1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved. 26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/cred.h> 36 #include <sys/kmem.h> 37 #include <sys/sysmacros.h> 38 #include <sys/vfs.h> 39 #include <sys/vnode.h> 40 #include <sys/debug.h> 41 #include <sys/errno.h> 42 #include <sys/time.h> 43 #include <sys/file.h> 44 #include <sys/user.h> 45 #include <sys/stream.h> 46 #include <sys/strsubr.h> 47 #include <sys/strsun.h> 48 #include <sys/sunddi.h> 49 #include <sys/esunddi.h> 50 #include <sys/flock.h> 51 #include <sys/modctl.h> 52 #include <sys/cmn_err.h> 53 #include <sys/vmsystm.h> 54 #include <sys/policy.h> 55 #include <sys/limits.h> 56 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 60 #include <sys/isa_defs.h> 61 #include <sys/inttypes.h> 62 #include <sys/systm.h> 63 #include <sys/cpuvar.h> 64 #include <sys/filio.h> 65 #include <sys/sendfile.h> 66 #include <sys/ddi.h> 67 #include <vm/seg.h> 68 #include <vm/seg_map.h> 69 #include <vm/seg_kpm.h> 70 71 #include <fs/sockfs/nl7c.h> 72 #include <fs/sockfs/sockcommon.h> 73 #include <fs/sockfs/sockfilter_impl.h> 74 #include <fs/sockfs/socktpi.h> 75 76 #ifdef SOCK_TEST 77 int do_useracc = 1; /* Controlled by setting SO_DEBUG to 4 */ 78 #else 79 #define do_useracc 1 80 #endif /* SOCK_TEST */ 81 82 extern int xnet_truncate_print; 83 84 extern void nl7c_init(void); 85 extern int sockfs_defer_nl7c_init; 86 87 /* 88 * Kernel component of socket creation. 89 * 90 * The socket library determines which version number to use. 91 * First the library calls this with a NULL devpath. If this fails 92 * to find a transport (using solookup) the library will look in /etc/netconfig 93 * for the appropriate transport. If one is found it will pass in the 94 * devpath for the kernel to use. 95 */ 96 int 97 so_socket(int family, int type_w_flags, int protocol, char *devpath, 98 int version) 99 { 100 struct sonode *so; 101 vnode_t *vp; 102 struct file *fp; 103 int fd; 104 int error; 105 int type; 106 107 type = type_w_flags & SOCK_TYPE_MASK; 108 type_w_flags &= ~SOCK_TYPE_MASK; 109 if (type_w_flags & ~(SOCK_CLOEXEC|SOCK_NDELAY|SOCK_NONBLOCK)) 110 return (set_errno(EINVAL)); 111 112 if (devpath != NULL) { 113 char *buf; 114 size_t kdevpathlen = 0; 115 116 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 117 if ((error = copyinstr(devpath, buf, 118 MAXPATHLEN, &kdevpathlen)) != 0) { 119 kmem_free(buf, MAXPATHLEN); 120 return (set_errno(error)); 121 } 122 so = socket_create(family, type, protocol, buf, NULL, 123 SOCKET_SLEEP, version, CRED(), &error); 124 kmem_free(buf, MAXPATHLEN); 125 } else { 126 so = socket_create(family, type, protocol, NULL, NULL, 127 SOCKET_SLEEP, version, CRED(), &error); 128 } 129 if (so == NULL) 130 return (set_errno(error)); 131 132 /* Allocate a file descriptor for the socket */ 133 vp = SOTOV(so); 134 if (error = falloc(vp, FWRITE|FREAD, &fp, &fd)) { 135 (void) socket_close(so, 0, CRED()); 136 socket_destroy(so); 137 return (set_errno(error)); 138 } 139 140 /* 141 * Now fill in the entries that falloc reserved 142 */ 143 if (type_w_flags & SOCK_NDELAY) { 144 so->so_state |= SS_NDELAY; 145 fp->f_flag |= FNDELAY; 146 } 147 if (type_w_flags & SOCK_NONBLOCK) { 148 so->so_state |= SS_NONBLOCK; 149 fp->f_flag |= FNONBLOCK; 150 } 151 mutex_exit(&fp->f_tlock); 152 setf(fd, fp); 153 if ((type_w_flags & SOCK_CLOEXEC) != 0) { 154 f_setfd(fd, FD_CLOEXEC); 155 } 156 157 return (fd); 158 } 159 160 /* 161 * Map from a file descriptor to a socket node. 162 * Returns with the file descriptor held i.e. the caller has to 163 * use releasef when done with the file descriptor. 164 */ 165 struct sonode * 166 getsonode(int sock, int *errorp, file_t **fpp) 167 { 168 file_t *fp; 169 vnode_t *vp; 170 struct sonode *so; 171 172 if ((fp = getf(sock)) == NULL) { 173 *errorp = EBADF; 174 eprintline(*errorp); 175 return (NULL); 176 } 177 vp = fp->f_vnode; 178 /* Check if it is a socket */ 179 if (vp->v_type != VSOCK) { 180 releasef(sock); 181 *errorp = ENOTSOCK; 182 eprintline(*errorp); 183 return (NULL); 184 } 185 /* 186 * Use the stream head to find the real socket vnode. 187 * This is needed when namefs sits above sockfs. 188 */ 189 if (vp->v_stream) { 190 ASSERT(vp->v_stream->sd_vnode); 191 vp = vp->v_stream->sd_vnode; 192 193 so = VTOSO(vp); 194 if (so->so_version == SOV_STREAM) { 195 releasef(sock); 196 *errorp = ENOTSOCK; 197 eprintsoline(so, *errorp); 198 return (NULL); 199 } 200 } else { 201 so = VTOSO(vp); 202 } 203 if (fpp) 204 *fpp = fp; 205 return (so); 206 } 207 208 /* 209 * Allocate and copyin a sockaddr. 210 * Ensures NULL termination for AF_UNIX addresses by extending them 211 * with one NULL byte if need be. Verifies that the length is not 212 * excessive to prevent an application from consuming all of kernel 213 * memory. Returns NULL when an error occurred. 214 */ 215 static struct sockaddr * 216 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp, 217 int *errorp) 218 { 219 char *faddr; 220 size_t namelen = (size_t)*namelenp; 221 222 ASSERT(namelen != 0); 223 if (namelen > SO_MAXARGSIZE) { 224 *errorp = EINVAL; 225 eprintsoline(so, *errorp); 226 return (NULL); 227 } 228 229 faddr = (char *)kmem_alloc(namelen, KM_SLEEP); 230 if (copyin(name, faddr, namelen)) { 231 kmem_free(faddr, namelen); 232 *errorp = EFAULT; 233 eprintsoline(so, *errorp); 234 return (NULL); 235 } 236 237 /* 238 * Add space for NULL termination if needed. 239 * Do a quick check if the last byte is NUL. 240 */ 241 if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') { 242 /* Check if there is any NULL termination */ 243 size_t i; 244 int foundnull = 0; 245 246 for (i = sizeof (name->sa_family); i < namelen; i++) { 247 if (faddr[i] == '\0') { 248 foundnull = 1; 249 break; 250 } 251 } 252 if (!foundnull) { 253 /* Add extra byte for NUL padding */ 254 char *nfaddr; 255 256 nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP); 257 bcopy(faddr, nfaddr, namelen); 258 kmem_free(faddr, namelen); 259 260 /* NUL terminate */ 261 nfaddr[namelen] = '\0'; 262 namelen++; 263 ASSERT((socklen_t)namelen == namelen); 264 *namelenp = (socklen_t)namelen; 265 faddr = nfaddr; 266 } 267 } 268 return ((struct sockaddr *)faddr); 269 } 270 271 /* 272 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL. 273 */ 274 static int 275 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp, void *kaddr, 276 socklen_t klen) 277 { 278 if (uaddr != NULL) { 279 if (ulen > klen) 280 ulen = klen; 281 282 if (ulen != 0) { 283 if (copyout(kaddr, uaddr, ulen)) 284 return (EFAULT); 285 } 286 } else 287 ulen = 0; 288 289 if (ulenp != NULL) { 290 if (copyout(&ulen, ulenp, sizeof (ulen))) 291 return (EFAULT); 292 } 293 return (0); 294 } 295 296 /* 297 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL. 298 * If klen is greater than ulen it still uses the non-truncated 299 * klen to update ulenp. 300 */ 301 static int 302 copyout_name(void *uaddr, socklen_t ulen, void *ulenp, void *kaddr, 303 socklen_t klen) 304 { 305 if (uaddr != NULL) { 306 if (ulen >= klen) 307 ulen = klen; 308 else if (ulen != 0 && xnet_truncate_print) { 309 printf("sockfs: truncating copyout of address using " 310 "XNET semantics for pid = %d. Lengths %d, %d\n", 311 curproc->p_pid, klen, ulen); 312 } 313 314 if (ulen != 0) { 315 if (copyout(kaddr, uaddr, ulen)) 316 return (EFAULT); 317 } else 318 klen = 0; 319 } else 320 klen = 0; 321 322 if (ulenp != NULL) { 323 if (copyout(&klen, ulenp, sizeof (klen))) 324 return (EFAULT); 325 } 326 return (0); 327 } 328 329 /* 330 * The socketpair() code in libsocket creates two sockets (using 331 * the /etc/netconfig fallback if needed) before calling this routine 332 * to connect the two sockets together. 333 * 334 * For a SOCK_STREAM socketpair a listener is needed - in that case this 335 * routine will create a new file descriptor as part of accepting the 336 * connection. The library socketpair() will check if svs[2] has changed 337 * in which case it will close the changed fd. 338 * 339 * Note that this code could use the TPI feature of accepting the connection 340 * on the listening endpoint. However, that would require significant changes 341 * to soaccept. 342 */ 343 int 344 so_socketpair(int sv[2]) 345 { 346 int svs[2]; 347 struct sonode *so1, *so2; 348 int error; 349 int orig_flags; 350 struct sockaddr_ux *name; 351 size_t namelen; 352 sotpi_info_t *sti1; 353 sotpi_info_t *sti2; 354 355 dprint(1, ("so_socketpair(%p)\n", (void *)sv)); 356 357 error = useracc(sv, sizeof (svs), B_WRITE); 358 if (error && do_useracc) 359 return (set_errno(EFAULT)); 360 361 if (copyin(sv, svs, sizeof (svs))) 362 return (set_errno(EFAULT)); 363 364 if ((so1 = getsonode(svs[0], &error, NULL)) == NULL) 365 return (set_errno(error)); 366 367 if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) { 368 releasef(svs[0]); 369 return (set_errno(error)); 370 } 371 372 if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) { 373 error = EOPNOTSUPP; 374 goto done; 375 } 376 377 sti1 = SOTOTPI(so1); 378 sti2 = SOTOTPI(so2); 379 380 /* 381 * The code below makes assumptions about the "sockfs" implementation. 382 * So make sure that the correct implementation is really used. 383 */ 384 ASSERT(so1->so_ops == &sotpi_sonodeops); 385 ASSERT(so2->so_ops == &sotpi_sonodeops); 386 387 if (so1->so_type == SOCK_DGRAM) { 388 /* 389 * Bind both sockets and connect them with each other. 390 * Need to allocate name/namelen for soconnect. 391 */ 392 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC, CRED()); 393 if (error) { 394 eprintsoline(so1, error); 395 goto done; 396 } 397 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED()); 398 if (error) { 399 eprintsoline(so2, error); 400 goto done; 401 } 402 namelen = sizeof (struct sockaddr_ux); 403 name = kmem_alloc(namelen, KM_SLEEP); 404 name->sou_family = AF_UNIX; 405 name->sou_addr = sti2->sti_ux_laddr; 406 error = socket_connect(so1, 407 (struct sockaddr *)name, 408 (socklen_t)namelen, 409 0, _SOCONNECT_NOXLATE, CRED()); 410 if (error) { 411 kmem_free(name, namelen); 412 eprintsoline(so1, error); 413 goto done; 414 } 415 name->sou_addr = sti1->sti_ux_laddr; 416 error = socket_connect(so2, 417 (struct sockaddr *)name, 418 (socklen_t)namelen, 419 0, _SOCONNECT_NOXLATE, CRED()); 420 kmem_free(name, namelen); 421 if (error) { 422 eprintsoline(so2, error); 423 goto done; 424 } 425 releasef(svs[0]); 426 releasef(svs[1]); 427 } else { 428 /* 429 * Bind both sockets, with so1 being a listener. 430 * Connect so2 to so1 - nonblocking to avoid waiting for 431 * soaccept to complete. 432 * Accept a connection on so1. Pass out the new fd as sv[0]. 433 * The library will detect the changed fd and close 434 * the original one. 435 */ 436 struct sonode *nso; 437 struct vnode *nvp; 438 struct file *nfp; 439 int nfd; 440 441 /* 442 * We could simply call socket_listen() here (which would do the 443 * binding automatically) if the code didn't rely on passing 444 * _SOBIND_NOXLATE to the TPI implementation of socket_bind(). 445 */ 446 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC| 447 _SOBIND_NOXLATE|_SOBIND_LISTEN|_SOBIND_SOCKETPAIR, 448 CRED()); 449 if (error) { 450 eprintsoline(so1, error); 451 goto done; 452 } 453 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED()); 454 if (error) { 455 eprintsoline(so2, error); 456 goto done; 457 } 458 459 namelen = sizeof (struct sockaddr_ux); 460 name = kmem_alloc(namelen, KM_SLEEP); 461 name->sou_family = AF_UNIX; 462 name->sou_addr = sti1->sti_ux_laddr; 463 error = socket_connect(so2, 464 (struct sockaddr *)name, 465 (socklen_t)namelen, 466 FNONBLOCK, _SOCONNECT_NOXLATE, CRED()); 467 kmem_free(name, namelen); 468 if (error) { 469 if (error != EINPROGRESS) { 470 eprintsoline(so2, error); goto done; 471 } 472 } 473 474 error = socket_accept(so1, 0, CRED(), &nso); 475 if (error) { 476 eprintsoline(so1, error); 477 goto done; 478 } 479 480 /* wait for so2 being SS_CONNECTED ignoring signals */ 481 mutex_enter(&so2->so_lock); 482 error = sowaitconnected(so2, 0, 1); 483 mutex_exit(&so2->so_lock); 484 if (error != 0) { 485 (void) socket_close(nso, 0, CRED()); 486 socket_destroy(nso); 487 eprintsoline(so2, error); 488 goto done; 489 } 490 491 nvp = SOTOV(nso); 492 if (error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd)) { 493 (void) socket_close(nso, 0, CRED()); 494 socket_destroy(nso); 495 eprintsoline(nso, error); 496 goto done; 497 } 498 /* 499 * copy over FNONBLOCK and FNDELAY flags should they exist 500 */ 501 if (so1->so_state & SS_NONBLOCK) 502 nfp->f_flag |= FNONBLOCK; 503 if (so1->so_state & SS_NDELAY) 504 nfp->f_flag |= FNDELAY; 505 506 /* 507 * fill in the entries that falloc reserved 508 */ 509 mutex_exit(&nfp->f_tlock); 510 setf(nfd, nfp); 511 512 /* 513 * get the original flags before we release 514 */ 515 VERIFY(f_getfd_error(svs[0], &orig_flags) == 0); 516 517 releasef(svs[0]); 518 releasef(svs[1]); 519 520 /* 521 * If FD_CLOEXEC was set on the filedescriptor we're 522 * swapping out, we should set it on the new one too. 523 */ 524 if (orig_flags & FD_CLOEXEC) { 525 f_setfd(nfd, FD_CLOEXEC); 526 } 527 528 /* 529 * The socketpair library routine will close the original 530 * svs[0] when this code passes out a different file 531 * descriptor. 532 */ 533 svs[0] = nfd; 534 535 if (copyout(svs, sv, sizeof (svs))) { 536 (void) closeandsetf(nfd, NULL); 537 eprintline(EFAULT); 538 return (set_errno(EFAULT)); 539 } 540 } 541 return (0); 542 543 done: 544 releasef(svs[0]); 545 releasef(svs[1]); 546 return (set_errno(error)); 547 } 548 549 int 550 bind(int sock, struct sockaddr *name, socklen_t namelen, int version) 551 { 552 struct sonode *so; 553 int error; 554 555 dprint(1, ("bind(%d, %p, %d)\n", 556 sock, (void *)name, namelen)); 557 558 if ((so = getsonode(sock, &error, NULL)) == NULL) 559 return (set_errno(error)); 560 561 /* Allocate and copyin name */ 562 /* 563 * X/Open test does not expect EFAULT with NULL name and non-zero 564 * namelen. 565 */ 566 if (name != NULL && namelen != 0) { 567 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 568 name = copyin_name(so, name, &namelen, &error); 569 if (name == NULL) { 570 releasef(sock); 571 return (set_errno(error)); 572 } 573 } else { 574 name = NULL; 575 namelen = 0; 576 } 577 578 switch (version) { 579 default: 580 error = socket_bind(so, name, namelen, 0, CRED()); 581 break; 582 case SOV_XPG4_2: 583 error = socket_bind(so, name, namelen, _SOBIND_XPG4_2, CRED()); 584 break; 585 case SOV_SOCKBSD: 586 error = socket_bind(so, name, namelen, _SOBIND_SOCKBSD, CRED()); 587 break; 588 } 589 done: 590 releasef(sock); 591 if (name != NULL) 592 kmem_free(name, (size_t)namelen); 593 594 if (error) 595 return (set_errno(error)); 596 return (0); 597 } 598 599 /* ARGSUSED2 */ 600 int 601 listen(int sock, int backlog, int version) 602 { 603 struct sonode *so; 604 int error; 605 606 dprint(1, ("listen(%d, %d)\n", 607 sock, backlog)); 608 609 if ((so = getsonode(sock, &error, NULL)) == NULL) 610 return (set_errno(error)); 611 612 error = socket_listen(so, backlog, CRED()); 613 614 releasef(sock); 615 if (error) 616 return (set_errno(error)); 617 return (0); 618 } 619 620 /*ARGSUSED3*/ 621 int 622 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version, 623 int flags) 624 { 625 struct sonode *so; 626 file_t *fp; 627 int error; 628 socklen_t namelen; 629 struct sonode *nso; 630 struct vnode *nvp; 631 struct file *nfp; 632 int nfd; 633 int ssflags; 634 struct sockaddr *addrp; 635 socklen_t addrlen; 636 637 dprint(1, ("accept(%d, %p, %p)\n", 638 sock, (void *)name, (void *)namelenp)); 639 640 if (flags & ~(SOCK_CLOEXEC|SOCK_NONBLOCK|SOCK_NDELAY)) { 641 return (set_errno(EINVAL)); 642 } 643 644 /* Translate SOCK_ flags to their SS_ variant */ 645 ssflags = 0; 646 if (flags & SOCK_NONBLOCK) 647 ssflags |= SS_NONBLOCK; 648 if (flags & SOCK_NDELAY) 649 ssflags |= SS_NDELAY; 650 651 if ((so = getsonode(sock, &error, &fp)) == NULL) 652 return (set_errno(error)); 653 654 if (name != NULL) { 655 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 656 if (copyin(namelenp, &namelen, sizeof (namelen))) { 657 releasef(sock); 658 return (set_errno(EFAULT)); 659 } 660 if (namelen != 0) { 661 error = useracc(name, (size_t)namelen, B_WRITE); 662 if (error && do_useracc) { 663 releasef(sock); 664 return (set_errno(EFAULT)); 665 } 666 } else 667 name = NULL; 668 } else { 669 namelen = 0; 670 } 671 672 /* 673 * Allocate the user fd before socket_accept() in order to 674 * catch EMFILE errors before calling socket_accept(). 675 */ 676 if ((nfd = ufalloc(0)) == -1) { 677 eprintsoline(so, EMFILE); 678 releasef(sock); 679 return (set_errno(EMFILE)); 680 } 681 error = socket_accept(so, fp->f_flag, CRED(), &nso); 682 if (error) { 683 setf(nfd, NULL); 684 releasef(sock); 685 return (set_errno(error)); 686 } 687 688 nvp = SOTOV(nso); 689 690 ASSERT(MUTEX_NOT_HELD(&nso->so_lock)); 691 if (namelen != 0) { 692 addrlen = so->so_max_addr_len; 693 addrp = (struct sockaddr *)kmem_alloc(addrlen, KM_SLEEP); 694 695 if ((error = socket_getpeername(nso, (struct sockaddr *)addrp, 696 &addrlen, B_TRUE, CRED())) == 0) { 697 error = copyout_name(name, namelen, namelenp, 698 addrp, addrlen); 699 } else { 700 ASSERT(error == EINVAL || error == ENOTCONN); 701 error = ECONNABORTED; 702 } 703 kmem_free(addrp, so->so_max_addr_len); 704 } 705 706 if (error) { 707 setf(nfd, NULL); 708 (void) socket_close(nso, 0, CRED()); 709 socket_destroy(nso); 710 releasef(sock); 711 return (set_errno(error)); 712 } 713 if (error = falloc(NULL, FWRITE|FREAD, &nfp, NULL)) { 714 setf(nfd, NULL); 715 (void) socket_close(nso, 0, CRED()); 716 socket_destroy(nso); 717 eprintsoline(so, error); 718 releasef(sock); 719 return (set_errno(error)); 720 } 721 /* 722 * fill in the entries that falloc reserved 723 */ 724 nfp->f_vnode = nvp; 725 mutex_exit(&nfp->f_tlock); 726 setf(nfd, nfp); 727 728 /* 729 * Act on SOCK_CLOEXEC from flags 730 */ 731 if (flags & SOCK_CLOEXEC) { 732 f_setfd(nfd, FD_CLOEXEC); 733 } 734 735 /* 736 * Copy FNDELAY and FNONBLOCK from listener to acceptor 737 * and from ssflags 738 */ 739 if ((ssflags | so->so_state) & (SS_NDELAY|SS_NONBLOCK)) { 740 uint_t oflag = nfp->f_flag; 741 int arg = 0; 742 743 if ((ssflags | so->so_state) & SS_NONBLOCK) 744 arg |= FNONBLOCK; 745 else if ((ssflags | so->so_state) & SS_NDELAY) 746 arg |= FNDELAY; 747 748 /* 749 * This code is a simplification of the F_SETFL code in fcntl() 750 * Ignore any errors from VOP_SETFL. 751 */ 752 if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred, NULL)) 753 != 0) { 754 eprintsoline(so, error); 755 error = 0; 756 } else { 757 mutex_enter(&nfp->f_tlock); 758 nfp->f_flag &= ~FMASK | (FREAD|FWRITE); 759 nfp->f_flag |= arg; 760 mutex_exit(&nfp->f_tlock); 761 } 762 } 763 releasef(sock); 764 return (nfd); 765 } 766 767 int 768 connect(int sock, struct sockaddr *name, socklen_t namelen, int version) 769 { 770 struct sonode *so; 771 file_t *fp; 772 int error; 773 774 dprint(1, ("connect(%d, %p, %d)\n", 775 sock, (void *)name, namelen)); 776 777 if ((so = getsonode(sock, &error, &fp)) == NULL) 778 return (set_errno(error)); 779 780 /* Allocate and copyin name */ 781 if (namelen != 0) { 782 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 783 name = copyin_name(so, name, &namelen, &error); 784 if (name == NULL) { 785 releasef(sock); 786 return (set_errno(error)); 787 } 788 } else 789 name = NULL; 790 791 error = socket_connect(so, name, namelen, fp->f_flag, 792 (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2, CRED()); 793 releasef(sock); 794 if (name) 795 kmem_free(name, (size_t)namelen); 796 if (error) 797 return (set_errno(error)); 798 return (0); 799 } 800 801 /*ARGSUSED2*/ 802 int 803 shutdown(int sock, int how, int version) 804 { 805 struct sonode *so; 806 int error; 807 808 dprint(1, ("shutdown(%d, %d)\n", 809 sock, how)); 810 811 if ((so = getsonode(sock, &error, NULL)) == NULL) 812 return (set_errno(error)); 813 814 error = socket_shutdown(so, how, CRED()); 815 816 releasef(sock); 817 if (error) 818 return (set_errno(error)); 819 return (0); 820 } 821 822 /* 823 * Common receive routine. 824 */ 825 static ssize_t 826 recvit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags, 827 socklen_t *namelenp, socklen_t *controllenp, int *flagsp) 828 { 829 struct sonode *so; 830 file_t *fp; 831 void *name; 832 socklen_t namelen; 833 void *control; 834 socklen_t controllen; 835 ssize_t len; 836 int error; 837 838 if ((so = getsonode(sock, &error, &fp)) == NULL) 839 return (set_errno(error)); 840 841 len = uiop->uio_resid; 842 uiop->uio_fmode = fp->f_flag; 843 uiop->uio_extflg = UIO_COPY_CACHED; 844 845 name = msg->msg_name; 846 namelen = msg->msg_namelen; 847 control = msg->msg_control; 848 controllen = msg->msg_controllen; 849 850 msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL | 851 MSG_DONTWAIT | MSG_XPG4_2); 852 853 error = socket_recvmsg(so, msg, uiop, CRED()); 854 if (error) { 855 releasef(sock); 856 return (set_errno(error)); 857 } 858 lwp_stat_update(LWP_STAT_MSGRCV, 1); 859 releasef(sock); 860 861 error = copyout_name(name, namelen, namelenp, 862 msg->msg_name, msg->msg_namelen); 863 if (error) 864 goto err; 865 866 if (flagsp != NULL) { 867 /* 868 * Clear internal flag. 869 */ 870 msg->msg_flags &= ~MSG_XPG4_2; 871 872 /* 873 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only 874 * when controllen is zero and there is control data to 875 * copy out. 876 */ 877 if (controllen != 0 && 878 (msg->msg_controllen > controllen || control == NULL)) { 879 dprint(1, ("recvit: CTRUNC %d %d %p\n", 880 msg->msg_controllen, controllen, control)); 881 882 msg->msg_flags |= MSG_CTRUNC; 883 } 884 if (copyout(&msg->msg_flags, flagsp, 885 sizeof (msg->msg_flags))) { 886 error = EFAULT; 887 goto err; 888 } 889 } 890 /* 891 * Note: This MUST be done last. There can be no "goto err" after this 892 * point since it could make so_closefds run twice on some part 893 * of the file descriptor array. 894 */ 895 if (controllen != 0) { 896 if (!(flags & MSG_XPG4_2)) { 897 /* 898 * Good old msg_accrights can only return a multiple 899 * of 4 bytes. 900 */ 901 controllen &= ~((int)sizeof (uint32_t) - 1); 902 } 903 error = copyout_arg(control, controllen, controllenp, 904 msg->msg_control, msg->msg_controllen); 905 if (error) 906 goto err; 907 908 if (msg->msg_controllen > controllen || control == NULL) { 909 if (control == NULL) 910 controllen = 0; 911 so_closefds(msg->msg_control, msg->msg_controllen, 912 !(flags & MSG_XPG4_2), controllen); 913 } 914 } 915 if (msg->msg_namelen != 0) 916 kmem_free(msg->msg_name, (size_t)msg->msg_namelen); 917 if (msg->msg_controllen != 0) 918 kmem_free(msg->msg_control, (size_t)msg->msg_controllen); 919 return (len - uiop->uio_resid); 920 921 err: 922 /* 923 * If we fail and the control part contains file descriptors 924 * we have to close the fd's. 925 */ 926 if (msg->msg_controllen != 0) 927 so_closefds(msg->msg_control, msg->msg_controllen, 928 !(flags & MSG_XPG4_2), 0); 929 if (msg->msg_namelen != 0) 930 kmem_free(msg->msg_name, (size_t)msg->msg_namelen); 931 if (msg->msg_controllen != 0) 932 kmem_free(msg->msg_control, (size_t)msg->msg_controllen); 933 return (set_errno(error)); 934 } 935 936 /* 937 * Native system call 938 */ 939 ssize_t 940 recv(int sock, void *buffer, size_t len, int flags) 941 { 942 struct nmsghdr lmsg; 943 struct uio auio; 944 struct iovec aiov[1]; 945 946 dprint(1, ("recv(%d, %p, %ld, %d)\n", 947 sock, buffer, len, flags)); 948 949 if ((ssize_t)len < 0) { 950 return (set_errno(EINVAL)); 951 } 952 953 aiov[0].iov_base = buffer; 954 aiov[0].iov_len = len; 955 auio.uio_loffset = 0; 956 auio.uio_iov = aiov; 957 auio.uio_iovcnt = 1; 958 auio.uio_resid = len; 959 auio.uio_segflg = UIO_USERSPACE; 960 auio.uio_limit = 0; 961 962 lmsg.msg_namelen = 0; 963 lmsg.msg_controllen = 0; 964 lmsg.msg_flags = 0; 965 return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL)); 966 } 967 968 ssize_t 969 recvfrom(int sock, void *buffer, size_t len, int flags, struct sockaddr *name, 970 socklen_t *namelenp) 971 { 972 struct nmsghdr lmsg; 973 struct uio auio; 974 struct iovec aiov[1]; 975 976 dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n", 977 sock, buffer, len, flags, (void *)name, (void *)namelenp)); 978 979 if ((ssize_t)len < 0) { 980 return (set_errno(EINVAL)); 981 } 982 983 aiov[0].iov_base = buffer; 984 aiov[0].iov_len = len; 985 auio.uio_loffset = 0; 986 auio.uio_iov = aiov; 987 auio.uio_iovcnt = 1; 988 auio.uio_resid = len; 989 auio.uio_segflg = UIO_USERSPACE; 990 auio.uio_limit = 0; 991 992 lmsg.msg_name = (char *)name; 993 if (namelenp != NULL) { 994 if (copyin(namelenp, &lmsg.msg_namelen, 995 sizeof (lmsg.msg_namelen))) 996 return (set_errno(EFAULT)); 997 } else { 998 lmsg.msg_namelen = 0; 999 } 1000 lmsg.msg_controllen = 0; 1001 lmsg.msg_flags = 0; 1002 1003 return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL)); 1004 } 1005 1006 /* 1007 * Uses the MSG_XPG4_2 flag to determine if the caller is using 1008 * struct omsghdr or struct nmsghdr. 1009 */ 1010 ssize_t 1011 recvmsg(int sock, struct nmsghdr *msg, int flags) 1012 { 1013 STRUCT_DECL(nmsghdr, u_lmsg); 1014 STRUCT_HANDLE(nmsghdr, umsgptr); 1015 struct nmsghdr lmsg; 1016 struct uio auio; 1017 struct iovec buf[IOV_MAX_STACK], *aiov = buf; 1018 ssize_t iovsize = 0; 1019 int iovcnt; 1020 ssize_t len, rval; 1021 int i; 1022 int *flagsp; 1023 model_t model; 1024 1025 dprint(1, ("recvmsg(%d, %p, %d)\n", 1026 sock, (void *)msg, flags)); 1027 1028 model = get_udatamodel(); 1029 STRUCT_INIT(u_lmsg, model); 1030 STRUCT_SET_HANDLE(umsgptr, model, msg); 1031 1032 if (flags & MSG_XPG4_2) { 1033 if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg))) 1034 return (set_errno(EFAULT)); 1035 flagsp = STRUCT_FADDR(umsgptr, msg_flags); 1036 } else { 1037 /* 1038 * Assumes that nmsghdr and omsghdr are identically shaped 1039 * except for the added msg_flags field. 1040 */ 1041 if (copyin(msg, STRUCT_BUF(u_lmsg), 1042 SIZEOF_STRUCT(omsghdr, model))) 1043 return (set_errno(EFAULT)); 1044 STRUCT_FSET(u_lmsg, msg_flags, 0); 1045 flagsp = NULL; 1046 } 1047 1048 /* 1049 * Code below us will kmem_alloc memory and hang it 1050 * off msg_control and msg_name fields. This forces 1051 * us to copy the structure to its native form. 1052 */ 1053 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name); 1054 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen); 1055 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov); 1056 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen); 1057 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control); 1058 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen); 1059 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags); 1060 1061 iovcnt = lmsg.msg_iovlen; 1062 1063 if (iovcnt <= 0 || iovcnt > IOV_MAX) { 1064 return (set_errno(EMSGSIZE)); 1065 } 1066 1067 if (iovcnt > IOV_MAX_STACK) { 1068 iovsize = iovcnt * sizeof (struct iovec); 1069 aiov = kmem_alloc(iovsize, KM_SLEEP); 1070 } 1071 1072 #ifdef _SYSCALL32_IMPL 1073 /* 1074 * 32-bit callers need to have their iovec expanded, while ensuring 1075 * that they can't move more than 2Gbytes of data in a single call. 1076 */ 1077 if (model == DATAMODEL_ILP32) { 1078 struct iovec32 buf32[IOV_MAX_STACK], *aiov32 = buf32; 1079 ssize_t iov32size; 1080 ssize32_t count32; 1081 1082 iov32size = iovcnt * sizeof (struct iovec32); 1083 if (iovsize != 0) 1084 aiov32 = kmem_alloc(iov32size, KM_SLEEP); 1085 1086 if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32, iov32size)) { 1087 if (iovsize != 0) { 1088 kmem_free(aiov32, iov32size); 1089 kmem_free(aiov, iovsize); 1090 } 1091 1092 return (set_errno(EFAULT)); 1093 } 1094 1095 count32 = 0; 1096 for (i = 0; i < iovcnt; i++) { 1097 ssize32_t iovlen32; 1098 1099 iovlen32 = aiov32[i].iov_len; 1100 count32 += iovlen32; 1101 if (iovlen32 < 0 || count32 < 0) { 1102 if (iovsize != 0) { 1103 kmem_free(aiov32, iov32size); 1104 kmem_free(aiov, iovsize); 1105 } 1106 1107 return (set_errno(EINVAL)); 1108 } 1109 1110 aiov[i].iov_len = iovlen32; 1111 aiov[i].iov_base = 1112 (caddr_t)(uintptr_t)aiov32[i].iov_base; 1113 } 1114 1115 if (iovsize != 0) 1116 kmem_free(aiov32, iov32size); 1117 } else 1118 #endif /* _SYSCALL32_IMPL */ 1119 if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) { 1120 if (iovsize != 0) 1121 kmem_free(aiov, iovsize); 1122 1123 return (set_errno(EFAULT)); 1124 } 1125 len = 0; 1126 for (i = 0; i < iovcnt; i++) { 1127 ssize_t iovlen = aiov[i].iov_len; 1128 len += iovlen; 1129 if (iovlen < 0 || len < 0) { 1130 if (iovsize != 0) 1131 kmem_free(aiov, iovsize); 1132 1133 return (set_errno(EINVAL)); 1134 } 1135 } 1136 auio.uio_loffset = 0; 1137 auio.uio_iov = aiov; 1138 auio.uio_iovcnt = iovcnt; 1139 auio.uio_resid = len; 1140 auio.uio_segflg = UIO_USERSPACE; 1141 auio.uio_limit = 0; 1142 1143 if (lmsg.msg_control != NULL && 1144 (do_useracc == 0 || 1145 useracc(lmsg.msg_control, lmsg.msg_controllen, 1146 B_WRITE) != 0)) { 1147 if (iovsize != 0) 1148 kmem_free(aiov, iovsize); 1149 1150 return (set_errno(EFAULT)); 1151 } 1152 1153 rval = recvit(sock, &lmsg, &auio, flags, 1154 STRUCT_FADDR(umsgptr, msg_namelen), 1155 STRUCT_FADDR(umsgptr, msg_controllen), flagsp); 1156 1157 if (iovsize != 0) 1158 kmem_free(aiov, iovsize); 1159 1160 return (rval); 1161 } 1162 1163 /* 1164 * Common send function. 1165 */ 1166 static ssize_t 1167 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags) 1168 { 1169 struct sonode *so; 1170 file_t *fp; 1171 void *name; 1172 socklen_t namelen; 1173 void *control; 1174 socklen_t controllen; 1175 ssize_t len; 1176 int error; 1177 1178 if ((so = getsonode(sock, &error, &fp)) == NULL) 1179 return (set_errno(error)); 1180 1181 uiop->uio_fmode = fp->f_flag; 1182 1183 if (so->so_family == AF_UNIX) 1184 uiop->uio_extflg = UIO_COPY_CACHED; 1185 else 1186 uiop->uio_extflg = UIO_COPY_DEFAULT; 1187 1188 /* Allocate and copyin name and control */ 1189 name = msg->msg_name; 1190 namelen = msg->msg_namelen; 1191 if (name != NULL && namelen != 0) { 1192 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1193 name = copyin_name(so, 1194 (struct sockaddr *)name, 1195 &namelen, &error); 1196 if (name == NULL) 1197 goto done3; 1198 /* copyin_name null terminates addresses for AF_UNIX */ 1199 msg->msg_namelen = namelen; 1200 msg->msg_name = name; 1201 } else { 1202 msg->msg_name = name = NULL; 1203 msg->msg_namelen = namelen = 0; 1204 } 1205 1206 control = msg->msg_control; 1207 controllen = msg->msg_controllen; 1208 if ((control != NULL) && (controllen != 0)) { 1209 /* 1210 * Verify that the length is not excessive to prevent 1211 * an application from consuming all of kernel memory. 1212 */ 1213 if (controllen > SO_MAXARGSIZE) { 1214 error = EINVAL; 1215 goto done2; 1216 } 1217 control = kmem_alloc(controllen, KM_SLEEP); 1218 1219 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1220 if (copyin(msg->msg_control, control, controllen)) { 1221 error = EFAULT; 1222 goto done1; 1223 } 1224 msg->msg_control = control; 1225 } else { 1226 msg->msg_control = control = NULL; 1227 msg->msg_controllen = controllen = 0; 1228 } 1229 1230 len = uiop->uio_resid; 1231 msg->msg_flags = flags; 1232 1233 error = socket_sendmsg(so, msg, uiop, CRED()); 1234 done1: 1235 if (control != NULL) 1236 kmem_free(control, controllen); 1237 done2: 1238 if (name != NULL) 1239 kmem_free(name, namelen); 1240 done3: 1241 if (error != 0) { 1242 releasef(sock); 1243 return (set_errno(error)); 1244 } 1245 lwp_stat_update(LWP_STAT_MSGSND, 1); 1246 releasef(sock); 1247 return (len - uiop->uio_resid); 1248 } 1249 1250 /* 1251 * Native system call 1252 */ 1253 ssize_t 1254 send(int sock, void *buffer, size_t len, int flags) 1255 { 1256 struct nmsghdr lmsg; 1257 struct uio auio; 1258 struct iovec aiov[1]; 1259 1260 dprint(1, ("send(%d, %p, %ld, %d)\n", 1261 sock, buffer, len, flags)); 1262 1263 if ((ssize_t)len < 0) { 1264 return (set_errno(EINVAL)); 1265 } 1266 1267 aiov[0].iov_base = buffer; 1268 aiov[0].iov_len = len; 1269 auio.uio_loffset = 0; 1270 auio.uio_iov = aiov; 1271 auio.uio_iovcnt = 1; 1272 auio.uio_resid = len; 1273 auio.uio_segflg = UIO_USERSPACE; 1274 auio.uio_limit = 0; 1275 1276 lmsg.msg_name = NULL; 1277 lmsg.msg_control = NULL; 1278 if (!(flags & MSG_XPG4_2)) { 1279 /* 1280 * In order to be compatible with the libsocket/sockmod 1281 * implementation we set EOR for all send* calls. 1282 */ 1283 flags |= MSG_EOR; 1284 } 1285 return (sendit(sock, &lmsg, &auio, flags)); 1286 } 1287 1288 /* 1289 * Uses the MSG_XPG4_2 flag to determine if the caller is using 1290 * struct omsghdr or struct nmsghdr. 1291 */ 1292 ssize_t 1293 sendmsg(int sock, struct nmsghdr *msg, int flags) 1294 { 1295 struct nmsghdr lmsg; 1296 STRUCT_DECL(nmsghdr, u_lmsg); 1297 struct uio auio; 1298 struct iovec buf[IOV_MAX_STACK], *aiov = buf; 1299 ssize_t iovsize = 0; 1300 int iovcnt; 1301 ssize_t len, rval; 1302 int i; 1303 model_t model; 1304 1305 dprint(1, ("sendmsg(%d, %p, %d)\n", sock, (void *)msg, flags)); 1306 1307 model = get_udatamodel(); 1308 STRUCT_INIT(u_lmsg, model); 1309 1310 if (flags & MSG_XPG4_2) { 1311 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg), 1312 STRUCT_SIZE(u_lmsg))) 1313 return (set_errno(EFAULT)); 1314 } else { 1315 /* 1316 * Assumes that nmsghdr and omsghdr are identically shaped 1317 * except for the added msg_flags field. 