1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 
  25 #include "assym.h"
  26 
  27 /*
  28  * General assembly language routines.
  29  * It is the intent of this file to contain routines that are
  30  * specific to cpu architecture.
  31  */
  32 
  33 /*
  34  * WARNING: If you add a fast trap handler which can be invoked by a
  35  * non-privileged user, you may have to use the FAST_TRAP_DONE macro
  36  * instead of "done" instruction to return back to the user mode. See
  37  * comments for the "fast_trap_done" entry point for more information.
  38  */
  39 #define FAST_TRAP_DONE  \
  40         ba,a    fast_trap_done
  41 
  42 /*
  43  * Override GET_NATIVE_TIME for the cpu module code.  This is not
  44  * guaranteed to be exactly one instruction, be careful of using
  45  * the macro in delay slots.
  46  *
  47  * Do not use any instruction that modifies condition codes as the 
  48  * caller may depend on these to remain unchanged across the macro.
  49  */
  50 #if defined(CHEETAH) || defined(OLYMPUS_C)
  51 
  52 #define GET_NATIVE_TIME(out, scr1, scr2) \
  53         rd      STICK, out
  54 #define DELTA_NATIVE_TIME(delta, reg, scr1, scr2, scr3) \
  55         rd      STICK, reg;             \
  56         add     reg, delta, reg;        \
  57         wr      reg, STICK
  58 #define RD_TICKCMPR(out, scr)           \
  59         rd      STICK_COMPARE, out
  60 #define WR_TICKCMPR(in, scr1, scr2, label) \
  61         wr      in, STICK_COMPARE
  62 
  63 #elif defined(HUMMINGBIRD)
  64 #include <sys/spitregs.h>
  65 
  66 /*
  67  * the current hummingbird version of %stick and %stick_cmp
  68  * were both implemented as (2) 32-bit locations in ASI_IO space;
  69  * the hdwr should support atomic r/w; meanwhile: ugly alert! ...
  70  *
  71  * 64-bit opcodes are required, but move only 32-bits:
  72  *
  73  * ldxa [phys]ASI_IO, %dst      reads  the low 32-bits from phys into %dst
  74  * stxa %src, [phys]ASI_IO      writes the low 32-bits from %src into phys
  75  *
  76  * reg equivalent               [phys]ASI_IO
  77  * ------------------           ---------------
  78  * %stick_cmp  low-32           0x1FE.0000.F060
  79  * %stick_cmp high-32           0x1FE.0000.F068
  80  * %stick      low-32           0x1FE.0000.F070
  81  * %stick     high-32           0x1FE.0000.F078
  82  */
  83 #define HSTC_LOW        0x60                    /* stick_cmp low  32-bits */
  84 #define HSTC_HIGH       0x68                    /* stick_cmp high 32-bits */
  85 #define HST_LOW         0x70                    /* stick low  32-bits */
  86 #define HST_HIGH        0x78                    /* stick high 32-bits */
  87 #define HST_DIFF        0x08                    /* low<-->high diff */
  88 
  89 /*
  90  * Any change in the number of instructions in SETL41()
  91  * will affect SETL41_OFF
  92  */
  93 #define SETL41(reg, byte) \
  94         sethi   %hi(0x1FE00000), reg;           /* 0000.0000.1FE0.0000 */ \
  95         or      reg, 0xF, reg;                  /* 0000.0000.1FE0.000F */ \
  96         sllx    reg, 12, reg;                   /* 0000.01FE.0000.F000 */ \
  97         or      reg, byte, reg;                 /* 0000.01FE.0000.F0xx */
  98 
  99 /*
 100  * SETL41_OFF is used to calulate the relative PC value when a
 101  * branch instruction needs to go over SETL41() macro
 102  */
 103 #define SETL41_OFF  16
 104 
 105 /*
 106  * reading stick requires 2 loads, and there could be an intervening
 107  * low-to-high 32-bit rollover resulting in a return value that is
 108  * off by about (2 ^ 32); this rare case is prevented by re-reading
 109  * the low-32 bits after the high-32 and verifying the "after" value
 110  * is >= the "before" value; if not, increment the high-32 value.
 111  *
 112  * this method is limited to 1 rollover, and based on the fixed
 113  * stick-frequency (5555555), requires the loads to complete within
 114  * 773 seconds; incrementing the high-32 value will not overflow for
 115  * about 52644 years.
 116  *
 117  * writing stick requires 2 stores; if the old/new low-32 value is
 118  * near 0xffffffff, there could be another rollover (also rare).
 119  * to prevent this, we first write a 0 to the low-32, then write
 120  * new values to the high-32 then the low-32.
 121  *
 122  * When we detect a carry in the lower %stick register, we need to
 123  * read HST_HIGH again. However at the point where we detect this,
 124  * we need to rebuild the register address HST_HIGH.This involves more
 125  * than one instructions and a branch is unavoidable. However, most of
 126  * the time, there is no carry. So we take the penalty of a branch
 127  * instruction only when there is carry (less frequent).
 128  * 
 129  * For GET_NATIVE_TIME(), we start afresh and branch to SETL41().
 130  * For DELTA_NATIVE_TIME(), we branch to just after SETL41() since
 131  * addr already points to HST_LOW.
 132  *
 133  * NOTE: this method requires disabling interrupts before using
 134  * DELTA_NATIVE_TIME.
 135  */
 136 #define GET_NATIVE_TIME(out, scr, tmp)  \
 137         SETL41(scr, HST_LOW);           \
 138         ldxa    [scr]ASI_IO, tmp;       \
 139         inc     HST_DIFF, scr;          \
 140         ldxa    [scr]ASI_IO, out;       \
 141         dec     HST_DIFF, scr;          \
 142         ldxa    [scr]ASI_IO, scr;       \
 143         sub     scr, tmp, tmp;          \
 144         brlz,pn tmp, .-(SETL41_OFF+24); \
 145         sllx    out, 32, out;           \
 146         or      out, scr, out
 147 #define DELTA_NATIVE_TIME(delta, addr, high, low, tmp) \
 148         SETL41(addr, HST_LOW);          \
 149         ldxa    [addr]ASI_IO, tmp;      \
 150         inc     HST_DIFF, addr;         \
 151         ldxa    [addr]ASI_IO, high;     \
 152         dec     HST_DIFF, addr;         \
 153         ldxa    [addr]ASI_IO, low;      \
 154         sub     low, tmp, tmp;          \
 155         brlz,pn tmp, .-24;              \
 156         sllx    high, 32, high;         \
 157         or      high, low, high;        \
 158         add     high, delta, high;      \
 159         srl     high, 0, low;           \
 160         srlx    high, 32, high;         \
 161         stxa    %g0, [addr]ASI_IO;      \
 162         inc     HST_DIFF, addr;         \
 163         stxa    high, [addr]ASI_IO;     \
 164         dec     HST_DIFF, addr;         \
 165         stxa    low, [addr]ASI_IO
 166 #define RD_TICKCMPR(out, scr)           \
 167         SETL41(scr, HSTC_LOW);          \
 168         ldxa    [scr]ASI_IO, out;       \
 169         inc     HST_DIFF, scr;          \
 170         ldxa    [scr]ASI_IO, scr;       \
 171         sllx    scr, 32, scr;           \
 172         or      scr, out, out
 173 #define WR_TICKCMPR(in, scra, scrd, label) \
 174         SETL41(scra, HSTC_HIGH);        \
 175         srlx    in, 32, scrd;           \
 176         stxa    scrd, [scra]ASI_IO;     \
 177         dec     HST_DIFF, scra;         \
 178         stxa    in, [scra]ASI_IO
 179 
 180 #else   /* !CHEETAH && !HUMMINGBIRD */
 181 
 182 #define GET_NATIVE_TIME(out, scr1, scr2) \
 183         rdpr    %tick, out
 184 #define DELTA_NATIVE_TIME(delta, reg, scr1, scr2, scr3) \
 185         rdpr    %tick, reg;             \
 186         add     reg, delta, reg;        \
 187         wrpr    reg, %tick
 188 #define RD_TICKCMPR(out, scr)           \
 189         rd      TICK_COMPARE, out
 190 #ifdef BB_ERRATA_1 /* writes to TICK_COMPARE may fail */
 191 /*
 192  * Writes to the TICK_COMPARE register sometimes fail on blackbird modules.
