1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2017, Joyent, Inc. 25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/stat.h> 69 #include <sys/modctl.h> 70 #include <sys/conf.h> 71 #include <sys/systm.h> 72 #include <sys/ddi.h> 73 #include <sys/sunddi.h> 74 #include <sys/cpuvar.h> 75 #include <sys/kmem.h> 76 #include <sys/strsubr.h> 77 #include <sys/sysmacros.h> 78 #include <sys/dtrace_impl.h> 79 #include <sys/atomic.h> 80 #include <sys/cmn_err.h> 81 #include <sys/mutex_impl.h> 82 #include <sys/rwlock_impl.h> 83 #include <sys/ctf_api.h> 84 #include <sys/panic.h> 85 #include <sys/priv_impl.h> 86 #include <sys/policy.h> 87 #include <sys/cred_impl.h> 88 #include <sys/procfs_isa.h> 89 #include <sys/taskq.h> 90 #include <sys/mkdev.h> 91 #include <sys/kdi.h> 92 #include <sys/zone.h> 93 #include <sys/socket.h> 94 #include <netinet/in.h> 95 #include "strtolctype.h" 96 97 /* 98 * DTrace Tunable Variables 99 * 100 * The following variables may be tuned by adding a line to /etc/system that 101 * includes both the name of the DTrace module ("dtrace") and the name of the 102 * variable. For example: 103 * 104 * set dtrace:dtrace_destructive_disallow = 1 105 * 106 * In general, the only variables that one should be tuning this way are those 107 * that affect system-wide DTrace behavior, and for which the default behavior 108 * is undesirable. Most of these variables are tunable on a per-consumer 109 * basis using DTrace options, and need not be tuned on a system-wide basis. 110 * When tuning these variables, avoid pathological values; while some attempt 111 * is made to verify the integrity of these variables, they are not considered 112 * part of the supported interface to DTrace, and they are therefore not 113 * checked comprehensively. Further, these variables should not be tuned 114 * dynamically via "mdb -kw" or other means; they should only be tuned via 115 * /etc/system. 116 */ 117 int dtrace_destructive_disallow = 0; 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 119 size_t dtrace_difo_maxsize = (256 * 1024); 120 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 121 size_t dtrace_statvar_maxsize = (16 * 1024); 122 size_t dtrace_actions_max = (16 * 1024); 123 size_t dtrace_retain_max = 1024; 124 dtrace_optval_t dtrace_helper_actions_max = 1024; 125 dtrace_optval_t dtrace_helper_providers_max = 32; 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 127 size_t dtrace_strsize_default = 256; 128 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 129 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 135 dtrace_optval_t dtrace_nspec_default = 1; 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 137 dtrace_optval_t dtrace_stackframes_default = 20; 138 dtrace_optval_t dtrace_ustackframes_default = 20; 139 dtrace_optval_t dtrace_jstackframes_default = 50; 140 dtrace_optval_t dtrace_jstackstrsize_default = 512; 141 int dtrace_msgdsize_max = 128; 142 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ 143 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 144 int dtrace_devdepth_max = 32; 145 int dtrace_err_verbose; 146 hrtime_t dtrace_deadman_interval = NANOSEC; 147 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 148 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 149 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 150 151 /* 152 * DTrace External Variables 153 * 154 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 155 * available to DTrace consumers via the backtick (`) syntax. One of these, 156 * dtrace_zero, is made deliberately so: it is provided as a source of 157 * well-known, zero-filled memory. While this variable is not documented, 158 * it is used by some translators as an implementation detail. 159 */ 160 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 161 162 /* 163 * DTrace Internal Variables 164 */ 165 static dev_info_t *dtrace_devi; /* device info */ 166 static vmem_t *dtrace_arena; /* probe ID arena */ 167 static vmem_t *dtrace_minor; /* minor number arena */ 168 static taskq_t *dtrace_taskq; /* task queue */ 169 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 170 static int dtrace_nprobes; /* number of probes */ 171 static dtrace_provider_t *dtrace_provider; /* provider list */ 172 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 173 static int dtrace_opens; /* number of opens */ 174 static int dtrace_helpers; /* number of helpers */ 175 static int dtrace_getf; /* number of unpriv getf()s */ 176 static void *dtrace_softstate; /* softstate pointer */ 177 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 178 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 179 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 180 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 181 static int dtrace_toxranges; /* number of toxic ranges */ 182 static int dtrace_toxranges_max; /* size of toxic range array */ 183 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 184 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 185 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 186 static kthread_t *dtrace_panicked; /* panicking thread */ 187 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 188 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 189 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 190 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 191 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 192 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 193 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 194 195 /* 196 * DTrace Locking 197 * DTrace is protected by three (relatively coarse-grained) locks: 198 * 199 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 200 * including enabling state, probes, ECBs, consumer state, helper state, 201 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 202 * probe context is lock-free -- synchronization is handled via the 203 * dtrace_sync() cross call mechanism. 204 * 205 * (2) dtrace_provider_lock is required when manipulating provider state, or 206 * when provider state must be held constant. 207 * 208 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 209 * when meta provider state must be held constant. 210 * 211 * The lock ordering between these three locks is dtrace_meta_lock before 212 * dtrace_provider_lock before dtrace_lock. (In particular, there are 213 * several places where dtrace_provider_lock is held by the framework as it 214 * calls into the providers -- which then call back into the framework, 215 * grabbing dtrace_lock.) 216 * 217 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 218 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 219 * role as a coarse-grained lock; it is acquired before both of these locks. 220 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 221 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 222 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 223 * acquired _between_ dtrace_provider_lock and dtrace_lock. 224 */ 225 static kmutex_t dtrace_lock; /* probe state lock */ 226 static kmutex_t dtrace_provider_lock; /* provider state lock */ 227 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 228 229 /* 230 * DTrace Provider Variables 231 * 232 * These are the variables relating to DTrace as a provider (that is, the 233 * provider of the BEGIN, END, and ERROR probes). 234 */ 235 static dtrace_pattr_t dtrace_provider_attr = { 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 241 }; 242 243 static void 244 dtrace_nullop(void) 245 {} 246 247 static int 248 dtrace_enable_nullop(void) 249 { 250 return (0); 251 } 252 253 static dtrace_pops_t dtrace_provider_ops = { 254 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 255 (void (*)(void *, struct modctl *))dtrace_nullop, 256 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop, 257 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 258 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 259 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 260 NULL, 261 NULL, 262 NULL, 263 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 264 }; 265 266 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 267 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 268 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 269 270 /* 271 * DTrace Helper Tracing Variables 272 * 273 * These variables should be set dynamically to enable helper tracing. The 274 * only variables that should be set are dtrace_helptrace_enable (which should 275 * be set to a non-zero value to allocate helper tracing buffers on the next 276 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 277 * non-zero value to deallocate helper tracing buffers on the next close of 278 * /dev/dtrace). When (and only when) helper tracing is disabled, the 279 * buffer size may also be set via dtrace_helptrace_bufsize. 280 */ 281 int dtrace_helptrace_enable = 0; 282 int dtrace_helptrace_disable = 0; 283 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 284 uint32_t dtrace_helptrace_nlocals; 285 static dtrace_helptrace_t *dtrace_helptrace_buffer; 286 static uint32_t dtrace_helptrace_next = 0; 287 static int dtrace_helptrace_wrapped = 0; 288 289 /* 290 * DTrace Error Hashing 291 * 292 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 293 * table. This is very useful for checking coverage of tests that are 294 * expected to induce DIF or DOF processing errors, and may be useful for 295 * debugging problems in the DIF code generator or in DOF generation . The 296 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 297 */ 298 #ifdef DEBUG 299 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 300 static const char *dtrace_errlast; 301 static kthread_t *dtrace_errthread; 302 static kmutex_t dtrace_errlock; 303 #endif 304 305 /* 306 * DTrace Macros and Constants 307 * 308 * These are various macros that are useful in various spots in the 309 * implementation, along with a few random constants that have no meaning 310 * outside of the implementation. There is no real structure to this cpp 311 * mishmash -- but is there ever? 312 */ 313 #define DTRACE_HASHSTR(hash, probe) \ 314 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 315 316 #define DTRACE_HASHNEXT(hash, probe) \ 317 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 318 319 #define DTRACE_HASHPREV(hash, probe) \ 320 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 321 322 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 323 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 324 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 325 326 #define DTRACE_AGGHASHSIZE_SLEW 17 327 328 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 329 330 /* 331 * The key for a thread-local variable consists of the lower 61 bits of the 332 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 333 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 334 * equal to a variable identifier. This is necessary (but not sufficient) to 335 * assure that global associative arrays never collide with thread-local 336 * variables. To guarantee that they cannot collide, we must also define the 337 * order for keying dynamic variables. That order is: 338 * 339 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 340 * 341 * Because the variable-key and the tls-key are in orthogonal spaces, there is 342 * no way for a global variable key signature to match a thread-local key 343 * signature. 344 */ 345 #define DTRACE_TLS_THRKEY(where) { \ 346 uint_t intr = 0; \ 347 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 348 for (; actv; actv >>= 1) \ 349 intr++; \ 350 ASSERT(intr < (1 << 3)); \ 351 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 352 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 353 } 354 355 #define DT_BSWAP_8(x) ((x) & 0xff) 356 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 357 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 358 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 359 360 #define DT_MASK_LO 0x00000000FFFFFFFFULL 361 362 #define DTRACE_STORE(type, tomax, offset, what) \ 363 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 364 365 #ifndef __x86 366 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 367 if (addr & (size - 1)) { \ 368 *flags |= CPU_DTRACE_BADALIGN; \ 369 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 370 return (0); \ 371 } 372 #else 373 #define DTRACE_ALIGNCHECK(addr, size, flags) 374 #endif 375 376 /* 377 * Test whether a range of memory starting at testaddr of size testsz falls 378 * within the range of memory described by addr, sz. We take care to avoid 379 * problems with overflow and underflow of the unsigned quantities, and 380 * disallow all negative sizes. Ranges of size 0 are allowed. 381 */ 382 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 383 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 384 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 385 (testaddr) + (testsz) >= (testaddr)) 386 387 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \ 388 do { \ 389 if ((remp) != NULL) { \ 390 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \ 391 } \ 392 _NOTE(CONSTCOND) } while (0) 393 394 395 /* 396 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 397 * alloc_sz on the righthand side of the comparison in order to avoid overflow 398 * or underflow in the comparison with it. This is simpler than the INRANGE 399 * check above, because we know that the dtms_scratch_ptr is valid in the 400 * range. Allocations of size zero are allowed. 401 */ 402 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 403 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 404 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 405 406 #define DTRACE_LOADFUNC(bits) \ 407 /*CSTYLED*/ \ 408 uint##bits##_t \ 409 dtrace_load##bits(uintptr_t addr) \ 410 { \ 411 size_t size = bits / NBBY; \ 412 /*CSTYLED*/ \ 413 uint##bits##_t rval; \ 414 int i; \ 415 volatile uint16_t *flags = (volatile uint16_t *) \ 416 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 417 \ 418 DTRACE_ALIGNCHECK(addr, size, flags); \ 419 \ 420 for (i = 0; i < dtrace_toxranges; i++) { \ 421 if (addr >= dtrace_toxrange[i].dtt_limit) \ 422 continue; \ 423 \ 424 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 425 continue; \ 426 \ 427 /* \ 428 * This address falls within a toxic region; return 0. \ 429 */ \ 430 *flags |= CPU_DTRACE_BADADDR; \ 431 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 432 return (0); \ 433 } \ 434 \ 435 *flags |= CPU_DTRACE_NOFAULT; \ 436 /*CSTYLED*/ \ 437 rval = *((volatile uint##bits##_t *)addr); \ 438 *flags &= ~CPU_DTRACE_NOFAULT; \ 439 \ 440 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 441 } 442 443 #ifdef _LP64 444 #define dtrace_loadptr dtrace_load64 445 #else 446 #define dtrace_loadptr dtrace_load32 447 #endif 448 449 #define DTRACE_DYNHASH_FREE 0 450 #define DTRACE_DYNHASH_SINK 1 451 #define DTRACE_DYNHASH_VALID 2 452 453 #define DTRACE_MATCH_FAIL -1 454 #define DTRACE_MATCH_NEXT 0 455 #define DTRACE_MATCH_DONE 1 456 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 457 #define DTRACE_STATE_ALIGN 64 458 459 #define DTRACE_FLAGS2FLT(flags) \ 460 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 461 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 462 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 463 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 464 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 465 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 466 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 467 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 468 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 469 DTRACEFLT_UNKNOWN) 470 471 #define DTRACEACT_ISSTRING(act) \ 472 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 473 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 474 475 static size_t dtrace_strlen(const char *, size_t); 476 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 477 static void dtrace_enabling_provide(dtrace_provider_t *); 478 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 479 static void dtrace_enabling_matchall(void); 480 static void dtrace_enabling_reap(void); 481 static dtrace_state_t *dtrace_anon_grab(void); 482 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 483 dtrace_state_t *, uint64_t, uint64_t); 484 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 485 static void dtrace_buffer_drop(dtrace_buffer_t *); 486 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 487 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 488 dtrace_state_t *, dtrace_mstate_t *); 489 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 490 dtrace_optval_t); 491 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 492 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 493 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *); 494 static void dtrace_getf_barrier(void); 495 static int dtrace_canload_remains(uint64_t, size_t, size_t *, 496 dtrace_mstate_t *, dtrace_vstate_t *); 497 static int dtrace_canstore_remains(uint64_t, size_t, size_t *, 498 dtrace_mstate_t *, dtrace_vstate_t *); 499 500 /* 501 * DTrace Probe Context Functions 502 * 503 * These functions are called from probe context. Because probe context is 504 * any context in which C may be called, arbitrarily locks may be held, 505 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 506 * As a result, functions called from probe context may only call other DTrace 507 * support functions -- they may not interact at all with the system at large. 508 * (Note that the ASSERT macro is made probe-context safe by redefining it in 509 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 510 * loads are to be performed from probe context, they _must_ be in terms of 511 * the safe dtrace_load*() variants. 512 * 513 * Some functions in this block are not actually called from probe context; 514 * for these functions, there will be a comment above the function reading 515 * "Note: not called from probe context." 516 */ 517 void 518 dtrace_panic(const char *format, ...) 519 { 520 va_list alist; 521 522 va_start(alist, format); 523 dtrace_vpanic(format, alist); 524 va_end(alist); 525 } 526 527 int 528 dtrace_assfail(const char *a, const char *f, int l) 529 { 530 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 531 532 /* 533 * We just need something here that even the most clever compiler 534 * cannot optimize away. 535 */ 536 return (a[(uintptr_t)f]); 537 } 538 539 /* 540 * Atomically increment a specified error counter from probe context. 541 */ 542 static void 543 dtrace_error(uint32_t *counter) 544 { 545 /* 546 * Most counters stored to in probe context are per-CPU counters. 547 * However, there are some error conditions that are sufficiently 548 * arcane that they don't merit per-CPU storage. If these counters 549 * are incremented concurrently on different CPUs, scalability will be 550 * adversely affected -- but we don't expect them to be white-hot in a 551 * correctly constructed enabling... 552 */ 553 uint32_t oval, nval; 554 555 do { 556 oval = *counter; 557 558 if ((nval = oval + 1) == 0) { 559 /* 560 * If the counter would wrap, set it to 1 -- assuring 561 * that the counter is never zero when we have seen 562 * errors. (The counter must be 32-bits because we 563 * aren't guaranteed a 64-bit compare&swap operation.) 564 * To save this code both the infamy of being fingered 565 * by a priggish news story and the indignity of being 566 * the target of a neo-puritan witch trial, we're 567 * carefully avoiding any colorful description of the 568 * likelihood of this condition -- but suffice it to 569 * say that it is only slightly more likely than the 570 * overflow of predicate cache IDs, as discussed in 571 * dtrace_predicate_create(). 572 */ 573 nval = 1; 574 } 575 } while (dtrace_cas32(counter, oval, nval) != oval); 576 } 577 578 /* 579 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 580 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 581 */ 582 /* BEGIN CSTYLED */ 583 DTRACE_LOADFUNC(8) 584 DTRACE_LOADFUNC(16) 585 DTRACE_LOADFUNC(32) 586 DTRACE_LOADFUNC(64) 587 /* END CSTYLED */ 588 589 static int 590 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 591 { 592 if (dest < mstate->dtms_scratch_base) 593 return (0); 594 595 if (dest + size < dest) 596 return (0); 597 598 if (dest + size > mstate->dtms_scratch_ptr) 599 return (0); 600 601 return (1); 602 } 603 604 static int 605 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain, 606 dtrace_statvar_t **svars, int nsvars) 607 { 608 int i; 609 size_t maxglobalsize, maxlocalsize; 610 611 if (nsvars == 0) 612 return (0); 613 614 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t); 615 maxlocalsize = maxglobalsize * NCPU; 616 617 for (i = 0; i < nsvars; i++) { 618 dtrace_statvar_t *svar = svars[i]; 619 uint8_t scope; 620 size_t size; 621 622 if (svar == NULL || (size = svar->dtsv_size) == 0) 623 continue; 624 625 scope = svar->dtsv_var.dtdv_scope; 626 627 /* 628 * We verify that our size is valid in the spirit of providing 629 * defense in depth: we want to prevent attackers from using 630 * DTrace to escalate an orthogonal kernel heap corruption bug 631 * into the ability to store to arbitrary locations in memory. 632 */ 633 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) || 634 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize)); 635 636 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, 637 svar->dtsv_size)) { 638 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data, 639 svar->dtsv_size); 640 return (1); 641 } 642 } 643 644 return (0); 645 } 646 647 /* 648 * Check to see if the address is within a memory region to which a store may 649 * be issued. This includes the DTrace scratch areas, and any DTrace variable 650 * region. The caller of dtrace_canstore() is responsible for performing any 651 * alignment checks that are needed before stores are actually executed. 652 */ 653 static int 654 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 655 dtrace_vstate_t *vstate) 656 { 657 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate)); 658 } 659 660 /* 661 * Implementation of dtrace_canstore which communicates the upper bound of the 662 * allowed memory region. 663 */ 664 static int 665 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain, 666 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 667 { 668 /* 669 * First, check to see if the address is in scratch space... 670 */ 671 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 672 mstate->dtms_scratch_size)) { 673 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base, 674 mstate->dtms_scratch_size); 675 return (1); 676 } 677 678 /* 679 * Now check to see if it's a dynamic variable. This check will pick 680 * up both thread-local variables and any global dynamically-allocated 681 * variables. 682 */ 683 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 684 vstate->dtvs_dynvars.dtds_size)) { 685 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 686 uintptr_t base = (uintptr_t)dstate->dtds_base + 687 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 688 uintptr_t chunkoffs; 689 dtrace_dynvar_t *dvar; 690 691 /* 692 * Before we assume that we can store here, we need to make 693 * sure that it isn't in our metadata -- storing to our 694 * dynamic variable metadata would corrupt our state. For 695 * the range to not include any dynamic variable metadata, 696 * it must: 697 * 698 * (1) Start above the hash table that is at the base of 699 * the dynamic variable space 700 * 701 * (2) Have a starting chunk offset that is beyond the 702 * dtrace_dynvar_t that is at the base of every chunk 703 * 704 * (3) Not span a chunk boundary 705 * 706 * (4) Not be in the tuple space of a dynamic variable 707 * 708 */ 709 if (addr < base) 710 return (0); 711 712 chunkoffs = (addr - base) % dstate->dtds_chunksize; 713 714 if (chunkoffs < sizeof (dtrace_dynvar_t)) 715 return (0); 716 717 if (chunkoffs + sz > dstate->dtds_chunksize) 718 return (0); 719 720 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs); 721 722 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) 723 return (0); 724 725 if (chunkoffs < sizeof (dtrace_dynvar_t) + 726 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t))) 727 return (0); 728 729 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize); 730 return (1); 731 } 732 733 /* 734 * Finally, check the static local and global variables. These checks 735 * take the longest, so we perform them last. 736 */ 737 if (dtrace_canstore_statvar(addr, sz, remain, 738 vstate->dtvs_locals, vstate->dtvs_nlocals)) 739 return (1); 740 741 if (dtrace_canstore_statvar(addr, sz, remain, 742 vstate->dtvs_globals, vstate->dtvs_nglobals)) 743 return (1); 744 745 return (0); 746 } 747 748 749 /* 750 * Convenience routine to check to see if the address is within a memory 751 * region in which a load may be issued given the user's privilege level; 752 * if not, it sets the appropriate error flags and loads 'addr' into the 753 * illegal value slot. 754 * 755 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 756 * appropriate memory access protection. 757 */ 758 static int 759 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 760 dtrace_vstate_t *vstate) 761 { 762 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate)); 763 } 764 765 /* 766 * Implementation of dtrace_canload which communicates the upper bound of the 767 * allowed memory region. 768 */ 769 static int 770 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain, 771 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 772 { 773 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 774 file_t *fp; 775 776 /* 777 * If we hold the privilege to read from kernel memory, then 778 * everything is readable. 779 */ 780 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 781 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 782 return (1); 783 } 784 785 /* 786 * You can obviously read that which you can store. 787 */ 788 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate)) 789 return (1); 790 791 /* 792 * We're allowed to read from our own string table. 793 */ 794 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 795 mstate->dtms_difo->dtdo_strlen)) { 796 DTRACE_RANGE_REMAIN(remain, addr, 797 mstate->dtms_difo->dtdo_strtab, 798 mstate->dtms_difo->dtdo_strlen); 799 return (1); 800 } 801 802 if (vstate->dtvs_state != NULL && 803 dtrace_priv_proc(vstate->dtvs_state, mstate)) { 804 proc_t *p; 805 806 /* 807 * When we have privileges to the current process, there are 808 * several context-related kernel structures that are safe to 809 * read, even absent the privilege to read from kernel memory. 810 * These reads are safe because these structures contain only 811 * state that (1) we're permitted to read, (2) is harmless or 812 * (3) contains pointers to additional kernel state that we're 813 * not permitted to read (and as such, do not present an 814 * opportunity for privilege escalation). Finally (and 815 * critically), because of the nature of their relation with 816 * the current thread context, the memory associated with these 817 * structures cannot change over the duration of probe context, 818 * and it is therefore impossible for this memory to be 819 * deallocated and reallocated as something else while it's 820 * being operated upon. 821 */ 822 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) { 823 DTRACE_RANGE_REMAIN(remain, addr, curthread, 824 sizeof (kthread_t)); 825 return (1); 826 } 827 828 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 829 sz, curthread->t_procp, sizeof (proc_t))) { 830 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp, 831 sizeof (proc_t)); 832 return (1); 833 } 834 835 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 836 curthread->t_cred, sizeof (cred_t))) { 837 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred, 838 sizeof (cred_t)); 839 return (1); 840 } 841 842 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 843 &(p->p_pidp->pid_id), sizeof (pid_t))) { 844 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id), 845 sizeof (pid_t)); 846 return (1); 847 } 848 849 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 850 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 851 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu, 852 offsetof(cpu_t, cpu_pause_thread)); 853 return (1); 854 } 855 } 856 857 if ((fp = mstate->dtms_getf) != NULL) { 858 uintptr_t psz = sizeof (void *); 859 vnode_t *vp; 860 vnodeops_t *op; 861 862 /* 863 * When getf() returns a file_t, the enabling is implicitly 864 * granted the (transient) right to read the returned file_t 865 * as well as the v_path and v_op->vnop_name of the underlying 866 * vnode. These accesses are allowed after a successful 867 * getf() because the members that they refer to cannot change 868 * once set -- and the barrier logic in the kernel's closef() 869 * path assures that the file_t and its referenced vode_t 870 * cannot themselves be stale (that is, it impossible for 871 * either dtms_getf itself or its f_vnode member to reference 872 * freed memory). 873 */ 874 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) { 875 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t)); 876 return (1); 877 } 878 879 if ((vp = fp->f_vnode) != NULL) { 880 size_t slen; 881 882 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) { 883 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path, 884 psz); 885 return (1); 886 } 887 888 slen = strlen(vp->v_path) + 1; 889 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) { 890 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path, 891 slen); 892 return (1); 893 } 894 895 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) { 896 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op, 897 psz); 898 return (1); 899 } 900 901 if ((op = vp->v_op) != NULL && 902 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 903 DTRACE_RANGE_REMAIN(remain, addr, 904 &op->vnop_name, psz); 905 return (1); 906 } 907 908 if (op != NULL && op->vnop_name != NULL && 909 DTRACE_INRANGE(addr, sz, op->vnop_name, 910 (slen = strlen(op->vnop_name) + 1))) { 911 DTRACE_RANGE_REMAIN(remain, addr, 912 op->vnop_name, slen); 913 return (1); 914 } 915 } 916 } 917 918 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 919 *illval = addr; 920 return (0); 921 } 922 923 /* 924 * Convenience routine to check to see if a given string is within a memory 925 * region in which a load may be issued given the user's privilege level; 926 * this exists so that we don't need to issue unnecessary dtrace_strlen() 927 * calls in the event that the user has all privileges. 928 */ 929 static int 930 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain, 931 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 932 { 933 size_t rsize; 934 935 /* 936 * If we hold the privilege to read from kernel memory, then 937 * everything is readable. 938 */ 939 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 940 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 941 return (1); 942 } 943 944 /* 945 * Even if the caller is uninterested in querying the remaining valid 946 * range, it is required to ensure that the access is allowed. 947 */ 948 if (remain == NULL) { 949 remain = &rsize; 950 } 951 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) { 952 size_t strsz; 953 /* 954 * Perform the strlen after determining the length of the 955 * memory region which is accessible. This prevents timing 956 * information from being used to find NULs in memory which is 957 * not accessible to the caller. 958 */ 959 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, 960 MIN(sz, *remain)); 961 if (strsz <= *remain) { 962 return (1); 963 } 964 } 965 966 return (0); 967 } 968 969 /* 970 * Convenience routine to check to see if a given variable is within a memory 971 * region in which a load may be issued given the user's privilege level. 972 */ 973 static int 974 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain, 975 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 976 { 977 size_t sz; 978 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 979 980 /* 981 * Calculate the max size before performing any checks since even 982 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function 983 * return the max length via 'remain'. 984 */ 985 if (type->dtdt_kind == DIF_TYPE_STRING) { 986 dtrace_state_t *state = vstate->dtvs_state; 987 988 if (state != NULL) { 989 sz = state->dts_options[DTRACEOPT_STRSIZE]; 990 } else { 991 /* 992 * In helper context, we have a NULL state; fall back 993 * to using the system-wide default for the string size 994 * in this case. 995 */ 996 sz = dtrace_strsize_default; 997 } 998 } else { 999 sz = type->dtdt_size; 1000 } 1001 1002 /* 1003 * If we hold the privilege to read from kernel memory, then 1004 * everything is readable. 1005 */ 1006 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1007 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz); 1008 return (1); 1009 } 1010 1011 if (type->dtdt_kind == DIF_TYPE_STRING) { 1012 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate, 1013 vstate)); 1014 } 1015 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate, 1016 vstate)); 1017 } 1018 1019 /* 1020 * Convert a string to a signed integer using safe loads. 1021 * 1022 * NOTE: This function uses various macros from strtolctype.h to manipulate 1023 * digit values, etc -- these have all been checked to ensure they make 1024 * no additional function calls. 1025 */ 1026 static int64_t 1027 dtrace_strtoll(char *input, int base, size_t limit) 1028 { 1029 uintptr_t pos = (uintptr_t)input; 1030 int64_t val = 0; 1031 int x; 1032 boolean_t neg = B_FALSE; 1033 char c, cc, ccc; 1034 uintptr_t end = pos + limit; 1035 1036 /* 1037 * Consume any whitespace preceding digits. 1038 */ 1039 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 1040 pos++; 1041 1042 /* 1043 * Handle an explicit sign if one is present. 1044 */ 1045 if (c == '-' || c == '+') { 1046 if (c == '-') 1047 neg = B_TRUE; 1048 c = dtrace_load8(++pos); 1049 } 1050 1051 /* 1052 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 1053 * if present. 1054 */ 1055 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 1056 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 1057 pos += 2; 1058 c = ccc; 1059 } 1060 1061 /* 1062 * Read in contiguous digits until the first non-digit character. 1063 */ 1064 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 1065 c = dtrace_load8(++pos)) 1066 val = val * base + x; 1067 1068 return (neg ? -val : val); 1069 } 1070 1071 /* 1072 * Compare two strings using safe loads. 1073 */ 1074 static int 1075 dtrace_strncmp(char *s1, char *s2, size_t limit) 1076 { 1077 uint8_t c1, c2; 1078 volatile uint16_t *flags; 1079 1080 if (s1 == s2 || limit == 0) 1081 return (0); 1082 1083 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 1084 1085 do { 1086 if (s1 == NULL) { 1087 c1 = '\0'; 1088 } else { 1089 c1 = dtrace_load8((uintptr_t)s1++); 1090 } 1091 1092 if (s2 == NULL) { 1093 c2 = '\0'; 1094 } else { 1095 c2 = dtrace_load8((uintptr_t)s2++); 1096 } 1097 1098 if (c1 != c2) 1099 return (c1 - c2); 1100 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 1101 1102 return (0); 1103 } 1104 1105 /* 1106 * Compute strlen(s) for a string using safe memory accesses. The additional 1107 * len parameter is used to specify a maximum length to ensure completion. 1108 */ 1109 static size_t 1110 dtrace_strlen(const char *s, size_t lim) 1111 { 1112 uint_t len; 1113 1114 for (len = 0; len != lim; len++) { 1115 if (dtrace_load8((uintptr_t)s++) == '\0') 1116 break; 1117 } 1118 1119 return (len); 1120 } 1121 1122 /* 1123 * Check if an address falls within a toxic region. 1124 */ 1125 static int 1126 dtrace_istoxic(uintptr_t kaddr, size_t size) 1127 { 1128 uintptr_t taddr, tsize; 1129 int i; 1130 1131 for (i = 0; i < dtrace_toxranges; i++) { 1132 taddr = dtrace_toxrange[i].dtt_base; 1133 tsize = dtrace_toxrange[i].dtt_limit - taddr; 1134 1135 if (kaddr - taddr < tsize) { 1136 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1137 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 1138 return (1); 1139 } 1140 1141 if (taddr - kaddr < size) { 1142 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1143 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 1144 return (1); 1145 } 1146 } 1147 1148 return (0); 1149 } 1150 1151 /* 1152 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1153 * memory specified by the DIF program. The dst is assumed to be safe memory 1154 * that we can store to directly because it is managed by DTrace. As with 1155 * standard bcopy, overlapping copies are handled properly. 1156 */ 1157 static void 1158 dtrace_bcopy(const void *src, void *dst, size_t len) 1159 { 1160 if (len != 0) { 1161 uint8_t *s1 = dst; 1162 const uint8_t *s2 = src; 1163 1164 if (s1 <= s2) { 1165 do { 1166 *s1++ = dtrace_load8((uintptr_t)s2++); 1167 } while (--len != 0); 1168 } else { 1169 s2 += len; 1170 s1 += len; 1171 1172 do { 1173 *--s1 = dtrace_load8((uintptr_t)--s2); 1174 } while (--len != 0); 1175 } 1176 } 1177 } 1178 1179 /* 1180 * Copy src to dst using safe memory accesses, up to either the specified 1181 * length, or the point that a nul byte is encountered. The src is assumed to 1182 * be unsafe memory specified by the DIF program. The dst is assumed to be 1183 * safe memory that we can store to directly because it is managed by DTrace. 1184 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1185 */ 1186 static void 1187 dtrace_strcpy(const void *src, void *dst, size_t len) 1188 { 1189 if (len != 0) { 1190 uint8_t *s1 = dst, c; 1191 const uint8_t *s2 = src; 1192 1193 do { 1194 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1195 } while (--len != 0 && c != '\0'); 1196 } 1197 } 1198 1199 /* 1200 * Copy src to dst, deriving the size and type from the specified (BYREF) 1201 * variable type. The src is assumed to be unsafe memory specified by the DIF 1202 * program. The dst is assumed to be DTrace variable memory that is of the 1203 * specified type; we assume that we can store to directly. 1204 */ 1205 static void 1206 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit) 1207 { 1208 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1209 1210 if (type->dtdt_kind == DIF_TYPE_STRING) { 1211 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit)); 1212 } else { 1213 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit)); 1214 } 1215 } 1216 1217 /* 1218 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1219 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1220 * safe memory that we can access directly because it is managed by DTrace. 1221 */ 1222 static int 1223 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1224 { 1225 volatile uint16_t *flags; 1226 1227 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 1228 1229 if (s1 == s2) 1230 return (0); 1231 1232 if (s1 == NULL || s2 == NULL) 1233 return (1); 1234 1235 if (s1 != s2 && len != 0) { 1236 const uint8_t *ps1 = s1; 1237 const uint8_t *ps2 = s2; 1238 1239 do { 1240 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1241 return (1); 1242 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1243 } 1244 return (0); 1245 } 1246 1247 /* 1248 * Zero the specified region using a simple byte-by-byte loop. Note that this 1249 * is for safe DTrace-managed memory only. 1250 */ 1251 static void 1252 dtrace_bzero(void *dst, size_t len) 1253 { 1254 uchar_t *cp; 1255 1256 for (cp = dst; len != 0; len--) 1257 *cp++ = 0; 1258 } 1259 1260 static void 1261 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1262 { 1263 uint64_t result[2]; 1264 1265 result[0] = addend1[0] + addend2[0]; 1266 result[1] = addend1[1] + addend2[1] + 1267 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1268 1269 sum[0] = result[0]; 1270 sum[1] = result[1]; 1271 } 1272 1273 /* 1274 * Shift the 128-bit value in a by b. If b is positive, shift left. 1275 * If b is negative, shift right. 1276 */ 1277 static void 1278 dtrace_shift_128(uint64_t *a, int b) 1279 { 1280 uint64_t mask; 1281 1282 if (b == 0) 1283 return; 1284 1285 if (b < 0) { 1286 b = -b; 1287 if (b >= 64) { 1288 a[0] = a[1] >> (b - 64); 1289 a[1] = 0; 1290 } else { 1291 a[0] >>= b; 1292 mask = 1LL << (64 - b); 1293 mask -= 1; 1294 a[0] |= ((a[1] & mask) << (64 - b)); 1295 a[1] >>= b; 1296 } 1297 } else { 1298 if (b >= 64) { 1299 a[1] = a[0] << (b - 64); 1300 a[0] = 0; 1301 } else { 1302 a[1] <<= b; 1303 mask = a[0] >> (64 - b); 1304 a[1] |= mask; 1305 a[0] <<= b; 1306 } 1307 } 1308 } 1309 1310 /* 1311 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1312 * use native multiplication on those, and then re-combine into the 1313 * resulting 128-bit value. 1314 * 1315 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1316 * hi1 * hi2 << 64 + 1317 * hi1 * lo2 << 32 + 1318 * hi2 * lo1 << 32 + 1319 * lo1 * lo2 1320 */ 1321 static void 1322 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1323 { 1324 uint64_t hi1, hi2, lo1, lo2; 1325 uint64_t tmp[2]; 1326 1327 hi1 = factor1 >> 32; 1328 hi2 = factor2 >> 32; 1329 1330 lo1 = factor1 & DT_MASK_LO; 1331 lo2 = factor2 & DT_MASK_LO; 1332 1333 product[0] = lo1 * lo2; 1334 product[1] = hi1 * hi2; 1335 1336 tmp[0] = hi1 * lo2; 1337 tmp[1] = 0; 1338 dtrace_shift_128(tmp, 32); 1339 dtrace_add_128(product, tmp, product); 1340 1341 tmp[0] = hi2 * lo1; 1342 tmp[1] = 0; 1343 dtrace_shift_128(tmp, 32); 1344 dtrace_add_128(product, tmp, product); 1345 } 1346 1347 /* 1348 * This privilege check should be used by actions and subroutines to 1349 * verify that the user credentials of the process that enabled the 1350 * invoking ECB match the target credentials 1351 */ 1352 static int 1353 dtrace_priv_proc_common_user(dtrace_state_t *state) 1354 { 1355 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1356 1357 /* 1358 * We should always have a non-NULL state cred here, since if cred 1359 * is null (anonymous tracing), we fast-path bypass this routine. 1360 */ 1361 ASSERT(s_cr != NULL); 1362 1363 if ((cr = CRED()) != NULL && 1364 s_cr->cr_uid == cr->cr_uid && 1365 s_cr->cr_uid == cr->cr_ruid && 1366 s_cr->cr_uid == cr->cr_suid && 1367 s_cr->cr_gid == cr->cr_gid && 1368 s_cr->cr_gid == cr->cr_rgid && 1369 s_cr->cr_gid == cr->cr_sgid) 1370 return (1); 1371 1372 return (0); 1373 } 1374 1375 /* 1376 * This privilege check should be used by actions and subroutines to 1377 * verify that the zone of the process that enabled the invoking ECB 1378 * matches the target credentials 1379 */ 1380 static int 1381 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1382 { 1383 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1384 1385 /* 1386 * We should always have a non-NULL state cred here, since if cred 1387 * is null (anonymous tracing), we fast-path bypass this routine. 1388 */ 1389 ASSERT(s_cr != NULL); 1390 1391 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1392 return (1); 1393 1394 return (0); 1395 } 1396 1397 /* 1398 * This privilege check should be used by actions and subroutines to 1399 * verify that the process has not setuid or changed credentials. 1400 */ 1401 static int 1402 dtrace_priv_proc_common_nocd() 1403 { 1404 proc_t *proc; 1405 1406 if ((proc = ttoproc(curthread)) != NULL && 1407 !(proc->p_flag & SNOCD)) 1408 return (1); 1409 1410 return (0); 1411 } 1412 1413 static int 1414 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate) 1415 { 1416 int action = state->dts_cred.dcr_action; 1417 1418 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC)) 1419 goto bad; 1420 1421 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1422 dtrace_priv_proc_common_zone(state) == 0) 1423 goto bad; 1424 1425 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1426 dtrace_priv_proc_common_user(state) == 0) 1427 goto bad; 1428 1429 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1430 dtrace_priv_proc_common_nocd() == 0) 1431 goto bad; 1432 1433 return (1); 1434 1435 bad: 1436 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1437 1438 return (0); 1439 } 1440 1441 static int 1442 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate) 1443 { 1444 if (mstate->dtms_access & DTRACE_ACCESS_PROC) { 1445 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1446 return (1); 1447 1448 if (dtrace_priv_proc_common_zone(state) && 1449 dtrace_priv_proc_common_user(state) && 1450 dtrace_priv_proc_common_nocd()) 1451 return (1); 1452 } 1453 1454 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1455 1456 return (0); 1457 } 1458 1459 static int 1460 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate) 1461 { 1462 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) && 1463 (state->dts_cred.dcr_action & DTRACE_CRA_PROC)) 1464 return (1); 1465 1466 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1467 1468 return (0); 1469 } 1470 1471 static int 1472 dtrace_priv_kernel(dtrace_state_t *state) 1473 { 1474 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1475 return (1); 1476 1477 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1478 1479 return (0); 1480 } 1481 1482 static int 1483 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1484 { 1485 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1486 return (1); 1487 1488 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1489 1490 return (0); 1491 } 1492 1493 /* 1494 * Determine if the dte_cond of the specified ECB allows for processing of 1495 * the current probe to continue. Note that this routine may allow continued 1496 * processing, but with access(es) stripped from the mstate's dtms_access 1497 * field. 1498 */ 1499 static int 1500 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1501 dtrace_ecb_t *ecb) 1502 { 1503 dtrace_probe_t *probe = ecb->dte_probe; 1504 dtrace_provider_t *prov = probe->dtpr_provider; 1505 dtrace_pops_t *pops = &prov->dtpv_pops; 1506 int mode = DTRACE_MODE_NOPRIV_DROP; 1507 1508 ASSERT(ecb->dte_cond); 1509 1510 if (pops->dtps_mode != NULL) { 1511 mode = pops->dtps_mode(prov->dtpv_arg, 1512 probe->dtpr_id, probe->dtpr_arg); 1513 1514 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL)); 1515 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT | 1516 DTRACE_MODE_NOPRIV_DROP)); 1517 } 1518 1519 /* 1520 * If the dte_cond bits indicate that this consumer is only allowed to 1521 * see user-mode firings of this probe, check that the probe was fired 1522 * while in a user context. If that's not the case, use the policy 1523 * specified by the provider to determine if we drop the probe or 1524 * merely restrict operation. 1525 */ 1526 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1527 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1528 1529 if (!(mode & DTRACE_MODE_USER)) { 1530 if (mode & DTRACE_MODE_NOPRIV_DROP) 1531 return (0); 1532 1533 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1534 } 1535 } 1536 1537 /* 1538 * This is more subtle than it looks. We have to be absolutely certain 1539 * that CRED() isn't going to change out from under us so it's only 1540 * legit to examine that structure if we're in constrained situations. 1541 * Currently, the only times we'll this check is if a non-super-user 1542 * has enabled the profile or syscall providers -- providers that 1543 * allow visibility of all processes. For the profile case, the check 1544 * above will ensure that we're examining a user context. 1545 */ 1546 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1547 cred_t *cr; 1548 cred_t *s_cr = state->dts_cred.dcr_cred; 1549 proc_t *proc; 1550 1551 ASSERT(s_cr != NULL); 1552 1553 if ((cr = CRED()) == NULL || 1554 s_cr->cr_uid != cr->cr_uid || 1555 s_cr->cr_uid != cr->cr_ruid || 1556 s_cr->cr_uid != cr->cr_suid || 1557 s_cr->cr_gid != cr->cr_gid || 1558 s_cr->cr_gid != cr->cr_rgid || 1559 s_cr->cr_gid != cr->cr_sgid || 1560 (proc = ttoproc(curthread)) == NULL || 1561 (proc->p_flag & SNOCD)) { 1562 if (mode & DTRACE_MODE_NOPRIV_DROP) 1563 return (0); 1564 1565 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1566 } 1567 } 1568 1569 /* 1570 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1571 * in our zone, check to see if our mode policy is to restrict rather 1572 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1573 * and DTRACE_ACCESS_ARGS 1574 */ 1575 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1576 cred_t *cr; 1577 cred_t *s_cr = state->dts_cred.dcr_cred; 1578 1579 ASSERT(s_cr != NULL); 1580 1581 if ((cr = CRED()) == NULL || 1582 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1583 if (mode & DTRACE_MODE_NOPRIV_DROP) 1584 return (0); 1585 1586 mstate->dtms_access &= 1587 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1588 } 1589 } 1590 1591 /* 1592 * By merits of being in this code path at all, we have limited 1593 * privileges. If the provider has indicated that limited privileges 1594 * are to denote restricted operation, strip off the ability to access 1595 * arguments. 1596 */ 1597 if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT) 1598 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1599 1600 return (1); 1601 } 1602 1603 /* 1604 * Note: not called from probe context. This function is called 1605 * asynchronously (and at a regular interval) from outside of probe context to 1606 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1607 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1608 */ 1609 void 1610 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1611 { 1612 dtrace_dynvar_t *dirty; 1613 dtrace_dstate_percpu_t *dcpu; 1614 dtrace_dynvar_t **rinsep; 1615 int i, j, work = 0; 1616 1617 for (i = 0; i < NCPU; i++) { 1618 dcpu = &dstate->dtds_percpu[i]; 1619 rinsep = &dcpu->dtdsc_rinsing; 1620 1621 /* 1622 * If the dirty list is NULL, there is no dirty work to do. 1623 */ 1624 if (dcpu->dtdsc_dirty == NULL) 1625 continue; 1626 1627 if (dcpu->dtdsc_rinsing != NULL) { 1628 /* 1629 * If the rinsing list is non-NULL, then it is because 1630 * this CPU was selected to accept another CPU's 1631 * dirty list -- and since that time, dirty buffers 1632 * have accumulated. This is a highly unlikely 1633 * condition, but we choose to ignore the dirty 1634 * buffers -- they'll be picked up a future cleanse. 1635 */ 1636 continue; 1637 } 1638 1639 if (dcpu->dtdsc_clean != NULL) { 1640 /* 1641 * If the clean list is non-NULL, then we're in a 1642 * situation where a CPU has done deallocations (we 1643 * have a non-NULL dirty list) but no allocations (we 1644 * also have a non-NULL clean list). We can't simply 1645 * move the dirty list into the clean list on this 1646 * CPU, yet we also don't want to allow this condition 1647 * to persist, lest a short clean list prevent a 1648 * massive dirty list from being cleaned (which in 1649 * turn could lead to otherwise avoidable dynamic 1650 * drops). To deal with this, we look for some CPU 1651 * with a NULL clean list, NULL dirty list, and NULL 1652 * rinsing list -- and then we borrow this CPU to 1653 * rinse our dirty list. 1654 */ 1655 for (j = 0; j < NCPU; j++) { 1656 dtrace_dstate_percpu_t *rinser; 1657 1658 rinser = &dstate->dtds_percpu[j]; 1659 1660 if (rinser->dtdsc_rinsing != NULL) 1661 continue; 1662 1663 if (rinser->dtdsc_dirty != NULL) 1664 continue; 1665 1666 if (rinser->dtdsc_clean != NULL) 1667 continue; 1668 1669 rinsep = &rinser->dtdsc_rinsing; 1670 break; 1671 } 1672 1673 if (j == NCPU) { 1674 /* 1675 * We were unable to find another CPU that 1676 * could accept this dirty list -- we are 1677 * therefore unable to clean it now. 1678 */ 1679 dtrace_dynvar_failclean++; 1680 continue; 1681 } 1682 } 1683 1684 work = 1; 1685 1686 /* 1687 * Atomically move the dirty list aside. 1688 */ 1689 do { 1690 dirty = dcpu->dtdsc_dirty; 1691 1692 /* 1693 * Before we zap the dirty list, set the rinsing list. 1694 * (This allows for a potential assertion in 1695 * dtrace_dynvar(): if a free dynamic variable appears 1696 * on a hash chain, either the dirty list or the 1697 * rinsing list for some CPU must be non-NULL.) 1698 */ 1699 *rinsep = dirty; 1700 dtrace_membar_producer(); 1701 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1702 dirty, NULL) != dirty); 1703 } 1704 1705 if (!work) { 1706 /* 1707 * We have no work to do; we can simply return. 1708 */ 1709 return; 1710 } 1711 1712 dtrace_sync(); 1713 1714 for (i = 0; i < NCPU; i++) { 1715 dcpu = &dstate->dtds_percpu[i]; 1716 1717 if (dcpu->dtdsc_rinsing == NULL) 1718 continue; 1719 1720 /* 1721 * We are now guaranteed that no hash chain contains a pointer 1722 * into this dirty list; we can make it clean. 1723 */ 1724 ASSERT(dcpu->dtdsc_clean == NULL); 1725 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1726 dcpu->dtdsc_rinsing = NULL; 1727 } 1728 1729 /* 1730 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1731 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1732 * This prevents a race whereby a CPU incorrectly decides that 1733 * the state should be something other than DTRACE_DSTATE_CLEAN 1734 * after dtrace_dynvar_clean() has completed. 1735 */ 1736 dtrace_sync(); 1737 1738 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1739 } 1740 1741 /* 1742 * Depending on the value of the op parameter, this function looks-up, 1743 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1744 * allocation is requested, this function will return a pointer to a 1745 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1746 * variable can be allocated. If NULL is returned, the appropriate counter 1747 * will be incremented. 1748 */ 1749 dtrace_dynvar_t * 1750 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1751 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1752 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1753 { 1754 uint64_t hashval = DTRACE_DYNHASH_VALID; 1755 dtrace_dynhash_t *hash = dstate->dtds_hash; 1756 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1757 processorid_t me = CPU->cpu_id, cpu = me; 1758 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1759 size_t bucket, ksize; 1760 size_t chunksize = dstate->dtds_chunksize; 1761 uintptr_t kdata, lock, nstate; 1762 uint_t i; 1763 1764 ASSERT(nkeys != 0); 1765 1766 /* 1767 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1768 * algorithm. For the by-value portions, we perform the algorithm in 1769 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1770 * bit, and seems to have only a minute effect on distribution. For 1771 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1772 * over each referenced byte. It's painful to do this, but it's much 1773 * better than pathological hash distribution. The efficacy of the 1774 * hashing algorithm (and a comparison with other algorithms) may be 1775 * found by running the ::dtrace_dynstat MDB dcmd. 1776 */ 1777 for (i = 0; i < nkeys; i++) { 1778 if (key[i].dttk_size == 0) { 1779 uint64_t val = key[i].dttk_value; 1780 1781 hashval += (val >> 48) & 0xffff; 1782 hashval += (hashval << 10); 1783 hashval ^= (hashval >> 6); 1784 1785 hashval += (val >> 32) & 0xffff; 1786 hashval += (hashval << 10); 1787 hashval ^= (hashval >> 6); 1788 1789 hashval += (val >> 16) & 0xffff; 1790 hashval += (hashval << 10); 1791 hashval ^= (hashval >> 6); 1792 1793 hashval += val & 0xffff; 1794 hashval += (hashval << 10); 1795 hashval ^= (hashval >> 6); 1796 } else { 1797 /* 1798 * This is incredibly painful, but it beats the hell 1799 * out of the alternative. 1800 */ 1801 uint64_t j, size = key[i].dttk_size; 1802 uintptr_t base = (uintptr_t)key[i].dttk_value; 1803 1804 if (!dtrace_canload(base, size, mstate, vstate)) 1805 break; 1806 1807 for (j = 0; j < size; j++) { 1808 hashval += dtrace_load8(base + j); 1809 hashval += (hashval << 10); 1810 hashval ^= (hashval >> 6); 1811 } 1812 } 1813 } 1814 1815 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1816 return (NULL); 1817 1818 hashval += (hashval << 3); 1819 hashval ^= (hashval >> 11); 1820 hashval += (hashval << 15); 1821 1822 /* 1823 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1824 * comes out to be one of our two sentinel hash values. If this 1825 * actually happens, we set the hashval to be a value known to be a 1826 * non-sentinel value. 1827 */ 1828 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1829 hashval = DTRACE_DYNHASH_VALID; 1830 1831 /* 1832 * Yes, it's painful to do a divide here. If the cycle count becomes 1833 * important here, tricks can be pulled to reduce it. (However, it's 1834 * critical that hash collisions be kept to an absolute minimum; 1835 * they're much more painful than a divide.) It's better to have a 1836 * solution that generates few collisions and still keeps things 1837 * relatively simple. 1838 */ 1839 bucket = hashval % dstate->dtds_hashsize; 1840 1841 if (op == DTRACE_DYNVAR_DEALLOC) { 1842 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1843 1844 for (;;) { 1845 while ((lock = *lockp) & 1) 1846 continue; 1847 1848 if (dtrace_casptr((void *)lockp, 1849 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1850 break; 1851 } 1852 1853 dtrace_membar_producer(); 1854 } 1855 1856 top: 1857 prev = NULL; 1858 lock = hash[bucket].dtdh_lock; 1859 1860 dtrace_membar_consumer(); 1861 1862 start = hash[bucket].dtdh_chain; 1863 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1864 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1865 op != DTRACE_DYNVAR_DEALLOC)); 1866 1867 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1868 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1869 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1870 1871 if (dvar->dtdv_hashval != hashval) { 1872 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1873 /* 1874 * We've reached the sink, and therefore the 1875 * end of the hash chain; we can kick out of 1876 * the loop knowing that we have seen a valid 1877 * snapshot of state. 1878 */ 1879 ASSERT(dvar->dtdv_next == NULL); 1880 ASSERT(dvar == &dtrace_dynhash_sink); 1881 break; 1882 } 1883 1884 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1885 /* 1886 * We've gone off the rails: somewhere along 1887 * the line, one of the members of this hash 1888 * chain was deleted. Note that we could also 1889 * detect this by simply letting this loop run 1890 * to completion, as we would eventually hit 1891 * the end of the dirty list. However, we 1892 * want to avoid running the length of the 1893 * dirty list unnecessarily (it might be quite 1894 * long), so we catch this as early as 1895 * possible by detecting the hash marker. In 1896 * this case, we simply set dvar to NULL and 1897 * break; the conditional after the loop will 1898 * send us back to top. 1899 */ 1900 dvar = NULL; 1901 break; 1902 } 1903 1904 goto next; 1905 } 1906 1907 if (dtuple->dtt_nkeys != nkeys) 1908 goto next; 1909 1910 for (i = 0; i < nkeys; i++, dkey++) { 1911 if (dkey->dttk_size != key[i].dttk_size) 1912 goto next; /* size or type mismatch */ 1913 1914 if (dkey->dttk_size != 0) { 1915 if (dtrace_bcmp( 1916 (void *)(uintptr_t)key[i].dttk_value, 1917 (void *)(uintptr_t)dkey->dttk_value, 1918 dkey->dttk_size)) 1919 goto next; 1920 } else { 1921 if (dkey->dttk_value != key[i].dttk_value) 1922 goto next; 1923 } 1924 } 1925 1926 if (op != DTRACE_DYNVAR_DEALLOC) 1927 return (dvar); 1928 1929 ASSERT(dvar->dtdv_next == NULL || 1930 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1931 1932 if (prev != NULL) { 1933 ASSERT(hash[bucket].dtdh_chain != dvar); 1934 ASSERT(start != dvar); 1935 ASSERT(prev->dtdv_next == dvar); 1936 prev->dtdv_next = dvar->dtdv_next; 1937 } else { 1938 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1939 start, dvar->dtdv_next) != start) { 1940 /* 1941 * We have failed to atomically swing the 1942 * hash table head pointer, presumably because 1943 * of a conflicting allocation on another CPU. 1944 * We need to reread the hash chain and try 1945 * again. 1946 */ 1947 goto top; 1948 } 1949 } 1950 1951 dtrace_membar_producer(); 1952 1953 /* 1954 * Now set the hash value to indicate that it's free. 1955 */ 1956 ASSERT(hash[bucket].dtdh_chain != dvar); 1957 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1958 1959 dtrace_membar_producer(); 1960 1961 /* 1962 * Set the next pointer to point at the dirty list, and 1963 * atomically swing the dirty pointer to the newly freed dvar. 1964 */ 1965 do { 1966 next = dcpu->dtdsc_dirty; 1967 dvar->dtdv_next = next; 1968 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1969 1970 /* 1971 * Finally, unlock this hash bucket. 1972 */ 1973 ASSERT(hash[bucket].dtdh_lock == lock); 1974 ASSERT(lock & 1); 1975 hash[bucket].dtdh_lock++; 1976 1977 return (NULL); 1978 next: 1979 prev = dvar; 1980 continue; 1981 } 1982 1983 if (dvar == NULL) { 1984 /* 1985 * If dvar is NULL, it is because we went off the rails: 1986 * one of the elements that we traversed in the hash chain 1987 * was deleted while we were traversing it. In this case, 1988 * we assert that we aren't doing a dealloc (deallocs lock 1989 * the hash bucket to prevent themselves from racing with 1990 * one another), and retry the hash chain traversal. 1991 */ 1992 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1993 goto top; 1994 } 1995 1996 if (op != DTRACE_DYNVAR_ALLOC) { 1997 /* 1998 * If we are not to allocate a new variable, we want to 1999 * return NULL now. Before we return, check that the value 2000 * of the lock word hasn't changed. If it has, we may have 2001 * seen an inconsistent snapshot. 2002 */ 2003 if (op == DTRACE_DYNVAR_NOALLOC) { 2004 if (hash[bucket].dtdh_lock != lock) 2005 goto top; 2006 } else { 2007 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 2008 ASSERT(hash[bucket].dtdh_lock == lock); 2009 ASSERT(lock & 1); 2010 hash[bucket].dtdh_lock++; 2011 } 2012 2013 return (NULL); 2014 } 2015 2016 /* 2017 * We need to allocate a new dynamic variable. The size we need is the 2018 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 2019 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 2020 * the size of any referred-to data (dsize). We then round the final 2021 * size up to the chunksize for allocation. 