1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2018 Joyent, Inc. 27 * Copyright (c) 2015 by Delphix. All rights reserved. 28 */ 29 /* 30 * Copyright (c) 2010, Intel Corporation. 31 * All rights reserved. 32 */ 33 34 #include <sys/types.h> 35 #include <sys/t_lock.h> 36 #include <sys/param.h> 37 #include <sys/sysmacros.h> 38 #include <sys/signal.h> 39 #include <sys/systm.h> 40 #include <sys/user.h> 41 #include <sys/mman.h> 42 #include <sys/vm.h> 43 #include <sys/conf.h> 44 #include <sys/avintr.h> 45 #include <sys/autoconf.h> 46 #include <sys/disp.h> 47 #include <sys/class.h> 48 #include <sys/bitmap.h> 49 50 #include <sys/privregs.h> 51 52 #include <sys/proc.h> 53 #include <sys/buf.h> 54 #include <sys/kmem.h> 55 #include <sys/mem.h> 56 #include <sys/kstat.h> 57 58 #include <sys/reboot.h> 59 60 #include <sys/cred.h> 61 #include <sys/vnode.h> 62 #include <sys/file.h> 63 64 #include <sys/procfs.h> 65 66 #include <sys/vfs.h> 67 #include <sys/cmn_err.h> 68 #include <sys/utsname.h> 69 #include <sys/debug.h> 70 #include <sys/kdi.h> 71 72 #include <sys/dumphdr.h> 73 #include <sys/bootconf.h> 74 #include <sys/memlist_plat.h> 75 #include <sys/varargs.h> 76 #include <sys/promif.h> 77 #include <sys/modctl.h> 78 79 #include <sys/sunddi.h> 80 #include <sys/sunndi.h> 81 #include <sys/ndi_impldefs.h> 82 #include <sys/ddidmareq.h> 83 #include <sys/psw.h> 84 #include <sys/regset.h> 85 #include <sys/clock.h> 86 #include <sys/pte.h> 87 #include <sys/tss.h> 88 #include <sys/stack.h> 89 #include <sys/trap.h> 90 #include <sys/fp.h> 91 #include <vm/kboot_mmu.h> 92 #include <vm/anon.h> 93 #include <vm/as.h> 94 #include <vm/page.h> 95 #include <vm/seg.h> 96 #include <vm/seg_dev.h> 97 #include <vm/seg_kmem.h> 98 #include <vm/seg_kpm.h> 99 #include <vm/seg_map.h> 100 #include <vm/seg_vn.h> 101 #include <vm/seg_kp.h> 102 #include <sys/memnode.h> 103 #include <vm/vm_dep.h> 104 #include <sys/thread.h> 105 #include <sys/sysconf.h> 106 #include <sys/vm_machparam.h> 107 #include <sys/archsystm.h> 108 #include <sys/machsystm.h> 109 #include <vm/hat.h> 110 #include <vm/hat_i86.h> 111 #include <sys/pmem.h> 112 #include <sys/smp_impldefs.h> 113 #include <sys/x86_archext.h> 114 #include <sys/cpuvar.h> 115 #include <sys/segments.h> 116 #include <sys/clconf.h> 117 #include <sys/kobj.h> 118 #include <sys/kobj_lex.h> 119 #include <sys/cpc_impl.h> 120 #include <sys/cpu_module.h> 121 #include <sys/smbios.h> 122 #include <sys/debug_info.h> 123 #include <sys/bootinfo.h> 124 #include <sys/ddi_periodic.h> 125 #include <sys/systeminfo.h> 126 #include <sys/multiboot.h> 127 #include <sys/ramdisk.h> 128 129 #ifdef __xpv 130 131 #include <sys/hypervisor.h> 132 #include <sys/xen_mmu.h> 133 #include <sys/evtchn_impl.h> 134 #include <sys/gnttab.h> 135 #include <sys/xpv_panic.h> 136 #include <xen/sys/xenbus_comms.h> 137 #include <xen/public/physdev.h> 138 139 extern void xen_late_startup(void); 140 141 struct xen_evt_data cpu0_evt_data; 142 143 #else /* __xpv */ 144 #include <sys/memlist_impl.h> 145 146 extern void mem_config_init(void); 147 #endif /* __xpv */ 148 149 extern void progressbar_init(void); 150 extern void brand_init(void); 151 extern void pcf_init(void); 152 extern void pg_init(void); 153 extern void ssp_init(void); 154 155 extern int size_pse_array(pgcnt_t, int); 156 157 #if defined(_SOFT_HOSTID) 158 159 #include <sys/rtc.h> 160 161 static int32_t set_soft_hostid(void); 162 static char hostid_file[] = "/etc/hostid"; 163 164 #endif 165 166 void *gfx_devinfo_list; 167 168 #if defined(__amd64) && !defined(__xpv) 169 extern void immu_startup(void); 170 #endif 171 172 /* 173 * XXX make declaration below "static" when drivers no longer use this 174 * interface. 175 */ 176 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 177 178 /* 179 * segkp 180 */ 181 extern int segkp_fromheap; 182 183 static void kvm_init(void); 184 static void startup_init(void); 185 static void startup_memlist(void); 186 static void startup_kmem(void); 187 static void startup_modules(void); 188 static void startup_vm(void); 189 static void startup_end(void); 190 static void layout_kernel_va(void); 191 192 /* 193 * Declare these as initialized data so we can patch them. 194 */ 195 #ifdef __i386 196 197 /* 198 * Due to virtual address space limitations running in 32 bit mode, restrict 199 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 200 * 201 * If the physical max memory size of 64g were allowed to be configured, the 202 * size of user virtual address space will be less than 1g. A limited user 203 * address space greatly reduces the range of applications that can run. 204 * 205 * If more physical memory than PHYSMEM is required, users should preferably 206 * run in 64 bit mode which has far looser virtual address space limitations. 207 * 208 * If 64 bit mode is not available (as in IA32) and/or more physical memory 209 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 210 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 211 * should also be carefully tuned to balance out the need of the user 212 * application while minimizing the risk of kernel heap exhaustion due to 213 * kernelbase being set too high. 214 */ 215 #define PHYSMEM 0x400000 216 217 #else /* __amd64 */ 218 219 /* 220 * For now we can handle memory with physical addresses up to about 221 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 222 * half the VA space for seg_kpm. When systems get bigger than 64TB this 223 * code will need revisiting. There is an implicit assumption that there 224 * are no *huge* holes in the physical address space too. 225 */ 226 #define TERABYTE (1ul << 40) 227 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 228 #define PHYSMEM PHYSMEM_MAX64 229 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 230 231 #endif /* __amd64 */ 232 233 pgcnt_t physmem = PHYSMEM; 234 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 235 236 char *kobj_file_buf; 237 int kobj_file_bufsize; /* set in /etc/system */ 238 239 /* Global variables for MP support. Used in mp_startup */ 240 caddr_t rm_platter_va = 0; 241 uint32_t rm_platter_pa; 242 243 int auto_lpg_disable = 1; 244 245 /* 246 * Some CPUs have holes in the middle of the 64-bit virtual address range. 247 */ 248 uintptr_t hole_start, hole_end; 249 250 /* 251 * kpm mapping window 252 */ 253 caddr_t kpm_vbase; 254 size_t kpm_size; 255 static int kpm_desired; 256 #ifdef __amd64 257 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 258 #endif 259 260 /* 261 * Configuration parameters set at boot time. 262 */ 263 264 caddr_t econtig; /* end of first block of contiguous kernel */ 265 266 struct bootops *bootops = 0; /* passed in from boot */ 267 struct bootops **bootopsp; 268 struct boot_syscalls *sysp; /* passed in from boot */ 269 270 char bootblock_fstype[16]; 271 272 char kern_bootargs[OBP_MAXPATHLEN]; 273 char kern_bootfile[OBP_MAXPATHLEN]; 274 275 /* 276 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 277 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 278 * zio buffers from their own segment, otherwise they are allocated from the 279 * heap. The optimization of allocating zio buffers from their own segment is 280 * only valid on 64-bit kernels. 281 */ 282 #if defined(__amd64) 283 int segzio_fromheap = 0; 284 #else 285 int segzio_fromheap = 1; 286 #endif 287 288 /* 289 * Give folks an escape hatch for disabling SMAP via kmdb. Doesn't work 290 * post-boot. 291 */ 292 int disable_smap = 0; 293 294 /* 295 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 296 * depends on number of BOP_ALLOC calls made and requested size, memory size 297 * combination and whether boot.bin memory needs to be freed. 298 */ 299 #define POSS_NEW_FRAGMENTS 12 300 301 /* 302 * VM data structures 303 */ 304 long page_hashsz; /* Size of page hash table (power of two) */ 305 unsigned int page_hashsz_shift; /* log2(page_hashsz) */ 306 struct page *pp_base; /* Base of initial system page struct array */ 307 struct page **page_hash; /* Page hash table */ 308 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 309 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 310 int pse_shift; /* log2(pse_table_size) */ 311 struct seg ktextseg; /* Segment used for kernel executable image */ 312 struct seg kvalloc; /* Segment used for "valloc" mapping */ 313 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 314 struct seg kmapseg; /* Segment used for generic kernel mappings */ 315 struct seg kdebugseg; /* Segment used for the kernel debugger */ 316 317 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 318 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 319 320 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 321 322 #if defined(__amd64) 323 struct seg kvseg_core; /* Segment used for the core heap */ 324 struct seg kpmseg; /* Segment used for physical mapping */ 325 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 326 #else 327 struct seg *segkpm = NULL; /* Unused on IA32 */ 328 #endif 329 330 caddr_t segkp_base; /* Base address of segkp */ 331 caddr_t segzio_base; /* Base address of segzio */ 332 #if defined(__amd64) 333 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 334 #else 335 pgcnt_t segkpsize = 0; 336 #endif 337 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 338 339 /* 340 * A static DR page_t VA map is reserved that can map the page structures 341 * for a domain's entire RA space. The pages that back this space are 342 * dynamically allocated and need not be physically contiguous. The DR 343 * map size is derived from KPM size. 344 * This mechanism isn't used by x86 yet, so just stubs here. 345 */ 346 int ppvm_enable = 0; /* Static virtual map for page structs */ 347 page_t *ppvm_base = NULL; /* Base of page struct map */ 348 pgcnt_t ppvm_size = 0; /* Size of page struct map */ 349 350 /* 351 * VA range available to the debugger 352 */ 353 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 354 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 355 356 struct memseg *memseg_base; 357 struct vnode unused_pages_vp; 358 359 #define FOURGB 0x100000000LL 360 361 struct memlist *memlist; 362 363 caddr_t s_text; /* start of kernel text segment */ 364 caddr_t e_text; /* end of kernel text segment */ 365 caddr_t s_data; /* start of kernel data segment */ 366 caddr_t e_data; /* end of kernel data segment */ 367 caddr_t modtext; /* start of loadable module text reserved */ 368 caddr_t e_modtext; /* end of loadable module text reserved */ 369 caddr_t moddata; /* start of loadable module data reserved */ 370 caddr_t e_moddata; /* end of loadable module data reserved */ 371 372 struct memlist *phys_install; /* Total installed physical memory */ 373 struct memlist *phys_avail; /* Total available physical memory */ 374 struct memlist *bios_rsvd; /* Bios reserved memory */ 375 376 /* 377 * kphysm_init returns the number of pages that were processed 378 */ 379 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 380 381 #define IO_PROP_SIZE 64 /* device property size */ 382 383 /* 384 * a couple useful roundup macros 385 */ 386 #define ROUND_UP_PAGE(x) \ 387 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 388 #define ROUND_UP_LPAGE(x) \ 389 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 390 #define ROUND_UP_4MEG(x) \ 391 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 392 #define ROUND_UP_TOPLEVEL(x) \ 393 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 394 395 /* 396 * 32-bit Kernel's Virtual memory layout. 397 * +-----------------------+ 398 * | | 399 * 0xFFC00000 -|-----------------------|- ARGSBASE 400 * | debugger | 401 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 402 * | Kernel Data | 403 * 0xFEC00000 -|-----------------------| 404 * | Kernel Text | 405 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 406 * |--- GDT ---|- GDT page (GDT_VA) 407 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 408 * | | 409 * | page_t structures | 410 * | memsegs, memlists, | 411 * | page hash, etc. | 412 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 413 * | | (segkp is just an arena in the heap) 414 * | | 415 * | kvseg | 416 * | | 417 * | | 418 * --- -|-----------------------|- kernelheap (floating) 419 * | Segkmap | 420 * 0xC3002000 -|-----------------------|- segmap_start (floating) 421 * | Red Zone | 422 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 423 * | | || 424 * | Shared objects | \/ 425 * | | 426 * : : 427 * | user data | 428 * |-----------------------| 429 * | user text | 430 * 0x08048000 -|-----------------------| 431 * | user stack | 432 * : : 433 * | invalid | 434 * 0x00000000 +-----------------------+ 435 * 436 * 437 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 438 * +-----------------------+ 439 * | | 440 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 441 * | debugger (?) | 442 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 443 * | unused | 444 * +-----------------------+ 445 * | Kernel Data | 446 * 0xFFFFFFFF.FBC00000 |-----------------------| 447 * | Kernel Text | 448 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 449 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 450 * |--- GDT ---|- GDT page (GDT_VA) 451 * |--- IDT ---|- IDT page (IDT_VA) 452 * |--- LDT ---|- LDT pages (LDT_VA) 453 * | | 454 * | Core heap | (used for loadable modules) 455 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 456 * | Kernel | 457 * | heap | 458 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 459 * | segmap | 460 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 461 * | device mappings | 462 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 463 * | segzio | 464 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 465 * | segkp | 466 * --- |-----------------------|- segkp_base (floating) 467 * | page_t structures | valloc_base + valloc_sz 468 * | memsegs, memlists, | 469 * | page hash, etc. | 470 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if >256GB) 471 * | segkpm | 472 * 0xFFFFFE00.00000000 |-----------------------| 473 * | Red Zone | 474 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if >256GB) 475 * | User stack |- User space memory 476 * | | 477 * | shared objects, etc | (grows downwards) 478 * : : 479 * | | 480 * 0xFFFF8000.00000000 |-----------------------| 481 * | | 482 * | VA Hole / unused | 483 * | | 484 * 0x00008000.00000000 |-----------------------| 485 * | | 486 * | | 487 * : : 488 * | user heap | (grows upwards) 489 * | | 490 * | user data | 491 * |-----------------------| 492 * | user text | 493 * 0x00000000.04000000 |-----------------------| 494 * | invalid | 495 * 0x00000000.00000000 +-----------------------+ 496 * 497 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 498 * kernel, except that userlimit is raised to 0xfe000000 499 * 500 * Floating values: 501 * 502 * valloc_base: start of the kernel's memory management/tracking data 503 * structures. This region contains page_t structures for 504 * physical memory, memsegs, memlists, and the page hash. 505 * 506 * core_base: start of the kernel's "core" heap area on 64-bit systems. 507 * This area is intended to be used for global data as well as for module 508 * text/data that does not fit into the nucleus pages. The core heap is 509 * restricted to a 2GB range, allowing every address within it to be 510 * accessed using rip-relative addressing 511 * 512 * ekernelheap: end of kernelheap and start of segmap. 513 * 514 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 515 * above a red zone that separates the user's address space from the 516 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 517 * 518 * segmap_start: start of segmap. The length of segmap can be modified 519 * through eeprom. The default length is 16MB on 32-bit systems and 64MB 520 * on 64-bit systems. 521 * 522 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 523 * decreased by 2X the size required for page_t. This allows the kernel 524 * heap to grow in size with physical memory. With sizeof(page_t) == 80 525 * bytes, the following shows the values of kernelbase and kernel heap 526 * sizes for different memory configurations (assuming default segmap and 527 * segkp sizes). 528 * 529 * mem size for kernelbase kernel heap 530 * size page_t's size 531 * ---- --------- ---------- ----------- 532 * 1gb 0x01400000 0xd1800000 684MB 533 * 2gb 0x02800000 0xcf000000 704MB 534 * 4gb 0x05000000 0xca000000 744MB 535 * 6gb 0x07800000 0xc5000000 784MB 536 * 8gb 0x0a000000 0xc0000000 824MB 537 * 16gb 0x14000000 0xac000000 984MB 538 * 32gb 0x28000000 0x84000000 1304MB 539 * 64gb 0x50000000 0x34000000 1944MB (*) 540 * 541 * kernelbase is less than the abi minimum of 0xc0000000 for memory 542 * configurations above 8gb. 543 * 544 * (*) support for memory configurations above 32gb will require manual tuning 545 * of kernelbase to balance out the need of user applications. 546 */ 547 548 /* real-time-clock initialization parameters */ 549 extern time_t process_rtc_config_file(void); 550 551 uintptr_t kernelbase; 552 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 553 uintptr_t eprom_kernelbase; 554 size_t segmapsize; 555 uintptr_t segmap_start; 556 int segmapfreelists; 557 pgcnt_t npages; 558 pgcnt_t orig_npages; 559 size_t core_size; /* size of "core" heap */ 560 uintptr_t core_base; /* base address of "core" heap */ 561 562 /* 563 * List of bootstrap pages. We mark these as allocated in startup. 564 * release_bootstrap() will free them when we're completely done with 565 * the bootstrap. 566 */ 567 static page_t *bootpages; 568 569 /* 570 * boot time pages that have a vnode from the ramdisk will keep that forever. 571 */ 572 static page_t *rd_pages; 573 574 /* 575 * Lower 64K 576 */ 577 static page_t *lower_pages = NULL; 578 static int lower_pages_count = 0; 579 580 struct system_hardware system_hardware; 581 582 /* 583 * Enable some debugging messages concerning memory usage... 584 */ 585 static void 586 print_memlist(char *title, struct memlist *mp) 587 { 588 prom_printf("MEMLIST: %s:\n", title); 589 while (mp != NULL) { 590 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 591 mp->ml_address, mp->ml_size); 592 mp = mp->ml_next; 593 } 594 } 595 596 /* 597 * XX64 need a comment here.. are these just default values, surely 598 * we read the "cpuid" type information to figure this out. 599 */ 600 int l2cache_sz = 0x80000; 601 int l2cache_linesz = 0x40; 602 int l2cache_assoc = 1; 603 604 static size_t textrepl_min_gb = 10; 605 606 /* 607 * on 64 bit we use a predifined VA range for mapping devices in the kernel 608 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 609 */ 610 #ifdef __amd64 611 612 vmem_t *device_arena; 613 uintptr_t toxic_addr = (uintptr_t)NULL; 614 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 615 616 #else /* __i386 */ 617 618 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 619 size_t toxic_bit_map_len = 0; /* in bits */ 620 621 #endif /* __i386 */ 622 623 /* 624 * Simple boot time debug facilities 625 */ 626 static char *prm_dbg_str[] = { 627 "%s:%d: '%s' is 0x%x\n", 628 "%s:%d: '%s' is 0x%llx\n" 629 }; 630 631 int prom_debug; 632 633 #define PRM_DEBUG(q) if (prom_debug) \ 634 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 635 #define PRM_POINT(q) if (prom_debug) \ 636 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 637 638 /* 639 * This structure is used to keep track of the intial allocations 640 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 641 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 642 */ 643 #define NUM_ALLOCATIONS 8 644 int num_allocations = 0; 645 struct { 646 void **al_ptr; 647 size_t al_size; 648 } allocations[NUM_ALLOCATIONS]; 649 size_t valloc_sz = 0; 650 uintptr_t valloc_base; 651 652 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 653 size = ROUND_UP_PAGE(size); \ 654 if (num_allocations == NUM_ALLOCATIONS) \ 655 panic("too many ADD_TO_ALLOCATIONS()"); \ 656 allocations[num_allocations].al_ptr = (void**)&ptr; \ 657 allocations[num_allocations].al_size = size; \ 658 valloc_sz += size; \ 659 ++num_allocations; \ 660 } 661 662 /* 663 * Allocate all the initial memory needed by the page allocator. 664 */ 665 static void 666 perform_allocations(void) 667 { 668 caddr_t mem; 669 int i; 670 int valloc_align; 671 672 PRM_DEBUG(valloc_base); 673 PRM_DEBUG(valloc_sz); 674 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 675 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 676 if (mem != (caddr_t)valloc_base) 677 panic("BOP_ALLOC() failed"); 678 bzero(mem, valloc_sz); 679 for (i = 0; i < num_allocations; ++i) { 680 *allocations[i].al_ptr = (void *)mem; 681 mem += allocations[i].al_size; 682 } 683 } 684 685 /* 686 * Set up and enable SMAP now before we start other CPUs, but after the kernel's 687 * VM has been set up so we can use hot_patch_kernel_text(). 688 * 689 * We can only patch 1, 2, or 4 bytes, but not three bytes. So instead, we 690 * replace the four byte word at the patch point. See uts/intel/ia32/ml/copy.s 691 * for more information on what's going on here. 692 */ 693 static void 694 startup_smap(void) 695 { 696 int i; 697 uint32_t inst; 698 uint8_t *instp; 699 char sym[128]; 700 701 extern int _smap_enable_patch_count; 702 extern int _smap_disable_patch_count; 703 704 if (disable_smap != 0) 705 remove_x86_feature(x86_featureset, X86FSET_SMAP); 706 707 if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_FALSE) 708 return; 709 710 for (i = 0; i < _smap_enable_patch_count; i++) { 711 int sizep; 712 713 VERIFY3U(i, <, _smap_enable_patch_count); 714 VERIFY(snprintf(sym, sizeof (sym), "_smap_enable_patch_%d", i) < 715 sizeof (sym)); 716 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep); 717 VERIFY(instp != 0); 718 inst = (instp[3] << 24) | (SMAP_CLAC_INSTR & 0x00ffffff); 719 hot_patch_kernel_text((caddr_t)instp, inst, 4); 720 } 721 722 for (i = 0; i < _smap_disable_patch_count; i++) { 723 int sizep; 724 725 VERIFY(snprintf(sym, sizeof (sym), "_smap_disable_patch_%d", 726 i) < sizeof (sym)); 727 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep); 728 VERIFY(instp != 0); 729 inst = (instp[3] << 24) | (SMAP_STAC_INSTR & 0x00ffffff); 730 hot_patch_kernel_text((caddr_t)instp, inst, 4); 731 } 732 733 hot_patch_kernel_text((caddr_t)smap_enable, SMAP_CLAC_INSTR, 4); 734 hot_patch_kernel_text((caddr_t)smap_disable, SMAP_STAC_INSTR, 4); 735 setcr4(getcr4() | CR4_SMAP); 736 smap_enable(); 737 } 738 739 /* 740 * Our world looks like this at startup time. 741 * 742 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 743 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 744 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 745 * addresses are fixed in the binary at link time. 746 * 747 * On the text page: 748 * unix/genunix/krtld/module text loads. 749 * 750 * On the data page: 751 * unix/genunix/krtld/module data loads. 752 * 753 * Machine-dependent startup code 754 */ 755 void 756 startup(void) 757 { 758 #if !defined(__xpv) 759 extern void startup_pci_bios(void); 760 #endif 761 extern cpuset_t cpu_ready_set; 762 763 /* 764 * Make sure that nobody tries to use sekpm until we have 765 * initialized it properly. 766 */ 767 #if defined(__amd64) 768 kpm_desired = 1; 769 #endif 770 kpm_enable = 0; 771 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 772 773 #if defined(__xpv) /* XXPV fix me! */ 774 { 775 extern int segvn_use_regions; 776 segvn_use_regions = 0; 777 } 778 #endif 779 ssp_init(); 780 progressbar_init(); 781 startup_init(); 782 #if defined(__xpv) 783 startup_xen_version(); 784 #endif 785 startup_memlist(); 786 startup_kmem(); 787 startup_vm(); 788 #if !defined(__xpv) 789 /* 790 * Note we need to do this even on fast reboot in order to access 791 * the irq routing table (used for pci labels). 792 */ 793 startup_pci_bios(); 794 startup_smap(); 795 #endif 796 #if defined(__xpv) 797 startup_xen_mca(); 798 #endif 799 startup_modules(); 800 801 startup_end(); 802 } 803 804 static void 805 startup_init() 806 { 807 PRM_POINT("startup_init() starting..."); 808 809 /* 810 * Complete the extraction of cpuid data 811 */ 812 cpuid_pass2(CPU); 813 814 (void) check_boot_version(BOP_GETVERSION(bootops)); 815 816 /* 817 * Check for prom_debug in boot environment 818 */ 819 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 820 ++prom_debug; 821 PRM_POINT("prom_debug found in boot enviroment"); 822 } 823 824 /* 825 * Collect node, cpu and memory configuration information. 826 */ 827 get_system_configuration(); 828 829 /* 830 * Halt if this is an unsupported processor. 831 */ 832 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 833 printf("\n486 processor (\"%s\") detected.\n", 834 CPU->cpu_brandstr); 835 halt("This processor is not supported by this release " 836 "of Solaris."); 837 } 838 839 PRM_POINT("startup_init() done"); 840 } 841 842 /* 843 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 844 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 845 * also filters out physical page zero. There is some reliance on the 846 * boot loader allocating only a few contiguous physical memory chunks. 847 */ 848 static void 849 avail_filter(uint64_t *addr, uint64_t *size) 850 { 851 uintptr_t va; 852 uintptr_t next_va; 853 pfn_t pfn; 854 uint64_t pfn_addr; 855 uint64_t pfn_eaddr; 856 uint_t prot; 857 size_t len; 858 uint_t change; 859 860 if (prom_debug) 861 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 862 *addr, *size); 863 864 /* 865 * page zero is required for BIOS.. never make it available 866 */ 867 if (*addr == 0) { 868 *addr += MMU_PAGESIZE; 869 *size -= MMU_PAGESIZE; 870 } 871 872 /* 873 * First we trim from the front of the range. Since kbm_probe() 874 * walks ranges in virtual order, but addr/size are physical, we need 875 * to the list until no changes are seen. This deals with the case 876 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 877 * but w < v. 878 */ 879 do { 880 change = 0; 881 for (va = KERNEL_TEXT; 882 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 883 va = next_va) { 884 885 next_va = va + len; 886 pfn_addr = pfn_to_pa(pfn); 887 pfn_eaddr = pfn_addr + len; 888 889 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 890 change = 1; 891 while (*size > 0 && len > 0) { 892 *addr += MMU_PAGESIZE; 893 *size -= MMU_PAGESIZE; 894 len -= MMU_PAGESIZE; 895 } 896 } 897 } 898 if (change && prom_debug) 899 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 900 *addr, *size); 901 } while (change); 902 903 /* 904 * Trim pages from the end of the range. 905 */ 906 for (va = KERNEL_TEXT; 907 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 908 va = next_va) { 909 910 next_va = va + len; 911 pfn_addr = pfn_to_pa(pfn); 912 913 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 914 *size = pfn_addr - *addr; 915 } 916 917 if (prom_debug) 918 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 919 *addr, *size); 920 } 921 922 static void 923 kpm_init() 924 { 925 struct segkpm_crargs b; 926 927 /* 928 * These variables were all designed for sfmmu in which segkpm is 929 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 930 * might use 2+ page sizes on a single machine, so none of these 931 * variables have a single correct value. They are set up as if we 932 * always use a 4KB pagesize, which should do no harm. In the long 933 * run, we should get rid of KPM's assumption that only a single 934 * pagesize is used. 935 */ 936 kpm_pgshft = MMU_PAGESHIFT; 937 kpm_pgsz = MMU_PAGESIZE; 938 kpm_pgoff = MMU_PAGEOFFSET; 939 kpmp2pshft = 0; 940 kpmpnpgs = 1; 941 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 942 943 PRM_POINT("about to create segkpm"); 944 rw_enter(&kas.a_lock, RW_WRITER); 945 946 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 947 panic("cannot attach segkpm"); 948 949 b.prot = PROT_READ | PROT_WRITE; 950 b.nvcolors = 1; 951 952 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 953 panic("segkpm_create segkpm"); 954 955 rw_exit(&kas.a_lock); 956 957 kpm_enable = 1; 958 959 /* 960 * As the KPM was disabled while setting up the system, go back and fix 961 * CPU zero's access to its user page table. This is a bit gross, but 962 * we have a chicken and egg problem otherwise. 963 */ 964 ASSERT(CPU->cpu_hat_info->hci_user_l3ptes == NULL); 965 CPU->cpu_hat_info->hci_user_l3ptes = 966 (x86pte_t *)hat_kpm_mapin_pfn(CPU->cpu_hat_info->hci_user_l3pfn); 967 } 968 969 /* 970 * The debug info page provides enough information to allow external 971 * inspectors (e.g. when running under a hypervisor) to bootstrap 972 * themselves into allowing full-blown kernel debugging. 973 */ 974 static void 975 init_debug_info(void) 976 { 977 caddr_t mem; 978 debug_info_t *di; 979 980 #ifndef __lint 981 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 982 #endif 983 984 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 985 MMU_PAGESIZE); 986 987 if (mem != (caddr_t)DEBUG_INFO_VA) 988 panic("BOP_ALLOC() failed"); 989 bzero(mem, MMU_PAGESIZE); 990 991 di = (debug_info_t *)mem; 992 993 di->di_magic = DEBUG_INFO_MAGIC; 994 di->di_version = DEBUG_INFO_VERSION; 995 di->di_modules = (uintptr_t)&modules; 996 di->di_s_text = (uintptr_t)s_text; 997 di->di_e_text = (uintptr_t)e_text; 998 di->di_s_data = (uintptr_t)s_data; 999 di->di_e_data = (uintptr_t)e_data; 1000 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 1001 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 1002 } 1003 1004 /* 1005 * Build the memlists and other kernel essential memory system data structures. 1006 * This is everything at valloc_base. 1007 */ 1008 static void 1009 startup_memlist(void) 1010 { 1011 size_t memlist_sz; 1012 size_t memseg_sz; 1013 size_t pagehash_sz; 1014 size_t pp_sz; 1015 uintptr_t va; 1016 size_t len; 1017 uint_t prot; 1018 pfn_t pfn; 1019 int memblocks; 1020 pfn_t rsvd_high_pfn; 1021 pgcnt_t rsvd_pgcnt; 1022 size_t rsvdmemlist_sz; 1023 int rsvdmemblocks; 1024 caddr_t pagecolor_mem; 1025 size_t pagecolor_memsz; 1026 caddr_t page_ctrs_mem; 1027 size_t page_ctrs_size; 1028 size_t pse_table_alloc_size; 1029 struct memlist *current; 1030 extern void startup_build_mem_nodes(struct memlist *); 1031 1032 /* XX64 fix these - they should be in include files */ 1033 extern size_t page_coloring_init(uint_t, int, int); 1034 extern void page_coloring_setup(caddr_t); 1035 1036 PRM_POINT("startup_memlist() starting..."); 1037 1038 /* 1039 * Use leftover large page nucleus text/data space for loadable modules. 1040 * Use at most MODTEXT/MODDATA. 1041 */ 1042 len = kbm_nucleus_size; 1043 ASSERT(len > MMU_PAGESIZE); 1044 1045 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 1046 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 1047 if (e_moddata - moddata > MODDATA) 1048 e_moddata = moddata + MODDATA; 1049 1050 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 1051 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 1052 if (e_modtext - modtext > MODTEXT) 1053 e_modtext = modtext + MODTEXT; 1054 1055 econtig = e_moddata; 1056 1057 PRM_DEBUG(modtext); 1058 PRM_DEBUG(e_modtext); 1059 PRM_DEBUG(moddata); 1060 PRM_DEBUG(e_moddata); 1061 PRM_DEBUG(econtig); 1062 1063 /* 1064 * Examine the boot loader physical memory map to find out: 1065 * - total memory in system - physinstalled 1066 * - the max physical address - physmax 1067 * - the number of discontiguous segments of memory. 1068 */ 1069 if (prom_debug) 1070 print_memlist("boot physinstalled", 1071 bootops->boot_mem->physinstalled); 1072 installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax, 1073 &physinstalled, &memblocks); 1074 PRM_DEBUG(physmax); 1075 PRM_DEBUG(physinstalled); 1076 PRM_DEBUG(memblocks); 1077 1078 /* 1079 * Compute maximum physical address for memory DR operations. 1080 * Memory DR operations are unsupported on xpv or 32bit OSes. 1081 */ 1082 #ifdef __amd64 1083 if (plat_dr_support_memory()) { 1084 if (plat_dr_physmax == 0) { 1085 uint_t pabits = UINT_MAX; 1086 1087 cpuid_get_addrsize(CPU, &pabits, NULL); 1088 plat_dr_physmax = btop(1ULL << pabits); 1089 } 1090 if (plat_dr_physmax > PHYSMEM_MAX64) 1091 plat_dr_physmax = PHYSMEM_MAX64; 1092 } else 1093 #endif 1094 plat_dr_physmax = 0; 1095 1096 /* 1097 * Examine the bios reserved memory to find out: 1098 * - the number of discontiguous segments of memory. 1099 */ 1100 if (prom_debug) 1101 print_memlist("boot reserved mem", 1102 bootops->boot_mem->rsvdmem); 1103 installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn, 1104 &rsvd_pgcnt, &rsvdmemblocks); 1105 PRM_DEBUG(rsvd_high_pfn); 1106 PRM_DEBUG(rsvd_pgcnt); 1107 PRM_DEBUG(rsvdmemblocks); 1108 1109 /* 1110 * Initialize hat's mmu parameters. 1111 * Check for enforce-prot-exec in boot environment. It's used to 1112 * enable/disable support for the page table entry NX bit. 1113 * The default is to enforce PROT_EXEC on processors that support NX. 1114 * Boot seems to round up the "len", but 8 seems to be big enough. 1115 */ 1116 mmu_init(); 1117 1118 #ifdef __i386 1119 /* 1120 * physmax is lowered if there is more memory than can be 1121 * physically addressed in 32 bit (PAE/non-PAE) modes. 1122 */ 1123 if (mmu.pae_hat) { 1124 if (PFN_ABOVE64G(physmax)) { 1125 physinstalled -= (physmax - (PFN_64G - 1)); 1126 physmax = PFN_64G - 1; 1127 } 1128 } else { 1129 if (PFN_ABOVE4G(physmax)) { 1130 physinstalled -= (physmax - (PFN_4G - 1)); 1131 physmax = PFN_4G - 1; 1132 } 1133 } 1134 #endif 1135 1136 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 1137 1138 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 1139 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 1140 char value[8]; 1141 1142 if (len < 8) 1143 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 1144 else 1145 (void) strcpy(value, ""); 1146 if (strcmp(value, "off") == 0) 1147 mmu.pt_nx = 0; 1148 } 1149 PRM_DEBUG(mmu.pt_nx); 1150 1151 /* 1152 * We will need page_t's for every page in the system, except for 1153 * memory mapped at or above above the start of the kernel text segment. 1154 * 1155 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1156 */ 1157 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1158 obp_pages = 0; 1159 va = KERNEL_TEXT; 1160 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1161 npages -= len >> MMU_PAGESHIFT; 1162 if (va >= (uintptr_t)e_moddata) 1163 obp_pages += len >> MMU_PAGESHIFT; 1164 va += len; 1165 } 1166 PRM_DEBUG(npages); 1167 PRM_DEBUG(obp_pages); 1168 1169 /* 1170 * If physmem is patched to be non-zero, use it instead of the computed 1171 * value unless it is larger than the actual amount of memory on hand. 1172 */ 1173 if (physmem == 0 || physmem > npages) { 1174 physmem = npages; 1175 } else if (physmem < npages) { 1176 orig_npages = npages; 1177 npages = physmem; 1178 } 1179 PRM_DEBUG(physmem); 1180 1181 /* 1182 * We now compute the sizes of all the initial allocations for 1183 * structures the kernel needs in order do kmem_alloc(). These 1184 * include: 1185 * memsegs 1186 * memlists 1187 * page hash table 1188 * page_t's 1189 * page coloring data structs 1190 */ 1191 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1192 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1193 PRM_DEBUG(memseg_sz); 1194 1195 /* 1196 * Reserve space for memlists. There's no real good way to know exactly 1197 * how much room we'll need, but this should be a good upper bound. 1198 */ 1199 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1200 (memblocks + POSS_NEW_FRAGMENTS)); 1201 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1202 PRM_DEBUG(memlist_sz); 1203 1204 /* 1205 * Reserve space for bios reserved memlists. 1206 */ 1207 rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1208 (rsvdmemblocks + POSS_NEW_FRAGMENTS)); 1209 ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz); 1210 PRM_DEBUG(rsvdmemlist_sz); 1211 1212 /* LINTED */ 1213 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), sizeof (struct page))); 1214 /* 1215 * The page structure hash table size is a power of 2 1216 * such that the average hash chain length is PAGE_HASHAVELEN. 1217 */ 1218 page_hashsz = npages / PAGE_HASHAVELEN; 1219 page_hashsz_shift = highbit(page_hashsz); 1220 page_hashsz = 1 << page_hashsz_shift; 1221 pagehash_sz = sizeof (struct page *) * page_hashsz; 1222 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1223 PRM_DEBUG(pagehash_sz); 1224 1225 /* 1226 * Set aside room for the page structures themselves. 1227 */ 1228 PRM_DEBUG(npages); 1229 pp_sz = sizeof (struct page) * npages; 1230 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1231 PRM_DEBUG(pp_sz); 1232 1233 /* 1234 * determine l2 cache info and memory size for page coloring 1235 */ 1236 (void) getl2cacheinfo(CPU, 1237 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1238 pagecolor_memsz = 1239 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1240 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1241 PRM_DEBUG(pagecolor_memsz); 1242 1243 page_ctrs_size = page_ctrs_sz(); 1244 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1245 PRM_DEBUG(page_ctrs_size); 1246 1247 /* 1248 * Allocate the array that protects pp->p_selock. 1249 */ 1250 pse_shift = size_pse_array(physmem, max_ncpus); 1251 pse_table_size = 1 << pse_shift; 1252 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1253 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1254 1255 #if defined(__amd64) 1256 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1257 valloc_base = VALLOC_BASE; 1258 1259 /* 1260 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1261 * for values of physmax up to 256GB (1/4 TB). They need adjusting when 1262 * memory is at addresses above 256GB. When adjusted, segkpm_base must 1263 * be aligned on KERNEL_REDZONE_SIZE boundary (span of top level pte). 1264 * 1265 * In the general case (>256GB), we use (4 * physmem) for the 1266 * kernel's virtual addresses, which is divided approximately 1267 * as follows: 1268 * - 1 * physmem for segkpm 1269 * - 1.5 * physmem for segzio 1270 * - 1.5 * physmem for heap 1271 * Total: 4.0 * physmem 1272 * 1273 * Note that the segzio and heap sizes are more than physmem so that 1274 * VA fragmentation does not prevent either of them from being 1275 * able to use nearly all of physmem. The value of 1.5x is determined 1276 * experimentally and may need to change if the workload changes. 1277 */ 1278 if (physmax + 1 > mmu_btop(TERABYTE / 4) || 1279 plat_dr_physmax > mmu_btop(TERABYTE / 4)) { 1280 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1281 1282 if (kpm_resv_amount < mmu_ptob(plat_dr_physmax)) { 1283 kpm_resv_amount = mmu_ptob(plat_dr_physmax); 1284 } 1285 1286 /* 1287 * This is what actually controls the KVA : UVA split. 1288 * The kernel uses high VA, and this is lowering the 1289 * boundary, thus increasing the amount of VA for the kernel. 1290 * This gives the kernel 4 * (amount of physical memory) VA. 1291 * 1292 * The maximum VA is UINT64_MAX and we are using 1293 * 64-bit 2's complement math, so e.g. if you have 512GB 1294 * of memory, segkpm_base = -(4 * 512GB) == -2TB == 1295 * UINT64_MAX - 2TB (approximately). So the kernel's 1296 * VA is [UINT64_MAX-2TB to UINT64_MAX]. 1297 */ 1298 segkpm_base = -(P2ROUNDUP((4 * kpm_resv_amount), 1299 KERNEL_REDZONE_SIZE)); 1300 1301 /* make sure we leave some space for user apps above hole */ 1302 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1303 if (segkpm_base > SEGKPM_BASE) 1304 segkpm_base = SEGKPM_BASE; 1305 PRM_DEBUG(segkpm_base); 1306 1307 valloc_base = segkpm_base + P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1308 if (valloc_base < segkpm_base) 1309 panic("not enough kernel VA to support memory size"); 1310 PRM_DEBUG(valloc_base); 1311 } 1312 #else /* __i386 */ 1313 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1314 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1315 PRM_DEBUG(valloc_base); 1316 #endif /* __i386 */ 1317 1318 /* 1319 * do all the initial allocations 1320 */ 1321 perform_allocations(); 1322 1323 /* 1324 * Build phys_install and phys_avail in kernel memspace. 1325 * - phys_install should be all memory in the system. 1326 * - phys_avail is phys_install minus any memory mapped before this 1327 * point above KERNEL_TEXT. 1328 */ 1329 current = phys_install = memlist; 1330 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1331 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1332 panic("physinstalled was too big!"); 1333 if (prom_debug) 1334 print_memlist("phys_install", phys_install); 1335 1336 phys_avail = current; 1337 PRM_POINT("Building phys_avail:\n"); 1338 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1339 avail_filter); 1340 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1341 panic("physavail was too big!"); 1342 if (prom_debug) 1343 print_memlist("phys_avail", phys_avail); 1344 #ifndef __xpv 1345 /* 1346 * Free unused memlist items, which may be used by memory DR driver 1347 * at runtime. 1348 */ 1349 if ((caddr_t)current < (caddr_t)memlist + memlist_sz) { 1350 memlist_free_block((caddr_t)current, 1351 (caddr_t)memlist + memlist_sz - (caddr_t)current); 1352 } 1353 #endif 1354 1355 /* 1356 * Build bios reserved memspace 1357 */ 1358 current = bios_rsvd; 1359 copy_memlist_filter(bootops->boot_mem->rsvdmem, ¤t, NULL); 1360 if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz) 1361 panic("bios_rsvd was too big!"); 1362 if (prom_debug) 1363 print_memlist("bios_rsvd", bios_rsvd); 1364 #ifndef __xpv 1365 /* 1366 * Free unused memlist items, which may be used by memory DR driver 1367 * at runtime. 1368 */ 1369 if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) { 1370 memlist_free_block((caddr_t)current, 1371 (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current); 1372 } 1373 #endif 1374 1375 /* 1376 * setup page coloring 1377 */ 1378 page_coloring_setup(pagecolor_mem); 1379 page_lock_init(); /* currently a no-op */ 1380 1381 /* 1382 * free page list counters 1383 */ 1384 (void) page_ctrs_alloc(page_ctrs_mem); 1385 1386 /* 1387 * Size the pcf array based on the number of cpus in the box at 1388 * boot time. 1389 */ 1390 1391 pcf_init(); 1392 1393 /* 1394 * Initialize the page structures from the memory lists. 1395 */ 1396 availrmem_initial = availrmem = freemem = 0; 1397 PRM_POINT("Calling kphysm_init()..."); 1398 npages = kphysm_init(pp_base, npages); 1399 PRM_POINT("kphysm_init() done"); 1400 PRM_DEBUG(npages); 1401 1402 init_debug_info(); 1403 1404 /* 1405 * Now that page_t's have been initialized, remove all the 1406 * initial allocation pages from the kernel free page lists. 1407 */ 1408 boot_mapin((caddr_t)valloc_base, valloc_sz); 1409 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1410 PRM_POINT("startup_memlist() done"); 1411 1412 PRM_DEBUG(valloc_sz); 1413 1414 #if defined(__amd64) 1415 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1416 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1417 extern size_t textrepl_size_thresh; 1418 textrepl_size_thresh = (16 << 20) - 1; 1419 } 1420 #endif 1421 } 1422 1423 /* 1424 * Layout the kernel's part of address space and initialize kmem allocator. 1425 */ 1426 static void 1427 startup_kmem(void) 1428 { 1429 extern void page_set_colorequiv_arr(void); 1430 #if !defined(__xpv) 1431 extern uint64_t kpti_kbase; 1432 #endif 1433 1434 PRM_POINT("startup_kmem() starting..."); 1435 1436 #if defined(__amd64) 1437 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1438 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1439 "systems."); 1440 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1441 core_base = (uintptr_t)COREHEAP_BASE; 1442 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1443 #else /* __i386 */ 1444 /* 1445 * We configure kernelbase based on: 1446 * 1447 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1448 * KERNELBASE_MAX. we large page align eprom_kernelbase 1449 * 1450 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1451 * On large memory systems we must lower kernelbase to allow 1452 * enough room for page_t's for all of memory. 1453 * 1454 * The value set here, might be changed a little later. 1455 */ 1456 if (eprom_kernelbase) { 1457 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1458 if (kernelbase > KERNELBASE_MAX) 1459 kernelbase = KERNELBASE_MAX; 1460 } else { 1461 kernelbase = (uintptr_t)KERNELBASE; 1462 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1463 } 1464 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1465 core_base = valloc_base; 1466 core_size = 0; 1467 #endif /* __i386 */ 1468 1469 PRM_DEBUG(core_base); 1470 PRM_DEBUG(core_size); 1471 PRM_DEBUG(kernelbase); 1472 1473 #if defined(__i386) 1474 segkp_fromheap = 1; 1475 #endif /* __i386 */ 1476 1477 ekernelheap = (char *)core_base; 1478 PRM_DEBUG(ekernelheap); 1479 1480 /* 1481 * Now that we know the real value of kernelbase, 1482 * update variables that were initialized with a value of 1483 * KERNELBASE (in common/conf/param.c). 1484 * 1485 * XXX The problem with this sort of hackery is that the 1486 * compiler just may feel like putting the const declarations 1487 * (in param.c) into the .text section. Perhaps they should 1488 * just be declared as variables there? 1489 */ 1490 1491 *(uintptr_t *)&_kernelbase = kernelbase; 1492 *(uintptr_t *)&_userlimit = kernelbase; 1493 #if defined(__amd64) 1494 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1495 #if !defined(__xpv) 1496 kpti_kbase = kernelbase; 1497 #endif 1498 #else 1499 *(uintptr_t *)&_userlimit32 = _userlimit; 1500 #endif 1501 PRM_DEBUG(_kernelbase); 1502 PRM_DEBUG(_userlimit); 1503 PRM_DEBUG(_userlimit32); 1504 1505 /* We have to re-do this now that we've modified _userlimit. */ 1506 mmu_calc_user_slots(); 1507 1508 layout_kernel_va(); 1509 1510 #if defined(__i386) 1511 /* 1512 * If segmap is too large we can push the bottom of the kernel heap 1513 * higher than the base. Or worse, it could exceed the top of the 1514 * VA space entirely, causing it to wrap around. 1515 */ 1516 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1517 panic("too little address space available for kernelheap," 1518 " use eeprom for lower kernelbase or smaller segmapsize"); 1519 #endif /* __i386 */ 1520 1521 /* 1522 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1523 */ 1524 kernelheap_init(kernelheap, ekernelheap, 1525 kernelheap + MMU_PAGESIZE, 1526 (void *)core_base, (void *)(core_base + core_size)); 1527 1528 #if defined(__xpv) 1529 /* 1530 * Link pending events struct into cpu struct 1531 */ 1532 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1533 #endif 1534 /* 1535 * Initialize kernel memory allocator. 1536 */ 1537 kmem_init(); 1538 1539 /* 1540 * Factor in colorequiv to check additional 'equivalent' bins 1541 */ 1542 page_set_colorequiv_arr(); 1543 1544 /* 1545 * print this out early so that we know what's going on 1546 */ 1547 print_x86_featureset(x86_featureset); 1548 1549 /* 1550 * Initialize bp_mapin(). 1551 */ 1552 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1553 1554 /* 1555 * orig_npages is non-zero if physmem has been configured for less 1556 * than the available memory. 1557 */ 1558 if (orig_npages) { 1559 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1560 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1561 npages, orig_npages); 1562 } 1563 #if defined(__i386) 1564 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1565 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1566 "System using 0x%lx", 1567 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1568 #endif 1569 1570 #ifdef KERNELBASE_ABI_MIN 1571 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1572 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1573 "i386 ABI compliant.", (uintptr_t)kernelbase); 1574 } 1575 #endif 1576 1577 #ifndef __xpv 1578 if (plat_dr_support_memory()) { 1579 mem_config_init(); 1580 } 1581 #else /* __xpv */ 1582 /* 1583 * Some of the xen start information has to be relocated up 1584 * into the kernel's permanent address space. 1585 */ 1586 PRM_POINT("calling xen_relocate_start_info()"); 1587 xen_relocate_start_info(); 1588 PRM_POINT("xen_relocate_start_info() done"); 1589 1590 /* 1591 * (Update the vcpu pointer in our cpu structure to point into 1592 * the relocated shared info.) 1593 */ 1594 CPU->cpu_m.mcpu_vcpu_info = 1595 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1596 #endif /* __xpv */ 1597 1598 PRM_POINT("startup_kmem() done"); 1599 } 1600 1601 #ifndef __xpv 1602 /* 1603 * If we have detected that we are running in an HVM environment, we need 1604 * to prepend the PV driver directory to the module search path. 1605 */ 1606 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1607 static void 1608 update_default_path() 1609 { 1610 char *current, *newpath; 1611 int newlen; 1612 1613 /* 1614 * We are about to resync with krtld. krtld will reset its 1615 * internal module search path iff Solaris has set default_path. 1616 * We want to be sure we're prepending this new directory to the 1617 * right search path. 1618 */ 1619 current = (default_path == NULL) ? kobj_module_path : default_path; 1620 1621 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2; 1622 newpath = kmem_alloc(newlen, KM_SLEEP); 1623 (void) strcpy(newpath, HVM_MOD_DIR); 1624 (void) strcat(newpath, " "); 1625 (void) strcat(newpath, current); 1626 1627 default_path = newpath; 1628 } 1629 #endif 1630 1631 static void 1632 startup_modules(void) 1633 { 1634 int cnt; 1635 extern void prom_setup(void); 1636 int32_t v, h; 1637 char d[11]; 1638 char *cp; 1639 cmi_hdl_t hdl; 1640 1641 PRM_POINT("startup_modules() starting..."); 1642 1643 #ifndef __xpv 1644 /* 1645 * Initialize ten-micro second timer so that drivers will 1646 * not get short changed in their init phase. This was 1647 * not getting called until clkinit which, on fast cpu's 1648 * caused the drv_usecwait to be way too short. 1649 */ 1650 microfind(); 1651 1652 if ((get_hwenv() & HW_XEN_HVM) != 0) 1653 update_default_path(); 1654 #endif 1655 1656 /* 1657 * Read the GMT lag from /etc/rtc_config. 1658 */ 1659 sgmtl(process_rtc_config_file()); 1660 1661 /* 1662 * Calculate default settings of system parameters based upon 1663 * maxusers, yet allow to be overridden via the /etc/system file. 1664 */ 1665 param_calc(0); 1666 1667 mod_setup(); 1668 1669 /* 1670 * Initialize system parameters. 1671 */ 1672 param_init(); 1673 1674 /* 1675 * Initialize the default brands 1676 */ 1677 brand_init(); 1678 1679 /* 1680 * maxmem is the amount of physical memory we're playing with. 1681 */ 1682 maxmem = physmem; 1683 1684 /* 1685 * Initialize segment management stuff. 1686 */ 1687 seg_init(); 1688 1689 if (modload("fs", "specfs") == -1) 1690 halt("Can't load specfs"); 1691 1692 if (modload("fs", "devfs") == -1) 1693 halt("Can't load devfs"); 1694 1695 if (modload("fs", "dev") == -1) 1696 halt("Can't load dev"); 1697 1698 if (modload("fs", "procfs") == -1) 1699 halt("Can't load procfs"); 1700 1701 (void) modloadonly("sys", "lbl_edition"); 1702 1703 dispinit(); 1704 1705 /* Read cluster configuration data. */ 1706 clconf_init(); 1707 1708 #if defined(__xpv) 1709 (void) ec_init(); 1710 gnttab_init(); 1711 (void) xs_early_init(); 1712 #endif /* __xpv */ 1713 1714 /* 1715 * Create a kernel device tree. First, create rootnex and 1716 * then invoke bus specific code to probe devices. 1717 */ 1718 setup_ddi(); 1719 1720 #ifdef __xpv 1721 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1722 #endif 1723 { 1724 id_t smid; 1725 smbios_system_t smsys; 1726 smbios_info_t sminfo; 1727 char *mfg; 1728 /* 1729 * Load the System Management BIOS into the global ksmbios 1730 * handle, if an SMBIOS is present on this system. 1731 * Also set "si-hw-provider" property, if not already set. 1732 */ 1733 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1734 if (ksmbios != NULL && 1735 ((smid = smbios_info_system(ksmbios, &smsys)) != SMB_ERR) && 1736 (smbios_info_common(ksmbios, smid, &sminfo)) != SMB_ERR) { 1737 mfg = (char *)sminfo.smbi_manufacturer; 1738 if (BOP_GETPROPLEN(bootops, "si-hw-provider") < 0) { 1739 extern char hw_provider[]; 1740 int i; 1741 for (i = 0; i < SYS_NMLN; i++) { 1742 if (isprint(mfg[i])) 1743 hw_provider[i] = mfg[i]; 1744 else { 1745 hw_provider[i] = '\0'; 1746 break; 1747 } 1748 } 1749 hw_provider[SYS_NMLN - 1] = '\0'; 1750 } 1751 } 1752 } 1753 1754 1755 /* 1756 * Originally clconf_init() apparently needed the hostid. But 1757 * this no longer appears to be true - it uses its own nodeid. 1758 * By placing the hostid logic here, we are able to make use of 1759 * the SMBIOS UUID. 1760 */ 1761 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) { 1762 cmn_err(CE_WARN, "Unable to set hostid"); 1763 } else { 1764 for (v = h, cnt = 0; cnt < 10; cnt++) { 1765 d[cnt] = (char)(v % 10); 1766 v /= 10; 1767 if (v == 0) 1768 break; 1769 } 1770 for (cp = hw_serial; cnt >= 0; cnt--) 1771 *cp++ = d[cnt] + '0'; 1772 *cp = 0; 1773 } 1774 1775 /* 1776 * Set up the CPU module subsystem for the boot cpu in the native 1777 * case, and all physical cpu resource in the xpv dom0 case. 1778 * Modifies the device tree, so this must be done after 1779 * setup_ddi(). 1780 */ 1781 #ifdef __xpv 1782 /* 1783 * If paravirtualized and on dom0 then we initialize all physical 1784 * cpu handles now; if paravirtualized on a domU then do not 1785 * initialize. 1786 */ 1787 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1788 xen_mc_lcpu_cookie_t cpi; 1789 1790 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1791 cpi = xen_physcpu_next(cpi)) { 1792 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1793 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1794 xen_physcpu_strandid(cpi))) != NULL && 1795 is_x86_feature(x86_featureset, X86FSET_MCA)) 1796 cmi_mca_init(hdl); 1797 } 1798 } 1799 #else 1800 /* 1801 * Initialize a handle for the boot cpu - others will initialize 1802 * as they startup. 1803 */ 1804 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1805 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) { 1806 if (is_x86_feature(x86_featureset, X86FSET_MCA)) 1807 cmi_mca_init(hdl); 1808 CPU->cpu_m.mcpu_cmi_hdl = hdl; 1809 } 1810 #endif /* __xpv */ 1811 1812 /* 1813 * Fake a prom tree such that /dev/openprom continues to work 1814 */ 1815 PRM_POINT("startup_modules: calling prom_setup..."); 1816 prom_setup(); 1817 PRM_POINT("startup_modules: done"); 1818 1819 /* 1820 * Load all platform specific modules 1821 */ 1822 PRM_POINT("startup_modules: calling psm_modload..."); 1823 psm_modload(); 1824 1825 PRM_POINT("startup_modules() done"); 1826 } 1827 1828 /* 1829 * claim a "setaside" boot page for use in the kernel 1830 */ 1831 page_t * 1832 boot_claim_page(pfn_t pfn) 1833 { 1834 page_t *pp; 1835 1836 pp = page_numtopp_nolock(pfn); 1837 ASSERT(pp != NULL); 1838 1839 if (PP_ISBOOTPAGES(pp)) { 1840 if (pp->p_next != NULL) 1841 pp->p_next->p_prev = pp->p_prev; 1842 if (pp->p_prev == NULL) 1843 bootpages = pp->p_next; 1844 else 1845 pp->p_prev->p_next = pp->p_next; 1846 } else { 1847 /* 1848 * htable_attach() expects a base pagesize page 1849 */ 1850 if (pp->p_szc != 0) 1851 page_boot_demote(pp); 1852 pp = page_numtopp(pfn, SE_EXCL); 1853 } 1854 return (pp); 1855 } 1856 1857 /* 1858 * Walk through the pagetables looking for pages mapped in by boot. If the 1859 * setaside flag is set the pages are expected to be returned to the 1860 * kernel later in boot, so we add them to the bootpages list. 1861 */ 1862 static void 1863 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1864 { 1865 uintptr_t va = low; 1866 size_t len; 1867 uint_t prot; 1868 pfn_t pfn; 1869 page_t *pp; 1870 pgcnt_t boot_protect_cnt = 0; 1871 1872 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1873 if (va + len >= high) 1874 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1875 "legal range.", len, (void *)va); 1876 1877 while (len > 0) { 1878 pp = page_numtopp_alloc(pfn); 1879 if (pp != NULL) { 1880 if (setaside == 0) 1881 panic("Unexpected mapping by boot. " 1882 "addr=%p pfn=%lx\n", 1883 (void *)va, pfn); 1884 1885 pp->p_next = bootpages; 1886 pp->p_prev = NULL; 1887 PP_SETBOOTPAGES(pp); 1888 if (bootpages != NULL) { 1889 bootpages->p_prev = pp; 1890 } 1891 bootpages = pp; 1892 ++boot_protect_cnt; 1893 } 1894 1895 ++pfn; 1896 len -= MMU_PAGESIZE; 1897 va += MMU_PAGESIZE; 1898 } 1899 } 1900 PRM_DEBUG(boot_protect_cnt); 1901 } 1902 1903 /* 1904 * 1905 */ 1906 static void 1907 layout_kernel_va(void) 1908 { 1909 PRM_POINT("layout_kernel_va() starting..."); 1910 /* 1911 * Establish the final size of the kernel's heap, size of segmap, 1912 * segkp, etc. 1913 */ 1914 1915 #if defined(__amd64) 1916 1917 kpm_vbase = (caddr_t)segkpm_base; 1918 if (physmax + 1 < plat_dr_physmax) { 1919 kpm_size = ROUND_UP_LPAGE(mmu_ptob(plat_dr_physmax)); 1920 } else { 1921 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1922 } 1923 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1924 panic("not enough room for kpm!"); 1925 PRM_DEBUG(kpm_size); 1926 PRM_DEBUG(kpm_vbase); 1927 1928 /* 1929 * By default we create a seg_kp in 64 bit kernels, it's a little 1930 * faster to access than embedding it in the heap. 1931 */ 1932 segkp_base = (caddr_t)valloc_base + valloc_sz; 1933 if (!segkp_fromheap) { 1934 size_t sz = mmu_ptob(segkpsize); 1935 1936 /* 1937 * determine size of segkp 1938 */ 1939 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1940 sz = SEGKPDEFSIZE; 1941 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1942 "segkpsize has been reset to %ld pages", 1943 mmu_btop(sz)); 1944 } 1945 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1946 1947 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1948 } 1949 PRM_DEBUG(segkp_base); 1950 PRM_DEBUG(segkpsize); 1951 1952 /* 1953 * segzio is used for ZFS cached data. It uses a distinct VA 1954 * segment (from kernel heap) so that we can easily tell not to 1955 * include it in kernel crash dumps on 64 bit kernels. The trick is 1956 * to give it lots of VA, but not constrain the kernel heap. 1957 * We can use 1.5x physmem for segzio, leaving approximately 1958 * another 1.5x physmem for heap. See also the comment in 1959 * startup_memlist(). 1960 */ 1961 segzio_base = segkp_base + mmu_ptob(segkpsize); 1962 if (segzio_fromheap) { 1963 segziosize = 0; 1964 } else { 1965 size_t physmem_size = mmu_ptob(physmem); 1966 size_t size = (segziosize == 0) ? 1967 physmem_size * 3 / 2 : mmu_ptob(segziosize); 1968 1969 if (size < SEGZIOMINSIZE) 1970 size = SEGZIOMINSIZE; 1971 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1972 } 1973 PRM_DEBUG(segziosize); 1974 PRM_DEBUG(segzio_base); 1975 1976 /* 1977 * Put the range of VA for device mappings next, kmdb knows to not 1978 * grep in this range of addresses. 1979 */ 1980 toxic_addr = 1981 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1982 PRM_DEBUG(toxic_addr); 1983 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1984 #else /* __i386 */ 1985 segmap_start = ROUND_UP_LPAGE(kernelbase); 1986 #endif /* __i386 */ 1987 PRM_DEBUG(segmap_start); 1988 1989 /* 1990 * Users can change segmapsize through eeprom. If the variable 1991 * is tuned through eeprom, there is no upper bound on the 1992 * size of segmap. 1993 */ 1994 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1995 1996 #if defined(__i386) 1997 /* 1998 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1999 * the bottom of the kernel's address range. Set aside space for a 2000 * small red zone just below the start of segmap. 2001 */ 2002 segmap_start += KERNEL_REDZONE_SIZE; 2003 segmapsize -= KERNEL_REDZONE_SIZE; 2004 #endif 2005 2006 PRM_DEBUG(segmap_start); 2007 PRM_DEBUG(segmapsize); 2008 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 2009 PRM_DEBUG(kernelheap); 2010 PRM_POINT("layout_kernel_va() done..."); 2011 } 2012 2013 /* 2014 * Finish initializing the VM system, now that we are no longer 2015 * relying on the boot time memory allocators. 2016 */ 2017 static void 2018 startup_vm(void) 2019 { 2020 struct segmap_crargs a; 2021 2022 extern int use_brk_lpg, use_stk_lpg; 2023 2024 PRM_POINT("startup_vm() starting..."); 2025 2026 /* 2027 * Initialize the hat layer. 2028 */ 2029 hat_init(); 2030 2031 /* 2032 * Do final allocations of HAT data structures that need to 2033 * be allocated before quiescing the boot loader. 2034 */ 2035 PRM_POINT("Calling hat_kern_alloc()..."); 2036 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 2037 PRM_POINT("hat_kern_alloc() done"); 2038 2039 #ifndef __xpv 2040 /* 2041 * Setup Page Attribute Table 2042 */ 2043 pat_sync(); 2044 #endif 2045 2046 /* 2047 * The next two loops are done in distinct steps in order 2048 * to be sure that any page that is doubly mapped (both above 2049 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 2050 * Note this may never happen, but it might someday. 2051 */ 2052 bootpages = NULL; 2053 PRM_POINT("Protecting boot pages"); 2054 2055 /* 2056 * Protect any pages mapped above KERNEL_TEXT that somehow have 2057 * page_t's. This can only happen if something weird allocated 2058 * in this range (like kadb/kmdb). 2059 */ 2060 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 2061 2062 /* 2063 * Before we can take over memory allocation/mapping from the boot 2064 * loader we must remove from our free page lists any boot allocated 2065 * pages that stay mapped until release_bootstrap(). 2066 */ 2067 protect_boot_range(0, kernelbase, 1); 2068 2069 2070 /* 2071 * Switch to running on regular HAT (not boot_mmu) 2072 */ 2073 PRM_POINT("Calling hat_kern_setup()..."); 2074 hat_kern_setup(); 2075 2076 /* 2077 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 2078 */ 2079 bop_no_more_mem(); 2080 2081 PRM_POINT("hat_kern_setup() done"); 2082 2083 hat_cpu_online(CPU); 2084 2085 /* 2086 * Initialize VM system 2087 */ 2088 PRM_POINT("Calling kvm_init()..."); 2089 kvm_init(); 2090 PRM_POINT("kvm_init() done"); 2091 2092 /* 2093 * Tell kmdb that the VM system is now working 2094 */ 2095 if (boothowto & RB_DEBUG) 2096 kdi_dvec_vmready(); 2097 2098 #if defined(__xpv) 2099 /* 2100 * Populate the I/O pool on domain 0 2101 */ 2102 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2103 extern long populate_io_pool(void); 2104 long init_io_pool_cnt; 2105 2106 PRM_POINT("Populating reserve I/O page pool"); 2107 init_io_pool_cnt = populate_io_pool(); 2108 PRM_DEBUG(init_io_pool_cnt); 2109 } 2110 #endif 2111 /* 2112 * Mangle the brand string etc. 2113 */ 2114 cpuid_pass3(CPU); 2115 2116 #if defined(__amd64) 2117 2118 /* 2119 * Create the device arena for toxic (to dtrace/kmdb) mappings. 2120 */ 2121 device_arena = vmem_create("device", (void *)toxic_addr, 2122 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 2123 2124 #else /* __i386 */ 2125 2126 /* 2127 * allocate the bit map that tracks toxic pages 2128 */ 2129 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 2130 PRM_DEBUG(toxic_bit_map_len); 2131 toxic_bit_map = 2132 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 2133 ASSERT(toxic_bit_map != NULL); 2134 PRM_DEBUG(toxic_bit_map); 2135 2136 #endif /* __i386 */ 2137 2138 2139 /* 2140 * Now that we've got more VA, as well as the ability to allocate from 2141 * it, tell the debugger. 2142 */ 2143 if (boothowto & RB_DEBUG) 2144 kdi_dvec_memavail(); 2145 2146 #if !defined(__xpv) 2147 /* 2148 * Map page pfn=0 for drivers, such as kd, that need to pick up 2149 * parameters left there by controllers/BIOS. 2150 */ 2151 PRM_POINT("setup up p0_va"); 2152 p0_va = i86devmap(0, 1, PROT_READ); 2153 PRM_DEBUG(p0_va); 2154 #endif 2155 2156 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 2157 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 2158 2159 /* 2160 * disable automatic large pages for small memory systems or 2161 * when the disable flag is set. 2162 * 2163 * Do not yet consider page sizes larger than 2m/4m. 2164 */ 2165 if (!auto_lpg_disable && mmu.max_page_level > 0) { 2166 max_uheap_lpsize = LEVEL_SIZE(1); 2167 max_ustack_lpsize = LEVEL_SIZE(1); 2168 max_privmap_lpsize = LEVEL_SIZE(1); 2169 max_uidata_lpsize = LEVEL_SIZE(1); 2170 max_utext_lpsize = LEVEL_SIZE(1); 2171 max_shm_lpsize = LEVEL_SIZE(1); 2172 } 2173 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 2174 auto_lpg_disable) { 2175 use_brk_lpg = 0; 2176 use_stk_lpg = 0; 2177 } 2178 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 2179 2180 PRM_POINT("Calling hat_init_finish()..."); 2181 hat_init_finish(); 2182 PRM_POINT("hat_init_finish() done"); 2183 2184 /* 2185 * Initialize the segkp segment type. 2186 */ 2187 rw_enter(&kas.a_lock, RW_WRITER); 2188 PRM_POINT("Attaching segkp"); 2189 if (segkp_fromheap) { 2190 segkp->s_as = &kas; 2191 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 2192 segkp) < 0) { 2193 panic("startup: cannot attach segkp"); 2194 /*NOTREACHED*/ 2195 } 2196 PRM_POINT("Doing segkp_create()"); 2197 if (segkp_create(segkp) != 0) { 2198 panic("startup: segkp_create failed"); 2199 /*NOTREACHED*/ 2200 } 2201 PRM_DEBUG(segkp); 2202 rw_exit(&kas.a_lock); 2203 2204 /* 2205 * kpm segment 2206 */ 2207 segmap_kpm = 0; 2208 if (kpm_desired) 2209 kpm_init(); 2210 2211 /* 2212 * Now create segmap segment. 2213 */ 2214 rw_enter(&kas.a_lock, RW_WRITER); 2215 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 2216 panic("cannot attach segmap"); 2217 /*NOTREACHED*/ 2218 } 2219 PRM_DEBUG(segmap); 2220 2221 a.prot = PROT_READ | PROT_WRITE; 2222 a.shmsize = 0; 2223 a.nfreelist = segmapfreelists; 2224 2225 if (segmap_create(segmap, (caddr_t)&a) != 0) 2226 panic("segmap_create segmap"); 2227 rw_exit(&kas.a_lock); 2228 2229 setup_vaddr_for_ppcopy(CPU); 2230 2231 segdev_init(); 2232 #if defined(__xpv) 2233 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2234 #endif 2235 pmem_init(); 2236 2237 PRM_POINT("startup_vm() done"); 2238 } 2239 2240 /* 2241 * Load a tod module for the non-standard tod part found on this system. 2242 */ 2243 static void 2244 load_tod_module(char *todmod) 2245 { 2246 if (modload("tod", todmod) == -1) 2247 halt("Can't load TOD module"); 2248 } 2249 2250 static void 2251 startup_end(void) 2252 { 2253 int i; 2254 extern void setx86isalist(void); 2255 extern void cpu_event_init(void); 2256 2257 PRM_POINT("startup_end() starting..."); 2258 2259 /* 2260 * Perform tasks that get done after most of the VM 2261 * initialization has been done but before the clock 2262 * and other devices get started. 2263 */ 2264 kern_setup1(); 2265 2266 /* 2267 * Perform CPC initialization for this CPU. 2268 */ 2269 kcpc_hw_init(CPU); 2270 2271 /* 2272 * Initialize cpu event framework. 2273 */ 2274 cpu_event_init(); 2275 2276 #if defined(OPTERON_WORKAROUND_6323525) 2277 if (opteron_workaround_6323525) 2278 patch_workaround_6323525(); 2279 #endif 2280 /* 2281 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2282 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2283 */ 2284 if (tod_module_name != NULL) { 2285 PRM_POINT("load_tod_module()"); 2286 load_tod_module(tod_module_name); 2287 } 2288 2289 #if defined(__xpv) 2290 /* 2291 * Forceload interposing TOD module for the hypervisor. 2292 */ 2293 PRM_POINT("load_tod_module()"); 2294 load_tod_module("xpvtod"); 2295 #endif 2296 2297 /* 2298 * Configure the system. 2299 */ 2300 PRM_POINT("Calling configure()..."); 2301 configure(); /* set up devices */ 2302 PRM_POINT("configure() done"); 2303 2304 /* 2305 * We can now setup for XSAVE because fpu_probe is done in configure(). 2306 */ 2307 if (fp_save_mech == FP_XSAVE) { 2308 xsave_setup_msr(CPU); 2309 } 2310 2311 /* 2312 * Set the isa_list string to the defined instruction sets we 2313 * support. 2314 */ 2315 setx86isalist(); 2316 cpu_intr_alloc(CPU, NINTR_THREADS); 2317 psm_install(); 2318 2319 /* 2320 * We're done with bootops. We don't unmap the bootstrap yet because 2321 * we're still using bootsvcs. 2322 */ 2323 PRM_POINT("NULLing out bootops"); 2324 *bootopsp = (struct bootops *)NULL; 2325 bootops = (struct bootops *)NULL; 2326 2327 #if defined(__xpv) 2328 ec_init_debug_irq(); 2329 xs_domu_init(); 2330 #endif 2331 2332 #if !defined(__xpv) 2333 /* 2334 * Intel IOMMU has been setup/initialized in ddi_impl.c 2335 * Start it up now. 2336 */ 2337 immu_startup(); 2338 2339 /* 2340 * Now that we're no longer going to drop into real mode for a BIOS call 2341 * via bootops, we can enable PCID (which requires CR0.PG). 2342 */ 2343 enable_pcid(); 2344 #endif 2345 2346 PRM_POINT("Enabling interrupts"); 2347 (*picinitf)(); 2348 sti(); 2349 #if defined(__xpv) 2350 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2351 xen_late_startup(); 2352 #endif 2353 2354 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2355 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2356 2357 /* 2358 * Register software interrupt handlers for ddi_periodic_add(9F). 2359 * Software interrupts up to the level 10 are supported. 2360 */ 2361 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2362 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2363 (avfunc)(uintptr_t)ddi_periodic_softintr, "ddi_periodic", 2364 (caddr_t)(uintptr_t)i, NULL); 2365 } 2366 2367 #if !defined(__xpv) 2368 if (modload("drv", "amd_iommu") < 0) { 2369 PRM_POINT("No AMD IOMMU present\n"); 2370 } else if (ddi_hold_installed_driver(ddi_name_to_major( 2371 "amd_iommu")) == NULL) { 2372 prom_printf("ERROR: failed to attach AMD IOMMU\n"); 2373 } 2374 #endif 2375 post_startup_cpu_fixups(); 2376 2377 PRM_POINT("startup_end() done"); 2378 } 2379 2380 /* 2381 * Don't remove the following 2 variables. They are necessary 2382 * for reading the hostid from the legacy file (/kernel/misc/sysinit). 2383 */ 2384 char *_hs1107 = hw_serial; 2385 ulong_t _bdhs34; 2386 2387 void 2388 post_startup(void) 2389 { 2390 extern void cpupm_init(cpu_t *); 2391 extern void cpu_event_init_cpu(cpu_t *); 2392 2393 /* 2394 * Set the system wide, processor-specific flags to be passed 2395 * to userland via the aux vector for performance hints and 2396 * instruction set extensions. 2397 */ 2398 bind_hwcap(); 2399 2400 #ifdef __xpv 2401 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2402 #endif 2403 { 2404 #if defined(__xpv) 2405 xpv_panic_init(); 2406 #else 2407 /* 2408 * Startup the memory scrubber. 2409 * XXPV This should be running somewhere .. 2410 */ 2411 if ((get_hwenv() & HW_VIRTUAL) == 0) 2412 memscrub_init(); 2413 #endif 2414 } 2415 2416 /* 2417 * Complete CPU module initialization 2418 */ 2419 cmi_post_startup(); 2420 2421 /* 2422 * Perform forceloading tasks for /etc/system. 2423 */ 2424 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2425 2426 /* 2427 * ON4.0: Force /proc module in until clock interrupt handle fixed 2428 * ON4.0: This must be fixed or restated in /etc/systems. 2429 */ 2430 (void) modload("fs", "procfs"); 2431 2432 (void) i_ddi_attach_hw_nodes("pit_beep"); 2433 2434 #if defined(__i386) 2435 /* 2436 * Check for required functional Floating Point hardware, 2437 * unless FP hardware explicitly disabled. 2438 */ 2439 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2440 halt("No working FP hardware found"); 2441 #endif 2442 2443 maxmem = freemem; 2444 2445 cpu_event_init_cpu(CPU); 2446 cpupm_init(CPU); 2447 (void) mach_cpu_create_device_node(CPU, NULL); 2448 2449 pg_init(); 2450 } 2451 2452 static int 2453 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) 2454 { 2455 return ((pp->p_pagenum >= btop(low_addr)) && 2456 (pp->p_pagenum < btopr(high_addr))); 2457 } 2458 2459 static int 2460 pp_in_module(page_t *pp, const rd_existing_t *modranges) 2461 { 2462 uint_t i; 2463 2464 for (i = 0; modranges[i].phys != 0; i++) { 2465 if (pp_in_range(pp, modranges[i].phys, 2466 modranges[i].phys + modranges[i].size)) 2467 return (1); 2468 } 2469 2470 return (0); 2471 } 2472 2473 void 2474 release_bootstrap(void) 2475 { 2476 int root_is_ramdisk; 2477 page_t *pp; 2478 extern void kobj_boot_unmountroot(void); 2479 extern dev_t rootdev; 2480 uint_t i; 2481 char propname[32]; 2482 rd_existing_t *modranges; 2483 #if !defined(__xpv) 2484 pfn_t pfn; 2485 #endif 2486 2487 /* 2488 * Save the bootfs module ranges so that we can reserve them below 2489 * for the real bootfs. 2490 */ 2491 modranges = kmem_alloc(sizeof (rd_existing_t) * MAX_BOOT_MODULES, 2492 KM_SLEEP); 2493 for (i = 0; ; i++) { 2494 uint64_t start, size; 2495 2496 modranges[i].phys = 0; 2497 2498 (void) snprintf(propname, sizeof (propname), 2499 "module-addr-%u", i); 2500 if (do_bsys_getproplen(NULL, propname) <= 0) 2501 break; 2502 (void) do_bsys_getprop(NULL, propname, &start); 2503 2504 (void) snprintf(propname, sizeof (propname), 2505 "module-size-%u", i); 2506 if (do_bsys_getproplen(NULL, propname) <= 0) 2507 break; 2508 (void) do_bsys_getprop(NULL, propname, &size); 2509 2510 modranges[i].phys = start; 2511 modranges[i].size = size; 2512 } 2513 2514 /* unmount boot ramdisk and release kmem usage */ 2515 kobj_boot_unmountroot(); 2516 2517 /* 2518 * We're finished using the boot loader so free its pages. 2519 */ 2520 PRM_POINT("Unmapping lower boot pages"); 2521 2522 clear_boot_mappings(0, _userlimit); 2523 2524 postbootkernelbase = kernelbase; 2525 2526 /* 2527 * If root isn't on ramdisk, destroy the hardcoded 2528 * ramdisk node now and release the memory. Else, 2529 * ramdisk memory is kept in rd_pages. 2530 */ 2531 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2532 if (!root_is_ramdisk) { 2533 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2534 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2535 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2536 (void) ddi_remove_child(dip, 0); 2537 } 2538 2539 PRM_POINT("Releasing boot pages"); 2540 while (bootpages) { 2541 extern uint64_t ramdisk_start, ramdisk_end; 2542 pp = bootpages; 2543 bootpages = pp->p_next; 2544 2545 2546 /* Keep pages for the lower 64K */ 2547 if (pp_in_range(pp, 0, 0x40000)) { 2548 pp->p_next = lower_pages; 2549 lower_pages = pp; 2550 lower_pages_count++; 2551 continue; 2552 } 2553 2554 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start, 2555 ramdisk_end) || pp_in_module(pp, modranges)) { 2556 pp->p_next = rd_pages; 2557 rd_pages = pp; 2558 continue; 2559 } 2560 pp->p_next = (struct page *)0; 2561 pp->p_prev = (struct page *)0; 2562 PP_CLRBOOTPAGES(pp); 2563 page_free(pp, 1); 2564 } 2565 PRM_POINT("Boot pages released"); 2566 2567 kmem_free(modranges, sizeof (rd_existing_t) * 99); 2568 2569 #if !defined(__xpv) 2570 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2571 /* 2572 * Find 1 page below 1 MB so that other processors can boot up or 2573 * so that any processor can resume. 2574 * Make sure it has a kernel VA as well as a 1:1 mapping. 2575 * We should have just free'd one up. 2576 */ 2577 2578 /* 2579 * 0x10 pages is 64K. Leave the bottom 64K alone 2580 * for BIOS. 2581 */ 2582 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { 2583 if (page_numtopp_alloc(pfn) == NULL) 2584 continue; 2585 rm_platter_va = i86devmap(pfn, 1, 2586 PROT_READ | PROT_WRITE | PROT_EXEC); 2587 rm_platter_pa = ptob(pfn); 2588 break; 2589 } 2590 if (pfn == btop(1*1024*1024) && use_mp) 2591 panic("No page below 1M available for starting " 2592 "other processors or for resuming from system-suspend"); 2593 #endif /* !__xpv */ 2594 } 2595 2596 /* 2597 * Initialize the platform-specific parts of a page_t. 2598 */ 2599 void 2600 add_physmem_cb(page_t *pp, pfn_t pnum) 2601 { 2602 pp->p_pagenum = pnum; 2603 pp->p_mapping = NULL; 2604 pp->p_embed = 0; 2605 pp->p_share = 0; 2606 pp->p_mlentry = 0; 2607 } 2608 2609 /* 2610 * kphysm_init() initializes physical memory. 2611 */ 2612 static pgcnt_t 2613 kphysm_init(page_t *pp, pgcnt_t npages) 2614 { 2615 struct memlist *pmem; 2616 struct memseg *cur_memseg; 2617 pfn_t base_pfn; 2618 pfn_t end_pfn; 2619 pgcnt_t num; 2620 pgcnt_t pages_done = 0; 2621 uint64_t addr; 2622 uint64_t size; 2623 extern pfn_t ddiphysmin; 2624 extern int mnode_xwa; 2625 int ms = 0, me = 0; 2626 2627 ASSERT(page_hash != NULL && page_hashsz != 0); 2628 2629 cur_memseg = memseg_base; 2630 for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) { 2631 /* 2632 * In a 32 bit kernel can't use higher memory if we're 2633 * not booting in PAE mode. This check takes care of that. 2634 */ 2635 addr = pmem->ml_address; 2636 size = pmem->ml_size; 2637 if (btop(addr) > physmax) 2638 continue; 2639 2640 /* 2641 * align addr and size - they may not be at page boundaries 2642 */ 2643 if ((addr & MMU_PAGEOFFSET) != 0) { 2644 addr += MMU_PAGEOFFSET; 2645 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2646 size -= addr - pmem->ml_address; 2647 } 2648 2649 /* only process pages below or equal to physmax */ 2650 if ((btop(addr + size) - 1) > physmax) 2651 size = ptob(physmax - btop(addr) + 1); 2652 2653 num = btop(size); 2654 if (num == 0) 2655 continue; 2656 2657 if (num > npages) 2658 num = npages; 2659 2660 npages -= num; 2661 pages_done += num; 2662 base_pfn = btop(addr); 2663 2664 if (prom_debug) 2665 prom_printf("MEMSEG addr=0x%" PRIx64 2666 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2667 addr, num, base_pfn, base_pfn + num); 2668 2669 /* 2670 * Ignore pages below ddiphysmin to simplify ddi memory 2671 * allocation with non-zero addr_lo requests. 2672 */ 2673 if (base_pfn < ddiphysmin) { 2674 if (base_pfn + num <= ddiphysmin) 2675 continue; 2676 pp += (ddiphysmin - base_pfn); 2677 num -= (ddiphysmin - base_pfn); 2678 base_pfn = ddiphysmin; 2679 } 2680 2681 /* 2682 * mnode_xwa is greater than 1 when large pages regions can 2683 * cross memory node boundaries. To prevent the formation 2684 * of these large pages, configure the memsegs based on the 2685 * memory node ranges which had been made non-contiguous. 2686 */ 2687 end_pfn = base_pfn + num - 1; 2688 if (mnode_xwa > 1) { 2689 ms = PFN_2_MEM_NODE(base_pfn); 2690 me = PFN_2_MEM_NODE(end_pfn); 2691 2692 if (ms != me) { 2693 /* 2694 * current range spans more than 1 memory node. 2695 * Set num to only the pfn range in the start 2696 * memory node. 2697 */ 2698 num = mem_node_config[ms].physmax - base_pfn 2699 + 1; 2700 ASSERT(end_pfn > mem_node_config[ms].physmax); 2701 } 2702 } 2703 2704 for (;;) { 2705 /* 2706 * Build the memsegs entry 2707 */ 2708 cur_memseg->pages = pp; 2709 cur_memseg->epages = pp + num; 2710 cur_memseg->pages_base = base_pfn; 2711 cur_memseg->pages_end = base_pfn + num; 2712 2713 /* 2714 * Insert into memseg list in decreasing pfn range 2715 * order. Low memory is typically more fragmented such 2716 * that this ordering keeps the larger ranges at the 2717 * front of the list for code that searches memseg. 2718 * This ASSERTS that the memsegs coming in from boot 2719 * are in increasing physical address order and not 2720 * contiguous. 2721 */ 2722 if (memsegs != NULL) { 2723 ASSERT(cur_memseg->pages_base >= 2724 memsegs->pages_end); 2725 cur_memseg->next = memsegs; 2726 } 2727 memsegs = cur_memseg; 2728 2729 /* 2730 * add_physmem() initializes the PSM part of the page 2731 * struct by calling the PSM back with add_physmem_cb(). 2732 * In addition it coalesces pages into larger pages as 2733 * it initializes them. 2734 */ 2735 add_physmem(pp, num, base_pfn); 2736 cur_memseg++; 2737 availrmem_initial += num; 2738 availrmem += num; 2739 2740 pp += num; 2741 if (ms >= me) 2742 break; 2743 2744 /* process next memory node range */ 2745 ms++; 2746 base_pfn = mem_node_config[ms].physbase; 2747 2748 if (mnode_xwa > 1) { 2749 num = MIN(mem_node_config[ms].physmax, 2750 end_pfn) - base_pfn + 1; 2751 } else { 2752 num = mem_node_config[ms].physmax - 2753 base_pfn + 1; 2754 } 2755 } 2756 } 2757 2758 PRM_DEBUG(availrmem_initial); 2759 PRM_DEBUG(availrmem); 2760 PRM_DEBUG(freemem); 2761 build_pfn_hash(); 2762 return (pages_done); 2763 } 2764 2765 /* 2766 * Kernel VM initialization. 2767 */ 2768 static void 2769 kvm_init(void) 2770 { 2771 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2772 2773 /* 2774 * Put the kernel segments in kernel address space. 2775 */ 2776 rw_enter(&kas.a_lock, RW_WRITER); 2777 as_avlinit(&kas); 2778 2779 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2780 (void) segkmem_create(&ktextseg); 2781 2782 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2783 (void) segkmem_create(&kvalloc); 2784 2785 (void) seg_attach(&kas, kernelheap, 2786 ekernelheap - kernelheap, &kvseg); 2787 (void) segkmem_create(&kvseg); 2788 2789 if (core_size > 0) { 2790 PRM_POINT("attaching kvseg_core"); 2791 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2792 &kvseg_core); 2793 (void) segkmem_create(&kvseg_core); 2794 } 2795 2796 if (segziosize > 0) { 2797 PRM_POINT("attaching segzio"); 2798 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2799 &kzioseg); 2800 (void) segkmem_zio_create(&kzioseg); 2801 2802 /* create zio area covering new segment */ 2803 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2804 } 2805 2806 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2807 (void) segkmem_create(&kdebugseg); 2808 2809 rw_exit(&kas.a_lock); 2810 2811 /* 2812 * Ensure that the red zone at kernelbase is never accessible. 2813 */ 2814 PRM_POINT("protecting redzone"); 2815 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2816 2817 /* 2818 * Make the text writable so that it can be hot patched by DTrace. 2819 */ 2820 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2821 PROT_READ | PROT_WRITE | PROT_EXEC); 2822 2823 /* 2824 * Make data writable until end. 2825 */ 2826 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2827 PROT_READ | PROT_WRITE | PROT_EXEC); 2828 } 2829 2830 #ifndef __xpv 2831 /* 2832 * Solaris adds an entry for Write Combining caching to the PAT 2833 */ 2834 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2835 2836 void 2837 pat_sync(void) 2838 { 2839 ulong_t cr0, cr0_orig, cr4; 2840 2841 if (!is_x86_feature(x86_featureset, X86FSET_PAT)) 2842 return; 2843 cr0_orig = cr0 = getcr0(); 2844 cr4 = getcr4(); 2845 2846 /* disable caching and flush all caches and TLBs */ 2847 cr0 |= CR0_CD; 2848 cr0 &= ~CR0_NW; 2849 setcr0(cr0); 2850 invalidate_cache(); 2851 if (cr4 & CR4_PGE) { 2852 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2853 setcr4(cr4); 2854 } else { 2855 reload_cr3(); 2856 } 2857 2858 /* add our entry to the PAT */ 2859 wrmsr(REG_PAT, pat_attr_reg); 2860 2861 /* flush TLBs and cache again, then reenable cr0 caching */ 2862 if (cr4 & CR4_PGE) { 2863 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2864 setcr4(cr4); 2865 } else { 2866 reload_cr3(); 2867 } 2868 invalidate_cache(); 2869 setcr0(cr0_orig); 2870 } 2871 2872 #endif /* !__xpv */ 2873 2874 #if defined(_SOFT_HOSTID) 2875 /* 2876 * On platforms that do not have a hardware serial number, attempt 2877 * to set one based on the contents of /etc/hostid. If this file does 2878 * not exist, assume that we are to generate a new hostid and set 2879 * it in the kernel, for subsequent saving by a userland process 2880 * once the system is up and the root filesystem is mounted r/w. 2881 * 2882 * In order to gracefully support upgrade on OpenSolaris, if 2883 * /etc/hostid does not exist, we will attempt to get a serial number 2884 * using the legacy method (/kernel/misc/sysinit). 2885 * 2886 * If that isn't present, we attempt to use an SMBIOS UUID, which is 2887 * a hardware serial number. Note that we don't automatically trust 2888 * all SMBIOS UUIDs (some older platforms are defective and ship duplicate 2889 * UUIDs in violation of the standard), we check against a blacklist. 2890 * 2891 * In an attempt to make the hostid less prone to abuse 2892 * (for license circumvention, etc), we store it in /etc/hostid 2893 * in rot47 format. 2894 */ 2895 extern volatile unsigned long tenmicrodata; 2896 static int atoi(char *); 2897 2898 /* 2899 * Set this to non-zero in /etc/system if you think your SMBIOS returns a 2900 * UUID that is not unique. (Also report it so that the smbios_uuid_blacklist 2901 * array can be updated.) 2902 */ 2903 int smbios_broken_uuid = 0; 2904 2905 /* 2906 * List of known bad UUIDs. This is just the lower 32-bit values, since 2907 * that's what we use for the host id. If your hostid falls here, you need 2908 * to contact your hardware OEM for a fix for your BIOS. 2909 */ 2910 static unsigned char 2911 smbios_uuid_blacklist[][16] = { 2912 2913 { /* Reported bad UUID (Google search) */ 2914 0x00, 0x02, 0x00, 0x03, 0x00, 0x04, 0x00, 0x05, 2915 0x00, 0x06, 0x00, 0x07, 0x00, 0x08, 0x00, 0x09, 2916 }, 2917 { /* Known bad DELL UUID */ 2918 0x4C, 0x4C, 0x45, 0x44, 0x00, 0x00, 0x20, 0x10, 2919 0x80, 0x20, 0x80, 0xC0, 0x4F, 0x20, 0x20, 0x20, 2920 }, 2921 { /* Uninitialized flash */ 2922 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 2923 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 2924 }, 2925 { /* All zeros */ 2926 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 2927 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 2928 }, 2929 }; 2930 2931 static int32_t 2932 uuid_to_hostid(const uint8_t *uuid) 2933 { 2934 /* 2935 * Although the UUIDs are 128-bits, they may not distribute entropy 2936 * evenly. We would like to use SHA or MD5, but those are located 2937 * in loadable modules and not available this early in boot. As we 2938 * don't need the values to be cryptographically strong, we just 2939 * generate 32-bit vaue by xor'ing the various sequences together, 2940 * which ensures that the entire UUID contributes to the hostid. 2941 */ 2942 uint32_t id = 0; 2943 2944 /* first check against the blacklist */ 2945 for (int i = 0; i < (sizeof (smbios_uuid_blacklist) / 16); i++) { 2946 if (bcmp(smbios_uuid_blacklist[0], uuid, 16) == 0) { 2947 cmn_err(CE_CONT, "?Broken SMBIOS UUID. " 2948 "Contact BIOS manufacturer for repair.\n"); 2949 return ((int32_t)HW_INVALID_HOSTID); 2950 } 2951 } 2952 2953 for (int i = 0; i < 16; i++) 2954 id ^= ((uuid[i]) << (8 * (i % sizeof (id)))); 2955 2956 /* Make sure return value is positive */ 2957 return (id & 0x7fffffff); 2958 } 2959 2960 static int32_t 2961 set_soft_hostid(void) 2962 { 2963 struct _buf *file; 2964 char tokbuf[MAXNAMELEN]; 2965 token_t token; 2966 int done = 0; 2967 u_longlong_t tmp; 2968 int i; 2969 int32_t hostid = (int32_t)HW_INVALID_HOSTID; 2970 unsigned char *c; 2971 hrtime_t tsc; 2972 smbios_system_t smsys; 2973 2974 /* 2975 * If /etc/hostid file not found, we'd like to get a pseudo 2976 * random number to use at the hostid. A nice way to do this 2977 * is to read the real time clock. To remain xen-compatible, 2978 * we can't poke the real hardware, so we use tsc_read() to 2979 * read the real time clock. However, there is an ominous 2980 * warning in tsc_read that says it can return zero, so we 2981 * deal with that possibility by falling back to using the 2982 * (hopefully random enough) value in tenmicrodata. 2983 */ 2984 2985 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) { 2986 /* 2987 * hostid file not found - try to load sysinit module 2988 * and see if it has a nonzero hostid value...use that 2989 * instead of generating a new hostid here if so. 2990 */ 2991 if ((i = modload("misc", "sysinit")) != -1) { 2992 if (strlen(hw_serial) > 0) 2993 hostid = (int32_t)atoi(hw_serial); 2994 (void) modunload(i); 2995 } 2996 2997 /* 2998 * We try to use the SMBIOS UUID. But not if it is blacklisted 2999 * in /etc/system. 3000 */ 3001 if ((hostid == HW_INVALID_HOSTID) && 3002 (smbios_broken_uuid == 0) && 3003 (ksmbios != NULL) && 3004 (smbios_info_system(ksmbios, &smsys) != SMB_ERR) && 3005 (smsys.smbs_uuidlen >= 16)) { 3006 hostid = uuid_to_hostid(smsys.smbs_uuid); 3007 } 3008 3009 /* 3010 * Generate a "random" hostid using the clock. These 3011 * hostids will change on each boot if the value is not 3012 * saved to a persistent /etc/hostid file. 3013 */ 3014 if (hostid == HW_INVALID_HOSTID) { 3015 tsc = tsc_read(); 3016 if (tsc == 0) /* tsc_read can return zero sometimes */ 3017 hostid = (int32_t)tenmicrodata & 0x0CFFFFF; 3018 else 3019 hostid = (int32_t)tsc & 0x0CFFFFF; 3020 } 3021 } else { 3022 /* hostid file found */ 3023 while (!done) { 3024 token = kobj_lex(file, tokbuf, sizeof (tokbuf)); 3025 3026 switch (token) { 3027 case POUND: 3028 /* 3029 * skip comments 3030 */ 3031 kobj_find_eol(file); 3032 break; 3033 case STRING: 3034 /* 3035 * un-rot47 - obviously this 3036 * nonsense is ascii-specific 3037 */ 3038 for (c = (unsigned char *)tokbuf; 3039 *c != '\0'; c++) { 3040 *c += 47; 3041 if (*c > '~') 3042 *c -= 94; 3043 else if (*c < '!') 3044 *c += 94; 3045 } 3046 /* 3047 * now we should have a real number 3048 */ 3049 3050 if (kobj_getvalue(tokbuf, &tmp) != 0) 3051 kobj_file_err(CE_WARN, file, 3052 "Bad value %s for hostid", 3053 tokbuf); 3054 else 3055 hostid = (int32_t)tmp; 3056 3057 break; 3058 case EOF: 3059 done = 1; 3060 /* FALLTHROUGH */ 3061 case NEWLINE: 3062 kobj_newline(file); 3063 break; 3064 default: 3065 break; 3066 3067 } 3068 } 3069 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */ 3070 kobj_file_err(CE_WARN, file, 3071 "hostid missing or corrupt"); 3072 3073 kobj_close_file(file); 3074 } 3075 /* 3076 * hostid is now the value read from /etc/hostid, or the 3077 * new hostid we generated in this routine or HW_INVALID_HOSTID if not 3078 * set. 3079 */ 3080 return (hostid); 3081 } 3082 3083 static int 3084 atoi(char *p) 3085 { 3086 int i = 0; 3087 3088 while (*p != '\0') 3089 i = 10 * i + (*p++ - '0'); 3090 3091 return (i); 3092 } 3093 3094 #endif /* _SOFT_HOSTID */ 3095 3096 void 3097 get_system_configuration(void) 3098 { 3099 char prop[32]; 3100 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 3101 3102 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 3103 BOP_GETPROP(bootops, "nodes", prop) < 0 || 3104 kobj_getvalue(prop, &nodes_ll) == -1 || 3105 nodes_ll > MAXNODES || 3106 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 3107 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 3108 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 3109 system_hardware.hd_nodes = 1; 3110 system_hardware.hd_cpus_per_node = 0; 3111 } else { 3112 system_hardware.hd_nodes = (int)nodes_ll; 3113 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 3114 } 3115 3116 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 3117 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 3118 kobj_getvalue(prop, &lvalue) == -1) 3119 eprom_kernelbase = 0; 3120 else 3121 eprom_kernelbase = (uintptr_t)lvalue; 3122 3123 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 3124 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 3125 kobj_getvalue(prop, &lvalue) == -1) 3126 segmapsize = SEGMAPDEFAULT; 3127 else 3128 segmapsize = (uintptr_t)lvalue; 3129 3130 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 3131 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 3132 kobj_getvalue(prop, &lvalue) == -1) 3133 segmapfreelists = 0; /* use segmap driver default */ 3134 else 3135 segmapfreelists = (int)lvalue; 3136 3137 /* physmem used to be here, but moved much earlier to fakebop.c */ 3138 } 3139 3140 /* 3141 * Add to a memory list. 3142 * start = start of new memory segment 3143 * len = length of new memory segment in bytes 3144 * new = pointer to a new struct memlist 3145 * memlistp = memory list to which to add segment. 3146 */ 3147 void 3148 memlist_add( 3149 uint64_t start, 3150 uint64_t len, 3151 struct memlist *new, 3152 struct memlist **memlistp) 3153 { 3154 struct memlist *cur; 3155 uint64_t end = start + len; 3156 3157 new->ml_address = start; 3158 new->ml_size = len; 3159 3160 cur = *memlistp; 3161 3162 while (cur) { 3163 if (cur->ml_address >= end) { 3164 new->ml_next = cur; 3165 *memlistp = new; 3166 new->ml_prev = cur->ml_prev; 3167 cur->ml_prev = new; 3168 return; 3169 } 3170 ASSERT(cur->ml_address + cur->ml_size <= start); 3171 if (cur->ml_next == NULL) { 3172 cur->ml_next = new; 3173 new->ml_prev = cur; 3174 new->ml_next = NULL; 3175 return; 3176 } 3177 memlistp = &cur->ml_next; 3178 cur = cur->ml_next; 3179 } 3180 } 3181 3182 void 3183 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 3184 { 3185 size_t tsize = e_modtext - modtext; 3186 size_t dsize = e_moddata - moddata; 3187 3188 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 3189 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 3190 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 3191 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 3192 } 3193 3194 caddr_t 3195 kobj_text_alloc(vmem_t *arena, size_t size) 3196 { 3197 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 3198 } 3199 3200 /*ARGSUSED*/ 3201 caddr_t 3202 kobj_texthole_alloc(caddr_t addr, size_t size) 3203 { 3204 panic("unexpected call to kobj_texthole_alloc()"); 3205 /*NOTREACHED*/ 3206 return (0); 3207 } 3208 3209 /*ARGSUSED*/ 3210 void 3211 kobj_texthole_free(caddr_t addr, size_t size) 3212 { 3213 panic("unexpected call to kobj_texthole_free()"); 3214 } 3215 3216 /* 3217 * This is called just after configure() in startup(). 3218 * 3219 * The ISALIST concept is a bit hopeless on Intel, because 3220 * there's no guarantee of an ever-more-capable processor 3221 * given that various parts of the instruction set may appear 3222 * and disappear between different implementations. 3223 * 3224 * While it would be possible to correct it and even enhance 3225 * it somewhat, the explicit hardware capability bitmask allows 3226 * more flexibility. 3227 * 3228 * So, we just leave this alone. 3229 */ 3230 void 3231 setx86isalist(void) 3232 { 3233 char *tp; 3234 size_t len; 3235 extern char *isa_list; 3236 3237 #define TBUFSIZE 1024 3238 3239 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 3240 *tp = '\0'; 3241 3242 #if defined(__amd64) 3243 (void) strcpy(tp, "amd64 "); 3244 #endif 3245 3246 switch (x86_vendor) { 3247 case X86_VENDOR_Intel: 3248 case X86_VENDOR_AMD: 3249 case X86_VENDOR_TM: 3250 if (is_x86_feature(x86_featureset, X86FSET_CMOV)) { 3251 /* 3252 * Pentium Pro or later 3253 */ 3254 (void) strcat(tp, "pentium_pro"); 3255 (void) strcat(tp, 3256 is_x86_feature(x86_featureset, X86FSET_MMX) ? 3257 "+mmx pentium_pro " : " "); 3258 } 3259 /*FALLTHROUGH*/ 3260 case X86_VENDOR_Cyrix: 3261 /* 3262 * The Cyrix 6x86 does not have any Pentium features 3263 * accessible while not at privilege level 0. 3264 */ 3265 if (is_x86_feature(x86_featureset, X86FSET_CPUID)) { 3266 (void) strcat(tp, "pentium"); 3267 (void) strcat(tp, 3268 is_x86_feature(x86_featureset, X86FSET_MMX) ? 3269 "+mmx pentium " : " "); 3270 } 3271 break; 3272 default: 3273 break; 3274 } 3275 (void) strcat(tp, "i486 i386 i86"); 3276 len = strlen(tp) + 1; /* account for NULL at end of string */ 3277 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 3278 kmem_free(tp, TBUFSIZE); 3279 3280 #undef TBUFSIZE 3281 } 3282 3283 3284 #ifdef __amd64 3285 3286 void * 3287 device_arena_alloc(size_t size, int vm_flag) 3288 { 3289 return (vmem_alloc(device_arena, size, vm_flag)); 3290 } 3291 3292 void 3293 device_arena_free(void *vaddr, size_t size) 3294 { 3295 vmem_free(device_arena, vaddr, size); 3296 } 3297 3298 #else /* __i386 */ 3299 3300 void * 3301 device_arena_alloc(size_t size, int vm_flag) 3302 { 3303 caddr_t vaddr; 3304 uintptr_t v; 3305 size_t start; 3306 size_t end; 3307 3308 vaddr = vmem_alloc(heap_arena, size, vm_flag); 3309 if (vaddr == NULL) 3310 return (NULL); 3311 3312 v = (uintptr_t)vaddr; 3313 ASSERT(v >= kernelbase); 3314 ASSERT(v + size <= valloc_base); 3315 3316 start = btop(v - kernelbase); 3317 end = btop(v + size - 1 - kernelbase); 3318 ASSERT(start < toxic_bit_map_len); 3319 ASSERT(end < toxic_bit_map_len); 3320 3321 while (start <= end) { 3322 BT_ATOMIC_SET(toxic_bit_map, start); 3323 ++start; 3324 } 3325 return (vaddr); 3326 } 3327 3328 void 3329 device_arena_free(void *vaddr, size_t size) 3330 { 3331 uintptr_t v = (uintptr_t)vaddr; 3332 size_t start; 3333 size_t end; 3334 3335 ASSERT(v >= kernelbase); 3336 ASSERT(v + size <= valloc_base); 3337 3338 start = btop(v - kernelbase); 3339 end = btop(v + size - 1 - kernelbase); 3340 ASSERT(start < toxic_bit_map_len); 3341 ASSERT(end < toxic_bit_map_len); 3342 3343 while (start <= end) { 3344 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 3345 BT_ATOMIC_CLEAR(toxic_bit_map, start); 3346 ++start; 3347 } 3348 vmem_free(heap_arena, vaddr, size); 3349 } 3350 3351 /* 3352 * returns 1st address in range that is in device arena, or NULL 3353 * if len is not NULL it returns the length of the toxic range 3354 */ 3355 void * 3356 device_arena_contains(void *vaddr, size_t size, size_t *len) 3357 { 3358 uintptr_t v = (uintptr_t)vaddr; 3359 uintptr_t eaddr = v + size; 3360 size_t start; 3361 size_t end; 3362 3363 /* 3364 * if called very early by kmdb, just return NULL 3365 */ 3366 if (toxic_bit_map == NULL) 3367 return (NULL); 3368 3369 /* 3370 * First check if we're completely outside the bitmap range. 3371 */ 3372 if (v >= valloc_base || eaddr < kernelbase) 3373 return (NULL); 3374 3375 /* 3376 * Trim ends of search to look at only what the bitmap covers. 3377 */ 3378 if (v < kernelbase) 3379 v = kernelbase; 3380 start = btop(v - kernelbase); 3381 end = btop(eaddr - kernelbase); 3382 if (end >= toxic_bit_map_len) 3383 end = toxic_bit_map_len; 3384 3385 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 3386 return (NULL); 3387 3388 v = kernelbase + ptob(start); 3389 if (len != NULL) 3390 *len = ptob(end - start); 3391 return ((void *)v); 3392 } 3393 3394 #endif /* __i386 */