 193  * The failure occurs only when the following instruction decodes to wr or
 194  * wrpr.  The workaround is to immediately follow writes to TICK_COMPARE
 195  * with a read, thus stalling the pipe and keeping following instructions
 196  * from causing data corruption.  Aligning to a quadword will ensure these
 197  * two instructions are not split due to i$ misses.
 198  */
 199 #define WR_TICKCMPR(cmpr,scr1,scr2,label)       \
 200         ba,a    .bb_errata_1.label              ;\
 201         .align  64                              ;\
 202 .bb_errata_1.label:                             ;\
 203         wr      cmpr, TICK_COMPARE              ;\
 204         rd      TICK_COMPARE, %g0
 205 #else   /* BB_ERRATA_1 */
 206 #define WR_TICKCMPR(in,scr1,scr2,label)         \
 207         wr      in, TICK_COMPARE
 208 #endif  /* BB_ERRATA_1 */
 209 
 210 #endif  /* !CHEETAH && !HUMMINGBIRD */
 211 
 212 #include <sys/clock.h>
 213 
 214 
 215 #include <sys/asm_linkage.h>
 216 #include <sys/privregs.h>
 217 #include <sys/machparam.h>        /* To get SYSBASE and PAGESIZE */
 218 #include <sys/machthread.h>
 219 #include <sys/clock.h>
 220 #include <sys/intreg.h>
 221 #include <sys/psr_compat.h>
 222 #include <sys/isa_defs.h>
 223 #include <sys/dditypes.h>
 224 #include <sys/intr.h>
 225 
 226 #include "assym.h"
 227 
 228         ENTRY(get_impl)
 229         GET_CPU_IMPL(%o0)
 230         retl
 231         nop
 232         SET_SIZE(get_impl)
 233 
 234         ENTRY_NP(tickcmpr_set)
 235         ! get 64-bit clock_cycles interval
 236         mov     %o0, %o2
 237         mov     8, %o3                  ! A reasonable initial step size
 238 1:
 239         WR_TICKCMPR(%o2,%o4,%o5,__LINE__)       ! Write to TICK_CMPR
 240 
 241         GET_NATIVE_TIME(%o0, %o4, %o5)  ! Read %tick to confirm the
 242         sllx    %o0, 1, %o0             !   value we wrote was in the future.
 243         srlx    %o0, 1, %o0
 244 
 245         cmp     %o2, %o0                ! If the value we wrote was in the
 246         bg,pt   %xcc, 2f                !   future, then blow out of here.
 247         sllx    %o3, 1, %o3             ! If not, then double our step size,
 248         ba,pt   %xcc, 1b                !   and take another lap.
 249         add     %o0, %o3, %o2           !
 250 2:
 251         retl
 252         nop
 253         SET_SIZE(tickcmpr_set)
 254 
 255         ENTRY_NP(tickcmpr_disable)
 256         mov     1, %g1
 257         sllx    %g1, TICKINT_DIS_SHFT, %o0
 258         WR_TICKCMPR(%o0,%o4,%o5,__LINE__)       ! Write to TICK_CMPR
 259         retl
 260         nop
 261         SET_SIZE(tickcmpr_disable)
 262 
 263 #ifdef DEBUG
 264         .seg    ".text"
 265 tick_write_panic:
 266         .asciz  "tick_write_delta: interrupts already disabled on entry"
 267 #endif  /* DEBUG */
 268 
 269         ENTRY_NP(tick_write_delta)
 270         rdpr    %pstate, %g1
 271 #ifdef DEBUG
 272         andcc   %g1, PSTATE_IE, %g0     ! If DEBUG, check that interrupts
 273         bnz     0f                      ! aren't already disabled.
 274         sethi   %hi(tick_write_panic), %o1
 275         save    %sp, -SA(MINFRAME), %sp ! get a new window to preserve caller
 276         call    panic
 277         or      %i1, %lo(tick_write_panic), %o0
 278 #endif  /* DEBUG */
 279 0:      wrpr    %g1, PSTATE_IE, %pstate ! Disable interrupts
 280         mov     %o0, %o2
 281         ba      0f                      ! Branch to cache line-aligned instr.
 282         nop
 283         .align  16
 284 0:      nop                             ! The next 3 instructions are now hot.
 285         DELTA_NATIVE_TIME(%o2, %o3, %o4, %o5, %g2)      ! read/inc/write %tick
 286 
 287         retl                            ! Return
 288         wrpr    %g0, %g1, %pstate       !     delay: Re-enable interrupts
 289 
 290         ENTRY_NP(tickcmpr_disabled)
 291         RD_TICKCMPR(%g1, %o0)
 292         retl
 293         srlx    %g1, TICKINT_DIS_SHFT, %o0
 294         SET_SIZE(tickcmpr_disabled)
 295 
 296 /*
 297  * Get current tick
 298  */
 299 
 300         ENTRY(gettick)
 301         ALTENTRY(randtick)
 302         GET_NATIVE_TIME(%o0, %o2, %o3)
 303         retl
 304         nop
 305         SET_SIZE(randtick)
 306         SET_SIZE(gettick)
 307 
 308 
 309 /*
 310  * Return the counter portion of the tick register.
 311  */
 312 
 313         ENTRY_NP(gettick_counter)
 314         rdpr    %tick, %o0
 315         sllx    %o0, 1, %o0
 316         retl
 317         srlx    %o0, 1, %o0             ! shake off npt bit
 318         SET_SIZE(gettick_counter)
 319 
 320 /*
 321  * Provide a C callable interface to the trap that reads the hi-res timer.
 322  * Returns 64-bit nanosecond timestamp in %o0 and %o1.
