1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2018, Joyent, Inc.
  25  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
  26  */
  27 
  28 /*
  29  * DTrace - Dynamic Tracing for Solaris
  30  *
  31  * This is the implementation of the Solaris Dynamic Tracing framework
  32  * (DTrace).  The user-visible interface to DTrace is described at length in
  33  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
  34  * library, the in-kernel DTrace framework, and the DTrace providers are
  35  * described in the block comments in the <sys/dtrace.h> header file.  The
  36  * internal architecture of DTrace is described in the block comments in the
  37  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
  38  * implementation very much assume mastery of all of these sources; if one has
  39  * an unanswered question about the implementation, one should consult them
  40  * first.
  41  *
  42  * The functions here are ordered roughly as follows:
  43  *
  44  *   - Probe context functions
  45  *   - Probe hashing functions
  46  *   - Non-probe context utility functions
  47  *   - Matching functions
  48  *   - Provider-to-Framework API functions
  49  *   - Probe management functions
  50  *   - DIF object functions
  51  *   - Format functions
  52  *   - Predicate functions
  53  *   - ECB functions
  54  *   - Buffer functions
  55  *   - Enabling functions
  56  *   - DOF functions
  57  *   - Anonymous enabling functions
  58  *   - Consumer state functions
  59  *   - Helper functions
  60  *   - Hook functions
  61  *   - Driver cookbook functions
  62  *
  63  * Each group of functions begins with a block comment labelled the "DTrace
  64  * [Group] Functions", allowing one to find each block by searching forward
  65  * on capital-f functions.
  66  */
  67 #include <sys/errno.h>
  68 #include <sys/stat.h>
  69 #include <sys/modctl.h>
  70 #include <sys/conf.h>
  71 #include <sys/systm.h>
  72 #include <sys/ddi.h>
  73 #include <sys/sunddi.h>
  74 #include <sys/cpuvar.h>
  75 #include <sys/kmem.h>
  76 #include <sys/strsubr.h>
  77 #include <sys/sysmacros.h>
  78 #include <sys/dtrace_impl.h>
  79 #include <sys/atomic.h>
  80 #include <sys/cmn_err.h>
  81 #include <sys/mutex_impl.h>
  82 #include <sys/rwlock_impl.h>
  83 #include <sys/ctf_api.h>
  84 #include <sys/panic.h>
  85 #include <sys/priv_impl.h>
  86 #include <sys/policy.h>
  87 #include <sys/cred_impl.h>
  88 #include <sys/procfs_isa.h>
  89 #include <sys/taskq.h>
  90 #include <sys/mkdev.h>
  91 #include <sys/kdi.h>
  92 #include <sys/zone.h>
  93 #include <sys/socket.h>
  94 #include <netinet/in.h>
  95 #include "strtolctype.h"
  96 
  97 /*
  98  * DTrace Tunable Variables
  99  *
 100  * The following variables may be tuned by adding a line to /etc/system that
 101  * includes both the name of the DTrace module ("dtrace") and the name of the
 102  * variable.  For example:
 103  *
 104  *   set dtrace:dtrace_destructive_disallow = 1
 105  *
 106  * In general, the only variables that one should be tuning this way are those
 107  * that affect system-wide DTrace behavior, and for which the default behavior
 108  * is undesirable.  Most of these variables are tunable on a per-consumer
 109  * basis using DTrace options, and need not be tuned on a system-wide basis.
 110  * When tuning these variables, avoid pathological values; while some attempt
 111  * is made to verify the integrity of these variables, they are not considered
 112  * part of the supported interface to DTrace, and they are therefore not
 113  * checked comprehensively.  Further, these variables should not be tuned
 114  * dynamically via "mdb -kw" or other means; they should only be tuned via
 115  * /etc/system.
 116  */
 117 int             dtrace_destructive_disallow = 0;
 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
 119 size_t          dtrace_difo_maxsize = (256 * 1024);
 120 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024);
 121 size_t          dtrace_statvar_maxsize = (16 * 1024);
 122 size_t          dtrace_actions_max = (16 * 1024);
 123 size_t          dtrace_retain_max = 1024;
 124 dtrace_optval_t dtrace_helper_actions_max = 1024;
 125 dtrace_optval_t dtrace_helper_providers_max = 32;
 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
 127 size_t          dtrace_strsize_default = 256;
 128 dtrace_optval_t dtrace_cleanrate_default = 9900990;             /* 101 hz */
 129 dtrace_optval_t dtrace_cleanrate_min = 200000;                  /* 5000 hz */
 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;  /* 1/minute */
 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC;               /* 1 hz */
 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC;            /* 1 hz */
 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;  /* 6/minute */
 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC;            /* 1 hz */
 135 dtrace_optval_t dtrace_nspec_default = 1;
 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
 137 dtrace_optval_t dtrace_stackframes_default = 20;
 138 dtrace_optval_t dtrace_ustackframes_default = 20;
 139 dtrace_optval_t dtrace_jstackframes_default = 50;
 140 dtrace_optval_t dtrace_jstackstrsize_default = 512;
 141 int             dtrace_msgdsize_max = 128;
 142 hrtime_t        dtrace_chill_max = MSEC2NSEC(500);              /* 500 ms */
 143 hrtime_t        dtrace_chill_interval = NANOSEC;                /* 1000 ms */
 144 int             dtrace_devdepth_max = 32;
 145 int             dtrace_err_verbose;
 146 hrtime_t        dtrace_deadman_interval = NANOSEC;
 147 hrtime_t        dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
 148 hrtime_t        dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
 149 hrtime_t        dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
 150 
 151 /*
 152  * DTrace External Variables
 153  *
 154  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
 155  * available to DTrace consumers via the backtick (`) syntax.  One of these,
 156  * dtrace_zero, is made deliberately so:  it is provided as a source of
 157  * well-known, zero-filled memory.  While this variable is not documented,
 158  * it is used by some translators as an implementation detail.
 159  */
 160 const char      dtrace_zero[256] = { 0 };       /* zero-filled memory */
 161 
 162 /*
 163  * DTrace Internal Variables
 164  */
 165 static dev_info_t       *dtrace_devi;           /* device info */
 166 static vmem_t           *dtrace_arena;          /* probe ID arena */
 167 static vmem_t           *dtrace_minor;          /* minor number arena */
 168 static taskq_t          *dtrace_taskq;          /* task queue */
 169 static dtrace_probe_t   **dtrace_probes;        /* array of all probes */
 170 static int              dtrace_nprobes;         /* number of probes */
 171 static dtrace_provider_t *dtrace_provider;      /* provider list */
 172 static dtrace_meta_t    *dtrace_meta_pid;       /* user-land meta provider */
 173 static int              dtrace_opens;           /* number of opens */
 174 static int              dtrace_helpers;         /* number of helpers */
 175 static int              dtrace_getf;            /* number of unpriv getf()s */
 176 static void             *dtrace_softstate;      /* softstate pointer */
 177 static dtrace_hash_t    *dtrace_bymod;          /* probes hashed by module */
 178 static dtrace_hash_t    *dtrace_byfunc;         /* probes hashed by function */
 179 static dtrace_hash_t    *dtrace_byname;         /* probes hashed by name */
 180 static dtrace_toxrange_t *dtrace_toxrange;      /* toxic range array */
 181 static int              dtrace_toxranges;       /* number of toxic ranges */
 182 static int              dtrace_toxranges_max;   /* size of toxic range array */
 183 static dtrace_anon_t    dtrace_anon;            /* anonymous enabling */
 184 static kmem_cache_t     *dtrace_state_cache;    /* cache for dynamic state */
 185 static uint64_t         dtrace_vtime_references; /* number of vtimestamp refs */
 186 static kthread_t        *dtrace_panicked;       /* panicking thread */
 187 static dtrace_ecb_t     *dtrace_ecb_create_cache; /* cached created ECB */
 188 static dtrace_genid_t   dtrace_probegen;        /* current probe generation */
 189 static dtrace_helpers_t *dtrace_deferred_pid;   /* deferred helper list */
 190 static dtrace_enabling_t *dtrace_retained;      /* list of retained enablings */
 191 static dtrace_genid_t   dtrace_retained_gen;    /* current retained enab gen */
 192 static dtrace_dynvar_t  dtrace_dynhash_sink;    /* end of dynamic hash chains */
 193 static int              dtrace_dynvar_failclean; /* dynvars failed to clean */
 194 
 195 /*
 196  * DTrace Locking
 197  * DTrace is protected by three (relatively coarse-grained) locks:
 198  *
 199  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
 200  *     including enabling state, probes, ECBs, consumer state, helper state,
 201  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
 202  *     probe context is lock-free -- synchronization is handled via the
 203  *     dtrace_sync() cross call mechanism.
 204  *
 205  * (2) dtrace_provider_lock is required when manipulating provider state, or
 206  *     when provider state must be held constant.
 207  *
 208  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
 209  *     when meta provider state must be held constant.
 210  *
 211  * The lock ordering between these three locks is dtrace_meta_lock before
 212  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
 213  * several places where dtrace_provider_lock is held by the framework as it
 214  * calls into the providers -- which then call back into the framework,
 215  * grabbing dtrace_lock.)
 216  *
 217  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
 218  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
 219  * role as a coarse-grained lock; it is acquired before both of these locks.
 220  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
 221  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
 222  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
 223  * acquired _between_ dtrace_provider_lock and dtrace_lock.
 224  */
 225 static kmutex_t         dtrace_lock;            /* probe state lock */
 226 static kmutex_t         dtrace_provider_lock;   /* provider state lock */
 227 static kmutex_t         dtrace_meta_lock;       /* meta-provider state lock */
 228 
 229 /*
 230  * DTrace Provider Variables
 231  *
 232  * These are the variables relating to DTrace as a provider (that is, the
 233  * provider of the BEGIN, END, and ERROR probes).
 234  */
 235 static dtrace_pattr_t   dtrace_provider_attr = {
 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
 237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
 238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
 239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
 240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
 241 };
 242 
 243 static void
 244 dtrace_nullop(void)
 245 {}
 246 
 247 static int
 248 dtrace_enable_nullop(void)
 249 {
 250         return (0);
 251 }
 252 
 253 static dtrace_pops_t    dtrace_provider_ops = {
 254         (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
 255         (void (*)(void *, struct modctl *))dtrace_nullop,
 256         (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
 257         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 258         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 259         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 260         NULL,
 261         NULL,
 262         NULL,
 263         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop
 264 };
 265 
 266 static dtrace_id_t      dtrace_probeid_begin;   /* special BEGIN probe */
 267 static dtrace_id_t      dtrace_probeid_end;     /* special END probe */
 268 dtrace_id_t             dtrace_probeid_error;   /* special ERROR probe */
 269 
 270 /*
 271  * DTrace Helper Tracing Variables
 272  *
 273  * These variables should be set dynamically to enable helper tracing.  The
 274  * only variables that should be set are dtrace_helptrace_enable (which should
 275  * be set to a non-zero value to allocate helper tracing buffers on the next
 276  * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
 277  * non-zero value to deallocate helper tracing buffers on the next close of
 278  * /dev/dtrace).  When (and only when) helper tracing is disabled, the
 279  * buffer size may also be set via dtrace_helptrace_bufsize.
 280  */
 281 int                     dtrace_helptrace_enable = 0;
 282 int                     dtrace_helptrace_disable = 0;
 283 int                     dtrace_helptrace_bufsize = 16 * 1024 * 1024;
 284 uint32_t                dtrace_helptrace_nlocals;
 285 static dtrace_helptrace_t *dtrace_helptrace_buffer;
 286 static uint32_t         dtrace_helptrace_next = 0;
 287 static int              dtrace_helptrace_wrapped = 0;
 288 
 289 /*
 290  * DTrace Error Hashing
 291  *
 292  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
 293  * table.  This is very useful for checking coverage of tests that are
 294  * expected to induce DIF or DOF processing errors, and may be useful for
 295  * debugging problems in the DIF code generator or in DOF generation .  The
 296  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
 297  */
 298 #ifdef DEBUG
 299 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
 300 static const char *dtrace_errlast;
 301 static kthread_t *dtrace_errthread;
 302 static kmutex_t dtrace_errlock;
 303 #endif
 304 
 305 /*
 306  * DTrace Macros and Constants
 307  *
 308  * These are various macros that are useful in various spots in the
 309  * implementation, along with a few random constants that have no meaning
 310  * outside of the implementation.  There is no real structure to this cpp
 311  * mishmash -- but is there ever?
 312  */
 313 #define DTRACE_HASHSTR(hash, probe)     \
 314         dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
 315 
 316 #define DTRACE_HASHNEXT(hash, probe)    \
 317         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
 318 
 319 #define DTRACE_HASHPREV(hash, probe)    \
 320         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
 321 
 322 #define DTRACE_HASHEQ(hash, lhs, rhs)   \
 323         (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
 324             *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
 325 
 326 #define DTRACE_AGGHASHSIZE_SLEW         17
 327 
 328 #define DTRACE_V4MAPPED_OFFSET          (sizeof (uint32_t) * 3)
 329 
 330 /*
 331  * The key for a thread-local variable consists of the lower 61 bits of the
 332  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
 333  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
 334  * equal to a variable identifier.  This is necessary (but not sufficient) to
 335  * assure that global associative arrays never collide with thread-local
 336  * variables.  To guarantee that they cannot collide, we must also define the
 337  * order for keying dynamic variables.  That order is:
 338  *
 339  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
 340  *
 341  * Because the variable-key and the tls-key are in orthogonal spaces, there is
 342  * no way for a global variable key signature to match a thread-local key
 343  * signature.
 344  */
 345 #define DTRACE_TLS_THRKEY(where) { \
 346         uint_t intr = 0; \
 347         uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
 348         for (; actv; actv >>= 1) \
 349                 intr++; \
 350         ASSERT(intr < (1 << 3)); \
 351         (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
 352             (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
 353 }
 354 
 355 #define DT_BSWAP_8(x)   ((x) & 0xff)
 356 #define DT_BSWAP_16(x)  ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
 357 #define DT_BSWAP_32(x)  ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
 358 #define DT_BSWAP_64(x)  ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
 359 
 360 #define DT_MASK_LO 0x00000000FFFFFFFFULL
 361 
 362 #define DTRACE_STORE(type, tomax, offset, what) \
 363         *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
 364 
 365 #ifndef __x86
 366 #define DTRACE_ALIGNCHECK(addr, size, flags)                            \
 367         if (addr & (size - 1)) {                                    \
 368                 *flags |= CPU_DTRACE_BADALIGN;                          \
 369                 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;     \
 370                 return (0);                                             \
 371         }
 372 #else
 373 #define DTRACE_ALIGNCHECK(addr, size, flags)
 374 #endif
 375 
 376 /*
 377  * Test whether a range of memory starting at testaddr of size testsz falls
 378  * within the range of memory described by addr, sz.  We take care to avoid
 379  * problems with overflow and underflow of the unsigned quantities, and
 380  * disallow all negative sizes.  Ranges of size 0 are allowed.
 381  */
 382 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
 383         ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
 384         (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
 385         (testaddr) + (testsz) >= (testaddr))
 386 
 387 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz)               \
 388 do {                                                                    \
 389         if ((remp) != NULL) {                                           \
 390                 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr);    \
 391         }                                                               \
 392 _NOTE(CONSTCOND) } while (0)
 393 
 394 
 395 /*
 396  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
 397  * alloc_sz on the righthand side of the comparison in order to avoid overflow
 398  * or underflow in the comparison with it.  This is simpler than the INRANGE
 399  * check above, because we know that the dtms_scratch_ptr is valid in the
 400  * range.  Allocations of size zero are allowed.
 401  */
 402 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
 403         ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
 404         (mstate)->dtms_scratch_ptr >= (alloc_sz))
 405 
 406 #define DTRACE_LOADFUNC(bits)                                           \
 407 /*CSTYLED*/                                                             \
 408 uint##bits##_t                                                          \
 409 dtrace_load##bits(uintptr_t addr)                                       \
 410 {                                                                       \
 411         size_t size = bits / NBBY;                                      \
 412         /*CSTYLED*/                                                     \
 413         uint##bits##_t rval;                                            \
 414         int i;                                                          \
 415         volatile uint16_t *flags = (volatile uint16_t *)                \
 416             &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;                    \
 417                                                                         \
 418         DTRACE_ALIGNCHECK(addr, size, flags);                           \
 419                                                                         \
 420         for (i = 0; i < dtrace_toxranges; i++) {                     \
 421                 if (addr >= dtrace_toxrange[i].dtt_limit)            \
 422                         continue;                                       \
 423                                                                         \
 424                 if (addr + size <= dtrace_toxrange[i].dtt_base)              \
 425                         continue;                                       \
 426                                                                         \
 427                 /*                                                      \
 428                  * This address falls within a toxic region; return 0.  \
 429                  */                                                     \
 430                 *flags |= CPU_DTRACE_BADADDR;                           \
 431                 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;     \
 432                 return (0);                                             \
 433         }                                                               \
 434                                                                         \
 435         *flags |= CPU_DTRACE_NOFAULT;                                   \
 436         /*CSTYLED*/                                                     \
 437         rval = *((volatile uint##bits##_t *)addr);                      \
 438         *flags &= ~CPU_DTRACE_NOFAULT;                                      \
 439                                                                         \
 440         return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);           \
 441 }
 442 
 443 #ifdef _LP64
 444 #define dtrace_loadptr  dtrace_load64
 445 #else
 446 #define dtrace_loadptr  dtrace_load32
 447 #endif
 448 
 449 #define DTRACE_DYNHASH_FREE     0
 450 #define DTRACE_DYNHASH_SINK     1
 451 #define DTRACE_DYNHASH_VALID    2
 452 
 453 #define DTRACE_MATCH_FAIL       -1
 454 #define DTRACE_MATCH_NEXT       0
 455 #define DTRACE_MATCH_DONE       1
 456 #define DTRACE_ANCHORED(probe)  ((probe)->dtpr_func[0] != '\0')
 457 #define DTRACE_STATE_ALIGN      64
 458 
 459 #define DTRACE_FLAGS2FLT(flags)                                         \
 460         (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :               \
 461         ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :            \
 462         ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :                \
 463         ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :            \
 464         ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :            \
 465         ((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :             \
 466         ((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :             \
 467         ((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :   \
 468         ((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :             \
 469         DTRACEFLT_UNKNOWN)
 470 
 471 #define DTRACEACT_ISSTRING(act)                                         \
 472         ((act)->dta_kind == DTRACEACT_DIFEXPR &&                     \
 473         (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
 474 
 475 static size_t dtrace_strlen(const char *, size_t);
 476 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
 477 static void dtrace_enabling_provide(dtrace_provider_t *);
 478 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
 479 static void dtrace_enabling_matchall(void);
 480 static void dtrace_enabling_reap(void);
 481 static dtrace_state_t *dtrace_anon_grab(void);
 482 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
 483     dtrace_state_t *, uint64_t, uint64_t);
 484 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
 485 static void dtrace_buffer_drop(dtrace_buffer_t *);
 486 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
 487 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
 488     dtrace_state_t *, dtrace_mstate_t *);
 489 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
 490     dtrace_optval_t);
 491 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
 492 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
 493 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *);
 494 static void dtrace_getf_barrier(void);
 495 static int dtrace_canload_remains(uint64_t, size_t, size_t *,
 496     dtrace_mstate_t *, dtrace_vstate_t *);
 497 static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
 498     dtrace_mstate_t *, dtrace_vstate_t *);
 499 
 500 /*
 501  * DTrace Probe Context Functions
 502  *
 503  * These functions are called from probe context.  Because probe context is
 504  * any context in which C may be called, arbitrarily locks may be held,
 505  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
 506  * As a result, functions called from probe context may only call other DTrace
 507  * support functions -- they may not interact at all with the system at large.
 508  * (Note that the ASSERT macro is made probe-context safe by redefining it in
 509  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
 510  * loads are to be performed from probe context, they _must_ be in terms of
 511  * the safe dtrace_load*() variants.
 512  *
 513  * Some functions in this block are not actually called from probe context;
 514  * for these functions, there will be a comment above the function reading
 515  * "Note:  not called from probe context."
 516  */
 517 void
 518 dtrace_panic(const char *format, ...)
 519 {
 520         va_list alist;
 521 
 522         va_start(alist, format);
 523         dtrace_vpanic(format, alist);
 524         va_end(alist);
 525 }
 526 
 527 int
 528 dtrace_assfail(const char *a, const char *f, int l)
 529 {
 530         dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
 531 
 532         /*
 533          * We just need something here that even the most clever compiler
 534          * cannot optimize away.
 535          */
 536         return (a[(uintptr_t)f]);
 537 }
 538 
 539 /*
 540  * Atomically increment a specified error counter from probe context.
 541  */
 542 static void
 543 dtrace_error(uint32_t *counter)
 544 {
 545         /*
 546          * Most counters stored to in probe context are per-CPU counters.
 547          * However, there are some error conditions that are sufficiently
 548          * arcane that they don't merit per-CPU storage.  If these counters
 549          * are incremented concurrently on different CPUs, scalability will be
 550          * adversely affected -- but we don't expect them to be white-hot in a
 551          * correctly constructed enabling...
 552          */
 553         uint32_t oval, nval;
 554 
 555         do {
 556                 oval = *counter;
 557 
 558                 if ((nval = oval + 1) == 0) {
 559                         /*
 560                          * If the counter would wrap, set it to 1 -- assuring
 561                          * that the counter is never zero when we have seen
 562                          * errors.  (The counter must be 32-bits because we
 563                          * aren't guaranteed a 64-bit compare&swap operation.)
 564                          * To save this code both the infamy of being fingered
 565                          * by a priggish news story and the indignity of being
 566                          * the target of a neo-puritan witch trial, we're
 567                          * carefully avoiding any colorful description of the
 568                          * likelihood of this condition -- but suffice it to
 569                          * say that it is only slightly more likely than the
 570                          * overflow of predicate cache IDs, as discussed in
 571                          * dtrace_predicate_create().
 572                          */
 573                         nval = 1;
 574                 }
 575         } while (dtrace_cas32(counter, oval, nval) != oval);
 576 }
 577 
 578 /*
 579  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
 580  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
 581  */
 582 /* BEGIN CSTYLED */
 583 DTRACE_LOADFUNC(8)
 584 DTRACE_LOADFUNC(16)
 585 DTRACE_LOADFUNC(32)
 586 DTRACE_LOADFUNC(64)
 587 /* END CSTYLED */
 588 
 589 static int
 590 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
 591 {
 592         if (dest < mstate->dtms_scratch_base)
 593                 return (0);
 594 
 595         if (dest + size < dest)
 596                 return (0);
 597 
 598         if (dest + size > mstate->dtms_scratch_ptr)
 599                 return (0);
 600 
 601         return (1);
 602 }
 603 
 604 static int
 605 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain,
 606     dtrace_statvar_t **svars, int nsvars)
 607 {
 608         int i;
 609         size_t maxglobalsize, maxlocalsize;
 610 
 611         if (nsvars == 0)
 612                 return (0);
 613 
 614         maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t);
 615         maxlocalsize = maxglobalsize * NCPU;
 616 
 617         for (i = 0; i < nsvars; i++) {
 618                 dtrace_statvar_t *svar = svars[i];
 619                 uint8_t scope;
 620                 size_t size;
 621 
 622                 if (svar == NULL || (size = svar->dtsv_size) == 0)
 623                         continue;
 624 
 625                 scope = svar->dtsv_var.dtdv_scope;
 626 
 627                 /*
 628                  * We verify that our size is valid in the spirit of providing
 629                  * defense in depth:  we want to prevent attackers from using
 630                  * DTrace to escalate an orthogonal kernel heap corruption bug
 631                  * into the ability to store to arbitrary locations in memory.
 632                  */
 633                 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) ||
 634                     (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize));
 635 
 636                 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data,
 637                     svar->dtsv_size)) {
 638                         DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data,
 639                             svar->dtsv_size);
 640                         return (1);
 641                 }
 642         }
 643 
 644         return (0);
 645 }
 646 
 647 /*
 648  * Check to see if the address is within a memory region to which a store may
 649  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
 650  * region.  The caller of dtrace_canstore() is responsible for performing any
 651  * alignment checks that are needed before stores are actually executed.
 652  */
 653 static int
 654 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
 655     dtrace_vstate_t *vstate)
 656 {
 657         return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate));
 658 }
 659 
 660 /*
 661  * Implementation of dtrace_canstore which communicates the upper bound of the
 662  * allowed memory region.
 663  */
 664 static int
 665 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain,
 666     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
 667 {
 668         /*
 669          * First, check to see if the address is in scratch space...
 670          */
 671         if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
 672             mstate->dtms_scratch_size)) {
 673                 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base,
 674                     mstate->dtms_scratch_size);
 675                 return (1);
 676         }
 677 
 678         /*
 679          * Now check to see if it's a dynamic variable.  This check will pick
 680          * up both thread-local variables and any global dynamically-allocated
 681          * variables.
 682          */
 683         if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
 684             vstate->dtvs_dynvars.dtds_size)) {
 685                 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
 686                 uintptr_t base = (uintptr_t)dstate->dtds_base +
 687                     (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
 688                 uintptr_t chunkoffs;
 689                 dtrace_dynvar_t *dvar;
 690 
 691                 /*
 692                  * Before we assume that we can store here, we need to make
 693                  * sure that it isn't in our metadata -- storing to our
 694                  * dynamic variable metadata would corrupt our state.  For
 695                  * the range to not include any dynamic variable metadata,
 696                  * it must:
 697                  *
 698                  *      (1) Start above the hash table that is at the base of
 699                  *      the dynamic variable space
 700                  *
 701                  *      (2) Have a starting chunk offset that is beyond the
 702                  *      dtrace_dynvar_t that is at the base of every chunk
 703                  *
 704                  *      (3) Not span a chunk boundary
 705                  *
 706                  *      (4) Not be in the tuple space of a dynamic variable
 707                  *
 708                  */
 709                 if (addr < base)
 710                         return (0);
 711 
 712                 chunkoffs = (addr - base) % dstate->dtds_chunksize;
 713 
 714                 if (chunkoffs < sizeof (dtrace_dynvar_t))
 715                         return (0);
 716 
 717                 if (chunkoffs + sz > dstate->dtds_chunksize)
 718                         return (0);
 719 
 720                 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs);
 721 
 722                 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE)
 723                         return (0);
 724 
 725                 if (chunkoffs < sizeof (dtrace_dynvar_t) +
 726                     ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t)))
 727                         return (0);
 728 
 729                 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize);
 730                 return (1);
 731         }
 732 
 733         /*
 734          * Finally, check the static local and global variables.  These checks
 735          * take the longest, so we perform them last.
 736          */
 737         if (dtrace_canstore_statvar(addr, sz, remain,
 738             vstate->dtvs_locals, vstate->dtvs_nlocals))
 739                 return (1);
 740 
 741         if (dtrace_canstore_statvar(addr, sz, remain,
 742             vstate->dtvs_globals, vstate->dtvs_nglobals))
 743                 return (1);
 744 
 745         return (0);
 746 }
 747 
 748 
 749 /*
 750  * Convenience routine to check to see if the address is within a memory
 751  * region in which a load may be issued given the user's privilege level;
 752  * if not, it sets the appropriate error flags and loads 'addr' into the
 753  * illegal value slot.
 754  *
 755  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
 756  * appropriate memory access protection.
 757  */
 758 static int
 759 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
 760     dtrace_vstate_t *vstate)
 761 {
 762         return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate));
 763 }
 764 
 765 /*
 766  * Implementation of dtrace_canload which communicates the upper bound of the
 767  * allowed memory region.
 768  */
 769 static int
 770 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain,
 771     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
 772 {
 773         volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
 774         file_t *fp;
 775 
 776         /*
 777          * If we hold the privilege to read from kernel memory, then
 778          * everything is readable.
 779          */
 780         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
 781                 DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
 782                 return (1);
 783         }
 784 
 785         /*
 786          * You can obviously read that which you can store.
 787          */
 788         if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate))
 789                 return (1);
 790 
 791         /*
 792          * We're allowed to read from our own string table.
 793          */
 794         if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
 795             mstate->dtms_difo->dtdo_strlen)) {
 796                 DTRACE_RANGE_REMAIN(remain, addr,
 797                     mstate->dtms_difo->dtdo_strtab,
 798                     mstate->dtms_difo->dtdo_strlen);
 799                 return (1);
 800         }
 801 
 802         if (vstate->dtvs_state != NULL &&
 803             dtrace_priv_proc(vstate->dtvs_state, mstate)) {
 804                 proc_t *p;
 805 
 806                 /*
 807                  * When we have privileges to the current process, there are
 808                  * several context-related kernel structures that are safe to
 809                  * read, even absent the privilege to read from kernel memory.
 810                  * These reads are safe because these structures contain only
 811                  * state that (1) we're permitted to read, (2) is harmless or
 812                  * (3) contains pointers to additional kernel state that we're
 813                  * not permitted to read (and as such, do not present an
 814                  * opportunity for privilege escalation).  Finally (and
 815                  * critically), because of the nature of their relation with
 816                  * the current thread context, the memory associated with these
 817                  * structures cannot change over the duration of probe context,
 818                  * and it is therefore impossible for this memory to be
 819                  * deallocated and reallocated as something else while it's
 820                  * being operated upon.
 821                  */
 822                 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) {
 823                         DTRACE_RANGE_REMAIN(remain, addr, curthread,
 824                             sizeof (kthread_t));
 825                         return (1);
 826                 }
 827 
 828                 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
 829                     sz, curthread->t_procp, sizeof (proc_t))) {
 830                         DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp,
 831                             sizeof (proc_t));
 832                         return (1);
 833                 }
 834 
 835                 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
 836                     curthread->t_cred, sizeof (cred_t))) {
 837                         DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred,
 838                             sizeof (cred_t));
 839                         return (1);
 840                 }
 841 
 842                 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
 843                     &(p->p_pidp->pid_id), sizeof (pid_t))) {
 844                         DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id),
 845                             sizeof (pid_t));
 846                         return (1);
 847                 }
 848 
 849                 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
 850                     curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
 851                         DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu,
 852                             offsetof(cpu_t, cpu_pause_thread));
 853                         return (1);
 854                 }
 855         }
 856 
 857         if ((fp = mstate->dtms_getf) != NULL) {
 858                 uintptr_t psz = sizeof (void *);
 859                 vnode_t *vp;
 860                 vnodeops_t *op;
 861 
 862                 /*
 863                  * When getf() returns a file_t, the enabling is implicitly
 864                  * granted the (transient) right to read the returned file_t
 865                  * as well as the v_path and v_op->vnop_name of the underlying
 866                  * vnode.  These accesses are allowed after a successful
 867                  * getf() because the members that they refer to cannot change
 868                  * once set -- and the barrier logic in the kernel's closef()
 869                  * path assures that the file_t and its referenced vode_t
 870                  * cannot themselves be stale (that is, it impossible for
 871                  * either dtms_getf itself or its f_vnode member to reference
 872                  * freed memory).
 873                  */
 874                 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) {
 875                         DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t));
 876                         return (1);
 877                 }
 878 
 879                 if ((vp = fp->f_vnode) != NULL) {
 880                         size_t slen;
 881 
 882                         if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) {
 883                                 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path,
 884                                     psz);
 885                                 return (1);
 886                         }
 887 
 888                         slen = strlen(vp->v_path) + 1;
 889                         if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) {
 890                                 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path,
 891                                     slen);
 892                                 return (1);
 893                         }
 894 
 895                         if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) {
 896                                 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op,
 897                                     psz);
 898                                 return (1);
 899                         }
 900 
 901                         if ((op = vp->v_op) != NULL &&
 902                             DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
 903                                 DTRACE_RANGE_REMAIN(remain, addr,
 904                                     &op->vnop_name, psz);
 905                                 return (1);
 906                         }
 907 
 908                         if (op != NULL && op->vnop_name != NULL &&
 909                             DTRACE_INRANGE(addr, sz, op->vnop_name,
 910                             (slen = strlen(op->vnop_name) + 1))) {
 911                                 DTRACE_RANGE_REMAIN(remain, addr,
 912                                     op->vnop_name, slen);
 913                                 return (1);
 914                         }
 915                 }
 916         }
 917 
 918         DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
 919         *illval = addr;
 920         return (0);
 921 }
 922 
 923 /*
 924  * Convenience routine to check to see if a given string is within a memory
 925  * region in which a load may be issued given the user's privilege level;
 926  * this exists so that we don't need to issue unnecessary dtrace_strlen()
 927  * calls in the event that the user has all privileges.
 928  */
 929 static int
 930 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain,
 931     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
 932 {
 933         size_t rsize;
 934 
 935         /*
 936          * If we hold the privilege to read from kernel memory, then
 937          * everything is readable.
 938          */
 939         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
 940                 DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
 941                 return (1);
 942         }
 943 
 944         /*
 945          * Even if the caller is uninterested in querying the remaining valid
 946          * range, it is required to ensure that the access is allowed.
 947          */
 948         if (remain == NULL) {
 949                 remain = &rsize;
 950         }
 951         if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) {
 952                 size_t strsz;
 953                 /*
 954                  * Perform the strlen after determining the length of the
 955                  * memory region which is accessible.  This prevents timing
 956                  * information from being used to find NULs in memory which is
 957                  * not accessible to the caller.
 958                  */
 959                 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr,
 960                     MIN(sz, *remain));
 961                 if (strsz <= *remain) {
 962                         return (1);
 963                 }
 964         }
 965 
 966         return (0);
 967 }
 968 
 969 /*
 970  * Convenience routine to check to see if a given variable is within a memory
 971  * region in which a load may be issued given the user's privilege level.
 972  */
 973 static int
 974 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain,
 975     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
 976 {
 977         size_t sz;
 978         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
 979 
 980         /*
 981          * Calculate the max size before performing any checks since even
 982          * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
 983          * return the max length via 'remain'.
 984          */
 985         if (type->dtdt_kind == DIF_TYPE_STRING) {
 986                 dtrace_state_t *state = vstate->dtvs_state;
 987 
 988                 if (state != NULL) {
 989                         sz = state->dts_options[DTRACEOPT_STRSIZE];
 990                 } else {
 991                         /*
 992                          * In helper context, we have a NULL state; fall back
 993                          * to using the system-wide default for the string size
 994                          * in this case.
 995                          */
 996                         sz = dtrace_strsize_default;
 997                 }
 998         } else {
 999                 sz = type->dtdt_size;
1000         }
1001 
1002         /*
1003          * If we hold the privilege to read from kernel memory, then
1004          * everything is readable.
1005          */
1006         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1007                 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz);
1008                 return (1);
1009         }
1010 
1011         if (type->dtdt_kind == DIF_TYPE_STRING) {
1012                 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate,
1013                     vstate));
1014         }
1015         return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate,
1016             vstate));
1017 }
1018 
1019 /*
1020  * Convert a string to a signed integer using safe loads.
1021  *
1022  * NOTE: This function uses various macros from strtolctype.h to manipulate
1023  * digit values, etc -- these have all been checked to ensure they make
1024  * no additional function calls.
1025  */
1026 static int64_t
1027 dtrace_strtoll(char *input, int base, size_t limit)
1028 {
1029         uintptr_t pos = (uintptr_t)input;
1030         int64_t val = 0;
1031         int x;
1032         boolean_t neg = B_FALSE;
1033         char c, cc, ccc;
1034         uintptr_t end = pos + limit;
1035 
1036         /*
1037          * Consume any whitespace preceding digits.
1038          */
1039         while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1040                 pos++;
1041 
1042         /*
1043          * Handle an explicit sign if one is present.
1044          */
1045         if (c == '-' || c == '+') {
1046                 if (c == '-')
1047                         neg = B_TRUE;
1048                 c = dtrace_load8(++pos);
1049         }
1050 
1051         /*
1052          * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1053          * if present.
1054          */
1055         if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1056             cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1057                 pos += 2;
1058                 c = ccc;
1059         }
1060 
1061         /*
1062          * Read in contiguous digits until the first non-digit character.
1063          */
1064         for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1065             c = dtrace_load8(++pos))
1066                 val = val * base + x;
1067 
1068         return (neg ? -val : val);
1069 }
1070 
1071 /*
1072  * Compare two strings using safe loads.
1073  */
1074 static int
1075 dtrace_strncmp(char *s1, char *s2, size_t limit)
1076 {
1077         uint8_t c1, c2;
1078         volatile uint16_t *flags;
1079 
1080         if (s1 == s2 || limit == 0)
1081                 return (0);
1082 
1083         flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1084 
1085         do {
1086                 if (s1 == NULL) {
1087                         c1 = '\0';
1088                 } else {
1089                         c1 = dtrace_load8((uintptr_t)s1++);
1090                 }
1091 
1092                 if (s2 == NULL) {
1093                         c2 = '\0';
1094                 } else {
1095                         c2 = dtrace_load8((uintptr_t)s2++);
1096                 }
1097 
1098                 if (c1 != c2)
1099                         return (c1 - c2);
1100         } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1101 
1102         return (0);
1103 }
1104 
1105 /*
1106  * Compute strlen(s) for a string using safe memory accesses.  The additional
1107  * len parameter is used to specify a maximum length to ensure completion.
1108  */
1109 static size_t
1110 dtrace_strlen(const char *s, size_t lim)
1111 {
1112         uint_t len;
1113 
1114         for (len = 0; len != lim; len++) {
1115                 if (dtrace_load8((uintptr_t)s++) == '\0')
1116                         break;
1117         }
1118 
1119         return (len);
1120 }
1121 
1122 /*
1123  * Check if an address falls within a toxic region.
1124  */
1125 static int
1126 dtrace_istoxic(uintptr_t kaddr, size_t size)
1127 {
1128         uintptr_t taddr, tsize;
1129         int i;
1130 
1131         for (i = 0; i < dtrace_toxranges; i++) {
1132                 taddr = dtrace_toxrange[i].dtt_base;
1133                 tsize = dtrace_toxrange[i].dtt_limit - taddr;
1134 
1135                 if (kaddr - taddr < tsize) {
1136                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1137                         cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
1138                         return (1);
1139                 }
1140 
1141                 if (taddr - kaddr < size) {
1142                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1143                         cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
1144                         return (1);
1145                 }
1146         }
1147 
1148         return (0);
1149 }
1150 
1151 /*
1152  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1153  * memory specified by the DIF program.  The dst is assumed to be safe memory
1154  * that we can store to directly because it is managed by DTrace.  As with
1155  * standard bcopy, overlapping copies are handled properly.
1156  */
1157 static void
1158 dtrace_bcopy(const void *src, void *dst, size_t len)
1159 {
1160         if (len != 0) {
1161                 uint8_t *s1 = dst;
1162                 const uint8_t *s2 = src;
1163 
1164                 if (s1 <= s2) {
1165                         do {
1166                                 *s1++ = dtrace_load8((uintptr_t)s2++);
1167                         } while (--len != 0);
1168                 } else {
1169                         s2 += len;
1170                         s1 += len;
1171 
1172                         do {
1173                                 *--s1 = dtrace_load8((uintptr_t)--s2);
1174                         } while (--len != 0);
1175                 }
1176         }
1177 }
1178 
1179 /*
1180  * Copy src to dst using safe memory accesses, up to either the specified
1181  * length, or the point that a nul byte is encountered.  The src is assumed to
1182  * be unsafe memory specified by the DIF program.  The dst is assumed to be
1183  * safe memory that we can store to directly because it is managed by DTrace.
1184  * Unlike dtrace_bcopy(), overlapping regions are not handled.
1185  */
1186 static void
1187 dtrace_strcpy(const void *src, void *dst, size_t len)
1188 {
1189         if (len != 0) {
1190                 uint8_t *s1 = dst, c;
1191                 const uint8_t *s2 = src;
1192 
1193                 do {
1194                         *s1++ = c = dtrace_load8((uintptr_t)s2++);
1195                 } while (--len != 0 && c != '\0');
1196         }
1197 }
1198 
1199 /*
1200  * Copy src to dst, deriving the size and type from the specified (BYREF)
1201  * variable type.  The src is assumed to be unsafe memory specified by the DIF
1202  * program.  The dst is assumed to be DTrace variable memory that is of the
1203  * specified type; we assume that we can store to directly.
1204  */
1205 static void
1206 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit)
1207 {
1208         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1209 
1210         if (type->dtdt_kind == DIF_TYPE_STRING) {
1211                 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit));
1212         } else {
1213                 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit));
1214         }
1215 }
1216 
1217 /*
1218  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1219  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1220  * safe memory that we can access directly because it is managed by DTrace.
1221  */
1222 static int
1223 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1224 {
1225         volatile uint16_t *flags;
1226 
1227         flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1228 
1229         if (s1 == s2)
1230                 return (0);
1231 
1232         if (s1 == NULL || s2 == NULL)
1233                 return (1);
1234 
1235         if (s1 != s2 && len != 0) {
1236                 const uint8_t *ps1 = s1;
1237                 const uint8_t *ps2 = s2;
1238 
1239                 do {
1240                         if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1241                                 return (1);
1242                 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1243         }
1244         return (0);
1245 }
1246 
1247 /*
1248  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1249  * is for safe DTrace-managed memory only.
1250  */
1251 static void
1252 dtrace_bzero(void *dst, size_t len)
1253 {
1254         uchar_t *cp;
1255 
1256         for (cp = dst; len != 0; len--)
1257                 *cp++ = 0;
1258 }
1259 
1260 static void
1261 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1262 {
1263         uint64_t result[2];
1264 
1265         result[0] = addend1[0] + addend2[0];
1266         result[1] = addend1[1] + addend2[1] +
1267             (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1268 
1269         sum[0] = result[0];
1270         sum[1] = result[1];
1271 }
1272 
1273 /*
1274  * Shift the 128-bit value in a by b. If b is positive, shift left.
1275  * If b is negative, shift right.
1276  */
1277 static void
1278 dtrace_shift_128(uint64_t *a, int b)
1279 {
1280         uint64_t mask;
1281 
1282         if (b == 0)
1283                 return;
1284 
1285         if (b < 0) {
1286                 b = -b;
1287                 if (b >= 64) {
1288                         a[0] = a[1] >> (b - 64);
1289                         a[1] = 0;
1290                 } else {
1291                         a[0] >>= b;
1292                         mask = 1LL << (64 - b);
1293                         mask -= 1;
1294                         a[0] |= ((a[1] & mask) << (64 - b));
1295                         a[1] >>= b;
1296                 }
1297         } else {
1298                 if (b >= 64) {
1299                         a[1] = a[0] << (b - 64);
1300                         a[0] = 0;
1301                 } else {
1302                         a[1] <<= b;
1303                         mask = a[0] >> (64 - b);
1304                         a[1] |= mask;
1305                         a[0] <<= b;
1306                 }
1307         }
1308 }
1309 
1310 /*
1311  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1312  * use native multiplication on those, and then re-combine into the
1313  * resulting 128-bit value.
1314  *
1315  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1316  *     hi1 * hi2 << 64 +
1317  *     hi1 * lo2 << 32 +
1318  *     hi2 * lo1 << 32 +
1319  *     lo1 * lo2
1320  */
1321 static void
1322 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1323 {
1324         uint64_t hi1, hi2, lo1, lo2;
1325         uint64_t tmp[2];
1326 
1327         hi1 = factor1 >> 32;
1328         hi2 = factor2 >> 32;
1329 
1330         lo1 = factor1 & DT_MASK_LO;
1331         lo2 = factor2 & DT_MASK_LO;
1332 
1333         product[0] = lo1 * lo2;
1334         product[1] = hi1 * hi2;
1335 
1336         tmp[0] = hi1 * lo2;
1337         tmp[1] = 0;
1338         dtrace_shift_128(tmp, 32);
1339         dtrace_add_128(product, tmp, product);
1340 
1341         tmp[0] = hi2 * lo1;
1342         tmp[1] = 0;
1343         dtrace_shift_128(tmp, 32);
1344         dtrace_add_128(product, tmp, product);
1345 }
1346 
1347 /*
1348  * This privilege check should be used by actions and subroutines to
1349  * verify that the user credentials of the process that enabled the
1350  * invoking ECB match the target credentials
1351  */
1352 static int
1353 dtrace_priv_proc_common_user(dtrace_state_t *state)
1354 {
1355         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1356 
1357         /*
1358          * We should always have a non-NULL state cred here, since if cred
1359          * is null (anonymous tracing), we fast-path bypass this routine.
1360          */
1361         ASSERT(s_cr != NULL);
1362 
1363         if ((cr = CRED()) != NULL &&
1364             s_cr->cr_uid == cr->cr_uid &&
1365             s_cr->cr_uid == cr->cr_ruid &&
1366             s_cr->cr_uid == cr->cr_suid &&
1367             s_cr->cr_gid == cr->cr_gid &&
1368             s_cr->cr_gid == cr->cr_rgid &&
1369             s_cr->cr_gid == cr->cr_sgid)
1370                 return (1);
1371 
1372         return (0);
1373 }
1374 
1375 /*
1376  * This privilege check should be used by actions and subroutines to
1377  * verify that the zone of the process that enabled the invoking ECB
1378  * matches the target credentials
1379  */
1380 static int
1381 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1382 {
1383         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1384 
1385         /*
1386          * We should always have a non-NULL state cred here, since if cred
1387          * is null (anonymous tracing), we fast-path bypass this routine.
1388          */
1389         ASSERT(s_cr != NULL);
1390 
1391         if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1392                 return (1);
1393 
1394         return (0);
1395 }
1396 
1397 /*
1398  * This privilege check should be used by actions and subroutines to
1399  * verify that the process has not setuid or changed credentials.
1400  */
1401 static int
1402 dtrace_priv_proc_common_nocd()
1403 {
1404         proc_t *proc;
1405 
1406         if ((proc = ttoproc(curthread)) != NULL &&
1407             !(proc->p_flag & SNOCD))
1408                 return (1);
1409 
1410         return (0);
1411 }
1412 
1413 static int
1414 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate)
1415 {
1416         int action = state->dts_cred.dcr_action;
1417 
1418         if (!(mstate->dtms_access & DTRACE_ACCESS_PROC))
1419                 goto bad;
1420 
1421         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1422             dtrace_priv_proc_common_zone(state) == 0)
1423                 goto bad;
1424 
1425         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1426             dtrace_priv_proc_common_user(state) == 0)
1427                 goto bad;
1428 
1429         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1430             dtrace_priv_proc_common_nocd() == 0)
1431                 goto bad;
1432 
1433         return (1);
1434 
1435 bad:
1436         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1437 
1438         return (0);
1439 }
1440 
1441 static int
1442 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate)
1443 {
1444         if (mstate->dtms_access & DTRACE_ACCESS_PROC) {
1445                 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1446                         return (1);
1447 
1448                 if (dtrace_priv_proc_common_zone(state) &&
1449                     dtrace_priv_proc_common_user(state) &&
1450                     dtrace_priv_proc_common_nocd())
1451                         return (1);
1452         }
1453 
1454         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1455 
1456         return (0);
1457 }
1458 
1459 static int
1460 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate)
1461 {
1462         if ((mstate->dtms_access & DTRACE_ACCESS_PROC) &&
1463             (state->dts_cred.dcr_action & DTRACE_CRA_PROC))
1464                 return (1);
1465 
1466         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1467 
1468         return (0);
1469 }
1470 
1471 static int
1472 dtrace_priv_kernel(dtrace_state_t *state)
1473 {
1474         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1475                 return (1);
1476 
1477         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1478 
1479         return (0);
1480 }
1481 
1482 static int
1483 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1484 {
1485         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1486                 return (1);
1487 
1488         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1489 
1490         return (0);
1491 }
1492 
1493 /*
1494  * Determine if the dte_cond of the specified ECB allows for processing of
1495  * the current probe to continue.  Note that this routine may allow continued
1496  * processing, but with access(es) stripped from the mstate's dtms_access
1497  * field.
1498  */
1499 static int
1500 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1501     dtrace_ecb_t *ecb)
1502 {
1503         dtrace_probe_t *probe = ecb->dte_probe;
1504         dtrace_provider_t *prov = probe->dtpr_provider;
1505         dtrace_pops_t *pops = &prov->dtpv_pops;
1506         int mode = DTRACE_MODE_NOPRIV_DROP;
1507 
1508         ASSERT(ecb->dte_cond);
1509 
1510         if (pops->dtps_mode != NULL) {
1511                 mode = pops->dtps_mode(prov->dtpv_arg,
1512                     probe->dtpr_id, probe->dtpr_arg);
1513 
1514                 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL));
1515                 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT |
1516                     DTRACE_MODE_NOPRIV_DROP));
1517         }
1518 
1519         /*
1520          * If the dte_cond bits indicate that this consumer is only allowed to
1521          * see user-mode firings of this probe, check that the probe was fired
1522          * while in a user context.  If that's not the case, use the policy
1523          * specified by the provider to determine if we drop the probe or
1524          * merely restrict operation.
1525          */
1526         if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1527                 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1528 
1529                 if (!(mode & DTRACE_MODE_USER)) {
1530                         if (mode & DTRACE_MODE_NOPRIV_DROP)
1531                                 return (0);
1532 
1533                         mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1534                 }
1535         }
1536 
1537         /*
1538          * This is more subtle than it looks. We have to be absolutely certain
1539          * that CRED() isn't going to change out from under us so it's only
1540          * legit to examine that structure if we're in constrained situations.
1541          * Currently, the only times we'll this check is if a non-super-user
1542          * has enabled the profile or syscall providers -- providers that
1543          * allow visibility of all processes. For the profile case, the check
1544          * above will ensure that we're examining a user context.
1545          */
1546         if (ecb->dte_cond & DTRACE_COND_OWNER) {
1547                 cred_t *cr;
1548                 cred_t *s_cr = state->dts_cred.dcr_cred;
1549                 proc_t *proc;
1550 
1551                 ASSERT(s_cr != NULL);
1552 
1553                 if ((cr = CRED()) == NULL ||
1554                     s_cr->cr_uid != cr->cr_uid ||
1555                     s_cr->cr_uid != cr->cr_ruid ||
1556                     s_cr->cr_uid != cr->cr_suid ||
1557                     s_cr->cr_gid != cr->cr_gid ||
1558                     s_cr->cr_gid != cr->cr_rgid ||
1559                     s_cr->cr_gid != cr->cr_sgid ||
1560                     (proc = ttoproc(curthread)) == NULL ||
1561                     (proc->p_flag & SNOCD)) {
1562                         if (mode & DTRACE_MODE_NOPRIV_DROP)
1563                                 return (0);
1564 
1565                         mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1566                 }
1567         }
1568 
1569         /*
1570          * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1571          * in our zone, check to see if our mode policy is to restrict rather
1572          * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1573          * and DTRACE_ACCESS_ARGS
1574          */
1575         if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1576                 cred_t *cr;
1577                 cred_t *s_cr = state->dts_cred.dcr_cred;
1578 
1579                 ASSERT(s_cr != NULL);
1580 
1581                 if ((cr = CRED()) == NULL ||
1582                     s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1583                         if (mode & DTRACE_MODE_NOPRIV_DROP)
1584                                 return (0);
1585 
1586                         mstate->dtms_access &=
1587                             ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1588                 }
1589         }
1590 
1591         /*
1592          * By merits of being in this code path at all, we have limited
1593          * privileges.  If the provider has indicated that limited privileges
1594          * are to denote restricted operation, strip off the ability to access
1595          * arguments.
1596          */
1597         if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT)
1598                 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1599 
1600         return (1);
1601 }
1602 
1603 /*
1604  * Note:  not called from probe context.  This function is called
1605  * asynchronously (and at a regular interval) from outside of probe context to
1606  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1607  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1608  */
1609 void
1610 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1611 {
1612         dtrace_dynvar_t *dirty;
1613         dtrace_dstate_percpu_t *dcpu;
1614         dtrace_dynvar_t **rinsep;
1615         int i, j, work = 0;
1616 
1617         for (i = 0; i < NCPU; i++) {
1618                 dcpu = &dstate->dtds_percpu[i];
1619                 rinsep = &dcpu->dtdsc_rinsing;
1620 
1621                 /*
1622                  * If the dirty list is NULL, there is no dirty work to do.
1623                  */
1624                 if (dcpu->dtdsc_dirty == NULL)
1625                         continue;
1626 
1627                 if (dcpu->dtdsc_rinsing != NULL) {
1628                         /*
1629                          * If the rinsing list is non-NULL, then it is because
1630                          * this CPU was selected to accept another CPU's
1631                          * dirty list -- and since that time, dirty buffers
1632                          * have accumulated.  This is a highly unlikely
1633                          * condition, but we choose to ignore the dirty
1634                          * buffers -- they'll be picked up a future cleanse.
1635                          */
1636                         continue;
1637                 }
1638 
1639                 if (dcpu->dtdsc_clean != NULL) {
1640                         /*
1641                          * If the clean list is non-NULL, then we're in a
1642                          * situation where a CPU has done deallocations (we
1643                          * have a non-NULL dirty list) but no allocations (we
1644                          * also have a non-NULL clean list).  We can't simply
1645                          * move the dirty list into the clean list on this
1646                          * CPU, yet we also don't want to allow this condition
1647                          * to persist, lest a short clean list prevent a
1648                          * massive dirty list from being cleaned (which in
1649                          * turn could lead to otherwise avoidable dynamic
1650                          * drops).  To deal with this, we look for some CPU
1651                          * with a NULL clean list, NULL dirty list, and NULL
1652                          * rinsing list -- and then we borrow this CPU to
1653                          * rinse our dirty list.
1654                          */
1655                         for (j = 0; j < NCPU; j++) {
1656                                 dtrace_dstate_percpu_t *rinser;
1657 
1658                                 rinser = &dstate->dtds_percpu[j];
1659 
1660                                 if (rinser->dtdsc_rinsing != NULL)
1661                                         continue;
1662 
1663                                 if (rinser->dtdsc_dirty != NULL)
1664                                         continue;
1665 
1666                                 if (rinser->dtdsc_clean != NULL)
1667                                         continue;
1668 
1669                                 rinsep = &rinser->dtdsc_rinsing;
1670                                 break;
1671                         }
1672 
1673                         if (j == NCPU) {
1674                                 /*
1675                                  * We were unable to find another CPU that
1676                                  * could accept this dirty list -- we are
1677                                  * therefore unable to clean it now.
1678                                  */
1679                                 dtrace_dynvar_failclean++;
1680                                 continue;
1681                         }
1682                 }
1683 
1684                 work = 1;
1685 
1686                 /*
1687                  * Atomically move the dirty list aside.
1688                  */
1689                 do {
1690                         dirty = dcpu->dtdsc_dirty;
1691 
1692                         /*
1693                          * Before we zap the dirty list, set the rinsing list.
1694                          * (This allows for a potential assertion in
1695                          * dtrace_dynvar():  if a free dynamic variable appears
1696                          * on a hash chain, either the dirty list or the
1697                          * rinsing list for some CPU must be non-NULL.)
1698                          */
1699                         *rinsep = dirty;
1700                         dtrace_membar_producer();
1701                 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1702                     dirty, NULL) != dirty);
1703         }
1704 
1705         if (!work) {
1706                 /*
1707                  * We have no work to do; we can simply return.
1708                  */
1709                 return;
1710         }
1711 
1712         dtrace_sync();
1713 
1714         for (i = 0; i < NCPU; i++) {
1715                 dcpu = &dstate->dtds_percpu[i];
1716 
1717                 if (dcpu->dtdsc_rinsing == NULL)
1718                         continue;
1719 
1720                 /*
1721                  * We are now guaranteed that no hash chain contains a pointer
1722                  * into this dirty list; we can make it clean.
1723                  */
1724                 ASSERT(dcpu->dtdsc_clean == NULL);
1725                 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1726                 dcpu->dtdsc_rinsing = NULL;
1727         }
1728 
1729         /*
1730          * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1731          * sure that all CPUs have seen all of the dtdsc_clean pointers.
1732          * This prevents a race whereby a CPU incorrectly decides that
1733          * the state should be something other than DTRACE_DSTATE_CLEAN
1734          * after dtrace_dynvar_clean() has completed.
1735          */
1736         dtrace_sync();
1737 
1738         dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1739 }
1740 
1741 /*
1742  * Depending on the value of the op parameter, this function looks-up,
1743  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1744  * allocation is requested, this function will return a pointer to a
1745  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1746  * variable can be allocated.  If NULL is returned, the appropriate counter
1747  * will be incremented.
1748  */
1749 dtrace_dynvar_t *
1750 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1751     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1752     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1753 {
1754         uint64_t hashval = DTRACE_DYNHASH_VALID;
1755         dtrace_dynhash_t *hash = dstate->dtds_hash;
1756         dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1757         processorid_t me = CPU->cpu_id, cpu = me;
1758         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1759         size_t bucket, ksize;
1760         size_t chunksize = dstate->dtds_chunksize;
1761         uintptr_t kdata, lock, nstate;
1762         uint_t i;
1763 
1764         ASSERT(nkeys != 0);
1765 
1766         /*
1767          * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1768          * algorithm.  For the by-value portions, we perform the algorithm in
1769          * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1770          * bit, and seems to have only a minute effect on distribution.  For
1771          * the by-reference data, we perform "One-at-a-time" iterating (safely)
1772          * over each referenced byte.  It's painful to do this, but it's much
1773          * better than pathological hash distribution.  The efficacy of the
1774          * hashing algorithm (and a comparison with other algorithms) may be
1775          * found by running the ::dtrace_dynstat MDB dcmd.
1776          */
1777         for (i = 0; i < nkeys; i++) {
1778                 if (key[i].dttk_size == 0) {
1779                         uint64_t val = key[i].dttk_value;
1780 
1781                         hashval += (val >> 48) & 0xffff;
1782                         hashval += (hashval << 10);
1783                         hashval ^= (hashval >> 6);
1784 
1785                         hashval += (val >> 32) & 0xffff;
1786                         hashval += (hashval << 10);
1787                         hashval ^= (hashval >> 6);
1788 
1789                         hashval += (val >> 16) & 0xffff;
1790                         hashval += (hashval << 10);
1791                         hashval ^= (hashval >> 6);
1792 
1793                         hashval += val & 0xffff;
1794                         hashval += (hashval << 10);
1795                         hashval ^= (hashval >> 6);
1796                 } else {
1797                         /*
1798                          * This is incredibly painful, but it beats the hell
1799                          * out of the alternative.
1800                          */
1801                         uint64_t j, size = key[i].dttk_size;
1802                         uintptr_t base = (uintptr_t)key[i].dttk_value;
1803 
1804                         if (!dtrace_canload(base, size, mstate, vstate))
1805                                 break;
1806 
1807                         for (j = 0; j < size; j++) {
1808                                 hashval += dtrace_load8(base + j);
1809                                 hashval += (hashval << 10);
1810                                 hashval ^= (hashval >> 6);
1811                         }
1812                 }
1813         }
1814 
1815         if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1816                 return (NULL);
1817 
1818         hashval += (hashval << 3);
1819         hashval ^= (hashval >> 11);
1820         hashval += (hashval << 15);
1821 
1822         /*
1823          * There is a remote chance (ideally, 1 in 2^31) that our hashval
1824          * comes out to be one of our two sentinel hash values.  If this
1825          * actually happens, we set the hashval to be a value known to be a
1826          * non-sentinel value.
1827          */
1828         if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1829                 hashval = DTRACE_DYNHASH_VALID;
1830 
1831         /*
1832          * Yes, it's painful to do a divide here.  If the cycle count becomes
1833          * important here, tricks can be pulled to reduce it.  (However, it's
1834          * critical that hash collisions be kept to an absolute minimum;
1835          * they're much more painful than a divide.)  It's better to have a
1836          * solution that generates few collisions and still keeps things
1837          * relatively simple.
1838          */
1839         bucket = hashval % dstate->dtds_hashsize;
1840 
1841         if (op == DTRACE_DYNVAR_DEALLOC) {
1842                 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1843 
1844                 for (;;) {
1845                         while ((lock = *lockp) & 1)
1846                                 continue;
1847 
1848                         if (dtrace_casptr((void *)lockp,
1849                             (void *)lock, (void *)(lock + 1)) == (void *)lock)
1850                                 break;
1851                 }
1852 
1853                 dtrace_membar_producer();
1854         }
1855 
1856 top:
1857         prev = NULL;
1858         lock = hash[bucket].dtdh_lock;
1859 
1860         dtrace_membar_consumer();
1861 
1862         start = hash[bucket].dtdh_chain;
1863         ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1864             start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1865             op != DTRACE_DYNVAR_DEALLOC));
1866 
1867         for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1868                 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1869                 dtrace_key_t *dkey = &dtuple->dtt_key[0];
1870 
1871                 if (dvar->dtdv_hashval != hashval) {
1872                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1873                                 /*
1874                                  * We've reached the sink, and therefore the
1875                                  * end of the hash chain; we can kick out of
1876                                  * the loop knowing that we have seen a valid
1877                                  * snapshot of state.
1878                                  */
1879                                 ASSERT(dvar->dtdv_next == NULL);
1880                                 ASSERT(dvar == &dtrace_dynhash_sink);
1881                                 break;
1882                         }
1883 
1884                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1885                                 /*
1886                                  * We've gone off the rails:  somewhere along
1887                                  * the line, one of the members of this hash
1888                                  * chain was deleted.  Note that we could also
1889                                  * detect this by simply letting this loop run
1890                                  * to completion, as we would eventually hit
1891                                  * the end of the dirty list.  However, we
1892                                  * want to avoid running the length of the
1893                                  * dirty list unnecessarily (it might be quite
1894                                  * long), so we catch this as early as
1895                                  * possible by detecting the hash marker.  In
1896                                  * this case, we simply set dvar to NULL and
1897                                  * break; the conditional after the loop will
1898                                  * send us back to top.
1899                                  */
1900                                 dvar = NULL;
1901                                 break;
1902                         }
1903 
1904                         goto next;
1905                 }
1906 
1907                 if (dtuple->dtt_nkeys != nkeys)
1908                         goto next;
1909 
1910                 for (i = 0; i < nkeys; i++, dkey++) {
1911                         if (dkey->dttk_size != key[i].dttk_size)
1912                                 goto next; /* size or type mismatch */
1913 
1914                         if (dkey->dttk_size != 0) {
1915                                 if (dtrace_bcmp(
1916                                     (void *)(uintptr_t)key[i].dttk_value,
1917                                     (void *)(uintptr_t)dkey->dttk_value,
1918                                     dkey->dttk_size))
1919                                         goto next;
1920                         } else {
1921                                 if (dkey->dttk_value != key[i].dttk_value)
1922                                         goto next;
1923                         }
1924                 }
1925 
1926                 if (op != DTRACE_DYNVAR_DEALLOC)
1927                         return (dvar);
1928 
1929                 ASSERT(dvar->dtdv_next == NULL ||
1930                     dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1931 
1932                 if (prev != NULL) {
1933                         ASSERT(hash[bucket].dtdh_chain != dvar);
1934                         ASSERT(start != dvar);
1935                         ASSERT(prev->dtdv_next == dvar);
1936                         prev->dtdv_next = dvar->dtdv_next;
1937                 } else {
1938                         if (dtrace_casptr(&hash[bucket].dtdh_chain,
1939                             start, dvar->dtdv_next) != start) {
1940                                 /*
1941                                  * We have failed to atomically swing the
1942                                  * hash table head pointer, presumably because
1943                                  * of a conflicting allocation on another CPU.
1944                                  * We need to reread the hash chain and try
1945                                  * again.
1946                                  */
1947                                 goto top;
1948                         }
1949                 }
1950 
1951                 dtrace_membar_producer();
1952 
1953                 /*
1954                  * Now set the hash value to indicate that it's free.
1955                  */
1956                 ASSERT(hash[bucket].dtdh_chain != dvar);
1957                 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1958 
1959                 dtrace_membar_producer();
1960 
1961                 /*
1962                  * Set the next pointer to point at the dirty list, and
1963                  * atomically swing the dirty pointer to the newly freed dvar.
1964                  */
1965                 do {
1966                         next = dcpu->dtdsc_dirty;
1967                         dvar->dtdv_next = next;
1968                 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1969 
1970                 /*
1971                  * Finally, unlock this hash bucket.
1972                  */
1973                 ASSERT(hash[bucket].dtdh_lock == lock);
1974                 ASSERT(lock & 1);
1975                 hash[bucket].dtdh_lock++;
1976 
1977                 return (NULL);
1978 next:
1979                 prev = dvar;
1980                 continue;
1981         }
1982 
1983         if (dvar == NULL) {
1984                 /*
1985                  * If dvar is NULL, it is because we went off the rails:
1986                  * one of the elements that we traversed in the hash chain
1987                  * was deleted while we were traversing it.  In this case,
1988                  * we assert that we aren't doing a dealloc (deallocs lock
1989                  * the hash bucket to prevent themselves from racing with
1990                  * one another), and retry the hash chain traversal.
1991                  */
1992                 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1993                 goto top;
1994         }
1995 
1996         if (op != DTRACE_DYNVAR_ALLOC) {
1997                 /*
1998                  * If we are not to allocate a new variable, we want to
1999                  * return NULL now.  Before we return, check that the value
2000                  * of the lock word hasn't changed.  If it has, we may have
2001                  * seen an inconsistent snapshot.
2002                  */
2003                 if (op == DTRACE_DYNVAR_NOALLOC) {
2004                         if (hash[bucket].dtdh_lock != lock)
2005                                 goto top;
2006                 } else {
2007                         ASSERT(op == DTRACE_DYNVAR_DEALLOC);
2008                         ASSERT(hash[bucket].dtdh_lock == lock);
2009                         ASSERT(lock & 1);
2010                         hash[bucket].dtdh_lock++;
2011                 }
2012 
2013                 return (NULL);
2014         }
2015 
2016         /*
2017          * We need to allocate a new dynamic variable.  The size we need is the
2018          * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2019          * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2020          * the size of any referred-to data (dsize).  We then round the final
2021          * size up to the chunksize for allocation.
2022          */
2023         for (ksize = 0, i = 0; i < nkeys; i++)
2024                 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
2025 
2026         /*
2027          * This should be pretty much impossible, but could happen if, say,
2028          * strange DIF specified the tuple.  Ideally, this should be an
2029          * assertion and not an error condition -- but that requires that the
2030          * chunksize calculation in dtrace_difo_chunksize() be absolutely
2031          * bullet-proof.  (That is, it must not be able to be fooled by
2032          * malicious DIF.)  Given the lack of backwards branches in DIF,
2033          * solving this would presumably not amount to solving the Halting
2034          * Problem -- but it still seems awfully hard.
2035          */
2036         if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
2037             ksize + dsize > chunksize) {
2038                 dcpu->dtdsc_drops++;
2039                 return (NULL);
2040         }
2041 
2042         nstate = DTRACE_DSTATE_EMPTY;
2043 
2044         do {
2045 retry:
2046                 free = dcpu->dtdsc_free;
2047 
2048                 if (free == NULL) {
2049                         dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2050                         void *rval;
2051 
2052                         if (clean == NULL) {
2053                                 /*
2054                                  * We're out of dynamic variable space on
2055                                  * this CPU.  Unless we have tried all CPUs,
2056                                  * we'll try to allocate from a different
2057                                  * CPU.
2058                                  */
2059                                 switch (dstate->dtds_state) {
2060                                 case DTRACE_DSTATE_CLEAN: {
2061                                         void *sp = &dstate->dtds_state;
2062 
2063                                         if (++cpu >= NCPU)
2064                                                 cpu = 0;
2065 
2066                                         if (dcpu->dtdsc_dirty != NULL &&
2067                                             nstate == DTRACE_DSTATE_EMPTY)
2068                                                 nstate = DTRACE_DSTATE_DIRTY;
2069 
2070                                         if (dcpu->dtdsc_rinsing != NULL)
2071                                                 nstate = DTRACE_DSTATE_RINSING;
2072 
2073                                         dcpu = &dstate->dtds_percpu[cpu];
2074 
2075                                         if (cpu != me)
2076                                                 goto retry;
2077 
2078                                         (void) dtrace_cas32(sp,
2079                                             DTRACE_DSTATE_CLEAN, nstate);
2080 
2081                                         /*
2082                                          * To increment the correct bean
2083                                          * counter, take another lap.
2084                                          */
2085                                         goto retry;
2086                                 }
2087 
2088                                 case DTRACE_DSTATE_DIRTY:
2089                                         dcpu->dtdsc_dirty_drops++;
2090                                         break;
2091 
2092                                 case DTRACE_DSTATE_RINSING:
2093                                         dcpu->dtdsc_rinsing_drops++;
2094                                         break;
2095 
2096                                 case DTRACE_DSTATE_EMPTY:
2097                                         dcpu->dtdsc_drops++;
2098                                         break;
2099                                 }
2100 
2101                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2102                                 return (NULL);
2103                         }
2104 
2105                         /*
2106                          * The clean list appears to be non-empty.  We want to
2107                          * move the clean list to the free list; we start by
2108                          * moving the clean pointer aside.
