1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright 2011 Bayard G. Bell <buffer.g.overflow@gmail.com>. 27 * All rights reserved. Use is subject to license terms. 28 * Copyright 2020 Joyent, Inc. 29 */ 30 31 /* 32 * Kernel's linker/loader 33 */ 34 35 #include <sys/types.h> 36 #include <sys/param.h> 37 #include <sys/sysmacros.h> 38 #include <sys/systm.h> 39 #include <sys/user.h> 40 #include <sys/kmem.h> 41 #include <sys/reboot.h> 42 #include <sys/bootconf.h> 43 #include <sys/debug.h> 44 #include <sys/uio.h> 45 #include <sys/file.h> 46 #include <sys/vnode.h> 47 #include <sys/user.h> 48 #include <sys/mman.h> 49 #include <vm/as.h> 50 #include <vm/seg_kp.h> 51 #include <vm/seg_kmem.h> 52 #include <sys/elf.h> 53 #include <sys/elf_notes.h> 54 #include <sys/vmsystm.h> 55 #include <sys/kdi.h> 56 #include <sys/atomic.h> 57 #include <sys/kmdb.h> 58 59 #include <sys/link.h> 60 #include <sys/kobj.h> 61 #include <sys/ksyms.h> 62 #include <sys/disp.h> 63 #include <sys/modctl.h> 64 #include <sys/varargs.h> 65 #include <sys/kstat.h> 66 #include <sys/kobj_impl.h> 67 #include <sys/fs/decomp.h> 68 #include <sys/callb.h> 69 #include <sys/cmn_err.h> 70 #include <sys/tnf_probe.h> 71 #include <sys/zmod.h> 72 73 #include <krtld/reloc.h> 74 #include <krtld/kobj_kdi.h> 75 #include <sys/sha1.h> 76 #include <sys/crypto/elfsign.h> 77 78 #if !defined(_OBP) 79 #include <sys/bootvfs.h> 80 #endif 81 82 /* 83 * do_symbols() error codes 84 */ 85 #define DOSYM_UNDEF -1 /* undefined symbol */ 86 #define DOSYM_UNSAFE -2 /* MT-unsafe driver symbol */ 87 88 #if !defined(_OBP) 89 static void synthetic_bootaux(char *, val_t *); 90 #endif 91 92 static struct module *load_exec(val_t *, char *); 93 static void load_linker(val_t *); 94 static struct modctl *add_primary(const char *filename, int); 95 static int bind_primary(val_t *, int); 96 static int load_primary(struct module *, int); 97 static int load_kmdb(val_t *); 98 static int get_progbits(struct module *, struct _buf *); 99 static int get_syms(struct module *, struct _buf *); 100 static int get_ctf(struct module *, struct _buf *); 101 static void get_signature(struct module *, struct _buf *); 102 static int do_common(struct module *); 103 static void add_dependent(struct module *, struct module *); 104 static int do_dependents(struct modctl *, char *, size_t); 105 static int do_symbols(struct module *, Elf64_Addr); 106 static void module_assign(struct modctl *, struct module *); 107 static void free_module_data(struct module *); 108 static char *depends_on(struct module *); 109 static char *getmodpath(const char *); 110 static char *basename(char *); 111 static void attr_val(val_t *); 112 static char *find_libmacro(char *); 113 static char *expand_libmacro(char *, char *, char *); 114 static int read_bootflags(void); 115 static int kobj_comp_setup(struct _buf *, struct compinfo *); 116 static int kobj_uncomp_blk(struct _buf *, caddr_t, uint_t); 117 static int kobj_read_blks(struct _buf *, caddr_t, uint_t, uint_t); 118 static int kobj_boot_open(char *, int); 119 static int kobj_boot_close(int); 120 static int kobj_boot_seek(int, off_t, off_t); 121 static int kobj_boot_read(int, caddr_t, size_t); 122 static int kobj_boot_fstat(int, struct bootstat *); 123 static int kobj_boot_compinfo(int, struct compinfo *); 124 125 static Sym *lookup_one(struct module *, const char *); 126 static void sym_insert(struct module *, char *, symid_t); 127 static Sym *sym_lookup(struct module *, Sym *); 128 129 static struct kobjopen_tctl *kobjopen_alloc(char *filename); 130 static void kobjopen_free(struct kobjopen_tctl *ltp); 131 static void kobjopen_thread(struct kobjopen_tctl *ltp); 132 static int kobj_is_compressed(intptr_t); 133 134 extern int kcopy(const void *, void *, size_t); 135 extern int elf_mach_ok(Ehdr *); 136 extern int alloc_gottable(struct module *, caddr_t *, caddr_t *); 137 138 #if !defined(_OBP) 139 extern int kobj_boot_mountroot(void); 140 #endif 141 142 static void tnf_unsplice_probes(uint_t, struct modctl *); 143 extern tnf_probe_control_t *__tnf_probe_list_head; 144 extern tnf_tag_data_t *__tnf_tag_list_head; 145 146 extern int modrootloaded; 147 extern int swaploaded; 148 extern int bop_io_quiesced; 149 extern int last_module_id; 150 151 extern char stubs_base[]; 152 extern char stubs_end[]; 153 154 #ifdef KOBJ_DEBUG 155 /* 156 * Values that can be or'd in to kobj_debug and their effects: 157 * 158 * D_DEBUG - misc. debugging information. 159 * D_SYMBOLS - list symbols and their values as they are entered 160 * into the hash table 161 * D_RELOCATIONS - display relocation processing information 162 * D_LOADING - display information about each module as it 163 * is loaded. 164 */ 165 int kobj_debug = 0; 166 167 #define KOBJ_MARK(s) if (kobj_debug & D_DEBUG) \ 168 (_kobj_printf(ops, "%d", __LINE__), _kobj_printf(ops, ": %s\n", s)) 169 #else 170 #define KOBJ_MARK(s) /* discard */ 171 #endif 172 173 #define MODPATH_PROPNAME "module-path" 174 175 #ifdef MODDIR_SUFFIX 176 static char slash_moddir_suffix_slash[] = MODDIR_SUFFIX "/"; 177 #else 178 #define slash_moddir_suffix_slash "" 179 #endif 180 181 #define _moddebug get_weakish_int(&moddebug) 182 #define _modrootloaded get_weakish_int(&modrootloaded) 183 #define _swaploaded get_weakish_int(&swaploaded) 184 #define _ioquiesced get_weakish_int(&bop_io_quiesced) 185 186 #define mod(X) (struct module *)((X)->modl_modp->mod_mp) 187 188 void *romp; /* rom vector (opaque to us) */ 189 struct bootops *ops; /* bootops vector */ 190 void *dbvec; /* debug vector */ 191 192 /* 193 * kobjopen thread control structure 194 */ 195 struct kobjopen_tctl { 196 ksema_t sema; 197 char *name; /* name of file */ 198 struct vnode *vp; /* vnode return from vn_open() */ 199 int Errno; /* error return from vnopen */ 200 }; 201 202 /* 203 * Structure for defining dynamically expandable library macros 204 */ 205 206 struct lib_macro_info { 207 char *lmi_list; /* ptr to list of possible choices */ 208 char *lmi_macroname; /* pointer to macro name */ 209 ushort_t lmi_ba_index; /* index into bootaux vector */ 210 ushort_t lmi_macrolen; /* macro length */ 211 } libmacros[] = { 212 { NULL, "CPU", BA_CPU, 0 }, 213 { NULL, "MMU", BA_MMU, 0 } 214 }; 215 216 #define NLIBMACROS sizeof (libmacros) / sizeof (struct lib_macro_info) 217 218 char *boot_cpu_compatible_list; /* make $CPU available */ 219 220 char *kobj_module_path; /* module search path */ 221 vmem_t *text_arena; /* module text arena */ 222 static vmem_t *data_arena; /* module data & bss arena */ 223 static vmem_t *ctf_arena; /* CTF debug data arena */ 224 static struct modctl *kobj_modules = NULL; /* modules loaded */ 225 int kobj_mmu_pagesize; /* system pagesize */ 226 static int lg_pagesize; /* "large" pagesize */ 227 static int kobj_last_module_id = 0; /* id assignment */ 228 static kmutex_t kobj_lock; /* protects mach memory list */ 229 230 /* 231 * The following functions have been implemented by the kernel. 232 * However, many 3rd party drivers provide their own implementations 233 * of these functions. When such drivers are loaded, messages 234 * indicating that these symbols have been multiply defined will be 235 * emitted to the console. To avoid alarming customers for no good 236 * reason, we simply suppress such warnings for the following set of 237 * functions. 238 */ 239 static char *suppress_sym_list[] = 240 { 241 "strstr", 242 "strncat", 243 "strlcat", 244 "strlcpy", 245 "strspn", 246 "memcpy", 247 "memset", 248 "memmove", 249 "memcmp", 250 "memchr", 251 "__udivdi3", 252 "__divdi3", 253 "__umoddi3", 254 "__moddi3", 255 NULL /* This entry must exist */ 256 }; 257 258 /* indexed by KOBJ_NOTIFY_* */ 259 static kobj_notify_list_t *kobj_notifiers[KOBJ_NOTIFY_MAX + 1]; 260 261 /* 262 * TNF probe management globals 263 */ 264 tnf_probe_control_t *__tnf_probe_list_head = NULL; 265 tnf_tag_data_t *__tnf_tag_list_head = NULL; 266 int tnf_changed_probe_list = 0; 267 268 /* 269 * Prefix for statically defined tracing (SDT) DTrace probes. 270 */ 271 const char *sdt_prefix = "__dtrace_probe_"; 272 273 /* 274 * Beginning and end of the kernel's dynamic text/data segments. 275 */ 276 static caddr_t _text; 277 static caddr_t _etext; 278 static caddr_t _data; 279 280 /* 281 * The sparc linker doesn't create a memory location 282 * for a variable named _edata, so _edata can only be 283 * referred to, not modified. krtld needs a static 284 * variable to modify it - within krtld, of course - 285 * outside of krtld, e_data is used in all kernels. 286 */ 287 #if defined(__sparc) 288 static caddr_t _edata; 289 #else 290 extern caddr_t _edata; 291 #endif 292 293 Addr dynseg = 0; /* load address of "dynamic" segment */ 294 size_t dynsize; /* "dynamic" segment size */ 295 296 297 int standalone = 1; /* an unwholey kernel? */ 298 int use_iflush; /* iflush after relocations */ 299 300 /* 301 * _kobj_printf() and _vkobj_printf() 302 * 303 * Common printf function pointer. Can handle only one conversion 304 * specification in the format string. Some of the functions invoked 305 * through this function pointer cannot handle more that one conversion 306 * specification in the format string. 307 */ 308 void (*_kobj_printf)(void *, const char *, ...) __KPRINTFLIKE(2); 309 void (*_vkobj_printf)(void *, const char *, va_list) __KVPRINTFLIKE(2); 310 311 /* 312 * Standalone function pointers for use within krtld. 313 * Many platforms implement optimized platmod versions of 314 * utilities such as bcopy and any such are not yet available 315 * until the kernel is more completely stitched together. 316 * See kobj_impl.h 317 */ 318 void (*kobj_bcopy)(const void *, void *, size_t); 319 void (*kobj_bzero)(void *, size_t); 320 size_t (*kobj_strlcat)(char *, const char *, size_t); 321 322 static kobj_stat_t kobj_stat; 323 324 #define MINALIGN 8 /* at least a double-word */ 325 326 int 327 get_weakish_int(int *ip) 328 { 329 if (standalone) 330 return (0); 331 return (ip == NULL ? 0 : *ip); 332 } 333 334 static void * 335 get_weakish_pointer(void **ptrp) 336 { 337 if (standalone) 338 return (0); 339 return (ptrp == NULL ? 0 : *ptrp); 340 } 341 342 /* 343 * XXX fix dependencies on "kernel"; this should work 344 * for other standalone binaries as well. 345 * 346 * XXX Fix hashing code to use one pointer to 347 * hash entries. 348 * |----------| 349 * | nbuckets | 350 * |----------| 351 * | nchains | 352 * |----------| 353 * | bucket[] | 354 * |----------| 355 * | chain[] | 356 * |----------| 357 */ 358 359 /* 360 * Load, bind and relocate all modules that 361 * form the primary kernel. At this point, our 362 * externals have not been relocated. 363 */ 364 void 365 kobj_init( 366 void *romvec, 367 void *dvec, 368 struct bootops *bootvec, 369 val_t *bootaux) 370 { 371 struct module *mp; 372 struct modctl *modp; 373 Addr entry; 374 char filename[MAXPATHLEN]; 375 376 /* 377 * Save these to pass on to 378 * the booted standalone. 379 */ 380 romp = romvec; 381 dbvec = dvec; 382 383 ops = bootvec; 384 kobj_setup_standalone_vectors(); 385 386 KOBJ_MARK("Entered kobj_init()"); 387 388 (void) BOP_GETPROP(ops, "whoami", filename); 389 390 /* 391 * We don't support standalone debuggers anymore. The use of kadb 392 * will interfere with the later use of kmdb. Let the user mend 393 * their ways now. Users will reach this message if they still 394 * have the kadb binary on their system (perhaps they used an old 395 * bfu, or maybe they intentionally copied it there) and have 396 * specified its use in a way that eluded our checking in the boot 397 * program. 398 */ 399 if (dvec != NULL) { 400 _kobj_printf(ops, "\nWARNING: Standalone debuggers such as " 401 "kadb are no longer supported\n\n"); 402 goto fail; 403 } 404 405 #if defined(_OBP) 406 /* 407 * OBP allows us to read both the ramdisk and 408 * the underlying root fs when root is a disk. 409 * This can lower incidences of unbootable systems 410 * when the archive is out-of-date with the /etc 411 * state files. 412 */ 413 if (BOP_MOUNTROOT() != BOOT_SVC_OK) { 414 _kobj_printf(ops, "can't mount boot fs\n"); 415 goto fail; 416 } 417 #else 418 { 419 /* on x86, we always boot with a ramdisk */ 420 (void) kobj_boot_mountroot(); 421 422 /* 423 * Now that the ramdisk is mounted, finish boot property 424 * initialization. 425 */ 426 read_bootenvrc(); 427 } 428 429 #if !defined(_UNIX_KRTLD) 430 /* 431 * 'unix' is linked together with 'krtld' into one executable and 432 * the early boot code does -not- hand us any of the dynamic metadata 433 * about the executable. In particular, it does not read in, map or 434 * otherwise look at the program headers. We fake all that up now. 435 * 436 * We do this early as DTrace static probes and tnf probes both call 437 * undefined references. We have to process those relocations before 438 * calling any of them. 439 * 440 * OBP tells kobj_start() where the ELF image is in memory, so it 441 * synthesized bootaux before kobj_init() was called 442 */ 443 if (bootaux[BA_PHDR].ba_ptr == NULL) 444 synthetic_bootaux(filename, bootaux); 445 446 #endif /* !_UNIX_KRTLD */ 447 #endif /* _OBP */ 448 449 /* 450 * Save the interesting attribute-values 451 * (scanned by kobj_boot). 452 */ 453 attr_val(bootaux); 454 455 /* 456 * Set the module search path. 457 */ 458 kobj_module_path = getmodpath(filename); 459 460 boot_cpu_compatible_list = find_libmacro("CPU"); 461 462 /* 463 * These two modules have actually been 464 * loaded by boot, but we finish the job 465 * by introducing them into the world of 466 * loadable modules. 467 */ 468 469 mp = load_exec(bootaux, filename); 470 load_linker(bootaux); 471 472 /* 473 * Load all the primary dependent modules. 474 */ 475 if (load_primary(mp, KOBJ_LM_PRIMARY) == -1) 476 goto fail; 477 478 /* 479 * Glue it together. 480 */ 481 if (bind_primary(bootaux, KOBJ_LM_PRIMARY) == -1) 482 goto fail; 483 484 entry = bootaux[BA_ENTRY].ba_val; 485 486 /* 487 * Get the boot flags 488 */ 489 bootflags(ops); 490 491 if (boothowto & RB_VERBOSE) 492 kobj_lm_dump(KOBJ_LM_PRIMARY); 493 494 kobj_kdi_init(); 495 496 if (boothowto & RB_KMDB) { 497 if (load_kmdb(bootaux) < 0) 498 goto fail; 499 } 500 501 /* 502 * Post setup. 503 */ 504 s_text = _text; 505 e_text = _etext; 506 s_data = _data; 507 e_data = _edata; 508 509 kobj_sync_instruction_memory(s_text, e_text - s_text); 510 511 #ifdef KOBJ_DEBUG 512 if (kobj_debug & D_DEBUG) 513 _kobj_printf(ops, 514 "krtld: transferring control to: 0x%lx\n", entry); 515 #endif 516 517 /* 518 * Make sure the mod system knows about the modules already loaded. 519 */ 520 last_module_id = kobj_last_module_id; 521 bcopy(kobj_modules, &modules, sizeof (modules)); 522 modp = &modules; 523 do { 524 if (modp->mod_next == kobj_modules) 525 modp->mod_next = &modules; 526 if (modp->mod_prev == kobj_modules) 527 modp->mod_prev = &modules; 528 } while ((modp = modp->mod_next) != &modules); 529 530 standalone = 0; 531 532 #ifdef KOBJ_DEBUG 533 if (kobj_debug & D_DEBUG) 534 _kobj_printf(ops, 535 "krtld: really transferring control to: 0x%lx\n", entry); 536 #endif 537 538 /* restore printf/bcopy/bzero vectors before returning */ 539 kobj_restore_vectors(); 540 541 #if defined(_DBOOT) 542 /* 543 * krtld was called from a dboot ELF section, the embedded 544 * dboot code contains the real entry via bootaux 545 */ 546 exitto((caddr_t)entry); 547 #else 548 /* 549 * krtld was directly called from startup 550 */ 551 return; 552 #endif 553 554 fail: 555 556 _kobj_printf(ops, "krtld: error during initial load/link phase\n"); 557 558 #if !defined(_UNIX_KRTLD) 559 _kobj_printf(ops, "\n"); 560 _kobj_printf(ops, "krtld could neither locate nor resolve symbols" 561 " for:\n"); 562 _kobj_printf(ops, " %s\n", filename); 563 _kobj_printf(ops, "in the boot archive. Please verify that this" 564 " file\n"); 565 _kobj_printf(ops, "matches what is found in the boot archive.