1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright 2012 Jason King. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 /* 31 * DWARF to tdata conversion 32 * 33 * For the most part, conversion is straightforward, proceeding in two passes. 34 * On the first pass, we iterate through every die, creating new type nodes as 35 * necessary. Referenced tdesc_t's are created in an uninitialized state, thus 36 * allowing type reference pointers to be filled in. If the tdesc_t 37 * corresponding to a given die can be completely filled out (sizes and offsets 38 * calculated, and so forth) without using any referenced types, the tdesc_t is 39 * marked as resolved. Consider an array type. If the type corresponding to 40 * the array contents has not yet been processed, we will create a blank tdesc 41 * for the contents type (only the type ID will be filled in, relying upon the 42 * later portion of the first pass to encounter and complete the referenced 43 * type). We will then attempt to determine the size of the array. If the 44 * array has a byte size attribute, we will have completely characterized the 45 * array type, and will be able to mark it as resolved. The lack of a byte 46 * size attribute, on the other hand, will prevent us from fully resolving the 47 * type, as the size will only be calculable with reference to the contents 48 * type, which has not, as yet, been encountered. The array type will thus be 49 * left without the resolved flag, and the first pass will continue. 50 * 51 * When we begin the second pass, we will have created tdesc_t nodes for every 52 * type in the section. We will traverse the tree, from the iidescs down, 53 * processing each unresolved node. As the referenced nodes will have been 54 * populated, the array type used in our example above will be able to use the 55 * size of the referenced types (if available) to determine its own type. The 56 * traversal will be repeated until all types have been resolved or we have 57 * failed to make progress. When all tdescs have been resolved, the conversion 58 * is complete. 59 * 60 * There are, as always, a few special cases that are handled during the first 61 * and second passes: 62 * 63 * 1. Empty enums - GCC will occasionally emit an enum without any members. 64 * Later on in the file, it will emit the same enum type, though this time 65 * with the full complement of members. All references to the memberless 66 * enum need to be redirected to the full definition. During the first 67 * pass, each enum is entered in dm_enumhash, along with a pointer to its 68 * corresponding tdesc_t. If, during the second pass, we encounter a 69 * memberless enum, we use the hash to locate the full definition. All 70 * tdescs referencing the empty enum are then redirected. 71 * 72 * 2. Forward declarations - If the compiler sees a forward declaration for 73 * a structure, followed by the definition of that structure, it will emit 74 * DWARF data for both the forward declaration and the definition. We need 75 * to resolve the forward declarations when possible, by redirecting 76 * forward-referencing tdescs to the actual struct/union definitions. This 77 * redirection is done completely within the first pass. We begin by 78 * recording all forward declarations in dw_fwdhash. When we define a 79 * structure, we check to see if there have been any corresponding forward 80 * declarations. If so, we redirect the tdescs which referenced the forward 81 * declarations to the structure or union definition. 82 * 83 * XXX see if a post traverser will allow the elimination of repeated pass 2 84 * traversals. 85 */ 86 87 #include <stdio.h> 88 #include <stdlib.h> 89 #include <strings.h> 90 #include <errno.h> 91 #include <libelf.h> 92 #include <libdwarf.h> 93 #include <libgen.h> 94 #include <dwarf.h> 95 96 #include "ctf_headers.h" 97 #include "ctftools.h" 98 #include "memory.h" 99 #include "list.h" 100 #include "traverse.h" 101 102 /* The version of DWARF which we support. */ 103 #define DWARF_VERSION 2 104 105 /* 106 * We need to define a couple of our own intrinsics, to smooth out some of the 107 * differences between the GCC and DevPro DWARF emitters. See the referenced 108 * routines and the special cases in the file comment for more details. 109 * 110 * Type IDs are 32 bits wide. We're going to use the top of that field to 111 * indicate types that we've created ourselves. 112 */ 113 #define TID_FILEMAX 0x3fffffff /* highest tid from file */ 114 #define TID_VOID 0x40000001 /* see die_void() */ 115 #define TID_LONG 0x40000002 /* see die_array() */ 116 117 #define TID_MFGTID_BASE 0x40000003 /* first mfg'd tid */ 118 119 /* 120 * To reduce the staggering amount of error-handling code that would otherwise 121 * be required, the attribute-retrieval routines handle most of their own 122 * errors. If the following flag is supplied as the value of the `req' 123 * argument, they will also handle the absence of a requested attribute by 124 * terminating the program. 125 */ 126 #define DW_ATTR_REQ 1 127 128 #define TDESC_HASH_BUCKETS 511 129 130 typedef struct dwarf { 131 Dwarf_Debug dw_dw; /* for libdwarf */ 132 Dwarf_Error dw_err; /* for libdwarf */ 133 Dwarf_Unsigned dw_maxoff; /* highest legal offset in this cu */ 134 tdata_t *dw_td; /* root of the tdesc/iidesc tree */ 135 hash_t *dw_tidhash; /* hash of tdescs by t_id */ 136 hash_t *dw_fwdhash; /* hash of fwd decls by name */ 137 hash_t *dw_enumhash; /* hash of memberless enums by name */ 138 tdesc_t *dw_void; /* manufactured void type */ 139 tdesc_t *dw_long; /* manufactured long type for arrays */ 140 size_t dw_ptrsz; /* size of a pointer in this file */ 141 tid_t dw_mfgtid_last; /* last mfg'd type ID used */ 142 uint_t dw_nunres; /* count of unresolved types */ 143 char *dw_cuname; /* name of compilation unit */ 144 } dwarf_t; 145 146 static void die_create_one(dwarf_t *, Dwarf_Die); 147 static void die_create(dwarf_t *, Dwarf_Die); 148 149 static tid_t 150 mfgtid_next(dwarf_t *dw) 151 { 152 return (++dw->dw_mfgtid_last); 153 } 154 155 static void 156 tdesc_add(dwarf_t *dw, tdesc_t *tdp) 157 { 158 hash_add(dw->dw_tidhash, tdp); 159 } 160 161 static tdesc_t * 162 tdesc_lookup(dwarf_t *dw, int tid) 163 { 164 tdesc_t tmpl, *tdp; 165 166 tmpl.t_id = tid; 167 168 if (hash_find(dw->dw_tidhash, &tmpl, (void **)&tdp)) 169 return (tdp); 170 else 171 return (NULL); 172 } 173 174 /* 175 * Resolve a tdesc down to a node which should have a size. Returns the size, 176 * zero if the size hasn't yet been determined. 