1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  * Copyright (c) 2018, Joyent, Inc.
  25  */
  26 
  27 #include <sys/types.h>
  28 #include <sys/param.h>
  29 #include <sys/systm.h>
  30 #include <sys/user.h>
  31 #include <sys/proc.h>
  32 #include <sys/cpuvar.h>
  33 #include <sys/thread.h>
  34 #include <sys/debug.h>
  35 #include <sys/msacct.h>
  36 #include <sys/time.h>
  37 #include <sys/zone.h>
  38 
  39 /*
  40  * Mega-theory block comment:
  41  *
  42  * Microstate accounting uses finite states and the transitions between these
  43  * states to measure timing and accounting information.  The state information
  44  * is presently tracked for threads (via microstate accounting) and cpus (via
  45  * cpu microstate accounting).  In each case, these accounting mechanisms use
  46  * states and transitions to measure time spent in each state instead of
  47  * clock-based sampling methodologies.
  48  *
  49  * For microstate accounting:
  50  * state transitions are accomplished by calling new_mstate() to switch between
  51  * states.  Transitions from a sleeping state (LMS_SLEEP and LMS_STOPPED) occur
  52  * by calling restore_mstate() which restores a thread to its previously running
  53  * state.  This code is primarialy executed by the dispatcher in disp() before
  54  * running a process that was put to sleep.  If the thread was not in a sleeping
  55  * state, this call has little effect other than to update the count of time the
  56  * thread has spent waiting on run-queues in its lifetime.
  57  *
  58  * For cpu microstate accounting:
  59  * Cpu microstate accounting is similar to the microstate accounting for threads
  60  * but it tracks user, system, and idle time for cpus.  Cpu microstate
  61  * accounting does not track interrupt times as there is a pre-existing
  62  * interrupt accounting mechanism for this purpose.  Cpu microstate accounting
  63  * tracks time that user threads have spent active, idle, or in the system on a
  64  * given cpu.  Cpu microstate accounting has fewer states which allows it to
  65  * have better defined transitions.  The states transition in the following
  66  * order:
  67  *
  68  *  CMS_USER <-> CMS_SYSTEM <-> CMS_IDLE
  69  *
  70  * In order to get to the idle state, the cpu microstate must first go through
  71  * the system state, and vice-versa for the user state from idle.  The switching
  72  * of the microstates from user to system is done as part of the regular thread
  73  * microstate accounting code, except for the idle state which is switched by
  74  * the dispatcher before it runs the idle loop.
  75  *
  76  * Cpu percentages:
  77  * Cpu percentages are now handled by and based upon microstate accounting
  78  * information (the same is true for load averages).  The routines which handle
  79  * the growing/shrinking and exponentiation of cpu percentages have been moved
  80  * here as it now makes more sense for them to be generated from the microstate
  81  * code.  Cpu percentages are generated similarly to the way they were before;
  82  * however, now they are based upon high-resolution timestamps and the
  83  * timestamps are modified at various state changes instead of during a clock()
  84  * interrupt.  This allows us to generate more accurate cpu percentages which
  85  * are also in-sync with microstate data.
  86  */
  87 
  88 /*
  89  * Initialize the microstate level and the
  90  * associated accounting information for an LWP.
  91  */
  92 void
  93 init_mstate(
  94         kthread_t       *t,
  95         int             init_state)
  96 {
  97         struct mstate *ms;
  98         klwp_t *lwp;
  99         hrtime_t curtime;
 100 
 101         ASSERT(init_state != LMS_WAIT_CPU);
 102         ASSERT((unsigned)init_state < NMSTATES);
 103 
 104         if ((lwp = ttolwp(t)) != NULL) {
 105                 ms = &lwp->lwp_mstate;
 106                 curtime = gethrtime_unscaled();
 107                 ms->ms_prev = LMS_SYSTEM;
 108                 ms->ms_start = curtime;
 109                 ms->ms_term = 0;
 110                 ms->ms_state_start = curtime;
 111                 t->t_mstate = init_state;
 112                 t->t_waitrq = 0;
 113                 t->t_hrtime = curtime;
 114                 if ((t->t_proc_flag & TP_MSACCT) == 0)
 115                         t->t_proc_flag |= TP_MSACCT;
 116                 bzero((caddr_t)&ms->ms_acct[0], sizeof (ms->ms_acct));
 117         }
 118 }
 119 
 120 /*
 121  * Initialize the microstate level and associated accounting information
 122  * for the specified cpu
 123  */
 124 
 125 void
 126 init_cpu_mstate(
 127         cpu_t *cpu,
 128         int init_state)
 129 {
 130         ASSERT(init_state != CMS_DISABLED);
 131 
 132         cpu->cpu_mstate = init_state;
 133         cpu->cpu_mstate_start = gethrtime_unscaled();
 134         cpu->cpu_waitrq = 0;
 135         bzero((caddr_t)&cpu->cpu_acct[0], sizeof (cpu->cpu_acct));
 136 }
 137 
 138 /*
 139  * sets cpu state to OFFLINE.  We don't actually track this time,
 140  * but it serves as a useful placeholder state for when we're not
 141  * doing anything.
 142  */
 143 
 144 void
 145 term_cpu_mstate(struct cpu *cpu)
 146 {
 147         ASSERT(cpu->cpu_mstate != CMS_DISABLED);
 148         cpu->cpu_mstate = CMS_DISABLED;
 149         cpu->cpu_mstate_start = 0;
 150 }
 151 
 152 /* NEW_CPU_MSTATE comments inline in new_cpu_mstate below. */
 153 
 154 #define NEW_CPU_MSTATE(state)                                           \
 155         gen = cpu->cpu_mstate_gen;                                   \
 156         cpu->cpu_mstate_gen = 0;                                     \
 157         /* Need membar_producer() here if stores not ordered / TSO */   \
 158         cpu->cpu_acct[cpu->cpu_mstate] += curtime - cpu->cpu_mstate_start; \
 159         cpu->cpu_mstate = state;                                     \
 160         cpu->cpu_mstate_start = curtime;                             \
 161         /* Need membar_producer() here if stores not ordered / TSO */   \
 162         cpu->cpu_mstate_gen = (++gen == 0) ? 1 : gen;
 163 
 164 void
 165 new_cpu_mstate(int cmstate, hrtime_t curtime)
 166 {
 167         cpu_t *cpu = CPU;
 168         uint16_t gen;
 169 
 170         ASSERT(cpu->cpu_mstate != CMS_DISABLED);
 171         ASSERT(cmstate < NCMSTATES);
 172         ASSERT(cmstate != CMS_DISABLED);
 173 
 174         /*
 175          * This function cannot be re-entrant on a given CPU. As such,
 176          * we ASSERT and panic if we are called on behalf of an interrupt.
 177          * The one exception is for an interrupt which has previously
 178          * blocked. Such an interrupt is being scheduled by the dispatcher
 179          * just like a normal thread, and as such cannot arrive here
 180          * in a re-entrant manner.
 181          */
 182 
 183         ASSERT(!CPU_ON_INTR(cpu) && curthread->t_intr == NULL);
 184         ASSERT(curthread->t_preempt > 0 || curthread == cpu->cpu_idle_thread);
 185 
 186         /*
 187          * LOCKING, or lack thereof:
 188          *
 189          * Updates to CPU mstate can only be made by the CPU
 190          * itself, and the above check to ignore interrupts
 191          * should prevent recursion into this function on a given
 192          * processor. i.e. no possible write contention.
 193          *
 194          * However, reads of CPU mstate can occur at any time
 195          * from any CPU. Any locking added to this code path
 196          * would seriously impact syscall performance. So,
 197          * instead we have a best-effort protection for readers.
 198          * The reader will want to account for any time between
 199          * cpu_mstate_start and the present time. This requires
 200          * some guarantees that the reader is getting coherent
 201          * information.
 202          *
 203          * We use a generation counter, which is set to 0 before
 204          * we start making changes, and is set to a new value
 205          * after we're done. Someone reading the CPU mstate
 206          * should check for the same non-zero value of this
 207          * counter both before and after reading all state. The
 208          * important point is that the reader is not a
 209          * performance-critical path, but this function is.
 210          *
 211          * The ordering of writes is critical. cpu_mstate_gen must
 212          * be visibly zero on all CPUs before we change cpu_mstate
 213          * and cpu_mstate_start. Additionally, cpu_mstate_gen must
 214          * not be restored to oldgen+1 until after all of the other
 215          * writes have become visible.
 216          *
 217          * Normally one puts membar_producer() calls to accomplish
 218          * this. Unfortunately this routine is extremely performance
 219          * critical (esp. in syscall_mstate below) and we cannot
 220          * afford the additional time, particularly on some x86
 221          * architectures with extremely slow sfence calls. On a
 222          * CPU which guarantees write ordering (including sparc, x86,
 223          * and amd64) this is not a problem. The compiler could still
 224          * reorder the writes, so we make the four cpu fields
 225          * volatile to prevent this.
 226          *
 227          * TSO warning: should we port to a non-TSO (or equivalent)
 228          * CPU, this will break.
 229          *
 230          * The reader stills needs the membar_consumer() calls because,
 231          * although the volatiles prevent the compiler from reordering
 232          * loads, the CPU can still do so.
 233          */
 234 
 235         NEW_CPU_MSTATE(cmstate);
 236 }
 237 
 238 /*
 239  * Return an aggregation of user and system CPU time consumed by
 240  * the specified thread in scaled nanoseconds.
 241  */
 242 hrtime_t
 243 mstate_thread_onproc_time(kthread_t *t)
 244 {
 245         hrtime_t aggr_time;
 246         hrtime_t now;
 247         hrtime_t waitrq;
 248         hrtime_t state_start;
 249         struct mstate *ms;
 250         klwp_t *lwp;
 251         int     mstate;
 252 
 253         ASSERT(THREAD_LOCK_HELD(t));
 254 
 255         if ((lwp = ttolwp(t)) == NULL)
 256                 return (0);
 257 
 258         mstate = t->t_mstate;
 259         waitrq = t->t_waitrq;
 260         ms = &lwp->lwp_mstate;
 261         state_start = ms->ms_state_start;
 262 
 263         aggr_time = ms->ms_acct[LMS_USER] +
 264             ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP];
 265 
 266         now = gethrtime_unscaled();
 267 
 268         /*
 269          * NOTE: gethrtime_unscaled on X86 taken on different CPUs is
 270          * inconsistent, so it is possible that now < state_start.
 271          */
 272         if (mstate == LMS_USER || mstate == LMS_SYSTEM || mstate == LMS_TRAP) {
 273                 /* if waitrq is zero, count all of the time. */
 274                 if (waitrq == 0) {
 275                         waitrq = now;
 276                 }
 277 
 278                 if (waitrq > state_start) {
 279                         aggr_time += waitrq - state_start;
 280                 }
 281         }
 282 
 283         scalehrtime(&aggr_time);
 284         return (aggr_time);
 285 }
 286 
 287 /*
 288  * Return the amount of onproc and runnable time this thread has experienced.
 289  *
 290  * Because the fields we read are not protected by locks when updated
 291  * by the thread itself, this is an inherently racey interface.  In
 292  * particular, the ASSERT(THREAD_LOCK_HELD(t)) doesn't guarantee as much
 293  * as it might appear to.
 294  *
 295  * The implication for users of this interface is that onproc and runnable
 296  * are *NOT* monotonically increasing; they may temporarily be larger than
 297  * they should be.
 298  */
 299 void
 300 mstate_systhread_times(kthread_t *t, hrtime_t *onproc, hrtime_t *runnable)
 301 {
 302         struct mstate   *const  ms = &ttolwp(t)->lwp_mstate;
 303 
 304         int             mstate;
 305         hrtime_t        now;
 306         hrtime_t        state_start;
 307         hrtime_t        waitrq;
 308         hrtime_t        aggr_onp;
 309         hrtime_t        aggr_run;
 310 
 311         ASSERT(THREAD_LOCK_HELD(t));
 312         ASSERT(t->t_procp->p_flag & SSYS);
 313         ASSERT(ttolwp(t) != NULL);
 314 
 315         /* shouldn't be any non-SYSTEM on-CPU time */
 316         ASSERT(ms->ms_acct[LMS_USER] == 0);
 317         ASSERT(ms->ms_acct[LMS_TRAP] == 0);
 318 
 319         mstate = t->t_mstate;
 320         waitrq = t->t_waitrq;
 321         state_start = ms->ms_state_start;
 322 
 323         aggr_onp = ms->ms_acct[LMS_SYSTEM];
 324         aggr_run = ms->ms_acct[LMS_WAIT_CPU];
 325 
 326         now = gethrtime_unscaled();
 327 
 328         /* if waitrq == 0, then there is no time to account to TS_RUN */
 329         if (waitrq == 0)
 330                 waitrq = now;
 331 
 332         /* If there is system time to accumulate, do so */
 333         if (mstate == LMS_SYSTEM && state_start < waitrq)
 334                 aggr_onp += waitrq - state_start;
 335 
 336         if (waitrq < now)
 337                 aggr_run += now - waitrq;
 338 
 339         scalehrtime(&aggr_onp);
 340         scalehrtime(&aggr_run);
 341 
 342         *onproc = aggr_onp;
 343         *runnable = aggr_run;
 344 }
 345 
 346 /*
 347  * Return an aggregation of microstate times in scaled nanoseconds (high-res
 348  * time).  This keeps in mind that p_acct is already scaled, and ms_acct is
 349  * not.
 350  */
 351 hrtime_t
 352 mstate_aggr_state(proc_t *p, int a_state)
 353 {
 354         struct mstate *ms;
 355         kthread_t *t;
 356         klwp_t *lwp;
 357         hrtime_t aggr_time;
 358         hrtime_t scaledtime;
 359 
 360         ASSERT(MUTEX_HELD(&p->p_lock));
 361         ASSERT((unsigned)a_state < NMSTATES);
 362 
 363         aggr_time = p->p_acct[a_state];
 364         if (a_state == LMS_SYSTEM)
 365                 aggr_time += p->p_acct[LMS_TRAP];
 366 
 367         t = p->p_tlist;
 368         if (t == NULL)
 369                 return (aggr_time);
 370 
 371         do {
 372                 if (t->t_proc_flag & TP_LWPEXIT)
 373                         continue;
 374 
 375                 lwp = ttolwp(t);
 376                 ms = &lwp->lwp_mstate;
 377                 scaledtime = ms->ms_acct[a_state];
 378                 scalehrtime(&scaledtime);
 379                 aggr_time += scaledtime;
 380                 if (a_state == LMS_SYSTEM) {
 381                         scaledtime = ms->ms_acct[LMS_TRAP];
 382                         scalehrtime(&scaledtime);
 383                         aggr_time += scaledtime;
 384                 }
 385         } while ((t = t->t_forw) != p->p_tlist);
 386 
 387         return (aggr_time);
 388 }
 389 
 390 
 391 void
 392 syscall_mstate(int fromms, int toms)
 393 {
 394         kthread_t *t = curthread;
 395         zone_t *z = ttozone(t);
 396         struct mstate *ms;
 397         hrtime_t *mstimep;
 398         hrtime_t curtime;
 399         klwp_t *lwp;
 400         hrtime_t newtime;
 401         cpu_t *cpu;
 402         uint16_t gen;
 403 
 404         if ((lwp = ttolwp(t)) == NULL)
 405                 return;
 406 
 407         ASSERT(fromms < NMSTATES);
 408         ASSERT(toms < NMSTATES);
 409 
 410         ms = &lwp->lwp_mstate;
 411         mstimep = &ms->ms_acct[fromms];
 412         curtime = gethrtime_unscaled();
 413         newtime = curtime - ms->ms_state_start;
 414         while (newtime < 0) {
 415                 curtime = gethrtime_unscaled();
 416                 newtime = curtime - ms->ms_state_start;
 417         }
 418         *mstimep += newtime;
 419         t->t_mstate = toms;
 420         ms->ms_state_start = curtime;
 421         ms->ms_prev = fromms;
 422         kpreempt_disable(); /* don't change CPU while changing CPU's state */
 423         cpu = CPU;
 424         ASSERT(cpu == t->t_cpu);
 425 
 426         if (fromms == LMS_USER) {
 427                 CPU_UARRAY_VAL(z->zone_ustate, cpu->cpu_id,
 428                     ZONE_USTATE_UTIME) += newtime;
 429         } else if (fromms == LMS_SYSTEM) {
 430                 CPU_UARRAY_VAL(z->zone_ustate, cpu->cpu_id,
 431                     ZONE_USTATE_STIME) += newtime;
 432         }
 433 
 434         if ((toms != LMS_USER) && (cpu->cpu_mstate != CMS_SYSTEM)) {
 435                 NEW_CPU_MSTATE(CMS_SYSTEM);
 436         } else if ((toms == LMS_USER) && (cpu->cpu_mstate != CMS_USER)) {
 437                 NEW_CPU_MSTATE(CMS_USER);
 438         }
 439         kpreempt_enable();
 440 }
 441 
 442 #undef NEW_CPU_MSTATE
 443 
 444 /*
 445  * The following is for computing the percentage of cpu time used recently
 446  * by an lwp.  The function cpu_decay() is also called from /proc code.
 447  *
 448  * exp_x(x):
 449  * Given x as a 64-bit non-negative scaled integer of arbitrary magnitude,
 450  * Return exp(-x) as a 64-bit scaled integer in the range [0 .. 1].
 451  *
 452  * Scaling for 64-bit scaled integer:
 453  * The binary point is to the right of the high-order bit
 454  * of the low-order 32-bit word.
 455  */
 456 
 457 #define LSHIFT  31
 458 #define LSI_ONE ((uint32_t)1 << LSHIFT)   /* 32-bit scaled integer 1 */
 459 
 460 #ifdef DEBUG
 461 uint_t expx_cnt = 0;    /* number of calls to exp_x() */
 462 uint_t expx_mul = 0;    /* number of long multiplies in exp_x() */
 463 #endif
 464 
 465 static uint64_t
 466 exp_x(uint64_t x)
 467 {
 468         int i;
 469         uint64_t ull;
 470         uint32_t ui;
 471 
 472 #ifdef DEBUG
 473         expx_cnt++;
 474 #endif
 475         /*
 476          * By the formula:
 477          *      exp(-x) = exp(-x/2) * exp(-x/2)
 478          * we keep halving x until it becomes small enough for
 479          * the following approximation to be accurate enough:
 480          *      exp(-x) = 1 - x
 481          * We reduce x until it is less than 1/4 (the 2 in LSHIFT-2 below).
 482          * Our final error will be smaller than 4% .
 483          */
 484 
 485         /*
 486          * Use a uint64_t for the initial shift calculation.
 487          */
 488         ull = x >> (LSHIFT-2);
 489 
 490         /*
 491          * Short circuit:
 492          * A number this large produces effectively 0 (actually .005).
 493          * This way, we will never do more than 5 multiplies.
 494          */
 495         if (ull >= (1 << 5))
 496                 return (0);
 497 
 498         ui = ull;       /* OK.  Now we can use a uint_t. */
 499         for (i = 0; ui != 0; i++)
 500                 ui >>= 1;
 501 
 502         if (i != 0) {
 503 #ifdef DEBUG
 504                 expx_mul += i;  /* seldom happens */
 505 #endif
 506                 x >>= i;
 507         }
 508 
 509         /*
 510          * Now we compute 1 - x and square it the number of times
 511          * that we halved x above to produce the final result:
 512          */
 513         x = LSI_ONE - x;
 514         while (i--)
 515                 x = (x * x) >> LSHIFT;
 516 
 517         return (x);
 518 }
 519 
 520 /*
 521  * Given the old percent cpu and a time delta in nanoseconds,
 522  * return the new decayed percent cpu:  pct * exp(-tau),
 523  * where 'tau' is the time delta multiplied by a decay factor.
 524  * We have chosen the decay factor (cpu_decay_factor in param.c)
 525  * to make the decay over five seconds be approximately 20%.
 526  *
 527  * 'pct' is a 32-bit scaled integer <= 1
 528  * The binary point is to the right of the high-order bit
 529  * of the 32-bit word.
 530  */
 531 static uint32_t
 532 cpu_decay(uint32_t pct, hrtime_t nsec)
 533 {
 534         uint64_t delta = (uint64_t)nsec;
 535 
 536         delta /= cpu_decay_factor;
 537         return ((pct * exp_x(delta)) >> LSHIFT);
 538 }
 539 
 540 /*
 541  * Given the old percent cpu and a time delta in nanoseconds,
 542  * return the new grown percent cpu:  1 - ( 1 - pct ) * exp(-tau)
 543  */
 544 static uint32_t
 545 cpu_grow(uint32_t pct, hrtime_t nsec)
 546 {
 547         return (LSI_ONE - cpu_decay(LSI_ONE - pct, nsec));
 548 }
 549 
 550 
 551 /*
 552  * Defined to determine whether a lwp is still on a processor.
 553  */
 554 
 555 #define T_ONPROC(kt)    \
 556         ((kt)->t_mstate < LMS_SLEEP)
 557 #define T_OFFPROC(kt)   \
 558         ((kt)->t_mstate >= LMS_SLEEP)
 559 
 560 uint_t
 561 cpu_update_pct(kthread_t *t, hrtime_t newtime)
 562 {
 563         hrtime_t delta;
 564         hrtime_t hrlb;
 565         uint_t pctcpu;
 566         uint_t npctcpu;
 567 
 568         /*
 569          * This routine can get called at PIL > 0, this *has* to be
 570          * done atomically. Holding locks here causes bad things to happen.
 571          * (read: deadlock).
 572          */
 573 
 574         do {
 575                 pctcpu = t->t_pctcpu;
 576                 hrlb = t->t_hrtime;
 577                 delta = newtime - hrlb;
 578                 if (delta < 0) {
 579                         newtime = gethrtime_unscaled();
 580                         delta = newtime - hrlb;
 581                 }
 582                 t->t_hrtime = newtime;
 583                 scalehrtime(&delta);
 584                 if (T_ONPROC(t) && t->t_waitrq == 0) {
 585                         npctcpu = cpu_grow(pctcpu, delta);
 586                 } else {
 587                         npctcpu = cpu_decay(pctcpu, delta);
 588                 }
 589         } while (atomic_cas_32(&t->t_pctcpu, pctcpu, npctcpu) != pctcpu);
 590 
 591         return (npctcpu);
 592 }
 593 
 594 /*
 595  * Change the microstate level for the LWP and update the
 596  * associated accounting information.  Return the previous
 597  * LWP state.
 598  */
 599 int
 600 new_mstate(kthread_t *t, int new_state)
 601 {
 602         struct mstate *ms;
 603         unsigned state;
 604         hrtime_t *mstimep;
 605         hrtime_t curtime;
 606         hrtime_t newtime;
 607         hrtime_t oldtime;
 608         hrtime_t ztime;
 609         hrtime_t origstart;
 610         klwp_t *lwp;
 611         zone_t *z;
 612 
 613         ASSERT(new_state != LMS_WAIT_CPU);
 614         ASSERT((unsigned)new_state < NMSTATES);
 615         ASSERT(t == curthread || THREAD_LOCK_HELD(t));
 616 
 617         /*
 618          * Don't do microstate processing for threads without a lwp (kernel
 619          * threads).  Also, if we're an interrupt thread that is pinning another
 620          * thread, our t_mstate hasn't been initialized.  We'd be modifying the
 621          * microstate of the underlying lwp which doesn't realize that it's
 622          * pinned.  In this case, also don't change the microstate.
 623          */
 624         if (((lwp = ttolwp(t)) == NULL) || t->t_intr)
 625                 return (LMS_SYSTEM);
 626 
 627         curtime = gethrtime_unscaled();
 628 
 629         /* adjust cpu percentages before we go any further */
 630         (void) cpu_update_pct(t, curtime);
 631 
 632         ms = &lwp->lwp_mstate;
 633         state = t->t_mstate;
 634         origstart = ms->ms_state_start;
 635         do {
 636                 switch (state) {
 637                 case LMS_TFAULT:
 638                 case LMS_DFAULT:
 639                 case LMS_KFAULT:
 640                 case LMS_USER_LOCK:
 641                         mstimep = &ms->ms_acct[LMS_SYSTEM];
 642                         break;
 643                 default:
 644                         mstimep = &ms->ms_acct[state];
 645                         break;
 646                 }
 647                 ztime = newtime = curtime - ms->ms_state_start;
 648                 if (newtime < 0) {
 649                         curtime = gethrtime_unscaled();
 650                         oldtime = *mstimep - 1; /* force CAS to fail */
 651                         continue;
 652                 }
 653                 oldtime = *mstimep;
 654                 newtime += oldtime;
 655                 t->t_mstate = new_state;
 656                 ms->ms_state_start = curtime;
 657         } while (atomic_cas_64((uint64_t *)mstimep, oldtime, newtime) !=
 658             oldtime);
 659 
 660         /*
 661          * Remember the previous running microstate.
 662          */
 663         if (state != LMS_SLEEP && state != LMS_STOPPED)
 664                 ms->ms_prev = state;
 665 
 666         /*
 667          * Switch CPU microstate if appropriate
 668          */
 669 
 670         kpreempt_disable(); /* MUST disable kpreempt before touching t->cpu */
 671 
 672         ASSERT(t->t_cpu == CPU);
 673 
 674         /*
 675          * When the system boots the initial startup thread will have a
 676          * ms_state_start of 0 which would add a huge system time to the global
 677          * zone.  We want to skip aggregating that initial bit of work.
 678          */
 679         if (origstart != 0) {
 680                 z = ttozone(t);
 681                 if (state == LMS_USER) {
 682                         CPU_UARRAY_VAL(z->zone_ustate, t->t_cpu->cpu_id,
 683                             ZONE_USTATE_UTIME) += ztime;
 684                 } else if (state == LMS_SYSTEM) {
 685                         CPU_UARRAY_VAL(z->zone_ustate, t->t_cpu->cpu_id,
 686                             ZONE_USTATE_STIME) += ztime;
 687                 }
 688         }
 689 
 690         if (!CPU_ON_INTR(t->t_cpu) && curthread->t_intr == NULL) {
 691                 if (new_state == LMS_USER && t->t_cpu->cpu_mstate != CMS_USER)
 692                         new_cpu_mstate(CMS_USER, curtime);
 693                 else if (new_state != LMS_USER &&
 694                     t->t_cpu->cpu_mstate != CMS_SYSTEM)
 695                         new_cpu_mstate(CMS_SYSTEM, curtime);
 696         }
 697         kpreempt_enable();
 698 
 699         return (ms->ms_prev);
 700 }
 701 
 702 /*
 703  * Restore the LWP microstate to the previous runnable state.
 704  * Called from disp() with the newly selected lwp.
 705  */
 706 void
 707 restore_mstate(kthread_t *t)
 708 {
 709         struct mstate *ms;
 710         hrtime_t *mstimep;
 711         klwp_t *lwp;
 712         hrtime_t curtime;
 713         hrtime_t waitrq;
 714         hrtime_t newtime;
 715         hrtime_t oldtime;
 716         hrtime_t waittime;
 717         zone_t *z;
 718 
 719         /*
 720          * Don't call restore mstate of threads without lwps.  (Kernel threads)
 721          *
 722          * threads with t_intr set shouldn't be in the dispatcher, so assert
 723          * that nobody here has t_intr.
 724          */
 725         ASSERT(t->t_intr == NULL);
 726 
 727         if ((lwp = ttolwp(t)) == NULL)
 728                 return;
 729 
 730         curtime = gethrtime_unscaled();
 731         (void) cpu_update_pct(t, curtime);
 732         ms = &lwp->lwp_mstate;
 733         ASSERT((unsigned)t->t_mstate < NMSTATES);
 734         do {
 735                 switch (t->t_mstate) {
 736                 case LMS_SLEEP:
 737                         /*
 738                          * Update the timer for the current sleep state.
 739                          */
 740                         ASSERT((unsigned)ms->ms_prev < NMSTATES);
 741                         switch (ms->ms_prev) {
 742                         case LMS_TFAULT:
 743                         case LMS_DFAULT:
 744                         case LMS_KFAULT:
 745                         case LMS_USER_LOCK:
 746                                 mstimep = &ms->ms_acct[ms->ms_prev];
 747                                 break;
 748                         default:
 749                                 mstimep = &ms->ms_acct[LMS_SLEEP];
 750                                 break;
 751                         }
 752                         /*
 753                          * Return to the previous run state.
 754                          */
 755                         t->t_mstate = ms->ms_prev;
 756                         break;
 757                 case LMS_STOPPED:
 758                         mstimep = &ms->ms_acct[LMS_STOPPED];
 759                         /*
 760                          * Return to the previous run state.
 761                          */
 762                         t->t_mstate = ms->ms_prev;
 763                         break;
 764                 case LMS_TFAULT:
 765                 case LMS_DFAULT:
 766                 case LMS_KFAULT:
 767                 case LMS_USER_LOCK:
 768                         mstimep = &ms->ms_acct[LMS_SYSTEM];
 769                         break;
 770                 default:
 771                         mstimep = &ms->ms_acct[t->t_mstate];
 772                         break;
 773                 }
 774                 waitrq = t->t_waitrq;        /* hopefully atomic */
 775                 if (waitrq == 0) {
 776                         waitrq = curtime;
 777                 }
 778                 t->t_waitrq = 0;
 779                 newtime = waitrq - ms->ms_state_start;
 780                 if (newtime < 0) {
 781                         curtime = gethrtime_unscaled();
 782                         oldtime = *mstimep - 1; /* force CAS to fail */
 783                         continue;
 784                 }
 785                 oldtime = *mstimep;
 786                 newtime += oldtime;
 787         } while (atomic_cas_64((uint64_t *)mstimep, oldtime, newtime) !=
 788             oldtime);
 789 
 790         /*
 791          * Update the WAIT_CPU timer and per-cpu waitrq total.
 792          */
 793         z = ttozone(t);
 794         waittime = curtime - waitrq;
 795         ms->ms_acct[LMS_WAIT_CPU] += waittime;
 796 
 797         /*
 798          * We are in a disp context where we're not going to migrate CPUs.
 799          */
 800         CPU_UARRAY_VAL(z->zone_ustate, CPU->cpu_id,
 801             ZONE_USTATE_WTIME) += waittime;
 802 
 803         CPU->cpu_waitrq += waittime;
 804         ms->ms_state_start = curtime;
 805 }
 806 
 807 /*
 808  * Copy lwp microstate accounting and resource usage information
 809  * to the process.  (lwp is terminating)
 810  */
 811 void
 812 term_mstate(kthread_t *t)
 813 {
 814         struct mstate *ms;
 815         proc_t *p = ttoproc(t);
 816         klwp_t *lwp = ttolwp(t);
 817         int i;
 818         hrtime_t tmp;
 819 
 820         ASSERT(MUTEX_HELD(&p->p_lock));
 821 
 822         ms = &lwp->lwp_mstate;
 823         (void) new_mstate(t, LMS_STOPPED);
 824         ms->ms_term = ms->ms_state_start;
 825         tmp = ms->ms_term - ms->ms_start;
 826         scalehrtime(&tmp);
 827         p->p_mlreal += tmp;
 828         for (i = 0; i < NMSTATES; i++) {
 829                 tmp = ms->ms_acct[i];
 830                 scalehrtime(&tmp);
 831                 p->p_acct[i] += tmp;
 832         }
 833         p->p_ru.minflt   += lwp->lwp_ru.minflt;
 834         p->p_ru.majflt   += lwp->lwp_ru.majflt;
 835         p->p_ru.nswap    += lwp->lwp_ru.nswap;
 836         p->p_ru.inblock  += lwp->lwp_ru.inblock;
 837         p->p_ru.oublock  += lwp->lwp_ru.oublock;
 838         p->p_ru.msgsnd   += lwp->lwp_ru.msgsnd;
 839         p->p_ru.msgrcv   += lwp->lwp_ru.msgrcv;
 840         p->p_ru.nsignals += lwp->lwp_ru.nsignals;
 841         p->p_ru.nvcsw    += lwp->lwp_ru.nvcsw;
 842         p->p_ru.nivcsw   += lwp->lwp_ru.nivcsw;
 843         p->p_ru.sysc  += lwp->lwp_ru.sysc;
 844         p->p_ru.ioch  += lwp->lwp_ru.ioch;
 845         p->p_defunct++;
 846 }