1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2018 Joyent, Inc.
27 * Copyright (c) 2015 by Delphix. All rights reserved.
28 */
29 /*
30 * Copyright (c) 2010, Intel Corporation.
31 * All rights reserved.
32 */
33
34 #include <sys/types.h>
35 #include <sys/t_lock.h>
36 #include <sys/param.h>
37 #include <sys/sysmacros.h>
38 #include <sys/signal.h>
39 #include <sys/systm.h>
40 #include <sys/user.h>
41 #include <sys/mman.h>
42 #include <sys/vm.h>
43 #include <sys/conf.h>
44 #include <sys/avintr.h>
45 #include <sys/autoconf.h>
46 #include <sys/disp.h>
47 #include <sys/class.h>
48 #include <sys/bitmap.h>
49
50 #include <sys/privregs.h>
51
52 #include <sys/proc.h>
53 #include <sys/buf.h>
54 #include <sys/kmem.h>
55 #include <sys/mem.h>
56 #include <sys/kstat.h>
57
58 #include <sys/reboot.h>
59
60 #include <sys/cred.h>
61 #include <sys/vnode.h>
62 #include <sys/file.h>
63
64 #include <sys/procfs.h>
65
66 #include <sys/vfs.h>
67 #include <sys/cmn_err.h>
68 #include <sys/utsname.h>
69 #include <sys/debug.h>
70 #include <sys/kdi.h>
71
72 #include <sys/dumphdr.h>
73 #include <sys/bootconf.h>
74 #include <sys/memlist_plat.h>
75 #include <sys/varargs.h>
76 #include <sys/promif.h>
77 #include <sys/modctl.h>
78
79 #include <sys/sunddi.h>
80 #include <sys/sunndi.h>
81 #include <sys/ndi_impldefs.h>
82 #include <sys/ddidmareq.h>
83 #include <sys/psw.h>
84 #include <sys/regset.h>
85 #include <sys/clock.h>
86 #include <sys/pte.h>
87 #include <sys/tss.h>
88 #include <sys/stack.h>
89 #include <sys/trap.h>
90 #include <sys/fp.h>
91 #include <vm/kboot_mmu.h>
92 #include <vm/anon.h>
93 #include <vm/as.h>
94 #include <vm/page.h>
95 #include <vm/seg.h>
96 #include <vm/seg_dev.h>
97 #include <vm/seg_kmem.h>
98 #include <vm/seg_kpm.h>
99 #include <vm/seg_map.h>
100 #include <vm/seg_vn.h>
101 #include <vm/seg_kp.h>
102 #include <sys/memnode.h>
103 #include <vm/vm_dep.h>
104 #include <sys/thread.h>
105 #include <sys/sysconf.h>
106 #include <sys/vm_machparam.h>
107 #include <sys/archsystm.h>
108 #include <sys/machsystm.h>
109 #include <vm/hat.h>
110 #include <vm/hat_i86.h>
111 #include <sys/pmem.h>
112 #include <sys/smp_impldefs.h>
113 #include <sys/x86_archext.h>
114 #include <sys/cpuvar.h>
115 #include <sys/segments.h>
116 #include <sys/clconf.h>
117 #include <sys/kobj.h>
118 #include <sys/kobj_lex.h>
119 #include <sys/cpc_impl.h>
120 #include <sys/cpu_module.h>
121 #include <sys/smbios.h>
122 #include <sys/debug_info.h>
123 #include <sys/bootinfo.h>
124 #include <sys/ddi_periodic.h>
125 #include <sys/systeminfo.h>
126 #include <sys/multiboot.h>
127 #include <sys/ramdisk.h>
128
129 #ifdef __xpv
130
131 #include <sys/hypervisor.h>
132 #include <sys/xen_mmu.h>
133 #include <sys/evtchn_impl.h>
134 #include <sys/gnttab.h>
135 #include <sys/xpv_panic.h>
136 #include <xen/sys/xenbus_comms.h>
137 #include <xen/public/physdev.h>
138
139 extern void xen_late_startup(void);
140
141 struct xen_evt_data cpu0_evt_data;
142
143 #else /* __xpv */
144 #include <sys/memlist_impl.h>
145
146 extern void mem_config_init(void);
147 #endif /* __xpv */
148
149 extern void progressbar_init(void);
150 extern void brand_init(void);
151 extern void pcf_init(void);
152 extern void pg_init(void);
153 extern void ssp_init(void);
154
155 extern int size_pse_array(pgcnt_t, int);
156
157 #if defined(_SOFT_HOSTID)
158
159 #include <sys/rtc.h>
160
161 static int32_t set_soft_hostid(void);
162 static char hostid_file[] = "/etc/hostid";
163
164 #endif
165
166 void *gfx_devinfo_list;
167
168 #if defined(__amd64) && !defined(__xpv)
169 extern void immu_startup(void);
170 #endif
171
172 /*
173 * XXX make declaration below "static" when drivers no longer use this
174 * interface.
175 */
176 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */
177
178 /*
179 * segkp
180 */
181 extern int segkp_fromheap;
182
183 static void kvm_init(void);
184 static void startup_init(void);
185 static void startup_memlist(void);
186 static void startup_kmem(void);
187 static void startup_modules(void);
188 static void startup_vm(void);
189 static void startup_end(void);
190 static void layout_kernel_va(void);
191
192 /*
193 * Declare these as initialized data so we can patch them.
194 */
195 #ifdef __i386
196
197 /*
198 * Due to virtual address space limitations running in 32 bit mode, restrict
199 * the amount of physical memory configured to a max of PHYSMEM pages (16g).
200 *
201 * If the physical max memory size of 64g were allowed to be configured, the
202 * size of user virtual address space will be less than 1g. A limited user
203 * address space greatly reduces the range of applications that can run.
204 *
205 * If more physical memory than PHYSMEM is required, users should preferably
206 * run in 64 bit mode which has far looser virtual address space limitations.
207 *
208 * If 64 bit mode is not available (as in IA32) and/or more physical memory
209 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired
210 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase
211 * should also be carefully tuned to balance out the need of the user
212 * application while minimizing the risk of kernel heap exhaustion due to
213 * kernelbase being set too high.
214 */
215 #define PHYSMEM 0x400000
216
217 #else /* __amd64 */
218
219 /*
220 * For now we can handle memory with physical addresses up to about
221 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly
222 * half the VA space for seg_kpm. When systems get bigger than 64TB this
223 * code will need revisiting. There is an implicit assumption that there
224 * are no *huge* holes in the physical address space too.
225 */
226 #define TERABYTE (1ul << 40)
227 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE)
228 #define PHYSMEM PHYSMEM_MAX64
229 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul
230
231 #endif /* __amd64 */
232
233 pgcnt_t physmem = PHYSMEM;
234 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */
235
236 char *kobj_file_buf;
237 int kobj_file_bufsize; /* set in /etc/system */
238
239 /* Global variables for MP support. Used in mp_startup */
240 caddr_t rm_platter_va = 0;
241 uint32_t rm_platter_pa;
242
243 int auto_lpg_disable = 1;
244
245 /*
246 * Some CPUs have holes in the middle of the 64-bit virtual address range.
247 */
248 uintptr_t hole_start, hole_end;
249
250 /*
251 * kpm mapping window
252 */
253 caddr_t kpm_vbase;
254 size_t kpm_size;
255 static int kpm_desired;
256 #ifdef __amd64
257 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE;
258 #endif
259
260 /*
261 * Configuration parameters set at boot time.
262 */
263
264 caddr_t econtig; /* end of first block of contiguous kernel */
265
266 struct bootops *bootops = 0; /* passed in from boot */
267 struct bootops **bootopsp;
268 struct boot_syscalls *sysp; /* passed in from boot */
269
270 char bootblock_fstype[16];
271
272 char kern_bootargs[OBP_MAXPATHLEN];
273 char kern_bootfile[OBP_MAXPATHLEN];
274
275 /*
276 * ZFS zio segment. This allows us to exclude large portions of ZFS data that
277 * gets cached in kmem caches on the heap. If this is set to zero, we allocate
278 * zio buffers from their own segment, otherwise they are allocated from the
279 * heap. The optimization of allocating zio buffers from their own segment is
280 * only valid on 64-bit kernels.
281 */
282 #if defined(__amd64)
283 int segzio_fromheap = 0;
284 #else
285 int segzio_fromheap = 1;
286 #endif
287
288 /*
289 * Give folks an escape hatch for disabling SMAP via kmdb. Doesn't work
290 * post-boot.
291 */
292 int disable_smap = 0;
293
294 /*
295 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
296 * depends on number of BOP_ALLOC calls made and requested size, memory size
297 * combination and whether boot.bin memory needs to be freed.
298 */
299 #define POSS_NEW_FRAGMENTS 12
300
301 /*
302 * VM data structures
303 */
304 long page_hashsz; /* Size of page hash table (power of two) */
305 unsigned int page_hashsz_shift; /* log2(page_hashsz) */
306 struct page *pp_base; /* Base of initial system page struct array */
307 struct page **page_hash; /* Page hash table */
308 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */
309 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */
310 int pse_shift; /* log2(pse_table_size) */
311 struct seg ktextseg; /* Segment used for kernel executable image */
312 struct seg kvalloc; /* Segment used for "valloc" mapping */
313 struct seg kpseg; /* Segment used for pageable kernel virt mem */
314 struct seg kmapseg; /* Segment used for generic kernel mappings */
315 struct seg kdebugseg; /* Segment used for the kernel debugger */
316
317 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */
318 static struct seg *segmap = &kmapseg; /* easier to use name for in here */
319
320 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */
321
322 #if defined(__amd64)
323 struct seg kvseg_core; /* Segment used for the core heap */
324 struct seg kpmseg; /* Segment used for physical mapping */
325 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */
326 #else
327 struct seg *segkpm = NULL; /* Unused on IA32 */
328 #endif
329
330 caddr_t segkp_base; /* Base address of segkp */
331 caddr_t segzio_base; /* Base address of segzio */
332 #if defined(__amd64)
333 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */
334 #else
335 pgcnt_t segkpsize = 0;
336 #endif
337 pgcnt_t segziosize = 0; /* size of zio segment in pages */
338
339 /*
340 * A static DR page_t VA map is reserved that can map the page structures
341 * for a domain's entire RA space. The pages that back this space are
342 * dynamically allocated and need not be physically contiguous. The DR
343 * map size is derived from KPM size.
344 * This mechanism isn't used by x86 yet, so just stubs here.
345 */
346 int ppvm_enable = 0; /* Static virtual map for page structs */
347 page_t *ppvm_base = NULL; /* Base of page struct map */
348 pgcnt_t ppvm_size = 0; /* Size of page struct map */
349
350 /*
351 * VA range available to the debugger
352 */
353 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
354 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
355
356 struct memseg *memseg_base;
357 struct vnode unused_pages_vp;
358
359 #define FOURGB 0x100000000LL
360
361 struct memlist *memlist;
362
363 caddr_t s_text; /* start of kernel text segment */
364 caddr_t e_text; /* end of kernel text segment */
365 caddr_t s_data; /* start of kernel data segment */
366 caddr_t e_data; /* end of kernel data segment */
367 caddr_t modtext; /* start of loadable module text reserved */
368 caddr_t e_modtext; /* end of loadable module text reserved */
369 caddr_t moddata; /* start of loadable module data reserved */
370 caddr_t e_moddata; /* end of loadable module data reserved */
371
372 struct memlist *phys_install; /* Total installed physical memory */
373 struct memlist *phys_avail; /* Total available physical memory */
374 struct memlist *bios_rsvd; /* Bios reserved memory */
375
376 /*
377 * kphysm_init returns the number of pages that were processed
378 */
379 static pgcnt_t kphysm_init(page_t *, pgcnt_t);
380
381 #define IO_PROP_SIZE 64 /* device property size */
382
383 /*
384 * a couple useful roundup macros
385 */
386 #define ROUND_UP_PAGE(x) \
387 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
388 #define ROUND_UP_LPAGE(x) \
389 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
390 #define ROUND_UP_4MEG(x) \
391 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG))
392 #define ROUND_UP_TOPLEVEL(x) \
393 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
394
395 /*
396 * 32-bit Kernel's Virtual memory layout.
