1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/signal.h> 31 #include <sys/stack.h> 32 #include <sys/pcb.h> 33 #include <sys/user.h> 34 #include <sys/systm.h> 35 #include <sys/sysinfo.h> 36 #include <sys/errno.h> 37 #include <sys/cmn_err.h> 38 #include <sys/cred.h> 39 #include <sys/resource.h> 40 #include <sys/task.h> 41 #include <sys/project.h> 42 #include <sys/proc.h> 43 #include <sys/debug.h> 44 #include <sys/disp.h> 45 #include <sys/class.h> 46 #include <vm/seg_kmem.h> 47 #include <vm/seg_kp.h> 48 #include <sys/machlock.h> 49 #include <sys/kmem.h> 50 #include <sys/varargs.h> 51 #include <sys/turnstile.h> 52 #include <sys/poll.h> 53 #include <sys/vtrace.h> 54 #include <sys/callb.h> 55 #include <c2/audit.h> 56 #include <sys/tnf.h> 57 #include <sys/sobject.h> 58 #include <sys/cpupart.h> 59 #include <sys/pset.h> 60 #include <sys/door.h> 61 #include <sys/spl.h> 62 #include <sys/copyops.h> 63 #include <sys/rctl.h> 64 #include <sys/brand.h> 65 #include <sys/pool.h> 66 #include <sys/zone.h> 67 #include <sys/tsol/label.h> 68 #include <sys/tsol/tndb.h> 69 #include <sys/cpc_impl.h> 70 #include <sys/sdt.h> 71 #include <sys/reboot.h> 72 #include <sys/kdi.h> 73 #include <sys/schedctl.h> 74 #include <sys/waitq.h> 75 #include <sys/cpucaps.h> 76 #include <sys/kiconv.h> 77 78 struct kmem_cache *thread_cache; /* cache of free threads */ 79 struct kmem_cache *lwp_cache; /* cache of free lwps */ 80 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */ 81 82 /* 83 * allthreads is only for use by kmem_readers. All kernel loops can use 84 * the current thread as a start/end point. 85 */ 86 kthread_t *allthreads = &t0; /* circular list of all threads */ 87 88 static kcondvar_t reaper_cv; /* synchronization var */ 89 kthread_t *thread_deathrow; /* circular list of reapable threads */ 90 kthread_t *lwp_deathrow; /* circular list of reapable threads */ 91 kmutex_t reaplock; /* protects lwp and thread deathrows */ 92 int thread_reapcnt = 0; /* number of threads on deathrow */ 93 int lwp_reapcnt = 0; /* number of lwps on deathrow */ 94 int reaplimit = 16; /* delay reaping until reaplimit */ 95 96 thread_free_lock_t *thread_free_lock; 97 /* protects tick thread from reaper */ 98 99 extern int nthread; 100 101 /* System Scheduling classes. */ 102 id_t syscid; /* system scheduling class ID */ 103 id_t sysdccid = CLASS_UNUSED; /* reset when SDC loads */ 104 105 void *segkp_thread; /* cookie for segkp pool */ 106 107 int lwp_cache_sz = 32; 108 int t_cache_sz = 8; 109 static kt_did_t next_t_id = 1; 110 111 /* Default mode for thread binding to CPUs and processor sets */ 112 int default_binding_mode = TB_ALLHARD; 113 114 /* 115 * Min/Max stack sizes for stack size parameters 116 */ 117 #define MAX_STKSIZE (32 * DEFAULTSTKSZ) 118 #define MIN_STKSIZE DEFAULTSTKSZ 119 120 /* 121 * default_stksize overrides lwp_default_stksize if it is set. 122 */ 123 int default_stksize; 124 int lwp_default_stksize; 125 126 static zone_key_t zone_thread_key; 127 128 unsigned int kmem_stackinfo; /* stackinfo feature on-off */ 129 kmem_stkinfo_t *kmem_stkinfo_log; /* stackinfo circular log */ 130 static kmutex_t kmem_stkinfo_lock; /* protects kmem_stkinfo_log */ 131 132 /* 133 * forward declarations for internal thread specific data (tsd) 134 */ 135 static void *tsd_realloc(void *, size_t, size_t); 136 137 void thread_reaper(void); 138 139 /* forward declarations for stackinfo feature */ 140 static void stkinfo_begin(kthread_t *); 141 static void stkinfo_end(kthread_t *); 142 static size_t stkinfo_percent(caddr_t, caddr_t, caddr_t); 143 144 /*ARGSUSED*/ 145 static int 146 turnstile_constructor(void *buf, void *cdrarg, int kmflags) 147 { 148 bzero(buf, sizeof (turnstile_t)); 149 return (0); 150 } 151 152 /*ARGSUSED*/ 153 static void 154 turnstile_destructor(void *buf, void *cdrarg) 155 { 156 turnstile_t *ts = buf; 157 158 ASSERT(ts->ts_free == NULL); 159 ASSERT(ts->ts_waiters == 0); 160 ASSERT(ts->ts_inheritor == NULL); 161 ASSERT(ts->ts_sleepq[0].sq_first == NULL); 162 ASSERT(ts->ts_sleepq[1].sq_first == NULL); 163 } 164 165 void 166 thread_init(void) 167 { 168 kthread_t *tp; 169 extern char sys_name[]; 170 extern void idle(); 171 struct cpu *cpu = CPU; 172 int i; 173 kmutex_t *lp; 174 175 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL)); 176 thread_free_lock = 177 kmem_alloc(sizeof (thread_free_lock_t) * THREAD_FREE_NUM, KM_SLEEP); 178 for (i = 0; i < THREAD_FREE_NUM; i++) { 179 lp = &thread_free_lock[i].tf_lock; 180 mutex_init(lp, NULL, MUTEX_DEFAULT, NULL); 181 } 182 183 #if defined(__i386) || defined(__amd64) 184 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 185 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 186 187 /* 188 * "struct _klwp" includes a "struct pcb", which includes a 189 * "struct fpu", which needs to be 64-byte aligned on amd64 190 * (and even on i386) for xsave/xrstor. 191 */ 192 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 193 64, NULL, NULL, NULL, NULL, NULL, 0); 194 #else 195 /* 196 * Allocate thread structures from static_arena. This prevents 197 * issues where a thread tries to relocate its own thread 198 * structure and touches it after the mapping has been suspended. 199 */ 200 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 201 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0); 202 203 lwp_stk_cache_init(); 204 205 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 206 0, NULL, NULL, NULL, NULL, NULL, 0); 207 #endif 208 209 turnstile_cache = kmem_cache_create("turnstile_cache", 210 sizeof (turnstile_t), 0, 211 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0); 212 213 label_init(); 214 cred_init(); 215 216 /* 217 * Initialize various resource management facilities. 218 */ 219 rctl_init(); 220 cpucaps_init(); 221 /* 222 * Zone_init() should be called before project_init() so that project ID 223 * for the first project is initialized correctly. 224 */ 225 zone_init(); 226 project_init(); 227 brand_init(); 228 kiconv_init(); 229 task_init(); 230 tcache_init(); 231 pool_init(); 232 233 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 234 235 /* 236 * Originally, we had two parameters to set default stack 237 * size: one for lwp's (lwp_default_stksize), and one for 238 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz). 239 * Now we have a third parameter that overrides both if it is 240 * set to a legal stack size, called default_stksize. 241 */ 242 243 if (default_stksize == 0) { 244 default_stksize = DEFAULTSTKSZ; 245 } else if (default_stksize % PAGESIZE != 0 || 246 default_stksize > MAX_STKSIZE || 247 default_stksize < MIN_STKSIZE) { 248 cmn_err(CE_WARN, "Illegal stack size. Using %d", 249 (int)DEFAULTSTKSZ); 250 default_stksize = DEFAULTSTKSZ; 251 } else { 252 lwp_default_stksize = default_stksize; 253 } 254 255 if (lwp_default_stksize == 0) { 256 lwp_default_stksize = default_stksize; 257 } else if (lwp_default_stksize % PAGESIZE != 0 || 258 lwp_default_stksize > MAX_STKSIZE || 259 lwp_default_stksize < MIN_STKSIZE) { 260 cmn_err(CE_WARN, "Illegal stack size. Using %d", 261 default_stksize); 262 lwp_default_stksize = default_stksize; 263 } 264 265 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz, 266 lwp_default_stksize, 267 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED)); 268 269 segkp_thread = segkp_cache_init(segkp, t_cache_sz, 270 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON); 271 272 (void) getcid(sys_name, &syscid); 273 curthread->t_cid = syscid; /* current thread is t0 */ 274 275 /* 276 * Set up the first CPU's idle thread. 