Print this page
8158 Want named threads API
9857 proc manpages should have LIBRARY section
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/sys/dtrace.h
+++ new/usr/src/uts/common/sys/dtrace.h
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
↓ open down ↓ |
17 lines elided |
↑ open up ↑ |
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 24 * Use is subject to license terms.
25 25 */
26 26
27 27 /*
28 - * Copyright 2017 Joyent, Inc.
28 + * Copyright 2018 Joyent, Inc.
29 29 * Copyright (c) 2013 by Delphix. All rights reserved.
30 30 */
31 31
32 32 #ifndef _SYS_DTRACE_H
33 33 #define _SYS_DTRACE_H
34 34
35 35 #ifdef __cplusplus
36 36 extern "C" {
37 37 #endif
38 38
39 39 /*
40 40 * DTrace Dynamic Tracing Software: Kernel Interfaces
41 41 *
42 42 * Note: The contents of this file are private to the implementation of the
43 43 * Solaris system and DTrace subsystem and are subject to change at any time
44 44 * without notice. Applications and drivers using these interfaces will fail
45 45 * to run on future releases. These interfaces should not be used for any
46 46 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
47 47 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
48 48 */
49 49
50 50 #ifndef _ASM
51 51
52 52 #include <sys/types.h>
53 53 #include <sys/modctl.h>
54 54 #include <sys/processor.h>
55 55 #include <sys/systm.h>
56 56 #include <sys/ctf_api.h>
57 57 #include <sys/cyclic.h>
58 58 #include <sys/int_limits.h>
59 59
60 60 /*
61 61 * DTrace Universal Constants and Typedefs
62 62 */
63 63 #define DTRACE_CPUALL -1 /* all CPUs */
64 64 #define DTRACE_IDNONE 0 /* invalid probe identifier */
65 65 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */
66 66 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */
67 67 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */
68 68 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */
69 69 #define DTRACE_PROVNONE 0 /* invalid provider identifier */
70 70 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */
71 71 #define DTRACE_ARGNONE -1 /* invalid argument index */
72 72
73 73 #define DTRACE_PROVNAMELEN 64
74 74 #define DTRACE_MODNAMELEN 64
75 75 #define DTRACE_FUNCNAMELEN 128
76 76 #define DTRACE_NAMELEN 64
77 77 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
78 78 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
79 79 #define DTRACE_ARGTYPELEN 128
80 80
81 81 typedef uint32_t dtrace_id_t; /* probe identifier */
82 82 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */
83 83 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */
84 84 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */
85 85 typedef uint16_t dtrace_actkind_t; /* action kind */
86 86 typedef int64_t dtrace_optval_t; /* option value */
87 87 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */
88 88
89 89 typedef enum dtrace_probespec {
90 90 DTRACE_PROBESPEC_NONE = -1,
91 91 DTRACE_PROBESPEC_PROVIDER = 0,
92 92 DTRACE_PROBESPEC_MOD,
93 93 DTRACE_PROBESPEC_FUNC,
94 94 DTRACE_PROBESPEC_NAME
95 95 } dtrace_probespec_t;
96 96
97 97 /*
98 98 * DTrace Intermediate Format (DIF)
99 99 *
100 100 * The following definitions describe the DTrace Intermediate Format (DIF), a
101 101 * a RISC-like instruction set and program encoding used to represent
102 102 * predicates and actions that can be bound to DTrace probes. The constants
103 103 * below defining the number of available registers are suggested minimums; the
104 104 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
105 105 * registers provided by the current DTrace implementation.
106 106 */
107 107 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */
108 108 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */
109 109 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */
110 110 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */
111 111 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */
112 112
113 113 #define DIF_OP_OR 1 /* or r1, r2, rd */
114 114 #define DIF_OP_XOR 2 /* xor r1, r2, rd */
115 115 #define DIF_OP_AND 3 /* and r1, r2, rd */
116 116 #define DIF_OP_SLL 4 /* sll r1, r2, rd */
117 117 #define DIF_OP_SRL 5 /* srl r1, r2, rd */
118 118 #define DIF_OP_SUB 6 /* sub r1, r2, rd */
119 119 #define DIF_OP_ADD 7 /* add r1, r2, rd */
120 120 #define DIF_OP_MUL 8 /* mul r1, r2, rd */
121 121 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */
122 122 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */
123 123 #define DIF_OP_SREM 11 /* srem r1, r2, rd */
124 124 #define DIF_OP_UREM 12 /* urem r1, r2, rd */
125 125 #define DIF_OP_NOT 13 /* not r1, rd */
126 126 #define DIF_OP_MOV 14 /* mov r1, rd */
127 127 #define DIF_OP_CMP 15 /* cmp r1, r2 */
128 128 #define DIF_OP_TST 16 /* tst r1 */
129 129 #define DIF_OP_BA 17 /* ba label */
130 130 #define DIF_OP_BE 18 /* be label */
131 131 #define DIF_OP_BNE 19 /* bne label */
132 132 #define DIF_OP_BG 20 /* bg label */
133 133 #define DIF_OP_BGU 21 /* bgu label */
134 134 #define DIF_OP_BGE 22 /* bge label */
135 135 #define DIF_OP_BGEU 23 /* bgeu label */
136 136 #define DIF_OP_BL 24 /* bl label */
137 137 #define DIF_OP_BLU 25 /* blu label */
138 138 #define DIF_OP_BLE 26 /* ble label */
139 139 #define DIF_OP_BLEU 27 /* bleu label */
140 140 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */
141 141 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */
142 142 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */
143 143 #define DIF_OP_LDUB 31 /* ldub [r1], rd */
144 144 #define DIF_OP_LDUH 32 /* lduh [r1], rd */
145 145 #define DIF_OP_LDUW 33 /* lduw [r1], rd */
146 146 #define DIF_OP_LDX 34 /* ldx [r1], rd */
147 147 #define DIF_OP_RET 35 /* ret rd */
148 148 #define DIF_OP_NOP 36 /* nop */
149 149 #define DIF_OP_SETX 37 /* setx intindex, rd */
150 150 #define DIF_OP_SETS 38 /* sets strindex, rd */
151 151 #define DIF_OP_SCMP 39 /* scmp r1, r2 */
152 152 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */
153 153 #define DIF_OP_LDGS 41 /* ldgs var, rd */
154 154 #define DIF_OP_STGS 42 /* stgs var, rs */
155 155 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */
156 156 #define DIF_OP_LDTS 44 /* ldts var, rd */
157 157 #define DIF_OP_STTS 45 /* stts var, rs */
158 158 #define DIF_OP_SRA 46 /* sra r1, r2, rd */
159 159 #define DIF_OP_CALL 47 /* call subr, rd */
160 160 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */
161 161 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
162 162 #define DIF_OP_POPTS 50 /* popts */
163 163 #define DIF_OP_FLUSHTS 51 /* flushts */
164 164 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */
165 165 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */
166 166 #define DIF_OP_STGAA 54 /* stgaa var, rs */
167 167 #define DIF_OP_STTAA 55 /* sttaa var, rs */
168 168 #define DIF_OP_LDLS 56 /* ldls var, rd */
169 169 #define DIF_OP_STLS 57 /* stls var, rs */
170 170 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */
171 171 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */
172 172 #define DIF_OP_STB 60 /* stb r1, [rd] */
173 173 #define DIF_OP_STH 61 /* sth r1, [rd] */
174 174 #define DIF_OP_STW 62 /* stw r1, [rd] */
175 175 #define DIF_OP_STX 63 /* stx r1, [rd] */
176 176 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */
177 177 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */
178 178 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */
179 179 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */
180 180 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */
181 181 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */
182 182 #define DIF_OP_ULDX 70 /* uldx [r1], rd */
183 183 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */
184 184 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */
185 185 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */
186 186 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */
187 187 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */
188 188 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */
189 189 #define DIF_OP_RLDX 77 /* rldx [r1], rd */
190 190 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */
191 191 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */
192 192 #define DIF_OP_STGA 80 /* stga var, ri, rd */
193 193
194 194 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */
195 195 #define DIF_STROFF_MAX 0xffff /* highest string table offset */
196 196 #define DIF_REGISTER_MAX 0xff /* highest register number */
197 197 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */
198 198 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */
199 199
200 200 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */
201 201 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */
202 202 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */
203 203
204 204 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */
205 205 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */
206 206 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */
207 207
208 208 #define DIF_VAR_ARGS 0x0000 /* arguments array */
209 209 #define DIF_VAR_REGS 0x0001 /* registers array */
210 210 #define DIF_VAR_UREGS 0x0002 /* user registers array */
211 211 #define DIF_VAR_VMREGS 0x0003 /* virtual machine registers array */
212 212 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */
213 213 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */
214 214 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */
215 215 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */
216 216 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */
217 217 #define DIF_VAR_ID 0x0105 /* probe ID */
218 218 #define DIF_VAR_ARG0 0x0106 /* first argument */
219 219 #define DIF_VAR_ARG1 0x0107 /* second argument */
220 220 #define DIF_VAR_ARG2 0x0108 /* third argument */
221 221 #define DIF_VAR_ARG3 0x0109 /* fourth argument */
222 222 #define DIF_VAR_ARG4 0x010a /* fifth argument */
223 223 #define DIF_VAR_ARG5 0x010b /* sixth argument */
224 224 #define DIF_VAR_ARG6 0x010c /* seventh argument */
225 225 #define DIF_VAR_ARG7 0x010d /* eighth argument */
226 226 #define DIF_VAR_ARG8 0x010e /* ninth argument */
227 227 #define DIF_VAR_ARG9 0x010f /* tenth argument */
228 228 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */
229 229 #define DIF_VAR_CALLER 0x0111 /* caller */
230 230 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */
231 231 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */
232 232 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */
233 233 #define DIF_VAR_PROBENAME 0x0115 /* probe name */
234 234 #define DIF_VAR_PID 0x0116 /* process ID */
↓ open down ↓ |
196 lines elided |
↑ open up ↑ |
235 235 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */
236 236 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */
237 237 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */
238 238 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */
239 239 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */
240 240 #define DIF_VAR_UCALLER 0x011c /* user-level caller */
241 241 #define DIF_VAR_PPID 0x011d /* parent process ID */
242 242 #define DIF_VAR_UID 0x011e /* process user ID */
243 243 #define DIF_VAR_GID 0x011f /* process group ID */
244 244 #define DIF_VAR_ERRNO 0x0120 /* thread errno */
245 +#define DIF_VAR_THREADNAME 0x0121 /* thread name */
245 246
246 247 #define DIF_SUBR_RAND 0
247 248 #define DIF_SUBR_MUTEX_OWNED 1
248 249 #define DIF_SUBR_MUTEX_OWNER 2
249 250 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3
250 251 #define DIF_SUBR_MUTEX_TYPE_SPIN 4
251 252 #define DIF_SUBR_RW_READ_HELD 5
252 253 #define DIF_SUBR_RW_WRITE_HELD 6
253 254 #define DIF_SUBR_RW_ISWRITER 7
254 255 #define DIF_SUBR_COPYIN 8
255 256 #define DIF_SUBR_COPYINSTR 9
256 257 #define DIF_SUBR_SPECULATION 10
257 258 #define DIF_SUBR_PROGENYOF 11
258 259 #define DIF_SUBR_STRLEN 12
259 260 #define DIF_SUBR_COPYOUT 13
260 261 #define DIF_SUBR_COPYOUTSTR 14
261 262 #define DIF_SUBR_ALLOCA 15
262 263 #define DIF_SUBR_BCOPY 16
263 264 #define DIF_SUBR_COPYINTO 17
264 265 #define DIF_SUBR_MSGDSIZE 18
265 266 #define DIF_SUBR_MSGSIZE 19
266 267 #define DIF_SUBR_GETMAJOR 20
267 268 #define DIF_SUBR_GETMINOR 21
268 269 #define DIF_SUBR_DDI_PATHNAME 22
269 270 #define DIF_SUBR_STRJOIN 23
270 271 #define DIF_SUBR_LLTOSTR 24
271 272 #define DIF_SUBR_BASENAME 25
272 273 #define DIF_SUBR_DIRNAME 26
273 274 #define DIF_SUBR_CLEANPATH 27
274 275 #define DIF_SUBR_STRCHR 28
275 276 #define DIF_SUBR_STRRCHR 29
276 277 #define DIF_SUBR_STRSTR 30
277 278 #define DIF_SUBR_STRTOK 31
278 279 #define DIF_SUBR_SUBSTR 32
279 280 #define DIF_SUBR_INDEX 33
280 281 #define DIF_SUBR_RINDEX 34
281 282 #define DIF_SUBR_HTONS 35
282 283 #define DIF_SUBR_HTONL 36
283 284 #define DIF_SUBR_HTONLL 37
284 285 #define DIF_SUBR_NTOHS 38
285 286 #define DIF_SUBR_NTOHL 39
286 287 #define DIF_SUBR_NTOHLL 40
287 288 #define DIF_SUBR_INET_NTOP 41
288 289 #define DIF_SUBR_INET_NTOA 42
289 290 #define DIF_SUBR_INET_NTOA6 43
290 291 #define DIF_SUBR_TOUPPER 44
291 292 #define DIF_SUBR_TOLOWER 45
292 293 #define DIF_SUBR_GETF 46
293 294 #define DIF_SUBR_JSON 47
294 295 #define DIF_SUBR_STRTOLL 48
295 296
296 297 #define DIF_SUBR_MAX 48 /* max subroutine value */
297 298
298 299 typedef uint32_t dif_instr_t;
299 300
300 301 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff)
301 302 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff)
302 303 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff)
303 304 #define DIF_INSTR_RD(i) ((i) & 0xff)
304 305 #define DIF_INSTR_RS(i) ((i) & 0xff)
305 306 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff)
306 307 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff)
307 308 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff)
308 309 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff)
309 310 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff)
310 311 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff)
311 312 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff)
312 313
313 314 #define DIF_INSTR_FMT(op, r1, r2, d) \
314 315 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
315 316
316 317 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
317 318 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
318 319 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0))
319 320 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
320 321 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label))
321 322 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
322 323 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
323 324 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
324 325 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
325 326 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
326 327 #define DIF_INSTR_NOP (DIF_OP_NOP << 24)
327 328 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d))
328 329 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))
329 330 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))
330 331 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
331 332 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs))
332 333 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24)
333 334 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24)
334 335 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
335 336 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
336 337 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))
337 338
338 339 #define DIF_REG_R0 0 /* %r0 is always set to zero */
339 340
340 341 /*
341 342 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
342 343 * of variables, function and associative array arguments, and the return type
343 344 * for each DIF object (shown below). It contains a description of the type,
344 345 * its size in bytes, and a module identifier.