397 * +-----------------------+
398 * | |
399 * 0xFFC00000 -|-----------------------|- ARGSBASE
400 * | debugger |
401 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE
402 * | Kernel Data |
403 * 0xFEC00000 -|-----------------------|
404 * | Kernel Text |
405 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen)
406 * |--- GDT ---|- GDT page (GDT_VA)
407 * |--- debug info ---|- debug info (DEBUG_INFO_VA)
408 * | |
409 * | page_t structures |
410 * | memsegs, memlists, |
411 * | page hash, etc. |
412 * --- -|-----------------------|- ekernelheap, valloc_base (floating)
413 * | | (segkp is just an arena in the heap)
414 * | |
415 * | kvseg |
416 * | |
417 * | |
418 * --- -|-----------------------|- kernelheap (floating)
419 * | Segkmap |
420 * 0xC3002000 -|-----------------------|- segmap_start (floating)
421 * | Red Zone |
422 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating)
423 * | | ||
424 * | Shared objects | \/
425 * | |
426 * : :
427 * | user data |
428 * |-----------------------|
429 * | user text |
430 * 0x08048000 -|-----------------------|
431 * | user stack |
432 * : :
433 * | invalid |
434 * 0x00000000 +-----------------------+
435 *
436 *
437 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
438 * +-----------------------+
439 * | |
440 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE
441 * | debugger (?) |
442 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE
443 * | unused |
444 * +-----------------------+
445 * | Kernel Data |
446 * 0xFFFFFFFF.FBC00000 |-----------------------|
447 * | Kernel Text |
448 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT
449 * |--- debug info ---|- debug info (DEBUG_INFO_VA)
450 * |--- GDT ---|- GDT page (GDT_VA)
451 * |--- IDT ---|- IDT page (IDT_VA)
452 * |--- LDT ---|- LDT pages (LDT_VA)
453 * | |
454 * | Core heap | (used for loadable modules)
455 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap
456 * | Kernel |
457 * | heap |
458 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating)
459 * | segmap |
460 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating)
461 * | device mappings |
462 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating)
463 * | segzio |
464 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating)
465 * | segkp |
466 * --- |-----------------------|- segkp_base (floating)
467 * | page_t structures | valloc_base + valloc_sz
468 * | memsegs, memlists, |
469 * | page hash, etc. |
470 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if >256GB)
471 * | segkpm |
472 * 0xFFFFFE00.00000000 |-----------------------|
473 * | Red Zone |
474 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if >256GB)
475 * | User stack |- User space memory
476 * | |
477 * | shared objects, etc | (grows downwards)
478 * : :
479 * | |
480 * 0xFFFF8000.00000000 |-----------------------|
481 * | |
482 * | VA Hole / unused |
483 * | |
484 * 0x00008000.00000000 |-----------------------|
485 * | |
486 * | |
487 * : :
488 * | user heap | (grows upwards)
489 * | |
490 * | user data |
491 * |-----------------------|
492 * | user text |
493 * 0x00000000.04000000 |-----------------------|
494 * | invalid |
495 * 0x00000000.00000000 +-----------------------+
496 *
497 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
498 * kernel, except that userlimit is raised to 0xfe000000
499 *
500 * Floating values:
501 *
502 * valloc_base: start of the kernel's memory management/tracking data
503 * structures. This region contains page_t structures for
504 * physical memory, memsegs, memlists, and the page hash.
505 *
506 * core_base: start of the kernel's "core" heap area on 64-bit systems.
507 * This area is intended to be used for global data as well as for module
508 * text/data that does not fit into the nucleus pages. The core heap is
509 * restricted to a 2GB range, allowing every address within it to be
510 * accessed using rip-relative addressing
511 *
512 * ekernelheap: end of kernelheap and start of segmap.
513 *
514 * kernelheap: start of kernel heap. On 32-bit systems, this starts right
515 * above a red zone that separates the user's address space from the
516 * kernel's. On 64-bit systems, it sits above segkp and segkpm.
517 *
518 * segmap_start: start of segmap. The length of segmap can be modified
519 * through eeprom. The default length is 16MB on 32-bit systems and 64MB
520 * on 64-bit systems.
521 *
522 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
523 * decreased by 2X the size required for page_t. This allows the kernel
524 * heap to grow in size with physical memory. With sizeof(page_t) == 80
525 * bytes, the following shows the values of kernelbase and kernel heap
526 * sizes for different memory configurations (assuming default segmap and
527 * segkp sizes).
528 *
529 * mem size for kernelbase kernel heap
530 * size page_t's size
531 * ---- --------- ---------- -----------
532 * 1gb 0x01400000 0xd1800000 684MB
533 * 2gb 0x02800000 0xcf000000 704MB
534 * 4gb 0x05000000 0xca000000 744MB
535 * 6gb 0x07800000 0xc5000000 784MB
536 * 8gb 0x0a000000 0xc0000000 824MB
537 * 16gb 0x14000000 0xac000000 984MB
538 * 32gb 0x28000000 0x84000000 1304MB
539 * 64gb 0x50000000 0x34000000 1944MB (*)
540 *
541 * kernelbase is less than the abi minimum of 0xc0000000 for memory
542 * configurations above 8gb.
543 *
544 * (*) support for memory configurations above 32gb will require manual tuning
545 * of kernelbase to balance out the need of user applications.
546 */
547
548 /* real-time-clock initialization parameters */
549 extern time_t process_rtc_config_file(void);
550
551 uintptr_t kernelbase;
552 uintptr_t postbootkernelbase; /* not set till boot loader is gone */
553 uintptr_t eprom_kernelbase;
554 size_t segmapsize;
555 uintptr_t segmap_start;
556 int segmapfreelists;
557 pgcnt_t npages;
558 pgcnt_t orig_npages;
559 size_t core_size; /* size of "core" heap */
560 uintptr_t core_base; /* base address of "core" heap */
561
562 /*
563 * List of bootstrap pages. We mark these as allocated in startup.
564 * release_bootstrap() will free them when we're completely done with
565 * the bootstrap.
566 */
567 static page_t *bootpages;
568
569 /*
570 * boot time pages that have a vnode from the ramdisk will keep that forever.
571 */
572 static page_t *rd_pages;
573
574 /*
575 * Lower 64K
576 */
577 static page_t *lower_pages = NULL;
578 static int lower_pages_count = 0;
579
580 struct system_hardware system_hardware;
581
582 /*
583 * Enable some debugging messages concerning memory usage...
584 */
585 static void
586 print_memlist(char *title, struct memlist *mp)
587 {
588 prom_printf("MEMLIST: %s:\n", title);
589 while (mp != NULL) {
590 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
591 mp->ml_address, mp->ml_size);
592 mp = mp->ml_next;
593 }
594 }
595
596 /*
597 * XX64 need a comment here.. are these just default values, surely
598 * we read the "cpuid" type information to figure this out.
599 */
600 int l2cache_sz = 0x80000;
601 int l2cache_linesz = 0x40;
602 int l2cache_assoc = 1;
603
604 static size_t textrepl_min_gb = 10;
605
606 /*
607 * on 64 bit we use a predifined VA range for mapping devices in the kernel
608 * on 32 bit the mappings are intermixed in the heap, so we use a bit map
609 */
610 #ifdef __amd64
611
612 vmem_t *device_arena;
613 uintptr_t toxic_addr = (uintptr_t)NULL;
614 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
615
616 #else /* __i386 */
617
618 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */
619 size_t toxic_bit_map_len = 0; /* in bits */
620
621 #endif /* __i386 */
622
623 /*
624 * Simple boot time debug facilities
625 */
626 static char *prm_dbg_str[] = {
627 "%s:%d: '%s' is 0x%x\n",
628 "%s:%d: '%s' is 0x%llx\n"
629 };
630
631 int prom_debug;
632
633 #define PRM_DEBUG(q) if (prom_debug) \
634 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
635 #define PRM_POINT(q) if (prom_debug) \
636 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
637
638 /*
639 * This structure is used to keep track of the intial allocations
640 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
641 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
642 */
643 #define NUM_ALLOCATIONS 8
644 int num_allocations = 0;
645 struct {
646 void **al_ptr;
647 size_t al_size;
648 } allocations[NUM_ALLOCATIONS];
649 size_t valloc_sz = 0;
650 uintptr_t valloc_base;
651
652 #define ADD_TO_ALLOCATIONS(ptr, size) { \
653 size = ROUND_UP_PAGE(size); \
654 if (num_allocations == NUM_ALLOCATIONS) \
655 panic("too many ADD_TO_ALLOCATIONS()"); \
656 allocations[num_allocations].al_ptr = (void**)&ptr; \
657 allocations[num_allocations].al_size = size; \
658 valloc_sz += size; \
659 ++num_allocations; \
660 }
661
662 /*
663 * Allocate all the initial memory needed by the page allocator.
664 */
665 static void
666 perform_allocations(void)
667 {
668 caddr_t mem;
669 int i;
670 int valloc_align;
671
672 PRM_DEBUG(valloc_base);
673 PRM_DEBUG(valloc_sz);
674 valloc_align = mmu.level_size[mmu.max_page_level > 0];
675 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align);
676 if (mem != (caddr_t)valloc_base)
677 panic("BOP_ALLOC() failed");
678 bzero(mem, valloc_sz);
679 for (i = 0; i < num_allocations; ++i) {
680 *allocations[i].al_ptr = (void *)mem;
681 mem += allocations[i].al_size;
682 }
683 }
684
685 /*
686 * Set up and enable SMAP now before we start other CPUs, but after the kernel's
687 * VM has been set up so we can use hot_patch_kernel_text().
688 *
689 * We can only patch 1, 2, or 4 bytes, but not three bytes. So instead, we
690 * replace the four byte word at the patch point. See uts/intel/ia32/ml/copy.s
691 * for more information on what's going on here.
692 */
693 static void
694 startup_smap(void)
695 {
696 int i;
697 uint32_t inst;
698 uint8_t *instp;
699 char sym[128];
700 struct modctl *modp;
701
702 extern int _smap_enable_patch_count;
703 extern int _smap_disable_patch_count;
704
705 if (disable_smap != 0)
706 remove_x86_feature(x86_featureset, X86FSET_SMAP);
707
708 if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_FALSE)
709 return;
710
711 for (i = 0; i < _smap_enable_patch_count; i++) {
712 int sizep;
713
714 VERIFY3U(i, <, _smap_enable_patch_count);
715 VERIFY(snprintf(sym, sizeof (sym), "_smap_enable_patch_%d", i) <
716 sizeof (sym));
717 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep);
718 VERIFY(instp != 0);
719 inst = (instp[3] << 24) | (SMAP_CLAC_INSTR & 0x00ffffff);
720 hot_patch_kernel_text((caddr_t)instp, inst, 4);
721 }
722
723 for (i = 0; i < _smap_disable_patch_count; i++) {
724 int sizep;
725
726 VERIFY(snprintf(sym, sizeof (sym), "_smap_disable_patch_%d",
727 i) < sizeof (sym));
728 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep);
729 VERIFY(instp != 0);
730 inst = (instp[3] << 24) | (SMAP_STAC_INSTR & 0x00ffffff);
731 hot_patch_kernel_text((caddr_t)instp, inst, 4);
732 }
733
734 /*
735 * Hotinline calls to smap_enable and smap_disable within
736 * unix module. Hotinlines in other modules are done on
737 * mod_load().
738 */
739 modp = mod_hold_by_name("unix");
740 do_hotinlines(modp->mod_mp);
741 mod_release_mod(modp);
742
743 setcr4(getcr4() | CR4_SMAP);
744 smap_enable();
745 }
746
747 /*
748 * Our world looks like this at startup time.
749 *
750 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
751 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at
752 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those
753 * addresses are fixed in the binary at link time.
754 *
755 * On the text page:
756 * unix/genunix/krtld/module text loads.
757 *
758 * On the data page:
759 * unix/genunix/krtld/module data loads.
760 *
761 * Machine-dependent startup code
762 */
763 void
764 startup(void)
765 {
766 #if !defined(__xpv)
767 extern void startup_pci_bios(void);
768 #endif
769 extern cpuset_t cpu_ready_set;
770
771 /*
772 * Make sure that nobody tries to use sekpm until we have
773 * initialized it properly.
774 */
775 #if defined(__amd64)
776 kpm_desired = 1;
777 #endif
778 kpm_enable = 0;
779 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */
780
781 #if defined(__xpv) /* XXPV fix me! */
782 {
783 extern int segvn_use_regions;
784 segvn_use_regions = 0;
785 }
786 #endif
787 ssp_init();
788 progressbar_init();
789 startup_init();
790 #if defined(__xpv)
791 startup_xen_version();
792 #endif
793 startup_memlist();
794 startup_kmem();
795 startup_vm();
796 #if !defined(__xpv)
797 /*
798 * Note we need to do this even on fast reboot in order to access
799 * the irq routing table (used for pci labels).
800 */
801 startup_pci_bios();
802 startup_smap();
803 #endif
804 #if defined(__xpv)
805 startup_xen_mca();
806 #endif
807 startup_modules();
808
809 startup_end();
810 }
811
812 static void
813 startup_init()
814 {
815 PRM_POINT("startup_init() starting...");
816
817 /*
818 * Complete the extraction of cpuid data
819 */
820 cpuid_pass2(CPU);
821
822 (void) check_boot_version(BOP_GETVERSION(bootops));
823
824 /*
825 * Check for prom_debug in boot environment
826 */
827 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
828 ++prom_debug;
829 PRM_POINT("prom_debug found in boot enviroment");
830 }
831
832 /*
833 * Collect node, cpu and memory configuration information.
834 */
835 get_system_configuration();
836
837 /*
838 * Halt if this is an unsupported processor.
839 */
840 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
841 printf("\n486 processor (\"%s\") detected.\n",
842 CPU->cpu_brandstr);
843 halt("This processor is not supported by this release "
844 "of Solaris.");
845 }
846
847 PRM_POINT("startup_init() done");
848 }
849
850 /*
851 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
852 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
853 * also filters out physical page zero. There is some reliance on the
854 * boot loader allocating only a few contiguous physical memory chunks.
855 */
856 static void
857 avail_filter(uint64_t *addr, uint64_t *size)
858 {
859 uintptr_t va;
860 uintptr_t next_va;
861 pfn_t pfn;
862 uint64_t pfn_addr;
863 uint64_t pfn_eaddr;
864 uint_t prot;
865 size_t len;
866 uint_t change;
867
868 if (prom_debug)
869 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
870 *addr, *size);
871
872 /*
873 * page zero is required for BIOS.. never make it available
874 */
875 if (*addr == 0) {
876 *addr += MMU_PAGESIZE;
877 *size -= MMU_PAGESIZE;
878 }
879
880 /*
881 * First we trim from the front of the range. Since kbm_probe()
882 * walks ranges in virtual order, but addr/size are physical, we need
883 * to the list until no changes are seen. This deals with the case
884 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
885 * but w < v.
886 */
887 do {
888 change = 0;
889 for (va = KERNEL_TEXT;
890 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
891 va = next_va) {
892
893 next_va = va + len;
894 pfn_addr = pfn_to_pa(pfn);
895 pfn_eaddr = pfn_addr + len;
896
897 if (pfn_addr <= *addr && pfn_eaddr > *addr) {
898 change = 1;
899 while (*size > 0 && len > 0) {
900 *addr += MMU_PAGESIZE;
901 *size -= MMU_PAGESIZE;
902 len -= MMU_PAGESIZE;
903 }
904 }
905 }
906 if (change && prom_debug)
907 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
908 *addr, *size);
909 } while (change);
910
911 /*
912 * Trim pages from the end of the range.
913 */
914 for (va = KERNEL_TEXT;
915 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
916 va = next_va) {
917
918 next_va = va + len;
919 pfn_addr = pfn_to_pa(pfn);
920
921 if (pfn_addr >= *addr && pfn_addr < *addr + *size)
922 *size = pfn_addr - *addr;
923 }
924
925 if (prom_debug)
926 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
927 *addr, *size);
928 }
929
930 static void
931 kpm_init()
932 {
933 struct segkpm_crargs b;
934
935 /*
936 * These variables were all designed for sfmmu in which segkpm is
937 * mapped using a single pagesize - either 8KB or 4MB. On x86, we
938 * might use 2+ page sizes on a single machine, so none of these
939 * variables have a single correct value. They are set up as if we
940 * always use a 4KB pagesize, which should do no harm. In the long
941 * run, we should get rid of KPM's assumption that only a single
942 * pagesize is used.
943 */
944 kpm_pgshft = MMU_PAGESHIFT;
945 kpm_pgsz = MMU_PAGESIZE;
946 kpm_pgoff = MMU_PAGEOFFSET;
947 kpmp2pshft = 0;
948 kpmpnpgs = 1;
949 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
950
951 PRM_POINT("about to create segkpm");
952 rw_enter(&kas.a_lock, RW_WRITER);
953
954 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
955 panic("cannot attach segkpm");
956
957 b.prot = PROT_READ | PROT_WRITE;
958 b.nvcolors = 1;
959
960 if (segkpm_create(segkpm, (caddr_t)&b) != 0)
961 panic("segkpm_create segkpm");
962
963 rw_exit(&kas.a_lock);
964
965 kpm_enable = 1;
966
967 /*
968 * As the KPM was disabled while setting up the system, go back and fix
969 * CPU zero's access to its user page table. This is a bit gross, but
970 * we have a chicken and egg problem otherwise.
971 */
972 ASSERT(CPU->cpu_hat_info->hci_user_l3ptes == NULL);
973 CPU->cpu_hat_info->hci_user_l3ptes =
974 (x86pte_t *)hat_kpm_mapin_pfn(CPU->cpu_hat_info->hci_user_l3pfn);
975 }
976
977 /*
978 * The debug info page provides enough information to allow external
979 * inspectors (e.g. when running under a hypervisor) to bootstrap
980 * themselves into allowing full-blown kernel debugging.
981 */
982 static void
983 init_debug_info(void)
984 {
985 caddr_t mem;
986 debug_info_t *di;
987
988 #ifndef __lint
989 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE);
990 #endif
991
992 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE,
993 MMU_PAGESIZE);
994
995 if (mem != (caddr_t)DEBUG_INFO_VA)
996 panic("BOP_ALLOC() failed");
997 bzero(mem, MMU_PAGESIZE);
998
999 di = (debug_info_t *)mem;
1000
1001 di->di_magic = DEBUG_INFO_MAGIC;
1002 di->di_version = DEBUG_INFO_VERSION;
1003 di->di_modules = (uintptr_t)&modules;
1004 di->di_s_text = (uintptr_t)s_text;
1005 di->di_e_text = (uintptr_t)e_text;
1006 di->di_s_data = (uintptr_t)s_data;
1007 di->di_e_data = (uintptr_t)e_data;
1008 di->di_hat_htable_off = offsetof(hat_t, hat_htable);
1009 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn);
1010 }
1011
1012 /*
1013 * Build the memlists and other kernel essential memory system data structures.
1014 * This is everything at valloc_base.
1015 */
1016 static void
1017 startup_memlist(void)
1018 {
1019 size_t memlist_sz;
1020 size_t memseg_sz;
1021 size_t pagehash_sz;
1022 size_t pp_sz;
1023 uintptr_t va;
1024 size_t len;
1025 uint_t prot;
1026 pfn_t pfn;
1027 int memblocks;
1028 pfn_t rsvd_high_pfn;
1029 pgcnt_t rsvd_pgcnt;
1030 size_t rsvdmemlist_sz;
1031 int rsvdmemblocks;
1032 caddr_t pagecolor_mem;
1033 size_t pagecolor_memsz;
1034 caddr_t page_ctrs_mem;
1035 size_t page_ctrs_size;
1036 size_t pse_table_alloc_size;
1037 struct memlist *current;
1038 extern void startup_build_mem_nodes(struct memlist *);
1039
1040 /* XX64 fix these - they should be in include files */
1041 extern size_t page_coloring_init(uint_t, int, int);
1042 extern void page_coloring_setup(caddr_t);
1043
1044 PRM_POINT("startup_memlist() starting...");
1045
1046 /*
1047 * Use leftover large page nucleus text/data space for loadable modules.
1048 * Use at most MODTEXT/MODDATA.
1049 */
1050 len = kbm_nucleus_size;
1051 ASSERT(len > MMU_PAGESIZE);
1052
1053 moddata = (caddr_t)ROUND_UP_PAGE(e_data);
1054 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len);
1055 if (e_moddata - moddata > MODDATA)
1056 e_moddata = moddata + MODDATA;
1057
1058 modtext = (caddr_t)ROUND_UP_PAGE(e_text);
1059 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len);
1060 if (e_modtext - modtext > MODTEXT)
1061 e_modtext = modtext + MODTEXT;
1062
1063 econtig = e_moddata;
1064
1065 PRM_DEBUG(modtext);
1066 PRM_DEBUG(e_modtext);
1067 PRM_DEBUG(moddata);
1068 PRM_DEBUG(e_moddata);
1069 PRM_DEBUG(econtig);
1070
1071 /*
1072 * Examine the boot loader physical memory map to find out:
1073 * - total memory in system - physinstalled
1074 * - the max physical address - physmax
1075 * - the number of discontiguous segments of memory.
1076 */
1077 if (prom_debug)
1078 print_memlist("boot physinstalled",
1079 bootops->boot_mem->physinstalled);
1080 installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax,
1081 &physinstalled, &memblocks);
1082 PRM_DEBUG(physmax);
1083 PRM_DEBUG(physinstalled);
1084 PRM_DEBUG(memblocks);
1085
1086 /*
1087 * Compute maximum physical address for memory DR operations.
1088 * Memory DR operations are unsupported on xpv or 32bit OSes.
1089 */
1090 #ifdef __amd64
1091 if (plat_dr_support_memory()) {
1092 if (plat_dr_physmax == 0) {
1093 uint_t pabits = UINT_MAX;
1094
1095 cpuid_get_addrsize(CPU, &pabits, NULL);
1096 plat_dr_physmax = btop(1ULL << pabits);
1097 }
1098 if (plat_dr_physmax > PHYSMEM_MAX64)
1099 plat_dr_physmax = PHYSMEM_MAX64;
1100 } else
1101 #endif
1102 plat_dr_physmax = 0;
1103
1104 /*
1105 * Examine the bios reserved memory to find out:
1106 * - the number of discontiguous segments of memory.
1107 */
1108 if (prom_debug)
1109 print_memlist("boot reserved mem",
1110 bootops->boot_mem->rsvdmem);
1111 installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn,
1112 &rsvd_pgcnt, &rsvdmemblocks);
1113 PRM_DEBUG(rsvd_high_pfn);
1114 PRM_DEBUG(rsvd_pgcnt);
1115 PRM_DEBUG(rsvdmemblocks);
1116
1117 /*
1118 * Initialize hat's mmu parameters.
1119 * Check for enforce-prot-exec in boot environment. It's used to
1120 * enable/disable support for the page table entry NX bit.
1121 * The default is to enforce PROT_EXEC on processors that support NX.
1122 * Boot seems to round up the "len", but 8 seems to be big enough.
1123 */
1124 mmu_init();
1125
1126 #ifdef __i386
1127 /*
1128 * physmax is lowered if there is more memory than can be
1129 * physically addressed in 32 bit (PAE/non-PAE) modes.
1130 */
1131 if (mmu.pae_hat) {
1132 if (PFN_ABOVE64G(physmax)) {
1133 physinstalled -= (physmax - (PFN_64G - 1));
1134 physmax = PFN_64G - 1;
1135 }
1136 } else {
1137 if (PFN_ABOVE4G(physmax)) {
1138 physinstalled -= (physmax - (PFN_4G - 1));
1139 physmax = PFN_4G - 1;
1140 }
1141 }
1142 #endif
1143
1144 startup_build_mem_nodes(bootops->boot_mem->physinstalled);
1145
1146 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
1147 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
1148 char value[8];
1149
1150 if (len < 8)
1151 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
1152 else
1153 (void) strcpy(value, "");
1154 if (strcmp(value, "off") == 0)
1155 mmu.pt_nx = 0;
1156 }
1157 PRM_DEBUG(mmu.pt_nx);
1158
1159 /*
1160 * We will need page_t's for every page in the system, except for
1161 * memory mapped at or above above the start of the kernel text segment.
1162 *
1163 * pages above e_modtext are attributed to kernel debugger (obp_pages)
1164 */
1165 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
1166 obp_pages = 0;
1167 va = KERNEL_TEXT;
1168 while (kbm_probe(&va, &len, &pfn, &prot) != 0) {
1169 npages -= len >> MMU_PAGESHIFT;
1170 if (va >= (uintptr_t)e_moddata)
1171 obp_pages += len >> MMU_PAGESHIFT;
1172 va += len;
1173 }
1174 PRM_DEBUG(npages);
1175 PRM_DEBUG(obp_pages);
1176
1177 /*
1178 * If physmem is patched to be non-zero, use it instead of the computed
1179 * value unless it is larger than the actual amount of memory on hand.
1180 */
1181 if (physmem == 0 || physmem > npages) {
1182 physmem = npages;
1183 } else if (physmem < npages) {
1184 orig_npages = npages;
1185 npages = physmem;
1186 }
1187 PRM_DEBUG(physmem);
1188
1189 /*
1190 * We now compute the sizes of all the initial allocations for
1191 * structures the kernel needs in order do kmem_alloc(). These
1192 * include:
1193 * memsegs
1194 * memlists
1195 * page hash table
1196 * page_t's
1197 * page coloring data structs
1198 */
1199 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
1200 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
1201 PRM_DEBUG(memseg_sz);
1202
1203 /*
1204 * Reserve space for memlists. There's no real good way to know exactly
1205 * how much room we'll need, but this should be a good upper bound.
1206 */
1207 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1208 (memblocks + POSS_NEW_FRAGMENTS));
1209 ADD_TO_ALLOCATIONS(memlist, memlist_sz);
1210 PRM_DEBUG(memlist_sz);
1211
1212 /*
1213 * Reserve space for bios reserved memlists.
1214 */
1215 rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1216 (rsvdmemblocks + POSS_NEW_FRAGMENTS));
1217 ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz);
1218 PRM_DEBUG(rsvdmemlist_sz);
1219
1220 /* LINTED */
1221 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), sizeof (struct page)));
1222 /*
1223 * The page structure hash table size is a power of 2
1224 * such that the average hash chain length is PAGE_HASHAVELEN.
1225 */
1226 page_hashsz = npages / PAGE_HASHAVELEN;
1227 page_hashsz_shift = highbit(page_hashsz);
1228 page_hashsz = 1 << page_hashsz_shift;
1229 pagehash_sz = sizeof (struct page *) * page_hashsz;
1230 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
1231 PRM_DEBUG(pagehash_sz);
1232
1233 /*
1234 * Set aside room for the page structures themselves.
1235 */
1236 PRM_DEBUG(npages);
1237 pp_sz = sizeof (struct page) * npages;
1238 ADD_TO_ALLOCATIONS(pp_base, pp_sz);
1239 PRM_DEBUG(pp_sz);
1240
1241 /*
1242 * determine l2 cache info and memory size for page coloring
1243 */
1244 (void) getl2cacheinfo(CPU,
1245 &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
1246 pagecolor_memsz =
1247 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
1248 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
1249 PRM_DEBUG(pagecolor_memsz);
1250
1251 page_ctrs_size = page_ctrs_sz();
1252 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
1253 PRM_DEBUG(page_ctrs_size);
1254
1255 /*
1256 * Allocate the array that protects pp->p_selock.
1257 */
1258 pse_shift = size_pse_array(physmem, max_ncpus);
1259 pse_table_size = 1 << pse_shift;
1260 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t);
1261 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size);
1262
1263 #if defined(__amd64)
1264 valloc_sz = ROUND_UP_LPAGE(valloc_sz);
1265 valloc_base = VALLOC_BASE;
1266
1267 /*
1268 * The default values of VALLOC_BASE and SEGKPM_BASE should work
1269 * for values of physmax up to 256GB (1/4 TB). They need adjusting when
1270 * memory is at addresses above 256GB. When adjusted, segkpm_base must
1271 * be aligned on KERNEL_REDZONE_SIZE boundary (span of top level pte).
1272 *
1273 * In the general case (>256GB), we use (4 * physmem) for the
1274 * kernel's virtual addresses, which is divided approximately
1275 * as follows:
1276 * - 1 * physmem for segkpm
1277 * - 1.5 * physmem for segzio
1278 * - 1.5 * physmem for heap
1279 * Total: 4.0 * physmem
1280 *
1281 * Note that the segzio and heap sizes are more than physmem so that
1282 * VA fragmentation does not prevent either of them from being
1283 * able to use nearly all of physmem. The value of 1.5x is determined
1284 * experimentally and may need to change if the workload changes.
1285 */
1286 if (physmax + 1 > mmu_btop(TERABYTE / 4) ||
1287 plat_dr_physmax > mmu_btop(TERABYTE / 4)) {
1288 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1);
1289
1290 if (kpm_resv_amount < mmu_ptob(plat_dr_physmax)) {
1291 kpm_resv_amount = mmu_ptob(plat_dr_physmax);
1292 }
1293
1294 /*
1295 * This is what actually controls the KVA : UVA split.
1296 * The kernel uses high VA, and this is lowering the
1297 * boundary, thus increasing the amount of VA for the kernel.
1298 * This gives the kernel 4 * (amount of physical memory) VA.
1299 *
1300 * The maximum VA is UINT64_MAX and we are using
1301 * 64-bit 2's complement math, so e.g. if you have 512GB
1302 * of memory, segkpm_base = -(4 * 512GB) == -2TB ==
1303 * UINT64_MAX - 2TB (approximately). So the kernel's
1304 * VA is [UINT64_MAX-2TB to UINT64_MAX].
1305 */
1306 segkpm_base = -(P2ROUNDUP((4 * kpm_resv_amount),
1307 KERNEL_REDZONE_SIZE));
1308
1309 /* make sure we leave some space for user apps above hole */
1310 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE);
1311 if (segkpm_base > SEGKPM_BASE)
1312 segkpm_base = SEGKPM_BASE;
1313 PRM_DEBUG(segkpm_base);
1314
1315 valloc_base = segkpm_base + P2ROUNDUP(kpm_resv_amount, ONE_GIG);
1316 if (valloc_base < segkpm_base)
1317 panic("not enough kernel VA to support memory size");
1318 PRM_DEBUG(valloc_base);
1319 }
1320 #else /* __i386 */
1321 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz);
1322 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]);
1323 PRM_DEBUG(valloc_base);
1324 #endif /* __i386 */
1325
1326 /*
1327 * do all the initial allocations
1328 */
1329 perform_allocations();
1330
1331 /*
1332 * Build phys_install and phys_avail in kernel memspace.
1333 * - phys_install should be all memory in the system.
1334 * - phys_avail is phys_install minus any memory mapped before this
1335 * point above KERNEL_TEXT.
1336 */
1337 current = phys_install = memlist;
1338 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL);
1339 if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1340 panic("physinstalled was too big!");
1341 if (prom_debug)
1342 print_memlist("phys_install", phys_install);
1343
1344 phys_avail = current;
1345 PRM_POINT("Building phys_avail:\n");
1346 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t,
1347 avail_filter);
1348 if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1349 panic("physavail was too big!");
1350 if (prom_debug)
1351 print_memlist("phys_avail", phys_avail);
1352 #ifndef __xpv
1353 /*
1354 * Free unused memlist items, which may be used by memory DR driver
1355 * at runtime.
1356 */
1357 if ((caddr_t)current < (caddr_t)memlist + memlist_sz) {
1358 memlist_free_block((caddr_t)current,
1359 (caddr_t)memlist + memlist_sz - (caddr_t)current);
1360 }
1361 #endif
1362
1363 /*
1364 * Build bios reserved memspace
1365 */
1366 current = bios_rsvd;
1367 copy_memlist_filter(bootops->boot_mem->rsvdmem, ¤t, NULL);
1368 if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz)
1369 panic("bios_rsvd was too big!");
1370 if (prom_debug)
1371 print_memlist("bios_rsvd", bios_rsvd);
1372 #ifndef __xpv
1373 /*
1374 * Free unused memlist items, which may be used by memory DR driver
1375 * at runtime.
1376 */
1377 if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) {
1378 memlist_free_block((caddr_t)current,
1379 (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current);
1380 }
1381 #endif
1382
1383 /*
1384 * setup page coloring
1385 */
1386 page_coloring_setup(pagecolor_mem);
1387 page_lock_init(); /* currently a no-op */
1388
1389 /*
1390 * free page list counters
1391 */
1392 (void) page_ctrs_alloc(page_ctrs_mem);
1393
1394 /*
1395 * Size the pcf array based on the number of cpus in the box at
1396 * boot time.
1397 */
1398
1399 pcf_init();
1400
1401 /*
1402 * Initialize the page structures from the memory lists.
1403 */
1404 availrmem_initial = availrmem = freemem = 0;
1405 PRM_POINT("Calling kphysm_init()...");
1406 npages = kphysm_init(pp_base, npages);
1407 PRM_POINT("kphysm_init() done");
1408 PRM_DEBUG(npages);
1409
1410 init_debug_info();
1411
1412 /*
1413 * Now that page_t's have been initialized, remove all the
1414 * initial allocation pages from the kernel free page lists.
1415 */
1416 boot_mapin((caddr_t)valloc_base, valloc_sz);
1417 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE);
1418 PRM_POINT("startup_memlist() done");
1419
1420 PRM_DEBUG(valloc_sz);
1421
1422 #if defined(__amd64)
1423 if ((availrmem >> (30 - MMU_PAGESHIFT)) >=
1424 textrepl_min_gb && l2cache_sz <= 2 << 20) {
1425 extern size_t textrepl_size_thresh;
1426 textrepl_size_thresh = (16 << 20) - 1;
1427 }
1428 #endif
1429 }
1430
1431 /*
1432 * Layout the kernel's part of address space and initialize kmem allocator.
1433 */
1434 static void
1435 startup_kmem(void)
1436 {
1437 extern void page_set_colorequiv_arr(void);
1438 #if !defined(__xpv)
1439 extern uint64_t kpti_kbase;
1440 #endif
1441
1442 PRM_POINT("startup_kmem() starting...");
1443
1444 #if defined(__amd64)
1445 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
1446 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
1447 "systems.");
1448 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE;
1449 core_base = (uintptr_t)COREHEAP_BASE;
1450 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE;
1451 #else /* __i386 */
1452 /*
1453 * We configure kernelbase based on:
1454 *
1455 * 1. user specified kernelbase via eeprom command. Value cannot exceed
1456 * KERNELBASE_MAX. we large page align eprom_kernelbase
1457 *
1458 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
1459 * On large memory systems we must lower kernelbase to allow
1460 * enough room for page_t's for all of memory.
1461 *
1462 * The value set here, might be changed a little later.
1463 */
1464 if (eprom_kernelbase) {
1465 kernelbase = eprom_kernelbase & mmu.level_mask[1];
1466 if (kernelbase > KERNELBASE_MAX)
1467 kernelbase = KERNELBASE_MAX;
1468 } else {
1469 kernelbase = (uintptr_t)KERNELBASE;
1470 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
1471 }
1472 ASSERT((kernelbase & mmu.level_offset[1]) == 0);
1473 core_base = valloc_base;
1474 core_size = 0;
1475 #endif /* __i386 */
1476
1477 PRM_DEBUG(core_base);
1478 PRM_DEBUG(core_size);
1479 PRM_DEBUG(kernelbase);
1480
1481 #if defined(__i386)
1482 segkp_fromheap = 1;
1483 #endif /* __i386 */
1484
1485 ekernelheap = (char *)core_base;
1486 PRM_DEBUG(ekernelheap);
1487
1488 /*
1489 * Now that we know the real value of kernelbase,
1490 * update variables that were initialized with a value of
1491 * KERNELBASE (in common/conf/param.c).
1492 *
1493 * XXX The problem with this sort of hackery is that the
1494 * compiler just may feel like putting the const declarations
1495 * (in param.c) into the .text section. Perhaps they should
1496 * just be declared as variables there?
1497 */
1498
1499 *(uintptr_t *)&_kernelbase = kernelbase;
1500 *(uintptr_t *)&_userlimit = kernelbase;
1501 #if defined(__amd64)
1502 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT;
1503 #if !defined(__xpv)
1504 kpti_kbase = kernelbase;
1505 #endif
1506 #else
1507 *(uintptr_t *)&_userlimit32 = _userlimit;
1508 #endif
1509 PRM_DEBUG(_kernelbase);
1510 PRM_DEBUG(_userlimit);
1511 PRM_DEBUG(_userlimit32);
1512
1513 /* We have to re-do this now that we've modified _userlimit. */
1514 mmu_calc_user_slots();
1515
1516 layout_kernel_va();
1517
1518 #if defined(__i386)
1519 /*
1520 * If segmap is too large we can push the bottom of the kernel heap
1521 * higher than the base. Or worse, it could exceed the top of the
1522 * VA space entirely, causing it to wrap around.
1523 */
1524 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
1525 panic("too little address space available for kernelheap,"
1526 " use eeprom for lower kernelbase or smaller segmapsize");
1527 #endif /* __i386 */
1528
1529 /*
1530 * Initialize the kernel heap. Note 3rd argument must be > 1st.
1531 */
1532 kernelheap_init(kernelheap, ekernelheap,
1533 kernelheap + MMU_PAGESIZE,
1534 (void *)core_base, (void *)(core_base + core_size));
1535
1536 #if defined(__xpv)
1537 /*
1538 * Link pending events struct into cpu struct
1539 */
1540 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data;
1541 #endif
1542 /*
1543 * Initialize kernel memory allocator.
1544 */
1545 kmem_init();
1546
1547 /*
1548 * Factor in colorequiv to check additional 'equivalent' bins
1549 */
1550 page_set_colorequiv_arr();
1551
1552 /*
1553 * print this out early so that we know what's going on
1554 */
1555 print_x86_featureset(x86_featureset);
1556
1557 /*
1558 * Initialize bp_mapin().
1559 */
1560 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
1561
1562 /*
1563 * orig_npages is non-zero if physmem has been configured for less
1564 * than the available memory.
1565 */
1566 if (orig_npages) {
1567 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages",
1568 (npages == PHYSMEM ? "Due to virtual address space " : ""),
1569 npages, orig_npages);
1570 }
1571 #if defined(__i386)
1572 if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
1573 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
1574 "System using 0x%lx",
1575 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
1576 #endif
1577
1578 #ifdef KERNELBASE_ABI_MIN
1579 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
1580 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
1581 "i386 ABI compliant.", (uintptr_t)kernelbase);
1582 }
1583 #endif
1584
1585 #ifndef __xpv
1586 if (plat_dr_support_memory()) {
1587 mem_config_init();
1588 }
1589 #else /* __xpv */
1590 /*
1591 * Some of the xen start information has to be relocated up
1592 * into the kernel's permanent address space.
1593 */
1594 PRM_POINT("calling xen_relocate_start_info()");
1595 xen_relocate_start_info();
1596 PRM_POINT("xen_relocate_start_info() done");
1597
1598 /*
1599 * (Update the vcpu pointer in our cpu structure to point into
1600 * the relocated shared info.)
1601 */
1602 CPU->cpu_m.mcpu_vcpu_info =
1603 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id];
1604 #endif /* __xpv */
1605
1606 PRM_POINT("startup_kmem() done");
1607 }
1608
1609 #ifndef __xpv
1610 /*
1611 * If we have detected that we are running in an HVM environment, we need
1612 * to prepend the PV driver directory to the module search path.
1613 */
1614 #define HVM_MOD_DIR "/platform/i86hvm/kernel"
1615 static void
1616 update_default_path()
1617 {
1618 char *current, *newpath;
1619 int newlen;
1620
1621 /*
1622 * We are about to resync with krtld. krtld will reset its
1623 * internal module search path iff Solaris has set default_path.
1624 * We want to be sure we're prepending this new directory to the
1625 * right search path.
1626 */
1627 current = (default_path == NULL) ? kobj_module_path : default_path;
1628
1629 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2;
1630 newpath = kmem_alloc(newlen, KM_SLEEP);
1631 (void) strcpy(newpath, HVM_MOD_DIR);
1632 (void) strcat(newpath, " ");
1633 (void) strcat(newpath, current);
1634
1635 default_path = newpath;
1636 }
1637 #endif
1638
1639 static void
1640 startup_modules(void)
1641 {
1642 int cnt;
1643 extern void prom_setup(void);
1644 int32_t v, h;
1645 char d[11];
1646 char *cp;
1647 cmi_hdl_t hdl;
1648
1649 PRM_POINT("startup_modules() starting...");
1650
1651 #ifndef __xpv
1652 /*
1653 * Initialize ten-micro second timer so that drivers will
1654 * not get short changed in their init phase. This was
1655 * not getting called until clkinit which, on fast cpu's
1656 * caused the drv_usecwait to be way too short.
1657 */
1658 microfind();
1659
1660 if ((get_hwenv() & HW_XEN_HVM) != 0)
1661 update_default_path();
1662 #endif
1663
1664 /*
1665 * Read the GMT lag from /etc/rtc_config.
1666 */
1667 sgmtl(process_rtc_config_file());
1668
1669 /*
1670 * Calculate default settings of system parameters based upon
1671 * maxusers, yet allow to be overridden via the /etc/system file.
1672 */
1673 param_calc(0);
1674
1675 mod_setup();
1676
1677 /*
1678 * Initialize system parameters.
1679 */
1680 param_init();
1681
1682 /*
1683 * Initialize the default brands
1684 */
1685 brand_init();
1686
1687 /*
1688 * maxmem is the amount of physical memory we're playing with.
1689 */
1690 maxmem = physmem;
1691
1692 /*
1693 * Initialize segment management stuff.
1694 */
1695 seg_init();
1696
1697 if (modload("fs", "specfs") == -1)
1698 halt("Can't load specfs");
1699
1700 if (modload("fs", "devfs") == -1)
1701 halt("Can't load devfs");
1702
1703 if (modload("fs", "dev") == -1)
1704 halt("Can't load dev");
1705
1706 if (modload("fs", "procfs") == -1)
1707 halt("Can't load procfs");
1708
1709 (void) modloadonly("sys", "lbl_edition");
1710
1711 dispinit();
1712
1713 /* Read cluster configuration data. */
1714 clconf_init();
1715
1716 #if defined(__xpv)
1717 (void) ec_init();
1718 gnttab_init();
1719 (void) xs_early_init();
1720 #endif /* __xpv */
1721
1722 /*
1723 * Create a kernel device tree. First, create rootnex and
1724 * then invoke bus specific code to probe devices.
1725 */
1726 setup_ddi();
1727
1728 #ifdef __xpv
1729 if (DOMAIN_IS_INITDOMAIN(xen_info))
1730 #endif
1731 {
1732 id_t smid;
1733 smbios_system_t smsys;
1734 smbios_info_t sminfo;
1735 char *mfg;
1736 /*
1737 * Load the System Management BIOS into the global ksmbios
1738 * handle, if an SMBIOS is present on this system.
1739 * Also set "si-hw-provider" property, if not already set.
1740 */
1741 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
1742 if (ksmbios != NULL &&
1743 ((smid = smbios_info_system(ksmbios, &smsys)) != SMB_ERR) &&
1744 (smbios_info_common(ksmbios, smid, &sminfo)) != SMB_ERR) {
1745 mfg = (char *)sminfo.smbi_manufacturer;
1746 if (BOP_GETPROPLEN(bootops, "si-hw-provider") < 0) {
1747 extern char hw_provider[];
1748 int i;
1749 for (i = 0; i < SYS_NMLN; i++) {
1750 if (isprint(mfg[i]))
1751 hw_provider[i] = mfg[i];
1752 else {
1753 hw_provider[i] = '\0';
1754 break;
1755 }
1756 }
1757 hw_provider[SYS_NMLN - 1] = '\0';
1758 }
1759 }
1760 }
1761
1762
1763 /*
1764 * Originally clconf_init() apparently needed the hostid. But
1765 * this no longer appears to be true - it uses its own nodeid.
1766 * By placing the hostid logic here, we are able to make use of
1767 * the SMBIOS UUID.
1768 */
1769 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) {
1770 cmn_err(CE_WARN, "Unable to set hostid");
1771 } else {
1772 for (v = h, cnt = 0; cnt < 10; cnt++) {
1773 d[cnt] = (char)(v % 10);
1774 v /= 10;
1775 if (v == 0)
1776 break;
1777 }
1778 for (cp = hw_serial; cnt >= 0; cnt--)
1779 *cp++ = d[cnt] + '0';
1780 *cp = 0;
1781 }
1782
1783 /*
1784 * Set up the CPU module subsystem for the boot cpu in the native
1785 * case, and all physical cpu resource in the xpv dom0 case.
1786 * Modifies the device tree, so this must be done after
1787 * setup_ddi().
1788 */
1789 #ifdef __xpv
1790 /*
1791 * If paravirtualized and on dom0 then we initialize all physical
1792 * cpu handles now; if paravirtualized on a domU then do not
1793 * initialize.
1794 */
1795 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1796 xen_mc_lcpu_cookie_t cpi;
1797
1798 for (cpi = xen_physcpu_next(NULL); cpi != NULL;
1799 cpi = xen_physcpu_next(cpi)) {
1800 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA,
1801 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi),
1802 xen_physcpu_strandid(cpi))) != NULL &&
1803 is_x86_feature(x86_featureset, X86FSET_MCA))
1804 cmi_mca_init(hdl);
1805 }
1806 }
1807 #else
1808 /*
1809 * Initialize a handle for the boot cpu - others will initialize
1810 * as they startup.
1811 */
1812 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1813 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) {
1814 if (is_x86_feature(x86_featureset, X86FSET_MCA))
1815 cmi_mca_init(hdl);
1816 CPU->cpu_m.mcpu_cmi_hdl = hdl;
1817 }
1818 #endif /* __xpv */
1819
1820 /*
1821 * Fake a prom tree such that /dev/openprom continues to work
1822 */
1823 PRM_POINT("startup_modules: calling prom_setup...");
1824 prom_setup();
1825 PRM_POINT("startup_modules: done");
1826
1827 /*
1828 * Load all platform specific modules
1829 */
1830 PRM_POINT("startup_modules: calling psm_modload...");
1831 psm_modload();
1832
1833 PRM_POINT("startup_modules() done");
1834 }
1835
1836 /*
1837 * claim a "setaside" boot page for use in the kernel
1838 */
1839 page_t *
1840 boot_claim_page(pfn_t pfn)
1841 {
1842 page_t *pp;
1843
1844 pp = page_numtopp_nolock(pfn);
1845 ASSERT(pp != NULL);
1846
1847 if (PP_ISBOOTPAGES(pp)) {
1848 if (pp->p_next != NULL)
1849 pp->p_next->p_prev = pp->p_prev;
1850 if (pp->p_prev == NULL)
1851 bootpages = pp->p_next;
1852 else
1853 pp->p_prev->p_next = pp->p_next;
1854 } else {
1855 /*
1856 * htable_attach() expects a base pagesize page
1857 */
1858 if (pp->p_szc != 0)
1859 page_boot_demote(pp);
1860 pp = page_numtopp(pfn, SE_EXCL);
1861 }
1862 return (pp);
1863 }
1864
1865 /*
1866 * Walk through the pagetables looking for pages mapped in by boot. If the
1867 * setaside flag is set the pages are expected to be returned to the
1868 * kernel later in boot, so we add them to the bootpages list.
1869 */
1870 static void
1871 protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
1872 {
1873 uintptr_t va = low;
1874 size_t len;
1875 uint_t prot;
1876 pfn_t pfn;
1877 page_t *pp;
1878 pgcnt_t boot_protect_cnt = 0;
1879
1880 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
1881 if (va + len >= high)
1882 panic("0x%lx byte mapping at 0x%p exceeds boot's "
1883 "legal range.", len, (void *)va);
1884
1885 while (len > 0) {
1886 pp = page_numtopp_alloc(pfn);
1887 if (pp != NULL) {
1888 if (setaside == 0)
1889 panic("Unexpected mapping by boot. "
1890 "addr=%p pfn=%lx\n",
1891 (void *)va, pfn);
1892
1893 pp->p_next = bootpages;
1894 pp->p_prev = NULL;
1895 PP_SETBOOTPAGES(pp);
1896 if (bootpages != NULL) {
1897 bootpages->p_prev = pp;
1898 }
1899 bootpages = pp;
1900 ++boot_protect_cnt;
1901 }
1902
1903 ++pfn;
1904 len -= MMU_PAGESIZE;
1905 va += MMU_PAGESIZE;
1906 }
1907 }
1908 PRM_DEBUG(boot_protect_cnt);
1909 }
1910
1911 /*
1912 *
1913 */
1914 static void
1915 layout_kernel_va(void)
1916 {
1917 PRM_POINT("layout_kernel_va() starting...");
1918 /*
1919 * Establish the final size of the kernel's heap, size of segmap,
1920 * segkp, etc.
1921 */
1922
1923 #if defined(__amd64)
1924
1925 kpm_vbase = (caddr_t)segkpm_base;
1926 if (physmax + 1 < plat_dr_physmax) {
1927 kpm_size = ROUND_UP_LPAGE(mmu_ptob(plat_dr_physmax));
1928 } else {
1929 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1));
1930 }
1931 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base)
1932 panic("not enough room for kpm!");
1933 PRM_DEBUG(kpm_size);
1934 PRM_DEBUG(kpm_vbase);
1935
1936 /*
1937 * By default we create a seg_kp in 64 bit kernels, it's a little
1938 * faster to access than embedding it in the heap.
1939 */
1940 segkp_base = (caddr_t)valloc_base + valloc_sz;
1941 if (!segkp_fromheap) {
1942 size_t sz = mmu_ptob(segkpsize);
1943
1944 /*
1945 * determine size of segkp
1946 */
1947 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
1948 sz = SEGKPDEFSIZE;
1949 cmn_err(CE_WARN, "!Illegal value for segkpsize. "
1950 "segkpsize has been reset to %ld pages",
1951 mmu_btop(sz));
1952 }
1953 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
1954
1955 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
1956 }
1957 PRM_DEBUG(segkp_base);
1958 PRM_DEBUG(segkpsize);
1959
1960 /*
1961 * segzio is used for ZFS cached data. It uses a distinct VA
1962 * segment (from kernel heap) so that we can easily tell not to
1963 * include it in kernel crash dumps on 64 bit kernels. The trick is
1964 * to give it lots of VA, but not constrain the kernel heap.
1965 * We can use 1.5x physmem for segzio, leaving approximately
1966 * another 1.5x physmem for heap. See also the comment in
1967 * startup_memlist().
1968 */
1969 segzio_base = segkp_base + mmu_ptob(segkpsize);
1970 if (segzio_fromheap) {
1971 segziosize = 0;
1972 } else {
1973 size_t physmem_size = mmu_ptob(physmem);
1974 size_t size = (segziosize == 0) ?
1975 physmem_size * 3 / 2 : mmu_ptob(segziosize);
1976
1977 if (size < SEGZIOMINSIZE)
1978 size = SEGZIOMINSIZE;
1979 segziosize = mmu_btop(ROUND_UP_LPAGE(size));
1980 }
1981 PRM_DEBUG(segziosize);
1982 PRM_DEBUG(segzio_base);
1983
1984 /*
1985 * Put the range of VA for device mappings next, kmdb knows to not
1986 * grep in this range of addresses.
1987 */
1988 toxic_addr =
1989 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize));
1990 PRM_DEBUG(toxic_addr);
1991 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size);
1992 #else /* __i386 */
1993 segmap_start = ROUND_UP_LPAGE(kernelbase);
1994 #endif /* __i386 */
1995 PRM_DEBUG(segmap_start);
1996
1997 /*
1998 * Users can change segmapsize through eeprom. If the variable
1999 * is tuned through eeprom, there is no upper bound on the
2000 * size of segmap.
2001 */
2002 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
2003
2004 #if defined(__i386)
2005 /*
2006 * 32-bit systems don't have segkpm or segkp, so segmap appears at
2007 * the bottom of the kernel's address range. Set aside space for a
2008 * small red zone just below the start of segmap.
2009 */
2010 segmap_start += KERNEL_REDZONE_SIZE;
2011 segmapsize -= KERNEL_REDZONE_SIZE;
2012 #endif
2013
2014 PRM_DEBUG(segmap_start);
2015 PRM_DEBUG(segmapsize);
2016 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize);
2017 PRM_DEBUG(kernelheap);
2018 PRM_POINT("layout_kernel_va() done...");
2019 }
2020
2021 /*
2022 * Finish initializing the VM system, now that we are no longer
2023 * relying on the boot time memory allocators.
2024 */
2025 static void
2026 startup_vm(void)
2027 {
2028 struct segmap_crargs a;
2029
2030 extern int use_brk_lpg, use_stk_lpg;
2031
2032 PRM_POINT("startup_vm() starting...");
2033
2034 /*
2035 * Initialize the hat layer.
2036 */
2037 hat_init();
2038
2039 /*
2040 * Do final allocations of HAT data structures that need to
2041 * be allocated before quiescing the boot loader.
2042 */
2043 PRM_POINT("Calling hat_kern_alloc()...");
2044 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap);
2045 PRM_POINT("hat_kern_alloc() done");
2046
2047 #ifndef __xpv
2048 /*
2049 * Setup Page Attribute Table
2050 */
2051 pat_sync();
2052 #endif
2053
2054 /*
2055 * The next two loops are done in distinct steps in order
2056 * to be sure that any page that is doubly mapped (both above
2057 * KERNEL_TEXT and below kernelbase) is dealt with correctly.
2058 * Note this may never happen, but it might someday.
2059 */
2060 bootpages = NULL;
2061 PRM_POINT("Protecting boot pages");
2062
2063 /*
2064 * Protect any pages mapped above KERNEL_TEXT that somehow have
2065 * page_t's. This can only happen if something weird allocated
2066 * in this range (like kadb/kmdb).
2067 */
2068 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
2069
2070 /*
2071 * Before we can take over memory allocation/mapping from the boot
2072 * loader we must remove from our free page lists any boot allocated
2073 * pages that stay mapped until release_bootstrap().
2074 */
2075 protect_boot_range(0, kernelbase, 1);
2076
2077
2078 /*
2079 * Switch to running on regular HAT (not boot_mmu)
2080 */
2081 PRM_POINT("Calling hat_kern_setup()...");
2082 hat_kern_setup();
2083
2084 /*
2085 * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
2086 */
2087 bop_no_more_mem();
2088
2089 PRM_POINT("hat_kern_setup() done");
2090
2091 hat_cpu_online(CPU);
2092
2093 /*
2094 * Initialize VM system
2095 */
2096 PRM_POINT("Calling kvm_init()...");
2097 kvm_init();
2098 PRM_POINT("kvm_init() done");
2099
2100 /*
2101 * Tell kmdb that the VM system is now working
2102 */
2103 if (boothowto & RB_DEBUG)
2104 kdi_dvec_vmready();
2105
2106 #if defined(__xpv)
2107 /*
2108 * Populate the I/O pool on domain 0
2109 */
2110 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2111 extern long populate_io_pool(void);
2112 long init_io_pool_cnt;
2113
2114 PRM_POINT("Populating reserve I/O page pool");
2115 init_io_pool_cnt = populate_io_pool();
2116 PRM_DEBUG(init_io_pool_cnt);
2117 }
2118 #endif
2119 /*
2120 * Mangle the brand string etc.
2121 */
2122 cpuid_pass3(CPU);
2123
2124 #if defined(__amd64)
2125
2126 /*
2127 * Create the device arena for toxic (to dtrace/kmdb) mappings.
2128 */
2129 device_arena = vmem_create("device", (void *)toxic_addr,
2130 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
2131
2132 #else /* __i386 */
2133
2134 /*
2135 * allocate the bit map that tracks toxic pages
2136 */
2137 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase));
2138 PRM_DEBUG(toxic_bit_map_len);
2139 toxic_bit_map =
2140 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
2141 ASSERT(toxic_bit_map != NULL);
2142 PRM_DEBUG(toxic_bit_map);
2143
2144 #endif /* __i386 */
2145
2146
2147 /*
2148 * Now that we've got more VA, as well as the ability to allocate from
2149 * it, tell the debugger.
2150 */
2151 if (boothowto & RB_DEBUG)
2152 kdi_dvec_memavail();
2153
2154 #if !defined(__xpv)
2155 /*
2156 * Map page pfn=0 for drivers, such as kd, that need to pick up
2157 * parameters left there by controllers/BIOS.
2158 */
2159 PRM_POINT("setup up p0_va");
2160 p0_va = i86devmap(0, 1, PROT_READ);
2161 PRM_DEBUG(p0_va);
2162 #endif
2163
2164 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
2165 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
2166
2167 /*
2168 * disable automatic large pages for small memory systems or
2169 * when the disable flag is set.
2170 *
2171 * Do not yet consider page sizes larger than 2m/4m.
2172 */
2173 if (!auto_lpg_disable && mmu.max_page_level > 0) {
2174 max_uheap_lpsize = LEVEL_SIZE(1);
2175 max_ustack_lpsize = LEVEL_SIZE(1);
2176 max_privmap_lpsize = LEVEL_SIZE(1);
2177 max_uidata_lpsize = LEVEL_SIZE(1);
2178 max_utext_lpsize = LEVEL_SIZE(1);
2179 max_shm_lpsize = LEVEL_SIZE(1);
2180 }
2181 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 ||
2182 auto_lpg_disable) {
2183 use_brk_lpg = 0;
2184 use_stk_lpg = 0;
2185 }
2186 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level);
2187
2188 PRM_POINT("Calling hat_init_finish()...");
2189 hat_init_finish();
2190 PRM_POINT("hat_init_finish() done");
2191
2192 /*
2193 * Initialize the segkp segment type.
2194 */
2195 rw_enter(&kas.a_lock, RW_WRITER);
2196 PRM_POINT("Attaching segkp");
2197 if (segkp_fromheap) {
2198 segkp->s_as = &kas;
2199 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
2200 segkp) < 0) {
2201 panic("startup: cannot attach segkp");
2202 /*NOTREACHED*/
2203 }
2204 PRM_POINT("Doing segkp_create()");
2205 if (segkp_create(segkp) != 0) {
2206 panic("startup: segkp_create failed");
2207 /*NOTREACHED*/
2208 }
2209 PRM_DEBUG(segkp);
2210 rw_exit(&kas.a_lock);
2211
2212 /*
2213 * kpm segment
2214 */
2215 segmap_kpm = 0;
2216 if (kpm_desired)
2217 kpm_init();
2218
2219 /*
2220 * Now create segmap segment.
2221 */
2222 rw_enter(&kas.a_lock, RW_WRITER);
2223 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) {
2224 panic("cannot attach segmap");
2225 /*NOTREACHED*/
2226 }
2227 PRM_DEBUG(segmap);
2228
2229 a.prot = PROT_READ | PROT_WRITE;
2230 a.shmsize = 0;
2231 a.nfreelist = segmapfreelists;
2232
2233 if (segmap_create(segmap, (caddr_t)&a) != 0)
2234 panic("segmap_create segmap");
2235 rw_exit(&kas.a_lock);
2236
2237 setup_vaddr_for_ppcopy(CPU);
2238
2239 segdev_init();
2240 #if defined(__xpv)
2241 if (DOMAIN_IS_INITDOMAIN(xen_info))
2242 #endif
2243 pmem_init();
2244
2245 PRM_POINT("startup_vm() done");
2246 }
2247
2248 /*
2249 * Load a tod module for the non-standard tod part found on this system.
2250 */
2251 static void
2252 load_tod_module(char *todmod)
2253 {
2254 if (modload("tod", todmod) == -1)
2255 halt("Can't load TOD module");
2256 }
2257
2258 static void
2259 startup_end(void)
2260 {
2261 int i;
2262 extern void setx86isalist(void);
2263 extern void cpu_event_init(void);
2264
2265 PRM_POINT("startup_end() starting...");
2266
2267 /*
2268 * Perform tasks that get done after most of the VM
2269 * initialization has been done but before the clock
2270 * and other devices get started.
2271 */
2272 kern_setup1();
2273
2274 /*
2275 * Perform CPC initialization for this CPU.
2276 */
2277 kcpc_hw_init(CPU);
2278
2279 /*
2280 * Initialize cpu event framework.
2281 */
2282 cpu_event_init();
2283
2284 #if defined(OPTERON_WORKAROUND_6323525)
2285 if (opteron_workaround_6323525)
2286 patch_workaround_6323525();
2287 #endif
2288 /*
2289 * If needed, load TOD module now so that ddi_get_time(9F) etc. work
2290 * (For now, "needed" is defined as set tod_module_name in /etc/system)
2291 */
2292 if (tod_module_name != NULL) {
2293 PRM_POINT("load_tod_module()");
2294 load_tod_module(tod_module_name);
2295 }
2296
2297 #if defined(__xpv)
2298 /*
2299 * Forceload interposing TOD module for the hypervisor.
2300 */
2301 PRM_POINT("load_tod_module()");
2302 load_tod_module("xpvtod");
2303 #endif
2304
2305 /*
2306 * Configure the system.
2307 */
2308 PRM_POINT("Calling configure()...");
2309 configure(); /* set up devices */
2310 PRM_POINT("configure() done");
2311
2312 /*
2313 * We can now setup for XSAVE because fpu_probe is done in configure().
2314 */
2315 if (fp_save_mech == FP_XSAVE) {
2316 xsave_setup_msr(CPU);
2317 }
2318
2319 /*
2320 * Set the isa_list string to the defined instruction sets we
2321 * support.
2322 */
2323 setx86isalist();
2324 cpu_intr_alloc(CPU, NINTR_THREADS);
2325 psm_install();
2326
2327 /*
2328 * We're done with bootops. We don't unmap the bootstrap yet because
2329 * we're still using bootsvcs.
2330 */
2331 PRM_POINT("NULLing out bootops");
2332 *bootopsp = (struct bootops *)NULL;
2333 bootops = (struct bootops *)NULL;
2334
2335 #if defined(__xpv)
2336 ec_init_debug_irq();
2337 xs_domu_init();
2338 #endif
2339
2340 #if !defined(__xpv)
2341 /*
2342 * Intel IOMMU has been setup/initialized in ddi_impl.c
2343 * Start it up now.
2344 */
2345 immu_startup();
2346
2347 /*
2348 * Now that we're no longer going to drop into real mode for a BIOS call
2349 * via bootops, we can enable PCID (which requires CR0.PG).
2350 */
2351 enable_pcid();
2352 #endif
2353
2354 PRM_POINT("Enabling interrupts");
2355 (*picinitf)();
2356 sti();
2357 #if defined(__xpv)
2358 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0);
2359 xen_late_startup();
2360 #endif
2361
2362 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
2363 "softlevel1", NULL, NULL); /* XXX to be moved later */
2364
2365 /*
2366 * Register software interrupt handlers for ddi_periodic_add(9F).
2367 * Software interrupts up to the level 10 are supported.
2368 */
2369 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
2370 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i,
2371 (avfunc)(uintptr_t)ddi_periodic_softintr, "ddi_periodic",
2372 (caddr_t)(uintptr_t)i, NULL);
2373 }
2374
2375 #if !defined(__xpv)
2376 if (modload("drv", "amd_iommu") < 0) {
2377 PRM_POINT("No AMD IOMMU present\n");
2378 } else if (ddi_hold_installed_driver(ddi_name_to_major(
2379 "amd_iommu")) == NULL) {
2380 prom_printf("ERROR: failed to attach AMD IOMMU\n");
2381 }
2382 #endif
2383 post_startup_cpu_fixups();
2384
2385 PRM_POINT("startup_end() done");
2386 }
2387
2388 /*
2389 * Don't remove the following 2 variables. They are necessary
2390 * for reading the hostid from the legacy file (/kernel/misc/sysinit).
2391 */
2392 char *_hs1107 = hw_serial;
2393 ulong_t _bdhs34;
2394
2395 void
2396 post_startup(void)
2397 {
2398 extern void cpupm_init(cpu_t *);
2399 extern void cpu_event_init_cpu(cpu_t *);
2400
2401 /*
2402 * Set the system wide, processor-specific flags to be passed
2403 * to userland via the aux vector for performance hints and
2404 * instruction set extensions.
2405 */
2406 bind_hwcap();
2407
2408 #ifdef __xpv
2409 if (DOMAIN_IS_INITDOMAIN(xen_info))
2410 #endif
2411 {
2412 #if defined(__xpv)
2413 xpv_panic_init();
2414 #else
2415 /*
2416 * Startup the memory scrubber.
2417 * XXPV This should be running somewhere ..
2418 */
2419 if ((get_hwenv() & HW_VIRTUAL) == 0)
2420 memscrub_init();
2421 #endif
2422 }
2423
2424 /*
2425 * Complete CPU module initialization
2426 */
2427 cmi_post_startup();
2428
2429 /*
2430 * Perform forceloading tasks for /etc/system.
2431 */
2432 (void) mod_sysctl(SYS_FORCELOAD, NULL);
2433
2434 /*
2435 * ON4.0: Force /proc module in until clock interrupt handle fixed
2436 * ON4.0: This must be fixed or restated in /etc/systems.
2437 */
2438 (void) modload("fs", "procfs");
2439
2440 (void) i_ddi_attach_hw_nodes("pit_beep");
2441
2442 #if defined(__i386)
2443 /*
2444 * Check for required functional Floating Point hardware,
2445 * unless FP hardware explicitly disabled.
2446 */
2447 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
2448 halt("No working FP hardware found");
2449 #endif
2450
2451 maxmem = freemem;
2452
2453 cpu_event_init_cpu(CPU);
2454 cpupm_init(CPU);
2455 (void) mach_cpu_create_device_node(CPU, NULL);
2456
2457 pg_init();
2458 }
2459
2460 static int
2461 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr)
2462 {
2463 return ((pp->p_pagenum >= btop(low_addr)) &&
2464 (pp->p_pagenum < btopr(high_addr)));
2465 }
2466
2467 static int
2468 pp_in_module(page_t *pp, const rd_existing_t *modranges)
2469 {
2470 uint_t i;
2471
2472 for (i = 0; modranges[i].phys != 0; i++) {
2473 if (pp_in_range(pp, modranges[i].phys,
2474 modranges[i].phys + modranges[i].size))
2475 return (1);
2476 }
2477
2478 return (0);
2479 }
2480
2481 void
2482 release_bootstrap(void)
2483 {
2484 int root_is_ramdisk;
2485 page_t *pp;
2486 extern void kobj_boot_unmountroot(void);
2487 extern dev_t rootdev;
2488 uint_t i;
2489 char propname[32];
2490 rd_existing_t *modranges;
2491 #if !defined(__xpv)
2492 pfn_t pfn;
2493 #endif
2494
2495 /*
2496 * Save the bootfs module ranges so that we can reserve them below
2497 * for the real bootfs.
2498 */
2499 modranges = kmem_alloc(sizeof (rd_existing_t) * MAX_BOOT_MODULES,
2500 KM_SLEEP);
2501 for (i = 0; ; i++) {
2502 uint64_t start, size;
2503
2504 modranges[i].phys = 0;
2505
2506 (void) snprintf(propname, sizeof (propname),
2507 "module-addr-%u", i);
2508 if (do_bsys_getproplen(NULL, propname) <= 0)
2509 break;
2510 (void) do_bsys_getprop(NULL, propname, &start);
2511
2512 (void) snprintf(propname, sizeof (propname),
2513 "module-size-%u", i);
2514 if (do_bsys_getproplen(NULL, propname) <= 0)
2515 break;
2516 (void) do_bsys_getprop(NULL, propname, &size);
2517
2518 modranges[i].phys = start;
2519 modranges[i].size = size;
2520 }
2521
2522 /* unmount boot ramdisk and release kmem usage */
2523 kobj_boot_unmountroot();
2524
2525 /*
2526 * We're finished using the boot loader so free its pages.
2527 */
2528 PRM_POINT("Unmapping lower boot pages");
2529
2530 clear_boot_mappings(0, _userlimit);
2531
2532 postbootkernelbase = kernelbase;
2533
2534 /*
2535 * If root isn't on ramdisk, destroy the hardcoded
2536 * ramdisk node now and release the memory. Else,
2537 * ramdisk memory is kept in rd_pages.
2538 */
2539 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
2540 if (!root_is_ramdisk) {
2541 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
2542 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
2543 ndi_rele_devi(dip); /* held from ddi_find_devinfo */
2544 (void) ddi_remove_child(dip, 0);
2545 }
2546
2547 PRM_POINT("Releasing boot pages");
2548 while (bootpages) {
2549 extern uint64_t ramdisk_start, ramdisk_end;
2550 pp = bootpages;
2551 bootpages = pp->p_next;
2552
2553
2554 /* Keep pages for the lower 64K */
2555 if (pp_in_range(pp, 0, 0x40000)) {
2556 pp->p_next = lower_pages;
2557 lower_pages = pp;
2558 lower_pages_count++;
2559 continue;
2560 }
2561
2562 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start,
2563 ramdisk_end) || pp_in_module(pp, modranges)) {
2564 pp->p_next = rd_pages;
2565 rd_pages = pp;
2566 continue;
2567 }
2568 pp->p_next = (struct page *)0;
2569 pp->p_prev = (struct page *)0;
2570 PP_CLRBOOTPAGES(pp);
2571 page_free(pp, 1);
2572 }
2573 PRM_POINT("Boot pages released");
2574
2575 kmem_free(modranges, sizeof (rd_existing_t) * 99);
2576
2577 #if !defined(__xpv)
2578 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */
2579 /*
2580 * Find 1 page below 1 MB so that other processors can boot up or
2581 * so that any processor can resume.
2582 * Make sure it has a kernel VA as well as a 1:1 mapping.
2583 * We should have just free'd one up.
2584 */
2585
2586 /*
2587 * 0x10 pages is 64K. Leave the bottom 64K alone
2588 * for BIOS.
2589 */
2590 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) {
2591 if (page_numtopp_alloc(pfn) == NULL)
2592 continue;
2593 rm_platter_va = i86devmap(pfn, 1,
2594 PROT_READ | PROT_WRITE | PROT_EXEC);
2595 rm_platter_pa = ptob(pfn);
2596 break;
2597 }
2598 if (pfn == btop(1*1024*1024) && use_mp)
2599 panic("No page below 1M available for starting "
2600 "other processors or for resuming from system-suspend");
2601 #endif /* !__xpv */
2602 }
2603
2604 /*
2605 * Initialize the platform-specific parts of a page_t.
2606 */
2607 void
2608 add_physmem_cb(page_t *pp, pfn_t pnum)
2609 {
2610 pp->p_pagenum = pnum;
2611 pp->p_mapping = NULL;
2612 pp->p_embed = 0;
2613 pp->p_share = 0;
2614 pp->p_mlentry = 0;
2615 }
2616
2617 /*
2618 * kphysm_init() initializes physical memory.
2619 */
2620 static pgcnt_t
2621 kphysm_init(page_t *pp, pgcnt_t npages)
2622 {
2623 struct memlist *pmem;
2624 struct memseg *cur_memseg;
2625 pfn_t base_pfn;
2626 pfn_t end_pfn;
2627 pgcnt_t num;
2628 pgcnt_t pages_done = 0;
2629 uint64_t addr;
2630 uint64_t size;
2631 extern pfn_t ddiphysmin;
2632 extern int mnode_xwa;
2633 int ms = 0, me = 0;
2634
2635 ASSERT(page_hash != NULL && page_hashsz != 0);
2636
2637 cur_memseg = memseg_base;
2638 for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) {
2639 /*
2640 * In a 32 bit kernel can't use higher memory if we're
2641 * not booting in PAE mode. This check takes care of that.
2642 */
2643 addr = pmem->ml_address;
2644 size = pmem->ml_size;
2645 if (btop(addr) > physmax)
2646 continue;
2647
2648 /*
2649 * align addr and size - they may not be at page boundaries
2650 */
2651 if ((addr & MMU_PAGEOFFSET) != 0) {
2652 addr += MMU_PAGEOFFSET;
2653 addr &= ~(uint64_t)MMU_PAGEOFFSET;
2654 size -= addr - pmem->ml_address;
2655 }
2656
2657 /* only process pages below or equal to physmax */
2658 if ((btop(addr + size) - 1) > physmax)
2659 size = ptob(physmax - btop(addr) + 1);
2660
2661 num = btop(size);
2662 if (num == 0)
2663 continue;
2664
2665 if (num > npages)
2666 num = npages;
2667
2668 npages -= num;
2669 pages_done += num;
2670 base_pfn = btop(addr);
2671
2672 if (prom_debug)
2673 prom_printf("MEMSEG addr=0x%" PRIx64
2674 " pgs=0x%lx pfn 0x%lx-0x%lx\n",
2675 addr, num, base_pfn, base_pfn + num);
2676
2677 /*
2678 * Ignore pages below ddiphysmin to simplify ddi memory
2679 * allocation with non-zero addr_lo requests.
2680 */
2681 if (base_pfn < ddiphysmin) {
2682 if (base_pfn + num <= ddiphysmin)
2683 continue;
2684 pp += (ddiphysmin - base_pfn);
2685 num -= (ddiphysmin - base_pfn);
2686 base_pfn = ddiphysmin;
2687 }
2688
2689 /*
2690 * mnode_xwa is greater than 1 when large pages regions can
2691 * cross memory node boundaries. To prevent the formation
2692 * of these large pages, configure the memsegs based on the
2693 * memory node ranges which had been made non-contiguous.
2694 */
2695 end_pfn = base_pfn + num - 1;
2696 if (mnode_xwa > 1) {
2697 ms = PFN_2_MEM_NODE(base_pfn);
2698 me = PFN_2_MEM_NODE(end_pfn);
2699
2700 if (ms != me) {
2701 /*
2702 * current range spans more than 1 memory node.
2703 * Set num to only the pfn range in the start
2704 * memory node.
2705 */
2706 num = mem_node_config[ms].physmax - base_pfn
2707 + 1;
2708 ASSERT(end_pfn > mem_node_config[ms].physmax);
2709 }
2710 }
2711
2712 for (;;) {
2713 /*
2714 * Build the memsegs entry
2715 */
2716 cur_memseg->pages = pp;
2717 cur_memseg->epages = pp + num;
2718 cur_memseg->pages_base = base_pfn;
2719 cur_memseg->pages_end = base_pfn + num;
2720
2721 /*
2722 * Insert into memseg list in decreasing pfn range
2723 * order. Low memory is typically more fragmented such
2724 * that this ordering keeps the larger ranges at the
2725 * front of the list for code that searches memseg.
2726 * This ASSERTS that the memsegs coming in from boot
2727 * are in increasing physical address order and not
2728 * contiguous.
2729 */
2730 if (memsegs != NULL) {
2731 ASSERT(cur_memseg->pages_base >=
2732 memsegs->pages_end);
2733 cur_memseg->next = memsegs;
2734 }
2735 memsegs = cur_memseg;
2736
2737 /*
2738 * add_physmem() initializes the PSM part of the page
2739 * struct by calling the PSM back with add_physmem_cb().
2740 * In addition it coalesces pages into larger pages as
2741 * it initializes them.
2742 */
2743 add_physmem(pp, num, base_pfn);
2744 cur_memseg++;
2745 availrmem_initial += num;
2746 availrmem += num;
2747
2748 pp += num;
2749 if (ms >= me)
2750 break;
2751
2752 /* process next memory node range */
2753 ms++;
2754 base_pfn = mem_node_config[ms].physbase;
2755
2756 if (mnode_xwa > 1) {
2757 num = MIN(mem_node_config[ms].physmax,
2758 end_pfn) - base_pfn + 1;
2759 } else {
2760 num = mem_node_config[ms].physmax -
2761 base_pfn + 1;
2762 }
2763 }
2764 }
2765
2766 PRM_DEBUG(availrmem_initial);
2767 PRM_DEBUG(availrmem);
2768 PRM_DEBUG(freemem);
2769 build_pfn_hash();
2770 return (pages_done);
2771 }
2772
2773 /*
2774 * Kernel VM initialization.
2775 */
2776 static void
2777 kvm_init(void)
2778 {
2779 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
2780
2781 /*
2782 * Put the kernel segments in kernel address space.
2783 */
2784 rw_enter(&kas.a_lock, RW_WRITER);
2785 as_avlinit(&kas);
2786
2787 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
2788 (void) segkmem_create(&ktextseg);
2789
2790 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
2791 (void) segkmem_create(&kvalloc);
2792
2793 (void) seg_attach(&kas, kernelheap,
2794 ekernelheap - kernelheap, &kvseg);
2795 (void) segkmem_create(&kvseg);
2796
2797 if (core_size > 0) {
2798 PRM_POINT("attaching kvseg_core");
2799 (void) seg_attach(&kas, (caddr_t)core_base, core_size,
2800 &kvseg_core);
2801 (void) segkmem_create(&kvseg_core);
2802 }
2803
2804 if (segziosize > 0) {
2805 PRM_POINT("attaching segzio");
2806 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2807 &kzioseg);
2808 (void) segkmem_zio_create(&kzioseg);
2809
2810 /* create zio area covering new segment */
2811 segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2812 }
2813
2814 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2815 (void) segkmem_create(&kdebugseg);
2816
2817 rw_exit(&kas.a_lock);
2818
2819 /*
2820 * Ensure that the red zone at kernelbase is never accessible.
2821 */
2822 PRM_POINT("protecting redzone");
2823 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
2824
2825 /*
2826 * Make the text writable so that it can be hot patched by DTrace.
2827 */
2828 (void) as_setprot(&kas, s_text, e_modtext - s_text,
2829 PROT_READ | PROT_WRITE | PROT_EXEC);
2830
2831 /*
2832 * Make data writable until end.
2833 */
2834 (void) as_setprot(&kas, s_data, e_moddata - s_data,
2835 PROT_READ | PROT_WRITE | PROT_EXEC);
2836 }
2837
2838 #ifndef __xpv
2839 /*
2840 * Solaris adds an entry for Write Combining caching to the PAT
2841 */
2842 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
2843
2844 void
2845 pat_sync(void)
2846 {
2847 ulong_t cr0, cr0_orig, cr4;
2848
2849 if (!is_x86_feature(x86_featureset, X86FSET_PAT))
2850 return;
2851 cr0_orig = cr0 = getcr0();
2852 cr4 = getcr4();
2853
2854 /* disable caching and flush all caches and TLBs */
2855 cr0 |= CR0_CD;
2856 cr0 &= ~CR0_NW;
2857 setcr0(cr0);
2858 invalidate_cache();
2859 if (cr4 & CR4_PGE) {
2860 setcr4(cr4 & ~(ulong_t)CR4_PGE);
2861 setcr4(cr4);
2862 } else {
2863 reload_cr3();
2864 }
2865
2866 /* add our entry to the PAT */
2867 wrmsr(REG_PAT, pat_attr_reg);
2868
2869 /* flush TLBs and cache again, then reenable cr0 caching */
2870 if (cr4 & CR4_PGE) {
2871 setcr4(cr4 & ~(ulong_t)CR4_PGE);
2872 setcr4(cr4);
2873 } else {
2874 reload_cr3();
2875 }
2876 invalidate_cache();
2877 setcr0(cr0_orig);
2878 }
2879
2880 #endif /* !__xpv */
2881
2882 #if defined(_SOFT_HOSTID)
2883 /*
2884 * On platforms that do not have a hardware serial number, attempt
2885 * to set one based on the contents of /etc/hostid. If this file does
2886 * not exist, assume that we are to generate a new hostid and set
2887 * it in the kernel, for subsequent saving by a userland process
2888 * once the system is up and the root filesystem is mounted r/w.
2889 *
2890 * In order to gracefully support upgrade on OpenSolaris, if
2891 * /etc/hostid does not exist, we will attempt to get a serial number
2892 * using the legacy method (/kernel/misc/sysinit).
2893 *
2894 * If that isn't present, we attempt to use an SMBIOS UUID, which is
2895 * a hardware serial number. Note that we don't automatically trust
2896 * all SMBIOS UUIDs (some older platforms are defective and ship duplicate
2897 * UUIDs in violation of the standard), we check against a blacklist.
2898 *
2899 * In an attempt to make the hostid less prone to abuse
2900 * (for license circumvention, etc), we store it in /etc/hostid
2901 * in rot47 format.
2902 */
2903 extern volatile unsigned long tenmicrodata;
2904 static int atoi(char *);
2905
2906 /*
2907 * Set this to non-zero in /etc/system if you think your SMBIOS returns a
2908 * UUID that is not unique. (Also report it so that the smbios_uuid_blacklist
2909 * array can be updated.)
2910 */
2911 int smbios_broken_uuid = 0;
2912
2913 /*
2914 * List of known bad UUIDs. This is just the lower 32-bit values, since
2915 * that's what we use for the host id. If your hostid falls here, you need
2916 * to contact your hardware OEM for a fix for your BIOS.
2917 */
2918 static unsigned char
2919 smbios_uuid_blacklist[][16] = {
2920
2921 { /* Reported bad UUID (Google search) */
2922 0x00, 0x02, 0x00, 0x03, 0x00, 0x04, 0x00, 0x05,
2923 0x00, 0x06, 0x00, 0x07, 0x00, 0x08, 0x00, 0x09,
2924 },
2925 { /* Known bad DELL UUID */
2926 0x4C, 0x4C, 0x45, 0x44, 0x00, 0x00, 0x20, 0x10,
2927 0x80, 0x20, 0x80, 0xC0, 0x4F, 0x20, 0x20, 0x20,
2928 },
2929 { /* Uninitialized flash */
2930 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
2931 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2932 },
2933 { /* All zeros */
2934 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2935 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
2936 },
2937 };
2938
2939 static int32_t
2940 uuid_to_hostid(const uint8_t *uuid)
2941 {
2942 /*
2943 * Although the UUIDs are 128-bits, they may not distribute entropy
2944 * evenly. We would like to use SHA or MD5, but those are located
2945 * in loadable modules and not available this early in boot. As we
2946 * don't need the values to be cryptographically strong, we just
2947 * generate 32-bit vaue by xor'ing the various sequences together,
2948 * which ensures that the entire UUID contributes to the hostid.
2949 */
2950 uint32_t id = 0;
2951
2952 /* first check against the blacklist */
2953 for (int i = 0; i < (sizeof (smbios_uuid_blacklist) / 16); i++) {
2954 if (bcmp(smbios_uuid_blacklist[0], uuid, 16) == 0) {
2955 cmn_err(CE_CONT, "?Broken SMBIOS UUID. "
2956 "Contact BIOS manufacturer for repair.\n");
2957 return ((int32_t)HW_INVALID_HOSTID);
2958 }
2959 }
2960
2961 for (int i = 0; i < 16; i++)
2962 id ^= ((uuid[i]) << (8 * (i % sizeof (id))));
2963
2964 /* Make sure return value is positive */
2965 return (id & 0x7fffffff);
2966 }
2967
2968 static int32_t
2969 set_soft_hostid(void)
2970 {
2971 struct _buf *file;
2972 char tokbuf[MAXNAMELEN];
2973 token_t token;
2974 int done = 0;
2975 u_longlong_t tmp;
2976 int i;
2977 int32_t hostid = (int32_t)HW_INVALID_HOSTID;
2978 unsigned char *c;
2979 hrtime_t tsc;
2980 smbios_system_t smsys;
2981
2982 /*
2983 * If /etc/hostid file not found, we'd like to get a pseudo
2984 * random number to use at the hostid. A nice way to do this
2985 * is to read the real time clock. To remain xen-compatible,
2986 * we can't poke the real hardware, so we use tsc_read() to
2987 * read the real time clock. However, there is an ominous
2988 * warning in tsc_read that says it can return zero, so we
2989 * deal with that possibility by falling back to using the
2990 * (hopefully random enough) value in tenmicrodata.
2991 */
2992
2993 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) {
2994 /*
2995 * hostid file not found - try to load sysinit module
2996 * and see if it has a nonzero hostid value...use that
2997 * instead of generating a new hostid here if so.
2998 */
2999 if ((i = modload("misc", "sysinit")) != -1) {
3000 if (strlen(hw_serial) > 0)
3001 hostid = (int32_t)atoi(hw_serial);
3002 (void) modunload(i);
3003 }
3004
3005 /*
3006 * We try to use the SMBIOS UUID. But not if it is blacklisted
3007 * in /etc/system.
3008 */
3009 if ((hostid == HW_INVALID_HOSTID) &&
3010 (smbios_broken_uuid == 0) &&
3011 (ksmbios != NULL) &&
3012 (smbios_info_system(ksmbios, &smsys) != SMB_ERR) &&
3013 (smsys.smbs_uuidlen >= 16)) {
3014 hostid = uuid_to_hostid(smsys.smbs_uuid);
3015 }
3016
3017 /*
3018 * Generate a "random" hostid using the clock. These
3019 * hostids will change on each boot if the value is not
3020 * saved to a persistent /etc/hostid file.
3021 */
3022 if (hostid == HW_INVALID_HOSTID) {
3023 tsc = tsc_read();
3024 if (tsc == 0) /* tsc_read can return zero sometimes */
3025 hostid = (int32_t)tenmicrodata & 0x0CFFFFF;
3026 else
3027 hostid = (int32_t)tsc & 0x0CFFFFF;
3028 }
3029 } else {
3030 /* hostid file found */
3031 while (!done) {
3032 token = kobj_lex(file, tokbuf, sizeof (tokbuf));
3033
3034 switch (token) {
3035 case POUND:
3036 /*
3037 * skip comments
3038 */
3039 kobj_find_eol(file);
3040 break;
3041 case STRING:
3042 /*
3043 * un-rot47 - obviously this
3044 * nonsense is ascii-specific
3045 */
3046 for (c = (unsigned char *)tokbuf;
3047 *c != '\0'; c++) {
3048 *c += 47;
3049 if (*c > '~')
3050 *c -= 94;
3051 else if (*c < '!')
3052 *c += 94;
3053 }
3054 /*
3055 * now we should have a real number
3056 */
3057
3058 if (kobj_getvalue(tokbuf, &tmp) != 0)
3059 kobj_file_err(CE_WARN, file,
3060 "Bad value %s for hostid",
3061 tokbuf);
3062 else
3063 hostid = (int32_t)tmp;
3064
3065 break;
3066 case EOF:
3067 done = 1;
3068 /* FALLTHROUGH */
3069 case NEWLINE:
3070 kobj_newline(file);
3071 break;
3072 default:
3073 break;
3074
3075 }
3076 }
3077 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */
3078 kobj_file_err(CE_WARN, file,
3079 "hostid missing or corrupt");
3080
3081 kobj_close_file(file);
3082 }
3083 /*
3084 * hostid is now the value read from /etc/hostid, or the
3085 * new hostid we generated in this routine or HW_INVALID_HOSTID if not
3086 * set.
3087 */
3088 return (hostid);
3089 }
3090
3091 static int
3092 atoi(char *p)
3093 {
3094 int i = 0;
3095
3096 while (*p != '\0')
3097 i = 10 * i + (*p++ - '0');
3098
3099 return (i);
3100 }
3101
3102 #endif /* _SOFT_HOSTID */
3103
3104 void
3105 get_system_configuration(void)
3106 {
3107 char prop[32];
3108 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
3109
3110 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) ||
3111 BOP_GETPROP(bootops, "nodes", prop) < 0 ||
3112 kobj_getvalue(prop, &nodes_ll) == -1 ||
3113 nodes_ll > MAXNODES ||
3114 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) ||
3115 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 ||
3116 kobj_getvalue(prop, &cpus_pernode_ll) == -1) {
3117 system_hardware.hd_nodes = 1;
3118 system_hardware.hd_cpus_per_node = 0;
3119 } else {
3120 system_hardware.hd_nodes = (int)nodes_ll;
3121 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
3122 }
3123
3124 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) ||
3125 BOP_GETPROP(bootops, "kernelbase", prop) < 0 ||
3126 kobj_getvalue(prop, &lvalue) == -1)
3127 eprom_kernelbase = 0;
3128 else
3129 eprom_kernelbase = (uintptr_t)lvalue;
3130
3131 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) ||
3132 BOP_GETPROP(bootops, "segmapsize", prop) < 0 ||
3133 kobj_getvalue(prop, &lvalue) == -1)
3134 segmapsize = SEGMAPDEFAULT;
3135 else
3136 segmapsize = (uintptr_t)lvalue;
3137
3138 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) ||
3139 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 ||
3140 kobj_getvalue(prop, &lvalue) == -1)
3141 segmapfreelists = 0; /* use segmap driver default */
3142 else
3143 segmapfreelists = (int)lvalue;
3144
3145 /* physmem used to be here, but moved much earlier to fakebop.c */
3146 }
3147
3148 /*
3149 * Add to a memory list.
3150 * start = start of new memory segment
3151 * len = length of new memory segment in bytes
3152 * new = pointer to a new struct memlist
3153 * memlistp = memory list to which to add segment.
3154 */
3155 void
3156 memlist_add(
3157 uint64_t start,
3158 uint64_t len,
3159 struct memlist *new,
3160 struct memlist **memlistp)
3161 {
3162 struct memlist *cur;
3163 uint64_t end = start + len;
3164
3165 new->ml_address = start;
3166 new->ml_size = len;
3167
3168 cur = *memlistp;
3169
3170 while (cur) {
3171 if (cur->ml_address >= end) {
3172 new->ml_next = cur;
3173 *memlistp = new;
3174 new->ml_prev = cur->ml_prev;
3175 cur->ml_prev = new;
3176 return;
3177 }
3178 ASSERT(cur->ml_address + cur->ml_size <= start);
3179 if (cur->ml_next == NULL) {
3180 cur->ml_next = new;
3181 new->ml_prev = cur;
3182 new->ml_next = NULL;
3183 return;
3184 }
3185 memlistp = &cur->ml_next;
3186 cur = cur->ml_next;
3187 }
3188 }
3189
3190 void
3191 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3192 {
3193 size_t tsize = e_modtext - modtext;
3194 size_t dsize = e_moddata - moddata;
3195
3196 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
3197 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
3198 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
3199 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3200 }
3201
3202 caddr_t
3203 kobj_text_alloc(vmem_t *arena, size_t size)
3204 {
3205 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
3206 }
3207
3208 /*ARGSUSED*/
3209 caddr_t
3210 kobj_texthole_alloc(caddr_t addr, size_t size)
3211 {
3212 panic("unexpected call to kobj_texthole_alloc()");
3213 /*NOTREACHED*/
3214 return (0);
3215 }
3216
3217 /*ARGSUSED*/
3218 void
3219 kobj_texthole_free(caddr_t addr, size_t size)
3220 {
3221 panic("unexpected call to kobj_texthole_free()");
3222 }
3223
3224 /*
3225 * This is called just after configure() in startup().
3226 *
3227 * The ISALIST concept is a bit hopeless on Intel, because
3228 * there's no guarantee of an ever-more-capable processor
3229 * given that various parts of the instruction set may appear
3230 * and disappear between different implementations.
3231 *
3232 * While it would be possible to correct it and even enhance
3233 * it somewhat, the explicit hardware capability bitmask allows
3234 * more flexibility.
3235 *
3236 * So, we just leave this alone.
3237 */
3238 void
3239 setx86isalist(void)
3240 {
3241 char *tp;
3242 size_t len;
3243 extern char *isa_list;
3244
3245 #define TBUFSIZE 1024
3246
3247 tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
3248 *tp = '\0';
3249
3250 #if defined(__amd64)
3251 (void) strcpy(tp, "amd64 ");
3252 #endif
3253
3254 switch (x86_vendor) {
3255 case X86_VENDOR_Intel:
3256 case X86_VENDOR_AMD:
3257 case X86_VENDOR_TM:
3258 if (is_x86_feature(x86_featureset, X86FSET_CMOV)) {
3259 /*
3260 * Pentium Pro or later
3261 */
3262 (void) strcat(tp, "pentium_pro");
3263 (void) strcat(tp,
3264 is_x86_feature(x86_featureset, X86FSET_MMX) ?
3265 "+mmx pentium_pro " : " ");
3266 }
3267 /*FALLTHROUGH*/
3268 case X86_VENDOR_Cyrix:
3269 /*
3270 * The Cyrix 6x86 does not have any Pentium features
3271 * accessible while not at privilege level 0.
3272 */
3273 if (is_x86_feature(x86_featureset, X86FSET_CPUID)) {
3274 (void) strcat(tp, "pentium");
3275 (void) strcat(tp,
3276 is_x86_feature(x86_featureset, X86FSET_MMX) ?
3277 "+mmx pentium " : " ");
3278 }
3279 break;
3280 default:
3281 break;
3282 }
3283 (void) strcat(tp, "i486 i386 i86");
3284 len = strlen(tp) + 1; /* account for NULL at end of string */
3285 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
3286 kmem_free(tp, TBUFSIZE);
3287
3288 #undef TBUFSIZE
3289 }
3290
3291
3292 #ifdef __amd64
3293
3294 void *
3295 device_arena_alloc(size_t size, int vm_flag)
3296 {
3297 return (vmem_alloc(device_arena, size, vm_flag));
3298 }
3299
3300 void
3301 device_arena_free(void *vaddr, size_t size)
3302 {
3303 vmem_free(device_arena, vaddr, size);
3304 }
3305
3306 #else /* __i386 */
3307
3308 void *
3309 device_arena_alloc(size_t size, int vm_flag)
3310 {
3311 caddr_t vaddr;
3312 uintptr_t v;
3313 size_t start;
3314 size_t end;
3315
3316 vaddr = vmem_alloc(heap_arena, size, vm_flag);
3317 if (vaddr == NULL)
3318 return (NULL);
3319
3320 v = (uintptr_t)vaddr;
3321 ASSERT(v >= kernelbase);
3322 ASSERT(v + size <= valloc_base);
3323
3324 start = btop(v - kernelbase);
3325 end = btop(v + size - 1 - kernelbase);
3326 ASSERT(start < toxic_bit_map_len);
3327 ASSERT(end < toxic_bit_map_len);
3328
3329 while (start <= end) {
3330 BT_ATOMIC_SET(toxic_bit_map, start);
3331 ++start;
3332 }
3333 return (vaddr);
3334 }
3335
3336 void
3337 device_arena_free(void *vaddr, size_t size)
3338 {
3339 uintptr_t v = (uintptr_t)vaddr;
3340 size_t start;
3341 size_t end;
3342
3343 ASSERT(v >= kernelbase);
3344 ASSERT(v + size <= valloc_base);
3345
3346 start = btop(v - kernelbase);
3347 end = btop(v + size - 1 - kernelbase);
3348 ASSERT(start < toxic_bit_map_len);
3349 ASSERT(end < toxic_bit_map_len);
3350
3351 while (start <= end) {
3352 ASSERT(BT_TEST(toxic_bit_map, start) != 0);
3353 BT_ATOMIC_CLEAR(toxic_bit_map, start);
3354 ++start;
3355 }
3356 vmem_free(heap_arena, vaddr, size);
3357 }
3358
3359 /*
3360 * returns 1st address in range that is in device arena, or NULL
3361 * if len is not NULL it returns the length of the toxic range
3362 */
3363 void *
3364 device_arena_contains(void *vaddr, size_t size, size_t *len)
3365 {
3366 uintptr_t v = (uintptr_t)vaddr;
3367 uintptr_t eaddr = v + size;
3368 size_t start;
3369 size_t end;
3370
3371 /*
3372 * if called very early by kmdb, just return NULL
3373 */
3374 if (toxic_bit_map == NULL)
3375 return (NULL);
3376
3377 /*
3378 * First check if we're completely outside the bitmap range.
3379 */
3380 if (v >= valloc_base || eaddr < kernelbase)
3381 return (NULL);
3382
3383 /*
3384 * Trim ends of search to look at only what the bitmap covers.
3385 */
3386 if (v < kernelbase)
3387 v = kernelbase;
3388 start = btop(v - kernelbase);
3389 end = btop(eaddr - kernelbase);
3390 if (end >= toxic_bit_map_len)
3391 end = toxic_bit_map_len;
3392
3393 if (bt_range(toxic_bit_map, &start, &end, end) == 0)
3394 return (NULL);
3395
3396 v = kernelbase + ptob(start);
3397 if (len != NULL)
3398 *len = ptob(end - start);
3399 return ((void *)v);
3400 }
3401
3402 #endif /* __i386 */