 323  */
 324 
 325         ENTRY_NP(gethrtime)
 326         GET_HRTIME(%g1, %o0, %o1, %o2, %o3, %o4, %o5, %g2)
 327                                                         ! %g1 = hrtime
 328         retl
 329         mov     %g1, %o0
 330         SET_SIZE(gethrtime)
 331 
 332         ENTRY_NP(gethrtime_unscaled)
 333         GET_NATIVE_TIME(%g1, %o2, %o3)                  ! %g1 = native time
 334         retl
 335         mov     %g1, %o0
 336         SET_SIZE(gethrtime_unscaled)
 337 
 338         ENTRY_NP(gethrtime_waitfree)
 339         ALTENTRY(dtrace_gethrtime)
 340         GET_NATIVE_TIME(%g1, %o2, %o3)                  ! %g1 = native time
 341         NATIVE_TIME_TO_NSEC(%g1, %o2, %o3)
 342         retl
 343         mov     %g1, %o0
 344         SET_SIZE(dtrace_gethrtime)
 345         SET_SIZE(gethrtime_waitfree)
 346 
 347         ENTRY(gethrtime_max)
 348         NATIVE_TIME_MAX(%g1)
 349         NATIVE_TIME_TO_NSEC(%g1, %o0, %o1)
 350 
 351         ! hrtime_t's are signed, max hrtime_t must be positive
 352         mov     -1, %o2
 353         brlz,a  %g1, 1f
 354         srlx    %o2, 1, %g1
 355 1:
 356         retl
 357         mov     %g1, %o0
 358         SET_SIZE(gethrtime_max)
 359 
 360         ENTRY(scalehrtime)
 361         ldx     [%o0], %o1
 362         NATIVE_TIME_TO_NSEC(%o1, %o2, %o3)
 363         retl
 364         stx     %o1, [%o0]
 365         SET_SIZE(scalehrtime)
 366 
 367 /*
 368  * Fast trap to return a timestamp, uses trap window, leaves traps
 369  * disabled.  Returns a 64-bit nanosecond timestamp in %o0 and %o1.
 370  *
 371  * This is the handler for the ST_GETHRTIME trap.
 372  */
 373 
 374         ENTRY_NP(get_timestamp)
 375         GET_HRTIME(%g1, %g2, %g3, %g4, %g5, %o0, %o1, %o2)      ! %g1 = hrtime
 376         srlx    %g1, 32, %o0                            ! %o0 = hi32(%g1)
 377         srl     %g1, 0, %o1                             ! %o1 = lo32(%g1)
 378         FAST_TRAP_DONE
 379         SET_SIZE(get_timestamp)
 380 
 381 /*
 382  * Macro to convert GET_HRESTIME() bits into a timestamp.
 383  *
 384  * We use two separate macros so that the platform-dependent GET_HRESTIME()
 385  * can be as small as possible; CONV_HRESTIME() implements the generic part.
 386  */
 387 #define CONV_HRESTIME(hrestsec, hrestnsec, adj, nslt, nano) \
 388         brz,pt  adj, 3f;                /* no adjustments, it's easy */ \
 389         add     hrestnsec, nslt, hrestnsec; /* hrest.tv_nsec += nslt */ \
 390         brlz,pn adj, 2f;                /* if hrestime_adj negative */  \
 391         srlx    nslt, ADJ_SHIFT, nslt;  /* delay: nslt >>= 4 */           \
 392         subcc   adj, nslt, %g0;         /* hrestime_adj - nslt/16 */    \
 393         movg    %xcc, nslt, adj;        /* adj by min(adj, nslt/16) */  \
 394         ba      3f;                     /* go convert to sec/nsec */    \
 395         add     hrestnsec, adj, hrestnsec; /* delay: apply adjustment */ \
 396 2:      addcc   adj, nslt, %g0;         /* hrestime_adj + nslt/16 */    \
 397         bge,a,pt %xcc, 3f;              /* is adj less negative? */     \
 398         add     hrestnsec, adj, hrestnsec; /* yes: hrest.nsec += adj */ \
 399         sub     hrestnsec, nslt, hrestnsec; /* no: hrest.nsec -= nslt/16 */ \
 400 3:      cmp     hrestnsec, nano;        /* more than a billion? */      \
 401         bl,pt   %xcc, 4f;               /* if not, we're done */        \
 402         nop;                            /* delay: do nothing :( */      \
 403         add     hrestsec, 1, hrestsec;  /* hrest.tv_sec++; */           \
 404         sub     hrestnsec, nano, hrestnsec; /* hrest.tv_nsec -= NANOSEC; */ \
 405         ba,a    3b;                     /* check >= billion again */ \
 406 4:
 407 
 408         ENTRY_NP(gethrestime)
 409         GET_HRESTIME(%o1, %o2, %o3, %o4, %o5, %g1, %g2, %g3, %g4)
 410         CONV_HRESTIME(%o1, %o2, %o3, %o4, %o5)
 411         stn     %o1, [%o0]
 412         retl
 413         stn     %o2, [%o0 + CLONGSIZE]
 414         SET_SIZE(gethrestime)
 415 
 416 /*
 417  * Similar to gethrestime(), but gethrestime_sec() returns current hrestime
 418  * seconds.
 419  */
 420         ENTRY_NP(gethrestime_sec)
 421         GET_HRESTIME(%o0, %o2, %o3, %o4, %o5, %g1, %g2, %g3, %g4)
 422         CONV_HRESTIME(%o0, %o2, %o3, %o4, %o5)
 423         retl                                    ! %o0 current hrestime seconds
 424         nop
 425         SET_SIZE(gethrestime_sec)
 426 
 427 /*
 428  * Returns the hrestime on the last tick.  This is simpler than gethrestime()
 429  * and gethrestime_sec():  no conversion is required.  gethrestime_lasttick()
 430  * follows the same locking algorithm as GET_HRESTIME and GET_HRTIME,
 431  * outlined in detail in clock.h.  (Unlike GET_HRESTIME/GET_HRTIME, we don't
 432  * rely on load dependencies to effect the membar #LoadLoad, instead declaring
 433  * it explicitly.)
 434  */
 435         ENTRY_NP(gethrestime_lasttick)
 436         sethi   %hi(hres_lock), %o1
 437 0:
 438         lduw    [%o1 + %lo(hres_lock)], %o2     ! Load lock value
 439         membar  #LoadLoad                       ! Load of lock must complete
 440         andn    %o2, 1, %o2                     ! Mask off lowest bit   
 441         ldn     [%o1 + %lo(hrestime)], %g1      ! Seconds.
 442         add     %o1, %lo(hrestime), %o4
 443         ldn     [%o4 + CLONGSIZE], %g2          ! Nanoseconds.
 444         membar  #LoadLoad                       ! All loads must complete
 445         lduw    [%o1 + %lo(hres_lock)], %o3     ! Reload lock value
 446         cmp     %o3, %o2                        ! If lock is locked or has
 447         bne     0b                              !   changed, retry.
 448         stn     %g1, [%o0]                      ! Delay: store seconds
 449         retl
 450         stn     %g2, [%o0 + CLONGSIZE]          ! Delay: store nanoseconds
 451         SET_SIZE(gethrestime_lasttick)
 452 
 453 /*
 454  * Fast trap for gettimeofday().  Returns a timestruc_t in %o0 and %o1.
