1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * 25 * Copyright 2018 Joyent, Inc. 26 */ 27 28 /* 29 * Management of KMDB's IDT, which is installed upon KMDB activation. 30 * 31 * Debugger activation has two flavors, which cover the cases where KMDB is 32 * loaded at boot, and when it is loaded after boot. In brief, in both cases, 33 * the KDI needs to interpose upon several handlers in the IDT. When 34 * mod-loaded KMDB is deactivated, we undo the IDT interposition, restoring the 35 * handlers to what they were before we started. 36 * 37 * We also take over the entirety of IDT (except the double-fault handler) on 38 * the active CPU when we're in kmdb so we can handle things like page faults 39 * sensibly. 40 * 41 * Boot-loaded KMDB 42 * 43 * When we're first activated, we're running on boot's IDT. We need to be able 44 * to function in this world, so we'll install our handlers into boot's IDT. 45 * This is a little complicated: we're using the fake cpu_t set up by 46 * boot_kdi_tmpinit(), so we can't access cpu_idt directly. Instead, 47 * kdi_idt_write() notices that cpu_idt is NULL, and works around this problem. 48 * 49 * Later, when we're about to switch to the kernel's IDT, it'll call us via 50 * kdi_idt_sync(), allowing us to add our handlers to the new IDT. While 51 * boot-loaded KMDB can't be unloaded, we still need to save the descriptors we 52 * replace so we can pass traps back to the kernel as necessary. 53 * 54 * The last phase of boot-loaded KMDB activation occurs at non-boot CPU 55 * startup. We will be called on each non-boot CPU, thus allowing us to set up 56 * any watchpoints that may have been configured on the boot CPU and interpose 57 * on the given CPU's IDT. We don't save the interposed descriptors in this 58 * case -- see kdi_cpu_init() for details. 59 * 60 * Mod-loaded KMDB 61 * 62 * This style of activation is much simpler, as the CPUs are already running, 63 * and are using their own copy of the kernel's IDT. We simply interpose upon 64 * each CPU's IDT. We save the handlers we replace, both for deactivation and 65 * for passing traps back to the kernel. Note that for the hypervisors' 66 * benefit, we need to xcall to the other CPUs to do this, since we need to 67 * actively set the trap entries in its virtual IDT from that vcpu's context 68 * rather than just modifying the IDT table from the CPU running kdi_activate(). 69 */ 70 71 #include <sys/types.h> 72 #include <sys/segments.h> 73 #include <sys/trap.h> 74 #include <sys/cpuvar.h> 75 #include <sys/reboot.h> 76 #include <sys/sunddi.h> 77 #include <sys/archsystm.h> 78 #include <sys/kdi_impl.h> 79 #include <sys/x_call.h> 80 #include <ia32/sys/psw.h> 81 #include <vm/hat_i86.h> 82 83 #define KDI_GATE_NVECS 3 84 85 #define KDI_IDT_NOSAVE 0 86 #define KDI_IDT_SAVE 1 87 88 #define KDI_IDT_DTYPE_KERNEL 0 89 #define KDI_IDT_DTYPE_BOOT 1 90 91 /* Solely to keep kdiregs_t in the CTF, otherwise unused. */ 92 kdiregs_t kdi_regs; 93 94 kdi_cpusave_t *kdi_cpusave; 95 int kdi_ncpusave; 96 97 static kdi_main_t kdi_kmdb_main; 98 99 kdi_drreg_t kdi_drreg; 100 101 #ifndef __amd64 102 /* Used to track the current set of valid kernel selectors. */ 103 uint32_t kdi_cs; 104 uint32_t kdi_ds; 105 uint32_t kdi_fs; 106 uint32_t kdi_gs; 107 #endif 108 109 uintptr_t kdi_kernel_handler; 110 111 int kdi_trap_switch; 112 113 #define KDI_MEMRANGES_MAX 2 114 115 kdi_memrange_t kdi_memranges[KDI_MEMRANGES_MAX]; 116 int kdi_nmemranges; 117 118 typedef void idt_hdlr_f(void); 119 120 extern idt_hdlr_f kdi_trap0, kdi_trap1, kdi_int2, kdi_trap3, kdi_trap4; 121 extern idt_hdlr_f kdi_trap5, kdi_trap6, kdi_trap7, kdi_trap9; 122 extern idt_hdlr_f kdi_traperr10, kdi_traperr11, kdi_traperr12; 123 extern idt_hdlr_f kdi_traperr13, kdi_traperr14, kdi_trap16, kdi_traperr17; 124 extern idt_hdlr_f kdi_trap18, kdi_trap19, kdi_trap20, kdi_ivct32; 125 extern idt_hdlr_f kdi_invaltrap; 126 extern size_t kdi_ivct_size; 127 128 typedef struct kdi_gate_spec { 129 uint_t kgs_vec; 130 uint_t kgs_dpl; 131 } kdi_gate_spec_t; 132 133 /* 134 * Beware: kdi_pass_to_kernel() has unpleasant knowledge of this list. 135 */ 136 static const kdi_gate_spec_t kdi_gate_specs[KDI_GATE_NVECS] = { 137 { T_SGLSTP, TRP_KPL }, 138 { T_BPTFLT, TRP_UPL }, 139 { T_DBGENTR, TRP_KPL } 140 }; 141 142 static gate_desc_t kdi_kgates[KDI_GATE_NVECS]; 143 144 extern gate_desc_t kdi_idt[NIDT]; 145 146 struct idt_description { 147 uint_t id_low; 148 uint_t id_high; 149 idt_hdlr_f *id_basehdlr; 150 size_t *id_incrp; 151 } idt_description[] = { 152 { T_ZERODIV, 0, kdi_trap0, NULL }, 153 { T_SGLSTP, 0, kdi_trap1, NULL }, 154 { T_NMIFLT, 0, kdi_int2, NULL }, 155 { T_BPTFLT, 0, kdi_trap3, NULL }, 156 { T_OVFLW, 0, kdi_trap4, NULL }, 157 { T_BOUNDFLT, 0, kdi_trap5, NULL }, 158 { T_ILLINST, 0, kdi_trap6, NULL }, 159 { T_NOEXTFLT, 0, kdi_trap7, NULL }, 160 #if !defined(__xpv) 161 { T_DBLFLT, 0, syserrtrap, NULL }, 162 #endif 163 { T_EXTOVRFLT, 0, kdi_trap9, NULL }, 164 { T_TSSFLT, 0, kdi_traperr10, NULL }, 165 { T_SEGFLT, 0, kdi_traperr11, NULL }, 166 { T_STKFLT, 0, kdi_traperr12, NULL }, 167 { T_GPFLT, 0, kdi_traperr13, NULL }, 168 { T_PGFLT, 0, kdi_traperr14, NULL }, 169 { 15, 0, kdi_invaltrap, NULL }, 170 { T_EXTERRFLT, 0, kdi_trap16, NULL }, 171 { T_ALIGNMENT, 0, kdi_traperr17, NULL }, 172 { T_MCE, 0, kdi_trap18, NULL }, 173 { T_SIMDFPE, 0, kdi_trap19, NULL }, 174 { T_DBGENTR, 0, kdi_trap20, NULL }, 175 { 21, 31, kdi_invaltrap, NULL }, 176 { 32, 255, kdi_ivct32, &kdi_ivct_size }, 177 { 0, 0, NULL }, 178 }; 179 180 void 181 kdi_idt_init(selector_t sel) 182 { 183 struct idt_description *id; 184 int i; 185 186 for (id = idt_description; id->id_basehdlr != NULL; id++) { 187 uint_t high = id->id_high != 0 ? id->id_high : id->id_low; 188 size_t incr = id->id_incrp != NULL ? *id->id_incrp : 0; 189 190 #if !defined(__xpv) 191 if (kpti_enable && sel == KCS_SEL && id->id_low == T_DBLFLT) 192 id->id_basehdlr = tr_syserrtrap; 193 #endif 194 195 for (i = id->id_low; i <= high; i++) { 196 caddr_t hdlr = (caddr_t)id->id_basehdlr + 197 incr * (i - id->id_low); 198 set_gatesegd(&kdi_idt[i], (void (*)())hdlr, sel, 199 SDT_SYSIGT, TRP_KPL, IST_DBG); 200 } 201 } 202 } 203 204 static void 205 kdi_idt_gates_install(selector_t sel, int saveold) 206 { 207 gate_desc_t gates[KDI_GATE_NVECS]; 208 int i; 209 210 bzero(gates, sizeof (*gates)); 211 212 for (i = 0; i < KDI_GATE_NVECS; i++) { 213 const kdi_gate_spec_t *gs = &kdi_gate_specs[i]; 214 uintptr_t func = GATESEG_GETOFFSET(&kdi_idt[gs->kgs_vec]); 215 set_gatesegd(&gates[i], (void (*)())func, sel, SDT_SYSIGT, 216 gs->kgs_dpl, IST_DBG); 217 } 218 219 for (i = 0; i < KDI_GATE_NVECS; i++) { 220 uint_t vec = kdi_gate_specs[i].kgs_vec; 221 222 if (saveold) 223 kdi_kgates[i] = CPU->cpu_m.mcpu_idt[vec]; 224 225 kdi_idt_write(&gates[i], vec); 226 } 227 } 228 229 static void 230 kdi_idt_gates_restore(void) 231 { 232 int i; 233 234 for (i = 0; i < KDI_GATE_NVECS; i++) 235 kdi_idt_write(&kdi_kgates[i], kdi_gate_specs[i].kgs_vec); 236 } 237 238 /* 239 * Called when we switch to the kernel's IDT. We need to interpose on the 240 * kernel's IDT entries and stop using KMDBCODE_SEL. 241 */ 242 void 243 kdi_idt_sync(void) 244 { 245 kdi_idt_init(KCS_SEL); 246 kdi_idt_gates_install(KCS_SEL, KDI_IDT_SAVE); 247 } 248 249 void 250 kdi_update_drreg(kdi_drreg_t *drreg) 251 { 252 kdi_drreg = *drreg; 253 } 254 255 void 256 kdi_memrange_add(caddr_t base, size_t len) 257 { 258 kdi_memrange_t *mr = &kdi_memranges[kdi_nmemranges]; 259 260 ASSERT(kdi_nmemranges != KDI_MEMRANGES_MAX); 261 262 mr->mr_base = base; 263 mr->mr_lim = base + len - 1; 264 kdi_nmemranges++; 265 } 266 267 void 268 kdi_idt_switch(kdi_cpusave_t *cpusave) 269 { 270 if (cpusave == NULL) 271 kdi_idtr_set(kdi_idt, sizeof (kdi_idt) - 1); 272 else 273 kdi_idtr_set(cpusave->krs_idt, (sizeof (*idt0) * NIDT) - 1); 274 } 275 276 /* 277 * Activation for CPUs other than the boot CPU, called from that CPU's 278 * mp_startup(). We saved the kernel's descriptors when we initialized the 279 * boot CPU, so we don't want to do it again. Saving the handlers from this 280 * CPU's IDT would actually be dangerous with the CPU initialization method in 281 * use at the time of this writing. With that method, the startup code creates 282 * the IDTs for slave CPUs by copying the one used by the boot CPU, which has 283 * already been interposed upon by KMDB. Were we to interpose again, we'd 284 * replace the kernel's descriptors with our own in the save area. By not 285 * saving, but still overwriting, we'll work in the current world, and in any 286 * future world where the IDT is generated from scratch. 287 */ 288 void 289 kdi_cpu_init(void) 290 { 291 kdi_idt_gates_install(KCS_SEL, KDI_IDT_NOSAVE); 292 /* Load the debug registers. */ 293 kdi_cpu_debug_init(&kdi_cpusave[CPU->cpu_id]); 294 } 295 296 /* 297 * Activation for all CPUs for mod-loaded kmdb, i.e. a kmdb that wasn't 298 * loaded at boot. 299 */ 300 static int 301 kdi_cpu_activate(void) 302 { 303 kdi_idt_gates_install(KCS_SEL, KDI_IDT_SAVE); 304 return (0); 305 } 306 307 void 308 kdi_activate(kdi_main_t main, kdi_cpusave_t *cpusave, uint_t ncpusave) 309 { 310 int i; 311 cpuset_t cpuset; 312 313 CPUSET_ALL(cpuset); 314 315 kdi_cpusave = cpusave; 316 kdi_ncpusave = ncpusave; 317 318 kdi_kmdb_main = main; 319 320 for (i = 0; i < kdi_ncpusave; i++) { 321 kdi_cpusave[i].krs_cpu_id = i; 322 323 kdi_cpusave[i].krs_curcrumb = 324 &kdi_cpusave[i].krs_crumbs[KDI_NCRUMBS - 1]; 325 kdi_cpusave[i].krs_curcrumbidx = KDI_NCRUMBS - 1; 326 } 327 328 if (boothowto & RB_KMDB) 329 kdi_idt_init(KMDBCODE_SEL); 330 else 331 kdi_idt_init(KCS_SEL); 332 333 /* The initial selector set. Updated by the debugger-entry code */ 334 #ifndef __amd64 335 kdi_cs = B32CODE_SEL; 336 kdi_ds = kdi_fs = kdi_gs = B32DATA_SEL; 337 #endif 338 339 kdi_memranges[0].mr_base = kdi_segdebugbase; 340 kdi_memranges[0].mr_lim = kdi_segdebugbase + kdi_segdebugsize - 1; 341 kdi_nmemranges = 1; 342 343 kdi_drreg.dr_ctl = KDIREG_DRCTL_RESERVED; 344 kdi_drreg.dr_stat = KDIREG_DRSTAT_RESERVED; 345 346 if (boothowto & RB_KMDB) { 347 kdi_idt_gates_install(KMDBCODE_SEL, KDI_IDT_NOSAVE); 348 } else { 349 xc_call(0, 0, 0, CPUSET2BV(cpuset), 350 (xc_func_t)kdi_cpu_activate); 351 } 352 } 353 354 static int 355 kdi_cpu_deactivate(void) 356 { 357 kdi_idt_gates_restore(); 358 return (0); 359 } 360 361 void 362 kdi_deactivate(void) 363 { 364 cpuset_t cpuset; 365 CPUSET_ALL(cpuset); 366 367 xc_call(0, 0, 0, CPUSET2BV(cpuset), (xc_func_t)kdi_cpu_deactivate); 368 kdi_nmemranges = 0; 369 } 370 371 /* 372 * We receive all breakpoints and single step traps. Some of them, including 373 * those from userland and those induced by DTrace providers, are intended for 374 * the kernel, and must be processed there. We adopt this 375 * ours-until-proven-otherwise position due to the painful consequences of 376 * sending the kernel an unexpected breakpoint or single step. Unless someone 377 * can prove to us that the kernel is prepared to handle the trap, we'll assume 378 * there's a problem and will give the user a chance to debug it. 379 * 380 * If we return 2, then the calling code should restore the trap-time %cr3: that 381 * is, it really is a kernel-originated trap. 382 */ 383 int 384 kdi_trap_pass(kdi_cpusave_t *cpusave) 385 { 386 greg_t tt = cpusave->krs_gregs[KDIREG_TRAPNO]; 387 greg_t pc = cpusave->krs_gregs[KDIREG_PC]; 388 greg_t cs = cpusave->krs_gregs[KDIREG_CS]; 389 390 if (USERMODE(cs)) 391 return (1); 392 393 if (tt != T_BPTFLT && tt != T_SGLSTP) 394 return (0); 395 396 if (tt == T_BPTFLT && kdi_dtrace_get_state() == 397 KDI_DTSTATE_DTRACE_ACTIVE) 398 return (2); 399 400 /* 401 * See the comments in the kernel's T_SGLSTP handler for why we need to 402 * do this. 403 */ 404 #if !defined(__xpv) 405 if (tt == T_SGLSTP && 406 (pc == (greg_t)sys_sysenter || pc == (greg_t)brand_sys_sysenter || 407 pc == (greg_t)tr_sys_sysenter || 408 pc == (greg_t)tr_brand_sys_sysenter)) { 409 #else 410 if (tt == T_SGLSTP && 411 (pc == (greg_t)sys_sysenter || pc == (greg_t)brand_sys_sysenter)) { 412 #endif 413 return (1); 414 } 415 416 return (0); 417 } 418 419 /* 420 * State has been saved, and all CPUs are on the CPU-specific stacks. All 421 * CPUs enter here, and head off into the debugger proper. 422 */ 423 void 424 kdi_debugger_entry(kdi_cpusave_t *cpusave) 425 { 426 /* 427 * BPTFLT gives us control with %eip set to the instruction *after* 428 * the int 3. Back it off, so we're looking at the instruction that 429 * triggered the fault. 430 */ 431 if (cpusave->krs_gregs[KDIREG_TRAPNO] == T_BPTFLT) 432 cpusave->krs_gregs[KDIREG_PC]--; 433 434 kdi_kmdb_main(cpusave); 435 }