1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
  24  */
  25 /*
  26  * Copyright (c) 2010, Intel Corporation.
  27  * All rights reserved.
  28  */
  29 /*
  30  * Copyright 2018 Joyent, Inc.
  31  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
  32  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
  33  */
  34 
  35 #include <sys/types.h>
  36 #include <sys/thread.h>
  37 #include <sys/cpuvar.h>
  38 #include <sys/cpu.h>
  39 #include <sys/t_lock.h>
  40 #include <sys/param.h>
  41 #include <sys/proc.h>
  42 #include <sys/disp.h>
  43 #include <sys/class.h>
  44 #include <sys/cmn_err.h>
  45 #include <sys/debug.h>
  46 #include <sys/note.h>
  47 #include <sys/asm_linkage.h>
  48 #include <sys/x_call.h>
  49 #include <sys/systm.h>
  50 #include <sys/var.h>
  51 #include <sys/vtrace.h>
  52 #include <vm/hat.h>
  53 #include <vm/as.h>
  54 #include <vm/seg_kmem.h>
  55 #include <vm/seg_kp.h>
  56 #include <sys/segments.h>
  57 #include <sys/kmem.h>
  58 #include <sys/stack.h>
  59 #include <sys/smp_impldefs.h>
  60 #include <sys/x86_archext.h>
  61 #include <sys/machsystm.h>
  62 #include <sys/traptrace.h>
  63 #include <sys/clock.h>
  64 #include <sys/cpc_impl.h>
  65 #include <sys/pg.h>
  66 #include <sys/cmt.h>
  67 #include <sys/dtrace.h>
  68 #include <sys/archsystm.h>
  69 #include <sys/fp.h>
  70 #include <sys/reboot.h>
  71 #include <sys/kdi_machimpl.h>
  72 #include <vm/hat_i86.h>
  73 #include <vm/vm_dep.h>
  74 #include <sys/memnode.h>
  75 #include <sys/pci_cfgspace.h>
  76 #include <sys/mach_mmu.h>
  77 #include <sys/sysmacros.h>
  78 #if defined(__xpv)
  79 #include <sys/hypervisor.h>
  80 #endif
  81 #include <sys/cpu_module.h>
  82 #include <sys/ontrap.h>
  83 
  84 struct cpu      cpus[1] __aligned(MMU_PAGESIZE);
  85 struct cpu      *cpu[NCPU] = {&cpus[0]};
  86 struct cpu      *cpu_free_list;
  87 cpu_core_t      cpu_core[NCPU];
  88 
  89 #define cpu_next_free   cpu_prev
  90 
  91 /*
  92  * Useful for disabling MP bring-up on a MP capable system.
  93  */
  94 int use_mp = 1;
  95 
  96 /*
  97  * to be set by a PSM to indicate what cpus
  98  * are sitting around on the system.
  99  */
 100 cpuset_t mp_cpus;
 101 
 102 /*
 103  * This variable is used by the hat layer to decide whether or not
 104  * critical sections are needed to prevent race conditions.  For sun4m,
 105  * this variable is set once enough MP initialization has been done in
 106  * order to allow cross calls.
 107  */
 108 int flushes_require_xcalls;
 109 
 110 cpuset_t cpu_ready_set;         /* initialized in startup() */
 111 
 112 static void mp_startup_boot(void);
 113 static void mp_startup_hotplug(void);
 114 
 115 static void cpu_sep_enable(void);
 116 static void cpu_sep_disable(void);
 117 static void cpu_asysc_enable(void);
 118 static void cpu_asysc_disable(void);
 119 
 120 /*
 121  * Init CPU info - get CPU type info for processor_info system call.
 122  */
 123 void
 124 init_cpu_info(struct cpu *cp)
 125 {
 126         processor_info_t *pi = &cp->cpu_type_info;
 127 
 128         /*
 129          * Get clock-frequency property for the CPU.
 130          */
 131         pi->pi_clock = cpu_freq;
 132 
 133         /*
 134          * Current frequency in Hz.
 135          */
 136         cp->cpu_curr_clock = cpu_freq_hz;
 137 
 138         /*
 139          * Supported frequencies.
 140          */
 141         if (cp->cpu_supp_freqs == NULL) {
 142                 cpu_set_supp_freqs(cp, NULL);
 143         }
 144 
 145         (void) strcpy(pi->pi_processor_type, "i386");
 146         if (fpu_exists)
 147                 (void) strcpy(pi->pi_fputypes, "i387 compatible");
 148 
 149         cp->cpu_idstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP);
 150         cp->cpu_brandstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP);
 151 
 152         /*
 153          * If called for the BSP, cp is equal to current CPU.
 154          * For non-BSPs, cpuid info of cp is not ready yet, so use cpuid info
 155          * of current CPU as default values for cpu_idstr and cpu_brandstr.
 156          * They will be corrected in mp_startup_common() after cpuid_pass1()
 157          * has been invoked on target CPU.
 158          */
 159         (void) cpuid_getidstr(CPU, cp->cpu_idstr, CPU_IDSTRLEN);
 160         (void) cpuid_getbrandstr(CPU, cp->cpu_brandstr, CPU_IDSTRLEN);
 161 }
 162 
 163 /*
 164  * Configure syscall support on this CPU.
 165  */
 166 /*ARGSUSED*/
 167 void
 168 init_cpu_syscall(struct cpu *cp)
 169 {
 170         kpreempt_disable();
 171 
 172         if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
 173             is_x86_feature(x86_featureset, X86FSET_ASYSC)) {
 174                 uint64_t flags;
 175 
 176 #if !defined(__xpv)
 177                 /*
 178                  * The syscall instruction imposes a certain ordering on
 179                  * segment selectors, so we double-check that ordering
 180                  * here.
 181                  */
 182                 CTASSERT(KDS_SEL == KCS_SEL + 8);
 183                 CTASSERT(UDS_SEL == U32CS_SEL + 8);
 184                 CTASSERT(UCS_SEL == U32CS_SEL + 16);
 185 #endif
 186 
 187                 /*
 188                  * Turn syscall/sysret extensions on.
 189                  */
 190                 cpu_asysc_enable();
 191 
 192                 /*
 193                  * Program the magic registers ..
 194                  */
 195                 wrmsr(MSR_AMD_STAR,
 196                     ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 32);
 197                 if (kpti_enable == 1) {
 198                         wrmsr(MSR_AMD_LSTAR,
 199                             (uint64_t)(uintptr_t)tr_sys_syscall);
 200                         wrmsr(MSR_AMD_CSTAR,
 201                             (uint64_t)(uintptr_t)tr_sys_syscall32);
 202                 } else {
 203                         wrmsr(MSR_AMD_LSTAR,
 204                             (uint64_t)(uintptr_t)sys_syscall);
 205                         wrmsr(MSR_AMD_CSTAR,
 206                             (uint64_t)(uintptr_t)sys_syscall32);
 207                 }
 208 
 209                 /*
 210                  * This list of flags is masked off the incoming
 211                  * %rfl when we enter the kernel.
 212                  */
 213                 flags = PS_IE | PS_T;
 214                 if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_TRUE)
 215                         flags |= PS_ACHK;
 216                 wrmsr(MSR_AMD_SFMASK, flags);
 217         }
 218 
 219         /*
 220          * On 64-bit kernels on Nocona machines, the 32-bit syscall
 221          * variant isn't available to 32-bit applications, but sysenter is.
 222          */
 223         if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
 224             is_x86_feature(x86_featureset, X86FSET_SEP)) {
 225 
 226 #if !defined(__xpv)
 227                 /*
 228                  * The sysenter instruction imposes a certain ordering on
 229                  * segment selectors, so we double-check that ordering
 230                  * here. See "sysenter" in Intel document 245471-012, "IA-32
 231                  * Intel Architecture Software Developer's Manual Volume 2:
 232                  * Instruction Set Reference"
 233                  */
 234                 CTASSERT(KDS_SEL == KCS_SEL + 8);
 235 
 236                 CTASSERT(U32CS_SEL == ((KCS_SEL + 16) | 3));
 237                 CTASSERT(UDS_SEL == U32CS_SEL + 8);
 238 #endif
 239 
 240                 cpu_sep_enable();
 241 
 242                 /*
 243                  * resume() sets this value to the base of the threads stack
 244                  * via a context handler.
 245                  */
 246                 wrmsr(MSR_INTC_SEP_ESP, 0);
 247 
 248                 if (kpti_enable == 1) {
 249                         wrmsr(MSR_INTC_SEP_EIP,
 250                             (uint64_t)(uintptr_t)tr_sys_sysenter);
 251                 } else {
 252                         wrmsr(MSR_INTC_SEP_EIP,
 253                             (uint64_t)(uintptr_t)sys_sysenter);
 254                 }
 255         }
 256 
 257         kpreempt_enable();
 258 }
 259 
 260 #if !defined(__xpv)
 261 /*
 262  * Configure per-cpu ID GDT
 263  */
 264 static void
 265 init_cpu_id_gdt(struct cpu *cp)
 266 {
 267         /* Write cpu_id into limit field of GDT for usermode retrieval */
 268 #if defined(__amd64)
 269         set_usegd(&cp->cpu_gdt[GDT_CPUID], SDP_SHORT, NULL, cp->cpu_id,
 270             SDT_MEMRODA, SEL_UPL, SDP_BYTES, SDP_OP32);
 271 #elif defined(__i386)
 272         set_usegd(&cp->cpu_gdt[GDT_CPUID], NULL, cp->cpu_id, SDT_MEMRODA,
 273             SEL_UPL, SDP_BYTES, SDP_OP32);
 274 #endif
 275 }
 276 #endif /* !defined(__xpv) */
 277 
 278 /*
 279  * Multiprocessor initialization.