\n"); 566 _kobj_printf(ops, "You may need to boot using the Solaris failsafe to" 567 " fix this.\n"); 568 bop_panic("Unable to boot"); 569 #endif 570 } 571 572 #if !defined(_UNIX_KRTLD) && !defined(_OBP) 573 /* 574 * Synthesize additional metadata that describes the executable if 575 * krtld's caller didn't do it. 576 * 577 * (When the dynamic executable has an interpreter, the boot program 578 * does all this for us. Where we don't have an interpreter, (or a 579 * even a boot program, perhaps) we have to do this for ourselves.) 580 */ 581 static void 582 synthetic_bootaux(char *filename, val_t *bootaux) 583 { 584 Ehdr ehdr; 585 caddr_t phdrbase; 586 struct _buf *file; 587 int i, n; 588 589 /* 590 * Elf header 591 */ 592 KOBJ_MARK("synthetic_bootaux()"); 593 KOBJ_MARK(filename); 594 file = kobj_open_file(filename); 595 if (file == (struct _buf *)-1) { 596 _kobj_printf(ops, "krtld: failed to open '%s'\n", filename); 597 return; 598 } 599 KOBJ_MARK("reading program headers"); 600 if (kobj_read_file(file, (char *)&ehdr, sizeof (ehdr), 0) < 0) { 601 _kobj_printf(ops, "krtld: %s: failed to read ehder\n", 602 filename); 603 return; 604 } 605 606 /* 607 * Program headers 608 */ 609 bootaux[BA_PHNUM].ba_val = ehdr.e_phnum; 610 bootaux[BA_PHENT].ba_val = ehdr.e_phentsize; 611 n = ehdr.e_phentsize * ehdr.e_phnum; 612 613 phdrbase = kobj_alloc(n, KM_WAIT | KM_TMP); 614 615 if (kobj_read_file(file, phdrbase, n, ehdr.e_phoff) < 0) { 616 _kobj_printf(ops, "krtld: %s: failed to read phdrs\n", 617 filename); 618 return; 619 } 620 bootaux[BA_PHDR].ba_ptr = phdrbase; 621 kobj_close_file(file); 622 KOBJ_MARK("closed file"); 623 624 /* 625 * Find the dynamic section address 626 */ 627 for (i = 0; i < ehdr.e_phnum; i++) { 628 Phdr *phdr = (Phdr *)(phdrbase + ehdr.e_phentsize * i); 629 630 if (phdr->p_type == PT_DYNAMIC) { 631 bootaux[BA_DYNAMIC].ba_ptr = (void *)phdr->p_vaddr; 632 break; 633 } 634 } 635 KOBJ_MARK("synthetic_bootaux() done"); 636 } 637 #endif /* !_UNIX_KRTLD && !_OBP */ 638 639 /* 640 * Set up any global information derived 641 * from attribute/values in the boot or 642 * aux vector. 643 */ 644 static void 645 attr_val(val_t *bootaux) 646 { 647 Phdr *phdr; 648 int phnum, phsize; 649 int i; 650 651 KOBJ_MARK("attr_val()"); 652 kobj_mmu_pagesize = bootaux[BA_PAGESZ].ba_val; 653 lg_pagesize = bootaux[BA_LPAGESZ].ba_val; 654 use_iflush = bootaux[BA_IFLUSH].ba_val; 655 656 phdr = (Phdr *)bootaux[BA_PHDR].ba_ptr; 657 phnum = bootaux[BA_PHNUM].ba_val; 658 phsize = bootaux[BA_PHENT].ba_val; 659 for (i = 0; i < phnum; i++) { 660 phdr = (Phdr *)(bootaux[BA_PHDR].ba_val + i * phsize); 661 662 if (phdr->p_type != PT_LOAD) { 663 continue; 664 } 665 /* 666 * Bounds of the various segments. 667 */ 668 if (!(phdr->p_flags & PF_X)) { 669 #if defined(_RELSEG) 670 /* 671 * sparc kernel puts the dynamic info 672 * into a separate segment, which is 673 * free'd in bop_fini() 674 */ 675 ASSERT(phdr->p_vaddr != 0); 676 dynseg = phdr->p_vaddr; 677 dynsize = phdr->p_memsz; 678 #else 679 ASSERT(phdr->p_vaddr == 0); 680 #endif 681 } else { 682 if (phdr->p_flags & PF_W) { 683 _data = (caddr_t)phdr->p_vaddr; 684 _edata = _data + phdr->p_memsz; 685 } else { 686 _text = (caddr_t)phdr->p_vaddr; 687 _etext = _text + phdr->p_memsz; 688 } 689 } 690 } 691 692 /* To do the kobj_alloc, _edata needs to be set. */ 693 for (i = 0; i < NLIBMACROS; i++) { 694 if (bootaux[libmacros[i].lmi_ba_index].ba_ptr != NULL) { 695 libmacros[i].lmi_list = kobj_alloc( 696 strlen(bootaux[libmacros[i].lmi_ba_index].ba_ptr) + 697 1, KM_WAIT); 698 (void) strcpy(libmacros[i].lmi_list, 699 bootaux[libmacros[i].lmi_ba_index].ba_ptr); 700 } 701 libmacros[i].lmi_macrolen = strlen(libmacros[i].lmi_macroname); 702 } 703 } 704 705 /* 706 * Set up the booted executable. 707 */ 708 static struct module * 709 load_exec(val_t *bootaux, char *filename) 710 { 711 struct modctl *cp; 712 struct module *mp; 713 Dyn *dyn; 714 Sym *sp; 715 int i, lsize, osize, nsize, allocsize; 716 char *libname, *tmp; 717 char path[MAXPATHLEN]; 718 719 #ifdef KOBJ_DEBUG 720 if (kobj_debug & D_DEBUG) 721 _kobj_printf(ops, "module path '%s'\n", kobj_module_path); 722 #endif 723 724 KOBJ_MARK("add_primary"); 725 cp = add_primary(filename, KOBJ_LM_PRIMARY); 726 727 KOBJ_MARK("struct module"); 728 mp = kobj_zalloc(sizeof (struct module), KM_WAIT); 729 cp->mod_mp = mp; 730 731 /* 732 * We don't have the following information 733 * since this module is an executable and not 734 * a relocatable .o. 735 */ 736 mp->symtbl_section = 0; 737 mp->shdrs = NULL; 738 mp->strhdr = NULL; 739 740 /* 741 * Since this module is the only exception, 742 * we cons up some section headers. 743 */ 744 KOBJ_MARK("symhdr"); 745 mp->symhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT); 746 747 KOBJ_MARK("strhdr"); 748 mp->strhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT); 749 750 mp->symhdr->sh_type = SHT_SYMTAB; 751 mp->strhdr->sh_type = SHT_STRTAB; 752 /* 753 * Scan the dynamic structure. 754 */ 755 for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr; 756 dyn->d_tag != DT_NULL; dyn++) { 757 switch (dyn->d_tag) { 758 case DT_SYMTAB: 759 mp->symspace = mp->symtbl = (char *)dyn->d_un.d_ptr; 760 mp->symhdr->sh_addr = dyn->d_un.d_ptr; 761 break; 762 case DT_HASH: 763 mp->nsyms = *((uint_t *)dyn->d_un.d_ptr + 1); 764 mp->hashsize = *(uint_t *)dyn->d_un.d_ptr; 765 break; 766 case DT_STRTAB: 767 mp->strings = (char *)dyn->d_un.d_ptr; 768 mp->strhdr->sh_addr = dyn->d_un.d_ptr; 769 break; 770 case DT_STRSZ: 771 mp->strhdr->sh_size = dyn->d_un.d_val; 772 break; 773 case DT_SYMENT: 774 mp->symhdr->sh_entsize = dyn->d_un.d_val; 775 break; 776 } 777 } 778 779 /* 780 * Collapse any DT_NEEDED entries into one string. 781 */ 782 nsize = osize = 0; 783 allocsize = MAXPATHLEN; 784 785 KOBJ_MARK("depends_on"); 786 mp->depends_on = kobj_alloc(allocsize, KM_WAIT); 787 788 for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr; 789 dyn->d_tag != DT_NULL; dyn++) 790 if (dyn->d_tag == DT_NEEDED) { 791 char *_lib; 792 793 libname = mp->strings + dyn->d_un.d_val; 794 if (strchr(libname, '$') != NULL) { 795 if ((_lib = expand_libmacro(libname, 796 path, path)) != NULL) 797 libname = _lib; 798 else 799 _kobj_printf(ops, "krtld: " 800 "load_exec: fail to " 801 "expand %s\n", libname); 802 } 803 lsize = strlen(libname); 804 nsize += lsize; 805 if (nsize + 1 > allocsize) { 806 KOBJ_MARK("grow depends_on"); 807 tmp = kobj_alloc(allocsize + MAXPATHLEN, 808 KM_WAIT); 809 bcopy(mp->depends_on, tmp, osize); 810 kobj_free(mp->depends_on, allocsize); 811 mp->depends_on = tmp; 812 allocsize += MAXPATHLEN; 813 } 814 bcopy(libname, mp->depends_on + osize, lsize); 815 *(mp->depends_on + nsize) = ' '; /* separate */ 816 nsize++; 817 osize = nsize; 818 } 819 if (nsize) { 820 mp->depends_on[nsize - 1] = '\0'; /* terminate the string */ 821 /* 822 * alloc with exact size and copy whatever it got over 823 */ 824 KOBJ_MARK("realloc depends_on"); 825 tmp = kobj_alloc(nsize, KM_WAIT); 826 bcopy(mp->depends_on, tmp, nsize); 827 kobj_free(mp->depends_on, allocsize); 828 mp->depends_on = tmp; 829 } else { 830 kobj_free(mp->depends_on, allocsize); 831 mp->depends_on = NULL; 832 } 833 834 mp->flags = KOBJ_EXEC|KOBJ_PRIM; /* NOT a relocatable .o */ 835 mp->symhdr->sh_size = mp->nsyms * mp->symhdr->sh_entsize; 836 /* 837 * We allocate our own table since we don't 838 * hash undefined references. 839 */ 840 KOBJ_MARK("chains"); 841 mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT); 842 KOBJ_MARK("buckets"); 843 mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT); 844 845 mp->text = _text; 846 mp->data = _data; 847 848 mp->text_size = _etext - _text; 849 mp->data_size = _edata - _data; 850 851 cp->mod_text = mp->text; 852 cp->mod_text_size = mp->text_size; 853 854 mp->filename = cp->mod_filename; 855 856 #ifdef KOBJ_DEBUG 857 if (kobj_debug & D_LOADING) { 858 _kobj_printf(ops, "krtld: file=%s\n", mp->filename); 859 _kobj_printf(ops, "\ttext: 0x%p", mp->text); 860 _kobj_printf(ops, " size: 0x%lx\n", mp->text_size); 861 _kobj_printf(ops, "\tdata: 0x%p", mp->data); 862 _kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size); 863 } 864 #endif /* KOBJ_DEBUG */ 865 866 /* 867 * Insert symbols into the hash table. 868 */ 869 for (i = 0; i < mp->nsyms; i++) { 870 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize); 871 872 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF) 873 continue; 874 #if defined(__sparc) 875 /* 876 * Register symbols are ignored in the kernel 877 */ 878 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) 879 continue; 880 #endif /* __sparc */ 881 882 sym_insert(mp, mp->strings + sp->st_name, i); 883 } 884 885 KOBJ_MARK("load_exec done"); 886 return (mp); 887 } 888 889 /* 890 * Set up the linker module (if it's compiled in, LDNAME is NULL) 891 */ 892 static void 893 load_linker(val_t *bootaux) 894 { 895 struct module *kmp = (struct module *)kobj_modules->mod_mp; 896 struct module *mp; 897 struct modctl *cp; 898 int i; 899 Shdr *shp; 900 Sym *sp; 901 int shsize; 902 char *dlname = (char *)bootaux[BA_LDNAME].ba_ptr; 903 904 /* 905 * On some architectures, krtld is compiled into the kernel. 906 */ 907 if (dlname == NULL) 908 return; 909 910 cp = add_primary(dlname, KOBJ_LM_PRIMARY); 911 912 mp = kobj_zalloc(sizeof (struct module), KM_WAIT); 913 914 cp->mod_mp = mp; 915 mp->hdr = *(Ehdr *)bootaux[BA_LDELF].ba_ptr; 916 shsize = mp->hdr.e_shentsize * mp->hdr.e_shnum; 917 mp->shdrs = kobj_alloc(shsize, KM_WAIT); 918 bcopy(bootaux[BA_LDSHDR].ba_ptr, mp->shdrs, shsize); 919 920 for (i = 1; i < (int)mp->hdr.e_shnum; i++) { 921 shp = (Shdr *)(mp->shdrs + (i * mp->hdr.e_shentsize)); 922 923 if (shp->sh_flags & SHF_ALLOC) { 924 if (shp->sh_flags & SHF_WRITE) { 925 if (mp->data == NULL) 926 mp->data = (char *)shp->sh_addr; 927 } else if (mp->text == NULL) { 928 mp->text = (char *)shp->sh_addr; 929 } 930 } 931 if (shp->sh_type == SHT_SYMTAB) { 932 mp->symtbl_section = i; 933 mp->symhdr = shp; 934 mp->symspace = mp->symtbl = (char *)shp->sh_addr; 935 } 936 } 937 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize; 938 mp->flags = KOBJ_INTERP|KOBJ_PRIM; 939 mp->strhdr = (Shdr *) 940 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize); 941 mp->strings = (char *)mp->strhdr->sh_addr; 942 mp->hashsize = kobj_gethashsize(mp->nsyms); 943 944 mp->symsize = mp->symhdr->sh_size + mp->strhdr->sh_size + sizeof (int) + 945 (mp->hashsize + mp->nsyms) * sizeof (symid_t); 946 947 mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT); 948 mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT); 949 950 mp->bss = bootaux[BA_BSS].ba_val; 951 mp->bss_align = 0; /* pre-aligned during allocation */ 952 mp->bss_size = (uintptr_t)_edata - mp->bss; 953 mp->text_size = _etext - mp->text; 954 mp->data_size = _edata - mp->data; 955 mp->filename = cp->mod_filename; 956 cp->mod_text = mp->text; 957 cp->mod_text_size = mp->text_size; 958 959 /* 960 * Now that we've figured out where the linker is, 961 * set the limits for the booted object. 962 */ 963 kmp->text_size = (size_t)(mp->text - kmp->text); 964 kmp->data_size = (size_t)(mp->data - kmp->data); 965 kobj_modules->mod_text_size = kmp->text_size; 966 967 #ifdef KOBJ_DEBUG 968 if (kobj_debug & D_LOADING) { 969 _kobj_printf(ops, "krtld: file=%s\n", mp->filename); 970 _kobj_printf(ops, "\ttext:0x%p", mp->text); 971 _kobj_printf(ops, " size: 0x%lx\n", mp->text_size); 972 _kobj_printf(ops, "\tdata:0x%p", mp->data); 973 _kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size); 974 } 975 #endif /* KOBJ_DEBUG */ 976 977 /* 978 * Insert the symbols into the hash table. 979 */ 980 for (i = 0; i < mp->nsyms; i++) { 981 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize); 982 983 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF) 984 continue; 985 if (ELF_ST_BIND(sp->st_info) == STB_GLOBAL) { 986 if (sp->st_shndx == SHN_COMMON) 987 sp->st_shndx = SHN_ABS; 988 } 989 sym_insert(mp, mp->strings + sp->st_name, i); 990 } 991 992 } 993 994 static kobj_notify_list_t ** 995 kobj_notify_lookup(uint_t type) 996 { 997 ASSERT(type != 0 && type < sizeof (kobj_notifiers) / 998 sizeof (kobj_notify_list_t *)); 999 1000 return (&kobj_notifiers[type]); 1001 } 1002 1003 int 1004 kobj_notify_add(kobj_notify_list_t *knp) 1005 { 1006 kobj_notify_list_t **knl; 1007 1008 knl = kobj_notify_lookup(knp->kn_type); 1009 1010 knp->kn_next = NULL; 1011 knp->kn_prev = NULL; 1012 1013 mutex_enter(&kobj_lock); 1014 1015 if (*knl != NULL) { 1016 (*knl)->kn_prev = knp; 1017 knp->kn_next = *knl; 1018 } 1019 (*knl) = knp; 1020 1021 mutex_exit(&kobj_lock); 1022 return (0); 1023 } 1024 1025 int 1026 kobj_notify_remove(kobj_notify_list_t *knp) 1027 { 1028 kobj_notify_list_t **knl = kobj_notify_lookup(knp->kn_type); 1029 kobj_notify_list_t *tknp; 1030 1031 mutex_enter(&kobj_lock); 1032 1033 /* LINTED */ 1034 if (tknp = knp->kn_next) 1035 tknp->kn_prev = knp->kn_prev; 1036 1037 /* LINTED */ 1038 if (tknp = knp->kn_prev) 1039 tknp->kn_next = knp->kn_next; 1040 else 1041 *knl = knp->kn_next; 1042 1043 mutex_exit(&kobj_lock); 1044 1045 return (0); 1046 } 1047 1048 /* 1049 * Notify all interested callbacks of a specified change in module state. 1050 */ 1051 static void 1052 kobj_notify(int type, struct modctl *modp) 1053 { 1054 kobj_notify_list_t *knp; 1055 1056 if (modp->mod_loadflags & MOD_NONOTIFY || standalone) 1057 return; 1058 1059 mutex_enter(&kobj_lock); 1060 1061 for (knp = *(kobj_notify_lookup(type)); knp != NULL; knp = knp->kn_next) 1062 knp->kn_func(type, modp); 1063 1064 /* 1065 * KDI notification must be last (it has to allow for work done by the 1066 * other notification callbacks), so we call it manually. 1067 */ 1068 kobj_kdi_mod_notify(type, modp); 1069 1070 mutex_exit(&kobj_lock); 1071 } 1072 1073 /* 1074 * Create the module path. 1075 */ 1076 static char * 1077 getmodpath(const char *filename) 1078 { 1079 char *path = kobj_zalloc(MAXPATHLEN, KM_WAIT); 1080 1081 /* 1082 * Platform code gets first crack, then add 1083 * the default components 1084 */ 1085 mach_modpath(path, filename); 1086 if (*path != '\0') 1087 (void) strcat(path, " "); 1088 return (strcat(path, MOD_DEFPATH)); 1089 } 1090 1091 static struct modctl * 1092 add_primary(const char *filename, int lmid) 1093 { 1094 struct modctl *cp; 1095 1096 cp = kobj_zalloc(sizeof (struct modctl), KM_WAIT); 1097 1098 cp->mod_filename = kobj_alloc(strlen(filename) + 1, KM_WAIT); 1099 1100 /* 1101 * For symbol lookup, we assemble our own 1102 * modctl list of the primary modules. 1103 */ 1104 1105 (void) strcpy(cp->mod_filename, filename); 1106 cp->mod_modname = basename(cp->mod_filename); 1107 1108 /* set values for modinfo assuming that the load will work */ 1109 cp->mod_prim = 1; 1110 cp->mod_loaded = 1; 1111 cp->mod_installed = 1; 1112 cp->mod_loadcnt = 1; 1113 cp->mod_loadflags = MOD_NOAUTOUNLOAD; 1114 1115 cp->mod_id = kobj_last_module_id++; 1116 1117 /* 1118 * Link the module in. We'll pass this info on 1119 * to the mod squad later. 1120 */ 1121 if (kobj_modules == NULL) { 1122 kobj_modules = cp; 1123 cp->mod_prev = cp->mod_next = cp; 1124 } else { 1125 cp->mod_prev = kobj_modules->mod_prev; 1126 cp->mod_next = kobj_modules; 1127 kobj_modules->mod_prev->mod_next = cp; 1128 kobj_modules->mod_prev = cp; 1129 } 1130 1131 kobj_lm_append(lmid, cp); 1132 1133 return (cp); 1134 } 1135 1136 static int 1137 bind_primary(val_t *bootaux, int lmid) 1138 { 1139 struct modctl_list *linkmap = kobj_lm_lookup(lmid); 1140 struct modctl_list *lp; 1141 struct module *mp; 1142 1143 /* 1144 * Do common symbols. 