1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
  24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
  25  * Copyright (c) 2014 Integros [integros.com]
  26  * Copyright (c) 2017, Intel Corporation.
  27  * Copyright 2020 Joyent, Inc.
  28  */
  29 
  30 #include <sys/sysmacros.h>
  31 #include <sys/zfs_context.h>
  32 #include <sys/fm/fs/zfs.h>
  33 #include <sys/spa.h>
  34 #include <sys/txg.h>
  35 #include <sys/spa_impl.h>
  36 #include <sys/vdev_impl.h>
  37 #include <sys/vdev_trim.h>
  38 #include <sys/zio_impl.h>
  39 #include <sys/zio_compress.h>
  40 #include <sys/zio_checksum.h>
  41 #include <sys/dmu_objset.h>
  42 #include <sys/arc.h>
  43 #include <sys/ddt.h>
  44 #include <sys/blkptr.h>
  45 #include <sys/zfeature.h>
  46 #include <sys/time.h>
  47 #include <sys/dsl_scan.h>
  48 #include <sys/metaslab_impl.h>
  49 #include <sys/abd.h>
  50 #include <sys/cityhash.h>
  51 #include <sys/dsl_crypt.h>
  52 
  53 /*
  54  * ==========================================================================
  55  * I/O type descriptions
  56  * ==========================================================================
  57  */
  58 const char *zio_type_name[ZIO_TYPES] = {
  59         "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
  60         "zio_ioctl", "z_trim"
  61 };
  62 
  63 boolean_t zio_dva_throttle_enabled = B_TRUE;
  64 
  65 /*
  66  * ==========================================================================
  67  * I/O kmem caches
  68  * ==========================================================================
  69  */
  70 kmem_cache_t *zio_cache;
  71 kmem_cache_t *zio_link_cache;
  72 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
  73 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
  74 
  75 #ifdef _KERNEL
  76 extern vmem_t *zio_alloc_arena;
  77 #endif
  78 
  79 #define ZIO_PIPELINE_CONTINUE           0x100
  80 #define ZIO_PIPELINE_STOP               0x101
  81 
  82 /* Mark IOs as "slow" if they take longer than 30 seconds */
  83 int zio_slow_io_ms = (30 * MILLISEC);
  84 
  85 #define BP_SPANB(indblkshift, level) \
  86         (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
  87 #define COMPARE_META_LEVEL      0x80000000ul
  88 /*
  89  * The following actions directly effect the spa's sync-to-convergence logic.
  90  * The values below define the sync pass when we start performing the action.
  91  * Care should be taken when changing these values as they directly impact
  92  * spa_sync() performance. Tuning these values may introduce subtle performance
  93  * pathologies and should only be done in the context of performance analysis.
  94  * These tunables will eventually be removed and replaced with #defines once
  95  * enough analysis has been done to determine optimal values.
  96  *
  97  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
  98  * regular blocks are not deferred.
  99  */
 100 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
 101 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
 102 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
 103 
 104 /*
 105  * An allocating zio is one that either currently has the DVA allocate
 106  * stage set or will have it later in its lifetime.
 107  */
 108 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
 109 
 110 boolean_t       zio_requeue_io_start_cut_in_line = B_TRUE;
 111 
 112 #ifdef ZFS_DEBUG
 113 int zio_buf_debug_limit = 16384;
 114 #else
 115 int zio_buf_debug_limit = 0;
 116 #endif
 117 
 118 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
 119 
 120 void
 121 zio_init(void)
 122 {
 123         size_t c;
 124         vmem_t *data_alloc_arena = NULL;
 125 
 126 #ifdef _KERNEL
 127         data_alloc_arena = zio_alloc_arena;
 128 #endif
 129         zio_cache = kmem_cache_create("zio_cache",
 130             sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 131         zio_link_cache = kmem_cache_create("zio_link_cache",
 132             sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 133 
 134         /*
 135          * For small buffers, we want a cache for each multiple of
 136          * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
 137          * for each quarter-power of 2.
 138          */
 139         for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
 140                 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
 141                 size_t p2 = size;
 142                 size_t align = 0;
 143                 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
 144 
 145                 while (!ISP2(p2))
 146                         p2 &= p2 - 1;
 147 
 148 #ifndef _KERNEL
 149                 /*
 150                  * If we are using watchpoints, put each buffer on its own page,
 151                  * to eliminate the performance overhead of trapping to the
 152                  * kernel when modifying a non-watched buffer that shares the
 153                  * page with a watched buffer.