345 346 */
346 347 typedef struct dtrace_diftype {
347 348 uint8_t dtdt_kind; /* type kind (see below) */
348 349 uint8_t dtdt_ckind; /* type kind in CTF */
349 350 uint8_t dtdt_flags; /* type flags (see below) */
350 351 uint8_t dtdt_pad; /* reserved for future use */
351 352 uint32_t dtdt_size; /* type size in bytes (unless string) */
352 353 } dtrace_diftype_t;
353 354
354 355 #define DIF_TYPE_CTF 0 /* type is a CTF type */
355 356 #define DIF_TYPE_STRING 1 /* type is a D string */
356 357
357 358 #define DIF_TF_BYREF 0x1 /* type is passed by reference */
358 359 #define DIF_TF_BYUREF 0x2 /* user type is passed by reference */
359 360
360 361 /*
361 362 * A DTrace Intermediate Format variable record is used to describe each of the
362 363 * variables referenced by a given DIF object. It contains an integer variable
363 364 * identifier along with variable scope and properties, as shown below. The
364 365 * size of this structure must be sizeof (int) aligned.
365 366 */
366 367 typedef struct dtrace_difv {
367 368 uint32_t dtdv_name; /* variable name index in dtdo_strtab */
368 369 uint32_t dtdv_id; /* variable reference identifier */
369 370 uint8_t dtdv_kind; /* variable kind (see below) */
370 371 uint8_t dtdv_scope; /* variable scope (see below) */
371 372 uint16_t dtdv_flags; /* variable flags (see below) */
372 373 dtrace_diftype_t dtdv_type; /* variable type (see above) */
373 374 } dtrace_difv_t;
374 375
375 376 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */
376 377 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */
377 378
378 379 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */
379 380 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */
380 381 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */
381 382
382 383 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */
383 384 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */
384 385
385 386 /*
386 387 * DTrace Actions
387 388 *
388 389 * The upper byte determines the class of the action; the low bytes determines
389 390 * the specific action within that class. The classes of actions are as
390 391 * follows:
391 392 *
392 393 * [ no class ] <= May record process- or kernel-related data
393 394 * DTRACEACT_PROC <= Only records process-related data
394 395 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes
395 396 * DTRACEACT_KERNEL <= Only records kernel-related data
396 397 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel
397 398 * DTRACEACT_SPECULATIVE <= Speculation-related action
398 399 * DTRACEACT_AGGREGATION <= Aggregating action
399 400 */
400 401 #define DTRACEACT_NONE 0 /* no action */
401 402 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */
402 403 #define DTRACEACT_EXIT 2 /* exit() action */
403 404 #define DTRACEACT_PRINTF 3 /* printf() action */
404 405 #define DTRACEACT_PRINTA 4 /* printa() action */
405 406 #define DTRACEACT_LIBACT 5 /* library-controlled action */
406 407 #define DTRACEACT_TRACEMEM 6 /* tracemem() action */
407 408 #define DTRACEACT_TRACEMEM_DYNSIZE 7 /* dynamic tracemem() size */
408 409
409 410 #define DTRACEACT_PROC 0x0100
410 411 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1)
411 412 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2)
412 413 #define DTRACEACT_USYM (DTRACEACT_PROC + 3)
413 414 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4)
414 415 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5)
415 416
416 417 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200
417 418 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1)
418 419 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2)
419 420 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3)
420 421 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4)
421 422
422 423 #define DTRACEACT_PROC_CONTROL 0x0300
423 424
424 425 #define DTRACEACT_KERNEL 0x0400
425 426 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1)
426 427 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2)
427 428 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3)
428 429
429 430 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500
430 431 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1)
431 432 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2)
432 433 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3)
433 434
434 435 #define DTRACEACT_SPECULATIVE 0x0600
435 436 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1)
436 437 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2)
437 438 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3)
438 439
439 440 #define DTRACEACT_CLASS(x) ((x) & 0xff00)
440 441
441 442 #define DTRACEACT_ISDESTRUCTIVE(x) \
442 443 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
443 444 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
444 445
445 446 #define DTRACEACT_ISSPECULATIVE(x) \
446 447 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
447 448
448 449 #define DTRACEACT_ISPRINTFLIKE(x) \
449 450 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
450 451 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
451 452
452 453 /*
453 454 * DTrace Aggregating Actions
454 455 *
455 456 * These are functions f(x) for which the following is true:
456 457 *
457 458 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
458 459 *
459 460 * where x_n is a set of arbitrary data. Aggregating actions are in their own
460 461 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow
461 462 * for easier processing of the aggregation argument and data payload for a few
462 463 * aggregating actions (notably: quantize(), lquantize(), and ustack()).
463 464 */
464 465 #define DTRACEACT_AGGREGATION 0x0700
465 466 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1)
466 467 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2)
467 468 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3)
468 469 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4)
469 470 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5)
470 471 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6)
471 472 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7)
472 473 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8)
473 474 #define DTRACEAGG_LLQUANTIZE (DTRACEACT_AGGREGATION + 9)
474 475
475 476 #define DTRACEACT_ISAGG(x) \
476 477 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
477 478
478 479 #define DTRACE_QUANTIZE_NBUCKETS \
479 480 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
480 481
481 482 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1)
482 483
483 484 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \
484 485 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \
485 486 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \
486 487 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \
487 488 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
488 489
489 490 #define DTRACE_LQUANTIZE_STEPSHIFT 48
490 491 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48)
491 492 #define DTRACE_LQUANTIZE_LEVELSHIFT 32
492 493 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32)
493 494 #define DTRACE_LQUANTIZE_BASESHIFT 0
494 495 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX
495 496
496 497 #define DTRACE_LQUANTIZE_STEP(x) \
497 498 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
498 499 DTRACE_LQUANTIZE_STEPSHIFT)
499 500
500 501 #define DTRACE_LQUANTIZE_LEVELS(x) \
501 502 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
502 503 DTRACE_LQUANTIZE_LEVELSHIFT)
503 504
504 505 #define DTRACE_LQUANTIZE_BASE(x) \
505 506 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
506 507 DTRACE_LQUANTIZE_BASESHIFT)
507 508
508 509 #define DTRACE_LLQUANTIZE_FACTORSHIFT 48
509 510 #define DTRACE_LLQUANTIZE_FACTORMASK ((uint64_t)UINT16_MAX << 48)
510 511 #define DTRACE_LLQUANTIZE_LOWSHIFT 32
511 512 #define DTRACE_LLQUANTIZE_LOWMASK ((uint64_t)UINT16_MAX << 32)
512 513 #define DTRACE_LLQUANTIZE_HIGHSHIFT 16
513 514 #define DTRACE_LLQUANTIZE_HIGHMASK ((uint64_t)UINT16_MAX << 16)
514 515 #define DTRACE_LLQUANTIZE_NSTEPSHIFT 0
515 516 #define DTRACE_LLQUANTIZE_NSTEPMASK UINT16_MAX
516 517
517 518 #define DTRACE_LLQUANTIZE_FACTOR(x) \
518 519 (uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
519 520 DTRACE_LLQUANTIZE_FACTORSHIFT)
520 521
521 522 #define DTRACE_LLQUANTIZE_LOW(x) \
522 523 (uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
523 524 DTRACE_LLQUANTIZE_LOWSHIFT)
524 525
525 526 #define DTRACE_LLQUANTIZE_HIGH(x) \
526 527 (uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
527 528 DTRACE_LLQUANTIZE_HIGHSHIFT)
528 529
529 530 #define DTRACE_LLQUANTIZE_NSTEP(x) \
530 531 (uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
531 532 DTRACE_LLQUANTIZE_NSTEPSHIFT)
532 533
533 534 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX)
534 535 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32)
535 536 #define DTRACE_USTACK_ARG(x, y) \
536 537 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
537 538
538 539 #ifndef _LP64
539 540 #ifndef _LITTLE_ENDIAN
540 541 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name
541 542 #else
542 543 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad
543 544 #endif
544 545 #else
545 546 #define DTRACE_PTR(type, name) type *name
546 547 #endif
547 548
548 549 /*
549 550 * DTrace Object Format (DOF)
550 551 *
551 552 * DTrace programs can be persistently encoded in the DOF format so that they
552 553 * may be embedded in other programs (for example, in an ELF file) or in the
553 554 * dtrace driver configuration file for use in anonymous tracing. The DOF
554 555 * format is versioned and extensible so that it can be revised and so that
555 556 * internal data structures can be modified or extended compatibly. All DOF
556 557 * structures use fixed-size types, so the 32-bit and 64-bit representations
557 558 * are identical and consumers can use either data model transparently.
558 559 *
559 560 * The file layout is structured as follows:
560 561 *
561 562 * +---------------+-------------------+----- ... ----+---- ... ------+
562 563 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable |
563 564 * | (file header) | (section headers) | section data | section data |
564 565 * +---------------+-------------------+----- ... ----+---- ... ------+
565 566 * |<------------ dof_hdr.dofh_loadsz --------------->| |
566 567 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
567 568 *
568 569 * The file header stores meta-data including a magic number, data model for
569 570 * the instrumentation, data encoding, and properties of the DIF code within.
570 571 * The header describes its own size and the size of the section headers. By
571 572 * convention, an array of section headers follows the file header, and then
572 573 * the data for all loadable sections and unloadable sections. This permits
573 574 * consumer code to easily download the headers and all loadable data into the
574 575 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
575 576 *
576 577 * The section headers describe the size, offset, alignment, and section type
577 578 * for each section. Sections are described using a set of #defines that tell
578 579 * the consumer what kind of data is expected. Sections can contain links to
579 580 * other sections by storing a dof_secidx_t, an index into the section header
580 581 * array, inside of the section data structures. The section header includes
581 582 * an entry size so that sections with data arrays can grow their structures.
582 583 *
583 584 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
584 585 * are represented themselves as a collection of related DOF sections. This
585 586 * permits us to change the set of sections associated with a DIFO over time,
586 587 * and also permits us to encode DIFOs that contain different sets of sections.
587 588 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
588 589 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of
589 590 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
590 591 *
591 592 * This loose coupling of the file structure (header and sections) to the
592 593 * structure of the DTrace program itself (ECB descriptions, action
593 594 * descriptions, and DIFOs) permits activities such as relocation processing
594 595 * to occur in a single pass without having to understand D program structure.
595 596 *
596 597 * Finally, strings are always stored in ELF-style string tables along with a
597 598 * string table section index and string table offset. Therefore strings in
598 599 * DOF are always arbitrary-length and not bound to the current implementation.