 280  *
 281  * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the
 282  * startup and idle threads for the specified CPU.
 283  * Parameter boot is true for boot time operations and is false for CPU
 284  * DR operations.
 285  */
 286 static struct cpu *
 287 mp_cpu_configure_common(int cpun, boolean_t boot)
 288 {
 289         struct cpu *cp;
 290         kthread_id_t tp;
 291         caddr_t sp;
 292         proc_t *procp;
 293 #if !defined(__xpv)
 294         extern int idle_cpu_prefer_mwait;
 295         extern void cpu_idle_mwait();
 296 #endif
 297         extern void idle();
 298         extern void cpu_idle();
 299 
 300 #ifdef TRAPTRACE
 301         trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun];
 302 #endif
 303 
 304         ASSERT(MUTEX_HELD(&cpu_lock));
 305         ASSERT(cpun < NCPU && cpu[cpun] == NULL);
 306 
 307         if (cpu_free_list == NULL) {
 308                 cp = kmem_zalloc(sizeof (*cp), KM_SLEEP);
 309         } else {
 310                 cp = cpu_free_list;
 311                 cpu_free_list = cp->cpu_next_free;
 312         }
 313 
 314         cp->cpu_m.mcpu_istamp = cpun << 16;
 315 
 316         /* Create per CPU specific threads in the process p0. */
 317         procp = &p0;
 318 
 319         /*
 320          * Initialize the dispatcher first.
 321          */
 322         disp_cpu_init(cp);
 323 
 324         cpu_vm_data_init(cp);
 325 
 326         /*
 327          * Allocate and initialize the startup thread for this CPU.
 328          * Interrupt and process switch stacks get allocated later
 329          * when the CPU starts running.
 330          */
 331         tp = thread_create(NULL, 0, NULL, NULL, 0, procp,
 332             TS_STOPPED, maxclsyspri);
 333 
 334         /*
 335          * Set state to TS_ONPROC since this thread will start running
 336          * as soon as the CPU comes online.
 337          *
 338          * All the other fields of the thread structure are setup by
 339          * thread_create().
 340          */
 341         THREAD_ONPROC(tp, cp);
 342         tp->t_preempt = 1;
 343         tp->t_bound_cpu = cp;
 344         tp->t_affinitycnt = 1;
 345         tp->t_cpu = cp;
 346         tp->t_disp_queue = cp->cpu_disp;
 347 
 348         /*
 349          * Setup thread to start in mp_startup_common.
 350          */
 351         sp = tp->t_stk;
 352         tp->t_sp = (uintptr_t)(sp - MINFRAME);
 353 #if defined(__amd64)
 354         tp->t_sp -= STACK_ENTRY_ALIGN;               /* fake a call */
 355 #endif
 356         /*
 357          * Setup thread start entry point for boot or hotplug.
 358          */
 359         if (boot) {
 360                 tp->t_pc = (uintptr_t)mp_startup_boot;
 361         } else {
 362                 tp->t_pc = (uintptr_t)mp_startup_hotplug;
 363         }
 364 
 365         cp->cpu_id = cpun;
 366         cp->cpu_self = cp;
 367         cp->cpu_thread = tp;
 368         cp->cpu_lwp = NULL;
 369         cp->cpu_dispthread = tp;
 370         cp->cpu_dispatch_pri = DISP_PRIO(tp);
 371 
 372         /*
 373          * cpu_base_spl must be set explicitly here to prevent any blocking
 374          * operations in mp_startup_common from causing the spl of the cpu
 375          * to drop to 0 (allowing device interrupts before we're ready) in
 376          * resume().
 377          * cpu_base_spl MUST remain at LOCK_LEVEL until the cpu is CPU_READY.
 378          * As an extra bit of security on DEBUG kernels, this is enforced with
 379          * an assertion in mp_startup_common() -- before cpu_base_spl is set
 380          * to its proper value.
 381          */
 382         cp->cpu_base_spl = ipltospl(LOCK_LEVEL);
 383 
 384         /*
 385          * Now, initialize per-CPU idle thread for this CPU.
 386          */
 387         tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1);
 388 
 389         cp->cpu_idle_thread = tp;
 390 
 391         tp->t_preempt = 1;
 392         tp->t_bound_cpu = cp;
 393         tp->t_affinitycnt = 1;
 394         tp->t_cpu = cp;
 395         tp->t_disp_queue = cp->cpu_disp;
 396 
 397         /*
 398          * Bootstrap the CPU's PG data
 399          */
 400         pg_cpu_bootstrap(cp);
 401 
 402         /*
 403          * Perform CPC initialization on the new CPU.
 404          */
 405         kcpc_hw_init(cp);
 406 
 407         /*
 408          * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2
 409          * for each CPU.
 410          */
 411         setup_vaddr_for_ppcopy(cp);
 412 
 413         /*
 414          * Allocate page for new GDT and initialize from current GDT.
 415          */
 416 #if !defined(__lint)
 417         ASSERT((sizeof (*cp->cpu_gdt) * NGDT) <= PAGESIZE);
 418 #endif
 419         cp->cpu_gdt = kmem_zalloc(PAGESIZE, KM_SLEEP);
 420         bcopy(CPU->cpu_gdt, cp->cpu_gdt, (sizeof (*cp->cpu_gdt) * NGDT));
 421 
 422 #if defined(__i386)
 423         /*
 424          * setup kernel %gs.
 425          */
 426         set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA,
 427             SEL_KPL, 0, 1);
 428 #endif
 429 
 430         /*
 431          * Allocate pages for the CPU LDT.
 432          */
 433         cp->cpu_m.mcpu_ldt = kmem_zalloc(LDT_CPU_SIZE, KM_SLEEP);
 434         cp->cpu_m.mcpu_ldt_len = 0;
 435 
 436         /*
 437          * Allocate a per-CPU IDT and initialize the new IDT to the currently
 438          * runing CPU.
 439          */
 440 #if !defined(__lint)
 441         ASSERT((sizeof (*CPU->cpu_idt) * NIDT) <= PAGESIZE);
 442 #endif
 443         cp->cpu_idt = kmem_alloc(PAGESIZE, KM_SLEEP);
 444         bcopy(CPU->cpu_idt, cp->cpu_idt, PAGESIZE);
 445 
 446         /*
 447          * alloc space for cpuid info
 448          */
 449         cpuid_alloc_space(cp);
 450 #if !defined(__xpv)
 451         if (is_x86_feature(x86_featureset, X86FSET_MWAIT) &&
 452             idle_cpu_prefer_mwait) {
 453                 cp->cpu_m.mcpu_mwait = cpuid_mwait_alloc(cp);
 454                 cp->cpu_m.mcpu_idle_cpu = cpu_idle_mwait;
 455         } else
 456 #endif
 457                 cp->cpu_m.mcpu_idle_cpu = cpu_idle;
 458 
 459         init_cpu_info(cp);
 460 
 461 #if !defined(__xpv)
 462         init_cpu_id_gdt(cp);
 463 #endif
 464 
 465         /*
 466          * alloc space for ucode_info
 467          */
 468         ucode_alloc_space(cp);
 469         xc_init_cpu(cp);
 470         hat_cpu_online(cp);
 471 
 472 #ifdef TRAPTRACE
 473         /*
 474          * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers
 475          */
 476         ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP);
 477         ttc->ttc_next = ttc->ttc_first;
 478         ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize;
 479 #endif
 480 
 481         /*
 482          * Record that we have another CPU.
 483          */
 484         /*
 485          * Initialize the interrupt threads for this CPU
 486          */
 487         cpu_intr_alloc(cp, NINTR_THREADS);
 488 
 489         cp->cpu_flags = CPU_OFFLINE | CPU_QUIESCED | CPU_POWEROFF;
 490         cpu_set_state(cp);
 491 
 492         /*
 493          * Add CPU to list of available CPUs.  It'll be on the active list
 494          * after mp_startup_common().
 495          */
 496         cpu_add_unit(cp);
 497 
 498         return (cp);
 499 }
 500 
 501 /*
 502  * Undo what was done in mp_cpu_configure_common
 503  */
 504 static void
 505 mp_cpu_unconfigure_common(struct cpu *cp, int error)
 506 {
 507         ASSERT(MUTEX_HELD(&cpu_lock));
 508 
 509         /*
 510          * Remove the CPU from the list of available CPUs.
 511          */
 512         cpu_del_unit(cp->cpu_id);
 513 
 514         if (error == ETIMEDOUT) {
 515                 /*
 516                  * The cpu was started, but never *seemed* to run any
 517                  * code in the kernel; it's probably off spinning in its
 518                  * own private world, though with potential references to
 519                  * our kmem-allocated IDTs and GDTs (for example).
 520                  *
 521                  * Worse still, it may actually wake up some time later,
 522                  * so rather than guess what it might or might not do, we
 523                  * leave the fundamental data structures intact.
 524                  */
 525                 cp->cpu_flags = 0;
 526                 return;
 527         }
 528 
 529         /*
 530          * At this point, the only threads bound to this CPU should
 531          * special per-cpu threads: it's idle thread, it's pause threads,
 532          * and it's interrupt threads.  Clean these up.
 533          */
 534         cpu_destroy_bound_threads(cp);
 535         cp->cpu_idle_thread = NULL;
 536 
 537         /*
 538          * Free the interrupt stack.