1145 */ 1146 for (lp = linkmap; lp; lp = lp->modl_next) { 1147 mp = mod(lp); 1148 1149 /* 1150 * Don't do common section relocations for modules that 1151 * don't need it. 1152 */ 1153 if (mp->flags & (KOBJ_EXEC|KOBJ_INTERP)) 1154 continue; 1155 1156 if (do_common(mp) < 0) 1157 return (-1); 1158 } 1159 1160 /* 1161 * Resolve symbols. 1162 */ 1163 for (lp = linkmap; lp; lp = lp->modl_next) { 1164 mp = mod(lp); 1165 1166 if (do_symbols(mp, 0) < 0) 1167 return (-1); 1168 } 1169 1170 /* 1171 * Do relocations. 1172 */ 1173 for (lp = linkmap; lp; lp = lp->modl_next) { 1174 mp = mod(lp); 1175 1176 if (mp->flags & KOBJ_EXEC) { 1177 Dyn *dyn; 1178 Word relasz = 0, relaent = 0; 1179 char *rela = NULL; 1180 1181 for (dyn = (Dyn *)bootaux[BA_DYNAMIC].ba_ptr; 1182 dyn->d_tag != DT_NULL; dyn++) { 1183 switch (dyn->d_tag) { 1184 case DT_RELASZ: 1185 case DT_RELSZ: 1186 relasz = dyn->d_un.d_val; 1187 break; 1188 case DT_RELAENT: 1189 case DT_RELENT: 1190 relaent = dyn->d_un.d_val; 1191 break; 1192 case DT_RELA: 1193 rela = (char *)dyn->d_un.d_ptr; 1194 break; 1195 case DT_REL: 1196 rela = (char *)dyn->d_un.d_ptr; 1197 break; 1198 } 1199 } 1200 if (relasz == 0 || 1201 relaent == 0 || rela == NULL) { 1202 _kobj_printf(ops, "krtld: bind_primary(): " 1203 "no relocation information found for " 1204 "module %s\n", mp->filename); 1205 return (-1); 1206 } 1207 #ifdef KOBJ_DEBUG 1208 if (kobj_debug & D_RELOCATIONS) 1209 _kobj_printf(ops, "krtld: relocating: file=%s " 1210 "KOBJ_EXEC\n", mp->filename); 1211 #endif 1212 if (do_relocate(mp, rela, relasz/relaent, relaent, 1213 (Addr)mp->text) < 0) 1214 return (-1); 1215 } else { 1216 if (do_relocations(mp) < 0) 1217 return (-1); 1218 } 1219 1220 kobj_sync_instruction_memory(mp->text, mp->text_size); 1221 } 1222 1223 for (lp = linkmap; lp; lp = lp->modl_next) { 1224 mp = mod(lp); 1225 1226 /* 1227 * We need to re-read the full symbol table for the boot file, 1228 * since we couldn't use the full one before. We also need to 1229 * load the CTF sections of both the boot file and the 1230 * interpreter (us). 1231 */ 1232 if (mp->flags & KOBJ_EXEC) { 1233 struct _buf *file; 1234 int n; 1235 1236 file = kobj_open_file(mp->filename); 1237 if (file == (struct _buf *)-1) 1238 return (-1); 1239 if (kobj_read_file(file, (char *)&mp->hdr, 1240 sizeof (mp->hdr), 0) < 0) 1241 return (-1); 1242 n = mp->hdr.e_shentsize * mp->hdr.e_shnum; 1243 mp->shdrs = kobj_alloc(n, KM_WAIT); 1244 if (kobj_read_file(file, mp->shdrs, n, 1245 mp->hdr.e_shoff) < 0) 1246 return (-1); 1247 if (get_syms(mp, file) < 0) 1248 return (-1); 1249 if (get_ctf(mp, file) < 0) 1250 return (-1); 1251 kobj_close_file(file); 1252 mp->flags |= KOBJ_RELOCATED; 1253 1254 } else if (mp->flags & KOBJ_INTERP) { 1255 struct _buf *file; 1256 1257 /* 1258 * The interpreter path fragment in mp->filename 1259 * will already have the module directory suffix 1260 * in it (if appropriate). 1261 */ 1262 file = kobj_open_path(mp->filename, 1, 0); 1263 if (file == (struct _buf *)-1) 1264 return (-1); 1265 if (get_ctf(mp, file) < 0) 1266 return (-1); 1267 kobj_close_file(file); 1268 mp->flags |= KOBJ_RELOCATED; 1269 } 1270 } 1271 1272 return (0); 1273 } 1274 1275 static struct modctl * 1276 mod_already_loaded(char *modname) 1277 { 1278 struct modctl *mctl = kobj_modules; 1279 1280 do { 1281 if (strcmp(modname, mctl->mod_filename) == 0) 1282 return (mctl); 1283 mctl = mctl->mod_next; 1284 1285 } while (mctl != kobj_modules); 1286 1287 return (NULL); 1288 } 1289 1290 /* 1291 * Load all the primary dependent modules. 1292 */ 1293 static int 1294 load_primary(struct module *mp, int lmid) 1295 { 1296 struct modctl *cp; 1297 struct module *dmp; 1298 char *p, *q; 1299 char modname[MODMAXNAMELEN]; 1300 1301 if ((p = mp->depends_on) == NULL) 1302 return (0); 1303 1304 /* CONSTANTCONDITION */ 1305 while (1) { 1306 /* 1307 * Skip space. 1308 */ 1309 while (*p && (*p == ' ' || *p == '\t')) 1310 p++; 1311 /* 1312 * Get module name. 1313 */ 1314 q = modname; 1315 while (*p && *p != ' ' && *p != '\t') 1316 *q++ = *p++; 1317 1318 if (q == modname) 1319 break; 1320 1321 *q = '\0'; 1322 /* 1323 * Check for dup dependencies. 1324 */ 1325 if (strcmp(modname, "dtracestubs") == 0 || 1326 mod_already_loaded(modname) != NULL) 1327 continue; 1328 1329 cp = add_primary(modname, lmid); 1330 cp->mod_busy = 1; 1331 /* 1332 * Load it. 1333 */ 1334 (void) kobj_load_module(cp, 1); 1335 cp->mod_busy = 0; 1336 1337 if ((dmp = cp->mod_mp) == NULL) { 1338 cp->mod_loaded = 0; 1339 cp->mod_installed = 0; 1340 cp->mod_loadcnt = 0; 1341 return (-1); 1342 } 1343 1344 add_dependent(mp, dmp); 1345 dmp->flags |= KOBJ_PRIM; 1346 1347 /* 1348 * Recurse. 1349 */ 1350 if (load_primary(dmp, lmid) == -1) { 1351 cp->mod_loaded = 0; 1352 cp->mod_installed = 0; 1353 cp->mod_loadcnt = 0; 1354 return (-1); 1355 } 1356 } 1357 return (0); 1358 } 1359 1360 static int 1361 console_is_usb_serial(void) 1362 { 1363 char *console; 1364 int len, ret; 1365 1366 if ((len = BOP_GETPROPLEN(ops, "console")) == -1) 1367 return (0); 1368 1369 console = kobj_zalloc(len, KM_WAIT|KM_TMP); 1370 (void) BOP_GETPROP(ops, "console", console); 1371 ret = (strcmp(console, "usb-serial") == 0); 1372 kobj_free(console, len); 1373 1374 return (ret); 1375 } 1376 1377 static int 1378 load_kmdb(val_t *bootaux) 1379 { 1380 struct modctl *mctl; 1381 struct module *mp; 1382 Sym *sym; 1383 1384 if (console_is_usb_serial()) { 1385 _kobj_printf(ops, "kmdb not loaded " 1386 "(unsupported on usb serial console)\n"); 1387 return (0); 1388 } 1389 1390 _kobj_printf(ops, "Loading kmdb...\n"); 1391 1392 if ((mctl = add_primary("misc/kmdbmod", KOBJ_LM_DEBUGGER)) == NULL) 1393 return (-1); 1394 1395 mctl->mod_busy = 1; 1396 (void) kobj_load_module(mctl, 1); 1397 mctl->mod_busy = 0; 1398 1399 if ((mp = mctl->mod_mp) == NULL) 1400 return (-1); 1401 1402 mp->flags |= KOBJ_PRIM; 1403 1404 if (load_primary(mp, KOBJ_LM_DEBUGGER) < 0) 1405 return (-1); 1406 1407 if (boothowto & RB_VERBOSE) 1408 kobj_lm_dump(KOBJ_LM_DEBUGGER); 1409 1410 if (bind_primary(bootaux, KOBJ_LM_DEBUGGER) < 0) 1411 return (-1); 1412 1413 if ((sym = lookup_one(mctl->mod_mp, "kctl_boot_activate")) == NULL) 1414 return (-1); 1415 1416 #ifdef KOBJ_DEBUG 1417 if (kobj_debug & D_DEBUG) { 1418 _kobj_printf(ops, "calling kctl_boot_activate() @ 0x%lx\n", 1419 sym->st_value); 1420 _kobj_printf(ops, "\tops 0x%p\n", ops); 1421 _kobj_printf(ops, "\tromp 0x%p\n", romp); 1422 } 1423 #endif 1424 1425 if (((kctl_boot_activate_f *)sym->st_value)(ops, romp, 0, 1426 (const char **)kobj_kmdb_argv) < 0) 1427 return (-1); 1428 1429 return (0); 1430 } 1431 1432 /* 1433 * Return a string listing module dependencies. 1434 */ 1435 static char * 1436 depends_on(struct module *mp) 1437 { 1438 Sym *sp; 1439 char *depstr, *q; 1440 1441 /* 1442 * The module doesn't have a depends_on value, so let's try it the 1443 * old-fashioned way - via "_depends_on" 1444 */ 1445 if ((sp = lookup_one(mp, "_depends_on")) == NULL) 1446 return (NULL); 1447 1448 q = (char *)sp->st_value; 1449 1450 #ifdef KOBJ_DEBUG 1451 /* 1452 * _depends_on is a deprecated interface, so we warn about its use 1453 * irrespective of subsequent processing errors. How else are we going 1454 * to be able to deco this interface completely? 1455 * Changes initially limited to DEBUG because third-party modules 1456 * should be flagged to developers before general use base. 1457 */ 1458 _kobj_printf(ops, 1459 "Warning: %s uses deprecated _depends_on interface.\n", 1460 mp->filename); 1461 _kobj_printf(ops, "Please notify module developer or vendor.\n"); 1462 #endif 1463 1464 /* 1465 * Idiot checks. Make sure it's 1466 * in-bounds and NULL terminated. 1467 */ 1468 if (kobj_addrcheck(mp, q) || q[sp->st_size - 1] != '\0') { 1469 _kobj_printf(ops, "Error processing dependency for %s\n", 1470 mp->filename); 1471 return (NULL); 1472 } 1473 1474 depstr = (char *)kobj_alloc(strlen(q) + 1, KM_WAIT); 1475 (void) strcpy(depstr, q); 1476 1477 return (depstr); 1478 } 1479 1480 void 1481 kobj_getmodinfo(void *xmp, struct modinfo *modinfo) 1482 { 1483 struct module *mp; 1484 mp = (struct module *)xmp; 1485 1486 modinfo->mi_base = mp->text; 1487 modinfo->mi_size = mp->text_size + mp->data_size; 1488 } 1489 1490 /* 1491 * kobj_export_ksyms() performs the following services: 1492 * 1493 * (1) Migrates the symbol table from boot/kobj memory to the ksyms arena. 1494 * (2) Removes unneeded symbols to save space. 1495 * (3) Reduces memory footprint by using VM_BESTFIT allocations. 1496 * (4) Makes the symbol table visible to /dev/ksyms. 1497 */ 1498 static void 1499 kobj_export_ksyms(struct module *mp) 1500 { 1501 Sym *esp = (Sym *)(mp->symtbl + mp->symhdr->sh_size); 1502 Sym *sp, *osp; 1503 char *name; 1504 size_t namelen; 1505 struct module *omp; 1506 uint_t nsyms; 1507 size_t symsize = mp->symhdr->sh_entsize; 1508 size_t locals = 1; 1509 size_t strsize; 1510 1511 /* 1512 * Make a copy of the original module structure. 1513 */ 1514 omp = kobj_alloc(sizeof (struct module), KM_WAIT); 1515 bcopy(mp, omp, sizeof (struct module)); 1516 1517 /* 1518 * Compute the sizes of the new symbol table sections. 1519 */ 1520 for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) { 1521 if (osp->st_value == 0) 1522 continue; 1523 if (sym_lookup(omp, osp) == NULL) 1524 continue; 1525 name = omp->strings + osp->st_name; 1526 namelen = strlen(name); 1527 if (ELF_ST_BIND(osp->st_info) == STB_LOCAL) 1528 locals++; 1529 nsyms++; 1530 strsize += namelen + 1; 1531 } 1532 1533 mp->nsyms = nsyms; 1534 mp->hashsize = kobj_gethashsize(mp->nsyms); 1535 1536 /* 1537 * ksyms_lock must be held as writer during any operation that 1538 * modifies ksyms_arena, including allocation from same, and 1539 * must not be dropped until the arena is vmem_walk()able. 1540 */ 1541 rw_enter(&ksyms_lock, RW_WRITER); 1542 1543 /* 1544 * Allocate space for the new section headers (symtab and strtab), 1545 * symbol table, buckets, chains, and strings. 1546 */ 1547 mp->symsize = (2 * sizeof (Shdr)) + (nsyms * symsize) + 1548 (mp->hashsize + mp->nsyms) * sizeof (symid_t) + strsize; 1549 1550 if (mp->flags & KOBJ_NOKSYMS) { 1551 mp->symspace = kobj_alloc(mp->symsize, KM_WAIT); 1552 } else { 1553 mp->symspace = vmem_alloc(ksyms_arena, mp->symsize, 1554 VM_BESTFIT | VM_SLEEP); 1555 } 1556 bzero(mp->symspace, mp->symsize); 1557 1558 /* 1559 * Divvy up symspace. 1560 */ 1561 mp->shdrs = mp->symspace; 1562 mp->symhdr = (Shdr *)mp->shdrs; 1563 mp->strhdr = (Shdr *)(mp->symhdr + 1); 1564 mp->symtbl = (char *)(mp->strhdr + 1); 1565 mp->buckets = (symid_t *)(mp->symtbl + (nsyms * symsize)); 1566 mp->chains = (symid_t *)(mp->buckets + mp->hashsize); 1567 mp->strings = (char *)(mp->chains + nsyms); 1568 1569 /* 1570 * Fill in the new section headers (symtab and strtab). 1571 */ 1572 mp->hdr.e_shnum = 2; 1573 mp->symtbl_section = 0; 1574 1575 mp->symhdr->sh_type = SHT_SYMTAB; 1576 mp->symhdr->sh_addr = (Addr)mp->symtbl; 1577 mp->symhdr->sh_size = nsyms * symsize; 1578 mp->symhdr->sh_link = 1; 1579 mp->symhdr->sh_info = locals; 1580 mp->symhdr->sh_addralign = sizeof (Addr); 1581 mp->symhdr->sh_entsize = symsize; 1582 1583 mp->strhdr->sh_type = SHT_STRTAB; 1584 mp->strhdr->sh_addr = (Addr)mp->strings; 1585 mp->strhdr->sh_size = strsize; 1586 mp->strhdr->sh_addralign = 1; 1587 1588 /* 1589 * Construct the new symbol table. 1590 */ 1591 for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) { 1592 if (osp->st_value == 0) 1593 continue; 1594 if (sym_lookup(omp, osp) == NULL) 1595 continue; 1596 name = omp->strings + osp->st_name; 1597 namelen = strlen(name); 1598 sp = (Sym *)(mp->symtbl + symsize * nsyms); 1599 bcopy(osp, sp, symsize); 1600 bcopy(name, mp->strings + strsize, namelen); 1601 sp->st_name = strsize; 1602 sym_insert(mp, name, nsyms); 1603 nsyms++; 1604 strsize += namelen + 1; 1605 } 1606 1607 rw_exit(&ksyms_lock); 1608 1609 /* 1610 * Free the old section headers -- we'll never need them again. 1611 */ 1612 if (!(mp->flags & KOBJ_PRIM)) { 1613 uint_t shn; 1614 Shdr *shp; 1615 1616 for (shn = 1; shn < omp->hdr.e_shnum; shn++) { 1617 shp = (Shdr *)(omp->shdrs + shn * omp->hdr.e_shentsize); 1618 switch (shp->sh_type) { 1619 case SHT_RELA: 1620 case SHT_REL: 1621 if (shp->sh_addr != 0) { 1622 kobj_free((void *)shp->sh_addr, 1623 shp->sh_size); 1624 } 1625 break; 1626 } 1627 } 1628 kobj_free(omp->shdrs, omp->hdr.e_shentsize * omp->hdr.e_shnum); 1629 } 1630 /* 1631 * Discard the old symbol table and our copy of the module strucure. 1632 */ 1633 if (!(mp->flags & KOBJ_PRIM)) 1634 kobj_free(omp->symspace, omp->symsize); 1635 kobj_free(omp, sizeof (struct module)); 1636 } 1637 1638 static void 1639 kobj_export_ctf(struct module *mp) 1640 { 1641 char *data = mp->ctfdata; 1642 size_t size = mp->ctfsize; 1643 1644 if (data != NULL) { 1645 if (_moddebug & MODDEBUG_NOCTF) { 1646 mp->ctfdata = NULL; 1647 mp->ctfsize = 0; 1648 } else { 1649 mp->ctfdata = vmem_alloc(ctf_arena, size, 1650 VM_BESTFIT | VM_SLEEP); 1651 bcopy(data, mp->ctfdata, size); 1652 } 1653 1654 if (!(mp->flags & KOBJ_PRIM)) 1655 kobj_free(data, size); 1656 } 1657 } 1658 1659 void 1660 kobj_export_module(struct module *mp) 1661 { 1662 kobj_export_ksyms(mp); 1663 kobj_export_ctf(mp); 1664 1665 mp->flags |= KOBJ_EXPORTED; 1666 } 1667 1668 static int 1669 process_dynamic(struct module *mp, char *dyndata, char *strdata) 1670 { 1671 char *path = NULL, *depstr = NULL; 1672 int allocsize = 0, osize = 0, nsize = 0; 1673 char *libname, *tmp; 1674 int lsize; 1675 Dyn *dynp; 1676 1677 for (dynp = (Dyn *)dyndata; dynp && dynp->d_tag != DT_NULL; dynp++) { 1678 switch (dynp->d_tag) { 1679 case DT_NEEDED: 1680 /* 1681 * Read the DT_NEEDED entries, expanding the macros they 1682 * contain (if any), and concatenating them into a 1683 * single space-separated dependency list. 1684 */ 1685 libname = (ulong_t)dynp->d_un.d_ptr + strdata; 1686 1687 if (strchr(libname, '$') != NULL) { 1688 char *_lib; 1689 1690 if (path == NULL) 1691 path = kobj_alloc(MAXPATHLEN, KM_WAIT); 1692 if ((_lib = expand_libmacro(libname, path, 1693 path)) != NULL) 1694 libname = _lib; 1695 else { 1696 _kobj_printf(ops, "krtld: " 1697 "process_dynamic: failed to expand " 1698 "%s\n", libname); 1699 } 1700 } 1701 1702 lsize = strlen(libname); 1703 nsize += lsize; 1704 if (nsize + 1 > allocsize) { 1705 tmp = kobj_alloc(allocsize + MAXPATHLEN, 1706 KM_WAIT); 1707 if (depstr != NULL) { 1708 bcopy(depstr, tmp, osize); 1709 kobj_free(depstr, allocsize); 1710 } 1711 depstr = tmp; 1712 allocsize += MAXPATHLEN; 1713 } 1714 bcopy(libname, depstr + osize, lsize); 1715 *(depstr + nsize) = ' '; /* separator */ 1716 nsize++; 1717 osize = nsize; 1718 break; 1719 1720 case DT_FLAGS_1: 1721 if (dynp->d_un.d_val & DF_1_IGNMULDEF) 1722 mp->flags |= KOBJ_IGNMULDEF; 1723 if (dynp->d_un.d_val & DF_1_NOKSYMS) 1724 mp->flags |= KOBJ_NOKSYMS; 1725 1726 break; 1727 } 1728 } 1729 1730 /* 1731 * finish up the depends string (if any) 1732 */ 1733 if (depstr != NULL) { 1734 *(depstr + nsize - 1) = '\0'; /* overwrite separator w/term */ 1735 if (path != NULL) 1736 kobj_free(path, MAXPATHLEN); 1737 1738 tmp = kobj_alloc(nsize, KM_WAIT); 1739 bcopy(depstr, tmp, nsize); 1740 kobj_free(depstr, allocsize); 1741 depstr = tmp; 1742 1743 mp->depends_on = depstr; 1744 } 1745 1746 return (0); 1747 } 1748 1749 static int 1750 do_dynamic(struct module *mp, struct _buf *file) 1751 { 1752 Shdr *dshp, *dstrp, *shp; 1753 char *dyndata, *dstrdata; 1754 int dshn, shn, rc; 1755 1756 /* find and validate the dynamic section (if any) */ 1757 1758 for (dshp = NULL, shn = 1; shn < mp->hdr.e_shnum; shn++) { 1759 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 1760 switch (shp->sh_type) { 1761 case SHT_DYNAMIC: 1762 if (dshp != NULL) { 1763 _kobj_printf(ops, "krtld: get_dynamic: %s, ", 1764 mp->filename); 1765 _kobj_printf(ops, 1766 "multiple dynamic sections\n"); 1767 return (-1); 1768 } else { 1769 dshp = shp; 1770 dshn = shn; 1771 } 1772 break; 1773 } 1774 } 1775 1776 if (dshp == NULL) 1777 return (0); 1778 1779 if (dshp->sh_link > mp->hdr.e_shnum) { 1780 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1781 _kobj_printf(ops, "no section for sh_link %d\n", dshp->sh_link); 1782 return (-1); 1783 } 1784 dstrp = (Shdr *)(mp->shdrs + dshp->sh_link * mp->hdr.e_shentsize); 1785 1786 if (dstrp->sh_type != SHT_STRTAB) { 1787 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1788 _kobj_printf(ops, "sh_link not a string table for section %d\n", 1789 dshn); 1790 return (-1); 1791 } 1792 1793 /* read it from disk */ 1794 1795 dyndata = kobj_alloc(dshp->sh_size, KM_WAIT|KM_TMP); 1796 if (kobj_read_file(file, dyndata, dshp->sh_size, dshp->sh_offset) < 0) { 1797 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1798 _kobj_printf(ops, "error reading section %d\n", dshn); 1799 1800 kobj_free(dyndata, dshp->sh_size); 1801 return (-1); 1802 } 1803 1804 dstrdata = kobj_alloc(dstrp->sh_size, KM_WAIT|KM_TMP); 1805 if (kobj_read_file(file, dstrdata, dstrp->sh_size, 1806 dstrp->sh_offset) < 0) { 1807 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1808 _kobj_printf(ops, "error reading section %d\n", dshp->sh_link); 1809 1810 kobj_free(dyndata, dshp->sh_size); 1811 kobj_free(dstrdata, dstrp->sh_size); 1812 return (-1); 1813 } 1814 1815 /* pull the interesting pieces out */ 1816 1817 rc = process_dynamic(mp, dyndata, dstrdata); 1818 1819 kobj_free(dyndata, dshp->sh_size); 1820 kobj_free(dstrdata, dstrp->sh_size); 1821 1822 return (rc); 1823 } 1824 1825 void 1826 kobj_set_ctf(struct module *mp, caddr_t data, size_t size) 1827 { 1828 if (!standalone) { 1829 if (mp->ctfdata != NULL) { 1830 if (vmem_contains(ctf_arena, mp->ctfdata, 1831 mp->ctfsize)) { 1832 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize); 1833 } else { 1834 kobj_free(mp->ctfdata, mp->ctfsize); 1835 } 1836 } 1837 } 1838 1839 /* 1840 * The order is very important here. We need to make sure that 1841 * consumers, at any given instant, see a consistent state. We'd 1842 * rather they see no CTF data than the address of one buffer and the 1843 * size of another. 