1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * This file is part of the Chelsio T4 support code. 14 * 15 * Copyright (C) 2010-2013 Chelsio Communications. All rights reserved. 16 * 17 * This program is distributed in the hope that it will be useful, but WITHOUT 18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 19 * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this 20 * release for licensing terms and conditions. 21 */ 22 23 #include <sys/ddi.h> 24 #include <sys/sunddi.h> 25 #include <sys/sunndi.h> 26 #include <sys/atomic.h> 27 #include <sys/dlpi.h> 28 #include <sys/pattr.h> 29 #include <sys/strsubr.h> 30 #include <sys/stream.h> 31 #include <sys/strsun.h> 32 #include <inet/ip.h> 33 #include <inet/tcp.h> 34 35 #include "version.h" 36 #include "common/common.h" 37 #include "common/t4_msg.h" 38 #include "common/t4_regs.h" 39 #include "common/t4_regs_values.h" 40 41 /* TODO: Tune. */ 42 int rx_buf_size = 8192; 43 int tx_copy_threshold = 256; 44 uint16_t rx_copy_threshold = 256; 45 46 /* Used to track coalesced tx work request */ 47 struct txpkts { 48 mblk_t *tail; /* head is in the software descriptor */ 49 uint64_t *flitp; /* ptr to flit where next pkt should start */ 50 uint8_t npkt; /* # of packets in this work request */ 51 uint8_t nflits; /* # of flits used by this work request */ 52 uint16_t plen; /* total payload (sum of all packets) */ 53 }; 54 55 /* All information needed to tx a frame */ 56 struct txinfo { 57 uint32_t len; /* Total length of frame */ 58 uint32_t flags; /* Checksum and LSO flags */ 59 uint32_t mss; /* MSS for LSO */ 60 uint8_t nsegs; /* # of segments in the SGL, 0 means imm. tx */ 61 uint8_t nflits; /* # of flits needed for the SGL */ 62 uint8_t hdls_used; /* # of DMA handles used */ 63 uint32_t txb_used; /* txb_space used */ 64 struct ulptx_sgl sgl __attribute__((aligned(8))); 65 struct ulptx_sge_pair reserved[TX_SGL_SEGS / 2]; 66 }; 67 68 static int service_iq(struct sge_iq *iq, int budget); 69 static inline void init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, 70 int8_t pktc_idx, int qsize, uint8_t esize); 71 static inline void init_fl(struct sge_fl *fl, uint16_t qsize); 72 static inline void init_eq(struct adapter *sc, struct sge_eq *eq, 73 uint16_t eqtype, uint16_t qsize,uint8_t tx_chan, uint16_t iqid); 74 static int alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, 75 struct sge_fl *fl, int intr_idx, int cong); 76 static int free_iq_fl(struct port_info *pi, struct sge_iq *iq, 77 struct sge_fl *fl); 78 static int alloc_fwq(struct adapter *sc); 79 static int free_fwq(struct adapter *sc); 80 #ifdef TCP_OFFLOAD_ENABLE 81 static int alloc_mgmtq(struct adapter *sc); 82 #endif 83 static int alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, 84 int i); 85 static int free_rxq(struct port_info *pi, struct sge_rxq *rxq); 86 #ifdef TCP_OFFLOAD_ENABLE 87 static int alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq, 88 int intr_idx); 89 static int free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq); 90 #endif 91 static int ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq); 92 static int eth_eq_alloc(struct adapter *sc, struct port_info *pi, 93 struct sge_eq *eq); 94 #ifdef TCP_OFFLOAD_ENABLE 95 static int ofld_eq_alloc(struct adapter *sc, struct port_info *pi, 96 struct sge_eq *eq); 97 #endif 98 static int alloc_eq(struct adapter *sc, struct port_info *pi, 99 struct sge_eq *eq); 100 static int free_eq(struct adapter *sc, struct sge_eq *eq); 101 #ifdef TCP_OFFLOAD_ENABLE 102 static int alloc_wrq(struct adapter *sc, struct port_info *pi, 103 struct sge_wrq *wrq, int idx); 104 static int free_wrq(struct adapter *sc, struct sge_wrq *wrq); 105 #endif 106 static int alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx); 107 static int free_txq(struct port_info *pi, struct sge_txq *txq); 108 static int alloc_dma_memory(struct adapter *sc, size_t len, int flags, 109 ddi_device_acc_attr_t *acc_attr, ddi_dma_attr_t *dma_attr, 110 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba, 111 caddr_t *pva); 112 static int free_dma_memory(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl); 113 static int alloc_desc_ring(struct adapter *sc, size_t len, int rw, 114 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba, 115 caddr_t *pva); 116 static int free_desc_ring(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl); 117 static int alloc_tx_copybuffer(struct adapter *sc, size_t len, 118 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba, 119 caddr_t *pva); 120 static inline bool is_new_response(const struct sge_iq *iq, 121 struct rsp_ctrl **ctrl); 122 static inline void iq_next(struct sge_iq *iq); 123 static int refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs); 124 static void refill_sfl(void *arg); 125 static void add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl); 126 static void free_fl_bufs(struct sge_fl *fl); 127 static mblk_t *get_fl_payload(struct adapter *sc, struct sge_fl *fl, 128 uint32_t len_newbuf, int *fl_bufs_used); 129 static int get_frame_txinfo(struct sge_txq *txq, mblk_t **fp, 130 struct txinfo *txinfo, int sgl_only); 131 static inline int fits_in_txb(struct sge_txq *txq, int len, int *waste); 132 static inline int copy_into_txb(struct sge_txq *txq, mblk_t *m, int len, 133 struct txinfo *txinfo); 134 static inline void add_seg(struct txinfo *txinfo, uint64_t ba, uint32_t len); 135 static inline int add_mblk(struct sge_txq *txq, struct txinfo *txinfo, 136 mblk_t *m, int len); 137 static void free_txinfo_resources(struct sge_txq *txq, struct txinfo *txinfo); 138 static int add_to_txpkts(struct sge_txq *txq, struct txpkts *txpkts, mblk_t *m, 139 struct txinfo *txinfo); 140 static void write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts); 141 static int write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, mblk_t *m, 142 struct txinfo *txinfo); 143 static inline void write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq, 144 struct txpkts *txpkts, struct txinfo *txinfo); 145 static inline void copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, 146 int len); 147 static inline void ring_tx_db(struct adapter *sc, struct sge_eq *eq); 148 static int reclaim_tx_descs(struct sge_txq *txq, int howmany); 149 static void write_txqflush_wr(struct sge_txq *txq); 150 static int t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, 151 mblk_t *m); 152 static inline void ring_fl_db(struct adapter *sc, struct sge_fl *fl); 153 static kstat_t *setup_port_config_kstats(struct port_info *pi); 154 static kstat_t *setup_port_info_kstats(struct port_info *pi); 155 static kstat_t *setup_rxq_kstats(struct port_info *pi, struct sge_rxq *rxq, 156 int idx); 157 static int update_rxq_kstats(kstat_t *ksp, int rw); 158 static int update_port_info_kstats(kstat_t *ksp, int rw); 159 static kstat_t *setup_txq_kstats(struct port_info *pi, struct sge_txq *txq, 160 int idx); 161 static int update_txq_kstats(kstat_t *ksp, int rw); 162 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *, 163 mblk_t *); 164 static int handle_fw_rpl(struct sge_iq *iq, const struct rss_header *rss, 165 mblk_t *m); 166 167 static inline int 168 reclaimable(struct sge_eq *eq) 169 { 170 unsigned int cidx; 171 172 cidx = eq->spg->cidx; /* stable snapshot */ 173 cidx = be16_to_cpu(cidx); 174 175 if (cidx >= eq->cidx) 176 return (cidx - eq->cidx); 177 else 178 return (cidx + eq->cap - eq->cidx); 179 } 180 181 void 182 t4_sge_init(struct adapter *sc) 183 { 184 struct driver_properties *p = &sc->props; 185 ddi_dma_attr_t *dma_attr; 186 ddi_device_acc_attr_t *acc_attr; 187 uint32_t sge_control, sge_conm_ctrl; 188 int egress_threshold; 189 190 /* 191 * Device access and DMA attributes for descriptor rings 192 */ 193 acc_attr = &sc->sge.acc_attr_desc; 194 acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0; 195 acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC; 196 acc_attr->devacc_attr_dataorder = DDI_STRICTORDER_ACC; 197 198 dma_attr = &sc->sge.dma_attr_desc; 199 dma_attr->dma_attr_version = DMA_ATTR_V0; 200 dma_attr->dma_attr_addr_lo = 0; 201 dma_attr->dma_attr_addr_hi = UINT64_MAX; 202 dma_attr->dma_attr_count_max = UINT64_MAX; 203 dma_attr->dma_attr_align = 512; 204 dma_attr->dma_attr_burstsizes = 0xfff; 205 dma_attr->dma_attr_minxfer = 1; 206 dma_attr->dma_attr_maxxfer = UINT64_MAX; 207 dma_attr->dma_attr_seg = UINT64_MAX; 208 dma_attr->dma_attr_sgllen = 1; 209 dma_attr->dma_attr_granular = 1; 210 dma_attr->dma_attr_flags = 0; 211 212 /* 213 * Device access and DMA attributes for tx buffers 214 */ 215 acc_attr = &sc->sge.acc_attr_tx; 216 acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0; 217 acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC; 218 219 dma_attr = &sc->sge.dma_attr_tx; 220 dma_attr->dma_attr_version = DMA_ATTR_V0; 221 dma_attr->dma_attr_addr_lo = 0; 222 dma_attr->dma_attr_addr_hi = UINT64_MAX; 223 dma_attr->dma_attr_count_max = UINT64_MAX; 224 dma_attr->dma_attr_align = 1; 225 dma_attr->dma_attr_burstsizes = 0xfff; 226 dma_attr->dma_attr_minxfer = 1; 227 dma_attr->dma_attr_maxxfer = UINT64_MAX; 228 dma_attr->dma_attr_seg = UINT64_MAX; 229 dma_attr->dma_attr_sgllen = TX_SGL_SEGS; 230 dma_attr->dma_attr_granular = 1; 231 dma_attr->dma_attr_flags = 0; 232 233 /* 234 * Ingress Padding Boundary and Egress Status Page Size are set up by 235 * t4_fixup_host_params(). 236 */ 237 sge_control = t4_read_reg(sc, A_SGE_CONTROL); 238 sc->sge.pktshift = G_PKTSHIFT(sge_control); 239 sc->sge.stat_len = (sge_control & F_EGRSTATUSPAGESIZE) ? 128 : 64; 240 241 /* t4_nex uses FLM packed mode */ 242 sc->sge.fl_align = t4_fl_pkt_align(sc, true); 243 244 /* 245 * Device access and DMA attributes for rx buffers 246 */ 247 sc->sge.rxb_params.dip = sc->dip; 248 sc->sge.rxb_params.buf_size = rx_buf_size; 249 250 acc_attr = &sc->sge.rxb_params.acc_attr_rx; 251 acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0; 252 acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC; 253 254 dma_attr = &sc->sge.rxb_params.dma_attr_rx; 255 dma_attr->dma_attr_version = DMA_ATTR_V0; 256 dma_attr->dma_attr_addr_lo = 0; 257 dma_attr->dma_attr_addr_hi = UINT64_MAX; 258 dma_attr->dma_attr_count_max = UINT64_MAX; 259 /* 260 * Low 4 bits of an rx buffer address have a special meaning to the SGE 261 * and an rx buf cannot have an address with any of these bits set. 262 * FL_ALIGN is >= 32 so we're sure things are ok. 263 */ 264 dma_attr->dma_attr_align = sc->sge.fl_align; 265 dma_attr->dma_attr_burstsizes = 0xfff; 266 dma_attr->dma_attr_minxfer = 1; 267 dma_attr->dma_attr_maxxfer = UINT64_MAX; 268 dma_attr->dma_attr_seg = UINT64_MAX; 269 dma_attr->dma_attr_sgllen = 1; 270 dma_attr->dma_attr_granular = 1; 271 dma_attr->dma_attr_flags = 0; 272 273 sc->sge.rxbuf_cache = rxbuf_cache_create(&sc->sge.rxb_params); 274 275 /* 276 * A FL with <= fl_starve_thres buffers is starving and a periodic 277 * timer will attempt to refill it. This needs to be larger than the 278 * SGE's Egress Congestion Threshold. If it isn't, then we can get 279 * stuck waiting for new packets while the SGE is waiting for us to 280 * give it more Free List entries. (Note that the SGE's Egress 281 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 282 * there was only a single field to control this. For T5 there's the 283 * original field which now only applies to Unpacked Mode Free List 284 * buffers and a new field which only applies to Packed Mode Free List 285 * buffers. 286 */ 287 288 sge_conm_ctrl = t4_read_reg(sc, A_SGE_CONM_CTRL); 289 switch (CHELSIO_CHIP_VERSION(sc->params.chip)) { 290 case CHELSIO_T4: 291 egress_threshold = G_EGRTHRESHOLD(sge_conm_ctrl); 292 break; 293 case CHELSIO_T5: 294 egress_threshold = G_EGRTHRESHOLDPACKING(sge_conm_ctrl); 295 break; 296 case CHELSIO_T6: 297 default: 298 egress_threshold = G_T6_EGRTHRESHOLDPACKING(sge_conm_ctrl); 299 } 300 sc->sge.fl_starve_threshold = 2*egress_threshold + 1; 301 302 t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, rx_buf_size); 303 304 t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, 305 V_THRESHOLD_0(p->counter_val[0]) | 306 V_THRESHOLD_1(p->counter_val[1]) | 307 V_THRESHOLD_2(p->counter_val[2]) | 308 V_THRESHOLD_3(p->counter_val[3])); 309 310 t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, 311 V_TIMERVALUE0(us_to_core_ticks(sc, p->timer_val[0])) | 312 V_TIMERVALUE1(us_to_core_ticks(sc, p->timer_val[1]))); 313 t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, 314 V_TIMERVALUE2(us_to_core_ticks(sc, p->timer_val[2])) | 315 V_TIMERVALUE3(us_to_core_ticks(sc, p->timer_val[3]))); 316 t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, 317 V_TIMERVALUE4(us_to_core_ticks(sc, p->timer_val[4])) | 318 V_TIMERVALUE5(us_to_core_ticks(sc, p->timer_val[5]))); 319 320 (void) t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_rpl); 321 (void) t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_rpl); 322 (void) t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update); 323 (void) t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx); 324 (void) t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, 325 t4_handle_fw_rpl); 326 } 327 328 /* 329 * Allocate and initialize the firmware event queue and the forwarded interrupt 330 * queues, if any. The adapter owns all these queues as they are not associated 331 * with any particular port. 332 * 333 * Returns errno on failure. Resources allocated up to that point may still be 334 * allocated. Caller is responsible for cleanup in case this function fails. 