1318 */ 1319 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg), 1320 SIZEOF_STRUCT(omsghdr, model))) 1321 return (set_errno(EFAULT)); 1322 /* 1323 * In order to be compatible with the libsocket/sockmod 1324 * implementation we set EOR for all send* calls. 1325 */ 1326 flags |= MSG_EOR; 1327 } 1328 1329 /* 1330 * Code below us will kmem_alloc memory and hang it 1331 * off msg_control and msg_name fields. This forces 1332 * us to copy the structure to its native form. 1333 */ 1334 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name); 1335 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen); 1336 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov); 1337 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen); 1338 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control); 1339 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen); 1340 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags); 1341 1342 iovcnt = lmsg.msg_iovlen; 1343 1344 if (iovcnt <= 0 || iovcnt > IOV_MAX) { 1345 /* 1346 * Unless this is XPG 4.2 we allow iovcnt == 0 to 1347 * be compatible with SunOS 4.X and 4.4BSD. 1348 */ 1349 if (iovcnt != 0 || (flags & MSG_XPG4_2)) 1350 return (set_errno(EMSGSIZE)); 1351 } 1352 1353 if (iovcnt > IOV_MAX_STACK) { 1354 iovsize = iovcnt * sizeof (struct iovec); 1355 aiov = kmem_alloc(iovsize, KM_SLEEP); 1356 } 1357 1358 #ifdef _SYSCALL32_IMPL 1359 /* 1360 * 32-bit callers need to have their iovec expanded, while ensuring 1361 * that they can't move more than 2Gbytes of data in a single call. 1362 */ 1363 if (model == DATAMODEL_ILP32) { 1364 struct iovec32 buf32[IOV_MAX_STACK], *aiov32 = buf32; 1365 ssize_t iov32size; 1366 ssize32_t count32; 1367 1368 iov32size = iovcnt * sizeof (struct iovec32); 1369 if (iovsize != 0) 1370 aiov32 = kmem_alloc(iov32size, KM_SLEEP); 1371 1372 if (iovcnt != 0 && 1373 copyin((struct iovec32 *)lmsg.msg_iov, aiov32, iov32size)) { 1374 if (iovsize != 0) { 1375 kmem_free(aiov32, iov32size); 1376 kmem_free(aiov, iovsize); 1377 } 1378 1379 return (set_errno(EFAULT)); 1380 } 1381 1382 count32 = 0; 1383 for (i = 0; i < iovcnt; i++) { 1384 ssize32_t iovlen32; 1385 1386 iovlen32 = aiov32[i].iov_len; 1387 count32 += iovlen32; 1388 if (iovlen32 < 0 || count32 < 0) { 1389 if (iovsize != 0) { 1390 kmem_free(aiov32, iov32size); 1391 kmem_free(aiov, iovsize); 1392 } 1393 1394 return (set_errno(EINVAL)); 1395 } 1396 1397 aiov[i].iov_len = iovlen32; 1398 aiov[i].iov_base = 1399 (caddr_t)(uintptr_t)aiov32[i].iov_base; 1400 } 1401 1402 if (iovsize != 0) 1403 kmem_free(aiov32, iov32size); 1404 } else 1405 #endif /* _SYSCALL32_IMPL */ 1406 if (iovcnt != 0 && 1407 copyin(lmsg.msg_iov, aiov, 1408 (unsigned)iovcnt * sizeof (struct iovec))) { 1409 if (iovsize != 0) 1410 kmem_free(aiov, iovsize); 1411 1412 return (set_errno(EFAULT)); 1413 } 1414 len = 0; 1415 for (i = 0; i < iovcnt; i++) { 1416 ssize_t iovlen = aiov[i].iov_len; 1417 len += iovlen; 1418 if (iovlen < 0 || len < 0) { 1419 if (iovsize != 0) 1420 kmem_free(aiov, iovsize); 1421 1422 return (set_errno(EINVAL)); 1423 } 1424 } 1425 auio.uio_loffset = 0; 1426 auio.uio_iov = aiov; 1427 auio.uio_iovcnt = iovcnt; 1428 auio.uio_resid = len; 1429 auio.uio_segflg = UIO_USERSPACE; 1430 auio.uio_limit = 0; 1431 1432 rval = sendit(sock, &lmsg, &auio, flags); 1433 1434 if (iovsize != 0) 1435 kmem_free(aiov, iovsize); 1436 1437 return (rval); 1438 } 1439 1440 ssize_t 1441 sendto(int sock, void *buffer, size_t len, int flags, 1442 struct sockaddr *name, socklen_t namelen) 1443 { 1444 struct nmsghdr lmsg; 1445 struct uio auio; 1446 struct iovec aiov[1]; 1447 1448 dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n", 1449 sock, buffer, len, flags, (void *)name, namelen)); 1450 1451 if ((ssize_t)len < 0) { 1452 return (set_errno(EINVAL)); 1453 } 1454 1455 aiov[0].iov_base = buffer; 1456 aiov[0].iov_len = len; 1457 auio.uio_loffset = 0; 1458 auio.uio_iov = aiov; 1459 auio.uio_iovcnt = 1; 1460 auio.uio_resid = len; 1461 auio.uio_segflg = UIO_USERSPACE; 1462 auio.uio_limit = 0; 1463 1464 lmsg.msg_name = (char *)name; 1465 lmsg.msg_namelen = namelen; 1466 lmsg.msg_control = NULL; 1467 if (!(flags & MSG_XPG4_2)) { 1468 /* 1469 * In order to be compatible with the libsocket/sockmod 1470 * implementation we set EOR for all send* calls. 1471 */ 1472 flags |= MSG_EOR; 1473 } 1474 return (sendit(sock, &lmsg, &auio, flags)); 1475 } 1476 1477 /*ARGSUSED3*/ 1478 int 1479 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version) 1480 { 1481 struct sonode *so; 1482 int error; 1483 socklen_t namelen; 1484 socklen_t sock_addrlen; 1485 struct sockaddr *sock_addrp; 1486 1487 dprint(1, ("getpeername(%d, %p, %p)\n", 1488 sock, (void *)name, (void *)namelenp)); 1489 1490 if ((so = getsonode(sock, &error, NULL)) == NULL) 1491 goto bad; 1492 1493 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1494 if (copyin(namelenp, &namelen, sizeof (namelen)) || 1495 (name == NULL && namelen != 0)) { 1496 error = EFAULT; 1497 goto rel_out; 1498 } 1499 sock_addrlen = so->so_max_addr_len; 1500 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP); 1501 1502 if ((error = socket_getpeername(so, sock_addrp, &sock_addrlen, 1503 B_FALSE, CRED())) == 0) { 1504 ASSERT(sock_addrlen <= so->so_max_addr_len); 1505 error = copyout_name(name, namelen, namelenp, 1506 (void *)sock_addrp, sock_addrlen); 1507 } 1508 kmem_free(sock_addrp, so->so_max_addr_len); 1509 rel_out: 1510 releasef(sock); 1511 bad: return (error != 0 ? set_errno(error) : 0); 1512 } 1513 1514 /*ARGSUSED3*/ 1515 int 1516 getsockname(int sock, struct sockaddr *name, socklen_t *namelenp, int version) 1517 { 1518 struct sonode *so; 1519 int error; 1520 socklen_t namelen, sock_addrlen; 1521 struct sockaddr *sock_addrp; 1522 1523 dprint(1, ("getsockname(%d, %p, %p)\n", 1524 sock, (void *)name, (void *)namelenp)); 1525 1526 if ((so = getsonode(sock, &error, NULL)) == NULL) 1527 goto bad; 1528 1529 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1530 if (copyin(namelenp, &namelen, sizeof (namelen)) || 1531 (name == NULL && namelen != 0)) { 1532 error = EFAULT; 1533 goto rel_out; 1534 } 1535 1536 sock_addrlen = so->so_max_addr_len; 1537 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP); 1538 if ((error = socket_getsockname(so, sock_addrp, &sock_addrlen, 1539 CRED())) == 0) { 1540 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1541 ASSERT(sock_addrlen <= so->so_max_addr_len); 1542 error = copyout_name(name, namelen, namelenp, 1543 (void *)sock_addrp, sock_addrlen); 1544 } 1545 kmem_free(sock_addrp, so->so_max_addr_len); 1546 rel_out: 1547 releasef(sock); 1548 bad: return (error != 0 ? set_errno(error) : 0); 1549 } 1550 1551 /*ARGSUSED5*/ 1552 int 1553 getsockopt(int sock, int level, int option_name, void *option_value, 1554 socklen_t *option_lenp, int version) 1555 { 1556 struct sonode *so; 1557 socklen_t optlen, optlen_res; 1558 void *optval; 1559 int error; 1560 1561 dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n", 1562 sock, level, option_name, option_value, (void *)option_lenp)); 1563 1564 if ((so = getsonode(sock, &error, NULL)) == NULL) 1565 return (set_errno(error)); 1566 1567 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1568 if (copyin(option_lenp, &optlen, sizeof (optlen))) { 1569 releasef(sock); 1570 return (set_errno(EFAULT)); 1571 } 1572 /* 1573 * Verify that the length is not excessive to prevent 1574 * an application from consuming all of kernel memory. 1575 */ 1576 if (optlen > SO_MAXARGSIZE) { 1577 error = EINVAL; 1578 releasef(sock); 1579 return (set_errno(error)); 1580 } 1581 optval = kmem_alloc(optlen, KM_SLEEP); 1582 optlen_res = optlen; 1583 error = socket_getsockopt(so, level, option_name, optval, 1584 &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2, 1585 CRED()); 1586 releasef(sock); 1587 if (error) { 1588 kmem_free(optval, optlen); 1589 return (set_errno(error)); 1590 } 1591 error = copyout_arg(option_value, optlen, option_lenp, 1592 optval, optlen_res); 1593 kmem_free(optval, optlen); 1594 if (error) 1595 return (set_errno(error)); 1596 return (0); 1597 } 1598 1599 /*ARGSUSED5*/ 1600 int 1601 setsockopt(int sock, int level, int option_name, void *option_value, 1602 socklen_t option_len, int version) 1603 { 1604 struct sonode *so; 1605 intptr_t buffer[2]; 1606 void *optval = NULL; 1607 int error; 1608 1609 dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n", 1610 sock, level, option_name, option_value, option_len)); 1611 1612 if ((so = getsonode(sock, &error, NULL)) == NULL) 1613 return (set_errno(error)); 1614 1615 if (option_value != NULL) { 1616 if (option_len != 0) { 1617 /* 1618 * Verify that the length is not excessive to prevent 1619 * an application from consuming all of kernel memory. 1620 */ 1621 if (option_len > SO_MAXARGSIZE) { 1622 error = EINVAL; 1623 goto done2; 1624 } 1625 optval = option_len <= sizeof (buffer) ? 1626 &buffer : kmem_alloc((size_t)option_len, KM_SLEEP); 1627 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1628 if (copyin(option_value, optval, (size_t)option_len)) { 1629 error = EFAULT; 1630 goto done1; 1631 } 1632 } 1633 } else 1634 option_len = 0; 1635 1636 error = socket_setsockopt(so, level, option_name, optval, 1637 (t_uscalar_t)option_len, CRED()); 1638 done1: 1639 if (optval != buffer) 1640 kmem_free(optval, (size_t)option_len); 1641 done2: 1642 releasef(sock); 1643 if (error) 1644 return (set_errno(error)); 1645 return (0); 1646 } 1647 1648 static int 1649 sockconf_add_sock(int family, int type, int protocol, char *name) 1650 { 1651 int error = 0; 1652 char *kdevpath = NULL; 1653 char *kmodule = NULL; 1654 char *buf = NULL; 1655 size_t pathlen = 0; 1656 struct sockparams *sp; 1657 1658 if (name == NULL) 1659 return (EINVAL); 1660 /* 1661 * Copyin the name. 1662 * This also makes it possible to check for too long pathnames. 1663 * Compress the space needed for the name before passing it 1664 * to soconfig - soconfig will store the string until 1665 * the configuration is removed. 1666 */ 1667 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1668 if ((error = copyinstr(name, buf, MAXPATHLEN, &pathlen)) != 0) { 1669 kmem_free(buf, MAXPATHLEN); 1670 return (error); 1671 } 1672 if (strncmp(buf, "/dev", strlen("/dev")) == 0) { 1673 /* For device */ 1674 1675 /* 1676 * Special handling for NCA: 1677 * 1678 * DEV_NCA is never opened even if an application 1679 * requests for AF_NCA. The device opened is instead a 1680 * predefined AF_INET transport (NCA_INET_DEV). 1681 * 1682 * Prior to Volo (PSARC/2007/587) NCA would determine 1683 * the device using a lookup, which worked then because 1684 * all protocols were based on TPI. Since TPI is no 1685 * longer the default, we have to explicitly state 1686 * which device to use. 1687 */ 1688 if (strcmp(buf, NCA_DEV) == 0) { 1689 /* only support entry <28, 2, 0> */ 1690 if (family != AF_NCA || type != SOCK_STREAM || 1691 protocol != 0) { 1692 kmem_free(buf, MAXPATHLEN); 1693 return (EINVAL); 1694 } 1695 1696 pathlen = strlen(NCA_INET_DEV) + 1; 1697 kdevpath = kmem_alloc(pathlen, KM_SLEEP); 1698 bcopy(NCA_INET_DEV, kdevpath, pathlen); 1699 kdevpath[pathlen - 1] = '\0'; 1700 } else { 1701 kdevpath = kmem_alloc(pathlen, KM_SLEEP); 1702 bcopy(buf, kdevpath, pathlen); 1703 kdevpath[pathlen - 1] = '\0'; 1704 } 1705 } else { 1706 /* For socket module */ 1707 kmodule = kmem_alloc(pathlen, KM_SLEEP); 1708 bcopy(buf, kmodule, pathlen); 1709 kmodule[pathlen - 1] = '\0'; 1710 pathlen = 0; 1711 } 1712 kmem_free(buf, MAXPATHLEN); 1713 1714 /* sockparams_create frees mod name and devpath upon failure */ 1715 sp = sockparams_create(family, type, protocol, kmodule, 1716 kdevpath, pathlen, 0, KM_SLEEP, &error); 1717 if (sp != NULL) { 1718 error = sockparams_add(sp); 1719 if (error != 0) 1720 sockparams_destroy(sp); 1721 } 1722 1723 return (error); 1724 } 1725 1726 static int 1727 sockconf_remove_sock(int family, int type, int protocol) 1728 { 1729 return (sockparams_delete(family, type, protocol)); 1730 } 1731 1732 static int 1733 sockconfig_remove_filter(const char *uname) 1734 { 1735 char kname[SOF_MAXNAMELEN]; 1736 size_t len; 1737 int error; 1738 sof_entry_t *ent; 1739 1740 if ((error = copyinstr(uname, kname, SOF_MAXNAMELEN, &len)) != 0) 1741 return (error); 1742 1743 ent = sof_entry_remove_by_name(kname); 1744 if (ent == NULL) 1745 return (ENXIO); 1746 1747 mutex_enter(&ent->sofe_lock); 1748 ASSERT(!(ent->sofe_flags & SOFEF_CONDEMED)); 1749 if (ent->sofe_refcnt == 0) { 1750 mutex_exit(&ent->sofe_lock); 1751 sof_entry_free(ent); 1752 } else { 1753 /* let the last socket free the filter */ 1754 ent->sofe_flags |= SOFEF_CONDEMED; 1755 mutex_exit(&ent->sofe_lock); 1756 } 1757 1758 return (0); 1759 } 1760 1761 static int 1762 sockconfig_add_filter(const char *uname, void *ufilpropp) 1763 { 1764 struct sockconfig_filter_props filprop; 1765 sof_entry_t *ent; 1766 int error; 1767 size_t tuplesz, len; 1768 char hintbuf[SOF_MAXNAMELEN]; 1769 1770 ent = kmem_zalloc(sizeof (sof_entry_t), KM_SLEEP); 1771 mutex_init(&ent->sofe_lock, NULL, MUTEX_DEFAULT, NULL); 1772 1773 if ((error = copyinstr(uname, ent->sofe_name, SOF_MAXNAMELEN, 1774 &len)) != 0) { 1775 sof_entry_free(ent); 1776 return (error); 1777 } 1778 1779 if (get_udatamodel() == DATAMODEL_NATIVE) { 1780 if (copyin(ufilpropp, &filprop, sizeof (filprop)) != 0) { 1781 sof_entry_free(ent); 1782 return (EFAULT); 1783 } 1784 } 1785 #ifdef _SYSCALL32_IMPL 1786 else { 1787 struct sockconfig_filter_props32 filprop32; 1788 1789 if (copyin(ufilpropp, &filprop32, sizeof (filprop32)) != 0) { 1790 sof_entry_free(ent); 1791 return (EFAULT); 1792 } 1793 filprop.sfp_modname = (char *)(uintptr_t)filprop32.sfp_modname; 1794 filprop.sfp_autoattach = filprop32.sfp_autoattach; 1795 filprop.sfp_hint = filprop32.sfp_hint; 1796 filprop.sfp_hintarg = (char *)(uintptr_t)filprop32.sfp_hintarg; 1797 filprop.sfp_socktuple_cnt = filprop32.sfp_socktuple_cnt; 1798 filprop.sfp_socktuple = 1799 (sof_socktuple_t *)(uintptr_t)filprop32.sfp_socktuple; 1800 } 1801 #endif /* _SYSCALL32_IMPL */ 1802 1803 if ((error = copyinstr(filprop.sfp_modname, ent->sofe_modname, 1804 sizeof (ent->sofe_modname), &len)) != 0) { 1805 sof_entry_free(ent); 1806 return (error); 1807 } 1808 1809 /* 1810 * A filter must specify at least one socket tuple. 1811 */ 1812 if (filprop.sfp_socktuple_cnt == 0 || 1813 filprop.sfp_socktuple_cnt > SOF_MAXSOCKTUPLECNT) { 1814 sof_entry_free(ent); 1815 return (EINVAL); 1816 } 1817 ent->sofe_flags = filprop.sfp_autoattach ? SOFEF_AUTO : SOFEF_PROG; 1818 ent->sofe_hint = filprop.sfp_hint; 1819 1820 /* 1821 * Verify the hint, and copy in the hint argument, if necessary. 1822 */ 1823 switch (ent->sofe_hint) { 1824 case SOF_HINT_BEFORE: 1825 case SOF_HINT_AFTER: 1826 if ((error = copyinstr(filprop.sfp_hintarg, hintbuf, 1827 sizeof (hintbuf), &len)) != 0) { 1828 sof_entry_free(ent); 1829 return (error); 1830 } 1831 ent->sofe_hintarg = kmem_alloc(len, KM_SLEEP); 1832 bcopy(hintbuf, ent->sofe_hintarg, len); 1833 /* FALLTHRU */ 1834 case SOF_HINT_TOP: 1835 case SOF_HINT_BOTTOM: 1836 /* hints cannot be used with programmatic filters */ 1837 if (ent->sofe_flags & SOFEF_PROG) { 1838 sof_entry_free(ent); 1839 return (EINVAL); 1840 } 1841 break; 1842 case SOF_HINT_NONE: 1843 break; 1844 default: 1845 /* bad hint value */ 1846 sof_entry_free(ent); 1847 return (EINVAL); 1848 } 1849 1850 ent->sofe_socktuple_cnt = filprop.sfp_socktuple_cnt; 1851 tuplesz = sizeof (sof_socktuple_t) * ent->sofe_socktuple_cnt; 1852 ent->sofe_socktuple = kmem_alloc(tuplesz, KM_SLEEP); 1853 1854 if (get_udatamodel() == DATAMODEL_NATIVE) { 1855 if (copyin(filprop.sfp_socktuple, ent->sofe_socktuple, 1856 tuplesz)) { 1857 sof_entry_free(ent); 1858 return (EFAULT); 1859 } 1860 } 1861 #ifdef _SYSCALL32_IMPL 1862 else { 1863 int i; 1864 caddr_t data = (caddr_t)filprop.sfp_socktuple; 1865 sof_socktuple_t *tup = ent->sofe_socktuple; 1866 sof_socktuple32_t tup32; 1867 1868 tup = ent->sofe_socktuple; 1869 for (i = 0; i < ent->sofe_socktuple_cnt; i++, tup++) { 1870 ASSERT(tup < ent->sofe_socktuple + tuplesz); 1871 1872 if (copyin(data, &tup32, sizeof (tup32)) != 0) { 1873 sof_entry_free(ent); 1874 return (EFAULT); 1875 } 1876 tup->sofst_family = tup32.sofst_family; 1877 tup->sofst_type = tup32.sofst_type; 1878 tup->sofst_protocol = tup32.sofst_protocol; 1879 1880 data += sizeof (tup32); 1881 } 1882 } 1883 #endif /* _SYSCALL32_IMPL */ 1884 1885 /* Sockets can start using the filter as soon as the filter is added */ 1886 if ((error = sof_entry_add(ent)) != 0) 1887 sof_entry_free(ent); 1888 1889 return (error); 1890 } 1891 1892 /* 1893 * Socket configuration system call. It is used to add and remove 1894 * socket types. 1895 */ 1896 int 1897 sockconfig(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 1898 { 1899 int error = 0; 1900 1901 if (secpolicy_net_config(CRED(), B_FALSE) != 0) 1902 return (set_errno(EPERM)); 1903 1904 if (sockfs_defer_nl7c_init) { 1905 nl7c_init(); 1906 sockfs_defer_nl7c_init = 0; 1907 } 1908 1909 switch (cmd) { 1910 case SOCKCONFIG_ADD_SOCK: 1911 error = sockconf_add_sock((int)(uintptr_t)arg1, 1912 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3, arg4); 1913 break; 1914 case SOCKCONFIG_REMOVE_SOCK: 1915 error = sockconf_remove_sock((int)(uintptr_t)arg1, 1916 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3); 1917 break; 1918 case SOCKCONFIG_ADD_FILTER: 1919 error = sockconfig_add_filter((const char *)arg1, arg2); 1920 break; 1921 case SOCKCONFIG_REMOVE_FILTER: 1922 error = sockconfig_remove_filter((const char *)arg1); 1923 break; 1924 case SOCKCONFIG_GET_SOCKTABLE: 1925 error = sockparams_copyout_socktable((int)(uintptr_t)arg1); 1926 break; 1927 default: 1928 #ifdef DEBUG 1929 cmn_err(CE_NOTE, "sockconfig: unkonwn subcommand %d", cmd); 1930 #endif 1931 error = EINVAL; 1932 break; 1933 } 1934 1935 if (error != 0) { 1936 eprintline(error); 1937 return (set_errno(error)); 1938 } 1939 return (0); 1940 } 1941 1942 1943 /* 1944 * Sendfile is implemented through two schemes, direct I/O or by 1945 * caching in the filesystem page cache. We cache the input file by 1946 * default and use direct I/O only if sendfile_max_size is set 1947 * appropriately as explained below. Note that this logic is consistent 1948 * with other filesystems where caching is turned on by default 1949 * unless explicitly turned off by using the DIRECTIO ioctl. 1950 * 1951 * We choose a slightly different scheme here. One can turn off 1952 * caching by setting sendfile_max_size to 0. One can also enable 1953 * caching of files <= sendfile_max_size by setting sendfile_max_size 1954 * to an appropriate value. By default sendfile_max_size is set to the 1955 * maximum value so that all files are cached. In future, we may provide 1956 * better interfaces for caching the file. 1957 * 1958 * Sendfile through Direct I/O (Zero copy) 1959 * -------------------------------------- 1960 * 1961 * As disks are normally slower than the network, we can't have a 1962 * single thread that reads the disk and writes to the network. We 1963 * need to have parallelism. This is done by having the sendfile 1964 * thread create another thread that reads from the filesystem 1965 * and queues it for network processing. In this scheme, the data 1966 * is never copied anywhere i.e it is zero copy unlike the other 1967 * scheme. 1968 * 1969 * We have a sendfile queue (snfq) where each sendfile 1970 * request (snf_req_t) is queued for processing by a thread. Number 1971 * of threads is dynamically allocated and they exit if they are idling 1972 * beyond a specified amount of time. When each request (snf_req_t) is 1973 * processed by a thread, it produces a number of mblk_t structures to 1974 * be consumed by the sendfile thread. snf_deque and snf_enque are 1975 * used for consuming and producing mblks. Size of the filesystem 1976 * read is determined by the tunable (sendfile_read_size). A single 1977 * mblk holds sendfile_read_size worth of data (except the last 1978 * read of the file) which is sent down as a whole to the network. 1979 * sendfile_read_size is set to 1 MB as this seems to be the optimal 1980 * value for the UFS filesystem backed by a striped storage array. 1981 * 1982 * Synchronisation between read (producer) and write (consumer) threads. 1983 * -------------------------------------------------------------------- 1984 * 1985 * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while 1986 * adding and deleting items in this list. Error can happen anytime 1987 * during read or write. There could be unprocessed mblks in the 1988 * sr_ib_XXX list when a read or write error occurs. Whenever error 1989 * is encountered, we need two things to happen : 1990 * 1991 * a) One of the threads need to clean the mblks. 1992 * b) When one thread encounters an error, the other should stop. 1993 * 1994 * For (a), we don't want to penalize the reader thread as it could do 1995 * some useful work processing other requests. For (b), the error can 1996 * be detected by examining sr_read_error or sr_write_error. 1997 * sr_lock protects sr_read_error and sr_write_error. If both reader and 1998 * writer encounters error, we need to report the write error back to 1999 * the application as that's what would have happened if the operations 2000 * were done sequentially. With this in mind, following should work : 2001 * 2002 * - Check for errors before read or write. 2003 * - If the reader encounters error, set the error in sr_read_error. 2004 * Check sr_write_error, if it is set, send cv_signal as it is 2005 * waiting for reader to complete. If it is not set, the writer 2006 * is either running sinking data to the network or blocked 2007 * because of flow control. For handling the latter case, we 2008 * always send a signal. In any case, it will examine sr_read_error 2009 * and return. sr_read_error is marked with SR_READ_DONE to tell 2010 * the writer that the reader is done in all the cases. 2011 * - If the writer encounters error, set the error in sr_write_error. 2012 * The reader thread is either blocked because of flow control or 2013 * running reading data from the disk. For the former, we need to 2014 * wakeup the thread. Again to keep it simple, we always wake up 2015 * the reader thread. Then, wait for the read thread to complete 2016 * if it is not done yet. Cleanup and return. 2017 * 2018 * High and low water marks for the read thread. 2019 * -------------------------------------------- 2020 * 2021 * If sendfile() is used to send data over a slow network, we need to 2022 * make sure that the read thread does not produce data at a faster 2023 * rate than the network. This can happen if the disk is faster than 2024 * the network. In such a case, we don't want to build a very large queue. 2025 * But we would still like to get all of the network throughput possible. 2026 * This implies that network should never block waiting for data. 2027 * As there are lot of disk throughput/network throughput combinations 2028 * possible, it is difficult to come up with an accurate number. 2029 * A typical 10K RPM disk has a max seek latency 17ms and rotational 2030 * latency of 3ms for reading a disk block. Thus, the total latency to 2031 * initiate a new read, transfer data from the disk and queue for 2032 * transmission would take about a max of 25ms. Todays max transfer rate 2033 * for network is 100MB/sec. If the thread is blocked because of flow 2034 * control, it would take 25ms to get new data ready for transmission. 2035 * We have to make sure that network is not idling, while we are initiating 2036 * new transfers. So, at 100MB/sec, to keep network busy we would need 2037 * 2.5MB of data. Rounding off, we keep the low water mark to be 3MB of data. 2038 * We need to pick a high water mark so that the woken up thread would 2039 * do considerable work before blocking again to prevent thrashing. Currently, 2040 * we pick this to be 10 times that of the low water mark. 2041 * 2042 * Sendfile with segmap caching (One copy from page cache to mblks). 2043 * ---------------------------------------------------------------- 2044 * 2045 * We use the segmap cache for caching the file, if the size of file 2046 * is <= sendfile_max_size. In this case we don't use threads as VM 2047 * is reasonably fast enough to keep up with the network. If the underlying 2048 * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth 2049 * of data into segmap space, and use the virtual address from segmap 2050 * directly through desballoc() to avoid copy. Once the transport is done 2051 * with the data, the mapping will be released through segmap_release() 2052 * called by the call-back routine. 2053 * 2054 * If zero-copy is not allowed by the transport, we simply call VOP_READ() 2055 * to copy the data from the filesystem into our temporary network buffer. 2056 * 2057 * To disable caching, set sendfile_max_size to 0. 2058 */ 2059 2060 uint_t sendfile_read_size = 1024 * 1024; 2061 #define SENDFILE_REQ_LOWAT 3 * 1024 * 1024 2062 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT; 2063 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT; 2064 struct sendfile_stats sf_stats; 2065 struct sendfile_queue *snfq; 2066 clock_t snfq_timeout; 2067 off64_t sendfile_max_size; 2068 2069 static void snf_enque(snf_req_t *, mblk_t *); 2070 static mblk_t *snf_deque(snf_req_t *); 2071 2072 void 2073 sendfile_init(void) 2074 { 2075 snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP); 2076 2077 mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL); 2078 cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL); 2079 snfq->snfq_max_threads = max_ncpus; 2080 snfq_timeout = SNFQ_TIMEOUT; 2081 /* Cache all files by default. */ 2082 sendfile_max_size = MAXOFFSET_T; 2083 } 2084 2085 /* 2086 * Queues a mblk_t for network processing. 2087 */ 2088 static void 2089 snf_enque(snf_req_t *sr, mblk_t *mp) 2090 { 2091 mp->b_next = NULL; 2092 mutex_enter(&sr->sr_lock); 2093 if (sr->sr_mp_head == NULL) { 2094 sr->sr_mp_head = sr->sr_mp_tail = mp; 2095 cv_signal(&sr->sr_cv); 2096 } else { 2097 sr->sr_mp_tail->b_next = mp; 2098 sr->sr_mp_tail = mp; 2099 } 2100 sr->sr_qlen += MBLKL(mp); 2101 while ((sr->sr_qlen > sr->sr_hiwat) && 2102 (sr->sr_write_error == 0)) { 2103 sf_stats.ss_full_waits++; 2104 cv_wait(&sr->sr_cv, &sr->sr_lock); 2105 } 2106 mutex_exit(&sr->sr_lock); 2107 } 2108 2109 /* 2110 * De-queues a mblk_t for network processing. 2111 */ 2112 static mblk_t * 2113 snf_deque(snf_req_t *sr) 2114 { 2115 mblk_t *mp; 2116 2117 mutex_enter(&sr->sr_lock); 2118 /* 2119 * If we have encountered an error on read or read is 2120 * completed and no more mblks, return NULL. 2121 * We need to check for NULL sr_mp_head also as 2122 * the reads could have completed and there is 2123 * nothing more to come. 2124 */ 2125 if (((sr->sr_read_error & ~SR_READ_DONE) != 0) || 2126 ((sr->sr_read_error & SR_READ_DONE) && 2127 sr->sr_mp_head == NULL)) { 2128 mutex_exit(&sr->sr_lock); 2129 return (NULL); 2130 } 2131 /* 2132 * To start with neither SR_READ_DONE is marked nor 2133 * the error is set. When we wake up from cv_wait, 2134 * following are the possibilities : 2135 * 2136 * a) sr_read_error is zero and mblks are queued. 2137 * b) sr_read_error is set to SR_READ_DONE 2138 * and mblks are queued. 2139 * c) sr_read_error is set to SR_READ_DONE 2140 * and no mblks. 2141 * d) sr_read_error is set to some error other 2142 * than SR_READ_DONE. 2143 */ 2144 2145 while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) { 2146 sf_stats.ss_empty_waits++; 2147 cv_wait(&sr->sr_cv, &sr->sr_lock); 2148 } 2149 /* Handle (a) and (b) first - the normal case. */ 2150 if (((sr->sr_read_error & ~SR_READ_DONE) == 0) && 2151 (sr->sr_mp_head != NULL)) { 2152 mp = sr->sr_mp_head; 2153 sr->sr_mp_head = mp->b_next; 2154 sr->sr_qlen -= MBLKL(mp); 2155 if (sr->sr_qlen < sr->sr_lowat) 2156 cv_signal(&sr->sr_cv); 2157 mutex_exit(&sr->sr_lock); 2158 mp->b_next = NULL; 2159 return (mp); 2160 } 2161 /* Handle (c) and (d). */ 2162 mutex_exit(&sr->sr_lock); 2163 return (NULL); 2164 } 2165 2166 /* 2167 * Reads data from the filesystem and queues it for network processing. 2168 */ 2169 void 2170 snf_async_read(snf_req_t *sr) 2171 { 2172 size_t iosize; 2173 u_offset_t fileoff; 2174 u_offset_t size; 2175 int ret_size; 2176 int error; 2177 file_t *fp; 2178 mblk_t *mp; 2179 struct vnode *vp; 2180 int extra = 0; 2181 int maxblk = 0; 2182 int wroff = 0; 2183 struct sonode *so; 2184 2185 fp = sr->sr_fp; 2186 size = sr->sr_file_size; 2187 fileoff = sr->sr_file_off; 2188 2189 /* 2190 * Ignore the error for filesystems that doesn't support DIRECTIO. 2191 */ 2192 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0, 2193 kcred, NULL, NULL); 2194 2195 vp = sr->sr_vp; 2196 if (vp->v_type == VSOCK) { 2197 stdata_t *stp; 2198 2199 /* 2200 * Get the extra space to insert a header and a trailer. 2201 */ 2202 so = VTOSO(vp); 2203 stp = vp->v_stream; 2204 if (stp == NULL) { 2205 wroff = so->so_proto_props.sopp_wroff; 2206 maxblk = so->so_proto_props.sopp_maxblk; 2207 extra = wroff + so->so_proto_props.sopp_tail; 2208 } else { 2209 wroff = (int)(stp->sd_wroff); 2210 maxblk = (int)(stp->sd_maxblk); 2211 extra = wroff + (int)(stp->sd_tail); 2212 } 2213 } 2214 2215 while ((size != 0) && (sr->sr_write_error == 0)) { 2216 2217 iosize = (int)MIN(sr->sr_maxpsz, size); 2218 2219 /* 2220 * Socket filters can limit the mblk size, 2221 * so limit reads to maxblk if there are 2222 * filters present. 2223 */ 2224 if (vp->v_type == VSOCK && 2225 so->so_filter_active > 0 && maxblk != INFPSZ) 2226 iosize = (int)MIN(iosize, maxblk); 2227 2228 if (is_system_labeled()) { 2229 mp = allocb_cred(iosize + extra, CRED(), 2230 curproc->p_pid); 2231 } else { 2232 mp = allocb(iosize + extra, BPRI_MED); 2233 } 2234 if (mp == NULL) { 2235 error = EAGAIN; 2236 break; 2237 } 2238 2239 mp->b_rptr += wroff; 2240 2241 ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize); 2242 2243 /* Error or Reached EOF ? */ 2244 if ((error != 0) || (ret_size == 0)) { 2245 freeb(mp); 2246 break; 2247 } 2248 mp->b_wptr = mp->b_rptr + ret_size; 2249 2250 snf_enque(sr, mp); 2251 size -= ret_size; 2252 fileoff += ret_size; 2253 } 2254 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0, 2255 kcred, NULL, NULL); 2256 mutex_enter(&sr->sr_lock); 2257 sr->sr_read_error = error; 2258 sr->sr_read_error |= SR_READ_DONE; 2259 cv_signal(&sr->sr_cv); 2260 mutex_exit(&sr->sr_lock); 2261 } 2262 2263 void 2264 snf_async_thread(void) 2265 { 2266 snf_req_t *sr; 2267 callb_cpr_t cprinfo; 2268 clock_t time_left = 1; 2269 2270 CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq"); 2271 2272 mutex_enter(&snfq->snfq_lock); 2273 for (;;) { 2274 /* 2275 * If we didn't find a entry, then block until woken up 2276 * again and then look through the queues again. 2277 */ 2278 while ((sr = snfq->snfq_req_head) == NULL) { 2279 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2280 if (time_left <= 0) { 2281 snfq->snfq_svc_threads--; 2282 CALLB_CPR_EXIT(&cprinfo); 2283 thread_exit(); 2284 /* NOTREACHED */ 2285 } 2286 snfq->snfq_idle_cnt++; 2287 2288 time_left = cv_reltimedwait(&snfq->snfq_cv, 2289 &snfq->snfq_lock, snfq_timeout, TR_CLOCK_TICK); 2290 snfq->snfq_idle_cnt--; 2291 2292 CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock); 2293 } 2294 snfq->snfq_req_head = sr->sr_next; 2295 snfq->snfq_req_cnt--; 2296 mutex_exit(&snfq->snfq_lock); 2297 snf_async_read(sr); 2298 mutex_enter(&snfq->snfq_lock); 2299 } 2300 } 2301 2302 2303 snf_req_t * 2304 create_thread(int operation, struct vnode *vp, file_t *fp, 2305 u_offset_t fileoff, u_offset_t size) 2306 { 2307 snf_req_t *sr; 2308 stdata_t *stp; 2309 2310 sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP); 2311 2312 sr->sr_vp = vp; 2313 sr->sr_fp = fp; 2314 stp = vp->v_stream; 2315 2316 /* 2317 * store sd_qn_maxpsz into sr_maxpsz while we have stream head. 2318 * stream might be closed before thread returns from snf_async_read. 2319 */ 2320 if (stp != NULL && stp->sd_qn_maxpsz > 0) { 2321 sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz); 2322 } else { 2323 sr->sr_maxpsz = MAXBSIZE; 2324 } 2325 2326 sr->sr_operation = operation; 2327 sr->sr_file_off = fileoff; 2328 sr->sr_file_size = size; 2329 sr->sr_hiwat = sendfile_req_hiwat; 2330 sr->sr_lowat = sendfile_req_lowat; 2331 mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL); 2332 cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL); 2333 /* 2334 * See whether we need another thread for servicing this 2335 * request. If there are already enough requests queued 2336 * for the threads, create one if not exceeding 2337 * snfq_max_threads. 2338 */ 2339 mutex_enter(&snfq->snfq_lock); 2340 if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt && 2341 snfq->snfq_svc_threads < snfq->snfq_max_threads) { 2342 (void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0, 2343 TS_RUN, minclsyspri); 2344 snfq->snfq_svc_threads++; 2345 } 2346 if (snfq->snfq_req_head == NULL) { 2347 snfq->snfq_req_head = snfq->snfq_req_tail = sr; 2348 cv_signal(&snfq->snfq_cv); 2349 } else { 2350 snfq->snfq_req_tail->sr_next = sr; 2351 snfq->snfq_req_tail = sr; 2352 } 2353 snfq->snfq_req_cnt++; 2354 mutex_exit(&snfq->snfq_lock); 2355 return (sr); 2356 } 2357 2358 int 2359 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size, 2360 ssize_t *count) 2361 { 2362 snf_req_t *sr; 2363 mblk_t *mp; 2364 int iosize; 2365 int error = 0; 2366 short fflag; 2367 struct vnode *vp; 2368 int ksize; 2369 struct nmsghdr msg; 2370 2371 ksize = 0; 2372 *count = 0; 2373 bzero(&msg, sizeof (msg)); 2374 2375 vp = fp->f_vnode; 2376 fflag = fp->f_flag; 2377 if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL) 2378 return (EAGAIN); 2379 2380 /* 2381 * We check for read error in snf_deque. It has to check 2382 * for successful READ_DONE and return NULL, and we might 2383 * as well make an additional check there. 2384 */ 2385 while ((mp = snf_deque(sr)) != NULL) { 2386 2387 if (ISSIG(curthread, JUSTLOOKING)) { 2388 freeb(mp); 2389 error = EINTR; 2390 break; 2391 } 2392 iosize = MBLKL(mp); 2393 2394 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2395 2396 if (error != 0) { 2397 if (mp != NULL) 2398 freeb(mp); 2399 break; 2400 } 2401 ksize += iosize; 2402 } 2403 *count = ksize; 2404 2405 mutex_enter(&sr->sr_lock); 2406 sr->sr_write_error = error; 2407 /* Look at the big comments on why we cv_signal here. */ 2408 cv_signal(&sr->sr_cv); 2409 2410 /* Wait for the reader to complete always. */ 2411 while (!(sr->sr_read_error & SR_READ_DONE)) { 2412 cv_wait(&sr->sr_cv, &sr->sr_lock); 2413 } 2414 /* If there is no write error, check for read error. */ 2415 if (error == 0) 2416 error = (sr->sr_read_error & ~SR_READ_DONE); 2417 2418 if (error != 0) { 2419 mblk_t *next_mp; 2420 2421 mp = sr->sr_mp_head; 2422 while (mp != NULL) { 2423 next_mp = mp->b_next; 2424 mp->b_next = NULL; 2425 freeb(mp); 2426 mp = next_mp; 2427 } 2428 } 2429 mutex_exit(&sr->sr_lock); 2430 kmem_free(sr, sizeof (snf_req_t)); 2431 return (error); 2432 } 2433 2434 /* Maximum no.of pages allocated by vpm for sendfile at a time */ 2435 #define SNF_VPMMAXPGS (VPMMAXPGS/2) 2436 2437 /* 2438 * Maximum no.of elements in the list returned by vpm, including 2439 * NULL for the last entry 2440 */ 2441 #define SNF_MAXVMAPS (SNF_VPMMAXPGS + 1) 2442 2443 typedef struct { 2444 unsigned int snfv_ref; 2445 frtn_t snfv_frtn; 2446 vnode_t *snfv_vp; 2447 struct vmap snfv_vml[SNF_MAXVMAPS]; 2448 } snf_vmap_desbinfo; 2449 2450 typedef struct { 2451 frtn_t snfi_frtn; 2452 caddr_t snfi_base; 2453 uint_t snfi_mapoff; 2454 size_t snfi_len; 2455 vnode_t *snfi_vp; 2456 } snf_smap_desbinfo; 2457 2458 /* 2459 * The callback function used for vpm mapped mblks called when the last ref of 2460 * the mblk is dropped which normally occurs when TCP receives the ack. But it 2461 * can be the driver too due to lazy reclaim. 2462 */ 2463 void 2464 snf_vmap_desbfree(snf_vmap_desbinfo *snfv) 2465 { 2466 ASSERT(snfv->snfv_ref != 0); 2467 if (atomic_dec_32_nv(&snfv->snfv_ref) == 0) { 2468 vpm_unmap_pages(snfv->snfv_vml, S_READ); 2469 VN_RELE(snfv->snfv_vp); 2470 kmem_free(snfv, sizeof (snf_vmap_desbinfo)); 2471 } 2472 } 2473 2474 /* 2475 * The callback function used for segmap'ped mblks called when the last ref of 2476 * the mblk is dropped which normally occurs when TCP receives the ack. But it 2477 * can be the driver too due to lazy reclaim. 2478 */ 2479 void 2480 snf_smap_desbfree(snf_smap_desbinfo *snfi) 2481 { 2482 if (! IS_KPM_ADDR(snfi->snfi_base)) { 2483 /* 2484 * We don't need to call segmap_fault(F_SOFTUNLOCK) for 2485 * segmap_kpm as long as the latter never falls back to 2486 * "use_segmap_range". (See segmap_getmapflt().) 2487 * 2488 * Using S_OTHER saves an redundant hat_setref() in 2489 * segmap_unlock() 2490 */ 2491 (void) segmap_fault(kas.a_hat, segkmap, 2492 (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base + 2493 snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len, 2494 F_SOFTUNLOCK, S_OTHER); 2495 } 2496 (void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED); 2497 VN_RELE(snfi->snfi_vp); 2498 kmem_free(snfi, sizeof (*snfi)); 2499 } 2500 2501 /* 2502 * Use segmap or vpm instead of bcopy to send down a desballoca'ed, mblk. 2503 * When segmap is used, the mblk contains a segmap slot of no more 2504 * than MAXBSIZE. 2505 * 2506 * With vpm, a maximum of SNF_MAXVMAPS page-sized mappings can be obtained 2507 * in each iteration and sent by socket_sendmblk until an error occurs or 2508 * the requested size has been transferred. An mblk is esballoca'ed from 2509 * each mapped page and a chain of these mblk is sent to the transport layer. 2510 * vpm will be called to unmap the pages when all mblks have been freed by 2511 * free_func. 2512 * 2513 * At the end of the whole sendfile() operation, we wait till the data from 2514 * the last mblk is ack'ed by the transport before returning so that the 2515 * caller of sendfile() can safely modify the file content. 2516 * 2517 * The caller of this function should make sure that total_size does not exceed 2518 * the actual file size of fvp. 2519 */ 2520 int 2521 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t total_size, 2522 ssize_t *count, boolean_t nowait) 2523 { 2524 caddr_t base; 2525 int mapoff; 2526 vnode_t *vp; 2527 mblk_t *mp = NULL; 2528 int chain_size; 2529 int error; 2530 clock_t deadlk_wait; 2531 short fflag; 2532 int ksize; 2533 struct vattr va; 2534 boolean_t dowait = B_FALSE; 2535 struct nmsghdr msg; 2536 2537 vp = fp->f_vnode; 2538 fflag = fp->f_flag; 2539 ksize = 0; 2540 bzero(&msg, sizeof (msg)); 2541 2542 for (;;) { 2543 if (ISSIG(curthread, JUSTLOOKING)) { 2544 error = EINTR; 2545 break; 2546 } 2547 2548 if (vpm_enable) { 2549 snf_vmap_desbinfo *snfv; 2550 mblk_t *nmp; 2551 int mblk_size; 2552 int maxsize; 2553 int i; 2554 2555 mapoff = fileoff & PAGEOFFSET; 2556 maxsize = MIN((SNF_VPMMAXPGS * PAGESIZE), total_size); 2557 2558 snfv = kmem_zalloc(sizeof (snf_vmap_desbinfo), 2559 KM_SLEEP); 2560 2561 /* 2562 * Get vpm mappings for maxsize with read access. 2563 * If the pages aren't available yet, we get 2564 * DEADLK, so wait and try again a little later using 2565 * an increasing wait. We might be here a long time. 2566 * 2567 * If delay_sig returns EINTR, be sure to exit and 2568 * pass it up to the caller. 2569 */ 2570 deadlk_wait = 0; 2571 while ((error = vpm_map_pages(fvp, fileoff, 2572 (size_t)maxsize, (VPM_FETCHPAGE), snfv->snfv_vml, 2573 SNF_MAXVMAPS, NULL, S_READ)) == EDEADLK) { 2574 deadlk_wait += (deadlk_wait < 5) ? 1 : 4; 2575 if ((error = delay_sig(deadlk_wait)) != 0) { 2576 break; 2577 } 2578 } 2579 if (error != 0) { 2580 kmem_free(snfv, sizeof (snf_vmap_desbinfo)); 2581 error = (error == EINTR) ? EINTR : EIO; 2582 goto out; 2583 } 2584 snfv->snfv_frtn.free_func = snf_vmap_desbfree; 2585 snfv->snfv_frtn.free_arg = (caddr_t)snfv; 2586 2587 /* Construct the mblk chain from the page mappings */ 2588 chain_size = 0; 2589 for (i = 0; (snfv->snfv_vml[i].vs_addr != NULL) && 2590 total_size > 0; i++) { 2591 ASSERT(chain_size < maxsize); 2592 mblk_size = MIN(snfv->snfv_vml[i].vs_len - 2593 mapoff, total_size); 2594 nmp = esballoca( 2595 (uchar_t *)snfv->snfv_vml[i].vs_addr + 2596 mapoff, mblk_size, BPRI_HI, 2597 &snfv->snfv_frtn); 2598 2599 /* 2600 * We return EAGAIN after unmapping the pages 2601 * if we cannot allocate the the head of the 2602 * chain. Otherwise, we continue sending the 2603 * mblks constructed so far. 2604 */ 2605 if (nmp == NULL) { 2606 if (i == 0) { 2607 vpm_unmap_pages(snfv->snfv_vml, 2608 S_READ); 2609 kmem_free(snfv, 2610 sizeof (snf_vmap_desbinfo)); 2611 error = EAGAIN; 2612 goto out; 2613 } 2614 break; 2615 } 2616 /* Mark this dblk with the zero-copy flag */ 2617 nmp->b_datap->db_struioflag |= STRUIO_ZC; 2618 nmp->b_wptr += mblk_size; 2619 chain_size += mblk_size; 2620 fileoff += mblk_size; 2621 total_size -= mblk_size; 2622 snfv->snfv_ref++; 2623 mapoff = 0; 2624 if (i > 0) 2625 linkb(mp, nmp); 2626 else 2627 mp = nmp; 2628 } 2629 VN_HOLD(fvp); 2630 snfv->snfv_vp = fvp; 2631 } else { 2632 /* vpm not supported. fallback to segmap */ 2633 snf_smap_desbinfo *snfi; 2634 2635 mapoff = fileoff & MAXBOFFSET; 2636 chain_size = MAXBSIZE - mapoff; 2637 if (chain_size > total_size) 2638 chain_size = total_size; 2639 /* 2640 * we don't forcefault because we'll call 2641 * segmap_fault(F_SOFTLOCK) next. 2642 * 2643 * S_READ will get the ref bit set (by either 2644 * segmap_getmapflt() or segmap_fault()) and page 2645 * shared locked. 2646 */ 2647 base = segmap_getmapflt(segkmap, fvp, fileoff, 2648 chain_size, segmap_kpm ? SM_FAULT : 0, S_READ); 2649 2650 snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP); 2651 snfi->snfi_len = (size_t)roundup(mapoff+chain_size, 2652 PAGESIZE)- (mapoff & PAGEMASK); 2653 /* 2654 * We must call segmap_fault() even for segmap_kpm 2655 * because that's how error gets returned. 2656 * (segmap_getmapflt() never fails but segmap_fault() 2657 * does.) 2658 * 2659 * If the pages aren't available yet, we get 2660 * DEADLK, so wait and try again a little later using 2661 * an increasing wait. We might be here a long time. 2662 * 2663 * If delay_sig returns EINTR, be sure to exit and 2664 * pass it up to the caller. 2665 */ 2666 deadlk_wait = 0; 2667 while ((error = FC_ERRNO(segmap_fault(kas.a_hat, 2668 segkmap, (caddr_t)(uintptr_t)(((uintptr_t)base + 2669 mapoff) & PAGEMASK), snfi->snfi_len, F_SOFTLOCK, 2670 S_READ))) == EDEADLK) { 2671 deadlk_wait += (deadlk_wait < 5) ? 1 : 4; 2672 if ((error = delay_sig(deadlk_wait)) != 0) { 2673 break; 2674 } 2675 } 2676 if (error != 0) { 2677 (void) segmap_release(segkmap, base, 0); 2678 kmem_free(snfi, sizeof (*snfi)); 2679 error = (error == EINTR) ? EINTR : EIO; 2680 goto out; 2681 } 2682 snfi->snfi_frtn.free_func = snf_smap_desbfree; 2683 snfi->snfi_frtn.free_arg = (caddr_t)snfi; 2684 snfi->snfi_base = base; 2685 snfi->snfi_mapoff = mapoff; 2686 mp = esballoca((uchar_t *)base + mapoff, chain_size, 2687 BPRI_HI, &snfi->snfi_frtn); 2688 2689 if (mp == NULL) { 2690 (void) segmap_fault(kas.a_hat, segkmap, 2691 (caddr_t)(uintptr_t)(((uintptr_t)base + 2692 mapoff) & PAGEMASK), snfi->snfi_len, 2693 F_SOFTUNLOCK, S_OTHER); 2694 (void) segmap_release(segkmap, base, 0); 2695 kmem_free(snfi, sizeof (*snfi)); 2696 freemsg(mp); 2697 error = EAGAIN; 2698 goto out; 2699 } 2700 VN_HOLD(fvp); 2701 snfi->snfi_vp = fvp; 2702 mp->b_wptr += chain_size; 2703 2704 /* Mark this dblk with the zero-copy flag */ 2705 mp->b_datap->db_struioflag |= STRUIO_ZC; 2706 fileoff += chain_size; 2707 total_size -= chain_size; 2708 } 2709 2710 if (total_size == 0 && !nowait) { 2711 ASSERT(!dowait); 2712 dowait = B_TRUE; 2713 mp->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 2714 } 2715 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2716 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2717 if (error != 0) { 2718 /* 2719 * mp contains the mblks that were not sent by 2720 * socket_sendmblk. Use its size to update *count 2721 */ 2722 *count = ksize + (chain_size - msgdsize(mp)); 2723 if (mp != NULL) 2724 freemsg(mp); 2725 return (error); 2726 } 2727 ksize += chain_size; 2728 if (total_size == 0) 2729 goto done; 2730 2731 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2732 va.va_mask = AT_SIZE; 2733 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2734 if (error) 2735 break; 2736 /* Read as much as possible. */ 2737 if (fileoff >= va.va_size) 2738 break; 2739 if (total_size + fileoff > va.va_size) 2740 total_size = va.va_size - fileoff; 2741 } 2742 out: 2743 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2744 done: 2745 *count = ksize; 2746 if (dowait) { 2747 stdata_t *stp; 2748 2749 stp = vp->v_stream; 2750 if (stp == NULL) { 2751 struct sonode *so; 2752 so = VTOSO(vp); 2753 error = so_zcopy_wait(so); 2754 } else { 2755 mutex_enter(&stp->sd_lock); 2756 while (!