1844 */ 1845 mp->ctfdata = NULL; 1846 membar_producer(); 1847 mp->ctfsize = size; 1848 mp->ctfdata = data; 1849 membar_producer(); 1850 } 1851 1852 int 1853 kobj_load_module(struct modctl *modp, int use_path) 1854 { 1855 char *filename = modp->mod_filename; 1856 char *modname = modp->mod_modname; 1857 int i; 1858 int n; 1859 struct _buf *file; 1860 struct module *mp = NULL; 1861 #ifdef MODDIR_SUFFIX 1862 int no_suffixdir_drv = 0; 1863 #endif 1864 1865 mp = kobj_zalloc(sizeof (struct module), KM_WAIT); 1866 1867 /* 1868 * We need to prevent kmdb's symbols from leaking into /dev/ksyms. 1869 * kmdb contains a bunch of symbols with well-known names, symbols 1870 * which will mask the real versions, thus causing no end of trouble 1871 * for mdb. 1872 */ 1873 if (strcmp(modp->mod_modname, "kmdbmod") == 0) 1874 mp->flags |= KOBJ_NOKSYMS; 1875 1876 file = kobj_open_path(filename, use_path, 1); 1877 if (file == (struct _buf *)-1) { 1878 #ifdef MODDIR_SUFFIX 1879 file = kobj_open_path(filename, use_path, 0); 1880 #endif 1881 if (file == (struct _buf *)-1) { 1882 kobj_free(mp, sizeof (*mp)); 1883 goto bad; 1884 } 1885 #ifdef MODDIR_SUFFIX 1886 /* 1887 * There is no driver module in the ISA specific (suffix) 1888 * subdirectory but there is a module in the parent directory. 1889 */ 1890 if (strncmp(filename, "drv/", 4) == 0) { 1891 no_suffixdir_drv = 1; 1892 } 1893 #endif 1894 } 1895 1896 mp->filename = kobj_alloc(strlen(file->_name) + 1, KM_WAIT); 1897 (void) strcpy(mp->filename, file->_name); 1898 1899 if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) { 1900 _kobj_printf(ops, "kobj_load_module: %s read header failed\n", 1901 modname); 1902 kobj_free(mp->filename, strlen(file->_name) + 1); 1903 kobj_free(mp, sizeof (*mp)); 1904 goto bad; 1905 } 1906 for (i = 0; i < SELFMAG; i++) { 1907 if (mp->hdr.e_ident[i] != ELFMAG[i]) { 1908 if (_moddebug & MODDEBUG_ERRMSG) 1909 _kobj_printf(ops, "%s not an elf module\n", 1910 modname); 1911 kobj_free(mp->filename, strlen(file->_name) + 1); 1912 kobj_free(mp, sizeof (*mp)); 1913 goto bad; 1914 } 1915 } 1916 /* 1917 * It's ELF, but is it our ISA? Interpreting the header 1918 * from a file for a byte-swapped ISA could cause a huge 1919 * and unsatisfiable value to be passed to kobj_alloc below 1920 * and therefore hang booting. 1921 */ 1922 if (!elf_mach_ok(&mp->hdr)) { 1923 if (_moddebug & MODDEBUG_ERRMSG) 1924 _kobj_printf(ops, "%s not an elf module for this ISA\n", 1925 modname); 1926 kobj_free(mp->filename, strlen(file->_name) + 1); 1927 kobj_free(mp, sizeof (*mp)); 1928 #ifdef MODDIR_SUFFIX 1929 /* 1930 * The driver mod is not in the ISA specific subdirectory 1931 * and the module in the parent directory is not our ISA. 1932 * If it is our ISA, for now we will silently succeed. 1933 */ 1934 if (no_suffixdir_drv == 1) { 1935 cmn_err(CE_CONT, "?NOTICE: %s: 64-bit driver module" 1936 " not found\n", modname); 1937 } 1938 #endif 1939 goto bad; 1940 } 1941 1942 /* 1943 * All modules, save for unix, should be relocatable (as opposed to 1944 * dynamic). Dynamic modules come with PLTs and GOTs, which can't 1945 * currently be processed by krtld. 1946 */ 1947 if (mp->hdr.e_type != ET_REL) { 1948 if (_moddebug & MODDEBUG_ERRMSG) 1949 _kobj_printf(ops, "%s isn't a relocatable (ET_REL) " 1950 "module\n", modname); 1951 kobj_free(mp->filename, strlen(file->_name) + 1); 1952 kobj_free(mp, sizeof (*mp)); 1953 goto bad; 1954 } 1955 1956 n = mp->hdr.e_shentsize * mp->hdr.e_shnum; 1957 mp->shdrs = kobj_alloc(n, KM_WAIT); 1958 1959 if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) { 1960 _kobj_printf(ops, "kobj_load_module: %s error reading " 1961 "section headers\n", modname); 1962 kobj_free(mp->shdrs, n); 1963 kobj_free(mp->filename, strlen(file->_name) + 1); 1964 kobj_free(mp, sizeof (*mp)); 1965 goto bad; 1966 } 1967 1968 kobj_notify(KOBJ_NOTIFY_MODLOADING, modp); 1969 module_assign(modp, mp); 1970 1971 /* read in sections */ 1972 if (get_progbits(mp, file) < 0) { 1973 _kobj_printf(ops, "%s error reading sections\n", modname); 1974 goto bad; 1975 } 1976 1977 if (do_dynamic(mp, file) < 0) { 1978 _kobj_printf(ops, "%s error reading dynamic section\n", 1979 modname); 1980 goto bad; 1981 } 1982 1983 modp->mod_text = mp->text; 1984 modp->mod_text_size = mp->text_size; 1985 1986 /* read in symbols; adjust values for each section's real address */ 1987 if (get_syms(mp, file) < 0) { 1988 _kobj_printf(ops, "%s error reading symbols\n", 1989 modname); 1990 goto bad; 1991 } 1992 1993 /* 1994 * If we didn't dependency information from the dynamic section, look 1995 * for it the old-fashioned way. 1996 */ 1997 if (mp->depends_on == NULL) 1998 mp->depends_on = depends_on(mp); 1999 2000 if (get_ctf(mp, file) < 0) { 2001 _kobj_printf(ops, "%s debug information will not " 2002 "be available\n", modname); 2003 } 2004 2005 /* primary kernel modules do not have a signature section */ 2006 if (!(mp->flags & KOBJ_PRIM)) 2007 get_signature(mp, file); 2008 2009 #ifdef KOBJ_DEBUG 2010 if (kobj_debug & D_LOADING) { 2011 _kobj_printf(ops, "krtld: file=%s\n", mp->filename); 2012 _kobj_printf(ops, "\ttext:0x%p", mp->text); 2013 _kobj_printf(ops, " size: 0x%lx\n", mp->text_size); 2014 _kobj_printf(ops, "\tdata:0x%p", mp->data); 2015 _kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size); 2016 } 2017 #endif /* KOBJ_DEBUG */ 2018 2019 /* 2020 * For primary kernel modules, we defer 2021 * symbol resolution and relocation until 2022 * all primary objects have been loaded. 2023 */ 2024 if (!standalone) { 2025 int ddrval, dcrval; 2026 char *dependent_modname; 2027 /* load all dependents */ 2028 dependent_modname = kobj_zalloc(MODMAXNAMELEN, KM_WAIT); 2029 ddrval = do_dependents(modp, dependent_modname, MODMAXNAMELEN); 2030 2031 /* 2032 * resolve undefined and common symbols, 2033 * also allocates common space 2034 */ 2035 if ((dcrval = do_common(mp)) < 0) { 2036 switch (dcrval) { 2037 case DOSYM_UNSAFE: 2038 _kobj_printf(ops, "WARNING: mod_load: " 2039 "MT-unsafe module '%s' rejected\n", 2040 modname); 2041 break; 2042 case DOSYM_UNDEF: 2043 _kobj_printf(ops, "WARNING: mod_load: " 2044 "cannot load module '%s'\n", 2045 modname); 2046 if (ddrval == -1) { 2047 _kobj_printf(ops, "WARNING: %s: ", 2048 modname); 2049 _kobj_printf(ops, 2050 "unable to resolve dependency, " 2051 "module '%s' not found\n", 2052 dependent_modname); 2053 } 2054 break; 2055 } 2056 } 2057 kobj_free(dependent_modname, MODMAXNAMELEN); 2058 if (dcrval < 0) 2059 goto bad; 2060 2061 /* process relocation tables */ 2062 if (do_relocations(mp) < 0) { 2063 _kobj_printf(ops, "%s error doing relocations\n", 2064 modname); 2065 goto bad; 2066 } 2067 2068 if (mp->destination) { 2069 off_t off = (uintptr_t)mp->destination & PAGEOFFSET; 2070 caddr_t base = (caddr_t)mp->destination - off; 2071 size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE); 2072 2073 hat_unload(kas.a_hat, base, size, HAT_UNLOAD_UNLOCK); 2074 vmem_free(heap_arena, base, size); 2075 } 2076 2077 /* sync_instruction_memory */ 2078 kobj_sync_instruction_memory(mp->text, mp->text_size); 2079 kobj_export_module(mp); 2080 kobj_notify(KOBJ_NOTIFY_MODLOADED, modp); 2081 } 2082 kobj_close_file(file); 2083 return (0); 2084 bad: 2085 if (file != (struct _buf *)-1) 2086 kobj_close_file(file); 2087 if (modp->mod_mp != NULL) 2088 free_module_data(modp->mod_mp); 2089 2090 module_assign(modp, NULL); 2091 return ((file == (struct _buf *)-1) ? ENOENT : EINVAL); 2092 } 2093 2094 int 2095 kobj_load_primary_module(struct modctl *modp) 2096 { 2097 struct modctl *dep; 2098 struct module *mp; 2099 2100 if (kobj_load_module(modp, 0) != 0) 2101 return (-1); 2102 2103 dep = NULL; 2104 mp = modp->mod_mp; 2105 mp->flags |= KOBJ_PRIM; 2106 2107 /* Bind new module to its dependents */ 2108 if (mp->depends_on != NULL && (dep = 2109 mod_already_loaded(mp->depends_on)) == NULL) { 2110 #ifdef KOBJ_DEBUG 2111 if (kobj_debug & D_DEBUG) { 2112 _kobj_printf(ops, "krtld: failed to resolve deps " 2113 "for primary %s\n", modp->mod_modname); 2114 } 2115 #endif 2116 return (-1); 2117 } 2118 2119 if (dep != NULL) 2120 add_dependent(mp, dep->mod_mp); 2121 2122 /* 2123 * Relocate it. This module may not be part of a link map, so we 2124 * can't use bind_primary. 2125 */ 2126 if (do_common(mp) < 0 || do_symbols(mp, 0) < 0 || 2127 do_relocations(mp) < 0) { 2128 #ifdef KOBJ_DEBUG 2129 if (kobj_debug & D_DEBUG) { 2130 _kobj_printf(ops, "krtld: failed to relocate " 2131 "primary %s\n", modp->mod_modname); 2132 } 2133 #endif 2134 return (-1); 2135 } 2136 2137 return (0); 2138 } 2139 2140 static void 2141 module_assign(struct modctl *cp, struct module *mp) 2142 { 2143 if (standalone) { 2144 cp->mod_mp = mp; 2145 return; 2146 } 2147 mutex_enter(&mod_lock); 2148 cp->mod_mp = mp; 2149 cp->mod_gencount++; 2150 mutex_exit(&mod_lock); 2151 } 2152 2153 void 2154 kobj_unload_module(struct modctl *modp) 2155 { 2156 struct module *mp = modp->mod_mp; 2157 2158 if ((_moddebug & MODDEBUG_KEEPTEXT) && mp) { 2159 _kobj_printf(ops, "text for %s ", mp->filename); 2160 _kobj_printf(ops, "was at %p\n", mp->text); 2161 mp->text = NULL; /* don't actually free it */ 2162 } 2163 2164 kobj_notify(KOBJ_NOTIFY_MODUNLOADING, modp); 2165 2166 /* 2167 * Null out mod_mp first, so consumers (debuggers) know not to look 2168 * at the module structure any more. 2169 */ 2170 mutex_enter(&mod_lock); 2171 modp->mod_mp = NULL; 2172 mutex_exit(&mod_lock); 2173 2174 kobj_notify(KOBJ_NOTIFY_MODUNLOADED, modp); 2175 free_module_data(mp); 2176 } 2177 2178 static void 2179 free_module_data(struct module *mp) 2180 { 2181 struct module_list *lp, *tmp; 2182 hotinline_desc_t *hid, *next; 2183 int ksyms_exported = 0; 2184 2185 lp = mp->head; 2186 while (lp) { 2187 tmp = lp; 2188 lp = lp->next; 2189 kobj_free((char *)tmp, sizeof (*tmp)); 2190 } 2191 2192 /* release hotinlines */ 2193 hid = mp->hi_calls; 2194 while (hid != NULL) { 2195 next = hid->hid_next; 2196 kobj_free(hid->hid_symname, strlen(hid->hid_symname) + 1); 2197 kobj_free(hid, sizeof (hotinline_desc_t)); 2198 hid = next; 2199 } 2200 2201 rw_enter(&ksyms_lock, RW_WRITER); 2202 if (mp->symspace) { 2203 if (vmem_contains(ksyms_arena, mp->symspace, mp->symsize)) { 2204 vmem_free(ksyms_arena, mp->symspace, mp->symsize); 2205 ksyms_exported = 1; 2206 } else { 2207 if (mp->flags & KOBJ_NOKSYMS) 2208 ksyms_exported = 1; 2209 kobj_free(mp->symspace, mp->symsize); 2210 } 2211 } 2212 rw_exit(&ksyms_lock); 2213 2214 if (mp->ctfdata) { 2215 if (vmem_contains(ctf_arena, mp->ctfdata, mp->ctfsize)) 2216 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize); 2217 else 2218 kobj_free(mp->ctfdata, mp->ctfsize); 2219 } 2220 2221 if (mp->sigdata) 2222 kobj_free(mp->sigdata, mp->sigsize); 2223 2224 /* 2225 * We did not get far enough into kobj_export_ksyms() to free allocated 2226 * buffers because we encounted error conditions. Free the buffers. 2227 */ 2228 if ((ksyms_exported == 0) && (mp->shdrs != NULL)) { 2229 uint_t shn; 2230 Shdr *shp; 2231 2232 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 2233 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2234 switch (shp->sh_type) { 2235 case SHT_RELA: 2236 case SHT_REL: 2237 if (shp->sh_addr != 0) 2238 kobj_free((void *)shp->sh_addr, 2239 shp->sh_size); 2240 break; 2241 } 2242 } 2243 err_free_done: 2244 if (!(mp->flags & KOBJ_PRIM)) { 2245 kobj_free(mp->shdrs, 2246 mp->hdr.e_shentsize * mp->hdr.e_shnum); 2247 } 2248 } 2249 2250 if (mp->bss) 2251 vmem_free(data_arena, (void *)mp->bss, mp->bss_size); 2252 2253 if (mp->fbt_tab) 2254 kobj_texthole_free(mp->fbt_tab, mp->fbt_size); 2255 2256 if (mp->textwin_base) 2257 kobj_textwin_free(mp); 2258 2259 if (mp->sdt_probes != NULL) { 2260 sdt_probedesc_t *sdp = mp->sdt_probes, *next; 2261 2262 while (sdp != NULL) { 2263 next = sdp->sdpd_next; 2264 kobj_free(sdp->sdpd_name, strlen(sdp->sdpd_name) + 1); 2265 kobj_free(sdp, sizeof (sdt_probedesc_t)); 2266 sdp = next; 2267 } 2268 } 2269 2270 if (mp->sdt_tab) 2271 kobj_texthole_free(mp->sdt_tab, mp->sdt_size); 2272 if (mp->text) 2273 vmem_free(text_arena, mp->text, mp->text_size); 2274 if (mp->data) 2275 vmem_free(data_arena, mp->data, mp->data_size); 2276 if (mp->depends_on) 2277 kobj_free(mp->depends_on, strlen(mp->depends_on)+1); 2278 if (mp->filename) 2279 kobj_free(mp->filename, strlen(mp->filename)+1); 2280 2281 kobj_free((char *)mp, sizeof (*mp)); 2282 } 2283 2284 static int 2285 get_progbits(struct module *mp, struct _buf *file) 2286 { 2287 struct proginfo *tp, *dp, *sdp; 2288 Shdr *shp; 2289 reloc_dest_t dest = NULL; 2290 uintptr_t bits_ptr; 2291 uintptr_t text = 0, data, textptr; 2292 uint_t shn; 2293 int err = -1; 2294 2295 tp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP); 2296 dp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP); 2297 sdp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP); 2298 /* 2299 * loop through sections to find out how much space we need 2300 * for text, data, (also bss that is already assigned) 2301 */ 2302 if (get_progbits_size(mp, tp, dp, sdp) < 0) 2303 goto done; 2304 2305 mp->text_size = tp->size; 2306 mp->data_size = dp->size; 2307 2308 if (standalone) { 2309 caddr_t limit = _data; 2310 2311 if (lg_pagesize && _text + lg_pagesize < limit) 2312 limit = _text + lg_pagesize; 2313 2314 mp->text = kobj_segbrk(&_etext, mp->text_size, 2315 tp->align, limit); 2316 /* 2317 * If we can't grow the text segment, try the 2318 * data segment before failing. 