335 */ 336 int 337 t4_setup_adapter_queues(struct adapter *sc) 338 { 339 int rc; 340 341 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 342 343 /* 344 * Firmware event queue 345 */ 346 rc = alloc_fwq(sc); 347 if (rc != 0) 348 return (rc); 349 350 #ifdef TCP_OFFLOAD_ENABLE 351 /* 352 * Management queue. This is just a control queue that uses the fwq as 353 * its associated iq. 354 */ 355 rc = alloc_mgmtq(sc); 356 #endif 357 358 return (rc); 359 } 360 361 /* 362 * Idempotent 363 */ 364 int 365 t4_teardown_adapter_queues(struct adapter *sc) 366 { 367 368 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 369 370 (void) free_fwq(sc); 371 372 return (0); 373 } 374 375 static inline int 376 first_vector(struct port_info *pi) 377 { 378 struct adapter *sc = pi->adapter; 379 int rc = T4_EXTRA_INTR, i; 380 381 if (sc->intr_count == 1) 382 return (0); 383 384 for_each_port(sc, i) { 385 struct port_info *p = sc->port[i]; 386 387 if (i == pi->port_id) 388 break; 389 390 #ifdef TCP_OFFLOAD_ENABLE 391 if (!(sc->flags & INTR_FWD)) 392 rc += p->nrxq + p->nofldrxq; 393 else 394 rc += max(p->nrxq, p->nofldrxq); 395 #else 396 /* 397 * Not compiled with offload support and intr_count > 1. Only 398 * NIC queues exist and they'd better be taking direct 399 * interrupts. 400 */ 401 ASSERT(!(sc->flags & INTR_FWD)); 402 rc += p->nrxq; 403 #endif 404 } 405 return (rc); 406 } 407 408 /* 409 * Given an arbitrary "index," come up with an iq that can be used by other 410 * queues (of this port) for interrupt forwarding, SGE egress updates, etc. 411 * The iq returned is guaranteed to be something that takes direct interrupts. 412 */ 413 static struct sge_iq * 414 port_intr_iq(struct port_info *pi, int idx) 415 { 416 struct adapter *sc = pi->adapter; 417 struct sge *s = &sc->sge; 418 struct sge_iq *iq = NULL; 419 420 if (sc->intr_count == 1) 421 return (&sc->sge.fwq); 422 423 #ifdef TCP_OFFLOAD_ENABLE 424 if (!(sc->flags & INTR_FWD)) { 425 idx %= pi->nrxq + pi->nofldrxq; 426 427 if (idx >= pi->nrxq) { 428 idx -= pi->nrxq; 429 iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq; 430 } else 431 iq = &s->rxq[pi->first_rxq + idx].iq; 432 433 } else { 434 idx %= max(pi->nrxq, pi->nofldrxq); 435 436 if (pi->nrxq >= pi->nofldrxq) 437 iq = &s->rxq[pi->first_rxq + idx].iq; 438 else 439 iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq; 440 } 441 #else 442 /* 443 * Not compiled with offload support and intr_count > 1. Only NIC 444 * queues exist and they'd better be taking direct interrupts. 445 */ 446 ASSERT(!(sc->flags & INTR_FWD)); 447 448 idx %= pi->nrxq; 449 iq = &s->rxq[pi->first_rxq + idx].iq; 450 #endif 451 452 return (iq); 453 } 454 455 int 456 t4_setup_port_queues(struct port_info *pi) 457 { 458 int rc = 0, i, intr_idx, j; 459 struct sge_rxq *rxq; 460 struct sge_txq *txq; 461 #ifdef TCP_OFFLOAD_ENABLE 462 int iqid; 463 struct sge_wrq *ctrlq; 464 struct sge_ofld_rxq *ofld_rxq; 465 struct sge_wrq *ofld_txq; 466 #endif 467 struct adapter *sc = pi->adapter; 468 struct driver_properties *p = &sc->props; 469 470 pi->ksp_config = setup_port_config_kstats(pi); 471 pi->ksp_info = setup_port_info_kstats(pi); 472 473 /* Interrupt vector to start from (when using multiple vectors) */ 474 intr_idx = first_vector(pi); 475 476 /* 477 * First pass over all rx queues (NIC and TOE): 478 * a) initialize iq and fl 479 * b) allocate queue iff it will take direct interrupts. 480 */ 481 482 for_each_rxq(pi, i, rxq) { 483 484 init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, p->qsize_rxq, 485 RX_IQ_ESIZE); 486 487 init_fl(&rxq->fl, p->qsize_rxq / 8); /* 8 bufs in each entry */ 488 489 if ((!(sc->flags & INTR_FWD)) 490 #ifdef TCP_OFFLOAD_ENABLE 491 || (sc->intr_count > 1 && pi->nrxq >= pi->nofldrxq) 492 #else 493 || (sc->intr_count > 1 && pi->nrxq) 494 #endif 495 ) { 496 rxq->iq.flags |= IQ_INTR; 497 rc = alloc_rxq(pi, rxq, intr_idx, i); 498 if (rc != 0) 499 goto done; 500 intr_idx++; 501 } 502 503 } 504 505 #ifdef TCP_OFFLOAD_ENABLE 506 for_each_ofld_rxq(pi, i, ofld_rxq) { 507 508 init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, 509 p->qsize_rxq, RX_IQ_ESIZE); 510 511 init_fl(&ofld_rxq->fl, p->qsize_rxq / 8); 512 513 if (!(sc->flags & INTR_FWD) || 514 (sc->intr_count > 1 && pi->nofldrxq > pi->nrxq)) { 515 ofld_rxq->iq.flags = IQ_INTR; 516 rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx); 517 if (rc != 0) 518 goto done; 519 520 intr_idx++; 521 } 522 } 523 #endif 524 525 /* 526 * Second pass over all rx queues (NIC and TOE). The queues forwarding 527 * their interrupts are allocated now. 528 */ 529 j = 0; 530 for_each_rxq(pi, i, rxq) { 531 if (rxq->iq.flags & IQ_INTR) 532 continue; 533 534 intr_idx = port_intr_iq(pi, j)->abs_id; 535 536 rc = alloc_rxq(pi, rxq, intr_idx, i); 537 if (rc != 0) 538 goto done; 539 j++; 540 } 541 542 #ifdef TCP_OFFLOAD_ENABLE 543 for_each_ofld_rxq(pi, i, ofld_rxq) { 544 if (ofld_rxq->iq.flags & IQ_INTR) 545 continue; 546 547 intr_idx = port_intr_iq(pi, j)->abs_id; 548 rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx); 549 if (rc != 0) 550 goto done; 551 j++; 552 } 553 #endif 554 /* 555 * Now the tx queues. Only one pass needed. 556 */ 557 j = 0; 558 for_each_txq(pi, i, txq) { 559 uint16_t iqid; 560 561 iqid = port_intr_iq(pi, j)->cntxt_id; 562 init_eq(sc, &txq->eq, EQ_ETH, p->qsize_txq, pi->tx_chan, iqid); 563 rc = alloc_txq(pi, txq, i); 564 if (rc != 0) 565 goto done; 566 } 567 568 #ifdef TCP_OFFLOAD_ENABLE 569 for_each_ofld_txq(pi, i, ofld_txq) { 570 uint16_t iqid; 571 572 iqid = port_intr_iq(pi, j)->cntxt_id; 573 init_eq(sc, &ofld_txq->eq, EQ_OFLD, p->qsize_txq, pi->tx_chan, 574 iqid); 575 rc = alloc_wrq(sc, pi, ofld_txq, i); 576 if (rc != 0) 577 goto done; 578 } 579 580 /* 581 * Finally, the control queue. 582 */ 583 ctrlq = &sc->sge.ctrlq[pi->port_id]; 584 iqid = port_intr_iq(pi, 0)->cntxt_id; 585 init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid); 586 rc = alloc_wrq(sc, pi, ctrlq, 0); 587 #endif 588 589 done: 590 if (rc != 0) 591 (void) t4_teardown_port_queues(pi); 592 593 return (rc); 594 } 595 596 /* 597 * Idempotent 598 */ 599 int 600 t4_teardown_port_queues(struct port_info *pi) 601 { 602 int i; 603 struct sge_rxq *rxq; 604 struct sge_txq *txq; 605 #ifdef TCP_OFFLOAD_ENABLE 606 struct adapter *sc = pi->adapter; 607 struct sge_ofld_rxq *ofld_rxq; 608 struct sge_wrq *ofld_txq; 609 #endif 610 611 if (pi->ksp_config != NULL) { 612 kstat_delete(pi->ksp_config); 613 pi->ksp_config = NULL; 614 } 615 if (pi->ksp_info != NULL) { 616 kstat_delete(pi->ksp_info); 617 pi->ksp_info = NULL; 618 } 619 620 #ifdef TCP_OFFLOAD_ENABLE 621 (void) free_wrq(sc, &sc->sge.ctrlq[pi->port_id]); 622 #endif 623 624 for_each_txq(pi, i, txq) { 625 (void) free_txq(pi, txq); 626 } 627 628 #ifdef TCP_OFFLOAD_ENABLE 629 for_each_ofld_txq(pi, i, ofld_txq) { 630 (void) free_wrq(sc, ofld_txq); 631 } 632 633 for_each_ofld_rxq(pi, i, ofld_rxq) { 634 if ((ofld_rxq->iq.flags & IQ_INTR) == 0) 635 (void) free_ofld_rxq(pi, ofld_rxq); 636 } 637 #endif 638 639 for_each_rxq(pi, i, rxq) { 640 if ((rxq->iq.flags & IQ_INTR) == 0) 641 (void) free_rxq(pi, rxq); 642 } 643 644 /* 645 * Then take down the rx queues that take direct interrupts. 646 */ 647 648 for_each_rxq(pi, i, rxq) { 649 if (rxq->iq.flags & IQ_INTR) 650 (void) free_rxq(pi, rxq); 651 } 652 653 #ifdef TCP_OFFLOAD_ENABLE 654 for_each_ofld_rxq(pi, i, ofld_rxq) { 655 if (ofld_rxq->iq.flags & IQ_INTR) 656 (void) free_ofld_rxq(pi, ofld_rxq); 657 } 658 #endif 659 660 return (0); 661 } 662 663 /* Deals with errors and forwarded interrupts */ 664 uint_t 665 t4_intr_all(caddr_t arg1, caddr_t arg2) 666 { 667 668 (void) t4_intr_err(arg1, arg2); 669 (void) t4_intr(arg1, arg2); 670 671 return (DDI_INTR_CLAIMED); 672 } 673 674 static void 675 t4_intr_rx_work(struct sge_iq *iq) 676 { 677 mblk_t *mp = NULL; 678 struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */ 679 RXQ_LOCK(rxq); 680 if (!iq->polling) { 681 mp = t4_ring_rx(rxq, iq->qsize/8); 682 t4_write_reg(iq->adapter, MYPF_REG(A_SGE_PF_GTS), 683 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next)); 684 } 685 RXQ_UNLOCK(rxq); 686 if (mp != NULL) 687 mac_rx_ring(rxq->port->mh, rxq->ring_handle, mp, 688 rxq->ring_gen_num); 689 } 690 691 /* Deals with interrupts on the given ingress queue */ 692 /* ARGSUSED */ 693 uint_t 694 t4_intr(caddr_t arg1, caddr_t arg2) 695 { 696 struct sge_iq *iq = (struct sge_iq *)arg2; 697 int state; 698 699 /* Right now receive polling is only enabled for MSI-X and 700 * when we have enough msi-x vectors i.e no interrupt forwarding. 701 */ 702 if (iq->adapter->props.multi_rings) { 703 t4_intr_rx_work(iq); 704 } else { 705 state = atomic_cas_uint(&iq->state, IQS_IDLE, IQS_BUSY); 706 if (state == IQS_IDLE) { 707 (void) service_iq(iq, 0); 708 (void) atomic_cas_uint(&iq->state, IQS_BUSY, IQS_IDLE); 709 } 710 } 711 return (DDI_INTR_CLAIMED); 712 } 713 714 /* Deals with error interrupts */ 715 /* ARGSUSED */ 716 uint_t 717 t4_intr_err(caddr_t arg1, caddr_t arg2) 718 { 719 /* LINTED: E_BAD_PTR_CAST_ALIGN */ 720 struct adapter *sc = (struct adapter *)arg1; 721 722 t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0); 723 (void) t4_slow_intr_handler(sc); 724 725 return (DDI_INTR_CLAIMED); 726 } 727 728 /* 729 * t4_ring_rx - Process responses from an SGE response queue. 730 * 731 * This function processes responses from an SGE response queue up to the supplied budget. 732 * Responses include received packets as well as control messages from FW 733 * or HW. 734 * It returns a chain of mblks containing the received data, to be 735 * passed up to mac_ring_rx(). 736 */ 737 mblk_t * 738 t4_ring_rx(struct sge_rxq *rxq, int budget) 739 { 740 struct sge_iq *iq = &rxq->iq; 741 struct sge_fl *fl = &rxq->fl; /* Use iff IQ_HAS_FL */ 742 struct adapter *sc = iq->adapter; 743 struct rsp_ctrl *ctrl; 744 const struct rss_header *rss; 745 int ndescs = 0, fl_bufs_used = 0; 746 int rsp_type; 747 uint32_t lq; 748 mblk_t *mblk_head = NULL, **mblk_tail, *m; 749 struct cpl_rx_pkt *cpl; 750 uint32_t received_bytes = 0, pkt_len = 0; 751 bool csum_ok; 752 uint16_t err_vec; 753 754 mblk_tail = &mblk_head; 755 756 while (is_new_response(iq, &ctrl)) { 757 758 membar_consumer(); 759 760 m = NULL; 761 rsp_type = G_RSPD_TYPE(ctrl->u.type_gen); 762 lq = be32_to_cpu(ctrl->pldbuflen_qid); 763 rss = (const void *)iq->cdesc; 764 765 switch (rsp_type) { 766 case X_RSPD_TYPE_FLBUF: 767 768 ASSERT(iq->flags & IQ_HAS_FL); 769 770 if (CPL_RX_PKT == rss->opcode) { 771 cpl = (void *)(rss + 1); 772 pkt_len = be16_to_cpu(cpl->len); 773 774 if (iq->polling && ((received_bytes + pkt_len) > budget)) 775 goto done; 776 777 m = get_fl_payload(sc, fl, lq, &fl_bufs_used); 778 if (m == NULL) { 779 panic("%s: line %d.", __func__, 780 __LINE__); 781 } 782 783 iq->intr_next = iq->intr_params; 784 m->b_rptr += sc->sge.pktshift; 785 if (sc->params.tp.rx_pkt_encap) 786 /* It is enabled only in T6 config file */ 787 err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec)); 788 else 789 err_vec = ntohs(cpl->err_vec); 790 791 csum_ok = cpl->csum_calc && !err_vec; 792 793 /* TODO: what about cpl->ip_frag? */ 794 if (csum_ok && !cpl->ip_frag) { 795 mac_hcksum_set(m, 0, 0, 0, 0xffff, 796 HCK_FULLCKSUM_OK | HCK_FULLCKSUM | 797 HCK_IPV4_HDRCKSUM_OK); 798 rxq->rxcsum++; 799 } 800 rxq->rxpkts++; 801 rxq->rxbytes += pkt_len; 802 received_bytes += pkt_len; 803 804 *mblk_tail = m; 805 mblk_tail = &m->b_next; 806 807 break; 808 } 809 810 m = get_fl_payload(sc, fl, lq, &fl_bufs_used); 811 if (m == NULL) { 812 panic("%s: line %d.", __func__, 813 __LINE__); 814 } 815 /* FALLTHROUGH */ 816 817 case X_RSPD_TYPE_CPL: 818 ASSERT(rss->opcode < NUM_CPL_CMDS); 819 sc->cpl_handler[rss->opcode](iq, rss, m); 820 break; 821 822 default: 823 break; 824 } 825 iq_next(iq); 826 ++ndescs; 827 if (!iq->polling && (ndescs == budget)) 828 break; 829 } 830 831 done: 832 833 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), 834 V_CIDXINC(ndescs) | V_INGRESSQID(iq->cntxt_id) | 835 V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); 836 837 if ((fl_bufs_used > 0) || (iq->flags & IQ_HAS_FL)) { 838 int starved; 839 FL_LOCK(fl); 840 fl->needed += fl_bufs_used; 841 starved = refill_fl(sc, fl, fl->cap / 8); 842 FL_UNLOCK(fl); 843 if (starved) 844 add_fl_to_sfl(sc, fl); 845 } 846 return (mblk_head); 847 } 848 849 /* 850 * Deals with anything and everything on the given ingress queue. 851 */ 852 static int 853 service_iq(struct sge_iq *iq, int budget) 854 { 855 struct sge_iq *q; 856 struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */ 857 struct sge_fl *fl = &rxq->fl; /* Use iff IQ_HAS_FL */ 858 struct adapter *sc = iq->adapter; 859 struct rsp_ctrl *ctrl; 860 const struct rss_header *rss; 861 int ndescs = 0, limit, fl_bufs_used = 0; 862 int rsp_type; 863 uint32_t lq; 864 mblk_t *m; 865 STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql); 866 867 limit = budget ? budget : iq->qsize / 8; 868 869 /* 870 * We always come back and check the descriptor ring for new indirect 871 * interrupts and other responses after running a single handler. 872 */ 873 for (;;) { 874 while (is_new_response(iq, &ctrl)) { 875 876 membar_consumer(); 877 878 m = NULL; 879 rsp_type = G_RSPD_TYPE(ctrl->u.type_gen); 880 lq = be32_to_cpu(ctrl->pldbuflen_qid); 881 rss = (const void *)iq->cdesc; 882 883 switch (rsp_type) { 884 case X_RSPD_TYPE_FLBUF: 885 886 ASSERT(iq->flags & IQ_HAS_FL); 887 888 m = get_fl_payload(sc, fl, lq, &fl_bufs_used); 889 if (m == NULL) { 890 panic("%s: line %d.", __func__, 891 __LINE__); 892 } 893 894 /* FALLTHRU */ 895 case X_RSPD_TYPE_CPL: 896 897 ASSERT(rss->opcode < NUM_CPL_CMDS); 898 sc->cpl_handler[rss->opcode](iq, rss, m); 899 break; 900 901 case X_RSPD_TYPE_INTR: 902 903 /* 904 * Interrupts should be forwarded only to queues 905 * that are not forwarding their interrupts. 906 * This means service_iq can recurse but only 1 907 * level deep. 908 */ 909 ASSERT(budget == 0); 910 911 q = sc->sge.iqmap[lq - sc->sge.iq_start]; 912 if (atomic_cas_uint(&q->state, IQS_IDLE, 913 IQS_BUSY) == IQS_IDLE) { 914 if (service_iq(q, q->qsize / 8) == 0) { 915 (void) atomic_cas_uint( 916 &q->state, IQS_BUSY, 917 IQS_IDLE); 918 } else { 919 STAILQ_INSERT_TAIL(&iql, q, 920 link); 921 } 922 } 923 break; 924 925 default: 926 break; 927 } 928 929 iq_next(iq); 930 if (++ndescs == limit) { 931 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), 932 V_CIDXINC(ndescs) | 933 V_INGRESSQID(iq->cntxt_id) | 934 V_SEINTARM(V_QINTR_TIMER_IDX( 935 X_TIMERREG_UPDATE_CIDX))); 936 ndescs = 0; 937 938 if (fl_bufs_used > 0) { 939 ASSERT(iq->flags & IQ_HAS_FL); 940 FL_LOCK(fl); 941 fl->needed += fl_bufs_used; 942 (void) refill_fl(sc, fl, fl->cap / 8); 943 FL_UNLOCK(fl); 944 fl_bufs_used = 0; 945 } 946 947 if (budget != 0) 948 return (EINPROGRESS); 949 } 950 } 951 952 if (STAILQ_EMPTY(&iql) != 0) 953 break; 954 955 /* 956 * Process the head only, and send it to the back of the list if 957 * it's still not done. 958 */ 959 q = STAILQ_FIRST(&iql); 960 STAILQ_REMOVE_HEAD(&iql, link); 961 if (service_iq(q, q->qsize / 8) == 0) 962 (void) atomic_cas_uint(&q->state, IQS_BUSY, IQS_IDLE); 963 else 964 STAILQ_INSERT_TAIL(&iql, q, link); 965 } 966 967 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) | 968 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next)); 969 970 if (iq->flags & IQ_HAS_FL) { 971 int starved; 972 973 FL_LOCK(fl); 974 fl->needed += fl_bufs_used; 975 starved = refill_fl(sc, fl, fl->cap / 4); 976 FL_UNLOCK(fl); 977 if (starved != 0) 978 add_fl_to_sfl(sc, fl); 979 } 980 981 return (0); 982 } 983 984 #ifdef TCP_OFFLOAD_ENABLE 985 int 986 t4_mgmt_tx(struct adapter *sc, mblk_t *m) 987 { 988 return (t4_wrq_tx(sc, &sc->sge.mgmtq, m)); 989 } 990 991 /* 992 * Doesn't fail. Holds on to work requests it can't send right away. 993 */ 994 int 995 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, mblk_t *m0) 996 { 997 struct sge_eq *eq = &wrq->eq; 998 struct mblk_pair *wr_list = &wrq->wr_list; 999 int can_reclaim; 1000 caddr_t dst; 1001 mblk_t *wr, *next; 1002 1003 TXQ_LOCK_ASSERT_OWNED(wrq); 1004 #ifdef TCP_OFFLOAD_ENABLE 1005 ASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD || 1006 (eq->flags & EQ_TYPEMASK) == EQ_CTRL); 1007 #else 1008 ASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL); 1009 #endif 1010 1011 if (m0 != NULL) { 1012 if (wr_list->head != NULL) 1013 wr_list->tail->b_next = m0; 1014 else 1015 wr_list->head = m0; 1016 while (m0->b_next) 1017 m0 = m0->b_next; 1018 wr_list->tail = m0; 1019 } 1020 1021 can_reclaim = reclaimable(eq); 1022 eq->cidx += can_reclaim; 1023 eq->avail += can_reclaim; 1024 if (eq->cidx >= eq->cap) 1025 eq->cidx -= eq->cap; 1026 1027 for (wr = wr_list->head; wr; wr = next) { 1028 int ndesc, len = 0; 1029 mblk_t *m; 1030 1031 next = wr->b_next; 1032 wr->b_next = NULL; 1033 1034 for (m = wr; m; m = m->b_cont) 1035 len += MBLKL(m); 1036 1037 ASSERT(len > 0 && (len & 0x7) == 0); 1038 ASSERT(len <= SGE_MAX_WR_LEN); 1039 1040 ndesc = howmany(len, EQ_ESIZE); 1041 if (eq->avail < ndesc) { 1042 wr->b_next = next; 1043 wrq->no_desc++; 1044 break; 1045 } 1046 1047 dst = (void *)&eq->desc[eq->pidx]; 1048 for (m = wr; m; m = m->b_cont) 1049 copy_to_txd(eq, (void *)m->b_rptr, &dst, MBLKL(m)); 1050 1051 eq->pidx += ndesc; 1052 eq->avail -= ndesc; 1053 if (eq->pidx >= eq->cap) 1054 eq->pidx -= eq->cap; 1055 1056 eq->pending += ndesc; 1057 if (eq->pending > 16) 1058 ring_tx_db(sc, eq); 1059 1060 wrq->tx_wrs++; 1061 freemsg(wr); 1062 1063 if (eq->avail < 8) { 1064 can_reclaim = reclaimable(eq); 1065 eq->cidx += can_reclaim; 1066 eq->avail += can_reclaim; 1067 if (eq->cidx >= eq->cap) 1068 eq->cidx -= eq->cap; 1069 } 1070 } 1071 1072 if (eq->pending != 0) 1073 ring_tx_db(sc, eq); 1074 1075 if (wr == NULL) 1076 wr_list->head = wr_list->tail = NULL; 1077 else { 1078 wr_list->head = wr; 1079 1080 ASSERT(wr_list->tail->b_next == NULL); 1081 } 1082 1083 return (0); 1084 } 1085 #endif 1086 1087 /* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */ 1088 #define TXPKTS_PKT_HDR ((\ 1089 sizeof (struct ulp_txpkt) + \ 1090 sizeof (struct ulptx_idata) + \ 1091 sizeof (struct cpl_tx_pkt_core)) / 8) 1092 1093 /* Header of a coalesced tx WR, before SGL of first packet (in flits) */ 1094 #define TXPKTS_WR_HDR (\ 1095 sizeof (struct fw_eth_tx_pkts_wr) / 8 + \ 1096 TXPKTS_PKT_HDR) 1097 1098 /* Header of a tx WR, before SGL of first packet (in flits) */ 1099 #define TXPKT_WR_HDR ((\ 1100 sizeof (struct fw_eth_tx_pkt_wr) + \ 1101 sizeof (struct cpl_tx_pkt_core)) / 8) 1102 1103 /* Header of a tx LSO WR, before SGL of first packet (in flits) */ 1104 #define TXPKT_LSO_WR_HDR ((\ 1105 sizeof (struct fw_eth_tx_pkt_wr) + \ 1106 sizeof(struct cpl_tx_pkt_lso_core) + \ 1107 sizeof (struct cpl_tx_pkt_core)) / 8) 1108 1109 mblk_t * 1110 t4_eth_tx(void *arg, mblk_t *frame) 1111 { 1112 struct sge_txq *txq = (struct sge_txq *) arg; 1113 struct port_info *pi = txq->port; 1114 struct adapter *sc = pi->adapter; 1115 struct sge_eq *eq = &txq->eq; 1116 mblk_t *next_frame; 1117 int rc, coalescing; 1118 struct txpkts txpkts; 1119 struct txinfo txinfo; 1120 1121 txpkts.npkt = 0; /* indicates there's nothing in txpkts */ 1122 coalescing = 0; 1123 1124 TXQ_LOCK(txq); 1125 if (eq->avail < 8) 1126 (void) reclaim_tx_descs(txq, 8); 1127 for (; frame; frame = next_frame) { 1128 1129 if (eq->avail < 8) 1130 break; 1131 1132 next_frame = frame->b_next; 1133 frame->b_next = NULL; 1134 1135 if (next_frame != NULL) 1136 coalescing = 1; 1137 1138 rc = get_frame_txinfo(txq, &frame, &txinfo, coalescing); 1139 if (rc != 0) { 1140 if (rc == ENOMEM) { 1141 1142 /* Short of resources, suspend tx */ 1143 1144 frame->b_next = next_frame; 1145 break; 1146 } 1147 1148 /* 1149 * Unrecoverable error for this frame, throw it 1150 * away and move on to the next. 1151 */ 1152 1153 freemsg(frame); 1154 continue; 1155 } 1156 1157 if (coalescing != 0 && 1158 add_to_txpkts(txq, &txpkts, frame, &txinfo) == 0) { 1159 1160 /* Successfully absorbed into txpkts */ 1161 1162 write_ulp_cpl_sgl(pi, txq, &txpkts, &txinfo); 1163 goto doorbell; 1164 } 1165 1166 /* 1167 * We weren't coalescing to begin with, or current frame could 1168 * not be coalesced (add_to_txpkts flushes txpkts if a frame 1169 * given to it can't be coalesced). Either way there should be 1170 * nothing in txpkts. 1171 */ 1172 ASSERT(txpkts.npkt == 0); 1173 1174 /* We're sending out individual frames now */ 1175 coalescing = 0; 1176 1177 if (eq->avail < 8) 1178 (void) reclaim_tx_descs(txq, 8); 1179 rc = write_txpkt_wr(pi, txq, frame, &txinfo); 1180 if (rc != 0) { 1181 1182 /* Short of hardware descriptors, suspend tx */ 1183 1184 /* 1185 * This is an unlikely but expensive failure. We've 1186 * done all the hard work (DMA bindings etc.) and now we 1187 * can't send out the frame. What's worse, we have to 1188 * spend even more time freeing up everything in txinfo. 1189 */ 1190 txq->qfull++; 1191 free_txinfo_resources(txq, &txinfo); 1192 1193 frame->b_next = next_frame; 1194 break; 1195 } 1196 1197 doorbell: 1198 /* Fewer and fewer doorbells as the queue fills up */ 1199 if (eq->pending >= (1 << (fls(eq->qsize - eq->avail) / 2))) { 1200 txq->txbytes += txinfo.len; 1201 txq->txpkts++; 1202 ring_tx_db(sc, eq); 1203 } 1204 (void) reclaim_tx_descs(txq, 32); 1205 } 1206 1207 if (txpkts.npkt > 0) 1208 write_txpkts_wr(txq, &txpkts); 1209 1210 /* 1211 * frame not NULL means there was an error but we haven't thrown it 1212 * away. This can happen when we're short of tx descriptors (qfull) or 1213 * maybe even DMA handles (dma_hdl_failed). Either way, a credit flush 1214 * and reclaim will get things going again. 1215 * 1216 * If eq->avail is already 0 we know a credit flush was requested in the 1217 * WR that reduced it to 0 so we don't need another flush (we don't have 1218 * any descriptor for a flush WR anyway, duh). 1219 */ 1220 if (frame && eq->avail > 0) 1221 write_txqflush_wr(txq); 1222 1223 if (eq->pending != 0) 1224 ring_tx_db(sc, eq); 1225 1226 (void) reclaim_tx_descs(txq, eq->qsize); 1227 TXQ_UNLOCK(txq); 1228 1229 return (frame); 1230 } 1231 1232 static inline void 1233 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int8_t pktc_idx, 1234 int qsize, uint8_t esize) 1235 { 1236 ASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS); 1237 ASSERT(pktc_idx < SGE_NCOUNTERS); /* -ve is ok, means don't use */ 1238 1239 iq->flags = 0; 1240 iq->adapter = sc; 1241 iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx); 1242 iq->intr_pktc_idx = SGE_NCOUNTERS - 1; 1243 if (pktc_idx >= 0) { 1244 iq->intr_params |= F_QINTR_CNT_EN; 1245 iq->intr_pktc_idx = pktc_idx; 1246 } 1247 iq->qsize = roundup(qsize, 16); /* See FW_IQ_CMD/iqsize */ 1248 iq->esize = max(esize, 16); /* See FW_IQ_CMD/iqesize */ 1249 } 1250 1251 static inline void 1252 init_fl(struct sge_fl *fl, uint16_t qsize) 1253 { 1254 1255 fl->qsize = qsize; 1256 } 1257 1258 static inline void 1259 init_eq(struct adapter *sc, struct sge_eq *eq, uint16_t eqtype, uint16_t qsize, 1260 uint8_t tx_chan, uint16_t iqid) 1261 { 1262 struct sge *s = &sc->sge; 1263 uint32_t r; 1264 1265 ASSERT(tx_chan < NCHAN); 1266 ASSERT(eqtype <= EQ_TYPEMASK); 1267 1268 if (is_t5(sc->params.chip)) { 1269 r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF); 1270 r >>= S_QUEUESPERPAGEPF0 + 1271 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf; 1272 s->s_qpp = r & M_QUEUESPERPAGEPF0; 1273 } 1274 1275 eq->flags = eqtype & EQ_TYPEMASK; 1276 eq->tx_chan = tx_chan; 1277 eq->iqid = iqid; 1278 eq->qsize = qsize; 1279 } 1280 1281 /* 1282 * Allocates the ring for an ingress queue and an optional freelist. If the 1283 * freelist is specified it will be allocated and then associated with the 1284 * ingress queue. 1285 * 1286 * Returns errno on failure. Resources allocated up to that point may still be 1287 * allocated. Caller is responsible for cleanup in case this function fails. 1288 * 1289 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then 1290 * the intr_idx specifies the vector, starting from 0. Otherwise it specifies 1291 * the index of the queue to which its interrupts will be forwarded. 1292 */ 1293 static int 1294 alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl, 1295 int intr_idx, int cong) 1296 { 1297 int rc, i, cntxt_id; 1298 size_t len; 1299 struct fw_iq_cmd c; 1300 struct adapter *sc = iq->adapter; 1301 uint32_t v = 0; 1302 1303 len = iq->qsize * iq->esize; 1304 rc = alloc_desc_ring(sc, len, DDI_DMA_READ, &iq->dhdl, &iq->ahdl, 1305 &iq->ba, (caddr_t *)&iq->desc); 1306 if (rc != 0) 1307 return (rc); 1308 1309 bzero(&c, sizeof (c)); 1310 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 1311 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) | 1312 V_FW_IQ_CMD_VFN(0)); 1313 1314 c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART | 1315 FW_LEN16(c)); 1316 1317 /* Special handling for firmware event queue */ 1318 if (iq == &sc->sge.fwq) 1319 v |= F_FW_IQ_CMD_IQASYNCH; 1320 1321 if (iq->flags & IQ_INTR) 1322 ASSERT(intr_idx < sc->intr_count); 1323 else 1324 v |= F_FW_IQ_CMD_IQANDST; 1325 v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx); 1326 1327 c.type_to_iqandstindex = cpu_to_be32(v | 1328 V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | 1329 V_FW_IQ_CMD_VIID(pi->viid) | 1330 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT)); 1331 c.iqdroprss_to_iqesize = cpu_to_be16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) | 1332 F_FW_IQ_CMD_IQGTSMODE | 1333 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) | 1334 V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4)); 1335 c.iqsize = cpu_to_be16(iq->qsize); 1336 c.iqaddr = cpu_to_be64(iq->ba); 1337 if (cong >= 0) 1338 c.iqns_to_fl0congen = BE_32(F_FW_IQ_CMD_IQFLINTCONGEN); 1339 1340 if (fl != NULL) { 1341 unsigned int chip_ver = CHELSIO_CHIP_VERSION(sc->params.chip); 1342 1343 mutex_init(&fl->lock, NULL, MUTEX_DRIVER, 1344 DDI_INTR_PRI(sc->intr_pri)); 1345 fl->flags |= FL_MTX; 1346 1347 len = fl->qsize * RX_FL_ESIZE; 1348 rc = alloc_desc_ring(sc, len, DDI_DMA_WRITE, &fl->dhdl, 1349 &fl->ahdl, &fl->ba, (caddr_t *)&fl->desc); 1350 if (rc != 0) 1351 return (rc); 1352 1353 /* Allocate space for one software descriptor per buffer. */ 1354 fl->cap = (fl->qsize - sc->sge.stat_len / RX_FL_ESIZE) * 8; 1355 fl->sdesc = kmem_zalloc(sizeof (struct fl_sdesc) * fl->cap, 1356 KM_SLEEP); 1357 fl->needed = fl->cap; 1358 fl->lowat = roundup(sc->sge.fl_starve_threshold, 8); 1359 1360 c.iqns_to_fl0congen |= 1361 cpu_to_be32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) | 1362 F_FW_IQ_CMD_FL0PACKEN | F_FW_IQ_CMD_FL0PADEN); 1363 if (cong >= 0) { 1364 c.iqns_to_fl0congen |= 1365 BE_32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) | 1366 F_FW_IQ_CMD_FL0CONGCIF | 1367 F_FW_IQ_CMD_FL0CONGEN); 1368 } 1369 1370 /* In T6, for egress queue type FL there is internal overhead 1371 * of 16B for header going into FLM module. Hence the maximum 1372 * allowed burst size is 448 bytes. For T4/T5, the hardware 1373 * doesn't coalesce fetch requests if more than 64 bytes of 1374 * Free List pointers are provided, so we use a 128-byte Fetch 1375 * Burst Minimum there (T6 implements coalescing so we can use 1376 * the smaller 64-byte value there). 1377 */ 1378 1379 c.fl0dcaen_to_fl0cidxfthresh = 1380 cpu_to_be16(V_FW_IQ_CMD_FL0FBMIN(chip_ver <= CHELSIO_T5 1381 ? X_FETCHBURSTMIN_128B 1382 : X_FETCHBURSTMIN_64B) | 1383 V_FW_IQ_CMD_FL0FBMAX(chip_ver <= CHELSIO_T5 1384 ? X_FETCHBURSTMAX_512B 1385 : X_FETCHBURSTMAX_256B)); 1386 c.fl0size = cpu_to_be16(fl->qsize); 1387 c.fl0addr = cpu_to_be64(fl->ba); 1388 } 1389 1390 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c); 1391 if (rc != 0) { 1392 cxgb_printf(sc->dip, CE_WARN, 1393 "failed to create ingress queue: %d", rc); 1394 return (rc); 1395 } 1396 1397 iq->cdesc = iq->desc; 1398 iq->cidx = 0; 1399 iq->gen = 1; 1400 iq->intr_next = iq->intr_params; 1401 iq->adapter = sc; 1402 iq->cntxt_id = be16_to_cpu(c.iqid); 1403 iq->abs_id = be16_to_cpu(c.physiqid); 1404 iq->flags |= IQ_ALLOCATED; 1405 mutex_init(&iq->lock, NULL, 1406 MUTEX_DRIVER, DDI_INTR_PRI(DDI_INTR_PRI(sc->intr_pri))); 1407 iq->polling = 0; 1408 1409 cntxt_id = iq->cntxt_id - sc->sge.iq_start; 1410 if (cntxt_id >= sc->sge.niq) { 1411 panic("%s: iq->cntxt_id (%d) more than the max (%d)", __func__, 1412 cntxt_id, sc->sge.niq - 1); 1413 } 1414 sc->sge.iqmap[cntxt_id] = iq; 1415 1416 if (fl != NULL) { 1417 fl->cntxt_id = be16_to_cpu(c.fl0id); 1418 fl->pidx = fl->cidx = 0; 1419 fl->copy_threshold = rx_copy_threshold; 1420 1421 cntxt_id = fl->cntxt_id - sc->sge.eq_start; 1422 if (cntxt_id >= sc->sge.neq) { 1423 panic("%s: fl->cntxt_id (%d) more than the max (%d)", 1424 __func__, cntxt_id, sc->sge.neq - 1); 1425 } 1426 sc->sge.eqmap[cntxt_id] = (void *)fl; 1427 1428 FL_LOCK(fl); 1429 (void) refill_fl(sc, fl, fl->lowat); 1430 FL_UNLOCK(fl); 1431 1432 iq->flags |= IQ_HAS_FL; 1433 } 1434 1435 if (is_t5(sc->params.chip) && cong >= 0) { 1436 uint32_t param, val; 1437 1438 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 1439 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 1440 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id); 1441 if (cong == 0) 1442 val = 1 << 19; 1443 else { 1444 val = 2 << 19; 1445 for (i = 0; i < 4; i++) { 1446 if (cong & (1 << i)) 1447 val |= 1 << (i << 2); 1448 } 1449 } 1450 1451 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 1452 if (rc != 0) { 1453 /* report error but carry on */ 1454 cxgb_printf(sc->dip, CE_WARN, 1455 "failed to set congestion manager context for " 1456 "ingress queue %d: %d", iq->cntxt_id, rc); 1457 } 1458 } 1459 1460 /* Enable IQ interrupts */ 1461 iq->state = IQS_IDLE; 1462 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) | 1463 V_INGRESSQID(iq->cntxt_id)); 1464 1465 return (0); 1466 } 1467 1468 static int 1469 free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl) 1470 { 1471 int rc; 1472 struct adapter *sc = iq->adapter; 1473 dev_info_t *dip; 1474 1475 dip = pi ? pi->dip : sc->dip; 1476 1477 if (iq != NULL) { 1478 if (iq->flags & IQ_ALLOCATED) { 1479 rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, 1480 FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id, 1481 fl ? fl->cntxt_id : 0xffff, 0xffff); 1482 if (rc != 0) { 1483 cxgb_printf(dip, CE_WARN, 1484 "failed to free queue %p: %d", iq, rc); 1485 return (rc); 1486 } 1487 mutex_destroy(&iq->lock); 1488 iq->flags &= ~IQ_ALLOCATED; 1489 } 1490 1491 if (iq->desc != NULL) { 1492 (void) free_desc_ring(&iq->dhdl, &iq->ahdl); 1493 iq->desc = NULL; 1494 } 1495 1496 bzero(iq, sizeof (*iq)); 1497 } 1498 1499 if (fl != NULL) { 1500 if (fl->sdesc != NULL) { 1501 FL_LOCK(fl); 1502 free_fl_bufs(fl); 1503 FL_UNLOCK(fl); 1504 1505 kmem_free(fl->sdesc, sizeof (struct fl_sdesc) * 1506 fl->cap); 1507 fl->sdesc = NULL; 1508 } 1509 1510 if (fl->desc != NULL) { 1511 (void) free_desc_ring(&fl->dhdl, &fl->ahdl); 1512 fl->desc = NULL; 1513 } 1514 1515 if (fl->flags & FL_MTX) { 1516 mutex_destroy(&fl->lock); 1517 fl->flags &= ~FL_MTX; 1518 } 1519 1520 bzero(fl, sizeof (struct sge_fl)); 1521 } 1522 1523 return (0); 1524 } 1525 1526 static int 1527 alloc_fwq(struct adapter *sc) 1528 { 1529 int rc, intr_idx; 1530 struct sge_iq *fwq = &sc->sge.fwq; 1531 1532 init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE); 1533 fwq->flags |= IQ_INTR; /* always */ 1534 intr_idx = sc->intr_count > 1 ? 1 : 0; 1535 rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1); 1536 if (rc != 0) { 1537 cxgb_printf(sc->dip, CE_WARN, 1538 "failed to create firmware event queue: %d.", rc); 1539 return (rc); 1540 } 1541 1542 return (0); 1543 } 1544 1545 static int 1546 free_fwq(struct adapter *sc) 1547 { 1548 1549 return (free_iq_fl(NULL, &sc->sge.fwq, NULL)); 1550 } 1551 1552 #ifdef TCP_OFFLOAD_ENABLE 1553 static int 1554 alloc_mgmtq(struct adapter *sc) 1555 { 1556 int rc; 1557 struct sge_wrq *mgmtq = &sc->sge.mgmtq; 1558 1559 init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan, 1560 sc->sge.fwq.cntxt_id); 1561 rc = alloc_wrq(sc, NULL, mgmtq, 0); 1562 if (rc != 0) { 1563 cxgb_printf(sc->dip, CE_WARN, 1564 "failed to create management queue: %d\n", rc); 1565 return (rc); 1566 } 1567 1568 return (0); 1569 } 1570 #endif 1571 1572 static int 1573 alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int i) 1574 { 1575 int rc; 1576 1577 rxq->port = pi; 1578 rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, 1 << pi->tx_chan); 1579 if (rc != 0) 1580 return (rc); 1581 1582 rxq->ksp = setup_rxq_kstats(pi, rxq, i); 1583 1584 return (rc); 1585 } 1586 1587 static int 1588 free_rxq(struct port_info *pi, struct sge_rxq *rxq) 1589 { 1590 int rc; 1591 1592 if (rxq->ksp != NULL) { 1593 kstat_delete(rxq->ksp); 1594 rxq->ksp = NULL; 1595 } 1596 1597 rc = free_iq_fl(pi, &rxq->iq, &rxq->fl); 1598 if (rc == 0) 1599 bzero(&rxq->fl, sizeof (*rxq) - offsetof(struct sge_rxq, fl)); 1600 1601 return (rc); 1602 } 1603 1604 #ifdef TCP_OFFLOAD_ENABLE 1605 static int 1606 alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq, 1607 int intr_idx) 1608 { 1609 int rc; 1610 1611 rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 1612 1 << pi->tx_chan); 1613 if (rc != 0) 1614 return (rc); 1615 1616 return (rc); 1617 } 1618 1619 static int 1620 free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq) 1621 { 1622 int rc; 1623 1624 rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl); 1625 if (rc == 0) 1626 bzero(&ofld_rxq->fl, sizeof (*ofld_rxq) - 1627 offsetof(struct sge_ofld_rxq, fl)); 1628 1629 return (rc); 1630 } 1631 #endif 1632 1633 static int 1634 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq) 1635 { 1636 int rc, cntxt_id; 1637 struct fw_eq_ctrl_cmd c; 1638 1639 bzero(&c, sizeof (c)); 1640 1641 c.op_to_vfn = BE_32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | 1642 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) | 1643 V_FW_EQ_CTRL_CMD_VFN(0)); 1644 c.alloc_to_len16 = BE_32(F_FW_EQ_CTRL_CMD_ALLOC | 1645 F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); 1646 c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* TODO */ 1647 c.physeqid_pkd = BE_32(0); 1648 c.fetchszm_to_iqid = 1649 BE_32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | 1650 V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) | 1651 F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid)); 1652 c.dcaen_to_eqsize = 1653 BE_32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 1654 V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 1655 V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | 1656 V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize)); 1657 c.eqaddr = BE_64(eq->ba); 1658 1659 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c); 1660 if (rc != 0) { 1661 cxgb_printf(sc->dip, CE_WARN, 1662 "failed to create control queue %d: %d", eq->tx_chan, rc); 1663 return (rc); 1664 } 1665 eq->flags |= EQ_ALLOCATED; 1666 1667 eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(BE_32(c.cmpliqid_eqid)); 1668 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 1669 if (cntxt_id >= sc->sge.neq) 1670 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 1671 cntxt_id, sc->sge.neq - 1); 1672 sc->sge.eqmap[cntxt_id] = eq; 1673 1674 return (rc); 1675 } 1676 1677 static int 1678 eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq) 1679 { 1680 int rc, cntxt_id; 1681 struct fw_eq_eth_cmd c; 1682 1683 bzero(&c, sizeof (c)); 1684 1685 c.op_to_vfn = BE_32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | 1686 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) | 1687 V_FW_EQ_ETH_CMD_VFN(0)); 1688 c.alloc_to_len16 = BE_32(F_FW_EQ_ETH_CMD_ALLOC | 1689 F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); 1690 c.autoequiqe_to_viid = BE_32(F_FW_EQ_ETH_CMD_AUTOEQUIQE | 1691 F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(pi->viid)); 1692 c.fetchszm_to_iqid = 1693 BE_32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | 1694 V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO | 1695 V_FW_EQ_ETH_CMD_IQID(eq->iqid)); 1696 c.dcaen_to_eqsize = BE_32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 1697 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 1698 V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | 1699 V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize)); 1700 c.eqaddr = BE_64(eq->ba); 1701 1702 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c); 1703 if (rc != 0) { 1704 cxgb_printf(pi->dip, CE_WARN, 1705 "failed to create Ethernet egress queue: %d", rc); 1706 return (rc); 1707 } 1708 eq->flags |= EQ_ALLOCATED; 1709 1710 eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(BE_32(c.eqid_pkd)); 1711 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 1712 if (cntxt_id >= sc->sge.neq) 1713 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 1714 cntxt_id, sc->sge.neq - 1); 1715 sc->sge.eqmap[cntxt_id] = eq; 1716 1717 return (rc); 1718 } 1719 1720 #ifdef TCP_OFFLOAD_ENABLE 1721 static int 1722 ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq) 1723 { 1724 int rc, cntxt_id; 1725 struct fw_eq_ofld_cmd c; 1726 1727 bzero(&c, sizeof (c)); 1728 1729 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST | 1730 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) | 1731 V_FW_EQ_OFLD_CMD_VFN(0)); 1732 c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC | 1733 F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); 1734 c.fetchszm_to_iqid = 1735 htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | 1736 V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) | 1737 F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid)); 1738 c.dcaen_to_eqsize = 1739 BE_32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 1740 V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 1741 V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | 1742 V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize)); 1743 c.eqaddr = BE_64(eq->ba); 1744 1745 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c); 1746 if (rc != 0) { 1747 cxgb_printf(pi->dip, CE_WARN, 1748 "failed to create egress queue for TCP offload: %d", rc); 1749 return (rc); 1750 } 1751 eq->flags |= EQ_ALLOCATED; 1752 1753 eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(BE_32(c.eqid_pkd)); 1754 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 1755 if (cntxt_id >= sc->sge.neq) 1756 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 1757 cntxt_id, sc->sge.neq - 1); 1758 sc->sge.eqmap[cntxt_id] = eq; 1759 1760 return (rc); 1761 } 1762 #endif 1763 1764 static int 1765 alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq) 1766 { 1767 int rc; 1768 size_t len; 1769 1770 mutex_init(&eq->lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(sc->intr_pri)); 1771 eq->flags |= EQ_MTX; 1772 1773 len = eq->qsize * EQ_ESIZE; 1774 rc = alloc_desc_ring(sc, len, DDI_DMA_WRITE, &eq->desc_dhdl, 1775 &eq->desc_ahdl, &eq->ba, (caddr_t *)&eq->desc); 1776 if (rc != 0) 1777 return (rc); 1778 1779 eq->cap = eq->qsize - sc->sge.stat_len / EQ_ESIZE; 1780 eq->spg = (void *)&eq->desc[eq->cap]; 1781 eq->avail = eq->cap - 1; /* one less to avoid cidx = pidx */ 1782 eq->pidx = eq->cidx = 0; 1783 eq->doorbells = sc->doorbells; 1784 1785 switch (eq->flags & EQ_TYPEMASK) { 1786 case EQ_CTRL: 1787 rc = ctrl_eq_alloc(sc, eq); 1788 break; 1789 1790 case EQ_ETH: 1791 rc = eth_eq_alloc(sc, pi, eq); 1792 break; 1793 1794 #ifdef TCP_OFFLOAD_ENABLE 1795 case EQ_OFLD: 1796 rc = ofld_eq_alloc(sc, pi, eq); 1797 break; 1798 #endif 1799 1800 default: 1801 panic("%s: invalid eq type %d.", __func__, 1802 eq->flags & EQ_TYPEMASK); 1803 } 1804 1805 if (eq->doorbells & 1806 (DOORBELL_UDB | DOORBELL_UDBWC | DOORBELL_WCWR)) { 1807 uint32_t s_qpp = sc->sge.s_qpp; 1808 uint32_t mask = (1 << s_qpp) - 1; 1809 volatile uint8_t *udb; 1810 1811 udb = (volatile uint8_t *)sc->reg1p + UDBS_DB_OFFSET; 1812 udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */ 1813 eq->udb_qid = eq->cntxt_id & mask; /* id in page */ 1814 if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE) 1815 eq->doorbells &= ~DOORBELL_WCWR; 1816 else { 1817 udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */ 1818 eq->udb_qid = 0; 1819 } 1820 eq->udb = (volatile void *)udb; 1821 } 1822 1823 if (rc != 0) { 1824 cxgb_printf(sc->dip, CE_WARN, 1825 "failed to allocate egress queue(%d): %d", 1826 eq->flags & EQ_TYPEMASK, rc); 1827 } 1828 1829 return (rc); 1830 } 1831 1832 static int 1833 free_eq(struct adapter *sc, struct sge_eq *eq) 1834 { 1835 int rc; 1836 1837 if (eq->flags & EQ_ALLOCATED) { 1838 switch (eq->flags & EQ_TYPEMASK) { 1839 case EQ_CTRL: 1840 rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, 1841 eq->cntxt_id); 1842 break; 1843 1844 case EQ_ETH: 1845 rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, 1846 eq->cntxt_id); 1847 break; 1848 1849 #ifdef TCP_OFFLOAD_ENABLE 1850 case EQ_OFLD: 1851 rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, 1852 eq->cntxt_id); 1853 break; 1854 #endif 1855 1856 default: 1857 panic("%s: invalid eq type %d.", __func__, 1858 eq->flags & EQ_TYPEMASK); 1859 } 1860 if (rc != 0) { 1861 cxgb_printf(sc->dip, CE_WARN, 1862 "failed to free egress queue (%d): %d", 1863 eq->flags & EQ_TYPEMASK, rc); 1864 return (rc); 1865 } 1866 eq->flags &= ~EQ_ALLOCATED; 1867 } 1868 1869 if (eq->desc != NULL) { 1870 (void) free_desc_ring(&eq->desc_dhdl, &eq->desc_ahdl); 1871 eq->desc = NULL; 1872 } 1873 1874 if (eq->flags & EQ_MTX) 1875 mutex_destroy(&eq->lock); 1876 1877 bzero(eq, sizeof (*eq)); 1878 return (0); 1879 } 1880 1881 #ifdef TCP_OFFLOAD_ENABLE 1882 /* ARGSUSED */ 1883 static int 1884 alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq, 1885 int idx) 1886 { 1887 int rc; 1888 1889 rc = alloc_eq(sc, pi, &wrq->eq); 1890 if (rc != 0) 1891 return (rc); 1892 1893 wrq->adapter = sc; 1894 wrq->wr_list.head = NULL; 1895 wrq->wr_list.tail = NULL; 1896 1897 /* 1898 * TODO: use idx to figure out what kind of wrq this is and install 1899 * useful kstats for it. 1900 */ 1901 1902 return (rc); 1903 } 1904 1905 static int 1906 free_wrq(struct adapter *sc, struct sge_wrq *wrq) 1907 { 1908 int rc; 1909 1910 rc = free_eq(sc, &wrq->eq); 1911 if (rc != 0) 1912 return (rc); 1913 1914 bzero(wrq, sizeof (*wrq)); 1915 return (0); 1916 } 1917 #endif 1918 1919 static int 1920 alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx) 1921 { 1922 int rc, i; 1923 struct adapter *sc = pi->adapter; 1924 struct sge_eq *eq = &txq->eq; 1925 1926 rc = alloc_eq(sc, pi, eq); 1927 if (rc != 0) 1928 return (rc); 1929 1930 txq->port = pi; 1931 txq->sdesc = kmem_zalloc(sizeof (struct tx_sdesc) * eq->cap, KM_SLEEP); 1932 txq->txb_size = eq->qsize * tx_copy_threshold; 1933 rc = alloc_tx_copybuffer(sc, txq->txb_size, &txq->txb_dhdl, 1934 &txq->txb_ahdl, &txq->txb_ba, &txq->txb_va); 1935 if (rc == 0) 1936 txq->txb_avail = txq->txb_size; 1937 else 1938 txq->txb_avail = txq->txb_size = 0; 1939 1940 /* 1941 * TODO: is this too low? Worst case would need around 4 times qsize 1942 * (all tx descriptors filled to the brim with SGLs, with each entry in 1943 * the SGL coming from a distinct DMA handle). Increase tx_dhdl_total 1944 * if you see too many dma_hdl_failed. 1945 */ 1946 txq->tx_dhdl_total = eq->qsize * 2; 1947 txq->tx_dhdl = kmem_zalloc(sizeof (ddi_dma_handle_t) * 1948 txq->tx_dhdl_total, KM_SLEEP); 1949 for (i = 0; i < txq->tx_dhdl_total; i++) { 1950 rc = ddi_dma_alloc_handle(sc->dip, &sc->sge.dma_attr_tx, 1951 DDI_DMA_SLEEP, 0, &txq->tx_dhdl[i]); 1952 if (rc != DDI_SUCCESS) { 1953 cxgb_printf(sc->dip, CE_WARN, 1954 "%s: failed to allocate DMA handle (%d)", 1955 __func__, rc); 1956 return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL); 1957 } 1958 txq->tx_dhdl_avail++; 1959 } 1960 1961 txq->ksp = setup_txq_kstats(pi, txq, idx); 1962 1963 return (rc); 1964 } 1965 1966 static int 1967 free_txq(struct port_info *pi, struct sge_txq *txq) 1968 { 1969 int i; 1970 struct adapter *sc = pi->adapter; 1971 struct sge_eq *eq = &txq->eq; 1972 1973 if (txq->ksp != NULL) { 1974 kstat_delete(txq->ksp); 1975 txq->ksp = NULL; 1976 } 1977 1978 if (txq->txb_va != NULL) { 1979 (void) free_desc_ring(&txq->txb_dhdl, &txq->txb_ahdl); 1980 txq->txb_va = NULL; 1981 } 1982 1983 if (txq->sdesc != NULL) { 1984 struct tx_sdesc *sd; 1985 ddi_dma_handle_t hdl; 1986 1987 TXQ_LOCK(txq); 1988 while (eq->cidx != eq->pidx) { 1989 sd = &txq->sdesc[eq->cidx]; 1990 1991 for (i = sd->hdls_used; i; i--) { 1992 hdl = txq->tx_dhdl[txq->tx_dhdl_cidx]; 1993 (void) ddi_dma_unbind_handle(hdl); 1994 if (++txq->tx_dhdl_cidx == txq->tx_dhdl_total) 1995 txq->tx_dhdl_cidx = 0; 1996 } 1997 1998 ASSERT(sd->m); 1999 freemsgchain(sd->m); 2000 2001 eq->cidx += sd->desc_used; 2002 if (eq->cidx >= eq->cap) 2003 eq->cidx -= eq->cap; 2004 2005 txq->txb_avail += txq->txb_used; 2006 } 2007 ASSERT(txq->tx_dhdl_cidx == txq->tx_dhdl_pidx); 2008 ASSERT(txq->txb_avail == txq->txb_size); 2009 TXQ_UNLOCK(txq); 2010 2011 kmem_free(txq->sdesc, sizeof (struct tx_sdesc) * eq->cap); 2012 txq->sdesc = NULL; 2013 } 2014 2015 if (txq->tx_dhdl != NULL) { 2016 for (i = 0; i < txq->tx_dhdl_total; i++) { 2017 if (txq->tx_dhdl[i] != NULL) 2018 ddi_dma_free_handle(&txq->tx_dhdl[i]); 2019 } 2020 } 2021 2022 (void) free_eq(sc, &txq->eq); 2023 2024 bzero(txq, sizeof (*txq)); 2025 return (0); 2026 } 2027 2028 /* 2029 * Allocates a block of contiguous memory for DMA. Can be used to allocate 2030 * memory for descriptor rings or for tx/rx copy buffers. 2031 * 2032 * Caller does not have to clean up anything if this function fails, it cleans 2033 * up after itself. 2034 * 2035 * Caller provides the following: 2036 * len length of the block of memory to allocate. 2037 * flags DDI_DMA_* flags to use (CONSISTENT/STREAMING, READ/WRITE/RDWR) 2038 * acc_attr device access attributes for the allocation. 2039 * dma_attr DMA attributes for the allocation 2040 * 2041 * If the function is successful it fills up this information: 2042 * dma_hdl DMA handle for the allocated memory 2043 * acc_hdl access handle for the allocated memory 2044 * ba bus address of the allocated memory 2045 * va KVA of the allocated memory. 2046 */ 2047 static int 2048 alloc_dma_memory(struct adapter *sc, size_t len, int flags, 2049 ddi_device_acc_attr_t *acc_attr, ddi_dma_attr_t *dma_attr, 2050 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, 2051 uint64_t *pba, caddr_t *pva) 2052 { 2053 int rc; 2054 ddi_dma_handle_t dhdl; 2055 ddi_acc_handle_t ahdl; 2056 ddi_dma_cookie_t cookie; 2057 uint_t ccount; 2058 caddr_t va; 2059 size_t real_len; 2060 2061 *pva = NULL; 2062 2063 /* 2064 * DMA handle. 2065 */ 2066 rc = ddi_dma_alloc_handle(sc->dip, dma_attr, DDI_DMA_SLEEP, 0, &dhdl); 2067 if (rc != DDI_SUCCESS) { 2068 cxgb_printf(sc->dip, CE_WARN, 2069 "failed to allocate DMA handle: %d", rc); 2070 2071 return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL); 2072 } 2073 2074 /* 2075 * Memory suitable for DMA. 2076 */ 2077 rc = ddi_dma_mem_alloc(dhdl, len, acc_attr, 2078 flags & DDI_DMA_CONSISTENT ? DDI_DMA_CONSISTENT : DDI_DMA_STREAMING, 2079 DDI_DMA_SLEEP, 0, &va, &real_len, &ahdl); 2080 if (rc != DDI_SUCCESS) { 2081 cxgb_printf(sc->dip, CE_WARN, 2082 "failed to allocate DMA memory: %d", rc); 2083 2084 ddi_dma_free_handle(&dhdl); 2085 return (ENOMEM); 2086 } 2087 2088 if (len != real_len) { 2089 cxgb_printf(sc->dip, CE_WARN, 2090 "%s: len (%u) != real_len (%u)\n", len, real_len); 2091 } 2092 2093 /* 2094 * DMA bindings. 2095 */ 2096 rc = ddi_dma_addr_bind_handle(dhdl, NULL, va, real_len, flags, NULL, 2097 NULL, &cookie, &ccount); 2098 if (rc != DDI_DMA_MAPPED) { 2099 cxgb_printf(sc->dip, CE_WARN, 2100 "failed to map DMA memory: %d", rc); 2101 2102 ddi_dma_mem_free(&ahdl); 2103 ddi_dma_free_handle(&dhdl); 2104 return (ENOMEM); 2105 } 2106 if (ccount != 1) { 2107 cxgb_printf(sc->dip, CE_WARN, 2108 "unusable DMA mapping (%d segments)", ccount); 2109 (void) free_desc_ring(&dhdl, &ahdl); 2110 } 2111 2112 bzero(va, real_len); 2113 *dma_hdl = dhdl; 2114 *acc_hdl = ahdl; 2115 *pba = cookie.dmac_laddress; 2116 *pva = va; 2117 2118 return (0); 2119 } 2120 2121 static int 2122 free_dma_memory(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl) 2123 { 2124 (void) ddi_dma_unbind_handle(*dhdl); 2125 ddi_dma_mem_free(ahdl); 2126 ddi_dma_free_handle(dhdl); 2127 2128 return (0); 2129 } 2130 2131 static int 2132 alloc_desc_ring(struct adapter *sc, size_t len, int rw, 2133 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, 2134 uint64_t *pba, caddr_t *pva) 2135 { 2136 ddi_device_acc_attr_t *acc_attr = &sc->sge.acc_attr_desc; 2137 ddi_dma_attr_t *dma_attr = &sc->sge.dma_attr_desc; 2138 2139 return (alloc_dma_memory(sc, len, DDI_DMA_CONSISTENT | rw, acc_attr, 2140 dma_attr, dma_hdl, acc_hdl, pba, pva)); 2141 } 2142 2143 static int 2144 free_desc_ring(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl) 2145 { 2146 return (free_dma_memory(dhdl, ahdl)); 2147 } 2148 2149 static int 2150 alloc_tx_copybuffer(struct adapter *sc, size_t len, 2151 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, 2152 uint64_t *pba, caddr_t *pva) 2153 { 2154 ddi_device_acc_attr_t *acc_attr = &sc->sge.acc_attr_tx; 2155 ddi_dma_attr_t *dma_attr = &sc->sge.dma_attr_desc; /* NOT dma_attr_tx */ 2156 2157 return (alloc_dma_memory(sc, len, DDI_DMA_STREAMING | DDI_DMA_WRITE, 2158 acc_attr, dma_attr, dma_hdl, acc_hdl, pba, pva)); 2159 } 2160 2161 static inline bool 2162 is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl) 2163 { 2164 (void) ddi_dma_sync(iq->dhdl, (uintptr_t)iq->cdesc - 2165 (uintptr_t)iq->desc, iq->esize, DDI_DMA_SYNC_FORKERNEL); 2166 2167 *ctrl = (void *)((uintptr_t)iq->cdesc + 2168 (iq->esize - sizeof (struct rsp_ctrl))); 2169 2170 return ((((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen)); 2171 } 2172 2173 static inline void 2174 iq_next(struct sge_iq *iq) 2175 { 2176 iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize); 2177 if (++iq->cidx == iq->qsize - 1) { 2178 iq->cidx = 0; 2179 iq->gen ^= 1; 2180 iq->cdesc = iq->desc; 2181 } 2182 } 2183 2184 /* 2185 * Fill up the freelist by upto nbufs and maybe ring its doorbell. 2186 * 2187 * Returns non-zero to indicate that it should be added to the list of starving 2188 * freelists. 2189 */ 2190 static int 2191 refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs) 2192 { 2193 uint64_t *d = &fl->desc[fl->pidx]; 2194 struct fl_sdesc *sd = &fl->sdesc[fl->pidx]; 2195 2196 FL_LOCK_ASSERT_OWNED(fl); 2197 ASSERT(nbufs >= 0); 2198 2199 if (nbufs > fl->needed) 2200 nbufs = fl->needed; 2201 2202 while (nbufs--) { 2203 if (sd->rxb != NULL) { 2204 if (sd->rxb->ref_cnt == 1) { 2205 /* 2206 * Buffer is available for recycling. Two ways 2207 * this can happen: 2208 * 2209 * a) All the packets DMA'd into it last time 2210 * around were within the rx_copy_threshold 2211 * and no part of the buffer was ever passed 2212 * up (ref_cnt never went over 1). 2213 * 2214 * b) Packets DMA'd into the buffer were passed 2215 * up but have all been freed by the upper 2216 * layers by now (ref_cnt went over 1 but is 2217 * now back to 1). 2218 * 2219 * Either way the bus address in the descriptor 2220 * ring is already valid. 2221 */ 2222 ASSERT(*d == cpu_to_be64(sd->rxb->ba)); 2223 d++; 2224 goto recycled; 2225 } else { 2226 /* 2227 * Buffer still in use and we need a 2228 * replacement. But first release our reference 2229 * on the existing buffer. 2230 */ 2231 rxbuf_free(sd->rxb); 2232 } 2233 } 2234 2235 sd->rxb = rxbuf_alloc(sc->sge.rxbuf_cache, KM_NOSLEEP, 1); 2236 if (sd->rxb == NULL) 2237 break; 2238 *d++ = cpu_to_be64(sd->rxb->ba); 2239 2240 recycled: fl->pending++; 2241 sd++; 2242 fl->needed--; 2243 if (++fl->pidx == fl->cap) { 2244 fl->pidx = 0; 2245 sd = fl->sdesc; 2246 d = fl->desc; 2247 } 2248 } 2249 2250 if (fl->pending >= 8) 2251 ring_fl_db(sc, fl); 2252 2253 return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING)); 2254 } 2255 2256 #ifndef TAILQ_FOREACH_SAFE 2257 #define TAILQ_FOREACH_SAFE(var, head, field, tvar) \ 2258 for ((var) = TAILQ_FIRST((head)); \ 2259 (var) && ((tvar) = TAILQ_NEXT((var), field), 1); \ 2260 (var) = (tvar)) 2261 #endif 2262 2263 /* 2264 * Attempt to refill all starving freelists. 2265 */ 2266 static void 2267 refill_sfl(void *arg) 2268 { 2269 struct adapter *sc = arg; 2270 struct sge_fl *fl, *fl_temp; 2271 2272 mutex_enter(&sc->sfl_lock); 2273 TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) { 2274 FL_LOCK(fl); 2275 (void) refill_fl(sc, fl, 64); 2276 if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) { 2277 TAILQ_REMOVE(&sc->sfl, fl, link); 2278 fl->flags &= ~FL_STARVING; 2279 } 2280 FL_UNLOCK(fl); 2281 } 2282 2283 if (!TAILQ_EMPTY(&sc->sfl) != 0) 2284 sc->sfl_timer = timeout(refill_sfl, sc, drv_usectohz(100000)); 2285 mutex_exit(&sc->sfl_lock); 2286 } 2287 2288 static void 2289 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl) 2290 { 2291 mutex_enter(&sc->sfl_lock); 2292 FL_LOCK(fl); 2293 if ((fl->flags & FL_DOOMED) == 0) { 2294 if (TAILQ_EMPTY(&sc->sfl) != 0) { 2295 sc->sfl_timer = timeout(refill_sfl, sc, 2296 drv_usectohz(100000)); 2297 } 2298 fl->flags |= FL_STARVING; 2299 TAILQ_INSERT_TAIL(&sc->sfl, fl, link); 2300 } 2301 FL_UNLOCK(fl); 2302 mutex_exit(&sc->sfl_lock); 2303 } 2304 2305 static void 2306 free_fl_bufs(struct sge_fl *fl) 2307 { 2308 struct fl_sdesc *sd; 2309 unsigned int i; 2310 2311 FL_LOCK_ASSERT_OWNED(fl); 2312 2313 for (i = 0; i < fl->cap; i++) { 2314 sd = &fl->sdesc[i]; 2315 2316 if (sd->rxb != NULL) { 2317 rxbuf_free(sd->rxb); 2318 sd->rxb = NULL; 2319 } 2320 } 2321 } 2322 2323 /* 2324 * Note that fl->cidx and fl->offset are left unchanged in case of failure. 2325 */ 2326 static mblk_t * 2327 get_fl_payload(struct adapter *sc, struct sge_fl *fl, 2328 uint32_t len_newbuf, int *fl_bufs_used) 2329 { 2330 struct mblk_pair frame = {0}; 2331 struct rxbuf *rxb; 2332 mblk_t *m = NULL; 2333 uint_t nbuf = 0, len, copy, n; 2334 uint32_t cidx, offset; 2335 2336 /* 2337 * The SGE won't pack a new frame into the current buffer if the entire 2338 * payload doesn't fit in the remaining space. Move on to the next buf 2339 * in that case. 2340 */ 2341 if (fl->offset > 0 && len_newbuf & F_RSPD_NEWBUF) { 2342 fl->offset = 0; 2343 if (++fl->cidx == fl->cap) 2344 fl->cidx = 0; 2345 nbuf++; 2346 } 2347 cidx = fl->cidx; 2348 offset = fl->offset; 2349 2350 len = G_RSPD_LEN(len_newbuf); /* pktshift + payload length */ 2351 copy = (len <= fl->copy_threshold); 2352 if (copy != 0) { 2353 frame.head = m = allocb(len, BPRI_HI); 2354 if (m == NULL) 2355 return (NULL); 2356 } 2357 2358 while (len) { 2359 rxb = fl->sdesc[cidx].rxb; 2360 n = min(len, rxb->buf_size - offset); 2361 2362 (void) ddi_dma_sync(rxb->dhdl, offset, n, 2363 DDI_DMA_SYNC_FORKERNEL); 2364 2365 if (copy != 0) 2366 bcopy(rxb->va + offset, m->b_wptr, n); 2367 else { 2368 m = desballoc((unsigned char *)rxb->va + offset, n, 2369 BPRI_HI, &rxb->freefunc); 2370 if (m == NULL) { 2371 freemsg(frame.head); 2372 return (NULL); 2373 } 2374 atomic_inc_uint(&rxb->ref_cnt); 2375 if (frame.head != NULL) 2376 frame.tail->b_cont = m; 2377 else 2378 frame.head = m; 2379 frame.tail = m; 2380 } 2381 m->b_wptr += n; 2382 len -= n; 2383 offset += roundup(n, sc->sge.fl_align); 2384 ASSERT(offset <= rxb->buf_size); 2385 if (offset == rxb->buf_size) { 2386 offset = 0; 2387 if (++cidx == fl->cap) 2388 cidx = 0; 2389 nbuf++; 2390 } 2391 } 2392 2393 fl->cidx = cidx; 2394 fl->offset = offset; 2395 (*fl_bufs_used) += nbuf; 2396 2397 ASSERT(frame.head != NULL); 2398 return (frame.head); 2399 } 2400 2401 /* 2402 * We'll do immediate data tx for non-LSO, but only when not coalescing. We're 2403 * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes 2404 * of immediate data. 2405 */ 2406 #define IMM_LEN ( \ 2407 2 * EQ_ESIZE \ 2408 - sizeof (struct fw_eth_tx_pkt_wr) \ 2409 - sizeof (struct cpl_tx_pkt_core)) 2410 2411 /* 2412 * Returns non-zero on failure, no need to cleanup anything in that case. 2413 * 2414 * Note 1: We always try to pull up the mblk if required and return E2BIG only 2415 * if this fails. 2416 * 2417 * Note 2: We'll also pullup incoming mblk if HW_LSO is set and the first mblk 2418 * does not have the TCP header in it. 2419 */ 2420 static int 2421 get_frame_txinfo(struct sge_txq *txq, mblk_t **fp, struct txinfo *txinfo, 2422 int sgl_only) 2423 { 2424 uint32_t flags = 0, len, n; 2425 mblk_t *m = *fp; 2426 int rc; 2427 2428 TXQ_LOCK_ASSERT_OWNED(txq); /* will manipulate txb and dma_hdls */ 2429 2430 mac_hcksum_get(m, NULL, NULL, NULL, NULL, &flags); 2431 txinfo->flags = flags; 2432 2433 mac_lso_get(m, &txinfo->mss, &flags); 2434 txinfo->flags |= flags; 2435 2436 if (flags & HW_LSO) 2437 sgl_only = 1; /* Do not allow immediate data with LSO */ 2438 2439 start: txinfo->nsegs = 0; 2440 txinfo->hdls_used = 0; 2441 txinfo->txb_used = 0; 2442 txinfo->len = 0; 2443 2444 /* total length and a rough estimate of # of segments */ 2445 n = 0; 2446 for (; m; m = m->b_cont) { 2447 len = MBLKL(m); 2448 n += (len / PAGE_SIZE) + 1; 2449 txinfo->len += len; 2450 } 2451 m = *fp; 2452 2453 if (n >= TX_SGL_SEGS || (flags & HW_LSO && MBLKL(m) < 50)) { 2454 txq->pullup_early++; 2455 m = msgpullup(*fp, -1); 2456 if (m == NULL) { 2457 txq->pullup_failed++; 2458 return (E2BIG); /* (*fp) left as it was */ 2459 } 2460 freemsg(*fp); 2461 *fp = m; 2462 mac_hcksum_set(m, NULL, NULL, NULL, NULL, txinfo->flags); 2463 } 2464 2465 if (txinfo->len <= IMM_LEN && !sgl_only) 2466 return (0); /* nsegs = 0 tells caller to use imm. tx */ 2467 2468 if (txinfo->len <= txq->copy_threshold && 2469 copy_into_txb(txq, m, txinfo->len, txinfo) == 0) 2470 goto done; 2471 2472 for (; m; m = m->b_cont) { 2473 2474 len = MBLKL(m); 2475 2476 /* Use tx copy buffer if this mblk is small enough */ 2477 if (len <= txq->copy_threshold && 2478 copy_into_txb(txq, m, len, txinfo) == 0) 2479 continue; 2480 2481 /* Add DMA bindings for this mblk to the SGL */ 2482 rc = add_mblk(txq, txinfo, m, len); 2483 2484 if (rc == E2BIG || 2485 (txinfo->nsegs == TX_SGL_SEGS && m->b_cont)) { 2486 2487 txq->pullup_late++; 2488 m = msgpullup(*fp, -1); 2489 if (m != NULL) { 2490 free_txinfo_resources(txq, txinfo); 2491 freemsg(*fp); 2492 *fp = m; 2493 mac_hcksum_set(m, NULL, NULL, NULL, NULL, 2494 txinfo->flags); 2495 goto start; 2496 } 2497 2498 txq->pullup_failed++; 2499 rc = E2BIG; 2500 } 2501 2502 if (rc != 0) { 2503 free_txinfo_resources(txq, txinfo); 2504 return (rc); 2505 } 2506 } 2507 2508 ASSERT(txinfo->nsegs > 0 && txinfo->nsegs <= TX_SGL_SEGS); 2509 2510 done: 2511 2512 /* 2513 * Store the # of flits required to hold this frame's SGL in nflits. An 2514 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by 2515 * multiple (len0 + len1, addr0, addr1) tuples. If addr1 is not used 2516 * then len1 must be set to 0. 2517 */ 2518 n = txinfo->nsegs - 1; 2519 txinfo->nflits = (3 * n) / 2 + (n & 1) + 2; 2520 if (n & 1) 2521 txinfo->sgl.sge[n / 2].len[1] = cpu_to_be32(0); 2522 2523 txinfo->sgl.cmd_nsge = cpu_to_be32(V_ULPTX_CMD((u32)ULP_TX_SC_DSGL) | 2524 V_ULPTX_NSGE(txinfo->nsegs)); 2525 2526 return (0); 2527 } 2528 2529 static inline int 2530 fits_in_txb(struct sge_txq *txq, int len, int *waste) 2531 { 2532 if (txq->txb_avail < len) 2533 return (0); 2534 2535 if (txq->txb_next + len <= txq->txb_size) { 2536 *waste = 0; 2537 return (1); 2538 } 2539 2540 *waste = txq->txb_size - txq->txb_next; 2541 2542 return (txq->txb_avail - *waste < len ? 0 : 1); 2543 } 2544 2545 #define TXB_CHUNK 64 2546 2547 /* 2548 * Copies the specified # of bytes into txq's tx copy buffer and updates txinfo 2549 * and txq to indicate resources used. Caller has to make sure that those many 2550 * bytes are available in the mblk chain (b_cont linked). 2551 */ 2552 static inline int 2553 copy_into_txb(struct sge_txq *txq, mblk_t *m, int len, struct txinfo *txinfo) 2554 { 2555 int waste, n; 2556 2557 TXQ_LOCK_ASSERT_OWNED(txq); /* will manipulate txb */ 2558 2559 if (!fits_in_txb(txq, len, &waste)) { 2560 txq->txb_full++; 2561 return (ENOMEM); 2562 } 2563 2564 if (waste != 0) { 2565 ASSERT((waste & (TXB_CHUNK - 1)) == 0); 2566 txinfo->txb_used += waste; 2567 txq->txb_avail -= waste; 2568 txq->txb_next = 0; 2569 } 2570 2571 for (n = 0; n < len; m = m->b_cont) { 2572 bcopy(m->b_rptr, txq->txb_va + txq->txb_next + n, MBLKL(m)); 2573 n += MBLKL(m); 2574 } 2575 2576 add_seg(txinfo, txq->txb_ba + txq->txb_next, len); 2577 2578 n = roundup(len, TXB_CHUNK); 2579 txinfo->txb_used += n; 2580 txq->txb_avail -= n; 2581 txq->txb_next += n; 2582 ASSERT(txq->txb_next <= txq->txb_size); 2583 if (txq->txb_next == txq->txb_size) 2584 txq->txb_next = 0; 2585 2586 return (0); 2587 } 2588 2589 static inline void 2590 add_seg(struct txinfo *txinfo, uint64_t ba, uint32_t len) 2591 { 2592 ASSERT(txinfo->nsegs < TX_SGL_SEGS); /* must have room */ 2593 2594 if (txinfo->nsegs != 0) { 2595 int idx = txinfo->nsegs - 1; 2596 txinfo->sgl.sge[idx / 2].len[idx & 1] = cpu_to_be32(len); 2597 txinfo->sgl.sge[idx / 2].addr[idx & 1] = cpu_to_be64(ba); 2598 } else { 2599 txinfo->sgl.len0 = cpu_to_be32(len); 2600 txinfo->sgl.addr0 = cpu_to_be64(ba); 2601 } 2602 txinfo->nsegs++; 2603 } 2604 2605 /* 2606 * This function cleans up any partially allocated resources when it fails so 2607 * there's nothing for the caller to clean up in that case. 2608 * 2609 * EIO indicates permanent failure. Caller should drop the frame containing 2610 * this mblk and continue. 2611 * 2612 * E2BIG indicates that the SGL length for this mblk exceeds the hardware 2613 * limit. Caller should pull up the frame before trying to send it out. 2614 * (This error means our pullup_early heuristic did not work for this frame) 2615 * 2616 * ENOMEM indicates a temporary shortage of resources (DMA handles, other DMA 2617 * resources, etc.). Caller should suspend the tx queue and wait for reclaim to 2618 * free up resources. 2619 */ 2620 static inline int 2621 add_mblk(struct sge_txq *txq, struct txinfo *txinfo, mblk_t *m, int len) 2622 { 2623 ddi_dma_handle_t dhdl; 2624 ddi_dma_cookie_t cookie; 2625 uint_t ccount = 0; 2626 int rc; 2627 2628 TXQ_LOCK_ASSERT_OWNED(txq); /* will manipulate dhdls */ 2629 2630 if (txq->tx_dhdl_avail == 0) { 2631 txq->dma_hdl_failed++; 2632 return (ENOMEM); 2633 } 2634 2635 dhdl = txq->tx_dhdl[txq->tx_dhdl_pidx]; 2636 rc = ddi_dma_addr_bind_handle(dhdl, NULL, (caddr_t)m->b_rptr, len, 2637 DDI_DMA_WRITE | DDI_DMA_STREAMING, DDI_DMA_DONTWAIT, NULL, &cookie, 2638 &ccount); 2639 if (rc != DDI_DMA_MAPPED) { 2640 txq->dma_map_failed++; 2641 2642 ASSERT(rc != DDI_DMA_INUSE && rc != DDI_DMA_PARTIAL_MAP); 2643 2644 return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EIO); 2645 } 2646 2647 if (ccount + txinfo->nsegs > TX_SGL_SEGS) { 2648 (void) ddi_dma_unbind_handle(dhdl); 2649 return (E2BIG); 2650 } 2651 2652 add_seg(txinfo, cookie.dmac_laddress, cookie.dmac_size); 2653 while (--ccount) { 2654 ddi_dma_nextcookie(dhdl, &cookie); 2655 add_seg(txinfo, cookie.dmac_laddress, cookie.dmac_size); 2656 } 2657 2658 if (++txq->tx_dhdl_pidx == txq->tx_dhdl_total) 2659 txq->tx_dhdl_pidx = 0; 2660 txq->tx_dhdl_avail--; 2661 txinfo->hdls_used++; 2662 2663 return (0); 2664 } 2665 2666 /* 2667 * Releases all the txq resources used up in the specified txinfo. 2668 */ 2669 static void 2670 free_txinfo_resources(struct sge_txq *txq, struct txinfo *txinfo) 2671 { 2672 int n; 2673 2674 TXQ_LOCK_ASSERT_OWNED(txq); /* dhdls, txb */ 2675 2676 n = txinfo->txb_used; 2677 if (n > 0) { 2678 txq->txb_avail += n; 2679 if (n <= txq->txb_next) 2680 txq->txb_next -= n; 2681 else { 2682 n -= txq->txb_next; 2683 txq->txb_next = txq->txb_size - n; 2684 } 2685 } 2686 2687 for (n = txinfo->hdls_used; n > 0; n--) { 2688 if (txq->tx_dhdl_pidx > 0) 2689 txq->tx_dhdl_pidx--; 2690 else 2691 txq->tx_dhdl_pidx = txq->tx_dhdl_total - 1; 2692 txq->tx_dhdl_avail++; 2693 (void) ddi_dma_unbind_handle(txq->tx_dhdl[txq->tx_dhdl_pidx]); 2694 } 2695 } 2696 2697 /* 2698 * Returns 0 to indicate that m has been accepted into a coalesced tx work 2699 * request. It has either been folded into txpkts or txpkts was flushed and m 2700 * has started a new coalesced work request (as the first frame in a fresh 2701 * txpkts). 2702 * 2703 * Returns non-zero to indicate a failure - caller is responsible for 2704 * transmitting m, if there was anything in txpkts it has been flushed. 2705 */ 2706 static int 2707 add_to_txpkts(struct sge_txq *txq, struct txpkts *txpkts, mblk_t *m, 2708 struct txinfo *txinfo) 2709 { 2710 struct sge_eq *eq = &txq->eq; 2711 int can_coalesce; 2712 struct tx_sdesc *txsd; 2713 uint8_t flits; 2714 2715 TXQ_LOCK_ASSERT_OWNED(txq); 2716 2717 if (txpkts->npkt > 0) { 2718 flits = TXPKTS_PKT_HDR + txinfo->nflits; 2719 can_coalesce = (txinfo->flags & HW_LSO) == 0 && 2720 txpkts->nflits + flits <= TX_WR_FLITS && 2721 txpkts->nflits + flits <= eq->avail * 8 && 2722 txpkts->plen + txinfo->len < 65536; 2723 2724 if (can_coalesce != 0) { 2725 txpkts->tail->b_next = m; 2726 txpkts->tail = m; 2727 txpkts->npkt++; 2728 txpkts->nflits += flits; 2729 txpkts->plen += txinfo->len; 2730 2731 txsd = &txq->sdesc[eq->pidx]; 2732 txsd->txb_used += txinfo->txb_used; 2733 txsd->hdls_used += txinfo->hdls_used; 2734 2735 return (0); 2736 } 2737 2738 /* 2739 * Couldn't coalesce m into txpkts. The first order of business 2740 * is to send txpkts on its way. Then we'll revisit m. 2741 */ 2742 write_txpkts_wr(txq, txpkts); 2743 } 2744 2745 /* 2746 * Check if we can start a new coalesced tx work request with m as 2747 * the first packet in it. 2748 */ 2749 2750 ASSERT(txpkts->npkt == 0); 2751 ASSERT(txinfo->len < 65536); 2752 2753 flits = TXPKTS_WR_HDR + txinfo->nflits; 2754 can_coalesce = (txinfo->flags & HW_LSO) == 0 && 2755 flits <= eq->avail * 8 && flits <= TX_WR_FLITS; 2756 2757 if (can_coalesce == 0) 2758 return (EINVAL); 2759 2760 /* 2761 * Start a fresh coalesced tx WR with m as the first frame in it. 2762 */ 2763 txpkts->tail = m; 2764 txpkts->npkt = 1; 2765 txpkts->nflits = flits; 2766 txpkts->flitp = &eq->desc[eq->pidx].flit[2]; 2767 txpkts->plen = txinfo->len; 2768 2769 txsd = &txq->sdesc[eq->pidx]; 2770 txsd->m = m; 2771 txsd->txb_used = txinfo->txb_used; 2772 txsd->hdls_used = txinfo->hdls_used; 2773 2774 return (0); 2775 } 2776 2777 /* 2778 * Note that write_txpkts_wr can never run out of hardware descriptors (but 2779 * write_txpkt_wr can). add_to_txpkts ensures that a frame is accepted for 2780 * coalescing only if sufficient hardware descriptors are available. 2781 */ 2782 static void 2783 write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts) 2784 { 2785 struct sge_eq *eq = &txq->eq; 2786 struct fw_eth_tx_pkts_wr *wr; 2787 struct tx_sdesc *txsd; 2788 uint32_t ctrl; 2789 uint16_t ndesc; 2790 2791 TXQ_LOCK_ASSERT_OWNED(txq); /* pidx, avail */ 2792 2793 ndesc = howmany(txpkts->nflits, 8); 2794 2795 wr = (void *)&eq->desc[eq->pidx]; 2796 wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR) | 2797 V_FW_WR_IMMDLEN(0)); /* immdlen does not matter in this WR */ 2798 ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2)); 2799 if (eq->avail == ndesc) 2800 ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ; 2801 wr->equiq_to_len16 = cpu_to_be32(ctrl); 2802 wr->plen = cpu_to_be16(txpkts->plen); 2803 wr->npkt = txpkts->npkt; 2804 wr->r3 = wr->type = 0; 2805 2806 /* Everything else already written */ 2807 2808 txsd = &txq->sdesc[eq->pidx]; 2809 txsd->desc_used = ndesc; 2810 2811 txq->txb_used += txsd->txb_used / TXB_CHUNK; 2812 txq->hdl_used += txsd->hdls_used; 2813 2814 ASSERT(eq->avail >= ndesc); 2815 2816 eq->pending += ndesc; 2817 eq->avail -= ndesc; 2818 eq->pidx += ndesc; 2819 if (eq->pidx >= eq->cap) 2820 eq->pidx -= eq->cap; 2821 2822 txq->txpkts_pkts += txpkts->npkt; 2823 txq->txpkts_wrs++; 2824 txpkts->npkt = 0; /* emptied */ 2825 } 2826 2827 static int 2828 write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, mblk_t *m, 2829 struct txinfo *txinfo) 2830 { 2831 struct sge_eq *eq = &txq->eq; 2832 struct fw_eth_tx_pkt_wr *wr; 2833 struct cpl_tx_pkt_core *cpl; 2834 uint32_t ctrl; /* used in many unrelated places */ 2835 uint64_t ctrl1; 2836 int nflits, ndesc; 2837 struct tx_sdesc *txsd; 2838 caddr_t dst; 2839 2840 TXQ_LOCK_ASSERT_OWNED(txq); /* pidx, avail */ 2841 2842 /* 2843 * Do we have enough flits to send this frame out? 2844 */ 2845 ctrl = sizeof (struct cpl_tx_pkt_core); 2846 if (txinfo->flags & HW_LSO) { 2847 nflits = TXPKT_LSO_WR_HDR; 2848 ctrl += sizeof(struct cpl_tx_pkt_lso_core); 2849 } else 2850 nflits = TXPKT_WR_HDR; 2851 if (txinfo->nsegs > 0) 2852 nflits += txinfo->nflits; 2853 else { 2854 nflits += howmany(txinfo->len, 8); 2855 ctrl += txinfo->len; 2856 } 2857 ndesc = howmany(nflits, 8); 2858 if (ndesc > eq->avail) 2859 return (ENOMEM); 2860 2861 /* Firmware work request header */ 2862 wr = (void *)&eq->desc[eq->pidx]; 2863 wr->op_immdlen = cpu_to_be32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) | 2864 V_FW_WR_IMMDLEN(ctrl)); 2865 ctrl = V_FW_WR_LEN16(howmany(nflits, 2)); 2866 if (eq->avail == ndesc) 2867 ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ; 2868 wr->equiq_to_len16 = cpu_to_be32(ctrl); 2869 wr->r3 = 0; 2870 2871 if (txinfo->flags & HW_LSO) { 2872 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 2873 char *p = (void *)m->b_rptr; 2874 ctrl = V_LSO_OPCODE((u32)CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | 2875 F_LSO_LAST_SLICE; 2876 2877 /* LINTED: E_BAD_PTR_CAST_ALIGN */ 2878 if (((struct ether_header *)p)->ether_type == 2879 htons(ETHERTYPE_VLAN)) { 2880 ctrl |= V_LSO_ETHHDR_LEN(1); 2881 p += sizeof (struct ether_vlan_header); 2882 } else 2883 p += sizeof (struct ether_header); 2884 2885 /* LINTED: E_BAD_PTR_CAST_ALIGN for IPH_HDR_LENGTH() */ 2886 ctrl |= V_LSO_IPHDR_LEN(IPH_HDR_LENGTH(p) / 4); 2887 /* LINTED: E_BAD_PTR_CAST_ALIGN for IPH_HDR_LENGTH() */ 2888 p += IPH_HDR_LENGTH(p); 2889 ctrl |= V_LSO_TCPHDR_LEN(TCP_HDR_LENGTH((tcph_t *)p) / 4); 2890 2891 lso->lso_ctrl = cpu_to_be32(ctrl); 2892 lso->ipid_ofst = cpu_to_be16(0); 2893 lso->mss = cpu_to_be16(txinfo->mss); 2894 lso->seqno_offset = cpu_to_be32(0); 2895 if (is_t4(pi->adapter->params.chip)) 2896 lso->len = cpu_to_be32(txinfo->len); 2897 else 2898 lso->len = cpu_to_be32(V_LSO_T5_XFER_SIZE(txinfo->len)); 2899 2900 cpl = (void *)(lso + 1); 2901 2902 txq->tso_wrs++; 2903 } else 2904 cpl = (void *)(wr + 1); 2905 2906 /* Checksum offload */ 2907 ctrl1 = 0; 2908 if (!(txinfo->flags & HCK_IPV4_HDRCKSUM)) 2909 ctrl1 |= F_TXPKT_IPCSUM_DIS; 2910 if (!(txinfo->flags & HCK_FULLCKSUM)) 2911 ctrl1 |= F_TXPKT_L4CSUM_DIS; 2912 if (ctrl1 == 0) 2913 txq->txcsum++; /* some hardware assistance provided */ 2914 2915 /* CPL header */ 2916 cpl->ctrl0 = cpu_to_be32(V_TXPKT_OPCODE(CPL_TX_PKT) | 2917 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf)); 2918 cpl->pack = 0; 2919 cpl->len = cpu_to_be16(txinfo->len); 2920 cpl->ctrl1 = cpu_to_be64(ctrl1); 2921 2922 /* Software descriptor */ 2923 txsd = &txq->sdesc[eq->pidx]; 2924 txsd->m = m; 2925 txsd->txb_used = txinfo->txb_used; 2926 txsd->hdls_used = txinfo->hdls_used; 2927 /* LINTED: E_ASSIGN_NARROW_CONV */ 2928 txsd->desc_used = ndesc; 2929 2930 txq->txb_used += txinfo->txb_used / TXB_CHUNK; 2931 txq->hdl_used += txinfo->hdls_used; 2932 2933 eq->pending += ndesc; 2934 eq->avail -= ndesc; 2935 eq->pidx += ndesc; 2936 if (eq->pidx >= eq->cap) 2937 eq->pidx -= eq->cap; 2938 2939 /* SGL */ 2940 dst = (void *)(cpl + 1); 2941 if (txinfo->nsegs > 0) { 2942 txq->sgl_wrs++; 2943 copy_to_txd(eq, (void *)&txinfo->sgl, &dst, txinfo->nflits * 8); 2944 2945 /* Need to zero-pad to a 16 byte boundary if not on one */ 2946 if ((uintptr_t)dst & 0xf) 2947 /* LINTED: E_BAD_PTR_CAST_ALIGN */ 2948 *(uint64_t *)dst = 0; 2949 2950 } else { 2951 txq->imm_wrs++; 2952 #ifdef DEBUG 2953 ctrl = txinfo->len; 2954 #endif 2955 for (; m; m = m->b_cont) { 2956 copy_to_txd(eq, (void *)m->b_rptr, &dst, MBLKL(m)); 2957 #ifdef DEBUG 2958 ctrl -= MBLKL(m); 2959 #endif 2960 } 2961 ASSERT(ctrl == 0); 2962 } 2963 2964 txq->txpkt_wrs++; 2965 return (0); 2966 } 2967 2968 static inline void 2969 write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq, 2970 struct txpkts *txpkts, struct txinfo *txinfo) 2971 { 2972 struct ulp_txpkt *ulpmc; 2973 struct ulptx_idata *ulpsc; 2974 struct cpl_tx_pkt_core *cpl; 2975 uintptr_t flitp, start, end; 2976 uint64_t ctrl; 2977 caddr_t dst; 2978 2979 ASSERT(txpkts->npkt > 0); 2980 2981 start = (uintptr_t)txq->eq.desc; 2982 end = (uintptr_t)txq->eq.spg; 2983 2984 /* Checksum offload */ 2985 ctrl = 0; 2986 if (!(txinfo->flags & HCK_IPV4_HDRCKSUM)) 2987 ctrl |= F_TXPKT_IPCSUM_DIS; 2988 if (!(txinfo->flags & HCK_FULLCKSUM)) 2989 ctrl |= F_TXPKT_L4CSUM_DIS; 2990 if (ctrl == 0) 2991 txq->txcsum++; /* some hardware assistance provided */ 2992 2993 /* 2994 * The previous packet's SGL must have ended at a 16 byte boundary (this 2995 * is required by the firmware/hardware). It follows that flitp cannot 2996 * wrap around between the ULPTX master command and ULPTX subcommand (8 2997 * bytes each), and that it can not wrap around in the middle of the 2998 * cpl_tx_pkt_core either. 2999 */ 3000 flitp = (uintptr_t)txpkts->flitp; 3001 ASSERT((flitp & 0xf) == 0); 3002 3003 /* ULP master command */ 3004 ulpmc = (void *)flitp; 3005 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 3006 ulpmc->len = htonl(howmany(sizeof (*ulpmc) + sizeof (*ulpsc) + 3007 sizeof (*cpl) + 8 * txinfo->nflits, 16)); 3008 3009 /* ULP subcommand */ 3010 ulpsc = (void *)(ulpmc + 1); 3011 ulpsc->cmd_more = cpu_to_be32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) | 3012 F_ULP_TX_SC_MORE); 3013 ulpsc->len = cpu_to_be32(sizeof (struct cpl_tx_pkt_core)); 3014 3015 flitp += sizeof (*ulpmc) + sizeof (*ulpsc); 3016 if (flitp == end) 3017 flitp = start; 3018 3019 /* CPL_TX_PKT */ 3020 cpl = (void *)flitp; 3021 cpl->ctrl0 = cpu_to_be32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3022 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf)); 3023 cpl->pack = 0; 3024 cpl->len = cpu_to_be16(txinfo->len); 3025 cpl->ctrl1 = cpu_to_be64(ctrl); 3026 3027 flitp += sizeof (*cpl); 3028 if (flitp == end) 3029 flitp = start; 3030 3031 /* SGL for this frame */ 3032 dst = (caddr_t)flitp; 3033 copy_to_txd(&txq->eq, (void *)&txinfo->sgl, &dst, txinfo->nflits * 8); 3034 flitp = (uintptr_t)dst; 3035 3036 /* Zero pad and advance to a 16 byte boundary if not already at one. */ 3037 if (flitp & 0xf) { 3038 3039 /* no matter what, flitp should be on an 8 byte boundary */ 3040 ASSERT((flitp & 0x7) == 0); 3041 3042 *(uint64_t *)flitp = 0; 3043 flitp += sizeof (uint64_t); 3044 txpkts->nflits++; 3045 } 3046 3047 if (flitp == end) 3048 flitp = start; 3049 3050 txpkts->flitp = (void *)flitp; 3051 } 3052 3053 static inline void 3054 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len) 3055 { 3056 if ((uintptr_t)(*to) + len <= (uintptr_t)eq->spg) { 3057 bcopy(from, *to, len); 3058 (*to) += len; 3059 } else { 3060 int portion = (uintptr_t)eq->spg - (uintptr_t)(*to); 3061 3062 bcopy(from, *to, portion); 3063 from += portion; 3064 portion = len - portion; /* remaining */ 3065 bcopy(from, (void *)eq->desc, portion); 3066 (*to) = (caddr_t)eq->desc + portion; 3067 } 3068 } 3069 3070 static inline void 3071 ring_tx_db(struct adapter *sc, struct sge_eq *eq) 3072 { 3073 int val, db_mode; 3074 u_int db = eq->doorbells; 3075 3076 if (eq->pending > 1) 3077 db &= ~DOORBELL_WCWR; 3078 3079 if (eq->pending > eq->pidx) { 3080 int offset = eq->cap - (eq->pending - eq->pidx); 3081 3082 /* pidx has wrapped around since last doorbell */ 3083 3084 (void) ddi_dma_sync(eq->desc_dhdl, 3085 offset * sizeof (struct tx_desc), 0, 3086 DDI_DMA_SYNC_FORDEV); 3087 (void) ddi_dma_sync(eq->desc_dhdl, 3088 0, eq->pidx * sizeof (struct tx_desc), 3089 DDI_DMA_SYNC_FORDEV); 3090 } else if (eq->pending > 0) { 3091 (void) ddi_dma_sync(eq->desc_dhdl, 3092 (eq->pidx - eq->pending) * sizeof (struct tx_desc), 3093 eq->pending * sizeof (struct tx_desc), 3094 DDI_DMA_SYNC_FORDEV); 3095 } 3096 3097 membar_producer(); 3098 3099 if (is_t4(sc->params.chip)) 3100 val = V_PIDX(eq->pending); 3101 else 3102 val = V_PIDX_T5(eq->pending); 3103 3104 db_mode = (1 << (ffs(db) - 1)); 3105 switch (db_mode) { 3106 case DOORBELL_UDB: 3107 *eq->udb = LE_32(V_QID(eq->udb_qid) | val); 3108 break; 3109 3110 case DOORBELL_WCWR: 3111 { 3112 volatile uint64_t *dst, *src; 3113 int i; 3114 /* 3115 * Queues whose 128B doorbell segment fits in 3116 * the page do not use relative qid 3117 * (udb_qid is always 0). Only queues with 3118 * doorbell segments can do WCWR. 3119 */ 3120 ASSERT(eq->udb_qid == 0 && eq->pending == 1); 3121 3122 dst = (volatile void *)((uintptr_t)eq->udb + 3123 UDBS_WR_OFFSET - UDBS_DB_OFFSET); 3124 i = eq->pidx ? eq->pidx - 1 : eq->cap - 1; 3125 src = (void *)&eq->desc[i]; 3126 while (src != (void *)&eq->desc[i + 1]) 3127 *dst++ = *src++; 3128 membar_producer(); 3129 break; 3130 } 3131 3132 case DOORBELL_UDBWC: 3133 *eq->udb = LE_32(V_QID(eq->udb_qid) | val); 3134 membar_producer(); 3135 break; 3136 3137 case DOORBELL_KDB: 3138 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), 3139 V_QID(eq->cntxt_id) | val); 3140 break; 3141 } 3142 3143 eq->pending = 0; 3144 } 3145 3146 static int 3147 reclaim_tx_descs(struct sge_txq *txq, int howmany) 3148 { 3149 struct tx_sdesc *txsd; 3150 uint_t cidx, can_reclaim, reclaimed, txb_freed, hdls_freed; 3151 struct sge_eq *eq = &txq->eq; 3152 3153 EQ_LOCK_ASSERT_OWNED(eq); 3154 3155 cidx = eq->spg->cidx; /* stable snapshot */ 3156 cidx = be16_to_cpu(cidx); 3157 3158 if (cidx >= eq->cidx) 3159 can_reclaim = cidx - eq->cidx; 3160 else 3161 can_reclaim = cidx + eq->cap - eq->cidx; 3162 3163 if (can_reclaim == 0) 3164 return (0); 3165 3166 txb_freed = hdls_freed = reclaimed = 0; 3167 do { 3168 int ndesc; 3169 3170 txsd = &txq->sdesc[eq->cidx]; 3171 ndesc = txsd->desc_used; 3172 3173 /* Firmware doesn't return "partial" credits. */ 3174 ASSERT(can_reclaim >= ndesc); 3175 3176 /* 3177 * We always keep mblk around, even for immediate data. If mblk 3178 * is NULL, this has to be the software descriptor for a credit 3179 * flush work request. 3180 */ 3181 if (txsd->m != NULL) 3182 freemsgchain(txsd->m); 3183 #ifdef DEBUG 3184 else { 3185 ASSERT(txsd->txb_used == 0); 3186 ASSERT(txsd->hdls_used == 0); 3187 ASSERT(ndesc == 1); 3188 } 3189 #endif 3190 3191 txb_freed += txsd->txb_used; 3192 hdls_freed += txsd->hdls_used; 3193 reclaimed += ndesc; 3194 3195 eq->cidx += ndesc; 3196 if (eq->cidx >= eq->cap) 3197 eq->cidx -= eq->cap; 3198 3199 can_reclaim -= ndesc; 3200 3201 } while (can_reclaim && reclaimed < howmany); 3202 3203 eq->avail += reclaimed; 3204 ASSERT(eq->avail < eq->cap); /* avail tops out at (cap - 1) */ 3205 3206 txq->txb_avail += txb_freed; 3207 3208 txq->tx_dhdl_avail += hdls_freed; 3209 ASSERT(txq->tx_dhdl_avail <= txq->tx_dhdl_total); 3210 for (; hdls_freed; hdls_freed--) { 3211 (void) ddi_dma_unbind_handle(txq->tx_dhdl[txq->tx_dhdl_cidx]); 3212 if (++txq->tx_dhdl_cidx == txq->tx_dhdl_total) 3213 txq->tx_dhdl_cidx = 0; 3214 } 3215 3216 return (reclaimed); 3217 } 3218 3219 static void 3220 write_txqflush_wr(struct sge_txq *txq) 3221 { 3222 struct sge_eq *eq = &txq->eq; 3223 struct fw_eq_flush_wr *wr; 3224 struct tx_sdesc *txsd; 3225 3226 EQ_LOCK_ASSERT_OWNED(eq); 3227 ASSERT(eq->avail > 0); 3228 3229 wr = (void *)&eq->desc[eq->pidx]; 3230 bzero(wr, sizeof (*wr)); 3231 wr->opcode = FW_EQ_FLUSH_WR; 3232 wr->equiq_to_len16 = cpu_to_be32(V_FW_WR_LEN16(sizeof (*wr) / 16) | 3233 F_FW_WR_EQUEQ | F_FW_WR_EQUIQ); 3234 3235 txsd = &txq->sdesc[eq->pidx]; 3236 txsd->m = NULL; 3237 txsd->txb_used = 0; 3238 txsd->hdls_used = 0; 3239 txsd->desc_used = 1; 3240 3241 eq->pending++; 3242 eq->avail--; 3243 if (++eq->pidx == eq->cap) 3244 eq->pidx = 0; 3245 } 3246 3247 static int 3248 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, mblk_t *m) 3249 { 3250 bool csum_ok; 3251 uint16_t err_vec; 3252 struct sge_rxq *rxq = (void *)iq; 3253 struct mblk_pair chain = {0}; 3254 struct adapter *sc = iq->adapter; 3255 const struct cpl_rx_pkt *cpl = (const void *)(rss + 1); 3256 3257 iq->intr_next = iq->intr_params; 3258 3259 m->b_rptr += sc->sge.pktshift; 3260 3261 /* Compressed error vector is enabled for T6 only */ 3262 if (sc->params.tp.rx_pkt_encap) 3263 /* It is enabled only in T6 config file */ 3264 err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec)); 3265 else 3266 err_vec = ntohs(cpl->err_vec); 3267 3268 csum_ok = cpl->csum_calc && !err_vec; 3269 /* TODO: what about cpl->ip_frag? */ 3270 if (csum_ok && !cpl->ip_frag) { 3271 mac_hcksum_set(m, 0, 0, 0, 0xffff, 3272 HCK_FULLCKSUM_OK | HCK_FULLCKSUM | 3273 HCK_IPV4_HDRCKSUM_OK); 3274 rxq->rxcsum++; 3275 } 3276 3277 /* Add to the chain that we'll send up */ 3278 if (chain.head != NULL) 3279 chain.tail->b_next = m; 3280 else 3281 chain.head = m; 3282 chain.tail = m; 3283 3284 t4_mac_rx(rxq->port, rxq, chain.head); 3285 3286 rxq->rxpkts++; 3287 rxq->rxbytes += be16_to_cpu(cpl->len); 3288 return (0); 3289 } 3290 3291 #define FL_HW_IDX(idx) ((idx) >> 3) 3292 3293 static inline void 3294 ring_fl_db(struct adapter *sc, struct sge_fl *fl) 3295 { 3296 int desc_start, desc_last, ndesc; 3297 uint32_t v = sc->params.arch.sge_fl_db ; 3298 3299 ndesc = FL_HW_IDX(fl->pending); 3300 3301 /* Hold back one credit if pidx = cidx */ 3302 if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx)) 3303 ndesc--; 3304 3305 /* 3306 * There are chances of ndesc modified above (to avoid pidx = cidx). 3307 * If there is nothing to post, return. 3308 */ 3309 if (ndesc <= 0) 3310 return; 3311 3312 desc_last = FL_HW_IDX(fl->pidx); 3313 3314 if (fl->pidx < fl->pending) { 3315 /* There was a wrap */ 3316 desc_start = FL_HW_IDX(fl->pidx + fl->cap - fl->pending); 3317 3318 /* From desc_start to the end of list */ 3319 (void) ddi_dma_sync(fl->dhdl, desc_start * RX_FL_ESIZE, 0, 3320 DDI_DMA_SYNC_FORDEV); 3321 3322 /* From start of list to the desc_last */ 3323 if (desc_last != 0) 3324 (void) ddi_dma_sync(fl->dhdl, 0, desc_last * 3325 RX_FL_ESIZE, DDI_DMA_SYNC_FORDEV); 3326 } else { 3327 /* There was no wrap, sync from start_desc to last_desc */ 3328 desc_start = FL_HW_IDX(fl->pidx - fl->pending); 3329 (void) ddi_dma_sync(fl->dhdl, desc_start * RX_FL_ESIZE, 3330 ndesc * RX_FL_ESIZE, DDI_DMA_SYNC_FORDEV); 3331 } 3332 3333 if (is_t4(sc->params.chip)) 3334 v |= V_PIDX(ndesc); 3335 else 3336 v |= V_PIDX_T5(ndesc); 3337 v |= V_QID(fl->cntxt_id) | V_PIDX(ndesc); 3338 3339 membar_producer(); 3340 3341 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v); 3342 3343 /* 3344 * Update pending count: 3345 * Deduct the number of descriptors posted 3346 */ 3347 fl->pending -= ndesc * 8; 3348 } 3349 3350 static void 3351 tx_reclaim_task(void *arg) 3352 { 3353 struct sge_txq *txq = arg; 3354 3355 TXQ_LOCK(txq); 3356 reclaim_tx_descs(txq, txq->eq.qsize); 3357 TXQ_UNLOCK(txq); 3358 } 3359 3360 /* ARGSUSED */ 3361 static int 3362 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss, 3363 mblk_t *m) 3364 { 3365 const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1); 3366 unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid)); 3367 struct adapter *sc = iq->adapter; 3368 struct sge *s = &sc->sge; 3369 struct sge_eq *eq; 3370 struct sge_txq *txq; 3371 3372 txq = (void *)s->eqmap[qid - s->eq_start]; 3373 eq = &txq->eq; 3374 txq->qflush++; 3375 t4_mac_tx_update(txq->port, txq); 3376 3377 ddi_taskq_dispatch(sc->tq[eq->tx_chan], tx_reclaim_task, 3378 (void *)txq, DDI_NOSLEEP); 3379 3380 return (0); 3381 } 3382 3383 static int 3384 handle_fw_rpl(struct sge_iq *iq, const struct rss_header *rss, mblk_t *m) 3385 { 3386 struct adapter *sc = iq->adapter; 3387 const struct cpl_fw6_msg *cpl = (const void *)(rss + 1); 3388 3389 ASSERT(m == NULL); 3390 3391 if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) { 3392 const struct rss_header *rss2; 3393 3394 rss2 = (const struct rss_header *)&cpl->data[0]; 3395 return (sc->cpl_handler[rss2->opcode](iq, rss2, m)); 3396 } 3397 return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0])); 3398 } 3399 3400 int 3401 t4_alloc_tx_maps(struct adapter *sc, struct tx_maps *txmaps, int count, 3402 int flags) 3403 { 3404 int i, rc; 3405 3406 txmaps->map_total = count; 3407 txmaps->map_avail = txmaps->map_cidx = txmaps->map_pidx = 0; 3408 3409 txmaps->map = kmem_zalloc(sizeof (ddi_dma_handle_t) * 3410 txmaps->map_total, flags); 3411 3412 for (i = 0; i < count; i++) { 3413 rc = ddi_dma_alloc_handle(sc->dip, &sc->sge.dma_attr_tx, 3414 DDI_DMA_SLEEP, 0, &txmaps->map[i]); 3415 if (rc != DDI_SUCCESS) { 3416 cxgb_printf(sc->dip, CE_WARN, 3417 "%s: failed to allocate DMA handle (%d)", 3418 __func__, rc); 3419 return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL); 3420 } 3421 txmaps->map_avail++; 3422 } 3423 3424 return (0); 3425 } 3426 3427 #define KS_UINIT(x) kstat_named_init(&kstatp->x, #x, KSTAT_DATA_ULONG) 3428 #define KS_CINIT(x) kstat_named_init(&kstatp->x, #x, KSTAT_DATA_CHAR) 3429 #define KS_U_SET(x, y) kstatp->x.value.ul = (y) 3430 #define KS_U_FROM(x, y) kstatp->x.value.ul = (y)->x 3431 #define KS_C_SET(x, ...) \ 3432 (void) snprintf(kstatp->x.value.c, 16, __VA_ARGS__) 3433 3434 /* 3435 * cxgbe:X:config 3436 */ 3437 struct cxgbe_port_config_kstats { 3438 kstat_named_t idx; 3439 kstat_named_t nrxq; 3440 kstat_named_t ntxq; 3441 kstat_named_t first_rxq; 3442 kstat_named_t first_txq; 3443 kstat_named_t controller; 3444 kstat_named_t factory_mac_address; 3445 }; 3446 3447 /* 3448 * cxgbe:X:info 3449 */ 3450 struct cxgbe_port_info_kstats { 3451 kstat_named_t transceiver; 3452 kstat_named_t rx_ovflow0; 3453 kstat_named_t rx_ovflow1; 3454 kstat_named_t rx_ovflow2; 3455 kstat_named_t rx_ovflow3; 3456 kstat_named_t rx_trunc0; 3457 kstat_named_t rx_trunc1; 3458 kstat_named_t rx_trunc2; 3459 kstat_named_t rx_trunc3; 3460 kstat_named_t tx_pause; 3461 kstat_named_t rx_pause; 3462 }; 3463 3464 static kstat_t * 3465 setup_port_config_kstats(struct port_info *pi) 3466 { 3467 kstat_t *ksp; 3468 struct cxgbe_port_config_kstats *kstatp; 3469 int ndata; 3470 dev_info_t *pdip = ddi_get_parent(pi->dip); 3471 uint8_t *ma = &pi->hw_addr[0]; 3472 3473 ndata = sizeof (struct cxgbe_port_config_kstats) / 3474 sizeof (kstat_named_t); 3475 3476 ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), "config", 3477 "net", KSTAT_TYPE_NAMED, ndata, 0); 3478 if (ksp == NULL) { 3479 cxgb_printf(pi->dip, CE_WARN, "failed to initialize kstats."); 3480 return (NULL); 3481 } 3482 3483 kstatp = (struct cxgbe_port_config_kstats *)ksp->ks_data; 3484 3485 KS_UINIT(idx); 3486 KS_UINIT(nrxq); 3487 KS_UINIT(ntxq); 3488 KS_UINIT(first_rxq); 3489 KS_UINIT(first_txq); 3490 KS_CINIT(controller); 3491 KS_CINIT(factory_mac_address); 3492 3493 KS_U_SET(idx, pi->port_id); 3494 KS_U_SET(nrxq, pi->nrxq); 3495 KS_U_SET(ntxq, pi->ntxq); 3496 KS_U_SET(first_rxq, pi->first_rxq); 3497 KS_U_SET(first_txq, pi->first_txq); 3498 KS_C_SET(controller, "%s%d", ddi_driver_name(pdip), 3499 ddi_get_instance(pdip)); 3500 KS_C_SET(factory_mac_address, "%02X%02X%02X%02X%02X%02X", 3501 ma[0], ma[1], ma[2], ma[3], ma[4], ma[5]); 3502 3503 /* Do NOT set ksp->ks_update. These kstats do not change. */ 3504 3505 /* Install the kstat */ 3506 ksp->ks_private = (void *)pi; 3507 kstat_install(ksp); 3508 3509 return (ksp); 3510 } 3511 3512 static kstat_t * 3513 setup_port_info_kstats(struct port_info *pi) 3514 { 3515 kstat_t *ksp; 3516 struct cxgbe_port_info_kstats *kstatp; 3517 int ndata; 3518 3519 ndata = sizeof (struct cxgbe_port_info_kstats) / sizeof (kstat_named_t); 3520 3521 ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), "info", 3522 "net", KSTAT_TYPE_NAMED, ndata, 0); 3523 if (ksp == NULL) { 3524 cxgb_printf(pi->dip, CE_WARN, "failed to initialize kstats."); 3525 return (NULL); 3526 } 3527 3528 kstatp = (struct cxgbe_port_info_kstats *)ksp->ks_data; 3529 3530 KS_CINIT(transceiver); 3531 KS_UINIT(rx_ovflow0); 3532 KS_UINIT(rx_ovflow1); 3533 KS_UINIT(rx_ovflow2); 3534 KS_UINIT(rx_ovflow3); 3535 KS_UINIT(rx_trunc0); 3536 KS_UINIT(rx_trunc1); 3537 KS_UINIT(rx_trunc2); 3538 KS_UINIT(rx_trunc3); 3539 KS_UINIT(tx_pause); 3540 KS_UINIT(rx_pause); 3541 3542 /* Install the kstat */ 3543 ksp->ks_update = update_port_info_kstats; 3544 ksp->ks_private = (void *)pi; 3545 kstat_install(ksp); 3546 3547 return (ksp); 3548 } 3549 3550 static int 3551 update_port_info_kstats(kstat_t *ksp, int rw) 3552 { 3553 struct cxgbe_port_info_kstats *kstatp = 3554 (struct cxgbe_port_info_kstats *)ksp->ks_data; 3555 struct port_info *pi = ksp->ks_private; 3556 static const char *mod_str[] = { NULL, "LR", "SR", "ER", "TWINAX", 3557 "active TWINAX", "LRM" }; 3558 uint32_t bgmap; 3559 3560 if (rw == KSTAT_WRITE) 3561 return (0); 3562 3563 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 3564 KS_C_SET(transceiver, "unplugged"); 3565 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 3566 KS_C_SET(transceiver, "unknown"); 3567 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 3568 KS_C_SET(transceiver, "unsupported"); 3569 else if (pi->mod_type > 0 && pi->mod_type < ARRAY_SIZE(mod_str)) 3570 KS_C_SET(transceiver, "%s", mod_str[pi->mod_type]); 3571 else 3572 KS_C_SET(transceiver, "type %d", pi->mod_type); 3573 3574 #define GET_STAT(name) t4_read_reg64(pi->adapter, \ 3575 PORT_REG(pi->port_id, A_MPS_PORT_STAT_##name##_L)) 3576 #define GET_STAT_COM(name) t4_read_reg64(pi->adapter, \ 3577 A_MPS_STAT_##name##_L) 3578 3579 bgmap = G_NUMPORTS(t4_read_reg(pi->adapter, A_MPS_CMN_CTL)); 3580 if (bgmap == 0) 3581 bgmap = (pi->port_id == 0) ? 0xf : 0; 3582 else if (bgmap == 1) 3583 bgmap = (pi->port_id < 2) ? (3 << (2 * pi->port_id)) : 0; 3584 else 3585 bgmap = 1; 3586 3587 KS_U_SET(rx_ovflow0, (bgmap & 1) ? 3588 GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0); 3589 KS_U_SET(rx_ovflow1, (bgmap & 2) ? 3590 GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0); 3591 KS_U_SET(rx_ovflow2, (bgmap & 4) ? 3592 GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0); 3593 KS_U_SET(rx_ovflow3, (bgmap & 8) ? 3594 GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0); 3595 KS_U_SET(rx_trunc0, (bgmap & 1) ? 3596 GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0); 3597 KS_U_SET(rx_trunc1, (bgmap & 2) ? 3598 GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0); 3599 KS_U_SET(rx_trunc2, (bgmap & 4) ? 3600 GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0); 3601 KS_U_SET(rx_trunc3, (bgmap & 8) ? 3602 GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0); 3603 3604 KS_U_SET(tx_pause, GET_STAT(TX_PORT_PAUSE)); 3605 KS_U_SET(rx_pause, GET_STAT(RX_PORT_PAUSE)); 3606 3607 return (0); 3608 3609 } 3610 3611 /* 3612 * cxgbe:X:rxqY 3613 */ 3614 struct rxq_kstats { 3615 kstat_named_t rxcsum; 3616 kstat_named_t rxpkts; 3617 kstat_named_t rxbytes; 3618 kstat_named_t nomem; 3619 }; 3620 3621 static kstat_t * 3622 setup_rxq_kstats(struct port_info *pi, struct sge_rxq *rxq, int idx) 3623 { 3624 struct kstat *ksp; 3625 struct rxq_kstats *kstatp; 3626 int ndata; 3627 char str[16]; 3628 3629 ndata = sizeof (struct rxq_kstats) / sizeof (kstat_named_t); 3630 (void) snprintf(str, sizeof (str), "rxq%u", idx); 3631 3632 ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), str, "rxq", 3633 KSTAT_TYPE_NAMED, ndata, 0); 3634 if (ksp == NULL) { 3635 cxgb_printf(pi->dip, CE_WARN, 3636 "%s: failed to initialize rxq kstats for queue %d.", 3637 __func__, idx); 3638 return (NULL); 3639 } 3640 3641 kstatp = (struct rxq_kstats *)ksp->ks_data; 3642 3643 KS_UINIT(rxcsum); 3644 KS_UINIT(rxpkts); 3645 KS_UINIT(rxbytes); 3646 KS_UINIT(nomem); 3647 3648 ksp->ks_update = update_rxq_kstats; 3649 ksp->ks_private = (void *)rxq; 3650 kstat_install(ksp); 3651 3652 return (ksp); 3653 } 3654 3655 static int 3656 update_rxq_kstats(kstat_t *ksp, int rw) 3657 { 3658 struct rxq_kstats *kstatp = (struct rxq_kstats *)ksp->ks_data; 3659 struct sge_rxq *rxq = ksp->ks_private; 3660 3661 if (rw == KSTAT_WRITE) 3662 return (0); 3663 3664 KS_U_FROM(rxcsum, rxq); 3665 KS_U_FROM(rxpkts, rxq); 3666 KS_U_FROM(rxbytes, rxq); 3667 KS_U_FROM(nomem, rxq); 3668 3669 return (0); 3670 } 3671 3672 /* 3673 * cxgbe:X:txqY 3674 */ 3675 struct txq_kstats { 3676 kstat_named_t txcsum; 3677 kstat_named_t tso_wrs; 3678 kstat_named_t imm_wrs; 3679 kstat_named_t sgl_wrs; 3680 kstat_named_t txpkt_wrs; 3681 kstat_named_t txpkts_wrs; 3682 kstat_named_t txpkts_pkts; 3683 kstat_named_t txb_used; 3684 kstat_named_t hdl_used; 3685 kstat_named_t txb_full; 3686 kstat_named_t dma_hdl_failed; 3687 kstat_named_t dma_map_failed; 3688 kstat_named_t qfull; 3689 kstat_named_t qflush; 3690 kstat_named_t pullup_early; 3691 kstat_named_t pullup_late; 3692 kstat_named_t pullup_failed; 3693 }; 3694 3695 static kstat_t * 3696 setup_txq_kstats(struct port_info *pi, struct sge_txq *txq, int idx) 3697 { 3698 struct kstat *ksp; 3699 struct txq_kstats *kstatp; 3700 int ndata; 3701 char str[16]; 3702 3703 ndata = sizeof (struct txq_kstats) / sizeof (kstat_named_t); 3704 (void) snprintf(str, sizeof (str), "txq%u", idx); 3705 3706 ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), str, "txq", 3707 KSTAT_TYPE_NAMED, ndata, 0); 3708 if (ksp == NULL) { 3709 cxgb_printf(pi->dip, CE_WARN, 3710 "%s: failed to initialize txq kstats for queue %d.", 3711 __func__, idx); 3712 return (NULL); 3713 } 3714 3715 kstatp = (struct txq_kstats *)ksp->ks_data; 3716 3717 KS_UINIT(txcsum); 3718 KS_UINIT(tso_wrs); 3719 KS_UINIT(imm_wrs); 3720 KS_UINIT(sgl_wrs); 3721 KS_UINIT(txpkt_wrs); 3722 KS_UINIT(txpkts_wrs); 3723 KS_UINIT(txpkts_pkts); 3724 KS_UINIT(txb_used); 3725 KS_UINIT(hdl_used); 3726 KS_UINIT(txb_full); 3727 KS_UINIT(dma_hdl_failed); 3728 KS_UINIT(dma_map_failed); 3729 KS_UINIT(qfull); 3730 KS_UINIT(qflush); 3731 KS_UINIT(pullup_early); 3732 KS_UINIT(pullup_late); 3733 KS_UINIT(pullup_failed); 3734 3735 ksp->ks_update = update_txq_kstats; 3736 ksp->ks_private = (void *)txq; 3737 kstat_install(ksp); 3738 3739 return (ksp); 3740 } 3741 3742 static int 3743 update_txq_kstats(kstat_t *ksp, int rw) 3744 { 3745 struct txq_kstats *kstatp = (struct txq_kstats *)ksp->ks_data; 3746 struct sge_txq *txq = ksp->ks_private; 3747 3748 if (rw == KSTAT_WRITE) 3749 return (0); 3750 3751 KS_U_FROM(txcsum, txq); 3752 KS_U_FROM(tso_wrs, txq); 3753 KS_U_FROM(imm_wrs, txq); 3754 KS_U_FROM(sgl_wrs, txq); 3755 KS_U_FROM(txpkt_wrs, txq); 3756 KS_U_FROM(txpkts_wrs, txq); 3757 KS_U_FROM(txpkts_pkts, txq); 3758 KS_U_FROM(txb_used, txq); 3759 KS_U_FROM(hdl_used, txq); 3760 KS_U_FROM(txb_full, txq); 3761 KS_U_FROM(dma_hdl_failed, txq); 3762 KS_U_FROM(dma_map_failed, txq); 3763 KS_U_FROM(qfull, txq); 3764 KS_U_FROM(qflush, txq); 3765 KS_U_FROM(pullup_early, txq); 3766 KS_U_FROM(pullup_late, txq); 3767 KS_U_FROM(pullup_failed, txq); 3768 3769 return (0); 3770 }