 539          */
 540         segkp_release(segkp,
 541             cp->cpu_intr_stack - (INTR_STACK_SIZE - SA(MINFRAME)));
 542         cp->cpu_intr_stack = NULL;
 543 
 544 #ifdef TRAPTRACE
 545         /*
 546          * Discard the trap trace buffer
 547          */
 548         {
 549                 trap_trace_ctl_t *ttc = &trap_trace_ctl[cp->cpu_id];
 550 
 551                 kmem_free((void *)ttc->ttc_first, trap_trace_bufsize);
 552                 ttc->ttc_first = NULL;
 553         }
 554 #endif
 555 
 556         hat_cpu_offline(cp);
 557 
 558         ucode_free_space(cp);
 559 
 560         /* Free CPU ID string and brand string. */
 561         if (cp->cpu_idstr) {
 562                 kmem_free(cp->cpu_idstr, CPU_IDSTRLEN);
 563                 cp->cpu_idstr = NULL;
 564         }
 565         if (cp->cpu_brandstr) {
 566                 kmem_free(cp->cpu_brandstr, CPU_IDSTRLEN);
 567                 cp->cpu_brandstr = NULL;
 568         }
 569 
 570 #if !defined(__xpv)
 571         if (cp->cpu_m.mcpu_mwait != NULL) {
 572                 cpuid_mwait_free(cp);
 573                 cp->cpu_m.mcpu_mwait = NULL;
 574         }
 575 #endif
 576         cpuid_free_space(cp);
 577 
 578         if (cp->cpu_idt != CPU->cpu_idt)
 579                 kmem_free(cp->cpu_idt, PAGESIZE);
 580         cp->cpu_idt = NULL;
 581 
 582         kmem_free(cp->cpu_m.mcpu_ldt, LDT_CPU_SIZE);
 583         cp->cpu_m.mcpu_ldt = NULL;
 584         cp->cpu_m.mcpu_ldt_len = 0;
 585 
 586         kmem_free(cp->cpu_gdt, PAGESIZE);
 587         cp->cpu_gdt = NULL;
 588 
 589         if (cp->cpu_supp_freqs != NULL) {
 590                 size_t len = strlen(cp->cpu_supp_freqs) + 1;
 591                 kmem_free(cp->cpu_supp_freqs, len);
 592                 cp->cpu_supp_freqs = NULL;
 593         }
 594 
 595         teardown_vaddr_for_ppcopy(cp);
 596 
 597         kcpc_hw_fini(cp);
 598 
 599         cp->cpu_dispthread = NULL;
 600         cp->cpu_thread = NULL;       /* discarded by cpu_destroy_bound_threads() */
 601 
 602         cpu_vm_data_destroy(cp);
 603 
 604         xc_fini_cpu(cp);
 605         disp_cpu_fini(cp);
 606 
 607         ASSERT(cp != CPU0);
 608         bzero(cp, sizeof (*cp));
 609         cp->cpu_next_free = cpu_free_list;
 610         cpu_free_list = cp;
 611 }
 612 
 613 /*
 614  * Apply workarounds for known errata, and warn about those that are absent.
 615  *
 616  * System vendors occasionally create configurations which contain different
 617  * revisions of the CPUs that are almost but not exactly the same.  At the
 618  * time of writing, this meant that their clock rates were the same, their
 619  * feature sets were the same, but the required workaround were -not-
 620  * necessarily the same.  So, this routine is invoked on -every- CPU soon
 621  * after starting to make sure that the resulting system contains the most
 622  * pessimal set of workarounds needed to cope with *any* of the CPUs in the
 623  * system.
 624  *
 625  * workaround_errata is invoked early in mlsetup() for CPU 0, and in
 626  * mp_startup_common() for all slave CPUs. Slaves process workaround_errata
 627  * prior to acknowledging their readiness to the master, so this routine will
 628  * never be executed by multiple CPUs in parallel, thus making updates to
 629  * global data safe.
 630  *
 631  * These workarounds are based on Rev 3.57 of the Revision Guide for
 632  * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005.
 633  */
 634 
 635 #if defined(OPTERON_ERRATUM_88)
 636 int opteron_erratum_88;         /* if non-zero -> at least one cpu has it */
 637 #endif
 638 
 639 #if defined(OPTERON_ERRATUM_91)
 640 int opteron_erratum_91;         /* if non-zero -> at least one cpu has it */
 641 #endif
 642 
 643 #if defined(OPTERON_ERRATUM_93)
 644 int opteron_erratum_93;         /* if non-zero -> at least one cpu has it */
 645 #endif
 646 
 647 #if defined(OPTERON_ERRATUM_95)
 648 int opteron_erratum_95;         /* if non-zero -> at least one cpu has it */
 649 #endif
 650 
 651 #if defined(OPTERON_ERRATUM_100)
 652 int opteron_erratum_100;        /* if non-zero -> at least one cpu has it */
 653 #endif
 654 
 655 #if defined(OPTERON_ERRATUM_108)
 656 int opteron_erratum_108;        /* if non-zero -> at least one cpu has it */
 657 #endif
 658 
 659 #if defined(OPTERON_ERRATUM_109)
 660 int opteron_erratum_109;        /* if non-zero -> at least one cpu has it */
 661 #endif
 662 
 663 #if defined(OPTERON_ERRATUM_121)
 664 int opteron_erratum_121;        /* if non-zero -> at least one cpu has it */
 665 #endif
 666 
 667 #if defined(OPTERON_ERRATUM_122)
 668 int opteron_erratum_122;        /* if non-zero -> at least one cpu has it */
 669 #endif
 670 
 671 #if defined(OPTERON_ERRATUM_123)
 672 int opteron_erratum_123;        /* if non-zero -> at least one cpu has it */
 673 #endif
 674 
 675 #if defined(OPTERON_ERRATUM_131)
 676 int opteron_erratum_131;        /* if non-zero -> at least one cpu has it */
 677 #endif
 678 
 679 #if defined(OPTERON_WORKAROUND_6336786)
 680 int opteron_workaround_6336786; /* non-zero -> WA relevant and applied */
 681 int opteron_workaround_6336786_UP = 0;  /* Not needed for UP */
 682 #endif
 683 
 684 #if defined(OPTERON_WORKAROUND_6323525)
 685 int opteron_workaround_6323525; /* if non-zero -> at least one cpu has it */
 686 #endif
 687 
 688 #if defined(OPTERON_ERRATUM_298)
 689 int opteron_erratum_298;
 690 #endif
 691 
 692 #if defined(OPTERON_ERRATUM_721)
 693 int opteron_erratum_721;
 694 #endif
 695 
 696 static void
 697 workaround_warning(cpu_t *cp, uint_t erratum)
 698 {
 699         cmn_err(CE_WARN, "cpu%d: no workaround for erratum %u",
 700             cp->cpu_id, erratum);
 701 }
 702 
 703 static void
 704 workaround_applied(uint_t erratum)
 705 {
 706         if (erratum > 1000000)
 707                 cmn_err(CE_CONT, "?workaround applied for cpu issue #%d\n",
 708                     erratum);
 709         else
 710                 cmn_err(CE_CONT, "?workaround applied for cpu erratum #%d\n",
 711                     erratum);
 712 }
 713 
 714 static void
 715 msr_warning(cpu_t *cp, const char *rw, uint_t msr, int error)
 716 {
 717         cmn_err(CE_WARN, "cpu%d: couldn't %smsr 0x%x, error %d",
 718             cp->cpu_id, rw, msr, error);
 719 }
 720 
 721 /*
 722  * Determine the number of nodes in a Hammer / Greyhound / Griffin family
 723  * system.
 724  */
 725 static uint_t
 726 opteron_get_nnodes(void)
 727 {
 728         static uint_t nnodes = 0;
 729 
 730         if (nnodes == 0) {
 731 #ifdef  DEBUG
 732                 uint_t family;
 733 
 734                 /*
 735                  * This routine uses a PCI config space based mechanism
 736                  * for retrieving the number of nodes in the system.
 737                  * Device 24, function 0, offset 0x60 as used here is not
 738                  * AMD processor architectural, and may not work on processor
 739                  * families other than those listed below.
 740                  *
 741                  * Callers of this routine must ensure that we're running on
 742                  * a processor which supports this mechanism.
 743                  * The assertion below is meant to catch calls on unsupported
 744                  * processors.
 745                  */
 746                 family = cpuid_getfamily(CPU);
 747                 ASSERT(family == 0xf || family == 0x10 || family == 0x11);
 748 #endif  /* DEBUG */
 749 
 750                 /*
 751                  * Obtain the number of nodes in the system from
 752                  * bits [6:4] of the Node ID register on node 0.
 753                  *
 754                  * The actual node count is NodeID[6:4] + 1
 755                  *
 756                  * The Node ID register is accessed via function 0,
 757                  * offset 0x60. Node 0 is device 24.
 758                  */
 759                 nnodes = ((pci_getl_func(0, 24, 0, 0x60) & 0x70) >> 4) + 1;
 760         }
 761         return (nnodes);
 762 }
 763 
 764 uint_t
 765 do_erratum_298(struct cpu *cpu)
 766 {
 767         static int      osvwrc = -3;
 768         extern int      osvw_opteron_erratum(cpu_t *, uint_t);
 769 
 770         /*
 771          * L2 Eviction May Occur During Processor Operation To Set
 772          * Accessed or Dirty Bit.
 773          */
 774         if (osvwrc == -3) {
 775                 osvwrc = osvw_opteron_erratum(cpu, 298);
 776         } else {
 777                 /* osvw return codes should be consistent for all cpus */
 778                 ASSERT(osvwrc == osvw_opteron_erratum(cpu, 298));
 779         }
 780 
 781         switch (osvwrc) {
 782         case 0:         /* erratum is not present: do nothing */
 783                 break;
 784         case 1:         /* erratum is present: BIOS workaround applied */
 785                 /*
 786                  * check if workaround is actually in place and issue warning
 787                  * if not.
 788                  */
 789                 if (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) ||
 790                     ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0)) {
 791 #if defined(OPTERON_ERRATUM_298)
 792                         opteron_erratum_298++;
 793 #else
 794                         workaround_warning(cpu, 298);
 795                         return (1);
 796 #endif
 797                 }
 798                 break;
 799         case -1:        /* cannot determine via osvw: check cpuid */
 800                 if ((cpuid_opteron_erratum(cpu, 298) > 0) &&
 801                     (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) ||
 802                     ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0))) {
 803 #if defined(OPTERON_ERRATUM_298)
 804                         opteron_erratum_298++;
 805 #else
 806                         workaround_warning(cpu, 298);
 807                         return (1);
 808 #endif
 809                 }
 810                 break;
 811         }
 812         return (0);
 813 }
 814 
 815 uint_t
 816 workaround_errata(struct cpu *cpu)
 817 {
 818         uint_t missing = 0;
 819 
 820         ASSERT(cpu == CPU);
 821 
 822         /*LINTED*/
 823         if (cpuid_opteron_erratum(cpu, 88) > 0) {
 824                 /*
 825                  * SWAPGS May Fail To Read Correct GS Base
 826                  */
 827 #if defined(OPTERON_ERRATUM_88)
 828                 /*
 829                  * The workaround is an mfence in the relevant assembler code
 830                  */
 831                 opteron_erratum_88++;
 832 #else
 833                 workaround_warning(cpu, 88);
 834                 missing++;
 835 #endif
 836         }
 837 
 838         if (cpuid_opteron_erratum(cpu, 91) > 0) {
 839                 /*
 840                  * Software Prefetches May Report A Page Fault
 841                  */
 842 #if defined(OPTERON_ERRATUM_91)
 843                 /*
 844                  * fix is in trap.c
 845                  */
 846                 opteron_erratum_91++;
 847 #else
 848                 workaround_warning(cpu, 91);
 849                 missing++;
 850 #endif
 851         }
 852 
 853         if (cpuid_opteron_erratum(cpu, 93) > 0) {
 854                 /*
 855                  * RSM Auto-Halt Restart Returns to Incorrect RIP
 856                  */
 857 #if defined(OPTERON_ERRATUM_93)
 858                 /*
 859                  * fix is in trap.c
 860                  */
 861                 opteron_erratum_93++;
 862 #else
 863                 workaround_warning(cpu, 93);
 864                 missing++;
 865 #endif
 866         }
 867 
 868         /*LINTED*/
 869         if (cpuid_opteron_erratum(cpu, 95) > 0) {
 870                 /*
 871                  * RET Instruction May Return to Incorrect EIP
 872                  */
 873 #if defined(OPTERON_ERRATUM_95)
 874 #if defined(_LP64)
 875                 /*
 876                  * Workaround this by ensuring that 32-bit user code and
 877                  * 64-bit kernel code never occupy the same address
 878                  * range mod 4G.
 879                  */
 880                 if (_userlimit32 > 0xc0000000ul)
 881                         *(uintptr_t *)&_userlimit32 = 0xc0000000ul;
 882 
 883                 /*LINTED*/
 884                 ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u);
 885                 opteron_erratum_95++;
 886 #endif  /* _LP64 */
 887 #else
 888                 workaround_warning(cpu, 95);
 889                 missing++;
 890 #endif
 891         }
 892 
 893         if (cpuid_opteron_erratum(cpu, 100) > 0) {
 894                 /*
 895                  * Compatibility Mode Branches Transfer to Illegal Address
 896                  */
 897 #if defined(OPTERON_ERRATUM_100)
 898                 /*
 899                  * fix is in trap.c
 900                  */
 901                 opteron_erratum_100++;
 902 #else
 903                 workaround_warning(cpu, 100);
 904                 missing++;
 905 #endif
 906         }
 907 
 908         /*LINTED*/
 909         if (cpuid_opteron_erratum(cpu, 108) > 0) {
 910                 /*
 911                  * CPUID Instruction May Return Incorrect Model Number In
 912                  * Some Processors
 913                  */
 914 #if defined(OPTERON_ERRATUM_108)
 915                 /*
 916                  * (Our cpuid-handling code corrects the model number on
 917                  * those processors)
 918                  */
 919 #else
 920                 workaround_warning(cpu, 108);
 921                 missing++;
 922 #endif
 923         }
 924 
 925         /*LINTED*/
 926         if (cpuid_opteron_erratum(cpu, 109) > 0) do {
 927                 /*
 928                  * Certain Reverse REP MOVS May Produce Unpredictable Behavior
 929                  */
 930 #if defined(OPTERON_ERRATUM_109)
 931                 /*
 932                  * The "workaround" is to print a warning to upgrade the BIOS
 933                  */
 934                 uint64_t value;
 935                 const uint_t msr = MSR_AMD_PATCHLEVEL;
 936                 int err;
 937 
 938                 if ((err = checked_rdmsr(msr, &value)) != 0) {
 939                         msr_warning(cpu, "rd", msr, err);
 940                         workaround_warning(cpu, 109);
 941                         missing++;
 942                 }
 943                 if (value == 0)
 944                         opteron_erratum_109++;
 945 #else
 946                 workaround_warning(cpu, 109);
 947                 missing++;
 948 #endif
 949         /*CONSTANTCONDITION*/
 950         } while (0);
 951 
 952         /*LINTED*/
 953         if (cpuid_opteron_erratum(cpu, 121) > 0) {
 954                 /*
 955                  * Sequential Execution Across Non_Canonical Boundary Caused
 956                  * Processor Hang
 957                  */
 958 #if defined(OPTERON_ERRATUM_121)
 959 #if defined(_LP64)
 960                 /*
 961                  * Erratum 121 is only present in long (64 bit) mode.
 962                  * Workaround is to include the page immediately before the
 963                  * va hole to eliminate the possibility of system hangs due to
 964                  * sequential execution across the va hole boundary.
 965                  */
 966                 if (opteron_erratum_121)
 967                         opteron_erratum_121++;
 968                 else {
 969                         if (hole_start) {
 970                                 hole_start -= PAGESIZE;
 971                         } else {
 972                                 /*
 973                                  * hole_start not yet initialized by
 974                                  * mmu_init. Initialize hole_start
 975                                  * with value to be subtracted.
 976                                  */
 977                                 hole_start = PAGESIZE;
 978                         }
 979                         opteron_erratum_121++;
 980                 }
 981 #endif  /* _LP64 */
 982 #else
 983                 workaround_warning(cpu, 121);
 984                 missing++;
 985 #endif
 986         }
 987 
 988         /*LINTED*/
 989         if (cpuid_opteron_erratum(cpu, 122) > 0) do {
 990                 /*
 991                  * TLB Flush Filter May Cause Coherency Problem in
 992                  * Multiprocessor Systems
 993                  */
 994 #if defined(OPTERON_ERRATUM_122)
 995                 uint64_t value;
 996                 const uint_t msr = MSR_AMD_HWCR;
 997                 int error;
 998 
 999                 /*
1000                  * Erratum 122 is only present in MP configurations (multi-core
1001                  * or multi-processor).
1002                  */
1003 #if defined(__xpv)
1004                 if (!DOMAIN_IS_INITDOMAIN(xen_info))
1005                         break;
1006                 if (!opteron_erratum_122 && xpv_nr_phys_cpus() == 1)
1007                         break;
1008 #else
1009                 if (!opteron_erratum_122 && opteron_get_nnodes() == 1 &&
1010                     cpuid_get_ncpu_per_chip(cpu) == 1)
1011                         break;
1012 #endif
1013                 /* disable TLB Flush Filter */
1014 
1015                 if ((error = checked_rdmsr(msr, &value)) != 0) {
1016                         msr_warning(cpu, "rd", msr, error);
1017                         workaround_warning(cpu, 122);
1018                         missing++;
1019                 } else {
1020                         value |= (uint64_t)AMD_HWCR_FFDIS;
1021                         if ((error = checked_wrmsr(msr, value)) != 0) {
1022                                 msr_warning(cpu, "wr", msr, error);
1023                                 workaround_warning(cpu, 122);
1024                                 missing++;
1025                         }
1026                 }
1027                 opteron_erratum_122++;
1028 #else
1029                 workaround_warning(cpu, 122);
1030                 missing++;
1031 #endif
1032         /*CONSTANTCONDITION*/
1033         } while (0);
1034 
1035         /*LINTED*/
1036         if (cpuid_opteron_erratum(cpu, 123) > 0) do {
1037                 /*
1038                  * Bypassed Reads May Cause Data Corruption of System Hang in
1039                  * Dual Core Processors
1040                  */
1041 #if defined(OPTERON_ERRATUM_123)
1042                 uint64_t value;
1043                 const uint_t msr = MSR_AMD_PATCHLEVEL;
1044                 int err;
1045 
1046                 /*
1047                  * Erratum 123 applies only to multi-core cpus.
1048                  */
1049                 if (cpuid_get_ncpu_per_chip(cpu) < 2)
1050                         break;
1051 #if defined(__xpv)
1052                 if (!DOMAIN_IS_INITDOMAIN(xen_info))
1053                         break;
1054 #endif
1055                 /*
1056                  * The "workaround" is to print a warning to upgrade the BIOS
1057                  */
1058                 if ((err = checked_rdmsr(msr, &value)) != 0) {
1059                         msr_warning(cpu, "rd", msr, err);
1060                         workaround_warning(cpu, 123);
1061                         missing++;
1062                 }
1063                 if (value == 0)
1064                         opteron_erratum_123++;
1065 #else
1066                 workaround_warning(cpu, 123);
1067                 missing++;
1068 
1069 #endif
1070         /*CONSTANTCONDITION*/
1071         } while (0);
1072 
1073         /*LINTED*/
1074         if (cpuid_opteron_erratum(cpu, 131) > 0) do {
1075                 /*
1076                  * Multiprocessor Systems with Four or More Cores May Deadlock
1077                  * Waiting for a Probe Response
1078                  */
1079 #if defined(OPTERON_ERRATUM_131)
1080                 uint64_t nbcfg;
1081                 const uint_t msr = MSR_AMD_NB_CFG;
1082                 const uint64_t wabits =
1083                     AMD_NB_CFG_SRQ_HEARTBEAT | AMD_NB_CFG_SRQ_SPR;
1084                 int error;
1085 
1086                 /*
1087                  * Erratum 131 applies to any system with four or more cores.
1088                  */
1089                 if (opteron_erratum_131)
1090                         break;
1091 #if defined(__xpv)
1092                 if (!DOMAIN_IS_INITDOMAIN(xen_info))
1093                         break;
1094                 if (xpv_nr_phys_cpus() < 4)
1095                         break;
1096 #else
1097                 if (opteron_get_nnodes() * cpuid_get_ncpu_per_chip(cpu) < 4)
1098                         break;
1099 #endif
1100                 /*
1101                  * Print a warning if neither of the workarounds for
1102                  * erratum 131 is present.
1103                  */
1104                 if ((error = checked_rdmsr(msr, &nbcfg)) != 0) {
1105                         msr_warning(cpu, "rd", msr, error);
1106                         workaround_warning(cpu, 131);
1107                         missing++;
1108                 } else if ((nbcfg & wabits) == 0) {
1109                         opteron_erratum_131++;
1110                 } else {
1111                         /* cannot have both workarounds set */
1112                         ASSERT((nbcfg & wabits) != wabits);
1113                 }
1114 #else
1115                 workaround_warning(cpu, 131);
1116                 missing++;
1117 #endif
1118         /*CONSTANTCONDITION*/
1119         } while (0);
1120 
1121         /*
1122          * This isn't really an erratum, but for convenience the
1123          * detection/workaround code lives here and in cpuid_opteron_erratum.
1124          */
1125         if (cpuid_opteron_erratum(cpu, 6336786) > 0) {
1126 #if defined(OPTERON_WORKAROUND_6336786)
1127                 /*
1128                  * Disable C1-Clock ramping on multi-core/multi-processor
1129                  * K8 platforms to guard against TSC drift.
1130                  */
1131                 if (opteron_workaround_6336786) {
1132                         opteron_workaround_6336786++;
1133 #if defined(__xpv)
1134                 } else if ((DOMAIN_IS_INITDOMAIN(xen_info) &&
1135                     xpv_nr_phys_cpus() > 1) ||
1136                     opteron_workaround_6336786_UP) {
1137                         /*
1138                          * XXPV Hmm.  We can't walk the Northbridges on
1139                          *      the hypervisor; so just complain and drive
1140                          *      on.  This probably needs to be fixed in
1141                          *      the hypervisor itself.
1142                          */
1143                         opteron_workaround_6336786++;
1144                         workaround_warning(cpu, 6336786);
1145 #else   /* __xpv */
1146                 } else if ((opteron_get_nnodes() *
1147                     cpuid_get_ncpu_per_chip(cpu) > 1) ||
1148                     opteron_workaround_6336786_UP) {
1149 
1150                         uint_t  node, nnodes;
1151                         uint8_t data;
1152 
1153                         nnodes = opteron_get_nnodes();
1154                         for (node = 0; node < nnodes; node++) {
1155                                 /*
1156                                  * Clear PMM7[1:0] (function 3, offset 0x87)
1157                                  * Northbridge device is the node id + 24.
1158                                  */
1159                                 data = pci_getb_func(0, node + 24, 3, 0x87);
1160                                 data &= 0xFC;
1161                                 pci_putb_func(0, node + 24, 3, 0x87, data);
1162                         }
1163                         opteron_workaround_6336786++;
1164 #endif  /* __xpv */
1165                 }
1166 #else
1167                 workaround_warning(cpu, 6336786);
1168                 missing++;
1169 #endif
1170         }
1171 
1172         /*LINTED*/
1173         /*
1174          * Mutex primitives don't work as expected.
1175          */
1176         if (cpuid_opteron_erratum(cpu, 6323525) > 0) {
1177 #if defined(OPTERON_WORKAROUND_6323525)
1178                 /*
1179                  * This problem only occurs with 2 or more cores. If bit in
1180                  * MSR_AMD_BU_CFG set, then not applicable. The workaround
1181                  * is to patch the semaphone routines with the lfence
1182                  * instruction to provide necessary load memory barrier with
1183                  * possible subsequent read-modify-write ops.
1184                  *
1185                  * It is too early in boot to call the patch routine so
1186                  * set erratum variable to be done in startup_end().
1187                  */
1188                 if (opteron_workaround_6323525) {
1189                         opteron_workaround_6323525++;
1190 #if defined(__xpv)
1191                 } else if (is_x86_feature(x86_featureset, X86FSET_SSE2)) {
1192                         if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1193                                 /*
1194                                  * XXPV Use dom0_msr here when extended
1195                                  *      operations are supported?
1196                                  */
1197                                 if (xpv_nr_phys_cpus() > 1)
1198                                         opteron_workaround_6323525++;
1199                         } else {
1200                                 /*
1201                                  * We have no way to tell how many physical
1202                                  * cpus there are, or even if this processor
1203                                  * has the problem, so enable the workaround
1204                                  * unconditionally (at some performance cost).
1205                                  */
1206                                 opteron_workaround_6323525++;
1207                         }
1208 #else   /* __xpv */
1209                 } else if (is_x86_feature(x86_featureset, X86FSET_SSE2) &&
1210                     ((opteron_get_nnodes() *
1211                     cpuid_get_ncpu_per_chip(cpu)) > 1)) {
1212                         if ((xrdmsr(MSR_AMD_BU_CFG) & (UINT64_C(1) << 33)) == 0)
1213                                 opteron_workaround_6323525++;
1214 #endif  /* __xpv */
1215                 }
1216 #else
1217                 workaround_warning(cpu, 6323525);
1218                 missing++;
1219 #endif
1220         }
1221 
1222         missing += do_erratum_298(cpu);
1223 
1224         if (cpuid_opteron_erratum(cpu, 721) > 0) {
1225 #if defined(OPTERON_ERRATUM_721)
1226                 on_trap_data_t otd;
1227 
1228                 if (!on_trap(&otd, OT_DATA_ACCESS))
1229                         wrmsr(MSR_AMD_DE_CFG,
1230                             rdmsr(MSR_AMD_DE_CFG) | AMD_DE_CFG_E721);
1231                 no_trap();
1232 
1233                 opteron_erratum_721++;
1234 #else
1235                 workaround_warning(cpu, 721);
1236                 missing++;
1237 #endif
1238         }
1239 
1240 #ifdef __xpv
1241         return (0);
1242 #else
1243         return (missing);
1244 #endif
1245 }
1246 
1247 void
1248 workaround_errata_end()
1249 {
1250 #if defined(OPTERON_ERRATUM_88)
1251         if (opteron_erratum_88)
1252                 workaround_applied(88);
1253 #endif
1254 #if defined(OPTERON_ERRATUM_91)
1255         if (opteron_erratum_91)
1256                 workaround_applied(91);
1257 #endif
1258 #if defined(OPTERON_ERRATUM_93)
1259         if (opteron_erratum_93)
1260                 workaround_applied(93);
1261 #endif
1262 #if defined(OPTERON_ERRATUM_95)
1263         if (opteron_erratum_95)
1264                 workaround_applied(95);
1265 #endif
1266 #if defined(OPTERON_ERRATUM_100)
1267         if (opteron_erratum_100)
1268                 workaround_applied(100);
1269 #endif
1270 #if defined(OPTERON_ERRATUM_108)
1271         if (opteron_erratum_108)
1272                 workaround_applied(108);
1273 #endif
1274 #if defined(OPTERON_ERRATUM_109)
1275         if (opteron_erratum_109) {
1276                 cmn_err(CE_WARN,
1277                     "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
1278                     " processor\nerratum 109 was not detected; updating your"
1279                     " system's BIOS to a version\ncontaining this"
1280                     " microcode patch is HIGHLY recommended or erroneous"
1281                     " system\noperation may occur.\n");
1282         }
1283 #endif
1284 #if defined(OPTERON_ERRATUM_121)
1285         if (opteron_erratum_121)
1286                 workaround_applied(121);
1287 #endif
1288 #if defined(OPTERON_ERRATUM_122)
1289         if (opteron_erratum_122)
1290                 workaround_applied(122);
1291 #endif
1292 #if defined(OPTERON_ERRATUM_123)
1293         if (opteron_erratum_123) {
1294                 cmn_err(CE_WARN,
1295                     "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
1296                     " processor\nerratum 123 was not detected; updating your"
1297                     " system's BIOS to a version\ncontaining this"
1298                     " microcode patch is HIGHLY recommended or erroneous"
1299                     " system\noperation may occur.\n");
1300         }
1301 #endif
1302 #if defined(OPTERON_ERRATUM_131)
1303         if (opteron_erratum_131) {
1304                 cmn_err(CE_WARN,
1305                     "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
1306                     " processor\nerratum 131 was not detected; updating your"
1307                     " system's BIOS to a version\ncontaining this"
1308                     " microcode patch is HIGHLY recommended or erroneous"
1309                     " system\noperation may occur.\n");
1310         }
1311 #endif
1312 #if defined(OPTERON_WORKAROUND_6336786)
1313         if (opteron_workaround_6336786)
1314                 workaround_applied(6336786);
1315 #endif
1316 #if defined(OPTERON_WORKAROUND_6323525)
1317         if (opteron_workaround_6323525)
1318                 workaround_applied(6323525);
1319 #endif
1320 #if defined(OPTERON_ERRATUM_298)
1321         if (opteron_erratum_298) {
1322                 cmn_err(CE_WARN,
1323                     "BIOS microcode patch for AMD 64/Opteron(tm)"
1324                     " processor\nerratum 298 was not detected; updating your"
1325                     " system's BIOS to a version\ncontaining this"
1326                     " microcode patch is HIGHLY recommended or erroneous"
1327                     " system\noperation may occur.\n");
1328         }
1329 #endif
1330 #if defined(OPTERON_ERRATUM_721)
1331         if (opteron_erratum_721)
1332                 workaround_applied(721);
1333 #endif
1334 }
1335 
1336 /*
1337  * The procset_slave and procset_master are used to synchronize
1338  * between the control CPU and the target CPU when starting CPUs.
1339  */
1340 static cpuset_t procset_slave, procset_master;
1341 
1342 static void
1343 mp_startup_wait(cpuset_t *sp, processorid_t cpuid)
1344 {
1345         cpuset_t tempset;
1346 
1347         for (tempset = *sp; !CPU_IN_SET(tempset, cpuid);
1348             tempset = *(volatile cpuset_t *)sp) {
1349                 SMT_PAUSE();
1350         }
1351         CPUSET_ATOMIC_DEL(*(cpuset_t *)sp, cpuid);
1352 }
1353 
1354 static void
1355 mp_startup_signal(cpuset_t *sp, processorid_t cpuid)
1356 {
1357         cpuset_t tempset;
1358 
1359         CPUSET_ATOMIC_ADD(*(cpuset_t *)sp, cpuid);
1360         for (tempset = *sp; CPU_IN_SET(tempset, cpuid);
1361             tempset = *(volatile cpuset_t *)sp) {
1362                 SMT_PAUSE();
1363         }
1364 }
1365 
1366 int
1367 mp_start_cpu_common(cpu_t *cp, boolean_t boot)
1368 {
1369         _NOTE(ARGUNUSED(boot));
1370 
1371         void *ctx;
1372         int delays;
1373         int error = 0;
1374         cpuset_t tempset;
1375         processorid_t cpuid;
1376 #ifndef __xpv
1377         extern void cpupm_init(cpu_t *);
1378 #endif
1379 
1380         ASSERT(cp != NULL);
1381         cpuid = cp->cpu_id;
1382         ctx = mach_cpucontext_alloc(cp);
1383         if (ctx == NULL) {
1384                 cmn_err(CE_WARN,
1385                     "cpu%d: failed to allocate context", cp->cpu_id);
1386                 return (EAGAIN);
1387         }
1388         error = mach_cpu_start(cp, ctx);
1389         if (error != 0) {
1390                 cmn_err(CE_WARN,
1391                     "cpu%d: failed to start, error %d", cp->cpu_id, error);
1392                 mach_cpucontext_free(cp, ctx, error);
1393                 return (error);
1394         }
1395 
1396         for (delays = 0, tempset = procset_slave; !CPU_IN_SET(tempset, cpuid);
1397             delays++) {
1398                 if (delays == 500) {
1399                         /*
1400                          * After five seconds, things are probably looking
1401                          * a bit bleak - explain the hang.
1402                          */
1403                         cmn_err(CE_NOTE, "cpu%d: started, "
1404                             "but not running in the kernel yet", cpuid);
1405                 } else if (delays > 2000) {
1406                         /*
1407                          * We waited at least 20 seconds, bail ..
1408                          */
1409                         error = ETIMEDOUT;
1410                         cmn_err(CE_WARN, "cpu%d: timed out", cpuid);
1411                         mach_cpucontext_free(cp, ctx, error);
1412                         return (error);
1413                 }
1414 
1415                 /*
1416                  * wait at least 10ms, then check again..
1417                  */
1418                 delay(USEC_TO_TICK_ROUNDUP(10000));
1419                 tempset = *((volatile cpuset_t *)&procset_slave);
1420         }
1421         CPUSET_ATOMIC_DEL(procset_slave, cpuid);
1422 
1423         mach_cpucontext_free(cp, ctx, 0);
1424 
1425 #ifndef __xpv
1426         if (tsc_gethrtime_enable)
1427                 tsc_sync_master(cpuid);
1428 #endif
1429 
1430         if (dtrace_cpu_init != NULL) {
1431                 (*dtrace_cpu_init)(cpuid);
1432         }
1433 
1434         /*
1435          * During CPU DR operations, the cpu_lock is held by current
1436          * (the control) thread. We can't release the cpu_lock here
1437          * because that will break the CPU DR logic.
1438          * On the other hand, CPUPM and processor group initialization
1439          * routines need to access the cpu_lock. So we invoke those
1440          * routines here on behalf of mp_startup_common().
1441          *
1442          * CPUPM and processor group initialization routines depend
1443          * on the cpuid probing results. Wait for mp_startup_common()
1444          * to signal that cpuid probing is done.
1445          */
1446         mp_startup_wait(&procset_slave, cpuid);
1447 #ifndef __xpv
1448         cpupm_init(cp);
1449 #endif
1450         (void) pg_cpu_init(cp, B_FALSE);
1451         cpu_set_state(cp);
1452         mp_startup_signal(&procset_master, cpuid);
1453 
1454         return (0);
1455 }
1456 
1457 /*
1458  * Start a single cpu, assuming that the kernel context is available
1459  * to successfully start another cpu.
1460  *
1461  * (For example, real mode code is mapped into the right place
1462  * in memory and is ready to be run.)
1463  */
1464 int
1465 start_cpu(processorid_t who)
1466 {
1467         cpu_t *cp;
1468         int error = 0;
1469         cpuset_t tempset;
1470 
1471         ASSERT(who != 0);
1472 
1473         /*
1474          * Check if there's at least a Mbyte of kmem available
1475          * before attempting to start the cpu.
1476          */
1477         if (kmem_avail() < 1024 * 1024) {
1478                 /*
1479                  * Kick off a reap in case that helps us with
1480                  * later attempts ..
1481                  */
1482                 kmem_reap();
1483                 return (ENOMEM);
1484         }
1485 
1486         /*
1487          * First configure cpu.
1488          */
1489         cp = mp_cpu_configure_common(who, B_TRUE);
1490         ASSERT(cp != NULL);
1491 
1492         /*
1493          * Then start cpu.
1494          */
1495         error = mp_start_cpu_common(cp, B_TRUE);
1496         if (error != 0) {
1497                 mp_cpu_unconfigure_common(cp, error);
1498                 return (error);
1499         }
1500 
1501         mutex_exit(&cpu_lock);
1502         tempset = cpu_ready_set;
1503         while (!CPU_IN_SET(tempset, who)) {
1504                 drv_usecwait(1);
1505                 tempset = *((volatile cpuset_t *)&cpu_ready_set);
1506         }
1507         mutex_enter(&cpu_lock);
1508 
1509         return (0);
1510 }
1511 
1512 void
1513 start_other_cpus(int cprboot)
1514 {
1515         _NOTE(ARGUNUSED(cprboot));
1516 
1517         uint_t who;
1518         uint_t bootcpuid = 0;
1519 
1520         /*
1521          * Initialize our own cpu_info.
1522          */
1523         init_cpu_info(CPU);
1524 
1525 #if !defined(__xpv)
1526         init_cpu_id_gdt(CPU);
1527 #endif
1528 
1529         cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_idstr);
1530         cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_brandstr);
1531 
1532         /*
1533          * KPTI initialisation happens very early in boot, before logging is
1534          * set up. Output a status message now as the boot CPU comes online.
1535          */
1536         cmn_err(CE_CONT, "?KPTI %s (PCID %s, INVPCID %s)\n",
1537             kpti_enable ? "enabled" : "disabled",
1538             x86_use_pcid == 1 ? "in use" :
1539             (is_x86_feature(x86_featureset, X86FSET_PCID) ? "disabled" :
1540             "not supported"),
1541             x86_use_pcid == 1 && x86_use_invpcid == 1 ? "in use" :
1542             (is_x86_feature(x86_featureset, X86FSET_INVPCID) ? "disabled" :
1543             "not supported"));
1544 
1545         /*
1546          * Initialize our syscall handlers
1547          */
1548         init_cpu_syscall(CPU);
1549 
1550         /*
1551          * Take the boot cpu out of the mp_cpus set because we know
1552          * it's already running.  Add it to the cpu_ready_set for
1553          * precisely the same reason.
1554          */
1555         CPUSET_DEL(mp_cpus, bootcpuid);
1556         CPUSET_ADD(cpu_ready_set, bootcpuid);
1557 
1558         /*
1559          * skip the rest of this if
1560          * . only 1 cpu dectected and system isn't hotplug-capable
1561          * . not using MP
1562          */
1563         if ((CPUSET_ISNULL(mp_cpus) && plat_dr_support_cpu() == 0) ||
1564             use_mp == 0) {
1565                 if (use_mp == 0)
1566                         cmn_err(CE_CONT, "?***** Not in MP mode\n");
1567                 goto done;
1568         }
1569 
1570         /*
1571          * perform such initialization as is needed
1572          * to be able to take CPUs on- and off-line.
1573          */
1574         cpu_pause_init();
1575 
1576         xc_init_cpu(CPU);               /* initialize processor crosscalls */
1577 
1578         if (mach_cpucontext_init() != 0)
1579                 goto done;
1580 
1581         flushes_require_xcalls = 1;
1582 
1583         /*
1584          * We lock our affinity to the master CPU to ensure that all slave CPUs
1585          * do their TSC syncs with the same CPU.
1586          */
1587         affinity_set(CPU_CURRENT);
1588 
1589         for (who = 0; who < NCPU; who++) {
1590                 if (!CPU_IN_SET(mp_cpus, who))
1591                         continue;
1592                 ASSERT(who != bootcpuid);
1593 
1594                 mutex_enter(&cpu_lock);
1595                 if (start_cpu(who) != 0)
1596                         CPUSET_DEL(mp_cpus, who);
1597                 cpu_state_change_notify(who, CPU_SETUP);
1598                 mutex_exit(&cpu_lock);
1599         }
1600 
1601         /* Free the space allocated to hold the microcode file */
1602         ucode_cleanup();
1603 
1604         affinity_clear();
1605 
1606         mach_cpucontext_fini();
1607 
1608 done:
1609         if (get_hwenv() == HW_NATIVE)
1610                 workaround_errata_end();
1611         cmi_post_mpstartup();
1612 
1613         if (use_mp && ncpus != boot_max_ncpus) {
1614                 cmn_err(CE_NOTE,
1615                     "System detected %d cpus, but "
1616                     "only %d cpu(s) were enabled during boot.",
1617                     boot_max_ncpus, ncpus);
1618                 cmn_err(CE_NOTE,
1619                     "Use \"boot-ncpus\" parameter to enable more CPU(s). "
1620                     "See eeprom(1M).");
1621         }
1622 }
1623 
1624 int
1625 mp_cpu_configure(int cpuid)
1626 {
1627         cpu_t *cp;
1628 
1629         if (use_mp == 0 || plat_dr_support_cpu() == 0) {
1630                 return (ENOTSUP);
1631         }
1632 
1633         cp = cpu_get(cpuid);
1634         if (cp != NULL) {
1635                 return (EALREADY);
1636         }
1637 
1638         /*
1639          * Check if there's at least a Mbyte of kmem available
1640          * before attempting to start the cpu.
1641          */
1642         if (kmem_avail() < 1024 * 1024) {
1643                 /*
1644                  * Kick off a reap in case that helps us with
1645                  * later attempts ..
1646                  */
1647                 kmem_reap();
1648                 return (ENOMEM);
1649         }
1650 
1651         cp = mp_cpu_configure_common(cpuid, B_FALSE);
1652         ASSERT(cp != NULL && cpu_get(cpuid) == cp);
1653 
1654         return (cp != NULL ? 0 : EAGAIN);
1655 }
1656 
1657 int
1658 mp_cpu_unconfigure(int cpuid)
1659 {
1660         cpu_t *cp;
1661 
1662         if (use_mp == 0 || plat_dr_support_cpu() == 0) {
1663                 return (ENOTSUP);
1664         } else if (cpuid < 0 || cpuid >= max_ncpus) {
1665                 return (EINVAL);
1666         }
1667 
1668         cp = cpu_get(cpuid);
1669         if (cp == NULL) {
1670                 return (ENODEV);
1671         }
1672         mp_cpu_unconfigure_common(cp, 0);
1673 
1674         return (0);
1675 }
1676 
1677 /*
1678  * Startup function for 'other' CPUs (besides boot cpu).
1679  * Called from real_mode_start.
1680  *
1681  * WARNING: until CPU_READY is set, mp_startup_common and routines called by
1682  * mp_startup_common should not call routines (e.g. kmem_free) that could call
1683  * hat_unload which requires CPU_READY to be set.
1684  */
1685 static void
1686 mp_startup_common(boolean_t boot)
1687 {
1688         cpu_t *cp = CPU;
1689         uchar_t new_x86_featureset[BT_SIZEOFMAP(NUM_X86_FEATURES)];
1690         extern void cpu_event_init_cpu(cpu_t *);
1691 
1692         /*
1693          * We need to get TSC on this proc synced (i.e., any delta
1694          * from cpu0 accounted for) as soon as we can, because many
1695          * many things use gethrtime/pc_gethrestime, including
1696          * interrupts, cmn_err, etc.  Before we can do that, we want to
1697          * clear TSC if we're on a buggy Sandy/Ivy Bridge CPU, so do that
1698          * right away.
1699          */
1700         bzero(new_x86_featureset, BT_SIZEOFMAP(NUM_X86_FEATURES));
1701         cpuid_pass1(cp, new_x86_featureset);
1702 
1703         if (boot && get_hwenv() == HW_NATIVE &&
1704             cpuid_getvendor(CPU) == X86_VENDOR_Intel &&
1705             cpuid_getfamily(CPU) == 6 &&
1706             (cpuid_getmodel(CPU) == 0x2d || cpuid_getmodel(CPU) == 0x3e) &&
1707             is_x86_feature(new_x86_featureset, X86FSET_TSC)) {
1708                 (void) wrmsr(REG_TSC, 0UL);
1709         }
1710 
1711         /* Let the control CPU continue into tsc_sync_master() */
1712         mp_startup_signal(&procset_slave, cp->cpu_id);
1713 
1714 #ifndef __xpv
1715         if (tsc_gethrtime_enable)
1716                 tsc_sync_slave();
1717 #endif
1718 
1719         /*
1720          * Once this was done from assembly, but it's safer here; if
1721          * it blocks, we need to be able to swtch() to and from, and
1722          * since we get here by calling t_pc, we need to do that call
1723          * before swtch() overwrites it.
1724          */
1725         (void) (*ap_mlsetup)();
1726 
1727 #ifndef __xpv
1728         /*
1729          * Program this cpu's PAT
1730          */
1731         pat_sync();
1732 #endif
1733 
1734         /*
1735          * Set up TSC_AUX to contain the cpuid for this processor
1736          * for the rdtscp instruction.
1737          */
1738         if (is_x86_feature(x86_featureset, X86FSET_TSCP))
1739                 (void) wrmsr(MSR_AMD_TSCAUX, cp->cpu_id);
1740 
1741         /*
1742          * Initialize this CPU's syscall handlers
1743          */
1744         init_cpu_syscall(cp);
1745 
1746         /*
1747          * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the
1748          * highest level at which a routine is permitted to block on
1749          * an adaptive mutex (allows for cpu poke interrupt in case
1750          * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks
1751          * device interrupts that may end up in the hat layer issuing cross
1752          * calls before CPU_READY is set.
1753          */
1754         splx(ipltospl(LOCK_LEVEL));
1755         sti();
1756 
1757         /*
1758          * Do a sanity check to make sure this new CPU is a sane thing
1759          * to add to the collection of processors running this system.
1760          *
1761          * XXX  Clearly this needs to get more sophisticated, if x86
1762          * systems start to get built out of heterogenous CPUs; as is
1763          * likely to happen once the number of processors in a configuration
1764          * gets large enough.
1765          */
1766         if (compare_x86_featureset(x86_featureset, new_x86_featureset) ==
1767             B_FALSE) {
1768                 cmn_err(CE_CONT, "cpu%d: featureset\n", cp->cpu_id);
1769                 print_x86_featureset(new_x86_featureset);
1770                 cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id);
1771         }
1772 
1773         /*
1774          * There exists a small subset of systems which expose differing
1775          * MWAIT/MONITOR support between CPUs.  If MWAIT support is absent from
1776          * the boot CPU, but is found on a later CPU, the system continues to
1777          * operate as if no MWAIT support is available.
1778          *
1779          * The reverse case, where MWAIT is available on the boot CPU but not
1780          * on a subsequently initialized CPU, is not presently allowed and will
1781          * result in a panic.
1782          */
1783         if (is_x86_feature(x86_featureset, X86FSET_MWAIT) !=
1784             is_x86_feature(new_x86_featureset, X86FSET_MWAIT)) {
1785                 if (!is_x86_feature(x86_featureset, X86FSET_MWAIT)) {
1786                         remove_x86_feature(new_x86_featureset, X86FSET_MWAIT);
1787                 } else {
1788                         panic("unsupported mixed cpu mwait support detected");
1789                 }
1790         }
1791 
1792         /*
1793          * We could be more sophisticated here, and just mark the CPU
1794          * as "faulted" but at this point we'll opt for the easier
1795          * answer of dying horribly.  Provided the boot cpu is ok,
1796          * the system can be recovered by booting with use_mp set to zero.
1797          */
1798         if (workaround_errata(cp) != 0)
1799                 panic("critical workaround(s) missing for cpu%d", cp->cpu_id);
1800 
1801         /*
1802          * We can touch cpu_flags here without acquiring the cpu_lock here
1803          * because the cpu_lock is held by the control CPU which is running
1804          * mp_start_cpu_common().
1805          * Need to clear CPU_QUIESCED flag before calling any function which
1806          * may cause thread context switching, such as kmem_alloc() etc.
1807          * The idle thread checks for CPU_QUIESCED flag and loops for ever if
1808          * it's set. So the startup thread may have no chance to switch back
1809          * again if it's switched away with CPU_QUIESCED set.
1810          */
1811         cp->cpu_flags &= ~(CPU_POWEROFF | CPU_QUIESCED);
1812 
1813         enable_pcid();
1814 
1815         /*
1816          * Setup this processor for XSAVE.
1817          */
1818         if (fp_save_mech == FP_XSAVE) {
1819                 xsave_setup_msr(cp);
1820         }
1821 
1822         cpuid_pass2(cp);
1823         cpuid_pass3(cp);
1824         cpuid_pass4(cp, NULL);
1825 
1826         /*
1827          * Correct cpu_idstr and cpu_brandstr on target CPU after
1828          * cpuid_pass1() is done.
1829          */
1830         (void) cpuid_getidstr(cp, cp->cpu_idstr, CPU_IDSTRLEN);
1831         (void) cpuid_getbrandstr(cp, cp->cpu_brandstr, CPU_IDSTRLEN);
1832 
1833         cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS;
1834 
1835         post_startup_cpu_fixups();
1836 
1837         cpu_event_init_cpu(cp);
1838 
1839         /*
1840          * Enable preemption here so that contention for any locks acquired
1841          * later in mp_startup_common may be preempted if the thread owning
1842          * those locks is continuously executing on other CPUs (for example,
1843          * this CPU must be preemptible to allow other CPUs to pause it during
1844          * their startup phases).  It's safe to enable preemption here because
1845          * the CPU state is pretty-much fully constructed.
1846          */
1847         curthread->t_preempt = 0;
1848 
1849         /* The base spl should still be at LOCK LEVEL here */
1850         ASSERT(cp->cpu_base_spl == ipltospl(LOCK_LEVEL));
1851         set_base_spl();         /* Restore the spl to its proper value */
1852 
1853         pghw_physid_create(cp);
1854         /*
1855          * Delegate initialization tasks, which need to access the cpu_lock,
1856          * to mp_start_cpu_common() because we can't acquire the cpu_lock here
1857          * during CPU DR operations.
1858          */
1859         mp_startup_signal(&procset_slave, cp->cpu_id);
1860         mp_startup_wait(&procset_master, cp->cpu_id);
1861         pg_cmt_cpu_startup(cp);
1862 
1863         if (boot) {
1864                 mutex_enter(&cpu_lock);
1865                 cp->cpu_flags &= ~CPU_OFFLINE;
1866                 cpu_enable_intr(cp);
1867                 cpu_add_active(cp);
1868                 mutex_exit(&cpu_lock);
1869         }
1870 
1871         /* Enable interrupts */
1872         (void) spl0();
1873 
1874         /*
1875          * Fill out cpu_ucode_info.  Update microcode if necessary.
1876          */
1877         ucode_check(cp);
1878 
1879 #ifndef __xpv
1880         {
1881                 /*
1882                  * Set up the CPU module for this CPU.  This can't be done
1883                  * before this CPU is made CPU_READY, because we may (in
1884                  * heterogeneous systems) need to go load another CPU module.
1885                  * The act of attempting to load a module may trigger a
1886                  * cross-call, which will ASSERT unless this cpu is CPU_READY.
1887                  */
1888                 cmi_hdl_t hdl;
1889 
1890                 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1891                     cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) {
1892                         if (is_x86_feature(x86_featureset, X86FSET_MCA))
1893                                 cmi_mca_init(hdl);
1894                         cp->cpu_m.mcpu_cmi_hdl = hdl;
1895                 }
1896         }
1897 #endif /* __xpv */
1898 
1899         if (boothowto & RB_DEBUG)
1900                 kdi_cpu_init();
1901 
1902         /*
1903          * Setting the bit in cpu_ready_set must be the last operation in
1904          * processor initialization; the boot CPU will continue to boot once
1905          * it sees this bit set for all active CPUs.
1906          */
1907         CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id);
1908 
1909         (void) mach_cpu_create_device_node(cp, NULL);
1910 
1911         cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr);
1912         cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr);
1913         cmn_err(CE_CONT, "?cpu%d initialization complete - online\n",
1914             cp->cpu_id);
1915 
1916         /*
1917          * Now we are done with the startup thread, so free it up.
1918          */
1919         thread_exit();
1920         panic("mp_startup: cannot return");
1921         /*NOTREACHED*/
1922 }
1923 
1924 /*
1925  * Startup function for 'other' CPUs at boot time (besides boot cpu).
1926  */
1927 static void
1928 mp_startup_boot(void)
1929 {
1930         mp_startup_common(B_TRUE);
1931 }
1932 
1933 /*
1934  * Startup function for hotplug CPUs at runtime.
1935  */
1936 void
1937 mp_startup_hotplug(void)
1938 {
1939         mp_startup_common(B_FALSE);
1940 }
1941 
1942 /*
1943  * Start CPU on user request.
1944  */
1945 /* ARGSUSED */
1946 int
1947 mp_cpu_start(struct cpu *cp)
1948 {
1949         ASSERT(MUTEX_HELD(&cpu_lock));
1950         return (0);
1951 }
1952 
1953 /*
1954  * Stop CPU on user request.
1955  */
1956 int
1957 mp_cpu_stop(struct cpu *cp)
1958 {
1959         extern int cbe_psm_timer_mode;
1960         ASSERT(MUTEX_HELD(&cpu_lock));
1961 
1962 #ifdef __xpv
1963         /*
1964          * We can't offline vcpu0.
1965          */
1966         if (cp->cpu_id == 0)
1967                 return (EBUSY);
1968 #endif
1969 
1970         /*
1971          * If TIMER_PERIODIC mode is used, CPU0 is the one running it;
1972          * can't stop it.  (This is true only for machines with no TSC.)
1973          */
1974 
1975         if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0))
1976                 return (EBUSY);
1977 
1978         return (0);
1979 }
1980 
1981 /*
1982  * Take the specified CPU out of participation in interrupts.
1983  */
1984 int
1985 cpu_disable_intr(struct cpu *cp)
1986 {
1987         if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS)
1988                 return (EBUSY);
1989 
1990         cp->cpu_flags &= ~CPU_ENABLE;
1991         return (0);
1992 }
1993 
1994 /*
1995  * Allow the specified CPU to participate in interrupts.
1996  */
1997 void
1998 cpu_enable_intr(struct cpu *cp)
1999 {
2000         ASSERT(MUTEX_HELD(&cpu_lock));
2001         cp->cpu_flags |= CPU_ENABLE;
2002         psm_enable_intr(cp->cpu_id);
2003 }
2004 
2005 void
2006 mp_cpu_faulted_enter(struct cpu *cp)
2007 {
2008 #ifdef __xpv
2009         _NOTE(ARGUNUSED(cp));
2010 #else
2011         cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl;
2012 
2013         if (hdl != NULL) {
2014                 cmi_hdl_hold(hdl);
2015         } else {
2016                 hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp),
2017                     cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp));
2018         }
2019         if (hdl != NULL) {
2020                 cmi_faulted_enter(hdl);
2021                 cmi_hdl_rele(hdl);
2022         }
2023 #endif
2024 }
2025 
2026 void
2027 mp_cpu_faulted_exit(struct cpu *cp)
2028 {
2029 #ifdef __xpv
2030         _NOTE(ARGUNUSED(cp));
2031 #else
2032         cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl;
2033 
2034         if (hdl != NULL) {
2035                 cmi_hdl_hold(hdl);
2036         } else {
2037                 hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp),
2038                     cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp));
2039         }
2040         if (hdl != NULL) {
2041                 cmi_faulted_exit(hdl);
2042                 cmi_hdl_rele(hdl);
2043         }
2044 #endif
2045 }
2046 
2047 /*
2048  * The following two routines are used as context operators on threads belonging
2049  * to processes with a private LDT (see sysi86).  Due to the rarity of such
2050  * processes, these routines are currently written for best code readability and
2051  * organization rather than speed.  We could avoid checking x86_featureset at
2052  * every context switch by installing different context ops, depending on
2053  * x86_featureset, at LDT creation time -- one for each combination of fast
2054  * syscall features.
2055  */
2056 
2057 /*ARGSUSED*/
2058 void
2059 cpu_fast_syscall_disable(void *arg)
2060 {
2061         if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
2062             is_x86_feature(x86_featureset, X86FSET_SEP))
2063                 cpu_sep_disable();
2064         if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
2065             is_x86_feature(x86_featureset, X86FSET_ASYSC))
2066                 cpu_asysc_disable();
2067 }
2068 
2069 /*ARGSUSED*/
2070 void
2071 cpu_fast_syscall_enable(void *arg)
2072 {
2073         if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
2074             is_x86_feature(x86_featureset, X86FSET_SEP))
2075                 cpu_sep_enable();
2076         if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
2077             is_x86_feature(x86_featureset, X86FSET_ASYSC))
2078                 cpu_asysc_enable();
2079 }
2080 
2081 static void
2082 cpu_sep_enable(void)
2083 {
2084         ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP));
2085         ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
2086 
2087         wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL);
2088 }
2089 
2090 static void
2091 cpu_sep_disable(void)
2092 {
2093         ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP));
2094         ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
2095 
2096         /*
2097          * Setting the SYSENTER_CS_MSR register to 0 causes software executing
2098          * the sysenter or sysexit instruction to trigger a #gp fault.
2099          */
2100         wrmsr(MSR_INTC_SEP_CS, 0);
2101 }
2102 
2103 static void
2104 cpu_asysc_enable(void)
2105 {
2106         ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC));
2107         ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
2108 
2109         wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) |
2110             (uint64_t)(uintptr_t)AMD_EFER_SCE);
2111 }
2112 
2113 static void
2114 cpu_asysc_disable(void)
2115 {
2116         ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC));
2117         ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
2118 
2119         /*
2120          * Turn off the SCE (syscall enable) bit in the EFER register. Software
2121          * executing syscall or sysret with this bit off will incur a #ud trap.
2122          */
2123         wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) &
2124             ~((uint64_t)(uintptr_t)AMD_EFER_SCE));
2125 }