2319 */ 2320 if (mp->text == NULL) { 2321 mp->text = kobj_segbrk(&_edata, mp->text_size, 2322 tp->align, 0); 2323 } 2324 2325 mp->data = kobj_segbrk(&_edata, mp->data_size, dp->align, 0); 2326 2327 if (mp->text == NULL || mp->data == NULL) 2328 goto done; 2329 2330 } else { 2331 if (text_arena == NULL) 2332 kobj_vmem_init(&text_arena, &data_arena); 2333 2334 /* 2335 * some architectures may want to load the module on a 2336 * page that is currently read only. It may not be 2337 * possible for those architectures to remap their page 2338 * on the fly. So we provide a facility for them to hang 2339 * a private hook where the memory they assign the module 2340 * is not the actual place where the module loads. 2341 * 2342 * In this case there are two addresses that deal with the 2343 * modload. 2344 * 1) the final destination of the module 2345 * 2) the address that is used to view the newly 2346 * loaded module until all the relocations relative to 1 2347 * above are completed. 2348 * 2349 * That is what dest is used for below. 2350 */ 2351 mp->text_size += tp->align; 2352 mp->data_size += dp->align; 2353 2354 mp->text = kobj_text_alloc(text_arena, mp->text_size); 2355 2356 /* 2357 * a remap is taking place. Align the text ptr relative 2358 * to the secondary mapping. That is where the bits will 2359 * be read in. 2360 */ 2361 if (kvseg.s_base != NULL && !vmem_contains(heaptext_arena, 2362 mp->text, mp->text_size)) { 2363 off_t off = (uintptr_t)mp->text & PAGEOFFSET; 2364 size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE); 2365 caddr_t map = vmem_alloc(heap_arena, size, VM_SLEEP); 2366 caddr_t orig = mp->text - off; 2367 pgcnt_t pages = size / PAGESIZE; 2368 2369 dest = (reloc_dest_t)(map + off); 2370 text = ALIGN((uintptr_t)dest, tp->align); 2371 2372 while (pages--) { 2373 hat_devload(kas.a_hat, map, PAGESIZE, 2374 hat_getpfnum(kas.a_hat, orig), 2375 PROT_READ | PROT_WRITE | PROT_EXEC, 2376 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 2377 map += PAGESIZE; 2378 orig += PAGESIZE; 2379 } 2380 /* 2381 * Since we set up a non-cacheable mapping, we need 2382 * to flush any old entries in the cache that might 2383 * be left around from the read-only mapping. 2384 */ 2385 dcache_flushall(); 2386 } 2387 if (mp->data_size) 2388 mp->data = vmem_alloc(data_arena, mp->data_size, 2389 VM_SLEEP | VM_BESTFIT); 2390 } 2391 textptr = (uintptr_t)mp->text; 2392 textptr = ALIGN(textptr, tp->align); 2393 mp->destination = dest; 2394 2395 /* 2396 * This is the case where a remap is not being done. 2397 */ 2398 if (text == 0) 2399 text = ALIGN((uintptr_t)mp->text, tp->align); 2400 data = ALIGN((uintptr_t)mp->data, dp->align); 2401 2402 /* now loop though sections assigning addresses and loading the data */ 2403 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 2404 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2405 if (!(shp->sh_flags & SHF_ALLOC)) 2406 continue; 2407 2408 if ((shp->sh_flags & SHF_WRITE) == 0) 2409 bits_ptr = text; 2410 else 2411 bits_ptr = data; 2412 2413 bits_ptr = ALIGN(bits_ptr, shp->sh_addralign); 2414 2415 if (shp->sh_type == SHT_NOBITS) { 2416 /* 2417 * Zero bss. 2418 */ 2419 bzero((caddr_t)bits_ptr, shp->sh_size); 2420 shp->sh_type = SHT_PROGBITS; 2421 } else { 2422 if (kobj_read_file(file, (char *)bits_ptr, 2423 shp->sh_size, shp->sh_offset) < 0) 2424 goto done; 2425 } 2426 2427 if (shp->sh_flags & SHF_WRITE) { 2428 shp->sh_addr = bits_ptr; 2429 } else { 2430 textptr = ALIGN(textptr, shp->sh_addralign); 2431 shp->sh_addr = textptr; 2432 textptr += shp->sh_size; 2433 } 2434 2435 bits_ptr += shp->sh_size; 2436 if ((shp->sh_flags & SHF_WRITE) == 0) 2437 text = bits_ptr; 2438 else 2439 data = bits_ptr; 2440 } 2441 2442 err = 0; 2443 done: 2444 /* 2445 * Free and mark as freed the section headers here so that 2446 * free_module_data() does not have to worry about this buffer. 2447 * 2448 * This buffer is freed here because one of the possible reasons 2449 * for error is a section with non-zero sh_addr and in that case 2450 * free_module_data() would have no way of recognizing that this 2451 * buffer was unallocated. 2452 */ 2453 if (err != 0) { 2454 kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum); 2455 mp->shdrs = NULL; 2456 } 2457 2458 (void) kobj_free(tp, sizeof (struct proginfo)); 2459 (void) kobj_free(dp, sizeof (struct proginfo)); 2460 (void) kobj_free(sdp, sizeof (struct proginfo)); 2461 2462 return (err); 2463 } 2464 2465 /* 2466 * Go through suppress_sym_list to see if "multiply defined" 2467 * warning of this symbol should be suppressed. Return 1 if 2468 * warning should be suppressed, 0 otherwise. 2469 */ 2470 static int 2471 kobj_suppress_warning(char *symname) 2472 { 2473 int i; 2474 2475 for (i = 0; suppress_sym_list[i] != NULL; i++) { 2476 if (strcmp(suppress_sym_list[i], symname) == 0) 2477 return (1); 2478 } 2479 2480 return (0); 2481 } 2482 2483 static int 2484 get_syms(struct module *mp, struct _buf *file) 2485 { 2486 uint_t shn; 2487 Shdr *shp; 2488 uint_t i; 2489 Sym *sp, *ksp; 2490 char *symname; 2491 int dosymtab = 0; 2492 2493 /* 2494 * Find the interesting sections. 2495 */ 2496 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 2497 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2498 switch (shp->sh_type) { 2499 case SHT_SYMTAB: 2500 mp->symtbl_section = shn; 2501 mp->symhdr = shp; 2502 dosymtab++; 2503 break; 2504 2505 case SHT_RELA: 2506 case SHT_REL: 2507 /* 2508 * Already loaded. 2509 */ 2510 if (shp->sh_addr) 2511 continue; 2512 2513 /* KM_TMP since kobj_free'd in do_relocations */ 2514 shp->sh_addr = (Addr) 2515 kobj_alloc(shp->sh_size, KM_WAIT|KM_TMP); 2516 2517 if (kobj_read_file(file, (char *)shp->sh_addr, 2518 shp->sh_size, shp->sh_offset) < 0) { 2519 _kobj_printf(ops, "krtld: get_syms: %s, ", 2520 mp->filename); 2521 _kobj_printf(ops, "error reading section %d\n", 2522 shn); 2523 return (-1); 2524 } 2525 break; 2526 } 2527 } 2528 2529 /* 2530 * This is true for a stripped executable. In the case of 2531 * 'unix' it can be stripped but it still contains the SHT_DYNSYM, 2532 * and since that symbol information is still present everything 2533 * is just fine. 2534 */ 2535 if (!dosymtab) { 2536 if (mp->flags & KOBJ_EXEC) 2537 return (0); 2538 _kobj_printf(ops, "krtld: get_syms: %s ", 2539 mp->filename); 2540 _kobj_printf(ops, "no SHT_SYMTAB symbol table found\n"); 2541 return (-1); 2542 } 2543 2544 /* 2545 * get the associated string table header 2546 */ 2547 if ((mp->symhdr == 0) || (mp->symhdr->sh_link >= mp->hdr.e_shnum)) 2548 return (-1); 2549 mp->strhdr = (Shdr *) 2550 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize); 2551 2552 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize; 2553 mp->hashsize = kobj_gethashsize(mp->nsyms); 2554 2555 /* 2556 * Allocate space for the symbol table, buckets, chains, and strings. 2557 */ 2558 mp->symsize = mp->symhdr->sh_size + 2559 (mp->hashsize + mp->nsyms) * sizeof (symid_t) + mp->strhdr->sh_size; 2560 mp->symspace = kobj_zalloc(mp->symsize, KM_WAIT|KM_SCRATCH); 2561 2562 mp->symtbl = mp->symspace; 2563 mp->buckets = (symid_t *)(mp->symtbl + mp->symhdr->sh_size); 2564 mp->chains = mp->buckets + mp->hashsize; 2565 mp->strings = (char *)(mp->chains + mp->nsyms); 2566 2567 if (kobj_read_file(file, mp->symtbl, 2568 mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0 || 2569 kobj_read_file(file, mp->strings, 2570 mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0) 2571 return (-1); 2572 2573 /* 2574 * loop through the symbol table adjusting values to account 2575 * for where each section got loaded into memory. Also 2576 * fill in the hash table. 2577 */ 2578 for (i = 1; i < mp->nsyms; i++) { 2579 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize); 2580 if (sp->st_shndx < SHN_LORESERVE) { 2581 if (sp->st_shndx >= mp->hdr.e_shnum) { 2582 _kobj_printf(ops, "%s bad shndx ", 2583 file->_name); 2584 _kobj_printf(ops, "in symbol %d\n", i); 2585 return (-1); 2586 } 2587 shp = (Shdr *) 2588 (mp->shdrs + 2589 sp->st_shndx * mp->hdr.e_shentsize); 2590 if (!(mp->flags & KOBJ_EXEC)) 2591 sp->st_value += shp->sh_addr; 2592 } 2593 2594 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF) 2595 continue; 2596 if (sp->st_name >= mp->strhdr->sh_size) 2597 return (-1); 2598 2599 symname = mp->strings + sp->st_name; 2600 2601 if (!(mp->flags & KOBJ_EXEC) && 2602 ELF_ST_BIND(sp->st_info) == STB_GLOBAL) { 2603 ksp = kobj_lookup_all(mp, symname, 0); 2604 2605 if (ksp && ELF_ST_BIND(ksp->st_info) == STB_GLOBAL && 2606 !kobj_suppress_warning(symname) && 2607 sp->st_shndx != SHN_UNDEF && 2608 sp->st_shndx != SHN_COMMON && 2609 ksp->st_shndx != SHN_UNDEF && 2610 ksp->st_shndx != SHN_COMMON) { 2611 /* 2612 * Unless this symbol is a stub, it's multiply 2613 * defined. Multiply-defined symbols are 2614 * usually bad, but some objects (kmdb) have 2615 * a legitimate need to have their own 2616 * copies of common functions. 2617 */ 2618 if ((standalone || 2619 ksp->st_value < (uintptr_t)stubs_base || 2620 ksp->st_value >= (uintptr_t)stubs_end) && 2621 !(mp->flags & KOBJ_IGNMULDEF)) { 2622 _kobj_printf(ops, 2623 "%s symbol ", file->_name); 2624 _kobj_printf(ops, 2625 "%s multiply defined\n", symname); 2626 } 2627 } 2628 } 2629 2630 sym_insert(mp, symname, i); 2631 } 2632 2633 return (0); 2634 } 2635 2636 static int 2637 get_ctf(struct module *mp, struct _buf *file) 2638 { 2639 char *shstrtab, *ctfdata; 2640 size_t shstrlen; 2641 Shdr *shp; 2642 uint_t i; 2643 2644 if (_moddebug & MODDEBUG_NOCTF) 2645 return (0); /* do not attempt to even load CTF data */ 2646 2647 if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) { 2648 _kobj_printf(ops, "krtld: get_ctf: %s, ", 2649 mp->filename); 2650 _kobj_printf(ops, "corrupt e_shstrndx %u\n", 2651 mp->hdr.e_shstrndx); 2652 return (-1); 2653 } 2654 2655 shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize); 2656 shstrlen = shp->sh_size; 2657 shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP); 2658 2659 if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) { 2660 _kobj_printf(ops, "krtld: get_ctf: %s, ", 2661 mp->filename); 2662 _kobj_printf(ops, "error reading section %u\n", 2663 mp->hdr.e_shstrndx); 2664 kobj_free(shstrtab, shstrlen); 2665 return (-1); 2666 } 2667 2668 for (i = 0; i < mp->hdr.e_shnum; i++) { 2669 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize); 2670 2671 if (shp->sh_size != 0 && shp->sh_name < shstrlen && 2672 strcmp(shstrtab + shp->sh_name, ".SUNW_ctf") == 0) { 2673 ctfdata = kobj_alloc(shp->sh_size, KM_WAIT|KM_SCRATCH); 2674 2675 if (kobj_read_file(file, ctfdata, shp->sh_size, 2676 shp->sh_offset) < 0) { 2677 _kobj_printf(ops, "krtld: get_ctf: %s, error " 2678 "reading .SUNW_ctf data\n", mp->filename); 2679 kobj_free(ctfdata, shp->sh_size); 2680 kobj_free(shstrtab, shstrlen); 2681 return (-1); 2682 } 2683 2684 mp->ctfdata = ctfdata; 2685 mp->ctfsize = shp->sh_size; 2686 break; 2687 } 2688 } 2689 2690 kobj_free(shstrtab, shstrlen); 2691 return (0); 2692 } 2693 2694 #define SHA1_DIGEST_LENGTH 20 /* SHA1 digest length in bytes */ 2695 2696 /* 2697 * Return the hash of the ELF sections that are memory resident. 2698 * i.e. text and data. We skip a SHT_NOBITS section since it occupies 2699 * no space in the file. We use SHA1 here since libelfsign uses 2700 * it and both places need to use the same algorithm. 2701 */ 2702 static void 2703 crypto_es_hash(struct module *mp, char *hash, char *shstrtab) 2704 { 2705 uint_t shn; 2706 Shdr *shp; 2707 SHA1_CTX ctx; 2708 2709 SHA1Init(&ctx); 2710 2711 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 2712 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2713 if (!(shp->sh_flags & SHF_ALLOC) || shp->sh_size == 0) 2714 continue; 2715 2716 /* 2717 * The check should ideally be shp->sh_type == SHT_NOBITS. 2718 * However, we can't do that check here as get_progbits() 2719 * resets the type. 2720 */ 2721 if (strcmp(shstrtab + shp->sh_name, ".bss") == 0) 2722 continue; 2723 #ifdef KOBJ_DEBUG 2724 if (kobj_debug & D_DEBUG) 2725 _kobj_printf(ops, 2726 "krtld: crypto_es_hash: updating hash with" 2727 " %s data size=%lx\n", shstrtab + shp->sh_name, 2728 (size_t)shp->sh_size); 2729 #endif 2730 ASSERT(shp->sh_addr != 0); 2731 SHA1Update(&ctx, (const uint8_t *)shp->sh_addr, shp->sh_size); 2732 } 2733 2734 SHA1Final((uchar_t *)hash, &ctx); 2735 } 2736 2737 /* 2738 * Get the .SUNW_signature section for the module, it it exists. 2739 * 2740 * This section exists only for crypto modules. None of the 2741 * primary modules have this section currently. 2742 */ 2743 static void 2744 get_signature(struct module *mp, struct _buf *file) 2745 { 2746 char *shstrtab, *sigdata = NULL; 2747 size_t shstrlen; 2748 Shdr *shp; 2749 uint_t i; 2750 2751 if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) { 2752 _kobj_printf(ops, "krtld: get_signature: %s, ", 2753 mp->filename); 2754 _kobj_printf(ops, "corrupt e_shstrndx %u\n", 2755 mp->hdr.e_shstrndx); 2756 return; 2757 } 2758 2759 shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize); 2760 shstrlen = shp->sh_size; 2761 shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP); 2762 2763 if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) { 2764 _kobj_printf(ops, "krtld: get_signature: %s, ", 2765 mp->filename); 2766 _kobj_printf(ops, "error reading section %u\n", 2767 mp->hdr.e_shstrndx); 2768 kobj_free(shstrtab, shstrlen); 2769 return; 2770 } 2771 2772 for (i = 0; i < mp->hdr.e_shnum; i++) { 2773 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize); 2774 if (shp->sh_size != 0 && shp->sh_name < shstrlen && 2775 strcmp(shstrtab + shp->sh_name, 2776 ELF_SIGNATURE_SECTION) == 0) { 2777 filesig_vers_t filesig_version; 2778 size_t sigsize = shp->sh_size + SHA1_DIGEST_LENGTH; 2779 sigdata = kobj_alloc(sigsize, KM_WAIT|KM_SCRATCH); 2780 2781 if (kobj_read_file(file, sigdata, shp->sh_size, 2782 shp->sh_offset) < 0) { 2783 _kobj_printf(ops, "krtld: get_signature: %s," 2784 " error reading .SUNW_signature data\n", 2785 mp->filename); 2786 kobj_free(sigdata, sigsize); 2787 kobj_free(shstrtab, shstrlen); 2788 return; 2789 } 2790 filesig_version = ((struct filesignatures *)sigdata)-> 2791 filesig_sig.filesig_version; 2792 if (!(filesig_version == FILESIG_VERSION1 || 2793 filesig_version == FILESIG_VERSION3)) { 2794 /* skip versions we don't understand */ 2795 kobj_free(sigdata, sigsize); 2796 kobj_free(shstrtab, shstrlen); 2797 return; 2798 } 2799 2800 mp->sigdata = sigdata; 2801 mp->sigsize = sigsize; 2802 break; 2803 } 2804 } 2805 2806 if (sigdata != NULL) { 2807 crypto_es_hash(mp, sigdata + shp->sh_size, shstrtab); 2808 } 2809 2810 kobj_free(shstrtab, shstrlen); 2811 } 2812 2813 static void 2814 add_dependent(struct module *mp, struct module *dep) 2815 { 2816 struct module_list *lp; 2817 2818 for (lp = mp->head; lp; lp = lp->next) { 2819 if (lp->mp == dep) 2820 return; /* already on the list */ 2821 } 2822 2823 if (lp == NULL) { 2824 lp = kobj_zalloc(sizeof (*lp), KM_WAIT); 2825 2826 lp->mp = dep; 2827 lp->next = NULL; 2828 if (mp->tail) 2829 mp->tail->next = lp; 2830 else 2831 mp->head = lp; 2832 mp->tail = lp; 2833 } 2834 } 2835 2836 static int 2837 do_dependents(struct modctl *modp, char *modname, size_t modnamelen) 2838 { 2839 struct module *mp; 2840 struct modctl *req; 2841 char *d, *p, *q; 2842 int c; 2843 char *err_modname = NULL; 2844 2845 mp = modp->mod_mp; 2846 2847 if ((p = mp->depends_on) == NULL) 2848 return (0); 2849 2850 for (;;) { 2851 /* 2852 * Skip space. 