new usr/src/ Makefil e. master

R R R R

38277 Tue Jun 11 04:01:18 2019
new usr/src/ Makefil e. master

9996

use GCC 7 as default primary conpiler

R R R R R

CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governi ng perm ssions

and limtations under the License.

When di stributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyri ght (c) 2012 by Del phix. Al rights reserved.

Copyright 2014 Garrett D Anore <garrett @anore. org>

Copyright 2015, Omi Tl Conputer Consulting, Inc. Al rights reserved.
Copyright 2015 Gary MIlIs

Copyright 2015 | gor Kozhukhov <i kozhukhov@nail . con>

Copyri ght 2016 Toormas Soone <t soone@re. con>

Copyright 2018 Omi OS Community Edition (Omi CSce) Association.
Copyri ght 2019, Joyent, Inc.

Copyright (c) 2019, Joyent, Inc.

Makefil e. master,

HHHF HHFHBHFHHHHE HHFHBHFHHFHFHFF TR

gl obal definitions for system source

-

/proto

#
Adj unct root,
and libraries.

contai ning an additional proto area to be used for headers
#
ADJUNCT_PROTO=

#

Adjunct for building things that run on the build machine.
#

NATI VE_ADJUNCT= / usr

RELEASE BUI LD shoul d be cleared for final release builds.
NOT_RELEASE BUI LD is exactly what the nane inplies.

GNUC t oggl es the bui I di ng of ON components using gcc and rel ated tools.
Normally set to ‘#, set it to ‘'’ to do gcc build.

The declaration POUND_SIGN is always "# . This is needed to get around the
make feature that '# is always a comment deliniter, even when escaped or
quoted. We use this nacro expansion nethod to get POUND_SI GN rather than
al ways breaking out a shell because the general case can cause a noticable

HHFHHFHH TR

Copyright (c) 1989, 2010, Oracle and/or its affiliates. Al rights reserved.

new usr/src/ Makefil e. master

108

110
111
112

114
115

117
118

120
121
122
123
124
125
126

slowdown in build times when so many Makefiles include Makefile. master.

#

While the najority of users are expected to override the setting bel ow
#with an env file (via nightly or bldenv), if you aren’t building that way
(ie, you' re using "ws" or sone other bootstrapping method) then you need
this definition in order to avoid the subshell invocation mentioned above.
#

PRE_POUND= pre\#

POUND_SI GN\= (PRE_POUND: pr e\ %%

NOT_RELEASE _BUI LD=

RELEASE_BUI LD= $(POUND_SI GN)

$(RELEASE_BUI LD) NOT_RELEASE_BUI LD= $(POUND_SI GN)

PATCH BUI LD= $(POUND_SI GN)

SPARC BLD is '# for an Intel build.
INTEL_BLD is '# for a Sparc build.

SPARC BLD 1= $(MACH: i 386=$(POUND_SI G\))

SPARC_BLD= $(SPARC_BLD_1: spar c=)

INTEL_BLD 1= $(MACH: spar c=$(POUND_SI GN))

| NTEL_BLD= $(I NTEL_BLD 1:i 386=)

The vari abl es bel ow control the conpilers used during the build.

There are a nunber of pernutations.

#

_ GNUC and __SUNC control (and indicate) the primary conpiler. \Whichever
one is not POUND SIGN is the primary, wth the other as the shadow. They
may al so be used to control entirely conpiler-specific Mikefile assignnents.
__ GNUC and GCC are the default.

#

_ GNUC64 indicates that the 64bit build should use the GNU C conpiler.

There is no Sun C anal ogue.

#

The foll owi ng version-specific options are operative regardl ess of which
conpiler is primary, and control the versions of the given conpilers to be
used. They also allow conpiler-version specific Makefile fragnents.

#

_ SUNC= $(POUND_SI GN)

$(__SUNC) __GNUC= $(POUND_SI GN)

__GN\NUCB4= $(__GNUO)

Allow build-tine "configuration" to enable or disable sone things.

The default is POUND_SIGN, neaning "not enabled". If the environnent
passes in an override |ike ENABLE_SMB PRI NTI NG= (enpty) that will

uncomment things in the lower Makefiles to enable the feature.

ENABLE_SMB_PRI NTI NG= $(POUND_SI GN)

CLOSED is the root of the tree that contains source which isn't released
as open source

CLOSED= $(SRC)/ ../ cl osed

BU LD TOOLS is the root of all tools including conpilers.

ONBLD_TOOLS is the root of all the tools that are part of SUNWNbI d.

BU LD TOOLS= /ws/ onnv-tool s

ONBLD_TOOLS= $(BU LD_TOOLS) / onbl d

define runtime JAVA HOVE, primarily for cnd/ pool s/ poold

JAVA_HOME= /usr/java

define buildtime JAVA ROOT

JAVA ROOT= /usr/java

Build uses java7 by default. Pass one the variables bel ow set to enpty
string in the environment to override.

BLD_JAVA 6= $(POUND_SI GN)

new usr/src/ Makefil e. master

127 BLD_JAVA 8= $(POUND_SI GN)
129 GNUC_ROOT=
129 GNUC_ROOT=
130 GCCLIBDI R=
131 GCCLI BDI R64=

/usr/gcc/7

/opt/gccl/ 4. 4. 4
$(GNUC_ROOT) / | i
$(GNUC_ROOT) / | i

133 DOCBOOK_XSL_ROOT=

/$(MACHG4)

/ usr/ share/ sgm / docbook/ xsl - styl esheet s

paths, so that the shell
This is mninall

135 RPCGEN= [usr/ bi n/rpcgen

136 STABS= $(ONBLD_TOOLS) / bi n/ $(MACH) / st abs

137 ELFEXTRACT= $(ONBLD_TOOLS)/ bi n/ $(MACH) / el f extract
138 MBH_PATCH= $(ONBLD_TOQLS) / bi n/ $(Mi\CI-I)/rrbh pat ch
139 BTXLD= $(ONBLD_TOOLS) / bi n/ $(MACH) / bt xI d

140 VTFONTCVT= $(ONBLD_TOOLS) / bi n/ $(MACH) / vt f ont cvt
141 # echo(1l) and true(1l) are specified w thout absolute
142 # spawned by make(1) may use the built-in versions.
143 # problematic, as the shell spawned by make(1) is known and under control, the
144 # only risk bei ng if the shell falls back to $PATH.
145 #

146 # V% specifically want an echo(l) that does interpolation of escape sequences,
147 # whi ch ksh93, /bin/sh, and bash will all provide.
148 ECHO= echo

149 TRUE= true

150 I NS= $(ONBLD_TOQOLS) / bi n/ $(MACH) / i nst al |
151 SYM.I NK= lusr/bin/ln -s

152 LN= Jusr/bin/lIn

153 MKDI R= [usr/ bi n/ mkdir

154 CHMOD= [usr/ bi n/ chnod

155 M= lusr/bin/m -f

156 RvE /usr/bin/rm-f

157 CUT= [usr/ bi n/ cut

158 NME [usr/ccs/ bin/ nm

159 DI FF= [usr/bin/diff

160 GREP= [usr/ bin/grep

161 EGREP= / usr/ bin/ egrep

162 ELFWRAP= /usr/ bin/el fwap

163 KSH93= [usr/ bi n/ ksh93

164 SED= [usr/ bin/sed

165 AVK= [usr/ bi n/ nawk

166 CP= [usr/bin/cp -f

167 = /usr/ccs/ bin/nts

168 CAT= [usr/ bin/ cat

169 ELFDUWP= [usr/ ccs/ bin/ el fdunp

170 M= [usr/bin/m

171 = [usr/ bin/gmt

172 STRI P= /usr/ccs/bin/strip

173 LEX= /usr/ccs/ bin/lex

174 FLEX= [usr/bin/flex

175 YACC= [usr/ccs/ bin/yacc

176 Bl SON= [usr/bi n/bi son

177 CPP= Jusr/lib/cpp

178 ANSI _CPP= $(GNUC_RQOT) / bi n/ cpp

179 JAVAC= $(JAVA_ROOT) / bi n/ j avac

180 JAVAH= $(JAVA_ROOT) / bi n/ j avah

181 JAVADOC= $(JAVA_ROOT) / bi n/ j avadoc

182 RM C= $(JAVA_ROOT) / bin/rmc

new usr/src/ Makefil e. master

192 FI ND= Jusr/bin/find

193 PERL= [usr/ bin/perl

194 PERL_VERSION= 5.10.0

195 PERL_PKGVERS= -510

196 PERL_ARCH = i 86pc-sol ari s- 64i nt
197 $(SPARC BLD) PERL_ARCH = sun4-sol ari s- 64i nt
198 PYTHON_VERSI ON= 2. 7

199 PYTHON_PKGVERS= - 27

200 PYTHON_SUFFI X=

201 PYTHON= [usr/ bi n/ pyt hon$(PYTHON_VERSI ON)

202 PYTHON3_VERS| ON= 3.5

203 PYTHON3_PKGVERS= - 35

204 PYTHON3_SUFFI X=

205 PYTHON3= /usr/ bi n/ pyt hon$(PYTHON3_VERSI ON)

206 $(BUI LDPY3TOOLS) TOOLS PYTHON= $(PYTHONB)
207 $(BUI LDPY2TOOLS) TOOLS_PYTHON= $(PYTHON)

208 SORT= /usr/bin/sort

209 TR= /usr/bin/tr

210 TOUCH= /usr/ bin/touch

211 W= [usr/ bi n/wc

212 XARGS= [usr/ bi n/ xar gs

213 ELFEDI T= /usr/bin/el fedit

214 DTRACE= /usr/sbin/dtrace -xnolibs

215 UN = [usr/ bin/uniq

216 TAR= [usr/bin/tar

217 ASTBI NDI R= /usr/ast/bin

218 MBGCC= $(ASTBI NDI R) / msgcc

219 MSGFMI= /usr/bin/msgfnm -s

220 LCDEF= $(ONBLD_TOQOLS) / bi n/ $(MACH) / | ocal edef
221 TIC= $(ONBLD_TOOLS) / bi n/ $(MACH) / ti ¢

222 ZIC= $(ONBLD_TOOLS) / bi n/ $(MACH) / zi ¢

223 OPENSSL= / usr/ bi n/ openssl

224 CPCGEN= $(ONBLD_TOOLS) / bi n/ $(MACH) / cpcgen
226 DEFAULT_CONSOLE_COLOR= \
227 - DDEFAULT_ANSI _FOREGROUND=ANS| _COLOR _WHI TE \
228 - DDEFAULT_ANSI ~ BACKGROUND=ANS| _COLOR_BLACK
230 FI LEMODE= 644

231 DI RMODE= 755

233 # Declare that nothing should be built in parallel.

234 # Individual Makefiles can use the . PARALLEL target to declare otherw se.

235 . NO_PARALLEL:

237 # For stylistic checks
238 #

239 # Note that the X and C checks are not used at this tinme and may need

240 # nodification when they are actually used.

183 JAR= $(JAVA_ROOT) / bi n/ j ar

184 CTFCONVERT= $(ONBLD_TOOLS) / bi n/ $(MACH) / ct f convert
185 CTFDI FF= $(ONBLD_TQOLS) / bi n/ $(MACH) / ct f di f f
186 CTFMERGE= $(ONBLD_TOOLS) / bi n/ $(MACH) / ct f er ge
187 CTFSTABS= $(ONBLD_TOOLS) / bi n/ $(MACH) / ct f st abs
188 CTFSTRI P= $(ONBLD_TOOLS) / bi n/ $(MACH) / ctfstrip
189 NDRGEN= $(ONBLD_TOOLS) / bi n/ $(MACH) / ndr gen
190 GENOFFSETS= $(ONBLD_TOOLS) / bi n/ genof f set s

191 XREF= $(ONBLD_TOQLS) / bi n/ xr ef

241 #

242 CSTYLE= $(ONBLD_TOOLS) / bi n/cstyl e

243 CSTYLE_TAI L=

244 HDRCHK= $(ONBLD_TQOLS) / bi n/ hdr chk

245 HDRCHK_TAI L=

246 JSTYLE= $(ONBLD_TOOLS)/ bi n/jstyle

248 DOT_H_CHECK= \

249 @(ECHO "checking $<"; $(CSTYLE) $< $(CSTYLE TAIL); \
250 $(HDRCHK) $< $(HDRCHK_TAI L)

252 DOT_X_CHECK= \

253 @(ECHO "checking $<"; $(RPCGEN) -C -h $< | $(CSTYLE) $(CSTYLE_TAIL);
254 $(RPCGEN) -C -h $< | $(HDRCHK) $< $(HDRCHK_TAI L)

256 DOT_C_CHECK=

257 @(EOHO) "checki ng $<"

: $(CSTYLE) $< $(CSTYLE TAIL)

\

new usr/src/ Makefil e. master

259 MANI FEST_CHECK= \

260 @(ECHO) "checking $<"; \

261 SVCCFG_DTD=$(SRC)/ cnd/ svc/ dt d/ servi ce_bundl e. dtd. 1 \

262 SVCCFG_REPOSI TORY=$(SRC) / cnd/ svc/ seed/ gl obal . db \

263 SVCCFG_CONFI GD_PATH=$(SRC) / cnd/ svc/ confi gd/ svc. confi gd-native \
264 $(SRO) Tcnd/ svel svecef g/ svecf g-native validate $<

266 INS.file= $(RM $@ $(INS) -s -m$(FILEMJDE) - $(@) $<

267 INS. dir= -s -d -m $(Dl RMODE)

268 # installs and renames at once

269 #

270 I NS. rename= $(INS.file); $(MW) $(@)/$(<F) $@

272 # install a link

273 | NSLI NKTARGET= $<

274 INS. |ink= $(RVM) $@ $(LN) $(1 NSLI NKTARCET) $@

275 INS. syni i nk= $(RM $@ $(SYM.INK) $(INSLI NKTARGET) $@

277 # The path to python that will be used for the shebang |ine when installing
278 # python scripts to the proto area. This is overridden by nekefiles to
279 # select to the correct version.

280 PYSHEBANG= $(PYTHON)

282 #

283 # Python bakes the ntime of the .py file into the conpiled .pyc and
284 # rebuilds if the baked-in ntime I=the ntime of the source file

285 # (rather than only if it’s less than), thus when installing python
286 # files we nust make certain to not adj ust the ntime of the source
287 # (.py) file.

288 #

289 INS. pyfile= $(RM $@ $(SED) \

290 -e "1s: M # @YTHON@ \ #! $(PYSHEBANG) "\

291 -e "1s: M #! @OOLS_PYTHON@ \ #! $(TOOLS_PYTHON) : "\

292 < $< > $@ $(CHVOD) $(FILEMDE) $@ $(TOUCH -r $< $@
294 # MACH nust be set in the shell environnent per uname -p on the build host
295 # More specific architecture variables should be set in |ower makefiles.
296 #

297 # MACH64 is derived from MACH, and BU LD64 is set to ‘# for

298 # architectures on which we do not build 64-bit versions.

299 # (There are no such architectures at the nonent.)

300 #

301 # Set BUILD64=# in the environnment to disable 64-bit and64

302 # builds on i386 nachines.

304 MACHB4_1= $(MACH: spar c=spar cv9)

305 MACH64= $(MACH64_1: i 386=and64)

307 MACH32_1= $(MACH: spar c=spar cv7)

308 MACH32= $(MACH32_1: i 386=i 86)

310 sparc_BUI LD64=

311 i 386_BUI LD64=

312 BUI LD64= $($(MACH) _BUI LD64)

314 #

315 # C conpiler node. Future conpilers may change the default on us,

316 # so force extended ANSI node globally. Lower |evel nekefiles can

317 # override this by setting CCMODE.

318 #

319 CCMODE= - Xa

320 CCMODE64= - Xa

322 #

323 # C conpiler verbose node. This is so we can enable it globally,

new usr/src/ Makefil e. master

324

but turn it off in the |lower |evel nakefiles of things we cannot

325 # (or aren’t going to) fix.

326 #

327 CCVERBOSE= -V

329 # set this to the secret flag "-W, -Q sel ect-v9abi warn=1" to get warni ngs
330 # fromthe conpiler about places the -xarch=v9 may differ from -xarch=v9c.
331 VI9ABI WARN=

333 # set this to the secret flag "-W,-Q sel ect-regsym=0" to disable register
334 # synbols (used to detect conflicts between objects that use gl obal registers)
335 # we disable this now for safety, and because genunix doesn’t link with
336 # this feature (the v9 default) enabl ed.

337 #

338 # REGSYM is separate since the C++ driver syntax is different.

339 CCREGSYM= -\W, - Q sel ect-regsyn¥0

340 CCCREGSYM= -Qoption cg -Q sel ect-regsym0

342 # Prevent the renoval of static synbols by the SPARC code generator (cg).

343 # The x86 code generator (ube) does not rempve such synbols and as such
344 # using this workaround is not applicable for x86.

345 #

346 CCSTATI CSYM= -W, - Qassenbl er - ounr ef synr0

347 #

348 # generate 32-bit addresses in the v9 kernel. Saves nenory.

349 CCABS32= - W, - xcode=abs32

350 #

351 # generate v9 code which tolerates callers using the v7 ABI, for the sake of
352 # system calls.

353 CC32BI TCALLERS= -_gcc=-massune- 32bit-callers

355
356
357
358
359
360
361
362
363
364
365
366
367

369
370
371
372
373
374
375
376
377

379
380
381
382
383
384
385
386
387
388

GCC, especially, is increasingly beginning to auto-inline functions and
sadly does so separately not under the general -fno-inline-functions

Additionally, we wish to prevent optim sations which cause GCC to clone
functions -- in particular, these may cause unhel pful synbols to be

emtted instead of function nanes

CCNOAUTOI NLI NE= \

-_gcc=-fno-inline-small-functions \

_gcc=-fno-inline-functions-called-once \

-_gcc=-fno-ipa-cp \

_gcc7=-fno-ipa-icf \

-_gcc8=-fno-ipa-icf \

-_gcc7=-fno-cl one-functions \

-_gcc8=-fno-clone-functions
GCC may put functions in different naned sub-sections of .text based on
their presuned calling frequency. At least in the kernel, where we actually
deliver relocatable objects, we don’t want this to happen.
#
Since at present we don't benefit fromthis even in userland, we disable it gl
but the application of this may nove into usr/src/uts/ in future.
CCNOREORDER= \

-_gcc7=-fno-reorder-functions \

-_gcc8=-fno-reorder-functions
#
gcc has a rather aggressive optimzation on by default that infers |oop
bounds based on undefined behavior (!!). This can lead to sone VERY
surprising optimzations -- ones that may be technically correct in the
strictest sense but also result in incorrect program behavior. W turn
this optimzation off, with extrenme prejudice.
#
CCNOAGGRESSI VELOOPS= '\

-_gcc7=-fno-aggressi ve-| oop-optim zations \
-_gcc8=-f no-aggressi ve-| oop-opti n zati ons

new usr/src/ Makefil e. master

390 # One optimzation the conpiler mght performis to turn this:

391 # #pragnma weak foo

392 # extern int foo;

393 # if (& 00)

394 # foo = 5;

395 # into

396 # foo = 5;

397 # Since we do sonme of this (foo might be referenced in conmon kernel code
398 # but provided only for sonme cpu nodules or platforns), we disable this
399 # optim zation.

400 #

401 spar c_CCUNBOUND
402 i 386_CCUNBOUND
403 CCUNBOUND

- W, - xsaf esunboundsym

$($(MACH) _CCUNBOUND)

405 #

406 # conpiler '-xarch’ flag. This is here to centralize it and neke it
407 # overridable for testing.

408 spar c_XARCH= -nB2

409 sparcv9_XARCH= -nb4

410 i 386_XARCH= -nB2

411 amd64_XARCH= -nm64 - Ui 386 -U__i386

413 # assenbler '-xarch’ flag. Different fromconpiler '-xarch flag.
414 spar c_AS_XARCH= - xar ch=v8pl us

415 sparcv9_AS XARCH= - xar ch=v9

416 i386_AS_XARCH=

417 anud64_AS_XARCH= -xarch=and64 -P -Ui 386 -U__i 386

419 #

420 # These flags define what we need to be 'standalone’ i.e. -not- part
421 # of the rather nore cosy userland environment. This basically neans
422 # the kernel.

423 #

424 # XX64 future versions of gcc will make -nctnodel =kernel inply -mo-red-zone
425 #

426 spar c_STAND_FLAGS= -_gcc=-ffreestanding

427 sparcv9_STAND FLAGS= -_gcc=-ffreestandi ng

428 # Disabling MW al so di sabl es 3DNow, disabling SSE al so disables all later

429 # additions to SSE (SSEZ AVX ,etc.)

430 NO_SI M= gcc—- Mmo- MrX - _gCcCc=- Mmo- sse
431 i 386_STAND_FLAGS= _gcc=-ffreest andl ng $(NO_SI MD)
432 and64_STAND_FLAGS= —xrmdel =kernel $(NO_SI MD)

434 SAVEARGS= -WI, - save_args

435 and64_STAND_FLAGS += $(SAVEARGS)

437 STAND_FLAGS_32

) 3 $($(MACH) _STAND_FLAGS)
438 STAND_FLAGS_64

$($(MACHBA) _STAND FLAGS)

440 #

441 # disable the increnmental I|inker
442 | LDOFF= -xi | dof f
443 #

444 XFFLAG= - xF=%al |
445 XESS= - XS

446 XSTRCONST= - xstrconst
448 #

449 # turn warnings into errors (C

450 CERRWARN = -errtags=yes -errwarn=%al |

451 CERRWARN += -errof f =E_EMPTY_TRANSLATI ON_UNI T
452 CERRWARN += -errof f =E_STATEMENT_NOT_REACHED

454 CERRWARN += -_gcc=- Who- m ssi ng- braces
455 CERRWARN += - _gcc=- Who- si gn- conpar e

new usr/src/ Makefil e. master

456 CERRWARN += - _gcc=- Who- unknown- pr agnmas
457 CERRWARN += - _gcc=- Who- unused- par anet er
458 CERRWARN += -_gcc=-Who-m ssing-field-initializers

460 # Unfortunately, this option can misfire very easily and unfixably.
461 CERRWARN += -_gcc=-Who- array- bounds

464 CERRWARN += - _smat ch=-p=i| | unos_user

465 include $(SRC)/Makefile.smatch

467 #

468 # turn warnings into errors (C++)

469 CCERRWARN= - Xwe

471 # C standard. Keep Studio flags until we get rid of lint.

472 CSTD_GNU89= -xc99=%one

473 CSTD_GNWI9= -xc99=%al |

474 CSTD= $(CSTD_GNUB9)

475 C99LMODE= $(CSTD: - xc99%=- Xc99%

477 # In nost places, assignments to these macros shoul d be appended with +=
478 # (CPPFLAGS.first allows values to be prepended to CPPFLAGS).
479 sparc_CFLAGS= $(spar c_XARCH) $(CCSTATI CSY

M
480 sparcv9_CFLAGS= $(sparcv9_XARCH) -dalign $(CCVERBOSE) $(V9ABI WARN) $(CCREGSYM \

481 $(CCSTATI CSYM
482 i386_CFLAGS= $(i 386_XARCH)
483 anul6d_CFLAGS= $(antd64_XARCH)

485 spar c_ASFLAGS= $(sparc_AS_XARCH)
486 spar cv9_ASFLAGS=$(spar cv9_AS_XARCH)
487 i 386_ASFLAGS= $(i 386_AS_XARCH)
488 anul64d_ASFLAGS= $(anu64_AS_XARCH)

490 #

491 spar c_COPTFLAG= -xO8
492 spar cv9_COPTFLAG= -x3B
493 | 386_COPTFLAG= -0
494 and64_COPTFLAG= -xO8

496 COPTFLAG= $($(MACH) COPTFLAG)
497 COPTFLAGB4= $($(MACH64) _COPTFLAG)

499 # When -g is used, the conpiler globalizes static objects
500 # (gives thema unique prefix). Disable that.
501 CNOGLOBAL= - WD, - nogl obal

503 #

504 # nane of the nodul e rather than sonething unique. O herw se, objects
505 #

506 # source will yeild objects that always | ook different.

507 #

508 # In the sane spirit, this will also renove the date fromthe N _OPT stab.
509 CGLOBALSTATI C= - WD, - xgl obal static

511 # Sonetinmes we want all synbols and types in debugging information even
512 # if they aren’t used.

513 CALLSYMs= -\, - xdbggen=no%usedonl y

515 #

516 # We force the conpilers to generate the debuggi ng i nformati on best understood
517 # by the CTF tools. Wth Sun Studio this is stabs due to bugs in the Studio
518 # conpilers. Wth GCC this is DWARF v2.

519 #

520 DEBUGFORVAT= - _cc=-xdebugf or mat =st abs - _gcc=-gdwar f -2

Direct the Sun Studio conpiler to use a static globalization prefix based on t

will not build determnistically, as subsequent conpilations of identical

new usr/src/ Makefil e. master 9 new usr/src/ Makefil e. master

522 # 588 # dmake SOURCEDEBUG=yes ... enabl es source-|evel debugging information, and
523 # Ask the conpiler to include debugging information 589 # avoi ds stri ppi ng it.
524 # 590 SOURCEDEBUG = $(POUND_SI GN)
525 CCGDEBUG= -g $(DEBUGFORVAT) 591 SRCDBGBLD = $(SOURCEDEBUG. yes=)
527 # 593 #
528 # Flags used to build in debug node for ctf generation. 594 # These variables are intended ONLY for use by developers to safely pass extra
529 # 595 # flags to the conpilers without unintentionally overriding Makefile-set
530 CTF_FLAGS sparc = $(CCGDEBUG) -W, -Q select-T1 $(CSTD) $(CNOGLOBAL) 596 # flags. They should NEVER be set to any value in a Makefile.
531 CTF_FLAGS_i 386 = $(CCGDEBUG $(CSTD) $(CNOGL OB 597 #
598 # They conme last in the associated FLAGS variable such that they can
533 CTF_FLAGS_sparcv9 = $(CTF FLAGS spar c) 599 # explicitly override things if necessary, there are gaps in this, but it's
534 CTF_FLAGS and64 = $(CTF_FLAGS_i 386) 600 # the best we can nanage.
601 #
536 # Sun Studi o produces broken userland code when savi ng argunents. 602 CUSERFLAGS =
537 $(__GNUC) CTF_FLAGS_and64 += $(SAVEARGS) 603 CUSERFLAGS64 = $(CUSERFLAGS)
604 CCUSERFLAGS =
539 CTF_FLAGS 32 = $(CTF_FLAGS_$(MACH)) 605 CCUSERFLAGS64 = $(CCUSERFLAGS)
540 CTF_FLAGS 64 = $(CTF_FLAGS_$(MACH64))
541 CTF_FLAGS = $(CTF_FLAGS_32) 607 CSOURCEDEBUGFLAGS =
608 CCSOURCEDEBUGFLAGS =
543 # 609 $(SRCDBGBLD) CSOURCEDEBUGFLAGS = $(CCGDEBUG) - xs
544 # Fl ags used with genoffsets 610 $(SRCDBGBLD) CCSOURCEDEBUGFLAGS = $(CCGDEBUG) - xs
545 #
546 GENOFFSETS_FLAGS = $(CALLSYMS) 612 CFLAGS= $(COPTFLAG) $($(MACH) _CFLAGS) $(SPACEFLAG $(CCMODE) \
613 $(1 LDOFF) $(CERRWARN) ~$(CSTD) $(CCUNBOUND) $(| ROPTFLAG) \
548 OFFSETS_CREATE = $(GENOFFSETS) -s $(CTFSTABS) -r $(CTFCONVERT) \ 614 $(CGLOBALSTATI) $(CONOQAUTOI NLI NE) $(CONOREORDER) \
549 “$(CW --noecho $(CW CC COWPILERS) -- $(GENOFFSETS_FLAGS) \ 615 $(CCNOAGGRESSI VELOOPS) \
550 $(CFLAGS) $(CPPFLAGS) 616 $(CSOURCEDEBUGFLAGS) $(CUSERFLAGS)
617 CFLAGS64= $(COPTFLAGG4) $($(MACH64) _CFLAGS) $(SPACEFLAGG4) $(CCMODE6G4) \
552 OFFSETS_CREATE64 = $(GENOFFSETS) -s $(CTFSTABS) -r $(CTFCONVERT) \ 618 $(1 LDOFF) $(CERRWARN) $(CSTD) $(CCUNBOUND) $(| ROPTFLAGG4) \
553 “$(CW --noecho $(CW CC COWPI LERS) -- $(GENOFFSETS_FLAGS) \ 619 $(CGLOBALSTATI C) $(CCNOAUTOI NLI NE) $(CONOREORDER) \
554 $(CFLAGS64) $(CPPFLAGS) 620 $(CCNOAGGRESSI VELOOPS) '\
621 $(CSOURCEDEBUGFLAGS) $(CUSERFLAGS64)
556 # 622 #
557 # tradeoff time for space (snaller is better) 623 # Flags that are used to build parts of the code that are subsequently
558 # 624 # run on the build nachine (al so known as the NATIVE_BU LD).
559 spar c_SPACEFLAG = -xspace -W, - Lt 625 #
560 sparcv9_SPACEFLAG = -xspace -W, - Lt 626 NATI VE_CFLAGS= $(COPTFLAG) $($(NATIVE_MACH) CFLAGS) $(CCMODE) \
561 i 386_SPACEFLAG = -xspace 627 $(1 LDOFF) $(CERRWARN) $(CSTD) $($(NATI VE_MACH) _CCUNBOUND) \
562 and64_SPACEFLAG = 628 $(1 ROPTFLAG) $(CGLOBALSTATI C) $(CCNOAUTO NLI NE) \
629 $(CCNOREORDER) $(CSOURCEDEBUGFLAGS) $(CUSERFLAGS)

564 SPACEFLAG $($(MACH) _SPACEFLAG)

565 SPACEFLAGH4 $($(MACH64) _SPACEFLAG) 631 DTEXTDOM=- DTEXT_DOVAI N=\ " $(TEXT_DOVAI N)\ * # For nessaging.
632 DTS_ERRNO=- D_TS_ERRNO
567 # 633 CPPFLAGS.first= # Please keep enpty. Only |lower makefiles should set this.
568 # The Sun Studio 11 conpiler has changed the behavi our of integer 634 CPPFLAGS. nast er =$(DTEXTDOM) $(DTS_ERRNO) \
569 # wrap arounds and so a flag is needed to use the | egacy behaviour 635 $(ENVCPPFLAGS1) $(ENVCPPFLAGS2) $(ENVCPPFLAGS3) $(ENVCPPFLAGS4) \
570 # (without this flag panics/hangs could be exposed within the source). 636 $(ADJUNCT_PROTQ %=- | % usr /i ncl ude)
571 # 637 CPPFLAGS. nat i ve=$(ENVCPPFLAGS1) $(ENVCPPFLAGS2) $(ENVCPPFLAGS3) \
572 sparc_| ROPTFLAG = -W2, -xwrap_i nt 638 $(ENVCPPFLAGS4) -1 $(NATI VE_ADJUNCT) /i ncl ude
573 sparcv9_I ROPTFLAG = -W2, -xwrap_i nt 639 CPPFLAGS= $(CPPFLAGS. first) $(CPPFLAGS. master)
574 i386_| ROPTFLAG = 640 AS_CPPFLAGS= $(CPPFLAGS. first) $(CPPFLAGS. master)
575 and64_| ROPTFLAG = 641 JAVAFLAGS= -source 1.6 -target 1.6 -Xlint:deprecation,-options
577 | ROPTFLAG = $($(MACH) _I ROPTFLAG) 643 #
578 | ROPTFLAGG4 = $($(MACH64) _| ROPTFLAG) 644 # For source nessage catal ogue
645 #
580 spar c_XREGSFLAG - xr egs=no%appl 646 . SUFFI XES: $(SUFFI XES) .i .po
581 spar cv9_XREGSFLAG - Xr egs=no%appl 647 MBGROOT= $(ROOT)/ cat al og

582 i 386_XREGSFLAG
583 and64 XREGSFLAG

648 MSGDOMAI N= $(MBGROOT) / $(TEXT_DOVAI N)

649 MSGDOMAI NPOFI LE = $(MSGDOVAI N) / $(POFI LE)

650 DCVBGDOVAI N= $(MSGRQOOT) / LC_TI ME/ $(TEXT_DOVAI N)

$($(MACH) _XREGSFLAG) 651 DCVBGDOVAI NPOFI LE = $(DCMSGDOMAI N) / $(DCFI LE: . dc=. po)
$($(MACH64) _XREGSFLAG)

585 XREGSFLAG
586 XREGSFLAGG4

653 CLOBBERFI LES += $(POFI LE) $(POFI LES)

new usr/src/ Makefil e. master

654 COMPI LE. cpp= $(CC) -E -C $(CFLAGS) $(CPPFLAGS)

655 XGETTEXT= /usr/bi n/ xgettext

656 XGETFLAGS= -c TRANSLATI ON_NOTE

657 GNUXGETTEXT= /usr/gnu/ bi n/ xgett ext

658 GNUXGETFLAGS= - - add- conment S=TRANSLATI ON_NOTE - - keywor d=_ \

659 --strict --no-location --omt-header

660 BUI LD. po= $(XGETTEXT) $(XGETFLAGS) -d $(<F) $<.i ;\

661 $(RM $@;\

662 $(SED) "/ ~domai n/ d" < $(<F).po > $@;\

663 $(RM $(<F).po $<.i

665 #

666 # This is overwitten by |ocal Mkefile when PROGis a |list.

667 #

668 POFI LE= $(PROG . po

670 sparc_CCFLAGS= -cg92 -conpat=4 \

671 -Qoption ccfe -nessages=no%anachroni sm\
672 $(CCERRVWARN)

673 sparcv9_CCFLAGS= $(sparcv9_XARCH) -dalign -conpat=5\

674 - Qoption ccfe -nessages=no%anachroni sm\
675 -Qoption ccfe -features=no%onststrings \
676 $(CCCREGSYM |\

677 $(CCERRWARN)

678 i 386_CCFLAGS= -conpat =4 \

679 - Qoption ccfe -nessages=no%anachroni sm\
680 -Qoption ccfe -features=no%onststrings \
681 $(CCERRWARN)

682 and64_CCFLAGS= $(anmd64_XARCH) -conpat=5 \

683 - Qoption ccfe -nessages=no%anachroni sm\
684 -Qoption ccfe -features=no%onststrings \
685 $(CCERRVWARN)

687 spar c_CCOPTFLAG= -0

688 spar cv9_CCOPTFLAG= -0

689 i 386_CCOPTFLAG= -0

690 anu64_CCOPTFLAG= -0

692 CCOPTFLAG= $($(MACH) _ CCOPTFLAG)

693 CCOPTFLAGG4= $($(MACH64) _CCOPTFLAG)

694 CCFLAGS= $(CCOPTFLAG) $($(MACH) _CCFLAGS) $(CCSOURCEDEBUGFLAGS) \
695 $(CCUSERFLAGS)

696 CCFLAGS64= $(CCOPTFLAG64) $($(MACH64) _CCFLAGS) $(CCSOURCEDEBUGFLAGS) \
697 $(CCUSERFLAGS64)

699 #

700 #

701 #

702 ELPWRAP_FLAGS =

703 ELFWRAP_FLAGS64 = -64

705 #

706 # Various mapfiles that are used throughout the build, and delivered to
707 # /usr/lib/ld.

708 #

709 MAPFI LE. NED_i 386 = $(SRC) / conmon/ mapf i | es/ common/ map. noexdat a
710 MAPFI LE. NED sparc =

711 MAPFI LE. NED = $(MAPFI LE. NED_$(MACH))

712 MAPFI LE. PGA = $(SRC) / conmon/ mapf i | es/ conmon/ map. pageal i gn
713 MAPFI LE. NES = $(SRC) / conmon/ mapf i | es/ conmon/ map. noexst k
714 NMAPFILE. FLT = $(SRC) / conmon/ mapfi | es/ common/ map. filter
715 MAPFI LE. LEX = $(SRC) / common/ mapfi | es/ common/ map. | ex. yy
717 #

718 # Generated mapfiles that are conpiler specific, and used throughout the
719 # build. These mapfiles are not delivered in /usr/lib/ld.

11

new usr/src/ Makefil e. master 12
720 #

721 NMAPFI LE. NGB_sparc= $(SRC) / common/ mapfi | es/ gen/ spar c_cc_nmap. noexegl obs
722 $(__GNUC64) MAPFI LE. NGB_sparc= \

723 $(SRC) / conmon/ mapf i | es/ gen/ spar c_gcc_nap. noexegl obs
724 MAPFI LE. NGB_spar cv9= $(SRC) / conmon/ mapfi | es/ gen/ sparcv9_cc_map. noexegl obs
725 $(__GNUC64) MAPFI LE. NGB_spar cv9= \

726 $(SRC) / conmon/ mapfi | es/ gen/ spar cv9_gcc_map. noexegl obs
727 MAPFI LE. NGB_i 386= $(SRC) / common/ mapfi | es/ gen/i 386_cc_map. noexegl obs
728 $(__GNUC64) MAPFI LE. NGB_i 386= \

729 $(SRC) / conmon/ mapfi | es/ gen/ i 386_gcc_map. noexegl obs
730 MAPFI LE. NGB_and64= $(SRC) / conmon/ mapfi | es/ gen/ and64_cc_map. noexegl obs
731 $(__GNUC64) MAPFI LE. NGB_and64= \

732 $(SRC) / conmon/ mapf i | es/ gen/ and64_gcc_map. noexegl obs
733 MAPFI LE. NGB = $(MAPFI LE. NGB_$(MACH))

735 #

736 # A generic interface mapfile nane, used by various dynam c objects to define
737 # the interfaces and interposers the object nust export.

738 #

739 MAPFI LE. I NT = mapfile-intf

741 #

742 # LDLIBS32 and LDLIBS64 can be set in the environment to override the foll ow ng
743 # assignnents.

744 #

745 # These environnment settings make sure that no libraries are searched outside
746 # of the |local workspace proto area:

747 # LDLI BS32=- YP, $ROOTI/ | i b: $ROOT/ usr/1ib

748 # LDLI BS64=- YP, $ROOT/ | i b/ $MACH64: $ROOT/ usr/ | i b/ $MACH64

749 #

750 LDLIBS32 = $(ENVLDLI BS1) $(ENVLDLI BS2) $(ENVLDLI BS3)

751 LDLIBS32 += $(ADJUNCT_PROTQ %=- L% usr/lib -L%1ib)

752 LDLIBS.cnmd = $(LDLI BS32)

753 LDLIBS. lib = $(LDLI BS32)

755 LDLI BS64 = $(ENVLDLI BS1: %% $(MACHB4)) \

756 $(ENVLDLI BS2: %% $(MACHE4)) \

757 $(ENVLDLI BS3: %% $(MACH64))

758 LDLI BS64 += $(ADJUNCT_PROTO %=- L% usr /| i b/ $(MACH64) -L% | i b/ $(MACHE4))
760 #

761 # Define conpilation macros.

762 #

763 COMPI LE. c= $(CC) $(CFLAGS) $(CPPFLAGS) -c

764 COWP| LE64. c= $(CC) $(CFLAGS64) $(CPPFLAGS) -c

765 COWPI LE. cc= $(CCC) $(CCFLAGS) $(CPPFLAGS) -c

766 COWPI LE64.cc= $(CCC) $(CCFLAGS64) $(CPPFLAGS) -c

767 COMPI LE. s= $(AS) $(ASFLAGS) $(AS_CPPFLAGS)

768 COWPI LE64. s= $(AS) $(ASFLAGS) $($(MACHE4) _AS_XARCH) $(AS_CPPFLAGS)

769 COWPI LE. d= $(DTRACE) -G -32

770 COVPI LE64. d= $(DTRACE) -G -64

771 COWPI LE. b= $(ELFWRAP) $(ELFWRAP_FLAGS$(CLASS))

772 CONPI LE64. b= $(ELFWRAP) $(ELFWRAP_FLAGS$(CLASS))

774 CLASSPATH= .

775 COWI LE.java= $(JAVAC) $(JAVAFLAGS) -classpath $(CLASSPATH)

777 #

778 # Link tine nmacros

779 #

780 CCNEEDED =-IC

781 CCEXTNEEDED = -1Crun -IGCstd

782 $(__GNUC) CCNEEDED = -L$(CGCCLIBDIR) -Istdc++ -lgcc_s

783 $(__GNUC) CCEXTNEEDED = $(CCNEEDED)

785 LINK. c= $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS)

new usr/src/ Makefil e. master

786 LI NK64. c= $(CO) $(CFLAGSG4) $(CPPFLAGS) $(LDFLAGS)

787 NORUNPATH= -norunpath -nolib

788 LINK. cc= $(CCC) $(CCFLAGS) $(CPPFLAGS) $(NORUNPATH) \

789 $(LDFLAGS) $(CCNEEDED)

790 LI NK64.cc= $(CCC) $(CCFLAGS64) $(CPPFLAGS) $(NORUNPATH) \

791 $(LDFLAGS) $(CCNEEDED)

793 #

794 # lint macros

795 #

796 # Note that the undefine of _ PRAGVA REDEFI NE_EXTNAME can be renoved once
797 # ONis built with a version of lint that has the fix for 4484186.
798 #

799 ALWAYS_LI NT_DEFS = -errtags=yes -s

800 ALWAYS_LI NT_DEFS += -errof f =E_PTRDI FF_OVERFLOW

801 ALWAYS_LI NT_DEFS += -errof f =E_ASSI GN_NARROW CONV

802 ALWAYS_LI NT_DEFS += - U__PRAGVA_REDEFI NE_EXTNANME

803 ALWAYS_LI NT_DEFS += $(C99LMODE)

804 ALWAYS LI NT_DEFS += -errsecurity=$(SECLEVEL)

805 ALWAYS_LI NT_DEFS += -errof f =E_SEC_CREAT_W THOUT_EXCL

806 ALWAYS LI NT_DEFS += -errof f =E_SEC_FORBI DDEN_WARN_CREAT

807 # XX64 -- really only needed for and64 |int

808 ALWAYS_ LI NT_DEFS += -errof f =E_ASSI GN_I NT_TO_SMALL_I NT

809 ALWAYS_LI NT_DEFS += -errof f =E_CAST_| NT_CONST_TO SMALL_I NT

810 ALWAYS LI NT_DEFS += -errof f =E_CAST_| NT_TO SMALL_I NT

811 ALWAYS_LI NT_DEFS += -errof f =E_CAST_TO PTR_FROM I NT

812 ALWAYS_LI NT_DEFS += -errof f=E_COMP_I NT_W TH_LARGE_| NT

813 ALWAYS_LI NT_DEFS += -errof f =E_| NTEGRAL_CONST_EXP_EXPECTED

814 ALWAYS LI NT_DEFS += -errof f =E_PASS_| NT_TO SMALL_T NT

815 ALWAYS_LI NT_DEFS += -errof f=E_PTR_CONV_LCSES_BI TS

817 # This forces lint to pick up note.h and sys/note.h from Devpro rather than
818 # fromthe proto area. The note.h that ON delivers woul d disable NOTE().
819 ONLY_LI NT_DEFS = -1 $(SPRO_VROOT) / prod/ i ncl ude/ I'i nt

821 SECLEVEL= core

822 LINT.c= $(LINT) $(ONLY_LI NT_DEFS) $(LI NTFLAGS) $(CPPFLAGS) \
823 $(ALWAYS_LI NT_DEFS

824 LINT64.c= $(LINT) $(ONLY_LI NT_DEFS) $(LI NTFLAGS64) $(CPPFLAGS) \
825 $(ALWAYS_LI NT_DEFS)

826 LINT.s= $(LINT. c)

828 # For some future builds, NATIVE_MACH and MACH mi ght be different.
829 # Therefore, NATI VE MACH needs to be redefined in the

830 # environment as ‘unane -p‘ to override this nacro.

831 #

832 # For now at |east, we cross-conpile and64 on i 386 machines.

833 NATI VE_MACH= $(MACH: and64=i 386)

835 # Define native conpil ation macros

836 #

838 # Base directory where conpilers are |oaded.

839 # Defined here so it can be overridden by devel oper.

840 #

841 SPRO ROOT= $(BUI LD_TOOLS) / SUNVipr o

842 SPRO_VROOT= $(SPRO_ROOT) / SS12

843 GNU_ROOT= [usr

845 $(__GNUC) PRI MARY_CC= gcc7, $(GNUC_ROOT) / bi n/ gcc, gnu

845 $(__GNUC) PRI MARY_CC= gcc4, $(GNUC_ROOT) / bi n/ gcc, gnu

846 $(_SUNC) PRI MARY_CC= st udi 012, $(SPRO_VROOT) / bi n/ cc, sun

847 $(__GNUC) PRI MARY_CCC= gcce7, $(GG > ROQT) / bi n/ g++, gnu

847 $(__GNUC) PRI MARY_CCC= gcc4, $(GNUC_ROOT) / bi n/ g++, gnu

848 $(__SUNC) PRI MARY_CCC= st udi 012, $(SPRO_VROOT) / bi n/ CC, sun

13

new usr/src/ Makefil e. master

14

850 CW CC_COWPI LERS= $(PRI MARY_CC: %=--prinmary % $(SHADOW CCS: % - - shadow %
851 CW CCC_COMPI LERS= $(PRI MARY_CCC: %=- - primary % $(SHADOW CCCS: %=- - shadow %)
854 # Till SS12ul formally becomes the NV CBE, LINT is hard
855 # coded to be picked up fromthe $SPRO_ROOT/ sunst udi 012. 1/
856 # | ocation. Inpacted variables are sparc_LINT, sparcv9_LINT,
857 # 1386_LINT, and64_LI NT.

858 # Resel them when SS12ul is rolled out.

859 #

861 # Specify platformconpiler versions for |anguages

862 # that we use (currently only ¢ and c++).

863 #

864 COW $(ONBLD_TOOLS) / bi n/ $(MACH) / cw

866 BUI LD_CC= $(cw $((,WCC COWPI LERS) - -

867 BUI LD_CCC= $(CW -C $(CW CCC_COWPI LERS) --
868 BUI LD_CPP= /usr/ccs/liblcpp

869 BUI LD LD= /usr/ccs/bin/ld

870 BUI LD LI NT= $(SPRO_ROOT) / sunst udi 012. 1/ bi n/ | i nt
872 $(MACH) _CC= $(BUI LD_CO)

873 $(MACH) _CCC= $(BUI LD_CCC)

874 $(MACH) _CPP= $(BUI LD_CPP)

875 $(MACH) _LD= $(BUI LD_LD)

876 $(MACH) _LI NT= $(BUI LD_LI NT)

877 $(MACH64) _CC= $(BUI LD_CO)

878 $(MACH64) _CCC= $(BUI LD_CCC)

879 $(MACH64) _CPP= $(BUI LD_CPP)

880 $(MACH64) _LD= $(BUI LD_LD)

881 $(MACH64) _LI NT= $(BUI LD_LI NT)

883 sparc_AS= /usr/ccs/bin/as -xregsynmno

884 sparcv9_AS= $($(MACH) _AS)

886 i 386_AS= /usr/ccs/ bin/as

887 $(__GNUC)i 386_AS= $(ONBLD_TOCLS) / bi n/ $(MACH) / aw

888 and64_AS= $(ONBLD_TOQOLS) / bi n/ $(MACH) / aw

890 NATI VECC= $($(NATI VE_MACH) _CC)

891 NATI VECCC= $($(NATI VE_MACH) _CCC)

892 NATI VECPP= $($(NATI VE_MACH) _CPP)

893 NATI VEAS= $($(NATI VE_MACH) —_AS)

894 NATI VELD= $($(NATI VE_MACH) _LD)

895 NATI VELI NT= $($(NATI VE_MACH) _LI NT)

897 #

898 # Makefile.naster.64 overrides these settings

899 #

900 CC= $(NATI VECO)

901 CCC= $(NATI VECCC)

902 CPP= $(NATI VECPP)

903 AS= $(NATI VEAS)

904 LD= $(NATI VELD)

905 LINT= $(NATI VELI NT)

907 # Pass -Y flag to cpp (nmethod of which is rel ease-dependent)
908 CCYFLAG= -Y I,

910 BDI RECT= - Bdi rect

911 BDYNAM C= - Bdynami c

912 BLOCAL= - Bl ocal

913 BNODI RECT= - Bnodi r ect

914 BREDUCE= - Breduce

915 BSTATI C= -Bstatic

new usr/src/ Makefil e. master

917 ZDEFS= -zdefs

918 ZDI RECT= -zdirect

919 ZI GNORE= -zignore

920 ZI NI TFI RST= -zinitfirst

921 ZI NTERPOSE= -zinterpose

922 ZLAZYLCAD= -zl azyl oad

923 ZLOADFLTR= -zloadfltr

924 ZMJLDEFS= -znul def s

925 ZNODEFAULTLIB= -znodefaultlib

926 ZNODEFS= -znodef s

927 ZNODELETE= -znodel ete

928 ZNODLOPEN= - znodl open

929 ZNODUMP= - znodunp

930 ZNOLAZYLQAD= -znol azyl oad

931 ZNOLDYNSYM= -znol dynsym

932 ZNORELOC= -znorel oc

933 ZNOVERSI ON= -znoversi on

934 ZRECORD= -zrecord

935 ZREDLOCSYM= -zredl ocsym

936 ZTEXT= -zt ext

937 ZVERBOSE= -zverbose

939 GSHARED= -G

940 CCMI= -mt

942 # Handle different PIC nodels on different |SAs
943 # (May be overridden by |ower-Ilevel Mkefiles)
945 sparc_C_Pl CFLAGS = -fpic

946 sparcv9_C Pl CFLAGS = -fpic

947 i386_C PI CFLAGS = -fpic

948 and64_C_Pl CFLAGS = -fpic

949 C_PI CFLAGS = $($(MACH) _C_PI CFLAGS)
950 C_PI CFLAGS64 = $($(MACH64) _C_PI CFLAGS)
952 sparc_C Bl GPlI CFLAGS = -fPIC

953 sparcv9_C BI GPI CFLAGS = -fPIC

954 | 386_C BI GPI CFLAGS = -fPIC

955 and64_C_BI GPI CFLAGS = -fPIC

956 C_BI GPI CFLAGS = $($(MACH) _C_BI GPI CFLAGS)
957 C_BI GPI CFLAGS64 = $($(MACH64) _C_BI GPI CFLAGS)
959 # CC requires there to be no space between '-K and
960 # and does not support -f

961 sparc_CC_Pl CFLAGS = -_cc=-Kpic -_gcc=-fpic
962 sparcv9_CC Pl CFLAGS = -_cc=-KPIC -_gcc=-fPIC
963 i 386_CC Pl CFLAGS = -_cc=-Kpic -_gcc=-fpic
964 and64_CC_Pl CFLAGS = -“cc=-Kpic -_gcec=-fpic
965 CC_PI CFLAGS = $($(MACH) _CC_PI CFLAGS)
966 CC_PI CFLAGS64 = $($(MACH64) _CC_PI CFLAGS)
968 AS_PI CFLAGS= -K pic

969 AS_BI GPI CFLAGS= -K PIC

971 #

972 # Default |abel for CTF sections

973 #

974 CTFCVTFLAGS= -L VERSI ON

976 #

977 # Override to pass nodul e-specific flags to ctfnerge.
978 # krtld to turn on fuzzy matching, and source-|evel
979 # stripping.

980 #

981 CTFMRGFLAGS=

"pic’ or 'PIC.

Currently used only by
debuggi ng to inhibit

15

new usr/src/ Makefil e. naster 16
983 #

984 # Make the transition between old and new CTF Tools. The new ctf tools

985 # do not support stabs (eg. Sun Studio). By setting BU LD OLD_CTF_TOOLS

986 # here or in the environnent file, the old ones will be built.

987 #

988 BUI LD _NEW CTF_TOOLS=

989
990

992

994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047

BU LD_OLD_CTF_TOOLS=$(POUND_SI GN)

$(BU LD_OLD _CTF
CTFCONVERT_O

Rules (nornall
processing fil

autonumtically.
RELEASE_CM

used with the

It is left as

If this

If this

If this

The follow ng
whi ch is used

HHHFHHFHHHHFH R HFHHF R EHHF T F TSR

POST_PROCESS_O
POST_PROCESS_S_O
POST_PROCESS_CC O
POST_PROCESS_A:
POST_PROCESS_SO.
POST_PROCESS.

- TOOLS) BUI LD_NEW CTF_TOOLS= $(POUND_SI GN)
= $(CTFCONVERT) $(CTFCVTFLAGS) $@

y from make.rul es) and nacros which are used for post
es. Normally, these do stripping of the conment section

Shoul d be edited to reflect the rel ease.

Post - processing for ‘.0 files (typically C source)

Post - processing for ‘.0 files built fromasssenbly

Post - processing for ‘.0 files built from C++
Post-processing for ‘.a files (currently null).

Post - processing for ‘.so’ files.

Post - processing for executable files (no suffix).

Note that these nmacros are not conpletely generalized as they are to be

file name to be processed follow ng.

an exercise to Rel ease Engineering to enbellish the generation

of the rel ease comment string.

is a standard devel opnent buil d:

conpress the comrent section (nts -c)

add the standard comment (nts -a $(RELEASE_CM)

add the devel opment specific coment (nts -a $(DEV_CM)

is an installation build:

del ete the coment section (nts -d)

add the standard comment (nts -a $(RELEASE_CM)

add the devel opment specific coment (ncts -a $(DEV_CM)

is an rel ease build:
del ete the coment section (nts -
add the standard comment (nts -a $(RELEASE_CM))

list of macros are used in the definition of RELEASE CM
to label all binaries in the build:

RELEASE Specific release of the build, eg: 5.2
RELEASE MAJOR Maj or version nunber part of $(RELEASE)
RELEASE_M NOR M nor version nunber part of $(RELEASE)
VERSI ON Version of the build (al pha, beta, Generic)
PATCHI D If this is a patch this value should contain
the patchid value (eg: "Generic 100832-01"), otherw se
it wll be set to $(VERSION)
RELEASE_DATE Date of the Rel ease Build
PATCH_DATE Date the patch was created, if this is blank it
will default to the RELEASE DATE
RELEASE_MAJOR= 5
RELEASE_M NOR= 11
RELEASE= $(RELEASE_MAJOR) . $(RELEASE_M NOR)

VERS| ON=
PATCHI D=
RELEASE_DATE=
PATCH_DATE=
RELEASE_CM=
DEV_CM=

SunGCS Devel opnent
$(VERSI ON)
rel ease date not set
$(RELEASE_DATE)
" @ $(POUND_SI GN)) SunOS $(RELEASE) $(PATCHI D) $(PATCH DATE) "
" @ $(POUND_SI GN)) SunCS I nternal Devel opment: non-nightly build"

new usr/src/ Makefil e. master

1049 PROCESS_COMMENT= @${MCS} -d -a $(RELEASE_CM -a $(DEV_CM

1050 $(RELEASE_BU LD) PROCESS_COMVENT= ~ @${McS} -d -a $(RELEASE_CM
1052 STRI P_STABS= $(STRIP) -x $@

1053 $(SRCDBGBLD) STRI P_STABS= :

1055 POST_PROCESS_O=

1056 POST_PROCESS_S_O=

1057 POST_PROCESS_CC O=

1058 POST_PROCESS_A=

1059 POST_PROCESS_SO= $(PROCESS _COWENT) $@; $(STRIP_STABS) ; \
1060 $(ELFSI GN_OBJECT)

1061 POST_PROCESS= $(PROCESS_COWMENT) $@; $(STRIP_STABS) ; \
1062 $(ELFSI GN_OBJECT)

1064 #

1065 # chk4ubin is a tool that inspects a nodule for a synmbol table
1066 # ELF section size which can trigger an OBP bug on ol der platfornmns.
1067 # This problem affects only specific sun4u boot abl e nodul es.

1068 #

1069 CHK4AUBI N= $(ONBLD_TOOLS) / bi n/ $(MACH) / chk4ubi n

1070 CHK4UBI NFLAGS=

1071 CHK4UBI NARY= $(CHK4UBI N) $(CHK4UBI NFLAGS) $@

1073 #

1074 # PKGARCHI VE specifies the default |ocation where packages shoul d be
1075 # placed if built.

1076 #

1077 $(RELEASE_BUI LD) PKGARCHI VESUFFI X= -nd

1078 PKGARCHI VE=$(SRO)/ . . | packages/ $(MACH) / ni ght | y$(PKGARCHI VESUFFI X)
1080 #

1081 # The repositories will be created with these publisher settings. To
1082 # update an image to the resulting repositories, this must match the
1083 # publisher name provided to "pkg set-publisher."

1084 #

1085 PKGPUBLI SHER _REDI ST= on-ni ghtly

1086 PKGPUBLI SHER_NONREDI ST= on-extra

1088 # Default build rules which perform comrent section post-processing.
1089 #

1090 . c:

1091 $(LINK.c) -0 $@$< $(LDLIBS)

1092 $(POST_PROCESS)

1093 .c.o

1094 $(COWPI LE. c) $(OUTPUT_OPTI ON) $< $(CTFCONVERT_HOOK)

1095 $(POST_PROCESS_O)

1096 .c. a:

1097 $(COWPILE.c) -0 $% $<

1098 $(PROCESS_COMVENT) $%

1099 $(AR) $(ARFLAGS) $@ $%

1100 $(RM $%

1101 .s.o

1102 $(COWPILE.s) -0 $@ $<

1103 $(POST_PROCESS_S_O)

1104 .s. a:

1105 $(COWPI LE. s) -0 $% $<

1106 $(PROCESS_COMMVENT) $%

1107 $(AR) $(ARFLAGS) $@ $%

1108 $(RM $%

1109 .cc:

1110 $(LINK. cc) -0 $@ $< $(LDLIBS)

1111 $(POST_PROCESS)

1112 .cc.o:

1113 $(COWPI LE. cc) $(OQUTPUT_COPTION) $<

17

new usr/src/ Makefile. master

1114 $(POST_PROCESS_CC_O

1115 .cc. a:

1116 $(COWPI LE. cc) -0 $% $<

1117 $(AR) $(ARFLAGS) $@ $%

1118 $(PROCESS_COMVENT) $%

1119 $(RM $%

1120 .y:

1121 $(YACC.y) $<

1122 $(LINK. c) -0 $@y.tab.c $(LDLIBS)

1123 $(POST_PROCESS)

1124 $(RV) y.tab.c

1125 .y.o:

1126 $(YACC. y) $<

1127 $(COWPILE.c) -0 $@y.tab.c $(CTFCONVERT_HOOK)

1128 $(POST_PROCESS_O)

1129 $(RM y.tab.c

1130 .1:

1131 $(RM $*.c

1132 $(LEX. 1) $< > $*. ¢

1133 $(LINK.C) -0 $@$*.c -11 $(LDLIBS)

1134 $(POST_PROCESS)

1135 $(RVM $*.c

1136 .1.o0:

1137 $(RM $*.c

1138 $(LEX. 1) $< > $*.c

1139 $(COWILE.c) -0 $@ $*. ¢ $(CTFCONVERT_HOOK)

1140 $(POST_PROCESS_O)

1141 $(RM $*.c

1143 . bin.o:

1144 $(COWPI LE. b) -0 $@ $<

1145 $(POST_PROCESS_O)

1147 .java. cl ass:

1148 $(COWPI LE. j ava) $<

1150 # Bourne and Korn shell script nessage catal og build rules.

1151 # We extract all gettext strings with sed(1) (being careful to permt
1152 # multiple gettext strings on the sane line), weed out the dups, and
1153 # build the catal ogue with awk(1).

1155 . sh. po . ksh. po:

1156 $(SED) -n -e ":a" \
1157 -e "h" \
1158 -e "s/.*gettext *\(\"[M"]*\"\).*/\1/p" \
1159 -e "x" \
1160 -e "s/\(.*\)gettext *F\U[ANT]IEFA\(LF\)/NTINV2/ N
1161 -e " " \
1162 $< | sort -u | $(AWK) '{ print "negid\t" $30 "\nnegstr"
1164 #

1165 # Python and Perl executable and nessage catal og build rules.
1166 #

1167 . SUFFI XES: .pl .pm.py .pyc

1169 . pl:

1170 $(RM $@

1171 $(SED) -e "s@EXT_DOVAI N@"$(TEXT_DOVAI N\" @ $< > $@
1172 $(CHVOD) +x $@

1174 . py:

1175 $(RM $@ $(SED) \

1176 -e "1s: M\ #! @YTHON@ \ #! $(PYSHEBANG) : " \

1177 -e "1s: M\ #! @OOLS_PYTHON@ \ #! $(TOOLS_PYTHON) :

1178 < $< > $@ $(CHVOD) +x $@

p

18

> $@

new usr/src/ Makefil e. master 19

1180
1181
1182
1183

1185
1186

1188
1189
1190
1191
1192

1194
1195
1196
1197
1198
1199
1200

1202
1203

1205
1206

1208

1209
1210
1211

1213

1214
1215
1216

1218
1219
1220

1222
1223
1224

1226
1227
1228
1229
1230

1232

1233
1234
1235
1236

1238
1239
1240
1241

1243
1244

- Py. pyc:
$(RM $@ .
$(PYTHON) -npy_conpile $<
@ $(<)c = s@] || $(W) $(9)c s@

. py. po:
$(GNUXGETTEXT) $(GNUXGETFLAGS) -d $(<F: % py=% $< ;

.pl.po .pm po:

$(XGETTEXT) $(XGETFLAGS) -d $(<F) $< ;
$(RVM $@;

$(SED) "/~dommin/d" < $(<F).po > $@;
$(RM $(<F). po

When using xgettext, we want nmessages to go to the default donmin,
rather than the specified one. This special version of the

COWPI LE. cpp nmacro effectively prevents expansi on of TEXT_DOVAI N,
causi ng xgettext to put all nessages into the default domain.

CPPFORPO=$(COVPI LE. cpp: \ " $(TEXT_DOVAI N) \ " =TEXT_DOVAI N)

HHHFHHH

.C.i:
$(CPPFORPO) $< > $@

Lhoi
$(CPPFORPO) $< > $@

$(YACO) -d $<
$(CPPFORPO) y.tab.c > $@
$(RM y.tab.c

$(LEX) $<
$(CPPFORPO) lex.yy.c > $@
$(RM lex.yy.c

. C. po:
$(CPPFORPO) $< > $<.i
$(BUI LD. po)

. cc. po:
$(CPPFORPO) $< > $<.i
$(BUI LD. po)

.y. po:
$(YACO) -d $<
$(CPPFORPO) y.tab.c > $<.i
$(BUI LD. po)
$(RM y.tab.c

$(LEX) $<

$(CPPFORPO) lex.yy.c > $<.i
$(BUI LD. po)

$(RM lex.yy.c

#
Rules to performstylistic checks

#
. SUFFI XES: .x .xm .check .xnlchk

. h. check:
$(DOT_H_CHECK)

new usr/src/ Makefile. master

1246 . x. check:

1247 $(DOT_X_CHECK)
1249 . xnm . xm chk:

1250 $(MANI FEST_ CHECK)
1252 #

1253 # Include rules to render autonated sccs get
1254 #
1255 incl ude $(SRC)/Makefile. noget

rul es

"safe".

new usr/src/tool s/env/illunos.sh

R R R R

11197 Tue Jun 11 04:01:18 2019
new usr/src/tool s/env/illunos.sh

9996

use GCC 7 as default primary conpiler

R R R R R

CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governi ng perm ssions

and limtations under the License.

When di stributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
Copyright 2015 Nexenta Systens, Inc. All rights reserved.

Copyright 2012 Joshua M O ul ow <j osh@ysnygr . or g>

Copyri ght 2015, Omi Tl Conputer Consulting, Inc. Al rights reserved.

Copyri ght 2018 Omi OGS Conmmunity Edition (Omi GSce) Associ ation.

Copyri ght 2019, Joyent, Inc.

Copyright (c) 2019, .]oyent , Inc.

- This file is sourced by "bldenv.sh" and "nightly.sh" and shoul d not
be executed directly.

- This script is only interpreted by ksh93 and explicitly allows the
use of ksh93 | anguage extensions.

HHFHHHFHHFH B F TSRS

HHH
el
[
=
@
g
®
=
12}
<
o
c
o
=
o
x
LB
<
—-
[}
]
=
—~
<}
o
>
D
S
@
@

DEBUG build only (-D, -F)

do not bri ngover fromthe parent (-n)

runs 'make check’ (-0

checks for newinterfaces in libraries (-A)

sends mail on conpletion (-mand the MAILTO vari abl e)

creates packages for PIT/RE (-p)

checks for changes in ELF runpaths (-r)

build and use this workspace’s tools in $SRC/tools (-t)
export NI GHTLY_OPTI ONS=" - FnCDAnprt’

Sone scripts optionally send nail nmessages to MAILTO
#export MAI LTO=

CODEMGR_WS - where is your workspace at
export CODEMGR Ws="‘git rev-parse --showtoplevel "

Conpilers may be specified using the follow ng variabl es:

PRI MARY_CC - primary C conpiler

PRIMARY_CCC - primary C++ conpiler

#

SHADOW CCS - list of shadow C conpilers

SHADOW CCCS - list of shadow C++ conpilers
#

new usr/src/tool s/env/illunos.sh

Each entry has the form <name>, <path to binary>, <styl e> where nanme is a
free-formnane (possibly used in the makefi les to guard options), path is
the path to the executable. style is the 'style’ of command |ine taken by
the conpiler, currently either gnu (or gcc) or sun (or cc), which is also
used by Makefiles to guard options.

#

__ SUNC and __GNUC nust still be set to reflect the style of the primry

conpiler (and to influence the default prinmary, otherw se)

#

for exanple:

export PRI MARY_CC=gcc4, /opt/gcc/ 4. 4.4/ bin/gce, gnu

export PRI MARY_CCC=gcc4,/opt/gcc/ 4. 4.4/ bin/ g++, gnu

export SHADOW CCS=st udi 012, / opt / SUN\Wspr o/ bi n/ cc, sun

export SHADOW CCCS=st udi 012,/ opt/ SUNWpr o/ bi n/ CC, sun

#

There can be several space-separated entries in SHADON* to run nultiple
shadow conpil ers.

#

To di sabl e shadow conpilation, unset SHADOWN* or set themto the enpty string.
#

export GNUC_ROOT=/usr/gcc/7

export PRI MARY_CCS=gcc7, $GNUC_ROOT/ bi n/ gcc, gnu
export PRI MARY_CCCS=gcc7, $GNUC_ROOT/ bi n/ g++, gnu
export SHADOW CCS=gcc4, / opt/ gcc/ 4. 4. 4/ bi n/ gcc, gnu
export SHADOW CCCS=gcc4, / opt/gcc/ 4. 4. 4/ bi n/ g++, gnu
export SHADOW CCS=gcc7, /usr/gcc/ 7/ bi n/ gcc, gnu
export SHADOW CCCS=gcc7, / usr/ gcc/ 7/ bi n/ g++, gnu

unconmment to enable smatch
#export ENABLE_SVATCH=1

Comment this out to disable support for SMB printing, i.e. if you
don’t want to bother providing the CUPS headers this needs.
export ENABLE_SMB_PRI NTI NG=

| f your distro uses certain versions of Perl, make sure either Makefile.naster
contains your new defaults OR your .env file sets them

These are how you woul d override for building on Omi GS r151028, for exanple.
#export PERL_VERSI ON=5. 28

#export PERL_ARCH=i 86pc-sol ari s-thread-nul ti-64int

#export PERL_PKGVERS=

|f your distro uses certain versions of Python, make sure either

Makefile.master contains your new defaults OR your .env file sets them
#export PYTHON_VERSI ON=2. 7

#export PYTHON_PKGVERS=- 27

#export PYTHON_SUFFI X=

#export PYTHON3_VERS|I ON=3. 5

#export PYTHON3_PKGVERS=- 35

#export PYTHON3_SUFFI X=m

110 # To disable building with either Python2 or Python 3 (or both), uncomment
111 # these lines:

112 #export BU LDPY2="#’

113 #export BU LDPY3='#'

115 # Set consol e col or schenme either by build type:

116 #

117 #export RELEASE_CONSOLE_COLOR="- DDEFAULT_ANSI _FOREGROUND=ANS| _COLOR BLACK \
118 # - DDEFAULT_ANSI _ BACKGROUND=ANS| _COLOR WHI TE"

119 #

120 #export DEBUG CONSOLE_COLOR="- DDEFAULT_ANSI _ FOREGROUND=ANSI _COLCOR_RED \

121 #

122
123

- DDEFAULT_ANSI_ BACKGROUND=ANS| _COLOR_WHI TE"
#
or just one for any build type:

124 #

new

usr/src/tool s/env/illunos.sh 3

125 #export DEFAULT_CONSOLE_COLOR="- DDEFAULT_ANSI _FOREGROUND=ANS| _COLOR BLACK \

126 # - DDEFAULT_ANSI _ BACKGROUND=ANSI _COLOR_WHI TE"

128 # Set if your distribution has different package versioning

129 #export PKGVERS_BRANCH=2018. 0. 0. 17900

131 # Skip Java 8 builds on distributions that don’t support it

132 #export BLD_JAVA 8=

134 # POST_NI GHTLY can be any command to be run at the end of nightly. See

135 # nightly(1l) for interactions between environnent variables and this conmand.
136 #POST_N GHTLY=

188 - m s s m oo oo
139 # You are less likely to need to nodify paraneters bel ow

T
142 # Maxi mum nunber of dmake jobs. The recomended nunber is 2 + NCPUS,

143 # where NCPUS is the nunber of |ogical CPUs on your build system

144 function maxj obs

145 {

146 naner ef maxj obs=$1

147 i nteger ncpu

148 integer -r mn_nem per_job=512 # m ni mum anount of menory for a job
150 ncpu=$(builtin getconf ; getconf ’'NPROCESSORS_ONLN)

151 ((maxj obs=ncpu + 2))

153 # Throttle nunber of parallel jobs |aunched by dmake to a val ue which
154 # gurantees that all jobs have enough nenory. This was added to avoid
155 # excessive pagi ng/ swapping in cases of virtual nachine installations
156 # which have lots of CPUs but not enough menory assigned to handle

157 # that many parallel jobs

158 if [[$(/usr/sbin/prtconf 2> /dev/null’) == ~(E)Menory\ size:\ ([[:digit
159 integer max_j obs_per_nenory # parallel jobs which fit into physi
160 integer physical _nmenory # physical nenory installed

162 # The array ".sh.match" contains the contents of capturing

163 # brackets in the last regex, .sh.match[1] will contain

164 # the value matched by ([[:digit:]]+), i.e. the anount of

165 # menory installed

166 physi cal _menory="10#${. sh. match[1] }"

168 ((

169 max_j obs_per _menor y=r ound(physi cal _menory/ m n_nem per_j o
170 mexj obs=f max(2, fm n(nmexjobs, max_jobs_per_nenory))

171))

172 fi

174 return 0

175 }

__unchanged_portion_onitted_

