1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
  24  * Use is subject to license terms.
  25  */
  26 
  27 /*
  28  * Copyright (c) 2012 by Delphix. All rights reserved.
  29  * Copyright 2019 Joyent, Inc.
  30  */
  31 
  32 #include <sys/thread.h>
  33 #include <sys/proc.h>
  34 #include <sys/debug.h>
  35 #include <sys/cmn_err.h>
  36 #include <sys/systm.h>
  37 #include <sys/sobject.h>
  38 #include <sys/sleepq.h>
  39 #include <sys/cpuvar.h>
  40 #include <sys/condvar.h>
  41 #include <sys/condvar_impl.h>
  42 #include <sys/schedctl.h>
  43 #include <sys/procfs.h>
  44 #include <sys/sdt.h>
  45 #include <sys/callo.h>
  46 
  47 /*
  48  * CV_MAX_WAITERS is the maximum number of waiters we track; once
  49  * the number becomes higher than that, we look at the sleepq to
  50  * see whether there are *really* any waiters.
  51  */
  52 #define CV_MAX_WAITERS          1024            /* must be power of 2 */
  53 #define CV_WAITERS_MASK         (CV_MAX_WAITERS - 1)
  54 
  55 /*
  56  * Threads don't "own" condition variables.
  57  */
  58 /* ARGSUSED */
  59 static kthread_t *
  60 cv_owner(void *cvp)
  61 {
  62         return (NULL);
  63 }
  64 
  65 /*
  66  * Unsleep a thread that's blocked on a condition variable.
  67  */
  68 static void
  69 cv_unsleep(kthread_t *t)
  70 {
  71         condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan;
  72         sleepq_head_t *sqh = SQHASH(cvp);
  73 
  74         ASSERT(THREAD_LOCK_HELD(t));
  75 
  76         if (cvp == NULL)
  77                 panic("cv_unsleep: thread %p not on sleepq %p",
  78                     (void *)t, (void *)sqh);
  79         DTRACE_SCHED1(wakeup, kthread_t *, t);
  80         sleepq_unsleep(t);
  81         if (cvp->cv_waiters != CV_MAX_WAITERS)
  82                 cvp->cv_waiters--;
  83         disp_lock_exit_high(&sqh->sq_lock);
  84         CL_SETRUN(t);
  85 }
  86 
  87 /*
  88  * Change the priority of a thread that's blocked on a condition variable.
  89  */
  90 static void
  91 cv_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip)
  92 {
  93         condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan;
  94         sleepq_t *sqp = t->t_sleepq;
  95 
  96         ASSERT(THREAD_LOCK_HELD(t));
  97         ASSERT(&SQHASH(cvp)->sq_queue == sqp);
  98 
  99         if (cvp == NULL)
 100                 panic("cv_change_pri: %p not on sleep queue", (void *)t);
 101         sleepq_dequeue(t);
 102         *t_prip = pri;
 103         sleepq_insert(sqp, t);
 104 }
 105 
 106 /*
 107  * The sobj_ops vector exports a set of functions needed when a thread
 108  * is asleep on a synchronization object of this type.
 109  */
 110 static sobj_ops_t cv_sobj_ops = {
 111         SOBJ_CV, cv_owner, cv_unsleep, cv_change_pri
 112 };
 113 
 114 /* ARGSUSED */
 115 void
 116 cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void *arg)
 117 {
 118         ((condvar_impl_t *)cvp)->cv_waiters = 0;
 119 }
 120 
 121 /*
 122  * cv_destroy is not currently needed, but is part of the DDI.
 123  * This is in case cv_init ever needs to allocate something for a cv.
 124  */
 125 /* ARGSUSED */
 126 void
 127 cv_destroy(kcondvar_t *cvp)
 128 {
 129         ASSERT((((condvar_impl_t *)cvp)->cv_waiters & CV_WAITERS_MASK) == 0);
 130 }
 131 
 132 /*
 133  * The cv_block() function blocks a thread on a condition variable
 134  * by putting it in a hashed sleep queue associated with the
 135  * synchronization object.
 136  *
 137  * Threads are taken off the hashed sleep queues via calls to
 138  * cv_signal(), cv_broadcast(), or cv_unsleep().
 139  */
 140 static void
 141 cv_block(condvar_impl_t *cvp)
 142 {
 143         kthread_t *t = curthread;
 144         klwp_t *lwp = ttolwp(t);
 145         sleepq_head_t *sqh;
 146 
 147         ASSERT(THREAD_LOCK_HELD(t));
 148         ASSERT(t != CPU->cpu_idle_thread);
 149         ASSERT(CPU_ON_INTR(CPU) == 0);
 150         ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL);
 151         ASSERT(t->t_state == TS_ONPROC);
 152 
 153         t->t_schedflag &= ~TS_SIGNALLED;
 154         CL_SLEEP(t);                    /* assign kernel priority */
 155         t->t_wchan = (caddr_t)cvp;
 156         t->t_sobj_ops = &cv_sobj_ops;
 157         DTRACE_SCHED(sleep);
 158 
 159         /*
 160          * The check for t_intr is to avoid doing the
 161          * account for an interrupt thread on the still-pinned
 162          * lwp's statistics.
 163          */
 164         if (lwp != NULL && t->t_intr == NULL) {
 165                 lwp->lwp_ru.nvcsw++;
 166                 (void) new_mstate(t, LMS_SLEEP);
 167         }
 168 
 169         sqh = SQHASH(cvp);
 170         disp_lock_enter_high(&sqh->sq_lock);
 171         if (cvp->cv_waiters < CV_MAX_WAITERS)
 172                 cvp->cv_waiters++;
 173         ASSERT(cvp->cv_waiters <= CV_MAX_WAITERS);
 174         THREAD_SLEEP(t, &sqh->sq_lock);
 175         sleepq_insert(&sqh->sq_queue, t);
 176         /*
 177          * THREAD_SLEEP() moves curthread->t_lockp to point to the
 178          * lock sqh->sq_lock. This lock is later released by the caller
 179          * when it calls thread_unlock() on curthread.
 180          */
 181 }
 182 
 183 #define cv_block_sig(t, cvp)    \
 184         { (t)->t_flag |= T_WAKEABLE; cv_block(cvp); }
 185 
 186 /*
 187  * Block on the indicated condition variable and release the
 188  * associated kmutex while blocked.
 189  */
 190 void
 191 cv_wait(kcondvar_t *cvp, kmutex_t *mp)
 192 {
 193         if (panicstr)
 194                 return;
 195         ASSERT(!quiesce_active);
 196 
 197         ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
 198         thread_lock(curthread);                 /* lock the thread */
 199         cv_block((condvar_impl_t *)cvp);
 200         thread_unlock_nopreempt(curthread);     /* unlock the waiters field */
 201         mutex_exit(mp);
 202         swtch();
 203         mutex_enter(mp);
 204 }
 205 
 206 static void
 207 cv_wakeup(void *arg)
 208 {
 209         kthread_t *t = arg;
 210 
 211         /*
 212          * This mutex is acquired and released in order to make sure that
 213          * the wakeup does not happen before the block itself happens.
 214          */
 215         mutex_enter(&t->t_wait_mutex);
 216         mutex_exit(&t->t_wait_mutex);
 217         setrun(t);
 218 }
 219 
 220 /*
 221  * Same as cv_wait except the thread will unblock at 'tim'
 222  * (an absolute time) if it hasn't already unblocked.
 223  *
 224  * Returns the amount of time left from the original 'tim' value
 225  * when it was unblocked.
 226  */
 227 clock_t
 228 cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim)
 229 {
 230         hrtime_t hrtim;
 231         clock_t now = ddi_get_lbolt();
 232 
 233         if (tim <= now)
 234                 return (-1);
 235 
 236         hrtim = TICK_TO_NSEC(tim - now);
 237         return (cv_timedwait_hires(cvp, mp, hrtim, nsec_per_tick, 0));
 238 }
 239 
 240 /*
 241  * Same as cv_timedwait() except that the third argument is a relative
 242  * timeout value, as opposed to an absolute one. There is also a fourth
 243  * argument that specifies how accurately the timeout must be implemented.
 244  */
 245 clock_t
 246 cv_reltimedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t delta, time_res_t res)
 247 {
 248         hrtime_t exp;
 249 
 250         ASSERT(TIME_RES_VALID(res));
 251 
 252         if (delta <= 0)
 253                 return (-1);
 254 
 255         if ((exp = TICK_TO_NSEC(delta)) < 0)
 256                 exp = CY_INFINITY;
 257 
 258         return (cv_timedwait_hires(cvp, mp, exp, time_res[res], 0));
 259 }
 260 
 261 clock_t
 262 cv_timedwait_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim,
 263     hrtime_t res, int flag)
 264 {
 265         kthread_t *t = curthread;
 266         callout_id_t id;
 267         clock_t timeleft;
 268         hrtime_t limit;
 269         int signalled;
 270 
 271         if (panicstr)
 272                 return (-1);
 273         ASSERT(!quiesce_active);
 274 
 275         limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0;
 276         if (tim <= limit)
 277                 return (-1);
 278         mutex_enter(&t->t_wait_mutex);
 279         id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t,
 280             tim, res, flag);
 281         thread_lock(t);         /* lock the thread */
 282         cv_block((condvar_impl_t *)cvp);
 283         thread_unlock_nopreempt(t);
 284         mutex_exit(&t->t_wait_mutex);
 285         mutex_exit(mp);
 286         swtch();
 287         signalled = (t->t_schedflag & TS_SIGNALLED);
 288         /*
 289          * Get the time left. untimeout() returns -1 if the timeout has
 290          * occured or the time remaining.  If the time remaining is zero,
 291          * the timeout has occured between when we were awoken and
 292          * we called untimeout.  We will treat this as if the timeout
 293          * has occured and set timeleft to -1.
 294          */
 295         timeleft = untimeout_default(id, 0);
 296         mutex_enter(mp);
 297         if (timeleft <= 0) {
 298                 timeleft = -1;
 299                 if (signalled)  /* avoid consuming the cv_signal() */
 300                         cv_signal(cvp);
 301         }
 302         return (timeleft);
 303 }
 304 
 305 int
 306 cv_wait_sig(kcondvar_t *cvp, kmutex_t *mp)
 307 {
 308         kthread_t *t = curthread;
 309         proc_t *p = ttoproc(t);
 310         klwp_t *lwp = ttolwp(t);
 311         int cancel_pending;
 312         int rval = 1;
 313         int signalled = 0;
 314 
 315         if (panicstr)
 316                 return (rval);
 317         ASSERT(!quiesce_active);
 318 
 319         /*
 320          * Threads in system processes don't process signals.  This is
 321          * true both for standard threads of system processes and for
 322          * interrupt threads which have borrowed their pinned thread's LWP.
 323          */
 324         if (lwp == NULL || (p->p_flag & SSYS)) {
 325                 cv_wait(cvp, mp);
 326                 return (rval);
 327         }
 328         ASSERT(t->t_intr == NULL);
 329 
 330         ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
 331         cancel_pending = schedctl_cancel_pending();
 332         lwp->lwp_asleep = 1;
 333         lwp->lwp_sysabort = 0;
 334         thread_lock(t);
 335         cv_block_sig(t, (condvar_impl_t *)cvp);
 336         thread_unlock_nopreempt(t);
 337         mutex_exit(mp);
 338         if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending)
 339                 setrun(t);
 340         /* ASSERT(no locks are held) */
 341         swtch();
 342         signalled = (t->t_schedflag & TS_SIGNALLED);
 343         t->t_flag &= ~T_WAKEABLE;
 344         mutex_enter(mp);
 345         if (ISSIG_PENDING(t, lwp, p)) {
 346                 mutex_exit(mp);
 347                 if (issig(FORREAL))
 348                         rval = 0;
 349                 mutex_enter(mp);
 350         }
 351         if (lwp->lwp_sysabort || MUSTRETURN(p, t))
 352                 rval = 0;
 353         if (rval != 0 && cancel_pending) {
 354                 schedctl_cancel_eintr();
 355                 rval = 0;
 356         }
 357         lwp->lwp_asleep = 0;
 358         lwp->lwp_sysabort = 0;
 359         if (rval == 0 && signalled)     /* avoid consuming the cv_signal() */
 360                 cv_signal(cvp);
 361         return (rval);
 362 }
 363 
 364 static clock_t
 365 cv_timedwait_sig_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim,
 366     hrtime_t res, int flag)
 367 {
 368         kthread_t *t = curthread;
 369         proc_t *p = ttoproc(t);
 370         klwp_t *lwp = ttolwp(t);
 371         int cancel_pending = 0;
 372         callout_id_t id;
 373         clock_t rval = 1;
 374         hrtime_t limit;
 375         int signalled = 0;
 376 
 377         if (panicstr)
 378                 return (rval);
 379         ASSERT(!quiesce_active);
 380 
 381         /*
 382          * Threads in system processes don't process signals.  This is
 383          * true both for standard threads of system processes and for
 384          * interrupt threads which have borrowed their pinned thread's LWP.
 385          */
 386         if (lwp == NULL || (p->p_flag & SSYS))
 387                 return (cv_timedwait_hires(cvp, mp, tim, res, flag));
 388         ASSERT(t->t_intr == NULL);
 389 
 390         /*
 391          * If tim is less than or equal to current hrtime, then the timeout
 392          * has already occured.  So just check to see if there is a signal
 393          * pending.  If so return 0 indicating that there is a signal pending.
 394          * Else return -1 indicating that the timeout occured. No need to
 395          * wait on anything.
 396          */
 397         limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0;
 398         if (tim <= limit) {
 399                 lwp->lwp_asleep = 1;
 400                 lwp->lwp_sysabort = 0;
 401                 rval = -1;
 402                 goto out;
 403         }
 404 
 405         /*
 406          * Set the timeout and wait.
 407          */
 408         cancel_pending = schedctl_cancel_pending();
 409         mutex_enter(&t->t_wait_mutex);
 410         id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t,
 411             tim, res, flag);
 412         lwp->lwp_asleep = 1;
 413         lwp->lwp_sysabort = 0;
 414         thread_lock(t);
 415         cv_block_sig(t, (condvar_impl_t *)cvp);
 416         thread_unlock_nopreempt(t);
 417         mutex_exit(&t->t_wait_mutex);
 418         mutex_exit(mp);
 419         if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending)
 420                 setrun(t);
 421         /* ASSERT(no locks are held) */
 422         swtch();
 423         signalled = (t->t_schedflag & TS_SIGNALLED);
 424         t->t_flag &= ~T_WAKEABLE;
 425 
 426         /*
 427          * Untimeout the thread.  untimeout() returns -1 if the timeout has
 428          * occured or the time remaining.  If the time remaining is zero,
 429          * the timeout has occured between when we were awoken and
 430          * we called untimeout.  We will treat this as if the timeout
 431          * has occured and set rval to -1.
 432          */
 433         rval = untimeout_default(id, 0);
 434         mutex_enter(mp);
 435         if (rval <= 0)
 436                 rval = -1;
 437 
 438         /*
 439          * Check to see if a signal is pending.  If so, regardless of whether
 440          * or not we were awoken due to the signal, the signal is now pending
 441          * and a return of 0 has the highest priority.