2022 */ 2023 for (ksize = 0, i = 0; i < nkeys; i++) 2024 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 2025 2026 /* 2027 * This should be pretty much impossible, but could happen if, say, 2028 * strange DIF specified the tuple. Ideally, this should be an 2029 * assertion and not an error condition -- but that requires that the 2030 * chunksize calculation in dtrace_difo_chunksize() be absolutely 2031 * bullet-proof. (That is, it must not be able to be fooled by 2032 * malicious DIF.) Given the lack of backwards branches in DIF, 2033 * solving this would presumably not amount to solving the Halting 2034 * Problem -- but it still seems awfully hard. 2035 */ 2036 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 2037 ksize + dsize > chunksize) { 2038 dcpu->dtdsc_drops++; 2039 return (NULL); 2040 } 2041 2042 nstate = DTRACE_DSTATE_EMPTY; 2043 2044 do { 2045 retry: 2046 free = dcpu->dtdsc_free; 2047 2048 if (free == NULL) { 2049 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 2050 void *rval; 2051 2052 if (clean == NULL) { 2053 /* 2054 * We're out of dynamic variable space on 2055 * this CPU. Unless we have tried all CPUs, 2056 * we'll try to allocate from a different 2057 * CPU. 2058 */ 2059 switch (dstate->dtds_state) { 2060 case DTRACE_DSTATE_CLEAN: { 2061 void *sp = &dstate->dtds_state; 2062 2063 if (++cpu >= NCPU) 2064 cpu = 0; 2065 2066 if (dcpu->dtdsc_dirty != NULL && 2067 nstate == DTRACE_DSTATE_EMPTY) 2068 nstate = DTRACE_DSTATE_DIRTY; 2069 2070 if (dcpu->dtdsc_rinsing != NULL) 2071 nstate = DTRACE_DSTATE_RINSING; 2072 2073 dcpu = &dstate->dtds_percpu[cpu]; 2074 2075 if (cpu != me) 2076 goto retry; 2077 2078 (void) dtrace_cas32(sp, 2079 DTRACE_DSTATE_CLEAN, nstate); 2080 2081 /* 2082 * To increment the correct bean 2083 * counter, take another lap. 2084 */ 2085 goto retry; 2086 } 2087 2088 case DTRACE_DSTATE_DIRTY: 2089 dcpu->dtdsc_dirty_drops++; 2090 break; 2091 2092 case DTRACE_DSTATE_RINSING: 2093 dcpu->dtdsc_rinsing_drops++; 2094 break; 2095 2096 case DTRACE_DSTATE_EMPTY: 2097 dcpu->dtdsc_drops++; 2098 break; 2099 } 2100 2101 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 2102 return (NULL); 2103 } 2104 2105 /* 2106 * The clean list appears to be non-empty. We want to 2107 * move the clean list to the free list; we start by 2108 * moving the clean pointer aside. 2109 */ 2110 if (dtrace_casptr(&dcpu->dtdsc_clean, 2111 clean, NULL) != clean) { 2112 /* 2113 * We are in one of two situations: 2114 * 2115 * (a) The clean list was switched to the 2116 * free list by another CPU. 2117 * 2118 * (b) The clean list was added to by the 2119 * cleansing cyclic. 2120 * 2121 * In either of these situations, we can 2122 * just reattempt the free list allocation. 2123 */ 2124 goto retry; 2125 } 2126 2127 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 2128 2129 /* 2130 * Now we'll move the clean list to our free list. 2131 * It's impossible for this to fail: the only way 2132 * the free list can be updated is through this 2133 * code path, and only one CPU can own the clean list. 2134 * Thus, it would only be possible for this to fail if 2135 * this code were racing with dtrace_dynvar_clean(). 2136 * (That is, if dtrace_dynvar_clean() updated the clean 2137 * list, and we ended up racing to update the free 2138 * list.) This race is prevented by the dtrace_sync() 2139 * in dtrace_dynvar_clean() -- which flushes the 2140 * owners of the clean lists out before resetting 2141 * the clean lists. 2142 */ 2143 dcpu = &dstate->dtds_percpu[me]; 2144 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2145 ASSERT(rval == NULL); 2146 goto retry; 2147 } 2148 2149 dvar = free; 2150 new_free = dvar->dtdv_next; 2151 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2152 2153 /* 2154 * We have now allocated a new chunk. We copy the tuple keys into the 2155 * tuple array and copy any referenced key data into the data space 2156 * following the tuple array. As we do this, we relocate dttk_value 2157 * in the final tuple to point to the key data address in the chunk. 2158 */ 2159 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2160 dvar->dtdv_data = (void *)(kdata + ksize); 2161 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2162 2163 for (i = 0; i < nkeys; i++) { 2164 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2165 size_t kesize = key[i].dttk_size; 2166 2167 if (kesize != 0) { 2168 dtrace_bcopy( 2169 (const void *)(uintptr_t)key[i].dttk_value, 2170 (void *)kdata, kesize); 2171 dkey->dttk_value = kdata; 2172 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2173 } else { 2174 dkey->dttk_value = key[i].dttk_value; 2175 } 2176 2177 dkey->dttk_size = kesize; 2178 } 2179 2180 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2181 dvar->dtdv_hashval = hashval; 2182 dvar->dtdv_next = start; 2183 2184 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2185 return (dvar); 2186 2187 /* 2188 * The cas has failed. Either another CPU is adding an element to 2189 * this hash chain, or another CPU is deleting an element from this 2190 * hash chain. The simplest way to deal with both of these cases 2191 * (though not necessarily the most efficient) is to free our 2192 * allocated block and re-attempt it all. Note that the free is 2193 * to the dirty list and _not_ to the free list. This is to prevent 2194 * races with allocators, above. 2195 */ 2196 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2197 2198 dtrace_membar_producer(); 2199 2200 do { 2201 free = dcpu->dtdsc_dirty; 2202 dvar->dtdv_next = free; 2203 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2204 2205 goto top; 2206 } 2207 2208 /*ARGSUSED*/ 2209 static void 2210 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2211 { 2212 if ((int64_t)nval < (int64_t)*oval) 2213 *oval = nval; 2214 } 2215 2216 /*ARGSUSED*/ 2217 static void 2218 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2219 { 2220 if ((int64_t)nval > (int64_t)*oval) 2221 *oval = nval; 2222 } 2223 2224 static void 2225 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2226 { 2227 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2228 int64_t val = (int64_t)nval; 2229 2230 if (val < 0) { 2231 for (i = 0; i < zero; i++) { 2232 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2233 quanta[i] += incr; 2234 return; 2235 } 2236 } 2237 } else { 2238 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2239 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2240 quanta[i - 1] += incr; 2241 return; 2242 } 2243 } 2244 2245 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2246 return; 2247 } 2248 2249 ASSERT(0); 2250 } 2251 2252 static void 2253 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2254 { 2255 uint64_t arg = *lquanta++; 2256 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2257 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2258 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2259 int32_t val = (int32_t)nval, level; 2260 2261 ASSERT(step != 0); 2262 ASSERT(levels != 0); 2263 2264 if (val < base) { 2265 /* 2266 * This is an underflow. 2267 */ 2268 lquanta[0] += incr; 2269 return; 2270 } 2271 2272 level = (val - base) / step; 2273 2274 if (level < levels) { 2275 lquanta[level + 1] += incr; 2276 return; 2277 } 2278 2279 /* 2280 * This is an overflow. 2281 */ 2282 lquanta[levels + 1] += incr; 2283 } 2284 2285 static int 2286 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2287 uint16_t high, uint16_t nsteps, int64_t value) 2288 { 2289 int64_t this = 1, last, next; 2290 int base = 1, order; 2291 2292 ASSERT(factor <= nsteps); 2293 ASSERT(nsteps % factor == 0); 2294 2295 for (order = 0; order < low; order++) 2296 this *= factor; 2297 2298 /* 2299 * If our value is less than our factor taken to the power of the 2300 * low order of magnitude, it goes into the zeroth bucket. 2301 */ 2302 if (value < (last = this)) 2303 return (0); 2304 2305 for (this *= factor; order <= high; order++) { 2306 int nbuckets = this > nsteps ? nsteps : this; 2307 2308 if ((next = this * factor) < this) { 2309 /* 2310 * We should not generally get log/linear quantizations 2311 * with a high magnitude that allows 64-bits to 2312 * overflow, but we nonetheless protect against this 2313 * by explicitly checking for overflow, and clamping 2314 * our value accordingly. 2315 */ 2316 value = this - 1; 2317 } 2318 2319 if (value < this) { 2320 /* 2321 * If our value lies within this order of magnitude, 2322 * determine its position by taking the offset within 2323 * the order of magnitude, dividing by the bucket 2324 * width, and adding to our (accumulated) base. 2325 */ 2326 return (base + (value - last) / (this / nbuckets)); 2327 } 2328 2329 base += nbuckets - (nbuckets / factor); 2330 last = this; 2331 this = next; 2332 } 2333 2334 /* 2335 * Our value is greater than or equal to our factor taken to the 2336 * power of one plus the high magnitude -- return the top bucket. 2337 */ 2338 return (base); 2339 } 2340 2341 static void 2342 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2343 { 2344 uint64_t arg = *llquanta++; 2345 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2346 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2347 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2348 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2349 2350 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2351 low, high, nsteps, nval)] += incr; 2352 } 2353 2354 /*ARGSUSED*/ 2355 static void 2356 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2357 { 2358 data[0]++; 2359 data[1] += nval; 2360 } 2361 2362 /*ARGSUSED*/ 2363 static void 2364 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2365 { 2366 int64_t snval = (int64_t)nval; 2367 uint64_t tmp[2]; 2368 2369 data[0]++; 2370 data[1] += nval; 2371 2372 /* 2373 * What we want to say here is: 2374 * 2375 * data[2] += nval * nval; 2376 * 2377 * But given that nval is 64-bit, we could easily overflow, so 2378 * we do this as 128-bit arithmetic. 2379 */ 2380 if (snval < 0) 2381 snval = -snval; 2382 2383 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2384 dtrace_add_128(data + 2, tmp, data + 2); 2385 } 2386 2387 /*ARGSUSED*/ 2388 static void 2389 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2390 { 2391 *oval = *oval + 1; 2392 } 2393 2394 /*ARGSUSED*/ 2395 static void 2396 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2397 { 2398 *oval += nval; 2399 } 2400 2401 /* 2402 * Aggregate given the tuple in the principal data buffer, and the aggregating 2403 * action denoted by the specified dtrace_aggregation_t. The aggregation 2404 * buffer is specified as the buf parameter. This routine does not return 2405 * failure; if there is no space in the aggregation buffer, the data will be 2406 * dropped, and a corresponding counter incremented. 2407 */ 2408 static void 2409 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2410 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2411 { 2412 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2413 uint32_t i, ndx, size, fsize; 2414 uint32_t align = sizeof (uint64_t) - 1; 2415 dtrace_aggbuffer_t *agb; 2416 dtrace_aggkey_t *key; 2417 uint32_t hashval = 0, limit, isstr; 2418 caddr_t tomax, data, kdata; 2419 dtrace_actkind_t action; 2420 dtrace_action_t *act; 2421 uintptr_t offs; 2422 2423 if (buf == NULL) 2424 return; 2425 2426 if (!agg->dtag_hasarg) { 2427 /* 2428 * Currently, only quantize() and lquantize() take additional 2429 * arguments, and they have the same semantics: an increment 2430 * value that defaults to 1 when not present. If additional 2431 * aggregating actions take arguments, the setting of the 2432 * default argument value will presumably have to become more 2433 * sophisticated... 2434 */ 2435 arg = 1; 2436 } 2437 2438 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2439 size = rec->dtrd_offset - agg->dtag_base; 2440 fsize = size + rec->dtrd_size; 2441 2442 ASSERT(dbuf->dtb_tomax != NULL); 2443 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2444 2445 if ((tomax = buf->dtb_tomax) == NULL) { 2446 dtrace_buffer_drop(buf); 2447 return; 2448 } 2449 2450 /* 2451 * The metastructure is always at the bottom of the buffer. 2452 */ 2453 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2454 sizeof (dtrace_aggbuffer_t)); 2455 2456 if (buf->dtb_offset == 0) { 2457 /* 2458 * We just kludge up approximately 1/8th of the size to be 2459 * buckets. If this guess ends up being routinely 2460 * off-the-mark, we may need to dynamically readjust this 2461 * based on past performance. 2462 */ 2463 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2464 2465 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2466 (uintptr_t)tomax || hashsize == 0) { 2467 /* 2468 * We've been given a ludicrously small buffer; 2469 * increment our drop count and leave. 2470 */ 2471 dtrace_buffer_drop(buf); 2472 return; 2473 } 2474 2475 /* 2476 * And now, a pathetic attempt to try to get a an odd (or 2477 * perchance, a prime) hash size for better hash distribution. 2478 */ 2479 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2480 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2481 2482 agb->dtagb_hashsize = hashsize; 2483 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2484 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2485 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2486 2487 for (i = 0; i < agb->dtagb_hashsize; i++) 2488 agb->dtagb_hash[i] = NULL; 2489 } 2490 2491 ASSERT(agg->dtag_first != NULL); 2492 ASSERT(agg->dtag_first->dta_intuple); 2493 2494 /* 2495 * Calculate the hash value based on the key. Note that we _don't_ 2496 * include the aggid in the hashing (but we will store it as part of 2497 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2498 * algorithm: a simple, quick algorithm that has no known funnels, and 2499 * gets good distribution in practice. The efficacy of the hashing 2500 * algorithm (and a comparison with other algorithms) may be found by 2501 * running the ::dtrace_aggstat MDB dcmd. 2502 */ 2503 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2504 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2505 limit = i + act->dta_rec.dtrd_size; 2506 ASSERT(limit <= size); 2507 isstr = DTRACEACT_ISSTRING(act); 2508 2509 for (; i < limit; i++) { 2510 hashval += data[i]; 2511 hashval += (hashval << 10); 2512 hashval ^= (hashval >> 6); 2513 2514 if (isstr && data[i] == '\0') 2515 break; 2516 } 2517 } 2518 2519 hashval += (hashval << 3); 2520 hashval ^= (hashval >> 11); 2521 hashval += (hashval << 15); 2522 2523 /* 2524 * Yes, the divide here is expensive -- but it's generally the least 2525 * of the performance issues given the amount of data that we iterate 2526 * over to compute hash values, compare data, etc. 2527 */ 2528 ndx = hashval % agb->dtagb_hashsize; 2529 2530 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2531 ASSERT((caddr_t)key >= tomax); 2532 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2533 2534 if (hashval != key->dtak_hashval || key->dtak_size != size) 2535 continue; 2536 2537 kdata = key->dtak_data; 2538 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2539 2540 for (act = agg->dtag_first; act->dta_intuple; 2541 act = act->dta_next) { 2542 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2543 limit = i + act->dta_rec.dtrd_size; 2544 ASSERT(limit <= size); 2545 isstr = DTRACEACT_ISSTRING(act); 2546 2547 for (; i < limit; i++) { 2548 if (kdata[i] != data[i]) 2549 goto next; 2550 2551 if (isstr && data[i] == '\0') 2552 break; 2553 } 2554 } 2555 2556 if (action != key->dtak_action) { 2557 /* 2558 * We are aggregating on the same value in the same 2559 * aggregation with two different aggregating actions. 2560 * (This should have been picked up in the compiler, 2561 * so we may be dealing with errant or devious DIF.) 2562 * This is an error condition; we indicate as much, 2563 * and return. 2564 */ 2565 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2566 return; 2567 } 2568 2569 /* 2570 * This is a hit: we need to apply the aggregator to 2571 * the value at this key. 2572 */ 2573 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2574 return; 2575 next: 2576 continue; 2577 } 2578 2579 /* 2580 * We didn't find it. We need to allocate some zero-filled space, 2581 * link it into the hash table appropriately, and apply the aggregator 2582 * to the (zero-filled) value. 2583 */ 2584 offs = buf->dtb_offset; 2585 while (offs & (align - 1)) 2586 offs += sizeof (uint32_t); 2587 2588 /* 2589 * If we don't have enough room to both allocate a new key _and_ 2590 * its associated data, increment the drop count and return. 2591 */ 2592 if ((uintptr_t)tomax + offs + fsize > 2593 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2594 dtrace_buffer_drop(buf); 2595 return; 2596 } 2597 2598 /*CONSTCOND*/ 2599 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2600 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2601 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2602 2603 key->dtak_data = kdata = tomax + offs; 2604 buf->dtb_offset = offs + fsize; 2605 2606 /* 2607 * Now copy the data across. 2608 */ 2609 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2610 2611 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2612 kdata[i] = data[i]; 2613 2614 /* 2615 * Because strings are not zeroed out by default, we need to iterate 2616 * looking for actions that store strings, and we need to explicitly 2617 * pad these strings out with zeroes. 2618 */ 2619 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2620 int nul; 2621 2622 if (!DTRACEACT_ISSTRING(act)) 2623 continue; 2624 2625 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2626 limit = i + act->dta_rec.dtrd_size; 2627 ASSERT(limit <= size); 2628 2629 for (nul = 0; i < limit; i++) { 2630 if (nul) { 2631 kdata[i] = '\0'; 2632 continue; 2633 } 2634 2635 if (data[i] != '\0') 2636 continue; 2637 2638 nul = 1; 2639 } 2640 } 2641 2642 for (i = size; i < fsize; i++) 2643 kdata[i] = 0; 2644 2645 key->dtak_hashval = hashval; 2646 key->dtak_size = size; 2647 key->dtak_action = action; 2648 key->dtak_next = agb->dtagb_hash[ndx]; 2649 agb->dtagb_hash[ndx] = key; 2650 2651 /* 2652 * Finally, apply the aggregator. 2653 */ 2654 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2655 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2656 } 2657 2658 /* 2659 * Given consumer state, this routine finds a speculation in the INACTIVE 2660 * state and transitions it into the ACTIVE state. If there is no speculation 2661 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2662 * incremented -- it is up to the caller to take appropriate action. 2663 */ 2664 static int 2665 dtrace_speculation(dtrace_state_t *state) 2666 { 2667 int i = 0; 2668 dtrace_speculation_state_t current; 2669 uint32_t *stat = &state->dts_speculations_unavail, count; 2670 2671 while (i < state->dts_nspeculations) { 2672 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2673 2674 current = spec->dtsp_state; 2675 2676 if (current != DTRACESPEC_INACTIVE) { 2677 if (current == DTRACESPEC_COMMITTINGMANY || 2678 current == DTRACESPEC_COMMITTING || 2679 current == DTRACESPEC_DISCARDING) 2680 stat = &state->dts_speculations_busy; 2681 i++; 2682 continue; 2683 } 2684 2685 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2686 current, DTRACESPEC_ACTIVE) == current) 2687 return (i + 1); 2688 } 2689 2690 /* 2691 * We couldn't find a speculation. If we found as much as a single 2692 * busy speculation buffer, we'll attribute this failure as "busy" 2693 * instead of "unavail". 2694 */ 2695 do { 2696 count = *stat; 2697 } while (dtrace_cas32(stat, count, count + 1) != count); 2698 2699 return (0); 2700 } 2701 2702 /* 2703 * This routine commits an active speculation. If the specified speculation 2704 * is not in a valid state to perform a commit(), this routine will silently do 2705 * nothing. The state of the specified speculation is transitioned according 2706 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2707 */ 2708 static void 2709 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2710 dtrace_specid_t which) 2711 { 2712 dtrace_speculation_t *spec; 2713 dtrace_buffer_t *src, *dest; 2714 uintptr_t daddr, saddr, dlimit, slimit; 2715 dtrace_speculation_state_t current, new; 2716 intptr_t offs; 2717 uint64_t timestamp; 2718 2719 if (which == 0) 2720 return; 2721 2722 if (which > state->dts_nspeculations) { 2723 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2724 return; 2725 } 2726 2727 spec = &state->dts_speculations[which - 1]; 2728 src = &spec->dtsp_buffer[cpu]; 2729 dest = &state->dts_buffer[cpu]; 2730 2731 do { 2732 current = spec->dtsp_state; 2733 2734 if (current == DTRACESPEC_COMMITTINGMANY) 2735 break; 2736 2737 switch (current) { 2738 case DTRACESPEC_INACTIVE: 2739 case DTRACESPEC_DISCARDING: 2740 return; 2741 2742 case DTRACESPEC_COMMITTING: 2743 /* 2744 * This is only possible if we are (a) commit()'ing 2745 * without having done a prior speculate() on this CPU 2746 * and (b) racing with another commit() on a different 2747 * CPU. There's nothing to do -- we just assert that 2748 * our offset is 0. 2749 */ 2750 ASSERT(src->dtb_offset == 0); 2751 return; 2752 2753 case DTRACESPEC_ACTIVE: 2754 new = DTRACESPEC_COMMITTING; 2755 break; 2756 2757 case DTRACESPEC_ACTIVEONE: 2758 /* 2759 * This speculation is active on one CPU. If our 2760 * buffer offset is non-zero, we know that the one CPU 2761 * must be us. Otherwise, we are committing on a 2762 * different CPU from the speculate(), and we must 2763 * rely on being asynchronously cleaned. 2764 */ 2765 if (src->dtb_offset != 0) { 2766 new = DTRACESPEC_COMMITTING; 2767 break; 2768 } 2769 /*FALLTHROUGH*/ 2770 2771 case DTRACESPEC_ACTIVEMANY: 2772 new = DTRACESPEC_COMMITTINGMANY; 2773 break; 2774 2775 default: 2776 ASSERT(0); 2777 } 2778 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2779 current, new) != current); 2780 2781 /* 2782 * We have set the state to indicate that we are committing this 2783 * speculation. Now reserve the necessary space in the destination 2784 * buffer. 2785 */ 2786 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2787 sizeof (uint64_t), state, NULL)) < 0) { 2788 dtrace_buffer_drop(dest); 2789 goto out; 2790 } 2791 2792 /* 2793 * We have sufficient space to copy the speculative buffer into the 2794 * primary buffer. First, modify the speculative buffer, filling 2795 * in the timestamp of all entries with the current time. The data 2796 * must have the commit() time rather than the time it was traced, 2797 * so that all entries in the primary buffer are in timestamp order. 2798 */ 2799 timestamp = dtrace_gethrtime(); 2800 saddr = (uintptr_t)src->dtb_tomax; 2801 slimit = saddr + src->dtb_offset; 2802 while (saddr < slimit) { 2803 size_t size; 2804 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2805 2806 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2807 saddr += sizeof (dtrace_epid_t); 2808 continue; 2809 } 2810 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2811 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2812 2813 ASSERT3U(saddr + size, <=, slimit); 2814 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2815 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2816 2817 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2818 2819 saddr += size; 2820 } 2821 2822 /* 2823 * Copy the buffer across. (Note that this is a 2824 * highly subobtimal bcopy(); in the unlikely event that this becomes 2825 * a serious performance issue, a high-performance DTrace-specific 2826 * bcopy() should obviously be invented.) 2827 */ 2828 daddr = (uintptr_t)dest->dtb_tomax + offs; 2829 dlimit = daddr + src->dtb_offset; 2830 saddr = (uintptr_t)src->dtb_tomax; 2831 2832 /* 2833 * First, the aligned portion. 2834 */ 2835 while (dlimit - daddr >= sizeof (uint64_t)) { 2836 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2837 2838 daddr += sizeof (uint64_t); 2839 saddr += sizeof (uint64_t); 2840 } 2841 2842 /* 2843 * Now any left-over bit... 2844 */ 2845 while (dlimit - daddr) 2846 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2847 2848 /* 2849 * Finally, commit the reserved space in the destination buffer. 2850 */ 2851 dest->dtb_offset = offs + src->dtb_offset; 2852 2853 out: 2854 /* 2855 * If we're lucky enough to be the only active CPU on this speculation 2856 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2857 */ 2858 if (current == DTRACESPEC_ACTIVE || 2859 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2860 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2861 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2862 2863 ASSERT(rval == DTRACESPEC_COMMITTING); 2864 } 2865 2866 src->dtb_offset = 0; 2867 src->dtb_xamot_drops += src->dtb_drops; 2868 src->dtb_drops = 0; 2869 } 2870 2871 /* 2872 * This routine discards an active speculation. If the specified speculation 2873 * is not in a valid state to perform a discard(), this routine will silently 2874 * do nothing. The state of the specified speculation is transitioned 2875 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2876 */ 2877 static void 2878 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2879 dtrace_specid_t which) 2880 { 2881 dtrace_speculation_t *spec; 2882 dtrace_speculation_state_t current, new; 2883 dtrace_buffer_t *buf; 2884 2885 if (which == 0) 2886 return; 2887 2888 if (which > state->dts_nspeculations) { 2889 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2890 return; 2891 } 2892 2893 spec = &state->dts_speculations[which - 1]; 2894 buf = &spec->dtsp_buffer[cpu]; 2895 2896 do { 2897 current = spec->dtsp_state; 2898 2899 switch (current) { 2900 case DTRACESPEC_INACTIVE: 2901 case DTRACESPEC_COMMITTINGMANY: 2902 case DTRACESPEC_COMMITTING: 2903 case DTRACESPEC_DISCARDING: 2904 return; 2905 2906 case DTRACESPEC_ACTIVE: 2907 case DTRACESPEC_ACTIVEMANY: 2908 new = DTRACESPEC_DISCARDING; 2909 break; 2910 2911 case DTRACESPEC_ACTIVEONE: 2912 if (buf->dtb_offset != 0) { 2913 new = DTRACESPEC_INACTIVE; 2914 } else { 2915 new = DTRACESPEC_DISCARDING; 2916 } 2917 break; 2918 2919 default: 2920 ASSERT(0); 2921 } 2922 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2923 current, new) != current); 2924 2925 buf->dtb_offset = 0; 2926 buf->dtb_drops = 0; 2927 } 2928 2929 /* 2930 * Note: not called from probe context. This function is called 2931 * asynchronously from cross call context to clean any speculations that are 2932 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2933 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2934 * speculation. 2935 */ 2936 static void 2937 dtrace_speculation_clean_here(dtrace_state_t *state) 2938 { 2939 dtrace_icookie_t cookie; 2940 processorid_t cpu = CPU->cpu_id; 2941 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2942 dtrace_specid_t i; 2943 2944 cookie = dtrace_interrupt_disable(); 2945 2946 if (dest->dtb_tomax == NULL) { 2947 dtrace_interrupt_enable(cookie); 2948 return; 2949 } 2950 2951 for (i = 0; i < state->dts_nspeculations; i++) { 2952 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2953 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2954 2955 if (src->dtb_tomax == NULL) 2956 continue; 2957 2958 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2959 src->dtb_offset = 0; 2960 continue; 2961 } 2962 2963 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2964 continue; 2965 2966 if (src->dtb_offset == 0) 2967 continue; 2968 2969 dtrace_speculation_commit(state, cpu, i + 1); 2970 } 2971 2972 dtrace_interrupt_enable(cookie); 2973 } 2974 2975 /* 2976 * Note: not called from probe context. This function is called 2977 * asynchronously (and at a regular interval) to clean any speculations that 2978 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2979 * is work to be done, it cross calls all CPUs to perform that work; 2980 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2981 * INACTIVE state until they have been cleaned by all CPUs. 2982 */ 2983 static void 2984 dtrace_speculation_clean(dtrace_state_t *state) 2985 { 2986 int work = 0, rv; 2987 dtrace_specid_t i; 2988 2989 for (i = 0; i < state->dts_nspeculations; i++) { 2990 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2991 2992 ASSERT(!spec->dtsp_cleaning); 2993 2994 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2995 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2996 continue; 2997 2998 work++; 2999 spec->dtsp_cleaning = 1; 3000 } 3001 3002 if (!work) 3003 return; 3004 3005 dtrace_xcall(DTRACE_CPUALL, 3006 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 3007 3008 /* 3009 * We now know that all CPUs have committed or discarded their 3010 * speculation buffers, as appropriate. We can now set the state 3011 * to inactive. 3012 */ 3013 for (i = 0; i < state->dts_nspeculations; i++) { 3014 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3015 dtrace_speculation_state_t current, new; 3016 3017 if (!spec->dtsp_cleaning) 3018 continue; 3019 3020 current = spec->dtsp_state; 3021 ASSERT(current == DTRACESPEC_DISCARDING || 3022 current == DTRACESPEC_COMMITTINGMANY); 3023 3024 new = DTRACESPEC_INACTIVE; 3025 3026 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 3027 ASSERT(rv == current); 3028 spec->dtsp_cleaning = 0; 3029 } 3030 } 3031 3032 /* 3033 * Called as part of a speculate() to get the speculative buffer associated 3034 * with a given speculation. Returns NULL if the specified speculation is not 3035 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 3036 * the active CPU is not the specified CPU -- the speculation will be 3037 * atomically transitioned into the ACTIVEMANY state. 3038 */ 3039 static dtrace_buffer_t * 3040 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 3041 dtrace_specid_t which) 3042 { 3043 dtrace_speculation_t *spec; 3044 dtrace_speculation_state_t current, new; 3045 dtrace_buffer_t *buf; 3046 3047 if (which == 0) 3048 return (NULL); 3049 3050 if (which > state->dts_nspeculations) { 3051 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3052 return (NULL); 3053 } 3054 3055 spec = &state->dts_speculations[which - 1]; 3056 buf = &spec->dtsp_buffer[cpuid]; 3057 3058 do { 3059 current = spec->dtsp_state; 3060 3061 switch (current) { 3062 case DTRACESPEC_INACTIVE: 3063 case DTRACESPEC_COMMITTINGMANY: 3064 case DTRACESPEC_DISCARDING: 3065 return (NULL); 3066 3067 case DTRACESPEC_COMMITTING: 3068 ASSERT(buf->dtb_offset == 0); 3069 return (NULL); 3070 3071 case DTRACESPEC_ACTIVEONE: 3072 /* 3073 * This speculation is currently active on one CPU. 3074 * Check the offset in the buffer; if it's non-zero, 3075 * that CPU must be us (and we leave the state alone). 3076 * If it's zero, assume that we're starting on a new 3077 * CPU -- and change the state to indicate that the 3078 * speculation is active on more than one CPU. 3079 */ 3080 if (buf->dtb_offset != 0) 3081 return (buf); 3082 3083 new = DTRACESPEC_ACTIVEMANY; 3084 break; 3085 3086 case DTRACESPEC_ACTIVEMANY: 3087 return (buf); 3088 3089 case DTRACESPEC_ACTIVE: 3090 new = DTRACESPEC_ACTIVEONE; 3091 break; 3092 3093 default: 3094 ASSERT(0); 3095 } 3096 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3097 current, new) != current); 3098 3099 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 3100 return (buf); 3101 } 3102 3103 /* 3104 * Return a string. In the event that the user lacks the privilege to access 3105 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3106 * don't fail access checking. 3107 * 3108 * dtrace_dif_variable() uses this routine as a helper for various 3109 * builtin values such as 'execname' and 'probefunc.' 3110 */ 3111 uintptr_t 3112 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 3113 dtrace_mstate_t *mstate) 3114 { 3115 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3116 uintptr_t ret; 3117 size_t strsz; 3118 3119 /* 3120 * The easy case: this probe is allowed to read all of memory, so 3121 * we can just return this as a vanilla pointer. 3122 */ 3123 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 3124 return (addr); 3125 3126 /* 3127 * This is the tougher case: we copy the string in question from 3128 * kernel memory into scratch memory and return it that way: this 3129 * ensures that we won't trip up when access checking tests the 3130 * BYREF return value. 3131 */ 3132 strsz = dtrace_strlen((char *)addr, size) + 1; 3133 3134 if (mstate->dtms_scratch_ptr + strsz > 3135 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3136 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3137 return (NULL); 3138 } 3139 3140 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3141 strsz); 3142 ret = mstate->dtms_scratch_ptr; 3143 mstate->dtms_scratch_ptr += strsz; 3144 return (ret); 3145 } 3146 3147 /* 3148 * This function implements the DIF emulator's variable lookups. The emulator 3149 * passes a reserved variable identifier and optional built-in array index. 3150 */ 3151 static uint64_t 3152 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3153 uint64_t ndx) 3154 { 3155 /* 3156 * If we're accessing one of the uncached arguments, we'll turn this 3157 * into a reference in the args array. 3158 */ 3159 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3160 ndx = v - DIF_VAR_ARG0; 3161 v = DIF_VAR_ARGS; 3162 } 3163 3164 switch (v) { 3165 case DIF_VAR_ARGS: 3166 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) { 3167 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= 3168 CPU_DTRACE_KPRIV; 3169 return (0); 3170 } 3171 3172 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3173 if (ndx >= sizeof (mstate->dtms_arg) / 3174 sizeof (mstate->dtms_arg[0])) { 3175 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3176 dtrace_provider_t *pv; 3177 uint64_t val; 3178 3179 pv = mstate->dtms_probe->dtpr_provider; 3180 if (pv->dtpv_pops.dtps_getargval != NULL) 3181 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3182 mstate->dtms_probe->dtpr_id, 3183 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3184 else 3185 val = dtrace_getarg(ndx, aframes); 3186 3187 /* 3188 * This is regrettably required to keep the compiler 3189 * from tail-optimizing the call to dtrace_getarg(). 3190 * The condition always evaluates to true, but the 3191 * compiler has no way of figuring that out a priori. 3192 * (None of this would be necessary if the compiler 3193 * could be relied upon to _always_ tail-optimize 3194 * the call to dtrace_getarg() -- but it can't.) 3195 */ 3196 if (mstate->dtms_probe != NULL) 3197 return (val); 3198 3199 ASSERT(0); 3200 } 3201 3202 return (mstate->dtms_arg[ndx]); 3203 3204 case DIF_VAR_UREGS: { 3205 klwp_t *lwp; 3206 3207 if (!dtrace_priv_proc(state, mstate)) 3208 return (0); 3209 3210 if ((lwp = curthread->t_lwp) == NULL) { 3211 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3212 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 3213 return (0); 3214 } 3215 3216 return (dtrace_getreg(lwp->lwp_regs, ndx)); 3217 } 3218 3219 case DIF_VAR_VMREGS: { 3220 uint64_t rval; 3221 3222 if (!dtrace_priv_kernel(state)) 3223 return (0); 3224 3225 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3226 3227 rval = dtrace_getvmreg(ndx, 3228 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags); 3229 3230 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3231 3232 return (rval); 3233 } 3234 3235 case DIF_VAR_CURTHREAD: 3236 if (!dtrace_priv_proc(state, mstate)) 3237 return (0); 3238 return ((uint64_t)(uintptr_t)curthread); 3239 3240 case DIF_VAR_TIMESTAMP: 3241 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3242 mstate->dtms_timestamp = dtrace_gethrtime(); 3243 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3244 } 3245 return (mstate->dtms_timestamp); 3246 3247 case DIF_VAR_VTIMESTAMP: 3248 ASSERT(dtrace_vtime_references != 0); 3249 return (curthread->t_dtrace_vtime); 3250 3251 case DIF_VAR_WALLTIMESTAMP: 3252 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3253 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3254 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3255 } 3256 return (mstate->dtms_walltimestamp); 3257 3258 case DIF_VAR_IPL: 3259 if (!dtrace_priv_kernel(state)) 3260 return (0); 3261 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3262 mstate->dtms_ipl = dtrace_getipl(); 3263 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3264 } 3265 return (mstate->dtms_ipl); 3266 3267 case DIF_VAR_EPID: 3268 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3269 return (mstate->dtms_epid); 3270 3271 case DIF_VAR_ID: 3272 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3273 return (mstate->dtms_probe->dtpr_id); 3274 3275 case DIF_VAR_STACKDEPTH: 3276 if (!dtrace_priv_kernel(state)) 3277 return (0); 3278 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3279 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3280 3281 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3282 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3283 } 3284 return (mstate->dtms_stackdepth); 3285 3286 case DIF_VAR_USTACKDEPTH: 3287 if (!dtrace_priv_proc(state, mstate)) 3288 return (0); 3289 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3290 /* 3291 * See comment in DIF_VAR_PID. 3292 */ 3293 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3294 CPU_ON_INTR(CPU)) { 3295 mstate->dtms_ustackdepth = 0; 3296 } else { 3297 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3298 mstate->dtms_ustackdepth = 3299 dtrace_getustackdepth(); 3300 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3301 } 3302 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3303 } 3304 return (mstate->dtms_ustackdepth); 3305 3306 case DIF_VAR_CALLER: 3307 if (!dtrace_priv_kernel(state)) 3308 return (0); 3309 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3310 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3311 3312 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3313 /* 3314 * If this is an unanchored probe, we are 3315 * required to go through the slow path: 3316 * dtrace_caller() only guarantees correct 3317 * results for anchored probes. 3318 */ 3319 pc_t caller[2]; 3320 3321 dtrace_getpcstack(caller, 2, aframes, 3322 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3323 mstate->dtms_caller = caller[1]; 3324 } else if ((mstate->dtms_caller = 3325 dtrace_caller(aframes)) == -1) { 3326 /* 3327 * We have failed to do this the quick way; 3328 * we must resort to the slower approach of 3329 * calling dtrace_getpcstack(). 3330 */ 3331 pc_t caller; 3332 3333 dtrace_getpcstack(&caller, 1, aframes, NULL); 3334 mstate->dtms_caller = caller; 3335 } 3336 3337 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3338 } 3339 return (mstate->dtms_caller); 3340 3341 case DIF_VAR_UCALLER: 3342 if (!dtrace_priv_proc(state, mstate)) 3343 return (0); 3344 3345 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3346 uint64_t ustack[3]; 3347 3348 /* 3349 * dtrace_getupcstack() fills in the first uint64_t 3350 * with the current PID. The second uint64_t will 3351 * be the program counter at user-level. The third 3352 * uint64_t will contain the caller, which is what 3353 * we're after. 3354 */ 3355 ustack[2] = NULL; 3356 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3357 dtrace_getupcstack(ustack, 3); 3358 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3359 mstate->dtms_ucaller = ustack[2]; 3360 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3361 } 3362 3363 return (mstate->dtms_ucaller); 3364 3365 case DIF_VAR_PROBEPROV: 3366 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3367 return (dtrace_dif_varstr( 3368 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3369 state, mstate)); 3370 3371 case DIF_VAR_PROBEMOD: 3372 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3373 return (dtrace_dif_varstr( 3374 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3375 state, mstate)); 3376 3377 case DIF_VAR_PROBEFUNC: 3378 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3379 return (dtrace_dif_varstr( 3380 (uintptr_t)mstate->dtms_probe->dtpr_func, 3381 state, mstate)); 3382 3383 case DIF_VAR_PROBENAME: 3384 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3385 return (dtrace_dif_varstr( 3386 (uintptr_t)mstate->dtms_probe->dtpr_name, 3387 state, mstate)); 3388 3389 case DIF_VAR_PID: 3390 if (!dtrace_priv_proc(state, mstate)) 3391 return (0); 3392 3393 /* 3394 * Note that we are assuming that an unanchored probe is 3395 * always due to a high-level interrupt. (And we're assuming 3396 * that there is only a single high level interrupt.) 3397 */ 3398 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3399 return (pid0.pid_id); 3400 3401 /* 3402 * It is always safe to dereference one's own t_procp pointer: 3403 * it always points to a valid, allocated proc structure. 3404 * Further, it is always safe to dereference the p_pidp member 3405 * of one's own proc structure. (These are truisms becuase 3406 * threads and processes don't clean up their own state -- 3407 * they leave that task to whomever reaps them.) 3408 */ 3409 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3410 3411 case DIF_VAR_PPID: 3412 if (!dtrace_priv_proc(state, mstate)) 3413 return (0); 3414 3415 /* 3416 * See comment in DIF_VAR_PID. 3417 */ 3418 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3419 return (pid0.pid_id); 3420 3421 /* 3422 * It is always safe to dereference one's own t_procp pointer: 3423 * it always points to a valid, allocated proc structure. 3424 * (This is true because threads don't clean up their own 3425 * state -- they leave that task to whomever reaps them.) 3426 */ 3427 return ((uint64_t)curthread->t_procp->p_ppid); 3428 3429 case DIF_VAR_TID: 3430 /* 3431 * See comment in DIF_VAR_PID. 3432 */ 3433 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3434 return (0); 3435 3436 return ((uint64_t)curthread->t_tid); 3437 3438 case DIF_VAR_EXECNAME: 3439 if (!dtrace_priv_proc(state, mstate)) 3440 return (0); 3441 3442 /* 3443 * See comment in DIF_VAR_PID. 3444 */ 3445 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3446 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3447 3448 /* 3449 * It is always safe to dereference one's own t_procp pointer: 3450 * it always points to a valid, allocated proc structure. 3451 * (This is true because threads don't clean up their own 3452 * state -- they leave that task to whomever reaps them.) 3453 */ 3454 return (dtrace_dif_varstr( 3455 (uintptr_t)curthread->t_procp->p_user.u_comm, 3456 state, mstate)); 3457 3458 case DIF_VAR_ZONENAME: 3459 if (!dtrace_priv_proc(state, mstate)) 3460 return (0); 3461 3462 /* 3463 * See comment in DIF_VAR_PID. 3464 */ 3465 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3466 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3467 3468 /* 3469 * It is always safe to dereference one's own t_procp pointer: 3470 * it always points to a valid, allocated proc structure. 3471 * (This is true because threads don't clean up their own 3472 * state -- they leave that task to whomever reaps them.) 3473 */ 3474 return (dtrace_dif_varstr( 3475 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3476 state, mstate)); 3477 3478 case DIF_VAR_UID: 3479 if (!dtrace_priv_proc(state, mstate)) 3480 return (0); 3481 3482 /* 3483 * See comment in DIF_VAR_PID. 3484 */ 3485 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3486 return ((uint64_t)p0.p_cred->cr_uid); 3487 3488 /* 3489 * It is always safe to dereference one's own t_procp pointer: 3490 * it always points to a valid, allocated proc structure. 3491 * (This is true because threads don't clean up their own 3492 * state -- they leave that task to whomever reaps them.) 3493 * 3494 * Additionally, it is safe to dereference one's own process 3495 * credential, since this is never NULL after process birth. 3496 */ 3497 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3498 3499 case DIF_VAR_GID: 3500 if (!dtrace_priv_proc(state, mstate)) 3501 return (0); 3502 3503 /* 3504 * See comment in DIF_VAR_PID. 3505 */ 3506 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3507 return ((uint64_t)p0.p_cred->cr_gid); 3508 3509 /* 3510 * It is always safe to dereference one's own t_procp pointer: 3511 * it always points to a valid, allocated proc structure. 3512 * (This is true because threads don't clean up their own 3513 * state -- they leave that task to whomever reaps them.) 3514 * 3515 * Additionally, it is safe to dereference one's own process 3516 * credential, since this is never NULL after process birth. 3517 */ 3518 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3519 3520 case DIF_VAR_ERRNO: { 3521 klwp_t *lwp; 3522 if (!dtrace_priv_proc(state, mstate)) 3523 return (0); 3524 3525 /* 3526 * See comment in DIF_VAR_PID. 3527 */ 3528 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3529 return (0); 3530 3531 /* 3532 * It is always safe to dereference one's own t_lwp pointer in 3533 * the event that this pointer is non-NULL. (This is true 3534 * because threads and lwps don't clean up their own state -- 3535 * they leave that task to whomever reaps them.) 3536 */ 3537 if ((lwp = curthread->t_lwp) == NULL) 3538 return (0); 3539 3540 return ((uint64_t)lwp->lwp_errno); 3541 } 3542 default: 3543 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3544 return (0); 3545 } 3546 } 3547 3548 static void 3549 dtrace_dif_variable_write(dtrace_mstate_t *mstate, dtrace_state_t *state, 3550 uint64_t v, uint64_t ndx, uint64_t data) 3551 { 3552 switch (v) { 3553 case DIF_VAR_UREGS: { 3554 klwp_t *lwp; 3555 3556 if (dtrace_destructive_disallow || 3557 !dtrace_priv_proc_control(state, mstate)) { 3558 return; 3559 } 3560 3561 if ((lwp = curthread->t_lwp) == NULL) { 3562 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3563 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 3564 return; 3565 } 3566 3567 dtrace_setreg(lwp->lwp_regs, ndx, data); 3568 return; 3569 } 3570 3571 default: 3572 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3573 return; 3574 } 3575 } 3576 3577 typedef enum dtrace_json_state { 3578 DTRACE_JSON_REST = 1, 3579 DTRACE_JSON_OBJECT, 3580 DTRACE_JSON_STRING, 3581 DTRACE_JSON_STRING_ESCAPE, 3582 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3583 DTRACE_JSON_COLON, 3584 DTRACE_JSON_COMMA, 3585 DTRACE_JSON_VALUE, 3586 DTRACE_JSON_IDENTIFIER, 3587 DTRACE_JSON_NUMBER, 3588 DTRACE_JSON_NUMBER_FRAC, 3589 DTRACE_JSON_NUMBER_EXP, 3590 DTRACE_JSON_COLLECT_OBJECT 3591 } dtrace_json_state_t; 3592 3593 /* 3594 * This function possesses just enough knowledge about JSON to extract a single 3595 * value from a JSON string and store it in the scratch buffer. It is able 3596 * to extract nested object values, and members of arrays by index. 3597 * 3598 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3599 * be looked up as we descend into the object tree. e.g. 3600 * 3601 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3602 * with nelems = 5. 3603 * 3604 * The run time of this function must be bounded above by strsize to limit the 3605 * amount of work done in probe context. As such, it is implemented as a 3606 * simple state machine, reading one character at a time using safe loads 3607 * until we find the requested element, hit a parsing error or run off the 3608 * end of the object or string. 3609 * 3610 * As there is no way for a subroutine to return an error without interrupting 3611 * clause execution, we simply return NULL in the event of a missing key or any 3612 * other error condition. Each NULL return in this function is commented with 3613 * the error condition it represents -- parsing or otherwise. 3614 * 3615 * The set of states for the state machine closely matches the JSON 3616 * specification (http://json.org/). Briefly: 3617 * 3618 * DTRACE_JSON_REST: 3619 * Skip whitespace until we find either a top-level Object, moving 3620 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3621 * 3622 * DTRACE_JSON_OBJECT: 3623 * Locate the next key String in an Object. Sets a flag to denote 3624 * the next String as a key string and moves to DTRACE_JSON_STRING. 3625 * 3626 * DTRACE_JSON_COLON: 3627 * Skip whitespace until we find the colon that separates key Strings 3628 * from their values. Once found, move to DTRACE_JSON_VALUE. 3629 * 3630 * DTRACE_JSON_VALUE: 3631 * Detects the type of the next value (String, Number, Identifier, Object 3632 * or Array) and routes to the states that process that type. Here we also 3633 * deal with the element selector list if we are requested to traverse down 3634 * into the object tree. 3635 * 3636 * DTRACE_JSON_COMMA: 3637 * Skip whitespace until we find the comma that separates key-value pairs 3638 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3639 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3640 * states return to this state at the end of their value, unless otherwise 3641 * noted. 3642 * 3643 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3644 * Processes a Number literal from the JSON, including any exponent 3645 * component that may be present. Numbers are returned as strings, which 3646 * may be passed to strtoll() if an integer is required. 3647 * 3648 * DTRACE_JSON_IDENTIFIER: 3649 * Processes a "true", "false" or "null" literal in the JSON. 3650 * 3651 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3652 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3653 * Processes a String literal from the JSON, whether the String denotes 3654 * a key, a value or part of a larger Object. Handles all escape sequences 3655 * present in the specification, including four-digit unicode characters, 3656 * but merely includes the escape sequence without converting it to the 3657 * actual escaped character. If the String is flagged as a key, we 3658 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3659 * 3660 * DTRACE_JSON_COLLECT_OBJECT: 3661 * This state collects an entire Object (or Array), correctly handling 3662 * embedded strings. If the full element selector list matches this nested 3663 * object, we return the Object in full as a string. If not, we use this 3664 * state to skip to the next value at this level and continue processing. 3665 * 3666 * NOTE: This function uses various macros from strtolctype.h to manipulate 3667 * digit values, etc -- these have all been checked to ensure they make 3668 * no additional function calls. 3669 */ 3670 static char * 3671 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3672 char *dest) 3673 { 3674 dtrace_json_state_t state = DTRACE_JSON_REST; 3675 int64_t array_elem = INT64_MIN; 3676 int64_t array_pos = 0; 3677 uint8_t escape_unicount = 0; 3678 boolean_t string_is_key = B_FALSE; 3679 boolean_t collect_object = B_FALSE; 3680 boolean_t found_key = B_FALSE; 3681 boolean_t in_array = B_FALSE; 3682 uint32_t braces = 0, brackets = 0; 3683 char *elem = elemlist; 3684 char *dd = dest; 3685 uintptr_t cur; 3686 3687 for (cur = json; cur < json + size; cur++) { 3688 char cc = dtrace_load8(cur); 3689 if (cc == '\0') 3690 return (NULL); 3691 3692 switch (state) { 3693 case DTRACE_JSON_REST: 3694 if (isspace(cc)) 3695 break; 3696 3697 if (cc == '{') { 3698 state = DTRACE_JSON_OBJECT; 3699 break; 3700 } 3701 3702 if (cc == '[') { 3703 in_array = B_TRUE; 3704 array_pos = 0; 3705 array_elem = dtrace_strtoll(elem, 10, size); 3706 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3707 state = DTRACE_JSON_VALUE; 3708 break; 3709 } 3710 3711 /* 3712 * ERROR: expected to find a top-level object or array. 3713 */ 3714 return (NULL); 3715 case DTRACE_JSON_OBJECT: 3716 if (isspace(cc)) 3717 break; 3718 3719 if (cc == '"') { 3720 state = DTRACE_JSON_STRING; 3721 string_is_key = B_TRUE; 3722 break; 3723 } 3724 3725 /* 3726 * ERROR: either the object did not start with a key 3727 * string, or we've run off the end of the object 3728 * without finding the requested key. 3729 */ 3730 return (NULL); 3731 case DTRACE_JSON_STRING: 3732 if (cc == '\\') { 3733 *dd++ = '\\'; 3734 state = DTRACE_JSON_STRING_ESCAPE; 3735 break; 3736 } 3737 3738 if (cc == '"') { 3739 if (collect_object) { 3740 /* 3741 * We don't reset the dest here, as 3742 * the string is part of a larger 3743 * object being collected. 3744 */ 3745 *dd++ = cc; 3746 collect_object = B_FALSE; 3747 state = DTRACE_JSON_COLLECT_OBJECT; 3748 break; 3749 } 3750 *dd = '\0'; 3751 dd = dest; /* reset string buffer */ 3752 if (string_is_key) { 3753 if (dtrace_strncmp(dest, elem, 3754 size) == 0) 3755 found_key = B_TRUE; 3756 } else if (found_key) { 3757 if (nelems > 1) { 3758 /* 3759 * We expected an object, not 3760 * this string. 3761 */ 3762 return (NULL); 3763 } 3764 return (dest); 3765 } 3766 state = string_is_key ? DTRACE_JSON_COLON : 3767 DTRACE_JSON_COMMA; 3768 string_is_key = B_FALSE; 3769 break; 3770 } 3771 3772 *dd++ = cc; 3773 break; 3774 case DTRACE_JSON_STRING_ESCAPE: 3775 *dd++ = cc; 3776 if (cc == 'u') { 3777 escape_unicount = 0; 3778 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3779 } else { 3780 state = DTRACE_JSON_STRING; 3781 } 3782 break; 3783 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3784 if (!isxdigit(cc)) { 3785 /* 3786 * ERROR: invalid unicode escape, expected 3787 * four valid hexidecimal digits. 3788 */ 3789 return (NULL); 3790 } 3791 3792 *dd++ = cc; 3793 if (++escape_unicount == 4) 3794 state = DTRACE_JSON_STRING; 3795 break; 3796 case DTRACE_JSON_COLON: 3797 if (isspace(cc)) 3798 break; 3799 3800 if (cc == ':') { 3801 state = DTRACE_JSON_VALUE; 3802 break; 3803 } 3804 3805 /* 3806 * ERROR: expected a colon. 3807 */ 3808 return (NULL); 3809 case DTRACE_JSON_COMMA: 3810 if (isspace(cc)) 3811 break; 3812 3813 if (cc == ',') { 3814 if (in_array) { 3815 state = DTRACE_JSON_VALUE; 3816 if (++array_pos == array_elem) 3817 found_key = B_TRUE; 3818 } else { 3819 state = DTRACE_JSON_OBJECT; 3820 } 3821 break; 3822 } 3823 3824 /* 3825 * ERROR: either we hit an unexpected character, or 3826 * we reached the end of the object or array without 3827 * finding the requested key. 3828 */ 3829 return (NULL); 3830 case DTRACE_JSON_IDENTIFIER: 3831 if (islower(cc)) { 3832 *dd++ = cc; 3833 break; 3834 } 3835 3836 *dd = '\0'; 3837 dd = dest; /* reset string buffer */ 3838 3839 if (dtrace_strncmp(dest, "true", 5) == 0 || 3840 dtrace_strncmp(dest, "false", 6) == 0 || 3841 dtrace_strncmp(dest, "null", 5) == 0) { 3842 if (found_key) { 3843 if (nelems > 1) { 3844 /* 3845 * ERROR: We expected an object, 3846 * not this identifier. 3847 */ 3848 return (NULL); 3849 } 3850 return (dest); 3851 } else { 3852 cur--; 3853 state = DTRACE_JSON_COMMA; 3854 break; 3855 } 3856 } 3857 3858 /* 3859 * ERROR: we did not recognise the identifier as one 3860 * of those in the JSON specification. 3861 */ 3862 return (NULL); 3863 case DTRACE_JSON_NUMBER: 3864 if (cc == '.') { 3865 *dd++ = cc; 3866 state = DTRACE_JSON_NUMBER_FRAC; 3867 break; 3868 } 3869 3870 if (cc == 'x' || cc == 'X') { 3871 /* 3872 * ERROR: specification explicitly excludes 3873 * hexidecimal or octal numbers. 3874 */ 3875 return (NULL); 3876 } 3877 3878 /* FALLTHRU */ 3879 case DTRACE_JSON_NUMBER_FRAC: 3880 if (cc == 'e' || cc == 'E') { 3881 *dd++ = cc; 3882 state = DTRACE_JSON_NUMBER_EXP; 3883 break; 3884 } 3885 3886 if (cc == '+' || cc == '-') { 3887 /* 3888 * ERROR: expect sign as part of exponent only. 3889 */ 3890 return (NULL); 3891 } 3892 /* FALLTHRU */ 3893 case DTRACE_JSON_NUMBER_EXP: 3894 if (isdigit(cc) || cc == '+' || cc == '-') { 3895 *dd++ = cc; 3896 break; 3897 } 3898 3899 *dd = '\0'; 3900 dd = dest; /* reset string buffer */ 3901 if (found_key) { 3902 if (nelems > 1) { 3903 /* 3904 * ERROR: We expected an object, not 3905 * this number. 3906 */ 3907 return (NULL); 3908 } 3909 return (dest); 3910 } 3911 3912 cur--; 3913 state = DTRACE_JSON_COMMA; 3914 break; 3915 case DTRACE_JSON_VALUE: 3916 if (isspace(cc)) 3917 break; 3918 3919 if (cc == '{' || cc == '[') { 3920 if (nelems > 1 && found_key) { 3921 in_array = cc == '[' ? B_TRUE : B_FALSE; 3922 /* 3923 * If our element selector directs us 3924 * to descend into this nested object, 3925 * then move to the next selector 3926 * element in the list and restart the 3927 * state machine. 3928 */ 3929 while (*elem != '\0') 3930 elem++; 3931 elem++; /* skip the inter-element NUL */ 3932 nelems--; 3933 dd = dest; 3934 if (in_array) { 3935 state = DTRACE_JSON_VALUE; 3936 array_pos = 0; 3937 array_elem = dtrace_strtoll( 3938 elem, 10, size); 3939 found_key = array_elem == 0 ? 3940 B_TRUE : B_FALSE; 3941 } else { 3942 found_key = B_FALSE; 3943 state = DTRACE_JSON_OBJECT; 3944 } 3945 break; 3946 } 3947 3948 /* 3949 * Otherwise, we wish to either skip this 3950 * nested object or return it in full. 3951 */ 3952 if (cc == '[') 3953 brackets = 1; 3954 else 3955 braces = 1; 3956 *dd++ = cc; 3957 state = DTRACE_JSON_COLLECT_OBJECT; 3958 break; 3959 } 3960 3961 if (cc == '"') { 3962 state = DTRACE_JSON_STRING; 3963 break; 3964 } 3965 3966 if (islower(cc)) { 3967 /* 3968 * Here we deal with true, false and null. 3969 */ 3970 *dd++ = cc; 3971 state = DTRACE_JSON_IDENTIFIER; 3972 break; 3973 } 3974 3975 if (cc == '-' || isdigit(cc)) { 3976 *dd++ = cc; 3977 state = DTRACE_JSON_NUMBER; 3978 break; 3979 } 3980 3981 /* 3982 * ERROR: unexpected character at start of value. 3983 */ 3984 return (NULL); 3985 case DTRACE_JSON_COLLECT_OBJECT: 3986 if (cc == '\0') 3987 /* 3988 * ERROR: unexpected end of input. 3989 */ 3990 return (NULL); 3991 3992 *dd++ = cc; 3993 if (cc == '"') { 3994 collect_object = B_TRUE; 3995 state = DTRACE_JSON_STRING; 3996 break; 3997 } 3998 3999 if (cc == ']') { 4000 if (brackets-- == 0) { 4001 /* 4002 * ERROR: unbalanced brackets. 4003 */ 4004 return (NULL); 4005 } 4006 } else if (cc == '}') { 4007 if (braces-- == 0) { 4008 /* 4009 * ERROR: unbalanced braces. 4010 */ 4011 return (NULL); 4012 } 4013 } else if (cc == '{') { 4014 braces++; 4015 } else if (cc == '[') { 4016 brackets++; 4017 } 4018 4019 if (brackets == 0 && braces == 0) { 4020 if (found_key) { 4021 *dd = '\0'; 4022 return (dest); 4023 } 4024 dd = dest; /* reset string buffer */ 4025 state = DTRACE_JSON_COMMA; 4026 } 4027 break; 4028 } 4029 } 4030 return (NULL); 4031 } 4032 4033 /* 4034 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 4035 * Notice that we don't bother validating the proper number of arguments or 4036 * their types in the tuple stack. This isn't needed because all argument 4037 * interpretation is safe because of our load safety -- the worst that can 4038 * happen is that a bogus program can obtain bogus results. 4039 */ 4040 static void 4041 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 4042 dtrace_key_t *tupregs, int nargs, 4043 dtrace_mstate_t *mstate, dtrace_state_t *state) 4044 { 4045 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4046 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 4047 dtrace_vstate_t *vstate = &state->dts_vstate; 4048 4049 union { 4050 mutex_impl_t mi; 4051 uint64_t mx; 4052 } m; 4053 4054 union { 4055 krwlock_t ri; 4056 uintptr_t rw; 4057 } r; 4058 4059 switch (subr) { 4060 case DIF_SUBR_RAND: 4061 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 4062 break; 4063 4064 case DIF_SUBR_MUTEX_OWNED: 4065 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4066 mstate, vstate)) { 4067 regs[rd] = NULL; 4068 break; 4069 } 4070 4071 m.mx = dtrace_load64(tupregs[0].dttk_value); 4072 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 4073 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 4074 else 4075 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 4076 break; 4077 4078 case DIF_SUBR_MUTEX_OWNER: 4079 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4080 mstate, vstate)) { 4081 regs[rd] = NULL; 4082 break; 4083 } 4084 4085 m.mx = dtrace_load64(tupregs[0].dttk_value); 4086 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 4087 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 4088 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 4089 else 4090 regs[rd] = 0; 4091 break; 4092 4093 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4094 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4095 mstate, vstate)) { 4096 regs[rd] = NULL; 4097 break; 4098 } 4099 4100 m.mx = dtrace_load64(tupregs[0].dttk_value); 4101 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 4102 break; 4103 4104 case DIF_SUBR_MUTEX_TYPE_SPIN: 4105 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4106 mstate, vstate)) { 4107 regs[rd] = NULL; 4108 break; 4109 } 4110 4111 m.mx = dtrace_load64(tupregs[0].dttk_value); 4112 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 4113 break; 4114 4115 case DIF_SUBR_RW_READ_HELD: { 4116 uintptr_t tmp; 4117 4118 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4119 mstate, vstate)) { 4120 regs[rd] = NULL; 4121 break; 4122 } 4123 4124 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4125 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 4126 break; 4127 } 4128 4129 case DIF_SUBR_RW_WRITE_HELD: 4130 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4131 mstate, vstate)) { 4132 regs[rd] = NULL; 4133 break; 4134 } 4135 4136 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4137 regs[rd] = _RW_WRITE_HELD(&r.ri); 4138 break; 4139 4140 case DIF_SUBR_RW_ISWRITER: 4141 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4142 mstate, vstate)) { 4143 regs[rd] = NULL; 4144 break; 4145 } 4146 4147 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4148 regs[rd] = _RW_ISWRITER(&r.ri); 4149 break; 4150 4151 case DIF_SUBR_BCOPY: { 4152 /* 4153 * We need to be sure that the destination is in the scratch 4154 * region -- no other region is allowed. 4155 */ 4156 uintptr_t src = tupregs[0].dttk_value; 4157 uintptr_t dest = tupregs[1].dttk_value; 4158 size_t size = tupregs[2].dttk_value; 4159 4160 if (!dtrace_inscratch(dest, size, mstate)) { 4161 *flags |= CPU_DTRACE_BADADDR; 4162 *illval = regs[rd]; 4163 break; 4164 } 4165 4166 if (!dtrace_canload(src, size, mstate, vstate)) { 4167 regs[rd] = NULL; 4168 break; 4169 } 4170 4171 dtrace_bcopy((void *)src, (void *)dest, size); 4172 break; 4173 } 4174 4175 case DIF_SUBR_ALLOCA: 4176 case DIF_SUBR_COPYIN: { 4177 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4178 uint64_t size = 4179 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4180 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4181 4182 /* 4183 * This action doesn't require any credential checks since 4184 * probes will not activate in user contexts to which the 4185 * enabling user does not have permissions. 4186 */ 4187 4188 /* 4189 * Rounding up the user allocation size could have overflowed 4190 * a large, bogus allocation (like -1ULL) to 0. 4191 */ 4192 if (scratch_size < size || 4193 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4194 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4195 regs[rd] = NULL; 4196 break; 4197 } 4198 4199 if (subr == DIF_SUBR_COPYIN) { 4200 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4201 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4202 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4203 } 4204 4205 mstate->dtms_scratch_ptr += scratch_size; 4206 regs[rd] = dest; 4207 break; 4208 } 4209 4210 case DIF_SUBR_COPYINTO: { 4211 uint64_t size = tupregs[1].dttk_value; 4212 uintptr_t dest = tupregs[2].dttk_value; 4213 4214 /* 4215 * This action doesn't require any credential checks since 4216 * probes will not activate in user contexts to which the 4217 * enabling user does not have permissions. 4218 */ 4219 if (!dtrace_inscratch(dest, size, mstate)) { 4220 *flags |= CPU_DTRACE_BADADDR; 4221 *illval = regs[rd]; 4222 break; 4223 } 4224 4225 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4226 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4227 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4228 break; 4229 } 4230 4231 case DIF_SUBR_COPYINSTR: { 4232 uintptr_t dest = mstate->dtms_scratch_ptr; 4233 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4234 4235 if (nargs > 1 && tupregs[1].dttk_value < size) 4236 size = tupregs[1].dttk_value + 1; 4237 4238 /* 4239 * This action doesn't require any credential checks since 4240 * probes will not activate in user contexts to which the 4241 * enabling user does not have permissions. 4242 */ 4243 if (!DTRACE_INSCRATCH(mstate, size)) { 4244 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4245 regs[rd] = NULL; 4246 break; 4247 } 4248 4249 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4250 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4251 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4252 4253 ((char *)dest)[size - 1] = '\0'; 4254 mstate->dtms_scratch_ptr += size; 4255 regs[rd] = dest; 4256 break; 4257 } 4258 4259 case DIF_SUBR_MSGSIZE: 4260 case DIF_SUBR_MSGDSIZE: { 4261 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4262 uintptr_t wptr, rptr; 4263 size_t count = 0; 4264 int cont = 0; 4265 4266 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4267 4268 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4269 vstate)) { 4270 regs[rd] = NULL; 4271 break; 4272 } 4273 4274 wptr = dtrace_loadptr(baddr + 4275 offsetof(mblk_t, b_wptr)); 4276 4277 rptr = dtrace_loadptr(baddr + 4278 offsetof(mblk_t, b_rptr)); 4279 4280 if (wptr < rptr) { 4281 *flags |= CPU_DTRACE_BADADDR; 4282 *illval = tupregs[0].dttk_value; 4283 break; 4284 } 4285 4286 daddr = dtrace_loadptr(baddr + 4287 offsetof(mblk_t, b_datap)); 4288 4289 baddr = dtrace_loadptr(baddr + 4290 offsetof(mblk_t, b_cont)); 4291 4292 /* 4293 * We want to prevent against denial-of-service here, 4294 * so we're only going to search the list for 4295 * dtrace_msgdsize_max mblks. 4296 */ 4297 if (cont++ > dtrace_msgdsize_max) { 4298 *flags |= CPU_DTRACE_ILLOP; 4299 break; 4300 } 4301 4302 if (subr == DIF_SUBR_MSGDSIZE) { 4303 if (dtrace_load8(daddr + 4304 offsetof(dblk_t, db_type)) != M_DATA) 4305 continue; 4306 } 4307 4308 count += wptr - rptr; 4309 } 4310 4311 if (!(*flags & CPU_DTRACE_FAULT)) 4312 regs[rd] = count; 4313 4314 break; 4315 } 4316 4317 case DIF_SUBR_PROGENYOF: { 4318 pid_t pid = tupregs[0].dttk_value; 4319 proc_t *p; 4320 int rval = 0; 4321 4322 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4323 4324 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4325 if (p->p_pidp->pid_id == pid) { 4326 rval = 1; 4327 break; 4328 } 4329 } 4330 4331 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4332 4333 regs[rd] = rval; 4334 break; 4335 } 4336 4337 case DIF_SUBR_SPECULATION: 4338 regs[rd] = dtrace_speculation(state); 4339 break; 4340 4341 case DIF_SUBR_COPYOUT: { 4342 uintptr_t kaddr = tupregs[0].dttk_value; 4343 uintptr_t uaddr = tupregs[1].dttk_value; 4344 uint64_t size = tupregs[2].dttk_value; 4345 4346 if (!dtrace_destructive_disallow && 4347 dtrace_priv_proc_control(state, mstate) && 4348 !dtrace_istoxic(kaddr, size) && 4349 dtrace_canload(kaddr, size, mstate, vstate)) { 4350 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4351 dtrace_copyout(kaddr, uaddr, size, flags); 4352 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4353 } 4354 break; 4355 } 4356 4357 case DIF_SUBR_COPYOUTSTR: { 4358 uintptr_t kaddr = tupregs[0].dttk_value; 4359 uintptr_t uaddr = tupregs[1].dttk_value; 4360 uint64_t size = tupregs[2].dttk_value; 4361 size_t lim; 4362 4363 if (!dtrace_destructive_disallow && 4364 dtrace_priv_proc_control(state, mstate) && 4365 !dtrace_istoxic(kaddr, size) && 4366 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) { 4367 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4368 dtrace_copyoutstr(kaddr, uaddr, lim, flags); 4369 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4370 } 4371 break; 4372 } 4373 4374 case DIF_SUBR_STRLEN: { 4375 size_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4376 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4377 size_t lim; 4378 4379 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4380 regs[rd] = NULL; 4381 break; 4382 } 4383 regs[rd] = dtrace_strlen((char *)addr, lim); 4384 4385 break; 4386 } 4387 4388 case DIF_SUBR_STRCHR: 4389 case DIF_SUBR_STRRCHR: { 4390 /* 4391 * We're going to iterate over the string looking for the 4392 * specified character. We will iterate until we have reached 4393 * the string length or we have found the character. If this 4394 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4395 * of the specified character instead of the first. 4396 */ 4397 uintptr_t addr = tupregs[0].dttk_value; 4398 uintptr_t addr_limit; 4399 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4400 size_t lim; 4401 char c, target = (char)tupregs[1].dttk_value; 4402 4403 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4404 regs[rd] = NULL; 4405 break; 4406 } 4407 addr_limit = addr + lim; 4408 4409 for (regs[rd] = NULL; addr < addr_limit; addr++) { 4410 if ((c = dtrace_load8(addr)) == target) { 4411 regs[rd] = addr; 4412 4413 if (subr == DIF_SUBR_STRCHR) 4414 break; 4415 } 4416 if (c == '\0') 4417 break; 4418 } 4419 4420 break; 4421 } 4422 4423 case DIF_SUBR_STRSTR: 4424 case DIF_SUBR_INDEX: 4425 case DIF_SUBR_RINDEX: { 4426 /* 4427 * We're going to iterate over the string looking for the 4428 * specified string. We will iterate until we have reached 4429 * the string length or we have found the string. (Yes, this 4430 * is done in the most naive way possible -- but considering 4431 * that the string we're searching for is likely to be 4432 * relatively short, the complexity of Rabin-Karp or similar 4433 * hardly seems merited.) 4434 */ 4435 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4436 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4437 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4438 size_t len = dtrace_strlen(addr, size); 4439 size_t sublen = dtrace_strlen(substr, size); 4440 char *limit = addr + len, *orig = addr; 4441 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4442 int inc = 1; 4443 4444 regs[rd] = notfound; 4445 4446 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4447 regs[rd] = NULL; 4448 break; 4449 } 4450 4451 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4452 vstate)) { 4453 regs[rd] = NULL; 4454 break; 4455 } 4456 4457 /* 4458 * strstr() and index()/rindex() have similar semantics if 4459 * both strings are the empty string: strstr() returns a 4460 * pointer to the (empty) string, and index() and rindex() 4461 * both return index 0 (regardless of any position argument). 4462 */ 4463 if (sublen == 0 && len == 0) { 4464 if (subr == DIF_SUBR_STRSTR) 4465 regs[rd] = (uintptr_t)addr; 4466 else 4467 regs[rd] = 0; 4468 break; 4469 } 4470 4471 if (subr != DIF_SUBR_STRSTR) { 4472 if (subr == DIF_SUBR_RINDEX) { 4473 limit = orig - 1; 4474 addr += len; 4475 inc = -1; 4476 } 4477 4478 /* 4479 * Both index() and rindex() take an optional position 4480 * argument that denotes the starting position. 4481 */ 4482 if (nargs == 3) { 4483 int64_t pos = (int64_t)tupregs[2].dttk_value; 4484 4485 /* 4486 * If the position argument to index() is 4487 * negative, Perl implicitly clamps it at 4488 * zero. This semantic is a little surprising 4489 * given the special meaning of negative 4490 * positions to similar Perl functions like 4491 * substr(), but it appears to reflect a 4492 * notion that index() can start from a 4493 * negative index and increment its way up to 4494 * the string. Given this notion, Perl's 4495 * rindex() is at least self-consistent in 4496 * that it implicitly clamps positions greater 4497 * than the string length to be the string 4498 * length. Where Perl completely loses 4499 * coherence, however, is when the specified 4500 * substring is the empty string (""). In 4501 * this case, even if the position is 4502 * negative, rindex() returns 0 -- and even if 4503 * the position is greater than the length, 4504 * index() returns the string length. These 4505 * semantics violate the notion that index() 4506 * should never return a value less than the 4507 * specified position and that rindex() should 4508 * never return a value greater than the 4509 * specified position. (One assumes that 4510 * these semantics are artifacts of Perl's 4511 * implementation and not the results of 4512 * deliberate design -- it beggars belief that 4513 * even Larry Wall could desire such oddness.) 4514 * While in the abstract one would wish for 4515 * consistent position semantics across 4516 * substr(), index() and rindex() -- or at the 4517 * very least self-consistent position 4518 * semantics for index() and rindex() -- we 4519 * instead opt to keep with the extant Perl 4520 * semantics, in all their broken glory. (Do 4521 * we have more desire to maintain Perl's 4522 * semantics than Perl does? Probably.) 4523 */ 4524 if (subr == DIF_SUBR_RINDEX) { 4525 if (pos < 0) { 4526 if (sublen == 0) 4527 regs[rd] = 0; 4528 break; 4529 } 4530 4531 if (pos > len) 4532 pos = len; 4533 } else { 4534 if (pos < 0) 4535 pos = 0; 4536 4537 if (pos >= len) { 4538 if (sublen == 0) 4539 regs[rd] = len; 4540 break; 4541 } 4542 } 4543 4544 addr = orig + pos; 4545 } 4546 } 4547 4548 for (regs[rd] = notfound; addr != limit; addr += inc) { 4549 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4550 if (subr != DIF_SUBR_STRSTR) { 4551 /* 4552 * As D index() and rindex() are 4553 * modeled on Perl (and not on awk), 4554 * we return a zero-based (and not a 4555 * one-based) index. (For you Perl 4556 * weenies: no, we're not going to add 4557 * $[ -- and shouldn't you be at a con 4558 * or something?) 4559 */ 4560 regs[rd] = (uintptr_t)(addr - orig); 4561 break; 4562 } 4563 4564 ASSERT(subr == DIF_SUBR_STRSTR); 4565 regs[rd] = (uintptr_t)addr; 4566 break; 4567 } 4568 } 4569 4570 break; 4571 } 4572 4573 case DIF_SUBR_STRTOK: { 4574 uintptr_t addr = tupregs[0].dttk_value; 4575 uintptr_t tokaddr = tupregs[1].dttk_value; 4576 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4577 uintptr_t limit, toklimit; 4578 size_t clim; 4579 uint8_t c, tokmap[32]; /* 256 / 8 */ 4580 char *dest = (char *)mstate->dtms_scratch_ptr; 4581 int i; 4582 4583 /* 4584 * Check both the token buffer and (later) the input buffer, 4585 * since both could be non-scratch addresses. 4586 */ 4587 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) { 4588 regs[rd] = NULL; 4589 break; 4590 } 4591 toklimit = tokaddr + clim; 4592 4593 if (!DTRACE_INSCRATCH(mstate, size)) { 4594 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4595 regs[rd] = NULL; 4596 break; 4597 } 4598 4599 if (addr == NULL) { 4600 /* 4601 * If the address specified is NULL, we use our saved 4602 * strtok pointer from the mstate. Note that this 4603 * means that the saved strtok pointer is _only_ 4604 * valid within multiple enablings of the same probe -- 4605 * it behaves like an implicit clause-local variable. 4606 */ 4607 addr = mstate->dtms_strtok; 4608 limit = mstate->dtms_strtok_limit; 4609 } else { 4610 /* 4611 * If the user-specified address is non-NULL we must 4612 * access check it. This is the only time we have 4613 * a chance to do so, since this address may reside 4614 * in the string table of this clause-- future calls 4615 * (when we fetch addr from mstate->dtms_strtok) 4616 * would fail this access check. 4617 */ 4618 if (!dtrace_strcanload(addr, size, &clim, mstate, 4619 vstate)) { 4620 regs[rd] = NULL; 4621 break; 4622 } 4623 limit = addr + clim; 4624 } 4625 4626 /* 4627 * First, zero the token map, and then process the token 4628 * string -- setting a bit in the map for every character 4629 * found in the token string. 4630 */ 4631 for (i = 0; i < sizeof (tokmap); i++) 4632 tokmap[i] = 0; 4633 4634 for (; tokaddr < toklimit; tokaddr++) { 4635 if ((c = dtrace_load8(tokaddr)) == '\0') 4636 break; 4637 4638 ASSERT((c >> 3) < sizeof (tokmap)); 4639 tokmap[c >> 3] |= (1 << (c & 0x7)); 4640 } 4641 4642 for (; addr < limit; addr++) { 4643 /* 4644 * We're looking for a character that is _not_ 4645 * contained in the token string. 4646 */ 4647 if ((c = dtrace_load8(addr)) == '\0') 4648 break; 4649 4650 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4651 break; 4652 } 4653 4654 if (c == '\0') { 4655 /* 4656 * We reached the end of the string without finding 4657 * any character that was not in the token string. 4658 * We return NULL in this case, and we set the saved 4659 * address to NULL as well. 4660 */ 4661 regs[rd] = NULL; 4662 mstate->dtms_strtok = NULL; 4663 mstate->dtms_strtok_limit = NULL; 4664 break; 4665 } 4666 4667 /* 4668 * From here on, we're copying into the destination string. 4669 */ 4670 for (i = 0; addr < limit && i < size - 1; addr++) { 4671 if ((c = dtrace_load8(addr)) == '\0') 4672 break; 4673 4674 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4675 break; 4676 4677 ASSERT(i < size); 4678 dest[i++] = c; 4679 } 4680 4681 ASSERT(i < size); 4682 dest[i] = '\0'; 4683 regs[rd] = (uintptr_t)dest; 4684 mstate->dtms_scratch_ptr += size; 4685 mstate->dtms_strtok = addr; 4686 mstate->dtms_strtok_limit = limit; 4687 break; 4688 } 4689 4690 case DIF_SUBR_SUBSTR: { 4691 uintptr_t s = tupregs[0].dttk_value; 4692 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4693 char *d = (char *)mstate->dtms_scratch_ptr; 4694 int64_t index = (int64_t)tupregs[1].dttk_value; 4695 int64_t remaining = (int64_t)tupregs[2].dttk_value; 4696 size_t len = dtrace_strlen((char *)s, size); 4697 int64_t i; 4698 4699 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4700 regs[rd] = NULL; 4701 break; 4702 } 4703 4704 if (!DTRACE_INSCRATCH(mstate, size)) { 4705 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4706 regs[rd] = NULL; 4707 break; 4708 } 4709 4710 if (nargs <= 2) 4711 remaining = (int64_t)size; 4712 4713 if (index < 0) { 4714 index += len; 4715 4716 if (index < 0 && index + remaining > 0) { 4717 remaining += index; 4718 index = 0; 4719 } 4720 } 4721 4722 if (index >= len || index < 0) { 4723 remaining = 0; 4724 } else if (remaining < 0) { 4725 remaining += len - index; 4726 } else if (index + remaining > size) { 4727 remaining = size - index; 4728 } 4729 4730 for (i = 0; i < remaining; i++) { 4731 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 4732 break; 4733 } 4734 4735 d[i] = '\0'; 4736 4737 mstate->dtms_scratch_ptr += size; 4738 regs[rd] = (uintptr_t)d; 4739 break; 4740 } 4741 4742 case DIF_SUBR_JSON: { 4743 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4744 uintptr_t json = tupregs[0].dttk_value; 4745 size_t jsonlen = dtrace_strlen((char *)json, size); 4746 uintptr_t elem = tupregs[1].dttk_value; 4747 size_t elemlen = dtrace_strlen((char *)elem, size); 4748 4749 char *dest = (char *)mstate->dtms_scratch_ptr; 4750 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 4751 char *ee = elemlist; 4752 int nelems = 1; 4753 uintptr_t cur; 4754 4755 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 4756 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 4757 regs[rd] = NULL; 4758 break; 4759 } 4760 4761 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 4762 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4763 regs[rd] = NULL; 4764 break; 4765 } 4766 4767 /* 4768 * Read the element selector and split it up into a packed list 4769 * of strings. 4770 */ 4771 for (cur = elem; cur < elem + elemlen; cur++) { 4772 char cc = dtrace_load8(cur); 4773 4774 if (cur == elem && cc == '[') { 4775 /* 4776 * If the first element selector key is 4777 * actually an array index then ignore the 4778 * bracket. 4779 */ 4780 continue; 4781 } 4782 4783 if (cc == ']') 4784 continue; 4785 4786 if (cc == '.' || cc == '[') { 4787 nelems++; 4788 cc = '\0'; 4789 } 4790 4791 *ee++ = cc; 4792 } 4793 *ee++ = '\0'; 4794 4795 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 4796 nelems, dest)) != NULL) 4797 mstate->dtms_scratch_ptr += jsonlen + 1; 4798 break; 4799 } 4800 4801 case DIF_SUBR_TOUPPER: 4802 case DIF_SUBR_TOLOWER: { 4803 uintptr_t s = tupregs[0].dttk_value; 4804 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4805 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4806 size_t len = dtrace_strlen((char *)s, size); 4807 char lower, upper, convert; 4808 int64_t i; 4809 4810 if (subr == DIF_SUBR_TOUPPER) { 4811 lower = 'a'; 4812 upper = 'z'; 4813 convert = 'A'; 4814 } else { 4815 lower = 'A'; 4816 upper = 'Z'; 4817 convert = 'a'; 4818 } 4819 4820 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4821 regs[rd] = NULL; 4822 break; 4823 } 4824 4825 if (!DTRACE_INSCRATCH(mstate, size)) { 4826 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4827 regs[rd] = NULL; 4828 break; 4829 } 4830 4831 for (i = 0; i < size - 1; i++) { 4832 if ((c = dtrace_load8(s + i)) == '\0') 4833 break; 4834 4835 if (c >= lower && c <= upper) 4836 c = convert + (c - lower); 4837 4838 dest[i] = c; 4839 } 4840 4841 ASSERT(i < size); 4842 dest[i] = '\0'; 4843 regs[rd] = (uintptr_t)dest; 4844 mstate->dtms_scratch_ptr += size; 4845 break; 4846 } 4847 4848 case DIF_SUBR_GETMAJOR: 4849 #ifdef _LP64 4850 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 4851 #else 4852 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 4853 #endif 4854 break; 4855 4856 case DIF_SUBR_GETMINOR: 4857 #ifdef _LP64 4858 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 4859 #else 4860 regs[rd] = tupregs[0].dttk_value & MAXMIN; 4861 #endif 4862 break; 4863 4864 case DIF_SUBR_DDI_PATHNAME: { 4865 /* 4866 * This one is a galactic mess. We are going to roughly 4867 * emulate ddi_pathname(), but it's made more complicated 4868 * by the fact that we (a) want to include the minor name and 4869 * (b) must proceed iteratively instead of recursively. 4870 */ 4871 uintptr_t dest = mstate->dtms_scratch_ptr; 4872 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4873 char *start = (char *)dest, *end = start + size - 1; 4874 uintptr_t daddr = tupregs[0].dttk_value; 4875 int64_t minor = (int64_t)tupregs[1].dttk_value; 4876 char *s; 4877 int i, len, depth = 0; 4878 4879 /* 4880 * Due to all the pointer jumping we do and context we must 4881 * rely upon, we just mandate that the user must have kernel 4882 * read privileges to use this routine. 4883 */ 4884 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 4885 *flags |= CPU_DTRACE_KPRIV; 4886 *illval = daddr; 4887 regs[rd] = NULL; 4888 } 4889 4890 if (!DTRACE_INSCRATCH(mstate, size)) { 4891 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4892 regs[rd] = NULL; 4893 break; 4894 } 4895 4896 *end = '\0'; 4897 4898 /* 4899 * We want to have a name for the minor. In order to do this, 4900 * we need to walk the minor list from the devinfo. We want 4901 * to be sure that we don't infinitely walk a circular list, 4902 * so we check for circularity by sending a scout pointer 4903 * ahead two elements for every element that we iterate over; 4904 * if the list is circular, these will ultimately point to the 4905 * same element. You may recognize this little trick as the 4906 * answer to a stupid interview question -- one that always 4907 * seems to be asked by those who had to have it laboriously 4908 * explained to them, and who can't even concisely describe 4909 * the conditions under which one would be forced to resort to 4910 * this technique. Needless to say, those conditions are 4911 * found here -- and probably only here. Is this the only use 4912 * of this infamous trick in shipping, production code? If it 4913 * isn't, it probably should be... 4914 */ 4915 if (minor != -1) { 4916 uintptr_t maddr = dtrace_loadptr(daddr + 4917 offsetof(struct dev_info, devi_minor)); 4918 4919 uintptr_t next = offsetof(struct ddi_minor_data, next); 4920 uintptr_t name = offsetof(struct ddi_minor_data, 4921 d_minor) + offsetof(struct ddi_minor, name); 4922 uintptr_t dev = offsetof(struct ddi_minor_data, 4923 d_minor) + offsetof(struct ddi_minor, dev); 4924 uintptr_t scout; 4925 4926 if (maddr != NULL) 4927 scout = dtrace_loadptr(maddr + next); 4928 4929 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4930 uint64_t m; 4931 #ifdef _LP64 4932 m = dtrace_load64(maddr + dev) & MAXMIN64; 4933 #else 4934 m = dtrace_load32(maddr + dev) & MAXMIN; 4935 #endif 4936 if (m != minor) { 4937 maddr = dtrace_loadptr(maddr + next); 4938 4939 if (scout == NULL) 4940 continue; 4941 4942 scout = dtrace_loadptr(scout + next); 4943 4944 if (scout == NULL) 4945 continue; 4946 4947 scout = dtrace_loadptr(scout + next); 4948 4949 if (scout == NULL) 4950 continue; 4951 4952 if (scout == maddr) { 4953 *flags |= CPU_DTRACE_ILLOP; 4954 break; 4955 } 4956 4957 continue; 4958 } 4959 4960 /* 4961 * We have the minor data. Now we need to 4962 * copy the minor's name into the end of the 4963 * pathname. 4964 */ 4965 s = (char *)dtrace_loadptr(maddr + name); 4966 len = dtrace_strlen(s, size); 4967 4968 if (*flags & CPU_DTRACE_FAULT) 4969 break; 4970 4971 if (len != 0) { 4972 if ((end -= (len + 1)) < start) 4973 break; 4974 4975 *end = ':'; 4976 } 4977 4978 for (i = 1; i <= len; i++) 4979 end[i] = dtrace_load8((uintptr_t)s++); 4980 break; 4981 } 4982 } 4983 4984 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4985 ddi_node_state_t devi_state; 4986 4987 devi_state = dtrace_load32(daddr + 4988 offsetof(struct dev_info, devi_node_state)); 4989 4990 if (*flags & CPU_DTRACE_FAULT) 4991 break; 4992 4993 if (devi_state >= DS_INITIALIZED) { 4994 s = (char *)dtrace_loadptr(daddr + 4995 offsetof(struct dev_info, devi_addr)); 4996 len = dtrace_strlen(s, size); 4997 4998 if (*flags & CPU_DTRACE_FAULT) 4999 break; 5000 5001 if (len != 0) { 5002 if ((end -= (len + 1)) < start) 5003 break; 5004 5005 *end = '@'; 5006 } 5007 5008 for (i = 1; i <= len; i++) 5009 end[i] = dtrace_load8((uintptr_t)s++); 5010 } 5011 5012 /* 5013 * Now for the node name... 5014 */ 5015 s = (char *)dtrace_loadptr(daddr + 5016 offsetof(struct dev_info, devi_node_name)); 5017 5018 daddr = dtrace_loadptr(daddr + 5019 offsetof(struct dev_info, devi_parent)); 5020 5021 /* 5022 * If our parent is NULL (that is, if we're the root 5023 * node), we're going to use the special path 5024 * "devices". 5025 */ 5026 if (daddr == NULL) 5027 s = "devices"; 5028 5029 len = dtrace_strlen(s, size); 5030 if (*flags & CPU_DTRACE_FAULT) 5031 break; 5032 5033 if ((end -= (len + 1)) < start) 5034 break; 5035 5036 for (i = 1; i <= len; i++) 5037 end[i] = dtrace_load8((uintptr_t)s++); 5038 *end = '/'; 5039 5040 if (depth++ > dtrace_devdepth_max) { 5041 *flags |= CPU_DTRACE_ILLOP; 5042 break; 5043 } 5044 } 5045 5046 if (end < start) 5047 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5048 5049 if (daddr == NULL) { 5050 regs[rd] = (uintptr_t)end; 5051 mstate->dtms_scratch_ptr += size; 5052 } 5053 5054 break; 5055 } 5056 5057 case DIF_SUBR_STRJOIN: { 5058 char *d = (char *)mstate->dtms_scratch_ptr; 5059 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5060 uintptr_t s1 = tupregs[0].dttk_value; 5061 uintptr_t s2 = tupregs[1].dttk_value; 5062 int i = 0, j = 0; 5063 size_t lim1, lim2; 5064 char c; 5065 5066 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) || 5067 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) { 5068 regs[rd] = NULL; 5069 break; 5070 } 5071 5072 if (!DTRACE_INSCRATCH(mstate, size)) { 5073 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5074 regs[rd] = NULL; 5075 break; 5076 } 5077 5078 for (;;) { 5079 if (i >= size) { 5080 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5081 regs[rd] = NULL; 5082 break; 5083 } 5084 c = (i >= lim1) ? '\0' : dtrace_load8(s1++); 5085 if ((d[i++] = c) == '\0') { 5086 i--; 5087 break; 5088 } 5089 } 5090 5091 for (;;) { 5092 if (i >= size) { 5093 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5094 regs[rd] = NULL; 5095 break; 5096 } 5097 5098 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++); 5099 if ((d[i++] = c) == '\0') 5100 break; 5101 } 5102 5103 if (i < size) { 5104 mstate->dtms_scratch_ptr += i; 5105 regs[rd] = (uintptr_t)d; 5106 } 5107 5108 break; 5109 } 5110 5111 case DIF_SUBR_STRTOLL: { 5112 uintptr_t s = tupregs[0].dttk_value; 5113 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5114 size_t lim; 5115 int base = 10; 5116 5117 if (nargs > 1) { 5118 if ((base = tupregs[1].dttk_value) <= 1 || 5119 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5120 *flags |= CPU_DTRACE_ILLOP; 5121 break; 5122 } 5123 } 5124 5125 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) { 5126 regs[rd] = INT64_MIN; 5127 break; 5128 } 5129 5130 regs[rd] = dtrace_strtoll((char *)s, base, lim); 5131 break; 5132 } 5133 5134 case DIF_SUBR_LLTOSTR: { 5135 int64_t i = (int64_t)tupregs[0].dttk_value; 5136 uint64_t val, digit; 5137 uint64_t size = 65; /* enough room for 2^64 in binary */ 5138 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 5139 int base = 10; 5140 5141 if (nargs > 1) { 5142 if ((base = tupregs[1].dttk_value) <= 1 || 5143 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5144 *flags |= CPU_DTRACE_ILLOP; 5145 break; 5146 } 5147 } 5148 5149 val = (base == 10 && i < 0) ? i * -1 : i; 5150 5151 if (!DTRACE_INSCRATCH(mstate, size)) { 5152 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5153 regs[rd] = NULL; 5154 break; 5155 } 5156 5157 for (*end-- = '\0'; val; val /= base) { 5158 if ((digit = val % base) <= '9' - '0') { 5159 *end-- = '0' + digit; 5160 } else { 5161 *end-- = 'a' + (digit - ('9' - '0') - 1); 5162 } 5163 } 5164 5165 if (i == 0 && base == 16) 5166 *end-- = '0'; 5167 5168 if (base == 16) 5169 *end-- = 'x'; 5170 5171 if (i == 0 || base == 8 || base == 16) 5172 *end-- = '0'; 5173 5174 if (i < 0 && base == 10) 5175 *end-- = '-'; 5176 5177 regs[rd] = (uintptr_t)end + 1; 5178 mstate->dtms_scratch_ptr += size; 5179 break; 5180 } 5181 5182 case DIF_SUBR_HTONS: 5183 case DIF_SUBR_NTOHS: 5184 #ifdef _BIG_ENDIAN 5185 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5186 #else 5187 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5188 #endif 5189 break; 5190 5191 5192 case DIF_SUBR_HTONL: 5193 case DIF_SUBR_NTOHL: 5194 #ifdef _BIG_ENDIAN 5195 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5196 #else 5197 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5198 #endif 5199 break; 5200 5201 5202 case DIF_SUBR_HTONLL: 5203 case DIF_SUBR_NTOHLL: 5204 #ifdef _BIG_ENDIAN 5205 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5206 #else 5207 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5208 #endif 5209 break; 5210 5211 5212 case DIF_SUBR_DIRNAME: 5213 case DIF_SUBR_BASENAME: { 5214 char *dest = (char *)mstate->dtms_scratch_ptr; 5215 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5216 uintptr_t src = tupregs[0].dttk_value; 5217 int i, j, len = dtrace_strlen((char *)src, size); 5218 int lastbase = -1, firstbase = -1, lastdir = -1; 5219 int start, end; 5220 5221 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5222 regs[rd] = NULL; 5223 break; 5224 } 5225 5226 if (!DTRACE_INSCRATCH(mstate, size)) { 5227 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5228 regs[rd] = NULL; 5229 break; 5230 } 5231 5232 /* 5233 * The basename and dirname for a zero-length string is 5234 * defined to be "." 5235 */ 5236 if (len == 0) { 5237 len = 1; 5238 src = (uintptr_t)"."; 5239 } 5240 5241 /* 5242 * Start from the back of the string, moving back toward the 5243 * front until we see a character that isn't a slash. That 5244 * character is the last character in the basename. 5245 */ 5246 for (i = len - 1; i >= 0; i--) { 5247 if (dtrace_load8(src + i) != '/') 5248 break; 5249 } 5250 5251 if (i >= 0) 5252 lastbase = i; 5253 5254 /* 5255 * Starting from the last character in the basename, move 5256 * towards the front until we find a slash. The character 5257 * that we processed immediately before that is the first 5258 * character in the basename. 5259 */ 5260 for (; i >= 0; i--) { 5261 if (dtrace_load8(src + i) == '/') 5262 break; 5263 } 5264 5265 if (i >= 0) 5266 firstbase = i + 1; 5267 5268 /* 5269 * Now keep going until we find a non-slash character. That 5270 * character is the last character in the dirname. 5271 */ 5272 for (; i >= 0; i--) { 5273 if (dtrace_load8(src + i) != '/') 5274 break; 5275 } 5276 5277 if (i >= 0) 5278 lastdir = i; 5279 5280 ASSERT(!(lastbase == -1 && firstbase != -1)); 5281 ASSERT(!(firstbase == -1 && lastdir != -1)); 5282 5283 if (lastbase == -1) { 5284 /* 5285 * We didn't find a non-slash character. We know that 5286 * the length is non-zero, so the whole string must be 5287 * slashes. In either the dirname or the basename 5288 * case, we return '/'. 5289 */ 5290 ASSERT(firstbase == -1); 5291 firstbase = lastbase = lastdir = 0; 5292 } 5293 5294 if (firstbase == -1) { 5295 /* 5296 * The entire string consists only of a basename 5297 * component. If we're looking for dirname, we need 5298 * to change our string to be just "."; if we're 5299 * looking for a basename, we'll just set the first 5300 * character of the basename to be 0. 5301 */ 5302 if (subr == DIF_SUBR_DIRNAME) { 5303 ASSERT(lastdir == -1); 5304 src = (uintptr_t)"."; 5305 lastdir = 0; 5306 } else { 5307 firstbase = 0; 5308 } 5309 } 5310 5311 if (subr == DIF_SUBR_DIRNAME) { 5312 if (lastdir == -1) { 5313 /* 5314 * We know that we have a slash in the name -- 5315 * or lastdir would be set to 0, above. And 5316 * because lastdir is -1, we know that this 5317 * slash must be the first character. (That 5318 * is, the full string must be of the form 5319 * "/basename".) In this case, the last 5320 * character of the directory name is 0. 5321 */ 5322 lastdir = 0; 5323 } 5324 5325 start = 0; 5326 end = lastdir; 5327 } else { 5328 ASSERT(subr == DIF_SUBR_BASENAME); 5329 ASSERT(firstbase != -1 && lastbase != -1); 5330 start = firstbase; 5331 end = lastbase; 5332 } 5333 5334 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5335 dest[j] = dtrace_load8(src + i); 5336 5337 dest[j] = '\0'; 5338 regs[rd] = (uintptr_t)dest; 5339 mstate->dtms_scratch_ptr += size; 5340 break; 5341 } 5342 5343 case DIF_SUBR_GETF: { 5344 uintptr_t fd = tupregs[0].dttk_value; 5345 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo; 5346 file_t *fp; 5347 5348 if (!dtrace_priv_proc(state, mstate)) { 5349 regs[rd] = NULL; 5350 break; 5351 } 5352 5353 /* 5354 * This is safe because fi_nfiles only increases, and the 5355 * fi_list array is not freed when the array size doubles. 5356 * (See the comment in flist_grow() for details on the 5357 * management of the u_finfo structure.) 5358 */ 5359 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL; 5360 5361 mstate->dtms_getf = fp; 5362 regs[rd] = (uintptr_t)fp; 5363 break; 5364 } 5365 5366 case DIF_SUBR_CLEANPATH: { 5367 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5368 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5369 uintptr_t src = tupregs[0].dttk_value; 5370 size_t lim; 5371 int i = 0, j = 0; 5372 zone_t *z; 5373 5374 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) { 5375 regs[rd] = NULL; 5376 break; 5377 } 5378 5379 if (!DTRACE_INSCRATCH(mstate, size)) { 5380 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5381 regs[rd] = NULL; 5382 break; 5383 } 5384 5385 /* 5386 * Move forward, loading each character. 5387 */ 5388 do { 5389 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5390 next: 5391 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5392 break; 5393 5394 if (c != '/') { 5395 dest[j++] = c; 5396 continue; 5397 } 5398 5399 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5400 5401 if (c == '/') { 5402 /* 5403 * We have two slashes -- we can just advance 5404 * to the next character. 5405 */ 5406 goto next; 5407 } 5408 5409 if (c != '.') { 5410 /* 5411 * This is not "." and it's not ".." -- we can 5412 * just store the "/" and this character and 5413 * drive on. 5414 */ 5415 dest[j++] = '/'; 5416 dest[j++] = c; 5417 continue; 5418 } 5419 5420 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5421 5422 if (c == '/') { 5423 /* 5424 * This is a "/./" component. We're not going 5425 * to store anything in the destination buffer; 5426 * we're just going to go to the next component. 5427 */ 5428 goto next; 5429 } 5430 5431 if (c != '.') { 5432 /* 5433 * This is not ".." -- we can just store the 5434 * "/." and this character and continue 5435 * processing. 5436 */ 5437 dest[j++] = '/'; 5438 dest[j++] = '.'; 5439 dest[j++] = c; 5440 continue; 5441 } 5442 5443 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5444 5445 if (c != '/' && c != '\0') { 5446 /* 5447 * This is not ".." -- it's "..[mumble]". 5448 * We'll store the "/.." and this character 5449 * and continue processing. 5450 */ 5451 dest[j++] = '/'; 5452 dest[j++] = '.'; 5453 dest[j++] = '.'; 5454 dest[j++] = c; 5455 continue; 5456 } 5457 5458 /* 5459 * This is "/../" or "/..\0". We need to back up 5460 * our destination pointer until we find a "/". 5461 */ 5462 i--; 5463 while (j != 0 && dest[--j] != '/') 5464 continue; 5465 5466 if (c == '\0') 5467 dest[++j] = '/'; 5468 } while (c != '\0'); 5469 5470 dest[j] = '\0'; 5471 5472 if (mstate->dtms_getf != NULL && 5473 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5474 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5475 /* 5476 * If we've done a getf() as a part of this ECB and we 5477 * don't have kernel access (and we're not in the global 5478 * zone), check if the path we cleaned up begins with 5479 * the zone's root path, and trim it off if so. Note 5480 * that this is an output cleanliness issue, not a 5481 * security issue: knowing one's zone root path does 5482 * not enable privilege escalation. 5483 */ 5484 if (strstr(dest, z->zone_rootpath) == dest) 5485 dest += strlen(z->zone_rootpath) - 1; 5486 } 5487 5488 regs[rd] = (uintptr_t)dest; 5489 mstate->dtms_scratch_ptr += size; 5490 break; 5491 } 5492 5493 case DIF_SUBR_INET_NTOA: 5494 case DIF_SUBR_INET_NTOA6: 5495 case DIF_SUBR_INET_NTOP: { 5496 size_t size; 5497 int af, argi, i; 5498 char *base, *end; 5499 5500 if (subr == DIF_SUBR_INET_NTOP) { 5501 af = (int)tupregs[0].dttk_value; 5502 argi = 1; 5503 } else { 5504 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5505 argi = 0; 5506 } 5507 5508 if (af == AF_INET) { 5509 ipaddr_t ip4; 5510 uint8_t *ptr8, val; 5511 5512 if (!dtrace_canload(tupregs[argi].dttk_value, 5513 sizeof (ipaddr_t), mstate, vstate)) { 5514 regs[rd] = NULL; 5515 break; 5516 } 5517 5518 /* 5519 * Safely load the IPv4 address. 5520 */ 5521 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5522 5523 /* 5524 * Check an IPv4 string will fit in scratch. 5525 */ 5526 size = INET_ADDRSTRLEN; 5527 if (!DTRACE_INSCRATCH(mstate, size)) { 5528 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5529 regs[rd] = NULL; 5530 break; 5531 } 5532 base = (char *)mstate->dtms_scratch_ptr; 5533 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5534 5535 /* 5536 * Stringify as a dotted decimal quad. 5537 */ 5538 *end-- = '\0'; 5539 ptr8 = (uint8_t *)&ip4; 5540 for (i = 3; i >= 0; i--) { 5541 val = ptr8[i]; 5542 5543 if (val == 0) { 5544 *end-- = '0'; 5545 } else { 5546 for (; val; val /= 10) { 5547 *end-- = '0' + (val % 10); 5548 } 5549 } 5550 5551 if (i > 0) 5552 *end-- = '.'; 5553 } 5554 ASSERT(end + 1 >= base); 5555 5556 } else if (af == AF_INET6) { 5557 struct in6_addr ip6; 5558 int firstzero, tryzero, numzero, v6end; 5559 uint16_t val; 5560 const char digits[] = "0123456789abcdef"; 5561 5562 /* 5563 * Stringify using RFC 1884 convention 2 - 16 bit 5564 * hexadecimal values with a zero-run compression. 5565 * Lower case hexadecimal digits are used. 5566 * eg, fe80::214:4fff:fe0b:76c8. 5567 * The IPv4 embedded form is returned for inet_ntop, 5568 * just the IPv4 string is returned for inet_ntoa6. 5569 */ 5570 5571 if (!dtrace_canload(tupregs[argi].dttk_value, 5572 sizeof (struct in6_addr), mstate, vstate)) { 5573 regs[rd] = NULL; 5574 break; 5575 } 5576 5577 /* 5578 * Safely load the IPv6 address. 5579 */ 5580 dtrace_bcopy( 5581 (void *)(uintptr_t)tupregs[argi].dttk_value, 5582 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5583 5584 /* 5585 * Check an IPv6 string will fit in scratch. 5586 */ 5587 size = INET6_ADDRSTRLEN; 5588 if (!DTRACE_INSCRATCH(mstate, size)) { 5589 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5590 regs[rd] = NULL; 5591 break; 5592 } 5593 base = (char *)mstate->dtms_scratch_ptr; 5594 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5595 *end-- = '\0'; 5596 5597 /* 5598 * Find the longest run of 16 bit zero values 5599 * for the single allowed zero compression - "::". 5600 */ 5601 firstzero = -1; 5602 tryzero = -1; 5603 numzero = 1; 5604 for (i = 0; i < sizeof (struct in6_addr); i++) { 5605 if (ip6._S6_un._S6_u8[i] == 0 && 5606 tryzero == -1 && i % 2 == 0) { 5607 tryzero = i; 5608 continue; 5609 } 5610 5611 if (tryzero != -1 && 5612 (ip6._S6_un._S6_u8[i] != 0 || 5613 i == sizeof (struct in6_addr) - 1)) { 5614 5615 if (i - tryzero <= numzero) { 5616 tryzero = -1; 5617 continue; 5618 } 5619 5620 firstzero = tryzero; 5621 numzero = i - i % 2 - tryzero; 5622 tryzero = -1; 5623 5624 if (ip6._S6_un._S6_u8[i] == 0 && 5625 i == sizeof (struct in6_addr) - 1) 5626 numzero += 2; 5627 } 5628 } 5629 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5630 5631 /* 5632 * Check for an IPv4 embedded address. 5633 */ 5634 v6end = sizeof (struct in6_addr) - 2; 5635 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5636 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5637 for (i = sizeof (struct in6_addr) - 1; 5638 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5639 ASSERT(end >= base); 5640 5641 val = ip6._S6_un._S6_u8[i]; 5642 5643 if (val == 0) { 5644 *end-- = '0'; 5645 } else { 5646 for (; val; val /= 10) { 5647 *end-- = '0' + val % 10; 5648 } 5649 } 5650 5651 if (i > DTRACE_V4MAPPED_OFFSET) 5652 *end-- = '.'; 5653 } 5654 5655 if (subr == DIF_SUBR_INET_NTOA6) 5656 goto inetout; 5657 5658 /* 5659 * Set v6end to skip the IPv4 address that 5660 * we have already stringified. 5661 */ 5662 v6end = 10; 5663 } 5664 5665 /* 5666 * Build the IPv6 string by working through the 5667 * address in reverse. 5668 */ 5669 for (i = v6end; i >= 0; i -= 2) { 5670 ASSERT(end >= base); 5671 5672 if (i == firstzero + numzero - 2) { 5673 *end-- = ':'; 5674 *end-- = ':'; 5675 i -= numzero - 2; 5676 continue; 5677 } 5678 5679 if (i < 14 && i != firstzero - 2) 5680 *end-- = ':'; 5681 5682 val = (ip6._S6_un._S6_u8[i] << 8) + 5683 ip6._S6_un._S6_u8[i + 1]; 5684 5685 if (val == 0) { 5686 *end-- = '0'; 5687 } else { 5688 for (; val; val /= 16) { 5689 *end-- = digits[val % 16]; 5690 } 5691 } 5692 } 5693 ASSERT(end + 1 >= base); 5694 5695 } else { 5696 /* 5697 * The user didn't use AH_INET or AH_INET6. 5698 */ 5699 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5700 regs[rd] = NULL; 5701 break; 5702 } 5703 5704 inetout: regs[rd] = (uintptr_t)end + 1; 5705 mstate->dtms_scratch_ptr += size; 5706 break; 5707 } 5708 5709 } 5710 } 5711 5712 /* 5713 * Emulate the execution of DTrace IR instructions specified by the given 5714 * DIF object. This function is deliberately void of assertions as all of 5715 * the necessary checks are handled by a call to dtrace_difo_validate(). 5716 */ 5717 static uint64_t 5718 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 5719 dtrace_vstate_t *vstate, dtrace_state_t *state) 5720 { 5721 const dif_instr_t *text = difo->dtdo_buf; 5722 const uint_t textlen = difo->dtdo_len; 5723 const char *strtab = difo->dtdo_strtab; 5724 const uint64_t *inttab = difo->dtdo_inttab; 5725 5726 uint64_t rval = 0; 5727 dtrace_statvar_t *svar; 5728 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 5729 dtrace_difv_t *v; 5730 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5731 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 5732 5733 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 5734 uint64_t regs[DIF_DIR_NREGS]; 5735 uint64_t *tmp; 5736 5737 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 5738 int64_t cc_r; 5739 uint_t pc = 0, id, opc; 5740 uint8_t ttop = 0; 5741 dif_instr_t instr; 5742 uint_t r1, r2, rd; 5743 5744 /* 5745 * We stash the current DIF object into the machine state: we need it 5746 * for subsequent access checking. 5747 */ 5748 mstate->dtms_difo = difo; 5749 5750 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 5751 5752 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 5753 opc = pc; 5754 5755 instr = text[pc++]; 5756 r1 = DIF_INSTR_R1(instr); 5757 r2 = DIF_INSTR_R2(instr); 5758 rd = DIF_INSTR_RD(instr); 5759 5760 switch (DIF_INSTR_OP(instr)) { 5761 case DIF_OP_OR: 5762 regs[rd] = regs[r1] | regs[r2]; 5763 break; 5764 case DIF_OP_XOR: 5765 regs[rd] = regs[r1] ^ regs[r2]; 5766 break; 5767 case DIF_OP_AND: 5768 regs[rd] = regs[r1] & regs[r2]; 5769 break; 5770 case DIF_OP_SLL: 5771 regs[rd] = regs[r1] << regs[r2]; 5772 break; 5773 case DIF_OP_SRL: 5774 regs[rd] = regs[r1] >> regs[r2]; 5775 break; 5776 case DIF_OP_SUB: 5777 regs[rd] = regs[r1] - regs[r2]; 5778 break; 5779 case DIF_OP_ADD: 5780 regs[rd] = regs[r1] + regs[r2]; 5781 break; 5782 case DIF_OP_MUL: 5783 regs[rd] = regs[r1] * regs[r2]; 5784 break; 5785 case DIF_OP_SDIV: 5786 if (regs[r2] == 0) { 5787 regs[rd] = 0; 5788 *flags |= CPU_DTRACE_DIVZERO; 5789 } else { 5790 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5791 regs[rd] = (int64_t)regs[r1] / 5792 (int64_t)regs[r2]; 5793 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5794 } 5795 break; 5796 5797 case DIF_OP_UDIV: 5798 if (regs[r2] == 0) { 5799 regs[rd] = 0; 5800 *flags |= CPU_DTRACE_DIVZERO; 5801 } else { 5802 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5803 regs[rd] = regs[r1] / regs[r2]; 5804 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5805 } 5806 break; 5807 5808 case DIF_OP_SREM: 5809 if (regs[r2] == 0) { 5810 regs[rd] = 0; 5811 *flags |= CPU_DTRACE_DIVZERO; 5812 } else { 5813 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5814 regs[rd] = (int64_t)regs[r1] % 5815 (int64_t)regs[r2]; 5816 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5817 } 5818 break; 5819 5820 case DIF_OP_UREM: 5821 if (regs[r2] == 0) { 5822 regs[rd] = 0; 5823 *flags |= CPU_DTRACE_DIVZERO; 5824 } else { 5825 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5826 regs[rd] = regs[r1] % regs[r2]; 5827 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5828 } 5829 break; 5830 5831 case DIF_OP_NOT: 5832 regs[rd] = ~regs[r1]; 5833 break; 5834 case DIF_OP_MOV: 5835 regs[rd] = regs[r1]; 5836 break; 5837 case DIF_OP_CMP: 5838 cc_r = regs[r1] - regs[r2]; 5839 cc_n = cc_r < 0; 5840 cc_z = cc_r == 0; 5841 cc_v = 0; 5842 cc_c = regs[r1] < regs[r2]; 5843 break; 5844 case DIF_OP_TST: 5845 cc_n = cc_v = cc_c = 0; 5846 cc_z = regs[r1] == 0; 5847 break; 5848 case DIF_OP_BA: 5849 pc = DIF_INSTR_LABEL(instr); 5850 break; 5851 case DIF_OP_BE: 5852 if (cc_z) 5853 pc = DIF_INSTR_LABEL(instr); 5854 break; 5855 case DIF_OP_BNE: 5856 if (cc_z == 0) 5857 pc = DIF_INSTR_LABEL(instr); 5858 break; 5859 case DIF_OP_BG: 5860 if ((cc_z | (cc_n ^ cc_v)) == 0) 5861 pc = DIF_INSTR_LABEL(instr); 5862 break; 5863 case DIF_OP_BGU: 5864 if ((cc_c | cc_z) == 0) 5865 pc = DIF_INSTR_LABEL(instr); 5866 break; 5867 case DIF_OP_BGE: 5868 if ((cc_n ^ cc_v) == 0) 5869 pc = DIF_INSTR_LABEL(instr); 5870 break; 5871 case DIF_OP_BGEU: 5872 if (cc_c == 0) 5873 pc = DIF_INSTR_LABEL(instr); 5874 break; 5875 case DIF_OP_BL: 5876 if (cc_n ^ cc_v) 5877 pc = DIF_INSTR_LABEL(instr); 5878 break; 5879 case DIF_OP_BLU: 5880 if (cc_c) 5881 pc = DIF_INSTR_LABEL(instr); 5882 break; 5883 case DIF_OP_BLE: 5884 if (cc_z | (cc_n ^ cc_v)) 5885 pc = DIF_INSTR_LABEL(instr); 5886 break; 5887 case DIF_OP_BLEU: 5888 if (cc_c | cc_z) 5889 pc = DIF_INSTR_LABEL(instr); 5890 break; 5891 case DIF_OP_RLDSB: 5892 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5893 break; 5894 /*FALLTHROUGH*/ 5895 case DIF_OP_LDSB: 5896 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 5897 break; 5898 case DIF_OP_RLDSH: 5899 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5900 break; 5901 /*FALLTHROUGH*/ 5902 case DIF_OP_LDSH: 5903 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 5904 break; 5905 case DIF_OP_RLDSW: 5906 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5907 break; 5908 /*FALLTHROUGH*/ 5909 case DIF_OP_LDSW: 5910 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 5911 break; 5912 case DIF_OP_RLDUB: 5913 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5914 break; 5915 /*FALLTHROUGH*/ 5916 case DIF_OP_LDUB: 5917 regs[rd] = dtrace_load8(regs[r1]); 5918 break; 5919 case DIF_OP_RLDUH: 5920 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5921 break; 5922 /*FALLTHROUGH*/ 5923 case DIF_OP_LDUH: 5924 regs[rd] = dtrace_load16(regs[r1]); 5925 break; 5926 case DIF_OP_RLDUW: 5927 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5928 break; 5929 /*FALLTHROUGH*/ 5930 case DIF_OP_LDUW: 5931 regs[rd] = dtrace_load32(regs[r1]); 5932 break; 5933 case DIF_OP_RLDX: 5934 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 5935 break; 5936 /*FALLTHROUGH*/ 5937 case DIF_OP_LDX: 5938 regs[rd] = dtrace_load64(regs[r1]); 5939 break; 5940 case DIF_OP_ULDSB: 5941 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5942 regs[rd] = (int8_t) 5943 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5944 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5945 break; 5946 case DIF_OP_ULDSH: 5947 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5948 regs[rd] = (int16_t) 5949 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5950 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5951 break; 5952 case DIF_OP_ULDSW: 5953 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5954 regs[rd] = (int32_t) 5955 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5956 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5957 break; 5958 case DIF_OP_ULDUB: 5959 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5960 regs[rd] = 5961 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5962 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5963 break; 5964 case DIF_OP_ULDUH: 5965 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5966 regs[rd] = 5967 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5968 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5969 break; 5970 case DIF_OP_ULDUW: 5971 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5972 regs[rd] = 5973 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5974 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5975 break; 5976 case DIF_OP_ULDX: 5977 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5978 regs[rd] = 5979 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 5980 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5981 break; 5982 case DIF_OP_RET: 5983 rval = regs[rd]; 5984 pc = textlen; 5985 break; 5986 case DIF_OP_NOP: 5987 break; 5988 case DIF_OP_SETX: 5989 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 5990 break; 5991 case DIF_OP_SETS: 5992 regs[rd] = (uint64_t)(uintptr_t) 5993 (strtab + DIF_INSTR_STRING(instr)); 5994 break; 5995 case DIF_OP_SCMP: { 5996 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 5997 uintptr_t s1 = regs[r1]; 5998 uintptr_t s2 = regs[r2]; 5999 size_t lim1, lim2; 6000 6001 if (s1 != NULL && 6002 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate)) 6003 break; 6004 if (s2 != NULL && 6005 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate)) 6006 break; 6007 6008 cc_r = dtrace_strncmp((char *)s1, (char *)s2, 6009 MIN(lim1, lim2)); 6010 6011 cc_n = cc_r < 0; 6012 cc_z = cc_r == 0; 6013 cc_v = cc_c = 0; 6014 break; 6015 } 6016 case DIF_OP_LDGA: 6017 regs[rd] = dtrace_dif_variable(mstate, state, 6018 r1, regs[r2]); 6019 break; 6020 case DIF_OP_LDGS: 6021 id = DIF_INSTR_VAR(instr); 6022 6023 if (id >= DIF_VAR_OTHER_UBASE) { 6024 uintptr_t a; 6025 6026 id -= DIF_VAR_OTHER_UBASE; 6027 svar = vstate->dtvs_globals[id]; 6028 ASSERT(svar != NULL); 6029 v = &svar->dtsv_var; 6030 6031 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 6032 regs[rd] = svar->dtsv_data; 6033 break; 6034 } 6035 6036 a = (uintptr_t)svar->dtsv_data; 6037 6038 if (*(uint8_t *)a == UINT8_MAX) { 6039 /* 6040 * If the 0th byte is set to UINT8_MAX 6041 * then this is to be treated as a 6042 * reference to a NULL variable. 6043 */ 6044 regs[rd] = NULL; 6045 } else { 6046 regs[rd] = a + sizeof (uint64_t); 6047 } 6048 6049 break; 6050 } 6051 6052 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 6053 break; 6054 6055 case DIF_OP_STGA: 6056 dtrace_dif_variable_write(mstate, state, r1, regs[r2], 6057 regs[rd]); 6058 break; 6059 6060 case DIF_OP_STGS: 6061 id = DIF_INSTR_VAR(instr); 6062 6063 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6064 id -= DIF_VAR_OTHER_UBASE; 6065 6066 VERIFY(id < vstate->dtvs_nglobals); 6067 svar = vstate->dtvs_globals[id]; 6068 ASSERT(svar != NULL); 6069 v = &svar->dtsv_var; 6070 6071 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6072 uintptr_t a = (uintptr_t)svar->dtsv_data; 6073 size_t lim; 6074 6075 ASSERT(a != NULL); 6076 ASSERT(svar->dtsv_size != 0); 6077 6078 if (regs[rd] == NULL) { 6079 *(uint8_t *)a = UINT8_MAX; 6080 break; 6081 } else { 6082 *(uint8_t *)a = 0; 6083 a += sizeof (uint64_t); 6084 } 6085 if (!dtrace_vcanload( 6086 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6087 &lim, mstate, vstate)) 6088 break; 6089 6090 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6091 (void *)a, &v->dtdv_type, lim); 6092 break; 6093 } 6094 6095 svar->dtsv_data = regs[rd]; 6096 break; 6097 6098 case DIF_OP_LDTA: 6099 /* 6100 * There are no DTrace built-in thread-local arrays at 6101 * present. This opcode is saved for future work. 6102 */ 6103 *flags |= CPU_DTRACE_ILLOP; 6104 regs[rd] = 0; 6105 break; 6106 6107 case DIF_OP_LDLS: 6108 id = DIF_INSTR_VAR(instr); 6109 6110 if (id < DIF_VAR_OTHER_UBASE) { 6111 /* 6112 * For now, this has no meaning. 6113 */ 6114 regs[rd] = 0; 6115 break; 6116 } 6117 6118 id -= DIF_VAR_OTHER_UBASE; 6119 6120 ASSERT(id < vstate->dtvs_nlocals); 6121 ASSERT(vstate->dtvs_locals != NULL); 6122 6123 svar = vstate->dtvs_locals[id]; 6124 ASSERT(svar != NULL); 6125 v = &svar->dtsv_var; 6126 6127 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6128 uintptr_t a = (uintptr_t)svar->dtsv_data; 6129 size_t sz = v->dtdv_type.dtdt_size; 6130 6131 sz += sizeof (uint64_t); 6132 ASSERT(svar->dtsv_size == NCPU * sz); 6133 a += CPU->cpu_id * sz; 6134 6135 if (*(uint8_t *)a == UINT8_MAX) { 6136 /* 6137 * If the 0th byte is set to UINT8_MAX 6138 * then this is to be treated as a 6139 * reference to a NULL variable. 6140 */ 6141 regs[rd] = NULL; 6142 } else { 6143 regs[rd] = a + sizeof (uint64_t); 6144 } 6145 6146 break; 6147 } 6148 6149 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6150 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6151 regs[rd] = tmp[CPU->cpu_id]; 6152 break; 6153 6154 case DIF_OP_STLS: 6155 id = DIF_INSTR_VAR(instr); 6156 6157 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6158 id -= DIF_VAR_OTHER_UBASE; 6159 VERIFY(id < vstate->dtvs_nlocals); 6160 6161 ASSERT(vstate->dtvs_locals != NULL); 6162 svar = vstate->dtvs_locals[id]; 6163 ASSERT(svar != NULL); 6164 v = &svar->dtsv_var; 6165 6166 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6167 uintptr_t a = (uintptr_t)svar->dtsv_data; 6168 size_t sz = v->dtdv_type.dtdt_size; 6169 size_t lim; 6170 6171 sz += sizeof (uint64_t); 6172 ASSERT(svar->dtsv_size == NCPU * sz); 6173 a += CPU->cpu_id * sz; 6174 6175 if (regs[rd] == NULL) { 6176 *(uint8_t *)a = UINT8_MAX; 6177 break; 6178 } else { 6179 *(uint8_t *)a = 0; 6180 a += sizeof (uint64_t); 6181 } 6182 6183 if (!dtrace_vcanload( 6184 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6185 &lim, mstate, vstate)) 6186 break; 6187 6188 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6189 (void *)a, &v->dtdv_type, lim); 6190 break; 6191 } 6192 6193 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6194 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6195 tmp[CPU->cpu_id] = regs[rd]; 6196 break; 6197 6198 case DIF_OP_LDTS: { 6199 dtrace_dynvar_t *dvar; 6200 dtrace_key_t *key; 6201 6202 id = DIF_INSTR_VAR(instr); 6203 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6204 id -= DIF_VAR_OTHER_UBASE; 6205 v = &vstate->dtvs_tlocals[id]; 6206 6207 key = &tupregs[DIF_DTR_NREGS]; 6208 key[0].dttk_value = (uint64_t)id; 6209 key[0].dttk_size = 0; 6210 DTRACE_TLS_THRKEY(key[1].dttk_value); 6211 key[1].dttk_size = 0; 6212 6213 dvar = dtrace_dynvar(dstate, 2, key, 6214 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 6215 mstate, vstate); 6216 6217 if (dvar == NULL) { 6218 regs[rd] = 0; 6219 break; 6220 } 6221 6222 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6223 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6224 } else { 6225 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6226 } 6227 6228 break; 6229 } 6230 6231 case DIF_OP_STTS: { 6232 dtrace_dynvar_t *dvar; 6233 dtrace_key_t *key; 6234 6235 id = DIF_INSTR_VAR(instr); 6236 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6237 id -= DIF_VAR_OTHER_UBASE; 6238 VERIFY(id < vstate->dtvs_ntlocals); 6239 6240 key = &tupregs[DIF_DTR_NREGS]; 6241 key[0].dttk_value = (uint64_t)id; 6242 key[0].dttk_size = 0; 6243 DTRACE_TLS_THRKEY(key[1].dttk_value); 6244 key[1].dttk_size = 0; 6245 v = &vstate->dtvs_tlocals[id]; 6246 6247 dvar = dtrace_dynvar(dstate, 2, key, 6248 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6249 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6250 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6251 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6252 6253 /* 6254 * Given that we're storing to thread-local data, 6255 * we need to flush our predicate cache. 6256 */ 6257 curthread->t_predcache = NULL; 6258 6259 if (dvar == NULL) 6260 break; 6261 6262 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6263 size_t lim; 6264 6265 if (!dtrace_vcanload( 6266 (void *)(uintptr_t)regs[rd], 6267 &v->dtdv_type, &lim, mstate, vstate)) 6268 break; 6269 6270 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6271 dvar->dtdv_data, &v->dtdv_type, lim); 6272 } else { 6273 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6274 } 6275 6276 break; 6277 } 6278 6279 case DIF_OP_SRA: 6280 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6281 break; 6282 6283 case DIF_OP_CALL: 6284 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6285 regs, tupregs, ttop, mstate, state); 6286 break; 6287 6288 case DIF_OP_PUSHTR: 6289 if (ttop == DIF_DTR_NREGS) { 6290 *flags |= CPU_DTRACE_TUPOFLOW; 6291 break; 6292 } 6293 6294 if (r1 == DIF_TYPE_STRING) { 6295 /* 6296 * If this is a string type and the size is 0, 6297 * we'll use the system-wide default string 6298 * size. Note that we are _not_ looking at 6299 * the value of the DTRACEOPT_STRSIZE option; 6300 * had this been set, we would expect to have 6301 * a non-zero size value in the "pushtr". 6302 */ 6303 tupregs[ttop].dttk_size = 6304 dtrace_strlen((char *)(uintptr_t)regs[rd], 6305 regs[r2] ? regs[r2] : 6306 dtrace_strsize_default) + 1; 6307 } else { 6308 if (regs[r2] > LONG_MAX) { 6309 *flags |= CPU_DTRACE_ILLOP; 6310 break; 6311 } 6312 6313 tupregs[ttop].dttk_size = regs[r2]; 6314 } 6315 6316 tupregs[ttop++].dttk_value = regs[rd]; 6317 break; 6318 6319 case DIF_OP_PUSHTV: 6320 if (ttop == DIF_DTR_NREGS) { 6321 *flags |= CPU_DTRACE_TUPOFLOW; 6322 break; 6323 } 6324 6325 tupregs[ttop].dttk_value = regs[rd]; 6326 tupregs[ttop++].dttk_size = 0; 6327 break; 6328 6329 case DIF_OP_POPTS: 6330 if (ttop != 0) 6331 ttop--; 6332 break; 6333 6334 case DIF_OP_FLUSHTS: 6335 ttop = 0; 6336 break; 6337 6338 case DIF_OP_LDGAA: 6339 case DIF_OP_LDTAA: { 6340 dtrace_dynvar_t *dvar; 6341 dtrace_key_t *key = tupregs; 6342 uint_t nkeys = ttop; 6343 6344 id = DIF_INSTR_VAR(instr); 6345 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6346 id -= DIF_VAR_OTHER_UBASE; 6347 6348 key[nkeys].dttk_value = (uint64_t)id; 6349 key[nkeys++].dttk_size = 0; 6350 6351 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6352 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6353 key[nkeys++].dttk_size = 0; 6354 VERIFY(id < vstate->dtvs_ntlocals); 6355 v = &vstate->dtvs_tlocals[id]; 6356 } else { 6357 VERIFY(id < vstate->dtvs_nglobals); 6358 v = &vstate->dtvs_globals[id]->dtsv_var; 6359 } 6360 6361 dvar = dtrace_dynvar(dstate, nkeys, key, 6362 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6363 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6364 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6365 6366 if (dvar == NULL) { 6367 regs[rd] = 0; 6368 break; 6369 } 6370 6371 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6372 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6373 } else { 6374 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6375 } 6376 6377 break; 6378 } 6379 6380 case DIF_OP_STGAA: 6381 case DIF_OP_STTAA: { 6382 dtrace_dynvar_t *dvar; 6383 dtrace_key_t *key = tupregs; 6384 uint_t nkeys = ttop; 6385 6386 id = DIF_INSTR_VAR(instr); 6387 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6388 id -= DIF_VAR_OTHER_UBASE; 6389 6390 key[nkeys].dttk_value = (uint64_t)id; 6391 key[nkeys++].dttk_size = 0; 6392 6393 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6394 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6395 key[nkeys++].dttk_size = 0; 6396 VERIFY(id < vstate->dtvs_ntlocals); 6397 v = &vstate->dtvs_tlocals[id]; 6398 } else { 6399 VERIFY(id < vstate->dtvs_nglobals); 6400 v = &vstate->dtvs_globals[id]->dtsv_var; 6401 } 6402 6403 dvar = dtrace_dynvar(dstate, nkeys, key, 6404 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6405 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6406 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6407 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6408 6409 if (dvar == NULL) 6410 break; 6411 6412 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6413 size_t lim; 6414 6415 if (!dtrace_vcanload( 6416 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6417 &lim, mstate, vstate)) 6418 break; 6419 6420 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6421 dvar->dtdv_data, &v->dtdv_type, lim); 6422 } else { 6423 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6424 } 6425 6426 break; 6427 } 6428 6429 case DIF_OP_ALLOCS: { 6430 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6431 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6432 6433 /* 6434 * Rounding up the user allocation size could have 6435 * overflowed large, bogus allocations (like -1ULL) to 6436 * 0. 6437 */ 6438 if (size < regs[r1] || 6439 !DTRACE_INSCRATCH(mstate, size)) { 6440 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6441 regs[rd] = NULL; 6442 break; 6443 } 6444 6445 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6446 mstate->dtms_scratch_ptr += size; 6447 regs[rd] = ptr; 6448 break; 6449 } 6450 6451 case DIF_OP_COPYS: 6452 if (!dtrace_canstore(regs[rd], regs[r2], 6453 mstate, vstate)) { 6454 *flags |= CPU_DTRACE_BADADDR; 6455 *illval = regs[rd]; 6456 break; 6457 } 6458 6459 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6460 break; 6461 6462 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6463 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6464 break; 6465 6466 case DIF_OP_STB: 6467 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6468 *flags |= CPU_DTRACE_BADADDR; 6469 *illval = regs[rd]; 6470 break; 6471 } 6472 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6473 break; 6474 6475 case DIF_OP_STH: 6476 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6477 *flags |= CPU_DTRACE_BADADDR; 6478 *illval = regs[rd]; 6479 break; 6480 } 6481 if (regs[rd] & 1) { 6482 *flags |= CPU_DTRACE_BADALIGN; 6483 *illval = regs[rd]; 6484 break; 6485 } 6486 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6487 break; 6488 6489 case DIF_OP_STW: 6490 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6491 *flags |= CPU_DTRACE_BADADDR; 6492 *illval = regs[rd]; 6493 break; 6494 } 6495 if (regs[rd] & 3) { 6496 *flags |= CPU_DTRACE_BADALIGN; 6497 *illval = regs[rd]; 6498 break; 6499 } 6500 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6501 break; 6502 6503 case DIF_OP_STX: 6504 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6505 *flags |= CPU_DTRACE_BADADDR; 6506 *illval = regs[rd]; 6507 break; 6508 } 6509 if (regs[rd] & 7) { 6510 *flags |= CPU_DTRACE_BADALIGN; 6511 *illval = regs[rd]; 6512 break; 6513 } 6514 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6515 break; 6516 } 6517 } 6518 6519 if (!(*flags & CPU_DTRACE_FAULT)) 6520 return (rval); 6521 6522 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6523 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6524 6525 return (0); 6526 } 6527 6528 static void 6529 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6530 { 6531 dtrace_probe_t *probe = ecb->dte_probe; 6532 dtrace_provider_t *prov = probe->dtpr_provider; 6533 char c[DTRACE_FULLNAMELEN + 80], *str; 6534 char *msg = "dtrace: breakpoint action at probe "; 6535 char *ecbmsg = " (ecb "; 6536 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6537 uintptr_t val = (uintptr_t)ecb; 6538 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6539 6540 if (dtrace_destructive_disallow) 6541 return; 6542 6543 /* 6544 * It's impossible to be taking action on the NULL probe. 6545 */ 6546 ASSERT(probe != NULL); 6547 6548 /* 6549 * This is a poor man's (destitute man's?) sprintf(): we want to 6550 * print the provider name, module name, function name and name of 6551 * the probe, along with the hex address of the ECB with the breakpoint 6552 * action -- all of which we must place in the character buffer by 6553 * hand. 6554 */ 6555 while (*msg != '\0') 6556 c[i++] = *msg++; 6557 6558 for (str = prov->dtpv_name; *str != '\0'; str++) 6559 c[i++] = *str; 6560 c[i++] = ':'; 6561 6562 for (str = probe->dtpr_mod; *str != '\0'; str++) 6563 c[i++] = *str; 6564 c[i++] = ':'; 6565 6566 for (str = probe->dtpr_func; *str != '\0'; str++) 6567 c[i++] = *str; 6568 c[i++] = ':'; 6569 6570 for (str = probe->dtpr_name; *str != '\0'; str++) 6571 c[i++] = *str; 6572 6573 while (*ecbmsg != '\0') 6574 c[i++] = *ecbmsg++; 6575 6576 while (shift >= 0) { 6577 mask = (uintptr_t)0xf << shift; 6578 6579 if (val >= ((uintptr_t)1 << shift)) 6580 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6581 shift -= 4; 6582 } 6583 6584 c[i++] = ')'; 6585 c[i] = '\0'; 6586 6587 debug_enter(c); 6588 } 6589 6590 static void 6591 dtrace_action_panic(dtrace_ecb_t *ecb) 6592 { 6593 dtrace_probe_t *probe = ecb->dte_probe; 6594 6595 /* 6596 * It's impossible to be taking action on the NULL probe. 6597 */ 6598 ASSERT(probe != NULL); 6599 6600 if (dtrace_destructive_disallow) 6601 return; 6602 6603 if (dtrace_panicked != NULL) 6604 return; 6605 6606 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6607 return; 6608 6609 /* 6610 * We won the right to panic. (We want to be sure that only one 6611 * thread calls panic() from dtrace_probe(), and that panic() is 6612 * called exactly once.) 6613 */ 6614 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6615 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6616 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 6617 } 6618 6619 static void 6620 dtrace_action_raise(uint64_t sig) 6621 { 6622 if (dtrace_destructive_disallow) 6623 return; 6624 6625 if (sig >= NSIG) { 6626 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6627 return; 6628 } 6629 6630 /* 6631 * raise() has a queue depth of 1 -- we ignore all subsequent 6632 * invocations of the raise() action. 6633 */ 6634 if (curthread->t_dtrace_sig == 0) 6635 curthread->t_dtrace_sig = (uint8_t)sig; 6636 6637 curthread->t_sig_check = 1; 6638 aston(curthread); 6639 } 6640 6641 static void 6642 dtrace_action_stop(void) 6643 { 6644 if (dtrace_destructive_disallow) 6645 return; 6646 6647 if (!curthread->t_dtrace_stop) { 6648 curthread->t_dtrace_stop = 1; 6649 curthread->t_sig_check = 1; 6650 aston(curthread); 6651 } 6652 } 6653 6654 static void 6655 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 6656 { 6657 hrtime_t now; 6658 volatile uint16_t *flags; 6659 cpu_t *cpu = CPU; 6660 6661 if (dtrace_destructive_disallow) 6662 return; 6663 6664 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 6665 6666 now = dtrace_gethrtime(); 6667 6668 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 6669 /* 6670 * We need to advance the mark to the current time. 6671 */ 6672 cpu->cpu_dtrace_chillmark = now; 6673 cpu->cpu_dtrace_chilled = 0; 6674 } 6675 6676 /* 6677 * Now check to see if the requested chill time would take us over 6678 * the maximum amount of time allowed in the chill interval. (Or 6679 * worse, if the calculation itself induces overflow.) 6680 */ 6681 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 6682 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 6683 *flags |= CPU_DTRACE_ILLOP; 6684 return; 6685 } 6686 6687 while (dtrace_gethrtime() - now < val) 6688 continue; 6689 6690 /* 6691 * Normally, we assure that the value of the variable "timestamp" does 6692 * not change within an ECB. The presence of chill() represents an 6693 * exception to this rule, however. 6694 */ 6695 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 6696 cpu->cpu_dtrace_chilled += val; 6697 } 6698 6699 static void 6700 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 6701 uint64_t *buf, uint64_t arg) 6702 { 6703 int nframes = DTRACE_USTACK_NFRAMES(arg); 6704 int strsize = DTRACE_USTACK_STRSIZE(arg); 6705 uint64_t *pcs = &buf[1], *fps; 6706 char *str = (char *)&pcs[nframes]; 6707 int size, offs = 0, i, j; 6708 size_t rem; 6709 uintptr_t old = mstate->dtms_scratch_ptr, saved; 6710 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6711 char *sym; 6712 6713 /* 6714 * Should be taking a faster path if string space has not been 6715 * allocated. 6716 */ 6717 ASSERT(strsize != 0); 6718 6719 /* 6720 * We will first allocate some temporary space for the frame pointers. 6721 */ 6722 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6723 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 6724 (nframes * sizeof (uint64_t)); 6725 6726 if (!DTRACE_INSCRATCH(mstate, size)) { 6727 /* 6728 * Not enough room for our frame pointers -- need to indicate 6729 * that we ran out of scratch space. 6730 */ 6731 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6732 return; 6733 } 6734 6735 mstate->dtms_scratch_ptr += size; 6736 saved = mstate->dtms_scratch_ptr; 6737 6738 /* 6739 * Now get a stack with both program counters and frame pointers. 6740 */ 6741 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6742 dtrace_getufpstack(buf, fps, nframes + 1); 6743 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6744 6745 /* 6746 * If that faulted, we're cooked. 6747 */ 6748 if (*flags & CPU_DTRACE_FAULT) 6749 goto out; 6750 6751 /* 6752 * Now we want to walk up the stack, calling the USTACK helper. For 6753 * each iteration, we restore the scratch pointer. 6754 */ 6755 for (i = 0; i < nframes; i++) { 6756 mstate->dtms_scratch_ptr = saved; 6757 6758 if (offs >= strsize) 6759 break; 6760 6761 sym = (char *)(uintptr_t)dtrace_helper( 6762 DTRACE_HELPER_ACTION_USTACK, 6763 mstate, state, pcs[i], fps[i]); 6764 6765 /* 6766 * If we faulted while running the helper, we're going to 6767 * clear the fault and null out the corresponding string. 6768 */ 6769 if (*flags & CPU_DTRACE_FAULT) { 6770 *flags &= ~CPU_DTRACE_FAULT; 6771 str[offs++] = '\0'; 6772 continue; 6773 } 6774 6775 if (sym == NULL) { 6776 str[offs++] = '\0'; 6777 continue; 6778 } 6779 6780 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate, 6781 &(state->dts_vstate))) { 6782 str[offs++] = '\0'; 6783 continue; 6784 } 6785 6786 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6787 6788 /* 6789 * Now copy in the string that the helper returned to us. 6790 */ 6791 for (j = 0; offs + j < strsize && j < rem; j++) { 6792 if ((str[offs + j] = sym[j]) == '\0') 6793 break; 6794 } 6795 6796 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6797 6798 offs += j + 1; 6799 } 6800 6801 if (offs >= strsize) { 6802 /* 6803 * If we didn't have room for all of the strings, we don't 6804 * abort processing -- this needn't be a fatal error -- but we 6805 * still want to increment a counter (dts_stkstroverflows) to 6806 * allow this condition to be warned about. (If this is from 6807 * a jstack() action, it is easily tuned via jstackstrsize.) 6808 */ 6809 dtrace_error(&state->dts_stkstroverflows); 6810 } 6811 6812 while (offs < strsize) 6813 str[offs++] = '\0'; 6814 6815 out: 6816 mstate->dtms_scratch_ptr = old; 6817 } 6818 6819 static void 6820 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 6821 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 6822 { 6823 volatile uint16_t *flags; 6824 uint64_t val = *valp; 6825 size_t valoffs = *valoffsp; 6826 6827 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6828 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 6829 6830 /* 6831 * If this is a string, we're going to only load until we find the zero 6832 * byte -- after which we'll store zero bytes. 6833 */ 6834 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 6835 char c = '\0' + 1; 6836 size_t s; 6837 6838 for (s = 0; s < size; s++) { 6839 if (c != '\0' && dtkind == DIF_TF_BYREF) { 6840 c = dtrace_load8(val++); 6841 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 6842 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6843 c = dtrace_fuword8((void *)(uintptr_t)val++); 6844 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6845 if (*flags & CPU_DTRACE_FAULT) 6846 break; 6847 } 6848 6849 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 6850 6851 if (c == '\0' && intuple) 6852 break; 6853 } 6854 } else { 6855 uint8_t c; 6856 while (valoffs < end) { 6857 if (dtkind == DIF_TF_BYREF) { 6858 c = dtrace_load8(val++); 6859 } else if (dtkind == DIF_TF_BYUREF) { 6860 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6861 c = dtrace_fuword8((void *)(uintptr_t)val++); 6862 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6863 if (*flags & CPU_DTRACE_FAULT) 6864 break; 6865 } 6866 6867 DTRACE_STORE(uint8_t, tomax, 6868 valoffs++, c); 6869 } 6870 } 6871 6872 *valp = val; 6873 *valoffsp = valoffs; 6874 } 6875 6876 /* 6877 * If you're looking for the epicenter of DTrace, you just found it. This 6878 * is the function called by the provider to fire a probe -- from which all 6879 * subsequent probe-context DTrace activity emanates. 6880 */ 6881 void 6882 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 6883 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 6884 { 6885 processorid_t cpuid; 6886 dtrace_icookie_t cookie; 6887 dtrace_probe_t *probe; 6888 dtrace_mstate_t mstate; 6889 dtrace_ecb_t *ecb; 6890 dtrace_action_t *act; 6891 intptr_t offs; 6892 size_t size; 6893 int vtime, onintr; 6894 volatile uint16_t *flags; 6895 hrtime_t now, end; 6896 6897 /* 6898 * Kick out immediately if this CPU is still being born (in which case 6899 * curthread will be set to -1) or the current thread can't allow 6900 * probes in its current context. 6901 */ 6902 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 6903 return; 6904 6905 cookie = dtrace_interrupt_disable(); 6906 probe = dtrace_probes[id - 1]; 6907 cpuid = CPU->cpu_id; 6908 onintr = CPU_ON_INTR(CPU); 6909 6910 CPU->cpu_dtrace_probes++; 6911 6912 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 6913 probe->dtpr_predcache == curthread->t_predcache) { 6914 /* 6915 * We have hit in the predicate cache; we know that 6916 * this predicate would evaluate to be false. 6917 */ 6918 dtrace_interrupt_enable(cookie); 6919 return; 6920 } 6921 6922 if (panic_quiesce) { 6923 /* 6924 * We don't trace anything if we're panicking. 6925 */ 6926 dtrace_interrupt_enable(cookie); 6927 return; 6928 } 6929 6930 now = mstate.dtms_timestamp = dtrace_gethrtime(); 6931 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 6932 vtime = dtrace_vtime_references != 0; 6933 6934 if (vtime && curthread->t_dtrace_start) 6935 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 6936 6937 mstate.dtms_difo = NULL; 6938 mstate.dtms_probe = probe; 6939 mstate.dtms_strtok = NULL; 6940 mstate.dtms_arg[0] = arg0; 6941 mstate.dtms_arg[1] = arg1; 6942 mstate.dtms_arg[2] = arg2; 6943 mstate.dtms_arg[3] = arg3; 6944 mstate.dtms_arg[4] = arg4; 6945 6946 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 6947 6948 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 6949 dtrace_predicate_t *pred = ecb->dte_predicate; 6950 dtrace_state_t *state = ecb->dte_state; 6951 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 6952 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 6953 dtrace_vstate_t *vstate = &state->dts_vstate; 6954 dtrace_provider_t *prov = probe->dtpr_provider; 6955 uint64_t tracememsize = 0; 6956 int committed = 0; 6957 caddr_t tomax; 6958 6959 /* 6960 * A little subtlety with the following (seemingly innocuous) 6961 * declaration of the automatic 'val': by looking at the 6962 * code, you might think that it could be declared in the 6963 * action processing loop, below. (That is, it's only used in 6964 * the action processing loop.) However, it must be declared 6965 * out of that scope because in the case of DIF expression 6966 * arguments to aggregating actions, one iteration of the 6967 * action loop will use the last iteration's value. 6968 */ 6969 #ifdef lint 6970 uint64_t val = 0; 6971 #else 6972 uint64_t val; 6973 #endif 6974 6975 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 6976 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC; 6977 mstate.dtms_getf = NULL; 6978 6979 *flags &= ~CPU_DTRACE_ERROR; 6980 6981 if (prov == dtrace_provider) { 6982 /* 6983 * If dtrace itself is the provider of this probe, 6984 * we're only going to continue processing the ECB if 6985 * arg0 (the dtrace_state_t) is equal to the ECB's 6986 * creating state. (This prevents disjoint consumers 6987 * from seeing one another's metaprobes.) 6988 */ 6989 if (arg0 != (uint64_t)(uintptr_t)state) 6990 continue; 6991 } 6992 6993 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 6994 /* 6995 * We're not currently active. If our provider isn't 6996 * the dtrace pseudo provider, we're not interested. 6997 */ 6998 if (prov != dtrace_provider) 6999 continue; 7000 7001 /* 7002 * Now we must further check if we are in the BEGIN 7003 * probe. If we are, we will only continue processing 7004 * if we're still in WARMUP -- if one BEGIN enabling 7005 * has invoked the exit() action, we don't want to 7006 * evaluate subsequent BEGIN enablings. 7007 */ 7008 if (probe->dtpr_id == dtrace_probeid_begin && 7009 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 7010 ASSERT(state->dts_activity == 7011 DTRACE_ACTIVITY_DRAINING); 7012 continue; 7013 } 7014 } 7015 7016 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb)) 7017 continue; 7018 7019 if (now - state->dts_alive > dtrace_deadman_timeout) { 7020 /* 7021 * We seem to be dead. Unless we (a) have kernel 7022 * destructive permissions (b) have explicitly enabled 7023 * destructive actions and (c) destructive actions have 7024 * not been disabled, we're going to transition into 7025 * the KILLED state, from which no further processing 7026 * on this state will be performed. 7027 */ 7028 if (!dtrace_priv_kernel_destructive(state) || 7029 !state->dts_cred.dcr_destructive || 7030 dtrace_destructive_disallow) { 7031 void *activity = &state->dts_activity; 7032 dtrace_activity_t current; 7033 7034 do { 7035 current = state->dts_activity; 7036 } while (dtrace_cas32(activity, current, 7037 DTRACE_ACTIVITY_KILLED) != current); 7038 7039 continue; 7040 } 7041 } 7042 7043 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 7044 ecb->dte_alignment, state, &mstate)) < 0) 7045 continue; 7046 7047 tomax = buf->dtb_tomax; 7048 ASSERT(tomax != NULL); 7049 7050 if (ecb->dte_size != 0) { 7051 dtrace_rechdr_t dtrh; 7052 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 7053 mstate.dtms_timestamp = dtrace_gethrtime(); 7054 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 7055 } 7056 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 7057 dtrh.dtrh_epid = ecb->dte_epid; 7058 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 7059 mstate.dtms_timestamp); 7060 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 7061 } 7062 7063 mstate.dtms_epid = ecb->dte_epid; 7064 mstate.dtms_present |= DTRACE_MSTATE_EPID; 7065 7066 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 7067 mstate.dtms_access |= DTRACE_ACCESS_KERNEL; 7068 7069 if (pred != NULL) { 7070 dtrace_difo_t *dp = pred->dtp_difo; 7071 int rval; 7072 7073 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 7074 7075 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 7076 dtrace_cacheid_t cid = probe->dtpr_predcache; 7077 7078 if (cid != DTRACE_CACHEIDNONE && !onintr) { 7079 /* 7080 * Update the predicate cache... 7081 */ 7082 ASSERT(cid == pred->dtp_cacheid); 7083 curthread->t_predcache = cid; 7084 } 7085 7086 continue; 7087 } 7088 } 7089 7090 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 7091 act != NULL; act = act->dta_next) { 7092 size_t valoffs; 7093 dtrace_difo_t *dp; 7094 dtrace_recdesc_t *rec = &act->dta_rec; 7095 7096 size = rec->dtrd_size; 7097 valoffs = offs + rec->dtrd_offset; 7098 7099 if (DTRACEACT_ISAGG(act->dta_kind)) { 7100 uint64_t v = 0xbad; 7101 dtrace_aggregation_t *agg; 7102 7103 agg = (dtrace_aggregation_t *)act; 7104 7105 if ((dp = act->dta_difo) != NULL) 7106 v = dtrace_dif_emulate(dp, 7107 &mstate, vstate, state); 7108 7109 if (*flags & CPU_DTRACE_ERROR) 7110 continue; 7111 7112 /* 7113 * Note that we always pass the expression 7114 * value from the previous iteration of the 7115 * action loop. This value will only be used 7116 * if there is an expression argument to the 7117 * aggregating action, denoted by the 7118 * dtag_hasarg field. 7119 */ 7120 dtrace_aggregate(agg, buf, 7121 offs, aggbuf, v, val); 7122 continue; 7123 } 7124 7125 switch (act->dta_kind) { 7126 case DTRACEACT_STOP: 7127 if (dtrace_priv_proc_destructive(state, 7128 &mstate)) 7129 dtrace_action_stop(); 7130 continue; 7131 7132 case DTRACEACT_BREAKPOINT: 7133 if (dtrace_priv_kernel_destructive(state)) 7134 dtrace_action_breakpoint(ecb); 7135 continue; 7136 7137 case DTRACEACT_PANIC: 7138 if (dtrace_priv_kernel_destructive(state)) 7139 dtrace_action_panic(ecb); 7140 continue; 7141 7142 case DTRACEACT_STACK: 7143 if (!dtrace_priv_kernel(state)) 7144 continue; 7145 7146 dtrace_getpcstack((pc_t *)(tomax + valoffs), 7147 size / sizeof (pc_t), probe->dtpr_aframes, 7148 DTRACE_ANCHORED(probe) ? NULL : 7149 (uint32_t *)arg0); 7150 7151 continue; 7152 7153 case DTRACEACT_JSTACK: 7154 case DTRACEACT_USTACK: 7155 if (!dtrace_priv_proc(state, &mstate)) 7156 continue; 7157 7158 /* 7159 * See comment in DIF_VAR_PID. 7160 */ 7161 if (DTRACE_ANCHORED(mstate.dtms_probe) && 7162 CPU_ON_INTR(CPU)) { 7163 int depth = DTRACE_USTACK_NFRAMES( 7164 rec->dtrd_arg) + 1; 7165 7166 dtrace_bzero((void *)(tomax + valoffs), 7167 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 7168 + depth * sizeof (uint64_t)); 7169 7170 continue; 7171 } 7172 7173 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 7174 curproc->p_dtrace_helpers != NULL) { 7175 /* 7176 * This is the slow path -- we have 7177 * allocated string space, and we're 7178 * getting the stack of a process that 7179 * has helpers. Call into a separate 7180 * routine to perform this processing. 7181 */ 7182 dtrace_action_ustack(&mstate, state, 7183 (uint64_t *)(tomax + valoffs), 7184 rec->dtrd_arg); 7185 continue; 7186 } 7187 7188 /* 7189 * Clear the string space, since there's no 7190 * helper to do it for us. 7191 */ 7192 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) { 7193 int depth = DTRACE_USTACK_NFRAMES( 7194 rec->dtrd_arg); 7195 size_t strsize = DTRACE_USTACK_STRSIZE( 7196 rec->dtrd_arg); 7197 uint64_t *buf = (uint64_t *)(tomax + 7198 valoffs); 7199 void *strspace = &buf[depth + 1]; 7200 7201 dtrace_bzero(strspace, 7202 MIN(depth, strsize)); 7203 } 7204 7205 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7206 dtrace_getupcstack((uint64_t *) 7207 (tomax + valoffs), 7208 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 7209 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7210 continue; 7211 7212 default: 7213 break; 7214 } 7215 7216 dp = act->dta_difo; 7217 ASSERT(dp != NULL); 7218 7219 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 7220 7221 if (*flags & CPU_DTRACE_ERROR) 7222 continue; 7223 7224 switch (act->dta_kind) { 7225 case DTRACEACT_SPECULATE: { 7226 dtrace_rechdr_t *dtrh; 7227 7228 ASSERT(buf == &state->dts_buffer[cpuid]); 7229 buf = dtrace_speculation_buffer(state, 7230 cpuid, val); 7231 7232 if (buf == NULL) { 7233 *flags |= CPU_DTRACE_DROP; 7234 continue; 7235 } 7236 7237 offs = dtrace_buffer_reserve(buf, 7238 ecb->dte_needed, ecb->dte_alignment, 7239 state, NULL); 7240 7241 if (offs < 0) { 7242 *flags |= CPU_DTRACE_DROP; 7243 continue; 7244 } 7245 7246 tomax = buf->dtb_tomax; 7247 ASSERT(tomax != NULL); 7248 7249 if (ecb->dte_size == 0) 7250 continue; 7251 7252 ASSERT3U(ecb->dte_size, >=, 7253 sizeof (dtrace_rechdr_t)); 7254 dtrh = ((void *)(tomax + offs)); 7255 dtrh->dtrh_epid = ecb->dte_epid; 7256 /* 7257 * When the speculation is committed, all of 7258 * the records in the speculative buffer will 7259 * have their timestamps set to the commit 7260 * time. Until then, it is set to a sentinel 7261 * value, for debugability. 7262 */ 7263 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7264 continue; 7265 } 7266 7267 case DTRACEACT_CHILL: 7268 if (dtrace_priv_kernel_destructive(state)) 7269 dtrace_action_chill(&mstate, val); 7270 continue; 7271 7272 case DTRACEACT_RAISE: 7273 if (dtrace_priv_proc_destructive(state, 7274 &mstate)) 7275 dtrace_action_raise(val); 7276 continue; 7277 7278 case DTRACEACT_COMMIT: 7279 ASSERT(!committed); 7280 7281 /* 7282 * We need to commit our buffer state. 7283 */ 7284 if (ecb->dte_size) 7285 buf->dtb_offset = offs + ecb->dte_size; 7286 buf = &state->dts_buffer[cpuid]; 7287 dtrace_speculation_commit(state, cpuid, val); 7288 committed = 1; 7289 continue; 7290 7291 case DTRACEACT_DISCARD: 7292 dtrace_speculation_discard(state, cpuid, val); 7293 continue; 7294 7295 case DTRACEACT_DIFEXPR: 7296 case DTRACEACT_LIBACT: 7297 case DTRACEACT_PRINTF: 7298 case DTRACEACT_PRINTA: 7299 case DTRACEACT_SYSTEM: 7300 case DTRACEACT_FREOPEN: 7301 case DTRACEACT_TRACEMEM: 7302 break; 7303 7304 case DTRACEACT_TRACEMEM_DYNSIZE: 7305 tracememsize = val; 7306 break; 7307 7308 case DTRACEACT_SYM: 7309 case DTRACEACT_MOD: 7310 if (!dtrace_priv_kernel(state)) 7311 continue; 7312 break; 7313 7314 case DTRACEACT_USYM: 7315 case DTRACEACT_UMOD: 7316 case DTRACEACT_UADDR: { 7317 struct pid *pid = curthread->t_procp->p_pidp; 7318 7319 if (!dtrace_priv_proc(state, &mstate)) 7320 continue; 7321 7322 DTRACE_STORE(uint64_t, tomax, 7323 valoffs, (uint64_t)pid->pid_id); 7324 DTRACE_STORE(uint64_t, tomax, 7325 valoffs + sizeof (uint64_t), val); 7326 7327 continue; 7328 } 7329 7330 case DTRACEACT_EXIT: { 7331 /* 7332 * For the exit action, we are going to attempt 7333 * to atomically set our activity to be 7334 * draining. If this fails (either because 7335 * another CPU has beat us to the exit action, 7336 * or because our current activity is something 7337 * other than ACTIVE or WARMUP), we will 7338 * continue. This assures that the exit action 7339 * can be successfully recorded at most once 7340 * when we're in the ACTIVE state. If we're 7341 * encountering the exit() action while in 7342 * COOLDOWN, however, we want to honor the new 7343 * status code. (We know that we're the only 7344 * thread in COOLDOWN, so there is no race.) 7345 */ 7346 void *activity = &state->dts_activity; 7347 dtrace_activity_t current = state->dts_activity; 7348 7349 if (current == DTRACE_ACTIVITY_COOLDOWN) 7350 break; 7351 7352 if (current != DTRACE_ACTIVITY_WARMUP) 7353 current = DTRACE_ACTIVITY_ACTIVE; 7354 7355 if (dtrace_cas32(activity, current, 7356 DTRACE_ACTIVITY_DRAINING) != current) { 7357 *flags |= CPU_DTRACE_DROP; 7358 continue; 7359 } 7360 7361 break; 7362 } 7363 7364 default: 7365 ASSERT(0); 7366 } 7367 7368 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7369 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7370 uintptr_t end = valoffs + size; 7371 7372 if (tracememsize != 0 && 7373 valoffs + tracememsize < end) { 7374 end = valoffs + tracememsize; 7375 tracememsize = 0; 7376 } 7377 7378 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7379 !dtrace_vcanload((void *)(uintptr_t)val, 7380 &dp->dtdo_rtype, NULL, &mstate, vstate)) 7381 continue; 7382 7383 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7384 &val, end, act->dta_intuple, 7385 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7386 DIF_TF_BYREF: DIF_TF_BYUREF); 7387 continue; 7388 } 7389 7390 switch (size) { 7391 case 0: 7392 break; 7393 7394 case sizeof (uint8_t): 7395 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7396 break; 7397 case sizeof (uint16_t): 7398 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7399 break; 7400 case sizeof (uint32_t): 7401 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7402 break; 7403 case sizeof (uint64_t): 7404 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7405 break; 7406 default: 7407 /* 7408 * Any other size should have been returned by 7409 * reference, not by value. 7410 */ 7411 ASSERT(0); 7412 break; 7413 } 7414 } 7415 7416 if (*flags & CPU_DTRACE_DROP) 7417 continue; 7418 7419 if (*flags & CPU_DTRACE_FAULT) { 7420 int ndx; 7421 dtrace_action_t *err; 7422 7423 buf->dtb_errors++; 7424 7425 if (probe->dtpr_id == dtrace_probeid_error) { 7426 /* 7427 * There's nothing we can do -- we had an 7428 * error on the error probe. We bump an 7429 * error counter to at least indicate that 7430 * this condition happened. 7431 */ 7432 dtrace_error(&state->dts_dblerrors); 7433 continue; 7434 } 7435 7436 if (vtime) { 7437 /* 7438 * Before recursing on dtrace_probe(), we 7439 * need to explicitly clear out our start 7440 * time to prevent it from being accumulated 7441 * into t_dtrace_vtime. 7442 */ 7443 curthread->t_dtrace_start = 0; 7444 } 7445 7446 /* 7447 * Iterate over the actions to figure out which action 7448 * we were processing when we experienced the error. 7449 * Note that act points _past_ the faulting action; if 7450 * act is ecb->dte_action, the fault was in the 7451 * predicate, if it's ecb->dte_action->dta_next it's 7452 * in action #1, and so on. 7453 */ 7454 for (err = ecb->dte_action, ndx = 0; 7455 err != act; err = err->dta_next, ndx++) 7456 continue; 7457 7458 dtrace_probe_error(state, ecb->dte_epid, ndx, 7459 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7460 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7461 cpu_core[cpuid].cpuc_dtrace_illval); 7462 7463 continue; 7464 } 7465 7466 if (!committed) 7467 buf->dtb_offset = offs + ecb->dte_size; 7468 } 7469 7470 end = dtrace_gethrtime(); 7471 if (vtime) 7472 curthread->t_dtrace_start = end; 7473 7474 CPU->cpu_dtrace_nsec += end - now; 7475 7476 dtrace_interrupt_enable(cookie); 7477 } 7478 7479 /* 7480 * DTrace Probe Hashing Functions 7481 * 7482 * The functions in this section (and indeed, the functions in remaining 7483 * sections) are not _called_ from probe context. (Any exceptions to this are 7484 * marked with a "Note:".) Rather, they are called from elsewhere in the 7485 * DTrace framework to look-up probes in, add probes to and remove probes from 7486 * the DTrace probe hashes. (Each probe is hashed by each element of the 7487 * probe tuple -- allowing for fast lookups, regardless of what was 7488 * specified.) 7489 */ 7490 static uint_t 7491 dtrace_hash_str(char *p) 7492 { 7493 unsigned int g; 7494 uint_t hval = 0; 7495 7496 while (*p) { 7497 hval = (hval << 4) + *p++; 7498 if ((g = (hval & 0xf0000000)) != 0) 7499 hval ^= g >> 24; 7500 hval &= ~g; 7501 } 7502 return (hval); 7503 } 7504 7505 static dtrace_hash_t * 7506 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 7507 { 7508 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 7509 7510 hash->dth_stroffs = stroffs; 7511 hash->dth_nextoffs = nextoffs; 7512 hash->dth_prevoffs = prevoffs; 7513 7514 hash->dth_size = 1; 7515 hash->dth_mask = hash->dth_size - 1; 7516 7517 hash->dth_tab = kmem_zalloc(hash->dth_size * 7518 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 7519 7520 return (hash); 7521 } 7522 7523 static void 7524 dtrace_hash_destroy(dtrace_hash_t *hash) 7525 { 7526 #ifdef DEBUG 7527 int i; 7528 7529 for (i = 0; i < hash->dth_size; i++) 7530 ASSERT(hash->dth_tab[i] == NULL); 7531 #endif 7532 7533 kmem_free(hash->dth_tab, 7534 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 7535 kmem_free(hash, sizeof (dtrace_hash_t)); 7536 } 7537 7538 static void 7539 dtrace_hash_resize(dtrace_hash_t *hash) 7540 { 7541 int size = hash->dth_size, i, ndx; 7542 int new_size = hash->dth_size << 1; 7543 int new_mask = new_size - 1; 7544 dtrace_hashbucket_t **new_tab, *bucket, *next; 7545 7546 ASSERT((new_size & new_mask) == 0); 7547 7548 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 7549 7550 for (i = 0; i < size; i++) { 7551 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 7552 dtrace_probe_t *probe = bucket->dthb_chain; 7553 7554 ASSERT(probe != NULL); 7555 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 7556 7557 next = bucket->dthb_next; 7558 bucket->dthb_next = new_tab[ndx]; 7559 new_tab[ndx] = bucket; 7560 } 7561 } 7562 7563 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 7564 hash->dth_tab = new_tab; 7565 hash->dth_size = new_size; 7566 hash->dth_mask = new_mask; 7567 } 7568 7569 static void 7570 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 7571 { 7572 int hashval = DTRACE_HASHSTR(hash, new); 7573 int ndx = hashval & hash->dth_mask; 7574 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7575 dtrace_probe_t **nextp, **prevp; 7576 7577 for (; bucket != NULL; bucket = bucket->dthb_next) { 7578 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 7579 goto add; 7580 } 7581 7582 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 7583 dtrace_hash_resize(hash); 7584 dtrace_hash_add(hash, new); 7585 return; 7586 } 7587 7588 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 7589 bucket->dthb_next = hash->dth_tab[ndx]; 7590 hash->dth_tab[ndx] = bucket; 7591 hash->dth_nbuckets++; 7592 7593 add: 7594 nextp = DTRACE_HASHNEXT(hash, new); 7595 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 7596 *nextp = bucket->dthb_chain; 7597 7598 if (bucket->dthb_chain != NULL) { 7599 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 7600 ASSERT(*prevp == NULL); 7601 *prevp = new; 7602 } 7603 7604 bucket->dthb_chain = new; 7605 bucket->dthb_len++; 7606 } 7607 7608 static dtrace_probe_t * 7609 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 7610 { 7611 int hashval = DTRACE_HASHSTR(hash, template); 7612 int ndx = hashval & hash->dth_mask; 7613 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7614 7615 for (; bucket != NULL; bucket = bucket->dthb_next) { 7616 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7617 return (bucket->dthb_chain); 7618 } 7619 7620 return (NULL); 7621 } 7622 7623 static int 7624 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 7625 { 7626 int hashval = DTRACE_HASHSTR(hash, template); 7627 int ndx = hashval & hash->dth_mask; 7628 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7629 7630 for (; bucket != NULL; bucket = bucket->dthb_next) { 7631 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7632 return (bucket->dthb_len); 7633 } 7634 7635 return (NULL); 7636 } 7637 7638 static void 7639 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 7640 { 7641 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 7642 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7643 7644 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 7645 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 7646 7647 /* 7648 * Find the bucket that we're removing this probe from. 7649 */ 7650 for (; bucket != NULL; bucket = bucket->dthb_next) { 7651 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 7652 break; 7653 } 7654 7655 ASSERT(bucket != NULL); 7656 7657 if (*prevp == NULL) { 7658 if (*nextp == NULL) { 7659 /* 7660 * The removed probe was the only probe on this 7661 * bucket; we need to remove the bucket. 7662 */ 7663 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 7664 7665 ASSERT(bucket->dthb_chain == probe); 7666 ASSERT(b != NULL); 7667 7668 if (b == bucket) { 7669 hash->dth_tab[ndx] = bucket->dthb_next; 7670 } else { 7671 while (b->dthb_next != bucket) 7672 b = b->dthb_next; 7673 b->dthb_next = bucket->dthb_next; 7674 } 7675 7676 ASSERT(hash->dth_nbuckets > 0); 7677 hash->dth_nbuckets--; 7678 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 7679 return; 7680 } 7681 7682 bucket->dthb_chain = *nextp; 7683 } else { 7684 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 7685 } 7686 7687 if (*nextp != NULL) 7688 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 7689 } 7690 7691 /* 7692 * DTrace Utility Functions 7693 * 7694 * These are random utility functions that are _not_ called from probe context. 7695 */ 7696 static int 7697 dtrace_badattr(const dtrace_attribute_t *a) 7698 { 7699 return (a->dtat_name > DTRACE_STABILITY_MAX || 7700 a->dtat_data > DTRACE_STABILITY_MAX || 7701 a->dtat_class > DTRACE_CLASS_MAX); 7702 } 7703 7704 /* 7705 * Return a duplicate copy of a string. If the specified string is NULL, 7706 * this function returns a zero-length string. 7707 */ 7708 static char * 7709 dtrace_strdup(const char *str) 7710 { 7711 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 7712 7713 if (str != NULL) 7714 (void) strcpy(new, str); 7715 7716 return (new); 7717 } 7718 7719 #define DTRACE_ISALPHA(c) \ 7720 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 7721 7722 static int 7723 dtrace_badname(const char *s) 7724 { 7725 char c; 7726 7727 if (s == NULL || (c = *s++) == '\0') 7728 return (0); 7729 7730 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 7731 return (1); 7732 7733 while ((c = *s++) != '\0') { 7734 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 7735 c != '-' && c != '_' && c != '.' && c != '`') 7736 return (1); 7737 } 7738 7739 return (0); 7740 } 7741 7742 static void 7743 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 7744 { 7745 uint32_t priv; 7746 7747 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 7748 /* 7749 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 7750 */ 7751 priv = DTRACE_PRIV_ALL; 7752 } else { 7753 *uidp = crgetuid(cr); 7754 *zoneidp = crgetzoneid(cr); 7755 7756 priv = 0; 7757 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 7758 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 7759 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 7760 priv |= DTRACE_PRIV_USER; 7761 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 7762 priv |= DTRACE_PRIV_PROC; 7763 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 7764 priv |= DTRACE_PRIV_OWNER; 7765 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 7766 priv |= DTRACE_PRIV_ZONEOWNER; 7767 } 7768 7769 *privp = priv; 7770 } 7771 7772 #ifdef DTRACE_ERRDEBUG 7773 static void 7774 dtrace_errdebug(const char *str) 7775 { 7776 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 7777 int occupied = 0; 7778 7779 mutex_enter(&dtrace_errlock); 7780 dtrace_errlast = str; 7781 dtrace_errthread = curthread; 7782 7783 while (occupied++ < DTRACE_ERRHASHSZ) { 7784 if (dtrace_errhash[hval].dter_msg == str) { 7785 dtrace_errhash[hval].dter_count++; 7786 goto out; 7787 } 7788 7789 if (dtrace_errhash[hval].dter_msg != NULL) { 7790 hval = (hval + 1) % DTRACE_ERRHASHSZ; 7791 continue; 7792 } 7793 7794 dtrace_errhash[hval].dter_msg = str; 7795 dtrace_errhash[hval].dter_count = 1; 7796 goto out; 7797 } 7798 7799 panic("dtrace: undersized error hash"); 7800 out: 7801 mutex_exit(&dtrace_errlock); 7802 } 7803 #endif 7804 7805 /* 7806 * DTrace Matching Functions 7807 * 7808 * These functions are used to match groups of probes, given some elements of 7809 * a probe tuple, or some globbed expressions for elements of a probe tuple. 7810 */ 7811 static int 7812 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 7813 zoneid_t zoneid) 7814 { 7815 if (priv != DTRACE_PRIV_ALL) { 7816 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 7817 uint32_t match = priv & ppriv; 7818 7819 /* 7820 * No PRIV_DTRACE_* privileges... 7821 */ 7822 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 7823 DTRACE_PRIV_KERNEL)) == 0) 7824 return (0); 7825 7826 /* 7827 * No matching bits, but there were bits to match... 7828 */ 7829 if (match == 0 && ppriv != 0) 7830 return (0); 7831 7832 /* 7833 * Need to have permissions to the process, but don't... 7834 */ 7835 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 7836 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 7837 return (0); 7838 } 7839 7840 /* 7841 * Need to be in the same zone unless we possess the 7842 * privilege to examine all zones. 7843 */ 7844 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 7845 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 7846 return (0); 7847 } 7848 } 7849 7850 return (1); 7851 } 7852 7853 /* 7854 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 7855 * consists of input pattern strings and an ops-vector to evaluate them. 7856 * This function returns >0 for match, 0 for no match, and <0 for error. 7857 */ 7858 static int 7859 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 7860 uint32_t priv, uid_t uid, zoneid_t zoneid) 7861 { 7862 dtrace_provider_t *pvp = prp->dtpr_provider; 7863 int rv; 7864 7865 if (pvp->dtpv_defunct) 7866 return (0); 7867 7868 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 7869 return (rv); 7870 7871 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 7872 return (rv); 7873 7874 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 7875 return (rv); 7876 7877 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 7878 return (rv); 7879 7880 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 7881 return (0); 7882 7883 return (rv); 7884 } 7885 7886 /* 7887 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 7888 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 7889 * libc's version, the kernel version only applies to 8-bit ASCII strings. 7890 * In addition, all of the recursion cases except for '*' matching have been 7891 * unwound. For '*', we still implement recursive evaluation, but a depth 7892 * counter is maintained and matching is aborted if we recurse too deep. 7893 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 7894 */ 7895 static int 7896 dtrace_match_glob(const char *s, const char *p, int depth) 7897 { 7898 const char *olds; 7899 char s1, c; 7900 int gs; 7901 7902 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 7903 return (-1); 7904 7905 if (s == NULL) 7906 s = ""; /* treat NULL as empty string */ 7907 7908 top: 7909 olds = s; 7910 s1 = *s++; 7911 7912 if (p == NULL) 7913 return (0); 7914 7915 if ((c = *p++) == '\0') 7916 return (s1 == '\0'); 7917 7918 switch (c) { 7919 case '[': { 7920 int ok = 0, notflag = 0; 7921 char lc = '\0'; 7922 7923 if (s1 == '\0') 7924 return (0); 7925 7926 if (*p == '!') { 7927 notflag = 1; 7928 p++; 7929 } 7930 7931 if ((c = *p++) == '\0') 7932 return (0); 7933 7934 do { 7935 if (c == '-' && lc != '\0' && *p != ']') { 7936 if ((c = *p++) == '\0') 7937 return (0); 7938 if (c == '\\' && (c = *p++) == '\0') 7939 return (0); 7940 7941 if (notflag) { 7942 if (s1 < lc || s1 > c) 7943 ok++; 7944 else 7945 return (0); 7946 } else if (lc <= s1 && s1 <= c) 7947 ok++; 7948 7949 } else if (c == '\\' && (c = *p++) == '\0') 7950 return (0); 7951 7952 lc = c; /* save left-hand 'c' for next iteration */ 7953 7954 if (notflag) { 7955 if (s1 != c) 7956 ok++; 7957 else 7958 return (0); 7959 } else if (s1 == c) 7960 ok++; 7961 7962 if ((c = *p++) == '\0') 7963 return (0); 7964 7965 } while (c != ']'); 7966 7967 if (ok) 7968 goto top; 7969 7970 return (0); 7971 } 7972 7973 case '\\': 7974 if ((c = *p++) == '\0') 7975 return (0); 7976 /*FALLTHRU*/ 7977 7978 default: 7979 if (c != s1) 7980 return (0); 7981 /*FALLTHRU*/ 7982 7983 case '?': 7984 if (s1 != '\0') 7985 goto top; 7986 return (0); 7987 7988 case '*': 7989 while (*p == '*') 7990 p++; /* consecutive *'s are identical to a single one */ 7991 7992 if (*p == '\0') 7993 return (1); 7994 7995 for (s = olds; *s != '\0'; s++) { 7996 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 7997 return (gs); 7998 } 7999 8000 return (0); 8001 } 8002 } 8003 8004 /*ARGSUSED*/ 8005 static int 8006 dtrace_match_string(const char *s, const char *p, int depth) 8007 { 8008 return (s != NULL && strcmp(s, p) == 0); 8009 } 8010 8011 /*ARGSUSED*/ 8012 static int 8013 dtrace_match_nul(const char *s, const char *p, int depth) 8014 { 8015 return (1); /* always match the empty pattern */ 8016 } 8017 8018 /*ARGSUSED*/ 8019 static int 8020 dtrace_match_nonzero(const char *s, const char *p, int depth) 8021 { 8022 return (s != NULL && s[0] != '\0'); 8023 } 8024 8025 static int 8026 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 8027 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 8028 { 8029 dtrace_probe_t template, *probe; 8030 dtrace_hash_t *hash = NULL; 8031 int len, rc, best = INT_MAX, nmatched = 0; 8032 dtrace_id_t i; 8033 8034 ASSERT(MUTEX_HELD(&dtrace_lock)); 8035 8036 /* 8037 * If the probe ID is specified in the key, just lookup by ID and 8038 * invoke the match callback once if a matching probe is found. 8039 */ 8040 if (pkp->dtpk_id != DTRACE_IDNONE) { 8041 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 8042 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 8043 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 8044 return (DTRACE_MATCH_FAIL); 8045 nmatched++; 8046 } 8047 return (nmatched); 8048 } 8049 8050 template.dtpr_mod = (char *)pkp->dtpk_mod; 8051 template.dtpr_func = (char *)pkp->dtpk_func; 8052 template.dtpr_name = (char *)pkp->dtpk_name; 8053 8054 /* 8055 * We want to find the most distinct of the module name, function 8056 * name, and name. So for each one that is not a glob pattern or 8057 * empty string, we perform a lookup in the corresponding hash and 8058 * use the hash table with the fewest collisions to do our search. 8059 */ 8060 if (pkp->dtpk_mmatch == &dtrace_match_string && 8061 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 8062 best = len; 8063 hash = dtrace_bymod; 8064 } 8065 8066 if (pkp->dtpk_fmatch == &dtrace_match_string && 8067 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 8068 best = len; 8069 hash = dtrace_byfunc; 8070 } 8071 8072 if (pkp->dtpk_nmatch == &dtrace_match_string && 8073 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 8074 best = len; 8075 hash = dtrace_byname; 8076 } 8077 8078 /* 8079 * If we did not select a hash table, iterate over every probe and 8080 * invoke our callback for each one that matches our input probe key. 8081 */ 8082 if (hash == NULL) { 8083 for (i = 0; i < dtrace_nprobes; i++) { 8084 if ((probe = dtrace_probes[i]) == NULL || 8085 dtrace_match_probe(probe, pkp, priv, uid, 8086 zoneid) <= 0) 8087 continue; 8088 8089 nmatched++; 8090 8091 if ((rc = (*matched)(probe, arg)) != 8092 DTRACE_MATCH_NEXT) { 8093 if (rc == DTRACE_MATCH_FAIL) 8094 return (DTRACE_MATCH_FAIL); 8095 break; 8096 } 8097 } 8098 8099 return (nmatched); 8100 } 8101 8102 /* 8103 * If we selected a hash table, iterate over each probe of the same key 8104 * name and invoke the callback for every probe that matches the other 8105 * attributes of our input probe key. 8106 */ 8107 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 8108 probe = *(DTRACE_HASHNEXT(hash, probe))) { 8109 8110 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 8111 continue; 8112 8113 nmatched++; 8114 8115 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 8116 if (rc == DTRACE_MATCH_FAIL) 8117 return (DTRACE_MATCH_FAIL); 8118 break; 8119 } 8120 } 8121 8122 return (nmatched); 8123 } 8124 8125 /* 8126 * Return the function pointer dtrace_probecmp() should use to compare the 8127 * specified pattern with a string. For NULL or empty patterns, we select 8128 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 8129 * For non-empty non-glob strings, we use dtrace_match_string(). 8130 */ 8131 static dtrace_probekey_f * 8132 dtrace_probekey_func(const char *p) 8133 { 8134 char c; 8135 8136 if (p == NULL || *p == '\0') 8137 return (&dtrace_match_nul); 8138 8139 while ((c = *p++) != '\0') { 8140 if (c == '[' || c == '?' || c == '*' || c == '\\') 8141 return (&dtrace_match_glob); 8142 } 8143 8144 return (&dtrace_match_string); 8145 } 8146 8147 /* 8148 * Build a probe comparison key for use with dtrace_match_probe() from the 8149 * given probe description. By convention, a null key only matches anchored 8150 * probes: if each field is the empty string, reset dtpk_fmatch to 8151 * dtrace_match_nonzero(). 8152 */ 8153 static void 8154 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 8155 { 8156 pkp->dtpk_prov = pdp->dtpd_provider; 8157 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 8158 8159 pkp->dtpk_mod = pdp->dtpd_mod; 8160 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 8161 8162 pkp->dtpk_func = pdp->dtpd_func; 8163 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 8164 8165 pkp->dtpk_name = pdp->dtpd_name; 8166 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 8167 8168 pkp->dtpk_id = pdp->dtpd_id; 8169 8170 if (pkp->dtpk_id == DTRACE_IDNONE && 8171 pkp->dtpk_pmatch == &dtrace_match_nul && 8172 pkp->dtpk_mmatch == &dtrace_match_nul && 8173 pkp->dtpk_fmatch == &dtrace_match_nul && 8174 pkp->dtpk_nmatch == &dtrace_match_nul) 8175 pkp->dtpk_fmatch = &dtrace_match_nonzero; 8176 } 8177 8178 /* 8179 * DTrace Provider-to-Framework API Functions 8180 * 8181 * These functions implement much of the Provider-to-Framework API, as 8182 * described in <sys/dtrace.h>. The parts of the API not in this section are 8183 * the functions in the API for probe management (found below), and 8184 * dtrace_probe() itself (found above). 8185 */ 8186 8187 /* 8188 * Register the calling provider with the DTrace framework. This should 8189 * generally be called by DTrace providers in their attach(9E) entry point. 8190 */ 8191 int 8192 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 8193 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 8194 { 8195 dtrace_provider_t *provider; 8196 8197 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 8198 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8199 "arguments", name ? name : "<NULL>"); 8200 return (EINVAL); 8201 } 8202 8203 if (name[0] == '\0' || dtrace_badname(name)) { 8204 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8205 "provider name", name); 8206 return (EINVAL); 8207 } 8208 8209 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 8210 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 8211 pops->dtps_destroy == NULL || 8212 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 8213 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8214 "provider ops", name); 8215 return (EINVAL); 8216 } 8217 8218 if (dtrace_badattr(&pap->dtpa_provider) || 8219 dtrace_badattr(&pap->dtpa_mod) || 8220 dtrace_badattr(&pap->dtpa_func) || 8221 dtrace_badattr(&pap->dtpa_name) || 8222 dtrace_badattr(&pap->dtpa_args)) { 8223 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8224 "provider attributes", name); 8225 return (EINVAL); 8226 } 8227 8228 if (priv & ~DTRACE_PRIV_ALL) { 8229 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8230 "privilege attributes", name); 8231 return (EINVAL); 8232 } 8233 8234 if ((priv & DTRACE_PRIV_KERNEL) && 8235 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 8236 pops->dtps_mode == NULL) { 8237 cmn_err(CE_WARN, "failed to register provider '%s': need " 8238 "dtps_mode() op for given privilege attributes", name); 8239 return (EINVAL); 8240 } 8241 8242 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 8243 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8244 (void) strcpy(provider->dtpv_name, name); 8245 8246 provider->dtpv_attr = *pap; 8247 provider->dtpv_priv.dtpp_flags = priv; 8248 if (cr != NULL) { 8249 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8250 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8251 } 8252 provider->dtpv_pops = *pops; 8253 8254 if (pops->dtps_provide == NULL) { 8255 ASSERT(pops->dtps_provide_module != NULL); 8256 provider->dtpv_pops.dtps_provide = 8257 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 8258 } 8259 8260 if (pops->dtps_provide_module == NULL) { 8261 ASSERT(pops->dtps_provide != NULL); 8262 provider->dtpv_pops.dtps_provide_module = 8263 (void (*)(void *, struct modctl *))dtrace_nullop; 8264 } 8265 8266 if (pops->dtps_suspend == NULL) { 8267 ASSERT(pops->dtps_resume == NULL); 8268 provider->dtpv_pops.dtps_suspend = 8269 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8270 provider->dtpv_pops.dtps_resume = 8271 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8272 } 8273 8274 provider->dtpv_arg = arg; 8275 *idp = (dtrace_provider_id_t)provider; 8276 8277 if (pops == &dtrace_provider_ops) { 8278 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8279 ASSERT(MUTEX_HELD(&dtrace_lock)); 8280 ASSERT(dtrace_anon.dta_enabling == NULL); 8281 8282 /* 8283 * We make sure that the DTrace provider is at the head of 8284 * the provider chain. 8285 */ 8286 provider->dtpv_next = dtrace_provider; 8287 dtrace_provider = provider; 8288 return (0); 8289 } 8290 8291 mutex_enter(&dtrace_provider_lock); 8292 mutex_enter(&dtrace_lock); 8293 8294 /* 8295 * If there is at least one provider registered, we'll add this 8296 * provider after the first provider. 8297 */ 8298 if (dtrace_provider != NULL) { 8299 provider->dtpv_next = dtrace_provider->dtpv_next; 8300 dtrace_provider->dtpv_next = provider; 8301 } else { 8302 dtrace_provider = provider; 8303 } 8304 8305 if (dtrace_retained != NULL) { 8306 dtrace_enabling_provide(provider); 8307 8308 /* 8309 * Now we need to call dtrace_enabling_matchall() -- which 8310 * will acquire cpu_lock and dtrace_lock. We therefore need 8311 * to drop all of our locks before calling into it... 8312 */ 8313 mutex_exit(&dtrace_lock); 8314 mutex_exit(&dtrace_provider_lock); 8315 dtrace_enabling_matchall(); 8316 8317 return (0); 8318 } 8319 8320 mutex_exit(&dtrace_lock); 8321 mutex_exit(&dtrace_provider_lock); 8322 8323 return (0); 8324 } 8325 8326 /* 8327 * Unregister the specified provider from the DTrace framework. This should 8328 * generally be called by DTrace providers in their detach(9E) entry point. 8329 */ 8330 int 8331 dtrace_unregister(dtrace_provider_id_t id) 8332 { 8333 dtrace_provider_t *old = (dtrace_provider_t *)id; 8334 dtrace_provider_t *prev = NULL; 8335 int i, self = 0, noreap = 0; 8336 dtrace_probe_t *probe, *first = NULL; 8337 8338 if (old->dtpv_pops.dtps_enable == 8339 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { 8340 /* 8341 * If DTrace itself is the provider, we're called with locks 8342 * already held. 8343 */ 8344 ASSERT(old == dtrace_provider); 8345 ASSERT(dtrace_devi != NULL); 8346 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8347 ASSERT(MUTEX_HELD(&dtrace_lock)); 8348 self = 1; 8349 8350 if (dtrace_provider->dtpv_next != NULL) { 8351 /* 8352 * There's another provider here; return failure. 8353 */ 8354 return (EBUSY); 8355 } 8356 } else { 8357 mutex_enter(&dtrace_provider_lock); 8358 mutex_enter(&mod_lock); 8359 mutex_enter(&dtrace_lock); 8360 } 8361 8362 /* 8363 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8364 * probes, we refuse to let providers slither away, unless this 8365 * provider has already been explicitly invalidated. 8366 */ 8367 if (!old->dtpv_defunct && 8368 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8369 dtrace_anon.dta_state->dts_necbs > 0))) { 8370 if (!self) { 8371 mutex_exit(&dtrace_lock); 8372 mutex_exit(&mod_lock); 8373 mutex_exit(&dtrace_provider_lock); 8374 } 8375 return (EBUSY); 8376 } 8377 8378 /* 8379 * Attempt to destroy the probes associated with this provider. 8380 */ 8381 for (i = 0; i < dtrace_nprobes; i++) { 8382 if ((probe = dtrace_probes[i]) == NULL) 8383 continue; 8384 8385 if (probe->dtpr_provider != old) 8386 continue; 8387 8388 if (probe->dtpr_ecb == NULL) 8389 continue; 8390 8391 /* 8392 * If we are trying to unregister a defunct provider, and the 8393 * provider was made defunct within the interval dictated by 8394 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8395 * attempt to reap our enablings. To denote that the provider 8396 * should reattempt to unregister itself at some point in the 8397 * future, we will return a differentiable error code (EAGAIN 8398 * instead of EBUSY) in this case. 8399 */ 8400 if (dtrace_gethrtime() - old->dtpv_defunct > 8401 dtrace_unregister_defunct_reap) 8402 noreap = 1; 8403 8404 if (!self) { 8405 mutex_exit(&dtrace_lock); 8406 mutex_exit(&mod_lock); 8407 mutex_exit(&dtrace_provider_lock); 8408 } 8409 8410 if (noreap) 8411 return (EBUSY); 8412 8413 (void) taskq_dispatch(dtrace_taskq, 8414 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8415 8416 return (EAGAIN); 8417 } 8418 8419 /* 8420 * All of the probes for this provider are disabled; we can safely 8421 * remove all of them from their hash chains and from the probe array. 8422 */ 8423 for (i = 0; i < dtrace_nprobes; i++) { 8424 if ((probe = dtrace_probes[i]) == NULL) 8425 continue; 8426 8427 if (probe->dtpr_provider != old) 8428 continue; 8429 8430 dtrace_probes[i] = NULL; 8431 8432 dtrace_hash_remove(dtrace_bymod, probe); 8433 dtrace_hash_remove(dtrace_byfunc, probe); 8434 dtrace_hash_remove(dtrace_byname, probe); 8435 8436 if (first == NULL) { 8437 first = probe; 8438 probe->dtpr_nextmod = NULL; 8439 } else { 8440 probe->dtpr_nextmod = first; 8441 first = probe; 8442 } 8443 } 8444 8445 /* 8446 * The provider's probes have been removed from the hash chains and 8447 * from the probe array. Now issue a dtrace_sync() to be sure that 8448 * everyone has cleared out from any probe array processing. 8449 */ 8450 dtrace_sync(); 8451 8452 for (probe = first; probe != NULL; probe = first) { 8453 first = probe->dtpr_nextmod; 8454 8455 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8456 probe->dtpr_arg); 8457 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8458 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8459 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8460 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 8461 kmem_free(probe, sizeof (dtrace_probe_t)); 8462 } 8463 8464 if ((prev = dtrace_provider) == old) { 8465 ASSERT(self || dtrace_devi == NULL); 8466 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 8467 dtrace_provider = old->dtpv_next; 8468 } else { 8469 while (prev != NULL && prev->dtpv_next != old) 8470 prev = prev->dtpv_next; 8471 8472 if (prev == NULL) { 8473 panic("attempt to unregister non-existent " 8474 "dtrace provider %p\n", (void *)id); 8475 } 8476 8477 prev->dtpv_next = old->dtpv_next; 8478 } 8479 8480 if (!self) { 8481 mutex_exit(&dtrace_lock); 8482 mutex_exit(&mod_lock); 8483 mutex_exit(&dtrace_provider_lock); 8484 } 8485 8486 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 8487 kmem_free(old, sizeof (dtrace_provider_t)); 8488 8489 return (0); 8490 } 8491 8492 /* 8493 * Invalidate the specified provider. All subsequent probe lookups for the 8494 * specified provider will fail, but its probes will not be removed. 8495 */ 8496 void 8497 dtrace_invalidate(dtrace_provider_id_t id) 8498 { 8499 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 8500 8501 ASSERT(pvp->dtpv_pops.dtps_enable != 8502 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8503 8504 mutex_enter(&dtrace_provider_lock); 8505 mutex_enter(&dtrace_lock); 8506 8507 pvp->dtpv_defunct = dtrace_gethrtime(); 8508 8509 mutex_exit(&dtrace_lock); 8510 mutex_exit(&dtrace_provider_lock); 8511 } 8512 8513 /* 8514 * Indicate whether or not DTrace has attached. 8515 */ 8516 int 8517 dtrace_attached(void) 8518 { 8519 /* 8520 * dtrace_provider will be non-NULL iff the DTrace driver has 8521 * attached. (It's non-NULL because DTrace is always itself a 8522 * provider.) 8523 */ 8524 return (dtrace_provider != NULL); 8525 } 8526 8527 /* 8528 * Remove all the unenabled probes for the given provider. This function is 8529 * not unlike dtrace_unregister(), except that it doesn't remove the provider 8530 * -- just as many of its associated probes as it can. 8531 */ 8532 int 8533 dtrace_condense(dtrace_provider_id_t id) 8534 { 8535 dtrace_provider_t *prov = (dtrace_provider_t *)id; 8536 int i; 8537 dtrace_probe_t *probe; 8538 8539 /* 8540 * Make sure this isn't the dtrace provider itself. 8541 */ 8542 ASSERT(prov->dtpv_pops.dtps_enable != 8543 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8544 8545 mutex_enter(&dtrace_provider_lock); 8546 mutex_enter(&dtrace_lock); 8547 8548 /* 8549 * Attempt to destroy the probes associated with this provider. 8550 */ 8551 for (i = 0; i < dtrace_nprobes; i++) { 8552 if ((probe = dtrace_probes[i]) == NULL) 8553 continue; 8554 8555 if (probe->dtpr_provider != prov) 8556 continue; 8557 8558 if (probe->dtpr_ecb != NULL) 8559 continue; 8560 8561 dtrace_probes[i] = NULL; 8562 8563 dtrace_hash_remove(dtrace_bymod, probe); 8564 dtrace_hash_remove(dtrace_byfunc, probe); 8565 dtrace_hash_remove(dtrace_byname, probe); 8566 8567 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 8568 probe->dtpr_arg); 8569 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8570 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8571 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8572 kmem_free(probe, sizeof (dtrace_probe_t)); 8573 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 8574 } 8575 8576 mutex_exit(&dtrace_lock); 8577 mutex_exit(&dtrace_provider_lock); 8578 8579 return (0); 8580 } 8581 8582 /* 8583 * DTrace Probe Management Functions 8584 * 8585 * The functions in this section perform the DTrace probe management, 8586 * including functions to create probes, look-up probes, and call into the 8587 * providers to request that probes be provided. Some of these functions are 8588 * in the Provider-to-Framework API; these functions can be identified by the 8589 * fact that they are not declared "static". 8590 */ 8591 8592 /* 8593 * Create a probe with the specified module name, function name, and name. 8594 */ 8595 dtrace_id_t 8596 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 8597 const char *func, const char *name, int aframes, void *arg) 8598 { 8599 dtrace_probe_t *probe, **probes; 8600 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 8601 dtrace_id_t id; 8602 8603 if (provider == dtrace_provider) { 8604 ASSERT(MUTEX_HELD(&dtrace_lock)); 8605 } else { 8606 mutex_enter(&dtrace_lock); 8607 } 8608 8609 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 8610 VM_BESTFIT | VM_SLEEP); 8611 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 8612 8613 probe->dtpr_id = id; 8614 probe->dtpr_gen = dtrace_probegen++; 8615 probe->dtpr_mod = dtrace_strdup(mod); 8616 probe->dtpr_func = dtrace_strdup(func); 8617 probe->dtpr_name = dtrace_strdup(name); 8618 probe->dtpr_arg = arg; 8619 probe->dtpr_aframes = aframes; 8620 probe->dtpr_provider = provider; 8621 8622 dtrace_hash_add(dtrace_bymod, probe); 8623 dtrace_hash_add(dtrace_byfunc, probe); 8624 dtrace_hash_add(dtrace_byname, probe); 8625 8626 if (id - 1 >= dtrace_nprobes) { 8627 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 8628 size_t nsize = osize << 1; 8629 8630 if (nsize == 0) { 8631 ASSERT(osize == 0); 8632 ASSERT(dtrace_probes == NULL); 8633 nsize = sizeof (dtrace_probe_t *); 8634 } 8635 8636 probes = kmem_zalloc(nsize, KM_SLEEP); 8637 8638 if (dtrace_probes == NULL) { 8639 ASSERT(osize == 0); 8640 dtrace_probes = probes; 8641 dtrace_nprobes = 1; 8642 } else { 8643 dtrace_probe_t **oprobes = dtrace_probes; 8644 8645 bcopy(oprobes, probes, osize); 8646 dtrace_membar_producer(); 8647 dtrace_probes = probes; 8648 8649 dtrace_sync(); 8650 8651 /* 8652 * All CPUs are now seeing the new probes array; we can 8653 * safely free the old array. 8654 */ 8655 kmem_free(oprobes, osize); 8656 dtrace_nprobes <<= 1; 8657 } 8658 8659 ASSERT(id - 1 < dtrace_nprobes); 8660 } 8661 8662 ASSERT(dtrace_probes[id - 1] == NULL); 8663 dtrace_probes[id - 1] = probe; 8664 8665 if (provider != dtrace_provider) 8666 mutex_exit(&dtrace_lock); 8667 8668 return (id); 8669 } 8670 8671 static dtrace_probe_t * 8672 dtrace_probe_lookup_id(dtrace_id_t id) 8673 { 8674 ASSERT(MUTEX_HELD(&dtrace_lock)); 8675 8676 if (id == 0 || id > dtrace_nprobes) 8677 return (NULL); 8678 8679 return (dtrace_probes[id - 1]); 8680 } 8681 8682 static int 8683 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 8684 { 8685 *((dtrace_id_t *)arg) = probe->dtpr_id; 8686 8687 return (DTRACE_MATCH_DONE); 8688 } 8689 8690 /* 8691 * Look up a probe based on provider and one or more of module name, function 8692 * name and probe name. 8693 */ 8694 dtrace_id_t 8695 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 8696 const char *func, const char *name) 8697 { 8698 dtrace_probekey_t pkey; 8699 dtrace_id_t id; 8700 int match; 8701 8702 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 8703 pkey.dtpk_pmatch = &dtrace_match_string; 8704 pkey.dtpk_mod = mod; 8705 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 8706 pkey.dtpk_func = func; 8707 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 8708 pkey.dtpk_name = name; 8709 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 8710 pkey.dtpk_id = DTRACE_IDNONE; 8711 8712 mutex_enter(&dtrace_lock); 8713 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 8714 dtrace_probe_lookup_match, &id); 8715 mutex_exit(&dtrace_lock); 8716 8717 ASSERT(match == 1 || match == 0); 8718 return (match ? id : 0); 8719 } 8720 8721 /* 8722 * Returns the probe argument associated with the specified probe. 8723 */ 8724 void * 8725 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 8726 { 8727 dtrace_probe_t *probe; 8728 void *rval = NULL; 8729 8730 mutex_enter(&dtrace_lock); 8731 8732 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 8733 probe->dtpr_provider == (dtrace_provider_t *)id) 8734 rval = probe->dtpr_arg; 8735 8736 mutex_exit(&dtrace_lock); 8737 8738 return (rval); 8739 } 8740 8741 /* 8742 * Copy a probe into a probe description. 8743 */ 8744 static void 8745 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 8746 { 8747 bzero(pdp, sizeof (dtrace_probedesc_t)); 8748 pdp->dtpd_id = prp->dtpr_id; 8749 8750 (void) strncpy(pdp->dtpd_provider, 8751 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 8752 8753 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 8754 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 8755 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 8756 } 8757 8758 /* 8759 * Called to indicate that a probe -- or probes -- should be provided by a 8760 * specfied provider. If the specified description is NULL, the provider will 8761 * be told to provide all of its probes. (This is done whenever a new 8762 * consumer comes along, or whenever a retained enabling is to be matched.) If 8763 * the specified description is non-NULL, the provider is given the 8764 * opportunity to dynamically provide the specified probe, allowing providers 8765 * to support the creation of probes on-the-fly. (So-called _autocreated_ 8766 * probes.) If the provider is NULL, the operations will be applied to all 8767 * providers; if the provider is non-NULL the operations will only be applied 8768 * to the specified provider. The dtrace_provider_lock must be held, and the 8769 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 8770 * will need to grab the dtrace_lock when it reenters the framework through 8771 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 8772 */ 8773 static void 8774 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 8775 { 8776 struct modctl *ctl; 8777 int all = 0; 8778 8779 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8780 8781 if (prv == NULL) { 8782 all = 1; 8783 prv = dtrace_provider; 8784 } 8785 8786 do { 8787 /* 8788 * First, call the blanket provide operation. 8789 */ 8790 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 8791 8792 /* 8793 * Now call the per-module provide operation. We will grab 8794 * mod_lock to prevent the list from being modified. Note 8795 * that this also prevents the mod_busy bits from changing. 8796 * (mod_busy can only be changed with mod_lock held.) 8797 */ 8798 mutex_enter(&mod_lock); 8799 8800 ctl = &modules; 8801 do { 8802 if (ctl->mod_busy || ctl->mod_mp == NULL) 8803 continue; 8804 8805 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 8806 8807 } while ((ctl = ctl->mod_next) != &modules); 8808 8809 mutex_exit(&mod_lock); 8810 } while (all && (prv = prv->dtpv_next) != NULL); 8811 } 8812 8813 /* 8814 * Iterate over each probe, and call the Framework-to-Provider API function 8815 * denoted by offs. 8816 */ 8817 static void 8818 dtrace_probe_foreach(uintptr_t offs) 8819 { 8820 dtrace_provider_t *prov; 8821 void (*func)(void *, dtrace_id_t, void *); 8822 dtrace_probe_t *probe; 8823 dtrace_icookie_t cookie; 8824 int i; 8825 8826 /* 8827 * We disable interrupts to walk through the probe array. This is 8828 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 8829 * won't see stale data. 8830 */ 8831 cookie = dtrace_interrupt_disable(); 8832 8833 for (i = 0; i < dtrace_nprobes; i++) { 8834 if ((probe = dtrace_probes[i]) == NULL) 8835 continue; 8836 8837 if (probe->dtpr_ecb == NULL) { 8838 /* 8839 * This probe isn't enabled -- don't call the function. 8840 */ 8841 continue; 8842 } 8843 8844 prov = probe->dtpr_provider; 8845 func = *((void(**)(void *, dtrace_id_t, void *)) 8846 ((uintptr_t)&prov->dtpv_pops + offs)); 8847 8848 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 8849 } 8850 8851 dtrace_interrupt_enable(cookie); 8852 } 8853 8854 static int 8855 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 8856 { 8857 dtrace_probekey_t pkey; 8858 uint32_t priv; 8859 uid_t uid; 8860 zoneid_t zoneid; 8861 8862 ASSERT(MUTEX_HELD(&dtrace_lock)); 8863 dtrace_ecb_create_cache = NULL; 8864 8865 if (desc == NULL) { 8866 /* 8867 * If we're passed a NULL description, we're being asked to 8868 * create an ECB with a NULL probe. 8869 */ 8870 (void) dtrace_ecb_create_enable(NULL, enab); 8871 return (0); 8872 } 8873 8874 dtrace_probekey(desc, &pkey); 8875 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 8876 &priv, &uid, &zoneid); 8877 8878 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 8879 enab)); 8880 } 8881 8882 /* 8883 * DTrace Helper Provider Functions 8884 */ 8885 static void 8886 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 8887 { 8888 attr->dtat_name = DOF_ATTR_NAME(dofattr); 8889 attr->dtat_data = DOF_ATTR_DATA(dofattr); 8890 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 8891 } 8892 8893 static void 8894 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 8895 const dof_provider_t *dofprov, char *strtab) 8896 { 8897 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 8898 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 8899 dofprov->dofpv_provattr); 8900 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 8901 dofprov->dofpv_modattr); 8902 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 8903 dofprov->dofpv_funcattr); 8904 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 8905 dofprov->dofpv_nameattr); 8906 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 8907 dofprov->dofpv_argsattr); 8908 } 8909 8910 static void 8911 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8912 { 8913 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8914 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8915 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 8916 dof_provider_t *provider; 8917 dof_probe_t *probe; 8918 uint32_t *off, *enoff; 8919 uint8_t *arg; 8920 char *strtab; 8921 uint_t i, nprobes; 8922 dtrace_helper_provdesc_t dhpv; 8923 dtrace_helper_probedesc_t dhpb; 8924 dtrace_meta_t *meta = dtrace_meta_pid; 8925 dtrace_mops_t *mops = &meta->dtm_mops; 8926 void *parg; 8927 8928 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8929 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8930 provider->dofpv_strtab * dof->dofh_secsize); 8931 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8932 provider->dofpv_probes * dof->dofh_secsize); 8933 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8934 provider->dofpv_prargs * dof->dofh_secsize); 8935 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8936 provider->dofpv_proffs * dof->dofh_secsize); 8937 8938 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8939 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 8940 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 8941 enoff = NULL; 8942 8943 /* 8944 * See dtrace_helper_provider_validate(). 8945 */ 8946 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 8947 provider->dofpv_prenoffs != DOF_SECT_NONE) { 8948 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8949 provider->dofpv_prenoffs * dof->dofh_secsize); 8950 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 8951 } 8952 8953 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 8954 8955 /* 8956 * Create the provider. 8957 */ 8958 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8959 8960 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 8961 return; 8962 8963 meta->dtm_count++; 8964 8965 /* 8966 * Create the probes. 8967 */ 8968 for (i = 0; i < nprobes; i++) { 8969 probe = (dof_probe_t *)(uintptr_t)(daddr + 8970 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 8971 8972 dhpb.dthpb_mod = dhp->dofhp_mod; 8973 dhpb.dthpb_func = strtab + probe->dofpr_func; 8974 dhpb.dthpb_name = strtab + probe->dofpr_name; 8975 dhpb.dthpb_base = probe->dofpr_addr; 8976 dhpb.dthpb_offs = off + probe->dofpr_offidx; 8977 dhpb.dthpb_noffs = probe->dofpr_noffs; 8978 if (enoff != NULL) { 8979 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 8980 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 8981 } else { 8982 dhpb.dthpb_enoffs = NULL; 8983 dhpb.dthpb_nenoffs = 0; 8984 } 8985 dhpb.dthpb_args = arg + probe->dofpr_argidx; 8986 dhpb.dthpb_nargc = probe->dofpr_nargc; 8987 dhpb.dthpb_xargc = probe->dofpr_xargc; 8988 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 8989 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 8990 8991 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 8992 } 8993 } 8994 8995 static void 8996 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 8997 { 8998 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8999 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9000 int i; 9001 9002 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9003 9004 for (i = 0; i < dof->dofh_secnum; i++) { 9005 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9006 dof->dofh_secoff + i * dof->dofh_secsize); 9007 9008 if (sec->dofs_type != DOF_SECT_PROVIDER) 9009 continue; 9010 9011 dtrace_helper_provide_one(dhp, sec, pid); 9012 } 9013 9014 /* 9015 * We may have just created probes, so we must now rematch against 9016 * any retained enablings. Note that this call will acquire both 9017 * cpu_lock and dtrace_lock; the fact that we are holding 9018 * dtrace_meta_lock now is what defines the ordering with respect to 9019 * these three locks. 9020 */ 9021 dtrace_enabling_matchall(); 9022 } 9023 9024 static void 9025 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9026 { 9027 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9028 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9029 dof_sec_t *str_sec; 9030 dof_provider_t *provider; 9031 char *strtab; 9032 dtrace_helper_provdesc_t dhpv; 9033 dtrace_meta_t *meta = dtrace_meta_pid; 9034 dtrace_mops_t *mops = &meta->dtm_mops; 9035 9036 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9037 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9038 provider->dofpv_strtab * dof->dofh_secsize); 9039 9040 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9041 9042 /* 9043 * Create the provider. 9044 */ 9045 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9046 9047 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 9048 9049 meta->dtm_count--; 9050 } 9051 9052 static void 9053 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 9054 { 9055 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9056 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9057 int i; 9058 9059 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9060 9061 for (i = 0; i < dof->dofh_secnum; i++) { 9062 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9063 dof->dofh_secoff + i * dof->dofh_secsize); 9064 9065 if (sec->dofs_type != DOF_SECT_PROVIDER) 9066 continue; 9067 9068 dtrace_helper_provider_remove_one(dhp, sec, pid); 9069 } 9070 } 9071 9072 /* 9073 * DTrace Meta Provider-to-Framework API Functions 9074 * 9075 * These functions implement the Meta Provider-to-Framework API, as described 9076 * in <sys/dtrace.h>. 9077 */ 9078 int 9079 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 9080 dtrace_meta_provider_id_t *idp) 9081 { 9082 dtrace_meta_t *meta; 9083 dtrace_helpers_t *help, *next; 9084 int i; 9085 9086 *idp = DTRACE_METAPROVNONE; 9087 9088 /* 9089 * We strictly don't need the name, but we hold onto it for 9090 * debuggability. All hail error queues! 9091 */ 9092 if (name == NULL) { 9093 cmn_err(CE_WARN, "failed to register meta-provider: " 9094 "invalid name"); 9095 return (EINVAL); 9096 } 9097 9098 if (mops == NULL || 9099 mops->dtms_create_probe == NULL || 9100 mops->dtms_provide_pid == NULL || 9101 mops->dtms_remove_pid == NULL) { 9102 cmn_err(CE_WARN, "failed to register meta-register %s: " 9103 "invalid ops", name); 9104 return (EINVAL); 9105 } 9106 9107 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 9108 meta->dtm_mops = *mops; 9109 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 9110 (void) strcpy(meta->dtm_name, name); 9111 meta->dtm_arg = arg; 9112 9113 mutex_enter(&dtrace_meta_lock); 9114 mutex_enter(&dtrace_lock); 9115 9116 if (dtrace_meta_pid != NULL) { 9117 mutex_exit(&dtrace_lock); 9118 mutex_exit(&dtrace_meta_lock); 9119 cmn_err(CE_WARN, "failed to register meta-register %s: " 9120 "user-land meta-provider exists", name); 9121 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 9122 kmem_free(meta, sizeof (dtrace_meta_t)); 9123 return (EINVAL); 9124 } 9125 9126 dtrace_meta_pid = meta; 9127 *idp = (dtrace_meta_provider_id_t)meta; 9128 9129 /* 9130 * If there are providers and probes ready to go, pass them 9131 * off to the new meta provider now. 9132 */ 9133 9134 help = dtrace_deferred_pid; 9135 dtrace_deferred_pid = NULL; 9136 9137 mutex_exit(&dtrace_lock); 9138 9139 while (help != NULL) { 9140 for (i = 0; i < help->dthps_nprovs; i++) { 9141 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 9142 help->dthps_pid); 9143 } 9144 9145 next = help->dthps_next; 9146 help->dthps_next = NULL; 9147 help->dthps_prev = NULL; 9148 help->dthps_deferred = 0; 9149 help = next; 9150 } 9151 9152 mutex_exit(&dtrace_meta_lock); 9153 9154 return (0); 9155 } 9156 9157 int 9158 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 9159 { 9160 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 9161 9162 mutex_enter(&dtrace_meta_lock); 9163 mutex_enter(&dtrace_lock); 9164 9165 if (old == dtrace_meta_pid) { 9166 pp = &dtrace_meta_pid; 9167 } else { 9168 panic("attempt to unregister non-existent " 9169 "dtrace meta-provider %p\n", (void *)old); 9170 } 9171 9172 if (old->dtm_count != 0) { 9173 mutex_exit(&dtrace_lock); 9174 mutex_exit(&dtrace_meta_lock); 9175 return (EBUSY); 9176 } 9177 9178 *pp = NULL; 9179 9180 mutex_exit(&dtrace_lock); 9181 mutex_exit(&dtrace_meta_lock); 9182 9183 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 9184 kmem_free(old, sizeof (dtrace_meta_t)); 9185 9186 return (0); 9187 } 9188 9189 9190 /* 9191 * DTrace DIF Object Functions 9192 */ 9193 static int 9194 dtrace_difo_err(uint_t pc, const char *format, ...) 9195 { 9196 if (dtrace_err_verbose) { 9197 va_list alist; 9198 9199 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 9200 va_start(alist, format); 9201 (void) vuprintf(format, alist); 9202 va_end(alist); 9203 } 9204 9205 #ifdef DTRACE_ERRDEBUG 9206 dtrace_errdebug(format); 9207 #endif 9208 return (1); 9209 } 9210 9211 /* 9212 * Validate a DTrace DIF object by checking the IR instructions. The following 9213 * rules are currently enforced by dtrace_difo_validate(): 9214 * 9215 * 1. Each instruction must have a valid opcode 9216 * 2. Each register, string, variable, or subroutine reference must be valid 9217 * 3. No instruction can modify register %r0 (must be zero) 9218 * 4. All instruction reserved bits must be set to zero 9219 * 5. The last instruction must be a "ret" instruction 9220 * 6. All branch targets must reference a valid instruction _after_ the branch 9221 */ 9222 static int 9223 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 9224 cred_t *cr) 9225 { 9226 int err = 0, i; 9227 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9228 int kcheckload; 9229 uint_t pc; 9230 int maxglobal = -1, maxlocal = -1, maxtlocal = -1; 9231 9232 kcheckload = cr == NULL || 9233 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 9234 9235 dp->dtdo_destructive = 0; 9236 9237 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9238 dif_instr_t instr = dp->dtdo_buf[pc]; 9239 9240 uint_t r1 = DIF_INSTR_R1(instr); 9241 uint_t r2 = DIF_INSTR_R2(instr); 9242 uint_t rd = DIF_INSTR_RD(instr); 9243 uint_t rs = DIF_INSTR_RS(instr); 9244 uint_t label = DIF_INSTR_LABEL(instr); 9245 uint_t v = DIF_INSTR_VAR(instr); 9246 uint_t subr = DIF_INSTR_SUBR(instr); 9247 uint_t type = DIF_INSTR_TYPE(instr); 9248 uint_t op = DIF_INSTR_OP(instr); 9249 9250 switch (op) { 9251 case DIF_OP_OR: 9252 case DIF_OP_XOR: 9253 case DIF_OP_AND: 9254 case DIF_OP_SLL: 9255 case DIF_OP_SRL: 9256 case DIF_OP_SRA: 9257 case DIF_OP_SUB: 9258 case DIF_OP_ADD: 9259 case DIF_OP_MUL: 9260 case DIF_OP_SDIV: 9261 case DIF_OP_UDIV: 9262 case DIF_OP_SREM: 9263 case DIF_OP_UREM: 9264 case DIF_OP_COPYS: 9265 if (r1 >= nregs) 9266 err += efunc(pc, "invalid register %u\n", r1); 9267 if (r2 >= nregs) 9268 err += efunc(pc, "invalid register %u\n", r2); 9269 if (rd >= nregs) 9270 err += efunc(pc, "invalid register %u\n", rd); 9271 if (rd == 0) 9272 err += efunc(pc, "cannot write to %r0\n"); 9273 break; 9274 case DIF_OP_NOT: 9275 case DIF_OP_MOV: 9276 case DIF_OP_ALLOCS: 9277 if (r1 >= nregs) 9278 err += efunc(pc, "invalid register %u\n", r1); 9279 if (r2 != 0) 9280 err += efunc(pc, "non-zero reserved bits\n"); 9281 if (rd >= nregs) 9282 err += efunc(pc, "invalid register %u\n", rd); 9283 if (rd == 0) 9284 err += efunc(pc, "cannot write to %r0\n"); 9285 break; 9286 case DIF_OP_LDSB: 9287 case DIF_OP_LDSH: 9288 case DIF_OP_LDSW: 9289 case DIF_OP_LDUB: 9290 case DIF_OP_LDUH: 9291 case DIF_OP_LDUW: 9292 case DIF_OP_LDX: 9293 if (r1 >= nregs) 9294 err += efunc(pc, "invalid register %u\n", r1); 9295 if (r2 != 0) 9296 err += efunc(pc, "non-zero reserved bits\n"); 9297 if (rd >= nregs) 9298 err += efunc(pc, "invalid register %u\n", rd); 9299 if (rd == 0) 9300 err += efunc(pc, "cannot write to %r0\n"); 9301 if (kcheckload) 9302 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9303 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9304 break; 9305 case DIF_OP_RLDSB: 9306 case DIF_OP_RLDSH: 9307 case DIF_OP_RLDSW: 9308 case DIF_OP_RLDUB: 9309 case DIF_OP_RLDUH: 9310 case DIF_OP_RLDUW: 9311 case DIF_OP_RLDX: 9312 if (r1 >= nregs) 9313 err += efunc(pc, "invalid register %u\n", r1); 9314 if (r2 != 0) 9315 err += efunc(pc, "non-zero reserved bits\n"); 9316 if (rd >= nregs) 9317 err += efunc(pc, "invalid register %u\n", rd); 9318 if (rd == 0) 9319 err += efunc(pc, "cannot write to %r0\n"); 9320 break; 9321 case DIF_OP_ULDSB: 9322 case DIF_OP_ULDSH: 9323 case DIF_OP_ULDSW: 9324 case DIF_OP_ULDUB: 9325 case DIF_OP_ULDUH: 9326 case DIF_OP_ULDUW: 9327 case DIF_OP_ULDX: 9328 if (r1 >= nregs) 9329 err += efunc(pc, "invalid register %u\n", r1); 9330 if (r2 != 0) 9331 err += efunc(pc, "non-zero reserved bits\n"); 9332 if (rd >= nregs) 9333 err += efunc(pc, "invalid register %u\n", rd); 9334 if (rd == 0) 9335 err += efunc(pc, "cannot write to %r0\n"); 9336 break; 9337 case DIF_OP_STB: 9338 case DIF_OP_STH: 9339 case DIF_OP_STW: 9340 case DIF_OP_STX: 9341 if (r1 >= nregs) 9342 err += efunc(pc, "invalid register %u\n", r1); 9343 if (r2 != 0) 9344 err += efunc(pc, "non-zero reserved bits\n"); 9345 if (rd >= nregs) 9346 err += efunc(pc, "invalid register %u\n", rd); 9347 if (rd == 0) 9348 err += efunc(pc, "cannot write to 0 address\n"); 9349 break; 9350 case DIF_OP_CMP: 9351 case DIF_OP_SCMP: 9352 if (r1 >= nregs) 9353 err += efunc(pc, "invalid register %u\n", r1); 9354 if (r2 >= nregs) 9355 err += efunc(pc, "invalid register %u\n", r2); 9356 if (rd != 0) 9357 err += efunc(pc, "non-zero reserved bits\n"); 9358 break; 9359 case DIF_OP_TST: 9360 if (r1 >= nregs) 9361 err += efunc(pc, "invalid register %u\n", r1); 9362 if (r2 != 0 || rd != 0) 9363 err += efunc(pc, "non-zero reserved bits\n"); 9364 break; 9365 case DIF_OP_BA: 9366 case DIF_OP_BE: 9367 case DIF_OP_BNE: 9368 case DIF_OP_BG: 9369 case DIF_OP_BGU: 9370 case DIF_OP_BGE: 9371 case DIF_OP_BGEU: 9372 case DIF_OP_BL: 9373 case DIF_OP_BLU: 9374 case DIF_OP_BLE: 9375 case DIF_OP_BLEU: 9376 if (label >= dp->dtdo_len) { 9377 err += efunc(pc, "invalid branch target %u\n", 9378 label); 9379 } 9380 if (label <= pc) { 9381 err += efunc(pc, "backward branch to %u\n", 9382 label); 9383 } 9384 break; 9385 case DIF_OP_RET: 9386 if (r1 != 0 || r2 != 0) 9387 err += efunc(pc, "non-zero reserved bits\n"); 9388 if (rd >= nregs) 9389 err += efunc(pc, "invalid register %u\n", rd); 9390 break; 9391 case DIF_OP_NOP: 9392 case DIF_OP_POPTS: 9393 case DIF_OP_FLUSHTS: 9394 if (r1 != 0 || r2 != 0 || rd != 0) 9395 err += efunc(pc, "non-zero reserved bits\n"); 9396 break; 9397 case DIF_OP_SETX: 9398 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9399 err += efunc(pc, "invalid integer ref %u\n", 9400 DIF_INSTR_INTEGER(instr)); 9401 } 9402 if (rd >= nregs) 9403 err += efunc(pc, "invalid register %u\n", rd); 9404 if (rd == 0) 9405 err += efunc(pc, "cannot write to %r0\n"); 9406 break; 9407 case DIF_OP_SETS: 9408 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9409 err += efunc(pc, "invalid string ref %u\n", 9410 DIF_INSTR_STRING(instr)); 9411 } 9412 if (rd >= nregs) 9413 err += efunc(pc, "invalid register %u\n", rd); 9414 if (rd == 0) 9415 err += efunc(pc, "cannot write to %r0\n"); 9416 break; 9417 case DIF_OP_LDGA: 9418 case DIF_OP_LDTA: 9419 if (r1 > DIF_VAR_ARRAY_MAX) 9420 err += efunc(pc, "invalid array %u\n", r1); 9421 if (r2 >= nregs) 9422 err += efunc(pc, "invalid register %u\n", r2); 9423 if (rd >= nregs) 9424 err += efunc(pc, "invalid register %u\n", rd); 9425 if (rd == 0) 9426 err += efunc(pc, "cannot write to %r0\n"); 9427 break; 9428 case DIF_OP_STGA: 9429 if (r1 > DIF_VAR_ARRAY_MAX) 9430 err += efunc(pc, "invalid array %u\n", r1); 9431 if (r2 >= nregs) 9432 err += efunc(pc, "invalid register %u\n", r2); 9433 if (rd >= nregs) 9434 err += efunc(pc, "invalid register %u\n", rd); 9435 dp->dtdo_destructive = 1; 9436 break; 9437 case DIF_OP_LDGS: 9438 case DIF_OP_LDTS: 9439 case DIF_OP_LDLS: 9440 case DIF_OP_LDGAA: 9441 case DIF_OP_LDTAA: 9442 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9443 err += efunc(pc, "invalid variable %u\n", v); 9444 if (rd >= nregs) 9445 err += efunc(pc, "invalid register %u\n", rd); 9446 if (rd == 0) 9447 err += efunc(pc, "cannot write to %r0\n"); 9448 break; 9449 case DIF_OP_STGS: 9450 case DIF_OP_STTS: 9451 case DIF_OP_STLS: 9452 case DIF_OP_STGAA: 9453 case DIF_OP_STTAA: 9454 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 9455 err += efunc(pc, "invalid variable %u\n", v); 9456 if (rs >= nregs) 9457 err += efunc(pc, "invalid register %u\n", rd); 9458 break; 9459 case DIF_OP_CALL: 9460 if (subr > DIF_SUBR_MAX) 9461 err += efunc(pc, "invalid subr %u\n", subr); 9462 if (rd >= nregs) 9463 err += efunc(pc, "invalid register %u\n", rd); 9464 if (rd == 0) 9465 err += efunc(pc, "cannot write to %r0\n"); 9466 9467 if (subr == DIF_SUBR_COPYOUT || 9468 subr == DIF_SUBR_COPYOUTSTR) { 9469 dp->dtdo_destructive = 1; 9470 } 9471 9472 if (subr == DIF_SUBR_GETF) { 9473 /* 9474 * If we have a getf() we need to record that 9475 * in our state. Note that our state can be 9476 * NULL if this is a helper -- but in that 9477 * case, the call to getf() is itself illegal, 9478 * and will be caught (slightly later) when 9479 * the helper is validated. 9480 */ 9481 if (vstate->dtvs_state != NULL) 9482 vstate->dtvs_state->dts_getf++; 9483 } 9484 9485 break; 9486 case DIF_OP_PUSHTR: 9487 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 9488 err += efunc(pc, "invalid ref type %u\n", type); 9489 if (r2 >= nregs) 9490 err += efunc(pc, "invalid register %u\n", r2); 9491 if (rs >= nregs) 9492 err += efunc(pc, "invalid register %u\n", rs); 9493 break; 9494 case DIF_OP_PUSHTV: 9495 if (type != DIF_TYPE_CTF) 9496 err += efunc(pc, "invalid val type %u\n", type); 9497 if (r2 >= nregs) 9498 err += efunc(pc, "invalid register %u\n", r2); 9499 if (rs >= nregs) 9500 err += efunc(pc, "invalid register %u\n", rs); 9501 break; 9502 default: 9503 err += efunc(pc, "invalid opcode %u\n", 9504 DIF_INSTR_OP(instr)); 9505 } 9506 } 9507 9508 if (dp->dtdo_len != 0 && 9509 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 9510 err += efunc(dp->dtdo_len - 1, 9511 "expected 'ret' as last DIF instruction\n"); 9512 } 9513 9514 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 9515 /* 9516 * If we're not returning by reference, the size must be either 9517 * 0 or the size of one of the base types. 9518 */ 9519 switch (dp->dtdo_rtype.dtdt_size) { 9520 case 0: 9521 case sizeof (uint8_t): 9522 case sizeof (uint16_t): 9523 case sizeof (uint32_t): 9524 case sizeof (uint64_t): 9525 break; 9526 9527 default: 9528 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 9529 } 9530 } 9531 9532 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 9533 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 9534 dtrace_diftype_t *vt, *et; 9535 uint_t id, ndx; 9536 9537 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 9538 v->dtdv_scope != DIFV_SCOPE_THREAD && 9539 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 9540 err += efunc(i, "unrecognized variable scope %d\n", 9541 v->dtdv_scope); 9542 break; 9543 } 9544 9545 if (v->dtdv_kind != DIFV_KIND_ARRAY && 9546 v->dtdv_kind != DIFV_KIND_SCALAR) { 9547 err += efunc(i, "unrecognized variable type %d\n", 9548 v->dtdv_kind); 9549 break; 9550 } 9551 9552 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 9553 err += efunc(i, "%d exceeds variable id limit\n", id); 9554 break; 9555 } 9556 9557 if (id < DIF_VAR_OTHER_UBASE) 9558 continue; 9559 9560 /* 9561 * For user-defined variables, we need to check that this 9562 * definition is identical to any previous definition that we 9563 * encountered. 9564 */ 9565 ndx = id - DIF_VAR_OTHER_UBASE; 9566 9567 switch (v->dtdv_scope) { 9568 case DIFV_SCOPE_GLOBAL: 9569 if (maxglobal == -1 || ndx > maxglobal) 9570 maxglobal = ndx; 9571 9572 if (ndx < vstate->dtvs_nglobals) { 9573 dtrace_statvar_t *svar; 9574 9575 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 9576 existing = &svar->dtsv_var; 9577 } 9578 9579 break; 9580 9581 case DIFV_SCOPE_THREAD: 9582 if (maxtlocal == -1 || ndx > maxtlocal) 9583 maxtlocal = ndx; 9584 9585 if (ndx < vstate->dtvs_ntlocals) 9586 existing = &vstate->dtvs_tlocals[ndx]; 9587 break; 9588 9589 case DIFV_SCOPE_LOCAL: 9590 if (maxlocal == -1 || ndx > maxlocal) 9591 maxlocal = ndx; 9592 9593 if (ndx < vstate->dtvs_nlocals) { 9594 dtrace_statvar_t *svar; 9595 9596 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 9597 existing = &svar->dtsv_var; 9598 } 9599 9600 break; 9601 } 9602 9603 vt = &v->dtdv_type; 9604 9605 if (vt->dtdt_flags & DIF_TF_BYREF) { 9606 if (vt->dtdt_size == 0) { 9607 err += efunc(i, "zero-sized variable\n"); 9608 break; 9609 } 9610 9611 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || 9612 v->dtdv_scope == DIFV_SCOPE_LOCAL) && 9613 vt->dtdt_size > dtrace_statvar_maxsize) { 9614 err += efunc(i, "oversized by-ref static\n"); 9615 break; 9616 } 9617 } 9618 9619 if (existing == NULL || existing->dtdv_id == 0) 9620 continue; 9621 9622 ASSERT(existing->dtdv_id == v->dtdv_id); 9623 ASSERT(existing->dtdv_scope == v->dtdv_scope); 9624 9625 if (existing->dtdv_kind != v->dtdv_kind) 9626 err += efunc(i, "%d changed variable kind\n", id); 9627 9628 et = &existing->dtdv_type; 9629 9630 if (vt->dtdt_flags != et->dtdt_flags) { 9631 err += efunc(i, "%d changed variable type flags\n", id); 9632 break; 9633 } 9634 9635 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 9636 err += efunc(i, "%d changed variable type size\n", id); 9637 break; 9638 } 9639 } 9640 9641 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9642 dif_instr_t instr = dp->dtdo_buf[pc]; 9643 9644 uint_t v = DIF_INSTR_VAR(instr); 9645 uint_t op = DIF_INSTR_OP(instr); 9646 9647 switch (op) { 9648 case DIF_OP_LDGS: 9649 case DIF_OP_LDGAA: 9650 case DIF_OP_STGS: 9651 case DIF_OP_STGAA: 9652 if (v > DIF_VAR_OTHER_UBASE + maxglobal) 9653 err += efunc(pc, "invalid variable %u\n", v); 9654 break; 9655 case DIF_OP_LDTS: 9656 case DIF_OP_LDTAA: 9657 case DIF_OP_STTS: 9658 case DIF_OP_STTAA: 9659 if (v > DIF_VAR_OTHER_UBASE + maxtlocal) 9660 err += efunc(pc, "invalid variable %u\n", v); 9661 break; 9662 case DIF_OP_LDLS: 9663 case DIF_OP_STLS: 9664 if (v > DIF_VAR_OTHER_UBASE + maxlocal) 9665 err += efunc(pc, "invalid variable %u\n", v); 9666 break; 9667 default: 9668 break; 9669 } 9670 } 9671 9672 return (err); 9673 } 9674 9675 /* 9676 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 9677 * are much more constrained than normal DIFOs. Specifically, they may 9678 * not: 9679 * 9680 * 1. Make calls to subroutines other than copyin(), copyinstr() or 9681 * miscellaneous string routines 9682 * 2. Access DTrace variables other than the args[] array, and the 9683 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 9684 * 3. Have thread-local variables. 9685 * 4. Have dynamic variables. 9686 */ 9687 static int 9688 dtrace_difo_validate_helper(dtrace_difo_t *dp) 9689 { 9690 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9691 int err = 0; 9692 uint_t pc; 9693 9694 for (pc = 0; pc < dp->dtdo_len; pc++) { 9695 dif_instr_t instr = dp->dtdo_buf[pc]; 9696 9697 uint_t v = DIF_INSTR_VAR(instr); 9698 uint_t subr = DIF_INSTR_SUBR(instr); 9699 uint_t op = DIF_INSTR_OP(instr); 9700 9701 switch (op) { 9702 case DIF_OP_OR: 9703 case DIF_OP_XOR: 9704 case DIF_OP_AND: 9705 case DIF_OP_SLL: 9706 case DIF_OP_SRL: 9707 case DIF_OP_SRA: 9708 case DIF_OP_SUB: 9709 case DIF_OP_ADD: 9710 case DIF_OP_MUL: 9711 case DIF_OP_SDIV: 9712 case DIF_OP_UDIV: 9713 case DIF_OP_SREM: 9714 case DIF_OP_UREM: 9715 case DIF_OP_COPYS: 9716 case DIF_OP_NOT: 9717 case DIF_OP_MOV: 9718 case DIF_OP_RLDSB: 9719 case DIF_OP_RLDSH: 9720 case DIF_OP_RLDSW: 9721 case DIF_OP_RLDUB: 9722 case DIF_OP_RLDUH: 9723 case DIF_OP_RLDUW: 9724 case DIF_OP_RLDX: 9725 case DIF_OP_ULDSB: 9726 case DIF_OP_ULDSH: 9727 case DIF_OP_ULDSW: 9728 case DIF_OP_ULDUB: 9729 case DIF_OP_ULDUH: 9730 case DIF_OP_ULDUW: 9731 case DIF_OP_ULDX: 9732 case DIF_OP_STB: 9733 case DIF_OP_STH: 9734 case DIF_OP_STW: 9735 case DIF_OP_STX: 9736 case DIF_OP_ALLOCS: 9737 case DIF_OP_CMP: 9738 case DIF_OP_SCMP: 9739 case DIF_OP_TST: 9740 case DIF_OP_BA: 9741 case DIF_OP_BE: 9742 case DIF_OP_BNE: 9743 case DIF_OP_BG: 9744 case DIF_OP_BGU: 9745 case DIF_OP_BGE: 9746 case DIF_OP_BGEU: 9747 case DIF_OP_BL: 9748 case DIF_OP_BLU: 9749 case DIF_OP_BLE: 9750 case DIF_OP_BLEU: 9751 case DIF_OP_RET: 9752 case DIF_OP_NOP: 9753 case DIF_OP_POPTS: 9754 case DIF_OP_FLUSHTS: 9755 case DIF_OP_SETX: 9756 case DIF_OP_SETS: 9757 case DIF_OP_LDGA: 9758 case DIF_OP_LDLS: 9759 case DIF_OP_STGS: 9760 case DIF_OP_STLS: 9761 case DIF_OP_PUSHTR: 9762 case DIF_OP_PUSHTV: 9763 break; 9764 9765 case DIF_OP_LDGS: 9766 if (v >= DIF_VAR_OTHER_UBASE) 9767 break; 9768 9769 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 9770 break; 9771 9772 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 9773 v == DIF_VAR_PPID || v == DIF_VAR_TID || 9774 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 9775 v == DIF_VAR_UID || v == DIF_VAR_GID) 9776 break; 9777 9778 err += efunc(pc, "illegal variable %u\n", v); 9779 break; 9780 9781 case DIF_OP_LDTA: 9782 if (v < DIF_VAR_OTHER_UBASE) { 9783 err += efunc(pc, "illegal variable load\n"); 9784 break; 9785 } 9786 /* FALLTHROUGH */ 9787 case DIF_OP_LDTS: 9788 case DIF_OP_LDGAA: 9789 case DIF_OP_LDTAA: 9790 err += efunc(pc, "illegal dynamic variable load\n"); 9791 break; 9792 9793 case DIF_OP_STGA: 9794 if (v < DIF_VAR_OTHER_UBASE) { 9795 err += efunc(pc, "illegal variable store\n"); 9796 break; 9797 } 9798 /* FALLTHROUGH */ 9799 case DIF_OP_STTS: 9800 case DIF_OP_STGAA: 9801 case DIF_OP_STTAA: 9802 err += efunc(pc, "illegal dynamic variable store\n"); 9803 break; 9804 9805 case DIF_OP_CALL: 9806 if (subr == DIF_SUBR_ALLOCA || 9807 subr == DIF_SUBR_BCOPY || 9808 subr == DIF_SUBR_COPYIN || 9809 subr == DIF_SUBR_COPYINTO || 9810 subr == DIF_SUBR_COPYINSTR || 9811 subr == DIF_SUBR_INDEX || 9812 subr == DIF_SUBR_INET_NTOA || 9813 subr == DIF_SUBR_INET_NTOA6 || 9814 subr == DIF_SUBR_INET_NTOP || 9815 subr == DIF_SUBR_JSON || 9816 subr == DIF_SUBR_LLTOSTR || 9817 subr == DIF_SUBR_STRTOLL || 9818 subr == DIF_SUBR_RINDEX || 9819 subr == DIF_SUBR_STRCHR || 9820 subr == DIF_SUBR_STRJOIN || 9821 subr == DIF_SUBR_STRRCHR || 9822 subr == DIF_SUBR_STRSTR || 9823 subr == DIF_SUBR_HTONS || 9824 subr == DIF_SUBR_HTONL || 9825 subr == DIF_SUBR_HTONLL || 9826 subr == DIF_SUBR_NTOHS || 9827 subr == DIF_SUBR_NTOHL || 9828 subr == DIF_SUBR_NTOHLL) 9829 break; 9830 9831 err += efunc(pc, "invalid subr %u\n", subr); 9832 break; 9833 9834 default: 9835 err += efunc(pc, "invalid opcode %u\n", 9836 DIF_INSTR_OP(instr)); 9837 } 9838 } 9839 9840 return (err); 9841 } 9842 9843 /* 9844 * Returns 1 if the expression in the DIF object can be cached on a per-thread 9845 * basis; 0 if not. 9846 */ 9847 static int 9848 dtrace_difo_cacheable(dtrace_difo_t *dp) 9849 { 9850 int i; 9851 9852 if (dp == NULL) 9853 return (0); 9854 9855 for (i = 0; i < dp->dtdo_varlen; i++) { 9856 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9857 9858 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 9859 continue; 9860 9861 switch (v->dtdv_id) { 9862 case DIF_VAR_CURTHREAD: 9863 case DIF_VAR_PID: 9864 case DIF_VAR_TID: 9865 case DIF_VAR_EXECNAME: 9866 case DIF_VAR_ZONENAME: 9867 break; 9868 9869 default: 9870 return (0); 9871 } 9872 } 9873 9874 /* 9875 * This DIF object may be cacheable. Now we need to look for any 9876 * array loading instructions, any memory loading instructions, or 9877 * any stores to thread-local variables. 9878 */ 9879 for (i = 0; i < dp->dtdo_len; i++) { 9880 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 9881 9882 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 9883 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 9884 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 9885 op == DIF_OP_LDGA || op == DIF_OP_STTS) 9886 return (0); 9887 } 9888 9889 return (1); 9890 } 9891 9892 static void 9893 dtrace_difo_hold(dtrace_difo_t *dp) 9894 { 9895 int i; 9896 9897 ASSERT(MUTEX_HELD(&dtrace_lock)); 9898 9899 dp->dtdo_refcnt++; 9900 ASSERT(dp->dtdo_refcnt != 0); 9901 9902 /* 9903 * We need to check this DIF object for references to the variable 9904 * DIF_VAR_VTIMESTAMP. 9905 */ 9906 for (i = 0; i < dp->dtdo_varlen; i++) { 9907 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9908 9909 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9910 continue; 9911 9912 if (dtrace_vtime_references++ == 0) 9913 dtrace_vtime_enable(); 9914 } 9915 } 9916 9917 /* 9918 * This routine calculates the dynamic variable chunksize for a given DIF 9919 * object. The calculation is not fool-proof, and can probably be tricked by 9920 * malicious DIF -- but it works for all compiler-generated DIF. Because this 9921 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 9922 * if a dynamic variable size exceeds the chunksize. 9923 */ 9924 static void 9925 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9926 { 9927 uint64_t sval; 9928 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 9929 const dif_instr_t *text = dp->dtdo_buf; 9930 uint_t pc, srd = 0; 9931 uint_t ttop = 0; 9932 size_t size, ksize; 9933 uint_t id, i; 9934 9935 for (pc = 0; pc < dp->dtdo_len; pc++) { 9936 dif_instr_t instr = text[pc]; 9937 uint_t op = DIF_INSTR_OP(instr); 9938 uint_t rd = DIF_INSTR_RD(instr); 9939 uint_t r1 = DIF_INSTR_R1(instr); 9940 uint_t nkeys = 0; 9941 uchar_t scope; 9942 9943 dtrace_key_t *key = tupregs; 9944 9945 switch (op) { 9946 case DIF_OP_SETX: 9947 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 9948 srd = rd; 9949 continue; 9950 9951 case DIF_OP_STTS: 9952 key = &tupregs[DIF_DTR_NREGS]; 9953 key[0].dttk_size = 0; 9954 key[1].dttk_size = 0; 9955 nkeys = 2; 9956 scope = DIFV_SCOPE_THREAD; 9957 break; 9958 9959 case DIF_OP_STGAA: 9960 case DIF_OP_STTAA: 9961 nkeys = ttop; 9962 9963 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 9964 key[nkeys++].dttk_size = 0; 9965 9966 key[nkeys++].dttk_size = 0; 9967 9968 if (op == DIF_OP_STTAA) { 9969 scope = DIFV_SCOPE_THREAD; 9970 } else { 9971 scope = DIFV_SCOPE_GLOBAL; 9972 } 9973 9974 break; 9975 9976 case DIF_OP_PUSHTR: 9977 if (ttop == DIF_DTR_NREGS) 9978 return; 9979 9980 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 9981 /* 9982 * If the register for the size of the "pushtr" 9983 * is %r0 (or the value is 0) and the type is 9984 * a string, we'll use the system-wide default 9985 * string size. 9986 */ 9987 tupregs[ttop++].dttk_size = 9988 dtrace_strsize_default; 9989 } else { 9990 if (srd == 0) 9991 return; 9992 9993 if (sval > LONG_MAX) 9994 return; 9995 9996 tupregs[ttop++].dttk_size = sval; 9997 } 9998 9999 break; 10000 10001 case DIF_OP_PUSHTV: 10002 if (ttop == DIF_DTR_NREGS) 10003 return; 10004 10005 tupregs[ttop++].dttk_size = 0; 10006 break; 10007 10008 case DIF_OP_FLUSHTS: 10009 ttop = 0; 10010 break; 10011 10012 case DIF_OP_POPTS: 10013 if (ttop != 0) 10014 ttop--; 10015 break; 10016 } 10017 10018 sval = 0; 10019 srd = 0; 10020 10021 if (nkeys == 0) 10022 continue; 10023 10024 /* 10025 * We have a dynamic variable allocation; calculate its size. 10026 */ 10027 for (ksize = 0, i = 0; i < nkeys; i++) 10028 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 10029 10030 size = sizeof (dtrace_dynvar_t); 10031 size += sizeof (dtrace_key_t) * (nkeys - 1); 10032 size += ksize; 10033 10034 /* 10035 * Now we need to determine the size of the stored data. 10036 */ 10037 id = DIF_INSTR_VAR(instr); 10038 10039 for (i = 0; i < dp->dtdo_varlen; i++) { 10040 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10041 10042 if (v->dtdv_id == id && v->dtdv_scope == scope) { 10043 size += v->dtdv_type.dtdt_size; 10044 break; 10045 } 10046 } 10047 10048 if (i == dp->dtdo_varlen) 10049 return; 10050 10051 /* 10052 * We have the size. If this is larger than the chunk size 10053 * for our dynamic variable state, reset the chunk size. 10054 */ 10055 size = P2ROUNDUP(size, sizeof (uint64_t)); 10056 10057 /* 10058 * Before setting the chunk size, check that we're not going 10059 * to set it to a negative value... 10060 */ 10061 if (size > LONG_MAX) 10062 return; 10063 10064 /* 10065 * ...and make certain that we didn't badly overflow. 10066 */ 10067 if (size < ksize || size < sizeof (dtrace_dynvar_t)) 10068 return; 10069 10070 if (size > vstate->dtvs_dynvars.dtds_chunksize) 10071 vstate->dtvs_dynvars.dtds_chunksize = size; 10072 } 10073 } 10074 10075 static void 10076 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10077 { 10078 int i, oldsvars, osz, nsz, otlocals, ntlocals; 10079 uint_t id; 10080 10081 ASSERT(MUTEX_HELD(&dtrace_lock)); 10082 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 10083 10084 for (i = 0; i < dp->dtdo_varlen; i++) { 10085 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10086 dtrace_statvar_t *svar, ***svarp; 10087 size_t dsize = 0; 10088 uint8_t scope = v->dtdv_scope; 10089 int *np; 10090 10091 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10092 continue; 10093 10094 id -= DIF_VAR_OTHER_UBASE; 10095 10096 switch (scope) { 10097 case DIFV_SCOPE_THREAD: 10098 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 10099 dtrace_difv_t *tlocals; 10100 10101 if ((ntlocals = (otlocals << 1)) == 0) 10102 ntlocals = 1; 10103 10104 osz = otlocals * sizeof (dtrace_difv_t); 10105 nsz = ntlocals * sizeof (dtrace_difv_t); 10106 10107 tlocals = kmem_zalloc(nsz, KM_SLEEP); 10108 10109 if (osz != 0) { 10110 bcopy(vstate->dtvs_tlocals, 10111 tlocals, osz); 10112 kmem_free(vstate->dtvs_tlocals, osz); 10113 } 10114 10115 vstate->dtvs_tlocals = tlocals; 10116 vstate->dtvs_ntlocals = ntlocals; 10117 } 10118 10119 vstate->dtvs_tlocals[id] = *v; 10120 continue; 10121 10122 case DIFV_SCOPE_LOCAL: 10123 np = &vstate->dtvs_nlocals; 10124 svarp = &vstate->dtvs_locals; 10125 10126 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10127 dsize = NCPU * (v->dtdv_type.dtdt_size + 10128 sizeof (uint64_t)); 10129 else 10130 dsize = NCPU * sizeof (uint64_t); 10131 10132 break; 10133 10134 case DIFV_SCOPE_GLOBAL: 10135 np = &vstate->dtvs_nglobals; 10136 svarp = &vstate->dtvs_globals; 10137 10138 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10139 dsize = v->dtdv_type.dtdt_size + 10140 sizeof (uint64_t); 10141 10142 break; 10143 10144 default: 10145 ASSERT(0); 10146 } 10147 10148 while (id >= (oldsvars = *np)) { 10149 dtrace_statvar_t **statics; 10150 int newsvars, oldsize, newsize; 10151 10152 if ((newsvars = (oldsvars << 1)) == 0) 10153 newsvars = 1; 10154 10155 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 10156 newsize = newsvars * sizeof (dtrace_statvar_t *); 10157 10158 statics = kmem_zalloc(newsize, KM_SLEEP); 10159 10160 if (oldsize != 0) { 10161 bcopy(*svarp, statics, oldsize); 10162 kmem_free(*svarp, oldsize); 10163 } 10164 10165 *svarp = statics; 10166 *np = newsvars; 10167 } 10168 10169 if ((svar = (*svarp)[id]) == NULL) { 10170 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 10171 svar->dtsv_var = *v; 10172 10173 if ((svar->dtsv_size = dsize) != 0) { 10174 svar->dtsv_data = (uint64_t)(uintptr_t) 10175 kmem_zalloc(dsize, KM_SLEEP); 10176 } 10177 10178 (*svarp)[id] = svar; 10179 } 10180 10181 svar->dtsv_refcnt++; 10182 } 10183 10184 dtrace_difo_chunksize(dp, vstate); 10185 dtrace_difo_hold(dp); 10186 } 10187 10188 static dtrace_difo_t * 10189 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10190 { 10191 dtrace_difo_t *new; 10192 size_t sz; 10193 10194 ASSERT(dp->dtdo_buf != NULL); 10195 ASSERT(dp->dtdo_refcnt != 0); 10196 10197 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10198 10199 ASSERT(dp->dtdo_buf != NULL); 10200 sz = dp->dtdo_len * sizeof (dif_instr_t); 10201 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 10202 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 10203 new->dtdo_len = dp->dtdo_len; 10204 10205 if (dp->dtdo_strtab != NULL) { 10206 ASSERT(dp->dtdo_strlen != 0); 10207 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 10208 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 10209 new->dtdo_strlen = dp->dtdo_strlen; 10210 } 10211 10212 if (dp->dtdo_inttab != NULL) { 10213 ASSERT(dp->dtdo_intlen != 0); 10214 sz = dp->dtdo_intlen * sizeof (uint64_t); 10215 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 10216 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 10217 new->dtdo_intlen = dp->dtdo_intlen; 10218 } 10219 10220 if (dp->dtdo_vartab != NULL) { 10221 ASSERT(dp->dtdo_varlen != 0); 10222 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 10223 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 10224 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 10225 new->dtdo_varlen = dp->dtdo_varlen; 10226 } 10227 10228 dtrace_difo_init(new, vstate); 10229 return (new); 10230 } 10231 10232 static void 10233 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10234 { 10235 int i; 10236 10237 ASSERT(dp->dtdo_refcnt == 0); 10238 10239 for (i = 0; i < dp->dtdo_varlen; i++) { 10240 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10241 dtrace_statvar_t *svar, **svarp; 10242 uint_t id; 10243 uint8_t scope = v->dtdv_scope; 10244 int *np; 10245 10246 switch (scope) { 10247 case DIFV_SCOPE_THREAD: 10248 continue; 10249 10250 case DIFV_SCOPE_LOCAL: 10251 np = &vstate->dtvs_nlocals; 10252 svarp = vstate->dtvs_locals; 10253 break; 10254 10255 case DIFV_SCOPE_GLOBAL: 10256 np = &vstate->dtvs_nglobals; 10257 svarp = vstate->dtvs_globals; 10258 break; 10259 10260 default: 10261 ASSERT(0); 10262 } 10263 10264 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10265 continue; 10266 10267 id -= DIF_VAR_OTHER_UBASE; 10268 ASSERT(id < *np); 10269 10270 svar = svarp[id]; 10271 ASSERT(svar != NULL); 10272 ASSERT(svar->dtsv_refcnt > 0); 10273 10274 if (--svar->dtsv_refcnt > 0) 10275 continue; 10276 10277 if (svar->dtsv_size != 0) { 10278 ASSERT(svar->dtsv_data != NULL); 10279 kmem_free((void *)(uintptr_t)svar->dtsv_data, 10280 svar->dtsv_size); 10281 } 10282 10283 kmem_free(svar, sizeof (dtrace_statvar_t)); 10284 svarp[id] = NULL; 10285 } 10286 10287 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10288 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10289 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10290 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10291 10292 kmem_free(dp, sizeof (dtrace_difo_t)); 10293 } 10294 10295 static void 10296 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10297 { 10298 int i; 10299 10300 ASSERT(MUTEX_HELD(&dtrace_lock)); 10301 ASSERT(dp->dtdo_refcnt != 0); 10302 10303 for (i = 0; i < dp->dtdo_varlen; i++) { 10304 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10305 10306 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10307 continue; 10308 10309 ASSERT(dtrace_vtime_references > 0); 10310 if (--dtrace_vtime_references == 0) 10311 dtrace_vtime_disable(); 10312 } 10313 10314 if (--dp->dtdo_refcnt == 0) 10315 dtrace_difo_destroy(dp, vstate); 10316 } 10317 10318 /* 10319 * DTrace Format Functions 10320 */ 10321 static uint16_t 10322 dtrace_format_add(dtrace_state_t *state, char *str) 10323 { 10324 char *fmt, **new; 10325 uint16_t ndx, len = strlen(str) + 1; 10326 10327 fmt = kmem_zalloc(len, KM_SLEEP); 10328 bcopy(str, fmt, len); 10329 10330 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10331 if (state->dts_formats[ndx] == NULL) { 10332 state->dts_formats[ndx] = fmt; 10333 return (ndx + 1); 10334 } 10335 } 10336 10337 if (state->dts_nformats == USHRT_MAX) { 10338 /* 10339 * This is only likely if a denial-of-service attack is being 10340 * attempted. As such, it's okay to fail silently here. 10341 */ 10342 kmem_free(fmt, len); 10343 return (0); 10344 } 10345 10346 /* 10347 * For simplicity, we always resize the formats array to be exactly the 10348 * number of formats. 10349 */ 10350 ndx = state->dts_nformats++; 10351 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10352 10353 if (state->dts_formats != NULL) { 10354 ASSERT(ndx != 0); 10355 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10356 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10357 } 10358 10359 state->dts_formats = new; 10360 state->dts_formats[ndx] = fmt; 10361 10362 return (ndx + 1); 10363 } 10364 10365 static void 10366 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10367 { 10368 char *fmt; 10369 10370 ASSERT(state->dts_formats != NULL); 10371 ASSERT(format <= state->dts_nformats); 10372 ASSERT(state->dts_formats[format - 1] != NULL); 10373 10374 fmt = state->dts_formats[format - 1]; 10375 kmem_free(fmt, strlen(fmt) + 1); 10376 state->dts_formats[format - 1] = NULL; 10377 } 10378 10379 static void 10380 dtrace_format_destroy(dtrace_state_t *state) 10381 { 10382 int i; 10383 10384 if (state->dts_nformats == 0) { 10385 ASSERT(state->dts_formats == NULL); 10386 return; 10387 } 10388 10389 ASSERT(state->dts_formats != NULL); 10390 10391 for (i = 0; i < state->dts_nformats; i++) { 10392 char *fmt = state->dts_formats[i]; 10393 10394 if (fmt == NULL) 10395 continue; 10396 10397 kmem_free(fmt, strlen(fmt) + 1); 10398 } 10399 10400 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10401 state->dts_nformats = 0; 10402 state->dts_formats = NULL; 10403 } 10404 10405 /* 10406 * DTrace Predicate Functions 10407 */ 10408 static dtrace_predicate_t * 10409 dtrace_predicate_create(dtrace_difo_t *dp) 10410 { 10411 dtrace_predicate_t *pred; 10412 10413 ASSERT(MUTEX_HELD(&dtrace_lock)); 10414 ASSERT(dp->dtdo_refcnt != 0); 10415 10416 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10417 pred->dtp_difo = dp; 10418 pred->dtp_refcnt = 1; 10419 10420 if (!dtrace_difo_cacheable(dp)) 10421 return (pred); 10422 10423 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10424 /* 10425 * This is only theoretically possible -- we have had 2^32 10426 * cacheable predicates on this machine. We cannot allow any 10427 * more predicates to become cacheable: as unlikely as it is, 10428 * there may be a thread caching a (now stale) predicate cache 10429 * ID. (N.B.: the temptation is being successfully resisted to 10430 * have this cmn_err() "Holy shit -- we executed this code!") 10431 */ 10432 return (pred); 10433 } 10434 10435 pred->dtp_cacheid = dtrace_predcache_id++; 10436 10437 return (pred); 10438 } 10439 10440 static void 10441 dtrace_predicate_hold(dtrace_predicate_t *pred) 10442 { 10443 ASSERT(MUTEX_HELD(&dtrace_lock)); 10444 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 10445 ASSERT(pred->dtp_refcnt > 0); 10446 10447 pred->dtp_refcnt++; 10448 } 10449 10450 static void 10451 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 10452 { 10453 dtrace_difo_t *dp = pred->dtp_difo; 10454 10455 ASSERT(MUTEX_HELD(&dtrace_lock)); 10456 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 10457 ASSERT(pred->dtp_refcnt > 0); 10458 10459 if (--pred->dtp_refcnt == 0) { 10460 dtrace_difo_release(pred->dtp_difo, vstate); 10461 kmem_free(pred, sizeof (dtrace_predicate_t)); 10462 } 10463 } 10464 10465 /* 10466 * DTrace Action Description Functions 10467 */ 10468 static dtrace_actdesc_t * 10469 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 10470 uint64_t uarg, uint64_t arg) 10471 { 10472 dtrace_actdesc_t *act; 10473 10474 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 10475 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 10476 10477 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 10478 act->dtad_kind = kind; 10479 act->dtad_ntuple = ntuple; 10480 act->dtad_uarg = uarg; 10481 act->dtad_arg = arg; 10482 act->dtad_refcnt = 1; 10483 10484 return (act); 10485 } 10486 10487 static void 10488 dtrace_actdesc_hold(dtrace_actdesc_t *act) 10489 { 10490 ASSERT(act->dtad_refcnt >= 1); 10491 act->dtad_refcnt++; 10492 } 10493 10494 static void 10495 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 10496 { 10497 dtrace_actkind_t kind = act->dtad_kind; 10498 dtrace_difo_t *dp; 10499 10500 ASSERT(act->dtad_refcnt >= 1); 10501 10502 if (--act->dtad_refcnt != 0) 10503 return; 10504 10505 if ((dp = act->dtad_difo) != NULL) 10506 dtrace_difo_release(dp, vstate); 10507 10508 if (DTRACEACT_ISPRINTFLIKE(kind)) { 10509 char *str = (char *)(uintptr_t)act->dtad_arg; 10510 10511 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 10512 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 10513 10514 if (str != NULL) 10515 kmem_free(str, strlen(str) + 1); 10516 } 10517 10518 kmem_free(act, sizeof (dtrace_actdesc_t)); 10519 } 10520 10521 /* 10522 * DTrace ECB Functions 10523 */ 10524 static dtrace_ecb_t * 10525 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 10526 { 10527 dtrace_ecb_t *ecb; 10528 dtrace_epid_t epid; 10529 10530 ASSERT(MUTEX_HELD(&dtrace_lock)); 10531 10532 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 10533 ecb->dte_predicate = NULL; 10534 ecb->dte_probe = probe; 10535 10536 /* 10537 * The default size is the size of the default action: recording 10538 * the header. 10539 */ 10540 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 10541 ecb->dte_alignment = sizeof (dtrace_epid_t); 10542 10543 epid = state->dts_epid++; 10544 10545 if (epid - 1 >= state->dts_necbs) { 10546 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 10547 int necbs = state->dts_necbs << 1; 10548 10549 ASSERT(epid == state->dts_necbs + 1); 10550 10551 if (necbs == 0) { 10552 ASSERT(oecbs == NULL); 10553 necbs = 1; 10554 } 10555 10556 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 10557 10558 if (oecbs != NULL) 10559 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 10560 10561 dtrace_membar_producer(); 10562 state->dts_ecbs = ecbs; 10563 10564 if (oecbs != NULL) { 10565 /* 10566 * If this state is active, we must dtrace_sync() 10567 * before we can free the old dts_ecbs array: we're 10568 * coming in hot, and there may be active ring 10569 * buffer processing (which indexes into the dts_ecbs 10570 * array) on another CPU. 10571 */ 10572 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 10573 dtrace_sync(); 10574 10575 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 10576 } 10577 10578 dtrace_membar_producer(); 10579 state->dts_necbs = necbs; 10580 } 10581 10582 ecb->dte_state = state; 10583 10584 ASSERT(state->dts_ecbs[epid - 1] == NULL); 10585 dtrace_membar_producer(); 10586 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 10587 10588 return (ecb); 10589 } 10590 10591 static int 10592 dtrace_ecb_enable(dtrace_ecb_t *ecb) 10593 { 10594 dtrace_probe_t *probe = ecb->dte_probe; 10595 10596 ASSERT(MUTEX_HELD(&cpu_lock)); 10597 ASSERT(MUTEX_HELD(&dtrace_lock)); 10598 ASSERT(ecb->dte_next == NULL); 10599 10600 if (probe == NULL) { 10601 /* 10602 * This is the NULL probe -- there's nothing to do. 10603 */ 10604 return (0); 10605 } 10606 10607 if (probe->dtpr_ecb == NULL) { 10608 dtrace_provider_t *prov = probe->dtpr_provider; 10609 10610 /* 10611 * We're the first ECB on this probe. 10612 */ 10613 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 10614 10615 if (ecb->dte_predicate != NULL) 10616 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 10617 10618 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 10619 probe->dtpr_id, probe->dtpr_arg)); 10620 } else { 10621 /* 10622 * This probe is already active. Swing the last pointer to 10623 * point to the new ECB, and issue a dtrace_sync() to assure 10624 * that all CPUs have seen the change. 10625 */ 10626 ASSERT(probe->dtpr_ecb_last != NULL); 10627 probe->dtpr_ecb_last->dte_next = ecb; 10628 probe->dtpr_ecb_last = ecb; 10629 probe->dtpr_predcache = 0; 10630 10631 dtrace_sync(); 10632 return (0); 10633 } 10634 } 10635 10636 static int 10637 dtrace_ecb_resize(dtrace_ecb_t *ecb) 10638 { 10639 dtrace_action_t *act; 10640 uint32_t curneeded = UINT32_MAX; 10641 uint32_t aggbase = UINT32_MAX; 10642 10643 /* 10644 * If we record anything, we always record the dtrace_rechdr_t. (And 10645 * we always record it first.) 10646 */ 10647 ecb->dte_size = sizeof (dtrace_rechdr_t); 10648 ecb->dte_alignment = sizeof (dtrace_epid_t); 10649 10650 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10651 dtrace_recdesc_t *rec = &act->dta_rec; 10652 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 10653 10654 ecb->dte_alignment = MAX(ecb->dte_alignment, 10655 rec->dtrd_alignment); 10656 10657 if (DTRACEACT_ISAGG(act->dta_kind)) { 10658 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10659 10660 ASSERT(rec->dtrd_size != 0); 10661 ASSERT(agg->dtag_first != NULL); 10662 ASSERT(act->dta_prev->dta_intuple); 10663 ASSERT(aggbase != UINT32_MAX); 10664 ASSERT(curneeded != UINT32_MAX); 10665 10666 agg->dtag_base = aggbase; 10667 10668 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10669 rec->dtrd_offset = curneeded; 10670 if (curneeded + rec->dtrd_size < curneeded) 10671 return (EINVAL); 10672 curneeded += rec->dtrd_size; 10673 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 10674 10675 aggbase = UINT32_MAX; 10676 curneeded = UINT32_MAX; 10677 } else if (act->dta_intuple) { 10678 if (curneeded == UINT32_MAX) { 10679 /* 10680 * This is the first record in a tuple. Align 10681 * curneeded to be at offset 4 in an 8-byte 10682 * aligned block. 10683 */ 10684 ASSERT(act->dta_prev == NULL || 10685 !act->dta_prev->dta_intuple); 10686 ASSERT3U(aggbase, ==, UINT32_MAX); 10687 curneeded = P2PHASEUP(ecb->dte_size, 10688 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 10689 10690 aggbase = curneeded - sizeof (dtrace_aggid_t); 10691 ASSERT(IS_P2ALIGNED(aggbase, 10692 sizeof (uint64_t))); 10693 } 10694 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10695 rec->dtrd_offset = curneeded; 10696 if (curneeded + rec->dtrd_size < curneeded) 10697 return (EINVAL); 10698 curneeded += rec->dtrd_size; 10699 } else { 10700 /* tuples must be followed by an aggregation */ 10701 ASSERT(act->dta_prev == NULL || 10702 !act->dta_prev->dta_intuple); 10703 10704 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 10705 rec->dtrd_alignment); 10706 rec->dtrd_offset = ecb->dte_size; 10707 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size) 10708 return (EINVAL); 10709 ecb->dte_size += rec->dtrd_size; 10710 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 10711 } 10712 } 10713 10714 if ((act = ecb->dte_action) != NULL && 10715 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 10716 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 10717 /* 10718 * If the size is still sizeof (dtrace_rechdr_t), then all 10719 * actions store no data; set the size to 0. 10720 */ 10721 ecb->dte_size = 0; 10722 } 10723 10724 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 10725 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 10726 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 10727 ecb->dte_needed); 10728 return (0); 10729 } 10730 10731 static dtrace_action_t * 10732 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10733 { 10734 dtrace_aggregation_t *agg; 10735 size_t size = sizeof (uint64_t); 10736 int ntuple = desc->dtad_ntuple; 10737 dtrace_action_t *act; 10738 dtrace_recdesc_t *frec; 10739 dtrace_aggid_t aggid; 10740 dtrace_state_t *state = ecb->dte_state; 10741 10742 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 10743 agg->dtag_ecb = ecb; 10744 10745 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 10746 10747 switch (desc->dtad_kind) { 10748 case DTRACEAGG_MIN: 10749 agg->dtag_initial = INT64_MAX; 10750 agg->dtag_aggregate = dtrace_aggregate_min; 10751 break; 10752 10753 case DTRACEAGG_MAX: 10754 agg->dtag_initial = INT64_MIN; 10755 agg->dtag_aggregate = dtrace_aggregate_max; 10756 break; 10757 10758 case DTRACEAGG_COUNT: 10759 agg->dtag_aggregate = dtrace_aggregate_count; 10760 break; 10761 10762 case DTRACEAGG_QUANTIZE: 10763 agg->dtag_aggregate = dtrace_aggregate_quantize; 10764 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 10765 sizeof (uint64_t); 10766 break; 10767 10768 case DTRACEAGG_LQUANTIZE: { 10769 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 10770 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 10771 10772 agg->dtag_initial = desc->dtad_arg; 10773 agg->dtag_aggregate = dtrace_aggregate_lquantize; 10774 10775 if (step == 0 || levels == 0) 10776 goto err; 10777 10778 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 10779 break; 10780 } 10781 10782 case DTRACEAGG_LLQUANTIZE: { 10783 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 10784 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 10785 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 10786 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 10787 int64_t v; 10788 10789 agg->dtag_initial = desc->dtad_arg; 10790 agg->dtag_aggregate = dtrace_aggregate_llquantize; 10791 10792 if (factor < 2 || low >= high || nsteps < factor) 10793 goto err; 10794 10795 /* 10796 * Now check that the number of steps evenly divides a power 10797 * of the factor. (This assures both integer bucket size and 10798 * linearity within each magnitude.) 10799 */ 10800 for (v = factor; v < nsteps; v *= factor) 10801 continue; 10802 10803 if ((v % nsteps) || (nsteps % factor)) 10804 goto err; 10805 10806 size = (dtrace_aggregate_llquantize_bucket(factor, 10807 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 10808 break; 10809 } 10810 10811 case DTRACEAGG_AVG: 10812 agg->dtag_aggregate = dtrace_aggregate_avg; 10813 size = sizeof (uint64_t) * 2; 10814 break; 10815 10816 case DTRACEAGG_STDDEV: 10817 agg->dtag_aggregate = dtrace_aggregate_stddev; 10818 size = sizeof (uint64_t) * 4; 10819 break; 10820 10821 case DTRACEAGG_SUM: 10822 agg->dtag_aggregate = dtrace_aggregate_sum; 10823 break; 10824 10825 default: 10826 goto err; 10827 } 10828 10829 agg->dtag_action.dta_rec.dtrd_size = size; 10830 10831 if (ntuple == 0) 10832 goto err; 10833 10834 /* 10835 * We must make sure that we have enough actions for the n-tuple. 10836 */ 10837 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 10838 if (DTRACEACT_ISAGG(act->dta_kind)) 10839 break; 10840 10841 if (--ntuple == 0) { 10842 /* 10843 * This is the action with which our n-tuple begins. 10844 */ 10845 agg->dtag_first = act; 10846 goto success; 10847 } 10848 } 10849 10850 /* 10851 * This n-tuple is short by ntuple elements. Return failure. 10852 */ 10853 ASSERT(ntuple != 0); 10854 err: 10855 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10856 return (NULL); 10857 10858 success: 10859 /* 10860 * If the last action in the tuple has a size of zero, it's actually 10861 * an expression argument for the aggregating action. 10862 */ 10863 ASSERT(ecb->dte_action_last != NULL); 10864 act = ecb->dte_action_last; 10865 10866 if (act->dta_kind == DTRACEACT_DIFEXPR) { 10867 ASSERT(act->dta_difo != NULL); 10868 10869 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 10870 agg->dtag_hasarg = 1; 10871 } 10872 10873 /* 10874 * We need to allocate an id for this aggregation. 10875 */ 10876 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 10877 VM_BESTFIT | VM_SLEEP); 10878 10879 if (aggid - 1 >= state->dts_naggregations) { 10880 dtrace_aggregation_t **oaggs = state->dts_aggregations; 10881 dtrace_aggregation_t **aggs; 10882 int naggs = state->dts_naggregations << 1; 10883 int onaggs = state->dts_naggregations; 10884 10885 ASSERT(aggid == state->dts_naggregations + 1); 10886 10887 if (naggs == 0) { 10888 ASSERT(oaggs == NULL); 10889 naggs = 1; 10890 } 10891 10892 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 10893 10894 if (oaggs != NULL) { 10895 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 10896 kmem_free(oaggs, onaggs * sizeof (*aggs)); 10897 } 10898 10899 state->dts_aggregations = aggs; 10900 state->dts_naggregations = naggs; 10901 } 10902 10903 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 10904 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 10905 10906 frec = &agg->dtag_first->dta_rec; 10907 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 10908 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 10909 10910 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 10911 ASSERT(!act->dta_intuple); 10912 act->dta_intuple = 1; 10913 } 10914 10915 return (&agg->dtag_action); 10916 } 10917 10918 static void 10919 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 10920 { 10921 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10922 dtrace_state_t *state = ecb->dte_state; 10923 dtrace_aggid_t aggid = agg->dtag_id; 10924 10925 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 10926 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 10927 10928 ASSERT(state->dts_aggregations[aggid - 1] == agg); 10929 state->dts_aggregations[aggid - 1] = NULL; 10930 10931 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10932 } 10933 10934 static int 10935 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10936 { 10937 dtrace_action_t *action, *last; 10938 dtrace_difo_t *dp = desc->dtad_difo; 10939 uint32_t size = 0, align = sizeof (uint8_t), mask; 10940 uint16_t format = 0; 10941 dtrace_recdesc_t *rec; 10942 dtrace_state_t *state = ecb->dte_state; 10943 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 10944 uint64_t arg = desc->dtad_arg; 10945 10946 ASSERT(MUTEX_HELD(&dtrace_lock)); 10947 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 10948 10949 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 10950 /* 10951 * If this is an aggregating action, there must be neither 10952 * a speculate nor a commit on the action chain. 10953 */ 10954 dtrace_action_t *act; 10955 10956 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10957 if (act->dta_kind == DTRACEACT_COMMIT) 10958 return (EINVAL); 10959 10960 if (act->dta_kind == DTRACEACT_SPECULATE) 10961 return (EINVAL); 10962 } 10963 10964 action = dtrace_ecb_aggregation_create(ecb, desc); 10965 10966 if (action == NULL) 10967 return (EINVAL); 10968 } else { 10969 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 10970 (desc->dtad_kind == DTRACEACT_DIFEXPR && 10971 dp != NULL && dp->dtdo_destructive)) { 10972 state->dts_destructive = 1; 10973 } 10974 10975 switch (desc->dtad_kind) { 10976 case DTRACEACT_PRINTF: 10977 case DTRACEACT_PRINTA: 10978 case DTRACEACT_SYSTEM: 10979 case DTRACEACT_FREOPEN: 10980 case DTRACEACT_DIFEXPR: 10981 /* 10982 * We know that our arg is a string -- turn it into a 10983 * format. 10984 */ 10985 if (arg == NULL) { 10986 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 10987 desc->dtad_kind == DTRACEACT_DIFEXPR); 10988 format = 0; 10989 } else { 10990 ASSERT(arg != NULL); 10991 ASSERT(arg > KERNELBASE); 10992 format = dtrace_format_add(state, 10993 (char *)(uintptr_t)arg); 10994 } 10995 10996 /*FALLTHROUGH*/ 10997 case DTRACEACT_LIBACT: 10998 case DTRACEACT_TRACEMEM: 10999 case DTRACEACT_TRACEMEM_DYNSIZE: 11000 if (dp == NULL) 11001 return (EINVAL); 11002 11003 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 11004 break; 11005 11006 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 11007 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11008 return (EINVAL); 11009 11010 size = opt[DTRACEOPT_STRSIZE]; 11011 } 11012 11013 break; 11014 11015 case DTRACEACT_STACK: 11016 if ((nframes = arg) == 0) { 11017 nframes = opt[DTRACEOPT_STACKFRAMES]; 11018 ASSERT(nframes > 0); 11019 arg = nframes; 11020 } 11021 11022 size = nframes * sizeof (pc_t); 11023 break; 11024 11025 case DTRACEACT_JSTACK: 11026 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 11027 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 11028 11029 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 11030 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 11031 11032 arg = DTRACE_USTACK_ARG(nframes, strsize); 11033 11034 /*FALLTHROUGH*/ 11035 case DTRACEACT_USTACK: 11036 if (desc->dtad_kind != DTRACEACT_JSTACK && 11037 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 11038 strsize = DTRACE_USTACK_STRSIZE(arg); 11039 nframes = opt[DTRACEOPT_USTACKFRAMES]; 11040 ASSERT(nframes > 0); 11041 arg = DTRACE_USTACK_ARG(nframes, strsize); 11042 } 11043 11044 /* 11045 * Save a slot for the pid. 11046 */ 11047 size = (nframes + 1) * sizeof (uint64_t); 11048 size += DTRACE_USTACK_STRSIZE(arg); 11049 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 11050 11051 break; 11052 11053 case DTRACEACT_SYM: 11054 case DTRACEACT_MOD: 11055 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 11056 sizeof (uint64_t)) || 11057 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11058 return (EINVAL); 11059 break; 11060 11061 case DTRACEACT_USYM: 11062 case DTRACEACT_UMOD: 11063 case DTRACEACT_UADDR: 11064 if (dp == NULL || 11065 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 11066 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11067 return (EINVAL); 11068 11069 /* 11070 * We have a slot for the pid, plus a slot for the 11071 * argument. To keep things simple (aligned with 11072 * bitness-neutral sizing), we store each as a 64-bit 11073 * quantity. 11074 */ 11075 size = 2 * sizeof (uint64_t); 11076 break; 11077 11078 case DTRACEACT_STOP: 11079 case DTRACEACT_BREAKPOINT: 11080 case DTRACEACT_PANIC: 11081 break; 11082 11083 case DTRACEACT_CHILL: 11084 case DTRACEACT_DISCARD: 11085 case DTRACEACT_RAISE: 11086 if (dp == NULL) 11087 return (EINVAL); 11088 break; 11089 11090 case DTRACEACT_EXIT: 11091 if (dp == NULL || 11092 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 11093 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11094 return (EINVAL); 11095 break; 11096 11097 case DTRACEACT_SPECULATE: 11098 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 11099 return (EINVAL); 11100 11101 if (dp == NULL) 11102 return (EINVAL); 11103 11104 state->dts_speculates = 1; 11105 break; 11106 11107 case DTRACEACT_COMMIT: { 11108 dtrace_action_t *act = ecb->dte_action; 11109 11110 for (; act != NULL; act = act->dta_next) { 11111 if (act->dta_kind == DTRACEACT_COMMIT) 11112 return (EINVAL); 11113 } 11114 11115 if (dp == NULL) 11116 return (EINVAL); 11117 break; 11118 } 11119 11120 default: 11121 return (EINVAL); 11122 } 11123 11124 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 11125 /* 11126 * If this is a data-storing action or a speculate, 11127 * we must be sure that there isn't a commit on the 11128 * action chain. 11129 */ 11130 dtrace_action_t *act = ecb->dte_action; 11131 11132 for (; act != NULL; act = act->dta_next) { 11133 if (act->dta_kind == DTRACEACT_COMMIT) 11134 return (EINVAL); 11135 } 11136 } 11137 11138 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 11139 action->dta_rec.dtrd_size = size; 11140 } 11141 11142 action->dta_refcnt = 1; 11143 rec = &action->dta_rec; 11144 size = rec->dtrd_size; 11145 11146 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 11147 if (!(size & mask)) { 11148 align = mask + 1; 11149 break; 11150 } 11151 } 11152 11153 action->dta_kind = desc->dtad_kind; 11154 11155 if ((action->dta_difo = dp) != NULL) 11156 dtrace_difo_hold(dp); 11157 11158 rec->dtrd_action = action->dta_kind; 11159 rec->dtrd_arg = arg; 11160 rec->dtrd_uarg = desc->dtad_uarg; 11161 rec->dtrd_alignment = (uint16_t)align; 11162 rec->dtrd_format = format; 11163 11164 if ((last = ecb->dte_action_last) != NULL) { 11165 ASSERT(ecb->dte_action != NULL); 11166 action->dta_prev = last; 11167 last->dta_next = action; 11168 } else { 11169 ASSERT(ecb->dte_action == NULL); 11170 ecb->dte_action = action; 11171 } 11172 11173 ecb->dte_action_last = action; 11174 11175 return (0); 11176 } 11177 11178 static void 11179 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 11180 { 11181 dtrace_action_t *act = ecb->dte_action, *next; 11182 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 11183 dtrace_difo_t *dp; 11184 uint16_t format; 11185 11186 if (act != NULL && act->dta_refcnt > 1) { 11187 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 11188 act->dta_refcnt--; 11189 } else { 11190 for (; act != NULL; act = next) { 11191 next = act->dta_next; 11192 ASSERT(next != NULL || act == ecb->dte_action_last); 11193 ASSERT(act->dta_refcnt == 1); 11194 11195 if ((format = act->dta_rec.dtrd_format) != 0) 11196 dtrace_format_remove(ecb->dte_state, format); 11197 11198 if ((dp = act->dta_difo) != NULL) 11199 dtrace_difo_release(dp, vstate); 11200 11201 if (DTRACEACT_ISAGG(act->dta_kind)) { 11202 dtrace_ecb_aggregation_destroy(ecb, act); 11203 } else { 11204 kmem_free(act, sizeof (dtrace_action_t)); 11205 } 11206 } 11207 } 11208 11209 ecb->dte_action = NULL; 11210 ecb->dte_action_last = NULL; 11211 ecb->dte_size = 0; 11212 } 11213 11214 static void 11215 dtrace_ecb_disable(dtrace_ecb_t *ecb) 11216 { 11217 /* 11218 * We disable the ECB by removing it from its probe. 11219 */ 11220 dtrace_ecb_t *pecb, *prev = NULL; 11221 dtrace_probe_t *probe = ecb->dte_probe; 11222 11223 ASSERT(MUTEX_HELD(&dtrace_lock)); 11224 11225 if (probe == NULL) { 11226 /* 11227 * This is the NULL probe; there is nothing to disable. 11228 */ 11229 return; 11230 } 11231 11232 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 11233 if (pecb == ecb) 11234 break; 11235 prev = pecb; 11236 } 11237 11238 ASSERT(pecb != NULL); 11239 11240 if (prev == NULL) { 11241 probe->dtpr_ecb = ecb->dte_next; 11242 } else { 11243 prev->dte_next = ecb->dte_next; 11244 } 11245 11246 if (ecb == probe->dtpr_ecb_last) { 11247 ASSERT(ecb->dte_next == NULL); 11248 probe->dtpr_ecb_last = prev; 11249 } 11250 11251 /* 11252 * The ECB has been disconnected from the probe; now sync to assure 11253 * that all CPUs have seen the change before returning. 11254 */ 11255 dtrace_sync(); 11256 11257 if (probe->dtpr_ecb == NULL) { 11258 /* 11259 * That was the last ECB on the probe; clear the predicate 11260 * cache ID for the probe, disable it and sync one more time 11261 * to assure that we'll never hit it again. 11262 */ 11263 dtrace_provider_t *prov = probe->dtpr_provider; 11264 11265 ASSERT(ecb->dte_next == NULL); 11266 ASSERT(probe->dtpr_ecb_last == NULL); 11267 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 11268 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 11269 probe->dtpr_id, probe->dtpr_arg); 11270 dtrace_sync(); 11271 } else { 11272 /* 11273 * There is at least one ECB remaining on the probe. If there 11274 * is _exactly_ one, set the probe's predicate cache ID to be 11275 * the predicate cache ID of the remaining ECB. 11276 */ 11277 ASSERT(probe->dtpr_ecb_last != NULL); 11278 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 11279 11280 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 11281 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 11282 11283 ASSERT(probe->dtpr_ecb->dte_next == NULL); 11284 11285 if (p != NULL) 11286 probe->dtpr_predcache = p->dtp_cacheid; 11287 } 11288 11289 ecb->dte_next = NULL; 11290 } 11291 } 11292 11293 static void 11294 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 11295 { 11296 dtrace_state_t *state = ecb->dte_state; 11297 dtrace_vstate_t *vstate = &state->dts_vstate; 11298 dtrace_predicate_t *pred; 11299 dtrace_epid_t epid = ecb->dte_epid; 11300 11301 ASSERT(MUTEX_HELD(&dtrace_lock)); 11302 ASSERT(ecb->dte_next == NULL); 11303 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 11304 11305 if ((pred = ecb->dte_predicate) != NULL) 11306 dtrace_predicate_release(pred, vstate); 11307 11308 dtrace_ecb_action_remove(ecb); 11309 11310 ASSERT(state->dts_ecbs[epid - 1] == ecb); 11311 state->dts_ecbs[epid - 1] = NULL; 11312 11313 kmem_free(ecb, sizeof (dtrace_ecb_t)); 11314 } 11315 11316 static dtrace_ecb_t * 11317 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 11318 dtrace_enabling_t *enab) 11319 { 11320 dtrace_ecb_t *ecb; 11321 dtrace_predicate_t *pred; 11322 dtrace_actdesc_t *act; 11323 dtrace_provider_t *prov; 11324 dtrace_ecbdesc_t *desc = enab->dten_current; 11325 11326 ASSERT(MUTEX_HELD(&dtrace_lock)); 11327 ASSERT(state != NULL); 11328 11329 ecb = dtrace_ecb_add(state, probe); 11330 ecb->dte_uarg = desc->dted_uarg; 11331 11332 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11333 dtrace_predicate_hold(pred); 11334 ecb->dte_predicate = pred; 11335 } 11336 11337 if (probe != NULL) { 11338 /* 11339 * If the provider shows more leg than the consumer is old 11340 * enough to see, we need to enable the appropriate implicit 11341 * predicate bits to prevent the ecb from activating at 11342 * revealing times. 11343 * 11344 * Providers specifying DTRACE_PRIV_USER at register time 11345 * are stating that they need the /proc-style privilege 11346 * model to be enforced, and this is what DTRACE_COND_OWNER 11347 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11348 */ 11349 prov = probe->dtpr_provider; 11350 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11351 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11352 ecb->dte_cond |= DTRACE_COND_OWNER; 11353 11354 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11355 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11356 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11357 11358 /* 11359 * If the provider shows us kernel innards and the user 11360 * is lacking sufficient privilege, enable the 11361 * DTRACE_COND_USERMODE implicit predicate. 11362 */ 11363 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11364 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11365 ecb->dte_cond |= DTRACE_COND_USERMODE; 11366 } 11367 11368 if (dtrace_ecb_create_cache != NULL) { 11369 /* 11370 * If we have a cached ecb, we'll use its action list instead 11371 * of creating our own (saving both time and space). 11372 */ 11373 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11374 dtrace_action_t *act = cached->dte_action; 11375 11376 if (act != NULL) { 11377 ASSERT(act->dta_refcnt > 0); 11378 act->dta_refcnt++; 11379 ecb->dte_action = act; 11380 ecb->dte_action_last = cached->dte_action_last; 11381 ecb->dte_needed = cached->dte_needed; 11382 ecb->dte_size = cached->dte_size; 11383 ecb->dte_alignment = cached->dte_alignment; 11384 } 11385 11386 return (ecb); 11387 } 11388 11389 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11390 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11391 dtrace_ecb_destroy(ecb); 11392 return (NULL); 11393 } 11394 } 11395 11396 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) { 11397 dtrace_ecb_destroy(ecb); 11398 return (NULL); 11399 } 11400 11401 return (dtrace_ecb_create_cache = ecb); 11402 } 11403 11404 static int 11405 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11406 { 11407 dtrace_ecb_t *ecb; 11408 dtrace_enabling_t *enab = arg; 11409 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11410 11411 ASSERT(state != NULL); 11412 11413 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11414 /* 11415 * This probe was created in a generation for which this 11416 * enabling has previously created ECBs; we don't want to 11417 * enable it again, so just kick out. 11418 */ 11419 return (DTRACE_MATCH_NEXT); 11420 } 11421 11422 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 11423 return (DTRACE_MATCH_DONE); 11424 11425 if (dtrace_ecb_enable(ecb) < 0) 11426 return (DTRACE_MATCH_FAIL); 11427 11428 return (DTRACE_MATCH_NEXT); 11429 } 11430 11431 static dtrace_ecb_t * 11432 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 11433 { 11434 dtrace_ecb_t *ecb; 11435 11436 ASSERT(MUTEX_HELD(&dtrace_lock)); 11437 11438 if (id == 0 || id > state->dts_necbs) 11439 return (NULL); 11440 11441 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 11442 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 11443 11444 return (state->dts_ecbs[id - 1]); 11445 } 11446 11447 static dtrace_aggregation_t * 11448 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 11449 { 11450 dtrace_aggregation_t *agg; 11451 11452 ASSERT(MUTEX_HELD(&dtrace_lock)); 11453 11454 if (id == 0 || id > state->dts_naggregations) 11455 return (NULL); 11456 11457 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 11458 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 11459 agg->dtag_id == id); 11460 11461 return (state->dts_aggregations[id - 1]); 11462 } 11463 11464 /* 11465 * DTrace Buffer Functions 11466 * 11467 * The following functions manipulate DTrace buffers. Most of these functions 11468 * are called in the context of establishing or processing consumer state; 11469 * exceptions are explicitly noted. 11470 */ 11471 11472 /* 11473 * Note: called from cross call context. This function switches the two 11474 * buffers on a given CPU. The atomicity of this operation is assured by 11475 * disabling interrupts while the actual switch takes place; the disabling of 11476 * interrupts serializes the execution with any execution of dtrace_probe() on 11477 * the same CPU. 11478 */ 11479 static void 11480 dtrace_buffer_switch(dtrace_buffer_t *buf) 11481 { 11482 caddr_t tomax = buf->dtb_tomax; 11483 caddr_t xamot = buf->dtb_xamot; 11484 dtrace_icookie_t cookie; 11485 hrtime_t now; 11486 11487 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11488 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 11489 11490 cookie = dtrace_interrupt_disable(); 11491 now = dtrace_gethrtime(); 11492 buf->dtb_tomax = xamot; 11493 buf->dtb_xamot = tomax; 11494 buf->dtb_xamot_drops = buf->dtb_drops; 11495 buf->dtb_xamot_offset = buf->dtb_offset; 11496 buf->dtb_xamot_errors = buf->dtb_errors; 11497 buf->dtb_xamot_flags = buf->dtb_flags; 11498 buf->dtb_offset = 0; 11499 buf->dtb_drops = 0; 11500 buf->dtb_errors = 0; 11501 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 11502 buf->dtb_interval = now - buf->dtb_switched; 11503 buf->dtb_switched = now; 11504 dtrace_interrupt_enable(cookie); 11505 } 11506 11507 /* 11508 * Note: called from cross call context. This function activates a buffer 11509 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 11510 * is guaranteed by the disabling of interrupts. 11511 */ 11512 static void 11513 dtrace_buffer_activate(dtrace_state_t *state) 11514 { 11515 dtrace_buffer_t *buf; 11516 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 11517 11518 buf = &state->dts_buffer[CPU->cpu_id]; 11519 11520 if (buf->dtb_tomax != NULL) { 11521 /* 11522 * We might like to assert that the buffer is marked inactive, 11523 * but this isn't necessarily true: the buffer for the CPU 11524 * that processes the BEGIN probe has its buffer activated 11525 * manually. In this case, we take the (harmless) action 11526 * re-clearing the bit INACTIVE bit. 11527 */ 11528 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 11529 } 11530 11531 dtrace_interrupt_enable(cookie); 11532 } 11533 11534 static int 11535 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 11536 processorid_t cpu, int *factor) 11537 { 11538 cpu_t *cp; 11539 dtrace_buffer_t *buf; 11540 int allocated = 0, desired = 0; 11541 11542 ASSERT(MUTEX_HELD(&cpu_lock)); 11543 ASSERT(MUTEX_HELD(&dtrace_lock)); 11544 11545 *factor = 1; 11546 11547 if (size > dtrace_nonroot_maxsize && 11548 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 11549 return (EFBIG); 11550 11551 cp = cpu_list; 11552 11553 do { 11554 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11555 continue; 11556 11557 buf = &bufs[cp->cpu_id]; 11558 11559 /* 11560 * If there is already a buffer allocated for this CPU, it 11561 * is only possible that this is a DR event. In this case, 11562 * the buffer size must match our specified size. 11563 */ 11564 if (buf->dtb_tomax != NULL) { 11565 ASSERT(buf->dtb_size == size); 11566 continue; 11567 } 11568 11569 ASSERT(buf->dtb_xamot == NULL); 11570 11571 if ((buf->dtb_tomax = kmem_zalloc(size, 11572 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11573 goto err; 11574 11575 buf->dtb_size = size; 11576 buf->dtb_flags = flags; 11577 buf->dtb_offset = 0; 11578 buf->dtb_drops = 0; 11579 11580 if (flags & DTRACEBUF_NOSWITCH) 11581 continue; 11582 11583 if ((buf->dtb_xamot = kmem_zalloc(size, 11584 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11585 goto err; 11586 } while ((cp = cp->cpu_next) != cpu_list); 11587 11588 return (0); 11589 11590 err: 11591 cp = cpu_list; 11592 11593 do { 11594 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11595 continue; 11596 11597 buf = &bufs[cp->cpu_id]; 11598 desired += 2; 11599 11600 if (buf->dtb_xamot != NULL) { 11601 ASSERT(buf->dtb_tomax != NULL); 11602 ASSERT(buf->dtb_size == size); 11603 kmem_free(buf->dtb_xamot, size); 11604 allocated++; 11605 } 11606 11607 if (buf->dtb_tomax != NULL) { 11608 ASSERT(buf->dtb_size == size); 11609 kmem_free(buf->dtb_tomax, size); 11610 allocated++; 11611 } 11612 11613 buf->dtb_tomax = NULL; 11614 buf->dtb_xamot = NULL; 11615 buf->dtb_size = 0; 11616 } while ((cp = cp->cpu_next) != cpu_list); 11617 11618 *factor = desired / (allocated > 0 ? allocated : 1); 11619 11620 return (ENOMEM); 11621 } 11622 11623 /* 11624 * Note: called from probe context. This function just increments the drop 11625 * count on a buffer. It has been made a function to allow for the 11626 * possibility of understanding the source of mysterious drop counts. (A 11627 * problem for which one may be particularly disappointed that DTrace cannot 11628 * be used to understand DTrace.) 11629 */ 11630 static void 11631 dtrace_buffer_drop(dtrace_buffer_t *buf) 11632 { 11633 buf->dtb_drops++; 11634 } 11635 11636 /* 11637 * Note: called from probe context. This function is called to reserve space 11638 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 11639 * mstate. Returns the new offset in the buffer, or a negative value if an 11640 * error has occurred. 11641 */ 11642 static intptr_t 11643 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 11644 dtrace_state_t *state, dtrace_mstate_t *mstate) 11645 { 11646 intptr_t offs = buf->dtb_offset, soffs; 11647 intptr_t woffs; 11648 caddr_t tomax; 11649 size_t total; 11650 11651 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 11652 return (-1); 11653 11654 if ((tomax = buf->dtb_tomax) == NULL) { 11655 dtrace_buffer_drop(buf); 11656 return (-1); 11657 } 11658 11659 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 11660 while (offs & (align - 1)) { 11661 /* 11662 * Assert that our alignment is off by a number which 11663 * is itself sizeof (uint32_t) aligned. 11664 */ 11665 ASSERT(!((align - (offs & (align - 1))) & 11666 (sizeof (uint32_t) - 1))); 11667 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11668 offs += sizeof (uint32_t); 11669 } 11670 11671 if ((soffs = offs + needed) > buf->dtb_size) { 11672 dtrace_buffer_drop(buf); 11673 return (-1); 11674 } 11675 11676 if (mstate == NULL) 11677 return (offs); 11678 11679 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 11680 mstate->dtms_scratch_size = buf->dtb_size - soffs; 11681 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11682 11683 return (offs); 11684 } 11685 11686 if (buf->dtb_flags & DTRACEBUF_FILL) { 11687 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 11688 (buf->dtb_flags & DTRACEBUF_FULL)) 11689 return (-1); 11690 goto out; 11691 } 11692 11693 total = needed + (offs & (align - 1)); 11694 11695 /* 11696 * For a ring buffer, life is quite a bit more complicated. Before 11697 * we can store any padding, we need to adjust our wrapping offset. 11698 * (If we've never before wrapped or we're not about to, no adjustment 11699 * is required.) 11700 */ 11701 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 11702 offs + total > buf->dtb_size) { 11703 woffs = buf->dtb_xamot_offset; 11704 11705 if (offs + total > buf->dtb_size) { 11706 /* 11707 * We can't fit in the end of the buffer. First, a 11708 * sanity check that we can fit in the buffer at all. 11709 */ 11710 if (total > buf->dtb_size) { 11711 dtrace_buffer_drop(buf); 11712 return (-1); 11713 } 11714 11715 /* 11716 * We're going to be storing at the top of the buffer, 11717 * so now we need to deal with the wrapped offset. We 11718 * only reset our wrapped offset to 0 if it is 11719 * currently greater than the current offset. If it 11720 * is less than the current offset, it is because a 11721 * previous allocation induced a wrap -- but the 11722 * allocation didn't subsequently take the space due 11723 * to an error or false predicate evaluation. In this 11724 * case, we'll just leave the wrapped offset alone: if 11725 * the wrapped offset hasn't been advanced far enough 11726 * for this allocation, it will be adjusted in the 11727 * lower loop. 11728 */ 11729 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 11730 if (woffs >= offs) 11731 woffs = 0; 11732 } else { 11733 woffs = 0; 11734 } 11735 11736 /* 11737 * Now we know that we're going to be storing to the 11738 * top of the buffer and that there is room for us 11739 * there. We need to clear the buffer from the current 11740 * offset to the end (there may be old gunk there). 11741 */ 11742 while (offs < buf->dtb_size) 11743 tomax[offs++] = 0; 11744 11745 /* 11746 * We need to set our offset to zero. And because we 11747 * are wrapping, we need to set the bit indicating as 11748 * much. We can also adjust our needed space back 11749 * down to the space required by the ECB -- we know 11750 * that the top of the buffer is aligned. 11751 */ 11752 offs = 0; 11753 total = needed; 11754 buf->dtb_flags |= DTRACEBUF_WRAPPED; 11755 } else { 11756 /* 11757 * There is room for us in the buffer, so we simply 11758 * need to check the wrapped offset. 11759 */ 11760 if (woffs < offs) { 11761 /* 11762 * The wrapped offset is less than the offset. 11763 * This can happen if we allocated buffer space 11764 * that induced a wrap, but then we didn't 11765 * subsequently take the space due to an error 11766 * or false predicate evaluation. This is 11767 * okay; we know that _this_ allocation isn't 11768 * going to induce a wrap. We still can't 11769 * reset the wrapped offset to be zero, 11770 * however: the space may have been trashed in 11771 * the previous failed probe attempt. But at 11772 * least the wrapped offset doesn't need to 11773 * be adjusted at all... 11774 */ 11775 goto out; 11776 } 11777 } 11778 11779 while (offs + total > woffs) { 11780 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 11781 size_t size; 11782 11783 if (epid == DTRACE_EPIDNONE) { 11784 size = sizeof (uint32_t); 11785 } else { 11786 ASSERT3U(epid, <=, state->dts_necbs); 11787 ASSERT(state->dts_ecbs[epid - 1] != NULL); 11788 11789 size = state->dts_ecbs[epid - 1]->dte_size; 11790 } 11791 11792 ASSERT(woffs + size <= buf->dtb_size); 11793 ASSERT(size != 0); 11794 11795 if (woffs + size == buf->dtb_size) { 11796 /* 11797 * We've reached the end of the buffer; we want 11798 * to set the wrapped offset to 0 and break 11799 * out. However, if the offs is 0, then we're 11800 * in a strange edge-condition: the amount of 11801 * space that we want to reserve plus the size 11802 * of the record that we're overwriting is 11803 * greater than the size of the buffer. This 11804 * is problematic because if we reserve the 11805 * space but subsequently don't consume it (due 11806 * to a failed predicate or error) the wrapped 11807 * offset will be 0 -- yet the EPID at offset 0 11808 * will not be committed. This situation is 11809 * relatively easy to deal with: if we're in 11810 * this case, the buffer is indistinguishable 11811 * from one that hasn't wrapped; we need only 11812 * finish the job by clearing the wrapped bit, 11813 * explicitly setting the offset to be 0, and 11814 * zero'ing out the old data in the buffer. 11815 */ 11816 if (offs == 0) { 11817 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 11818 buf->dtb_offset = 0; 11819 woffs = total; 11820 11821 while (woffs < buf->dtb_size) 11822 tomax[woffs++] = 0; 11823 } 11824 11825 woffs = 0; 11826 break; 11827 } 11828 11829 woffs += size; 11830 } 11831 11832 /* 11833 * We have a wrapped offset. It may be that the wrapped offset 11834 * has become zero -- that's okay. 11835 */ 11836 buf->dtb_xamot_offset = woffs; 11837 } 11838 11839 out: 11840 /* 11841 * Now we can plow the buffer with any necessary padding. 11842 */ 11843 while (offs & (align - 1)) { 11844 /* 11845 * Assert that our alignment is off by a number which 11846 * is itself sizeof (uint32_t) aligned. 11847 */ 11848 ASSERT(!((align - (offs & (align - 1))) & 11849 (sizeof (uint32_t) - 1))); 11850 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11851 offs += sizeof (uint32_t); 11852 } 11853 11854 if (buf->dtb_flags & DTRACEBUF_FILL) { 11855 if (offs + needed > buf->dtb_size - state->dts_reserve) { 11856 buf->dtb_flags |= DTRACEBUF_FULL; 11857 return (-1); 11858 } 11859 } 11860 11861 if (mstate == NULL) 11862 return (offs); 11863 11864 /* 11865 * For ring buffers and fill buffers, the scratch space is always 11866 * the inactive buffer. 11867 */ 11868 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 11869 mstate->dtms_scratch_size = buf->dtb_size; 11870 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11871 11872 return (offs); 11873 } 11874 11875 static void 11876 dtrace_buffer_polish(dtrace_buffer_t *buf) 11877 { 11878 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 11879 ASSERT(MUTEX_HELD(&dtrace_lock)); 11880 11881 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 11882 return; 11883 11884 /* 11885 * We need to polish the ring buffer. There are three cases: 11886 * 11887 * - The first (and presumably most common) is that there is no gap 11888 * between the buffer offset and the wrapped offset. In this case, 11889 * there is nothing in the buffer that isn't valid data; we can 11890 * mark the buffer as polished and return. 11891 * 11892 * - The second (less common than the first but still more common 11893 * than the third) is that there is a gap between the buffer offset 11894 * and the wrapped offset, and the wrapped offset is larger than the 11895 * buffer offset. This can happen because of an alignment issue, or 11896 * can happen because of a call to dtrace_buffer_reserve() that 11897 * didn't subsequently consume the buffer space. In this case, 11898 * we need to zero the data from the buffer offset to the wrapped 11899 * offset. 11900 * 11901 * - The third (and least common) is that there is a gap between the 11902 * buffer offset and the wrapped offset, but the wrapped offset is 11903 * _less_ than the buffer offset. This can only happen because a 11904 * call to dtrace_buffer_reserve() induced a wrap, but the space 11905 * was not subsequently consumed. In this case, we need to zero the 11906 * space from the offset to the end of the buffer _and_ from the 11907 * top of the buffer to the wrapped offset. 11908 */ 11909 if (buf->dtb_offset < buf->dtb_xamot_offset) { 11910 bzero(buf->dtb_tomax + buf->dtb_offset, 11911 buf->dtb_xamot_offset - buf->dtb_offset); 11912 } 11913 11914 if (buf->dtb_offset > buf->dtb_xamot_offset) { 11915 bzero(buf->dtb_tomax + buf->dtb_offset, 11916 buf->dtb_size - buf->dtb_offset); 11917 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 11918 } 11919 } 11920 11921 /* 11922 * This routine determines if data generated at the specified time has likely 11923 * been entirely consumed at user-level. This routine is called to determine 11924 * if an ECB on a defunct probe (but for an active enabling) can be safely 11925 * disabled and destroyed. 11926 */ 11927 static int 11928 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 11929 { 11930 int i; 11931 11932 for (i = 0; i < NCPU; i++) { 11933 dtrace_buffer_t *buf = &bufs[i]; 11934 11935 if (buf->dtb_size == 0) 11936 continue; 11937 11938 if (buf->dtb_flags & DTRACEBUF_RING) 11939 return (0); 11940 11941 if (!buf->dtb_switched && buf->dtb_offset != 0) 11942 return (0); 11943 11944 if (buf->dtb_switched - buf->dtb_interval < when) 11945 return (0); 11946 } 11947 11948 return (1); 11949 } 11950 11951 static void 11952 dtrace_buffer_free(dtrace_buffer_t *bufs) 11953 { 11954 int i; 11955 11956 for (i = 0; i < NCPU; i++) { 11957 dtrace_buffer_t *buf = &bufs[i]; 11958 11959 if (buf->dtb_tomax == NULL) { 11960 ASSERT(buf->dtb_xamot == NULL); 11961 ASSERT(buf->dtb_size == 0); 11962 continue; 11963 } 11964 11965 if (buf->dtb_xamot != NULL) { 11966 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11967 kmem_free(buf->dtb_xamot, buf->dtb_size); 11968 } 11969 11970 kmem_free(buf->dtb_tomax, buf->dtb_size); 11971 buf->dtb_size = 0; 11972 buf->dtb_tomax = NULL; 11973 buf->dtb_xamot = NULL; 11974 } 11975 } 11976 11977 /* 11978 * DTrace Enabling Functions 11979 */ 11980 static dtrace_enabling_t * 11981 dtrace_enabling_create(dtrace_vstate_t *vstate) 11982 { 11983 dtrace_enabling_t *enab; 11984 11985 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 11986 enab->dten_vstate = vstate; 11987 11988 return (enab); 11989 } 11990 11991 static void 11992 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 11993 { 11994 dtrace_ecbdesc_t **ndesc; 11995 size_t osize, nsize; 11996 11997 /* 11998 * We can't add to enablings after we've enabled them, or after we've 11999 * retained them. 12000 */ 12001 ASSERT(enab->dten_probegen == 0); 12002 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12003 12004 if (enab->dten_ndesc < enab->dten_maxdesc) { 12005 enab->dten_desc[enab->dten_ndesc++] = ecb; 12006 return; 12007 } 12008 12009 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12010 12011 if (enab->dten_maxdesc == 0) { 12012 enab->dten_maxdesc = 1; 12013 } else { 12014 enab->dten_maxdesc <<= 1; 12015 } 12016 12017 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 12018 12019 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12020 ndesc = kmem_zalloc(nsize, KM_SLEEP); 12021 bcopy(enab->dten_desc, ndesc, osize); 12022 kmem_free(enab->dten_desc, osize); 12023 12024 enab->dten_desc = ndesc; 12025 enab->dten_desc[enab->dten_ndesc++] = ecb; 12026 } 12027 12028 static void 12029 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 12030 dtrace_probedesc_t *pd) 12031 { 12032 dtrace_ecbdesc_t *new; 12033 dtrace_predicate_t *pred; 12034 dtrace_actdesc_t *act; 12035 12036 /* 12037 * We're going to create a new ECB description that matches the 12038 * specified ECB in every way, but has the specified probe description. 12039 */ 12040 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12041 12042 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 12043 dtrace_predicate_hold(pred); 12044 12045 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 12046 dtrace_actdesc_hold(act); 12047 12048 new->dted_action = ecb->dted_action; 12049 new->dted_pred = ecb->dted_pred; 12050 new->dted_probe = *pd; 12051 new->dted_uarg = ecb->dted_uarg; 12052 12053 dtrace_enabling_add(enab, new); 12054 } 12055 12056 static void 12057 dtrace_enabling_dump(dtrace_enabling_t *enab) 12058 { 12059 int i; 12060 12061 for (i = 0; i < enab->dten_ndesc; i++) { 12062 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 12063 12064 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 12065 desc->dtpd_provider, desc->dtpd_mod, 12066 desc->dtpd_func, desc->dtpd_name); 12067 } 12068 } 12069 12070 static void 12071 dtrace_enabling_destroy(dtrace_enabling_t *enab) 12072 { 12073 int i; 12074 dtrace_ecbdesc_t *ep; 12075 dtrace_vstate_t *vstate = enab->dten_vstate; 12076 12077 ASSERT(MUTEX_HELD(&dtrace_lock)); 12078 12079 for (i = 0; i < enab->dten_ndesc; i++) { 12080 dtrace_actdesc_t *act, *next; 12081 dtrace_predicate_t *pred; 12082 12083 ep = enab->dten_desc[i]; 12084 12085 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 12086 dtrace_predicate_release(pred, vstate); 12087 12088 for (act = ep->dted_action; act != NULL; act = next) { 12089 next = act->dtad_next; 12090 dtrace_actdesc_release(act, vstate); 12091 } 12092 12093 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12094 } 12095 12096 kmem_free(enab->dten_desc, 12097 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 12098 12099 /* 12100 * If this was a retained enabling, decrement the dts_nretained count 12101 * and take it off of the dtrace_retained list. 12102 */ 12103 if (enab->dten_prev != NULL || enab->dten_next != NULL || 12104 dtrace_retained == enab) { 12105 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12106 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 12107 enab->dten_vstate->dtvs_state->dts_nretained--; 12108 dtrace_retained_gen++; 12109 } 12110 12111 if (enab->dten_prev == NULL) { 12112 if (dtrace_retained == enab) { 12113 dtrace_retained = enab->dten_next; 12114 12115 if (dtrace_retained != NULL) 12116 dtrace_retained->dten_prev = NULL; 12117 } 12118 } else { 12119 ASSERT(enab != dtrace_retained); 12120 ASSERT(dtrace_retained != NULL); 12121 enab->dten_prev->dten_next = enab->dten_next; 12122 } 12123 12124 if (enab->dten_next != NULL) { 12125 ASSERT(dtrace_retained != NULL); 12126 enab->dten_next->dten_prev = enab->dten_prev; 12127 } 12128 12129 kmem_free(enab, sizeof (dtrace_enabling_t)); 12130 } 12131 12132 static int 12133 dtrace_enabling_retain(dtrace_enabling_t *enab) 12134 { 12135 dtrace_state_t *state; 12136 12137 ASSERT(MUTEX_HELD(&dtrace_lock)); 12138 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12139 ASSERT(enab->dten_vstate != NULL); 12140 12141 state = enab->dten_vstate->dtvs_state; 12142 ASSERT(state != NULL); 12143 12144 /* 12145 * We only allow each state to retain dtrace_retain_max enablings. 12146 */ 12147 if (state->dts_nretained >= dtrace_retain_max) 12148 return (ENOSPC); 12149 12150 state->dts_nretained++; 12151 dtrace_retained_gen++; 12152 12153 if (dtrace_retained == NULL) { 12154 dtrace_retained = enab; 12155 return (0); 12156 } 12157 12158 enab->dten_next = dtrace_retained; 12159 dtrace_retained->dten_prev = enab; 12160 dtrace_retained = enab; 12161 12162 return (0); 12163 } 12164 12165 static int 12166 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 12167 dtrace_probedesc_t *create) 12168 { 12169 dtrace_enabling_t *new, *enab; 12170 int found = 0, err = ENOENT; 12171 12172 ASSERT(MUTEX_HELD(&dtrace_lock)); 12173 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 12174 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 12175 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 12176 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 12177 12178 new = dtrace_enabling_create(&state->dts_vstate); 12179 12180 /* 12181 * Iterate over all retained enablings, looking for enablings that 12182 * match the specified state. 12183 */ 12184 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12185 int i; 12186 12187 /* 12188 * dtvs_state can only be NULL for helper enablings -- and 12189 * helper enablings can't be retained. 12190 */ 12191 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12192 12193 if (enab->dten_vstate->dtvs_state != state) 12194 continue; 12195 12196 /* 12197 * Now iterate over each probe description; we're looking for 12198 * an exact match to the specified probe description. 12199 */ 12200 for (i = 0; i < enab->dten_ndesc; i++) { 12201 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12202 dtrace_probedesc_t *pd = &ep->dted_probe; 12203 12204 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 12205 continue; 12206 12207 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 12208 continue; 12209 12210 if (strcmp(pd->dtpd_func, match->dtpd_func)) 12211 continue; 12212 12213 if (strcmp(pd->dtpd_name, match->dtpd_name)) 12214 continue; 12215 12216 /* 12217 * We have a winning probe! Add it to our growing 12218 * enabling. 12219 */ 12220 found = 1; 12221 dtrace_enabling_addlike(new, ep, create); 12222 } 12223 } 12224 12225 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 12226 dtrace_enabling_destroy(new); 12227 return (err); 12228 } 12229 12230 return (0); 12231 } 12232 12233 static void 12234 dtrace_enabling_retract(dtrace_state_t *state) 12235 { 12236 dtrace_enabling_t *enab, *next; 12237 12238 ASSERT(MUTEX_HELD(&dtrace_lock)); 12239 12240 /* 12241 * Iterate over all retained enablings, destroy the enablings retained 12242 * for the specified state. 12243 */ 12244 for (enab = dtrace_retained; enab != NULL; enab = next) { 12245 next = enab->dten_next; 12246 12247 /* 12248 * dtvs_state can only be NULL for helper enablings -- and 12249 * helper enablings can't be retained. 12250 */ 12251 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12252 12253 if (enab->dten_vstate->dtvs_state == state) { 12254 ASSERT(state->dts_nretained > 0); 12255 dtrace_enabling_destroy(enab); 12256 } 12257 } 12258 12259 ASSERT(state->dts_nretained == 0); 12260 } 12261 12262 static int 12263 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 12264 { 12265 int i = 0; 12266 int total_matched = 0, matched = 0; 12267 12268 ASSERT(MUTEX_HELD(&cpu_lock)); 12269 ASSERT(MUTEX_HELD(&dtrace_lock)); 12270 12271 for (i = 0; i < enab->dten_ndesc; i++) { 12272 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12273 12274 enab->dten_current = ep; 12275 enab->dten_error = 0; 12276 12277 /* 12278 * If a provider failed to enable a probe then get out and 12279 * let the consumer know we failed. 12280 */ 12281 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 12282 return (EBUSY); 12283 12284 total_matched += matched; 12285 12286 if (enab->dten_error != 0) { 12287 /* 12288 * If we get an error half-way through enabling the 12289 * probes, we kick out -- perhaps with some number of 12290 * them enabled. Leaving enabled probes enabled may 12291 * be slightly confusing for user-level, but we expect 12292 * that no one will attempt to actually drive on in 12293 * the face of such errors. If this is an anonymous 12294 * enabling (indicated with a NULL nmatched pointer), 12295 * we cmn_err() a message. We aren't expecting to 12296 * get such an error -- such as it can exist at all, 12297 * it would be a result of corrupted DOF in the driver 12298 * properties. 12299 */ 12300 if (nmatched == NULL) { 12301 cmn_err(CE_WARN, "dtrace_enabling_match() " 12302 "error on %p: %d", (void *)ep, 12303 enab->dten_error); 12304 } 12305 12306 return (enab->dten_error); 12307 } 12308 } 12309 12310 enab->dten_probegen = dtrace_probegen; 12311 if (nmatched != NULL) 12312 *nmatched = total_matched; 12313 12314 return (0); 12315 } 12316 12317 static void 12318 dtrace_enabling_matchall(void) 12319 { 12320 dtrace_enabling_t *enab; 12321 12322 mutex_enter(&cpu_lock); 12323 mutex_enter(&dtrace_lock); 12324 12325 /* 12326 * Iterate over all retained enablings to see if any probes match 12327 * against them. We only perform this operation on enablings for which 12328 * we have sufficient permissions by virtue of being in the global zone 12329 * or in the same zone as the DTrace client. Because we can be called 12330 * after dtrace_detach() has been called, we cannot assert that there 12331 * are retained enablings. We can safely load from dtrace_retained, 12332 * however: the taskq_destroy() at the end of dtrace_detach() will 12333 * block pending our completion. 12334 */ 12335 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12336 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred; 12337 cred_t *cr = dcr->dcr_cred; 12338 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0; 12339 12340 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL && 12341 (zone == GLOBAL_ZONEID || getzoneid() == zone))) 12342 (void) dtrace_enabling_match(enab, NULL); 12343 } 12344 12345 mutex_exit(&dtrace_lock); 12346 mutex_exit(&cpu_lock); 12347 } 12348 12349 /* 12350 * If an enabling is to be enabled without having matched probes (that is, if 12351 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 12352 * enabling must be _primed_ by creating an ECB for every ECB description. 12353 * This must be done to assure that we know the number of speculations, the 12354 * number of aggregations, the minimum buffer size needed, etc. before we 12355 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 12356 * enabling any probes, we create ECBs for every ECB decription, but with a 12357 * NULL probe -- which is exactly what this function does. 12358 */ 12359 static void 12360 dtrace_enabling_prime(dtrace_state_t *state) 12361 { 12362 dtrace_enabling_t *enab; 12363 int i; 12364 12365 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12366 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12367 12368 if (enab->dten_vstate->dtvs_state != state) 12369 continue; 12370 12371 /* 12372 * We don't want to prime an enabling more than once, lest 12373 * we allow a malicious user to induce resource exhaustion. 12374 * (The ECBs that result from priming an enabling aren't 12375 * leaked -- but they also aren't deallocated until the 12376 * consumer state is destroyed.) 12377 */ 12378 if (enab->dten_primed) 12379 continue; 12380 12381 for (i = 0; i < enab->dten_ndesc; i++) { 12382 enab->dten_current = enab->dten_desc[i]; 12383 (void) dtrace_probe_enable(NULL, enab); 12384 } 12385 12386 enab->dten_primed = 1; 12387 } 12388 } 12389 12390 /* 12391 * Called to indicate that probes should be provided due to retained 12392 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 12393 * must take an initial lap through the enabling calling the dtps_provide() 12394 * entry point explicitly to allow for autocreated probes. 12395 */ 12396 static void 12397 dtrace_enabling_provide(dtrace_provider_t *prv) 12398 { 12399 int i, all = 0; 12400 dtrace_probedesc_t desc; 12401 dtrace_genid_t gen; 12402 12403 ASSERT(MUTEX_HELD(&dtrace_lock)); 12404 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 12405 12406 if (prv == NULL) { 12407 all = 1; 12408 prv = dtrace_provider; 12409 } 12410 12411 do { 12412 dtrace_enabling_t *enab; 12413 void *parg = prv->dtpv_arg; 12414 12415 retry: 12416 gen = dtrace_retained_gen; 12417 for (enab = dtrace_retained; enab != NULL; 12418 enab = enab->dten_next) { 12419 for (i = 0; i < enab->dten_ndesc; i++) { 12420 desc = enab->dten_desc[i]->dted_probe; 12421 mutex_exit(&dtrace_lock); 12422 prv->dtpv_pops.dtps_provide(parg, &desc); 12423 mutex_enter(&dtrace_lock); 12424 /* 12425 * Process the retained enablings again if 12426 * they have changed while we weren't holding 12427 * dtrace_lock. 12428 */ 12429 if (gen != dtrace_retained_gen) 12430 goto retry; 12431 } 12432 } 12433 } while (all && (prv = prv->dtpv_next) != NULL); 12434 12435 mutex_exit(&dtrace_lock); 12436 dtrace_probe_provide(NULL, all ? NULL : prv); 12437 mutex_enter(&dtrace_lock); 12438 } 12439 12440 /* 12441 * Called to reap ECBs that are attached to probes from defunct providers. 12442 */ 12443 static void 12444 dtrace_enabling_reap(void) 12445 { 12446 dtrace_provider_t *prov; 12447 dtrace_probe_t *probe; 12448 dtrace_ecb_t *ecb; 12449 hrtime_t when; 12450 int i; 12451 12452 mutex_enter(&cpu_lock); 12453 mutex_enter(&dtrace_lock); 12454 12455 for (i = 0; i < dtrace_nprobes; i++) { 12456 if ((probe = dtrace_probes[i]) == NULL) 12457 continue; 12458 12459 if (probe->dtpr_ecb == NULL) 12460 continue; 12461 12462 prov = probe->dtpr_provider; 12463 12464 if ((when = prov->dtpv_defunct) == 0) 12465 continue; 12466 12467 /* 12468 * We have ECBs on a defunct provider: we want to reap these 12469 * ECBs to allow the provider to unregister. The destruction 12470 * of these ECBs must be done carefully: if we destroy the ECB 12471 * and the consumer later wishes to consume an EPID that 12472 * corresponds to the destroyed ECB (and if the EPID metadata 12473 * has not been previously consumed), the consumer will abort 12474 * processing on the unknown EPID. To reduce (but not, sadly, 12475 * eliminate) the possibility of this, we will only destroy an 12476 * ECB for a defunct provider if, for the state that 12477 * corresponds to the ECB: 12478 * 12479 * (a) There is no speculative tracing (which can effectively 12480 * cache an EPID for an arbitrary amount of time). 12481 * 12482 * (b) The principal buffers have been switched twice since the 12483 * provider became defunct. 12484 * 12485 * (c) The aggregation buffers are of zero size or have been 12486 * switched twice since the provider became defunct. 12487 * 12488 * We use dts_speculates to determine (a) and call a function 12489 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 12490 * that as soon as we've been unable to destroy one of the ECBs 12491 * associated with the probe, we quit trying -- reaping is only 12492 * fruitful in as much as we can destroy all ECBs associated 12493 * with the defunct provider's probes. 12494 */ 12495 while ((ecb = probe->dtpr_ecb) != NULL) { 12496 dtrace_state_t *state = ecb->dte_state; 12497 dtrace_buffer_t *buf = state->dts_buffer; 12498 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 12499 12500 if (state->dts_speculates) 12501 break; 12502 12503 if (!dtrace_buffer_consumed(buf, when)) 12504 break; 12505 12506 if (!dtrace_buffer_consumed(aggbuf, when)) 12507 break; 12508 12509 dtrace_ecb_disable(ecb); 12510 ASSERT(probe->dtpr_ecb != ecb); 12511 dtrace_ecb_destroy(ecb); 12512 } 12513 } 12514 12515 mutex_exit(&dtrace_lock); 12516 mutex_exit(&cpu_lock); 12517 } 12518 12519 /* 12520 * DTrace DOF Functions 12521 */ 12522 /*ARGSUSED*/ 12523 static void 12524 dtrace_dof_error(dof_hdr_t *dof, const char *str) 12525 { 12526 if (dtrace_err_verbose) 12527 cmn_err(CE_WARN, "failed to process DOF: %s", str); 12528 12529 #ifdef DTRACE_ERRDEBUG 12530 dtrace_errdebug(str); 12531 #endif 12532 } 12533 12534 /* 12535 * Create DOF out of a currently enabled state. Right now, we only create 12536 * DOF containing the run-time options -- but this could be expanded to create 12537 * complete DOF representing the enabled state. 12538 */ 12539 static dof_hdr_t * 12540 dtrace_dof_create(dtrace_state_t *state) 12541 { 12542 dof_hdr_t *dof; 12543 dof_sec_t *sec; 12544 dof_optdesc_t *opt; 12545 int i, len = sizeof (dof_hdr_t) + 12546 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 12547 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12548 12549 ASSERT(MUTEX_HELD(&dtrace_lock)); 12550 12551 dof = kmem_zalloc(len, KM_SLEEP); 12552 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 12553 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 12554 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 12555 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 12556 12557 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 12558 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 12559 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 12560 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 12561 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 12562 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 12563 12564 dof->dofh_flags = 0; 12565 dof->dofh_hdrsize = sizeof (dof_hdr_t); 12566 dof->dofh_secsize = sizeof (dof_sec_t); 12567 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 12568 dof->dofh_secoff = sizeof (dof_hdr_t); 12569 dof->dofh_loadsz = len; 12570 dof->dofh_filesz = len; 12571 dof->dofh_pad = 0; 12572 12573 /* 12574 * Fill in the option section header... 12575 */ 12576 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 12577 sec->dofs_type = DOF_SECT_OPTDESC; 12578 sec->dofs_align = sizeof (uint64_t); 12579 sec->dofs_flags = DOF_SECF_LOAD; 12580 sec->dofs_entsize = sizeof (dof_optdesc_t); 12581 12582 opt = (dof_optdesc_t *)((uintptr_t)sec + 12583 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 12584 12585 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 12586 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12587 12588 for (i = 0; i < DTRACEOPT_MAX; i++) { 12589 opt[i].dofo_option = i; 12590 opt[i].dofo_strtab = DOF_SECIDX_NONE; 12591 opt[i].dofo_value = state->dts_options[i]; 12592 } 12593 12594 return (dof); 12595 } 12596 12597 static dof_hdr_t * 12598 dtrace_dof_copyin(uintptr_t uarg, int *errp) 12599 { 12600 dof_hdr_t hdr, *dof; 12601 12602 ASSERT(!MUTEX_HELD(&dtrace_lock)); 12603 12604 /* 12605 * First, we're going to copyin() the sizeof (dof_hdr_t). 12606 */ 12607 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 12608 dtrace_dof_error(NULL, "failed to copyin DOF header"); 12609 *errp = EFAULT; 12610 return (NULL); 12611 } 12612 12613 /* 12614 * Now we'll allocate the entire DOF and copy it in -- provided 12615 * that the length isn't outrageous. 12616 */ 12617 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 12618 dtrace_dof_error(&hdr, "load size exceeds maximum"); 12619 *errp = E2BIG; 12620 return (NULL); 12621 } 12622 12623 if (hdr.dofh_loadsz < sizeof (hdr)) { 12624 dtrace_dof_error(&hdr, "invalid load size"); 12625 *errp = EINVAL; 12626 return (NULL); 12627 } 12628 12629 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 12630 12631 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 12632 dof->dofh_loadsz != hdr.dofh_loadsz) { 12633 kmem_free(dof, hdr.dofh_loadsz); 12634 *errp = EFAULT; 12635 return (NULL); 12636 } 12637 12638 return (dof); 12639 } 12640 12641 static dof_hdr_t * 12642 dtrace_dof_property(const char *name) 12643 { 12644 uchar_t *buf; 12645 uint64_t loadsz; 12646 unsigned int len, i; 12647 dof_hdr_t *dof; 12648 12649 /* 12650 * Unfortunately, array of values in .conf files are always (and 12651 * only) interpreted to be integer arrays. We must read our DOF 12652 * as an integer array, and then squeeze it into a byte array. 12653 */ 12654 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 12655 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 12656 return (NULL); 12657 12658 for (i = 0; i < len; i++) 12659 buf[i] = (uchar_t)(((int *)buf)[i]); 12660 12661 if (len < sizeof (dof_hdr_t)) { 12662 ddi_prop_free(buf); 12663 dtrace_dof_error(NULL, "truncated header"); 12664 return (NULL); 12665 } 12666 12667 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 12668 ddi_prop_free(buf); 12669 dtrace_dof_error(NULL, "truncated DOF"); 12670 return (NULL); 12671 } 12672 12673 if (loadsz >= dtrace_dof_maxsize) { 12674 ddi_prop_free(buf); 12675 dtrace_dof_error(NULL, "oversized DOF"); 12676 return (NULL); 12677 } 12678 12679 dof = kmem_alloc(loadsz, KM_SLEEP); 12680 bcopy(buf, dof, loadsz); 12681 ddi_prop_free(buf); 12682 12683 return (dof); 12684 } 12685 12686 static void 12687 dtrace_dof_destroy(dof_hdr_t *dof) 12688 { 12689 kmem_free(dof, dof->dofh_loadsz); 12690 } 12691 12692 /* 12693 * Return the dof_sec_t pointer corresponding to a given section index. If the 12694 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 12695 * a type other than DOF_SECT_NONE is specified, the header is checked against 12696 * this type and NULL is returned if the types do not match. 12697 */ 12698 static dof_sec_t * 12699 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 12700 { 12701 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 12702 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 12703 12704 if (i >= dof->dofh_secnum) { 12705 dtrace_dof_error(dof, "referenced section index is invalid"); 12706 return (NULL); 12707 } 12708 12709 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 12710 dtrace_dof_error(dof, "referenced section is not loadable"); 12711 return (NULL); 12712 } 12713 12714 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 12715 dtrace_dof_error(dof, "referenced section is the wrong type"); 12716 return (NULL); 12717 } 12718 12719 return (sec); 12720 } 12721 12722 static dtrace_probedesc_t * 12723 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 12724 { 12725 dof_probedesc_t *probe; 12726 dof_sec_t *strtab; 12727 uintptr_t daddr = (uintptr_t)dof; 12728 uintptr_t str; 12729 size_t size; 12730 12731 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 12732 dtrace_dof_error(dof, "invalid probe section"); 12733 return (NULL); 12734 } 12735 12736 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12737 dtrace_dof_error(dof, "bad alignment in probe description"); 12738 return (NULL); 12739 } 12740 12741 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 12742 dtrace_dof_error(dof, "truncated probe description"); 12743 return (NULL); 12744 } 12745 12746 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 12747 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 12748 12749 if (strtab == NULL) 12750 return (NULL); 12751 12752 str = daddr + strtab->dofs_offset; 12753 size = strtab->dofs_size; 12754 12755 if (probe->dofp_provider >= strtab->dofs_size) { 12756 dtrace_dof_error(dof, "corrupt probe provider"); 12757 return (NULL); 12758 } 12759 12760 (void) strncpy(desc->dtpd_provider, 12761 (char *)(str + probe->dofp_provider), 12762 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 12763 12764 if (probe->dofp_mod >= strtab->dofs_size) { 12765 dtrace_dof_error(dof, "corrupt probe module"); 12766 return (NULL); 12767 } 12768 12769 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 12770 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 12771 12772 if (probe->dofp_func >= strtab->dofs_size) { 12773 dtrace_dof_error(dof, "corrupt probe function"); 12774 return (NULL); 12775 } 12776 12777 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 12778 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 12779 12780 if (probe->dofp_name >= strtab->dofs_size) { 12781 dtrace_dof_error(dof, "corrupt probe name"); 12782 return (NULL); 12783 } 12784 12785 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 12786 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 12787 12788 return (desc); 12789 } 12790 12791 static dtrace_difo_t * 12792 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12793 cred_t *cr) 12794 { 12795 dtrace_difo_t *dp; 12796 size_t ttl = 0; 12797 dof_difohdr_t *dofd; 12798 uintptr_t daddr = (uintptr_t)dof; 12799 size_t max = dtrace_difo_maxsize; 12800 int i, l, n; 12801 12802 static const struct { 12803 int section; 12804 int bufoffs; 12805 int lenoffs; 12806 int entsize; 12807 int align; 12808 const char *msg; 12809 } difo[] = { 12810 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 12811 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 12812 sizeof (dif_instr_t), "multiple DIF sections" }, 12813 12814 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 12815 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 12816 sizeof (uint64_t), "multiple integer tables" }, 12817 12818 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 12819 offsetof(dtrace_difo_t, dtdo_strlen), 0, 12820 sizeof (char), "multiple string tables" }, 12821 12822 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 12823 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 12824 sizeof (uint_t), "multiple variable tables" }, 12825 12826 { DOF_SECT_NONE, 0, 0, 0, NULL } 12827 }; 12828 12829 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 12830 dtrace_dof_error(dof, "invalid DIFO header section"); 12831 return (NULL); 12832 } 12833 12834 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12835 dtrace_dof_error(dof, "bad alignment in DIFO header"); 12836 return (NULL); 12837 } 12838 12839 if (sec->dofs_size < sizeof (dof_difohdr_t) || 12840 sec->dofs_size % sizeof (dof_secidx_t)) { 12841 dtrace_dof_error(dof, "bad size in DIFO header"); 12842 return (NULL); 12843 } 12844 12845 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12846 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 12847 12848 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 12849 dp->dtdo_rtype = dofd->dofd_rtype; 12850 12851 for (l = 0; l < n; l++) { 12852 dof_sec_t *subsec; 12853 void **bufp; 12854 uint32_t *lenp; 12855 12856 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 12857 dofd->dofd_links[l])) == NULL) 12858 goto err; /* invalid section link */ 12859 12860 if (ttl + subsec->dofs_size > max) { 12861 dtrace_dof_error(dof, "exceeds maximum size"); 12862 goto err; 12863 } 12864 12865 ttl += subsec->dofs_size; 12866 12867 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 12868 if (subsec->dofs_type != difo[i].section) 12869 continue; 12870 12871 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 12872 dtrace_dof_error(dof, "section not loaded"); 12873 goto err; 12874 } 12875 12876 if (subsec->dofs_align != difo[i].align) { 12877 dtrace_dof_error(dof, "bad alignment"); 12878 goto err; 12879 } 12880 12881 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 12882 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 12883 12884 if (*bufp != NULL) { 12885 dtrace_dof_error(dof, difo[i].msg); 12886 goto err; 12887 } 12888 12889 if (difo[i].entsize != subsec->dofs_entsize) { 12890 dtrace_dof_error(dof, "entry size mismatch"); 12891 goto err; 12892 } 12893 12894 if (subsec->dofs_entsize != 0 && 12895 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 12896 dtrace_dof_error(dof, "corrupt entry size"); 12897 goto err; 12898 } 12899 12900 *lenp = subsec->dofs_size; 12901 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 12902 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 12903 *bufp, subsec->dofs_size); 12904 12905 if (subsec->dofs_entsize != 0) 12906 *lenp /= subsec->dofs_entsize; 12907 12908 break; 12909 } 12910 12911 /* 12912 * If we encounter a loadable DIFO sub-section that is not 12913 * known to us, assume this is a broken program and fail. 12914 */ 12915 if (difo[i].section == DOF_SECT_NONE && 12916 (subsec->dofs_flags & DOF_SECF_LOAD)) { 12917 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 12918 goto err; 12919 } 12920 } 12921 12922 if (dp->dtdo_buf == NULL) { 12923 /* 12924 * We can't have a DIF object without DIF text. 12925 */ 12926 dtrace_dof_error(dof, "missing DIF text"); 12927 goto err; 12928 } 12929 12930 /* 12931 * Before we validate the DIF object, run through the variable table 12932 * looking for the strings -- if any of their size are under, we'll set 12933 * their size to be the system-wide default string size. Note that 12934 * this should _not_ happen if the "strsize" option has been set -- 12935 * in this case, the compiler should have set the size to reflect the 12936 * setting of the option. 12937 */ 12938 for (i = 0; i < dp->dtdo_varlen; i++) { 12939 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 12940 dtrace_diftype_t *t = &v->dtdv_type; 12941 12942 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 12943 continue; 12944 12945 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 12946 t->dtdt_size = dtrace_strsize_default; 12947 } 12948 12949 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 12950 goto err; 12951 12952 dtrace_difo_init(dp, vstate); 12953 return (dp); 12954 12955 err: 12956 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 12957 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 12958 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 12959 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 12960 12961 kmem_free(dp, sizeof (dtrace_difo_t)); 12962 return (NULL); 12963 } 12964 12965 static dtrace_predicate_t * 12966 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12967 cred_t *cr) 12968 { 12969 dtrace_difo_t *dp; 12970 12971 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 12972 return (NULL); 12973 12974 return (dtrace_predicate_create(dp)); 12975 } 12976 12977 static dtrace_actdesc_t * 12978 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12979 cred_t *cr) 12980 { 12981 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 12982 dof_actdesc_t *desc; 12983 dof_sec_t *difosec; 12984 size_t offs; 12985 uintptr_t daddr = (uintptr_t)dof; 12986 uint64_t arg; 12987 dtrace_actkind_t kind; 12988 12989 if (sec->dofs_type != DOF_SECT_ACTDESC) { 12990 dtrace_dof_error(dof, "invalid action section"); 12991 return (NULL); 12992 } 12993 12994 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 12995 dtrace_dof_error(dof, "truncated action description"); 12996 return (NULL); 12997 } 12998 12999 if (sec->dofs_align != sizeof (uint64_t)) { 13000 dtrace_dof_error(dof, "bad alignment in action description"); 13001 return (NULL); 13002 } 13003 13004 if (sec->dofs_size < sec->dofs_entsize) { 13005 dtrace_dof_error(dof, "section entry size exceeds total size"); 13006 return (NULL); 13007 } 13008 13009 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 13010 dtrace_dof_error(dof, "bad entry size in action description"); 13011 return (NULL); 13012 } 13013 13014 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 13015 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 13016 return (NULL); 13017 } 13018 13019 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 13020 desc = (dof_actdesc_t *)(daddr + 13021 (uintptr_t)sec->dofs_offset + offs); 13022 kind = (dtrace_actkind_t)desc->dofa_kind; 13023 13024 if ((DTRACEACT_ISPRINTFLIKE(kind) && 13025 (kind != DTRACEACT_PRINTA || 13026 desc->dofa_strtab != DOF_SECIDX_NONE)) || 13027 (kind == DTRACEACT_DIFEXPR && 13028 desc->dofa_strtab != DOF_SECIDX_NONE)) { 13029 dof_sec_t *strtab; 13030 char *str, *fmt; 13031 uint64_t i; 13032 13033 /* 13034 * The argument to these actions is an index into the 13035 * DOF string table. For printf()-like actions, this 13036 * is the format string. For print(), this is the 13037 * CTF type of the expression result. 13038 */ 13039 if ((strtab = dtrace_dof_sect(dof, 13040 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 13041 goto err; 13042 13043 str = (char *)((uintptr_t)dof + 13044 (uintptr_t)strtab->dofs_offset); 13045 13046 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 13047 if (str[i] == '\0') 13048 break; 13049 } 13050 13051 if (i >= strtab->dofs_size) { 13052 dtrace_dof_error(dof, "bogus format string"); 13053 goto err; 13054 } 13055 13056 if (i == desc->dofa_arg) { 13057 dtrace_dof_error(dof, "empty format string"); 13058 goto err; 13059 } 13060 13061 i -= desc->dofa_arg; 13062 fmt = kmem_alloc(i + 1, KM_SLEEP); 13063 bcopy(&str[desc->dofa_arg], fmt, i + 1); 13064 arg = (uint64_t)(uintptr_t)fmt; 13065 } else { 13066 if (kind == DTRACEACT_PRINTA) { 13067 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 13068 arg = 0; 13069 } else { 13070 arg = desc->dofa_arg; 13071 } 13072 } 13073 13074 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 13075 desc->dofa_uarg, arg); 13076 13077 if (last != NULL) { 13078 last->dtad_next = act; 13079 } else { 13080 first = act; 13081 } 13082 13083 last = act; 13084 13085 if (desc->dofa_difo == DOF_SECIDX_NONE) 13086 continue; 13087 13088 if ((difosec = dtrace_dof_sect(dof, 13089 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 13090 goto err; 13091 13092 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 13093 13094 if (act->dtad_difo == NULL) 13095 goto err; 13096 } 13097 13098 ASSERT(first != NULL); 13099 return (first); 13100 13101 err: 13102 for (act = first; act != NULL; act = next) { 13103 next = act->dtad_next; 13104 dtrace_actdesc_release(act, vstate); 13105 } 13106 13107 return (NULL); 13108 } 13109 13110 static dtrace_ecbdesc_t * 13111 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13112 cred_t *cr) 13113 { 13114 dtrace_ecbdesc_t *ep; 13115 dof_ecbdesc_t *ecb; 13116 dtrace_probedesc_t *desc; 13117 dtrace_predicate_t *pred = NULL; 13118 13119 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 13120 dtrace_dof_error(dof, "truncated ECB description"); 13121 return (NULL); 13122 } 13123 13124 if (sec->dofs_align != sizeof (uint64_t)) { 13125 dtrace_dof_error(dof, "bad alignment in ECB description"); 13126 return (NULL); 13127 } 13128 13129 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 13130 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 13131 13132 if (sec == NULL) 13133 return (NULL); 13134 13135 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 13136 ep->dted_uarg = ecb->dofe_uarg; 13137 desc = &ep->dted_probe; 13138 13139 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 13140 goto err; 13141 13142 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 13143 if ((sec = dtrace_dof_sect(dof, 13144 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 13145 goto err; 13146 13147 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 13148 goto err; 13149 13150 ep->dted_pred.dtpdd_predicate = pred; 13151 } 13152 13153 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 13154 if ((sec = dtrace_dof_sect(dof, 13155 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 13156 goto err; 13157 13158 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 13159 13160 if (ep->dted_action == NULL) 13161 goto err; 13162 } 13163 13164 return (ep); 13165 13166 err: 13167 if (pred != NULL) 13168 dtrace_predicate_release(pred, vstate); 13169 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 13170 return (NULL); 13171 } 13172 13173 /* 13174 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 13175 * specified DOF. At present, this amounts to simply adding 'ubase' to the 13176 * site of any user SETX relocations to account for load object base address. 13177 * In the future, if we need other relocations, this function can be extended. 13178 */ 13179 static int 13180 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 13181 { 13182 uintptr_t daddr = (uintptr_t)dof; 13183 uintptr_t ts_end; 13184 dof_relohdr_t *dofr = 13185 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 13186 dof_sec_t *ss, *rs, *ts; 13187 dof_relodesc_t *r; 13188 uint_t i, n; 13189 13190 if (sec->dofs_size < sizeof (dof_relohdr_t) || 13191 sec->dofs_align != sizeof (dof_secidx_t)) { 13192 dtrace_dof_error(dof, "invalid relocation header"); 13193 return (-1); 13194 } 13195 13196 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 13197 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 13198 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 13199 ts_end = (uintptr_t)ts + sizeof (dof_sec_t); 13200 13201 if (ss == NULL || rs == NULL || ts == NULL) 13202 return (-1); /* dtrace_dof_error() has been called already */ 13203 13204 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 13205 rs->dofs_align != sizeof (uint64_t)) { 13206 dtrace_dof_error(dof, "invalid relocation section"); 13207 return (-1); 13208 } 13209 13210 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 13211 n = rs->dofs_size / rs->dofs_entsize; 13212 13213 for (i = 0; i < n; i++) { 13214 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 13215 13216 switch (r->dofr_type) { 13217 case DOF_RELO_NONE: 13218 break; 13219 case DOF_RELO_SETX: 13220 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 13221 sizeof (uint64_t) > ts->dofs_size) { 13222 dtrace_dof_error(dof, "bad relocation offset"); 13223 return (-1); 13224 } 13225 13226 if (taddr >= (uintptr_t)ts && taddr < ts_end) { 13227 dtrace_dof_error(dof, "bad relocation offset"); 13228 return (-1); 13229 } 13230 13231 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 13232 dtrace_dof_error(dof, "misaligned setx relo"); 13233 return (-1); 13234 } 13235 13236 *(uint64_t *)taddr += ubase; 13237 break; 13238 default: 13239 dtrace_dof_error(dof, "invalid relocation type"); 13240 return (-1); 13241 } 13242 13243 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 13244 } 13245 13246 return (0); 13247 } 13248 13249 /* 13250 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 13251 * header: it should be at the front of a memory region that is at least 13252 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 13253 * size. It need not be validated in any other way. 13254 */ 13255 static int 13256 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 13257 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 13258 { 13259 uint64_t len = dof->dofh_loadsz, seclen; 13260 uintptr_t daddr = (uintptr_t)dof; 13261 dtrace_ecbdesc_t *ep; 13262 dtrace_enabling_t *enab; 13263 uint_t i; 13264 13265 ASSERT(MUTEX_HELD(&dtrace_lock)); 13266 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 13267 13268 /* 13269 * Check the DOF header identification bytes. In addition to checking 13270 * valid settings, we also verify that unused bits/bytes are zeroed so 13271 * we can use them later without fear of regressing existing binaries. 13272 */ 13273 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 13274 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 13275 dtrace_dof_error(dof, "DOF magic string mismatch"); 13276 return (-1); 13277 } 13278 13279 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 13280 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 13281 dtrace_dof_error(dof, "DOF has invalid data model"); 13282 return (-1); 13283 } 13284 13285 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 13286 dtrace_dof_error(dof, "DOF encoding mismatch"); 13287 return (-1); 13288 } 13289 13290 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 13291 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 13292 dtrace_dof_error(dof, "DOF version mismatch"); 13293 return (-1); 13294 } 13295 13296 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 13297 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 13298 return (-1); 13299 } 13300 13301 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 13302 dtrace_dof_error(dof, "DOF uses too many integer registers"); 13303 return (-1); 13304 } 13305 13306 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 13307 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 13308 return (-1); 13309 } 13310 13311 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 13312 if (dof->dofh_ident[i] != 0) { 13313 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 13314 return (-1); 13315 } 13316 } 13317 13318 if (dof->dofh_flags & ~DOF_FL_VALID) { 13319 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 13320 return (-1); 13321 } 13322 13323 if (dof->dofh_secsize == 0) { 13324 dtrace_dof_error(dof, "zero section header size"); 13325 return (-1); 13326 } 13327 13328 /* 13329 * Check that the section headers don't exceed the amount of DOF 13330 * data. Note that we cast the section size and number of sections 13331 * to uint64_t's to prevent possible overflow in the multiplication. 13332 */ 13333 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 13334 13335 if (dof->dofh_secoff > len || seclen > len || 13336 dof->dofh_secoff + seclen > len) { 13337 dtrace_dof_error(dof, "truncated section headers"); 13338 return (-1); 13339 } 13340 13341 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 13342 dtrace_dof_error(dof, "misaligned section headers"); 13343 return (-1); 13344 } 13345 13346 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 13347 dtrace_dof_error(dof, "misaligned section size"); 13348 return (-1); 13349 } 13350 13351 /* 13352 * Take an initial pass through the section headers to be sure that 13353 * the headers don't have stray offsets. If the 'noprobes' flag is 13354 * set, do not permit sections relating to providers, probes, or args. 13355 */ 13356 for (i = 0; i < dof->dofh_secnum; i++) { 13357 dof_sec_t *sec = (dof_sec_t *)(daddr + 13358 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13359 13360 if (noprobes) { 13361 switch (sec->dofs_type) { 13362 case DOF_SECT_PROVIDER: 13363 case DOF_SECT_PROBES: 13364 case DOF_SECT_PRARGS: 13365 case DOF_SECT_PROFFS: 13366 dtrace_dof_error(dof, "illegal sections " 13367 "for enabling"); 13368 return (-1); 13369 } 13370 } 13371 13372 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 13373 !(sec->dofs_flags & DOF_SECF_LOAD)) { 13374 dtrace_dof_error(dof, "loadable section with load " 13375 "flag unset"); 13376 return (-1); 13377 } 13378 13379 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13380 continue; /* just ignore non-loadable sections */ 13381 13382 if (!ISP2(sec->dofs_align)) { 13383 dtrace_dof_error(dof, "bad section alignment"); 13384 return (-1); 13385 } 13386 13387 if (sec->dofs_offset & (sec->dofs_align - 1)) { 13388 dtrace_dof_error(dof, "misaligned section"); 13389 return (-1); 13390 } 13391 13392 if (sec->dofs_offset > len || sec->dofs_size > len || 13393 sec->dofs_offset + sec->dofs_size > len) { 13394 dtrace_dof_error(dof, "corrupt section header"); 13395 return (-1); 13396 } 13397 13398 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 13399 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 13400 dtrace_dof_error(dof, "non-terminating string table"); 13401 return (-1); 13402 } 13403 } 13404 13405 /* 13406 * Take a second pass through the sections and locate and perform any 13407 * relocations that are present. We do this after the first pass to 13408 * be sure that all sections have had their headers validated. 13409 */ 13410 for (i = 0; i < dof->dofh_secnum; i++) { 13411 dof_sec_t *sec = (dof_sec_t *)(daddr + 13412 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13413 13414 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13415 continue; /* skip sections that are not loadable */ 13416 13417 switch (sec->dofs_type) { 13418 case DOF_SECT_URELHDR: 13419 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 13420 return (-1); 13421 break; 13422 } 13423 } 13424 13425 if ((enab = *enabp) == NULL) 13426 enab = *enabp = dtrace_enabling_create(vstate); 13427 13428 for (i = 0; i < dof->dofh_secnum; i++) { 13429 dof_sec_t *sec = (dof_sec_t *)(daddr + 13430 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13431 13432 if (sec->dofs_type != DOF_SECT_ECBDESC) 13433 continue; 13434 13435 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 13436 dtrace_enabling_destroy(enab); 13437 *enabp = NULL; 13438 return (-1); 13439 } 13440 13441 dtrace_enabling_add(enab, ep); 13442 } 13443 13444 return (0); 13445 } 13446 13447 /* 13448 * Process DOF for any options. This routine assumes that the DOF has been 13449 * at least processed by dtrace_dof_slurp(). 13450 */ 13451 static int 13452 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 13453 { 13454 int i, rval; 13455 uint32_t entsize; 13456 size_t offs; 13457 dof_optdesc_t *desc; 13458 13459 for (i = 0; i < dof->dofh_secnum; i++) { 13460 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 13461 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13462 13463 if (sec->dofs_type != DOF_SECT_OPTDESC) 13464 continue; 13465 13466 if (sec->dofs_align != sizeof (uint64_t)) { 13467 dtrace_dof_error(dof, "bad alignment in " 13468 "option description"); 13469 return (EINVAL); 13470 } 13471 13472 if ((entsize = sec->dofs_entsize) == 0) { 13473 dtrace_dof_error(dof, "zeroed option entry size"); 13474 return (EINVAL); 13475 } 13476 13477 if (entsize < sizeof (dof_optdesc_t)) { 13478 dtrace_dof_error(dof, "bad option entry size"); 13479 return (EINVAL); 13480 } 13481 13482 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 13483 desc = (dof_optdesc_t *)((uintptr_t)dof + 13484 (uintptr_t)sec->dofs_offset + offs); 13485 13486 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 13487 dtrace_dof_error(dof, "non-zero option string"); 13488 return (EINVAL); 13489 } 13490 13491 if (desc->dofo_value == DTRACEOPT_UNSET) { 13492 dtrace_dof_error(dof, "unset option"); 13493 return (EINVAL); 13494 } 13495 13496 if ((rval = dtrace_state_option(state, 13497 desc->dofo_option, desc->dofo_value)) != 0) { 13498 dtrace_dof_error(dof, "rejected option"); 13499 return (rval); 13500 } 13501 } 13502 } 13503 13504 return (0); 13505 } 13506 13507 /* 13508 * DTrace Consumer State Functions 13509 */ 13510 int 13511 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 13512 { 13513 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 13514 void *base; 13515 uintptr_t limit; 13516 dtrace_dynvar_t *dvar, *next, *start; 13517 int i; 13518 13519 ASSERT(MUTEX_HELD(&dtrace_lock)); 13520 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 13521 13522 bzero(dstate, sizeof (dtrace_dstate_t)); 13523 13524 if ((dstate->dtds_chunksize = chunksize) == 0) 13525 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 13526 13527 VERIFY(dstate->dtds_chunksize < LONG_MAX); 13528 13529 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 13530 size = min; 13531 13532 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 13533 return (ENOMEM); 13534 13535 dstate->dtds_size = size; 13536 dstate->dtds_base = base; 13537 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 13538 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 13539 13540 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 13541 13542 if (hashsize != 1 && (hashsize & 1)) 13543 hashsize--; 13544 13545 dstate->dtds_hashsize = hashsize; 13546 dstate->dtds_hash = dstate->dtds_base; 13547 13548 /* 13549 * Set all of our hash buckets to point to the single sink, and (if 13550 * it hasn't already been set), set the sink's hash value to be the 13551 * sink sentinel value. The sink is needed for dynamic variable 13552 * lookups to know that they have iterated over an entire, valid hash 13553 * chain. 13554 */ 13555 for (i = 0; i < hashsize; i++) 13556 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 13557 13558 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 13559 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 13560 13561 /* 13562 * Determine number of active CPUs. Divide free list evenly among 13563 * active CPUs. 13564 */ 13565 start = (dtrace_dynvar_t *) 13566 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 13567 limit = (uintptr_t)base + size; 13568 13569 VERIFY((uintptr_t)start < limit); 13570 VERIFY((uintptr_t)start >= (uintptr_t)base); 13571 13572 maxper = (limit - (uintptr_t)start) / NCPU; 13573 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 13574 13575 for (i = 0; i < NCPU; i++) { 13576 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 13577 13578 /* 13579 * If we don't even have enough chunks to make it once through 13580 * NCPUs, we're just going to allocate everything to the first 13581 * CPU. And if we're on the last CPU, we're going to allocate 13582 * whatever is left over. In either case, we set the limit to 13583 * be the limit of the dynamic variable space. 13584 */ 13585 if (maxper == 0 || i == NCPU - 1) { 13586 limit = (uintptr_t)base + size; 13587 start = NULL; 13588 } else { 13589 limit = (uintptr_t)start + maxper; 13590 start = (dtrace_dynvar_t *)limit; 13591 } 13592 13593 VERIFY(limit <= (uintptr_t)base + size); 13594 13595 for (;;) { 13596 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 13597 dstate->dtds_chunksize); 13598 13599 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 13600 break; 13601 13602 VERIFY((uintptr_t)dvar >= (uintptr_t)base && 13603 (uintptr_t)dvar <= (uintptr_t)base + size); 13604 dvar->dtdv_next = next; 13605 dvar = next; 13606 } 13607 13608 if (maxper == 0) 13609 break; 13610 } 13611 13612 return (0); 13613 } 13614 13615 void 13616 dtrace_dstate_fini(dtrace_dstate_t *dstate) 13617 { 13618 ASSERT(MUTEX_HELD(&cpu_lock)); 13619 13620 if (dstate->dtds_base == NULL) 13621 return; 13622 13623 kmem_free(dstate->dtds_base, dstate->dtds_size); 13624 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 13625 } 13626 13627 static void 13628 dtrace_vstate_fini(dtrace_vstate_t *vstate) 13629 { 13630 /* 13631 * Logical XOR, where are you? 13632 */ 13633 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 13634 13635 if (vstate->dtvs_nglobals > 0) { 13636 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 13637 sizeof (dtrace_statvar_t *)); 13638 } 13639 13640 if (vstate->dtvs_ntlocals > 0) { 13641 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 13642 sizeof (dtrace_difv_t)); 13643 } 13644 13645 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 13646 13647 if (vstate->dtvs_nlocals > 0) { 13648 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 13649 sizeof (dtrace_statvar_t *)); 13650 } 13651 } 13652 13653 static void 13654 dtrace_state_clean(dtrace_state_t *state) 13655 { 13656 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 13657 return; 13658 13659 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 13660 dtrace_speculation_clean(state); 13661 } 13662 13663 static void 13664 dtrace_state_deadman(dtrace_state_t *state) 13665 { 13666 hrtime_t now; 13667 13668 dtrace_sync(); 13669 13670 now = dtrace_gethrtime(); 13671 13672 if (state != dtrace_anon.dta_state && 13673 now - state->dts_laststatus >= dtrace_deadman_user) 13674 return; 13675 13676 /* 13677 * We must be sure that dts_alive never appears to be less than the 13678 * value upon entry to dtrace_state_deadman(), and because we lack a 13679 * dtrace_cas64(), we cannot store to it atomically. We thus instead 13680 * store INT64_MAX to it, followed by a memory barrier, followed by 13681 * the new value. This assures that dts_alive never appears to be 13682 * less than its true value, regardless of the order in which the 13683 * stores to the underlying storage are issued. 13684 */ 13685 state->dts_alive = INT64_MAX; 13686 dtrace_membar_producer(); 13687 state->dts_alive = now; 13688 } 13689 13690 dtrace_state_t * 13691 dtrace_state_create(dev_t *devp, cred_t *cr) 13692 { 13693 minor_t minor; 13694 major_t major; 13695 char c[30]; 13696 dtrace_state_t *state; 13697 dtrace_optval_t *opt; 13698 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 13699 13700 ASSERT(MUTEX_HELD(&dtrace_lock)); 13701 ASSERT(MUTEX_HELD(&cpu_lock)); 13702 13703 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 13704 VM_BESTFIT | VM_SLEEP); 13705 13706 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 13707 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 13708 return (NULL); 13709 } 13710 13711 state = ddi_get_soft_state(dtrace_softstate, minor); 13712 state->dts_epid = DTRACE_EPIDNONE + 1; 13713 13714 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 13715 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 13716 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 13717 13718 if (devp != NULL) { 13719 major = getemajor(*devp); 13720 } else { 13721 major = ddi_driver_major(dtrace_devi); 13722 } 13723 13724 state->dts_dev = makedevice(major, minor); 13725 13726 if (devp != NULL) 13727 *devp = state->dts_dev; 13728 13729 /* 13730 * We allocate NCPU buffers. On the one hand, this can be quite 13731 * a bit of memory per instance (nearly 36K on a Starcat). On the 13732 * other hand, it saves an additional memory reference in the probe 13733 * path. 13734 */ 13735 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 13736 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 13737 state->dts_cleaner = CYCLIC_NONE; 13738 state->dts_deadman = CYCLIC_NONE; 13739 state->dts_vstate.dtvs_state = state; 13740 13741 for (i = 0; i < DTRACEOPT_MAX; i++) 13742 state->dts_options[i] = DTRACEOPT_UNSET; 13743 13744 /* 13745 * Set the default options. 13746 */ 13747 opt = state->dts_options; 13748 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 13749 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 13750 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 13751 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 13752 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 13753 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 13754 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 13755 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 13756 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 13757 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 13758 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 13759 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 13760 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 13761 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 13762 13763 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 13764 13765 /* 13766 * Depending on the user credentials, we set flag bits which alter probe 13767 * visibility or the amount of destructiveness allowed. In the case of 13768 * actual anonymous tracing, or the possession of all privileges, all of 13769 * the normal checks are bypassed. 13770 */ 13771 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 13772 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 13773 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 13774 } else { 13775 /* 13776 * Set up the credentials for this instantiation. We take a 13777 * hold on the credential to prevent it from disappearing on 13778 * us; this in turn prevents the zone_t referenced by this 13779 * credential from disappearing. This means that we can 13780 * examine the credential and the zone from probe context. 13781 */ 13782 crhold(cr); 13783 state->dts_cred.dcr_cred = cr; 13784 13785 /* 13786 * CRA_PROC means "we have *some* privilege for dtrace" and 13787 * unlocks the use of variables like pid, zonename, etc. 13788 */ 13789 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 13790 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13791 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 13792 } 13793 13794 /* 13795 * dtrace_user allows use of syscall and profile providers. 13796 * If the user also has proc_owner and/or proc_zone, we 13797 * extend the scope to include additional visibility and 13798 * destructive power. 13799 */ 13800 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 13801 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 13802 state->dts_cred.dcr_visible |= 13803 DTRACE_CRV_ALLPROC; 13804 13805 state->dts_cred.dcr_action |= 13806 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13807 } 13808 13809 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 13810 state->dts_cred.dcr_visible |= 13811 DTRACE_CRV_ALLZONE; 13812 13813 state->dts_cred.dcr_action |= 13814 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13815 } 13816 13817 /* 13818 * If we have all privs in whatever zone this is, 13819 * we can do destructive things to processes which 13820 * have altered credentials. 13821 */ 13822 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13823 cr->cr_zone->zone_privset)) { 13824 state->dts_cred.dcr_action |= 13825 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13826 } 13827 } 13828 13829 /* 13830 * Holding the dtrace_kernel privilege also implies that 13831 * the user has the dtrace_user privilege from a visibility 13832 * perspective. But without further privileges, some 13833 * destructive actions are not available. 13834 */ 13835 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 13836 /* 13837 * Make all probes in all zones visible. However, 13838 * this doesn't mean that all actions become available 13839 * to all zones. 13840 */ 13841 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 13842 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 13843 13844 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 13845 DTRACE_CRA_PROC; 13846 /* 13847 * Holding proc_owner means that destructive actions 13848 * for *this* zone are allowed. 13849 */ 13850 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13851 state->dts_cred.dcr_action |= 13852 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13853 13854 /* 13855 * Holding proc_zone means that destructive actions 13856 * for this user/group ID in all zones is allowed. 13857 */ 13858 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13859 state->dts_cred.dcr_action |= 13860 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13861 13862 /* 13863 * If we have all privs in whatever zone this is, 13864 * we can do destructive things to processes which 13865 * have altered credentials. 13866 */ 13867 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13868 cr->cr_zone->zone_privset)) { 13869 state->dts_cred.dcr_action |= 13870 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13871 } 13872 } 13873 13874 /* 13875 * Holding the dtrace_proc privilege gives control over fasttrap 13876 * and pid providers. We need to grant wider destructive 13877 * privileges in the event that the user has proc_owner and/or 13878 * proc_zone. 13879 */ 13880 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13881 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13882 state->dts_cred.dcr_action |= 13883 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13884 13885 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13886 state->dts_cred.dcr_action |= 13887 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13888 } 13889 } 13890 13891 return (state); 13892 } 13893 13894 static int 13895 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 13896 { 13897 dtrace_optval_t *opt = state->dts_options, size; 13898 processorid_t cpu; 13899 int flags = 0, rval, factor, divisor = 1; 13900 13901 ASSERT(MUTEX_HELD(&dtrace_lock)); 13902 ASSERT(MUTEX_HELD(&cpu_lock)); 13903 ASSERT(which < DTRACEOPT_MAX); 13904 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 13905 (state == dtrace_anon.dta_state && 13906 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 13907 13908 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 13909 return (0); 13910 13911 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 13912 cpu = opt[DTRACEOPT_CPU]; 13913 13914 if (which == DTRACEOPT_SPECSIZE) 13915 flags |= DTRACEBUF_NOSWITCH; 13916 13917 if (which == DTRACEOPT_BUFSIZE) { 13918 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 13919 flags |= DTRACEBUF_RING; 13920 13921 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 13922 flags |= DTRACEBUF_FILL; 13923 13924 if (state != dtrace_anon.dta_state || 13925 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 13926 flags |= DTRACEBUF_INACTIVE; 13927 } 13928 13929 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 13930 /* 13931 * The size must be 8-byte aligned. If the size is not 8-byte 13932 * aligned, drop it down by the difference. 13933 */ 13934 if (size & (sizeof (uint64_t) - 1)) 13935 size -= size & (sizeof (uint64_t) - 1); 13936 13937 if (size < state->dts_reserve) { 13938 /* 13939 * Buffers always must be large enough to accommodate 13940 * their prereserved space. We return E2BIG instead 13941 * of ENOMEM in this case to allow for user-level 13942 * software to differentiate the cases. 13943 */ 13944 return (E2BIG); 13945 } 13946 13947 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 13948 13949 if (rval != ENOMEM) { 13950 opt[which] = size; 13951 return (rval); 13952 } 13953 13954 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13955 return (rval); 13956 13957 for (divisor = 2; divisor < factor; divisor <<= 1) 13958 continue; 13959 } 13960 13961 return (ENOMEM); 13962 } 13963 13964 static int 13965 dtrace_state_buffers(dtrace_state_t *state) 13966 { 13967 dtrace_speculation_t *spec = state->dts_speculations; 13968 int rval, i; 13969 13970 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 13971 DTRACEOPT_BUFSIZE)) != 0) 13972 return (rval); 13973 13974 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 13975 DTRACEOPT_AGGSIZE)) != 0) 13976 return (rval); 13977 13978 for (i = 0; i < state->dts_nspeculations; i++) { 13979 if ((rval = dtrace_state_buffer(state, 13980 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 13981 return (rval); 13982 } 13983 13984 return (0); 13985 } 13986 13987 static void 13988 dtrace_state_prereserve(dtrace_state_t *state) 13989 { 13990 dtrace_ecb_t *ecb; 13991 dtrace_probe_t *probe; 13992 13993 state->dts_reserve = 0; 13994 13995 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 13996 return; 13997 13998 /* 13999 * If our buffer policy is a "fill" buffer policy, we need to set the 14000 * prereserved space to be the space required by the END probes. 14001 */ 14002 probe = dtrace_probes[dtrace_probeid_end - 1]; 14003 ASSERT(probe != NULL); 14004 14005 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 14006 if (ecb->dte_state != state) 14007 continue; 14008 14009 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 14010 } 14011 } 14012 14013 static int 14014 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 14015 { 14016 dtrace_optval_t *opt = state->dts_options, sz, nspec; 14017 dtrace_speculation_t *spec; 14018 dtrace_buffer_t *buf; 14019 cyc_handler_t hdlr; 14020 cyc_time_t when; 14021 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14022 dtrace_icookie_t cookie; 14023 14024 mutex_enter(&cpu_lock); 14025 mutex_enter(&dtrace_lock); 14026 14027 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14028 rval = EBUSY; 14029 goto out; 14030 } 14031 14032 /* 14033 * Before we can perform any checks, we must prime all of the 14034 * retained enablings that correspond to this state. 14035 */ 14036 dtrace_enabling_prime(state); 14037 14038 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 14039 rval = EACCES; 14040 goto out; 14041 } 14042 14043 dtrace_state_prereserve(state); 14044 14045 /* 14046 * Now we want to do is try to allocate our speculations. 14047 * We do not automatically resize the number of speculations; if 14048 * this fails, we will fail the operation. 14049 */ 14050 nspec = opt[DTRACEOPT_NSPEC]; 14051 ASSERT(nspec != DTRACEOPT_UNSET); 14052 14053 if (nspec > INT_MAX) { 14054 rval = ENOMEM; 14055 goto out; 14056 } 14057 14058 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 14059 KM_NOSLEEP | KM_NORMALPRI); 14060 14061 if (spec == NULL) { 14062 rval = ENOMEM; 14063 goto out; 14064 } 14065 14066 state->dts_speculations = spec; 14067 state->dts_nspeculations = (int)nspec; 14068 14069 for (i = 0; i < nspec; i++) { 14070 if ((buf = kmem_zalloc(bufsize, 14071 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 14072 rval = ENOMEM; 14073 goto err; 14074 } 14075 14076 spec[i].dtsp_buffer = buf; 14077 } 14078 14079 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 14080 if (dtrace_anon.dta_state == NULL) { 14081 rval = ENOENT; 14082 goto out; 14083 } 14084 14085 if (state->dts_necbs != 0) { 14086 rval = EALREADY; 14087 goto out; 14088 } 14089 14090 state->dts_anon = dtrace_anon_grab(); 14091 ASSERT(state->dts_anon != NULL); 14092 state = state->dts_anon; 14093 14094 /* 14095 * We want "grabanon" to be set in the grabbed state, so we'll 14096 * copy that option value from the grabbing state into the 14097 * grabbed state. 14098 */ 14099 state->dts_options[DTRACEOPT_GRABANON] = 14100 opt[DTRACEOPT_GRABANON]; 14101 14102 *cpu = dtrace_anon.dta_beganon; 14103 14104 /* 14105 * If the anonymous state is active (as it almost certainly 14106 * is if the anonymous enabling ultimately matched anything), 14107 * we don't allow any further option processing -- but we 14108 * don't return failure. 14109 */ 14110 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14111 goto out; 14112 } 14113 14114 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 14115 opt[DTRACEOPT_AGGSIZE] != 0) { 14116 if (state->dts_aggregations == NULL) { 14117 /* 14118 * We're not going to create an aggregation buffer 14119 * because we don't have any ECBs that contain 14120 * aggregations -- set this option to 0. 14121 */ 14122 opt[DTRACEOPT_AGGSIZE] = 0; 14123 } else { 14124 /* 14125 * If we have an aggregation buffer, we must also have 14126 * a buffer to use as scratch. 14127 */ 14128 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 14129 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 14130 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 14131 } 14132 } 14133 } 14134 14135 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 14136 opt[DTRACEOPT_SPECSIZE] != 0) { 14137 if (!state->dts_speculates) { 14138 /* 14139 * We're not going to create speculation buffers 14140 * because we don't have any ECBs that actually 14141 * speculate -- set the speculation size to 0. 14142 */ 14143 opt[DTRACEOPT_SPECSIZE] = 0; 14144 } 14145 } 14146 14147 /* 14148 * The bare minimum size for any buffer that we're actually going to 14149 * do anything to is sizeof (uint64_t). 14150 */ 14151 sz = sizeof (uint64_t); 14152 14153 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 14154 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 14155 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 14156 /* 14157 * A buffer size has been explicitly set to 0 (or to a size 14158 * that will be adjusted to 0) and we need the space -- we 14159 * need to return failure. We return ENOSPC to differentiate 14160 * it from failing to allocate a buffer due to failure to meet 14161 * the reserve (for which we return E2BIG). 14162 */ 14163 rval = ENOSPC; 14164 goto out; 14165 } 14166 14167 if ((rval = dtrace_state_buffers(state)) != 0) 14168 goto err; 14169 14170 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 14171 sz = dtrace_dstate_defsize; 14172 14173 do { 14174 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 14175 14176 if (rval == 0) 14177 break; 14178 14179 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14180 goto err; 14181 } while (sz >>= 1); 14182 14183 opt[DTRACEOPT_DYNVARSIZE] = sz; 14184 14185 if (rval != 0) 14186 goto err; 14187 14188 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 14189 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 14190 14191 if (opt[DTRACEOPT_CLEANRATE] == 0) 14192 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 14193 14194 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 14195 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 14196 14197 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 14198 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 14199 14200 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 14201 hdlr.cyh_arg = state; 14202 hdlr.cyh_level = CY_LOW_LEVEL; 14203 14204 when.cyt_when = 0; 14205 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 14206 14207 state->dts_cleaner = cyclic_add(&hdlr, &when); 14208 14209 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 14210 hdlr.cyh_arg = state; 14211 hdlr.cyh_level = CY_LOW_LEVEL; 14212 14213 when.cyt_when = 0; 14214 when.cyt_interval = dtrace_deadman_interval; 14215 14216 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 14217 state->dts_deadman = cyclic_add(&hdlr, &when); 14218 14219 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 14220 14221 if (state->dts_getf != 0 && 14222 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14223 /* 14224 * We don't have kernel privs but we have at least one call 14225 * to getf(); we need to bump our zone's count, and (if 14226 * this is the first enabling to have an unprivileged call 14227 * to getf()) we need to hook into closef(). 14228 */ 14229 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 14230 14231 if (dtrace_getf++ == 0) { 14232 ASSERT(dtrace_closef == NULL); 14233 dtrace_closef = dtrace_getf_barrier; 14234 } 14235 } 14236 14237 /* 14238 * Now it's time to actually fire the BEGIN probe. We need to disable 14239 * interrupts here both to record the CPU on which we fired the BEGIN 14240 * probe (the data from this CPU will be processed first at user 14241 * level) and to manually activate the buffer for this CPU. 14242 */ 14243 cookie = dtrace_interrupt_disable(); 14244 *cpu = CPU->cpu_id; 14245 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 14246 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 14247 14248 dtrace_probe(dtrace_probeid_begin, 14249 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 14250 dtrace_interrupt_enable(cookie); 14251 /* 14252 * We may have had an exit action from a BEGIN probe; only change our 14253 * state to ACTIVE if we're still in WARMUP. 14254 */ 14255 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 14256 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 14257 14258 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 14259 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 14260 14261 /* 14262 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 14263 * want each CPU to transition its principal buffer out of the 14264 * INACTIVE state. Doing this assures that no CPU will suddenly begin 14265 * processing an ECB halfway down a probe's ECB chain; all CPUs will 14266 * atomically transition from processing none of a state's ECBs to 14267 * processing all of them. 14268 */ 14269 dtrace_xcall(DTRACE_CPUALL, 14270 (dtrace_xcall_t)dtrace_buffer_activate, state); 14271 goto out; 14272 14273 err: 14274 dtrace_buffer_free(state->dts_buffer); 14275 dtrace_buffer_free(state->dts_aggbuffer); 14276 14277 if ((nspec = state->dts_nspeculations) == 0) { 14278 ASSERT(state->dts_speculations == NULL); 14279 goto out; 14280 } 14281 14282 spec = state->dts_speculations; 14283 ASSERT(spec != NULL); 14284 14285 for (i = 0; i < state->dts_nspeculations; i++) { 14286 if ((buf = spec[i].dtsp_buffer) == NULL) 14287 break; 14288 14289 dtrace_buffer_free(buf); 14290 kmem_free(buf, bufsize); 14291 } 14292 14293 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14294 state->dts_nspeculations = 0; 14295 state->dts_speculations = NULL; 14296 14297 out: 14298 mutex_exit(&dtrace_lock); 14299 mutex_exit(&cpu_lock); 14300 14301 return (rval); 14302 } 14303 14304 static int 14305 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 14306 { 14307 dtrace_icookie_t cookie; 14308 14309 ASSERT(MUTEX_HELD(&dtrace_lock)); 14310 14311 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 14312 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 14313 return (EINVAL); 14314 14315 /* 14316 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 14317 * to be sure that every CPU has seen it. See below for the details 14318 * on why this is done. 14319 */ 14320 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 14321 dtrace_sync(); 14322 14323 /* 14324 * By this point, it is impossible for any CPU to be still processing 14325 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 14326 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 14327 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 14328 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 14329 * iff we're in the END probe. 14330 */ 14331 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 14332 dtrace_sync(); 14333 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 14334 14335 /* 14336 * Finally, we can release the reserve and call the END probe. We 14337 * disable interrupts across calling the END probe to allow us to 14338 * return the CPU on which we actually called the END probe. This 14339 * allows user-land to be sure that this CPU's principal buffer is 14340 * processed last. 14341 */ 14342 state->dts_reserve = 0; 14343 14344 cookie = dtrace_interrupt_disable(); 14345 *cpu = CPU->cpu_id; 14346 dtrace_probe(dtrace_probeid_end, 14347 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 14348 dtrace_interrupt_enable(cookie); 14349 14350 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 14351 dtrace_sync(); 14352 14353 if (state->dts_getf != 0 && 14354 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14355 /* 14356 * We don't have kernel privs but we have at least one call 14357 * to getf(); we need to lower our zone's count, and (if 14358 * this is the last enabling to have an unprivileged call 14359 * to getf()) we need to clear the closef() hook. 14360 */ 14361 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 14362 ASSERT(dtrace_closef == dtrace_getf_barrier); 14363 ASSERT(dtrace_getf > 0); 14364 14365 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 14366 14367 if (--dtrace_getf == 0) 14368 dtrace_closef = NULL; 14369 } 14370 14371 return (0); 14372 } 14373 14374 static int 14375 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 14376 dtrace_optval_t val) 14377 { 14378 ASSERT(MUTEX_HELD(&dtrace_lock)); 14379 14380 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14381 return (EBUSY); 14382 14383 if (option >= DTRACEOPT_MAX) 14384 return (EINVAL); 14385 14386 if (option != DTRACEOPT_CPU && val < 0) 14387 return (EINVAL); 14388 14389 switch (option) { 14390 case DTRACEOPT_DESTRUCTIVE: 14391 if (dtrace_destructive_disallow) 14392 return (EACCES); 14393 14394 state->dts_cred.dcr_destructive = 1; 14395 break; 14396 14397 case DTRACEOPT_BUFSIZE: 14398 case DTRACEOPT_DYNVARSIZE: 14399 case DTRACEOPT_AGGSIZE: 14400 case DTRACEOPT_SPECSIZE: 14401 case DTRACEOPT_STRSIZE: 14402 if (val < 0) 14403 return (EINVAL); 14404 14405 if (val >= LONG_MAX) { 14406 /* 14407 * If this is an otherwise negative value, set it to 14408 * the highest multiple of 128m less than LONG_MAX. 14409 * Technically, we're adjusting the size without 14410 * regard to the buffer resizing policy, but in fact, 14411 * this has no effect -- if we set the buffer size to 14412 * ~LONG_MAX and the buffer policy is ultimately set to 14413 * be "manual", the buffer allocation is guaranteed to 14414 * fail, if only because the allocation requires two 14415 * buffers. (We set the the size to the highest 14416 * multiple of 128m because it ensures that the size 14417 * will remain a multiple of a megabyte when 14418 * repeatedly halved -- all the way down to 15m.) 14419 */ 14420 val = LONG_MAX - (1 << 27) + 1; 14421 } 14422 } 14423 14424 state->dts_options[option] = val; 14425 14426 return (0); 14427 } 14428 14429 static void 14430 dtrace_state_destroy(dtrace_state_t *state) 14431 { 14432 dtrace_ecb_t *ecb; 14433 dtrace_vstate_t *vstate = &state->dts_vstate; 14434 minor_t minor = getminor(state->dts_dev); 14435 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14436 dtrace_speculation_t *spec = state->dts_speculations; 14437 int nspec = state->dts_nspeculations; 14438 uint32_t match; 14439 14440 ASSERT(MUTEX_HELD(&dtrace_lock)); 14441 ASSERT(MUTEX_HELD(&cpu_lock)); 14442 14443 /* 14444 * First, retract any retained enablings for this state. 14445 */ 14446 dtrace_enabling_retract(state); 14447 ASSERT(state->dts_nretained == 0); 14448 14449 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 14450 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 14451 /* 14452 * We have managed to come into dtrace_state_destroy() on a 14453 * hot enabling -- almost certainly because of a disorderly 14454 * shutdown of a consumer. (That is, a consumer that is 14455 * exiting without having called dtrace_stop().) In this case, 14456 * we're going to set our activity to be KILLED, and then 14457 * issue a sync to be sure that everyone is out of probe 14458 * context before we start blowing away ECBs. 14459 */ 14460 state->dts_activity = DTRACE_ACTIVITY_KILLED; 14461 dtrace_sync(); 14462 } 14463 14464 /* 14465 * Release the credential hold we took in dtrace_state_create(). 14466 */ 14467 if (state->dts_cred.dcr_cred != NULL) 14468 crfree(state->dts_cred.dcr_cred); 14469 14470 /* 14471 * Now we can safely disable and destroy any enabled probes. Because 14472 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 14473 * (especially if they're all enabled), we take two passes through the 14474 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 14475 * in the second we disable whatever is left over. 14476 */ 14477 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 14478 for (i = 0; i < state->dts_necbs; i++) { 14479 if ((ecb = state->dts_ecbs[i]) == NULL) 14480 continue; 14481 14482 if (match && ecb->dte_probe != NULL) { 14483 dtrace_probe_t *probe = ecb->dte_probe; 14484 dtrace_provider_t *prov = probe->dtpr_provider; 14485 14486 if (!(prov->dtpv_priv.dtpp_flags & match)) 14487 continue; 14488 } 14489 14490 dtrace_ecb_disable(ecb); 14491 dtrace_ecb_destroy(ecb); 14492 } 14493 14494 if (!match) 14495 break; 14496 } 14497 14498 /* 14499 * Before we free the buffers, perform one more sync to assure that 14500 * every CPU is out of probe context. 14501 */ 14502 dtrace_sync(); 14503 14504 dtrace_buffer_free(state->dts_buffer); 14505 dtrace_buffer_free(state->dts_aggbuffer); 14506 14507 for (i = 0; i < nspec; i++) 14508 dtrace_buffer_free(spec[i].dtsp_buffer); 14509 14510 if (state->dts_cleaner != CYCLIC_NONE) 14511 cyclic_remove(state->dts_cleaner); 14512 14513 if (state->dts_deadman != CYCLIC_NONE) 14514 cyclic_remove(state->dts_deadman); 14515 14516 dtrace_dstate_fini(&vstate->dtvs_dynvars); 14517 dtrace_vstate_fini(vstate); 14518 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 14519 14520 if (state->dts_aggregations != NULL) { 14521 #ifdef DEBUG 14522 for (i = 0; i < state->dts_naggregations; i++) 14523 ASSERT(state->dts_aggregations[i] == NULL); 14524 #endif 14525 ASSERT(state->dts_naggregations > 0); 14526 kmem_free(state->dts_aggregations, 14527 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 14528 } 14529 14530 kmem_free(state->dts_buffer, bufsize); 14531 kmem_free(state->dts_aggbuffer, bufsize); 14532 14533 for (i = 0; i < nspec; i++) 14534 kmem_free(spec[i].dtsp_buffer, bufsize); 14535 14536 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14537 14538 dtrace_format_destroy(state); 14539 14540 vmem_destroy(state->dts_aggid_arena); 14541 ddi_soft_state_free(dtrace_softstate, minor); 14542 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14543 } 14544 14545 /* 14546 * DTrace Anonymous Enabling Functions 14547 */ 14548 static dtrace_state_t * 14549 dtrace_anon_grab(void) 14550 { 14551 dtrace_state_t *state; 14552 14553 ASSERT(MUTEX_HELD(&dtrace_lock)); 14554 14555 if ((state = dtrace_anon.dta_state) == NULL) { 14556 ASSERT(dtrace_anon.dta_enabling == NULL); 14557 return (NULL); 14558 } 14559 14560 ASSERT(dtrace_anon.dta_enabling != NULL); 14561 ASSERT(dtrace_retained != NULL); 14562 14563 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 14564 dtrace_anon.dta_enabling = NULL; 14565 dtrace_anon.dta_state = NULL; 14566 14567 return (state); 14568 } 14569 14570 static void 14571 dtrace_anon_property(void) 14572 { 14573 int i, rv; 14574 dtrace_state_t *state; 14575 dof_hdr_t *dof; 14576 char c[32]; /* enough for "dof-data-" + digits */ 14577 14578 ASSERT(MUTEX_HELD(&dtrace_lock)); 14579 ASSERT(MUTEX_HELD(&cpu_lock)); 14580 14581 for (i = 0; ; i++) { 14582 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 14583 14584 dtrace_err_verbose = 1; 14585 14586 if ((dof = dtrace_dof_property(c)) == NULL) { 14587 dtrace_err_verbose = 0; 14588 break; 14589 } 14590 14591 /* 14592 * We want to create anonymous state, so we need to transition 14593 * the kernel debugger to indicate that DTrace is active. If 14594 * this fails (e.g. because the debugger has modified text in 14595 * some way), we won't continue with the processing. 14596 */ 14597 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14598 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 14599 "enabling ignored."); 14600 dtrace_dof_destroy(dof); 14601 break; 14602 } 14603 14604 /* 14605 * If we haven't allocated an anonymous state, we'll do so now. 14606 */ 14607 if ((state = dtrace_anon.dta_state) == NULL) { 14608 state = dtrace_state_create(NULL, NULL); 14609 dtrace_anon.dta_state = state; 14610 14611 if (state == NULL) { 14612 /* 14613 * This basically shouldn't happen: the only 14614 * failure mode from dtrace_state_create() is a 14615 * failure of ddi_soft_state_zalloc() that 14616 * itself should never happen. Still, the 14617 * interface allows for a failure mode, and 14618 * we want to fail as gracefully as possible: 14619 * we'll emit an error message and cease 14620 * processing anonymous state in this case. 14621 */ 14622 cmn_err(CE_WARN, "failed to create " 14623 "anonymous state"); 14624 dtrace_dof_destroy(dof); 14625 break; 14626 } 14627 } 14628 14629 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 14630 &dtrace_anon.dta_enabling, 0, B_TRUE); 14631 14632 if (rv == 0) 14633 rv = dtrace_dof_options(dof, state); 14634 14635 dtrace_err_verbose = 0; 14636 dtrace_dof_destroy(dof); 14637 14638 if (rv != 0) { 14639 /* 14640 * This is malformed DOF; chuck any anonymous state 14641 * that we created. 14642 */ 14643 ASSERT(dtrace_anon.dta_enabling == NULL); 14644 dtrace_state_destroy(state); 14645 dtrace_anon.dta_state = NULL; 14646 break; 14647 } 14648 14649 ASSERT(dtrace_anon.dta_enabling != NULL); 14650 } 14651 14652 if (dtrace_anon.dta_enabling != NULL) { 14653 int rval; 14654 14655 /* 14656 * dtrace_enabling_retain() can only fail because we are 14657 * trying to retain more enablings than are allowed -- but 14658 * we only have one anonymous enabling, and we are guaranteed 14659 * to be allowed at least one retained enabling; we assert 14660 * that dtrace_enabling_retain() returns success. 14661 */ 14662 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 14663 ASSERT(rval == 0); 14664 14665 dtrace_enabling_dump(dtrace_anon.dta_enabling); 14666 } 14667 } 14668 14669 /* 14670 * DTrace Helper Functions 14671 */ 14672 static void 14673 dtrace_helper_trace(dtrace_helper_action_t *helper, 14674 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 14675 { 14676 uint32_t size, next, nnext, i; 14677 dtrace_helptrace_t *ent, *buffer; 14678 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14679 14680 if ((buffer = dtrace_helptrace_buffer) == NULL) 14681 return; 14682 14683 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 14684 14685 /* 14686 * What would a tracing framework be without its own tracing 14687 * framework? (Well, a hell of a lot simpler, for starters...) 14688 */ 14689 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 14690 sizeof (uint64_t) - sizeof (uint64_t); 14691 14692 /* 14693 * Iterate until we can allocate a slot in the trace buffer. 14694 */ 14695 do { 14696 next = dtrace_helptrace_next; 14697 14698 if (next + size < dtrace_helptrace_bufsize) { 14699 nnext = next + size; 14700 } else { 14701 nnext = size; 14702 } 14703 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 14704 14705 /* 14706 * We have our slot; fill it in. 14707 */ 14708 if (nnext == size) { 14709 dtrace_helptrace_wrapped++; 14710 next = 0; 14711 } 14712 14713 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 14714 ent->dtht_helper = helper; 14715 ent->dtht_where = where; 14716 ent->dtht_nlocals = vstate->dtvs_nlocals; 14717 14718 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 14719 mstate->dtms_fltoffs : -1; 14720 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 14721 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 14722 14723 for (i = 0; i < vstate->dtvs_nlocals; i++) { 14724 dtrace_statvar_t *svar; 14725 14726 if ((svar = vstate->dtvs_locals[i]) == NULL) 14727 continue; 14728 14729 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 14730 ent->dtht_locals[i] = 14731 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 14732 } 14733 } 14734 14735 static uint64_t 14736 dtrace_helper(int which, dtrace_mstate_t *mstate, 14737 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 14738 { 14739 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14740 uint64_t sarg0 = mstate->dtms_arg[0]; 14741 uint64_t sarg1 = mstate->dtms_arg[1]; 14742 uint64_t rval; 14743 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 14744 dtrace_helper_action_t *helper; 14745 dtrace_vstate_t *vstate; 14746 dtrace_difo_t *pred; 14747 int i, trace = dtrace_helptrace_buffer != NULL; 14748 14749 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 14750 14751 if (helpers == NULL) 14752 return (0); 14753 14754 if ((helper = helpers->dthps_actions[which]) == NULL) 14755 return (0); 14756 14757 vstate = &helpers->dthps_vstate; 14758 mstate->dtms_arg[0] = arg0; 14759 mstate->dtms_arg[1] = arg1; 14760 14761 /* 14762 * Now iterate over each helper. If its predicate evaluates to 'true', 14763 * we'll call the corresponding actions. Note that the below calls 14764 * to dtrace_dif_emulate() may set faults in machine state. This is 14765 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 14766 * the stored DIF offset with its own (which is the desired behavior). 14767 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 14768 * from machine state; this is okay, too. 14769 */ 14770 for (; helper != NULL; helper = helper->dtha_next) { 14771 if ((pred = helper->dtha_predicate) != NULL) { 14772 if (trace) 14773 dtrace_helper_trace(helper, mstate, vstate, 0); 14774 14775 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 14776 goto next; 14777 14778 if (*flags & CPU_DTRACE_FAULT) 14779 goto err; 14780 } 14781 14782 for (i = 0; i < helper->dtha_nactions; i++) { 14783 if (trace) 14784 dtrace_helper_trace(helper, 14785 mstate, vstate, i + 1); 14786 14787 rval = dtrace_dif_emulate(helper->dtha_actions[i], 14788 mstate, vstate, state); 14789 14790 if (*flags & CPU_DTRACE_FAULT) 14791 goto err; 14792 } 14793 14794 next: 14795 if (trace) 14796 dtrace_helper_trace(helper, mstate, vstate, 14797 DTRACE_HELPTRACE_NEXT); 14798 } 14799 14800 if (trace) 14801 dtrace_helper_trace(helper, mstate, vstate, 14802 DTRACE_HELPTRACE_DONE); 14803 14804 /* 14805 * Restore the arg0 that we saved upon entry. 14806 */ 14807 mstate->dtms_arg[0] = sarg0; 14808 mstate->dtms_arg[1] = sarg1; 14809 14810 return (rval); 14811 14812 err: 14813 if (trace) 14814 dtrace_helper_trace(helper, mstate, vstate, 14815 DTRACE_HELPTRACE_ERR); 14816 14817 /* 14818 * Restore the arg0 that we saved upon entry. 14819 */ 14820 mstate->dtms_arg[0] = sarg0; 14821 mstate->dtms_arg[1] = sarg1; 14822 14823 return (NULL); 14824 } 14825 14826 static void 14827 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 14828 dtrace_vstate_t *vstate) 14829 { 14830 int i; 14831 14832 if (helper->dtha_predicate != NULL) 14833 dtrace_difo_release(helper->dtha_predicate, vstate); 14834 14835 for (i = 0; i < helper->dtha_nactions; i++) { 14836 ASSERT(helper->dtha_actions[i] != NULL); 14837 dtrace_difo_release(helper->dtha_actions[i], vstate); 14838 } 14839 14840 kmem_free(helper->dtha_actions, 14841 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 14842 kmem_free(helper, sizeof (dtrace_helper_action_t)); 14843 } 14844 14845 static int 14846 dtrace_helper_destroygen(int gen) 14847 { 14848 proc_t *p = curproc; 14849 dtrace_helpers_t *help = p->p_dtrace_helpers; 14850 dtrace_vstate_t *vstate; 14851 int i; 14852 14853 ASSERT(MUTEX_HELD(&dtrace_lock)); 14854 14855 if (help == NULL || gen > help->dthps_generation) 14856 return (EINVAL); 14857 14858 vstate = &help->dthps_vstate; 14859 14860 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14861 dtrace_helper_action_t *last = NULL, *h, *next; 14862 14863 for (h = help->dthps_actions[i]; h != NULL; h = next) { 14864 next = h->dtha_next; 14865 14866 if (h->dtha_generation == gen) { 14867 if (last != NULL) { 14868 last->dtha_next = next; 14869 } else { 14870 help->dthps_actions[i] = next; 14871 } 14872 14873 dtrace_helper_action_destroy(h, vstate); 14874 } else { 14875 last = h; 14876 } 14877 } 14878 } 14879 14880 /* 14881 * Interate until we've cleared out all helper providers with the 14882 * given generation number. 14883 */ 14884 for (;;) { 14885 dtrace_helper_provider_t *prov; 14886 14887 /* 14888 * Look for a helper provider with the right generation. We 14889 * have to start back at the beginning of the list each time 14890 * because we drop dtrace_lock. It's unlikely that we'll make 14891 * more than two passes. 14892 */ 14893 for (i = 0; i < help->dthps_nprovs; i++) { 14894 prov = help->dthps_provs[i]; 14895 14896 if (prov->dthp_generation == gen) 14897 break; 14898 } 14899 14900 /* 14901 * If there were no matches, we're done. 14902 */ 14903 if (i == help->dthps_nprovs) 14904 break; 14905 14906 /* 14907 * Move the last helper provider into this slot. 14908 */ 14909 help->dthps_nprovs--; 14910 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 14911 help->dthps_provs[help->dthps_nprovs] = NULL; 14912 14913 mutex_exit(&dtrace_lock); 14914 14915 /* 14916 * If we have a meta provider, remove this helper provider. 14917 */ 14918 mutex_enter(&dtrace_meta_lock); 14919 if (dtrace_meta_pid != NULL) { 14920 ASSERT(dtrace_deferred_pid == NULL); 14921 dtrace_helper_provider_remove(&prov->dthp_prov, 14922 p->p_pid); 14923 } 14924 mutex_exit(&dtrace_meta_lock); 14925 14926 dtrace_helper_provider_destroy(prov); 14927 14928 mutex_enter(&dtrace_lock); 14929 } 14930 14931 return (0); 14932 } 14933 14934 static int 14935 dtrace_helper_validate(dtrace_helper_action_t *helper) 14936 { 14937 int err = 0, i; 14938 dtrace_difo_t *dp; 14939 14940 if ((dp = helper->dtha_predicate) != NULL) 14941 err += dtrace_difo_validate_helper(dp); 14942 14943 for (i = 0; i < helper->dtha_nactions; i++) 14944 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 14945 14946 return (err == 0); 14947 } 14948 14949 static int 14950 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 14951 { 14952 dtrace_helpers_t *help; 14953 dtrace_helper_action_t *helper, *last; 14954 dtrace_actdesc_t *act; 14955 dtrace_vstate_t *vstate; 14956 dtrace_predicate_t *pred; 14957 int count = 0, nactions = 0, i; 14958 14959 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 14960 return (EINVAL); 14961 14962 help = curproc->p_dtrace_helpers; 14963 last = help->dthps_actions[which]; 14964 vstate = &help->dthps_vstate; 14965 14966 for (count = 0; last != NULL; last = last->dtha_next) { 14967 count++; 14968 if (last->dtha_next == NULL) 14969 break; 14970 } 14971 14972 /* 14973 * If we already have dtrace_helper_actions_max helper actions for this 14974 * helper action type, we'll refuse to add a new one. 14975 */ 14976 if (count >= dtrace_helper_actions_max) 14977 return (ENOSPC); 14978 14979 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 14980 helper->dtha_generation = help->dthps_generation; 14981 14982 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 14983 ASSERT(pred->dtp_difo != NULL); 14984 dtrace_difo_hold(pred->dtp_difo); 14985 helper->dtha_predicate = pred->dtp_difo; 14986 } 14987 14988 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 14989 if (act->dtad_kind != DTRACEACT_DIFEXPR) 14990 goto err; 14991 14992 if (act->dtad_difo == NULL) 14993 goto err; 14994 14995 nactions++; 14996 } 14997 14998 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 14999 (helper->dtha_nactions = nactions), KM_SLEEP); 15000 15001 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 15002 dtrace_difo_hold(act->dtad_difo); 15003 helper->dtha_actions[i++] = act->dtad_difo; 15004 } 15005 15006 if (!dtrace_helper_validate(helper)) 15007 goto err; 15008 15009 if (last == NULL) { 15010 help->dthps_actions[which] = helper; 15011 } else { 15012 last->dtha_next = helper; 15013 } 15014 15015 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 15016 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 15017 dtrace_helptrace_next = 0; 15018 } 15019 15020 return (0); 15021 err: 15022 dtrace_helper_action_destroy(helper, vstate); 15023 return (EINVAL); 15024 } 15025 15026 static void 15027 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 15028 dof_helper_t *dofhp) 15029 { 15030 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 15031 15032 mutex_enter(&dtrace_meta_lock); 15033 mutex_enter(&dtrace_lock); 15034 15035 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 15036 /* 15037 * If the dtrace module is loaded but not attached, or if 15038 * there aren't isn't a meta provider registered to deal with 15039 * these provider descriptions, we need to postpone creating 15040 * the actual providers until later. 15041 */ 15042 15043 if (help->dthps_next == NULL && help->dthps_prev == NULL && 15044 dtrace_deferred_pid != help) { 15045 help->dthps_deferred = 1; 15046 help->dthps_pid = p->p_pid; 15047 help->dthps_next = dtrace_deferred_pid; 15048 help->dthps_prev = NULL; 15049 if (dtrace_deferred_pid != NULL) 15050 dtrace_deferred_pid->dthps_prev = help; 15051 dtrace_deferred_pid = help; 15052 } 15053 15054 mutex_exit(&dtrace_lock); 15055 15056 } else if (dofhp != NULL) { 15057 /* 15058 * If the dtrace module is loaded and we have a particular 15059 * helper provider description, pass that off to the 15060 * meta provider. 15061 */ 15062 15063 mutex_exit(&dtrace_lock); 15064 15065 dtrace_helper_provide(dofhp, p->p_pid); 15066 15067 } else { 15068 /* 15069 * Otherwise, just pass all the helper provider descriptions 15070 * off to the meta provider. 15071 */ 15072 15073 int i; 15074 mutex_exit(&dtrace_lock); 15075 15076 for (i = 0; i < help->dthps_nprovs; i++) { 15077 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 15078 p->p_pid); 15079 } 15080 } 15081 15082 mutex_exit(&dtrace_meta_lock); 15083 } 15084 15085 static int 15086 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 15087 { 15088 dtrace_helpers_t *help; 15089 dtrace_helper_provider_t *hprov, **tmp_provs; 15090 uint_t tmp_maxprovs, i; 15091 15092 ASSERT(MUTEX_HELD(&dtrace_lock)); 15093 15094 help = curproc->p_dtrace_helpers; 15095 ASSERT(help != NULL); 15096 15097 /* 15098 * If we already have dtrace_helper_providers_max helper providers, 15099 * we're refuse to add a new one. 15100 */ 15101 if (help->dthps_nprovs >= dtrace_helper_providers_max) 15102 return (ENOSPC); 15103 15104 /* 15105 * Check to make sure this isn't a duplicate. 15106 */ 15107 for (i = 0; i < help->dthps_nprovs; i++) { 15108 if (dofhp->dofhp_addr == 15109 help->dthps_provs[i]->dthp_prov.dofhp_addr) 15110 return (EALREADY); 15111 } 15112 15113 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 15114 hprov->dthp_prov = *dofhp; 15115 hprov->dthp_ref = 1; 15116 hprov->dthp_generation = gen; 15117 15118 /* 15119 * Allocate a bigger table for helper providers if it's already full. 15120 */ 15121 if (help->dthps_maxprovs == help->dthps_nprovs) { 15122 tmp_maxprovs = help->dthps_maxprovs; 15123 tmp_provs = help->dthps_provs; 15124 15125 if (help->dthps_maxprovs == 0) 15126 help->dthps_maxprovs = 2; 15127 else 15128 help->dthps_maxprovs *= 2; 15129 if (help->dthps_maxprovs > dtrace_helper_providers_max) 15130 help->dthps_maxprovs = dtrace_helper_providers_max; 15131 15132 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 15133 15134 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 15135 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15136 15137 if (tmp_provs != NULL) { 15138 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 15139 sizeof (dtrace_helper_provider_t *)); 15140 kmem_free(tmp_provs, tmp_maxprovs * 15141 sizeof (dtrace_helper_provider_t *)); 15142 } 15143 } 15144 15145 help->dthps_provs[help->dthps_nprovs] = hprov; 15146 help->dthps_nprovs++; 15147 15148 return (0); 15149 } 15150 15151 static void 15152 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 15153 { 15154 mutex_enter(&dtrace_lock); 15155 15156 if (--hprov->dthp_ref == 0) { 15157 dof_hdr_t *dof; 15158 mutex_exit(&dtrace_lock); 15159 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 15160 dtrace_dof_destroy(dof); 15161 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 15162 } else { 15163 mutex_exit(&dtrace_lock); 15164 } 15165 } 15166 15167 static int 15168 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 15169 { 15170 uintptr_t daddr = (uintptr_t)dof; 15171 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 15172 dof_provider_t *provider; 15173 dof_probe_t *probe; 15174 uint8_t *arg; 15175 char *strtab, *typestr; 15176 dof_stridx_t typeidx; 15177 size_t typesz; 15178 uint_t nprobes, j, k; 15179 15180 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 15181 15182 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 15183 dtrace_dof_error(dof, "misaligned section offset"); 15184 return (-1); 15185 } 15186 15187 /* 15188 * The section needs to be large enough to contain the DOF provider 15189 * structure appropriate for the given version. 15190 */ 15191 if (sec->dofs_size < 15192 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 15193 offsetof(dof_provider_t, dofpv_prenoffs) : 15194 sizeof (dof_provider_t))) { 15195 dtrace_dof_error(dof, "provider section too small"); 15196 return (-1); 15197 } 15198 15199 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 15200 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 15201 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 15202 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 15203 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 15204 15205 if (str_sec == NULL || prb_sec == NULL || 15206 arg_sec == NULL || off_sec == NULL) 15207 return (-1); 15208 15209 enoff_sec = NULL; 15210 15211 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 15212 provider->dofpv_prenoffs != DOF_SECT_NONE && 15213 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 15214 provider->dofpv_prenoffs)) == NULL) 15215 return (-1); 15216 15217 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 15218 15219 if (provider->dofpv_name >= str_sec->dofs_size || 15220 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 15221 dtrace_dof_error(dof, "invalid provider name"); 15222 return (-1); 15223 } 15224 15225 if (prb_sec->dofs_entsize == 0 || 15226 prb_sec->dofs_entsize > prb_sec->dofs_size) { 15227 dtrace_dof_error(dof, "invalid entry size"); 15228 return (-1); 15229 } 15230 15231 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 15232 dtrace_dof_error(dof, "misaligned entry size"); 15233 return (-1); 15234 } 15235 15236 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 15237 dtrace_dof_error(dof, "invalid entry size"); 15238 return (-1); 15239 } 15240 15241 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 15242 dtrace_dof_error(dof, "misaligned section offset"); 15243 return (-1); 15244 } 15245 15246 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 15247 dtrace_dof_error(dof, "invalid entry size"); 15248 return (-1); 15249 } 15250 15251 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 15252 15253 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 15254 15255 /* 15256 * Take a pass through the probes to check for errors. 15257 */ 15258 for (j = 0; j < nprobes; j++) { 15259 probe = (dof_probe_t *)(uintptr_t)(daddr + 15260 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 15261 15262 if (probe->dofpr_func >= str_sec->dofs_size) { 15263 dtrace_dof_error(dof, "invalid function name"); 15264 return (-1); 15265 } 15266 15267 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 15268 dtrace_dof_error(dof, "function name too long"); 15269 return (-1); 15270 } 15271 15272 if (probe->dofpr_name >= str_sec->dofs_size || 15273 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 15274 dtrace_dof_error(dof, "invalid probe name"); 15275 return (-1); 15276 } 15277 15278 /* 15279 * The offset count must not wrap the index, and the offsets 15280 * must also not overflow the section's data. 15281 */ 15282 if (probe->dofpr_offidx + probe->dofpr_noffs < 15283 probe->dofpr_offidx || 15284 (probe->dofpr_offidx + probe->dofpr_noffs) * 15285 off_sec->dofs_entsize > off_sec->dofs_size) { 15286 dtrace_dof_error(dof, "invalid probe offset"); 15287 return (-1); 15288 } 15289 15290 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 15291 /* 15292 * If there's no is-enabled offset section, make sure 15293 * there aren't any is-enabled offsets. Otherwise 15294 * perform the same checks as for probe offsets 15295 * (immediately above). 15296 */ 15297 if (enoff_sec == NULL) { 15298 if (probe->dofpr_enoffidx != 0 || 15299 probe->dofpr_nenoffs != 0) { 15300 dtrace_dof_error(dof, "is-enabled " 15301 "offsets with null section"); 15302 return (-1); 15303 } 15304 } else if (probe->dofpr_enoffidx + 15305 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 15306 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 15307 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 15308 dtrace_dof_error(dof, "invalid is-enabled " 15309 "offset"); 15310 return (-1); 15311 } 15312 15313 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 15314 dtrace_dof_error(dof, "zero probe and " 15315 "is-enabled offsets"); 15316 return (-1); 15317 } 15318 } else if (probe->dofpr_noffs == 0) { 15319 dtrace_dof_error(dof, "zero probe offsets"); 15320 return (-1); 15321 } 15322 15323 if (probe->dofpr_argidx + probe->dofpr_xargc < 15324 probe->dofpr_argidx || 15325 (probe->dofpr_argidx + probe->dofpr_xargc) * 15326 arg_sec->dofs_entsize > arg_sec->dofs_size) { 15327 dtrace_dof_error(dof, "invalid args"); 15328 return (-1); 15329 } 15330 15331 typeidx = probe->dofpr_nargv; 15332 typestr = strtab + probe->dofpr_nargv; 15333 for (k = 0; k < probe->dofpr_nargc; k++) { 15334 if (typeidx >= str_sec->dofs_size) { 15335 dtrace_dof_error(dof, "bad " 15336 "native argument type"); 15337 return (-1); 15338 } 15339 15340 typesz = strlen(typestr) + 1; 15341 if (typesz > DTRACE_ARGTYPELEN) { 15342 dtrace_dof_error(dof, "native " 15343 "argument type too long"); 15344 return (-1); 15345 } 15346 typeidx += typesz; 15347 typestr += typesz; 15348 } 15349 15350 typeidx = probe->dofpr_xargv; 15351 typestr = strtab + probe->dofpr_xargv; 15352 for (k = 0; k < probe->dofpr_xargc; k++) { 15353 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 15354 dtrace_dof_error(dof, "bad " 15355 "native argument index"); 15356 return (-1); 15357 } 15358 15359 if (typeidx >= str_sec->dofs_size) { 15360 dtrace_dof_error(dof, "bad " 15361 "translated argument type"); 15362 return (-1); 15363 } 15364 15365 typesz = strlen(typestr) + 1; 15366 if (typesz > DTRACE_ARGTYPELEN) { 15367 dtrace_dof_error(dof, "translated argument " 15368 "type too long"); 15369 return (-1); 15370 } 15371 15372 typeidx += typesz; 15373 typestr += typesz; 15374 } 15375 } 15376 15377 return (0); 15378 } 15379 15380 static int 15381 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 15382 { 15383 dtrace_helpers_t *help; 15384 dtrace_vstate_t *vstate; 15385 dtrace_enabling_t *enab = NULL; 15386 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 15387 uintptr_t daddr = (uintptr_t)dof; 15388 15389 ASSERT(MUTEX_HELD(&dtrace_lock)); 15390 15391 if ((help = curproc->p_dtrace_helpers) == NULL) 15392 help = dtrace_helpers_create(curproc); 15393 15394 vstate = &help->dthps_vstate; 15395 15396 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 15397 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 15398 dtrace_dof_destroy(dof); 15399 return (rv); 15400 } 15401 15402 /* 15403 * Look for helper providers and validate their descriptions. 15404 */ 15405 if (dhp != NULL) { 15406 for (i = 0; i < dof->dofh_secnum; i++) { 15407 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 15408 dof->dofh_secoff + i * dof->dofh_secsize); 15409 15410 if (sec->dofs_type != DOF_SECT_PROVIDER) 15411 continue; 15412 15413 if (dtrace_helper_provider_validate(dof, sec) != 0) { 15414 dtrace_enabling_destroy(enab); 15415 dtrace_dof_destroy(dof); 15416 return (-1); 15417 } 15418 15419 nprovs++; 15420 } 15421 } 15422 15423 /* 15424 * Now we need to walk through the ECB descriptions in the enabling. 15425 */ 15426 for (i = 0; i < enab->dten_ndesc; i++) { 15427 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 15428 dtrace_probedesc_t *desc = &ep->dted_probe; 15429 15430 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 15431 continue; 15432 15433 if (strcmp(desc->dtpd_mod, "helper") != 0) 15434 continue; 15435 15436 if (strcmp(desc->dtpd_func, "ustack") != 0) 15437 continue; 15438 15439 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 15440 ep)) != 0) { 15441 /* 15442 * Adding this helper action failed -- we are now going 15443 * to rip out the entire generation and return failure. 15444 */ 15445 (void) dtrace_helper_destroygen(help->dthps_generation); 15446 dtrace_enabling_destroy(enab); 15447 dtrace_dof_destroy(dof); 15448 return (-1); 15449 } 15450 15451 nhelpers++; 15452 } 15453 15454 if (nhelpers < enab->dten_ndesc) 15455 dtrace_dof_error(dof, "unmatched helpers"); 15456 15457 gen = help->dthps_generation++; 15458 dtrace_enabling_destroy(enab); 15459 15460 if (dhp != NULL && nprovs > 0) { 15461 /* 15462 * Now that this is in-kernel, we change the sense of the 15463 * members: dofhp_dof denotes the in-kernel copy of the DOF 15464 * and dofhp_addr denotes the address at user-level. 15465 */ 15466 dhp->dofhp_addr = dhp->dofhp_dof; 15467 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 15468 15469 if (dtrace_helper_provider_add(dhp, gen) == 0) { 15470 mutex_exit(&dtrace_lock); 15471 dtrace_helper_provider_register(curproc, help, dhp); 15472 mutex_enter(&dtrace_lock); 15473 15474 destroy = 0; 15475 } 15476 } 15477 15478 if (destroy) 15479 dtrace_dof_destroy(dof); 15480 15481 return (gen); 15482 } 15483 15484 static dtrace_helpers_t * 15485 dtrace_helpers_create(proc_t *p) 15486 { 15487 dtrace_helpers_t *help; 15488 15489 ASSERT(MUTEX_HELD(&dtrace_lock)); 15490 ASSERT(p->p_dtrace_helpers == NULL); 15491 15492 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 15493 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 15494 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 15495 15496 p->p_dtrace_helpers = help; 15497 dtrace_helpers++; 15498 15499 return (help); 15500 } 15501 15502 static void 15503 dtrace_helpers_destroy(proc_t *p) 15504 { 15505 dtrace_helpers_t *help; 15506 dtrace_vstate_t *vstate; 15507 int i; 15508 15509 mutex_enter(&dtrace_lock); 15510 15511 ASSERT(p->p_dtrace_helpers != NULL); 15512 ASSERT(dtrace_helpers > 0); 15513 15514 help = p->p_dtrace_helpers; 15515 vstate = &help->dthps_vstate; 15516 15517 /* 15518 * We're now going to lose the help from this process. 15519 */ 15520 p->p_dtrace_helpers = NULL; 15521 if (p == curproc) { 15522 dtrace_sync(); 15523 } else { 15524 /* 15525 * It is sometimes necessary to clean up dtrace helpers from a 15526 * an incomplete child process as part of a failed fork 15527 * operation. In such situations, a dtrace_sync() call should 15528 * be unnecessary as the process should be devoid of threads, 15529 * much less any in probe context. 15530 */ 15531 VERIFY(p->p_stat == SIDL); 15532 } 15533 15534 /* 15535 * Destroy the helper actions. 15536 */ 15537 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15538 dtrace_helper_action_t *h, *next; 15539 15540 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15541 next = h->dtha_next; 15542 dtrace_helper_action_destroy(h, vstate); 15543 h = next; 15544 } 15545 } 15546 15547 mutex_exit(&dtrace_lock); 15548 15549 /* 15550 * Destroy the helper providers. 15551 */ 15552 if (help->dthps_maxprovs > 0) { 15553 mutex_enter(&dtrace_meta_lock); 15554 if (dtrace_meta_pid != NULL) { 15555 ASSERT(dtrace_deferred_pid == NULL); 15556 15557 for (i = 0; i < help->dthps_nprovs; i++) { 15558 dtrace_helper_provider_remove( 15559 &help->dthps_provs[i]->dthp_prov, p->p_pid); 15560 } 15561 } else { 15562 mutex_enter(&dtrace_lock); 15563 ASSERT(help->dthps_deferred == 0 || 15564 help->dthps_next != NULL || 15565 help->dthps_prev != NULL || 15566 help == dtrace_deferred_pid); 15567 15568 /* 15569 * Remove the helper from the deferred list. 15570 */ 15571 if (help->dthps_next != NULL) 15572 help->dthps_next->dthps_prev = help->dthps_prev; 15573 if (help->dthps_prev != NULL) 15574 help->dthps_prev->dthps_next = help->dthps_next; 15575 if (dtrace_deferred_pid == help) { 15576 dtrace_deferred_pid = help->dthps_next; 15577 ASSERT(help->dthps_prev == NULL); 15578 } 15579 15580 mutex_exit(&dtrace_lock); 15581 } 15582 15583 mutex_exit(&dtrace_meta_lock); 15584 15585 for (i = 0; i < help->dthps_nprovs; i++) { 15586 dtrace_helper_provider_destroy(help->dthps_provs[i]); 15587 } 15588 15589 kmem_free(help->dthps_provs, help->dthps_maxprovs * 15590 sizeof (dtrace_helper_provider_t *)); 15591 } 15592 15593 mutex_enter(&dtrace_lock); 15594 15595 dtrace_vstate_fini(&help->dthps_vstate); 15596 kmem_free(help->dthps_actions, 15597 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 15598 kmem_free(help, sizeof (dtrace_helpers_t)); 15599 15600 --dtrace_helpers; 15601 mutex_exit(&dtrace_lock); 15602 } 15603 15604 static void 15605 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 15606 { 15607 dtrace_helpers_t *help, *newhelp; 15608 dtrace_helper_action_t *helper, *new, *last; 15609 dtrace_difo_t *dp; 15610 dtrace_vstate_t *vstate; 15611 int i, j, sz, hasprovs = 0; 15612 15613 mutex_enter(&dtrace_lock); 15614 ASSERT(from->p_dtrace_helpers != NULL); 15615 ASSERT(dtrace_helpers > 0); 15616 15617 help = from->p_dtrace_helpers; 15618 newhelp = dtrace_helpers_create(to); 15619 ASSERT(to->p_dtrace_helpers != NULL); 15620 15621 newhelp->dthps_generation = help->dthps_generation; 15622 vstate = &newhelp->dthps_vstate; 15623 15624 /* 15625 * Duplicate the helper actions. 15626 */ 15627 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15628 if ((helper = help->dthps_actions[i]) == NULL) 15629 continue; 15630 15631 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 15632 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 15633 KM_SLEEP); 15634 new->dtha_generation = helper->dtha_generation; 15635 15636 if ((dp = helper->dtha_predicate) != NULL) { 15637 dp = dtrace_difo_duplicate(dp, vstate); 15638 new->dtha_predicate = dp; 15639 } 15640 15641 new->dtha_nactions = helper->dtha_nactions; 15642 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 15643 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 15644 15645 for (j = 0; j < new->dtha_nactions; j++) { 15646 dtrace_difo_t *dp = helper->dtha_actions[j]; 15647 15648 ASSERT(dp != NULL); 15649 dp = dtrace_difo_duplicate(dp, vstate); 15650 new->dtha_actions[j] = dp; 15651 } 15652 15653 if (last != NULL) { 15654 last->dtha_next = new; 15655 } else { 15656 newhelp->dthps_actions[i] = new; 15657 } 15658 15659 last = new; 15660 } 15661 } 15662 15663 /* 15664 * Duplicate the helper providers and register them with the 15665 * DTrace framework. 15666 */ 15667 if (help->dthps_nprovs > 0) { 15668 newhelp->dthps_nprovs = help->dthps_nprovs; 15669 newhelp->dthps_maxprovs = help->dthps_nprovs; 15670 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 15671 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15672 for (i = 0; i < newhelp->dthps_nprovs; i++) { 15673 newhelp->dthps_provs[i] = help->dthps_provs[i]; 15674 newhelp->dthps_provs[i]->dthp_ref++; 15675 } 15676 15677 hasprovs = 1; 15678 } 15679 15680 mutex_exit(&dtrace_lock); 15681 15682 if (hasprovs) 15683 dtrace_helper_provider_register(to, newhelp, NULL); 15684 } 15685 15686 /* 15687 * DTrace Hook Functions 15688 */ 15689 static void 15690 dtrace_module_loaded(struct modctl *ctl) 15691 { 15692 dtrace_provider_t *prv; 15693 15694 mutex_enter(&dtrace_provider_lock); 15695 mutex_enter(&mod_lock); 15696 15697 ASSERT(ctl->mod_busy); 15698 15699 /* 15700 * We're going to call each providers per-module provide operation 15701 * specifying only this module. 15702 */ 15703 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 15704 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 15705 15706 mutex_exit(&mod_lock); 15707 mutex_exit(&dtrace_provider_lock); 15708 15709 /* 15710 * If we have any retained enablings, we need to match against them. 15711 * Enabling probes requires that cpu_lock be held, and we cannot hold 15712 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 15713 * module. (In particular, this happens when loading scheduling 15714 * classes.) So if we have any retained enablings, we need to dispatch 15715 * our task queue to do the match for us. 15716 */ 15717 mutex_enter(&dtrace_lock); 15718 15719 if (dtrace_retained == NULL) { 15720 mutex_exit(&dtrace_lock); 15721 return; 15722 } 15723 15724 (void) taskq_dispatch(dtrace_taskq, 15725 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 15726 15727 mutex_exit(&dtrace_lock); 15728 15729 /* 15730 * And now, for a little heuristic sleaze: in general, we want to 15731 * match modules as soon as they load. However, we cannot guarantee 15732 * this, because it would lead us to the lock ordering violation 15733 * outlined above. The common case, of course, is that cpu_lock is 15734 * _not_ held -- so we delay here for a clock tick, hoping that that's 15735 * long enough for the task queue to do its work. If it's not, it's 15736 * not a serious problem -- it just means that the module that we 15737 * just loaded may not be immediately instrumentable. 15738 */ 15739 delay(1); 15740 } 15741 15742 static void 15743 dtrace_module_unloaded(struct modctl *ctl) 15744 { 15745 dtrace_probe_t template, *probe, *first, *next; 15746 dtrace_provider_t *prov; 15747 15748 template.dtpr_mod = ctl->mod_modname; 15749 15750 mutex_enter(&dtrace_provider_lock); 15751 mutex_enter(&mod_lock); 15752 mutex_enter(&dtrace_lock); 15753 15754 if (dtrace_bymod == NULL) { 15755 /* 15756 * The DTrace module is loaded (obviously) but not attached; 15757 * we don't have any work to do. 15758 */ 15759 mutex_exit(&dtrace_provider_lock); 15760 mutex_exit(&mod_lock); 15761 mutex_exit(&dtrace_lock); 15762 return; 15763 } 15764 15765 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 15766 probe != NULL; probe = probe->dtpr_nextmod) { 15767 if (probe->dtpr_ecb != NULL) { 15768 mutex_exit(&dtrace_provider_lock); 15769 mutex_exit(&mod_lock); 15770 mutex_exit(&dtrace_lock); 15771 15772 /* 15773 * This shouldn't _actually_ be possible -- we're 15774 * unloading a module that has an enabled probe in it. 15775 * (It's normally up to the provider to make sure that 15776 * this can't happen.) However, because dtps_enable() 15777 * doesn't have a failure mode, there can be an 15778 * enable/unload race. Upshot: we don't want to 15779 * assert, but we're not going to disable the 15780 * probe, either. 15781 */ 15782 if (dtrace_err_verbose) { 15783 cmn_err(CE_WARN, "unloaded module '%s' had " 15784 "enabled probes", ctl->mod_modname); 15785 } 15786 15787 return; 15788 } 15789 } 15790 15791 probe = first; 15792 15793 for (first = NULL; probe != NULL; probe = next) { 15794 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 15795 15796 dtrace_probes[probe->dtpr_id - 1] = NULL; 15797 15798 next = probe->dtpr_nextmod; 15799 dtrace_hash_remove(dtrace_bymod, probe); 15800 dtrace_hash_remove(dtrace_byfunc, probe); 15801 dtrace_hash_remove(dtrace_byname, probe); 15802 15803 if (first == NULL) { 15804 first = probe; 15805 probe->dtpr_nextmod = NULL; 15806 } else { 15807 probe->dtpr_nextmod = first; 15808 first = probe; 15809 } 15810 } 15811 15812 /* 15813 * We've removed all of the module's probes from the hash chains and 15814 * from the probe array. Now issue a dtrace_sync() to be sure that 15815 * everyone has cleared out from any probe array processing. 15816 */ 15817 dtrace_sync(); 15818 15819 for (probe = first; probe != NULL; probe = first) { 15820 first = probe->dtpr_nextmod; 15821 prov = probe->dtpr_provider; 15822 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 15823 probe->dtpr_arg); 15824 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 15825 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 15826 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 15827 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 15828 kmem_free(probe, sizeof (dtrace_probe_t)); 15829 } 15830 15831 mutex_exit(&dtrace_lock); 15832 mutex_exit(&mod_lock); 15833 mutex_exit(&dtrace_provider_lock); 15834 } 15835 15836 void 15837 dtrace_suspend(void) 15838 { 15839 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 15840 } 15841 15842 void 15843 dtrace_resume(void) 15844 { 15845 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 15846 } 15847 15848 static int 15849 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 15850 { 15851 ASSERT(MUTEX_HELD(&cpu_lock)); 15852 mutex_enter(&dtrace_lock); 15853 15854 switch (what) { 15855 case CPU_CONFIG: { 15856 dtrace_state_t *state; 15857 dtrace_optval_t *opt, rs, c; 15858 15859 /* 15860 * For now, we only allocate a new buffer for anonymous state. 15861 */ 15862 if ((state = dtrace_anon.dta_state) == NULL) 15863 break; 15864 15865 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 15866 break; 15867 15868 opt = state->dts_options; 15869 c = opt[DTRACEOPT_CPU]; 15870 15871 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 15872 break; 15873 15874 /* 15875 * Regardless of what the actual policy is, we're going to 15876 * temporarily set our resize policy to be manual. We're 15877 * also going to temporarily set our CPU option to denote 15878 * the newly configured CPU. 15879 */ 15880 rs = opt[DTRACEOPT_BUFRESIZE]; 15881 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 15882 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 15883 15884 (void) dtrace_state_buffers(state); 15885 15886 opt[DTRACEOPT_BUFRESIZE] = rs; 15887 opt[DTRACEOPT_CPU] = c; 15888 15889 break; 15890 } 15891 15892 case CPU_UNCONFIG: 15893 /* 15894 * We don't free the buffer in the CPU_UNCONFIG case. (The 15895 * buffer will be freed when the consumer exits.) 15896 */ 15897 break; 15898 15899 default: 15900 break; 15901 } 15902 15903 mutex_exit(&dtrace_lock); 15904 return (0); 15905 } 15906 15907 static void 15908 dtrace_cpu_setup_initial(processorid_t cpu) 15909 { 15910 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 15911 } 15912 15913 static void 15914 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 15915 { 15916 if (dtrace_toxranges >= dtrace_toxranges_max) { 15917 int osize, nsize; 15918 dtrace_toxrange_t *range; 15919 15920 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15921 15922 if (osize == 0) { 15923 ASSERT(dtrace_toxrange == NULL); 15924 ASSERT(dtrace_toxranges_max == 0); 15925 dtrace_toxranges_max = 1; 15926 } else { 15927 dtrace_toxranges_max <<= 1; 15928 } 15929 15930 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15931 range = kmem_zalloc(nsize, KM_SLEEP); 15932 15933 if (dtrace_toxrange != NULL) { 15934 ASSERT(osize != 0); 15935 bcopy(dtrace_toxrange, range, osize); 15936 kmem_free(dtrace_toxrange, osize); 15937 } 15938 15939 dtrace_toxrange = range; 15940 } 15941 15942 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 15943 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 15944 15945 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 15946 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 15947 dtrace_toxranges++; 15948 } 15949 15950 static void 15951 dtrace_getf_barrier() 15952 { 15953 /* 15954 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 15955 * that contain calls to getf(), this routine will be called on every 15956 * closef() before either the underlying vnode is released or the 15957 * file_t itself is freed. By the time we are here, it is essential 15958 * that the file_t can no longer be accessed from a call to getf() 15959 * in probe context -- that assures that a dtrace_sync() can be used 15960 * to clear out any enablings referring to the old structures. 15961 */ 15962 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 15963 kcred->cr_zone->zone_dtrace_getf != 0) 15964 dtrace_sync(); 15965 } 15966 15967 /* 15968 * DTrace Driver Cookbook Functions 15969 */ 15970 /*ARGSUSED*/ 15971 static int 15972 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 15973 { 15974 dtrace_provider_id_t id; 15975 dtrace_state_t *state = NULL; 15976 dtrace_enabling_t *enab; 15977 15978 mutex_enter(&cpu_lock); 15979 mutex_enter(&dtrace_provider_lock); 15980 mutex_enter(&dtrace_lock); 15981 15982 if (ddi_soft_state_init(&dtrace_softstate, 15983 sizeof (dtrace_state_t), 0) != 0) { 15984 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 15985 mutex_exit(&cpu_lock); 15986 mutex_exit(&dtrace_provider_lock); 15987 mutex_exit(&dtrace_lock); 15988 return (DDI_FAILURE); 15989 } 15990 15991 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 15992 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 15993 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 15994 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 15995 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 15996 ddi_remove_minor_node(devi, NULL); 15997 ddi_soft_state_fini(&dtrace_softstate); 15998 mutex_exit(&cpu_lock); 15999 mutex_exit(&dtrace_provider_lock); 16000 mutex_exit(&dtrace_lock); 16001 return (DDI_FAILURE); 16002 } 16003 16004 ddi_report_dev(devi); 16005 dtrace_devi = devi; 16006 16007 dtrace_modload = dtrace_module_loaded; 16008 dtrace_modunload = dtrace_module_unloaded; 16009 dtrace_cpu_init = dtrace_cpu_setup_initial; 16010 dtrace_helpers_cleanup = dtrace_helpers_destroy; 16011 dtrace_helpers_fork = dtrace_helpers_duplicate; 16012 dtrace_cpustart_init = dtrace_suspend; 16013 dtrace_cpustart_fini = dtrace_resume; 16014 dtrace_debugger_init = dtrace_suspend; 16015 dtrace_debugger_fini = dtrace_resume; 16016 16017 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 16018 16019 ASSERT(MUTEX_HELD(&cpu_lock)); 16020 16021 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 16022 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 16023 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 16024 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 16025 VM_SLEEP | VMC_IDENTIFIER); 16026 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 16027 1, INT_MAX, 0); 16028 16029 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 16030 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 16031 NULL, NULL, NULL, NULL, NULL, 0); 16032 16033 ASSERT(MUTEX_HELD(&cpu_lock)); 16034 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 16035 offsetof(dtrace_probe_t, dtpr_nextmod), 16036 offsetof(dtrace_probe_t, dtpr_prevmod)); 16037 16038 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 16039 offsetof(dtrace_probe_t, dtpr_nextfunc), 16040 offsetof(dtrace_probe_t, dtpr_prevfunc)); 16041 16042 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 16043 offsetof(dtrace_probe_t, dtpr_nextname), 16044 offsetof(dtrace_probe_t, dtpr_prevname)); 16045 16046 if (dtrace_retain_max < 1) { 16047 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 16048 "setting to 1", dtrace_retain_max); 16049 dtrace_retain_max = 1; 16050 } 16051 16052 /* 16053 * Now discover our toxic ranges. 16054 */ 16055 dtrace_toxic_ranges(dtrace_toxrange_add); 16056 16057 /* 16058 * Before we register ourselves as a provider to our own framework, 16059 * we would like to assert that dtrace_provider is NULL -- but that's 16060 * not true if we were loaded as a dependency of a DTrace provider. 16061 * Once we've registered, we can assert that dtrace_provider is our 16062 * pseudo provider. 16063 */ 16064 (void) dtrace_register("dtrace", &dtrace_provider_attr, 16065 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 16066 16067 ASSERT(dtrace_provider != NULL); 16068 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 16069 16070 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 16071 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 16072 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 16073 dtrace_provider, NULL, NULL, "END", 0, NULL); 16074 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 16075 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 16076 16077 dtrace_anon_property(); 16078 mutex_exit(&cpu_lock); 16079 16080 /* 16081 * If there are already providers, we must ask them to provide their 16082 * probes, and then match any anonymous enabling against them. Note 16083 * that there should be no other retained enablings at this time: 16084 * the only retained enablings at this time should be the anonymous 16085 * enabling. 16086 */ 16087 if (dtrace_anon.dta_enabling != NULL) { 16088 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 16089 16090 dtrace_enabling_provide(NULL); 16091 state = dtrace_anon.dta_state; 16092 16093 /* 16094 * We couldn't hold cpu_lock across the above call to 16095 * dtrace_enabling_provide(), but we must hold it to actually 16096 * enable the probes. We have to drop all of our locks, pick 16097 * up cpu_lock, and regain our locks before matching the 16098 * retained anonymous enabling. 16099 */ 16100 mutex_exit(&dtrace_lock); 16101 mutex_exit(&dtrace_provider_lock); 16102 16103 mutex_enter(&cpu_lock); 16104 mutex_enter(&dtrace_provider_lock); 16105 mutex_enter(&dtrace_lock); 16106 16107 if ((enab = dtrace_anon.dta_enabling) != NULL) 16108 (void) dtrace_enabling_match(enab, NULL); 16109 16110 mutex_exit(&cpu_lock); 16111 } 16112 16113 mutex_exit(&dtrace_lock); 16114 mutex_exit(&dtrace_provider_lock); 16115 16116 if (state != NULL) { 16117 /* 16118 * If we created any anonymous state, set it going now. 16119 */ 16120 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 16121 } 16122 16123 return (DDI_SUCCESS); 16124 } 16125 16126 /*ARGSUSED*/ 16127 static int 16128 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 16129 { 16130 dtrace_state_t *state; 16131 uint32_t priv; 16132 uid_t uid; 16133 zoneid_t zoneid; 16134 16135 if (getminor(*devp) == DTRACEMNRN_HELPER) 16136 return (0); 16137 16138 /* 16139 * If this wasn't an open with the "helper" minor, then it must be 16140 * the "dtrace" minor. 16141 */ 16142 if (getminor(*devp) != DTRACEMNRN_DTRACE) 16143 return (ENXIO); 16144 16145 /* 16146 * If no DTRACE_PRIV_* bits are set in the credential, then the 16147 * caller lacks sufficient permission to do anything with DTrace. 16148 */ 16149 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 16150 if (priv == DTRACE_PRIV_NONE) 16151 return (EACCES); 16152 16153 /* 16154 * Ask all providers to provide all their probes. 16155 */ 16156 mutex_enter(&dtrace_provider_lock); 16157 dtrace_probe_provide(NULL, NULL); 16158 mutex_exit(&dtrace_provider_lock); 16159 16160 mutex_enter(&cpu_lock); 16161 mutex_enter(&dtrace_lock); 16162 dtrace_opens++; 16163 dtrace_membar_producer(); 16164 16165 /* 16166 * If the kernel debugger is active (that is, if the kernel debugger 16167 * modified text in some way), we won't allow the open. 16168 */ 16169 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 16170 dtrace_opens--; 16171 mutex_exit(&cpu_lock); 16172 mutex_exit(&dtrace_lock); 16173 return (EBUSY); 16174 } 16175 16176 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 16177 /* 16178 * If DTrace helper tracing is enabled, we need to allocate the 16179 * trace buffer and initialize the values. 16180 */ 16181 dtrace_helptrace_buffer = 16182 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 16183 dtrace_helptrace_next = 0; 16184 dtrace_helptrace_wrapped = 0; 16185 dtrace_helptrace_enable = 0; 16186 } 16187 16188 state = dtrace_state_create(devp, cred_p); 16189 mutex_exit(&cpu_lock); 16190 16191 if (state == NULL) { 16192 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 16193 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16194 mutex_exit(&dtrace_lock); 16195 return (EAGAIN); 16196 } 16197 16198 mutex_exit(&dtrace_lock); 16199 16200 return (0); 16201 } 16202 16203 /*ARGSUSED*/ 16204 static int 16205 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 16206 { 16207 minor_t minor = getminor(dev); 16208 dtrace_state_t *state; 16209 dtrace_helptrace_t *buf = NULL; 16210 16211 if (minor == DTRACEMNRN_HELPER) 16212 return (0); 16213 16214 state = ddi_get_soft_state(dtrace_softstate, minor); 16215 16216 mutex_enter(&cpu_lock); 16217 mutex_enter(&dtrace_lock); 16218 16219 if (state->dts_anon) { 16220 /* 16221 * There is anonymous state. Destroy that first. 16222 */ 16223 ASSERT(dtrace_anon.dta_state == NULL); 16224 dtrace_state_destroy(state->dts_anon); 16225 } 16226 16227 if (dtrace_helptrace_disable) { 16228 /* 16229 * If we have been told to disable helper tracing, set the 16230 * buffer to NULL before calling into dtrace_state_destroy(); 16231 * we take advantage of its dtrace_sync() to know that no 16232 * CPU is in probe context with enabled helper tracing 16233 * after it returns. 16234 */ 16235 buf = dtrace_helptrace_buffer; 16236 dtrace_helptrace_buffer = NULL; 16237 } 16238 16239 dtrace_state_destroy(state); 16240 ASSERT(dtrace_opens > 0); 16241 16242 /* 16243 * Only relinquish control of the kernel debugger interface when there 16244 * are no consumers and no anonymous enablings. 16245 */ 16246 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 16247 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16248 16249 if (buf != NULL) { 16250 kmem_free(buf, dtrace_helptrace_bufsize); 16251 dtrace_helptrace_disable = 0; 16252 } 16253 16254 mutex_exit(&dtrace_lock); 16255 mutex_exit(&cpu_lock); 16256 16257 return (0); 16258 } 16259 16260 /*ARGSUSED*/ 16261 static int 16262 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 16263 { 16264 int rval; 16265 dof_helper_t help, *dhp = NULL; 16266 16267 switch (cmd) { 16268 case DTRACEHIOC_ADDDOF: 16269 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 16270 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 16271 return (EFAULT); 16272 } 16273 16274 dhp = &help; 16275 arg = (intptr_t)help.dofhp_dof; 16276 /*FALLTHROUGH*/ 16277 16278 case DTRACEHIOC_ADD: { 16279 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 16280 16281 if (dof == NULL) 16282 return (rval); 16283 16284 mutex_enter(&dtrace_lock); 16285 16286 /* 16287 * dtrace_helper_slurp() takes responsibility for the dof -- 16288 * it may free it now or it may save it and free it later. 16289 */ 16290 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 16291 *rv = rval; 16292 rval = 0; 16293 } else { 16294 rval = EINVAL; 16295 } 16296 16297 mutex_exit(&dtrace_lock); 16298 return (rval); 16299 } 16300 16301 case DTRACEHIOC_REMOVE: { 16302 mutex_enter(&dtrace_lock); 16303 rval = dtrace_helper_destroygen(arg); 16304 mutex_exit(&dtrace_lock); 16305 16306 return (rval); 16307 } 16308 16309 default: 16310 break; 16311 } 16312 16313 return (ENOTTY); 16314 } 16315 16316 /*ARGSUSED*/ 16317 static int 16318 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 16319 { 16320 minor_t minor = getminor(dev); 16321 dtrace_state_t *state; 16322 int rval; 16323 16324 if (minor == DTRACEMNRN_HELPER) 16325 return (dtrace_ioctl_helper(cmd, arg, rv)); 16326 16327 state = ddi_get_soft_state(dtrace_softstate, minor); 16328 16329 if (state->dts_anon) { 16330 ASSERT(dtrace_anon.dta_state == NULL); 16331 state = state->dts_anon; 16332 } 16333 16334 switch (cmd) { 16335 case DTRACEIOC_PROVIDER: { 16336 dtrace_providerdesc_t pvd; 16337 dtrace_provider_t *pvp; 16338 16339 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 16340 return (EFAULT); 16341 16342 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 16343 mutex_enter(&dtrace_provider_lock); 16344 16345 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 16346 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 16347 break; 16348 } 16349 16350 mutex_exit(&dtrace_provider_lock); 16351 16352 if (pvp == NULL) 16353 return (ESRCH); 16354 16355 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 16356 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 16357 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 16358 return (EFAULT); 16359 16360 return (0); 16361 } 16362 16363 case DTRACEIOC_EPROBE: { 16364 dtrace_eprobedesc_t epdesc; 16365 dtrace_ecb_t *ecb; 16366 dtrace_action_t *act; 16367 void *buf; 16368 size_t size; 16369 uintptr_t dest; 16370 int nrecs; 16371 16372 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 16373 return (EFAULT); 16374 16375 mutex_enter(&dtrace_lock); 16376 16377 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 16378 mutex_exit(&dtrace_lock); 16379 return (EINVAL); 16380 } 16381 16382 if (ecb->dte_probe == NULL) { 16383 mutex_exit(&dtrace_lock); 16384 return (EINVAL); 16385 } 16386 16387 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 16388 epdesc.dtepd_uarg = ecb->dte_uarg; 16389 epdesc.dtepd_size = ecb->dte_size; 16390 16391 nrecs = epdesc.dtepd_nrecs; 16392 epdesc.dtepd_nrecs = 0; 16393 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16394 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16395 continue; 16396 16397 epdesc.dtepd_nrecs++; 16398 } 16399 16400 /* 16401 * Now that we have the size, we need to allocate a temporary 16402 * buffer in which to store the complete description. We need 16403 * the temporary buffer to be able to drop dtrace_lock() 16404 * across the copyout(), below. 16405 */ 16406 size = sizeof (dtrace_eprobedesc_t) + 16407 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 16408 16409 buf = kmem_alloc(size, KM_SLEEP); 16410 dest = (uintptr_t)buf; 16411 16412 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 16413 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 16414 16415 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16416 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16417 continue; 16418 16419 if (nrecs-- == 0) 16420 break; 16421 16422 bcopy(&act->dta_rec, (void *)dest, 16423 sizeof (dtrace_recdesc_t)); 16424 dest += sizeof (dtrace_recdesc_t); 16425 } 16426 16427 mutex_exit(&dtrace_lock); 16428 16429 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16430 kmem_free(buf, size); 16431 return (EFAULT); 16432 } 16433 16434 kmem_free(buf, size); 16435 return (0); 16436 } 16437 16438 case DTRACEIOC_AGGDESC: { 16439 dtrace_aggdesc_t aggdesc; 16440 dtrace_action_t *act; 16441 dtrace_aggregation_t *agg; 16442 int nrecs; 16443 uint32_t offs; 16444 dtrace_recdesc_t *lrec; 16445 void *buf; 16446 size_t size; 16447 uintptr_t dest; 16448 16449 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 16450 return (EFAULT); 16451 16452 mutex_enter(&dtrace_lock); 16453 16454 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 16455 mutex_exit(&dtrace_lock); 16456 return (EINVAL); 16457 } 16458 16459 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 16460 16461 nrecs = aggdesc.dtagd_nrecs; 16462 aggdesc.dtagd_nrecs = 0; 16463 16464 offs = agg->dtag_base; 16465 lrec = &agg->dtag_action.dta_rec; 16466 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 16467 16468 for (act = agg->dtag_first; ; act = act->dta_next) { 16469 ASSERT(act->dta_intuple || 16470 DTRACEACT_ISAGG(act->dta_kind)); 16471 16472 /* 16473 * If this action has a record size of zero, it 16474 * denotes an argument to the aggregating action. 16475 * Because the presence of this record doesn't (or 16476 * shouldn't) affect the way the data is interpreted, 16477 * we don't copy it out to save user-level the 16478 * confusion of dealing with a zero-length record. 16479 */ 16480 if (act->dta_rec.dtrd_size == 0) { 16481 ASSERT(agg->dtag_hasarg); 16482 continue; 16483 } 16484 16485 aggdesc.dtagd_nrecs++; 16486 16487 if (act == &agg->dtag_action) 16488 break; 16489 } 16490 16491 /* 16492 * Now that we have the size, we need to allocate a temporary 16493 * buffer in which to store the complete description. We need 16494 * the temporary buffer to be able to drop dtrace_lock() 16495 * across the copyout(), below. 16496 */ 16497 size = sizeof (dtrace_aggdesc_t) + 16498 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 16499 16500 buf = kmem_alloc(size, KM_SLEEP); 16501 dest = (uintptr_t)buf; 16502 16503 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 16504 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 16505 16506 for (act = agg->dtag_first; ; act = act->dta_next) { 16507 dtrace_recdesc_t rec = act->dta_rec; 16508 16509 /* 16510 * See the comment in the above loop for why we pass 16511 * over zero-length records. 16512 */ 16513 if (rec.dtrd_size == 0) { 16514 ASSERT(agg->dtag_hasarg); 16515 continue; 16516 } 16517 16518 if (nrecs-- == 0) 16519 break; 16520 16521 rec.dtrd_offset -= offs; 16522 bcopy(&rec, (void *)dest, sizeof (rec)); 16523 dest += sizeof (dtrace_recdesc_t); 16524 16525 if (act == &agg->dtag_action) 16526 break; 16527 } 16528 16529 mutex_exit(&dtrace_lock); 16530 16531 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16532 kmem_free(buf, size); 16533 return (EFAULT); 16534 } 16535 16536 kmem_free(buf, size); 16537 return (0); 16538 } 16539 16540 case DTRACEIOC_ENABLE: { 16541 dof_hdr_t *dof; 16542 dtrace_enabling_t *enab = NULL; 16543 dtrace_vstate_t *vstate; 16544 int err = 0; 16545 16546 *rv = 0; 16547 16548 /* 16549 * If a NULL argument has been passed, we take this as our 16550 * cue to reevaluate our enablings. 16551 */ 16552 if (arg == NULL) { 16553 dtrace_enabling_matchall(); 16554 16555 return (0); 16556 } 16557 16558 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 16559 return (rval); 16560 16561 mutex_enter(&cpu_lock); 16562 mutex_enter(&dtrace_lock); 16563 vstate = &state->dts_vstate; 16564 16565 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 16566 mutex_exit(&dtrace_lock); 16567 mutex_exit(&cpu_lock); 16568 dtrace_dof_destroy(dof); 16569 return (EBUSY); 16570 } 16571 16572 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 16573 mutex_exit(&dtrace_lock); 16574 mutex_exit(&cpu_lock); 16575 dtrace_dof_destroy(dof); 16576 return (EINVAL); 16577 } 16578 16579 if ((rval = dtrace_dof_options(dof, state)) != 0) { 16580 dtrace_enabling_destroy(enab); 16581 mutex_exit(&dtrace_lock); 16582 mutex_exit(&cpu_lock); 16583 dtrace_dof_destroy(dof); 16584 return (rval); 16585 } 16586 16587 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 16588 err = dtrace_enabling_retain(enab); 16589 } else { 16590 dtrace_enabling_destroy(enab); 16591 } 16592 16593 mutex_exit(&cpu_lock); 16594 mutex_exit(&dtrace_lock); 16595 dtrace_dof_destroy(dof); 16596 16597 return (err); 16598 } 16599 16600 case DTRACEIOC_REPLICATE: { 16601 dtrace_repldesc_t desc; 16602 dtrace_probedesc_t *match = &desc.dtrpd_match; 16603 dtrace_probedesc_t *create = &desc.dtrpd_create; 16604 int err; 16605 16606 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16607 return (EFAULT); 16608 16609 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16610 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16611 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16612 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16613 16614 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16615 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16616 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16617 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16618 16619 mutex_enter(&dtrace_lock); 16620 err = dtrace_enabling_replicate(state, match, create); 16621 mutex_exit(&dtrace_lock); 16622 16623 return (err); 16624 } 16625 16626 case DTRACEIOC_PROBEMATCH: 16627 case DTRACEIOC_PROBES: { 16628 dtrace_probe_t *probe = NULL; 16629 dtrace_probedesc_t desc; 16630 dtrace_probekey_t pkey; 16631 dtrace_id_t i; 16632 int m = 0; 16633 uint32_t priv; 16634 uid_t uid; 16635 zoneid_t zoneid; 16636 16637 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16638 return (EFAULT); 16639 16640 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16641 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16642 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16643 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16644 16645 /* 16646 * Before we attempt to match this probe, we want to give 16647 * all providers the opportunity to provide it. 16648 */ 16649 if (desc.dtpd_id == DTRACE_IDNONE) { 16650 mutex_enter(&dtrace_provider_lock); 16651 dtrace_probe_provide(&desc, NULL); 16652 mutex_exit(&dtrace_provider_lock); 16653 desc.dtpd_id++; 16654 } 16655 16656 if (cmd == DTRACEIOC_PROBEMATCH) { 16657 dtrace_probekey(&desc, &pkey); 16658 pkey.dtpk_id = DTRACE_IDNONE; 16659 } 16660 16661 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 16662 16663 mutex_enter(&dtrace_lock); 16664 16665 if (cmd == DTRACEIOC_PROBEMATCH) { 16666 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16667 if ((probe = dtrace_probes[i - 1]) != NULL && 16668 (m = dtrace_match_probe(probe, &pkey, 16669 priv, uid, zoneid)) != 0) 16670 break; 16671 } 16672 16673 if (m < 0) { 16674 mutex_exit(&dtrace_lock); 16675 return (EINVAL); 16676 } 16677 16678 } else { 16679 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16680 if ((probe = dtrace_probes[i - 1]) != NULL && 16681 dtrace_match_priv(probe, priv, uid, zoneid)) 16682 break; 16683 } 16684 } 16685 16686 if (probe == NULL) { 16687 mutex_exit(&dtrace_lock); 16688 return (ESRCH); 16689 } 16690 16691 dtrace_probe_description(probe, &desc); 16692 mutex_exit(&dtrace_lock); 16693 16694 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16695 return (EFAULT); 16696 16697 return (0); 16698 } 16699 16700 case DTRACEIOC_PROBEARG: { 16701 dtrace_argdesc_t desc; 16702 dtrace_probe_t *probe; 16703 dtrace_provider_t *prov; 16704 16705 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16706 return (EFAULT); 16707 16708 if (desc.dtargd_id == DTRACE_IDNONE) 16709 return (EINVAL); 16710 16711 if (desc.dtargd_ndx == DTRACE_ARGNONE) 16712 return (EINVAL); 16713 16714 mutex_enter(&dtrace_provider_lock); 16715 mutex_enter(&mod_lock); 16716 mutex_enter(&dtrace_lock); 16717 16718 if (desc.dtargd_id > dtrace_nprobes) { 16719 mutex_exit(&dtrace_lock); 16720 mutex_exit(&mod_lock); 16721 mutex_exit(&dtrace_provider_lock); 16722 return (EINVAL); 16723 } 16724 16725 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 16726 mutex_exit(&dtrace_lock); 16727 mutex_exit(&mod_lock); 16728 mutex_exit(&dtrace_provider_lock); 16729 return (EINVAL); 16730 } 16731 16732 mutex_exit(&dtrace_lock); 16733 16734 prov = probe->dtpr_provider; 16735 16736 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 16737 /* 16738 * There isn't any typed information for this probe. 16739 * Set the argument number to DTRACE_ARGNONE. 16740 */ 16741 desc.dtargd_ndx = DTRACE_ARGNONE; 16742 } else { 16743 desc.dtargd_native[0] = '\0'; 16744 desc.dtargd_xlate[0] = '\0'; 16745 desc.dtargd_mapping = desc.dtargd_ndx; 16746 16747 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 16748 probe->dtpr_id, probe->dtpr_arg, &desc); 16749 } 16750 16751 mutex_exit(&mod_lock); 16752 mutex_exit(&dtrace_provider_lock); 16753 16754 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16755 return (EFAULT); 16756 16757 return (0); 16758 } 16759 16760 case DTRACEIOC_GO: { 16761 processorid_t cpuid; 16762 rval = dtrace_state_go(state, &cpuid); 16763 16764 if (rval != 0) 16765 return (rval); 16766 16767 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16768 return (EFAULT); 16769 16770 return (0); 16771 } 16772 16773 case DTRACEIOC_STOP: { 16774 processorid_t cpuid; 16775 16776 mutex_enter(&dtrace_lock); 16777 rval = dtrace_state_stop(state, &cpuid); 16778 mutex_exit(&dtrace_lock); 16779 16780 if (rval != 0) 16781 return (rval); 16782 16783 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16784 return (EFAULT); 16785 16786 return (0); 16787 } 16788 16789 case DTRACEIOC_DOFGET: { 16790 dof_hdr_t hdr, *dof; 16791 uint64_t len; 16792 16793 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 16794 return (EFAULT); 16795 16796 mutex_enter(&dtrace_lock); 16797 dof = dtrace_dof_create(state); 16798 mutex_exit(&dtrace_lock); 16799 16800 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 16801 rval = copyout(dof, (void *)arg, len); 16802 dtrace_dof_destroy(dof); 16803 16804 return (rval == 0 ? 0 : EFAULT); 16805 } 16806 16807 case DTRACEIOC_AGGSNAP: 16808 case DTRACEIOC_BUFSNAP: { 16809 dtrace_bufdesc_t desc; 16810 caddr_t cached; 16811 dtrace_buffer_t *buf; 16812 16813 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16814 return (EFAULT); 16815 16816 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 16817 return (EINVAL); 16818 16819 mutex_enter(&dtrace_lock); 16820 16821 if (cmd == DTRACEIOC_BUFSNAP) { 16822 buf = &state->dts_buffer[desc.dtbd_cpu]; 16823 } else { 16824 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 16825 } 16826 16827 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 16828 size_t sz = buf->dtb_offset; 16829 16830 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 16831 mutex_exit(&dtrace_lock); 16832 return (EBUSY); 16833 } 16834 16835 /* 16836 * If this buffer has already been consumed, we're 16837 * going to indicate that there's nothing left here 16838 * to consume. 16839 */ 16840 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 16841 mutex_exit(&dtrace_lock); 16842 16843 desc.dtbd_size = 0; 16844 desc.dtbd_drops = 0; 16845 desc.dtbd_errors = 0; 16846 desc.dtbd_oldest = 0; 16847 sz = sizeof (desc); 16848 16849 if (copyout(&desc, (void *)arg, sz) != 0) 16850 return (EFAULT); 16851 16852 return (0); 16853 } 16854 16855 /* 16856 * If this is a ring buffer that has wrapped, we want 16857 * to copy the whole thing out. 16858 */ 16859 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 16860 dtrace_buffer_polish(buf); 16861 sz = buf->dtb_size; 16862 } 16863 16864 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 16865 mutex_exit(&dtrace_lock); 16866 return (EFAULT); 16867 } 16868 16869 desc.dtbd_size = sz; 16870 desc.dtbd_drops = buf->dtb_drops; 16871 desc.dtbd_errors = buf->dtb_errors; 16872 desc.dtbd_oldest = buf->dtb_xamot_offset; 16873 desc.dtbd_timestamp = dtrace_gethrtime(); 16874 16875 mutex_exit(&dtrace_lock); 16876 16877 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16878 return (EFAULT); 16879 16880 buf->dtb_flags |= DTRACEBUF_CONSUMED; 16881 16882 return (0); 16883 } 16884 16885 if (buf->dtb_tomax == NULL) { 16886 ASSERT(buf->dtb_xamot == NULL); 16887 mutex_exit(&dtrace_lock); 16888 return (ENOENT); 16889 } 16890 16891 cached = buf->dtb_tomax; 16892 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 16893 16894 dtrace_xcall(desc.dtbd_cpu, 16895 (dtrace_xcall_t)dtrace_buffer_switch, buf); 16896 16897 state->dts_errors += buf->dtb_xamot_errors; 16898 16899 /* 16900 * If the buffers did not actually switch, then the cross call 16901 * did not take place -- presumably because the given CPU is 16902 * not in the ready set. If this is the case, we'll return 16903 * ENOENT. 16904 */ 16905 if (buf->dtb_tomax == cached) { 16906 ASSERT(buf->dtb_xamot != cached); 16907 mutex_exit(&dtrace_lock); 16908 return (ENOENT); 16909 } 16910 16911 ASSERT(cached == buf->dtb_xamot); 16912 16913 /* 16914 * We have our snapshot; now copy it out. 16915 */ 16916 if (copyout(buf->dtb_xamot, desc.dtbd_data, 16917 buf->dtb_xamot_offset) != 0) { 16918 mutex_exit(&dtrace_lock); 16919 return (EFAULT); 16920 } 16921 16922 desc.dtbd_size = buf->dtb_xamot_offset; 16923 desc.dtbd_drops = buf->dtb_xamot_drops; 16924 desc.dtbd_errors = buf->dtb_xamot_errors; 16925 desc.dtbd_oldest = 0; 16926 desc.dtbd_timestamp = buf->dtb_switched; 16927 16928 mutex_exit(&dtrace_lock); 16929 16930 /* 16931 * Finally, copy out the buffer description. 16932 */ 16933 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16934 return (EFAULT); 16935 16936 return (0); 16937 } 16938 16939 case DTRACEIOC_CONF: { 16940 dtrace_conf_t conf; 16941 16942 bzero(&conf, sizeof (conf)); 16943 conf.dtc_difversion = DIF_VERSION; 16944 conf.dtc_difintregs = DIF_DIR_NREGS; 16945 conf.dtc_diftupregs = DIF_DTR_NREGS; 16946 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 16947 16948 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 16949 return (EFAULT); 16950 16951 return (0); 16952 } 16953 16954 case DTRACEIOC_STATUS: { 16955 dtrace_status_t stat; 16956 dtrace_dstate_t *dstate; 16957 int i, j; 16958 uint64_t nerrs; 16959 16960 /* 16961 * See the comment in dtrace_state_deadman() for the reason 16962 * for setting dts_laststatus to INT64_MAX before setting 16963 * it to the correct value. 16964 */ 16965 state->dts_laststatus = INT64_MAX; 16966 dtrace_membar_producer(); 16967 state->dts_laststatus = dtrace_gethrtime(); 16968 16969 bzero(&stat, sizeof (stat)); 16970 16971 mutex_enter(&dtrace_lock); 16972 16973 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 16974 mutex_exit(&dtrace_lock); 16975 return (ENOENT); 16976 } 16977 16978 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 16979 stat.dtst_exiting = 1; 16980 16981 nerrs = state->dts_errors; 16982 dstate = &state->dts_vstate.dtvs_dynvars; 16983 16984 for (i = 0; i < NCPU; i++) { 16985 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 16986 16987 stat.dtst_dyndrops += dcpu->dtdsc_drops; 16988 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 16989 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 16990 16991 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 16992 stat.dtst_filled++; 16993 16994 nerrs += state->dts_buffer[i].dtb_errors; 16995 16996 for (j = 0; j < state->dts_nspeculations; j++) { 16997 dtrace_speculation_t *spec; 16998 dtrace_buffer_t *buf; 16999 17000 spec = &state->dts_speculations[j]; 17001 buf = &spec->dtsp_buffer[i]; 17002 stat.dtst_specdrops += buf->dtb_xamot_drops; 17003 } 17004 } 17005 17006 stat.dtst_specdrops_busy = state->dts_speculations_busy; 17007 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 17008 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 17009 stat.dtst_dblerrors = state->dts_dblerrors; 17010 stat.dtst_killed = 17011 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 17012 stat.dtst_errors = nerrs; 17013 17014 mutex_exit(&dtrace_lock); 17015 17016 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 17017 return (EFAULT); 17018 17019 return (0); 17020 } 17021 17022 case DTRACEIOC_FORMAT: { 17023 dtrace_fmtdesc_t fmt; 17024 char *str; 17025 int len; 17026 17027 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 17028 return (EFAULT); 17029 17030 mutex_enter(&dtrace_lock); 17031 17032 if (fmt.dtfd_format == 0 || 17033 fmt.dtfd_format > state->dts_nformats) { 17034 mutex_exit(&dtrace_lock); 17035 return (EINVAL); 17036 } 17037 17038 /* 17039 * Format strings are allocated contiguously and they are 17040 * never freed; if a format index is less than the number 17041 * of formats, we can assert that the format map is non-NULL 17042 * and that the format for the specified index is non-NULL. 17043 */ 17044 ASSERT(state->dts_formats != NULL); 17045 str = state->dts_formats[fmt.dtfd_format - 1]; 17046 ASSERT(str != NULL); 17047 17048 len = strlen(str) + 1; 17049 17050 if (len > fmt.dtfd_length) { 17051 fmt.dtfd_length = len; 17052 17053 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 17054 mutex_exit(&dtrace_lock); 17055 return (EINVAL); 17056 } 17057 } else { 17058 if (copyout(str, fmt.dtfd_string, len) != 0) { 17059 mutex_exit(&dtrace_lock); 17060 return (EINVAL); 17061 } 17062 } 17063 17064 mutex_exit(&dtrace_lock); 17065 return (0); 17066 } 17067 17068 default: 17069 break; 17070 } 17071 17072 return (ENOTTY); 17073 } 17074 17075 /*ARGSUSED*/ 17076 static int 17077 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 17078 { 17079 dtrace_state_t *state; 17080 17081 switch (cmd) { 17082 case DDI_DETACH: 17083 break; 17084 17085 case DDI_SUSPEND: 17086 return (DDI_SUCCESS); 17087 17088 default: 17089 return (DDI_FAILURE); 17090 } 17091 17092 mutex_enter(&cpu_lock); 17093 mutex_enter(&dtrace_provider_lock); 17094 mutex_enter(&dtrace_lock); 17095 17096 ASSERT(dtrace_opens == 0); 17097 17098 if (dtrace_helpers > 0) { 17099 mutex_exit(&dtrace_provider_lock); 17100 mutex_exit(&dtrace_lock); 17101 mutex_exit(&cpu_lock); 17102 return (DDI_FAILURE); 17103 } 17104 17105 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 17106 mutex_exit(&dtrace_provider_lock); 17107 mutex_exit(&dtrace_lock); 17108 mutex_exit(&cpu_lock); 17109 return (DDI_FAILURE); 17110 } 17111 17112 dtrace_provider = NULL; 17113 17114 if ((state = dtrace_anon_grab()) != NULL) { 17115 /* 17116 * If there were ECBs on this state, the provider should 17117 * have not been allowed to detach; assert that there is 17118 * none. 17119 */ 17120 ASSERT(state->dts_necbs == 0); 17121 dtrace_state_destroy(state); 17122 17123 /* 17124 * If we're being detached with anonymous state, we need to 17125 * indicate to the kernel debugger that DTrace is now inactive. 17126 */ 17127 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17128 } 17129 17130 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 17131 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 17132 dtrace_cpu_init = NULL; 17133 dtrace_helpers_cleanup = NULL; 17134 dtrace_helpers_fork = NULL; 17135 dtrace_cpustart_init = NULL; 17136 dtrace_cpustart_fini = NULL; 17137 dtrace_debugger_init = NULL; 17138 dtrace_debugger_fini = NULL; 17139 dtrace_modload = NULL; 17140 dtrace_modunload = NULL; 17141 17142 ASSERT(dtrace_getf == 0); 17143 ASSERT(dtrace_closef == NULL); 17144 17145 mutex_exit(&cpu_lock); 17146 17147 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 17148 dtrace_probes = NULL; 17149 dtrace_nprobes = 0; 17150 17151 dtrace_hash_destroy(dtrace_bymod); 17152 dtrace_hash_destroy(dtrace_byfunc); 17153 dtrace_hash_destroy(dtrace_byname); 17154 dtrace_bymod = NULL; 17155 dtrace_byfunc = NULL; 17156 dtrace_byname = NULL; 17157 17158 kmem_cache_destroy(dtrace_state_cache); 17159 vmem_destroy(dtrace_minor); 17160 vmem_destroy(dtrace_arena); 17161 17162 if (dtrace_toxrange != NULL) { 17163 kmem_free(dtrace_toxrange, 17164 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 17165 dtrace_toxrange = NULL; 17166 dtrace_toxranges = 0; 17167 dtrace_toxranges_max = 0; 17168 } 17169 17170 ddi_remove_minor_node(dtrace_devi, NULL); 17171 dtrace_devi = NULL; 17172 17173 ddi_soft_state_fini(&dtrace_softstate); 17174 17175 ASSERT(dtrace_vtime_references == 0); 17176 ASSERT(dtrace_opens == 0); 17177 ASSERT(dtrace_retained == NULL); 17178 17179 mutex_exit(&dtrace_lock); 17180 mutex_exit(&dtrace_provider_lock); 17181 17182 /* 17183 * We don't destroy the task queue until after we have dropped our 17184 * locks (taskq_destroy() may block on running tasks). To prevent 17185 * attempting to do work after we have effectively detached but before 17186 * the task queue has been destroyed, all tasks dispatched via the 17187 * task queue must check that DTrace is still attached before 17188 * performing any operation. 17189 */ 17190 taskq_destroy(dtrace_taskq); 17191 dtrace_taskq = NULL; 17192 17193 return (DDI_SUCCESS); 17194 } 17195 17196 /*ARGSUSED*/ 17197 static int 17198 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 17199 { 17200 int error; 17201 17202 switch (infocmd) { 17203 case DDI_INFO_DEVT2DEVINFO: 17204 *result = (void *)dtrace_devi; 17205 error = DDI_SUCCESS; 17206 break; 17207 case DDI_INFO_DEVT2INSTANCE: 17208 *result = (void *)0; 17209 error = DDI_SUCCESS; 17210 break; 17211 default: 17212 error = DDI_FAILURE; 17213 } 17214 return (error); 17215 } 17216 17217 static struct cb_ops dtrace_cb_ops = { 17218 dtrace_open, /* open */ 17219 dtrace_close, /* close */ 17220 nulldev, /* strategy */ 17221 nulldev, /* print */ 17222 nodev, /* dump */ 17223 nodev, /* read */ 17224 nodev, /* write */ 17225 dtrace_ioctl, /* ioctl */ 17226 nodev, /* devmap */ 17227 nodev, /* mmap */ 17228 nodev, /* segmap */ 17229 nochpoll, /* poll */ 17230 ddi_prop_op, /* cb_prop_op */ 17231 0, /* streamtab */ 17232 D_NEW | D_MP /* Driver compatibility flag */ 17233 }; 17234 17235 static struct dev_ops dtrace_ops = { 17236 DEVO_REV, /* devo_rev */ 17237 0, /* refcnt */ 17238 dtrace_info, /* get_dev_info */ 17239 nulldev, /* identify */ 17240 nulldev, /* probe */ 17241 dtrace_attach, /* attach */ 17242 dtrace_detach, /* detach */ 17243 nodev, /* reset */ 17244 &dtrace_cb_ops, /* driver operations */ 17245 NULL, /* bus operations */ 17246 nodev, /* dev power */ 17247 ddi_quiesce_not_needed, /* quiesce */ 17248 }; 17249 17250 static struct modldrv modldrv = { 17251 &mod_driverops, /* module type (this is a pseudo driver) */ 17252 "Dynamic Tracing", /* name of module */ 17253 &dtrace_ops, /* driver ops */ 17254 }; 17255 17256 static struct modlinkage modlinkage = { 17257 MODREV_1, 17258 (void *)&modldrv, 17259 NULL 17260 }; 17261 17262 int 17263 _init(void) 17264 { 17265 return (mod_install(&modlinkage)); 17266 } 17267 17268 int 17269 _info(struct modinfo *modinfop) 17270 { 17271 return (mod_info(&modlinkage, modinfop)); 17272 } 17273 17274 int 17275 _fini(void) 17276 { 17277 return (mod_remove(&modlinkage)); 17278 }