177 */ 178 static size_t 179 tdesc_size(tdesc_t *tdp) 180 { 181 for (;;) { 182 switch (tdp->t_type) { 183 case INTRINSIC: 184 case POINTER: 185 case ARRAY: 186 case FUNCTION: 187 case STRUCT: 188 case UNION: 189 case ENUM: 190 return (tdp->t_size); 191 192 case FORWARD: 193 return (0); 194 195 case TYPEDEF: 196 case VOLATILE: 197 case CONST: 198 case RESTRICT: 199 tdp = tdp->t_tdesc; 200 continue; 201 202 case 0: /* not yet defined */ 203 return (0); 204 205 default: 206 terminate("tdp %u: tdesc_size on unknown type %d\n", 207 tdp->t_id, tdp->t_type); 208 } 209 } 210 } 211 212 static size_t 213 tdesc_bitsize(tdesc_t *tdp) 214 { 215 for (;;) { 216 switch (tdp->t_type) { 217 case INTRINSIC: 218 return (tdp->t_intr->intr_nbits); 219 220 case ARRAY: 221 case FUNCTION: 222 case STRUCT: 223 case UNION: 224 case ENUM: 225 case POINTER: 226 return (tdp->t_size * NBBY); 227 228 case FORWARD: 229 return (0); 230 231 case TYPEDEF: 232 case VOLATILE: 233 case RESTRICT: 234 case CONST: 235 tdp = tdp->t_tdesc; 236 continue; 237 238 case 0: /* not yet defined */ 239 return (0); 240 241 default: 242 terminate("tdp %u: tdesc_bitsize on unknown type %d\n", 243 tdp->t_id, tdp->t_type); 244 } 245 } 246 } 247 248 static tdesc_t * 249 tdesc_basetype(tdesc_t *tdp) 250 { 251 for (;;) { 252 switch (tdp->t_type) { 253 case TYPEDEF: 254 case VOLATILE: 255 case RESTRICT: 256 case CONST: 257 tdp = tdp->t_tdesc; 258 break; 259 case 0: /* not yet defined */ 260 return (NULL); 261 default: 262 return (tdp); 263 } 264 } 265 } 266 267 static Dwarf_Off 268 die_off(dwarf_t *dw, Dwarf_Die die) 269 { 270 Dwarf_Off off; 271 272 if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK) 273 return (off); 274 275 terminate("failed to get offset for die: %s\n", 276 dwarf_errmsg(dw->dw_err)); 277 /*NOTREACHED*/ 278 return (0); 279 } 280 281 static Dwarf_Die 282 die_sibling(dwarf_t *dw, Dwarf_Die die) 283 { 284 Dwarf_Die sib; 285 int rc; 286 287 if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) == 288 DW_DLV_OK) 289 return (sib); 290 else if (rc == DW_DLV_NO_ENTRY) 291 return (NULL); 292 293 terminate("die %llu: failed to find type sibling: %s\n", 294 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 295 /*NOTREACHED*/ 296 return (NULL); 297 } 298 299 static Dwarf_Die 300 die_child(dwarf_t *dw, Dwarf_Die die) 301 { 302 Dwarf_Die child; 303 int rc; 304 305 if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK) 306 return (child); 307 else if (rc == DW_DLV_NO_ENTRY) 308 return (NULL); 309 310 terminate("die %llu: failed to find type child: %s\n", 311 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 312 /*NOTREACHED*/ 313 return (NULL); 314 } 315 316 static Dwarf_Half 317 die_tag(dwarf_t *dw, Dwarf_Die die) 318 { 319 Dwarf_Half tag; 320 321 if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK) 322 return (tag); 323 324 terminate("die %llu: failed to get tag for type: %s\n", 325 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 326 /*NOTREACHED*/ 327 return (0); 328 } 329 330 static Dwarf_Attribute 331 die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req) 332 { 333 Dwarf_Attribute attr; 334 int rc; 335 336 if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) { 337 return (attr); 338 } else if (rc == DW_DLV_NO_ENTRY) { 339 if (req) { 340 terminate("die %llu: no attr 0x%x\n", die_off(dw, die), 341 name); 342 } else { 343 return (NULL); 344 } 345 } 346 347 terminate("die %llu: failed to get attribute for type: %s\n", 348 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 349 /*NOTREACHED*/ 350 return (NULL); 351 } 352 353 static Dwarf_Half 354 die_attr_form(dwarf_t *dw, Dwarf_Attribute attr) 355 { 356 Dwarf_Half form; 357 358 if (dwarf_whatform(attr, &form, &dw->dw_err) == DW_DLV_OK) 359 return (form); 360 361 terminate("failed to get attribute form for type: %s\n", 362 dwarf_errmsg(dw->dw_err)); 363 /*NOTREACHED*/ 364 return (0); 365 } 366 367 /* 368 * the following functions lookup the value of an attribute in a DIE: 369 * 370 * die_signed 371 * die_unsigned 372 * die_bool 373 * die_string 374 * 375 * They all take the same parameters (with the exception of valp which is 376 * a pointer to the type of the attribute we are looking up): 377 * 378 * dw - the dwarf object to look in 379 * die - the DIE we're interested in 380 * name - the name of the attribute to lookup 381 * valp - pointer to where the value of the attribute is placed 382 * req - if the value is required (0 / non-zero) 383 * 384 * If the attribute is not found, one of the following happens: 385 * - program terminates (req is non-zero) 386 * - function returns 0 387 * 388 * If the value is found, and in a form (class) we can handle, the function 389 * returns 1. 390 * 391 * Currently, we can only handle attribute values that are stored as 392 * constants (immediate value). If an attribute has a form we cannot 393 * handle (for example VLAs may store the dimensions of the array 394 * as a DWARF expression that can compute it at runtime by reading 395 * values off the stack or other locations in memory), it is treated 396 * the same as if the attribute does not exist. 397 */ 398 static int 399 die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp, 400 int req) 401 { 402 Dwarf_Attribute attr; 403 Dwarf_Signed val; 404 405 if ((attr = die_attr(dw, die, name, req)) == NULL) 406 return (0); /* die_attr will terminate for us if necessary */ 407 408 if (dwarf_formsdata(attr, &val, &dw->dw_err) != DW_DLV_OK) { 409 if (req == 0) 410 return (0); 411 412 terminate("die %llu: failed to get signed (form 0x%x)\n", 413 die_off(dw, die), die_attr_form(dw, attr)); 414 } 415 416 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR); 417 418 *valp = val; 419 return (1); 420 } 421 422 static int 423 die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp, 424 int req) 425 { 426 Dwarf_Attribute attr; 427 Dwarf_Unsigned val; 428 429 if ((attr = die_attr(dw, die, name, req)) == NULL) 430 return (0); /* die_attr will terminate for us if necessary */ 431 432 if (dwarf_formudata(attr, &val, &dw->dw_err) != DW_DLV_OK) { 433 if (req == 0) 434 return (0); 435 436 terminate("die %llu: failed to get unsigned (form 0x%x)\n", 437 die_off(dw, die), die_attr_form(dw, attr)); 438 } 439 440 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR); 441 442 *valp = val; 443 return (1); 444 } 445 446 static int 447 die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req) 448 { 449 Dwarf_Attribute attr; 450 Dwarf_Bool val; 451 452 if ((attr = die_attr(dw, die, name, req)) == NULL) 453 return (0); /* die_attr will terminate for us if necessary */ 454 455 if (dwarf_formflag(attr, &val, &dw->dw_err) != DW_DLV_OK) { 456 if (req == 0) 457 return (0); 458 459 terminate("die %llu: failed to get bool (form 0x%x)\n", 460 die_off(dw, die), die_attr_form(dw, attr)); 461 } 462 463 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR); 464 465 *valp = val; 466 return (1); 467 } 468 469 static int 470 die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req) 471 { 472 Dwarf_Attribute attr; 473 char *str; 474 475 if ((attr = die_attr(dw, die, name, req)) == NULL) 476 return (0); /* die_attr will terminate for us if necessary */ 477 478 if (dwarf_formstring(attr, &str, &dw->dw_err) != DW_DLV_OK) { 479 if (req == 0) 480 return (0); 481 482 terminate("die %llu: failed to get string (form 0x%x)\n", 483 die_off(dw, die), die_attr_form(dw, attr)); 484 } 485 486 *strp = xstrdup(str); 487 dwarf_dealloc(dw->dw_dw, str, DW_DLA_STRING); 488 489 return (1); 490 } 491 492 static Dwarf_Off 493 die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name) 494 { 495 Dwarf_Attribute attr; 496 Dwarf_Off off; 497 498 attr = die_attr(dw, die, name, DW_ATTR_REQ); 499 500 if (dwarf_formref(attr, &off, &dw->dw_err) != DW_DLV_OK) { 501 terminate("die %llu: failed to get ref (form 0x%x)\n", 502 die_off(dw, die), die_attr_form(dw, attr)); 503 } 504 505 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR); 506 507 return (off); 508 } 509 510 static char * 511 die_name(dwarf_t *dw, Dwarf_Die die) 512 { 513 char *str = NULL; 514 515 (void) die_string(dw, die, DW_AT_name, &str, 0); 516 517 return (str); 518 } 519 520 static int 521 die_isdecl(dwarf_t *dw, Dwarf_Die die) 522 { 523 Dwarf_Bool val; 524 525 return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val); 526 } 527 528 static int 529 die_isglobal(dwarf_t *dw, Dwarf_Die die) 530 { 531 Dwarf_Signed vis; 532 Dwarf_Bool ext; 533 534 /* 535 * Some compilers (gcc) use DW_AT_external to indicate function 536 * visibility. Others (Sun) use DW_AT_visibility. 537 */ 538 if (die_signed(dw, die, DW_AT_visibility, &vis, 0)) 539 return (vis == DW_VIS_exported); 540 else 541 return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext); 542 } 543 544 static tdesc_t * 545 die_add(dwarf_t *dw, Dwarf_Off off) 546 { 547 tdesc_t *tdp = xcalloc(sizeof (tdesc_t)); 548 549 tdp->t_id = off; 550 551 tdesc_add(dw, tdp); 552 553 return (tdp); 554 } 555 556 static tdesc_t * 557 die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name) 558 { 559 Dwarf_Off ref = die_attr_ref(dw, die, name); 560 tdesc_t *tdp; 561 562 if ((tdp = tdesc_lookup(dw, ref)) != NULL) 563 return (tdp); 564 565 return (die_add(dw, ref)); 566 } 567 568 static int 569 die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, 570 Dwarf_Unsigned *valp, int req) 571 { 572 Dwarf_Attribute attr; 573 Dwarf_Locdesc *loc; 574 Dwarf_Signed locnum; 575 576 if ((attr = die_attr(dw, die, name, req)) == NULL) 577 return (0); /* die_attr will terminate for us if necessary */ 578 579 if (dwarf_loclist(attr, &loc, &locnum, &dw->dw_err) != DW_DLV_OK) { 580 terminate("die %llu: failed to get mem offset location list\n", 581 die_off(dw, die)); 582 } 583 584 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR); 585 586 if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) { 587 terminate("die %llu: cannot parse member offset\n", 588 die_off(dw, die)); 589 } 590 591 *valp = loc->ld_s->lr_number; 592 593 dwarf_dealloc(dw->dw_dw, loc->ld_s, DW_DLA_LOC_BLOCK); 594 dwarf_dealloc(dw->dw_dw, loc, DW_DLA_LOCDESC); 595 596 return (1); 597 } 598 599 static tdesc_t * 600 tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz) 601 { 602 tdesc_t *tdp; 603 intr_t *intr; 604 605 intr = xcalloc(sizeof (intr_t)); 606 intr->intr_type = INTR_INT; 607 intr->intr_signed = 1; 608 intr->intr_nbits = sz * NBBY; 609 610 tdp = xcalloc(sizeof (tdesc_t)); 611 tdp->t_name = xstrdup(name); 612 tdp->t_size = sz; 613 tdp->t_id = tid; 614 tdp->t_type = INTRINSIC; 615 tdp->t_intr = intr; 616 tdp->t_flags = TDESC_F_RESOLVED; 617 618 tdesc_add(dw, tdp); 619 620 return (tdp); 621 } 622 623 /* 624 * Manufacture a void type. Used for gcc-emitted stabs, where the lack of a 625 * type reference implies a reference to a void type. A void *, for example 626 * will be represented by a pointer die without a DW_AT_type. CTF requires 627 * that pointer nodes point to something, so we'll create a void for use as 628 * the target. Note that the DWARF data may already create a void type. Ours 629 * would then be a duplicate, but it'll be removed in the self-uniquification 630 * merge performed at the completion of DWARF->tdesc conversion. 631 */ 632 static tdesc_t * 633 tdesc_intr_void(dwarf_t *dw) 634 { 635 if (dw->dw_void == NULL) 636 dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0); 637 638 return (dw->dw_void); 639 } 640 641 static tdesc_t * 642 tdesc_intr_long(dwarf_t *dw) 643 { 644 if (dw->dw_long == NULL) { 645 dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long", 646 dw->dw_ptrsz); 647 } 648 649 return (dw->dw_long); 650 } 651 652 /* 653 * Used for creating bitfield types. We create a copy of an existing intrinsic, 654 * adjusting the size of the copy to match what the caller requested. The 655 * caller can then use the copy as the type for a bitfield structure member. 656 */ 657 static tdesc_t * 658 tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz) 659 { 660 tdesc_t *new = xcalloc(sizeof (tdesc_t)); 661 662 if (!(old->t_flags & TDESC_F_RESOLVED)) { 663 terminate("tdp %u: attempt to make a bit field from an " 664 "unresolved type\n", old->t_id); 665 } 666 667 new->t_name = xstrdup(old->t_name); 668 new->t_size = old->t_size; 669 new->t_id = mfgtid_next(dw); 670 new->t_type = INTRINSIC; 671 new->t_flags = TDESC_F_RESOLVED; 672 673 new->t_intr = xcalloc(sizeof (intr_t)); 674 bcopy(old->t_intr, new->t_intr, sizeof (intr_t)); 675 new->t_intr->intr_nbits = bitsz; 676 677 tdesc_add(dw, new); 678 679 return (new); 680 } 681 682 static void 683 tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp, 684 tdesc_t *dimtdp) 685 { 686 Dwarf_Unsigned uval; 687 Dwarf_Signed sval; 688 tdesc_t *ctdp; 689 Dwarf_Die dim2; 690 ardef_t *ar; 691 692 if ((dim2 = die_sibling(dw, dim)) == NULL) { 693 ctdp = arrtdp; 694 } else if (die_tag(dw, dim2) == DW_TAG_subrange_type) { 695 ctdp = xcalloc(sizeof (tdesc_t)); 696 ctdp->t_id = mfgtid_next(dw); 697 debug(3, "die %llu: creating new type %u for sub-dimension\n", 698 die_off(dw, dim2), ctdp->t_id); 699 tdesc_array_create(dw, dim2, arrtdp, ctdp); 700 } else { 701 terminate("die %llu: unexpected non-subrange node in array\n", 702 die_off(dw, dim2)); 703 } 704 705 dimtdp->t_type = ARRAY; 706 dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t)); 707 708 /* 709 * Array bounds can be signed or unsigned, but there are several kinds 710 * of signless forms (data1, data2, etc) that take their sign from the 711 * routine that is trying to interpret them. That is, data1 can be 712 * either signed or unsigned, depending on whether you use the signed or 713 * unsigned accessor function. GCC will use the signless forms to store 714 * unsigned values which have their high bit set, so we need to try to 715 * read them first as unsigned to get positive values. We could also 716 * try signed first, falling back to unsigned if we got a negative 717 * value. 718 */ 719 if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0)) 720 ar->ad_nelems = uval + 1; 721 else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0)) 722 ar->ad_nelems = sval + 1; 723 else 724 ar->ad_nelems = 0; 725 726 /* 727 * Different compilers use different index types. Force the type to be 728 * a common, known value (long). 729 */ 730 ar->ad_idxtype = tdesc_intr_long(dw); 731 ar->ad_contents = ctdp; 732 733 if (ar->ad_contents->t_size != 0) { 734 dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems; 735 dimtdp->t_flags |= TDESC_F_RESOLVED; 736 } 737 } 738 739 /* 740 * Create a tdesc from an array node. Some arrays will come with byte size 741 * attributes, and thus can be resolved immediately. Others don't, and will 742 * need to wait until the second pass for resolution. 743 */ 744 static void 745 die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp) 746 { 747 tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type); 748 Dwarf_Unsigned uval; 749 Dwarf_Die dim; 750 751 debug(3, "die %llu: creating array\n", off); 752 753 if ((dim = die_child(dw, arr)) == NULL || 754 die_tag(dw, dim) != DW_TAG_subrange_type) 755 terminate("die %llu: failed to retrieve array bounds\n", off); 756 757 tdesc_array_create(dw, dim, arrtdp, tdp); 758 759 if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) { 760 tdesc_t *dimtdp; 761 int flags; 762 763 tdp->t_size = uval; 764 765 /* 766 * Ensure that sub-dimensions have sizes too before marking 767 * as resolved. 768 */ 769 flags = TDESC_F_RESOLVED; 770 for (dimtdp = tdp->t_ardef->ad_contents; 771 dimtdp->t_type == ARRAY; 772 dimtdp = dimtdp->t_ardef->ad_contents) { 773 if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) { 774 flags = 0; 775 break; 776 } 777 } 778 779 tdp->t_flags |= flags; 780 } 781 782 debug(3, "die %llu: array nelems %u size %u\n", off, 783 tdp->t_ardef->ad_nelems, tdp->t_size); 784 } 785 786 /*ARGSUSED1*/ 787 static int 788 die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp, void *private) 789 { 790 dwarf_t *dw = private; 791 size_t sz; 792 793 if (tdp->t_flags & TDESC_F_RESOLVED) 794 return (1); 795 796 debug(3, "trying to resolve array %d (cont %d)\n", tdp->t_id, 797 tdp->t_ardef->ad_contents->t_id); 798 799 if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0) { 800 debug(3, "unable to resolve array %s (%d) contents %d\n", 801 tdesc_name(tdp), tdp->t_id, 802 tdp->t_ardef->ad_contents->t_id); 803 804 dw->dw_nunres++; 805 return (1); 806 } 807 808 tdp->t_size = sz * tdp->t_ardef->ad_nelems; 809 tdp->t_flags |= TDESC_F_RESOLVED; 810 811 debug(3, "resolved array %d: %u bytes\n", tdp->t_id, tdp->t_size); 812 813 return (1); 814 } 815 816 /*ARGSUSED1*/ 817 static int 818 die_array_failed(tdesc_t *tdp, tdesc_t **tdpp, void *private) 819 { 820 tdesc_t *cont = tdp->t_ardef->ad_contents; 821 822 if (tdp->t_flags & TDESC_F_RESOLVED) 823 return (1); 824 825 fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n", 826 tdp->t_id, tdesc_name(cont), cont->t_id); 827 828 return (1); 829 } 830 831 /* 832 * Most enums (those with members) will be resolved during this first pass. 833 * Others - those without members (see the file comment) - won't be, and will 834 * need to wait until the second pass when they can be matched with their full 835 * definitions. 836 */ 837 static void 838 die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 839 { 840 Dwarf_Die mem; 841 Dwarf_Unsigned uval; 842 Dwarf_Signed sval; 843 844 debug(3, "die %llu: creating enum\n", off); 845 846 tdp->t_type = ENUM; 847 848 (void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ); 849 tdp->t_size = uval; 850 851 if ((mem = die_child(dw, die)) != NULL) { 852 elist_t **elastp = &tdp->t_emem; 853 854 do { 855 elist_t *el; 856 857 if (die_tag(dw, mem) != DW_TAG_enumerator) { 858 /* Nested type declaration */ 859 die_create_one(dw, mem); 860 continue; 861 } 862 863 el = xcalloc(sizeof (elist_t)); 864 el->el_name = die_name(dw, mem); 865 866 /* 867 * We have to be careful here: newer GCCs generate DWARF 868 * where an unsigned value will happily pass 869 * die_signed(). Since negative values will fail 870 * die_unsigned(), we try that first to make sure we get 871 * the right value. 872 */ 873 if (die_unsigned(dw, mem, DW_AT_const_value, 874 &uval, 0)) { 875 el->el_number = uval; 876 } else if (die_signed(dw, mem, DW_AT_const_value, 877 &sval, 0)) { 878 el->el_number = sval; 879 } else { 880 terminate("die %llu: enum %llu: member without " 881 "value\n", off, die_off(dw, mem)); 882 } 883 884 debug(3, "die %llu: enum %llu: created %s = %d\n", off, 885 die_off(dw, mem), el->el_name, el->el_number); 886 887 *elastp = el; 888 elastp = &el->el_next; 889 890 } while ((mem = die_sibling(dw, mem)) != NULL); 891 892 hash_add(dw->dw_enumhash, tdp); 893 894 tdp->t_flags |= TDESC_F_RESOLVED; 895 896 if (tdp->t_name != NULL) { 897 iidesc_t *ii = xcalloc(sizeof (iidesc_t)); 898 ii->ii_type = II_SOU; 899 ii->ii_name = xstrdup(tdp->t_name); 900 ii->ii_dtype = tdp; 901 902 iidesc_add(dw->dw_td->td_iihash, ii); 903 } 904 } 905 } 906 907 static int 908 die_enum_match(void *arg1, void *arg2) 909 { 910 tdesc_t *tdp = arg1, **fullp = arg2; 911 912 if (tdp->t_emem != NULL) { 913 *fullp = tdp; 914 return (-1); /* stop the iteration */ 915 } 916 917 return (0); 918 } 919 920 /*ARGSUSED1*/ 921 static int 922 die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp, void *private) 923 { 924 dwarf_t *dw = private; 925 tdesc_t *full = NULL; 926 927 if (tdp->t_flags & TDESC_F_RESOLVED) 928 return (1); 929 930 (void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full); 931 932 /* 933 * The answer to this one won't change from iteration to iteration, 934 * so don't even try. 935 */ 936 if (full == NULL) { 937 terminate("tdp %u: enum %s has no members\n", tdp->t_id, 938 tdesc_name(tdp)); 939 } 940 941 debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id, 942 tdesc_name(tdp), full->t_id); 943 944 tdp->t_flags |= TDESC_F_RESOLVED; 945 946 return (1); 947 } 948 949 static int 950 die_fwd_map(void *arg1, void *arg2) 951 { 952 tdesc_t *fwd = arg1, *sou = arg2; 953 954 debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id, 955 tdesc_name(fwd), sou->t_id); 956 fwd->t_tdesc = sou; 957 958 return (0); 959 } 960 961 /* 962 * Structures and unions will never be resolved during the first pass, as we 963 * won't be able to fully determine the member sizes. The second pass, which 964 * have access to sizing information, will be able to complete the resolution. 965 */ 966 static void 967 die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp, 968 int type, const char *typename) 969 { 970 Dwarf_Unsigned sz, bitsz, bitoff; 971 Dwarf_Die mem; 972 mlist_t *ml, **mlastp; 973 iidesc_t *ii; 974 975 tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type); 976 977 debug(3, "die %llu: creating %s %s\n", off, 978 (tdp->t_type == FORWARD ? "forward decl" : typename), 979 tdesc_name(tdp)); 980 981 if (tdp->t_type == FORWARD) { 982 hash_add(dw->dw_fwdhash, tdp); 983 return; 984 } 985 986 (void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp); 987 988 (void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ); 989 tdp->t_size = sz; 990 991 /* 992 * GCC allows empty SOUs as an extension. 993 */ 994 if ((mem = die_child(dw, str)) == NULL) 995 goto out; 996 997 mlastp = &tdp->t_members; 998 999 do { 1000 Dwarf_Off memoff = die_off(dw, mem); 1001 Dwarf_Half tag = die_tag(dw, mem); 1002 Dwarf_Unsigned mloff; 1003 1004 if (tag != DW_TAG_member) { 1005 /* Nested type declaration */ 1006 die_create_one(dw, mem); 1007 continue; 1008 } 1009 1010 debug(3, "die %llu: mem %llu: creating member\n", off, memoff); 1011 1012 ml = xcalloc(sizeof (mlist_t)); 1013 1014 /* 1015 * This could be a GCC anon struct/union member, so we'll allow 1016 * an empty name, even though nothing can really handle them 1017 * properly. Note that some versions of GCC miss out debug 1018 * info for anon structs, though recent versions are fixed (gcc 1019 * bug 11816). 1020 */ 1021 if ((ml->ml_name = die_name(dw, mem)) == NULL) 1022 ml->ml_name = ""; 1023 1024 ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type); 1025 1026 if (die_mem_offset(dw, mem, DW_AT_data_member_location, 1027 &mloff, 0)) { 1028 debug(3, "die %llu: got mloff %llx\n", off, 1029 (u_longlong_t)mloff); 1030 ml->ml_offset = mloff * 8; 1031 } 1032 1033 if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0)) 1034 ml->ml_size = bitsz; 1035 else 1036 ml->ml_size = tdesc_bitsize(ml->ml_type); 1037 1038 if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) { 1039 #ifdef _BIG_ENDIAN 1040 ml->ml_offset += bitoff; 1041 #else 1042 ml->ml_offset += tdesc_bitsize(ml->ml_type) - bitoff - 1043 ml->ml_size; 1044 #endif 1045 } 1046 1047 debug(3, "die %llu: mem %llu: created \"%s\" (off %u sz %u)\n", 1048 off, memoff, ml->ml_name, ml->ml_offset, ml->ml_size); 1049 1050 *mlastp = ml; 1051 mlastp = &ml->ml_next; 1052 } while ((mem = die_sibling(dw, mem)) != NULL); 1053 1054 /* 1055 * GCC will attempt to eliminate unused types, thus decreasing the 1056 * size of the emitted dwarf. That is, if you declare a foo_t in your 1057 * header, include said header in your source file, and neglect to 1058 * actually use (directly or indirectly) the foo_t in the source file, 1059 * the foo_t won't make it into the emitted DWARF. So, at least, goes 1060 * the theory. 1061 * 1062 * Occasionally, it'll emit the DW_TAG_structure_type for the foo_t, 1063 * and then neglect to emit the members. Strangely, the loner struct 1064 * tag will always be followed by a proper nested declaration of 1065 * something else. This is clearly a bug, but we're not going to have 1066 * time to get it fixed before this goo goes back, so we'll have to work 1067 * around it. If we see a no-membered struct with a nested declaration 1068 * (i.e. die_child of the struct tag won't be null), we'll ignore it. 1069 * Being paranoid, we won't simply remove it from the hash. Instead, 1070 * we'll decline to create an iidesc for it, thus ensuring that this 1071 * type won't make it into the output file. To be safe, we'll also 1072 * change the name. 1073 */ 1074 if (tdp->t_members == NULL) { 1075 const char *old = tdesc_name(tdp); 1076 size_t newsz = 7 + strlen(old) + 1; 1077 char *new = xmalloc(newsz); 1078 (void) snprintf(new, newsz, "orphan %s", old); 1079 1080 debug(3, "die %llu: worked around %s %s\n", off, typename, old); 1081 1082 if (tdp->t_name != NULL) 1083 free(tdp->t_name); 1084 tdp->t_name = new; 1085 return; 1086 } 1087 1088 out: 1089 if (tdp->t_name != NULL) { 1090 ii = xcalloc(sizeof (iidesc_t)); 1091 ii->ii_type = II_SOU; 1092 ii->ii_name = xstrdup(tdp->t_name); 1093 ii->ii_dtype = tdp; 1094 1095 iidesc_add(dw->dw_td->td_iihash, ii); 1096 } 1097 } 1098 1099 static void 1100 die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1101 { 1102 die_sou_create(dw, die, off, tdp, STRUCT, "struct"); 1103 } 1104 1105 static void 1106 die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1107 { 1108 die_sou_create(dw, die, off, tdp, UNION, "union"); 1109 } 1110 1111 /*ARGSUSED1*/ 1112 static int 1113 die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp, void *private) 1114 { 1115 dwarf_t *dw = private; 1116 mlist_t *ml; 1117 tdesc_t *mt; 1118 1119 if (tdp->t_flags & TDESC_F_RESOLVED) 1120 return (1); 1121 1122 debug(3, "resolving sou %s\n", tdesc_name(tdp)); 1123 1124 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) { 1125 if (ml->ml_size == 0) { 1126 mt = tdesc_basetype(ml->ml_type); 1127 1128 if ((ml->ml_size = tdesc_bitsize(mt)) != 0) 1129 continue; 1130 1131 /* 1132 * For empty members, or GCC/C99 flexible array 1133 * members, a size of 0 is correct. 1134 */ 1135 if (mt->t_members == NULL) 1136 continue; 1137 if (mt->t_type == ARRAY && mt->t_ardef->ad_nelems == 0) 1138 continue; 1139 1140 dw->dw_nunres++; 1141 return (1); 1142 } 1143 1144 if ((mt = tdesc_basetype(ml->ml_type)) == NULL) { 1145 dw->dw_nunres++; 1146 return (1); 1147 } 1148 1149 if (ml->ml_size != 0 && mt->t_type == INTRINSIC && 1150 mt->t_intr->intr_nbits != ml->ml_size) { 1151 /* 1152 * This member is a bitfield, and needs to reference 1153 * an intrinsic type with the same width. If the 1154 * currently-referenced type isn't of the same width, 1155 * we'll copy it, adjusting the width of the copy to 1156 * the size we'd like. 1157 */ 1158 debug(3, "tdp %u: creating bitfield for %d bits\n", 1159 tdp->t_id, ml->ml_size); 1160 1161 ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size); 1162 } 1163 } 1164 1165 tdp->t_flags |= TDESC_F_RESOLVED; 1166 1167 return (1); 1168 } 1169 1170 /*ARGSUSED1*/ 1171 static int 1172 die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp, void *private) 1173 { 1174 const char *typename = (tdp->t_type == STRUCT ? "struct" : "union"); 1175 mlist_t *ml; 1176 1177 if (tdp->t_flags & TDESC_F_RESOLVED) 1178 return (1); 1179 1180 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) { 1181 if (ml->ml_size == 0) { 1182 fprintf(stderr, "%s %d: failed to size member \"%s\" " 1183 "of type %s (%d)\n", typename, tdp->t_id, 1184 ml->ml_name, tdesc_name(ml->ml_type), 1185 ml->ml_type->t_id); 1186 } 1187 } 1188 1189 return (1); 1190 } 1191 1192 static void 1193 die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1194 { 1195 Dwarf_Attribute attr; 1196 Dwarf_Half tag; 1197 Dwarf_Die arg; 1198 fndef_t *fn; 1199 int i; 1200 1201 debug(3, "die %llu: creating function pointer\n", off); 1202 1203 /* 1204 * We'll begin by processing any type definition nodes that may be 1205 * lurking underneath this one. 1206 */ 1207 for (arg = die_child(dw, die); arg != NULL; 1208 arg = die_sibling(dw, arg)) { 1209 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter && 1210 tag != DW_TAG_unspecified_parameters) { 1211 /* Nested type declaration */ 1212 die_create_one(dw, arg); 1213 } 1214 } 1215 1216 if (die_isdecl(dw, die)) { 1217 /* 1218 * This is a prototype. We don't add prototypes to the 1219 * tree, so we're going to drop the tdesc. Unfortunately, 1220 * it has already been added to the tree. Nobody will reference 1221 * it, though, and it will be leaked. 1222 */ 1223 return; 1224 } 1225 1226 fn = xcalloc(sizeof (fndef_t)); 1227 1228 tdp->t_type = FUNCTION; 1229 1230 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) { 1231 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR); 1232 fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type); 1233 } else { 1234 fn->fn_ret = tdesc_intr_void(dw); 1235 } 1236 1237 /* 1238 * Count the arguments to the function, then read them in. 1239 */ 1240 for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL; 1241 arg = die_sibling(dw, arg)) { 1242 if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter) 1243 fn->fn_nargs++; 1244 else if (tag == DW_TAG_unspecified_parameters && 1245 fn->fn_nargs > 0) 1246 fn->fn_vargs = 1; 1247 } 1248 1249 if (fn->fn_nargs != 0) { 1250 debug(3, "die %llu: adding %d argument%s\n", off, fn->fn_nargs, 1251 (fn->fn_nargs > 1 ? "s" : "")); 1252 1253 fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs); 1254 for (i = 0, arg = die_child(dw, die); 1255 arg != NULL && i < fn->fn_nargs; 1256 arg = die_sibling(dw, arg)) { 1257 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1258 continue; 1259 1260 fn->fn_args[i++] = die_lookup_pass1(dw, arg, 1261 DW_AT_type); 1262 } 1263 } 1264 1265 tdp->t_fndef = fn; 1266 tdp->t_flags |= TDESC_F_RESOLVED; 1267 } 1268 1269 /* 1270 * GCC and DevPro use different names for the base types. While the terms are 1271 * the same, they are arranged in a different order. Some terms, such as int, 1272 * are implied in one, and explicitly named in the other. Given a base type 1273 * as input, this routine will return a common name, along with an intr_t 1274 * that reflects said name. 1275 */ 1276 static intr_t * 1277 die_base_name_parse(const char *name, char **newp) 1278 { 1279 char buf[100]; 1280 char *base, *c; 1281 int nlong = 0, nshort = 0, nchar = 0, nint = 0; 1282 int sign = 1; 1283 char fmt = '\0'; 1284 intr_t *intr; 1285 1286 if (strlen(name) > sizeof (buf) - 1) 1287 terminate("base type name \"%s\" is too long\n", name); 1288 1289 strncpy(buf, name, sizeof (buf)); 1290 1291 for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) { 1292 if (strcmp(c, "signed") == 0) 1293 sign = 1; 1294 else if (strcmp(c, "unsigned") == 0) 1295 sign = 0; 1296 else if (strcmp(c, "long") == 0) 1297 nlong++; 1298 else if (strcmp(c, "char") == 0) { 1299 nchar++; 1300 fmt = 'c'; 1301 } else if (strcmp(c, "short") == 0) 1302 nshort++; 1303 else if (strcmp(c, "int") == 0) 1304 nint++; 1305 else { 1306 /* 1307 * If we don't recognize any of the tokens, we'll tell 1308 * the caller to fall back to the dwarf-provided 1309 * encoding information. 1310 */ 1311 return (NULL); 1312 } 1313 } 1314 1315 if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2) 1316 return (NULL); 1317 1318 if (nchar > 0) { 1319 if (nlong > 0 || nshort > 0 || nint > 0) 1320 return (NULL); 1321 1322 base = "char"; 1323 1324 } else if (nshort > 0) { 1325 if (nlong > 0) 1326 return (NULL); 1327 1328 base = "short"; 1329 1330 } else if (nlong > 0) { 1331 base = "long"; 1332 1333 } else { 1334 base = "int"; 1335 } 1336 1337 intr = xcalloc(sizeof (intr_t)); 1338 intr->intr_type = INTR_INT; 1339 intr->intr_signed = sign; 1340 intr->intr_iformat = fmt; 1341 1342 snprintf(buf, sizeof (buf), "%s%s%s", 1343 (sign ? "" : "unsigned "), 1344 (nlong > 1 ? "long " : ""), 1345 base); 1346 1347 *newp = xstrdup(buf); 1348 return (intr); 1349 } 1350 1351 typedef struct fp_size_map { 1352 size_t fsm_typesz[2]; /* size of {32,64} type */ 1353 uint_t fsm_enc[3]; /* CTF_FP_* for {bare,cplx,imagry} type */ 1354 } fp_size_map_t; 1355 1356 static const fp_size_map_t fp_encodings[] = { 1357 { { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, 1358 { { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, 1359 #ifdef __sparc 1360 { { 16, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 1361 #else 1362 { { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 1363 #endif 1364 { { 0, 0 } } 1365 }; 1366 1367 static uint_t 1368 die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Signed enc, size_t sz) 1369 { 1370 const fp_size_map_t *map = fp_encodings; 1371 uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t); 1372 uint_t mult = 1, col = 0; 1373 1374 if (enc == DW_ATE_complex_float) { 1375 mult = 2; 1376 col = 1; 1377 } else if (enc == DW_ATE_imaginary_float || 1378 enc == DW_ATE_SUN_imaginary_float) 1379 col = 2; 1380 1381 while (map->fsm_typesz[szidx] != 0) { 1382 if (map->fsm_typesz[szidx] * mult == sz) 1383 return (map->fsm_enc[col]); 1384 map++; 1385 } 1386 1387 terminate("die %llu: unrecognized real type size %u\n", off, sz); 1388 /*NOTREACHED*/ 1389 return (0); 1390 } 1391 1392 static intr_t * 1393 die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz) 1394 { 1395 intr_t *intr = xcalloc(sizeof (intr_t)); 1396 Dwarf_Signed enc; 1397 1398 (void) die_signed(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ); 1399 1400 switch (enc) { 1401 case DW_ATE_unsigned: 1402 case DW_ATE_address: 1403 intr->intr_type = INTR_INT; 1404 break; 1405 case DW_ATE_unsigned_char: 1406 intr->intr_type = INTR_INT; 1407 intr->intr_iformat = 'c'; 1408 break; 1409 case DW_ATE_signed: 1410 intr->intr_type = INTR_INT; 1411 intr->intr_signed = 1; 1412 break; 1413 case DW_ATE_signed_char: 1414 intr->intr_type = INTR_INT; 1415 intr->intr_signed = 1; 1416 intr->intr_iformat = 'c'; 1417 break; 1418 case DW_ATE_boolean: 1419 intr->intr_type = INTR_INT; 1420 intr->intr_signed = 1; 1421 intr->intr_iformat = 'b'; 1422 break; 1423 case DW_ATE_float: 1424 case DW_ATE_complex_float: 1425 case DW_ATE_imaginary_float: 1426 case DW_ATE_SUN_imaginary_float: 1427 case DW_ATE_SUN_interval_float: 1428 intr->intr_type = INTR_REAL; 1429 intr->intr_signed = 1; 1430 intr->intr_fformat = die_base_type2enc(dw, off, enc, sz); 1431 break; 1432 default: 1433 terminate("die %llu: unknown base type encoding 0x%llx\n", 1434 off, enc); 1435 } 1436 1437 return (intr); 1438 } 1439 1440 static void 1441 die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp) 1442 { 1443 Dwarf_Unsigned sz; 1444 intr_t *intr; 1445 char *new; 1446 1447 debug(3, "die %llu: creating base type\n", off); 1448 1449 /* 1450 * The compilers have their own clever (internally inconsistent) ideas 1451 * as to what base types should look like. Some times gcc will, for 1452 * example, use DW_ATE_signed_char for char. Other times, however, it 1453 * will use DW_ATE_signed. Needless to say, this causes some problems 1454 * down the road, particularly with merging. We do, however, use the 1455 * DWARF idea of type sizes, as this allows us to avoid caring about 1456 * the data model. 1457 */ 1458 (void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ); 1459 1460 if (tdp->t_name == NULL) 1461 terminate("die %llu: base type without name\n", off); 1462 1463 /* XXX make a name parser for float too */ 1464 if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) { 1465 /* Found it. We'll use the parsed version */ 1466 debug(3, "die %llu: name \"%s\" remapped to \"%s\"\n", off, 1467 tdesc_name(tdp), new); 1468 1469 free(tdp->t_name); 1470 tdp->t_name = new; 1471 } else { 1472 /* 1473 * We didn't recognize the type, so we'll create an intr_t 1474 * based on the DWARF data. 1475 */ 1476 debug(3, "die %llu: using dwarf data for base \"%s\"\n", off, 1477 tdesc_name(tdp)); 1478 1479 intr = die_base_from_dwarf(dw, base, off, sz); 1480 } 1481 1482 intr->intr_nbits = sz * 8; 1483 1484 tdp->t_type = INTRINSIC; 1485 tdp->t_intr = intr; 1486 tdp->t_size = sz; 1487 1488 tdp->t_flags |= TDESC_F_RESOLVED; 1489 } 1490 1491 static void 1492 die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp, 1493 int type, const char *typename) 1494 { 1495 Dwarf_Attribute attr; 1496 1497 debug(3, "die %llu: creating %s\n", off, typename); 1498 1499 tdp->t_type = type; 1500 1501 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) { 1502 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR); 1503 tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type); 1504 } else { 1505 tdp->t_tdesc = tdesc_intr_void(dw); 1506 } 1507 1508 if (type == POINTER) 1509 tdp->t_size = dw->dw_ptrsz; 1510 1511 tdp->t_flags |= TDESC_F_RESOLVED; 1512 1513 if (type == TYPEDEF) { 1514 iidesc_t *ii = xcalloc(sizeof (iidesc_t)); 1515 ii->ii_type = II_TYPE; 1516 ii->ii_name = xstrdup(tdp->t_name); 1517 ii->ii_dtype = tdp; 1518 1519 iidesc_add(dw->dw_td->td_iihash, ii); 1520 } 1521 } 1522 1523 static void 1524 die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1525 { 1526 die_through_create(dw, die, off, tdp, TYPEDEF, "typedef"); 1527 } 1528 1529 static void 1530 die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1531 { 1532 die_through_create(dw, die, off, tdp, CONST, "const"); 1533 } 1534 1535 static void 1536 die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1537 { 1538 die_through_create(dw, die, off, tdp, POINTER, "pointer"); 1539 } 1540 1541 static void 1542 die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1543 { 1544 die_through_create(dw, die, off, tdp, RESTRICT, "restrict"); 1545 } 1546 1547 static void 1548 die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1549 { 1550 die_through_create(dw, die, off, tdp, VOLATILE, "volatile"); 1551 } 1552 1553 /*ARGSUSED3*/ 1554 static void 1555 die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1556 { 1557 Dwarf_Die arg; 1558 Dwarf_Half tag; 1559 iidesc_t *ii; 1560 char *name; 1561 1562 debug(3, "die %llu: creating function definition\n", off); 1563 1564 /* 1565 * We'll begin by processing any type definition nodes that may be 1566 * lurking underneath this one. 1567 */ 1568 for (arg = die_child(dw, die); arg != NULL; 1569 arg = die_sibling(dw, arg)) { 1570 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter && 1571 tag != DW_TAG_variable) { 1572 /* Nested type declaration */ 1573 die_create_one(dw, arg); 1574 } 1575 } 1576 1577 if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) { 1578 /* 1579 * We process neither prototypes nor subprograms without 1580 * names. 1581 */ 1582 return; 1583 } 1584 1585 ii = xcalloc(sizeof (iidesc_t)); 1586 ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN; 1587 ii->ii_name = name; 1588 if (ii->ii_type == II_SFUN) 1589 ii->ii_owner = xstrdup(dw->dw_cuname); 1590 1591 debug(3, "die %llu: function %s is %s\n", off, ii->ii_name, 1592 (ii->ii_type == II_GFUN ? "global" : "static")); 1593 1594 if (die_attr(dw, die, DW_AT_type, 0) != NULL) 1595 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type); 1596 else 1597 ii->ii_dtype = tdesc_intr_void(dw); 1598 1599 for (arg = die_child(dw, die); arg != NULL; 1600 arg = die_sibling(dw, arg)) { 1601 char *name; 1602 1603 debug(3, "die %llu: looking at sub member at %llu\n", 1604 off, die_off(dw, die)); 1605 1606 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1607 continue; 1608 1609 if ((name = die_name(dw, arg)) == NULL) { 1610 terminate("die %llu: func arg %d has no name\n", 1611 off, ii->ii_nargs + 1); 1612 } 1613 1614 if (strcmp(name, "...") == 0) { 1615 free(name); 1616 ii->ii_vargs = 1; 1617 continue; 1618 } 1619 1620 ii->ii_nargs++; 1621 } 1622 1623 if (ii->ii_nargs > 0) { 1624 int i; 1625 1626 debug(3, "die %llu: function has %d argument%s\n", off, 1627 ii->ii_nargs, (ii->ii_nargs == 1 ? "" : "s")); 1628 1629 ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs); 1630 1631 for (arg = die_child(dw, die), i = 0; 1632 arg != NULL && i < ii->ii_nargs; 1633 arg = die_sibling(dw, arg)) { 1634 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1635 continue; 1636 1637 ii->ii_args[i++] = die_lookup_pass1(dw, arg, 1638 DW_AT_type); 1639 } 1640 } 1641 1642 iidesc_add(dw->dw_td->td_iihash, ii); 1643 } 1644 1645 /*ARGSUSED3*/ 1646 static void 1647 die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1648 { 1649 iidesc_t *ii; 1650 char *name; 1651 1652 debug(3, "die %llu: creating object definition\n", off); 1653 1654 /* Skip "Non-Defining Declarations" */ 1655 if (die_isdecl(dw, die)) 1656 return; 1657 1658 /* 1659 * If we find a DIE of "Declarations Completing Non-Defining 1660 * Declarations", we will use the referenced type's DIE. This isn't 1661 * quite correct, e.g. DW_AT_decl_line will be the forward declaration 1662 * not this site. It's sufficient for what we need, however: in 1663 * particular, we should find DW_AT_external as needed there. 1664 */ 1665 if (die_attr(dw, die, DW_AT_specification, 0) != NULL) { 1666 Dwarf_Die sdie; 1667 Dwarf_Off soff; 1668 1669 soff = die_attr_ref(dw, die, DW_AT_specification); 1670 1671 if (dwarf_offdie(dw->dw_dw, soff, 1672 &sdie, &dw->dw_err) != DW_DLV_OK) { 1673 terminate("dwarf_offdie(%llu) failed: %s\n", 1674 soff, dwarf_errmsg(dw->dw_err)); 1675 } 1676 1677 die = sdie; 1678 } 1679 1680 if ((name = die_name(dw, die)) == NULL) 1681 return; 1682 1683 ii = xcalloc(sizeof (iidesc_t)); 1684 ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR; 1685 ii->ii_name = name; 1686 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type); 1687 if (ii->ii_type == II_SVAR) 1688 ii->ii_owner = xstrdup(dw->dw_cuname); 1689 1690 iidesc_add(dw->dw_td->td_iihash, ii); 1691 } 1692 1693 /*ARGSUSED2*/ 1694 static int 1695 die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private) 1696 { 1697 if (fwd->t_flags & TDESC_F_RESOLVED) 1698 return (1); 1699 1700 if (fwd->t_tdesc != NULL) { 1701 debug(3, "tdp %u: unforwarded %s\n", fwd->t_id, 1702 tdesc_name(fwd)); 1703 *fwdp = fwd->t_tdesc; 1704 } 1705 1706 fwd->t_flags |= TDESC_F_RESOLVED; 1707 1708 return (1); 1709 } 1710 1711 /*ARGSUSED*/ 1712 static void 1713 die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1714 { 1715 Dwarf_Die child = die_child(dw, die); 1716 1717 if (child != NULL) 1718 die_create(dw, child); 1719 } 1720 1721 /* 1722 * Used to map the die to a routine which can parse it, using the tag to do the 1723 * mapping. While the processing of most tags entails the creation of a tdesc, 1724 * there are a few which don't - primarily those which result in the creation of 1725 * iidescs which refer to existing tdescs. 1726 */ 1727 1728 #define DW_F_NOTDP 0x1 /* Don't create a tdesc for the creator */ 1729 1730 typedef struct die_creator { 1731 Dwarf_Half dc_tag; 1732 uint16_t dc_flags; 1733 void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *); 1734 } die_creator_t; 1735 1736 static const die_creator_t die_creators[] = { 1737 { DW_TAG_array_type, 0, die_array_create }, 1738 { DW_TAG_enumeration_type, 0, die_enum_create }, 1739 { DW_TAG_lexical_block, DW_F_NOTDP, die_lexblk_descend }, 1740 { DW_TAG_pointer_type, 0, die_pointer_create }, 1741 { DW_TAG_structure_type, 0, die_struct_create }, 1742 { DW_TAG_subroutine_type, 0, die_funcptr_create }, 1743 { DW_TAG_typedef, 0, die_typedef_create }, 1744 { DW_TAG_union_type, 0, die_union_create }, 1745 { DW_TAG_base_type, 0, die_base_create }, 1746 { DW_TAG_const_type, 0, die_const_create }, 1747 { DW_TAG_subprogram, DW_F_NOTDP, die_function_create }, 1748 { DW_TAG_variable, DW_F_NOTDP, die_variable_create }, 1749 { DW_TAG_volatile_type, 0, die_volatile_create }, 1750 { DW_TAG_restrict_type, 0, die_restrict_create }, 1751 { 0, 0, NULL } 1752 }; 1753 1754 static const die_creator_t * 1755 die_tag2ctor(Dwarf_Half tag) 1756 { 1757 const die_creator_t *dc; 1758 1759 for (dc = die_creators; dc->dc_create != NULL; dc++) { 1760 if (dc->dc_tag == tag) 1761 return (dc); 1762 } 1763 1764 return (NULL); 1765 } 1766 1767 static void 1768 die_create_one(dwarf_t *dw, Dwarf_Die die) 1769 { 1770 Dwarf_Off off = die_off(dw, die); 1771 const die_creator_t *dc; 1772 Dwarf_Half tag; 1773 tdesc_t *tdp; 1774 1775 debug(3, "die %llu: create_one\n", off); 1776 1777 if (off > dw->dw_maxoff) { 1778 terminate("illegal die offset %llu (max %llu)\n", off, 1779 dw->dw_maxoff); 1780 } 1781 1782 tag = die_tag(dw, die); 1783 1784 if ((dc = die_tag2ctor(tag)) == NULL) { 1785 debug(2, "die %llu: ignoring tag type %x\n", off, tag); 1786 return; 1787 } 1788 1789 if ((tdp = tdesc_lookup(dw, off)) == NULL && 1790 !(dc->dc_flags & DW_F_NOTDP)) { 1791 tdp = xcalloc(sizeof (tdesc_t)); 1792 tdp->t_id = off; 1793 tdesc_add(dw, tdp); 1794 } 1795 1796 if (tdp != NULL) 1797 tdp->t_name = die_name(dw, die); 1798 1799 dc->dc_create(dw, die, off, tdp); 1800 } 1801 1802 static void 1803 die_create(dwarf_t *dw, Dwarf_Die die) 1804 { 1805 do { 1806 die_create_one(dw, die); 1807 } while ((die = die_sibling(dw, die)) != NULL); 1808 } 1809 1810 static tdtrav_cb_f die_resolvers[] = { 1811 NULL, 1812 NULL, /* intrinsic */ 1813 NULL, /* pointer */ 1814 die_array_resolve, /* array */ 1815 NULL, /* function */ 1816 die_sou_resolve, /* struct */ 1817 die_sou_resolve, /* union */ 1818 die_enum_resolve, /* enum */ 1819 die_fwd_resolve, /* forward */ 1820 NULL, /* typedef */ 1821 NULL, /* typedef unres */ 1822 NULL, /* volatile */ 1823 NULL, /* const */ 1824 NULL, /* restrict */ 1825 }; 1826 1827 static tdtrav_cb_f die_fail_reporters[] = { 1828 NULL, 1829 NULL, /* intrinsic */ 1830 NULL, /* pointer */ 1831 die_array_failed, /* array */ 1832 NULL, /* function */ 1833 die_sou_failed, /* struct */ 1834 die_sou_failed, /* union */ 1835 NULL, /* enum */ 1836 NULL, /* forward */ 1837 NULL, /* typedef */ 1838 NULL, /* typedef unres */ 1839 NULL, /* volatile */ 1840 NULL, /* const */ 1841 NULL, /* restrict */ 1842 }; 1843 1844 static void 1845 die_resolve(dwarf_t *dw) 1846 { 1847 int last = -1; 1848 int pass = 0; 1849 1850 do { 1851 pass++; 1852 dw->dw_nunres = 0; 1853 1854 (void) iitraverse_hash(dw->dw_td->td_iihash, 1855 &dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw); 1856 1857 debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres); 1858 1859 if (dw->dw_nunres == last) { 1860 fprintf(stderr, "%s: failed to resolve the following " 1861 "types:\n", progname); 1862 1863 (void) iitraverse_hash(dw->dw_td->td_iihash, 1864 &dw->dw_td->td_curvgen, NULL, NULL, 1865 die_fail_reporters, dw); 1866 1867 terminate("failed to resolve types\n"); 1868 } 1869 1870 last = dw->dw_nunres; 1871 1872 } while (dw->dw_nunres != 0); 1873 } 1874 1875 /* 1876 * Any object containing a function or object symbol at any scope should also 1877 * contain DWARF data. 1878 */ 1879 static boolean_t 1880 should_have_dwarf(Elf *elf) 1881 { 1882 Elf_Scn *scn = NULL; 1883 Elf_Data *data = NULL; 1884 GElf_Shdr shdr; 1885 GElf_Sym sym; 1886 uint32_t symdx = 0; 1887 size_t nsyms = 0; 1888 boolean_t found = B_FALSE; 1889 1890 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1891 gelf_getshdr(scn, &shdr); 1892 1893 if (shdr.sh_type == SHT_SYMTAB) { 1894 found = B_TRUE; 1895 break; 1896 } 1897 } 1898 1899 if (!found) 1900 terminate("cannot convert stripped objects\n"); 1901 1902 data = elf_getdata(scn, NULL); 1903 nsyms = shdr.sh_size / shdr.sh_entsize; 1904 1905 for (symdx = 0; symdx < nsyms; symdx++) { 1906 gelf_getsym(data, symdx, &sym); 1907 1908 if ((GELF_ST_TYPE(sym.st_info) == STT_FUNC) || 1909 (GELF_ST_TYPE(sym.st_info) == STT_TLS) || 1910 (GELF_ST_TYPE(sym.st_info) == STT_OBJECT)) { 1911 char *name; 1912 1913 name = elf_strptr(elf, shdr.sh_link, sym.st_name); 1914 1915 /* Studio emits these local symbols regardless */ 1916 if ((strcmp(name, "Bbss.bss") != 0) && 1917 (strcmp(name, "Ttbss.bss") != 0) && 1918 (strcmp(name, "Ddata.data") != 0) && 1919 (strcmp(name, "Ttdata.data") != 0) && 1920 (strcmp(name, "Drodata.rodata") != 0)) 1921 return (B_TRUE); 1922 } 1923 } 1924 1925 return (B_FALSE); 1926 } 1927 1928 /*ARGSUSED*/ 1929 int 1930 dw_read(tdata_t *td, Elf *elf, const char *filename) 1931 { 1932 Dwarf_Unsigned abboff, hdrlen, nxthdr; 1933 Dwarf_Half vers, addrsz; 1934 Dwarf_Die cu, child; 1935 dwarf_t dw; 1936 char *prod = NULL; 1937 int rc; 1938 1939 bzero(&dw, sizeof (dwarf_t)); 1940 dw.dw_td = td; 1941 dw.dw_ptrsz = elf_ptrsz(elf); 1942 dw.dw_mfgtid_last = TID_MFGTID_BASE; 1943 dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp); 1944 dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash, 1945 tdesc_namecmp); 1946 dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash, 1947 tdesc_namecmp); 1948 1949 if ((rc = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw.dw_dw, 1950 &dw.dw_err)) == DW_DLV_NO_ENTRY) { 1951 if (should_have_dwarf(elf)) { 1952 errno = ENOENT; 1953 return (-1); 1954 } else { 1955 return (0); 1956 } 1957 } else if (rc != DW_DLV_OK) { 1958 if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) { 1959 /* 1960 * There's no type data in the DWARF section, but 1961 * libdwarf is too clever to handle that properly. 1962 */ 1963 return (0); 1964 } 1965 1966 terminate("failed to initialize DWARF: %s\n", 1967 dwarf_errmsg(dw.dw_err)); 1968 } 1969 1970 if ((rc = dwarf_next_cu_header(dw.dw_dw, &hdrlen, &vers, &abboff, 1971 &addrsz, &nxthdr, &dw.dw_err)) != DW_DLV_OK) 1972 terminate("file does not contain valid DWARF data: %s\n", 1973 dwarf_errmsg(dw.dw_err)); 1974 1975 /* 1976 * Some compilers emit no DWARF for empty files, others emit an empty 1977 * compilation unit. 1978 */ 1979 if ((cu = die_sibling(&dw, NULL)) == NULL || 1980 ((child = die_child(&dw, cu)) == NULL) && 1981 should_have_dwarf(elf)) { 1982 terminate("file does not contain dwarf type data " 1983 "(try compiling with -g)\n"); 1984 } else if (child == NULL) { 1985 return (0); 1986 } 1987 1988 dw.dw_maxoff = nxthdr - 1; 1989 1990 if (dw.dw_maxoff > TID_FILEMAX) 1991 terminate("file contains too many types\n"); 1992 1993 debug(1, "DWARF version: %d\n", vers); 1994 if (vers != DWARF_VERSION) { 1995 terminate("file contains incompatible version %d DWARF code " 1996 "(version 2 required)\n", vers); 1997 } 1998 1999 if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) { 2000 debug(1, "DWARF emitter: %s\n", prod); 2001 free(prod); 2002 } 2003 2004 if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) { 2005 char *base = xstrdup(basename(dw.dw_cuname)); 2006 free(dw.dw_cuname); 2007 dw.dw_cuname = base; 2008 2009 debug(1, "CU name: %s\n", dw.dw_cuname); 2010 } 2011 2012 die_create(&dw, child); 2013 2014 if ((rc = dwarf_next_cu_header(dw.dw_dw, &hdrlen, &vers, &abboff, 2015 &addrsz, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY) 2016 terminate("multiple compilation units not supported\n"); 2017 2018 (void) dwarf_finish(dw.dw_dw, &dw.dw_err); 2019 2020 die_resolve(&dw); 2021 2022 cvt_fixups(td, dw.dw_ptrsz); 2023 2024 /* leak the dwarf_t */ 2025 2026 return (0); 2027 }