1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015, Joyent Inc. All rights reserved. 25 * Copyright (c) 2016 by Delphix. All rights reserved. 26 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 27 */ 28 29 /* 30 * Zones 31 * 32 * A zone is a named collection of processes, namespace constraints, 33 * and other system resources which comprise a secure and manageable 34 * application containment facility. 35 * 36 * Zones (represented by the reference counted zone_t) are tracked in 37 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 38 * (zoneid_t) are used to track zone association. Zone IDs are 39 * dynamically generated when the zone is created; if a persistent 40 * identifier is needed (core files, accounting logs, audit trail, 41 * etc.), the zone name should be used. 42 * 43 * 44 * Global Zone: 45 * 46 * The global zone (zoneid 0) is automatically associated with all 47 * system resources that have not been bound to a user-created zone. 48 * This means that even systems where zones are not in active use 49 * have a global zone, and all processes, mounts, etc. are 50 * associated with that zone. The global zone is generally 51 * unconstrained in terms of privileges and access, though the usual 52 * credential and privilege based restrictions apply. 53 * 54 * 55 * Zone States: 56 * 57 * The states in which a zone may be in and the transitions are as 58 * follows: 59 * 60 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 61 * initialized zone is added to the list of active zones on the system but 62 * isn't accessible. 63 * 64 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 65 * not yet completed. Not possible to enter the zone, but attributes can 66 * be retrieved. 67 * 68 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 69 * ready. The zone is made visible after the ZSD constructor callbacks are 70 * executed. A zone remains in this state until it transitions into 71 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 72 * 73 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 74 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 75 * state. 76 * 77 * ZONE_IS_RUNNING: The zone is open for business: zsched has 78 * successfully started init. A zone remains in this state until 79 * zone_shutdown() is called. 80 * 81 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 82 * killing all processes running in the zone. The zone remains 83 * in this state until there are no more user processes running in the zone. 84 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 85 * Since zone_shutdown() is restartable, it may be called successfully 86 * multiple times for the same zone_t. Setting of the zone's state to 87 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 88 * the zone's status without worrying about it being a moving target. 89 * 90 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 91 * are no more user processes in the zone. The zone remains in this 92 * state until there are no more kernel threads associated with the 93 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 94 * fail. 95 * 96 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 97 * have exited. zone_shutdown() returns. Henceforth it is not possible to 98 * join the zone or create kernel threads therein. 99 * 100 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 101 * remains in this state until zsched exits. Calls to zone_find_by_*() 102 * return NULL from now on. 103 * 104 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 105 * processes or threads doing work on behalf of the zone. The zone is 106 * removed from the list of active zones. zone_destroy() returns, and 107 * the zone can be recreated. 108 * 109 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 110 * callbacks are executed, and all memory associated with the zone is 111 * freed. 112 * 113 * Threads can wait for the zone to enter a requested state by using 114 * zone_status_wait() or zone_status_timedwait() with the desired 115 * state passed in as an argument. Zone state transitions are 116 * uni-directional; it is not possible to move back to an earlier state. 117 * 118 * 119 * Zone-Specific Data: 120 * 121 * Subsystems needing to maintain zone-specific data can store that 122 * data using the ZSD mechanism. This provides a zone-specific data 123 * store, similar to thread-specific data (see pthread_getspecific(3C) 124 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 125 * to register callbacks to be invoked when a zone is created, shut 126 * down, or destroyed. This can be used to initialize zone-specific 127 * data for new zones and to clean up when zones go away. 128 * 129 * 130 * Data Structures: 131 * 132 * The per-zone structure (zone_t) is reference counted, and freed 133 * when all references are released. zone_hold and zone_rele can be 134 * used to adjust the reference count. In addition, reference counts 135 * associated with the cred_t structure are tracked separately using 136 * zone_cred_hold and zone_cred_rele. 137 * 138 * Pointers to active zone_t's are stored in two hash tables; one 139 * for searching by id, the other for searching by name. Lookups 140 * can be performed on either basis, using zone_find_by_id and 141 * zone_find_by_name. Both return zone_t pointers with the zone 142 * held, so zone_rele should be called when the pointer is no longer 143 * needed. Zones can also be searched by path; zone_find_by_path 144 * returns the zone with which a path name is associated (global 145 * zone if the path is not within some other zone's file system 146 * hierarchy). This currently requires iterating through each zone, 147 * so it is slower than an id or name search via a hash table. 148 * 149 * 150 * Locking: 151 * 152 * zonehash_lock: This is a top-level global lock used to protect the 153 * zone hash tables and lists. Zones cannot be created or destroyed 154 * while this lock is held. 155 * zone_status_lock: This is a global lock protecting zone state. 156 * Zones cannot change state while this lock is held. It also 157 * protects the list of kernel threads associated with a zone. 158 * zone_lock: This is a per-zone lock used to protect several fields of 159 * the zone_t (see <sys/zone.h> for details). In addition, holding 160 * this lock means that the zone cannot go away. 161 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 162 * related to the zone.max-lwps rctl. 163 * zone_mem_lock: This is a per-zone lock used to protect the fields 164 * related to the zone.max-locked-memory and zone.max-swap rctls. 165 * zone_rctl_lock: This is a per-zone lock used to protect other rctls, 166 * currently just max_lofi 167 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 168 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 169 * list (a list of zones in the ZONE_IS_DEAD state). 170 * 171 * Ordering requirements: 172 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 173 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 174 * 175 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 176 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 177 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock 178 * 179 * Blocking memory allocations are permitted while holding any of the 180 * zone locks. 181 * 182 * 183 * System Call Interface: 184 * 185 * The zone subsystem can be managed and queried from user level with 186 * the following system calls (all subcodes of the primary "zone" 187 * system call): 188 * - zone_create: creates a zone with selected attributes (name, 189 * root path, privileges, resource controls, ZFS datasets) 190 * - zone_enter: allows the current process to enter a zone 191 * - zone_getattr: reports attributes of a zone 192 * - zone_setattr: set attributes of a zone 193 * - zone_boot: set 'init' running for the zone 194 * - zone_list: lists all zones active in the system 195 * - zone_lookup: looks up zone id based on name 196 * - zone_shutdown: initiates shutdown process (see states above) 197 * - zone_destroy: completes shutdown process (see states above) 198 * 199 */ 200 201 #include <sys/priv_impl.h> 202 #include <sys/cred.h> 203 #include <c2/audit.h> 204 #include <sys/debug.h> 205 #include <sys/file.h> 206 #include <sys/kmem.h> 207 #include <sys/kstat.h> 208 #include <sys/mutex.h> 209 #include <sys/note.h> 210 #include <sys/pathname.h> 211 #include <sys/proc.h> 212 #include <sys/project.h> 213 #include <sys/sysevent.h> 214 #include <sys/task.h> 215 #include <sys/systm.h> 216 #include <sys/types.h> 217 #include <sys/utsname.h> 218 #include <sys/vnode.h> 219 #include <sys/vfs.h> 220 #include <sys/systeminfo.h> 221 #include <sys/policy.h> 222 #include <sys/cred_impl.h> 223 #include <sys/contract_impl.h> 224 #include <sys/contract/process_impl.h> 225 #include <sys/class.h> 226 #include <sys/pool.h> 227 #include <sys/pool_pset.h> 228 #include <sys/pset.h> 229 #include <sys/strlog.h> 230 #include <sys/sysmacros.h> 231 #include <sys/callb.h> 232 #include <sys/vmparam.h> 233 #include <sys/corectl.h> 234 #include <sys/ipc_impl.h> 235 #include <sys/klpd.h> 236 237 #include <sys/door.h> 238 #include <sys/cpuvar.h> 239 #include <sys/sdt.h> 240 241 #include <sys/uadmin.h> 242 #include <sys/session.h> 243 #include <sys/cmn_err.h> 244 #include <sys/modhash.h> 245 #include <sys/sunddi.h> 246 #include <sys/nvpair.h> 247 #include <sys/rctl.h> 248 #include <sys/fss.h> 249 #include <sys/brand.h> 250 #include <sys/zone.h> 251 #include <net/if.h> 252 #include <sys/cpucaps.h> 253 #include <vm/seg.h> 254 #include <sys/mac.h> 255 256 /* 257 * This constant specifies the number of seconds that threads waiting for 258 * subsystems to release a zone's general-purpose references will wait before 259 * they log the zone's reference counts. The constant's value shouldn't 260 * be so small that reference counts are unnecessarily reported for zones 261 * whose references are slowly released. On the other hand, it shouldn't be so 262 * large that users reboot their systems out of frustration over hung zones 263 * before the system logs the zones' reference counts. 264 */ 265 #define ZONE_DESTROY_TIMEOUT_SECS 60 266 267 /* List of data link IDs which are accessible from the zone */ 268 typedef struct zone_dl { 269 datalink_id_t zdl_id; 270 nvlist_t *zdl_net; 271 list_node_t zdl_linkage; 272 } zone_dl_t; 273 274 /* 275 * cv used to signal that all references to the zone have been released. This 276 * needs to be global since there may be multiple waiters, and the first to 277 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 278 */ 279 static kcondvar_t zone_destroy_cv; 280 /* 281 * Lock used to serialize access to zone_cv. This could have been per-zone, 282 * but then we'd need another lock for zone_destroy_cv, and why bother? 283 */ 284 static kmutex_t zone_status_lock; 285 286 /* 287 * ZSD-related global variables. 288 */ 289 static kmutex_t zsd_key_lock; /* protects the following two */ 290 /* 291 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 292 */ 293 static zone_key_t zsd_keyval = 0; 294 /* 295 * Global list of registered keys. We use this when a new zone is created. 296 */ 297 static list_t zsd_registered_keys; 298 299 int zone_hash_size = 256; 300 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 301 static kmutex_t zonehash_lock; 302 static uint_t zonecount; 303 static id_space_t *zoneid_space; 304 305 /* 306 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 307 * kernel proper runs, and which manages all other zones. 308 * 309 * Although not declared as static, the variable "zone0" should not be used 310 * except for by code that needs to reference the global zone early on in boot, 311 * before it is fully initialized. All other consumers should use 312 * 'global_zone'. 313 */ 314 zone_t zone0; 315 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 316 317 /* 318 * List of active zones, protected by zonehash_lock. 319 */ 320 static list_t zone_active; 321 322 /* 323 * List of destroyed zones that still have outstanding cred references. 324 * Used for debugging. Uses a separate lock to avoid lock ordering 325 * problems in zone_free. 326 */ 327 static list_t zone_deathrow; 328 static kmutex_t zone_deathrow_lock; 329 330 /* number of zones is limited by virtual interface limit in IP */ 331 uint_t maxzones = 8192; 332 333 /* Event channel to sent zone state change notifications */ 334 evchan_t *zone_event_chan; 335 336 /* 337 * This table holds the mapping from kernel zone states to 338 * states visible in the state notification API. 339 * The idea is that we only expose "obvious" states and 340 * do not expose states which are just implementation details. 341 */ 342 const char *zone_status_table[] = { 343 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 344 ZONE_EVENT_INITIALIZED, /* initialized */ 345 ZONE_EVENT_READY, /* ready */ 346 ZONE_EVENT_READY, /* booting */ 347 ZONE_EVENT_RUNNING, /* running */ 348 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 349 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 350 ZONE_EVENT_SHUTTING_DOWN, /* down */ 351 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 352 ZONE_EVENT_UNINITIALIZED, /* dead */ 353 }; 354 355 /* 356 * This array contains the names of the subsystems listed in zone_ref_subsys_t 357 * (see sys/zone.h). 358 */ 359 static char *zone_ref_subsys_names[] = { 360 "NFS", /* ZONE_REF_NFS */ 361 "NFSv4", /* ZONE_REF_NFSV4 */ 362 "SMBFS", /* ZONE_REF_SMBFS */ 363 "MNTFS", /* ZONE_REF_MNTFS */ 364 "LOFI", /* ZONE_REF_LOFI */ 365 "VFS", /* ZONE_REF_VFS */ 366 "IPC" /* ZONE_REF_IPC */ 367 }; 368 369 /* 370 * This isn't static so lint doesn't complain. 371 */ 372 rctl_hndl_t rc_zone_cpu_shares; 373 rctl_hndl_t rc_zone_locked_mem; 374 rctl_hndl_t rc_zone_max_swap; 375 rctl_hndl_t rc_zone_max_lofi; 376 rctl_hndl_t rc_zone_cpu_cap; 377 rctl_hndl_t rc_zone_nlwps; 378 rctl_hndl_t rc_zone_nprocs; 379 rctl_hndl_t rc_zone_shmmax; 380 rctl_hndl_t rc_zone_shmmni; 381 rctl_hndl_t rc_zone_semmni; 382 rctl_hndl_t rc_zone_msgmni; 383 384 const char * const zone_default_initname = "/sbin/init"; 385 static char * const zone_prefix = "/zone/"; 386 static int zone_shutdown(zoneid_t zoneid); 387 static int zone_add_datalink(zoneid_t, datalink_id_t); 388 static int zone_remove_datalink(zoneid_t, datalink_id_t); 389 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *); 390 static int zone_set_network(zoneid_t, zone_net_data_t *); 391 static int zone_get_network(zoneid_t, zone_net_data_t *); 392 393 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 394 395 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 396 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 397 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 398 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 399 zone_key_t); 400 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 401 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 402 kmutex_t *); 403 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 404 kmutex_t *); 405 406 /* 407 * Bump this number when you alter the zone syscall interfaces; this is 408 * because we need to have support for previous API versions in libc 409 * to support patching; libc calls into the kernel to determine this number. 410 * 411 * Version 1 of the API is the version originally shipped with Solaris 10 412 * Version 2 alters the zone_create system call in order to support more 413 * arguments by moving the args into a structure; and to do better 414 * error reporting when zone_create() fails. 415 * Version 3 alters the zone_create system call in order to support the 416 * import of ZFS datasets to zones. 417 * Version 4 alters the zone_create system call in order to support 418 * Trusted Extensions. 419 * Version 5 alters the zone_boot system call, and converts its old 420 * bootargs parameter to be set by the zone_setattr API instead. 421 * Version 6 adds the flag argument to zone_create. 422 */ 423 static const int ZONE_SYSCALL_API_VERSION = 6; 424 425 /* 426 * Certain filesystems (such as NFS and autofs) need to know which zone 427 * the mount is being placed in. Because of this, we need to be able to 428 * ensure that a zone isn't in the process of being created/destroyed such 429 * that nfs_mount() thinks it is in the global/NGZ zone, while by the time 430 * it gets added the list of mounted zones, it ends up on the wrong zone's 431 * mount list. Since a zone can't reside on an NFS file system, we don't 432 * have to worry about the zonepath itself. 433 * 434 * The following functions: block_mounts()/resume_mounts() and 435 * mount_in_progress()/mount_completed() are used by zones and the VFS 436 * layer (respectively) to synchronize zone state transitions and new 437 * mounts within a zone. This syncronization is on a per-zone basis, so 438 * activity for one zone will not interfere with activity for another zone. 439 * 440 * The semantics are like a reader-reader lock such that there may 441 * either be multiple mounts (or zone state transitions, if that weren't 442 * serialized by zonehash_lock) in progress at the same time, but not 443 * both. 444 * 445 * We use cv's so the user can ctrl-C out of the operation if it's 446 * taking too long. 447 * 448 * The semantics are such that there is unfair bias towards the 449 * "current" operation. This means that zone halt may starve if 450 * there is a rapid succession of new mounts coming in to the zone. 451 */ 452 /* 453 * Prevent new mounts from progressing to the point of calling 454 * VFS_MOUNT(). If there are already mounts in this "region", wait for 455 * them to complete. 456 */ 457 static int 458 block_mounts(zone_t *zp) 459 { 460 int retval = 0; 461 462 /* 463 * Since it may block for a long time, block_mounts() shouldn't be 464 * called with zonehash_lock held. 465 */ 466 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 467 mutex_enter(&zp->zone_mount_lock); 468 while (zp->zone_mounts_in_progress > 0) { 469 if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0) 470 goto signaled; 471 } 472 /* 473 * A negative value of mounts_in_progress indicates that mounts 474 * have been blocked by (-mounts_in_progress) different callers 475 * (remotely possible if two threads enter zone_shutdown at the same 476 * time). 477 */ 478 zp->zone_mounts_in_progress--; 479 retval = 1; 480 signaled: 481 mutex_exit(&zp->zone_mount_lock); 482 return (retval); 483 } 484 485 /* 486 * The VFS layer may progress with new mounts as far as we're concerned. 487 * Allow them to progress if we were the last obstacle. 488 */ 489 static void 490 resume_mounts(zone_t *zp) 491 { 492 mutex_enter(&zp->zone_mount_lock); 493 if (++zp->zone_mounts_in_progress == 0) 494 cv_broadcast(&zp->zone_mount_cv); 495 mutex_exit(&zp->zone_mount_lock); 496 } 497 498 /* 499 * The VFS layer is busy with a mount; this zone should wait until all 500 * of its mounts are completed to progress. 501 */ 502 void 503 mount_in_progress(zone_t *zp) 504 { 505 mutex_enter(&zp->zone_mount_lock); 506 while (zp->zone_mounts_in_progress < 0) 507 cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock); 508 zp->zone_mounts_in_progress++; 509 mutex_exit(&zp->zone_mount_lock); 510 } 511 512 /* 513 * VFS is done with one mount; wake up any waiting block_mounts() 514 * callers if this is the last mount. 515 */ 516 void 517 mount_completed(zone_t *zp) 518 { 519 mutex_enter(&zp->zone_mount_lock); 520 if (--zp->zone_mounts_in_progress == 0) 521 cv_broadcast(&zp->zone_mount_cv); 522 mutex_exit(&zp->zone_mount_lock); 523 } 524 525 /* 526 * ZSD routines. 527 * 528 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 529 * defined by the pthread_key_create() and related interfaces. 530 * 531 * Kernel subsystems may register one or more data items and/or 532 * callbacks to be executed when a zone is created, shutdown, or 533 * destroyed. 534 * 535 * Unlike the thread counterpart, destructor callbacks will be executed 536 * even if the data pointer is NULL and/or there are no constructor 537 * callbacks, so it is the responsibility of such callbacks to check for 538 * NULL data values if necessary. 539 * 540 * The locking strategy and overall picture is as follows: 541 * 542 * When someone calls zone_key_create(), a template ZSD entry is added to the 543 * global list "zsd_registered_keys", protected by zsd_key_lock. While 544 * holding that lock all the existing zones are marked as 545 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 546 * zone_zsd list (protected by zone_lock). The global list is updated first 547 * (under zone_key_lock) to make sure that newly created zones use the 548 * most recent list of keys. Then under zonehash_lock we walk the zones 549 * and mark them. Similar locking is used in zone_key_delete(). 550 * 551 * The actual create, shutdown, and destroy callbacks are done without 552 * holding any lock. And zsd_flags are used to ensure that the operations 553 * completed so that when zone_key_create (and zone_create) is done, as well as 554 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 555 * are completed. 556 * 557 * When new zones are created constructor callbacks for all registered ZSD 558 * entries will be called. That also uses the above two phases of marking 559 * what needs to be done, and then running the callbacks without holding 560 * any locks. 561 * 562 * The framework does not provide any locking around zone_getspecific() and 563 * zone_setspecific() apart from that needed for internal consistency, so 564 * callers interested in atomic "test-and-set" semantics will need to provide 565 * their own locking. 566 */ 567 568 /* 569 * Helper function to find the zsd_entry associated with the key in the 570 * given list. 571 */ 572 static struct zsd_entry * 573 zsd_find(list_t *l, zone_key_t key) 574 { 575 struct zsd_entry *zsd; 576 577 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 578 if (zsd->zsd_key == key) { 579 return (zsd); 580 } 581 } 582 return (NULL); 583 } 584 585 /* 586 * Helper function to find the zsd_entry associated with the key in the 587 * given list. Move it to the front of the list. 588 */ 589 static struct zsd_entry * 590 zsd_find_mru(list_t *l, zone_key_t key) 591 { 592 struct zsd_entry *zsd; 593 594 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 595 if (zsd->zsd_key == key) { 596 /* 597 * Move to head of list to keep list in MRU order. 598 */ 599 if (zsd != list_head(l)) { 600 list_remove(l, zsd); 601 list_insert_head(l, zsd); 602 } 603 return (zsd); 604 } 605 } 606 return (NULL); 607 } 608 609 void 610 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 611 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 612 { 613 struct zsd_entry *zsdp; 614 struct zsd_entry *t; 615 struct zone *zone; 616 zone_key_t key; 617 618 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 619 zsdp->zsd_data = NULL; 620 zsdp->zsd_create = create; 621 zsdp->zsd_shutdown = shutdown; 622 zsdp->zsd_destroy = destroy; 623 624 /* 625 * Insert in global list of callbacks. Makes future zone creations 626 * see it. 627 */ 628 mutex_enter(&zsd_key_lock); 629 key = zsdp->zsd_key = ++zsd_keyval; 630 ASSERT(zsd_keyval != 0); 631 list_insert_tail(&zsd_registered_keys, zsdp); 632 mutex_exit(&zsd_key_lock); 633 634 /* 635 * Insert for all existing zones and mark them as needing 636 * a create callback. 637 */ 638 mutex_enter(&zonehash_lock); /* stop the world */ 639 for (zone = list_head(&zone_active); zone != NULL; 640 zone = list_next(&zone_active, zone)) { 641 zone_status_t status; 642 643 mutex_enter(&zone->zone_lock); 644 645 /* Skip zones that are on the way down or not yet up */ 646 status = zone_status_get(zone); 647 if (status >= ZONE_IS_DOWN || 648 status == ZONE_IS_UNINITIALIZED) { 649 mutex_exit(&zone->zone_lock); 650 continue; 651 } 652 653 t = zsd_find_mru(&zone->zone_zsd, key); 654 if (t != NULL) { 655 /* 656 * A zsd_configure already inserted it after 657 * we dropped zsd_key_lock above. 658 */ 659 mutex_exit(&zone->zone_lock); 660 continue; 661 } 662 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 663 t->zsd_key = key; 664 t->zsd_create = create; 665 t->zsd_shutdown = shutdown; 666 t->zsd_destroy = destroy; 667 if (create != NULL) { 668 t->zsd_flags = ZSD_CREATE_NEEDED; 669 DTRACE_PROBE2(zsd__create__needed, 670 zone_t *, zone, zone_key_t, key); 671 } 672 list_insert_tail(&zone->zone_zsd, t); 673 mutex_exit(&zone->zone_lock); 674 } 675 mutex_exit(&zonehash_lock); 676 677 if (create != NULL) { 678 /* Now call the create callback for this key */ 679 zsd_apply_all_zones(zsd_apply_create, key); 680 } 681 /* 682 * It is safe for consumers to use the key now, make it 683 * globally visible. Specifically zone_getspecific() will 684 * always successfully return the zone specific data associated 685 * with the key. 686 */ 687 *keyp = key; 688 689 } 690 691 /* 692 * Function called when a module is being unloaded, or otherwise wishes 693 * to unregister its ZSD key and callbacks. 694 * 695 * Remove from the global list and determine the functions that need to 696 * be called under a global lock. Then call the functions without 697 * holding any locks. Finally free up the zone_zsd entries. (The apply 698 * functions need to access the zone_zsd entries to find zsd_data etc.) 699 */ 700 int 701 zone_key_delete(zone_key_t key) 702 { 703 struct zsd_entry *zsdp = NULL; 704 zone_t *zone; 705 706 mutex_enter(&zsd_key_lock); 707 zsdp = zsd_find_mru(&zsd_registered_keys, key); 708 if (zsdp == NULL) { 709 mutex_exit(&zsd_key_lock); 710 return (-1); 711 } 712 list_remove(&zsd_registered_keys, zsdp); 713 mutex_exit(&zsd_key_lock); 714 715 mutex_enter(&zonehash_lock); 716 for (zone = list_head(&zone_active); zone != NULL; 717 zone = list_next(&zone_active, zone)) { 718 struct zsd_entry *del; 719 720 mutex_enter(&zone->zone_lock); 721 del = zsd_find_mru(&zone->zone_zsd, key); 722 if (del == NULL) { 723 /* 724 * Somebody else got here first e.g the zone going 725 * away. 726 */ 727 mutex_exit(&zone->zone_lock); 728 continue; 729 } 730 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 731 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 732 if (del->zsd_shutdown != NULL && 733 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 734 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 735 DTRACE_PROBE2(zsd__shutdown__needed, 736 zone_t *, zone, zone_key_t, key); 737 } 738 if (del->zsd_destroy != NULL && 739 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 740 del->zsd_flags |= ZSD_DESTROY_NEEDED; 741 DTRACE_PROBE2(zsd__destroy__needed, 742 zone_t *, zone, zone_key_t, key); 743 } 744 mutex_exit(&zone->zone_lock); 745 } 746 mutex_exit(&zonehash_lock); 747 kmem_free(zsdp, sizeof (*zsdp)); 748 749 /* Now call the shutdown and destroy callback for this key */ 750 zsd_apply_all_zones(zsd_apply_shutdown, key); 751 zsd_apply_all_zones(zsd_apply_destroy, key); 752 753 /* Now we can free up the zsdp structures in each zone */ 754 mutex_enter(&zonehash_lock); 755 for (zone = list_head(&zone_active); zone != NULL; 756 zone = list_next(&zone_active, zone)) { 757 struct zsd_entry *del; 758 759 mutex_enter(&zone->zone_lock); 760 del = zsd_find(&zone->zone_zsd, key); 761 if (del != NULL) { 762 list_remove(&zone->zone_zsd, del); 763 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 764 kmem_free(del, sizeof (*del)); 765 } 766 mutex_exit(&zone->zone_lock); 767 } 768 mutex_exit(&zonehash_lock); 769 770 return (0); 771 } 772 773 /* 774 * ZSD counterpart of pthread_setspecific(). 775 * 776 * Since all zsd callbacks, including those with no create function, 777 * have an entry in zone_zsd, if the key is registered it is part of 778 * the zone_zsd list. 779 * Return an error if the key wasn't registerd. 780 */ 781 int 782 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 783 { 784 struct zsd_entry *t; 785 786 mutex_enter(&zone->zone_lock); 787 t = zsd_find_mru(&zone->zone_zsd, key); 788 if (t != NULL) { 789 /* 790 * Replace old value with new 791 */ 792 t->zsd_data = (void *)data; 793 mutex_exit(&zone->zone_lock); 794 return (0); 795 } 796 mutex_exit(&zone->zone_lock); 797 return (-1); 798 } 799 800 /* 801 * ZSD counterpart of pthread_getspecific(). 802 */ 803 void * 804 zone_getspecific(zone_key_t key, zone_t *zone) 805 { 806 struct zsd_entry *t; 807 void *data; 808 809 mutex_enter(&zone->zone_lock); 810 t = zsd_find_mru(&zone->zone_zsd, key); 811 data = (t == NULL ? NULL : t->zsd_data); 812 mutex_exit(&zone->zone_lock); 813 return (data); 814 } 815 816 /* 817 * Function used to initialize a zone's list of ZSD callbacks and data 818 * when the zone is being created. The callbacks are initialized from 819 * the template list (zsd_registered_keys). The constructor callback is 820 * executed later (once the zone exists and with locks dropped). 821 */ 822 static void 823 zone_zsd_configure(zone_t *zone) 824 { 825 struct zsd_entry *zsdp; 826 struct zsd_entry *t; 827 828 ASSERT(MUTEX_HELD(&zonehash_lock)); 829 ASSERT(list_head(&zone->zone_zsd) == NULL); 830 mutex_enter(&zone->zone_lock); 831 mutex_enter(&zsd_key_lock); 832 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 833 zsdp = list_next(&zsd_registered_keys, zsdp)) { 834 /* 835 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 836 * should not have added anything to it. 837 */ 838 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 839 840 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 841 t->zsd_key = zsdp->zsd_key; 842 t->zsd_create = zsdp->zsd_create; 843 t->zsd_shutdown = zsdp->zsd_shutdown; 844 t->zsd_destroy = zsdp->zsd_destroy; 845 if (zsdp->zsd_create != NULL) { 846 t->zsd_flags = ZSD_CREATE_NEEDED; 847 DTRACE_PROBE2(zsd__create__needed, 848 zone_t *, zone, zone_key_t, zsdp->zsd_key); 849 } 850 list_insert_tail(&zone->zone_zsd, t); 851 } 852 mutex_exit(&zsd_key_lock); 853 mutex_exit(&zone->zone_lock); 854 } 855 856 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 857 858 /* 859 * Helper function to execute shutdown or destructor callbacks. 860 */ 861 static void 862 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 863 { 864 struct zsd_entry *t; 865 866 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 867 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 868 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 869 870 /* 871 * Run the callback solely based on what is registered for the zone 872 * in zone_zsd. The global list can change independently of this 873 * as keys are registered and unregistered and we don't register new 874 * callbacks for a zone that is in the process of going away. 875 */ 876 mutex_enter(&zone->zone_lock); 877 for (t = list_head(&zone->zone_zsd); t != NULL; 878 t = list_next(&zone->zone_zsd, t)) { 879 zone_key_t key = t->zsd_key; 880 881 /* Skip if no callbacks registered */ 882 883 if (ct == ZSD_SHUTDOWN) { 884 if (t->zsd_shutdown != NULL && 885 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 886 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 887 DTRACE_PROBE2(zsd__shutdown__needed, 888 zone_t *, zone, zone_key_t, key); 889 } 890 } else { 891 if (t->zsd_destroy != NULL && 892 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 893 t->zsd_flags |= ZSD_DESTROY_NEEDED; 894 DTRACE_PROBE2(zsd__destroy__needed, 895 zone_t *, zone, zone_key_t, key); 896 } 897 } 898 } 899 mutex_exit(&zone->zone_lock); 900 901 /* Now call the shutdown and destroy callback for this key */ 902 zsd_apply_all_keys(zsd_apply_shutdown, zone); 903 zsd_apply_all_keys(zsd_apply_destroy, zone); 904 905 } 906 907 /* 908 * Called when the zone is going away; free ZSD-related memory, and 909 * destroy the zone_zsd list. 910 */ 911 static void 912 zone_free_zsd(zone_t *zone) 913 { 914 struct zsd_entry *t, *next; 915 916 /* 917 * Free all the zsd_entry's we had on this zone. 918 */ 919 mutex_enter(&zone->zone_lock); 920 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 921 next = list_next(&zone->zone_zsd, t); 922 list_remove(&zone->zone_zsd, t); 923 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 924 kmem_free(t, sizeof (*t)); 925 } 926 list_destroy(&zone->zone_zsd); 927 mutex_exit(&zone->zone_lock); 928 929 } 930 931 /* 932 * Apply a function to all zones for particular key value. 933 * 934 * The applyfn has to drop zonehash_lock if it does some work, and 935 * then reacquire it before it returns. 936 * When the lock is dropped we don't follow list_next even 937 * if it is possible to do so without any hazards. This is 938 * because we want the design to allow for the list of zones 939 * to change in any arbitrary way during the time the 940 * lock was dropped. 941 * 942 * It is safe to restart the loop at list_head since the applyfn 943 * changes the zsd_flags as it does work, so a subsequent 944 * pass through will have no effect in applyfn, hence the loop will terminate 945 * in at worst O(N^2). 946 */ 947 static void 948 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 949 { 950 zone_t *zone; 951 952 mutex_enter(&zonehash_lock); 953 zone = list_head(&zone_active); 954 while (zone != NULL) { 955 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 956 /* Lock dropped - restart at head */ 957 zone = list_head(&zone_active); 958 } else { 959 zone = list_next(&zone_active, zone); 960 } 961 } 962 mutex_exit(&zonehash_lock); 963 } 964 965 /* 966 * Apply a function to all keys for a particular zone. 967 * 968 * The applyfn has to drop zonehash_lock if it does some work, and 969 * then reacquire it before it returns. 970 * When the lock is dropped we don't follow list_next even 971 * if it is possible to do so without any hazards. This is 972 * because we want the design to allow for the list of zsd callbacks 973 * to change in any arbitrary way during the time the 974 * lock was dropped. 975 * 976 * It is safe to restart the loop at list_head since the applyfn 977 * changes the zsd_flags as it does work, so a subsequent 978 * pass through will have no effect in applyfn, hence the loop will terminate 979 * in at worst O(N^2). 980 */ 981 static void 982 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 983 { 984 struct zsd_entry *t; 985 986 mutex_enter(&zone->zone_lock); 987 t = list_head(&zone->zone_zsd); 988 while (t != NULL) { 989 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 990 /* Lock dropped - restart at head */ 991 t = list_head(&zone->zone_zsd); 992 } else { 993 t = list_next(&zone->zone_zsd, t); 994 } 995 } 996 mutex_exit(&zone->zone_lock); 997 } 998 999 /* 1000 * Call the create function for the zone and key if CREATE_NEEDED 1001 * is set. 1002 * If some other thread gets here first and sets CREATE_INPROGRESS, then 1003 * we wait for that thread to complete so that we can ensure that 1004 * all the callbacks are done when we've looped over all zones/keys. 1005 * 1006 * When we call the create function, we drop the global held by the 1007 * caller, and return true to tell the caller it needs to re-evalute the 1008 * state. 1009 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1010 * remains held on exit. 1011 */ 1012 static boolean_t 1013 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 1014 zone_t *zone, zone_key_t key) 1015 { 1016 void *result; 1017 struct zsd_entry *t; 1018 boolean_t dropped; 1019 1020 if (lockp != NULL) { 1021 ASSERT(MUTEX_HELD(lockp)); 1022 } 1023 if (zone_lock_held) { 1024 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1025 } else { 1026 mutex_enter(&zone->zone_lock); 1027 } 1028 1029 t = zsd_find(&zone->zone_zsd, key); 1030 if (t == NULL) { 1031 /* 1032 * Somebody else got here first e.g the zone going 1033 * away. 1034 */ 1035 if (!zone_lock_held) 1036 mutex_exit(&zone->zone_lock); 1037 return (B_FALSE); 1038 } 1039 dropped = B_FALSE; 1040 if (zsd_wait_for_inprogress(zone, t, lockp)) 1041 dropped = B_TRUE; 1042 1043 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 1044 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 1045 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1046 DTRACE_PROBE2(zsd__create__inprogress, 1047 zone_t *, zone, zone_key_t, key); 1048 mutex_exit(&zone->zone_lock); 1049 if (lockp != NULL) 1050 mutex_exit(lockp); 1051 1052 dropped = B_TRUE; 1053 ASSERT(t->zsd_create != NULL); 1054 DTRACE_PROBE2(zsd__create__start, 1055 zone_t *, zone, zone_key_t, key); 1056 1057 result = (*t->zsd_create)(zone->zone_id); 1058 1059 DTRACE_PROBE2(zsd__create__end, 1060 zone_t *, zone, voidn *, result); 1061 1062 ASSERT(result != NULL); 1063 if (lockp != NULL) 1064 mutex_enter(lockp); 1065 mutex_enter(&zone->zone_lock); 1066 t->zsd_data = result; 1067 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1068 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1069 cv_broadcast(&t->zsd_cv); 1070 DTRACE_PROBE2(zsd__create__completed, 1071 zone_t *, zone, zone_key_t, key); 1072 } 1073 if (!zone_lock_held) 1074 mutex_exit(&zone->zone_lock); 1075 return (dropped); 1076 } 1077 1078 /* 1079 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1080 * is set. 1081 * If some other thread gets here first and sets *_INPROGRESS, then 1082 * we wait for that thread to complete so that we can ensure that 1083 * all the callbacks are done when we've looped over all zones/keys. 1084 * 1085 * When we call the shutdown function, we drop the global held by the 1086 * caller, and return true to tell the caller it needs to re-evalute the 1087 * state. 1088 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1089 * remains held on exit. 1090 */ 1091 static boolean_t 1092 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1093 zone_t *zone, zone_key_t key) 1094 { 1095 struct zsd_entry *t; 1096 void *data; 1097 boolean_t dropped; 1098 1099 if (lockp != NULL) { 1100 ASSERT(MUTEX_HELD(lockp)); 1101 } 1102 if (zone_lock_held) { 1103 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1104 } else { 1105 mutex_enter(&zone->zone_lock); 1106 } 1107 1108 t = zsd_find(&zone->zone_zsd, key); 1109 if (t == NULL) { 1110 /* 1111 * Somebody else got here first e.g the zone going 1112 * away. 1113 */ 1114 if (!zone_lock_held) 1115 mutex_exit(&zone->zone_lock); 1116 return (B_FALSE); 1117 } 1118 dropped = B_FALSE; 1119 if (zsd_wait_for_creator(zone, t, lockp)) 1120 dropped = B_TRUE; 1121 1122 if (zsd_wait_for_inprogress(zone, t, lockp)) 1123 dropped = B_TRUE; 1124 1125 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1126 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1127 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1128 DTRACE_PROBE2(zsd__shutdown__inprogress, 1129 zone_t *, zone, zone_key_t, key); 1130 mutex_exit(&zone->zone_lock); 1131 if (lockp != NULL) 1132 mutex_exit(lockp); 1133 dropped = B_TRUE; 1134 1135 ASSERT(t->zsd_shutdown != NULL); 1136 data = t->zsd_data; 1137 1138 DTRACE_PROBE2(zsd__shutdown__start, 1139 zone_t *, zone, zone_key_t, key); 1140 1141 (t->zsd_shutdown)(zone->zone_id, data); 1142 DTRACE_PROBE2(zsd__shutdown__end, 1143 zone_t *, zone, zone_key_t, key); 1144 1145 if (lockp != NULL) 1146 mutex_enter(lockp); 1147 mutex_enter(&zone->zone_lock); 1148 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1149 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1150 cv_broadcast(&t->zsd_cv); 1151 DTRACE_PROBE2(zsd__shutdown__completed, 1152 zone_t *, zone, zone_key_t, key); 1153 } 1154 if (!zone_lock_held) 1155 mutex_exit(&zone->zone_lock); 1156 return (dropped); 1157 } 1158 1159 /* 1160 * Call the destroy function for the zone and key if DESTROY_NEEDED 1161 * is set. 1162 * If some other thread gets here first and sets *_INPROGRESS, then 1163 * we wait for that thread to complete so that we can ensure that 1164 * all the callbacks are done when we've looped over all zones/keys. 1165 * 1166 * When we call the destroy function, we drop the global held by the 1167 * caller, and return true to tell the caller it needs to re-evalute the 1168 * state. 1169 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1170 * remains held on exit. 1171 */ 1172 static boolean_t 1173 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1174 zone_t *zone, zone_key_t key) 1175 { 1176 struct zsd_entry *t; 1177 void *data; 1178 boolean_t dropped; 1179 1180 if (lockp != NULL) { 1181 ASSERT(MUTEX_HELD(lockp)); 1182 } 1183 if (zone_lock_held) { 1184 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1185 } else { 1186 mutex_enter(&zone->zone_lock); 1187 } 1188 1189 t = zsd_find(&zone->zone_zsd, key); 1190 if (t == NULL) { 1191 /* 1192 * Somebody else got here first e.g the zone going 1193 * away. 1194 */ 1195 if (!zone_lock_held) 1196 mutex_exit(&zone->zone_lock); 1197 return (B_FALSE); 1198 } 1199 dropped = B_FALSE; 1200 if (zsd_wait_for_creator(zone, t, lockp)) 1201 dropped = B_TRUE; 1202 1203 if (zsd_wait_for_inprogress(zone, t, lockp)) 1204 dropped = B_TRUE; 1205 1206 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1207 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1208 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1209 DTRACE_PROBE2(zsd__destroy__inprogress, 1210 zone_t *, zone, zone_key_t, key); 1211 mutex_exit(&zone->zone_lock); 1212 if (lockp != NULL) 1213 mutex_exit(lockp); 1214 dropped = B_TRUE; 1215 1216 ASSERT(t->zsd_destroy != NULL); 1217 data = t->zsd_data; 1218 DTRACE_PROBE2(zsd__destroy__start, 1219 zone_t *, zone, zone_key_t, key); 1220 1221 (t->zsd_destroy)(zone->zone_id, data); 1222 DTRACE_PROBE2(zsd__destroy__end, 1223 zone_t *, zone, zone_key_t, key); 1224 1225 if (lockp != NULL) 1226 mutex_enter(lockp); 1227 mutex_enter(&zone->zone_lock); 1228 t->zsd_data = NULL; 1229 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1230 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1231 cv_broadcast(&t->zsd_cv); 1232 DTRACE_PROBE2(zsd__destroy__completed, 1233 zone_t *, zone, zone_key_t, key); 1234 } 1235 if (!zone_lock_held) 1236 mutex_exit(&zone->zone_lock); 1237 return (dropped); 1238 } 1239 1240 /* 1241 * Wait for any CREATE_NEEDED flag to be cleared. 1242 * Returns true if lockp was temporarily dropped while waiting. 1243 */ 1244 static boolean_t 1245 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1246 { 1247 boolean_t dropped = B_FALSE; 1248 1249 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1250 DTRACE_PROBE2(zsd__wait__for__creator, 1251 zone_t *, zone, struct zsd_entry *, t); 1252 if (lockp != NULL) { 1253 dropped = B_TRUE; 1254 mutex_exit(lockp); 1255 } 1256 cv_wait(&t->zsd_cv, &zone->zone_lock); 1257 if (lockp != NULL) { 1258 /* First drop zone_lock to preserve order */ 1259 mutex_exit(&zone->zone_lock); 1260 mutex_enter(lockp); 1261 mutex_enter(&zone->zone_lock); 1262 } 1263 } 1264 return (dropped); 1265 } 1266 1267 /* 1268 * Wait for any INPROGRESS flag to be cleared. 1269 * Returns true if lockp was temporarily dropped while waiting. 1270 */ 1271 static boolean_t 1272 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1273 { 1274 boolean_t dropped = B_FALSE; 1275 1276 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1277 DTRACE_PROBE2(zsd__wait__for__inprogress, 1278 zone_t *, zone, struct zsd_entry *, t); 1279 if (lockp != NULL) { 1280 dropped = B_TRUE; 1281 mutex_exit(lockp); 1282 } 1283 cv_wait(&t->zsd_cv, &zone->zone_lock); 1284 if (lockp != NULL) { 1285 /* First drop zone_lock to preserve order */ 1286 mutex_exit(&zone->zone_lock); 1287 mutex_enter(lockp); 1288 mutex_enter(&zone->zone_lock); 1289 } 1290 } 1291 return (dropped); 1292 } 1293 1294 /* 1295 * Frees memory associated with the zone dataset list. 1296 */ 1297 static void 1298 zone_free_datasets(zone_t *zone) 1299 { 1300 zone_dataset_t *t, *next; 1301 1302 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1303 next = list_next(&zone->zone_datasets, t); 1304 list_remove(&zone->zone_datasets, t); 1305 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1306 kmem_free(t, sizeof (*t)); 1307 } 1308 list_destroy(&zone->zone_datasets); 1309 } 1310 1311 /* 1312 * zone.cpu-shares resource control support. 1313 */ 1314 /*ARGSUSED*/ 1315 static rctl_qty_t 1316 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1317 { 1318 ASSERT(MUTEX_HELD(&p->p_lock)); 1319 return (p->p_zone->zone_shares); 1320 } 1321 1322 /*ARGSUSED*/ 1323 static int 1324 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1325 rctl_qty_t nv) 1326 { 1327 ASSERT(MUTEX_HELD(&p->p_lock)); 1328 ASSERT(e->rcep_t == RCENTITY_ZONE); 1329 if (e->rcep_p.zone == NULL) 1330 return (0); 1331 1332 e->rcep_p.zone->zone_shares = nv; 1333 return (0); 1334 } 1335 1336 static rctl_ops_t zone_cpu_shares_ops = { 1337 rcop_no_action, 1338 zone_cpu_shares_usage, 1339 zone_cpu_shares_set, 1340 rcop_no_test 1341 }; 1342 1343 /* 1344 * zone.cpu-cap resource control support. 1345 */ 1346 /*ARGSUSED*/ 1347 static rctl_qty_t 1348 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1349 { 1350 ASSERT(MUTEX_HELD(&p->p_lock)); 1351 return (cpucaps_zone_get(p->p_zone)); 1352 } 1353 1354 /*ARGSUSED*/ 1355 static int 1356 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1357 rctl_qty_t nv) 1358 { 1359 zone_t *zone = e->rcep_p.zone; 1360 1361 ASSERT(MUTEX_HELD(&p->p_lock)); 1362 ASSERT(e->rcep_t == RCENTITY_ZONE); 1363 1364 if (zone == NULL) 1365 return (0); 1366 1367 /* 1368 * set cap to the new value. 1369 */ 1370 return (cpucaps_zone_set(zone, nv)); 1371 } 1372 1373 static rctl_ops_t zone_cpu_cap_ops = { 1374 rcop_no_action, 1375 zone_cpu_cap_get, 1376 zone_cpu_cap_set, 1377 rcop_no_test 1378 }; 1379 1380 /*ARGSUSED*/ 1381 static rctl_qty_t 1382 zone_lwps_usage(rctl_t *r, proc_t *p) 1383 { 1384 rctl_qty_t nlwps; 1385 zone_t *zone = p->p_zone; 1386 1387 ASSERT(MUTEX_HELD(&p->p_lock)); 1388 1389 mutex_enter(&zone->zone_nlwps_lock); 1390 nlwps = zone->zone_nlwps; 1391 mutex_exit(&zone->zone_nlwps_lock); 1392 1393 return (nlwps); 1394 } 1395 1396 /*ARGSUSED*/ 1397 static int 1398 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1399 rctl_qty_t incr, uint_t flags) 1400 { 1401 rctl_qty_t nlwps; 1402 1403 ASSERT(MUTEX_HELD(&p->p_lock)); 1404 ASSERT(e->rcep_t == RCENTITY_ZONE); 1405 if (e->rcep_p.zone == NULL) 1406 return (0); 1407 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1408 nlwps = e->rcep_p.zone->zone_nlwps; 1409 1410 if (nlwps + incr > rcntl->rcv_value) 1411 return (1); 1412 1413 return (0); 1414 } 1415 1416 /*ARGSUSED*/ 1417 static int 1418 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1419 { 1420 ASSERT(MUTEX_HELD(&p->p_lock)); 1421 ASSERT(e->rcep_t == RCENTITY_ZONE); 1422 if (e->rcep_p.zone == NULL) 1423 return (0); 1424 e->rcep_p.zone->zone_nlwps_ctl = nv; 1425 return (0); 1426 } 1427 1428 static rctl_ops_t zone_lwps_ops = { 1429 rcop_no_action, 1430 zone_lwps_usage, 1431 zone_lwps_set, 1432 zone_lwps_test, 1433 }; 1434 1435 /*ARGSUSED*/ 1436 static rctl_qty_t 1437 zone_procs_usage(rctl_t *r, proc_t *p) 1438 { 1439 rctl_qty_t nprocs; 1440 zone_t *zone = p->p_zone; 1441 1442 ASSERT(MUTEX_HELD(&p->p_lock)); 1443 1444 mutex_enter(&zone->zone_nlwps_lock); 1445 nprocs = zone->zone_nprocs; 1446 mutex_exit(&zone->zone_nlwps_lock); 1447 1448 return (nprocs); 1449 } 1450 1451 /*ARGSUSED*/ 1452 static int 1453 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1454 rctl_qty_t incr, uint_t flags) 1455 { 1456 rctl_qty_t nprocs; 1457 1458 ASSERT(MUTEX_HELD(&p->p_lock)); 1459 ASSERT(e->rcep_t == RCENTITY_ZONE); 1460 if (e->rcep_p.zone == NULL) 1461 return (0); 1462 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1463 nprocs = e->rcep_p.zone->zone_nprocs; 1464 1465 if (nprocs + incr > rcntl->rcv_value) 1466 return (1); 1467 1468 return (0); 1469 } 1470 1471 /*ARGSUSED*/ 1472 static int 1473 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1474 { 1475 ASSERT(MUTEX_HELD(&p->p_lock)); 1476 ASSERT(e->rcep_t == RCENTITY_ZONE); 1477 if (e->rcep_p.zone == NULL) 1478 return (0); 1479 e->rcep_p.zone->zone_nprocs_ctl = nv; 1480 return (0); 1481 } 1482 1483 static rctl_ops_t zone_procs_ops = { 1484 rcop_no_action, 1485 zone_procs_usage, 1486 zone_procs_set, 1487 zone_procs_test, 1488 }; 1489 1490 /*ARGSUSED*/ 1491 static rctl_qty_t 1492 zone_shmmax_usage(rctl_t *rctl, struct proc *p) 1493 { 1494 ASSERT(MUTEX_HELD(&p->p_lock)); 1495 return (p->p_zone->zone_shmmax); 1496 } 1497 1498 /*ARGSUSED*/ 1499 static int 1500 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1501 rctl_qty_t incr, uint_t flags) 1502 { 1503 rctl_qty_t v; 1504 ASSERT(MUTEX_HELD(&p->p_lock)); 1505 ASSERT(e->rcep_t == RCENTITY_ZONE); 1506 v = e->rcep_p.zone->zone_shmmax + incr; 1507 if (v > rval->rcv_value) 1508 return (1); 1509 return (0); 1510 } 1511 1512 static rctl_ops_t zone_shmmax_ops = { 1513 rcop_no_action, 1514 zone_shmmax_usage, 1515 rcop_no_set, 1516 zone_shmmax_test 1517 }; 1518 1519 /*ARGSUSED*/ 1520 static rctl_qty_t 1521 zone_shmmni_usage(rctl_t *rctl, struct proc *p) 1522 { 1523 ASSERT(MUTEX_HELD(&p->p_lock)); 1524 return (p->p_zone->zone_ipc.ipcq_shmmni); 1525 } 1526 1527 /*ARGSUSED*/ 1528 static int 1529 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1530 rctl_qty_t incr, uint_t flags) 1531 { 1532 rctl_qty_t v; 1533 ASSERT(MUTEX_HELD(&p->p_lock)); 1534 ASSERT(e->rcep_t == RCENTITY_ZONE); 1535 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1536 if (v > rval->rcv_value) 1537 return (1); 1538 return (0); 1539 } 1540 1541 static rctl_ops_t zone_shmmni_ops = { 1542 rcop_no_action, 1543 zone_shmmni_usage, 1544 rcop_no_set, 1545 zone_shmmni_test 1546 }; 1547 1548 /*ARGSUSED*/ 1549 static rctl_qty_t 1550 zone_semmni_usage(rctl_t *rctl, struct proc *p) 1551 { 1552 ASSERT(MUTEX_HELD(&p->p_lock)); 1553 return (p->p_zone->zone_ipc.ipcq_semmni); 1554 } 1555 1556 /*ARGSUSED*/ 1557 static int 1558 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1559 rctl_qty_t incr, uint_t flags) 1560 { 1561 rctl_qty_t v; 1562 ASSERT(MUTEX_HELD(&p->p_lock)); 1563 ASSERT(e->rcep_t == RCENTITY_ZONE); 1564 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1565 if (v > rval->rcv_value) 1566 return (1); 1567 return (0); 1568 } 1569 1570 static rctl_ops_t zone_semmni_ops = { 1571 rcop_no_action, 1572 zone_semmni_usage, 1573 rcop_no_set, 1574 zone_semmni_test 1575 }; 1576 1577 /*ARGSUSED*/ 1578 static rctl_qty_t 1579 zone_msgmni_usage(rctl_t *rctl, struct proc *p) 1580 { 1581 ASSERT(MUTEX_HELD(&p->p_lock)); 1582 return (p->p_zone->zone_ipc.ipcq_msgmni); 1583 } 1584 1585 /*ARGSUSED*/ 1586 static int 1587 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1588 rctl_qty_t incr, uint_t flags) 1589 { 1590 rctl_qty_t v; 1591 ASSERT(MUTEX_HELD(&p->p_lock)); 1592 ASSERT(e->rcep_t == RCENTITY_ZONE); 1593 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1594 if (v > rval->rcv_value) 1595 return (1); 1596 return (0); 1597 } 1598 1599 static rctl_ops_t zone_msgmni_ops = { 1600 rcop_no_action, 1601 zone_msgmni_usage, 1602 rcop_no_set, 1603 zone_msgmni_test 1604 }; 1605 1606 /*ARGSUSED*/ 1607 static rctl_qty_t 1608 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1609 { 1610 rctl_qty_t q; 1611 ASSERT(MUTEX_HELD(&p->p_lock)); 1612 mutex_enter(&p->p_zone->zone_mem_lock); 1613 q = p->p_zone->zone_locked_mem; 1614 mutex_exit(&p->p_zone->zone_mem_lock); 1615 return (q); 1616 } 1617 1618 /*ARGSUSED*/ 1619 static int 1620 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1621 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1622 { 1623 rctl_qty_t q; 1624 zone_t *z; 1625 1626 z = e->rcep_p.zone; 1627 ASSERT(MUTEX_HELD(&p->p_lock)); 1628 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1629 q = z->zone_locked_mem; 1630 if (q + incr > rcntl->rcv_value) 1631 return (1); 1632 return (0); 1633 } 1634 1635 /*ARGSUSED*/ 1636 static int 1637 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1638 rctl_qty_t nv) 1639 { 1640 ASSERT(MUTEX_HELD(&p->p_lock)); 1641 ASSERT(e->rcep_t == RCENTITY_ZONE); 1642 if (e->rcep_p.zone == NULL) 1643 return (0); 1644 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1645 return (0); 1646 } 1647 1648 static rctl_ops_t zone_locked_mem_ops = { 1649 rcop_no_action, 1650 zone_locked_mem_usage, 1651 zone_locked_mem_set, 1652 zone_locked_mem_test 1653 }; 1654 1655 /*ARGSUSED*/ 1656 static rctl_qty_t 1657 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1658 { 1659 rctl_qty_t q; 1660 zone_t *z = p->p_zone; 1661 1662 ASSERT(MUTEX_HELD(&p->p_lock)); 1663 mutex_enter(&z->zone_mem_lock); 1664 q = z->zone_max_swap; 1665 mutex_exit(&z->zone_mem_lock); 1666 return (q); 1667 } 1668 1669 /*ARGSUSED*/ 1670 static int 1671 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1672 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1673 { 1674 rctl_qty_t q; 1675 zone_t *z; 1676 1677 z = e->rcep_p.zone; 1678 ASSERT(MUTEX_HELD(&p->p_lock)); 1679 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1680 q = z->zone_max_swap; 1681 if (q + incr > rcntl->rcv_value) 1682 return (1); 1683 return (0); 1684 } 1685 1686 /*ARGSUSED*/ 1687 static int 1688 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1689 rctl_qty_t nv) 1690 { 1691 ASSERT(MUTEX_HELD(&p->p_lock)); 1692 ASSERT(e->rcep_t == RCENTITY_ZONE); 1693 if (e->rcep_p.zone == NULL) 1694 return (0); 1695 e->rcep_p.zone->zone_max_swap_ctl = nv; 1696 return (0); 1697 } 1698 1699 static rctl_ops_t zone_max_swap_ops = { 1700 rcop_no_action, 1701 zone_max_swap_usage, 1702 zone_max_swap_set, 1703 zone_max_swap_test 1704 }; 1705 1706 /*ARGSUSED*/ 1707 static rctl_qty_t 1708 zone_max_lofi_usage(rctl_t *rctl, struct proc *p) 1709 { 1710 rctl_qty_t q; 1711 zone_t *z = p->p_zone; 1712 1713 ASSERT(MUTEX_HELD(&p->p_lock)); 1714 mutex_enter(&z->zone_rctl_lock); 1715 q = z->zone_max_lofi; 1716 mutex_exit(&z->zone_rctl_lock); 1717 return (q); 1718 } 1719 1720 /*ARGSUSED*/ 1721 static int 1722 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1723 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1724 { 1725 rctl_qty_t q; 1726 zone_t *z; 1727 1728 z = e->rcep_p.zone; 1729 ASSERT(MUTEX_HELD(&p->p_lock)); 1730 ASSERT(MUTEX_HELD(&z->zone_rctl_lock)); 1731 q = z->zone_max_lofi; 1732 if (q + incr > rcntl->rcv_value) 1733 return (1); 1734 return (0); 1735 } 1736 1737 /*ARGSUSED*/ 1738 static int 1739 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1740 rctl_qty_t nv) 1741 { 1742 ASSERT(MUTEX_HELD(&p->p_lock)); 1743 ASSERT(e->rcep_t == RCENTITY_ZONE); 1744 if (e->rcep_p.zone == NULL) 1745 return (0); 1746 e->rcep_p.zone->zone_max_lofi_ctl = nv; 1747 return (0); 1748 } 1749 1750 static rctl_ops_t zone_max_lofi_ops = { 1751 rcop_no_action, 1752 zone_max_lofi_usage, 1753 zone_max_lofi_set, 1754 zone_max_lofi_test 1755 }; 1756 1757 /* 1758 * Helper function to brand the zone with a unique ID. 1759 */ 1760 static void 1761 zone_uniqid(zone_t *zone) 1762 { 1763 static uint64_t uniqid = 0; 1764 1765 ASSERT(MUTEX_HELD(&zonehash_lock)); 1766 zone->zone_uniqid = uniqid++; 1767 } 1768 1769 /* 1770 * Returns a held pointer to the "kcred" for the specified zone. 1771 */ 1772 struct cred * 1773 zone_get_kcred(zoneid_t zoneid) 1774 { 1775 zone_t *zone; 1776 cred_t *cr; 1777 1778 if ((zone = zone_find_by_id(zoneid)) == NULL) 1779 return (NULL); 1780 cr = zone->zone_kcred; 1781 crhold(cr); 1782 zone_rele(zone); 1783 return (cr); 1784 } 1785 1786 static int 1787 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1788 { 1789 zone_t *zone = ksp->ks_private; 1790 zone_kstat_t *zk = ksp->ks_data; 1791 1792 if (rw == KSTAT_WRITE) 1793 return (EACCES); 1794 1795 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1796 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1797 return (0); 1798 } 1799 1800 static int 1801 zone_nprocs_kstat_update(kstat_t *ksp, int rw) 1802 { 1803 zone_t *zone = ksp->ks_private; 1804 zone_kstat_t *zk = ksp->ks_data; 1805 1806 if (rw == KSTAT_WRITE) 1807 return (EACCES); 1808 1809 zk->zk_usage.value.ui64 = zone->zone_nprocs; 1810 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl; 1811 return (0); 1812 } 1813 1814 static int 1815 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1816 { 1817 zone_t *zone = ksp->ks_private; 1818 zone_kstat_t *zk = ksp->ks_data; 1819 1820 if (rw == KSTAT_WRITE) 1821 return (EACCES); 1822 1823 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1824 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1825 return (0); 1826 } 1827 1828 static kstat_t * 1829 zone_kstat_create_common(zone_t *zone, char *name, 1830 int (*updatefunc) (kstat_t *, int)) 1831 { 1832 kstat_t *ksp; 1833 zone_kstat_t *zk; 1834 1835 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED, 1836 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1837 KSTAT_FLAG_VIRTUAL); 1838 1839 if (ksp == NULL) 1840 return (NULL); 1841 1842 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1843 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1844 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1845 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1846 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1847 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1848 ksp->ks_update = updatefunc; 1849 ksp->ks_private = zone; 1850 kstat_install(ksp); 1851 return (ksp); 1852 } 1853 1854 1855 static int 1856 zone_mcap_kstat_update(kstat_t *ksp, int rw) 1857 { 1858 zone_t *zone = ksp->ks_private; 1859 zone_mcap_kstat_t *zmp = ksp->ks_data; 1860 1861 if (rw == KSTAT_WRITE) 1862 return (EACCES); 1863 1864 zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin; 1865 zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin; 1866 zmp->zm_execpgin.value.ui64 = zone->zone_execpgin; 1867 zmp->zm_fspgin.value.ui64 = zone->zone_fspgin; 1868 zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail; 1869 1870 return (0); 1871 } 1872 1873 static kstat_t * 1874 zone_mcap_kstat_create(zone_t *zone) 1875 { 1876 kstat_t *ksp; 1877 zone_mcap_kstat_t *zmp; 1878 1879 if ((ksp = kstat_create_zone("memory_cap", zone->zone_id, 1880 zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED, 1881 sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t), 1882 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1883 return (NULL); 1884 1885 if (zone->zone_id != GLOBAL_ZONEID) 1886 kstat_zone_add(ksp, GLOBAL_ZONEID); 1887 1888 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP); 1889 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1890 ksp->ks_lock = &zone->zone_mcap_lock; 1891 zone->zone_mcap_stats = zmp; 1892 1893 /* The kstat "name" field is not large enough for a full zonename */ 1894 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1895 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1896 kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64); 1897 kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64); 1898 kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64); 1899 kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64); 1900 kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail", 1901 KSTAT_DATA_UINT64); 1902 1903 ksp->ks_update = zone_mcap_kstat_update; 1904 ksp->ks_private = zone; 1905 1906 kstat_install(ksp); 1907 return (ksp); 1908 } 1909 1910 static int 1911 zone_misc_kstat_update(kstat_t *ksp, int rw) 1912 { 1913 zone_t *zone = ksp->ks_private; 1914 zone_misc_kstat_t *zmp = ksp->ks_data; 1915 hrtime_t tmp; 1916 1917 if (rw == KSTAT_WRITE) 1918 return (EACCES); 1919 1920 tmp = zone->zone_utime; 1921 scalehrtime(&tmp); 1922 zmp->zm_utime.value.ui64 = tmp; 1923 tmp = zone->zone_stime; 1924 scalehrtime(&tmp); 1925 zmp->zm_stime.value.ui64 = tmp; 1926 tmp = zone->zone_wtime; 1927 scalehrtime(&tmp); 1928 zmp->zm_wtime.value.ui64 = tmp; 1929 1930 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0]; 1931 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1]; 1932 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2]; 1933 1934 zmp->zm_ffcap.value.ui32 = zone->zone_ffcap; 1935 zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc; 1936 zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem; 1937 zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc; 1938 1939 zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp; 1940 1941 zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid; 1942 zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time; 1943 1944 return (0); 1945 } 1946 1947 static kstat_t * 1948 zone_misc_kstat_create(zone_t *zone) 1949 { 1950 kstat_t *ksp; 1951 zone_misc_kstat_t *zmp; 1952 1953 if ((ksp = kstat_create_zone("zones", zone->zone_id, 1954 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED, 1955 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t), 1956 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1957 return (NULL); 1958 1959 if (zone->zone_id != GLOBAL_ZONEID) 1960 kstat_zone_add(ksp, GLOBAL_ZONEID); 1961 1962 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP); 1963 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1964 ksp->ks_lock = &zone->zone_misc_lock; 1965 zone->zone_misc_stats = zmp; 1966 1967 /* The kstat "name" field is not large enough for a full zonename */ 1968 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1969 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1970 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64); 1971 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64); 1972 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64); 1973 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32); 1974 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32); 1975 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min", 1976 KSTAT_DATA_UINT32); 1977 kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32); 1978 kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc", 1979 KSTAT_DATA_UINT32); 1980 kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32); 1981 kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32); 1982 kstat_named_init(&zmp->zm_nested_intp, "nested_interp", 1983 KSTAT_DATA_UINT32); 1984 kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32); 1985 kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64); 1986 1987 ksp->ks_update = zone_misc_kstat_update; 1988 ksp->ks_private = zone; 1989 1990 kstat_install(ksp); 1991 return (ksp); 1992 } 1993 1994 static void 1995 zone_kstat_create(zone_t *zone) 1996 { 1997 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone, 1998 "lockedmem", zone_lockedmem_kstat_update); 1999 zone->zone_swapresv_kstat = zone_kstat_create_common(zone, 2000 "swapresv", zone_swapresv_kstat_update); 2001 zone->zone_nprocs_kstat = zone_kstat_create_common(zone, 2002 "nprocs", zone_nprocs_kstat_update); 2003 2004 if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) { 2005 zone->zone_mcap_stats = kmem_zalloc( 2006 sizeof (zone_mcap_kstat_t), KM_SLEEP); 2007 } 2008 2009 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) { 2010 zone->zone_misc_stats = kmem_zalloc( 2011 sizeof (zone_misc_kstat_t), KM_SLEEP); 2012 } 2013 } 2014 2015 static void 2016 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz) 2017 { 2018 void *data; 2019 2020 if (*pkstat != NULL) { 2021 data = (*pkstat)->ks_data; 2022 kstat_delete(*pkstat); 2023 kmem_free(data, datasz); 2024 *pkstat = NULL; 2025 } 2026 } 2027 2028 static void 2029 zone_kstat_delete(zone_t *zone) 2030 { 2031 zone_kstat_delete_common(&zone->zone_lockedmem_kstat, 2032 sizeof (zone_kstat_t)); 2033 zone_kstat_delete_common(&zone->zone_swapresv_kstat, 2034 sizeof (zone_kstat_t)); 2035 zone_kstat_delete_common(&zone->zone_nprocs_kstat, 2036 sizeof (zone_kstat_t)); 2037 zone_kstat_delete_common(&zone->zone_mcap_ksp, 2038 sizeof (zone_mcap_kstat_t)); 2039 zone_kstat_delete_common(&zone->zone_misc_ksp, 2040 sizeof (zone_misc_kstat_t)); 2041 } 2042 2043 /* 2044 * Called very early on in boot to initialize the ZSD list so that 2045 * zone_key_create() can be called before zone_init(). It also initializes 2046 * portions of zone0 which may be used before zone_init() is called. The 2047 * variable "global_zone" will be set when zone0 is fully initialized by 2048 * zone_init(). 2049 */ 2050 void 2051 zone_zsd_init(void) 2052 { 2053 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 2054 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 2055 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 2056 offsetof(struct zsd_entry, zsd_linkage)); 2057 list_create(&zone_active, sizeof (zone_t), 2058 offsetof(zone_t, zone_linkage)); 2059 list_create(&zone_deathrow, sizeof (zone_t), 2060 offsetof(zone_t, zone_linkage)); 2061 2062 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 2063 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 2064 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 2065 zone0.zone_shares = 1; 2066 zone0.zone_nlwps = 0; 2067 zone0.zone_nlwps_ctl = INT_MAX; 2068 zone0.zone_nprocs = 0; 2069 zone0.zone_nprocs_ctl = INT_MAX; 2070 zone0.zone_locked_mem = 0; 2071 zone0.zone_locked_mem_ctl = UINT64_MAX; 2072 ASSERT(zone0.zone_max_swap == 0); 2073 zone0.zone_max_swap_ctl = UINT64_MAX; 2074 zone0.zone_max_lofi = 0; 2075 zone0.zone_max_lofi_ctl = UINT64_MAX; 2076 zone0.zone_shmmax = 0; 2077 zone0.zone_ipc.ipcq_shmmni = 0; 2078 zone0.zone_ipc.ipcq_semmni = 0; 2079 zone0.zone_ipc.ipcq_msgmni = 0; 2080 zone0.zone_name = GLOBAL_ZONENAME; 2081 zone0.zone_nodename = utsname.nodename; 2082 zone0.zone_domain = srpc_domain; 2083 zone0.zone_hostid = HW_INVALID_HOSTID; 2084 zone0.zone_fs_allowed = NULL; 2085 psecflags_default(&zone0.zone_secflags); 2086 zone0.zone_ref = 1; 2087 zone0.zone_id = GLOBAL_ZONEID; 2088 zone0.zone_status = ZONE_IS_RUNNING; 2089 zone0.zone_rootpath = "/"; 2090 zone0.zone_rootpathlen = 2; 2091 zone0.zone_psetid = ZONE_PS_INVAL; 2092 zone0.zone_ncpus = 0; 2093 zone0.zone_ncpus_online = 0; 2094 zone0.zone_proc_initpid = 1; 2095 zone0.zone_initname = initname; 2096 zone0.zone_lockedmem_kstat = NULL; 2097 zone0.zone_swapresv_kstat = NULL; 2098 zone0.zone_nprocs_kstat = NULL; 2099 2100 zone0.zone_stime = 0; 2101 zone0.zone_utime = 0; 2102 zone0.zone_wtime = 0; 2103 2104 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t), 2105 offsetof(zone_ref_t, zref_linkage)); 2106 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 2107 offsetof(struct zsd_entry, zsd_linkage)); 2108 list_insert_head(&zone_active, &zone0); 2109 2110 /* 2111 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 2112 * to anything meaningful. It is assigned to be 'rootdir' in 2113 * vfs_mountroot(). 2114 */ 2115 zone0.zone_rootvp = NULL; 2116 zone0.zone_vfslist = NULL; 2117 zone0.zone_bootargs = initargs; 2118 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 2119 /* 2120 * The global zone has all privileges 2121 */ 2122 priv_fillset(zone0.zone_privset); 2123 /* 2124 * Add p0 to the global zone 2125 */ 2126 zone0.zone_zsched = &p0; 2127 p0.p_zone = &zone0; 2128 } 2129 2130 /* 2131 * Compute a hash value based on the contents of the label and the DOI. The 2132 * hash algorithm is somewhat arbitrary, but is based on the observation that 2133 * humans will likely pick labels that differ by amounts that work out to be 2134 * multiples of the number of hash chains, and thus stirring in some primes 2135 * should help. 2136 */ 2137 static uint_t 2138 hash_bylabel(void *hdata, mod_hash_key_t key) 2139 { 2140 const ts_label_t *lab = (ts_label_t *)key; 2141 const uint32_t *up, *ue; 2142 uint_t hash; 2143 int i; 2144 2145 _NOTE(ARGUNUSED(hdata)); 2146 2147 hash = lab->tsl_doi + (lab->tsl_doi << 1); 2148 /* we depend on alignment of label, but not representation */ 2149 up = (const uint32_t *)&lab->tsl_label; 2150 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 2151 i = 1; 2152 while (up < ue) { 2153 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 2154 hash += *up + (*up << ((i % 16) + 1)); 2155 up++; 2156 i++; 2157 } 2158 return (hash); 2159 } 2160 2161 /* 2162 * All that mod_hash cares about here is zero (equal) versus non-zero (not 2163 * equal). This may need to be changed if less than / greater than is ever 2164 * needed. 2165 */ 2166 static int 2167 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 2168 { 2169 ts_label_t *lab1 = (ts_label_t *)key1; 2170 ts_label_t *lab2 = (ts_label_t *)key2; 2171 2172 return (label_equal(lab1, lab2) ? 0 : 1); 2173 } 2174 2175 /* 2176 * Called by main() to initialize the zones framework. 2177 */ 2178 void 2179 zone_init(void) 2180 { 2181 rctl_dict_entry_t *rde; 2182 rctl_val_t *dval; 2183 rctl_set_t *set; 2184 rctl_alloc_gp_t *gp; 2185 rctl_entity_p_t e; 2186 int res; 2187 2188 ASSERT(curproc == &p0); 2189 2190 /* 2191 * Create ID space for zone IDs. ID 0 is reserved for the 2192 * global zone. 2193 */ 2194 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 2195 2196 /* 2197 * Initialize generic zone resource controls, if any. 2198 */ 2199 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 2200 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 2201 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 2202 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 2203 2204 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 2205 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 2206 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 2207 RCTL_GLOBAL_INFINITE, 2208 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 2209 2210 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 2211 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2212 INT_MAX, INT_MAX, &zone_lwps_ops); 2213 2214 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE, 2215 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2216 INT_MAX, INT_MAX, &zone_procs_ops); 2217 2218 /* 2219 * System V IPC resource controls 2220 */ 2221 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 2222 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2223 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 2224 2225 rc_zone_semmni = rctl_register("zone.max-sem-ids", 2226 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2227 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 2228 2229 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 2230 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2231 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 2232 2233 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 2234 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2235 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 2236 2237 /* 2238 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 2239 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 2240 */ 2241 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2242 bzero(dval, sizeof (rctl_val_t)); 2243 dval->rcv_value = 1; 2244 dval->rcv_privilege = RCPRIV_PRIVILEGED; 2245 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 2246 dval->rcv_action_recip_pid = -1; 2247 2248 rde = rctl_dict_lookup("zone.cpu-shares"); 2249 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 2250 2251 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 2252 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2253 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2254 &zone_locked_mem_ops); 2255 2256 rc_zone_max_swap = rctl_register("zone.max-swap", 2257 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2258 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2259 &zone_max_swap_ops); 2260 2261 rc_zone_max_lofi = rctl_register("zone.max-lofi", 2262 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | 2263 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2264 &zone_max_lofi_ops); 2265 2266 /* 2267 * Initialize the ``global zone''. 2268 */ 2269 set = rctl_set_create(); 2270 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2271 mutex_enter(&p0.p_lock); 2272 e.rcep_p.zone = &zone0; 2273 e.rcep_t = RCENTITY_ZONE; 2274 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 2275 gp); 2276 2277 zone0.zone_nlwps = p0.p_lwpcnt; 2278 zone0.zone_nprocs = 1; 2279 zone0.zone_ntasks = 1; 2280 mutex_exit(&p0.p_lock); 2281 zone0.zone_restart_init = B_TRUE; 2282 zone0.zone_brand = &native_brand; 2283 rctl_prealloc_destroy(gp); 2284 /* 2285 * pool_default hasn't been initialized yet, so we let pool_init() 2286 * take care of making sure the global zone is in the default pool. 2287 */ 2288 2289 /* 2290 * Initialize global zone kstats 2291 */ 2292 zone_kstat_create(&zone0); 2293 2294 /* 2295 * Initialize zone label. 2296 * mlp are initialized when tnzonecfg is loaded. 2297 */ 2298 zone0.zone_slabel = l_admin_low; 2299 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 2300 label_hold(l_admin_low); 2301 2302 /* 2303 * Initialise the lock for the database structure used by mntfs. 2304 */ 2305 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 2306 2307 mutex_enter(&zonehash_lock); 2308 zone_uniqid(&zone0); 2309 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 2310 2311 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 2312 mod_hash_null_valdtor); 2313 zonehashbyname = mod_hash_create_strhash("zone_by_name", 2314 zone_hash_size, mod_hash_null_valdtor); 2315 /* 2316 * maintain zonehashbylabel only for labeled systems 2317 */ 2318 if (is_system_labeled()) 2319 zonehashbylabel = mod_hash_create_extended("zone_by_label", 2320 zone_hash_size, mod_hash_null_keydtor, 2321 mod_hash_null_valdtor, hash_bylabel, NULL, 2322 hash_labelkey_cmp, KM_SLEEP); 2323 zonecount = 1; 2324 2325 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 2326 (mod_hash_val_t)&zone0); 2327 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 2328 (mod_hash_val_t)&zone0); 2329 if (is_system_labeled()) { 2330 zone0.zone_flags |= ZF_HASHED_LABEL; 2331 (void) mod_hash_insert(zonehashbylabel, 2332 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 2333 } 2334 mutex_exit(&zonehash_lock); 2335 2336 /* 2337 * We avoid setting zone_kcred until now, since kcred is initialized 2338 * sometime after zone_zsd_init() and before zone_init(). 2339 */ 2340 zone0.zone_kcred = kcred; 2341 /* 2342 * The global zone is fully initialized (except for zone_rootvp which 2343 * will be set when the root filesystem is mounted). 2344 */ 2345 global_zone = &zone0; 2346 2347 /* 2348 * Setup an event channel to send zone status change notifications on 2349 */ 2350 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 2351 EVCH_CREAT); 2352 2353 if (res) 2354 panic("Sysevent_evc_bind failed during zone setup.\n"); 2355 2356 } 2357 2358 static void 2359 zone_free(zone_t *zone) 2360 { 2361 ASSERT(zone != global_zone); 2362 ASSERT(zone->zone_ntasks == 0); 2363 ASSERT(zone->zone_nlwps == 0); 2364 ASSERT(zone->zone_nprocs == 0); 2365 ASSERT(zone->zone_cred_ref == 0); 2366 ASSERT(zone->zone_kcred == NULL); 2367 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 2368 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2369 ASSERT(list_is_empty(&zone->zone_ref_list)); 2370 2371 /* 2372 * Remove any zone caps. 2373 */ 2374 cpucaps_zone_remove(zone); 2375 2376 ASSERT(zone->zone_cpucap == NULL); 2377 2378 /* remove from deathrow list */ 2379 if (zone_status_get(zone) == ZONE_IS_DEAD) { 2380 ASSERT(zone->zone_ref == 0); 2381 mutex_enter(&zone_deathrow_lock); 2382 list_remove(&zone_deathrow, zone); 2383 mutex_exit(&zone_deathrow_lock); 2384 } 2385 2386 list_destroy(&zone->zone_ref_list); 2387 zone_free_zsd(zone); 2388 zone_free_datasets(zone); 2389 list_destroy(&zone->zone_dl_list); 2390 2391 if (zone->zone_rootvp != NULL) 2392 VN_RELE(zone->zone_rootvp); 2393 if (zone->zone_rootpath) 2394 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2395 if (zone->zone_name != NULL) 2396 kmem_free(zone->zone_name, ZONENAME_MAX); 2397 if (zone->zone_slabel != NULL) 2398 label_rele(zone->zone_slabel); 2399 if (zone->zone_nodename != NULL) 2400 kmem_free(zone->zone_nodename, _SYS_NMLN); 2401 if (zone->zone_domain != NULL) 2402 kmem_free(zone->zone_domain, _SYS_NMLN); 2403 if (zone->zone_privset != NULL) 2404 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2405 if (zone->zone_rctls != NULL) 2406 rctl_set_free(zone->zone_rctls); 2407 if (zone->zone_bootargs != NULL) 2408 strfree(zone->zone_bootargs); 2409 if (zone->zone_initname != NULL) 2410 strfree(zone->zone_initname); 2411 if (zone->zone_fs_allowed != NULL) 2412 strfree(zone->zone_fs_allowed); 2413 if (zone->zone_pfexecd != NULL) 2414 klpd_freelist(&zone->zone_pfexecd); 2415 id_free(zoneid_space, zone->zone_id); 2416 mutex_destroy(&zone->zone_lock); 2417 cv_destroy(&zone->zone_cv); 2418 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2419 rw_destroy(&zone->zone_mntfs_db_lock); 2420 kmem_free(zone, sizeof (zone_t)); 2421 } 2422 2423 /* 2424 * See block comment at the top of this file for information about zone 2425 * status values. 2426 */ 2427 /* 2428 * Convenience function for setting zone status. 2429 */ 2430 static void 2431 zone_status_set(zone_t *zone, zone_status_t status) 2432 { 2433 2434 nvlist_t *nvl = NULL; 2435 ASSERT(MUTEX_HELD(&zone_status_lock)); 2436 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2437 status >= zone_status_get(zone)); 2438 2439 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2440 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2441 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2442 zone_status_table[status]) || 2443 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2444 zone_status_table[zone->zone_status]) || 2445 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2446 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2447 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2448 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2449 #ifdef DEBUG 2450 (void) printf( 2451 "Failed to allocate and send zone state change event.\n"); 2452 #endif 2453 } 2454 nvlist_free(nvl); 2455 2456 zone->zone_status = status; 2457 2458 cv_broadcast(&zone->zone_cv); 2459 } 2460 2461 /* 2462 * Public function to retrieve the zone status. The zone status may 2463 * change after it is retrieved. 2464 */ 2465 zone_status_t 2466 zone_status_get(zone_t *zone) 2467 { 2468 return (zone->zone_status); 2469 } 2470 2471 static int 2472 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2473 { 2474 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2475 int err = 0; 2476 2477 ASSERT(zone != global_zone); 2478 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0) 2479 goto done; /* EFAULT or ENAMETOOLONG */ 2480 2481 if (zone->zone_bootargs != NULL) 2482 strfree(zone->zone_bootargs); 2483 2484 zone->zone_bootargs = strdup(buf); 2485 2486 done: 2487 kmem_free(buf, BOOTARGS_MAX); 2488 return (err); 2489 } 2490 2491 static int 2492 zone_set_brand(zone_t *zone, const char *brand) 2493 { 2494 struct brand_attr *attrp; 2495 brand_t *bp; 2496 2497 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2498 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2499 kmem_free(attrp, sizeof (struct brand_attr)); 2500 return (EFAULT); 2501 } 2502 2503 bp = brand_register_zone(attrp); 2504 kmem_free(attrp, sizeof (struct brand_attr)); 2505 if (bp == NULL) 2506 return (EINVAL); 2507 2508 /* 2509 * This is the only place where a zone can change it's brand. 2510 * We already need to hold zone_status_lock to check the zone 2511 * status, so we'll just use that lock to serialize zone 2512 * branding requests as well. 2513 */ 2514 mutex_enter(&zone_status_lock); 2515 2516 /* Re-Branding is not allowed and the zone can't be booted yet */ 2517 if ((ZONE_IS_BRANDED(zone)) || 2518 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2519 mutex_exit(&zone_status_lock); 2520 brand_unregister_zone(bp); 2521 return (EINVAL); 2522 } 2523 2524 /* set up the brand specific data */ 2525 zone->zone_brand = bp; 2526 ZBROP(zone)->b_init_brand_data(zone); 2527 2528 mutex_exit(&zone_status_lock); 2529 return (0); 2530 } 2531 2532 static int 2533 zone_set_secflags(zone_t *zone, const psecflags_t *zone_secflags) 2534 { 2535 int err = 0; 2536 psecflags_t psf; 2537 2538 ASSERT(zone != global_zone); 2539 2540 if ((err = copyin(zone_secflags, &psf, sizeof (psf))) != 0) 2541 return (err); 2542 2543 if (zone_status_get(zone) > ZONE_IS_READY) 2544 return (EINVAL); 2545 2546 if (!psecflags_validate(&psf)) 2547 return (EINVAL); 2548 2549 (void) memcpy(&zone->zone_secflags, &psf, sizeof (psf)); 2550 2551 /* Set security flags on the zone's zsched */ 2552 (void) memcpy(&zone->zone_zsched->p_secflags, &zone->zone_secflags, 2553 sizeof (zone->zone_zsched->p_secflags)); 2554 2555 return (0); 2556 } 2557 2558 static int 2559 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed) 2560 { 2561 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP); 2562 int err = 0; 2563 2564 ASSERT(zone != global_zone); 2565 if ((err = copyinstr(zone_fs_allowed, buf, 2566 ZONE_FS_ALLOWED_MAX, NULL)) != 0) 2567 goto done; 2568 2569 if (zone->zone_fs_allowed != NULL) 2570 strfree(zone->zone_fs_allowed); 2571 2572 zone->zone_fs_allowed = strdup(buf); 2573 2574 done: 2575 kmem_free(buf, ZONE_FS_ALLOWED_MAX); 2576 return (err); 2577 } 2578 2579 static int 2580 zone_set_initname(zone_t *zone, const char *zone_initname) 2581 { 2582 char initname[INITNAME_SZ]; 2583 size_t len; 2584 int err = 0; 2585 2586 ASSERT(zone != global_zone); 2587 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2588 return (err); /* EFAULT or ENAMETOOLONG */ 2589 2590 if (zone->zone_initname != NULL) 2591 strfree(zone->zone_initname); 2592 2593 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2594 (void) strcpy(zone->zone_initname, initname); 2595 return (0); 2596 } 2597 2598 static int 2599 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2600 { 2601 uint64_t mcap; 2602 int err = 0; 2603 2604 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2605 zone->zone_phys_mcap = mcap; 2606 2607 return (err); 2608 } 2609 2610 static int 2611 zone_set_sched_class(zone_t *zone, const char *new_class) 2612 { 2613 char sched_class[PC_CLNMSZ]; 2614 id_t classid; 2615 int err; 2616 2617 ASSERT(zone != global_zone); 2618 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2619 return (err); /* EFAULT or ENAMETOOLONG */ 2620 2621 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid)) 2622 return (set_errno(EINVAL)); 2623 zone->zone_defaultcid = classid; 2624 ASSERT(zone->zone_defaultcid > 0 && 2625 zone->zone_defaultcid < loaded_classes); 2626 2627 return (0); 2628 } 2629 2630 /* 2631 * Block indefinitely waiting for (zone_status >= status) 2632 */ 2633 void 2634 zone_status_wait(zone_t *zone, zone_status_t status) 2635 { 2636 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2637 2638 mutex_enter(&zone_status_lock); 2639 while (zone->zone_status < status) { 2640 cv_wait(&zone->zone_cv, &zone_status_lock); 2641 } 2642 mutex_exit(&zone_status_lock); 2643 } 2644 2645 /* 2646 * Private CPR-safe version of zone_status_wait(). 2647 */ 2648 static void 2649 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2650 { 2651 callb_cpr_t cprinfo; 2652 2653 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2654 2655 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2656 str); 2657 mutex_enter(&zone_status_lock); 2658 while (zone->zone_status < status) { 2659 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2660 cv_wait(&zone->zone_cv, &zone_status_lock); 2661 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2662 } 2663 /* 2664 * zone_status_lock is implicitly released by the following. 2665 */ 2666 CALLB_CPR_EXIT(&cprinfo); 2667 } 2668 2669 /* 2670 * Block until zone enters requested state or signal is received. Return (0) 2671 * if signaled, non-zero otherwise. 2672 */ 2673 int 2674 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2675 { 2676 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2677 2678 mutex_enter(&zone_status_lock); 2679 while (zone->zone_status < status) { 2680 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2681 mutex_exit(&zone_status_lock); 2682 return (0); 2683 } 2684 } 2685 mutex_exit(&zone_status_lock); 2686 return (1); 2687 } 2688 2689 /* 2690 * Block until the zone enters the requested state or the timeout expires, 2691 * whichever happens first. Return (-1) if operation timed out, time remaining 2692 * otherwise. 2693 */ 2694 clock_t 2695 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2696 { 2697 clock_t timeleft = 0; 2698 2699 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2700 2701 mutex_enter(&zone_status_lock); 2702 while (zone->zone_status < status && timeleft != -1) { 2703 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2704 } 2705 mutex_exit(&zone_status_lock); 2706 return (timeleft); 2707 } 2708 2709 /* 2710 * Block until the zone enters the requested state, the current process is 2711 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2712 * operation timed out, 0 if signaled, time remaining otherwise. 2713 */ 2714 clock_t 2715 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2716 { 2717 clock_t timeleft = tim - ddi_get_lbolt(); 2718 2719 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2720 2721 mutex_enter(&zone_status_lock); 2722 while (zone->zone_status < status) { 2723 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2724 tim); 2725 if (timeleft <= 0) 2726 break; 2727 } 2728 mutex_exit(&zone_status_lock); 2729 return (timeleft); 2730 } 2731 2732 /* 2733 * Zones have two reference counts: one for references from credential 2734 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2735 * This is so we can allow a zone to be rebooted while there are still 2736 * outstanding cred references, since certain drivers cache dblks (which 2737 * implicitly results in cached creds). We wait for zone_ref to drop to 2738 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2739 * later freed when the zone_cred_ref drops to 0, though nothing other 2740 * than the zone id and privilege set should be accessed once the zone 2741 * is "dead". 2742 * 2743 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2744 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2745 * to 0. This can be useful to flush out other sources of cached creds 2746 * that may be less innocuous than the driver case. 2747 * 2748 * Zones also provide a tracked reference counting mechanism in which zone 2749 * references are represented by "crumbs" (zone_ref structures). Crumbs help 2750 * debuggers determine the sources of leaked zone references. See 2751 * zone_hold_ref() and zone_rele_ref() below for more information. 2752 */ 2753 2754 int zone_wait_for_cred = 0; 2755 2756 static void 2757 zone_hold_locked(zone_t *z) 2758 { 2759 ASSERT(MUTEX_HELD(&z->zone_lock)); 2760 z->zone_ref++; 2761 ASSERT(z->zone_ref != 0); 2762 } 2763 2764 /* 2765 * Increment the specified zone's reference count. The zone's zone_t structure 2766 * will not be freed as long as the zone's reference count is nonzero. 2767 * Decrement the zone's reference count via zone_rele(). 2768 * 2769 * NOTE: This function should only be used to hold zones for short periods of 2770 * time. Use zone_hold_ref() if the zone must be held for a long time. 2771 */ 2772 void 2773 zone_hold(zone_t *z) 2774 { 2775 mutex_enter(&z->zone_lock); 2776 zone_hold_locked(z); 2777 mutex_exit(&z->zone_lock); 2778 } 2779 2780 /* 2781 * If the non-cred ref count drops to 1 and either the cred ref count 2782 * is 0 or we aren't waiting for cred references, the zone is ready to 2783 * be destroyed. 2784 */ 2785 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2786 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2787 2788 /* 2789 * Common zone reference release function invoked by zone_rele() and 2790 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified 2791 * zone's subsystem-specific reference counters are not affected by the 2792 * release. If ref is not NULL, then the zone_ref_t to which it refers is 2793 * removed from the specified zone's reference list. ref must be non-NULL iff 2794 * subsys is not ZONE_REF_NUM_SUBSYS. 2795 */ 2796 static void 2797 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2798 { 2799 boolean_t wakeup; 2800 2801 mutex_enter(&z->zone_lock); 2802 ASSERT(z->zone_ref != 0); 2803 z->zone_ref--; 2804 if (subsys != ZONE_REF_NUM_SUBSYS) { 2805 ASSERT(z->zone_subsys_ref[subsys] != 0); 2806 z->zone_subsys_ref[subsys]--; 2807 list_remove(&z->zone_ref_list, ref); 2808 } 2809 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2810 /* no more refs, free the structure */ 2811 mutex_exit(&z->zone_lock); 2812 zone_free(z); 2813 return; 2814 } 2815 /* signal zone_destroy so the zone can finish halting */ 2816 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2817 mutex_exit(&z->zone_lock); 2818 2819 if (wakeup) { 2820 /* 2821 * Grabbing zonehash_lock here effectively synchronizes with 2822 * zone_destroy() to avoid missed signals. 2823 */ 2824 mutex_enter(&zonehash_lock); 2825 cv_broadcast(&zone_destroy_cv); 2826 mutex_exit(&zonehash_lock); 2827 } 2828 } 2829 2830 /* 2831 * Decrement the specified zone's reference count. The specified zone will 2832 * cease to exist after this function returns if the reference count drops to 2833 * zero. This function should be paired with zone_hold(). 2834 */ 2835 void 2836 zone_rele(zone_t *z) 2837 { 2838 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS); 2839 } 2840 2841 /* 2842 * Initialize a zone reference structure. This function must be invoked for 2843 * a reference structure before the structure is passed to zone_hold_ref(). 2844 */ 2845 void 2846 zone_init_ref(zone_ref_t *ref) 2847 { 2848 ref->zref_zone = NULL; 2849 list_link_init(&ref->zref_linkage); 2850 } 2851 2852 /* 2853 * Acquire a reference to zone z. The caller must specify the 2854 * zone_ref_subsys_t constant associated with its subsystem. The specified 2855 * zone_ref_t structure will represent a reference to the specified zone. Use 2856 * zone_rele_ref() to release the reference. 2857 * 2858 * The referenced zone_t structure will not be freed as long as the zone_t's 2859 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding 2860 * references. 2861 * 2862 * NOTE: The zone_ref_t structure must be initialized before it is used. 2863 * See zone_init_ref() above. 2864 */ 2865 void 2866 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2867 { 2868 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS); 2869 2870 /* 2871 * Prevent consumers from reusing a reference structure before 2872 * releasing it. 2873 */ 2874 VERIFY(ref->zref_zone == NULL); 2875 2876 ref->zref_zone = z; 2877 mutex_enter(&z->zone_lock); 2878 zone_hold_locked(z); 2879 z->zone_subsys_ref[subsys]++; 2880 ASSERT(z->zone_subsys_ref[subsys] != 0); 2881 list_insert_head(&z->zone_ref_list, ref); 2882 mutex_exit(&z->zone_lock); 2883 } 2884 2885 /* 2886 * Release the zone reference represented by the specified zone_ref_t. 2887 * The reference is invalid after it's released; however, the zone_ref_t 2888 * structure can be reused without having to invoke zone_init_ref(). 2889 * subsys should be the same value that was passed to zone_hold_ref() 2890 * when the reference was acquired. 2891 */ 2892 void 2893 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys) 2894 { 2895 zone_rele_common(ref->zref_zone, ref, subsys); 2896 2897 /* 2898 * Set the zone_ref_t's zref_zone field to NULL to generate panics 2899 * when consumers dereference the reference. This helps us catch 2900 * consumers who use released references. Furthermore, this lets 2901 * consumers reuse the zone_ref_t structure without having to 2902 * invoke zone_init_ref(). 2903 */ 2904 ref->zref_zone = NULL; 2905 } 2906 2907 void 2908 zone_cred_hold(zone_t *z) 2909 { 2910 mutex_enter(&z->zone_lock); 2911 z->zone_cred_ref++; 2912 ASSERT(z->zone_cred_ref != 0); 2913 mutex_exit(&z->zone_lock); 2914 } 2915 2916 void 2917 zone_cred_rele(zone_t *z) 2918 { 2919 boolean_t wakeup; 2920 2921 mutex_enter(&z->zone_lock); 2922 ASSERT(z->zone_cred_ref != 0); 2923 z->zone_cred_ref--; 2924 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2925 /* no more refs, free the structure */ 2926 mutex_exit(&z->zone_lock); 2927 zone_free(z); 2928 return; 2929 } 2930 /* 2931 * If zone_destroy is waiting for the cred references to drain 2932 * out, and they have, signal it. 2933 */ 2934 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2935 zone_status_get(z) >= ZONE_IS_DEAD); 2936 mutex_exit(&z->zone_lock); 2937 2938 if (wakeup) { 2939 /* 2940 * Grabbing zonehash_lock here effectively synchronizes with 2941 * zone_destroy() to avoid missed signals. 2942 */ 2943 mutex_enter(&zonehash_lock); 2944 cv_broadcast(&zone_destroy_cv); 2945 mutex_exit(&zonehash_lock); 2946 } 2947 } 2948 2949 void 2950 zone_task_hold(zone_t *z) 2951 { 2952 mutex_enter(&z->zone_lock); 2953 z->zone_ntasks++; 2954 ASSERT(z->zone_ntasks != 0); 2955 mutex_exit(&z->zone_lock); 2956 } 2957 2958 void 2959 zone_task_rele(zone_t *zone) 2960 { 2961 uint_t refcnt; 2962 2963 mutex_enter(&zone->zone_lock); 2964 ASSERT(zone->zone_ntasks != 0); 2965 refcnt = --zone->zone_ntasks; 2966 if (refcnt > 1) { /* Common case */ 2967 mutex_exit(&zone->zone_lock); 2968 return; 2969 } 2970 zone_hold_locked(zone); /* so we can use the zone_t later */ 2971 mutex_exit(&zone->zone_lock); 2972 if (refcnt == 1) { 2973 /* 2974 * See if the zone is shutting down. 2975 */ 2976 mutex_enter(&zone_status_lock); 2977 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2978 goto out; 2979 } 2980 2981 /* 2982 * Make sure the ntasks didn't change since we 2983 * dropped zone_lock. 2984 */ 2985 mutex_enter(&zone->zone_lock); 2986 if (refcnt != zone->zone_ntasks) { 2987 mutex_exit(&zone->zone_lock); 2988 goto out; 2989 } 2990 mutex_exit(&zone->zone_lock); 2991 2992 /* 2993 * No more user processes in the zone. The zone is empty. 2994 */ 2995 zone_status_set(zone, ZONE_IS_EMPTY); 2996 goto out; 2997 } 2998 2999 ASSERT(refcnt == 0); 3000 /* 3001 * zsched has exited; the zone is dead. 3002 */ 3003 zone->zone_zsched = NULL; /* paranoia */ 3004 mutex_enter(&zone_status_lock); 3005 zone_status_set(zone, ZONE_IS_DEAD); 3006 out: 3007 mutex_exit(&zone_status_lock); 3008 zone_rele(zone); 3009 } 3010 3011 zoneid_t 3012 getzoneid(void) 3013 { 3014 return (curproc->p_zone->zone_id); 3015 } 3016 3017 /* 3018 * Internal versions of zone_find_by_*(). These don't zone_hold() or 3019 * check the validity of a zone's state. 3020 */ 3021 static zone_t * 3022 zone_find_all_by_id(zoneid_t zoneid) 3023 { 3024 mod_hash_val_t hv; 3025 zone_t *zone = NULL; 3026 3027 ASSERT(MUTEX_HELD(&zonehash_lock)); 3028 3029 if (mod_hash_find(zonehashbyid, 3030 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 3031 zone = (zone_t *)hv; 3032 return (zone); 3033 } 3034 3035 static zone_t * 3036 zone_find_all_by_label(const ts_label_t *label) 3037 { 3038 mod_hash_val_t hv; 3039 zone_t *zone = NULL; 3040 3041 ASSERT(MUTEX_HELD(&zonehash_lock)); 3042 3043 /* 3044 * zonehashbylabel is not maintained for unlabeled systems 3045 */ 3046 if (!is_system_labeled()) 3047 return (NULL); 3048 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 3049 zone = (zone_t *)hv; 3050 return (zone); 3051 } 3052 3053 static zone_t * 3054 zone_find_all_by_name(char *name) 3055 { 3056 mod_hash_val_t hv; 3057 zone_t *zone = NULL; 3058 3059 ASSERT(MUTEX_HELD(&zonehash_lock)); 3060 3061 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 3062 zone = (zone_t *)hv; 3063 return (zone); 3064 } 3065 3066 /* 3067 * Public interface for looking up a zone by zoneid. Only returns the zone if 3068 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 3069 * Caller must call zone_rele() once it is done with the zone. 3070 * 3071 * The zone may begin the zone_destroy() sequence immediately after this 3072 * function returns, but may be safely used until zone_rele() is called. 3073 */ 3074 zone_t * 3075 zone_find_by_id(zoneid_t zoneid) 3076 { 3077 zone_t *zone; 3078 zone_status_t status; 3079 3080 mutex_enter(&zonehash_lock); 3081 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3082 mutex_exit(&zonehash_lock); 3083 return (NULL); 3084 } 3085 status = zone_status_get(zone); 3086 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3087 /* 3088 * For all practical purposes the zone doesn't exist. 3089 */ 3090 mutex_exit(&zonehash_lock); 3091 return (NULL); 3092 } 3093 zone_hold(zone); 3094 mutex_exit(&zonehash_lock); 3095 return (zone); 3096 } 3097 3098 /* 3099 * Similar to zone_find_by_id, but using zone label as the key. 3100 */ 3101 zone_t * 3102 zone_find_by_label(const ts_label_t *label) 3103 { 3104 zone_t *zone; 3105 zone_status_t status; 3106 3107 mutex_enter(&zonehash_lock); 3108 if ((zone = zone_find_all_by_label(label)) == NULL) { 3109 mutex_exit(&zonehash_lock); 3110 return (NULL); 3111 } 3112 3113 status = zone_status_get(zone); 3114 if (status > ZONE_IS_DOWN) { 3115 /* 3116 * For all practical purposes the zone doesn't exist. 3117 */ 3118 mutex_exit(&zonehash_lock); 3119 return (NULL); 3120 } 3121 zone_hold(zone); 3122 mutex_exit(&zonehash_lock); 3123 return (zone); 3124 } 3125 3126 /* 3127 * Similar to zone_find_by_id, but using zone name as the key. 3128 */ 3129 zone_t * 3130 zone_find_by_name(char *name) 3131 { 3132 zone_t *zone; 3133 zone_status_t status; 3134 3135 mutex_enter(&zonehash_lock); 3136 if ((zone = zone_find_all_by_name(name)) == NULL) { 3137 mutex_exit(&zonehash_lock); 3138 return (NULL); 3139 } 3140 status = zone_status_get(zone); 3141 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3142 /* 3143 * For all practical purposes the zone doesn't exist. 3144 */ 3145 mutex_exit(&zonehash_lock); 3146 return (NULL); 3147 } 3148 zone_hold(zone); 3149 mutex_exit(&zonehash_lock); 3150 return (zone); 3151 } 3152 3153 /* 3154 * Similar to zone_find_by_id(), using the path as a key. For instance, 3155 * if there is a zone "foo" rooted at /foo/root, and the path argument 3156 * is "/foo/root/proc", it will return the held zone_t corresponding to 3157 * zone "foo". 3158 * 3159 * zone_find_by_path() always returns a non-NULL value, since at the 3160 * very least every path will be contained in the global zone. 3161 * 3162 * As with the other zone_find_by_*() functions, the caller is 3163 * responsible for zone_rele()ing the return value of this function. 3164 */ 3165 zone_t * 3166 zone_find_by_path(const char *path) 3167 { 3168 zone_t *zone; 3169 zone_t *zret = NULL; 3170 zone_status_t status; 3171 3172 if (path == NULL) { 3173 /* 3174 * Call from rootconf(). 3175 */ 3176 zone_hold(global_zone); 3177 return (global_zone); 3178 } 3179 ASSERT(*path == '/'); 3180 mutex_enter(&zonehash_lock); 3181 for (zone = list_head(&zone_active); zone != NULL; 3182 zone = list_next(&zone_active, zone)) { 3183 if (ZONE_PATH_VISIBLE(path, zone)) 3184 zret = zone; 3185 } 3186 ASSERT(zret != NULL); 3187 status = zone_status_get(zret); 3188 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3189 /* 3190 * Zone practically doesn't exist. 3191 */ 3192 zret = global_zone; 3193 } 3194 zone_hold(zret); 3195 mutex_exit(&zonehash_lock); 3196 return (zret); 3197 } 3198 3199 /* 3200 * Public interface for updating per-zone load averages. Called once per 3201 * second. 3202 * 3203 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c. 3204 */ 3205 void 3206 zone_loadavg_update() 3207 { 3208 zone_t *zp; 3209 zone_status_t status; 3210 struct loadavg_s *lavg; 3211 hrtime_t zone_total; 3212 int i; 3213 hrtime_t hr_avg; 3214 int nrun; 3215 static int64_t f[3] = { 135, 27, 9 }; 3216 int64_t q, r; 3217 3218 mutex_enter(&zonehash_lock); 3219 for (zp = list_head(&zone_active); zp != NULL; 3220 zp = list_next(&zone_active, zp)) { 3221 mutex_enter(&zp->zone_lock); 3222 3223 /* Skip zones that are on the way down or not yet up */ 3224 status = zone_status_get(zp); 3225 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) { 3226 /* For all practical purposes the zone doesn't exist. */ 3227 mutex_exit(&zp->zone_lock); 3228 continue; 3229 } 3230 3231 /* 3232 * Update the 10 second moving average data in zone_loadavg. 3233 */ 3234 lavg = &zp->zone_loadavg; 3235 3236 zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime; 3237 scalehrtime(&zone_total); 3238 3239 /* The zone_total should always be increasing. */ 3240 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ? 3241 zone_total - lavg->lg_total : 0; 3242 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 3243 /* lg_total holds the prev. 1 sec. total */ 3244 lavg->lg_total = zone_total; 3245 3246 /* 3247 * To simplify the calculation, we don't calculate the load avg. 3248 * until the zone has been up for at least 10 seconds and our 3249 * moving average is thus full. 3250 */ 3251 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) { 3252 lavg->lg_len++; 3253 mutex_exit(&zp->zone_lock); 3254 continue; 3255 } 3256 3257 /* Now calculate the 1min, 5min, 15 min load avg. */ 3258 hr_avg = 0; 3259 for (i = 0; i < S_LOADAVG_SZ; i++) 3260 hr_avg += lavg->lg_loads[i]; 3261 hr_avg = hr_avg / S_LOADAVG_SZ; 3262 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 3263 3264 /* Compute load avg. See comment in calcloadavg() */ 3265 for (i = 0; i < 3; i++) { 3266 q = (zp->zone_hp_avenrun[i] >> 16) << 7; 3267 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7; 3268 zp->zone_hp_avenrun[i] += 3269 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 3270 3271 /* avenrun[] can only hold 31 bits of load avg. */ 3272 if (zp->zone_hp_avenrun[i] < 3273 ((uint64_t)1<<(31+16-FSHIFT))) 3274 zp->zone_avenrun[i] = (int32_t) 3275 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT)); 3276 else 3277 zp->zone_avenrun[i] = 0x7fffffff; 3278 } 3279 3280 mutex_exit(&zp->zone_lock); 3281 } 3282 mutex_exit(&zonehash_lock); 3283 } 3284 3285 /* 3286 * Get the number of cpus visible to this zone. The system-wide global 3287 * 'ncpus' is returned if pools are disabled, the caller is in the 3288 * global zone, or a NULL zone argument is passed in. 3289 */ 3290 int 3291 zone_ncpus_get(zone_t *zone) 3292 { 3293 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 3294 3295 return (myncpus != 0 ? myncpus : ncpus); 3296 } 3297 3298 /* 3299 * Get the number of online cpus visible to this zone. The system-wide 3300 * global 'ncpus_online' is returned if pools are disabled, the caller 3301 * is in the global zone, or a NULL zone argument is passed in. 3302 */ 3303 int 3304 zone_ncpus_online_get(zone_t *zone) 3305 { 3306 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 3307 3308 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 3309 } 3310 3311 /* 3312 * Return the pool to which the zone is currently bound. 3313 */ 3314 pool_t * 3315 zone_pool_get(zone_t *zone) 3316 { 3317 ASSERT(pool_lock_held()); 3318 3319 return (zone->zone_pool); 3320 } 3321 3322 /* 3323 * Set the zone's pool pointer and update the zone's visibility to match 3324 * the resources in the new pool. 3325 */ 3326 void 3327 zone_pool_set(zone_t *zone, pool_t *pool) 3328 { 3329 ASSERT(pool_lock_held()); 3330 ASSERT(MUTEX_HELD(&cpu_lock)); 3331 3332 zone->zone_pool = pool; 3333 zone_pset_set(zone, pool->pool_pset->pset_id); 3334 } 3335 3336 /* 3337 * Return the cached value of the id of the processor set to which the 3338 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 3339 * facility is disabled. 3340 */ 3341 psetid_t 3342 zone_pset_get(zone_t *zone) 3343 { 3344 ASSERT(MUTEX_HELD(&cpu_lock)); 3345 3346 return (zone->zone_psetid); 3347 } 3348 3349 /* 3350 * Set the cached value of the id of the processor set to which the zone 3351 * is currently bound. Also update the zone's visibility to match the 3352 * resources in the new processor set. 3353 */ 3354 void 3355 zone_pset_set(zone_t *zone, psetid_t newpsetid) 3356 { 3357 psetid_t oldpsetid; 3358 3359 ASSERT(MUTEX_HELD(&cpu_lock)); 3360 oldpsetid = zone_pset_get(zone); 3361 3362 if (oldpsetid == newpsetid) 3363 return; 3364 /* 3365 * Global zone sees all. 3366 */ 3367 if (zone != global_zone) { 3368 zone->zone_psetid = newpsetid; 3369 if (newpsetid != ZONE_PS_INVAL) 3370 pool_pset_visibility_add(newpsetid, zone); 3371 if (oldpsetid != ZONE_PS_INVAL) 3372 pool_pset_visibility_remove(oldpsetid, zone); 3373 } 3374 /* 3375 * Disabling pools, so we should start using the global values 3376 * for ncpus and ncpus_online. 3377 */ 3378 if (newpsetid == ZONE_PS_INVAL) { 3379 zone->zone_ncpus = 0; 3380 zone->zone_ncpus_online = 0; 3381 } 3382 } 3383 3384 /* 3385 * Walk the list of active zones and issue the provided callback for 3386 * each of them. 3387 * 3388 * Caller must not be holding any locks that may be acquired under 3389 * zonehash_lock. See comment at the beginning of the file for a list of 3390 * common locks and their interactions with zones. 3391 */ 3392 int 3393 zone_walk(int (*cb)(zone_t *, void *), void *data) 3394 { 3395 zone_t *zone; 3396 int ret = 0; 3397 zone_status_t status; 3398 3399 mutex_enter(&zonehash_lock); 3400 for (zone = list_head(&zone_active); zone != NULL; 3401 zone = list_next(&zone_active, zone)) { 3402 /* 3403 * Skip zones that shouldn't be externally visible. 3404 */ 3405 status = zone_status_get(zone); 3406 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 3407 continue; 3408 /* 3409 * Bail immediately if any callback invocation returns a 3410 * non-zero value. 3411 */ 3412 ret = (*cb)(zone, data); 3413 if (ret != 0) 3414 break; 3415 } 3416 mutex_exit(&zonehash_lock); 3417 return (ret); 3418 } 3419 3420 static int 3421 zone_set_root(zone_t *zone, const char *upath) 3422 { 3423 vnode_t *vp; 3424 int trycount; 3425 int error = 0; 3426 char *path; 3427 struct pathname upn, pn; 3428 size_t pathlen; 3429 3430 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 3431 return (error); 3432 3433 pn_alloc(&pn); 3434 3435 /* prevent infinite loop */ 3436 trycount = 10; 3437 for (;;) { 3438 if (--trycount <= 0) { 3439 error = ESTALE; 3440 goto out; 3441 } 3442 3443 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 3444 /* 3445 * VOP_ACCESS() may cover 'vp' with a new 3446 * filesystem, if 'vp' is an autoFS vnode. 3447 * Get the new 'vp' if so. 3448 */ 3449 if ((error = 3450 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && 3451 (!vn_ismntpt(vp) || 3452 (error = traverse(&vp)) == 0)) { 3453 pathlen = pn.pn_pathlen + 2; 3454 path = kmem_alloc(pathlen, KM_SLEEP); 3455 (void) strncpy(path, pn.pn_path, 3456 pn.pn_pathlen + 1); 3457 path[pathlen - 2] = '/'; 3458 path[pathlen - 1] = '\0'; 3459 pn_free(&pn); 3460 pn_free(&upn); 3461 3462 /* Success! */ 3463 break; 3464 } 3465 VN_RELE(vp); 3466 } 3467 if (error != ESTALE) 3468 goto out; 3469 } 3470 3471 ASSERT(error == 0); 3472 zone->zone_rootvp = vp; /* we hold a reference to vp */ 3473 zone->zone_rootpath = path; 3474 zone->zone_rootpathlen = pathlen; 3475 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 3476 zone->zone_flags |= ZF_IS_SCRATCH; 3477 return (0); 3478 3479 out: 3480 pn_free(&pn); 3481 pn_free(&upn); 3482 return (error); 3483 } 3484 3485 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 3486 ((c) >= 'a' && (c) <= 'z') || \ 3487 ((c) >= 'A' && (c) <= 'Z')) 3488 3489 static int 3490 zone_set_name(zone_t *zone, const char *uname) 3491 { 3492 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 3493 size_t len; 3494 int i, err; 3495 3496 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 3497 kmem_free(kname, ZONENAME_MAX); 3498 return (err); /* EFAULT or ENAMETOOLONG */ 3499 } 3500 3501 /* must be less than ZONENAME_MAX */ 3502 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 3503 kmem_free(kname, ZONENAME_MAX); 3504 return (EINVAL); 3505 } 3506 3507 /* 3508 * Name must start with an alphanumeric and must contain only 3509 * alphanumerics, '-', '_' and '.'. 3510 */ 3511 if (!isalnum(kname[0])) { 3512 kmem_free(kname, ZONENAME_MAX); 3513 return (EINVAL); 3514 } 3515 for (i = 1; i < len - 1; i++) { 3516 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 3517 kname[i] != '.') { 3518 kmem_free(kname, ZONENAME_MAX); 3519 return (EINVAL); 3520 } 3521 } 3522 3523 zone->zone_name = kname; 3524 return (0); 3525 } 3526 3527 /* 3528 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep' 3529 * is NULL or it points to a zone with no hostid emulation, then the machine's 3530 * hostid (i.e., the global zone's hostid) is returned. This function returns 3531 * zero if neither the zone nor the host machine (global zone) have hostids. It 3532 * returns HW_INVALID_HOSTID if the function attempts to return the machine's 3533 * hostid and the machine's hostid is invalid. 3534 */ 3535 uint32_t 3536 zone_get_hostid(zone_t *zonep) 3537 { 3538 unsigned long machine_hostid; 3539 3540 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) { 3541 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0) 3542 return (HW_INVALID_HOSTID); 3543 return ((uint32_t)machine_hostid); 3544 } 3545 return (zonep->zone_hostid); 3546 } 3547 3548 /* 3549 * Similar to thread_create(), but makes sure the thread is in the appropriate 3550 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 3551 */ 3552 /*ARGSUSED*/ 3553 kthread_t * 3554 zthread_create( 3555 caddr_t stk, 3556 size_t stksize, 3557 void (*proc)(), 3558 void *arg, 3559 size_t len, 3560 pri_t pri) 3561 { 3562 kthread_t *t; 3563 zone_t *zone = curproc->p_zone; 3564 proc_t *pp = zone->zone_zsched; 3565 3566 zone_hold(zone); /* Reference to be dropped when thread exits */ 3567 3568 /* 3569 * No-one should be trying to create threads if the zone is shutting 3570 * down and there aren't any kernel threads around. See comment 3571 * in zthread_exit(). 3572 */ 3573 ASSERT(!(zone->zone_kthreads == NULL && 3574 zone_status_get(zone) >= ZONE_IS_EMPTY)); 3575 /* 3576 * Create a thread, but don't let it run until we've finished setting 3577 * things up. 3578 */ 3579 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 3580 ASSERT(t->t_forw == NULL); 3581 mutex_enter(&zone_status_lock); 3582 if (zone->zone_kthreads == NULL) { 3583 t->t_forw = t->t_back = t; 3584 } else { 3585 kthread_t *tx = zone->zone_kthreads; 3586 3587 t->t_forw = tx; 3588 t->t_back = tx->t_back; 3589 tx->t_back->t_forw = t; 3590 tx->t_back = t; 3591 } 3592 zone->zone_kthreads = t; 3593 mutex_exit(&zone_status_lock); 3594 3595 mutex_enter(&pp->p_lock); 3596 t->t_proc_flag |= TP_ZTHREAD; 3597 project_rele(t->t_proj); 3598 t->t_proj = project_hold(pp->p_task->tk_proj); 3599 3600 /* 3601 * Setup complete, let it run. 3602 */ 3603 thread_lock(t); 3604 t->t_schedflag |= TS_ALLSTART; 3605 setrun_locked(t); 3606 thread_unlock(t); 3607 3608 mutex_exit(&pp->p_lock); 3609 3610 return (t); 3611 } 3612 3613 /* 3614 * Similar to thread_exit(). Must be called by threads created via 3615 * zthread_exit(). 3616 */ 3617 void 3618 zthread_exit(void) 3619 { 3620 kthread_t *t = curthread; 3621 proc_t *pp = curproc; 3622 zone_t *zone = pp->p_zone; 3623 3624 mutex_enter(&zone_status_lock); 3625 3626 /* 3627 * Reparent to p0 3628 */ 3629 kpreempt_disable(); 3630 mutex_enter(&pp->p_lock); 3631 t->t_proc_flag &= ~TP_ZTHREAD; 3632 t->t_procp = &p0; 3633 hat_thread_exit(t); 3634 mutex_exit(&pp->p_lock); 3635 kpreempt_enable(); 3636 3637 if (t->t_back == t) { 3638 ASSERT(t->t_forw == t); 3639 /* 3640 * If the zone is empty, once the thread count 3641 * goes to zero no further kernel threads can be 3642 * created. This is because if the creator is a process 3643 * in the zone, then it must have exited before the zone 3644 * state could be set to ZONE_IS_EMPTY. 3645 * Otherwise, if the creator is a kernel thread in the 3646 * zone, the thread count is non-zero. 3647 * 3648 * This really means that non-zone kernel threads should 3649 * not create zone kernel threads. 3650 */ 3651 zone->zone_kthreads = NULL; 3652 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 3653 zone_status_set(zone, ZONE_IS_DOWN); 3654 /* 3655 * Remove any CPU caps on this zone. 3656 */ 3657 cpucaps_zone_remove(zone); 3658 } 3659 } else { 3660 t->t_forw->t_back = t->t_back; 3661 t->t_back->t_forw = t->t_forw; 3662 if (zone->zone_kthreads == t) 3663 zone->zone_kthreads = t->t_forw; 3664 } 3665 mutex_exit(&zone_status_lock); 3666 zone_rele(zone); 3667 thread_exit(); 3668 /* NOTREACHED */ 3669 } 3670 3671 static void 3672 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 3673 { 3674 vnode_t *oldvp; 3675 3676 /* we're going to hold a reference here to the directory */ 3677 VN_HOLD(vp); 3678 3679 /* update abs cwd/root path see c2/audit.c */ 3680 if (AU_AUDITING()) 3681 audit_chdirec(vp, vpp); 3682 3683 mutex_enter(&pp->p_lock); 3684 oldvp = *vpp; 3685 *vpp = vp; 3686 mutex_exit(&pp->p_lock); 3687 if (oldvp != NULL) 3688 VN_RELE(oldvp); 3689 } 3690 3691 /* 3692 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 3693 */ 3694 static int 3695 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 3696 { 3697 nvpair_t *nvp = NULL; 3698 boolean_t priv_set = B_FALSE; 3699 boolean_t limit_set = B_FALSE; 3700 boolean_t action_set = B_FALSE; 3701 3702 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3703 const char *name; 3704 uint64_t ui64; 3705 3706 name = nvpair_name(nvp); 3707 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 3708 return (EINVAL); 3709 (void) nvpair_value_uint64(nvp, &ui64); 3710 if (strcmp(name, "privilege") == 0) { 3711 /* 3712 * Currently only privileged values are allowed, but 3713 * this may change in the future. 3714 */ 3715 if (ui64 != RCPRIV_PRIVILEGED) 3716 return (EINVAL); 3717 rv->rcv_privilege = ui64; 3718 priv_set = B_TRUE; 3719 } else if (strcmp(name, "limit") == 0) { 3720 rv->rcv_value = ui64; 3721 limit_set = B_TRUE; 3722 } else if (strcmp(name, "action") == 0) { 3723 if (ui64 != RCTL_LOCAL_NOACTION && 3724 ui64 != RCTL_LOCAL_DENY) 3725 return (EINVAL); 3726 rv->rcv_flagaction = ui64; 3727 action_set = B_TRUE; 3728 } else { 3729 return (EINVAL); 3730 } 3731 } 3732 3733 if (!(priv_set && limit_set && action_set)) 3734 return (EINVAL); 3735 rv->rcv_action_signal = 0; 3736 rv->rcv_action_recipient = NULL; 3737 rv->rcv_action_recip_pid = -1; 3738 rv->rcv_firing_time = 0; 3739 3740 return (0); 3741 } 3742 3743 /* 3744 * Non-global zone version of start_init. 3745 */ 3746 void 3747 zone_start_init(void) 3748 { 3749 proc_t *p = ttoproc(curthread); 3750 zone_t *z = p->p_zone; 3751 3752 ASSERT(!INGLOBALZONE(curproc)); 3753 3754 /* 3755 * For all purposes (ZONE_ATTR_INITPID and restart_init), 3756 * storing just the pid of init is sufficient. 3757 */ 3758 z->zone_proc_initpid = p->p_pid; 3759 3760 /* 3761 * We maintain zone_boot_err so that we can return the cause of the 3762 * failure back to the caller of the zone_boot syscall. 3763 */ 3764 p->p_zone->zone_boot_err = start_init_common(); 3765 3766 /* 3767 * We will prevent booting zones from becoming running zones if the 3768 * global zone is shutting down. 3769 */ 3770 mutex_enter(&zone_status_lock); 3771 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >= 3772 ZONE_IS_SHUTTING_DOWN) { 3773 /* 3774 * Make sure we are still in the booting state-- we could have 3775 * raced and already be shutting down, or even further along. 3776 */ 3777 if (zone_status_get(z) == ZONE_IS_BOOTING) { 3778 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 3779 } 3780 mutex_exit(&zone_status_lock); 3781 /* It's gone bad, dispose of the process */ 3782 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 3783 mutex_enter(&p->p_lock); 3784 ASSERT(p->p_flag & SEXITLWPS); 3785 lwp_exit(); 3786 } 3787 } else { 3788 if (zone_status_get(z) == ZONE_IS_BOOTING) 3789 zone_status_set(z, ZONE_IS_RUNNING); 3790 mutex_exit(&zone_status_lock); 3791 /* cause the process to return to userland. */ 3792 lwp_rtt(); 3793 } 3794 } 3795 3796 struct zsched_arg { 3797 zone_t *zone; 3798 nvlist_t *nvlist; 3799 }; 3800 3801 /* 3802 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 3803 * anything to do with scheduling, but rather with the fact that 3804 * per-zone kernel threads are parented to zsched, just like regular 3805 * kernel threads are parented to sched (p0). 3806 * 3807 * zsched is also responsible for launching init for the zone. 3808 */ 3809 static void 3810 zsched(void *arg) 3811 { 3812 struct zsched_arg *za = arg; 3813 proc_t *pp = curproc; 3814 proc_t *initp = proc_init; 3815 zone_t *zone = za->zone; 3816 cred_t *cr, *oldcred; 3817 rctl_set_t *set; 3818 rctl_alloc_gp_t *gp; 3819 contract_t *ct = NULL; 3820 task_t *tk, *oldtk; 3821 rctl_entity_p_t e; 3822 kproject_t *pj; 3823 3824 nvlist_t *nvl = za->nvlist; 3825 nvpair_t *nvp = NULL; 3826 3827 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 3828 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 3829 PTOU(pp)->u_argc = 0; 3830 PTOU(pp)->u_argv = NULL; 3831 PTOU(pp)->u_envp = NULL; 3832 PTOU(pp)->u_commpagep = NULL; 3833 closeall(P_FINFO(pp)); 3834 3835 /* 3836 * We are this zone's "zsched" process. As the zone isn't generally 3837 * visible yet we don't need to grab any locks before initializing its 3838 * zone_proc pointer. 3839 */ 3840 zone_hold(zone); /* this hold is released by zone_destroy() */ 3841 zone->zone_zsched = pp; 3842 mutex_enter(&pp->p_lock); 3843 pp->p_zone = zone; 3844 mutex_exit(&pp->p_lock); 3845 3846 /* 3847 * Disassociate process from its 'parent'; parent ourselves to init 3848 * (pid 1) and change other values as needed. 3849 */ 3850 sess_create(); 3851 3852 mutex_enter(&pidlock); 3853 proc_detach(pp); 3854 pp->p_ppid = 1; 3855 pp->p_flag |= SZONETOP; 3856 pp->p_ancpid = 1; 3857 pp->p_parent = initp; 3858 pp->p_psibling = NULL; 3859 if (initp->p_child) 3860 initp->p_child->p_psibling = pp; 3861 pp->p_sibling = initp->p_child; 3862 initp->p_child = pp; 3863 3864 /* Decrement what newproc() incremented. */ 3865 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 3866 /* 3867 * Our credentials are about to become kcred-like, so we don't care 3868 * about the caller's ruid. 3869 */ 3870 upcount_inc(crgetruid(kcred), zone->zone_id); 3871 mutex_exit(&pidlock); 3872 3873 /* 3874 * getting out of global zone, so decrement lwp and process counts 3875 */ 3876 pj = pp->p_task->tk_proj; 3877 mutex_enter(&global_zone->zone_nlwps_lock); 3878 pj->kpj_nlwps -= pp->p_lwpcnt; 3879 global_zone->zone_nlwps -= pp->p_lwpcnt; 3880 pj->kpj_nprocs--; 3881 global_zone->zone_nprocs--; 3882 mutex_exit(&global_zone->zone_nlwps_lock); 3883 3884 /* 3885 * Decrement locked memory counts on old zone and project. 3886 */ 3887 mutex_enter(&global_zone->zone_mem_lock); 3888 global_zone->zone_locked_mem -= pp->p_locked_mem; 3889 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 3890 mutex_exit(&global_zone->zone_mem_lock); 3891 3892 /* 3893 * Create and join a new task in project '0' of this zone. 3894 * 3895 * We don't need to call holdlwps() since we know we're the only lwp in 3896 * this process. 3897 * 3898 * task_join() returns with p_lock held. 3899 */ 3900 tk = task_create(0, zone); 3901 mutex_enter(&cpu_lock); 3902 oldtk = task_join(tk, 0); 3903 3904 pj = pp->p_task->tk_proj; 3905 3906 mutex_enter(&zone->zone_mem_lock); 3907 zone->zone_locked_mem += pp->p_locked_mem; 3908 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 3909 mutex_exit(&zone->zone_mem_lock); 3910 3911 /* 3912 * add lwp and process counts to zsched's zone, and increment 3913 * project's task and process count due to the task created in 3914 * the above task_create. 3915 */ 3916 mutex_enter(&zone->zone_nlwps_lock); 3917 pj->kpj_nlwps += pp->p_lwpcnt; 3918 pj->kpj_ntasks += 1; 3919 zone->zone_nlwps += pp->p_lwpcnt; 3920 pj->kpj_nprocs++; 3921 zone->zone_nprocs++; 3922 mutex_exit(&zone->zone_nlwps_lock); 3923 3924 mutex_exit(&curproc->p_lock); 3925 mutex_exit(&cpu_lock); 3926 task_rele(oldtk); 3927 3928 /* 3929 * The process was created by a process in the global zone, hence the 3930 * credentials are wrong. We might as well have kcred-ish credentials. 3931 */ 3932 cr = zone->zone_kcred; 3933 crhold(cr); 3934 mutex_enter(&pp->p_crlock); 3935 oldcred = pp->p_cred; 3936 pp->p_cred = cr; 3937 mutex_exit(&pp->p_crlock); 3938 crfree(oldcred); 3939 3940 /* 3941 * Hold credentials again (for thread) 3942 */ 3943 crhold(cr); 3944 3945 /* 3946 * p_lwpcnt can't change since this is a kernel process. 3947 */ 3948 crset(pp, cr); 3949 3950 /* 3951 * Chroot 3952 */ 3953 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 3954 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 3955 3956 /* 3957 * Initialize zone's rctl set. 3958 */ 3959 set = rctl_set_create(); 3960 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 3961 mutex_enter(&pp->p_lock); 3962 e.rcep_p.zone = zone; 3963 e.rcep_t = RCENTITY_ZONE; 3964 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 3965 mutex_exit(&pp->p_lock); 3966 rctl_prealloc_destroy(gp); 3967 3968 /* 3969 * Apply the rctls passed in to zone_create(). This is basically a list 3970 * assignment: all of the old values are removed and the new ones 3971 * inserted. That is, if an empty list is passed in, all values are 3972 * removed. 3973 */ 3974 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3975 rctl_dict_entry_t *rde; 3976 rctl_hndl_t hndl; 3977 char *name; 3978 nvlist_t **nvlarray; 3979 uint_t i, nelem; 3980 int error; /* For ASSERT()s */ 3981 3982 name = nvpair_name(nvp); 3983 hndl = rctl_hndl_lookup(name); 3984 ASSERT(hndl != -1); 3985 rde = rctl_dict_lookup_hndl(hndl); 3986 ASSERT(rde != NULL); 3987 3988 for (; /* ever */; ) { 3989 rctl_val_t oval; 3990 3991 mutex_enter(&pp->p_lock); 3992 error = rctl_local_get(hndl, NULL, &oval, pp); 3993 mutex_exit(&pp->p_lock); 3994 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 3995 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 3996 if (oval.rcv_privilege == RCPRIV_SYSTEM) 3997 break; 3998 mutex_enter(&pp->p_lock); 3999 error = rctl_local_delete(hndl, &oval, pp); 4000 mutex_exit(&pp->p_lock); 4001 ASSERT(error == 0); 4002 } 4003 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 4004 ASSERT(error == 0); 4005 for (i = 0; i < nelem; i++) { 4006 rctl_val_t *nvalp; 4007 4008 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 4009 error = nvlist2rctlval(nvlarray[i], nvalp); 4010 ASSERT(error == 0); 4011 /* 4012 * rctl_local_insert can fail if the value being 4013 * inserted is a duplicate; this is OK. 4014 */ 4015 mutex_enter(&pp->p_lock); 4016 if (rctl_local_insert(hndl, nvalp, pp) != 0) 4017 kmem_cache_free(rctl_val_cache, nvalp); 4018 mutex_exit(&pp->p_lock); 4019 } 4020 } 4021 4022 /* 4023 * Tell the world that we're done setting up. 4024 * 4025 * At this point we want to set the zone status to ZONE_IS_INITIALIZED 4026 * and atomically set the zone's processor set visibility. Once 4027 * we drop pool_lock() this zone will automatically get updated 4028 * to reflect any future changes to the pools configuration. 4029 * 4030 * Note that after we drop the locks below (zonehash_lock in 4031 * particular) other operations such as a zone_getattr call can 4032 * now proceed and observe the zone. That is the reason for doing a 4033 * state transition to the INITIALIZED state. 4034 */ 4035 pool_lock(); 4036 mutex_enter(&cpu_lock); 4037 mutex_enter(&zonehash_lock); 4038 zone_uniqid(zone); 4039 zone_zsd_configure(zone); 4040 if (pool_state == POOL_ENABLED) 4041 zone_pset_set(zone, pool_default->pool_pset->pset_id); 4042 mutex_enter(&zone_status_lock); 4043 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 4044 zone_status_set(zone, ZONE_IS_INITIALIZED); 4045 mutex_exit(&zone_status_lock); 4046 mutex_exit(&zonehash_lock); 4047 mutex_exit(&cpu_lock); 4048 pool_unlock(); 4049 4050 /* Now call the create callback for this key */ 4051 zsd_apply_all_keys(zsd_apply_create, zone); 4052 4053 /* The callbacks are complete. Mark ZONE_IS_READY */ 4054 mutex_enter(&zone_status_lock); 4055 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); 4056 zone_status_set(zone, ZONE_IS_READY); 4057 mutex_exit(&zone_status_lock); 4058 4059 /* 4060 * Once we see the zone transition to the ZONE_IS_BOOTING state, 4061 * we launch init, and set the state to running. 4062 */ 4063 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 4064 4065 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 4066 id_t cid; 4067 4068 /* 4069 * Ok, this is a little complicated. We need to grab the 4070 * zone's pool's scheduling class ID; note that by now, we 4071 * are already bound to a pool if we need to be (zoneadmd 4072 * will have done that to us while we're in the READY 4073 * state). *But* the scheduling class for the zone's 'init' 4074 * must be explicitly passed to newproc, which doesn't 4075 * respect pool bindings. 4076 * 4077 * We hold the pool_lock across the call to newproc() to 4078 * close the obvious race: the pool's scheduling class 4079 * could change before we manage to create the LWP with 4080 * classid 'cid'. 4081 */ 4082 pool_lock(); 4083 if (zone->zone_defaultcid > 0) 4084 cid = zone->zone_defaultcid; 4085 else 4086 cid = pool_get_class(zone->zone_pool); 4087 if (cid == -1) 4088 cid = defaultcid; 4089 4090 /* 4091 * If this fails, zone_boot will ultimately fail. The 4092 * state of the zone will be set to SHUTTING_DOWN-- userland 4093 * will have to tear down the zone, and fail, or try again. 4094 */ 4095 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 4096 minclsyspri - 1, &ct, 0)) != 0) { 4097 mutex_enter(&zone_status_lock); 4098 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4099 mutex_exit(&zone_status_lock); 4100 } else { 4101 zone->zone_boot_time = gethrestime_sec(); 4102 } 4103 4104 pool_unlock(); 4105 } 4106 4107 /* 4108 * Wait for zone_destroy() to be called. This is what we spend 4109 * most of our life doing. 4110 */ 4111 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 4112 4113 if (ct) 4114 /* 4115 * At this point the process contract should be empty. 4116 * (Though if it isn't, it's not the end of the world.) 4117 */ 4118 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 4119 4120 /* 4121 * Allow kcred to be freed when all referring processes 4122 * (including this one) go away. We can't just do this in 4123 * zone_free because we need to wait for the zone_cred_ref to 4124 * drop to 0 before calling zone_free, and the existence of 4125 * zone_kcred will prevent that. Thus, we call crfree here to 4126 * balance the crdup in zone_create. The crhold calls earlier 4127 * in zsched will be dropped when the thread and process exit. 4128 */ 4129 crfree(zone->zone_kcred); 4130 zone->zone_kcred = NULL; 4131 4132 exit(CLD_EXITED, 0); 4133 } 4134 4135 /* 4136 * Helper function to determine if there are any submounts of the 4137 * provided path. Used to make sure the zone doesn't "inherit" any 4138 * mounts from before it is created. 4139 */ 4140 static uint_t 4141 zone_mount_count(const char *rootpath) 4142 { 4143 vfs_t *vfsp; 4144 uint_t count = 0; 4145 size_t rootpathlen = strlen(rootpath); 4146 4147 /* 4148 * Holding zonehash_lock prevents race conditions with 4149 * vfs_list_add()/vfs_list_remove() since we serialize with 4150 * zone_find_by_path(). 4151 */ 4152 ASSERT(MUTEX_HELD(&zonehash_lock)); 4153 /* 4154 * The rootpath must end with a '/' 4155 */ 4156 ASSERT(rootpath[rootpathlen - 1] == '/'); 4157 4158 /* 4159 * This intentionally does not count the rootpath itself if that 4160 * happens to be a mount point. 4161 */ 4162 vfs_list_read_lock(); 4163 vfsp = rootvfs; 4164 do { 4165 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 4166 rootpathlen) == 0) 4167 count++; 4168 vfsp = vfsp->vfs_next; 4169 } while (vfsp != rootvfs); 4170 vfs_list_unlock(); 4171 return (count); 4172 } 4173 4174 /* 4175 * Helper function to make sure that a zone created on 'rootpath' 4176 * wouldn't end up containing other zones' rootpaths. 4177 */ 4178 static boolean_t 4179 zone_is_nested(const char *rootpath) 4180 { 4181 zone_t *zone; 4182 size_t rootpathlen = strlen(rootpath); 4183 size_t len; 4184 4185 ASSERT(MUTEX_HELD(&zonehash_lock)); 4186 4187 /* 4188 * zone_set_root() appended '/' and '\0' at the end of rootpath 4189 */ 4190 if ((rootpathlen <= 3) && (rootpath[0] == '/') && 4191 (rootpath[1] == '/') && (rootpath[2] == '\0')) 4192 return (B_TRUE); 4193 4194 for (zone = list_head(&zone_active); zone != NULL; 4195 zone = list_next(&zone_active, zone)) { 4196 if (zone == global_zone) 4197 continue; 4198 len = strlen(zone->zone_rootpath); 4199 if (strncmp(rootpath, zone->zone_rootpath, 4200 MIN(rootpathlen, len)) == 0) 4201 return (B_TRUE); 4202 } 4203 return (B_FALSE); 4204 } 4205 4206 static int 4207 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 4208 size_t zone_privssz) 4209 { 4210 priv_set_t *privs; 4211 4212 if (zone_privssz < sizeof (priv_set_t)) 4213 return (ENOMEM); 4214 4215 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 4216 4217 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 4218 kmem_free(privs, sizeof (priv_set_t)); 4219 return (EFAULT); 4220 } 4221 4222 zone->zone_privset = privs; 4223 return (0); 4224 } 4225 4226 /* 4227 * We make creative use of nvlists to pass in rctls from userland. The list is 4228 * a list of the following structures: 4229 * 4230 * (name = rctl_name, value = nvpair_list_array) 4231 * 4232 * Where each element of the nvpair_list_array is of the form: 4233 * 4234 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 4235 * (name = "limit", value = uint64_t), 4236 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 4237 */ 4238 static int 4239 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 4240 { 4241 nvpair_t *nvp = NULL; 4242 nvlist_t *nvl = NULL; 4243 char *kbuf; 4244 int error; 4245 rctl_val_t rv; 4246 4247 *nvlp = NULL; 4248 4249 if (buflen == 0) 4250 return (0); 4251 4252 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4253 return (ENOMEM); 4254 if (copyin(ubuf, kbuf, buflen)) { 4255 error = EFAULT; 4256 goto out; 4257 } 4258 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 4259 /* 4260 * nvl may have been allocated/free'd, but the value set to 4261 * non-NULL, so we reset it here. 4262 */ 4263 nvl = NULL; 4264 error = EINVAL; 4265 goto out; 4266 } 4267 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4268 rctl_dict_entry_t *rde; 4269 rctl_hndl_t hndl; 4270 nvlist_t **nvlarray; 4271 uint_t i, nelem; 4272 char *name; 4273 4274 error = EINVAL; 4275 name = nvpair_name(nvp); 4276 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 4277 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 4278 goto out; 4279 } 4280 if ((hndl = rctl_hndl_lookup(name)) == -1) { 4281 goto out; 4282 } 4283 rde = rctl_dict_lookup_hndl(hndl); 4284 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 4285 ASSERT(error == 0); 4286 for (i = 0; i < nelem; i++) { 4287 if (error = nvlist2rctlval(nvlarray[i], &rv)) 4288 goto out; 4289 } 4290 if (rctl_invalid_value(rde, &rv)) { 4291 error = EINVAL; 4292 goto out; 4293 } 4294 } 4295 error = 0; 4296 *nvlp = nvl; 4297 out: 4298 kmem_free(kbuf, buflen); 4299 if (error && nvl != NULL) 4300 nvlist_free(nvl); 4301 return (error); 4302 } 4303 4304 int 4305 zone_create_error(int er_error, int er_ext, int *er_out) 4306 { 4307 if (er_out != NULL) { 4308 if (copyout(&er_ext, er_out, sizeof (int))) { 4309 return (set_errno(EFAULT)); 4310 } 4311 } 4312 return (set_errno(er_error)); 4313 } 4314 4315 static int 4316 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 4317 { 4318 ts_label_t *tsl; 4319 bslabel_t blab; 4320 4321 /* Get label from user */ 4322 if (copyin(lab, &blab, sizeof (blab)) != 0) 4323 return (EFAULT); 4324 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 4325 if (tsl == NULL) 4326 return (ENOMEM); 4327 4328 zone->zone_slabel = tsl; 4329 return (0); 4330 } 4331 4332 /* 4333 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 4334 */ 4335 static int 4336 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 4337 { 4338 char *kbuf; 4339 char *dataset, *next; 4340 zone_dataset_t *zd; 4341 size_t len; 4342 4343 if (ubuf == NULL || buflen == 0) 4344 return (0); 4345 4346 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4347 return (ENOMEM); 4348 4349 if (copyin(ubuf, kbuf, buflen) != 0) { 4350 kmem_free(kbuf, buflen); 4351 return (EFAULT); 4352 } 4353 4354 dataset = next = kbuf; 4355 for (;;) { 4356 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 4357 4358 next = strchr(dataset, ','); 4359 4360 if (next == NULL) 4361 len = strlen(dataset); 4362 else 4363 len = next - dataset; 4364 4365 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 4366 bcopy(dataset, zd->zd_dataset, len); 4367 zd->zd_dataset[len] = '\0'; 4368 4369 list_insert_head(&zone->zone_datasets, zd); 4370 4371 if (next == NULL) 4372 break; 4373 4374 dataset = next + 1; 4375 } 4376 4377 kmem_free(kbuf, buflen); 4378 return (0); 4379 } 4380 4381 /* 4382 * System call to create/initialize a new zone named 'zone_name', rooted 4383 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 4384 * and initialized with the zone-wide rctls described in 'rctlbuf', and 4385 * with labeling set by 'match', 'doi', and 'label'. 4386 * 4387 * If extended error is non-null, we may use it to return more detailed 4388 * error information. 4389 */ 4390 static zoneid_t 4391 zone_create(const char *zone_name, const char *zone_root, 4392 const priv_set_t *zone_privs, size_t zone_privssz, 4393 caddr_t rctlbuf, size_t rctlbufsz, 4394 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 4395 int match, uint32_t doi, const bslabel_t *label, 4396 int flags) 4397 { 4398 struct zsched_arg zarg; 4399 nvlist_t *rctls = NULL; 4400 proc_t *pp = curproc; 4401 zone_t *zone, *ztmp; 4402 zoneid_t zoneid, start = GLOBAL_ZONEID; 4403 int error; 4404 int error2 = 0; 4405 char *str; 4406 cred_t *zkcr; 4407 boolean_t insert_label_hash; 4408 4409 if (secpolicy_zone_config(CRED()) != 0) 4410 return (set_errno(EPERM)); 4411 4412 /* can't boot zone from within chroot environment */ 4413 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 4414 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 4415 extended_error)); 4416 /* 4417 * As the first step of zone creation, we want to allocate a zoneid. 4418 * This allocation is complicated by the fact that netstacks use the 4419 * zoneid to determine their stackid, but netstacks themselves are 4420 * freed asynchronously with respect to zone destruction. This means 4421 * that a netstack reference leak (or in principle, an extraordinarily 4422 * long netstack reference hold) could result in a zoneid being 4423 * allocated that in fact corresponds to a stackid from an active 4424 * (referenced) netstack -- unleashing all sorts of havoc when that 4425 * netstack is actually (re)used. (In the abstract, we might wish a 4426 * zoneid to not be deallocated until its last referencing netstack 4427 * has been released, but netstacks lack a backpointer into their 4428 * referencing zone -- and changing them to have such a pointer would 4429 * be substantial, to put it euphemistically.) To avoid this, we 4430 * detect this condition on allocation: if we have allocated a zoneid 4431 * that corresponds to a netstack that's still in use, we warn about 4432 * it (as it is much more likely to be a reference leak than an actual 4433 * netstack reference), free it, and allocate another. That these 4434 * identifers are allocated out of an ID space assures that we won't 4435 * see the identifier we just allocated. 4436 */ 4437 for (;;) { 4438 zoneid = id_alloc(zoneid_space); 4439 4440 if (!netstack_inuse_by_stackid(zoneid_to_netstackid(zoneid))) 4441 break; 4442 4443 id_free(zoneid_space, zoneid); 4444 4445 if (start == GLOBAL_ZONEID) { 4446 start = zoneid; 4447 } else if (zoneid == start) { 4448 /* 4449 * We have managed to iterate over the entire available 4450 * zoneid space -- there are no identifiers available, 4451 * presumably due to some number of leaked netstack 4452 * references. While it's in principle possible for us 4453 * to continue to try, it seems wiser to give up at 4454 * this point to warn and fail explicitly with a 4455 * distinctive error. 4456 */ 4457 cmn_err(CE_WARN, "zone_create() failed: all available " 4458 "zone IDs have netstacks still in use"); 4459 return (set_errno(ENFILE)); 4460 } 4461 4462 cmn_err(CE_WARN, "unable to reuse zone ID %d; " 4463 "netstack still in use", zoneid); 4464 } 4465 4466 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 4467 zone->zone_id = zoneid; 4468 zone->zone_status = ZONE_IS_UNINITIALIZED; 4469 zone->zone_pool = pool_default; 4470 zone->zone_pool_mod = gethrtime(); 4471 zone->zone_psetid = ZONE_PS_INVAL; 4472 zone->zone_ncpus = 0; 4473 zone->zone_ncpus_online = 0; 4474 zone->zone_restart_init = B_TRUE; 4475 zone->zone_brand = &native_brand; 4476 zone->zone_initname = NULL; 4477 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 4478 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 4479 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 4480 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 4481 list_create(&zone->zone_ref_list, sizeof (zone_ref_t), 4482 offsetof(zone_ref_t, zref_linkage)); 4483 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 4484 offsetof(struct zsd_entry, zsd_linkage)); 4485 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 4486 offsetof(zone_dataset_t, zd_linkage)); 4487 list_create(&zone->zone_dl_list, sizeof (zone_dl_t), 4488 offsetof(zone_dl_t, zdl_linkage)); 4489 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 4490 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 4491 4492 if (flags & ZCF_NET_EXCL) { 4493 zone->zone_flags |= ZF_NET_EXCL; 4494 } 4495 4496 if ((error = zone_set_name(zone, zone_name)) != 0) { 4497 zone_free(zone); 4498 return (zone_create_error(error, 0, extended_error)); 4499 } 4500 4501 if ((error = zone_set_root(zone, zone_root)) != 0) { 4502 zone_free(zone); 4503 return (zone_create_error(error, 0, extended_error)); 4504 } 4505 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 4506 zone_free(zone); 4507 return (zone_create_error(error, 0, extended_error)); 4508 } 4509 4510 /* initialize node name to be the same as zone name */ 4511 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4512 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 4513 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 4514 4515 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4516 zone->zone_domain[0] = '\0'; 4517 zone->zone_hostid = HW_INVALID_HOSTID; 4518 zone->zone_shares = 1; 4519 zone->zone_shmmax = 0; 4520 zone->zone_ipc.ipcq_shmmni = 0; 4521 zone->zone_ipc.ipcq_semmni = 0; 4522 zone->zone_ipc.ipcq_msgmni = 0; 4523 zone->zone_bootargs = NULL; 4524 zone->zone_fs_allowed = NULL; 4525 4526 secflags_zero(&zone0.zone_secflags.psf_lower); 4527 secflags_zero(&zone0.zone_secflags.psf_effective); 4528 secflags_zero(&zone0.zone_secflags.psf_inherit); 4529 secflags_fullset(&zone0.zone_secflags.psf_upper); 4530 4531 zone->zone_initname = 4532 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 4533 (void) strcpy(zone->zone_initname, zone_default_initname); 4534 zone->zone_nlwps = 0; 4535 zone->zone_nlwps_ctl = INT_MAX; 4536 zone->zone_nprocs = 0; 4537 zone->zone_nprocs_ctl = INT_MAX; 4538 zone->zone_locked_mem = 0; 4539 zone->zone_locked_mem_ctl = UINT64_MAX; 4540 zone->zone_max_swap = 0; 4541 zone->zone_max_swap_ctl = UINT64_MAX; 4542 zone->zone_max_lofi = 0; 4543 zone->zone_max_lofi_ctl = UINT64_MAX; 4544 zone0.zone_lockedmem_kstat = NULL; 4545 zone0.zone_swapresv_kstat = NULL; 4546 4547 /* 4548 * Zsched initializes the rctls. 4549 */ 4550 zone->zone_rctls = NULL; 4551 4552 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 4553 zone_free(zone); 4554 return (zone_create_error(error, 0, extended_error)); 4555 } 4556 4557 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 4558 zone_free(zone); 4559 return (set_errno(error)); 4560 } 4561 4562 /* 4563 * Read in the trusted system parameters: 4564 * match flag and sensitivity label. 4565 */ 4566 zone->zone_match = match; 4567 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4568 /* Fail if requested to set doi to anything but system's doi */ 4569 if (doi != 0 && doi != default_doi) { 4570 zone_free(zone); 4571 return (set_errno(EINVAL)); 4572 } 4573 /* Always apply system's doi to the zone */ 4574 error = zone_set_label(zone, label, default_doi); 4575 if (error != 0) { 4576 zone_free(zone); 4577 return (set_errno(error)); 4578 } 4579 insert_label_hash = B_TRUE; 4580 } else { 4581 /* all zones get an admin_low label if system is not labeled */ 4582 zone->zone_slabel = l_admin_low; 4583 label_hold(l_admin_low); 4584 insert_label_hash = B_FALSE; 4585 } 4586 4587 /* 4588 * Stop all lwps since that's what normally happens as part of fork(). 4589 * This needs to happen before we grab any locks to avoid deadlock 4590 * (another lwp in the process could be waiting for the held lock). 4591 */ 4592 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 4593 zone_free(zone); 4594 nvlist_free(rctls); 4595 return (zone_create_error(error, 0, extended_error)); 4596 } 4597 4598 if (block_mounts(zone) == 0) { 4599 mutex_enter(&pp->p_lock); 4600 if (curthread != pp->p_agenttp) 4601 continuelwps(pp); 4602 mutex_exit(&pp->p_lock); 4603 zone_free(zone); 4604 nvlist_free(rctls); 4605 return (zone_create_error(error, 0, extended_error)); 4606 } 4607 4608 /* 4609 * Set up credential for kernel access. After this, any errors 4610 * should go through the dance in errout rather than calling 4611 * zone_free directly. 4612 */ 4613 zone->zone_kcred = crdup(kcred); 4614 crsetzone(zone->zone_kcred, zone); 4615 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 4616 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 4617 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 4618 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 4619 4620 mutex_enter(&zonehash_lock); 4621 /* 4622 * Make sure zone doesn't already exist. 4623 * 4624 * If the system and zone are labeled, 4625 * make sure no other zone exists that has the same label. 4626 */ 4627 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 4628 (insert_label_hash && 4629 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 4630 zone_status_t status; 4631 4632 status = zone_status_get(ztmp); 4633 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 4634 error = EEXIST; 4635 else 4636 error = EBUSY; 4637 4638 if (insert_label_hash) 4639 error2 = ZE_LABELINUSE; 4640 4641 goto errout; 4642 } 4643 4644 /* 4645 * Don't allow zone creations which would cause one zone's rootpath to 4646 * be accessible from that of another (non-global) zone. 4647 */ 4648 if (zone_is_nested(zone->zone_rootpath)) { 4649 error = EBUSY; 4650 goto errout; 4651 } 4652 4653 ASSERT(zonecount != 0); /* check for leaks */ 4654 if (zonecount + 1 > maxzones) { 4655 error = ENOMEM; 4656 goto errout; 4657 } 4658 4659 if (zone_mount_count(zone->zone_rootpath) != 0) { 4660 error = EBUSY; 4661 error2 = ZE_AREMOUNTS; 4662 goto errout; 4663 } 4664 4665 /* 4666 * Zone is still incomplete, but we need to drop all locks while 4667 * zsched() initializes this zone's kernel process. We 4668 * optimistically add the zone to the hashtable and associated 4669 * lists so a parallel zone_create() doesn't try to create the 4670 * same zone. 4671 */ 4672 zonecount++; 4673 (void) mod_hash_insert(zonehashbyid, 4674 (mod_hash_key_t)(uintptr_t)zone->zone_id, 4675 (mod_hash_val_t)(uintptr_t)zone); 4676 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 4677 (void) strcpy(str, zone->zone_name); 4678 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 4679 (mod_hash_val_t)(uintptr_t)zone); 4680 if (insert_label_hash) { 4681 (void) mod_hash_insert(zonehashbylabel, 4682 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 4683 zone->zone_flags |= ZF_HASHED_LABEL; 4684 } 4685 4686 /* 4687 * Insert into active list. At this point there are no 'hold's 4688 * on the zone, but everyone else knows not to use it, so we can 4689 * continue to use it. zsched() will do a zone_hold() if the 4690 * newproc() is successful. 4691 */ 4692 list_insert_tail(&zone_active, zone); 4693 mutex_exit(&zonehash_lock); 4694 4695 zarg.zone = zone; 4696 zarg.nvlist = rctls; 4697 /* 4698 * The process, task, and project rctls are probably wrong; 4699 * we need an interface to get the default values of all rctls, 4700 * and initialize zsched appropriately. I'm not sure that that 4701 * makes much of a difference, though. 4702 */ 4703 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0); 4704 if (error != 0) { 4705 /* 4706 * We need to undo all globally visible state. 4707 */ 4708 mutex_enter(&zonehash_lock); 4709 list_remove(&zone_active, zone); 4710 if (zone->zone_flags & ZF_HASHED_LABEL) { 4711 ASSERT(zone->zone_slabel != NULL); 4712 (void) mod_hash_destroy(zonehashbylabel, 4713 (mod_hash_key_t)zone->zone_slabel); 4714 } 4715 (void) mod_hash_destroy(zonehashbyname, 4716 (mod_hash_key_t)(uintptr_t)zone->zone_name); 4717 (void) mod_hash_destroy(zonehashbyid, 4718 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4719 ASSERT(zonecount > 1); 4720 zonecount--; 4721 goto errout; 4722 } 4723 4724 /* 4725 * Zone creation can't fail from now on. 4726 */ 4727 4728 /* 4729 * Create zone kstats 4730 */ 4731 zone_kstat_create(zone); 4732 4733 /* 4734 * Let the other lwps continue. 4735 */ 4736 mutex_enter(&pp->p_lock); 4737 if (curthread != pp->p_agenttp) 4738 continuelwps(pp); 4739 mutex_exit(&pp->p_lock); 4740 4741 /* 4742 * Wait for zsched to finish initializing the zone. 4743 */ 4744 zone_status_wait(zone, ZONE_IS_READY); 4745 /* 4746 * The zone is fully visible, so we can let mounts progress. 4747 */ 4748 resume_mounts(zone); 4749 nvlist_free(rctls); 4750 4751 return (zoneid); 4752 4753 errout: 4754 mutex_exit(&zonehash_lock); 4755 /* 4756 * Let the other lwps continue. 4757 */ 4758 mutex_enter(&pp->p_lock); 4759 if (curthread != pp->p_agenttp) 4760 continuelwps(pp); 4761 mutex_exit(&pp->p_lock); 4762 4763 resume_mounts(zone); 4764 nvlist_free(rctls); 4765 /* 4766 * There is currently one reference to the zone, a cred_ref from 4767 * zone_kcred. To free the zone, we call crfree, which will call 4768 * zone_cred_rele, which will call zone_free. 4769 */ 4770 ASSERT(zone->zone_cred_ref == 1); 4771 ASSERT(zone->zone_kcred->cr_ref == 1); 4772 ASSERT(zone->zone_ref == 0); 4773 zkcr = zone->zone_kcred; 4774 zone->zone_kcred = NULL; 4775 crfree(zkcr); /* triggers call to zone_free */ 4776 return (zone_create_error(error, error2, extended_error)); 4777 } 4778 4779 /* 4780 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 4781 * the heavy lifting. initname is the path to the program to launch 4782 * at the "top" of the zone; if this is NULL, we use the system default, 4783 * which is stored at zone_default_initname. 4784 */ 4785 static int 4786 zone_boot(zoneid_t zoneid) 4787 { 4788 int err; 4789 zone_t *zone; 4790 4791 if (secpolicy_zone_config(CRED()) != 0) 4792 return (set_errno(EPERM)); 4793 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4794 return (set_errno(EINVAL)); 4795 4796 mutex_enter(&zonehash_lock); 4797 /* 4798 * Look for zone under hash lock to prevent races with calls to 4799 * zone_shutdown, zone_destroy, etc. 4800 */ 4801 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4802 mutex_exit(&zonehash_lock); 4803 return (set_errno(EINVAL)); 4804 } 4805 4806 mutex_enter(&zone_status_lock); 4807 if (zone_status_get(zone) != ZONE_IS_READY) { 4808 mutex_exit(&zone_status_lock); 4809 mutex_exit(&zonehash_lock); 4810 return (set_errno(EINVAL)); 4811 } 4812 zone_status_set(zone, ZONE_IS_BOOTING); 4813 mutex_exit(&zone_status_lock); 4814 4815 zone_hold(zone); /* so we can use the zone_t later */ 4816 mutex_exit(&zonehash_lock); 4817 4818 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 4819 zone_rele(zone); 4820 return (set_errno(EINTR)); 4821 } 4822 4823 /* 4824 * Boot (starting init) might have failed, in which case the zone 4825 * will go to the SHUTTING_DOWN state; an appropriate errno will 4826 * be placed in zone->zone_boot_err, and so we return that. 4827 */ 4828 err = zone->zone_boot_err; 4829 zone_rele(zone); 4830 return (err ? set_errno(err) : 0); 4831 } 4832 4833 /* 4834 * Kills all user processes in the zone, waiting for them all to exit 4835 * before returning. 4836 */ 4837 static int 4838 zone_empty(zone_t *zone) 4839 { 4840 int waitstatus; 4841 4842 /* 4843 * We need to drop zonehash_lock before killing all 4844 * processes, otherwise we'll deadlock with zone_find_* 4845 * which can be called from the exit path. 4846 */ 4847 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 4848 while ((waitstatus = zone_status_timedwait_sig(zone, 4849 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) { 4850 killall(zone->zone_id); 4851 } 4852 /* 4853 * return EINTR if we were signaled 4854 */ 4855 if (waitstatus == 0) 4856 return (EINTR); 4857 return (0); 4858 } 4859 4860 /* 4861 * This function implements the policy for zone visibility. 4862 * 4863 * In standard Solaris, a non-global zone can only see itself. 4864 * 4865 * In Trusted Extensions, a labeled zone can lookup any zone whose label 4866 * it dominates. For this test, the label of the global zone is treated as 4867 * admin_high so it is special-cased instead of being checked for dominance. 4868 * 4869 * Returns true if zone attributes are viewable, false otherwise. 4870 */ 4871 static boolean_t 4872 zone_list_access(zone_t *zone) 4873 { 4874 4875 if (curproc->p_zone == global_zone || 4876 curproc->p_zone == zone) { 4877 return (B_TRUE); 4878 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4879 bslabel_t *curproc_label; 4880 bslabel_t *zone_label; 4881 4882 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 4883 zone_label = label2bslabel(zone->zone_slabel); 4884 4885 if (zone->zone_id != GLOBAL_ZONEID && 4886 bldominates(curproc_label, zone_label)) { 4887 return (B_TRUE); 4888 } else { 4889 return (B_FALSE); 4890 } 4891 } else { 4892 return (B_FALSE); 4893 } 4894 } 4895 4896 /* 4897 * Systemcall to start the zone's halt sequence. By the time this 4898 * function successfully returns, all user processes and kernel threads 4899 * executing in it will have exited, ZSD shutdown callbacks executed, 4900 * and the zone status set to ZONE_IS_DOWN. 4901 * 4902 * It is possible that the call will interrupt itself if the caller is the 4903 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 4904 */ 4905 static int 4906 zone_shutdown(zoneid_t zoneid) 4907 { 4908 int error; 4909 zone_t *zone; 4910 zone_status_t status; 4911 4912 if (secpolicy_zone_config(CRED()) != 0) 4913 return (set_errno(EPERM)); 4914 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4915 return (set_errno(EINVAL)); 4916 4917 mutex_enter(&zonehash_lock); 4918 /* 4919 * Look for zone under hash lock to prevent races with other 4920 * calls to zone_shutdown and zone_destroy. 4921 */ 4922 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4923 mutex_exit(&zonehash_lock); 4924 return (set_errno(EINVAL)); 4925 } 4926 4927 /* 4928 * We have to drop zonehash_lock before calling block_mounts. 4929 * Hold the zone so we can continue to use the zone_t. 4930 */ 4931 zone_hold(zone); 4932 mutex_exit(&zonehash_lock); 4933 4934 /* 4935 * Block mounts so that VFS_MOUNT() can get an accurate view of 4936 * the zone's status with regards to ZONE_IS_SHUTTING down. 4937 * 4938 * e.g. NFS can fail the mount if it determines that the zone 4939 * has already begun the shutdown sequence. 4940 * 4941 */ 4942 if (block_mounts(zone) == 0) { 4943 zone_rele(zone); 4944 return (set_errno(EINTR)); 4945 } 4946 4947 mutex_enter(&zonehash_lock); 4948 mutex_enter(&zone_status_lock); 4949 status = zone_status_get(zone); 4950 /* 4951 * Fail if the zone isn't fully initialized yet. 4952 */ 4953 if (status < ZONE_IS_READY) { 4954 mutex_exit(&zone_status_lock); 4955 mutex_exit(&zonehash_lock); 4956 resume_mounts(zone); 4957 zone_rele(zone); 4958 return (set_errno(EINVAL)); 4959 } 4960 /* 4961 * If conditions required for zone_shutdown() to return have been met, 4962 * return success. 4963 */ 4964 if (status >= ZONE_IS_DOWN) { 4965 mutex_exit(&zone_status_lock); 4966 mutex_exit(&zonehash_lock); 4967 resume_mounts(zone); 4968 zone_rele(zone); 4969 return (0); 4970 } 4971 /* 4972 * If zone_shutdown() hasn't been called before, go through the motions. 4973 * If it has, there's nothing to do but wait for the kernel threads to 4974 * drain. 4975 */ 4976 if (status < ZONE_IS_EMPTY) { 4977 uint_t ntasks; 4978 4979 mutex_enter(&zone->zone_lock); 4980 if ((ntasks = zone->zone_ntasks) != 1) { 4981 /* 4982 * There's still stuff running. 4983 */ 4984 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4985 } 4986 mutex_exit(&zone->zone_lock); 4987 if (ntasks == 1) { 4988 /* 4989 * The only way to create another task is through 4990 * zone_enter(), which will block until we drop 4991 * zonehash_lock. The zone is empty. 4992 */ 4993 if (zone->zone_kthreads == NULL) { 4994 /* 4995 * Skip ahead to ZONE_IS_DOWN 4996 */ 4997 zone_status_set(zone, ZONE_IS_DOWN); 4998 } else { 4999 zone_status_set(zone, ZONE_IS_EMPTY); 5000 } 5001 } 5002 } 5003 mutex_exit(&zone_status_lock); 5004 mutex_exit(&zonehash_lock); 5005 resume_mounts(zone); 5006 5007 if (error = zone_empty(zone)) { 5008 zone_rele(zone); 5009 return (set_errno(error)); 5010 } 5011 /* 5012 * After the zone status goes to ZONE_IS_DOWN this zone will no 5013 * longer be notified of changes to the pools configuration, so 5014 * in order to not end up with a stale pool pointer, we point 5015 * ourselves at the default pool and remove all resource 5016 * visibility. This is especially important as the zone_t may 5017 * languish on the deathrow for a very long time waiting for 5018 * cred's to drain out. 5019 * 5020 * This rebinding of the zone can happen multiple times 5021 * (presumably due to interrupted or parallel systemcalls) 5022 * without any adverse effects. 5023 */ 5024 if (pool_lock_intr() != 0) { 5025 zone_rele(zone); 5026 return (set_errno(EINTR)); 5027 } 5028 if (pool_state == POOL_ENABLED) { 5029 mutex_enter(&cpu_lock); 5030 zone_pool_set(zone, pool_default); 5031 /* 5032 * The zone no longer needs to be able to see any cpus. 5033 */ 5034 zone_pset_set(zone, ZONE_PS_INVAL); 5035 mutex_exit(&cpu_lock); 5036 } 5037 pool_unlock(); 5038 5039 /* 5040 * ZSD shutdown callbacks can be executed multiple times, hence 5041 * it is safe to not be holding any locks across this call. 5042 */ 5043 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 5044 5045 mutex_enter(&zone_status_lock); 5046 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 5047 zone_status_set(zone, ZONE_IS_DOWN); 5048 mutex_exit(&zone_status_lock); 5049 5050 /* 5051 * Wait for kernel threads to drain. 5052 */ 5053 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 5054 zone_rele(zone); 5055 return (set_errno(EINTR)); 5056 } 5057 5058 /* 5059 * Zone can be become down/destroyable even if the above wait 5060 * returns EINTR, so any code added here may never execute. 5061 * (i.e. don't add code here) 5062 */ 5063 5064 zone_rele(zone); 5065 return (0); 5066 } 5067 5068 /* 5069 * Log the specified zone's reference counts. The caller should not be 5070 * holding the zone's zone_lock. 5071 */ 5072 static void 5073 zone_log_refcounts(zone_t *zone) 5074 { 5075 char *buffer; 5076 char *buffer_position; 5077 uint32_t buffer_size; 5078 uint32_t index; 5079 uint_t ref; 5080 uint_t cred_ref; 5081 5082 /* 5083 * Construct a string representing the subsystem-specific reference 5084 * counts. The counts are printed in ascending order by index into the 5085 * zone_t::zone_subsys_ref array. The list will be surrounded by 5086 * square brackets [] and will only contain nonzero reference counts. 5087 * 5088 * The buffer will hold two square bracket characters plus ten digits, 5089 * one colon, one space, one comma, and some characters for a 5090 * subsystem name per subsystem-specific reference count. (Unsigned 32- 5091 * bit integers have at most ten decimal digits.) The last 5092 * reference count's comma is replaced by the closing square 5093 * bracket and a NULL character to terminate the string. 5094 * 5095 * NOTE: We have to grab the zone's zone_lock to create a consistent 5096 * snapshot of the zone's reference counters. 5097 * 5098 * First, figure out how much space the string buffer will need. 5099 * The buffer's size is stored in buffer_size. 5100 */ 5101 buffer_size = 2; /* for the square brackets */ 5102 mutex_enter(&zone->zone_lock); 5103 zone->zone_flags |= ZF_REFCOUNTS_LOGGED; 5104 ref = zone->zone_ref; 5105 cred_ref = zone->zone_cred_ref; 5106 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) 5107 if (zone->zone_subsys_ref[index] != 0) 5108 buffer_size += strlen(zone_ref_subsys_names[index]) + 5109 13; 5110 if (buffer_size == 2) { 5111 /* 5112 * No subsystems had nonzero reference counts. Don't bother 5113 * with allocating a buffer; just log the general-purpose and 5114 * credential reference counts. 5115 */ 5116 mutex_exit(&zone->zone_lock); 5117 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 5118 "Zone '%s' (ID: %d) is shutting down, but %u zone " 5119 "references and %u credential references are still extant", 5120 zone->zone_name, zone->zone_id, ref, cred_ref); 5121 return; 5122 } 5123 5124 /* 5125 * buffer_size contains the exact number of characters that the 5126 * buffer will need. Allocate the buffer and fill it with nonzero 5127 * subsystem-specific reference counts. Surround the results with 5128 * square brackets afterwards. 5129 */ 5130 buffer = kmem_alloc(buffer_size, KM_SLEEP); 5131 buffer_position = &buffer[1]; 5132 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) { 5133 /* 5134 * NOTE: The DDI's version of sprintf() returns a pointer to 5135 * the modified buffer rather than the number of bytes written 5136 * (as in snprintf(3C)). This is unfortunate and annoying. 5137 * Therefore, we'll use snprintf() with INT_MAX to get the 5138 * number of bytes written. Using INT_MAX is safe because 5139 * the buffer is perfectly sized for the data: we'll never 5140 * overrun the buffer. 5141 */ 5142 if (zone->zone_subsys_ref[index] != 0) 5143 buffer_position += snprintf(buffer_position, INT_MAX, 5144 "%s: %u,", zone_ref_subsys_names[index], 5145 zone->zone_subsys_ref[index]); 5146 } 5147 mutex_exit(&zone->zone_lock); 5148 buffer[0] = '['; 5149 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size); 5150 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ','); 5151 buffer_position[-1] = ']'; 5152 5153 /* 5154 * Log the reference counts and free the message buffer. 5155 */ 5156 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 5157 "Zone '%s' (ID: %d) is shutting down, but %u zone references and " 5158 "%u credential references are still extant %s", zone->zone_name, 5159 zone->zone_id, ref, cred_ref, buffer); 5160 kmem_free(buffer, buffer_size); 5161 } 5162 5163 /* 5164 * Systemcall entry point to finalize the zone halt process. The caller 5165 * must have already successfully called zone_shutdown(). 5166 * 5167 * Upon successful completion, the zone will have been fully destroyed: 5168 * zsched will have exited, destructor callbacks executed, and the zone 5169 * removed from the list of active zones. 5170 */ 5171 static int 5172 zone_destroy(zoneid_t zoneid) 5173 { 5174 uint64_t uniqid; 5175 zone_t *zone; 5176 zone_status_t status; 5177 clock_t wait_time; 5178 boolean_t log_refcounts; 5179 5180 if (secpolicy_zone_config(CRED()) != 0) 5181 return (set_errno(EPERM)); 5182 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5183 return (set_errno(EINVAL)); 5184 5185 mutex_enter(&zonehash_lock); 5186 /* 5187 * Look for zone under hash lock to prevent races with other 5188 * calls to zone_destroy. 5189 */ 5190 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5191 mutex_exit(&zonehash_lock); 5192 return (set_errno(EINVAL)); 5193 } 5194 5195 if (zone_mount_count(zone->zone_rootpath) != 0) { 5196 mutex_exit(&zonehash_lock); 5197 return (set_errno(EBUSY)); 5198 } 5199 mutex_enter(&zone_status_lock); 5200 status = zone_status_get(zone); 5201 if (status < ZONE_IS_DOWN) { 5202 mutex_exit(&zone_status_lock); 5203 mutex_exit(&zonehash_lock); 5204 return (set_errno(EBUSY)); 5205 } else if (status == ZONE_IS_DOWN) { 5206 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 5207 } 5208 mutex_exit(&zone_status_lock); 5209 zone_hold(zone); 5210 mutex_exit(&zonehash_lock); 5211 5212 /* 5213 * wait for zsched to exit 5214 */ 5215 zone_status_wait(zone, ZONE_IS_DEAD); 5216 zone_zsd_callbacks(zone, ZSD_DESTROY); 5217 zone->zone_netstack = NULL; 5218 uniqid = zone->zone_uniqid; 5219 zone_rele(zone); 5220 zone = NULL; /* potentially free'd */ 5221 5222 log_refcounts = B_FALSE; 5223 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS); 5224 mutex_enter(&zonehash_lock); 5225 for (; /* ever */; ) { 5226 boolean_t unref; 5227 boolean_t refs_have_been_logged; 5228 5229 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 5230 zone->zone_uniqid != uniqid) { 5231 /* 5232 * The zone has gone away. Necessary conditions 5233 * are met, so we return success. 5234 */ 5235 mutex_exit(&zonehash_lock); 5236 return (0); 5237 } 5238 mutex_enter(&zone->zone_lock); 5239 unref = ZONE_IS_UNREF(zone); 5240 refs_have_been_logged = (zone->zone_flags & 5241 ZF_REFCOUNTS_LOGGED); 5242 mutex_exit(&zone->zone_lock); 5243 if (unref) { 5244 /* 5245 * There is only one reference to the zone -- that 5246 * added when the zone was added to the hashtables -- 5247 * and things will remain this way until we drop 5248 * zonehash_lock... we can go ahead and cleanup the 5249 * zone. 5250 */ 5251 break; 5252 } 5253 5254 /* 5255 * Wait for zone_rele_common() or zone_cred_rele() to signal 5256 * zone_destroy_cv. zone_destroy_cv is signaled only when 5257 * some zone's general-purpose reference count reaches one. 5258 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting 5259 * on zone_destroy_cv, then log the zone's reference counts and 5260 * continue to wait for zone_rele() and zone_cred_rele(). 5261 */ 5262 if (!refs_have_been_logged) { 5263 if (!log_refcounts) { 5264 /* 5265 * This thread hasn't timed out waiting on 5266 * zone_destroy_cv yet. Wait wait_time clock 5267 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS 5268 * seconds) for the zone's references to clear. 5269 */ 5270 ASSERT(wait_time > 0); 5271 wait_time = cv_reltimedwait_sig( 5272 &zone_destroy_cv, &zonehash_lock, wait_time, 5273 TR_SEC); 5274 if (wait_time > 0) { 5275 /* 5276 * A thread in zone_rele() or 5277 * zone_cred_rele() signaled 5278 * zone_destroy_cv before this thread's 5279 * wait timed out. The zone might have 5280 * only one reference left; find out! 5281 */ 5282 continue; 5283 } else if (wait_time == 0) { 5284 /* The thread's process was signaled. */ 5285 mutex_exit(&zonehash_lock); 5286 return (set_errno(EINTR)); 5287 } 5288 5289 /* 5290 * The thread timed out while waiting on 5291 * zone_destroy_cv. Even though the thread 5292 * timed out, it has to check whether another 5293 * thread woke up from zone_destroy_cv and 5294 * destroyed the zone. 5295 * 5296 * If the zone still exists and has more than 5297 * one unreleased general-purpose reference, 5298 * then log the zone's reference counts. 5299 */ 5300 log_refcounts = B_TRUE; 5301 continue; 5302 } 5303 5304 /* 5305 * The thread already timed out on zone_destroy_cv while 5306 * waiting for subsystems to release the zone's last 5307 * general-purpose references. Log the zone's reference 5308 * counts and wait indefinitely on zone_destroy_cv. 5309 */ 5310 zone_log_refcounts(zone); 5311 } 5312 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 5313 /* The thread's process was signaled. */ 5314 mutex_exit(&zonehash_lock); 5315 return (set_errno(EINTR)); 5316 } 5317 } 5318 5319 /* 5320 * Remove CPU cap for this zone now since we're not going to 5321 * fail below this point. 5322 */ 5323 cpucaps_zone_remove(zone); 5324 5325 /* Get rid of the zone's kstats */ 5326 zone_kstat_delete(zone); 5327 5328 /* remove the pfexecd doors */ 5329 if (zone->zone_pfexecd != NULL) { 5330 klpd_freelist(&zone->zone_pfexecd); 5331 zone->zone_pfexecd = NULL; 5332 } 5333 5334 /* free brand specific data */ 5335 if (ZONE_IS_BRANDED(zone)) 5336 ZBROP(zone)->b_free_brand_data(zone); 5337 5338 /* Say goodbye to brand framework. */ 5339 brand_unregister_zone(zone->zone_brand); 5340 5341 /* 5342 * It is now safe to let the zone be recreated; remove it from the 5343 * lists. The memory will not be freed until the last cred 5344 * reference goes away. 5345 */ 5346 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 5347 zonecount--; 5348 /* remove from active list and hash tables */ 5349 list_remove(&zone_active, zone); 5350 (void) mod_hash_destroy(zonehashbyname, 5351 (mod_hash_key_t)zone->zone_name); 5352 (void) mod_hash_destroy(zonehashbyid, 5353 (mod_hash_key_t)(uintptr_t)zone->zone_id); 5354 if (zone->zone_flags & ZF_HASHED_LABEL) 5355 (void) mod_hash_destroy(zonehashbylabel, 5356 (mod_hash_key_t)zone->zone_slabel); 5357 mutex_exit(&zonehash_lock); 5358 5359 /* 5360 * Release the root vnode; we're not using it anymore. Nor should any 5361 * other thread that might access it exist. 5362 */ 5363 if (zone->zone_rootvp != NULL) { 5364 VN_RELE(zone->zone_rootvp); 5365 zone->zone_rootvp = NULL; 5366 } 5367 5368 /* add to deathrow list */ 5369 mutex_enter(&zone_deathrow_lock); 5370 list_insert_tail(&zone_deathrow, zone); 5371 mutex_exit(&zone_deathrow_lock); 5372 5373 /* 5374 * Drop last reference (which was added by zsched()), this will 5375 * free the zone unless there are outstanding cred references. 5376 */ 5377 zone_rele(zone); 5378 return (0); 5379 } 5380 5381 /* 5382 * Systemcall entry point for zone_getattr(2). 5383 */ 5384 static ssize_t 5385 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5386 { 5387 size_t size; 5388 int error = 0, err; 5389 zone_t *zone; 5390 char *zonepath; 5391 char *outstr; 5392 zone_status_t zone_status; 5393 pid_t initpid; 5394 boolean_t global = (curzone == global_zone); 5395 boolean_t inzone = (curzone->zone_id == zoneid); 5396 ushort_t flags; 5397 zone_net_data_t *zbuf; 5398 5399 mutex_enter(&zonehash_lock); 5400 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5401 mutex_exit(&zonehash_lock); 5402 return (set_errno(EINVAL)); 5403 } 5404 zone_status = zone_status_get(zone); 5405 if (zone_status < ZONE_IS_INITIALIZED) { 5406 mutex_exit(&zonehash_lock); 5407 return (set_errno(EINVAL)); 5408 } 5409 zone_hold(zone); 5410 mutex_exit(&zonehash_lock); 5411 5412 /* 5413 * If not in the global zone, don't show information about other zones, 5414 * unless the system is labeled and the local zone's label dominates 5415 * the other zone. 5416 */ 5417 if (!zone_list_access(zone)) { 5418 zone_rele(zone); 5419 return (set_errno(EINVAL)); 5420 } 5421 5422 switch (attr) { 5423 case ZONE_ATTR_ROOT: 5424 if (global) { 5425 /* 5426 * Copy the path to trim the trailing "/" (except for 5427 * the global zone). 5428 */ 5429 if (zone != global_zone) 5430 size = zone->zone_rootpathlen - 1; 5431 else 5432 size = zone->zone_rootpathlen; 5433 zonepath = kmem_alloc(size, KM_SLEEP); 5434 bcopy(zone->zone_rootpath, zonepath, size); 5435 zonepath[size - 1] = '\0'; 5436 } else { 5437 if (inzone || !is_system_labeled()) { 5438 /* 5439 * Caller is not in the global zone. 5440 * if the query is on the current zone 5441 * or the system is not labeled, 5442 * just return faked-up path for current zone. 5443 */ 5444 zonepath = "/"; 5445 size = 2; 5446 } else { 5447 /* 5448 * Return related path for current zone. 5449 */ 5450 int prefix_len = strlen(zone_prefix); 5451 int zname_len = strlen(zone->zone_name); 5452 5453 size = prefix_len + zname_len + 1; 5454 zonepath = kmem_alloc(size, KM_SLEEP); 5455 bcopy(zone_prefix, zonepath, prefix_len); 5456 bcopy(zone->zone_name, zonepath + 5457 prefix_len, zname_len); 5458 zonepath[size - 1] = '\0'; 5459 } 5460 } 5461 if (bufsize > size) 5462 bufsize = size; 5463 if (buf != NULL) { 5464 err = copyoutstr(zonepath, buf, bufsize, NULL); 5465 if (err != 0 && err != ENAMETOOLONG) 5466 error = EFAULT; 5467 } 5468 if (global || (is_system_labeled() && !inzone)) 5469 kmem_free(zonepath, size); 5470 break; 5471 5472 case ZONE_ATTR_NAME: 5473 size = strlen(zone->zone_name) + 1; 5474 if (bufsize > size) 5475 bufsize = size; 5476 if (buf != NULL) { 5477 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 5478 if (err != 0 && err != ENAMETOOLONG) 5479 error = EFAULT; 5480 } 5481 break; 5482 5483 case ZONE_ATTR_STATUS: 5484 /* 5485 * Since we're not holding zonehash_lock, the zone status 5486 * may be anything; leave it up to userland to sort it out. 5487 */ 5488 size = sizeof (zone_status); 5489 if (bufsize > size) 5490 bufsize = size; 5491 zone_status = zone_status_get(zone); 5492 if (buf != NULL && 5493 copyout(&zone_status, buf, bufsize) != 0) 5494 error = EFAULT; 5495 break; 5496 case ZONE_ATTR_FLAGS: 5497 size = sizeof (zone->zone_flags); 5498 if (bufsize > size) 5499 bufsize = size; 5500 flags = zone->zone_flags; 5501 if (buf != NULL && 5502 copyout(&flags, buf, bufsize) != 0) 5503 error = EFAULT; 5504 break; 5505 case ZONE_ATTR_PRIVSET: 5506 size = sizeof (priv_set_t); 5507 if (bufsize > size) 5508 bufsize = size; 5509 if (buf != NULL && 5510 copyout(zone->zone_privset, buf, bufsize) != 0) 5511 error = EFAULT; 5512 break; 5513 case ZONE_ATTR_UNIQID: 5514 size = sizeof (zone->zone_uniqid); 5515 if (bufsize > size) 5516 bufsize = size; 5517 if (buf != NULL && 5518 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 5519 error = EFAULT; 5520 break; 5521 case ZONE_ATTR_POOLID: 5522 { 5523 pool_t *pool; 5524 poolid_t poolid; 5525 5526 if (pool_lock_intr() != 0) { 5527 error = EINTR; 5528 break; 5529 } 5530 pool = zone_pool_get(zone); 5531 poolid = pool->pool_id; 5532 pool_unlock(); 5533 size = sizeof (poolid); 5534 if (bufsize > size) 5535 bufsize = size; 5536 if (buf != NULL && copyout(&poolid, buf, size) != 0) 5537 error = EFAULT; 5538 } 5539 break; 5540 case ZONE_ATTR_SLBL: 5541 size = sizeof (bslabel_t); 5542 if (bufsize > size) 5543 bufsize = size; 5544 if (zone->zone_slabel == NULL) 5545 error = EINVAL; 5546 else if (buf != NULL && 5547 copyout(label2bslabel(zone->zone_slabel), buf, 5548 bufsize) != 0) 5549 error = EFAULT; 5550 break; 5551 case ZONE_ATTR_INITPID: 5552 size = sizeof (initpid); 5553 if (bufsize > size) 5554 bufsize = size; 5555 initpid = zone->zone_proc_initpid; 5556 if (initpid == -1) { 5557 error = ESRCH; 5558 break; 5559 } 5560 if (buf != NULL && 5561 copyout(&initpid, buf, bufsize) != 0) 5562 error = EFAULT; 5563 break; 5564 case ZONE_ATTR_BRAND: 5565 size = strlen(zone->zone_brand->b_name) + 1; 5566 5567 if (bufsize > size) 5568 bufsize = size; 5569 if (buf != NULL) { 5570 err = copyoutstr(zone->zone_brand->b_name, buf, 5571 bufsize, NULL); 5572 if (err != 0 && err != ENAMETOOLONG) 5573 error = EFAULT; 5574 } 5575 break; 5576 case ZONE_ATTR_INITNAME: 5577 size = strlen(zone->zone_initname) + 1; 5578 if (bufsize > size) 5579 bufsize = size; 5580 if (buf != NULL) { 5581 err = copyoutstr(zone->zone_initname, buf, bufsize, 5582 NULL); 5583 if (err != 0 && err != ENAMETOOLONG) 5584 error = EFAULT; 5585 } 5586 break; 5587 case ZONE_ATTR_BOOTARGS: 5588 if (zone->zone_bootargs == NULL) 5589 outstr = ""; 5590 else 5591 outstr = zone->zone_bootargs; 5592 size = strlen(outstr) + 1; 5593 if (bufsize > size) 5594 bufsize = size; 5595 if (buf != NULL) { 5596 err = copyoutstr(outstr, buf, bufsize, NULL); 5597 if (err != 0 && err != ENAMETOOLONG) 5598 error = EFAULT; 5599 } 5600 break; 5601 case ZONE_ATTR_PHYS_MCAP: 5602 size = sizeof (zone->zone_phys_mcap); 5603 if (bufsize > size) 5604 bufsize = size; 5605 if (buf != NULL && 5606 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 5607 error = EFAULT; 5608 break; 5609 case ZONE_ATTR_SCHED_CLASS: 5610 mutex_enter(&class_lock); 5611 5612 if (zone->zone_defaultcid >= loaded_classes) 5613 outstr = ""; 5614 else 5615 outstr = sclass[zone->zone_defaultcid].cl_name; 5616 size = strlen(outstr) + 1; 5617 if (bufsize > size) 5618 bufsize = size; 5619 if (buf != NULL) { 5620 err = copyoutstr(outstr, buf, bufsize, NULL); 5621 if (err != 0 && err != ENAMETOOLONG) 5622 error = EFAULT; 5623 } 5624 5625 mutex_exit(&class_lock); 5626 break; 5627 case ZONE_ATTR_HOSTID: 5628 if (zone->zone_hostid != HW_INVALID_HOSTID && 5629 bufsize == sizeof (zone->zone_hostid)) { 5630 size = sizeof (zone->zone_hostid); 5631 if (buf != NULL && copyout(&zone->zone_hostid, buf, 5632 bufsize) != 0) 5633 error = EFAULT; 5634 } else { 5635 error = EINVAL; 5636 } 5637 break; 5638 case ZONE_ATTR_FS_ALLOWED: 5639 if (zone->zone_fs_allowed == NULL) 5640 outstr = ""; 5641 else 5642 outstr = zone->zone_fs_allowed; 5643 size = strlen(outstr) + 1; 5644 if (bufsize > size) 5645 bufsize = size; 5646 if (buf != NULL) { 5647 err = copyoutstr(outstr, buf, bufsize, NULL); 5648 if (err != 0 && err != ENAMETOOLONG) 5649 error = EFAULT; 5650 } 5651 break; 5652 case ZONE_ATTR_SECFLAGS: 5653 size = sizeof (zone->zone_secflags); 5654 if (bufsize > size) 5655 bufsize = size; 5656 if ((err = copyout(&zone->zone_secflags, buf, bufsize)) != 0) 5657 error = EFAULT; 5658 break; 5659 case ZONE_ATTR_NETWORK: 5660 bufsize = MIN(bufsize, PIPE_BUF + sizeof (zone_net_data_t)); 5661 size = bufsize; 5662 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5663 if (copyin(buf, zbuf, bufsize) != 0) { 5664 error = EFAULT; 5665 } else { 5666 error = zone_get_network(zoneid, zbuf); 5667 if (error == 0 && copyout(zbuf, buf, bufsize) != 0) 5668 error = EFAULT; 5669 } 5670 kmem_free(zbuf, bufsize); 5671 break; 5672 default: 5673 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 5674 size = bufsize; 5675 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 5676 } else { 5677 error = EINVAL; 5678 } 5679 } 5680 zone_rele(zone); 5681 5682 if (error) 5683 return (set_errno(error)); 5684 return ((ssize_t)size); 5685 } 5686 5687 /* 5688 * Systemcall entry point for zone_setattr(2). 5689 */ 5690 /*ARGSUSED*/ 5691 static int 5692 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5693 { 5694 zone_t *zone; 5695 zone_status_t zone_status; 5696 int err = -1; 5697 zone_net_data_t *zbuf; 5698 5699 if (secpolicy_zone_config(CRED()) != 0) 5700 return (set_errno(EPERM)); 5701 5702 /* 5703 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 5704 * global zone. 5705 */ 5706 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 5707 return (set_errno(EINVAL)); 5708 } 5709 5710 mutex_enter(&zonehash_lock); 5711 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5712 mutex_exit(&zonehash_lock); 5713 return (set_errno(EINVAL)); 5714 } 5715 zone_hold(zone); 5716 mutex_exit(&zonehash_lock); 5717 5718 /* 5719 * At present most attributes can only be set on non-running, 5720 * non-global zones. 5721 */ 5722 zone_status = zone_status_get(zone); 5723 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) { 5724 err = EINVAL; 5725 goto done; 5726 } 5727 5728 switch (attr) { 5729 case ZONE_ATTR_INITNAME: 5730 err = zone_set_initname(zone, (const char *)buf); 5731 break; 5732 case ZONE_ATTR_INITNORESTART: 5733 zone->zone_restart_init = B_FALSE; 5734 err = 0; 5735 break; 5736 case ZONE_ATTR_BOOTARGS: 5737 err = zone_set_bootargs(zone, (const char *)buf); 5738 break; 5739 case ZONE_ATTR_BRAND: 5740 err = zone_set_brand(zone, (const char *)buf); 5741 break; 5742 case ZONE_ATTR_FS_ALLOWED: 5743 err = zone_set_fs_allowed(zone, (const char *)buf); 5744 break; 5745 case ZONE_ATTR_SECFLAGS: 5746 err = zone_set_secflags(zone, (psecflags_t *)buf); 5747 break; 5748 case ZONE_ATTR_PHYS_MCAP: 5749 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 5750 break; 5751 case ZONE_ATTR_SCHED_CLASS: 5752 err = zone_set_sched_class(zone, (const char *)buf); 5753 break; 5754 case ZONE_ATTR_HOSTID: 5755 if (bufsize == sizeof (zone->zone_hostid)) { 5756 if (copyin(buf, &zone->zone_hostid, bufsize) == 0) 5757 err = 0; 5758 else 5759 err = EFAULT; 5760 } else { 5761 err = EINVAL; 5762 } 5763 break; 5764 case ZONE_ATTR_NETWORK: 5765 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) { 5766 err = EINVAL; 5767 break; 5768 } 5769 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5770 if (copyin(buf, zbuf, bufsize) != 0) { 5771 kmem_free(zbuf, bufsize); 5772 err = EFAULT; 5773 break; 5774 } 5775 err = zone_set_network(zoneid, zbuf); 5776 kmem_free(zbuf, bufsize); 5777 break; 5778 default: 5779 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 5780 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 5781 else 5782 err = EINVAL; 5783 } 5784 5785 done: 5786 zone_rele(zone); 5787 ASSERT(err != -1); 5788 return (err != 0 ? set_errno(err) : 0); 5789 } 5790 5791 /* 5792 * Return zero if the process has at least one vnode mapped in to its 5793 * address space which shouldn't be allowed to change zones. 5794 * 5795 * Also return zero if the process has any shared mappings which reserve 5796 * swap. This is because the counting for zone.max-swap does not allow swap 5797 * reservation to be shared between zones. zone swap reservation is counted 5798 * on zone->zone_max_swap. 5799 */ 5800 static int 5801 as_can_change_zones(void) 5802 { 5803 proc_t *pp = curproc; 5804 struct seg *seg; 5805 struct as *as = pp->p_as; 5806 vnode_t *vp; 5807 int allow = 1; 5808 5809 ASSERT(pp->p_as != &kas); 5810 AS_LOCK_ENTER(as, RW_READER); 5811 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 5812 5813 /* 5814 * Cannot enter zone with shared anon memory which 5815 * reserves swap. See comment above. 5816 */ 5817 if (seg_can_change_zones(seg) == B_FALSE) { 5818 allow = 0; 5819 break; 5820 } 5821 /* 5822 * if we can't get a backing vnode for this segment then skip 5823 * it. 5824 */ 5825 vp = NULL; 5826 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 5827 continue; 5828 if (!vn_can_change_zones(vp)) { /* bail on first match */ 5829 allow = 0; 5830 break; 5831 } 5832 } 5833 AS_LOCK_EXIT(as); 5834 return (allow); 5835 } 5836 5837 /* 5838 * Count swap reserved by curproc's address space 5839 */ 5840 static size_t 5841 as_swresv(void) 5842 { 5843 proc_t *pp = curproc; 5844 struct seg *seg; 5845 struct as *as = pp->p_as; 5846 size_t swap = 0; 5847 5848 ASSERT(pp->p_as != &kas); 5849 ASSERT(AS_WRITE_HELD(as)); 5850 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 5851 swap += seg_swresv(seg); 5852 5853 return (swap); 5854 } 5855 5856 /* 5857 * Systemcall entry point for zone_enter(). 5858 * 5859 * The current process is injected into said zone. In the process 5860 * it will change its project membership, privileges, rootdir/cwd, 5861 * zone-wide rctls, and pool association to match those of the zone. 5862 * 5863 * The first zone_enter() called while the zone is in the ZONE_IS_READY 5864 * state will transition it to ZONE_IS_RUNNING. Processes may only 5865 * enter a zone that is "ready" or "running". 5866 */ 5867 static int 5868 zone_enter(zoneid_t zoneid) 5869 { 5870 zone_t *zone; 5871 vnode_t *vp; 5872 proc_t *pp = curproc; 5873 contract_t *ct; 5874 cont_process_t *ctp; 5875 task_t *tk, *oldtk; 5876 kproject_t *zone_proj0; 5877 cred_t *cr, *newcr; 5878 pool_t *oldpool, *newpool; 5879 sess_t *sp; 5880 uid_t uid; 5881 zone_status_t status; 5882 int err = 0; 5883 rctl_entity_p_t e; 5884 size_t swap; 5885 kthread_id_t t; 5886 5887 if (secpolicy_zone_config(CRED()) != 0) 5888 return (set_errno(EPERM)); 5889 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5890 return (set_errno(EINVAL)); 5891 5892 /* 5893 * Stop all lwps so we don't need to hold a lock to look at 5894 * curproc->p_zone. This needs to happen before we grab any 5895 * locks to avoid deadlock (another lwp in the process could 5896 * be waiting for the held lock). 5897 */ 5898 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 5899 return (set_errno(EINTR)); 5900 5901 /* 5902 * Make sure we're not changing zones with files open or mapped in 5903 * to our address space which shouldn't be changing zones. 5904 */ 5905 if (!files_can_change_zones()) { 5906 err = EBADF; 5907 goto out; 5908 } 5909 if (!as_can_change_zones()) { 5910 err = EFAULT; 5911 goto out; 5912 } 5913 5914 mutex_enter(&zonehash_lock); 5915 if (pp->p_zone != global_zone) { 5916 mutex_exit(&zonehash_lock); 5917 err = EINVAL; 5918 goto out; 5919 } 5920 5921 zone = zone_find_all_by_id(zoneid); 5922 if (zone == NULL) { 5923 mutex_exit(&zonehash_lock); 5924 err = EINVAL; 5925 goto out; 5926 } 5927 5928 /* 5929 * To prevent processes in a zone from holding contracts on 5930 * extrazonal resources, and to avoid process contract 5931 * memberships which span zones, contract holders and processes 5932 * which aren't the sole members of their encapsulating process 5933 * contracts are not allowed to zone_enter. 5934 */ 5935 ctp = pp->p_ct_process; 5936 ct = &ctp->conp_contract; 5937 mutex_enter(&ct->ct_lock); 5938 mutex_enter(&pp->p_lock); 5939 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 5940 mutex_exit(&pp->p_lock); 5941 mutex_exit(&ct->ct_lock); 5942 mutex_exit(&zonehash_lock); 5943 err = EINVAL; 5944 goto out; 5945 } 5946 5947 /* 5948 * Moreover, we don't allow processes whose encapsulating 5949 * process contracts have inherited extrazonal contracts. 5950 * While it would be easier to eliminate all process contracts 5951 * with inherited contracts, we need to be able to give a 5952 * restarted init (or other zone-penetrating process) its 5953 * predecessor's contracts. 5954 */ 5955 if (ctp->conp_ninherited != 0) { 5956 contract_t *next; 5957 for (next = list_head(&ctp->conp_inherited); next; 5958 next = list_next(&ctp->conp_inherited, next)) { 5959 if (contract_getzuniqid(next) != zone->zone_uniqid) { 5960 mutex_exit(&pp->p_lock); 5961 mutex_exit(&ct->ct_lock); 5962 mutex_exit(&zonehash_lock); 5963 err = EINVAL; 5964 goto out; 5965 } 5966 } 5967 } 5968 5969 mutex_exit(&pp->p_lock); 5970 mutex_exit(&ct->ct_lock); 5971 5972 status = zone_status_get(zone); 5973 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 5974 /* 5975 * Can't join 5976 */ 5977 mutex_exit(&zonehash_lock); 5978 err = EINVAL; 5979 goto out; 5980 } 5981 5982 /* 5983 * Make sure new priv set is within the permitted set for caller 5984 */ 5985 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 5986 mutex_exit(&zonehash_lock); 5987 err = EPERM; 5988 goto out; 5989 } 5990 /* 5991 * We want to momentarily drop zonehash_lock while we optimistically 5992 * bind curproc to the pool it should be running in. This is safe 5993 * since the zone can't disappear (we have a hold on it). 5994 */ 5995 zone_hold(zone); 5996 mutex_exit(&zonehash_lock); 5997 5998 /* 5999 * Grab pool_lock to keep the pools configuration from changing 6000 * and to stop ourselves from getting rebound to another pool 6001 * until we join the zone. 6002 */ 6003 if (pool_lock_intr() != 0) { 6004 zone_rele(zone); 6005 err = EINTR; 6006 goto out; 6007 } 6008 ASSERT(secpolicy_pool(CRED()) == 0); 6009 /* 6010 * Bind ourselves to the pool currently associated with the zone. 6011 */ 6012 oldpool = curproc->p_pool; 6013 newpool = zone_pool_get(zone); 6014 if (pool_state == POOL_ENABLED && newpool != oldpool && 6015 (err = pool_do_bind(newpool, P_PID, P_MYID, 6016 POOL_BIND_ALL)) != 0) { 6017 pool_unlock(); 6018 zone_rele(zone); 6019 goto out; 6020 } 6021 6022 /* 6023 * Grab cpu_lock now; we'll need it later when we call 6024 * task_join(). 6025 */ 6026 mutex_enter(&cpu_lock); 6027 mutex_enter(&zonehash_lock); 6028 /* 6029 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 6030 */ 6031 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 6032 /* 6033 * Can't join anymore. 6034 */ 6035 mutex_exit(&zonehash_lock); 6036 mutex_exit(&cpu_lock); 6037 if (pool_state == POOL_ENABLED && 6038 newpool != oldpool) 6039 (void) pool_do_bind(oldpool, P_PID, P_MYID, 6040 POOL_BIND_ALL); 6041 pool_unlock(); 6042 zone_rele(zone); 6043 err = EINVAL; 6044 goto out; 6045 } 6046 6047 /* 6048 * a_lock must be held while transfering locked memory and swap 6049 * reservation from the global zone to the non global zone because 6050 * asynchronous faults on the processes' address space can lock 6051 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 6052 * segments respectively. 6053 */ 6054 AS_LOCK_ENTER(pp->p_as, RW_WRITER); 6055 swap = as_swresv(); 6056 mutex_enter(&pp->p_lock); 6057 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 6058 /* verify that we do not exceed and task or lwp limits */ 6059 mutex_enter(&zone->zone_nlwps_lock); 6060 /* add new lwps to zone and zone's proj0 */ 6061 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 6062 zone->zone_nlwps += pp->p_lwpcnt; 6063 /* add 1 task to zone's proj0 */ 6064 zone_proj0->kpj_ntasks += 1; 6065 6066 zone_proj0->kpj_nprocs++; 6067 zone->zone_nprocs++; 6068 mutex_exit(&zone->zone_nlwps_lock); 6069 6070 mutex_enter(&zone->zone_mem_lock); 6071 zone->zone_locked_mem += pp->p_locked_mem; 6072 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 6073 zone->zone_max_swap += swap; 6074 mutex_exit(&zone->zone_mem_lock); 6075 6076 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 6077 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 6078 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 6079 6080 /* remove lwps and process from proc's old zone and old project */ 6081 mutex_enter(&pp->p_zone->zone_nlwps_lock); 6082 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 6083 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 6084 pp->p_task->tk_proj->kpj_nprocs--; 6085 pp->p_zone->zone_nprocs--; 6086 mutex_exit(&pp->p_zone->zone_nlwps_lock); 6087 6088 mutex_enter(&pp->p_zone->zone_mem_lock); 6089 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 6090 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 6091 pp->p_zone->zone_max_swap -= swap; 6092 mutex_exit(&pp->p_zone->zone_mem_lock); 6093 6094 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 6095 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 6096 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 6097 6098 pp->p_flag |= SZONETOP; 6099 pp->p_zone = zone; 6100 mutex_exit(&pp->p_lock); 6101 AS_LOCK_EXIT(pp->p_as); 6102 6103 /* 6104 * Joining the zone cannot fail from now on. 6105 * 6106 * This means that a lot of the following code can be commonized and 6107 * shared with zsched(). 6108 */ 6109 6110 /* 6111 * If the process contract fmri was inherited, we need to 6112 * flag this so that any contract status will not leak 6113 * extra zone information, svc_fmri in this case 6114 */ 6115 if (ctp->conp_svc_ctid != ct->ct_id) { 6116 mutex_enter(&ct->ct_lock); 6117 ctp->conp_svc_zone_enter = ct->ct_id; 6118 mutex_exit(&ct->ct_lock); 6119 } 6120 6121 /* 6122 * Reset the encapsulating process contract's zone. 6123 */ 6124 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 6125 contract_setzuniqid(ct, zone->zone_uniqid); 6126 6127 /* 6128 * Create a new task and associate the process with the project keyed 6129 * by (projid,zoneid). 6130 * 6131 * We might as well be in project 0; the global zone's projid doesn't 6132 * make much sense in a zone anyhow. 6133 * 6134 * This also increments zone_ntasks, and returns with p_lock held. 6135 */ 6136 tk = task_create(0, zone); 6137 oldtk = task_join(tk, 0); 6138 mutex_exit(&cpu_lock); 6139 6140 /* 6141 * call RCTLOP_SET functions on this proc 6142 */ 6143 e.rcep_p.zone = zone; 6144 e.rcep_t = RCENTITY_ZONE; 6145 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 6146 RCD_CALLBACK); 6147 mutex_exit(&pp->p_lock); 6148 6149 /* 6150 * We don't need to hold any of zsched's locks here; not only do we know 6151 * the process and zone aren't going away, we know its session isn't 6152 * changing either. 6153 * 6154 * By joining zsched's session here, we mimic the behavior in the 6155 * global zone of init's sid being the pid of sched. We extend this 6156 * to all zlogin-like zone_enter()'ing processes as well. 6157 */ 6158 mutex_enter(&pidlock); 6159 sp = zone->zone_zsched->p_sessp; 6160 sess_hold(zone->zone_zsched); 6161 mutex_enter(&pp->p_lock); 6162 pgexit(pp); 6163 sess_rele(pp->p_sessp, B_TRUE); 6164 pp->p_sessp = sp; 6165 pgjoin(pp, zone->zone_zsched->p_pidp); 6166 6167 /* 6168 * If any threads are scheduled to be placed on zone wait queue they 6169 * should abandon the idea since the wait queue is changing. 6170 * We need to be holding pidlock & p_lock to do this. 6171 */ 6172 if ((t = pp->p_tlist) != NULL) { 6173 do { 6174 thread_lock(t); 6175 /* 6176 * Kick this thread so that it doesn't sit 6177 * on a wrong wait queue. 6178 */ 6179 if (ISWAITING(t)) 6180 setrun_locked(t); 6181 6182 if (t->t_schedflag & TS_ANYWAITQ) 6183 t->t_schedflag &= ~ TS_ANYWAITQ; 6184 6185 thread_unlock(t); 6186 } while ((t = t->t_forw) != pp->p_tlist); 6187 } 6188 6189 /* 6190 * If there is a default scheduling class for the zone and it is not 6191 * the class we are currently in, change all of the threads in the 6192 * process to the new class. We need to be holding pidlock & p_lock 6193 * when we call parmsset so this is a good place to do it. 6194 */ 6195 if (zone->zone_defaultcid > 0 && 6196 zone->zone_defaultcid != curthread->t_cid) { 6197 pcparms_t pcparms; 6198 6199 pcparms.pc_cid = zone->zone_defaultcid; 6200 pcparms.pc_clparms[0] = 0; 6201 6202 /* 6203 * If setting the class fails, we still want to enter the zone. 6204 */ 6205 if ((t = pp->p_tlist) != NULL) { 6206 do { 6207 (void) parmsset(&pcparms, t); 6208 } while ((t = t->t_forw) != pp->p_tlist); 6209 } 6210 } 6211 6212 mutex_exit(&pp->p_lock); 6213 mutex_exit(&pidlock); 6214 6215 mutex_exit(&zonehash_lock); 6216 /* 6217 * We're firmly in the zone; let pools progress. 6218 */ 6219 pool_unlock(); 6220 task_rele(oldtk); 6221 /* 6222 * We don't need to retain a hold on the zone since we already 6223 * incremented zone_ntasks, so the zone isn't going anywhere. 6224 */ 6225 zone_rele(zone); 6226 6227 /* 6228 * Chroot 6229 */ 6230 vp = zone->zone_rootvp; 6231 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 6232 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 6233 6234 /* 6235 * Change process security flags. Note that the _effective_ flags 6236 * cannot change 6237 */ 6238 secflags_copy(&pp->p_secflags.psf_lower, 6239 &zone->zone_secflags.psf_lower); 6240 secflags_copy(&pp->p_secflags.psf_upper, 6241 &zone->zone_secflags.psf_upper); 6242 secflags_copy(&pp->p_secflags.psf_inherit, 6243 &zone->zone_secflags.psf_inherit); 6244 6245 /* 6246 * Change process credentials 6247 */ 6248 newcr = cralloc(); 6249 mutex_enter(&pp->p_crlock); 6250 cr = pp->p_cred; 6251 crcopy_to(cr, newcr); 6252 crsetzone(newcr, zone); 6253 pp->p_cred = newcr; 6254 6255 /* 6256 * Restrict all process privilege sets to zone limit 6257 */ 6258 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 6259 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 6260 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 6261 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 6262 mutex_exit(&pp->p_crlock); 6263 crset(pp, newcr); 6264 6265 /* 6266 * Adjust upcount to reflect zone entry. 6267 */ 6268 uid = crgetruid(newcr); 6269 mutex_enter(&pidlock); 6270 upcount_dec(uid, GLOBAL_ZONEID); 6271 upcount_inc(uid, zoneid); 6272 mutex_exit(&pidlock); 6273 6274 /* 6275 * Set up core file path and content. 6276 */ 6277 set_core_defaults(); 6278 6279 out: 6280 /* 6281 * Let the other lwps continue. 6282 */ 6283 mutex_enter(&pp->p_lock); 6284 if (curthread != pp->p_agenttp) 6285 continuelwps(pp); 6286 mutex_exit(&pp->p_lock); 6287 6288 return (err != 0 ? set_errno(err) : 0); 6289 } 6290 6291 /* 6292 * Systemcall entry point for zone_list(2). 6293 * 6294 * Processes running in a (non-global) zone only see themselves. 6295 * On labeled systems, they see all zones whose label they dominate. 6296 */ 6297 static int 6298 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 6299 { 6300 zoneid_t *zoneids; 6301 zone_t *zone, *myzone; 6302 uint_t user_nzones, real_nzones; 6303 uint_t domi_nzones; 6304 int error; 6305 6306 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 6307 return (set_errno(EFAULT)); 6308 6309 myzone = curproc->p_zone; 6310 if (myzone != global_zone) { 6311 bslabel_t *mybslab; 6312 6313 if (!is_system_labeled()) { 6314 /* just return current zone */ 6315 real_nzones = domi_nzones = 1; 6316 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 6317 zoneids[0] = myzone->zone_id; 6318 } else { 6319 /* return all zones that are dominated */ 6320 mutex_enter(&zonehash_lock); 6321 real_nzones = zonecount; 6322 domi_nzones = 0; 6323 if (real_nzones > 0) { 6324 zoneids = kmem_alloc(real_nzones * 6325 sizeof (zoneid_t), KM_SLEEP); 6326 mybslab = label2bslabel(myzone->zone_slabel); 6327 for (zone = list_head(&zone_active); 6328 zone != NULL; 6329 zone = list_next(&zone_active, zone)) { 6330 if (zone->zone_id == GLOBAL_ZONEID) 6331 continue; 6332 if (zone != myzone && 6333 (zone->zone_flags & ZF_IS_SCRATCH)) 6334 continue; 6335 /* 6336 * Note that a label always dominates 6337 * itself, so myzone is always included 6338 * in the list. 6339 */ 6340 if (bldominates(mybslab, 6341 label2bslabel(zone->zone_slabel))) { 6342 zoneids[domi_nzones++] = 6343 zone->zone_id; 6344 } 6345 } 6346 } 6347 mutex_exit(&zonehash_lock); 6348 } 6349 } else { 6350 mutex_enter(&zonehash_lock); 6351 real_nzones = zonecount; 6352 domi_nzones = 0; 6353 if (real_nzones > 0) { 6354 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 6355 KM_SLEEP); 6356 for (zone = list_head(&zone_active); zone != NULL; 6357 zone = list_next(&zone_active, zone)) 6358 zoneids[domi_nzones++] = zone->zone_id; 6359 ASSERT(domi_nzones == real_nzones); 6360 } 6361 mutex_exit(&zonehash_lock); 6362 } 6363 6364 /* 6365 * If user has allocated space for fewer entries than we found, then 6366 * return only up to their limit. Either way, tell them exactly how 6367 * many we found. 6368 */ 6369 if (domi_nzones < user_nzones) 6370 user_nzones = domi_nzones; 6371 error = 0; 6372 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 6373 error = EFAULT; 6374 } else if (zoneidlist != NULL && user_nzones != 0) { 6375 if (copyout(zoneids, zoneidlist, 6376 user_nzones * sizeof (zoneid_t)) != 0) 6377 error = EFAULT; 6378 } 6379 6380 if (real_nzones > 0) 6381 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 6382 6383 if (error != 0) 6384 return (set_errno(error)); 6385 else 6386 return (0); 6387 } 6388 6389 /* 6390 * Systemcall entry point for zone_lookup(2). 6391 * 6392 * Non-global zones are only able to see themselves and (on labeled systems) 6393 * the zones they dominate. 6394 */ 6395 static zoneid_t 6396 zone_lookup(const char *zone_name) 6397 { 6398 char *kname; 6399 zone_t *zone; 6400 zoneid_t zoneid; 6401 int err; 6402 6403 if (zone_name == NULL) { 6404 /* return caller's zone id */ 6405 return (getzoneid()); 6406 } 6407 6408 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 6409 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 6410 kmem_free(kname, ZONENAME_MAX); 6411 return (set_errno(err)); 6412 } 6413 6414 mutex_enter(&zonehash_lock); 6415 zone = zone_find_all_by_name(kname); 6416 kmem_free(kname, ZONENAME_MAX); 6417 /* 6418 * In a non-global zone, can only lookup global and own name. 6419 * In Trusted Extensions zone label dominance rules apply. 6420 */ 6421 if (zone == NULL || 6422 zone_status_get(zone) < ZONE_IS_READY || 6423 !zone_list_access(zone)) { 6424 mutex_exit(&zonehash_lock); 6425 return (set_errno(EINVAL)); 6426 } else { 6427 zoneid = zone->zone_id; 6428 mutex_exit(&zonehash_lock); 6429 return (zoneid); 6430 } 6431 } 6432 6433 static int 6434 zone_version(int *version_arg) 6435 { 6436 int version = ZONE_SYSCALL_API_VERSION; 6437 6438 if (copyout(&version, version_arg, sizeof (int)) != 0) 6439 return (set_errno(EFAULT)); 6440 return (0); 6441 } 6442 6443 /* ARGSUSED */ 6444 long 6445 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 6446 { 6447 zone_def zs; 6448 int err; 6449 6450 switch (cmd) { 6451 case ZONE_CREATE: 6452 if (get_udatamodel() == DATAMODEL_NATIVE) { 6453 if (copyin(arg1, &zs, sizeof (zone_def))) { 6454 return (set_errno(EFAULT)); 6455 } 6456 } else { 6457 #ifdef _SYSCALL32_IMPL 6458 zone_def32 zs32; 6459 6460 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 6461 return (set_errno(EFAULT)); 6462 } 6463 zs.zone_name = 6464 (const char *)(unsigned long)zs32.zone_name; 6465 zs.zone_root = 6466 (const char *)(unsigned long)zs32.zone_root; 6467 zs.zone_privs = 6468 (const struct priv_set *) 6469 (unsigned long)zs32.zone_privs; 6470 zs.zone_privssz = zs32.zone_privssz; 6471 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 6472 zs.rctlbufsz = zs32.rctlbufsz; 6473 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 6474 zs.zfsbufsz = zs32.zfsbufsz; 6475 zs.extended_error = 6476 (int *)(unsigned long)zs32.extended_error; 6477 zs.match = zs32.match; 6478 zs.doi = zs32.doi; 6479 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 6480 zs.flags = zs32.flags; 6481 #else 6482 panic("get_udatamodel() returned bogus result\n"); 6483 #endif 6484 } 6485 6486 return (zone_create(zs.zone_name, zs.zone_root, 6487 zs.zone_privs, zs.zone_privssz, 6488 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 6489 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 6490 zs.extended_error, zs.match, zs.doi, 6491 zs.label, zs.flags)); 6492 case ZONE_BOOT: 6493 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 6494 case ZONE_DESTROY: 6495 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 6496 case ZONE_GETATTR: 6497 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 6498 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6499 case ZONE_SETATTR: 6500 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 6501 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6502 case ZONE_ENTER: 6503 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 6504 case ZONE_LIST: 6505 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 6506 case ZONE_SHUTDOWN: 6507 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 6508 case ZONE_LOOKUP: 6509 return (zone_lookup((const char *)arg1)); 6510 case ZONE_VERSION: 6511 return (zone_version((int *)arg1)); 6512 case ZONE_ADD_DATALINK: 6513 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 6514 (datalink_id_t)(uintptr_t)arg2)); 6515 case ZONE_DEL_DATALINK: 6516 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 6517 (datalink_id_t)(uintptr_t)arg2)); 6518 case ZONE_CHECK_DATALINK: { 6519 zoneid_t zoneid; 6520 boolean_t need_copyout; 6521 6522 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0) 6523 return (EFAULT); 6524 need_copyout = (zoneid == ALL_ZONES); 6525 err = zone_check_datalink(&zoneid, 6526 (datalink_id_t)(uintptr_t)arg2); 6527 if (err == 0 && need_copyout) { 6528 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0) 6529 err = EFAULT; 6530 } 6531 return (err == 0 ? 0 : set_errno(err)); 6532 } 6533 case ZONE_LIST_DATALINK: 6534 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 6535 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3)); 6536 default: 6537 return (set_errno(EINVAL)); 6538 } 6539 } 6540 6541 struct zarg { 6542 zone_t *zone; 6543 zone_cmd_arg_t arg; 6544 }; 6545 6546 static int 6547 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 6548 { 6549 char *buf; 6550 size_t buflen; 6551 int error; 6552 6553 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 6554 buf = kmem_alloc(buflen, KM_SLEEP); 6555 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 6556 error = door_ki_open(buf, doorp); 6557 kmem_free(buf, buflen); 6558 return (error); 6559 } 6560 6561 static void 6562 zone_release_door(door_handle_t *doorp) 6563 { 6564 door_ki_rele(*doorp); 6565 *doorp = NULL; 6566 } 6567 6568 static void 6569 zone_ki_call_zoneadmd(struct zarg *zargp) 6570 { 6571 door_handle_t door = NULL; 6572 door_arg_t darg, save_arg; 6573 char *zone_name; 6574 size_t zone_namelen; 6575 zoneid_t zoneid; 6576 zone_t *zone; 6577 zone_cmd_arg_t arg; 6578 uint64_t uniqid; 6579 size_t size; 6580 int error; 6581 int retry; 6582 6583 zone = zargp->zone; 6584 arg = zargp->arg; 6585 kmem_free(zargp, sizeof (*zargp)); 6586 6587 zone_namelen = strlen(zone->zone_name) + 1; 6588 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 6589 bcopy(zone->zone_name, zone_name, zone_namelen); 6590 zoneid = zone->zone_id; 6591 uniqid = zone->zone_uniqid; 6592 /* 6593 * zoneadmd may be down, but at least we can empty out the zone. 6594 * We can ignore the return value of zone_empty() since we're called 6595 * from a kernel thread and know we won't be delivered any signals. 6596 */ 6597 ASSERT(curproc == &p0); 6598 (void) zone_empty(zone); 6599 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 6600 zone_rele(zone); 6601 6602 size = sizeof (arg); 6603 darg.rbuf = (char *)&arg; 6604 darg.data_ptr = (char *)&arg; 6605 darg.rsize = size; 6606 darg.data_size = size; 6607 darg.desc_ptr = NULL; 6608 darg.desc_num = 0; 6609 6610 save_arg = darg; 6611 /* 6612 * Since we're not holding a reference to the zone, any number of 6613 * things can go wrong, including the zone disappearing before we get a 6614 * chance to talk to zoneadmd. 6615 */ 6616 for (retry = 0; /* forever */; retry++) { 6617 if (door == NULL && 6618 (error = zone_lookup_door(zone_name, &door)) != 0) { 6619 goto next; 6620 } 6621 ASSERT(door != NULL); 6622 6623 if ((error = door_ki_upcall_limited(door, &darg, NULL, 6624 SIZE_MAX, 0)) == 0) { 6625 break; 6626 } 6627 switch (error) { 6628 case EINTR: 6629 /* FALLTHROUGH */ 6630 case EAGAIN: /* process may be forking */ 6631 /* 6632 * Back off for a bit 6633 */ 6634 break; 6635 case EBADF: 6636 zone_release_door(&door); 6637 if (zone_lookup_door(zone_name, &door) != 0) { 6638 /* 6639 * zoneadmd may be dead, but it may come back to 6640 * life later. 6641 */ 6642 break; 6643 } 6644 break; 6645 default: 6646 cmn_err(CE_WARN, 6647 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 6648 error); 6649 goto out; 6650 } 6651 next: 6652 /* 6653 * If this isn't the same zone_t that we originally had in mind, 6654 * then this is the same as if two kadmin requests come in at 6655 * the same time: the first one wins. This means we lose, so we 6656 * bail. 6657 */ 6658 if ((zone = zone_find_by_id(zoneid)) == NULL) { 6659 /* 6660 * Problem is solved. 6661 */ 6662 break; 6663 } 6664 if (zone->zone_uniqid != uniqid) { 6665 /* 6666 * zoneid recycled 6667 */ 6668 zone_rele(zone); 6669 break; 6670 } 6671 /* 6672 * We could zone_status_timedwait(), but there doesn't seem to 6673 * be much point in doing that (plus, it would mean that 6674 * zone_free() isn't called until this thread exits). 6675 */ 6676 zone_rele(zone); 6677 delay(hz); 6678 darg = save_arg; 6679 } 6680 out: 6681 if (door != NULL) { 6682 zone_release_door(&door); 6683 } 6684 kmem_free(zone_name, zone_namelen); 6685 thread_exit(); 6686 } 6687 6688 /* 6689 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 6690 * kadmin(). The caller is a process in the zone. 6691 * 6692 * In order to shutdown the zone, we will hand off control to zoneadmd 6693 * (running in the global zone) via a door. We do a half-hearted job at 6694 * killing all processes in the zone, create a kernel thread to contact 6695 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 6696 * a form of generation number used to let zoneadmd (as well as 6697 * zone_destroy()) know exactly which zone they're re talking about. 6698 */ 6699 int 6700 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 6701 { 6702 struct zarg *zargp; 6703 zone_cmd_t zcmd; 6704 zone_t *zone; 6705 6706 zone = curproc->p_zone; 6707 ASSERT(getzoneid() != GLOBAL_ZONEID); 6708 6709 switch (cmd) { 6710 case A_SHUTDOWN: 6711 switch (fcn) { 6712 case AD_HALT: 6713 case AD_POWEROFF: 6714 zcmd = Z_HALT; 6715 break; 6716 case AD_BOOT: 6717 zcmd = Z_REBOOT; 6718 break; 6719 case AD_IBOOT: 6720 case AD_SBOOT: 6721 case AD_SIBOOT: 6722 case AD_NOSYNC: 6723 return (ENOTSUP); 6724 default: 6725 return (EINVAL); 6726 } 6727 break; 6728 case A_REBOOT: 6729 zcmd = Z_REBOOT; 6730 break; 6731 case A_FTRACE: 6732 case A_REMOUNT: 6733 case A_FREEZE: 6734 case A_DUMP: 6735 case A_CONFIG: 6736 return (ENOTSUP); 6737 default: 6738 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 6739 return (EINVAL); 6740 } 6741 6742 if (secpolicy_zone_admin(credp, B_FALSE)) 6743 return (EPERM); 6744 mutex_enter(&zone_status_lock); 6745 6746 /* 6747 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 6748 * is in the zone. 6749 */ 6750 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 6751 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 6752 /* 6753 * This zone is already on its way down. 6754 */ 6755 mutex_exit(&zone_status_lock); 6756 return (0); 6757 } 6758 /* 6759 * Prevent future zone_enter()s 6760 */ 6761 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 6762 mutex_exit(&zone_status_lock); 6763 6764 /* 6765 * Kill everyone now and call zoneadmd later. 6766 * zone_ki_call_zoneadmd() will do a more thorough job of this 6767 * later. 6768 */ 6769 killall(zone->zone_id); 6770 /* 6771 * Now, create the thread to contact zoneadmd and do the rest of the 6772 * work. This thread can't be created in our zone otherwise 6773 * zone_destroy() would deadlock. 6774 */ 6775 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 6776 zargp->arg.cmd = zcmd; 6777 zargp->arg.uniqid = zone->zone_uniqid; 6778 zargp->zone = zone; 6779 (void) strcpy(zargp->arg.locale, "C"); 6780 /* mdep was already copied in for us by uadmin */ 6781 if (mdep != NULL) 6782 (void) strlcpy(zargp->arg.bootbuf, mdep, 6783 sizeof (zargp->arg.bootbuf)); 6784 zone_hold(zone); 6785 6786 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 6787 TS_RUN, minclsyspri); 6788 exit(CLD_EXITED, 0); 6789 6790 return (EINVAL); 6791 } 6792 6793 /* 6794 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 6795 * status to ZONE_IS_SHUTTING_DOWN. 6796 * 6797 * This function also shuts down all running zones to ensure that they won't 6798 * fork new processes. 6799 */ 6800 void 6801 zone_shutdown_global(void) 6802 { 6803 zone_t *current_zonep; 6804 6805 ASSERT(INGLOBALZONE(curproc)); 6806 mutex_enter(&zonehash_lock); 6807 mutex_enter(&zone_status_lock); 6808 6809 /* Modify the global zone's status first. */ 6810 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 6811 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 6812 6813 /* 6814 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN. 6815 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so 6816 * could cause assertions to fail (e.g., assertions about a zone's 6817 * state during initialization, readying, or booting) or produce races. 6818 * We'll let threads continue to initialize and ready new zones: they'll 6819 * fail to boot the new zones when they see that the global zone is 6820 * shutting down. 6821 */ 6822 for (current_zonep = list_head(&zone_active); current_zonep != NULL; 6823 current_zonep = list_next(&zone_active, current_zonep)) { 6824 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING) 6825 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN); 6826 } 6827 mutex_exit(&zone_status_lock); 6828 mutex_exit(&zonehash_lock); 6829 } 6830 6831 /* 6832 * Returns true if the named dataset is visible in the current zone. 6833 * The 'write' parameter is set to 1 if the dataset is also writable. 6834 */ 6835 int 6836 zone_dataset_visible(const char *dataset, int *write) 6837 { 6838 static int zfstype = -1; 6839 zone_dataset_t *zd; 6840 size_t len; 6841 zone_t *zone = curproc->p_zone; 6842 const char *name = NULL; 6843 vfs_t *vfsp = NULL; 6844 6845 if (dataset[0] == '\0') 6846 return (0); 6847 6848 /* 6849 * Walk the list once, looking for datasets which match exactly, or 6850 * specify a dataset underneath an exported dataset. If found, return 6851 * true and note that it is writable. 6852 */ 6853 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6854 zd = list_next(&zone->zone_datasets, zd)) { 6855 6856 len = strlen(zd->zd_dataset); 6857 if (strlen(dataset) >= len && 6858 bcmp(dataset, zd->zd_dataset, len) == 0 && 6859 (dataset[len] == '\0' || dataset[len] == '/' || 6860 dataset[len] == '@')) { 6861 if (write) 6862 *write = 1; 6863 return (1); 6864 } 6865 } 6866 6867 /* 6868 * Walk the list a second time, searching for datasets which are parents 6869 * of exported datasets. These should be visible, but read-only. 6870 * 6871 * Note that we also have to support forms such as 'pool/dataset/', with 6872 * a trailing slash. 6873 */ 6874 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6875 zd = list_next(&zone->zone_datasets, zd)) { 6876 6877 len = strlen(dataset); 6878 if (dataset[len - 1] == '/') 6879 len--; /* Ignore trailing slash */ 6880 if (len < strlen(zd->zd_dataset) && 6881 bcmp(dataset, zd->zd_dataset, len) == 0 && 6882 zd->zd_dataset[len] == '/') { 6883 if (write) 6884 *write = 0; 6885 return (1); 6886 } 6887 } 6888 6889 /* 6890 * We reach here if the given dataset is not found in the zone_dataset 6891 * list. Check if this dataset was added as a filesystem (ie. "add fs") 6892 * instead of delegation. For this we search for the dataset in the 6893 * zone_vfslist of this zone. If found, return true and note that it is 6894 * not writable. 6895 */ 6896 6897 /* 6898 * Initialize zfstype if it is not initialized yet. 6899 */ 6900 if (zfstype == -1) { 6901 struct vfssw *vswp = vfs_getvfssw("zfs"); 6902 zfstype = vswp - vfssw; 6903 vfs_unrefvfssw(vswp); 6904 } 6905 6906 vfs_list_read_lock(); 6907 vfsp = zone->zone_vfslist; 6908 do { 6909 ASSERT(vfsp); 6910 if (vfsp->vfs_fstype == zfstype) { 6911 name = refstr_value(vfsp->vfs_resource); 6912 6913 /* 6914 * Check if we have an exact match. 6915 */ 6916 if (strcmp(dataset, name) == 0) { 6917 vfs_list_unlock(); 6918 if (write) 6919 *write = 0; 6920 return (1); 6921 } 6922 /* 6923 * We need to check if we are looking for parents of 6924 * a dataset. These should be visible, but read-only. 6925 */ 6926 len = strlen(dataset); 6927 if (dataset[len - 1] == '/') 6928 len--; 6929 6930 if (len < strlen(name) && 6931 bcmp(dataset, name, len) == 0 && name[len] == '/') { 6932 vfs_list_unlock(); 6933 if (write) 6934 *write = 0; 6935 return (1); 6936 } 6937 } 6938 vfsp = vfsp->vfs_zone_next; 6939 } while (vfsp != zone->zone_vfslist); 6940 6941 vfs_list_unlock(); 6942 return (0); 6943 } 6944 6945 /* 6946 * zone_find_by_any_path() - 6947 * 6948 * kernel-private routine similar to zone_find_by_path(), but which 6949 * effectively compares against zone paths rather than zonerootpath 6950 * (i.e., the last component of zonerootpaths, which should be "root/", 6951 * are not compared.) This is done in order to accurately identify all 6952 * paths, whether zone-visible or not, including those which are parallel 6953 * to /root/, such as /dev/, /home/, etc... 6954 * 6955 * If the specified path does not fall under any zone path then global 6956 * zone is returned. 6957 * 6958 * The treat_abs parameter indicates whether the path should be treated as 6959 * an absolute path although it does not begin with "/". (This supports 6960 * nfs mount syntax such as host:any/path.) 6961 * 6962 * The caller is responsible for zone_rele of the returned zone. 6963 */ 6964 zone_t * 6965 zone_find_by_any_path(const char *path, boolean_t treat_abs) 6966 { 6967 zone_t *zone; 6968 int path_offset = 0; 6969 6970 if (path == NULL) { 6971 zone_hold(global_zone); 6972 return (global_zone); 6973 } 6974 6975 if (*path != '/') { 6976 ASSERT(treat_abs); 6977 path_offset = 1; 6978 } 6979 6980 mutex_enter(&zonehash_lock); 6981 for (zone = list_head(&zone_active); zone != NULL; 6982 zone = list_next(&zone_active, zone)) { 6983 char *c; 6984 size_t pathlen; 6985 char *rootpath_start; 6986 6987 if (zone == global_zone) /* skip global zone */ 6988 continue; 6989 6990 /* scan backwards to find start of last component */ 6991 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 6992 do { 6993 c--; 6994 } while (*c != '/'); 6995 6996 pathlen = c - zone->zone_rootpath + 1 - path_offset; 6997 rootpath_start = (zone->zone_rootpath + path_offset); 6998 if (strncmp(path, rootpath_start, pathlen) == 0) 6999 break; 7000 } 7001 if (zone == NULL) 7002 zone = global_zone; 7003 zone_hold(zone); 7004 mutex_exit(&zonehash_lock); 7005 return (zone); 7006 } 7007 7008 /* 7009 * Finds a zone_dl_t with the given linkid in the given zone. Returns the 7010 * zone_dl_t pointer if found, and NULL otherwise. 7011 */ 7012 static zone_dl_t * 7013 zone_find_dl(zone_t *zone, datalink_id_t linkid) 7014 { 7015 zone_dl_t *zdl; 7016 7017 ASSERT(mutex_owned(&zone->zone_lock)); 7018 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7019 zdl = list_next(&zone->zone_dl_list, zdl)) { 7020 if (zdl->zdl_id == linkid) 7021 break; 7022 } 7023 return (zdl); 7024 } 7025 7026 static boolean_t 7027 zone_dl_exists(zone_t *zone, datalink_id_t linkid) 7028 { 7029 boolean_t exists; 7030 7031 mutex_enter(&zone->zone_lock); 7032 exists = (zone_find_dl(zone, linkid) != NULL); 7033 mutex_exit(&zone->zone_lock); 7034 return (exists); 7035 } 7036 7037 /* 7038 * Add an data link name for the zone. 7039 */ 7040 static int 7041 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid) 7042 { 7043 zone_dl_t *zdl; 7044 zone_t *zone; 7045 zone_t *thiszone; 7046 7047 if ((thiszone = zone_find_by_id(zoneid)) == NULL) 7048 return (set_errno(ENXIO)); 7049 7050 /* Verify that the datalink ID doesn't already belong to a zone. */ 7051 mutex_enter(&zonehash_lock); 7052 for (zone = list_head(&zone_active); zone != NULL; 7053 zone = list_next(&zone_active, zone)) { 7054 if (zone_dl_exists(zone, linkid)) { 7055 mutex_exit(&zonehash_lock); 7056 zone_rele(thiszone); 7057 return (set_errno((zone == thiszone) ? EEXIST : EPERM)); 7058 } 7059 } 7060 7061 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP); 7062 zdl->zdl_id = linkid; 7063 zdl->zdl_net = NULL; 7064 mutex_enter(&thiszone->zone_lock); 7065 list_insert_head(&thiszone->zone_dl_list, zdl); 7066 mutex_exit(&thiszone->zone_lock); 7067 mutex_exit(&zonehash_lock); 7068 zone_rele(thiszone); 7069 return (0); 7070 } 7071 7072 static int 7073 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid) 7074 { 7075 zone_dl_t *zdl; 7076 zone_t *zone; 7077 int err = 0; 7078 7079 if ((zone = zone_find_by_id(zoneid)) == NULL) 7080 return (set_errno(EINVAL)); 7081 7082 mutex_enter(&zone->zone_lock); 7083 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7084 err = ENXIO; 7085 } else { 7086 list_remove(&zone->zone_dl_list, zdl); 7087 nvlist_free(zdl->zdl_net); 7088 kmem_free(zdl, sizeof (zone_dl_t)); 7089 } 7090 mutex_exit(&zone->zone_lock); 7091 zone_rele(zone); 7092 return (err == 0 ? 0 : set_errno(err)); 7093 } 7094 7095 /* 7096 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned 7097 * the linkid. Otherwise we just check if the specified zoneidp has been 7098 * assigned the supplied linkid. 7099 */ 7100 int 7101 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid) 7102 { 7103 zone_t *zone; 7104 int err = ENXIO; 7105 7106 if (*zoneidp != ALL_ZONES) { 7107 if ((zone = zone_find_by_id(*zoneidp)) != NULL) { 7108 if (zone_dl_exists(zone, linkid)) 7109 err = 0; 7110 zone_rele(zone); 7111 } 7112 return (err); 7113 } 7114 7115 mutex_enter(&zonehash_lock); 7116 for (zone = list_head(&zone_active); zone != NULL; 7117 zone = list_next(&zone_active, zone)) { 7118 if (zone_dl_exists(zone, linkid)) { 7119 *zoneidp = zone->zone_id; 7120 err = 0; 7121 break; 7122 } 7123 } 7124 mutex_exit(&zonehash_lock); 7125 return (err); 7126 } 7127 7128 /* 7129 * Get the list of datalink IDs assigned to a zone. 7130 * 7131 * On input, *nump is the number of datalink IDs that can fit in the supplied 7132 * idarray. Upon return, *nump is either set to the number of datalink IDs 7133 * that were placed in the array if the array was large enough, or to the 7134 * number of datalink IDs that the function needs to place in the array if the 7135 * array is too small. 7136 */ 7137 static int 7138 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray) 7139 { 7140 uint_t num, dlcount; 7141 zone_t *zone; 7142 zone_dl_t *zdl; 7143 datalink_id_t *idptr = idarray; 7144 7145 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 7146 return (set_errno(EFAULT)); 7147 if ((zone = zone_find_by_id(zoneid)) == NULL) 7148 return (set_errno(ENXIO)); 7149 7150 num = 0; 7151 mutex_enter(&zone->zone_lock); 7152 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7153 zdl = list_next(&zone->zone_dl_list, zdl)) { 7154 /* 7155 * If the list is bigger than what the caller supplied, just 7156 * count, don't do copyout. 7157 */ 7158 if (++num > dlcount) 7159 continue; 7160 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) { 7161 mutex_exit(&zone->zone_lock); 7162 zone_rele(zone); 7163 return (set_errno(EFAULT)); 7164 } 7165 idptr++; 7166 } 7167 mutex_exit(&zone->zone_lock); 7168 zone_rele(zone); 7169 7170 /* Increased or decreased, caller should be notified. */ 7171 if (num != dlcount) { 7172 if (copyout(&num, nump, sizeof (num)) != 0) 7173 return (set_errno(EFAULT)); 7174 } 7175 return (0); 7176 } 7177 7178 /* 7179 * Public interface for looking up a zone by zoneid. It's a customized version 7180 * for netstack_zone_create(). It can only be called from the zsd create 7181 * callbacks, since it doesn't have reference on the zone structure hence if 7182 * it is called elsewhere the zone could disappear after the zonehash_lock 7183 * is dropped. 7184 * 7185 * Furthermore it 7186 * 1. Doesn't check the status of the zone. 7187 * 2. It will be called even before zone_init is called, in that case the 7188 * address of zone0 is returned directly, and netstack_zone_create() 7189 * will only assign a value to zone0.zone_netstack, won't break anything. 7190 * 3. Returns without the zone being held. 7191 */ 7192 zone_t * 7193 zone_find_by_id_nolock(zoneid_t zoneid) 7194 { 7195 zone_t *zone; 7196 7197 mutex_enter(&zonehash_lock); 7198 if (zonehashbyid == NULL) 7199 zone = &zone0; 7200 else 7201 zone = zone_find_all_by_id(zoneid); 7202 mutex_exit(&zonehash_lock); 7203 return (zone); 7204 } 7205 7206 /* 7207 * Walk the datalinks for a given zone 7208 */ 7209 int 7210 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *), 7211 void *data) 7212 { 7213 zone_t *zone; 7214 zone_dl_t *zdl; 7215 datalink_id_t *idarray; 7216 uint_t idcount = 0; 7217 int i, ret = 0; 7218 7219 if ((zone = zone_find_by_id(zoneid)) == NULL) 7220 return (ENOENT); 7221 7222 /* 7223 * We first build an array of linkid's so that we can walk these and 7224 * execute the callback with the zone_lock dropped. 7225 */ 7226 mutex_enter(&zone->zone_lock); 7227 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7228 zdl = list_next(&zone->zone_dl_list, zdl)) { 7229 idcount++; 7230 } 7231 7232 if (idcount == 0) { 7233 mutex_exit(&zone->zone_lock); 7234 zone_rele(zone); 7235 return (0); 7236 } 7237 7238 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP); 7239 if (idarray == NULL) { 7240 mutex_exit(&zone->zone_lock); 7241 zone_rele(zone); 7242 return (ENOMEM); 7243 } 7244 7245 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7246 i++, zdl = list_next(&zone->zone_dl_list, zdl)) { 7247 idarray[i] = zdl->zdl_id; 7248 } 7249 7250 mutex_exit(&zone->zone_lock); 7251 7252 for (i = 0; i < idcount && ret == 0; i++) { 7253 if ((ret = (*cb)(idarray[i], data)) != 0) 7254 break; 7255 } 7256 7257 zone_rele(zone); 7258 kmem_free(idarray, sizeof (datalink_id_t) * idcount); 7259 return (ret); 7260 } 7261 7262 static char * 7263 zone_net_type2name(int type) 7264 { 7265 switch (type) { 7266 case ZONE_NETWORK_ADDRESS: 7267 return (ZONE_NET_ADDRNAME); 7268 case ZONE_NETWORK_DEFROUTER: 7269 return (ZONE_NET_RTRNAME); 7270 default: 7271 return (NULL); 7272 } 7273 } 7274 7275 static int 7276 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7277 { 7278 zone_t *zone; 7279 zone_dl_t *zdl; 7280 nvlist_t *nvl; 7281 int err = 0; 7282 uint8_t *new = NULL; 7283 char *nvname; 7284 int bufsize; 7285 datalink_id_t linkid = znbuf->zn_linkid; 7286 7287 if (secpolicy_zone_config(CRED()) != 0) 7288 return (set_errno(EPERM)); 7289 7290 if (zoneid == GLOBAL_ZONEID) 7291 return (set_errno(EINVAL)); 7292 7293 nvname = zone_net_type2name(znbuf->zn_type); 7294 bufsize = znbuf->zn_len; 7295 new = znbuf->zn_val; 7296 if (nvname == NULL) 7297 return (set_errno(EINVAL)); 7298 7299 if ((zone = zone_find_by_id(zoneid)) == NULL) { 7300 return (set_errno(EINVAL)); 7301 } 7302 7303 mutex_enter(&zone->zone_lock); 7304 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7305 err = ENXIO; 7306 goto done; 7307 } 7308 if ((nvl = zdl->zdl_net) == NULL) { 7309 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) { 7310 err = ENOMEM; 7311 goto done; 7312 } else { 7313 zdl->zdl_net = nvl; 7314 } 7315 } 7316 if (nvlist_exists(nvl, nvname)) { 7317 err = EINVAL; 7318 goto done; 7319 } 7320 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize); 7321 ASSERT(err == 0); 7322 done: 7323 mutex_exit(&zone->zone_lock); 7324 zone_rele(zone); 7325 if (err != 0) 7326 return (set_errno(err)); 7327 else 7328 return (0); 7329 } 7330 7331 static int 7332 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7333 { 7334 zone_t *zone; 7335 zone_dl_t *zdl; 7336 nvlist_t *nvl; 7337 uint8_t *ptr; 7338 uint_t psize; 7339 int err = 0; 7340 char *nvname; 7341 int bufsize; 7342 void *buf; 7343 datalink_id_t linkid = znbuf->zn_linkid; 7344 7345 if (zoneid == GLOBAL_ZONEID) 7346 return (set_errno(EINVAL)); 7347 7348 nvname = zone_net_type2name(znbuf->zn_type); 7349 bufsize = znbuf->zn_len; 7350 buf = znbuf->zn_val; 7351 7352 if (nvname == NULL) 7353 return (set_errno(EINVAL)); 7354 if ((zone = zone_find_by_id(zoneid)) == NULL) 7355 return (set_errno(EINVAL)); 7356 7357 mutex_enter(&zone->zone_lock); 7358 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7359 err = ENXIO; 7360 goto done; 7361 } 7362 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) { 7363 err = ENOENT; 7364 goto done; 7365 } 7366 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize); 7367 ASSERT(err == 0); 7368 7369 if (psize > bufsize) { 7370 err = ENOBUFS; 7371 goto done; 7372 } 7373 znbuf->zn_len = psize; 7374 bcopy(ptr, buf, psize); 7375 done: 7376 mutex_exit(&zone->zone_lock); 7377 zone_rele(zone); 7378 if (err != 0) 7379 return (set_errno(err)); 7380 else 7381 return (0); 7382 }