1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2017 Joyent, Inc.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 */
27
28 #include <mdb/mdb_param.h>
29 #include <mdb/mdb_modapi.h>
30 #include <mdb/mdb_ks.h>
31 #include <mdb/mdb_ctf.h>
32
33 #include <sys/types.h>
34 #include <sys/thread.h>
35 #include <sys/session.h>
36 #include <sys/user.h>
37 #include <sys/proc.h>
38 #include <sys/var.h>
39 #include <sys/t_lock.h>
40 #include <sys/callo.h>
41 #include <sys/priocntl.h>
42 #include <sys/class.h>
43 #include <sys/regset.h>
44 #include <sys/stack.h>
45 #include <sys/cpuvar.h>
46 #include <sys/vnode.h>
47 #include <sys/vfs.h>
48 #include <sys/flock_impl.h>
49 #include <sys/kmem_impl.h>
50 #include <sys/vmem_impl.h>
51 #include <sys/kstat.h>
52 #include <sys/dditypes.h>
53 #include <sys/ddi_impldefs.h>
54 #include <sys/sysmacros.h>
55 #include <sys/sysconf.h>
56 #include <sys/task.h>
57 #include <sys/project.h>
58 #include <sys/errorq_impl.h>
59 #include <sys/cred_impl.h>
60 #include <sys/zone.h>
61 #include <sys/panic.h>
62 #include <regex.h>
63 #include <sys/port_impl.h>
64
65 #include "avl.h"
66 #include "bio.h"
67 #include "bitset.h"
68 #include "combined.h"
69 #include "contract.h"
70 #include "cpupart_mdb.h"
71 #include "cred.h"
72 #include "ctxop.h"
73 #include "cyclic.h"
74 #include "damap.h"
75 #include "ddi_periodic.h"
76 #include "devinfo.h"
77 #include "dnlc.h"
78 #include "findstack.h"
79 #include "fm.h"
80 #include "gcore.h"
81 #include "group.h"
82 #include "irm.h"
83 #include "kgrep.h"
84 #include "kmem.h"
85 #include "ldi.h"
86 #include "leaky.h"
87 #include "lgrp.h"
88 #include "list.h"
89 #include "log.h"
90 #include "mdi.h"
91 #include "memory.h"
92 #include "mmd.h"
93 #include "modhash.h"
94 #include "ndievents.h"
95 #include "net.h"
96 #include "netstack.h"
97 #include "nvpair.h"
98 #include "pg.h"
99 #include "rctl.h"
100 #include "sobj.h"
101 #include "streams.h"
102 #include "sysevent.h"
103 #include "taskq.h"
104 #include "thread.h"
105 #include "tsd.h"
106 #include "tsol.h"
107 #include "typegraph.h"
108 #include "vfs.h"
109 #include "zone.h"
110 #include "hotplug.h"
111
112 /*
113 * Surely this is defined somewhere...
114 */
115 #define NINTR 16
116
117 #define KILOS 10
118 #define MEGS 20
119 #define GIGS 30
120
121 #ifndef STACK_BIAS
122 #define STACK_BIAS 0
123 #endif
124
125 static char
126 pstat2ch(uchar_t state)
127 {
128 switch (state) {
129 case SSLEEP: return ('S');
130 case SRUN: return ('R');
131 case SZOMB: return ('Z');
132 case SIDL: return ('I');
133 case SONPROC: return ('O');
134 case SSTOP: return ('T');
135 case SWAIT: return ('W');
136 default: return ('?');
137 }
138 }
139
140 #define PS_PRTTHREADS 0x1
141 #define PS_PRTLWPS 0x2
142 #define PS_PSARGS 0x4
143 #define PS_TASKS 0x8
144 #define PS_PROJECTS 0x10
145 #define PS_ZONES 0x20
146
147 static int
148 ps_threadprint(uintptr_t addr, const void *data, void *private)
149 {
150 const kthread_t *t = (const kthread_t *)data;
151 uint_t prt_flags = *((uint_t *)private);
152
153 static const mdb_bitmask_t t_state_bits[] = {
154 { "TS_FREE", UINT_MAX, TS_FREE },
155 { "TS_SLEEP", TS_SLEEP, TS_SLEEP },
156 { "TS_RUN", TS_RUN, TS_RUN },
157 { "TS_ONPROC", TS_ONPROC, TS_ONPROC },
158 { "TS_ZOMB", TS_ZOMB, TS_ZOMB },
159 { "TS_STOPPED", TS_STOPPED, TS_STOPPED },
160 { "TS_WAIT", TS_WAIT, TS_WAIT },
161 { NULL, 0, 0 }
162 };
163
164 if (prt_flags & PS_PRTTHREADS)
165 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits);
166
167 if (prt_flags & PS_PRTLWPS)
168 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid);
169
170 return (WALK_NEXT);
171 }
172
173 typedef struct mdb_pflags_proc {
174 struct pid *p_pidp;
175 ushort_t p_pidflag;
176 uint_t p_proc_flag;
177 uint_t p_flag;
178 } mdb_pflags_proc_t;
179
180 static int
181 pflags(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
182 {
183 mdb_pflags_proc_t pr;
184 struct pid pid;
185
186 static const mdb_bitmask_t p_flag_bits[] = {
187 { "SSYS", SSYS, SSYS },
188 { "SEXITING", SEXITING, SEXITING },
189 { "SITBUSY", SITBUSY, SITBUSY },
190 { "SFORKING", SFORKING, SFORKING },
191 { "SWATCHOK", SWATCHOK, SWATCHOK },
192 { "SKILLED", SKILLED, SKILLED },
193 { "SSCONT", SSCONT, SSCONT },
194 { "SZONETOP", SZONETOP, SZONETOP },
195 { "SEXTKILLED", SEXTKILLED, SEXTKILLED },
196 { "SUGID", SUGID, SUGID },
197 { "SEXECED", SEXECED, SEXECED },
198 { "SJCTL", SJCTL, SJCTL },
199 { "SNOWAIT", SNOWAIT, SNOWAIT },
200 { "SVFORK", SVFORK, SVFORK },
201 { "SVFWAIT", SVFWAIT, SVFWAIT },
202 { "SEXITLWPS", SEXITLWPS, SEXITLWPS },
203 { "SHOLDFORK", SHOLDFORK, SHOLDFORK },
204 { "SHOLDFORK1", SHOLDFORK1, SHOLDFORK1 },
205 { "SCOREDUMP", SCOREDUMP, SCOREDUMP },
206 { "SMSACCT", SMSACCT, SMSACCT },
207 { "SLWPWRAP", SLWPWRAP, SLWPWRAP },
208 { "SAUTOLPG", SAUTOLPG, SAUTOLPG },
209 { "SNOCD", SNOCD, SNOCD },
210 { "SHOLDWATCH", SHOLDWATCH, SHOLDWATCH },
211 { "SMSFORK", SMSFORK, SMSFORK },
212 { "SDOCORE", SDOCORE, SDOCORE },
213 { NULL, 0, 0 }
214 };
215
216 static const mdb_bitmask_t p_pidflag_bits[] = {
217 { "CLDPEND", CLDPEND, CLDPEND },
218 { "CLDCONT", CLDCONT, CLDCONT },
219 { "CLDNOSIGCHLD", CLDNOSIGCHLD, CLDNOSIGCHLD },
220 { "CLDWAITPID", CLDWAITPID, CLDWAITPID },
221 { NULL, 0, 0 }
222 };
223
224 static const mdb_bitmask_t p_proc_flag_bits[] = {
225 { "P_PR_TRACE", P_PR_TRACE, P_PR_TRACE },
226 { "P_PR_PTRACE", P_PR_PTRACE, P_PR_PTRACE },
227 { "P_PR_FORK", P_PR_FORK, P_PR_FORK },
228 { "P_PR_LOCK", P_PR_LOCK, P_PR_LOCK },
229 { "P_PR_ASYNC", P_PR_ASYNC, P_PR_ASYNC },
230 { "P_PR_EXEC", P_PR_EXEC, P_PR_EXEC },
231 { "P_PR_BPTADJ", P_PR_BPTADJ, P_PR_BPTADJ },
232 { "P_PR_RUNLCL", P_PR_RUNLCL, P_PR_RUNLCL },
233 { "P_PR_KILLCL", P_PR_KILLCL, P_PR_KILLCL },
234 { NULL, 0, 0 }
235 };
236
237 if (!(flags & DCMD_ADDRSPEC)) {
238 if (mdb_walk_dcmd("proc", "pflags", argc, argv) == -1) {
239 mdb_warn("can't walk 'proc'");
240 return (DCMD_ERR);
241 }
242 return (DCMD_OK);
243 }
244
245 if (mdb_ctf_vread(&pr, "proc_t", "mdb_pflags_proc_t", addr, 0) == -1 ||
246 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp) == -1) {
247 mdb_warn("cannot read proc_t or pid");
248 return (DCMD_ERR);
249 }
250
251 mdb_printf("%p [pid %d]:\n", addr, pid.pid_id);
252 mdb_printf("\tp_flag: %08x <%b>\n", pr.p_flag, pr.p_flag,
253 p_flag_bits);
254 mdb_printf("\tp_pidflag: %08x <%b>\n", pr.p_pidflag, pr.p_pidflag,
255 p_pidflag_bits);
256 mdb_printf("\tp_proc_flag: %08x <%b>\n", pr.p_proc_flag, pr.p_proc_flag,
257 p_proc_flag_bits);
258
259 return (DCMD_OK);
260 }
261
262 typedef struct mdb_ps_proc {
263 char p_stat;
264 struct pid *p_pidp;
265 struct pid *p_pgidp;
266 struct cred *p_cred;
267 struct sess *p_sessp;
268 struct task *p_task;
269 struct zone *p_zone;
270 pid_t p_ppid;
271 uint_t p_flag;
272 struct {
273 char u_comm[MAXCOMLEN + 1];
274 char u_psargs[PSARGSZ];
275 } p_user;
276 } mdb_ps_proc_t;
277
278 int
279 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
280 {
281 uint_t prt_flags = 0;
282 mdb_ps_proc_t pr;
283 struct pid pid, pgid, sid;
284 sess_t session;
285 cred_t cred;
286 task_t tk;
287 kproject_t pj;
288 zone_t zn;
289
290 if (!(flags & DCMD_ADDRSPEC)) {
291 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
292 mdb_warn("can't walk 'proc'");
293 return (DCMD_ERR);
294 }
295 return (DCMD_OK);
296 }
297
298 if (mdb_getopts(argc, argv,
299 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
300 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
301 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
302 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
303 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
304 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
305 return (DCMD_USAGE);
306
307 if (DCMD_HDRSPEC(flags)) {
308 mdb_printf("%<u>%1s %6s %6s %6s %6s ",
309 "S", "PID", "PPID", "PGID", "SID");
310 if (prt_flags & PS_TASKS)
311 mdb_printf("%5s ", "TASK");
312 if (prt_flags & PS_PROJECTS)
313 mdb_printf("%5s ", "PROJ");
314 if (prt_flags & PS_ZONES)
315 mdb_printf("%5s ", "ZONE");
316 mdb_printf("%6s %10s %?s %s%</u>\n",
317 "UID", "FLAGS", "ADDR", "NAME");
318 }
319
320 if (mdb_ctf_vread(&pr, "proc_t", "mdb_ps_proc_t", addr, 0) == -1)
321 return (DCMD_ERR);
322
323 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
324 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
325 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
326 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
327 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
328 if (prt_flags & (PS_TASKS | PS_PROJECTS))
329 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
330 if (prt_flags & PS_PROJECTS)
331 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
332 if (prt_flags & PS_ZONES)
333 mdb_vread(&zn, sizeof (zn), (uintptr_t)pr.p_zone);
334
335 mdb_printf("%c %6d %6d %6d %6d ",
336 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
337 sid.pid_id);
338 if (prt_flags & PS_TASKS)
339 mdb_printf("%5d ", tk.tk_tkid);
340 if (prt_flags & PS_PROJECTS)
341 mdb_printf("%5d ", pj.kpj_id);
342 if (prt_flags & PS_ZONES)
343 mdb_printf("%5d ", zn.zone_id);
344 mdb_printf("%6d 0x%08x %0?p %s\n",
345 cred.cr_uid, pr.p_flag, addr,
346 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
347
348 if (prt_flags & ~PS_PSARGS)
349 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
350
351 return (DCMD_OK);
352 }
353
354 #define PG_NEWEST 0x0001
355 #define PG_OLDEST 0x0002
356 #define PG_PIPE_OUT 0x0004
357 #define PG_EXACT_MATCH 0x0008
358
359 typedef struct pgrep_data {
360 uint_t pg_flags;
361 uint_t pg_psflags;
362 uintptr_t pg_xaddr;
363 hrtime_t pg_xstart;
364 const char *pg_pat;
365 #ifndef _KMDB
366 regex_t pg_reg;
367 #endif
368 } pgrep_data_t;
369
370 typedef struct mdb_pgrep_proc {
371 struct {
372 timestruc_t u_start;
373 char u_comm[MAXCOMLEN + 1];
374 } p_user;
375 } mdb_pgrep_proc_t;
376
377 /*ARGSUSED*/
378 static int
379 pgrep_cb(uintptr_t addr, const void *ignored, void *data)
380 {
381 mdb_pgrep_proc_t p;
382 pgrep_data_t *pgp = data;
383 #ifndef _KMDB
384 regmatch_t pmatch;
385 #endif
386
387 if (mdb_ctf_vread(&p, "proc_t", "mdb_pgrep_proc_t", addr, 0) == -1)
388 return (WALK_ERR);
389
390 /*
391 * kmdb doesn't have access to the reg* functions, so we fall back
392 * to strstr/strcmp.
393 */
394 #ifdef _KMDB
395 if ((pgp->pg_flags & PG_EXACT_MATCH) ?
396 (strcmp(p.p_user.u_comm, pgp->pg_pat) != 0) :
397 (strstr(p.p_user.u_comm, pgp->pg_pat) == NULL))
398 return (WALK_NEXT);
399 #else
400 if (regexec(&pgp->pg_reg, p.p_user.u_comm, 1, &pmatch, 0) != 0)
401 return (WALK_NEXT);
402
403 if ((pgp->pg_flags & PG_EXACT_MATCH) &&
404 (pmatch.rm_so != 0 || p.p_user.u_comm[pmatch.rm_eo] != '\0'))
405 return (WALK_NEXT);
406 #endif
407
408 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
409 hrtime_t start;
410
411 start = (hrtime_t)p.p_user.u_start.tv_sec * NANOSEC +
412 p.p_user.u_start.tv_nsec;
413
414 if (pgp->pg_flags & PG_NEWEST) {
415 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) {
416 pgp->pg_xaddr = addr;
417 pgp->pg_xstart = start;
418 }
419 } else {
420 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) {
421 pgp->pg_xaddr = addr;
422 pgp->pg_xstart = start;
423 }
424 }
425
426 } else if (pgp->pg_flags & PG_PIPE_OUT) {
427 mdb_printf("%p\n", addr);
428
429 } else {
430 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
431 mdb_warn("can't invoke 'ps'");
432 return (WALK_DONE);
433 }
434 pgp->pg_psflags &= ~DCMD_LOOPFIRST;
435 }
436
437 return (WALK_NEXT);
438 }
439
440 /*ARGSUSED*/
441 int
442 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
443 {
444 pgrep_data_t pg;
445 int i;
446 #ifndef _KMDB
447 int err;
448 #endif
449
450 if (flags & DCMD_ADDRSPEC)
451 return (DCMD_USAGE);
452
453 pg.pg_flags = 0;
454 pg.pg_xaddr = 0;
455
456 i = mdb_getopts(argc, argv,
457 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
458 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
459 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
460 NULL);
461
462 argc -= i;
463 argv += i;
464
465 if (argc != 1)
466 return (DCMD_USAGE);
467
468 /*
469 * -n and -o are mutually exclusive.
470 */
471 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
472 return (DCMD_USAGE);
473
474 if (argv->a_type != MDB_TYPE_STRING)
475 return (DCMD_USAGE);
476
477 if (flags & DCMD_PIPE_OUT)
478 pg.pg_flags |= PG_PIPE_OUT;
479
480 pg.pg_pat = argv->a_un.a_str;
481 if (DCMD_HDRSPEC(flags))
482 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
483 else
484 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
485
486 #ifndef _KMDB
487 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
488 size_t nbytes;
489 char *buf;
490
491 nbytes = regerror(err, &pg.pg_reg, NULL, 0);
492 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
493 (void) regerror(err, &pg.pg_reg, buf, nbytes);
494 mdb_warn("%s\n", buf);
495
496 return (DCMD_ERR);
497 }
498 #endif
499
500 if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
501 mdb_warn("can't walk 'proc'");
502 return (DCMD_ERR);
503 }
504
505 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
506 if (pg.pg_flags & PG_PIPE_OUT) {
507 mdb_printf("%p\n", pg.pg_xaddr);
508 } else {
509 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
510 0, NULL) != 0) {
511 mdb_warn("can't invoke 'ps'");
512 return (DCMD_ERR);
513 }
514 }
515 }
516
517 return (DCMD_OK);
518 }
519
520 int
521 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
522 {
523 task_t tk;
524 kproject_t pj;
525
526 if (!(flags & DCMD_ADDRSPEC)) {
527 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
528 mdb_warn("can't walk task_cache");
529 return (DCMD_ERR);
530 }
531 return (DCMD_OK);
532 }
533 if (DCMD_HDRSPEC(flags)) {
534 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
535 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
536 }
537 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
538 mdb_warn("can't read task_t structure at %p", addr);
539 return (DCMD_ERR);
540 }
541 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
542 mdb_warn("can't read project_t structure at %p", addr);
543 return (DCMD_ERR);
544 }
545 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
546 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
547 tk.tk_flags);
548 return (DCMD_OK);
549 }
550
551 int
552 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
553 {
554 kproject_t pj;
555
556 if (!(flags & DCMD_ADDRSPEC)) {
557 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
558 mdb_warn("can't walk projects");
559 return (DCMD_ERR);
560 }
561 return (DCMD_OK);
562 }
563 if (DCMD_HDRSPEC(flags)) {
564 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
565 "ADDR", "PROJID", "ZONEID", "REFCNT");
566 }
567 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
568 mdb_warn("can't read kproject_t structure at %p", addr);
569 return (DCMD_ERR);
570 }
571 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
572 pj.kpj_count);
573 return (DCMD_OK);
574 }
575
576 /* walk callouts themselves, either by list or id hash. */
577 int
578 callout_walk_init(mdb_walk_state_t *wsp)
579 {
580 if (wsp->walk_addr == NULL) {
581 mdb_warn("callout doesn't support global walk");
582 return (WALK_ERR);
583 }
584 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP);
585 return (WALK_NEXT);
586 }
587
588 #define CALLOUT_WALK_BYLIST 0
589 #define CALLOUT_WALK_BYID 1
590
591 /* the walker arg switches between walking by list (0) and walking by id (1). */
592 int
593 callout_walk_step(mdb_walk_state_t *wsp)
594 {
595 int retval;
596
597 if (wsp->walk_addr == NULL) {
598 return (WALK_DONE);
599 }
600 if (mdb_vread(wsp->walk_data, sizeof (callout_t),
601 wsp->walk_addr) == -1) {
602 mdb_warn("failed to read callout at %p", wsp->walk_addr);
603 return (WALK_DONE);
604 }
605 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
606 wsp->walk_cbdata);
607
608 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) {
609 wsp->walk_addr =
610 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext);
611 } else {
612 wsp->walk_addr =
613 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext);
614 }
615
616 return (retval);
617 }
618
619 void
620 callout_walk_fini(mdb_walk_state_t *wsp)
621 {
622 mdb_free(wsp->walk_data, sizeof (callout_t));
623 }
624
625 /*
626 * walker for callout lists. This is different from hashes and callouts.
627 * Thankfully, it's also simpler.