2109                          */
2110                         if (dtrace_casptr(&dcpu->dtdsc_clean,
2111                             clean, NULL) != clean) {
2112                                 /*
2113                                  * We are in one of two situations:
2114                                  *
2115                                  *  (a) The clean list was switched to the
2116                                  *      free list by another CPU.
2117                                  *
2118                                  *  (b) The clean list was added to by the
2119                                  *      cleansing cyclic.
2120                                  *
2121                                  * In either of these situations, we can
2122                                  * just reattempt the free list allocation.
2123                                  */
2124                                 goto retry;
2125                         }
2126 
2127                         ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2128 
2129                         /*
2130                          * Now we'll move the clean list to our free list.
2131                          * It's impossible for this to fail:  the only way
2132                          * the free list can be updated is through this
2133                          * code path, and only one CPU can own the clean list.
2134                          * Thus, it would only be possible for this to fail if
2135                          * this code were racing with dtrace_dynvar_clean().
2136                          * (That is, if dtrace_dynvar_clean() updated the clean
2137                          * list, and we ended up racing to update the free
2138                          * list.)  This race is prevented by the dtrace_sync()
2139                          * in dtrace_dynvar_clean() -- which flushes the
2140                          * owners of the clean lists out before resetting
2141                          * the clean lists.
2142                          */
2143                         dcpu = &dstate->dtds_percpu[me];
2144                         rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2145                         ASSERT(rval == NULL);
2146                         goto retry;
2147                 }
2148 
2149                 dvar = free;
2150                 new_free = dvar->dtdv_next;
2151         } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2152 
2153         /*
2154          * We have now allocated a new chunk.  We copy the tuple keys into the
2155          * tuple array and copy any referenced key data into the data space
2156          * following the tuple array.  As we do this, we relocate dttk_value
2157          * in the final tuple to point to the key data address in the chunk.
2158          */
2159         kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2160         dvar->dtdv_data = (void *)(kdata + ksize);
2161         dvar->dtdv_tuple.dtt_nkeys = nkeys;
2162 
2163         for (i = 0; i < nkeys; i++) {
2164                 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2165                 size_t kesize = key[i].dttk_size;
2166 
2167                 if (kesize != 0) {
2168                         dtrace_bcopy(
2169                             (const void *)(uintptr_t)key[i].dttk_value,
2170                             (void *)kdata, kesize);
2171                         dkey->dttk_value = kdata;
2172                         kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2173                 } else {
2174                         dkey->dttk_value = key[i].dttk_value;
2175                 }
2176 
2177                 dkey->dttk_size = kesize;
2178         }
2179 
2180         ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2181         dvar->dtdv_hashval = hashval;
2182         dvar->dtdv_next = start;
2183 
2184         if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2185                 return (dvar);
2186 
2187         /*
2188          * The cas has failed.  Either another CPU is adding an element to
2189          * this hash chain, or another CPU is deleting an element from this
2190          * hash chain.  The simplest way to deal with both of these cases
2191          * (though not necessarily the most efficient) is to free our
2192          * allocated block and re-attempt it all.  Note that the free is
2193          * to the dirty list and _not_ to the free list.  This is to prevent
2194          * races with allocators, above.
2195          */
2196         dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2197 
2198         dtrace_membar_producer();
2199 
2200         do {
2201                 free = dcpu->dtdsc_dirty;
2202                 dvar->dtdv_next = free;
2203         } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2204 
2205         goto top;
2206 }
2207 
2208 /*ARGSUSED*/
2209 static void
2210 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2211 {
2212         if ((int64_t)nval < (int64_t)*oval)
2213                 *oval = nval;
2214 }
2215 
2216 /*ARGSUSED*/
2217 static void
2218 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2219 {
2220         if ((int64_t)nval > (int64_t)*oval)
2221                 *oval = nval;
2222 }
2223 
2224 static void
2225 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2226 {
2227         int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2228         int64_t val = (int64_t)nval;
2229 
2230         if (val < 0) {
2231                 for (i = 0; i < zero; i++) {
2232                         if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2233                                 quanta[i] += incr;
2234                                 return;
2235                         }
2236                 }
2237         } else {
2238                 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2239                         if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2240                                 quanta[i - 1] += incr;
2241                                 return;
2242                         }
2243                 }
2244 
2245                 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2246                 return;
2247         }
2248 
2249         ASSERT(0);
2250 }
2251 
2252 static void
2253 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2254 {
2255         uint64_t arg = *lquanta++;
2256         int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2257         uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2258         uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2259         int32_t val = (int32_t)nval, level;
2260 
2261         ASSERT(step != 0);
2262         ASSERT(levels != 0);
2263 
2264         if (val < base) {
2265                 /*
2266                  * This is an underflow.
2267                  */
2268                 lquanta[0] += incr;
2269                 return;
2270         }
2271 
2272         level = (val - base) / step;
2273 
2274         if (level < levels) {
2275                 lquanta[level + 1] += incr;
2276                 return;
2277         }
2278 
2279         /*
2280          * This is an overflow.
2281          */
2282         lquanta[levels + 1] += incr;
2283 }
2284 
2285 static int
2286 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2287     uint16_t high, uint16_t nsteps, int64_t value)
2288 {
2289         int64_t this = 1, last, next;
2290         int base = 1, order;
2291 
2292         ASSERT(factor <= nsteps);
2293         ASSERT(nsteps % factor == 0);
2294 
2295         for (order = 0; order < low; order++)
2296                 this *= factor;
2297 
2298         /*
2299          * If our value is less than our factor taken to the power of the
2300          * low order of magnitude, it goes into the zeroth bucket.
2301          */
2302         if (value < (last = this))
2303                 return (0);
2304 
2305         for (this *= factor; order <= high; order++) {
2306                 int nbuckets = this > nsteps ? nsteps : this;
2307 
2308                 if ((next = this * factor) < this) {
2309                         /*
2310                          * We should not generally get log/linear quantizations
2311                          * with a high magnitude that allows 64-bits to
2312                          * overflow, but we nonetheless protect against this
2313                          * by explicitly checking for overflow, and clamping
2314                          * our value accordingly.
2315                          */
2316                         value = this - 1;
2317                 }
2318 
2319                 if (value < this) {
2320                         /*
2321                          * If our value lies within this order of magnitude,
2322                          * determine its position by taking the offset within
2323                          * the order of magnitude, dividing by the bucket
2324                          * width, and adding to our (accumulated) base.
2325                          */
2326                         return (base + (value - last) / (this / nbuckets));
2327                 }
2328 
2329                 base += nbuckets - (nbuckets / factor);
2330                 last = this;
2331                 this = next;
2332         }
2333 
2334         /*
2335          * Our value is greater than or equal to our factor taken to the
2336          * power of one plus the high magnitude -- return the top bucket.
2337          */
2338         return (base);
2339 }
2340 
2341 static void
2342 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2343 {
2344         uint64_t arg = *llquanta++;
2345         uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2346         uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2347         uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2348         uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2349 
2350         llquanta[dtrace_aggregate_llquantize_bucket(factor,
2351             low, high, nsteps, nval)] += incr;
2352 }
2353 
2354 /*ARGSUSED*/
2355 static void
2356 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2357 {
2358         data[0]++;
2359         data[1] += nval;
2360 }
2361 
2362 /*ARGSUSED*/
2363 static void
2364 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2365 {
2366         int64_t snval = (int64_t)nval;
2367         uint64_t tmp[2];
2368 
2369         data[0]++;
2370         data[1] += nval;
2371 
2372         /*
2373          * What we want to say here is:
2374          *
2375          * data[2] += nval * nval;
2376          *
2377          * But given that nval is 64-bit, we could easily overflow, so
2378          * we do this as 128-bit arithmetic.
2379          */
2380         if (snval < 0)
2381                 snval = -snval;
2382 
2383         dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2384         dtrace_add_128(data + 2, tmp, data + 2);
2385 }
2386 
2387 /*ARGSUSED*/
2388 static void
2389 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2390 {
2391         *oval = *oval + 1;
2392 }
2393 
2394 /*ARGSUSED*/
2395 static void
2396 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2397 {
2398         *oval += nval;
2399 }
2400 
2401 /*
2402  * Aggregate given the tuple in the principal data buffer, and the aggregating
2403  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2404  * buffer is specified as the buf parameter.  This routine does not return
2405  * failure; if there is no space in the aggregation buffer, the data will be
2406  * dropped, and a corresponding counter incremented.
2407  */
2408 static void
2409 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2410     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2411 {
2412         dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2413         uint32_t i, ndx, size, fsize;
2414         uint32_t align = sizeof (uint64_t) - 1;
2415         dtrace_aggbuffer_t *agb;
2416         dtrace_aggkey_t *key;
2417         uint32_t hashval = 0, limit, isstr;
2418         caddr_t tomax, data, kdata;
2419         dtrace_actkind_t action;
2420         dtrace_action_t *act;
2421         uintptr_t offs;
2422 
2423         if (buf == NULL)
2424                 return;
2425 
2426         if (!agg->dtag_hasarg) {
2427                 /*
2428                  * Currently, only quantize() and lquantize() take additional
2429                  * arguments, and they have the same semantics:  an increment
2430                  * value that defaults to 1 when not present.  If additional
2431                  * aggregating actions take arguments, the setting of the
2432                  * default argument value will presumably have to become more
2433                  * sophisticated...
2434                  */
2435                 arg = 1;
2436         }
2437 
2438         action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2439         size = rec->dtrd_offset - agg->dtag_base;
2440         fsize = size + rec->dtrd_size;
2441 
2442         ASSERT(dbuf->dtb_tomax != NULL);
2443         data = dbuf->dtb_tomax + offset + agg->dtag_base;
2444 
2445         if ((tomax = buf->dtb_tomax) == NULL) {
2446                 dtrace_buffer_drop(buf);
2447                 return;
2448         }
2449 
2450         /*
2451          * The metastructure is always at the bottom of the buffer.
2452          */
2453         agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2454             sizeof (dtrace_aggbuffer_t));
2455 
2456         if (buf->dtb_offset == 0) {
2457                 /*
2458                  * We just kludge up approximately 1/8th of the size to be
2459                  * buckets.  If this guess ends up being routinely
2460                  * off-the-mark, we may need to dynamically readjust this
2461                  * based on past performance.
2462                  */
2463                 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2464 
2465                 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2466                     (uintptr_t)tomax || hashsize == 0) {
2467                         /*
2468                          * We've been given a ludicrously small buffer;
2469                          * increment our drop count and leave.
2470                          */
2471                         dtrace_buffer_drop(buf);
2472                         return;
2473                 }
2474 
2475                 /*
2476                  * And now, a pathetic attempt to try to get a an odd (or
2477                  * perchance, a prime) hash size for better hash distribution.
2478                  */
2479                 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2480                         hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2481 
2482                 agb->dtagb_hashsize = hashsize;
2483                 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2484                     agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2485                 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2486 
2487                 for (i = 0; i < agb->dtagb_hashsize; i++)
2488                         agb->dtagb_hash[i] = NULL;
2489         }
2490 
2491         ASSERT(agg->dtag_first != NULL);
2492         ASSERT(agg->dtag_first->dta_intuple);
2493 
2494         /*
2495          * Calculate the hash value based on the key.  Note that we _don't_
2496          * include the aggid in the hashing (but we will store it as part of
2497          * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2498          * algorithm: a simple, quick algorithm that has no known funnels, and
2499          * gets good distribution in practice.  The efficacy of the hashing
2500          * algorithm (and a comparison with other algorithms) may be found by
2501          * running the ::dtrace_aggstat MDB dcmd.
2502          */
2503         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2504                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2505                 limit = i + act->dta_rec.dtrd_size;
2506                 ASSERT(limit <= size);
2507                 isstr = DTRACEACT_ISSTRING(act);
2508 
2509                 for (; i < limit; i++) {
2510                         hashval += data[i];
2511                         hashval += (hashval << 10);
2512                         hashval ^= (hashval >> 6);
2513 
2514                         if (isstr && data[i] == '\0')
2515                                 break;
2516                 }
2517         }
2518 
2519         hashval += (hashval << 3);
2520         hashval ^= (hashval >> 11);
2521         hashval += (hashval << 15);
2522 
2523         /*
2524          * Yes, the divide here is expensive -- but it's generally the least
2525          * of the performance issues given the amount of data that we iterate
2526          * over to compute hash values, compare data, etc.
2527          */
2528         ndx = hashval % agb->dtagb_hashsize;
2529 
2530         for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2531                 ASSERT((caddr_t)key >= tomax);
2532                 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2533 
2534                 if (hashval != key->dtak_hashval || key->dtak_size != size)
2535                         continue;
2536 
2537                 kdata = key->dtak_data;
2538                 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2539 
2540                 for (act = agg->dtag_first; act->dta_intuple;
2541                     act = act->dta_next) {
2542                         i = act->dta_rec.dtrd_offset - agg->dtag_base;
2543                         limit = i + act->dta_rec.dtrd_size;
2544                         ASSERT(limit <= size);
2545                         isstr = DTRACEACT_ISSTRING(act);
2546 
2547                         for (; i < limit; i++) {
2548                                 if (kdata[i] != data[i])
2549                                         goto next;
2550 
2551                                 if (isstr && data[i] == '\0')
2552                                         break;
2553                         }
2554                 }
2555 
2556                 if (action != key->dtak_action) {
2557                         /*
2558                          * We are aggregating on the same value in the same
2559                          * aggregation with two different aggregating actions.
2560                          * (This should have been picked up in the compiler,
2561                          * so we may be dealing with errant or devious DIF.)
2562                          * This is an error condition; we indicate as much,
2563                          * and return.
2564                          */
2565                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2566                         return;
2567                 }
2568 
2569                 /*
2570                  * This is a hit:  we need to apply the aggregator to
2571                  * the value at this key.
2572                  */
2573                 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2574                 return;
2575 next:
2576                 continue;
2577         }
2578 
2579         /*
2580          * We didn't find it.  We need to allocate some zero-filled space,
2581          * link it into the hash table appropriately, and apply the aggregator
2582          * to the (zero-filled) value.
2583          */
2584         offs = buf->dtb_offset;
2585         while (offs & (align - 1))
2586                 offs += sizeof (uint32_t);
2587 
2588         /*
2589          * If we don't have enough room to both allocate a new key _and_
2590          * its associated data, increment the drop count and return.
2591          */
2592         if ((uintptr_t)tomax + offs + fsize >
2593             agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2594                 dtrace_buffer_drop(buf);
2595                 return;
2596         }
2597 
2598         /*CONSTCOND*/
2599         ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2600         key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2601         agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2602 
2603         key->dtak_data = kdata = tomax + offs;
2604         buf->dtb_offset = offs + fsize;
2605 
2606         /*
2607          * Now copy the data across.
2608          */
2609         *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2610 
2611         for (i = sizeof (dtrace_aggid_t); i < size; i++)
2612                 kdata[i] = data[i];
2613 
2614         /*
2615          * Because strings are not zeroed out by default, we need to iterate
2616          * looking for actions that store strings, and we need to explicitly
2617          * pad these strings out with zeroes.
2618          */
2619         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2620                 int nul;
2621 
2622                 if (!DTRACEACT_ISSTRING(act))
2623                         continue;
2624 
2625                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2626                 limit = i + act->dta_rec.dtrd_size;
2627                 ASSERT(limit <= size);
2628 
2629                 for (nul = 0; i < limit; i++) {
2630                         if (nul) {
2631                                 kdata[i] = '\0';
2632                                 continue;
2633                         }
2634 
2635                         if (data[i] != '\0')
2636                                 continue;
2637 
2638                         nul = 1;
2639                 }
2640         }
2641 
2642         for (i = size; i < fsize; i++)
2643                 kdata[i] = 0;
2644 
2645         key->dtak_hashval = hashval;
2646         key->dtak_size = size;
2647         key->dtak_action = action;
2648         key->dtak_next = agb->dtagb_hash[ndx];
2649         agb->dtagb_hash[ndx] = key;
2650 
2651         /*
2652          * Finally, apply the aggregator.
2653          */
2654         *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2655         agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2656 }
2657 
2658 /*
2659  * Given consumer state, this routine finds a speculation in the INACTIVE
2660  * state and transitions it into the ACTIVE state.  If there is no speculation
2661  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2662  * incremented -- it is up to the caller to take appropriate action.
2663  */
2664 static int
2665 dtrace_speculation(dtrace_state_t *state)
2666 {
2667         int i = 0;
2668         dtrace_speculation_state_t current;
2669         uint32_t *stat = &state->dts_speculations_unavail, count;
2670 
2671         while (i < state->dts_nspeculations) {
2672                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2673 
2674                 current = spec->dtsp_state;
2675 
2676                 if (current != DTRACESPEC_INACTIVE) {
2677                         if (current == DTRACESPEC_COMMITTINGMANY ||
2678                             current == DTRACESPEC_COMMITTING ||
2679                             current == DTRACESPEC_DISCARDING)
2680                                 stat = &state->dts_speculations_busy;
2681                         i++;
2682                         continue;
2683                 }
2684 
2685                 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2686                     current, DTRACESPEC_ACTIVE) == current)
2687                         return (i + 1);
2688         }
2689 
2690         /*
2691          * We couldn't find a speculation.  If we found as much as a single
2692          * busy speculation buffer, we'll attribute this failure as "busy"
2693          * instead of "unavail".
2694          */
2695         do {
2696                 count = *stat;
2697         } while (dtrace_cas32(stat, count, count + 1) != count);
2698 
2699         return (0);
2700 }
2701 
2702 /*
2703  * This routine commits an active speculation.  If the specified speculation
2704  * is not in a valid state to perform a commit(), this routine will silently do
2705  * nothing.  The state of the specified speculation is transitioned according
2706  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2707  */
2708 static void
2709 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2710     dtrace_specid_t which)
2711 {
2712         dtrace_speculation_t *spec;
2713         dtrace_buffer_t *src, *dest;
2714         uintptr_t daddr, saddr, dlimit, slimit;
2715         dtrace_speculation_state_t current, new;
2716         intptr_t offs;
2717         uint64_t timestamp;
2718 
2719         if (which == 0)
2720                 return;
2721 
2722         if (which > state->dts_nspeculations) {
2723                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2724                 return;
2725         }
2726 
2727         spec = &state->dts_speculations[which - 1];
2728         src = &spec->dtsp_buffer[cpu];
2729         dest = &state->dts_buffer[cpu];
2730 
2731         do {
2732                 current = spec->dtsp_state;
2733 
2734                 if (current == DTRACESPEC_COMMITTINGMANY)
2735                         break;
2736 
2737                 switch (current) {
2738                 case DTRACESPEC_INACTIVE:
2739                 case DTRACESPEC_DISCARDING:
2740                         return;
2741 
2742                 case DTRACESPEC_COMMITTING:
2743                         /*
2744                          * This is only possible if we are (a) commit()'ing
2745                          * without having done a prior speculate() on this CPU
2746                          * and (b) racing with another commit() on a different
2747                          * CPU.  There's nothing to do -- we just assert that
2748                          * our offset is 0.
2749                          */
2750                         ASSERT(src->dtb_offset == 0);
2751                         return;
2752 
2753                 case DTRACESPEC_ACTIVE:
2754                         new = DTRACESPEC_COMMITTING;
2755                         break;
2756 
2757                 case DTRACESPEC_ACTIVEONE:
2758                         /*
2759                          * This speculation is active on one CPU.  If our
2760                          * buffer offset is non-zero, we know that the one CPU
2761                          * must be us.  Otherwise, we are committing on a
2762                          * different CPU from the speculate(), and we must
2763                          * rely on being asynchronously cleaned.
2764                          */
2765                         if (src->dtb_offset != 0) {
2766                                 new = DTRACESPEC_COMMITTING;
2767                                 break;
2768                         }
2769                         /*FALLTHROUGH*/
2770 
2771                 case DTRACESPEC_ACTIVEMANY:
2772                         new = DTRACESPEC_COMMITTINGMANY;
2773                         break;
2774 
2775                 default:
2776                         ASSERT(0);
2777                 }
2778         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2779             current, new) != current);
2780 
2781         /*
2782          * We have set the state to indicate that we are committing this
2783          * speculation.  Now reserve the necessary space in the destination
2784          * buffer.
2785          */
2786         if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2787             sizeof (uint64_t), state, NULL)) < 0) {
2788                 dtrace_buffer_drop(dest);
2789                 goto out;
2790         }
2791 
2792         /*
2793          * We have sufficient space to copy the speculative buffer into the
2794          * primary buffer.  First, modify the speculative buffer, filling
2795          * in the timestamp of all entries with the current time.  The data
2796          * must have the commit() time rather than the time it was traced,
2797          * so that all entries in the primary buffer are in timestamp order.
2798          */
2799         timestamp = dtrace_gethrtime();
2800         saddr = (uintptr_t)src->dtb_tomax;
2801         slimit = saddr + src->dtb_offset;
2802         while (saddr < slimit) {
2803                 size_t size;
2804                 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2805 
2806                 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2807                         saddr += sizeof (dtrace_epid_t);
2808                         continue;
2809                 }
2810                 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2811                 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2812 
2813                 ASSERT3U(saddr + size, <=, slimit);
2814                 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2815                 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2816 
2817                 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2818 
2819                 saddr += size;
2820         }
2821 
2822         /*
2823          * Copy the buffer across.  (Note that this is a
2824          * highly subobtimal bcopy(); in the unlikely event that this becomes
2825          * a serious performance issue, a high-performance DTrace-specific
2826          * bcopy() should obviously be invented.)
2827          */
2828         daddr = (uintptr_t)dest->dtb_tomax + offs;
2829         dlimit = daddr + src->dtb_offset;
2830         saddr = (uintptr_t)src->dtb_tomax;
2831 
2832         /*
2833          * First, the aligned portion.
2834          */
2835         while (dlimit - daddr >= sizeof (uint64_t)) {
2836                 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2837 
2838                 daddr += sizeof (uint64_t);
2839                 saddr += sizeof (uint64_t);
2840         }
2841 
2842         /*
2843          * Now any left-over bit...
2844          */
2845         while (dlimit - daddr)
2846                 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2847 
2848         /*
2849          * Finally, commit the reserved space in the destination buffer.
2850          */
2851         dest->dtb_offset = offs + src->dtb_offset;
2852 
2853 out:
2854         /*
2855          * If we're lucky enough to be the only active CPU on this speculation
2856          * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2857          */
2858         if (current == DTRACESPEC_ACTIVE ||
2859             (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2860                 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2861                     DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2862 
2863                 ASSERT(rval == DTRACESPEC_COMMITTING);
2864         }
2865 
2866         src->dtb_offset = 0;
2867         src->dtb_xamot_drops += src->dtb_drops;
2868         src->dtb_drops = 0;
2869 }
2870 
2871 /*
2872  * This routine discards an active speculation.  If the specified speculation
2873  * is not in a valid state to perform a discard(), this routine will silently
2874  * do nothing.  The state of the specified speculation is transitioned
2875  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2876  */
2877 static void
2878 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2879     dtrace_specid_t which)
2880 {
2881         dtrace_speculation_t *spec;
2882         dtrace_speculation_state_t current, new;
2883         dtrace_buffer_t *buf;
2884 
2885         if (which == 0)
2886                 return;
2887 
2888         if (which > state->dts_nspeculations) {
2889                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2890                 return;
2891         }
2892 
2893         spec = &state->dts_speculations[which - 1];
2894         buf = &spec->dtsp_buffer[cpu];
2895 
2896         do {
2897                 current = spec->dtsp_state;
2898 
2899                 switch (current) {
2900                 case DTRACESPEC_INACTIVE:
2901                 case DTRACESPEC_COMMITTINGMANY:
2902                 case DTRACESPEC_COMMITTING:
2903                 case DTRACESPEC_DISCARDING:
2904                         return;
2905 
2906                 case DTRACESPEC_ACTIVE:
2907                 case DTRACESPEC_ACTIVEMANY:
2908                         new = DTRACESPEC_DISCARDING;
2909                         break;
2910 
2911                 case DTRACESPEC_ACTIVEONE:
2912                         if (buf->dtb_offset != 0) {
2913                                 new = DTRACESPEC_INACTIVE;
2914                         } else {
2915                                 new = DTRACESPEC_DISCARDING;
2916                         }
2917                         break;
2918 
2919                 default:
2920                         ASSERT(0);
2921                 }
2922         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2923             current, new) != current);
2924 
2925         buf->dtb_offset = 0;
2926         buf->dtb_drops = 0;
2927 }
2928 
2929 /*
2930  * Note:  not called from probe context.  This function is called
2931  * asynchronously from cross call context to clean any speculations that are
2932  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2933  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2934  * speculation.
2935  */
2936 static void
2937 dtrace_speculation_clean_here(dtrace_state_t *state)
2938 {
2939         dtrace_icookie_t cookie;
2940         processorid_t cpu = CPU->cpu_id;
2941         dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2942         dtrace_specid_t i;
2943 
2944         cookie = dtrace_interrupt_disable();
2945 
2946         if (dest->dtb_tomax == NULL) {
2947                 dtrace_interrupt_enable(cookie);
2948                 return;
2949         }
2950 
2951         for (i = 0; i < state->dts_nspeculations; i++) {
2952                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2953                 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2954 
2955                 if (src->dtb_tomax == NULL)
2956                         continue;
2957 
2958                 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2959                         src->dtb_offset = 0;
2960                         continue;
2961                 }
2962 
2963                 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2964                         continue;
2965 
2966                 if (src->dtb_offset == 0)
2967                         continue;
2968 
2969                 dtrace_speculation_commit(state, cpu, i + 1);
2970         }
2971 
2972         dtrace_interrupt_enable(cookie);
2973 }
2974 
2975 /*
2976  * Note:  not called from probe context.  This function is called
2977  * asynchronously (and at a regular interval) to clean any speculations that
2978  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2979  * is work to be done, it cross calls all CPUs to perform that work;
2980  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2981  * INACTIVE state until they have been cleaned by all CPUs.
2982  */
2983 static void
2984 dtrace_speculation_clean(dtrace_state_t *state)
2985 {
2986         int work = 0, rv;
2987         dtrace_specid_t i;
2988 
2989         for (i = 0; i < state->dts_nspeculations; i++) {
2990                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2991 
2992                 ASSERT(!spec->dtsp_cleaning);
2993 
2994                 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2995                     spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2996                         continue;
2997 
2998                 work++;
2999                 spec->dtsp_cleaning = 1;
3000         }
3001 
3002         if (!work)
3003                 return;
3004 
3005         dtrace_xcall(DTRACE_CPUALL,
3006             (dtrace_xcall_t)dtrace_speculation_clean_here, state);
3007 
3008         /*
3009          * We now know that all CPUs have committed or discarded their
3010          * speculation buffers, as appropriate.  We can now set the state
3011          * to inactive.
3012          */
3013         for (i = 0; i < state->dts_nspeculations; i++) {
3014                 dtrace_speculation_t *spec = &state->dts_speculations[i];
3015                 dtrace_speculation_state_t current, new;
3016 
3017                 if (!spec->dtsp_cleaning)
3018                         continue;
3019 
3020                 current = spec->dtsp_state;
3021                 ASSERT(current == DTRACESPEC_DISCARDING ||
3022                     current == DTRACESPEC_COMMITTINGMANY);
3023 
3024                 new = DTRACESPEC_INACTIVE;
3025 
3026                 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
3027                 ASSERT(rv == current);
3028                 spec->dtsp_cleaning = 0;
3029         }
3030 }
3031 
3032 /*
3033  * Called as part of a speculate() to get the speculative buffer associated
3034  * with a given speculation.  Returns NULL if the specified speculation is not
3035  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
3036  * the active CPU is not the specified CPU -- the speculation will be
3037  * atomically transitioned into the ACTIVEMANY state.
3038  */
3039 static dtrace_buffer_t *
3040 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
3041     dtrace_specid_t which)
3042 {
3043         dtrace_speculation_t *spec;
3044         dtrace_speculation_state_t current, new;
3045         dtrace_buffer_t *buf;
3046 
3047         if (which == 0)
3048                 return (NULL);
3049 
3050         if (which > state->dts_nspeculations) {
3051                 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3052                 return (NULL);
3053         }
3054 
3055         spec = &state->dts_speculations[which - 1];
3056         buf = &spec->dtsp_buffer[cpuid];
3057 
3058         do {
3059                 current = spec->dtsp_state;
3060 
3061                 switch (current) {
3062                 case DTRACESPEC_INACTIVE:
3063                 case DTRACESPEC_COMMITTINGMANY:
3064                 case DTRACESPEC_DISCARDING:
3065                         return (NULL);
3066 
3067                 case DTRACESPEC_COMMITTING:
3068                         ASSERT(buf->dtb_offset == 0);
3069                         return (NULL);
3070 
3071                 case DTRACESPEC_ACTIVEONE:
3072                         /*
3073                          * This speculation is currently active on one CPU.
3074                          * Check the offset in the buffer; if it's non-zero,
3075                          * that CPU must be us (and we leave the state alone).
3076                          * If it's zero, assume that we're starting on a new
3077                          * CPU -- and change the state to indicate that the
3078                          * speculation is active on more than one CPU.
3079                          */
3080                         if (buf->dtb_offset != 0)
3081                                 return (buf);
3082 
3083                         new = DTRACESPEC_ACTIVEMANY;
3084                         break;
3085 
3086                 case DTRACESPEC_ACTIVEMANY:
3087                         return (buf);
3088 
3089                 case DTRACESPEC_ACTIVE:
3090                         new = DTRACESPEC_ACTIVEONE;
3091                         break;
3092 
3093                 default:
3094                         ASSERT(0);
3095                 }
3096         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3097             current, new) != current);
3098 
3099         ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3100         return (buf);
3101 }
3102 
3103 /*
3104  * Return a string.  In the event that the user lacks the privilege to access
3105  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3106  * don't fail access checking.
3107  *
3108  * dtrace_dif_variable() uses this routine as a helper for various
3109  * builtin values such as 'execname' and 'probefunc.'
3110  */
3111 uintptr_t
3112 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3113     dtrace_mstate_t *mstate)
3114 {
3115         uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3116         uintptr_t ret;
3117         size_t strsz;
3118 
3119         /*
3120          * The easy case: this probe is allowed to read all of memory, so
3121          * we can just return this as a vanilla pointer.
3122          */
3123         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3124                 return (addr);
3125 
3126         /*
3127          * This is the tougher case: we copy the string in question from
3128          * kernel memory into scratch memory and return it that way: this
3129          * ensures that we won't trip up when access checking tests the
3130          * BYREF return value.
3131          */
3132         strsz = dtrace_strlen((char *)addr, size) + 1;
3133 
3134         if (mstate->dtms_scratch_ptr + strsz >
3135             mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3136                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3137                 return (NULL);
3138         }
3139 
3140         dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3141             strsz);
3142         ret = mstate->dtms_scratch_ptr;
3143         mstate->dtms_scratch_ptr += strsz;
3144         return (ret);
3145 }
3146 
3147 /*
3148  * This function implements the DIF emulator's variable lookups.  The emulator
3149  * passes a reserved variable identifier and optional built-in array index.
3150  */
3151 static uint64_t
3152 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3153     uint64_t ndx)
3154 {
3155         /*
3156          * If we're accessing one of the uncached arguments, we'll turn this
3157          * into a reference in the args array.
3158          */
3159         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3160                 ndx = v - DIF_VAR_ARG0;
3161                 v = DIF_VAR_ARGS;
3162         }
3163 
3164         switch (v) {
3165         case DIF_VAR_ARGS:
3166                 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) {
3167                         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |=
3168                             CPU_DTRACE_KPRIV;
3169                         return (0);
3170                 }
3171 
3172                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3173                 if (ndx >= sizeof (mstate->dtms_arg) /
3174                     sizeof (mstate->dtms_arg[0])) {
3175                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3176                         dtrace_provider_t *pv;
3177                         uint64_t val;
3178 
3179                         pv = mstate->dtms_probe->dtpr_provider;
3180                         if (pv->dtpv_pops.dtps_getargval != NULL)
3181                                 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3182                                     mstate->dtms_probe->dtpr_id,
3183                                     mstate->dtms_probe->dtpr_arg, ndx, aframes);
3184                         else
3185                                 val = dtrace_getarg(ndx, aframes);
3186 
3187                         /*
3188                          * This is regrettably required to keep the compiler
3189                          * from tail-optimizing the call to dtrace_getarg().
3190                          * The condition always evaluates to true, but the
3191                          * compiler has no way of figuring that out a priori.
3192                          * (None of this would be necessary if the compiler
3193                          * could be relied upon to _always_ tail-optimize
3194                          * the call to dtrace_getarg() -- but it can't.)
3195                          */
3196                         if (mstate->dtms_probe != NULL)
3197                                 return (val);
3198 
3199                         ASSERT(0);
3200                 }
3201 
3202                 return (mstate->dtms_arg[ndx]);
3203 
3204         case DIF_VAR_UREGS: {
3205                 klwp_t *lwp;
3206 
3207                 if (!dtrace_priv_proc(state, mstate))
3208                         return (0);
3209 
3210                 if ((lwp = curthread->t_lwp) == NULL) {
3211                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3212                         cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
3213                         return (0);
3214                 }
3215 
3216                 return (dtrace_getreg(lwp->lwp_regs, ndx));
3217         }
3218 
3219         case DIF_VAR_VMREGS: {
3220                 uint64_t rval;
3221 
3222                 if (!dtrace_priv_kernel(state))
3223                         return (0);
3224 
3225                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3226 
3227                 rval = dtrace_getvmreg(ndx,
3228                     &cpu_core[CPU->cpu_id].cpuc_dtrace_flags);
3229 
3230                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3231 
3232                 return (rval);
3233         }
3234 
3235         case DIF_VAR_CURTHREAD:
3236                 if (!dtrace_priv_proc(state, mstate))
3237                         return (0);
3238                 return ((uint64_t)(uintptr_t)curthread);
3239 
3240         case DIF_VAR_TIMESTAMP:
3241                 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3242                         mstate->dtms_timestamp = dtrace_gethrtime();
3243                         mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3244                 }
3245                 return (mstate->dtms_timestamp);
3246 
3247         case DIF_VAR_VTIMESTAMP:
3248                 ASSERT(dtrace_vtime_references != 0);
3249                 return (curthread->t_dtrace_vtime);
3250 
3251         case DIF_VAR_WALLTIMESTAMP:
3252                 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3253                         mstate->dtms_walltimestamp = dtrace_gethrestime();
3254                         mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3255                 }
3256                 return (mstate->dtms_walltimestamp);
3257 
3258         case DIF_VAR_IPL:
3259                 if (!dtrace_priv_kernel(state))
3260                         return (0);
3261                 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3262                         mstate->dtms_ipl = dtrace_getipl();
3263                         mstate->dtms_present |= DTRACE_MSTATE_IPL;
3264                 }
3265                 return (mstate->dtms_ipl);
3266 
3267         case DIF_VAR_EPID:
3268                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3269                 return (mstate->dtms_epid);
3270 
3271         case DIF_VAR_ID:
3272                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3273                 return (mstate->dtms_probe->dtpr_id);
3274 
3275         case DIF_VAR_STACKDEPTH:
3276                 if (!dtrace_priv_kernel(state))
3277                         return (0);
3278                 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3279                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3280 
3281                         mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3282                         mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3283                 }
3284                 return (mstate->dtms_stackdepth);
3285 
3286         case DIF_VAR_USTACKDEPTH:
3287                 if (!dtrace_priv_proc(state, mstate))
3288                         return (0);
3289                 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3290                         /*
3291                          * See comment in DIF_VAR_PID.
3292                          */
3293                         if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3294                             CPU_ON_INTR(CPU)) {
3295                                 mstate->dtms_ustackdepth = 0;
3296                         } else {
3297                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3298                                 mstate->dtms_ustackdepth =
3299                                     dtrace_getustackdepth();
3300                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3301                         }
3302                         mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3303                 }
3304                 return (mstate->dtms_ustackdepth);
3305 
3306         case DIF_VAR_CALLER:
3307                 if (!dtrace_priv_kernel(state))
3308                         return (0);
3309                 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3310                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3311 
3312                         if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3313                                 /*
3314                                  * If this is an unanchored probe, we are
3315                                  * required to go through the slow path:
3316                                  * dtrace_caller() only guarantees correct
3317                                  * results for anchored probes.
3318                                  */
3319                                 pc_t caller[2];
3320 
3321                                 dtrace_getpcstack(caller, 2, aframes,
3322                                     (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3323                                 mstate->dtms_caller = caller[1];
3324                         } else if ((mstate->dtms_caller =
3325                             dtrace_caller(aframes)) == -1) {
3326                                 /*
3327                                  * We have failed to do this the quick way;
3328                                  * we must resort to the slower approach of
3329                                  * calling dtrace_getpcstack().
3330                                  */
3331                                 pc_t caller;
3332 
3333                                 dtrace_getpcstack(&caller, 1, aframes, NULL);
3334                                 mstate->dtms_caller = caller;
3335                         }
3336 
3337                         mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3338                 }
3339                 return (mstate->dtms_caller);
3340 
3341         case DIF_VAR_UCALLER:
3342                 if (!dtrace_priv_proc(state, mstate))
3343                         return (0);
3344 
3345                 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3346                         uint64_t ustack[3];
3347 
3348                         /*
3349                          * dtrace_getupcstack() fills in the first uint64_t
3350                          * with the current PID.  The second uint64_t will
3351                          * be the program counter at user-level.  The third
3352                          * uint64_t will contain the caller, which is what
3353                          * we're after.
3354                          */
3355                         ustack[2] = NULL;
3356                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3357                         dtrace_getupcstack(ustack, 3);
3358                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3359                         mstate->dtms_ucaller = ustack[2];
3360                         mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3361                 }
3362 
3363                 return (mstate->dtms_ucaller);
3364 
3365         case DIF_VAR_PROBEPROV:
3366                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3367                 return (dtrace_dif_varstr(
3368                     (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3369                     state, mstate));
3370 
3371         case DIF_VAR_PROBEMOD:
3372                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3373                 return (dtrace_dif_varstr(
3374                     (uintptr_t)mstate->dtms_probe->dtpr_mod,
3375                     state, mstate));
3376 
3377         case DIF_VAR_PROBEFUNC:
3378                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3379                 return (dtrace_dif_varstr(
3380                     (uintptr_t)mstate->dtms_probe->dtpr_func,
3381                     state, mstate));
3382 
3383         case DIF_VAR_PROBENAME:
3384                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3385                 return (dtrace_dif_varstr(
3386                     (uintptr_t)mstate->dtms_probe->dtpr_name,
3387                     state, mstate));
3388 
3389         case DIF_VAR_PID:
3390                 if (!dtrace_priv_proc(state, mstate))
3391                         return (0);
3392 
3393                 /*
3394                  * Note that we are assuming that an unanchored probe is
3395                  * always due to a high-level interrupt.  (And we're assuming
3396                  * that there is only a single high level interrupt.)
3397                  */
3398                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3399                         return (pid0.pid_id);
3400 
3401                 /*
3402                  * It is always safe to dereference one's own t_procp pointer:
3403                  * it always points to a valid, allocated proc structure.
3404                  * Further, it is always safe to dereference the p_pidp member
3405                  * of one's own proc structure.  (These are truisms becuase
3406                  * threads and processes don't clean up their own state --
3407                  * they leave that task to whomever reaps them.)
3408                  */
3409                 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3410 
3411         case DIF_VAR_PPID:
3412                 if (!dtrace_priv_proc(state, mstate))
3413                         return (0);
3414 
3415                 /*
3416                  * See comment in DIF_VAR_PID.
3417                  */
3418                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3419                         return (pid0.pid_id);
3420 
3421                 /*
3422                  * It is always safe to dereference one's own t_procp pointer:
3423                  * it always points to a valid, allocated proc structure.
3424                  * (This is true because threads don't clean up their own
3425                  * state -- they leave that task to whomever reaps them.)
3426                  */
3427                 return ((uint64_t)curthread->t_procp->p_ppid);
3428 
3429         case DIF_VAR_TID:
3430                 /*
3431                  * See comment in DIF_VAR_PID.
3432                  */
3433                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3434                         return (0);
3435 
3436                 return ((uint64_t)curthread->t_tid);
3437 
3438         case DIF_VAR_EXECNAME:
3439                 if (!dtrace_priv_proc(state, mstate))
3440                         return (0);
3441 
3442                 /*
3443                  * See comment in DIF_VAR_PID.
3444                  */
3445                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3446                         return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3447 
3448                 /*
3449                  * It is always safe to dereference one's own t_procp pointer:
3450                  * it always points to a valid, allocated proc structure.
3451                  * (This is true because threads don't clean up their own
3452                  * state -- they leave that task to whomever reaps them.)
3453                  */
3454                 return (dtrace_dif_varstr(
3455                     (uintptr_t)curthread->t_procp->p_user.u_comm,
3456                     state, mstate));
3457 
3458         case DIF_VAR_ZONENAME:
3459                 if (!dtrace_priv_proc(state, mstate))
3460                         return (0);
3461 
3462                 /*
3463                  * See comment in DIF_VAR_PID.
3464                  */
3465                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3466                         return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3467 
3468                 /*
3469                  * It is always safe to dereference one's own t_procp pointer:
3470                  * it always points to a valid, allocated proc structure.
3471                  * (This is true because threads don't clean up their own
3472                  * state -- they leave that task to whomever reaps them.)
3473                  */
3474                 return (dtrace_dif_varstr(
3475                     (uintptr_t)curthread->t_procp->p_zone->zone_name,
3476                     state, mstate));
3477 
3478         case DIF_VAR_UID:
3479                 if (!dtrace_priv_proc(state, mstate))
3480                         return (0);
3481 
3482                 /*
3483                  * See comment in DIF_VAR_PID.
3484                  */
3485                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3486                         return ((uint64_t)p0.p_cred->cr_uid);
3487 
3488                 /*
3489                  * It is always safe to dereference one's own t_procp pointer:
3490                  * it always points to a valid, allocated proc structure.
3491                  * (This is true because threads don't clean up their own
3492                  * state -- they leave that task to whomever reaps them.)
3493                  *
3494                  * Additionally, it is safe to dereference one's own process
3495                  * credential, since this is never NULL after process birth.
3496                  */
3497                 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3498 
3499         case DIF_VAR_GID:
3500                 if (!dtrace_priv_proc(state, mstate))
3501                         return (0);
3502 
3503                 /*
3504                  * See comment in DIF_VAR_PID.
3505                  */
3506                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3507                         return ((uint64_t)p0.p_cred->cr_gid);
3508 
3509                 /*
3510                  * It is always safe to dereference one's own t_procp pointer:
3511                  * it always points to a valid, allocated proc structure.
3512                  * (This is true because threads don't clean up their own
3513                  * state -- they leave that task to whomever reaps them.)
3514                  *
3515                  * Additionally, it is safe to dereference one's own process
3516                  * credential, since this is never NULL after process birth.
3517                  */
3518                 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3519 
3520         case DIF_VAR_ERRNO: {
3521                 klwp_t *lwp;
3522                 if (!dtrace_priv_proc(state, mstate))
3523                         return (0);
3524 
3525                 /*
3526                  * See comment in DIF_VAR_PID.
3527                  */
3528                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3529                         return (0);
3530 
3531                 /*
3532                  * It is always safe to dereference one's own t_lwp pointer in
3533                  * the event that this pointer is non-NULL.  (This is true
3534                  * because threads and lwps don't clean up their own state --
3535                  * they leave that task to whomever reaps them.)
3536                  */
3537                 if ((lwp = curthread->t_lwp) == NULL)
3538                         return (0);
3539 
3540                 return ((uint64_t)lwp->lwp_errno);
3541         }
3542 
3543         case DIF_VAR_THREADNAME:
3544                 /*
3545                  * See comment in DIF_VAR_PID.
3546                  */
3547                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3548                         return (0);
3549 
3550                 if (curthread->t_name == NULL)
3551                         return (0);
3552 
3553                 /*
3554                  * Once set, ->t_name itself is never changed: any updates are
3555                  * made to the same buffer that we are pointing out.  So we are
3556                  * safe to dereference it here.
3557                  */
3558                 return (dtrace_dif_varstr((uintptr_t)curthread->t_name,
3559                     state, mstate));
3560 
3561         default:
3562                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3563                 return (0);
3564         }
3565 }
3566 
3567 static void
3568 dtrace_dif_variable_write(dtrace_mstate_t *mstate, dtrace_state_t *state,
3569     uint64_t v, uint64_t ndx, uint64_t data)
3570 {
3571         switch (v) {
3572         case DIF_VAR_UREGS: {
3573                 klwp_t *lwp;
3574 
3575                 if (dtrace_destructive_disallow ||
3576                     !dtrace_priv_proc_control(state, mstate)) {
3577                         return;
3578                 }
3579 
3580                 if ((lwp = curthread->t_lwp) == NULL) {
3581                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3582                         cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
3583                         return;
3584                 }
3585 
3586                 dtrace_setreg(lwp->lwp_regs, ndx, data);
3587                 return;
3588         }
3589 
3590         default:
3591                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3592                 return;
3593         }
3594 }
3595 
3596 typedef enum dtrace_json_state {
3597         DTRACE_JSON_REST = 1,
3598         DTRACE_JSON_OBJECT,
3599         DTRACE_JSON_STRING,
3600         DTRACE_JSON_STRING_ESCAPE,
3601         DTRACE_JSON_STRING_ESCAPE_UNICODE,
3602         DTRACE_JSON_COLON,
3603         DTRACE_JSON_COMMA,
3604         DTRACE_JSON_VALUE,
3605         DTRACE_JSON_IDENTIFIER,
3606         DTRACE_JSON_NUMBER,
3607         DTRACE_JSON_NUMBER_FRAC,
3608         DTRACE_JSON_NUMBER_EXP,
3609         DTRACE_JSON_COLLECT_OBJECT
3610 } dtrace_json_state_t;
3611 
3612 /*
3613  * This function possesses just enough knowledge about JSON to extract a single
3614  * value from a JSON string and store it in the scratch buffer.  It is able
3615  * to extract nested object values, and members of arrays by index.
3616  *
3617  * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3618  * be looked up as we descend into the object tree.  e.g.
3619  *
3620  *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3621  *       with nelems = 5.
3622  *
3623  * The run time of this function must be bounded above by strsize to limit the
3624  * amount of work done in probe context.  As such, it is implemented as a
3625  * simple state machine, reading one character at a time using safe loads
3626  * until we find the requested element, hit a parsing error or run off the
3627  * end of the object or string.
3628  *
3629  * As there is no way for a subroutine to return an error without interrupting
3630  * clause execution, we simply return NULL in the event of a missing key or any
3631  * other error condition.  Each NULL return in this function is commented with
3632  * the error condition it represents -- parsing or otherwise.
3633  *
3634  * The set of states for the state machine closely matches the JSON
3635  * specification (http://json.org/).  Briefly:
3636  *
3637  *   DTRACE_JSON_REST:
3638  *     Skip whitespace until we find either a top-level Object, moving
3639  *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3640  *
3641  *   DTRACE_JSON_OBJECT:
3642  *     Locate the next key String in an Object.  Sets a flag to denote
3643  *     the next String as a key string and moves to DTRACE_JSON_STRING.
3644  *
3645  *   DTRACE_JSON_COLON:
3646  *     Skip whitespace until we find the colon that separates key Strings
3647  *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3648  *
3649  *   DTRACE_JSON_VALUE:
3650  *     Detects the type of the next value (String, Number, Identifier, Object
3651  *     or Array) and routes to the states that process that type.  Here we also
3652  *     deal with the element selector list if we are requested to traverse down
3653  *     into the object tree.
3654  *
3655  *   DTRACE_JSON_COMMA:
3656  *     Skip whitespace until we find the comma that separates key-value pairs
3657  *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3658  *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3659  *     states return to this state at the end of their value, unless otherwise
3660  *     noted.
3661  *
3662  *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3663  *     Processes a Number literal from the JSON, including any exponent
3664  *     component that may be present.  Numbers are returned as strings, which
3665  *     may be passed to strtoll() if an integer is required.
3666  *
3667  *   DTRACE_JSON_IDENTIFIER:
3668  *     Processes a "true", "false" or "null" literal in the JSON.
3669  *
3670  *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3671  *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3672  *     Processes a String literal from the JSON, whether the String denotes
3673  *     a key, a value or part of a larger Object.  Handles all escape sequences
3674  *     present in the specification, including four-digit unicode characters,
3675  *     but merely includes the escape sequence without converting it to the
3676  *     actual escaped character.  If the String is flagged as a key, we
3677  *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3678  *
3679  *   DTRACE_JSON_COLLECT_OBJECT:
3680  *     This state collects an entire Object (or Array), correctly handling
3681  *     embedded strings.  If the full element selector list matches this nested
3682  *     object, we return the Object in full as a string.  If not, we use this
3683  *     state to skip to the next value at this level and continue processing.
3684  *
3685  * NOTE: This function uses various macros from strtolctype.h to manipulate
3686  * digit values, etc -- these have all been checked to ensure they make
3687  * no additional function calls.
3688  */
3689 static char *
3690 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3691     char *dest)
3692 {
3693         dtrace_json_state_t state = DTRACE_JSON_REST;
3694         int64_t array_elem = INT64_MIN;
3695         int64_t array_pos = 0;
3696         uint8_t escape_unicount = 0;
3697         boolean_t string_is_key = B_FALSE;
3698         boolean_t collect_object = B_FALSE;
3699         boolean_t found_key = B_FALSE;
3700         boolean_t in_array = B_FALSE;
3701         uint32_t braces = 0, brackets = 0;
3702         char *elem = elemlist;
3703         char *dd = dest;
3704         uintptr_t cur;
3705 
3706         for (cur = json; cur < json + size; cur++) {
3707                 char cc = dtrace_load8(cur);
3708                 if (cc == '\0')
3709                         return (NULL);
3710 
3711                 switch (state) {
3712                 case DTRACE_JSON_REST:
3713                         if (isspace(cc))
3714                                 break;
3715 
3716                         if (cc == '{') {
3717                                 state = DTRACE_JSON_OBJECT;
3718                                 break;
3719                         }
3720 
3721                         if (cc == '[') {
3722                                 in_array = B_TRUE;
3723                                 array_pos = 0;
3724                                 array_elem = dtrace_strtoll(elem, 10, size);
3725                                 found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3726                                 state = DTRACE_JSON_VALUE;
3727                                 break;
3728                         }
3729 
3730                         /*
3731                          * ERROR: expected to find a top-level object or array.
3732                          */
3733                         return (NULL);
3734                 case DTRACE_JSON_OBJECT:
3735                         if (isspace(cc))
3736                                 break;
3737 
3738                         if (cc == '"') {
3739                                 state = DTRACE_JSON_STRING;
3740                                 string_is_key = B_TRUE;
3741                                 break;
3742                         }
3743 
3744                         /*
3745                          * ERROR: either the object did not start with a key
3746                          * string, or we've run off the end of the object
3747                          * without finding the requested key.
3748                          */
3749                         return (NULL);
3750                 case DTRACE_JSON_STRING:
3751                         if (cc == '\\') {
3752                                 *dd++ = '\\';
3753                                 state = DTRACE_JSON_STRING_ESCAPE;
3754                                 break;
3755                         }
3756 
3757                         if (cc == '"') {
3758                                 if (collect_object) {
3759                                         /*
3760                                          * We don't reset the dest here, as
3761                                          * the string is part of a larger
3762                                          * object being collected.
3763                                          */
3764                                         *dd++ = cc;
3765                                         collect_object = B_FALSE;
3766                                         state = DTRACE_JSON_COLLECT_OBJECT;
3767                                         break;
3768                                 }
3769                                 *dd = '\0';
3770                                 dd = dest; /* reset string buffer */
3771                                 if (string_is_key) {
3772                                         if (dtrace_strncmp(dest, elem,
3773                                             size) == 0)
3774                                                 found_key = B_TRUE;
3775                                 } else if (found_key) {
3776                                         if (nelems > 1) {
3777                                                 /*
3778                                                  * We expected an object, not
3779                                                  * this string.
3780                                                  */
3781                                                 return (NULL);
3782                                         }
3783                                         return (dest);
3784                                 }
3785                                 state = string_is_key ? DTRACE_JSON_COLON :
3786                                     DTRACE_JSON_COMMA;
3787                                 string_is_key = B_FALSE;
3788                                 break;
3789                         }
3790 
3791                         *dd++ = cc;
3792                         break;
3793                 case DTRACE_JSON_STRING_ESCAPE:
3794                         *dd++ = cc;
3795                         if (cc == 'u') {
3796                                 escape_unicount = 0;
3797                                 state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3798                         } else {
3799                                 state = DTRACE_JSON_STRING;
3800                         }
3801                         break;
3802                 case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3803                         if (!isxdigit(cc)) {
3804                                 /*
3805                                  * ERROR: invalid unicode escape, expected
3806                                  * four valid hexidecimal digits.
3807                                  */
3808                                 return (NULL);
3809                         }
3810 
3811                         *dd++ = cc;
3812                         if (++escape_unicount == 4)
3813                                 state = DTRACE_JSON_STRING;
3814                         break;
3815                 case DTRACE_JSON_COLON:
3816                         if (isspace(cc))
3817                                 break;
3818 
3819                         if (cc == ':') {
3820                                 state = DTRACE_JSON_VALUE;
3821                                 break;
3822                         }
3823 
3824                         /*
3825                          * ERROR: expected a colon.
3826                          */
3827                         return (NULL);
3828                 case DTRACE_JSON_COMMA:
3829                         if (isspace(cc))
3830                                 break;
3831 
3832                         if (cc == ',') {
3833                                 if (in_array) {
3834                                         state = DTRACE_JSON_VALUE;
3835                                         if (++array_pos == array_elem)
3836                                                 found_key = B_TRUE;
3837                                 } else {
3838                                         state = DTRACE_JSON_OBJECT;
3839                                 }
3840                                 break;
3841                         }
3842 
3843                         /*
3844                          * ERROR: either we hit an unexpected character, or
3845                          * we reached the end of the object or array without
3846                          * finding the requested key.
3847                          */
3848                         return (NULL);
3849                 case DTRACE_JSON_IDENTIFIER:
3850                         if (islower(cc)) {
3851                                 *dd++ = cc;
3852                                 break;
3853                         }
3854 
3855                         *dd = '\0';
3856                         dd = dest; /* reset string buffer */
3857 
3858                         if (dtrace_strncmp(dest, "true", 5) == 0 ||
3859                             dtrace_strncmp(dest, "false", 6) == 0 ||
3860                             dtrace_strncmp(dest, "null", 5) == 0) {
3861                                 if (found_key) {
3862                                         if (nelems > 1) {
3863                                                 /*
3864                                                  * ERROR: We expected an object,
3865                                                  * not this identifier.
3866                                                  */
3867                                                 return (NULL);
3868                                         }
3869                                         return (dest);
3870                                 } else {
3871                                         cur--;
3872                                         state = DTRACE_JSON_COMMA;
3873                                         break;
3874                                 }
3875                         }
3876 
3877                         /*
3878                          * ERROR: we did not recognise the identifier as one
3879                          * of those in the JSON specification.
3880                          */
3881                         return (NULL);
3882                 case DTRACE_JSON_NUMBER:
3883                         if (cc == '.') {
3884                                 *dd++ = cc;
3885                                 state = DTRACE_JSON_NUMBER_FRAC;
3886                                 break;
3887                         }
3888 
3889                         if (cc == 'x' || cc == 'X') {
3890                                 /*
3891                                  * ERROR: specification explicitly excludes
3892                                  * hexidecimal or octal numbers.
3893                                  */
3894                                 return (NULL);
3895                         }
3896 
3897                         /* FALLTHRU */
3898                 case DTRACE_JSON_NUMBER_FRAC:
3899                         if (cc == 'e' || cc == 'E') {
3900                                 *dd++ = cc;
3901                                 state = DTRACE_JSON_NUMBER_EXP;
3902                                 break;
3903                         }
3904 
3905                         if (cc == '+' || cc == '-') {
3906                                 /*
3907                                  * ERROR: expect sign as part of exponent only.
3908                                  */
3909                                 return (NULL);
3910                         }
3911                         /* FALLTHRU */
3912                 case DTRACE_JSON_NUMBER_EXP:
3913                         if (isdigit(cc) || cc == '+' || cc == '-') {
3914                                 *dd++ = cc;
3915                                 break;
3916                         }
3917 
3918                         *dd = '\0';
3919                         dd = dest; /* reset string buffer */
3920                         if (found_key) {
3921                                 if (nelems > 1) {
3922                                         /*
3923                                          * ERROR: We expected an object, not
3924                                          * this number.
3925                                          */
3926                                         return (NULL);
3927                                 }
3928                                 return (dest);
3929                         }
3930 
3931                         cur--;
3932                         state = DTRACE_JSON_COMMA;
3933                         break;
3934                 case DTRACE_JSON_VALUE:
3935                         if (isspace(cc))
3936                                 break;
3937 
3938                         if (cc == '{' || cc == '[') {
3939                                 if (nelems > 1 && found_key) {
3940                                         in_array = cc == '[' ? B_TRUE : B_FALSE;
3941                                         /*
3942                                          * If our element selector directs us
3943                                          * to descend into this nested object,
3944                                          * then move to the next selector
3945                                          * element in the list and restart the
3946                                          * state machine.
3947                                          */
3948                                         while (*elem != '\0')
3949                                                 elem++;
3950                                         elem++; /* skip the inter-element NUL */
3951                                         nelems--;
3952                                         dd = dest;
3953                                         if (in_array) {
3954                                                 state = DTRACE_JSON_VALUE;
3955                                                 array_pos = 0;
3956                                                 array_elem = dtrace_strtoll(
3957                                                     elem, 10, size);
3958                                                 found_key = array_elem == 0 ?
3959                                                     B_TRUE : B_FALSE;
3960                                         } else {
3961                                                 found_key = B_FALSE;
3962                                                 state = DTRACE_JSON_OBJECT;
3963                                         }
3964                                         break;
3965                                 }
3966 
3967                                 /*
3968                                  * Otherwise, we wish to either skip this
3969                                  * nested object or return it in full.
3970                                  */
3971                                 if (cc == '[')
3972                                         brackets = 1;
3973                                 else
3974                                         braces = 1;
3975                                 *dd++ = cc;
3976                                 state = DTRACE_JSON_COLLECT_OBJECT;
3977                                 break;
3978                         }
3979 
3980                         if (cc == '"') {
3981                                 state = DTRACE_JSON_STRING;
3982                                 break;
3983                         }
3984 
3985                         if (islower(cc)) {
3986                                 /*
3987                                  * Here we deal with true, false and null.
3988                                  */
3989                                 *dd++ = cc;
3990                                 state = DTRACE_JSON_IDENTIFIER;
3991                                 break;
3992                         }
3993 
3994                         if (cc == '-' || isdigit(cc)) {
3995                                 *dd++ = cc;
3996                                 state = DTRACE_JSON_NUMBER;
3997                                 break;
3998                         }
3999 
4000                         /*
4001                          * ERROR: unexpected character at start of value.
4002                          */
4003                         return (NULL);
4004                 case DTRACE_JSON_COLLECT_OBJECT:
4005                         if (cc == '\0')
4006                                 /*
4007                                  * ERROR: unexpected end of input.
4008                                  */
4009                                 return (NULL);
4010 
4011                         *dd++ = cc;
4012                         if (cc == '"') {
4013                                 collect_object = B_TRUE;
4014                                 state = DTRACE_JSON_STRING;
4015                                 break;
4016                         }
4017 
4018                         if (cc == ']') {
4019                                 if (brackets-- == 0) {
4020                                         /*
4021                                          * ERROR: unbalanced brackets.
4022                                          */
4023                                         return (NULL);
4024                                 }
4025                         } else if (cc == '}') {
4026                                 if (braces-- == 0) {
4027                                         /*
4028                                          * ERROR: unbalanced braces.
4029                                          */
4030                                         return (NULL);
4031                                 }
4032                         } else if (cc == '{') {
4033                                 braces++;
4034                         } else if (cc == '[') {
4035                                 brackets++;
4036                         }
4037 
4038                         if (brackets == 0 && braces == 0) {
4039                                 if (found_key) {
4040                                         *dd = '\0';
4041                                         return (dest);
4042                                 }
4043                                 dd = dest; /* reset string buffer */
4044                                 state = DTRACE_JSON_COMMA;
4045                         }
4046                         break;
4047                 }
4048         }
4049         return (NULL);
4050 }
4051 
4052 /*
4053  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4054  * Notice that we don't bother validating the proper number of arguments or
4055  * their types in the tuple stack.  This isn't needed because all argument
4056  * interpretation is safe because of our load safety -- the worst that can
4057  * happen is that a bogus program can obtain bogus results.
4058  */
4059 static void
4060 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4061     dtrace_key_t *tupregs, int nargs,
4062     dtrace_mstate_t *mstate, dtrace_state_t *state)
4063 {
4064         volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4065         volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
4066         dtrace_vstate_t *vstate = &state->dts_vstate;
4067 
4068         union {
4069                 mutex_impl_t mi;
4070                 uint64_t mx;
4071         } m;
4072 
4073         union {
4074                 krwlock_t ri;
4075                 uintptr_t rw;
4076         } r;
4077 
4078         switch (subr) {
4079         case DIF_SUBR_RAND:
4080                 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
4081                 break;
4082 
4083         case DIF_SUBR_MUTEX_OWNED:
4084                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4085                     mstate, vstate)) {
4086                         regs[rd] = NULL;
4087                         break;
4088                 }
4089 
4090                 m.mx = dtrace_load64(tupregs[0].dttk_value);
4091                 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4092                         regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4093                 else
4094                         regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4095                 break;
4096 
4097         case DIF_SUBR_MUTEX_OWNER:
4098                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4099                     mstate, vstate)) {
4100                         regs[rd] = NULL;
4101                         break;
4102                 }
4103 
4104                 m.mx = dtrace_load64(tupregs[0].dttk_value);
4105                 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4106                     MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4107                         regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4108                 else
4109                         regs[rd] = 0;
4110                 break;
4111 
4112         case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4113                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4114                     mstate, vstate)) {
4115                         regs[rd] = NULL;
4116                         break;
4117                 }
4118 
4119                 m.mx = dtrace_load64(tupregs[0].dttk_value);
4120                 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4121                 break;
4122 
4123         case DIF_SUBR_MUTEX_TYPE_SPIN:
4124                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4125                     mstate, vstate)) {
4126                         regs[rd] = NULL;
4127                         break;
4128                 }
4129 
4130                 m.mx = dtrace_load64(tupregs[0].dttk_value);
4131                 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4132                 break;
4133 
4134         case DIF_SUBR_RW_READ_HELD: {
4135                 uintptr_t tmp;
4136 
4137                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4138                     mstate, vstate)) {
4139                         regs[rd] = NULL;
4140                         break;
4141                 }
4142 
4143                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4144                 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4145                 break;
4146         }
4147 
4148         case DIF_SUBR_RW_WRITE_HELD:
4149                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4150                     mstate, vstate)) {
4151                         regs[rd] = NULL;
4152                         break;
4153                 }
4154 
4155                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4156                 regs[rd] = _RW_WRITE_HELD(&r.ri);
4157                 break;
4158 
4159         case DIF_SUBR_RW_ISWRITER:
4160                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4161                     mstate, vstate)) {
4162                         regs[rd] = NULL;
4163                         break;
4164                 }
4165 
4166                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4167                 regs[rd] = _RW_ISWRITER(&r.ri);
4168                 break;
4169 
4170         case DIF_SUBR_BCOPY: {
4171                 /*
4172                  * We need to be sure that the destination is in the scratch
4173                  * region -- no other region is allowed.
4174                  */
4175                 uintptr_t src = tupregs[0].dttk_value;
4176                 uintptr_t dest = tupregs[1].dttk_value;
4177                 size_t size = tupregs[2].dttk_value;
4178 
4179                 if (!dtrace_inscratch(dest, size, mstate)) {
4180                         *flags |= CPU_DTRACE_BADADDR;
4181                         *illval = regs[rd];
4182                         break;
4183                 }
4184 
4185                 if (!dtrace_canload(src, size, mstate, vstate)) {
4186                         regs[rd] = NULL;
4187                         break;
4188                 }
4189 
4190                 dtrace_bcopy((void *)src, (void *)dest, size);
4191                 break;
4192         }
4193 
4194         case DIF_SUBR_ALLOCA:
4195         case DIF_SUBR_COPYIN: {
4196                 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4197                 uint64_t size =
4198                     tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4199                 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4200 
4201                 /*
4202                  * This action doesn't require any credential checks since
4203                  * probes will not activate in user contexts to which the
4204                  * enabling user does not have permissions.
4205                  */
4206 
4207                 /*
4208                  * Rounding up the user allocation size could have overflowed
4209                  * a large, bogus allocation (like -1ULL) to 0.
4210                  */
4211                 if (scratch_size < size ||
4212                     !DTRACE_INSCRATCH(mstate, scratch_size)) {
4213                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4214                         regs[rd] = NULL;
4215                         break;
4216                 }
4217 
4218                 if (subr == DIF_SUBR_COPYIN) {
4219                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4220                         dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4221                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4222                 }
4223 
4224                 mstate->dtms_scratch_ptr += scratch_size;
4225                 regs[rd] = dest;
4226                 break;
4227         }
4228 
4229         case DIF_SUBR_COPYINTO: {
4230                 uint64_t size = tupregs[1].dttk_value;
4231                 uintptr_t dest = tupregs[2].dttk_value;
4232 
4233                 /*
4234                  * This action doesn't require any credential checks since
4235                  * probes will not activate in user contexts to which the
4236                  * enabling user does not have permissions.
4237                  */
4238                 if (!dtrace_inscratch(dest, size, mstate)) {
4239                         *flags |= CPU_DTRACE_BADADDR;
4240                         *illval = regs[rd];
4241                         break;
4242                 }
4243 
4244                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4245                 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4246                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4247                 break;
4248         }
4249 
4250         case DIF_SUBR_COPYINSTR: {
4251                 uintptr_t dest = mstate->dtms_scratch_ptr;
4252                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4253 
4254                 if (nargs > 1 && tupregs[1].dttk_value < size)
4255                         size = tupregs[1].dttk_value + 1;
4256 
4257                 /*
4258                  * This action doesn't require any credential checks since
4259                  * probes will not activate in user contexts to which the
4260                  * enabling user does not have permissions.
4261                  */
4262                 if (!DTRACE_INSCRATCH(mstate, size)) {
4263                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4264                         regs[rd] = NULL;
4265                         break;
4266                 }
4267 
4268                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4269                 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4270                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4271 
4272                 ((char *)dest)[size - 1] = '\0';
4273                 mstate->dtms_scratch_ptr += size;
4274                 regs[rd] = dest;
4275                 break;
4276         }
4277 
4278         case DIF_SUBR_MSGSIZE:
4279         case DIF_SUBR_MSGDSIZE: {
4280                 uintptr_t baddr = tupregs[0].dttk_value, daddr;
4281                 uintptr_t wptr, rptr;
4282                 size_t count = 0;
4283                 int cont = 0;
4284 
4285                 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4286 
4287                         if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4288                             vstate)) {
4289                                 regs[rd] = NULL;
4290                                 break;
4291                         }
4292 
4293                         wptr = dtrace_loadptr(baddr +
4294                             offsetof(mblk_t, b_wptr));
4295 
4296                         rptr = dtrace_loadptr(baddr +
4297                             offsetof(mblk_t, b_rptr));
4298 
4299                         if (wptr < rptr) {
4300                                 *flags |= CPU_DTRACE_BADADDR;
4301                                 *illval = tupregs[0].dttk_value;
4302                                 break;
4303                         }
4304 
4305                         daddr = dtrace_loadptr(baddr +
4306                             offsetof(mblk_t, b_datap));
4307 
4308                         baddr = dtrace_loadptr(baddr +
4309                             offsetof(mblk_t, b_cont));
4310 
4311                         /*
4312                          * We want to prevent against denial-of-service here,
4313                          * so we're only going to search the list for
4314                          * dtrace_msgdsize_max mblks.
4315                          */
4316                         if (cont++ > dtrace_msgdsize_max) {
4317                                 *flags |= CPU_DTRACE_ILLOP;
4318                                 break;
4319                         }
4320 
4321                         if (subr == DIF_SUBR_MSGDSIZE) {
4322                                 if (dtrace_load8(daddr +
4323                                     offsetof(dblk_t, db_type)) != M_DATA)
4324                                         continue;
4325                         }
4326 
4327                         count += wptr - rptr;
4328                 }
4329 
4330                 if (!(*flags & CPU_DTRACE_FAULT))
4331                         regs[rd] = count;
4332 
4333                 break;
4334         }
4335 
4336         case DIF_SUBR_PROGENYOF: {
4337                 pid_t pid = tupregs[0].dttk_value;
4338                 proc_t *p;
4339                 int rval = 0;
4340 
4341                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4342 
4343                 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4344                         if (p->p_pidp->pid_id == pid) {
4345                                 rval = 1;
4346                                 break;
4347                         }
4348                 }
4349 
4350                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4351 
4352                 regs[rd] = rval;
4353                 break;
4354         }
4355 
4356         case DIF_SUBR_SPECULATION:
4357                 regs[rd] = dtrace_speculation(state);
4358                 break;
4359 
4360         case DIF_SUBR_COPYOUT: {
4361                 uintptr_t kaddr = tupregs[0].dttk_value;
4362                 uintptr_t uaddr = tupregs[1].dttk_value;
4363                 uint64_t size = tupregs[2].dttk_value;
4364 
4365                 if (!dtrace_destructive_disallow &&
4366                     dtrace_priv_proc_control(state, mstate) &&
4367                     !dtrace_istoxic(kaddr, size) &&
4368                     dtrace_canload(kaddr, size, mstate, vstate)) {
4369                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4370                         dtrace_copyout(kaddr, uaddr, size, flags);
4371                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4372                 }
4373                 break;
4374         }
4375 
4376         case DIF_SUBR_COPYOUTSTR: {
4377                 uintptr_t kaddr = tupregs[0].dttk_value;
4378                 uintptr_t uaddr = tupregs[1].dttk_value;
4379                 uint64_t size = tupregs[2].dttk_value;
4380                 size_t lim;
4381 
4382                 if (!dtrace_destructive_disallow &&
4383                     dtrace_priv_proc_control(state, mstate) &&
4384                     !dtrace_istoxic(kaddr, size) &&
4385                     dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) {
4386                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4387                         dtrace_copyoutstr(kaddr, uaddr, lim, flags);
4388                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4389                 }
4390                 break;
4391         }
4392 
4393         case DIF_SUBR_STRLEN: {
4394                 size_t size = state->dts_options[DTRACEOPT_STRSIZE];
4395                 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4396                 size_t lim;
4397 
4398                 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4399                         regs[rd] = NULL;
4400                         break;
4401                 }
4402                 regs[rd] = dtrace_strlen((char *)addr, lim);
4403 
4404                 break;
4405         }
4406 
4407         case DIF_SUBR_STRCHR:
4408         case DIF_SUBR_STRRCHR: {
4409                 /*
4410                  * We're going to iterate over the string looking for the
4411                  * specified character.  We will iterate until we have reached
4412                  * the string length or we have found the character.  If this
4413                  * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4414                  * of the specified character instead of the first.
4415                  */
4416                 uintptr_t addr = tupregs[0].dttk_value;
4417                 uintptr_t addr_limit;
4418                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4419                 size_t lim;
4420                 char c, target = (char)tupregs[1].dttk_value;
4421 
4422                 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4423                         regs[rd] = NULL;
4424                         break;
4425                 }
4426                 addr_limit = addr + lim;
4427 
4428                 for (regs[rd] = NULL; addr < addr_limit; addr++) {
4429                         if ((c = dtrace_load8(addr)) == target) {
4430                                 regs[rd] = addr;
4431 
4432                                 if (subr == DIF_SUBR_STRCHR)
4433                                         break;
4434                         }
4435                         if (c == '\0')
4436                                 break;
4437                 }
4438 
4439                 break;
4440         }
4441 
4442         case DIF_SUBR_STRSTR:
4443         case DIF_SUBR_INDEX:
4444         case DIF_SUBR_RINDEX: {
4445                 /*
4446                  * We're going to iterate over the string looking for the
4447                  * specified string.  We will iterate until we have reached
4448                  * the string length or we have found the string.  (Yes, this
4449                  * is done in the most naive way possible -- but considering
4450                  * that the string we're searching for is likely to be
4451                  * relatively short, the complexity of Rabin-Karp or similar
4452                  * hardly seems merited.)
4453                  */
4454                 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4455                 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4456                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4457                 size_t len = dtrace_strlen(addr, size);
4458                 size_t sublen = dtrace_strlen(substr, size);
4459                 char *limit = addr + len, *orig = addr;
4460                 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4461                 int inc = 1;
4462 
4463                 regs[rd] = notfound;
4464 
4465                 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4466                         regs[rd] = NULL;
4467                         break;
4468                 }
4469 
4470                 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4471                     vstate)) {
4472                         regs[rd] = NULL;
4473                         break;
4474                 }
4475 
4476                 /*
4477                  * strstr() and index()/rindex() have similar semantics if
4478                  * both strings are the empty string: strstr() returns a
4479                  * pointer to the (empty) string, and index() and rindex()
4480                  * both return index 0 (regardless of any position argument).
4481                  */
4482                 if (sublen == 0 && len == 0) {
4483                         if (subr == DIF_SUBR_STRSTR)
4484                                 regs[rd] = (uintptr_t)addr;
4485                         else
4486                                 regs[rd] = 0;
4487                         break;
4488                 }
4489 
4490                 if (subr != DIF_SUBR_STRSTR) {
4491                         if (subr == DIF_SUBR_RINDEX) {
4492                                 limit = orig - 1;
4493                                 addr += len;
4494                                 inc = -1;
4495                         }
4496 
4497                         /*
4498                          * Both index() and rindex() take an optional position
4499                          * argument that denotes the starting position.
4500                          */
4501                         if (nargs == 3) {
4502                                 int64_t pos = (int64_t)tupregs[2].dttk_value;
4503 
4504                                 /*
4505                                  * If the position argument to index() is
4506                                  * negative, Perl implicitly clamps it at
4507                                  * zero.  This semantic is a little surprising
4508                                  * given the special meaning of negative
4509                                  * positions to similar Perl functions like
4510                                  * substr(), but it appears to reflect a
4511                                  * notion that index() can start from a
4512                                  * negative index and increment its way up to
4513                                  * the string.  Given this notion, Perl's
4514                                  * rindex() is at least self-consistent in
4515                                  * that it implicitly clamps positions greater
4516                                  * than the string length to be the string
4517                                  * length.  Where Perl completely loses
4518                                  * coherence, however, is when the specified
4519                                  * substring is the empty string ("").  In
4520                                  * this case, even if the position is
4521                                  * negative, rindex() returns 0 -- and even if
4522                                  * the position is greater than the length,
4523                                  * index() returns the string length.  These
4524                                  * semantics violate the notion that index()
4525                                  * should never return a value less than the
4526                                  * specified position and that rindex() should
4527                                  * never return a value greater than the
4528                                  * specified position.  (One assumes that
4529                                  * these semantics are artifacts of Perl's
4530                                  * implementation and not the results of
4531                                  * deliberate design -- it beggars belief that
4532                                  * even Larry Wall could desire such oddness.)
4533                                  * While in the abstract one would wish for
4534                                  * consistent position semantics across
4535                                  * substr(), index() and rindex() -- or at the
4536                                  * very least self-consistent position
4537                                  * semantics for index() and rindex() -- we
4538                                  * instead opt to keep with the extant Perl
4539                                  * semantics, in all their broken glory.  (Do
4540                                  * we have more desire to maintain Perl's
4541                                  * semantics than Perl does?  Probably.)
4542                                  */
4543                                 if (subr == DIF_SUBR_RINDEX) {
4544                                         if (pos < 0) {
4545                                                 if (sublen == 0)
4546                                                         regs[rd] = 0;
4547                                                 break;
4548                                         }
4549 
4550                                         if (pos > len)
4551                                                 pos = len;
4552                                 } else {
4553                                         if (pos < 0)
4554                                                 pos = 0;
4555 
4556                                         if (pos >= len) {
4557                                                 if (sublen == 0)
4558                                                         regs[rd] = len;
4559                                                 break;
4560                                         }
4561                                 }
4562 
4563                                 addr = orig + pos;
4564                         }
4565                 }
4566 
4567                 for (regs[rd] = notfound; addr != limit; addr += inc) {
4568                         if (dtrace_strncmp(addr, substr, sublen) == 0) {
4569                                 if (subr != DIF_SUBR_STRSTR) {
4570                                         /*
4571                                          * As D index() and rindex() are
4572                                          * modeled on Perl (and not on awk),
4573                                          * we return a zero-based (and not a
4574                                          * one-based) index.  (For you Perl
4575                                          * weenies: no, we're not going to add
4576                                          * $[ -- and shouldn't you be at a con
4577                                          * or something?)
4578                                          */
4579                                         regs[rd] = (uintptr_t)(addr - orig);
4580                                         break;
4581                                 }
4582 
4583                                 ASSERT(subr == DIF_SUBR_STRSTR);
4584                                 regs[rd] = (uintptr_t)addr;
4585                                 break;
4586                         }
4587                 }
4588 
4589                 break;
4590         }
4591 
4592         case DIF_SUBR_STRTOK: {
4593                 uintptr_t addr = tupregs[0].dttk_value;
4594                 uintptr_t tokaddr = tupregs[1].dttk_value;
4595                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4596                 uintptr_t limit, toklimit;
4597                 size_t clim;
4598                 uint8_t c, tokmap[32];   /* 256 / 8 */
4599                 char *dest = (char *)mstate->dtms_scratch_ptr;
4600                 int i;
4601 
4602                 /*
4603                  * Check both the token buffer and (later) the input buffer,
4604                  * since both could be non-scratch addresses.
4605                  */
4606                 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) {
4607                         regs[rd] = NULL;
4608                         break;
4609                 }
4610                 toklimit = tokaddr + clim;
4611 
4612                 if (!DTRACE_INSCRATCH(mstate, size)) {
4613                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4614                         regs[rd] = NULL;
4615                         break;
4616                 }
4617 
4618                 if (addr == NULL) {
4619                         /*
4620                          * If the address specified is NULL, we use our saved
4621                          * strtok pointer from the mstate.  Note that this
4622                          * means that the saved strtok pointer is _only_
4623                          * valid within multiple enablings of the same probe --
4624                          * it behaves like an implicit clause-local variable.
4625                          */
4626                         addr = mstate->dtms_strtok;
4627                         limit = mstate->dtms_strtok_limit;
4628                 } else {
4629                         /*
4630                          * If the user-specified address is non-NULL we must
4631                          * access check it.  This is the only time we have
4632                          * a chance to do so, since this address may reside
4633                          * in the string table of this clause-- future calls
4634                          * (when we fetch addr from mstate->dtms_strtok)
4635                          * would fail this access check.
4636                          */
4637                         if (!dtrace_strcanload(addr, size, &clim, mstate,
4638                             vstate)) {
4639                                 regs[rd] = NULL;
4640                                 break;
4641                         }
4642                         limit = addr + clim;
4643                 }
4644 
4645                 /*
4646                  * First, zero the token map, and then process the token
4647                  * string -- setting a bit in the map for every character
4648                  * found in the token string.
4649                  */
4650                 for (i = 0; i < sizeof (tokmap); i++)
4651                         tokmap[i] = 0;
4652 
4653                 for (; tokaddr < toklimit; tokaddr++) {
4654                         if ((c = dtrace_load8(tokaddr)) == '\0')
4655                                 break;
4656 
4657                         ASSERT((c >> 3) < sizeof (tokmap));
4658                         tokmap[c >> 3] |= (1 << (c & 0x7));
4659                 }
4660 
4661                 for (; addr < limit; addr++) {
4662                         /*
4663                          * We're looking for a character that is _not_
4664                          * contained in the token string.
4665                          */
4666                         if ((c = dtrace_load8(addr)) == '\0')
4667                                 break;
4668 
4669                         if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4670                                 break;
4671                 }
4672 
4673                 if (c == '\0') {
4674                         /*
4675                          * We reached the end of the string without finding
4676                          * any character that was not in the token string.
4677                          * We return NULL in this case, and we set the saved
4678                          * address to NULL as well.
4679                          */
4680                         regs[rd] = NULL;
4681                         mstate->dtms_strtok = NULL;
4682                         mstate->dtms_strtok_limit = NULL;
4683                         break;
4684                 }
4685 
4686                 /*
4687                  * From here on, we're copying into the destination string.
4688                  */
4689                 for (i = 0; addr < limit && i < size - 1; addr++) {
4690                         if ((c = dtrace_load8(addr)) == '\0')
4691                                 break;
4692 
4693                         if (tokmap[c >> 3] & (1 << (c & 0x7)))
4694                                 break;
4695 
4696                         ASSERT(i < size);
4697                         dest[i++] = c;
4698                 }
4699 
4700                 ASSERT(i < size);
4701                 dest[i] = '\0';
4702                 regs[rd] = (uintptr_t)dest;
4703                 mstate->dtms_scratch_ptr += size;
4704                 mstate->dtms_strtok = addr;
4705                 mstate->dtms_strtok_limit = limit;
4706                 break;
4707         }
4708 
4709         case DIF_SUBR_SUBSTR: {
4710                 uintptr_t s = tupregs[0].dttk_value;
4711                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4712                 char *d = (char *)mstate->dtms_scratch_ptr;
4713                 int64_t index = (int64_t)tupregs[1].dttk_value;
4714                 int64_t remaining = (int64_t)tupregs[2].dttk_value;
4715                 size_t len = dtrace_strlen((char *)s, size);
4716                 int64_t i;
4717 
4718                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4719                         regs[rd] = NULL;
4720                         break;
4721                 }
4722 
4723                 if (!DTRACE_INSCRATCH(mstate, size)) {
4724                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4725                         regs[rd] = NULL;
4726                         break;
4727                 }
4728 
4729                 if (nargs <= 2)
4730                         remaining = (int64_t)size;
4731 
4732                 if (index < 0) {
4733                         index += len;
4734 
4735                         if (index < 0 && index + remaining > 0) {
4736                                 remaining += index;
4737                                 index = 0;
4738                         }
4739                 }
4740 
4741                 if (index >= len || index < 0) {
4742                         remaining = 0;
4743                 } else if (remaining < 0) {
4744                         remaining += len - index;
4745                 } else if (index + remaining > size) {
4746                         remaining = size - index;
4747                 }
4748 
4749                 for (i = 0; i < remaining; i++) {
4750                         if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4751                                 break;
4752                 }
4753 
4754                 d[i] = '\0';
4755 
4756                 mstate->dtms_scratch_ptr += size;
4757                 regs[rd] = (uintptr_t)d;
4758                 break;
4759         }
4760 
4761         case DIF_SUBR_JSON: {
4762                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4763                 uintptr_t json = tupregs[0].dttk_value;
4764                 size_t jsonlen = dtrace_strlen((char *)json, size);
4765                 uintptr_t elem = tupregs[1].dttk_value;
4766                 size_t elemlen = dtrace_strlen((char *)elem, size);
4767 
4768                 char *dest = (char *)mstate->dtms_scratch_ptr;
4769                 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
4770                 char *ee = elemlist;
4771                 int nelems = 1;
4772                 uintptr_t cur;
4773 
4774                 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
4775                     !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
4776                         regs[rd] = NULL;
4777                         break;
4778                 }
4779 
4780                 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
4781                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4782                         regs[rd] = NULL;
4783                         break;
4784                 }
4785 
4786                 /*
4787                  * Read the element selector and split it up into a packed list
4788                  * of strings.
4789                  */
4790                 for (cur = elem; cur < elem + elemlen; cur++) {
4791                         char cc = dtrace_load8(cur);
4792 
4793                         if (cur == elem && cc == '[') {
4794                                 /*
4795                                  * If the first element selector key is
4796                                  * actually an array index then ignore the
4797                                  * bracket.
4798                                  */
4799                                 continue;
4800                         }
4801 
4802                         if (cc == ']')
4803                                 continue;
4804 
4805                         if (cc == '.' || cc == '[') {
4806                                 nelems++;
4807                                 cc = '\0';
4808                         }
4809 
4810                         *ee++ = cc;
4811                 }
4812                 *ee++ = '\0';
4813 
4814                 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
4815                     nelems, dest)) != NULL)
4816                         mstate->dtms_scratch_ptr += jsonlen + 1;
4817                 break;
4818         }
4819 
4820         case DIF_SUBR_TOUPPER:
4821         case DIF_SUBR_TOLOWER: {
4822                 uintptr_t s = tupregs[0].dttk_value;
4823                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4824                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4825                 size_t len = dtrace_strlen((char *)s, size);
4826                 char lower, upper, convert;
4827                 int64_t i;
4828 
4829                 if (subr == DIF_SUBR_TOUPPER) {
4830                         lower = 'a';
4831                         upper = 'z';
4832                         convert = 'A';
4833                 } else {
4834                         lower = 'A';
4835                         upper = 'Z';
4836                         convert = 'a';
4837                 }
4838 
4839                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4840                         regs[rd] = NULL;
4841                         break;
4842                 }
4843 
4844                 if (!DTRACE_INSCRATCH(mstate, size)) {
4845                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4846                         regs[rd] = NULL;
4847                         break;
4848                 }
4849 
4850                 for (i = 0; i < size - 1; i++) {
4851                         if ((c = dtrace_load8(s + i)) == '\0')
4852                                 break;
4853 
4854                         if (c >= lower && c <= upper)
4855                                 c = convert + (c - lower);
4856 
4857                         dest[i] = c;
4858                 }
4859 
4860                 ASSERT(i < size);
4861                 dest[i] = '\0';
4862                 regs[rd] = (uintptr_t)dest;
4863                 mstate->dtms_scratch_ptr += size;
4864                 break;
4865         }
4866 
4867 case DIF_SUBR_GETMAJOR:
4868 #ifdef _LP64
4869                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4870 #else
4871                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4872 #endif
4873                 break;
4874 
4875         case DIF_SUBR_GETMINOR:
4876 #ifdef _LP64
4877                 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4878 #else
4879                 regs[rd] = tupregs[0].dttk_value & MAXMIN;
4880 #endif
4881                 break;
4882 
4883         case DIF_SUBR_DDI_PATHNAME: {
4884                 /*
4885                  * This one is a galactic mess.  We are going to roughly
4886                  * emulate ddi_pathname(), but it's made more complicated
4887                  * by the fact that we (a) want to include the minor name and
4888                  * (b) must proceed iteratively instead of recursively.
4889                  */
4890                 uintptr_t dest = mstate->dtms_scratch_ptr;
4891                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4892                 char *start = (char *)dest, *end = start + size - 1;
4893                 uintptr_t daddr = tupregs[0].dttk_value;
4894                 int64_t minor = (int64_t)tupregs[1].dttk_value;
4895                 char *s;
4896                 int i, len, depth = 0;
4897 
4898                 /*
4899                  * Due to all the pointer jumping we do and context we must
4900                  * rely upon, we just mandate that the user must have kernel
4901                  * read privileges to use this routine.
4902                  */
4903                 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4904                         *flags |= CPU_DTRACE_KPRIV;
4905                         *illval = daddr;
4906                         regs[rd] = NULL;
4907                 }
4908 
4909                 if (!DTRACE_INSCRATCH(mstate, size)) {
4910                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4911                         regs[rd] = NULL;
4912                         break;
4913                 }
4914 
4915                 *end = '\0';
4916 
4917                 /*
4918                  * We want to have a name for the minor.  In order to do this,
4919                  * we need to walk the minor list from the devinfo.  We want
4920                  * to be sure that we don't infinitely walk a circular list,
4921                  * so we check for circularity by sending a scout pointer
4922                  * ahead two elements for every element that we iterate over;
4923                  * if the list is circular, these will ultimately point to the
4924                  * same element.  You may recognize this little trick as the
4925                  * answer to a stupid interview question -- one that always
4926                  * seems to be asked by those who had to have it laboriously
4927                  * explained to them, and who can't even concisely describe
4928                  * the conditions under which one would be forced to resort to
4929                  * this technique.  Needless to say, those conditions are
4930                  * found here -- and probably only here.  Is this the only use
4931                  * of this infamous trick in shipping, production code?  If it
4932                  * isn't, it probably should be...
4933                  */
4934                 if (minor != -1) {
4935                         uintptr_t maddr = dtrace_loadptr(daddr +
4936                             offsetof(struct dev_info, devi_minor));
4937 
4938                         uintptr_t next = offsetof(struct ddi_minor_data, next);
4939                         uintptr_t name = offsetof(struct ddi_minor_data,
4940                             d_minor) + offsetof(struct ddi_minor, name);
4941                         uintptr_t dev = offsetof(struct ddi_minor_data,
4942                             d_minor) + offsetof(struct ddi_minor, dev);
4943                         uintptr_t scout;
4944 
4945                         if (maddr != NULL)
4946                                 scout = dtrace_loadptr(maddr + next);
4947 
4948                         while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4949                                 uint64_t m;
4950 #ifdef _LP64
4951                                 m = dtrace_load64(maddr + dev) & MAXMIN64;
4952 #else
4953                                 m = dtrace_load32(maddr + dev) & MAXMIN;
4954 #endif
4955                                 if (m != minor) {
4956                                         maddr = dtrace_loadptr(maddr + next);
4957 
4958                                         if (scout == NULL)
4959                                                 continue;
4960 
4961                                         scout = dtrace_loadptr(scout + next);
4962 
4963                                         if (scout == NULL)
4964                                                 continue;
4965 
4966                                         scout = dtrace_loadptr(scout + next);
4967 
4968                                         if (scout == NULL)
4969                                                 continue;
4970 
4971                                         if (scout == maddr) {
4972                                                 *flags |= CPU_DTRACE_ILLOP;
4973                                                 break;
4974                                         }
4975 
4976                                         continue;
4977                                 }
4978 
4979                                 /*
4980                                  * We have the minor data.  Now we need to
4981                                  * copy the minor's name into the end of the
4982                                  * pathname.
4983                                  */
4984                                 s = (char *)dtrace_loadptr(maddr + name);
4985                                 len = dtrace_strlen(s, size);
4986 
4987                                 if (*flags & CPU_DTRACE_FAULT)
4988                                         break;
4989 
4990                                 if (len != 0) {
4991                                         if ((end -= (len + 1)) < start)
4992                                                 break;
4993 
4994                                         *end = ':';
4995                                 }
4996 
4997                                 for (i = 1; i <= len; i++)
4998                                         end[i] = dtrace_load8((uintptr_t)s++);
4999                                 break;
5000                         }
5001                 }
5002 
5003                 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5004                         ddi_node_state_t devi_state;
5005 
5006                         devi_state = dtrace_load32(daddr +
5007                             offsetof(struct dev_info, devi_node_state));
5008 
5009                         if (*flags & CPU_DTRACE_FAULT)
5010                                 break;
5011 
5012                         if (devi_state >= DS_INITIALIZED) {
5013                                 s = (char *)dtrace_loadptr(daddr +
5014                                     offsetof(struct dev_info, devi_addr));
5015                                 len = dtrace_strlen(s, size);
5016 
5017                                 if (*flags & CPU_DTRACE_FAULT)
5018                                         break;
5019 
5020                                 if (len != 0) {
5021                                         if ((end -= (len + 1)) < start)
5022                                                 break;
5023 
5024                                         *end = '@';
5025                                 }
5026 
5027                                 for (i = 1; i <= len; i++)
5028                                         end[i] = dtrace_load8((uintptr_t)s++);
5029                         }
5030 
5031                         /*
5032                          * Now for the node name...
5033                          */
5034                         s = (char *)dtrace_loadptr(daddr +
5035                             offsetof(struct dev_info, devi_node_name));
5036 
5037                         daddr = dtrace_loadptr(daddr +
5038                             offsetof(struct dev_info, devi_parent));
5039 
5040                         /*
5041                          * If our parent is NULL (that is, if we're the root
5042                          * node), we're going to use the special path
5043                          * "devices".
5044                          */
5045                         if (daddr == NULL)
5046                                 s = "devices";
5047 
5048                         len = dtrace_strlen(s, size);
5049                         if (*flags & CPU_DTRACE_FAULT)
5050                                 break;
5051 
5052                         if ((end -= (len + 1)) < start)
5053                                 break;
5054 
5055                         for (i = 1; i <= len; i++)
5056                                 end[i] = dtrace_load8((uintptr_t)s++);
5057                         *end = '/';
5058 
5059                         if (depth++ > dtrace_devdepth_max) {
5060                                 *flags |= CPU_DTRACE_ILLOP;
5061                                 break;
5062                         }
5063                 }
5064 
5065                 if (end < start)
5066                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5067 
5068                 if (daddr == NULL) {
5069                         regs[rd] = (uintptr_t)end;
5070                         mstate->dtms_scratch_ptr += size;
5071                 }
5072 
5073                 break;
5074         }
5075 
5076         case DIF_SUBR_STRJOIN: {
5077                 char *d = (char *)mstate->dtms_scratch_ptr;
5078                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5079                 uintptr_t s1 = tupregs[0].dttk_value;
5080                 uintptr_t s2 = tupregs[1].dttk_value;
5081                 int i = 0, j = 0;
5082                 size_t lim1, lim2;
5083                 char c;
5084 
5085                 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) ||
5086                     !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) {
5087                         regs[rd] = NULL;
5088                         break;
5089                 }
5090 
5091                 if (!DTRACE_INSCRATCH(mstate, size)) {
5092                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5093                         regs[rd] = NULL;
5094                         break;
5095                 }
5096 
5097                 for (;;) {
5098                         if (i >= size) {
5099                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5100                                 regs[rd] = NULL;
5101                                 break;
5102                         }
5103                         c = (i >= lim1) ? '\0' : dtrace_load8(s1++);
5104                         if ((d[i++] = c) == '\0') {
5105                                 i--;
5106                                 break;
5107                         }
5108                 }
5109 
5110                 for (;;) {
5111                         if (i >= size) {
5112                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5113                                 regs[rd] = NULL;
5114                                 break;
5115                         }
5116 
5117                         c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++);
5118                         if ((d[i++] = c) == '\0')
5119                                 break;
5120                 }
5121 
5122                 if (i < size) {
5123                         mstate->dtms_scratch_ptr += i;
5124                         regs[rd] = (uintptr_t)d;
5125                 }
5126 
5127                 break;
5128         }
5129 
5130         case DIF_SUBR_STRTOLL: {
5131                 uintptr_t s = tupregs[0].dttk_value;
5132                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5133                 size_t lim;
5134                 int base = 10;
5135 
5136                 if (nargs > 1) {
5137                         if ((base = tupregs[1].dttk_value) <= 1 ||
5138                             base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5139                                 *flags |= CPU_DTRACE_ILLOP;
5140                                 break;
5141                         }
5142                 }
5143 
5144                 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) {
5145                         regs[rd] = INT64_MIN;
5146                         break;
5147                 }
5148 
5149                 regs[rd] = dtrace_strtoll((char *)s, base, lim);
5150                 break;
5151         }
5152 
5153         case DIF_SUBR_LLTOSTR: {
5154                 int64_t i = (int64_t)tupregs[0].dttk_value;
5155                 uint64_t val, digit;
5156                 uint64_t size = 65;     /* enough room for 2^64 in binary */
5157                 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5158                 int base = 10;
5159 
5160                 if (nargs > 1) {
5161                         if ((base = tupregs[1].dttk_value) <= 1 ||
5162                             base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5163                                 *flags |= CPU_DTRACE_ILLOP;
5164                                 break;
5165                         }
5166                 }
5167 
5168                 val = (base == 10 && i < 0) ? i * -1 : i;
5169 
5170                 if (!DTRACE_INSCRATCH(mstate, size)) {
5171                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5172                         regs[rd] = NULL;
5173                         break;
5174                 }
5175 
5176                 for (*end-- = '\0'; val; val /= base) {
5177                         if ((digit = val % base) <= '9' - '0') {
5178                                 *end-- = '0' + digit;
5179                         } else {
5180                                 *end-- = 'a' + (digit - ('9' - '0') - 1);
5181                         }
5182                 }
5183 
5184                 if (i == 0 && base == 16)
5185                         *end-- = '0';
5186 
5187                 if (base == 16)
5188                         *end-- = 'x';
5189 
5190                 if (i == 0 || base == 8 || base == 16)
5191                         *end-- = '0';
5192 
5193                 if (i < 0 && base == 10)
5194                         *end-- = '-';
5195 
5196                 regs[rd] = (uintptr_t)end + 1;
5197                 mstate->dtms_scratch_ptr += size;
5198                 break;
5199         }
5200 
5201         case DIF_SUBR_HTONS:
5202         case DIF_SUBR_NTOHS:
5203 #ifdef _BIG_ENDIAN
5204                 regs[rd] = (uint16_t)tupregs[0].dttk_value;
5205 #else
5206                 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5207 #endif
5208                 break;
5209 
5210 
5211         case DIF_SUBR_HTONL:
5212         case DIF_SUBR_NTOHL:
5213 #ifdef _BIG_ENDIAN
5214                 regs[rd] = (uint32_t)tupregs[0].dttk_value;
5215 #else
5216                 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5217 #endif
5218                 break;
5219 
5220 
5221         case DIF_SUBR_HTONLL:
5222         case DIF_SUBR_NTOHLL:
5223 #ifdef _BIG_ENDIAN
5224                 regs[rd] = (uint64_t)tupregs[0].dttk_value;
5225 #else
5226                 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5227 #endif
5228                 break;
5229 
5230 
5231         case DIF_SUBR_DIRNAME:
5232         case DIF_SUBR_BASENAME: {
5233                 char *dest = (char *)mstate->dtms_scratch_ptr;
5234                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5235                 uintptr_t src = tupregs[0].dttk_value;
5236                 int i, j, len = dtrace_strlen((char *)src, size);
5237                 int lastbase = -1, firstbase = -1, lastdir = -1;
5238                 int start, end;
5239 
5240                 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5241                         regs[rd] = NULL;
5242                         break;
5243                 }
5244 
5245                 if (!DTRACE_INSCRATCH(mstate, size)) {
5246                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5247                         regs[rd] = NULL;
5248                         break;
5249                 }
5250 
5251                 /*
5252                  * The basename and dirname for a zero-length string is
5253                  * defined to be "."
5254                  */
5255                 if (len == 0) {
5256                         len = 1;
5257                         src = (uintptr_t)".";
5258                 }
5259 
5260                 /*
5261                  * Start from the back of the string, moving back toward the
5262                  * front until we see a character that isn't a slash.  That
5263                  * character is the last character in the basename.
5264                  */
5265                 for (i = len - 1; i >= 0; i--) {
5266                         if (dtrace_load8(src + i) != '/')
5267                                 break;
5268                 }
5269 
5270                 if (i >= 0)
5271                         lastbase = i;
5272 
5273                 /*
5274                  * Starting from the last character in the basename, move
5275                  * towards the front until we find a slash.  The character
5276                  * that we processed immediately before that is the first
5277                  * character in the basename.
5278                  */
5279                 for (; i >= 0; i--) {
5280                         if (dtrace_load8(src + i) == '/')
5281                                 break;
5282                 }
5283 
5284                 if (i >= 0)
5285                         firstbase = i + 1;
5286 
5287                 /*
5288                  * Now keep going until we find a non-slash character.  That
5289                  * character is the last character in the dirname.
5290                  */
5291                 for (; i >= 0; i--) {
5292                         if (dtrace_load8(src + i) != '/')
5293                                 break;
5294                 }
5295 
5296                 if (i >= 0)
5297                         lastdir = i;
5298 
5299                 ASSERT(!(lastbase == -1 && firstbase != -1));
5300                 ASSERT(!(firstbase == -1 && lastdir != -1));
5301 
5302                 if (lastbase == -1) {
5303                         /*
5304                          * We didn't find a non-slash character.  We know that
5305                          * the length is non-zero, so the whole string must be
5306                          * slashes.  In either the dirname or the basename
5307                          * case, we return '/'.
5308                          */
5309                         ASSERT(firstbase == -1);
5310                         firstbase = lastbase = lastdir = 0;
5311                 }
5312 
5313                 if (firstbase == -1) {
5314                         /*
5315                          * The entire string consists only of a basename
5316                          * component.  If we're looking for dirname, we need
5317                          * to change our string to be just "."; if we're
5318                          * looking for a basename, we'll just set the first
5319                          * character of the basename to be 0.
5320                          */
5321                         if (subr == DIF_SUBR_DIRNAME) {
5322                                 ASSERT(lastdir == -1);
5323                                 src = (uintptr_t)".";
5324                                 lastdir = 0;
5325                         } else {
5326                                 firstbase = 0;
5327                         }
5328                 }
5329 
5330                 if (subr == DIF_SUBR_DIRNAME) {
5331                         if (lastdir == -1) {
5332                                 /*
5333                                  * We know that we have a slash in the name --
5334                                  * or lastdir would be set to 0, above.  And
5335                                  * because lastdir is -1, we know that this
5336                                  * slash must be the first character.  (That
5337                                  * is, the full string must be of the form
5338                                  * "/basename".)  In this case, the last
5339                                  * character of the directory name is 0.
5340                                  */
5341                                 lastdir = 0;
5342                         }
5343 
5344                         start = 0;
5345                         end = lastdir;
5346                 } else {
5347                         ASSERT(subr == DIF_SUBR_BASENAME);
5348                         ASSERT(firstbase != -1 && lastbase != -1);
5349                         start = firstbase;
5350                         end = lastbase;
5351                 }
5352 
5353                 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5354                         dest[j] = dtrace_load8(src + i);
5355 
5356                 dest[j] = '\0';
5357                 regs[rd] = (uintptr_t)dest;
5358                 mstate->dtms_scratch_ptr += size;
5359                 break;
5360         }
5361 
5362         case DIF_SUBR_GETF: {
5363                 uintptr_t fd = tupregs[0].dttk_value;
5364                 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo;
5365                 file_t *fp;
5366 
5367                 if (!dtrace_priv_proc(state, mstate)) {
5368                         regs[rd] = NULL;
5369                         break;
5370                 }
5371 
5372                 /*
5373                  * This is safe because fi_nfiles only increases, and the
5374                  * fi_list array is not freed when the array size doubles.
5375                  * (See the comment in flist_grow() for details on the
5376                  * management of the u_finfo structure.)
5377                  */
5378                 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL;
5379 
5380                 mstate->dtms_getf = fp;
5381                 regs[rd] = (uintptr_t)fp;
5382                 break;
5383         }
5384 
5385         case DIF_SUBR_CLEANPATH: {
5386                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
5387                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5388                 uintptr_t src = tupregs[0].dttk_value;
5389                 size_t lim;
5390                 int i = 0, j = 0;
5391                 zone_t *z;
5392 
5393                 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) {
5394                         regs[rd] = NULL;
5395                         break;
5396                 }
5397 
5398                 if (!DTRACE_INSCRATCH(mstate, size)) {
5399                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5400                         regs[rd] = NULL;
5401                         break;
5402                 }
5403 
5404                 /*
5405                  * Move forward, loading each character.
5406                  */
5407                 do {
5408                         c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5409 next:
5410                         if (j + 5 >= size)   /* 5 = strlen("/..c\0") */
5411                                 break;
5412 
5413                         if (c != '/') {
5414                                 dest[j++] = c;
5415                                 continue;
5416                         }
5417 
5418                         c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5419 
5420                         if (c == '/') {
5421                                 /*
5422                                  * We have two slashes -- we can just advance
5423                                  * to the next character.
5424                                  */
5425                                 goto next;
5426                         }
5427 
5428                         if (c != '.') {
5429                                 /*
5430                                  * This is not "." and it's not ".." -- we can
5431                                  * just store the "/" and this character and
5432                                  * drive on.
5433                                  */
5434                                 dest[j++] = '/';
5435                                 dest[j++] = c;
5436                                 continue;
5437                         }
5438 
5439                         c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5440 
5441                         if (c == '/') {
5442                                 /*
5443                                  * This is a "/./" component.  We're not going
5444                                  * to store anything in the destination buffer;
5445                                  * we're just going to go to the next component.
5446                                  */
5447                                 goto next;
5448                         }
5449 
5450                         if (c != '.') {
5451                                 /*
5452                                  * This is not ".." -- we can just store the
5453                                  * "/." and this character and continue
5454                                  * processing.
5455                                  */
5456                                 dest[j++] = '/';
5457                                 dest[j++] = '.';
5458                                 dest[j++] = c;
5459                                 continue;
5460                         }
5461 
5462                         c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5463 
5464                         if (c != '/' && c != '\0') {
5465                                 /*
5466                                  * This is not ".." -- it's "..[mumble]".
5467                                  * We'll store the "/.." and this character
5468                                  * and continue processing.
5469                                  */
5470                                 dest[j++] = '/';
5471                                 dest[j++] = '.';
5472                                 dest[j++] = '.';
5473                                 dest[j++] = c;
5474                                 continue;
5475                         }
5476 
5477                         /*
5478                          * This is "/../" or "/..\0".  We need to back up
5479                          * our destination pointer until we find a "/".
5480                          */
5481                         i--;
5482                         while (j != 0 && dest[--j] != '/')
5483                                 continue;
5484 
5485                         if (c == '\0')
5486                                 dest[++j] = '/';
5487                 } while (c != '\0');
5488 
5489                 dest[j] = '\0';
5490 
5491                 if (mstate->dtms_getf != NULL &&
5492                     !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5493                     (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5494                         /*
5495                          * If we've done a getf() as a part of this ECB and we
5496                          * don't have kernel access (and we're not in the global
5497                          * zone), check if the path we cleaned up begins with
5498                          * the zone's root path, and trim it off if so.  Note
5499                          * that this is an output cleanliness issue, not a
5500                          * security issue: knowing one's zone root path does
5501                          * not enable privilege escalation.
5502                          */
5503                         if (strstr(dest, z->zone_rootpath) == dest)
5504                                 dest += strlen(z->zone_rootpath) - 1;
5505                 }
5506 
5507                 regs[rd] = (uintptr_t)dest;
5508                 mstate->dtms_scratch_ptr += size;
5509                 break;
5510         }
5511 
5512         case DIF_SUBR_INET_NTOA:
5513         case DIF_SUBR_INET_NTOA6:
5514         case DIF_SUBR_INET_NTOP: {
5515                 size_t size;
5516                 int af, argi, i;
5517                 char *base, *end;
5518 
5519                 if (subr == DIF_SUBR_INET_NTOP) {
5520                         af = (int)tupregs[0].dttk_value;
5521                         argi = 1;
5522                 } else {
5523                         af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5524                         argi = 0;
5525                 }
5526 
5527                 if (af == AF_INET) {
5528                         ipaddr_t ip4;
5529                         uint8_t *ptr8, val;
5530 
5531                         if (!dtrace_canload(tupregs[argi].dttk_value,
5532                             sizeof (ipaddr_t), mstate, vstate)) {
5533                                 regs[rd] = NULL;
5534                                 break;
5535                         }
5536 
5537                         /*
5538                          * Safely load the IPv4 address.
5539                          */
5540                         ip4 = dtrace_load32(tupregs[argi].dttk_value);
5541 
5542                         /*
5543                          * Check an IPv4 string will fit in scratch.
5544                          */
5545                         size = INET_ADDRSTRLEN;
5546                         if (!DTRACE_INSCRATCH(mstate, size)) {
5547                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5548                                 regs[rd] = NULL;
5549                                 break;
5550                         }
5551                         base = (char *)mstate->dtms_scratch_ptr;
5552                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
5553 
5554                         /*
5555                          * Stringify as a dotted decimal quad.
5556                          */
5557                         *end-- = '\0';
5558                         ptr8 = (uint8_t *)&ip4;
5559                         for (i = 3; i >= 0; i--) {
5560                                 val = ptr8[i];
5561 
5562                                 if (val == 0) {
5563                                         *end-- = '0';
5564                                 } else {
5565                                         for (; val; val /= 10) {
5566                                                 *end-- = '0' + (val % 10);
5567                                         }
5568                                 }
5569 
5570                                 if (i > 0)
5571                                         *end-- = '.';
5572                         }
5573                         ASSERT(end + 1 >= base);
5574 
5575                 } else if (af == AF_INET6) {
5576                         struct in6_addr ip6;
5577                         int firstzero, tryzero, numzero, v6end;
5578                         uint16_t val;
5579                         const char digits[] = "0123456789abcdef";
5580 
5581                         /*
5582                          * Stringify using RFC 1884 convention 2 - 16 bit
5583                          * hexadecimal values with a zero-run compression.
5584                          * Lower case hexadecimal digits are used.
5585                          *      eg, fe80::214:4fff:fe0b:76c8.
5586                          * The IPv4 embedded form is returned for inet_ntop,
5587                          * just the IPv4 string is returned for inet_ntoa6.
5588                          */
5589 
5590                         if (!dtrace_canload(tupregs[argi].dttk_value,
5591                             sizeof (struct in6_addr), mstate, vstate)) {
5592                                 regs[rd] = NULL;
5593                                 break;
5594                         }
5595 
5596                         /*
5597                          * Safely load the IPv6 address.
5598                          */
5599                         dtrace_bcopy(
5600                             (void *)(uintptr_t)tupregs[argi].dttk_value,
5601                             (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5602 
5603                         /*
5604                          * Check an IPv6 string will fit in scratch.
5605                          */
5606                         size = INET6_ADDRSTRLEN;
5607                         if (!DTRACE_INSCRATCH(mstate, size)) {
5608                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5609                                 regs[rd] = NULL;
5610                                 break;
5611                         }
5612                         base = (char *)mstate->dtms_scratch_ptr;
5613                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
5614                         *end-- = '\0';
5615 
5616                         /*
5617                          * Find the longest run of 16 bit zero values
5618                          * for the single allowed zero compression - "::".
5619                          */
5620                         firstzero = -1;
5621                         tryzero = -1;
5622                         numzero = 1;
5623                         for (i = 0; i < sizeof (struct in6_addr); i++) {
5624                                 if (ip6._S6_un._S6_u8[i] == 0 &&
5625                                     tryzero == -1 && i % 2 == 0) {
5626                                         tryzero = i;
5627                                         continue;
5628                                 }
5629 
5630                                 if (tryzero != -1 &&
5631                                     (ip6._S6_un._S6_u8[i] != 0 ||
5632                                     i == sizeof (struct in6_addr) - 1)) {
5633 
5634                                         if (i - tryzero <= numzero) {
5635                                                 tryzero = -1;
5636                                                 continue;
5637                                         }
5638 
5639                                         firstzero = tryzero;
5640                                         numzero = i - i % 2 - tryzero;
5641                                         tryzero = -1;
5642 
5643                                         if (ip6._S6_un._S6_u8[i] == 0 &&
5644                                             i == sizeof (struct in6_addr) - 1)
5645                                                 numzero += 2;
5646                                 }
5647                         }
5648                         ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5649 
5650                         /*
5651                          * Check for an IPv4 embedded address.
5652                          */
5653                         v6end = sizeof (struct in6_addr) - 2;
5654                         if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5655                             IN6_IS_ADDR_V4COMPAT(&ip6)) {
5656                                 for (i = sizeof (struct in6_addr) - 1;
5657                                     i >= DTRACE_V4MAPPED_OFFSET; i--) {
5658                                         ASSERT(end >= base);
5659 
5660                                         val = ip6._S6_un._S6_u8[i];
5661 
5662                                         if (val == 0) {
5663                                                 *end-- = '0';
5664                                         } else {
5665                                                 for (; val; val /= 10) {
5666                                                         *end-- = '0' + val % 10;
5667                                                 }
5668                                         }
5669 
5670                                         if (i > DTRACE_V4MAPPED_OFFSET)
5671                                                 *end-- = '.';
5672                                 }
5673 
5674                                 if (subr == DIF_SUBR_INET_NTOA6)
5675                                         goto inetout;
5676 
5677                                 /*
5678                                  * Set v6end to skip the IPv4 address that
5679                                  * we have already stringified.
5680                                  */
5681                                 v6end = 10;
5682                         }
5683 
5684                         /*
5685                          * Build the IPv6 string by working through the
5686                          * address in reverse.
5687                          */
5688                         for (i = v6end; i >= 0; i -= 2) {
5689                                 ASSERT(end >= base);
5690 
5691                                 if (i == firstzero + numzero - 2) {
5692                                         *end-- = ':';
5693                                         *end-- = ':';
5694                                         i -= numzero - 2;
5695                                         continue;
5696                                 }
5697 
5698                                 if (i < 14 && i != firstzero - 2)
5699                                         *end-- = ':';
5700 
5701                                 val = (ip6._S6_un._S6_u8[i] << 8) +
5702                                     ip6._S6_un._S6_u8[i + 1];
5703 
5704                                 if (val == 0) {
5705                                         *end-- = '0';
5706                                 } else {
5707                                         for (; val; val /= 16) {
5708                                                 *end-- = digits[val % 16];
5709                                         }
5710                                 }
5711                         }
5712                         ASSERT(end + 1 >= base);
5713 
5714                 } else {
5715                         /*
5716                          * The user didn't use AH_INET or AH_INET6.
5717                          */
5718                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5719                         regs[rd] = NULL;
5720                         break;
5721                 }
5722 
5723 inetout:        regs[rd] = (uintptr_t)end + 1;
5724                 mstate->dtms_scratch_ptr += size;
5725                 break;
5726         }
5727 
5728         }
5729 }
5730 
5731 /*
5732  * Emulate the execution of DTrace IR instructions specified by the given
5733  * DIF object.  This function is deliberately void of assertions as all of
5734  * the necessary checks are handled by a call to dtrace_difo_validate().
5735  */
5736 static uint64_t
5737 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
5738     dtrace_vstate_t *vstate, dtrace_state_t *state)
5739 {
5740         const dif_instr_t *text = difo->dtdo_buf;
5741         const uint_t textlen = difo->dtdo_len;
5742         const char *strtab = difo->dtdo_strtab;
5743         const uint64_t *inttab = difo->dtdo_inttab;
5744 
5745         uint64_t rval = 0;
5746         dtrace_statvar_t *svar;
5747         dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5748         dtrace_difv_t *v;
5749         volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5750         volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
5751 
5752         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5753         uint64_t regs[DIF_DIR_NREGS];
5754         uint64_t *tmp;
5755 
5756         uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5757         int64_t cc_r;
5758         uint_t pc = 0, id, opc;
5759         uint8_t ttop = 0;
5760         dif_instr_t instr;
5761         uint_t r1, r2, rd;
5762 
5763         /*
5764          * We stash the current DIF object into the machine state: we need it
5765          * for subsequent access checking.
5766          */
5767         mstate->dtms_difo = difo;
5768 
5769         regs[DIF_REG_R0] = 0;           /* %r0 is fixed at zero */
5770 
5771         while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5772                 opc = pc;
5773 
5774                 instr = text[pc++];
5775                 r1 = DIF_INSTR_R1(instr);
5776                 r2 = DIF_INSTR_R2(instr);
5777                 rd = DIF_INSTR_RD(instr);
5778 
5779                 switch (DIF_INSTR_OP(instr)) {
5780                 case DIF_OP_OR:
5781                         regs[rd] = regs[r1] | regs[r2];
5782                         break;
5783                 case DIF_OP_XOR:
5784                         regs[rd] = regs[r1] ^ regs[r2];
5785                         break;
5786                 case DIF_OP_AND:
5787                         regs[rd] = regs[r1] & regs[r2];
5788                         break;
5789                 case DIF_OP_SLL:
5790                         regs[rd] = regs[r1] << regs[r2];
5791                         break;
5792                 case DIF_OP_SRL:
5793                         regs[rd] = regs[r1] >> regs[r2];
5794                         break;
5795                 case DIF_OP_SUB:
5796                         regs[rd] = regs[r1] - regs[r2];
5797                         break;
5798                 case DIF_OP_ADD:
5799                         regs[rd] = regs[r1] + regs[r2];
5800                         break;
5801                 case DIF_OP_MUL:
5802                         regs[rd] = regs[r1] * regs[r2];
5803                         break;
5804                 case DIF_OP_SDIV:
5805                         if (regs[r2] == 0) {
5806                                 regs[rd] = 0;
5807                                 *flags |= CPU_DTRACE_DIVZERO;
5808                         } else {
5809                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5810                                 regs[rd] = (int64_t)regs[r1] /
5811                                     (int64_t)regs[r2];
5812                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5813                         }
5814                         break;
5815 
5816                 case DIF_OP_UDIV:
5817                         if (regs[r2] == 0) {
5818                                 regs[rd] = 0;
5819                                 *flags |= CPU_DTRACE_DIVZERO;
5820                         } else {
5821                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5822                                 regs[rd] = regs[r1] / regs[r2];
5823                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5824                         }
5825                         break;
5826 
5827                 case DIF_OP_SREM:
5828                         if (regs[r2] == 0) {
5829                                 regs[rd] = 0;
5830                                 *flags |= CPU_DTRACE_DIVZERO;
5831                         } else {
5832                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5833                                 regs[rd] = (int64_t)regs[r1] %
5834                                     (int64_t)regs[r2];
5835                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5836                         }
5837                         break;
5838 
5839                 case DIF_OP_UREM:
5840                         if (regs[r2] == 0) {
5841                                 regs[rd] = 0;
5842                                 *flags |= CPU_DTRACE_DIVZERO;
5843                         } else {
5844                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5845                                 regs[rd] = regs[r1] % regs[r2];
5846                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5847                         }
5848                         break;
5849 
5850                 case DIF_OP_NOT:
5851                         regs[rd] = ~regs[r1];
5852                         break;
5853                 case DIF_OP_MOV:
5854                         regs[rd] = regs[r1];
5855                         break;
5856                 case DIF_OP_CMP:
5857                         cc_r = regs[r1] - regs[r2];
5858                         cc_n = cc_r < 0;
5859                         cc_z = cc_r == 0;
5860                         cc_v = 0;
5861                         cc_c = regs[r1] < regs[r2];
5862                         break;
5863                 case DIF_OP_TST:
5864                         cc_n = cc_v = cc_c = 0;
5865                         cc_z = regs[r1] == 0;
5866                         break;
5867                 case DIF_OP_BA:
5868                         pc = DIF_INSTR_LABEL(instr);
5869                         break;
5870                 case DIF_OP_BE:
5871                         if (cc_z)
5872                                 pc = DIF_INSTR_LABEL(instr);
5873                         break;
5874                 case DIF_OP_BNE:
5875                         if (cc_z == 0)
5876                                 pc = DIF_INSTR_LABEL(instr);
5877                         break;
5878                 case DIF_OP_BG:
5879                         if ((cc_z | (cc_n ^ cc_v)) == 0)
5880                                 pc = DIF_INSTR_LABEL(instr);
5881                         break;
5882                 case DIF_OP_BGU:
5883                         if ((cc_c | cc_z) == 0)
5884                                 pc = DIF_INSTR_LABEL(instr);
5885                         break;
5886                 case DIF_OP_BGE:
5887                         if ((cc_n ^ cc_v) == 0)
5888                                 pc = DIF_INSTR_LABEL(instr);
5889                         break;
5890                 case DIF_OP_BGEU:
5891                         if (cc_c == 0)
5892                                 pc = DIF_INSTR_LABEL(instr);
5893                         break;
5894                 case DIF_OP_BL:
5895                         if (cc_n ^ cc_v)
5896                                 pc = DIF_INSTR_LABEL(instr);
5897                         break;
5898                 case DIF_OP_BLU:
5899                         if (cc_c)
5900                                 pc = DIF_INSTR_LABEL(instr);
5901                         break;
5902                 case DIF_OP_BLE:
5903                         if (cc_z | (cc_n ^ cc_v))
5904                                 pc = DIF_INSTR_LABEL(instr);
5905                         break;
5906                 case DIF_OP_BLEU:
5907                         if (cc_c | cc_z)
5908                                 pc = DIF_INSTR_LABEL(instr);
5909                         break;
5910                 case DIF_OP_RLDSB:
5911                         if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5912                                 break;
5913                         /*FALLTHROUGH*/
5914                 case DIF_OP_LDSB:
5915                         regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5916                         break;
5917                 case DIF_OP_RLDSH:
5918                         if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5919                                 break;
5920                         /*FALLTHROUGH*/
5921                 case DIF_OP_LDSH:
5922                         regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5923                         break;
5924                 case DIF_OP_RLDSW:
5925                         if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5926                                 break;
5927                         /*FALLTHROUGH*/
5928                 case DIF_OP_LDSW:
5929                         regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5930                         break;
5931                 case DIF_OP_RLDUB:
5932                         if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5933                                 break;
5934                         /*FALLTHROUGH*/
5935                 case DIF_OP_LDUB:
5936                         regs[rd] = dtrace_load8(regs[r1]);
5937                         break;
5938                 case DIF_OP_RLDUH:
5939                         if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5940                                 break;
5941                         /*FALLTHROUGH*/
5942                 case DIF_OP_LDUH:
5943                         regs[rd] = dtrace_load16(regs[r1]);
5944                         break;
5945                 case DIF_OP_RLDUW:
5946                         if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5947                                 break;
5948                         /*FALLTHROUGH*/
5949                 case DIF_OP_LDUW:
5950                         regs[rd] = dtrace_load32(regs[r1]);
5951                         break;
5952                 case DIF_OP_RLDX:
5953                         if (!dtrace_canload(regs[r1], 8, mstate, vstate))
5954                                 break;
5955                         /*FALLTHROUGH*/
5956                 case DIF_OP_LDX:
5957                         regs[rd] = dtrace_load64(regs[r1]);
5958                         break;
5959                 case DIF_OP_ULDSB:
5960                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5961                         regs[rd] = (int8_t)
5962                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5963                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5964                         break;
5965                 case DIF_OP_ULDSH:
5966                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5967                         regs[rd] = (int16_t)
5968                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5969                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5970                         break;
5971                 case DIF_OP_ULDSW:
5972                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5973                         regs[rd] = (int32_t)
5974                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5975                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5976                         break;
5977                 case DIF_OP_ULDUB:
5978                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5979                         regs[rd] =
5980                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5981                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5982                         break;
5983                 case DIF_OP_ULDUH:
5984                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5985                         regs[rd] =
5986                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5987                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5988                         break;
5989                 case DIF_OP_ULDUW:
5990                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5991                         regs[rd] =
5992                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5993                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5994                         break;
5995                 case DIF_OP_ULDX:
5996                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5997                         regs[rd] =
5998                             dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5999                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6000                         break;
6001                 case DIF_OP_RET:
6002                         rval = regs[rd];
6003                         pc = textlen;
6004                         break;
6005                 case DIF_OP_NOP:
6006                         break;
6007                 case DIF_OP_SETX:
6008                         regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6009                         break;
6010                 case DIF_OP_SETS:
6011                         regs[rd] = (uint64_t)(uintptr_t)
6012                             (strtab + DIF_INSTR_STRING(instr));
6013                         break;
6014                 case DIF_OP_SCMP: {
6015                         size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6016                         uintptr_t s1 = regs[r1];
6017                         uintptr_t s2 = regs[r2];
6018                         size_t lim1, lim2;
6019 
6020                         if (s1 != NULL &&
6021                             !dtrace_strcanload(s1, sz, &lim1, mstate, vstate))
6022                                 break;
6023                         if (s2 != NULL &&
6024                             !dtrace_strcanload(s2, sz, &lim2, mstate, vstate))
6025                                 break;
6026 
6027                         cc_r = dtrace_strncmp((char *)s1, (char *)s2,
6028                             MIN(lim1, lim2));
6029 
6030                         cc_n = cc_r < 0;
6031                         cc_z = cc_r == 0;
6032                         cc_v = cc_c = 0;
6033                         break;
6034                 }
6035                 case DIF_OP_LDGA:
6036                         regs[rd] = dtrace_dif_variable(mstate, state,
6037                             r1, regs[r2]);
6038                         break;
6039                 case DIF_OP_LDGS:
6040                         id = DIF_INSTR_VAR(instr);
6041 
6042                         if (id >= DIF_VAR_OTHER_UBASE) {
6043                                 uintptr_t a;
6044 
6045                                 id -= DIF_VAR_OTHER_UBASE;
6046                                 svar = vstate->dtvs_globals[id];
6047                                 ASSERT(svar != NULL);
6048                                 v = &svar->dtsv_var;
6049 
6050                                 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6051                                         regs[rd] = svar->dtsv_data;
6052                                         break;
6053                                 }
6054 
6055                                 a = (uintptr_t)svar->dtsv_data;
6056 
6057                                 if (*(uint8_t *)a == UINT8_MAX) {
6058                                         /*
6059                                          * If the 0th byte is set to UINT8_MAX
6060                                          * then this is to be treated as a
6061                                          * reference to a NULL variable.
6062                                          */
6063                                         regs[rd] = NULL;
6064                                 } else {
6065                                         regs[rd] = a + sizeof (uint64_t);
6066                                 }
6067 
6068                                 break;
6069                         }
6070 
6071                         regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6072                         break;
6073 
6074                 case DIF_OP_STGA:
6075                         dtrace_dif_variable_write(mstate, state, r1, regs[r2],
6076                             regs[rd]);
6077                         break;
6078 
6079                 case DIF_OP_STGS:
6080                         id = DIF_INSTR_VAR(instr);
6081 
6082                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
6083                         id -= DIF_VAR_OTHER_UBASE;
6084 
6085                         VERIFY(id < vstate->dtvs_nglobals);
6086                         svar = vstate->dtvs_globals[id];
6087                         ASSERT(svar != NULL);
6088                         v = &svar->dtsv_var;
6089 
6090                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6091                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
6092                                 size_t lim;
6093 
6094                                 ASSERT(a != NULL);
6095                                 ASSERT(svar->dtsv_size != 0);
6096 
6097                                 if (regs[rd] == NULL) {
6098                                         *(uint8_t *)a = UINT8_MAX;
6099                                         break;
6100                                 } else {
6101                                         *(uint8_t *)a = 0;
6102                                         a += sizeof (uint64_t);
6103                                 }
6104                                 if (!dtrace_vcanload(
6105                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6106                                     &lim, mstate, vstate))
6107                                         break;
6108 
6109                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6110                                     (void *)a, &v->dtdv_type, lim);
6111                                 break;
6112                         }
6113 
6114                         svar->dtsv_data = regs[rd];
6115                         break;
6116 
6117                 case DIF_OP_LDTA:
6118                         /*
6119                          * There are no DTrace built-in thread-local arrays at
6120                          * present.  This opcode is saved for future work.
6121                          */
6122                         *flags |= CPU_DTRACE_ILLOP;
6123                         regs[rd] = 0;
6124                         break;
6125 
6126                 case DIF_OP_LDLS:
6127                         id = DIF_INSTR_VAR(instr);
6128 
6129                         if (id < DIF_VAR_OTHER_UBASE) {
6130                                 /*
6131                                  * For now, this has no meaning.
6132                                  */
6133                                 regs[rd] = 0;
6134                                 break;
6135                         }
6136 
6137                         id -= DIF_VAR_OTHER_UBASE;
6138 
6139                         ASSERT(id < vstate->dtvs_nlocals);
6140                         ASSERT(vstate->dtvs_locals != NULL);
6141 
6142                         svar = vstate->dtvs_locals[id];
6143                         ASSERT(svar != NULL);
6144                         v = &svar->dtsv_var;
6145 
6146                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6147                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
6148                                 size_t sz = v->dtdv_type.dtdt_size;
6149 
6150                                 sz += sizeof (uint64_t);
6151                                 ASSERT(svar->dtsv_size == NCPU * sz);
6152                                 a += CPU->cpu_id * sz;
6153 
6154                                 if (*(uint8_t *)a == UINT8_MAX) {
6155                                         /*
6156                                          * If the 0th byte is set to UINT8_MAX
6157                                          * then this is to be treated as a
6158                                          * reference to a NULL variable.
6159                                          */
6160                                         regs[rd] = NULL;
6161                                 } else {
6162                                         regs[rd] = a + sizeof (uint64_t);
6163                                 }
6164 
6165                                 break;
6166                         }
6167 
6168                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6169                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6170                         regs[rd] = tmp[CPU->cpu_id];
6171                         break;
6172 
6173                 case DIF_OP_STLS:
6174                         id = DIF_INSTR_VAR(instr);
6175 
6176                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
6177                         id -= DIF_VAR_OTHER_UBASE;
6178                         VERIFY(id < vstate->dtvs_nlocals);
6179 
6180                         ASSERT(vstate->dtvs_locals != NULL);
6181                         svar = vstate->dtvs_locals[id];
6182                         ASSERT(svar != NULL);
6183                         v = &svar->dtsv_var;
6184 
6185                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6186                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
6187                                 size_t sz = v->dtdv_type.dtdt_size;
6188                                 size_t lim;
6189 
6190                                 sz += sizeof (uint64_t);
6191                                 ASSERT(svar->dtsv_size == NCPU * sz);
6192                                 a += CPU->cpu_id * sz;
6193 
6194                                 if (regs[rd] == NULL) {
6195                                         *(uint8_t *)a = UINT8_MAX;
6196                                         break;
6197                                 } else {
6198                                         *(uint8_t *)a = 0;
6199                                         a += sizeof (uint64_t);
6200                                 }
6201 
6202                                 if (!dtrace_vcanload(
6203                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6204                                     &lim, mstate, vstate))
6205                                         break;
6206 
6207                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6208                                     (void *)a, &v->dtdv_type, lim);
6209                                 break;
6210                         }
6211 
6212                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6213                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6214                         tmp[CPU->cpu_id] = regs[rd];
6215                         break;
6216 
6217                 case DIF_OP_LDTS: {
6218                         dtrace_dynvar_t *dvar;
6219                         dtrace_key_t *key;
6220 
6221                         id = DIF_INSTR_VAR(instr);
6222                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
6223                         id -= DIF_VAR_OTHER_UBASE;
6224                         v = &vstate->dtvs_tlocals[id];
6225 
6226                         key = &tupregs[DIF_DTR_NREGS];
6227                         key[0].dttk_value = (uint64_t)id;
6228                         key[0].dttk_size = 0;
6229                         DTRACE_TLS_THRKEY(key[1].dttk_value);
6230                         key[1].dttk_size = 0;
6231 
6232                         dvar = dtrace_dynvar(dstate, 2, key,
6233                             sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6234                             mstate, vstate);
6235 
6236                         if (dvar == NULL) {
6237                                 regs[rd] = 0;
6238                                 break;
6239                         }
6240 
6241                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6242                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6243                         } else {
6244                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6245                         }
6246 
6247                         break;
6248                 }
6249 
6250                 case DIF_OP_STTS: {
6251                         dtrace_dynvar_t *dvar;
6252                         dtrace_key_t *key;
6253 
6254                         id = DIF_INSTR_VAR(instr);
6255                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
6256                         id -= DIF_VAR_OTHER_UBASE;
6257                         VERIFY(id < vstate->dtvs_ntlocals);
6258 
6259                         key = &tupregs[DIF_DTR_NREGS];
6260                         key[0].dttk_value = (uint64_t)id;
6261                         key[0].dttk_size = 0;
6262                         DTRACE_TLS_THRKEY(key[1].dttk_value);
6263                         key[1].dttk_size = 0;
6264                         v = &vstate->dtvs_tlocals[id];
6265 
6266                         dvar = dtrace_dynvar(dstate, 2, key,
6267                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6268                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
6269                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
6270                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6271 
6272                         /*
6273                          * Given that we're storing to thread-local data,
6274                          * we need to flush our predicate cache.
6275                          */
6276                         curthread->t_predcache = NULL;
6277 
6278                         if (dvar == NULL)
6279                                 break;
6280 
6281                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6282                                 size_t lim;
6283 
6284                                 if (!dtrace_vcanload(
6285                                     (void *)(uintptr_t)regs[rd],
6286                                     &v->dtdv_type, &lim, mstate, vstate))
6287                                         break;
6288 
6289                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6290                                     dvar->dtdv_data, &v->dtdv_type, lim);
6291                         } else {
6292                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6293                         }
6294 
6295                         break;
6296                 }
6297 
6298                 case DIF_OP_SRA:
6299                         regs[rd] = (int64_t)regs[r1] >> regs[r2];
6300                         break;
6301 
6302                 case DIF_OP_CALL:
6303                         dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6304                             regs, tupregs, ttop, mstate, state);
6305                         break;
6306 
6307                 case DIF_OP_PUSHTR:
6308                         if (ttop == DIF_DTR_NREGS) {
6309                                 *flags |= CPU_DTRACE_TUPOFLOW;
6310                                 break;
6311                         }
6312 
6313                         if (r1 == DIF_TYPE_STRING) {
6314                                 /*
6315                                  * If this is a string type and the size is 0,
6316                                  * we'll use the system-wide default string
6317                                  * size.  Note that we are _not_ looking at
6318                                  * the value of the DTRACEOPT_STRSIZE option;
6319                                  * had this been set, we would expect to have
6320                                  * a non-zero size value in the "pushtr".
6321                                  */
6322                                 tupregs[ttop].dttk_size =
6323                                     dtrace_strlen((char *)(uintptr_t)regs[rd],
6324                                     regs[r2] ? regs[r2] :
6325                                     dtrace_strsize_default) + 1;
6326                         } else {
6327                                 if (regs[r2] > LONG_MAX) {
6328                                         *flags |= CPU_DTRACE_ILLOP;
6329                                         break;
6330                                 }
6331 
6332                                 tupregs[ttop].dttk_size = regs[r2];
6333                         }
6334 
6335                         tupregs[ttop++].dttk_value = regs[rd];
6336                         break;
6337 
6338                 case DIF_OP_PUSHTV:
6339                         if (ttop == DIF_DTR_NREGS) {
6340                                 *flags |= CPU_DTRACE_TUPOFLOW;
6341                                 break;
6342                         }
6343 
6344                         tupregs[ttop].dttk_value = regs[rd];
6345                         tupregs[ttop++].dttk_size = 0;
6346                         break;
6347 
6348                 case DIF_OP_POPTS:
6349                         if (ttop != 0)
6350                                 ttop--;
6351                         break;
6352 
6353                 case DIF_OP_FLUSHTS:
6354                         ttop = 0;
6355                         break;
6356 
6357                 case DIF_OP_LDGAA:
6358                 case DIF_OP_LDTAA: {
6359                         dtrace_dynvar_t *dvar;
6360                         dtrace_key_t *key = tupregs;
6361                         uint_t nkeys = ttop;
6362 
6363                         id = DIF_INSTR_VAR(instr);
6364                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
6365                         id -= DIF_VAR_OTHER_UBASE;
6366 
6367                         key[nkeys].dttk_value = (uint64_t)id;
6368                         key[nkeys++].dttk_size = 0;
6369 
6370                         if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6371                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6372                                 key[nkeys++].dttk_size = 0;
6373                                 VERIFY(id < vstate->dtvs_ntlocals);
6374                                 v = &vstate->dtvs_tlocals[id];
6375                         } else {
6376                                 VERIFY(id < vstate->dtvs_nglobals);
6377                                 v = &vstate->dtvs_globals[id]->dtsv_var;
6378                         }
6379 
6380                         dvar = dtrace_dynvar(dstate, nkeys, key,
6381                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6382                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
6383                             DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6384 
6385                         if (dvar == NULL) {
6386                                 regs[rd] = 0;
6387                                 break;
6388                         }
6389 
6390                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6391                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6392                         } else {
6393                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6394                         }
6395 
6396                         break;
6397                 }
6398 
6399                 case DIF_OP_STGAA:
6400                 case DIF_OP_STTAA: {
6401                         dtrace_dynvar_t *dvar;
6402                         dtrace_key_t *key = tupregs;
6403                         uint_t nkeys = ttop;
6404 
6405                         id = DIF_INSTR_VAR(instr);
6406                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
6407                         id -= DIF_VAR_OTHER_UBASE;
6408 
6409                         key[nkeys].dttk_value = (uint64_t)id;
6410                         key[nkeys++].dttk_size = 0;
6411 
6412                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6413                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6414                                 key[nkeys++].dttk_size = 0;
6415                                 VERIFY(id < vstate->dtvs_ntlocals);
6416                                 v = &vstate->dtvs_tlocals[id];
6417                         } else {
6418                                 VERIFY(id < vstate->dtvs_nglobals);
6419                                 v = &vstate->dtvs_globals[id]->dtsv_var;
6420                         }
6421 
6422                         dvar = dtrace_dynvar(dstate, nkeys, key,
6423                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6424                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
6425                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
6426                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6427 
6428                         if (dvar == NULL)
6429                                 break;
6430 
6431                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6432                                 size_t lim;
6433 
6434                                 if (!dtrace_vcanload(
6435                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6436                                     &lim, mstate, vstate))
6437                                         break;
6438 
6439                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6440                                     dvar->dtdv_data, &v->dtdv_type, lim);
6441                         } else {
6442                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6443                         }
6444 
6445                         break;
6446                 }
6447 
6448                 case DIF_OP_ALLOCS: {
6449                         uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6450                         size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6451 
6452                         /*
6453                          * Rounding up the user allocation size could have
6454                          * overflowed large, bogus allocations (like -1ULL) to
6455                          * 0.
6456                          */
6457                         if (size < regs[r1] ||
6458                             !DTRACE_INSCRATCH(mstate, size)) {
6459                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6460                                 regs[rd] = NULL;
6461                                 break;
6462                         }
6463 
6464                         dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6465                         mstate->dtms_scratch_ptr += size;
6466                         regs[rd] = ptr;
6467                         break;
6468                 }
6469 
6470                 case DIF_OP_COPYS:
6471                         if (!dtrace_canstore(regs[rd], regs[r2],
6472                             mstate, vstate)) {
6473                                 *flags |= CPU_DTRACE_BADADDR;
6474                                 *illval = regs[rd];
6475                                 break;
6476                         }
6477 
6478                         if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6479                                 break;
6480 
6481                         dtrace_bcopy((void *)(uintptr_t)regs[r1],
6482                             (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6483                         break;
6484 
6485                 case DIF_OP_STB:
6486                         if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6487                                 *flags |= CPU_DTRACE_BADADDR;
6488                                 *illval = regs[rd];
6489                                 break;
6490                         }
6491                         *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6492                         break;
6493 
6494                 case DIF_OP_STH:
6495                         if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6496                                 *flags |= CPU_DTRACE_BADADDR;
6497                                 *illval = regs[rd];
6498                                 break;
6499                         }
6500                         if (regs[rd] & 1) {
6501                                 *flags |= CPU_DTRACE_BADALIGN;
6502                                 *illval = regs[rd];
6503                                 break;
6504                         }
6505                         *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6506                         break;
6507 
6508                 case DIF_OP_STW:
6509                         if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6510                                 *flags |= CPU_DTRACE_BADADDR;
6511                                 *illval = regs[rd];
6512                                 break;
6513                         }
6514                         if (regs[rd] & 3) {
6515                                 *flags |= CPU_DTRACE_BADALIGN;
6516                                 *illval = regs[rd];
6517                                 break;
6518                         }
6519                         *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6520                         break;
6521 
6522                 case DIF_OP_STX:
6523                         if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6524                                 *flags |= CPU_DTRACE_BADADDR;
6525                                 *illval = regs[rd];
6526                                 break;
6527                         }
6528                         if (regs[rd] & 7) {
6529                                 *flags |= CPU_DTRACE_BADALIGN;
6530                                 *illval = regs[rd];
6531                                 break;
6532                         }
6533                         *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6534                         break;
6535                 }
6536         }
6537 
6538         if (!(*flags & CPU_DTRACE_FAULT))
6539                 return (rval);
6540 
6541         mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6542         mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6543 
6544         return (0);
6545 }
6546 
6547 static void
6548 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6549 {
6550         dtrace_probe_t *probe = ecb->dte_probe;
6551         dtrace_provider_t *prov = probe->dtpr_provider;
6552         char c[DTRACE_FULLNAMELEN + 80], *str;
6553         char *msg = "dtrace: breakpoint action at probe ";
6554         char *ecbmsg = " (ecb ";
6555         uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6556         uintptr_t val = (uintptr_t)ecb;
6557         int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6558 
6559         if (dtrace_destructive_disallow)
6560                 return;
6561 
6562         /*
6563          * It's impossible to be taking action on the NULL probe.
6564          */
6565         ASSERT(probe != NULL);
6566 
6567         /*
6568          * This is a poor man's (destitute man's?) sprintf():  we want to
6569          * print the provider name, module name, function name and name of
6570          * the probe, along with the hex address of the ECB with the breakpoint
6571          * action -- all of which we must place in the character buffer by
6572          * hand.
6573          */
6574         while (*msg != '\0')
6575                 c[i++] = *msg++;
6576 
6577         for (str = prov->dtpv_name; *str != '\0'; str++)
6578                 c[i++] = *str;
6579         c[i++] = ':';
6580 
6581         for (str = probe->dtpr_mod; *str != '\0'; str++)
6582                 c[i++] = *str;
6583         c[i++] = ':';
6584 
6585         for (str = probe->dtpr_func; *str != '\0'; str++)
6586                 c[i++] = *str;
6587         c[i++] = ':';
6588 
6589         for (str = probe->dtpr_name; *str != '\0'; str++)
6590                 c[i++] = *str;
6591 
6592         while (*ecbmsg != '\0')
6593                 c[i++] = *ecbmsg++;
6594 
6595         while (shift >= 0) {
6596                 mask = (uintptr_t)0xf << shift;
6597 
6598                 if (val >= ((uintptr_t)1 << shift))
6599                         c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6600                 shift -= 4;
6601         }
6602 
6603         c[i++] = ')';
6604         c[i] = '\0';
6605 
6606         debug_enter(c);
6607 }
6608 
6609 static void
6610 dtrace_action_panic(dtrace_ecb_t *ecb)
6611 {
6612         dtrace_probe_t *probe = ecb->dte_probe;
6613 
6614         /*
6615          * It's impossible to be taking action on the NULL probe.
6616          */
6617         ASSERT(probe != NULL);
6618 
6619         if (dtrace_destructive_disallow)
6620                 return;
6621 
6622         if (dtrace_panicked != NULL)
6623                 return;
6624 
6625         if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6626                 return;
6627 
6628         /*
6629          * We won the right to panic.  (We want to be sure that only one
6630          * thread calls panic() from dtrace_probe(), and that panic() is
6631          * called exactly once.)
6632          */
6633         dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6634             probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6635             probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6636 }
6637 
6638 static void
6639 dtrace_action_raise(uint64_t sig)
6640 {
6641         if (dtrace_destructive_disallow)
6642                 return;
6643 
6644         if (sig >= NSIG) {
6645                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6646                 return;
6647         }
6648 
6649         /*
6650          * raise() has a queue depth of 1 -- we ignore all subsequent
6651          * invocations of the raise() action.
6652          */
6653         if (curthread->t_dtrace_sig == 0)
6654                 curthread->t_dtrace_sig = (uint8_t)sig;
6655 
6656         curthread->t_sig_check = 1;
6657         aston(curthread);
6658 }
6659 
6660 static void
6661 dtrace_action_stop(void)
6662 {
6663         if (dtrace_destructive_disallow)
6664                 return;
6665 
6666         if (!curthread->t_dtrace_stop) {
6667                 curthread->t_dtrace_stop = 1;
6668                 curthread->t_sig_check = 1;
6669                 aston(curthread);
6670         }
6671 }
6672 
6673 static void
6674 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
6675 {
6676         hrtime_t now;
6677         volatile uint16_t *flags;
6678         cpu_t *cpu = CPU;
6679 
6680         if (dtrace_destructive_disallow)
6681                 return;
6682 
6683         flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
6684 
6685         now = dtrace_gethrtime();
6686 
6687         if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6688                 /*
6689                  * We need to advance the mark to the current time.
6690                  */
6691                 cpu->cpu_dtrace_chillmark = now;
6692                 cpu->cpu_dtrace_chilled = 0;
6693         }
6694 
6695         /*
6696          * Now check to see if the requested chill time would take us over
6697          * the maximum amount of time allowed in the chill interval.  (Or
6698          * worse, if the calculation itself induces overflow.)
6699          */
6700         if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
6701             cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6702                 *flags |= CPU_DTRACE_ILLOP;
6703                 return;
6704         }
6705 
6706         while (dtrace_gethrtime() - now < val)
6707                 continue;
6708 
6709         /*
6710          * Normally, we assure that the value of the variable "timestamp" does
6711          * not change within an ECB.  The presence of chill() represents an
6712          * exception to this rule, however.
6713          */
6714         mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
6715         cpu->cpu_dtrace_chilled += val;
6716 }
6717 
6718 static void
6719 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
6720     uint64_t *buf, uint64_t arg)
6721 {
6722         int nframes = DTRACE_USTACK_NFRAMES(arg);
6723         int strsize = DTRACE_USTACK_STRSIZE(arg);
6724         uint64_t *pcs = &buf[1], *fps;
6725         char *str = (char *)&pcs[nframes];
6726         int size, offs = 0, i, j;
6727         size_t rem;
6728         uintptr_t old = mstate->dtms_scratch_ptr, saved;
6729         uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6730         char *sym;
6731 
6732         /*
6733          * Should be taking a faster path if string space has not been
6734          * allocated.
6735          */
6736         ASSERT(strsize != 0);
6737 
6738         /*
6739          * We will first allocate some temporary space for the frame pointers.
6740          */
6741         fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6742         size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
6743             (nframes * sizeof (uint64_t));
6744 
6745         if (!DTRACE_INSCRATCH(mstate, size)) {
6746                 /*
6747                  * Not enough room for our frame pointers -- need to indicate
6748                  * that we ran out of scratch space.
6749                  */
6750                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6751                 return;
6752         }
6753 
6754         mstate->dtms_scratch_ptr += size;
6755         saved = mstate->dtms_scratch_ptr;
6756 
6757         /*
6758          * Now get a stack with both program counters and frame pointers.
6759          */
6760         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6761         dtrace_getufpstack(buf, fps, nframes + 1);
6762         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6763 
6764         /*
6765          * If that faulted, we're cooked.
6766          */
6767         if (*flags & CPU_DTRACE_FAULT)
6768                 goto out;
6769 
6770         /*
6771          * Now we want to walk up the stack, calling the USTACK helper.  For
6772          * each iteration, we restore the scratch pointer.
6773          */
6774         for (i = 0; i < nframes; i++) {
6775                 mstate->dtms_scratch_ptr = saved;
6776 
6777                 if (offs >= strsize)
6778                         break;
6779 
6780                 sym = (char *)(uintptr_t)dtrace_helper(
6781                     DTRACE_HELPER_ACTION_USTACK,
6782                     mstate, state, pcs[i], fps[i]);
6783 
6784                 /*
6785                  * If we faulted while running the helper, we're going to
6786                  * clear the fault and null out the corresponding string.
6787                  */
6788                 if (*flags & CPU_DTRACE_FAULT) {
6789                         *flags &= ~CPU_DTRACE_FAULT;
6790                         str[offs++] = '\0';
6791                         continue;
6792                 }
6793 
6794                 if (sym == NULL) {
6795                         str[offs++] = '\0';
6796                         continue;
6797                 }
6798 
6799                 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate,
6800                     &(state->dts_vstate))) {
6801                         str[offs++] = '\0';
6802                         continue;
6803                 }
6804 
6805                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6806 
6807                 /*
6808                  * Now copy in the string that the helper returned to us.
6809                  */
6810                 for (j = 0; offs + j < strsize && j < rem; j++) {
6811                         if ((str[offs + j] = sym[j]) == '\0')
6812                                 break;
6813                 }
6814 
6815                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6816 
6817                 offs += j + 1;
6818         }
6819 
6820         if (offs >= strsize) {
6821                 /*
6822                  * If we didn't have room for all of the strings, we don't
6823                  * abort processing -- this needn't be a fatal error -- but we
6824                  * still want to increment a counter (dts_stkstroverflows) to
6825                  * allow this condition to be warned about.  (If this is from
6826                  * a jstack() action, it is easily tuned via jstackstrsize.)
6827                  */
6828                 dtrace_error(&state->dts_stkstroverflows);
6829         }
6830 
6831         while (offs < strsize)
6832                 str[offs++] = '\0';
6833 
6834 out:
6835         mstate->dtms_scratch_ptr = old;
6836 }
6837 
6838 static void
6839 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
6840     size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
6841 {
6842         volatile uint16_t *flags;
6843         uint64_t val = *valp;
6844         size_t valoffs = *valoffsp;
6845 
6846         flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6847         ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
6848 
6849         /*
6850          * If this is a string, we're going to only load until we find the zero
6851          * byte -- after which we'll store zero bytes.
6852          */
6853         if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
6854                 char c = '\0' + 1;
6855                 size_t s;
6856 
6857                 for (s = 0; s < size; s++) {
6858                         if (c != '\0' && dtkind == DIF_TF_BYREF) {
6859                                 c = dtrace_load8(val++);
6860                         } else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
6861                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6862                                 c = dtrace_fuword8((void *)(uintptr_t)val++);
6863                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6864                                 if (*flags & CPU_DTRACE_FAULT)
6865                                         break;
6866                         }
6867 
6868                         DTRACE_STORE(uint8_t, tomax, valoffs++, c);
6869 
6870                         if (c == '\0' && intuple)
6871                                 break;
6872                 }
6873         } else {
6874                 uint8_t c;
6875                 while (valoffs < end) {
6876                         if (dtkind == DIF_TF_BYREF) {
6877                                 c = dtrace_load8(val++);
6878                         } else if (dtkind == DIF_TF_BYUREF) {
6879                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6880                                 c = dtrace_fuword8((void *)(uintptr_t)val++);
6881                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6882                                 if (*flags & CPU_DTRACE_FAULT)
6883                                         break;
6884                         }
6885 
6886                         DTRACE_STORE(uint8_t, tomax,
6887                             valoffs++, c);
6888                 }
6889         }
6890 
6891         *valp = val;
6892         *valoffsp = valoffs;
6893 }
6894 
6895 /*
6896  * If you're looking for the epicenter of DTrace, you just found it.  This
6897  * is the function called by the provider to fire a probe -- from which all
6898  * subsequent probe-context DTrace activity emanates.
6899  */
6900 void
6901 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6902     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6903 {
6904         processorid_t cpuid;
6905         dtrace_icookie_t cookie;
6906         dtrace_probe_t *probe;
6907         dtrace_mstate_t mstate;
6908         dtrace_ecb_t *ecb;
6909         dtrace_action_t *act;
6910         intptr_t offs;
6911         size_t size;
6912         int vtime, onintr;
6913         volatile uint16_t *flags;
6914         hrtime_t now, end;
6915 
6916         /*
6917          * Kick out immediately if this CPU is still being born (in which case
6918          * curthread will be set to -1) or the current thread can't allow
6919          * probes in its current context.
6920          */
6921         if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6922                 return;
6923 
6924         cookie = dtrace_interrupt_disable();
6925         probe = dtrace_probes[id - 1];
6926         cpuid = CPU->cpu_id;
6927         onintr = CPU_ON_INTR(CPU);
6928 
6929         CPU->cpu_dtrace_probes++;
6930 
6931         if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6932             probe->dtpr_predcache == curthread->t_predcache) {
6933                 /*
6934                  * We have hit in the predicate cache; we know that
6935                  * this predicate would evaluate to be false.
6936                  */
6937                 dtrace_interrupt_enable(cookie);
6938                 return;
6939         }
6940 
6941         if (panic_quiesce) {
6942                 /*
6943                  * We don't trace anything if we're panicking.
6944                  */
6945                 dtrace_interrupt_enable(cookie);
6946                 return;
6947         }
6948 
6949         now = mstate.dtms_timestamp = dtrace_gethrtime();
6950         mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6951         vtime = dtrace_vtime_references != 0;
6952 
6953         if (vtime && curthread->t_dtrace_start)
6954                 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6955 
6956         mstate.dtms_difo = NULL;
6957         mstate.dtms_probe = probe;
6958         mstate.dtms_strtok = NULL;
6959         mstate.dtms_arg[0] = arg0;
6960         mstate.dtms_arg[1] = arg1;
6961         mstate.dtms_arg[2] = arg2;
6962         mstate.dtms_arg[3] = arg3;
6963         mstate.dtms_arg[4] = arg4;
6964 
6965         flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6966 
6967         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6968                 dtrace_predicate_t *pred = ecb->dte_predicate;
6969                 dtrace_state_t *state = ecb->dte_state;
6970                 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6971                 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6972                 dtrace_vstate_t *vstate = &state->dts_vstate;
6973                 dtrace_provider_t *prov = probe->dtpr_provider;
6974                 uint64_t tracememsize = 0;
6975                 int committed = 0;
6976                 caddr_t tomax;
6977 
6978                 /*
6979                  * A little subtlety with the following (seemingly innocuous)
6980                  * declaration of the automatic 'val':  by looking at the
6981                  * code, you might think that it could be declared in the
6982                  * action processing loop, below.  (That is, it's only used in
6983                  * the action processing loop.)  However, it must be declared
6984                  * out of that scope because in the case of DIF expression
6985                  * arguments to aggregating actions, one iteration of the
6986                  * action loop will use the last iteration's value.
6987                  */
6988 #ifdef lint
6989                 uint64_t val = 0;
6990 #else
6991                 uint64_t val;
6992 #endif
6993 
6994                 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6995                 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC;
6996                 mstate.dtms_getf = NULL;
6997 
6998                 *flags &= ~CPU_DTRACE_ERROR;
6999 
7000                 if (prov == dtrace_provider) {
7001                         /*
7002                          * If dtrace itself is the provider of this probe,
7003                          * we're only going to continue processing the ECB if
7004                          * arg0 (the dtrace_state_t) is equal to the ECB's
7005                          * creating state.  (This prevents disjoint consumers
7006                          * from seeing one another's metaprobes.)
7007                          */
7008                         if (arg0 != (uint64_t)(uintptr_t)state)
7009                                 continue;
7010                 }
7011 
7012                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7013                         /*
7014                          * We're not currently active.  If our provider isn't
7015                          * the dtrace pseudo provider, we're not interested.
7016                          */
7017                         if (prov != dtrace_provider)
7018                                 continue;
7019 
7020                         /*
7021                          * Now we must further check if we are in the BEGIN
7022                          * probe.  If we are, we will only continue processing
7023                          * if we're still in WARMUP -- if one BEGIN enabling
7024                          * has invoked the exit() action, we don't want to
7025                          * evaluate subsequent BEGIN enablings.
7026                          */
7027                         if (probe->dtpr_id == dtrace_probeid_begin &&
7028                             state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7029                                 ASSERT(state->dts_activity ==
7030                                     DTRACE_ACTIVITY_DRAINING);
7031                                 continue;
7032                         }
7033                 }
7034 
7035                 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb))
7036                         continue;
7037 
7038                 if (now - state->dts_alive > dtrace_deadman_timeout) {
7039                         /*
7040                          * We seem to be dead.  Unless we (a) have kernel
7041                          * destructive permissions (b) have explicitly enabled
7042                          * destructive actions and (c) destructive actions have
7043                          * not been disabled, we're going to transition into
7044                          * the KILLED state, from which no further processing
7045                          * on this state will be performed.
7046                          */
7047                         if (!dtrace_priv_kernel_destructive(state) ||
7048                             !state->dts_cred.dcr_destructive ||
7049                             dtrace_destructive_disallow) {
7050                                 void *activity = &state->dts_activity;
7051                                 dtrace_activity_t current;
7052 
7053                                 do {
7054                                         current = state->dts_activity;
7055                                 } while (dtrace_cas32(activity, current,
7056                                     DTRACE_ACTIVITY_KILLED) != current);
7057 
7058                                 continue;
7059                         }
7060                 }
7061 
7062                 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7063                     ecb->dte_alignment, state, &mstate)) < 0)
7064                         continue;
7065 
7066                 tomax = buf->dtb_tomax;
7067                 ASSERT(tomax != NULL);
7068 
7069                 if (ecb->dte_size != 0) {
7070                         dtrace_rechdr_t dtrh;
7071                         if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7072                                 mstate.dtms_timestamp = dtrace_gethrtime();
7073                                 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7074                         }
7075                         ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7076                         dtrh.dtrh_epid = ecb->dte_epid;
7077                         DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7078                             mstate.dtms_timestamp);
7079                         *((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7080                 }
7081 
7082                 mstate.dtms_epid = ecb->dte_epid;
7083                 mstate.dtms_present |= DTRACE_MSTATE_EPID;
7084 
7085                 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7086                         mstate.dtms_access |= DTRACE_ACCESS_KERNEL;
7087 
7088                 if (pred != NULL) {
7089                         dtrace_difo_t *dp = pred->dtp_difo;
7090                         int rval;
7091 
7092                         rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7093 
7094                         if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7095                                 dtrace_cacheid_t cid = probe->dtpr_predcache;
7096 
7097                                 if (cid != DTRACE_CACHEIDNONE && !onintr) {
7098                                         /*
7099                                          * Update the predicate cache...
7100                                          */
7101                                         ASSERT(cid == pred->dtp_cacheid);
7102                                         curthread->t_predcache = cid;
7103                                 }
7104 
7105                                 continue;
7106                         }
7107                 }
7108 
7109                 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7110                     act != NULL; act = act->dta_next) {
7111                         size_t valoffs;
7112                         dtrace_difo_t *dp;
7113                         dtrace_recdesc_t *rec = &act->dta_rec;
7114 
7115                         size = rec->dtrd_size;
7116                         valoffs = offs + rec->dtrd_offset;
7117 
7118                         if (DTRACEACT_ISAGG(act->dta_kind)) {
7119                                 uint64_t v = 0xbad;
7120                                 dtrace_aggregation_t *agg;
7121 
7122                                 agg = (dtrace_aggregation_t *)act;
7123 
7124                                 if ((dp = act->dta_difo) != NULL)
7125                                         v = dtrace_dif_emulate(dp,
7126                                             &mstate, vstate, state);
7127 
7128                                 if (*flags & CPU_DTRACE_ERROR)
7129                                         continue;
7130 
7131                                 /*
7132                                  * Note that we always pass the expression
7133                                  * value from the previous iteration of the
7134                                  * action loop.  This value will only be used
7135                                  * if there is an expression argument to the
7136                                  * aggregating action, denoted by the
7137                                  * dtag_hasarg field.
7138                                  */
7139                                 dtrace_aggregate(agg, buf,
7140                                     offs, aggbuf, v, val);
7141                                 continue;
7142                         }
7143 
7144                         switch (act->dta_kind) {
7145                         case DTRACEACT_STOP:
7146                                 if (dtrace_priv_proc_destructive(state,
7147                                     &mstate))
7148                                         dtrace_action_stop();
7149                                 continue;
7150 
7151                         case DTRACEACT_BREAKPOINT:
7152                                 if (dtrace_priv_kernel_destructive(state))
7153                                         dtrace_action_breakpoint(ecb);
7154                                 continue;
7155 
7156                         case DTRACEACT_PANIC:
7157                                 if (dtrace_priv_kernel_destructive(state))
7158                                         dtrace_action_panic(ecb);
7159                                 continue;
7160 
7161                         case DTRACEACT_STACK:
7162                                 if (!dtrace_priv_kernel(state))
7163                                         continue;
7164 
7165                                 dtrace_getpcstack((pc_t *)(tomax + valoffs),
7166                                     size / sizeof (pc_t), probe->dtpr_aframes,
7167                                     DTRACE_ANCHORED(probe) ? NULL :
7168                                     (uint32_t *)arg0);
7169 
7170                                 continue;
7171 
7172                         case DTRACEACT_JSTACK:
7173                         case DTRACEACT_USTACK:
7174                                 if (!dtrace_priv_proc(state, &mstate))
7175                                         continue;
7176 
7177                                 /*
7178                                  * See comment in DIF_VAR_PID.
7179                                  */
7180                                 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7181                                     CPU_ON_INTR(CPU)) {
7182                                         int depth = DTRACE_USTACK_NFRAMES(
7183                                             rec->dtrd_arg) + 1;
7184 
7185                                         dtrace_bzero((void *)(tomax + valoffs),
7186                                             DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7187                                             + depth * sizeof (uint64_t));
7188 
7189                                         continue;
7190                                 }
7191 
7192                                 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7193                                     curproc->p_dtrace_helpers != NULL) {
7194                                         /*
7195                                          * This is the slow path -- we have
7196                                          * allocated string space, and we're
7197                                          * getting the stack of a process that
7198                                          * has helpers.  Call into a separate
7199                                          * routine to perform this processing.
7200                                          */
7201                                         dtrace_action_ustack(&mstate, state,
7202                                             (uint64_t *)(tomax + valoffs),
7203                                             rec->dtrd_arg);
7204                                         continue;
7205                                 }
7206 
7207                                 /*
7208                                  * Clear the string space, since there's no
7209                                  * helper to do it for us.
7210                                  */
7211                                 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) {
7212                                         int depth = DTRACE_USTACK_NFRAMES(
7213                                             rec->dtrd_arg);
7214                                         size_t strsize = DTRACE_USTACK_STRSIZE(
7215                                             rec->dtrd_arg);
7216                                         uint64_t *buf = (uint64_t *)(tomax +
7217                                             valoffs);
7218                                         void *strspace = &buf[depth + 1];
7219 
7220                                         dtrace_bzero(strspace,
7221                                             MIN(depth, strsize));
7222                                 }
7223 
7224                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7225                                 dtrace_getupcstack((uint64_t *)
7226                                     (tomax + valoffs),
7227                                     DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7228                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7229                                 continue;
7230 
7231                         default:
7232                                 break;
7233                         }
7234 
7235                         dp = act->dta_difo;
7236                         ASSERT(dp != NULL);
7237 
7238                         val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7239 
7240                         if (*flags & CPU_DTRACE_ERROR)
7241                                 continue;
7242 
7243                         switch (act->dta_kind) {
7244                         case DTRACEACT_SPECULATE: {
7245                                 dtrace_rechdr_t *dtrh;
7246 
7247                                 ASSERT(buf == &state->dts_buffer[cpuid]);
7248                                 buf = dtrace_speculation_buffer(state,
7249                                     cpuid, val);
7250 
7251                                 if (buf == NULL) {
7252                                         *flags |= CPU_DTRACE_DROP;
7253                                         continue;
7254                                 }
7255 
7256                                 offs = dtrace_buffer_reserve(buf,
7257                                     ecb->dte_needed, ecb->dte_alignment,
7258                                     state, NULL);
7259 
7260                                 if (offs < 0) {
7261                                         *flags |= CPU_DTRACE_DROP;
7262                                         continue;
7263                                 }
7264 
7265                                 tomax = buf->dtb_tomax;
7266                                 ASSERT(tomax != NULL);
7267 
7268                                 if (ecb->dte_size == 0)
7269                                         continue;
7270 
7271                                 ASSERT3U(ecb->dte_size, >=,
7272                                     sizeof (dtrace_rechdr_t));
7273                                 dtrh = ((void *)(tomax + offs));
7274                                 dtrh->dtrh_epid = ecb->dte_epid;
7275                                 /*
7276                                  * When the speculation is committed, all of
7277                                  * the records in the speculative buffer will
7278                                  * have their timestamps set to the commit
7279                                  * time.  Until then, it is set to a sentinel
7280                                  * value, for debugability.
7281                                  */
7282                                 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7283                                 continue;
7284                         }
7285 
7286                         case DTRACEACT_CHILL:
7287                                 if (dtrace_priv_kernel_destructive(state))
7288                                         dtrace_action_chill(&mstate, val);
7289                                 continue;
7290 
7291                         case DTRACEACT_RAISE:
7292                                 if (dtrace_priv_proc_destructive(state,
7293                                     &mstate))
7294                                         dtrace_action_raise(val);
7295                                 continue;
7296 
7297                         case DTRACEACT_COMMIT:
7298                                 ASSERT(!committed);
7299 
7300                                 /*
7301                                  * We need to commit our buffer state.
7302                                  */
7303                                 if (ecb->dte_size)
7304                                         buf->dtb_offset = offs + ecb->dte_size;
7305                                 buf = &state->dts_buffer[cpuid];
7306                                 dtrace_speculation_commit(state, cpuid, val);
7307                                 committed = 1;
7308                                 continue;
7309 
7310                         case DTRACEACT_DISCARD:
7311                                 dtrace_speculation_discard(state, cpuid, val);
7312                                 continue;
7313 
7314                         case DTRACEACT_DIFEXPR:
7315                         case DTRACEACT_LIBACT:
7316                         case DTRACEACT_PRINTF:
7317                         case DTRACEACT_PRINTA:
7318                         case DTRACEACT_SYSTEM:
7319                         case DTRACEACT_FREOPEN:
7320                         case DTRACEACT_TRACEMEM:
7321                                 break;
7322 
7323                         case DTRACEACT_TRACEMEM_DYNSIZE:
7324                                 tracememsize = val;
7325                                 break;
7326 
7327                         case DTRACEACT_SYM:
7328                         case DTRACEACT_MOD:
7329                                 if (!dtrace_priv_kernel(state))
7330                                         continue;
7331                                 break;
7332 
7333                         case DTRACEACT_USYM:
7334                         case DTRACEACT_UMOD:
7335                         case DTRACEACT_UADDR: {
7336                                 struct pid *pid = curthread->t_procp->p_pidp;
7337 
7338                                 if (!dtrace_priv_proc(state, &mstate))
7339                                         continue;
7340 
7341                                 DTRACE_STORE(uint64_t, tomax,
7342                                     valoffs, (uint64_t)pid->pid_id);
7343                                 DTRACE_STORE(uint64_t, tomax,
7344                                     valoffs + sizeof (uint64_t), val);
7345 
7346                                 continue;
7347                         }
7348 
7349                         case DTRACEACT_EXIT: {
7350                                 /*
7351                                  * For the exit action, we are going to attempt
7352                                  * to atomically set our activity to be
7353                                  * draining.  If this fails (either because
7354                                  * another CPU has beat us to the exit action,
7355                                  * or because our current activity is something
7356                                  * other than ACTIVE or WARMUP), we will
7357                                  * continue.  This assures that the exit action
7358                                  * can be successfully recorded at most once
7359                                  * when we're in the ACTIVE state.  If we're
7360                                  * encountering the exit() action while in
7361                                  * COOLDOWN, however, we want to honor the new
7362                                  * status code.  (We know that we're the only
7363                                  * thread in COOLDOWN, so there is no race.)
7364                                  */
7365                                 void *activity = &state->dts_activity;
7366                                 dtrace_activity_t current = state->dts_activity;
7367 
7368                                 if (current == DTRACE_ACTIVITY_COOLDOWN)
7369                                         break;
7370 
7371                                 if (current != DTRACE_ACTIVITY_WARMUP)
7372                                         current = DTRACE_ACTIVITY_ACTIVE;
7373 
7374                                 if (dtrace_cas32(activity, current,
7375                                     DTRACE_ACTIVITY_DRAINING) != current) {
7376                                         *flags |= CPU_DTRACE_DROP;
7377                                         continue;
7378                                 }
7379 
7380                                 break;
7381                         }
7382 
7383                         default:
7384                                 ASSERT(0);
7385                         }
7386 
7387                         if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7388                             dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7389                                 uintptr_t end = valoffs + size;
7390 
7391                                 if (tracememsize != 0 &&
7392                                     valoffs + tracememsize < end) {
7393                                         end = valoffs + tracememsize;
7394                                         tracememsize = 0;
7395                                 }
7396 
7397                                 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7398                                     !dtrace_vcanload((void *)(uintptr_t)val,
7399                                     &dp->dtdo_rtype, NULL, &mstate, vstate))
7400                                         continue;
7401 
7402                                 dtrace_store_by_ref(dp, tomax, size, &valoffs,
7403                                     &val, end, act->dta_intuple,
7404                                     dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7405                                     DIF_TF_BYREF: DIF_TF_BYUREF);
7406                                 continue;
7407                         }
7408 
7409                         switch (size) {
7410                         case 0:
7411                                 break;
7412 
7413                         case sizeof (uint8_t):
7414                                 DTRACE_STORE(uint8_t, tomax, valoffs, val);
7415                                 break;
7416                         case sizeof (uint16_t):
7417                                 DTRACE_STORE(uint16_t, tomax, valoffs, val);
7418                                 break;
7419                         case sizeof (uint32_t):
7420                                 DTRACE_STORE(uint32_t, tomax, valoffs, val);
7421                                 break;
7422                         case sizeof (uint64_t):
7423                                 DTRACE_STORE(uint64_t, tomax, valoffs, val);
7424                                 break;
7425                         default:
7426                                 /*
7427                                  * Any other size should have been returned by
7428                                  * reference, not by value.
7429                                  */
7430                                 ASSERT(0);
7431                                 break;
7432                         }
7433                 }
7434 
7435                 if (*flags & CPU_DTRACE_DROP)
7436                         continue;
7437 
7438                 if (*flags & CPU_DTRACE_FAULT) {
7439                         int ndx;
7440                         dtrace_action_t *err;
7441 
7442                         buf->dtb_errors++;
7443 
7444                         if (probe->dtpr_id == dtrace_probeid_error) {
7445                                 /*
7446                                  * There's nothing we can do -- we had an
7447                                  * error on the error probe.  We bump an
7448                                  * error counter to at least indicate that
7449                                  * this condition happened.
7450                                  */
7451                                 dtrace_error(&state->dts_dblerrors);
7452                                 continue;
7453                         }
7454 
7455                         if (vtime) {
7456                                 /*
7457                                  * Before recursing on dtrace_probe(), we
7458                                  * need to explicitly clear out our start
7459                                  * time to prevent it from being accumulated
7460                                  * into t_dtrace_vtime.
7461                                  */
7462                                 curthread->t_dtrace_start = 0;
7463                         }
7464 
7465                         /*
7466                          * Iterate over the actions to figure out which action
7467                          * we were processing when we experienced the error.
7468                          * Note that act points _past_ the faulting action; if
7469                          * act is ecb->dte_action, the fault was in the
7470                          * predicate, if it's ecb->dte_action->dta_next it's
7471                          * in action #1, and so on.
7472                          */
7473                         for (err = ecb->dte_action, ndx = 0;
7474                             err != act; err = err->dta_next, ndx++)
7475                                 continue;
7476 
7477                         dtrace_probe_error(state, ecb->dte_epid, ndx,
7478                             (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7479                             mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7480                             cpu_core[cpuid].cpuc_dtrace_illval);
7481 
7482                         continue;
7483                 }
7484 
7485                 if (!committed)
7486                         buf->dtb_offset = offs + ecb->dte_size;
7487         }
7488 
7489         end = dtrace_gethrtime();
7490         if (vtime)
7491                 curthread->t_dtrace_start = end;
7492 
7493         CPU->cpu_dtrace_nsec += end - now;
7494 
7495         dtrace_interrupt_enable(cookie);
7496 }
7497 
7498 /*
7499  * DTrace Probe Hashing Functions
7500  *
7501  * The functions in this section (and indeed, the functions in remaining
7502  * sections) are not _called_ from probe context.  (Any exceptions to this are
7503  * marked with a "Note:".)  Rather, they are called from elsewhere in the
7504  * DTrace framework to look-up probes in, add probes to and remove probes from
7505  * the DTrace probe hashes.  (Each probe is hashed by each element of the
7506  * probe tuple -- allowing for fast lookups, regardless of what was
7507  * specified.)
7508  */
7509 static uint_t
7510 dtrace_hash_str(char *p)
7511 {
7512         unsigned int g;
7513         uint_t hval = 0;
7514 
7515         while (*p) {
7516                 hval = (hval << 4) + *p++;
7517                 if ((g = (hval & 0xf0000000)) != 0)
7518                         hval ^= g >> 24;
7519                 hval &= ~g;
7520         }
7521         return (hval);
7522 }
7523 
7524 static dtrace_hash_t *
7525 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7526 {
7527         dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
7528 
7529         hash->dth_stroffs = stroffs;
7530         hash->dth_nextoffs = nextoffs;
7531         hash->dth_prevoffs = prevoffs;
7532 
7533         hash->dth_size = 1;
7534         hash->dth_mask = hash->dth_size - 1;
7535 
7536         hash->dth_tab = kmem_zalloc(hash->dth_size *
7537             sizeof (dtrace_hashbucket_t *), KM_SLEEP);
7538 
7539         return (hash);
7540 }
7541 
7542 static void
7543 dtrace_hash_destroy(dtrace_hash_t *hash)
7544 {
7545 #ifdef DEBUG
7546         int i;
7547 
7548         for (i = 0; i < hash->dth_size; i++)
7549                 ASSERT(hash->dth_tab[i] == NULL);
7550 #endif
7551 
7552         kmem_free(hash->dth_tab,
7553             hash->dth_size * sizeof (dtrace_hashbucket_t *));
7554         kmem_free(hash, sizeof (dtrace_hash_t));
7555 }
7556 
7557 static void
7558 dtrace_hash_resize(dtrace_hash_t *hash)
7559 {
7560         int size = hash->dth_size, i, ndx;
7561         int new_size = hash->dth_size << 1;
7562         int new_mask = new_size - 1;
7563         dtrace_hashbucket_t **new_tab, *bucket, *next;
7564 
7565         ASSERT((new_size & new_mask) == 0);
7566 
7567         new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
7568 
7569         for (i = 0; i < size; i++) {
7570                 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
7571                         dtrace_probe_t *probe = bucket->dthb_chain;
7572 
7573                         ASSERT(probe != NULL);
7574                         ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
7575 
7576                         next = bucket->dthb_next;
7577                         bucket->dthb_next = new_tab[ndx];
7578                         new_tab[ndx] = bucket;
7579                 }
7580         }
7581 
7582         kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
7583         hash->dth_tab = new_tab;
7584         hash->dth_size = new_size;
7585         hash->dth_mask = new_mask;
7586 }
7587 
7588 static void
7589 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
7590 {
7591         int hashval = DTRACE_HASHSTR(hash, new);
7592         int ndx = hashval & hash->dth_mask;
7593         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7594         dtrace_probe_t **nextp, **prevp;
7595 
7596         for (; bucket != NULL; bucket = bucket->dthb_next) {
7597                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
7598                         goto add;
7599         }
7600 
7601         if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
7602                 dtrace_hash_resize(hash);
7603                 dtrace_hash_add(hash, new);
7604                 return;
7605         }
7606 
7607         bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
7608         bucket->dthb_next = hash->dth_tab[ndx];
7609         hash->dth_tab[ndx] = bucket;
7610         hash->dth_nbuckets++;
7611 
7612 add:
7613         nextp = DTRACE_HASHNEXT(hash, new);
7614         ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
7615         *nextp = bucket->dthb_chain;
7616 
7617         if (bucket->dthb_chain != NULL) {
7618                 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
7619                 ASSERT(*prevp == NULL);
7620                 *prevp = new;
7621         }
7622 
7623         bucket->dthb_chain = new;
7624         bucket->dthb_len++;
7625 }
7626 
7627 static dtrace_probe_t *
7628 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
7629 {
7630         int hashval = DTRACE_HASHSTR(hash, template);
7631         int ndx = hashval & hash->dth_mask;
7632         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7633 
7634         for (; bucket != NULL; bucket = bucket->dthb_next) {
7635                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7636                         return (bucket->dthb_chain);
7637         }
7638 
7639         return (NULL);
7640 }
7641 
7642 static int
7643 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
7644 {
7645         int hashval = DTRACE_HASHSTR(hash, template);
7646         int ndx = hashval & hash->dth_mask;
7647         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7648 
7649         for (; bucket != NULL; bucket = bucket->dthb_next) {
7650                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7651                         return (bucket->dthb_len);
7652         }
7653 
7654         return (NULL);
7655 }
7656 
7657 static void
7658 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7659 {
7660         int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
7661         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7662 
7663         dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7664         dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
7665 
7666         /*
7667          * Find the bucket that we're removing this probe from.
7668          */
7669         for (; bucket != NULL; bucket = bucket->dthb_next) {
7670                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
7671                         break;
7672         }
7673 
7674         ASSERT(bucket != NULL);
7675 
7676         if (*prevp == NULL) {
7677                 if (*nextp == NULL) {
7678                         /*
7679                          * The removed probe was the only probe on this
7680                          * bucket; we need to remove the bucket.
7681                          */
7682                         dtrace_hashbucket_t *b = hash->dth_tab[ndx];
7683 
7684                         ASSERT(bucket->dthb_chain == probe);
7685                         ASSERT(b != NULL);
7686 
7687                         if (b == bucket) {
7688                                 hash->dth_tab[ndx] = bucket->dthb_next;
7689                         } else {
7690                                 while (b->dthb_next != bucket)
7691                                         b = b->dthb_next;
7692                                 b->dthb_next = bucket->dthb_next;
7693                         }
7694 
7695                         ASSERT(hash->dth_nbuckets > 0);
7696                         hash->dth_nbuckets--;
7697                         kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7698                         return;
7699                 }
7700 
7701                 bucket->dthb_chain = *nextp;
7702         } else {
7703                 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7704         }
7705 
7706         if (*nextp != NULL)
7707                 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7708 }
7709 
7710 /*
7711  * DTrace Utility Functions
7712  *
7713  * These are random utility functions that are _not_ called from probe context.
7714  */
7715 static int
7716 dtrace_badattr(const dtrace_attribute_t *a)
7717 {
7718         return (a->dtat_name > DTRACE_STABILITY_MAX ||
7719             a->dtat_data > DTRACE_STABILITY_MAX ||
7720             a->dtat_class > DTRACE_CLASS_MAX);
7721 }
7722 
7723 /*
7724  * Return a duplicate copy of a string.  If the specified string is NULL,
7725  * this function returns a zero-length string.
7726  */
7727 static char *
7728 dtrace_strdup(const char *str)
7729 {
7730         char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7731 
7732         if (str != NULL)
7733                 (void) strcpy(new, str);
7734 
7735         return (new);
7736 }
7737 
7738 #define DTRACE_ISALPHA(c)       \
7739         (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7740 
7741 static int
7742 dtrace_badname(const char *s)
7743 {
7744         char c;
7745 
7746         if (s == NULL || (c = *s++) == '\0')
7747                 return (0);
7748 
7749         if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7750                 return (1);
7751 
7752         while ((c = *s++) != '\0') {
7753                 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7754                     c != '-' && c != '_' && c != '.' && c != '`')
7755                         return (1);
7756         }
7757 
7758         return (0);
7759 }
7760 
7761 static void
7762 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7763 {
7764         uint32_t priv;
7765 
7766         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7767                 /*
7768                  * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7769                  */
7770                 priv = DTRACE_PRIV_ALL;
7771         } else {
7772                 *uidp = crgetuid(cr);
7773                 *zoneidp = crgetzoneid(cr);
7774 
7775                 priv = 0;
7776                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7777                         priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7778                 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7779                         priv |= DTRACE_PRIV_USER;
7780                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7781                         priv |= DTRACE_PRIV_PROC;
7782                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7783                         priv |= DTRACE_PRIV_OWNER;
7784                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7785                         priv |= DTRACE_PRIV_ZONEOWNER;
7786         }
7787 
7788         *privp = priv;
7789 }
7790 
7791 #ifdef DTRACE_ERRDEBUG
7792 static void
7793 dtrace_errdebug(const char *str)
7794 {
7795         int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
7796         int occupied = 0;
7797 
7798         mutex_enter(&dtrace_errlock);
7799         dtrace_errlast = str;
7800         dtrace_errthread = curthread;
7801 
7802         while (occupied++ < DTRACE_ERRHASHSZ) {
7803                 if (dtrace_errhash[hval].dter_msg == str) {
7804                         dtrace_errhash[hval].dter_count++;
7805                         goto out;
7806                 }
7807 
7808                 if (dtrace_errhash[hval].dter_msg != NULL) {
7809                         hval = (hval + 1) % DTRACE_ERRHASHSZ;
7810                         continue;
7811                 }
7812 
7813                 dtrace_errhash[hval].dter_msg = str;
7814                 dtrace_errhash[hval].dter_count = 1;
7815                 goto out;
7816         }
7817 
7818         panic("dtrace: undersized error hash");
7819 out:
7820         mutex_exit(&dtrace_errlock);
7821 }
7822 #endif
7823 
7824 /*
7825  * DTrace Matching Functions
7826  *
7827  * These functions are used to match groups of probes, given some elements of
7828  * a probe tuple, or some globbed expressions for elements of a probe tuple.
7829  */
7830 static int
7831 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7832     zoneid_t zoneid)
7833 {
7834         if (priv != DTRACE_PRIV_ALL) {
7835                 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7836                 uint32_t match = priv & ppriv;
7837 
7838                 /*
7839                  * No PRIV_DTRACE_* privileges...
7840                  */
7841                 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7842                     DTRACE_PRIV_KERNEL)) == 0)
7843                         return (0);
7844 
7845                 /*
7846                  * No matching bits, but there were bits to match...
7847                  */
7848                 if (match == 0 && ppriv != 0)
7849                         return (0);
7850 
7851                 /*
7852                  * Need to have permissions to the process, but don't...
7853                  */
7854                 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7855                     uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7856                         return (0);
7857                 }
7858 
7859                 /*
7860                  * Need to be in the same zone unless we possess the
7861                  * privilege to examine all zones.
7862                  */
7863                 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7864                     zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7865                         return (0);
7866                 }
7867         }
7868 
7869         return (1);
7870 }
7871 
7872 /*
7873  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7874  * consists of input pattern strings and an ops-vector to evaluate them.
7875  * This function returns >0 for match, 0 for no match, and <0 for error.
7876  */
7877 static int
7878 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7879     uint32_t priv, uid_t uid, zoneid_t zoneid)
7880 {
7881         dtrace_provider_t *pvp = prp->dtpr_provider;
7882         int rv;
7883 
7884         if (pvp->dtpv_defunct)
7885                 return (0);
7886 
7887         if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7888                 return (rv);
7889 
7890         if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7891                 return (rv);
7892 
7893         if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7894                 return (rv);
7895 
7896         if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7897                 return (rv);
7898 
7899         if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7900                 return (0);
7901 
7902         return (rv);
7903 }
7904 
7905 /*
7906  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7907  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7908  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7909  * In addition, all of the recursion cases except for '*' matching have been
7910  * unwound.  For '*', we still implement recursive evaluation, but a depth
7911  * counter is maintained and matching is aborted if we recurse too deep.
7912  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7913  */
7914 static int
7915 dtrace_match_glob(const char *s, const char *p, int depth)
7916 {
7917         const char *olds;
7918         char s1, c;
7919         int gs;
7920 
7921         if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7922                 return (-1);
7923 
7924         if (s == NULL)
7925                 s = ""; /* treat NULL as empty string */
7926 
7927 top:
7928         olds = s;
7929         s1 = *s++;
7930 
7931         if (p == NULL)
7932                 return (0);
7933 
7934         if ((c = *p++) == '\0')
7935                 return (s1 == '\0');
7936 
7937         switch (c) {
7938         case '[': {
7939                 int ok = 0, notflag = 0;
7940                 char lc = '\0';
7941 
7942                 if (s1 == '\0')
7943                         return (0);
7944 
7945                 if (*p == '!') {
7946                         notflag = 1;
7947                         p++;
7948                 }
7949 
7950                 if ((c = *p++) == '\0')
7951                         return (0);
7952 
7953                 do {
7954                         if (c == '-' && lc != '\0' && *p != ']') {
7955                                 if ((c = *p++) == '\0')
7956                                         return (0);
7957                                 if (c == '\\' && (c = *p++) == '\0')
7958                                         return (0);
7959 
7960                                 if (notflag) {
7961                                         if (s1 < lc || s1 > c)
7962                                                 ok++;
7963                                         else
7964                                                 return (0);
7965                                 } else if (lc <= s1 && s1 <= c)
7966                                         ok++;
7967 
7968                         } else if (c == '\\' && (c = *p++) == '\0')
7969                                 return (0);
7970 
7971                         lc = c; /* save left-hand 'c' for next iteration */
7972 
7973                         if (notflag) {
7974                                 if (s1 != c)
7975                                         ok++;
7976                                 else
7977                                         return (0);
7978                         } else if (s1 == c)
7979                                 ok++;
7980 
7981                         if ((c = *p++) == '\0')
7982                                 return (0);
7983 
7984                 } while (c != ']');
7985 
7986                 if (ok)
7987                         goto top;
7988 
7989                 return (0);
7990         }
7991 
7992         case '\\':
7993                 if ((c = *p++) == '\0')
7994                         return (0);
7995                 /*FALLTHRU*/
7996 
7997         default:
7998                 if (c != s1)
7999                         return (0);
8000                 /*FALLTHRU*/
8001 
8002         case '?':
8003                 if (s1 != '\0')
8004                         goto top;
8005                 return (0);
8006 
8007         case '*':
8008                 while (*p == '*')
8009                         p++; /* consecutive *'s are identical to a single one */
8010 
8011                 if (*p == '\0')
8012                         return (1);
8013 
8014                 for (s = olds; *s != '\0'; s++) {
8015                         if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8016                                 return (gs);
8017                 }
8018 
8019                 return (0);
8020         }
8021 }
8022 
8023 /*ARGSUSED*/
8024 static int
8025 dtrace_match_string(const char *s, const char *p, int depth)
8026 {
8027         return (s != NULL && strcmp(s, p) == 0);
8028 }
8029 
8030 /*ARGSUSED*/
8031 static int
8032 dtrace_match_nul(const char *s, const char *p, int depth)
8033 {
8034         return (1); /* always match the empty pattern */
8035 }
8036 
8037 /*ARGSUSED*/
8038 static int
8039 dtrace_match_nonzero(const char *s, const char *p, int depth)
8040 {
8041         return (s != NULL && s[0] != '\0');
8042 }
8043 
8044 static int
8045 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8046     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8047 {
8048         dtrace_probe_t template, *probe;
8049         dtrace_hash_t *hash = NULL;
8050         int len, rc, best = INT_MAX, nmatched = 0;
8051         dtrace_id_t i;
8052 
8053         ASSERT(MUTEX_HELD(&dtrace_lock));
8054 
8055         /*
8056          * If the probe ID is specified in the key, just lookup by ID and
8057          * invoke the match callback once if a matching probe is found.
8058          */
8059         if (pkp->dtpk_id != DTRACE_IDNONE) {
8060                 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8061                     dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8062                         if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
8063                                 return (DTRACE_MATCH_FAIL);
8064                         nmatched++;
8065                 }
8066                 return (nmatched);
8067         }
8068 
8069         template.dtpr_mod = (char *)pkp->dtpk_mod;
8070         template.dtpr_func = (char *)pkp->dtpk_func;
8071         template.dtpr_name = (char *)pkp->dtpk_name;
8072 
8073         /*
8074          * We want to find the most distinct of the module name, function
8075          * name, and name.  So for each one that is not a glob pattern or
8076          * empty string, we perform a lookup in the corresponding hash and
8077          * use the hash table with the fewest collisions to do our search.
8078          */
8079         if (pkp->dtpk_mmatch == &dtrace_match_string &&
8080             (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8081                 best = len;
8082                 hash = dtrace_bymod;
8083         }
8084 
8085         if (pkp->dtpk_fmatch == &dtrace_match_string &&
8086             (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8087                 best = len;
8088                 hash = dtrace_byfunc;
8089         }
8090 
8091         if (pkp->dtpk_nmatch == &dtrace_match_string &&
8092             (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8093                 best = len;
8094                 hash = dtrace_byname;
8095         }
8096 
8097         /*
8098          * If we did not select a hash table, iterate over every probe and
8099          * invoke our callback for each one that matches our input probe key.
8100          */
8101         if (hash == NULL) {
8102                 for (i = 0; i < dtrace_nprobes; i++) {
8103                         if ((probe = dtrace_probes[i]) == NULL ||
8104                             dtrace_match_probe(probe, pkp, priv, uid,
8105                             zoneid) <= 0)
8106                                 continue;
8107 
8108                         nmatched++;
8109 
8110                         if ((rc = (*matched)(probe, arg)) !=
8111                             DTRACE_MATCH_NEXT) {
8112                                 if (rc == DTRACE_MATCH_FAIL)
8113                                         return (DTRACE_MATCH_FAIL);
8114                                 break;
8115                         }
8116                 }
8117 
8118                 return (nmatched);
8119         }
8120 
8121         /*
8122          * If we selected a hash table, iterate over each probe of the same key
8123          * name and invoke the callback for every probe that matches the other
8124          * attributes of our input probe key.
8125          */
8126         for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8127             probe = *(DTRACE_HASHNEXT(hash, probe))) {
8128 
8129                 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8130                         continue;
8131 
8132                 nmatched++;
8133 
8134                 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
8135                         if (rc == DTRACE_MATCH_FAIL)
8136                                 return (DTRACE_MATCH_FAIL);
8137                         break;
8138                 }
8139         }
8140 
8141         return (nmatched);
8142 }
8143 
8144 /*
8145  * Return the function pointer dtrace_probecmp() should use to compare the
8146  * specified pattern with a string.  For NULL or empty patterns, we select
8147  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
8148  * For non-empty non-glob strings, we use dtrace_match_string().
8149  */
8150 static dtrace_probekey_f *
8151 dtrace_probekey_func(const char *p)
8152 {
8153         char c;
8154 
8155         if (p == NULL || *p == '\0')
8156                 return (&dtrace_match_nul);
8157 
8158         while ((c = *p++) != '\0') {
8159                 if (c == '[' || c == '?' || c == '*' || c == '\\')
8160                         return (&dtrace_match_glob);
8161         }
8162 
8163         return (&dtrace_match_string);
8164 }
8165 
8166 /*
8167  * Build a probe comparison key for use with dtrace_match_probe() from the
8168  * given probe description.  By convention, a null key only matches anchored
8169  * probes: if each field is the empty string, reset dtpk_fmatch to
8170  * dtrace_match_nonzero().
8171  */
8172 static void
8173 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8174 {
8175         pkp->dtpk_prov = pdp->dtpd_provider;
8176         pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8177 
8178         pkp->dtpk_mod = pdp->dtpd_mod;
8179         pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8180 
8181         pkp->dtpk_func = pdp->dtpd_func;
8182         pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8183 
8184         pkp->dtpk_name = pdp->dtpd_name;
8185         pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8186 
8187         pkp->dtpk_id = pdp->dtpd_id;
8188 
8189         if (pkp->dtpk_id == DTRACE_IDNONE &&
8190             pkp->dtpk_pmatch == &dtrace_match_nul &&
8191             pkp->dtpk_mmatch == &dtrace_match_nul &&
8192             pkp->dtpk_fmatch == &dtrace_match_nul &&
8193             pkp->dtpk_nmatch == &dtrace_match_nul)
8194                 pkp->dtpk_fmatch = &dtrace_match_nonzero;
8195 }
8196 
8197 /*
8198  * DTrace Provider-to-Framework API Functions
8199  *
8200  * These functions implement much of the Provider-to-Framework API, as
8201  * described in <sys/dtrace.h>.  The parts of the API not in this section are
8202  * the functions in the API for probe management (found below), and
8203  * dtrace_probe() itself (found above).
8204  */
8205 
8206 /*
8207  * Register the calling provider with the DTrace framework.  This should
8208  * generally be called by DTrace providers in their attach(9E) entry point.
8209  */
8210 int
8211 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8212     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8213 {
8214         dtrace_provider_t *provider;
8215 
8216         if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8217                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8218                     "arguments", name ? name : "<NULL>");
8219                 return (EINVAL);
8220         }
8221 
8222         if (name[0] == '\0' || dtrace_badname(name)) {
8223                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8224                     "provider name", name);
8225                 return (EINVAL);
8226         }
8227 
8228         if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8229             pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8230             pops->dtps_destroy == NULL ||
8231             ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8232                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8233                     "provider ops", name);
8234                 return (EINVAL);
8235         }
8236 
8237         if (dtrace_badattr(&pap->dtpa_provider) ||
8238             dtrace_badattr(&pap->dtpa_mod) ||
8239             dtrace_badattr(&pap->dtpa_func) ||
8240             dtrace_badattr(&pap->dtpa_name) ||
8241             dtrace_badattr(&pap->dtpa_args)) {
8242                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8243                     "provider attributes", name);
8244                 return (EINVAL);
8245         }
8246 
8247         if (priv & ~DTRACE_PRIV_ALL) {
8248                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8249                     "privilege attributes", name);
8250                 return (EINVAL);
8251         }
8252 
8253         if ((priv & DTRACE_PRIV_KERNEL) &&
8254             (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8255             pops->dtps_mode == NULL) {
8256                 cmn_err(CE_WARN, "failed to register provider '%s': need "
8257                     "dtps_mode() op for given privilege attributes", name);
8258                 return (EINVAL);
8259         }
8260 
8261         provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8262         provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8263         (void) strcpy(provider->dtpv_name, name);
8264 
8265         provider->dtpv_attr = *pap;
8266         provider->dtpv_priv.dtpp_flags = priv;
8267         if (cr != NULL) {
8268                 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8269                 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8270         }
8271         provider->dtpv_pops = *pops;
8272 
8273         if (pops->dtps_provide == NULL) {
8274                 ASSERT(pops->dtps_provide_module != NULL);
8275                 provider->dtpv_pops.dtps_provide =
8276                     (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
8277         }
8278 
8279         if (pops->dtps_provide_module == NULL) {
8280                 ASSERT(pops->dtps_provide != NULL);
8281                 provider->dtpv_pops.dtps_provide_module =
8282                     (void (*)(void *, struct modctl *))dtrace_nullop;
8283         }
8284 
8285         if (pops->dtps_suspend == NULL) {
8286                 ASSERT(pops->dtps_resume == NULL);
8287                 provider->dtpv_pops.dtps_suspend =
8288                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8289                 provider->dtpv_pops.dtps_resume =
8290                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8291         }
8292 
8293         provider->dtpv_arg = arg;
8294         *idp = (dtrace_provider_id_t)provider;
8295 
8296         if (pops == &dtrace_provider_ops) {
8297                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8298                 ASSERT(MUTEX_HELD(&dtrace_lock));
8299                 ASSERT(dtrace_anon.dta_enabling == NULL);
8300 
8301                 /*
8302                  * We make sure that the DTrace provider is at the head of
8303                  * the provider chain.
8304                  */
8305                 provider->dtpv_next = dtrace_provider;
8306                 dtrace_provider = provider;
8307                 return (0);
8308         }
8309 
8310         mutex_enter(&dtrace_provider_lock);
8311         mutex_enter(&dtrace_lock);
8312 
8313         /*
8314          * If there is at least one provider registered, we'll add this
8315          * provider after the first provider.
8316          */
8317         if (dtrace_provider != NULL) {
8318                 provider->dtpv_next = dtrace_provider->dtpv_next;
8319                 dtrace_provider->dtpv_next = provider;
8320         } else {
8321                 dtrace_provider = provider;
8322         }
8323 
8324         if (dtrace_retained != NULL) {
8325                 dtrace_enabling_provide(provider);
8326 
8327                 /*
8328                  * Now we need to call dtrace_enabling_matchall() -- which
8329                  * will acquire cpu_lock and dtrace_lock.  We therefore need
8330                  * to drop all of our locks before calling into it...
8331                  */
8332                 mutex_exit(&dtrace_lock);
8333                 mutex_exit(&dtrace_provider_lock);
8334                 dtrace_enabling_matchall();
8335 
8336                 return (0);
8337         }
8338 
8339         mutex_exit(&dtrace_lock);
8340         mutex_exit(&dtrace_provider_lock);
8341 
8342         return (0);
8343 }
8344 
8345 /*
8346  * Unregister the specified provider from the DTrace framework.  This should
8347  * generally be called by DTrace providers in their detach(9E) entry point.
8348  */
8349 int
8350 dtrace_unregister(dtrace_provider_id_t id)
8351 {
8352         dtrace_provider_t *old = (dtrace_provider_t *)id;
8353         dtrace_provider_t *prev = NULL;
8354         int i, self = 0, noreap = 0;
8355         dtrace_probe_t *probe, *first = NULL;
8356 
8357         if (old->dtpv_pops.dtps_enable ==
8358             (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
8359                 /*
8360                  * If DTrace itself is the provider, we're called with locks
8361                  * already held.
8362                  */
8363                 ASSERT(old == dtrace_provider);
8364                 ASSERT(dtrace_devi != NULL);
8365                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8366                 ASSERT(MUTEX_HELD(&dtrace_lock));
8367                 self = 1;
8368 
8369                 if (dtrace_provider->dtpv_next != NULL) {
8370                         /*
8371                          * There's another provider here; return failure.
8372                          */
8373                         return (EBUSY);
8374                 }
8375         } else {
8376                 mutex_enter(&dtrace_provider_lock);
8377                 mutex_enter(&mod_lock);
8378                 mutex_enter(&dtrace_lock);
8379         }
8380 
8381         /*
8382          * If anyone has /dev/dtrace open, or if there are anonymous enabled
8383          * probes, we refuse to let providers slither away, unless this
8384          * provider has already been explicitly invalidated.
8385          */
8386         if (!old->dtpv_defunct &&
8387             (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8388             dtrace_anon.dta_state->dts_necbs > 0))) {
8389                 if (!self) {
8390                         mutex_exit(&dtrace_lock);
8391                         mutex_exit(&mod_lock);
8392                         mutex_exit(&dtrace_provider_lock);
8393                 }
8394                 return (EBUSY);
8395         }
8396 
8397         /*
8398          * Attempt to destroy the probes associated with this provider.
8399          */
8400         for (i = 0; i < dtrace_nprobes; i++) {
8401                 if ((probe = dtrace_probes[i]) == NULL)
8402                         continue;
8403 
8404                 if (probe->dtpr_provider != old)
8405                         continue;
8406 
8407                 if (probe->dtpr_ecb == NULL)
8408                         continue;
8409 
8410                 /*
8411                  * If we are trying to unregister a defunct provider, and the
8412                  * provider was made defunct within the interval dictated by
8413                  * dtrace_unregister_defunct_reap, we'll (asynchronously)
8414                  * attempt to reap our enablings.  To denote that the provider
8415                  * should reattempt to unregister itself at some point in the
8416                  * future, we will return a differentiable error code (EAGAIN
8417                  * instead of EBUSY) in this case.
8418                  */
8419                 if (dtrace_gethrtime() - old->dtpv_defunct >
8420                     dtrace_unregister_defunct_reap)
8421                         noreap = 1;
8422 
8423                 if (!self) {
8424                         mutex_exit(&dtrace_lock);
8425                         mutex_exit(&mod_lock);
8426                         mutex_exit(&dtrace_provider_lock);
8427                 }
8428 
8429                 if (noreap)
8430                         return (EBUSY);
8431 
8432                 (void) taskq_dispatch(dtrace_taskq,
8433                     (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8434 
8435                 return (EAGAIN);
8436         }
8437 
8438         /*
8439          * All of the probes for this provider are disabled; we can safely
8440          * remove all of them from their hash chains and from the probe array.
8441          */
8442         for (i = 0; i < dtrace_nprobes; i++) {
8443                 if ((probe = dtrace_probes[i]) == NULL)
8444                         continue;
8445 
8446                 if (probe->dtpr_provider != old)
8447                         continue;
8448 
8449                 dtrace_probes[i] = NULL;
8450 
8451                 dtrace_hash_remove(dtrace_bymod, probe);
8452                 dtrace_hash_remove(dtrace_byfunc, probe);
8453                 dtrace_hash_remove(dtrace_byname, probe);
8454 
8455                 if (first == NULL) {
8456                         first = probe;
8457                         probe->dtpr_nextmod = NULL;
8458                 } else {
8459                         probe->dtpr_nextmod = first;
8460                         first = probe;
8461                 }
8462         }
8463 
8464         /*
8465          * The provider's probes have been removed from the hash chains and
8466          * from the probe array.  Now issue a dtrace_sync() to be sure that
8467          * everyone has cleared out from any probe array processing.
8468          */
8469         dtrace_sync();
8470 
8471         for (probe = first; probe != NULL; probe = first) {
8472                 first = probe->dtpr_nextmod;
8473 
8474                 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8475                     probe->dtpr_arg);
8476                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8477                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8478                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8479                 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8480                 kmem_free(probe, sizeof (dtrace_probe_t));
8481         }
8482 
8483         if ((prev = dtrace_provider) == old) {
8484                 ASSERT(self || dtrace_devi == NULL);
8485                 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8486                 dtrace_provider = old->dtpv_next;
8487         } else {
8488                 while (prev != NULL && prev->dtpv_next != old)
8489                         prev = prev->dtpv_next;
8490 
8491                 if (prev == NULL) {
8492                         panic("attempt to unregister non-existent "
8493                             "dtrace provider %p\n", (void *)id);
8494                 }
8495 
8496                 prev->dtpv_next = old->dtpv_next;
8497         }
8498 
8499         if (!self) {
8500                 mutex_exit(&dtrace_lock);
8501                 mutex_exit(&mod_lock);
8502                 mutex_exit(&dtrace_provider_lock);
8503         }
8504 
8505         kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8506         kmem_free(old, sizeof (dtrace_provider_t));
8507 
8508         return (0);
8509 }
8510 
8511 /*
8512  * Invalidate the specified provider.  All subsequent probe lookups for the
8513  * specified provider will fail, but its probes will not be removed.
8514  */
8515 void
8516 dtrace_invalidate(dtrace_provider_id_t id)
8517 {
8518         dtrace_provider_t *pvp = (dtrace_provider_t *)id;
8519 
8520         ASSERT(pvp->dtpv_pops.dtps_enable !=
8521             (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
8522 
8523         mutex_enter(&dtrace_provider_lock);
8524         mutex_enter(&dtrace_lock);
8525 
8526         pvp->dtpv_defunct = dtrace_gethrtime();
8527 
8528         mutex_exit(&dtrace_lock);
8529         mutex_exit(&dtrace_provider_lock);
8530 }
8531 
8532 /*
8533  * Indicate whether or not DTrace has attached.
8534  */
8535 int
8536 dtrace_attached(void)
8537 {
8538         /*
8539          * dtrace_provider will be non-NULL iff the DTrace driver has
8540          * attached.  (It's non-NULL because DTrace is always itself a
8541          * provider.)
8542          */
8543         return (dtrace_provider != NULL);
8544 }
8545 
8546 /*
8547  * Remove all the unenabled probes for the given provider.  This function is
8548  * not unlike dtrace_unregister(), except that it doesn't remove the provider
8549  * -- just as many of its associated probes as it can.
8550  */
8551 int
8552 dtrace_condense(dtrace_provider_id_t id)
8553 {
8554         dtrace_provider_t *prov = (dtrace_provider_t *)id;
8555         int i;
8556         dtrace_probe_t *probe;
8557 
8558         /*
8559          * Make sure this isn't the dtrace provider itself.
8560          */
8561         ASSERT(prov->dtpv_pops.dtps_enable !=
8562             (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
8563 
8564         mutex_enter(&dtrace_provider_lock);
8565         mutex_enter(&dtrace_lock);
8566 
8567         /*
8568          * Attempt to destroy the probes associated with this provider.
8569          */
8570         for (i = 0; i < dtrace_nprobes; i++) {
8571                 if ((probe = dtrace_probes[i]) == NULL)
8572                         continue;
8573 
8574                 if (probe->dtpr_provider != prov)
8575                         continue;
8576 
8577                 if (probe->dtpr_ecb != NULL)
8578                         continue;
8579 
8580                 dtrace_probes[i] = NULL;
8581 
8582                 dtrace_hash_remove(dtrace_bymod, probe);
8583                 dtrace_hash_remove(dtrace_byfunc, probe);
8584                 dtrace_hash_remove(dtrace_byname, probe);
8585 
8586                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
8587                     probe->dtpr_arg);
8588                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8589                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8590                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8591                 kmem_free(probe, sizeof (dtrace_probe_t));
8592                 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
8593         }
8594 
8595         mutex_exit(&dtrace_lock);
8596         mutex_exit(&dtrace_provider_lock);
8597 
8598         return (0);
8599 }
8600 
8601 /*
8602  * DTrace Probe Management Functions
8603  *
8604  * The functions in this section perform the DTrace probe management,
8605  * including functions to create probes, look-up probes, and call into the
8606  * providers to request that probes be provided.  Some of these functions are
8607  * in the Provider-to-Framework API; these functions can be identified by the
8608  * fact that they are not declared "static".
8609  */
8610 
8611 /*
8612  * Create a probe with the specified module name, function name, and name.
8613  */
8614 dtrace_id_t
8615 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
8616     const char *func, const char *name, int aframes, void *arg)
8617 {
8618         dtrace_probe_t *probe, **probes;
8619         dtrace_provider_t *provider = (dtrace_provider_t *)prov;
8620         dtrace_id_t id;
8621 
8622         if (provider == dtrace_provider) {
8623                 ASSERT(MUTEX_HELD(&dtrace_lock));
8624         } else {
8625                 mutex_enter(&dtrace_lock);
8626         }
8627 
8628         id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
8629             VM_BESTFIT | VM_SLEEP);
8630         probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
8631 
8632         probe->dtpr_id = id;
8633         probe->dtpr_gen = dtrace_probegen++;
8634         probe->dtpr_mod = dtrace_strdup(mod);
8635         probe->dtpr_func = dtrace_strdup(func);
8636         probe->dtpr_name = dtrace_strdup(name);
8637         probe->dtpr_arg = arg;
8638         probe->dtpr_aframes = aframes;
8639         probe->dtpr_provider = provider;
8640 
8641         dtrace_hash_add(dtrace_bymod, probe);
8642         dtrace_hash_add(dtrace_byfunc, probe);
8643         dtrace_hash_add(dtrace_byname, probe);
8644 
8645         if (id - 1 >= dtrace_nprobes) {
8646                 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
8647                 size_t nsize = osize << 1;
8648 
8649                 if (nsize == 0) {
8650                         ASSERT(osize == 0);
8651                         ASSERT(dtrace_probes == NULL);
8652                         nsize = sizeof (dtrace_probe_t *);
8653                 }
8654 
8655                 probes = kmem_zalloc(nsize, KM_SLEEP);
8656 
8657                 if (dtrace_probes == NULL) {
8658                         ASSERT(osize == 0);
8659                         dtrace_probes = probes;
8660                         dtrace_nprobes = 1;
8661                 } else {
8662                         dtrace_probe_t **oprobes = dtrace_probes;
8663 
8664                         bcopy(oprobes, probes, osize);
8665                         dtrace_membar_producer();
8666                         dtrace_probes = probes;
8667 
8668                         dtrace_sync();
8669 
8670                         /*
8671                          * All CPUs are now seeing the new probes array; we can
8672                          * safely free the old array.
8673                          */
8674                         kmem_free(oprobes, osize);
8675                         dtrace_nprobes <<= 1;
8676                 }
8677 
8678                 ASSERT(id - 1 < dtrace_nprobes);
8679         }
8680 
8681         ASSERT(dtrace_probes[id - 1] == NULL);
8682         dtrace_probes[id - 1] = probe;
8683 
8684         if (provider != dtrace_provider)
8685                 mutex_exit(&dtrace_lock);
8686 
8687         return (id);
8688 }
8689 
8690 static dtrace_probe_t *
8691 dtrace_probe_lookup_id(dtrace_id_t id)
8692 {
8693         ASSERT(MUTEX_HELD(&dtrace_lock));
8694 
8695         if (id == 0 || id > dtrace_nprobes)
8696                 return (NULL);
8697 
8698         return (dtrace_probes[id - 1]);
8699 }
8700 
8701 static int
8702 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8703 {
8704         *((dtrace_id_t *)arg) = probe->dtpr_id;
8705 
8706         return (DTRACE_MATCH_DONE);
8707 }
8708 
8709 /*
8710  * Look up a probe based on provider and one or more of module name, function
8711  * name and probe name.
8712  */
8713 dtrace_id_t
8714 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
8715     const char *func, const char *name)
8716 {
8717         dtrace_probekey_t pkey;
8718         dtrace_id_t id;
8719         int match;
8720 
8721         pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
8722         pkey.dtpk_pmatch = &dtrace_match_string;
8723         pkey.dtpk_mod = mod;
8724         pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
8725         pkey.dtpk_func = func;
8726         pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
8727         pkey.dtpk_name = name;
8728         pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
8729         pkey.dtpk_id = DTRACE_IDNONE;
8730 
8731         mutex_enter(&dtrace_lock);
8732         match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
8733             dtrace_probe_lookup_match, &id);
8734         mutex_exit(&dtrace_lock);
8735 
8736         ASSERT(match == 1 || match == 0);
8737         return (match ? id : 0);
8738 }
8739 
8740 /*
8741  * Returns the probe argument associated with the specified probe.
8742  */
8743 void *
8744 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8745 {
8746         dtrace_probe_t *probe;
8747         void *rval = NULL;
8748 
8749         mutex_enter(&dtrace_lock);
8750 
8751         if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8752             probe->dtpr_provider == (dtrace_provider_t *)id)
8753                 rval = probe->dtpr_arg;
8754 
8755         mutex_exit(&dtrace_lock);
8756 
8757         return (rval);
8758 }
8759 
8760 /*
8761  * Copy a probe into a probe description.
8762  */
8763 static void
8764 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8765 {
8766         bzero(pdp, sizeof (dtrace_probedesc_t));
8767         pdp->dtpd_id = prp->dtpr_id;
8768 
8769         (void) strncpy(pdp->dtpd_provider,
8770             prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8771 
8772         (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8773         (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8774         (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8775 }
8776 
8777 /*
8778  * Called to indicate that a probe -- or probes -- should be provided by a
8779  * specfied provider.  If the specified description is NULL, the provider will
8780  * be told to provide all of its probes.  (This is done whenever a new
8781  * consumer comes along, or whenever a retained enabling is to be matched.) If
8782  * the specified description is non-NULL, the provider is given the
8783  * opportunity to dynamically provide the specified probe, allowing providers
8784  * to support the creation of probes on-the-fly.  (So-called _autocreated_
8785  * probes.)  If the provider is NULL, the operations will be applied to all
8786  * providers; if the provider is non-NULL the operations will only be applied
8787  * to the specified provider.  The dtrace_provider_lock must be held, and the
8788  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8789  * will need to grab the dtrace_lock when it reenters the framework through
8790  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8791  */
8792 static void
8793 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8794 {
8795         struct modctl *ctl;
8796         int all = 0;
8797 
8798         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8799 
8800         if (prv == NULL) {
8801                 all = 1;
8802                 prv = dtrace_provider;
8803         }
8804 
8805         do {
8806                 /*
8807                  * First, call the blanket provide operation.
8808                  */
8809                 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8810 
8811                 /*
8812                  * Now call the per-module provide operation.  We will grab
8813                  * mod_lock to prevent the list from being modified.  Note
8814                  * that this also prevents the mod_busy bits from changing.
8815                  * (mod_busy can only be changed with mod_lock held.)
8816                  */
8817                 mutex_enter(&mod_lock);
8818 
8819                 ctl = &modules;
8820                 do {
8821                         if (ctl->mod_busy || ctl->mod_mp == NULL)
8822                                 continue;
8823 
8824                         prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8825 
8826                 } while ((ctl = ctl->mod_next) != &modules);
8827 
8828                 mutex_exit(&mod_lock);
8829         } while (all && (prv = prv->dtpv_next) != NULL);
8830 }
8831 
8832 /*
8833  * Iterate over each probe, and call the Framework-to-Provider API function
8834  * denoted by offs.
8835  */
8836 static void
8837 dtrace_probe_foreach(uintptr_t offs)
8838 {
8839         dtrace_provider_t *prov;
8840         void (*func)(void *, dtrace_id_t, void *);
8841         dtrace_probe_t *probe;
8842         dtrace_icookie_t cookie;
8843         int i;
8844 
8845         /*
8846          * We disable interrupts to walk through the probe array.  This is
8847          * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8848          * won't see stale data.
8849          */
8850         cookie = dtrace_interrupt_disable();
8851 
8852         for (i = 0; i < dtrace_nprobes; i++) {
8853                 if ((probe = dtrace_probes[i]) == NULL)
8854                         continue;
8855 
8856                 if (probe->dtpr_ecb == NULL) {
8857                         /*
8858                          * This probe isn't enabled -- don't call the function.
8859                          */
8860                         continue;
8861                 }
8862 
8863                 prov = probe->dtpr_provider;
8864                 func = *((void(**)(void *, dtrace_id_t, void *))
8865                     ((uintptr_t)&prov->dtpv_pops + offs));
8866 
8867                 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8868         }
8869 
8870         dtrace_interrupt_enable(cookie);
8871 }
8872 
8873 static int
8874 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8875 {
8876         dtrace_probekey_t pkey;
8877         uint32_t priv;
8878         uid_t uid;
8879         zoneid_t zoneid;
8880 
8881         ASSERT(MUTEX_HELD(&dtrace_lock));
8882         dtrace_ecb_create_cache = NULL;
8883 
8884         if (desc == NULL) {
8885                 /*
8886                  * If we're passed a NULL description, we're being asked to
8887                  * create an ECB with a NULL probe.
8888                  */
8889                 (void) dtrace_ecb_create_enable(NULL, enab);
8890                 return (0);
8891         }
8892 
8893         dtrace_probekey(desc, &pkey);
8894         dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8895             &priv, &uid, &zoneid);
8896 
8897         return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8898             enab));
8899 }
8900 
8901 /*
8902  * DTrace Helper Provider Functions
8903  */
8904 static void
8905 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8906 {
8907         attr->dtat_name = DOF_ATTR_NAME(dofattr);
8908         attr->dtat_data = DOF_ATTR_DATA(dofattr);
8909         attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8910 }
8911 
8912 static void
8913 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8914     const dof_provider_t *dofprov, char *strtab)
8915 {
8916         hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8917         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8918             dofprov->dofpv_provattr);
8919         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8920             dofprov->dofpv_modattr);
8921         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8922             dofprov->dofpv_funcattr);
8923         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8924             dofprov->dofpv_nameattr);
8925         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8926             dofprov->dofpv_argsattr);
8927 }
8928 
8929 static void
8930 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8931 {
8932         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8933         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8934         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8935         dof_provider_t *provider;
8936         dof_probe_t *probe;
8937         uint32_t *off, *enoff;
8938         uint8_t *arg;
8939         char *strtab;
8940         uint_t i, nprobes;
8941         dtrace_helper_provdesc_t dhpv;
8942         dtrace_helper_probedesc_t dhpb;
8943         dtrace_meta_t *meta = dtrace_meta_pid;
8944         dtrace_mops_t *mops = &meta->dtm_mops;
8945         void *parg;
8946 
8947         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8948         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8949             provider->dofpv_strtab * dof->dofh_secsize);
8950         prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8951             provider->dofpv_probes * dof->dofh_secsize);
8952         arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8953             provider->dofpv_prargs * dof->dofh_secsize);
8954         off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8955             provider->dofpv_proffs * dof->dofh_secsize);
8956 
8957         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8958         off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8959         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8960         enoff = NULL;
8961 
8962         /*
8963          * See dtrace_helper_provider_validate().
8964          */
8965         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8966             provider->dofpv_prenoffs != DOF_SECT_NONE) {
8967                 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8968                     provider->dofpv_prenoffs * dof->dofh_secsize);
8969                 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8970         }
8971 
8972         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8973 
8974         /*
8975          * Create the provider.
8976          */
8977         dtrace_dofprov2hprov(&dhpv, provider, strtab);
8978 
8979         if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8980                 return;
8981 
8982         meta->dtm_count++;
8983 
8984         /*
8985          * Create the probes.
8986          */
8987         for (i = 0; i < nprobes; i++) {
8988                 probe = (dof_probe_t *)(uintptr_t)(daddr +
8989                     prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8990 
8991                 dhpb.dthpb_mod = dhp->dofhp_mod;
8992                 dhpb.dthpb_func = strtab + probe->dofpr_func;
8993                 dhpb.dthpb_name = strtab + probe->dofpr_name;
8994                 dhpb.dthpb_base = probe->dofpr_addr;
8995                 dhpb.dthpb_offs = off + probe->dofpr_offidx;
8996                 dhpb.dthpb_noffs = probe->dofpr_noffs;
8997                 if (enoff != NULL) {
8998                         dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8999                         dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9000                 } else {
9001                         dhpb.dthpb_enoffs = NULL;
9002                         dhpb.dthpb_nenoffs = 0;
9003                 }
9004                 dhpb.dthpb_args = arg + probe->dofpr_argidx;
9005                 dhpb.dthpb_nargc = probe->dofpr_nargc;
9006                 dhpb.dthpb_xargc = probe->dofpr_xargc;
9007                 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9008                 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9009 
9010                 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9011         }
9012 }
9013 
9014 static void
9015 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9016 {
9017         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9018         dof_hdr_t *dof = (dof_hdr_t *)daddr;
9019         int i;
9020 
9021         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9022 
9023         for (i = 0; i < dof->dofh_secnum; i++) {
9024                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9025                     dof->dofh_secoff + i * dof->dofh_secsize);
9026 
9027                 if (sec->dofs_type != DOF_SECT_PROVIDER)
9028                         continue;
9029 
9030                 dtrace_helper_provide_one(dhp, sec, pid);
9031         }
9032 
9033         /*
9034          * We may have just created probes, so we must now rematch against
9035          * any retained enablings.  Note that this call will acquire both
9036          * cpu_lock and dtrace_lock; the fact that we are holding
9037          * dtrace_meta_lock now is what defines the ordering with respect to
9038          * these three locks.
9039          */
9040         dtrace_enabling_matchall();
9041 }
9042 
9043 static void
9044 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9045 {
9046         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9047         dof_hdr_t *dof = (dof_hdr_t *)daddr;
9048         dof_sec_t *str_sec;
9049         dof_provider_t *provider;
9050         char *strtab;
9051         dtrace_helper_provdesc_t dhpv;
9052         dtrace_meta_t *meta = dtrace_meta_pid;
9053         dtrace_mops_t *mops = &meta->dtm_mops;
9054 
9055         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9056         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9057             provider->dofpv_strtab * dof->dofh_secsize);
9058 
9059         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9060 
9061         /*
9062          * Create the provider.
9063          */
9064         dtrace_dofprov2hprov(&dhpv, provider, strtab);
9065 
9066         mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9067 
9068         meta->dtm_count--;
9069 }
9070 
9071 static void
9072 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9073 {
9074         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9075         dof_hdr_t *dof = (dof_hdr_t *)daddr;
9076         int i;
9077 
9078         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9079 
9080         for (i = 0; i < dof->dofh_secnum; i++) {
9081                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9082                     dof->dofh_secoff + i * dof->dofh_secsize);
9083 
9084                 if (sec->dofs_type != DOF_SECT_PROVIDER)
9085                         continue;
9086 
9087                 dtrace_helper_provider_remove_one(dhp, sec, pid);
9088         }
9089 }
9090 
9091 /*
9092  * DTrace Meta Provider-to-Framework API Functions
9093  *
9094  * These functions implement the Meta Provider-to-Framework API, as described
9095  * in <sys/dtrace.h>.
9096  */
9097 int
9098 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9099     dtrace_meta_provider_id_t *idp)
9100 {
9101         dtrace_meta_t *meta;
9102         dtrace_helpers_t *help, *next;
9103         int i;
9104 
9105         *idp = DTRACE_METAPROVNONE;
9106 
9107         /*
9108          * We strictly don't need the name, but we hold onto it for
9109          * debuggability. All hail error queues!
9110          */
9111         if (name == NULL) {
9112                 cmn_err(CE_WARN, "failed to register meta-provider: "
9113                     "invalid name");
9114                 return (EINVAL);
9115         }
9116 
9117         if (mops == NULL ||
9118             mops->dtms_create_probe == NULL ||
9119             mops->dtms_provide_pid == NULL ||
9120             mops->dtms_remove_pid == NULL) {
9121                 cmn_err(CE_WARN, "failed to register meta-register %s: "
9122                     "invalid ops", name);
9123                 return (EINVAL);
9124         }
9125 
9126         meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9127         meta->dtm_mops = *mops;
9128         meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9129         (void) strcpy(meta->dtm_name, name);
9130         meta->dtm_arg = arg;
9131 
9132         mutex_enter(&dtrace_meta_lock);
9133         mutex_enter(&dtrace_lock);
9134 
9135         if (dtrace_meta_pid != NULL) {
9136                 mutex_exit(&dtrace_lock);
9137                 mutex_exit(&dtrace_meta_lock);
9138                 cmn_err(CE_WARN, "failed to register meta-register %s: "
9139                     "user-land meta-provider exists", name);
9140                 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9141                 kmem_free(meta, sizeof (dtrace_meta_t));
9142                 return (EINVAL);
9143         }
9144 
9145         dtrace_meta_pid = meta;
9146         *idp = (dtrace_meta_provider_id_t)meta;
9147 
9148         /*
9149          * If there are providers and probes ready to go, pass them
9150          * off to the new meta provider now.
9151          */
9152 
9153         help = dtrace_deferred_pid;
9154         dtrace_deferred_pid = NULL;
9155 
9156         mutex_exit(&dtrace_lock);
9157 
9158         while (help != NULL) {
9159                 for (i = 0; i < help->dthps_nprovs; i++) {
9160                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9161                             help->dthps_pid);
9162                 }
9163 
9164                 next = help->dthps_next;
9165                 help->dthps_next = NULL;
9166                 help->dthps_prev = NULL;
9167                 help->dthps_deferred = 0;
9168                 help = next;
9169         }
9170 
9171         mutex_exit(&dtrace_meta_lock);
9172 
9173         return (0);
9174 }
9175 
9176 int
9177 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9178 {
9179         dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9180 
9181         mutex_enter(&dtrace_meta_lock);
9182         mutex_enter(&dtrace_lock);
9183 
9184         if (old == dtrace_meta_pid) {
9185                 pp = &dtrace_meta_pid;
9186         } else {
9187                 panic("attempt to unregister non-existent "
9188                     "dtrace meta-provider %p\n", (void *)old);
9189         }
9190 
9191         if (old->dtm_count != 0) {
9192                 mutex_exit(&dtrace_lock);
9193                 mutex_exit(&dtrace_meta_lock);
9194                 return (EBUSY);
9195         }
9196 
9197         *pp = NULL;
9198 
9199         mutex_exit(&dtrace_lock);
9200         mutex_exit(&dtrace_meta_lock);
9201 
9202         kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9203         kmem_free(old, sizeof (dtrace_meta_t));
9204 
9205         return (0);
9206 }
9207 
9208 
9209 /*
9210  * DTrace DIF Object Functions
9211  */
9212 static int
9213 dtrace_difo_err(uint_t pc, const char *format, ...)
9214 {
9215         if (dtrace_err_verbose) {
9216                 va_list alist;
9217 
9218                 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
9219                 va_start(alist, format);
9220                 (void) vuprintf(format, alist);
9221                 va_end(alist);
9222         }
9223 
9224 #ifdef DTRACE_ERRDEBUG
9225         dtrace_errdebug(format);
9226 #endif
9227         return (1);
9228 }
9229 
9230 /*
9231  * Validate a DTrace DIF object by checking the IR instructions.  The following
9232  * rules are currently enforced by dtrace_difo_validate():
9233  *
9234  * 1. Each instruction must have a valid opcode
9235  * 2. Each register, string, variable, or subroutine reference must be valid
9236  * 3. No instruction can modify register %r0 (must be zero)
9237  * 4. All instruction reserved bits must be set to zero
9238  * 5. The last instruction must be a "ret" instruction
9239  * 6. All branch targets must reference a valid instruction _after_ the branch
9240  */
9241 static int
9242 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9243     cred_t *cr)
9244 {
9245         int err = 0, i;
9246         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9247         int kcheckload;
9248         uint_t pc;
9249         int maxglobal = -1, maxlocal = -1, maxtlocal = -1;
9250 
9251         kcheckload = cr == NULL ||
9252             (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9253 
9254         dp->dtdo_destructive = 0;
9255 
9256         for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9257                 dif_instr_t instr = dp->dtdo_buf[pc];
9258 
9259                 uint_t r1 = DIF_INSTR_R1(instr);
9260                 uint_t r2 = DIF_INSTR_R2(instr);
9261                 uint_t rd = DIF_INSTR_RD(instr);
9262                 uint_t rs = DIF_INSTR_RS(instr);
9263                 uint_t label = DIF_INSTR_LABEL(instr);
9264                 uint_t v = DIF_INSTR_VAR(instr);
9265                 uint_t subr = DIF_INSTR_SUBR(instr);
9266                 uint_t type = DIF_INSTR_TYPE(instr);
9267                 uint_t op = DIF_INSTR_OP(instr);
9268 
9269                 switch (op) {
9270                 case DIF_OP_OR:
9271                 case DIF_OP_XOR:
9272                 case DIF_OP_AND:
9273                 case DIF_OP_SLL:
9274                 case DIF_OP_SRL:
9275                 case DIF_OP_SRA:
9276                 case DIF_OP_SUB:
9277                 case DIF_OP_ADD:
9278                 case DIF_OP_MUL:
9279                 case DIF_OP_SDIV:
9280                 case DIF_OP_UDIV:
9281                 case DIF_OP_SREM:
9282                 case DIF_OP_UREM:
9283                 case DIF_OP_COPYS:
9284                         if (r1 >= nregs)
9285                                 err += efunc(pc, "invalid register %u\n", r1);
9286                         if (r2 >= nregs)
9287                                 err += efunc(pc, "invalid register %u\n", r2);
9288                         if (rd >= nregs)
9289                                 err += efunc(pc, "invalid register %u\n", rd);
9290                         if (rd == 0)
9291                                 err += efunc(pc, "cannot write to %r0\n");
9292                         break;
9293                 case DIF_OP_NOT:
9294                 case DIF_OP_MOV:
9295                 case DIF_OP_ALLOCS:
9296                         if (r1 >= nregs)
9297                                 err += efunc(pc, "invalid register %u\n", r1);
9298                         if (r2 != 0)
9299                                 err += efunc(pc, "non-zero reserved bits\n");
9300                         if (rd >= nregs)
9301                                 err += efunc(pc, "invalid register %u\n", rd);
9302                         if (rd == 0)
9303                                 err += efunc(pc, "cannot write to %r0\n");
9304                         break;
9305                 case DIF_OP_LDSB:
9306                 case DIF_OP_LDSH:
9307                 case DIF_OP_LDSW:
9308                 case DIF_OP_LDUB:
9309                 case DIF_OP_LDUH:
9310                 case DIF_OP_LDUW:
9311                 case DIF_OP_LDX:
9312                         if (r1 >= nregs)
9313                                 err += efunc(pc, "invalid register %u\n", r1);
9314                         if (r2 != 0)
9315                                 err += efunc(pc, "non-zero reserved bits\n");
9316                         if (rd >= nregs)
9317                                 err += efunc(pc, "invalid register %u\n", rd);
9318                         if (rd == 0)
9319                                 err += efunc(pc, "cannot write to %r0\n");
9320                         if (kcheckload)
9321                                 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9322                                     DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9323                         break;
9324                 case DIF_OP_RLDSB:
9325                 case DIF_OP_RLDSH:
9326                 case DIF_OP_RLDSW:
9327                 case DIF_OP_RLDUB:
9328                 case DIF_OP_RLDUH:
9329                 case DIF_OP_RLDUW:
9330                 case DIF_OP_RLDX:
9331                         if (r1 >= nregs)
9332                                 err += efunc(pc, "invalid register %u\n", r1);
9333                         if (r2 != 0)
9334                                 err += efunc(pc, "non-zero reserved bits\n");
9335                         if (rd >= nregs)
9336                                 err += efunc(pc, "invalid register %u\n", rd);
9337                         if (rd == 0)
9338                                 err += efunc(pc, "cannot write to %r0\n");
9339                         break;
9340                 case DIF_OP_ULDSB:
9341                 case DIF_OP_ULDSH:
9342                 case DIF_OP_ULDSW:
9343                 case DIF_OP_ULDUB:
9344                 case DIF_OP_ULDUH:
9345                 case DIF_OP_ULDUW:
9346                 case DIF_OP_ULDX:
9347                         if (r1 >= nregs)
9348                                 err += efunc(pc, "invalid register %u\n", r1);
9349                         if (r2 != 0)
9350                                 err += efunc(pc, "non-zero reserved bits\n");
9351                         if (rd >= nregs)
9352                                 err += efunc(pc, "invalid register %u\n", rd);
9353                         if (rd == 0)
9354                                 err += efunc(pc, "cannot write to %r0\n");
9355                         break;
9356                 case DIF_OP_STB:
9357                 case DIF_OP_STH:
9358                 case DIF_OP_STW:
9359                 case DIF_OP_STX:
9360                         if (r1 >= nregs)
9361                                 err += efunc(pc, "invalid register %u\n", r1);
9362                         if (r2 != 0)
9363                                 err += efunc(pc, "non-zero reserved bits\n");
9364                         if (rd >= nregs)
9365                                 err += efunc(pc, "invalid register %u\n", rd);
9366                         if (rd == 0)
9367                                 err += efunc(pc, "cannot write to 0 address\n");
9368                         break;
9369                 case DIF_OP_CMP:
9370                 case DIF_OP_SCMP:
9371                         if (r1 >= nregs)
9372                                 err += efunc(pc, "invalid register %u\n", r1);
9373                         if (r2 >= nregs)
9374                                 err += efunc(pc, "invalid register %u\n", r2);
9375                         if (rd != 0)
9376                                 err += efunc(pc, "non-zero reserved bits\n");
9377                         break;
9378                 case DIF_OP_TST:
9379                         if (r1 >= nregs)
9380                                 err += efunc(pc, "invalid register %u\n", r1);
9381                         if (r2 != 0 || rd != 0)
9382                                 err += efunc(pc, "non-zero reserved bits\n");
9383                         break;
9384                 case DIF_OP_BA:
9385                 case DIF_OP_BE:
9386                 case DIF_OP_BNE:
9387                 case DIF_OP_BG:
9388                 case DIF_OP_BGU:
9389                 case DIF_OP_BGE:
9390                 case DIF_OP_BGEU:
9391                 case DIF_OP_BL:
9392                 case DIF_OP_BLU:
9393                 case DIF_OP_BLE:
9394                 case DIF_OP_BLEU:
9395                         if (label >= dp->dtdo_len) {
9396                                 err += efunc(pc, "invalid branch target %u\n",
9397                                     label);
9398                         }
9399                         if (label <= pc) {
9400                                 err += efunc(pc, "backward branch to %u\n",
9401                                     label);
9402                         }
9403                         break;
9404                 case DIF_OP_RET:
9405                         if (r1 != 0 || r2 != 0)
9406                                 err += efunc(pc, "non-zero reserved bits\n");
9407                         if (rd >= nregs)
9408                                 err += efunc(pc, "invalid register %u\n", rd);
9409                         break;
9410                 case DIF_OP_NOP:
9411                 case DIF_OP_POPTS:
9412                 case DIF_OP_FLUSHTS:
9413                         if (r1 != 0 || r2 != 0 || rd != 0)
9414                                 err += efunc(pc, "non-zero reserved bits\n");
9415                         break;
9416                 case DIF_OP_SETX:
9417                         if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9418                                 err += efunc(pc, "invalid integer ref %u\n",
9419                                     DIF_INSTR_INTEGER(instr));
9420                         }
9421                         if (rd >= nregs)
9422                                 err += efunc(pc, "invalid register %u\n", rd);
9423                         if (rd == 0)
9424                                 err += efunc(pc, "cannot write to %r0\n");
9425                         break;
9426                 case DIF_OP_SETS:
9427                         if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9428                                 err += efunc(pc, "invalid string ref %u\n",
9429                                     DIF_INSTR_STRING(instr));
9430                         }
9431                         if (rd >= nregs)
9432                                 err += efunc(pc, "invalid register %u\n", rd);
9433                         if (rd == 0)
9434                                 err += efunc(pc, "cannot write to %r0\n");
9435                         break;
9436                 case DIF_OP_LDGA:
9437                 case DIF_OP_LDTA:
9438                         if (r1 > DIF_VAR_ARRAY_MAX)
9439                                 err += efunc(pc, "invalid array %u\n", r1);
9440                         if (r2 >= nregs)
9441                                 err += efunc(pc, "invalid register %u\n", r2);
9442                         if (rd >= nregs)
9443                                 err += efunc(pc, "invalid register %u\n", rd);
9444                         if (rd == 0)
9445                                 err += efunc(pc, "cannot write to %r0\n");
9446                         break;
9447                 case DIF_OP_STGA:
9448                         if (r1 > DIF_VAR_ARRAY_MAX)
9449                                 err += efunc(pc, "invalid array %u\n", r1);
9450                         if (r2 >= nregs)
9451                                 err += efunc(pc, "invalid register %u\n", r2);
9452                         if (rd >= nregs)
9453                                 err += efunc(pc, "invalid register %u\n", rd);
9454                         dp->dtdo_destructive = 1;
9455                         break;
9456                 case DIF_OP_LDGS:
9457                 case DIF_OP_LDTS:
9458                 case DIF_OP_LDLS:
9459                 case DIF_OP_LDGAA:
9460                 case DIF_OP_LDTAA:
9461                         if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9462                                 err += efunc(pc, "invalid variable %u\n", v);
9463                         if (rd >= nregs)
9464                                 err += efunc(pc, "invalid register %u\n", rd);
9465                         if (rd == 0)
9466                                 err += efunc(pc, "cannot write to %r0\n");
9467                         break;
9468                 case DIF_OP_STGS:
9469                 case DIF_OP_STTS:
9470                 case DIF_OP_STLS:
9471                 case DIF_OP_STGAA:
9472                 case DIF_OP_STTAA:
9473                         if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9474                                 err += efunc(pc, "invalid variable %u\n", v);
9475                         if (rs >= nregs)
9476                                 err += efunc(pc, "invalid register %u\n", rd);
9477                         break;
9478                 case DIF_OP_CALL:
9479                         if (subr > DIF_SUBR_MAX)
9480                                 err += efunc(pc, "invalid subr %u\n", subr);
9481                         if (rd >= nregs)
9482                                 err += efunc(pc, "invalid register %u\n", rd);
9483                         if (rd == 0)
9484                                 err += efunc(pc, "cannot write to %r0\n");
9485 
9486                         if (subr == DIF_SUBR_COPYOUT ||
9487                             subr == DIF_SUBR_COPYOUTSTR) {
9488                                 dp->dtdo_destructive = 1;
9489                         }
9490 
9491                         if (subr == DIF_SUBR_GETF) {
9492                                 /*
9493                                  * If we have a getf() we need to record that
9494                                  * in our state.  Note that our state can be
9495                                  * NULL if this is a helper -- but in that
9496                                  * case, the call to getf() is itself illegal,
9497                                  * and will be caught (slightly later) when
9498                                  * the helper is validated.
9499                                  */
9500                                 if (vstate->dtvs_state != NULL)
9501                                         vstate->dtvs_state->dts_getf++;
9502                         }
9503 
9504                         break;
9505                 case DIF_OP_PUSHTR:
9506                         if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9507                                 err += efunc(pc, "invalid ref type %u\n", type);
9508                         if (r2 >= nregs)
9509                                 err += efunc(pc, "invalid register %u\n", r2);
9510                         if (rs >= nregs)
9511                                 err += efunc(pc, "invalid register %u\n", rs);
9512                         break;
9513                 case DIF_OP_PUSHTV:
9514                         if (type != DIF_TYPE_CTF)
9515                                 err += efunc(pc, "invalid val type %u\n", type);
9516                         if (r2 >= nregs)
9517                                 err += efunc(pc, "invalid register %u\n", r2);
9518                         if (rs >= nregs)
9519                                 err += efunc(pc, "invalid register %u\n", rs);
9520                         break;
9521                 default:
9522                         err += efunc(pc, "invalid opcode %u\n",
9523                             DIF_INSTR_OP(instr));
9524                 }
9525         }
9526 
9527         if (dp->dtdo_len != 0 &&
9528             DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9529                 err += efunc(dp->dtdo_len - 1,
9530                     "expected 'ret' as last DIF instruction\n");
9531         }
9532 
9533         if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
9534                 /*
9535                  * If we're not returning by reference, the size must be either
9536                  * 0 or the size of one of the base types.
9537                  */
9538                 switch (dp->dtdo_rtype.dtdt_size) {
9539                 case 0:
9540                 case sizeof (uint8_t):
9541                 case sizeof (uint16_t):
9542                 case sizeof (uint32_t):
9543                 case sizeof (uint64_t):
9544                         break;
9545 
9546                 default:
9547                         err += efunc(dp->dtdo_len - 1, "bad return size\n");
9548                 }
9549         }
9550 
9551         for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9552                 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
9553                 dtrace_diftype_t *vt, *et;
9554                 uint_t id, ndx;
9555 
9556                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
9557                     v->dtdv_scope != DIFV_SCOPE_THREAD &&
9558                     v->dtdv_scope != DIFV_SCOPE_LOCAL) {
9559                         err += efunc(i, "unrecognized variable scope %d\n",
9560                             v->dtdv_scope);
9561                         break;
9562                 }
9563 
9564                 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
9565                     v->dtdv_kind != DIFV_KIND_SCALAR) {
9566                         err += efunc(i, "unrecognized variable type %d\n",
9567                             v->dtdv_kind);
9568                         break;
9569                 }
9570 
9571                 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
9572                         err += efunc(i, "%d exceeds variable id limit\n", id);
9573                         break;
9574                 }
9575 
9576                 if (id < DIF_VAR_OTHER_UBASE)
9577                         continue;
9578 
9579                 /*
9580                  * For user-defined variables, we need to check that this
9581                  * definition is identical to any previous definition that we
9582                  * encountered.
9583                  */
9584                 ndx = id - DIF_VAR_OTHER_UBASE;
9585 
9586                 switch (v->dtdv_scope) {
9587                 case DIFV_SCOPE_GLOBAL:
9588                         if (maxglobal == -1 || ndx > maxglobal)
9589                                 maxglobal = ndx;
9590 
9591                         if (ndx < vstate->dtvs_nglobals) {
9592                                 dtrace_statvar_t *svar;
9593 
9594                                 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
9595                                         existing = &svar->dtsv_var;
9596                         }
9597 
9598                         break;
9599 
9600                 case DIFV_SCOPE_THREAD:
9601                         if (maxtlocal == -1 || ndx > maxtlocal)
9602                                 maxtlocal = ndx;
9603 
9604                         if (ndx < vstate->dtvs_ntlocals)
9605                                 existing = &vstate->dtvs_tlocals[ndx];
9606                         break;
9607 
9608                 case DIFV_SCOPE_LOCAL:
9609                         if (maxlocal == -1 || ndx > maxlocal)
9610                                 maxlocal = ndx;
9611 
9612                         if (ndx < vstate->dtvs_nlocals) {
9613                                 dtrace_statvar_t *svar;
9614 
9615                                 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
9616                                         existing = &svar->dtsv_var;
9617                         }
9618 
9619                         break;
9620                 }
9621 
9622                 vt = &v->dtdv_type;
9623 
9624                 if (vt->dtdt_flags & DIF_TF_BYREF) {
9625                         if (vt->dtdt_size == 0) {
9626                                 err += efunc(i, "zero-sized variable\n");
9627                                 break;
9628                         }
9629 
9630                         if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
9631                             v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
9632                             vt->dtdt_size > dtrace_statvar_maxsize) {
9633                                 err += efunc(i, "oversized by-ref static\n");
9634                                 break;
9635                         }
9636                 }
9637 
9638                 if (existing == NULL || existing->dtdv_id == 0)
9639                         continue;
9640 
9641                 ASSERT(existing->dtdv_id == v->dtdv_id);
9642                 ASSERT(existing->dtdv_scope == v->dtdv_scope);
9643 
9644                 if (existing->dtdv_kind != v->dtdv_kind)
9645                         err += efunc(i, "%d changed variable kind\n", id);
9646 
9647                 et = &existing->dtdv_type;
9648 
9649                 if (vt->dtdt_flags != et->dtdt_flags) {
9650                         err += efunc(i, "%d changed variable type flags\n", id);
9651                         break;
9652                 }
9653 
9654                 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9655                         err += efunc(i, "%d changed variable type size\n", id);
9656                         break;
9657                 }
9658         }
9659 
9660         for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9661                 dif_instr_t instr = dp->dtdo_buf[pc];
9662 
9663                 uint_t v = DIF_INSTR_VAR(instr);
9664                 uint_t op = DIF_INSTR_OP(instr);
9665 
9666                 switch (op) {
9667                 case DIF_OP_LDGS:
9668                 case DIF_OP_LDGAA:
9669                 case DIF_OP_STGS:
9670                 case DIF_OP_STGAA:
9671                         if (v > DIF_VAR_OTHER_UBASE + maxglobal)
9672                                 err += efunc(pc, "invalid variable %u\n", v);
9673                         break;
9674                 case DIF_OP_LDTS:
9675                 case DIF_OP_LDTAA:
9676                 case DIF_OP_STTS:
9677                 case DIF_OP_STTAA:
9678                         if (v > DIF_VAR_OTHER_UBASE + maxtlocal)
9679                                 err += efunc(pc, "invalid variable %u\n", v);
9680                         break;
9681                 case DIF_OP_LDLS:
9682                 case DIF_OP_STLS:
9683                         if (v > DIF_VAR_OTHER_UBASE + maxlocal)
9684                                 err += efunc(pc, "invalid variable %u\n", v);
9685                         break;
9686                 default:
9687                         break;
9688                 }
9689         }
9690 
9691         return (err);
9692 }
9693 
9694 /*
9695  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
9696  * are much more constrained than normal DIFOs.  Specifically, they may
9697  * not:
9698  *
9699  * 1. Make calls to subroutines other than copyin(), copyinstr() or
9700  *    miscellaneous string routines
9701  * 2. Access DTrace variables other than the args[] array, and the
9702  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9703  * 3. Have thread-local variables.
9704  * 4. Have dynamic variables.
9705  */
9706 static int
9707 dtrace_difo_validate_helper(dtrace_difo_t *dp)
9708 {
9709         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9710         int err = 0;
9711         uint_t pc;
9712 
9713         for (pc = 0; pc < dp->dtdo_len; pc++) {
9714                 dif_instr_t instr = dp->dtdo_buf[pc];
9715 
9716                 uint_t v = DIF_INSTR_VAR(instr);
9717                 uint_t subr = DIF_INSTR_SUBR(instr);
9718                 uint_t op = DIF_INSTR_OP(instr);
9719 
9720                 switch (op) {
9721                 case DIF_OP_OR:
9722                 case DIF_OP_XOR:
9723                 case DIF_OP_AND:
9724                 case DIF_OP_SLL:
9725                 case DIF_OP_SRL:
9726                 case DIF_OP_SRA:
9727                 case DIF_OP_SUB:
9728                 case DIF_OP_ADD:
9729                 case DIF_OP_MUL:
9730                 case DIF_OP_SDIV:
9731                 case DIF_OP_UDIV:
9732                 case DIF_OP_SREM:
9733                 case DIF_OP_UREM:
9734                 case DIF_OP_COPYS:
9735                 case DIF_OP_NOT:
9736                 case DIF_OP_MOV:
9737                 case DIF_OP_RLDSB:
9738                 case DIF_OP_RLDSH:
9739                 case DIF_OP_RLDSW:
9740                 case DIF_OP_RLDUB:
9741                 case DIF_OP_RLDUH:
9742                 case DIF_OP_RLDUW:
9743                 case DIF_OP_RLDX:
9744                 case DIF_OP_ULDSB:
9745                 case DIF_OP_ULDSH:
9746                 case DIF_OP_ULDSW:
9747                 case DIF_OP_ULDUB:
9748                 case DIF_OP_ULDUH:
9749                 case DIF_OP_ULDUW:
9750                 case DIF_OP_ULDX:
9751                 case DIF_OP_STB:
9752                 case DIF_OP_STH:
9753                 case DIF_OP_STW:
9754                 case DIF_OP_STX:
9755                 case DIF_OP_ALLOCS:
9756                 case DIF_OP_CMP:
9757                 case DIF_OP_SCMP:
9758                 case DIF_OP_TST:
9759                 case DIF_OP_BA:
9760                 case DIF_OP_BE:
9761                 case DIF_OP_BNE:
9762                 case DIF_OP_BG:
9763                 case DIF_OP_BGU:
9764                 case DIF_OP_BGE:
9765                 case DIF_OP_BGEU:
9766                 case DIF_OP_BL:
9767                 case DIF_OP_BLU:
9768                 case DIF_OP_BLE:
9769                 case DIF_OP_BLEU:
9770                 case DIF_OP_RET:
9771                 case DIF_OP_NOP:
9772                 case DIF_OP_POPTS:
9773                 case DIF_OP_FLUSHTS:
9774                 case DIF_OP_SETX:
9775                 case DIF_OP_SETS:
9776                 case DIF_OP_LDGA:
9777                 case DIF_OP_LDLS:
9778                 case DIF_OP_STGS:
9779                 case DIF_OP_STLS:
9780                 case DIF_OP_PUSHTR:
9781                 case DIF_OP_PUSHTV:
9782                         break;
9783 
9784                 case DIF_OP_LDGS:
9785                         if (v >= DIF_VAR_OTHER_UBASE)
9786                                 break;
9787 
9788                         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9789                                 break;
9790 
9791                         if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9792                             v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9793                             v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9794                             v == DIF_VAR_UID || v == DIF_VAR_GID)
9795                                 break;
9796 
9797                         err += efunc(pc, "illegal variable %u\n", v);
9798                         break;
9799 
9800                 case DIF_OP_LDTA:
9801                         if (v < DIF_VAR_OTHER_UBASE) {
9802                                 err += efunc(pc, "illegal variable load\n");
9803                                 break;
9804                         }
9805                         /* FALLTHROUGH */
9806                 case DIF_OP_LDTS:
9807                 case DIF_OP_LDGAA:
9808                 case DIF_OP_LDTAA:
9809                         err += efunc(pc, "illegal dynamic variable load\n");
9810                         break;
9811 
9812                 case DIF_OP_STGA:
9813                         if (v < DIF_VAR_OTHER_UBASE) {
9814                                 err += efunc(pc, "illegal variable store\n");
9815                                 break;
9816                         }
9817                         /* FALLTHROUGH */
9818                 case DIF_OP_STTS:
9819                 case DIF_OP_STGAA:
9820                 case DIF_OP_STTAA:
9821                         err += efunc(pc, "illegal dynamic variable store\n");
9822                         break;
9823 
9824                 case DIF_OP_CALL:
9825                         if (subr == DIF_SUBR_ALLOCA ||
9826                             subr == DIF_SUBR_BCOPY ||
9827                             subr == DIF_SUBR_COPYIN ||
9828                             subr == DIF_SUBR_COPYINTO ||
9829                             subr == DIF_SUBR_COPYINSTR ||
9830                             subr == DIF_SUBR_INDEX ||
9831                             subr == DIF_SUBR_INET_NTOA ||
9832                             subr == DIF_SUBR_INET_NTOA6 ||
9833                             subr == DIF_SUBR_INET_NTOP ||
9834                             subr == DIF_SUBR_JSON ||
9835                             subr == DIF_SUBR_LLTOSTR ||
9836                             subr == DIF_SUBR_STRTOLL ||
9837                             subr == DIF_SUBR_RINDEX ||
9838                             subr == DIF_SUBR_STRCHR ||
9839                             subr == DIF_SUBR_STRJOIN ||
9840                             subr == DIF_SUBR_STRRCHR ||
9841                             subr == DIF_SUBR_STRSTR ||
9842                             subr == DIF_SUBR_HTONS ||
9843                             subr == DIF_SUBR_HTONL ||
9844                             subr == DIF_SUBR_HTONLL ||
9845                             subr == DIF_SUBR_NTOHS ||
9846                             subr == DIF_SUBR_NTOHL ||
9847                             subr == DIF_SUBR_NTOHLL)
9848                                 break;
9849 
9850                         err += efunc(pc, "invalid subr %u\n", subr);
9851                         break;
9852 
9853                 default:
9854                         err += efunc(pc, "invalid opcode %u\n",
9855                             DIF_INSTR_OP(instr));
9856                 }
9857         }
9858 
9859         return (err);
9860 }
9861 
9862 /*
9863  * Returns 1 if the expression in the DIF object can be cached on a per-thread
9864  * basis; 0 if not.
9865  */
9866 static int
9867 dtrace_difo_cacheable(dtrace_difo_t *dp)
9868 {
9869         int i;
9870 
9871         if (dp == NULL)
9872                 return (0);
9873 
9874         for (i = 0; i < dp->dtdo_varlen; i++) {
9875                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9876 
9877                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9878                         continue;
9879 
9880                 switch (v->dtdv_id) {
9881                 case DIF_VAR_CURTHREAD:
9882                 case DIF_VAR_PID:
9883                 case DIF_VAR_TID:
9884                 case DIF_VAR_EXECNAME:
9885                 case DIF_VAR_ZONENAME:
9886                         break;
9887 
9888                 default:
9889                         return (0);
9890                 }
9891         }
9892 
9893         /*
9894          * This DIF object may be cacheable.  Now we need to look for any
9895          * array loading instructions, any memory loading instructions, or
9896          * any stores to thread-local variables.
9897          */
9898         for (i = 0; i < dp->dtdo_len; i++) {
9899                 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9900 
9901                 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9902                     (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9903                     (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9904                     op == DIF_OP_LDGA || op == DIF_OP_STTS)
9905                         return (0);
9906         }
9907 
9908         return (1);
9909 }
9910 
9911 static void
9912 dtrace_difo_hold(dtrace_difo_t *dp)
9913 {
9914         int i;
9915 
9916         ASSERT(MUTEX_HELD(&dtrace_lock));
9917 
9918         dp->dtdo_refcnt++;
9919         ASSERT(dp->dtdo_refcnt != 0);
9920 
9921         /*
9922          * We need to check this DIF object for references to the variable
9923          * DIF_VAR_VTIMESTAMP.
9924          */
9925         for (i = 0; i < dp->dtdo_varlen; i++) {
9926                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9927 
9928                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9929                         continue;
9930 
9931                 if (dtrace_vtime_references++ == 0)
9932                         dtrace_vtime_enable();
9933         }
9934 }
9935 
9936 /*
9937  * This routine calculates the dynamic variable chunksize for a given DIF
9938  * object.  The calculation is not fool-proof, and can probably be tricked by
9939  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9940  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9941  * if a dynamic variable size exceeds the chunksize.
9942  */
9943 static void
9944 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9945 {
9946         uint64_t sval;
9947         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9948         const dif_instr_t *text = dp->dtdo_buf;
9949         uint_t pc, srd = 0;
9950         uint_t ttop = 0;
9951         size_t size, ksize;
9952         uint_t id, i;
9953 
9954         for (pc = 0; pc < dp->dtdo_len; pc++) {
9955                 dif_instr_t instr = text[pc];
9956                 uint_t op = DIF_INSTR_OP(instr);
9957                 uint_t rd = DIF_INSTR_RD(instr);
9958                 uint_t r1 = DIF_INSTR_R1(instr);
9959                 uint_t nkeys = 0;
9960                 uchar_t scope;
9961 
9962                 dtrace_key_t *key = tupregs;
9963 
9964                 switch (op) {
9965                 case DIF_OP_SETX:
9966                         sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9967                         srd = rd;
9968                         continue;
9969 
9970                 case DIF_OP_STTS:
9971                         key = &tupregs[DIF_DTR_NREGS];
9972                         key[0].dttk_size = 0;
9973                         key[1].dttk_size = 0;
9974                         nkeys = 2;
9975                         scope = DIFV_SCOPE_THREAD;
9976                         break;
9977 
9978                 case DIF_OP_STGAA:
9979                 case DIF_OP_STTAA:
9980                         nkeys = ttop;
9981 
9982                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9983                                 key[nkeys++].dttk_size = 0;
9984 
9985                         key[nkeys++].dttk_size = 0;
9986 
9987                         if (op == DIF_OP_STTAA) {
9988                                 scope = DIFV_SCOPE_THREAD;
9989                         } else {
9990                                 scope = DIFV_SCOPE_GLOBAL;
9991                         }
9992 
9993                         break;
9994 
9995                 case DIF_OP_PUSHTR:
9996                         if (ttop == DIF_DTR_NREGS)
9997                                 return;
9998 
9999                         if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10000                                 /*
10001                                  * If the register for the size of the "pushtr"
10002                                  * is %r0 (or the value is 0) and the type is
10003                                  * a string, we'll use the system-wide default
10004                                  * string size.
10005                                  */
10006                                 tupregs[ttop++].dttk_size =
10007                                     dtrace_strsize_default;
10008                         } else {
10009                                 if (srd == 0)
10010                                         return;
10011 
10012                                 if (sval > LONG_MAX)
10013                                         return;
10014 
10015                                 tupregs[ttop++].dttk_size = sval;
10016                         }
10017 
10018                         break;
10019 
10020                 case DIF_OP_PUSHTV:
10021                         if (ttop == DIF_DTR_NREGS)
10022                                 return;
10023 
10024                         tupregs[ttop++].dttk_size = 0;
10025                         break;
10026 
10027                 case DIF_OP_FLUSHTS:
10028                         ttop = 0;
10029                         break;
10030 
10031                 case DIF_OP_POPTS:
10032                         if (ttop != 0)
10033                                 ttop--;
10034                         break;
10035                 }
10036 
10037                 sval = 0;
10038                 srd = 0;
10039 
10040                 if (nkeys == 0)
10041                         continue;
10042 
10043                 /*
10044                  * We have a dynamic variable allocation; calculate its size.
10045                  */
10046                 for (ksize = 0, i = 0; i < nkeys; i++)
10047                         ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10048 
10049                 size = sizeof (dtrace_dynvar_t);
10050                 size += sizeof (dtrace_key_t) * (nkeys - 1);
10051                 size += ksize;
10052 
10053                 /*
10054                  * Now we need to determine the size of the stored data.
10055                  */
10056                 id = DIF_INSTR_VAR(instr);
10057 
10058                 for (i = 0; i < dp->dtdo_varlen; i++) {
10059                         dtrace_difv_t *v = &dp->dtdo_vartab[i];
10060 
10061                         if (v->dtdv_id == id && v->dtdv_scope == scope) {
10062                                 size += v->dtdv_type.dtdt_size;
10063                                 break;
10064                         }
10065                 }
10066 
10067                 if (i == dp->dtdo_varlen)
10068                         return;
10069 
10070                 /*
10071                  * We have the size.  If this is larger than the chunk size
10072                  * for our dynamic variable state, reset the chunk size.
10073                  */
10074                 size = P2ROUNDUP(size, sizeof (uint64_t));
10075 
10076                 /*
10077                  * Before setting the chunk size, check that we're not going
10078                  * to set it to a negative value...
10079                  */
10080                 if (size > LONG_MAX)
10081                         return;
10082 
10083                 /*
10084                  * ...and make certain that we didn't badly overflow.
10085                  */
10086                 if (size < ksize || size < sizeof (dtrace_dynvar_t))
10087                         return;
10088 
10089                 if (size > vstate->dtvs_dynvars.dtds_chunksize)
10090                         vstate->dtvs_dynvars.dtds_chunksize = size;
10091         }
10092 }
10093 
10094 static void
10095 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10096 {
10097         int i, oldsvars, osz, nsz, otlocals, ntlocals;
10098         uint_t id;
10099 
10100         ASSERT(MUTEX_HELD(&dtrace_lock));
10101         ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10102 
10103         for (i = 0; i < dp->dtdo_varlen; i++) {
10104                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10105                 dtrace_statvar_t *svar, ***svarp;
10106                 size_t dsize = 0;
10107                 uint8_t scope = v->dtdv_scope;
10108                 int *np;
10109 
10110                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10111                         continue;
10112 
10113                 id -= DIF_VAR_OTHER_UBASE;
10114 
10115                 switch (scope) {
10116                 case DIFV_SCOPE_THREAD:
10117                         while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10118                                 dtrace_difv_t *tlocals;
10119 
10120                                 if ((ntlocals = (otlocals << 1)) == 0)
10121                                         ntlocals = 1;
10122 
10123                                 osz = otlocals * sizeof (dtrace_difv_t);
10124                                 nsz = ntlocals * sizeof (dtrace_difv_t);
10125 
10126                                 tlocals = kmem_zalloc(nsz, KM_SLEEP);
10127 
10128                                 if (osz != 0) {
10129                                         bcopy(vstate->dtvs_tlocals,
10130                                             tlocals, osz);
10131                                         kmem_free(vstate->dtvs_tlocals, osz);
10132                                 }
10133 
10134                                 vstate->dtvs_tlocals = tlocals;
10135                                 vstate->dtvs_ntlocals = ntlocals;
10136                         }
10137 
10138                         vstate->dtvs_tlocals[id] = *v;
10139                         continue;
10140 
10141                 case DIFV_SCOPE_LOCAL:
10142                         np = &vstate->dtvs_nlocals;
10143                         svarp = &vstate->dtvs_locals;
10144 
10145                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10146                                 dsize = NCPU * (v->dtdv_type.dtdt_size +
10147                                     sizeof (uint64_t));
10148                         else
10149                                 dsize = NCPU * sizeof (uint64_t);
10150 
10151                         break;
10152 
10153                 case DIFV_SCOPE_GLOBAL:
10154                         np = &vstate->dtvs_nglobals;
10155                         svarp = &vstate->dtvs_globals;
10156 
10157                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10158                                 dsize = v->dtdv_type.dtdt_size +
10159                                     sizeof (uint64_t);
10160 
10161                         break;
10162 
10163                 default:
10164                         ASSERT(0);
10165                 }
10166 
10167                 while (id >= (oldsvars = *np)) {
10168                         dtrace_statvar_t **statics;
10169                         int newsvars, oldsize, newsize;
10170 
10171                         if ((newsvars = (oldsvars << 1)) == 0)
10172                                 newsvars = 1;
10173 
10174                         oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10175                         newsize = newsvars * sizeof (dtrace_statvar_t *);
10176 
10177                         statics = kmem_zalloc(newsize, KM_SLEEP);
10178 
10179                         if (oldsize != 0) {
10180                                 bcopy(*svarp, statics, oldsize);
10181                                 kmem_free(*svarp, oldsize);
10182                         }
10183 
10184                         *svarp = statics;
10185                         *np = newsvars;
10186                 }
10187 
10188                 if ((svar = (*svarp)[id]) == NULL) {
10189                         svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10190                         svar->dtsv_var = *v;
10191 
10192                         if ((svar->dtsv_size = dsize) != 0) {
10193                                 svar->dtsv_data = (uint64_t)(uintptr_t)
10194                                     kmem_zalloc(dsize, KM_SLEEP);
10195                         }
10196 
10197                         (*svarp)[id] = svar;
10198                 }
10199 
10200                 svar->dtsv_refcnt++;
10201         }
10202 
10203         dtrace_difo_chunksize(dp, vstate);
10204         dtrace_difo_hold(dp);
10205 }
10206 
10207 static dtrace_difo_t *
10208 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10209 {
10210         dtrace_difo_t *new;
10211         size_t sz;
10212 
10213         ASSERT(dp->dtdo_buf != NULL);
10214         ASSERT(dp->dtdo_refcnt != 0);
10215 
10216         new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10217 
10218         ASSERT(dp->dtdo_buf != NULL);
10219         sz = dp->dtdo_len * sizeof (dif_instr_t);
10220         new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10221         bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10222         new->dtdo_len = dp->dtdo_len;
10223 
10224         if (dp->dtdo_strtab != NULL) {
10225                 ASSERT(dp->dtdo_strlen != 0);
10226                 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10227                 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10228                 new->dtdo_strlen = dp->dtdo_strlen;
10229         }
10230 
10231         if (dp->dtdo_inttab != NULL) {
10232                 ASSERT(dp->dtdo_intlen != 0);
10233                 sz = dp->dtdo_intlen * sizeof (uint64_t);
10234                 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10235                 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10236                 new->dtdo_intlen = dp->dtdo_intlen;
10237         }
10238 
10239         if (dp->dtdo_vartab != NULL) {
10240                 ASSERT(dp->dtdo_varlen != 0);
10241                 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10242                 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10243                 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10244                 new->dtdo_varlen = dp->dtdo_varlen;
10245         }
10246 
10247         dtrace_difo_init(new, vstate);
10248         return (new);
10249 }
10250 
10251 static void
10252 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10253 {
10254         int i;
10255 
10256         ASSERT(dp->dtdo_refcnt == 0);
10257 
10258         for (i = 0; i < dp->dtdo_varlen; i++) {
10259                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10260                 dtrace_statvar_t *svar, **svarp;
10261                 uint_t id;
10262                 uint8_t scope = v->dtdv_scope;
10263                 int *np;
10264 
10265                 switch (scope) {
10266                 case DIFV_SCOPE_THREAD:
10267                         continue;
10268 
10269                 case DIFV_SCOPE_LOCAL:
10270                         np = &vstate->dtvs_nlocals;
10271                         svarp = vstate->dtvs_locals;
10272                         break;
10273 
10274                 case DIFV_SCOPE_GLOBAL:
10275                         np = &vstate->dtvs_nglobals;
10276                         svarp = vstate->dtvs_globals;
10277                         break;
10278 
10279                 default:
10280                         ASSERT(0);
10281                 }
10282 
10283                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10284                         continue;
10285 
10286                 id -= DIF_VAR_OTHER_UBASE;
10287                 ASSERT(id < *np);
10288 
10289                 svar = svarp[id];
10290                 ASSERT(svar != NULL);
10291                 ASSERT(svar->dtsv_refcnt > 0);
10292 
10293                 if (--svar->dtsv_refcnt > 0)
10294                         continue;
10295 
10296                 if (svar->dtsv_size != 0) {
10297                         ASSERT(svar->dtsv_data != NULL);
10298                         kmem_free((void *)(uintptr_t)svar->dtsv_data,
10299                             svar->dtsv_size);
10300                 }
10301 
10302                 kmem_free(svar, sizeof (dtrace_statvar_t));
10303                 svarp[id] = NULL;
10304         }
10305 
10306         kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10307         kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10308         kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10309         kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10310 
10311         kmem_free(dp, sizeof (dtrace_difo_t));
10312 }
10313 
10314 static void
10315 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10316 {
10317         int i;
10318 
10319         ASSERT(MUTEX_HELD(&dtrace_lock));
10320         ASSERT(dp->dtdo_refcnt != 0);
10321 
10322         for (i = 0; i < dp->dtdo_varlen; i++) {
10323                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10324 
10325                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10326                         continue;
10327 
10328                 ASSERT(dtrace_vtime_references > 0);
10329                 if (--dtrace_vtime_references == 0)
10330                         dtrace_vtime_disable();
10331         }
10332 
10333         if (--dp->dtdo_refcnt == 0)
10334                 dtrace_difo_destroy(dp, vstate);
10335 }
10336 
10337 /*
10338  * DTrace Format Functions
10339  */
10340 static uint16_t
10341 dtrace_format_add(dtrace_state_t *state, char *str)
10342 {
10343         char *fmt, **new;
10344         uint16_t ndx, len = strlen(str) + 1;
10345 
10346         fmt = kmem_zalloc(len, KM_SLEEP);
10347         bcopy(str, fmt, len);
10348 
10349         for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10350                 if (state->dts_formats[ndx] == NULL) {
10351                         state->dts_formats[ndx] = fmt;
10352                         return (ndx + 1);
10353                 }
10354         }
10355 
10356         if (state->dts_nformats == USHRT_MAX) {
10357                 /*
10358                  * This is only likely if a denial-of-service attack is being
10359                  * attempted.  As such, it's okay to fail silently here.
10360                  */
10361                 kmem_free(fmt, len);
10362                 return (0);
10363         }
10364 
10365         /*
10366          * For simplicity, we always resize the formats array to be exactly the
10367          * number of formats.
10368          */
10369         ndx = state->dts_nformats++;
10370         new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10371 
10372         if (state->dts_formats != NULL) {
10373                 ASSERT(ndx != 0);
10374                 bcopy(state->dts_formats, new, ndx * sizeof (char *));
10375                 kmem_free(state->dts_formats, ndx * sizeof (char *));
10376         }
10377 
10378         state->dts_formats = new;
10379         state->dts_formats[ndx] = fmt;
10380 
10381         return (ndx + 1);
10382 }
10383 
10384 static void
10385 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10386 {
10387         char *fmt;
10388 
10389         ASSERT(state->dts_formats != NULL);
10390         ASSERT(format <= state->dts_nformats);
10391         ASSERT(state->dts_formats[format - 1] != NULL);
10392 
10393         fmt = state->dts_formats[format - 1];
10394         kmem_free(fmt, strlen(fmt) + 1);
10395         state->dts_formats[format - 1] = NULL;
10396 }
10397 
10398 static void
10399 dtrace_format_destroy(dtrace_state_t *state)
10400 {
10401         int i;
10402 
10403         if (state->dts_nformats == 0) {
10404                 ASSERT(state->dts_formats == NULL);
10405                 return;
10406         }
10407 
10408         ASSERT(state->dts_formats != NULL);
10409 
10410         for (i = 0; i < state->dts_nformats; i++) {
10411                 char *fmt = state->dts_formats[i];
10412 
10413                 if (fmt == NULL)
10414                         continue;
10415 
10416                 kmem_free(fmt, strlen(fmt) + 1);
10417         }
10418 
10419         kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10420         state->dts_nformats = 0;
10421         state->dts_formats = NULL;
10422 }
10423 
10424 /*
10425  * DTrace Predicate Functions
10426  */
10427 static dtrace_predicate_t *
10428 dtrace_predicate_create(dtrace_difo_t *dp)
10429 {
10430         dtrace_predicate_t *pred;
10431 
10432         ASSERT(MUTEX_HELD(&dtrace_lock));
10433         ASSERT(dp->dtdo_refcnt != 0);
10434 
10435         pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10436         pred->dtp_difo = dp;
10437         pred->dtp_refcnt = 1;
10438 
10439         if (!dtrace_difo_cacheable(dp))
10440                 return (pred);
10441 
10442         if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10443                 /*
10444                  * This is only theoretically possible -- we have had 2^32
10445                  * cacheable predicates on this machine.  We cannot allow any
10446                  * more predicates to become cacheable:  as unlikely as it is,
10447                  * there may be a thread caching a (now stale) predicate cache
10448                  * ID. (N.B.: the temptation is being successfully resisted to
10449                  * have this cmn_err() "Holy shit -- we executed this code!")
10450                  */
10451                 return (pred);
10452         }
10453 
10454         pred->dtp_cacheid = dtrace_predcache_id++;
10455 
10456         return (pred);
10457 }
10458 
10459 static void
10460 dtrace_predicate_hold(dtrace_predicate_t *pred)
10461 {
10462         ASSERT(MUTEX_HELD(&dtrace_lock));
10463         ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10464         ASSERT(pred->dtp_refcnt > 0);
10465 
10466         pred->dtp_refcnt++;
10467 }
10468 
10469 static void
10470 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10471 {
10472         dtrace_difo_t *dp = pred->dtp_difo;
10473 
10474         ASSERT(MUTEX_HELD(&dtrace_lock));
10475         ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10476         ASSERT(pred->dtp_refcnt > 0);
10477 
10478         if (--pred->dtp_refcnt == 0) {
10479                 dtrace_difo_release(pred->dtp_difo, vstate);
10480                 kmem_free(pred, sizeof (dtrace_predicate_t));
10481         }
10482 }
10483 
10484 /*
10485  * DTrace Action Description Functions
10486  */
10487 static dtrace_actdesc_t *
10488 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10489     uint64_t uarg, uint64_t arg)
10490 {
10491         dtrace_actdesc_t *act;
10492 
10493         ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
10494             arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
10495 
10496         act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10497         act->dtad_kind = kind;
10498         act->dtad_ntuple = ntuple;
10499         act->dtad_uarg = uarg;
10500         act->dtad_arg = arg;
10501         act->dtad_refcnt = 1;
10502 
10503         return (act);
10504 }
10505 
10506 static void
10507 dtrace_actdesc_hold(dtrace_actdesc_t *act)
10508 {
10509         ASSERT(act->dtad_refcnt >= 1);
10510         act->dtad_refcnt++;
10511 }
10512 
10513 static void
10514 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10515 {
10516         dtrace_actkind_t kind = act->dtad_kind;
10517         dtrace_difo_t *dp;
10518 
10519         ASSERT(act->dtad_refcnt >= 1);
10520 
10521         if (--act->dtad_refcnt != 0)
10522                 return;
10523 
10524         if ((dp = act->dtad_difo) != NULL)
10525                 dtrace_difo_release(dp, vstate);
10526 
10527         if (DTRACEACT_ISPRINTFLIKE(kind)) {
10528                 char *str = (char *)(uintptr_t)act->dtad_arg;
10529 
10530                 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10531                     (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
10532 
10533                 if (str != NULL)
10534                         kmem_free(str, strlen(str) + 1);
10535         }
10536 
10537         kmem_free(act, sizeof (dtrace_actdesc_t));
10538 }
10539 
10540 /*
10541  * DTrace ECB Functions
10542  */
10543 static dtrace_ecb_t *
10544 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
10545 {
10546         dtrace_ecb_t *ecb;
10547         dtrace_epid_t epid;
10548 
10549         ASSERT(MUTEX_HELD(&dtrace_lock));
10550 
10551         ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
10552         ecb->dte_predicate = NULL;
10553         ecb->dte_probe = probe;
10554 
10555         /*
10556          * The default size is the size of the default action: recording
10557          * the header.
10558          */
10559         ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
10560         ecb->dte_alignment = sizeof (dtrace_epid_t);
10561 
10562         epid = state->dts_epid++;
10563 
10564         if (epid - 1 >= state->dts_necbs) {
10565                 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
10566                 int necbs = state->dts_necbs << 1;
10567 
10568                 ASSERT(epid == state->dts_necbs + 1);
10569 
10570                 if (necbs == 0) {
10571                         ASSERT(oecbs == NULL);
10572                         necbs = 1;
10573                 }
10574 
10575                 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
10576 
10577                 if (oecbs != NULL)
10578                         bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
10579 
10580                 dtrace_membar_producer();
10581                 state->dts_ecbs = ecbs;
10582 
10583                 if (oecbs != NULL) {
10584                         /*
10585                          * If this state is active, we must dtrace_sync()
10586                          * before we can free the old dts_ecbs array:  we're
10587                          * coming in hot, and there may be active ring
10588                          * buffer processing (which indexes into the dts_ecbs
10589                          * array) on another CPU.
10590                          */
10591                         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
10592                                 dtrace_sync();
10593 
10594                         kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
10595                 }
10596 
10597                 dtrace_membar_producer();
10598                 state->dts_necbs = necbs;
10599         }
10600 
10601         ecb->dte_state = state;
10602 
10603         ASSERT(state->dts_ecbs[epid - 1] == NULL);
10604         dtrace_membar_producer();
10605         state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
10606 
10607         return (ecb);
10608 }
10609 
10610 static int
10611 dtrace_ecb_enable(dtrace_ecb_t *ecb)
10612 {
10613         dtrace_probe_t *probe = ecb->dte_probe;
10614 
10615         ASSERT(MUTEX_HELD(&cpu_lock));
10616         ASSERT(MUTEX_HELD(&dtrace_lock));
10617         ASSERT(ecb->dte_next == NULL);
10618 
10619         if (probe == NULL) {
10620                 /*
10621                  * This is the NULL probe -- there's nothing to do.
10622                  */
10623                 return (0);
10624         }
10625 
10626         if (probe->dtpr_ecb == NULL) {
10627                 dtrace_provider_t *prov = probe->dtpr_provider;
10628 
10629                 /*
10630                  * We're the first ECB on this probe.
10631                  */
10632                 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
10633 
10634                 if (ecb->dte_predicate != NULL)
10635                         probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
10636 
10637                 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
10638                     probe->dtpr_id, probe->dtpr_arg));
10639         } else {
10640                 /*
10641                  * This probe is already active.  Swing the last pointer to
10642                  * point to the new ECB, and issue a dtrace_sync() to assure
10643                  * that all CPUs have seen the change.
10644                  */
10645                 ASSERT(probe->dtpr_ecb_last != NULL);
10646                 probe->dtpr_ecb_last->dte_next = ecb;
10647                 probe->dtpr_ecb_last = ecb;
10648                 probe->dtpr_predcache = 0;
10649 
10650                 dtrace_sync();
10651                 return (0);
10652         }
10653 }
10654 
10655 static int
10656 dtrace_ecb_resize(dtrace_ecb_t *ecb)
10657 {
10658         dtrace_action_t *act;
10659         uint32_t curneeded = UINT32_MAX;
10660         uint32_t aggbase = UINT32_MAX;
10661 
10662         /*
10663          * If we record anything, we always record the dtrace_rechdr_t.  (And
10664          * we always record it first.)
10665          */
10666         ecb->dte_size = sizeof (dtrace_rechdr_t);
10667         ecb->dte_alignment = sizeof (dtrace_epid_t);
10668 
10669         for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10670                 dtrace_recdesc_t *rec = &act->dta_rec;
10671                 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
10672 
10673                 ecb->dte_alignment = MAX(ecb->dte_alignment,
10674                     rec->dtrd_alignment);
10675 
10676                 if (DTRACEACT_ISAGG(act->dta_kind)) {
10677                         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10678 
10679                         ASSERT(rec->dtrd_size != 0);
10680                         ASSERT(agg->dtag_first != NULL);
10681                         ASSERT(act->dta_prev->dta_intuple);
10682                         ASSERT(aggbase != UINT32_MAX);
10683                         ASSERT(curneeded != UINT32_MAX);
10684 
10685                         agg->dtag_base = aggbase;
10686 
10687                         curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10688                         rec->dtrd_offset = curneeded;
10689                         if (curneeded + rec->dtrd_size < curneeded)
10690                                 return (EINVAL);
10691                         curneeded += rec->dtrd_size;
10692                         ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
10693 
10694                         aggbase = UINT32_MAX;
10695                         curneeded = UINT32_MAX;
10696                 } else if (act->dta_intuple) {
10697                         if (curneeded == UINT32_MAX) {
10698                                 /*
10699                                  * This is the first record in a tuple.  Align
10700                                  * curneeded to be at offset 4 in an 8-byte
10701                                  * aligned block.
10702                                  */
10703                                 ASSERT(act->dta_prev == NULL ||
10704                                     !act->dta_prev->dta_intuple);
10705                                 ASSERT3U(aggbase, ==, UINT32_MAX);
10706                                 curneeded = P2PHASEUP(ecb->dte_size,
10707                                     sizeof (uint64_t), sizeof (dtrace_aggid_t));
10708 
10709                                 aggbase = curneeded - sizeof (dtrace_aggid_t);
10710                                 ASSERT(IS_P2ALIGNED(aggbase,
10711                                     sizeof (uint64_t)));
10712                         }
10713                         curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10714                         rec->dtrd_offset = curneeded;
10715                         if (curneeded + rec->dtrd_size < curneeded)
10716                                 return (EINVAL);
10717                         curneeded += rec->dtrd_size;
10718                 } else {
10719                         /* tuples must be followed by an aggregation */
10720                         ASSERT(act->dta_prev == NULL ||
10721                             !act->dta_prev->dta_intuple);
10722 
10723                         ecb->dte_size = P2ROUNDUP(ecb->dte_size,
10724                             rec->dtrd_alignment);
10725                         rec->dtrd_offset = ecb->dte_size;
10726                         if (ecb->dte_size + rec->dtrd_size < ecb->dte_size)
10727                                 return (EINVAL);
10728                         ecb->dte_size += rec->dtrd_size;
10729                         ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
10730                 }
10731         }
10732 
10733         if ((act = ecb->dte_action) != NULL &&
10734             !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
10735             ecb->dte_size == sizeof (dtrace_rechdr_t)) {
10736                 /*
10737                  * If the size is still sizeof (dtrace_rechdr_t), then all
10738                  * actions store no data; set the size to 0.
10739                  */
10740                 ecb->dte_size = 0;
10741         }
10742 
10743         ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
10744         ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
10745         ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
10746             ecb->dte_needed);
10747         return (0);
10748 }
10749 
10750 static dtrace_action_t *
10751 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10752 {
10753         dtrace_aggregation_t *agg;
10754         size_t size = sizeof (uint64_t);
10755         int ntuple = desc->dtad_ntuple;
10756         dtrace_action_t *act;
10757         dtrace_recdesc_t *frec;
10758         dtrace_aggid_t aggid;
10759         dtrace_state_t *state = ecb->dte_state;
10760 
10761         agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10762         agg->dtag_ecb = ecb;
10763 
10764         ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10765 
10766         switch (desc->dtad_kind) {
10767         case DTRACEAGG_MIN:
10768                 agg->dtag_initial = INT64_MAX;
10769                 agg->dtag_aggregate = dtrace_aggregate_min;
10770                 break;
10771 
10772         case DTRACEAGG_MAX:
10773                 agg->dtag_initial = INT64_MIN;
10774                 agg->dtag_aggregate = dtrace_aggregate_max;
10775                 break;
10776 
10777         case DTRACEAGG_COUNT:
10778                 agg->dtag_aggregate = dtrace_aggregate_count;
10779                 break;
10780 
10781         case DTRACEAGG_QUANTIZE:
10782                 agg->dtag_aggregate = dtrace_aggregate_quantize;
10783                 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10784                     sizeof (uint64_t);
10785                 break;
10786 
10787         case DTRACEAGG_LQUANTIZE: {
10788                 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10789                 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10790 
10791                 agg->dtag_initial = desc->dtad_arg;
10792                 agg->dtag_aggregate = dtrace_aggregate_lquantize;
10793 
10794                 if (step == 0 || levels == 0)
10795                         goto err;
10796 
10797                 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10798                 break;
10799         }
10800 
10801         case DTRACEAGG_LLQUANTIZE: {
10802                 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10803                 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10804                 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10805                 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10806                 int64_t v;
10807 
10808                 agg->dtag_initial = desc->dtad_arg;
10809                 agg->dtag_aggregate = dtrace_aggregate_llquantize;
10810 
10811                 if (factor < 2 || low >= high || nsteps < factor)
10812                         goto err;
10813 
10814                 /*
10815                  * Now check that the number of steps evenly divides a power
10816                  * of the factor.  (This assures both integer bucket size and
10817                  * linearity within each magnitude.)
10818                  */
10819                 for (v = factor; v < nsteps; v *= factor)
10820                         continue;
10821 
10822                 if ((v % nsteps) || (nsteps % factor))
10823                         goto err;
10824 
10825                 size = (dtrace_aggregate_llquantize_bucket(factor,
10826                     low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10827                 break;
10828         }
10829 
10830         case DTRACEAGG_AVG:
10831                 agg->dtag_aggregate = dtrace_aggregate_avg;
10832                 size = sizeof (uint64_t) * 2;
10833                 break;
10834 
10835         case DTRACEAGG_STDDEV:
10836                 agg->dtag_aggregate = dtrace_aggregate_stddev;
10837                 size = sizeof (uint64_t) * 4;
10838                 break;
10839 
10840         case DTRACEAGG_SUM:
10841                 agg->dtag_aggregate = dtrace_aggregate_sum;
10842                 break;
10843 
10844         default:
10845                 goto err;
10846         }
10847 
10848         agg->dtag_action.dta_rec.dtrd_size = size;
10849 
10850         if (ntuple == 0)
10851                 goto err;
10852 
10853         /*
10854          * We must make sure that we have enough actions for the n-tuple.
10855          */
10856         for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10857                 if (DTRACEACT_ISAGG(act->dta_kind))
10858                         break;
10859 
10860                 if (--ntuple == 0) {
10861                         /*
10862                          * This is the action with which our n-tuple begins.
10863                          */
10864                         agg->dtag_first = act;
10865                         goto success;
10866                 }
10867         }
10868 
10869         /*
10870          * This n-tuple is short by ntuple elements.  Return failure.
10871          */
10872         ASSERT(ntuple != 0);
10873 err:
10874         kmem_free(agg, sizeof (dtrace_aggregation_t));
10875         return (NULL);
10876 
10877 success:
10878         /*
10879          * If the last action in the tuple has a size of zero, it's actually
10880          * an expression argument for the aggregating action.
10881          */
10882         ASSERT(ecb->dte_action_last != NULL);
10883         act = ecb->dte_action_last;
10884 
10885         if (act->dta_kind == DTRACEACT_DIFEXPR) {
10886                 ASSERT(act->dta_difo != NULL);
10887 
10888                 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10889                         agg->dtag_hasarg = 1;
10890         }
10891 
10892         /*
10893          * We need to allocate an id for this aggregation.
10894          */
10895         aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10896             VM_BESTFIT | VM_SLEEP);
10897 
10898         if (aggid - 1 >= state->dts_naggregations) {
10899                 dtrace_aggregation_t **oaggs = state->dts_aggregations;
10900                 dtrace_aggregation_t **aggs;
10901                 int naggs = state->dts_naggregations << 1;
10902                 int onaggs = state->dts_naggregations;
10903 
10904                 ASSERT(aggid == state->dts_naggregations + 1);
10905 
10906                 if (naggs == 0) {
10907                         ASSERT(oaggs == NULL);
10908                         naggs = 1;
10909                 }
10910 
10911                 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10912 
10913                 if (oaggs != NULL) {
10914                         bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10915                         kmem_free(oaggs, onaggs * sizeof (*aggs));
10916                 }
10917 
10918                 state->dts_aggregations = aggs;
10919                 state->dts_naggregations = naggs;
10920         }
10921 
10922         ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10923         state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10924 
10925         frec = &agg->dtag_first->dta_rec;
10926         if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10927                 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10928 
10929         for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10930                 ASSERT(!act->dta_intuple);
10931                 act->dta_intuple = 1;
10932         }
10933 
10934         return (&agg->dtag_action);
10935 }
10936 
10937 static void
10938 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10939 {
10940         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10941         dtrace_state_t *state = ecb->dte_state;
10942         dtrace_aggid_t aggid = agg->dtag_id;
10943 
10944         ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10945         vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10946 
10947         ASSERT(state->dts_aggregations[aggid - 1] == agg);
10948         state->dts_aggregations[aggid - 1] = NULL;
10949 
10950         kmem_free(agg, sizeof (dtrace_aggregation_t));
10951 }
10952 
10953 static int
10954 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10955 {
10956         dtrace_action_t *action, *last;
10957         dtrace_difo_t *dp = desc->dtad_difo;
10958         uint32_t size = 0, align = sizeof (uint8_t), mask;
10959         uint16_t format = 0;
10960         dtrace_recdesc_t *rec;
10961         dtrace_state_t *state = ecb->dte_state;
10962         dtrace_optval_t *opt = state->dts_options, nframes, strsize;
10963         uint64_t arg = desc->dtad_arg;
10964 
10965         ASSERT(MUTEX_HELD(&dtrace_lock));
10966         ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10967 
10968         if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10969                 /*
10970                  * If this is an aggregating action, there must be neither
10971                  * a speculate nor a commit on the action chain.
10972                  */
10973                 dtrace_action_t *act;
10974 
10975                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10976                         if (act->dta_kind == DTRACEACT_COMMIT)
10977                                 return (EINVAL);
10978 
10979                         if (act->dta_kind == DTRACEACT_SPECULATE)
10980                                 return (EINVAL);
10981                 }
10982 
10983                 action = dtrace_ecb_aggregation_create(ecb, desc);
10984 
10985                 if (action == NULL)
10986                         return (EINVAL);
10987         } else {
10988                 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10989                     (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10990                     dp != NULL && dp->dtdo_destructive)) {
10991                         state->dts_destructive = 1;
10992                 }
10993 
10994                 switch (desc->dtad_kind) {
10995                 case DTRACEACT_PRINTF:
10996                 case DTRACEACT_PRINTA:
10997                 case DTRACEACT_SYSTEM:
10998                 case DTRACEACT_FREOPEN:
10999                 case DTRACEACT_DIFEXPR:
11000                         /*
11001                          * We know that our arg is a string -- turn it into a
11002                          * format.
11003                          */
11004                         if (arg == NULL) {
11005                                 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11006                                     desc->dtad_kind == DTRACEACT_DIFEXPR);
11007                                 format = 0;
11008                         } else {
11009                                 ASSERT(arg != NULL);
11010                                 ASSERT(arg > KERNELBASE);
11011                                 format = dtrace_format_add(state,
11012                                     (char *)(uintptr_t)arg);
11013                         }
11014 
11015                         /*FALLTHROUGH*/
11016                 case DTRACEACT_LIBACT:
11017                 case DTRACEACT_TRACEMEM:
11018                 case DTRACEACT_TRACEMEM_DYNSIZE:
11019                         if (dp == NULL)
11020                                 return (EINVAL);
11021 
11022                         if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11023                                 break;
11024 
11025                         if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11026                                 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11027                                         return (EINVAL);
11028 
11029                                 size = opt[DTRACEOPT_STRSIZE];
11030                         }
11031 
11032                         break;
11033 
11034                 case DTRACEACT_STACK:
11035                         if ((nframes = arg) == 0) {
11036                                 nframes = opt[DTRACEOPT_STACKFRAMES];
11037                                 ASSERT(nframes > 0);
11038                                 arg = nframes;
11039                         }
11040 
11041                         size = nframes * sizeof (pc_t);
11042                         break;
11043 
11044                 case DTRACEACT_JSTACK:
11045                         if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11046                                 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11047 
11048                         if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11049                                 nframes = opt[DTRACEOPT_JSTACKFRAMES];
11050 
11051                         arg = DTRACE_USTACK_ARG(nframes, strsize);
11052 
11053                         /*FALLTHROUGH*/
11054                 case DTRACEACT_USTACK:
11055                         if (desc->dtad_kind != DTRACEACT_JSTACK &&
11056                             (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11057                                 strsize = DTRACE_USTACK_STRSIZE(arg);
11058                                 nframes = opt[DTRACEOPT_USTACKFRAMES];
11059                                 ASSERT(nframes > 0);
11060                                 arg = DTRACE_USTACK_ARG(nframes, strsize);
11061                         }
11062 
11063                         /*
11064                          * Save a slot for the pid.
11065                          */
11066                         size = (nframes + 1) * sizeof (uint64_t);
11067                         size += DTRACE_USTACK_STRSIZE(arg);
11068                         size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11069 
11070                         break;
11071 
11072                 case DTRACEACT_SYM:
11073                 case DTRACEACT_MOD:
11074                         if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11075                             sizeof (uint64_t)) ||
11076                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11077                                 return (EINVAL);
11078                         break;
11079 
11080                 case DTRACEACT_USYM:
11081                 case DTRACEACT_UMOD:
11082                 case DTRACEACT_UADDR:
11083                         if (dp == NULL ||
11084                             (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11085                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11086                                 return (EINVAL);
11087 
11088                         /*
11089                          * We have a slot for the pid, plus a slot for the
11090                          * argument.  To keep things simple (aligned with
11091                          * bitness-neutral sizing), we store each as a 64-bit
11092                          * quantity.
11093                          */
11094                         size = 2 * sizeof (uint64_t);
11095                         break;
11096 
11097                 case DTRACEACT_STOP:
11098                 case DTRACEACT_BREAKPOINT:
11099                 case DTRACEACT_PANIC:
11100                         break;
11101 
11102                 case DTRACEACT_CHILL:
11103                 case DTRACEACT_DISCARD:
11104                 case DTRACEACT_RAISE:
11105                         if (dp == NULL)
11106                                 return (EINVAL);
11107                         break;
11108 
11109                 case DTRACEACT_EXIT:
11110                         if (dp == NULL ||
11111                             (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11112                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11113                                 return (EINVAL);
11114                         break;
11115 
11116                 case DTRACEACT_SPECULATE:
11117                         if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11118                                 return (EINVAL);
11119 
11120                         if (dp == NULL)
11121                                 return (EINVAL);
11122 
11123                         state->dts_speculates = 1;
11124                         break;
11125 
11126                 case DTRACEACT_COMMIT: {
11127                         dtrace_action_t *act = ecb->dte_action;
11128 
11129                         for (; act != NULL; act = act->dta_next) {
11130                                 if (act->dta_kind == DTRACEACT_COMMIT)
11131                                         return (EINVAL);
11132                         }
11133 
11134                         if (dp == NULL)
11135                                 return (EINVAL);
11136                         break;
11137                 }
11138 
11139                 default:
11140                         return (EINVAL);
11141                 }
11142 
11143                 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11144                         /*
11145                          * If this is a data-storing action or a speculate,
11146                          * we must be sure that there isn't a commit on the
11147                          * action chain.
11148                          */
11149                         dtrace_action_t *act = ecb->dte_action;
11150 
11151                         for (; act != NULL; act = act->dta_next) {
11152                                 if (act->dta_kind == DTRACEACT_COMMIT)
11153                                         return (EINVAL);
11154                         }
11155                 }
11156 
11157                 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11158                 action->dta_rec.dtrd_size = size;
11159         }
11160 
11161         action->dta_refcnt = 1;
11162         rec = &action->dta_rec;
11163         size = rec->dtrd_size;
11164 
11165         for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11166                 if (!(size & mask)) {
11167                         align = mask + 1;
11168                         break;
11169                 }
11170         }
11171 
11172         action->dta_kind = desc->dtad_kind;
11173 
11174         if ((action->dta_difo = dp) != NULL)
11175                 dtrace_difo_hold(dp);
11176 
11177         rec->dtrd_action = action->dta_kind;
11178         rec->dtrd_arg = arg;
11179         rec->dtrd_uarg = desc->dtad_uarg;
11180         rec->dtrd_alignment = (uint16_t)align;
11181         rec->dtrd_format = format;
11182 
11183         if ((last = ecb->dte_action_last) != NULL) {
11184                 ASSERT(ecb->dte_action != NULL);
11185                 action->dta_prev = last;
11186                 last->dta_next = action;
11187         } else {
11188                 ASSERT(ecb->dte_action == NULL);
11189                 ecb->dte_action = action;
11190         }
11191 
11192         ecb->dte_action_last = action;
11193 
11194         return (0);
11195 }
11196 
11197 static void
11198 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11199 {
11200         dtrace_action_t *act = ecb->dte_action, *next;
11201         dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11202         dtrace_difo_t *dp;
11203         uint16_t format;
11204 
11205         if (act != NULL && act->dta_refcnt > 1) {
11206                 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11207                 act->dta_refcnt--;
11208         } else {
11209                 for (; act != NULL; act = next) {
11210                         next = act->dta_next;
11211                         ASSERT(next != NULL || act == ecb->dte_action_last);
11212                         ASSERT(act->dta_refcnt == 1);
11213 
11214                         if ((format = act->dta_rec.dtrd_format) != 0)
11215                                 dtrace_format_remove(ecb->dte_state, format);
11216 
11217                         if ((dp = act->dta_difo) != NULL)
11218                                 dtrace_difo_release(dp, vstate);
11219 
11220                         if (DTRACEACT_ISAGG(act->dta_kind)) {
11221                                 dtrace_ecb_aggregation_destroy(ecb, act);
11222                         } else {
11223                                 kmem_free(act, sizeof (dtrace_action_t));
11224                         }
11225                 }
11226         }
11227 
11228         ecb->dte_action = NULL;
11229         ecb->dte_action_last = NULL;
11230         ecb->dte_size = 0;
11231 }
11232 
11233 static void
11234 dtrace_ecb_disable(dtrace_ecb_t *ecb)
11235 {
11236         /*
11237          * We disable the ECB by removing it from its probe.
11238          */
11239         dtrace_ecb_t *pecb, *prev = NULL;
11240         dtrace_probe_t *probe = ecb->dte_probe;
11241 
11242         ASSERT(MUTEX_HELD(&dtrace_lock));
11243 
11244         if (probe == NULL) {
11245                 /*
11246                  * This is the NULL probe; there is nothing to disable.
11247                  */
11248                 return;
11249         }
11250 
11251         for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11252                 if (pecb == ecb)
11253                         break;
11254                 prev = pecb;
11255         }
11256 
11257         ASSERT(pecb != NULL);
11258 
11259         if (prev == NULL) {
11260                 probe->dtpr_ecb = ecb->dte_next;
11261         } else {
11262                 prev->dte_next = ecb->dte_next;
11263         }
11264 
11265         if (ecb == probe->dtpr_ecb_last) {
11266                 ASSERT(ecb->dte_next == NULL);
11267                 probe->dtpr_ecb_last = prev;
11268         }
11269 
11270         /*
11271          * The ECB has been disconnected from the probe; now sync to assure
11272          * that all CPUs have seen the change before returning.
11273          */
11274         dtrace_sync();
11275 
11276         if (probe->dtpr_ecb == NULL) {
11277                 /*
11278                  * That was the last ECB on the probe; clear the predicate
11279                  * cache ID for the probe, disable it and sync one more time
11280                  * to assure that we'll never hit it again.
11281                  */
11282                 dtrace_provider_t *prov = probe->dtpr_provider;
11283 
11284                 ASSERT(ecb->dte_next == NULL);
11285                 ASSERT(probe->dtpr_ecb_last == NULL);
11286                 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11287                 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11288                     probe->dtpr_id, probe->dtpr_arg);
11289                 dtrace_sync();
11290         } else {
11291                 /*
11292                  * There is at least one ECB remaining on the probe.  If there
11293                  * is _exactly_ one, set the probe's predicate cache ID to be
11294                  * the predicate cache ID of the remaining ECB.
11295                  */
11296                 ASSERT(probe->dtpr_ecb_last != NULL);
11297                 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11298 
11299                 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11300                         dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11301 
11302                         ASSERT(probe->dtpr_ecb->dte_next == NULL);
11303 
11304                         if (p != NULL)
11305                                 probe->dtpr_predcache = p->dtp_cacheid;
11306                 }
11307 
11308                 ecb->dte_next = NULL;
11309         }
11310 }
11311 
11312 static void
11313 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11314 {
11315         dtrace_state_t *state = ecb->dte_state;
11316         dtrace_vstate_t *vstate = &state->dts_vstate;
11317         dtrace_predicate_t *pred;
11318         dtrace_epid_t epid = ecb->dte_epid;
11319 
11320         ASSERT(MUTEX_HELD(&dtrace_lock));
11321         ASSERT(ecb->dte_next == NULL);
11322         ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11323 
11324         if ((pred = ecb->dte_predicate) != NULL)
11325                 dtrace_predicate_release(pred, vstate);
11326 
11327         dtrace_ecb_action_remove(ecb);
11328 
11329         ASSERT(state->dts_ecbs[epid - 1] == ecb);
11330         state->dts_ecbs[epid - 1] = NULL;
11331 
11332         kmem_free(ecb, sizeof (dtrace_ecb_t));
11333 }
11334 
11335 static dtrace_ecb_t *
11336 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11337     dtrace_enabling_t *enab)
11338 {
11339         dtrace_ecb_t *ecb;
11340         dtrace_predicate_t *pred;
11341         dtrace_actdesc_t *act;
11342         dtrace_provider_t *prov;
11343         dtrace_ecbdesc_t *desc = enab->dten_current;
11344 
11345         ASSERT(MUTEX_HELD(&dtrace_lock));
11346         ASSERT(state != NULL);
11347 
11348         ecb = dtrace_ecb_add(state, probe);
11349         ecb->dte_uarg = desc->dted_uarg;
11350 
11351         if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11352                 dtrace_predicate_hold(pred);
11353                 ecb->dte_predicate = pred;
11354         }
11355 
11356         if (probe != NULL) {
11357                 /*
11358                  * If the provider shows more leg than the consumer is old
11359                  * enough to see, we need to enable the appropriate implicit
11360                  * predicate bits to prevent the ecb from activating at
11361                  * revealing times.
11362                  *
11363                  * Providers specifying DTRACE_PRIV_USER at register time
11364                  * are stating that they need the /proc-style privilege
11365                  * model to be enforced, and this is what DTRACE_COND_OWNER
11366                  * and DTRACE_COND_ZONEOWNER will then do at probe time.
11367                  */
11368                 prov = probe->dtpr_provider;
11369                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11370                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11371                         ecb->dte_cond |= DTRACE_COND_OWNER;
11372 
11373                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11374                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11375                         ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11376 
11377                 /*
11378                  * If the provider shows us kernel innards and the user
11379                  * is lacking sufficient privilege, enable the
11380                  * DTRACE_COND_USERMODE implicit predicate.
11381                  */
11382                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11383                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11384                         ecb->dte_cond |= DTRACE_COND_USERMODE;
11385         }
11386 
11387         if (dtrace_ecb_create_cache != NULL) {
11388                 /*
11389                  * If we have a cached ecb, we'll use its action list instead
11390                  * of creating our own (saving both time and space).
11391                  */
11392                 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11393                 dtrace_action_t *act = cached->dte_action;
11394 
11395                 if (act != NULL) {
11396                         ASSERT(act->dta_refcnt > 0);
11397                         act->dta_refcnt++;
11398                         ecb->dte_action = act;
11399                         ecb->dte_action_last = cached->dte_action_last;
11400                         ecb->dte_needed = cached->dte_needed;
11401                         ecb->dte_size = cached->dte_size;
11402                         ecb->dte_alignment = cached->dte_alignment;
11403                 }
11404 
11405                 return (ecb);
11406         }
11407 
11408         for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11409                 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11410                         dtrace_ecb_destroy(ecb);
11411                         return (NULL);
11412                 }
11413         }
11414 
11415         if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) {
11416                 dtrace_ecb_destroy(ecb);
11417                 return (NULL);
11418         }
11419 
11420         return (dtrace_ecb_create_cache = ecb);
11421 }
11422 
11423 static int
11424 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11425 {
11426         dtrace_ecb_t *ecb;
11427         dtrace_enabling_t *enab = arg;
11428         dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11429 
11430         ASSERT(state != NULL);
11431 
11432         if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11433                 /*
11434                  * This probe was created in a generation for which this
11435                  * enabling has previously created ECBs; we don't want to
11436                  * enable it again, so just kick out.
11437                  */
11438                 return (DTRACE_MATCH_NEXT);
11439         }
11440 
11441         if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11442                 return (DTRACE_MATCH_DONE);
11443 
11444         if (dtrace_ecb_enable(ecb) < 0)
11445                 return (DTRACE_MATCH_FAIL);
11446 
11447         return (DTRACE_MATCH_NEXT);
11448 }
11449 
11450 static dtrace_ecb_t *
11451 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11452 {
11453         dtrace_ecb_t *ecb;
11454 
11455         ASSERT(MUTEX_HELD(&dtrace_lock));
11456 
11457         if (id == 0 || id > state->dts_necbs)
11458                 return (NULL);
11459 
11460         ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11461         ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11462 
11463         return (state->dts_ecbs[id - 1]);
11464 }
11465 
11466 static dtrace_aggregation_t *
11467 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11468 {
11469         dtrace_aggregation_t *agg;
11470 
11471         ASSERT(MUTEX_HELD(&dtrace_lock));
11472 
11473         if (id == 0 || id > state->dts_naggregations)
11474                 return (NULL);
11475 
11476         ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11477         ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11478             agg->dtag_id == id);
11479 
11480         return (state->dts_aggregations[id - 1]);
11481 }
11482 
11483 /*
11484  * DTrace Buffer Functions
11485  *
11486  * The following functions manipulate DTrace buffers.  Most of these functions
11487  * are called in the context of establishing or processing consumer state;
11488  * exceptions are explicitly noted.
11489  */
11490 
11491 /*
11492  * Note:  called from cross call context.  This function switches the two
11493  * buffers on a given CPU.  The atomicity of this operation is assured by
11494  * disabling interrupts while the actual switch takes place; the disabling of
11495  * interrupts serializes the execution with any execution of dtrace_probe() on
11496  * the same CPU.
11497  */
11498 static void
11499 dtrace_buffer_switch(dtrace_buffer_t *buf)
11500 {
11501         caddr_t tomax = buf->dtb_tomax;
11502         caddr_t xamot = buf->dtb_xamot;
11503         dtrace_icookie_t cookie;
11504         hrtime_t now;
11505 
11506         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11507         ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
11508 
11509         cookie = dtrace_interrupt_disable();
11510         now = dtrace_gethrtime();
11511         buf->dtb_tomax = xamot;
11512         buf->dtb_xamot = tomax;
11513         buf->dtb_xamot_drops = buf->dtb_drops;
11514         buf->dtb_xamot_offset = buf->dtb_offset;
11515         buf->dtb_xamot_errors = buf->dtb_errors;
11516         buf->dtb_xamot_flags = buf->dtb_flags;
11517         buf->dtb_offset = 0;
11518         buf->dtb_drops = 0;
11519         buf->dtb_errors = 0;
11520         buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
11521         buf->dtb_interval = now - buf->dtb_switched;
11522         buf->dtb_switched = now;
11523         dtrace_interrupt_enable(cookie);
11524 }
11525 
11526 /*
11527  * Note:  called from cross call context.  This function activates a buffer
11528  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
11529  * is guaranteed by the disabling of interrupts.
11530  */
11531 static void
11532 dtrace_buffer_activate(dtrace_state_t *state)
11533 {
11534         dtrace_buffer_t *buf;
11535         dtrace_icookie_t cookie = dtrace_interrupt_disable();
11536 
11537         buf = &state->dts_buffer[CPU->cpu_id];
11538 
11539         if (buf->dtb_tomax != NULL) {
11540                 /*
11541                  * We might like to assert that the buffer is marked inactive,
11542                  * but this isn't necessarily true:  the buffer for the CPU
11543                  * that processes the BEGIN probe has its buffer activated
11544                  * manually.  In this case, we take the (harmless) action
11545                  * re-clearing the bit INACTIVE bit.
11546                  */
11547                 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
11548         }
11549 
11550         dtrace_interrupt_enable(cookie);
11551 }
11552 
11553 static int
11554 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
11555     processorid_t cpu, int *factor)
11556 {
11557         cpu_t *cp;
11558         dtrace_buffer_t *buf;
11559         int allocated = 0, desired = 0;
11560 
11561         ASSERT(MUTEX_HELD(&cpu_lock));
11562         ASSERT(MUTEX_HELD(&dtrace_lock));
11563 
11564         *factor = 1;
11565 
11566         if (size > dtrace_nonroot_maxsize &&
11567             !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
11568                 return (EFBIG);
11569 
11570         cp = cpu_list;
11571 
11572         do {
11573                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11574                         continue;
11575 
11576                 buf = &bufs[cp->cpu_id];
11577 
11578                 /*
11579                  * If there is already a buffer allocated for this CPU, it
11580                  * is only possible that this is a DR event.  In this case,
11581                  * the buffer size must match our specified size.
11582                  */
11583                 if (buf->dtb_tomax != NULL) {
11584                         ASSERT(buf->dtb_size == size);
11585                         continue;
11586                 }
11587 
11588                 ASSERT(buf->dtb_xamot == NULL);
11589 
11590                 if ((buf->dtb_tomax = kmem_zalloc(size,
11591                     KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11592                         goto err;
11593 
11594                 buf->dtb_size = size;
11595                 buf->dtb_flags = flags;
11596                 buf->dtb_offset = 0;
11597                 buf->dtb_drops = 0;
11598 
11599                 if (flags & DTRACEBUF_NOSWITCH)
11600                         continue;
11601 
11602                 if ((buf->dtb_xamot = kmem_zalloc(size,
11603                     KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11604                         goto err;
11605         } while ((cp = cp->cpu_next) != cpu_list);
11606 
11607         return (0);
11608 
11609 err:
11610         cp = cpu_list;
11611 
11612         do {
11613                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11614                         continue;
11615 
11616                 buf = &bufs[cp->cpu_id];
11617                 desired += 2;
11618 
11619                 if (buf->dtb_xamot != NULL) {
11620                         ASSERT(buf->dtb_tomax != NULL);
11621                         ASSERT(buf->dtb_size == size);
11622                         kmem_free(buf->dtb_xamot, size);
11623                         allocated++;
11624                 }
11625 
11626                 if (buf->dtb_tomax != NULL) {
11627                         ASSERT(buf->dtb_size == size);
11628                         kmem_free(buf->dtb_tomax, size);
11629                         allocated++;
11630                 }
11631 
11632                 buf->dtb_tomax = NULL;
11633                 buf->dtb_xamot = NULL;
11634                 buf->dtb_size = 0;
11635         } while ((cp = cp->cpu_next) != cpu_list);
11636 
11637         *factor = desired / (allocated > 0 ? allocated : 1);
11638 
11639         return (ENOMEM);
11640 }
11641 
11642 /*
11643  * Note:  called from probe context.  This function just increments the drop
11644  * count on a buffer.  It has been made a function to allow for the
11645  * possibility of understanding the source of mysterious drop counts.  (A
11646  * problem for which one may be particularly disappointed that DTrace cannot
11647  * be used to understand DTrace.)
11648  */
11649 static void
11650 dtrace_buffer_drop(dtrace_buffer_t *buf)
11651 {
11652         buf->dtb_drops++;
11653 }
11654 
11655 /*
11656  * Note:  called from probe context.  This function is called to reserve space
11657  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
11658  * mstate.  Returns the new offset in the buffer, or a negative value if an
11659  * error has occurred.
11660  */
11661 static intptr_t
11662 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11663     dtrace_state_t *state, dtrace_mstate_t *mstate)
11664 {
11665         intptr_t offs = buf->dtb_offset, soffs;
11666         intptr_t woffs;
11667         caddr_t tomax;
11668         size_t total;
11669 
11670         if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11671                 return (-1);
11672 
11673         if ((tomax = buf->dtb_tomax) == NULL) {
11674                 dtrace_buffer_drop(buf);
11675                 return (-1);
11676         }
11677 
11678         if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11679                 while (offs & (align - 1)) {
11680                         /*
11681                          * Assert that our alignment is off by a number which
11682                          * is itself sizeof (uint32_t) aligned.
11683                          */
11684                         ASSERT(!((align - (offs & (align - 1))) &
11685                             (sizeof (uint32_t) - 1)));
11686                         DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11687                         offs += sizeof (uint32_t);
11688                 }
11689 
11690                 if ((soffs = offs + needed) > buf->dtb_size) {
11691                         dtrace_buffer_drop(buf);
11692                         return (-1);
11693                 }
11694 
11695                 if (mstate == NULL)
11696                         return (offs);
11697 
11698                 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11699                 mstate->dtms_scratch_size = buf->dtb_size - soffs;
11700                 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11701 
11702                 return (offs);
11703         }
11704 
11705         if (buf->dtb_flags & DTRACEBUF_FILL) {
11706                 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11707                     (buf->dtb_flags & DTRACEBUF_FULL))
11708                         return (-1);
11709                 goto out;
11710         }
11711 
11712         total = needed + (offs & (align - 1));
11713 
11714         /*
11715          * For a ring buffer, life is quite a bit more complicated.  Before
11716          * we can store any padding, we need to adjust our wrapping offset.
11717          * (If we've never before wrapped or we're not about to, no adjustment
11718          * is required.)
11719          */
11720         if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11721             offs + total > buf->dtb_size) {
11722                 woffs = buf->dtb_xamot_offset;
11723 
11724                 if (offs + total > buf->dtb_size) {
11725                         /*
11726                          * We can't fit in the end of the buffer.  First, a
11727                          * sanity check that we can fit in the buffer at all.
11728                          */
11729                         if (total > buf->dtb_size) {
11730                                 dtrace_buffer_drop(buf);
11731                                 return (-1);
11732                         }
11733 
11734                         /*
11735                          * We're going to be storing at the top of the buffer,
11736                          * so now we need to deal with the wrapped offset.  We
11737                          * only reset our wrapped offset to 0 if it is
11738                          * currently greater than the current offset.  If it
11739                          * is less than the current offset, it is because a
11740                          * previous allocation induced a wrap -- but the
11741                          * allocation didn't subsequently take the space due
11742                          * to an error or false predicate evaluation.  In this
11743                          * case, we'll just leave the wrapped offset alone: if
11744                          * the wrapped offset hasn't been advanced far enough
11745                          * for this allocation, it will be adjusted in the
11746                          * lower loop.
11747                          */
11748                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11749                                 if (woffs >= offs)
11750                                         woffs = 0;
11751                         } else {
11752                                 woffs = 0;
11753                         }
11754 
11755                         /*
11756                          * Now we know that we're going to be storing to the
11757                          * top of the buffer and that there is room for us
11758                          * there.  We need to clear the buffer from the current
11759                          * offset to the end (there may be old gunk there).
11760                          */
11761                         while (offs < buf->dtb_size)
11762                                 tomax[offs++] = 0;
11763 
11764                         /*
11765                          * We need to set our offset to zero.  And because we
11766                          * are wrapping, we need to set the bit indicating as
11767                          * much.  We can also adjust our needed space back
11768                          * down to the space required by the ECB -- we know
11769                          * that the top of the buffer is aligned.
11770                          */
11771                         offs = 0;
11772                         total = needed;
11773                         buf->dtb_flags |= DTRACEBUF_WRAPPED;
11774                 } else {
11775                         /*
11776                          * There is room for us in the buffer, so we simply
11777                          * need to check the wrapped offset.
11778                          */
11779                         if (woffs < offs) {
11780                                 /*
11781                                  * The wrapped offset is less than the offset.
11782                                  * This can happen if we allocated buffer space
11783                                  * that induced a wrap, but then we didn't
11784                                  * subsequently take the space due to an error
11785                                  * or false predicate evaluation.  This is
11786                                  * okay; we know that _this_ allocation isn't
11787                                  * going to induce a wrap.  We still can't
11788                                  * reset the wrapped offset to be zero,
11789                                  * however: the space may have been trashed in
11790                                  * the previous failed probe attempt.  But at
11791                                  * least the wrapped offset doesn't need to
11792                                  * be adjusted at all...
11793                                  */
11794                                 goto out;
11795                         }
11796                 }
11797 
11798                 while (offs + total > woffs) {
11799                         dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11800                         size_t size;
11801 
11802                         if (epid == DTRACE_EPIDNONE) {
11803                                 size = sizeof (uint32_t);
11804                         } else {
11805                                 ASSERT3U(epid, <=, state->dts_necbs);
11806                                 ASSERT(state->dts_ecbs[epid - 1] != NULL);
11807 
11808                                 size = state->dts_ecbs[epid - 1]->dte_size;
11809                         }
11810 
11811                         ASSERT(woffs + size <= buf->dtb_size);
11812                         ASSERT(size != 0);
11813 
11814                         if (woffs + size == buf->dtb_size) {
11815                                 /*
11816                                  * We've reached the end of the buffer; we want
11817                                  * to set the wrapped offset to 0 and break
11818                                  * out.  However, if the offs is 0, then we're
11819                                  * in a strange edge-condition:  the amount of
11820                                  * space that we want to reserve plus the size
11821                                  * of the record that we're overwriting is
11822                                  * greater than the size of the buffer.  This
11823                                  * is problematic because if we reserve the
11824                                  * space but subsequently don't consume it (due
11825                                  * to a failed predicate or error) the wrapped
11826                                  * offset will be 0 -- yet the EPID at offset 0
11827                                  * will not be committed.  This situation is
11828                                  * relatively easy to deal with:  if we're in
11829                                  * this case, the buffer is indistinguishable
11830                                  * from one that hasn't wrapped; we need only
11831                                  * finish the job by clearing the wrapped bit,
11832                                  * explicitly setting the offset to be 0, and
11833                                  * zero'ing out the old data in the buffer.
11834                                  */
11835                                 if (offs == 0) {
11836                                         buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11837                                         buf->dtb_offset = 0;
11838                                         woffs = total;
11839 
11840                                         while (woffs < buf->dtb_size)
11841                                                 tomax[woffs++] = 0;
11842                                 }
11843 
11844                                 woffs = 0;
11845                                 break;
11846                         }
11847 
11848                         woffs += size;
11849                 }
11850 
11851                 /*
11852                  * We have a wrapped offset.  It may be that the wrapped offset
11853                  * has become zero -- that's okay.
11854                  */
11855                 buf->dtb_xamot_offset = woffs;
11856         }
11857 
11858 out:
11859         /*
11860          * Now we can plow the buffer with any necessary padding.
11861          */
11862         while (offs & (align - 1)) {
11863                 /*
11864                  * Assert that our alignment is off by a number which
11865                  * is itself sizeof (uint32_t) aligned.
11866                  */
11867                 ASSERT(!((align - (offs & (align - 1))) &
11868                     (sizeof (uint32_t) - 1)));
11869                 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11870                 offs += sizeof (uint32_t);
11871         }
11872 
11873         if (buf->dtb_flags & DTRACEBUF_FILL) {
11874                 if (offs + needed > buf->dtb_size - state->dts_reserve) {
11875                         buf->dtb_flags |= DTRACEBUF_FULL;
11876                         return (-1);
11877                 }
11878         }
11879 
11880         if (mstate == NULL)
11881                 return (offs);
11882 
11883         /*
11884          * For ring buffers and fill buffers, the scratch space is always
11885          * the inactive buffer.
11886          */
11887         mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11888         mstate->dtms_scratch_size = buf->dtb_size;
11889         mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11890 
11891         return (offs);
11892 }
11893 
11894 static void
11895 dtrace_buffer_polish(dtrace_buffer_t *buf)
11896 {
11897         ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11898         ASSERT(MUTEX_HELD(&dtrace_lock));
11899 
11900         if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11901                 return;
11902 
11903         /*
11904          * We need to polish the ring buffer.  There are three cases:
11905          *
11906          * - The first (and presumably most common) is that there is no gap
11907          *   between the buffer offset and the wrapped offset.  In this case,
11908          *   there is nothing in the buffer that isn't valid data; we can
11909          *   mark the buffer as polished and return.
11910          *
11911          * - The second (less common than the first but still more common
11912          *   than the third) is that there is a gap between the buffer offset
11913          *   and the wrapped offset, and the wrapped offset is larger than the
11914          *   buffer offset.  This can happen because of an alignment issue, or
11915          *   can happen because of a call to dtrace_buffer_reserve() that
11916          *   didn't subsequently consume the buffer space.  In this case,
11917          *   we need to zero the data from the buffer offset to the wrapped
11918          *   offset.
11919          *
11920          * - The third (and least common) is that there is a gap between the
11921          *   buffer offset and the wrapped offset, but the wrapped offset is
11922          *   _less_ than the buffer offset.  This can only happen because a
11923          *   call to dtrace_buffer_reserve() induced a wrap, but the space
11924          *   was not subsequently consumed.  In this case, we need to zero the
11925          *   space from the offset to the end of the buffer _and_ from the
11926          *   top of the buffer to the wrapped offset.
11927          */
11928         if (buf->dtb_offset < buf->dtb_xamot_offset) {
11929                 bzero(buf->dtb_tomax + buf->dtb_offset,
11930                     buf->dtb_xamot_offset - buf->dtb_offset);
11931         }
11932 
11933         if (buf->dtb_offset > buf->dtb_xamot_offset) {
11934                 bzero(buf->dtb_tomax + buf->dtb_offset,
11935                     buf->dtb_size - buf->dtb_offset);
11936                 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11937         }
11938 }
11939 
11940 /*
11941  * This routine determines if data generated at the specified time has likely
11942  * been entirely consumed at user-level.  This routine is called to determine
11943  * if an ECB on a defunct probe (but for an active enabling) can be safely
11944  * disabled and destroyed.
11945  */
11946 static int
11947 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11948 {
11949         int i;
11950 
11951         for (i = 0; i < NCPU; i++) {
11952                 dtrace_buffer_t *buf = &bufs[i];
11953 
11954                 if (buf->dtb_size == 0)
11955                         continue;
11956 
11957                 if (buf->dtb_flags & DTRACEBUF_RING)
11958                         return (0);
11959 
11960                 if (!buf->dtb_switched && buf->dtb_offset != 0)
11961                         return (0);
11962 
11963                 if (buf->dtb_switched - buf->dtb_interval < when)
11964                         return (0);
11965         }
11966 
11967         return (1);
11968 }
11969 
11970 static void
11971 dtrace_buffer_free(dtrace_buffer_t *bufs)
11972 {
11973         int i;
11974 
11975         for (i = 0; i < NCPU; i++) {
11976                 dtrace_buffer_t *buf = &bufs[i];
11977 
11978                 if (buf->dtb_tomax == NULL) {
11979                         ASSERT(buf->dtb_xamot == NULL);
11980                         ASSERT(buf->dtb_size == 0);
11981                         continue;
11982                 }
11983 
11984                 if (buf->dtb_xamot != NULL) {
11985                         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11986                         kmem_free(buf->dtb_xamot, buf->dtb_size);
11987                 }
11988 
11989                 kmem_free(buf->dtb_tomax, buf->dtb_size);
11990                 buf->dtb_size = 0;
11991                 buf->dtb_tomax = NULL;
11992                 buf->dtb_xamot = NULL;
11993         }
11994 }
11995 
11996 /*
11997  * DTrace Enabling Functions
11998  */
11999 static dtrace_enabling_t *
12000 dtrace_enabling_create(dtrace_vstate_t *vstate)
12001 {
12002         dtrace_enabling_t *enab;
12003 
12004         enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12005         enab->dten_vstate = vstate;
12006 
12007         return (enab);
12008 }
12009 
12010 static void
12011 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12012 {
12013         dtrace_ecbdesc_t **ndesc;
12014         size_t osize, nsize;
12015 
12016         /*
12017          * We can't add to enablings after we've enabled them, or after we've
12018          * retained them.
12019          */
12020         ASSERT(enab->dten_probegen == 0);
12021         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12022 
12023         if (enab->dten_ndesc < enab->dten_maxdesc) {
12024                 enab->dten_desc[enab->dten_ndesc++] = ecb;
12025                 return;
12026         }
12027 
12028         osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12029 
12030         if (enab->dten_maxdesc == 0) {
12031                 enab->dten_maxdesc = 1;
12032         } else {
12033                 enab->dten_maxdesc <<= 1;
12034         }
12035 
12036         ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12037 
12038         nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12039         ndesc = kmem_zalloc(nsize, KM_SLEEP);
12040         bcopy(enab->dten_desc, ndesc, osize);
12041         kmem_free(enab->dten_desc, osize);
12042 
12043         enab->dten_desc = ndesc;
12044         enab->dten_desc[enab->dten_ndesc++] = ecb;
12045 }
12046 
12047 static void
12048 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12049     dtrace_probedesc_t *pd)
12050 {
12051         dtrace_ecbdesc_t *new;
12052         dtrace_predicate_t *pred;
12053         dtrace_actdesc_t *act;
12054 
12055         /*
12056          * We're going to create a new ECB description that matches the
12057          * specified ECB in every way, but has the specified probe description.
12058          */
12059         new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12060 
12061         if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12062                 dtrace_predicate_hold(pred);
12063 
12064         for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12065                 dtrace_actdesc_hold(act);
12066 
12067         new->dted_action = ecb->dted_action;
12068         new->dted_pred = ecb->dted_pred;
12069         new->dted_probe = *pd;
12070         new->dted_uarg = ecb->dted_uarg;
12071 
12072         dtrace_enabling_add(enab, new);
12073 }
12074 
12075 static void
12076 dtrace_enabling_dump(dtrace_enabling_t *enab)
12077 {
12078         int i;
12079 
12080         for (i = 0; i < enab->dten_ndesc; i++) {
12081                 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12082 
12083                 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12084                     desc->dtpd_provider, desc->dtpd_mod,
12085                     desc->dtpd_func, desc->dtpd_name);
12086         }
12087 }
12088 
12089 static void
12090 dtrace_enabling_destroy(dtrace_enabling_t *enab)
12091 {
12092         int i;
12093         dtrace_ecbdesc_t *ep;
12094         dtrace_vstate_t *vstate = enab->dten_vstate;
12095 
12096         ASSERT(MUTEX_HELD(&dtrace_lock));
12097 
12098         for (i = 0; i < enab->dten_ndesc; i++) {
12099                 dtrace_actdesc_t *act, *next;
12100                 dtrace_predicate_t *pred;
12101 
12102                 ep = enab->dten_desc[i];
12103 
12104                 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12105                         dtrace_predicate_release(pred, vstate);
12106 
12107                 for (act = ep->dted_action; act != NULL; act = next) {
12108                         next = act->dtad_next;
12109                         dtrace_actdesc_release(act, vstate);
12110                 }
12111 
12112                 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12113         }
12114 
12115         kmem_free(enab->dten_desc,
12116             enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12117 
12118         /*
12119          * If this was a retained enabling, decrement the dts_nretained count
12120          * and take it off of the dtrace_retained list.
12121          */
12122         if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12123             dtrace_retained == enab) {
12124                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12125                 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12126                 enab->dten_vstate->dtvs_state->dts_nretained--;
12127                 dtrace_retained_gen++;
12128         }
12129 
12130         if (enab->dten_prev == NULL) {
12131                 if (dtrace_retained == enab) {
12132                         dtrace_retained = enab->dten_next;
12133 
12134                         if (dtrace_retained != NULL)
12135                                 dtrace_retained->dten_prev = NULL;
12136                 }
12137         } else {
12138                 ASSERT(enab != dtrace_retained);
12139                 ASSERT(dtrace_retained != NULL);
12140                 enab->dten_prev->dten_next = enab->dten_next;
12141         }
12142 
12143         if (enab->dten_next != NULL) {
12144                 ASSERT(dtrace_retained != NULL);
12145                 enab->dten_next->dten_prev = enab->dten_prev;
12146         }
12147 
12148         kmem_free(enab, sizeof (dtrace_enabling_t));
12149 }
12150 
12151 static int
12152 dtrace_enabling_retain(dtrace_enabling_t *enab)
12153 {
12154         dtrace_state_t *state;
12155 
12156         ASSERT(MUTEX_HELD(&dtrace_lock));
12157         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12158         ASSERT(enab->dten_vstate != NULL);
12159 
12160         state = enab->dten_vstate->dtvs_state;
12161         ASSERT(state != NULL);
12162 
12163         /*
12164          * We only allow each state to retain dtrace_retain_max enablings.
12165          */
12166         if (state->dts_nretained >= dtrace_retain_max)
12167                 return (ENOSPC);
12168 
12169         state->dts_nretained++;
12170         dtrace_retained_gen++;
12171 
12172         if (dtrace_retained == NULL) {
12173                 dtrace_retained = enab;
12174                 return (0);
12175         }
12176 
12177         enab->dten_next = dtrace_retained;
12178         dtrace_retained->dten_prev = enab;
12179         dtrace_retained = enab;
12180 
12181         return (0);
12182 }
12183 
12184 static int
12185 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12186     dtrace_probedesc_t *create)
12187 {
12188         dtrace_enabling_t *new, *enab;
12189         int found = 0, err = ENOENT;
12190 
12191         ASSERT(MUTEX_HELD(&dtrace_lock));
12192         ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12193         ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12194         ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12195         ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12196 
12197         new = dtrace_enabling_create(&state->dts_vstate);
12198 
12199         /*
12200          * Iterate over all retained enablings, looking for enablings that
12201          * match the specified state.
12202          */
12203         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12204                 int i;
12205 
12206                 /*
12207                  * dtvs_state can only be NULL for helper enablings -- and
12208                  * helper enablings can't be retained.
12209                  */
12210                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12211 
12212                 if (enab->dten_vstate->dtvs_state != state)
12213                         continue;
12214 
12215                 /*
12216                  * Now iterate over each probe description; we're looking for
12217                  * an exact match to the specified probe description.
12218                  */
12219                 for (i = 0; i < enab->dten_ndesc; i++) {
12220                         dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12221                         dtrace_probedesc_t *pd = &ep->dted_probe;
12222 
12223                         if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12224                                 continue;
12225 
12226                         if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12227                                 continue;
12228 
12229                         if (strcmp(pd->dtpd_func, match->dtpd_func))
12230                                 continue;
12231 
12232                         if (strcmp(pd->dtpd_name, match->dtpd_name))
12233                                 continue;
12234 
12235                         /*
12236                          * We have a winning probe!  Add it to our growing
12237                          * enabling.
12238                          */
12239                         found = 1;
12240                         dtrace_enabling_addlike(new, ep, create);
12241                 }
12242         }
12243 
12244         if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12245                 dtrace_enabling_destroy(new);
12246                 return (err);
12247         }
12248 
12249         return (0);
12250 }
12251 
12252 static void
12253 dtrace_enabling_retract(dtrace_state_t *state)
12254 {
12255         dtrace_enabling_t *enab, *next;
12256 
12257         ASSERT(MUTEX_HELD(&dtrace_lock));
12258 
12259         /*
12260          * Iterate over all retained enablings, destroy the enablings retained
12261          * for the specified state.
12262          */
12263         for (enab = dtrace_retained; enab != NULL; enab = next) {
12264                 next = enab->dten_next;
12265 
12266                 /*
12267                  * dtvs_state can only be NULL for helper enablings -- and
12268                  * helper enablings can't be retained.
12269                  */
12270                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12271 
12272                 if (enab->dten_vstate->dtvs_state == state) {
12273                         ASSERT(state->dts_nretained > 0);
12274                         dtrace_enabling_destroy(enab);
12275                 }
12276         }
12277 
12278         ASSERT(state->dts_nretained == 0);
12279 }
12280 
12281 static int
12282 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12283 {
12284         int i = 0;
12285         int total_matched = 0, matched = 0;
12286 
12287         ASSERT(MUTEX_HELD(&cpu_lock));
12288         ASSERT(MUTEX_HELD(&dtrace_lock));
12289 
12290         for (i = 0; i < enab->dten_ndesc; i++) {
12291                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12292 
12293                 enab->dten_current = ep;
12294                 enab->dten_error = 0;
12295 
12296                 /*
12297                  * If a provider failed to enable a probe then get out and
12298                  * let the consumer know we failed.
12299                  */
12300                 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
12301                         return (EBUSY);
12302 
12303                 total_matched += matched;
12304 
12305                 if (enab->dten_error != 0) {
12306                         /*
12307                          * If we get an error half-way through enabling the
12308                          * probes, we kick out -- perhaps with some number of
12309                          * them enabled.  Leaving enabled probes enabled may
12310                          * be slightly confusing for user-level, but we expect
12311                          * that no one will attempt to actually drive on in
12312                          * the face of such errors.  If this is an anonymous
12313                          * enabling (indicated with a NULL nmatched pointer),
12314                          * we cmn_err() a message.  We aren't expecting to
12315                          * get such an error -- such as it can exist at all,
12316                          * it would be a result of corrupted DOF in the driver
12317                          * properties.
12318                          */
12319                         if (nmatched == NULL) {
12320                                 cmn_err(CE_WARN, "dtrace_enabling_match() "
12321                                     "error on %p: %d", (void *)ep,
12322                                     enab->dten_error);
12323                         }
12324 
12325                         return (enab->dten_error);
12326                 }
12327         }
12328 
12329         enab->dten_probegen = dtrace_probegen;
12330         if (nmatched != NULL)
12331                 *nmatched = total_matched;
12332 
12333         return (0);
12334 }
12335 
12336 static void
12337 dtrace_enabling_matchall(void)
12338 {
12339         dtrace_enabling_t *enab;
12340 
12341         mutex_enter(&cpu_lock);
12342         mutex_enter(&dtrace_lock);
12343 
12344         /*
12345          * Iterate over all retained enablings to see if any probes match
12346          * against them.  We only perform this operation on enablings for which
12347          * we have sufficient permissions by virtue of being in the global zone
12348          * or in the same zone as the DTrace client.  Because we can be called
12349          * after dtrace_detach() has been called, we cannot assert that there
12350          * are retained enablings.  We can safely load from dtrace_retained,
12351          * however:  the taskq_destroy() at the end of dtrace_detach() will
12352          * block pending our completion.
12353          */
12354         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12355                 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred;
12356                 cred_t *cr = dcr->dcr_cred;
12357                 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0;
12358 
12359                 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL &&
12360                     (zone == GLOBAL_ZONEID || getzoneid() == zone)))
12361                         (void) dtrace_enabling_match(enab, NULL);
12362         }
12363 
12364         mutex_exit(&dtrace_lock);
12365         mutex_exit(&cpu_lock);
12366 }
12367 
12368 /*
12369  * If an enabling is to be enabled without having matched probes (that is, if
12370  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12371  * enabling must be _primed_ by creating an ECB for every ECB description.
12372  * This must be done to assure that we know the number of speculations, the
12373  * number of aggregations, the minimum buffer size needed, etc. before we
12374  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
12375  * enabling any probes, we create ECBs for every ECB decription, but with a
12376  * NULL probe -- which is exactly what this function does.
12377  */
12378 static void
12379 dtrace_enabling_prime(dtrace_state_t *state)
12380 {
12381         dtrace_enabling_t *enab;
12382         int i;
12383 
12384         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12385                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12386 
12387                 if (enab->dten_vstate->dtvs_state != state)
12388                         continue;
12389 
12390                 /*
12391                  * We don't want to prime an enabling more than once, lest
12392                  * we allow a malicious user to induce resource exhaustion.
12393                  * (The ECBs that result from priming an enabling aren't
12394                  * leaked -- but they also aren't deallocated until the
12395                  * consumer state is destroyed.)
12396                  */
12397                 if (enab->dten_primed)
12398                         continue;
12399 
12400                 for (i = 0; i < enab->dten_ndesc; i++) {
12401                         enab->dten_current = enab->dten_desc[i];
12402                         (void) dtrace_probe_enable(NULL, enab);
12403                 }
12404 
12405                 enab->dten_primed = 1;
12406         }
12407 }
12408 
12409 /*
12410  * Called to indicate that probes should be provided due to retained
12411  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
12412  * must take an initial lap through the enabling calling the dtps_provide()
12413  * entry point explicitly to allow for autocreated probes.
12414  */
12415 static void
12416 dtrace_enabling_provide(dtrace_provider_t *prv)
12417 {
12418         int i, all = 0;
12419         dtrace_probedesc_t desc;
12420         dtrace_genid_t gen;
12421 
12422         ASSERT(MUTEX_HELD(&dtrace_lock));
12423         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
12424 
12425         if (prv == NULL) {
12426                 all = 1;
12427                 prv = dtrace_provider;
12428         }
12429 
12430         do {
12431                 dtrace_enabling_t *enab;
12432                 void *parg = prv->dtpv_arg;
12433 
12434 retry:
12435                 gen = dtrace_retained_gen;
12436                 for (enab = dtrace_retained; enab != NULL;
12437                     enab = enab->dten_next) {
12438                         for (i = 0; i < enab->dten_ndesc; i++) {
12439                                 desc = enab->dten_desc[i]->dted_probe;
12440                                 mutex_exit(&dtrace_lock);
12441                                 prv->dtpv_pops.dtps_provide(parg, &desc);
12442                                 mutex_enter(&dtrace_lock);
12443                                 /*
12444                                  * Process the retained enablings again if
12445                                  * they have changed while we weren't holding
12446                                  * dtrace_lock.
12447                                  */
12448                                 if (gen != dtrace_retained_gen)
12449                                         goto retry;
12450                         }
12451                 }
12452         } while (all && (prv = prv->dtpv_next) != NULL);
12453 
12454         mutex_exit(&dtrace_lock);
12455         dtrace_probe_provide(NULL, all ? NULL : prv);
12456         mutex_enter(&dtrace_lock);
12457 }
12458 
12459 /*
12460  * Called to reap ECBs that are attached to probes from defunct providers.
12461  */
12462 static void
12463 dtrace_enabling_reap(void)
12464 {
12465         dtrace_provider_t *prov;
12466         dtrace_probe_t *probe;
12467         dtrace_ecb_t *ecb;
12468         hrtime_t when;
12469         int i;
12470 
12471         mutex_enter(&cpu_lock);
12472         mutex_enter(&dtrace_lock);
12473 
12474         for (i = 0; i < dtrace_nprobes; i++) {
12475                 if ((probe = dtrace_probes[i]) == NULL)
12476                         continue;
12477 
12478                 if (probe->dtpr_ecb == NULL)
12479                         continue;
12480 
12481                 prov = probe->dtpr_provider;
12482 
12483                 if ((when = prov->dtpv_defunct) == 0)
12484                         continue;
12485 
12486                 /*
12487                  * We have ECBs on a defunct provider:  we want to reap these
12488                  * ECBs to allow the provider to unregister.  The destruction
12489                  * of these ECBs must be done carefully:  if we destroy the ECB
12490                  * and the consumer later wishes to consume an EPID that
12491                  * corresponds to the destroyed ECB (and if the EPID metadata
12492                  * has not been previously consumed), the consumer will abort
12493                  * processing on the unknown EPID.  To reduce (but not, sadly,
12494                  * eliminate) the possibility of this, we will only destroy an
12495                  * ECB for a defunct provider if, for the state that
12496                  * corresponds to the ECB:
12497                  *
12498                  *  (a) There is no speculative tracing (which can effectively
12499                  *      cache an EPID for an arbitrary amount of time).
12500                  *
12501                  *  (b) The principal buffers have been switched twice since the
12502                  *      provider became defunct.
12503                  *
12504                  *  (c) The aggregation buffers are of zero size or have been
12505                  *      switched twice since the provider became defunct.
12506                  *
12507                  * We use dts_speculates to determine (a) and call a function
12508                  * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
12509                  * that as soon as we've been unable to destroy one of the ECBs
12510                  * associated with the probe, we quit trying -- reaping is only
12511                  * fruitful in as much as we can destroy all ECBs associated
12512                  * with the defunct provider's probes.
12513                  */
12514                 while ((ecb = probe->dtpr_ecb) != NULL) {
12515                         dtrace_state_t *state = ecb->dte_state;
12516                         dtrace_buffer_t *buf = state->dts_buffer;
12517                         dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
12518 
12519                         if (state->dts_speculates)
12520                                 break;
12521 
12522                         if (!dtrace_buffer_consumed(buf, when))
12523                                 break;
12524 
12525                         if (!dtrace_buffer_consumed(aggbuf, when))
12526                                 break;
12527 
12528                         dtrace_ecb_disable(ecb);
12529                         ASSERT(probe->dtpr_ecb != ecb);
12530                         dtrace_ecb_destroy(ecb);
12531                 }
12532         }
12533 
12534         mutex_exit(&dtrace_lock);
12535         mutex_exit(&cpu_lock);
12536 }
12537 
12538 /*
12539  * DTrace DOF Functions
12540  */
12541 /*ARGSUSED*/
12542 static void
12543 dtrace_dof_error(dof_hdr_t *dof, const char *str)
12544 {
12545         if (dtrace_err_verbose)
12546                 cmn_err(CE_WARN, "failed to process DOF: %s", str);
12547 
12548 #ifdef DTRACE_ERRDEBUG
12549         dtrace_errdebug(str);
12550 #endif
12551 }
12552 
12553 /*
12554  * Create DOF out of a currently enabled state.  Right now, we only create
12555  * DOF containing the run-time options -- but this could be expanded to create
12556  * complete DOF representing the enabled state.
12557  */
12558 static dof_hdr_t *
12559 dtrace_dof_create(dtrace_state_t *state)
12560 {
12561         dof_hdr_t *dof;
12562         dof_sec_t *sec;
12563         dof_optdesc_t *opt;
12564         int i, len = sizeof (dof_hdr_t) +
12565             roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
12566             sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12567 
12568         ASSERT(MUTEX_HELD(&dtrace_lock));
12569 
12570         dof = kmem_zalloc(len, KM_SLEEP);
12571         dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
12572         dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
12573         dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
12574         dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
12575 
12576         dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
12577         dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
12578         dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
12579         dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
12580         dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
12581         dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
12582 
12583         dof->dofh_flags = 0;
12584         dof->dofh_hdrsize = sizeof (dof_hdr_t);
12585         dof->dofh_secsize = sizeof (dof_sec_t);
12586         dof->dofh_secnum = 1;        /* only DOF_SECT_OPTDESC */
12587         dof->dofh_secoff = sizeof (dof_hdr_t);
12588         dof->dofh_loadsz = len;
12589         dof->dofh_filesz = len;
12590         dof->dofh_pad = 0;
12591 
12592         /*
12593          * Fill in the option section header...
12594          */
12595         sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
12596         sec->dofs_type = DOF_SECT_OPTDESC;
12597         sec->dofs_align = sizeof (uint64_t);
12598         sec->dofs_flags = DOF_SECF_LOAD;
12599         sec->dofs_entsize = sizeof (dof_optdesc_t);
12600 
12601         opt = (dof_optdesc_t *)((uintptr_t)sec +
12602             roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
12603 
12604         sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
12605         sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12606 
12607         for (i = 0; i < DTRACEOPT_MAX; i++) {
12608                 opt[i].dofo_option = i;
12609                 opt[i].dofo_strtab = DOF_SECIDX_NONE;
12610                 opt[i].dofo_value = state->dts_options[i];
12611         }
12612 
12613         return (dof);
12614 }
12615 
12616 static dof_hdr_t *
12617 dtrace_dof_copyin(uintptr_t uarg, int *errp)
12618 {
12619         dof_hdr_t hdr, *dof;
12620 
12621         ASSERT(!MUTEX_HELD(&dtrace_lock));
12622 
12623         /*
12624          * First, we're going to copyin() the sizeof (dof_hdr_t).
12625          */
12626         if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
12627                 dtrace_dof_error(NULL, "failed to copyin DOF header");
12628                 *errp = EFAULT;
12629                 return (NULL);
12630         }
12631 
12632         /*
12633          * Now we'll allocate the entire DOF and copy it in -- provided
12634          * that the length isn't outrageous.
12635          */
12636         if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
12637                 dtrace_dof_error(&hdr, "load size exceeds maximum");
12638                 *errp = E2BIG;
12639                 return (NULL);
12640         }
12641 
12642         if (hdr.dofh_loadsz < sizeof (hdr)) {
12643                 dtrace_dof_error(&hdr, "invalid load size");
12644                 *errp = EINVAL;
12645                 return (NULL);
12646         }
12647 
12648         dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
12649 
12650         if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
12651             dof->dofh_loadsz != hdr.dofh_loadsz) {
12652                 kmem_free(dof, hdr.dofh_loadsz);
12653                 *errp = EFAULT;
12654                 return (NULL);
12655         }
12656 
12657         return (dof);
12658 }
12659 
12660 static dof_hdr_t *
12661 dtrace_dof_property(const char *name)
12662 {
12663         uchar_t *buf;
12664         uint64_t loadsz;
12665         unsigned int len, i;
12666         dof_hdr_t *dof;
12667 
12668         /*
12669          * Unfortunately, array of values in .conf files are always (and
12670          * only) interpreted to be integer arrays.  We must read our DOF
12671          * as an integer array, and then squeeze it into a byte array.
12672          */
12673         if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
12674             (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
12675                 return (NULL);
12676 
12677         for (i = 0; i < len; i++)
12678                 buf[i] = (uchar_t)(((int *)buf)[i]);
12679 
12680         if (len < sizeof (dof_hdr_t)) {
12681                 ddi_prop_free(buf);
12682                 dtrace_dof_error(NULL, "truncated header");
12683                 return (NULL);
12684         }
12685 
12686         if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12687                 ddi_prop_free(buf);
12688                 dtrace_dof_error(NULL, "truncated DOF");
12689                 return (NULL);
12690         }
12691 
12692         if (loadsz >= dtrace_dof_maxsize) {
12693                 ddi_prop_free(buf);
12694                 dtrace_dof_error(NULL, "oversized DOF");
12695                 return (NULL);
12696         }
12697 
12698         dof = kmem_alloc(loadsz, KM_SLEEP);
12699         bcopy(buf, dof, loadsz);
12700         ddi_prop_free(buf);
12701 
12702         return (dof);
12703 }
12704 
12705 static void
12706 dtrace_dof_destroy(dof_hdr_t *dof)
12707 {
12708         kmem_free(dof, dof->dofh_loadsz);
12709 }
12710 
12711 /*
12712  * Return the dof_sec_t pointer corresponding to a given section index.  If the
12713  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
12714  * a type other than DOF_SECT_NONE is specified, the header is checked against
12715  * this type and NULL is returned if the types do not match.
12716  */
12717 static dof_sec_t *
12718 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12719 {
12720         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12721             ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12722 
12723         if (i >= dof->dofh_secnum) {
12724                 dtrace_dof_error(dof, "referenced section index is invalid");
12725                 return (NULL);
12726         }
12727 
12728         if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12729                 dtrace_dof_error(dof, "referenced section is not loadable");
12730                 return (NULL);
12731         }
12732 
12733         if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12734                 dtrace_dof_error(dof, "referenced section is the wrong type");
12735                 return (NULL);
12736         }
12737 
12738         return (sec);
12739 }
12740 
12741 static dtrace_probedesc_t *
12742 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12743 {
12744         dof_probedesc_t *probe;
12745         dof_sec_t *strtab;
12746         uintptr_t daddr = (uintptr_t)dof;
12747         uintptr_t str;
12748         size_t size;
12749 
12750         if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12751                 dtrace_dof_error(dof, "invalid probe section");
12752                 return (NULL);
12753         }
12754 
12755         if (sec->dofs_align != sizeof (dof_secidx_t)) {
12756                 dtrace_dof_error(dof, "bad alignment in probe description");
12757                 return (NULL);
12758         }
12759 
12760         if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12761                 dtrace_dof_error(dof, "truncated probe description");
12762                 return (NULL);
12763         }
12764 
12765         probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12766         strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12767 
12768         if (strtab == NULL)
12769                 return (NULL);
12770 
12771         str = daddr + strtab->dofs_offset;
12772         size = strtab->dofs_size;
12773 
12774         if (probe->dofp_provider >= strtab->dofs_size) {
12775                 dtrace_dof_error(dof, "corrupt probe provider");
12776                 return (NULL);
12777         }
12778 
12779         (void) strncpy(desc->dtpd_provider,
12780             (char *)(str + probe->dofp_provider),
12781             MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12782 
12783         if (probe->dofp_mod >= strtab->dofs_size) {
12784                 dtrace_dof_error(dof, "corrupt probe module");
12785                 return (NULL);
12786         }
12787 
12788         (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12789             MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12790 
12791         if (probe->dofp_func >= strtab->dofs_size) {
12792                 dtrace_dof_error(dof, "corrupt probe function");
12793                 return (NULL);
12794         }
12795 
12796         (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12797             MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12798 
12799         if (probe->dofp_name >= strtab->dofs_size) {
12800                 dtrace_dof_error(dof, "corrupt probe name");
12801                 return (NULL);
12802         }
12803 
12804         (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12805             MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12806 
12807         return (desc);
12808 }
12809 
12810 static dtrace_difo_t *
12811 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12812     cred_t *cr)
12813 {
12814         dtrace_difo_t *dp;
12815         size_t ttl = 0;
12816         dof_difohdr_t *dofd;
12817         uintptr_t daddr = (uintptr_t)dof;
12818         size_t max = dtrace_difo_maxsize;
12819         int i, l, n;
12820 
12821         static const struct {
12822                 int section;
12823                 int bufoffs;
12824                 int lenoffs;
12825                 int entsize;
12826                 int align;
12827                 const char *msg;
12828         } difo[] = {
12829                 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12830                 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12831                 sizeof (dif_instr_t), "multiple DIF sections" },
12832 
12833                 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12834                 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12835                 sizeof (uint64_t), "multiple integer tables" },
12836 
12837                 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12838                 offsetof(dtrace_difo_t, dtdo_strlen), 0,
12839                 sizeof (char), "multiple string tables" },
12840 
12841                 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12842                 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12843                 sizeof (uint_t), "multiple variable tables" },
12844 
12845                 { DOF_SECT_NONE, 0, 0, 0, NULL }
12846         };
12847 
12848         if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12849                 dtrace_dof_error(dof, "invalid DIFO header section");
12850                 return (NULL);
12851         }
12852 
12853         if (sec->dofs_align != sizeof (dof_secidx_t)) {
12854                 dtrace_dof_error(dof, "bad alignment in DIFO header");
12855                 return (NULL);
12856         }
12857 
12858         if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12859             sec->dofs_size % sizeof (dof_secidx_t)) {
12860                 dtrace_dof_error(dof, "bad size in DIFO header");
12861                 return (NULL);
12862         }
12863 
12864         dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12865         n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12866 
12867         dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12868         dp->dtdo_rtype = dofd->dofd_rtype;
12869 
12870         for (l = 0; l < n; l++) {
12871                 dof_sec_t *subsec;
12872                 void **bufp;
12873                 uint32_t *lenp;
12874 
12875                 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12876                     dofd->dofd_links[l])) == NULL)
12877                         goto err; /* invalid section link */
12878 
12879                 if (ttl + subsec->dofs_size > max) {
12880                         dtrace_dof_error(dof, "exceeds maximum size");
12881                         goto err;
12882                 }
12883 
12884                 ttl += subsec->dofs_size;
12885 
12886                 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12887                         if (subsec->dofs_type != difo[i].section)
12888                                 continue;
12889 
12890                         if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12891                                 dtrace_dof_error(dof, "section not loaded");
12892                                 goto err;
12893                         }
12894 
12895                         if (subsec->dofs_align != difo[i].align) {
12896                                 dtrace_dof_error(dof, "bad alignment");
12897                                 goto err;
12898                         }
12899 
12900                         bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12901                         lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12902 
12903                         if (*bufp != NULL) {
12904                                 dtrace_dof_error(dof, difo[i].msg);
12905                                 goto err;
12906                         }
12907 
12908                         if (difo[i].entsize != subsec->dofs_entsize) {
12909                                 dtrace_dof_error(dof, "entry size mismatch");
12910                                 goto err;
12911                         }
12912 
12913                         if (subsec->dofs_entsize != 0 &&
12914                             (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12915                                 dtrace_dof_error(dof, "corrupt entry size");
12916                                 goto err;
12917                         }
12918 
12919                         *lenp = subsec->dofs_size;
12920                         *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12921                         bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12922                             *bufp, subsec->dofs_size);
12923 
12924                         if (subsec->dofs_entsize != 0)
12925                                 *lenp /= subsec->dofs_entsize;
12926 
12927                         break;
12928                 }
12929 
12930                 /*
12931                  * If we encounter a loadable DIFO sub-section that is not
12932                  * known to us, assume this is a broken program and fail.
12933                  */
12934                 if (difo[i].section == DOF_SECT_NONE &&
12935                     (subsec->dofs_flags & DOF_SECF_LOAD)) {
12936                         dtrace_dof_error(dof, "unrecognized DIFO subsection");
12937                         goto err;
12938                 }
12939         }
12940 
12941         if (dp->dtdo_buf == NULL) {
12942                 /*
12943                  * We can't have a DIF object without DIF text.
12944                  */
12945                 dtrace_dof_error(dof, "missing DIF text");
12946                 goto err;
12947         }
12948 
12949         /*
12950          * Before we validate the DIF object, run through the variable table
12951          * looking for the strings -- if any of their size are under, we'll set
12952          * their size to be the system-wide default string size.  Note that
12953          * this should _not_ happen if the "strsize" option has been set --
12954          * in this case, the compiler should have set the size to reflect the
12955          * setting of the option.
12956          */
12957         for (i = 0; i < dp->dtdo_varlen; i++) {
12958                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
12959                 dtrace_diftype_t *t = &v->dtdv_type;
12960 
12961                 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12962                         continue;
12963 
12964                 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12965                         t->dtdt_size = dtrace_strsize_default;
12966         }
12967 
12968         if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12969                 goto err;
12970 
12971         dtrace_difo_init(dp, vstate);
12972         return (dp);
12973 
12974 err:
12975         kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12976         kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12977         kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12978         kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12979 
12980         kmem_free(dp, sizeof (dtrace_difo_t));
12981         return (NULL);
12982 }
12983 
12984 static dtrace_predicate_t *
12985 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12986     cred_t *cr)
12987 {
12988         dtrace_difo_t *dp;
12989 
12990         if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12991                 return (NULL);
12992 
12993         return (dtrace_predicate_create(dp));
12994 }
12995 
12996 static dtrace_actdesc_t *
12997 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12998     cred_t *cr)
12999 {
13000         dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13001         dof_actdesc_t *desc;
13002         dof_sec_t *difosec;
13003         size_t offs;
13004         uintptr_t daddr = (uintptr_t)dof;
13005         uint64_t arg;
13006         dtrace_actkind_t kind;
13007 
13008         if (sec->dofs_type != DOF_SECT_ACTDESC) {
13009                 dtrace_dof_error(dof, "invalid action section");
13010                 return (NULL);
13011         }
13012 
13013         if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13014                 dtrace_dof_error(dof, "truncated action description");
13015                 return (NULL);
13016         }
13017 
13018         if (sec->dofs_align != sizeof (uint64_t)) {
13019                 dtrace_dof_error(dof, "bad alignment in action description");
13020                 return (NULL);
13021         }
13022 
13023         if (sec->dofs_size < sec->dofs_entsize) {
13024                 dtrace_dof_error(dof, "section entry size exceeds total size");
13025                 return (NULL);
13026         }
13027 
13028         if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13029                 dtrace_dof_error(dof, "bad entry size in action description");
13030                 return (NULL);
13031         }
13032 
13033         if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13034                 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13035                 return (NULL);
13036         }
13037 
13038         for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13039                 desc = (dof_actdesc_t *)(daddr +
13040                     (uintptr_t)sec->dofs_offset + offs);
13041                 kind = (dtrace_actkind_t)desc->dofa_kind;
13042 
13043                 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13044                     (kind != DTRACEACT_PRINTA ||
13045                     desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13046                     (kind == DTRACEACT_DIFEXPR &&
13047                     desc->dofa_strtab != DOF_SECIDX_NONE)) {
13048                         dof_sec_t *strtab;
13049                         char *str, *fmt;
13050                         uint64_t i;
13051 
13052                         /*
13053                          * The argument to these actions is an index into the
13054                          * DOF string table.  For printf()-like actions, this
13055                          * is the format string.  For print(), this is the
13056                          * CTF type of the expression result.
13057                          */
13058                         if ((strtab = dtrace_dof_sect(dof,
13059                             DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13060                                 goto err;
13061 
13062                         str = (char *)((uintptr_t)dof +
13063                             (uintptr_t)strtab->dofs_offset);
13064 
13065                         for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13066                                 if (str[i] == '\0')
13067                                         break;
13068                         }
13069 
13070                         if (i >= strtab->dofs_size) {
13071                                 dtrace_dof_error(dof, "bogus format string");
13072                                 goto err;
13073                         }
13074 
13075                         if (i == desc->dofa_arg) {
13076                                 dtrace_dof_error(dof, "empty format string");
13077                                 goto err;
13078                         }
13079 
13080                         i -= desc->dofa_arg;
13081                         fmt = kmem_alloc(i + 1, KM_SLEEP);
13082                         bcopy(&str[desc->dofa_arg], fmt, i + 1);
13083                         arg = (uint64_t)(uintptr_t)fmt;
13084                 } else {
13085                         if (kind == DTRACEACT_PRINTA) {
13086                                 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13087                                 arg = 0;
13088                         } else {
13089                                 arg = desc->dofa_arg;
13090                         }
13091                 }
13092 
13093                 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13094                     desc->dofa_uarg, arg);
13095 
13096                 if (last != NULL) {
13097                         last->dtad_next = act;
13098                 } else {
13099                         first = act;
13100                 }
13101 
13102                 last = act;
13103 
13104                 if (desc->dofa_difo == DOF_SECIDX_NONE)
13105                         continue;
13106 
13107                 if ((difosec = dtrace_dof_sect(dof,
13108                     DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13109                         goto err;
13110 
13111                 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13112 
13113                 if (act->dtad_difo == NULL)
13114                         goto err;
13115         }
13116 
13117         ASSERT(first != NULL);
13118         return (first);
13119 
13120 err:
13121         for (act = first; act != NULL; act = next) {
13122                 next = act->dtad_next;
13123                 dtrace_actdesc_release(act, vstate);
13124         }
13125 
13126         return (NULL);
13127 }
13128 
13129 static dtrace_ecbdesc_t *
13130 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13131     cred_t *cr)
13132 {
13133         dtrace_ecbdesc_t *ep;
13134         dof_ecbdesc_t *ecb;
13135         dtrace_probedesc_t *desc;
13136         dtrace_predicate_t *pred = NULL;
13137 
13138         if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13139                 dtrace_dof_error(dof, "truncated ECB description");
13140                 return (NULL);
13141         }
13142 
13143         if (sec->dofs_align != sizeof (uint64_t)) {
13144                 dtrace_dof_error(dof, "bad alignment in ECB description");
13145                 return (NULL);
13146         }
13147 
13148         ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13149         sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13150 
13151         if (sec == NULL)
13152                 return (NULL);
13153 
13154         ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13155         ep->dted_uarg = ecb->dofe_uarg;
13156         desc = &ep->dted_probe;
13157 
13158         if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13159                 goto err;
13160 
13161         if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13162                 if ((sec = dtrace_dof_sect(dof,
13163                     DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13164                         goto err;
13165 
13166                 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13167                         goto err;
13168 
13169                 ep->dted_pred.dtpdd_predicate = pred;
13170         }
13171 
13172         if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13173                 if ((sec = dtrace_dof_sect(dof,
13174                     DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13175                         goto err;
13176 
13177                 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13178 
13179                 if (ep->dted_action == NULL)
13180                         goto err;
13181         }
13182 
13183         return (ep);
13184 
13185 err:
13186         if (pred != NULL)
13187                 dtrace_predicate_release(pred, vstate);
13188         kmem_free(ep, sizeof (dtrace_ecbdesc_t));
13189         return (NULL);
13190 }
13191 
13192 /*
13193  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13194  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
13195  * site of any user SETX relocations to account for load object base address.
13196  * In the future, if we need other relocations, this function can be extended.
13197  */
13198 static int
13199 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
13200 {
13201         uintptr_t daddr = (uintptr_t)dof;
13202         uintptr_t ts_end;
13203         dof_relohdr_t *dofr =
13204             (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13205         dof_sec_t *ss, *rs, *ts;
13206         dof_relodesc_t *r;
13207         uint_t i, n;
13208 
13209         if (sec->dofs_size < sizeof (dof_relohdr_t) ||
13210             sec->dofs_align != sizeof (dof_secidx_t)) {
13211                 dtrace_dof_error(dof, "invalid relocation header");
13212                 return (-1);
13213         }
13214 
13215         ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
13216         rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
13217         ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
13218         ts_end = (uintptr_t)ts + sizeof (dof_sec_t);
13219 
13220         if (ss == NULL || rs == NULL || ts == NULL)
13221                 return (-1); /* dtrace_dof_error() has been called already */
13222 
13223         if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
13224             rs->dofs_align != sizeof (uint64_t)) {
13225                 dtrace_dof_error(dof, "invalid relocation section");
13226                 return (-1);
13227         }
13228 
13229         r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
13230         n = rs->dofs_size / rs->dofs_entsize;
13231 
13232         for (i = 0; i < n; i++) {
13233                 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
13234 
13235                 switch (r->dofr_type) {
13236                 case DOF_RELO_NONE:
13237                         break;
13238                 case DOF_RELO_SETX:
13239                         if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
13240                             sizeof (uint64_t) > ts->dofs_size) {
13241                                 dtrace_dof_error(dof, "bad relocation offset");
13242                                 return (-1);
13243                         }
13244 
13245                         if (taddr >= (uintptr_t)ts && taddr < ts_end) {
13246                                 dtrace_dof_error(dof, "bad relocation offset");
13247                                 return (-1);
13248                         }
13249 
13250                         if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
13251                                 dtrace_dof_error(dof, "misaligned setx relo");
13252                                 return (-1);
13253                         }
13254 
13255                         *(uint64_t *)taddr += ubase;
13256                         break;
13257                 default:
13258                         dtrace_dof_error(dof, "invalid relocation type");
13259                         return (-1);
13260                 }
13261 
13262                 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
13263         }
13264 
13265         return (0);
13266 }
13267 
13268 /*
13269  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
13270  * header:  it should be at the front of a memory region that is at least
13271  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
13272  * size.  It need not be validated in any other way.
13273  */
13274 static int
13275 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
13276     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
13277 {
13278         uint64_t len = dof->dofh_loadsz, seclen;
13279         uintptr_t daddr = (uintptr_t)dof;
13280         dtrace_ecbdesc_t *ep;
13281         dtrace_enabling_t *enab;
13282         uint_t i;
13283 
13284         ASSERT(MUTEX_HELD(&dtrace_lock));
13285         ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
13286 
13287         /*
13288          * Check the DOF header identification bytes.  In addition to checking
13289          * valid settings, we also verify that unused bits/bytes are zeroed so
13290          * we can use them later without fear of regressing existing binaries.
13291          */
13292         if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
13293             DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
13294                 dtrace_dof_error(dof, "DOF magic string mismatch");
13295                 return (-1);
13296         }
13297 
13298         if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
13299             dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
13300                 dtrace_dof_error(dof, "DOF has invalid data model");
13301                 return (-1);
13302         }
13303 
13304         if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
13305                 dtrace_dof_error(dof, "DOF encoding mismatch");
13306                 return (-1);
13307         }
13308 
13309         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13310             dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
13311                 dtrace_dof_error(dof, "DOF version mismatch");
13312                 return (-1);
13313         }
13314 
13315         if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
13316                 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
13317                 return (-1);
13318         }
13319 
13320         if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
13321                 dtrace_dof_error(dof, "DOF uses too many integer registers");
13322                 return (-1);
13323         }
13324 
13325         if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
13326                 dtrace_dof_error(dof, "DOF uses too many tuple registers");
13327                 return (-1);
13328         }
13329 
13330         for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
13331                 if (dof->dofh_ident[i] != 0) {
13332                         dtrace_dof_error(dof, "DOF has invalid ident byte set");
13333                         return (-1);
13334                 }
13335         }
13336 
13337         if (dof->dofh_flags & ~DOF_FL_VALID) {
13338                 dtrace_dof_error(dof, "DOF has invalid flag bits set");
13339                 return (-1);
13340         }
13341 
13342         if (dof->dofh_secsize == 0) {
13343                 dtrace_dof_error(dof, "zero section header size");
13344                 return (-1);
13345         }
13346 
13347         /*
13348          * Check that the section headers don't exceed the amount of DOF
13349          * data.  Note that we cast the section size and number of sections
13350          * to uint64_t's to prevent possible overflow in the multiplication.
13351          */
13352         seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
13353 
13354         if (dof->dofh_secoff > len || seclen > len ||
13355             dof->dofh_secoff + seclen > len) {
13356                 dtrace_dof_error(dof, "truncated section headers");
13357                 return (-1);
13358         }
13359 
13360         if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
13361                 dtrace_dof_error(dof, "misaligned section headers");
13362                 return (-1);
13363         }
13364 
13365         if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
13366                 dtrace_dof_error(dof, "misaligned section size");
13367                 return (-1);
13368         }
13369 
13370         /*
13371          * Take an initial pass through the section headers to be sure that
13372          * the headers don't have stray offsets.  If the 'noprobes' flag is
13373          * set, do not permit sections relating to providers, probes, or args.
13374          */
13375         for (i = 0; i < dof->dofh_secnum; i++) {
13376                 dof_sec_t *sec = (dof_sec_t *)(daddr +
13377                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13378 
13379                 if (noprobes) {
13380                         switch (sec->dofs_type) {
13381                         case DOF_SECT_PROVIDER:
13382                         case DOF_SECT_PROBES:
13383                         case DOF_SECT_PRARGS:
13384                         case DOF_SECT_PROFFS:
13385                                 dtrace_dof_error(dof, "illegal sections "
13386                                     "for enabling");
13387                                 return (-1);
13388                         }
13389                 }
13390 
13391                 if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
13392                     !(sec->dofs_flags & DOF_SECF_LOAD)) {
13393                         dtrace_dof_error(dof, "loadable section with load "
13394                             "flag unset");
13395                         return (-1);
13396                 }
13397 
13398                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
13399                         continue; /* just ignore non-loadable sections */
13400 
13401                 if (!ISP2(sec->dofs_align)) {
13402                         dtrace_dof_error(dof, "bad section alignment");
13403                         return (-1);
13404                 }
13405 
13406                 if (sec->dofs_offset & (sec->dofs_align - 1)) {
13407                         dtrace_dof_error(dof, "misaligned section");
13408                         return (-1);
13409                 }
13410 
13411                 if (sec->dofs_offset > len || sec->dofs_size > len ||
13412                     sec->dofs_offset + sec->dofs_size > len) {
13413                         dtrace_dof_error(dof, "corrupt section header");
13414                         return (-1);
13415                 }
13416 
13417                 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
13418                     sec->dofs_offset + sec->dofs_size - 1) != '\0') {
13419                         dtrace_dof_error(dof, "non-terminating string table");
13420                         return (-1);
13421                 }
13422         }
13423 
13424         /*
13425          * Take a second pass through the sections and locate and perform any
13426          * relocations that are present.  We do this after the first pass to
13427          * be sure that all sections have had their headers validated.
13428          */
13429         for (i = 0; i < dof->dofh_secnum; i++) {
13430                 dof_sec_t *sec = (dof_sec_t *)(daddr +
13431                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13432 
13433                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
13434                         continue; /* skip sections that are not loadable */
13435 
13436                 switch (sec->dofs_type) {
13437                 case DOF_SECT_URELHDR:
13438                         if (dtrace_dof_relocate(dof, sec, ubase) != 0)
13439                                 return (-1);
13440                         break;
13441                 }
13442         }
13443 
13444         if ((enab = *enabp) == NULL)
13445                 enab = *enabp = dtrace_enabling_create(vstate);
13446 
13447         for (i = 0; i < dof->dofh_secnum; i++) {
13448                 dof_sec_t *sec = (dof_sec_t *)(daddr +
13449                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13450 
13451                 if (sec->dofs_type != DOF_SECT_ECBDESC)
13452                         continue;
13453 
13454                 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
13455                         dtrace_enabling_destroy(enab);
13456                         *enabp = NULL;
13457                         return (-1);
13458                 }
13459 
13460                 dtrace_enabling_add(enab, ep);
13461         }
13462 
13463         return (0);
13464 }
13465 
13466 /*
13467  * Process DOF for any options.  This routine assumes that the DOF has been
13468  * at least processed by dtrace_dof_slurp().
13469  */
13470 static int
13471 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
13472 {
13473         int i, rval;
13474         uint32_t entsize;
13475         size_t offs;
13476         dof_optdesc_t *desc;
13477 
13478         for (i = 0; i < dof->dofh_secnum; i++) {
13479                 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
13480                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13481 
13482                 if (sec->dofs_type != DOF_SECT_OPTDESC)
13483                         continue;
13484 
13485                 if (sec->dofs_align != sizeof (uint64_t)) {
13486                         dtrace_dof_error(dof, "bad alignment in "
13487                             "option description");
13488                         return (EINVAL);
13489                 }
13490 
13491                 if ((entsize = sec->dofs_entsize) == 0) {
13492                         dtrace_dof_error(dof, "zeroed option entry size");
13493                         return (EINVAL);
13494                 }
13495 
13496                 if (entsize < sizeof (dof_optdesc_t)) {
13497                         dtrace_dof_error(dof, "bad option entry size");
13498                         return (EINVAL);
13499                 }
13500 
13501                 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
13502                         desc = (dof_optdesc_t *)((uintptr_t)dof +
13503                             (uintptr_t)sec->dofs_offset + offs);
13504 
13505                         if (desc->dofo_strtab != DOF_SECIDX_NONE) {
13506                                 dtrace_dof_error(dof, "non-zero option string");
13507                                 return (EINVAL);
13508                         }
13509 
13510                         if (desc->dofo_value == DTRACEOPT_UNSET) {
13511                                 dtrace_dof_error(dof, "unset option");
13512                                 return (EINVAL);
13513                         }
13514 
13515                         if ((rval = dtrace_state_option(state,
13516                             desc->dofo_option, desc->dofo_value)) != 0) {
13517                                 dtrace_dof_error(dof, "rejected option");
13518                                 return (rval);
13519                         }
13520                 }
13521         }
13522 
13523         return (0);
13524 }
13525 
13526 /*
13527  * DTrace Consumer State Functions
13528  */
13529 int
13530 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
13531 {
13532         size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
13533         void *base;
13534         uintptr_t limit;
13535         dtrace_dynvar_t *dvar, *next, *start;
13536         int i;
13537 
13538         ASSERT(MUTEX_HELD(&dtrace_lock));
13539         ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
13540 
13541         bzero(dstate, sizeof (dtrace_dstate_t));
13542 
13543         if ((dstate->dtds_chunksize = chunksize) == 0)
13544                 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
13545 
13546         VERIFY(dstate->dtds_chunksize < LONG_MAX);
13547 
13548         if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
13549                 size = min;
13550 
13551         if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
13552                 return (ENOMEM);
13553 
13554         dstate->dtds_size = size;
13555         dstate->dtds_base = base;
13556         dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
13557         bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
13558 
13559         hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
13560 
13561         if (hashsize != 1 && (hashsize & 1))
13562                 hashsize--;
13563 
13564         dstate->dtds_hashsize = hashsize;
13565         dstate->dtds_hash = dstate->dtds_base;
13566 
13567         /*
13568          * Set all of our hash buckets to point to the single sink, and (if
13569          * it hasn't already been set), set the sink's hash value to be the
13570          * sink sentinel value.  The sink is needed for dynamic variable
13571          * lookups to know that they have iterated over an entire, valid hash
13572          * chain.
13573          */
13574         for (i = 0; i < hashsize; i++)
13575                 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
13576 
13577         if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
13578                 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
13579 
13580         /*
13581          * Determine number of active CPUs.  Divide free list evenly among
13582          * active CPUs.
13583          */
13584         start = (dtrace_dynvar_t *)
13585             ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
13586         limit = (uintptr_t)base + size;
13587 
13588         VERIFY((uintptr_t)start < limit);
13589         VERIFY((uintptr_t)start >= (uintptr_t)base);
13590 
13591         maxper = (limit - (uintptr_t)start) / NCPU;
13592         maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
13593 
13594         for (i = 0; i < NCPU; i++) {
13595                 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
13596 
13597                 /*
13598                  * If we don't even have enough chunks to make it once through
13599                  * NCPUs, we're just going to allocate everything to the first
13600                  * CPU.  And if we're on the last CPU, we're going to allocate
13601                  * whatever is left over.  In either case, we set the limit to
13602                  * be the limit of the dynamic variable space.
13603                  */
13604                 if (maxper == 0 || i == NCPU - 1) {
13605                         limit = (uintptr_t)base + size;
13606                         start = NULL;
13607                 } else {
13608                         limit = (uintptr_t)start + maxper;
13609                         start = (dtrace_dynvar_t *)limit;
13610                 }
13611 
13612                 VERIFY(limit <= (uintptr_t)base + size);
13613 
13614                 for (;;) {
13615                         next = (dtrace_dynvar_t *)((uintptr_t)dvar +
13616                             dstate->dtds_chunksize);
13617 
13618                         if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
13619                                 break;
13620 
13621                         VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
13622                             (uintptr_t)dvar <= (uintptr_t)base + size);
13623                         dvar->dtdv_next = next;
13624                         dvar = next;
13625                 }
13626 
13627                 if (maxper == 0)
13628                         break;
13629         }
13630 
13631         return (0);
13632 }
13633 
13634 void
13635 dtrace_dstate_fini(dtrace_dstate_t *dstate)
13636 {
13637         ASSERT(MUTEX_HELD(&cpu_lock));
13638 
13639         if (dstate->dtds_base == NULL)
13640                 return;
13641 
13642         kmem_free(dstate->dtds_base, dstate->dtds_size);
13643         kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
13644 }
13645 
13646 static void
13647 dtrace_vstate_fini(dtrace_vstate_t *vstate)
13648 {
13649         /*
13650          * Logical XOR, where are you?
13651          */
13652         ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13653 
13654         if (vstate->dtvs_nglobals > 0) {
13655                 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13656                     sizeof (dtrace_statvar_t *));
13657         }
13658 
13659         if (vstate->dtvs_ntlocals > 0) {
13660                 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13661                     sizeof (dtrace_difv_t));
13662         }
13663 
13664         ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13665 
13666         if (vstate->dtvs_nlocals > 0) {
13667                 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13668                     sizeof (dtrace_statvar_t *));
13669         }
13670 }
13671 
13672 static void
13673 dtrace_state_clean(dtrace_state_t *state)
13674 {
13675         if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13676                 return;
13677 
13678         dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13679         dtrace_speculation_clean(state);
13680 }
13681 
13682 static void
13683 dtrace_state_deadman(dtrace_state_t *state)
13684 {
13685         hrtime_t now;
13686 
13687         dtrace_sync();
13688 
13689         now = dtrace_gethrtime();
13690 
13691         if (state != dtrace_anon.dta_state &&
13692             now - state->dts_laststatus >= dtrace_deadman_user)
13693                 return;
13694 
13695         /*
13696          * We must be sure that dts_alive never appears to be less than the
13697          * value upon entry to dtrace_state_deadman(), and because we lack a
13698          * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13699          * store INT64_MAX to it, followed by a memory barrier, followed by
13700          * the new value.  This assures that dts_alive never appears to be
13701          * less than its true value, regardless of the order in which the
13702          * stores to the underlying storage are issued.
13703          */
13704         state->dts_alive = INT64_MAX;
13705         dtrace_membar_producer();
13706         state->dts_alive = now;
13707 }
13708 
13709 dtrace_state_t *
13710 dtrace_state_create(dev_t *devp, cred_t *cr)
13711 {
13712         minor_t minor;
13713         major_t major;
13714         char c[30];
13715         dtrace_state_t *state;
13716         dtrace_optval_t *opt;
13717         int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13718 
13719         ASSERT(MUTEX_HELD(&dtrace_lock));
13720         ASSERT(MUTEX_HELD(&cpu_lock));
13721 
13722         minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13723             VM_BESTFIT | VM_SLEEP);
13724 
13725         if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13726                 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13727                 return (NULL);
13728         }
13729 
13730         state = ddi_get_soft_state(dtrace_softstate, minor);
13731         state->dts_epid = DTRACE_EPIDNONE + 1;
13732 
13733         (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
13734         state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13735             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13736 
13737         if (devp != NULL) {
13738                 major = getemajor(*devp);
13739         } else {
13740                 major = ddi_driver_major(dtrace_devi);
13741         }
13742 
13743         state->dts_dev = makedevice(major, minor);
13744 
13745         if (devp != NULL)
13746                 *devp = state->dts_dev;
13747 
13748         /*
13749          * We allocate NCPU buffers.  On the one hand, this can be quite
13750          * a bit of memory per instance (nearly 36K on a Starcat).  On the
13751          * other hand, it saves an additional memory reference in the probe
13752          * path.
13753          */
13754         state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13755         state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13756         state->dts_cleaner = CYCLIC_NONE;
13757         state->dts_deadman = CYCLIC_NONE;
13758         state->dts_vstate.dtvs_state = state;
13759 
13760         for (i = 0; i < DTRACEOPT_MAX; i++)
13761                 state->dts_options[i] = DTRACEOPT_UNSET;
13762 
13763         /*
13764          * Set the default options.
13765          */
13766         opt = state->dts_options;
13767         opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13768         opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13769         opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13770         opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13771         opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13772         opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13773         opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13774         opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13775         opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13776         opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13777         opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13778         opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13779         opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13780         opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13781 
13782         state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13783 
13784         /*
13785          * Depending on the user credentials, we set flag bits which alter probe
13786          * visibility or the amount of destructiveness allowed.  In the case of
13787          * actual anonymous tracing, or the possession of all privileges, all of
13788          * the normal checks are bypassed.
13789          */
13790         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13791                 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13792                 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13793         } else {
13794                 /*
13795                  * Set up the credentials for this instantiation.  We take a
13796                  * hold on the credential to prevent it from disappearing on
13797                  * us; this in turn prevents the zone_t referenced by this
13798                  * credential from disappearing.  This means that we can
13799                  * examine the credential and the zone from probe context.
13800                  */
13801                 crhold(cr);
13802                 state->dts_cred.dcr_cred = cr;
13803 
13804                 /*
13805                  * CRA_PROC means "we have *some* privilege for dtrace" and
13806                  * unlocks the use of variables like pid, zonename, etc.
13807                  */
13808                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13809                     PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13810                         state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13811                 }
13812 
13813                 /*
13814                  * dtrace_user allows use of syscall and profile providers.
13815                  * If the user also has proc_owner and/or proc_zone, we
13816                  * extend the scope to include additional visibility and
13817                  * destructive power.
13818                  */
13819                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13820                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13821                                 state->dts_cred.dcr_visible |=
13822                                     DTRACE_CRV_ALLPROC;
13823 
13824                                 state->dts_cred.dcr_action |=
13825                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13826                         }
13827 
13828                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13829                                 state->dts_cred.dcr_visible |=
13830                                     DTRACE_CRV_ALLZONE;
13831 
13832                                 state->dts_cred.dcr_action |=
13833                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13834                         }
13835 
13836                         /*
13837                          * If we have all privs in whatever zone this is,
13838                          * we can do destructive things to processes which
13839                          * have altered credentials.
13840                          */
13841                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13842                             cr->cr_zone->zone_privset)) {
13843                                 state->dts_cred.dcr_action |=
13844                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13845                         }
13846                 }
13847 
13848                 /*
13849                  * Holding the dtrace_kernel privilege also implies that
13850                  * the user has the dtrace_user privilege from a visibility
13851                  * perspective.  But without further privileges, some
13852                  * destructive actions are not available.
13853                  */
13854                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13855                         /*
13856                          * Make all probes in all zones visible.  However,
13857                          * this doesn't mean that all actions become available
13858                          * to all zones.
13859                          */
13860                         state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13861                             DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13862 
13863                         state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13864                             DTRACE_CRA_PROC;
13865                         /*
13866                          * Holding proc_owner means that destructive actions
13867                          * for *this* zone are allowed.
13868                          */
13869                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13870                                 state->dts_cred.dcr_action |=
13871                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13872 
13873                         /*
13874                          * Holding proc_zone means that destructive actions
13875                          * for this user/group ID in all zones is allowed.
13876                          */
13877                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13878                                 state->dts_cred.dcr_action |=
13879                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13880 
13881                         /*
13882                          * If we have all privs in whatever zone this is,
13883                          * we can do destructive things to processes which
13884                          * have altered credentials.
13885                          */
13886                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13887                             cr->cr_zone->zone_privset)) {
13888                                 state->dts_cred.dcr_action |=
13889                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13890                         }
13891                 }
13892 
13893                 /*
13894                  * Holding the dtrace_proc privilege gives control over fasttrap
13895                  * and pid providers.  We need to grant wider destructive
13896                  * privileges in the event that the user has proc_owner and/or
13897                  * proc_zone.
13898                  */
13899                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13900                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13901                                 state->dts_cred.dcr_action |=
13902                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13903 
13904                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13905                                 state->dts_cred.dcr_action |=
13906                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13907                 }
13908         }
13909 
13910         return (state);
13911 }
13912 
13913 static int
13914 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13915 {
13916         dtrace_optval_t *opt = state->dts_options, size;
13917         processorid_t cpu;
13918         int flags = 0, rval, factor, divisor = 1;
13919 
13920         ASSERT(MUTEX_HELD(&dtrace_lock));
13921         ASSERT(MUTEX_HELD(&cpu_lock));
13922         ASSERT(which < DTRACEOPT_MAX);
13923         ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13924             (state == dtrace_anon.dta_state &&
13925             state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13926 
13927         if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13928                 return (0);
13929 
13930         if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13931                 cpu = opt[DTRACEOPT_CPU];
13932 
13933         if (which == DTRACEOPT_SPECSIZE)
13934                 flags |= DTRACEBUF_NOSWITCH;
13935 
13936         if (which == DTRACEOPT_BUFSIZE) {
13937                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13938                         flags |= DTRACEBUF_RING;
13939 
13940                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13941                         flags |= DTRACEBUF_FILL;
13942 
13943                 if (state != dtrace_anon.dta_state ||
13944                     state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13945                         flags |= DTRACEBUF_INACTIVE;
13946         }
13947 
13948         for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
13949                 /*
13950                  * The size must be 8-byte aligned.  If the size is not 8-byte
13951                  * aligned, drop it down by the difference.
13952                  */
13953                 if (size & (sizeof (uint64_t) - 1))
13954                         size -= size & (sizeof (uint64_t) - 1);
13955 
13956                 if (size < state->dts_reserve) {
13957                         /*
13958                          * Buffers always must be large enough to accommodate
13959                          * their prereserved space.  We return E2BIG instead
13960                          * of ENOMEM in this case to allow for user-level
13961                          * software to differentiate the cases.
13962                          */
13963                         return (E2BIG);
13964                 }
13965 
13966                 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
13967 
13968                 if (rval != ENOMEM) {
13969                         opt[which] = size;
13970                         return (rval);
13971                 }
13972 
13973                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13974                         return (rval);
13975 
13976                 for (divisor = 2; divisor < factor; divisor <<= 1)
13977                         continue;
13978         }
13979 
13980         return (ENOMEM);
13981 }
13982 
13983 static int
13984 dtrace_state_buffers(dtrace_state_t *state)
13985 {
13986         dtrace_speculation_t *spec = state->dts_speculations;
13987         int rval, i;
13988 
13989         if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13990             DTRACEOPT_BUFSIZE)) != 0)
13991                 return (rval);
13992 
13993         if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13994             DTRACEOPT_AGGSIZE)) != 0)
13995                 return (rval);
13996 
13997         for (i = 0; i < state->dts_nspeculations; i++) {
13998                 if ((rval = dtrace_state_buffer(state,
13999                     spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14000                         return (rval);
14001         }
14002 
14003         return (0);
14004 }
14005 
14006 static void
14007 dtrace_state_prereserve(dtrace_state_t *state)
14008 {
14009         dtrace_ecb_t *ecb;
14010         dtrace_probe_t *probe;
14011 
14012         state->dts_reserve = 0;
14013 
14014         if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14015                 return;
14016 
14017         /*
14018          * If our buffer policy is a "fill" buffer policy, we need to set the
14019          * prereserved space to be the space required by the END probes.
14020          */
14021         probe = dtrace_probes[dtrace_probeid_end - 1];
14022         ASSERT(probe != NULL);
14023 
14024         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14025                 if (ecb->dte_state != state)
14026                         continue;
14027 
14028                 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14029         }
14030 }
14031 
14032 static int
14033 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14034 {
14035         dtrace_optval_t *opt = state->dts_options, sz, nspec;
14036         dtrace_speculation_t *spec;
14037         dtrace_buffer_t *buf;
14038         cyc_handler_t hdlr;
14039         cyc_time_t when;
14040         int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14041         dtrace_icookie_t cookie;
14042 
14043         mutex_enter(&cpu_lock);
14044         mutex_enter(&dtrace_lock);
14045 
14046         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14047                 rval = EBUSY;
14048                 goto out;
14049         }
14050 
14051         /*
14052          * Before we can perform any checks, we must prime all of the
14053          * retained enablings that correspond to this state.
14054          */
14055         dtrace_enabling_prime(state);
14056 
14057         if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14058                 rval = EACCES;
14059                 goto out;
14060         }
14061 
14062         dtrace_state_prereserve(state);
14063 
14064         /*
14065          * Now we want to do is try to allocate our speculations.
14066          * We do not automatically resize the number of speculations; if
14067          * this fails, we will fail the operation.
14068          */
14069         nspec = opt[DTRACEOPT_NSPEC];
14070         ASSERT(nspec != DTRACEOPT_UNSET);
14071 
14072         if (nspec > INT_MAX) {
14073                 rval = ENOMEM;
14074                 goto out;
14075         }
14076 
14077         spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
14078             KM_NOSLEEP | KM_NORMALPRI);
14079 
14080         if (spec == NULL) {
14081                 rval = ENOMEM;
14082                 goto out;
14083         }
14084 
14085         state->dts_speculations = spec;
14086         state->dts_nspeculations = (int)nspec;
14087 
14088         for (i = 0; i < nspec; i++) {
14089                 if ((buf = kmem_zalloc(bufsize,
14090                     KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
14091                         rval = ENOMEM;
14092                         goto err;
14093                 }
14094 
14095                 spec[i].dtsp_buffer = buf;
14096         }
14097 
14098         if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
14099                 if (dtrace_anon.dta_state == NULL) {
14100                         rval = ENOENT;
14101                         goto out;
14102                 }
14103 
14104                 if (state->dts_necbs != 0) {
14105                         rval = EALREADY;
14106                         goto out;
14107                 }
14108 
14109                 state->dts_anon = dtrace_anon_grab();
14110                 ASSERT(state->dts_anon != NULL);
14111                 state = state->dts_anon;
14112 
14113                 /*
14114                  * We want "grabanon" to be set in the grabbed state, so we'll
14115                  * copy that option value from the grabbing state into the
14116                  * grabbed state.
14117                  */
14118                 state->dts_options[DTRACEOPT_GRABANON] =
14119                     opt[DTRACEOPT_GRABANON];
14120 
14121                 *cpu = dtrace_anon.dta_beganon;
14122 
14123                 /*
14124                  * If the anonymous state is active (as it almost certainly
14125                  * is if the anonymous enabling ultimately matched anything),
14126                  * we don't allow any further option processing -- but we
14127                  * don't return failure.
14128                  */
14129                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14130                         goto out;
14131         }
14132 
14133         if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
14134             opt[DTRACEOPT_AGGSIZE] != 0) {
14135                 if (state->dts_aggregations == NULL) {
14136                         /*
14137                          * We're not going to create an aggregation buffer
14138                          * because we don't have any ECBs that contain
14139                          * aggregations -- set this option to 0.
14140                          */
14141                         opt[DTRACEOPT_AGGSIZE] = 0;
14142                 } else {
14143                         /*
14144                          * If we have an aggregation buffer, we must also have
14145                          * a buffer to use as scratch.
14146                          */
14147                         if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
14148                             opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
14149                                 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
14150                         }
14151                 }
14152         }
14153 
14154         if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
14155             opt[DTRACEOPT_SPECSIZE] != 0) {
14156                 if (!state->dts_speculates) {
14157                         /*
14158                          * We're not going to create speculation buffers
14159                          * because we don't have any ECBs that actually
14160                          * speculate -- set the speculation size to 0.
14161                          */
14162                         opt[DTRACEOPT_SPECSIZE] = 0;
14163                 }
14164         }
14165 
14166         /*
14167          * The bare minimum size for any buffer that we're actually going to
14168          * do anything to is sizeof (uint64_t).
14169          */
14170         sz = sizeof (uint64_t);
14171 
14172         if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
14173             (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
14174             (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
14175                 /*
14176                  * A buffer size has been explicitly set to 0 (or to a size
14177                  * that will be adjusted to 0) and we need the space -- we
14178                  * need to return failure.  We return ENOSPC to differentiate
14179                  * it from failing to allocate a buffer due to failure to meet
14180                  * the reserve (for which we return E2BIG).
14181                  */
14182                 rval = ENOSPC;
14183                 goto out;
14184         }
14185 
14186         if ((rval = dtrace_state_buffers(state)) != 0)
14187                 goto err;
14188 
14189         if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
14190                 sz = dtrace_dstate_defsize;
14191 
14192         do {
14193                 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
14194 
14195                 if (rval == 0)
14196                         break;
14197 
14198                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14199                         goto err;
14200         } while (sz >>= 1);
14201 
14202         opt[DTRACEOPT_DYNVARSIZE] = sz;
14203 
14204         if (rval != 0)
14205                 goto err;
14206 
14207         if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
14208                 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
14209 
14210         if (opt[DTRACEOPT_CLEANRATE] == 0)
14211                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14212 
14213         if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
14214                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
14215 
14216         if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
14217                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14218 
14219         hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
14220         hdlr.cyh_arg = state;
14221         hdlr.cyh_level = CY_LOW_LEVEL;
14222 
14223         when.cyt_when = 0;
14224         when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
14225 
14226         state->dts_cleaner = cyclic_add(&hdlr, &when);
14227 
14228         hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
14229         hdlr.cyh_arg = state;
14230         hdlr.cyh_level = CY_LOW_LEVEL;
14231 
14232         when.cyt_when = 0;
14233         when.cyt_interval = dtrace_deadman_interval;
14234 
14235         state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
14236         state->dts_deadman = cyclic_add(&hdlr, &when);
14237 
14238         state->dts_activity = DTRACE_ACTIVITY_WARMUP;
14239 
14240         if (state->dts_getf != 0 &&
14241             !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14242                 /*
14243                  * We don't have kernel privs but we have at least one call
14244                  * to getf(); we need to bump our zone's count, and (if
14245                  * this is the first enabling to have an unprivileged call
14246                  * to getf()) we need to hook into closef().
14247                  */
14248                 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
14249 
14250                 if (dtrace_getf++ == 0) {
14251                         ASSERT(dtrace_closef == NULL);
14252                         dtrace_closef = dtrace_getf_barrier;
14253                 }
14254         }
14255 
14256         /*
14257          * Now it's time to actually fire the BEGIN probe.  We need to disable
14258          * interrupts here both to record the CPU on which we fired the BEGIN
14259          * probe (the data from this CPU will be processed first at user
14260          * level) and to manually activate the buffer for this CPU.
14261          */
14262         cookie = dtrace_interrupt_disable();
14263         *cpu = CPU->cpu_id;
14264         ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
14265         state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
14266 
14267         dtrace_probe(dtrace_probeid_begin,
14268             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14269         dtrace_interrupt_enable(cookie);
14270         /*
14271          * We may have had an exit action from a BEGIN probe; only change our
14272          * state to ACTIVE if we're still in WARMUP.
14273          */
14274         ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
14275             state->dts_activity == DTRACE_ACTIVITY_DRAINING);
14276 
14277         if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
14278                 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
14279 
14280         /*
14281          * Regardless of whether or not now we're in ACTIVE or DRAINING, we
14282          * want each CPU to transition its principal buffer out of the
14283          * INACTIVE state.  Doing this assures that no CPU will suddenly begin
14284          * processing an ECB halfway down a probe's ECB chain; all CPUs will
14285          * atomically transition from processing none of a state's ECBs to
14286          * processing all of them.
14287          */
14288         dtrace_xcall(DTRACE_CPUALL,
14289             (dtrace_xcall_t)dtrace_buffer_activate, state);
14290         goto out;
14291 
14292 err:
14293         dtrace_buffer_free(state->dts_buffer);
14294         dtrace_buffer_free(state->dts_aggbuffer);
14295 
14296         if ((nspec = state->dts_nspeculations) == 0) {
14297                 ASSERT(state->dts_speculations == NULL);
14298                 goto out;
14299         }
14300 
14301         spec = state->dts_speculations;
14302         ASSERT(spec != NULL);
14303 
14304         for (i = 0; i < state->dts_nspeculations; i++) {
14305                 if ((buf = spec[i].dtsp_buffer) == NULL)
14306                         break;
14307 
14308                 dtrace_buffer_free(buf);
14309                 kmem_free(buf, bufsize);
14310         }
14311 
14312         kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14313         state->dts_nspeculations = 0;
14314         state->dts_speculations = NULL;
14315 
14316 out:
14317         mutex_exit(&dtrace_lock);
14318         mutex_exit(&cpu_lock);
14319 
14320         return (rval);
14321 }
14322 
14323 static int
14324 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
14325 {
14326         dtrace_icookie_t cookie;
14327 
14328         ASSERT(MUTEX_HELD(&dtrace_lock));
14329 
14330         if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
14331             state->dts_activity != DTRACE_ACTIVITY_DRAINING)
14332                 return (EINVAL);
14333 
14334         /*
14335          * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
14336          * to be sure that every CPU has seen it.  See below for the details
14337          * on why this is done.
14338          */
14339         state->dts_activity = DTRACE_ACTIVITY_DRAINING;
14340         dtrace_sync();
14341 
14342         /*
14343          * By this point, it is impossible for any CPU to be still processing
14344          * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
14345          * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
14346          * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
14347          * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
14348          * iff we're in the END probe.
14349          */
14350         state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
14351         dtrace_sync();
14352         ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
14353 
14354         /*
14355          * Finally, we can release the reserve and call the END probe.  We
14356          * disable interrupts across calling the END probe to allow us to
14357          * return the CPU on which we actually called the END probe.  This
14358          * allows user-land to be sure that this CPU's principal buffer is
14359          * processed last.
14360          */
14361         state->dts_reserve = 0;
14362 
14363         cookie = dtrace_interrupt_disable();
14364         *cpu = CPU->cpu_id;
14365         dtrace_probe(dtrace_probeid_end,
14366             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14367         dtrace_interrupt_enable(cookie);
14368 
14369         state->dts_activity = DTRACE_ACTIVITY_STOPPED;
14370         dtrace_sync();
14371 
14372         if (state->dts_getf != 0 &&
14373             !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14374                 /*
14375                  * We don't have kernel privs but we have at least one call
14376                  * to getf(); we need to lower our zone's count, and (if
14377                  * this is the last enabling to have an unprivileged call
14378                  * to getf()) we need to clear the closef() hook.
14379                  */
14380                 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
14381                 ASSERT(dtrace_closef == dtrace_getf_barrier);
14382                 ASSERT(dtrace_getf > 0);
14383 
14384                 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
14385 
14386                 if (--dtrace_getf == 0)
14387                         dtrace_closef = NULL;
14388         }
14389 
14390         return (0);
14391 }
14392 
14393 static int
14394 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
14395     dtrace_optval_t val)
14396 {
14397         ASSERT(MUTEX_HELD(&dtrace_lock));
14398 
14399         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14400                 return (EBUSY);
14401 
14402         if (option >= DTRACEOPT_MAX)
14403                 return (EINVAL);
14404 
14405         if (option != DTRACEOPT_CPU && val < 0)
14406                 return (EINVAL);
14407 
14408         switch (option) {
14409         case DTRACEOPT_DESTRUCTIVE:
14410                 if (dtrace_destructive_disallow)
14411                         return (EACCES);
14412 
14413                 state->dts_cred.dcr_destructive = 1;
14414                 break;
14415 
14416         case DTRACEOPT_BUFSIZE:
14417         case DTRACEOPT_DYNVARSIZE:
14418         case DTRACEOPT_AGGSIZE:
14419         case DTRACEOPT_SPECSIZE:
14420         case DTRACEOPT_STRSIZE:
14421                 if (val < 0)
14422                         return (EINVAL);
14423 
14424                 if (val >= LONG_MAX) {
14425                         /*
14426                          * If this is an otherwise negative value, set it to
14427                          * the highest multiple of 128m less than LONG_MAX.
14428                          * Technically, we're adjusting the size without
14429                          * regard to the buffer resizing policy, but in fact,
14430                          * this has no effect -- if we set the buffer size to
14431                          * ~LONG_MAX and the buffer policy is ultimately set to
14432                          * be "manual", the buffer allocation is guaranteed to
14433                          * fail, if only because the allocation requires two
14434                          * buffers.  (We set the the size to the highest
14435                          * multiple of 128m because it ensures that the size
14436                          * will remain a multiple of a megabyte when
14437                          * repeatedly halved -- all the way down to 15m.)
14438                          */
14439                         val = LONG_MAX - (1 << 27) + 1;
14440                 }
14441         }
14442 
14443         state->dts_options[option] = val;
14444 
14445         return (0);
14446 }
14447 
14448 static void
14449 dtrace_state_destroy(dtrace_state_t *state)
14450 {
14451         dtrace_ecb_t *ecb;
14452         dtrace_vstate_t *vstate = &state->dts_vstate;
14453         minor_t minor = getminor(state->dts_dev);
14454         int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14455         dtrace_speculation_t *spec = state->dts_speculations;
14456         int nspec = state->dts_nspeculations;
14457         uint32_t match;
14458 
14459         ASSERT(MUTEX_HELD(&dtrace_lock));
14460         ASSERT(MUTEX_HELD(&cpu_lock));
14461 
14462         /*
14463          * First, retract any retained enablings for this state.
14464          */
14465         dtrace_enabling_retract(state);
14466         ASSERT(state->dts_nretained == 0);
14467 
14468         if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
14469             state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
14470                 /*
14471                  * We have managed to come into dtrace_state_destroy() on a
14472                  * hot enabling -- almost certainly because of a disorderly
14473                  * shutdown of a consumer.  (That is, a consumer that is
14474                  * exiting without having called dtrace_stop().) In this case,
14475                  * we're going to set our activity to be KILLED, and then
14476                  * issue a sync to be sure that everyone is out of probe
14477                  * context before we start blowing away ECBs.
14478                  */
14479                 state->dts_activity = DTRACE_ACTIVITY_KILLED;
14480                 dtrace_sync();
14481         }
14482 
14483         /*
14484          * Release the credential hold we took in dtrace_state_create().
14485          */
14486         if (state->dts_cred.dcr_cred != NULL)
14487                 crfree(state->dts_cred.dcr_cred);
14488 
14489         /*
14490          * Now we can safely disable and destroy any enabled probes.  Because
14491          * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
14492          * (especially if they're all enabled), we take two passes through the
14493          * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
14494          * in the second we disable whatever is left over.
14495          */
14496         for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
14497                 for (i = 0; i < state->dts_necbs; i++) {
14498                         if ((ecb = state->dts_ecbs[i]) == NULL)
14499                                 continue;
14500 
14501                         if (match && ecb->dte_probe != NULL) {
14502                                 dtrace_probe_t *probe = ecb->dte_probe;
14503                                 dtrace_provider_t *prov = probe->dtpr_provider;
14504 
14505                                 if (!(prov->dtpv_priv.dtpp_flags & match))
14506                                         continue;
14507                         }
14508 
14509                         dtrace_ecb_disable(ecb);
14510                         dtrace_ecb_destroy(ecb);
14511                 }
14512 
14513                 if (!match)
14514                         break;
14515         }
14516 
14517         /*
14518          * Before we free the buffers, perform one more sync to assure that
14519          * every CPU is out of probe context.
14520          */
14521         dtrace_sync();
14522 
14523         dtrace_buffer_free(state->dts_buffer);
14524         dtrace_buffer_free(state->dts_aggbuffer);
14525 
14526         for (i = 0; i < nspec; i++)
14527                 dtrace_buffer_free(spec[i].dtsp_buffer);
14528 
14529         if (state->dts_cleaner != CYCLIC_NONE)
14530                 cyclic_remove(state->dts_cleaner);
14531 
14532         if (state->dts_deadman != CYCLIC_NONE)
14533                 cyclic_remove(state->dts_deadman);
14534 
14535         dtrace_dstate_fini(&vstate->dtvs_dynvars);
14536         dtrace_vstate_fini(vstate);
14537         kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
14538 
14539         if (state->dts_aggregations != NULL) {
14540 #ifdef DEBUG
14541                 for (i = 0; i < state->dts_naggregations; i++)
14542                         ASSERT(state->dts_aggregations[i] == NULL);
14543 #endif
14544                 ASSERT(state->dts_naggregations > 0);
14545                 kmem_free(state->dts_aggregations,
14546                     state->dts_naggregations * sizeof (dtrace_aggregation_t *));
14547         }
14548 
14549         kmem_free(state->dts_buffer, bufsize);
14550         kmem_free(state->dts_aggbuffer, bufsize);
14551 
14552         for (i = 0; i < nspec; i++)
14553                 kmem_free(spec[i].dtsp_buffer, bufsize);
14554 
14555         kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14556 
14557         dtrace_format_destroy(state);
14558 
14559         vmem_destroy(state->dts_aggid_arena);
14560         ddi_soft_state_free(dtrace_softstate, minor);
14561         vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14562 }
14563 
14564 /*
14565  * DTrace Anonymous Enabling Functions
14566  */
14567 static dtrace_state_t *
14568 dtrace_anon_grab(void)
14569 {
14570         dtrace_state_t *state;
14571 
14572         ASSERT(MUTEX_HELD(&dtrace_lock));
14573 
14574         if ((state = dtrace_anon.dta_state) == NULL) {
14575                 ASSERT(dtrace_anon.dta_enabling == NULL);
14576                 return (NULL);
14577         }
14578 
14579         ASSERT(dtrace_anon.dta_enabling != NULL);
14580         ASSERT(dtrace_retained != NULL);
14581 
14582         dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14583         dtrace_anon.dta_enabling = NULL;
14584         dtrace_anon.dta_state = NULL;
14585 
14586         return (state);
14587 }
14588 
14589 static void
14590 dtrace_anon_property(void)
14591 {
14592         int i, rv;
14593         dtrace_state_t *state;
14594         dof_hdr_t *dof;
14595         char c[32];             /* enough for "dof-data-" + digits */
14596 
14597         ASSERT(MUTEX_HELD(&dtrace_lock));
14598         ASSERT(MUTEX_HELD(&cpu_lock));
14599 
14600         for (i = 0; ; i++) {
14601                 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
14602 
14603                 dtrace_err_verbose = 1;
14604 
14605                 if ((dof = dtrace_dof_property(c)) == NULL) {
14606                         dtrace_err_verbose = 0;
14607                         break;
14608                 }
14609 
14610                 /*
14611                  * We want to create anonymous state, so we need to transition
14612                  * the kernel debugger to indicate that DTrace is active.  If
14613                  * this fails (e.g. because the debugger has modified text in
14614                  * some way), we won't continue with the processing.
14615                  */
14616                 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14617                         cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14618                             "enabling ignored.");
14619                         dtrace_dof_destroy(dof);
14620                         break;
14621                 }
14622 
14623                 /*
14624                  * If we haven't allocated an anonymous state, we'll do so now.
14625                  */
14626                 if ((state = dtrace_anon.dta_state) == NULL) {
14627                         state = dtrace_state_create(NULL, NULL);
14628                         dtrace_anon.dta_state = state;
14629 
14630                         if (state == NULL) {
14631                                 /*
14632                                  * This basically shouldn't happen:  the only
14633                                  * failure mode from dtrace_state_create() is a
14634                                  * failure of ddi_soft_state_zalloc() that
14635                                  * itself should never happen.  Still, the
14636                                  * interface allows for a failure mode, and
14637                                  * we want to fail as gracefully as possible:
14638                                  * we'll emit an error message and cease
14639                                  * processing anonymous state in this case.
14640                                  */
14641                                 cmn_err(CE_WARN, "failed to create "
14642                                     "anonymous state");
14643                                 dtrace_dof_destroy(dof);
14644                                 break;
14645                         }
14646                 }
14647 
14648                 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14649                     &dtrace_anon.dta_enabling, 0, B_TRUE);
14650 
14651                 if (rv == 0)
14652                         rv = dtrace_dof_options(dof, state);
14653 
14654                 dtrace_err_verbose = 0;
14655                 dtrace_dof_destroy(dof);
14656 
14657                 if (rv != 0) {
14658                         /*
14659                          * This is malformed DOF; chuck any anonymous state
14660                          * that we created.
14661                          */
14662                         ASSERT(dtrace_anon.dta_enabling == NULL);
14663                         dtrace_state_destroy(state);
14664                         dtrace_anon.dta_state = NULL;
14665                         break;
14666                 }
14667 
14668                 ASSERT(dtrace_anon.dta_enabling != NULL);
14669         }
14670 
14671         if (dtrace_anon.dta_enabling != NULL) {
14672                 int rval;
14673 
14674                 /*
14675                  * dtrace_enabling_retain() can only fail because we are
14676                  * trying to retain more enablings than are allowed -- but
14677                  * we only have one anonymous enabling, and we are guaranteed
14678                  * to be allowed at least one retained enabling; we assert
14679                  * that dtrace_enabling_retain() returns success.
14680                  */
14681                 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14682                 ASSERT(rval == 0);
14683 
14684                 dtrace_enabling_dump(dtrace_anon.dta_enabling);
14685         }
14686 }
14687 
14688 /*
14689  * DTrace Helper Functions
14690  */
14691 static void
14692 dtrace_helper_trace(dtrace_helper_action_t *helper,
14693     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14694 {
14695         uint32_t size, next, nnext, i;
14696         dtrace_helptrace_t *ent, *buffer;
14697         uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14698 
14699         if ((buffer = dtrace_helptrace_buffer) == NULL)
14700                 return;
14701 
14702         ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14703 
14704         /*
14705          * What would a tracing framework be without its own tracing
14706          * framework?  (Well, a hell of a lot simpler, for starters...)
14707          */
14708         size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14709             sizeof (uint64_t) - sizeof (uint64_t);
14710 
14711         /*
14712          * Iterate until we can allocate a slot in the trace buffer.
14713          */
14714         do {
14715                 next = dtrace_helptrace_next;
14716 
14717                 if (next + size < dtrace_helptrace_bufsize) {
14718                         nnext = next + size;
14719                 } else {
14720                         nnext = size;
14721                 }
14722         } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14723 
14724         /*
14725          * We have our slot; fill it in.
14726          */
14727         if (nnext == size) {
14728                 dtrace_helptrace_wrapped++;
14729                 next = 0;
14730         }
14731 
14732         ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
14733         ent->dtht_helper = helper;
14734         ent->dtht_where = where;
14735         ent->dtht_nlocals = vstate->dtvs_nlocals;
14736 
14737         ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14738             mstate->dtms_fltoffs : -1;
14739         ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14740         ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
14741 
14742         for (i = 0; i < vstate->dtvs_nlocals; i++) {
14743                 dtrace_statvar_t *svar;
14744 
14745                 if ((svar = vstate->dtvs_locals[i]) == NULL)
14746                         continue;
14747 
14748                 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14749                 ent->dtht_locals[i] =
14750                     ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
14751         }
14752 }
14753 
14754 static uint64_t
14755 dtrace_helper(int which, dtrace_mstate_t *mstate,
14756     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14757 {
14758         uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14759         uint64_t sarg0 = mstate->dtms_arg[0];
14760         uint64_t sarg1 = mstate->dtms_arg[1];
14761         uint64_t rval;
14762         dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14763         dtrace_helper_action_t *helper;
14764         dtrace_vstate_t *vstate;
14765         dtrace_difo_t *pred;
14766         int i, trace = dtrace_helptrace_buffer != NULL;
14767 
14768         ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14769 
14770         if (helpers == NULL)
14771                 return (0);
14772 
14773         if ((helper = helpers->dthps_actions[which]) == NULL)
14774                 return (0);
14775 
14776         vstate = &helpers->dthps_vstate;
14777         mstate->dtms_arg[0] = arg0;
14778         mstate->dtms_arg[1] = arg1;
14779 
14780         /*
14781          * Now iterate over each helper.  If its predicate evaluates to 'true',
14782          * we'll call the corresponding actions.  Note that the below calls
14783          * to dtrace_dif_emulate() may set faults in machine state.  This is
14784          * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
14785          * the stored DIF offset with its own (which is the desired behavior).
14786          * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14787          * from machine state; this is okay, too.
14788          */
14789         for (; helper != NULL; helper = helper->dtha_next) {
14790                 if ((pred = helper->dtha_predicate) != NULL) {
14791                         if (trace)
14792                                 dtrace_helper_trace(helper, mstate, vstate, 0);
14793 
14794                         if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14795                                 goto next;
14796 
14797                         if (*flags & CPU_DTRACE_FAULT)
14798                                 goto err;
14799                 }
14800 
14801                 for (i = 0; i < helper->dtha_nactions; i++) {
14802                         if (trace)
14803                                 dtrace_helper_trace(helper,
14804                                     mstate, vstate, i + 1);
14805 
14806                         rval = dtrace_dif_emulate(helper->dtha_actions[i],
14807                             mstate, vstate, state);
14808 
14809                         if (*flags & CPU_DTRACE_FAULT)
14810                                 goto err;
14811                 }
14812 
14813 next:
14814                 if (trace)
14815                         dtrace_helper_trace(helper, mstate, vstate,
14816                             DTRACE_HELPTRACE_NEXT);
14817         }
14818 
14819         if (trace)
14820                 dtrace_helper_trace(helper, mstate, vstate,
14821                     DTRACE_HELPTRACE_DONE);
14822 
14823         /*
14824          * Restore the arg0 that we saved upon entry.
14825          */
14826         mstate->dtms_arg[0] = sarg0;
14827         mstate->dtms_arg[1] = sarg1;
14828 
14829         return (rval);
14830 
14831 err:
14832         if (trace)
14833                 dtrace_helper_trace(helper, mstate, vstate,
14834                     DTRACE_HELPTRACE_ERR);
14835 
14836         /*
14837          * Restore the arg0 that we saved upon entry.
14838          */
14839         mstate->dtms_arg[0] = sarg0;
14840         mstate->dtms_arg[1] = sarg1;
14841 
14842         return (NULL);
14843 }
14844 
14845 static void
14846 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14847     dtrace_vstate_t *vstate)
14848 {
14849         int i;
14850 
14851         if (helper->dtha_predicate != NULL)
14852                 dtrace_difo_release(helper->dtha_predicate, vstate);
14853 
14854         for (i = 0; i < helper->dtha_nactions; i++) {
14855                 ASSERT(helper->dtha_actions[i] != NULL);
14856                 dtrace_difo_release(helper->dtha_actions[i], vstate);
14857         }
14858 
14859         kmem_free(helper->dtha_actions,
14860             helper->dtha_nactions * sizeof (dtrace_difo_t *));
14861         kmem_free(helper, sizeof (dtrace_helper_action_t));
14862 }
14863 
14864 static int
14865 dtrace_helper_destroygen(int gen)
14866 {
14867         proc_t *p = curproc;
14868         dtrace_helpers_t *help = p->p_dtrace_helpers;
14869         dtrace_vstate_t *vstate;
14870         int i;
14871 
14872         ASSERT(MUTEX_HELD(&dtrace_lock));
14873 
14874         if (help == NULL || gen > help->dthps_generation)
14875                 return (EINVAL);
14876 
14877         vstate = &help->dthps_vstate;
14878 
14879         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14880                 dtrace_helper_action_t *last = NULL, *h, *next;
14881 
14882                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14883                         next = h->dtha_next;
14884 
14885                         if (h->dtha_generation == gen) {
14886                                 if (last != NULL) {
14887                                         last->dtha_next = next;
14888                                 } else {
14889                                         help->dthps_actions[i] = next;
14890                                 }
14891 
14892                                 dtrace_helper_action_destroy(h, vstate);
14893                         } else {
14894                                 last = h;
14895                         }
14896                 }
14897         }
14898 
14899         /*
14900          * Interate until we've cleared out all helper providers with the
14901          * given generation number.
14902          */
14903         for (;;) {
14904                 dtrace_helper_provider_t *prov;
14905 
14906                 /*
14907                  * Look for a helper provider with the right generation. We
14908                  * have to start back at the beginning of the list each time
14909                  * because we drop dtrace_lock. It's unlikely that we'll make
14910                  * more than two passes.
14911                  */
14912                 for (i = 0; i < help->dthps_nprovs; i++) {
14913                         prov = help->dthps_provs[i];
14914 
14915                         if (prov->dthp_generation == gen)
14916                                 break;
14917                 }
14918 
14919                 /*
14920                  * If there were no matches, we're done.
14921                  */
14922                 if (i == help->dthps_nprovs)
14923                         break;
14924 
14925                 /*
14926                  * Move the last helper provider into this slot.
14927                  */
14928                 help->dthps_nprovs--;
14929                 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14930                 help->dthps_provs[help->dthps_nprovs] = NULL;
14931 
14932                 mutex_exit(&dtrace_lock);
14933 
14934                 /*
14935                  * If we have a meta provider, remove this helper provider.
14936                  */
14937                 mutex_enter(&dtrace_meta_lock);
14938                 if (dtrace_meta_pid != NULL) {
14939                         ASSERT(dtrace_deferred_pid == NULL);
14940                         dtrace_helper_provider_remove(&prov->dthp_prov,
14941                             p->p_pid);
14942                 }
14943                 mutex_exit(&dtrace_meta_lock);
14944 
14945                 dtrace_helper_provider_destroy(prov);
14946 
14947                 mutex_enter(&dtrace_lock);
14948         }
14949 
14950         return (0);
14951 }
14952 
14953 static int
14954 dtrace_helper_validate(dtrace_helper_action_t *helper)
14955 {
14956         int err = 0, i;
14957         dtrace_difo_t *dp;
14958 
14959         if ((dp = helper->dtha_predicate) != NULL)
14960                 err += dtrace_difo_validate_helper(dp);
14961 
14962         for (i = 0; i < helper->dtha_nactions; i++)
14963                 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14964 
14965         return (err == 0);
14966 }
14967 
14968 static int
14969 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14970 {
14971         dtrace_helpers_t *help;
14972         dtrace_helper_action_t *helper, *last;
14973         dtrace_actdesc_t *act;
14974         dtrace_vstate_t *vstate;
14975         dtrace_predicate_t *pred;
14976         int count = 0, nactions = 0, i;
14977 
14978         if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14979                 return (EINVAL);
14980 
14981         help = curproc->p_dtrace_helpers;
14982         last = help->dthps_actions[which];
14983         vstate = &help->dthps_vstate;
14984 
14985         for (count = 0; last != NULL; last = last->dtha_next) {
14986                 count++;
14987                 if (last->dtha_next == NULL)
14988                         break;
14989         }
14990 
14991         /*
14992          * If we already have dtrace_helper_actions_max helper actions for this
14993          * helper action type, we'll refuse to add a new one.
14994          */
14995         if (count >= dtrace_helper_actions_max)
14996                 return (ENOSPC);
14997 
14998         helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14999         helper->dtha_generation = help->dthps_generation;
15000 
15001         if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15002                 ASSERT(pred->dtp_difo != NULL);
15003                 dtrace_difo_hold(pred->dtp_difo);
15004                 helper->dtha_predicate = pred->dtp_difo;
15005         }
15006 
15007         for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15008                 if (act->dtad_kind != DTRACEACT_DIFEXPR)
15009                         goto err;
15010 
15011                 if (act->dtad_difo == NULL)
15012                         goto err;
15013 
15014                 nactions++;
15015         }
15016 
15017         helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15018             (helper->dtha_nactions = nactions), KM_SLEEP);
15019 
15020         for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
15021                 dtrace_difo_hold(act->dtad_difo);
15022                 helper->dtha_actions[i++] = act->dtad_difo;
15023         }
15024 
15025         if (!dtrace_helper_validate(helper))
15026                 goto err;
15027 
15028         if (last == NULL) {
15029                 help->dthps_actions[which] = helper;
15030         } else {
15031                 last->dtha_next = helper;
15032         }
15033 
15034         if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
15035                 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
15036                 dtrace_helptrace_next = 0;
15037         }
15038 
15039         return (0);
15040 err:
15041         dtrace_helper_action_destroy(helper, vstate);
15042         return (EINVAL);
15043 }
15044 
15045 static void
15046 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
15047     dof_helper_t *dofhp)
15048 {
15049         ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
15050 
15051         mutex_enter(&dtrace_meta_lock);
15052         mutex_enter(&dtrace_lock);
15053 
15054         if (!dtrace_attached() || dtrace_meta_pid == NULL) {
15055                 /*
15056                  * If the dtrace module is loaded but not attached, or if
15057                  * there aren't isn't a meta provider registered to deal with
15058                  * these provider descriptions, we need to postpone creating
15059                  * the actual providers until later.
15060                  */
15061 
15062                 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
15063                     dtrace_deferred_pid != help) {
15064                         help->dthps_deferred = 1;
15065                         help->dthps_pid = p->p_pid;
15066                         help->dthps_next = dtrace_deferred_pid;
15067                         help->dthps_prev = NULL;
15068                         if (dtrace_deferred_pid != NULL)
15069                                 dtrace_deferred_pid->dthps_prev = help;
15070                         dtrace_deferred_pid = help;
15071                 }
15072 
15073                 mutex_exit(&dtrace_lock);
15074 
15075         } else if (dofhp != NULL) {
15076                 /*
15077                  * If the dtrace module is loaded and we have a particular
15078                  * helper provider description, pass that off to the
15079                  * meta provider.
15080                  */
15081 
15082                 mutex_exit(&dtrace_lock);
15083 
15084                 dtrace_helper_provide(dofhp, p->p_pid);
15085 
15086         } else {
15087                 /*
15088                  * Otherwise, just pass all the helper provider descriptions
15089                  * off to the meta provider.
15090                  */
15091 
15092                 int i;
15093                 mutex_exit(&dtrace_lock);
15094 
15095                 for (i = 0; i < help->dthps_nprovs; i++) {
15096                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
15097                             p->p_pid);
15098                 }
15099         }
15100 
15101         mutex_exit(&dtrace_meta_lock);
15102 }
15103 
15104 static int
15105 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
15106 {
15107         dtrace_helpers_t *help;
15108         dtrace_helper_provider_t *hprov, **tmp_provs;
15109         uint_t tmp_maxprovs, i;
15110 
15111         ASSERT(MUTEX_HELD(&dtrace_lock));
15112 
15113         help = curproc->p_dtrace_helpers;
15114         ASSERT(help != NULL);
15115 
15116         /*
15117          * If we already have dtrace_helper_providers_max helper providers,
15118          * we're refuse to add a new one.
15119          */
15120         if (help->dthps_nprovs >= dtrace_helper_providers_max)
15121                 return (ENOSPC);
15122 
15123         /*
15124          * Check to make sure this isn't a duplicate.
15125          */
15126         for (i = 0; i < help->dthps_nprovs; i++) {
15127                 if (dofhp->dofhp_addr ==
15128                     help->dthps_provs[i]->dthp_prov.dofhp_addr)
15129                         return (EALREADY);
15130         }
15131 
15132         hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
15133         hprov->dthp_prov = *dofhp;
15134         hprov->dthp_ref = 1;
15135         hprov->dthp_generation = gen;
15136 
15137         /*
15138          * Allocate a bigger table for helper providers if it's already full.
15139          */
15140         if (help->dthps_maxprovs == help->dthps_nprovs) {
15141                 tmp_maxprovs = help->dthps_maxprovs;
15142                 tmp_provs = help->dthps_provs;
15143 
15144                 if (help->dthps_maxprovs == 0)
15145                         help->dthps_maxprovs = 2;
15146                 else
15147                         help->dthps_maxprovs *= 2;
15148                 if (help->dthps_maxprovs > dtrace_helper_providers_max)
15149                         help->dthps_maxprovs = dtrace_helper_providers_max;
15150 
15151                 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
15152 
15153                 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
15154                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15155 
15156                 if (tmp_provs != NULL) {
15157                         bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
15158                             sizeof (dtrace_helper_provider_t *));
15159                         kmem_free(tmp_provs, tmp_maxprovs *
15160                             sizeof (dtrace_helper_provider_t *));
15161                 }
15162         }
15163 
15164         help->dthps_provs[help->dthps_nprovs] = hprov;
15165         help->dthps_nprovs++;
15166 
15167         return (0);
15168 }
15169 
15170 static void
15171 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
15172 {
15173         mutex_enter(&dtrace_lock);
15174 
15175         if (--hprov->dthp_ref == 0) {
15176                 dof_hdr_t *dof;
15177                 mutex_exit(&dtrace_lock);
15178                 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
15179                 dtrace_dof_destroy(dof);
15180                 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
15181         } else {
15182                 mutex_exit(&dtrace_lock);
15183         }
15184 }
15185 
15186 static int
15187 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
15188 {
15189         uintptr_t daddr = (uintptr_t)dof;
15190         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
15191         dof_provider_t *provider;
15192         dof_probe_t *probe;
15193         uint8_t *arg;
15194         char *strtab, *typestr;
15195         dof_stridx_t typeidx;
15196         size_t typesz;
15197         uint_t nprobes, j, k;
15198 
15199         ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
15200 
15201         if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
15202                 dtrace_dof_error(dof, "misaligned section offset");
15203                 return (-1);
15204         }
15205 
15206         /*
15207          * The section needs to be large enough to contain the DOF provider
15208          * structure appropriate for the given version.
15209          */
15210         if (sec->dofs_size <
15211             ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
15212             offsetof(dof_provider_t, dofpv_prenoffs) :
15213             sizeof (dof_provider_t))) {
15214                 dtrace_dof_error(dof, "provider section too small");
15215                 return (-1);
15216         }
15217 
15218         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
15219         str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
15220         prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
15221         arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
15222         off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
15223 
15224         if (str_sec == NULL || prb_sec == NULL ||
15225             arg_sec == NULL || off_sec == NULL)
15226                 return (-1);
15227 
15228         enoff_sec = NULL;
15229 
15230         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
15231             provider->dofpv_prenoffs != DOF_SECT_NONE &&
15232             (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
15233             provider->dofpv_prenoffs)) == NULL)
15234                 return (-1);
15235 
15236         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
15237 
15238         if (provider->dofpv_name >= str_sec->dofs_size ||
15239             strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
15240                 dtrace_dof_error(dof, "invalid provider name");
15241                 return (-1);
15242         }
15243 
15244         if (prb_sec->dofs_entsize == 0 ||
15245             prb_sec->dofs_entsize > prb_sec->dofs_size) {
15246                 dtrace_dof_error(dof, "invalid entry size");
15247                 return (-1);
15248         }
15249 
15250         if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
15251                 dtrace_dof_error(dof, "misaligned entry size");
15252                 return (-1);
15253         }
15254 
15255         if (off_sec->dofs_entsize != sizeof (uint32_t)) {
15256                 dtrace_dof_error(dof, "invalid entry size");
15257                 return (-1);
15258         }
15259 
15260         if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
15261                 dtrace_dof_error(dof, "misaligned section offset");
15262                 return (-1);
15263         }
15264 
15265         if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
15266                 dtrace_dof_error(dof, "invalid entry size");
15267                 return (-1);
15268         }
15269 
15270         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
15271 
15272         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
15273 
15274         /*
15275          * Take a pass through the probes to check for errors.
15276          */
15277         for (j = 0; j < nprobes; j++) {
15278                 probe = (dof_probe_t *)(uintptr_t)(daddr +
15279                     prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
15280 
15281                 if (probe->dofpr_func >= str_sec->dofs_size) {
15282                         dtrace_dof_error(dof, "invalid function name");
15283                         return (-1);
15284                 }
15285 
15286                 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
15287                         dtrace_dof_error(dof, "function name too long");
15288                         return (-1);
15289                 }
15290 
15291                 if (probe->dofpr_name >= str_sec->dofs_size ||
15292                     strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
15293                         dtrace_dof_error(dof, "invalid probe name");
15294                         return (-1);
15295                 }
15296 
15297                 /*
15298                  * The offset count must not wrap the index, and the offsets
15299                  * must also not overflow the section's data.
15300                  */
15301                 if (probe->dofpr_offidx + probe->dofpr_noffs <
15302                     probe->dofpr_offidx ||
15303                     (probe->dofpr_offidx + probe->dofpr_noffs) *
15304                     off_sec->dofs_entsize > off_sec->dofs_size) {
15305                         dtrace_dof_error(dof, "invalid probe offset");
15306                         return (-1);
15307                 }
15308 
15309                 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
15310                         /*
15311                          * If there's no is-enabled offset section, make sure
15312                          * there aren't any is-enabled offsets. Otherwise
15313                          * perform the same checks as for probe offsets
15314                          * (immediately above).
15315                          */
15316                         if (enoff_sec == NULL) {
15317                                 if (probe->dofpr_enoffidx != 0 ||
15318                                     probe->dofpr_nenoffs != 0) {
15319                                         dtrace_dof_error(dof, "is-enabled "
15320                                             "offsets with null section");
15321                                         return (-1);
15322                                 }
15323                         } else if (probe->dofpr_enoffidx +
15324                             probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
15325                             (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
15326                             enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
15327                                 dtrace_dof_error(dof, "invalid is-enabled "
15328                                     "offset");
15329                                 return (-1);
15330                         }
15331 
15332                         if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
15333                                 dtrace_dof_error(dof, "zero probe and "
15334                                     "is-enabled offsets");
15335                                 return (-1);
15336                         }
15337                 } else if (probe->dofpr_noffs == 0) {
15338                         dtrace_dof_error(dof, "zero probe offsets");
15339                         return (-1);
15340                 }
15341 
15342                 if (probe->dofpr_argidx + probe->dofpr_xargc <
15343                     probe->dofpr_argidx ||
15344                     (probe->dofpr_argidx + probe->dofpr_xargc) *
15345                     arg_sec->dofs_entsize > arg_sec->dofs_size) {
15346                         dtrace_dof_error(dof, "invalid args");
15347                         return (-1);
15348                 }
15349 
15350                 typeidx = probe->dofpr_nargv;
15351                 typestr = strtab + probe->dofpr_nargv;
15352                 for (k = 0; k < probe->dofpr_nargc; k++) {
15353                         if (typeidx >= str_sec->dofs_size) {
15354                                 dtrace_dof_error(dof, "bad "
15355                                     "native argument type");
15356                                 return (-1);
15357                         }
15358 
15359                         typesz = strlen(typestr) + 1;
15360                         if (typesz > DTRACE_ARGTYPELEN) {
15361                                 dtrace_dof_error(dof, "native "
15362                                     "argument type too long");
15363                                 return (-1);
15364                         }
15365                         typeidx += typesz;
15366                         typestr += typesz;
15367                 }
15368 
15369                 typeidx = probe->dofpr_xargv;
15370                 typestr = strtab + probe->dofpr_xargv;
15371                 for (k = 0; k < probe->dofpr_xargc; k++) {
15372                         if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
15373                                 dtrace_dof_error(dof, "bad "
15374                                     "native argument index");
15375                                 return (-1);
15376                         }
15377 
15378                         if (typeidx >= str_sec->dofs_size) {
15379                                 dtrace_dof_error(dof, "bad "
15380                                     "translated argument type");
15381                                 return (-1);
15382                         }
15383 
15384                         typesz = strlen(typestr) + 1;
15385                         if (typesz > DTRACE_ARGTYPELEN) {
15386                                 dtrace_dof_error(dof, "translated argument "
15387                                     "type too long");
15388                                 return (-1);
15389                         }
15390 
15391                         typeidx += typesz;
15392                         typestr += typesz;
15393                 }
15394         }
15395 
15396         return (0);
15397 }
15398 
15399 static int
15400 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
15401 {
15402         dtrace_helpers_t *help;
15403         dtrace_vstate_t *vstate;
15404         dtrace_enabling_t *enab = NULL;
15405         int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
15406         uintptr_t daddr = (uintptr_t)dof;
15407 
15408         ASSERT(MUTEX_HELD(&dtrace_lock));
15409 
15410         if ((help = curproc->p_dtrace_helpers) == NULL)
15411                 help = dtrace_helpers_create(curproc);
15412 
15413         vstate = &help->dthps_vstate;
15414 
15415         if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
15416             dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
15417                 dtrace_dof_destroy(dof);
15418                 return (rv);
15419         }
15420 
15421         /*
15422          * Look for helper providers and validate their descriptions.
15423          */
15424         if (dhp != NULL) {
15425                 for (i = 0; i < dof->dofh_secnum; i++) {
15426                         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
15427                             dof->dofh_secoff + i * dof->dofh_secsize);
15428 
15429                         if (sec->dofs_type != DOF_SECT_PROVIDER)
15430                                 continue;
15431 
15432                         if (dtrace_helper_provider_validate(dof, sec) != 0) {
15433                                 dtrace_enabling_destroy(enab);
15434                                 dtrace_dof_destroy(dof);
15435                                 return (-1);
15436                         }
15437 
15438                         nprovs++;
15439                 }
15440         }
15441 
15442         /*
15443          * Now we need to walk through the ECB descriptions in the enabling.
15444          */
15445         for (i = 0; i < enab->dten_ndesc; i++) {
15446                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
15447                 dtrace_probedesc_t *desc = &ep->dted_probe;
15448 
15449                 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
15450                         continue;
15451 
15452                 if (strcmp(desc->dtpd_mod, "helper") != 0)
15453                         continue;
15454 
15455                 if (strcmp(desc->dtpd_func, "ustack") != 0)
15456                         continue;
15457 
15458                 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
15459                     ep)) != 0) {
15460                         /*
15461                          * Adding this helper action failed -- we are now going
15462                          * to rip out the entire generation and return failure.
15463                          */
15464                         (void) dtrace_helper_destroygen(help->dthps_generation);
15465                         dtrace_enabling_destroy(enab);
15466                         dtrace_dof_destroy(dof);
15467                         return (-1);
15468                 }
15469 
15470                 nhelpers++;
15471         }
15472 
15473         if (nhelpers < enab->dten_ndesc)
15474                 dtrace_dof_error(dof, "unmatched helpers");
15475 
15476         gen = help->dthps_generation++;
15477         dtrace_enabling_destroy(enab);
15478 
15479         if (dhp != NULL && nprovs > 0) {
15480                 /*
15481                  * Now that this is in-kernel, we change the sense of the
15482                  * members:  dofhp_dof denotes the in-kernel copy of the DOF
15483                  * and dofhp_addr denotes the address at user-level.
15484                  */
15485                 dhp->dofhp_addr = dhp->dofhp_dof;
15486                 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
15487 
15488                 if (dtrace_helper_provider_add(dhp, gen) == 0) {
15489                         mutex_exit(&dtrace_lock);
15490                         dtrace_helper_provider_register(curproc, help, dhp);
15491                         mutex_enter(&dtrace_lock);
15492 
15493                         destroy = 0;
15494                 }
15495         }
15496 
15497         if (destroy)
15498                 dtrace_dof_destroy(dof);
15499 
15500         return (gen);
15501 }
15502 
15503 static dtrace_helpers_t *
15504 dtrace_helpers_create(proc_t *p)
15505 {
15506         dtrace_helpers_t *help;
15507 
15508         ASSERT(MUTEX_HELD(&dtrace_lock));
15509         ASSERT(p->p_dtrace_helpers == NULL);
15510 
15511         help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
15512         help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
15513             DTRACE_NHELPER_ACTIONS, KM_SLEEP);
15514 
15515         p->p_dtrace_helpers = help;
15516         dtrace_helpers++;
15517 
15518         return (help);
15519 }
15520 
15521 static void
15522 dtrace_helpers_destroy(proc_t *p)
15523 {
15524         dtrace_helpers_t *help;
15525         dtrace_vstate_t *vstate;
15526         int i;
15527 
15528         mutex_enter(&dtrace_lock);
15529 
15530         ASSERT(p->p_dtrace_helpers != NULL);
15531         ASSERT(dtrace_helpers > 0);
15532 
15533         help = p->p_dtrace_helpers;
15534         vstate = &help->dthps_vstate;
15535 
15536         /*
15537          * We're now going to lose the help from this process.
15538          */
15539         p->p_dtrace_helpers = NULL;
15540         if (p == curproc) {
15541                 dtrace_sync();
15542         } else {
15543                 /*
15544                  * It is sometimes necessary to clean up dtrace helpers from a
15545                  * an incomplete child process as part of a failed fork
15546                  * operation.  In such situations, a dtrace_sync() call should
15547                  * be unnecessary as the process should be devoid of threads,
15548                  * much less any in probe context.
15549                  */
15550                 VERIFY(p->p_stat == SIDL);
15551         }
15552 
15553         /*
15554          * Destroy the helper actions.
15555          */
15556         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15557                 dtrace_helper_action_t *h, *next;
15558 
15559                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
15560                         next = h->dtha_next;
15561                         dtrace_helper_action_destroy(h, vstate);
15562                         h = next;
15563                 }
15564         }
15565 
15566         mutex_exit(&dtrace_lock);
15567 
15568         /*
15569          * Destroy the helper providers.
15570          */
15571         if (help->dthps_maxprovs > 0) {
15572                 mutex_enter(&dtrace_meta_lock);
15573                 if (dtrace_meta_pid != NULL) {
15574                         ASSERT(dtrace_deferred_pid == NULL);
15575 
15576                         for (i = 0; i < help->dthps_nprovs; i++) {
15577                                 dtrace_helper_provider_remove(
15578                                     &help->dthps_provs[i]->dthp_prov, p->p_pid);
15579                         }
15580                 } else {
15581                         mutex_enter(&dtrace_lock);
15582                         ASSERT(help->dthps_deferred == 0 ||
15583                             help->dthps_next != NULL ||
15584                             help->dthps_prev != NULL ||
15585                             help == dtrace_deferred_pid);
15586 
15587                         /*
15588                          * Remove the helper from the deferred list.
15589                          */
15590                         if (help->dthps_next != NULL)
15591                                 help->dthps_next->dthps_prev = help->dthps_prev;
15592                         if (help->dthps_prev != NULL)
15593                                 help->dthps_prev->dthps_next = help->dthps_next;
15594                         if (dtrace_deferred_pid == help) {
15595                                 dtrace_deferred_pid = help->dthps_next;
15596                                 ASSERT(help->dthps_prev == NULL);
15597                         }
15598 
15599                         mutex_exit(&dtrace_lock);
15600                 }
15601 
15602                 mutex_exit(&dtrace_meta_lock);
15603 
15604                 for (i = 0; i < help->dthps_nprovs; i++) {
15605                         dtrace_helper_provider_destroy(help->dthps_provs[i]);
15606                 }
15607 
15608                 kmem_free(help->dthps_provs, help->dthps_maxprovs *
15609                     sizeof (dtrace_helper_provider_t *));
15610         }
15611 
15612         mutex_enter(&dtrace_lock);
15613 
15614         dtrace_vstate_fini(&help->dthps_vstate);
15615         kmem_free(help->dthps_actions,
15616             sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15617         kmem_free(help, sizeof (dtrace_helpers_t));
15618 
15619         --dtrace_helpers;
15620         mutex_exit(&dtrace_lock);
15621 }
15622 
15623 static void
15624 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15625 {
15626         dtrace_helpers_t *help, *newhelp;
15627         dtrace_helper_action_t *helper, *new, *last;
15628         dtrace_difo_t *dp;
15629         dtrace_vstate_t *vstate;
15630         int i, j, sz, hasprovs = 0;
15631 
15632         mutex_enter(&dtrace_lock);
15633         ASSERT(from->p_dtrace_helpers != NULL);
15634         ASSERT(dtrace_helpers > 0);
15635 
15636         help = from->p_dtrace_helpers;
15637         newhelp = dtrace_helpers_create(to);
15638         ASSERT(to->p_dtrace_helpers != NULL);
15639 
15640         newhelp->dthps_generation = help->dthps_generation;
15641         vstate = &newhelp->dthps_vstate;
15642 
15643         /*
15644          * Duplicate the helper actions.
15645          */
15646         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15647                 if ((helper = help->dthps_actions[i]) == NULL)
15648                         continue;
15649 
15650                 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15651                         new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15652                             KM_SLEEP);
15653                         new->dtha_generation = helper->dtha_generation;
15654 
15655                         if ((dp = helper->dtha_predicate) != NULL) {
15656                                 dp = dtrace_difo_duplicate(dp, vstate);
15657                                 new->dtha_predicate = dp;
15658                         }
15659 
15660                         new->dtha_nactions = helper->dtha_nactions;
15661                         sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15662                         new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15663 
15664                         for (j = 0; j < new->dtha_nactions; j++) {
15665                                 dtrace_difo_t *dp = helper->dtha_actions[j];
15666 
15667                                 ASSERT(dp != NULL);
15668                                 dp = dtrace_difo_duplicate(dp, vstate);
15669                                 new->dtha_actions[j] = dp;
15670                         }
15671 
15672                         if (last != NULL) {
15673                                 last->dtha_next = new;
15674                         } else {
15675                                 newhelp->dthps_actions[i] = new;
15676                         }
15677 
15678                         last = new;
15679                 }
15680         }
15681 
15682         /*
15683          * Duplicate the helper providers and register them with the
15684          * DTrace framework.
15685          */
15686         if (help->dthps_nprovs > 0) {
15687                 newhelp->dthps_nprovs = help->dthps_nprovs;
15688                 newhelp->dthps_maxprovs = help->dthps_nprovs;
15689                 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15690                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15691                 for (i = 0; i < newhelp->dthps_nprovs; i++) {
15692                         newhelp->dthps_provs[i] = help->dthps_provs[i];
15693                         newhelp->dthps_provs[i]->dthp_ref++;
15694                 }
15695 
15696                 hasprovs = 1;
15697         }
15698 
15699         mutex_exit(&dtrace_lock);
15700 
15701         if (hasprovs)
15702                 dtrace_helper_provider_register(to, newhelp, NULL);
15703 }
15704 
15705 /*
15706  * DTrace Hook Functions
15707  */
15708 static void
15709 dtrace_module_loaded(struct modctl *ctl)
15710 {
15711         dtrace_provider_t *prv;
15712 
15713         mutex_enter(&dtrace_provider_lock);
15714         mutex_enter(&mod_lock);
15715 
15716         ASSERT(ctl->mod_busy);
15717 
15718         /*
15719          * We're going to call each providers per-module provide operation
15720          * specifying only this module.
15721          */
15722         for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15723                 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15724 
15725         mutex_exit(&mod_lock);
15726         mutex_exit(&dtrace_provider_lock);
15727 
15728         /*
15729          * If we have any retained enablings, we need to match against them.
15730          * Enabling probes requires that cpu_lock be held, and we cannot hold
15731          * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15732          * module.  (In particular, this happens when loading scheduling
15733          * classes.)  So if we have any retained enablings, we need to dispatch
15734          * our task queue to do the match for us.
15735          */
15736         mutex_enter(&dtrace_lock);
15737 
15738         if (dtrace_retained == NULL) {
15739                 mutex_exit(&dtrace_lock);
15740                 return;
15741         }
15742 
15743         (void) taskq_dispatch(dtrace_taskq,
15744             (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15745 
15746         mutex_exit(&dtrace_lock);
15747 
15748         /*
15749          * And now, for a little heuristic sleaze:  in general, we want to
15750          * match modules as soon as they load.  However, we cannot guarantee
15751          * this, because it would lead us to the lock ordering violation
15752          * outlined above.  The common case, of course, is that cpu_lock is
15753          * _not_ held -- so we delay here for a clock tick, hoping that that's
15754          * long enough for the task queue to do its work.  If it's not, it's
15755          * not a serious problem -- it just means that the module that we
15756          * just loaded may not be immediately instrumentable.
15757          */
15758         delay(1);
15759 }
15760 
15761 static void
15762 dtrace_module_unloaded(struct modctl *ctl)
15763 {
15764         dtrace_probe_t template, *probe, *first, *next;
15765         dtrace_provider_t *prov;
15766 
15767         template.dtpr_mod = ctl->mod_modname;
15768 
15769         mutex_enter(&dtrace_provider_lock);
15770         mutex_enter(&mod_lock);
15771         mutex_enter(&dtrace_lock);
15772 
15773         if (dtrace_bymod == NULL) {
15774                 /*
15775                  * The DTrace module is loaded (obviously) but not attached;
15776                  * we don't have any work to do.
15777                  */
15778                 mutex_exit(&dtrace_provider_lock);
15779                 mutex_exit(&mod_lock);
15780                 mutex_exit(&dtrace_lock);
15781                 return;
15782         }
15783 
15784         for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15785             probe != NULL; probe = probe->dtpr_nextmod) {
15786                 if (probe->dtpr_ecb != NULL) {
15787                         mutex_exit(&dtrace_provider_lock);
15788                         mutex_exit(&mod_lock);
15789                         mutex_exit(&dtrace_lock);
15790 
15791                         /*
15792                          * This shouldn't _actually_ be possible -- we're
15793                          * unloading a module that has an enabled probe in it.
15794                          * (It's normally up to the provider to make sure that
15795                          * this can't happen.)  However, because dtps_enable()
15796                          * doesn't have a failure mode, there can be an
15797                          * enable/unload race.  Upshot:  we don't want to
15798                          * assert, but we're not going to disable the
15799                          * probe, either.
15800                          */
15801                         if (dtrace_err_verbose) {
15802                                 cmn_err(CE_WARN, "unloaded module '%s' had "
15803                                     "enabled probes", ctl->mod_modname);
15804                         }
15805 
15806                         return;
15807                 }
15808         }
15809 
15810         probe = first;
15811 
15812         for (first = NULL; probe != NULL; probe = next) {
15813                 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15814 
15815                 dtrace_probes[probe->dtpr_id - 1] = NULL;
15816 
15817                 next = probe->dtpr_nextmod;
15818                 dtrace_hash_remove(dtrace_bymod, probe);
15819                 dtrace_hash_remove(dtrace_byfunc, probe);
15820                 dtrace_hash_remove(dtrace_byname, probe);
15821 
15822                 if (first == NULL) {
15823                         first = probe;
15824                         probe->dtpr_nextmod = NULL;
15825                 } else {
15826                         probe->dtpr_nextmod = first;
15827                         first = probe;
15828                 }
15829         }
15830 
15831         /*
15832          * We've removed all of the module's probes from the hash chains and
15833          * from the probe array.  Now issue a dtrace_sync() to be sure that
15834          * everyone has cleared out from any probe array processing.
15835          */
15836         dtrace_sync();
15837 
15838         for (probe = first; probe != NULL; probe = first) {
15839                 first = probe->dtpr_nextmod;
15840                 prov = probe->dtpr_provider;
15841                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15842                     probe->dtpr_arg);
15843                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15844                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15845                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15846                 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15847                 kmem_free(probe, sizeof (dtrace_probe_t));
15848         }
15849 
15850         mutex_exit(&dtrace_lock);
15851         mutex_exit(&mod_lock);
15852         mutex_exit(&dtrace_provider_lock);
15853 }
15854 
15855 void
15856 dtrace_suspend(void)
15857 {
15858         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15859 }
15860 
15861 void
15862 dtrace_resume(void)
15863 {
15864         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15865 }
15866 
15867 static int
15868 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15869 {
15870         ASSERT(MUTEX_HELD(&cpu_lock));
15871         mutex_enter(&dtrace_lock);
15872 
15873         switch (what) {
15874         case CPU_CONFIG: {
15875                 dtrace_state_t *state;
15876                 dtrace_optval_t *opt, rs, c;
15877 
15878                 /*
15879                  * For now, we only allocate a new buffer for anonymous state.
15880                  */
15881                 if ((state = dtrace_anon.dta_state) == NULL)
15882                         break;
15883 
15884                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15885                         break;
15886 
15887                 opt = state->dts_options;
15888                 c = opt[DTRACEOPT_CPU];
15889 
15890                 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15891                         break;
15892 
15893                 /*
15894                  * Regardless of what the actual policy is, we're going to
15895                  * temporarily set our resize policy to be manual.  We're
15896                  * also going to temporarily set our CPU option to denote
15897                  * the newly configured CPU.
15898                  */
15899                 rs = opt[DTRACEOPT_BUFRESIZE];
15900                 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15901                 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15902 
15903                 (void) dtrace_state_buffers(state);
15904 
15905                 opt[DTRACEOPT_BUFRESIZE] = rs;
15906                 opt[DTRACEOPT_CPU] = c;
15907 
15908                 break;
15909         }
15910 
15911         case CPU_UNCONFIG:
15912                 /*
15913                  * We don't free the buffer in the CPU_UNCONFIG case.  (The
15914                  * buffer will be freed when the consumer exits.)
15915                  */
15916                 break;
15917 
15918         default:
15919                 break;
15920         }
15921 
15922         mutex_exit(&dtrace_lock);
15923         return (0);
15924 }
15925 
15926 static void
15927 dtrace_cpu_setup_initial(processorid_t cpu)
15928 {
15929         (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15930 }
15931 
15932 static void
15933 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15934 {
15935         if (dtrace_toxranges >= dtrace_toxranges_max) {
15936                 int osize, nsize;
15937                 dtrace_toxrange_t *range;
15938 
15939                 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15940 
15941                 if (osize == 0) {
15942                         ASSERT(dtrace_toxrange == NULL);
15943                         ASSERT(dtrace_toxranges_max == 0);
15944                         dtrace_toxranges_max = 1;
15945                 } else {
15946                         dtrace_toxranges_max <<= 1;
15947                 }
15948 
15949                 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15950                 range = kmem_zalloc(nsize, KM_SLEEP);
15951 
15952                 if (dtrace_toxrange != NULL) {
15953                         ASSERT(osize != 0);
15954                         bcopy(dtrace_toxrange, range, osize);
15955                         kmem_free(dtrace_toxrange, osize);
15956                 }
15957 
15958                 dtrace_toxrange = range;
15959         }
15960 
15961         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
15962         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
15963 
15964         dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15965         dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15966         dtrace_toxranges++;
15967 }
15968 
15969 static void
15970 dtrace_getf_barrier()
15971 {
15972         /*
15973          * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
15974          * that contain calls to getf(), this routine will be called on every
15975          * closef() before either the underlying vnode is released or the
15976          * file_t itself is freed.  By the time we are here, it is essential
15977          * that the file_t can no longer be accessed from a call to getf()
15978          * in probe context -- that assures that a dtrace_sync() can be used
15979          * to clear out any enablings referring to the old structures.
15980          */
15981         if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
15982             kcred->cr_zone->zone_dtrace_getf != 0)
15983                 dtrace_sync();
15984 }
15985 
15986 /*
15987  * DTrace Driver Cookbook Functions
15988  */
15989 /*ARGSUSED*/
15990 static int
15991 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15992 {
15993         dtrace_provider_id_t id;
15994         dtrace_state_t *state = NULL;
15995         dtrace_enabling_t *enab;
15996 
15997         mutex_enter(&cpu_lock);
15998         mutex_enter(&dtrace_provider_lock);
15999         mutex_enter(&dtrace_lock);
16000 
16001         if (ddi_soft_state_init(&dtrace_softstate,
16002             sizeof (dtrace_state_t), 0) != 0) {
16003                 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
16004                 mutex_exit(&cpu_lock);
16005                 mutex_exit(&dtrace_provider_lock);
16006                 mutex_exit(&dtrace_lock);
16007                 return (DDI_FAILURE);
16008         }
16009 
16010         if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
16011             DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
16012             ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
16013             DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
16014                 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
16015                 ddi_remove_minor_node(devi, NULL);
16016                 ddi_soft_state_fini(&dtrace_softstate);
16017                 mutex_exit(&cpu_lock);
16018                 mutex_exit(&dtrace_provider_lock);
16019                 mutex_exit(&dtrace_lock);
16020                 return (DDI_FAILURE);
16021         }
16022 
16023         ddi_report_dev(devi);
16024         dtrace_devi = devi;
16025 
16026         dtrace_modload = dtrace_module_loaded;
16027         dtrace_modunload = dtrace_module_unloaded;
16028         dtrace_cpu_init = dtrace_cpu_setup_initial;
16029         dtrace_helpers_cleanup = dtrace_helpers_destroy;
16030         dtrace_helpers_fork = dtrace_helpers_duplicate;
16031         dtrace_cpustart_init = dtrace_suspend;
16032         dtrace_cpustart_fini = dtrace_resume;
16033         dtrace_debugger_init = dtrace_suspend;
16034         dtrace_debugger_fini = dtrace_resume;
16035 
16036         register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16037 
16038         ASSERT(MUTEX_HELD(&cpu_lock));
16039 
16040         dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
16041             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
16042         dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
16043             UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
16044             VM_SLEEP | VMC_IDENTIFIER);
16045         dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
16046             1, INT_MAX, 0);
16047 
16048         dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
16049             sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
16050             NULL, NULL, NULL, NULL, NULL, 0);
16051 
16052         ASSERT(MUTEX_HELD(&cpu_lock));
16053         dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
16054             offsetof(dtrace_probe_t, dtpr_nextmod),
16055             offsetof(dtrace_probe_t, dtpr_prevmod));
16056 
16057         dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
16058             offsetof(dtrace_probe_t, dtpr_nextfunc),
16059             offsetof(dtrace_probe_t, dtpr_prevfunc));
16060 
16061         dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
16062             offsetof(dtrace_probe_t, dtpr_nextname),
16063             offsetof(dtrace_probe_t, dtpr_prevname));
16064 
16065         if (dtrace_retain_max < 1) {
16066                 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
16067                     "setting to 1", dtrace_retain_max);
16068                 dtrace_retain_max = 1;
16069         }
16070 
16071         /*
16072          * Now discover our toxic ranges.
16073          */
16074         dtrace_toxic_ranges(dtrace_toxrange_add);
16075 
16076         /*
16077          * Before we register ourselves as a provider to our own framework,
16078          * we would like to assert that dtrace_provider is NULL -- but that's
16079          * not true if we were loaded as a dependency of a DTrace provider.
16080          * Once we've registered, we can assert that dtrace_provider is our
16081          * pseudo provider.
16082          */
16083         (void) dtrace_register("dtrace", &dtrace_provider_attr,
16084             DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
16085 
16086         ASSERT(dtrace_provider != NULL);
16087         ASSERT((dtrace_provider_id_t)dtrace_provider == id);
16088 
16089         dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
16090             dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
16091         dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
16092             dtrace_provider, NULL, NULL, "END", 0, NULL);
16093         dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
16094             dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
16095 
16096         dtrace_anon_property();
16097         mutex_exit(&cpu_lock);
16098 
16099         /*
16100          * If there are already providers, we must ask them to provide their
16101          * probes, and then match any anonymous enabling against them.  Note
16102          * that there should be no other retained enablings at this time:
16103          * the only retained enablings at this time should be the anonymous
16104          * enabling.
16105          */
16106         if (dtrace_anon.dta_enabling != NULL) {
16107                 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
16108 
16109                 dtrace_enabling_provide(NULL);
16110                 state = dtrace_anon.dta_state;
16111 
16112                 /*
16113                  * We couldn't hold cpu_lock across the above call to
16114                  * dtrace_enabling_provide(), but we must hold it to actually
16115                  * enable the probes.  We have to drop all of our locks, pick
16116                  * up cpu_lock, and regain our locks before matching the
16117                  * retained anonymous enabling.
16118                  */
16119                 mutex_exit(&dtrace_lock);
16120                 mutex_exit(&dtrace_provider_lock);
16121 
16122                 mutex_enter(&cpu_lock);
16123                 mutex_enter(&dtrace_provider_lock);
16124                 mutex_enter(&dtrace_lock);
16125 
16126                 if ((enab = dtrace_anon.dta_enabling) != NULL)
16127                         (void) dtrace_enabling_match(enab, NULL);
16128 
16129                 mutex_exit(&cpu_lock);
16130         }
16131 
16132         mutex_exit(&dtrace_lock);
16133         mutex_exit(&dtrace_provider_lock);
16134 
16135         if (state != NULL) {
16136                 /*
16137                  * If we created any anonymous state, set it going now.
16138                  */
16139                 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
16140         }
16141 
16142         return (DDI_SUCCESS);
16143 }
16144 
16145 /*ARGSUSED*/
16146 static int
16147 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
16148 {
16149         dtrace_state_t *state;
16150         uint32_t priv;
16151         uid_t uid;
16152         zoneid_t zoneid;
16153 
16154         if (getminor(*devp) == DTRACEMNRN_HELPER)
16155                 return (0);
16156 
16157         /*
16158          * If this wasn't an open with the "helper" minor, then it must be
16159          * the "dtrace" minor.
16160          */
16161         if (getminor(*devp) != DTRACEMNRN_DTRACE)
16162                 return (ENXIO);
16163 
16164         /*
16165          * If no DTRACE_PRIV_* bits are set in the credential, then the
16166          * caller lacks sufficient permission to do anything with DTrace.
16167          */
16168         dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
16169         if (priv == DTRACE_PRIV_NONE)
16170                 return (EACCES);
16171 
16172         /*
16173          * Ask all providers to provide all their probes.
16174          */
16175         mutex_enter(&dtrace_provider_lock);
16176         dtrace_probe_provide(NULL, NULL);
16177         mutex_exit(&dtrace_provider_lock);
16178 
16179         mutex_enter(&cpu_lock);
16180         mutex_enter(&dtrace_lock);
16181         dtrace_opens++;
16182         dtrace_membar_producer();
16183 
16184         /*
16185          * If the kernel debugger is active (that is, if the kernel debugger
16186          * modified text in some way), we won't allow the open.
16187          */
16188         if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
16189                 dtrace_opens--;
16190                 mutex_exit(&cpu_lock);
16191                 mutex_exit(&dtrace_lock);
16192                 return (EBUSY);
16193         }
16194 
16195         if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
16196                 /*
16197                  * If DTrace helper tracing is enabled, we need to allocate the
16198                  * trace buffer and initialize the values.
16199                  */
16200                 dtrace_helptrace_buffer =
16201                     kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
16202                 dtrace_helptrace_next = 0;
16203                 dtrace_helptrace_wrapped = 0;
16204                 dtrace_helptrace_enable = 0;
16205         }
16206 
16207         state = dtrace_state_create(devp, cred_p);
16208         mutex_exit(&cpu_lock);
16209 
16210         if (state == NULL) {
16211                 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16212                         (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16213                 mutex_exit(&dtrace_lock);
16214                 return (EAGAIN);
16215         }
16216 
16217         mutex_exit(&dtrace_lock);
16218 
16219         return (0);
16220 }
16221 
16222 /*ARGSUSED*/
16223 static int
16224 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
16225 {
16226         minor_t minor = getminor(dev);
16227         dtrace_state_t *state;
16228         dtrace_helptrace_t *buf = NULL;
16229 
16230         if (minor == DTRACEMNRN_HELPER)
16231                 return (0);
16232 
16233         state = ddi_get_soft_state(dtrace_softstate, minor);
16234 
16235         mutex_enter(&cpu_lock);
16236         mutex_enter(&dtrace_lock);
16237 
16238         if (state->dts_anon) {
16239                 /*
16240                  * There is anonymous state. Destroy that first.
16241                  */
16242                 ASSERT(dtrace_anon.dta_state == NULL);
16243                 dtrace_state_destroy(state->dts_anon);
16244         }
16245 
16246         if (dtrace_helptrace_disable) {
16247                 /*
16248                  * If we have been told to disable helper tracing, set the
16249                  * buffer to NULL before calling into dtrace_state_destroy();
16250                  * we take advantage of its dtrace_sync() to know that no
16251                  * CPU is in probe context with enabled helper tracing
16252                  * after it returns.
16253                  */
16254                 buf = dtrace_helptrace_buffer;
16255                 dtrace_helptrace_buffer = NULL;
16256         }
16257 
16258         dtrace_state_destroy(state);
16259         ASSERT(dtrace_opens > 0);
16260 
16261         /*
16262          * Only relinquish control of the kernel debugger interface when there
16263          * are no consumers and no anonymous enablings.
16264          */
16265         if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16266                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16267 
16268         if (buf != NULL) {
16269                 kmem_free(buf, dtrace_helptrace_bufsize);
16270                 dtrace_helptrace_disable = 0;
16271         }
16272 
16273         mutex_exit(&dtrace_lock);
16274         mutex_exit(&cpu_lock);
16275 
16276         return (0);
16277 }
16278 
16279 /*ARGSUSED*/
16280 static int
16281 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
16282 {
16283         int rval;
16284         dof_helper_t help, *dhp = NULL;
16285 
16286         switch (cmd) {
16287         case DTRACEHIOC_ADDDOF:
16288                 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
16289                         dtrace_dof_error(NULL, "failed to copyin DOF helper");
16290                         return (EFAULT);
16291                 }
16292 
16293                 dhp = &help;
16294                 arg = (intptr_t)help.dofhp_dof;
16295                 /*FALLTHROUGH*/
16296 
16297         case DTRACEHIOC_ADD: {
16298                 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
16299 
16300                 if (dof == NULL)
16301                         return (rval);
16302 
16303                 mutex_enter(&dtrace_lock);
16304 
16305                 /*
16306                  * dtrace_helper_slurp() takes responsibility for the dof --
16307                  * it may free it now or it may save it and free it later.
16308                  */
16309                 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
16310                         *rv = rval;
16311                         rval = 0;
16312                 } else {
16313                         rval = EINVAL;
16314                 }
16315 
16316                 mutex_exit(&dtrace_lock);
16317                 return (rval);
16318         }
16319 
16320         case DTRACEHIOC_REMOVE: {
16321                 mutex_enter(&dtrace_lock);
16322                 rval = dtrace_helper_destroygen(arg);
16323                 mutex_exit(&dtrace_lock);
16324 
16325                 return (rval);
16326         }
16327 
16328         default:
16329                 break;
16330         }
16331 
16332         return (ENOTTY);
16333 }
16334 
16335 /*ARGSUSED*/
16336 static int
16337 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
16338 {
16339         minor_t minor = getminor(dev);
16340         dtrace_state_t *state;
16341         int rval;
16342 
16343         if (minor == DTRACEMNRN_HELPER)
16344                 return (dtrace_ioctl_helper(cmd, arg, rv));
16345 
16346         state = ddi_get_soft_state(dtrace_softstate, minor);
16347 
16348         if (state->dts_anon) {
16349                 ASSERT(dtrace_anon.dta_state == NULL);
16350                 state = state->dts_anon;
16351         }
16352 
16353         switch (cmd) {
16354         case DTRACEIOC_PROVIDER: {
16355                 dtrace_providerdesc_t pvd;
16356                 dtrace_provider_t *pvp;
16357 
16358                 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
16359                         return (EFAULT);
16360 
16361                 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
16362                 mutex_enter(&dtrace_provider_lock);
16363 
16364                 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
16365                         if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
16366                                 break;
16367                 }
16368 
16369                 mutex_exit(&dtrace_provider_lock);
16370 
16371                 if (pvp == NULL)
16372                         return (ESRCH);
16373 
16374                 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
16375                 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
16376                 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
16377                         return (EFAULT);
16378 
16379                 return (0);
16380         }
16381 
16382         case DTRACEIOC_EPROBE: {
16383                 dtrace_eprobedesc_t epdesc;
16384                 dtrace_ecb_t *ecb;
16385                 dtrace_action_t *act;
16386                 void *buf;
16387                 size_t size;
16388                 uintptr_t dest;
16389                 int nrecs;
16390 
16391                 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
16392                         return (EFAULT);
16393 
16394                 mutex_enter(&dtrace_lock);
16395 
16396                 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
16397                         mutex_exit(&dtrace_lock);
16398                         return (EINVAL);
16399                 }
16400 
16401                 if (ecb->dte_probe == NULL) {
16402                         mutex_exit(&dtrace_lock);
16403                         return (EINVAL);
16404                 }
16405 
16406                 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
16407                 epdesc.dtepd_uarg = ecb->dte_uarg;
16408                 epdesc.dtepd_size = ecb->dte_size;
16409 
16410                 nrecs = epdesc.dtepd_nrecs;
16411                 epdesc.dtepd_nrecs = 0;
16412                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16413                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16414                                 continue;
16415 
16416                         epdesc.dtepd_nrecs++;
16417                 }
16418 
16419                 /*
16420                  * Now that we have the size, we need to allocate a temporary
16421                  * buffer in which to store the complete description.  We need
16422                  * the temporary buffer to be able to drop dtrace_lock()
16423                  * across the copyout(), below.
16424                  */
16425                 size = sizeof (dtrace_eprobedesc_t) +
16426                     (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
16427 
16428                 buf = kmem_alloc(size, KM_SLEEP);
16429                 dest = (uintptr_t)buf;
16430 
16431                 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
16432                 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
16433 
16434                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16435                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16436                                 continue;
16437 
16438                         if (nrecs-- == 0)
16439                                 break;
16440 
16441                         bcopy(&act->dta_rec, (void *)dest,
16442                             sizeof (dtrace_recdesc_t));
16443                         dest += sizeof (dtrace_recdesc_t);
16444                 }
16445 
16446                 mutex_exit(&dtrace_lock);
16447 
16448                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16449                         kmem_free(buf, size);
16450                         return (EFAULT);
16451                 }
16452 
16453                 kmem_free(buf, size);
16454                 return (0);
16455         }
16456 
16457         case DTRACEIOC_AGGDESC: {
16458                 dtrace_aggdesc_t aggdesc;
16459                 dtrace_action_t *act;
16460                 dtrace_aggregation_t *agg;
16461                 int nrecs;
16462                 uint32_t offs;
16463                 dtrace_recdesc_t *lrec;
16464                 void *buf;
16465                 size_t size;
16466                 uintptr_t dest;
16467 
16468                 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
16469                         return (EFAULT);
16470 
16471                 mutex_enter(&dtrace_lock);
16472 
16473                 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16474                         mutex_exit(&dtrace_lock);
16475                         return (EINVAL);
16476                 }
16477 
16478                 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16479 
16480                 nrecs = aggdesc.dtagd_nrecs;
16481                 aggdesc.dtagd_nrecs = 0;
16482 
16483                 offs = agg->dtag_base;
16484                 lrec = &agg->dtag_action.dta_rec;
16485                 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16486 
16487                 for (act = agg->dtag_first; ; act = act->dta_next) {
16488                         ASSERT(act->dta_intuple ||
16489                             DTRACEACT_ISAGG(act->dta_kind));
16490 
16491                         /*
16492                          * If this action has a record size of zero, it
16493                          * denotes an argument to the aggregating action.
16494                          * Because the presence of this record doesn't (or
16495                          * shouldn't) affect the way the data is interpreted,
16496                          * we don't copy it out to save user-level the
16497                          * confusion of dealing with a zero-length record.
16498                          */
16499                         if (act->dta_rec.dtrd_size == 0) {
16500                                 ASSERT(agg->dtag_hasarg);
16501                                 continue;
16502                         }
16503 
16504                         aggdesc.dtagd_nrecs++;
16505 
16506                         if (act == &agg->dtag_action)
16507                                 break;
16508                 }
16509 
16510                 /*
16511                  * Now that we have the size, we need to allocate a temporary
16512                  * buffer in which to store the complete description.  We need
16513                  * the temporary buffer to be able to drop dtrace_lock()
16514                  * across the copyout(), below.
16515                  */
16516                 size = sizeof (dtrace_aggdesc_t) +
16517                     (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16518 
16519                 buf = kmem_alloc(size, KM_SLEEP);
16520                 dest = (uintptr_t)buf;
16521 
16522                 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16523                 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16524 
16525                 for (act = agg->dtag_first; ; act = act->dta_next) {
16526                         dtrace_recdesc_t rec = act->dta_rec;
16527 
16528                         /*
16529                          * See the comment in the above loop for why we pass
16530                          * over zero-length records.
16531                          */
16532                         if (rec.dtrd_size == 0) {
16533                                 ASSERT(agg->dtag_hasarg);
16534                                 continue;
16535                         }
16536 
16537                         if (nrecs-- == 0)
16538                                 break;
16539 
16540                         rec.dtrd_offset -= offs;
16541                         bcopy(&rec, (void *)dest, sizeof (rec));
16542                         dest += sizeof (dtrace_recdesc_t);
16543 
16544                         if (act == &agg->dtag_action)
16545                                 break;
16546                 }
16547 
16548                 mutex_exit(&dtrace_lock);
16549 
16550                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16551                         kmem_free(buf, size);
16552                         return (EFAULT);
16553                 }
16554 
16555                 kmem_free(buf, size);
16556                 return (0);
16557         }
16558 
16559         case DTRACEIOC_ENABLE: {
16560                 dof_hdr_t *dof;
16561                 dtrace_enabling_t *enab = NULL;
16562                 dtrace_vstate_t *vstate;
16563                 int err = 0;
16564 
16565                 *rv = 0;
16566 
16567                 /*
16568                  * If a NULL argument has been passed, we take this as our
16569                  * cue to reevaluate our enablings.
16570                  */
16571                 if (arg == NULL) {
16572                         dtrace_enabling_matchall();
16573 
16574                         return (0);
16575                 }
16576 
16577                 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16578                         return (rval);
16579 
16580                 mutex_enter(&cpu_lock);
16581                 mutex_enter(&dtrace_lock);
16582                 vstate = &state->dts_vstate;
16583 
16584                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16585                         mutex_exit(&dtrace_lock);
16586                         mutex_exit(&cpu_lock);
16587                         dtrace_dof_destroy(dof);
16588                         return (EBUSY);
16589                 }
16590 
16591                 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16592                         mutex_exit(&dtrace_lock);
16593                         mutex_exit(&cpu_lock);
16594                         dtrace_dof_destroy(dof);
16595                         return (EINVAL);
16596                 }
16597 
16598                 if ((rval = dtrace_dof_options(dof, state)) != 0) {
16599                         dtrace_enabling_destroy(enab);
16600                         mutex_exit(&dtrace_lock);
16601                         mutex_exit(&cpu_lock);
16602                         dtrace_dof_destroy(dof);
16603                         return (rval);
16604                 }
16605 
16606                 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16607                         err = dtrace_enabling_retain(enab);
16608                 } else {
16609                         dtrace_enabling_destroy(enab);
16610                 }
16611 
16612                 mutex_exit(&cpu_lock);
16613                 mutex_exit(&dtrace_lock);
16614                 dtrace_dof_destroy(dof);
16615 
16616                 return (err);
16617         }
16618 
16619         case DTRACEIOC_REPLICATE: {
16620                 dtrace_repldesc_t desc;
16621                 dtrace_probedesc_t *match = &desc.dtrpd_match;
16622                 dtrace_probedesc_t *create = &desc.dtrpd_create;
16623                 int err;
16624 
16625                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16626                         return (EFAULT);
16627 
16628                 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16629                 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16630                 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16631                 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16632 
16633                 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16634                 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16635                 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16636                 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16637 
16638                 mutex_enter(&dtrace_lock);
16639                 err = dtrace_enabling_replicate(state, match, create);
16640                 mutex_exit(&dtrace_lock);
16641 
16642                 return (err);
16643         }
16644 
16645         case DTRACEIOC_PROBEMATCH:
16646         case DTRACEIOC_PROBES: {
16647                 dtrace_probe_t *probe = NULL;
16648                 dtrace_probedesc_t desc;
16649                 dtrace_probekey_t pkey;
16650                 dtrace_id_t i;
16651                 int m = 0;
16652                 uint32_t priv;
16653                 uid_t uid;
16654                 zoneid_t zoneid;
16655 
16656                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16657                         return (EFAULT);
16658 
16659                 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16660                 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16661                 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16662                 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16663 
16664                 /*
16665                  * Before we attempt to match this probe, we want to give
16666                  * all providers the opportunity to provide it.
16667                  */
16668                 if (desc.dtpd_id == DTRACE_IDNONE) {
16669                         mutex_enter(&dtrace_provider_lock);
16670                         dtrace_probe_provide(&desc, NULL);
16671                         mutex_exit(&dtrace_provider_lock);
16672                         desc.dtpd_id++;
16673                 }
16674 
16675                 if (cmd == DTRACEIOC_PROBEMATCH)  {
16676                         dtrace_probekey(&desc, &pkey);
16677                         pkey.dtpk_id = DTRACE_IDNONE;
16678                 }
16679 
16680                 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16681 
16682                 mutex_enter(&dtrace_lock);
16683 
16684                 if (cmd == DTRACEIOC_PROBEMATCH) {
16685                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16686                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
16687                                     (m = dtrace_match_probe(probe, &pkey,
16688                                     priv, uid, zoneid)) != 0)
16689                                         break;
16690                         }
16691 
16692                         if (m < 0) {
16693                                 mutex_exit(&dtrace_lock);
16694                                 return (EINVAL);
16695                         }
16696 
16697                 } else {
16698                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16699                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
16700                                     dtrace_match_priv(probe, priv, uid, zoneid))
16701                                         break;
16702                         }
16703                 }
16704 
16705                 if (probe == NULL) {
16706                         mutex_exit(&dtrace_lock);
16707                         return (ESRCH);
16708                 }
16709 
16710                 dtrace_probe_description(probe, &desc);
16711                 mutex_exit(&dtrace_lock);
16712 
16713                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16714                         return (EFAULT);
16715 
16716                 return (0);
16717         }
16718 
16719         case DTRACEIOC_PROBEARG: {
16720                 dtrace_argdesc_t desc;
16721                 dtrace_probe_t *probe;
16722                 dtrace_provider_t *prov;
16723 
16724                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16725                         return (EFAULT);
16726 
16727                 if (desc.dtargd_id == DTRACE_IDNONE)
16728                         return (EINVAL);
16729 
16730                 if (desc.dtargd_ndx == DTRACE_ARGNONE)
16731                         return (EINVAL);
16732 
16733                 mutex_enter(&dtrace_provider_lock);
16734                 mutex_enter(&mod_lock);
16735                 mutex_enter(&dtrace_lock);
16736 
16737                 if (desc.dtargd_id > dtrace_nprobes) {
16738                         mutex_exit(&dtrace_lock);
16739                         mutex_exit(&mod_lock);
16740                         mutex_exit(&dtrace_provider_lock);
16741                         return (EINVAL);
16742                 }
16743 
16744                 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16745                         mutex_exit(&dtrace_lock);
16746                         mutex_exit(&mod_lock);
16747                         mutex_exit(&dtrace_provider_lock);
16748                         return (EINVAL);
16749                 }
16750 
16751                 mutex_exit(&dtrace_lock);
16752 
16753                 prov = probe->dtpr_provider;
16754 
16755                 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16756                         /*
16757                          * There isn't any typed information for this probe.
16758                          * Set the argument number to DTRACE_ARGNONE.
16759                          */
16760                         desc.dtargd_ndx = DTRACE_ARGNONE;
16761                 } else {
16762                         desc.dtargd_native[0] = '\0';
16763                         desc.dtargd_xlate[0] = '\0';
16764                         desc.dtargd_mapping = desc.dtargd_ndx;
16765 
16766                         prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16767                             probe->dtpr_id, probe->dtpr_arg, &desc);
16768                 }
16769 
16770                 mutex_exit(&mod_lock);
16771                 mutex_exit(&dtrace_provider_lock);
16772 
16773                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16774                         return (EFAULT);
16775 
16776                 return (0);
16777         }
16778 
16779         case DTRACEIOC_GO: {
16780                 processorid_t cpuid;
16781                 rval = dtrace_state_go(state, &cpuid);
16782 
16783                 if (rval != 0)
16784                         return (rval);
16785 
16786                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16787                         return (EFAULT);
16788 
16789                 return (0);
16790         }
16791 
16792         case DTRACEIOC_STOP: {
16793                 processorid_t cpuid;
16794 
16795                 mutex_enter(&dtrace_lock);
16796                 rval = dtrace_state_stop(state, &cpuid);
16797                 mutex_exit(&dtrace_lock);
16798 
16799                 if (rval != 0)
16800                         return (rval);
16801 
16802                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16803                         return (EFAULT);
16804 
16805                 return (0);
16806         }
16807 
16808         case DTRACEIOC_DOFGET: {
16809                 dof_hdr_t hdr, *dof;
16810                 uint64_t len;
16811 
16812                 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16813                         return (EFAULT);
16814 
16815                 mutex_enter(&dtrace_lock);
16816                 dof = dtrace_dof_create(state);
16817                 mutex_exit(&dtrace_lock);
16818 
16819                 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16820                 rval = copyout(dof, (void *)arg, len);
16821                 dtrace_dof_destroy(dof);
16822 
16823                 return (rval == 0 ? 0 : EFAULT);
16824         }
16825 
16826         case DTRACEIOC_AGGSNAP:
16827         case DTRACEIOC_BUFSNAP: {
16828                 dtrace_bufdesc_t desc;
16829                 caddr_t cached;
16830                 dtrace_buffer_t *buf;
16831 
16832                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16833                         return (EFAULT);
16834 
16835                 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16836                         return (EINVAL);
16837 
16838                 mutex_enter(&dtrace_lock);
16839 
16840                 if (cmd == DTRACEIOC_BUFSNAP) {
16841                         buf = &state->dts_buffer[desc.dtbd_cpu];
16842                 } else {
16843                         buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16844                 }
16845 
16846                 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16847                         size_t sz = buf->dtb_offset;
16848 
16849                         if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16850                                 mutex_exit(&dtrace_lock);
16851                                 return (EBUSY);
16852                         }
16853 
16854                         /*
16855                          * If this buffer has already been consumed, we're
16856                          * going to indicate that there's nothing left here
16857                          * to consume.
16858                          */
16859                         if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16860                                 mutex_exit(&dtrace_lock);
16861 
16862                                 desc.dtbd_size = 0;
16863                                 desc.dtbd_drops = 0;
16864                                 desc.dtbd_errors = 0;
16865                                 desc.dtbd_oldest = 0;
16866                                 sz = sizeof (desc);
16867 
16868                                 if (copyout(&desc, (void *)arg, sz) != 0)
16869                                         return (EFAULT);
16870 
16871                                 return (0);
16872                         }
16873 
16874                         /*
16875                          * If this is a ring buffer that has wrapped, we want
16876                          * to copy the whole thing out.
16877                          */
16878                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16879                                 dtrace_buffer_polish(buf);
16880                                 sz = buf->dtb_size;
16881                         }
16882 
16883                         if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16884                                 mutex_exit(&dtrace_lock);
16885                                 return (EFAULT);
16886                         }
16887 
16888                         desc.dtbd_size = sz;
16889                         desc.dtbd_drops = buf->dtb_drops;
16890                         desc.dtbd_errors = buf->dtb_errors;
16891                         desc.dtbd_oldest = buf->dtb_xamot_offset;
16892                         desc.dtbd_timestamp = dtrace_gethrtime();
16893 
16894                         mutex_exit(&dtrace_lock);
16895 
16896                         if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16897                                 return (EFAULT);
16898 
16899                         buf->dtb_flags |= DTRACEBUF_CONSUMED;
16900 
16901                         return (0);
16902                 }
16903 
16904                 if (buf->dtb_tomax == NULL) {
16905                         ASSERT(buf->dtb_xamot == NULL);
16906                         mutex_exit(&dtrace_lock);
16907                         return (ENOENT);
16908                 }
16909 
16910                 cached = buf->dtb_tomax;
16911                 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16912 
16913                 dtrace_xcall(desc.dtbd_cpu,
16914                     (dtrace_xcall_t)dtrace_buffer_switch, buf);
16915 
16916                 state->dts_errors += buf->dtb_xamot_errors;
16917 
16918                 /*
16919                  * If the buffers did not actually switch, then the cross call
16920                  * did not take place -- presumably because the given CPU is
16921                  * not in the ready set.  If this is the case, we'll return
16922                  * ENOENT.
16923                  */
16924                 if (buf->dtb_tomax == cached) {
16925                         ASSERT(buf->dtb_xamot != cached);
16926                         mutex_exit(&dtrace_lock);
16927                         return (ENOENT);
16928                 }
16929 
16930                 ASSERT(cached == buf->dtb_xamot);
16931 
16932                 /*
16933                  * We have our snapshot; now copy it out.
16934                  */
16935                 if (copyout(buf->dtb_xamot, desc.dtbd_data,
16936                     buf->dtb_xamot_offset) != 0) {
16937                         mutex_exit(&dtrace_lock);
16938                         return (EFAULT);
16939                 }
16940 
16941                 desc.dtbd_size = buf->dtb_xamot_offset;
16942                 desc.dtbd_drops = buf->dtb_xamot_drops;
16943                 desc.dtbd_errors = buf->dtb_xamot_errors;
16944                 desc.dtbd_oldest = 0;
16945                 desc.dtbd_timestamp = buf->dtb_switched;
16946 
16947                 mutex_exit(&dtrace_lock);
16948 
16949                 /*
16950                  * Finally, copy out the buffer description.
16951                  */
16952                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16953                         return (EFAULT);
16954 
16955                 return (0);
16956         }
16957 
16958         case DTRACEIOC_CONF: {
16959                 dtrace_conf_t conf;
16960 
16961                 bzero(&conf, sizeof (conf));
16962                 conf.dtc_difversion = DIF_VERSION;
16963                 conf.dtc_difintregs = DIF_DIR_NREGS;
16964                 conf.dtc_diftupregs = DIF_DTR_NREGS;
16965                 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16966 
16967                 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16968                         return (EFAULT);
16969 
16970                 return (0);
16971         }
16972 
16973         case DTRACEIOC_STATUS: {
16974                 dtrace_status_t stat;
16975                 dtrace_dstate_t *dstate;
16976                 int i, j;
16977                 uint64_t nerrs;
16978 
16979                 /*
16980                  * See the comment in dtrace_state_deadman() for the reason
16981                  * for setting dts_laststatus to INT64_MAX before setting
16982                  * it to the correct value.
16983                  */
16984                 state->dts_laststatus = INT64_MAX;
16985                 dtrace_membar_producer();
16986                 state->dts_laststatus = dtrace_gethrtime();
16987 
16988                 bzero(&stat, sizeof (stat));
16989 
16990                 mutex_enter(&dtrace_lock);
16991 
16992                 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16993                         mutex_exit(&dtrace_lock);
16994                         return (ENOENT);
16995                 }
16996 
16997                 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16998                         stat.dtst_exiting = 1;
16999 
17000                 nerrs = state->dts_errors;
17001                 dstate = &state->dts_vstate.dtvs_dynvars;
17002 
17003                 for (i = 0; i < NCPU; i++) {
17004                         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
17005 
17006                         stat.dtst_dyndrops += dcpu->dtdsc_drops;
17007                         stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
17008                         stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
17009 
17010                         if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
17011                                 stat.dtst_filled++;
17012 
17013                         nerrs += state->dts_buffer[i].dtb_errors;
17014 
17015                         for (j = 0; j < state->dts_nspeculations; j++) {
17016                                 dtrace_speculation_t *spec;
17017                                 dtrace_buffer_t *buf;
17018 
17019                                 spec = &state->dts_speculations[j];
17020                                 buf = &spec->dtsp_buffer[i];
17021                                 stat.dtst_specdrops += buf->dtb_xamot_drops;
17022                         }
17023                 }
17024 
17025                 stat.dtst_specdrops_busy = state->dts_speculations_busy;
17026                 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
17027                 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
17028                 stat.dtst_dblerrors = state->dts_dblerrors;
17029                 stat.dtst_killed =
17030                     (state->dts_activity == DTRACE_ACTIVITY_KILLED);
17031                 stat.dtst_errors = nerrs;
17032 
17033                 mutex_exit(&dtrace_lock);
17034 
17035                 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
17036                         return (EFAULT);
17037 
17038                 return (0);
17039         }
17040 
17041         case DTRACEIOC_FORMAT: {
17042                 dtrace_fmtdesc_t fmt;
17043                 char *str;
17044                 int len;
17045 
17046                 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
17047                         return (EFAULT);
17048 
17049                 mutex_enter(&dtrace_lock);
17050 
17051                 if (fmt.dtfd_format == 0 ||
17052                     fmt.dtfd_format > state->dts_nformats) {
17053                         mutex_exit(&dtrace_lock);
17054                         return (EINVAL);
17055                 }
17056 
17057                 /*
17058                  * Format strings are allocated contiguously and they are
17059                  * never freed; if a format index is less than the number
17060                  * of formats, we can assert that the format map is non-NULL
17061                  * and that the format for the specified index is non-NULL.
17062                  */
17063                 ASSERT(state->dts_formats != NULL);
17064                 str = state->dts_formats[fmt.dtfd_format - 1];
17065                 ASSERT(str != NULL);
17066 
17067                 len = strlen(str) + 1;
17068 
17069                 if (len > fmt.dtfd_length) {
17070                         fmt.dtfd_length = len;
17071 
17072                         if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
17073                                 mutex_exit(&dtrace_lock);
17074                                 return (EINVAL);
17075                         }
17076                 } else {
17077                         if (copyout(str, fmt.dtfd_string, len) != 0) {
17078                                 mutex_exit(&dtrace_lock);
17079                                 return (EINVAL);
17080                         }
17081                 }
17082 
17083                 mutex_exit(&dtrace_lock);
17084                 return (0);
17085         }
17086 
17087         default:
17088                 break;
17089         }
17090 
17091         return (ENOTTY);
17092 }
17093 
17094 /*ARGSUSED*/
17095 static int
17096 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
17097 {
17098         dtrace_state_t *state;
17099 
17100         switch (cmd) {
17101         case DDI_DETACH:
17102                 break;
17103 
17104         case DDI_SUSPEND:
17105                 return (DDI_SUCCESS);
17106 
17107         default:
17108                 return (DDI_FAILURE);
17109         }
17110 
17111         mutex_enter(&cpu_lock);
17112         mutex_enter(&dtrace_provider_lock);
17113         mutex_enter(&dtrace_lock);
17114 
17115         ASSERT(dtrace_opens == 0);
17116 
17117         if (dtrace_helpers > 0) {
17118                 mutex_exit(&dtrace_provider_lock);
17119                 mutex_exit(&dtrace_lock);
17120                 mutex_exit(&cpu_lock);
17121                 return (DDI_FAILURE);
17122         }
17123 
17124         if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
17125                 mutex_exit(&dtrace_provider_lock);
17126                 mutex_exit(&dtrace_lock);
17127                 mutex_exit(&cpu_lock);
17128                 return (DDI_FAILURE);
17129         }
17130 
17131         dtrace_provider = NULL;
17132 
17133         if ((state = dtrace_anon_grab()) != NULL) {
17134                 /*
17135                  * If there were ECBs on this state, the provider should
17136                  * have not been allowed to detach; assert that there is
17137                  * none.
17138                  */
17139                 ASSERT(state->dts_necbs == 0);
17140                 dtrace_state_destroy(state);
17141 
17142                 /*
17143                  * If we're being detached with anonymous state, we need to
17144                  * indicate to the kernel debugger that DTrace is now inactive.
17145                  */
17146                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17147         }
17148 
17149         bzero(&dtrace_anon, sizeof (dtrace_anon_t));
17150         unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17151         dtrace_cpu_init = NULL;
17152         dtrace_helpers_cleanup = NULL;
17153         dtrace_helpers_fork = NULL;
17154         dtrace_cpustart_init = NULL;
17155         dtrace_cpustart_fini = NULL;
17156         dtrace_debugger_init = NULL;
17157         dtrace_debugger_fini = NULL;
17158         dtrace_modload = NULL;
17159         dtrace_modunload = NULL;
17160 
17161         ASSERT(dtrace_getf == 0);
17162         ASSERT(dtrace_closef == NULL);
17163 
17164         mutex_exit(&cpu_lock);
17165 
17166         kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
17167         dtrace_probes = NULL;
17168         dtrace_nprobes = 0;
17169 
17170         dtrace_hash_destroy(dtrace_bymod);
17171         dtrace_hash_destroy(dtrace_byfunc);
17172         dtrace_hash_destroy(dtrace_byname);
17173         dtrace_bymod = NULL;
17174         dtrace_byfunc = NULL;
17175         dtrace_byname = NULL;
17176 
17177         kmem_cache_destroy(dtrace_state_cache);
17178         vmem_destroy(dtrace_minor);
17179         vmem_destroy(dtrace_arena);
17180 
17181         if (dtrace_toxrange != NULL) {
17182                 kmem_free(dtrace_toxrange,
17183                     dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
17184                 dtrace_toxrange = NULL;
17185                 dtrace_toxranges = 0;
17186                 dtrace_toxranges_max = 0;
17187         }
17188 
17189         ddi_remove_minor_node(dtrace_devi, NULL);
17190         dtrace_devi = NULL;
17191 
17192         ddi_soft_state_fini(&dtrace_softstate);
17193 
17194         ASSERT(dtrace_vtime_references == 0);
17195         ASSERT(dtrace_opens == 0);
17196         ASSERT(dtrace_retained == NULL);
17197 
17198         mutex_exit(&dtrace_lock);
17199         mutex_exit(&dtrace_provider_lock);
17200 
17201         /*
17202          * We don't destroy the task queue until after we have dropped our
17203          * locks (taskq_destroy() may block on running tasks).  To prevent
17204          * attempting to do work after we have effectively detached but before
17205          * the task queue has been destroyed, all tasks dispatched via the
17206          * task queue must check that DTrace is still attached before
17207          * performing any operation.
17208          */
17209         taskq_destroy(dtrace_taskq);
17210         dtrace_taskq = NULL;
17211 
17212         return (DDI_SUCCESS);
17213 }
17214 
17215 /*ARGSUSED*/
17216 static int
17217 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
17218 {
17219         int error;
17220 
17221         switch (infocmd) {
17222         case DDI_INFO_DEVT2DEVINFO:
17223                 *result = (void *)dtrace_devi;
17224                 error = DDI_SUCCESS;
17225                 break;
17226         case DDI_INFO_DEVT2INSTANCE:
17227                 *result = (void *)0;
17228                 error = DDI_SUCCESS;
17229                 break;
17230         default:
17231                 error = DDI_FAILURE;
17232         }
17233         return (error);
17234 }
17235 
17236 static struct cb_ops dtrace_cb_ops = {
17237         dtrace_open,            /* open */
17238         dtrace_close,           /* close */
17239         nulldev,                /* strategy */
17240         nulldev,                /* print */
17241         nodev,                  /* dump */
17242         nodev,                  /* read */
17243         nodev,                  /* write */
17244         dtrace_ioctl,           /* ioctl */
17245         nodev,                  /* devmap */
17246         nodev,                  /* mmap */
17247         nodev,                  /* segmap */
17248         nochpoll,               /* poll */
17249         ddi_prop_op,            /* cb_prop_op */
17250         0,                      /* streamtab  */
17251         D_NEW | D_MP            /* Driver compatibility flag */
17252 };
17253 
17254 static struct dev_ops dtrace_ops = {
17255         DEVO_REV,               /* devo_rev */
17256         0,                      /* refcnt */
17257         dtrace_info,            /* get_dev_info */
17258         nulldev,                /* identify */
17259         nulldev,                /* probe */
17260         dtrace_attach,          /* attach */
17261         dtrace_detach,          /* detach */
17262         nodev,                  /* reset */
17263         &dtrace_cb_ops,             /* driver operations */
17264         NULL,                   /* bus operations */
17265         nodev,                  /* dev power */
17266         ddi_quiesce_not_needed,         /* quiesce */
17267 };
17268 
17269 static struct modldrv modldrv = {
17270         &mod_driverops,             /* module type (this is a pseudo driver) */
17271         "Dynamic Tracing",      /* name of module */
17272         &dtrace_ops,                /* driver ops */
17273 };
17274 
17275 static struct modlinkage modlinkage = {
17276         MODREV_1,
17277         (void *)&modldrv,
17278         NULL
17279 };
17280 
17281 int
17282 _init(void)
17283 {
17284         return (mod_install(&modlinkage));
17285 }
17286 
17287 int
17288 _info(struct modinfo *modinfop)
17289 {
17290         return (mod_info(&modlinkage, modinfop));
17291 }
17292 
17293 int
17294 _fini(void)
17295 {
17296         return (mod_remove(&modlinkage));
17297 }