(stp->sd_flag & STZCNOTIFY)) { 2757 if (cv_wait_sig(&stp->sd_zcopy_wait, 2758 &stp->sd_lock) == 0) { 2759 error = EINTR; 2760 break; 2761 } 2762 } 2763 stp->sd_flag &= ~STZCNOTIFY; 2764 mutex_exit(&stp->sd_lock); 2765 } 2766 } 2767 return (error); 2768 } 2769 2770 int 2771 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size, 2772 uint_t maxpsz, ssize_t *count) 2773 { 2774 struct vnode *vp; 2775 mblk_t *mp; 2776 int iosize; 2777 int extra = 0; 2778 int error; 2779 short fflag; 2780 int ksize; 2781 int ioflag; 2782 struct uio auio; 2783 struct iovec aiov; 2784 struct vattr va; 2785 int maxblk = 0; 2786 int wroff = 0; 2787 struct sonode *so; 2788 struct nmsghdr msg; 2789 2790 vp = fp->f_vnode; 2791 if (vp->v_type == VSOCK) { 2792 stdata_t *stp; 2793 2794 /* 2795 * Get the extra space to insert a header and a trailer. 2796 */ 2797 so = VTOSO(vp); 2798 stp = vp->v_stream; 2799 if (stp == NULL) { 2800 wroff = so->so_proto_props.sopp_wroff; 2801 maxblk = so->so_proto_props.sopp_maxblk; 2802 extra = wroff + so->so_proto_props.sopp_tail; 2803 } else { 2804 wroff = (int)(stp->sd_wroff); 2805 maxblk = (int)(stp->sd_maxblk); 2806 extra = wroff + (int)(stp->sd_tail); 2807 } 2808 } 2809 bzero(&msg, sizeof (msg)); 2810 fflag = fp->f_flag; 2811 ksize = 0; 2812 auio.uio_iov = &aiov; 2813 auio.uio_iovcnt = 1; 2814 auio.uio_segflg = UIO_SYSSPACE; 2815 auio.uio_llimit = MAXOFFSET_T; 2816 auio.uio_fmode = fflag; 2817 auio.uio_extflg = UIO_COPY_CACHED; 2818 ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC); 2819 /* If read sync is not asked for, filter sync flags */ 2820 if ((ioflag & FRSYNC) == 0) 2821 ioflag &= ~(FSYNC|FDSYNC); 2822 for (;;) { 2823 if (ISSIG(curthread, JUSTLOOKING)) { 2824 error = EINTR; 2825 break; 2826 } 2827 iosize = (int)MIN(maxpsz, size); 2828 2829 /* 2830 * Socket filters can limit the mblk size, 2831 * so limit reads to maxblk if there are 2832 * filters present. 2833 */ 2834 if (vp->v_type == VSOCK && 2835 so->so_filter_active > 0 && maxblk != INFPSZ) 2836 iosize = (int)MIN(iosize, maxblk); 2837 2838 if (is_system_labeled()) { 2839 mp = allocb_cred(iosize + extra, CRED(), 2840 curproc->p_pid); 2841 } else { 2842 mp = allocb(iosize + extra, BPRI_MED); 2843 } 2844 if (mp == NULL) { 2845 error = EAGAIN; 2846 break; 2847 } 2848 2849 mp->b_rptr += wroff; 2850 2851 aiov.iov_base = (caddr_t)mp->b_rptr; 2852 aiov.iov_len = iosize; 2853 auio.uio_loffset = fileoff; 2854 auio.uio_resid = iosize; 2855 2856 error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL); 2857 iosize -= auio.uio_resid; 2858 2859 if (error == EINTR && iosize != 0) 2860 error = 0; 2861 2862 if (error != 0 || iosize == 0) { 2863 freeb(mp); 2864 break; 2865 } 2866 mp->b_wptr = mp->b_rptr + iosize; 2867 2868 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2869 2870 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2871 2872 if (error != 0) { 2873 *count = ksize; 2874 if (mp != NULL) 2875 freeb(mp); 2876 return (error); 2877 } 2878 ksize += iosize; 2879 size -= iosize; 2880 if (size == 0) 2881 goto done; 2882 2883 fileoff += iosize; 2884 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2885 va.va_mask = AT_SIZE; 2886 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2887 if (error) 2888 break; 2889 /* Read as much as possible. */ 2890 if (fileoff >= va.va_size) 2891 size = 0; 2892 else if (size + fileoff > va.va_size) 2893 size = va.va_size - fileoff; 2894 } 2895 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2896 done: 2897 *count = ksize; 2898 return (error); 2899 } 2900 2901 #if defined(_SYSCALL32_IMPL) || defined(_ILP32) 2902 /* 2903 * Largefile support for 32 bit applications only. 2904 */ 2905 int 2906 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv, 2907 ssize32_t *count32) 2908 { 2909 ssize32_t sfv_len; 2910 u_offset_t sfv_off, va_size; 2911 struct vnode *vp, *fvp, *realvp; 2912 struct vattr va; 2913 stdata_t *stp; 2914 ssize_t count = 0; 2915 int error = 0; 2916 boolean_t dozcopy = B_FALSE; 2917 uint_t maxpsz; 2918 2919 sfv_len = (ssize32_t)sfv->sfv_len; 2920 if (sfv_len < 0) { 2921 error = EINVAL; 2922 goto out; 2923 } 2924 2925 if (sfv_len == 0) goto out; 2926 2927 sfv_off = (u_offset_t)sfv->sfv_off; 2928 2929 /* Same checks as in pread */ 2930 if (sfv_off > MAXOFFSET_T) { 2931 error = EINVAL; 2932 goto out; 2933 } 2934 if (sfv_off + sfv_len > MAXOFFSET_T) 2935 sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off); 2936 2937 /* 2938 * There are no more checks on sfv_len. So, we cast it to 2939 * u_offset_t and share the snf_direct_io/snf_cache code between 2940 * 32 bit and 64 bit. 2941 * 2942 * TODO: should do nbl_need_check() like read()? 2943 */ 2944 if (sfv_len > sendfile_max_size) { 2945 sf_stats.ss_file_not_cached++; 2946 error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len, 2947 &count); 2948 goto out; 2949 } 2950 fvp = rfp->f_vnode; 2951 if (VOP_REALVP(fvp, &realvp, NULL) == 0) 2952 fvp = realvp; 2953 /* 2954 * Grab the lock as a reader to prevent the file size 2955 * from changing underneath. 2956 */ 2957 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2958 va.va_mask = AT_SIZE; 2959 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2960 va_size = va.va_size; 2961 if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) { 2962 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2963 goto out; 2964 } 2965 /* Read as much as possible. */ 2966 if (sfv_off + sfv_len > va_size) 2967 sfv_len = va_size - sfv_off; 2968 2969 vp = fp->f_vnode; 2970 stp = vp->v_stream; 2971 /* 2972 * When the NOWAIT flag is not set, we enable zero-copy only if the 2973 * transfer size is large enough. This prevents performance loss 2974 * when the caller sends the file piece by piece. 2975 */ 2976 if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) || 2977 (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) && 2978 !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) { 2979 uint_t copyflag; 2980 copyflag = stp != NULL ? stp->sd_copyflag : 2981 VTOSO(vp)->so_proto_props.sopp_zcopyflag; 2982 if ((copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) { 2983 int on = 1; 2984 2985 if (socket_setsockopt(VTOSO(vp), SOL_SOCKET, 2986 SO_SND_COPYAVOID, &on, sizeof (on), CRED()) == 0) 2987 dozcopy = B_TRUE; 2988 } else { 2989 dozcopy = copyflag & STZCVMSAFE; 2990 } 2991 } 2992 if (dozcopy) { 2993 sf_stats.ss_file_segmap++; 2994 error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len, 2995 &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0)); 2996 } else { 2997 if (vp->v_type == VSOCK && stp == NULL) { 2998 sonode_t *so = VTOSO(vp); 2999 maxpsz = so->so_proto_props.sopp_maxpsz; 3000 } else if (stp != NULL) { 3001 maxpsz = stp->sd_qn_maxpsz; 3002 } else { 3003 maxpsz = maxphys; 3004 } 3005 3006 if (maxpsz == INFPSZ) 3007 maxpsz = maxphys; 3008 else 3009 maxpsz = roundup(maxpsz, MAXBSIZE); 3010 sf_stats.ss_file_cached++; 3011 error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len, 3012 maxpsz, &count); 3013 } 3014 out: 3015 releasef(sfv->sfv_fd); 3016 *count32 = (ssize32_t)count; 3017 return (error); 3018 } 3019 #endif 3020 3021 #ifdef _SYSCALL32_IMPL 3022 /* 3023 * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a 3024 * ssize_t rather than ssize32_t; see the comments above read32 for details. 3025 */ 3026 3027 ssize_t 3028 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags) 3029 { 3030 return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags)); 3031 } 3032 3033 ssize_t 3034 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags, 3035 caddr32_t name, caddr32_t namelenp) 3036 { 3037 return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags, 3038 (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp)); 3039 } 3040 3041 ssize_t 3042 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags) 3043 { 3044 return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags)); 3045 } 3046 3047 ssize_t 3048 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags, 3049 caddr32_t name, socklen_t namelen) 3050 { 3051 return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags, 3052 (void *)(uintptr_t)name, namelen)); 3053 } 3054 #endif /* _SYSCALL32_IMPL */ 3055 3056 /* 3057 * Function wrappers (mostly around the sonode switch) for 3058 * backward compatibility. 3059 */ 3060 3061 int 3062 soaccept(struct sonode *so, int fflag, struct sonode **nsop) 3063 { 3064 return (socket_accept(so, fflag, CRED(), nsop)); 3065 } 3066 3067 int 3068 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen, 3069 int backlog, int flags) 3070 { 3071 int error; 3072 3073 error = socket_bind(so, name, namelen, flags, CRED()); 3074 if (error == 0 && backlog != 0) 3075 return (socket_listen(so, backlog, CRED())); 3076 3077 return (error); 3078 } 3079 3080 int 3081 solisten(struct sonode *so, int backlog) 3082 { 3083 return (socket_listen(so, backlog, CRED())); 3084 } 3085 3086 int 3087 soconnect(struct sonode *so, struct sockaddr *name, socklen_t namelen, 3088 int fflag, int flags) 3089 { 3090 return (socket_connect(so, name, namelen, fflag, flags, CRED())); 3091 } 3092 3093 int 3094 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop) 3095 { 3096 return (socket_recvmsg(so, msg, uiop, CRED())); 3097 } 3098 3099 int 3100 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop) 3101 { 3102 return (socket_sendmsg(so, msg, uiop, CRED())); 3103 } 3104 3105 int 3106 soshutdown(struct sonode *so, int how) 3107 { 3108 return (socket_shutdown(so, how, CRED())); 3109 } 3110 3111 int 3112 sogetsockopt(struct sonode *so, int level, int option_name, void *optval, 3113 socklen_t *optlenp, int flags) 3114 { 3115 return (socket_getsockopt(so, level, option_name, optval, optlenp, 3116 flags, CRED())); 3117 } 3118 3119 int 3120 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval, 3121 t_uscalar_t optlen) 3122 { 3123 return (socket_setsockopt(so, level, option_name, optval, optlen, 3124 CRED())); 3125 } 3126 3127 /* 3128 * Because this is backward compatibility interface it only needs to be 3129 * able to handle the creation of TPI sockfs sockets. 3130 */ 3131 struct sonode * 3132 socreate(struct sockparams *sp, int family, int type, int protocol, int version, 3133 int *errorp) 3134 { 3135 struct sonode *so; 3136 3137 ASSERT(sp != NULL); 3138 3139 so = sp->sp_smod_info->smod_sock_create_func(sp, family, type, protocol, 3140 version, SOCKET_SLEEP, errorp, CRED()); 3141 if (so == NULL) { 3142 SOCKPARAMS_DEC_REF(sp); 3143 } else { 3144 if ((*errorp = SOP_INIT(so, NULL, CRED(), SOCKET_SLEEP)) == 0) { 3145 /* Cannot fail, only bumps so_count */ 3146 (void) VOP_OPEN(&SOTOV(so), FREAD|FWRITE, CRED(), NULL); 3147 } else { 3148 socket_destroy(so); 3149 so = NULL; 3150 } 3151 } 3152 return (so); 3153 }