 442          */
 443 out:
 444         if (ISSIG_PENDING(t, lwp, p)) {
 445                 mutex_exit(mp);
 446                 if (issig(FORREAL))
 447                         rval = 0;
 448                 mutex_enter(mp);
 449         }
 450         if (lwp->lwp_sysabort || MUSTRETURN(p, t))
 451                 rval = 0;
 452         if (rval != 0 && cancel_pending) {
 453                 schedctl_cancel_eintr();
 454                 rval = 0;
 455         }
 456         lwp->lwp_asleep = 0;
 457         lwp->lwp_sysabort = 0;
 458         if (rval <= 0 && signalled)  /* avoid consuming the cv_signal() */
 459                 cv_signal(cvp);
 460         return (rval);
 461 }
 462 
 463 /*
 464  * Returns:
 465  *      Function result in order of precedence:
 466  *               0 if a signal was received
 467  *              -1 if timeout occured
 468  *              >0 if awakened via cv_signal() or cv_broadcast().
 469  *                 (returns time remaining)
 470  *
 471  * cv_timedwait_sig() is now part of the DDI.
 472  *
 473  * This function is now just a wrapper for cv_timedwait_sig_hires().
 474  */
 475 clock_t
 476 cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t tim)
 477 {
 478         hrtime_t hrtim;
 479 
 480         hrtim = TICK_TO_NSEC(tim - ddi_get_lbolt());
 481         return (cv_timedwait_sig_hires(cvp, mp, hrtim, nsec_per_tick, 0));
 482 }
 483 
 484 /*
 485  * Wait until the specified time.
 486  * If tim == -1, waits without timeout using cv_wait_sig_swap().
 487  */
 488 int
 489 cv_timedwait_sig_hrtime(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim)
 490 {
 491         if (tim == -1) {
 492                 return (cv_wait_sig_swap(cvp, mp));
 493         } else {
 494                 return (cv_timedwait_sig_hires(cvp, mp, tim, 1,
 495                     CALLOUT_FLAG_ABSOLUTE | CALLOUT_FLAG_ROUNDUP));
 496         }
 497 }
 498 
 499 /*
 500  * Same as cv_timedwait_sig() except that the third argument is a relative
 501  * timeout value, as opposed to an absolute one. There is also a fourth
 502  * argument that specifies how accurately the timeout must be implemented.
 503  */
 504 clock_t
 505 cv_reltimedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t delta,
 506     time_res_t res)
 507 {
 508         hrtime_t exp = 0;
 509 
 510         ASSERT(TIME_RES_VALID(res));
 511 
 512         if (delta > 0) {
 513                 if ((exp = TICK_TO_NSEC(delta)) < 0)
 514                         exp = CY_INFINITY;
 515         }
 516 
 517         return (cv_timedwait_sig_hires(cvp, mp, exp, time_res[res], 0));
 518 }
 519 
 520 /*
 521  * Like cv_wait_sig_swap but allows the caller to indicate (with a
 522  * non-NULL sigret) that they will take care of signalling the cv
 523  * after wakeup, if necessary.  This is a vile hack that should only
 524  * be used when no other option is available; almost all callers
 525  * should just use cv_wait_sig_swap (which takes care of the cv_signal
 526  * stuff automatically) instead.
 527  */
 528 int
 529 cv_wait_sig_swap_core(kcondvar_t *cvp, kmutex_t *mp, int *sigret)
 530 {
 531         kthread_t *t = curthread;
 532         proc_t *p = ttoproc(t);
 533         klwp_t *lwp = ttolwp(t);
 534         int cancel_pending;
 535         int rval = 1;
 536         int signalled = 0;
 537 
 538         if (panicstr)
 539                 return (rval);
 540 
 541         /*
 542          * Threads in system processes don't process signals.  This is
 543          * true both for standard threads of system processes and for
 544          * interrupt threads which have borrowed their pinned thread's LWP.