599 600 */
600 601
601 602 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */
602 603
603 604 typedef struct dof_hdr {
604 605 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
605 606 uint32_t dofh_flags; /* file attribute flags (if any) */
606 607 uint32_t dofh_hdrsize; /* size of file header in bytes */
607 608 uint32_t dofh_secsize; /* size of section header in bytes */
608 609 uint32_t dofh_secnum; /* number of section headers */
609 610 uint64_t dofh_secoff; /* file offset of section headers */
610 611 uint64_t dofh_loadsz; /* file size of loadable portion */
611 612 uint64_t dofh_filesz; /* file size of entire DOF file */
612 613 uint64_t dofh_pad; /* reserved for future use */
613 614 } dof_hdr_t;
614 615
615 616 #define DOF_ID_MAG0 0 /* first byte of magic number */
616 617 #define DOF_ID_MAG1 1 /* second byte of magic number */
617 618 #define DOF_ID_MAG2 2 /* third byte of magic number */
618 619 #define DOF_ID_MAG3 3 /* fourth byte of magic number */
619 620 #define DOF_ID_MODEL 4 /* DOF data model (see below) */
620 621 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */
621 622 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */
622 623 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */
623 624 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */
624 625 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */
625 626 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */
626 627
627 628 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */
628 629 #define DOF_MAG_MAG1 'D'
629 630 #define DOF_MAG_MAG2 'O'
630 631 #define DOF_MAG_MAG3 'F'
631 632
632 633 #define DOF_MAG_STRING "\177DOF"
633 634 #define DOF_MAG_STRLEN 4
634 635
635 636 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */
636 637 #define DOF_MODEL_ILP32 1
637 638 #define DOF_MODEL_LP64 2
638 639
639 640 #ifdef _LP64
640 641 #define DOF_MODEL_NATIVE DOF_MODEL_LP64
641 642 #else
642 643 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32
643 644 #endif
644 645
645 646 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */
646 647 #define DOF_ENCODE_LSB 1
647 648 #define DOF_ENCODE_MSB 2
648 649
649 650 #ifdef _BIG_ENDIAN
650 651 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB
651 652 #else
652 653 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB
653 654 #endif
654 655
655 656 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */
656 657 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */
657 658 #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */
658 659
659 660 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */
660 661
661 662 typedef uint32_t dof_secidx_t; /* section header table index type */
662 663 typedef uint32_t dof_stridx_t; /* string table index type */
663 664
664 665 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */
665 666 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */
666 667
667 668 typedef struct dof_sec {
668 669 uint32_t dofs_type; /* section type (see below) */
669 670 uint32_t dofs_align; /* section data memory alignment */
670 671 uint32_t dofs_flags; /* section flags (if any) */
671 672 uint32_t dofs_entsize; /* size of section entry (if table) */
672 673 uint64_t dofs_offset; /* offset of section data within file */
673 674 uint64_t dofs_size; /* size of section data in bytes */
674 675 } dof_sec_t;
675 676
676 677 #define DOF_SECT_NONE 0 /* null section */
677 678 #define DOF_SECT_COMMENTS 1 /* compiler comments */
678 679 #define DOF_SECT_SOURCE 2 /* D program source code */
679 680 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */
680 681 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */
681 682 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */
682 683 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */
683 684 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */
684 685 #define DOF_SECT_STRTAB 8 /* string table */
685 686 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */
686 687 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */
687 688 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */
688 689 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */
689 690 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */
690 691 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */
691 692 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */
692 693 #define DOF_SECT_PROBES 16 /* dof_probe_t array */
693 694 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */
694 695 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */
695 696 #define DOF_SECT_INTTAB 19 /* uint64_t array */
696 697 #define DOF_SECT_UTSNAME 20 /* struct utsname */
697 698 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */
698 699 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */
699 700 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */
700 701 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */
701 702 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */
702 703 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */
703 704
704 705 #define DOF_SECF_LOAD 1 /* section should be loaded */
705 706
706 707 #define DOF_SEC_ISLOADABLE(x) \
707 708 (((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) || \
708 709 ((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) || \
709 710 ((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) || \
710 711 ((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) || \
711 712 ((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) || \
712 713 ((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) || \
713 714 ((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) || \
714 715 ((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) || \
715 716 ((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) || \
716 717 ((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) || \
717 718 ((x) == DOF_SECT_XLIMPORT) || ((x) == DOF_SECT_XLEXPORT) || \
718 719 ((x) == DOF_SECT_PREXPORT) || ((x) == DOF_SECT_PRENOFFS))
719 720
720 721 typedef struct dof_ecbdesc {
721 722 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */
722 723 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */
723 724 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */
724 725 uint32_t dofe_pad; /* reserved for future use */
725 726 uint64_t dofe_uarg; /* user-supplied library argument */
726 727 } dof_ecbdesc_t;
727 728
728 729 typedef struct dof_probedesc {
729 730 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */
730 731 dof_stridx_t dofp_provider; /* provider string */
731 732 dof_stridx_t dofp_mod; /* module string */
732 733 dof_stridx_t dofp_func; /* function string */
733 734 dof_stridx_t dofp_name; /* name string */
734 735 uint32_t dofp_id; /* probe identifier (or zero) */
735 736 } dof_probedesc_t;
736 737
737 738 typedef struct dof_actdesc {
738 739 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */
739 740 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */
740 741 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */
741 742 uint32_t dofa_ntuple; /* number of subsequent tuple actions */
742 743 uint64_t dofa_arg; /* kind-specific argument */
743 744 uint64_t dofa_uarg; /* user-supplied argument */
744 745 } dof_actdesc_t;
745 746
746 747 typedef struct dof_difohdr {
747 748 dtrace_diftype_t dofd_rtype; /* return type for this fragment */
748 749 dof_secidx_t dofd_links[1]; /* variable length array of indices */
749 750 } dof_difohdr_t;
750 751
751 752 typedef struct dof_relohdr {
752 753 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */
753 754 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */
754 755 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */
755 756 } dof_relohdr_t;
756 757
757 758 typedef struct dof_relodesc {
758 759 dof_stridx_t dofr_name; /* string name of relocation symbol */
759 760 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */
760 761 uint64_t dofr_offset; /* byte offset for relocation */
761 762 uint64_t dofr_data; /* additional type-specific data */
762 763 } dof_relodesc_t;
763 764
764 765 #define DOF_RELO_NONE 0 /* empty relocation entry */
765 766 #define DOF_RELO_SETX 1 /* relocate setx value */
766 767
767 768 typedef struct dof_optdesc {
768 769 uint32_t dofo_option; /* option identifier */
769 770 dof_secidx_t dofo_strtab; /* string table, if string option */
770 771 uint64_t dofo_value; /* option value or string index */
771 772 } dof_optdesc_t;
772 773
773 774 typedef uint32_t dof_attr_t; /* encoded stability attributes */
774 775
775 776 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8))
776 777 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff)
777 778 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff)
778 779 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff)
779 780
780 781 typedef struct dof_provider {
781 782 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */
782 783 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */
783 784 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */
784 785 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */
785 786 dof_stridx_t dofpv_name; /* provider name string */
786 787 dof_attr_t dofpv_provattr; /* provider attributes */
787 788 dof_attr_t dofpv_modattr; /* module attributes */
788 789 dof_attr_t dofpv_funcattr; /* function attributes */
789 790 dof_attr_t dofpv_nameattr; /* name attributes */
790 791 dof_attr_t dofpv_argsattr; /* args attributes */
791 792 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */
792 793 } dof_provider_t;
793 794
794 795 typedef struct dof_probe {
795 796 uint64_t dofpr_addr; /* probe base address or offset */
796 797 dof_stridx_t dofpr_func; /* probe function string */
797 798 dof_stridx_t dofpr_name; /* probe name string */
798 799 dof_stridx_t dofpr_nargv; /* native argument type strings */
799 800 dof_stridx_t dofpr_xargv; /* translated argument type strings */
800 801 uint32_t dofpr_argidx; /* index of first argument mapping */
801 802 uint32_t dofpr_offidx; /* index of first offset entry */
802 803 uint8_t dofpr_nargc; /* native argument count */
803 804 uint8_t dofpr_xargc; /* translated argument count */
804 805 uint16_t dofpr_noffs; /* number of offset entries for probe */
805 806 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */
806 807 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */
807 808 uint16_t dofpr_pad1; /* reserved for future use */
808 809 uint32_t dofpr_pad2; /* reserved for future use */
809 810 } dof_probe_t;
810 811
811 812 typedef struct dof_xlator {
812 813 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */
813 814 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */
814 815 dof_stridx_t dofxl_argv; /* input parameter type strings */
815 816 uint32_t dofxl_argc; /* input parameter list length */
816 817 dof_stridx_t dofxl_type; /* output type string name */
817 818 dof_attr_t dofxl_attr; /* output stability attributes */
818 819 } dof_xlator_t;
819 820
820 821 typedef struct dof_xlmember {
821 822 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */
822 823 dof_stridx_t dofxm_name; /* member name */
823 824 dtrace_diftype_t dofxm_type; /* member type */
824 825 } dof_xlmember_t;
825 826
826 827 typedef struct dof_xlref {
827 828 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */
828 829 uint32_t dofxr_member; /* index of referenced dof_xlmember */
829 830 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */
830 831 } dof_xlref_t;
831 832
832 833 /*
833 834 * DTrace Intermediate Format Object (DIFO)
834 835 *
835 836 * A DIFO is used to store the compiled DIF for a D expression, its return
836 837 * type, and its string and variable tables. The string table is a single
837 838 * buffer of character data into which sets instructions and variable
838 839 * references can reference strings using a byte offset. The variable table
839 840 * is an array of dtrace_difv_t structures that describe the name and type of
840 841 * each variable and the id used in the DIF code. This structure is described
841 842 * above in the DIF section of this header file. The DIFO is used at both
842 843 * user-level (in the library) and in the kernel, but the structure is never
843 844 * passed between the two: the DOF structures form the only interface. As a
844 845 * result, the definition can change depending on the presence of _KERNEL.
845 846 */
846 847 typedef struct dtrace_difo {
847 848 dif_instr_t *dtdo_buf; /* instruction buffer */
848 849 uint64_t *dtdo_inttab; /* integer table (optional) */
849 850 char *dtdo_strtab; /* string table (optional) */
850 851 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */
851 852 uint_t dtdo_len; /* length of instruction buffer */
852 853 uint_t dtdo_intlen; /* length of integer table */
853 854 uint_t dtdo_strlen; /* length of string table */
854 855 uint_t dtdo_varlen; /* length of variable table */
855 856 dtrace_diftype_t dtdo_rtype; /* return type */
856 857 uint_t dtdo_refcnt; /* owner reference count */
857 858 uint_t dtdo_destructive; /* invokes destructive subroutines */
858 859 #ifndef _KERNEL
859 860 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */
860 861 dof_relodesc_t *dtdo_ureltab; /* user relocations */
861 862 struct dt_node **dtdo_xlmtab; /* translator references */
862 863 uint_t dtdo_krelen; /* length of krelo table */
863 864 uint_t dtdo_urelen; /* length of urelo table */
864 865 uint_t dtdo_xlmlen; /* length of translator table */
865 866 #endif
866 867 } dtrace_difo_t;
867 868
868 869 /*
869 870 * DTrace Enabling Description Structures
870 871 *
871 872 * When DTrace is tracking the description of a DTrace enabling entity (probe,
872 873 * predicate, action, ECB, record, etc.), it does so in a description
873 874 * structure. These structures all end in "desc", and are used at both
874 875 * user-level and in the kernel -- but (with the exception of
875 876 * dtrace_probedesc_t) they are never passed between them. Typically,
876 877 * user-level will use the description structures when assembling an enabling.
877 878 * It will then distill those description structures into a DOF object (see
878 879 * above), and send it into the kernel. The kernel will again use the
879 880 * description structures to create a description of the enabling as it reads
880 881 * the DOF. When the description is complete, the enabling will be actually
881 882 * created -- turning it into the structures that represent the enabling
882 883 * instead of merely describing it. Not surprisingly, the description
883 884 * structures bear a strong resemblance to the DOF structures that act as their
884 885 * conduit.
885 886 */
886 887 struct dtrace_predicate;
887 888
888 889 typedef struct dtrace_probedesc {
889 890 dtrace_id_t dtpd_id; /* probe identifier */
890 891 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
891 892 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */
892 893 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */
893 894 char dtpd_name[DTRACE_NAMELEN]; /* probe name */
894 895 } dtrace_probedesc_t;
895 896
896 897 typedef struct dtrace_repldesc {
897 898 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */
898 899 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */
899 900 } dtrace_repldesc_t;
900 901
901 902 typedef struct dtrace_preddesc {
902 903 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */
903 904 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
904 905 } dtrace_preddesc_t;
905 906
906 907 typedef struct dtrace_actdesc {
907 908 dtrace_difo_t *dtad_difo; /* pointer to DIF object */
908 909 struct dtrace_actdesc *dtad_next; /* next action */
909 910 dtrace_actkind_t dtad_kind; /* kind of action */
910 911 uint32_t dtad_ntuple; /* number in tuple */
911 912 uint64_t dtad_arg; /* action argument */
912 913 uint64_t dtad_uarg; /* user argument */
913 914 int dtad_refcnt; /* reference count */
914 915 } dtrace_actdesc_t;
915 916
916 917 typedef struct dtrace_ecbdesc {
917 918 dtrace_actdesc_t *dted_action; /* action description(s) */
918 919 dtrace_preddesc_t dted_pred; /* predicate description */
919 920 dtrace_probedesc_t dted_probe; /* probe description */
920 921 uint64_t dted_uarg; /* library argument */
921 922 int dted_refcnt; /* reference count */
922 923 } dtrace_ecbdesc_t;
923 924
924 925 /*
925 926 * DTrace Metadata Description Structures
926 927 *
927 928 * DTrace separates the trace data stream from the metadata stream. The only
928 929 * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID +
929 930 * timestamp) or (in the case of aggregations) aggregation identifiers. To
930 931 * determine the structure of the data, DTrace consumers pass the token to the
931 932 * kernel, and receive in return a corresponding description of the enabled
932 933 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
933 934 * dtrace_aggdesc structure). Both of these structures are expressed in terms
934 935 * of record descriptions (via the dtrace_recdesc structure) that describe the
935 936 * exact structure of the data. Some record descriptions may also contain a
936 937 * format identifier; this additional bit of metadata can be retrieved from the
937 938 * kernel, for which a format description is returned via the dtrace_fmtdesc
938 939 * structure. Note that all four of these structures must be bitness-neutral
939 940 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
940 941 */
941 942 typedef struct dtrace_recdesc {
942 943 dtrace_actkind_t dtrd_action; /* kind of action */
943 944 uint32_t dtrd_size; /* size of record */
944 945 uint32_t dtrd_offset; /* offset in ECB's data */
945 946 uint16_t dtrd_alignment; /* required alignment */
946 947 uint16_t dtrd_format; /* format, if any */
947 948 uint64_t dtrd_arg; /* action argument */
948 949 uint64_t dtrd_uarg; /* user argument */
949 950 } dtrace_recdesc_t;
950 951
951 952 typedef struct dtrace_eprobedesc {
952 953 dtrace_epid_t dtepd_epid; /* enabled probe ID */
953 954 dtrace_id_t dtepd_probeid; /* probe ID */
954 955 uint64_t dtepd_uarg; /* library argument */
955 956 uint32_t dtepd_size; /* total size */
956 957 int dtepd_nrecs; /* number of records */
957 958 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */
958 959 } dtrace_eprobedesc_t;
959 960
960 961 typedef struct dtrace_aggdesc {
961 962 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */
962 963 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */
963 964 int dtagd_flags; /* not filled in by kernel */
964 965 dtrace_aggid_t dtagd_id; /* aggregation ID */
965 966 dtrace_epid_t dtagd_epid; /* enabled probe ID */
966 967 uint32_t dtagd_size; /* size in bytes */
967 968 int dtagd_nrecs; /* number of records */
968 969 uint32_t dtagd_pad; /* explicit padding */
969 970 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */
970 971 } dtrace_aggdesc_t;
971 972
972 973 typedef struct dtrace_fmtdesc {
973 974 DTRACE_PTR(char, dtfd_string); /* format string */
974 975 int dtfd_length; /* length of format string */
975 976 uint16_t dtfd_format; /* format identifier */
976 977 } dtrace_fmtdesc_t;
977 978
978 979 #define DTRACE_SIZEOF_EPROBEDESC(desc) \
979 980 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \
980 981 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
981 982
982 983 #define DTRACE_SIZEOF_AGGDESC(desc) \
983 984 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \
984 985 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
985 986
986 987 /*
987 988 * DTrace Option Interface
988 989 *
989 990 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
990 991 * in a DOF image. The dof_optdesc structure contains an option identifier and
991 992 * an option value. The valid option identifiers are found below; the mapping
992 993 * between option identifiers and option identifying strings is maintained at
993 994 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the
994 995 * following are potentially valid option values: all positive integers, zero
995 996 * and negative one. Some options (notably "bufpolicy" and "bufresize") take
996 997 * predefined tokens as their values; these are defined with
997 998 * DTRACEOPT_{option}_{token}.
998 999 */
999 1000 #define DTRACEOPT_BUFSIZE 0 /* buffer size */
1000 1001 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */
1001 1002 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */
1002 1003 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */
1003 1004 #define DTRACEOPT_SPECSIZE 4 /* speculation size */
1004 1005 #define DTRACEOPT_NSPEC 5 /* number of speculations */
1005 1006 #define DTRACEOPT_STRSIZE 6 /* string size */
1006 1007 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */
1007 1008 #define DTRACEOPT_CPU 8 /* CPU to trace */
1008 1009 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */
1009 1010 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */
1010 1011 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */
1011 1012 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */
1012 1013 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */
1013 1014 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */
1014 1015 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */
1015 1016 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */
1016 1017 #define DTRACEOPT_STATUSRATE 17 /* status rate */
1017 1018 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */
1018 1019 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */
1019 1020 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */
1020 1021 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */
1021 1022 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */
1022 1023 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */
1023 1024 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */
1024 1025 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */
1025 1026 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */
1026 1027 #define DTRACEOPT_TEMPORAL 27 /* temporally ordered output */
1027 1028 #define DTRACEOPT_AGGHIST 28 /* histogram aggregation output */
1028 1029 #define DTRACEOPT_AGGPACK 29 /* packed aggregation output */
1029 1030 #define DTRACEOPT_AGGZOOM 30 /* zoomed aggregation scaling */
1030 1031 #define DTRACEOPT_ZONE 31 /* zone in which to enable probes */
1031 1032 #define DTRACEOPT_MAX 32 /* number of options */
1032 1033
1033 1034 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */
1034 1035
1035 1036 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */
1036 1037 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */
1037 1038 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */
1038 1039
1039 1040 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */
1040 1041 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */
1041 1042
1042 1043 /*
1043 1044 * DTrace Buffer Interface
1044 1045 *
1045 1046 * In order to get a snapshot of the principal or aggregation buffer,
1046 1047 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1047 1048 * structure. This describes which CPU user-level is interested in, and
1048 1049 * where user-level wishes the kernel to snapshot the buffer to (the
1049 1050 * dtbd_data field). The kernel uses the same structure to pass back some
1050 1051 * information regarding the buffer: the size of data actually copied out, the
1051 1052 * number of drops, the number of errors, the offset of the oldest record,
1052 1053 * and the time of the snapshot.
1053 1054 *
1054 1055 * If the buffer policy is a "switch" policy, taking a snapshot of the
1055 1056 * principal buffer has the additional effect of switching the active and
1056 1057 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has
1057 1058 * the additional effect of switching the active and inactive buffers.
1058 1059 */
1059 1060 typedef struct dtrace_bufdesc {
1060 1061 uint64_t dtbd_size; /* size of buffer */
1061 1062 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */
1062 1063 uint32_t dtbd_errors; /* number of errors */
1063 1064 uint64_t dtbd_drops; /* number of drops */
1064 1065 DTRACE_PTR(char, dtbd_data); /* data */
1065 1066 uint64_t dtbd_oldest; /* offset of oldest record */
1066 1067 uint64_t dtbd_timestamp; /* hrtime of snapshot */
1067 1068 } dtrace_bufdesc_t;
1068 1069
1069 1070 /*
1070 1071 * Each record in the buffer (dtbd_data) begins with a header that includes
1071 1072 * the epid and a timestamp. The timestamp is split into two 4-byte parts
1072 1073 * so that we do not require 8-byte alignment.
1073 1074 */
1074 1075 typedef struct dtrace_rechdr {
1075 1076 dtrace_epid_t dtrh_epid; /* enabled probe id */
1076 1077 uint32_t dtrh_timestamp_hi; /* high bits of hrtime_t */
1077 1078 uint32_t dtrh_timestamp_lo; /* low bits of hrtime_t */
1078 1079 } dtrace_rechdr_t;
1079 1080
1080 1081 #define DTRACE_RECORD_LOAD_TIMESTAMP(dtrh) \
1081 1082 ((dtrh)->dtrh_timestamp_lo + \
1082 1083 ((uint64_t)(dtrh)->dtrh_timestamp_hi << 32))
1083 1084
1084 1085 #define DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) { \
1085 1086 (dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime; \
1086 1087 (dtrh)->dtrh_timestamp_hi = hrtime >> 32; \
1087 1088 }
1088 1089
1089 1090 /*
1090 1091 * DTrace Status
1091 1092 *
1092 1093 * The status of DTrace is relayed via the dtrace_status structure. This
1093 1094 * structure contains members to count drops other than the capacity drops
1094 1095 * available via the buffer interface (see above). This consists of dynamic
1095 1096 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1096 1097 * speculative drops (including capacity speculative drops, drops due to busy
1097 1098 * speculative buffers and drops due to unavailable speculative buffers).
1098 1099 * Additionally, the status structure contains a field to indicate the number
1099 1100 * of "fill"-policy buffers have been filled and a boolean field to indicate
1100 1101 * that exit() has been called. If the dtst_exiting field is non-zero, no
1101 1102 * further data will be generated until tracing is stopped (at which time any
1102 1103 * enablings of the END action will be processed); if user-level sees that
1103 1104 * this field is non-zero, tracing should be stopped as soon as possible.
1104 1105 */
1105 1106 typedef struct dtrace_status {
1106 1107 uint64_t dtst_dyndrops; /* dynamic drops */
1107 1108 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */
1108 1109 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */
1109 1110 uint64_t dtst_specdrops; /* speculative drops */
1110 1111 uint64_t dtst_specdrops_busy; /* spec drops due to busy */
1111 1112 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */
1112 1113 uint64_t dtst_errors; /* total errors */
1113 1114 uint64_t dtst_filled; /* number of filled bufs */
1114 1115 uint64_t dtst_stkstroverflows; /* stack string tab overflows */
1115 1116 uint64_t dtst_dblerrors; /* errors in ERROR probes */
1116 1117 char dtst_killed; /* non-zero if killed */
1117 1118 char dtst_exiting; /* non-zero if exit() called */
1118 1119 char dtst_pad[6]; /* pad out to 64-bit align */
1119 1120 } dtrace_status_t;
1120 1121
1121 1122 /*
1122 1123 * DTrace Configuration
1123 1124 *
1124 1125 * User-level may need to understand some elements of the kernel DTrace
1125 1126 * configuration in order to generate correct DIF. This information is
1126 1127 * conveyed via the dtrace_conf structure.
1127 1128 */
1128 1129 typedef struct dtrace_conf {
1129 1130 uint_t dtc_difversion; /* supported DIF version */
1130 1131 uint_t dtc_difintregs; /* # of DIF integer registers */
1131 1132 uint_t dtc_diftupregs; /* # of DIF tuple registers */
1132 1133 uint_t dtc_ctfmodel; /* CTF data model */
1133 1134 uint_t dtc_pad[8]; /* reserved for future use */
1134 1135 } dtrace_conf_t;
1135 1136
1136 1137 /*
1137 1138 * DTrace Faults
1138 1139 *
1139 1140 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1140 1141 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1141 1142 * postprocessing at user-level. Probe processing faults induce an ERROR
1142 1143 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1143 1144 * the error condition using thse symbolic labels.
1144 1145 */
1145 1146 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */
1146 1147 #define DTRACEFLT_BADADDR 1 /* Bad address */
1147 1148 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */
1148 1149 #define DTRACEFLT_ILLOP 3 /* Illegal operation */
1149 1150 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */
1150 1151 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */
1151 1152 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */
1152 1153 #define DTRACEFLT_UPRIV 7 /* Illegal user access */
1153 1154 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */
1154 1155 #define DTRACEFLT_BADSTACK 9 /* Bad stack */
1155 1156
1156 1157 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */
1157 1158
1158 1159 /*
1159 1160 * DTrace Argument Types
1160 1161 *
1161 1162 * Because it would waste both space and time, argument types do not reside
1162 1163 * with the probe. In order to determine argument types for args[X]
1163 1164 * variables, the D compiler queries for argument types on a probe-by-probe
1164 1165 * basis. (This optimizes for the common case that arguments are either not
1165 1166 * used or used in an untyped fashion.) Typed arguments are specified with a
1166 1167 * string of the type name in the dtragd_native member of the argument
1167 1168 * description structure. Typed arguments may be further translated to types
1168 1169 * of greater stability; the provider indicates such a translated argument by
1169 1170 * filling in the dtargd_xlate member with the string of the translated type.
1170 1171 * Finally, the provider may indicate which argument value a given argument
1171 1172 * maps to by setting the dtargd_mapping member -- allowing a single argument
1172 1173 * to map to multiple args[X] variables.
1173 1174 */
1174 1175 typedef struct dtrace_argdesc {
1175 1176 dtrace_id_t dtargd_id; /* probe identifier */
1176 1177 int dtargd_ndx; /* arg number (-1 iff none) */
1177 1178 int dtargd_mapping; /* value mapping */
1178 1179 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */
1179 1180 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */
1180 1181 } dtrace_argdesc_t;
1181 1182
1182 1183 /*
1183 1184 * DTrace Stability Attributes
1184 1185 *
1185 1186 * Each DTrace provider advertises the name and data stability of each of its
1186 1187 * probe description components, as well as its architectural dependencies.
1187 1188 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1188 1189 * order to compute the properties of an input program and report them.
1189 1190 */
1190 1191 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */
1191 1192 typedef uint8_t dtrace_class_t; /* architectural dependency class */
1192 1193
1193 1194 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */
1194 1195 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */
1195 1196 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */
1196 1197 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */
1197 1198 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */
1198 1199 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */
1199 1200 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */
1200 1201 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */
1201 1202 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */
1202 1203
1203 1204 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */
1204 1205 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */
1205 1206 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */
1206 1207 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */
1207 1208 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */
1208 1209 #define DTRACE_CLASS_COMMON 5 /* common to all systems */
1209 1210 #define DTRACE_CLASS_MAX 5 /* maximum valid class */
1210 1211
1211 1212 #define DTRACE_PRIV_NONE 0x0000
1212 1213 #define DTRACE_PRIV_KERNEL 0x0001
1213 1214 #define DTRACE_PRIV_USER 0x0002
1214 1215 #define DTRACE_PRIV_PROC 0x0004
1215 1216 #define DTRACE_PRIV_OWNER 0x0008
1216 1217 #define DTRACE_PRIV_ZONEOWNER 0x0010
1217 1218
1218 1219 #define DTRACE_PRIV_ALL \
1219 1220 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1220 1221 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1221 1222
1222 1223 typedef struct dtrace_ppriv {
1223 1224 uint32_t dtpp_flags; /* privilege flags */
1224 1225 uid_t dtpp_uid; /* user ID */
1225 1226 zoneid_t dtpp_zoneid; /* zone ID */
1226 1227 } dtrace_ppriv_t;
1227 1228
1228 1229 typedef struct dtrace_attribute {
1229 1230 dtrace_stability_t dtat_name; /* entity name stability */
1230 1231 dtrace_stability_t dtat_data; /* entity data stability */
1231 1232 dtrace_class_t dtat_class; /* entity data dependency */
1232 1233 } dtrace_attribute_t;
1233 1234
1234 1235 typedef struct dtrace_pattr {
1235 1236 dtrace_attribute_t dtpa_provider; /* provider attributes */
1236 1237 dtrace_attribute_t dtpa_mod; /* module attributes */
1237 1238 dtrace_attribute_t dtpa_func; /* function attributes */
1238 1239 dtrace_attribute_t dtpa_name; /* name attributes */
1239 1240 dtrace_attribute_t dtpa_args; /* args[] attributes */
1240 1241 } dtrace_pattr_t;
1241 1242
1242 1243 typedef struct dtrace_providerdesc {
1243 1244 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */
1244 1245 dtrace_pattr_t dtvd_attr; /* stability attributes */
1245 1246 dtrace_ppriv_t dtvd_priv; /* privileges required */
1246 1247 } dtrace_providerdesc_t;
1247 1248
1248 1249 /*
1249 1250 * DTrace Pseudodevice Interface
1250 1251 *
1251 1252 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1252 1253 * pseudodevice driver. These ioctls comprise the user-kernel interface to
1253 1254 * DTrace.
1254 1255 */
1255 1256 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8))
1256 1257 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1257 1258 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1258 1259 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1259 1260 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1260 1261 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1261 1262 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1262 1263 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1263 1264 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1264 1265 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1265 1266 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1266 1267 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1267 1268 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1268 1269 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1269 1270 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1270 1271 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1271 1272 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1272 1273
1273 1274 /*
1274 1275 * DTrace Helpers
1275 1276 *
1276 1277 * In general, DTrace establishes probes in processes and takes actions on
1277 1278 * processes without knowing their specific user-level structures. Instead of
1278 1279 * existing in the framework, process-specific knowledge is contained by the
1279 1280 * enabling D program -- which can apply process-specific knowledge by making
1280 1281 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1281 1282 * operate on user-level data. However, there may exist some specific probes
1282 1283 * of particular semantic relevance that the application developer may wish to
1283 1284 * explicitly export. For example, an application may wish to export a probe
1284 1285 * at the point that it begins and ends certain well-defined transactions. In
1285 1286 * addition to providing probes, programs may wish to offer assistance for
1286 1287 * certain actions. For example, in highly dynamic environments (e.g., Java),
1287 1288 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1288 1289 * names (the translation from instruction addresses to corresponding symbol
1289 1290 * names may only be possible in situ); these environments may wish to define
1290 1291 * a series of actions to be applied in situ to obtain a meaningful stack
1291 1292 * trace.
1292 1293 *
1293 1294 * These two mechanisms -- user-level statically defined tracing and assisting
1294 1295 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified
1295 1296 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1296 1297 * providers, probes and their arguments. If a helper wishes to provide
1297 1298 * action assistance, probe descriptions and corresponding DIF actions may be
1298 1299 * specified in the helper DOF. For such helper actions, however, the probe
1299 1300 * description describes the specific helper: all DTrace helpers have the
1300 1301 * provider name "dtrace" and the module name "helper", and the name of the
1301 1302 * helper is contained in the function name (for example, the ustack() helper
1302 1303 * is named "ustack"). Any helper-specific name may be contained in the name
1303 1304 * (for example, if a helper were to have a constructor, it might be named
1304 1305 * "dtrace:helper:<helper>:init"). Helper actions are only called when the
1305 1306 * action that they are helping is taken. Helper actions may only return DIF
1306 1307 * expressions, and may only call the following subroutines:
1307 1308 *
1308 1309 * alloca() <= Allocates memory out of the consumer's scratch space
1309 1310 * bcopy() <= Copies memory to scratch space
1310 1311 * copyin() <= Copies memory from user-level into consumer's scratch
1311 1312 * copyinto() <= Copies memory into a specific location in scratch
1312 1313 * copyinstr() <= Copies a string into a specific location in scratch
1313 1314 *
1314 1315 * Helper actions may only access the following built-in variables:
1315 1316 *
1316 1317 * curthread <= Current kthread_t pointer
1317 1318 * tid <= Current thread identifier
1318 1319 * pid <= Current process identifier
1319 1320 * ppid <= Parent process identifier
1320 1321 * uid <= Current user ID
1321 1322 * gid <= Current group ID
1322 1323 * execname <= Current executable name
1323 1324 * zonename <= Current zone name
1324 1325 *
1325 1326 * Helper actions may not manipulate or allocate dynamic variables, but they
1326 1327 * may have clause-local and statically-allocated global variables. The
1327 1328 * helper action variable state is specific to the helper action -- variables
1328 1329 * used by the helper action may not be accessed outside of the helper
1329 1330 * action, and the helper action may not access variables that like outside
1330 1331 * of it. Helper actions may not load from kernel memory at-large; they are
1331 1332 * restricting to loading current user state (via copyin() and variants) and
1332 1333 * scratch space. As with probe enablings, helper actions are executed in
1333 1334 * program order. The result of the helper action is the result of the last
1334 1335 * executing helper expression.
1335 1336 *
1336 1337 * Helpers -- composed of either providers/probes or probes/actions (or both)
1337 1338 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1338 1339 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1339 1340 * encapsulates the name and base address of the user-level library or
1340 1341 * executable publishing the helpers and probes as well as the DOF that
1341 1342 * contains the definitions of those helpers and probes.
1342 1343 *
1343 1344 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1344 1345 * helpers and should no longer be used. No other ioctls are valid on the
1345 1346 * helper minor node.
1346 1347 */
1347 1348 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8))
1348 1349 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */
1349 1350 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */
1350 1351 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */
1351 1352
1352 1353 typedef struct dof_helper {
1353 1354 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */
1354 1355 uint64_t dofhp_addr; /* base address of object */
1355 1356 uint64_t dofhp_dof; /* address of helper DOF */
1356 1357 } dof_helper_t;
1357 1358
1358 1359 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
1359 1360 #define DTRACEMNR_HELPER "helper" /* node for helpers */
1360 1361 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */
1361 1362 #define DTRACEMNRN_HELPER 1 /* minor for helpers */
1362 1363 #define DTRACEMNRN_CLONE 2 /* first clone minor */
1363 1364
1364 1365 #ifdef _KERNEL
1365 1366
1366 1367 /*
1367 1368 * DTrace Provider API
1368 1369 *
1369 1370 * The following functions are implemented by the DTrace framework and are
1370 1371 * used to implement separate in-kernel DTrace providers. Common functions
1371 1372 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are
1372 1373 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1373 1374 *
1374 1375 * The provider API has two halves: the API that the providers consume from
1375 1376 * DTrace, and the API that providers make available to DTrace.
1376 1377 *
1377 1378 * 1 Framework-to-Provider API
1378 1379 *
1379 1380 * 1.1 Overview
1380 1381 *
1381 1382 * The Framework-to-Provider API is represented by the dtrace_pops structure
1382 1383 * that the provider passes to the framework when registering itself. This
1383 1384 * structure consists of the following members:
1384 1385 *
1385 1386 * dtps_provide() <-- Provide all probes, all modules
1386 1387 * dtps_provide_module() <-- Provide all probes in specified module
1387 1388 * dtps_enable() <-- Enable specified probe
1388 1389 * dtps_disable() <-- Disable specified probe
1389 1390 * dtps_suspend() <-- Suspend specified probe
1390 1391 * dtps_resume() <-- Resume specified probe
1391 1392 * dtps_getargdesc() <-- Get the argument description for args[X]
1392 1393 * dtps_getargval() <-- Get the value for an argX or args[X] variable
1393 1394 * dtps_mode() <-- Return the mode of the fired probe
1394 1395 * dtps_destroy() <-- Destroy all state associated with this probe
1395 1396 *
1396 1397 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1397 1398 *
1398 1399 * 1.2.1 Overview
1399 1400 *
1400 1401 * Called to indicate that the provider should provide all probes. If the
1401 1402 * specified description is non-NULL, dtps_provide() is being called because
1402 1403 * no probe matched a specified probe -- if the provider has the ability to
1403 1404 * create custom probes, it may wish to create a probe that matches the
1404 1405 * specified description.
1405 1406 *
1406 1407 * 1.2.2 Arguments and notes
1407 1408 *
1408 1409 * The first argument is the cookie as passed to dtrace_register(). The
1409 1410 * second argument is a pointer to a probe description that the provider may
1410 1411 * wish to consider when creating custom probes. The provider is expected to
1411 1412 * call back into the DTrace framework via dtrace_probe_create() to create
1412 1413 * any necessary probes. dtps_provide() may be called even if the provider
1413 1414 * has made available all probes; the provider should check the return value
1414 1415 * of dtrace_probe_create() to handle this case. Note that the provider need
1415 1416 * not implement both dtps_provide() and dtps_provide_module(); see
1416 1417 * "Arguments and Notes" for dtrace_register(), below.
1417 1418 *
1418 1419 * 1.2.3 Return value
1419 1420 *
1420 1421 * None.
1421 1422 *
1422 1423 * 1.2.4 Caller's context
1423 1424 *
1424 1425 * dtps_provide() is typically called from open() or ioctl() context, but may
1425 1426 * be called from other contexts as well. The DTrace framework is locked in
1426 1427 * such a way that providers may not register or unregister. This means that
1427 1428 * the provider may not call any DTrace API that affects its registration with
1428 1429 * the framework, including dtrace_register(), dtrace_unregister(),
1429 1430 * dtrace_invalidate(), and dtrace_condense(). However, the context is such
1430 1431 * that the provider may (and indeed, is expected to) call probe-related
1431 1432 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1432 1433 * and dtrace_probe_arg().
1433 1434 *
1434 1435 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp)
1435 1436 *
1436 1437 * 1.3.1 Overview
1437 1438 *
1438 1439 * Called to indicate that the provider should provide all probes in the
1439 1440 * specified module.
1440 1441 *
1441 1442 * 1.3.2 Arguments and notes
1442 1443 *
1443 1444 * The first argument is the cookie as passed to dtrace_register(). The
1444 1445 * second argument is a pointer to a modctl structure that indicates the
1445 1446 * module for which probes should be created.
1446 1447 *
1447 1448 * 1.3.3 Return value
1448 1449 *
1449 1450 * None.
1450 1451 *
1451 1452 * 1.3.4 Caller's context
1452 1453 *
1453 1454 * dtps_provide_module() may be called from open() or ioctl() context, but
1454 1455 * may also be called from a module loading context. mod_lock is held, and
1455 1456 * the DTrace framework is locked in such a way that providers may not
1456 1457 * register or unregister. This means that the provider may not call any
1457 1458 * DTrace API that affects its registration with the framework, including
1458 1459 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1459 1460 * dtrace_condense(). However, the context is such that the provider may (and
1460 1461 * indeed, is expected to) call probe-related DTrace routines, including
1461 1462 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note
1462 1463 * that the provider need not implement both dtps_provide() and
1463 1464 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1464 1465 * below.
1465 1466 *
1466 1467 * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1467 1468 *
1468 1469 * 1.4.1 Overview
1469 1470 *
1470 1471 * Called to enable the specified probe.
1471 1472 *
1472 1473 * 1.4.2 Arguments and notes
1473 1474 *
1474 1475 * The first argument is the cookie as passed to dtrace_register(). The
1475 1476 * second argument is the identifier of the probe to be enabled. The third
1476 1477 * argument is the probe argument as passed to dtrace_probe_create().
1477 1478 * dtps_enable() will be called when a probe transitions from not being
1478 1479 * enabled at all to having one or more ECB. The number of ECBs associated
1479 1480 * with the probe may change without subsequent calls into the provider.
1480 1481 * When the number of ECBs drops to zero, the provider will be explicitly
1481 1482 * told to disable the probe via dtps_disable(). dtrace_probe() should never
1482 1483 * be called for a probe identifier that hasn't been explicitly enabled via
1483 1484 * dtps_enable().
1484 1485 *
1485 1486 * 1.4.3 Return value
1486 1487 *
1487 1488 * On success, dtps_enable() should return 0. On failure, -1 should be
1488 1489 * returned.
1489 1490 *
1490 1491 * 1.4.4 Caller's context
1491 1492 *
1492 1493 * The DTrace framework is locked in such a way that it may not be called
1493 1494 * back into at all. cpu_lock is held. mod_lock is not held and may not
1494 1495 * be acquired.