 455  *
 456  * This is the handler for the ST_GETHRESTIME trap.
 457  */
 458 
 459         ENTRY_NP(get_hrestime)
 460         GET_HRESTIME(%o0, %o1, %g1, %g2, %g3, %g4, %g5, %o2, %o3)
 461         CONV_HRESTIME(%o0, %o1, %g1, %g2, %g3)
 462         FAST_TRAP_DONE
 463         SET_SIZE(get_hrestime)
 464 
 465 /*
 466  * Fast trap to return lwp virtual time, uses trap window, leaves traps
 467  * disabled.  Returns a 64-bit number in %o0:%o1, which is the number
 468  * of nanoseconds consumed.
 469  *
 470  * This is the handler for the ST_GETHRVTIME trap.
 471  *
 472  * Register usage:
 473  *      %o0, %o1 = return lwp virtual time
 474  *      %o2 = CPU/thread
 475  *      %o3 = lwp
 476  *      %g1 = scratch
 477  *      %g5 = scratch
 478  */
 479         ENTRY_NP(get_virtime)
 480         GET_NATIVE_TIME(%g5, %g1, %g2)  ! %g5 = native time in ticks
 481         CPU_ADDR(%g2, %g3)                      ! CPU struct ptr to %g2
 482         ldn     [%g2 + CPU_THREAD], %g2         ! thread pointer to %g2
 483         ldn     [%g2 + T_LWP], %g3              ! lwp pointer to %g3
 484 
 485         /*
 486          * Subtract start time of current microstate from time
 487          * of day to get increment for lwp virtual time.
 488          */
 489         ldx     [%g3 + LWP_STATE_START], %g1    ! ms_state_start
 490         sub     %g5, %g1, %g5
 491 
 492         /*
 493          * Add current value of ms_acct[LMS_USER]
 494          */
 495         ldx     [%g3 + LWP_ACCT_USER], %g1      ! ms_acct[LMS_USER]
 496         add     %g5, %g1, %g5
 497         NATIVE_TIME_TO_NSEC(%g5, %g1, %o0) 
 498         
 499         srl     %g5, 0, %o1                     ! %o1 = lo32(%g5)
 500         srlx    %g5, 32, %o0                    ! %o0 = hi32(%g5)
 501 
 502         FAST_TRAP_DONE
 503         SET_SIZE(get_virtime)
 504 
 505 
 506 
 507         .seg    ".text"
 508 hrtime_base_panic:
 509         .asciz  "hrtime_base stepping back"
 510 
 511 
 512         ENTRY_NP(hres_tick)
 513         save    %sp, -SA(MINFRAME), %sp ! get a new window
 514 
 515         sethi   %hi(hrestime), %l4
 516         ldstub  [%l4 + %lo(hres_lock + HRES_LOCK_OFFSET)], %l5  ! try locking
 517 7:      tst     %l5
 518         bz,pt   %xcc, 8f                        ! if we got it, drive on
 519         ld      [%l4 + %lo(nsec_scale)], %l5    ! delay: %l5 = scaling factor
 520         ldub    [%l4 + %lo(hres_lock + HRES_LOCK_OFFSET)], %l5
 521 9:      tst     %l5
 522         bz,a,pn %xcc, 7b
 523         ldstub  [%l4 + %lo(hres_lock + HRES_LOCK_OFFSET)], %l5
 524         ba,pt   %xcc, 9b
 525         ldub    [%l4 + %lo(hres_lock + HRES_LOCK_OFFSET)], %l5
 526 8:
 527         membar  #StoreLoad|#StoreStore
 528 
 529         !
 530         ! update hres_last_tick.  %l5 has the scaling factor (nsec_scale).
 531         !
 532         ldx     [%l4 + %lo(hrtime_base)], %g1   ! load current hrtime_base
 533         GET_NATIVE_TIME(%l0, %l3, %l6)          ! current native time
 534         stx     %l0, [%l4 + %lo(hres_last_tick)]! prev = current
 535         ! convert native time to nsecs
 536         NATIVE_TIME_TO_NSEC_SCALE(%l0, %l5, %l2, NSEC_SHIFT)
 537 
 538         sub     %l0, %g1, %i1                   ! get accurate nsec delta
 539 
 540         ldx     [%l4 + %lo(hrtime_base)], %l1   
 541         cmp     %l1, %l0
 542         bg,pn   %xcc, 9f
 543         nop
 544 
 545         stx     %l0, [%l4 + %lo(hrtime_base)]   ! update hrtime_base
 546 
 547         !
 548         ! apply adjustment, if any
 549         !
 550         ldx     [%l4 + %lo(hrestime_adj)], %l0  ! %l0 = hrestime_adj
 551         brz     %l0, 2f
 552                                                 ! hrestime_adj == 0 ?
 553                                                 ! yes, skip adjustments
 554         clr     %l5                             ! delay: set adj to zero
 555         tst     %l0                             ! is hrestime_adj >= 0 ?
 556         bge,pt  %xcc, 1f                        ! yes, go handle positive case
 557         srl     %i1, ADJ_SHIFT, %l5             ! delay: %l5 = adj
 558 
 559         addcc   %l0, %l5, %g0                   ! hrestime_adj < -adj ?
 560         bl,pt   %xcc, 2f                        ! yes, use current adj
 561         neg     %l5                             ! delay: %l5 = -adj
 562         ba,pt   %xcc, 2f
 563         mov     %l0, %l5                        ! no, so set adj = hrestime_adj
 564 1:
 565         subcc   %l0, %l5, %g0                   ! hrestime_adj < adj ?
 566         bl,a,pt %xcc, 2f                        ! yes, set adj = hrestime_adj
 567         mov     %l0, %l5                        ! delay: adj = hrestime_adj
 568 2:
 569         ldx     [%l4 + %lo(timedelta)], %l0     ! %l0 = timedelta
 570         sub     %l0, %l5, %l0                   ! timedelta -= adj
 571 
 572         stx     %l0, [%l4 + %lo(timedelta)]     ! store new timedelta
 573         stx     %l0, [%l4 + %lo(hrestime_adj)]  ! hrestime_adj = timedelta
 574 
 575         or      %l4, %lo(hrestime), %l2
 576         ldn     [%l2], %i2                      ! %i2:%i3 = hrestime sec:nsec
 577         ldn     [%l2 + CLONGSIZE], %i3
 578         add     %i3, %l5, %i3                   ! hrestime.nsec += adj
 579         add     %i3, %i1, %i3                   ! hrestime.nsec += nslt
 580 
 581         set     NANOSEC, %l5                    ! %l5 = NANOSEC
 582         cmp     %i3, %l5
 583         bl,pt   %xcc, 5f                        ! if hrestime.tv_nsec < NANOSEC
 584         sethi   %hi(one_sec), %i1               ! delay
 585         add     %i2, 0x1, %i2                   ! hrestime.tv_sec++
 586         sub     %i3, %l5, %i3                   ! hrestime.tv_nsec - NANOSEC
 587         mov     0x1, %l5
 588         st      %l5, [%i1 + %lo(one_sec)]
 589 5:
 590         stn     %i2, [%l2]
 591         stn     %i3, [%l2 + CLONGSIZE]          ! store the new hrestime
 592 
 593         membar  #StoreStore
 594 
 595         ld      [%l4 + %lo(hres_lock)], %i1
 596         inc     %i1                             ! release lock
 597         st      %i1, [%l4 + %lo(hres_lock)]     ! clear hres_lock
 598 
 599         ret
 600         restore
 601 
 602 9:
 603         !