 545          */
 546         if (lwp == NULL || (p->p_flag & SSYS)) {
 547                 cv_wait(cvp, mp);
 548                 return (rval);
 549         }
 550         ASSERT(t->t_intr == NULL);
 551 
 552         cancel_pending = schedctl_cancel_pending();
 553         lwp->lwp_asleep = 1;
 554         lwp->lwp_sysabort = 0;
 555         thread_lock(t);
 556         cv_block_sig(t, (condvar_impl_t *)cvp);
 557         /* I can be swapped now */
 558         curthread->t_schedflag &= ~TS_DONT_SWAP;
 559         thread_unlock_nopreempt(t);
 560         mutex_exit(mp);
 561         if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending)
 562                 setrun(t);
 563         /* ASSERT(no locks are held) */
 564         swtch();
 565         signalled = (t->t_schedflag & TS_SIGNALLED);
 566         t->t_flag &= ~T_WAKEABLE;
 567         /* TS_DONT_SWAP set by disp() */
 568         ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
 569         mutex_enter(mp);
 570         if (ISSIG_PENDING(t, lwp, p)) {
 571                 mutex_exit(mp);
 572                 if (issig(FORREAL))
 573                         rval = 0;
 574                 mutex_enter(mp);
 575         }
 576         if (lwp->lwp_sysabort || MUSTRETURN(p, t))
 577                 rval = 0;
 578         if (rval != 0 && cancel_pending) {
 579                 schedctl_cancel_eintr();
 580                 rval = 0;
 581         }
 582         lwp->lwp_asleep = 0;
 583         lwp->lwp_sysabort = 0;
 584         if (rval == 0) {
 585                 if (sigret != NULL)
 586                         *sigret = signalled;    /* just tell the caller */
 587                 else if (signalled)
 588                         cv_signal(cvp); /* avoid consuming the cv_signal() */
 589         }
 590         return (rval);
 591 }
 592 
 593 /*
 594  * Same as cv_wait_sig but the thread can be swapped out while waiting.
 595  * This should only be used when we know we aren't holding any locks.
 596  */
 597 int
 598 cv_wait_sig_swap(kcondvar_t *cvp, kmutex_t *mp)
 599 {
 600         return (cv_wait_sig_swap_core(cvp, mp, NULL));
 601 }
 602 
 603 void
 604 cv_signal(kcondvar_t *cvp)
 605 {
 606         condvar_impl_t *cp = (condvar_impl_t *)cvp;
 607 
 608         /* make sure the cv_waiters field looks sane */
 609         ASSERT(cp->cv_waiters <= CV_MAX_WAITERS);
 610         if (cp->cv_waiters > 0) {
 611                 sleepq_head_t *sqh = SQHASH(cp);
 612                 disp_lock_enter(&sqh->sq_lock);
 613                 ASSERT(CPU_ON_INTR(CPU) == 0);
 614                 if (cp->cv_waiters & CV_WAITERS_MASK) {
 615                         kthread_t *t;
 616                         cp->cv_waiters--;
 617                         t = sleepq_wakeone_chan(&sqh->sq_queue, cp);
 618                         /*
 619                          * If cv_waiters is non-zero (and less than
 620                          * CV_MAX_WAITERS) there should be a thread
 621                          * in the queue.
