1 /*
   2  * This file and its contents are supplied under the terms of the
   3  * Common Development and Distribution License ("CDDL"), version 1.0.
   4  * You may only use this file in accordance with the terms of version
   5  * 1.0 of the CDDL.
   6  *
   7  * A full copy of the text of the CDDL should have accompanied this
   8  * source. A copy of the CDDL is also available via the Internet at
   9  * http://www.illumos.org/license/CDDL.
  10  */
  11 
  12 /*
  13  * This file is part of the Chelsio T4 support code.
  14  *
  15  * Copyright (C) 2010-2013 Chelsio Communications.  All rights reserved.
  16  *
  17  * This program is distributed in the hope that it will be useful, but WITHOUT
  18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  19  * FITNESS FOR A PARTICULAR PURPOSE.  See the LICENSE file included in this
  20  * release for licensing terms and conditions.
  21  */
  22 
  23 #include <sys/ddi.h>
  24 #include <sys/sunddi.h>
  25 #include <sys/sunndi.h>
  26 #include <sys/atomic.h>
  27 #include <sys/dlpi.h>
  28 #include <sys/pattr.h>
  29 #include <sys/strsubr.h>
  30 #include <sys/stream.h>
  31 #include <sys/strsun.h>
  32 #include <inet/ip.h>
  33 #include <inet/tcp.h>
  34 
  35 #include "version.h"
  36 #include "common/common.h"
  37 #include "common/t4_msg.h"
  38 #include "common/t4_regs.h"
  39 #include "common/t4_regs_values.h"
  40 
  41 /* TODO: Tune. */
  42 int rx_buf_size = 8192;
  43 int tx_copy_threshold = 256;
  44 uint16_t rx_copy_threshold = 256;
  45 
  46 /* Used to track coalesced tx work request */
  47 struct txpkts {
  48         mblk_t *tail;           /* head is in the software descriptor */
  49         uint64_t *flitp;        /* ptr to flit where next pkt should start */
  50         uint8_t npkt;           /* # of packets in this work request */
  51         uint8_t nflits;         /* # of flits used by this work request */
  52         uint16_t plen;          /* total payload (sum of all packets) */
  53 };
  54 
  55 /* All information needed to tx a frame */
  56 struct txinfo {
  57         uint32_t len;           /* Total length of frame */
  58         uint32_t flags;         /* Checksum and LSO flags */
  59         uint32_t mss;           /* MSS for LSO */
  60         uint8_t nsegs;          /* # of segments in the SGL, 0 means imm. tx */
  61         uint8_t nflits;         /* # of flits needed for the SGL */
  62         uint8_t hdls_used;      /* # of DMA handles used */
  63         uint32_t txb_used;      /* txb_space used */
  64         struct ulptx_sgl sgl __attribute__((aligned(8)));
  65         struct ulptx_sge_pair reserved[TX_SGL_SEGS / 2];
  66 };
  67 
  68 static int service_iq(struct sge_iq *iq, int budget);
  69 static inline void init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx,
  70     int8_t pktc_idx, int qsize, uint8_t esize);
  71 static inline void init_fl(struct sge_fl *fl, uint16_t qsize);
  72 static inline void init_eq(struct adapter *sc, struct sge_eq *eq,
  73     uint16_t eqtype, uint16_t qsize,uint8_t tx_chan, uint16_t iqid);
  74 static int alloc_iq_fl(struct port_info *pi, struct sge_iq *iq,
  75     struct sge_fl *fl, int intr_idx, int cong);
  76 static int free_iq_fl(struct port_info *pi, struct sge_iq *iq,
  77     struct sge_fl *fl);
  78 static int alloc_fwq(struct adapter *sc);
  79 static int free_fwq(struct adapter *sc);
  80 #ifdef TCP_OFFLOAD_ENABLE
  81 static int alloc_mgmtq(struct adapter *sc);
  82 #endif
  83 static int alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx,
  84     int i);
  85 static int free_rxq(struct port_info *pi, struct sge_rxq *rxq);
  86 #ifdef TCP_OFFLOAD_ENABLE
  87 static int alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
  88         int intr_idx);
  89 static int free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq);
  90 #endif
  91 static int ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq);
  92 static int eth_eq_alloc(struct adapter *sc, struct port_info *pi,
  93     struct sge_eq *eq);
  94 #ifdef TCP_OFFLOAD_ENABLE
  95 static int ofld_eq_alloc(struct adapter *sc, struct port_info *pi,
  96     struct sge_eq *eq);
  97 #endif
  98 static int alloc_eq(struct adapter *sc, struct port_info *pi,
  99     struct sge_eq *eq);
 100 static int free_eq(struct adapter *sc, struct sge_eq *eq);
 101 #ifdef TCP_OFFLOAD_ENABLE
 102 static int alloc_wrq(struct adapter *sc, struct port_info *pi,
 103     struct sge_wrq *wrq, int idx);
 104 static int free_wrq(struct adapter *sc, struct sge_wrq *wrq);
 105 #endif
 106 static int alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx);
 107 static int free_txq(struct port_info *pi, struct sge_txq *txq);
 108 static int alloc_dma_memory(struct adapter *sc, size_t len, int flags,
 109     ddi_device_acc_attr_t *acc_attr, ddi_dma_attr_t *dma_attr,
 110     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
 111     caddr_t *pva);
 112 static int free_dma_memory(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl);
 113 static int alloc_desc_ring(struct adapter *sc, size_t len, int rw,
 114     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
 115     caddr_t *pva);
 116 static int free_desc_ring(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl);
 117 static int alloc_tx_copybuffer(struct adapter *sc, size_t len,
 118     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
 119     caddr_t *pva);
 120 static inline bool is_new_response(const struct sge_iq *iq,
 121     struct rsp_ctrl **ctrl);
 122 static inline void iq_next(struct sge_iq *iq);
 123 static int refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs);
 124 static void refill_sfl(void *arg);
 125 static void add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl);
 126 static void free_fl_bufs(struct sge_fl *fl);
 127 static mblk_t *get_fl_payload(struct adapter *sc, struct sge_fl *fl,
 128     uint32_t len_newbuf, int *fl_bufs_used);
 129 static int get_frame_txinfo(struct sge_txq *txq, mblk_t **fp,
 130     struct txinfo *txinfo, int sgl_only);
 131 static inline int fits_in_txb(struct sge_txq *txq, int len, int *waste);
 132 static inline int copy_into_txb(struct sge_txq *txq, mblk_t *m, int len,
 133     struct txinfo *txinfo);
 134 static inline void add_seg(struct txinfo *txinfo, uint64_t ba, uint32_t len);
 135 static inline int add_mblk(struct sge_txq *txq, struct txinfo *txinfo,
 136     mblk_t *m, int len);
 137 static void free_txinfo_resources(struct sge_txq *txq, struct txinfo *txinfo);
 138 static int add_to_txpkts(struct sge_txq *txq, struct txpkts *txpkts, mblk_t *m,
 139     struct txinfo *txinfo);
 140 static void write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts);
 141 static int write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, mblk_t *m,
 142     struct txinfo *txinfo);
 143 static inline void write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
 144     struct txpkts *txpkts, struct txinfo *txinfo);
 145 static inline void copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to,
 146     int len);
 147 static inline void ring_tx_db(struct adapter *sc, struct sge_eq *eq);
 148 static int reclaim_tx_descs(struct sge_txq *txq, int howmany);
 149 static void write_txqflush_wr(struct sge_txq *txq);
 150 static int t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss,
 151     mblk_t *m);
 152 static inline void ring_fl_db(struct adapter *sc, struct sge_fl *fl);
 153 static kstat_t *setup_port_config_kstats(struct port_info *pi);
 154 static kstat_t *setup_port_info_kstats(struct port_info *pi);
 155 static kstat_t *setup_rxq_kstats(struct port_info *pi, struct sge_rxq *rxq,
 156     int idx);
 157 static int update_rxq_kstats(kstat_t *ksp, int rw);
 158 static int update_port_info_kstats(kstat_t *ksp, int rw);
 159 static kstat_t *setup_txq_kstats(struct port_info *pi, struct sge_txq *txq,
 160     int idx);
 161 static int update_txq_kstats(kstat_t *ksp, int rw);
 162 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
 163     mblk_t *);
 164 static int handle_fw_rpl(struct sge_iq *iq, const struct rss_header *rss,
 165     mblk_t *m);
 166 
 167 static inline int
 168 reclaimable(struct sge_eq *eq)
 169 {
 170         unsigned int cidx;
 171 
 172         cidx = eq->spg->cidx;   /* stable snapshot */
 173         cidx = be16_to_cpu(cidx);
 174 
 175         if (cidx >= eq->cidx)
 176                 return (cidx - eq->cidx);
 177         else
 178                 return (cidx + eq->cap - eq->cidx);
 179 }
 180 
 181 void
 182 t4_sge_init(struct adapter *sc)
 183 {
 184         struct driver_properties *p = &sc->props;
 185         ddi_dma_attr_t *dma_attr;
 186         ddi_device_acc_attr_t *acc_attr;
 187         uint32_t sge_control, sge_conm_ctrl;
 188         int egress_threshold;
 189 
 190         /*
 191          * Device access and DMA attributes for descriptor rings
 192          */
 193         acc_attr = &sc->sge.acc_attr_desc;
 194         acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
 195         acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
 196         acc_attr->devacc_attr_dataorder = DDI_STRICTORDER_ACC;
 197 
 198         dma_attr = &sc->sge.dma_attr_desc;
 199         dma_attr->dma_attr_version = DMA_ATTR_V0;
 200         dma_attr->dma_attr_addr_lo = 0;
 201         dma_attr->dma_attr_addr_hi = UINT64_MAX;
 202         dma_attr->dma_attr_count_max = UINT64_MAX;
 203         dma_attr->dma_attr_align = 512;
 204         dma_attr->dma_attr_burstsizes = 0xfff;
 205         dma_attr->dma_attr_minxfer = 1;
 206         dma_attr->dma_attr_maxxfer = UINT64_MAX;
 207         dma_attr->dma_attr_seg = UINT64_MAX;
 208         dma_attr->dma_attr_sgllen = 1;
 209         dma_attr->dma_attr_granular = 1;
 210         dma_attr->dma_attr_flags = 0;
 211 
 212         /*
 213          * Device access and DMA attributes for tx buffers
 214          */
 215         acc_attr = &sc->sge.acc_attr_tx;
 216         acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
 217         acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
 218 
 219         dma_attr = &sc->sge.dma_attr_tx;
 220         dma_attr->dma_attr_version = DMA_ATTR_V0;
 221         dma_attr->dma_attr_addr_lo = 0;
 222         dma_attr->dma_attr_addr_hi = UINT64_MAX;
 223         dma_attr->dma_attr_count_max = UINT64_MAX;
 224         dma_attr->dma_attr_align = 1;
 225         dma_attr->dma_attr_burstsizes = 0xfff;
 226         dma_attr->dma_attr_minxfer = 1;
 227         dma_attr->dma_attr_maxxfer = UINT64_MAX;
 228         dma_attr->dma_attr_seg = UINT64_MAX;
 229         dma_attr->dma_attr_sgllen = TX_SGL_SEGS;
 230         dma_attr->dma_attr_granular = 1;
 231         dma_attr->dma_attr_flags = 0;
 232 
 233         /*
 234          * Ingress Padding Boundary and Egress Status Page Size are set up by
 235          * t4_fixup_host_params().
 236          */
 237         sge_control = t4_read_reg(sc, A_SGE_CONTROL);
 238         sc->sge.pktshift = G_PKTSHIFT(sge_control);
 239         sc->sge.stat_len = (sge_control & F_EGRSTATUSPAGESIZE) ? 128 : 64;
 240 
 241         /* t4_nex uses FLM packed mode */
 242         sc->sge.fl_align = t4_fl_pkt_align(sc, true);
 243 
 244         /*
 245          * Device access and DMA attributes for rx buffers
 246          */
 247         sc->sge.rxb_params.dip = sc->dip;
 248         sc->sge.rxb_params.buf_size = rx_buf_size;
 249 
 250         acc_attr = &sc->sge.rxb_params.acc_attr_rx;
 251         acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
 252         acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
 253 
 254         dma_attr = &sc->sge.rxb_params.dma_attr_rx;
 255         dma_attr->dma_attr_version = DMA_ATTR_V0;
 256         dma_attr->dma_attr_addr_lo = 0;
 257         dma_attr->dma_attr_addr_hi = UINT64_MAX;
 258         dma_attr->dma_attr_count_max = UINT64_MAX;
 259         /*
 260          * Low 4 bits of an rx buffer address have a special meaning to the SGE
 261          * and an rx buf cannot have an address with any of these bits set.
 262          * FL_ALIGN is >= 32 so we're sure things are ok.
 263          */
 264         dma_attr->dma_attr_align = sc->sge.fl_align;
 265         dma_attr->dma_attr_burstsizes = 0xfff;
 266         dma_attr->dma_attr_minxfer = 1;
 267         dma_attr->dma_attr_maxxfer = UINT64_MAX;
 268         dma_attr->dma_attr_seg = UINT64_MAX;
 269         dma_attr->dma_attr_sgllen = 1;
 270         dma_attr->dma_attr_granular = 1;
 271         dma_attr->dma_attr_flags = 0;
 272 
 273         sc->sge.rxbuf_cache = rxbuf_cache_create(&sc->sge.rxb_params);
 274 
 275         /*
 276          * A FL with <= fl_starve_thres buffers is starving and a periodic
 277          * timer will attempt to refill it.  This needs to be larger than the
 278          * SGE's Egress Congestion Threshold.  If it isn't, then we can get
 279          * stuck waiting for new packets while the SGE is waiting for us to
 280          * give it more Free List entries.  (Note that the SGE's Egress
 281          * Congestion Threshold is in units of 2 Free List pointers.) For T4,
 282          * there was only a single field to control this.  For T5 there's the
 283          * original field which now only applies to Unpacked Mode Free List
 284          * buffers and a new field which only applies to Packed Mode Free List
 285          * buffers.
 286          */
 287 
 288         sge_conm_ctrl = t4_read_reg(sc, A_SGE_CONM_CTRL);
 289         switch (CHELSIO_CHIP_VERSION(sc->params.chip)) {
 290         case CHELSIO_T4:
 291                 egress_threshold = G_EGRTHRESHOLD(sge_conm_ctrl);
 292                 break;
 293         case CHELSIO_T5:
 294                 egress_threshold = G_EGRTHRESHOLDPACKING(sge_conm_ctrl);
 295                 break;
 296         case CHELSIO_T6:
 297         default:
 298                 egress_threshold = G_T6_EGRTHRESHOLDPACKING(sge_conm_ctrl);
 299         }
 300         sc->sge.fl_starve_threshold = 2*egress_threshold + 1;
 301 
 302         t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, rx_buf_size);
 303 
 304         t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD,
 305             V_THRESHOLD_0(p->counter_val[0]) |
 306             V_THRESHOLD_1(p->counter_val[1]) |
 307             V_THRESHOLD_2(p->counter_val[2]) |
 308             V_THRESHOLD_3(p->counter_val[3]));
 309 
 310         t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1,
 311             V_TIMERVALUE0(us_to_core_ticks(sc, p->timer_val[0])) |
 312             V_TIMERVALUE1(us_to_core_ticks(sc, p->timer_val[1])));
 313         t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3,
 314             V_TIMERVALUE2(us_to_core_ticks(sc, p->timer_val[2])) |
 315             V_TIMERVALUE3(us_to_core_ticks(sc, p->timer_val[3])));
 316         t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5,
 317             V_TIMERVALUE4(us_to_core_ticks(sc, p->timer_val[4])) |
 318             V_TIMERVALUE5(us_to_core_ticks(sc, p->timer_val[5])));
 319 
 320         (void) t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_rpl);
 321         (void) t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_rpl);
 322         (void) t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
 323         (void) t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
 324         (void) t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL,
 325                     t4_handle_fw_rpl);
 326 }
 327 
 328 /*
 329  * Allocate and initialize the firmware event queue and the forwarded interrupt
 330  * queues, if any.  The adapter owns all these queues as they are not associated
 331  * with any particular port.
 332  *
 333  * Returns errno on failure.  Resources allocated up to that point may still be
 334  * allocated.  Caller is responsible for cleanup in case this function fails.
 335  */
 336 int
 337 t4_setup_adapter_queues(struct adapter *sc)
 338 {
 339         int rc;
 340 
 341         ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
 342 
 343         /*
 344          * Firmware event queue
 345          */
 346         rc = alloc_fwq(sc);
 347         if (rc != 0)
 348                 return (rc);
 349 
 350 #ifdef TCP_OFFLOAD_ENABLE
 351         /*
 352          * Management queue.  This is just a control queue that uses the fwq as
 353          * its associated iq.
 354          */
 355         rc = alloc_mgmtq(sc);
 356 #endif
 357 
 358         return (rc);
 359 }
 360 
 361 /*
 362  * Idempotent
 363  */
 364 int
 365 t4_teardown_adapter_queues(struct adapter *sc)
 366 {
 367 
 368         ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
 369 
 370         (void) free_fwq(sc);
 371 
 372         return (0);
 373 }
 374 
 375 static inline int
 376 first_vector(struct port_info *pi)
 377 {
 378         struct adapter *sc = pi->adapter;
 379         int rc = T4_EXTRA_INTR, i;
 380 
 381         if (sc->intr_count == 1)
 382                 return (0);
 383 
 384         for_each_port(sc, i) {
 385                 struct port_info *p = sc->port[i];
 386 
 387                 if (i == pi->port_id)
 388                         break;
 389 
 390 #ifdef TCP_OFFLOAD_ENABLE
 391                 if (!(sc->flags & INTR_FWD))
 392                         rc += p->nrxq + p->nofldrxq;
 393                 else
 394                         rc += max(p->nrxq, p->nofldrxq);
 395 #else
 396                 /*
 397                  * Not compiled with offload support and intr_count > 1.  Only
 398                  * NIC queues exist and they'd better be taking direct
 399                  * interrupts.
 400                  */
 401                 ASSERT(!(sc->flags & INTR_FWD));
 402                 rc += p->nrxq;
 403 #endif
 404         }
 405         return (rc);
 406 }
 407 
 408 /*
 409  * Given an arbitrary "index," come up with an iq that can be used by other
 410  * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
 411  * The iq returned is guaranteed to be something that takes direct interrupts.
 412  */
 413 static struct sge_iq *
 414 port_intr_iq(struct port_info *pi, int idx)
 415 {
 416         struct adapter *sc = pi->adapter;
 417         struct sge *s = &sc->sge;
 418         struct sge_iq *iq = NULL;
 419 
 420         if (sc->intr_count == 1)
 421                 return (&sc->sge.fwq);
 422 
 423 #ifdef TCP_OFFLOAD_ENABLE
 424         if (!(sc->flags & INTR_FWD)) {
 425                 idx %= pi->nrxq + pi->nofldrxq;
 426 
 427                 if (idx >= pi->nrxq) {
 428                         idx -= pi->nrxq;
 429                         iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
 430                 } else
 431                         iq = &s->rxq[pi->first_rxq + idx].iq;
 432 
 433         } else {
 434                 idx %= max(pi->nrxq, pi->nofldrxq);
 435 
 436                 if (pi->nrxq >= pi->nofldrxq)
 437                         iq = &s->rxq[pi->first_rxq + idx].iq;
 438                 else
 439                         iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
 440         }
 441 #else
 442         /*
 443          * Not compiled with offload support and intr_count > 1.  Only NIC
 444          * queues exist and they'd better be taking direct interrupts.
 445          */
 446         ASSERT(!(sc->flags & INTR_FWD));
 447 
 448         idx %= pi->nrxq;
 449         iq = &s->rxq[pi->first_rxq + idx].iq;
 450 #endif
 451 
 452         return (iq);
 453 }
 454 
 455 int
 456 t4_setup_port_queues(struct port_info *pi)
 457 {
 458         int rc = 0, i, intr_idx, j;
 459         struct sge_rxq *rxq;
 460         struct sge_txq *txq;
 461 #ifdef TCP_OFFLOAD_ENABLE
 462         int iqid;
 463         struct sge_wrq *ctrlq;
 464         struct sge_ofld_rxq *ofld_rxq;
 465         struct sge_wrq *ofld_txq;
 466 #endif
 467         struct adapter *sc = pi->adapter;
 468         struct driver_properties *p = &sc->props;
 469 
 470         pi->ksp_config = setup_port_config_kstats(pi);
 471         pi->ksp_info   = setup_port_info_kstats(pi);
 472 
 473         /* Interrupt vector to start from (when using multiple vectors) */
 474         intr_idx = first_vector(pi);
 475 
 476         /*
 477          * First pass over all rx queues (NIC and TOE):
 478          * a) initialize iq and fl
 479          * b) allocate queue iff it will take direct interrupts.
 480          */
 481 
 482         for_each_rxq(pi, i, rxq) {
 483 
 484                 init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, p->qsize_rxq,
 485                     RX_IQ_ESIZE);
 486 
 487                 init_fl(&rxq->fl, p->qsize_rxq / 8); /* 8 bufs in each entry */
 488 
 489                 if ((!(sc->flags & INTR_FWD))
 490 #ifdef TCP_OFFLOAD_ENABLE
 491                     || (sc->intr_count > 1 && pi->nrxq >= pi->nofldrxq)
 492 #else
 493                     || (sc->intr_count > 1 && pi->nrxq)
 494 #endif
 495                    ) {
 496                         rxq->iq.flags |= IQ_INTR;
 497                         rc = alloc_rxq(pi, rxq, intr_idx, i);
 498                         if (rc != 0)
 499                                 goto done;
 500                         intr_idx++;
 501                 }
 502 
 503         }
 504 
 505 #ifdef TCP_OFFLOAD_ENABLE
 506         for_each_ofld_rxq(pi, i, ofld_rxq) {
 507 
 508                 init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
 509                     p->qsize_rxq, RX_IQ_ESIZE);
 510 
 511                 init_fl(&ofld_rxq->fl, p->qsize_rxq / 8);
 512 
 513                 if (!(sc->flags & INTR_FWD) ||
 514                     (sc->intr_count > 1 && pi->nofldrxq > pi->nrxq)) {
 515                         ofld_rxq->iq.flags = IQ_INTR;
 516                         rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx);
 517                         if (rc != 0)
 518                                 goto done;
 519 
 520                         intr_idx++;
 521                 }
 522         }
 523 #endif
 524 
 525         /*
 526          * Second pass over all rx queues (NIC and TOE).  The queues forwarding
 527          * their interrupts are allocated now.
 528          */
 529         j = 0;
 530         for_each_rxq(pi, i, rxq) {
 531                 if (rxq->iq.flags & IQ_INTR)
 532                         continue;
 533 
 534                 intr_idx = port_intr_iq(pi, j)->abs_id;
 535 
 536                 rc = alloc_rxq(pi, rxq, intr_idx, i);
 537                 if (rc != 0)
 538                         goto done;
 539                 j++;
 540         }
 541 
 542 #ifdef TCP_OFFLOAD_ENABLE
 543         for_each_ofld_rxq(pi, i, ofld_rxq) {
 544                 if (ofld_rxq->iq.flags & IQ_INTR)
 545                         continue;
 546 
 547                 intr_idx = port_intr_iq(pi, j)->abs_id;
 548                 rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx);
 549                 if (rc != 0)
 550                         goto done;
 551                 j++;
 552         }
 553 #endif
 554         /*
 555          * Now the tx queues.  Only one pass needed.
 556          */
 557         j = 0;
 558         for_each_txq(pi, i, txq) {
 559                 uint16_t iqid;
 560 
 561                 iqid = port_intr_iq(pi, j)->cntxt_id;
 562                 init_eq(sc, &txq->eq, EQ_ETH, p->qsize_txq, pi->tx_chan, iqid);
 563                 rc = alloc_txq(pi, txq, i);
 564                 if (rc != 0)
 565                         goto done;
 566         }
 567 
 568 #ifdef TCP_OFFLOAD_ENABLE
 569         for_each_ofld_txq(pi, i, ofld_txq) {
 570                 uint16_t iqid;
 571 
 572                 iqid = port_intr_iq(pi, j)->cntxt_id;
 573                 init_eq(sc, &ofld_txq->eq, EQ_OFLD, p->qsize_txq, pi->tx_chan,
 574                     iqid);
 575                 rc = alloc_wrq(sc, pi, ofld_txq, i);
 576                 if (rc != 0)
 577                         goto done;
 578         }
 579 
 580         /*
 581          * Finally, the control queue.
 582          */
 583         ctrlq = &sc->sge.ctrlq[pi->port_id];
 584         iqid = port_intr_iq(pi, 0)->cntxt_id;
 585         init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid);
 586         rc = alloc_wrq(sc, pi, ctrlq, 0);
 587 #endif
 588 
 589 done:
 590         if (rc != 0)
 591                 (void) t4_teardown_port_queues(pi);
 592 
 593         return (rc);
 594 }
 595 
 596 /*
 597  * Idempotent
 598  */
 599 int
 600 t4_teardown_port_queues(struct port_info *pi)
 601 {
 602         int i;
 603         struct sge_rxq *rxq;
 604         struct sge_txq *txq;
 605 #ifdef TCP_OFFLOAD_ENABLE
 606         struct adapter *sc = pi->adapter;
 607         struct sge_ofld_rxq *ofld_rxq;
 608         struct sge_wrq *ofld_txq;
 609 #endif
 610 
 611         if (pi->ksp_config != NULL) {
 612                 kstat_delete(pi->ksp_config);
 613                 pi->ksp_config = NULL;
 614         }
 615         if (pi->ksp_info != NULL) {
 616                 kstat_delete(pi->ksp_info);
 617                 pi->ksp_info = NULL;
 618         }
 619 
 620 #ifdef TCP_OFFLOAD_ENABLE
 621         (void) free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
 622 #endif
 623 
 624         for_each_txq(pi, i, txq) {
 625                 (void) free_txq(pi, txq);
 626         }
 627 
 628 #ifdef TCP_OFFLOAD_ENABLE
 629         for_each_ofld_txq(pi, i, ofld_txq) {
 630                 (void) free_wrq(sc, ofld_txq);
 631         }
 632 
 633         for_each_ofld_rxq(pi, i, ofld_rxq) {
 634                 if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
 635                         (void) free_ofld_rxq(pi, ofld_rxq);
 636         }
 637 #endif
 638 
 639         for_each_rxq(pi, i, rxq) {
 640                 if ((rxq->iq.flags & IQ_INTR) == 0)
 641                         (void) free_rxq(pi, rxq);
 642         }
 643 
 644         /*
 645          * Then take down the rx queues that take direct interrupts.
 646          */
 647 
 648         for_each_rxq(pi, i, rxq) {
 649                 if (rxq->iq.flags & IQ_INTR)
 650                         (void) free_rxq(pi, rxq);
 651         }
 652 
 653 #ifdef TCP_OFFLOAD_ENABLE
 654         for_each_ofld_rxq(pi, i, ofld_rxq) {
 655                 if (ofld_rxq->iq.flags & IQ_INTR)
 656                         (void) free_ofld_rxq(pi, ofld_rxq);
 657         }
 658 #endif
 659 
 660         return (0);
 661 }
 662 
 663 /* Deals with errors and forwarded interrupts */
 664 uint_t
 665 t4_intr_all(caddr_t arg1, caddr_t arg2)
 666 {
 667 
 668         (void) t4_intr_err(arg1, arg2);
 669         (void) t4_intr(arg1, arg2);
 670 
 671         return (DDI_INTR_CLAIMED);
 672 }
 673 
 674 static void
 675 t4_intr_rx_work(struct sge_iq *iq)
 676 {
 677         mblk_t *mp = NULL;
 678         struct sge_rxq *rxq = iq_to_rxq(iq);    /* Use iff iq is part of rxq */
 679         RXQ_LOCK(rxq);
 680         if (!iq->polling) {
 681                 mp = t4_ring_rx(rxq, iq->qsize/8);
 682                 t4_write_reg(iq->adapter, MYPF_REG(A_SGE_PF_GTS),
 683                      V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next));
 684         }
 685         RXQ_UNLOCK(rxq);
 686         if (mp != NULL)
 687                 mac_rx_ring(rxq->port->mh, rxq->ring_handle, mp,
 688                             rxq->ring_gen_num);
 689 }
 690 
 691 /* Deals with interrupts on the given ingress queue */
 692 /* ARGSUSED */
 693 uint_t
 694 t4_intr(caddr_t arg1, caddr_t arg2)
 695 {
 696         struct sge_iq *iq = (struct sge_iq *)arg2;
 697         int state;
 698 
 699         /* Right now receive polling is only enabled for MSI-X and
 700          * when we have enough msi-x vectors i.e no interrupt forwarding.
 701          */
 702         if (iq->adapter->props.multi_rings) {
 703                 t4_intr_rx_work(iq);
 704         } else {
 705                 state = atomic_cas_uint(&iq->state, IQS_IDLE, IQS_BUSY);
 706                 if (state == IQS_IDLE) {
 707                         (void) service_iq(iq, 0);
 708                         (void) atomic_cas_uint(&iq->state, IQS_BUSY, IQS_IDLE);
 709                 }
 710         }
 711         return (DDI_INTR_CLAIMED);
 712 }
 713 
 714 /* Deals with error interrupts */
 715 /* ARGSUSED */
 716 uint_t
 717 t4_intr_err(caddr_t arg1, caddr_t arg2)
 718 {
 719         /* LINTED: E_BAD_PTR_CAST_ALIGN */
 720         struct adapter *sc = (struct adapter *)arg1;
 721 
 722         t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
 723         (void) t4_slow_intr_handler(sc);
 724 
 725         return (DDI_INTR_CLAIMED);
 726 }
 727 
 728 /*
 729  * t4_ring_rx - Process responses from an SGE response queue.
 730  *
 731  * This function processes responses from an SGE response queue up to the supplied budget.
 732  * Responses include received packets as well as control messages from FW
 733  * or HW.
 734  * It returns a chain of mblks containing the received data, to be
 735  * passed up to mac_ring_rx().
 736  */
 737 mblk_t *
 738 t4_ring_rx(struct sge_rxq *rxq, int budget)
 739 {
 740         struct sge_iq *iq = &rxq->iq;
 741         struct sge_fl *fl = &rxq->fl;           /* Use iff IQ_HAS_FL */
 742         struct adapter *sc = iq->adapter;
 743         struct rsp_ctrl *ctrl;
 744         const struct rss_header *rss;
 745         int ndescs = 0, fl_bufs_used = 0;
 746         int rsp_type;
 747         uint32_t lq;
 748         mblk_t *mblk_head = NULL, **mblk_tail, *m;
 749         struct cpl_rx_pkt *cpl;
 750         uint32_t received_bytes = 0, pkt_len = 0;
 751         bool csum_ok;
 752         uint16_t err_vec;
 753 
 754         mblk_tail = &mblk_head;
 755 
 756         while (is_new_response(iq, &ctrl)) {
 757 
 758                 membar_consumer();
 759 
 760                 m = NULL;
 761                 rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
 762                 lq = be32_to_cpu(ctrl->pldbuflen_qid);
 763                 rss = (const void *)iq->cdesc;
 764 
 765                 switch (rsp_type) {
 766                 case X_RSPD_TYPE_FLBUF:
 767 
 768                         ASSERT(iq->flags & IQ_HAS_FL);
 769 
 770                         if (CPL_RX_PKT == rss->opcode) {
 771                                 cpl = (void *)(rss + 1);
 772                                 pkt_len = be16_to_cpu(cpl->len);
 773 
 774                                 if (iq->polling && ((received_bytes + pkt_len) > budget))
 775                                         goto done;
 776 
 777                                 m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
 778                                 if (m == NULL)
 779                                         goto done;
 780 
 781                                 iq->intr_next = iq->intr_params;
 782                                 m->b_rptr += sc->sge.pktshift;
 783                                 if (sc->params.tp.rx_pkt_encap)
 784                                 /* It is enabled only in T6 config file */
 785                                         err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec));
 786                                 else
 787                                         err_vec = ntohs(cpl->err_vec);
 788 
 789                                 csum_ok = cpl->csum_calc && !err_vec;
 790 
 791                                 /* TODO: what about cpl->ip_frag? */
 792                                 if (csum_ok && !cpl->ip_frag) {
 793                                         mac_hcksum_set(m, 0, 0, 0, 0xffff,
 794                                             HCK_FULLCKSUM_OK | HCK_FULLCKSUM |
 795                                             HCK_IPV4_HDRCKSUM_OK);
 796                                         rxq->rxcsum++;
 797                                 }
 798                                 rxq->rxpkts++;
 799                                 rxq->rxbytes += pkt_len;
 800                                 received_bytes += pkt_len;
 801 
 802                                 *mblk_tail = m;
 803                                 mblk_tail = &m->b_next;
 804 
 805                                 break;
 806                         }
 807 
 808                         m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
 809                         if (m == NULL)
 810                                 goto done;
 811                         /* FALLTHROUGH */
 812 
 813                 case X_RSPD_TYPE_CPL:
 814                         ASSERT(rss->opcode < NUM_CPL_CMDS);
 815                         sc->cpl_handler[rss->opcode](iq, rss, m);
 816                         break;
 817 
 818                 default:
 819                         break;
 820                 }
 821                 iq_next(iq);
 822                 ++ndescs;
 823                 if (!iq->polling && (ndescs == budget))
 824                         break;
 825         }
 826 
 827 done:
 828 
 829         t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
 830                      V_CIDXINC(ndescs) | V_INGRESSQID(iq->cntxt_id) |
 831                      V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
 832 
 833         if ((fl_bufs_used > 0) || (iq->flags & IQ_HAS_FL)) {
 834                 int starved;
 835                 FL_LOCK(fl);
 836                 fl->needed += fl_bufs_used;
 837                 starved = refill_fl(sc, fl, fl->cap / 8);
 838                 FL_UNLOCK(fl);
 839                 if (starved)
 840                         add_fl_to_sfl(sc, fl);
 841         }
 842         return (mblk_head);
 843 }
 844 
 845 /*
 846  * Deals with anything and everything on the given ingress queue.
 847  */
 848 static int
 849 service_iq(struct sge_iq *iq, int budget)
 850 {
 851         struct sge_iq *q;
 852         struct sge_rxq *rxq = iq_to_rxq(iq);    /* Use iff iq is part of rxq */
 853         struct sge_fl *fl = &rxq->fl;            /* Use iff IQ_HAS_FL */
 854         struct adapter *sc = iq->adapter;
 855         struct rsp_ctrl *ctrl;
 856         const struct rss_header *rss;
 857         int ndescs = 0, limit, fl_bufs_used = 0;
 858         int rsp_type;
 859         uint32_t lq;
 860         int starved;
 861         mblk_t *m;
 862         STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
 863 
 864         limit = budget ? budget : iq->qsize / 8;
 865 
 866         /*
 867          * We always come back and check the descriptor ring for new indirect
 868          * interrupts and other responses after running a single handler.
 869          */
 870         for (;;) {
 871                 while (is_new_response(iq, &ctrl)) {
 872 
 873                         membar_consumer();
 874 
 875                         m = NULL;
 876                         rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
 877                         lq = be32_to_cpu(ctrl->pldbuflen_qid);
 878                         rss = (const void *)iq->cdesc;
 879 
 880                         switch (rsp_type) {
 881                         case X_RSPD_TYPE_FLBUF:
 882 
 883                                 ASSERT(iq->flags & IQ_HAS_FL);
 884 
 885                                 m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
 886                                 if (m == NULL) {
 887                                         /*
 888                                          * Rearm the iq with a
 889                                          * longer-than-default timer
 890                                          */
 891                                         t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
 892                                                         V_INGRESSQID((u32)iq->cntxt_id) |
 893                                                         V_SEINTARM(V_QINTR_TIMER_IDX(SGE_NTIMERS-1)));
 894                                         if (fl_bufs_used > 0) {
 895                                                 ASSERT(iq->flags & IQ_HAS_FL);
 896                                                 FL_LOCK(fl);
 897                                                 fl->needed += fl_bufs_used;
 898                                                 starved = refill_fl(sc, fl, fl->cap / 8);
 899                                                 FL_UNLOCK(fl);
 900                                                 if (starved)
 901                                                         add_fl_to_sfl(sc, fl);
 902                                         }
 903                                         return (0);
 904                                 }
 905 
 906                         /* FALLTHRU */
 907                         case X_RSPD_TYPE_CPL:
 908 
 909                                 ASSERT(rss->opcode < NUM_CPL_CMDS);
 910                                 sc->cpl_handler[rss->opcode](iq, rss, m);
 911                                 break;
 912 
 913                         case X_RSPD_TYPE_INTR:
 914 
 915                                 /*
 916                                  * Interrupts should be forwarded only to queues
 917                                  * that are not forwarding their interrupts.
 918                                  * This means service_iq can recurse but only 1
 919                                  * level deep.
 920                                  */
 921                                 ASSERT(budget == 0);
 922 
 923                                 q = sc->sge.iqmap[lq - sc->sge.iq_start];
 924                                 if (atomic_cas_uint(&q->state, IQS_IDLE,
 925                                     IQS_BUSY) == IQS_IDLE) {
 926                                         if (service_iq(q, q->qsize / 8) == 0) {
 927                                                 (void) atomic_cas_uint(
 928                                                     &q->state, IQS_BUSY,
 929                                                     IQS_IDLE);
 930                                         } else {
 931                                                 STAILQ_INSERT_TAIL(&iql, q,
 932                                                     link);
 933                                         }
 934                                 }
 935                                 break;
 936 
 937                         default:
 938                                 break;
 939                         }
 940 
 941                         iq_next(iq);
 942                         if (++ndescs == limit) {
 943                                 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
 944                                     V_CIDXINC(ndescs) |
 945                                     V_INGRESSQID(iq->cntxt_id) |
 946                                     V_SEINTARM(V_QINTR_TIMER_IDX(
 947                                     X_TIMERREG_UPDATE_CIDX)));
 948                                 ndescs = 0;
 949 
 950                                 if (fl_bufs_used > 0) {
 951                                         ASSERT(iq->flags & IQ_HAS_FL);
 952                                         FL_LOCK(fl);
 953                                         fl->needed += fl_bufs_used;
 954                                         (void) refill_fl(sc, fl, fl->cap / 8);
 955                                         FL_UNLOCK(fl);
 956                                         fl_bufs_used = 0;
 957                                 }
 958 
 959                                 if (budget != 0)
 960                                         return (EINPROGRESS);
 961                         }
 962                 }
 963 
 964                 if (STAILQ_EMPTY(&iql) != 0)
 965                         break;
 966 
 967                 /*
 968                  * Process the head only, and send it to the back of the list if
 969                  * it's still not done.
 970                  */
 971                 q = STAILQ_FIRST(&iql);
 972                 STAILQ_REMOVE_HEAD(&iql, link);
 973                 if (service_iq(q, q->qsize / 8) == 0)
 974                         (void) atomic_cas_uint(&q->state, IQS_BUSY, IQS_IDLE);
 975                 else
 976                         STAILQ_INSERT_TAIL(&iql, q, link);
 977         }
 978 
 979         t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
 980             V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next));
 981 
 982         if (iq->flags & IQ_HAS_FL) {
 983 
 984                 FL_LOCK(fl);
 985                 fl->needed += fl_bufs_used;
 986                 starved = refill_fl(sc, fl, fl->cap / 4);
 987                 FL_UNLOCK(fl);
 988                 if (starved != 0)
 989                         add_fl_to_sfl(sc, fl);
 990         }
 991 
 992         return (0);
 993 }
 994 
 995 #ifdef TCP_OFFLOAD_ENABLE
 996 int
 997 t4_mgmt_tx(struct adapter *sc, mblk_t *m)
 998 {
 999         return (t4_wrq_tx(sc, &sc->sge.mgmtq, m));
1000 }
1001 
1002 /*
1003  * Doesn't fail.  Holds on to work requests it can't send right away.
1004  */
1005 int
1006 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, mblk_t *m0)
1007 {
1008         struct sge_eq *eq = &wrq->eq;
1009         struct mblk_pair *wr_list = &wrq->wr_list;
1010         int can_reclaim;
1011         caddr_t dst;
1012         mblk_t *wr, *next;
1013 
1014         TXQ_LOCK_ASSERT_OWNED(wrq);
1015 #ifdef TCP_OFFLOAD_ENABLE
1016         ASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD ||
1017             (eq->flags & EQ_TYPEMASK) == EQ_CTRL);
1018 #else
1019         ASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL);
1020 #endif
1021 
1022         if (m0 != NULL) {
1023                 if (wr_list->head != NULL)
1024                         wr_list->tail->b_next = m0;
1025                 else
1026                         wr_list->head = m0;
1027                 while (m0->b_next)
1028                         m0 = m0->b_next;
1029                 wr_list->tail = m0;
1030         }
1031 
1032         can_reclaim = reclaimable(eq);
1033         eq->cidx += can_reclaim;
1034         eq->avail += can_reclaim;
1035         if (eq->cidx >= eq->cap)
1036                 eq->cidx -= eq->cap;
1037 
1038         for (wr = wr_list->head; wr; wr = next) {
1039                 int ndesc, len = 0;
1040                 mblk_t *m;
1041 
1042                 next = wr->b_next;
1043                 wr->b_next = NULL;
1044 
1045                 for (m = wr; m; m = m->b_cont)
1046                         len += MBLKL(m);
1047 
1048                 ASSERT(len > 0 && (len & 0x7) == 0);
1049                 ASSERT(len <= SGE_MAX_WR_LEN);
1050 
1051                 ndesc = howmany(len, EQ_ESIZE);
1052                 if (eq->avail < ndesc) {
1053                         wr->b_next = next;
1054                         wrq->no_desc++;
1055                         break;
1056                 }
1057 
1058                 dst = (void *)&eq->desc[eq->pidx];
1059                 for (m = wr; m; m = m->b_cont)
1060                         copy_to_txd(eq, (void *)m->b_rptr, &dst, MBLKL(m));
1061 
1062                 eq->pidx += ndesc;
1063                 eq->avail -= ndesc;
1064                 if (eq->pidx >= eq->cap)
1065                         eq->pidx -= eq->cap;
1066 
1067                 eq->pending += ndesc;
1068                 if (eq->pending > 16)
1069                         ring_tx_db(sc, eq);
1070 
1071                 wrq->tx_wrs++;
1072                 freemsg(wr);
1073 
1074                 if (eq->avail < 8) {
1075                         can_reclaim = reclaimable(eq);
1076                         eq->cidx += can_reclaim;
1077                         eq->avail += can_reclaim;
1078                         if (eq->cidx >= eq->cap)
1079                                 eq->cidx -= eq->cap;
1080                 }
1081         }
1082 
1083         if (eq->pending != 0)
1084                 ring_tx_db(sc, eq);
1085 
1086         if (wr == NULL)
1087                 wr_list->head = wr_list->tail = NULL;
1088         else {
1089                 wr_list->head = wr;
1090 
1091                 ASSERT(wr_list->tail->b_next == NULL);
1092         }
1093 
1094         return (0);
1095 }
1096 #endif
1097 
1098 /* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
1099 #define TXPKTS_PKT_HDR ((\
1100         sizeof (struct ulp_txpkt) + \
1101         sizeof (struct ulptx_idata) + \
1102         sizeof (struct cpl_tx_pkt_core)) / 8)
1103 
1104 /* Header of a coalesced tx WR, before SGL of first packet (in flits) */
1105 #define TXPKTS_WR_HDR (\
1106         sizeof (struct fw_eth_tx_pkts_wr) / 8 + \
1107         TXPKTS_PKT_HDR)
1108 
1109 /* Header of a tx WR, before SGL of first packet (in flits) */
1110 #define TXPKT_WR_HDR ((\
1111         sizeof (struct fw_eth_tx_pkt_wr) + \
1112         sizeof (struct cpl_tx_pkt_core)) / 8)
1113 
1114 /* Header of a tx LSO WR, before SGL of first packet (in flits) */
1115 #define TXPKT_LSO_WR_HDR ((\
1116         sizeof (struct fw_eth_tx_pkt_wr) + \
1117         sizeof(struct cpl_tx_pkt_lso_core) + \
1118         sizeof (struct cpl_tx_pkt_core)) / 8)
1119 
1120 mblk_t *
1121 t4_eth_tx(void *arg, mblk_t *frame)
1122 {
1123         struct sge_txq *txq = (struct sge_txq *) arg;
1124         struct port_info *pi = txq->port;
1125         struct adapter *sc = pi->adapter;
1126         struct sge_eq *eq = &txq->eq;
1127         mblk_t *next_frame;
1128         int rc, coalescing;
1129         struct txpkts txpkts;
1130         struct txinfo txinfo;
1131 
1132         txpkts.npkt = 0; /* indicates there's nothing in txpkts */
1133         coalescing = 0;
1134 
1135         TXQ_LOCK(txq);
1136         if (eq->avail < 8)
1137                 (void) reclaim_tx_descs(txq, 8);
1138         for (; frame; frame = next_frame) {
1139 
1140                 if (eq->avail < 8)
1141                         break;
1142 
1143                 next_frame = frame->b_next;
1144                 frame->b_next = NULL;
1145 
1146                 if (next_frame != NULL)
1147                         coalescing = 1;
1148 
1149                 rc = get_frame_txinfo(txq, &frame, &txinfo, coalescing);
1150                 if (rc != 0) {
1151                         if (rc == ENOMEM) {
1152 
1153                                 /* Short of resources, suspend tx */
1154 
1155                                 frame->b_next = next_frame;
1156                                 break;
1157                         }
1158 
1159                         /*
1160                          * Unrecoverable error for this frame, throw it
1161                          * away and move on to the next.
1162                          */
1163 
1164                         freemsg(frame);
1165                         continue;
1166                 }
1167 
1168                 if (coalescing != 0 &&
1169                     add_to_txpkts(txq, &txpkts, frame, &txinfo) == 0) {
1170 
1171                         /* Successfully absorbed into txpkts */
1172 
1173                         write_ulp_cpl_sgl(pi, txq, &txpkts, &txinfo);
1174                         goto doorbell;
1175                 }
1176 
1177                 /*
1178                  * We weren't coalescing to begin with, or current frame could
1179                  * not be coalesced (add_to_txpkts flushes txpkts if a frame
1180                  * given to it can't be coalesced).  Either way there should be
1181                  * nothing in txpkts.
1182                  */
1183                 ASSERT(txpkts.npkt == 0);
1184 
1185                 /* We're sending out individual frames now */
1186                 coalescing = 0;
1187 
1188                 if (eq->avail < 8)
1189                         (void) reclaim_tx_descs(txq, 8);
1190                 rc = write_txpkt_wr(pi, txq, frame, &txinfo);
1191                 if (rc != 0) {
1192 
1193                         /* Short of hardware descriptors, suspend tx */
1194 
1195                         /*
1196                          * This is an unlikely but expensive failure.  We've
1197                          * done all the hard work (DMA bindings etc.) and now we
1198                          * can't send out the frame.  What's worse, we have to
1199                          * spend even more time freeing up everything in txinfo.
1200                          */
1201                         txq->qfull++;
1202                         free_txinfo_resources(txq, &txinfo);
1203 
1204                         frame->b_next = next_frame;
1205                         break;
1206                 }
1207 
1208 doorbell:
1209                 /* Fewer and fewer doorbells as the queue fills up */
1210                 if (eq->pending >= (1 << (fls(eq->qsize - eq->avail) / 2))) {
1211                         txq->txbytes += txinfo.len;
1212                         txq->txpkts++;
1213                         ring_tx_db(sc, eq);
1214                 }
1215                 (void) reclaim_tx_descs(txq, 32);
1216         }
1217 
1218         if (txpkts.npkt > 0)
1219                 write_txpkts_wr(txq, &txpkts);
1220 
1221         /*
1222          * frame not NULL means there was an error but we haven't thrown it
1223          * away.  This can happen when we're short of tx descriptors (qfull) or
1224          * maybe even DMA handles (dma_hdl_failed).  Either way, a credit flush
1225          * and reclaim will get things going again.
1226          *
1227          * If eq->avail is already 0 we know a credit flush was requested in the
1228          * WR that reduced it to 0 so we don't need another flush (we don't have
1229          * any descriptor for a flush WR anyway, duh).
1230          */
1231         if (frame && eq->avail > 0)
1232                 write_txqflush_wr(txq);
1233 
1234         if (eq->pending != 0)
1235                 ring_tx_db(sc, eq);
1236 
1237         (void) reclaim_tx_descs(txq, eq->qsize);
1238         TXQ_UNLOCK(txq);
1239 
1240         return (frame);
1241 }
1242 
1243 static inline void
1244 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int8_t pktc_idx,
1245         int qsize, uint8_t esize)
1246 {
1247         ASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS);
1248         ASSERT(pktc_idx < SGE_NCOUNTERS);    /* -ve is ok, means don't use */
1249 
1250         iq->flags = 0;
1251         iq->adapter = sc;
1252         iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
1253         iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
1254         if (pktc_idx >= 0) {
1255                 iq->intr_params |= F_QINTR_CNT_EN;
1256                 iq->intr_pktc_idx = pktc_idx;
1257         }
1258         iq->qsize = roundup(qsize, 16);              /* See FW_IQ_CMD/iqsize */
1259         iq->esize = max(esize, 16);          /* See FW_IQ_CMD/iqesize */
1260 }
1261 
1262 static inline void
1263 init_fl(struct sge_fl *fl, uint16_t qsize)
1264 {
1265 
1266         fl->qsize = qsize;
1267         fl->allocb_fail = 0;
1268 }
1269 
1270 static inline void
1271 init_eq(struct adapter *sc, struct sge_eq *eq, uint16_t eqtype, uint16_t qsize,
1272     uint8_t tx_chan, uint16_t iqid)
1273 {
1274         struct sge *s = &sc->sge;
1275         uint32_t r;
1276 
1277         ASSERT(tx_chan < NCHAN);
1278         ASSERT(eqtype <= EQ_TYPEMASK);
1279 
1280         if (is_t5(sc->params.chip)) {
1281                 r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
1282                 r >>= S_QUEUESPERPAGEPF0 +
1283                     (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
1284                 s->s_qpp = r & M_QUEUESPERPAGEPF0;
1285         }
1286 
1287         eq->flags = eqtype & EQ_TYPEMASK;
1288         eq->tx_chan = tx_chan;
1289         eq->iqid = iqid;
1290         eq->qsize = qsize;
1291 }
1292 
1293 /*
1294  * Allocates the ring for an ingress queue and an optional freelist.  If the
1295  * freelist is specified it will be allocated and then associated with the
1296  * ingress queue.
1297  *
1298  * Returns errno on failure.  Resources allocated up to that point may still be
1299  * allocated.  Caller is responsible for cleanup in case this function fails.
1300  *
1301  * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
1302  * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
1303  * the index of the queue to which its interrupts will be forwarded.
1304  */
1305 static int
1306 alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
1307     int intr_idx, int cong)
1308 {
1309         int rc, i, cntxt_id;
1310         size_t len;
1311         struct fw_iq_cmd c;
1312         struct adapter *sc = iq->adapter;
1313         uint32_t v = 0;
1314 
1315         len = iq->qsize * iq->esize;
1316         rc = alloc_desc_ring(sc, len, DDI_DMA_READ, &iq->dhdl, &iq->ahdl,
1317             &iq->ba, (caddr_t *)&iq->desc);
1318         if (rc != 0)
1319                 return (rc);
1320 
1321         bzero(&c, sizeof (c));
1322         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
1323             F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
1324             V_FW_IQ_CMD_VFN(0));
1325 
1326         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
1327             FW_LEN16(c));
1328 
1329         /* Special handling for firmware event queue */
1330         if (iq == &sc->sge.fwq)
1331                 v |= F_FW_IQ_CMD_IQASYNCH;
1332 
1333         if (iq->flags & IQ_INTR)
1334                 ASSERT(intr_idx < sc->intr_count);
1335         else
1336                 v |= F_FW_IQ_CMD_IQANDST;
1337         v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
1338 
1339         c.type_to_iqandstindex = cpu_to_be32(v |
1340             V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1341             V_FW_IQ_CMD_VIID(pi->viid) |
1342             V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
1343         c.iqdroprss_to_iqesize = cpu_to_be16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
1344             F_FW_IQ_CMD_IQGTSMODE |
1345             V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
1346             V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
1347         c.iqsize = cpu_to_be16(iq->qsize);
1348         c.iqaddr = cpu_to_be64(iq->ba);
1349         if (cong >= 0)
1350                 c.iqns_to_fl0congen = BE_32(F_FW_IQ_CMD_IQFLINTCONGEN);
1351 
1352         if (fl != NULL) {
1353                 unsigned int chip_ver = CHELSIO_CHIP_VERSION(sc->params.chip);
1354 
1355                 mutex_init(&fl->lock, NULL, MUTEX_DRIVER,
1356                     DDI_INTR_PRI(sc->intr_pri));
1357                 fl->flags |= FL_MTX;
1358 
1359                 len = fl->qsize * RX_FL_ESIZE;
1360                 rc = alloc_desc_ring(sc, len, DDI_DMA_WRITE, &fl->dhdl,
1361                     &fl->ahdl, &fl->ba, (caddr_t *)&fl->desc);
1362                 if (rc != 0)
1363                         return (rc);
1364 
1365                 /* Allocate space for one software descriptor per buffer. */
1366                 fl->cap = (fl->qsize - sc->sge.stat_len / RX_FL_ESIZE) * 8;
1367                 fl->sdesc = kmem_zalloc(sizeof (struct fl_sdesc) * fl->cap,
1368                     KM_SLEEP);
1369                 fl->needed = fl->cap;
1370                 fl->lowat = roundup(sc->sge.fl_starve_threshold, 8);
1371 
1372                 c.iqns_to_fl0congen |=
1373                     cpu_to_be32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
1374                     F_FW_IQ_CMD_FL0PACKEN | F_FW_IQ_CMD_FL0PADEN);
1375                 if (cong >= 0) {
1376                         c.iqns_to_fl0congen |=
1377                             BE_32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
1378                             F_FW_IQ_CMD_FL0CONGCIF |
1379                             F_FW_IQ_CMD_FL0CONGEN);
1380                 }
1381 
1382                 /* In T6, for egress queue type FL there is internal overhead
1383                  * of 16B for header going into FLM module.  Hence the maximum
1384                  * allowed burst size is 448 bytes.  For T4/T5, the hardware
1385                  * doesn't coalesce fetch requests if more than 64 bytes of
1386                  * Free List pointers are provided, so we use a 128-byte Fetch
1387                  * Burst Minimum there (T6 implements coalescing so we can use
1388                  * the smaller 64-byte value there).
1389                  */
1390 
1391                 c.fl0dcaen_to_fl0cidxfthresh =
1392                     cpu_to_be16(V_FW_IQ_CMD_FL0FBMIN(chip_ver <= CHELSIO_T5
1393                                                      ? X_FETCHBURSTMIN_128B
1394                                                      : X_FETCHBURSTMIN_64B) |
1395                     V_FW_IQ_CMD_FL0FBMAX(chip_ver <= CHELSIO_T5
1396                                          ? X_FETCHBURSTMAX_512B
1397                                          : X_FETCHBURSTMAX_256B));
1398                 c.fl0size = cpu_to_be16(fl->qsize);
1399                 c.fl0addr = cpu_to_be64(fl->ba);
1400         }
1401 
1402         rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1403         if (rc != 0) {
1404                 cxgb_printf(sc->dip, CE_WARN,
1405                     "failed to create ingress queue: %d", rc);
1406                 return (rc);
1407         }
1408 
1409         iq->cdesc = iq->desc;
1410         iq->cidx = 0;
1411         iq->gen = 1;
1412         iq->intr_next = iq->intr_params;
1413         iq->adapter = sc;
1414         iq->cntxt_id = be16_to_cpu(c.iqid);
1415         iq->abs_id = be16_to_cpu(c.physiqid);
1416         iq->flags |= IQ_ALLOCATED;
1417         mutex_init(&iq->lock, NULL,
1418                     MUTEX_DRIVER, DDI_INTR_PRI(DDI_INTR_PRI(sc->intr_pri)));
1419         iq->polling = 0;
1420 
1421         cntxt_id = iq->cntxt_id - sc->sge.iq_start;
1422         if (cntxt_id >= sc->sge.niq) {
1423                 panic("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
1424                     cntxt_id, sc->sge.niq - 1);
1425         }
1426         sc->sge.iqmap[cntxt_id] = iq;
1427 
1428         if (fl != NULL) {
1429                 fl->cntxt_id = be16_to_cpu(c.fl0id);
1430                 fl->pidx = fl->cidx = 0;
1431                 fl->copy_threshold = rx_copy_threshold;
1432 
1433                 cntxt_id = fl->cntxt_id - sc->sge.eq_start;
1434                 if (cntxt_id >= sc->sge.neq) {
1435                         panic("%s: fl->cntxt_id (%d) more than the max (%d)",
1436                             __func__, cntxt_id, sc->sge.neq - 1);
1437                 }
1438                 sc->sge.eqmap[cntxt_id] = (void *)fl;
1439 
1440                 FL_LOCK(fl);
1441                 (void) refill_fl(sc, fl, fl->lowat);
1442                 FL_UNLOCK(fl);
1443 
1444                 iq->flags |= IQ_HAS_FL;
1445         }
1446 
1447         if (is_t5(sc->params.chip) && cong >= 0) {
1448                 uint32_t param, val;
1449 
1450                 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1451                         V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
1452                         V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
1453                 if (cong == 0)
1454                         val = 1 << 19;
1455                 else {
1456                         val = 2 << 19;
1457                         for (i = 0; i < 4; i++) {
1458                                 if (cong & (1 << i))
1459                                         val |= 1 << (i << 2);
1460                         }
1461                 }
1462 
1463                 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
1464                 if (rc != 0) {
1465                         /* report error but carry on */
1466                         cxgb_printf(sc->dip, CE_WARN,
1467                             "failed to set congestion manager context for "
1468                             "ingress queue %d: %d", iq->cntxt_id, rc);
1469                 }
1470         }
1471 
1472         /* Enable IQ interrupts */
1473         iq->state = IQS_IDLE;
1474         t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
1475             V_INGRESSQID(iq->cntxt_id));
1476 
1477         return (0);
1478 }
1479 
1480 static int
1481 free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
1482 {
1483         int rc;
1484         struct adapter *sc = iq->adapter;
1485         dev_info_t *dip;
1486 
1487         dip = pi ? pi->dip : sc->dip;
1488 
1489         if (iq != NULL) {
1490                 if (iq->flags & IQ_ALLOCATED) {
1491                         rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
1492                             FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
1493                             fl ? fl->cntxt_id : 0xffff, 0xffff);
1494                         if (rc != 0) {
1495                                 cxgb_printf(dip, CE_WARN,
1496                                     "failed to free queue %p: %d", iq, rc);
1497                                 return (rc);
1498                         }
1499                         mutex_destroy(&iq->lock);
1500                         iq->flags &= ~IQ_ALLOCATED;
1501                 }
1502 
1503                 if (iq->desc != NULL) {
1504                         (void) free_desc_ring(&iq->dhdl, &iq->ahdl);
1505                         iq->desc = NULL;
1506                 }
1507 
1508                 bzero(iq, sizeof (*iq));
1509         }
1510 
1511         if (fl != NULL) {
1512                 if (fl->sdesc != NULL) {
1513                         FL_LOCK(fl);
1514                         free_fl_bufs(fl);
1515                         FL_UNLOCK(fl);
1516 
1517                         kmem_free(fl->sdesc, sizeof (struct fl_sdesc) *
1518                             fl->cap);
1519                         fl->sdesc = NULL;
1520                 }
1521 
1522                 if (fl->desc != NULL) {
1523                         (void) free_desc_ring(&fl->dhdl, &fl->ahdl);
1524                         fl->desc = NULL;
1525                 }
1526 
1527                 if (fl->flags & FL_MTX) {
1528                         mutex_destroy(&fl->lock);
1529                         fl->flags &= ~FL_MTX;
1530                 }
1531 
1532                 bzero(fl, sizeof (struct sge_fl));
1533         }
1534 
1535         return (0);
1536 }
1537 
1538 static int
1539 alloc_fwq(struct adapter *sc)
1540 {
1541         int rc, intr_idx;
1542         struct sge_iq *fwq = &sc->sge.fwq;
1543 
1544         init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE);
1545         fwq->flags |= IQ_INTR;       /* always */
1546         intr_idx = sc->intr_count > 1 ? 1 : 0;
1547         rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
1548         if (rc != 0) {
1549                 cxgb_printf(sc->dip, CE_WARN,
1550                     "failed to create firmware event queue: %d.", rc);
1551                 return (rc);
1552         }
1553 
1554         return (0);
1555 }
1556 
1557 static int
1558 free_fwq(struct adapter *sc)
1559 {
1560 
1561         return (free_iq_fl(NULL, &sc->sge.fwq, NULL));
1562 }
1563 
1564 #ifdef TCP_OFFLOAD_ENABLE
1565 static int
1566 alloc_mgmtq(struct adapter *sc)
1567 {
1568         int rc;
1569         struct sge_wrq *mgmtq = &sc->sge.mgmtq;
1570 
1571         init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
1572             sc->sge.fwq.cntxt_id);
1573         rc = alloc_wrq(sc, NULL, mgmtq, 0);
1574         if (rc != 0) {
1575                 cxgb_printf(sc->dip, CE_WARN,
1576                     "failed to create management queue: %d\n", rc);
1577                 return (rc);
1578         }
1579 
1580         return (0);
1581 }
1582 #endif
1583 
1584 static int
1585 alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int i)
1586 {
1587         int rc;
1588 
1589         rxq->port = pi;
1590         rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, 1 << pi->tx_chan);
1591         if (rc != 0)
1592                 return (rc);
1593 
1594         rxq->ksp = setup_rxq_kstats(pi, rxq, i);
1595 
1596         return (rc);
1597 }
1598 
1599 static int
1600 free_rxq(struct port_info *pi, struct sge_rxq *rxq)
1601 {
1602         int rc;
1603 
1604         if (rxq->ksp != NULL) {
1605                 kstat_delete(rxq->ksp);
1606                 rxq->ksp = NULL;
1607         }
1608 
1609         rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
1610         if (rc == 0)
1611                 bzero(&rxq->fl, sizeof (*rxq) - offsetof(struct sge_rxq, fl));
1612 
1613         return (rc);
1614 }
1615 
1616 #ifdef TCP_OFFLOAD_ENABLE
1617 static int
1618 alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
1619         int intr_idx)
1620 {
1621         int rc;
1622 
1623         rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
1624             1 << pi->tx_chan);
1625         if (rc != 0)
1626                 return (rc);
1627 
1628         return (rc);
1629 }
1630 
1631 static int
1632 free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
1633 {
1634         int rc;
1635 
1636         rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
1637         if (rc == 0)
1638                 bzero(&ofld_rxq->fl, sizeof (*ofld_rxq) -
1639                     offsetof(struct sge_ofld_rxq, fl));
1640 
1641         return (rc);
1642 }
1643 #endif
1644 
1645 static int
1646 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
1647 {
1648         int rc, cntxt_id;
1649         struct fw_eq_ctrl_cmd c;
1650 
1651         bzero(&c, sizeof (c));
1652 
1653         c.op_to_vfn = BE_32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
1654             F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
1655             V_FW_EQ_CTRL_CMD_VFN(0));
1656         c.alloc_to_len16 = BE_32(F_FW_EQ_CTRL_CMD_ALLOC |
1657             F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
1658         c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* TODO */
1659         c.physeqid_pkd = BE_32(0);
1660         c.fetchszm_to_iqid =
1661             BE_32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
1662             V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
1663             F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
1664         c.dcaen_to_eqsize =
1665             BE_32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1666             V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1667             V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
1668             V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
1669         c.eqaddr = BE_64(eq->ba);
1670 
1671         rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1672         if (rc != 0) {
1673                 cxgb_printf(sc->dip, CE_WARN,
1674                     "failed to create control queue %d: %d", eq->tx_chan, rc);
1675                 return (rc);
1676         }
1677         eq->flags |= EQ_ALLOCATED;
1678 
1679         eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(BE_32(c.cmpliqid_eqid));
1680         cntxt_id = eq->cntxt_id - sc->sge.eq_start;
1681         if (cntxt_id >= sc->sge.neq)
1682                 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
1683                     cntxt_id, sc->sge.neq - 1);
1684         sc->sge.eqmap[cntxt_id] = eq;
1685 
1686         return (rc);
1687 }
1688 
1689 static int
1690 eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
1691 {
1692         int rc, cntxt_id;
1693         struct fw_eq_eth_cmd c;
1694 
1695         bzero(&c, sizeof (c));
1696 
1697         c.op_to_vfn = BE_32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
1698             F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
1699             V_FW_EQ_ETH_CMD_VFN(0));
1700         c.alloc_to_len16 = BE_32(F_FW_EQ_ETH_CMD_ALLOC |
1701             F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
1702         c.autoequiqe_to_viid = BE_32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
1703             F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(pi->viid));
1704         c.fetchszm_to_iqid =
1705             BE_32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
1706             V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
1707             V_FW_EQ_ETH_CMD_IQID(eq->iqid));
1708         c.dcaen_to_eqsize = BE_32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1709             V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1710             V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
1711             V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
1712         c.eqaddr = BE_64(eq->ba);
1713 
1714         rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1715         if (rc != 0) {
1716                 cxgb_printf(pi->dip, CE_WARN,
1717                     "failed to create Ethernet egress queue: %d", rc);
1718                 return (rc);
1719         }
1720         eq->flags |= EQ_ALLOCATED;
1721 
1722         eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(BE_32(c.eqid_pkd));
1723         cntxt_id = eq->cntxt_id - sc->sge.eq_start;
1724         if (cntxt_id >= sc->sge.neq)
1725                 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
1726                     cntxt_id, sc->sge.neq - 1);
1727         sc->sge.eqmap[cntxt_id] = eq;
1728 
1729         return (rc);
1730 }
1731 
1732 #ifdef TCP_OFFLOAD_ENABLE
1733 static int
1734 ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
1735 {
1736         int rc, cntxt_id;
1737         struct fw_eq_ofld_cmd c;
1738 
1739         bzero(&c, sizeof (c));
1740 
1741         c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
1742             F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
1743             V_FW_EQ_OFLD_CMD_VFN(0));
1744         c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
1745             F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
1746         c.fetchszm_to_iqid =
1747             htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
1748             V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
1749             F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
1750         c.dcaen_to_eqsize =
1751             BE_32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1752             V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1753             V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
1754             V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize));
1755         c.eqaddr = BE_64(eq->ba);
1756 
1757         rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1758         if (rc != 0) {
1759                 cxgb_printf(pi->dip, CE_WARN,
1760                     "failed to create egress queue for TCP offload: %d", rc);
1761                 return (rc);
1762         }
1763         eq->flags |= EQ_ALLOCATED;
1764 
1765         eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(BE_32(c.eqid_pkd));
1766         cntxt_id = eq->cntxt_id - sc->sge.eq_start;
1767         if (cntxt_id >= sc->sge.neq)
1768                 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
1769                     cntxt_id, sc->sge.neq - 1);
1770         sc->sge.eqmap[cntxt_id] = eq;
1771 
1772         return (rc);
1773 }
1774 #endif
1775 
1776 static int
1777 alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
1778 {
1779         int rc;
1780         size_t len;
1781 
1782         mutex_init(&eq->lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(sc->intr_pri));
1783         eq->flags |= EQ_MTX;
1784 
1785         len = eq->qsize * EQ_ESIZE;
1786         rc = alloc_desc_ring(sc, len, DDI_DMA_WRITE, &eq->desc_dhdl,
1787             &eq->desc_ahdl, &eq->ba, (caddr_t *)&eq->desc);
1788         if (rc != 0)
1789                 return (rc);
1790 
1791         eq->cap = eq->qsize - sc->sge.stat_len / EQ_ESIZE;
1792         eq->spg = (void *)&eq->desc[eq->cap];
1793         eq->avail = eq->cap - 1;  /* one less to avoid cidx = pidx */
1794         eq->pidx = eq->cidx = 0;
1795         eq->doorbells = sc->doorbells;
1796 
1797         switch (eq->flags & EQ_TYPEMASK) {
1798         case EQ_CTRL:
1799                 rc = ctrl_eq_alloc(sc, eq);
1800                 break;
1801 
1802         case EQ_ETH:
1803                 rc = eth_eq_alloc(sc, pi, eq);
1804                 break;
1805 
1806 #ifdef TCP_OFFLOAD_ENABLE
1807         case EQ_OFLD:
1808                 rc = ofld_eq_alloc(sc, pi, eq);
1809                 break;
1810 #endif
1811 
1812         default:
1813                 panic("%s: invalid eq type %d.", __func__,
1814                     eq->flags & EQ_TYPEMASK);
1815         }
1816 
1817         if (eq->doorbells &
1818                 (DOORBELL_UDB | DOORBELL_UDBWC | DOORBELL_WCWR)) {
1819                 uint32_t s_qpp = sc->sge.s_qpp;
1820                 uint32_t mask = (1 << s_qpp) - 1;
1821                 volatile uint8_t *udb;
1822 
1823                 udb = (volatile uint8_t *)sc->reg1p + UDBS_DB_OFFSET;
1824                 udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;   /* pg offset */
1825                 eq->udb_qid = eq->cntxt_id & mask;              /* id in page */
1826                 if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE)
1827                         eq->doorbells &= ~DOORBELL_WCWR;
1828                 else {
1829                         udb += eq->udb_qid << UDBS_SEG_SHIFT;   /* seg offset */
1830                         eq->udb_qid = 0;
1831                 }
1832                 eq->udb = (volatile void *)udb;
1833         }
1834 
1835         if (rc != 0) {
1836                 cxgb_printf(sc->dip, CE_WARN,
1837                     "failed to allocate egress queue(%d): %d",
1838                     eq->flags & EQ_TYPEMASK, rc);
1839         }
1840 
1841         return (rc);
1842 }
1843 
1844 static int
1845 free_eq(struct adapter *sc, struct sge_eq *eq)
1846 {
1847         int rc;
1848 
1849         if (eq->flags & EQ_ALLOCATED) {
1850                 switch (eq->flags & EQ_TYPEMASK) {
1851                 case EQ_CTRL:
1852                         rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
1853                             eq->cntxt_id);
1854                         break;
1855 
1856                 case EQ_ETH:
1857                         rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
1858                             eq->cntxt_id);
1859                         break;
1860 
1861 #ifdef TCP_OFFLOAD_ENABLE
1862                 case EQ_OFLD:
1863                         rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
1864                             eq->cntxt_id);
1865                         break;
1866 #endif
1867 
1868                 default:
1869                         panic("%s: invalid eq type %d.", __func__,
1870                             eq->flags & EQ_TYPEMASK);
1871                 }
1872                 if (rc != 0) {
1873                         cxgb_printf(sc->dip, CE_WARN,
1874                             "failed to free egress queue (%d): %d",
1875                             eq->flags & EQ_TYPEMASK, rc);
1876                         return (rc);
1877                 }
1878                 eq->flags &= ~EQ_ALLOCATED;
1879         }
1880 
1881         if (eq->desc != NULL) {
1882                 (void) free_desc_ring(&eq->desc_dhdl, &eq->desc_ahdl);
1883                 eq->desc = NULL;
1884         }
1885 
1886         if (eq->flags & EQ_MTX)
1887                 mutex_destroy(&eq->lock);
1888 
1889         bzero(eq, sizeof (*eq));
1890         return (0);
1891 }
1892 
1893 #ifdef TCP_OFFLOAD_ENABLE
1894 /* ARGSUSED */
1895 static int
1896 alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
1897     int idx)
1898 {
1899         int rc;
1900 
1901         rc = alloc_eq(sc, pi, &wrq->eq);
1902         if (rc != 0)
1903                 return (rc);
1904 
1905         wrq->adapter = sc;
1906         wrq->wr_list.head = NULL;
1907         wrq->wr_list.tail = NULL;
1908 
1909         /*
1910          * TODO: use idx to figure out what kind of wrq this is and install
1911          * useful kstats for it.
1912          */
1913 
1914         return (rc);
1915 }
1916 
1917 static int
1918 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
1919 {
1920         int rc;
1921 
1922         rc = free_eq(sc, &wrq->eq);
1923         if (rc != 0)
1924                 return (rc);
1925 
1926         bzero(wrq, sizeof (*wrq));
1927         return (0);
1928 }
1929 #endif
1930 
1931 static int
1932 alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx)
1933 {
1934         int rc, i;
1935         struct adapter *sc = pi->adapter;
1936         struct sge_eq *eq = &txq->eq;
1937 
1938         rc = alloc_eq(sc, pi, eq);
1939         if (rc != 0)
1940                 return (rc);
1941 
1942         txq->port = pi;
1943         txq->sdesc = kmem_zalloc(sizeof (struct tx_sdesc) * eq->cap, KM_SLEEP);
1944         txq->txb_size = eq->qsize * tx_copy_threshold;
1945         rc = alloc_tx_copybuffer(sc, txq->txb_size, &txq->txb_dhdl,
1946             &txq->txb_ahdl, &txq->txb_ba, &txq->txb_va);
1947         if (rc == 0)
1948                 txq->txb_avail = txq->txb_size;
1949         else
1950                 txq->txb_avail = txq->txb_size = 0;
1951 
1952         /*
1953          * TODO: is this too low?  Worst case would need around 4 times qsize
1954          * (all tx descriptors filled to the brim with SGLs, with each entry in
1955          * the SGL coming from a distinct DMA handle).  Increase tx_dhdl_total
1956          * if you see too many dma_hdl_failed.
1957          */
1958         txq->tx_dhdl_total = eq->qsize * 2;
1959         txq->tx_dhdl = kmem_zalloc(sizeof (ddi_dma_handle_t) *
1960             txq->tx_dhdl_total, KM_SLEEP);
1961         for (i = 0; i < txq->tx_dhdl_total; i++) {
1962                 rc = ddi_dma_alloc_handle(sc->dip, &sc->sge.dma_attr_tx,
1963                     DDI_DMA_SLEEP, 0, &txq->tx_dhdl[i]);
1964                 if (rc != DDI_SUCCESS) {
1965                         cxgb_printf(sc->dip, CE_WARN,
1966                             "%s: failed to allocate DMA handle (%d)",
1967                             __func__, rc);
1968                         return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
1969                 }
1970                 txq->tx_dhdl_avail++;
1971         }
1972 
1973         txq->ksp = setup_txq_kstats(pi, txq, idx);
1974 
1975         return (rc);
1976 }
1977 
1978 static int
1979 free_txq(struct port_info *pi, struct sge_txq *txq)
1980 {
1981         int i;
1982         struct adapter *sc = pi->adapter;
1983         struct sge_eq *eq = &txq->eq;
1984 
1985         if (txq->ksp != NULL) {
1986                 kstat_delete(txq->ksp);
1987                 txq->ksp = NULL;
1988         }
1989 
1990         if (txq->txb_va != NULL) {
1991                 (void) free_desc_ring(&txq->txb_dhdl, &txq->txb_ahdl);
1992                 txq->txb_va = NULL;
1993         }
1994 
1995         if (txq->sdesc != NULL) {
1996                 struct tx_sdesc *sd;
1997                 ddi_dma_handle_t hdl;
1998 
1999                 TXQ_LOCK(txq);
2000                 while (eq->cidx != eq->pidx) {
2001                         sd = &txq->sdesc[eq->cidx];
2002 
2003                         for (i = sd->hdls_used; i; i--) {
2004                                 hdl = txq->tx_dhdl[txq->tx_dhdl_cidx];
2005                                 (void) ddi_dma_unbind_handle(hdl);
2006                                 if (++txq->tx_dhdl_cidx == txq->tx_dhdl_total)
2007                                         txq->tx_dhdl_cidx = 0;
2008                         }
2009 
2010                         ASSERT(sd->m);
2011                         freemsgchain(sd->m);
2012 
2013                         eq->cidx += sd->desc_used;
2014                         if (eq->cidx >= eq->cap)
2015                                 eq->cidx -= eq->cap;
2016 
2017                         txq->txb_avail += txq->txb_used;
2018                 }
2019                 ASSERT(txq->tx_dhdl_cidx == txq->tx_dhdl_pidx);
2020                 ASSERT(txq->txb_avail == txq->txb_size);
2021                 TXQ_UNLOCK(txq);
2022 
2023                 kmem_free(txq->sdesc, sizeof (struct tx_sdesc) * eq->cap);
2024                 txq->sdesc = NULL;
2025         }
2026 
2027         if (txq->tx_dhdl != NULL) {
2028                 for (i = 0; i < txq->tx_dhdl_total; i++) {
2029                         if (txq->tx_dhdl[i] != NULL)
2030                                 ddi_dma_free_handle(&txq->tx_dhdl[i]);
2031                 }
2032         }
2033 
2034         (void) free_eq(sc, &txq->eq);
2035 
2036         bzero(txq, sizeof (*txq));
2037         return (0);
2038 }
2039 
2040 /*
2041  * Allocates a block of contiguous memory for DMA.  Can be used to allocate
2042  * memory for descriptor rings or for tx/rx copy buffers.
2043  *
2044  * Caller does not have to clean up anything if this function fails, it cleans
2045  * up after itself.
2046  *
2047  * Caller provides the following:
2048  * len          length of the block of memory to allocate.
2049  * flags        DDI_DMA_* flags to use (CONSISTENT/STREAMING, READ/WRITE/RDWR)
2050  * acc_attr     device access attributes for the allocation.
2051  * dma_attr     DMA attributes for the allocation
2052  *
2053  * If the function is successful it fills up this information:
2054  * dma_hdl      DMA handle for the allocated memory
2055  * acc_hdl      access handle for the allocated memory
2056  * ba           bus address of the allocated memory
2057  * va           KVA of the allocated memory.
2058  */
2059 static int
2060 alloc_dma_memory(struct adapter *sc, size_t len, int flags,
2061     ddi_device_acc_attr_t *acc_attr, ddi_dma_attr_t *dma_attr,
2062     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
2063     uint64_t *pba, caddr_t *pva)
2064 {
2065         int rc;
2066         ddi_dma_handle_t dhdl;
2067         ddi_acc_handle_t ahdl;
2068         ddi_dma_cookie_t cookie;
2069         uint_t ccount;
2070         caddr_t va;
2071         size_t real_len;
2072 
2073         *pva = NULL;
2074 
2075         /*
2076          * DMA handle.
2077          */
2078         rc = ddi_dma_alloc_handle(sc->dip, dma_attr, DDI_DMA_SLEEP, 0, &dhdl);
2079         if (rc != DDI_SUCCESS) {
2080                 cxgb_printf(sc->dip, CE_WARN,
2081                     "failed to allocate DMA handle: %d", rc);
2082 
2083                 return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
2084         }
2085 
2086         /*
2087          * Memory suitable for DMA.
2088          */
2089         rc = ddi_dma_mem_alloc(dhdl, len, acc_attr,
2090             flags & DDI_DMA_CONSISTENT ? DDI_DMA_CONSISTENT : DDI_DMA_STREAMING,
2091             DDI_DMA_SLEEP, 0, &va, &real_len, &ahdl);
2092         if (rc != DDI_SUCCESS) {
2093                 cxgb_printf(sc->dip, CE_WARN,
2094                     "failed to allocate DMA memory: %d", rc);
2095 
2096                 ddi_dma_free_handle(&dhdl);
2097                 return (ENOMEM);
2098         }
2099 
2100         if (len != real_len) {
2101                 cxgb_printf(sc->dip, CE_WARN,
2102                     "%s: len (%u) != real_len (%u)\n", len, real_len);
2103         }
2104 
2105         /*
2106          * DMA bindings.
2107          */
2108         rc = ddi_dma_addr_bind_handle(dhdl, NULL, va, real_len, flags, NULL,
2109             NULL, &cookie, &ccount);
2110         if (rc != DDI_DMA_MAPPED) {
2111                 cxgb_printf(sc->dip, CE_WARN,
2112                     "failed to map DMA memory: %d", rc);
2113 
2114                 ddi_dma_mem_free(&ahdl);
2115                 ddi_dma_free_handle(&dhdl);
2116                 return (ENOMEM);
2117         }
2118         if (ccount != 1) {
2119                 cxgb_printf(sc->dip, CE_WARN,
2120                     "unusable DMA mapping (%d segments)", ccount);
2121                 (void) free_desc_ring(&dhdl, &ahdl);
2122         }
2123 
2124         bzero(va, real_len);
2125         *dma_hdl = dhdl;
2126         *acc_hdl = ahdl;
2127         *pba = cookie.dmac_laddress;
2128         *pva = va;
2129 
2130         return (0);
2131 }
2132 
2133 static int
2134 free_dma_memory(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl)
2135 {
2136         (void) ddi_dma_unbind_handle(*dhdl);
2137         ddi_dma_mem_free(ahdl);
2138         ddi_dma_free_handle(dhdl);
2139 
2140         return (0);
2141 }
2142 
2143 static int
2144 alloc_desc_ring(struct adapter *sc, size_t len, int rw,
2145     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
2146     uint64_t *pba, caddr_t *pva)
2147 {
2148         ddi_device_acc_attr_t *acc_attr = &sc->sge.acc_attr_desc;
2149         ddi_dma_attr_t *dma_attr = &sc->sge.dma_attr_desc;
2150 
2151         return (alloc_dma_memory(sc, len, DDI_DMA_CONSISTENT | rw, acc_attr,
2152             dma_attr, dma_hdl, acc_hdl, pba, pva));
2153 }
2154 
2155 static int
2156 free_desc_ring(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl)
2157 {
2158         return (free_dma_memory(dhdl, ahdl));
2159 }
2160 
2161 static int
2162 alloc_tx_copybuffer(struct adapter *sc, size_t len,
2163     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
2164     uint64_t *pba, caddr_t *pva)
2165 {
2166         ddi_device_acc_attr_t *acc_attr = &sc->sge.acc_attr_tx;
2167         ddi_dma_attr_t *dma_attr = &sc->sge.dma_attr_desc; /* NOT dma_attr_tx */
2168 
2169         return (alloc_dma_memory(sc, len, DDI_DMA_STREAMING | DDI_DMA_WRITE,
2170             acc_attr, dma_attr, dma_hdl, acc_hdl, pba, pva));
2171 }
2172 
2173 static inline bool
2174 is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
2175 {
2176         (void) ddi_dma_sync(iq->dhdl, (uintptr_t)iq->cdesc -
2177             (uintptr_t)iq->desc, iq->esize, DDI_DMA_SYNC_FORKERNEL);
2178 
2179         *ctrl = (void *)((uintptr_t)iq->cdesc +
2180             (iq->esize - sizeof (struct rsp_ctrl)));
2181 
2182         return ((((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen));
2183 }
2184 
2185 static inline void
2186 iq_next(struct sge_iq *iq)
2187 {
2188         iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
2189         if (++iq->cidx == iq->qsize - 1) {
2190                 iq->cidx = 0;
2191                 iq->gen ^= 1;
2192                 iq->cdesc = iq->desc;
2193         }
2194 }
2195 
2196 /*
2197  * Fill up the freelist by upto nbufs and maybe ring its doorbell.
2198  *
2199  * Returns non-zero to indicate that it should be added to the list of starving
2200  * freelists.
2201  */
2202 static int
2203 refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
2204 {
2205         uint64_t *d = &fl->desc[fl->pidx];
2206         struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
2207 
2208         FL_LOCK_ASSERT_OWNED(fl);
2209         ASSERT(nbufs >= 0);
2210 
2211         if (nbufs > fl->needed)
2212                 nbufs = fl->needed;
2213 
2214         while (nbufs--) {
2215                 if (sd->rxb != NULL) {
2216                         if (sd->rxb->ref_cnt == 1) {
2217                                 /*
2218                                  * Buffer is available for recycling.  Two ways
2219                                  * this can happen:
2220                                  *
2221                                  * a) All the packets DMA'd into it last time
2222                                  *    around were within the rx_copy_threshold
2223                                  *    and no part of the buffer was ever passed
2224                                  *    up (ref_cnt never went over 1).
2225                                  *
2226                                  * b) Packets DMA'd into the buffer were passed
2227                                  *    up but have all been freed by the upper
2228                                  *    layers by now (ref_cnt went over 1 but is
2229                                  *    now back to 1).
2230                                  *
2231                                  * Either way the bus address in the descriptor
2232                                  * ring is already valid.
2233                                  */
2234                                 ASSERT(*d == cpu_to_be64(sd->rxb->ba));
2235                                 d++;
2236                                 goto recycled;
2237                         } else {
2238                                 /*
2239                                  * Buffer still in use and we need a
2240                                  * replacement. But first release our reference
2241                                  * on the existing buffer.
2242                                  */
2243                                 rxbuf_free(sd->rxb);
2244                         }
2245                 }
2246 
2247                 sd->rxb = rxbuf_alloc(sc->sge.rxbuf_cache, KM_NOSLEEP, 1);
2248                 if (sd->rxb == NULL)
2249                         break;
2250                 *d++ = cpu_to_be64(sd->rxb->ba);
2251 
2252 recycled:       fl->pending++;
2253                 sd++;
2254                 fl->needed--;
2255                 if (++fl->pidx == fl->cap) {
2256                         fl->pidx = 0;
2257                         sd = fl->sdesc;
2258                         d = fl->desc;
2259                 }
2260         }
2261 
2262         if (fl->pending >= 8)
2263                 ring_fl_db(sc, fl);
2264 
2265         return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
2266 }
2267 
2268 #ifndef TAILQ_FOREACH_SAFE
2269 #define TAILQ_FOREACH_SAFE(var, head, field, tvar)                      \
2270         for ((var) = TAILQ_FIRST((head));                               \
2271             (var) && ((tvar) = TAILQ_NEXT((var), field), 1);            \
2272             (var) = (tvar))
2273 #endif
2274 
2275 /*
2276  * Attempt to refill all starving freelists.
2277  */
2278 static void
2279 refill_sfl(void *arg)
2280 {
2281         struct adapter *sc = arg;
2282         struct sge_fl *fl, *fl_temp;
2283 
2284         mutex_enter(&sc->sfl_lock);
2285         TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
2286                 FL_LOCK(fl);
2287                 (void) refill_fl(sc, fl, 64);
2288                 if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
2289                         TAILQ_REMOVE(&sc->sfl, fl, link);
2290                         fl->flags &= ~FL_STARVING;
2291                 }
2292                 FL_UNLOCK(fl);
2293         }
2294 
2295         if (!TAILQ_EMPTY(&sc->sfl) != 0)
2296                 sc->sfl_timer =  timeout(refill_sfl, sc, drv_usectohz(100000));
2297         mutex_exit(&sc->sfl_lock);
2298 }
2299 
2300 static void
2301 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
2302 {
2303         mutex_enter(&sc->sfl_lock);
2304         FL_LOCK(fl);
2305         if ((fl->flags & FL_DOOMED) == 0) {
2306                 if (TAILQ_EMPTY(&sc->sfl) != 0) {
2307                         sc->sfl_timer = timeout(refill_sfl, sc,
2308                             drv_usectohz(100000));
2309                 }
2310                 fl->flags |= FL_STARVING;
2311                 TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
2312         }
2313         FL_UNLOCK(fl);
2314         mutex_exit(&sc->sfl_lock);
2315 }
2316 
2317 static void
2318 free_fl_bufs(struct sge_fl *fl)
2319 {
2320         struct fl_sdesc *sd;
2321         unsigned int i;
2322 
2323         FL_LOCK_ASSERT_OWNED(fl);
2324 
2325         for (i = 0; i < fl->cap; i++) {
2326                 sd = &fl->sdesc[i];
2327 
2328                 if (sd->rxb != NULL) {
2329                         rxbuf_free(sd->rxb);
2330                         sd->rxb = NULL;
2331                 }
2332         }
2333 }
2334 
2335 /*
2336  * Note that fl->cidx and fl->offset are left unchanged in case of failure.
2337  */
2338 static mblk_t *
2339 get_fl_payload(struct adapter *sc, struct sge_fl *fl,
2340                uint32_t len_newbuf, int *fl_bufs_used)
2341 {
2342         struct mblk_pair frame = {0};
2343         struct rxbuf *rxb;
2344         mblk_t *m = NULL;
2345         uint_t nbuf = 0, len, copy, n;
2346         uint32_t cidx, offset, rcidx, roffset;
2347 
2348         /*
2349          * The SGE won't pack a new frame into the current buffer if the entire
2350          * payload doesn't fit in the remaining space.  Move on to the next buf
2351          * in that case.
2352          */
2353         rcidx = fl->cidx;
2354         roffset = fl->offset;
2355         if (fl->offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
2356                 fl->offset = 0;
2357                 if (++fl->cidx == fl->cap)
2358                         fl->cidx = 0;
2359                 nbuf++;
2360         }
2361         cidx = fl->cidx;
2362         offset = fl->offset;
2363 
2364         len = G_RSPD_LEN(len_newbuf);   /* pktshift + payload length */
2365         copy = (len <= fl->copy_threshold);
2366         if (copy != 0) {
2367                 frame.head = m = allocb(len, BPRI_HI);
2368                 if (m == NULL) {
2369                         fl->allocb_fail++;
2370                         cmn_err(CE_WARN,"%s: mbuf allocation failure "
2371                                         "count = %llu", __func__,
2372                                         (unsigned long long)fl->allocb_fail);
2373                         fl->cidx = rcidx;
2374                         fl->offset = roffset;
2375                         return (NULL);
2376                 }
2377         }
2378 
2379         while (len) {
2380                 rxb = fl->sdesc[cidx].rxb;
2381                 n = min(len, rxb->buf_size - offset);
2382 
2383                 (void) ddi_dma_sync(rxb->dhdl, offset, n,
2384                     DDI_DMA_SYNC_FORKERNEL);
2385 
2386                 if (copy != 0)
2387                         bcopy(rxb->va + offset, m->b_wptr, n);
2388                 else {
2389                         m = desballoc((unsigned char *)rxb->va + offset, n,
2390                             BPRI_HI, &rxb->freefunc);
2391                         if (m == NULL) {
2392                                 fl->allocb_fail++;
2393                                 cmn_err(CE_WARN,
2394                                         "%s: mbuf allocation failure "
2395                                         "count = %llu", __func__,
2396                                         (unsigned long long)fl->allocb_fail);
2397                                 if (frame.head)
2398                                         freemsgchain(frame.head);
2399                                 fl->cidx = rcidx;
2400                                 fl->offset = roffset;
2401                                 return (NULL);
2402                         }
2403                         atomic_inc_uint(&rxb->ref_cnt);
2404                         if (frame.head != NULL)
2405                                 frame.tail->b_cont = m;
2406                         else
2407                                 frame.head = m;
2408                         frame.tail = m;
2409                 }
2410                 m->b_wptr += n;
2411                 len -= n;
2412                 offset += roundup(n, sc->sge.fl_align);
2413                 ASSERT(offset <= rxb->buf_size);
2414                 if (offset == rxb->buf_size) {
2415                         offset = 0;
2416                         if (++cidx == fl->cap)
2417                                 cidx = 0;
2418                         nbuf++;
2419                 }
2420         }
2421 
2422         fl->cidx = cidx;
2423         fl->offset = offset;
2424         (*fl_bufs_used) += nbuf;
2425 
2426         ASSERT(frame.head != NULL);
2427         return (frame.head);
2428 }
2429 
2430 /*
2431  * We'll do immediate data tx for non-LSO, but only when not coalescing.  We're
2432  * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
2433  * of immediate data.
2434  */
2435 #define IMM_LEN ( \
2436         2 * EQ_ESIZE \
2437         - sizeof (struct fw_eth_tx_pkt_wr) \
2438         - sizeof (struct cpl_tx_pkt_core))
2439 
2440 /*
2441  * Returns non-zero on failure, no need to cleanup anything in that case.
2442  *
2443  * Note 1: We always try to pull up the mblk if required and return E2BIG only
2444  * if this fails.
2445  *
2446  * Note 2: We'll also pullup incoming mblk if HW_LSO is set and the first mblk
2447  * does not have the TCP header in it.
2448  */
2449 static int
2450 get_frame_txinfo(struct sge_txq *txq, mblk_t **fp, struct txinfo *txinfo,
2451     int sgl_only)
2452 {
2453         uint32_t flags = 0, len, n;
2454         mblk_t *m = *fp;
2455         int rc;
2456 
2457         TXQ_LOCK_ASSERT_OWNED(txq);     /* will manipulate txb and dma_hdls */
2458 
2459         mac_hcksum_get(m, NULL, NULL, NULL, NULL, &flags);
2460         txinfo->flags = flags;
2461 
2462         mac_lso_get(m, &txinfo->mss, &flags);
2463         txinfo->flags |= flags;
2464 
2465         if (flags & HW_LSO)
2466                 sgl_only = 1;   /* Do not allow immediate data with LSO */
2467 
2468 start:  txinfo->nsegs = 0;
2469         txinfo->hdls_used = 0;
2470         txinfo->txb_used = 0;
2471         txinfo->len = 0;
2472 
2473         /* total length and a rough estimate of # of segments */
2474         n = 0;
2475         for (; m; m = m->b_cont) {
2476                 len = MBLKL(m);
2477                 n += (len / PAGE_SIZE) + 1;
2478                 txinfo->len += len;
2479         }
2480         m = *fp;
2481 
2482         if (n >= TX_SGL_SEGS || (flags & HW_LSO && MBLKL(m) < 50)) {
2483                 txq->pullup_early++;
2484                 m = msgpullup(*fp, -1);
2485                 if (m == NULL) {
2486                         txq->pullup_failed++;
2487                         return (E2BIG); /* (*fp) left as it was */
2488                 }
2489                 freemsg(*fp);
2490                 *fp = m;
2491                 mac_hcksum_set(m, NULL, NULL, NULL, NULL, txinfo->flags);
2492         }
2493 
2494         if (txinfo->len <= IMM_LEN && !sgl_only)
2495                 return (0);     /* nsegs = 0 tells caller to use imm. tx */
2496 
2497         if (txinfo->len <= txq->copy_threshold &&
2498             copy_into_txb(txq, m, txinfo->len, txinfo) == 0)
2499                 goto done;
2500 
2501         for (; m; m = m->b_cont) {
2502 
2503                 len = MBLKL(m);
2504 
2505                 /* Use tx copy buffer if this mblk is small enough */
2506                 if (len <= txq->copy_threshold &&
2507                     copy_into_txb(txq, m, len, txinfo) == 0)
2508                         continue;
2509 
2510                 /* Add DMA bindings for this mblk to the SGL */
2511                 rc = add_mblk(txq, txinfo, m, len);
2512 
2513                 if (rc == E2BIG ||
2514                     (txinfo->nsegs == TX_SGL_SEGS && m->b_cont)) {
2515 
2516                         txq->pullup_late++;
2517                         m = msgpullup(*fp, -1);
2518                         if (m != NULL) {
2519                                 free_txinfo_resources(txq, txinfo);
2520                                 freemsg(*fp);
2521                                 *fp = m;
2522                                 mac_hcksum_set(m, NULL, NULL, NULL, NULL,
2523                                     txinfo->flags);
2524                                 goto start;
2525                         }
2526 
2527                         txq->pullup_failed++;
2528                         rc = E2BIG;
2529                 }
2530 
2531                 if (rc != 0) {
2532                         free_txinfo_resources(txq, txinfo);
2533                         return (rc);
2534                 }
2535         }
2536 
2537         ASSERT(txinfo->nsegs > 0 && txinfo->nsegs <= TX_SGL_SEGS);
2538 
2539 done:
2540 
2541         /*
2542          * Store the # of flits required to hold this frame's SGL in nflits.  An
2543          * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
2544          * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
2545          * then len1 must be set to 0.
2546          */
2547         n = txinfo->nsegs - 1;
2548         txinfo->nflits = (3 * n) / 2 + (n & 1) + 2;
2549         if (n & 1)
2550                 txinfo->sgl.sge[n / 2].len[1] = cpu_to_be32(0);
2551 
2552         txinfo->sgl.cmd_nsge = cpu_to_be32(V_ULPTX_CMD((u32)ULP_TX_SC_DSGL) |
2553             V_ULPTX_NSGE(txinfo->nsegs));
2554 
2555         return (0);
2556 }
2557 
2558 static inline int
2559 fits_in_txb(struct sge_txq *txq, int len, int *waste)
2560 {
2561         if (txq->txb_avail < len)
2562                 return (0);
2563 
2564         if (txq->txb_next + len <= txq->txb_size) {
2565                 *waste = 0;
2566                 return (1);
2567         }
2568 
2569         *waste = txq->txb_size - txq->txb_next;
2570 
2571         return (txq->txb_avail - *waste < len ? 0 : 1);
2572 }
2573 
2574 #define TXB_CHUNK       64
2575 
2576 /*
2577  * Copies the specified # of bytes into txq's tx copy buffer and updates txinfo
2578  * and txq to indicate resources used.  Caller has to make sure that those many
2579  * bytes are available in the mblk chain (b_cont linked).
2580  */
2581 static inline int
2582 copy_into_txb(struct sge_txq *txq, mblk_t *m, int len, struct txinfo *txinfo)
2583 {
2584         int waste, n;
2585 
2586         TXQ_LOCK_ASSERT_OWNED(txq);     /* will manipulate txb */
2587 
2588         if (!fits_in_txb(txq, len, &waste)) {
2589                 txq->txb_full++;
2590                 return (ENOMEM);
2591         }
2592 
2593         if (waste != 0) {
2594                 ASSERT((waste & (TXB_CHUNK - 1)) == 0);
2595                 txinfo->txb_used += waste;
2596                 txq->txb_avail -= waste;
2597                 txq->txb_next = 0;
2598         }
2599 
2600         for (n = 0; n < len; m = m->b_cont) {
2601                 bcopy(m->b_rptr, txq->txb_va + txq->txb_next + n, MBLKL(m));
2602                 n += MBLKL(m);
2603         }
2604 
2605         add_seg(txinfo, txq->txb_ba + txq->txb_next, len);
2606 
2607         n = roundup(len, TXB_CHUNK);
2608         txinfo->txb_used += n;
2609         txq->txb_avail -= n;
2610         txq->txb_next += n;
2611         ASSERT(txq->txb_next <= txq->txb_size);
2612         if (txq->txb_next == txq->txb_size)
2613                 txq->txb_next = 0;
2614 
2615         return (0);
2616 }
2617 
2618 static inline void
2619 add_seg(struct txinfo *txinfo, uint64_t ba, uint32_t len)
2620 {
2621         ASSERT(txinfo->nsegs < TX_SGL_SEGS);      /* must have room */
2622 
2623         if (txinfo->nsegs != 0) {
2624                 int idx = txinfo->nsegs - 1;
2625                 txinfo->sgl.sge[idx / 2].len[idx & 1] = cpu_to_be32(len);
2626                 txinfo->sgl.sge[idx / 2].addr[idx & 1] = cpu_to_be64(ba);
2627         } else {
2628                 txinfo->sgl.len0 = cpu_to_be32(len);
2629                 txinfo->sgl.addr0 = cpu_to_be64(ba);
2630         }
2631         txinfo->nsegs++;
2632 }
2633 
2634 /*
2635  * This function cleans up any partially allocated resources when it fails so
2636  * there's nothing for the caller to clean up in that case.
2637  *
2638  * EIO indicates permanent failure.  Caller should drop the frame containing
2639  * this mblk and continue.
2640  *
2641  * E2BIG indicates that the SGL length for this mblk exceeds the hardware
2642  * limit.  Caller should pull up the frame before trying to send it out.
2643  * (This error means our pullup_early heuristic did not work for this frame)
2644  *
2645  * ENOMEM indicates a temporary shortage of resources (DMA handles, other DMA
2646  * resources, etc.).  Caller should suspend the tx queue and wait for reclaim to
2647  * free up resources.
2648  */
2649 static inline int
2650 add_mblk(struct sge_txq *txq, struct txinfo *txinfo, mblk_t *m, int len)
2651 {
2652         ddi_dma_handle_t dhdl;
2653         ddi_dma_cookie_t cookie;
2654         uint_t ccount = 0;
2655         int rc;
2656 
2657         TXQ_LOCK_ASSERT_OWNED(txq);     /* will manipulate dhdls */
2658 
2659         if (txq->tx_dhdl_avail == 0) {
2660                 txq->dma_hdl_failed++;
2661                 return (ENOMEM);
2662         }
2663 
2664         dhdl = txq->tx_dhdl[txq->tx_dhdl_pidx];
2665         rc = ddi_dma_addr_bind_handle(dhdl, NULL, (caddr_t)m->b_rptr, len,
2666             DDI_DMA_WRITE | DDI_DMA_STREAMING, DDI_DMA_DONTWAIT, NULL, &cookie,
2667             &ccount);
2668         if (rc != DDI_DMA_MAPPED) {
2669                 txq->dma_map_failed++;
2670 
2671                 ASSERT(rc != DDI_DMA_INUSE && rc != DDI_DMA_PARTIAL_MAP);
2672 
2673                 return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EIO);
2674         }
2675 
2676         if (ccount + txinfo->nsegs > TX_SGL_SEGS) {
2677                 (void) ddi_dma_unbind_handle(dhdl);
2678                 return (E2BIG);
2679         }
2680 
2681         add_seg(txinfo, cookie.dmac_laddress, cookie.dmac_size);
2682         while (--ccount) {
2683                 ddi_dma_nextcookie(dhdl, &cookie);
2684                 add_seg(txinfo, cookie.dmac_laddress, cookie.dmac_size);
2685         }
2686 
2687         if (++txq->tx_dhdl_pidx == txq->tx_dhdl_total)
2688                 txq->tx_dhdl_pidx = 0;
2689         txq->tx_dhdl_avail--;
2690         txinfo->hdls_used++;
2691 
2692         return (0);
2693 }
2694 
2695 /*
2696  * Releases all the txq resources used up in the specified txinfo.
2697  */
2698 static void
2699 free_txinfo_resources(struct sge_txq *txq, struct txinfo *txinfo)
2700 {
2701         int n;
2702 
2703         TXQ_LOCK_ASSERT_OWNED(txq);     /* dhdls, txb */
2704 
2705         n = txinfo->txb_used;
2706         if (n > 0) {
2707                 txq->txb_avail += n;
2708                 if (n <= txq->txb_next)
2709                         txq->txb_next -= n;
2710                 else {
2711                         n -= txq->txb_next;
2712                         txq->txb_next = txq->txb_size - n;
2713                 }
2714         }
2715 
2716         for (n = txinfo->hdls_used; n > 0; n--) {
2717                 if (txq->tx_dhdl_pidx > 0)
2718                         txq->tx_dhdl_pidx--;
2719                 else
2720                         txq->tx_dhdl_pidx = txq->tx_dhdl_total - 1;
2721                 txq->tx_dhdl_avail++;
2722                 (void) ddi_dma_unbind_handle(txq->tx_dhdl[txq->tx_dhdl_pidx]);
2723         }
2724 }
2725 
2726 /*
2727  * Returns 0 to indicate that m has been accepted into a coalesced tx work
2728  * request.  It has either been folded into txpkts or txpkts was flushed and m
2729  * has started a new coalesced work request (as the first frame in a fresh
2730  * txpkts).
2731  *
2732  * Returns non-zero to indicate a failure - caller is responsible for
2733  * transmitting m, if there was anything in txpkts it has been flushed.
2734  */
2735 static int
2736 add_to_txpkts(struct sge_txq *txq, struct txpkts *txpkts, mblk_t *m,
2737     struct txinfo *txinfo)
2738 {
2739         struct sge_eq *eq = &txq->eq;
2740         int can_coalesce;
2741         struct tx_sdesc *txsd;
2742         uint8_t flits;
2743 
2744         TXQ_LOCK_ASSERT_OWNED(txq);
2745 
2746         if (txpkts->npkt > 0) {
2747                 flits = TXPKTS_PKT_HDR + txinfo->nflits;
2748                 can_coalesce = (txinfo->flags & HW_LSO) == 0 &&
2749                     txpkts->nflits + flits <= TX_WR_FLITS &&
2750                     txpkts->nflits + flits <= eq->avail * 8 &&
2751                     txpkts->plen + txinfo->len < 65536;
2752 
2753                 if (can_coalesce != 0) {
2754                         txpkts->tail->b_next = m;
2755                         txpkts->tail = m;
2756                         txpkts->npkt++;
2757                         txpkts->nflits += flits;
2758                         txpkts->plen += txinfo->len;
2759 
2760                         txsd = &txq->sdesc[eq->pidx];
2761                         txsd->txb_used += txinfo->txb_used;
2762                         txsd->hdls_used += txinfo->hdls_used;
2763 
2764                         return (0);
2765                 }
2766 
2767                 /*
2768                  * Couldn't coalesce m into txpkts.  The first order of business
2769                  * is to send txpkts on its way.  Then we'll revisit m.
2770                  */
2771                 write_txpkts_wr(txq, txpkts);
2772         }
2773 
2774         /*
2775          * Check if we can start a new coalesced tx work request with m as
2776          * the first packet in it.
2777          */
2778 
2779         ASSERT(txpkts->npkt == 0);
2780         ASSERT(txinfo->len < 65536);
2781 
2782         flits = TXPKTS_WR_HDR + txinfo->nflits;
2783         can_coalesce = (txinfo->flags & HW_LSO) == 0 &&
2784             flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
2785 
2786         if (can_coalesce == 0)
2787                 return (EINVAL);
2788 
2789         /*
2790          * Start a fresh coalesced tx WR with m as the first frame in it.
2791          */
2792         txpkts->tail = m;
2793         txpkts->npkt = 1;
2794         txpkts->nflits = flits;
2795         txpkts->flitp = &eq->desc[eq->pidx].flit[2];
2796         txpkts->plen = txinfo->len;
2797 
2798         txsd = &txq->sdesc[eq->pidx];
2799         txsd->m = m;
2800         txsd->txb_used = txinfo->txb_used;
2801         txsd->hdls_used = txinfo->hdls_used;
2802 
2803         return (0);
2804 }
2805 
2806 /*
2807  * Note that write_txpkts_wr can never run out of hardware descriptors (but
2808  * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
2809  * coalescing only if sufficient hardware descriptors are available.
2810  */
2811 static void
2812 write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
2813 {
2814         struct sge_eq *eq = &txq->eq;
2815         struct fw_eth_tx_pkts_wr *wr;
2816         struct tx_sdesc *txsd;
2817         uint32_t ctrl;
2818         uint16_t ndesc;
2819 
2820         TXQ_LOCK_ASSERT_OWNED(txq);     /* pidx, avail */
2821 
2822         ndesc = howmany(txpkts->nflits, 8);
2823 
2824         wr = (void *)&eq->desc[eq->pidx];
2825         wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR) |
2826             V_FW_WR_IMMDLEN(0)); /* immdlen does not matter in this WR */
2827         ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
2828         if (eq->avail == ndesc)
2829                 ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2830         wr->equiq_to_len16 = cpu_to_be32(ctrl);
2831         wr->plen = cpu_to_be16(txpkts->plen);
2832         wr->npkt = txpkts->npkt;
2833         wr->r3 = wr->type = 0;
2834 
2835         /* Everything else already written */
2836 
2837         txsd = &txq->sdesc[eq->pidx];
2838         txsd->desc_used = ndesc;
2839 
2840         txq->txb_used += txsd->txb_used / TXB_CHUNK;
2841         txq->hdl_used += txsd->hdls_used;
2842 
2843         ASSERT(eq->avail >= ndesc);
2844 
2845         eq->pending += ndesc;
2846         eq->avail -= ndesc;
2847         eq->pidx += ndesc;
2848         if (eq->pidx >= eq->cap)
2849                 eq->pidx -= eq->cap;
2850 
2851         txq->txpkts_pkts += txpkts->npkt;
2852         txq->txpkts_wrs++;
2853         txpkts->npkt = 0;    /* emptied */
2854 }
2855 
2856 static int
2857 write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, mblk_t *m,
2858     struct txinfo *txinfo)
2859 {
2860         struct sge_eq *eq = &txq->eq;
2861         struct fw_eth_tx_pkt_wr *wr;
2862         struct cpl_tx_pkt_core *cpl;
2863         uint32_t ctrl;  /* used in many unrelated places */
2864         uint64_t ctrl1;
2865         int nflits, ndesc;
2866         struct tx_sdesc *txsd;
2867         caddr_t dst;
2868 
2869         TXQ_LOCK_ASSERT_OWNED(txq);     /* pidx, avail */
2870 
2871         /*
2872          * Do we have enough flits to send this frame out?
2873          */
2874         ctrl = sizeof (struct cpl_tx_pkt_core);
2875         if (txinfo->flags & HW_LSO) {
2876                 nflits = TXPKT_LSO_WR_HDR;
2877                 ctrl += sizeof(struct cpl_tx_pkt_lso_core);
2878         } else
2879                 nflits = TXPKT_WR_HDR;
2880         if (txinfo->nsegs > 0)
2881                 nflits += txinfo->nflits;
2882         else {
2883                 nflits += howmany(txinfo->len, 8);
2884                 ctrl += txinfo->len;
2885         }
2886         ndesc = howmany(nflits, 8);
2887         if (ndesc > eq->avail)
2888                 return (ENOMEM);
2889 
2890         /* Firmware work request header */
2891         wr = (void *)&eq->desc[eq->pidx];
2892         wr->op_immdlen = cpu_to_be32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
2893             V_FW_WR_IMMDLEN(ctrl));
2894         ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
2895         if (eq->avail == ndesc)
2896                 ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2897         wr->equiq_to_len16 = cpu_to_be32(ctrl);
2898         wr->r3 = 0;
2899 
2900         if (txinfo->flags & HW_LSO) {
2901                 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2902                 char *p = (void *)m->b_rptr;
2903                 ctrl = V_LSO_OPCODE((u32)CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
2904                     F_LSO_LAST_SLICE;
2905 
2906                 /* LINTED: E_BAD_PTR_CAST_ALIGN */
2907                 if (((struct ether_header *)p)->ether_type ==
2908                     htons(ETHERTYPE_VLAN)) {
2909                         ctrl |= V_LSO_ETHHDR_LEN(1);
2910                         p += sizeof (struct ether_vlan_header);
2911                 } else
2912                         p += sizeof (struct ether_header);
2913 
2914                 /* LINTED: E_BAD_PTR_CAST_ALIGN for IPH_HDR_LENGTH() */
2915                 ctrl |= V_LSO_IPHDR_LEN(IPH_HDR_LENGTH(p) / 4);
2916                 /* LINTED: E_BAD_PTR_CAST_ALIGN for IPH_HDR_LENGTH() */
2917                 p += IPH_HDR_LENGTH(p);
2918                 ctrl |= V_LSO_TCPHDR_LEN(TCP_HDR_LENGTH((tcph_t *)p) / 4);
2919 
2920                 lso->lso_ctrl = cpu_to_be32(ctrl);
2921                 lso->ipid_ofst = cpu_to_be16(0);
2922                 lso->mss = cpu_to_be16(txinfo->mss);
2923                 lso->seqno_offset = cpu_to_be32(0);
2924                 if (is_t4(pi->adapter->params.chip))
2925                         lso->len = cpu_to_be32(txinfo->len);
2926                 else
2927                         lso->len = cpu_to_be32(V_LSO_T5_XFER_SIZE(txinfo->len));
2928 
2929                 cpl = (void *)(lso + 1);
2930 
2931                 txq->tso_wrs++;
2932         } else
2933                 cpl = (void *)(wr + 1);
2934 
2935         /* Checksum offload */
2936         ctrl1 = 0;
2937         if (!(txinfo->flags & HCK_IPV4_HDRCKSUM))
2938                 ctrl1 |= F_TXPKT_IPCSUM_DIS;
2939         if (!(txinfo->flags & HCK_FULLCKSUM))
2940                 ctrl1 |= F_TXPKT_L4CSUM_DIS;
2941         if (ctrl1 == 0)
2942                 txq->txcsum++;       /* some hardware assistance provided */
2943 
2944         /* CPL header */
2945         cpl->ctrl0 = cpu_to_be32(V_TXPKT_OPCODE(CPL_TX_PKT) |
2946             V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
2947         cpl->pack = 0;
2948         cpl->len = cpu_to_be16(txinfo->len);
2949         cpl->ctrl1 = cpu_to_be64(ctrl1);
2950 
2951         /* Software descriptor */
2952         txsd = &txq->sdesc[eq->pidx];
2953         txsd->m = m;
2954         txsd->txb_used = txinfo->txb_used;
2955         txsd->hdls_used = txinfo->hdls_used;
2956         /* LINTED: E_ASSIGN_NARROW_CONV */
2957         txsd->desc_used = ndesc;
2958 
2959         txq->txb_used += txinfo->txb_used / TXB_CHUNK;
2960         txq->hdl_used += txinfo->hdls_used;
2961 
2962         eq->pending += ndesc;
2963         eq->avail -= ndesc;
2964         eq->pidx += ndesc;
2965         if (eq->pidx >= eq->cap)
2966                 eq->pidx -= eq->cap;
2967 
2968         /* SGL */
2969         dst = (void *)(cpl + 1);
2970         if (txinfo->nsegs > 0) {
2971                 txq->sgl_wrs++;
2972                 copy_to_txd(eq, (void *)&txinfo->sgl, &dst, txinfo->nflits * 8);
2973 
2974                 /* Need to zero-pad to a 16 byte boundary if not on one */
2975                 if ((uintptr_t)dst & 0xf)
2976                         /* LINTED: E_BAD_PTR_CAST_ALIGN */
2977                         *(uint64_t *)dst = 0;
2978 
2979         } else {
2980                 txq->imm_wrs++;
2981 #ifdef DEBUG
2982                 ctrl = txinfo->len;
2983 #endif
2984                 for (; m; m = m->b_cont) {
2985                         copy_to_txd(eq, (void *)m->b_rptr, &dst, MBLKL(m));
2986 #ifdef DEBUG
2987                         ctrl -= MBLKL(m);
2988 #endif
2989                 }
2990                 ASSERT(ctrl == 0);
2991         }
2992 
2993         txq->txpkt_wrs++;
2994         return (0);
2995 }
2996 
2997 static inline void
2998 write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
2999     struct txpkts *txpkts, struct txinfo *txinfo)
3000 {
3001         struct ulp_txpkt *ulpmc;
3002         struct ulptx_idata *ulpsc;
3003         struct cpl_tx_pkt_core *cpl;
3004         uintptr_t flitp, start, end;
3005         uint64_t ctrl;
3006         caddr_t dst;
3007 
3008         ASSERT(txpkts->npkt > 0);
3009 
3010         start = (uintptr_t)txq->eq.desc;
3011         end = (uintptr_t)txq->eq.spg;
3012 
3013         /* Checksum offload */
3014         ctrl = 0;
3015         if (!(txinfo->flags & HCK_IPV4_HDRCKSUM))
3016                 ctrl |= F_TXPKT_IPCSUM_DIS;
3017         if (!(txinfo->flags & HCK_FULLCKSUM))
3018                 ctrl |= F_TXPKT_L4CSUM_DIS;
3019         if (ctrl == 0)
3020                 txq->txcsum++;       /* some hardware assistance provided */
3021 
3022         /*
3023          * The previous packet's SGL must have ended at a 16 byte boundary (this
3024          * is required by the firmware/hardware).  It follows that flitp cannot
3025          * wrap around between the ULPTX master command and ULPTX subcommand (8
3026          * bytes each), and that it can not wrap around in the middle of the
3027          * cpl_tx_pkt_core either.
3028          */
3029         flitp = (uintptr_t)txpkts->flitp;
3030         ASSERT((flitp & 0xf) == 0);
3031 
3032         /* ULP master command */
3033         ulpmc = (void *)flitp;
3034         ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
3035         ulpmc->len = htonl(howmany(sizeof (*ulpmc) + sizeof (*ulpsc) +
3036             sizeof (*cpl) + 8 * txinfo->nflits, 16));
3037 
3038         /* ULP subcommand */
3039         ulpsc = (void *)(ulpmc + 1);
3040         ulpsc->cmd_more = cpu_to_be32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
3041             F_ULP_TX_SC_MORE);
3042         ulpsc->len = cpu_to_be32(sizeof (struct cpl_tx_pkt_core));
3043 
3044         flitp += sizeof (*ulpmc) + sizeof (*ulpsc);
3045         if (flitp == end)
3046                 flitp = start;
3047 
3048         /* CPL_TX_PKT */
3049         cpl = (void *)flitp;
3050         cpl->ctrl0 = cpu_to_be32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3051             V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3052         cpl->pack = 0;
3053         cpl->len = cpu_to_be16(txinfo->len);
3054         cpl->ctrl1 = cpu_to_be64(ctrl);
3055 
3056         flitp += sizeof (*cpl);
3057         if (flitp == end)
3058                 flitp = start;
3059 
3060         /* SGL for this frame */
3061         dst = (caddr_t)flitp;
3062         copy_to_txd(&txq->eq, (void *)&txinfo->sgl, &dst, txinfo->nflits * 8);
3063         flitp = (uintptr_t)dst;
3064 
3065         /* Zero pad and advance to a 16 byte boundary if not already at one. */
3066         if (flitp & 0xf) {
3067 
3068                 /* no matter what, flitp should be on an 8 byte boundary */
3069                 ASSERT((flitp & 0x7) == 0);
3070 
3071                 *(uint64_t *)flitp = 0;
3072                 flitp += sizeof (uint64_t);
3073                 txpkts->nflits++;
3074         }
3075 
3076         if (flitp == end)
3077                 flitp = start;
3078 
3079         txpkts->flitp = (void *)flitp;
3080 }
3081 
3082 static inline void
3083 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
3084 {
3085         if ((uintptr_t)(*to) + len <= (uintptr_t)eq->spg) {
3086                 bcopy(from, *to, len);
3087                 (*to) += len;
3088         } else {
3089                 int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
3090 
3091                 bcopy(from, *to, portion);
3092                 from += portion;
3093                 portion = len - portion;        /* remaining */
3094                 bcopy(from, (void *)eq->desc, portion);
3095                 (*to) = (caddr_t)eq->desc + portion;
3096         }
3097 }
3098 
3099 static inline void
3100 ring_tx_db(struct adapter *sc, struct sge_eq *eq)
3101 {
3102         int val, db_mode;
3103         u_int db = eq->doorbells;
3104 
3105         if (eq->pending > 1)
3106                 db &= ~DOORBELL_WCWR;
3107 
3108         if (eq->pending > eq->pidx) {
3109                 int offset = eq->cap - (eq->pending - eq->pidx);
3110 
3111                 /* pidx has wrapped around since last doorbell */
3112 
3113                 (void) ddi_dma_sync(eq->desc_dhdl,
3114                     offset * sizeof (struct tx_desc), 0,
3115                     DDI_DMA_SYNC_FORDEV);
3116                 (void) ddi_dma_sync(eq->desc_dhdl,
3117                     0, eq->pidx * sizeof (struct tx_desc),
3118                     DDI_DMA_SYNC_FORDEV);
3119         } else if (eq->pending > 0) {
3120                 (void) ddi_dma_sync(eq->desc_dhdl,
3121                     (eq->pidx - eq->pending) * sizeof (struct tx_desc),
3122                     eq->pending * sizeof (struct tx_desc),
3123                     DDI_DMA_SYNC_FORDEV);
3124         }
3125 
3126         membar_producer();
3127 
3128         if (is_t4(sc->params.chip))
3129                 val = V_PIDX(eq->pending);
3130         else
3131                 val = V_PIDX_T5(eq->pending);
3132 
3133         db_mode = (1 << (ffs(db) - 1));
3134         switch (db_mode) {
3135                 case DOORBELL_UDB:
3136                         *eq->udb = LE_32(V_QID(eq->udb_qid) | val);
3137                         break;
3138 
3139                 case DOORBELL_WCWR:
3140                         {
3141                                 volatile uint64_t *dst, *src;
3142                                 int i;
3143                                 /*
3144                                  * Queues whose 128B doorbell segment fits in
3145                                  * the page do not use relative qid
3146                                  * (udb_qid is always 0).  Only queues with
3147                                  * doorbell segments can do WCWR.
3148                                  */
3149                                 ASSERT(eq->udb_qid == 0 && eq->pending == 1);
3150 
3151                                 dst = (volatile void *)((uintptr_t)eq->udb +
3152                                     UDBS_WR_OFFSET - UDBS_DB_OFFSET);
3153                                 i = eq->pidx ? eq->pidx - 1 : eq->cap - 1;
3154                                 src = (void *)&eq->desc[i];
3155                                 while (src != (void *)&eq->desc[i + 1])
3156                                         *dst++ = *src++;
3157                                 membar_producer();
3158                                 break;
3159                         }
3160 
3161                 case DOORBELL_UDBWC:
3162                         *eq->udb = LE_32(V_QID(eq->udb_qid) | val);
3163                         membar_producer();
3164                         break;
3165 
3166                 case DOORBELL_KDB:
3167                         t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
3168                             V_QID(eq->cntxt_id) | val);
3169                         break;
3170         }
3171 
3172         eq->pending = 0;
3173 }
3174 
3175 static int
3176 reclaim_tx_descs(struct sge_txq *txq, int howmany)
3177 {
3178         struct tx_sdesc *txsd;
3179         uint_t cidx, can_reclaim, reclaimed, txb_freed, hdls_freed;
3180         struct sge_eq *eq = &txq->eq;
3181 
3182         EQ_LOCK_ASSERT_OWNED(eq);
3183 
3184         cidx = eq->spg->cidx;     /* stable snapshot */
3185         cidx = be16_to_cpu(cidx);
3186 
3187         if (cidx >= eq->cidx)
3188                 can_reclaim = cidx - eq->cidx;
3189         else
3190                 can_reclaim = cidx + eq->cap - eq->cidx;
3191 
3192         if (can_reclaim == 0)
3193                 return (0);
3194 
3195         txb_freed = hdls_freed = reclaimed = 0;
3196         do {
3197                 int ndesc;
3198 
3199                 txsd = &txq->sdesc[eq->cidx];
3200                 ndesc = txsd->desc_used;
3201 
3202                 /* Firmware doesn't return "partial" credits. */
3203                 ASSERT(can_reclaim >= ndesc);
3204 
3205                 /*
3206                  * We always keep mblk around, even for immediate data.  If mblk
3207                  * is NULL, this has to be the software descriptor for a credit
3208                  * flush work request.
3209                  */
3210                 if (txsd->m != NULL)
3211                         freemsgchain(txsd->m);
3212 #ifdef DEBUG
3213                 else {
3214                         ASSERT(txsd->txb_used == 0);
3215                         ASSERT(txsd->hdls_used == 0);
3216                         ASSERT(ndesc == 1);
3217                 }
3218 #endif
3219 
3220                 txb_freed += txsd->txb_used;
3221                 hdls_freed += txsd->hdls_used;
3222                 reclaimed += ndesc;
3223 
3224                 eq->cidx += ndesc;
3225                 if (eq->cidx >= eq->cap)
3226                         eq->cidx -= eq->cap;
3227 
3228                 can_reclaim -= ndesc;
3229 
3230         } while (can_reclaim && reclaimed < howmany);
3231 
3232         eq->avail += reclaimed;
3233         ASSERT(eq->avail < eq->cap);   /* avail tops out at (cap - 1) */
3234 
3235         txq->txb_avail += txb_freed;
3236 
3237         txq->tx_dhdl_avail += hdls_freed;
3238         ASSERT(txq->tx_dhdl_avail <= txq->tx_dhdl_total);
3239         for (; hdls_freed; hdls_freed--) {
3240                 (void) ddi_dma_unbind_handle(txq->tx_dhdl[txq->tx_dhdl_cidx]);
3241                 if (++txq->tx_dhdl_cidx == txq->tx_dhdl_total)
3242                         txq->tx_dhdl_cidx = 0;
3243         }
3244 
3245         return (reclaimed);
3246 }
3247 
3248 static void
3249 write_txqflush_wr(struct sge_txq *txq)
3250 {
3251         struct sge_eq *eq = &txq->eq;
3252         struct fw_eq_flush_wr *wr;
3253         struct tx_sdesc *txsd;
3254 
3255         EQ_LOCK_ASSERT_OWNED(eq);
3256         ASSERT(eq->avail > 0);
3257 
3258         wr = (void *)&eq->desc[eq->pidx];
3259         bzero(wr, sizeof (*wr));
3260         wr->opcode = FW_EQ_FLUSH_WR;
3261         wr->equiq_to_len16 = cpu_to_be32(V_FW_WR_LEN16(sizeof (*wr) / 16) |
3262             F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3263 
3264         txsd = &txq->sdesc[eq->pidx];
3265         txsd->m = NULL;
3266         txsd->txb_used = 0;
3267         txsd->hdls_used = 0;
3268         txsd->desc_used = 1;
3269 
3270         eq->pending++;
3271         eq->avail--;
3272         if (++eq->pidx == eq->cap)
3273                 eq->pidx = 0;
3274 }
3275 
3276 static int
3277 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, mblk_t *m)
3278 {
3279         bool csum_ok;
3280         uint16_t err_vec;
3281         struct sge_rxq *rxq = (void *)iq;
3282         struct mblk_pair chain = {0};
3283         struct adapter *sc = iq->adapter;
3284         const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
3285 
3286         iq->intr_next = iq->intr_params;
3287 
3288         m->b_rptr += sc->sge.pktshift;
3289 
3290         /* Compressed error vector is enabled for T6 only */
3291         if (sc->params.tp.rx_pkt_encap)
3292                 /* It is enabled only in T6 config file */
3293                 err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec));
3294         else
3295                 err_vec = ntohs(cpl->err_vec);
3296 
3297         csum_ok = cpl->csum_calc && !err_vec;
3298         /* TODO: what about cpl->ip_frag? */
3299         if (csum_ok && !cpl->ip_frag) {
3300                 mac_hcksum_set(m, 0, 0, 0, 0xffff,
3301                     HCK_FULLCKSUM_OK | HCK_FULLCKSUM |
3302                     HCK_IPV4_HDRCKSUM_OK);
3303                 rxq->rxcsum++;
3304         }
3305 
3306         /* Add to the chain that we'll send up */
3307         if (chain.head != NULL)
3308                 chain.tail->b_next = m;
3309         else
3310                 chain.head = m;
3311         chain.tail = m;
3312 
3313         t4_mac_rx(rxq->port, rxq, chain.head);
3314 
3315         rxq->rxpkts++;
3316         rxq->rxbytes  += be16_to_cpu(cpl->len);
3317         return (0);
3318 }
3319 
3320 #define FL_HW_IDX(idx)  ((idx) >> 3)
3321 
3322 static inline void
3323 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3324 {
3325         int desc_start, desc_last, ndesc;
3326         uint32_t v = sc->params.arch.sge_fl_db ;
3327 
3328         ndesc = FL_HW_IDX(fl->pending);
3329 
3330         /* Hold back one credit if pidx = cidx */
3331         if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
3332                 ndesc--;
3333 
3334         /*
3335          * There are chances of ndesc modified above (to avoid pidx = cidx).
3336          * If there is nothing to post, return.
3337          */
3338         if (ndesc <= 0)
3339                 return;
3340 
3341         desc_last = FL_HW_IDX(fl->pidx);
3342 
3343         if (fl->pidx < fl->pending) {
3344                 /* There was a wrap */
3345                 desc_start = FL_HW_IDX(fl->pidx + fl->cap - fl->pending);
3346 
3347                 /* From desc_start to the end of list */
3348                 (void) ddi_dma_sync(fl->dhdl, desc_start * RX_FL_ESIZE, 0,
3349                     DDI_DMA_SYNC_FORDEV);
3350 
3351                 /* From start of list to the desc_last */
3352                 if (desc_last != 0)
3353                         (void) ddi_dma_sync(fl->dhdl, 0, desc_last *
3354                             RX_FL_ESIZE, DDI_DMA_SYNC_FORDEV);
3355         } else {
3356                 /* There was no wrap, sync from start_desc to last_desc */
3357                 desc_start = FL_HW_IDX(fl->pidx - fl->pending);
3358                 (void) ddi_dma_sync(fl->dhdl, desc_start * RX_FL_ESIZE,
3359                     ndesc * RX_FL_ESIZE, DDI_DMA_SYNC_FORDEV);
3360         }
3361 
3362         if (is_t4(sc->params.chip))
3363                 v |= V_PIDX(ndesc);
3364         else
3365                 v |= V_PIDX_T5(ndesc);
3366         v |= V_QID(fl->cntxt_id) | V_PIDX(ndesc);
3367 
3368         membar_producer();
3369 
3370         t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3371 
3372         /*
3373          * Update pending count:
3374          * Deduct the number of descriptors posted
3375          */
3376         fl->pending -= ndesc * 8;
3377 }
3378 
3379 static void
3380 tx_reclaim_task(void *arg)
3381 {
3382         struct sge_txq *txq = arg;
3383 
3384         TXQ_LOCK(txq);
3385         reclaim_tx_descs(txq, txq->eq.qsize);
3386         TXQ_UNLOCK(txq);
3387 }
3388 
3389 /* ARGSUSED */
3390 static int
3391 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
3392                 mblk_t *m)
3393 {
3394         const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
3395         unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
3396         struct adapter *sc = iq->adapter;
3397         struct sge *s = &sc->sge;
3398         struct sge_eq *eq;
3399         struct sge_txq *txq;
3400 
3401         txq = (void *)s->eqmap[qid - s->eq_start];
3402         eq = &txq->eq;
3403         txq->qflush++;
3404         t4_mac_tx_update(txq->port, txq);
3405 
3406         ddi_taskq_dispatch(sc->tq[eq->tx_chan], tx_reclaim_task,
3407                 (void *)txq, DDI_NOSLEEP);
3408 
3409         return (0);
3410 }
3411 
3412 static int
3413 handle_fw_rpl(struct sge_iq *iq, const struct rss_header *rss, mblk_t *m)
3414 {
3415         struct adapter *sc = iq->adapter;
3416         const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
3417 
3418         ASSERT(m == NULL);
3419 
3420         if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
3421                 const struct rss_header *rss2;
3422 
3423                 rss2 = (const struct rss_header *)&cpl->data[0];
3424                 return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
3425         }
3426         return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
3427 }
3428 
3429 int
3430 t4_alloc_tx_maps(struct adapter *sc, struct tx_maps *txmaps, int count,
3431     int flags)
3432 {
3433         int i, rc;
3434 
3435         txmaps->map_total =  count;
3436         txmaps->map_avail = txmaps->map_cidx = txmaps->map_pidx = 0;
3437 
3438         txmaps->map =  kmem_zalloc(sizeof (ddi_dma_handle_t) *
3439             txmaps->map_total, flags);
3440 
3441         for (i = 0; i < count; i++) {
3442                 rc = ddi_dma_alloc_handle(sc->dip, &sc->sge.dma_attr_tx,
3443                     DDI_DMA_SLEEP, 0, &txmaps->map[i]);
3444                 if (rc != DDI_SUCCESS) {
3445                         cxgb_printf(sc->dip, CE_WARN,
3446                             "%s: failed to allocate DMA handle (%d)",
3447                             __func__, rc);
3448                         return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
3449                 }
3450                 txmaps->map_avail++;
3451         }
3452 
3453         return (0);
3454 }
3455 
3456 #define KS_UINIT(x)     kstat_named_init(&kstatp->x, #x, KSTAT_DATA_ULONG)
3457 #define KS_CINIT(x)     kstat_named_init(&kstatp->x, #x, KSTAT_DATA_CHAR)
3458 #define KS_U_SET(x, y)  kstatp->x.value.ul = (y)
3459 #define KS_U_FROM(x, y) kstatp->x.value.ul = (y)->x
3460 #define KS_C_SET(x, ...)        \
3461                         (void) snprintf(kstatp->x.value.c, 16,  __VA_ARGS__)
3462 
3463 /*
3464  * cxgbe:X:config
3465  */
3466 struct cxgbe_port_config_kstats {
3467         kstat_named_t idx;
3468         kstat_named_t nrxq;
3469         kstat_named_t ntxq;
3470         kstat_named_t first_rxq;
3471         kstat_named_t first_txq;
3472         kstat_named_t controller;
3473         kstat_named_t factory_mac_address;
3474 };
3475 
3476 /*
3477  * cxgbe:X:info
3478  */
3479 struct cxgbe_port_info_kstats {
3480         kstat_named_t transceiver;
3481         kstat_named_t rx_ovflow0;
3482         kstat_named_t rx_ovflow1;
3483         kstat_named_t rx_ovflow2;
3484         kstat_named_t rx_ovflow3;
3485         kstat_named_t rx_trunc0;
3486         kstat_named_t rx_trunc1;
3487         kstat_named_t rx_trunc2;
3488         kstat_named_t rx_trunc3;
3489         kstat_named_t tx_pause;
3490         kstat_named_t rx_pause;
3491 };
3492 
3493 static kstat_t *
3494 setup_port_config_kstats(struct port_info *pi)
3495 {
3496         kstat_t *ksp;
3497         struct cxgbe_port_config_kstats *kstatp;
3498         int ndata;
3499         dev_info_t *pdip = ddi_get_parent(pi->dip);
3500         uint8_t *ma = &pi->hw_addr[0];
3501 
3502         ndata = sizeof (struct cxgbe_port_config_kstats) /
3503             sizeof (kstat_named_t);
3504 
3505         ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), "config",
3506             "net", KSTAT_TYPE_NAMED, ndata, 0);
3507         if (ksp == NULL) {
3508                 cxgb_printf(pi->dip, CE_WARN, "failed to initialize kstats.");
3509                 return (NULL);
3510         }
3511 
3512         kstatp = (struct cxgbe_port_config_kstats *)ksp->ks_data;
3513 
3514         KS_UINIT(idx);
3515         KS_UINIT(nrxq);
3516         KS_UINIT(ntxq);
3517         KS_UINIT(first_rxq);
3518         KS_UINIT(first_txq);
3519         KS_CINIT(controller);
3520         KS_CINIT(factory_mac_address);
3521 
3522         KS_U_SET(idx, pi->port_id);
3523         KS_U_SET(nrxq, pi->nrxq);
3524         KS_U_SET(ntxq, pi->ntxq);
3525         KS_U_SET(first_rxq, pi->first_rxq);
3526         KS_U_SET(first_txq, pi->first_txq);
3527         KS_C_SET(controller, "%s%d", ddi_driver_name(pdip),
3528             ddi_get_instance(pdip));
3529         KS_C_SET(factory_mac_address, "%02X%02X%02X%02X%02X%02X",
3530             ma[0], ma[1], ma[2], ma[3], ma[4], ma[5]);
3531 
3532         /* Do NOT set ksp->ks_update.  These kstats do not change. */
3533 
3534         /* Install the kstat */
3535         ksp->ks_private = (void *)pi;
3536         kstat_install(ksp);
3537 
3538         return (ksp);
3539 }
3540 
3541 static kstat_t *
3542 setup_port_info_kstats(struct port_info *pi)
3543 {
3544         kstat_t *ksp;
3545         struct cxgbe_port_info_kstats *kstatp;
3546         int ndata;
3547 
3548         ndata = sizeof (struct cxgbe_port_info_kstats) / sizeof (kstat_named_t);
3549 
3550         ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), "info",
3551             "net", KSTAT_TYPE_NAMED, ndata, 0);
3552         if (ksp == NULL) {
3553                 cxgb_printf(pi->dip, CE_WARN, "failed to initialize kstats.");
3554                 return (NULL);
3555         }
3556 
3557         kstatp = (struct cxgbe_port_info_kstats *)ksp->ks_data;
3558 
3559         KS_CINIT(transceiver);
3560         KS_UINIT(rx_ovflow0);
3561         KS_UINIT(rx_ovflow1);
3562         KS_UINIT(rx_ovflow2);
3563         KS_UINIT(rx_ovflow3);
3564         KS_UINIT(rx_trunc0);
3565         KS_UINIT(rx_trunc1);
3566         KS_UINIT(rx_trunc2);
3567         KS_UINIT(rx_trunc3);
3568         KS_UINIT(tx_pause);
3569         KS_UINIT(rx_pause);
3570 
3571         /* Install the kstat */
3572         ksp->ks_update = update_port_info_kstats;
3573         ksp->ks_private = (void *)pi;
3574         kstat_install(ksp);
3575 
3576         return (ksp);
3577 }
3578 
3579 static int
3580 update_port_info_kstats(kstat_t *ksp, int rw)
3581 {
3582         struct cxgbe_port_info_kstats *kstatp =
3583             (struct cxgbe_port_info_kstats *)ksp->ks_data;
3584         struct port_info *pi = ksp->ks_private;
3585         static const char *mod_str[] = { NULL, "LR", "SR", "ER", "TWINAX",
3586             "active TWINAX", "LRM" };
3587         uint32_t bgmap;
3588 
3589         if (rw == KSTAT_WRITE)
3590                 return (0);
3591 
3592         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
3593                 KS_C_SET(transceiver, "unplugged");
3594         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
3595                 KS_C_SET(transceiver, "unknown");
3596         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
3597                 KS_C_SET(transceiver, "unsupported");
3598         else if (pi->mod_type > 0 && pi->mod_type < ARRAY_SIZE(mod_str))
3599                 KS_C_SET(transceiver, "%s", mod_str[pi->mod_type]);
3600         else
3601                 KS_C_SET(transceiver, "type %d", pi->mod_type);
3602 
3603 #define GET_STAT(name) t4_read_reg64(pi->adapter, \
3604             PORT_REG(pi->port_id, A_MPS_PORT_STAT_##name##_L))
3605 #define GET_STAT_COM(name) t4_read_reg64(pi->adapter, \
3606             A_MPS_STAT_##name##_L)
3607 
3608         bgmap = G_NUMPORTS(t4_read_reg(pi->adapter, A_MPS_CMN_CTL));
3609         if (bgmap == 0)
3610                 bgmap = (pi->port_id == 0) ? 0xf : 0;
3611         else if (bgmap == 1)
3612                 bgmap = (pi->port_id < 2) ? (3 << (2 * pi->port_id)) : 0;
3613         else
3614                 bgmap = 1;
3615 
3616         KS_U_SET(rx_ovflow0, (bgmap & 1) ?
3617             GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0);
3618         KS_U_SET(rx_ovflow1, (bgmap & 2) ?
3619             GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0);
3620         KS_U_SET(rx_ovflow2, (bgmap & 4) ?
3621             GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0);
3622         KS_U_SET(rx_ovflow3, (bgmap & 8) ?
3623             GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0);
3624         KS_U_SET(rx_trunc0,  (bgmap & 1) ?
3625             GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0);
3626         KS_U_SET(rx_trunc1,  (bgmap & 2) ?
3627             GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0);
3628         KS_U_SET(rx_trunc2,  (bgmap & 4) ?
3629             GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0);
3630         KS_U_SET(rx_trunc3,  (bgmap & 8) ?
3631             GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0);
3632 
3633         KS_U_SET(tx_pause, GET_STAT(TX_PORT_PAUSE));
3634         KS_U_SET(rx_pause, GET_STAT(RX_PORT_PAUSE));
3635 
3636         return (0);
3637 
3638 }
3639 
3640 /*
3641  * cxgbe:X:rxqY
3642  */
3643 struct rxq_kstats {
3644         kstat_named_t rxcsum;
3645         kstat_named_t rxpkts;
3646         kstat_named_t rxbytes;
3647         kstat_named_t nomem;
3648 };
3649 
3650 static kstat_t *
3651 setup_rxq_kstats(struct port_info *pi, struct sge_rxq *rxq, int idx)
3652 {
3653         struct kstat *ksp;
3654         struct rxq_kstats *kstatp;
3655         int ndata;
3656         char str[16];
3657 
3658         ndata = sizeof (struct rxq_kstats) / sizeof (kstat_named_t);
3659         (void) snprintf(str, sizeof (str), "rxq%u", idx);
3660 
3661         ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), str, "rxq",
3662             KSTAT_TYPE_NAMED, ndata, 0);
3663         if (ksp == NULL) {
3664                 cxgb_printf(pi->dip, CE_WARN,
3665                     "%s: failed to initialize rxq kstats for queue %d.",
3666                     __func__, idx);
3667                 return (NULL);
3668         }
3669 
3670         kstatp = (struct rxq_kstats *)ksp->ks_data;
3671 
3672         KS_UINIT(rxcsum);
3673         KS_UINIT(rxpkts);
3674         KS_UINIT(rxbytes);
3675         KS_UINIT(nomem);
3676 
3677         ksp->ks_update = update_rxq_kstats;
3678         ksp->ks_private = (void *)rxq;
3679         kstat_install(ksp);
3680 
3681         return (ksp);
3682 }
3683 
3684 static int
3685 update_rxq_kstats(kstat_t *ksp, int rw)
3686 {
3687         struct rxq_kstats *kstatp = (struct rxq_kstats *)ksp->ks_data;
3688         struct sge_rxq *rxq = ksp->ks_private;
3689 
3690         if (rw == KSTAT_WRITE)
3691                 return (0);
3692 
3693         KS_U_FROM(rxcsum, rxq);
3694         KS_U_FROM(rxpkts, rxq);
3695         KS_U_FROM(rxbytes, rxq);
3696         KS_U_FROM(nomem, rxq);
3697 
3698         return (0);
3699 }
3700 
3701 /*
3702  * cxgbe:X:txqY
3703  */
3704 struct txq_kstats {
3705         kstat_named_t txcsum;
3706         kstat_named_t tso_wrs;
3707         kstat_named_t imm_wrs;
3708         kstat_named_t sgl_wrs;
3709         kstat_named_t txpkt_wrs;
3710         kstat_named_t txpkts_wrs;
3711         kstat_named_t txpkts_pkts;
3712         kstat_named_t txb_used;
3713         kstat_named_t hdl_used;
3714         kstat_named_t txb_full;
3715         kstat_named_t dma_hdl_failed;
3716         kstat_named_t dma_map_failed;
3717         kstat_named_t qfull;
3718         kstat_named_t qflush;
3719         kstat_named_t pullup_early;
3720         kstat_named_t pullup_late;
3721         kstat_named_t pullup_failed;
3722 };
3723 
3724 static kstat_t *
3725 setup_txq_kstats(struct port_info *pi, struct sge_txq *txq, int idx)
3726 {
3727         struct kstat *ksp;
3728         struct txq_kstats *kstatp;
3729         int ndata;
3730         char str[16];
3731 
3732         ndata = sizeof (struct txq_kstats) / sizeof (kstat_named_t);
3733         (void) snprintf(str, sizeof (str), "txq%u", idx);
3734 
3735         ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), str, "txq",
3736             KSTAT_TYPE_NAMED, ndata, 0);
3737         if (ksp == NULL) {
3738                 cxgb_printf(pi->dip, CE_WARN,
3739                     "%s: failed to initialize txq kstats for queue %d.",
3740                     __func__, idx);
3741                 return (NULL);
3742         }
3743 
3744         kstatp = (struct txq_kstats *)ksp->ks_data;
3745 
3746         KS_UINIT(txcsum);
3747         KS_UINIT(tso_wrs);
3748         KS_UINIT(imm_wrs);
3749         KS_UINIT(sgl_wrs);
3750         KS_UINIT(txpkt_wrs);
3751         KS_UINIT(txpkts_wrs);
3752         KS_UINIT(txpkts_pkts);
3753         KS_UINIT(txb_used);
3754         KS_UINIT(hdl_used);
3755         KS_UINIT(txb_full);
3756         KS_UINIT(dma_hdl_failed);
3757         KS_UINIT(dma_map_failed);
3758         KS_UINIT(qfull);
3759         KS_UINIT(qflush);
3760         KS_UINIT(pullup_early);
3761         KS_UINIT(pullup_late);
3762         KS_UINIT(pullup_failed);
3763 
3764         ksp->ks_update = update_txq_kstats;
3765         ksp->ks_private = (void *)txq;
3766         kstat_install(ksp);
3767 
3768         return (ksp);
3769 }
3770 
3771 static int
3772 update_txq_kstats(kstat_t *ksp, int rw)
3773 {
3774         struct txq_kstats *kstatp = (struct txq_kstats *)ksp->ks_data;
3775         struct sge_txq *txq = ksp->ks_private;
3776 
3777         if (rw == KSTAT_WRITE)
3778                 return (0);
3779 
3780         KS_U_FROM(txcsum, txq);
3781         KS_U_FROM(tso_wrs, txq);
3782         KS_U_FROM(imm_wrs, txq);
3783         KS_U_FROM(sgl_wrs, txq);
3784         KS_U_FROM(txpkt_wrs, txq);
3785         KS_U_FROM(txpkts_wrs, txq);
3786         KS_U_FROM(txpkts_pkts, txq);
3787         KS_U_FROM(txb_used, txq);
3788         KS_U_FROM(hdl_used, txq);
3789         KS_U_FROM(txb_full, txq);
3790         KS_U_FROM(dma_hdl_failed, txq);
3791         KS_U_FROM(dma_map_failed, txq);
3792         KS_U_FROM(qfull, txq);
3793         KS_U_FROM(qflush, txq);
3794         KS_U_FROM(pullup_early, txq);
3795         KS_U_FROM(pullup_late, txq);
3796         KS_U_FROM(pullup_failed, txq);
3797 
3798         return (0);
3799 }