2853 */ 2854 while (*p && (*p == ' ' || *p == '\t')) 2855 p++; 2856 /* 2857 * Get module name. 2858 */ 2859 d = p; 2860 q = modname; 2861 c = 0; 2862 while (*p && *p != ' ' && *p != '\t') { 2863 if (c < modnamelen - 1) { 2864 *q++ = *p; 2865 c++; 2866 } 2867 p++; 2868 } 2869 2870 if (q == modname) 2871 break; 2872 2873 if (c == modnamelen - 1) { 2874 char *dep = kobj_alloc(p - d + 1, KM_WAIT|KM_TMP); 2875 2876 (void) strncpy(dep, d, p - d + 1); 2877 dep[p - d] = '\0'; 2878 2879 _kobj_printf(ops, "%s: dependency ", modp->mod_modname); 2880 _kobj_printf(ops, "'%s' too long ", dep); 2881 _kobj_printf(ops, "(max %d chars)\n", (int)modnamelen); 2882 2883 kobj_free(dep, p - d + 1); 2884 2885 return (-1); 2886 } 2887 2888 *q = '\0'; 2889 if ((req = mod_load_requisite(modp, modname)) == NULL) { 2890 #ifndef KOBJ_DEBUG 2891 if (_moddebug & MODDEBUG_LOADMSG) { 2892 #endif /* KOBJ_DEBUG */ 2893 _kobj_printf(ops, 2894 "%s: unable to resolve dependency, ", 2895 modp->mod_modname); 2896 _kobj_printf(ops, "cannot load module '%s'\n", 2897 modname); 2898 #ifndef KOBJ_DEBUG 2899 } 2900 #endif /* KOBJ_DEBUG */ 2901 if (err_modname == NULL) { 2902 /* 2903 * This must be the same size as the modname 2904 * one. 2905 */ 2906 err_modname = kobj_zalloc(MODMAXNAMELEN, 2907 KM_WAIT); 2908 2909 /* 2910 * We can use strcpy() here without fearing 2911 * the NULL terminator because the size of 2912 * err_modname is the same as one of modname, 2913 * and it's filled with zeros. 2914 */ 2915 (void) strcpy(err_modname, modname); 2916 } 2917 continue; 2918 } 2919 2920 add_dependent(mp, req->mod_mp); 2921 mod_release_mod(req); 2922 2923 } 2924 2925 if (err_modname != NULL) { 2926 /* 2927 * Copy the first module name where you detect an error to keep 2928 * its behavior the same as before. 2929 * This way keeps minimizing the memory use for error 2930 * modules, and this might be important at boot time because 2931 * the memory usage is a crucial factor for booting in most 2932 * cases. You can expect more verbose messages when using 2933 * a debug kernel or setting a bit in moddebug. 2934 */ 2935 bzero(modname, MODMAXNAMELEN); 2936 (void) strcpy(modname, err_modname); 2937 kobj_free(err_modname, MODMAXNAMELEN); 2938 return (-1); 2939 } 2940 2941 return (0); 2942 } 2943 2944 static int 2945 do_common(struct module *mp) 2946 { 2947 int err; 2948 2949 /* 2950 * first time through, assign all symbols defined in other 2951 * modules, and count up how much common space will be needed 2952 * (bss_size and bss_align) 2953 */ 2954 if ((err = do_symbols(mp, 0)) < 0) 2955 return (err); 2956 /* 2957 * increase bss_size by the maximum delta that could be 2958 * computed by the ALIGN below 2959 */ 2960 mp->bss_size += mp->bss_align; 2961 if (mp->bss_size) { 2962 if (standalone) 2963 mp->bss = (uintptr_t)kobj_segbrk(&_edata, mp->bss_size, 2964 MINALIGN, 0); 2965 else 2966 mp->bss = (uintptr_t)vmem_alloc(data_arena, 2967 mp->bss_size, VM_SLEEP | VM_BESTFIT); 2968 bzero((void *)mp->bss, mp->bss_size); 2969 /* now assign addresses to all common symbols */ 2970 if ((err = do_symbols(mp, ALIGN(mp->bss, mp->bss_align))) < 0) 2971 return (err); 2972 } 2973 return (0); 2974 } 2975 2976 static int 2977 do_symbols(struct module *mp, Elf64_Addr bss_base) 2978 { 2979 int bss_align; 2980 uintptr_t bss_ptr; 2981 int err; 2982 int i; 2983 Sym *sp, *sp1; 2984 char *name; 2985 int assign; 2986 int resolved = 1; 2987 2988 /* 2989 * Nothing left to do (optimization). 2990 */ 2991 if (mp->flags & KOBJ_RESOLVED) 2992 return (0); 2993 2994 assign = (bss_base) ? 1 : 0; 2995 bss_ptr = bss_base; 2996 bss_align = 0; 2997 err = 0; 2998 2999 for (i = 1; i < mp->nsyms; i++) { 3000 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * i); 3001 /* 3002 * we know that st_name is in bounds, since get_sections 3003 * has already checked all of the symbols 3004 */ 3005 name = mp->strings + sp->st_name; 3006 if (sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON) 3007 continue; 3008 #if defined(__sparc) 3009 /* 3010 * Register symbols are ignored in the kernel 3011 */ 3012 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) { 3013 if (*name != '\0') { 3014 _kobj_printf(ops, "%s: named REGISTER symbol ", 3015 mp->filename); 3016 _kobj_printf(ops, "not supported '%s'\n", 3017 name); 3018 err = DOSYM_UNDEF; 3019 } 3020 continue; 3021 } 3022 #endif /* __sparc */ 3023 /* 3024 * TLS symbols are ignored in the kernel 3025 */ 3026 if (ELF_ST_TYPE(sp->st_info) == STT_TLS) { 3027 _kobj_printf(ops, "%s: TLS symbol ", 3028 mp->filename); 3029 _kobj_printf(ops, "not supported '%s'\n", 3030 name); 3031 err = DOSYM_UNDEF; 3032 continue; 3033 } 3034 3035 if (ELF_ST_BIND(sp->st_info) != STB_LOCAL) { 3036 if ((sp1 = kobj_lookup_all(mp, name, 0)) != NULL) { 3037 sp->st_shndx = SHN_ABS; 3038 sp->st_value = sp1->st_value; 3039 continue; 3040 } 3041 } 3042 3043 if (sp->st_shndx == SHN_UNDEF) { 3044 resolved = 0; 3045 3046 /* 3047 * Skip over sdt probes and smap calls, 3048 * they're relocated later. 3049 */ 3050 if (strncmp(name, sdt_prefix, strlen(sdt_prefix)) == 0) 3051 continue; 3052 #if defined(__x86) 3053 if (strcmp(name, "smap_enable") == 0 || 3054 strcmp(name, "smap_disable") == 0) 3055 continue; 3056 #endif /* defined(__x86) */ 3057 3058 3059 /* 3060 * If it's not a weak reference and it's 3061 * not a primary object, it's an error. 3062 * (Primary objects may take more than 3063 * one pass to resolve) 3064 */ 3065 if (!(mp->flags & KOBJ_PRIM) && 3066 ELF_ST_BIND(sp->st_info) != STB_WEAK) { 3067 _kobj_printf(ops, "%s: undefined symbol", 3068 mp->filename); 3069 _kobj_printf(ops, " '%s'\n", name); 3070 /* 3071 * Try to determine whether this symbol 3072 * represents a dependency on obsolete 3073 * unsafe driver support. This is just 3074 * to make the warning more informative. 3075 */ 3076 if (strcmp(name, "sleep") == 0 || 3077 strcmp(name, "unsleep") == 0 || 3078 strcmp(name, "wakeup") == 0 || 3079 strcmp(name, "bsd_compat_ioctl") == 0 || 3080 strcmp(name, "unsafe_driver") == 0 || 3081 strncmp(name, "spl", 3) == 0 || 3082 strncmp(name, "i_ddi_spl", 9) == 0) 3083 err = DOSYM_UNSAFE; 3084 if (err == 0) 3085 err = DOSYM_UNDEF; 3086 } 3087 continue; 3088 } 3089 /* 3090 * It's a common symbol - st_value is the 3091 * required alignment. 3092 */ 3093 if (sp->st_value > bss_align) 3094 bss_align = sp->st_value; 3095 bss_ptr = ALIGN(bss_ptr, sp->st_value); 3096 if (assign) { 3097 sp->st_shndx = SHN_ABS; 3098 sp->st_value = bss_ptr; 3099 } 3100 bss_ptr += sp->st_size; 3101 } 3102 if (err) 3103 return (err); 3104 if (assign == 0 && mp->bss == 0) { 3105 mp->bss_align = bss_align; 3106 mp->bss_size = bss_ptr; 3107 } else if (resolved) { 3108 mp->flags |= KOBJ_RESOLVED; 3109 } 3110 3111 return (0); 3112 } 3113 3114 uint_t 3115 kobj_hash_name(const char *p) 3116 { 3117 uint_t g; 3118 uint_t hval; 3119 3120 hval = 0; 3121 while (*p) { 3122 hval = (hval << 4) + *p++; 3123 if ((g = (hval & 0xf0000000)) != 0) 3124 hval ^= g >> 24; 3125 hval &= ~g; 3126 } 3127 return (hval); 3128 } 3129 3130 /* look for name in all modules */ 3131 uintptr_t 3132 kobj_getsymvalue(char *name, int kernelonly) 3133 { 3134 Sym *sp; 3135 struct modctl *modp; 3136 struct module *mp; 3137 uintptr_t value = 0; 3138 3139 if ((sp = kobj_lookup_kernel(name)) != NULL) 3140 return ((uintptr_t)sp->st_value); 3141 3142 if (kernelonly) 3143 return (0); /* didn't find it in the kernel so give up */ 3144 3145 mutex_enter(&mod_lock); 3146 modp = &modules; 3147 do { 3148 mp = (struct module *)modp->mod_mp; 3149 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded && 3150 (sp = lookup_one(mp, name))) { 3151 value = (uintptr_t)sp->st_value; 3152 break; 3153 } 3154 } while ((modp = modp->mod_next) != &modules); 3155 mutex_exit(&mod_lock); 3156 return (value); 3157 } 3158 3159 /* look for a symbol near value. */ 3160 char * 3161 kobj_getsymname(uintptr_t value, ulong_t *offset) 3162 { 3163 char *name = NULL; 3164 struct modctl *modp; 3165 3166 struct modctl_list *lp; 3167 struct module *mp; 3168 3169 /* 3170 * Loop through the primary kernel modules. 3171 */ 3172 for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) { 3173 mp = mod(lp); 3174 3175 if ((name = kobj_searchsym(mp, value, offset)) != NULL) 3176 return (name); 3177 } 3178 3179 mutex_enter(&mod_lock); 3180 modp = &modules; 3181 do { 3182 mp = (struct module *)modp->mod_mp; 3183 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded && 3184 (name = kobj_searchsym(mp, value, offset))) 3185 break; 3186 } while ((modp = modp->mod_next) != &modules); 3187 mutex_exit(&mod_lock); 3188 return (name); 3189 } 3190 3191 /* return address of symbol and size */ 3192 3193 uintptr_t 3194 kobj_getelfsym(char *name, void *mp, int *size) 3195 { 3196 Sym *sp; 3197 3198 if (mp == NULL) 3199 sp = kobj_lookup_kernel(name); 3200 else 3201 sp = lookup_one(mp, name); 3202 3203 if (sp == NULL) 3204 return (0); 3205 3206 *size = (int)sp->st_size; 3207 return ((uintptr_t)sp->st_value); 3208 } 3209 3210 uintptr_t 3211 kobj_lookup(struct module *mod, const char *name) 3212 { 3213 Sym *sp; 3214 3215 sp = lookup_one(mod, name); 3216 3217 if (sp == NULL) 3218 return (0); 3219 3220 return ((uintptr_t)sp->st_value); 3221 } 3222 3223 char * 3224 kobj_searchsym(struct module *mp, uintptr_t value, ulong_t *offset) 3225 { 3226 Sym *symtabptr; 3227 char *strtabptr; 3228 int symnum; 3229 Sym *sym; 3230 Sym *cursym; 3231 uintptr_t curval; 3232 3233 *offset = (ulong_t)-1l; /* assume not found */ 3234 cursym = NULL; 3235 3236 if (kobj_addrcheck(mp, (void *)value) != 0) 3237 return (NULL); /* not in this module */ 3238 3239 strtabptr = mp->strings; 3240 symtabptr = (Sym *)mp->symtbl; 3241 3242 /* 3243 * Scan the module's symbol table for a symbol <= value 3244 */ 3245 for (symnum = 1, sym = symtabptr + 1; 3246 symnum < mp->nsyms; symnum++, sym = (Sym *) 3247 ((uintptr_t)sym + mp->symhdr->sh_entsize)) { 3248 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) { 3249 if (ELF_ST_BIND(sym->st_info) != STB_LOCAL) 3250 continue; 3251 if (ELF_ST_TYPE(sym->st_info) != STT_OBJECT && 3252 ELF_ST_TYPE(sym->st_info) != STT_FUNC) 3253 continue; 3254 } 3255 3256 curval = (uintptr_t)sym->st_value; 3257 3258 if (curval > value) 3259 continue; 3260 3261 /* 3262 * If one or both are functions... 3263 */ 3264 if (ELF_ST_TYPE(sym->st_info) == STT_FUNC || (cursym != NULL && 3265 ELF_ST_TYPE(cursym->st_info) == STT_FUNC)) { 3266 /* Ignore if the address is out of the bounds */ 3267 if (value - sym->st_value >= sym->st_size) 3268 continue; 3269 3270 if (cursym != NULL && 3271 ELF_ST_TYPE(cursym->st_info) == STT_FUNC) { 3272 /* Prefer the function to the non-function */ 3273 if (ELF_ST_TYPE(sym->st_info) != STT_FUNC) 3274 continue; 3275 3276 /* Prefer the larger of the two functions */ 3277 if (sym->st_size <= cursym->st_size) 3278 continue; 3279 } 3280 } else if (value - curval >= *offset) { 3281 continue; 3282 } 3283 3284 *offset = (ulong_t)(value - curval); 3285 cursym = sym; 3286 } 3287 if (cursym == NULL) 3288 return (NULL); 3289 3290 return (strtabptr + cursym->st_name); 3291 } 3292 3293 Sym * 3294 kobj_lookup_all(struct module *mp, char *name, int include_self) 3295 { 3296 Sym *sp; 3297 struct module_list *mlp; 3298 struct modctl_list *clp; 3299 struct module *mmp; 3300 3301 if (include_self && (sp = lookup_one(mp, name)) != NULL) 3302 return (sp); 3303 3304 for (mlp = mp->head; mlp; mlp = mlp->next) { 3305 if ((sp = lookup_one(mlp->mp, name)) != NULL && 3306 ELF_ST_BIND(sp->st_info) != STB_LOCAL) 3307 return (sp); 3308 } 3309 3310 /* 3311 * Loop through the primary kernel modules. 3312 */ 3313 for (clp = kobj_lm_lookup(KOBJ_LM_PRIMARY); clp; clp = clp->modl_next) { 3314 mmp = mod(clp); 3315 3316 if (mmp == NULL || mp == mmp) 3317 continue; 3318 3319 if ((sp = lookup_one(mmp, name)) != NULL && 3320 ELF_ST_BIND(sp->st_info) != STB_LOCAL) 3321 return (sp); 3322 } 3323 return (NULL); 3324 } 3325 3326 Sym * 3327 kobj_lookup_kernel(const char *name) 3328 { 3329 struct modctl_list *lp; 3330 struct module *mp; 3331 Sym *sp; 3332 3333 /* 3334 * Loop through the primary kernel modules. 3335 */ 3336 for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) { 3337 mp = mod(lp); 3338 3339 if (mp == NULL) 3340 continue; 3341 3342 if ((sp = lookup_one(mp, name)) != NULL) 3343 return (sp); 3344 } 3345 return (NULL); 3346 } 3347 3348 static Sym * 3349 lookup_one(struct module *mp, const char *name) 3350 { 3351 symid_t *ip; 3352 char *name1; 3353 Sym *sp; 3354 3355 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip; 3356 ip = &mp->chains[*ip]) { 3357 sp = (Sym *)(mp->symtbl + 3358 mp->symhdr->sh_entsize * *ip); 3359 name1 = mp->strings + sp->st_name; 3360 if (strcmp(name, name1) == 0 && 3361 ELF_ST_TYPE(sp->st_info) != STT_FILE && 3362 sp->st_shndx != SHN_UNDEF && 3363 sp->st_shndx != SHN_COMMON) 3364 return (sp); 3365 } 3366 return (NULL); 3367 } 3368 3369 /* 3370 * Lookup a given symbol pointer in the module's symbol hash. If the symbol 3371 * is hashed, return the symbol pointer; otherwise return NULL. 3372 */ 3373 static Sym * 3374 sym_lookup(struct module *mp, Sym *ksp) 3375 { 3376 char *name = mp->strings + ksp->st_name; 3377 symid_t *ip; 3378 Sym *sp; 3379 3380 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip; 3381 ip = &mp->chains[*ip]) { 3382 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * *ip); 3383 if (sp == ksp) 3384 return (ksp); 3385 } 3386 return (NULL); 3387 } 3388 3389 static void 3390 sym_insert(struct module *mp, char *name, symid_t index) 3391 { 3392 symid_t *ip; 3393 3394 #ifdef KOBJ_DEBUG 3395 if (kobj_debug & D_SYMBOLS) { 3396 static struct module *lastmp = NULL; 3397 Sym *sp; 3398 if (lastmp != mp) { 3399 _kobj_printf(ops, 3400 "krtld: symbol entry: file=%s\n", 3401 mp->filename); 3402 _kobj_printf(ops, 3403 "krtld:\tsymndx\tvalue\t\t" 3404 "symbol name\n"); 3405 lastmp = mp; 3406 } 3407 sp = (Sym *)(mp->symtbl + 3408 index * mp->symhdr->sh_entsize); 3409 _kobj_printf(ops, "krtld:\t[%3d]", index); 3410 _kobj_printf(ops, "\t0x%lx", sp->st_value); 3411 _kobj_printf(ops, "\t%s\n", name); 3412 } 3413 #endif 3414 3415 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip; 3416 ip = &mp->chains[*ip]) { 3417 ; 3418 } 3419 *ip = index; 3420 } 3421 3422 struct modctl * 3423 kobj_boot_mod_lookup(const char *modname) 3424 { 3425 struct modctl *mctl = kobj_modules; 3426 3427 do { 3428 if (strcmp(modname, mctl->mod_modname) == 0) 3429 return (mctl); 3430 } while ((mctl = mctl->mod_next) != kobj_modules); 3431 3432 return (NULL); 3433 } 3434 3435 /* 3436 * Determine if the module exists. 3437 */ 3438 int 3439 kobj_path_exists(char *name, int use_path) 3440 { 3441 struct _buf *file; 3442 3443 file = kobj_open_path(name, use_path, 1); 3444 #ifdef MODDIR_SUFFIX 3445 if (file == (struct _buf *)-1) 3446 file = kobj_open_path(name, use_path, 0); 3447 #endif /* MODDIR_SUFFIX */ 3448 if (file == (struct _buf *)-1) 3449 return (0); 3450 kobj_close_file(file); 3451 return (1); 3452 } 3453 3454 /* 3455 * fullname is dynamically allocated to be able to hold the 3456 * maximum size string that can be constructed from name. 3457 * path is exactly like the shell PATH variable. 3458 */ 3459 struct _buf * 3460 kobj_open_path(char *name, int use_path, int use_moddir_suffix) 3461 { 3462 char *p, *q; 3463 char *pathp; 3464 char *pathpsave; 3465 char *fullname; 3466 int maxpathlen; 3467 struct _buf *file; 3468 3469 #if !defined(MODDIR_SUFFIX) 3470 use_moddir_suffix = B_FALSE; 3471 #endif 3472 3473 if (!use_path) 3474 pathp = ""; /* use name as specified */ 3475 else 3476 pathp = kobj_module_path; 3477 /* use configured default path */ 3478 3479 pathpsave = pathp; /* keep this for error reporting */ 3480 3481 /* 3482 * Allocate enough space for the largest possible fullname. 3483 * since path is of the form <directory> : <directory> : ... 3484 * we're potentially allocating a little more than we need to 3485 * but we'll allocate the exact amount when we find the right directory. 