1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  * Copyright 2012 Joyent, Inc.  All rights reserved.
  25  */
  26 
  27 #include <sys/types.h>
  28 #include <sys/param.h>
  29 #include <sys/systm.h>
  30 #include <sys/user.h>
  31 #include <sys/proc.h>
  32 #include <sys/cpuvar.h>
  33 #include <sys/thread.h>
  34 #include <sys/debug.h>
  35 #include <sys/msacct.h>
  36 #include <sys/time.h>
  37 #include <sys/zone.h>
  38 
  39 /*
  40  * Mega-theory block comment:
  41  *
  42  * Microstate accounting uses finite states and the transitions between these
  43  * states to measure timing and accounting information.  The state information
  44  * is presently tracked for threads (via microstate accounting) and cpus (via
  45  * cpu microstate accounting).  In each case, these accounting mechanisms use
  46  * states and transitions to measure time spent in each state instead of
  47  * clock-based sampling methodologies.
  48  *
  49  * For microstate accounting:
  50  * state transitions are accomplished by calling new_mstate() to switch between
  51  * states.  Transitions from a sleeping state (LMS_SLEEP and LMS_STOPPED) occur
  52  * by calling restore_mstate() which restores a thread to its previously running
  53  * state.  This code is primarialy executed by the dispatcher in disp() before
  54  * running a process that was put to sleep.  If the thread was not in a sleeping
  55  * state, this call has little effect other than to update the count of time the
  56  * thread has spent waiting on run-queues in its lifetime.
  57  *
  58  * For cpu microstate accounting:
  59  * Cpu microstate accounting is similar to the microstate accounting for threads
  60  * but it tracks user, system, and idle time for cpus.  Cpu microstate
  61  * accounting does not track interrupt times as there is a pre-existing
  62  * interrupt accounting mechanism for this purpose.  Cpu microstate accounting
  63  * tracks time that user threads have spent active, idle, or in the system on a
  64  * given cpu.  Cpu microstate accounting has fewer states which allows it to
  65  * have better defined transitions.  The states transition in the following
  66  * order:
  67  *
  68  *  CMS_USER <-> CMS_SYSTEM <-> CMS_IDLE
  69  *
  70  * In order to get to the idle state, the cpu microstate must first go through
  71  * the system state, and vice-versa for the user state from idle.  The switching
  72  * of the microstates from user to system is done as part of the regular thread
  73  * microstate accounting code, except for the idle state which is switched by
  74  * the dispatcher before it runs the idle loop.
  75  *
  76  * Cpu percentages:
  77  * Cpu percentages are now handled by and based upon microstate accounting
  78  * information (the same is true for load averages).  The routines which handle
  79  * the growing/shrinking and exponentiation of cpu percentages have been moved
  80  * here as it now makes more sense for them to be generated from the microstate
  81  * code.  Cpu percentages are generated similarly to the way they were before;
  82  * however, now they are based upon high-resolution timestamps and the
  83  * timestamps are modified at various state changes instead of during a clock()
  84  * interrupt.  This allows us to generate more accurate cpu percentages which
  85  * are also in-sync with microstate data.
  86  */
  87 
  88 /*
  89  * Initialize the microstate level and the
  90  * associated accounting information for an LWP.
  91  */
  92 void
  93 init_mstate(
  94         kthread_t       *t,
  95         int             init_state)
  96 {
  97         struct mstate *ms;
  98         klwp_t *lwp;
  99         hrtime_t curtime;
 100 
 101         ASSERT(init_state != LMS_WAIT_CPU);
 102         ASSERT((unsigned)init_state < NMSTATES);
 103 
 104         if ((lwp = ttolwp(t)) != NULL) {
 105                 ms = &lwp->lwp_mstate;
 106                 curtime = gethrtime_unscaled();
 107                 ms->ms_prev = LMS_SYSTEM;
 108                 ms->ms_start = curtime;
 109                 ms->ms_term = 0;
 110                 ms->ms_state_start = curtime;
 111                 t->t_mstate = init_state;
 112                 t->t_waitrq = 0;
 113                 t->t_hrtime = curtime;
 114                 if ((t->t_proc_flag & TP_MSACCT) == 0)
 115                         t->t_proc_flag |= TP_MSACCT;
 116                 bzero((caddr_t)&ms->ms_acct[0], sizeof (ms->ms_acct));
 117         }
 118 }
 119 
 120 /*
 121  * Initialize the microstate level and associated accounting information
 122  * for the specified cpu
 123  */
 124 
 125 void
 126 init_cpu_mstate(
 127         cpu_t *cpu,
 128         int init_state)
 129 {
 130         ASSERT(init_state != CMS_DISABLED);
 131 
 132         cpu->cpu_mstate = init_state;
 133         cpu->cpu_mstate_start = gethrtime_unscaled();
 134         cpu->cpu_waitrq = 0;
 135         bzero((caddr_t)&cpu->cpu_acct[0], sizeof (cpu->cpu_acct));
 136 }
 137 
 138 /*
 139  * sets cpu state to OFFLINE.  We don't actually track this time,
 140  * but it serves as a useful placeholder state for when we're not
 141  * doing anything.
 142  */
 143 
 144 void
 145 term_cpu_mstate(struct cpu *cpu)
 146 {
 147         ASSERT(cpu->cpu_mstate != CMS_DISABLED);
 148         cpu->cpu_mstate = CMS_DISABLED;
 149         cpu->cpu_mstate_start = 0;
 150 }
 151 
 152 /* NEW_CPU_MSTATE comments inline in new_cpu_mstate below. */
 153 
 154 #define NEW_CPU_MSTATE(state)                                           \
 155         gen = cpu->cpu_mstate_gen;                                   \
 156         cpu->cpu_mstate_gen = 0;                                     \
 157         /* Need membar_producer() here if stores not ordered / TSO */   \
 158         cpu->cpu_acct[cpu->cpu_mstate] += curtime - cpu->cpu_mstate_start; \
 159         cpu->cpu_mstate = state;                                     \
 160         cpu->cpu_mstate_start = curtime;                             \
 161         /* Need membar_producer() here if stores not ordered / TSO */   \
 162         cpu->cpu_mstate_gen = (++gen == 0) ? 1 : gen;
 163 
 164 void
 165 new_cpu_mstate(int cmstate, hrtime_t curtime)
 166 {
 167         cpu_t *cpu = CPU;
 168         uint16_t gen;
 169 
 170         ASSERT(cpu->cpu_mstate != CMS_DISABLED);
 171         ASSERT(cmstate < NCMSTATES);
 172         ASSERT(cmstate != CMS_DISABLED);
 173 
 174         /*
 175          * This function cannot be re-entrant on a given CPU. As such,
 176          * we ASSERT and panic if we are called on behalf of an interrupt.
 177          * The one exception is for an interrupt which has previously
 178          * blocked. Such an interrupt is being scheduled by the dispatcher
 179          * just like a normal thread, and as such cannot arrive here
 180          * in a re-entrant manner.
 181          */
 182 
 183         ASSERT(!CPU_ON_INTR(cpu) && curthread->t_intr == NULL);
 184         ASSERT(curthread->t_preempt > 0 || curthread == cpu->cpu_idle_thread);
 185 
 186         /*
 187          * LOCKING, or lack thereof:
 188          *
 189          * Updates to CPU mstate can only be made by the CPU
 190          * itself, and the above check to ignore interrupts
 191          * should prevent recursion into this function on a given
 192          * processor. i.e. no possible write contention.
 193          *
 194          * However, reads of CPU mstate can occur at any time
 195          * from any CPU. Any locking added to this code path
 196          * would seriously impact syscall performance. So,
 197          * instead we have a best-effort protection for readers.
 198          * The reader will want to account for any time between
 199          * cpu_mstate_start and the present time. This requires
 200          * some guarantees that the reader is getting coherent
 201          * information.
 202          *
 203          * We use a generation counter, which is set to 0 before
 204          * we start making changes, and is set to a new value
 205          * after we're done. Someone reading the CPU mstate
 206          * should check for the same non-zero value of this
 207          * counter both before and after reading all state. The
 208          * important point is that the reader is not a
 209          * performance-critical path, but this function is.
 210          *
 211          * The ordering of writes is critical. cpu_mstate_gen must
 212          * be visibly zero on all CPUs before we change cpu_mstate
 213          * and cpu_mstate_start. Additionally, cpu_mstate_gen must
 214          * not be restored to oldgen+1 until after all of the other
 215          * writes have become visible.
 216          *
 217          * Normally one puts membar_producer() calls to accomplish
 218          * this. Unfortunately this routine is extremely performance
 219          * critical (esp. in syscall_mstate below) and we cannot
 220          * afford the additional time, particularly on some x86
 221          * architectures with extremely slow sfence calls. On a
 222          * CPU which guarantees write ordering (including sparc, x86,
 223          * and amd64) this is not a problem. The compiler could still
 224          * reorder the writes, so we make the four cpu fields
 225          * volatile to prevent this.
 226          *
 227          * TSO warning: should we port to a non-TSO (or equivalent)
 228          * CPU, this will break.
 229          *
 230          * The reader stills needs the membar_consumer() calls because,
 231          * although the volatiles prevent the compiler from reordering
 232          * loads, the CPU can still do so.
 233          */
 234 
 235         NEW_CPU_MSTATE(cmstate);
 236 }
 237 
 238 /*
 239  * Return an aggregation of user and system CPU time consumed by
 240  * the specified thread in scaled nanoseconds.
 241  */
 242 hrtime_t
 243 mstate_thread_onproc_time(kthread_t *t)
 244 {
 245         hrtime_t aggr_time;
 246         hrtime_t now;
 247         hrtime_t waitrq;
 248         hrtime_t state_start;
 249         struct mstate *ms;
 250         klwp_t *lwp;
 251         int     mstate;
 252 
 253         ASSERT(THREAD_LOCK_HELD(t));
 254 
 255         if ((lwp = ttolwp(t)) == NULL)
 256                 return (0);
 257 
 258         mstate = t->t_mstate;
 259         waitrq = t->t_waitrq;
 260         ms = &lwp->lwp_mstate;
 261         state_start = ms->ms_state_start;
 262 
 263         aggr_time = ms->ms_acct[LMS_USER] +
 264             ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP];
 265 
 266         now = gethrtime_unscaled();
 267 
 268         /*
 269          * NOTE: gethrtime_unscaled on X86 taken on different CPUs is
 270          * inconsistent, so it is possible that now < state_start.
 271          */
 272         if (mstate == LMS_USER || mstate == LMS_SYSTEM || mstate == LMS_TRAP) {
 273                 /* if waitrq is zero, count all of the time. */
 274                 if (waitrq == 0) {
 275                         waitrq = now;
 276                 }
 277 
 278                 if (waitrq > state_start) {
 279                         aggr_time += waitrq - state_start;
 280                 }
 281         }
 282 
 283         scalehrtime(&aggr_time);
 284         return (aggr_time);
 285 }
 286 
 287 /*
 288  * Return the amount of onproc and runnable time this thread has experienced.
 289  *
 290  * Because the fields we read are not protected by locks when updated
 291  * by the thread itself, this is an inherently racey interface.  In
 292  * particular, the ASSERT(THREAD_LOCK_HELD(t)) doesn't guarantee as much
 293  * as it might appear to.
 294  *
 295  * The implication for users of this interface is that onproc and runnable
 296  * are *NOT* monotonically increasing; they may temporarily be larger than
 297  * they should be.
 298  */
 299 void
 300 mstate_systhread_times(kthread_t *t, hrtime_t *onproc, hrtime_t *runnable)
 301 {
 302         struct mstate   *const  ms = &ttolwp(t)->lwp_mstate;
 303 
 304         int             mstate;
 305         hrtime_t        now;
 306         hrtime_t        state_start;
 307         hrtime_t        waitrq;
 308         hrtime_t        aggr_onp;
 309         hrtime_t        aggr_run;
 310 
 311         ASSERT(THREAD_LOCK_HELD(t));
 312         ASSERT(t->t_procp->p_flag & SSYS);
 313         ASSERT(ttolwp(t) != NULL);
 314 
 315         /* shouldn't be any non-SYSTEM on-CPU time */
 316         ASSERT(ms->ms_acct[LMS_USER] == 0);
 317         ASSERT(ms->ms_acct[LMS_TRAP] == 0);
 318 
 319         mstate = t->t_mstate;
 320         waitrq = t->t_waitrq;
 321         state_start = ms->ms_state_start;
 322 
 323         aggr_onp = ms->ms_acct[LMS_SYSTEM];
 324         aggr_run = ms->ms_acct[LMS_WAIT_CPU];
 325 
 326         now = gethrtime_unscaled();
 327 
 328         /* if waitrq == 0, then there is no time to account to TS_RUN */
 329         if (waitrq == 0)
 330                 waitrq = now;
 331 
 332         /* If there is system time to accumulate, do so */
 333         if (mstate == LMS_SYSTEM && state_start < waitrq)
 334                 aggr_onp += waitrq - state_start;
 335 
 336         if (waitrq < now)
 337                 aggr_run += now - waitrq;
 338 
 339         scalehrtime(&aggr_onp);
 340         scalehrtime(&aggr_run);
 341 
 342         *onproc = aggr_onp;
 343         *runnable = aggr_run;
 344 }
 345 
 346 /*
 347  * Return an aggregation of microstate times in scaled nanoseconds (high-res
 348  * time).  This keeps in mind that p_acct is already scaled, and ms_acct is
 349  * not.
 350  */
 351 hrtime_t
 352 mstate_aggr_state(proc_t *p, int a_state)
 353 {
 354         struct mstate *ms;
 355         kthread_t *t;
 356         klwp_t *lwp;
 357         hrtime_t aggr_time;
 358         hrtime_t scaledtime;
 359 
 360         ASSERT(MUTEX_HELD(&p->p_lock));
 361         ASSERT((unsigned)a_state < NMSTATES);
 362 
 363         aggr_time = p->p_acct[a_state];
 364         if (a_state == LMS_SYSTEM)
 365                 aggr_time += p->p_acct[LMS_TRAP];
 366 
 367         t = p->p_tlist;
 368         if (t == NULL)
 369                 return (aggr_time);
 370 
 371         do {
 372                 if (t->t_proc_flag & TP_LWPEXIT)
 373                         continue;
 374 
 375                 lwp = ttolwp(t);
 376                 ms = &lwp->lwp_mstate;
 377                 scaledtime = ms->ms_acct[a_state];
 378                 scalehrtime(&scaledtime);
 379                 aggr_time += scaledtime;
 380                 if (a_state == LMS_SYSTEM) {
 381                         scaledtime = ms->ms_acct[LMS_TRAP];
 382                         scalehrtime(&scaledtime);
 383                         aggr_time += scaledtime;
 384                 }
 385         } while ((t = t->t_forw) != p->p_tlist);
 386 
 387         return (aggr_time);
 388 }
 389 
 390 
 391 void
 392 syscall_mstate(int fromms, int toms)
 393 {
 394         kthread_t *t = curthread;
 395         zone_t *z = ttozone(t);
 396         struct mstate *ms;
 397         hrtime_t *mstimep;
 398         hrtime_t curtime;
 399         klwp_t *lwp;
 400         hrtime_t newtime;
 401         cpu_t *cpu;
 402         uint16_t gen;
 403 
 404         if ((lwp = ttolwp(t)) == NULL)
 405                 return;
 406 
 407         ASSERT(fromms < NMSTATES);
 408         ASSERT(toms < NMSTATES);
 409 
 410         ms = &lwp->lwp_mstate;
 411         mstimep = &ms->ms_acct[fromms];
 412         curtime = gethrtime_unscaled();
 413         newtime = curtime - ms->ms_state_start;
 414         while (newtime < 0) {
 415                 curtime = gethrtime_unscaled();
 416                 newtime = curtime - ms->ms_state_start;
 417         }
 418         *mstimep += newtime;
 419         if (fromms == LMS_USER)
 420                 atomic_add_64(&z->zone_utime, newtime);
 421         else if (fromms == LMS_SYSTEM)
 422                 atomic_add_64(&z->zone_stime, newtime);
 423         t->t_mstate = toms;
 424         ms->ms_state_start = curtime;
 425         ms->ms_prev = fromms;
 426         kpreempt_disable(); /* don't change CPU while changing CPU's state */
 427         cpu = CPU;
 428         ASSERT(cpu == t->t_cpu);
 429         if ((toms != LMS_USER) && (cpu->cpu_mstate != CMS_SYSTEM)) {
 430                 NEW_CPU_MSTATE(CMS_SYSTEM);
 431         } else if ((toms == LMS_USER) && (cpu->cpu_mstate != CMS_USER)) {
 432                 NEW_CPU_MSTATE(CMS_USER);
 433         }
 434         kpreempt_enable();
 435 }
 436 
 437 #undef NEW_CPU_MSTATE
 438 
 439 /*
 440  * The following is for computing the percentage of cpu time used recently
 441  * by an lwp.  The function cpu_decay() is also called from /proc code.
 442  *
 443  * exp_x(x):
 444  * Given x as a 64-bit non-negative scaled integer of arbitrary magnitude,
 445  * Return exp(-x) as a 64-bit scaled integer in the range [0 .. 1].
 446  *
 447  * Scaling for 64-bit scaled integer:
 448  * The binary point is to the right of the high-order bit
 449  * of the low-order 32-bit word.
 450  */
 451 
 452 #define LSHIFT  31
 453 #define LSI_ONE ((uint32_t)1 << LSHIFT)   /* 32-bit scaled integer 1 */
 454 
 455 #ifdef DEBUG
 456 uint_t expx_cnt = 0;    /* number of calls to exp_x() */
 457 uint_t expx_mul = 0;    /* number of long multiplies in exp_x() */
 458 #endif
 459 
 460 static uint64_t
 461 exp_x(uint64_t x)
 462 {
 463         int i;
 464         uint64_t ull;
 465         uint32_t ui;
 466 
 467 #ifdef DEBUG
 468         expx_cnt++;
 469 #endif
 470         /*
 471          * By the formula:
 472          *      exp(-x) = exp(-x/2) * exp(-x/2)
 473          * we keep halving x until it becomes small enough for
 474          * the following approximation to be accurate enough:
 475          *      exp(-x) = 1 - x
 476          * We reduce x until it is less than 1/4 (the 2 in LSHIFT-2 below).
 477          * Our final error will be smaller than 4% .
 478          */
 479 
 480         /*
 481          * Use a uint64_t for the initial shift calculation.
 482          */
 483         ull = x >> (LSHIFT-2);
 484 
 485         /*
 486          * Short circuit:
 487          * A number this large produces effectively 0 (actually .005).
 488          * This way, we will never do more than 5 multiplies.
 489          */
 490         if (ull >= (1 << 5))
 491                 return (0);
 492 
 493         ui = ull;       /* OK.  Now we can use a uint_t. */
 494         for (i = 0; ui != 0; i++)
 495                 ui >>= 1;
 496 
 497         if (i != 0) {
 498 #ifdef DEBUG
 499                 expx_mul += i;  /* seldom happens */
 500 #endif
 501                 x >>= i;
 502         }
 503 
 504         /*
 505          * Now we compute 1 - x and square it the number of times
 506          * that we halved x above to produce the final result:
 507          */
 508         x = LSI_ONE - x;
 509         while (i--)
 510                 x = (x * x) >> LSHIFT;
 511 
 512         return (x);
 513 }
 514 
 515 /*
 516  * Given the old percent cpu and a time delta in nanoseconds,
 517  * return the new decayed percent cpu:  pct * exp(-tau),
 518  * where 'tau' is the time delta multiplied by a decay factor.
 519  * We have chosen the decay factor (cpu_decay_factor in param.c)
 520  * to make the decay over five seconds be approximately 20%.
 521  *
 522  * 'pct' is a 32-bit scaled integer <= 1
 523  * The binary point is to the right of the high-order bit
 524  * of the 32-bit word.
 525  */
 526 static uint32_t
 527 cpu_decay(uint32_t pct, hrtime_t nsec)
 528 {
 529         uint64_t delta = (uint64_t)nsec;
 530 
 531         delta /= cpu_decay_factor;
 532         return ((pct * exp_x(delta)) >> LSHIFT);
 533 }
 534 
 535 /*
 536  * Given the old percent cpu and a time delta in nanoseconds,
 537  * return the new grown percent cpu:  1 - ( 1 - pct ) * exp(-tau)
 538  */
 539 static uint32_t
 540 cpu_grow(uint32_t pct, hrtime_t nsec)
 541 {
 542         return (LSI_ONE - cpu_decay(LSI_ONE - pct, nsec));
 543 }
 544 
 545 
 546 /*
 547  * Defined to determine whether a lwp is still on a processor.
 548  */
 549 
 550 #define T_ONPROC(kt)    \
 551         ((kt)->t_mstate < LMS_SLEEP)
 552 #define T_OFFPROC(kt)   \
 553         ((kt)->t_mstate >= LMS_SLEEP)
 554 
 555 uint_t
 556 cpu_update_pct(kthread_t *t, hrtime_t newtime)
 557 {
 558         hrtime_t delta;
 559         hrtime_t hrlb;
 560         uint_t pctcpu;
 561         uint_t npctcpu;
 562 
 563         /*
 564          * This routine can get called at PIL > 0, this *has* to be
 565          * done atomically. Holding locks here causes bad things to happen.
 566          * (read: deadlock).
 567          */
 568 
 569         do {
 570                 pctcpu = t->t_pctcpu;
 571                 hrlb = t->t_hrtime;
 572                 delta = newtime - hrlb;
 573                 if (delta < 0) {
 574                         newtime = gethrtime_unscaled();
 575                         delta = newtime - hrlb;
 576                 }
 577                 t->t_hrtime = newtime;
 578                 scalehrtime(&delta);
 579                 if (T_ONPROC(t) && t->t_waitrq == 0) {
 580                         npctcpu = cpu_grow(pctcpu, delta);
 581                 } else {
 582                         npctcpu = cpu_decay(pctcpu, delta);
 583                 }
 584         } while (atomic_cas_32(&t->t_pctcpu, pctcpu, npctcpu) != pctcpu);
 585 
 586         return (npctcpu);
 587 }
 588 
 589 /*
 590  * Change the microstate level for the LWP and update the
 591  * associated accounting information.  Return the previous
 592  * LWP state.
 593  */
 594 int
 595 new_mstate(kthread_t *t, int new_state)
 596 {
 597         struct mstate *ms;
 598         unsigned state;
 599         hrtime_t *mstimep;
 600         hrtime_t curtime;
 601         hrtime_t newtime;
 602         hrtime_t oldtime;
 603         hrtime_t ztime;
 604         hrtime_t origstart;
 605         klwp_t *lwp;
 606         zone_t *z;
 607 
 608         ASSERT(new_state != LMS_WAIT_CPU);
 609         ASSERT((unsigned)new_state < NMSTATES);
 610         ASSERT(t == curthread || THREAD_LOCK_HELD(t));
 611 
 612         /*
 613          * Don't do microstate processing for threads without a lwp (kernel
 614          * threads).  Also, if we're an interrupt thread that is pinning another
 615          * thread, our t_mstate hasn't been initialized.  We'd be modifying the
 616          * microstate of the underlying lwp which doesn't realize that it's
 617          * pinned.  In this case, also don't change the microstate.
 618          */
 619         if (((lwp = ttolwp(t)) == NULL) || t->t_intr)
 620                 return (LMS_SYSTEM);
 621 
 622         curtime = gethrtime_unscaled();
 623 
 624         /* adjust cpu percentages before we go any further */
 625         (void) cpu_update_pct(t, curtime);
 626 
 627         ms = &lwp->lwp_mstate;
 628         state = t->t_mstate;
 629         origstart = ms->ms_state_start;
 630         do {
 631                 switch (state) {
 632                 case LMS_TFAULT:
 633                 case LMS_DFAULT:
 634                 case LMS_KFAULT:
 635                 case LMS_USER_LOCK:
 636                         mstimep = &ms->ms_acct[LMS_SYSTEM];
 637                         break;
 638                 default:
 639                         mstimep = &ms->ms_acct[state];
 640                         break;
 641                 }
 642                 ztime = newtime = curtime - ms->ms_state_start;
 643                 if (newtime < 0) {
 644                         curtime = gethrtime_unscaled();
 645                         oldtime = *mstimep - 1; /* force CAS to fail */
 646                         continue;
 647                 }
 648                 oldtime = *mstimep;
 649                 newtime += oldtime;
 650                 t->t_mstate = new_state;
 651                 ms->ms_state_start = curtime;
 652         } while (atomic_cas_64((uint64_t *)mstimep, oldtime, newtime) !=
 653             oldtime);
 654 
 655         /*
 656          * When the system boots the initial startup thread will have a
 657          * ms_state_start of 0 which would add a huge system time to the global
 658          * zone.  We want to skip aggregating that initial bit of work.
 659          */
 660         if (origstart != 0) {
 661                 z = ttozone(t);
 662                 if (state == LMS_USER)
 663                         atomic_add_64(&z->zone_utime, ztime);
 664                 else if (state == LMS_SYSTEM)
 665                         atomic_add_64(&z->zone_stime, ztime);
 666         }
 667 
 668         /*
 669          * Remember the previous running microstate.
 670          */
 671         if (state != LMS_SLEEP && state != LMS_STOPPED)
 672                 ms->ms_prev = state;
 673 
 674         /*
 675          * Switch CPU microstate if appropriate
 676          */
 677 
 678         kpreempt_disable(); /* MUST disable kpreempt before touching t->cpu */
 679         ASSERT(t->t_cpu == CPU);
 680         if (!CPU_ON_INTR(t->t_cpu) && curthread->t_intr == NULL) {
 681                 if (new_state == LMS_USER && t->t_cpu->cpu_mstate != CMS_USER)
 682                         new_cpu_mstate(CMS_USER, curtime);
 683                 else if (new_state != LMS_USER &&
 684                     t->t_cpu->cpu_mstate != CMS_SYSTEM)
 685                         new_cpu_mstate(CMS_SYSTEM, curtime);
 686         }
 687         kpreempt_enable();
 688 
 689         return (ms->ms_prev);
 690 }
 691 
 692 /*
 693  * Restore the LWP microstate to the previous runnable state.
 694  * Called from disp() with the newly selected lwp.
 695  */
 696 void
 697 restore_mstate(kthread_t *t)
 698 {
 699         struct mstate *ms;
 700         hrtime_t *mstimep;
 701         klwp_t *lwp;
 702         hrtime_t curtime;
 703         hrtime_t waitrq;
 704         hrtime_t newtime;
 705         hrtime_t oldtime;
 706         hrtime_t waittime;
 707         zone_t *z;
 708 
 709         /*
 710          * Don't call restore mstate of threads without lwps.  (Kernel threads)
 711          *
 712          * threads with t_intr set shouldn't be in the dispatcher, so assert
 713          * that nobody here has t_intr.
 714          */
 715         ASSERT(t->t_intr == NULL);
 716 
 717         if ((lwp = ttolwp(t)) == NULL)
 718                 return;
 719 
 720         curtime = gethrtime_unscaled();
 721         (void) cpu_update_pct(t, curtime);
 722         ms = &lwp->lwp_mstate;
 723         ASSERT((unsigned)t->t_mstate < NMSTATES);
 724         do {
 725                 switch (t->t_mstate) {
 726                 case LMS_SLEEP:
 727                         /*
 728                          * Update the timer for the current sleep state.
 729                          */
 730                         ASSERT((unsigned)ms->ms_prev < NMSTATES);
 731                         switch (ms->ms_prev) {
 732                         case LMS_TFAULT:
 733                         case LMS_DFAULT:
 734                         case LMS_KFAULT:
 735                         case LMS_USER_LOCK:
 736                                 mstimep = &ms->ms_acct[ms->ms_prev];
 737                                 break;
 738                         default:
 739                                 mstimep = &ms->ms_acct[LMS_SLEEP];
 740                                 break;
 741                         }
 742                         /*
 743                          * Return to the previous run state.
 744                          */
 745                         t->t_mstate = ms->ms_prev;
 746                         break;
 747                 case LMS_STOPPED:
 748                         mstimep = &ms->ms_acct[LMS_STOPPED];
 749                         /*
 750                          * Return to the previous run state.
 751                          */
 752                         t->t_mstate = ms->ms_prev;
 753                         break;
 754                 case LMS_TFAULT:
 755                 case LMS_DFAULT:
 756                 case LMS_KFAULT:
 757                 case LMS_USER_LOCK:
 758                         mstimep = &ms->ms_acct[LMS_SYSTEM];
 759                         break;
 760                 default:
 761                         mstimep = &ms->ms_acct[t->t_mstate];
 762                         break;
 763                 }
 764                 waitrq = t->t_waitrq;        /* hopefully atomic */
 765                 if (waitrq == 0) {
 766                         waitrq = curtime;
 767                 }
 768                 t->t_waitrq = 0;
 769                 newtime = waitrq - ms->ms_state_start;
 770                 if (newtime < 0) {
 771                         curtime = gethrtime_unscaled();
 772                         oldtime = *mstimep - 1; /* force CAS to fail */
 773                         continue;
 774                 }
 775                 oldtime = *mstimep;
 776                 newtime += oldtime;
 777         } while (atomic_cas_64((uint64_t *)mstimep, oldtime, newtime) !=
 778             oldtime);
 779 
 780         /*
 781          * Update the WAIT_CPU timer and per-cpu waitrq total.
 782          */
 783         z = ttozone(t);
 784         waittime = curtime - waitrq;
 785         ms->ms_acct[LMS_WAIT_CPU] += waittime;
 786         atomic_add_64(&z->zone_wtime, waittime);
 787         CPU->cpu_waitrq += waittime;
 788         ms->ms_state_start = curtime;
 789 }
 790 
 791 /*
 792  * Copy lwp microstate accounting and resource usage information
 793  * to the process.  (lwp is terminating)
 794  */
 795 void
 796 term_mstate(kthread_t *t)
 797 {
 798         struct mstate *ms;
 799         proc_t *p = ttoproc(t);
 800         klwp_t *lwp = ttolwp(t);
 801         int i;
 802         hrtime_t tmp;
 803 
 804         ASSERT(MUTEX_HELD(&p->p_lock));
 805 
 806         ms = &lwp->lwp_mstate;
 807         (void) new_mstate(t, LMS_STOPPED);
 808         ms->ms_term = ms->ms_state_start;
 809         tmp = ms->ms_term - ms->ms_start;
 810         scalehrtime(&tmp);
 811         p->p_mlreal += tmp;
 812         for (i = 0; i < NMSTATES; i++) {
 813                 tmp = ms->ms_acct[i];
 814                 scalehrtime(&tmp);
 815                 p->p_acct[i] += tmp;
 816         }
 817         p->p_ru.minflt   += lwp->lwp_ru.minflt;
 818         p->p_ru.majflt   += lwp->lwp_ru.majflt;
 819         p->p_ru.nswap    += lwp->lwp_ru.nswap;
 820         p->p_ru.inblock  += lwp->lwp_ru.inblock;
 821         p->p_ru.oublock  += lwp->lwp_ru.oublock;
 822         p->p_ru.msgsnd   += lwp->lwp_ru.msgsnd;
 823         p->p_ru.msgrcv   += lwp->lwp_ru.msgrcv;
 824         p->p_ru.nsignals += lwp->lwp_ru.nsignals;
 825         p->p_ru.nvcsw    += lwp->lwp_ru.nvcsw;
 826         p->p_ru.nivcsw   += lwp->lwp_ru.nivcsw;
 827         p->p_ru.sysc  += lwp->lwp_ru.sysc;
 828         p->p_ru.ioch  += lwp->lwp_ru.ioch;
 829         p->p_defunct++;
 830 }