 604         ! release hres_lock
 605         !
 606         ld      [%l4 + %lo(hres_lock)], %i1
 607         inc     %i1
 608         st      %i1, [%l4 + %lo(hres_lock)]
 609 
 610         sethi   %hi(hrtime_base_panic), %o0
 611         call    panic
 612         or      %o0, %lo(hrtime_base_panic), %o0
 613 
 614         SET_SIZE(hres_tick)
 615 
 616         .seg    ".text"
 617 kstat_q_panic_msg:
 618         .asciz  "kstat_q_exit: qlen == 0"
 619 
 620         ENTRY(kstat_q_panic)
 621         save    %sp, -SA(MINFRAME), %sp
 622         sethi   %hi(kstat_q_panic_msg), %o0
 623         call    panic
 624         or      %o0, %lo(kstat_q_panic_msg), %o0
 625         /*NOTREACHED*/
 626         SET_SIZE(kstat_q_panic)
 627 
 628 #define BRZPN   brz,pn
 629 #define BRZPT   brz,pt
 630 
 631 #define KSTAT_Q_UPDATE(QOP, QBR, QZERO, QRETURN, QTYPE) \
 632         ld      [%o0 + QTYPE/**/CNT], %o1;      /* %o1 = old qlen */    \
 633         QOP     %o1, 1, %o2;                    /* %o2 = new qlen */    \
 634         QBR     %o1, QZERO;                     /* done if qlen == 0 */ \
 635         st      %o2, [%o0 + QTYPE/**/CNT];      /* delay: save qlen */  \
 636         ldx     [%o0 + QTYPE/**/LASTUPDATE], %o3;                       \
 637         ldx     [%o0 + QTYPE/**/TIME], %o4;     /* %o4 = old time */    \
 638         ldx     [%o0 + QTYPE/**/LENTIME], %o5;  /* %o5 = old lentime */ \
 639         sub     %g1, %o3, %o2;                  /* %o2 = time delta */  \
 640         mulx    %o1, %o2, %o3;                  /* %o3 = cur lentime */ \
 641         add     %o4, %o2, %o4;                  /* %o4 = new time */    \
 642         add     %o5, %o3, %o5;                  /* %o5 = new lentime */ \
 643         stx     %o4, [%o0 + QTYPE/**/TIME];     /* save time */         \
 644         stx     %o5, [%o0 + QTYPE/**/LENTIME];  /* save lentime */      \
 645 QRETURN;                                                                \
 646         stx     %g1, [%o0 + QTYPE/**/LASTUPDATE]; /* lastupdate = now */
 647 
 648 #if !defined(DEBUG)
 649 /*
 650  * same as KSTAT_Q_UPDATE but without:
 651  * QBR     %o1, QZERO;
 652  * to be used only with non-debug build. mimics ASSERT() behaviour.
 653  */
 654 #define KSTAT_Q_UPDATE_ND(QOP, QRETURN, QTYPE) \
 655         ld      [%o0 + QTYPE/**/CNT], %o1;      /* %o1 = old qlen */    \
 656         QOP     %o1, 1, %o2;                    /* %o2 = new qlen */    \
 657         st      %o2, [%o0 + QTYPE/**/CNT];      /* delay: save qlen */  \
 658         ldx     [%o0 + QTYPE/**/LASTUPDATE], %o3;                       \
 659         ldx     [%o0 + QTYPE/**/TIME], %o4;     /* %o4 = old time */    \
 660         ldx     [%o0 + QTYPE/**/LENTIME], %o5;  /* %o5 = old lentime */ \
 661         sub     %g1, %o3, %o2;                  /* %o2 = time delta */  \
 662         mulx    %o1, %o2, %o3;                  /* %o3 = cur lentime */ \
 663         add     %o4, %o2, %o4;                  /* %o4 = new time */    \
 664         add     %o5, %o3, %o5;                  /* %o5 = new lentime */ \
 665         stx     %o4, [%o0 + QTYPE/**/TIME];     /* save time */         \
 666         stx     %o5, [%o0 + QTYPE/**/LENTIME];  /* save lentime */      \
 667 QRETURN;                                                                \
 668         stx     %g1, [%o0 + QTYPE/**/LASTUPDATE]; /* lastupdate = now */
 669 #endif
 670 
 671         .align 16
 672         ENTRY(kstat_waitq_enter)
 673         GET_NATIVE_TIME(%g1, %g2, %g3)
 674         KSTAT_Q_UPDATE(add, BRZPT, 1f, 1:retl, KSTAT_IO_W)
 675         SET_SIZE(kstat_waitq_enter)
 676 
 677         .align 16
 678         ENTRY(kstat_waitq_exit)
 679         GET_NATIVE_TIME(%g1, %g2, %g3)
 680 #if defined(DEBUG)
 681         KSTAT_Q_UPDATE(sub, BRZPN, kstat_q_panic, retl, KSTAT_IO_W)
 682 #else
 683         KSTAT_Q_UPDATE_ND(sub, retl, KSTAT_IO_W)
 684 #endif
 685         SET_SIZE(kstat_waitq_exit)
 686 
 687         .align 16
 688         ENTRY(kstat_runq_enter)
 689         GET_NATIVE_TIME(%g1, %g2, %g3)
 690         KSTAT_Q_UPDATE(add, BRZPT, 1f, 1:retl, KSTAT_IO_R)
 691         SET_SIZE(kstat_runq_enter)
 692 
 693         .align 16
 694         ENTRY(kstat_runq_exit)
 695         GET_NATIVE_TIME(%g1, %g2, %g3)
 696 #if defined(DEBUG)
 697         KSTAT_Q_UPDATE(sub, BRZPN, kstat_q_panic, retl, KSTAT_IO_R)
 698 #else
 699         KSTAT_Q_UPDATE_ND(sub, retl, KSTAT_IO_R)
 700 #endif
 701         SET_SIZE(kstat_runq_exit)
 702 
 703         .align 16
 704         ENTRY(kstat_waitq_to_runq)
 705         GET_NATIVE_TIME(%g1, %g2, %g3)
 706 #if defined(DEBUG)
 707         KSTAT_Q_UPDATE(sub, BRZPN, kstat_q_panic, 1:, KSTAT_IO_W)
 708 #else
 709         KSTAT_Q_UPDATE_ND(sub, 1:, KSTAT_IO_W)
 710 #endif
 711         KSTAT_Q_UPDATE(add, BRZPT, 1f, 1:retl, KSTAT_IO_R)
 712         SET_SIZE(kstat_waitq_to_runq)
 713 
 714         .align 16
 715         ENTRY(kstat_runq_back_to_waitq)
 716         GET_NATIVE_TIME(%g1, %g2, %g3)
 717 #if defined(DEBUG)
 718         KSTAT_Q_UPDATE(sub, BRZPN, kstat_q_panic, 1:, KSTAT_IO_R)
 719 #else
 720         KSTAT_Q_UPDATE_ND(sub, 1:, KSTAT_IO_R)
 721 #endif
 722         KSTAT_Q_UPDATE(add, BRZPT, 1f, 1:retl, KSTAT_IO_W)
 723         SET_SIZE(kstat_runq_back_to_waitq)
 724 
 725         /*
 726          *  -- WARNING --
 727          *
 728          * The following variables MUST be together on a 128-byte boundary.
 729          * In addition to the primary performance motivation (having them all
 730          * on the same cache line(s)), code here and in the GET*TIME() macros
 731          * assumes that they all have the same high 22 address bits (so
 732          * there's only one sethi).
 733          */
 734         .seg    ".data"
 735         .global timedelta, hres_last_tick, hrestime, hrestime_adj
 736         .global hres_lock, nsec_scale, hrtime_base, traptrace_use_stick
 737         .global nsec_shift, adj_shift
 738 
 739         /* XXX - above comment claims 128-bytes is necessary */
 740         .align  64
 741 timedelta:
 742         .word   0, 0            /* int64_t */
 743 hres_last_tick:
 744         .word   0, 0            /* hrtime_t */
 745 hrestime:
 746         .nword  0, 0            /* 2 longs */
 747 hrestime_adj:
 748         .word   0, 0            /* int64_t */
 749 hres_lock:
 750         .word   0
 751 nsec_scale:
 752         .word   0
 753 hrtime_base:
 754         .word   0, 0
 755 traptrace_use_stick:
 756         .word   0
 757 nsec_shift:
 758         .word   NSEC_SHIFT
 759 adj_shift:
 760         .word   ADJ_SHIFT
 761 
 762 
 763 /*
 764  * drv_usecwait(clock_t n)      [DDI/DKI - section 9F]
 765  * usec_delay(int n)            [compatibility - should go one day]
 766  * Delay by spinning.
 767  *
 768  * delay for n microseconds.  numbers <= 0 delay 1 usec
 769  *
 770  * With UltraSPARC-III the combination of supporting mixed-speed CPUs
 771  * and variable clock rate for power management requires that we
 772  * use %stick to implement this routine.
 773  *
 774  * For OPL platforms that support the "sleep" instruction, we
 775  * conditionally (ifdef'ed) insert a "sleep" instruction in
 776  * the loop. Note that theoritically we should have move (duplicated)
 777  * the code down to spitfire/us3/opl specific asm files - but this
 778  * is alot of code duplication just to add one "sleep" instruction.
 779  * We chose less code duplication for this.
 780  */
 781 
 782         ENTRY(drv_usecwait)
 783         ALTENTRY(usec_delay)
 784         brlez,a,pn %o0, 0f
 785         mov     1, %o0
 786 0:
 787         sethi   %hi(sticks_per_usec), %o1
 788         lduw    [%o1 + %lo(sticks_per_usec)], %o1
 789         mulx    %o1, %o0, %o1           ! Scale usec to ticks
 790         inc     %o1                     ! We don't start on a tick edge
 791         GET_NATIVE_TIME(%o2, %o3, %o4)
 792         add     %o1, %o2, %o1
 793 
 794 1:
 795 #ifdef  _OPL
 796         .word 0x81b01060                ! insert "sleep" instruction
 797 #endif /* _OPL */                       ! use byte code for now
 798         cmp     %o1, %o2
 799         GET_NATIVE_TIME(%o2, %o3, %o4)
 800         bgeu,pt %xcc, 1b
 801         nop
 802         retl
 803         nop
 804         SET_SIZE(usec_delay)
 805         SET_SIZE(drv_usecwait)
 806 
 807 /*
 808  * Level-14 interrupt prologue.
 809  */
 810         ENTRY_NP(pil14_interrupt)
 811         CPU_ADDR(%g1, %g2)
 812         rdpr    %pil, %g6                       ! %g6 = interrupted PIL
 813         stn     %g6, [%g1 + CPU_PROFILE_PIL]    ! record interrupted PIL
 814         rdpr    %tstate, %g6
 815         rdpr    %tpc, %g5
 816         btst    TSTATE_PRIV, %g6                ! trap from supervisor mode?
 817         bnz,a,pt %xcc, 1f
 818         stn     %g5, [%g1 + CPU_PROFILE_PC]     ! if so, record kernel PC
 819         stn     %g5, [%g1 + CPU_PROFILE_UPC]    ! if not, record user PC
 820         ba      pil_interrupt_common            ! must be large-disp branch
 821         stn     %g0, [%g1 + CPU_PROFILE_PC]     ! zero kernel PC
 822 1:      ba      pil_interrupt_common            ! must be large-disp branch
 823         stn     %g0, [%g1 + CPU_PROFILE_UPC]    ! zero user PC
 824         SET_SIZE(pil14_interrupt)
 825 
 826         ENTRY_NP(tick_rtt)
 827         !
 828         ! Load TICK_COMPARE into %o5; if bit 63 is set, then TICK_COMPARE is
 829         ! disabled.  If TICK_COMPARE is enabled, we know that we need to
 830         ! reenqueue the interrupt request structure.  We'll then check TICKINT
 831         ! in SOFTINT; if it's set, then we know that we were in a TICK_COMPARE
 832         ! interrupt.  In this case, TICK_COMPARE may have been rewritten
 833         ! recently; we'll compare %o5 to the current time to verify that it's
 834         ! in the future.  
 835         !
 836         ! Note that %o5 is live until after 1f.
 837         ! XXX - there is a subroutine call while %o5 is live!
 838         !
 839         RD_TICKCMPR(%o5, %g1)
 840         srlx    %o5, TICKINT_DIS_SHFT, %g1
 841         brnz,pt %g1, 2f
 842         nop
 843 
 844         rdpr    %pstate, %g5
 845         andn    %g5, PSTATE_IE, %g1
 846         wrpr    %g0, %g1, %pstate               ! Disable vec interrupts
 847 
 848         sethi   %hi(cbe_level14_inum), %o1
 849         ldx     [%o1 + %lo(cbe_level14_inum)], %o1
 850         call    intr_enqueue_req ! preserves %o5 and %g5
 851         mov     PIL_14, %o0
 852 
 853         ! Check SOFTINT for TICKINT/STICKINT
 854         rd      SOFTINT, %o4
 855         set     (TICK_INT_MASK | STICK_INT_MASK), %o0
 856         andcc   %o4, %o0, %g0
 857         bz,a,pn %icc, 2f
 858         wrpr    %g0, %g5, %pstate               ! Enable vec interrupts
 859 
 860         ! clear TICKINT/STICKINT
 861         wr      %o0, CLEAR_SOFTINT
 862 
 863         !
 864         ! Now that we've cleared TICKINT, we can reread %tick and confirm
 865         ! that the value we programmed is still in the future.  If it isn't,
 866         ! we need to reprogram TICK_COMPARE to fire as soon as possible.
 867         !
 868         GET_NATIVE_TIME(%o0, %g1, %g2)          ! %o0 = tick
 869         sllx    %o0, 1, %o0                     ! Clear the DIS bit
 870         srlx    %o0, 1, %o0
 871         cmp     %o5, %o0                        ! In the future?
 872         bg,a,pt %xcc, 2f                        ! Yes, drive on.
 873         wrpr    %g0, %g5, %pstate               !   delay: enable vec intr
 874 
 875         !
 876         ! If we're here, then we have programmed TICK_COMPARE with a %tick
 877         ! which is in the past; we'll now load an initial step size, and loop
 878         ! until we've managed to program TICK_COMPARE to fire in the future.
 879         !
 880         mov     8, %o4                          ! 8 = arbitrary inital step
 881 1:      add     %o0, %o4, %o5                   ! Add the step
 882         WR_TICKCMPR(%o5,%g1,%g2,__LINE__)       ! Write to TICK_CMPR
 883         GET_NATIVE_TIME(%o0, %g1, %g2)          ! %o0 = tick
 884         sllx    %o0, 1, %o0                     ! Clear the DIS bit
 885         srlx    %o0, 1, %o0
 886         cmp     %o5, %o0                        ! In the future?
 887         bg,a,pt %xcc, 2f                        ! Yes, drive on.
 888         wrpr    %g0, %g5, %pstate               !    delay: enable vec intr
 889         ba      1b                              ! No, try again.
 890         sllx    %o4, 1, %o4                     !    delay: double step size
 891 
 892 2:      ba      current_thread_complete
 893         nop
 894         SET_SIZE(tick_rtt)
 895 
 896 /*
 897  * Level-15 interrupt prologue.
 898  */
 899        ENTRY_NP(pil15_interrupt)
 900        CPU_ADDR(%g1, %g2)
 901        rdpr    %tstate, %g6
 902        rdpr    %tpc, %g5
 903        btst    TSTATE_PRIV, %g6                ! trap from supervisor mode?
 904        bnz,a,pt %xcc, 1f
 905        stn     %g5, [%g1 + CPU_CPCPROFILE_PC]  ! if so, record kernel PC
 906        stn     %g5, [%g1 + CPU_CPCPROFILE_UPC] ! if not, record user PC
 907        ba      pil15_epilogue                  ! must be large-disp branch
 908        stn     %g0, [%g1 + CPU_CPCPROFILE_PC]  ! zero kernel PC
 909 1:     ba      pil15_epilogue                  ! must be large-disp branch
 910        stn     %g0, [%g1 + CPU_CPCPROFILE_UPC] ! zero user PC
 911        SET_SIZE(pil15_interrupt)
 912 
 913 #ifdef DEBUG
 914         .seg    ".text"
 915 find_cpufreq_panic:
 916         .asciz  "find_cpufrequency: interrupts already disabled on entry"
 917 #endif  /* DEBUG */
 918 
 919         ENTRY_NP(find_cpufrequency)
 920         rdpr    %pstate, %g1
 921 
 922 #ifdef DEBUG
 923         andcc   %g1, PSTATE_IE, %g0     ! If DEBUG, check that interrupts
 924         bnz     0f                      ! are currently enabled
 925         sethi   %hi(find_cpufreq_panic), %o1
 926         call    panic
 927         or      %o1, %lo(find_cpufreq_panic), %o0
 928 #endif  /* DEBUG */
 929 
 930 0:
 931         wrpr    %g1, PSTATE_IE, %pstate ! Disable interrupts
 932 3:
 933         ldub    [%o0], %o1              ! Read the number of seconds
 934         mov     %o1, %o2                ! remember initial value in %o2
 935 1:
 936         GET_NATIVE_TIME(%o3, %g4, %g5)
 937         cmp     %o1, %o2                ! did the seconds register roll over?
 938         be,pt   %icc, 1b                ! branch back if unchanged
 939         ldub    [%o0], %o2              !   delay: load the new seconds val
 940 
 941         brz,pn  %o2, 3b                 ! if the minutes just rolled over,
 942                                         ! the last second could have been
 943                                         ! inaccurate; try again.
 944         mov     %o2, %o4                !   delay: store init. val. in %o2
 945 2:
 946         GET_NATIVE_TIME(%o5, %g4, %g5)
 947         cmp     %o2, %o4                ! did the seconds register roll over?
 948         be,pt   %icc, 2b                ! branch back if unchanged
 949         ldub    [%o0], %o4              !   delay: load the new seconds val
 950 
 951         brz,pn  %o4, 0b                 ! if the minutes just rolled over,
 952                                         ! the last second could have been
 953                                         ! inaccurate; try again.
 954         wrpr    %g0, %g1, %pstate       !   delay: re-enable interrupts
 955 
 956         retl
 957         sub     %o5, %o3, %o0           ! return the difference in ticks
 958         SET_SIZE(find_cpufrequency)
 959 
 960 #if defined(CHEETAH) || defined(CHEETAH_PLUS) || defined(JALAPENO) || \
 961         defined(SERRANO)
 962         !
 963         ! On US-III, the prefetch instruction queue is 8 entries deep.
 964         ! Also, prefetches for write put data in the E$, which has
 965         ! lines of 512 bytes for an 8MB cache. Each E$ line is further
 966         ! subblocked into 64 byte chunks.
 967         !
 968         ! Since prefetch can only bring in 64 bytes at a time (See Sparc
 969         ! v9 Architecture Manual pp.204) and a page_t is 128 bytes,
 970         ! then 2 prefetches are required in order to bring an entire
 971         ! page into the E$.
 972         !
 973         ! Since the prefetch queue is 8 entries deep, we currently can
 974         ! only have 4 prefetches for page_t's outstanding. Thus, we
 975         ! prefetch n+4 ahead of where we are now: 
 976         !
 977         !      4 * sizeof(page_t)     -> 512
 978         !      4 * sizeof(page_t) +64 -> 576
 979         ! 
 980         ! Example
 981         ! =======
 982         ! contiguous page array in memory...
 983         !
 984         ! |AAA1|AAA2|BBB1|BBB2|CCC1|CCC2|DDD1|DDD2|XXX1|XXX2|YYY1|YYY2|...
 985         ! ^         ^         ^         ^         ^    ^
 986         ! pp                                      |    pp+4*sizeof(page)+64
 987         !                                         |
 988         !                                         pp+4*sizeof(page)
 989         !
 990         !  Prefetch
 991         !   Queue
 992         ! +-------+<--- In this iteration, we're working with pp (AAA1),
 993         ! |Preftch|     but we enqueue prefetch for addr = XXX1
 994         ! | XXX1  | 
 995         ! +-------+<--- this queue slot will be a prefetch instruction for
 996         ! |Preftch|     for addr = pp + 4*sizeof(page_t) + 64 (or second
 997         ! | XXX2  |     half of page XXX)
 998         ! +-------+ 
 999         ! |Preftch|<-+- The next time around this function, we'll be
1000         ! | YYY1  |  |  working with pp = BBB1, but will be enqueueing
1001         ! +-------+  |  prefetches to for both halves of page YYY,
1002         ! |Preftch|  |  while both halves of page XXX are in transit
1003         ! | YYY2  |<-+  make their way into the E$.
1004         ! +-------+
1005         ! |Preftch|
1006         ! | ZZZ1  |
1007         ! +-------+
1008         ! .       .
1009         ! :       :
1010         !
1011         !  E$
1012         ! +============================================...
1013         ! | XXX1 | XXX2 | YYY1 | YYY2 | ZZZ1 | ZZZ2 |
1014         ! +============================================...
1015         ! |      |      |      |      |      |      |
1016         ! +============================================...
1017         ! .
1018         ! :
1019         !
1020         ! So we should expect the first four page accesses to stall
1021         ! while we warm up the cache, afterwhich, most of the pages
1022         ! will have their pp ready in the E$.
1023         ! 
1024         ! Also note that if sizeof(page_t) grows beyond 128, then 
1025         ! we'll need an additional prefetch to get an entire page
1026         ! into the E$, thus reducing the number of outstanding page
1027         ! prefetches to 2 (ie. 3 prefetches/page = 6 queue slots)
1028         ! etc.
1029         !
1030         ! Cheetah+
1031         ! ========
1032         ! On Cheetah+ we use "#n_write" prefetches as these avoid
1033         ! unnecessary RTS->RTO bus transaction state change, and
1034         ! just issues RTO transaction. (See pp.77 of Cheetah+ Delta
1035         ! PRM). On Cheetah, #n_write prefetches are reflected with
1036         ! RTS->RTO state transition regardless.
1037         !
1038 #define STRIDE1 512
1039 #define STRIDE2 576
1040 
1041 #if     STRIDE1 != (PAGE_SIZE * 4)
1042 #error  "STRIDE1 != (PAGE_SIZE * 4)"
1043 #endif  /* STRIDE1 != (PAGE_SIZE * 4) */
1044 
1045         ENTRY(prefetch_page_w)
1046         prefetch        [%o0+STRIDE1], #n_writes
1047         retl
1048         prefetch        [%o0+STRIDE2], #n_writes
1049         SET_SIZE(prefetch_page_w)
1050 
1051         !
1052         ! Note on CHEETAH to prefetch for read, we really use #one_write.
1053         ! This fetches to E$ (general use) rather than P$ (floating point use).
1054         !
1055         ENTRY(prefetch_page_r)
1056         prefetch        [%o0+STRIDE1], #one_write
1057         retl
1058         prefetch        [%o0+STRIDE2], #one_write
1059         SET_SIZE(prefetch_page_r)
1060 
1061 #elif defined(SPITFIRE) || defined(HUMMINGBIRD)
1062 
1063         !
1064         ! UltraSparcII can have up to 3 prefetches outstanding.
1065         ! A page_t is 128 bytes (2 prefetches of 64 bytes each)
1066         ! So prefetch for pp + 1, which is
1067         !
1068         !       pp + sizeof(page_t)
1069         ! and
1070         !       pp + sizeof(page_t) + 64
1071         !
1072 #define STRIDE1 128
1073 #define STRIDE2 192
1074 
1075 #if     STRIDE1 != PAGE_SIZE
1076 #error  "STRIDE1 != PAGE_SIZE"
1077 #endif  /* STRIDE1 != PAGE_SIZE */
1078 
1079         ENTRY(prefetch_page_w)
1080         prefetch        [%o0+STRIDE1], #n_writes
1081         retl
1082         prefetch        [%o0+STRIDE2], #n_writes
1083         SET_SIZE(prefetch_page_w)
1084 
1085         ENTRY(prefetch_page_r)
1086         prefetch        [%o0+STRIDE1], #n_reads
1087         retl
1088         prefetch        [%o0+STRIDE2], #n_reads
1089         SET_SIZE(prefetch_page_r)
1090 
1091 #elif defined(OLYMPUS_C)
1092         !
1093         ! Prefetch strides for Olympus-C
1094         !
1095 
1096 #define STRIDE1 0x440
1097 #define STRIDE2 0x640
1098         
1099         ENTRY(prefetch_page_w)
1100         prefetch        [%o0+STRIDE1], #n_writes
1101         retl
1102         prefetch        [%o0+STRIDE2], #n_writes
1103         SET_SIZE(prefetch_page_w)
1104 
1105         ENTRY(prefetch_page_r)
1106         prefetch        [%o0+STRIDE1], #n_writes
1107         retl
1108         prefetch        [%o0+STRIDE2], #n_writes
1109         SET_SIZE(prefetch_page_r)
1110 #else   /* OLYMPUS_C */
1111 
1112 #error "You need to fix this for your new cpu type."
1113 
1114 #endif  /* OLYMPUS_C */
1115 
1116 #if defined(CHEETAH) || defined(CHEETAH_PLUS) || defined(JALAPENO) || \
1117         defined(SERRANO)
1118 
1119 #define PREFETCH_Q_LEN 8
1120 
1121 #elif defined(SPITFIRE) || defined(HUMMINGBIRD)
1122 
1123 #define PREFETCH_Q_LEN 3
1124 
1125 #elif defined(OLYMPUS_C)
1126         !
1127         ! Use length of one for now.
1128         !
1129 #define PREFETCH_Q_LEN  1
1130 
1131 #else   /* OLYMPUS_C */
1132 
1133 #error You need to fix this for your new cpu type.
1134 
1135 #endif  /* OLYMPUS_C */
1136 
1137 #include <vm/kpm.h>
1138 
1139 #ifdef  SEGKPM_SUPPORT
1140 
1141 #define SMAP_SIZE 72
1142 #define SMAP_STRIDE (((PREFETCH_Q_LEN * 64) / SMAP_SIZE) * 64)
1143 
1144 #else   /* SEGKPM_SUPPORT */
1145 
1146         !
1147         ! The hardware will prefetch the 64 byte cache aligned block
1148         ! that contains the address specified in the prefetch instruction.
1149         ! Since the size of the smap struct is 48 bytes, issuing 1 prefetch
1150         ! per pass will suffice as long as we prefetch far enough ahead to
1151         ! make sure we don't stall for the cases where the smap object
1152         ! spans multiple hardware prefetch blocks.  Let's prefetch as far
1153         ! ahead as the hardware will allow.
1154         !
1155         ! The smap array is processed with decreasing address pointers.
1156         !
1157 #define SMAP_SIZE 48
1158 #define SMAP_STRIDE (PREFETCH_Q_LEN * SMAP_SIZE)
1159 
1160 #endif  /* SEGKPM_SUPPORT */
1161 
1162         ENTRY(prefetch_smap_w)
1163         retl
1164         prefetch        [%o0-SMAP_STRIDE], #n_writes
1165         SET_SIZE(prefetch_smap_w)
1166 
1167         ENTRY_NP(getidsr)
1168         retl
1169         ldxa    [%g0]ASI_INTR_DISPATCH_STATUS, %o0
1170         SET_SIZE(getidsr)
1171