277 * It runs whenever the CPU has nothing worthwhile to do. 278 */ 279 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1); 280 cpu->cpu_idle_thread = tp; 281 tp->t_preempt = 1; 282 tp->t_disp_queue = cpu->cpu_disp; 283 ASSERT(tp->t_disp_queue != NULL); 284 tp->t_bound_cpu = cpu; 285 tp->t_affinitycnt = 1; 286 287 /* 288 * Registering a thread in the callback table is usually 289 * done in the initialization code of the thread. In this 290 * case, we do it right after thread creation to avoid 291 * blocking idle thread while registering itself. It also 292 * avoids the possibility of reregistration in case a CPU 293 * restarts its idle thread. 294 */ 295 CALLB_CPR_INIT_SAFE(tp, "idle"); 296 297 /* 298 * Create the thread_reaper daemon. From this point on, exited 299 * threads will get reaped. 300 */ 301 (void) thread_create(NULL, 0, (void (*)())thread_reaper, 302 NULL, 0, &p0, TS_RUN, minclsyspri); 303 304 /* 305 * Finish initializing the kernel memory allocator now that 306 * thread_create() is available. 307 */ 308 kmem_thread_init(); 309 310 if (boothowto & RB_DEBUG) 311 kdi_dvec_thravail(); 312 } 313 314 /* 315 * Create a thread. 316 * 317 * thread_create() blocks for memory if necessary. It never fails. 318 * 319 * If stk is NULL, the thread is created at the base of the stack 320 * and cannot be swapped. 321 */ 322 kthread_t * 323 thread_create( 324 caddr_t stk, 325 size_t stksize, 326 void (*proc)(), 327 void *arg, 328 size_t len, 329 proc_t *pp, 330 int state, 331 pri_t pri) 332 { 333 kthread_t *t; 334 extern struct classfuncs sys_classfuncs; 335 turnstile_t *ts; 336 337 /* 338 * Every thread keeps a turnstile around in case it needs to block. 339 * The only reason the turnstile is not simply part of the thread 340 * structure is that we may have to break the association whenever 341 * more than one thread blocks on a given synchronization object. 342 * From a memory-management standpoint, turnstiles are like the 343 * "attached mblks" that hang off dblks in the streams allocator. 344 */ 345 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 346 347 if (stk == NULL) { 348 /* 349 * alloc both thread and stack in segkp chunk 350 */ 351 352 if (stksize < default_stksize) 353 stksize = default_stksize; 354 355 if (stksize == default_stksize) { 356 stk = (caddr_t)segkp_cache_get(segkp_thread); 357 } else { 358 stksize = roundup(stksize, PAGESIZE); 359 stk = (caddr_t)segkp_get(segkp, stksize, 360 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED)); 361 } 362 363 ASSERT(stk != NULL); 364 365 /* 366 * The machine-dependent mutex code may require that 367 * thread pointers (since they may be used for mutex owner 368 * fields) have certain alignment requirements. 369 * PTR24_ALIGN is the size of the alignment quanta. 370 * XXX - assumes stack grows toward low addresses. 371 */ 372 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN) 373 cmn_err(CE_PANIC, "thread_create: proposed stack size" 374 " too small to hold thread."); 375 #ifdef STACK_GROWTH_DOWN 376 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1); 377 stksize &= -PTR24_ALIGN; /* make thread aligned */ 378 t = (kthread_t *)(stk + stksize); 379 bzero(t, sizeof (kthread_t)); 380 if (audit_active) 381 audit_thread_create(t); 382 t->t_stk = stk + stksize; 383 t->t_stkbase = stk; 384 #else /* stack grows to larger addresses */ 385 stksize -= SA(sizeof (kthread_t)); 386 t = (kthread_t *)(stk); 387 bzero(t, sizeof (kthread_t)); 388 t->t_stk = stk + sizeof (kthread_t); 389 t->t_stkbase = stk + stksize + sizeof (kthread_t); 390 #endif /* STACK_GROWTH_DOWN */ 391 t->t_flag |= T_TALLOCSTK; 392 t->t_swap = stk; 393 } else { 394 t = kmem_cache_alloc(thread_cache, KM_SLEEP); 395 bzero(t, sizeof (kthread_t)); 396 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0); 397 if (audit_active) 398 audit_thread_create(t); 399 /* 400 * Initialize t_stk to the kernel stack pointer to use 401 * upon entry to the kernel 402 */ 403 #ifdef STACK_GROWTH_DOWN 404 t->t_stk = stk + stksize; 405 t->t_stkbase = stk; 406 #else 407 t->t_stk = stk; /* 3b2-like */ 408 t->t_stkbase = stk + stksize; 409 #endif /* STACK_GROWTH_DOWN */ 410 } 411 412 if (kmem_stackinfo != 0) { 413 stkinfo_begin(t); 414 } 415 416 t->t_ts = ts; 417 418 /* 419 * p_cred could be NULL if it thread_create is called before cred_init 420 * is called in main. 421 */ 422 mutex_enter(&pp->p_crlock); 423 if (pp->p_cred) 424 crhold(t->t_cred = pp->p_cred); 425 mutex_exit(&pp->p_crlock); 426 t->t_start = gethrestime_sec(); 427 t->t_startpc = proc; 428 t->t_procp = pp; 429 t->t_clfuncs = &sys_classfuncs.thread; 430 t->t_cid = syscid; 431 t->t_pri = pri; 432 t->t_stime = ddi_get_lbolt(); 433 t->t_schedflag = TS_LOAD | TS_DONT_SWAP; 434 t->t_bind_cpu = PBIND_NONE; 435 t->t_bindflag = (uchar_t)default_binding_mode; 436 t->t_bind_pset = PS_NONE; 437 t->t_plockp = &pp->p_lock; 438 t->t_copyops = NULL; 439 t->t_taskq = NULL; 440 t->t_anttime = 0; 441 t->t_hatdepth = 0; 442 443 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */ 444 445 CPU_STATS_ADDQ(CPU, sys, nthreads, 1); 446 #ifndef NPROBE 447 /* Kernel probe */ 448 tnf_thread_create(t); 449 #endif /* NPROBE */ 450 LOCK_INIT_CLEAR(&t->t_lock); 451 452 /* 453 * Callers who give us a NULL proc must do their own 454 * stack initialization. e.g. lwp_create() 455 */ 456 if (proc != NULL) { 457 t->t_stk = thread_stk_init(t->t_stk); 458 thread_load(t, proc, arg, len); 459 } 460 461 /* 462 * Put a hold on project0. If this thread is actually in a 463 * different project, then t_proj will be changed later in 464 * lwp_create(). All kernel-only threads must be in project 0. 465 */ 466 t->t_proj = project_hold(proj0p); 467 468 lgrp_affinity_init(&t->t_lgrp_affinity); 469 470 mutex_enter(&pidlock); 471 nthread++; 472 t->t_did = next_t_id++; 473 t->t_prev = curthread->t_prev; 474 t->t_next = curthread; 475 476 /* 477 * Add the thread to the list of all threads, and initialize 478 * its t_cpu pointer. We need to block preemption since 479 * cpu_offline walks the thread list looking for threads 480 * with t_cpu pointing to the CPU being offlined. We want 481 * to make sure that the list is consistent and that if t_cpu 482 * is set, the thread is on the list. 483 */ 484 kpreempt_disable(); 485 curthread->t_prev->t_next = t; 486 curthread->t_prev = t; 487 488 /* 489 * Threads should never have a NULL t_cpu pointer so assign it 490 * here. If the thread is being created with state TS_RUN a 491 * better CPU may be chosen when it is placed on the run queue. 492 * 493 * We need to keep kernel preemption disabled when setting all 494 * three fields to keep them in sync. Also, always create in 495 * the default partition since that's where kernel threads go 496 * (if this isn't a kernel thread, t_cpupart will be changed 497 * in lwp_create before setting the thread runnable). 498 */ 499 t->t_cpupart = &cp_default; 500 501 /* 502 * For now, affiliate this thread with the root lgroup. 503 * Since the kernel does not (presently) allocate its memory 504 * in a locality aware fashion, the root is an appropriate home. 505 * If this thread is later associated with an lwp, it will have 506 * it's lgroup re-assigned at that time. 507 */ 508 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1); 509 510 /* 511 * Inherit the current cpu. If this cpu isn't part of the chosen 512 * lgroup, a new cpu will be chosen by cpu_choose when the thread 513 * is ready to run. 514 */ 515 if (CPU->cpu_part == &cp_default) 516 t->t_cpu = CPU; 517 else 518 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl, 519 t->t_pri, NULL); 520 521 t->t_disp_queue = t->t_cpu->cpu_disp; 522 kpreempt_enable(); 523 524 /* 525 * Initialize thread state and the dispatcher lock pointer. 526 * Need to hold onto pidlock to block allthreads walkers until 527 * the state is set. 528 */ 529 switch (state) { 530 case TS_RUN: 531 curthread->t_oldspl = splhigh(); /* get dispatcher spl */ 532 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock); 533 CL_SETRUN(t); 534 thread_unlock(t); 535 break; 536 537 case TS_ONPROC: 538 THREAD_ONPROC(t, t->t_cpu); 539 break; 540 541 case TS_FREE: 542 /* 543 * Free state will be used for intr threads. 544 * The interrupt routine must set the thread dispatcher 545 * lock pointer (t_lockp) if starting on a CPU 546 * other than the current one. 547 */ 548 THREAD_FREEINTR(t, CPU); 549 break; 550 551 case TS_STOPPED: 552 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock); 553 break; 554 555 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */ 556 cmn_err(CE_PANIC, "thread_create: invalid state %d", state); 557 } 558 mutex_exit(&pidlock); 559 return (t); 560 } 561 562 /* 563 * Move thread to project0 and take care of project reference counters. 564 */ 565 void 566 thread_rele(kthread_t *t) 567 { 568 kproject_t *kpj; 569 570 thread_lock(t); 571 572 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0); 573 kpj = ttoproj(t); 574 t->t_proj = proj0p; 575 576 thread_unlock(t); 577 578 if (kpj != proj0p) { 579 project_rele(kpj); 580 (void) project_hold(proj0p); 581 } 582 } 583 584 void 585 thread_exit(void) 586 { 587 kthread_t *t = curthread; 588 589 if ((t->t_proc_flag & TP_ZTHREAD) != 0) 590 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called"); 591 592 tsd_exit(); /* Clean up this thread's TSD */ 593 594 kcpc_passivate(); /* clean up performance counter state */ 595 596 /* 597 * No kernel thread should have called poll() without arranging 598 * calling pollcleanup() here. 599 */ 600 ASSERT(t->t_pollstate == NULL); 601 ASSERT(t->t_schedctl == NULL); 602 if (t->t_door) 603 door_slam(); /* in case thread did an upcall */ 604 605 #ifndef NPROBE 606 /* Kernel probe */ 607 if (t->t_tnf_tpdp) 608 tnf_thread_exit(); 609 #endif /* NPROBE */ 610 611 thread_rele(t); 612 t->t_preempt++; 613 614 /* 615 * remove thread from the all threads list so that 616 * death-row can use the same pointers. 617 */ 618 mutex_enter(&pidlock); 619 t->t_next->t_prev = t->t_prev; 620 t->t_prev->t_next = t->t_next; 621 ASSERT(allthreads != t); /* t0 never exits */ 622 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 623 mutex_exit(&pidlock); 624 625 if (t->t_ctx != NULL) 626 exitctx(t); 627 if (t->t_procp->p_pctx != NULL) 628 exitpctx(t->t_procp); 629 630 if (kmem_stackinfo != 0) { 631 stkinfo_end(t); 632 } 633 634 t->t_state = TS_ZOMB; /* set zombie thread */ 635 636 swtch_from_zombie(); /* give up the CPU */ 637 /* NOTREACHED */ 638 } 639 640 /* 641 * Check to see if the specified thread is active (defined as being on 642 * the thread list). This is certainly a slow way to do this; if there's 643 * ever a reason to speed it up, we could maintain a hash table of active 644 * threads indexed by their t_did. 645 */ 646 static kthread_t * 647 did_to_thread(kt_did_t tid) 648 { 649 kthread_t *t; 650 651 ASSERT(MUTEX_HELD(&pidlock)); 652 for (t = curthread->t_next; t != curthread; t = t->t_next) { 653 if (t->t_did == tid) 654 break; 655 } 656 if (t->t_did == tid) 657 return (t); 658 else 659 return (NULL); 660 } 661 662 /* 663 * Wait for specified thread to exit. Returns immediately if the thread 664 * could not be found, meaning that it has either already exited or never 665 * existed. 666 */ 667 void 668 thread_join(kt_did_t tid) 669 { 670 kthread_t *t; 671 672 ASSERT(tid != curthread->t_did); 673 ASSERT(tid != t0.t_did); 674 675 mutex_enter(&pidlock); 676 /* 677 * Make sure we check that the thread is on the thread list 678 * before blocking on it; otherwise we could end up blocking on 679 * a cv that's already been freed. In other words, don't cache 680 * the thread pointer across calls to cv_wait. 681 * 682 * The choice of loop invariant means that whenever a thread 683 * is taken off the allthreads list, a cv_broadcast must be 684 * performed on that thread's t_joincv to wake up any waiters. 685 * The broadcast doesn't have to happen right away, but it 686 * shouldn't be postponed indefinitely (e.g., by doing it in 687 * thread_free which may only be executed when the deathrow 688 * queue is processed. 689 */ 690 while (t = did_to_thread(tid)) 691 cv_wait(&t->t_joincv, &pidlock); 692 mutex_exit(&pidlock); 693 } 694 695 void 696 thread_free_prevent(kthread_t *t) 697 { 698 kmutex_t *lp; 699 700 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 701 mutex_enter(lp); 702 } 703 704 void 705 thread_free_allow(kthread_t *t) 706 { 707 kmutex_t *lp; 708 709 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 710 mutex_exit(lp); 711 } 712 713 static void 714 thread_free_barrier(kthread_t *t) 715 { 716 kmutex_t *lp; 717 718 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 719 mutex_enter(lp); 720 mutex_exit(lp); 721 } 722 723 void 724 thread_free(kthread_t *t) 725 { 726 boolean_t allocstk = (t->t_flag & T_TALLOCSTK); 727 klwp_t *lwp = t->t_lwp; 728 caddr_t swap = t->t_swap; 729 730 ASSERT(t != &t0 && t->t_state == TS_FREE); 731 ASSERT(t->t_door == NULL); 732 ASSERT(t->t_schedctl == NULL); 733 ASSERT(t->t_pollstate == NULL); 734 735 t->t_pri = 0; 736 t->t_pc = 0; 737 t->t_sp = 0; 738 t->t_wchan0 = NULL; 739 t->t_wchan = NULL; 740 if (t->t_cred != NULL) { 741 crfree(t->t_cred); 742 t->t_cred = 0; 743 } 744 if (t->t_pdmsg) { 745 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1); 746 t->t_pdmsg = NULL; 747 } 748 if (audit_active) 749 audit_thread_free(t); 750 #ifndef NPROBE 751 if (t->t_tnf_tpdp) 752 tnf_thread_free(t); 753 #endif /* NPROBE */ 754 if (t->t_cldata) { 755 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata); 756 } 757 if (t->t_rprof != NULL) { 758 kmem_free(t->t_rprof, sizeof (*t->t_rprof)); 759 t->t_rprof = NULL; 760 } 761 t->t_lockp = NULL; /* nothing should try to lock this thread now */ 762 if (lwp) 763 lwp_freeregs(lwp, 0); 764 if (t->t_ctx) 765 freectx(t, 0); 766 t->t_stk = NULL; 767 if (lwp) 768 lwp_stk_fini(lwp); 769 lock_clear(&t->t_lock); 770 771 if (t->t_ts->ts_waiters > 0) 772 panic("thread_free: turnstile still active"); 773 774 kmem_cache_free(turnstile_cache, t->t_ts); 775 776 free_afd(&t->t_activefd); 777 778 /* 779 * Barrier for the tick accounting code. The tick accounting code 780 * holds this lock to keep the thread from going away while it's 781 * looking at it. 782 */ 783 thread_free_barrier(t); 784 785 ASSERT(ttoproj(t) == proj0p); 786 project_rele(ttoproj(t)); 787 788 lgrp_affinity_free(&t->t_lgrp_affinity); 789 790 mutex_enter(&pidlock); 791 nthread--; 792 mutex_exit(&pidlock); 793 794 /* 795 * Free thread, lwp and stack. This needs to be done carefully, since 796 * if T_TALLOCSTK is set, the thread is part of the stack. 797 */ 798 t->t_lwp = NULL; 799 t->t_swap = NULL; 800 801 if (swap) { 802 segkp_release(segkp, swap); 803 } 804 if (lwp) { 805 kmem_cache_free(lwp_cache, lwp); 806 } 807 if (!allocstk) { 808 kmem_cache_free(thread_cache, t); 809 } 810 } 811 812 /* 813 * Removes threads associated with the given zone from a deathrow queue. 814 * tp is a pointer to the head of the deathrow queue, and countp is a 815 * pointer to the current deathrow count. Returns a linked list of 816 * threads removed from the list. 817 */ 818 static kthread_t * 819 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid) 820 { 821 kthread_t *tmp, *list = NULL; 822 cred_t *cr; 823 824 ASSERT(MUTEX_HELD(&reaplock)); 825 while (*tp != NULL) { 826 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) { 827 tmp = *tp; 828 *tp = tmp->t_forw; 829 tmp->t_forw = list; 830 list = tmp; 831 (*countp)--; 832 } else { 833 tp = &(*tp)->t_forw; 834 } 835 } 836 return (list); 837 } 838 839 static void 840 thread_reap_list(kthread_t *t) 841 { 842 kthread_t *next; 843 844 while (t != NULL) { 845 next = t->t_forw; 846 thread_free(t); 847 t = next; 848 } 849 } 850 851 /* ARGSUSED */ 852 static void 853 thread_zone_destroy(zoneid_t zoneid, void *unused) 854 { 855 kthread_t *t, *l; 856 857 mutex_enter(&reaplock); 858 /* 859 * Pull threads and lwps associated with zone off deathrow lists. 860 */ 861 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid); 862 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid); 863 mutex_exit(&reaplock); 864 865 /* 866 * Guard against race condition in mutex_owner_running: 867 * thread=owner(mutex) 868 * <interrupt> 869 * thread exits mutex 870 * thread exits 871 * thread reaped 872 * thread struct freed 873 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE. 874 * A cross call to all cpus will cause the interrupt handler 875 * to reset the PC if it is in mutex_owner_running, refreshing 876 * stale thread pointers. 877 */ 878 mutex_sync(); /* sync with mutex code */ 879 880 /* 881 * Reap threads 882 */ 883 thread_reap_list(t); 884 885 /* 886 * Reap lwps 887 */ 888 thread_reap_list(l); 889 } 890 891 /* 892 * cleanup zombie threads that are on deathrow. 893 */ 894 void 895 thread_reaper() 896 { 897 kthread_t *t, *l; 898 callb_cpr_t cprinfo; 899 900 /* 901 * Register callback to clean up threads when zone is destroyed. 902 */ 903 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy); 904 905 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper"); 906 for (;;) { 907 mutex_enter(&reaplock); 908 while (thread_deathrow == NULL && lwp_deathrow == NULL) { 909 CALLB_CPR_SAFE_BEGIN(&cprinfo); 910 cv_wait(&reaper_cv, &reaplock); 911 CALLB_CPR_SAFE_END(&cprinfo, &reaplock); 912 } 913 /* 914 * mutex_sync() needs to be called when reaping, but 915 * not too often. We limit reaping rate to once 916 * per second. Reaplimit is max rate at which threads can 917 * be freed. Does not impact thread destruction/creation. 918 */ 919 t = thread_deathrow; 920 l = lwp_deathrow; 921 thread_deathrow = NULL; 922 lwp_deathrow = NULL; 923 thread_reapcnt = 0; 924 lwp_reapcnt = 0; 925 mutex_exit(&reaplock); 926 927 /* 928 * Guard against race condition in mutex_owner_running: 929 * thread=owner(mutex) 930 * <interrupt> 931 * thread exits mutex 932 * thread exits 933 * thread reaped 934 * thread struct freed 935 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE. 936 * A cross call to all cpus will cause the interrupt handler 937 * to reset the PC if it is in mutex_owner_running, refreshing 938 * stale thread pointers. 939 */ 940 mutex_sync(); /* sync with mutex code */ 941 /* 942 * Reap threads 943 */ 944 thread_reap_list(t); 945 946 /* 947 * Reap lwps 948 */ 949 thread_reap_list(l); 950 delay(hz); 951 } 952 } 953 954 /* 955 * This is called by lwpcreate, etc.() to put a lwp_deathrow thread onto 956 * thread_deathrow. The thread's state is changed already TS_FREE to indicate 957 * that is reapable. The thread already holds the reaplock, and was already 958 * freed. 959 */ 960 void 961 reapq_move_lq_to_tq(kthread_t *t) 962 { 963 ASSERT(t->t_state == TS_FREE); 964 ASSERT(MUTEX_HELD(&reaplock)); 965 t->t_forw = thread_deathrow; 966 thread_deathrow = t; 967 thread_reapcnt++; 968 if (lwp_reapcnt + thread_reapcnt > reaplimit) 969 cv_signal(&reaper_cv); /* wake the reaper */ 970 } 971 972 /* 973 * This is called by resume() to put a zombie thread onto deathrow. 974 * The thread's state is changed to TS_FREE to indicate that is reapable. 975 * This is called from the idle thread so it must not block - just spin. 976 */ 977 void 978 reapq_add(kthread_t *t) 979 { 980 mutex_enter(&reaplock); 981 982 /* 983 * lwp_deathrow contains threads with lwp linkage and 984 * swappable thread stacks which have the default stacksize. 985 * These threads' lwps and stacks may be reused by lwp_create(). 986 * 987 * Anything else goes on thread_deathrow(), where it will eventually 988 * be thread_free()d. 989 */ 990 if (t->t_flag & T_LWPREUSE) { 991 ASSERT(ttolwp(t) != NULL); 992 t->t_forw = lwp_deathrow; 993 lwp_deathrow = t; 994 lwp_reapcnt++; 995 } else { 996 t->t_forw = thread_deathrow; 997 thread_deathrow = t; 998 thread_reapcnt++; 999 } 1000 if (lwp_reapcnt + thread_reapcnt > reaplimit) 1001 cv_signal(&reaper_cv); /* wake the reaper */ 1002 t->t_state = TS_FREE; 1003 lock_clear(&t->t_lock); 1004 1005 /* 1006 * Before we return, we need to grab and drop the thread lock for 1007 * the dead thread. At this point, the current thread is the idle 1008 * thread, and the dead thread's CPU lock points to the current 1009 * CPU -- and we must grab and drop the lock to synchronize with 1010 * a racing thread walking a blocking chain that the zombie thread 1011 * was recently in. By this point, that blocking chain is (by 1012 * definition) stale: the dead thread is not holding any locks, and 1013 * is therefore not in any blocking chains -- but if we do not regrab 1014 * our lock before freeing the dead thread's data structures, the 1015 * thread walking the (stale) blocking chain will die on memory 1016 * corruption when it attempts to drop the dead thread's lock. We 1017 * only need do this once because there is no way for the dead thread 1018 * to ever again be on a blocking chain: once we have grabbed and 1019 * dropped the thread lock, we are guaranteed that anyone that could 1020 * have seen this thread in a blocking chain can no longer see it. 1021 */ 1022 thread_lock(t); 1023 thread_unlock(t); 1024 1025 mutex_exit(&reaplock); 1026 } 1027 1028 /* 1029 * Install thread context ops for the current thread. 1030 */ 1031 void 1032 installctx( 1033 kthread_t *t, 1034 void *arg, 1035 void (*save)(void *), 1036 void (*restore)(void *), 1037 void (*fork)(void *, void *), 1038 void (*lwp_create)(void *, void *), 1039 void (*exit)(void *), 1040 void (*free)(void *, int)) 1041 { 1042 struct ctxop *ctx; 1043 1044 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP); 1045 ctx->save_op = save; 1046 ctx->restore_op = restore; 1047 ctx->fork_op = fork; 1048 ctx->lwp_create_op = lwp_create; 1049 ctx->exit_op = exit; 1050 ctx->free_op = free; 1051 ctx->arg = arg; 1052 ctx->next = t->t_ctx; 1053 t->t_ctx = ctx; 1054 } 1055 1056 /* 1057 * Remove the thread context ops from a thread. 1058 */ 1059 int 1060 removectx( 1061 kthread_t *t, 1062 void *arg, 1063 void (*save)(void *), 1064 void (*restore)(void *), 1065 void (*fork)(void *, void *), 1066 void (*lwp_create)(void *, void *), 1067 void (*exit)(void *), 1068 void (*free)(void *, int)) 1069 { 1070 struct ctxop *ctx, *prev_ctx; 1071 1072 /* 1073 * The incoming kthread_t (which is the thread for which the 1074 * context ops will be removed) should be one of the following: 1075 * 1076 * a) the current thread, 1077 * 1078 * b) a thread of a process that's being forked (SIDL), 1079 * 1080 * c) a thread that belongs to the same process as the current 1081 * thread and for which the current thread is the agent thread, 1082 * 1083 * d) a thread that is TS_STOPPED which is indicative of it 1084 * being (if curthread is not an agent) a thread being created 1085 * as part of an lwp creation. 1086 */ 1087 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL || 1088 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1089 1090 /* 1091 * Serialize modifications to t->t_ctx to prevent the agent thread 1092 * and the target thread from racing with each other during lwp exit. 1093 */ 1094 mutex_enter(&t->t_ctx_lock); 1095 prev_ctx = NULL; 1096 kpreempt_disable(); 1097 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) { 1098 if (ctx->save_op == save && ctx->restore_op == restore && 1099 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create && 1100 ctx->exit_op == exit && ctx->free_op == free && 1101 ctx->arg == arg) { 1102 if (prev_ctx) 1103 prev_ctx->next = ctx->next; 1104 else 1105 t->t_ctx = ctx->next; 1106 mutex_exit(&t->t_ctx_lock); 1107 if (ctx->free_op != NULL) 1108 (ctx->free_op)(ctx->arg, 0); 1109 kmem_free(ctx, sizeof (struct ctxop)); 1110 kpreempt_enable(); 1111 return (1); 1112 } 1113 prev_ctx = ctx; 1114 } 1115 mutex_exit(&t->t_ctx_lock); 1116 kpreempt_enable(); 1117 1118 return (0); 1119 } 1120 1121 void 1122 savectx(kthread_t *t) 1123 { 1124 struct ctxop *ctx; 1125 1126 ASSERT(t == curthread); 1127 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1128 if (ctx->save_op != NULL) 1129 (ctx->save_op)(ctx->arg); 1130 } 1131 1132 void 1133 restorectx(kthread_t *t) 1134 { 1135 struct ctxop *ctx; 1136 1137 ASSERT(t == curthread); 1138 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1139 if (ctx->restore_op != NULL) 1140 (ctx->restore_op)(ctx->arg); 1141 } 1142 1143 void 1144 forkctx(kthread_t *t, kthread_t *ct) 1145 { 1146 struct ctxop *ctx; 1147 1148 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1149 if (ctx->fork_op != NULL) 1150 (ctx->fork_op)(t, ct); 1151 } 1152 1153 /* 1154 * Note that this operator is only invoked via the _lwp_create 1155 * system call. The system may have other reasons to create lwps 1156 * e.g. the agent lwp or the doors unreferenced lwp. 1157 */ 1158 void 1159 lwp_createctx(kthread_t *t, kthread_t *ct) 1160 { 1161 struct ctxop *ctx; 1162 1163 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1164 if (ctx->lwp_create_op != NULL) 1165 (ctx->lwp_create_op)(t, ct); 1166 } 1167 1168 /* 1169 * exitctx is called from thread_exit() and lwp_exit() to perform any actions 1170 * needed when the thread/LWP leaves the processor for the last time. This 1171 * routine is not intended to deal with freeing memory; freectx() is used for 1172 * that purpose during thread_free(). This routine is provided to allow for 1173 * clean-up that can't wait until thread_free(). 1174 */ 1175 void 1176 exitctx(kthread_t *t) 1177 { 1178 struct ctxop *ctx; 1179 1180 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1181 if (ctx->exit_op != NULL) 1182 (ctx->exit_op)(t); 1183 } 1184 1185 /* 1186 * freectx is called from thread_free() and exec() to get 1187 * rid of old thread context ops. 1188 */ 1189 void 1190 freectx(kthread_t *t, int isexec) 1191 { 1192 struct ctxop *ctx; 1193 1194 kpreempt_disable(); 1195 while ((ctx = t->t_ctx) != NULL) { 1196 t->t_ctx = ctx->next; 1197 if (ctx->free_op != NULL) 1198 (ctx->free_op)(ctx->arg, isexec); 1199 kmem_free(ctx, sizeof (struct ctxop)); 1200 } 1201 kpreempt_enable(); 1202 } 1203 1204 /* 1205 * freectx_ctx is called from lwp_create() when lwp is reused from 1206 * lwp_deathrow and its thread structure is added to thread_deathrow. 1207 * The thread structure to which this ctx was attached may be already 1208 * freed by the thread reaper so free_op implementations shouldn't rely 1209 * on thread structure to which this ctx was attached still being around. 1210 */ 1211 void 1212 freectx_ctx(struct ctxop *ctx) 1213 { 1214 struct ctxop *nctx; 1215 1216 ASSERT(ctx != NULL); 1217 1218 kpreempt_disable(); 1219 do { 1220 nctx = ctx->next; 1221 if (ctx->free_op != NULL) 1222 (ctx->free_op)(ctx->arg, 0); 1223 kmem_free(ctx, sizeof (struct ctxop)); 1224 } while ((ctx = nctx) != NULL); 1225 kpreempt_enable(); 1226 } 1227 1228 /* 1229 * Set the thread running; arrange for it to be swapped in if necessary. 1230 */ 1231 void 1232 setrun_locked(kthread_t *t) 1233 { 1234 ASSERT(THREAD_LOCK_HELD(t)); 1235 if (t->t_state == TS_SLEEP) { 1236 /* 1237 * Take off sleep queue. 1238 */ 1239 SOBJ_UNSLEEP(t->t_sobj_ops, t); 1240 } else if (t->t_state & (TS_RUN | TS_ONPROC)) { 1241 /* 1242 * Already on dispatcher queue. 1243 */ 1244 return; 1245 } else if (t->t_state == TS_WAIT) { 1246 waitq_setrun(t); 1247 } else if (t->t_state == TS_STOPPED) { 1248 /* 1249 * All of the sending of SIGCONT (TC_XSTART) and /proc 1250 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have 1251 * requested that the thread be run. 1252 * Just calling setrun() is not sufficient to set a stopped 1253 * thread running. TP_TXSTART is always set if the thread 1254 * is not stopped by a jobcontrol stop signal. 1255 * TP_TPSTART is always set if /proc is not controlling it. 1256 * TP_TCSTART is always set if lwp_suspend() didn't stop it. 1257 * The thread won't be stopped unless one of these 1258 * three mechanisms did it. 1259 * 1260 * These flags must be set before calling setrun_locked(t). 1261 * They can't be passed as arguments because the streams 1262 * code calls setrun() indirectly and the mechanism for 1263 * doing so admits only one argument. Note that the 1264 * thread must be locked in order to change t_schedflags. 1265 */ 1266 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART) 1267 return; 1268 /* 1269 * Process is no longer stopped (a thread is running). 1270 */ 1271 t->t_whystop = 0; 1272 t->t_whatstop = 0; 1273 /* 1274 * Strictly speaking, we do not have to clear these 1275 * flags here; they are cleared on entry to stop(). 1276 * However, they are confusing when doing kernel 1277 * debugging or when they are revealed by ps(1). 1278 */ 1279 t->t_schedflag &= ~TS_ALLSTART; 1280 THREAD_TRANSITION(t); /* drop stopped-thread lock */ 1281 ASSERT(t->t_lockp == &transition_lock); 1282 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 1283 /* 1284 * Let the class put the process on the dispatcher queue. 1285 */ 1286 CL_SETRUN(t); 1287 } 1288 } 1289 1290 void 1291 setrun(kthread_t *t) 1292 { 1293 thread_lock(t); 1294 setrun_locked(t); 1295 thread_unlock(t); 1296 } 1297 1298 /* 1299 * Unpin an interrupted thread. 1300 * When an interrupt occurs, the interrupt is handled on the stack 1301 * of an interrupt thread, taken from a pool linked to the CPU structure. 1302 * 1303 * When swtch() is switching away from an interrupt thread because it 1304 * blocked or was preempted, this routine is called to complete the 1305 * saving of the interrupted thread state, and returns the interrupted 1306 * thread pointer so it may be resumed. 1307 * 1308 * Called by swtch() only at high spl. 1309 */ 1310 kthread_t * 1311 thread_unpin() 1312 { 1313 kthread_t *t = curthread; /* current thread */ 1314 kthread_t *itp; /* interrupted thread */ 1315 int i; /* interrupt level */ 1316 extern int intr_passivate(); 1317 1318 ASSERT(t->t_intr != NULL); 1319 1320 itp = t->t_intr; /* interrupted thread */ 1321 t->t_intr = NULL; /* clear interrupt ptr */ 1322 1323 /* 1324 * Get state from interrupt thread for the one 1325 * it interrupted. 1326 */ 1327 1328 i = intr_passivate(t, itp); 1329 1330 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE, 1331 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)", 1332 i, t, t, itp, itp); 1333 1334 /* 1335 * Dissociate the current thread from the interrupted thread's LWP. 1336 */ 1337 t->t_lwp = NULL; 1338 1339 /* 1340 * Interrupt handlers above the level that spinlocks block must 1341 * not block. 1342 */ 1343 #if DEBUG 1344 if (i < 0 || i > LOCK_LEVEL) 1345 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i); 1346 #endif 1347 1348 /* 1349 * Compute the CPU's base interrupt level based on the active 1350 * interrupts. 1351 */ 1352 ASSERT(CPU->cpu_intr_actv & (1 << i)); 1353 set_base_spl(); 1354 1355 return (itp); 1356 } 1357 1358 /* 1359 * Create and initialize an interrupt thread. 1360 * Returns non-zero on error. 1361 * Called at spl7() or better. 1362 */ 1363 void 1364 thread_create_intr(struct cpu *cp) 1365 { 1366 kthread_t *tp; 1367 1368 tp = thread_create(NULL, 0, 1369 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0); 1370 1371 /* 1372 * Set the thread in the TS_FREE state. The state will change 1373 * to TS_ONPROC only while the interrupt is active. Think of these 1374 * as being on a private free list for the CPU. Being TS_FREE keeps 1375 * inactive interrupt threads out of debugger thread lists. 1376 * 1377 * We cannot call thread_create with TS_FREE because of the current 1378 * checks there for ONPROC. Fix this when thread_create takes flags. 1379 */ 1380 THREAD_FREEINTR(tp, cp); 1381 1382 /* 1383 * Nobody should ever reference the credentials of an interrupt 1384 * thread so make it NULL to catch any such references. 1385 */ 1386 tp->t_cred = NULL; 1387 tp->t_flag |= T_INTR_THREAD; 1388 tp->t_cpu = cp; 1389 tp->t_bound_cpu = cp; 1390 tp->t_disp_queue = cp->cpu_disp; 1391 tp->t_affinitycnt = 1; 1392 tp->t_preempt = 1; 1393 1394 /* 1395 * Don't make a user-requested binding on this thread so that 1396 * the processor can be offlined. 1397 */ 1398 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */ 1399 tp->t_bind_pset = PS_NONE; 1400 1401 #if defined(__i386) || defined(__amd64) 1402 tp->t_stk -= STACK_ALIGN; 1403 *(tp->t_stk) = 0; /* terminate intr thread stack */ 1404 #endif 1405 1406 /* 1407 * Link onto CPU's interrupt pool. 1408 */ 1409 tp->t_link = cp->cpu_intr_thread; 1410 cp->cpu_intr_thread = tp; 1411 } 1412 1413 /* 1414 * TSD -- THREAD SPECIFIC DATA 1415 */ 1416 static kmutex_t tsd_mutex; /* linked list spin lock */ 1417 static uint_t tsd_nkeys; /* size of destructor array */ 1418 /* per-key destructor funcs */ 1419 static void (**tsd_destructor)(void *); 1420 /* list of tsd_thread's */ 1421 static struct tsd_thread *tsd_list; 1422 1423 /* 1424 * Default destructor 1425 * Needed because NULL destructor means that the key is unused 1426 */ 1427 /* ARGSUSED */ 1428 void 1429 tsd_defaultdestructor(void *value) 1430 {} 1431 1432 /* 1433 * Create a key (index into per thread array) 1434 * Locks out tsd_create, tsd_destroy, and tsd_exit 1435 * May allocate memory with lock held 1436 */ 1437 void 1438 tsd_create(uint_t *keyp, void (*destructor)(void *)) 1439 { 1440 int i; 1441 uint_t nkeys; 1442 1443 /* 1444 * if key is allocated, do nothing 1445 */ 1446 mutex_enter(&tsd_mutex); 1447 if (*keyp) { 1448 mutex_exit(&tsd_mutex); 1449 return; 1450 } 1451 /* 1452 * find an unused key 1453 */ 1454 if (destructor == NULL) 1455 destructor = tsd_defaultdestructor; 1456 1457 for (i = 0; i < tsd_nkeys; ++i) 1458 if (tsd_destructor[i] == NULL) 1459 break; 1460 1461 /* 1462 * if no unused keys, increase the size of the destructor array 1463 */ 1464 if (i == tsd_nkeys) { 1465 if ((nkeys = (tsd_nkeys << 1)) == 0) 1466 nkeys = 1; 1467 tsd_destructor = 1468 (void (**)(void *))tsd_realloc((void *)tsd_destructor, 1469 (size_t)(tsd_nkeys * sizeof (void (*)(void *))), 1470 (size_t)(nkeys * sizeof (void (*)(void *)))); 1471 tsd_nkeys = nkeys; 1472 } 1473 1474 /* 1475 * allocate the next available unused key 1476 */ 1477 tsd_destructor[i] = destructor; 1478 *keyp = i + 1; 1479 mutex_exit(&tsd_mutex); 1480 } 1481 1482 /* 1483 * Destroy a key -- this is for unloadable modules 1484 * 1485 * Assumes that the caller is preventing tsd_set and tsd_get 1486 * Locks out tsd_create, tsd_destroy, and tsd_exit 1487 * May free memory with lock held 1488 */ 1489 void 1490 tsd_destroy(uint_t *keyp) 1491 { 1492 uint_t key; 1493 struct tsd_thread *tsd; 1494 1495 /* 1496 * protect the key namespace and our destructor lists 1497 */ 1498 mutex_enter(&tsd_mutex); 1499 key = *keyp; 1500 *keyp = 0; 1501 1502 ASSERT(key <= tsd_nkeys); 1503 1504 /* 1505 * if the key is valid 1506 */ 1507 if (key != 0) { 1508 uint_t k = key - 1; 1509 /* 1510 * for every thread with TSD, call key's destructor 1511 */ 1512 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) { 1513 /* 1514 * no TSD for key in this thread 1515 */ 1516 if (key > tsd->ts_nkeys) 1517 continue; 1518 /* 1519 * call destructor for key 1520 */ 1521 if (tsd->ts_value[k] && tsd_destructor[k]) 1522 (*tsd_destructor[k])(tsd->ts_value[k]); 1523 /* 1524 * reset value for key 1525 */ 1526 tsd->ts_value[k] = NULL; 1527 } 1528 /* 1529 * actually free the key (NULL destructor == unused) 1530 */ 1531 tsd_destructor[k] = NULL; 1532 } 1533 1534 mutex_exit(&tsd_mutex); 1535 } 1536 1537 /* 1538 * Quickly return the per thread value that was stored with the specified key 1539 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1540 */ 1541 void * 1542 tsd_get(uint_t key) 1543 { 1544 return (tsd_agent_get(curthread, key)); 1545 } 1546 1547 /* 1548 * Set a per thread value indexed with the specified key 1549 */ 1550 int 1551 tsd_set(uint_t key, void *value) 1552 { 1553 return (tsd_agent_set(curthread, key, value)); 1554 } 1555 1556 /* 1557 * Like tsd_get(), except that the agent lwp can get the tsd of 1558 * another thread in the same process (the agent thread only runs when the 1559 * process is completely stopped by /proc), or syslwp is creating a new lwp. 1560 */ 1561 void * 1562 tsd_agent_get(kthread_t *t, uint_t key) 1563 { 1564 struct tsd_thread *tsd = t->t_tsd; 1565 1566 ASSERT(t == curthread || 1567 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1568 1569 if (key && tsd != NULL && key <= tsd->ts_nkeys) 1570 return (tsd->ts_value[key - 1]); 1571 return (NULL); 1572 } 1573 1574 /* 1575 * Like tsd_set(), except that the agent lwp can set the tsd of 1576 * another thread in the same process, or syslwp can set the tsd 1577 * of a thread it's in the middle of creating. 1578 * 1579 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1580 * May lock out tsd_destroy (and tsd_create), may allocate memory with 1581 * lock held 1582 */ 1583 int 1584 tsd_agent_set(kthread_t *t, uint_t key, void *value) 1585 { 1586 struct tsd_thread *tsd = t->t_tsd; 1587 1588 ASSERT(t == curthread || 1589 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1590 1591 if (key == 0) 1592 return (EINVAL); 1593 if (tsd == NULL) 1594 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1595 if (key <= tsd->ts_nkeys) { 1596 tsd->ts_value[key - 1] = value; 1597 return (0); 1598 } 1599 1600 ASSERT(key <= tsd_nkeys); 1601 1602 /* 1603 * lock out tsd_destroy() 1604 */ 1605 mutex_enter(&tsd_mutex); 1606 if (tsd->ts_nkeys == 0) { 1607 /* 1608 * Link onto list of threads with TSD 1609 */ 1610 if ((tsd->ts_next = tsd_list) != NULL) 1611 tsd_list->ts_prev = tsd; 1612 tsd_list = tsd; 1613 } 1614 1615 /* 1616 * Allocate thread local storage and set the value for key 1617 */ 1618 tsd->ts_value = tsd_realloc(tsd->ts_value, 1619 tsd->ts_nkeys * sizeof (void *), 1620 key * sizeof (void *)); 1621 tsd->ts_nkeys = key; 1622 tsd->ts_value[key - 1] = value; 1623 mutex_exit(&tsd_mutex); 1624 1625 return (0); 1626 } 1627 1628 1629 /* 1630 * Return the per thread value that was stored with the specified key 1631 * If necessary, create the key and the value 1632 * Assumes the caller is protecting *keyp from tsd_destroy 1633 */ 1634 void * 1635 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void)) 1636 { 1637 void *value; 1638 uint_t key = *keyp; 1639 struct tsd_thread *tsd = curthread->t_tsd; 1640 1641 if (tsd == NULL) 1642 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1643 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1])) 1644 return (value); 1645 if (key == 0) 1646 tsd_create(keyp, destroy); 1647 (void) tsd_set(*keyp, value = (*allocate)()); 1648 1649 return (value); 1650 } 1651 1652 /* 1653 * Called from thread_exit() to run the destructor function for each tsd 1654 * Locks out tsd_create and tsd_destroy 1655 * Assumes that the destructor *DOES NOT* use tsd 1656 */ 1657 void 1658 tsd_exit(void) 1659 { 1660 int i; 1661 struct tsd_thread *tsd = curthread->t_tsd; 1662 1663 if (tsd == NULL) 1664 return; 1665 1666 if (tsd->ts_nkeys == 0) { 1667 kmem_free(tsd, sizeof (*tsd)); 1668 curthread->t_tsd = NULL; 1669 return; 1670 } 1671 1672 /* 1673 * lock out tsd_create and tsd_destroy, call 1674 * the destructor, and mark the value as destroyed. 1675 */ 1676 mutex_enter(&tsd_mutex); 1677 1678 for (i = 0; i < tsd->ts_nkeys; i++) { 1679 if (tsd->ts_value[i] && tsd_destructor[i]) 1680 (*tsd_destructor[i])(tsd->ts_value[i]); 1681 tsd->ts_value[i] = NULL; 1682 } 1683 1684 /* 1685 * remove from linked list of threads with TSD 1686 */ 1687 if (tsd->ts_next) 1688 tsd->ts_next->ts_prev = tsd->ts_prev; 1689 if (tsd->ts_prev) 1690 tsd->ts_prev->ts_next = tsd->ts_next; 1691 if (tsd_list == tsd) 1692 tsd_list = tsd->ts_next; 1693 1694 mutex_exit(&tsd_mutex); 1695 1696 /* 1697 * free up the TSD 1698 */ 1699 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *)); 1700 kmem_free(tsd, sizeof (struct tsd_thread)); 1701 curthread->t_tsd = NULL; 1702 } 1703 1704 /* 1705 * realloc 1706 */ 1707 static void * 1708 tsd_realloc(void *old, size_t osize, size_t nsize) 1709 { 1710 void *new; 1711 1712 new = kmem_zalloc(nsize, KM_SLEEP); 1713 if (old) { 1714 bcopy(old, new, osize); 1715 kmem_free(old, osize); 1716 } 1717 return (new); 1718 } 1719 1720 /* 1721 * Return non-zero if an interrupt is being serviced. 1722 */ 1723 int 1724 servicing_interrupt() 1725 { 1726 int onintr = 0; 1727 1728 /* Are we an interrupt thread */ 1729 if (curthread->t_flag & T_INTR_THREAD) 1730 return (1); 1731 /* Are we servicing a high level interrupt? */ 1732 if (CPU_ON_INTR(CPU)) { 1733 kpreempt_disable(); 1734 onintr = CPU_ON_INTR(CPU); 1735 kpreempt_enable(); 1736 } 1737 return (onintr); 1738 } 1739 1740 1741 /* 1742 * Change the dispatch priority of a thread in the system. 1743 * Used when raising or lowering a thread's priority. 1744 * (E.g., priority inheritance) 1745 * 1746 * Since threads are queued according to their priority, we 1747 * we must check the thread's state to determine whether it 1748 * is on a queue somewhere. If it is, we've got to: 1749 * 1750 * o Dequeue the thread. 1751 * o Change its effective priority. 1752 * o Enqueue the thread. 1753 * 1754 * Assumptions: The thread whose priority we wish to change 1755 * must be locked before we call thread_change_(e)pri(). 1756 * The thread_change(e)pri() function doesn't drop the thread 1757 * lock--that must be done by its caller. 1758 */ 1759 void 1760 thread_change_epri(kthread_t *t, pri_t disp_pri) 1761 { 1762 uint_t state; 1763 1764 ASSERT(THREAD_LOCK_HELD(t)); 1765 1766 /* 1767 * If the inherited priority hasn't actually changed, 1768 * just return. 1769 */ 1770 if (t->t_epri == disp_pri) 1771 return; 1772 1773 state = t->t_state; 1774 1775 /* 1776 * If it's not on a queue, change the priority with impunity. 1777 */ 1778 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1779 t->t_epri = disp_pri; 1780 if (state == TS_ONPROC) { 1781 cpu_t *cp = t->t_disp_queue->disp_cpu; 1782 1783 if (t == cp->cpu_dispthread) 1784 cp->cpu_dispatch_pri = DISP_PRIO(t); 1785 } 1786 } else if (state == TS_SLEEP) { 1787 /* 1788 * Take the thread out of its sleep queue. 1789 * Change the inherited priority. 1790 * Re-enqueue the thread. 1791 * Each synchronization object exports a function 1792 * to do this in an appropriate manner. 1793 */ 1794 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri); 1795 } else if (state == TS_WAIT) { 1796 /* 1797 * Re-enqueue a thread on the wait queue if its 1798 * effective priority needs to change. 1799 */ 1800 if (disp_pri != t->t_epri) 1801 waitq_change_pri(t, disp_pri); 1802 } else { 1803 /* 1804 * The thread is on a run queue. 1805 * Note: setbackdq() may not put the thread 1806 * back on the same run queue where it originally 1807 * resided. 1808 */ 1809 (void) dispdeq(t); 1810 t->t_epri = disp_pri; 1811 setbackdq(t); 1812 } 1813 schedctl_set_cidpri(t); 1814 } 1815 1816 /* 1817 * Function: Change the t_pri field of a thread. 1818 * Side Effects: Adjust the thread ordering on a run queue 1819 * or sleep queue, if necessary. 1820 * Returns: 1 if the thread was on a run queue, else 0. 1821 */ 1822 int 1823 thread_change_pri(kthread_t *t, pri_t disp_pri, int front) 1824 { 1825 uint_t state; 1826 int on_rq = 0; 1827 1828 ASSERT(THREAD_LOCK_HELD(t)); 1829 1830 state = t->t_state; 1831 THREAD_WILLCHANGE_PRI(t, disp_pri); 1832 1833 /* 1834 * If it's not on a queue, change the priority with impunity. 1835 */ 1836 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1837 t->t_pri = disp_pri; 1838 1839 if (state == TS_ONPROC) { 1840 cpu_t *cp = t->t_disp_queue->disp_cpu; 1841 1842 if (t == cp->cpu_dispthread) 1843 cp->cpu_dispatch_pri = DISP_PRIO(t); 1844 } 1845 } else if (state == TS_SLEEP) { 1846 /* 1847 * If the priority has changed, take the thread out of 1848 * its sleep queue and change the priority. 1849 * Re-enqueue the thread. 1850 * Each synchronization object exports a function 1851 * to do this in an appropriate manner. 1852 */ 1853 if (disp_pri != t->t_pri) 1854 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri); 1855 } else if (state == TS_WAIT) { 1856 /* 1857 * Re-enqueue a thread on the wait queue if its 1858 * priority needs to change. 1859 */ 1860 if (disp_pri != t->t_pri) 1861 waitq_change_pri(t, disp_pri); 1862 } else { 1863 /* 1864 * The thread is on a run queue. 1865 * Note: setbackdq() may not put the thread 1866 * back on the same run queue where it originally 1867 * resided. 1868 * 1869 * We still requeue the thread even if the priority 1870 * is unchanged to preserve round-robin (and other) 1871 * effects between threads of the same priority. 1872 */ 1873 on_rq = dispdeq(t); 1874 ASSERT(on_rq); 1875 t->t_pri = disp_pri; 1876 if (front) { 1877 setfrontdq(t); 1878 } else { 1879 setbackdq(t); 1880 } 1881 } 1882 schedctl_set_cidpri(t); 1883 return (on_rq); 1884 } 1885 1886 /* 1887 * Tunable kmem_stackinfo is set, fill the kernel thread stack with a 1888 * specific pattern. 1889 */ 1890 static void 1891 stkinfo_begin(kthread_t *t) 1892 { 1893 caddr_t start; /* stack start */ 1894 caddr_t end; /* stack end */ 1895 uint64_t *ptr; /* pattern pointer */ 1896 1897 /* 1898 * Stack grows up or down, see thread_create(), 1899 * compute stack memory area start and end (start < end). 1900 */ 1901 if (t->t_stk > t->t_stkbase) { 1902 /* stack grows down */ 1903 start = t->t_stkbase; 1904 end = t->t_stk; 1905 } else { 1906 /* stack grows up */ 1907 start = t->t_stk; 1908 end = t->t_stkbase; 1909 } 1910 1911 /* 1912 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes 1913 * alignement for start and end in stack area boundaries 1914 * (protection against corrupt t_stkbase/t_stk data). 1915 */ 1916 if ((((uintptr_t)start) & 0x7) != 0) { 1917 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8); 1918 } 1919 end = (caddr_t)(((uintptr_t)end) & (~0x7)); 1920 1921 if ((end <= start) || (end - start) > (1024 * 1024)) { 1922 /* negative or stack size > 1 meg, assume bogus */ 1923 return; 1924 } 1925 1926 /* fill stack area with a pattern (instead of zeros) */ 1927 ptr = (uint64_t *)((void *)start); 1928 while (ptr < (uint64_t *)((void *)end)) { 1929 *ptr++ = KMEM_STKINFO_PATTERN; 1930 } 1931 } 1932 1933 1934 /* 1935 * Tunable kmem_stackinfo is set, create stackinfo log if doesn't already exist, 1936 * compute the percentage of kernel stack really used, and set in the log 1937 * if it's the latest highest percentage. 1938 */ 1939 static void 1940 stkinfo_end(kthread_t *t) 1941 { 1942 caddr_t start; /* stack start */ 1943 caddr_t end; /* stack end */ 1944 uint64_t *ptr; /* pattern pointer */ 1945 size_t stksz; /* stack size */ 1946 size_t smallest = 0; 1947 size_t percent = 0; 1948 uint_t index = 0; 1949 uint_t i; 1950 static size_t smallest_percent = (size_t)-1; 1951 static uint_t full = 0; 1952 1953 /* create the stackinfo log, if doesn't already exist */ 1954 mutex_enter(&kmem_stkinfo_lock); 1955 if (kmem_stkinfo_log == NULL) { 1956 kmem_stkinfo_log = (kmem_stkinfo_t *) 1957 kmem_zalloc(KMEM_STKINFO_LOG_SIZE * 1958 (sizeof (kmem_stkinfo_t)), KM_NOSLEEP); 1959 if (kmem_stkinfo_log == NULL) { 1960 mutex_exit(&kmem_stkinfo_lock); 1961 return; 1962 } 1963 } 1964 mutex_exit(&kmem_stkinfo_lock); 1965 1966 /* 1967 * Stack grows up or down, see thread_create(), 1968 * compute stack memory area start and end (start < end). 1969 */ 1970 if (t->t_stk > t->t_stkbase) { 1971 /* stack grows down */ 1972 start = t->t_stkbase; 1973 end = t->t_stk; 1974 } else { 1975 /* stack grows up */ 1976 start = t->t_stk; 1977 end = t->t_stkbase; 1978 } 1979 1980 /* stack size as found in kthread_t */ 1981 stksz = end - start; 1982 1983 /* 1984 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes 1985 * alignement for start and end in stack area boundaries 1986 * (protection against corrupt t_stkbase/t_stk data). 1987 */ 1988 if ((((uintptr_t)start) & 0x7) != 0) { 1989 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8); 1990 } 1991 end = (caddr_t)(((uintptr_t)end) & (~0x7)); 1992 1993 if ((end <= start) || (end - start) > (1024 * 1024)) { 1994 /* negative or stack size > 1 meg, assume bogus */ 1995 return; 1996 } 1997 1998 /* search until no pattern in the stack */ 1999 if (t->t_stk > t->t_stkbase) { 2000 /* stack grows down */ 2001 #if defined(__i386) || defined(__amd64) 2002 /* 2003 * 6 longs are pushed on stack, see thread_load(). Skip 2004 * them, so if kthread has never run, percent is zero. 2005 * 8 bytes alignement is preserved for a 32 bit kernel, 2006 * 6 x 4 = 24, 24 is a multiple of 8. 2007 * 2008 */ 2009 end -= (6 * sizeof (long)); 2010 #endif 2011 ptr = (uint64_t *)((void *)start); 2012 while (ptr < (uint64_t *)((void *)end)) { 2013 if (*ptr != KMEM_STKINFO_PATTERN) { 2014 percent = stkinfo_percent(end, 2015 start, (caddr_t)ptr); 2016 break; 2017 } 2018 ptr++; 2019 } 2020 } else { 2021 /* stack grows up */ 2022 ptr = (uint64_t *)((void *)end); 2023 ptr--; 2024 while (ptr >= (uint64_t *)((void *)start)) { 2025 if (*ptr != KMEM_STKINFO_PATTERN) { 2026 percent = stkinfo_percent(start, 2027 end, (caddr_t)ptr); 2028 break; 2029 } 2030 ptr--; 2031 } 2032 } 2033 2034 DTRACE_PROBE3(stack__usage, kthread_t *, t, 2035 size_t, stksz, size_t, percent); 2036 2037 if (percent == 0) { 2038 return; 2039 } 2040 2041 mutex_enter(&kmem_stkinfo_lock); 2042 if (full == KMEM_STKINFO_LOG_SIZE && percent < smallest_percent) { 2043 /* 2044 * The log is full and already contains the highest values 2045 */ 2046 mutex_exit(&kmem_stkinfo_lock); 2047 return; 2048 } 2049 2050 /* keep a log of the highest used stack */ 2051 for (i = 0; i < KMEM_STKINFO_LOG_SIZE; i++) { 2052 if (kmem_stkinfo_log[i].percent == 0) { 2053 index = i; 2054 full++; 2055 break; 2056 } 2057 if (smallest == 0) { 2058 smallest = kmem_stkinfo_log[i].percent; 2059 index = i; 2060 continue; 2061 } 2062 if (kmem_stkinfo_log[i].percent < smallest) { 2063 smallest = kmem_stkinfo_log[i].percent; 2064 index = i; 2065 } 2066 } 2067 2068 if (percent >= kmem_stkinfo_log[index].percent) { 2069 kmem_stkinfo_log[index].kthread = (caddr_t)t; 2070 kmem_stkinfo_log[index].t_startpc = (caddr_t)t->t_startpc; 2071 kmem_stkinfo_log[index].start = start; 2072 kmem_stkinfo_log[index].stksz = stksz; 2073 kmem_stkinfo_log[index].percent = percent; 2074 kmem_stkinfo_log[index].t_tid = t->t_tid; 2075 kmem_stkinfo_log[index].cmd[0] = '\0'; 2076 if (t->t_tid != 0) { 2077 stksz = strlen((t->t_procp)->p_user.u_comm); 2078 if (stksz >= KMEM_STKINFO_STR_SIZE) { 2079 stksz = KMEM_STKINFO_STR_SIZE - 1; 2080 kmem_stkinfo_log[index].cmd[stksz] = '\0'; 2081 } else { 2082 stksz += 1; 2083 } 2084 (void) memcpy(kmem_stkinfo_log[index].cmd, 2085 (t->t_procp)->p_user.u_comm, stksz); 2086 } 2087 if (percent < smallest_percent) { 2088 smallest_percent = percent; 2089 } 2090 } 2091 mutex_exit(&kmem_stkinfo_lock); 2092 } 2093 2094 /* 2095 * Tunable kmem_stackinfo is set, compute stack utilization percentage. 2096 */ 2097 static size_t 2098 stkinfo_percent(caddr_t t_stk, caddr_t t_stkbase, caddr_t sp) 2099 { 2100 size_t percent; 2101 size_t s; 2102 2103 if (t_stk > t_stkbase) { 2104 /* stack grows down */ 2105 if (sp > t_stk) { 2106 return (0); 2107 } 2108 if (sp < t_stkbase) { 2109 return (100); 2110 } 2111 percent = t_stk - sp + 1; 2112 s = t_stk - t_stkbase + 1; 2113 } else { 2114 /* stack grows up */ 2115 if (sp < t_stk) { 2116 return (0); 2117 } 2118 if (sp > t_stkbase) { 2119 return (100); 2120 } 2121 percent = sp - t_stk + 1; 2122 s = t_stkbase - t_stk + 1; 2123 } 2124 percent = ((100 * percent) / s) + 1; 2125 if (percent > 100) { 2126 percent = 100; 2127 } 2128 return (percent); 2129 }