628 */
629 int
630 callout_list_walk_init(mdb_walk_state_t *wsp)
631 {
632 if (wsp->walk_addr == NULL) {
633 mdb_warn("callout list doesn't support global walk");
634 return (WALK_ERR);
635 }
636 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP);
637 return (WALK_NEXT);
638 }
639
640 int
641 callout_list_walk_step(mdb_walk_state_t *wsp)
642 {
643 int retval;
644
645 if (wsp->walk_addr == NULL) {
646 return (WALK_DONE);
647 }
648 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t),
649 wsp->walk_addr) != sizeof (callout_list_t)) {
650 mdb_warn("failed to read callout_list at %p", wsp->walk_addr);
651 return (WALK_ERR);
652 }
653 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
654 wsp->walk_cbdata);
655
656 wsp->walk_addr = (uintptr_t)
657 (((callout_list_t *)wsp->walk_data)->cl_next);
658
659 return (retval);
660 }
661
662 void
663 callout_list_walk_fini(mdb_walk_state_t *wsp)
664 {
665 mdb_free(wsp->walk_data, sizeof (callout_list_t));
666 }
667
668 /* routines/structs to walk callout table(s) */
669 typedef struct cot_data {
670 callout_table_t *ct0;
671 callout_table_t ct;
672 callout_hash_t cot_idhash[CALLOUT_BUCKETS];
673 callout_hash_t cot_clhash[CALLOUT_BUCKETS];
674 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS];
675 int cotndx;
676 int cotsize;
677 } cot_data_t;
678
679 int
680 callout_table_walk_init(mdb_walk_state_t *wsp)
681 {
682 int max_ncpus;
683 cot_data_t *cot_walk_data;
684
685 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP);
686
687 if (wsp->walk_addr == NULL) {
688 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) {
689 mdb_warn("failed to read 'callout_table'");
690 return (WALK_ERR);
691 }
692 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
693 mdb_warn("failed to get callout_table array size");
694 return (WALK_ERR);
695 }
696 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus;
697 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0;
698 } else {
699 /* not a global walk */
700 cot_walk_data->cotsize = 1;
701 }
702
703 cot_walk_data->cotndx = 0;
704 wsp->walk_data = cot_walk_data;
705
706 return (WALK_NEXT);
707 }
708
709 int
710 callout_table_walk_step(mdb_walk_state_t *wsp)
711 {
712 int retval;
713 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data;
714 size_t size;
715
716 if (cotwd->cotndx >= cotwd->cotsize) {
717 return (WALK_DONE);
718 }
719 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t),
720 wsp->walk_addr) != sizeof (callout_table_t)) {
721 mdb_warn("failed to read callout_table at %p", wsp->walk_addr);
722 return (WALK_ERR);
723 }
724
725 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
726 if (cotwd->ct.ct_idhash != NULL) {
727 if (mdb_vread(cotwd->cot_idhash, size,
728 (uintptr_t)(cotwd->ct.ct_idhash)) != size) {
729 mdb_warn("failed to read id_hash at %p",
730 cotwd->ct.ct_idhash);
731 return (WALK_ERR);
732 }
733 }
734 if (cotwd->ct.ct_clhash != NULL) {
735 if (mdb_vread(&(cotwd->cot_clhash), size,
736 (uintptr_t)cotwd->ct.ct_clhash) == -1) {
737 mdb_warn("failed to read cl_hash at %p",
738 cotwd->ct.ct_clhash);
739 return (WALK_ERR);
740 }
741 }
742 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS;
743 if (cotwd->ct.ct_kstat_data != NULL) {
744 if (mdb_vread(&(cotwd->ct_kstat_data), size,
745 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) {
746 mdb_warn("failed to read kstats at %p",
747 cotwd->ct.ct_kstat_data);
748 return (WALK_ERR);
749 }
750 }
751 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd,
752 wsp->walk_cbdata);
753
754 cotwd->cotndx++;
755 if (cotwd->cotndx >= cotwd->cotsize) {
756 return (WALK_DONE);
757 }
758 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr +
759 sizeof (callout_table_t));
760
761 return (retval);
762 }
763
764 void
765 callout_table_walk_fini(mdb_walk_state_t *wsp)
766 {
767 mdb_free(wsp->walk_data, sizeof (cot_data_t));
768 }
769
770 static const char *co_typenames[] = { "R", "N" };
771
772 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK)
773
774 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS)
775
776 /* callout flags, in no particular order */
777 #define COF_REAL 0x00000001
778 #define COF_NORM 0x00000002
779 #define COF_LONG 0x00000004
780 #define COF_SHORT 0x00000008
781 #define COF_EMPTY 0x00000010
782 #define COF_TIME 0x00000020
783 #define COF_BEFORE 0x00000040
784 #define COF_AFTER 0x00000080
785 #define COF_SEQID 0x00000100
786 #define COF_FUNC 0x00000200
787 #define COF_ADDR 0x00000400
788 #define COF_EXEC 0x00000800
789 #define COF_HIRES 0x00001000
790 #define COF_ABS 0x00002000
791 #define COF_TABLE 0x00004000
792 #define COF_BYIDH 0x00008000
793 #define COF_FREE 0x00010000
794 #define COF_LIST 0x00020000
795 #define COF_EXPREL 0x00040000
796 #define COF_HDR 0x00080000
797 #define COF_VERBOSE 0x00100000
798 #define COF_LONGLIST 0x00200000
799 #define COF_THDR 0x00400000
800 #define COF_LHDR 0x00800000
801 #define COF_CHDR 0x01000000
802 #define COF_PARAM 0x02000000
803 #define COF_DECODE 0x04000000
804 #define COF_HEAP 0x08000000
805 #define COF_QUEUE 0x10000000
806
807 /* show real and normal, short and long, expired and unexpired. */
808 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT)
809
810 #define COF_LIST_FLAGS \
811 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE)
812
813 /* private callout data for callback functions */
814 typedef struct callout_data {
815 uint_t flags; /* COF_* */
816 cpu_t *cpu; /* cpu pointer if given */
817 int seqid; /* cpu seqid, or -1 */
818 hrtime_t time; /* expiration time value */
819 hrtime_t atime; /* expiration before value */
820 hrtime_t btime; /* expiration after value */
821 uintptr_t funcaddr; /* function address or NULL */
822 uintptr_t param; /* parameter to function or NULL */
823 hrtime_t now; /* current system time */
824 int nsec_per_tick; /* for conversions */
825 ulong_t ctbits; /* for decoding xid */
826 callout_table_t *co_table; /* top of callout table array */
827 int ndx; /* table index. */
828 int bucket; /* which list/id bucket are we in */
829 hrtime_t exp; /* expire time */
830 int list_flags; /* copy of cl_flags */
831 } callout_data_t;
832
833 /* this callback does the actual callback itself (finally). */
834 /*ARGSUSED*/
835 static int
836 callouts_cb(uintptr_t addr, const void *data, void *priv)
837 {
838 callout_data_t *coargs = (callout_data_t *)priv;
839 callout_t *co = (callout_t *)data;
840 int tableid, list_flags;
841 callout_id_t coid;
842
843 if ((coargs == NULL) || (co == NULL)) {
844 return (WALK_ERR);
845 }
846
847 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) {
848 /*
849 * The callout must have been reallocated. No point in
850 * walking any more.
851 */
852 return (WALK_DONE);
853 }
854 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) {
855 /*
856 * The callout must have been freed. No point in
857 * walking any more.
858 */
859 return (WALK_DONE);
860 }
861 if ((coargs->flags & COF_FUNC) &&
862 (coargs->funcaddr != (uintptr_t)co->c_func)) {
863 return (WALK_NEXT);
864 }
865 if ((coargs->flags & COF_PARAM) &&
866 (coargs->param != (uintptr_t)co->c_arg)) {
867 return (WALK_NEXT);
868 }
869 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) {
870 return (WALK_NEXT);
871 }
872 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) {
873 return (WALK_NEXT);
874 }
875 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) {
876 return (WALK_NEXT);
877 }
878 /* it is possible we don't have the exp time or flags */
879 if (coargs->flags & COF_BYIDH) {
880 if (!(coargs->flags & COF_FREE)) {
881 /* we have to fetch the expire time ourselves. */
882 if (mdb_vread(&coargs->exp, sizeof (hrtime_t),
883 (uintptr_t)co->c_list + offsetof(callout_list_t,
884 cl_expiration)) == -1) {
885 mdb_warn("failed to read expiration "
886 "time from %p", co->c_list);
887 coargs->exp = 0;
888 }
889 /* and flags. */
890 if (mdb_vread(&coargs->list_flags, sizeof (int),
891 (uintptr_t)co->c_list + offsetof(callout_list_t,
892 cl_flags)) == -1) {
893 mdb_warn("failed to read list flags"
894 "from %p", co->c_list);
895 coargs->list_flags = 0;
896 }
897 } else {
898 /* free callouts can't use list pointer. */
899 coargs->exp = 0;
900 coargs->list_flags = 0;
901 }
902 if (coargs->exp != 0) {
903 if ((coargs->flags & COF_TIME) &&
904 (coargs->exp != coargs->time)) {
905 return (WALK_NEXT);
906 }
907 if ((coargs->flags & COF_BEFORE) &&
908 (coargs->exp > coargs->btime)) {
909 return (WALK_NEXT);
910 }
911 if ((coargs->flags & COF_AFTER) &&
912 (coargs->exp < coargs->atime)) {
913 return (WALK_NEXT);
914 }
915 }
916 /* tricky part, since both HIRES and ABS can be set */
917 list_flags = coargs->list_flags;
918 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
919 /* both flags are set, only skip "regular" ones */
920 if (! (list_flags & COF_LIST_FLAGS)) {
921 return (WALK_NEXT);
922 }
923 } else {
924 /* individual flags, or no flags */
925 if ((coargs->flags & COF_HIRES) &&
926 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
927 return (WALK_NEXT);
928 }
929 if ((coargs->flags & COF_ABS) &&
930 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
931 return (WALK_NEXT);
932 }
933 }
934 /*
935 * We do the checks for COF_HEAP and COF_QUEUE here only if we
936 * are traversing BYIDH. If the traversal is by callout list,
937 * we do this check in callout_list_cb() to be more
938 * efficient.
939 */
940 if ((coargs->flags & COF_HEAP) &&
941 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
942 return (WALK_NEXT);
943 }
944
945 if ((coargs->flags & COF_QUEUE) &&
946 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
947 return (WALK_NEXT);
948 }
949 }
950
951 #define callout_table_mask ((1 << coargs->ctbits) - 1)
952 tableid = CALLOUT_ID_TO_TABLE(co->c_xid);
953 #undef callout_table_mask
954 coid = CO_PLAIN_ID(co->c_xid);
955
956 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) {
957 /*
958 * We need to print the headers. If walking by id, then
959 * the list header isn't printed, so we must include
960 * that info here.
961 */
962 if (!(coargs->flags & COF_VERBOSE)) {
963 mdb_printf("%<u>%3s %-1s %-14s %</u>",
964 "SEQ", "T", "EXP");
965 } else if (coargs->flags & COF_BYIDH) {
966 mdb_printf("%<u>%-14s %</u>", "EXP");
967 }
968 mdb_printf("%<u>%-4s %-?s %-20s%</u>",
969 "XHAL", "XID", "FUNC(ARG)");
970 if (coargs->flags & COF_LONGLIST) {
971 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>",
972 "PREVID", "NEXTID", "PREVL", "NEXTL");
973 mdb_printf("%<u> %-?s %-4s %-?s%</u>",
974 "DONE", "UTOS", "THREAD");
975 }
976 mdb_printf("\n");
977 coargs->flags &= ~COF_CHDR;
978 coargs->flags |= (COF_THDR | COF_LHDR);
979 }
980
981 if (!(coargs->flags & COF_ADDR)) {
982 if (!(coargs->flags & COF_VERBOSE)) {
983 mdb_printf("%-3d %1s %-14llx ",
984 TABLE_TO_SEQID(tableid),
985 co_typenames[tableid & CALLOUT_TYPE_MASK],
986 (coargs->flags & COF_EXPREL) ?
987 coargs->exp - coargs->now : coargs->exp);
988 } else if (coargs->flags & COF_BYIDH) {
989 mdb_printf("%-14x ",
990 (coargs->flags & COF_EXPREL) ?
991 coargs->exp - coargs->now : coargs->exp);
992 }
993 list_flags = coargs->list_flags;
994 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)",
995 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ",
996 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ",
997 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ",
998 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ",
999 (long long)coid, co->c_func, co->c_arg);
1000 if (coargs->flags & COF_LONGLIST) {
1001 mdb_printf(" %-?p %-?p %-?p %-?p",
1002 co->c_idprev, co->c_idnext, co->c_clprev,
1003 co->c_clnext);
1004 mdb_printf(" %-?p %-4d %-0?p",
1005 co->c_done, co->c_waiting, co->c_executor);
1006 }
1007 } else {
1008 /* address only */
1009 mdb_printf("%-0p", addr);
1010 }
1011 mdb_printf("\n");
1012 return (WALK_NEXT);
1013 }
1014
1015 /* this callback is for callout list handling. idhash is done by callout_t_cb */
1016 /*ARGSUSED*/
1017 static int
1018 callout_list_cb(uintptr_t addr, const void *data, void *priv)
1019 {
1020 callout_data_t *coargs = (callout_data_t *)priv;
1021 callout_list_t *cl = (callout_list_t *)data;
1022 callout_t *coptr;
1023 int list_flags;
1024
1025 if ((coargs == NULL) || (cl == NULL)) {
1026 return (WALK_ERR);
1027 }
1028
1029 coargs->exp = cl->cl_expiration;
1030 coargs->list_flags = cl->cl_flags;
1031 if ((coargs->flags & COF_FREE) &&
1032 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
1033 /*
1034 * The callout list must have been reallocated. No point in
1035 * walking any more.
1036 */
1037 return (WALK_DONE);
1038 }
1039 if (!(coargs->flags & COF_FREE) &&
1040 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
1041 /*
1042 * The callout list must have been freed. No point in
1043 * walking any more.
1044 */
1045 return (WALK_DONE);
1046 }
1047 if ((coargs->flags & COF_TIME) &&
1048 (cl->cl_expiration != coargs->time)) {
1049 return (WALK_NEXT);
1050 }
1051 if ((coargs->flags & COF_BEFORE) &&
1052 (cl->cl_expiration > coargs->btime)) {
1053 return (WALK_NEXT);
1054 }
1055 if ((coargs->flags & COF_AFTER) &&
1056 (cl->cl_expiration < coargs->atime)) {
1057 return (WALK_NEXT);
1058 }
1059 if (!(coargs->flags & COF_EMPTY) &&
1060 (cl->cl_callouts.ch_head == NULL)) {
1061 return (WALK_NEXT);
1062 }
1063 /* FOUR cases, each different, !A!B, !AB, A!B, AB */
1064 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
1065 /* both flags are set, only skip "regular" ones */
1066 if (! (cl->cl_flags & COF_LIST_FLAGS)) {
1067 return (WALK_NEXT);
1068 }
1069 } else {
1070 if ((coargs->flags & COF_HIRES) &&
1071 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
1072 return (WALK_NEXT);
1073 }
1074 if ((coargs->flags & COF_ABS) &&
1075 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
1076 return (WALK_NEXT);
1077 }
1078 }
1079
1080 if ((coargs->flags & COF_HEAP) &&
1081 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
1082 return (WALK_NEXT);
1083 }
1084
1085 if ((coargs->flags & COF_QUEUE) &&
1086 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
1087 return (WALK_NEXT);
1088 }
1089
1090 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) &&
1091 (coargs->flags & (COF_LIST | COF_VERBOSE))) {
1092 if (!(coargs->flags & COF_VERBOSE)) {
1093 /* don't be redundant again */
1094 mdb_printf("%<u>SEQ T %</u>");
1095 }
1096 mdb_printf("%<u>EXP HA BUCKET "
1097 "CALLOUTS %</u>");
1098
1099 if (coargs->flags & COF_LONGLIST) {
1100 mdb_printf("%<u> %-?s %-?s%</u>",
1101 "PREV", "NEXT");
1102 }
1103 mdb_printf("\n");
1104 coargs->flags &= ~COF_LHDR;
1105 coargs->flags |= (COF_THDR | COF_CHDR);
1106 }
1107 if (coargs->flags & (COF_LIST | COF_VERBOSE)) {
1108 if (!(coargs->flags & COF_ADDR)) {
1109 if (!(coargs->flags & COF_VERBOSE)) {
1110 mdb_printf("%3d %1s ",
1111 TABLE_TO_SEQID(coargs->ndx),
1112 co_typenames[coargs->ndx &
1113 CALLOUT_TYPE_MASK]);
1114 }
1115
1116 list_flags = coargs->list_flags;
1117 mdb_printf("%-14llx %1s%1s %-6d %-0?p ",
1118 (coargs->flags & COF_EXPREL) ?
1119 coargs->exp - coargs->now : coargs->exp,
1120 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ?
1121 "H" : " ",
1122 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ?
1123 "A" : " ",
1124 coargs->bucket, cl->cl_callouts.ch_head);
1125
1126 if (coargs->flags & COF_LONGLIST) {
1127 mdb_printf(" %-?p %-?p",
1128 cl->cl_prev, cl->cl_next);
1129 }
1130 } else {
1131 /* address only */
1132 mdb_printf("%-0p", addr);
1133 }
1134 mdb_printf("\n");
1135 if (coargs->flags & COF_LIST) {
1136 return (WALK_NEXT);
1137 }
1138 }
1139 /* yet another layer as we walk the actual callouts via list. */
1140 if (cl->cl_callouts.ch_head == NULL) {
1141 return (WALK_NEXT);
1142 }
1143 /* free list structures do not have valid callouts off of them. */
1144 if (coargs->flags & COF_FREE) {
1145 return (WALK_NEXT);
1146 }
1147 coptr = (callout_t *)cl->cl_callouts.ch_head;
1148
1149 if (coargs->flags & COF_VERBOSE) {
1150 mdb_inc_indent(4);
1151 }
1152 /*
1153 * walk callouts using yet another callback routine.
1154 * we use callouts_bytime because id hash is handled via
1155 * the callout_t_cb callback.