1495 1496 *
1496 1497 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1497 1498 *
1498 1499 * 1.5.1 Overview
1499 1500 *
1500 1501 * Called to disable the specified probe.
1501 1502 *
1502 1503 * 1.5.2 Arguments and notes
1503 1504 *
1504 1505 * The first argument is the cookie as passed to dtrace_register(). The
1505 1506 * second argument is the identifier of the probe to be disabled. The third
1506 1507 * argument is the probe argument as passed to dtrace_probe_create().
1507 1508 * dtps_disable() will be called when a probe transitions from being enabled
1508 1509 * to having zero ECBs. dtrace_probe() should never be called for a probe
1509 1510 * identifier that has been explicitly enabled via dtps_disable().
1510 1511 *
1511 1512 * 1.5.3 Return value
1512 1513 *
1513 1514 * None.
1514 1515 *
1515 1516 * 1.5.4 Caller's context
1516 1517 *
1517 1518 * The DTrace framework is locked in such a way that it may not be called
1518 1519 * back into at all. cpu_lock is held. mod_lock is not held and may not
1519 1520 * be acquired.
1520 1521 *
1521 1522 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1522 1523 *
1523 1524 * 1.6.1 Overview
1524 1525 *
1525 1526 * Called to suspend the specified enabled probe. This entry point is for
1526 1527 * providers that may need to suspend some or all of their probes when CPUs
1527 1528 * are being powered on or when the boot monitor is being entered for a
1528 1529 * prolonged period of time.
1529 1530 *
1530 1531 * 1.6.2 Arguments and notes
1531 1532 *
1532 1533 * The first argument is the cookie as passed to dtrace_register(). The
1533 1534 * second argument is the identifier of the probe to be suspended. The
1534 1535 * third argument is the probe argument as passed to dtrace_probe_create().
1535 1536 * dtps_suspend will only be called on an enabled probe. Providers that
1536 1537 * provide a dtps_suspend entry point will want to take roughly the action
1537 1538 * that it takes for dtps_disable.
1538 1539 *
1539 1540 * 1.6.3 Return value
1540 1541 *
1541 1542 * None.
1542 1543 *
1543 1544 * 1.6.4 Caller's context
1544 1545 *
1545 1546 * Interrupts are disabled. The DTrace framework is in a state such that the
1546 1547 * specified probe cannot be disabled or destroyed for the duration of
1547 1548 * dtps_suspend(). As interrupts are disabled, the provider is afforded
1548 1549 * little latitude; the provider is expected to do no more than a store to
1549 1550 * memory.
1550 1551 *
1551 1552 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1552 1553 *
1553 1554 * 1.7.1 Overview
1554 1555 *
1555 1556 * Called to resume the specified enabled probe. This entry point is for
1556 1557 * providers that may need to resume some or all of their probes after the
1557 1558 * completion of an event that induced a call to dtps_suspend().
1558 1559 *
1559 1560 * 1.7.2 Arguments and notes
1560 1561 *
1561 1562 * The first argument is the cookie as passed to dtrace_register(). The
1562 1563 * second argument is the identifier of the probe to be resumed. The
1563 1564 * third argument is the probe argument as passed to dtrace_probe_create().
1564 1565 * dtps_resume will only be called on an enabled probe. Providers that
1565 1566 * provide a dtps_resume entry point will want to take roughly the action
1566 1567 * that it takes for dtps_enable.
1567 1568 *
1568 1569 * 1.7.3 Return value
1569 1570 *
1570 1571 * None.
1571 1572 *
1572 1573 * 1.7.4 Caller's context
1573 1574 *
1574 1575 * Interrupts are disabled. The DTrace framework is in a state such that the
1575 1576 * specified probe cannot be disabled or destroyed for the duration of
1576 1577 * dtps_resume(). As interrupts are disabled, the provider is afforded
1577 1578 * little latitude; the provider is expected to do no more than a store to
1578 1579 * memory.
1579 1580 *
1580 1581 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1581 1582 * dtrace_argdesc_t *desc)
1582 1583 *
1583 1584 * 1.8.1 Overview
1584 1585 *
1585 1586 * Called to retrieve the argument description for an args[X] variable.
1586 1587 *
1587 1588 * 1.8.2 Arguments and notes
1588 1589 *
1589 1590 * The first argument is the cookie as passed to dtrace_register(). The
1590 1591 * second argument is the identifier of the current probe. The third
1591 1592 * argument is the probe argument as passed to dtrace_probe_create(). The
1592 1593 * fourth argument is a pointer to the argument description. This
1593 1594 * description is both an input and output parameter: it contains the
1594 1595 * index of the desired argument in the dtargd_ndx field, and expects
1595 1596 * the other fields to be filled in upon return. If there is no argument
1596 1597 * corresponding to the specified index, the dtargd_ndx field should be set
1597 1598 * to DTRACE_ARGNONE.
1598 1599 *
1599 1600 * 1.8.3 Return value
1600 1601 *
1601 1602 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1602 1603 * members of the dtrace_argdesc_t structure are all output values.
1603 1604 *
1604 1605 * 1.8.4 Caller's context
1605 1606 *
1606 1607 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1607 1608 * the DTrace framework is locked in such a way that providers may not
1608 1609 * register or unregister. This means that the provider may not call any
1609 1610 * DTrace API that affects its registration with the framework, including
1610 1611 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1611 1612 * dtrace_condense().
1612 1613 *
1613 1614 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1614 1615 * int argno, int aframes)
1615 1616 *
1616 1617 * 1.9.1 Overview
1617 1618 *
1618 1619 * Called to retrieve a value for an argX or args[X] variable.
1619 1620 *
1620 1621 * 1.9.2 Arguments and notes
1621 1622 *
1622 1623 * The first argument is the cookie as passed to dtrace_register(). The
1623 1624 * second argument is the identifier of the current probe. The third
1624 1625 * argument is the probe argument as passed to dtrace_probe_create(). The
1625 1626 * fourth argument is the number of the argument (the X in the example in
1626 1627 * 1.9.1). The fifth argument is the number of stack frames that were used
1627 1628 * to get from the actual place in the code that fired the probe to
1628 1629 * dtrace_probe() itself, the so-called artificial frames. This argument may
1629 1630 * be used to descend an appropriate number of frames to find the correct
1630 1631 * values. If this entry point is left NULL, the dtrace_getarg() built-in
1631 1632 * function is used.
1632 1633 *
1633 1634 * 1.9.3 Return value
1634 1635 *
1635 1636 * The value of the argument.
1636 1637 *
1637 1638 * 1.9.4 Caller's context
1638 1639 *
1639 1640 * This is called from within dtrace_probe() meaning that interrupts
1640 1641 * are disabled. No locks should be taken within this entry point.
1641 1642 *
1642 1643 * 1.10 int dtps_mode(void *arg, dtrace_id_t id, void *parg)
1643 1644 *
1644 1645 * 1.10.1 Overview
1645 1646 *
1646 1647 * Called to determine the mode of a fired probe.
1647 1648 *
1648 1649 * 1.10.2 Arguments and notes
1649 1650 *
1650 1651 * The first argument is the cookie as passed to dtrace_register(). The
1651 1652 * second argument is the identifier of the current probe. The third
1652 1653 * argument is the probe argument as passed to dtrace_probe_create(). This
1653 1654 * entry point must not be left NULL for providers whose probes allow for
1654 1655 * mixed mode tracing, that is to say those unanchored probes that can fire
1655 1656 * during kernel- or user-mode execution.
1656 1657 *
1657 1658 * 1.10.3 Return value
1658 1659 *
1659 1660 * A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL
1660 1661 * or DTRACE_MODE_USER) and the policy when the privilege of the enabling
1661 1662 * is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP,
1662 1663 * DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT). If
1663 1664 * DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result
1664 1665 * in the probe firing being silently ignored for the enabling; if the
1665 1666 * DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not
1666 1667 * prevent probe processing for the enabling, but restrictions will be in
1667 1668 * place that induce a UPRIV fault upon attempt to examine probe arguments
1668 1669 * or current process state. If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit
1669 1670 * is set, similar restrictions will be placed upon operation if the
1670 1671 * privilege is sufficient to process the enabling, but does not otherwise
1671 1672 * entitle the enabling to all zones. The DTRACE_MODE_NOPRIV_DROP and
1672 1673 * DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these
1673 1674 * two policies must be specified), but either may be combined (or not)
1674 1675 * with DTRACE_MODE_LIMITEDPRIV_RESTRICT.
1675 1676 *
1676 1677 * 1.10.4 Caller's context
1677 1678 *
1678 1679 * This is called from within dtrace_probe() meaning that interrupts
1679 1680 * are disabled. No locks should be taken within this entry point.
1680 1681 *
1681 1682 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1682 1683 *
1683 1684 * 1.11.1 Overview
1684 1685 *
1685 1686 * Called to destroy the specified probe.
1686 1687 *
1687 1688 * 1.11.2 Arguments and notes
1688 1689 *
1689 1690 * The first argument is the cookie as passed to dtrace_register(). The
1690 1691 * second argument is the identifier of the probe to be destroyed. The third
1691 1692 * argument is the probe argument as passed to dtrace_probe_create(). The
1692 1693 * provider should free all state associated with the probe. The framework
1693 1694 * guarantees that dtps_destroy() is only called for probes that have either
1694 1695 * been disabled via dtps_disable() or were never enabled via dtps_enable().
1695 1696 * Once dtps_disable() has been called for a probe, no further call will be
1696 1697 * made specifying the probe.
1697 1698 *
1698 1699 * 1.11.3 Return value
1699 1700 *
1700 1701 * None.
1701 1702 *
1702 1703 * 1.11.4 Caller's context
1703 1704 *
1704 1705 * The DTrace framework is locked in such a way that it may not be called
1705 1706 * back into at all. mod_lock is held. cpu_lock is not held, and may not be
1706 1707 * acquired.
1707 1708 *
1708 1709 *
1709 1710 * 2 Provider-to-Framework API
1710 1711 *
1711 1712 * 2.1 Overview
1712 1713 *
1713 1714 * The Provider-to-Framework API provides the mechanism for the provider to
1714 1715 * register itself with the DTrace framework, to create probes, to lookup
1715 1716 * probes and (most importantly) to fire probes. The Provider-to-Framework
1716 1717 * consists of:
1717 1718 *
1718 1719 * dtrace_register() <-- Register a provider with the DTrace framework
1719 1720 * dtrace_unregister() <-- Remove a provider's DTrace registration
1720 1721 * dtrace_invalidate() <-- Invalidate the specified provider
1721 1722 * dtrace_condense() <-- Remove a provider's unenabled probes
1722 1723 * dtrace_attached() <-- Indicates whether or not DTrace has attached
1723 1724 * dtrace_probe_create() <-- Create a DTrace probe
1724 1725 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name
1725 1726 * dtrace_probe_arg() <-- Return the probe argument for a specific probe
1726 1727 * dtrace_probe() <-- Fire the specified probe
1727 1728 *
1728 1729 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1729 1730 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1730 1731 * dtrace_provider_id_t *idp)
1731 1732 *
1732 1733 * 2.2.1 Overview
1733 1734 *
1734 1735 * dtrace_register() registers the calling provider with the DTrace
1735 1736 * framework. It should generally be called by DTrace providers in their
1736 1737 * attach(9E) entry point.
1737 1738 *
1738 1739 * 2.2.2 Arguments and Notes
1739 1740 *
1740 1741 * The first argument is the name of the provider. The second argument is a
1741 1742 * pointer to the stability attributes for the provider. The third argument
1742 1743 * is the privilege flags for the provider, and must be some combination of:
1743 1744 *
1744 1745 * DTRACE_PRIV_NONE <= All users may enable probes from this provider
1745 1746 *
1746 1747 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may
1747 1748 * enable probes from this provider
1748 1749 *
1749 1750 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may
1750 1751 * enable probes from this provider
1751 1752 *
1752 1753 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL
1753 1754 * may enable probes from this provider
1754 1755 *
1755 1756 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on
1756 1757 * the privilege requirements above. These probes
1757 1758 * require either (a) a user ID matching the user
1758 1759 * ID of the cred passed in the fourth argument
1759 1760 * or (b) the PRIV_PROC_OWNER privilege.
1760 1761 *
1761 1762 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1762 1763 * the privilege requirements above. These probes
1763 1764 * require either (a) a zone ID matching the zone
1764 1765 * ID of the cred passed in the fourth argument
1765 1766 * or (b) the PRIV_PROC_ZONE privilege.
1766 1767 *
1767 1768 * Note that these flags designate the _visibility_ of the probes, not
1768 1769 * the conditions under which they may or may not fire.
1769 1770 *
1770 1771 * The fourth argument is the credential that is associated with the
1771 1772 * provider. This argument should be NULL if the privilege flags don't
1772 1773 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the
1773 1774 * framework stashes the uid and zoneid represented by this credential
1774 1775 * for use at probe-time, in implicit predicates. These limit visibility
1775 1776 * of the probes to users and/or zones which have sufficient privilege to
1776 1777 * access them.
1777 1778 *
1778 1779 * The fifth argument is a DTrace provider operations vector, which provides
1779 1780 * the implementation for the Framework-to-Provider API. (See Section 1,
1780 1781 * above.) This must be non-NULL, and each member must be non-NULL. The
1781 1782 * exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1782 1783 * members (if the provider so desires, _one_ of these members may be left
1783 1784 * NULL -- denoting that the provider only implements the other) and (2)
1784 1785 * the dtps_suspend() and dtps_resume() members, which must either both be
1785 1786 * NULL or both be non-NULL.
1786 1787 *
1787 1788 * The sixth argument is a cookie to be specified as the first argument for
1788 1789 * each function in the Framework-to-Provider API. This argument may have
1789 1790 * any value.
1790 1791 *
1791 1792 * The final argument is a pointer to dtrace_provider_id_t. If
1792 1793 * dtrace_register() successfully completes, the provider identifier will be
1793 1794 * stored in the memory pointed to be this argument. This argument must be
1794 1795 * non-NULL.
1795 1796 *
1796 1797 * 2.2.3 Return value
1797 1798 *
1798 1799 * On success, dtrace_register() returns 0 and stores the new provider's
1799 1800 * identifier into the memory pointed to by the idp argument. On failure,
1800 1801 * dtrace_register() returns an errno:
1801 1802 *
1802 1803 * EINVAL The arguments passed to dtrace_register() were somehow invalid.
1803 1804 * This may because a parameter that must be non-NULL was NULL,
1804 1805 * because the name was invalid (either empty or an illegal
1805 1806 * provider name) or because the attributes were invalid.
1806 1807 *
1807 1808 * No other failure code is returned.
1808 1809 *
1809 1810 * 2.2.4 Caller's context
1810 1811 *
1811 1812 * dtrace_register() may induce calls to dtrace_provide(); the provider must
1812 1813 * hold no locks across dtrace_register() that may also be acquired by
1813 1814 * dtrace_provide(). cpu_lock and mod_lock must not be held.
1814 1815 *
1815 1816 * 2.3 int dtrace_unregister(dtrace_provider_t id)
1816 1817 *
1817 1818 * 2.3.1 Overview
1818 1819 *
1819 1820 * Unregisters the specified provider from the DTrace framework. It should
1820 1821 * generally be called by DTrace providers in their detach(9E) entry point.
1821 1822 *
1822 1823 * 2.3.2 Arguments and Notes
1823 1824 *
1824 1825 * The only argument is the provider identifier, as returned from a
1825 1826 * successful call to dtrace_register(). As a result of calling
1826 1827 * dtrace_unregister(), the DTrace framework will call back into the provider
1827 1828 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
1828 1829 * completes, however, the DTrace framework will no longer make calls through
1829 1830 * the Framework-to-Provider API.
1830 1831 *
1831 1832 * 2.3.3 Return value
1832 1833 *
1833 1834 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister()
1834 1835 * returns an errno:
1835 1836 *
1836 1837 * EBUSY There are currently processes that have the DTrace pseudodevice
1837 1838 * open, or there exists an anonymous enabling that hasn't yet
1838 1839 * been claimed.
1839 1840 *
1840 1841 * No other failure code is returned.
1841 1842 *
1842 1843 * 2.3.4 Caller's context
1843 1844 *
1844 1845 * Because a call to dtrace_unregister() may induce calls through the
1845 1846 * Framework-to-Provider API, the caller may not hold any lock across
1846 1847 * dtrace_register() that is also acquired in any of the Framework-to-
1847 1848 * Provider API functions. Additionally, mod_lock may not be held.
1848 1849 *
1849 1850 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id)
1850 1851 *
1851 1852 * 2.4.1 Overview
1852 1853 *
1853 1854 * Invalidates the specified provider. All subsequent probe lookups for the
1854 1855 * specified provider will fail, but its probes will not be removed.
1855 1856 *
1856 1857 * 2.4.2 Arguments and note
1857 1858 *
1858 1859 * The only argument is the provider identifier, as returned from a
1859 1860 * successful call to dtrace_register(). In general, a provider's probes
1860 1861 * always remain valid; dtrace_invalidate() is a mechanism for invalidating
1861 1862 * an entire provider, regardless of whether or not probes are enabled or
1862 1863 * not. Note that dtrace_invalidate() will _not_ prevent already enabled
1863 1864 * probes from firing -- it will merely prevent any new enablings of the
1864 1865 * provider's probes.
1865 1866 *
1866 1867 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1867 1868 *
1868 1869 * 2.5.1 Overview
1869 1870 *
1870 1871 * Removes all the unenabled probes for the given provider. This function is
1871 1872 * not unlike dtrace_unregister(), except that it doesn't remove the
1872 1873 * provider just as many of its associated probes as it can.
1873 1874 *
1874 1875 * 2.5.2 Arguments and Notes
1875 1876 *
1876 1877 * As with dtrace_unregister(), the sole argument is the provider identifier
1877 1878 * as returned from a successful call to dtrace_register(). As a result of
1878 1879 * calling dtrace_condense(), the DTrace framework will call back into the
1879 1880 * given provider's dtps_destroy() entry point for each of the provider's
1880 1881 * unenabled probes.
1881 1882 *
1882 1883 * 2.5.3 Return value
1883 1884 *
1884 1885 * Currently, dtrace_condense() always returns 0. However, consumers of this
1885 1886 * function should check the return value as appropriate; its behavior may
1886 1887 * change in the future.
1887 1888 *
1888 1889 * 2.5.4 Caller's context
1889 1890 *
1890 1891 * As with dtrace_unregister(), the caller may not hold any lock across
1891 1892 * dtrace_condense() that is also acquired in the provider's entry points.
1892 1893 * Also, mod_lock may not be held.
1893 1894 *
1894 1895 * 2.6 int dtrace_attached()
1895 1896 *
1896 1897 * 2.6.1 Overview
1897 1898 *
1898 1899 * Indicates whether or not DTrace has attached.
1899 1900 *
1900 1901 * 2.6.2 Arguments and Notes
1901 1902 *
1902 1903 * For most providers, DTrace makes initial contact beyond registration.
1903 1904 * That is, once a provider has registered with DTrace, it waits to hear
1904 1905 * from DTrace to create probes. However, some providers may wish to
1905 1906 * proactively create probes without first being told by DTrace to do so.
1906 1907 * If providers wish to do this, they must first call dtrace_attached() to
1907 1908 * determine if DTrace itself has attached. If dtrace_attached() returns 0,
1908 1909 * the provider must not make any other Provider-to-Framework API call.
1909 1910 *
1910 1911 * 2.6.3 Return value
1911 1912 *
1912 1913 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1913 1914 *
1914 1915 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1915 1916 * const char *func, const char *name, int aframes, void *arg)
1916 1917 *
1917 1918 * 2.7.1 Overview
1918 1919 *
1919 1920 * Creates a probe with specified module name, function name, and name.
1920 1921 *
1921 1922 * 2.7.2 Arguments and Notes
1922 1923 *
1923 1924 * The first argument is the provider identifier, as returned from a
1924 1925 * successful call to dtrace_register(). The second, third, and fourth
1925 1926 * arguments are the module name, function name, and probe name,
1926 1927 * respectively. Of these, module name and function name may both be NULL
1927 1928 * (in which case the probe is considered to be unanchored), or they may both
1928 1929 * be non-NULL. The name must be non-NULL, and must point to a non-empty
1929 1930 * string.
1930 1931 *
1931 1932 * The fifth argument is the number of artificial stack frames that will be
1932 1933 * found on the stack when dtrace_probe() is called for the new probe. These
1933 1934 * artificial frames will be automatically be pruned should the stack() or
1934 1935 * stackdepth() functions be called as part of one of the probe's ECBs. If
1935 1936 * the parameter doesn't add an artificial frame, this parameter should be
1936 1937 * zero.
1937 1938 *
1938 1939 * The final argument is a probe argument that will be passed back to the
1939 1940 * provider when a probe-specific operation is called. (e.g., via
1940 1941 * dtps_enable(), dtps_disable(), etc.)
1941 1942 *
1942 1943 * Note that it is up to the provider to be sure that the probe that it
1943 1944 * creates does not already exist -- if the provider is unsure of the probe's
1944 1945 * existence, it should assure its absence with dtrace_probe_lookup() before
1945 1946 * calling dtrace_probe_create().
1946 1947 *
1947 1948 * 2.7.3 Return value
1948 1949 *
1949 1950 * dtrace_probe_create() always succeeds, and always returns the identifier
1950 1951 * of the newly-created probe.
1951 1952 *
1952 1953 * 2.7.4 Caller's context
1953 1954 *
1954 1955 * While dtrace_probe_create() is generally expected to be called from
1955 1956 * dtps_provide() and/or dtps_provide_module(), it may be called from other
1956 1957 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1957 1958 *
1958 1959 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1959 1960 * const char *func, const char *name)
1960 1961 *
1961 1962 * 2.8.1 Overview
1962 1963 *
1963 1964 * Looks up a probe based on provdider and one or more of module name,
1964 1965 * function name and probe name.
1965 1966 *
1966 1967 * 2.8.2 Arguments and Notes
1967 1968 *
1968 1969 * The first argument is the provider identifier, as returned from a
1969 1970 * successful call to dtrace_register(). The second, third, and fourth
1970 1971 * arguments are the module name, function name, and probe name,
1971 1972 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return
1972 1973 * the identifier of the first probe that is provided by the specified
1973 1974 * provider and matches all of the non-NULL matching criteria.
1974 1975 * dtrace_probe_lookup() is generally used by a provider to be check the
1975 1976 * existence of a probe before creating it with dtrace_probe_create().
1976 1977 *
1977 1978 * 2.8.3 Return value
1978 1979 *
1979 1980 * If the probe exists, returns its identifier. If the probe does not exist,
1980 1981 * return DTRACE_IDNONE.
1981 1982 *
1982 1983 * 2.8.4 Caller's context
1983 1984 *
1984 1985 * While dtrace_probe_lookup() is generally expected to be called from
1985 1986 * dtps_provide() and/or dtps_provide_module(), it may also be called from
1986 1987 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1987 1988 *
1988 1989 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
1989 1990 *
1990 1991 * 2.9.1 Overview
1991 1992 *
1992 1993 * Returns the probe argument associated with the specified probe.
1993 1994 *
1994 1995 * 2.9.2 Arguments and Notes
1995 1996 *
1996 1997 * The first argument is the provider identifier, as returned from a
1997 1998 * successful call to dtrace_register(). The second argument is a probe
1998 1999 * identifier, as returned from dtrace_probe_lookup() or
1999 2000 * dtrace_probe_create(). This is useful if a probe has multiple
2000 2001 * provider-specific components to it: the provider can create the probe
2001 2002 * once with provider-specific state, and then add to the state by looking
2002 2003 * up the probe based on probe identifier.
2003 2004 *
2004 2005 * 2.9.3 Return value
2005 2006 *
2006 2007 * Returns the argument associated with the specified probe. If the
2007 2008 * specified probe does not exist, or if the specified probe is not provided
2008 2009 * by the specified provider, NULL is returned.
2009 2010 *
2010 2011 * 2.9.4 Caller's context
2011 2012 *
2012 2013 * While dtrace_probe_arg() is generally expected to be called from
2013 2014 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2014 2015 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2015 2016 *
2016 2017 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2017 2018 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2018 2019 *
2019 2020 * 2.10.1 Overview
2020 2021 *
2021 2022 * The epicenter of DTrace: fires the specified probes with the specified
2022 2023 * arguments.
2023 2024 *
2024 2025 * 2.10.2 Arguments and Notes
2025 2026 *
2026 2027 * The first argument is a probe identifier as returned by
2027 2028 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth
2028 2029 * arguments are the values to which the D variables "arg0" through "arg4"
2029 2030 * will be mapped.
2030 2031 *
2031 2032 * dtrace_probe() should be called whenever the specified probe has fired --
2032 2033 * however the provider defines it.
2033 2034 *
2034 2035 * 2.10.3 Return value
2035 2036 *
2036 2037 * None.
2037 2038 *
2038 2039 * 2.10.4 Caller's context
2039 2040 *
2040 2041 * dtrace_probe() may be called in virtually any context: kernel, user,
2041 2042 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2042 2043 * dispatcher locks held, with interrupts disabled, etc. The only latitude
2043 2044 * that must be afforded to DTrace is the ability to make calls within
2044 2045 * itself (and to its in-kernel subroutines) and the ability to access
2045 2046 * arbitrary (but mapped) memory. On some platforms, this constrains
2046 2047 * context. For example, on UltraSPARC, dtrace_probe() cannot be called
2047 2048 * from any context in which TL is greater than zero. dtrace_probe() may
2048 2049 * also not be called from any routine which may be called by dtrace_probe()
2049 2050 * -- which includes functions in the DTrace framework and some in-kernel
2050 2051 * DTrace subroutines. All such functions "dtrace_"; providers that
2051 2052 * instrument the kernel arbitrarily should be sure to not instrument these
2052 2053 * routines.
