3.1 Assessing Fragmentation and Selecting Candidate Slabs
733 *
734 * The consolidator piggybacks on the kmem maintenance thread and is called on
735 * the same interval as kmem_cache_update(), once per cache every fifteen
736 * seconds. kmem maintains a running count of unallocated objects in the slab
737 * layer (cache_bufslab). The consolidator checks whether that number exceeds
738 * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether
739 * there is a significant number of slabs in the cache (arbitrarily a minimum
740 * 101 total slabs). Unused objects that have fallen out of the magazine layer's
741 * working set are included in the assessment, and magazines in the depot are
742 * reaped if those objects would lift cache_bufslab above the fragmentation
743 * threshold. Once the consolidator decides that a cache is fragmented, it looks
744 * for a candidate slab to reclaim, starting at the end of the partial slab free
745 * list and scanning backwards. At first the consolidator is choosy: only a slab
746 * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a
747 * single allocated object, regardless of percentage). If there is difficulty
748 * finding a candidate slab, kmem raises the allocation threshold incrementally,
749 * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce
750 * external fragmentation (unused objects on the free list) below 12.5% (1/8),
751 * even in the worst case of every slab in the cache being almost 7/8 allocated.
752 * The threshold can also be lowered incrementally when candidate slabs are easy
753 * to find, and the threshold is reset to the minimum 1/8 as soon as the cache
754 * is no longer fragmented.
755 *
756 * 3.2 Generating Callbacks
757 *
758 * Once an eligible slab is chosen, a callback is generated for every allocated
759 * object on the slab, in the hope that the client will move everything off the
760 * slab and make it reclaimable. Objects selected as move destinations are
761 * chosen from slabs at the front of the free list. Assuming slabs in the ideal
762 * order (most allocated at the front, least allocated at the back) and a
763 * cooperative client, the consolidator will succeed in removing slabs from both
764 * ends of the free list, completely allocating on the one hand and completely
765 * freeing on the other. Objects selected as move destinations are allocated in
766 * the kmem maintenance thread where move requests are enqueued. A separate
767 * callback thread removes pending callbacks from the queue and calls the
768 * client. The separate thread ensures that client code (the move function) does
769 * not interfere with internal kmem maintenance tasks. A map of pending
770 * callbacks keyed by object address (the object to be moved) is checked to
771 * ensure that duplicate callbacks are not generated for the same object.
772 * Allocating the move destination (the object to move to) prevents subsequent
773 * callbacks from selecting the same destination as an earlier pending callback.
774 *
775 * Move requests can also be generated by kmem_cache_reap() when the system is
776 * desperate for memory and by kmem_cache_move_notify(), called by the client to
777 * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible.
778 * The map of pending callbacks is protected by the same lock that protects the
779 * slab layer.
780 *
781 * When the system is desperate for memory, kmem does not bother to determine
782 * whether or not the cache exceeds the fragmentation threshold, but tries to
783 * consolidate as many slabs as possible. Normally, the consolidator chews
784 * slowly, one sparsely allocated slab at a time during each maintenance
785 * interval that the cache is fragmented. When desperate, the consolidator
786 * starts at the last partial slab and enqueues callbacks for every allocated
787 * object on every partial slab, working backwards until it reaches the first
788 * partial slab. The first partial slab, meanwhile, advances in pace with the
789 * consolidator as allocations to supply move destinations for the enqueued
790 * callbacks use up the highly allocated slabs at the front of the free list.
791 * Ideally, the overgrown free list collapses like an accordion, starting at
792 * both ends and ending at the center with a single partial slab.
793 *
794 * 3.3 Client Responses
795 *
796 * When the client returns KMEM_CBRC_NO in response to the move callback, kmem
797 * marks the slab that supplied the stuck object non-reclaimable and moves it to
798 * front of the free list. The slab remains marked as long as it remains on the
799 * free list, and it appears more allocated to the partial slab compare function
800 * than any unmarked slab, no matter how many of its objects are allocated.
801 * Since even one immovable object ties up the entire slab, the goal is to
802 * completely allocate any slab that cannot be completely freed. kmem does not
803 * bother generating callbacks to move objects from a marked slab unless the
804 * system is desperate.
805 *
806 * When the client responds KMEM_CBRC_LATER, kmem increments a count for the
807 * slab. If the client responds LATER too many times, kmem disbelieves and
808 * treats the response as a NO. The count is cleared when the slab is taken off
809 * the partial slab list or when the client moves one of the slab's objects.
810 *
811 * 4. Observability
812 *
813 * A kmem cache's external fragmentation is best observed with 'mdb -k' using
814 * the ::kmem_slabs dcmd. For a complete description of the command, enter
815 * '::help kmem_slabs' at the mdb prompt.
816 */
817
818 #include <sys/kmem_impl.h>
819 #include <sys/vmem_impl.h>
820 #include <sys/param.h>
821 #include <sys/sysmacros.h>
822 #include <sys/vm.h>
823 #include <sys/proc.h>
824 #include <sys/tuneable.h>
825 #include <sys/systm.h>
826 #include <sys/cmn_err.h>
827 #include <sys/debug.h>
828 #include <sys/sdt.h>
829 #include <sys/mutex.h>
830 #include <sys/bitmap.h>
831 #include <sys/atomic.h>
832 #include <sys/kobj.h>
833 #include <sys/disp.h>
834 #include <vm/seg_kmem.h>
835 #include <sys/log.h>
836 #include <sys/callb.h>
837 #include <sys/taskq.h>
838 #include <sys/modctl.h>
839 #include <sys/reboot.h>
840 #include <sys/id32.h>
841 #include <sys/zone.h>
842 #include <sys/netstack.h>
843 #ifdef DEBUG
844 #include <sys/random.h>
845 #endif
846
847 extern void streams_msg_init(void);
848 extern int segkp_fromheap;
849 extern void segkp_cache_free(void);
850 extern int callout_init_done;
851
852 struct kmem_cache_kstat {
853 kstat_named_t kmc_buf_size;
854 kstat_named_t kmc_align;
855 kstat_named_t kmc_chunk_size;
856 kstat_named_t kmc_slab_size;
857 kstat_named_t kmc_alloc;
858 kstat_named_t kmc_alloc_fail;
859 kstat_named_t kmc_free;
860 kstat_named_t kmc_depot_alloc;
861 kstat_named_t kmc_depot_free;
862 kstat_named_t kmc_depot_contention;
863 kstat_named_t kmc_slab_alloc;
864 kstat_named_t kmc_slab_free;
865 kstat_named_t kmc_buf_constructed;
866 kstat_named_t kmc_buf_avail;
867 kstat_named_t kmc_buf_inuse;
868 kstat_named_t kmc_buf_total;
869 kstat_named_t kmc_buf_max;
870 kstat_named_t kmc_slab_create;
871 kstat_named_t kmc_slab_destroy;
872 kstat_named_t kmc_vmem_source;
873 kstat_named_t kmc_hash_size;
874 kstat_named_t kmc_hash_lookup_depth;
875 kstat_named_t kmc_hash_rescale;
876 kstat_named_t kmc_full_magazines;
877 kstat_named_t kmc_empty_magazines;
878 kstat_named_t kmc_magazine_size;
879 kstat_named_t kmc_reap; /* number of kmem_cache_reap() calls */
880 kstat_named_t kmc_defrag; /* attempts to defrag all partial slabs */
881 kstat_named_t kmc_scan; /* attempts to defrag one partial slab */
882 kstat_named_t kmc_move_callbacks; /* sum of yes, no, later, dn, dk */
883 kstat_named_t kmc_move_yes;
884 kstat_named_t kmc_move_no;
885 kstat_named_t kmc_move_later;
886 kstat_named_t kmc_move_dont_need;
887 kstat_named_t kmc_move_dont_know; /* obj unrecognized by client ... */
888 kstat_named_t kmc_move_hunt_found; /* ... but found in mag layer */
889 kstat_named_t kmc_move_slabs_freed; /* slabs freed by consolidator */
890 kstat_named_t kmc_move_reclaimable; /* buffers, if consolidator ran */
891 } kmem_cache_kstat = {
892 { "buf_size", KSTAT_DATA_UINT64 },
893 { "align", KSTAT_DATA_UINT64 },
894 { "chunk_size", KSTAT_DATA_UINT64 },
895 { "slab_size", KSTAT_DATA_UINT64 },
896 { "alloc", KSTAT_DATA_UINT64 },
897 { "alloc_fail", KSTAT_DATA_UINT64 },
898 { "free", KSTAT_DATA_UINT64 },
899 { "depot_alloc", KSTAT_DATA_UINT64 },
900 { "depot_free", KSTAT_DATA_UINT64 },
901 { "depot_contention", KSTAT_DATA_UINT64 },
902 { "slab_alloc", KSTAT_DATA_UINT64 },
903 { "slab_free", KSTAT_DATA_UINT64 },
904 { "buf_constructed", KSTAT_DATA_UINT64 },
905 { "buf_avail", KSTAT_DATA_UINT64 },
906 { "buf_inuse", KSTAT_DATA_UINT64 },
907 { "buf_total", KSTAT_DATA_UINT64 },
908 { "buf_max", KSTAT_DATA_UINT64 },
909 { "slab_create", KSTAT_DATA_UINT64 },
910 { "slab_destroy", KSTAT_DATA_UINT64 },
911 { "vmem_source", KSTAT_DATA_UINT64 },
912 { "hash_size", KSTAT_DATA_UINT64 },
913 { "hash_lookup_depth", KSTAT_DATA_UINT64 },
914 { "hash_rescale", KSTAT_DATA_UINT64 },
915 { "full_magazines", KSTAT_DATA_UINT64 },
916 { "empty_magazines", KSTAT_DATA_UINT64 },
917 { "magazine_size", KSTAT_DATA_UINT64 },
918 { "reap", KSTAT_DATA_UINT64 },
919 { "defrag", KSTAT_DATA_UINT64 },
920 { "scan", KSTAT_DATA_UINT64 },
921 { "move_callbacks", KSTAT_DATA_UINT64 },
922 { "move_yes", KSTAT_DATA_UINT64 },
923 { "move_no", KSTAT_DATA_UINT64 },
924 { "move_later", KSTAT_DATA_UINT64 },
925 { "move_dont_need", KSTAT_DATA_UINT64 },
926 { "move_dont_know", KSTAT_DATA_UINT64 },
927 { "move_hunt_found", KSTAT_DATA_UINT64 },
928 { "move_slabs_freed", KSTAT_DATA_UINT64 },
929 { "move_reclaimable", KSTAT_DATA_UINT64 },
930 };
931
932 static kmutex_t kmem_cache_kstat_lock;
933
934 /*
935 * The default set of caches to back kmem_alloc().
936 * These sizes should be reevaluated periodically.
937 *
938 * We want allocations that are multiples of the coherency granularity
939 * (64 bytes) to be satisfied from a cache which is a multiple of 64
940 * bytes, so that it will be 64-byte aligned. For all multiples of 64,
941 * the next kmem_cache_size greater than or equal to it must be a
942 * multiple of 64.
943 *
944 * We split the table into two sections: size <= 4k and size > 4k. This
945 * saves a lot of space and cache footprint in our cache tables.
946 */
947 static const int kmem_alloc_sizes[] = {
948 1 * 8,
949 2 * 8,
950 3 * 8,
951 4 * 8, 5 * 8, 6 * 8, 7 * 8,
952 4 * 16, 5 * 16, 6 * 16, 7 * 16,
953 4 * 32, 5 * 32, 6 * 32, 7 * 32,
954 4 * 64, 5 * 64, 6 * 64, 7 * 64,
955 4 * 128, 5 * 128, 6 * 128, 7 * 128,
956 P2ALIGN(8192 / 7, 64),
957 P2ALIGN(8192 / 6, 64),
958 P2ALIGN(8192 / 5, 64),
959 P2ALIGN(8192 / 4, 64),
960 P2ALIGN(8192 / 3, 64),
961 P2ALIGN(8192 / 2, 64),
962 };
963
964 static const int kmem_big_alloc_sizes[] = {
965 2 * 4096, 3 * 4096,
966 2 * 8192, 3 * 8192,
967 4 * 8192, 5 * 8192, 6 * 8192, 7 * 8192,
968 8 * 8192, 9 * 8192, 10 * 8192, 11 * 8192,
969 12 * 8192, 13 * 8192, 14 * 8192, 15 * 8192,
970 16 * 8192
971 };
972
973 #define KMEM_MAXBUF 4096
974 #define KMEM_BIG_MAXBUF_32BIT 32768
975 #define KMEM_BIG_MAXBUF 131072
976
977 #define KMEM_BIG_MULTIPLE 4096 /* big_alloc_sizes must be a multiple */
978 #define KMEM_BIG_SHIFT 12 /* lg(KMEM_BIG_MULTIPLE) */
979
980 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
981 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT];
982
983 #define KMEM_ALLOC_TABLE_MAX (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT)
984 static size_t kmem_big_alloc_table_max = 0; /* # of filled elements */
985
986 static kmem_magtype_t kmem_magtype[] = {
987 { 1, 8, 3200, 65536 },
988 { 3, 16, 256, 32768 },
989 { 7, 32, 64, 16384 },
990 { 15, 64, 0, 8192 },
991 { 31, 64, 0, 4096 },
992 { 47, 64, 0, 2048 },
993 { 63, 64, 0, 1024 },
994 { 95, 64, 0, 512 },
995 { 143, 64, 0, 0 },
996 };
997
998 static uint32_t kmem_reaping;
999 static uint32_t kmem_reaping_idspace;
1000
1001 /*
1002 * kmem tunables
1003 */
1004 clock_t kmem_reap_interval; /* cache reaping rate [15 * HZ ticks] */
1005 int kmem_depot_contention = 3; /* max failed tryenters per real interval */
1006 pgcnt_t kmem_reapahead = 0; /* start reaping N pages before pageout */
1007 int kmem_panic = 1; /* whether to panic on error */
1008 int kmem_logging = 1; /* kmem_log_enter() override */
1009 uint32_t kmem_mtbf = 0; /* mean time between failures [default: off] */
1010 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
1011 size_t kmem_content_log_size; /* content log size [2% of memory] */
1012 size_t kmem_failure_log_size; /* failure log [4 pages per CPU] */
1013 size_t kmem_slab_log_size; /* slab create log [4 pages per CPU] */
1014 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
1015 size_t kmem_lite_minsize = 0; /* minimum buffer size for KMF_LITE */
1016 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
1017 int kmem_lite_pcs = 4; /* number of PCs to store in KMF_LITE mode */
1018 size_t kmem_maxverify; /* maximum bytes to inspect in debug routines */
1019 size_t kmem_minfirewall; /* hardware-enforced redzone threshold */
1020
1021 #ifdef _LP64
1022 size_t kmem_max_cached = KMEM_BIG_MAXBUF; /* maximum kmem_alloc cache */
1023 #else
1024 size_t kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */
1025 #endif
1026
1027 #ifdef DEBUG
1028 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
1029 #else
1030 int kmem_flags = 0;
1031 #endif
1032 int kmem_ready;
1033
1034 static kmem_cache_t *kmem_slab_cache;
1035 static kmem_cache_t *kmem_bufctl_cache;
1036 static kmem_cache_t *kmem_bufctl_audit_cache;
1037
1038 static kmutex_t kmem_cache_lock; /* inter-cache linkage only */
1039 static list_t kmem_caches;
1040
1041 static taskq_t *kmem_taskq;
1042 static kmutex_t kmem_flags_lock;
1043 static vmem_t *kmem_metadata_arena;
1044 static vmem_t *kmem_msb_arena; /* arena for metadata caches */
1045 static vmem_t *kmem_cache_arena;
1046 static vmem_t *kmem_hash_arena;
1047 static vmem_t *kmem_log_arena;
1048 static vmem_t *kmem_oversize_arena;
1049 static vmem_t *kmem_va_arena;
1050 static vmem_t *kmem_default_arena;
1051 static vmem_t *kmem_firewall_va_arena;
1052 static vmem_t *kmem_firewall_arena;
1053
1054 /*
1055 * kmem slab consolidator thresholds (tunables)
1056 */
1057 size_t kmem_frag_minslabs = 101; /* minimum total slabs */
1058 size_t kmem_frag_numer = 1; /* free buffers (numerator) */
1059 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */
1060 /*
1061 * Maximum number of slabs from which to move buffers during a single
1062 * maintenance interval while the system is not low on memory.
1063 */
1064 size_t kmem_reclaim_max_slabs = 1;
1065 /*
1066 * Number of slabs to scan backwards from the end of the partial slab list
1067 * when searching for buffers to relocate.
1068 */
1069 size_t kmem_reclaim_scan_range = 12;
1070
1071 /* consolidator knobs */
1072 boolean_t kmem_move_noreap;
1073 boolean_t kmem_move_blocked;
1074 boolean_t kmem_move_fulltilt;
1075 boolean_t kmem_move_any_partial;
1076
1077 #ifdef DEBUG
1078 /*
1079 * kmem consolidator debug tunables:
1080 * Ensure code coverage by occasionally running the consolidator even when the
1081 * caches are not fragmented (they may never be). These intervals are mean time
1082 * in cache maintenance intervals (kmem_cache_update).
1083 */
1084 uint32_t kmem_mtb_move = 60; /* defrag 1 slab (~15min) */
1085 uint32_t kmem_mtb_reap = 1800; /* defrag all slabs (~7.5hrs) */
1086 #endif /* DEBUG */
1087
1088 static kmem_cache_t *kmem_defrag_cache;
1089 static kmem_cache_t *kmem_move_cache;
1090 static taskq_t *kmem_move_taskq;
1091
1092 static void kmem_cache_scan(kmem_cache_t *);
1093 static void kmem_cache_defrag(kmem_cache_t *);
1094 static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *);
1095
1096
1097 kmem_log_header_t *kmem_transaction_log;
1098 kmem_log_header_t *kmem_content_log;
1099 kmem_log_header_t *kmem_failure_log;
1100 kmem_log_header_t *kmem_slab_log;
1101
1102 static int kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
1103
1104 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller) \
1105 if ((count) > 0) { \
1106 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \
1107 pc_t *_e; \
1108 /* memmove() the old entries down one notch */ \
1109 for (_e = &_s[(count) - 1]; _e > _s; _e--) \
1110 *_e = *(_e - 1); \
1111 *_s = (uintptr_t)(caller); \
1112 }
1113
1114 #define KMERR_MODIFIED 0 /* buffer modified while on freelist */
1115 #define KMERR_REDZONE 1 /* redzone violation (write past end of buf) */
1116 #define KMERR_DUPFREE 2 /* freed a buffer twice */
1117 #define KMERR_BADADDR 3 /* freed a bad (unallocated) address */
1118 #define KMERR_BADBUFTAG 4 /* buftag corrupted */
1119 #define KMERR_BADBUFCTL 5 /* bufctl corrupted */
1120 #define KMERR_BADCACHE 6 /* freed a buffer to the wrong cache */
1121 #define KMERR_BADSIZE 7 /* alloc size != free size */
1122 #define KMERR_BADBASE 8 /* buffer base address wrong */
1123
1124 struct {
1125 hrtime_t kmp_timestamp; /* timestamp of panic */
1126 int kmp_error; /* type of kmem error */
1127 void *kmp_buffer; /* buffer that induced panic */
1128 void *kmp_realbuf; /* real start address for buffer */
1129 kmem_cache_t *kmp_cache; /* buffer's cache according to client */
1130 kmem_cache_t *kmp_realcache; /* actual cache containing buffer */
1131 kmem_slab_t *kmp_slab; /* slab accoring to kmem_findslab() */
1132 kmem_bufctl_t *kmp_bufctl; /* bufctl */
1133 } kmem_panic_info;
1134
1135
1136 static void
1137 copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
1138 {
1139 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1140 uint64_t *buf = buf_arg;
1141
1142 while (buf < bufend)
1143 *buf++ = pattern;
1144 }
1145
1146 static void *
1147 verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
1148 {
1149 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1150 uint64_t *buf;
1151
1152 for (buf = buf_arg; buf < bufend; buf++)
1153 if (*buf != pattern)
1154 return (buf);
1155 return (NULL);
1156 }
1157
1158 static void *
1159 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
1160 {
1161 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1162 uint64_t *buf;
1163
1164 for (buf = buf_arg; buf < bufend; buf++) {
1165 if (*buf != old) {
1166 copy_pattern(old, buf_arg,
1167 (char *)buf - (char *)buf_arg);
1168 return (buf);
1169 }
1170 *buf = new;
1171 }
1172
1173 return (NULL);
1174 }
1175
1176 static void
1177 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1178 {
1179 kmem_cache_t *cp;
1180
1181 mutex_enter(&kmem_cache_lock);
1182 for (cp = list_head(&kmem_caches); cp != NULL;
1183 cp = list_next(&kmem_caches, cp))
1184 if (tq != NULL)
1185 (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1186 tqflag);
1187 else
1188 func(cp);
1189 mutex_exit(&kmem_cache_lock);
1190 }
1191
1192 static void
1193 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1194 {
1195 kmem_cache_t *cp;
1196
1197 mutex_enter(&kmem_cache_lock);
1198 for (cp = list_head(&kmem_caches); cp != NULL;
1199 cp = list_next(&kmem_caches, cp)) {
1200 if (!(cp->cache_cflags & KMC_IDENTIFIER))
1201 continue;
1202 if (tq != NULL)
1203 (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1204 tqflag);
1205 else
1206 func(cp);
1207 }
1208 mutex_exit(&kmem_cache_lock);
1209 }
1210
1211 /*
1212 * Debugging support. Given a buffer address, find its slab.
1213 */
1214 static kmem_slab_t *
1215 kmem_findslab(kmem_cache_t *cp, void *buf)
1216 {
1217 kmem_slab_t *sp;
1218
1219 mutex_enter(&cp->cache_lock);
1220 for (sp = list_head(&cp->cache_complete_slabs); sp != NULL;
1221 sp = list_next(&cp->cache_complete_slabs, sp)) {
1222 if (KMEM_SLAB_MEMBER(sp, buf)) {
1223 mutex_exit(&cp->cache_lock);
1224 return (sp);
1225 }
1226 }
1227 for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL;
1228 sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) {
1229 if (KMEM_SLAB_MEMBER(sp, buf)) {
1230 mutex_exit(&cp->cache_lock);
1231 return (sp);
1232 }
1233 }
1234 mutex_exit(&cp->cache_lock);
1235
1236 return (NULL);
1237 }
1238
1239 static void
1240 kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
1241 {
1242 kmem_buftag_t *btp = NULL;
1243 kmem_bufctl_t *bcp = NULL;
1244 kmem_cache_t *cp = cparg;
1245 kmem_slab_t *sp;
1246 uint64_t *off;
1247 void *buf = bufarg;
1248
1249 kmem_logging = 0; /* stop logging when a bad thing happens */
1250
1251 kmem_panic_info.kmp_timestamp = gethrtime();
1252
1253 sp = kmem_findslab(cp, buf);
1254 if (sp == NULL) {
1255 for (cp = list_tail(&kmem_caches); cp != NULL;
1256 cp = list_prev(&kmem_caches, cp)) {
1257 if ((sp = kmem_findslab(cp, buf)) != NULL)
1258 break;
1259 }
1260 }
1261
1262 if (sp == NULL) {
1263 cp = NULL;
1264 error = KMERR_BADADDR;
1265 } else {
1266 if (cp != cparg)
1267 error = KMERR_BADCACHE;
1268 else
1269 buf = (char *)bufarg - ((uintptr_t)bufarg -
1270 (uintptr_t)sp->slab_base) % cp->cache_chunksize;
1271 if (buf != bufarg)
1272 error = KMERR_BADBASE;
1273 if (cp->cache_flags & KMF_BUFTAG)
1274 btp = KMEM_BUFTAG(cp, buf);
1275 if (cp->cache_flags & KMF_HASH) {
1276 mutex_enter(&cp->cache_lock);
1277 for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
1278 if (bcp->bc_addr == buf)
1279 break;
1280 mutex_exit(&cp->cache_lock);
1281 if (bcp == NULL && btp != NULL)
1282 bcp = btp->bt_bufctl;
1283 if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
1284 NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
1285 bcp->bc_addr != buf) {
1286 error = KMERR_BADBUFCTL;
1287 bcp = NULL;
1288 }
1289 }
1290 }
1291
1292 kmem_panic_info.kmp_error = error;
1293 kmem_panic_info.kmp_buffer = bufarg;
1294 kmem_panic_info.kmp_realbuf = buf;
1295 kmem_panic_info.kmp_cache = cparg;
1296 kmem_panic_info.kmp_realcache = cp;
1297 kmem_panic_info.kmp_slab = sp;
1298 kmem_panic_info.kmp_bufctl = bcp;
1299
1300 printf("kernel memory allocator: ");
1301
1302 switch (error) {
1303
1304 case KMERR_MODIFIED:
1305 printf("buffer modified after being freed\n");
1306 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1307 if (off == NULL) /* shouldn't happen */
1308 off = buf;
1309 printf("modification occurred at offset 0x%lx "
1310 "(0x%llx replaced by 0x%llx)\n",
1311 (uintptr_t)off - (uintptr_t)buf,
1312 (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
1313 break;
1314
1315 case KMERR_REDZONE:
1316 printf("redzone violation: write past end of buffer\n");
1317 break;
1318
1319 case KMERR_BADADDR:
1320 printf("invalid free: buffer not in cache\n");
1321 break;
1322
1323 case KMERR_DUPFREE:
1324 printf("duplicate free: buffer freed twice\n");
1325 break;
1326
1327 case KMERR_BADBUFTAG:
1328 printf("boundary tag corrupted\n");
1329 printf("bcp ^ bxstat = %lx, should be %lx\n",
1330 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
1331 KMEM_BUFTAG_FREE);
1332 break;
1333
1334 case KMERR_BADBUFCTL:
1335 printf("bufctl corrupted\n");
1336 break;
1337
1338 case KMERR_BADCACHE:
1339 printf("buffer freed to wrong cache\n");
1340 printf("buffer was allocated from %s,\n", cp->cache_name);
1341 printf("caller attempting free to %s.\n", cparg->cache_name);
1342 break;
1343
1344 case KMERR_BADSIZE:
1345 printf("bad free: free size (%u) != alloc size (%u)\n",
1346 KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
1347 KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
1348 break;
1349
1350 case KMERR_BADBASE:
1351 printf("bad free: free address (%p) != alloc address (%p)\n",
1352 bufarg, buf);
1353 break;
1354 }
1355
1356 printf("buffer=%p bufctl=%p cache: %s\n",
1357 bufarg, (void *)bcp, cparg->cache_name);
1358
1359 if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
1360 error != KMERR_BADBUFCTL) {
1361 int d;
1362 timestruc_t ts;
1363 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
1364
1365 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
1366 printf("previous transaction on buffer %p:\n", buf);
1367 printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n",
1368 (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
1369 (void *)sp, cp->cache_name);
1370 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
1371 ulong_t off;
1372 char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
1373 printf("%s+%lx\n", sym ? sym : "?", off);
1374 }
1375 }
1376 if (kmem_panic > 0)
1377 panic("kernel heap corruption detected");
1378 if (kmem_panic == 0)
1379 debug_enter(NULL);
1380 kmem_logging = 1; /* resume logging */
1381 }
1382
1383 static kmem_log_header_t *
1384 kmem_log_init(size_t logsize)
1385 {
1386 kmem_log_header_t *lhp;
1387 int nchunks = 4 * max_ncpus;
1388 size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
1389 int i;
1390
1391 /*
1392 * Make sure that lhp->lh_cpu[] is nicely aligned
1393 * to prevent false sharing of cache lines.
1394 */
1395 lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
1396 lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1397 NULL, NULL, VM_SLEEP);
1398 bzero(lhp, lhsize);
1399
1400 mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
1401 lhp->lh_nchunks = nchunks;
1402 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
1403 lhp->lh_base = vmem_alloc(kmem_log_arena,
1404 lhp->lh_chunksize * nchunks, VM_SLEEP);
1405 lhp->lh_free = vmem_alloc(kmem_log_arena,
1406 nchunks * sizeof (int), VM_SLEEP);
1407 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1408
1409 for (i = 0; i < max_ncpus; i++) {
1410 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1411 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
1412 clhp->clh_chunk = i;
1413 }
1414
1415 for (i = max_ncpus; i < nchunks; i++)
1416 lhp->lh_free[i] = i;
1417
1418 lhp->lh_head = max_ncpus;
1419 lhp->lh_tail = 0;
1420
1421 return (lhp);
1422 }
1423
1424 static void *
1425 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
1426 {
1427 void *logspace;
1428 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid];
1429
1430 if (lhp == NULL || kmem_logging == 0 || panicstr)
1431 return (NULL);
1432
1433 mutex_enter(&clhp->clh_lock);
1434 clhp->clh_hits++;
1435 if (size > clhp->clh_avail) {
1436 mutex_enter(&lhp->lh_lock);
1437 lhp->lh_hits++;
1438 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1439 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1440 clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1441 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1442 clhp->clh_current = lhp->lh_base +
1443 clhp->clh_chunk * lhp->lh_chunksize;
1444 clhp->clh_avail = lhp->lh_chunksize;
1445 if (size > lhp->lh_chunksize)
1446 size = lhp->lh_chunksize;
1447 mutex_exit(&lhp->lh_lock);
1448 }
1449 logspace = clhp->clh_current;
1450 clhp->clh_current += size;
1451 clhp->clh_avail -= size;
1452 bcopy(data, logspace, size);
1453 mutex_exit(&clhp->clh_lock);
1454 return (logspace);
1455 }
1456
1457 #define KMEM_AUDIT(lp, cp, bcp) \
1458 { \
1459 kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp); \
1460 _bcp->bc_timestamp = gethrtime(); \
1461 _bcp->bc_thread = curthread; \
1462 _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH); \
1463 _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp)); \
1464 }
1465
1466 static void
1467 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
1468 kmem_slab_t *sp, void *addr)
1469 {
1470 kmem_bufctl_audit_t bca;
1471
1472 bzero(&bca, sizeof (kmem_bufctl_audit_t));
1473 bca.bc_addr = addr;
1474 bca.bc_slab = sp;
1475 bca.bc_cache = cp;
1476 KMEM_AUDIT(lp, cp, &bca);
1477 }
1478
1479 /*
1480 * Create a new slab for cache cp.
1481 */
1482 static kmem_slab_t *
1483 kmem_slab_create(kmem_cache_t *cp, int kmflag)
1484 {
1485 size_t slabsize = cp->cache_slabsize;
1486 size_t chunksize = cp->cache_chunksize;
1487 int cache_flags = cp->cache_flags;
1488 size_t color, chunks;
1489 char *buf, *slab;
1490 kmem_slab_t *sp;
1491 kmem_bufctl_t *bcp;
1492 vmem_t *vmp = cp->cache_arena;
1493
1494 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1495
1496 color = cp->cache_color + cp->cache_align;
1497 if (color > cp->cache_maxcolor)
1498 color = cp->cache_mincolor;
1499 cp->cache_color = color;
1500
1501 slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
1502
1503 if (slab == NULL)
1504 goto vmem_alloc_failure;
1505
1506 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1507
1508 /*
1509 * Reverify what was already checked in kmem_cache_set_move(), since the
1510 * consolidator depends (for correctness) on slabs being initialized
1511 * with the 0xbaddcafe memory pattern (setting a low order bit usable by
1512 * clients to distinguish uninitialized memory from known objects).
1513 */
1514 ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH));
1515 if (!(cp->cache_cflags & KMC_NOTOUCH))
1516 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1517
1518 if (cache_flags & KMF_HASH) {
1519 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
1520 goto slab_alloc_failure;
1521 chunks = (slabsize - color) / chunksize;
1522 } else {
1523 sp = KMEM_SLAB(cp, slab);
1524 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
1525 }
1526
1527 sp->slab_cache = cp;
1528 sp->slab_head = NULL;
1529 sp->slab_refcnt = 0;
1530 sp->slab_base = buf = slab + color;
1531 sp->slab_chunks = chunks;
1532 sp->slab_stuck_offset = (uint32_t)-1;
1533 sp->slab_later_count = 0;
1534 sp->slab_flags = 0;
1535
1536 ASSERT(chunks > 0);
1537 while (chunks-- != 0) {
1538 if (cache_flags & KMF_HASH) {
1539 bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
1540 if (bcp == NULL)
1541 goto bufctl_alloc_failure;
1542 if (cache_flags & KMF_AUDIT) {
1543 kmem_bufctl_audit_t *bcap =
1544 (kmem_bufctl_audit_t *)bcp;
1545 bzero(bcap, sizeof (kmem_bufctl_audit_t));
1546 bcap->bc_cache = cp;
1547 }
1548 bcp->bc_addr = buf;
1549 bcp->bc_slab = sp;
1550 } else {
1551 bcp = KMEM_BUFCTL(cp, buf);
1552 }
1553 if (cache_flags & KMF_BUFTAG) {
1554 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1555 btp->bt_redzone = KMEM_REDZONE_PATTERN;
1556 btp->bt_bufctl = bcp;
1557 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1558 if (cache_flags & KMF_DEADBEEF) {
1559 copy_pattern(KMEM_FREE_PATTERN, buf,
1560 cp->cache_verify);
1561 }
1562 }
1563 bcp->bc_next = sp->slab_head;
1564 sp->slab_head = bcp;
1565 buf += chunksize;
1566 }
1567
1568 kmem_log_event(kmem_slab_log, cp, sp, slab);
1569
1570 return (sp);
1571
1572 bufctl_alloc_failure:
1573
1574 while ((bcp = sp->slab_head) != NULL) {
1575 sp->slab_head = bcp->bc_next;
1576 kmem_cache_free(cp->cache_bufctl_cache, bcp);
1577 }
1578 kmem_cache_free(kmem_slab_cache, sp);
1579
1580 slab_alloc_failure:
1581
1582 vmem_free(vmp, slab, slabsize);
1583
1584 vmem_alloc_failure:
1585
1586 kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1587 atomic_inc_64(&cp->cache_alloc_fail);
1588
1589 return (NULL);
1590 }
1591
1592 /*
1593 * Destroy a slab.
1594 */
1595 static void
1596 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
1597 {
1598 vmem_t *vmp = cp->cache_arena;
1599 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1600
1601 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1602 ASSERT(sp->slab_refcnt == 0);
1603
1604 if (cp->cache_flags & KMF_HASH) {
1605 kmem_bufctl_t *bcp;
1606 while ((bcp = sp->slab_head) != NULL) {
1607 sp->slab_head = bcp->bc_next;
1608 kmem_cache_free(cp->cache_bufctl_cache, bcp);
1609 }
1610 kmem_cache_free(kmem_slab_cache, sp);
1611 }
1612 vmem_free(vmp, slab, cp->cache_slabsize);
1613 }
1614
1615 static void *
1616 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill)
1617 {
1618 kmem_bufctl_t *bcp, **hash_bucket;
1619 void *buf;
1620 boolean_t new_slab = (sp->slab_refcnt == 0);
1621
1622 ASSERT(MUTEX_HELD(&cp->cache_lock));
1623 /*
1624 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we
1625 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the
1626 * slab is newly created.
1627 */
1628 ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) &&
1629 (sp == avl_first(&cp->cache_partial_slabs))));
1630 ASSERT(sp->slab_cache == cp);
1631
1632 cp->cache_slab_alloc++;
1633 cp->cache_bufslab--;
1634 sp->slab_refcnt++;
1635
1636 bcp = sp->slab_head;
1637 sp->slab_head = bcp->bc_next;
1638
1639 if (cp->cache_flags & KMF_HASH) {
1640 /*
1641 * Add buffer to allocated-address hash table.
1642 */
1643 buf = bcp->bc_addr;
1644 hash_bucket = KMEM_HASH(cp, buf);
1645 bcp->bc_next = *hash_bucket;
1646 *hash_bucket = bcp;
1647 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1648 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1649 }
1650 } else {
1651 buf = KMEM_BUF(cp, bcp);
1652 }
1653
1654 ASSERT(KMEM_SLAB_MEMBER(sp, buf));
1655
1656 if (sp->slab_head == NULL) {
1657 ASSERT(KMEM_SLAB_IS_ALL_USED(sp));
1658 if (new_slab) {
1659 ASSERT(sp->slab_chunks == 1);
1660 } else {
1661 ASSERT(sp->slab_chunks > 1); /* the slab was partial */
1662 avl_remove(&cp->cache_partial_slabs, sp);
1663 sp->slab_later_count = 0; /* clear history */
1664 sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
1665 sp->slab_stuck_offset = (uint32_t)-1;
1666 }
1667 list_insert_head(&cp->cache_complete_slabs, sp);
1668 cp->cache_complete_slab_count++;
1669 return (buf);
1670 }
1671
1672 ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
1673 /*
1674 * Peek to see if the magazine layer is enabled before
1675 * we prefill. We're not holding the cpu cache lock,
1676 * so the peek could be wrong, but there's no harm in it.
1677 */
1678 if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) &&
1679 (KMEM_CPU_CACHE(cp)->cc_magsize != 0)) {
1680 kmem_slab_prefill(cp, sp);
1681 return (buf);
1682 }
1683
1684 if (new_slab) {
1685 avl_add(&cp->cache_partial_slabs, sp);
1686 return (buf);
1687 }
1688
1689 /*
1690 * The slab is now more allocated than it was, so the
1691 * order remains unchanged.
1692 */
1693 ASSERT(!avl_update(&cp->cache_partial_slabs, sp));
1694 return (buf);
1695 }
1696
1697 /*
1698 * Allocate a raw (unconstructed) buffer from cp's slab layer.
1699 */
1700 static void *
1701 kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
1702 {
1703 kmem_slab_t *sp;
1704 void *buf;
1705 boolean_t test_destructor;
1706
1707 mutex_enter(&cp->cache_lock);
1708 test_destructor = (cp->cache_slab_alloc == 0);
1709 sp = avl_first(&cp->cache_partial_slabs);
1710 if (sp == NULL) {
1711 ASSERT(cp->cache_bufslab == 0);
1712
1713 /*
1714 * The freelist is empty. Create a new slab.
1715 */
1716 mutex_exit(&cp->cache_lock);
1717 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) {
1718 return (NULL);
1719 }
1720 mutex_enter(&cp->cache_lock);
1721 cp->cache_slab_create++;
1722 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1723 cp->cache_bufmax = cp->cache_buftotal;
1724 cp->cache_bufslab += sp->slab_chunks;
1725 }
1726
1727 buf = kmem_slab_alloc_impl(cp, sp, B_TRUE);
1728 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1729 (cp->cache_complete_slab_count +
1730 avl_numnodes(&cp->cache_partial_slabs) +
1731 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1732 mutex_exit(&cp->cache_lock);
1733
1734 if (test_destructor && cp->cache_destructor != NULL) {
1735 /*
1736 * On the first kmem_slab_alloc(), assert that it is valid to
1737 * call the destructor on a newly constructed object without any
1738 * client involvement.
1739 */
1740 if ((cp->cache_constructor == NULL) ||
1741 cp->cache_constructor(buf, cp->cache_private,
1742 kmflag) == 0) {
1743 cp->cache_destructor(buf, cp->cache_private);
1744 }
1745 copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf,
1746 cp->cache_bufsize);
1747 if (cp->cache_flags & KMF_DEADBEEF) {
1748 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1749 }
1750 }
1751
1752 return (buf);
1753 }
1754
1755 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *);
1756
1757 /*
1758 * Free a raw (unconstructed) buffer to cp's slab layer.
1759 */
1760 static void
1761 kmem_slab_free(kmem_cache_t *cp, void *buf)
1762 {
1763 kmem_slab_t *sp;
1764 kmem_bufctl_t *bcp, **prev_bcpp;
1765
1766 ASSERT(buf != NULL);
1767
1768 mutex_enter(&cp->cache_lock);
1769 cp->cache_slab_free++;
1770
1771 if (cp->cache_flags & KMF_HASH) {
1772 /*
1773 * Look up buffer in allocated-address hash table.
1774 */
1775 prev_bcpp = KMEM_HASH(cp, buf);
1776 while ((bcp = *prev_bcpp) != NULL) {
1777 if (bcp->bc_addr == buf) {
1778 *prev_bcpp = bcp->bc_next;
1779 sp = bcp->bc_slab;
1780 break;
1781 }
1782 cp->cache_lookup_depth++;
1783 prev_bcpp = &bcp->bc_next;
1784 }
1785 } else {
1786 bcp = KMEM_BUFCTL(cp, buf);
1787 sp = KMEM_SLAB(cp, buf);
1788 }
1789
1790 if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
1791 mutex_exit(&cp->cache_lock);
1792 kmem_error(KMERR_BADADDR, cp, buf);
1793 return;
1794 }
1795
1796 if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) {
1797 /*
1798 * If this is the buffer that prevented the consolidator from
1799 * clearing the slab, we can reset the slab flags now that the
1800 * buffer is freed. (It makes sense to do this in
1801 * kmem_cache_free(), where the client gives up ownership of the
1802 * buffer, but on the hot path the test is too expensive.)
1803 */
1804 kmem_slab_move_yes(cp, sp, buf);
1805 }
1806
1807 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1808 if (cp->cache_flags & KMF_CONTENTS)
1809 ((kmem_bufctl_audit_t *)bcp)->bc_contents =
1810 kmem_log_enter(kmem_content_log, buf,
1811 cp->cache_contents);
1812 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1813 }
1814
1815 bcp->bc_next = sp->slab_head;
1816 sp->slab_head = bcp;
1817
1818 cp->cache_bufslab++;
1819 ASSERT(sp->slab_refcnt >= 1);
1820
1821 if (--sp->slab_refcnt == 0) {
1822 /*
1823 * There are no outstanding allocations from this slab,
1824 * so we can reclaim the memory.
1825 */
1826 if (sp->slab_chunks == 1) {
1827 list_remove(&cp->cache_complete_slabs, sp);
1828 cp->cache_complete_slab_count--;
1829 } else {
1830 avl_remove(&cp->cache_partial_slabs, sp);
1831 }
1832
1833 cp->cache_buftotal -= sp->slab_chunks;
1834 cp->cache_bufslab -= sp->slab_chunks;
1835 /*
1836 * Defer releasing the slab to the virtual memory subsystem
1837 * while there is a pending move callback, since we guarantee
1838 * that buffers passed to the move callback have only been
1839 * touched by kmem or by the client itself. Since the memory
1840 * patterns baddcafe (uninitialized) and deadbeef (freed) both
1841 * set at least one of the two lowest order bits, the client can
1842 * test those bits in the move callback to determine whether or
1843 * not it knows about the buffer (assuming that the client also
1844 * sets one of those low order bits whenever it frees a buffer).
1845 */
1846 if (cp->cache_defrag == NULL ||
1847 (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) &&
1848 !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) {
1849 cp->cache_slab_destroy++;
1850 mutex_exit(&cp->cache_lock);
1851 kmem_slab_destroy(cp, sp);
1852 } else {
1853 list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
1854 /*
1855 * Slabs are inserted at both ends of the deadlist to
1856 * distinguish between slabs freed while move callbacks
1857 * are pending (list head) and a slab freed while the
1858 * lock is dropped in kmem_move_buffers() (list tail) so
1859 * that in both cases slab_destroy() is called from the
1860 * right context.
1861 */
1862 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
1863 list_insert_tail(deadlist, sp);
1864 } else {
1865 list_insert_head(deadlist, sp);
1866 }
1867 cp->cache_defrag->kmd_deadcount++;
1868 mutex_exit(&cp->cache_lock);
1869 }
1870 return;
1871 }
1872
1873 if (bcp->bc_next == NULL) {
1874 /* Transition the slab from completely allocated to partial. */
1875 ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1));
1876 ASSERT(sp->slab_chunks > 1);
1877 list_remove(&cp->cache_complete_slabs, sp);
1878 cp->cache_complete_slab_count--;
1879 avl_add(&cp->cache_partial_slabs, sp);
1880 } else {
1881 (void) avl_update_gt(&cp->cache_partial_slabs, sp);
1882 }
1883
1884 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1885 (cp->cache_complete_slab_count +
1886 avl_numnodes(&cp->cache_partial_slabs) +
1887 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1888 mutex_exit(&cp->cache_lock);
1889 }
1890
1891 /*
1892 * Return -1 if kmem_error, 1 if constructor fails, 0 if successful.
1893 */
1894 static int
1895 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
1896 caddr_t caller)
1897 {
1898 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1899 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1900 uint32_t mtbf;
1901
1902 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1903 kmem_error(KMERR_BADBUFTAG, cp, buf);
1904 return (-1);
1905 }
1906
1907 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
1908
1909 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1910 kmem_error(KMERR_BADBUFCTL, cp, buf);
1911 return (-1);
1912 }
1913
1914 if (cp->cache_flags & KMF_DEADBEEF) {
1915 if (!construct && (cp->cache_flags & KMF_LITE)) {
1916 if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
1917 kmem_error(KMERR_MODIFIED, cp, buf);
1918 return (-1);
1919 }
1920 if (cp->cache_constructor != NULL)
1921 *(uint64_t *)buf = btp->bt_redzone;
1922 else
1923 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
1924 } else {
1925 construct = 1;
1926 if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
1927 KMEM_UNINITIALIZED_PATTERN, buf,
1928 cp->cache_verify)) {
1929 kmem_error(KMERR_MODIFIED, cp, buf);
1930 return (-1);
1931 }
1932 }
1933 }
1934 btp->bt_redzone = KMEM_REDZONE_PATTERN;
1935
1936 if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
1937 gethrtime() % mtbf == 0 &&
1938 (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
1939 kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1940 if (!construct && cp->cache_destructor != NULL)
1941 cp->cache_destructor(buf, cp->cache_private);
1942 } else {
1943 mtbf = 0;
1944 }
1945
1946 if (mtbf || (construct && cp->cache_constructor != NULL &&
1947 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
1948 atomic_inc_64(&cp->cache_alloc_fail);
1949 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1950 if (cp->cache_flags & KMF_DEADBEEF)
1951 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1952 kmem_slab_free(cp, buf);
1953 return (1);
1954 }
1955
1956 if (cp->cache_flags & KMF_AUDIT) {
1957 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1958 }
1959
1960 if ((cp->cache_flags & KMF_LITE) &&
1961 !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
1962 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
1963 }
1964
1965 return (0);
1966 }
1967
1968 static int
1969 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
1970 {
1971 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1972 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1973 kmem_slab_t *sp;
1974
1975 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
1976 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1977 kmem_error(KMERR_DUPFREE, cp, buf);
1978 return (-1);
1979 }
1980 sp = kmem_findslab(cp, buf);
1981 if (sp == NULL || sp->slab_cache != cp)
1982 kmem_error(KMERR_BADADDR, cp, buf);
1983 else
1984 kmem_error(KMERR_REDZONE, cp, buf);
1985 return (-1);
1986 }
1987
1988 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1989
1990 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1991 kmem_error(KMERR_BADBUFCTL, cp, buf);
1992 return (-1);
1993 }
1994
1995 if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
1996 kmem_error(KMERR_REDZONE, cp, buf);
1997 return (-1);
1998 }
1999
2000 if (cp->cache_flags & KMF_AUDIT) {
2001 if (cp->cache_flags & KMF_CONTENTS)
2002 bcp->bc_contents = kmem_log_enter(kmem_content_log,
2003 buf, cp->cache_contents);
2004 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
2005 }
2006
2007 if ((cp->cache_flags & KMF_LITE) &&
2008 !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
2009 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
2010 }
2011
2012 if (cp->cache_flags & KMF_DEADBEEF) {
2013 if (cp->cache_flags & KMF_LITE)
2014 btp->bt_redzone = *(uint64_t *)buf;
2015 else if (cp->cache_destructor != NULL)
2016 cp->cache_destructor(buf, cp->cache_private);
2017
2018 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
2019 }
2020
2021 return (0);
2022 }
2023
2024 /*
2025 * Free each object in magazine mp to cp's slab layer, and free mp itself.
2026 */
2027 static void
2028 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
2029 {
2030 int round;
2031
2032 ASSERT(!list_link_active(&cp->cache_link) ||
2033 taskq_member(kmem_taskq, curthread));
2034
2035 for (round = 0; round < nrounds; round++) {
2036 void *buf = mp->mag_round[round];
2037
2038 if (cp->cache_flags & KMF_DEADBEEF) {
2039 if (verify_pattern(KMEM_FREE_PATTERN, buf,
2040 cp->cache_verify) != NULL) {
2041 kmem_error(KMERR_MODIFIED, cp, buf);
2042 continue;
2043 }
2044 if ((cp->cache_flags & KMF_LITE) &&
2045 cp->cache_destructor != NULL) {
2046 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2047 *(uint64_t *)buf = btp->bt_redzone;
2048 cp->cache_destructor(buf, cp->cache_private);
2049 *(uint64_t *)buf = KMEM_FREE_PATTERN;
2050 }
2051 } else if (cp->cache_destructor != NULL) {
2052 cp->cache_destructor(buf, cp->cache_private);
2053 }
2054
2055 kmem_slab_free(cp, buf);
2056 }
2057 ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2058 kmem_cache_free(cp->cache_magtype->mt_cache, mp);
2059 }
2060
2061 /*
2062 * Allocate a magazine from the depot.
2063 */
2064 static kmem_magazine_t *
2065 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
2066 {
2067 kmem_magazine_t *mp;
2068
2069 /*
2070 * If we can't get the depot lock without contention,
2071 * update our contention count. We use the depot
2072 * contention rate to determine whether we need to
2073 * increase the magazine size for better scalability.
2074 */
2075 if (!mutex_tryenter(&cp->cache_depot_lock)) {
2076 mutex_enter(&cp->cache_depot_lock);
2077 cp->cache_depot_contention++;
2078 }
2079
2080 if ((mp = mlp->ml_list) != NULL) {
2081 ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2082 mlp->ml_list = mp->mag_next;
2083 if (--mlp->ml_total < mlp->ml_min)
2084 mlp->ml_min = mlp->ml_total;
2085 mlp->ml_alloc++;
2086 }
2087
2088 mutex_exit(&cp->cache_depot_lock);
2089
2090 return (mp);
2091 }
2092
2093 /*
2094 * Free a magazine to the depot.
2095 */
2096 static void
2097 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
2098 {
2099 mutex_enter(&cp->cache_depot_lock);
2100 ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2101 mp->mag_next = mlp->ml_list;
2102 mlp->ml_list = mp;
2103 mlp->ml_total++;
2104 mutex_exit(&cp->cache_depot_lock);
2105 }
2106
2107 /*
2108 * Update the working set statistics for cp's depot.
2109 */
2110 static void
2111 kmem_depot_ws_update(kmem_cache_t *cp)
2112 {
2113 mutex_enter(&cp->cache_depot_lock);
2114 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
2115 cp->cache_full.ml_min = cp->cache_full.ml_total;
2116 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
2117 cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2118 mutex_exit(&cp->cache_depot_lock);
2119 }
2120
2121 /*
2122 * Set the working set statistics for cp's depot to zero. (Everything is
2123 * eligible for reaping.)
2124 */
2125 static void
2126 kmem_depot_ws_zero(kmem_cache_t *cp)
2127 {
2128 mutex_enter(&cp->cache_depot_lock);
2129 cp->cache_full.ml_reaplimit = cp->cache_full.ml_total;
2130 cp->cache_full.ml_min = cp->cache_full.ml_total;
2131 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total;
2132 cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2133 mutex_exit(&cp->cache_depot_lock);
2134 }
2135
2136 /*
2137 * The number of bytes to reap before we call kpreempt(). The default (1MB)
2138 * causes us to preempt reaping up to hundreds of times per second. Using a
2139 * larger value (1GB) causes this to have virtually no effect.
2140 */
2141 size_t kmem_reap_preempt_bytes = 1024 * 1024;
2142
2143 /*
2144 * Reap all magazines that have fallen out of the depot's working set.
2145 */
2146 static void
2147 kmem_depot_ws_reap(kmem_cache_t *cp)
2148 {
2149 size_t bytes = 0;
2150 long reap;
2151 kmem_magazine_t *mp;
2152
2153 ASSERT(!list_link_active(&cp->cache_link) ||
2154 taskq_member(kmem_taskq, curthread));
2155
2156 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
2157 while (reap-- &&
2158 (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) {
2159 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
2160 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2161 if (bytes > kmem_reap_preempt_bytes) {
2162 kpreempt(KPREEMPT_SYNC);
2163 bytes = 0;
2164 }
2165 }
2166
2167 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
2168 while (reap-- &&
2169 (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) {
2170 kmem_magazine_destroy(cp, mp, 0);
2171 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2172 if (bytes > kmem_reap_preempt_bytes) {
2173 kpreempt(KPREEMPT_SYNC);
2174 bytes = 0;
2175 }
2176 }
2177 }
2178
2179 static void
2180 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
2181 {
2182 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
2183 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
2184 ASSERT(ccp->cc_magsize > 0);
2185
2186 ccp->cc_ploaded = ccp->cc_loaded;
2187 ccp->cc_prounds = ccp->cc_rounds;
2188 ccp->cc_loaded = mp;
2189 ccp->cc_rounds = rounds;
2190 }
2191
2192 /*
2193 * Intercept kmem alloc/free calls during crash dump in order to avoid
2194 * changing kmem state while memory is being saved to the dump device.
2195 * Otherwise, ::kmem_verify will report "corrupt buffers". Note that
2196 * there are no locks because only one CPU calls kmem during a crash
2197 * dump. To enable this feature, first create the associated vmem
2198 * arena with VMC_DUMPSAFE.
2199 */
2200 static void *kmem_dump_start; /* start of pre-reserved heap */
2201 static void *kmem_dump_end; /* end of heap area */
2202 static void *kmem_dump_curr; /* current free heap pointer */
2203 static size_t kmem_dump_size; /* size of heap area */
2204
2205 /* append to each buf created in the pre-reserved heap */
2206 typedef struct kmem_dumpctl {
2207 void *kdc_next; /* cache dump free list linkage */
2208 } kmem_dumpctl_t;
2209
2210 #define KMEM_DUMPCTL(cp, buf) \
2211 ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \
2212 sizeof (void *)))
2213
2214 /* Keep some simple stats. */
2215 #define KMEM_DUMP_LOGS (100)
2216
2217 typedef struct kmem_dump_log {
2218 kmem_cache_t *kdl_cache;
2219 uint_t kdl_allocs; /* # of dump allocations */
2220 uint_t kdl_frees; /* # of dump frees */
2221 uint_t kdl_alloc_fails; /* # of allocation failures */
2222 uint_t kdl_free_nondump; /* # of non-dump frees */
2223 uint_t kdl_unsafe; /* cache was used, but unsafe */
2224 } kmem_dump_log_t;
2225
2226 static kmem_dump_log_t *kmem_dump_log;
2227 static int kmem_dump_log_idx;
2228
2229 #define KDI_LOG(cp, stat) { \
2230 kmem_dump_log_t *kdl; \
2231 if ((kdl = (kmem_dump_log_t *)((cp)->cache_dumplog)) != NULL) { \
2232 kdl->stat++; \
2233 } else if (kmem_dump_log_idx < KMEM_DUMP_LOGS) { \
2234 kdl = &kmem_dump_log[kmem_dump_log_idx++]; \
2235 kdl->stat++; \
2236 kdl->kdl_cache = (cp); \
2237 (cp)->cache_dumplog = kdl; \
2238 } \
2239 }
2240
2241 /* set non zero for full report */
2242 uint_t kmem_dump_verbose = 0;
2243
2244 /* stats for overize heap */
2245 uint_t kmem_dump_oversize_allocs = 0;
2246 uint_t kmem_dump_oversize_max = 0;
2247
2248 static void
2249 kmem_dumppr(char **pp, char *e, const char *format, ...)
2250 {
2251 char *p = *pp;
2252
2253 if (p < e) {
2254 int n;
2255 va_list ap;
2256
2257 va_start(ap, format);
2258 n = vsnprintf(p, e - p, format, ap);
2259 va_end(ap);
2260 *pp = p + n;
2261 }
2262 }
2263
2264 /*
2265 * Called when dumpadm(1M) configures dump parameters.
2266 */
2267 void
2268 kmem_dump_init(size_t size)
2269 {
2270 if (kmem_dump_start != NULL)
2271 kmem_free(kmem_dump_start, kmem_dump_size);
2272
2273 if (kmem_dump_log == NULL)
2274 kmem_dump_log = (kmem_dump_log_t *)kmem_zalloc(KMEM_DUMP_LOGS *
2275 sizeof (kmem_dump_log_t), KM_SLEEP);
2276
2277 kmem_dump_start = kmem_alloc(size, KM_SLEEP);
2278
2279 if (kmem_dump_start != NULL) {
2280 kmem_dump_size = size;
2281 kmem_dump_curr = kmem_dump_start;
2282 kmem_dump_end = (void *)((char *)kmem_dump_start + size);
2283 copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size);
2284 } else {
2285 kmem_dump_size = 0;
2286 kmem_dump_curr = NULL;
2287 kmem_dump_end = NULL;
2288 }
2289 }
2290
2291 /*
2292 * Set flag for each kmem_cache_t if is safe to use alternate dump
2293 * memory. Called just before panic crash dump starts. Set the flag
2294 * for the calling CPU.
2295 */
2296 void
2297 kmem_dump_begin(void)
2298 {
2299 ASSERT(panicstr != NULL);
2300 if (kmem_dump_start != NULL) {
2301 kmem_cache_t *cp;
2302
2303 for (cp = list_head(&kmem_caches); cp != NULL;
2304 cp = list_next(&kmem_caches, cp)) {
2305 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2306
2307 if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) {
2308 cp->cache_flags |= KMF_DUMPDIVERT;
2309 ccp->cc_flags |= KMF_DUMPDIVERT;
2310 ccp->cc_dump_rounds = ccp->cc_rounds;
2311 ccp->cc_dump_prounds = ccp->cc_prounds;
2312 ccp->cc_rounds = ccp->cc_prounds = -1;
2313 } else {
2314 cp->cache_flags |= KMF_DUMPUNSAFE;
2315 ccp->cc_flags |= KMF_DUMPUNSAFE;
2316 }
2317 }
2318 }
2319 }
2320
2321 /*
2322 * finished dump intercept
2323 * print any warnings on the console
2324 * return verbose information to dumpsys() in the given buffer
2325 */
2326 size_t
2327 kmem_dump_finish(char *buf, size_t size)
2328 {
2329 int kdi_idx;
2330 int kdi_end = kmem_dump_log_idx;
2331 int percent = 0;
2332 int header = 0;
2333 int warn = 0;
2334 size_t used;
2335 kmem_cache_t *cp;
2336 kmem_dump_log_t *kdl;
2337 char *e = buf + size;
2338 char *p = buf;
2339
2340 if (kmem_dump_size == 0 || kmem_dump_verbose == 0)
2341 return (0);
2342
2343 used = (char *)kmem_dump_curr - (char *)kmem_dump_start;
2344 percent = (used * 100) / kmem_dump_size;
2345
2346 kmem_dumppr(&p, e, "%% heap used,%d\n", percent);
2347 kmem_dumppr(&p, e, "used bytes,%ld\n", used);
2348 kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size);
2349 kmem_dumppr(&p, e, "Oversize allocs,%d\n",
2350 kmem_dump_oversize_allocs);
2351 kmem_dumppr(&p, e, "Oversize max size,%ld\n",
2352 kmem_dump_oversize_max);
2353
2354 for (kdi_idx = 0; kdi_idx < kdi_end; kdi_idx++) {
2355 kdl = &kmem_dump_log[kdi_idx];
2356 cp = kdl->kdl_cache;
2357 if (cp == NULL)
2358 break;
2359 if (kdl->kdl_alloc_fails)
2360 ++warn;
2361 if (header == 0) {
2362 kmem_dumppr(&p, e,
2363 "Cache Name,Allocs,Frees,Alloc Fails,"
2364 "Nondump Frees,Unsafe Allocs/Frees\n");
2365 header = 1;
2366 }
2367 kmem_dumppr(&p, e, "%s,%d,%d,%d,%d,%d\n",
2368 cp->cache_name, kdl->kdl_allocs, kdl->kdl_frees,
2369 kdl->kdl_alloc_fails, kdl->kdl_free_nondump,
2370 kdl->kdl_unsafe);
2371 }
2372
2373 /* return buffer size used */
2374 if (p < e)
2375 bzero(p, e - p);
2376 return (p - buf);
2377 }
2378
2379 /*
2380 * Allocate a constructed object from alternate dump memory.
2381 */
2382 void *
2383 kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag)
2384 {
2385 void *buf;
2386 void *curr;
2387 char *bufend;
2388
2389 /* return a constructed object */
2390 if ((buf = cp->cache_dumpfreelist) != NULL) {
2391 cp->cache_dumpfreelist = KMEM_DUMPCTL(cp, buf)->kdc_next;
2392 KDI_LOG(cp, kdl_allocs);
2393 return (buf);
2394 }
2395
2396 /* create a new constructed object */
2397 curr = kmem_dump_curr;
2398 buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align);
2399 bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t);
2400
2401 /* hat layer objects cannot cross a page boundary */
2402 if (cp->cache_align < PAGESIZE) {
2403 char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE);
2404 if (bufend > page) {
2405 bufend += page - (char *)buf;
2406 buf = (void *)page;
2407 }
2408 }
2409
2410 /* fall back to normal alloc if reserved area is used up */
2411 if (bufend > (char *)kmem_dump_end) {
2412 kmem_dump_curr = kmem_dump_end;
2413 KDI_LOG(cp, kdl_alloc_fails);
2414 return (NULL);
2415 }
2416
2417 /*
2418 * Must advance curr pointer before calling a constructor that
2419 * may also allocate memory.
2420 */
2421 kmem_dump_curr = bufend;
2422
2423 /* run constructor */
2424 if (cp->cache_constructor != NULL &&
2425 cp->cache_constructor(buf, cp->cache_private, kmflag)
2426 != 0) {
2427 #ifdef DEBUG
2428 printf("name='%s' cache=0x%p: kmem cache constructor failed\n",
2429 cp->cache_name, (void *)cp);
2430 #endif
2431 /* reset curr pointer iff no allocs were done */
2432 if (kmem_dump_curr == bufend)
2433 kmem_dump_curr = curr;
2434
2435 /* fall back to normal alloc if the constructor fails */
2436 KDI_LOG(cp, kdl_alloc_fails);
2437 return (NULL);
2438 }
2439
2440 KDI_LOG(cp, kdl_allocs);
2441 return (buf);
2442 }
2443
2444 /*
2445 * Free a constructed object in alternate dump memory.
2446 */
2447 int
2448 kmem_cache_free_dump(kmem_cache_t *cp, void *buf)
2449 {
2450 /* save constructed buffers for next time */
2451 if ((char *)buf >= (char *)kmem_dump_start &&
2452 (char *)buf < (char *)kmem_dump_end) {
2453 KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dumpfreelist;
2454 cp->cache_dumpfreelist = buf;
2455 KDI_LOG(cp, kdl_frees);
2456 return (0);
2457 }
2458
2459 /* count all non-dump buf frees */
2460 KDI_LOG(cp, kdl_free_nondump);
2461
2462 /* just drop buffers that were allocated before dump started */
2463 if (kmem_dump_curr < kmem_dump_end)
2464 return (0);
2465
2466 /* fall back to normal free if reserved area is used up */
2467 return (1);
2468 }
2469
2470 /*
2471 * Allocate a constructed object from cache cp.
2472 */
2473 void *
2474 kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
2475 {
2476 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2477 kmem_magazine_t *fmp;
2478 void *buf;
2479
2480 mutex_enter(&ccp->cc_lock);
2481 for (;;) {
2482 /*
2483 * If there's an object available in the current CPU's
2484 * loaded magazine, just take it and return.
2485 */
2486 if (ccp->cc_rounds > 0) {
2487 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
2488 ccp->cc_alloc++;
2489 mutex_exit(&ccp->cc_lock);
2490 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) {
2491 if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2492 ASSERT(!(ccp->cc_flags &
2493 KMF_DUMPDIVERT));
2494 KDI_LOG(cp, kdl_unsafe);
2495 }
2496 if ((ccp->cc_flags & KMF_BUFTAG) &&
2497 kmem_cache_alloc_debug(cp, buf, kmflag, 0,
2498 caller()) != 0) {
2499 if (kmflag & KM_NOSLEEP)
2500 return (NULL);
2501 mutex_enter(&ccp->cc_lock);
2502 continue;
2503 }
2504 }
2505 return (buf);
2506 }
2507
2508 /*
2509 * The loaded magazine is empty. If the previously loaded
2510 * magazine was full, exchange them and try again.
2511 */
2512 if (ccp->cc_prounds > 0) {
2513 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2514 continue;
2515 }
2516
2517 /*
2518 * Return an alternate buffer at dump time to preserve
2519 * the heap.
2520 */
2521 if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2522 if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2523 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2524 /* log it so that we can warn about it */
2525 KDI_LOG(cp, kdl_unsafe);
2526 } else {
2527 if ((buf = kmem_cache_alloc_dump(cp, kmflag)) !=
2528 NULL) {
2529 mutex_exit(&ccp->cc_lock);
2530 return (buf);
2531 }
2532 break; /* fall back to slab layer */
2533 }
2534 }
2535
2536 /*
2537 * If the magazine layer is disabled, break out now.
2538 */
2539 if (ccp->cc_magsize == 0)
2540 break;
2541
2542 /*
2543 * Try to get a full magazine from the depot.
2544 */
2545 fmp = kmem_depot_alloc(cp, &cp->cache_full);
2546 if (fmp != NULL) {
2547 if (ccp->cc_ploaded != NULL)
2548 kmem_depot_free(cp, &cp->cache_empty,
2549 ccp->cc_ploaded);
2550 kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
2551 continue;
2552 }
2553
2554 /*
2555 * There are no full magazines in the depot,
2556 * so fall through to the slab layer.
2557 */
2558 break;
2559 }
2560 mutex_exit(&ccp->cc_lock);
2561
2562 /*
2563 * We couldn't allocate a constructed object from the magazine layer,
2564 * so get a raw buffer from the slab layer and apply its constructor.
2565 */
2566 buf = kmem_slab_alloc(cp, kmflag);
2567
2568 if (buf == NULL)
2569 return (NULL);
2570
2571 if (cp->cache_flags & KMF_BUFTAG) {
2572 /*
2573 * Make kmem_cache_alloc_debug() apply the constructor for us.
2574 */
2575 int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller());
2576 if (rc != 0) {
2577 if (kmflag & KM_NOSLEEP)
2578 return (NULL);
2579 /*
2580 * kmem_cache_alloc_debug() detected corruption
2581 * but didn't panic (kmem_panic <= 0). We should not be
2582 * here because the constructor failed (indicated by a
2583 * return code of 1). Try again.
2584 */
2585 ASSERT(rc == -1);
2586 return (kmem_cache_alloc(cp, kmflag));
2587 }
2588 return (buf);
2589 }
2590
2591 if (cp->cache_constructor != NULL &&
2592 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
2593 atomic_inc_64(&cp->cache_alloc_fail);
2594 kmem_slab_free(cp, buf);
2595 return (NULL);
2596 }
2597
2598 return (buf);
2599 }
2600
2601 /*
2602 * The freed argument tells whether or not kmem_cache_free_debug() has already
2603 * been called so that we can avoid the duplicate free error. For example, a
2604 * buffer on a magazine has already been freed by the client but is still
2605 * constructed.
2606 */
2607 static void
2608 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed)
2609 {
2610 if (!freed && (cp->cache_flags & KMF_BUFTAG))
2611 if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2612 return;
2613
2614 /*
2615 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
2616 * kmem_cache_free_debug() will have already applied the destructor.
2617 */
2618 if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
2619 cp->cache_destructor != NULL) {
2620 if (cp->cache_flags & KMF_DEADBEEF) { /* KMF_LITE implied */
2621 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2622 *(uint64_t *)buf = btp->bt_redzone;
2623 cp->cache_destructor(buf, cp->cache_private);
2624 *(uint64_t *)buf = KMEM_FREE_PATTERN;
2625 } else {
2626 cp->cache_destructor(buf, cp->cache_private);
2627 }
2628 }
2629
2630 kmem_slab_free(cp, buf);
2631 }
2632
2633 /*
2634 * Used when there's no room to free a buffer to the per-CPU cache.
2635 * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the
2636 * caller should try freeing to the per-CPU cache again.
2637 * Note that we don't directly install the magazine in the cpu cache,
2638 * since its state may have changed wildly while the lock was dropped.
2639 */
2640 static int
2641 kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp)
2642 {
2643 kmem_magazine_t *emp;
2644 kmem_magtype_t *mtp;
2645
2646 ASSERT(MUTEX_HELD(&ccp->cc_lock));
2647 ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize ||
2648 ((uint_t)ccp->cc_rounds == -1)) &&
2649 ((uint_t)ccp->cc_prounds == ccp->cc_magsize ||
2650 ((uint_t)ccp->cc_prounds == -1)));
2651
2652 emp = kmem_depot_alloc(cp, &cp->cache_empty);
2653 if (emp != NULL) {
2654 if (ccp->cc_ploaded != NULL)
2655 kmem_depot_free(cp, &cp->cache_full,
2656 ccp->cc_ploaded);
2657 kmem_cpu_reload(ccp, emp, 0);
2658 return (1);
2659 }
2660 /*
2661 * There are no empty magazines in the depot,
2662 * so try to allocate a new one. We must drop all locks
2663 * across kmem_cache_alloc() because lower layers may
2664 * attempt to allocate from this cache.
2665 */
2666 mtp = cp->cache_magtype;
2667 mutex_exit(&ccp->cc_lock);
2668 emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
2669 mutex_enter(&ccp->cc_lock);
2670
2671 if (emp != NULL) {
2672 /*
2673 * We successfully allocated an empty magazine.
2674 * However, we had to drop ccp->cc_lock to do it,
2675 * so the cache's magazine size may have changed.
2676 * If so, free the magazine and try again.
2677 */
2678 if (ccp->cc_magsize != mtp->mt_magsize) {
2679 mutex_exit(&ccp->cc_lock);
2680 kmem_cache_free(mtp->mt_cache, emp);
2681 mutex_enter(&ccp->cc_lock);
2682 return (1);
2683 }
2684
2685 /*
2686 * We got a magazine of the right size. Add it to
2687 * the depot and try the whole dance again.
2688 */
2689 kmem_depot_free(cp, &cp->cache_empty, emp);
2690 return (1);
2691 }
2692
2693 /*
2694 * We couldn't allocate an empty magazine,
2695 * so fall through to the slab layer.
2696 */
2697 return (0);
2698 }
2699
2700 /*
2701 * Free a constructed object to cache cp.
2702 */
2703 void
2704 kmem_cache_free(kmem_cache_t *cp, void *buf)
2705 {
2706 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2707
2708 /*
2709 * The client must not free either of the buffers passed to the move
2710 * callback function.
2711 */
2712 ASSERT(cp->cache_defrag == NULL ||
2713 cp->cache_defrag->kmd_thread != curthread ||
2714 (buf != cp->cache_defrag->kmd_from_buf &&
2715 buf != cp->cache_defrag->kmd_to_buf));
2716
2717 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2718 if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2719 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2720 /* log it so that we can warn about it */
2721 KDI_LOG(cp, kdl_unsafe);
2722 } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) {
2723 return;
2724 }
2725 if (ccp->cc_flags & KMF_BUFTAG) {
2726 if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2727 return;
2728 }
2729 }
2730
2731 mutex_enter(&ccp->cc_lock);
2732 /*
2733 * Any changes to this logic should be reflected in kmem_slab_prefill()
2734 */
2735 for (;;) {
2736 /*
2737 * If there's a slot available in the current CPU's
2738 * loaded magazine, just put the object there and return.
2739 */
2740 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2741 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2742 ccp->cc_free++;
2743 mutex_exit(&ccp->cc_lock);
2744 return;
2745 }
2746
2747 /*
2748 * The loaded magazine is full. If the previously loaded
2749 * magazine was empty, exchange them and try again.
2750 */
2751 if (ccp->cc_prounds == 0) {
2752 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2753 continue;
2754 }
2755
2756 /*
2757 * If the magazine layer is disabled, break out now.
2758 */
2759 if (ccp->cc_magsize == 0)
2760 break;
2761
2762 if (!kmem_cpucache_magazine_alloc(ccp, cp)) {
2763 /*
2764 * We couldn't free our constructed object to the
2765 * magazine layer, so apply its destructor and free it
2766 * to the slab layer.
2767 */
2768 break;
2769 }
2770 }
2771 mutex_exit(&ccp->cc_lock);
2772 kmem_slab_free_constructed(cp, buf, B_TRUE);
2773 }
2774
2775 static void
2776 kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp)
2777 {
2778 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2779 int cache_flags = cp->cache_flags;
2780
2781 kmem_bufctl_t *next, *head;
2782 size_t nbufs;
2783
2784 /*
2785 * Completely allocate the newly created slab and put the pre-allocated
2786 * buffers in magazines. Any of the buffers that cannot be put in
2787 * magazines must be returned to the slab.
2788 */
2789 ASSERT(MUTEX_HELD(&cp->cache_lock));
2790 ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL);
2791 ASSERT(cp->cache_constructor == NULL);
2792 ASSERT(sp->slab_cache == cp);
2793 ASSERT(sp->slab_refcnt == 1);
2794 ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt);
2795 ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL);
2796
2797 head = sp->slab_head;
2798 nbufs = (sp->slab_chunks - sp->slab_refcnt);
2799 sp->slab_head = NULL;
2800 sp->slab_refcnt += nbufs;
2801 cp->cache_bufslab -= nbufs;
2802 cp->cache_slab_alloc += nbufs;
2803 list_insert_head(&cp->cache_complete_slabs, sp);
2804 cp->cache_complete_slab_count++;
2805 mutex_exit(&cp->cache_lock);
2806 mutex_enter(&ccp->cc_lock);
2807
2808 while (head != NULL) {
2809 void *buf = KMEM_BUF(cp, head);
2810 /*
2811 * If there's a slot available in the current CPU's
2812 * loaded magazine, just put the object there and
2813 * continue.
2814 */
2815 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2816 ccp->cc_loaded->mag_round[ccp->cc_rounds++] =
2817 buf;
2818 ccp->cc_free++;
2819 nbufs--;
2820 head = head->bc_next;
2821 continue;
2822 }
2823
2824 /*
2825 * The loaded magazine is full. If the previously
2826 * loaded magazine was empty, exchange them and try
2827 * again.
2828 */
2829 if (ccp->cc_prounds == 0) {
2830 kmem_cpu_reload(ccp, ccp->cc_ploaded,
2831 ccp->cc_prounds);
2832 continue;
2833 }
2834
2835 /*
2836 * If the magazine layer is disabled, break out now.
2837 */
2838
2839 if (ccp->cc_magsize == 0) {
2840 break;
2841 }
2842
2843 if (!kmem_cpucache_magazine_alloc(ccp, cp))
2844 break;
2845 }
2846 mutex_exit(&ccp->cc_lock);
2847 if (nbufs != 0) {
2848 ASSERT(head != NULL);
2849
2850 /*
2851 * If there was a failure, return remaining objects to
2852 * the slab
2853 */
2854 while (head != NULL) {
2855 ASSERT(nbufs != 0);
2856 next = head->bc_next;
2857 head->bc_next = NULL;
2858 kmem_slab_free(cp, KMEM_BUF(cp, head));
2859 head = next;
2860 nbufs--;
2861 }
2862 }
2863 ASSERT(head == NULL);
2864 ASSERT(nbufs == 0);
2865 mutex_enter(&cp->cache_lock);
2866 }
2867
2868 void *
2869 kmem_zalloc(size_t size, int kmflag)
2870 {
2871 size_t index;
2872 void *buf;
2873
2874 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2875 kmem_cache_t *cp = kmem_alloc_table[index];
2876 buf = kmem_cache_alloc(cp, kmflag);
2877 if (buf != NULL) {
2878 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2879 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2880 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2881 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2882
2883 if (cp->cache_flags & KMF_LITE) {
2884 KMEM_BUFTAG_LITE_ENTER(btp,
2885 kmem_lite_count, caller());
2886 }
2887 }
2888 bzero(buf, size);
2889 }
2890 } else {
2891 buf = kmem_alloc(size, kmflag);
2892 if (buf != NULL)
2893 bzero(buf, size);
2894 }
2895 return (buf);
2896 }
2897
2898 void *
2899 kmem_alloc(size_t size, int kmflag)
2900 {
2901 size_t index;
2902 kmem_cache_t *cp;
2903 void *buf;
2904
2905 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2906 cp = kmem_alloc_table[index];
2907 /* fall through to kmem_cache_alloc() */
2908
2909 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2910 kmem_big_alloc_table_max) {
2911 cp = kmem_big_alloc_table[index];
2912 /* fall through to kmem_cache_alloc() */
2913
2914 } else {
2915 if (size == 0)
2916 return (NULL);
2917
2918 buf = vmem_alloc(kmem_oversize_arena, size,
2919 kmflag & KM_VMFLAGS);
2920 if (buf == NULL)
2921 kmem_log_event(kmem_failure_log, NULL, NULL,
2922 (void *)size);
2923 else if (KMEM_DUMP(kmem_slab_cache)) {
2924 /* stats for dump intercept */
2925 kmem_dump_oversize_allocs++;
2926 if (size > kmem_dump_oversize_max)
2927 kmem_dump_oversize_max = size;
2928 }
2929 return (buf);
2930 }
2931
2932 buf = kmem_cache_alloc(cp, kmflag);
2933 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) {
2934 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2935 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2936 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2937
2938 if (cp->cache_flags & KMF_LITE) {
2939 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller());
2940 }
2941 }
2942 return (buf);
2943 }
2944
2945 void
2946 kmem_free(void *buf, size_t size)
2947 {
2948 size_t index;
2949 kmem_cache_t *cp;
2950
2951 if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) {
2952 cp = kmem_alloc_table[index];
2953 /* fall through to kmem_cache_free() */
2954
2955 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2956 kmem_big_alloc_table_max) {
2957 cp = kmem_big_alloc_table[index];
2958 /* fall through to kmem_cache_free() */
2959
2960 } else {
2961 EQUIV(buf == NULL, size == 0);
2962 if (buf == NULL && size == 0)
2963 return;
2964 vmem_free(kmem_oversize_arena, buf, size);
2965 return;
2966 }
2967
2968 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2969 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2970 uint32_t *ip = (uint32_t *)btp;
2971 if (ip[1] != KMEM_SIZE_ENCODE(size)) {
2972 if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
2973 kmem_error(KMERR_DUPFREE, cp, buf);
2974 return;
2975 }
2976 if (KMEM_SIZE_VALID(ip[1])) {
2977 ip[0] = KMEM_SIZE_ENCODE(size);
2978 kmem_error(KMERR_BADSIZE, cp, buf);
2979 } else {
2980 kmem_error(KMERR_REDZONE, cp, buf);
2981 }
2982 return;
2983 }
2984 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
2985 kmem_error(KMERR_REDZONE, cp, buf);
2986 return;
2987 }
2988 btp->bt_redzone = KMEM_REDZONE_PATTERN;
2989 if (cp->cache_flags & KMF_LITE) {
2990 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
2991 caller());
2992 }
2993 }
2994 kmem_cache_free(cp, buf);
2995 }
2996
2997 void *
2998 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
2999 {
3000 size_t realsize = size + vmp->vm_quantum;
3001 void *addr;
3002
3003 /*
3004 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
3005 * vm_quantum will cause integer wraparound. Check for this, and
3006 * blow off the firewall page in this case. Note that such a
3007 * giant allocation (the entire kernel address space) can never
3008 * be satisfied, so it will either fail immediately (VM_NOSLEEP)
3009 * or sleep forever (VM_SLEEP). Thus, there is no need for a
3010 * corresponding check in kmem_firewall_va_free().
3011 */
3012 if (realsize < size)
3013 realsize = size;
3014
3015 /*
3016 * While boot still owns resource management, make sure that this
3017 * redzone virtual address allocation is properly accounted for in
3018 * OBPs "virtual-memory" "available" lists because we're
3019 * effectively claiming them for a red zone. If we don't do this,
3020 * the available lists become too fragmented and too large for the
3021 * current boot/kernel memory list interface.
3022 */
3023 addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
3024
3025 if (addr != NULL && kvseg.s_base == NULL && realsize != size)
3026 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
3027
3028 return (addr);
3029 }
3030
3031 void
3032 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
3033 {
3034 ASSERT((kvseg.s_base == NULL ?
3035 va_to_pfn((char *)addr + size) :
3036 hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
3037
3038 vmem_free(vmp, addr, size + vmp->vm_quantum);
3039 }
3040
3041 /*
3042 * Try to allocate at least `size' bytes of memory without sleeping or
3043 * panicking. Return actual allocated size in `asize'. If allocation failed,
3044 * try final allocation with sleep or panic allowed.
3045 */
3046 void *
3047 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
3048 {
3049 void *p;
3050
3051 *asize = P2ROUNDUP(size, KMEM_ALIGN);
3052 do {
3053 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
3054 if (p != NULL)
3055 return (p);
3056 *asize += KMEM_ALIGN;
3057 } while (*asize <= PAGESIZE);
3058
3059 *asize = P2ROUNDUP(size, KMEM_ALIGN);
3060 return (kmem_alloc(*asize, kmflag));
3061 }
3062
3063 /*
3064 * Reclaim all unused memory from a cache.
3065 */
3066 static void
3067 kmem_cache_reap(kmem_cache_t *cp)
3068 {
3069 ASSERT(taskq_member(kmem_taskq, curthread));
3070 cp->cache_reap++;
3071
3072 /*
3073 * Ask the cache's owner to free some memory if possible.
3074 * The idea is to handle things like the inode cache, which
3075 * typically sits on a bunch of memory that it doesn't truly
3076 * *need*. Reclaim policy is entirely up to the owner; this
3077 * callback is just an advisory plea for help.
3078 */
3079 if (cp->cache_reclaim != NULL) {
3080 long delta;
3081
3082 /*
3083 * Reclaimed memory should be reapable (not included in the
3084 * depot's working set).
3085 */
3086 delta = cp->cache_full.ml_total;
3087 cp->cache_reclaim(cp->cache_private);
3088 delta = cp->cache_full.ml_total - delta;
3089 if (delta > 0) {
3090 mutex_enter(&cp->cache_depot_lock);
3091 cp->cache_full.ml_reaplimit += delta;
3092 cp->cache_full.ml_min += delta;
3093 mutex_exit(&cp->cache_depot_lock);
3094 }
3095 }
3096
3097 kmem_depot_ws_reap(cp);
3098
3099 if (cp->cache_defrag != NULL && !kmem_move_noreap) {
3100 kmem_cache_defrag(cp);
3101 }
3102 }
3103
3104 static void
3105 kmem_reap_timeout(void *flag_arg)
3106 {
3107 uint32_t *flag = (uint32_t *)flag_arg;
3108
3109 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3110 *flag = 0;
3111 }
3112
3113 static void
3114 kmem_reap_done(void *flag)
3115 {
3116 if (!callout_init_done) {
3117 /* can't schedule a timeout at this point */
3118 kmem_reap_timeout(flag);
3119 } else {
3120 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
3121 }
3122 }
3123
3124 static void
3125 kmem_reap_start(void *flag)
3126 {
3127 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3128
3129 if (flag == &kmem_reaping) {
3130 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3131 /*
3132 * if we have segkp under heap, reap segkp cache.
3133 */
3134 if (segkp_fromheap)
3135 segkp_cache_free();
3136 }
3137 else
3138 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3139
3140 /*
3141 * We use taskq_dispatch() to schedule a timeout to clear
3142 * the flag so that kmem_reap() becomes self-throttling:
3143 * we won't reap again until the current reap completes *and*
3144 * at least kmem_reap_interval ticks have elapsed.
3145 */
3146 if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP))
3147 kmem_reap_done(flag);
3148 }
3149
3150 static void
3151 kmem_reap_common(void *flag_arg)
3152 {
3153 uint32_t *flag = (uint32_t *)flag_arg;
3154
3155 if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
3156 atomic_cas_32(flag, 0, 1) != 0)
3157 return;
3158
3159 /*
3160 * It may not be kosher to do memory allocation when a reap is called
3161 * (for example, if vmem_populate() is in the call chain). So we
3162 * start the reap going with a TQ_NOALLOC dispatch. If the dispatch
3163 * fails, we reset the flag, and the next reap will try again.
3164 */
3165 if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC))
3166 *flag = 0;
3167 }
3168
3169 /*
3170 * Reclaim all unused memory from all caches. Called from the VM system
3171 * when memory gets tight.
3172 */
3173 void
3174 kmem_reap(void)
3175 {
3176 kmem_reap_common(&kmem_reaping);
3177 }
3178
3179 /*
3180 * Reclaim all unused memory from identifier arenas, called when a vmem
3181 * arena not back by memory is exhausted. Since reaping memory-backed caches
3182 * cannot help with identifier exhaustion, we avoid both a large amount of
3183 * work and unwanted side-effects from reclaim callbacks.
3184 */
3185 void
3186 kmem_reap_idspace(void)
3187 {
3188 kmem_reap_common(&kmem_reaping_idspace);
3189 }
3190
3191 /*
3192 * Purge all magazines from a cache and set its magazine limit to zero.
3193 * All calls are serialized by the kmem_taskq lock, except for the final
3194 * call from kmem_cache_destroy().
3195 */
3196 static void
3197 kmem_cache_magazine_purge(kmem_cache_t *cp)
3198 {
3199 kmem_cpu_cache_t *ccp;
3200 kmem_magazine_t *mp, *pmp;
3201 int rounds, prounds, cpu_seqid;
3202
3203 ASSERT(!list_link_active(&cp->cache_link) ||
3204 taskq_member(kmem_taskq, curthread));
3205 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
3206
3207 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3208 ccp = &cp->cache_cpu[cpu_seqid];
3209
3210 mutex_enter(&ccp->cc_lock);
3211 mp = ccp->cc_loaded;
3212 pmp = ccp->cc_ploaded;
3213 rounds = ccp->cc_rounds;
3214 prounds = ccp->cc_prounds;
3215 ccp->cc_loaded = NULL;
3216 ccp->cc_ploaded = NULL;
3217 ccp->cc_rounds = -1;
3218 ccp->cc_prounds = -1;
3219 ccp->cc_magsize = 0;
3220 mutex_exit(&ccp->cc_lock);
3221
3222 if (mp)
3223 kmem_magazine_destroy(cp, mp, rounds);
3224 if (pmp)
3225 kmem_magazine_destroy(cp, pmp, prounds);
3226 }
3227
3228 kmem_depot_ws_zero(cp);
3229 kmem_depot_ws_reap(cp);
3230 }
3231
3232 /*
3233 * Enable per-cpu magazines on a cache.
3234 */
3235 static void
3236 kmem_cache_magazine_enable(kmem_cache_t *cp)
3237 {
3238 int cpu_seqid;
3239
3240 if (cp->cache_flags & KMF_NOMAGAZINE)
3241 return;
3242
3243 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3244 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3245 mutex_enter(&ccp->cc_lock);
3246 ccp->cc_magsize = cp->cache_magtype->mt_magsize;
3247 mutex_exit(&ccp->cc_lock);
3248 }
3249
3250 }
3251
3252 /*
3253 * Allow our caller to determine if there are running reaps.
3254 *
3255 * This call is very conservative and may return B_TRUE even when
3256 * reaping activity isn't active. If it returns B_FALSE, then reaping
3257 * activity is definitely inactive.
3258 */
3259 boolean_t
3260 kmem_cache_reap_active(void)
3261 {
3262 return (!taskq_empty(kmem_taskq));
3263 }
3264
3265 /*
3266 * Reap (almost) everything soon.
3267 *
3268 * Note: this does not wait for the reap-tasks to complete. Caller
3269 * should use kmem_cache_reap_active() (above) and/or moderation to
3270 * avoid scheduling too many reap-tasks.
3271 */
3272 void
3273 kmem_cache_reap_soon(kmem_cache_t *cp)
3274 {
3275 ASSERT(list_link_active(&cp->cache_link));
3276
3277 kmem_depot_ws_zero(cp);
3278
3279 (void) taskq_dispatch(kmem_taskq,
3280 (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
3281 }
3282
3283 /*
3284 * Recompute a cache's magazine size. The trade-off is that larger magazines
3285 * provide a higher transfer rate with the depot, while smaller magazines
3286 * reduce memory consumption. Magazine resizing is an expensive operation;
3287 * it should not be done frequently.
3288 *
3289 * Changes to the magazine size are serialized by the kmem_taskq lock.
3290 *
3291 * Note: at present this only grows the magazine size. It might be useful
3292 * to allow shrinkage too.
3293 */
3294 static void
3295 kmem_cache_magazine_resize(kmem_cache_t *cp)
3296 {
3297 kmem_magtype_t *mtp = cp->cache_magtype;
3298
3299 ASSERT(taskq_member(kmem_taskq, curthread));
3300
3301 if (cp->cache_chunksize < mtp->mt_maxbuf) {
3302 kmem_cache_magazine_purge(cp);
3303 mutex_enter(&cp->cache_depot_lock);
3304 cp->cache_magtype = ++mtp;
3305 cp->cache_depot_contention_prev =
3306 cp->cache_depot_contention + INT_MAX;
3307 mutex_exit(&cp->cache_depot_lock);
3308 kmem_cache_magazine_enable(cp);
3309 }
3310 }
3311
3312 /*
3313 * Rescale a cache's hash table, so that the table size is roughly the
3314 * cache size. We want the average lookup time to be extremely small.
3315 */
3316 static void
3317 kmem_hash_rescale(kmem_cache_t *cp)
3318 {
3319 kmem_bufctl_t **old_table, **new_table, *bcp;
3320 size_t old_size, new_size, h;
3321
3322 ASSERT(taskq_member(kmem_taskq, curthread));
3323
3324 new_size = MAX(KMEM_HASH_INITIAL,
3325 1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
3326 old_size = cp->cache_hash_mask + 1;
3327
3328 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
3329 return;
3330
3331 new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
3332 VM_NOSLEEP);
3333 if (new_table == NULL)
3334 return;
3335 bzero(new_table, new_size * sizeof (void *));
3336
3337 mutex_enter(&cp->cache_lock);
3338
3339 old_size = cp->cache_hash_mask + 1;
3340 old_table = cp->cache_hash_table;
3341
3342 cp->cache_hash_mask = new_size - 1;
3343 cp->cache_hash_table = new_table;
3344 cp->cache_rescale++;
3345
3346 for (h = 0; h < old_size; h++) {
3347 bcp = old_table[h];
3348 while (bcp != NULL) {
3349 void *addr = bcp->bc_addr;
3350 kmem_bufctl_t *next_bcp = bcp->bc_next;
3351 kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
3352 bcp->bc_next = *hash_bucket;
3353 *hash_bucket = bcp;
3354 bcp = next_bcp;
3355 }
3356 }
3357
3358 mutex_exit(&cp->cache_lock);
3359
3360 vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
3361 }
3362
3363 /*
3364 * Perform periodic maintenance on a cache: hash rescaling, depot working-set
3365 * update, magazine resizing, and slab consolidation.
3366 */
3367 static void
3368 kmem_cache_update(kmem_cache_t *cp)
3369 {
3370 int need_hash_rescale = 0;
3371 int need_magazine_resize = 0;
3372
3373 ASSERT(MUTEX_HELD(&kmem_cache_lock));
3374
3375 /*
3376 * If the cache has become much larger or smaller than its hash table,
3377 * fire off a request to rescale the hash table.
3378 */
3379 mutex_enter(&cp->cache_lock);
3380
3381 if ((cp->cache_flags & KMF_HASH) &&
3382 (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
3383 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
3384 cp->cache_hash_mask > KMEM_HASH_INITIAL)))
3385 need_hash_rescale = 1;
3386
3387 mutex_exit(&cp->cache_lock);
3388
3389 /*
3390 * Update the depot working set statistics.
3391 */
3392 kmem_depot_ws_update(cp);
3393
3394 /*
3395 * If there's a lot of contention in the depot,
3396 * increase the magazine size.
3397 */
3398 mutex_enter(&cp->cache_depot_lock);
3399
3400 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
3401 (int)(cp->cache_depot_contention -
3402 cp->cache_depot_contention_prev) > kmem_depot_contention)
3403 need_magazine_resize = 1;
3404
3405 cp->cache_depot_contention_prev = cp->cache_depot_contention;
3406
3407 mutex_exit(&cp->cache_depot_lock);
3408
3409 if (need_hash_rescale)
3410 (void) taskq_dispatch(kmem_taskq,
3411 (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
3412
3413 if (need_magazine_resize)
3414 (void) taskq_dispatch(kmem_taskq,
3415 (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
3416
3417 if (cp->cache_defrag != NULL)
3418 (void) taskq_dispatch(kmem_taskq,
3419 (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP);
3420 }
3421
3422 static void kmem_update(void *);
3423
3424 static void
3425 kmem_update_timeout(void *dummy)
3426 {
3427 (void) timeout(kmem_update, dummy, kmem_reap_interval);
3428 }
3429
3430 static void
3431 kmem_update(void *dummy)
3432 {
3433 kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
3434
3435 /*
3436 * We use taskq_dispatch() to reschedule the timeout so that
3437 * kmem_update() becomes self-throttling: it won't schedule
3438 * new tasks until all previous tasks have completed.
3439 */
3440 if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP))
3441 kmem_update_timeout(NULL);
3442 }
3443
3444 static int
3445 kmem_cache_kstat_update(kstat_t *ksp, int rw)
3446 {
3447 struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
3448 kmem_cache_t *cp = ksp->ks_private;
3449 uint64_t cpu_buf_avail;
3450 uint64_t buf_avail = 0;
3451 int cpu_seqid;
3452 long reap;
3453
3454 ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
3455
3456 if (rw == KSTAT_WRITE)
3457 return (EACCES);
3458
3459 mutex_enter(&cp->cache_lock);
3460
3461 kmcp->kmc_alloc_fail.value.ui64 = cp->cache_alloc_fail;
3462 kmcp->kmc_alloc.value.ui64 = cp->cache_slab_alloc;
3463 kmcp->kmc_free.value.ui64 = cp->cache_slab_free;
3464 kmcp->kmc_slab_alloc.value.ui64 = cp->cache_slab_alloc;
3465 kmcp->kmc_slab_free.value.ui64 = cp->cache_slab_free;
3466
3467 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3468 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3469
3470 mutex_enter(&ccp->cc_lock);
3471
3472 cpu_buf_avail = 0;
3473 if (ccp->cc_rounds > 0)
3474 cpu_buf_avail += ccp->cc_rounds;
3475 if (ccp->cc_prounds > 0)
3476 cpu_buf_avail += ccp->cc_prounds;
3477
3478 kmcp->kmc_alloc.value.ui64 += ccp->cc_alloc;
3479 kmcp->kmc_free.value.ui64 += ccp->cc_free;
3480 buf_avail += cpu_buf_avail;
3481
3482 mutex_exit(&ccp->cc_lock);
3483 }
3484
3485 mutex_enter(&cp->cache_depot_lock);
3486
3487 kmcp->kmc_depot_alloc.value.ui64 = cp->cache_full.ml_alloc;
3488 kmcp->kmc_depot_free.value.ui64 = cp->cache_empty.ml_alloc;
3489 kmcp->kmc_depot_contention.value.ui64 = cp->cache_depot_contention;
3490 kmcp->kmc_full_magazines.value.ui64 = cp->cache_full.ml_total;
3491 kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total;
3492 kmcp->kmc_magazine_size.value.ui64 =
3493 (cp->cache_flags & KMF_NOMAGAZINE) ?
3494 0 : cp->cache_magtype->mt_magsize;
3495
3496 kmcp->kmc_alloc.value.ui64 += cp->cache_full.ml_alloc;
3497 kmcp->kmc_free.value.ui64 += cp->cache_empty.ml_alloc;
3498 buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
3499
3500 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
3501 reap = MIN(reap, cp->cache_full.ml_total);
3502
3503 mutex_exit(&cp->cache_depot_lock);
3504
3505 kmcp->kmc_buf_size.value.ui64 = cp->cache_bufsize;
3506 kmcp->kmc_align.value.ui64 = cp->cache_align;
3507 kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize;
3508 kmcp->kmc_slab_size.value.ui64 = cp->cache_slabsize;
3509 kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
3510 buf_avail += cp->cache_bufslab;
3511 kmcp->kmc_buf_avail.value.ui64 = buf_avail;
3512 kmcp->kmc_buf_inuse.value.ui64 = cp->cache_buftotal - buf_avail;
3513 kmcp->kmc_buf_total.value.ui64 = cp->cache_buftotal;
3514 kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax;
3515 kmcp->kmc_slab_create.value.ui64 = cp->cache_slab_create;
3516 kmcp->kmc_slab_destroy.value.ui64 = cp->cache_slab_destroy;
3517 kmcp->kmc_hash_size.value.ui64 = (cp->cache_flags & KMF_HASH) ?
3518 cp->cache_hash_mask + 1 : 0;
3519 kmcp->kmc_hash_lookup_depth.value.ui64 = cp->cache_lookup_depth;
3520 kmcp->kmc_hash_rescale.value.ui64 = cp->cache_rescale;
3521 kmcp->kmc_vmem_source.value.ui64 = cp->cache_arena->vm_id;
3522 kmcp->kmc_reap.value.ui64 = cp->cache_reap;
3523
3524 if (cp->cache_defrag == NULL) {
3525 kmcp->kmc_move_callbacks.value.ui64 = 0;
3526 kmcp->kmc_move_yes.value.ui64 = 0;
3527 kmcp->kmc_move_no.value.ui64 = 0;
3528 kmcp->kmc_move_later.value.ui64 = 0;
3529 kmcp->kmc_move_dont_need.value.ui64 = 0;
3530 kmcp->kmc_move_dont_know.value.ui64 = 0;
3531 kmcp->kmc_move_hunt_found.value.ui64 = 0;
3532 kmcp->kmc_move_slabs_freed.value.ui64 = 0;
3533 kmcp->kmc_defrag.value.ui64 = 0;
3534 kmcp->kmc_scan.value.ui64 = 0;
3535 kmcp->kmc_move_reclaimable.value.ui64 = 0;
3536 } else {
3537 int64_t reclaimable;
3538
3539 kmem_defrag_t *kd = cp->cache_defrag;
3540 kmcp->kmc_move_callbacks.value.ui64 = kd->kmd_callbacks;
3541 kmcp->kmc_move_yes.value.ui64 = kd->kmd_yes;
3542 kmcp->kmc_move_no.value.ui64 = kd->kmd_no;
3543 kmcp->kmc_move_later.value.ui64 = kd->kmd_later;
3544 kmcp->kmc_move_dont_need.value.ui64 = kd->kmd_dont_need;
3545 kmcp->kmc_move_dont_know.value.ui64 = kd->kmd_dont_know;
3546 kmcp->kmc_move_hunt_found.value.ui64 = 0;
3547 kmcp->kmc_move_slabs_freed.value.ui64 = kd->kmd_slabs_freed;
3548 kmcp->kmc_defrag.value.ui64 = kd->kmd_defrags;
3549 kmcp->kmc_scan.value.ui64 = kd->kmd_scans;
3550
3551 reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1);
3552 reclaimable = MAX(reclaimable, 0);
3553 reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
3554 kmcp->kmc_move_reclaimable.value.ui64 = reclaimable;
3555 }
3556
3557 mutex_exit(&cp->cache_lock);
3558 return (0);
3559 }
3560
3561 /*
3562 * Return a named statistic about a particular cache.
3563 * This shouldn't be called very often, so it's currently designed for
3564 * simplicity (leverages existing kstat support) rather than efficiency.
3565 */
3566 uint64_t
3567 kmem_cache_stat(kmem_cache_t *cp, char *name)
3568 {
3569 int i;
3570 kstat_t *ksp = cp->cache_kstat;
3571 kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
3572 uint64_t value = 0;
3573
3574 if (ksp != NULL) {
3575 mutex_enter(&kmem_cache_kstat_lock);
3576 (void) kmem_cache_kstat_update(ksp, KSTAT_READ);
3577 for (i = 0; i < ksp->ks_ndata; i++) {
3578 if (strcmp(knp[i].name, name) == 0) {
3579 value = knp[i].value.ui64;
3580 break;
3581 }
3582 }
3583 mutex_exit(&kmem_cache_kstat_lock);
3584 }
3585 return (value);
3586 }
3587
3588 /*
3589 * Return an estimate of currently available kernel heap memory.
3590 * On 32-bit systems, physical memory may exceed virtual memory,
3591 * we just truncate the result at 1GB.
3592 */
3593 size_t
3594 kmem_avail(void)
3595 {
3596 spgcnt_t rmem = availrmem - tune.t_minarmem;
3597 spgcnt_t fmem = freemem - minfree;
3598
3599 return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
3600 1 << (30 - PAGESHIFT))));
3601 }
3602
3603 /*
3604 * Return the maximum amount of memory that is (in theory) allocatable
3605 * from the heap. This may be used as an estimate only since there
3606 * is no guarentee this space will still be available when an allocation
3607 * request is made, nor that the space may be allocated in one big request
3608 * due to kernel heap fragmentation.
3609 */
3610 size_t
3611 kmem_maxavail(void)
3612 {
3613 spgcnt_t pmem = availrmem - tune.t_minarmem;
3614 spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
3615
3616 return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
3617 }
3618
3619 /*
3620 * Indicate whether memory-intensive kmem debugging is enabled.
3621 */
3622 int
3623 kmem_debugging(void)
3624 {
3625 return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
3626 }
3627
3628 /* binning function, sorts finely at the two extremes */
3629 #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift) \
3630 ((((sp)->slab_refcnt <= (binshift)) || \
3631 (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift))) \
3632 ? -(sp)->slab_refcnt \
3633 : -((binshift) + ((sp)->slab_refcnt >> (binshift))))
3634
3635 /*
3636 * Minimizing the number of partial slabs on the freelist minimizes
3637 * fragmentation (the ratio of unused buffers held by the slab layer). There are
3638 * two ways to get a slab off of the freelist: 1) free all the buffers on the
3639 * slab, and 2) allocate all the buffers on the slab. It follows that we want
3640 * the most-used slabs at the front of the list where they have the best chance
3641 * of being completely allocated, and the least-used slabs at a safe distance
3642 * from the front to improve the odds that the few remaining buffers will all be
3643 * freed before another allocation can tie up the slab. For that reason a slab
3644 * with a higher slab_refcnt sorts less than than a slab with a lower
3645 * slab_refcnt.
3646 *
3647 * However, if a slab has at least one buffer that is deemed unfreeable, we
3648 * would rather have that slab at the front of the list regardless of
3649 * slab_refcnt, since even one unfreeable buffer makes the entire slab
3650 * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move()
3651 * callback, the slab is marked unfreeable for as long as it remains on the
3652 * freelist.
3653 */
3654 static int
3655 kmem_partial_slab_cmp(const void *p0, const void *p1)
3656 {
3657 const kmem_cache_t *cp;
3658 const kmem_slab_t *s0 = p0;
3659 const kmem_slab_t *s1 = p1;
3660 int w0, w1;
3661 size_t binshift;
3662
3663 ASSERT(KMEM_SLAB_IS_PARTIAL(s0));
3664 ASSERT(KMEM_SLAB_IS_PARTIAL(s1));
3665 ASSERT(s0->slab_cache == s1->slab_cache);
3666 cp = s1->slab_cache;
3667 ASSERT(MUTEX_HELD(&cp->cache_lock));
3668 binshift = cp->cache_partial_binshift;
3669
3670 /* weight of first slab */
3671 w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift);
3672 if (s0->slab_flags & KMEM_SLAB_NOMOVE) {
3673 w0 -= cp->cache_maxchunks;
3674 }
3675
3676 /* weight of second slab */
3677 w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift);
3678 if (s1->slab_flags & KMEM_SLAB_NOMOVE) {
3679 w1 -= cp->cache_maxchunks;
3680 }
3681
3682 if (w0 < w1)
3683 return (-1);
3684 if (w0 > w1)
3685 return (1);
3686
3687 /* compare pointer values */
3688 if ((uintptr_t)s0 < (uintptr_t)s1)
3689 return (-1);
3690 if ((uintptr_t)s0 > (uintptr_t)s1)
3691 return (1);
3692
3693 return (0);
3694 }
3695
3696 /*
3697 * It must be valid to call the destructor (if any) on a newly created object.
3698 * That is, the constructor (if any) must leave the object in a valid state for
3699 * the destructor.
3700 */
3701 kmem_cache_t *
3702 kmem_cache_create(
3703 char *name, /* descriptive name for this cache */
3704 size_t bufsize, /* size of the objects it manages */
3705 size_t align, /* required object alignment */
3706 int (*constructor)(void *, void *, int), /* object constructor */
3707 void (*destructor)(void *, void *), /* object destructor */
3708 void (*reclaim)(void *), /* memory reclaim callback */
3709 void *private, /* pass-thru arg for constr/destr/reclaim */
3710 vmem_t *vmp, /* vmem source for slab allocation */
3711 int cflags) /* cache creation flags */
3712 {
3713 int cpu_seqid;
3714 size_t chunksize;
3715 kmem_cache_t *cp;
3716 kmem_magtype_t *mtp;
3717 size_t csize = KMEM_CACHE_SIZE(max_ncpus);
3718
3719 #ifdef DEBUG
3720 /*
3721 * Cache names should conform to the rules for valid C identifiers
3722 */
3723 if (!strident_valid(name)) {
3724 cmn_err(CE_CONT,
3725 "kmem_cache_create: '%s' is an invalid cache name\n"
3726 "cache names must conform to the rules for "
3727 "C identifiers\n", name);
3728 }
3729 #endif /* DEBUG */
3730
3731 if (vmp == NULL)
3732 vmp = kmem_default_arena;
3733
3734 /*
3735 * If this kmem cache has an identifier vmem arena as its source, mark
3736 * it such to allow kmem_reap_idspace().
3737 */
3738 ASSERT(!(cflags & KMC_IDENTIFIER)); /* consumer should not set this */
3739 if (vmp->vm_cflags & VMC_IDENTIFIER)
3740 cflags |= KMC_IDENTIFIER;
3741
3742 /*
3743 * Get a kmem_cache structure. We arrange that cp->cache_cpu[]
3744 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
3745 * false sharing of per-CPU data.
3746 */
3747 cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
3748 P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
3749 bzero(cp, csize);
3750 list_link_init(&cp->cache_link);
3751
3752 if (align == 0)
3753 align = KMEM_ALIGN;
3754
3755 /*
3756 * If we're not at least KMEM_ALIGN aligned, we can't use free
3757 * memory to hold bufctl information (because we can't safely
3758 * perform word loads and stores on it).
3759 */
3760 if (align < KMEM_ALIGN)
3761 cflags |= KMC_NOTOUCH;
3762
3763 if (!ISP2(align) || align > vmp->vm_quantum)
3764 panic("kmem_cache_create: bad alignment %lu", align);
3765
3766 mutex_enter(&kmem_flags_lock);
3767 if (kmem_flags & KMF_RANDOMIZE)
3768 kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
3769 KMF_RANDOMIZE;
3770 cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
3771 mutex_exit(&kmem_flags_lock);
3772
3773 /*
3774 * Make sure all the various flags are reasonable.
3775 */
3776 ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
3777
3778 if (cp->cache_flags & KMF_LITE) {
3779 if (bufsize >= kmem_lite_minsize &&
3780 align <= kmem_lite_maxalign &&
3781 P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
3782 cp->cache_flags |= KMF_BUFTAG;
3783 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3784 } else {
3785 cp->cache_flags &= ~KMF_DEBUG;
3786 }
3787 }
3788
3789 if (cp->cache_flags & KMF_DEADBEEF)
3790 cp->cache_flags |= KMF_REDZONE;
3791
3792 if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
3793 cp->cache_flags |= KMF_NOMAGAZINE;
3794
3795 if (cflags & KMC_NODEBUG)
3796 cp->cache_flags &= ~KMF_DEBUG;
3797
3798 if (cflags & KMC_NOTOUCH)
3799 cp->cache_flags &= ~KMF_TOUCH;
3800
3801 if (cflags & KMC_PREFILL)
3802 cp->cache_flags |= KMF_PREFILL;
3803
3804 if (cflags & KMC_NOHASH)
3805 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3806
3807 if (cflags & KMC_NOMAGAZINE)
3808 cp->cache_flags |= KMF_NOMAGAZINE;
3809
3810 if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
3811 cp->cache_flags |= KMF_REDZONE;
3812
3813 if (!(cp->cache_flags & KMF_AUDIT))
3814 cp->cache_flags &= ~KMF_CONTENTS;
3815
3816 if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
3817 !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
3818 cp->cache_flags |= KMF_FIREWALL;
3819
3820 if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
3821 cp->cache_flags &= ~KMF_FIREWALL;
3822
3823 if (cp->cache_flags & KMF_FIREWALL) {
3824 cp->cache_flags &= ~KMF_BUFTAG;
3825 cp->cache_flags |= KMF_NOMAGAZINE;
3826 ASSERT(vmp == kmem_default_arena);
3827 vmp = kmem_firewall_arena;
3828 }
3829
3830 /*
3831 * Set cache properties.
3832 */
3833 (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
3834 strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1);
3835 cp->cache_bufsize = bufsize;
3836 cp->cache_align = align;
3837 cp->cache_constructor = constructor;
3838 cp->cache_destructor = destructor;
3839 cp->cache_reclaim = reclaim;
3840 cp->cache_private = private;
3841 cp->cache_arena = vmp;
3842 cp->cache_cflags = cflags;
3843
3844 /*
3845 * Determine the chunk size.
3846 */
3847 chunksize = bufsize;
3848
3849 if (align >= KMEM_ALIGN) {
3850 chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
3851 cp->cache_bufctl = chunksize - KMEM_ALIGN;
3852 }
3853
3854 if (cp->cache_flags & KMF_BUFTAG) {
3855 cp->cache_bufctl = chunksize;
3856 cp->cache_buftag = chunksize;
3857 if (cp->cache_flags & KMF_LITE)
3858 chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
3859 else
3860 chunksize += sizeof (kmem_buftag_t);
3861 }
3862
3863 if (cp->cache_flags & KMF_DEADBEEF) {
3864 cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
3865 if (cp->cache_flags & KMF_LITE)
3866 cp->cache_verify = sizeof (uint64_t);
3867 }
3868
3869 cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
3870
3871 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
3872
3873 /*
3874 * Now that we know the chunk size, determine the optimal slab size.
3875 */
3876 if (vmp == kmem_firewall_arena) {
3877 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
3878 cp->cache_mincolor = cp->cache_slabsize - chunksize;
3879 cp->cache_maxcolor = cp->cache_mincolor;
3880 cp->cache_flags |= KMF_HASH;
3881 ASSERT(!(cp->cache_flags & KMF_BUFTAG));
3882 } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
3883 !(cp->cache_flags & KMF_AUDIT) &&
3884 chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
3885 cp->cache_slabsize = vmp->vm_quantum;
3886 cp->cache_mincolor = 0;
3887 cp->cache_maxcolor =
3888 (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
3889 ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
3890 ASSERT(!(cp->cache_flags & KMF_AUDIT));
3891 } else {
3892 size_t chunks, bestfit, waste, slabsize;
3893 size_t minwaste = LONG_MAX;
3894
3895 for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
3896 slabsize = P2ROUNDUP(chunksize * chunks,
3897 vmp->vm_quantum);
3898 chunks = slabsize / chunksize;
3899 waste = (slabsize % chunksize) / chunks;
3900 if (waste < minwaste) {
3901 minwaste = waste;
3902 bestfit = slabsize;
3903 }
3904 }
3905 if (cflags & KMC_QCACHE)
3906 bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
3907 cp->cache_slabsize = bestfit;
3908 cp->cache_mincolor = 0;
3909 cp->cache_maxcolor = bestfit % chunksize;
3910 cp->cache_flags |= KMF_HASH;
3911 }
3912
3913 cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize);
3914 cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1;
3915
3916 /*
3917 * Disallowing prefill when either the DEBUG or HASH flag is set or when
3918 * there is a constructor avoids some tricky issues with debug setup
3919 * that may be revisited later. We cannot allow prefill in a
3920 * metadata cache because of potential recursion.
3921 */
3922 if (vmp == kmem_msb_arena ||
3923 cp->cache_flags & (KMF_HASH | KMF_BUFTAG) ||
3924 cp->cache_constructor != NULL)
3925 cp->cache_flags &= ~KMF_PREFILL;
3926
3927 if (cp->cache_flags & KMF_HASH) {
3928 ASSERT(!(cflags & KMC_NOHASH));
3929 cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
3930 kmem_bufctl_audit_cache : kmem_bufctl_cache;
3931 }
3932
3933 if (cp->cache_maxcolor >= vmp->vm_quantum)
3934 cp->cache_maxcolor = vmp->vm_quantum - 1;
3935
3936 cp->cache_color = cp->cache_mincolor;
3937
3938 /*
3939 * Initialize the rest of the slab layer.
3940 */
3941 mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
3942
3943 avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp,
3944 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3945 /* LINTED: E_TRUE_LOGICAL_EXPR */
3946 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3947 /* reuse partial slab AVL linkage for complete slab list linkage */
3948 list_create(&cp->cache_complete_slabs,
3949 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3950
3951 if (cp->cache_flags & KMF_HASH) {
3952 cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
3953 KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
3954 bzero(cp->cache_hash_table,
3955 KMEM_HASH_INITIAL * sizeof (void *));
3956 cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
3957 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
3958 }
3959
3960 /*
3961 * Initialize the depot.
3962 */
3963 mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
3964
3965 for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
3966 continue;
3967
3968 cp->cache_magtype = mtp;
3969
3970 /*
3971 * Initialize the CPU layer.
3972 */
3973 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3974 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3975 mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
3976 ccp->cc_flags = cp->cache_flags;
3977 ccp->cc_rounds = -1;
3978 ccp->cc_prounds = -1;
3979 }
3980
3981 /*
3982 * Create the cache's kstats.
3983 */
3984 if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
3985 "kmem_cache", KSTAT_TYPE_NAMED,
3986 sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
3987 KSTAT_FLAG_VIRTUAL)) != NULL) {
3988 cp->cache_kstat->ks_data = &kmem_cache_kstat;
3989 cp->cache_kstat->ks_update = kmem_cache_kstat_update;
3990 cp->cache_kstat->ks_private = cp;
3991 cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
3992 kstat_install(cp->cache_kstat);
3993 }
3994
3995 /*
3996 * Add the cache to the global list. This makes it visible
3997 * to kmem_update(), so the cache must be ready for business.
3998 */
3999 mutex_enter(&kmem_cache_lock);
4000 list_insert_tail(&kmem_caches, cp);
4001 mutex_exit(&kmem_cache_lock);
4002
4003 if (kmem_ready)
4004 kmem_cache_magazine_enable(cp);
4005
4006 return (cp);
4007 }
4008
4009 static int
4010 kmem_move_cmp(const void *buf, const void *p)
4011 {
4012 const kmem_move_t *kmm = p;
4013 uintptr_t v1 = (uintptr_t)buf;
4014 uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf;
4015 return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0));
4016 }
4017
4018 static void
4019 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd)
4020 {
4021 kmd->kmd_reclaim_numer = 1;
4022 }
4023
4024 /*
4025 * Initially, when choosing candidate slabs for buffers to move, we want to be
4026 * very selective and take only slabs that are less than
4027 * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate
4028 * slabs, then we raise the allocation ceiling incrementally. The reclaim
4029 * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no
4030 * longer fragmented.
4031 */
4032 static void
4033 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction)
4034 {
4035 if (direction > 0) {
4036 /* make it easier to find a candidate slab */
4037 if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) {
4038 kmd->kmd_reclaim_numer++;
4039 }
4040 } else {
4041 /* be more selective */
4042 if (kmd->kmd_reclaim_numer > 1) {
4043 kmd->kmd_reclaim_numer--;
4044 }
4045 }
4046 }
4047
4048 void
4049 kmem_cache_set_move(kmem_cache_t *cp,
4050 kmem_cbrc_t (*move)(void *, void *, size_t, void *))
4051 {
4052 kmem_defrag_t *defrag;
4053
4054 ASSERT(move != NULL);
4055 /*
4056 * The consolidator does not support NOTOUCH caches because kmem cannot
4057 * initialize their slabs with the 0xbaddcafe memory pattern, which sets
4058 * a low order bit usable by clients to distinguish uninitialized memory
4059 * from known objects (see kmem_slab_create).
4060 */
4061 ASSERT(!(cp->cache_cflags & KMC_NOTOUCH));
4062 ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER));
4063
4064 /*
4065 * We should not be holding anyone's cache lock when calling
4066 * kmem_cache_alloc(), so allocate in all cases before acquiring the
4067 * lock.
4068 */
4069 defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP);
4070
4071 mutex_enter(&cp->cache_lock);
4072
4073 if (KMEM_IS_MOVABLE(cp)) {
4074 if (cp->cache_move == NULL) {
4075 ASSERT(cp->cache_slab_alloc == 0);
4076
4077 cp->cache_defrag = defrag;
4078 defrag = NULL; /* nothing to free */
4079 bzero(cp->cache_defrag, sizeof (kmem_defrag_t));
4080 avl_create(&cp->cache_defrag->kmd_moves_pending,
4081 kmem_move_cmp, sizeof (kmem_move_t),
4082 offsetof(kmem_move_t, kmm_entry));
4083 /* LINTED: E_TRUE_LOGICAL_EXPR */
4084 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
4085 /* reuse the slab's AVL linkage for deadlist linkage */
4086 list_create(&cp->cache_defrag->kmd_deadlist,
4087 sizeof (kmem_slab_t),
4088 offsetof(kmem_slab_t, slab_link));
4089 kmem_reset_reclaim_threshold(cp->cache_defrag);
4090 }
4091 cp->cache_move = move;
4092 }
4093
4094 mutex_exit(&cp->cache_lock);
4095
4096 if (defrag != NULL) {
4097 kmem_cache_free(kmem_defrag_cache, defrag); /* unused */
4098 }
4099 }
4100
4101 void
4102 kmem_cache_destroy(kmem_cache_t *cp)
4103 {
4104 int cpu_seqid;
4105
4106 /*
4107 * Remove the cache from the global cache list so that no one else
4108 * can schedule tasks on its behalf, wait for any pending tasks to
4109 * complete, purge the cache, and then destroy it.
4110 */
4111 mutex_enter(&kmem_cache_lock);
4112 list_remove(&kmem_caches, cp);
4113 mutex_exit(&kmem_cache_lock);
4114
4115 if (kmem_taskq != NULL)
4116 taskq_wait(kmem_taskq);
4117
4118 if (kmem_move_taskq != NULL && cp->cache_defrag != NULL)
4119 taskq_wait(kmem_move_taskq);
4120
4121 kmem_cache_magazine_purge(cp);
4122
4123 mutex_enter(&cp->cache_lock);
4124 if (cp->cache_buftotal != 0)
4125 cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
4126 cp->cache_name, (void *)cp);
4127 if (cp->cache_defrag != NULL) {
4128 avl_destroy(&cp->cache_defrag->kmd_moves_pending);
4129 list_destroy(&cp->cache_defrag->kmd_deadlist);
4130 kmem_cache_free(kmem_defrag_cache, cp->cache_defrag);
4131 cp->cache_defrag = NULL;
4132 }
4133 /*
4134 * The cache is now dead. There should be no further activity. We
4135 * enforce this by setting land mines in the constructor, destructor,
4136 * reclaim, and move routines that induce a kernel text fault if
4137 * invoked.
4138 */
4139 cp->cache_constructor = (int (*)(void *, void *, int))1;
4140 cp->cache_destructor = (void (*)(void *, void *))2;
4141 cp->cache_reclaim = (void (*)(void *))3;
4142 cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4;
4143 mutex_exit(&cp->cache_lock);
4144
4145 kstat_delete(cp->cache_kstat);
4146
4147 if (cp->cache_hash_table != NULL)
4148 vmem_free(kmem_hash_arena, cp->cache_hash_table,
4149 (cp->cache_hash_mask + 1) * sizeof (void *));
4150
4151 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
4152 mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
4153
4154 mutex_destroy(&cp->cache_depot_lock);
4155 mutex_destroy(&cp->cache_lock);
4156
4157 vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
4158 }
4159
4160 /*ARGSUSED*/
4161 static int
4162 kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
4163 {
4164 ASSERT(MUTEX_HELD(&cpu_lock));
4165 if (what == CPU_UNCONFIG) {
4166 kmem_cache_applyall(kmem_cache_magazine_purge,
4167 kmem_taskq, TQ_SLEEP);
4168 kmem_cache_applyall(kmem_cache_magazine_enable,
4169 kmem_taskq, TQ_SLEEP);
4170 }
4171 return (0);
4172 }
4173
4174 static void
4175 kmem_alloc_caches_create(const int *array, size_t count,
4176 kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift)
4177 {
4178 char name[KMEM_CACHE_NAMELEN + 1];
4179 size_t table_unit = (1 << shift); /* range of one alloc_table entry */
4180 size_t size = table_unit;
4181 int i;
4182
4183 for (i = 0; i < count; i++) {
4184 size_t cache_size = array[i];
4185 size_t align = KMEM_ALIGN;
4186 kmem_cache_t *cp;
4187
4188 /* if the table has an entry for maxbuf, we're done */
4189 if (size > maxbuf)
4190 break;
4191
4192 /* cache size must be a multiple of the table unit */
4193 ASSERT(P2PHASE(cache_size, table_unit) == 0);
4194
4195 /*
4196 * If they allocate a multiple of the coherency granularity,
4197 * they get a coherency-granularity-aligned address.
4198 */
4199 if (IS_P2ALIGNED(cache_size, 64))
4200 align = 64;
4201 if (IS_P2ALIGNED(cache_size, PAGESIZE))
4202 align = PAGESIZE;
4203 (void) snprintf(name, sizeof (name),
4204 "kmem_alloc_%lu", cache_size);
4205 cp = kmem_cache_create(name, cache_size, align,
4206 NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
4207
4208 while (size <= cache_size) {
4209 alloc_table[(size - 1) >> shift] = cp;
4210 size += table_unit;
4211 }
4212 }
4213
4214 ASSERT(size > maxbuf); /* i.e. maxbuf <= max(cache_size) */
4215 }
4216
4217 static void
4218 kmem_cache_init(int pass, int use_large_pages)
4219 {
4220 int i;
4221 size_t maxbuf;
4222 kmem_magtype_t *mtp;
4223
4224 for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
4225 char name[KMEM_CACHE_NAMELEN + 1];
4226
4227 mtp = &kmem_magtype[i];
4228 (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
4229 mtp->mt_cache = kmem_cache_create(name,
4230 (mtp->mt_magsize + 1) * sizeof (void *),
4231 mtp->mt_align, NULL, NULL, NULL, NULL,
4232 kmem_msb_arena, KMC_NOHASH);
4233 }
4234
4235 kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
4236 sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
4237 kmem_msb_arena, KMC_NOHASH);
4238
4239 kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
4240 sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
4241 kmem_msb_arena, KMC_NOHASH);
4242
4243 kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
4244 sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
4245 kmem_msb_arena, KMC_NOHASH);
4246
4247 if (pass == 2) {
4248 kmem_va_arena = vmem_create("kmem_va",
4249 NULL, 0, PAGESIZE,
4250 vmem_alloc, vmem_free, heap_arena,
4251 8 * PAGESIZE, VM_SLEEP);
4252
4253 if (use_large_pages) {
4254 kmem_default_arena = vmem_xcreate("kmem_default",
4255 NULL, 0, PAGESIZE,
4256 segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
4257 0, VMC_DUMPSAFE | VM_SLEEP);
4258 } else {
4259 kmem_default_arena = vmem_create("kmem_default",
4260 NULL, 0, PAGESIZE,
4261 segkmem_alloc, segkmem_free, kmem_va_arena,
4262 0, VMC_DUMPSAFE | VM_SLEEP);
4263 }
4264
4265 /* Figure out what our maximum cache size is */
4266 maxbuf = kmem_max_cached;
4267 if (maxbuf <= KMEM_MAXBUF) {
4268 maxbuf = 0;
4269 kmem_max_cached = KMEM_MAXBUF;
4270 } else {
4271 size_t size = 0;
4272 size_t max =
4273 sizeof (kmem_big_alloc_sizes) / sizeof (int);
4274 /*
4275 * Round maxbuf up to an existing cache size. If maxbuf
4276 * is larger than the largest cache, we truncate it to
4277 * the largest cache's size.
4278 */
4279 for (i = 0; i < max; i++) {
4280 size = kmem_big_alloc_sizes[i];
4281 if (maxbuf <= size)
4282 break;
4283 }
4284 kmem_max_cached = maxbuf = size;
4285 }
4286
4287 /*
4288 * The big alloc table may not be completely overwritten, so
4289 * we clear out any stale cache pointers from the first pass.
4290 */
4291 bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table));
4292 } else {
4293 /*
4294 * During the first pass, the kmem_alloc_* caches
4295 * are treated as metadata.
4296 */
4297 kmem_default_arena = kmem_msb_arena;
4298 maxbuf = KMEM_BIG_MAXBUF_32BIT;
4299 }
4300
4301 /*
4302 * Set up the default caches to back kmem_alloc()
4303 */
4304 kmem_alloc_caches_create(
4305 kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int),
4306 kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT);
4307
4308 kmem_alloc_caches_create(
4309 kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int),
4310 kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT);
4311
4312 kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT;
4313 }
4314
4315 void
4316 kmem_init(void)
4317 {
4318 kmem_cache_t *cp;
4319 int old_kmem_flags = kmem_flags;
4320 int use_large_pages = 0;
4321 size_t maxverify, minfirewall;
4322
4323 kstat_init();
4324
4325 /*
4326 * Don't do firewalled allocations if the heap is less than 1TB
4327 * (i.e. on a 32-bit kernel)
4328 * The resulting VM_NEXTFIT allocations would create too much
4329 * fragmentation in a small heap.
4330 */
4331 #if defined(_LP64)
4332 maxverify = minfirewall = PAGESIZE / 2;
4333 #else
4334 maxverify = minfirewall = ULONG_MAX;
4335 #endif
4336
4337 /* LINTED */
4338 ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
4339
4340 list_create(&kmem_caches, sizeof (kmem_cache_t),
4341 offsetof(kmem_cache_t, cache_link));
4342
4343 kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
4344 vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
4345 VM_SLEEP | VMC_NO_QCACHE);
4346
4347 kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
4348 PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
4349 VMC_DUMPSAFE | VM_SLEEP);
4350
4351 kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
4352 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4353
4354 kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
4355 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4356
4357 kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
4358 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4359
4360 kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
4361 NULL, 0, PAGESIZE,
4362 kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
4363 0, VM_SLEEP);
4364
4365 kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
4366 segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0,
4367 VMC_DUMPSAFE | VM_SLEEP);
4368
4369 /* temporary oversize arena for mod_read_system_file */
4370 kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
4371 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4372
4373 kmem_reap_interval = 15 * hz;
4374
4375 /*
4376 * Read /etc/system. This is a chicken-and-egg problem because
4377 * kmem_flags may be set in /etc/system, but mod_read_system_file()
4378 * needs to use the allocator. The simplest solution is to create
4379 * all the standard kmem caches, read /etc/system, destroy all the
4380 * caches we just created, and then create them all again in light
4381 * of the (possibly) new kmem_flags and other kmem tunables.
4382 */
4383 kmem_cache_init(1, 0);
4384
4385 mod_read_system_file(boothowto & RB_ASKNAME);
4386
4387 while ((cp = list_tail(&kmem_caches)) != NULL)
4388 kmem_cache_destroy(cp);
4389
4390 vmem_destroy(kmem_oversize_arena);
4391
4392 if (old_kmem_flags & KMF_STICKY)
4393 kmem_flags = old_kmem_flags;
4394
4395 if (!(kmem_flags & KMF_AUDIT))
4396 vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
4397
4398 if (kmem_maxverify == 0)
4399 kmem_maxverify = maxverify;
4400
4401 if (kmem_minfirewall == 0)
4402 kmem_minfirewall = minfirewall;
4403
4404 /*
4405 * give segkmem a chance to figure out if we are using large pages
4406 * for the kernel heap
4407 */
4408 use_large_pages = segkmem_lpsetup();
4409
4410 /*
4411 * To protect against corruption, we keep the actual number of callers
4412 * KMF_LITE records seperate from the tunable. We arbitrarily clamp
4413 * to 16, since the overhead for small buffers quickly gets out of
4414 * hand.
4415 *
4416 * The real limit would depend on the needs of the largest KMC_NOHASH
4417 * cache.
4418 */
4419 kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
4420 kmem_lite_pcs = kmem_lite_count;
4421
4422 /*
4423 * Normally, we firewall oversized allocations when possible, but
4424 * if we are using large pages for kernel memory, and we don't have
4425 * any non-LITE debugging flags set, we want to allocate oversized
4426 * buffers from large pages, and so skip the firewalling.
4427 */
4428 if (use_large_pages &&
4429 ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
4430 kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
4431 PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
4432 0, VMC_DUMPSAFE | VM_SLEEP);
4433 } else {
4434 kmem_oversize_arena = vmem_create("kmem_oversize",
4435 NULL, 0, PAGESIZE,
4436 segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
4437 kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE |
4438 VM_SLEEP);
4439 }
4440
4441 kmem_cache_init(2, use_large_pages);
4442
4443 if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
4444 if (kmem_transaction_log_size == 0)
4445 kmem_transaction_log_size = kmem_maxavail() / 50;
4446 kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
4447 }
4448
4449 if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
4450 if (kmem_content_log_size == 0)
4451 kmem_content_log_size = kmem_maxavail() / 50;
4452 kmem_content_log = kmem_log_init(kmem_content_log_size);
4453 }
4454
4455 kmem_failure_log = kmem_log_init(kmem_failure_log_size);
4456
4457 kmem_slab_log = kmem_log_init(kmem_slab_log_size);
4458
4459 /*
4460 * Initialize STREAMS message caches so allocb() is available.
4461 * This allows us to initialize the logging framework (cmn_err(9F),
4462 * strlog(9F), etc) so we can start recording messages.
4463 */
4464 streams_msg_init();
4465
4466 /*
4467 * Initialize the ZSD framework in Zones so modules loaded henceforth
4468 * can register their callbacks.
4469 */
4470 zone_zsd_init();
4471
4472 log_init();
4473 taskq_init();
4474
4475 /*
4476 * Warn about invalid or dangerous values of kmem_flags.
4477 * Always warn about unsupported values.
4478 */
4479 if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
4480 KMF_CONTENTS | KMF_LITE)) != 0) ||
4481 ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
4482 cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
4483 "See the Solaris Tunable Parameters Reference Manual.",
4484 kmem_flags);
4485
4486 #ifdef DEBUG
4487 if ((kmem_flags & KMF_DEBUG) == 0)
4488 cmn_err(CE_NOTE, "kmem debugging disabled.");
4489 #else
4490 /*
4491 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
4492 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
4493 * if KMF_AUDIT is set). We should warn the user about the performance
4494 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
4495 * isn't set (since that disables AUDIT).
4496 */
4497 if (!(kmem_flags & KMF_LITE) &&
4498 (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
4499 cmn_err(CE_WARN, "High-overhead kmem debugging features "
4500 "enabled (kmem_flags = 0x%x). Performance degradation "
4501 "and large memory overhead possible. See the Solaris "
4502 "Tunable Parameters Reference Manual.", kmem_flags);
4503 #endif /* not DEBUG */
4504
4505 kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
4506
4507 kmem_ready = 1;
4508
4509 /*
4510 * Initialize the platform-specific aligned/DMA memory allocator.
4511 */
4512 ka_init();
4513
4514 /*
4515 * Initialize 32-bit ID cache.
4516 */
4517 id32_init();
4518
4519 /*
4520 * Initialize the networking stack so modules loaded can
4521 * register their callbacks.
4522 */
4523 netstack_init();
4524 }
4525
4526 static void
4527 kmem_move_init(void)
4528 {
4529 kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache",
4530 sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL,
4531 kmem_msb_arena, KMC_NOHASH);
4532 kmem_move_cache = kmem_cache_create("kmem_move_cache",
4533 sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL,
4534 kmem_msb_arena, KMC_NOHASH);
4535
4536 /*
4537 * kmem guarantees that move callbacks are sequential and that even
4538 * across multiple caches no two moves ever execute simultaneously.
4539 * Move callbacks are processed on a separate taskq so that client code
4540 * does not interfere with internal maintenance tasks.
4541 */
4542 kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1,
4543 minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE);
4544 }
4545
4546 void
4547 kmem_thread_init(void)
4548 {
4549 kmem_move_init();
4550 kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
4551 300, INT_MAX, TASKQ_PREPOPULATE);
4552 }
4553
4554 void
4555 kmem_mp_init(void)
4556 {
4557 mutex_enter(&cpu_lock);
4558 register_cpu_setup_func(kmem_cpu_setup, NULL);
4559 mutex_exit(&cpu_lock);
4560
4561 kmem_update_timeout(NULL);
4562
4563 taskq_mp_init();
4564 }
4565
4566 /*
4567 * Return the slab of the allocated buffer, or NULL if the buffer is not
4568 * allocated. This function may be called with a known slab address to determine
4569 * whether or not the buffer is allocated, or with a NULL slab address to obtain
4570 * an allocated buffer's slab.
4571 */
4572 static kmem_slab_t *
4573 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf)
4574 {
4575 kmem_bufctl_t *bcp, *bufbcp;
4576
4577 ASSERT(MUTEX_HELD(&cp->cache_lock));
4578 ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf));
4579
4580 if (cp->cache_flags & KMF_HASH) {
4581 for (bcp = *KMEM_HASH(cp, buf);
4582 (bcp != NULL) && (bcp->bc_addr != buf);
4583 bcp = bcp->bc_next) {
4584 continue;
4585 }
4586 ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1);
4587 return (bcp == NULL ? NULL : bcp->bc_slab);
4588 }
4589
4590 if (sp == NULL) {
4591 sp = KMEM_SLAB(cp, buf);
4592 }
4593 bufbcp = KMEM_BUFCTL(cp, buf);
4594 for (bcp = sp->slab_head;
4595 (bcp != NULL) && (bcp != bufbcp);
4596 bcp = bcp->bc_next) {
4597 continue;
4598 }
4599 return (bcp == NULL ? sp : NULL);
4600 }
4601
4602 static boolean_t
4603 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags)
4604 {
4605 long refcnt = sp->slab_refcnt;
4606
4607 ASSERT(cp->cache_defrag != NULL);
4608
4609 /*
4610 * For code coverage we want to be able to move an object within the
4611 * same slab (the only partial slab) even if allocating the destination
4612 * buffer resulted in a completely allocated slab.
4613 */
4614 if (flags & KMM_DEBUG) {
4615 return ((flags & KMM_DESPERATE) ||
4616 ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0));
4617 }
4618
4619 /* If we're desperate, we don't care if the client said NO. */
4620 if (flags & KMM_DESPERATE) {
4621 return (refcnt < sp->slab_chunks); /* any partial */
4622 }
4623
4624 if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4625 return (B_FALSE);
4626 }
4627
4628 if ((refcnt == 1) || kmem_move_any_partial) {
4629 return (refcnt < sp->slab_chunks);
4630 }
4631
4632 /*
4633 * The reclaim threshold is adjusted at each kmem_cache_scan() so that
4634 * slabs with a progressively higher percentage of used buffers can be
4635 * reclaimed until the cache as a whole is no longer fragmented.
4636 *
4637 * sp->slab_refcnt kmd_reclaim_numer
4638 * --------------- < ------------------
4639 * sp->slab_chunks KMEM_VOID_FRACTION
4640 */
4641 return ((refcnt * KMEM_VOID_FRACTION) <
4642 (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer));
4643 }
4644
4645 /*
4646 * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(),
4647 * or when the buffer is freed.
4648 */
4649 static void
4650 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4651 {
4652 ASSERT(MUTEX_HELD(&cp->cache_lock));
4653 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4654
4655 if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4656 return;
4657 }
4658
4659 if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4660 if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) {
4661 avl_remove(&cp->cache_partial_slabs, sp);
4662 sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
4663 sp->slab_stuck_offset = (uint32_t)-1;
4664 avl_add(&cp->cache_partial_slabs, sp);
4665 }
4666 } else {
4667 sp->slab_later_count = 0;
4668 sp->slab_stuck_offset = (uint32_t)-1;
4669 }
4670 }
4671
4672 static void
4673 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4674 {
4675 ASSERT(taskq_member(kmem_move_taskq, curthread));
4676 ASSERT(MUTEX_HELD(&cp->cache_lock));
4677 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4678
4679 if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4680 return;
4681 }
4682
4683 avl_remove(&cp->cache_partial_slabs, sp);
4684 sp->slab_later_count = 0;
4685 sp->slab_flags |= KMEM_SLAB_NOMOVE;
4686 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf);
4687 avl_add(&cp->cache_partial_slabs, sp);
4688 }
4689
4690 static void kmem_move_end(kmem_cache_t *, kmem_move_t *);
4691
4692 /*
4693 * The move callback takes two buffer addresses, the buffer to be moved, and a
4694 * newly allocated and constructed buffer selected by kmem as the destination.
4695 * It also takes the size of the buffer and an optional user argument specified
4696 * at cache creation time. kmem guarantees that the buffer to be moved has not
4697 * been unmapped by the virtual memory subsystem. Beyond that, it cannot
4698 * guarantee the present whereabouts of the buffer to be moved, so it is up to
4699 * the client to safely determine whether or not it is still using the buffer.
4700 * The client must not free either of the buffers passed to the move callback,
4701 * since kmem wants to free them directly to the slab layer. The client response
4702 * tells kmem which of the two buffers to free:
4703 *
4704 * YES kmem frees the old buffer (the move was successful)
4705 * NO kmem frees the new buffer, marks the slab of the old buffer
4706 * non-reclaimable to avoid bothering the client again
4707 * LATER kmem frees the new buffer, increments slab_later_count
4708 * DONT_KNOW kmem frees the new buffer
4709 * DONT_NEED kmem frees both the old buffer and the new buffer
4710 *
4711 * The pending callback argument now being processed contains both of the
4712 * buffers (old and new) passed to the move callback function, the slab of the
4713 * old buffer, and flags related to the move request, such as whether or not the
4714 * system was desperate for memory.
4715 *
4716 * Slabs are not freed while there is a pending callback, but instead are kept
4717 * on a deadlist, which is drained after the last callback completes. This means
4718 * that slabs are safe to access until kmem_move_end(), no matter how many of
4719 * their buffers have been freed. Once slab_refcnt reaches zero, it stays at
4720 * zero for as long as the slab remains on the deadlist and until the slab is
4721 * freed.
4722 */
4723 static void
4724 kmem_move_buffer(kmem_move_t *callback)
4725 {
4726 kmem_cbrc_t response;
4727 kmem_slab_t *sp = callback->kmm_from_slab;
4728 kmem_cache_t *cp = sp->slab_cache;
4729 boolean_t free_on_slab;
4730
4731 ASSERT(taskq_member(kmem_move_taskq, curthread));
4732 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4733 ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf));
4734
4735 /*
4736 * The number of allocated buffers on the slab may have changed since we
4737 * last checked the slab's reclaimability (when the pending move was
4738 * enqueued), or the client may have responded NO when asked to move
4739 * another buffer on the same slab.
4740 */
4741 if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) {
4742 kmem_slab_free(cp, callback->kmm_to_buf);
4743 kmem_move_end(cp, callback);
4744 return;
4745 }
4746
4747 /*
4748 * Checking the slab layer is easy, so we might as well do that here
4749 * in case we can avoid bothering the client.
4750 */
4751 mutex_enter(&cp->cache_lock);
4752 free_on_slab = (kmem_slab_allocated(cp, sp,
4753 callback->kmm_from_buf) == NULL);
4754 mutex_exit(&cp->cache_lock);
4755
4756 if (free_on_slab) {
4757 kmem_slab_free(cp, callback->kmm_to_buf);
4758 kmem_move_end(cp, callback);
4759 return;
4760 }
4761
4762 if (cp->cache_flags & KMF_BUFTAG) {
4763 /*
4764 * Make kmem_cache_alloc_debug() apply the constructor for us.
4765 */
4766 if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf,
4767 KM_NOSLEEP, 1, caller()) != 0) {
4768 kmem_move_end(cp, callback);
4769 return;
4770 }
4771 } else if (cp->cache_constructor != NULL &&
4772 cp->cache_constructor(callback->kmm_to_buf, cp->cache_private,
4773 KM_NOSLEEP) != 0) {
4774 atomic_inc_64(&cp->cache_alloc_fail);
4775 kmem_slab_free(cp, callback->kmm_to_buf);
4776 kmem_move_end(cp, callback);
4777 return;
4778 }
4779
4780 cp->cache_defrag->kmd_callbacks++;
4781 cp->cache_defrag->kmd_thread = curthread;
4782 cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf;
4783 cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf;
4784 DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *,
4785 callback);
4786
4787 response = cp->cache_move(callback->kmm_from_buf,
4788 callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private);
4789
4790 DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *,
4791 callback, kmem_cbrc_t, response);
4792 cp->cache_defrag->kmd_thread = NULL;
4793 cp->cache_defrag->kmd_from_buf = NULL;
4794 cp->cache_defrag->kmd_to_buf = NULL;
4795
4796 if (response == KMEM_CBRC_YES) {
4797 cp->cache_defrag->kmd_yes++;
4798 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4799 /* slab safe to access until kmem_move_end() */
4800 if (sp->slab_refcnt == 0)
4801 cp->cache_defrag->kmd_slabs_freed++;
4802 mutex_enter(&cp->cache_lock);
4803 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4804 mutex_exit(&cp->cache_lock);
4805 kmem_move_end(cp, callback);
4806 return;
4807 }
4808
4809 switch (response) {
4810 case KMEM_CBRC_NO:
4811 cp->cache_defrag->kmd_no++;
4812 mutex_enter(&cp->cache_lock);
4813 kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4814 mutex_exit(&cp->cache_lock);
4815 break;
4816 case KMEM_CBRC_LATER:
4817 cp->cache_defrag->kmd_later++;
4818 mutex_enter(&cp->cache_lock);
4819 if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4820 mutex_exit(&cp->cache_lock);
4821 break;
4822 }
4823
4824 if (++sp->slab_later_count >= KMEM_DISBELIEF) {
4825 kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4826 } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) {
4827 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp,
4828 callback->kmm_from_buf);
4829 }
4830 mutex_exit(&cp->cache_lock);
4831 break;
4832 case KMEM_CBRC_DONT_NEED:
4833 cp->cache_defrag->kmd_dont_need++;
4834 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4835 if (sp->slab_refcnt == 0)
4836 cp->cache_defrag->kmd_slabs_freed++;
4837 mutex_enter(&cp->cache_lock);
4838 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4839 mutex_exit(&cp->cache_lock);
4840 break;
4841 case KMEM_CBRC_DONT_KNOW:
4842 /*
4843 * If we don't know if we can move this buffer or not, we'll
4844 * just assume that we can't: if the buffer is in fact free,
4845 * then it is sitting in one of the per-CPU magazines or in
4846 * a full magazine in the depot layer. Either way, because
4847 * defrag is induced in the same logic that reaps a cache,
4848 * it's likely that full magazines will be returned to the
4849 * system soon (thereby accomplishing what we're trying to
4850 * accomplish here: return those magazines to their slabs).
4851 * Given this, any work that we might do now to locate a buffer
4852 * in a magazine is wasted (and expensive!) work; we bump
4853 * a counter in this case and otherwise assume that we can't
4854 * move it.
4855 */
4856 cp->cache_defrag->kmd_dont_know++;
4857 break;
4858 default:
4859 panic("'%s' (%p) unexpected move callback response %d\n",
4860 cp->cache_name, (void *)cp, response);
4861 }
4862
4863 kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE);
4864 kmem_move_end(cp, callback);
4865 }
4866
4867 /* Return B_FALSE if there is insufficient memory for the move request. */
4868 static boolean_t
4869 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags)
4870 {
4871 void *to_buf;
4872 avl_index_t index;
4873 kmem_move_t *callback, *pending;
4874 ulong_t n;
4875
4876 ASSERT(taskq_member(kmem_taskq, curthread));
4877 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4878 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4879
4880 callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP);
4881
4882 if (callback == NULL)
4883 return (B_FALSE);
4884
4885 callback->kmm_from_slab = sp;
4886 callback->kmm_from_buf = buf;
4887 callback->kmm_flags = flags;
4888
4889 mutex_enter(&cp->cache_lock);
4890
4891 n = avl_numnodes(&cp->cache_partial_slabs);
4892 if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) {
4893 mutex_exit(&cp->cache_lock);
4894 kmem_cache_free(kmem_move_cache, callback);
4895 return (B_TRUE); /* there is no need for the move request */
4896 }
4897
4898 pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index);
4899 if (pending != NULL) {
4900 /*
4901 * If the move is already pending and we're desperate now,
4902 * update the move flags.
4903 */
4904 if (flags & KMM_DESPERATE) {
4905 pending->kmm_flags |= KMM_DESPERATE;
4906 }
4907 mutex_exit(&cp->cache_lock);
4908 kmem_cache_free(kmem_move_cache, callback);
4909 return (B_TRUE);
4910 }
4911
4912 to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs),
4913 B_FALSE);
4914 callback->kmm_to_buf = to_buf;
4915 avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index);
4916
4917 mutex_exit(&cp->cache_lock);
4918
4919 if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer,
4920 callback, TQ_NOSLEEP)) {
4921 mutex_enter(&cp->cache_lock);
4922 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4923 mutex_exit(&cp->cache_lock);
4924 kmem_slab_free(cp, to_buf);
4925 kmem_cache_free(kmem_move_cache, callback);
4926 return (B_FALSE);
4927 }
4928
4929 return (B_TRUE);
4930 }
4931
4932 static void
4933 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback)
4934 {
4935 avl_index_t index;
4936
4937 ASSERT(cp->cache_defrag != NULL);
4938 ASSERT(taskq_member(kmem_move_taskq, curthread));
4939 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4940
4941 mutex_enter(&cp->cache_lock);
4942 VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending,
4943 callback->kmm_from_buf, &index) != NULL);
4944 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4945 if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) {
4946 list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
4947 kmem_slab_t *sp;
4948
4949 /*
4950 * The last pending move completed. Release all slabs from the
4951 * front of the dead list except for any slab at the tail that
4952 * needs to be released from the context of kmem_move_buffers().
4953 * kmem deferred unmapping the buffers on these slabs in order
4954 * to guarantee that buffers passed to the move callback have
4955 * been touched only by kmem or by the client itself.
4956 */
4957 while ((sp = list_remove_head(deadlist)) != NULL) {
4958 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
4959 list_insert_tail(deadlist, sp);
4960 break;
4961 }
4962 cp->cache_defrag->kmd_deadcount--;
4963 cp->cache_slab_destroy++;
4964 mutex_exit(&cp->cache_lock);
4965 kmem_slab_destroy(cp, sp);
4966 mutex_enter(&cp->cache_lock);
4967 }
4968 }
4969 mutex_exit(&cp->cache_lock);
4970 kmem_cache_free(kmem_move_cache, callback);
4971 }
4972
4973 /*
4974 * Move buffers from least used slabs first by scanning backwards from the end
4975 * of the partial slab list. Scan at most max_scan candidate slabs and move
4976 * buffers from at most max_slabs slabs (0 for all partial slabs in both cases).
4977 * If desperate to reclaim memory, move buffers from any partial slab, otherwise
4978 * skip slabs with a ratio of allocated buffers at or above the current
4979 * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the
4980 * scan is aborted) so that the caller can adjust the reclaimability threshold
4981 * depending on how many reclaimable slabs it finds.
4982 *
4983 * kmem_move_buffers() drops and reacquires cache_lock every time it issues a
4984 * move request, since it is not valid for kmem_move_begin() to call
4985 * kmem_cache_alloc() or taskq_dispatch() with cache_lock held.
4986 */
4987 static int
4988 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs,
4989 int flags)
4990 {
4991 kmem_slab_t *sp;
4992 void *buf;
4993 int i, j; /* slab index, buffer index */
4994 int s; /* reclaimable slabs */
4995 int b; /* allocated (movable) buffers on reclaimable slab */
4996 boolean_t success;
4997 int refcnt;
4998 int nomove;
4999
5000 ASSERT(taskq_member(kmem_taskq, curthread));
5001 ASSERT(MUTEX_HELD(&cp->cache_lock));
5002 ASSERT(kmem_move_cache != NULL);
5003 ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL);
5004 ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) :
5005 avl_numnodes(&cp->cache_partial_slabs) > 1);
5006
5007 if (kmem_move_blocked) {
5008 return (0);
5009 }
5010
5011 if (kmem_move_fulltilt) {
5012 flags |= KMM_DESPERATE;
5013 }
5014
5015 if (max_scan == 0 || (flags & KMM_DESPERATE)) {
5016 /*
5017 * Scan as many slabs as needed to find the desired number of
5018 * candidate slabs.
5019 */
5020 max_scan = (size_t)-1;
5021 }
5022
5023 if (max_slabs == 0 || (flags & KMM_DESPERATE)) {
5024 /* Find as many candidate slabs as possible. */
5025 max_slabs = (size_t)-1;
5026 }
5027
5028 sp = avl_last(&cp->cache_partial_slabs);
5029 ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
5030 for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) &&
5031 ((sp != avl_first(&cp->cache_partial_slabs)) ||
5032 (flags & KMM_DEBUG));
5033 sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) {
5034
5035 if (!kmem_slab_is_reclaimable(cp, sp, flags)) {
5036 continue;
5037 }
5038 s++;
5039
5040 /* Look for allocated buffers to move. */
5041 for (j = 0, b = 0, buf = sp->slab_base;
5042 (j < sp->slab_chunks) && (b < sp->slab_refcnt);
5043 buf = (((char *)buf) + cp->cache_chunksize), j++) {
5044
5045 if (kmem_slab_allocated(cp, sp, buf) == NULL) {
5046 continue;
5047 }
5048
5049 b++;
5050
5051 /*
5052 * Prevent the slab from being destroyed while we drop
5053 * cache_lock and while the pending move is not yet
5054 * registered. Flag the pending move while
5055 * kmd_moves_pending may still be empty, since we can't
5056 * yet rely on a non-zero pending move count to prevent
5057 * the slab from being destroyed.
5058 */
5059 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5060 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5061 /*
5062 * Recheck refcnt and nomove after reacquiring the lock,
5063 * since these control the order of partial slabs, and
5064 * we want to know if we can pick up the scan where we
5065 * left off.
5066 */
5067 refcnt = sp->slab_refcnt;
5068 nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
5069 mutex_exit(&cp->cache_lock);
5070
5071 success = kmem_move_begin(cp, sp, buf, flags);
5072
5073 /*
5074 * Now, before the lock is reacquired, kmem could
5075 * process all pending move requests and purge the
5076 * deadlist, so that upon reacquiring the lock, sp has
5077 * been remapped. Or, the client may free all the
5078 * objects on the slab while the pending moves are still
5079 * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING
5080 * flag causes the slab to be put at the end of the
5081 * deadlist and prevents it from being destroyed, since
5082 * we plan to destroy it here after reacquiring the
5083 * lock.
5084 */
5085 mutex_enter(&cp->cache_lock);
5086 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5087 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5088
5089 if (sp->slab_refcnt == 0) {
5090 list_t *deadlist =
5091 &cp->cache_defrag->kmd_deadlist;
5092 list_remove(deadlist, sp);
5093
5094 if (!avl_is_empty(
5095 &cp->cache_defrag->kmd_moves_pending)) {
5096 /*
5097 * A pending move makes it unsafe to
5098 * destroy the slab, because even though
5099 * the move is no longer needed, the
5100 * context where that is determined
5101 * requires the slab to exist.
5102 * Fortunately, a pending move also
5103 * means we don't need to destroy the
5104 * slab here, since it will get
5105 * destroyed along with any other slabs
5106 * on the deadlist after the last
5107 * pending move completes.
5108 */
5109 list_insert_head(deadlist, sp);
5110 return (-1);
5111 }
5112
5113 /*
5114 * Destroy the slab now if it was completely
5115 * freed while we dropped cache_lock and there
5116 * are no pending moves. Since slab_refcnt
5117 * cannot change once it reaches zero, no new
5118 * pending moves from that slab are possible.
5119 */
5120 cp->cache_defrag->kmd_deadcount--;
5121 cp->cache_slab_destroy++;
5122 mutex_exit(&cp->cache_lock);
5123 kmem_slab_destroy(cp, sp);
5124 mutex_enter(&cp->cache_lock);
5125 /*
5126 * Since we can't pick up the scan where we left
5127 * off, abort the scan and say nothing about the
5128 * number of reclaimable slabs.
5129 */
5130 return (-1);
5131 }
5132
5133 if (!success) {
5134 /*
5135 * Abort the scan if there is not enough memory
5136 * for the request and say nothing about the
5137 * number of reclaimable slabs.
5138 */
5139 return (-1);
5140 }
5141
5142 /*
5143 * The slab's position changed while the lock was
5144 * dropped, so we don't know where we are in the
5145 * sequence any more.
5146 */
5147 if (sp->slab_refcnt != refcnt) {
5148 /*
5149 * If this is a KMM_DEBUG move, the slab_refcnt
5150 * may have changed because we allocated a
5151 * destination buffer on the same slab. In that
5152 * case, we're not interested in counting it.
5153 */
5154 return (-1);
5155 }
5156 if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove)
5157 return (-1);
5158
5159 /*
5160 * Generating a move request allocates a destination
5161 * buffer from the slab layer, bumping the first partial
5162 * slab if it is completely allocated. If the current
5163 * slab becomes the first partial slab as a result, we
5164 * can't continue to scan backwards.
5165 *
5166 * If this is a KMM_DEBUG move and we allocated the
5167 * destination buffer from the last partial slab, then
5168 * the buffer we're moving is on the same slab and our
5169 * slab_refcnt has changed, causing us to return before
5170 * reaching here if there are no partial slabs left.
5171 */
5172 ASSERT(!avl_is_empty(&cp->cache_partial_slabs));
5173 if (sp == avl_first(&cp->cache_partial_slabs)) {
5174 /*
5175 * We're not interested in a second KMM_DEBUG
5176 * move.
5177 */
5178 goto end_scan;
5179 }
5180 }
5181 }
5182 end_scan:
5183
5184 return (s);
5185 }
5186
5187 typedef struct kmem_move_notify_args {
5188 kmem_cache_t *kmna_cache;
5189 void *kmna_buf;
5190 } kmem_move_notify_args_t;
5191
5192 static void
5193 kmem_cache_move_notify_task(void *arg)
5194 {
5195 kmem_move_notify_args_t *args = arg;
5196 kmem_cache_t *cp = args->kmna_cache;
5197 void *buf = args->kmna_buf;
5198 kmem_slab_t *sp;
5199
5200 ASSERT(taskq_member(kmem_taskq, curthread));
5201 ASSERT(list_link_active(&cp->cache_link));
5202
5203 kmem_free(args, sizeof (kmem_move_notify_args_t));
5204 mutex_enter(&cp->cache_lock);
5205 sp = kmem_slab_allocated(cp, NULL, buf);
5206
5207 /* Ignore the notification if the buffer is no longer allocated. */
5208 if (sp == NULL) {
5209 mutex_exit(&cp->cache_lock);
5210 return;
5211 }
5212
5213 /* Ignore the notification if there's no reason to move the buffer. */
5214 if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5215 /*
5216 * So far the notification is not ignored. Ignore the
5217 * notification if the slab is not marked by an earlier refusal
5218 * to move a buffer.
5219 */
5220 if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) &&
5221 (sp->slab_later_count == 0)) {
5222 mutex_exit(&cp->cache_lock);
5223 return;
5224 }
5225
5226 kmem_slab_move_yes(cp, sp, buf);
5227 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5228 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5229 mutex_exit(&cp->cache_lock);
5230 /* see kmem_move_buffers() about dropping the lock */
5231 (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY);
5232 mutex_enter(&cp->cache_lock);
5233 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5234 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5235 if (sp->slab_refcnt == 0) {
5236 list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5237 list_remove(deadlist, sp);
5238
5239 if (!avl_is_empty(
5240 &cp->cache_defrag->kmd_moves_pending)) {
5241 list_insert_head(deadlist, sp);
5242 mutex_exit(&cp->cache_lock);
5243 return;
5244 }
5245
5246 cp->cache_defrag->kmd_deadcount--;
5247 cp->cache_slab_destroy++;
5248 mutex_exit(&cp->cache_lock);
5249 kmem_slab_destroy(cp, sp);
5250 return;
5251 }
5252 } else {
5253 kmem_slab_move_yes(cp, sp, buf);
5254 }
5255 mutex_exit(&cp->cache_lock);
5256 }
5257
5258 void
5259 kmem_cache_move_notify(kmem_cache_t *cp, void *buf)
5260 {
5261 kmem_move_notify_args_t *args;
5262
5263 args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP);
5264 if (args != NULL) {
5265 args->kmna_cache = cp;
5266 args->kmna_buf = buf;
5267 if (!taskq_dispatch(kmem_taskq,
5268 (task_func_t *)kmem_cache_move_notify_task, args,
5269 TQ_NOSLEEP))
5270 kmem_free(args, sizeof (kmem_move_notify_args_t));
5271 }
5272 }
5273
5274 static void
5275 kmem_cache_defrag(kmem_cache_t *cp)
5276 {
5277 size_t n;
5278
5279 ASSERT(cp->cache_defrag != NULL);
5280
5281 mutex_enter(&cp->cache_lock);
5282 n = avl_numnodes(&cp->cache_partial_slabs);
5283 if (n > 1) {
5284 /* kmem_move_buffers() drops and reacquires cache_lock */
5285 cp->cache_defrag->kmd_defrags++;
5286 (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE);
5287 }
5288 mutex_exit(&cp->cache_lock);
5289 }
5290
5291 /* Is this cache above the fragmentation threshold? */
5292 static boolean_t
5293 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree)
5294 {
5295 /*
5296 * nfree kmem_frag_numer
5297 * ------------------ > ---------------
5298 * cp->cache_buftotal kmem_frag_denom
5299 */
5300 return ((nfree * kmem_frag_denom) >
5301 (cp->cache_buftotal * kmem_frag_numer));
5302 }
5303
5304 static boolean_t
5305 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap)
5306 {
5307 boolean_t fragmented;
5308 uint64_t nfree;
5309
5310 ASSERT(MUTEX_HELD(&cp->cache_lock));
5311 *doreap = B_FALSE;
5312
5313 if (kmem_move_fulltilt) {
5314 if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5315 return (B_TRUE);
5316 }
5317 } else {
5318 if ((cp->cache_complete_slab_count + avl_numnodes(
5319 &cp->cache_partial_slabs)) < kmem_frag_minslabs) {
5320 return (B_FALSE);
5321 }
5322 }
5323
5324 nfree = cp->cache_bufslab;
5325 fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) &&
5326 kmem_cache_frag_threshold(cp, nfree));
5327
5328 /*
5329 * Free buffers in the magazine layer appear allocated from the point of
5330 * view of the slab layer. We want to know if the slab layer would
5331 * appear fragmented if we included free buffers from magazines that
5332 * have fallen out of the working set.
5333 */
5334 if (!fragmented) {
5335 long reap;
5336
5337 mutex_enter(&cp->cache_depot_lock);
5338 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
5339 reap = MIN(reap, cp->cache_full.ml_total);
5340 mutex_exit(&cp->cache_depot_lock);
5341
5342 nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
5343 if (kmem_cache_frag_threshold(cp, nfree)) {
5344 *doreap = B_TRUE;
5345 }
5346 }
5347
5348 return (fragmented);
5349 }
5350
5351 /* Called periodically from kmem_taskq */
5352 static void
5353 kmem_cache_scan(kmem_cache_t *cp)
5354 {
5355 boolean_t reap = B_FALSE;
5356 kmem_defrag_t *kmd;
5357
5358 ASSERT(taskq_member(kmem_taskq, curthread));
5359
5360 mutex_enter(&cp->cache_lock);
5361
5362 kmd = cp->cache_defrag;
5363 if (kmd->kmd_consolidate > 0) {
5364 kmd->kmd_consolidate--;
5365 mutex_exit(&cp->cache_lock);
5366 kmem_cache_reap(cp);
5367 return;
5368 }
5369
5370 if (kmem_cache_is_fragmented(cp, &reap)) {
5371 size_t slabs_found;
5372
5373 /*
5374 * Consolidate reclaimable slabs from the end of the partial
5375 * slab list (scan at most kmem_reclaim_scan_range slabs to find
5376 * reclaimable slabs). Keep track of how many candidate slabs we
5377 * looked for and how many we actually found so we can adjust
5378 * the definition of a candidate slab if we're having trouble
5379 * finding them.
5380 *
5381 * kmem_move_buffers() drops and reacquires cache_lock.
5382 */
5383 kmd->kmd_scans++;
5384 slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range,
5385 kmem_reclaim_max_slabs, 0);
5386 if (slabs_found >= 0) {
5387 kmd->kmd_slabs_sought += kmem_reclaim_max_slabs;
5388 kmd->kmd_slabs_found += slabs_found;
5389 }
5390
5391 if (++kmd->kmd_tries >= kmem_reclaim_scan_range) {
5392 kmd->kmd_tries = 0;
5393
5394 /*
5395 * If we had difficulty finding candidate slabs in
5396 * previous scans, adjust the threshold so that
5397 * candidates are easier to find.
5398 */
5399 if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) {
5400 kmem_adjust_reclaim_threshold(kmd, -1);
5401 } else if ((kmd->kmd_slabs_found * 2) <
5402 kmd->kmd_slabs_sought) {
5403 kmem_adjust_reclaim_threshold(kmd, 1);
5404 }
5405 kmd->kmd_slabs_sought = 0;
5406 kmd->kmd_slabs_found = 0;
5407 }
5408 } else {
5409 kmem_reset_reclaim_threshold(cp->cache_defrag);
5410 #ifdef DEBUG
5411 if (!avl_is_empty(&cp->cache_partial_slabs)) {
5412 /*
5413 * In a debug kernel we want the consolidator to
5414 * run occasionally even when there is plenty of
5415 * memory.
5416 */
5417 uint16_t debug_rand;
5418
5419 (void) random_get_bytes((uint8_t *)&debug_rand, 2);
5420 if (!kmem_move_noreap &&
5421 ((debug_rand % kmem_mtb_reap) == 0)) {
5422 mutex_exit(&cp->cache_lock);
5423 kmem_cache_reap(cp);
5424 return;
5425 } else if ((debug_rand % kmem_mtb_move) == 0) {
5426 kmd->kmd_scans++;
5427 (void) kmem_move_buffers(cp,
5428 kmem_reclaim_scan_range, 1, KMM_DEBUG);
5429 }
5430 }
5431 #endif /* DEBUG */
5432 }
5433
5434 mutex_exit(&cp->cache_lock);
5435
5436 if (reap)
5437 kmem_depot_ws_reap(cp);
5438 }