1156 */
1157 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs,
1158 (uintptr_t)coptr) == -1) {
1159 mdb_warn("cannot walk callouts at %p", coptr);
1160 return (WALK_ERR);
1161 }
1162 if (coargs->flags & COF_VERBOSE) {
1163 mdb_dec_indent(4);
1164 }
1165
1166 return (WALK_NEXT);
1167 }
1168
1169 /* this callback handles the details of callout table walking. */
1170 static int
1171 callout_t_cb(uintptr_t addr, const void *data, void *priv)
1172 {
1173 callout_data_t *coargs = (callout_data_t *)priv;
1174 cot_data_t *cotwd = (cot_data_t *)data;
1175 callout_table_t *ct = &(cotwd->ct);
1176 int index, seqid, cotype;
1177 int i;
1178 callout_list_t *clptr;
1179 callout_t *coptr;
1180
1181 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) {
1182 return (WALK_ERR);
1183 }
1184
1185 index = ((char *)addr - (char *)coargs->co_table) /
1186 sizeof (callout_table_t);
1187 cotype = index & CALLOUT_TYPE_MASK;
1188 seqid = TABLE_TO_SEQID(index);
1189
1190 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) {
1191 return (WALK_NEXT);
1192 }
1193
1194 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) {
1195 return (WALK_NEXT);
1196 }
1197
1198 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) {
1199 return (WALK_NEXT);
1200 }
1201
1202 if (!(coargs->flags & COF_EMPTY) && (
1203 (ct->ct_heap == NULL) || (ct->ct_cyclic == NULL))) {
1204 return (WALK_NEXT);
1205 }
1206
1207 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) &&
1208 (coargs->flags & (COF_TABLE | COF_VERBOSE))) {
1209 /* print table hdr */
1210 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>",
1211 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP");
1212 coargs->flags &= ~COF_THDR;
1213 coargs->flags |= (COF_LHDR | COF_CHDR);
1214 if (coargs->flags & COF_LONGLIST) {
1215 /* more info! */
1216 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s"
1217 " %-?s %-?s %-?s%</u>",
1218 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE",
1219 "PEND", "FREE", "LOCK");
1220 }
1221 mdb_printf("\n");
1222 }
1223 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) {
1224 if (!(coargs->flags & COF_ADDR)) {
1225 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p",
1226 seqid, co_typenames[cotype],
1227 ct->ct_free, ct->ct_lfree, ct->ct_cyclic,
1228 ct->ct_heap);
1229 if (coargs->flags & COF_LONGLIST) {
1230 /* more info! */
1231 mdb_printf(" %-7d %-7d %-?p %-?p %-?p"
1232 " %-?lld %-?lld %-?p",
1233 ct->ct_heap_num, ct->ct_heap_max,
1234 ct->ct_taskq, ct->ct_expired.ch_head,
1235 ct->ct_queue.ch_head,
1236 cotwd->ct_timeouts_pending,
1237 cotwd->ct_allocations -
1238 cotwd->ct_timeouts_pending,
1239 ct->ct_mutex);
1240 }
1241 } else {
1242 /* address only */
1243 mdb_printf("%-0?p", addr);
1244 }
1245 mdb_printf("\n");
1246 if (coargs->flags & COF_TABLE) {
1247 return (WALK_NEXT);
1248 }
1249 }
1250
1251 coargs->ndx = index;
1252 if (coargs->flags & COF_VERBOSE) {
1253 mdb_inc_indent(4);
1254 }
1255 /* keep digging. */
1256 if (!(coargs->flags & COF_BYIDH)) {
1257 /* walk the list hash table */
1258 if (coargs->flags & COF_FREE) {
1259 clptr = ct->ct_lfree;
1260 coargs->bucket = 0;
1261 if (clptr == NULL) {
1262 return (WALK_NEXT);
1263 }
1264 if (mdb_pwalk("callout_list", callout_list_cb, coargs,
1265 (uintptr_t)clptr) == -1) {
1266 mdb_warn("cannot walk callout free list at %p",
1267 clptr);
1268 return (WALK_ERR);
1269 }
1270 } else {
1271 /* first print the expired list. */
1272 clptr = (callout_list_t *)ct->ct_expired.ch_head;
1273 if (clptr != NULL) {
1274 coargs->bucket = -1;
1275 if (mdb_pwalk("callout_list", callout_list_cb,
1276 coargs, (uintptr_t)clptr) == -1) {
1277 mdb_warn("cannot walk callout_list"
1278 " at %p", clptr);
1279 return (WALK_ERR);
1280 }
1281 }
1282 /* then, print the callout queue */
1283 clptr = (callout_list_t *)ct->ct_queue.ch_head;
1284 if (clptr != NULL) {
1285 coargs->bucket = -1;
1286 if (mdb_pwalk("callout_list", callout_list_cb,
1287 coargs, (uintptr_t)clptr) == -1) {
1288 mdb_warn("cannot walk callout_list"
1289 " at %p", clptr);
1290 return (WALK_ERR);
1291 }
1292 }
1293 for (i = 0; i < CALLOUT_BUCKETS; i++) {
1294 if (ct->ct_clhash == NULL) {
1295 /* nothing to do */
1296 break;
1297 }
1298 if (cotwd->cot_clhash[i].ch_head == NULL) {
1299 continue;
1300 }
1301 clptr = (callout_list_t *)
1302 cotwd->cot_clhash[i].ch_head;
1303 coargs->bucket = i;
1304 /* walk list with callback routine. */
1305 if (mdb_pwalk("callout_list", callout_list_cb,
1306 coargs, (uintptr_t)clptr) == -1) {
1307 mdb_warn("cannot walk callout_list"
1308 " at %p", clptr);
1309 return (WALK_ERR);
1310 }
1311 }
1312 }
1313 } else {
1314 /* walk the id hash table. */
1315 if (coargs->flags & COF_FREE) {
1316 coptr = ct->ct_free;
1317 coargs->bucket = 0;
1318 if (coptr == NULL) {
1319 return (WALK_NEXT);
1320 }
1321 if (mdb_pwalk("callouts_byid", callouts_cb, coargs,
1322 (uintptr_t)coptr) == -1) {
1323 mdb_warn("cannot walk callout id free list"
1324 " at %p", coptr);
1325 return (WALK_ERR);
1326 }
1327 } else {
1328 for (i = 0; i < CALLOUT_BUCKETS; i++) {
1329 if (ct->ct_idhash == NULL) {
1330 break;
1331 }
1332 coptr = (callout_t *)
1333 cotwd->cot_idhash[i].ch_head;
1334 if (coptr == NULL) {
1335 continue;
1336 }
1337 coargs->bucket = i;
1338
1339 /*
1340 * walk callouts directly by id. For id
1341 * chain, the callout list is just a header,
1342 * so there's no need to walk it.
1343 */
1344 if (mdb_pwalk("callouts_byid", callouts_cb,
1345 coargs, (uintptr_t)coptr) == -1) {
1346 mdb_warn("cannot walk callouts at %p",
1347 coptr);
1348 return (WALK_ERR);
1349 }
1350 }
1351 }
1352 }
1353 if (coargs->flags & COF_VERBOSE) {
1354 mdb_dec_indent(4);
1355 }
1356 return (WALK_NEXT);
1357 }
1358
1359 /*
1360 * initialize some common info for both callout dcmds.
1361 */
1362 int
1363 callout_common_init(callout_data_t *coargs)
1364 {
1365 /* we need a couple of things */
1366 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) {
1367 mdb_warn("failed to read 'callout_table'");
1368 return (DCMD_ERR);
1369 }
1370 /* need to get now in nsecs. Approximate with hrtime vars */
1371 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") !=
1372 sizeof (hrtime_t)) {
1373 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t),
1374 "hrtime_base") != sizeof (hrtime_t)) {
1375 mdb_warn("Could not determine current system time");
1376 return (DCMD_ERR);
1377 }
1378 }
1379
1380 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) {
1381 mdb_warn("failed to read 'callout_table_bits'");
1382 return (DCMD_ERR);
1383 }
1384 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) {
1385 mdb_warn("failed to read 'nsec_per_tick'");
1386 return (DCMD_ERR);
1387 }
1388 return (DCMD_OK);
1389 }
1390
1391 /*
1392 * dcmd to print callouts. Optional addr limits to specific table.
1393 * Parses lots of options that get passed to callbacks for walkers.
1394 * Has it's own help function.
1395 */
1396 /*ARGSUSED*/
1397 int
1398 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1399 {
1400 callout_data_t coargs;
1401 /* getopts doesn't help much with stuff like this */
1402 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag;
1403 char *funcname = NULL;
1404 char *paramstr = NULL;
1405 uintptr_t Stmp, Ctmp; /* for getopt. */
1406 int retval;
1407
1408 coargs.flags = COF_DEFAULT;
1409 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE;
1410 coargs.seqid = -1;
1411
1412 if (mdb_getopts(argc, argv,
1413 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags,
1414 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags,
1415 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags,
1416 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags,
1417 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags,
1418 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags,
1419 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags,
1420 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags,
1421 'd', MDB_OPT_SETBITS, 1, &dflag,
1422 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp,
1423 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp,
1424 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time,
1425 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime,
1426 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime,
1427 'k', MDB_OPT_SETBITS, 1, &kflag,
1428 'f', MDB_OPT_STR, &funcname,
1429 'p', MDB_OPT_STR, ¶mstr,
1430 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags,
1431 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags,
1432 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags,
1433 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags,
1434 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1435 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags,
1436 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags,
1437 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags,
1438 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags,
1439 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags,
1440 NULL) != argc) {
1441 return (DCMD_USAGE);
1442 }
1443
1444 /* initialize from kernel variables */
1445 if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1446 return (retval);
1447 }
1448
1449 /* do some option post-processing */
1450 if (kflag) {
1451 coargs.time *= coargs.nsec_per_tick;
1452 coargs.atime *= coargs.nsec_per_tick;
1453 coargs.btime *= coargs.nsec_per_tick;
1454 }
1455
1456 if (dflag) {
1457 coargs.time += coargs.now;
1458 coargs.atime += coargs.now;
1459 coargs.btime += coargs.now;
1460 }
1461 if (Sflag) {
1462 if (flags & DCMD_ADDRSPEC) {
1463 mdb_printf("-S option conflicts with explicit"
1464 " address\n");
1465 return (DCMD_USAGE);
1466 }
1467 coargs.flags |= COF_SEQID;
1468 coargs.seqid = (int)Stmp;
1469 }
1470 if (Cflag) {
1471 if (flags & DCMD_ADDRSPEC) {
1472 mdb_printf("-C option conflicts with explicit"
1473 " address\n");
1474 return (DCMD_USAGE);
1475 }
1476 if (coargs.flags & COF_SEQID) {
1477 mdb_printf("-C and -S are mutually exclusive\n");
1478 return (DCMD_USAGE);
1479 }
1480 coargs.cpu = (cpu_t *)Ctmp;
1481 if (mdb_vread(&coargs.seqid, sizeof (processorid_t),
1482 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) {
1483 mdb_warn("failed to read cpu_t at %p", Ctmp);
1484 return (DCMD_ERR);
1485 }
1486 coargs.flags |= COF_SEQID;
1487 }
1488 /* avoid null outputs. */
1489 if (!(coargs.flags & (COF_REAL | COF_NORM))) {
1490 coargs.flags |= COF_REAL | COF_NORM;
1491 }
1492 if (!(coargs.flags & (COF_LONG | COF_SHORT))) {
1493 coargs.flags |= COF_LONG | COF_SHORT;
1494 }
1495 if (tflag) {
1496 if (aflag || bflag) {
1497 mdb_printf("-t and -a|b are mutually exclusive\n");
1498 return (DCMD_USAGE);
1499 }
1500 coargs.flags |= COF_TIME;
1501 }
1502 if (aflag) {
1503 coargs.flags |= COF_AFTER;
1504 }
1505 if (bflag) {
1506 coargs.flags |= COF_BEFORE;
1507 }
1508 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) {
1509 mdb_printf("value for -a must be earlier than the value"
1510 " for -b.\n");
1511 return (DCMD_USAGE);
1512 }
1513
1514 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) {
1515 mdb_printf("-H and -Q are mutually exclusive\n");
1516 return (DCMD_USAGE);
1517 }
1518
1519 if (funcname != NULL) {
1520 GElf_Sym sym;
1521
1522 if (mdb_lookup_by_name(funcname, &sym) != 0) {
1523 coargs.funcaddr = mdb_strtoull(funcname);
1524 } else {
1525 coargs.funcaddr = sym.st_value;
1526 }
1527 coargs.flags |= COF_FUNC;
1528 }
1529
1530 if (paramstr != NULL) {
1531 GElf_Sym sym;
1532
1533 if (mdb_lookup_by_name(paramstr, &sym) != 0) {
1534 coargs.param = mdb_strtoull(paramstr);
1535 } else {
1536 coargs.param = sym.st_value;
1537 }
1538 coargs.flags |= COF_PARAM;
1539 }
1540
1541 if (!(flags & DCMD_ADDRSPEC)) {
1542 /* don't pass "dot" if no addr. */
1543 addr = NULL;
1544 }
1545 if (addr != NULL) {
1546 /*
1547 * a callout table was specified. Ignore -r|n option
1548 * to avoid null output.
1549 */
1550 coargs.flags |= (COF_REAL | COF_NORM);
1551 }
1552
1553 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) {
1554 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR;
1555 }
1556 if (coargs.flags & COF_FREE) {
1557 coargs.flags |= COF_EMPTY;
1558 /* -F = free callouts, -FL = free lists */
1559 if (!(coargs.flags & COF_LIST)) {
1560 coargs.flags |= COF_BYIDH;
1561 }
1562 }
1563
1564 /* walk table, using specialized callback routine. */
1565 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) {
1566 mdb_warn("cannot walk callout_table");
1567 return (DCMD_ERR);
1568 }
1569 return (DCMD_OK);
1570 }
1571
1572
1573 /*
1574 * Given an extended callout id, dump its information.
1575 */
1576 /*ARGSUSED*/
1577 int
1578 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1579 {
1580 callout_data_t coargs;
1581 callout_table_t *ctptr;
1582 callout_table_t ct;
1583 callout_id_t coid;
1584 callout_t *coptr;
1585 int tableid;
1586 callout_id_t xid;
1587 ulong_t idhash;
1588 int i, retval;
1589 const mdb_arg_t *arg;
1590 size_t size;
1591 callout_hash_t cot_idhash[CALLOUT_BUCKETS];
1592
1593 coargs.flags = COF_DEFAULT | COF_BYIDH;
1594 i = mdb_getopts(argc, argv,
1595 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags,
1596 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1597 NULL);
1598 argc -= i;
1599 argv += i;
1600
1601 if (argc != 1) {
1602 return (DCMD_USAGE);
1603 }
1604 arg = &argv[0];
1605
1606 if (arg->a_type == MDB_TYPE_IMMEDIATE) {
1607 xid = arg->a_un.a_val;
1608 } else {
1609 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str);
1610 }
1611
1612 if (DCMD_HDRSPEC(flags)) {
1613 coargs.flags |= COF_CHDR;
1614 }
1615
1616
1617 /* initialize from kernel variables */
1618 if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1619 return (retval);
1620 }
1621
1622 /* we must massage the environment so that the macros will play nice */
1623 #define callout_table_mask ((1 << coargs.ctbits) - 1)
1624 #define callout_table_bits coargs.ctbits
1625 #define nsec_per_tick coargs.nsec_per_tick
1626 tableid = CALLOUT_ID_TO_TABLE(xid);
1627 idhash = CALLOUT_IDHASH(xid);
1628 #undef callouts_table_bits
1629 #undef callout_table_mask
1630 #undef nsec_per_tick
1631 coid = CO_PLAIN_ID(xid);
1632
1633 if (flags & DCMD_ADDRSPEC) {
1634 mdb_printf("calloutid does not accept explicit address.\n");
1635 return (DCMD_USAGE);
1636 }
1637
1638 if (coargs.flags & COF_DECODE) {
1639 if (DCMD_HDRSPEC(flags)) {
1640 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n",
1641 "SEQ", "T", "XL", "XID", "IDHASH");
1642 }
1643 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n",
1644 TABLE_TO_SEQID(tableid),
1645 co_typenames[tableid & CALLOUT_TYPE_MASK],
1646 (xid & CALLOUT_EXECUTING) ? "X" : " ",
1647 (xid & CALLOUT_LONGTERM) ? "L" : " ",
1648 (long long)coid, idhash);
1649 return (DCMD_OK);
1650 }
1651
1652 /* get our table. Note this relies on the types being correct */
1653 ctptr = coargs.co_table + tableid;
1654 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) {
1655 mdb_warn("failed to read callout_table at %p", ctptr);
1656 return (DCMD_ERR);
1657 }
1658 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
1659 if (ct.ct_idhash != NULL) {
1660 if (mdb_vread(&(cot_idhash), size,
1661 (uintptr_t)ct.ct_idhash) == -1) {
1662 mdb_warn("failed to read id_hash at %p",
1663 ct.ct_idhash);
1664 return (WALK_ERR);
1665 }
1666 }
1667
1668 /* callout at beginning of hash chain */
1669 if (ct.ct_idhash == NULL) {
1670 mdb_printf("id hash chain for this xid is empty\n");
1671 return (DCMD_ERR);
1672 }
1673 coptr = (callout_t *)cot_idhash[idhash].ch_head;
1674 if (coptr == NULL) {
1675 mdb_printf("id hash chain for this xid is empty\n");
1676 return (DCMD_ERR);
1677 }
1678
1679 coargs.ndx = tableid;
1680 coargs.bucket = idhash;
1681
1682 /* use the walker, luke */
1683 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs,
1684 (uintptr_t)coptr) == -1) {
1685 mdb_warn("cannot walk callouts at %p", coptr);
1686 return (WALK_ERR);
1687 }
1688
1689 return (DCMD_OK);
1690 }
1691
1692 void
1693 callout_help(void)
1694 {
1695 mdb_printf("callout: display callouts.\n"
1696 "Given a callout table address, display callouts from table.\n"
1697 "Without an address, display callouts from all tables.\n"
1698 "options:\n"
1699 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n"
1700 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n"
1701 " -x : limit display to callouts which are executing\n"
1702 " -h : limit display to callouts based on hrestime\n"
1703 " -B : limit display to callouts based on absolute time\n"
1704 " -t|a|b nsec: limit display to callouts that expire a(t) time,"
1705 " (a)fter time,\n or (b)efore time. Use -a and -b together "
1706 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n"
1707 " -d : interpret time option to -t|a|b as delta from current time\n"
1708 " -k : use ticks instead of nanoseconds as arguments to"
1709 " -t|a|b. Note that\n ticks are less accurate and may not"
1710 " match other tick times (ie: lbolt).\n"
1711 " -D : display exiration time as delta from current time\n"
1712 " -S seqid : limit display to callouts for this cpu sequence id\n"
1713 " -C addr : limit display to callouts for this cpu pointer\n"
1714 " -f name|addr : limit display to callouts with this function\n"
1715 " -p name|addr : limit display to callouts functions with this"
1716 " parameter\n"
1717 " -T : display the callout table itself, instead of callouts\n"
1718 " -L : display callout lists instead of callouts\n"
1719 " -E : with -T or L, display empty data structures.\n"
1720 " -i : traverse callouts by id hash instead of list hash\n"
1721 " -F : walk free callout list (free list with -i) instead\n"
1722 " -v : display more info for each item\n"
1723 " -V : show details of each level of info as it is traversed\n"
1724 " -H : limit display to callouts in the callout heap\n"
1725 " -Q : limit display to callouts in the callout queue\n"
1726 " -A : show only addresses. Useful for pipelines.\n");
1727 }
1728
1729 void
1730 calloutid_help(void)
1731 {
1732 mdb_printf("calloutid: display callout by id.\n"
1733 "Given an extended callout id, display the callout infomation.\n"
1734 "options:\n"
1735 " -d : do not dereference callout, just decode the id.\n"
1736 " -v : verbose display more info about the callout\n");
1737 }
1738
1739 /*ARGSUSED*/
1740 int
1741 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1742 {
1743 long num_classes, i;
1744 sclass_t *class_tbl;
1745 GElf_Sym g_sclass;
1746 char class_name[PC_CLNMSZ];
1747 size_t tbl_size;
1748
1749 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
1750 mdb_warn("failed to find symbol sclass\n");
1751 return (DCMD_ERR);
1752 }
1753
1754 tbl_size = (size_t)g_sclass.st_size;
1755 num_classes = tbl_size / (sizeof (sclass_t));
1756 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
1757
1758 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
1759 mdb_warn("failed to read sclass");
1760 return (DCMD_ERR);
1761 }
1762
1763 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
1764 "INIT FCN", "CLASS FCN");
1765
1766 for (i = 0; i < num_classes; i++) {
1767 if (mdb_vread(class_name, sizeof (class_name),
1768 (uintptr_t)class_tbl[i].cl_name) == -1)
1769 (void) strcpy(class_name, "???");
1770
1771 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
1772 class_tbl[i].cl_init, class_tbl[i].cl_funcs);
1773 }
1774
1775 return (DCMD_OK);
1776 }
1777
1778 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */
1779
1780 int
1781 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1782 {
1783 uintptr_t rootdir;
1784 vnode_t vn;
1785 char buf[MAXPATHLEN];
1786
1787 uint_t opt_F = FALSE;
1788
1789 if (mdb_getopts(argc, argv,
1790 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
1791 return (DCMD_USAGE);
1792
1793 if (!(flags & DCMD_ADDRSPEC)) {
1794 mdb_warn("expected explicit vnode_t address before ::\n");
1795 return (DCMD_USAGE);
1796 }
1797
1798 if (mdb_readvar(&rootdir, "rootdir") == -1) {
1799 mdb_warn("failed to read rootdir");
1800 return (DCMD_ERR);
1801 }
1802
1803 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
1804 return (DCMD_ERR);
1805
1806 if (*buf == '\0') {
1807 mdb_printf("??\n");
1808 return (DCMD_OK);
1809 }
1810
1811 mdb_printf("%s", buf);
1812 if (opt_F && buf[strlen(buf)-1] != '/' &&
1813 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
1814 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
1815 mdb_printf("\n");
1816
1817 return (DCMD_OK);
1818 }
1819
1820 int
1821 ld_walk_init(mdb_walk_state_t *wsp)
1822 {
1823 wsp->walk_data = (void *)wsp->walk_addr;
1824 return (WALK_NEXT);
1825 }
1826
1827 int
1828 ld_walk_step(mdb_walk_state_t *wsp)
1829 {
1830 int status;
1831 lock_descriptor_t ld;
1832
1833 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
1834 mdb_warn("couldn't read lock_descriptor_t at %p\n",
1835 wsp->walk_addr);
1836 return (WALK_ERR);
1837 }
1838
1839 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
1840 if (status == WALK_ERR)
1841 return (WALK_ERR);
1842
1843 wsp->walk_addr = (uintptr_t)ld.l_next;
1844 if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
1845 return (WALK_DONE);
1846
1847 return (status);
1848 }
1849
1850 int
1851 lg_walk_init(mdb_walk_state_t *wsp)
1852 {
1853 GElf_Sym sym;
1854
1855 if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
1856 mdb_warn("failed to find symbol 'lock_graph'\n");
1857 return (WALK_ERR);
1858 }
1859
1860 wsp->walk_addr = (uintptr_t)sym.st_value;
1861 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
1862
1863 return (WALK_NEXT);
1864 }
1865
1866 typedef struct lg_walk_data {
1867 uintptr_t startaddr;
1868 mdb_walk_cb_t callback;
1869 void *data;
1870 } lg_walk_data_t;
1871
1872 /*
1873 * We can't use ::walk lock_descriptor directly, because the head of each graph
1874 * is really a dummy lock. Rather than trying to dynamically determine if this
1875 * is a dummy node or not, we just filter out the initial element of the
1876 * list.
1877 */
1878 static int
1879 lg_walk_cb(uintptr_t addr, const void *data, void *priv)
1880 {
1881 lg_walk_data_t *lw = priv;
1882
1883 if (addr != lw->startaddr)
1884 return (lw->callback(addr, data, lw->data));
1885
1886 return (WALK_NEXT);
1887 }
1888
1889 int
1890 lg_walk_step(mdb_walk_state_t *wsp)
1891 {
1892 graph_t *graph;
1893 lg_walk_data_t lw;
1894
1895 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
1896 return (WALK_DONE);
1897
1898 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
1899 mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
1900 return (WALK_ERR);
1901 }
1902
1903 wsp->walk_addr += sizeof (graph);
1904
1905 if (graph == NULL)
1906 return (WALK_NEXT);
1907
1908 lw.callback = wsp->walk_callback;
1909 lw.data = wsp->walk_cbdata;
1910
1911 lw.startaddr = (uintptr_t)&(graph->active_locks);
1912 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1913 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1914 return (WALK_ERR);
1915 }
1916
1917 lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
1918 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1919 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1920 return (WALK_ERR);
1921 }
1922
1923 return (WALK_NEXT);
1924 }
1925
1926 /*
1927 * The space available for the path corresponding to the locked vnode depends
1928 * on whether we are printing 32- or 64-bit addresses.
1929 */
1930 #ifdef _LP64
1931 #define LM_VNPATHLEN 20
1932 #else
1933 #define LM_VNPATHLEN 30
1934 #endif
1935
1936 typedef struct mdb_lminfo_proc {
1937 struct {
1938 char u_comm[MAXCOMLEN + 1];
1939 } p_user;
1940 } mdb_lminfo_proc_t;
1941
1942 /*ARGSUSED*/
1943 static int
1944 lminfo_cb(uintptr_t addr, const void *data, void *priv)
1945 {
1946 const lock_descriptor_t *ld = data;
1947 char buf[LM_VNPATHLEN];
1948 mdb_lminfo_proc_t p;
1949 uintptr_t paddr = 0;
1950
1951 if (ld->l_flock.l_pid != 0)
1952 paddr = mdb_pid2proc(ld->l_flock.l_pid, NULL);
1953
1954 if (paddr != 0)
1955 mdb_ctf_vread(&p, "proc_t", "mdb_lminfo_proc_t", paddr, 0);
1956
1957 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
1958 addr, ld->l_type == F_RDLCK ? "RD" :
1959 ld->l_type == F_WRLCK ? "WR" : "??",
1960 ld->l_state, ld->l_flock.l_pid,
1961 ld->l_flock.l_pid == 0 ? "<kernel>" :
1962 paddr == 0 ? "<defunct>" : p.p_user.u_comm, ld->l_vnode);
1963
1964 mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
1965 sizeof (buf));
1966 mdb_printf("%s\n", buf);
1967
1968 return (WALK_NEXT);
1969 }
1970
1971 /*ARGSUSED*/
1972 int
1973 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1974 {
1975 if (DCMD_HDRSPEC(flags))
1976 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
1977 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
1978
1979 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL));
1980 }
1981
1982 /*ARGSUSED*/
1983 int
1984 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target)
1985 {
1986 if ((uintptr_t)f->f_vnode == *target) {
1987 mdb_printf("file %p\n", addr);
1988 *target = NULL;
1989 }
1990
1991 return (WALK_NEXT);
1992 }
1993
1994 /*ARGSUSED*/
1995 int
1996 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target)
1997 {
1998 uintptr_t t = *target;
1999
2000 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) {
2001 mdb_warn("couldn't file walk proc %p", addr);
2002 return (WALK_ERR);
2003 }
2004
2005 if (t == NULL)
2006 mdb_printf("%p\n", addr);
2007
2008 return (WALK_NEXT);
2009 }
2010
2011 /*ARGSUSED*/
2012 int
2013 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2014 {
2015 uintptr_t target = addr;
2016
2017 if (!(flags & DCMD_ADDRSPEC) || addr == NULL)
2018 return (DCMD_USAGE);
2019
2020 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) {
2021 mdb_warn("can't proc walk");
2022 return (DCMD_ERR);
2023 }
2024
2025 return (DCMD_OK);
2026 }
2027
2028 typedef struct datafmt {
2029 char *hdr1;
2030 char *hdr2;
2031 char *dashes;
2032 char *fmt;
2033 } datafmt_t;
2034
2035 static datafmt_t kmemfmt[] = {
2036 { "cache ", "name ",
2037 "-------------------------", "%-25s " },
2038 { " buf", " size", "------", "%6u " },
2039 { " buf", "in use", "------", "%6u " },
2040 { " buf", " total", "------", "%6u " },
2041 { " memory", " in use", "----------", "%10lu%c " },
2042 { " alloc", " succeed", "---------", "%9u " },
2043 { "alloc", " fail", "-----", "%5u " },
2044 { NULL, NULL, NULL, NULL }
2045 };
2046
2047 static datafmt_t vmemfmt[] = {
2048 { "vmem ", "name ",
2049 "-------------------------", "%-*s " },
2050 { " memory", " in use", "----------", "%9llu%c " },
2051 { " memory", " total", "-----------", "%10llu%c " },
2052 { " memory", " import", "----------", "%9llu%c " },
2053 { " alloc", " succeed", "---------", "%9llu " },
2054 { "alloc", " fail", "-----", "%5llu " },
2055 { NULL, NULL, NULL, NULL }
2056 };
2057
2058 /*ARGSUSED*/
2059 static int
2060 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
2061 {
2062 short rounds, prounds;
2063
2064 if (KMEM_DUMPCC(ccp)) {
2065 rounds = ccp->cc_dump_rounds;
2066 prounds = ccp->cc_dump_prounds;
2067 } else {
2068 rounds = ccp->cc_rounds;
2069 prounds = ccp->cc_prounds;
2070 }
2071 if (rounds > 0)
2072 *avail += rounds;
2073 if (prounds > 0)
2074 *avail += prounds;
2075
2076 return (WALK_NEXT);
2077 }
2078
2079 /*ARGSUSED*/
2080 static int
2081 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
2082 {
2083 *alloc += ccp->cc_alloc;
2084
2085 return (WALK_NEXT);
2086 }
2087
2088 /*ARGSUSED*/
2089 static int
2090 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
2091 {
2092 *avail += sp->slab_chunks - sp->slab_refcnt;
2093
2094 return (WALK_NEXT);
2095 }
2096
2097 typedef struct kmastat_vmem {
2098 uintptr_t kv_addr;
2099 struct kmastat_vmem *kv_next;
2100 size_t kv_meminuse;
2101 int kv_alloc;
2102 int kv_fail;
2103 } kmastat_vmem_t;
2104
2105 typedef struct kmastat_args {
2106 kmastat_vmem_t **ka_kvpp;
2107 uint_t ka_shift;
2108 } kmastat_args_t;
2109
2110 static int
2111 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap)
2112 {
2113 kmastat_vmem_t **kvpp = kap->ka_kvpp;
2114 kmastat_vmem_t *kv;
2115 datafmt_t *dfp = kmemfmt;
2116 int magsize;
2117
2118 int avail, alloc, total;
2119 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
2120 cp->cache_slabsize;
2121
2122 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
2123 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
2124 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
2125
2126 magsize = kmem_get_magsize(cp);
2127
2128 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
2129 avail = cp->cache_full.ml_total * magsize;
2130 total = cp->cache_buftotal;
2131
2132 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
2133 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
2134 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
2135
2136 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) {
2137 if (kv->kv_addr == (uintptr_t)cp->cache_arena)
2138 goto out;
2139 }
2140
2141 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
2142 kv->kv_next = *kvpp;
2143 kv->kv_addr = (uintptr_t)cp->cache_arena;
2144 *kvpp = kv;
2145 out:
2146 kv->kv_meminuse += meminuse;
2147 kv->kv_alloc += alloc;
2148 kv->kv_fail += cp->cache_alloc_fail;
2149
2150 mdb_printf((dfp++)->fmt, cp->cache_name);
2151 mdb_printf((dfp++)->fmt, cp->cache_bufsize);
2152 mdb_printf((dfp++)->fmt, total - avail);
2153 mdb_printf((dfp++)->fmt, total);
2154 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift,
2155 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2156 kap->ka_shift == KILOS ? 'K' : 'B');
2157 mdb_printf((dfp++)->fmt, alloc);
2158 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
2159 mdb_printf("\n");
2160
2161 return (WALK_NEXT);
2162 }
2163
2164 static int
2165 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap)
2166 {
2167 kmastat_vmem_t *kv = *kap->ka_kvpp;
2168 size_t len;
2169
2170 while (kv != NULL && kv->kv_addr != addr)
2171 kv = kv->kv_next;
2172
2173 if (kv == NULL || kv->kv_alloc == 0)
2174 return (WALK_NEXT);
2175
2176 len = MIN(17, strlen(v->vm_name));
2177
2178 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name,
2179 17 - len, "", "", "", "",
2180 kv->kv_meminuse >> kap->ka_shift,
2181 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2182 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail);
2183
2184 return (WALK_NEXT);
2185 }
2186
2187 /*ARGSUSED*/
2188 static int
2189 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp)
2190 {
2191 datafmt_t *dfp = vmemfmt;
2192 const vmem_kstat_t *vkp = &v->vm_kstat;
2193 uintptr_t paddr;
2194 vmem_t parent;
2195 int ident = 0;
2196
2197 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) {
2198 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
2199 mdb_warn("couldn't trace %p's ancestry", addr);
2200 ident = 0;
2201 break;
2202 }
2203 paddr = (uintptr_t)parent.vm_source;
2204 }
2205
2206 mdb_printf("%*s", ident, "");
2207 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
2208 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp,
2209 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2210 *shiftp == KILOS ? 'K' : 'B');
2211 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp,
2212 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2213 *shiftp == KILOS ? 'K' : 'B');
2214 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp,
2215 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2216 *shiftp == KILOS ? 'K' : 'B');
2217 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
2218 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
2219
2220 mdb_printf("\n");
2221
2222 return (WALK_NEXT);
2223 }
2224
2225 /*ARGSUSED*/
2226 int
2227 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2228 {
2229 kmastat_vmem_t *kv = NULL;
2230 datafmt_t *dfp;
2231 kmastat_args_t ka;
2232
2233 ka.ka_shift = 0;
2234 if (mdb_getopts(argc, argv,
2235 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift,
2236 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift,
2237 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc)
2238 return (DCMD_USAGE);
2239
2240 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2241 mdb_printf("%s ", dfp->hdr1);
2242 mdb_printf("\n");
2243
2244 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2245 mdb_printf("%s ", dfp->hdr2);
2246 mdb_printf("\n");
2247
2248 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2249 mdb_printf("%s ", dfp->dashes);
2250 mdb_printf("\n");
2251
2252 ka.ka_kvpp = &kv;
2253 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) {
2254 mdb_warn("can't walk 'kmem_cache'");
2255 return (DCMD_ERR);
2256 }
2257
2258 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2259 mdb_printf("%s ", dfp->dashes);
2260 mdb_printf("\n");
2261
2262 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) {
2263 mdb_warn("can't walk 'vmem'");
2264 return (DCMD_ERR);
2265 }
2266
2267 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2268 mdb_printf("%s ", dfp->dashes);
2269 mdb_printf("\n");
2270
2271 mdb_printf("\n");
2272
2273 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2274 mdb_printf("%s ", dfp->hdr1);
2275 mdb_printf("\n");
2276
2277 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2278 mdb_printf("%s ", dfp->hdr2);
2279 mdb_printf("\n");
2280
2281 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2282 mdb_printf("%s ", dfp->dashes);
2283 mdb_printf("\n");
2284
2285 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) {
2286 mdb_warn("can't walk 'vmem'");
2287 return (DCMD_ERR);
2288 }
2289
2290 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2291 mdb_printf("%s ", dfp->dashes);
2292 mdb_printf("\n");
2293 return (DCMD_OK);
2294 }
2295
2296 /*
2297 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made
2298 * up of a set of 'struct seg's. We could just scan each seg en masse, but
2299 * unfortunately, a few of the segs are both large and sparse, so we could
2300 * spend quite a bit of time scanning VAs which have no backing pages.
2301 *
2302 * So for the few very sparse segs, we skip the segment itself, and scan
2303 * the allocated vmem_segs in the vmem arena which manages that part of kas.
2304 * Currently, we do this for:
2305 *
2306 * SEG VMEM ARENA
2307 * kvseg heap_arena
2308 * kvseg32 heap32_arena
2309 * kvseg_core heap_core_arena
2310 *
2311 * In addition, we skip the segkpm segment in its entirety, since it is very
2312 * sparse, and contains no new kernel data.
2313 */
2314 typedef struct kgrep_walk_data {
2315 kgrep_cb_func *kg_cb;
2316 void *kg_cbdata;
2317 uintptr_t kg_kvseg;
2318 uintptr_t kg_kvseg32;
2319 uintptr_t kg_kvseg_core;
2320 uintptr_t kg_segkpm;
2321 uintptr_t kg_heap_lp_base;
2322 uintptr_t kg_heap_lp_end;
2323 } kgrep_walk_data_t;
2324
2325 static int
2326 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
2327 {
2328 uintptr_t base = (uintptr_t)seg->s_base;
2329
2330 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
2331 addr == kg->kg_kvseg_core)
2332 return (WALK_NEXT);
2333
2334 if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
2335 return (WALK_NEXT);
2336
2337 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
2338 }
2339
2340 /*ARGSUSED*/
2341 static int
2342 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2343 {
2344 /*
2345 * skip large page heap address range - it is scanned by walking
2346 * allocated vmem_segs in the heap_lp_arena
2347 */
2348 if (seg->vs_start == kg->kg_heap_lp_base &&
2349 seg->vs_end == kg->kg_heap_lp_end)
2350 return (WALK_NEXT);
2351
2352 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2353 }
2354
2355 /*ARGSUSED*/
2356 static int
2357 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2358 {
2359 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2360 }
2361
2362 static int
2363 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
2364 {
2365 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
2366
2367 if (strcmp(vmem->vm_name, "heap") != 0 &&
2368 strcmp(vmem->vm_name, "heap32") != 0 &&
2369 strcmp(vmem->vm_name, "heap_core") != 0 &&
2370 strcmp(vmem->vm_name, "heap_lp") != 0)
2371 return (WALK_NEXT);
2372
2373 if (strcmp(vmem->vm_name, "heap_lp") == 0)
2374 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
2375
2376 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
2377 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
2378 return (WALK_ERR);
2379 }
2380
2381 return (WALK_NEXT);
2382 }
2383
2384 int
2385 kgrep_subr(kgrep_cb_func *cb, void *cbdata)
2386 {
2387 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
2388 kgrep_walk_data_t kg;
2389
2390 if (mdb_get_state() == MDB_STATE_RUNNING) {
2391 mdb_warn("kgrep can only be run on a system "
2392 "dump or under kmdb; see dumpadm(1M)\n");
2393 return (DCMD_ERR);
2394 }
2395
2396 if (mdb_lookup_by_name("kas", &kas) == -1) {
2397 mdb_warn("failed to locate 'kas' symbol\n");
2398 return (DCMD_ERR);
2399 }
2400
2401 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
2402 mdb_warn("failed to locate 'kvseg' symbol\n");
2403 return (DCMD_ERR);
2404 }
2405
2406 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
2407 mdb_warn("failed to locate 'kvseg32' symbol\n");
2408 return (DCMD_ERR);
2409 }
2410
2411 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
2412 mdb_warn("failed to locate 'kvseg_core' symbol\n");
2413 return (DCMD_ERR);
2414 }
2415
2416 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
2417 mdb_warn("failed to locate 'segkpm_ops' symbol\n");
2418 return (DCMD_ERR);
2419 }
2420
2421 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
2422 mdb_warn("failed to read 'heap_lp_base'\n");
2423 return (DCMD_ERR);
2424 }
2425
2426 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
2427 mdb_warn("failed to read 'heap_lp_end'\n");
2428 return (DCMD_ERR);
2429 }
2430
2431 kg.kg_cb = cb;
2432 kg.kg_cbdata = cbdata;
2433 kg.kg_kvseg = (uintptr_t)kvseg.st_value;
2434 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
2435 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
2436 kg.kg_segkpm = (uintptr_t)segkpm.st_value;
2437
2438 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
2439 &kg, kas.st_value) == -1) {
2440 mdb_warn("failed to walk kas segments");
2441 return (DCMD_ERR);
2442 }
2443
2444 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
2445 mdb_warn("failed to walk heap/heap32 vmem arenas");
2446 return (DCMD_ERR);
2447 }
2448
2449 return (DCMD_OK);
2450 }
2451
2452 size_t
2453 kgrep_subr_pagesize(void)
2454 {
2455 return (PAGESIZE);
2456 }
2457
2458 typedef struct file_walk_data {
2459 struct uf_entry *fw_flist;
2460 int fw_flistsz;
2461 int fw_ndx;
2462 int fw_nofiles;
2463 } file_walk_data_t;
2464
2465 typedef struct mdb_file_proc {
2466 struct {
2467 struct {
2468 int fi_nfiles;
2469 uf_entry_t *volatile fi_list;
2470 } u_finfo;
2471 } p_user;
2472 } mdb_file_proc_t;
2473
2474 int
2475 file_walk_init(mdb_walk_state_t *wsp)
2476 {
2477 file_walk_data_t *fw;
2478 mdb_file_proc_t p;
2479
2480 if (wsp->walk_addr == NULL) {
2481 mdb_warn("file walk doesn't support global walks\n");
2482 return (WALK_ERR);
2483 }
2484
2485 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
2486
2487 if (mdb_ctf_vread(&p, "proc_t", "mdb_file_proc_t",
2488 wsp->walk_addr, 0) == -1) {
2489 mdb_free(fw, sizeof (file_walk_data_t));
2490 mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
2491 return (WALK_ERR);
2492 }
2493
2494 if (p.p_user.u_finfo.fi_nfiles == 0) {
2495 mdb_free(fw, sizeof (file_walk_data_t));
2496 return (WALK_DONE);
2497 }
2498
2499 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
2500 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
2501 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
2502
2503 if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
2504 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
2505 mdb_warn("failed to read file array at %p",
2506 p.p_user.u_finfo.fi_list);
2507 mdb_free(fw->fw_flist, fw->fw_flistsz);
2508 mdb_free(fw, sizeof (file_walk_data_t));
2509 return (WALK_ERR);
2510 }
2511
2512 fw->fw_ndx = 0;
2513 wsp->walk_data = fw;
2514
2515 return (WALK_NEXT);
2516 }
2517
2518 int
2519 file_walk_step(mdb_walk_state_t *wsp)
2520 {
2521 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2522 struct file file;
2523 uintptr_t fp;
2524
2525 again:
2526 if (fw->fw_ndx == fw->fw_nofiles)
2527 return (WALK_DONE);
2528
2529 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL)
2530 goto again;
2531
2532 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2533 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2534 }
2535
2536 int
2537 allfile_walk_step(mdb_walk_state_t *wsp)
2538 {
2539 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2540 struct file file;
2541 uintptr_t fp;
2542
2543 if (fw->fw_ndx == fw->fw_nofiles)
2544 return (WALK_DONE);
2545
2546 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL)
2547 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2548 else
2549 bzero(&file, sizeof (file));
2550
2551 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2552 }
2553
2554 void
2555 file_walk_fini(mdb_walk_state_t *wsp)
2556 {
2557 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2558
2559 mdb_free(fw->fw_flist, fw->fw_flistsz);
2560 mdb_free(fw, sizeof (file_walk_data_t));
2561 }
2562
2563 int
2564 port_walk_init(mdb_walk_state_t *wsp)
2565 {
2566 if (wsp->walk_addr == NULL) {
2567 mdb_warn("port walk doesn't support global walks\n");
2568 return (WALK_ERR);
2569 }
2570
2571 if (mdb_layered_walk("file", wsp) == -1) {
2572 mdb_warn("couldn't walk 'file'");
2573 return (WALK_ERR);
2574 }
2575 return (WALK_NEXT);
2576 }
2577
2578 int
2579 port_walk_step(mdb_walk_state_t *wsp)
2580 {
2581 struct vnode vn;
2582 uintptr_t vp;
2583 uintptr_t pp;
2584 struct port port;
2585
2586 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
2587 if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2588 mdb_warn("failed to read vnode_t at %p", vp);
2589 return (WALK_ERR);
2590 }
2591 if (vn.v_type != VPORT)
2592 return (WALK_NEXT);
2593
2594 pp = (uintptr_t)vn.v_data;
2595 if (mdb_vread(&port, sizeof (port), pp) == -1) {
2596 mdb_warn("failed to read port_t at %p", pp);
2597 return (WALK_ERR);
2598 }
2599 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
2600 }
2601
2602 typedef struct portev_walk_data {
2603 list_node_t *pev_node;
2604 list_node_t *pev_last;
2605 size_t pev_offset;
2606 } portev_walk_data_t;
2607
2608 int
2609 portev_walk_init(mdb_walk_state_t *wsp)
2610 {
2611 portev_walk_data_t *pevd;
2612 struct port port;
2613 struct vnode vn;
2614 struct list *list;
2615 uintptr_t vp;
2616
2617 if (wsp->walk_addr == NULL) {
2618 mdb_warn("portev walk doesn't support global walks\n");
2619 return (WALK_ERR);
2620 }
2621
2622 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
2623
2624 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
2625 mdb_free(pevd, sizeof (portev_walk_data_t));
2626 mdb_warn("failed to read port structure at %p", wsp->walk_addr);
2627 return (WALK_ERR);
2628 }
2629
2630 vp = (uintptr_t)port.port_vnode;
2631 if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2632 mdb_free(pevd, sizeof (portev_walk_data_t));
2633 mdb_warn("failed to read vnode_t at %p", vp);
2634 return (WALK_ERR);
2635 }
2636
2637 if (vn.v_type != VPORT) {
2638 mdb_free(pevd, sizeof (portev_walk_data_t));
2639 mdb_warn("input address (%p) does not point to an event port",
2640 wsp->walk_addr);
2641 return (WALK_ERR);
2642 }
2643
2644 if (port.port_queue.portq_nent == 0) {
2645 mdb_free(pevd, sizeof (portev_walk_data_t));
2646 return (WALK_DONE);
2647 }
2648 list = &port.port_queue.portq_list;
2649 pevd->pev_offset = list->list_offset;
2650 pevd->pev_last = list->list_head.list_prev;
2651 pevd->pev_node = list->list_head.list_next;
2652 wsp->walk_data = pevd;
2653 return (WALK_NEXT);
2654 }
2655
2656 int
2657 portev_walk_step(mdb_walk_state_t *wsp)
2658 {
2659 portev_walk_data_t *pevd;
2660 struct port_kevent ev;
2661 uintptr_t evp;
2662
2663 pevd = (portev_walk_data_t *)wsp->walk_data;
2664
2665 if (pevd->pev_last == NULL)
2666 return (WALK_DONE);
2667 if (pevd->pev_node == pevd->pev_last)
2668 pevd->pev_last = NULL; /* last round */
2669
2670 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
2671 if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
2672 mdb_warn("failed to read port_kevent at %p", evp);
2673 return (WALK_DONE);
2674 }
2675 pevd->pev_node = ev.portkev_node.list_next;
2676 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
2677 }
2678
2679 void
2680 portev_walk_fini(mdb_walk_state_t *wsp)
2681 {
2682 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
2683
2684 if (pevd != NULL)
2685 mdb_free(pevd, sizeof (portev_walk_data_t));
2686 }
2687
2688 typedef struct proc_walk_data {
2689 uintptr_t *pw_stack;
2690 int pw_depth;
2691 int pw_max;
2692 } proc_walk_data_t;
2693
2694 int
2695 proc_walk_init(mdb_walk_state_t *wsp)
2696 {
2697 GElf_Sym sym;
2698 proc_walk_data_t *pw;
2699
2700 if (wsp->walk_addr == NULL) {
2701 if (mdb_lookup_by_name("p0", &sym) == -1) {
2702 mdb_warn("failed to read 'practive'");
2703 return (WALK_ERR);
2704 }
2705 wsp->walk_addr = (uintptr_t)sym.st_value;
2706 }
2707
2708 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
2709
2710 if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
2711 mdb_warn("failed to read 'nproc'");
2712 mdb_free(pw, sizeof (pw));
2713 return (WALK_ERR);
2714 }
2715
2716 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
2717 wsp->walk_data = pw;
2718
2719 return (WALK_NEXT);
2720 }
2721
2722 typedef struct mdb_walk_proc {
2723 struct proc *p_child;
2724 struct proc *p_sibling;
2725 } mdb_walk_proc_t;
2726
2727 int
2728 proc_walk_step(mdb_walk_state_t *wsp)
2729 {
2730 proc_walk_data_t *pw = wsp->walk_data;
2731 uintptr_t addr = wsp->walk_addr;
2732 uintptr_t cld, sib;
2733 int status;
2734 mdb_walk_proc_t pr;
2735
2736 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2737 addr, 0) == -1) {
2738 mdb_warn("failed to read proc at %p", addr);
2739 return (WALK_DONE);
2740 }
2741
2742 cld = (uintptr_t)pr.p_child;
2743 sib = (uintptr_t)pr.p_sibling;
2744
2745 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
2746 pw->pw_depth--;
2747 goto sib;
2748 }
2749
2750 /*
2751 * Always pass NULL as the local copy pointer. Consumers
2752 * should use mdb_ctf_vread() to read their own minimal
2753 * version of proc_t. Thus minimizing the chance of breakage
2754 * with older crash dumps.
2755 */
2756 status = wsp->walk_callback(addr, NULL, wsp->walk_cbdata);
2757
2758 if (status != WALK_NEXT)
2759 return (status);
2760
2761 if ((wsp->walk_addr = cld) != NULL) {
2762 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2763 cld, 0) == -1) {
2764 mdb_warn("proc %p has invalid p_child %p; skipping\n",
2765 addr, cld);
2766 goto sib;
2767 }
2768
2769 pw->pw_stack[pw->pw_depth++] = addr;
2770
2771 if (pw->pw_depth == pw->pw_max) {
2772 mdb_warn("depth %d exceeds max depth; try again\n",
2773 pw->pw_depth);
2774 return (WALK_DONE);
2775 }
2776 return (WALK_NEXT);
2777 }
2778
2779 sib:
2780 /*
2781 * We know that p0 has no siblings, and if another starting proc
2782 * was given, we don't want to walk its siblings anyway.
2783 */
2784 if (pw->pw_depth == 0)
2785 return (WALK_DONE);
2786
2787 if (sib != NULL && mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2788 sib, 0) == -1) {
2789 mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
2790 addr, sib);
2791 sib = NULL;
2792 }
2793
2794 if ((wsp->walk_addr = sib) == NULL) {
2795 if (pw->pw_depth > 0) {
2796 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
2797 return (WALK_NEXT);
2798 }
2799 return (WALK_DONE);
2800 }
2801
2802 return (WALK_NEXT);
2803 }
2804
2805 void
2806 proc_walk_fini(mdb_walk_state_t *wsp)
2807 {
2808 proc_walk_data_t *pw = wsp->walk_data;
2809
2810 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
2811 mdb_free(pw, sizeof (proc_walk_data_t));
2812 }
2813
2814 int
2815 task_walk_init(mdb_walk_state_t *wsp)
2816 {
2817 task_t task;
2818
2819 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
2820 mdb_warn("failed to read task at %p", wsp->walk_addr);
2821 return (WALK_ERR);
2822 }
2823 wsp->walk_addr = (uintptr_t)task.tk_memb_list;
2824 wsp->walk_data = task.tk_memb_list;
2825 return (WALK_NEXT);
2826 }
2827
2828 typedef struct mdb_task_proc {
2829 struct proc *p_tasknext;
2830 } mdb_task_proc_t;
2831
2832 int
2833 task_walk_step(mdb_walk_state_t *wsp)
2834 {
2835 mdb_task_proc_t proc;
2836 int status;
2837
2838 if (mdb_ctf_vread(&proc, "proc_t", "mdb_task_proc_t",
2839 wsp->walk_addr, 0) == -1) {
2840 mdb_warn("failed to read proc at %p", wsp->walk_addr);
2841 return (WALK_DONE);
2842 }
2843
2844 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
2845
2846 if (proc.p_tasknext == wsp->walk_data)
2847 return (WALK_DONE);
2848
2849 wsp->walk_addr = (uintptr_t)proc.p_tasknext;
2850 return (status);
2851 }
2852
2853 int
2854 project_walk_init(mdb_walk_state_t *wsp)
2855 {
2856 if (wsp->walk_addr == NULL) {
2857 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
2858 mdb_warn("failed to read 'proj0p'");
2859 return (WALK_ERR);
2860 }
2861 }
2862 wsp->walk_data = (void *)wsp->walk_addr;
2863 return (WALK_NEXT);
2864 }
2865
2866 int
2867 project_walk_step(mdb_walk_state_t *wsp)
2868 {
2869 uintptr_t addr = wsp->walk_addr;
2870 kproject_t pj;
2871 int status;
2872
2873 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
2874 mdb_warn("failed to read project at %p", addr);
2875 return (WALK_DONE);
2876 }
2877 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
2878 if (status != WALK_NEXT)
2879 return (status);
2880 wsp->walk_addr = (uintptr_t)pj.kpj_next;
2881 if ((void *)wsp->walk_addr == wsp->walk_data)
2882 return (WALK_DONE);
2883 return (WALK_NEXT);
2884 }
2885
2886 static int
2887 generic_walk_step(mdb_walk_state_t *wsp)
2888 {
2889 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
2890 wsp->walk_cbdata));
2891 }
2892
2893 static int
2894 cpu_walk_cmp(const void *l, const void *r)
2895 {
2896 uintptr_t lhs = *((uintptr_t *)l);
2897 uintptr_t rhs = *((uintptr_t *)r);
2898 cpu_t lcpu, rcpu;
2899
2900 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
2901 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
2902
2903 if (lcpu.cpu_id < rcpu.cpu_id)
2904 return (-1);
2905
2906 if (lcpu.cpu_id > rcpu.cpu_id)
2907 return (1);
2908
2909 return (0);
2910 }
2911
2912 typedef struct cpu_walk {
2913 uintptr_t *cw_array;
2914 int cw_ndx;
2915 } cpu_walk_t;
2916
2917 int
2918 cpu_walk_init(mdb_walk_state_t *wsp)
2919 {
2920 cpu_walk_t *cw;
2921 int max_ncpus, i = 0;
2922 uintptr_t current, first;
2923 cpu_t cpu, panic_cpu;
2924 uintptr_t panicstr, addr;
2925 GElf_Sym sym;
2926
2927 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
2928
2929 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
2930 mdb_warn("failed to read 'max_ncpus'");
2931 return (WALK_ERR);
2932 }
2933
2934 if (mdb_readvar(&panicstr, "panicstr") == -1) {
2935 mdb_warn("failed to read 'panicstr'");
2936 return (WALK_ERR);
2937 }
2938
2939 if (panicstr != NULL) {
2940 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
2941 mdb_warn("failed to find 'panic_cpu'");
2942 return (WALK_ERR);
2943 }
2944
2945 addr = (uintptr_t)sym.st_value;
2946
2947 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
2948 mdb_warn("failed to read 'panic_cpu'");
2949 return (WALK_ERR);
2950 }
2951 }
2952
2953 /*
2954 * Unfortunately, there is no platform-independent way to walk
2955 * CPUs in ID order. We therefore loop through in cpu_next order,
2956 * building an array of CPU pointers which will subsequently be
2957 * sorted.
2958 */
2959 cw->cw_array =
2960 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
2961
2962 if (mdb_readvar(&first, "cpu_list") == -1) {
2963 mdb_warn("failed to read 'cpu_list'");
2964 return (WALK_ERR);
2965 }
2966
2967 current = first;
2968 do {
2969 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
2970 mdb_warn("failed to read cpu at %p", current);
2971 return (WALK_ERR);
2972 }
2973
2974 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) {
2975 cw->cw_array[i++] = addr;
2976 } else {
2977 cw->cw_array[i++] = current;
2978 }
2979 } while ((current = (uintptr_t)cpu.cpu_next) != first);
2980
2981 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
2982 wsp->walk_data = cw;
2983
2984 return (WALK_NEXT);
2985 }
2986
2987 int
2988 cpu_walk_step(mdb_walk_state_t *wsp)
2989 {
2990 cpu_walk_t *cw = wsp->walk_data;
2991 cpu_t cpu;
2992 uintptr_t addr = cw->cw_array[cw->cw_ndx++];
2993
2994 if (addr == NULL)
2995 return (WALK_DONE);
2996
2997 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
2998 mdb_warn("failed to read cpu at %p", addr);
2999 return (WALK_DONE);
3000 }
3001
3002 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
3003 }
3004
3005 typedef struct cpuinfo_data {
3006 intptr_t cid_cpu;
3007 uintptr_t **cid_ithr;
3008 char cid_print_head;
3009 char cid_print_thr;
3010 char cid_print_ithr;
3011 char cid_print_flags;
3012 } cpuinfo_data_t;
3013
3014 int
3015 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
3016 {
3017 cpu_t c;
3018 int id;
3019 uint8_t pil;
3020
3021 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
3022 return (WALK_NEXT);
3023
3024 if (thr->t_bound_cpu == NULL) {
3025 mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
3026 return (WALK_NEXT);
3027 }
3028
3029 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
3030
3031 if ((id = c.cpu_id) >= NCPU) {
3032 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
3033 thr->t_bound_cpu, id, NCPU);
3034 return (WALK_NEXT);
3035 }
3036
3037 if ((pil = thr->t_pil) >= NINTR) {
3038 mdb_warn("thread %p has pil (%d) greater than %d\n",
3039 addr, pil, NINTR);
3040 return (WALK_NEXT);
3041 }
3042
3043 if (cid->cid_ithr[id][pil] != NULL) {
3044 mdb_warn("CPU %d has multiple threads at pil %d (at least "
3045 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
3046 return (WALK_NEXT);
3047 }
3048
3049 cid->cid_ithr[id][pil] = addr;
3050
3051 return (WALK_NEXT);
3052 }
3053
3054 #define CPUINFO_IDWIDTH 3
3055 #define CPUINFO_FLAGWIDTH 9
3056
3057 #ifdef _LP64
3058 #if defined(__amd64)
3059 #define CPUINFO_TWIDTH 16
3060 #define CPUINFO_CPUWIDTH 16
3061 #else
3062 #define CPUINFO_CPUWIDTH 11
3063 #define CPUINFO_TWIDTH 11
3064 #endif
3065 #else
3066 #define CPUINFO_CPUWIDTH 8
3067 #define CPUINFO_TWIDTH 8
3068 #endif
3069
3070 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
3071 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
3072 #define CPUINFO_ITHRDELT 4
3073
3074 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \
3075 flagline < nflaglines ? flagbuf[flagline++] : "")
3076
3077 typedef struct mdb_cpuinfo_proc {
3078 struct {
3079 char u_comm[MAXCOMLEN + 1];
3080 } p_user;
3081 } mdb_cpuinfo_proc_t;
3082
3083 int
3084 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
3085 {
3086 kthread_t t;
3087 disp_t disp;
3088 mdb_cpuinfo_proc_t p;
3089 uintptr_t pinned;
3090 char **flagbuf;
3091 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
3092
3093 const char *flags[] = {
3094 "RUNNING", "READY", "QUIESCED", "EXISTS",
3095 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
3096 "SPARE", "FAULTED", NULL
3097 };
3098
3099 if (cid->cid_cpu != -1) {
3100 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
3101 return (WALK_NEXT);
3102
3103 /*
3104 * Set cid_cpu to -1 to indicate that we found a matching CPU.
3105 */
3106 cid->cid_cpu = -1;
3107 rval = WALK_DONE;
3108 }
3109
3110 if (cid->cid_print_head) {
3111 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
3112 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
3113 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
3114 "PROC");
3115 cid->cid_print_head = FALSE;
3116 }
3117
3118 bspl = cpu->cpu_base_spl;
3119
3120 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
3121 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
3122 return (WALK_ERR);
3123 }
3124
3125 mdb_printf("%3d %0*p %3x %4d %4d ",
3126 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
3127 disp.disp_nrunnable, bspl);
3128
3129 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
3130 mdb_printf("%3d ", t.t_pri);
3131 } else {
3132 mdb_printf("%3s ", "-");
3133 }
3134
3135 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
3136 cpu->cpu_kprunrun ? "yes" : "no");
3137
3138 if (cpu->cpu_last_swtch) {
3139 mdb_printf("t-%-4d ",
3140 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch);
3141 } else {
3142 mdb_printf("%-6s ", "-");
3143 }
3144
3145 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
3146
3147 if (cpu->cpu_thread == cpu->cpu_idle_thread)
3148 mdb_printf(" (idle)\n");
3149 else if (cpu->cpu_thread == NULL)
3150 mdb_printf(" -\n");
3151 else {
3152 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t",
3153 (uintptr_t)t.t_procp, 0) != -1) {
3154 mdb_printf(" %s\n", p.p_user.u_comm);
3155 } else {
3156 mdb_printf(" ?\n");
3157 }
3158 }
3159
3160 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
3161
3162 if (cid->cid_print_flags) {
3163 int first = 1, i, j, k;
3164 char *s;
3165
3166 cid->cid_print_head = TRUE;
3167
3168 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
3169 if (!(cpu->cpu_flags & i))
3170 continue;
3171
3172 if (first) {
3173 s = mdb_alloc(CPUINFO_THRDELT + 1,
3174 UM_GC | UM_SLEEP);
3175
3176 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
3177 "%*s|%*s", CPUINFO_FLAGDELT, "",
3178 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
3179 flagbuf[nflaglines++] = s;
3180 }
3181
3182 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
3183 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
3184 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
3185 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
3186 first ? "<--+" : "");
3187
3188 for (k = strlen(s); k < CPUINFO_THRDELT; k++)
3189 s[k] = ' ';
3190 s[k] = '\0';
3191
3192 flagbuf[nflaglines++] = s;
3193 first = 0;
3194 }
3195 }
3196
3197 if (cid->cid_print_ithr) {
3198 int i, found_one = FALSE;
3199 int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
3200
3201 for (i = NINTR - 1; i >= 0; i--) {
3202 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
3203
3204 if (iaddr == NULL)
3205 continue;
3206
3207 if (!found_one) {
3208 found_one = TRUE;
3209
3210 CPUINFO_INDENT;
3211 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
3212 CPUINFO_ITHRDELT, "");
3213
3214 CPUINFO_INDENT;
3215 mdb_printf("%c%*s+--> %3s %s\n",
3216 print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
3217 "", "PIL", "THREAD");
3218 }
3219
3220 if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
3221 mdb_warn("failed to read kthread_t at %p",
3222 iaddr);
3223 return (WALK_ERR);
3224 }
3225
3226 CPUINFO_INDENT;
3227 mdb_printf("%c%*s %3d %0*p\n",
3228 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
3229 t.t_pil, CPUINFO_TWIDTH, iaddr);
3230
3231 pinned = (uintptr_t)t.t_intr;
3232 }
3233
3234 if (found_one && pinned != NULL) {
3235 cid->cid_print_head = TRUE;
3236 (void) strcpy(p.p_user.u_comm, "?");
3237
3238 if (mdb_vread(&t, sizeof (t),
3239 (uintptr_t)pinned) == -1) {
3240 mdb_warn("failed to read kthread_t at %p",
3241 pinned);
3242 return (WALK_ERR);
3243 }
3244 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t",
3245 (uintptr_t)t.t_procp, 0) == -1) {
3246 mdb_warn("failed to read proc_t at %p",
3247 t.t_procp);
3248 return (WALK_ERR);
3249 }
3250
3251 CPUINFO_INDENT;
3252 mdb_printf("%c%*s %3s %0*p %s\n",
3253 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
3254 CPUINFO_TWIDTH, pinned,
3255 pinned == (uintptr_t)cpu->cpu_idle_thread ?
3256 "(idle)" : p.p_user.u_comm);
3257 }
3258 }
3259
3260 if (disp.disp_nrunnable && cid->cid_print_thr) {
3261 dispq_t *dq;
3262
3263 int i, npri = disp.disp_npri;
3264
3265 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
3266
3267 if (mdb_vread(dq, sizeof (dispq_t) * npri,
3268 (uintptr_t)disp.disp_q) == -1) {
3269 mdb_warn("failed to read dispq_t at %p", disp.disp_q);
3270 return (WALK_ERR);
3271 }
3272
3273 CPUINFO_INDENT;
3274 mdb_printf("|\n");
3275
3276 CPUINFO_INDENT;
3277 mdb_printf("+--> %3s %-*s %s\n", "PRI",
3278 CPUINFO_TWIDTH, "THREAD", "PROC");
3279
3280 for (i = npri - 1; i >= 0; i--) {
3281 uintptr_t taddr = (uintptr_t)dq[i].dq_first;
3282
3283 while (taddr != NULL) {
3284 if (mdb_vread(&t, sizeof (t), taddr) == -1) {
3285 mdb_warn("failed to read kthread_t "
3286 "at %p", taddr);
3287 return (WALK_ERR);
3288 }
3289 if (mdb_ctf_vread(&p, "proc_t",
3290 "mdb_cpuinfo_proc_t",
3291 (uintptr_t)t.t_procp, 0) == -1) {
3292 mdb_warn("failed to read proc_t at %p",
3293 t.t_procp);
3294 return (WALK_ERR);
3295 }
3296
3297 CPUINFO_INDENT;
3298 mdb_printf(" %3d %0*p %s\n", t.t_pri,
3299 CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
3300
3301 taddr = (uintptr_t)t.t_link;
3302 }
3303 }
3304 cid->cid_print_head = TRUE;
3305 }
3306
3307 while (flagline < nflaglines)
3308 mdb_printf("%s\n", flagbuf[flagline++]);
3309
3310 if (cid->cid_print_head)
3311 mdb_printf("\n");
3312
3313 return (rval);
3314 }
3315
3316 int
3317 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3318 {
3319 uint_t verbose = FALSE;
3320 cpuinfo_data_t cid;
3321
3322 cid.cid_print_ithr = FALSE;
3323 cid.cid_print_thr = FALSE;
3324 cid.cid_print_flags = FALSE;
3325 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
3326 cid.cid_cpu = -1;
3327
3328 if (flags & DCMD_ADDRSPEC)
3329 cid.cid_cpu = addr;
3330
3331 if (mdb_getopts(argc, argv,
3332 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
3333 return (DCMD_USAGE);
3334
3335 if (verbose) {
3336 cid.cid_print_ithr = TRUE;
3337 cid.cid_print_thr = TRUE;
3338 cid.cid_print_flags = TRUE;
3339 cid.cid_print_head = TRUE;
3340 }
3341
3342 if (cid.cid_print_ithr) {
3343 int i;
3344
3345 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
3346 * NCPU, UM_SLEEP | UM_GC);
3347
3348 for (i = 0; i < NCPU; i++)
3349 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
3350 NINTR, UM_SLEEP | UM_GC);
3351
3352 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
3353 &cid) == -1) {
3354 mdb_warn("couldn't walk thread");
3355 return (DCMD_ERR);
3356 }
3357 }
3358
3359 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
3360 mdb_warn("can't walk cpus");
3361 return (DCMD_ERR);
3362 }
3363
3364 if (cid.cid_cpu != -1) {
3365 /*
3366 * We didn't find this CPU when we walked through the CPUs
3367 * (i.e. the address specified doesn't show up in the "cpu"
3368 * walk). However, the specified address may still correspond
3369 * to a valid cpu_t (for example, if the specified address is
3370 * the actual panicking cpu_t and not the cached panic_cpu).
3371 * Point is: even if we didn't find it, we still want to try
3372 * to print the specified address as a cpu_t.
3373 */
3374 cpu_t cpu;
3375
3376 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
3377 mdb_warn("%p is neither a valid CPU ID nor a "
3378 "valid cpu_t address\n", cid.cid_cpu);
3379 return (DCMD_ERR);
3380 }
3381
3382 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
3383 }
3384
3385 return (DCMD_OK);
3386 }
3387
3388 /*ARGSUSED*/
3389 int
3390 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3391 {
3392 int i;
3393
3394 if (!(flags & DCMD_ADDRSPEC))
3395 return (DCMD_USAGE);
3396
3397 for (i = 0; i < sizeof (addr) * NBBY; i++)
3398 mdb_printf("%p\n", addr ^ (1UL << i));
3399
3400 return (DCMD_OK);
3401 }
3402
3403 typedef struct mdb_as2proc_proc {
3404 struct as *p_as;
3405 } mdb_as2proc_proc_t;
3406
3407 /*ARGSUSED*/
3408 int
3409 as2proc_walk(uintptr_t addr, const void *ignored, struct as **asp)
3410 {
3411 mdb_as2proc_proc_t p;
3412
3413 mdb_ctf_vread(&p, "proc_t", "mdb_as2proc_proc_t", addr, 0);
3414
3415 if (p.p_as == *asp)
3416 mdb_printf("%p\n", addr);
3417 return (WALK_NEXT);
3418 }
3419
3420 /*ARGSUSED*/
3421 int
3422 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3423 {
3424 if (!(flags & DCMD_ADDRSPEC) || argc != 0)
3425 return (DCMD_USAGE);
3426
3427 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
3428 mdb_warn("failed to walk proc");
3429 return (DCMD_ERR);
3430 }
3431
3432 return (DCMD_OK);
3433 }
3434
3435 typedef struct mdb_ptree_proc {
3436 struct proc *p_parent;
3437 struct {
3438 char u_comm[MAXCOMLEN + 1];
3439 } p_user;
3440 } mdb_ptree_proc_t;
3441
3442 /*ARGSUSED*/
3443 int
3444 ptree_walk(uintptr_t addr, const void *ignored, void *data)
3445 {
3446 mdb_ptree_proc_t proc;
3447 mdb_ptree_proc_t parent;
3448 int ident = 0;
3449 uintptr_t paddr;
3450
3451 mdb_ctf_vread(&proc, "proc_t", "mdb_ptree_proc_t", addr, 0);
3452
3453 for (paddr = (uintptr_t)proc.p_parent; paddr != NULL; ident += 5) {
3454 mdb_ctf_vread(&parent, "proc_t", "mdb_ptree_proc_t", paddr, 0);
3455 paddr = (uintptr_t)parent.p_parent;
3456 }
3457
3458 mdb_inc_indent(ident);
3459 mdb_printf("%0?p %s\n", addr, proc.p_user.u_comm);
3460 mdb_dec_indent(ident);
3461
3462 return (WALK_NEXT);
3463 }
3464
3465 void
3466 ptree_ancestors(uintptr_t addr, uintptr_t start)
3467 {
3468 mdb_ptree_proc_t p;
3469
3470 if (mdb_ctf_vread(&p, "proc_t", "mdb_ptree_proc_t", addr, 0) == -1) {
3471 mdb_warn("couldn't read ancestor at %p", addr);
3472 return;
3473 }
3474
3475 if (p.p_parent != NULL)
3476 ptree_ancestors((uintptr_t)p.p_parent, start);
3477
3478 if (addr != start)
3479 (void) ptree_walk(addr, &p, NULL);
3480 }
3481
3482 /*ARGSUSED*/
3483 int
3484 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3485 {
3486 if (!(flags & DCMD_ADDRSPEC))
3487 addr = NULL;
3488 else
3489 ptree_ancestors(addr, addr);
3490
3491 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) {
3492 mdb_warn("couldn't walk 'proc'");
3493 return (DCMD_ERR);
3494 }
3495
3496 return (DCMD_OK);
3497 }
3498
3499 typedef struct mdb_fd_proc {
3500 struct {
3501 struct {
3502 int fi_nfiles;
3503 uf_entry_t *volatile fi_list;
3504 } u_finfo;
3505 } p_user;
3506 } mdb_fd_proc_t;
3507
3508 /*ARGSUSED*/
3509 static int
3510 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3511 {
3512 int fdnum;
3513 const mdb_arg_t *argp = &argv[0];
3514 mdb_fd_proc_t p;
3515 uf_entry_t uf;
3516
3517 if ((flags & DCMD_ADDRSPEC) == 0) {
3518 mdb_warn("fd doesn't give global information\n");
3519 return (DCMD_ERR);
3520 }
3521 if (argc != 1)
3522 return (DCMD_USAGE);
3523
3524 if (argp->a_type == MDB_TYPE_IMMEDIATE)
3525 fdnum = argp->a_un.a_val;
3526 else
3527 fdnum = mdb_strtoull(argp->a_un.a_str);
3528
3529 if (mdb_ctf_vread(&p, "proc_t", "mdb_fd_proc_t", addr, 0) == -1) {
3530 mdb_warn("couldn't read proc_t at %p", addr);
3531 return (DCMD_ERR);
3532 }
3533 if (fdnum > p.p_user.u_finfo.fi_nfiles) {
3534 mdb_warn("process %p only has %d files open.\n",
3535 addr, p.p_user.u_finfo.fi_nfiles);
3536 return (DCMD_ERR);
3537 }
3538 if (mdb_vread(&uf, sizeof (uf_entry_t),
3539 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) {
3540 mdb_warn("couldn't read uf_entry_t at %p",
3541 &p.p_user.u_finfo.fi_list[fdnum]);
3542 return (DCMD_ERR);
3543 }
3544
3545 mdb_printf("%p\n", uf.uf_file);
3546 return (DCMD_OK);
3547 }
3548
3549 /*ARGSUSED*/
3550 static int
3551 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3552 {
3553 pid_t pid = (pid_t)addr;
3554
3555 if (argc != 0)
3556 return (DCMD_USAGE);
3557
3558 if ((addr = mdb_pid2proc(pid, NULL)) == 0) {
3559 mdb_warn("PID 0t%d not found\n", pid);
3560 return (DCMD_ERR);
3561 }
3562
3563 mdb_printf("%p\n", addr);
3564 return (DCMD_OK);
3565 }
3566
3567 static char *sysfile_cmd[] = {
3568 "exclude:",
3569 "include:",
3570 "forceload:",
3571 "rootdev:",
3572 "rootfs:",
3573 "swapdev:",
3574 "swapfs:",
3575 "moddir:",
3576 "set",
3577 "unknown",
3578 };
3579
3580 static char *sysfile_ops[] = { "", "=", "&", "|" };
3581
3582 /*ARGSUSED*/
3583 static int
3584 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target)
3585 {
3586 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) {
3587 *target = NULL;
3588 return (WALK_DONE);
3589 }
3590 return (WALK_NEXT);
3591 }
3592
3593 /*ARGSUSED*/
3594 static int
3595 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3596 {
3597 struct sysparam *sysp, sys;
3598 char var[256];
3599 char modname[256];
3600 char val[256];
3601 char strval[256];
3602 vmem_t *mod_sysfile_arena;
3603 void *straddr;
3604
3605 if (mdb_readvar(&sysp, "sysparam_hd") == -1) {
3606 mdb_warn("failed to read sysparam_hd");
3607 return (DCMD_ERR);
3608 }
3609
3610 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) {
3611 mdb_warn("failed to read mod_sysfile_arena");
3612 return (DCMD_ERR);
3613 }
3614
3615 while (sysp != NULL) {
3616 var[0] = '\0';
3617 val[0] = '\0';
3618 modname[0] = '\0';
3619 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) {
3620 mdb_warn("couldn't read sysparam %p", sysp);
3621 return (DCMD_ERR);
3622 }
3623 if (sys.sys_modnam != NULL &&
3624 mdb_readstr(modname, 256,
3625 (uintptr_t)sys.sys_modnam) == -1) {
3626 mdb_warn("couldn't read modname in %p", sysp);
3627 return (DCMD_ERR);
3628 }
3629 if (sys.sys_ptr != NULL &&
3630 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) {
3631 mdb_warn("couldn't read ptr in %p", sysp);
3632 return (DCMD_ERR);
3633 }
3634 if (sys.sys_op != SETOP_NONE) {
3635 /*
3636 * Is this an int or a string? We determine this
3637 * by checking whether straddr is contained in
3638 * mod_sysfile_arena. If so, the walker will set
3639 * straddr to NULL.
3640 */
3641 straddr = (void *)(uintptr_t)sys.sys_info;
3642 if (sys.sys_op == SETOP_ASSIGN &&
3643 sys.sys_info != 0 &&
3644 mdb_pwalk("vmem_seg",
3645 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr,
3646 (uintptr_t)mod_sysfile_arena) == 0 &&
3647 straddr == NULL &&
3648 mdb_readstr(strval, 256,
3649 (uintptr_t)sys.sys_info) != -1) {
3650 (void) mdb_snprintf(val, sizeof (val), "\"%s\"",
3651 strval);
3652 } else {
3653 (void) mdb_snprintf(val, sizeof (val),
3654 "0x%llx [0t%llu]", sys.sys_info,
3655 sys.sys_info);
3656 }
3657 }
3658 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type],
3659 modname, modname[0] == '\0' ? "" : ":",
3660 var, sysfile_ops[sys.sys_op], val);
3661
3662 sysp = sys.sys_next;
3663 }
3664
3665 return (DCMD_OK);
3666 }
3667
3668 int
3669 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp)
3670 {
3671
3672 if (*didp == thr->t_did) {
3673 mdb_printf("%p\n", addr);
3674 return (WALK_DONE);
3675 } else
3676 return (WALK_NEXT);
3677 }
3678
3679 /*ARGSUSED*/
3680 int
3681 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3682 {
3683 const mdb_arg_t *argp = &argv[0];
3684 kt_did_t did;
3685
3686 if (argc != 1)
3687 return (DCMD_USAGE);
3688
3689 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str);
3690
3691 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) {
3692 mdb_warn("failed to walk thread");
3693 return (DCMD_ERR);
3694
3695 }
3696 return (DCMD_OK);
3697
3698 }
3699
3700 static int
3701 errorq_walk_init(mdb_walk_state_t *wsp)
3702 {
3703 if (wsp->walk_addr == NULL &&
3704 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) {
3705 mdb_warn("failed to read errorq_list");
3706 return (WALK_ERR);
3707 }
3708
3709 return (WALK_NEXT);
3710 }
3711
3712 static int
3713 errorq_walk_step(mdb_walk_state_t *wsp)
3714 {
3715 uintptr_t addr = wsp->walk_addr;
3716 errorq_t eq;
3717
3718 if (addr == NULL)
3719 return (WALK_DONE);
3720
3721 if (mdb_vread(&eq, sizeof (eq), addr) == -1) {
3722 mdb_warn("failed to read errorq at %p", addr);
3723 return (WALK_ERR);
3724 }
3725
3726 wsp->walk_addr = (uintptr_t)eq.eq_next;
3727 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata));
3728 }
3729
3730 typedef struct eqd_walk_data {
3731 uintptr_t *eqd_stack;
3732 void *eqd_buf;
3733 ulong_t eqd_qpos;
3734 ulong_t eqd_qlen;
3735 size_t eqd_size;
3736 } eqd_walk_data_t;
3737
3738 /*
3739 * In order to walk the list of pending error queue elements, we push the
3740 * addresses of the corresponding data buffers in to the eqd_stack array.
3741 * The error lists are in reverse chronological order when iterating using
3742 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the
3743 * walker client gets addresses in order from oldest error to newest error.
3744 */
3745 static void
3746 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr)
3747 {
3748 errorq_elem_t eqe;
3749
3750 while (addr != NULL) {
3751 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) {
3752 mdb_warn("failed to read errorq element at %p", addr);
3753 break;
3754 }
3755
3756 if (eqdp->eqd_qpos == eqdp->eqd_qlen) {
3757 mdb_warn("errorq is overfull -- more than %lu "
3758 "elems found\n", eqdp->eqd_qlen);
3759 break;
3760 }
3761
3762 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data;
3763 addr = (uintptr_t)eqe.eqe_prev;
3764 }
3765 }
3766
3767 static int
3768 eqd_walk_init(mdb_walk_state_t *wsp)
3769 {
3770 eqd_walk_data_t *eqdp;
3771 errorq_elem_t eqe, *addr;
3772 errorq_t eq;
3773 ulong_t i;
3774
3775 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) {
3776 mdb_warn("failed to read errorq at %p", wsp->walk_addr);
3777 return (WALK_ERR);
3778 }
3779
3780 if (eq.eq_ptail != NULL &&
3781 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) {
3782 mdb_warn("failed to read errorq element at %p", eq.eq_ptail);
3783 return (WALK_ERR);
3784 }
3785
3786 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP);
3787 wsp->walk_data = eqdp;
3788
3789 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP);
3790 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP);
3791 eqdp->eqd_qlen = eq.eq_qlen;
3792 eqdp->eqd_qpos = 0;
3793 eqdp->eqd_size = eq.eq_size;
3794
3795 /*
3796 * The newest elements in the queue are on the pending list, so we
3797 * push those on to our stack first.
3798 */
3799 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend);
3800
3801 /*
3802 * If eq_ptail is set, it may point to a subset of the errors on the
3803 * pending list in the event a atomic_cas_ptr() failed; if ptail's
3804 * data is already in our stack, NULL out eq_ptail and ignore it.
3805 */
3806 if (eq.eq_ptail != NULL) {
3807 for (i = 0; i < eqdp->eqd_qpos; i++) {
3808 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) {
3809 eq.eq_ptail = NULL;
3810 break;
3811 }
3812 }
3813 }
3814
3815 /*
3816 * If eq_phead is set, it has the processing list in order from oldest
3817 * to newest. Use this to recompute eq_ptail as best we can and then
3818 * we nicely fall into eqd_push_list() of eq_ptail below.
3819 */
3820 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe),
3821 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next)
3822 eq.eq_ptail = addr;
3823
3824 /*
3825 * The oldest elements in the queue are on the processing list, subject
3826 * to machinations in the if-clauses above. Push any such elements.
3827 */
3828 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail);
3829 return (WALK_NEXT);
3830 }
3831
3832 static int
3833 eqd_walk_step(mdb_walk_state_t *wsp)
3834 {
3835 eqd_walk_data_t *eqdp = wsp->walk_data;
3836 uintptr_t addr;
3837
3838 if (eqdp->eqd_qpos == 0)
3839 return (WALK_DONE);
3840
3841 addr = eqdp->eqd_stack[--eqdp->eqd_qpos];
3842
3843 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) {
3844 mdb_warn("failed to read errorq data at %p", addr);
3845 return (WALK_ERR);
3846 }
3847
3848 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata));
3849 }
3850
3851 static void
3852 eqd_walk_fini(mdb_walk_state_t *wsp)
3853 {
3854 eqd_walk_data_t *eqdp = wsp->walk_data;
3855
3856 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen);
3857 mdb_free(eqdp->eqd_buf, eqdp->eqd_size);
3858 mdb_free(eqdp, sizeof (eqd_walk_data_t));
3859 }
3860
3861 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64)
3862
3863 static int
3864 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3865 {
3866 int i;
3867 errorq_t eq;
3868 uint_t opt_v = FALSE;
3869
3870 if (!(flags & DCMD_ADDRSPEC)) {
3871 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) {
3872 mdb_warn("can't walk 'errorq'");
3873 return (DCMD_ERR);
3874 }
3875 return (DCMD_OK);
3876 }
3877
3878 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL);
3879 argc -= i;
3880 argv += i;
3881
3882 if (argc != 0)
3883 return (DCMD_USAGE);
3884
3885 if (opt_v || DCMD_HDRSPEC(flags)) {
3886 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ",
3887 "ADDR", "NAME", "S", "V", "N");
3888 if (!opt_v) {
3889 mdb_printf("%7s %7s %7s%</u>\n",
3890 "ACCEPT", "DROP", "LOG");
3891 } else {
3892 mdb_printf("%5s %6s %6s %3s %16s%</u>\n",
3893 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC");
3894 }
3895 }
3896
3897 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) {
3898 mdb_warn("failed to read errorq at %p", addr);
3899 return (DCMD_ERR);
3900 }
3901
3902 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name,
3903 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-',
3904 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ',
3905 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' ');
3906
3907 if (!opt_v) {
3908 mdb_printf("%7llu %7llu %7llu\n",
3909 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed),
3910 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) +
3911 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged));
3912 } else {
3913 mdb_printf("%5s %6lu %6lu %3u %a\n",
3914 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func);
3915 mdb_printf("%38s\n%41s"
3916 "%12s %llu\n"
3917 "%53s %llu\n"
3918 "%53s %llu\n"
3919 "%53s %llu\n"
3920 "%53s %llu\n"
3921 "%53s %llu\n"
3922 "%53s %llu\n"
3923 "%53s %llu\n\n",
3924 "|", "+-> ",
3925 "DISPATCHED", EQKSVAL(eq, eqk_dispatched),
3926 "DROPPED", EQKSVAL(eq, eqk_dropped),
3927 "LOGGED", EQKSVAL(eq, eqk_logged),
3928 "RESERVED", EQKSVAL(eq, eqk_reserved),
3929 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail),
3930 "COMMITTED", EQKSVAL(eq, eqk_committed),
3931 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail),
3932 "CANCELLED", EQKSVAL(eq, eqk_cancelled));
3933 }
3934
3935 return (DCMD_OK);
3936 }
3937
3938 /*ARGSUSED*/
3939 static int
3940 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3941 {
3942 cpu_t panic_cpu;
3943 kthread_t *panic_thread;
3944 void *buf;
3945 panic_data_t *pd;
3946 int i, n;
3947
3948 if (!mdb_prop_postmortem) {
3949 mdb_warn("panicinfo can only be run on a system "
3950 "dump; see dumpadm(1M)\n");
3951 return (DCMD_ERR);
3952 }
3953
3954 if (flags & DCMD_ADDRSPEC || argc != 0)
3955 return (DCMD_USAGE);
3956
3957 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1)
3958 mdb_warn("failed to read 'panic_cpu'");
3959 else
3960 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id);
3961
3962 if (mdb_readvar(&panic_thread, "panic_thread") == -1)
3963 mdb_warn("failed to read 'panic_thread'");
3964 else
3965 mdb_printf("%16s %?p\n", "thread", panic_thread);
3966
3967 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP);
3968 pd = (panic_data_t *)buf;
3969
3970 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 ||
3971 pd->pd_version != PANICBUFVERS) {
3972 mdb_warn("failed to read 'panicbuf'");
3973 mdb_free(buf, PANICBUFSIZE);
3974 return (DCMD_ERR);
3975 }
3976
3977 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff);
3978
3979 n = (pd->pd_msgoff - (sizeof (panic_data_t) -
3980 sizeof (panic_nv_t))) / sizeof (panic_nv_t);
3981
3982 for (i = 0; i < n; i++)
3983 mdb_printf("%16s %?llx\n",
3984 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value);
3985
3986 mdb_free(buf, PANICBUFSIZE);
3987 return (DCMD_OK);
3988 }
3989
3990 /*
3991 * ::time dcmd, which will print a hires timestamp of when we entered the
3992 * debugger, or the lbolt value if used with the -l option.
3993 *
3994 */
3995 /*ARGSUSED*/
3996 static int
3997 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3998 {
3999 uint_t opt_dec = FALSE;
4000 uint_t opt_lbolt = FALSE;
4001 uint_t opt_hex = FALSE;
4002 const char *fmt;
4003 hrtime_t result;
4004
4005 if (mdb_getopts(argc, argv,
4006 'd', MDB_OPT_SETBITS, TRUE, &opt_dec,
4007 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt,
4008 'x', MDB_OPT_SETBITS, TRUE, &opt_hex,
4009 NULL) != argc)
4010 return (DCMD_USAGE);
4011
4012 if (opt_dec && opt_hex)
4013 return (DCMD_USAGE);
4014
4015 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime();
4016 fmt =
4017 opt_hex ? "0x%llx\n" :
4018 opt_dec ? "0t%lld\n" : "%#llr\n";
4019
4020 mdb_printf(fmt, result);
4021 return (DCMD_OK);
4022 }
4023
4024 void
4025 time_help(void)
4026 {
4027 mdb_printf("Prints the system time in nanoseconds.\n\n"
4028 "::time will return the timestamp at which we dropped into, \n"
4029 "if called from, kmdb(1); the core dump's high resolution \n"
4030 "time if inspecting one; or the running hires time if we're \n"
4031 "looking at a live system.\n\n"
4032 "Switches:\n"
4033 " -d report times in decimal\n"
4034 " -l prints the number of clock ticks since system boot\n"
4035 " -x report times in hexadecimal\n");
4036 }
4037
4038 static const mdb_dcmd_t dcmds[] = {
4039
4040 /* from genunix.c */
4041 { "as2proc", ":", "convert as to proc_t address", as2proc },
4042 { "binding_hash_entry", ":", "print driver names hash table entry",
4043 binding_hash_entry },
4044 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]"
4045 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]"
4046 " [-FivVA]",
4047 "display callouts", callout, callout_help },
4048 { "calloutid", "[-d|v] xid", "print callout by extended id",
4049 calloutid, calloutid_help },
4050 { "class", NULL, "print process scheduler classes", class },
4051 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
4052 { "did2thread", "? kt_did", "find kernel thread for this id",
4053 did2thread },
4054 { "errorq", "?[-v]", "display kernel error queues", errorq },
4055 { "fd", ":[fd num]", "get a file pointer from an fd", fd },
4056 { "flipone", ":", "the vik_rev_level 2 special", flipone },
4057 { "lminfo", NULL, "print lock manager information", lminfo },
4058 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
4059 { "panicinfo", NULL, "print panic information", panicinfo },
4060 { "pid2proc", "?", "convert PID to proc_t address", pid2proc },
4061 { "project", NULL, "display kernel project(s)", project },
4062 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps },
4063 { "pflags", NULL, "display various proc_t flags", pflags },
4064 { "pgrep", "[-x] [-n | -o] pattern",
4065 "pattern match against all processes", pgrep },
4066 { "ptree", NULL, "print process tree", ptree },
4067 { "sysevent", "?[-sv]", "print sysevent pending or sent queue",
4068 sysevent},
4069 { "sysevent_channel", "?", "print sysevent channel database",
4070 sysevent_channel},
4071 { "sysevent_class_list", ":", "print sysevent class list",
4072 sysevent_class_list},
4073 { "sysevent_subclass_list", ":",
4074 "print sysevent subclass list", sysevent_subclass_list},
4075 { "system", NULL, "print contents of /etc/system file", sysfile },
4076 { "task", NULL, "display kernel task(s)", task },
4077 { "time", "[-dlx]", "display system time", time, time_help },
4078 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
4079 { "whereopen", ":", "given a vnode, dumps procs which have it open",
4080 whereopen },
4081
4082 /* from bio.c */
4083 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
4084
4085 /* from bitset.c */
4086 { "bitset", ":", "display a bitset", bitset, bitset_help },
4087
4088 /* from contract.c */
4089 { "contract", "?", "display a contract", cmd_contract },
4090 { "ctevent", ":", "display a contract event", cmd_ctevent },
4091 { "ctid", ":", "convert id to a contract pointer", cmd_ctid },
4092
4093 /* from cpupart.c */
4094 { "cpupart", "?[-v]", "print cpu partition info", cpupart },
4095
4096 /* from cred.c */
4097 { "cred", ":[-v]", "display a credential", cmd_cred },
4098 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp },
4099 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid },
4100 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist },
4101
4102 /* from cyclic.c */
4103 { "cyccover", NULL, "dump cyclic coverage information", cyccover },
4104 { "cycid", "?", "dump a cyclic id", cycid },
4105 { "cycinfo", "?", "dump cyc_cpu info", cycinfo },
4106 { "cyclic", ":", "developer information", cyclic },
4107 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace },
4108
4109 /* from damap.c */
4110 { "damap", ":", "display a damap_t", damap, damap_help },
4111
4112 /* from ddi_periodic.c */
4113 { "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo },
4114
4115 /* from devinfo.c */
4116 { "devbindings", "?[-qs] [device-name | major-num]",
4117 "print devinfo nodes bound to device-name or major-num",
4118 devbindings, devinfo_help },
4119 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo,
4120 devinfo_help },
4121 { "devinfo_audit", ":[-v]", "devinfo configuration audit record",
4122 devinfo_audit },
4123 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
4124 devinfo_audit_log },
4125 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
4126 devinfo_audit_node },
4127 { "devinfo2driver", ":", "find driver name for this devinfo node",
4128 devinfo2driver },
4129 { "devnames", "?[-vm] [num]", "print devnames array", devnames },
4130 { "dev2major", "?<dev_t>", "convert dev_t to a major number",
4131 dev2major },
4132 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
4133 dev2minor },
4134 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers",
4135 devt },
4136 { "major2name", "?<major-num>", "convert major number to dev name",
4137 major2name },
4138 { "minornodes", ":", "given a devinfo node, print its minor nodes",
4139 minornodes },
4140 { "modctl2devinfo", ":", "given a modctl, list its devinfos",
4141 modctl2devinfo },
4142 { "name2major", "<dev-name>", "convert dev name to major number",
4143 name2major },
4144 { "prtconf", "?[-vpc] [-d driver]", "print devinfo tree", prtconf,
4145 prtconf_help },
4146 { "softstate", ":<instance>", "retrieve soft-state pointer",
4147 softstate },
4148 { "devinfo_fm", ":", "devinfo fault managment configuration",
4149 devinfo_fm },
4150 { "devinfo_fmce", ":", "devinfo fault managment cache entry",
4151 devinfo_fmce},
4152
4153 /* from findstack.c */
4154 { "findstack", ":[-v]", "find kernel thread stack", findstack },
4155 { "findstack_debug", NULL, "toggle findstack debugging",
4156 findstack_debug },
4157 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] "
4158 "[-s sobj | -S sobj] [-t tstate | -T tstate]",
4159 "print unique kernel thread stacks",
4160 stacks, stacks_help },
4161
4162 /* from fm.c */
4163 { "ereport", "[-v]", "print ereports logged in dump",
4164 ereport },
4165
4166 /* from group.c */
4167 { "group", "?[-q]", "display a group", group},
4168
4169 /* from hotplug.c */
4170 { "hotplug", "?[-p]", "display a registered hotplug attachment",
4171 hotplug, hotplug_help },
4172
4173 /* from irm.c */
4174 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd },
4175 { "irmreqs", NULL, "display interrupt requests in an interrupt pool",
4176 irmreqs_dcmd },
4177 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd },
4178
4179 /* from kgrep.c + genunix.c */
4180 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep,
4181 kgrep_help },
4182
4183 /* from kmem.c */
4184 { "allocdby", ":", "given a thread, print its allocated buffers",
4185 allocdby },
4186 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
4187 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
4188 { "freedby", ":", "given a thread, print its freed buffers", freedby },
4189 { "kmalog", "?[ fail | slab ]",
4190 "display kmem transaction log and stack traces", kmalog },
4191 { "kmastat", "[-kmg]", "kernel memory allocator stats",
4192 kmastat },
4193 { "kmausers", "?[-ef] [cache ...]", "current medium and large users "
4194 "of the kmem allocator", kmausers, kmausers_help },
4195 { "kmem_cache", "?[-n name]",
4196 "print kernel memory caches", kmem_cache, kmem_cache_help},
4197 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] "
4198 "[-B minbinsize]", "display slab usage per kmem cache",
4199 kmem_slabs, kmem_slabs_help },
4200 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
4201 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
4202 { "kmem_verify", "?", "check integrity of kmem-managed memory",
4203 kmem_verify },
4204 { "vmem", "?", "print a vmem_t", vmem },
4205 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
4206 "[-m minsize] [-M maxsize] [-t thread] [-T type]",
4207 "print or filter a vmem_seg", vmem_seg, vmem_seg_help },
4208 { "whatthread", ":[-v]", "print threads whose stack contains the "
4209 "given address", whatthread },
4210
4211 /* from ldi.c */
4212 { "ldi_handle", "?[-i]", "display a layered driver handle",
4213 ldi_handle, ldi_handle_help },
4214 { "ldi_ident", NULL, "display a layered driver identifier",
4215 ldi_ident, ldi_ident_help },
4216
4217 /* from leaky.c + leaky_subr.c */
4218 { "findleaks", FINDLEAKS_USAGE,
4219 "search for potential kernel memory leaks", findleaks,
4220 findleaks_help },
4221
4222 /* from lgrp.c */
4223 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
4224 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set},
4225
4226 /* from log.c */
4227 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf },
4228
4229 /* from mdi.c */
4230 { "mdipi", NULL, "given a path, dump mdi_pathinfo "
4231 "and detailed pi_prop list", mdipi },
4232 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list",
4233 mdiprops },
4234 { "mdiphci", NULL, "given a phci, dump mdi_phci and "
4235 "list all paths", mdiphci },
4236 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list "
4237 "all phcis", mdivhci },
4238 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo "
4239 "client links", mdiclient_paths },
4240 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo "
4241 "phci links", mdiphci_paths },
4242 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links",
4243 mdiphcis },
4244
4245 /* from memory.c */
4246 { "addr2smap", ":[offset]", "translate address to smap", addr2smap },
4247 { "memlist", "?[-iav]", "display a struct memlist", memlist },
4248 { "memstat", NULL, "display memory usage summary", memstat },
4249 { "page", "?", "display a summarized page_t", page },
4250 { "pagelookup", "?[-v vp] [-o offset]",
4251 "find the page_t with the name {vp, offset}",
4252 pagelookup, pagelookup_help },
4253 { "page_num2pp", ":", "find the page_t for a given page frame number",
4254 page_num2pp },
4255 { "pmap", ":[-q]", "print process memory map", pmap },
4256 { "seg", ":", "print address space segment", seg },
4257 { "swapinfo", "?", "display a struct swapinfo", swapinfof },
4258 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
4259
4260 /* from mmd.c */
4261 { "multidata", ":[-sv]", "display a summarized multidata_t",
4262 multidata },
4263 { "pattbl", ":", "display a summarized multidata attribute table",
4264 pattbl },
4265 { "pattr2multidata", ":", "print multidata pointer from pattr_t",
4266 pattr2multidata },
4267 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t",
4268 pdesc2slab },
4269 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify },
4270 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t",
4271 slab2multidata },
4272
4273 /* from modhash.c */
4274 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
4275 "display information about one or all mod_hash structures",
4276 modhash, modhash_help },
4277 { "modent", ":[-k | -v | -t type]",
4278 "display information about a mod_hash_entry", modent,
4279 modent_help },
4280
4281 /* from net.c */
4282 { "dladm", "?<sub-command> [flags]", "show data link information",
4283 dladm, dladm_help },
4284 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
4285 mi },
4286 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]",
4287 "show network statistics", netstat },
4288 { "sonode", "?[-f inet | inet6 | unix | #] "
4289 "[-t stream | dgram | raw | #] [-p #]",
4290 "filter and display sonode", sonode },
4291
4292 /* from netstack.c */
4293 { "netstack", "", "show stack instances", netstack },
4294 { "netstackid2netstack", ":",
4295 "translate a netstack id to its netstack_t",
4296 netstackid2netstack },
4297
4298 /* from nvpair.c */
4299 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
4300 nvpair_print },
4301 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR,
4302 print_nvlist },
4303
4304 /* from pg.c */
4305 { "pg", "?[-q]", "display a pg", pg},
4306
4307 /* from rctl.c */
4308 { "rctl_dict", "?", "print systemwide default rctl definitions",
4309 rctl_dict },
4310 { "rctl_list", ":[handle]", "print rctls for the given proc",
4311 rctl_list },
4312 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
4313 rctl },
4314 { "rctl_validate", ":[-v] [-n #]", "test resource control value "
4315 "sequence", rctl_validate },
4316
4317 /* from sobj.c */
4318 { "rwlock", ":", "dump out a readers/writer lock", rwlock },
4319 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
4320 mutex_help },
4321 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
4322 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
4323 { "turnstile", "?", "display a turnstile", turnstile },
4324
4325 /* from stream.c */
4326 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
4327 "print an mblk", mblk_prt, mblk_help },
4328 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
4329 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
4330 mblk2dblk },
4331 { "q2otherq", ":", "print peer queue for a given queue", q2otherq },
4332 { "q2rdq", ":", "print read queue for a given queue", q2rdq },
4333 { "q2syncq", ":", "print syncq for a given queue", q2syncq },
4334 { "q2stream", ":", "print stream pointer for a given queue", q2stream },
4335 { "q2wrq", ":", "print write queue for a given queue", q2wrq },
4336 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
4337 "filter and display STREAM queue", queue, queue_help },
4338 { "stdata", ":[-q|v] [-f flag] [-F flag]",
4339 "filter and display STREAM head", stdata, stdata_help },
4340 { "str2mate", ":", "print mate of this stream", str2mate },
4341 { "str2wrq", ":", "print write queue of this stream", str2wrq },
4342 { "stream", ":", "display STREAM", stream },
4343 { "strftevent", ":", "print STREAMS flow trace event", strftevent },
4344 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
4345 "filter and display STREAM sync queue", syncq, syncq_help },
4346 { "syncq2q", ":", "print queue for a given syncq", syncq2q },
4347
4348 /* from taskq.c */
4349 { "taskq", ":[-atT] [-m min_maxq] [-n name]",
4350 "display a taskq", taskq, taskq_help },
4351 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },
4352
4353 /* from thread.c */
4354 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
4355 thread_help },
4356 { "threadlist", "?[-t] [-v [count]]",
4357 "display threads and associated C stack traces", threadlist,
4358 threadlist_help },
4359 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo,
4360 stackinfo_help },
4361
4362 /* from tsd.c */
4363 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
4364 { "tsdtot", ":", "find thread with this tsd", tsdtot },
4365
4366 /*
4367 * typegraph does not work under kmdb, as it requires too much memory
4368 * for its internal data structures.
4369 */
4370 #ifndef _KMDB
4371 /* from typegraph.c */
4372 { "findlocks", ":", "find locks held by specified thread", findlocks },
4373 { "findfalse", "?[-v]", "find potentially falsely shared structures",
4374 findfalse },
4375 { "typegraph", NULL, "build type graph", typegraph },
4376 { "istype", ":type", "manually set object type", istype },
4377 { "notype", ":", "manually clear object type", notype },
4378 { "whattype", ":", "determine object type", whattype },
4379 #endif
4380
4381 /* from vfs.c */
4382 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
4383 { "pfiles", ":[-fp]", "print process file information", pfiles,
4384 pfiles_help },
4385
4386 /* from zone.c */
4387 { "zid2zone", ":", "find the zone_t with the given zone id",
4388 zid2zone },
4389 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt },
4390 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for "
4391 "selected zones", zsd },
4392
4393 #ifndef _KMDB
4394 { "gcore", NULL, "generate a user core for the given process",
4395 gcore_dcmd },
4396 #endif
4397
4398 { NULL }
4399 };
4400
4401 static const mdb_walker_t walkers[] = {
4402
4403 /* from genunix.c */
4404 { "callouts_bytime", "walk callouts by list chain (expiration time)",
4405 callout_walk_init, callout_walk_step, callout_walk_fini,
4406 (void *)CALLOUT_WALK_BYLIST },
4407 { "callouts_byid", "walk callouts by id hash chain",
4408 callout_walk_init, callout_walk_step, callout_walk_fini,
4409 (void *)CALLOUT_WALK_BYID },
4410 { "callout_list", "walk a callout list", callout_list_walk_init,
4411 callout_list_walk_step, callout_list_walk_fini },
4412 { "callout_table", "walk callout table array", callout_table_walk_init,
4413 callout_table_walk_step, callout_table_walk_fini },
4414 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
4415 { "dnlc", "walk dnlc entries",
4416 dnlc_walk_init, dnlc_walk_step, dnlc_walk_fini },
4417 { "ereportq_dump", "walk list of ereports in dump error queue",
4418 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL },
4419 { "ereportq_pend", "walk list of ereports in pending error queue",
4420 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL },
4421 { "errorq", "walk list of system error queues",
4422 errorq_walk_init, errorq_walk_step, NULL },
4423 { "errorq_data", "walk pending error queue data buffers",
4424 eqd_walk_init, eqd_walk_step, eqd_walk_fini },
4425 { "allfile", "given a proc pointer, list all file pointers",
4426 file_walk_init, allfile_walk_step, file_walk_fini },
4427 { "file", "given a proc pointer, list of open file pointers",
4428 file_walk_init, file_walk_step, file_walk_fini },
4429 { "lock_descriptor", "walk lock_descriptor_t structures",
4430 ld_walk_init, ld_walk_step, NULL },
4431 { "lock_graph", "walk lock graph",
4432 lg_walk_init, lg_walk_step, NULL },
4433 { "port", "given a proc pointer, list of created event ports",
4434 port_walk_init, port_walk_step, NULL },
4435 { "portev", "given a port pointer, list of events in the queue",
4436 portev_walk_init, portev_walk_step, portev_walk_fini },
4437 { "proc", "list of active proc_t structures",
4438 proc_walk_init, proc_walk_step, proc_walk_fini },
4439 { "projects", "walk a list of kernel projects",
4440 project_walk_init, project_walk_step, NULL },
4441 { "sysevent_pend", "walk sysevent pending queue",
4442 sysevent_pend_walk_init, sysevent_walk_step,
4443 sysevent_walk_fini},
4444 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
4445 sysevent_walk_step, sysevent_walk_fini},
4446 { "sysevent_channel", "walk sysevent channel subscriptions",
4447 sysevent_channel_walk_init, sysevent_channel_walk_step,
4448 sysevent_channel_walk_fini},
4449 { "sysevent_class_list", "walk sysevent subscription's class list",
4450 sysevent_class_list_walk_init, sysevent_class_list_walk_step,
4451 sysevent_class_list_walk_fini},
4452 { "sysevent_subclass_list",
4453 "walk sysevent subscription's subclass list",
4454 sysevent_subclass_list_walk_init,
4455 sysevent_subclass_list_walk_step,
4456 sysevent_subclass_list_walk_fini},
4457 { "task", "given a task pointer, walk its processes",
4458 task_walk_init, task_walk_step, NULL },
4459
4460 /* from avl.c */
4461 { AVL_WALK_NAME, AVL_WALK_DESC,
4462 avl_walk_init, avl_walk_step, avl_walk_fini },
4463
4464 /* from bio.c */
4465 { "buf", "walk the bio buf hash",
4466 buf_walk_init, buf_walk_step, buf_walk_fini },
4467
4468 /* from contract.c */
4469 { "contract", "walk all contracts, or those of the specified type",
4470 ct_walk_init, generic_walk_step, NULL },
4471 { "ct_event", "walk events on a contract event queue",
4472 ct_event_walk_init, generic_walk_step, NULL },
4473 { "ct_listener", "walk contract event queue listeners",
4474 ct_listener_walk_init, generic_walk_step, NULL },
4475
4476 /* from cpupart.c */
4477 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
4478 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
4479 NULL },
4480 { "cpupart_walk", "walk the set of cpu partitions",
4481 cpupart_walk_init, cpupart_walk_step, NULL },
4482
4483 /* from ctxop.c */
4484 { "ctxop", "walk list of context ops on a thread",
4485 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },
4486
4487 /* from cyclic.c */
4488 { "cyccpu", "walk per-CPU cyc_cpu structures",
4489 cyccpu_walk_init, cyccpu_walk_step, NULL },
4490 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
4491 cycomni_walk_init, cycomni_walk_step, NULL },
4492 { "cyctrace", "walk cyclic trace buffer",
4493 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },
4494
4495 /* from devinfo.c */
4496 { "binding_hash", "walk all entries in binding hash table",
4497 binding_hash_walk_init, binding_hash_walk_step, NULL },
4498 { "devinfo", "walk devinfo tree or subtree",
4499 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
4500 { "devinfo_audit_log", "walk devinfo audit system-wide log",
4501 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
4502 devinfo_audit_log_walk_fini},
4503 { "devinfo_audit_node", "walk per-devinfo audit history",
4504 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
4505 devinfo_audit_node_walk_fini},
4506 { "devinfo_children", "walk children of devinfo node",
4507 devinfo_children_walk_init, devinfo_children_walk_step,
4508 devinfo_children_walk_fini },
4509 { "devinfo_parents", "walk ancestors of devinfo node",
4510 devinfo_parents_walk_init, devinfo_parents_walk_step,
4511 devinfo_parents_walk_fini },
4512 { "devinfo_siblings", "walk siblings of devinfo node",
4513 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
4514 { "devi_next", "walk devinfo list",
4515 NULL, devi_next_walk_step, NULL },
4516 { "devnames", "walk devnames array",
4517 devnames_walk_init, devnames_walk_step, devnames_walk_fini },
4518 { "minornode", "given a devinfo node, walk minor nodes",
4519 minornode_walk_init, minornode_walk_step, NULL },
4520 { "softstate",
4521 "given an i_ddi_soft_state*, list all in-use driver stateps",
4522 soft_state_walk_init, soft_state_walk_step,
4523 NULL, NULL },
4524 { "softstate_all",
4525 "given an i_ddi_soft_state*, list all driver stateps",
4526 soft_state_walk_init, soft_state_all_walk_step,
4527 NULL, NULL },
4528 { "devinfo_fmc",
4529 "walk a fault management handle cache active list",
4530 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },
4531
4532 /* from group.c */
4533 { "group", "walk all elements of a group",
4534 group_walk_init, group_walk_step, NULL },
4535
4536 /* from irm.c */
4537 { "irmpools", "walk global list of interrupt pools",
4538 irmpools_walk_init, list_walk_step, list_walk_fini },
4539 { "irmreqs", "walk list of interrupt requests in an interrupt pool",
4540 irmreqs_walk_init, list_walk_step, list_walk_fini },
4541
4542 /* from kmem.c */
4543 { "allocdby", "given a thread, walk its allocated bufctls",
4544 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4545 { "bufctl", "walk a kmem cache's bufctls",
4546 bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
4547 { "bufctl_history", "walk the available history of a bufctl",
4548 bufctl_history_walk_init, bufctl_history_walk_step,
4549 bufctl_history_walk_fini },
4550 { "freedby", "given a thread, walk its freed bufctls",
4551 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4552 { "freectl", "walk a kmem cache's free bufctls",
4553 freectl_walk_init, kmem_walk_step, kmem_walk_fini },
4554 { "freectl_constructed", "walk a kmem cache's constructed free bufctls",
4555 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4556 { "freemem", "walk a kmem cache's free memory",
4557 freemem_walk_init, kmem_walk_step, kmem_walk_fini },
4558 { "freemem_constructed", "walk a kmem cache's constructed free memory",
4559 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4560 { "kmem", "walk a kmem cache",
4561 kmem_walk_init, kmem_walk_step, kmem_walk_fini },
4562 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
4563 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
4564 { "kmem_hash", "given a kmem cache, walk its allocated hash table",
4565 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
4566 { "kmem_log", "walk the kmem transaction log",
4567 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
4568 { "kmem_slab", "given a kmem cache, walk its slabs",
4569 kmem_slab_walk_init, combined_walk_step, combined_walk_fini },
4570 { "kmem_slab_partial",
4571 "given a kmem cache, walk its partially allocated slabs (min 1)",
4572 kmem_slab_walk_partial_init, combined_walk_step,
4573 combined_walk_fini },
4574 { "vmem", "walk vmem structures in pre-fix, depth-first order",
4575 vmem_walk_init, vmem_walk_step, vmem_walk_fini },
4576 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
4577 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4578 { "vmem_free", "given a vmem_t, walk its free vmem_segs",
4579 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4580 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
4581 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
4582 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
4583 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4584 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
4585 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4586
4587 /* from ldi.c */
4588 { "ldi_handle", "walk the layered driver handle hash",
4589 ldi_handle_walk_init, ldi_handle_walk_step, NULL },
4590 { "ldi_ident", "walk the layered driver identifier hash",
4591 ldi_ident_walk_init, ldi_ident_walk_step, NULL },
4592
4593 /* from leaky.c + leaky_subr.c */
4594 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
4595 "stack trace",
4596 leaky_walk_init, leaky_walk_step, leaky_walk_fini },
4597 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
4598 "leaks w/ same stack trace",
4599 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },
4600
4601 /* from lgrp.c */
4602 { "lgrp_cpulist", "walk CPUs in a given lgroup",
4603 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL },
4604 { "lgrptbl", "walk lgroup table",
4605 lgrp_walk_init, lgrp_walk_step, NULL },
4606 { "lgrp_parents", "walk up lgroup lineage from given lgroup",
4607 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL },
4608 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup",
4609 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL },
4610 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup",
4611 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL },
4612
4613 /* from list.c */
4614 { LIST_WALK_NAME, LIST_WALK_DESC,
4615 list_walk_init, list_walk_step, list_walk_fini },
4616
4617 /* from mdi.c */
4618 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link",
4619 mdi_pi_client_link_walk_init,
4620 mdi_pi_client_link_walk_step,
4621 mdi_pi_client_link_walk_fini },
4622 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link",
4623 mdi_pi_phci_link_walk_init,
4624 mdi_pi_phci_link_walk_step,
4625 mdi_pi_phci_link_walk_fini },
4626 { "mdiphci_list", "Walker for mdi_phci ph_next link",
4627 mdi_phci_ph_next_walk_init,
4628 mdi_phci_ph_next_walk_step,
4629 mdi_phci_ph_next_walk_fini },
4630
4631 /* from memory.c */
4632 { "allpages", "walk all pages, including free pages",
4633 allpages_walk_init, allpages_walk_step, allpages_walk_fini },
4634 { "anon", "given an amp, list allocated anon structures",
4635 anon_walk_init, anon_walk_step, anon_walk_fini,
4636 ANON_WALK_ALLOC },
4637 { "anon_all", "given an amp, list contents of all anon slots",
4638 anon_walk_init, anon_walk_step, anon_walk_fini,
4639 ANON_WALK_ALL },
4640 { "memlist", "walk specified memlist",
4641 NULL, memlist_walk_step, NULL },
4642 { "page", "walk all pages, or those from the specified vnode",
4643 page_walk_init, page_walk_step, page_walk_fini },
4644 { "seg", "given an as, list of segments",
4645 seg_walk_init, avl_walk_step, avl_walk_fini },
4646 { "segvn_anon",
4647 "given a struct segvn_data, list allocated anon structures",
4648 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4649 ANON_WALK_ALLOC },
4650 { "segvn_anon_all",
4651 "given a struct segvn_data, list contents of all anon slots",
4652 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4653 ANON_WALK_ALL },
4654 { "segvn_pages",
4655 "given a struct segvn_data, list resident pages in "
4656 "offset order",
4657 segvn_pages_walk_init, segvn_pages_walk_step,
4658 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT },
4659 { "segvn_pages_all",
4660 "for each offset in a struct segvn_data, give page_t pointer "
4661 "(if resident), or NULL.",
4662 segvn_pages_walk_init, segvn_pages_walk_step,
4663 segvn_pages_walk_fini, SEGVN_PAGES_ALL },
4664 { "swapinfo", "walk swapinfo structures",
4665 swap_walk_init, swap_walk_step, NULL },
4666
4667 /* from mmd.c */
4668 { "pattr", "walk pattr_t structures", pattr_walk_init,
4669 mmdq_walk_step, mmdq_walk_fini },
4670 { "pdesc", "walk pdesc_t structures",
4671 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini },
4672 { "pdesc_slab", "walk pdesc_slab_t structures",
4673 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini },
4674
4675 /* from modhash.c */
4676 { "modhash", "walk list of mod_hash structures", modhash_walk_init,
4677 modhash_walk_step, NULL },
4678 { "modent", "walk list of entries in a given mod_hash",
4679 modent_walk_init, modent_walk_step, modent_walk_fini },
4680 { "modchain", "walk list of entries in a given mod_hash_entry",
4681 NULL, modchain_walk_step, NULL },
4682
4683 /* from net.c */
4684 { "icmp", "walk ICMP control structures using MI for all stacks",
4685 mi_payload_walk_init, mi_payload_walk_step, NULL,
4686 &mi_icmp_arg },
4687 { "mi", "given a MI_O, walk the MI",
4688 mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
4689 { "sonode", "given a sonode, walk its children",
4690 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
4691 { "icmp_stacks", "walk all the icmp_stack_t",
4692 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL },
4693 { "tcp_stacks", "walk all the tcp_stack_t",
4694 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL },
4695 { "udp_stacks", "walk all the udp_stack_t",
4696 udp_stacks_walk_init, udp_stacks_walk_step, NULL },
4697
4698 /* from netstack.c */
4699 { "netstack", "walk a list of kernel netstacks",
4700 netstack_walk_init, netstack_walk_step, NULL },
4701
4702 /* from nvpair.c */
4703 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,
4704 nvpair_walk_init, nvpair_walk_step, NULL },
4705
4706 /* from rctl.c */
4707 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists",
4708 rctl_dict_walk_init, rctl_dict_walk_step, NULL },
4709 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
4710 rctl_set_walk_step, NULL },
4711 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
4712 rctl_val_walk_init, rctl_val_walk_step },
4713
4714 /* from sobj.c */
4715 { "blocked", "walk threads blocked on a given sobj",
4716 blocked_walk_init, blocked_walk_step, NULL },
4717 { "wchan", "given a wchan, list of blocked threads",
4718 wchan_walk_init, wchan_walk_step, wchan_walk_fini },
4719
4720 /* from stream.c */
4721 { "b_cont", "walk mblk_t list using b_cont",
4722 mblk_walk_init, b_cont_step, mblk_walk_fini },
4723 { "b_next", "walk mblk_t list using b_next",
4724 mblk_walk_init, b_next_step, mblk_walk_fini },
4725 { "qlink", "walk queue_t list using q_link",
4726 queue_walk_init, queue_link_step, queue_walk_fini },
4727 { "qnext", "walk queue_t list using q_next",
4728 queue_walk_init, queue_next_step, queue_walk_fini },
4729 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
4730 strftblk_walk_init, strftblk_step, strftblk_walk_fini },
4731 { "readq", "walk read queue side of stdata",
4732 str_walk_init, strr_walk_step, str_walk_fini },
4733 { "writeq", "walk write queue side of stdata",
4734 str_walk_init, strw_walk_step, str_walk_fini },
4735
4736 /* from taskq.c */
4737 { "taskq_thread", "given a taskq_t, list all of its threads",
4738 taskq_thread_walk_init,
4739 taskq_thread_walk_step,
4740 taskq_thread_walk_fini },
4741 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
4742 taskq_ent_walk_init, taskq_ent_walk_step, NULL },
4743
4744 /* from thread.c */
4745 { "deathrow", "walk threads on both lwp_ and thread_deathrow",
4746 deathrow_walk_init, deathrow_walk_step, NULL },
4747 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
4748 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4749 { "cpupart_dispq",
4750 "given a cpupart_t, walk threads in dispatcher queues",
4751 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4752 { "lwp_deathrow", "walk lwp_deathrow",
4753 lwp_deathrow_walk_init, deathrow_walk_step, NULL },
4754 { "thread", "global or per-process kthread_t structures",
4755 thread_walk_init, thread_walk_step, thread_walk_fini },
4756 { "thread_deathrow", "walk threads on thread_deathrow",
4757 thread_deathrow_walk_init, deathrow_walk_step, NULL },
4758
4759 /* from tsd.c */
4760 { "tsd", "walk list of thread-specific data",
4761 tsd_walk_init, tsd_walk_step, tsd_walk_fini },
4762
4763 /* from tsol.c */
4764 { "tnrh", "walk remote host cache structures",
4765 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini },
4766 { "tnrhtp", "walk remote host template structures",
4767 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini },
4768
4769 /*
4770 * typegraph does not work under kmdb, as it requires too much memory
4771 * for its internal data structures.
4772 */
4773 #ifndef _KMDB
4774 /* from typegraph.c */
4775 { "typeconflict", "walk buffers with conflicting type inferences",
4776 typegraph_walk_init, typeconflict_walk_step },
4777 { "typeunknown", "walk buffers with unknown types",
4778 typegraph_walk_init, typeunknown_walk_step },
4779 #endif
4780
4781 /* from vfs.c */
4782 { "vfs", "walk file system list",
4783 vfs_walk_init, vfs_walk_step },
4784
4785 /* from zone.c */
4786 { "zone", "walk a list of kernel zones",
4787 zone_walk_init, zone_walk_step, NULL },
4788 { "zsd", "walk list of zsd entries for a zone",
4789 zsd_walk_init, zsd_walk_step, NULL },
4790
4791 { NULL }
4792 };
4793
4794 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
4795
4796 /*ARGSUSED*/
4797 static void
4798 genunix_statechange_cb(void *ignored)
4799 {
4800 /*
4801 * Force ::findleaks and ::stacks to let go any cached state.
4802 */
4803 leaky_cleanup(1);
4804 stacks_cleanup(1);
4805
4806 kmem_statechange(); /* notify kmem */
4807 }
4808
4809 const mdb_modinfo_t *
4810 _mdb_init(void)
4811 {
4812 kmem_init();
4813
4814 (void) mdb_callback_add(MDB_CALLBACK_STCHG,
4815 genunix_statechange_cb, NULL);
4816
4817 #ifndef _KMDB
4818 gcore_init();
4819 #endif
4820
4821 return (&modinfo);
4822 }
4823
4824 void
4825 _mdb_fini(void)
4826 {
4827 leaky_cleanup(1);
4828 stacks_cleanup(1);
4829 }