Print this page
de-linting of .s files
remove inlines,some other files

*** 18,641 **** * * CDDL HEADER END */ /* * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2016 by Delphix. All rights reserved. */ - /* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */ - /* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */ - /* All Rights Reserved */ - - /* Copyright (c) 1987, 1988 Microsoft Corporation */ - /* All Rights Reserved */ - #include <sys/asm_linkage.h> #include <sys/asm_misc.h> #include <sys/regset.h> #include <sys/psw.h> - #include <sys/x86_archext.h> #include <sys/machbrand.h> - #include <sys/privregs.h> - #if defined(__lint) - - #include <sys/types.h> - #include <sys/thread.h> - #include <sys/systm.h> - - #else /* __lint */ - #include <sys/segments.h> #include <sys/pcb.h> #include <sys/trap.h> #include <sys/ftrace.h> #include <sys/traptrace.h> #include <sys/clock.h> #include <sys/panic.h> - #include "assym.h" ! #endif /* __lint */ /* ! * We implement two flavours of system call entry points * ! * - {int,lcall}/iret (i386) ! * - sysenter/sysexit (Pentium II and beyond) * ! * The basic pattern used in the handlers is to check to see if we can ! * do fast (simple) version of the system call; if we can't we use various ! * C routines that handle corner cases and debugging. * ! * To reduce the amount of assembler replication, yet keep the system call ! * implementations vaguely comprehensible, the common code in the body ! * of the handlers is broken up into a set of preprocessor definitions ! * below. */ - /* - * When we have SYSCALLTRACE defined, we sneak an extra - * predicate into a couple of tests. - */ #if defined(SYSCALLTRACE) #define ORL_SYSCALLTRACE(r32) \ ! orl syscalltrace, r32 #else #define ORL_SYSCALLTRACE(r32) #endif /* ! * This check is false whenever we want to go fast i.e. * - * if (code >= NSYSCALL || - * t->t_pre_sys || (t->t_proc_flag & TP_WATCHPT) != 0) - * do full version - * #ifdef SYSCALLTRACE - * if (syscalltrace) - * do full version - * #endif - * - * Preconditions: - * - t curthread - * - code contains the syscall number - * Postconditions: - * - %ecx and %edi are smashed - * - condition code flag ZF is cleared if pre-sys is too complex - */ - #define CHECK_PRESYS_NE(t, code) \ - movzbl T_PRE_SYS(t), %edi; \ - movzwl T_PROC_FLAG(t), %ecx; \ - andl $TP_WATCHPT, %ecx; \ - orl %ecx, %edi; \ - cmpl $NSYSCALL, code; \ - setae %cl; \ - movzbl %cl, %ecx; \ - orl %ecx, %edi; \ - ORL_SYSCALLTRACE(%edi) - - /* * Check if a brand_mach_ops callback is defined for the specified callback_id ! * type. If so invoke it with the user's %gs value loaded and the following * data on the stack: * -------------------------------------- ! * | user's %ss | * | | user's %esp | * | | EFLAGS register | ! * | | user's %cs | ! * | | user's %eip (user return address) | ! * | | 'scratch space' | ! * | | user's %ebx | ! * | | user's %gs selector | ! * v | lwp pointer | ! * | callback wrapper return addr | ! * -------------------------------------- * ! * If the brand code returns, we assume that we are meant to execute the ! * normal system call path. * ! * The interface to the brand callbacks on the 32-bit kernel assumes %ebx * is available as a scratch register within the callback. If the callback ! * returns within the kernel then this macro will restore %ebx. If the * callback is going to return directly to userland then it should restore ! * %ebx before returning to userland. */ ! #define BRAND_CALLBACK(callback_id) \ ! subl $4, %esp /* save some scratch space */ ;\ ! pushl %ebx /* save %ebx to use for scratch */ ;\ ! pushl %gs /* save the user %gs */ ;\ ! movl $KGS_SEL, %ebx ;\ ! movw %bx, %gs /* switch to the kernel's %gs */ ;\ ! movl %gs:CPU_THREAD, %ebx /* load the thread pointer */ ;\ ! movl T_LWP(%ebx), %ebx /* load the lwp pointer */ ;\ ! pushl %ebx /* push the lwp pointer */ ;\ ! movl LWP_PROCP(%ebx), %ebx /* load the proc pointer */ ;\ ! movl P_BRAND(%ebx), %ebx /* load the brand pointer */ ;\ ! movl B_MACHOPS(%ebx), %ebx /* load the machops pointer */ ;\ ! movl _CONST(_MUL(callback_id, CPTRSIZE))(%ebx), %ebx ;\ ! cmpl $0, %ebx ;\ je 1f ;\ ! movl %ebx, 12(%esp) /* save callback to scratch */ ;\ ! movl 4(%esp), %ebx /* grab the user %gs */ ;\ ! movw %bx, %gs /* restore the user %gs */ ;\ ! call *12(%esp) /* call callback in scratch */ ;\ ! 1: movl 4(%esp), %ebx /* restore user %gs (re-do if */ ;\ ! movw %bx, %gs /* branch due to no callback) */ ;\ ! movl 8(%esp), %ebx /* restore user's %ebx */ ;\ ! addl $16, %esp /* restore stack ptr */ #define MSTATE_TRANSITION(from, to) \ ! pushl $to; \ ! pushl $from; \ ! call syscall_mstate; \ ! addl $0x8, %esp /* ! * aka CPU_STATS_ADDQ(CPU, sys.syscall, 1) ! * This must be called with interrupts or preemption disabled. */ ! #define CPU_STATS_SYS_SYSCALL_INC \ ! addl $1, %gs:CPU_STATS_SYS_SYSCALL; \ ! adcl $0, %gs:CPU_STATS_SYS_SYSCALL+4; ! #if !defined(__lint) /* * ASSERT(lwptoregs(lwp) == rp); * ! * this may seem obvious, but very odd things happen if this * assertion is false * * Preconditions: * -none- * Postconditions (if assertion is true): ! * %esi and %edi are smashed */ #if defined(DEBUG) __lwptoregs_msg: .string "syscall_asm.s:%d lwptoregs(%p) [%p] != rp [%p]" ! #define ASSERT_LWPTOREGS(t, rp) \ ! movl T_LWP(t), %esi; \ ! movl LWP_REGS(%esi), %edi; \ ! cmpl rp, %edi; \ je 7f; \ ! pushl rp; \ ! pushl %edi; \ ! pushl %esi; \ ! pushl $__LINE__; \ ! pushl $__lwptoregs_msg; \ call panic; \ 7: #else ! #define ASSERT_LWPTOREGS(t, rp) #endif - #endif /* __lint */ - /* ! * This is an assembler version of this fragment: ! * ! * lwp->lwp_state = LWP_SYS; ! * lwp->lwp_ru.sysc++; ! * lwp->lwp_eosys = NORMALRETURN; ! * lwp->lwp_ap = argp; ! * ! * Preconditions: ! * -none- ! * Postconditions: ! * -none- */ ! #define SET_LWP(lwp, argp) \ ! movb $LWP_SYS, LWP_STATE(lwp); \ ! addl $1, LWP_RU_SYSC(lwp); \ ! adcl $0, LWP_RU_SYSC+4(lwp); \ ! movb $NORMALRETURN, LWP_EOSYS(lwp); \ ! movl argp, LWP_AP(lwp) ! /* ! * Set up the thread, lwp, find the handler, and copy ! * in the arguments from userland to the kernel stack. ! * ! * Preconditions: ! * - %eax contains the syscall number ! * Postconditions: ! * - %eax contains a pointer to the sysent structure ! * - %ecx is zeroed ! * - %esi, %edi are smashed ! * - %esp is SYS_DROPped ready for the syscall ! */ ! #define SIMPLE_SYSCALL_PRESYS(t, faultlabel) \ ! movl T_LWP(t), %esi; \ ! movw %ax, T_SYSNUM(t); \ ! subl $SYS_DROP, %esp; \ ! shll $SYSENT_SIZE_SHIFT, %eax; \ ! SET_LWP(%esi, %esp); \ ! leal sysent(%eax), %eax; \ ! movzbl SY_NARG(%eax), %ecx; \ ! testl %ecx, %ecx; \ ! jz 4f; \ ! movl %esp, %edi; \ ! movl SYS_DROP + REGOFF_UESP(%esp), %esi; \ ! movl $faultlabel, T_LOFAULT(t); \ ! addl $4, %esi; \ ! rep; \ ! smovl; \ ! movl %ecx, T_LOFAULT(t); \ ! 4: /* ! * Check to see if a simple return is possible i.e. * ! * if ((t->t_post_sys_ast | syscalltrace) != 0) ! * do full version; * ! * Preconditions: ! * - t is curthread ! * Postconditions: ! * - condition code NE is set if post-sys is too complex ! * - rtmp is zeroed if it isn't (we rely on this!) ! */ ! #define CHECK_POSTSYS_NE(t, rtmp) \ ! xorl rtmp, rtmp; \ ! ORL_SYSCALLTRACE(rtmp); \ ! orl T_POST_SYS_AST(t), rtmp; \ ! cmpl $0, rtmp ! ! /* ! * Fix up the lwp, thread, and eflags for a successful return * ! * Preconditions: ! * - zwreg contains zero ! * Postconditions: ! * - %esp has been unSYS_DROPped ! * - %esi is smashed (points to lwp) ! */ ! #define SIMPLE_SYSCALL_POSTSYS(t, zwreg) \ ! movl T_LWP(t), %esi; \ ! addl $SYS_DROP, %esp; \ ! movw zwreg, T_SYSNUM(t); \ ! movb $LWP_USER, LWP_STATE(%esi); \ ! andb $_CONST(0xffff - PS_C), REGOFF_EFL(%esp) ! ! /* ! * System call handler. This is the destination of both the call ! * gate (lcall 0x27) _and_ the interrupt gate (int 0x91). For our purposes, ! * there are two significant differences between an interrupt gate and a call ! * gate: * ! * 1) An interrupt gate runs the handler with interrupts disabled, whereas a ! * call gate runs the handler with whatever EFLAGS settings were in effect at ! * the time of the call. * ! * 2) An interrupt gate pushes the contents of the EFLAGS register at the time ! * of the interrupt onto the stack, whereas a call gate does not. * ! * Because we use the following code sequence to handle system calls made from ! * _both_ a call gate _and_ an interrupt gate, these two differences must be ! * respected. In regards to number 1) above, the handler must ensure that a sane ! * EFLAGS snapshot is stored on the stack so that when the kernel returns back ! * to the user via iret (which returns to user with the EFLAGS value saved on ! * the stack), interrupts are re-enabled. * ! * In regards to number 2) above, the handler must always put a current snapshot ! * of EFLAGS onto the stack in the appropriate place. If we came in via an ! * interrupt gate, we will be clobbering the EFLAGS value that was pushed by ! * the interrupt gate. This is OK, as the only bit that was changed by the ! * hardware was the IE (interrupt enable) bit, which for an interrupt gate is ! * now off. If we were to do nothing, the stack would contain an EFLAGS with ! * IE off, resulting in us eventually returning back to the user with interrupts ! * disabled. The solution is to turn on the IE bit in the EFLAGS value saved on ! * the stack. * ! * Another subtlety which deserves mention is the difference between the two ! * descriptors. The call gate descriptor is set to instruct the hardware to copy ! * one parameter from the user stack to the kernel stack, whereas the interrupt ! * gate descriptor doesn't use the parameter passing mechanism at all. The ! * kernel doesn't actually use the parameter that is copied by the hardware; the ! * only reason it does this is so that there is a space on the stack large ! * enough to hold an EFLAGS register value, which happens to be in the correct ! * place for use by iret when we go back to userland. How convenient. * ! * Stack frame description in syscall() and callees. * - * |------------| - * | regs | +(8*4)+4 registers - * |------------| - * | 8 args | <- %esp MAXSYSARGS (currently 8) arguments - * |------------| * */ ! #define SYS_DROP _CONST(_MUL(MAXSYSARGS, 4)) ! #if defined(__lint) ! /*ARGSUSED*/ ! void ! sys_call() ! {} ! void ! _allsyscalls() ! {} ! size_t _allsyscalls_size; ! #else /* __lint */ ! ENTRY_NP2(brand_sys_call, _allsyscalls) ! BRAND_CALLBACK(BRAND_CB_SYSCALL) ! ALTENTRY(sys_call) ! / on entry eax = system call number ! / set up the stack to look as in reg.h ! subl $8, %esp / pad the stack with ERRCODE and TRAPNO ! SYSCALL_PUSH ! #ifdef TRAPTRACE ! TRACE_PTR(%edi, %ebx, %ebx, %ecx, $TT_SYSCALL) / Uses labels "8" and "9" ! TRACE_REGS(%edi, %esp, %ebx, %ecx) / Uses label "9" ! pushl %eax ! TRACE_STAMP(%edi) / Clobbers %eax, %edx, uses "9" ! popl %eax ! movl %eax, TTR_SYSNUM(%edi) #endif ! _watch_do_syscall: ! movl %esp, %ebp ! / Interrupts may be enabled here, so we must make sure this thread ! / doesn't migrate off the CPU while it updates the CPU stats. ! / ! / XXX This is only true if we got here via call gate thru the LDT for ! / old style syscalls. Perhaps this preempt++-- will go away soon? ! movl %gs:CPU_THREAD, %ebx ! addb $1, T_PREEMPT(%ebx) ! CPU_STATS_SYS_SYSCALL_INC ! subb $1, T_PREEMPT(%ebx) ENABLE_INTR_FLAGS - pushl %eax / preserve across mstate call MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM) ! popl %eax ! movl %gs:CPU_THREAD, %ebx ! ASSERT_LWPTOREGS(%ebx, %esp) ! CHECK_PRESYS_NE(%ebx, %eax) ! jne _full_syscall_presys ! SIMPLE_SYSCALL_PRESYS(%ebx, _syscall_fault) ! _syslcall_call: ! call *SY_CALLC(%eax) ! _syslcall_done: ! CHECK_POSTSYS_NE(%ebx, %ecx) ! jne _full_syscall_postsys ! SIMPLE_SYSCALL_POSTSYS(%ebx, %cx) ! movl %eax, REGOFF_EAX(%esp) ! movl %edx, REGOFF_EDX(%esp) MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER) ! / ! / get back via iret ! / ! CLI(%edx) ! jmp sys_rtt_syscall ! _full_syscall_presys: ! movl T_LWP(%ebx), %esi ! subl $SYS_DROP, %esp ! movb $LWP_SYS, LWP_STATE(%esi) ! pushl %esp ! pushl %ebx ! call syscall_entry ! addl $8, %esp ! jmp _syslcall_call ! _full_syscall_postsys: ! addl $SYS_DROP, %esp ! pushl %edx ! pushl %eax ! pushl %ebx ! call syscall_exit ! addl $12, %esp MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER) jmp _sys_rtt ! _syscall_fault: ! push $0xe / EFAULT ! call set_errno ! addl $4, %esp ! xorl %eax, %eax / fake syscall_err() ! xorl %edx, %edx ! jmp _syslcall_done ! SET_SIZE(sys_call) ! SET_SIZE(brand_sys_call) ! #endif /* __lint */ ! /* ! * System call handler via the sysenter instruction * ! * Here's how syscall entry usually works (see sys_call for details). * ! * There, the caller (lcall or int) in userland has arranged that: * ! * - %eax contains the syscall number ! * - the user stack contains the args to the syscall * ! * Normally the lcall instruction into the call gate causes the processor ! * to push %ss, %esp, <top-of-stack>, %cs, %eip onto the kernel stack. ! * The sys_call handler then leaves space for r_trapno and r_err, and ! * pusha's {%eax, %ecx, %edx, %ebx, %esp, %ebp, %esi, %edi}, followed ! * by %ds, %es, %fs and %gs to capture a 'struct regs' on the stack. ! * Then the kernel sets %ds, %es and %gs to kernel selectors, and finally ! * extracts %efl and puts it into r_efl (which happens to live at the offset ! * that <top-of-stack> was copied into). Note that the value in r_efl has ! * the IF (interrupt enable) flag turned on. (The int instruction into the ! * interrupt gate does essentially the same thing, only instead of ! * <top-of-stack> we get eflags - see comment above.) * ! * In the sysenter case, things are a lot more primitive. * * The caller in userland has arranged that: * * - %eax contains the syscall number * - %ecx contains the user %esp * - %edx contains the return %eip * - the user stack contains the args to the syscall * - * e.g. - * <args on the stack> - * mov $SYS_callnum, %eax - * mov $1f, %edx / return %eip - * mov %esp, %ecx / return %esp - * sysenter - * 1: - * * Hardware and (privileged) initialization code have arranged that by * the time the sysenter instructions completes: * ! * - %eip is pointing to sys_sysenter (below). * - %cs and %ss are set to kernel text and stack (data) selectors. ! * - %esp is pointing at the lwp's stack ! * - Interrupts have been disabled. * ! * The task for the sysenter handler is: * - * - recreate the same regs structure on the stack and the same - * kernel state as if we'd come in on an lcall - * - do the normal work of a syscall - * - execute the system call epilogue, use sysexit to return to userland. - * - * Note that we are unable to return both "rvals" to userland with this - * call, as %edx is used by the sysexit instruction. - * * One final complication in this routine is its interaction with ! * single-stepping in a debugger. For most of the system call mechanisms, ! * the CPU automatically clears the single-step flag before we enter the ! * kernel. The sysenter mechanism does not clear the flag, so a user ! * single-stepping through a libc routine may suddenly find themself ! * single-stepping through the kernel. To detect this, kmdb compares the ! * trap %pc to the [brand_]sys_enter addresses on each single-step trap. ! * If it finds that we have single-stepped to a sysenter entry point, it ! * explicitly clears the flag and executes the sys_sysenter routine. * ! * One final complication in this final complication is the fact that we ! * have two different entry points for sysenter: brand_sys_sysenter and ! * sys_sysenter. If we enter at brand_sys_sysenter and start single-stepping ! * through the kernel with kmdb, we will eventually hit the instruction at ! * sys_sysenter. kmdb cannot distinguish between that valid single-step ! * and the undesirable one mentioned above. To avoid this situation, we ! * simply add a jump over the instruction at sys_sysenter to make it ! * impossible to single-step to it. */ - #if defined(__lint) - void - sys_sysenter() - {} - - #else /* __lint */ - ENTRY_NP(brand_sys_sysenter) ! pushl %edx ! BRAND_CALLBACK(BRAND_CB_SYSENTER) ! popl %edx /* * Jump over sys_sysenter to allow single-stepping as described * above. */ ! ja 1f ALTENTRY(sys_sysenter) ! nop ! 1: ! / ! / do what the call gate would've done to the stack .. ! / ! pushl $UDS_SEL / (really %ss, but it's the same ..) ! pushl %ecx / userland makes this a copy of %esp ! pushfl ! orl $PS_IE, (%esp) / turn interrupts on when we return to user ! pushl $UCS_SEL ! pushl %edx / userland makes this a copy of %eip ! / ! / done. finish building the stack frame ! / ! subl $8, %esp / leave space for ERR and TRAPNO ! SYSENTER_PUSH ! #ifdef TRAPTRACE ! TRACE_PTR(%edi, %ebx, %ebx, %ecx, $TT_SYSENTER) / uses labels 8 and 9 ! TRACE_REGS(%edi, %esp, %ebx, %ecx) / uses label 9 ! pushl %eax ! TRACE_STAMP(%edi) / clobbers %eax, %edx, uses label 9 ! popl %eax ! movl %eax, TTR_SYSNUM(%edi) #endif - movl %esp, %ebp ! CPU_STATS_SYS_SYSCALL_INC ENABLE_INTR_FLAGS ! pushl %eax / preserve across mstate call MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM) ! popl %eax ! movl %gs:CPU_THREAD, %ebx ! ASSERT_LWPTOREGS(%ebx, %esp) ! CHECK_PRESYS_NE(%ebx, %eax) ! jne _full_syscall_presys ! SIMPLE_SYSCALL_PRESYS(%ebx, _syscall_fault) ! _sysenter_call: ! call *SY_CALLC(%eax) ! _sysenter_done: ! CHECK_POSTSYS_NE(%ebx, %ecx) ! jne _full_syscall_postsys ! SIMPLE_SYSCALL_POSTSYS(%ebx, %cx) ! / ! / sysexit uses %edx to restore %eip, so we can't use it ! / to return a value, sigh. ! / ! movl %eax, REGOFF_EAX(%esp) ! / movl %edx, REGOFF_EDX(%esp) ! / Interrupts will be turned on by the 'sti' executed just before ! / sysexit. The following ensures that restoring the user's EFLAGS ! / doesn't enable interrupts too soon. ! andl $_BITNOT(PS_IE), REGOFF_EFL(%esp) MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER) cli ! SYSCALL_POP ! popl %edx / sysexit: %edx -> %eip ! addl $4, %esp / get CS off the stack ! popfl / EFL ! popl %ecx / sysexit: %ecx -> %esp ! sti ! sysexit SET_SIZE(sys_sysenter) SET_SIZE(brand_sys_sysenter) /* * Declare a uintptr_t which covers the entire pc range of syscall * handlers for the stack walkers that need this. */ .align CPTRSIZE .globl _allsyscalls_size --- 18,1302 ---- * * CDDL HEADER END */ /* * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. + * Copyright 2019 Joyent, Inc. * Copyright (c) 2016 by Delphix. All rights reserved. */ #include <sys/asm_linkage.h> #include <sys/asm_misc.h> #include <sys/regset.h> + #include <sys/privregs.h> #include <sys/psw.h> #include <sys/machbrand.h> #include <sys/segments.h> #include <sys/pcb.h> #include <sys/trap.h> #include <sys/ftrace.h> #include <sys/traptrace.h> #include <sys/clock.h> + #include <sys/model.h> #include <sys/panic.h> ! #if defined(__xpv) ! #include <sys/hypervisor.h> ! #endif + #include "assym.h" + /* ! * We implement five flavours of system call entry points * ! * - syscall/sysretq (amd64 generic) ! * - syscall/sysretl (i386 plus SYSC bit) ! * - sysenter/sysexit (i386 plus SEP bit) ! * - int/iret (i386 generic) ! * - lcall/iret (i386 generic) * ! * The current libc included in Solaris uses int/iret as the base unoptimized ! * kernel entry method. Older libc implementations and legacy binaries may use ! * the lcall call gate, so it must continue to be supported. * ! * System calls that use an lcall call gate are processed in trap() via a ! * segment-not-present trap, i.e. lcalls are extremely slow(!). ! * ! * The basic pattern used in the 32-bit SYSC handler at this point in time is ! * to have the bare minimum of assembler, and get to the C handlers as ! * quickly as possible. ! * ! * The 64-bit handler is much closer to the sparcv9 handler; that's ! * because of passing arguments in registers. The 32-bit world still ! * passes arguments on the stack -- that makes that handler substantially ! * more complex. ! * ! * The two handlers share a few code fragments which are broken ! * out into preprocessor macros below. ! * ! * XX64 come back and speed all this up later. The 32-bit stuff looks ! * especially easy to speed up the argument copying part .. ! * ! * ! * Notes about segment register usage (c.f. the 32-bit kernel) ! * ! * In the 32-bit kernel, segment registers are dutifully saved and ! * restored on all mode transitions because the kernel uses them directly. ! * When the processor is running in 64-bit mode, segment registers are ! * largely ignored. ! * ! * %cs and %ss ! * controlled by the hardware mechanisms that make mode transitions ! * ! * The remaining segment registers have to either be pointing at a valid ! * descriptor i.e. with the 'present' bit set, or they can NULL descriptors ! * ! * %ds and %es ! * always ignored ! * ! * %fs and %gs ! * fsbase and gsbase are used to control the place they really point at. ! * The kernel only depends on %gs, and controls its own gsbase via swapgs ! * ! * Note that loading segment registers is still costly because the GDT ! * lookup still happens (this is because the hardware can't know that we're ! * not setting up these segment registers for a 32-bit program). Thus we ! * avoid doing this in the syscall path, and defer them to lwp context switch ! * handlers, so the register values remain virtualized to the lwp. */ #if defined(SYSCALLTRACE) #define ORL_SYSCALLTRACE(r32) \ ! orl syscalltrace(%rip), r32 #else #define ORL_SYSCALLTRACE(r32) #endif /* ! * In the 32-bit kernel, we do absolutely nothing before getting into the ! * brand callback checks. In 64-bit land, we do swapgs and then come here. ! * We assume that the %rsp- and %r15-stashing fields in the CPU structure ! * are still unused. * * Check if a brand_mach_ops callback is defined for the specified callback_id ! * type. If so invoke it with the kernel's %gs value loaded and the following * data on the stack: + * + * stack: -------------------------------------- + * 32 | callback pointer | + * | 24 | user (or interrupt) stack pointer | + * | 16 | lwp pointer | + * v 8 | userland return address | + * 0 | callback wrapper return addr | * -------------------------------------- ! * ! * Since we're pushing the userland return address onto the kernel stack ! * we need to get that address without accessing the user's stack (since we ! * can't trust that data). There are different ways to get the userland ! * return address depending on how the syscall trap was made: ! * ! * a) For sys_syscall and sys_syscall32 the return address is in %rcx. ! * b) For sys_sysenter the return address is in %rdx. ! * c) For sys_int80 and sys_syscall_int (int91), upon entry into the macro, ! * the stack pointer points at the state saved when we took the interrupt: ! * ------------------------ ! * | | user's %ss | * | | user's %esp | * | | EFLAGS register | ! * v | user's %cs | ! * | user's %eip | ! * ------------------------ * ! * The 2nd parameter to the BRAND_CALLBACK macro is either the ! * BRAND_URET_FROM_REG or BRAND_URET_FROM_INTR_STACK macro. These macros are ! * used to generate the proper code to get the userland return address for ! * each syscall entry point. * ! * The interface to the brand callbacks on the 64-bit kernel assumes %r15 * is available as a scratch register within the callback. If the callback ! * returns within the kernel then this macro will restore %r15. If the * callback is going to return directly to userland then it should restore ! * %r15 before returning to userland. */ ! #define BRAND_URET_FROM_REG(rip_reg) \ ! pushq rip_reg /* push the return address */ ! ! /* ! * The interrupt stack pointer we saved on entry to the BRAND_CALLBACK macro ! * is currently pointing at the user return address (%eip). ! */ ! #define BRAND_URET_FROM_INTR_STACK() \ ! movq %gs:CPU_RTMP_RSP, %r15 /* grab the intr. stack pointer */ ;\ ! pushq (%r15) /* push the return address */ ! ! #define BRAND_CALLBACK(callback_id, push_userland_ret) \ ! movq %rsp, %gs:CPU_RTMP_RSP /* save the stack pointer */ ;\ ! movq %r15, %gs:CPU_RTMP_R15 /* save %r15 */ ;\ ! movq %gs:CPU_THREAD, %r15 /* load the thread pointer */ ;\ ! movq T_STACK(%r15), %rsp /* switch to the kernel stack */ ;\ ! subq $16, %rsp /* save space for 2 pointers */ ;\ ! pushq %r14 /* save %r14 */ ;\ ! movq %gs:CPU_RTMP_RSP, %r14 ;\ ! movq %r14, 8(%rsp) /* stash the user stack pointer */ ;\ ! popq %r14 /* restore %r14 */ ;\ ! movq T_LWP(%r15), %r15 /* load the lwp pointer */ ;\ ! pushq %r15 /* push the lwp pointer */ ;\ ! movq LWP_PROCP(%r15), %r15 /* load the proc pointer */ ;\ ! movq P_BRAND(%r15), %r15 /* load the brand pointer */ ;\ ! movq B_MACHOPS(%r15), %r15 /* load the machops pointer */ ;\ ! movq _CONST(_MUL(callback_id, CPTRSIZE))(%r15), %r15 ;\ ! cmpq $0, %r15 ;\ je 1f ;\ ! movq %r15, 16(%rsp) /* save the callback pointer */ ;\ ! push_userland_ret /* push the return address */ ;\ ! movq 24(%rsp), %r15 /* load callback pointer */ ;\ ! INDIRECT_CALL_REG(r15) /* call callback */ ;\ ! 1: movq %gs:CPU_RTMP_R15, %r15 /* restore %r15 */ ;\ ! movq %gs:CPU_RTMP_RSP, %rsp /* restore the stack pointer */ #define MSTATE_TRANSITION(from, to) \ ! movl $from, %edi; \ ! movl $to, %esi; \ ! call syscall_mstate /* ! * Check to see if a simple (direct) return is possible i.e. ! * ! * if (t->t_post_sys_ast | syscalltrace | ! * lwp->lwp_pcb.pcb_rupdate == 1) ! * do full version ; ! * ! * Preconditions: ! * - t is curthread ! * Postconditions: ! * - condition code NE is set if post-sys is too complex ! * - rtmp is zeroed if it isn't (we rely on this!) ! * - ltmp is smashed */ ! #define CHECK_POSTSYS_NE(t, ltmp, rtmp) \ ! movq T_LWP(t), ltmp; \ ! movzbl PCB_RUPDATE(ltmp), rtmp; \ ! ORL_SYSCALLTRACE(rtmp); \ ! orl T_POST_SYS_AST(t), rtmp; \ ! cmpl $0, rtmp ! /* ! * Fix up the lwp, thread, and eflags for a successful return ! * ! * Preconditions: ! * - zwreg contains zero ! */ ! #define SIMPLE_SYSCALL_POSTSYS(t, lwp, zwreg) \ ! movb $LWP_USER, LWP_STATE(lwp); \ ! movw zwreg, T_SYSNUM(t); \ ! andb $_CONST(0xffff - PS_C), REGOFF_RFL(%rsp) /* * ASSERT(lwptoregs(lwp) == rp); * ! * This may seem obvious, but very odd things happen if this * assertion is false * * Preconditions: + * (%rsp is ready for normal call sequence) + * Postconditions (if assertion is true): + * %r11 is smashed + * + * ASSERT(rp->r_cs == descnum) + * + * The code selector is written into the regs structure when the + * lwp stack is created. We use this ASSERT to validate that + * the regs structure really matches how we came in. + * + * Preconditions: + * (%rsp is ready for normal call sequence) + * Postconditions (if assertion is true): * -none- + * + * ASSERT(lwp->lwp_pcb.pcb_rupdate == 0); + * + * If this is false, it meant that we returned to userland without + * updating the segment registers as we were supposed to. + * + * Note that we must ensure no interrupts or other traps intervene + * between entering privileged mode and performing the assertion, + * otherwise we may perform a context switch on the thread, which + * will end up setting pcb_rupdate to 1 again. + * + * ASSERT(%cr0 & CR0_TS == 0); + * Preconditions: + * (%rsp is ready for normal call sequence) * Postconditions (if assertion is true): ! * (specified register is clobbered) ! * ! * Check to make sure that we are returning to user land and that CR0.TS ! * is not set. This is required as part of the eager FPU (see ! * uts/intel/ia32/os/fpu.c for more information). */ + #if defined(DEBUG) __lwptoregs_msg: .string "syscall_asm.s:%d lwptoregs(%p) [%p] != rp [%p]" ! __codesel_msg: ! .string "syscall_asm.s:%d rp->r_cs [%ld] != %ld" ! ! __no_rupdate_msg: ! .string "syscall_asm.s:%d lwp %p, pcb_rupdate != 0" ! ! __bad_ts_msg: ! .string "syscall_asm.s:%d CR0.TS set on user return" ! ! #define ASSERT_LWPTOREGS(lwp, rp) \ ! movq LWP_REGS(lwp), %r11; \ ! cmpq rp, %r11; \ je 7f; \ ! leaq __lwptoregs_msg(%rip), %rdi; \ ! movl $__LINE__, %esi; \ ! movq lwp, %rdx; \ ! movq %r11, %rcx; \ ! movq rp, %r8; \ ! xorl %eax, %eax; \ call panic; \ 7: + + #define ASSERT_NO_RUPDATE_PENDING(lwp) \ + testb $0x1, PCB_RUPDATE(lwp); \ + je 8f; \ + movq lwp, %rdx; \ + leaq __no_rupdate_msg(%rip), %rdi; \ + movl $__LINE__, %esi; \ + xorl %eax, %eax; \ + call panic; \ + 8: + + #define ASSERT_CR0TS_ZERO(reg) \ + movq %cr0, reg; \ + testq $CR0_TS, reg; \ + jz 9f; \ + leaq __bad_ts_msg(%rip), %rdi; \ + movl $__LINE__, %esi; \ + xorl %eax, %eax; \ + call panic; \ + 9: + #else ! #define ASSERT_LWPTOREGS(lwp, rp) ! #define ASSERT_NO_RUPDATE_PENDING(lwp) ! #define ASSERT_CR0TS_ZERO(reg) #endif /* ! * Do the traptrace thing and restore any registers we used ! * in situ. Assumes that %rsp is pointing at the base of ! * the struct regs, obviously .. */ ! #ifdef TRAPTRACE ! #define SYSCALL_TRAPTRACE(ttype) \ ! TRACE_PTR(%rdi, %rbx, %ebx, %rcx, ttype); \ ! TRACE_REGS(%rdi, %rsp, %rbx, %rcx); \ ! TRACE_STAMP(%rdi); /* rdtsc clobbers %eax, %edx */ \ ! movq REGOFF_RAX(%rsp), %rax; \ ! movq REGOFF_RBX(%rsp), %rbx; \ ! movq REGOFF_RCX(%rsp), %rcx; \ ! movq REGOFF_RDX(%rsp), %rdx; \ ! movl %eax, TTR_SYSNUM(%rdi); \ ! movq REGOFF_RDI(%rsp), %rdi ! #define SYSCALL_TRAPTRACE32(ttype) \ ! SYSCALL_TRAPTRACE(ttype); \ ! /* paranoia: clean the top 32-bits of the registers */ \ ! orl %eax, %eax; \ ! orl %ebx, %ebx; \ ! orl %ecx, %ecx; \ ! orl %edx, %edx; \ ! orl %edi, %edi ! #else /* TRAPTRACE */ ! #define SYSCALL_TRAPTRACE(ttype) ! #define SYSCALL_TRAPTRACE32(ttype) ! #endif /* TRAPTRACE */ /* ! * The 64-bit libc syscall wrapper does this: * ! * fn(<args>) ! * { ! * movq %rcx, %r10 -- because syscall smashes %rcx ! * movl $CODE, %eax ! * syscall ! * <error processing> ! * } * ! * Thus when we come into the kernel: * ! * %rdi, %rsi, %rdx, %r10, %r8, %r9 contain first six args ! * %rax is the syscall number ! * %r12-%r15 contain caller state * ! * The syscall instruction arranges that: * ! * %rcx contains the return %rip ! * %r11d contains bottom 32-bits of %rflags ! * %rflags is masked (as determined by the SFMASK msr) ! * %cs is set to UCS_SEL (as determined by the STAR msr) ! * %ss is set to UDS_SEL (as determined by the STAR msr) ! * %rip is set to sys_syscall (as determined by the LSTAR msr) * ! * Or in other words, we have no registers available at all. ! * Only swapgs can save us! * ! * Under the hypervisor, the swapgs has happened already. However, the ! * state of the world is very different from that we're familiar with. * ! * In particular, we have a stack structure like that for interrupt ! * gates, except that the %cs and %ss registers are modified for reasons ! * that are not entirely clear. Critically, the %rcx/%r11 values do ! * *not* reflect the usage of those registers under a 'real' syscall[1]; ! * the stack, therefore, looks like this: * ! * 0x0(rsp) potentially junk %rcx ! * 0x8(rsp) potentially junk %r11 ! * 0x10(rsp) user %rip ! * 0x18(rsp) modified %cs ! * 0x20(rsp) user %rflags ! * 0x28(rsp) user %rsp ! * 0x30(rsp) modified %ss * * + * and before continuing on, we must load the %rip into %rcx and the + * %rflags into %r11. + * + * [1] They used to, and we relied on it, but this was broken in 3.1.1. + * Sigh. */ ! #if defined(__xpv) ! #define XPV_SYSCALL_PROD \ ! movq 0x10(%rsp), %rcx; \ ! movq 0x20(%rsp), %r11; \ ! movq 0x28(%rsp), %rsp ! #else ! #define XPV_SYSCALL_PROD /* nothing */ ! #endif ! ENTRY_NP2(brand_sys_syscall,_allsyscalls) ! SWAPGS /* kernel gsbase */ ! XPV_SYSCALL_PROD ! BRAND_CALLBACK(BRAND_CB_SYSCALL, BRAND_URET_FROM_REG(%rcx)) ! jmp noprod_sys_syscall ! ALTENTRY(sys_syscall) ! SWAPGS /* kernel gsbase */ ! XPV_SYSCALL_PROD ! noprod_sys_syscall: ! movq %r15, %gs:CPU_RTMP_R15 ! movq %rsp, %gs:CPU_RTMP_RSP ! movq %gs:CPU_THREAD, %r15 ! movq T_STACK(%r15), %rsp /* switch from user to kernel stack */ ! ASSERT_UPCALL_MASK_IS_SET ! movl $UCS_SEL, REGOFF_CS(%rsp) ! movq %rcx, REGOFF_RIP(%rsp) /* syscall: %rip -> %rcx */ ! movq %r11, REGOFF_RFL(%rsp) /* syscall: %rfl -> %r11d */ ! movl $UDS_SEL, REGOFF_SS(%rsp) ! movl %eax, %eax /* wrapper: sysc# -> %eax */ ! movq %rdi, REGOFF_RDI(%rsp) ! movq %rsi, REGOFF_RSI(%rsp) ! movq %rdx, REGOFF_RDX(%rsp) ! movq %r10, REGOFF_RCX(%rsp) /* wrapper: %rcx -> %r10 */ ! movq %r10, %rcx /* arg[3] for direct calls */ ! movq %r8, REGOFF_R8(%rsp) ! movq %r9, REGOFF_R9(%rsp) ! movq %rax, REGOFF_RAX(%rsp) ! movq %rbx, REGOFF_RBX(%rsp) ! movq %rbp, REGOFF_RBP(%rsp) ! movq %r10, REGOFF_R10(%rsp) ! movq %gs:CPU_RTMP_RSP, %r11 ! movq %r11, REGOFF_RSP(%rsp) ! movq %r12, REGOFF_R12(%rsp) ! movq %r13, REGOFF_R13(%rsp) ! movq %r14, REGOFF_R14(%rsp) ! movq %gs:CPU_RTMP_R15, %r10 ! movq %r10, REGOFF_R15(%rsp) ! movq $0, REGOFF_SAVFP(%rsp) ! movq $0, REGOFF_SAVPC(%rsp) ! ! /* ! * Copy these registers here in case we end up stopped with ! * someone (like, say, /proc) messing with our register state. ! * We don't -restore- them unless we have to in update_sregs. ! * ! * Since userland -can't- change fsbase or gsbase directly, ! * and capturing them involves two serializing instructions, ! * we don't bother to capture them here. ! */ ! xorl %ebx, %ebx ! movw %ds, %bx ! movq %rbx, REGOFF_DS(%rsp) ! movw %es, %bx ! movq %rbx, REGOFF_ES(%rsp) ! movw %fs, %bx ! movq %rbx, REGOFF_FS(%rsp) ! movw %gs, %bx ! movq %rbx, REGOFF_GS(%rsp) ! ! /* ! * If we're trying to use TRAPTRACE though, I take that back: we're ! * probably debugging some problem in the SWAPGS logic and want to know ! * what the incoming gsbase was. ! * ! * Since we already did SWAPGS, record the KGSBASE. ! */ ! #if defined(DEBUG) && defined(TRAPTRACE) && !defined(__xpv) ! movl $MSR_AMD_KGSBASE, %ecx ! rdmsr ! movl %eax, REGOFF_GSBASE(%rsp) ! movl %edx, REGOFF_GSBASE+4(%rsp) #endif ! /* ! * Machine state saved in the regs structure on the stack ! * First six args in %rdi, %rsi, %rdx, %rcx, %r8, %r9 ! * %eax is the syscall number ! * %rsp is the thread's stack, %r15 is curthread ! * REG_RSP(%rsp) is the user's stack ! */ ! SYSCALL_TRAPTRACE($TT_SYSC64) + movq %rsp, %rbp + + movq T_LWP(%r15), %r14 + ASSERT_NO_RUPDATE_PENDING(%r14) ENABLE_INTR_FLAGS MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM) ! movl REGOFF_RAX(%rsp), %eax /* (%rax damaged by mstate call) */ ! ASSERT_LWPTOREGS(%r14, %rsp) ! movb $LWP_SYS, LWP_STATE(%r14) ! incq LWP_RU_SYSC(%r14) ! movb $NORMALRETURN, LWP_EOSYS(%r14) ! incq %gs:CPU_STATS_SYS_SYSCALL ! movw %ax, T_SYSNUM(%r15) ! movzbl T_PRE_SYS(%r15), %ebx ! ORL_SYSCALLTRACE(%ebx) ! testl %ebx, %ebx ! jne _syscall_pre ! _syscall_invoke: ! movq REGOFF_RDI(%rbp), %rdi ! movq REGOFF_RSI(%rbp), %rsi ! movq REGOFF_RDX(%rbp), %rdx ! movq REGOFF_RCX(%rbp), %rcx ! movq REGOFF_R8(%rbp), %r8 ! movq REGOFF_R9(%rbp), %r9 + cmpl $NSYSCALL, %eax + jae _syscall_ill + shll $SYSENT_SIZE_SHIFT, %eax + leaq sysent(%rax), %rbx + + movq SY_CALLC(%rbx), %rax + INDIRECT_CALL_REG(rax) + + movq %rax, %r12 + movq %rdx, %r13 + + /* + * If the handler returns two ints, then we need to split the + * 64-bit return value into two 32-bit values. + */ + testw $SE_32RVAL2, SY_FLAGS(%rbx) + je 5f + movq %r12, %r13 + shrq $32, %r13 /* upper 32-bits into %edx */ + movl %r12d, %r12d /* lower 32-bits into %eax */ + 5: + /* + * Optimistically assume that there's no post-syscall + * work to do. (This is to avoid having to call syscall_mstate() + * with interrupts disabled) + */ MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER) ! /* ! * We must protect ourselves from being descheduled here; ! * If we were, and we ended up on another cpu, or another ! * lwp got in ahead of us, it could change the segment ! * registers without us noticing before we return to userland. ! */ ! CLI(%r14) ! CHECK_POSTSYS_NE(%r15, %r14, %ebx) ! jne _syscall_post ! /* ! * We need to protect ourselves against non-canonical return values ! * because Intel doesn't check for them on sysret (AMD does). Canonical ! * addresses on current amd64 processors only use 48-bits for VAs; an ! * address is canonical if all upper bits (47-63) are identical. If we ! * find a non-canonical %rip, we opt to go through the full ! * _syscall_post path which takes us into an iretq which is not ! * susceptible to the same problems sysret is. ! * ! * We're checking for a canonical address by first doing an arithmetic ! * shift. This will fill in the remaining bits with the value of bit 63. ! * If the address were canonical, the register would now have either all ! * zeroes or all ones in it. Therefore we add one (inducing overflow) ! * and compare against 1. A canonical address will either be zero or one ! * at this point, hence the use of ja. ! * ! * At this point, r12 and r13 have the return value so we can't use ! * those registers. ! */ ! movq REGOFF_RIP(%rsp), %rcx ! sarq $47, %rcx ! incq %rcx ! cmpq $1, %rcx ! ja _syscall_post ! ! SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx) ! ! movq %r12, REGOFF_RAX(%rsp) ! movq %r13, REGOFF_RDX(%rsp) ! ! /* ! * Clobber %r11 as we check CR0.TS. ! */ ! ASSERT_CR0TS_ZERO(%r11) ! ! /* ! * Unlike other cases, because we need to restore the user stack pointer ! * before exiting the kernel we must clear the microarch state before ! * getting here. This should be safe because it means that the only ! * values on the bus after this are based on the user's registers and ! * potentially the addresses where we stored them. Given the constraints ! * of sysret, that's how it has to be. ! */ ! call x86_md_clear ! ! /* ! * To get back to userland, we need the return %rip in %rcx and ! * the return %rfl in %r11d. The sysretq instruction also arranges ! * to fix up %cs and %ss; everything else is our responsibility. ! */ ! movq REGOFF_RDI(%rsp), %rdi ! movq REGOFF_RSI(%rsp), %rsi ! movq REGOFF_RDX(%rsp), %rdx ! /* %rcx used to restore %rip value */ ! ! movq REGOFF_R8(%rsp), %r8 ! movq REGOFF_R9(%rsp), %r9 ! movq REGOFF_RAX(%rsp), %rax ! movq REGOFF_RBX(%rsp), %rbx ! ! movq REGOFF_RBP(%rsp), %rbp ! movq REGOFF_R10(%rsp), %r10 ! /* %r11 used to restore %rfl value */ ! movq REGOFF_R12(%rsp), %r12 ! ! movq REGOFF_R13(%rsp), %r13 ! movq REGOFF_R14(%rsp), %r14 ! movq REGOFF_R15(%rsp), %r15 ! ! movq REGOFF_RIP(%rsp), %rcx ! movl REGOFF_RFL(%rsp), %r11d ! ! #if defined(__xpv) ! addq $REGOFF_RIP, %rsp ! #else ! movq REGOFF_RSP(%rsp), %rsp ! #endif ! ! /* ! * There can be no instructions between the ALTENTRY below and ! * SYSRET or we could end up breaking brand support. See label usage ! * in sn1_brand_syscall_callback for an example. ! */ ! ASSERT_UPCALL_MASK_IS_SET ! #if defined(__xpv) ! SYSRETQ ! ALTENTRY(nopop_sys_syscall_swapgs_sysretq) ! ! /* ! * We can only get here after executing a brand syscall ! * interposition callback handler and simply need to ! * "sysretq" back to userland. On the hypervisor this ! * involves the iret hypercall which requires us to construct ! * just enough of the stack needed for the hypercall. ! * (rip, cs, rflags, rsp, ss). ! */ ! movq %rsp, %gs:CPU_RTMP_RSP /* save user's rsp */ ! movq %gs:CPU_THREAD, %r11 ! movq T_STACK(%r11), %rsp ! ! movq %rcx, REGOFF_RIP(%rsp) ! movl $UCS_SEL, REGOFF_CS(%rsp) ! movq %gs:CPU_RTMP_RSP, %r11 ! movq %r11, REGOFF_RSP(%rsp) ! pushfq ! popq %r11 /* hypercall enables ints */ ! movq %r11, REGOFF_RFL(%rsp) ! movl $UDS_SEL, REGOFF_SS(%rsp) ! addq $REGOFF_RIP, %rsp ! /* ! * XXPV: see comment in SYSRETQ definition for future optimization ! * we could take. ! */ ! ASSERT_UPCALL_MASK_IS_SET ! SYSRETQ ! #else ! ALTENTRY(nopop_sys_syscall_swapgs_sysretq) ! jmp tr_sysretq ! #endif ! /*NOTREACHED*/ ! SET_SIZE(nopop_sys_syscall_swapgs_sysretq) ! ! _syscall_pre: ! call pre_syscall ! movl %eax, %r12d ! testl %eax, %eax ! jne _syscall_post_call ! /* ! * Didn't abort, so reload the syscall args and invoke the handler. ! */ ! movzwl T_SYSNUM(%r15), %eax ! jmp _syscall_invoke ! ! _syscall_ill: ! call nosys ! movq %rax, %r12 ! movq %rdx, %r13 ! jmp _syscall_post_call ! ! _syscall_post: ! STI ! /* ! * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM ! * so that we can account for the extra work it takes us to finish. ! */ ! MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM) ! _syscall_post_call: ! movq %r12, %rdi ! movq %r13, %rsi ! call post_syscall MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER) jmp _sys_rtt + SET_SIZE(sys_syscall) + SET_SIZE(brand_sys_syscall) ! ENTRY_NP(brand_sys_syscall32) ! SWAPGS /* kernel gsbase */ ! XPV_TRAP_POP ! BRAND_CALLBACK(BRAND_CB_SYSCALL32, BRAND_URET_FROM_REG(%rcx)) ! jmp nopop_sys_syscall32 ! ALTENTRY(sys_syscall32) ! SWAPGS /* kernel gsbase */ ! XPV_TRAP_POP ! nopop_sys_syscall32: ! movl %esp, %r10d ! movq %gs:CPU_THREAD, %r15 ! movq T_STACK(%r15), %rsp ! movl %eax, %eax ! ! movl $U32CS_SEL, REGOFF_CS(%rsp) ! movl %ecx, REGOFF_RIP(%rsp) /* syscall: %rip -> %rcx */ ! movq %r11, REGOFF_RFL(%rsp) /* syscall: %rfl -> %r11d */ ! movq %r10, REGOFF_RSP(%rsp) ! movl $UDS_SEL, REGOFF_SS(%rsp) ! ! _syscall32_save: ! movl %edi, REGOFF_RDI(%rsp) ! movl %esi, REGOFF_RSI(%rsp) ! movl %ebp, REGOFF_RBP(%rsp) ! movl %ebx, REGOFF_RBX(%rsp) ! movl %edx, REGOFF_RDX(%rsp) ! movl %ecx, REGOFF_RCX(%rsp) ! movl %eax, REGOFF_RAX(%rsp) /* wrapper: sysc# -> %eax */ ! movq $0, REGOFF_SAVFP(%rsp) ! movq $0, REGOFF_SAVPC(%rsp) ! ! /* ! * Copy these registers here in case we end up stopped with ! * someone (like, say, /proc) messing with our register state. ! * We don't -restore- them unless we have to in update_sregs. * ! * Since userland -can't- change fsbase or gsbase directly, ! * we don't bother to capture them here. ! */ ! xorl %ebx, %ebx ! movw %ds, %bx ! movq %rbx, REGOFF_DS(%rsp) ! movw %es, %bx ! movq %rbx, REGOFF_ES(%rsp) ! movw %fs, %bx ! movq %rbx, REGOFF_FS(%rsp) ! movw %gs, %bx ! movq %rbx, REGOFF_GS(%rsp) ! ! /* ! * If we're trying to use TRAPTRACE though, I take that back: we're ! * probably debugging some problem in the SWAPGS logic and want to know ! * what the incoming gsbase was. * ! * Since we already did SWAPGS, record the KGSBASE. ! */ ! #if defined(DEBUG) && defined(TRAPTRACE) && !defined(__xpv) ! movl $MSR_AMD_KGSBASE, %ecx ! rdmsr ! movl %eax, REGOFF_GSBASE(%rsp) ! movl %edx, REGOFF_GSBASE+4(%rsp) ! #endif ! ! /* ! * Application state saved in the regs structure on the stack ! * %eax is the syscall number ! * %rsp is the thread's stack, %r15 is curthread ! * REG_RSP(%rsp) is the user's stack ! */ ! ! SYSCALL_TRAPTRACE32($TT_SYSC) ! ! movq %rsp, %rbp ! ! movq T_LWP(%r15), %r14 ! ASSERT_NO_RUPDATE_PENDING(%r14) ! ! ENABLE_INTR_FLAGS ! ! MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM) ! movl REGOFF_RAX(%rsp), %eax /* (%rax damaged by mstate call) */ ! ! ASSERT_LWPTOREGS(%r14, %rsp) ! ! incq %gs:CPU_STATS_SYS_SYSCALL ! ! /* ! * Make some space for MAXSYSARGS (currently 8) 32-bit args placed ! * into 64-bit (long) arg slots, maintaining 16 byte alignment. Or ! * more succinctly: * ! * SA(MAXSYSARGS * sizeof (long)) == 64 ! */ ! #define SYS_DROP 64 /* drop for args */ ! subq $SYS_DROP, %rsp ! movb $LWP_SYS, LWP_STATE(%r14) ! movq %r15, %rdi ! movq %rsp, %rsi ! call syscall_entry ! ! /* ! * Fetch the arguments copied onto the kernel stack and put ! * them in the right registers to invoke a C-style syscall handler. ! * %rax contains the handler address. * ! * Ideas for making all this go faster of course include simply ! * forcibly fetching 6 arguments from the user stack under lofault ! * protection, reverting to copyin_args only when watchpoints ! * are in effect. * ! * (If we do this, make sure that exec and libthread leave ! * enough space at the top of the stack to ensure that we'll ! * never do a fetch from an invalid page.) * + * Lots of ideas here, but they won't really help with bringup B-) + * Correctness can't wait, performance can wait a little longer .. + */ + + movq %rax, %rbx + movl 0(%rsp), %edi + movl 8(%rsp), %esi + movl 0x10(%rsp), %edx + movl 0x18(%rsp), %ecx + movl 0x20(%rsp), %r8d + movl 0x28(%rsp), %r9d + + movq SY_CALLC(%rbx), %rax + INDIRECT_CALL_REG(rax) + + movq %rbp, %rsp /* pop the args */ + + /* + * amd64 syscall handlers -always- return a 64-bit value in %rax. + * On the 32-bit kernel, they always return that value in %eax:%edx + * as required by the 32-bit ABI. + * + * Simulate the same behaviour by unconditionally splitting the + * return value in the same way. + */ + movq %rax, %r13 + shrq $32, %r13 /* upper 32-bits into %edx */ + movl %eax, %r12d /* lower 32-bits into %eax */ + + /* + * Optimistically assume that there's no post-syscall + * work to do. (This is to avoid having to call syscall_mstate() + * with interrupts disabled) + */ + MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER) + + /* + * We must protect ourselves from being descheduled here; + * If we were, and we ended up on another cpu, or another + * lwp got in ahead of us, it could change the segment + * registers without us noticing before we return to userland. + */ + CLI(%r14) + CHECK_POSTSYS_NE(%r15, %r14, %ebx) + jne _full_syscall_postsys32 + SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx) + + /* + * Clobber %r11 as we check CR0.TS. + */ + ASSERT_CR0TS_ZERO(%r11) + + /* + * Unlike other cases, because we need to restore the user stack pointer + * before exiting the kernel we must clear the microarch state before + * getting here. This should be safe because it means that the only + * values on the bus after this are based on the user's registers and + * potentially the addresses where we stored them. Given the constraints + * of sysret, that's how it has to be. + */ + call x86_md_clear + + /* + * To get back to userland, we need to put the return %rip in %rcx and + * the return %rfl in %r11d. The sysret instruction also arranges + * to fix up %cs and %ss; everything else is our responsibility. + */ + + movl %r12d, %eax /* %eax: rval1 */ + movl REGOFF_RBX(%rsp), %ebx + /* %ecx used for return pointer */ + movl %r13d, %edx /* %edx: rval2 */ + movl REGOFF_RBP(%rsp), %ebp + movl REGOFF_RSI(%rsp), %esi + movl REGOFF_RDI(%rsp), %edi + + movl REGOFF_RFL(%rsp), %r11d /* %r11 -> eflags */ + movl REGOFF_RIP(%rsp), %ecx /* %ecx -> %eip */ + movl REGOFF_RSP(%rsp), %esp + + ASSERT_UPCALL_MASK_IS_SET + ALTENTRY(nopop_sys_syscall32_swapgs_sysretl) + jmp tr_sysretl + SET_SIZE(nopop_sys_syscall32_swapgs_sysretl) + /*NOTREACHED*/ + + _full_syscall_postsys32: + STI + /* + * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM + * so that we can account for the extra work it takes us to finish. + */ + MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM) + movq %r15, %rdi + movq %r12, %rsi /* rval1 - %eax */ + movq %r13, %rdx /* rval2 - %edx */ + call syscall_exit + MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER) + jmp _sys_rtt + SET_SIZE(sys_syscall32) + SET_SIZE(brand_sys_syscall32) + + /* + * System call handler via the sysenter instruction + * Used only for 32-bit system calls on the 64-bit kernel. + * * The caller in userland has arranged that: * * - %eax contains the syscall number * - %ecx contains the user %esp * - %edx contains the return %eip * - the user stack contains the args to the syscall * * Hardware and (privileged) initialization code have arranged that by * the time the sysenter instructions completes: * ! * - %rip is pointing to sys_sysenter (below). * - %cs and %ss are set to kernel text and stack (data) selectors. ! * - %rsp is pointing at the lwp's stack ! * - interrupts have been disabled. * ! * Note that we are unable to return both "rvals" to userland with ! * this call, as %edx is used by the sysexit instruction. * * One final complication in this routine is its interaction with ! * single-stepping in a debugger. For most of the system call mechanisms, the ! * CPU automatically clears the single-step flag before we enter the kernel. ! * The sysenter mechanism does not clear the flag, so a user single-stepping ! * through a libc routine may suddenly find themself single-stepping through the ! * kernel. To detect this, kmdb and trap() both compare the trap %pc to the ! * [brand_]sys_enter addresses on each single-step trap. If it finds that we ! * have single-stepped to a sysenter entry point, it explicitly clears the flag ! * and executes the sys_sysenter routine. * ! * One final complication in this final complication is the fact that we have ! * two different entry points for sysenter: brand_sys_sysenter and sys_sysenter. ! * If we enter at brand_sys_sysenter and start single-stepping through the ! * kernel with kmdb, we will eventually hit the instruction at sys_sysenter. ! * kmdb cannot distinguish between that valid single-step and the undesirable ! * one mentioned above. To avoid this situation, we simply add a jump over the ! * instruction at sys_sysenter to make it impossible to single-step to it. */ ENTRY_NP(brand_sys_sysenter) ! SWAPGS /* kernel gsbase */ ! ALTENTRY(_brand_sys_sysenter_post_swapgs) ! ! BRAND_CALLBACK(BRAND_CB_SYSENTER, BRAND_URET_FROM_REG(%rdx)) /* * Jump over sys_sysenter to allow single-stepping as described * above. */ ! jmp _sys_sysenter_post_swapgs ALTENTRY(sys_sysenter) ! SWAPGS /* kernel gsbase */ ! ALTENTRY(_sys_sysenter_post_swapgs) ! movq %gs:CPU_THREAD, %r15 ! movl $U32CS_SEL, REGOFF_CS(%rsp) ! movl %ecx, REGOFF_RSP(%rsp) /* wrapper: %esp -> %ecx */ ! movl %edx, REGOFF_RIP(%rsp) /* wrapper: %eip -> %edx */ ! /* ! * NOTE: none of the instructions that run before we get here should ! * clobber bits in (R)FLAGS! This includes the kpti trampoline. ! */ ! pushfq ! popq %r10 ! movl $UDS_SEL, REGOFF_SS(%rsp) ! ! /* ! * Set the interrupt flag before storing the flags to the ! * flags image on the stack so we can return to user with ! * interrupts enabled if we return via sys_rtt_syscall32 ! */ ! orq $PS_IE, %r10 ! movq %r10, REGOFF_RFL(%rsp) ! ! movl %edi, REGOFF_RDI(%rsp) ! movl %esi, REGOFF_RSI(%rsp) ! movl %ebp, REGOFF_RBP(%rsp) ! movl %ebx, REGOFF_RBX(%rsp) ! movl %edx, REGOFF_RDX(%rsp) ! movl %ecx, REGOFF_RCX(%rsp) ! movl %eax, REGOFF_RAX(%rsp) /* wrapper: sysc# -> %eax */ ! movq $0, REGOFF_SAVFP(%rsp) ! movq $0, REGOFF_SAVPC(%rsp) ! ! /* ! * Copy these registers here in case we end up stopped with ! * someone (like, say, /proc) messing with our register state. ! * We don't -restore- them unless we have to in update_sregs. ! * ! * Since userland -can't- change fsbase or gsbase directly, ! * we don't bother to capture them here. ! */ ! xorl %ebx, %ebx ! movw %ds, %bx ! movq %rbx, REGOFF_DS(%rsp) ! movw %es, %bx ! movq %rbx, REGOFF_ES(%rsp) ! movw %fs, %bx ! movq %rbx, REGOFF_FS(%rsp) ! movw %gs, %bx ! movq %rbx, REGOFF_GS(%rsp) ! ! /* ! * If we're trying to use TRAPTRACE though, I take that back: we're ! * probably debugging some problem in the SWAPGS logic and want to know ! * what the incoming gsbase was. ! * ! * Since we already did SWAPGS, record the KGSBASE. ! */ ! #if defined(DEBUG) && defined(TRAPTRACE) && !defined(__xpv) ! movl $MSR_AMD_KGSBASE, %ecx ! rdmsr ! movl %eax, REGOFF_GSBASE(%rsp) ! movl %edx, REGOFF_GSBASE+4(%rsp) #endif ! /* ! * Application state saved in the regs structure on the stack ! * %eax is the syscall number ! * %rsp is the thread's stack, %r15 is curthread ! * REG_RSP(%rsp) is the user's stack ! */ + SYSCALL_TRAPTRACE($TT_SYSENTER) + + movq %rsp, %rbp + + movq T_LWP(%r15), %r14 + ASSERT_NO_RUPDATE_PENDING(%r14) + ENABLE_INTR_FLAGS ! /* ! * Catch 64-bit process trying to issue sysenter instruction ! * on Nocona based systems. ! */ ! movq LWP_PROCP(%r14), %rax ! cmpq $DATAMODEL_ILP32, P_MODEL(%rax) ! je 7f ! ! /* ! * For a non-32-bit process, simulate a #ud, since that's what ! * native hardware does. The traptrace entry (above) will ! * let you know what really happened. ! */ ! movq $T_ILLINST, REGOFF_TRAPNO(%rsp) ! movq REGOFF_CS(%rsp), %rdi ! movq %rdi, REGOFF_ERR(%rsp) ! movq %rsp, %rdi ! movq REGOFF_RIP(%rsp), %rsi ! movl %gs:CPU_ID, %edx ! call trap ! jmp _sys_rtt ! 7: ! MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM) ! movl REGOFF_RAX(%rsp), %eax /* (%rax damaged by mstate calls) */ ! ASSERT_LWPTOREGS(%r14, %rsp) ! incq %gs:CPU_STATS_SYS_SYSCALL ! /* ! * Make some space for MAXSYSARGS (currently 8) 32-bit args ! * placed into 64-bit (long) arg slots, plus one 64-bit ! * (long) arg count, maintaining 16 byte alignment. ! */ ! subq $SYS_DROP, %rsp ! movb $LWP_SYS, LWP_STATE(%r14) ! movq %r15, %rdi ! movq %rsp, %rsi ! call syscall_entry ! /* ! * Fetch the arguments copied onto the kernel stack and put ! * them in the right registers to invoke a C-style syscall handler. ! * %rax contains the handler address. ! */ ! movq %rax, %rbx ! movl 0(%rsp), %edi ! movl 8(%rsp), %esi ! movl 0x10(%rsp), %edx ! movl 0x18(%rsp), %ecx ! movl 0x20(%rsp), %r8d ! movl 0x28(%rsp), %r9d ! movq SY_CALLC(%rbx), %rax ! INDIRECT_CALL_REG(rax) ! movq %rbp, %rsp /* pop the args */ + /* + * amd64 syscall handlers -always- return a 64-bit value in %rax. + * On the 32-bit kernel, the always return that value in %eax:%edx + * as required by the 32-bit ABI. + * + * Simulate the same behaviour by unconditionally splitting the + * return value in the same way. + */ + movq %rax, %r13 + shrq $32, %r13 /* upper 32-bits into %edx */ + movl %eax, %r12d /* lower 32-bits into %eax */ + + /* + * Optimistically assume that there's no post-syscall + * work to do. (This is to avoid having to call syscall_mstate() + * with interrupts disabled) + */ MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER) + /* + * We must protect ourselves from being descheduled here; + * If we were, and we ended up on another cpu, or another + * lwp got int ahead of us, it could change the segment + * registers without us noticing before we return to userland. + * + * This cli is undone in the tr_sysexit trampoline code. + */ cli + CHECK_POSTSYS_NE(%r15, %r14, %ebx) + jne _full_syscall_postsys32 + SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx) ! /* ! * To get back to userland, load up the 32-bit registers and ! * sysexit back where we came from. ! */ ! /* ! * Interrupts will be turned on by the 'sti' executed just before ! * sysexit. The following ensures that restoring the user's rflags ! * doesn't enable interrupts too soon. ! */ ! andq $_BITNOT(PS_IE), REGOFF_RFL(%rsp) ! ! /* ! * Clobber %r11 as we check CR0.TS. ! */ ! ASSERT_CR0TS_ZERO(%r11) ! ! /* ! * (There's no point in loading up %edx because the sysexit ! * mechanism smashes it.) ! */ ! movl %r12d, %eax ! movl REGOFF_RBX(%rsp), %ebx ! movl REGOFF_RBP(%rsp), %ebp ! movl REGOFF_RSI(%rsp), %esi ! movl REGOFF_RDI(%rsp), %edi ! ! movl REGOFF_RIP(%rsp), %edx /* sysexit: %edx -> %eip */ ! pushq REGOFF_RFL(%rsp) ! popfq ! movl REGOFF_RSP(%rsp), %ecx /* sysexit: %ecx -> %esp */ ! ALTENTRY(sys_sysenter_swapgs_sysexit) ! call x86_md_clear ! jmp tr_sysexit ! SET_SIZE(sys_sysenter_swapgs_sysexit) SET_SIZE(sys_sysenter) + SET_SIZE(_sys_sysenter_post_swapgs) SET_SIZE(brand_sys_sysenter) /* + * This is the destination of the "int $T_SYSCALLINT" interrupt gate, used by + * the generic i386 libc to do system calls. We do a small amount of setup + * before jumping into the existing sys_syscall32 path. + */ + + ENTRY_NP(brand_sys_syscall_int) + SWAPGS /* kernel gsbase */ + XPV_TRAP_POP + call smap_enable + BRAND_CALLBACK(BRAND_CB_INT91, BRAND_URET_FROM_INTR_STACK()) + jmp nopop_syscall_int + + ALTENTRY(sys_syscall_int) + SWAPGS /* kernel gsbase */ + XPV_TRAP_POP + call smap_enable + + nopop_syscall_int: + movq %gs:CPU_THREAD, %r15 + movq T_STACK(%r15), %rsp + movl %eax, %eax + /* + * Set t_post_sys on this thread to force ourselves out via the slow + * path. It might be possible at some later date to optimize this out + * and use a faster return mechanism. + */ + movb $1, T_POST_SYS(%r15) + CLEAN_CS + jmp _syscall32_save + /* + * There should be no instructions between this label and SWAPGS/IRET + * or we could end up breaking branded zone support. See the usage of + * this label in lx_brand_int80_callback and sn1_brand_int91_callback + * for examples. + * + * We want to swapgs to maintain the invariant that all entries into + * tr_iret_user are done on the user gsbase. + */ + ALTENTRY(sys_sysint_swapgs_iret) + call x86_md_clear + SWAPGS + jmp tr_iret_user + /*NOTREACHED*/ + SET_SIZE(sys_sysint_swapgs_iret) + SET_SIZE(sys_syscall_int) + SET_SIZE(brand_sys_syscall_int) + + /* + * Legacy 32-bit applications and old libc implementations do lcalls; + * we should never get here because the LDT entry containing the syscall + * segment descriptor has the "segment present" bit cleared, which means + * we end up processing those system calls in trap() via a not-present trap. + * + * We do it this way because a call gate unhelpfully does -nothing- to the + * interrupt flag bit, so an interrupt can run us just after the lcall + * completes, but just before the swapgs takes effect. Thus the INTR_PUSH and + * INTR_POP paths would have to be slightly more complex to dance around + * this problem, and end up depending explicitly on the first + * instruction of this handler being either swapgs or cli. + */ + + ENTRY_NP(sys_lcall32) + SWAPGS /* kernel gsbase */ + pushq $0 + pushq %rbp + movq %rsp, %rbp + leaq __lcall_panic_str(%rip), %rdi + xorl %eax, %eax + call panic + SET_SIZE(sys_lcall32) + + __lcall_panic_str: + .string "sys_lcall32: shouldn't be here!" + + /* * Declare a uintptr_t which covers the entire pc range of syscall * handlers for the stack walkers that need this. */ .align CPTRSIZE .globl _allsyscalls_size
*** 642,671 **** .type _allsyscalls_size, @object _allsyscalls_size: .NWORD . - _allsyscalls SET_SIZE(_allsyscalls_size) - #endif /* __lint */ - /* * These are the thread context handlers for lwps using sysenter/sysexit. */ - #if defined(__lint) - - /*ARGSUSED*/ - void - sep_save(void *ksp) - {} - - /*ARGSUSED*/ - void - sep_restore(void *ksp) - {} - - #else /* __lint */ - /* * setting this value to zero as we switch away causes the * stack-pointer-on-sysenter to be NULL, ensuring that we * don't silently corrupt another (preempted) thread stack * when running an lwp that (somehow) didn't get sep_restore'd --- 1303,1316 ----
*** 680,714 **** /* * Update the kernel stack pointer as we resume onto this cpu. */ ENTRY_NP(sep_restore) ! movl 4(%esp), %eax /* per-lwp kernel sp */ ! xorl %edx, %edx movl $MSR_INTC_SEP_ESP, %ecx wrmsr ret SET_SIZE(sep_restore) - #endif /* __lint */ - - /* - * Call syscall(). Called from trap() on watchpoint at lcall 0,7 - */ - - #if defined(__lint) - - void - watch_syscall(void) - {} - - #else /* __lint */ - - ENTRY_NP(watch_syscall) - CLI(%eax) - movl %gs:CPU_THREAD, %ebx - movl T_STACK(%ebx), %esp / switch to the thread stack - movl REGOFF_EAX(%esp), %eax / recover original syscall# - jmp _watch_do_syscall - SET_SIZE(watch_syscall) - - #endif /* __lint */ --- 1325,1337 ---- /* * Update the kernel stack pointer as we resume onto this cpu. */ ENTRY_NP(sep_restore) ! movq %rdi, %rdx ! shrq $32, %rdx ! movl %edi, %eax movl $MSR_INTC_SEP_ESP, %ecx wrmsr ret SET_SIZE(sep_restore)