3486 * (The + 3 below is one for NULL terminator and one for the '/' 3487 * we might have to add at the beginning of path and one for 3488 * the '/' between path and name.) 3489 */ 3490 maxpathlen = strlen(pathp) + strlen(name) + 3; 3491 /* sizeof includes null */ 3492 maxpathlen += sizeof (slash_moddir_suffix_slash) - 1; 3493 fullname = kobj_zalloc(maxpathlen, KM_WAIT); 3494 3495 for (;;) { 3496 p = fullname; 3497 if (*pathp != '\0' && *pathp != '/') 3498 *p++ = '/'; /* path must start with '/' */ 3499 while (*pathp && *pathp != ':' && *pathp != ' ') 3500 *p++ = *pathp++; 3501 if (p != fullname && p[-1] != '/') 3502 *p++ = '/'; 3503 if (use_moddir_suffix) { 3504 char *b = basename(name); 3505 char *s; 3506 3507 /* copy everything up to the base name */ 3508 q = name; 3509 while (q != b && *q) 3510 *p++ = *q++; 3511 s = slash_moddir_suffix_slash; 3512 while (*s) 3513 *p++ = *s++; 3514 /* copy the rest */ 3515 while (*b) 3516 *p++ = *b++; 3517 } else { 3518 q = name; 3519 while (*q) 3520 *p++ = *q++; 3521 } 3522 *p = 0; 3523 if ((file = kobj_open_file(fullname)) != (struct _buf *)-1) { 3524 kobj_free(fullname, maxpathlen); 3525 return (file); 3526 } 3527 while (*pathp == ' ' || *pathp == ':') 3528 pathp++; 3529 if (*pathp == 0) 3530 break; 3531 3532 } 3533 kobj_free(fullname, maxpathlen); 3534 if (_moddebug & MODDEBUG_ERRMSG) { 3535 _kobj_printf(ops, "can't open %s,", name); 3536 _kobj_printf(ops, " path is %s\n", pathpsave); 3537 } 3538 return ((struct _buf *)-1); 3539 } 3540 3541 intptr_t 3542 kobj_open(char *filename) 3543 { 3544 struct vnode *vp; 3545 int fd; 3546 3547 if (_modrootloaded) { 3548 struct kobjopen_tctl *ltp = kobjopen_alloc(filename); 3549 int Errno; 3550 3551 /* 3552 * Hand off the open to a thread who has a 3553 * stack size capable handling the request. 3554 */ 3555 if (curthread != &t0) { 3556 (void) thread_create(NULL, DEFAULTSTKSZ * 2, 3557 kobjopen_thread, ltp, 0, &p0, TS_RUN, maxclsyspri); 3558 sema_p(<p->sema); 3559 Errno = ltp->Errno; 3560 vp = ltp->vp; 3561 } else { 3562 /* 3563 * 1098067: module creds should not be those of the 3564 * caller 3565 */ 3566 cred_t *saved_cred = curthread->t_cred; 3567 curthread->t_cred = kcred; 3568 Errno = vn_openat(filename, UIO_SYSSPACE, FREAD, 0, &vp, 3569 0, 0, rootdir, -1); 3570 curthread->t_cred = saved_cred; 3571 } 3572 kobjopen_free(ltp); 3573 3574 if (Errno) { 3575 if (_moddebug & MODDEBUG_ERRMSG) { 3576 _kobj_printf(ops, 3577 "kobj_open: vn_open of %s fails, ", 3578 filename); 3579 _kobj_printf(ops, "Errno = %d\n", Errno); 3580 } 3581 return (-1); 3582 } else { 3583 if (_moddebug & MODDEBUG_ERRMSG) { 3584 _kobj_printf(ops, "kobj_open: '%s'", filename); 3585 _kobj_printf(ops, " vp = %p\n", vp); 3586 } 3587 return ((intptr_t)vp); 3588 } 3589 } else { 3590 fd = kobj_boot_open(filename, 0); 3591 3592 if (_moddebug & MODDEBUG_ERRMSG) { 3593 if (fd < 0) 3594 _kobj_printf(ops, 3595 "kobj_open: can't open %s\n", filename); 3596 else { 3597 _kobj_printf(ops, "kobj_open: '%s'", filename); 3598 _kobj_printf(ops, " descr = 0x%x\n", fd); 3599 } 3600 } 3601 return ((intptr_t)fd); 3602 } 3603 } 3604 3605 /* 3606 * Calls to kobj_open() are handled off to this routine as a separate thread. 3607 */ 3608 static void 3609 kobjopen_thread(struct kobjopen_tctl *ltp) 3610 { 3611 kmutex_t cpr_lk; 3612 callb_cpr_t cpr_i; 3613 3614 mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL); 3615 CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "kobjopen"); 3616 ltp->Errno = vn_open(ltp->name, UIO_SYSSPACE, FREAD, 0, &(ltp->vp), 3617 0, 0); 3618 sema_v(<p->sema); 3619 mutex_enter(&cpr_lk); 3620 CALLB_CPR_EXIT(&cpr_i); 3621 mutex_destroy(&cpr_lk); 3622 thread_exit(); 3623 } 3624 3625 /* 3626 * allocate and initialize a kobjopen thread structure 3627 */ 3628 static struct kobjopen_tctl * 3629 kobjopen_alloc(char *filename) 3630 { 3631 struct kobjopen_tctl *ltp = kmem_zalloc(sizeof (*ltp), KM_SLEEP); 3632 3633 ASSERT(filename != NULL); 3634 3635 ltp->name = kmem_alloc(strlen(filename) + 1, KM_SLEEP); 3636 bcopy(filename, ltp->name, strlen(filename) + 1); 3637 sema_init(<p->sema, 0, NULL, SEMA_DEFAULT, NULL); 3638 return (ltp); 3639 } 3640 3641 /* 3642 * free a kobjopen thread control structure 3643 */ 3644 static void 3645 kobjopen_free(struct kobjopen_tctl *ltp) 3646 { 3647 sema_destroy(<p->sema); 3648 kmem_free(ltp->name, strlen(ltp->name) + 1); 3649 kmem_free(ltp, sizeof (*ltp)); 3650 } 3651 3652 int 3653 kobj_read(intptr_t descr, char *buf, uint_t size, uint_t offset) 3654 { 3655 int stat; 3656 ssize_t resid; 3657 3658 if (_modrootloaded) { 3659 if ((stat = vn_rdwr(UIO_READ, (struct vnode *)descr, buf, size, 3660 (offset_t)offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), 3661 &resid)) != 0) { 3662 _kobj_printf(ops, 3663 "vn_rdwr failed with error 0x%x\n", stat); 3664 return (-1); 3665 } 3666 return (size - resid); 3667 } else { 3668 int count = 0; 3669 3670 if (kobj_boot_seek((int)descr, (off_t)0, offset) != 0) { 3671 _kobj_printf(ops, 3672 "kobj_read: seek 0x%x failed\n", offset); 3673 return (-1); 3674 } 3675 3676 count = kobj_boot_read((int)descr, buf, size); 3677 if (count < size) { 3678 if (_moddebug & MODDEBUG_ERRMSG) { 3679 _kobj_printf(ops, 3680 "kobj_read: req %d bytes, ", size); 3681 _kobj_printf(ops, "got %d\n", count); 3682 } 3683 } 3684 return (count); 3685 } 3686 } 3687 3688 void 3689 kobj_close(intptr_t descr) 3690 { 3691 if (_moddebug & MODDEBUG_ERRMSG) 3692 _kobj_printf(ops, "kobj_close: 0x%lx\n", descr); 3693 3694 if (_modrootloaded) { 3695 struct vnode *vp = (struct vnode *)descr; 3696 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 3697 VN_RELE(vp); 3698 } else 3699 (void) kobj_boot_close((int)descr); 3700 } 3701 3702 int 3703 kobj_fstat(intptr_t descr, struct bootstat *buf) 3704 { 3705 if (buf == NULL) 3706 return (-1); 3707 3708 if (_modrootloaded) { 3709 vattr_t vattr; 3710 struct vnode *vp = (struct vnode *)descr; 3711 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0) 3712 return (-1); 3713 3714 /* 3715 * The vattr and bootstat structures are similar, but not 3716 * identical. We do our best to fill in the bootstat structure 3717 * from the contents of vattr (transfering only the ones that 3718 * are obvious. 3719 */ 3720 3721 buf->st_mode = (uint32_t)vattr.va_mode; 3722 buf->st_nlink = (uint32_t)vattr.va_nlink; 3723 buf->st_uid = (int32_t)vattr.va_uid; 3724 buf->st_gid = (int32_t)vattr.va_gid; 3725 buf->st_rdev = (uint64_t)vattr.va_rdev; 3726 buf->st_size = (uint64_t)vattr.va_size; 3727 buf->st_atim.tv_sec = (int64_t)vattr.va_atime.tv_sec; 3728 buf->st_atim.tv_nsec = (int64_t)vattr.va_atime.tv_nsec; 3729 buf->st_mtim.tv_sec = (int64_t)vattr.va_mtime.tv_sec; 3730 buf->st_mtim.tv_nsec = (int64_t)vattr.va_mtime.tv_nsec; 3731 buf->st_ctim.tv_sec = (int64_t)vattr.va_ctime.tv_sec; 3732 buf->st_ctim.tv_nsec = (int64_t)vattr.va_ctime.tv_nsec; 3733 buf->st_blksize = (int32_t)vattr.va_blksize; 3734 buf->st_blocks = (int64_t)vattr.va_nblocks; 3735 3736 return (0); 3737 } 3738 3739 return (kobj_boot_fstat((int)descr, buf)); 3740 } 3741 3742 3743 struct _buf * 3744 kobj_open_file(char *name) 3745 { 3746 struct _buf *file; 3747 struct compinfo cbuf; 3748 intptr_t fd; 3749 3750 if ((fd = kobj_open(name)) == -1) { 3751 return ((struct _buf *)-1); 3752 } 3753 3754 file = kobj_zalloc(sizeof (struct _buf), KM_WAIT|KM_TMP); 3755 file->_fd = fd; 3756 file->_name = kobj_alloc(strlen(name)+1, KM_WAIT|KM_TMP); 3757 file->_cnt = file->_size = file->_off = 0; 3758 file->_ln = 1; 3759 file->_ptr = file->_base; 3760 (void) strcpy(file->_name, name); 3761 3762 /* 3763 * Before root is mounted, we must check 3764 * for a compressed file and do our own 3765 * buffering. 3766 */ 3767 if (_modrootloaded) { 3768 file->_base = kobj_zalloc(MAXBSIZE, KM_WAIT); 3769 file->_bsize = MAXBSIZE; 3770 3771 /* Check if the file is compressed */ 3772 file->_iscmp = kobj_is_compressed(fd); 3773 } else { 3774 if (kobj_boot_compinfo(fd, &cbuf) != 0) { 3775 kobj_close_file(file); 3776 return ((struct _buf *)-1); 3777 } 3778 file->_iscmp = cbuf.iscmp; 3779 if (file->_iscmp) { 3780 if (kobj_comp_setup(file, &cbuf) != 0) { 3781 kobj_close_file(file); 3782 return ((struct _buf *)-1); 3783 } 3784 } else { 3785 file->_base = kobj_zalloc(cbuf.blksize, KM_WAIT|KM_TMP); 3786 file->_bsize = cbuf.blksize; 3787 } 3788 } 3789 return (file); 3790 } 3791 3792 static int 3793 kobj_comp_setup(struct _buf *file, struct compinfo *cip) 3794 { 3795 struct comphdr *hdr; 3796 3797 /* 3798 * read the compressed image into memory, 3799 * so we can deompress from there 3800 */ 3801 file->_dsize = cip->fsize; 3802 file->_dbuf = kobj_alloc(cip->fsize, KM_WAIT|KM_TMP); 3803 if (kobj_read(file->_fd, file->_dbuf, cip->fsize, 0) != cip->fsize) { 3804 kobj_free(file->_dbuf, cip->fsize); 3805 return (-1); 3806 } 3807 3808 hdr = kobj_comphdr(file); 3809 if (hdr->ch_magic != CH_MAGIC_ZLIB || hdr->ch_version != CH_VERSION || 3810 hdr->ch_algorithm != CH_ALG_ZLIB || hdr->ch_fsize == 0 || 3811 !ISP2(hdr->ch_blksize)) { 3812 kobj_free(file->_dbuf, cip->fsize); 3813 return (-1); 3814 } 3815 file->_base = kobj_alloc(hdr->ch_blksize, KM_WAIT|KM_TMP); 3816 file->_bsize = hdr->ch_blksize; 3817 return (0); 3818 } 3819 3820 void 3821 kobj_close_file(struct _buf *file) 3822 { 3823 kobj_close(file->_fd); 3824 if (file->_base != NULL) 3825 kobj_free(file->_base, file->_bsize); 3826 if (file->_dbuf != NULL) 3827 kobj_free(file->_dbuf, file->_dsize); 3828 kobj_free(file->_name, strlen(file->_name)+1); 3829 kobj_free(file, sizeof (struct _buf)); 3830 } 3831 3832 int 3833 kobj_read_file(struct _buf *file, char *buf, uint_t size, uint_t off) 3834 { 3835 int b_size, c_size; 3836 int b_off; /* Offset into buffer for start of bcopy */ 3837 int count = 0; 3838 int page_addr; 3839 3840 if (_moddebug & MODDEBUG_ERRMSG) { 3841 _kobj_printf(ops, "kobj_read_file: size=%x,", size); 3842 _kobj_printf(ops, " offset=%x at", off); 3843 _kobj_printf(ops, " buf=%lx\n", (uintptr_t)buf); 3844 } 3845 3846 /* 3847 * Handle compressed (gzip for now) file here. First get the 3848 * compressed size, then read the image into memory and finally 3849 * call zlib to decompress the image at the supplied memory buffer. 3850 */ 3851 if (file->_iscmp == CH_MAGIC_GZIP) { 3852 ulong_t dlen; 3853 vattr_t vattr; 3854 struct vnode *vp = (struct vnode *)file->_fd; 3855 ssize_t resid; 3856 int err = 0; 3857 3858 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0) 3859 return (-1); 3860 3861 file->_dbuf = kobj_alloc(vattr.va_size, KM_WAIT|KM_TMP); 3862 file->_dsize = vattr.va_size; 3863 3864 /* Read the compressed file into memory */ 3865 if ((err = vn_rdwr(UIO_READ, vp, file->_dbuf, vattr.va_size, 3866 (offset_t)(0), UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), 3867 &resid)) != 0) { 3868 3869 _kobj_printf(ops, "kobj_read_file :vn_rdwr() failed, " 3870 "error code 0x%x\n", err); 3871 return (-1); 3872 } 3873 3874 dlen = size; 3875 3876 /* Decompress the image at the supplied memory buffer */ 3877 if ((err = z_uncompress(buf, &dlen, file->_dbuf, 3878 vattr.va_size)) != Z_OK) { 3879 _kobj_printf(ops, "kobj_read_file: z_uncompress " 3880 "failed, error code : 0x%x\n", err); 3881 return (-1); 3882 } 3883 3884 if (dlen != size) { 3885 _kobj_printf(ops, "kobj_read_file: z_uncompress " 3886 "failed to uncompress (size returned 0x%lx , " 3887 "expected size: 0x%x)\n", dlen, size); 3888 return (-1); 3889 } 3890 3891 return (0); 3892 } 3893 3894 while (size) { 3895 page_addr = F_PAGE(file, off); 3896 b_size = file->_size; 3897 /* 3898 * If we have the filesystem page the caller's referring to 3899 * and we have something in the buffer, 3900 * satisfy as much of the request from the buffer as we can. 3901 */ 3902 if (page_addr == file->_off && b_size > 0) { 3903 b_off = B_OFFSET(file, off); 3904 c_size = b_size - b_off; 3905 /* 3906 * If there's nothing to copy, we're at EOF. 3907 */ 3908 if (c_size <= 0) 3909 break; 3910 if (c_size > size) 3911 c_size = size; 3912 if (buf) { 3913 if (_moddebug & MODDEBUG_ERRMSG) 3914 _kobj_printf(ops, "copying %x bytes\n", 3915 c_size); 3916 bcopy(file->_base+b_off, buf, c_size); 3917 size -= c_size; 3918 off += c_size; 3919 buf += c_size; 3920 count += c_size; 3921 } else { 3922 _kobj_printf(ops, "kobj_read: system error"); 3923 count = -1; 3924 break; 3925 } 3926 } else { 3927 /* 3928 * If the caller's offset is page aligned and 3929 * the caller want's at least a filesystem page and 3930 * the caller provided a buffer, 3931 * read directly into the caller's buffer. 3932 */ 3933 if (page_addr == off && 3934 (c_size = F_BLKS(file, size)) && buf) { 3935 c_size = kobj_read_blks(file, buf, c_size, 3936 page_addr); 3937 if (c_size < 0) { 3938 count = -1; 3939 break; 3940 } 3941 count += c_size; 3942 if (c_size != F_BLKS(file, size)) 3943 break; 3944 size -= c_size; 3945 off += c_size; 3946 buf += c_size; 3947 /* 3948 * Otherwise, read into our buffer and copy next time 3949 * around the loop. 3950 */ 3951 } else { 3952 file->_off = page_addr; 3953 c_size = kobj_read_blks(file, file->_base, 3954 file->_bsize, page_addr); 3955 file->_ptr = file->_base; 3956 file->_cnt = c_size; 3957 file->_size = c_size; 3958 /* 3959 * If a _filbuf call or nothing read, break. 3960 */ 3961 if (buf == NULL || c_size <= 0) { 3962 count = c_size; 3963 break; 3964 } 3965 } 3966 if (_moddebug & MODDEBUG_ERRMSG) 3967 _kobj_printf(ops, "read %x bytes\n", c_size); 3968 } 3969 } 3970 if (_moddebug & MODDEBUG_ERRMSG) 3971 _kobj_printf(ops, "count = %x\n", count); 3972 3973 return (count); 3974 } 3975 3976 static int 3977 kobj_read_blks(struct _buf *file, char *buf, uint_t size, uint_t off) 3978 { 3979 int ret; 3980 3981 ASSERT(B_OFFSET(file, size) == 0 && B_OFFSET(file, off) == 0); 3982 if (file->_iscmp) { 3983 uint_t blks; 3984 int nret; 3985 3986 ret = 0; 3987 for (blks = size / file->_bsize; blks != 0; blks--) { 3988 nret = kobj_uncomp_blk(file, buf, off); 3989 if (nret == -1) 3990 return (-1); 3991 buf += nret; 3992 off += nret; 3993 ret += nret; 3994 if (nret < file->_bsize) 3995 break; 3996 } 3997 } else 3998 ret = kobj_read(file->_fd, buf, size, off); 3999 return (ret); 4000 } 4001 4002 static int 4003 kobj_uncomp_blk(struct _buf *file, char *buf, uint_t off) 4004 { 4005 struct comphdr *hdr = kobj_comphdr(file); 4006 ulong_t dlen, slen; 4007 caddr_t src; 4008 int i; 4009 4010 dlen = file->_bsize; 4011 i = off / file->_bsize; 4012 src = file->_dbuf + hdr->ch_blkmap[i]; 4013 if (i == hdr->ch_fsize / file->_bsize) 4014 slen = file->_dsize - hdr->ch_blkmap[i]; 4015 else 4016 slen = hdr->ch_blkmap[i + 1] - hdr->ch_blkmap[i]; 4017 if (z_uncompress(buf, &dlen, src, slen) != Z_OK) 4018 return (-1); 4019 return (dlen); 4020 } 4021 4022 int 4023 kobj_filbuf(struct _buf *f) 4024 { 4025 if (kobj_read_file(f, NULL, f->_bsize, f->_off + f->_size) > 0) 4026 return (kobj_getc(f)); 4027 return (-1); 4028 } 4029 4030 void 4031 kobj_free(void *address, size_t size) 4032 { 4033 if (standalone) 4034 return; 4035 4036 kmem_free(address, size); 4037 kobj_stat.nfree_calls++; 4038 kobj_stat.nfree += size; 4039 } 4040 4041 void * 4042 kobj_zalloc(size_t size, int flag) 4043 { 4044 void *v; 4045 4046 if ((v = kobj_alloc(size, flag)) != 0) { 4047 bzero(v, size); 4048 } 4049 4050 return (v); 4051 } 4052 4053 void * 4054 kobj_alloc(size_t size, int flag) 4055 { 4056 /* 4057 * If we are running standalone in the 4058 * linker, we ask boot for memory. 4059 * Either it's temporary memory that we lose 4060 * once boot is mapped out or we allocate it 4061 * permanently using the dynamic data segment. 4062 */ 4063 if (standalone) { 4064 #if defined(_OBP) 4065 if (flag & (KM_TMP | KM_SCRATCH)) 4066 return (bop_temp_alloc(size, MINALIGN)); 4067 #else 4068 if (flag & (KM_TMP | KM_SCRATCH)) 4069 return (BOP_ALLOC(ops, 0, size, MINALIGN)); 4070 #endif 4071 return (kobj_segbrk(&_edata, size, MINALIGN, 0)); 4072 } 4073 4074 kobj_stat.nalloc_calls++; 4075 kobj_stat.nalloc += size; 4076 4077 return (kmem_alloc(size, (flag & KM_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)); 4078 } 4079 4080 /* 4081 * Allow the "mod" system to sync up with the work 4082 * already done by kobj during the initial loading 4083 * of the kernel. This also gives us a chance 4084 * to reallocate memory that belongs to boot. 4085 */ 4086 void 4087 kobj_sync(void) 4088 { 4089 struct modctl_list *lp, **lpp; 4090 4091 /* 4092 * The module path can be set in /etc/system via 'moddir' commands 4093 */ 4094 if (default_path != NULL) 4095 kobj_module_path = default_path; 4096 else 4097 default_path = kobj_module_path; 4098 4099 ksyms_arena = vmem_create("ksyms", NULL, 0, sizeof (uint64_t), 4100 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4101 4102 ctf_arena = vmem_create("ctf", NULL, 0, sizeof (uint_t), 4103 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4104 4105 /* 4106 * Move symbol tables from boot memory to ksyms_arena. 4107 */ 4108 for (lpp = kobj_linkmaps; *lpp != NULL; lpp++) { 4109 for (lp = *lpp; lp != NULL; lp = lp->modl_next) 4110 kobj_export_module(mod(lp)); 4111 } 4112 } 4113 4114 caddr_t 4115 kobj_segbrk(caddr_t *spp, size_t size, size_t align, caddr_t limit) 4116 { 4117 uintptr_t va, pva; 4118 size_t alloc_pgsz = kobj_mmu_pagesize; 4119 size_t alloc_align = BO_NO_ALIGN; 4120 size_t alloc_size; 4121 4122 /* 4123 * If we are using "large" mappings for the kernel, 4124 * request aligned memory from boot using the 4125 * "large" pagesize. 4126 */ 4127 if (lg_pagesize) { 4128 alloc_align = lg_pagesize; 4129 alloc_pgsz = lg_pagesize; 4130 } 4131 4132 #if defined(__sparc) 4133 /* account for redzone */ 4134 if (limit) 4135 limit -= alloc_pgsz; 4136 #endif /* __sparc */ 4137 4138 va = ALIGN((uintptr_t)*spp, align); 4139 pva = P2ROUNDUP((uintptr_t)*spp, alloc_pgsz); 4140 /* 4141 * Need more pages? 4142 */ 4143 if (va + size > pva) { 4144 uintptr_t npva; 4145 4146 alloc_size = P2ROUNDUP(size - (pva - va), alloc_pgsz); 4147 /* 4148 * Check for overlapping segments. 4149 */ 4150 if (limit && limit <= *spp + alloc_size) { 4151 return ((caddr_t)0); 4152 } 4153 4154 npva = (uintptr_t)BOP_ALLOC(ops, (caddr_t)pva, 4155 alloc_size, alloc_align); 4156 4157 if (npva == 0) { 4158 _kobj_printf(ops, "BOP_ALLOC failed, 0x%lx bytes", 4159 alloc_size); 4160 _kobj_printf(ops, " aligned %lx", alloc_align); 4161 _kobj_printf(ops, " at 0x%lx\n", pva); 4162 return (NULL); 4163 } 4164 } 4165 *spp = (caddr_t)(va + size); 4166 4167 return ((caddr_t)va); 4168 } 4169 4170 /* 4171 * Calculate the number of output hash buckets. 4172 * We use the next prime larger than n / 4, 4173 * so the average hash chain is about 4 entries. 4174 * More buckets would just be a waste of memory. 4175 */ 4176 uint_t 4177 kobj_gethashsize(uint_t n) 4178 { 4179 int f; 4180 int hsize = MAX(n / 4, 2); 4181 4182 for (f = 2; f * f <= hsize; f++) 4183 if (hsize % f == 0) 4184 hsize += f = 1; 4185 4186 return (hsize); 4187 } 4188 4189 /* 4190 * Get the file size. 4191 * 4192 * Before root is mounted, files are compressed in the boot_archive ramdisk 4193 * (in the memory). kobj_fstat would return the compressed file size. 4194 * In order to get the uncompressed file size, read the file to the end and 4195 * count its size. 4196 */ 4197 int 4198 kobj_get_filesize(struct _buf *file, uint64_t *size) 4199 { 4200 int err = 0; 4201 ssize_t resid; 4202 uint32_t buf; 4203 4204 if (_modrootloaded) { 4205 struct bootstat bst; 4206 4207 if (kobj_fstat(file->_fd, &bst) != 0) 4208 return (EIO); 4209 *size = bst.st_size; 4210 4211 if (file->_iscmp == CH_MAGIC_GZIP) { 4212 /* 4213 * Read the last 4 bytes of the compressed (gzip) 4214 * image to get the size of its uncompressed 4215 * version. 4216 */ 4217 if ((err = vn_rdwr(UIO_READ, (struct vnode *)file->_fd, 4218 (char *)(&buf), 4, (offset_t)(*size - 4), 4219 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) 4220 != 0) { 4221 _kobj_printf(ops, "kobj_get_filesize: " 4222 "vn_rdwr() failed with error 0x%x\n", err); 4223 return (-1); 4224 } 4225 4226 *size = (uint64_t)buf; 4227 } 4228 } else { 4229 4230 #if defined(_OBP) 4231 struct bootstat bsb; 4232 4233 if (file->_iscmp) { 4234 struct comphdr *hdr = kobj_comphdr(file); 4235 4236 *size = hdr->ch_fsize; 4237 } else if (kobj_boot_fstat(file->_fd, &bsb) != 0) 4238 return (EIO); 4239 else 4240 *size = bsb.st_size; 4241 #else 4242 char *buf; 4243 int count; 4244 uint64_t offset = 0; 4245 4246 buf = kmem_alloc(MAXBSIZE, KM_SLEEP); 4247 do { 4248 count = kobj_read_file(file, buf, MAXBSIZE, offset); 4249 if (count < 0) { 4250 kmem_free(buf, MAXBSIZE); 4251 return (EIO); 4252 } 4253 offset += count; 4254 } while (count == MAXBSIZE); 4255 kmem_free(buf, MAXBSIZE); 4256 4257 *size = offset; 4258 #endif 4259 } 4260 4261 return (0); 4262 } 4263 4264 static char * 4265 basename(char *s) 4266 { 4267 char *p, *q; 4268 4269 q = NULL; 4270 p = s; 4271 do { 4272 if (*p == '/') 4273 q = p; 4274 } while (*p++); 4275 return (q ? q + 1 : s); 4276 } 4277 4278 void 4279 kobj_stat_get(kobj_stat_t *kp) 4280 { 4281 *kp = kobj_stat; 4282 } 4283 4284 int 4285 kobj_getpagesize() 4286 { 4287 return (lg_pagesize); 4288 } 4289 4290 void 4291 kobj_textwin_alloc(struct module *mp) 4292 { 4293 ASSERT(MUTEX_HELD(&mod_lock)); 4294 4295 if (mp->textwin != NULL) 4296 return; 4297 4298 /* 4299 * If the text is not contained in the heap, then it is not contained 4300 * by a writable mapping. (Specifically, it's on the nucleus page.) 4301 * We allocate a read/write mapping for this module's text to allow 4302 * the text to be patched without calling hot_patch_kernel_text() 4303 * (which is quite slow). 4304 */ 4305 if (!vmem_contains(heaptext_arena, mp->text, mp->text_size)) { 4306 uintptr_t text = (uintptr_t)mp->text; 4307 uintptr_t size = (uintptr_t)mp->text_size; 4308 uintptr_t i; 4309 caddr_t va; 4310 size_t sz = ((text + size + PAGESIZE - 1) & PAGEMASK) - 4311 (text & PAGEMASK); 4312 4313 va = mp->textwin_base = vmem_alloc(heap_arena, sz, VM_SLEEP); 4314 4315 for (i = text & PAGEMASK; i < text + size; i += PAGESIZE) { 4316 hat_devload(kas.a_hat, va, PAGESIZE, 4317 hat_getpfnum(kas.a_hat, (caddr_t)i), 4318 PROT_READ | PROT_WRITE, 4319 HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 4320 va += PAGESIZE; 4321 } 4322 4323 mp->textwin = mp->textwin_base + (text & PAGEOFFSET); 4324 } else { 4325 mp->textwin = mp->text; 4326 } 4327 } 4328 4329 void 4330 kobj_textwin_free(struct module *mp) 4331 { 4332 uintptr_t text = (uintptr_t)mp->text; 4333 uintptr_t tsize = (uintptr_t)mp->text_size; 4334 size_t size = (((text + tsize + PAGESIZE - 1) & PAGEMASK) - 4335 (text & PAGEMASK)); 4336 4337 mp->textwin = NULL; 4338 4339 if (mp->textwin_base == NULL) 4340 return; 4341 4342 hat_unload(kas.a_hat, mp->textwin_base, size, HAT_UNLOAD_UNLOCK); 4343 vmem_free(heap_arena, mp->textwin_base, size); 4344 mp->textwin_base = NULL; 4345 } 4346 4347 static char * 4348 find_libmacro(char *name) 4349 { 4350 int lmi; 4351 4352 for (lmi = 0; lmi < NLIBMACROS; lmi++) { 4353 if (strcmp(name, libmacros[lmi].lmi_macroname) == 0) 4354 return (libmacros[lmi].lmi_list); 4355 } 4356 return (NULL); 4357 } 4358 4359 /* 4360 * Check for $MACRO in tail (string to expand) and expand it in path at pathend 4361 * returns path if successful, else NULL 4362 * Support multiple $MACROs expansion and the first valid path will be returned 4363 * Caller's responsibility to provide enough space in path to expand 4364 */ 4365 char * 4366 expand_libmacro(char *tail, char *path, char *pathend) 4367 { 4368 char c, *p, *p1, *p2, *path2, *endp; 4369 int diff, lmi, macrolen, valid_macro, more_macro; 4370 struct _buf *file; 4371 4372 /* 4373 * check for $MACROS between nulls or slashes 4374 */ 4375 p = strchr(tail, '$'); 4376 if (p == NULL) 4377 return (NULL); 4378 for (lmi = 0; lmi < NLIBMACROS; lmi++) { 4379 macrolen = libmacros[lmi].lmi_macrolen; 4380 if (strncmp(p + 1, libmacros[lmi].lmi_macroname, macrolen) == 0) 4381 break; 4382 } 4383 4384 valid_macro = 0; 4385 if (lmi < NLIBMACROS) { 4386 /* 4387 * The following checks are used to restrict expansion of 4388 * macros to those that form a full directory/file name 4389 * and to keep the behavior same as before. If this 4390 * restriction is removed or no longer valid in the future, 4391 * the checks below can be deleted. 4392 */ 4393 if ((p == tail) || (*(p - 1) == '/')) { 4394 c = *(p + macrolen + 1); 4395 if (c == '/' || c == '\0') 4396 valid_macro = 1; 4397 } 4398 } 4399 4400 if (!valid_macro) { 4401 p2 = strchr(p, '/'); 4402 /* 4403 * if no more macro to expand, then just copy whatever left 4404 * and check whether it exists 4405 */ 4406 if (p2 == NULL || strchr(p2, '$') == NULL) { 4407 (void) strcpy(pathend, tail); 4408 if ((file = kobj_open_path(path, 1, 1)) != 4409 (struct _buf *)-1) { 4410 kobj_close_file(file); 4411 return (path); 4412 } else 4413 return (NULL); 4414 } else { 4415 /* 4416 * copy all chars before '/' and call expand_libmacro() 4417 * again 4418 */ 4419 diff = p2 - tail; 4420 bcopy(tail, pathend, diff); 4421 pathend += diff; 4422 *(pathend) = '\0'; 4423 return (expand_libmacro(p2, path, pathend)); 4424 } 4425 } 4426 4427 more_macro = 0; 4428 if (c != '\0') { 4429 endp = p + macrolen + 1; 4430 if (strchr(endp, '$') != NULL) 4431 more_macro = 1; 4432 } else 4433 endp = NULL; 4434 4435 /* 4436 * copy lmi_list and split it into components. 4437 * then put the part of tail before $MACRO into path 4438 * at pathend 4439 */ 4440 diff = p - tail; 4441 if (diff > 0) 4442 bcopy(tail, pathend, diff); 4443 path2 = pathend + diff; 4444 p1 = libmacros[lmi].lmi_list; 4445 while (p1 && (*p1 != '\0')) { 4446 p2 = strchr(p1, ':'); 4447 if (p2) { 4448 diff = p2 - p1; 4449 bcopy(p1, path2, diff); 4450 *(path2 + diff) = '\0'; 4451 } else { 4452 diff = strlen(p1); 4453 bcopy(p1, path2, diff + 1); 4454 } 4455 /* copy endp only if there isn't any more macro to expand */ 4456 if (!more_macro && (endp != NULL)) 4457 (void) strcat(path2, endp); 4458 file = kobj_open_path(path, 1, 1); 4459 if (file != (struct _buf *)-1) { 4460 kobj_close_file(file); 4461 /* 4462 * if more macros to expand then call expand_libmacro(), 4463 * else return path which has the whole path 4464 */ 4465 if (!more_macro || (expand_libmacro(endp, path, 4466 path2 + diff) != NULL)) { 4467 return (path); 4468 } 4469 } 4470 if (p2) 4471 p1 = ++p2; 4472 else 4473 return (NULL); 4474 } 4475 return (NULL); 4476 } 4477 4478 static void 4479 tnf_add_notifyunload(kobj_notify_f *fp) 4480 { 4481 kobj_notify_list_t *entry; 4482 4483 entry = kobj_alloc(sizeof (kobj_notify_list_t), KM_WAIT); 4484 entry->kn_type = KOBJ_NOTIFY_MODUNLOADING; 4485 entry->kn_func = fp; 4486 (void) kobj_notify_add(entry); 4487 } 4488 4489 /* ARGSUSED */ 4490 static void 4491 tnf_unsplice_probes(uint_t what, struct modctl *mod) 4492 { 4493 tnf_probe_control_t **p; 4494 tnf_tag_data_t **q; 4495 struct module *mp = mod->mod_mp; 4496 4497 if (!(mp->flags & KOBJ_TNF_PROBE)) 4498 return; 4499 4500 for (p = &__tnf_probe_list_head; *p; ) 4501 if (kobj_addrcheck(mp, (char *)*p) == 0) 4502 *p = (*p)->next; 4503 else 4504 p = &(*p)->next; 4505 4506 for (q = &__tnf_tag_list_head; *q; ) 4507 if (kobj_addrcheck(mp, (char *)*q) == 0) 4508 *q = (tnf_tag_data_t *)(*q)->tag_version; 4509 else 4510 q = (tnf_tag_data_t **)&(*q)->tag_version; 4511 4512 tnf_changed_probe_list = 1; 4513 } 4514 4515 int 4516 tnf_splice_probes(int boot_load, tnf_probe_control_t *plist, 4517 tnf_tag_data_t *tlist) 4518 { 4519 int result = 0; 4520 static int add_notify = 1; 4521 4522 if (plist) { 4523 tnf_probe_control_t *pl; 4524 4525 for (pl = plist; pl->next; ) 4526 pl = pl->next; 4527 4528 if (!boot_load) 4529 mutex_enter(&mod_lock); 4530 tnf_changed_probe_list = 1; 4531 pl->next = __tnf_probe_list_head; 4532 __tnf_probe_list_head = plist; 4533 if (!boot_load) 4534 mutex_exit(&mod_lock); 4535 result = 1; 4536 } 4537 4538 if (tlist) { 4539 tnf_tag_data_t *tl; 4540 4541 for (tl = tlist; tl->tag_version; ) 4542 tl = (tnf_tag_data_t *)tl->tag_version; 4543 4544 if (!boot_load) 4545 mutex_enter(&mod_lock); 4546 tl->tag_version = (tnf_tag_version_t *)__tnf_tag_list_head; 4547 __tnf_tag_list_head = tlist; 4548 if (!boot_load) 4549 mutex_exit(&mod_lock); 4550 result = 1; 4551 } 4552 if (!boot_load && result && add_notify) { 4553 tnf_add_notifyunload(tnf_unsplice_probes); 4554 add_notify = 0; 4555 } 4556 return (result); 4557 } 4558 4559 char *kobj_file_buf; 4560 int kobj_file_bufsize; 4561 4562 /* 4563 * This code is for the purpose of manually recording which files 4564 * needs to go into the boot archive on any given system. 4565 * 4566 * To enable the code, set kobj_file_bufsize in /etc/system 4567 * and reboot the system, then use mdb to look at kobj_file_buf. 4568 */ 4569 static void 4570 kobj_record_file(char *filename) 4571 { 4572 static char *buf; 4573 static int size = 0; 4574 int n; 4575 4576 if (kobj_file_bufsize == 0) /* don't bother */ 4577 return; 4578 4579 if (kobj_file_buf == NULL) { /* allocate buffer */ 4580 size = kobj_file_bufsize; 4581 buf = kobj_file_buf = kobj_alloc(size, KM_WAIT|KM_TMP); 4582 } 4583 4584 n = snprintf(buf, size, "%s\n", filename); 4585 if (n > size) 4586 n = size; 4587 size -= n; 4588 buf += n; 4589 } 4590 4591 static int 4592 kobj_boot_fstat(int fd, struct bootstat *stp) 4593 { 4594 #if defined(_OBP) 4595 if (!standalone && _ioquiesced) 4596 return (-1); 4597 return (BOP_FSTAT(ops, fd, stp)); 4598 #else 4599 return (BRD_FSTAT(bfs_ops, fd, stp)); 4600 #endif 4601 } 4602 4603 static int 4604 kobj_boot_open(char *filename, int flags) 4605 { 4606 #if defined(_OBP) 4607 4608 /* 4609 * If io via bootops is quiesced, it means boot is no longer 4610 * available to us. We make it look as if we can't open the 4611 * named file - which is reasonably accurate. 4612 */ 4613 if (!standalone && _ioquiesced) 4614 return (-1); 4615 4616 kobj_record_file(filename); 4617 return (BOP_OPEN(filename, flags)); 4618 #else /* x86 */ 4619 kobj_record_file(filename); 4620 return (BRD_OPEN(bfs_ops, filename, flags)); 4621 #endif 4622 } 4623 4624 static int 4625 kobj_boot_close(int fd) 4626 { 4627 #if defined(_OBP) 4628 if (!standalone && _ioquiesced) 4629 return (-1); 4630 4631 return (BOP_CLOSE(fd)); 4632 #else /* x86 */ 4633 return (BRD_CLOSE(bfs_ops, fd)); 4634 #endif 4635 } 4636 4637 /*ARGSUSED*/ 4638 static int 4639 kobj_boot_seek(int fd, off_t hi, off_t lo) 4640 { 4641 #if defined(_OBP) 4642 return (BOP_SEEK(fd, lo) == -1 ? -1 : 0); 4643 #else 4644 return (BRD_SEEK(bfs_ops, fd, lo, SEEK_SET)); 4645 #endif 4646 } 4647 4648 static int 4649 kobj_boot_read(int fd, caddr_t buf, size_t size) 4650 { 4651 #if defined(_OBP) 4652 return (BOP_READ(fd, buf, size)); 4653 #else 4654 return (BRD_READ(bfs_ops, fd, buf, size)); 4655 #endif 4656 } 4657 4658 static int 4659 kobj_boot_compinfo(int fd, struct compinfo *cb) 4660 { 4661 return (boot_compinfo(fd, cb)); 4662 } 4663 4664 /* 4665 * Check if the file is compressed (for now we handle only gzip). 4666 * It returns CH_MAGIC_GZIP if the file is compressed and 0 otherwise. 4667 */ 4668 static int 4669 kobj_is_compressed(intptr_t fd) 4670 { 4671 struct vnode *vp = (struct vnode *)fd; 4672 ssize_t resid; 4673 uint16_t magic_buf; 4674 int err = 0; 4675 4676 if ((err = vn_rdwr(UIO_READ, vp, (caddr_t)((intptr_t)&magic_buf), 4677 sizeof (magic_buf), (offset_t)(0), 4678 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) { 4679 4680 _kobj_printf(ops, "kobj_is_compressed: vn_rdwr() failed, " 4681 "error code 0x%x\n", err); 4682 return (0); 4683 } 4684 4685 if (magic_buf == CH_MAGIC_GZIP) 4686 return (CH_MAGIC_GZIP); 4687 4688 return (0); 4689 }