 622                          */
 623                         ASSERT(t != NULL);
 624                 } else if (sleepq_wakeone_chan(&sqh->sq_queue, cp) == NULL) {
 625                         cp->cv_waiters = 0;
 626                 }
 627                 disp_lock_exit(&sqh->sq_lock);
 628         }
 629 }
 630 
 631 void
 632 cv_broadcast(kcondvar_t *cvp)
 633 {
 634         condvar_impl_t *cp = (condvar_impl_t *)cvp;
 635 
 636         /* make sure the cv_waiters field looks sane */
 637         ASSERT(cp->cv_waiters <= CV_MAX_WAITERS);
 638         if (cp->cv_waiters > 0) {
 639                 sleepq_head_t *sqh = SQHASH(cp);
 640                 disp_lock_enter(&sqh->sq_lock);
 641                 ASSERT(CPU_ON_INTR(CPU) == 0);
 642                 sleepq_wakeall_chan(&sqh->sq_queue, cp);
 643                 cp->cv_waiters = 0;
 644                 disp_lock_exit(&sqh->sq_lock);
 645         }
 646 }
 647 
 648 /*
 649  * Same as cv_wait(), but wakes up (after wakeup_time milliseconds) to check
 650  * for requests to stop, like cv_wait_sig() but without dealing with signals.
 651  * This is a horrible kludge.  It is evil.  It is vile.  It is swill.
 652  * If your code has to call this function then your code is the same.
 653  */
 654 void
 655 cv_wait_stop(kcondvar_t *cvp, kmutex_t *mp, int wakeup_time)
 656 {
 657         kthread_t *t = curthread;
 658         klwp_t *lwp = ttolwp(t);
 659         proc_t *p = ttoproc(t);
 660         callout_id_t id;
 661         clock_t tim;
 662 
 663         if (panicstr)
 664                 return;
 665 
 666         /*
 667          * Threads in system processes don't process signals.  This is
 668          * true both for standard threads of system processes and for
 669          * interrupt threads which have borrowed their pinned thread's LWP.
 670          */
 671         if (lwp == NULL || (p->p_flag & SSYS)) {
 672                 cv_wait(cvp, mp);
 673                 return;
 674         }
 675         ASSERT(t->t_intr == NULL);
 676 
 677         /*
 678          * Wakeup in wakeup_time milliseconds, i.e., human time.
 679          */
 680         tim = ddi_get_lbolt() + MSEC_TO_TICK(wakeup_time);
 681         mutex_enter(&t->t_wait_mutex);
 682         id = realtime_timeout_default((void (*)(void *))cv_wakeup, t,
 683             tim - ddi_get_lbolt());
 684         thread_lock(t);                 /* lock the thread */
 685         cv_block((condvar_impl_t *)cvp);
 686         thread_unlock_nopreempt(t);
 687         mutex_exit(&t->t_wait_mutex);
 688         mutex_exit(mp);
 689         /* ASSERT(no locks are held); */
 690         swtch();
 691         (void) untimeout_default(id, 0);
 692 
 693         /*
 694          * Check for reasons to stop, if lwp_nostop is not true.
 695          * See issig_forreal() for explanations of the various stops.
 696          */
 697         mutex_enter(&p->p_lock);
 698         while (lwp->lwp_nostop == 0 && !(p->p_flag & SEXITLWPS)) {
 699                 /*
 700                  * Hold the lwp here for watchpoint manipulation.
 701                  */
 702                 if (t->t_proc_flag & TP_PAUSE) {
 703                         stop(PR_SUSPENDED, SUSPEND_PAUSE);
 704                         continue;
 705                 }
 706                 /*
 707                  * System checkpoint.
 708                  */
 709                 if (t->t_proc_flag & TP_CHKPT) {
 710                         stop(PR_CHECKPOINT, 0);
 711                         continue;
 712                 }
 713                 /*
 714                  * Honor fork1(), watchpoint activity (remapping a page),
 715                  * and lwp_suspend() requests.
 716                  */
 717                 if ((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) ||
 718                     (t->t_proc_flag & TP_HOLDLWP)) {
 719                         stop(PR_SUSPENDED, SUSPEND_NORMAL);
 720                         continue;
 721                 }
 722                 /*
 723                  * Honor /proc requested stop.
 724                  */
 725                 if (t->t_proc_flag & TP_PRSTOP) {
 726                         stop(PR_REQUESTED, 0);
 727                 }
 728                 /*
 729                  * If some lwp in the process has already stopped
 730                  * showing PR_JOBCONTROL, stop in sympathy with it.
 731                  */
 732                 if (p->p_stopsig && t != p->p_agenttp) {
 733                         stop(PR_JOBCONTROL, p->p_stopsig);
 734                         continue;
 735                 }
 736                 break;
 737         }
 738         mutex_exit(&p->p_lock);
 739         mutex_enter(mp);
 740 }
 741 
 742 /*
 743  * Like cv_timedwait_sig(), but takes an absolute hires future time
 744  * rather than a future time in clock ticks.  Will not return showing
 745  * that a timeout occurred until the future time is passed.
 746  * If 'when' is a NULL pointer, no timeout will occur.
 747  * Returns:
 748  *      Function result in order of precedence:
 749  *               0 if a signal was received
 750  *              -1 if timeout occured
 751  *              >0 if awakened via cv_signal() or cv_broadcast()
 752  *                 or by a spurious wakeup.
 753  *                 (might return time remaining)
 754  * As a special test, if someone abruptly resets the system time
 755  * (but not through adjtime(2); drifting of the clock is allowed and
 756  * expected [see timespectohz_adj()]), then we force a return of -1
 757  * so the caller can return a premature timeout to the calling process
 758  * so it can reevaluate the situation in light of the new system time.
 759  * (The system clock has been reset if timecheck != timechanged.)
 760  *
 761  * Generally, cv_timedwait_sig_hrtime() should be used instead of this
 762  * routine.  It waits based on hrtime rather than wall-clock time and therefore
 763  * does not need to deal with the time changing.
 764  */
 765 int
 766 cv_waituntil_sig(kcondvar_t *cvp, kmutex_t *mp, timestruc_t *when,
 767     int timecheck)
 768 {
 769         timestruc_t now;
 770         timestruc_t delta;
 771         hrtime_t interval;
 772         int rval;
 773 
 774         if (when == NULL)
 775                 return (cv_wait_sig_swap(cvp, mp));
 776 
 777         gethrestime(&now);
 778         delta = *when;
 779         timespecsub(&delta, &now);
 780         if (delta.tv_sec < 0 || (delta.tv_sec == 0 && delta.tv_nsec == 0)) {
 781                 /*
 782                  * We have already reached the absolute future time.
 783                  * Call cv_timedwait_sig() just to check for signals.
 784                  * We will return immediately with either 0 or -1.
 785                  */
 786                 rval = cv_timedwait_sig_hires(cvp, mp, 0, 1, 0);
 787         } else {
 788                 if (timecheck == timechanged) {
 789                         /*
 790                          * Make sure that the interval is atleast one tick.
 791                          * This is to prevent a user from flooding the system
 792                          * with very small, high resolution timers.
 793                          */
 794                         interval = ts2hrt(&delta);
 795                         if (interval < nsec_per_tick)
 796                                 interval = nsec_per_tick;
 797                         rval = cv_timedwait_sig_hires(cvp, mp, interval, 1,
 798                             CALLOUT_FLAG_HRESTIME);
 799                 } else {
 800                         /*
 801                          * Someone reset the system time;
 802                          * just force an immediate timeout.
 803                          */
 804                         rval = -1;
 805                 }
 806                 if (rval == -1 && timecheck == timechanged) {
 807                         /*
 808                          * Even though cv_timedwait_sig() returned showing a
 809                          * timeout, the future time may not have passed yet.
 810                          * If not, change rval to indicate a normal wakeup.
 811                          */
 812                         gethrestime(&now);
 813                         delta = *when;
 814                         timespecsub(&delta, &now);
 815                         if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
 816                             delta.tv_nsec > 0))
 817                                 rval = 1;
 818                 }
 819         }
 820         return (rval);
 821 }