2053 2054 */
2054 2055 typedef struct dtrace_pops {
2055 2056 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
2056 2057 void (*dtps_provide_module)(void *arg, struct modctl *mp);
2057 2058 int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2058 2059 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2059 2060 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2060 2061 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2061 2062 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2062 2063 dtrace_argdesc_t *desc);
2063 2064 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2064 2065 int argno, int aframes);
2065 2066 int (*dtps_mode)(void *arg, dtrace_id_t id, void *parg);
2066 2067 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2067 2068 } dtrace_pops_t;
2068 2069
2069 2070 #define DTRACE_MODE_KERNEL 0x01
2070 2071 #define DTRACE_MODE_USER 0x02
2071 2072 #define DTRACE_MODE_NOPRIV_DROP 0x10
2072 2073 #define DTRACE_MODE_NOPRIV_RESTRICT 0x20
2073 2074 #define DTRACE_MODE_LIMITEDPRIV_RESTRICT 0x40
2074 2075
2075 2076 typedef uintptr_t dtrace_provider_id_t;
2076 2077
2077 2078 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2078 2079 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2079 2080 extern int dtrace_unregister(dtrace_provider_id_t);
2080 2081 extern int dtrace_condense(dtrace_provider_id_t);
2081 2082 extern void dtrace_invalidate(dtrace_provider_id_t);
2082 2083 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
2083 2084 const char *, const char *);
2084 2085 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2085 2086 const char *, const char *, int, void *);
2086 2087 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2087 2088 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2088 2089 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2089 2090
2090 2091 /*
2091 2092 * DTrace Meta Provider API
2092 2093 *
2093 2094 * The following functions are implemented by the DTrace framework and are
2094 2095 * used to implement meta providers. Meta providers plug into the DTrace
2095 2096 * framework and are used to instantiate new providers on the fly. At
2096 2097 * present, there is only one type of meta provider and only one meta
2097 2098 * provider may be registered with the DTrace framework at a time. The
2098 2099 * sole meta provider type provides user-land static tracing facilities
2099 2100 * by taking meta probe descriptions and adding a corresponding provider
2100 2101 * into the DTrace framework.
2101 2102 *
2102 2103 * 1 Framework-to-Provider
2103 2104 *
2104 2105 * 1.1 Overview
2105 2106 *
2106 2107 * The Framework-to-Provider API is represented by the dtrace_mops structure
2107 2108 * that the meta provider passes to the framework when registering itself as
2108 2109 * a meta provider. This structure consists of the following members:
2109 2110 *
2110 2111 * dtms_create_probe() <-- Add a new probe to a created provider
2111 2112 * dtms_provide_pid() <-- Create a new provider for a given process
2112 2113 * dtms_remove_pid() <-- Remove a previously created provider
2113 2114 *
2114 2115 * 1.2 void dtms_create_probe(void *arg, void *parg,
2115 2116 * dtrace_helper_probedesc_t *probedesc);
2116 2117 *
2117 2118 * 1.2.1 Overview
2118 2119 *
2119 2120 * Called by the DTrace framework to create a new probe in a provider
2120 2121 * created by this meta provider.
2121 2122 *
2122 2123 * 1.2.2 Arguments and notes
2123 2124 *
2124 2125 * The first argument is the cookie as passed to dtrace_meta_register().
2125 2126 * The second argument is the provider cookie for the associated provider;
2126 2127 * this is obtained from the return value of dtms_provide_pid(). The third
2127 2128 * argument is the helper probe description.
2128 2129 *
2129 2130 * 1.2.3 Return value
2130 2131 *
2131 2132 * None
2132 2133 *
2133 2134 * 1.2.4 Caller's context
2134 2135 *
2135 2136 * dtms_create_probe() is called from either ioctl() or module load context
2136 2137 * in the context of a newly-created provider (that is, a provider that
2137 2138 * is a result of a call to dtms_provide_pid()). The DTrace framework is
2138 2139 * locked in such a way that meta providers may not register or unregister,
2139 2140 * such that no other thread can call into a meta provider operation and that
2140 2141 * atomicity is assured with respect to meta provider operations across
2141 2142 * dtms_provide_pid() and subsequent calls to dtms_create_probe().
2142 2143 * The context is thus effectively single-threaded with respect to the meta
2143 2144 * provider, and that the meta provider cannot call dtrace_meta_register()
2144 2145 * or dtrace_meta_unregister(). However, the context is such that the
2145 2146 * provider may (and is expected to) call provider-related DTrace provider
2146 2147 * APIs including dtrace_probe_create().
2147 2148 *
2148 2149 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2149 2150 * pid_t pid)
2150 2151 *
2151 2152 * 1.3.1 Overview
2152 2153 *
2153 2154 * Called by the DTrace framework to instantiate a new provider given the
2154 2155 * description of the provider and probes in the mprov argument. The
2155 2156 * meta provider should call dtrace_register() to insert the new provider
2156 2157 * into the DTrace framework.
2157 2158 *
2158 2159 * 1.3.2 Arguments and notes
2159 2160 *
2160 2161 * The first argument is the cookie as passed to dtrace_meta_register().
2161 2162 * The second argument is a pointer to a structure describing the new
2162 2163 * helper provider. The third argument is the process identifier for
2163 2164 * process associated with this new provider. Note that the name of the
2164 2165 * provider as passed to dtrace_register() should be the contatenation of
2165 2166 * the dtmpb_provname member of the mprov argument and the processs
2166 2167 * identifier as a string.
2167 2168 *
2168 2169 * 1.3.3 Return value
2169 2170 *
2170 2171 * The cookie for the provider that the meta provider creates. This is
2171 2172 * the same value that it passed to dtrace_register().
2172 2173 *
2173 2174 * 1.3.4 Caller's context
2174 2175 *
2175 2176 * dtms_provide_pid() is called from either ioctl() or module load context.
2176 2177 * The DTrace framework is locked in such a way that meta providers may not
2177 2178 * register or unregister. This means that the meta provider cannot call
2178 2179 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2179 2180 * is such that the provider may -- and is expected to -- call
2180 2181 * provider-related DTrace provider APIs including dtrace_register().
2181 2182 *
2182 2183 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2183 2184 * pid_t pid)
2184 2185 *
2185 2186 * 1.4.1 Overview
2186 2187 *
2187 2188 * Called by the DTrace framework to remove a provider that had previously
2188 2189 * been instantiated via the dtms_provide_pid() entry point. The meta
2189 2190 * provider need not remove the provider immediately, but this entry
2190 2191 * point indicates that the provider should be removed as soon as possible
2191 2192 * using the dtrace_unregister() API.
2192 2193 *
2193 2194 * 1.4.2 Arguments and notes
2194 2195 *
2195 2196 * The first argument is the cookie as passed to dtrace_meta_register().
2196 2197 * The second argument is a pointer to a structure describing the helper
2197 2198 * provider. The third argument is the process identifier for process
2198 2199 * associated with this new provider.
2199 2200 *
2200 2201 * 1.4.3 Return value
2201 2202 *
2202 2203 * None
2203 2204 *
2204 2205 * 1.4.4 Caller's context
↓ open down ↓ |
1950 lines elided |
↑ open up ↑ |
2205 2206 *
2206 2207 * dtms_remove_pid() is called from either ioctl() or exit() context.
2207 2208 * The DTrace framework is locked in such a way that meta providers may not
2208 2209 * register or unregister. This means that the meta provider cannot call
2209 2210 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2210 2211 * is such that the provider may -- and is expected to -- call
2211 2212 * provider-related DTrace provider APIs including dtrace_unregister().
2212 2213 */
2213 2214 typedef struct dtrace_helper_probedesc {
2214 2215 char *dthpb_mod; /* probe module */
2215 - char *dthpb_func; /* probe function */
2216 - char *dthpb_name; /* probe name */
2216 + char *dthpb_func; /* probe function */
2217 + char *dthpb_name; /* probe name */
2217 2218 uint64_t dthpb_base; /* base address */
2218 2219 uint32_t *dthpb_offs; /* offsets array */
2219 2220 uint32_t *dthpb_enoffs; /* is-enabled offsets array */
2220 2221 uint32_t dthpb_noffs; /* offsets count */
2221 2222 uint32_t dthpb_nenoffs; /* is-enabled offsets count */
2222 2223 uint8_t *dthpb_args; /* argument mapping array */
2223 2224 uint8_t dthpb_xargc; /* translated argument count */
2224 2225 uint8_t dthpb_nargc; /* native argument count */
2225 2226 char *dthpb_xtypes; /* translated types strings */
2226 2227 char *dthpb_ntypes; /* native types strings */
2227 2228 } dtrace_helper_probedesc_t;
2228 2229
2229 2230 typedef struct dtrace_helper_provdesc {
2230 2231 char *dthpv_provname; /* provider name */
2231 2232 dtrace_pattr_t dthpv_pattr; /* stability attributes */
2232 2233 } dtrace_helper_provdesc_t;
2233 2234
2234 2235 typedef struct dtrace_mops {
2235 2236 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2236 2237 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2237 2238 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2238 2239 } dtrace_mops_t;
2239 2240
2240 2241 typedef uintptr_t dtrace_meta_provider_id_t;
2241 2242
2242 2243 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2243 2244 dtrace_meta_provider_id_t *);
2244 2245 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2245 2246
2246 2247 /*
2247 2248 * DTrace Kernel Hooks
2248 2249 *
2249 2250 * The following functions are implemented by the base kernel and form a set of
2250 2251 * hooks used by the DTrace framework. DTrace hooks are implemented in either
2251 2252 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2252 2253 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2253 2254 */
2254 2255
2255 2256 typedef enum dtrace_vtime_state {
2256 2257 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */
2257 2258 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */
2258 2259 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */
2259 2260 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */
2260 2261 } dtrace_vtime_state_t;
2261 2262
2262 2263 extern dtrace_vtime_state_t dtrace_vtime_active;
2263 2264 extern void dtrace_vtime_switch(kthread_t *next);
2264 2265 extern void dtrace_vtime_enable_tnf(void);
2265 2266 extern void dtrace_vtime_disable_tnf(void);
2266 2267 extern void dtrace_vtime_enable(void);
2267 2268 extern void dtrace_vtime_disable(void);
2268 2269
2269 2270 struct regs;
2270 2271
2271 2272 extern int (*dtrace_pid_probe_ptr)(struct regs *);
2272 2273 extern int (*dtrace_return_probe_ptr)(struct regs *);
2273 2274 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2274 2275 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2275 2276 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2276 2277 extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2277 2278
2278 2279 typedef uintptr_t dtrace_icookie_t;
2279 2280 typedef void (*dtrace_xcall_t)(void *);
2280 2281
2281 2282 extern dtrace_icookie_t dtrace_interrupt_disable(void);
2282 2283 extern void dtrace_interrupt_enable(dtrace_icookie_t);
2283 2284
2284 2285 extern void dtrace_membar_producer(void);
2285 2286 extern void dtrace_membar_consumer(void);
2286 2287
2287 2288 extern void (*dtrace_cpu_init)(processorid_t);
2288 2289 extern void (*dtrace_modload)(struct modctl *);
2289 2290 extern void (*dtrace_modunload)(struct modctl *);
2290 2291 extern void (*dtrace_helpers_cleanup)(proc_t *);
2291 2292 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2292 2293 extern void (*dtrace_cpustart_init)();
2293 2294 extern void (*dtrace_cpustart_fini)();
2294 2295 extern void (*dtrace_closef)();
2295 2296
2296 2297 extern void (*dtrace_debugger_init)();
2297 2298 extern void (*dtrace_debugger_fini)();
2298 2299 extern dtrace_cacheid_t dtrace_predcache_id;
2299 2300
2300 2301 extern hrtime_t dtrace_gethrtime(void);
2301 2302 extern void dtrace_sync(void);
2302 2303 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2303 2304 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2304 2305 extern void dtrace_vpanic(const char *, __va_list);
2305 2306 extern void dtrace_panic(const char *, ...);
2306 2307
2307 2308 extern int dtrace_safe_defer_signal(void);
2308 2309 extern void dtrace_safe_synchronous_signal(void);
2309 2310
2310 2311 extern int dtrace_mach_aframes(void);
2311 2312
2312 2313 #if defined(__i386) || defined(__amd64)
2313 2314 extern int dtrace_instr_size(uchar_t *instr);
2314 2315 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2315 2316 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2316 2317 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2317 2318 extern void dtrace_invop_callsite(void);
2318 2319 #endif
2319 2320
2320 2321 #ifdef __sparc
2321 2322 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2322 2323 extern void dtrace_getfsr(uint64_t *);
2323 2324 #endif
2324 2325
2325 2326 #define DTRACE_CPUFLAG_ISSET(flag) \
2326 2327 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
2327 2328
2328 2329 #define DTRACE_CPUFLAG_SET(flag) \
2329 2330 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2330 2331
2331 2332 #define DTRACE_CPUFLAG_CLEAR(flag) \
2332 2333 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
2333 2334
2334 2335 #endif /* _KERNEL */
2335 2336
2336 2337 #endif /* _ASM */
2337 2338
2338 2339 #if defined(__i386) || defined(__amd64)
2339 2340
2340 2341 #define DTRACE_INVOP_PUSHL_EBP 1
2341 2342 #define DTRACE_INVOP_POPL_EBP 2
2342 2343 #define DTRACE_INVOP_LEAVE 3
2343 2344 #define DTRACE_INVOP_NOP 4
2344 2345 #define DTRACE_INVOP_RET 5
2345 2346
2346 2347 #endif
2347 2348
2348 2349 #ifdef __cplusplus
2349 2350 }
2350 2351 #endif
2351 2352
2352 2353 #endif /* _SYS_DTRACE_H */
↓ open down ↓ |
126 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX