Print this page
de-linting of .s files
remove inlines,some other files
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/i86pc/ml/syscall_asm.s
+++ new/usr/src/uts/i86pc/ml/syscall_asm.s
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
↓ open down ↓ |
12 lines elided |
↑ open up ↑ |
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
23 + * Copyright 2019 Joyent, Inc.
23 24 * Copyright (c) 2016 by Delphix. All rights reserved.
24 25 */
25 26
26 -/* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
27 -/* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */
28 -/* All Rights Reserved */
29 -
30 -/* Copyright (c) 1987, 1988 Microsoft Corporation */
31 -/* All Rights Reserved */
32 -
33 27 #include <sys/asm_linkage.h>
34 28 #include <sys/asm_misc.h>
35 29 #include <sys/regset.h>
30 +#include <sys/privregs.h>
36 31 #include <sys/psw.h>
37 -#include <sys/x86_archext.h>
38 32 #include <sys/machbrand.h>
39 -#include <sys/privregs.h>
40 33
41 -#if defined(__lint)
42 -
43 -#include <sys/types.h>
44 -#include <sys/thread.h>
45 -#include <sys/systm.h>
46 -
47 -#else /* __lint */
48 -
49 34 #include <sys/segments.h>
50 35 #include <sys/pcb.h>
51 36 #include <sys/trap.h>
52 37 #include <sys/ftrace.h>
53 38 #include <sys/traptrace.h>
54 39 #include <sys/clock.h>
40 +#include <sys/model.h>
55 41 #include <sys/panic.h>
56 -#include "assym.h"
57 42
58 -#endif /* __lint */
43 +#if defined(__xpv)
44 +#include <sys/hypervisor.h>
45 +#endif
59 46
47 +#include "assym.h"
48 +
60 49 /*
61 - * We implement two flavours of system call entry points
50 + * We implement five flavours of system call entry points
62 51 *
63 - * - {int,lcall}/iret (i386)
64 - * - sysenter/sysexit (Pentium II and beyond)
52 + * - syscall/sysretq (amd64 generic)
53 + * - syscall/sysretl (i386 plus SYSC bit)
54 + * - sysenter/sysexit (i386 plus SEP bit)
55 + * - int/iret (i386 generic)
56 + * - lcall/iret (i386 generic)
65 57 *
66 - * The basic pattern used in the handlers is to check to see if we can
67 - * do fast (simple) version of the system call; if we can't we use various
68 - * C routines that handle corner cases and debugging.
58 + * The current libc included in Solaris uses int/iret as the base unoptimized
59 + * kernel entry method. Older libc implementations and legacy binaries may use
60 + * the lcall call gate, so it must continue to be supported.
69 61 *
70 - * To reduce the amount of assembler replication, yet keep the system call
71 - * implementations vaguely comprehensible, the common code in the body
72 - * of the handlers is broken up into a set of preprocessor definitions
73 - * below.
62 + * System calls that use an lcall call gate are processed in trap() via a
63 + * segment-not-present trap, i.e. lcalls are extremely slow(!).
64 + *
65 + * The basic pattern used in the 32-bit SYSC handler at this point in time is
66 + * to have the bare minimum of assembler, and get to the C handlers as
67 + * quickly as possible.
68 + *
69 + * The 64-bit handler is much closer to the sparcv9 handler; that's
70 + * because of passing arguments in registers. The 32-bit world still
71 + * passes arguments on the stack -- that makes that handler substantially
72 + * more complex.
73 + *
74 + * The two handlers share a few code fragments which are broken
75 + * out into preprocessor macros below.
76 + *
77 + * XX64 come back and speed all this up later. The 32-bit stuff looks
78 + * especially easy to speed up the argument copying part ..
79 + *
80 + *
81 + * Notes about segment register usage (c.f. the 32-bit kernel)
82 + *
83 + * In the 32-bit kernel, segment registers are dutifully saved and
84 + * restored on all mode transitions because the kernel uses them directly.
85 + * When the processor is running in 64-bit mode, segment registers are
86 + * largely ignored.
87 + *
88 + * %cs and %ss
89 + * controlled by the hardware mechanisms that make mode transitions
90 + *
91 + * The remaining segment registers have to either be pointing at a valid
92 + * descriptor i.e. with the 'present' bit set, or they can NULL descriptors
93 + *
94 + * %ds and %es
95 + * always ignored
96 + *
97 + * %fs and %gs
98 + * fsbase and gsbase are used to control the place they really point at.
99 + * The kernel only depends on %gs, and controls its own gsbase via swapgs
100 + *
101 + * Note that loading segment registers is still costly because the GDT
102 + * lookup still happens (this is because the hardware can't know that we're
103 + * not setting up these segment registers for a 32-bit program). Thus we
104 + * avoid doing this in the syscall path, and defer them to lwp context switch
105 + * handlers, so the register values remain virtualized to the lwp.
74 106 */
75 107
76 -/*
77 - * When we have SYSCALLTRACE defined, we sneak an extra
78 - * predicate into a couple of tests.
79 - */
80 108 #if defined(SYSCALLTRACE)
81 -#define ORL_SYSCALLTRACE(r32) \
82 - orl syscalltrace, r32
109 +#define ORL_SYSCALLTRACE(r32) \
110 + orl syscalltrace(%rip), r32
83 111 #else
84 112 #define ORL_SYSCALLTRACE(r32)
85 113 #endif
86 114
87 115 /*
88 - * This check is false whenever we want to go fast i.e.
116 + * In the 32-bit kernel, we do absolutely nothing before getting into the
117 + * brand callback checks. In 64-bit land, we do swapgs and then come here.
118 + * We assume that the %rsp- and %r15-stashing fields in the CPU structure
119 + * are still unused.
89 120 *
90 - * if (code >= NSYSCALL ||
91 - * t->t_pre_sys || (t->t_proc_flag & TP_WATCHPT) != 0)
92 - * do full version
93 - * #ifdef SYSCALLTRACE
94 - * if (syscalltrace)
95 - * do full version
96 - * #endif
97 - *
98 - * Preconditions:
99 - * - t curthread
100 - * - code contains the syscall number
101 - * Postconditions:
102 - * - %ecx and %edi are smashed
103 - * - condition code flag ZF is cleared if pre-sys is too complex
104 - */
105 -#define CHECK_PRESYS_NE(t, code) \
106 - movzbl T_PRE_SYS(t), %edi; \
107 - movzwl T_PROC_FLAG(t), %ecx; \
108 - andl $TP_WATCHPT, %ecx; \
109 - orl %ecx, %edi; \
110 - cmpl $NSYSCALL, code; \
111 - setae %cl; \
112 - movzbl %cl, %ecx; \
113 - orl %ecx, %edi; \
114 - ORL_SYSCALLTRACE(%edi)
115 -
116 -/*
117 121 * Check if a brand_mach_ops callback is defined for the specified callback_id
118 - * type. If so invoke it with the user's %gs value loaded and the following
122 + * type. If so invoke it with the kernel's %gs value loaded and the following
119 123 * data on the stack:
120 - * --------------------------------------
121 - * | user's %ss |
122 - * | | user's %esp |
123 - * | | EFLAGS register |
124 - * | | user's %cs |
125 - * | | user's %eip (user return address) |
126 - * | | 'scratch space' |
127 - * | | user's %ebx |
128 - * | | user's %gs selector |
129 - * v | lwp pointer |
130 - * | callback wrapper return addr |
124 + *
125 + * stack: --------------------------------------
126 + * 32 | callback pointer |
127 + * | 24 | user (or interrupt) stack pointer |
128 + * | 16 | lwp pointer |
129 + * v 8 | userland return address |
130 + * 0 | callback wrapper return addr |
131 131 * --------------------------------------
132 132 *
133 - * If the brand code returns, we assume that we are meant to execute the
134 - * normal system call path.
133 + * Since we're pushing the userland return address onto the kernel stack
134 + * we need to get that address without accessing the user's stack (since we
135 + * can't trust that data). There are different ways to get the userland
136 + * return address depending on how the syscall trap was made:
135 137 *
136 - * The interface to the brand callbacks on the 32-bit kernel assumes %ebx
138 + * a) For sys_syscall and sys_syscall32 the return address is in %rcx.
139 + * b) For sys_sysenter the return address is in %rdx.
140 + * c) For sys_int80 and sys_syscall_int (int91), upon entry into the macro,
141 + * the stack pointer points at the state saved when we took the interrupt:
142 + * ------------------------
143 + * | | user's %ss |
144 + * | | user's %esp |
145 + * | | EFLAGS register |
146 + * v | user's %cs |
147 + * | user's %eip |
148 + * ------------------------
149 + *
150 + * The 2nd parameter to the BRAND_CALLBACK macro is either the
151 + * BRAND_URET_FROM_REG or BRAND_URET_FROM_INTR_STACK macro. These macros are
152 + * used to generate the proper code to get the userland return address for
153 + * each syscall entry point.
154 + *
155 + * The interface to the brand callbacks on the 64-bit kernel assumes %r15
137 156 * is available as a scratch register within the callback. If the callback
138 - * returns within the kernel then this macro will restore %ebx. If the
157 + * returns within the kernel then this macro will restore %r15. If the
139 158 * callback is going to return directly to userland then it should restore
140 - * %ebx before returning to userland.
159 + * %r15 before returning to userland.
141 160 */
142 -#define BRAND_CALLBACK(callback_id) \
143 - subl $4, %esp /* save some scratch space */ ;\
144 - pushl %ebx /* save %ebx to use for scratch */ ;\
145 - pushl %gs /* save the user %gs */ ;\
146 - movl $KGS_SEL, %ebx ;\
147 - movw %bx, %gs /* switch to the kernel's %gs */ ;\
148 - movl %gs:CPU_THREAD, %ebx /* load the thread pointer */ ;\
149 - movl T_LWP(%ebx), %ebx /* load the lwp pointer */ ;\
150 - pushl %ebx /* push the lwp pointer */ ;\
151 - movl LWP_PROCP(%ebx), %ebx /* load the proc pointer */ ;\
152 - movl P_BRAND(%ebx), %ebx /* load the brand pointer */ ;\
153 - movl B_MACHOPS(%ebx), %ebx /* load the machops pointer */ ;\
154 - movl _CONST(_MUL(callback_id, CPTRSIZE))(%ebx), %ebx ;\
155 - cmpl $0, %ebx ;\
161 +#define BRAND_URET_FROM_REG(rip_reg) \
162 + pushq rip_reg /* push the return address */
163 +
164 +/*
165 + * The interrupt stack pointer we saved on entry to the BRAND_CALLBACK macro
166 + * is currently pointing at the user return address (%eip).
167 + */
168 +#define BRAND_URET_FROM_INTR_STACK() \
169 + movq %gs:CPU_RTMP_RSP, %r15 /* grab the intr. stack pointer */ ;\
170 + pushq (%r15) /* push the return address */
171 +
172 +#define BRAND_CALLBACK(callback_id, push_userland_ret) \
173 + movq %rsp, %gs:CPU_RTMP_RSP /* save the stack pointer */ ;\
174 + movq %r15, %gs:CPU_RTMP_R15 /* save %r15 */ ;\
175 + movq %gs:CPU_THREAD, %r15 /* load the thread pointer */ ;\
176 + movq T_STACK(%r15), %rsp /* switch to the kernel stack */ ;\
177 + subq $16, %rsp /* save space for 2 pointers */ ;\
178 + pushq %r14 /* save %r14 */ ;\
179 + movq %gs:CPU_RTMP_RSP, %r14 ;\
180 + movq %r14, 8(%rsp) /* stash the user stack pointer */ ;\
181 + popq %r14 /* restore %r14 */ ;\
182 + movq T_LWP(%r15), %r15 /* load the lwp pointer */ ;\
183 + pushq %r15 /* push the lwp pointer */ ;\
184 + movq LWP_PROCP(%r15), %r15 /* load the proc pointer */ ;\
185 + movq P_BRAND(%r15), %r15 /* load the brand pointer */ ;\
186 + movq B_MACHOPS(%r15), %r15 /* load the machops pointer */ ;\
187 + movq _CONST(_MUL(callback_id, CPTRSIZE))(%r15), %r15 ;\
188 + cmpq $0, %r15 ;\
156 189 je 1f ;\
157 - movl %ebx, 12(%esp) /* save callback to scratch */ ;\
158 - movl 4(%esp), %ebx /* grab the user %gs */ ;\
159 - movw %bx, %gs /* restore the user %gs */ ;\
160 - call *12(%esp) /* call callback in scratch */ ;\
161 -1: movl 4(%esp), %ebx /* restore user %gs (re-do if */ ;\
162 - movw %bx, %gs /* branch due to no callback) */ ;\
163 - movl 8(%esp), %ebx /* restore user's %ebx */ ;\
164 - addl $16, %esp /* restore stack ptr */
190 + movq %r15, 16(%rsp) /* save the callback pointer */ ;\
191 + push_userland_ret /* push the return address */ ;\
192 + movq 24(%rsp), %r15 /* load callback pointer */ ;\
193 + INDIRECT_CALL_REG(r15) /* call callback */ ;\
194 +1: movq %gs:CPU_RTMP_R15, %r15 /* restore %r15 */ ;\
195 + movq %gs:CPU_RTMP_RSP, %rsp /* restore the stack pointer */
165 196
166 197 #define MSTATE_TRANSITION(from, to) \
167 - pushl $to; \
168 - pushl $from; \
169 - call syscall_mstate; \
170 - addl $0x8, %esp
198 + movl $from, %edi; \
199 + movl $to, %esi; \
200 + call syscall_mstate
171 201
172 202 /*
173 - * aka CPU_STATS_ADDQ(CPU, sys.syscall, 1)
174 - * This must be called with interrupts or preemption disabled.
203 + * Check to see if a simple (direct) return is possible i.e.
204 + *
205 + * if (t->t_post_sys_ast | syscalltrace |
206 + * lwp->lwp_pcb.pcb_rupdate == 1)
207 + * do full version ;
208 + *
209 + * Preconditions:
210 + * - t is curthread
211 + * Postconditions:
212 + * - condition code NE is set if post-sys is too complex
213 + * - rtmp is zeroed if it isn't (we rely on this!)
214 + * - ltmp is smashed
175 215 */
176 -#define CPU_STATS_SYS_SYSCALL_INC \
177 - addl $1, %gs:CPU_STATS_SYS_SYSCALL; \
178 - adcl $0, %gs:CPU_STATS_SYS_SYSCALL+4;
216 +#define CHECK_POSTSYS_NE(t, ltmp, rtmp) \
217 + movq T_LWP(t), ltmp; \
218 + movzbl PCB_RUPDATE(ltmp), rtmp; \
219 + ORL_SYSCALLTRACE(rtmp); \
220 + orl T_POST_SYS_AST(t), rtmp; \
221 + cmpl $0, rtmp
179 222
180 -#if !defined(__lint)
223 +/*
224 + * Fix up the lwp, thread, and eflags for a successful return
225 + *
226 + * Preconditions:
227 + * - zwreg contains zero
228 + */
229 +#define SIMPLE_SYSCALL_POSTSYS(t, lwp, zwreg) \
230 + movb $LWP_USER, LWP_STATE(lwp); \
231 + movw zwreg, T_SYSNUM(t); \
232 + andb $_CONST(0xffff - PS_C), REGOFF_RFL(%rsp)
181 233
182 234 /*
183 235 * ASSERT(lwptoregs(lwp) == rp);
184 236 *
185 - * this may seem obvious, but very odd things happen if this
237 + * This may seem obvious, but very odd things happen if this
186 238 * assertion is false
187 239 *
188 240 * Preconditions:
241 + * (%rsp is ready for normal call sequence)
242 + * Postconditions (if assertion is true):
243 + * %r11 is smashed
244 + *
245 + * ASSERT(rp->r_cs == descnum)
246 + *
247 + * The code selector is written into the regs structure when the
248 + * lwp stack is created. We use this ASSERT to validate that
249 + * the regs structure really matches how we came in.
250 + *
251 + * Preconditions:
252 + * (%rsp is ready for normal call sequence)
253 + * Postconditions (if assertion is true):
189 254 * -none-
255 + *
256 + * ASSERT(lwp->lwp_pcb.pcb_rupdate == 0);
257 + *
258 + * If this is false, it meant that we returned to userland without
259 + * updating the segment registers as we were supposed to.
260 + *
261 + * Note that we must ensure no interrupts or other traps intervene
262 + * between entering privileged mode and performing the assertion,
263 + * otherwise we may perform a context switch on the thread, which
264 + * will end up setting pcb_rupdate to 1 again.
265 + *
266 + * ASSERT(%cr0 & CR0_TS == 0);
267 + * Preconditions:
268 + * (%rsp is ready for normal call sequence)
190 269 * Postconditions (if assertion is true):
191 - * %esi and %edi are smashed
270 + * (specified register is clobbered)
271 + *
272 + * Check to make sure that we are returning to user land and that CR0.TS
273 + * is not set. This is required as part of the eager FPU (see
274 + * uts/intel/ia32/os/fpu.c for more information).
192 275 */
276 +
193 277 #if defined(DEBUG)
194 278
195 279 __lwptoregs_msg:
196 280 .string "syscall_asm.s:%d lwptoregs(%p) [%p] != rp [%p]"
197 281
198 -#define ASSERT_LWPTOREGS(t, rp) \
199 - movl T_LWP(t), %esi; \
200 - movl LWP_REGS(%esi), %edi; \
201 - cmpl rp, %edi; \
282 +__codesel_msg:
283 + .string "syscall_asm.s:%d rp->r_cs [%ld] != %ld"
284 +
285 +__no_rupdate_msg:
286 + .string "syscall_asm.s:%d lwp %p, pcb_rupdate != 0"
287 +
288 +__bad_ts_msg:
289 + .string "syscall_asm.s:%d CR0.TS set on user return"
290 +
291 +#define ASSERT_LWPTOREGS(lwp, rp) \
292 + movq LWP_REGS(lwp), %r11; \
293 + cmpq rp, %r11; \
202 294 je 7f; \
203 - pushl rp; \
204 - pushl %edi; \
205 - pushl %esi; \
206 - pushl $__LINE__; \
207 - pushl $__lwptoregs_msg; \
295 + leaq __lwptoregs_msg(%rip), %rdi; \
296 + movl $__LINE__, %esi; \
297 + movq lwp, %rdx; \
298 + movq %r11, %rcx; \
299 + movq rp, %r8; \
300 + xorl %eax, %eax; \
208 301 call panic; \
209 302 7:
303 +
304 +#define ASSERT_NO_RUPDATE_PENDING(lwp) \
305 + testb $0x1, PCB_RUPDATE(lwp); \
306 + je 8f; \
307 + movq lwp, %rdx; \
308 + leaq __no_rupdate_msg(%rip), %rdi; \
309 + movl $__LINE__, %esi; \
310 + xorl %eax, %eax; \
311 + call panic; \
312 +8:
313 +
314 +#define ASSERT_CR0TS_ZERO(reg) \
315 + movq %cr0, reg; \
316 + testq $CR0_TS, reg; \
317 + jz 9f; \
318 + leaq __bad_ts_msg(%rip), %rdi; \
319 + movl $__LINE__, %esi; \
320 + xorl %eax, %eax; \
321 + call panic; \
322 +9:
323 +
210 324 #else
211 -#define ASSERT_LWPTOREGS(t, rp)
325 +#define ASSERT_LWPTOREGS(lwp, rp)
326 +#define ASSERT_NO_RUPDATE_PENDING(lwp)
327 +#define ASSERT_CR0TS_ZERO(reg)
212 328 #endif
213 329
214 -#endif /* __lint */
215 -
216 330 /*
217 - * This is an assembler version of this fragment:
218 - *
219 - * lwp->lwp_state = LWP_SYS;
220 - * lwp->lwp_ru.sysc++;
221 - * lwp->lwp_eosys = NORMALRETURN;
222 - * lwp->lwp_ap = argp;
223 - *
224 - * Preconditions:
225 - * -none-
226 - * Postconditions:
227 - * -none-
331 + * Do the traptrace thing and restore any registers we used
332 + * in situ. Assumes that %rsp is pointing at the base of
333 + * the struct regs, obviously ..
228 334 */
229 -#define SET_LWP(lwp, argp) \
230 - movb $LWP_SYS, LWP_STATE(lwp); \
231 - addl $1, LWP_RU_SYSC(lwp); \
232 - adcl $0, LWP_RU_SYSC+4(lwp); \
233 - movb $NORMALRETURN, LWP_EOSYS(lwp); \
234 - movl argp, LWP_AP(lwp)
335 +#ifdef TRAPTRACE
336 +#define SYSCALL_TRAPTRACE(ttype) \
337 + TRACE_PTR(%rdi, %rbx, %ebx, %rcx, ttype); \
338 + TRACE_REGS(%rdi, %rsp, %rbx, %rcx); \
339 + TRACE_STAMP(%rdi); /* rdtsc clobbers %eax, %edx */ \
340 + movq REGOFF_RAX(%rsp), %rax; \
341 + movq REGOFF_RBX(%rsp), %rbx; \
342 + movq REGOFF_RCX(%rsp), %rcx; \
343 + movq REGOFF_RDX(%rsp), %rdx; \
344 + movl %eax, TTR_SYSNUM(%rdi); \
345 + movq REGOFF_RDI(%rsp), %rdi
235 346
236 -/*
237 - * Set up the thread, lwp, find the handler, and copy
238 - * in the arguments from userland to the kernel stack.
239 - *
240 - * Preconditions:
241 - * - %eax contains the syscall number
242 - * Postconditions:
243 - * - %eax contains a pointer to the sysent structure
244 - * - %ecx is zeroed
245 - * - %esi, %edi are smashed
246 - * - %esp is SYS_DROPped ready for the syscall
247 - */
248 -#define SIMPLE_SYSCALL_PRESYS(t, faultlabel) \
249 - movl T_LWP(t), %esi; \
250 - movw %ax, T_SYSNUM(t); \
251 - subl $SYS_DROP, %esp; \
252 - shll $SYSENT_SIZE_SHIFT, %eax; \
253 - SET_LWP(%esi, %esp); \
254 - leal sysent(%eax), %eax; \
255 - movzbl SY_NARG(%eax), %ecx; \
256 - testl %ecx, %ecx; \
257 - jz 4f; \
258 - movl %esp, %edi; \
259 - movl SYS_DROP + REGOFF_UESP(%esp), %esi; \
260 - movl $faultlabel, T_LOFAULT(t); \
261 - addl $4, %esi; \
262 - rep; \
263 - smovl; \
264 - movl %ecx, T_LOFAULT(t); \
265 -4:
347 +#define SYSCALL_TRAPTRACE32(ttype) \
348 + SYSCALL_TRAPTRACE(ttype); \
349 + /* paranoia: clean the top 32-bits of the registers */ \
350 + orl %eax, %eax; \
351 + orl %ebx, %ebx; \
352 + orl %ecx, %ecx; \
353 + orl %edx, %edx; \
354 + orl %edi, %edi
355 +#else /* TRAPTRACE */
356 +#define SYSCALL_TRAPTRACE(ttype)
357 +#define SYSCALL_TRAPTRACE32(ttype)
358 +#endif /* TRAPTRACE */
266 359
267 360 /*
268 - * Check to see if a simple return is possible i.e.
361 + * The 64-bit libc syscall wrapper does this:
269 362 *
270 - * if ((t->t_post_sys_ast | syscalltrace) != 0)
271 - * do full version;
363 + * fn(<args>)
364 + * {
365 + * movq %rcx, %r10 -- because syscall smashes %rcx
366 + * movl $CODE, %eax
367 + * syscall
368 + * <error processing>
369 + * }
272 370 *
273 - * Preconditions:
274 - * - t is curthread
275 - * Postconditions:
276 - * - condition code NE is set if post-sys is too complex
277 - * - rtmp is zeroed if it isn't (we rely on this!)
278 - */
279 -#define CHECK_POSTSYS_NE(t, rtmp) \
280 - xorl rtmp, rtmp; \
281 - ORL_SYSCALLTRACE(rtmp); \
282 - orl T_POST_SYS_AST(t), rtmp; \
283 - cmpl $0, rtmp
284 -
285 -/*
286 - * Fix up the lwp, thread, and eflags for a successful return
371 + * Thus when we come into the kernel:
287 372 *
288 - * Preconditions:
289 - * - zwreg contains zero
290 - * Postconditions:
291 - * - %esp has been unSYS_DROPped
292 - * - %esi is smashed (points to lwp)
293 - */
294 -#define SIMPLE_SYSCALL_POSTSYS(t, zwreg) \
295 - movl T_LWP(t), %esi; \
296 - addl $SYS_DROP, %esp; \
297 - movw zwreg, T_SYSNUM(t); \
298 - movb $LWP_USER, LWP_STATE(%esi); \
299 - andb $_CONST(0xffff - PS_C), REGOFF_EFL(%esp)
300 -
301 -/*
302 - * System call handler. This is the destination of both the call
303 - * gate (lcall 0x27) _and_ the interrupt gate (int 0x91). For our purposes,
304 - * there are two significant differences between an interrupt gate and a call
305 - * gate:
373 + * %rdi, %rsi, %rdx, %r10, %r8, %r9 contain first six args
374 + * %rax is the syscall number
375 + * %r12-%r15 contain caller state
306 376 *
307 - * 1) An interrupt gate runs the handler with interrupts disabled, whereas a
308 - * call gate runs the handler with whatever EFLAGS settings were in effect at
309 - * the time of the call.
377 + * The syscall instruction arranges that:
310 378 *
311 - * 2) An interrupt gate pushes the contents of the EFLAGS register at the time
312 - * of the interrupt onto the stack, whereas a call gate does not.
379 + * %rcx contains the return %rip
380 + * %r11d contains bottom 32-bits of %rflags
381 + * %rflags is masked (as determined by the SFMASK msr)
382 + * %cs is set to UCS_SEL (as determined by the STAR msr)
383 + * %ss is set to UDS_SEL (as determined by the STAR msr)
384 + * %rip is set to sys_syscall (as determined by the LSTAR msr)
313 385 *
314 - * Because we use the following code sequence to handle system calls made from
315 - * _both_ a call gate _and_ an interrupt gate, these two differences must be
316 - * respected. In regards to number 1) above, the handler must ensure that a sane
317 - * EFLAGS snapshot is stored on the stack so that when the kernel returns back
318 - * to the user via iret (which returns to user with the EFLAGS value saved on
319 - * the stack), interrupts are re-enabled.
386 + * Or in other words, we have no registers available at all.
387 + * Only swapgs can save us!
320 388 *
321 - * In regards to number 2) above, the handler must always put a current snapshot
322 - * of EFLAGS onto the stack in the appropriate place. If we came in via an
323 - * interrupt gate, we will be clobbering the EFLAGS value that was pushed by
324 - * the interrupt gate. This is OK, as the only bit that was changed by the
325 - * hardware was the IE (interrupt enable) bit, which for an interrupt gate is
326 - * now off. If we were to do nothing, the stack would contain an EFLAGS with
327 - * IE off, resulting in us eventually returning back to the user with interrupts
328 - * disabled. The solution is to turn on the IE bit in the EFLAGS value saved on
329 - * the stack.
389 + * Under the hypervisor, the swapgs has happened already. However, the
390 + * state of the world is very different from that we're familiar with.
330 391 *
331 - * Another subtlety which deserves mention is the difference between the two
332 - * descriptors. The call gate descriptor is set to instruct the hardware to copy
333 - * one parameter from the user stack to the kernel stack, whereas the interrupt
334 - * gate descriptor doesn't use the parameter passing mechanism at all. The
335 - * kernel doesn't actually use the parameter that is copied by the hardware; the
336 - * only reason it does this is so that there is a space on the stack large
337 - * enough to hold an EFLAGS register value, which happens to be in the correct
338 - * place for use by iret when we go back to userland. How convenient.
392 + * In particular, we have a stack structure like that for interrupt
393 + * gates, except that the %cs and %ss registers are modified for reasons
394 + * that are not entirely clear. Critically, the %rcx/%r11 values do
395 + * *not* reflect the usage of those registers under a 'real' syscall[1];
396 + * the stack, therefore, looks like this:
339 397 *
340 - * Stack frame description in syscall() and callees.
398 + * 0x0(rsp) potentially junk %rcx
399 + * 0x8(rsp) potentially junk %r11
400 + * 0x10(rsp) user %rip
401 + * 0x18(rsp) modified %cs
402 + * 0x20(rsp) user %rflags
403 + * 0x28(rsp) user %rsp
404 + * 0x30(rsp) modified %ss
341 405 *
342 - * |------------|
343 - * | regs | +(8*4)+4 registers
344 - * |------------|
345 - * | 8 args | <- %esp MAXSYSARGS (currently 8) arguments
346 - * |------------|
347 406 *
407 + * and before continuing on, we must load the %rip into %rcx and the
408 + * %rflags into %r11.
409 + *
410 + * [1] They used to, and we relied on it, but this was broken in 3.1.1.
411 + * Sigh.
348 412 */
349 -#define SYS_DROP _CONST(_MUL(MAXSYSARGS, 4))
413 +#if defined(__xpv)
414 +#define XPV_SYSCALL_PROD \
415 + movq 0x10(%rsp), %rcx; \
416 + movq 0x20(%rsp), %r11; \
417 + movq 0x28(%rsp), %rsp
418 +#else
419 +#define XPV_SYSCALL_PROD /* nothing */
420 +#endif
350 421
351 -#if defined(__lint)
422 + ENTRY_NP2(brand_sys_syscall,_allsyscalls)
423 + SWAPGS /* kernel gsbase */
424 + XPV_SYSCALL_PROD
425 + BRAND_CALLBACK(BRAND_CB_SYSCALL, BRAND_URET_FROM_REG(%rcx))
426 + jmp noprod_sys_syscall
352 427
353 -/*ARGSUSED*/
354 -void
355 -sys_call()
356 -{}
428 + ALTENTRY(sys_syscall)
429 + SWAPGS /* kernel gsbase */
430 + XPV_SYSCALL_PROD
357 431
358 -void
359 -_allsyscalls()
360 -{}
432 +noprod_sys_syscall:
433 + movq %r15, %gs:CPU_RTMP_R15
434 + movq %rsp, %gs:CPU_RTMP_RSP
361 435
362 -size_t _allsyscalls_size;
436 + movq %gs:CPU_THREAD, %r15
437 + movq T_STACK(%r15), %rsp /* switch from user to kernel stack */
363 438
364 -#else /* __lint */
439 + ASSERT_UPCALL_MASK_IS_SET
365 440
366 - ENTRY_NP2(brand_sys_call, _allsyscalls)
367 - BRAND_CALLBACK(BRAND_CB_SYSCALL)
441 + movl $UCS_SEL, REGOFF_CS(%rsp)
442 + movq %rcx, REGOFF_RIP(%rsp) /* syscall: %rip -> %rcx */
443 + movq %r11, REGOFF_RFL(%rsp) /* syscall: %rfl -> %r11d */
444 + movl $UDS_SEL, REGOFF_SS(%rsp)
368 445
369 - ALTENTRY(sys_call)
370 - / on entry eax = system call number
446 + movl %eax, %eax /* wrapper: sysc# -> %eax */
447 + movq %rdi, REGOFF_RDI(%rsp)
448 + movq %rsi, REGOFF_RSI(%rsp)
449 + movq %rdx, REGOFF_RDX(%rsp)
450 + movq %r10, REGOFF_RCX(%rsp) /* wrapper: %rcx -> %r10 */
451 + movq %r10, %rcx /* arg[3] for direct calls */
371 452
372 - / set up the stack to look as in reg.h
373 - subl $8, %esp / pad the stack with ERRCODE and TRAPNO
453 + movq %r8, REGOFF_R8(%rsp)
454 + movq %r9, REGOFF_R9(%rsp)
455 + movq %rax, REGOFF_RAX(%rsp)
456 + movq %rbx, REGOFF_RBX(%rsp)
374 457
375 - SYSCALL_PUSH
458 + movq %rbp, REGOFF_RBP(%rsp)
459 + movq %r10, REGOFF_R10(%rsp)
460 + movq %gs:CPU_RTMP_RSP, %r11
461 + movq %r11, REGOFF_RSP(%rsp)
462 + movq %r12, REGOFF_R12(%rsp)
376 463
377 -#ifdef TRAPTRACE
378 - TRACE_PTR(%edi, %ebx, %ebx, %ecx, $TT_SYSCALL) / Uses labels "8" and "9"
379 - TRACE_REGS(%edi, %esp, %ebx, %ecx) / Uses label "9"
380 - pushl %eax
381 - TRACE_STAMP(%edi) / Clobbers %eax, %edx, uses "9"
382 - popl %eax
383 - movl %eax, TTR_SYSNUM(%edi)
464 + movq %r13, REGOFF_R13(%rsp)
465 + movq %r14, REGOFF_R14(%rsp)
466 + movq %gs:CPU_RTMP_R15, %r10
467 + movq %r10, REGOFF_R15(%rsp)
468 + movq $0, REGOFF_SAVFP(%rsp)
469 + movq $0, REGOFF_SAVPC(%rsp)
470 +
471 + /*
472 + * Copy these registers here in case we end up stopped with
473 + * someone (like, say, /proc) messing with our register state.
474 + * We don't -restore- them unless we have to in update_sregs.
475 + *
476 + * Since userland -can't- change fsbase or gsbase directly,
477 + * and capturing them involves two serializing instructions,
478 + * we don't bother to capture them here.
479 + */
480 + xorl %ebx, %ebx
481 + movw %ds, %bx
482 + movq %rbx, REGOFF_DS(%rsp)
483 + movw %es, %bx
484 + movq %rbx, REGOFF_ES(%rsp)
485 + movw %fs, %bx
486 + movq %rbx, REGOFF_FS(%rsp)
487 + movw %gs, %bx
488 + movq %rbx, REGOFF_GS(%rsp)
489 +
490 + /*
491 + * If we're trying to use TRAPTRACE though, I take that back: we're
492 + * probably debugging some problem in the SWAPGS logic and want to know
493 + * what the incoming gsbase was.
494 + *
495 + * Since we already did SWAPGS, record the KGSBASE.
496 + */
497 +#if defined(DEBUG) && defined(TRAPTRACE) && !defined(__xpv)
498 + movl $MSR_AMD_KGSBASE, %ecx
499 + rdmsr
500 + movl %eax, REGOFF_GSBASE(%rsp)
501 + movl %edx, REGOFF_GSBASE+4(%rsp)
384 502 #endif
385 503
386 -_watch_do_syscall:
387 - movl %esp, %ebp
504 + /*
505 + * Machine state saved in the regs structure on the stack
506 + * First six args in %rdi, %rsi, %rdx, %rcx, %r8, %r9
507 + * %eax is the syscall number
508 + * %rsp is the thread's stack, %r15 is curthread
509 + * REG_RSP(%rsp) is the user's stack
510 + */
388 511
389 - / Interrupts may be enabled here, so we must make sure this thread
390 - / doesn't migrate off the CPU while it updates the CPU stats.
391 - /
392 - / XXX This is only true if we got here via call gate thru the LDT for
393 - / old style syscalls. Perhaps this preempt++-- will go away soon?
394 - movl %gs:CPU_THREAD, %ebx
395 - addb $1, T_PREEMPT(%ebx)
396 - CPU_STATS_SYS_SYSCALL_INC
397 - subb $1, T_PREEMPT(%ebx)
512 + SYSCALL_TRAPTRACE($TT_SYSC64)
398 513
514 + movq %rsp, %rbp
515 +
516 + movq T_LWP(%r15), %r14
517 + ASSERT_NO_RUPDATE_PENDING(%r14)
399 518 ENABLE_INTR_FLAGS
400 519
401 - pushl %eax / preserve across mstate call
402 520 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
403 - popl %eax
521 + movl REGOFF_RAX(%rsp), %eax /* (%rax damaged by mstate call) */
404 522
405 - movl %gs:CPU_THREAD, %ebx
523 + ASSERT_LWPTOREGS(%r14, %rsp)
406 524
407 - ASSERT_LWPTOREGS(%ebx, %esp)
525 + movb $LWP_SYS, LWP_STATE(%r14)
526 + incq LWP_RU_SYSC(%r14)
527 + movb $NORMALRETURN, LWP_EOSYS(%r14)
408 528
409 - CHECK_PRESYS_NE(%ebx, %eax)
410 - jne _full_syscall_presys
411 - SIMPLE_SYSCALL_PRESYS(%ebx, _syscall_fault)
529 + incq %gs:CPU_STATS_SYS_SYSCALL
412 530
413 -_syslcall_call:
414 - call *SY_CALLC(%eax)
531 + movw %ax, T_SYSNUM(%r15)
532 + movzbl T_PRE_SYS(%r15), %ebx
533 + ORL_SYSCALLTRACE(%ebx)
534 + testl %ebx, %ebx
535 + jne _syscall_pre
415 536
416 -_syslcall_done:
417 - CHECK_POSTSYS_NE(%ebx, %ecx)
418 - jne _full_syscall_postsys
419 - SIMPLE_SYSCALL_POSTSYS(%ebx, %cx)
420 - movl %eax, REGOFF_EAX(%esp)
421 - movl %edx, REGOFF_EDX(%esp)
537 +_syscall_invoke:
538 + movq REGOFF_RDI(%rbp), %rdi
539 + movq REGOFF_RSI(%rbp), %rsi
540 + movq REGOFF_RDX(%rbp), %rdx
541 + movq REGOFF_RCX(%rbp), %rcx
542 + movq REGOFF_R8(%rbp), %r8
543 + movq REGOFF_R9(%rbp), %r9
422 544
545 + cmpl $NSYSCALL, %eax
546 + jae _syscall_ill
547 + shll $SYSENT_SIZE_SHIFT, %eax
548 + leaq sysent(%rax), %rbx
549 +
550 + movq SY_CALLC(%rbx), %rax
551 + INDIRECT_CALL_REG(rax)
552 +
553 + movq %rax, %r12
554 + movq %rdx, %r13
555 +
556 + /*
557 + * If the handler returns two ints, then we need to split the
558 + * 64-bit return value into two 32-bit values.
559 + */
560 + testw $SE_32RVAL2, SY_FLAGS(%rbx)
561 + je 5f
562 + movq %r12, %r13
563 + shrq $32, %r13 /* upper 32-bits into %edx */
564 + movl %r12d, %r12d /* lower 32-bits into %eax */
565 +5:
566 + /*
567 + * Optimistically assume that there's no post-syscall
568 + * work to do. (This is to avoid having to call syscall_mstate()
569 + * with interrupts disabled)
570 + */
423 571 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
424 572
425 - /
426 - / get back via iret
427 - /
428 - CLI(%edx)
429 - jmp sys_rtt_syscall
573 + /*
574 + * We must protect ourselves from being descheduled here;
575 + * If we were, and we ended up on another cpu, or another
576 + * lwp got in ahead of us, it could change the segment
577 + * registers without us noticing before we return to userland.
578 + */
579 + CLI(%r14)
580 + CHECK_POSTSYS_NE(%r15, %r14, %ebx)
581 + jne _syscall_post
430 582
431 -_full_syscall_presys:
432 - movl T_LWP(%ebx), %esi
433 - subl $SYS_DROP, %esp
434 - movb $LWP_SYS, LWP_STATE(%esi)
435 - pushl %esp
436 - pushl %ebx
437 - call syscall_entry
438 - addl $8, %esp
439 - jmp _syslcall_call
583 + /*
584 + * We need to protect ourselves against non-canonical return values
585 + * because Intel doesn't check for them on sysret (AMD does). Canonical
586 + * addresses on current amd64 processors only use 48-bits for VAs; an
587 + * address is canonical if all upper bits (47-63) are identical. If we
588 + * find a non-canonical %rip, we opt to go through the full
589 + * _syscall_post path which takes us into an iretq which is not
590 + * susceptible to the same problems sysret is.
591 + *
592 + * We're checking for a canonical address by first doing an arithmetic
593 + * shift. This will fill in the remaining bits with the value of bit 63.
594 + * If the address were canonical, the register would now have either all
595 + * zeroes or all ones in it. Therefore we add one (inducing overflow)
596 + * and compare against 1. A canonical address will either be zero or one
597 + * at this point, hence the use of ja.
598 + *
599 + * At this point, r12 and r13 have the return value so we can't use
600 + * those registers.
601 + */
602 + movq REGOFF_RIP(%rsp), %rcx
603 + sarq $47, %rcx
604 + incq %rcx
605 + cmpq $1, %rcx
606 + ja _syscall_post
440 607
441 -_full_syscall_postsys:
442 - addl $SYS_DROP, %esp
443 - pushl %edx
444 - pushl %eax
445 - pushl %ebx
446 - call syscall_exit
447 - addl $12, %esp
608 +
609 + SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
610 +
611 + movq %r12, REGOFF_RAX(%rsp)
612 + movq %r13, REGOFF_RDX(%rsp)
613 +
614 + /*
615 + * Clobber %r11 as we check CR0.TS.
616 + */
617 + ASSERT_CR0TS_ZERO(%r11)
618 +
619 + /*
620 + * Unlike other cases, because we need to restore the user stack pointer
621 + * before exiting the kernel we must clear the microarch state before
622 + * getting here. This should be safe because it means that the only
623 + * values on the bus after this are based on the user's registers and
624 + * potentially the addresses where we stored them. Given the constraints
625 + * of sysret, that's how it has to be.
626 + */
627 + call x86_md_clear
628 +
629 + /*
630 + * To get back to userland, we need the return %rip in %rcx and
631 + * the return %rfl in %r11d. The sysretq instruction also arranges
632 + * to fix up %cs and %ss; everything else is our responsibility.
633 + */
634 + movq REGOFF_RDI(%rsp), %rdi
635 + movq REGOFF_RSI(%rsp), %rsi
636 + movq REGOFF_RDX(%rsp), %rdx
637 + /* %rcx used to restore %rip value */
638 +
639 + movq REGOFF_R8(%rsp), %r8
640 + movq REGOFF_R9(%rsp), %r9
641 + movq REGOFF_RAX(%rsp), %rax
642 + movq REGOFF_RBX(%rsp), %rbx
643 +
644 + movq REGOFF_RBP(%rsp), %rbp
645 + movq REGOFF_R10(%rsp), %r10
646 + /* %r11 used to restore %rfl value */
647 + movq REGOFF_R12(%rsp), %r12
648 +
649 + movq REGOFF_R13(%rsp), %r13
650 + movq REGOFF_R14(%rsp), %r14
651 + movq REGOFF_R15(%rsp), %r15
652 +
653 + movq REGOFF_RIP(%rsp), %rcx
654 + movl REGOFF_RFL(%rsp), %r11d
655 +
656 +#if defined(__xpv)
657 + addq $REGOFF_RIP, %rsp
658 +#else
659 + movq REGOFF_RSP(%rsp), %rsp
660 +#endif
661 +
662 + /*
663 + * There can be no instructions between the ALTENTRY below and
664 + * SYSRET or we could end up breaking brand support. See label usage
665 + * in sn1_brand_syscall_callback for an example.
666 + */
667 + ASSERT_UPCALL_MASK_IS_SET
668 +#if defined(__xpv)
669 + SYSRETQ
670 + ALTENTRY(nopop_sys_syscall_swapgs_sysretq)
671 +
672 + /*
673 + * We can only get here after executing a brand syscall
674 + * interposition callback handler and simply need to
675 + * "sysretq" back to userland. On the hypervisor this
676 + * involves the iret hypercall which requires us to construct
677 + * just enough of the stack needed for the hypercall.
678 + * (rip, cs, rflags, rsp, ss).
679 + */
680 + movq %rsp, %gs:CPU_RTMP_RSP /* save user's rsp */
681 + movq %gs:CPU_THREAD, %r11
682 + movq T_STACK(%r11), %rsp
683 +
684 + movq %rcx, REGOFF_RIP(%rsp)
685 + movl $UCS_SEL, REGOFF_CS(%rsp)
686 + movq %gs:CPU_RTMP_RSP, %r11
687 + movq %r11, REGOFF_RSP(%rsp)
688 + pushfq
689 + popq %r11 /* hypercall enables ints */
690 + movq %r11, REGOFF_RFL(%rsp)
691 + movl $UDS_SEL, REGOFF_SS(%rsp)
692 + addq $REGOFF_RIP, %rsp
693 + /*
694 + * XXPV: see comment in SYSRETQ definition for future optimization
695 + * we could take.
696 + */
697 + ASSERT_UPCALL_MASK_IS_SET
698 + SYSRETQ
699 +#else
700 + ALTENTRY(nopop_sys_syscall_swapgs_sysretq)
701 + jmp tr_sysretq
702 +#endif
703 + /*NOTREACHED*/
704 + SET_SIZE(nopop_sys_syscall_swapgs_sysretq)
705 +
706 +_syscall_pre:
707 + call pre_syscall
708 + movl %eax, %r12d
709 + testl %eax, %eax
710 + jne _syscall_post_call
711 + /*
712 + * Didn't abort, so reload the syscall args and invoke the handler.
713 + */
714 + movzwl T_SYSNUM(%r15), %eax
715 + jmp _syscall_invoke
716 +
717 +_syscall_ill:
718 + call nosys
719 + movq %rax, %r12
720 + movq %rdx, %r13
721 + jmp _syscall_post_call
722 +
723 +_syscall_post:
724 + STI
725 + /*
726 + * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM
727 + * so that we can account for the extra work it takes us to finish.
728 + */
729 + MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
730 +_syscall_post_call:
731 + movq %r12, %rdi
732 + movq %r13, %rsi
733 + call post_syscall
448 734 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
449 735 jmp _sys_rtt
736 + SET_SIZE(sys_syscall)
737 + SET_SIZE(brand_sys_syscall)
450 738
451 -_syscall_fault:
452 - push $0xe / EFAULT
453 - call set_errno
454 - addl $4, %esp
455 - xorl %eax, %eax / fake syscall_err()
456 - xorl %edx, %edx
457 - jmp _syslcall_done
458 - SET_SIZE(sys_call)
459 - SET_SIZE(brand_sys_call)
739 + ENTRY_NP(brand_sys_syscall32)
740 + SWAPGS /* kernel gsbase */
741 + XPV_TRAP_POP
742 + BRAND_CALLBACK(BRAND_CB_SYSCALL32, BRAND_URET_FROM_REG(%rcx))
743 + jmp nopop_sys_syscall32
460 744
461 -#endif /* __lint */
745 + ALTENTRY(sys_syscall32)
746 + SWAPGS /* kernel gsbase */
747 + XPV_TRAP_POP
462 748
749 +nopop_sys_syscall32:
750 + movl %esp, %r10d
751 + movq %gs:CPU_THREAD, %r15
752 + movq T_STACK(%r15), %rsp
753 + movl %eax, %eax
754 +
755 + movl $U32CS_SEL, REGOFF_CS(%rsp)
756 + movl %ecx, REGOFF_RIP(%rsp) /* syscall: %rip -> %rcx */
757 + movq %r11, REGOFF_RFL(%rsp) /* syscall: %rfl -> %r11d */
758 + movq %r10, REGOFF_RSP(%rsp)
759 + movl $UDS_SEL, REGOFF_SS(%rsp)
760 +
761 +_syscall32_save:
762 + movl %edi, REGOFF_RDI(%rsp)
763 + movl %esi, REGOFF_RSI(%rsp)
764 + movl %ebp, REGOFF_RBP(%rsp)
765 + movl %ebx, REGOFF_RBX(%rsp)
766 + movl %edx, REGOFF_RDX(%rsp)
767 + movl %ecx, REGOFF_RCX(%rsp)
768 + movl %eax, REGOFF_RAX(%rsp) /* wrapper: sysc# -> %eax */
769 + movq $0, REGOFF_SAVFP(%rsp)
770 + movq $0, REGOFF_SAVPC(%rsp)
771 +
772 + /*
773 + * Copy these registers here in case we end up stopped with
774 + * someone (like, say, /proc) messing with our register state.
775 + * We don't -restore- them unless we have to in update_sregs.
776 + *
777 + * Since userland -can't- change fsbase or gsbase directly,
778 + * we don't bother to capture them here.
779 + */
780 + xorl %ebx, %ebx
781 + movw %ds, %bx
782 + movq %rbx, REGOFF_DS(%rsp)
783 + movw %es, %bx
784 + movq %rbx, REGOFF_ES(%rsp)
785 + movw %fs, %bx
786 + movq %rbx, REGOFF_FS(%rsp)
787 + movw %gs, %bx
788 + movq %rbx, REGOFF_GS(%rsp)
789 +
790 + /*
791 + * If we're trying to use TRAPTRACE though, I take that back: we're
792 + * probably debugging some problem in the SWAPGS logic and want to know
793 + * what the incoming gsbase was.
794 + *
795 + * Since we already did SWAPGS, record the KGSBASE.
796 + */
797 +#if defined(DEBUG) && defined(TRAPTRACE) && !defined(__xpv)
798 + movl $MSR_AMD_KGSBASE, %ecx
799 + rdmsr
800 + movl %eax, REGOFF_GSBASE(%rsp)
801 + movl %edx, REGOFF_GSBASE+4(%rsp)
802 +#endif
803 +
804 + /*
805 + * Application state saved in the regs structure on the stack
806 + * %eax is the syscall number
807 + * %rsp is the thread's stack, %r15 is curthread
808 + * REG_RSP(%rsp) is the user's stack
809 + */
810 +
811 + SYSCALL_TRAPTRACE32($TT_SYSC)
812 +
813 + movq %rsp, %rbp
814 +
815 + movq T_LWP(%r15), %r14
816 + ASSERT_NO_RUPDATE_PENDING(%r14)
817 +
818 + ENABLE_INTR_FLAGS
819 +
820 + MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
821 + movl REGOFF_RAX(%rsp), %eax /* (%rax damaged by mstate call) */
822 +
823 + ASSERT_LWPTOREGS(%r14, %rsp)
824 +
825 + incq %gs:CPU_STATS_SYS_SYSCALL
826 +
827 + /*
828 + * Make some space for MAXSYSARGS (currently 8) 32-bit args placed
829 + * into 64-bit (long) arg slots, maintaining 16 byte alignment. Or
830 + * more succinctly:
831 + *
832 + * SA(MAXSYSARGS * sizeof (long)) == 64
833 + */
834 +#define SYS_DROP 64 /* drop for args */
835 + subq $SYS_DROP, %rsp
836 + movb $LWP_SYS, LWP_STATE(%r14)
837 + movq %r15, %rdi
838 + movq %rsp, %rsi
839 + call syscall_entry
840 +
841 + /*
842 + * Fetch the arguments copied onto the kernel stack and put
843 + * them in the right registers to invoke a C-style syscall handler.
844 + * %rax contains the handler address.
845 + *
846 + * Ideas for making all this go faster of course include simply
847 + * forcibly fetching 6 arguments from the user stack under lofault
848 + * protection, reverting to copyin_args only when watchpoints
849 + * are in effect.
850 + *
851 + * (If we do this, make sure that exec and libthread leave
852 + * enough space at the top of the stack to ensure that we'll
853 + * never do a fetch from an invalid page.)
854 + *
855 + * Lots of ideas here, but they won't really help with bringup B-)
856 + * Correctness can't wait, performance can wait a little longer ..
857 + */
858 +
859 + movq %rax, %rbx
860 + movl 0(%rsp), %edi
861 + movl 8(%rsp), %esi
862 + movl 0x10(%rsp), %edx
863 + movl 0x18(%rsp), %ecx
864 + movl 0x20(%rsp), %r8d
865 + movl 0x28(%rsp), %r9d
866 +
867 + movq SY_CALLC(%rbx), %rax
868 + INDIRECT_CALL_REG(rax)
869 +
870 + movq %rbp, %rsp /* pop the args */
871 +
872 + /*
873 + * amd64 syscall handlers -always- return a 64-bit value in %rax.
874 + * On the 32-bit kernel, they always return that value in %eax:%edx
875 + * as required by the 32-bit ABI.
876 + *
877 + * Simulate the same behaviour by unconditionally splitting the
878 + * return value in the same way.
879 + */
880 + movq %rax, %r13
881 + shrq $32, %r13 /* upper 32-bits into %edx */
882 + movl %eax, %r12d /* lower 32-bits into %eax */
883 +
884 + /*
885 + * Optimistically assume that there's no post-syscall
886 + * work to do. (This is to avoid having to call syscall_mstate()
887 + * with interrupts disabled)
888 + */
889 + MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
890 +
891 + /*
892 + * We must protect ourselves from being descheduled here;
893 + * If we were, and we ended up on another cpu, or another
894 + * lwp got in ahead of us, it could change the segment
895 + * registers without us noticing before we return to userland.
896 + */
897 + CLI(%r14)
898 + CHECK_POSTSYS_NE(%r15, %r14, %ebx)
899 + jne _full_syscall_postsys32
900 + SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
901 +
902 + /*
903 + * Clobber %r11 as we check CR0.TS.
904 + */
905 + ASSERT_CR0TS_ZERO(%r11)
906 +
907 + /*
908 + * Unlike other cases, because we need to restore the user stack pointer
909 + * before exiting the kernel we must clear the microarch state before
910 + * getting here. This should be safe because it means that the only
911 + * values on the bus after this are based on the user's registers and
912 + * potentially the addresses where we stored them. Given the constraints
913 + * of sysret, that's how it has to be.
914 + */
915 + call x86_md_clear
916 +
917 + /*
918 + * To get back to userland, we need to put the return %rip in %rcx and
919 + * the return %rfl in %r11d. The sysret instruction also arranges
920 + * to fix up %cs and %ss; everything else is our responsibility.
921 + */
922 +
923 + movl %r12d, %eax /* %eax: rval1 */
924 + movl REGOFF_RBX(%rsp), %ebx
925 + /* %ecx used for return pointer */
926 + movl %r13d, %edx /* %edx: rval2 */
927 + movl REGOFF_RBP(%rsp), %ebp
928 + movl REGOFF_RSI(%rsp), %esi
929 + movl REGOFF_RDI(%rsp), %edi
930 +
931 + movl REGOFF_RFL(%rsp), %r11d /* %r11 -> eflags */
932 + movl REGOFF_RIP(%rsp), %ecx /* %ecx -> %eip */
933 + movl REGOFF_RSP(%rsp), %esp
934 +
935 + ASSERT_UPCALL_MASK_IS_SET
936 + ALTENTRY(nopop_sys_syscall32_swapgs_sysretl)
937 + jmp tr_sysretl
938 + SET_SIZE(nopop_sys_syscall32_swapgs_sysretl)
939 + /*NOTREACHED*/
940 +
941 +_full_syscall_postsys32:
942 + STI
943 + /*
944 + * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM
945 + * so that we can account for the extra work it takes us to finish.
946 + */
947 + MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
948 + movq %r15, %rdi
949 + movq %r12, %rsi /* rval1 - %eax */
950 + movq %r13, %rdx /* rval2 - %edx */
951 + call syscall_exit
952 + MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
953 + jmp _sys_rtt
954 + SET_SIZE(sys_syscall32)
955 + SET_SIZE(brand_sys_syscall32)
956 +
463 957 /*
464 958 * System call handler via the sysenter instruction
959 + * Used only for 32-bit system calls on the 64-bit kernel.
465 960 *
466 - * Here's how syscall entry usually works (see sys_call for details).
467 - *
468 - * There, the caller (lcall or int) in userland has arranged that:
469 - *
470 - * - %eax contains the syscall number
471 - * - the user stack contains the args to the syscall
472 - *
473 - * Normally the lcall instruction into the call gate causes the processor
474 - * to push %ss, %esp, <top-of-stack>, %cs, %eip onto the kernel stack.
475 - * The sys_call handler then leaves space for r_trapno and r_err, and
476 - * pusha's {%eax, %ecx, %edx, %ebx, %esp, %ebp, %esi, %edi}, followed
477 - * by %ds, %es, %fs and %gs to capture a 'struct regs' on the stack.
478 - * Then the kernel sets %ds, %es and %gs to kernel selectors, and finally
479 - * extracts %efl and puts it into r_efl (which happens to live at the offset
480 - * that <top-of-stack> was copied into). Note that the value in r_efl has
481 - * the IF (interrupt enable) flag turned on. (The int instruction into the
482 - * interrupt gate does essentially the same thing, only instead of
483 - * <top-of-stack> we get eflags - see comment above.)
484 - *
485 - * In the sysenter case, things are a lot more primitive.
486 - *
487 961 * The caller in userland has arranged that:
488 962 *
489 963 * - %eax contains the syscall number
490 964 * - %ecx contains the user %esp
491 965 * - %edx contains the return %eip
492 966 * - the user stack contains the args to the syscall
493 967 *
494 - * e.g.
495 - * <args on the stack>
496 - * mov $SYS_callnum, %eax
497 - * mov $1f, %edx / return %eip
498 - * mov %esp, %ecx / return %esp
499 - * sysenter
500 - * 1:
501 - *
502 968 * Hardware and (privileged) initialization code have arranged that by
503 969 * the time the sysenter instructions completes:
504 970 *
505 - * - %eip is pointing to sys_sysenter (below).
971 + * - %rip is pointing to sys_sysenter (below).
506 972 * - %cs and %ss are set to kernel text and stack (data) selectors.
507 - * - %esp is pointing at the lwp's stack
508 - * - Interrupts have been disabled.
973 + * - %rsp is pointing at the lwp's stack
974 + * - interrupts have been disabled.
509 975 *
510 - * The task for the sysenter handler is:
976 + * Note that we are unable to return both "rvals" to userland with
977 + * this call, as %edx is used by the sysexit instruction.
511 978 *
512 - * - recreate the same regs structure on the stack and the same
513 - * kernel state as if we'd come in on an lcall
514 - * - do the normal work of a syscall
515 - * - execute the system call epilogue, use sysexit to return to userland.
516 - *
517 - * Note that we are unable to return both "rvals" to userland with this
518 - * call, as %edx is used by the sysexit instruction.
519 - *
520 979 * One final complication in this routine is its interaction with
521 - * single-stepping in a debugger. For most of the system call mechanisms,
522 - * the CPU automatically clears the single-step flag before we enter the
523 - * kernel. The sysenter mechanism does not clear the flag, so a user
524 - * single-stepping through a libc routine may suddenly find themself
525 - * single-stepping through the kernel. To detect this, kmdb compares the
526 - * trap %pc to the [brand_]sys_enter addresses on each single-step trap.
527 - * If it finds that we have single-stepped to a sysenter entry point, it
528 - * explicitly clears the flag and executes the sys_sysenter routine.
980 + * single-stepping in a debugger. For most of the system call mechanisms, the
981 + * CPU automatically clears the single-step flag before we enter the kernel.
982 + * The sysenter mechanism does not clear the flag, so a user single-stepping
983 + * through a libc routine may suddenly find themself single-stepping through the
984 + * kernel. To detect this, kmdb and trap() both compare the trap %pc to the
985 + * [brand_]sys_enter addresses on each single-step trap. If it finds that we
986 + * have single-stepped to a sysenter entry point, it explicitly clears the flag
987 + * and executes the sys_sysenter routine.
529 988 *
530 - * One final complication in this final complication is the fact that we
531 - * have two different entry points for sysenter: brand_sys_sysenter and
532 - * sys_sysenter. If we enter at brand_sys_sysenter and start single-stepping
533 - * through the kernel with kmdb, we will eventually hit the instruction at
534 - * sys_sysenter. kmdb cannot distinguish between that valid single-step
535 - * and the undesirable one mentioned above. To avoid this situation, we
536 - * simply add a jump over the instruction at sys_sysenter to make it
537 - * impossible to single-step to it.
989 + * One final complication in this final complication is the fact that we have
990 + * two different entry points for sysenter: brand_sys_sysenter and sys_sysenter.
991 + * If we enter at brand_sys_sysenter and start single-stepping through the
992 + * kernel with kmdb, we will eventually hit the instruction at sys_sysenter.
993 + * kmdb cannot distinguish between that valid single-step and the undesirable
994 + * one mentioned above. To avoid this situation, we simply add a jump over the
995 + * instruction at sys_sysenter to make it impossible to single-step to it.
538 996 */
539 -#if defined(__lint)
540 997
541 -void
542 -sys_sysenter()
543 -{}
544 -
545 -#else /* __lint */
546 -
547 998 ENTRY_NP(brand_sys_sysenter)
548 - pushl %edx
549 - BRAND_CALLBACK(BRAND_CB_SYSENTER)
550 - popl %edx
999 + SWAPGS /* kernel gsbase */
1000 + ALTENTRY(_brand_sys_sysenter_post_swapgs)
1001 +
1002 + BRAND_CALLBACK(BRAND_CB_SYSENTER, BRAND_URET_FROM_REG(%rdx))
551 1003 /*
552 1004 * Jump over sys_sysenter to allow single-stepping as described
553 1005 * above.
554 1006 */
555 - ja 1f
1007 + jmp _sys_sysenter_post_swapgs
556 1008
557 1009 ALTENTRY(sys_sysenter)
558 - nop
559 -1:
560 - /
561 - / do what the call gate would've done to the stack ..
562 - /
563 - pushl $UDS_SEL / (really %ss, but it's the same ..)
564 - pushl %ecx / userland makes this a copy of %esp
565 - pushfl
566 - orl $PS_IE, (%esp) / turn interrupts on when we return to user
567 - pushl $UCS_SEL
568 - pushl %edx / userland makes this a copy of %eip
569 - /
570 - / done. finish building the stack frame
571 - /
572 - subl $8, %esp / leave space for ERR and TRAPNO
1010 + SWAPGS /* kernel gsbase */
1011 + ALTENTRY(_sys_sysenter_post_swapgs)
573 1012
574 - SYSENTER_PUSH
1013 + movq %gs:CPU_THREAD, %r15
575 1014
576 -#ifdef TRAPTRACE
577 - TRACE_PTR(%edi, %ebx, %ebx, %ecx, $TT_SYSENTER) / uses labels 8 and 9
578 - TRACE_REGS(%edi, %esp, %ebx, %ecx) / uses label 9
579 - pushl %eax
580 - TRACE_STAMP(%edi) / clobbers %eax, %edx, uses label 9
581 - popl %eax
582 - movl %eax, TTR_SYSNUM(%edi)
1015 + movl $U32CS_SEL, REGOFF_CS(%rsp)
1016 + movl %ecx, REGOFF_RSP(%rsp) /* wrapper: %esp -> %ecx */
1017 + movl %edx, REGOFF_RIP(%rsp) /* wrapper: %eip -> %edx */
1018 + /*
1019 + * NOTE: none of the instructions that run before we get here should
1020 + * clobber bits in (R)FLAGS! This includes the kpti trampoline.
1021 + */
1022 + pushfq
1023 + popq %r10
1024 + movl $UDS_SEL, REGOFF_SS(%rsp)
1025 +
1026 + /*
1027 + * Set the interrupt flag before storing the flags to the
1028 + * flags image on the stack so we can return to user with
1029 + * interrupts enabled if we return via sys_rtt_syscall32
1030 + */
1031 + orq $PS_IE, %r10
1032 + movq %r10, REGOFF_RFL(%rsp)
1033 +
1034 + movl %edi, REGOFF_RDI(%rsp)
1035 + movl %esi, REGOFF_RSI(%rsp)
1036 + movl %ebp, REGOFF_RBP(%rsp)
1037 + movl %ebx, REGOFF_RBX(%rsp)
1038 + movl %edx, REGOFF_RDX(%rsp)
1039 + movl %ecx, REGOFF_RCX(%rsp)
1040 + movl %eax, REGOFF_RAX(%rsp) /* wrapper: sysc# -> %eax */
1041 + movq $0, REGOFF_SAVFP(%rsp)
1042 + movq $0, REGOFF_SAVPC(%rsp)
1043 +
1044 + /*
1045 + * Copy these registers here in case we end up stopped with
1046 + * someone (like, say, /proc) messing with our register state.
1047 + * We don't -restore- them unless we have to in update_sregs.
1048 + *
1049 + * Since userland -can't- change fsbase or gsbase directly,
1050 + * we don't bother to capture them here.
1051 + */
1052 + xorl %ebx, %ebx
1053 + movw %ds, %bx
1054 + movq %rbx, REGOFF_DS(%rsp)
1055 + movw %es, %bx
1056 + movq %rbx, REGOFF_ES(%rsp)
1057 + movw %fs, %bx
1058 + movq %rbx, REGOFF_FS(%rsp)
1059 + movw %gs, %bx
1060 + movq %rbx, REGOFF_GS(%rsp)
1061 +
1062 + /*
1063 + * If we're trying to use TRAPTRACE though, I take that back: we're
1064 + * probably debugging some problem in the SWAPGS logic and want to know
1065 + * what the incoming gsbase was.
1066 + *
1067 + * Since we already did SWAPGS, record the KGSBASE.
1068 + */
1069 +#if defined(DEBUG) && defined(TRAPTRACE) && !defined(__xpv)
1070 + movl $MSR_AMD_KGSBASE, %ecx
1071 + rdmsr
1072 + movl %eax, REGOFF_GSBASE(%rsp)
1073 + movl %edx, REGOFF_GSBASE+4(%rsp)
583 1074 #endif
584 - movl %esp, %ebp
585 1075
586 - CPU_STATS_SYS_SYSCALL_INC
1076 + /*
1077 + * Application state saved in the regs structure on the stack
1078 + * %eax is the syscall number
1079 + * %rsp is the thread's stack, %r15 is curthread
1080 + * REG_RSP(%rsp) is the user's stack
1081 + */
587 1082
1083 + SYSCALL_TRAPTRACE($TT_SYSENTER)
1084 +
1085 + movq %rsp, %rbp
1086 +
1087 + movq T_LWP(%r15), %r14
1088 + ASSERT_NO_RUPDATE_PENDING(%r14)
1089 +
588 1090 ENABLE_INTR_FLAGS
589 1091
590 - pushl %eax / preserve across mstate call
1092 + /*
1093 + * Catch 64-bit process trying to issue sysenter instruction
1094 + * on Nocona based systems.
1095 + */
1096 + movq LWP_PROCP(%r14), %rax
1097 + cmpq $DATAMODEL_ILP32, P_MODEL(%rax)
1098 + je 7f
1099 +
1100 + /*
1101 + * For a non-32-bit process, simulate a #ud, since that's what
1102 + * native hardware does. The traptrace entry (above) will
1103 + * let you know what really happened.
1104 + */
1105 + movq $T_ILLINST, REGOFF_TRAPNO(%rsp)
1106 + movq REGOFF_CS(%rsp), %rdi
1107 + movq %rdi, REGOFF_ERR(%rsp)
1108 + movq %rsp, %rdi
1109 + movq REGOFF_RIP(%rsp), %rsi
1110 + movl %gs:CPU_ID, %edx
1111 + call trap
1112 + jmp _sys_rtt
1113 +7:
1114 +
591 1115 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
592 - popl %eax
1116 + movl REGOFF_RAX(%rsp), %eax /* (%rax damaged by mstate calls) */
593 1117
594 - movl %gs:CPU_THREAD, %ebx
1118 + ASSERT_LWPTOREGS(%r14, %rsp)
595 1119
596 - ASSERT_LWPTOREGS(%ebx, %esp)
1120 + incq %gs:CPU_STATS_SYS_SYSCALL
597 1121
598 - CHECK_PRESYS_NE(%ebx, %eax)
599 - jne _full_syscall_presys
600 - SIMPLE_SYSCALL_PRESYS(%ebx, _syscall_fault)
1122 + /*
1123 + * Make some space for MAXSYSARGS (currently 8) 32-bit args
1124 + * placed into 64-bit (long) arg slots, plus one 64-bit
1125 + * (long) arg count, maintaining 16 byte alignment.
1126 + */
1127 + subq $SYS_DROP, %rsp
1128 + movb $LWP_SYS, LWP_STATE(%r14)
1129 + movq %r15, %rdi
1130 + movq %rsp, %rsi
1131 + call syscall_entry
601 1132
602 -_sysenter_call:
603 - call *SY_CALLC(%eax)
1133 + /*
1134 + * Fetch the arguments copied onto the kernel stack and put
1135 + * them in the right registers to invoke a C-style syscall handler.
1136 + * %rax contains the handler address.
1137 + */
1138 + movq %rax, %rbx
1139 + movl 0(%rsp), %edi
1140 + movl 8(%rsp), %esi
1141 + movl 0x10(%rsp), %edx
1142 + movl 0x18(%rsp), %ecx
1143 + movl 0x20(%rsp), %r8d
1144 + movl 0x28(%rsp), %r9d
604 1145
605 -_sysenter_done:
606 - CHECK_POSTSYS_NE(%ebx, %ecx)
607 - jne _full_syscall_postsys
608 - SIMPLE_SYSCALL_POSTSYS(%ebx, %cx)
609 - /
610 - / sysexit uses %edx to restore %eip, so we can't use it
611 - / to return a value, sigh.
612 - /
613 - movl %eax, REGOFF_EAX(%esp)
614 - / movl %edx, REGOFF_EDX(%esp)
1146 + movq SY_CALLC(%rbx), %rax
1147 + INDIRECT_CALL_REG(rax)
615 1148
616 - / Interrupts will be turned on by the 'sti' executed just before
617 - / sysexit. The following ensures that restoring the user's EFLAGS
618 - / doesn't enable interrupts too soon.
619 - andl $_BITNOT(PS_IE), REGOFF_EFL(%esp)
1149 + movq %rbp, %rsp /* pop the args */
620 1150
1151 + /*
1152 + * amd64 syscall handlers -always- return a 64-bit value in %rax.
1153 + * On the 32-bit kernel, the always return that value in %eax:%edx
1154 + * as required by the 32-bit ABI.
1155 + *
1156 + * Simulate the same behaviour by unconditionally splitting the
1157 + * return value in the same way.
1158 + */
1159 + movq %rax, %r13
1160 + shrq $32, %r13 /* upper 32-bits into %edx */
1161 + movl %eax, %r12d /* lower 32-bits into %eax */
1162 +
1163 + /*
1164 + * Optimistically assume that there's no post-syscall
1165 + * work to do. (This is to avoid having to call syscall_mstate()
1166 + * with interrupts disabled)
1167 + */
621 1168 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
622 1169
1170 + /*
1171 + * We must protect ourselves from being descheduled here;
1172 + * If we were, and we ended up on another cpu, or another
1173 + * lwp got int ahead of us, it could change the segment
1174 + * registers without us noticing before we return to userland.
1175 + *
1176 + * This cli is undone in the tr_sysexit trampoline code.
1177 + */
623 1178 cli
1179 + CHECK_POSTSYS_NE(%r15, %r14, %ebx)
1180 + jne _full_syscall_postsys32
1181 + SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
624 1182
625 - SYSCALL_POP
1183 + /*
1184 + * To get back to userland, load up the 32-bit registers and
1185 + * sysexit back where we came from.
1186 + */
626 1187
627 - popl %edx / sysexit: %edx -> %eip
628 - addl $4, %esp / get CS off the stack
629 - popfl / EFL
630 - popl %ecx / sysexit: %ecx -> %esp
631 - sti
632 - sysexit
1188 + /*
1189 + * Interrupts will be turned on by the 'sti' executed just before
1190 + * sysexit. The following ensures that restoring the user's rflags
1191 + * doesn't enable interrupts too soon.
1192 + */
1193 + andq $_BITNOT(PS_IE), REGOFF_RFL(%rsp)
1194 +
1195 + /*
1196 + * Clobber %r11 as we check CR0.TS.
1197 + */
1198 + ASSERT_CR0TS_ZERO(%r11)
1199 +
1200 + /*
1201 + * (There's no point in loading up %edx because the sysexit
1202 + * mechanism smashes it.)
1203 + */
1204 + movl %r12d, %eax
1205 + movl REGOFF_RBX(%rsp), %ebx
1206 + movl REGOFF_RBP(%rsp), %ebp
1207 + movl REGOFF_RSI(%rsp), %esi
1208 + movl REGOFF_RDI(%rsp), %edi
1209 +
1210 + movl REGOFF_RIP(%rsp), %edx /* sysexit: %edx -> %eip */
1211 + pushq REGOFF_RFL(%rsp)
1212 + popfq
1213 + movl REGOFF_RSP(%rsp), %ecx /* sysexit: %ecx -> %esp */
1214 + ALTENTRY(sys_sysenter_swapgs_sysexit)
1215 + call x86_md_clear
1216 + jmp tr_sysexit
1217 + SET_SIZE(sys_sysenter_swapgs_sysexit)
633 1218 SET_SIZE(sys_sysenter)
1219 + SET_SIZE(_sys_sysenter_post_swapgs)
634 1220 SET_SIZE(brand_sys_sysenter)
635 1221
636 1222 /*
1223 + * This is the destination of the "int $T_SYSCALLINT" interrupt gate, used by
1224 + * the generic i386 libc to do system calls. We do a small amount of setup
1225 + * before jumping into the existing sys_syscall32 path.
1226 + */
1227 +
1228 + ENTRY_NP(brand_sys_syscall_int)
1229 + SWAPGS /* kernel gsbase */
1230 + XPV_TRAP_POP
1231 + call smap_enable
1232 + BRAND_CALLBACK(BRAND_CB_INT91, BRAND_URET_FROM_INTR_STACK())
1233 + jmp nopop_syscall_int
1234 +
1235 + ALTENTRY(sys_syscall_int)
1236 + SWAPGS /* kernel gsbase */
1237 + XPV_TRAP_POP
1238 + call smap_enable
1239 +
1240 +nopop_syscall_int:
1241 + movq %gs:CPU_THREAD, %r15
1242 + movq T_STACK(%r15), %rsp
1243 + movl %eax, %eax
1244 + /*
1245 + * Set t_post_sys on this thread to force ourselves out via the slow
1246 + * path. It might be possible at some later date to optimize this out
1247 + * and use a faster return mechanism.
1248 + */
1249 + movb $1, T_POST_SYS(%r15)
1250 + CLEAN_CS
1251 + jmp _syscall32_save
1252 + /*
1253 + * There should be no instructions between this label and SWAPGS/IRET
1254 + * or we could end up breaking branded zone support. See the usage of
1255 + * this label in lx_brand_int80_callback and sn1_brand_int91_callback
1256 + * for examples.
1257 + *
1258 + * We want to swapgs to maintain the invariant that all entries into
1259 + * tr_iret_user are done on the user gsbase.
1260 + */
1261 + ALTENTRY(sys_sysint_swapgs_iret)
1262 + call x86_md_clear
1263 + SWAPGS
1264 + jmp tr_iret_user
1265 + /*NOTREACHED*/
1266 + SET_SIZE(sys_sysint_swapgs_iret)
1267 + SET_SIZE(sys_syscall_int)
1268 + SET_SIZE(brand_sys_syscall_int)
1269 +
1270 +/*
1271 + * Legacy 32-bit applications and old libc implementations do lcalls;
1272 + * we should never get here because the LDT entry containing the syscall
1273 + * segment descriptor has the "segment present" bit cleared, which means
1274 + * we end up processing those system calls in trap() via a not-present trap.
1275 + *
1276 + * We do it this way because a call gate unhelpfully does -nothing- to the
1277 + * interrupt flag bit, so an interrupt can run us just after the lcall
1278 + * completes, but just before the swapgs takes effect. Thus the INTR_PUSH and
1279 + * INTR_POP paths would have to be slightly more complex to dance around
1280 + * this problem, and end up depending explicitly on the first
1281 + * instruction of this handler being either swapgs or cli.
1282 + */
1283 +
1284 + ENTRY_NP(sys_lcall32)
1285 + SWAPGS /* kernel gsbase */
1286 + pushq $0
1287 + pushq %rbp
1288 + movq %rsp, %rbp
1289 + leaq __lcall_panic_str(%rip), %rdi
1290 + xorl %eax, %eax
1291 + call panic
1292 + SET_SIZE(sys_lcall32)
1293 +
1294 +__lcall_panic_str:
1295 + .string "sys_lcall32: shouldn't be here!"
1296 +
1297 +/*
637 1298 * Declare a uintptr_t which covers the entire pc range of syscall
638 1299 * handlers for the stack walkers that need this.
639 1300 */
640 1301 .align CPTRSIZE
641 1302 .globl _allsyscalls_size
642 1303 .type _allsyscalls_size, @object
643 1304 _allsyscalls_size:
644 1305 .NWORD . - _allsyscalls
645 1306 SET_SIZE(_allsyscalls_size)
646 1307
647 -#endif /* __lint */
648 -
649 1308 /*
650 1309 * These are the thread context handlers for lwps using sysenter/sysexit.
651 1310 */
652 1311
653 -#if defined(__lint)
654 -
655 -/*ARGSUSED*/
656 -void
657 -sep_save(void *ksp)
658 -{}
659 -
660 -/*ARGSUSED*/
661 -void
662 -sep_restore(void *ksp)
663 -{}
664 -
665 -#else /* __lint */
666 -
667 1312 /*
668 1313 * setting this value to zero as we switch away causes the
669 1314 * stack-pointer-on-sysenter to be NULL, ensuring that we
670 1315 * don't silently corrupt another (preempted) thread stack
671 1316 * when running an lwp that (somehow) didn't get sep_restore'd
672 1317 */
673 1318 ENTRY_NP(sep_save)
674 1319 xorl %edx, %edx
675 1320 xorl %eax, %eax
676 1321 movl $MSR_INTC_SEP_ESP, %ecx
677 1322 wrmsr
678 1323 ret
679 1324 SET_SIZE(sep_save)
680 1325
681 1326 /*
682 1327 * Update the kernel stack pointer as we resume onto this cpu.
683 1328 */
684 1329 ENTRY_NP(sep_restore)
685 - movl 4(%esp), %eax /* per-lwp kernel sp */
686 - xorl %edx, %edx
1330 + movq %rdi, %rdx
1331 + shrq $32, %rdx
1332 + movl %edi, %eax
687 1333 movl $MSR_INTC_SEP_ESP, %ecx
688 1334 wrmsr
689 1335 ret
690 1336 SET_SIZE(sep_restore)
691 1337
692 -#endif /* __lint */
693 -
694 -/*
695 - * Call syscall(). Called from trap() on watchpoint at lcall 0,7
696 - */
697 -
698 -#if defined(__lint)
699 -
700 -void
701 -watch_syscall(void)
702 -{}
703 -
704 -#else /* __lint */
705 -
706 - ENTRY_NP(watch_syscall)
707 - CLI(%eax)
708 - movl %gs:CPU_THREAD, %ebx
709 - movl T_STACK(%ebx), %esp / switch to the thread stack
710 - movl REGOFF_EAX(%esp), %eax / recover original syscall#
711 - jmp _watch_do_syscall
712 - SET_SIZE(watch_syscall)
713 -
714 -#endif /* __lint */
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX