
new/usr/src/Makefile.master 1

**
 38277 Tue Jun 11 04:01:18 2019
new/usr/src/Makefile.master
9996 use GCC 7 as default primary compiler
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright (c) 2012 by Delphix. All rights reserved.
25 # Copyright 2014 Garrett D’Amore <garrett@damore.org>
26 # Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
27 # Copyright 2015 Gary Mills
28 # Copyright 2015 Igor Kozhukhov <ikozhukhov@gmail.com>
29 # Copyright 2016 Toomas Soome <tsoome@me.com>
30 # Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
31 # Copyright 2019, Joyent, Inc.
31 # Copyright (c) 2019, Joyent, Inc.
32 #

34 #
35 # Makefile.master, global definitions for system source
36 #
37 ROOT= /proto

39 #
40 # Adjunct root, containing an additional proto area to be used for headers
41 # and libraries.
42 #
43 ADJUNCT_PROTO=

45 #
46 # Adjunct for building things that run on the build machine.
47 #
48 NATIVE_ADJUNCT= /usr

50 #
51 # RELEASE_BUILD should be cleared for final release builds.
52 # NOT_RELEASE_BUILD is exactly what the name implies.
53 #
54 # __GNUC toggles the building of ON components using gcc and related tools.
55 # Normally set to ‘#’, set it to ‘’ to do gcc build.
56 #
57 # The declaration POUND_SIGN is always ’#’. This is needed to get around the
58 # make feature that ’#’ is always a comment delimiter, even when escaped or
59 # quoted. We use this macro expansion method to get POUND_SIGN rather than
60 # always breaking out a shell because the general case can cause a noticable

new/usr/src/Makefile.master 2

61 # slowdown in build times when so many Makefiles include Makefile.master.
62 #
63 # While the majority of users are expected to override the setting below
64 # with an env file (via nightly or bldenv), if you aren’t building that way
65 # (ie, you’re using "ws" or some other bootstrapping method) then you need
66 # this definition in order to avoid the subshell invocation mentioned above.
67 #

69 PRE_POUND= pre\#
70 POUND_SIGN= $(PRE_POUND:pre\%=%)

72 NOT_RELEASE_BUILD=
73 RELEASE_BUILD= $(POUND_SIGN)
74 $(RELEASE_BUILD)NOT_RELEASE_BUILD= $(POUND_SIGN)
75 PATCH_BUILD= $(POUND_SIGN)

77 # SPARC_BLD is ’#’ for an Intel build.
78 # INTEL_BLD is ’#’ for a Sparc build.
79 SPARC_BLD_1= $(MACH:i386=$(POUND_SIGN))
80 SPARC_BLD= $(SPARC_BLD_1:sparc=)
81 INTEL_BLD_1= $(MACH:sparc=$(POUND_SIGN))
82 INTEL_BLD= $(INTEL_BLD_1:i386=)

84 # The variables below control the compilers used during the build.
85 # There are a number of permutations.
86 #
87 # __GNUC and __SUNC control (and indicate) the primary compiler. Whichever
88 # one is not POUND_SIGN is the primary, with the other as the shadow. They
89 # may also be used to control entirely compiler-specific Makefile assignments.
90 # __GNUC and GCC are the default.
91 #
92 # __GNUC64 indicates that the 64bit build should use the GNU C compiler.
93 # There is no Sun C analogue.
94 #
95 # The following version-specific options are operative regardless of which
96 # compiler is primary, and control the versions of the given compilers to be
97 # used. They also allow compiler-version specific Makefile fragments.
98 #

100 __SUNC= $(POUND_SIGN)
101 $(__SUNC)__GNUC= $(POUND_SIGN)
102 __GNUC64= $(__GNUC)

104 # Allow build-time "configuration" to enable or disable some things.
105 # The default is POUND_SIGN, meaning "not enabled". If the environment
106 # passes in an override like ENABLE_SMB_PRINTING= (empty) that will
107 # uncomment things in the lower Makefiles to enable the feature.
108 ENABLE_SMB_PRINTING= $(POUND_SIGN)

110 # CLOSED is the root of the tree that contains source which isn’t released
111 # as open source
112 CLOSED= $(SRC)/../closed

114 # BUILD_TOOLS is the root of all tools including compilers.
115 # ONBLD_TOOLS is the root of all the tools that are part of SUNWonbld.

117 BUILD_TOOLS= /ws/onnv-tools
118 ONBLD_TOOLS= $(BUILD_TOOLS)/onbld

120 # define runtime JAVA_HOME, primarily for cmd/pools/poold
121 JAVA_HOME= /usr/java
122 # define buildtime JAVA_ROOT
123 JAVA_ROOT= /usr/java
124 # Build uses java7 by default. Pass one the variables below set to empty
125 # string in the environment to override.
126 BLD_JAVA_6= $(POUND_SIGN)

new/usr/src/Makefile.master 3

127 BLD_JAVA_8= $(POUND_SIGN)

129 GNUC_ROOT= /usr/gcc/7
129 GNUC_ROOT= /opt/gcc/4.4.4
130 GCCLIBDIR= $(GNUC_ROOT)/lib
131 GCCLIBDIR64= $(GNUC_ROOT)/lib/$(MACH64)

133 DOCBOOK_XSL_ROOT= /usr/share/sgml/docbook/xsl-stylesheets

135 RPCGEN= /usr/bin/rpcgen
136 STABS= $(ONBLD_TOOLS)/bin/$(MACH)/stabs
137 ELFEXTRACT= $(ONBLD_TOOLS)/bin/$(MACH)/elfextract
138 MBH_PATCH= $(ONBLD_TOOLS)/bin/$(MACH)/mbh_patch
139 BTXLD= $(ONBLD_TOOLS)/bin/$(MACH)/btxld
140 VTFONTCVT= $(ONBLD_TOOLS)/bin/$(MACH)/vtfontcvt
141 # echo(1) and true(1) are specified without absolute paths, so that the shell
142 # spawned by make(1) may use the built-in versions. This is minimally
143 # problematic, as the shell spawned by make(1) is known and under control, the
144 # only risk being if the shell falls back to $PATH.
145 #
146 # We specifically want an echo(1) that does interpolation of escape sequences,
147 # which ksh93, /bin/sh, and bash will all provide.
148 ECHO= echo
149 TRUE= true
150 INS= $(ONBLD_TOOLS)/bin/$(MACH)/install
151 SYMLINK= /usr/bin/ln -s
152 LN= /usr/bin/ln
153 MKDIR= /usr/bin/mkdir
154 CHMOD= /usr/bin/chmod
155 MV= /usr/bin/mv -f
156 RM= /usr/bin/rm -f
157 CUT= /usr/bin/cut
158 NM= /usr/ccs/bin/nm
159 DIFF= /usr/bin/diff
160 GREP= /usr/bin/grep
161 EGREP= /usr/bin/egrep
162 ELFWRAP= /usr/bin/elfwrap
163 KSH93= /usr/bin/ksh93
164 SED= /usr/bin/sed
165 AWK= /usr/bin/nawk
166 CP= /usr/bin/cp -f
167 MCS= /usr/ccs/bin/mcs
168 CAT= /usr/bin/cat
169 ELFDUMP= /usr/ccs/bin/elfdump
170 M4= /usr/bin/m4
171 GM4= /usr/bin/gm4
172 STRIP= /usr/ccs/bin/strip
173 LEX= /usr/ccs/bin/lex
174 FLEX= /usr/bin/flex
175 YACC= /usr/ccs/bin/yacc
176 BISON= /usr/bin/bison
177 CPP= /usr/lib/cpp
178 ANSI_CPP= $(GNUC_ROOT)/bin/cpp
179 JAVAC= $(JAVA_ROOT)/bin/javac
180 JAVAH= $(JAVA_ROOT)/bin/javah
181 JAVADOC= $(JAVA_ROOT)/bin/javadoc
182 RMIC= $(JAVA_ROOT)/bin/rmic
183 JAR= $(JAVA_ROOT)/bin/jar
184 CTFCONVERT= $(ONBLD_TOOLS)/bin/$(MACH)/ctfconvert
185 CTFDIFF= $(ONBLD_TOOLS)/bin/$(MACH)/ctfdiff
186 CTFMERGE= $(ONBLD_TOOLS)/bin/$(MACH)/ctfmerge
187 CTFSTABS= $(ONBLD_TOOLS)/bin/$(MACH)/ctfstabs
188 CTFSTRIP= $(ONBLD_TOOLS)/bin/$(MACH)/ctfstrip
189 NDRGEN= $(ONBLD_TOOLS)/bin/$(MACH)/ndrgen
190 GENOFFSETS= $(ONBLD_TOOLS)/bin/genoffsets
191 XREF= $(ONBLD_TOOLS)/bin/xref

new/usr/src/Makefile.master 4

192 FIND= /usr/bin/find
193 PERL= /usr/bin/perl
194 PERL_VERSION= 5.10.0
195 PERL_PKGVERS= -510
196 PERL_ARCH = i86pc-solaris-64int
197 $(SPARC_BLD)PERL_ARCH = sun4-solaris-64int
198 PYTHON_VERSION= 2.7
199 PYTHON_PKGVERS= -27
200 PYTHON_SUFFIX=
201 PYTHON= /usr/bin/python$(PYTHON_VERSION)
202 PYTHON3_VERSION= 3.5
203 PYTHON3_PKGVERS= -35
204 PYTHON3_SUFFIX= m
205 PYTHON3= /usr/bin/python$(PYTHON3_VERSION)
206 $(BUILDPY3TOOLS)TOOLS_PYTHON= $(PYTHON3)
207 $(BUILDPY2TOOLS)TOOLS_PYTHON= $(PYTHON)
208 SORT= /usr/bin/sort
209 TR= /usr/bin/tr
210 TOUCH= /usr/bin/touch
211 WC= /usr/bin/wc
212 XARGS= /usr/bin/xargs
213 ELFEDIT= /usr/bin/elfedit
214 DTRACE= /usr/sbin/dtrace -xnolibs
215 UNIQ= /usr/bin/uniq
216 TAR= /usr/bin/tar
217 ASTBINDIR= /usr/ast/bin
218 MSGCC= $(ASTBINDIR)/msgcc
219 MSGFMT= /usr/bin/msgfmt -s
220 LCDEF= $(ONBLD_TOOLS)/bin/$(MACH)/localedef
221 TIC= $(ONBLD_TOOLS)/bin/$(MACH)/tic
222 ZIC= $(ONBLD_TOOLS)/bin/$(MACH)/zic
223 OPENSSL= /usr/bin/openssl
224 CPCGEN= $(ONBLD_TOOLS)/bin/$(MACH)/cpcgen

226 DEFAULT_CONSOLE_COLOR= \
227 -DDEFAULT_ANSI_FOREGROUND=ANSI_COLOR_WHITE \
228 -DDEFAULT_ANSI_BACKGROUND=ANSI_COLOR_BLACK

230 FILEMODE= 644
231 DIRMODE= 755

233 # Declare that nothing should be built in parallel.
234 # Individual Makefiles can use the .PARALLEL target to declare otherwise.
235 .NO_PARALLEL:

237 # For stylistic checks
238 #
239 # Note that the X and C checks are not used at this time and may need
240 # modification when they are actually used.
241 #
242 CSTYLE= $(ONBLD_TOOLS)/bin/cstyle
243 CSTYLE_TAIL=
244 HDRCHK= $(ONBLD_TOOLS)/bin/hdrchk
245 HDRCHK_TAIL=
246 JSTYLE= $(ONBLD_TOOLS)/bin/jstyle

248 DOT_H_CHECK= \
249 @$(ECHO) "checking $<"; $(CSTYLE) $< $(CSTYLE_TAIL); \
250 $(HDRCHK) $< $(HDRCHK_TAIL)

252 DOT_X_CHECK= \
253 @$(ECHO) "checking $<"; $(RPCGEN) -C -h $< | $(CSTYLE) $(CSTYLE_TAIL); \
254 $(RPCGEN) -C -h $< | $(HDRCHK) $< $(HDRCHK_TAIL)

256 DOT_C_CHECK= \
257 @$(ECHO) "checking $<"; $(CSTYLE) $< $(CSTYLE_TAIL)

new/usr/src/Makefile.master 5

259 MANIFEST_CHECK= \
260 @$(ECHO) "checking $<"; \
261 SVCCFG_DTD=$(SRC)/cmd/svc/dtd/service_bundle.dtd.1 \
262 SVCCFG_REPOSITORY=$(SRC)/cmd/svc/seed/global.db \
263 SVCCFG_CONFIGD_PATH=$(SRC)/cmd/svc/configd/svc.configd-native \
264 $(SRC)/cmd/svc/svccfg/svccfg-native validate $<

266 INS.file= $(RM) $@; $(INS) -s -m $(FILEMODE) -f $(@D) $<
267 INS.dir= $(INS) -s -d -m $(DIRMODE) $@
268 # installs and renames at once
269 #
270 INS.rename= $(INS.file); $(MV) $(@D)/$(<F) $@

272 # install a link
273 INSLINKTARGET= $<
274 INS.link= $(RM) $@; $(LN) $(INSLINKTARGET) $@
275 INS.symlink= $(RM) $@; $(SYMLINK) $(INSLINKTARGET) $@

277 # The path to python that will be used for the shebang line when installing
278 # python scripts to the proto area. This is overridden by makefiles to
279 # select to the correct version.
280 PYSHEBANG= $(PYTHON)

282 #
283 # Python bakes the mtime of the .py file into the compiled .pyc and
284 # rebuilds if the baked-in mtime != the mtime of the source file
285 # (rather than only if it’s less than), thus when installing python
286 # files we must make certain to not adjust the mtime of the source
287 # (.py) file.
288 #
289 INS.pyfile= $(RM) $@; $(SED) \
290 -e "1s:^\#!@PYTHON@:\#!$(PYSHEBANG):" \
291 -e "1s:^\#!@TOOLS_PYTHON@:\#!$(TOOLS_PYTHON):" \
292 < $< > $@; $(CHMOD) $(FILEMODE) $@; $(TOUCH) -r $< $@

294 # MACH must be set in the shell environment per uname -p on the build host
295 # More specific architecture variables should be set in lower makefiles.
296 #
297 # MACH64 is derived from MACH, and BUILD64 is set to ‘#’ for
298 # architectures on which we do not build 64-bit versions.
299 # (There are no such architectures at the moment.)
300 #
301 # Set BUILD64=# in the environment to disable 64-bit amd64
302 # builds on i386 machines.

304 MACH64_1= $(MACH:sparc=sparcv9)
305 MACH64= $(MACH64_1:i386=amd64)

307 MACH32_1= $(MACH:sparc=sparcv7)
308 MACH32= $(MACH32_1:i386=i86)

310 sparc_BUILD64=
311 i386_BUILD64=
312 BUILD64= $($(MACH)_BUILD64)

314 #
315 # C compiler mode. Future compilers may change the default on us,
316 # so force extended ANSI mode globally. Lower level makefiles can
317 # override this by setting CCMODE.
318 #
319 CCMODE= -Xa
320 CCMODE64= -Xa

322 #
323 # C compiler verbose mode. This is so we can enable it globally,

new/usr/src/Makefile.master 6

324 # but turn it off in the lower level makefiles of things we cannot
325 # (or aren’t going to) fix.
326 #
327 CCVERBOSE= -v

329 # set this to the secret flag "-Wc,-Qiselect-v9abiwarn=1" to get warnings
330 # from the compiler about places the -xarch=v9 may differ from -xarch=v9c.
331 V9ABIWARN=

333 # set this to the secret flag "-Wc,-Qiselect-regsym=0" to disable register
334 # symbols (used to detect conflicts between objects that use global registers)
335 # we disable this now for safety, and because genunix doesn’t link with
336 # this feature (the v9 default) enabled.
337 #
338 # REGSYM is separate since the C++ driver syntax is different.
339 CCREGSYM= -Wc,-Qiselect-regsym=0
340 CCCREGSYM= -Qoption cg -Qiselect-regsym=0

342 # Prevent the removal of static symbols by the SPARC code generator (cg).
343 # The x86 code generator (ube) does not remove such symbols and as such
344 # using this workaround is not applicable for x86.
345 #
346 CCSTATICSYM= -Wc,-Qassembler-ounrefsym=0
347 #
348 # generate 32-bit addresses in the v9 kernel. Saves memory.
349 CCABS32= -Wc,-xcode=abs32
350 #
351 # generate v9 code which tolerates callers using the v7 ABI, for the sake of
352 # system calls.
353 CC32BITCALLERS= -_gcc=-massume-32bit-callers

355 # GCC, especially, is increasingly beginning to auto-inline functions and
356 # sadly does so separately not under the general -fno-inline-functions
357 # Additionally, we wish to prevent optimisations which cause GCC to clone
358 # functions -- in particular, these may cause unhelpful symbols to be
359 # emitted instead of function names
360 CCNOAUTOINLINE= \
361 -_gcc=-fno-inline-small-functions \
362 -_gcc=-fno-inline-functions-called-once \
363 -_gcc=-fno-ipa-cp \
364 -_gcc7=-fno-ipa-icf \
365 -_gcc8=-fno-ipa-icf \
366 -_gcc7=-fno-clone-functions \
367 -_gcc8=-fno-clone-functions

369 # GCC may put functions in different named sub-sections of .text based on
370 # their presumed calling frequency. At least in the kernel, where we actually
371 # deliver relocatable objects, we don’t want this to happen.
372 #
373 # Since at present we don’t benefit from this even in userland, we disable it gl
374 # but the application of this may move into usr/src/uts/ in future.
375 CCNOREORDER= \
376 -_gcc7=-fno-reorder-functions \
377 -_gcc8=-fno-reorder-functions

379 #
380 # gcc has a rather aggressive optimization on by default that infers loop
381 # bounds based on undefined behavior (!!). This can lead to some VERY
382 # surprising optimizations -- ones that may be technically correct in the
383 # strictest sense but also result in incorrect program behavior. We turn
384 # this optimization off, with extreme prejudice.
385 #
386 CCNOAGGRESSIVELOOPS= \
387 -_gcc7=-fno-aggressive-loop-optimizations \
388 -_gcc8=-fno-aggressive-loop-optimizations

new/usr/src/Makefile.master 7

390 # One optimization the compiler might perform is to turn this:
391 # #pragma weak foo
392 # extern int foo;
393 # if (&foo)
394 # foo = 5;
395 # into
396 # foo = 5;
397 # Since we do some of this (foo might be referenced in common kernel code
398 # but provided only for some cpu modules or platforms), we disable this
399 # optimization.
400 #
401 sparc_CCUNBOUND = -Wd,-xsafe=unboundsym
402 i386_CCUNBOUND =
403 CCUNBOUND = $($(MACH)_CCUNBOUND)

405 #
406 # compiler ’-xarch’ flag. This is here to centralize it and make it
407 # overridable for testing.
408 sparc_XARCH= -m32
409 sparcv9_XARCH= -m64
410 i386_XARCH= -m32
411 amd64_XARCH= -m64 -Ui386 -U__i386

413 # assembler ’-xarch’ flag. Different from compiler ’-xarch’ flag.
414 sparc_AS_XARCH= -xarch=v8plus
415 sparcv9_AS_XARCH= -xarch=v9
416 i386_AS_XARCH=
417 amd64_AS_XARCH= -xarch=amd64 -P -Ui386 -U__i386

419 #
420 # These flags define what we need to be ’standalone’ i.e. -not- part
421 # of the rather more cosy userland environment. This basically means
422 # the kernel.
423 #
424 # XX64 future versions of gcc will make -mcmodel=kernel imply -mno-red-zone
425 #
426 sparc_STAND_FLAGS= -_gcc=-ffreestanding
427 sparcv9_STAND_FLAGS= -_gcc=-ffreestanding
428 # Disabling MMX also disables 3DNow, disabling SSE also disables all later
429 # additions to SSE (SSE2, AVX ,etc.)
430 NO_SIMD= -_gcc=-mno-mmx -_gcc=-mno-sse
431 i386_STAND_FLAGS= -_gcc=-ffreestanding $(NO_SIMD)
432 amd64_STAND_FLAGS= -xmodel=kernel $(NO_SIMD)

434 SAVEARGS= -Wu,-save_args
435 amd64_STAND_FLAGS += $(SAVEARGS)

437 STAND_FLAGS_32 = $($(MACH)_STAND_FLAGS)
438 STAND_FLAGS_64 = $($(MACH64)_STAND_FLAGS)

440 #
441 # disable the incremental linker
442 ILDOFF= -xildoff
443 #
444 XFFLAG= -xF=%all
445 XESS= -xs
446 XSTRCONST= -xstrconst

448 #
449 # turn warnings into errors (C)
450 CERRWARN = -errtags=yes -errwarn=%all
451 CERRWARN += -erroff=E_EMPTY_TRANSLATION_UNIT
452 CERRWARN += -erroff=E_STATEMENT_NOT_REACHED

454 CERRWARN += -_gcc=-Wno-missing-braces
455 CERRWARN += -_gcc=-Wno-sign-compare

new/usr/src/Makefile.master 8

456 CERRWARN += -_gcc=-Wno-unknown-pragmas
457 CERRWARN += -_gcc=-Wno-unused-parameter
458 CERRWARN += -_gcc=-Wno-missing-field-initializers

460 # Unfortunately, this option can misfire very easily and unfixably.
461 CERRWARN += -_gcc=-Wno-array-bounds

464 CERRWARN += -_smatch=-p=illumos_user
465 include $(SRC)/Makefile.smatch

467 #
468 # turn warnings into errors (C++)
469 CCERRWARN= -xwe

471 # C standard. Keep Studio flags until we get rid of lint.
472 CSTD_GNU89= -xc99=%none
473 CSTD_GNU99= -xc99=%all
474 CSTD= $(CSTD_GNU89)
475 C99LMODE= $(CSTD:-xc99%=-Xc99%)

477 # In most places, assignments to these macros should be appended with +=
478 # (CPPFLAGS.first allows values to be prepended to CPPFLAGS).
479 sparc_CFLAGS= $(sparc_XARCH) $(CCSTATICSYM)
480 sparcv9_CFLAGS= $(sparcv9_XARCH) -dalign $(CCVERBOSE) $(V9ABIWARN) $(CCREGSYM) \
481 $(CCSTATICSYM)
482 i386_CFLAGS= $(i386_XARCH)
483 amd64_CFLAGS= $(amd64_XARCH)

485 sparc_ASFLAGS= $(sparc_AS_XARCH)
486 sparcv9_ASFLAGS=$(sparcv9_AS_XARCH)
487 i386_ASFLAGS= $(i386_AS_XARCH)
488 amd64_ASFLAGS= $(amd64_AS_XARCH)

490 #
491 sparc_COPTFLAG= -xO3
492 sparcv9_COPTFLAG= -xO3
493 i386_COPTFLAG= -O
494 amd64_COPTFLAG= -xO3

496 COPTFLAG= $($(MACH)_COPTFLAG)
497 COPTFLAG64= $($(MACH64)_COPTFLAG)

499 # When -g is used, the compiler globalizes static objects
500 # (gives them a unique prefix). Disable that.
501 CNOGLOBAL= -W0,-noglobal

503 # Direct the Sun Studio compiler to use a static globalization prefix based on t
504 # name of the module rather than something unique. Otherwise, objects
505 # will not build deterministically, as subsequent compilations of identical
506 # source will yeild objects that always look different.
507 #
508 # In the same spirit, this will also remove the date from the N_OPT stab.
509 CGLOBALSTATIC= -W0,-xglobalstatic

511 # Sometimes we want all symbols and types in debugging information even
512 # if they aren’t used.
513 CALLSYMS= -W0,-xdbggen=no%usedonly

515 #
516 # We force the compilers to generate the debugging information best understood
517 # by the CTF tools. With Sun Studio this is stabs due to bugs in the Studio
518 # compilers. With GCC this is DWARF v2.
519 #
520 DEBUGFORMAT= -_cc=-xdebugformat=stabs -_gcc=-gdwarf-2

new/usr/src/Makefile.master 9

522 #
523 # Ask the compiler to include debugging information
524 #
525 CCGDEBUG= -g $(DEBUGFORMAT)

527 #
528 # Flags used to build in debug mode for ctf generation.
529 #
530 CTF_FLAGS_sparc = $(CCGDEBUG) -Wc,-Qiselect-T1 $(CSTD) $(CNOGLOBAL)
531 CTF_FLAGS_i386 = $(CCGDEBUG) $(CSTD) $(CNOGLOBAL)

533 CTF_FLAGS_sparcv9 = $(CTF_FLAGS_sparc)
534 CTF_FLAGS_amd64 = $(CTF_FLAGS_i386)

536 # Sun Studio produces broken userland code when saving arguments.
537 $(__GNUC)CTF_FLAGS_amd64 += $(SAVEARGS)

539 CTF_FLAGS_32 = $(CTF_FLAGS_$(MACH))
540 CTF_FLAGS_64 = $(CTF_FLAGS_$(MACH64))
541 CTF_FLAGS = $(CTF_FLAGS_32)

543 #
544 # Flags used with genoffsets
545 #
546 GENOFFSETS_FLAGS = $(CALLSYMS)

548 OFFSETS_CREATE = $(GENOFFSETS) -s $(CTFSTABS) -r $(CTFCONVERT) \
549 $(CW) --noecho $(CW_CC_COMPILERS) -- $(GENOFFSETS_FLAGS) \
550 $(CFLAGS) $(CPPFLAGS)

552 OFFSETS_CREATE64 = $(GENOFFSETS) -s $(CTFSTABS) -r $(CTFCONVERT) \
553 $(CW) --noecho $(CW_CC_COMPILERS) -- $(GENOFFSETS_FLAGS) \
554 $(CFLAGS64) $(CPPFLAGS)

556 #
557 # tradeoff time for space (smaller is better)
558 #
559 sparc_SPACEFLAG = -xspace -W0,-Lt
560 sparcv9_SPACEFLAG = -xspace -W0,-Lt
561 i386_SPACEFLAG = -xspace
562 amd64_SPACEFLAG =

564 SPACEFLAG = $($(MACH)_SPACEFLAG)
565 SPACEFLAG64 = $($(MACH64)_SPACEFLAG)

567 #
568 # The Sun Studio 11 compiler has changed the behaviour of integer
569 # wrap arounds and so a flag is needed to use the legacy behaviour
570 # (without this flag panics/hangs could be exposed within the source).
571 #
572 sparc_IROPTFLAG = -W2,-xwrap_int
573 sparcv9_IROPTFLAG = -W2,-xwrap_int
574 i386_IROPTFLAG =
575 amd64_IROPTFLAG =

577 IROPTFLAG = $($(MACH)_IROPTFLAG)
578 IROPTFLAG64 = $($(MACH64)_IROPTFLAG)

580 sparc_XREGSFLAG = -xregs=no%appl
581 sparcv9_XREGSFLAG = -xregs=no%appl
582 i386_XREGSFLAG =
583 amd64_XREGSFLAG =

585 XREGSFLAG = $($(MACH)_XREGSFLAG)
586 XREGSFLAG64 = $($(MACH64)_XREGSFLAG)

new/usr/src/Makefile.master 10

588 # dmake SOURCEDEBUG=yes ... enables source-level debugging information, and
589 # avoids stripping it.
590 SOURCEDEBUG = $(POUND_SIGN)
591 SRCDBGBLD = $(SOURCEDEBUG:yes=)

593 #
594 # These variables are intended ONLY for use by developers to safely pass extra
595 # flags to the compilers without unintentionally overriding Makefile-set
596 # flags. They should NEVER be set to any value in a Makefile.
597 #
598 # They come last in the associated FLAGS variable such that they can
599 # explicitly override things if necessary, there are gaps in this, but it’s
600 # the best we can manage.
601 #
602 CUSERFLAGS =
603 CUSERFLAGS64 = $(CUSERFLAGS)
604 CCUSERFLAGS =
605 CCUSERFLAGS64 = $(CCUSERFLAGS)

607 CSOURCEDEBUGFLAGS =
608 CCSOURCEDEBUGFLAGS =
609 $(SRCDBGBLD)CSOURCEDEBUGFLAGS = $(CCGDEBUG) -xs
610 $(SRCDBGBLD)CCSOURCEDEBUGFLAGS = $(CCGDEBUG) -xs

612 CFLAGS= $(COPTFLAG) $($(MACH)_CFLAGS) $(SPACEFLAG) $(CCMODE) \
613 $(ILDOFF) $(CERRWARN) $(CSTD) $(CCUNBOUND) $(IROPTFLAG) \
614 $(CGLOBALSTATIC) $(CCNOAUTOINLINE) $(CCNOREORDER) \
615 $(CCNOAGGRESSIVELOOPS) \
616 $(CSOURCEDEBUGFLAGS) $(CUSERFLAGS)
617 CFLAGS64= $(COPTFLAG64) $($(MACH64)_CFLAGS) $(SPACEFLAG64) $(CCMODE64) \
618 $(ILDOFF) $(CERRWARN) $(CSTD) $(CCUNBOUND) $(IROPTFLAG64) \
619 $(CGLOBALSTATIC) $(CCNOAUTOINLINE) $(CCNOREORDER) \
620 $(CCNOAGGRESSIVELOOPS) \
621 $(CSOURCEDEBUGFLAGS) $(CUSERFLAGS64)
622 #
623 # Flags that are used to build parts of the code that are subsequently
624 # run on the build machine (also known as the NATIVE_BUILD).
625 #
626 NATIVE_CFLAGS= $(COPTFLAG) $($(NATIVE_MACH)_CFLAGS) $(CCMODE) \
627 $(ILDOFF) $(CERRWARN) $(CSTD) $($(NATIVE_MACH)_CCUNBOUND) \
628 $(IROPTFLAG) $(CGLOBALSTATIC) $(CCNOAUTOINLINE) \
629 $(CCNOREORDER) $(CSOURCEDEBUGFLAGS) $(CUSERFLAGS)

631 DTEXTDOM=-DTEXT_DOMAIN=\"$(TEXT_DOMAIN)\" # For messaging.
632 DTS_ERRNO=-D_TS_ERRNO
633 CPPFLAGS.first= # Please keep empty. Only lower makefiles should set this.
634 CPPFLAGS.master=$(DTEXTDOM) $(DTS_ERRNO) \
635 $(ENVCPPFLAGS1) $(ENVCPPFLAGS2) $(ENVCPPFLAGS3) $(ENVCPPFLAGS4) \
636 $(ADJUNCT_PROTO:%=-I%/usr/include)
637 CPPFLAGS.native=$(ENVCPPFLAGS1) $(ENVCPPFLAGS2) $(ENVCPPFLAGS3) \
638 $(ENVCPPFLAGS4) -I$(NATIVE_ADJUNCT)/include
639 CPPFLAGS= $(CPPFLAGS.first) $(CPPFLAGS.master)
640 AS_CPPFLAGS= $(CPPFLAGS.first) $(CPPFLAGS.master)
641 JAVAFLAGS= -source 1.6 -target 1.6 -Xlint:deprecation,-options

643 #
644 # For source message catalogue
645 #
646 .SUFFIXES: $(SUFFIXES) .i .po
647 MSGROOT= $(ROOT)/catalog
648 MSGDOMAIN= $(MSGROOT)/$(TEXT_DOMAIN)
649 MSGDOMAINPOFILE = $(MSGDOMAIN)/$(POFILE)
650 DCMSGDOMAIN= $(MSGROOT)/LC_TIME/$(TEXT_DOMAIN)
651 DCMSGDOMAINPOFILE = $(DCMSGDOMAIN)/$(DCFILE:.dc=.po)

653 CLOBBERFILES += $(POFILE) $(POFILES)

new/usr/src/Makefile.master 11

654 COMPILE.cpp= $(CC) -E -C $(CFLAGS) $(CPPFLAGS)
655 XGETTEXT= /usr/bin/xgettext
656 XGETFLAGS= -c TRANSLATION_NOTE
657 GNUXGETTEXT= /usr/gnu/bin/xgettext
658 GNUXGETFLAGS= --add-comments=TRANSLATION_NOTE --keyword=_ \
659 --strict --no-location --omit-header
660 BUILD.po= $(XGETTEXT) $(XGETFLAGS) -d $(<F) $<.i ;\
661 $(RM) $@ ;\
662 $(SED) "/^domain/d" < $(<F).po > $@ ;\
663 $(RM) $(<F).po $<.i

665 #
666 # This is overwritten by local Makefile when PROG is a list.
667 #
668 POFILE= $(PROG).po

670 sparc_CCFLAGS= -cg92 -compat=4 \
671 -Qoption ccfe -messages=no%anachronism \
672 $(CCERRWARN)
673 sparcv9_CCFLAGS= $(sparcv9_XARCH) -dalign -compat=5 \
674 -Qoption ccfe -messages=no%anachronism \
675 -Qoption ccfe -features=no%conststrings \
676 $(CCCREGSYM) \
677 $(CCERRWARN)
678 i386_CCFLAGS= -compat=4 \
679 -Qoption ccfe -messages=no%anachronism \
680 -Qoption ccfe -features=no%conststrings \
681 $(CCERRWARN)
682 amd64_CCFLAGS= $(amd64_XARCH) -compat=5 \
683 -Qoption ccfe -messages=no%anachronism \
684 -Qoption ccfe -features=no%conststrings \
685 $(CCERRWARN)

687 sparc_CCOPTFLAG= -O
688 sparcv9_CCOPTFLAG= -O
689 i386_CCOPTFLAG= -O
690 amd64_CCOPTFLAG= -O

692 CCOPTFLAG= $($(MACH)_CCOPTFLAG)
693 CCOPTFLAG64= $($(MACH64)_CCOPTFLAG)
694 CCFLAGS= $(CCOPTFLAG) $($(MACH)_CCFLAGS) $(CCSOURCEDEBUGFLAGS) \
695 $(CCUSERFLAGS)
696 CCFLAGS64= $(CCOPTFLAG64) $($(MACH64)_CCFLAGS) $(CCSOURCEDEBUGFLAGS) \
697 $(CCUSERFLAGS64)

699 #
700 #
701 #
702 ELFWRAP_FLAGS =
703 ELFWRAP_FLAGS64 = -64

705 #
706 # Various mapfiles that are used throughout the build, and delivered to
707 # /usr/lib/ld.
708 #
709 MAPFILE.NED_i386 = $(SRC)/common/mapfiles/common/map.noexdata
710 MAPFILE.NED_sparc =
711 MAPFILE.NED = $(MAPFILE.NED_$(MACH))
712 MAPFILE.PGA = $(SRC)/common/mapfiles/common/map.pagealign
713 MAPFILE.NES = $(SRC)/common/mapfiles/common/map.noexstk
714 MAPFILE.FLT = $(SRC)/common/mapfiles/common/map.filter
715 MAPFILE.LEX = $(SRC)/common/mapfiles/common/map.lex.yy

717 #
718 # Generated mapfiles that are compiler specific, and used throughout the
719 # build. These mapfiles are not delivered in /usr/lib/ld.

new/usr/src/Makefile.master 12

720 #
721 MAPFILE.NGB_sparc= $(SRC)/common/mapfiles/gen/sparc_cc_map.noexeglobs
722 $(__GNUC64)MAPFILE.NGB_sparc= \
723 $(SRC)/common/mapfiles/gen/sparc_gcc_map.noexeglobs
724 MAPFILE.NGB_sparcv9= $(SRC)/common/mapfiles/gen/sparcv9_cc_map.noexeglobs
725 $(__GNUC64)MAPFILE.NGB_sparcv9= \
726 $(SRC)/common/mapfiles/gen/sparcv9_gcc_map.noexeglobs
727 MAPFILE.NGB_i386= $(SRC)/common/mapfiles/gen/i386_cc_map.noexeglobs
728 $(__GNUC64)MAPFILE.NGB_i386= \
729 $(SRC)/common/mapfiles/gen/i386_gcc_map.noexeglobs
730 MAPFILE.NGB_amd64= $(SRC)/common/mapfiles/gen/amd64_cc_map.noexeglobs
731 $(__GNUC64)MAPFILE.NGB_amd64= \
732 $(SRC)/common/mapfiles/gen/amd64_gcc_map.noexeglobs
733 MAPFILE.NGB = $(MAPFILE.NGB_$(MACH))

735 #
736 # A generic interface mapfile name, used by various dynamic objects to define
737 # the interfaces and interposers the object must export.
738 #
739 MAPFILE.INT = mapfile-intf

741 #
742 # LDLIBS32 and LDLIBS64 can be set in the environment to override the following
743 # assignments.
744 #
745 # These environment settings make sure that no libraries are searched outside
746 # of the local workspace proto area:
747 # LDLIBS32=-YP,$ROOT/lib:$ROOT/usr/lib
748 # LDLIBS64=-YP,$ROOT/lib/$MACH64:$ROOT/usr/lib/$MACH64
749 #
750 LDLIBS32 = $(ENVLDLIBS1) $(ENVLDLIBS2) $(ENVLDLIBS3)
751 LDLIBS32 += $(ADJUNCT_PROTO:%=-L%/usr/lib -L%/lib)
752 LDLIBS.cmd = $(LDLIBS32)
753 LDLIBS.lib = $(LDLIBS32)

755 LDLIBS64 = $(ENVLDLIBS1:%=%/$(MACH64)) \
756 $(ENVLDLIBS2:%=%/$(MACH64)) \
757 $(ENVLDLIBS3:%=%/$(MACH64))
758 LDLIBS64 += $(ADJUNCT_PROTO:%=-L%/usr/lib/$(MACH64) -L%/lib/$(MACH64))

760 #
761 # Define compilation macros.
762 #
763 COMPILE.c= $(CC) $(CFLAGS) $(CPPFLAGS) -c
764 COMPILE64.c= $(CC) $(CFLAGS64) $(CPPFLAGS) -c
765 COMPILE.cc= $(CCC) $(CCFLAGS) $(CPPFLAGS) -c
766 COMPILE64.cc= $(CCC) $(CCFLAGS64) $(CPPFLAGS) -c
767 COMPILE.s= $(AS) $(ASFLAGS) $(AS_CPPFLAGS)
768 COMPILE64.s= $(AS) $(ASFLAGS) $($(MACH64)_AS_XARCH) $(AS_CPPFLAGS)
769 COMPILE.d= $(DTRACE) -G -32
770 COMPILE64.d= $(DTRACE) -G -64
771 COMPILE.b= $(ELFWRAP) $(ELFWRAP_FLAGS$(CLASS))
772 COMPILE64.b= $(ELFWRAP) $(ELFWRAP_FLAGS$(CLASS))

774 CLASSPATH= .
775 COMPILE.java= $(JAVAC) $(JAVAFLAGS) -classpath $(CLASSPATH)

777 #
778 # Link time macros
779 #
780 CCNEEDED = -lC
781 CCEXTNEEDED = -lCrun -lCstd
782 $(__GNUC)CCNEEDED = -L$(GCCLIBDIR) -lstdc++ -lgcc_s
783 $(__GNUC)CCEXTNEEDED = $(CCNEEDED)

785 LINK.c= $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS)

new/usr/src/Makefile.master 13

786 LINK64.c= $(CC) $(CFLAGS64) $(CPPFLAGS) $(LDFLAGS)
787 NORUNPATH= -norunpath -nolib
788 LINK.cc= $(CCC) $(CCFLAGS) $(CPPFLAGS) $(NORUNPATH) \
789 $(LDFLAGS) $(CCNEEDED)
790 LINK64.cc= $(CCC) $(CCFLAGS64) $(CPPFLAGS) $(NORUNPATH) \
791 $(LDFLAGS) $(CCNEEDED)

793 #
794 # lint macros
795 #
796 # Note that the undefine of __PRAGMA_REDEFINE_EXTNAME can be removed once
797 # ON is built with a version of lint that has the fix for 4484186.
798 #
799 ALWAYS_LINT_DEFS = -errtags=yes -s
800 ALWAYS_LINT_DEFS += -erroff=E_PTRDIFF_OVERFLOW
801 ALWAYS_LINT_DEFS += -erroff=E_ASSIGN_NARROW_CONV
802 ALWAYS_LINT_DEFS += -U__PRAGMA_REDEFINE_EXTNAME
803 ALWAYS_LINT_DEFS += $(C99LMODE)
804 ALWAYS_LINT_DEFS += -errsecurity=$(SECLEVEL)
805 ALWAYS_LINT_DEFS += -erroff=E_SEC_CREAT_WITHOUT_EXCL
806 ALWAYS_LINT_DEFS += -erroff=E_SEC_FORBIDDEN_WARN_CREAT
807 # XX64 -- really only needed for amd64 lint
808 ALWAYS_LINT_DEFS += -erroff=E_ASSIGN_INT_TO_SMALL_INT
809 ALWAYS_LINT_DEFS += -erroff=E_CAST_INT_CONST_TO_SMALL_INT
810 ALWAYS_LINT_DEFS += -erroff=E_CAST_INT_TO_SMALL_INT
811 ALWAYS_LINT_DEFS += -erroff=E_CAST_TO_PTR_FROM_INT
812 ALWAYS_LINT_DEFS += -erroff=E_COMP_INT_WITH_LARGE_INT
813 ALWAYS_LINT_DEFS += -erroff=E_INTEGRAL_CONST_EXP_EXPECTED
814 ALWAYS_LINT_DEFS += -erroff=E_PASS_INT_TO_SMALL_INT
815 ALWAYS_LINT_DEFS += -erroff=E_PTR_CONV_LOSES_BITS

817 # This forces lint to pick up note.h and sys/note.h from Devpro rather than
818 # from the proto area. The note.h that ON delivers would disable NOTE().
819 ONLY_LINT_DEFS = -I$(SPRO_VROOT)/prod/include/lint

821 SECLEVEL= core
822 LINT.c= $(LINT) $(ONLY_LINT_DEFS) $(LINTFLAGS) $(CPPFLAGS) \
823 $(ALWAYS_LINT_DEFS)
824 LINT64.c= $(LINT) $(ONLY_LINT_DEFS) $(LINTFLAGS64) $(CPPFLAGS) \
825 $(ALWAYS_LINT_DEFS)
826 LINT.s= $(LINT.c)

828 # For some future builds, NATIVE_MACH and MACH might be different.
829 # Therefore, NATIVE_MACH needs to be redefined in the
830 # environment as ‘uname -p‘ to override this macro.
831 #
832 # For now at least, we cross-compile amd64 on i386 machines.
833 NATIVE_MACH= $(MACH:amd64=i386)

835 # Define native compilation macros
836 #

838 # Base directory where compilers are loaded.
839 # Defined here so it can be overridden by developer.
840 #
841 SPRO_ROOT= $(BUILD_TOOLS)/SUNWspro
842 SPRO_VROOT= $(SPRO_ROOT)/SS12
843 GNU_ROOT= /usr

845 $(__GNUC)PRIMARY_CC= gcc7,$(GNUC_ROOT)/bin/gcc,gnu
845 $(__GNUC)PRIMARY_CC= gcc4,$(GNUC_ROOT)/bin/gcc,gnu
846 $(__SUNC)PRIMARY_CC= studio12,$(SPRO_VROOT)/bin/cc,sun
847 $(__GNUC)PRIMARY_CCC= gcc7,$(GNUC_ROOT)/bin/g++,gnu
847 $(__GNUC)PRIMARY_CCC= gcc4,$(GNUC_ROOT)/bin/g++,gnu
848 $(__SUNC)PRIMARY_CCC= studio12,$(SPRO_VROOT)/bin/CC,sun

new/usr/src/Makefile.master 14

850 CW_CC_COMPILERS= $(PRIMARY_CC:%=--primary %) $(SHADOW_CCS:%=--shadow %)
851 CW_CCC_COMPILERS= $(PRIMARY_CCC:%=--primary %) $(SHADOW_CCCS:%=--shadow %)

854 # Till SS12u1 formally becomes the NV CBE, LINT is hard
855 # coded to be picked up from the $SPRO_ROOT/sunstudio12.1/
856 # location. Impacted variables are sparc_LINT, sparcv9_LINT,
857 # i386_LINT, amd64_LINT.
858 # Reset them when SS12u1 is rolled out.
859 #

861 # Specify platform compiler versions for languages
862 # that we use (currently only c and c++).
863 #
864 CW= $(ONBLD_TOOLS)/bin/$(MACH)/cw

866 BUILD_CC= $(CW) $(CW_CC_COMPILERS) --
867 BUILD_CCC= $(CW) -C $(CW_CCC_COMPILERS) --
868 BUILD_CPP= /usr/ccs/lib/cpp
869 BUILD_LD= /usr/ccs/bin/ld
870 BUILD_LINT= $(SPRO_ROOT)/sunstudio12.1/bin/lint

872 $(MACH)_CC= $(BUILD_CC)
873 $(MACH)_CCC= $(BUILD_CCC)
874 $(MACH)_CPP= $(BUILD_CPP)
875 $(MACH)_LD= $(BUILD_LD)
876 $(MACH)_LINT= $(BUILD_LINT)
877 $(MACH64)_CC= $(BUILD_CC)
878 $(MACH64)_CCC= $(BUILD_CCC)
879 $(MACH64)_CPP= $(BUILD_CPP)
880 $(MACH64)_LD= $(BUILD_LD)
881 $(MACH64)_LINT= $(BUILD_LINT)

883 sparc_AS= /usr/ccs/bin/as -xregsym=no
884 sparcv9_AS= $($(MACH)_AS)

886 i386_AS= /usr/ccs/bin/as
887 $(__GNUC)i386_AS= $(ONBLD_TOOLS)/bin/$(MACH)/aw
888 amd64_AS= $(ONBLD_TOOLS)/bin/$(MACH)/aw

890 NATIVECC= $($(NATIVE_MACH)_CC)
891 NATIVECCC= $($(NATIVE_MACH)_CCC)
892 NATIVECPP= $($(NATIVE_MACH)_CPP)
893 NATIVEAS= $($(NATIVE_MACH)_AS)
894 NATIVELD= $($(NATIVE_MACH)_LD)
895 NATIVELINT= $($(NATIVE_MACH)_LINT)

897 #
898 # Makefile.master.64 overrides these settings
899 #
900 CC= $(NATIVECC)
901 CCC= $(NATIVECCC)
902 CPP= $(NATIVECPP)
903 AS= $(NATIVEAS)
904 LD= $(NATIVELD)
905 LINT= $(NATIVELINT)

907 # Pass -Y flag to cpp (method of which is release-dependent)
908 CCYFLAG= -Y I,

910 BDIRECT= -Bdirect
911 BDYNAMIC= -Bdynamic
912 BLOCAL= -Blocal
913 BNODIRECT= -Bnodirect
914 BREDUCE= -Breduce
915 BSTATIC= -Bstatic

new/usr/src/Makefile.master 15

917 ZDEFS= -zdefs
918 ZDIRECT= -zdirect
919 ZIGNORE= -zignore
920 ZINITFIRST= -zinitfirst
921 ZINTERPOSE= -zinterpose
922 ZLAZYLOAD= -zlazyload
923 ZLOADFLTR= -zloadfltr
924 ZMULDEFS= -zmuldefs
925 ZNODEFAULTLIB= -znodefaultlib
926 ZNODEFS= -znodefs
927 ZNODELETE= -znodelete
928 ZNODLOPEN= -znodlopen
929 ZNODUMP= -znodump
930 ZNOLAZYLOAD= -znolazyload
931 ZNOLDYNSYM= -znoldynsym
932 ZNORELOC= -znoreloc
933 ZNOVERSION= -znoversion
934 ZRECORD= -zrecord
935 ZREDLOCSYM= -zredlocsym
936 ZTEXT= -ztext
937 ZVERBOSE= -zverbose

939 GSHARED= -G
940 CCMT= -mt

942 # Handle different PIC models on different ISAs
943 # (May be overridden by lower-level Makefiles)

945 sparc_C_PICFLAGS = -fpic
946 sparcv9_C_PICFLAGS = -fpic
947 i386_C_PICFLAGS = -fpic
948 amd64_C_PICFLAGS = -fpic
949 C_PICFLAGS = $($(MACH)_C_PICFLAGS)
950 C_PICFLAGS64 = $($(MACH64)_C_PICFLAGS)

952 sparc_C_BIGPICFLAGS = -fPIC
953 sparcv9_C_BIGPICFLAGS = -fPIC
954 i386_C_BIGPICFLAGS = -fPIC
955 amd64_C_BIGPICFLAGS = -fPIC
956 C_BIGPICFLAGS = $($(MACH)_C_BIGPICFLAGS)
957 C_BIGPICFLAGS64 = $($(MACH64)_C_BIGPICFLAGS)

959 # CC requires there to be no space between ’-K’ and ’pic’ or ’PIC’.
960 # and does not support -f
961 sparc_CC_PICFLAGS = -_cc=-Kpic -_gcc=-fpic
962 sparcv9_CC_PICFLAGS = -_cc=-KPIC -_gcc=-fPIC
963 i386_CC_PICFLAGS = -_cc=-Kpic -_gcc=-fpic
964 amd64_CC_PICFLAGS = -_cc=-Kpic -_gcc=-fpic
965 CC_PICFLAGS = $($(MACH)_CC_PICFLAGS)
966 CC_PICFLAGS64 = $($(MACH64)_CC_PICFLAGS)

968 AS_PICFLAGS= -K pic
969 AS_BIGPICFLAGS= -K PIC

971 #
972 # Default label for CTF sections
973 #
974 CTFCVTFLAGS= -L VERSION

976 #
977 # Override to pass module-specific flags to ctfmerge. Currently used only by
978 # krtld to turn on fuzzy matching, and source-level debugging to inhibit
979 # stripping.
980 #
981 CTFMRGFLAGS=

new/usr/src/Makefile.master 16

983 #
984 # Make the transition between old and new CTF Tools. The new ctf tools
985 # do not support stabs (eg. Sun Studio). By setting BUILD_OLD_CTF_TOOLS
986 # here or in the environment file, the old ones will be built.
987 #
988 BUILD_NEW_CTF_TOOLS=
989 BUILD_OLD_CTF_TOOLS=$(POUND_SIGN)
990 $(BUILD_OLD_CTF_TOOLS)BUILD_NEW_CTF_TOOLS= $(POUND_SIGN)

992 CTFCONVERT_O = $(CTFCONVERT) $(CTFCVTFLAGS) $@

994 # Rules (normally from make.rules) and macros which are used for post
995 # processing files. Normally, these do stripping of the comment section
996 # automatically.
997 # RELEASE_CM: Should be edited to reflect the release.
998 # POST_PROCESS_O: Post-processing for ‘.o’ files (typically C source)
999 # POST_PROCESS_S_O: Post-processing for ‘.o’ files built from asssembly

1000 # POST_PROCESS_CC_O: Post-processing for ‘.o’ files built from C++
1001 # POST_PROCESS_A: Post-processing for ‘.a’ files (currently null).
1002 # POST_PROCESS_SO: Post-processing for ‘.so’ files.
1003 # POST_PROCESS: Post-processing for executable files (no suffix).
1004 #
1005 # Note that these macros are not completely generalized as they are to be
1006 # used with the file name to be processed following.
1007 #
1008 # It is left as an exercise to Release Engineering to embellish the generation
1009 # of the release comment string.
1010 #
1011 # If this is a standard development build:
1012 # compress the comment section (mcs -c)
1013 # add the standard comment (mcs -a $(RELEASE_CM))
1014 # add the development specific comment (mcs -a $(DEV_CM))
1015 #
1016 # If this is an installation build:
1017 # delete the comment section (mcs -d)
1018 # add the standard comment (mcs -a $(RELEASE_CM))
1019 # add the development specific comment (mcs -a $(DEV_CM))
1020 #
1021 # If this is an release build:
1022 # delete the comment section (mcs -d)
1023 # add the standard comment (mcs -a $(RELEASE_CM))
1024 #
1025 # The following list of macros are used in the definition of RELEASE_CM
1026 # which is used to label all binaries in the build:
1027 #
1028 # RELEASE Specific release of the build, eg: 5.2
1029 # RELEASE_MAJOR Major version number part of $(RELEASE)
1030 # RELEASE_MINOR Minor version number part of $(RELEASE)
1031 # VERSION Version of the build (alpha, beta, Generic)
1032 # PATCHID If this is a patch this value should contain
1033 # the patchid value (eg: "Generic 100832-01"), otherwise
1034 # it will be set to $(VERSION)
1035 # RELEASE_DATE Date of the Release Build
1036 # PATCH_DATE Date the patch was created, if this is blank it
1037 # will default to the RELEASE_DATE
1038 #
1039 RELEASE_MAJOR= 5
1040 RELEASE_MINOR= 11
1041 RELEASE= $(RELEASE_MAJOR).$(RELEASE_MINOR)
1042 VERSION= SunOS Development
1043 PATCHID= $(VERSION)
1044 RELEASE_DATE= release date not set
1045 PATCH_DATE= $(RELEASE_DATE)
1046 RELEASE_CM= "@($(POUND_SIGN))SunOS $(RELEASE) $(PATCHID) $(PATCH_DATE)"
1047 DEV_CM= "@($(POUND_SIGN))SunOS Internal Development: non-nightly build"

new/usr/src/Makefile.master 17

1049 PROCESS_COMMENT= @?${MCS} -d -a $(RELEASE_CM) -a $(DEV_CM)
1050 $(RELEASE_BUILD)PROCESS_COMMENT= @?${MCS} -d -a $(RELEASE_CM)

1052 STRIP_STABS= $(STRIP) -x $@
1053 $(SRCDBGBLD)STRIP_STABS= :

1055 POST_PROCESS_O=
1056 POST_PROCESS_S_O=
1057 POST_PROCESS_CC_O=
1058 POST_PROCESS_A=
1059 POST_PROCESS_SO= $(PROCESS_COMMENT) $@ ; $(STRIP_STABS) ; \
1060 $(ELFSIGN_OBJECT)
1061 POST_PROCESS= $(PROCESS_COMMENT) $@ ; $(STRIP_STABS) ; \
1062 $(ELFSIGN_OBJECT)

1064 #
1065 # chk4ubin is a tool that inspects a module for a symbol table
1066 # ELF section size which can trigger an OBP bug on older platforms.
1067 # This problem affects only specific sun4u bootable modules.
1068 #
1069 CHK4UBIN= $(ONBLD_TOOLS)/bin/$(MACH)/chk4ubin
1070 CHK4UBINFLAGS=
1071 CHK4UBINARY= $(CHK4UBIN) $(CHK4UBINFLAGS) $@

1073 #
1074 # PKGARCHIVE specifies the default location where packages should be
1075 # placed if built.
1076 #
1077 $(RELEASE_BUILD)PKGARCHIVESUFFIX= -nd
1078 PKGARCHIVE=$(SRC)/../../packages/$(MACH)/nightly$(PKGARCHIVESUFFIX)

1080 #
1081 # The repositories will be created with these publisher settings. To
1082 # update an image to the resulting repositories, this must match the
1083 # publisher name provided to "pkg set-publisher."
1084 #
1085 PKGPUBLISHER_REDIST= on-nightly
1086 PKGPUBLISHER_NONREDIST= on-extra

1088 # Default build rules which perform comment section post-processing.
1089 #
1090 .c:
1091 $(LINK.c) -o $@ $< $(LDLIBS)
1092 $(POST_PROCESS)
1093 .c.o:
1094 $(COMPILE.c) $(OUTPUT_OPTION) $< $(CTFCONVERT_HOOK)
1095 $(POST_PROCESS_O)
1096 .c.a:
1097 $(COMPILE.c) -o $% $<
1098 $(PROCESS_COMMENT) $%
1099 $(AR) $(ARFLAGS) $@ $%
1100 $(RM) $%
1101 .s.o:
1102 $(COMPILE.s) -o $@ $<
1103 $(POST_PROCESS_S_O)
1104 .s.a:
1105 $(COMPILE.s) -o $% $<
1106 $(PROCESS_COMMENT) $%
1107 $(AR) $(ARFLAGS) $@ $%
1108 $(RM) $%
1109 .cc:
1110 $(LINK.cc) -o $@ $< $(LDLIBS)
1111 $(POST_PROCESS)
1112 .cc.o:
1113 $(COMPILE.cc) $(OUTPUT_OPTION) $<

new/usr/src/Makefile.master 18

1114 $(POST_PROCESS_CC_O)
1115 .cc.a:
1116 $(COMPILE.cc) -o $% $<
1117 $(AR) $(ARFLAGS) $@ $%
1118 $(PROCESS_COMMENT) $%
1119 $(RM) $%
1120 .y:
1121 $(YACC.y) $<
1122 $(LINK.c) -o $@ y.tab.c $(LDLIBS)
1123 $(POST_PROCESS)
1124 $(RM) y.tab.c
1125 .y.o:
1126 $(YACC.y) $<
1127 $(COMPILE.c) -o $@ y.tab.c $(CTFCONVERT_HOOK)
1128 $(POST_PROCESS_O)
1129 $(RM) y.tab.c
1130 .l:
1131 $(RM) $*.c
1132 $(LEX.l) $< > $*.c
1133 $(LINK.c) -o $@ $*.c -ll $(LDLIBS)
1134 $(POST_PROCESS)
1135 $(RM) $*.c
1136 .l.o:
1137 $(RM) $*.c
1138 $(LEX.l) $< > $*.c
1139 $(COMPILE.c) -o $@ $*.c $(CTFCONVERT_HOOK)
1140 $(POST_PROCESS_O)
1141 $(RM) $*.c

1143 .bin.o:
1144 $(COMPILE.b) -o $@ $<
1145 $(POST_PROCESS_O)

1147 .java.class:
1148 $(COMPILE.java) $<

1150 # Bourne and Korn shell script message catalog build rules.
1151 # We extract all gettext strings with sed(1) (being careful to permit
1152 # multiple gettext strings on the same line), weed out the dups, and
1153 # build the catalogue with awk(1).

1155 .sh.po .ksh.po:
1156 $(SED) -n -e ":a" \
1157 -e "h" \
1158 -e "s/.*gettext *\(\"[^\"]*\"\).*/\1/p" \
1159 -e "x" \
1160 -e "s/\(.*\)gettext *\"[^\"]*\"\(.*\)/\1\2/" \
1161 -e "t a" \
1162 $< | sort -u | $(AWK) ’{ print "msgid\t" $$0 "\nmsgstr" }’ > $@

1164 #
1165 # Python and Perl executable and message catalog build rules.
1166 #
1167 .SUFFIXES: .pl .pm .py .pyc

1169 .pl:
1170 $(RM) $@;
1171 $(SED) -e "s@TEXT_DOMAIN@\"$(TEXT_DOMAIN)\"@" $< > $@;
1172 $(CHMOD) +x $@

1174 .py:
1175 $(RM) $@; $(SED) \
1176 -e "1s:^\#!@PYTHON@:\#!$(PYSHEBANG):" \
1177 -e "1s:^\#!@TOOLS_PYTHON@:\#!$(TOOLS_PYTHON):" \
1178 < $< > $@; $(CHMOD) +x $@

new/usr/src/Makefile.master 19

1180 .py.pyc:
1181 $(RM) $@
1182 $(PYTHON) -mpy_compile $<
1183 @[$(<)c = $@] || $(MV) $(<)c $@

1185 .py.po:
1186 $(GNUXGETTEXT) $(GNUXGETFLAGS) -d $(<F:%.py=%) $< ;

1188 .pl.po .pm.po:
1189 $(XGETTEXT) $(XGETFLAGS) -d $(<F) $< ;
1190 $(RM) $@ ;
1191 $(SED) "/^domain/d" < $(<F).po > $@ ;
1192 $(RM) $(<F).po

1194 #
1195 # When using xgettext, we want messages to go to the default domain,
1196 # rather than the specified one. This special version of the
1197 # COMPILE.cpp macro effectively prevents expansion of TEXT_DOMAIN,
1198 # causing xgettext to put all messages into the default domain.
1199 #
1200 CPPFORPO=$(COMPILE.cpp:\"$(TEXT_DOMAIN)\"=TEXT_DOMAIN)

1202 .c.i:
1203 $(CPPFORPO) $< > $@

1205 .h.i:
1206 $(CPPFORPO) $< > $@

1208 .y.i:
1209 $(YACC) -d $<
1210 $(CPPFORPO) y.tab.c > $@
1211 $(RM) y.tab.c

1213 .l.i:
1214 $(LEX) $<
1215 $(CPPFORPO) lex.yy.c > $@
1216 $(RM) lex.yy.c

1218 .c.po:
1219 $(CPPFORPO) $< > $<.i
1220 $(BUILD.po)

1222 .cc.po:
1223 $(CPPFORPO) $< > $<.i
1224 $(BUILD.po)

1226 .y.po:
1227 $(YACC) -d $<
1228 $(CPPFORPO) y.tab.c > $<.i
1229 $(BUILD.po)
1230 $(RM) y.tab.c

1232 .l.po:
1233 $(LEX) $<
1234 $(CPPFORPO) lex.yy.c > $<.i
1235 $(BUILD.po)
1236 $(RM) lex.yy.c

1238 #
1239 # Rules to perform stylistic checks
1240 #
1241 .SUFFIXES: .x .xml .check .xmlchk

1243 .h.check:
1244 $(DOT_H_CHECK)

new/usr/src/Makefile.master 20

1246 .x.check:
1247 $(DOT_X_CHECK)

1249 .xml.xmlchk:
1250 $(MANIFEST_CHECK)

1252 #
1253 # Include rules to render automated sccs get rules "safe".
1254 #
1255 include $(SRC)/Makefile.noget

new/usr/src/tools/env/illumos.sh 1

**
 11197 Tue Jun 11 04:01:18 2019
new/usr/src/tools/env/illumos.sh
9996 use GCC 7 as default primary compiler
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
22 # Copyright 2015 Nexenta Systems, Inc. All rights reserved.
23 # Copyright 2012 Joshua M. Clulow <josh@sysmgr.org>
24 # Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
25 # Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
26 # Copyright 2019, Joyent, Inc.
26 # Copyright (c) 2019, Joyent, Inc.
27 #
28 # - This file is sourced by "bldenv.sh" and "nightly.sh" and should not
29 # be executed directly.
30 # - This script is only interpreted by ksh93 and explicitly allows the
31 # use of ksh93 language extensions.

34 # ---
35 # Parameters you are likely to want to change
36 # ---

38 # DEBUG build only (-D, -F)
39 # do not bringover from the parent (-n)
40 # runs ’make check’ (-C)
41 # checks for new interfaces in libraries (-A)
42 # sends mail on completion (-m and the MAILTO variable)
43 # creates packages for PIT/RE (-p)
44 # checks for changes in ELF runpaths (-r)
45 # build and use this workspace’s tools in $SRC/tools (-t)
46 export NIGHTLY_OPTIONS=’-FnCDAmprt’

48 # Some scripts optionally send mail messages to MAILTO.
49 #export MAILTO=

51 # CODEMGR_WS - where is your workspace at
52 export CODEMGR_WS="‘git rev-parse --show-toplevel‘"

54 # Compilers may be specified using the following variables:
55 # PRIMARY_CC - primary C compiler
56 # PRIMARY_CCC - primary C++ compiler
57 #
58 # SHADOW_CCS - list of shadow C compilers
59 # SHADOW_CCCS - list of shadow C++ compilers
60 #

new/usr/src/tools/env/illumos.sh 2

61 # Each entry has the form <name>,<path to binary>,<style> where name is a
62 # free-form name (possibly used in the makefiles to guard options), path is
63 # the path to the executable. style is the ’style’ of command line taken by
64 # the compiler, currently either gnu (or gcc) or sun (or cc), which is also
65 # used by Makefiles to guard options.
66 #
67 # __SUNC and __GNUC must still be set to reflect the style of the primary
68 # compiler (and to influence the default primary, otherwise)
69 #
70 # for example:
71 # export PRIMARY_CC=gcc4,/opt/gcc/4.4.4/bin/gcc,gnu
72 # export PRIMARY_CCC=gcc4,/opt/gcc/4.4.4/bin/g++,gnu
73 # export SHADOW_CCS=studio12,/opt/SUNWspro/bin/cc,sun
74 # export SHADOW_CCCS=studio12,/opt/SUNWspro/bin/CC,sun
75 #
76 # There can be several space-separated entries in SHADOW_* to run multiple
77 # shadow compilers.
78 #
79 # To disable shadow compilation, unset SHADOW_* or set them to the empty string.
80 #
81 export GNUC_ROOT=/usr/gcc/7
82 export PRIMARY_CCS=gcc7,$GNUC_ROOT/bin/gcc,gnu
83 export PRIMARY_CCCS=gcc7,$GNUC_ROOT/bin/g++,gnu
84 export SHADOW_CCS=gcc4,/opt/gcc/4.4.4/bin/gcc,gnu
85 export SHADOW_CCCS=gcc4,/opt/gcc/4.4.4/bin/g++,gnu
81 export SHADOW_CCS=gcc7,/usr/gcc/7/bin/gcc,gnu
82 export SHADOW_CCCS=gcc7,/usr/gcc/7/bin/g++,gnu

87 # uncomment to enable smatch
88 #export ENABLE_SMATCH=1

90 # Comment this out to disable support for SMB printing, i.e. if you
91 # don’t want to bother providing the CUPS headers this needs.
92 export ENABLE_SMB_PRINTING=

94 # If your distro uses certain versions of Perl, make sure either Makefile.master
95 # contains your new defaults OR your .env file sets them.
96 # These are how you would override for building on OmniOS r151028, for example.
97 #export PERL_VERSION=5.28
98 #export PERL_ARCH=i86pc-solaris-thread-multi-64int
99 #export PERL_PKGVERS=

101 # If your distro uses certain versions of Python, make sure either
102 # Makefile.master contains your new defaults OR your .env file sets them.
103 #export PYTHON_VERSION=2.7
104 #export PYTHON_PKGVERS=-27
105 #export PYTHON_SUFFIX=
106 #export PYTHON3_VERSION=3.5
107 #export PYTHON3_PKGVERS=-35
108 #export PYTHON3_SUFFIX=m

110 # To disable building with either Python2 or Python 3 (or both), uncomment
111 # these lines:
112 #export BUILDPY2=’#’
113 #export BUILDPY3=’#’

115 # Set console color scheme either by build type:
116 #
117 #export RELEASE_CONSOLE_COLOR="-DDEFAULT_ANSI_FOREGROUND=ANSI_COLOR_BLACK \
118 # -DDEFAULT_ANSI_BACKGROUND=ANSI_COLOR_WHITE"
119 #
120 #export DEBUG_CONSOLE_COLOR="-DDEFAULT_ANSI_FOREGROUND=ANSI_COLOR_RED \
121 # -DDEFAULT_ANSI_BACKGROUND=ANSI_COLOR_WHITE"
122 #
123 # or just one for any build type:
124 #

new/usr/src/tools/env/illumos.sh 3

125 #export DEFAULT_CONSOLE_COLOR="-DDEFAULT_ANSI_FOREGROUND=ANSI_COLOR_BLACK \
126 # -DDEFAULT_ANSI_BACKGROUND=ANSI_COLOR_WHITE"

128 # Set if your distribution has different package versioning
129 #export PKGVERS_BRANCH=2018.0.0.17900

131 # Skip Java 8 builds on distributions that don’t support it
132 #export BLD_JAVA_8=

134 # POST_NIGHTLY can be any command to be run at the end of nightly. See
135 # nightly(1) for interactions between environment variables and this command.
136 #POST_NIGHTLY=

138 # ---
139 # You are less likely to need to modify parameters below.
140 # ---

142 # Maximum number of dmake jobs. The recommended number is 2 + NCPUS,
143 # where NCPUS is the number of logical CPUs on your build system.
144 function maxjobs
145 {
146 nameref maxjobs=$1
147 integer ncpu
148 integer -r min_mem_per_job=512 # minimum amount of memory for a job

150 ncpu=$(builtin getconf ; getconf ’NPROCESSORS_ONLN’)
151 ((maxjobs=ncpu + 2))

153 # Throttle number of parallel jobs launched by dmake to a value which
154 # gurantees that all jobs have enough memory. This was added to avoid
155 # excessive paging/swapping in cases of virtual machine installations
156 # which have lots of CPUs but not enough memory assigned to handle
157 # that many parallel jobs
158 if [[$(/usr/sbin/prtconf 2>’/dev/null’) == ~(E)Memory\ size:\ ([[:digit
159 integer max_jobs_per_memory # parallel jobs which fit into physi
160 integer physical_memory # physical memory installed

162 # The array ".sh.match" contains the contents of capturing
163 # brackets in the last regex, .sh.match[1] will contain
164 # the value matched by ([[:digit:]]+), i.e. the amount of
165 # memory installed
166 physical_memory="10#${.sh.match[1]}"

168 ((
169 max_jobs_per_memory=round(physical_memory/min_mem_per_jo
170 maxjobs=fmax(2, fmin(maxjobs, max_jobs_per_memory))
171))
172 fi

174 return 0
175 }

______unchanged_portion_omitted_