 154                  */
 155                 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
 156                         continue;
 157 #endif
 158                 if (size <= 4 * SPA_MINBLOCKSIZE) {
 159                         align = SPA_MINBLOCKSIZE;
 160                 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
 161                         align = MIN(p2 >> 2, PAGESIZE);
 162                 }
 163 
 164                 if (align != 0) {
 165                         char name[36];
 166                         (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
 167                         zio_buf_cache[c] = kmem_cache_create(name, size,
 168                             align, NULL, NULL, NULL, NULL, NULL, cflags);
 169 
 170                         /*
 171                          * Since zio_data bufs do not appear in crash dumps, we
 172                          * pass KMC_NOTOUCH so that no allocator metadata is
 173                          * stored with the buffers.
 174                          */
 175                         (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
 176                         zio_data_buf_cache[c] = kmem_cache_create(name, size,
 177                             align, NULL, NULL, NULL, NULL, data_alloc_arena,
 178                             cflags | KMC_NOTOUCH);
 179                 }
 180         }
 181 
 182         while (--c != 0) {
 183                 ASSERT(zio_buf_cache[c] != NULL);
 184                 if (zio_buf_cache[c - 1] == NULL)
 185                         zio_buf_cache[c - 1] = zio_buf_cache[c];
 186 
 187                 ASSERT(zio_data_buf_cache[c] != NULL);
 188                 if (zio_data_buf_cache[c - 1] == NULL)
 189                         zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
 190         }
 191 
 192         zio_inject_init();
 193 }
 194 
 195 void
 196 zio_fini(void)
 197 {
 198         size_t c;
 199         kmem_cache_t *last_cache = NULL;
 200         kmem_cache_t *last_data_cache = NULL;
 201 
 202         for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
 203                 if (zio_buf_cache[c] != last_cache) {
 204                         last_cache = zio_buf_cache[c];
 205                         kmem_cache_destroy(zio_buf_cache[c]);
 206                 }
 207                 zio_buf_cache[c] = NULL;
 208 
 209                 if (zio_data_buf_cache[c] != last_data_cache) {
 210                         last_data_cache = zio_data_buf_cache[c];
 211                         kmem_cache_destroy(zio_data_buf_cache[c]);
 212                 }
 213                 zio_data_buf_cache[c] = NULL;
 214         }
 215 
 216         kmem_cache_destroy(zio_link_cache);
 217         kmem_cache_destroy(zio_cache);
 218 
 219         zio_inject_fini();
 220 }
 221 
 222 /*
 223  * ==========================================================================
 224  * Allocate and free I/O buffers
 225  * ==========================================================================
 226  */
 227 
 228 /*
 229  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
 230  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
 231  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
 232  * excess / transient data in-core during a crashdump.
 233  */
 234 void *
 235 zio_buf_alloc(size_t size)
 236 {
 237         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 238 
 239         VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 240 
 241         return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
 242 }
 243 
 244 /*
 245  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
 246  * crashdump if the kernel panics.  This exists so that we will limit the amount
 247  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
 248  * of kernel heap dumped to disk when the kernel panics)
 249  */
 250 void *
 251 zio_data_buf_alloc(size_t size)
 252 {
 253         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 254 
 255         VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 256 
 257         return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
 258 }
 259 
 260 void
 261 zio_buf_free(void *buf, size_t size)
 262 {
 263         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 264 
 265         VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 266 
 267         kmem_cache_free(zio_buf_cache[c], buf);
 268 }
 269 
 270 void
 271 zio_data_buf_free(void *buf, size_t size)
 272 {
 273         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 274 
 275         VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 276 
 277         kmem_cache_free(zio_data_buf_cache[c], buf);
 278 }
 279 
 280 /* ARGSUSED */
 281 static void
 282 zio_abd_free(void *abd, size_t size)
 283 {
 284         abd_free((abd_t *)abd);
 285 }
 286 
 287 /*
 288  * ==========================================================================
 289  * Push and pop I/O transform buffers
 290  * ==========================================================================
 291  */
 292 void
 293 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
 294     zio_transform_func_t *transform)
 295 {
 296         zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
 297 
 298         /*
 299          * Ensure that anyone expecting this zio to contain a linear ABD isn't
 300          * going to get a nasty surprise when they try to access the data.
 301          */
 302         IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
 303 
 304         zt->zt_orig_abd = zio->io_abd;
 305         zt->zt_orig_size = zio->io_size;
 306         zt->zt_bufsize = bufsize;
 307         zt->zt_transform = transform;
 308 
 309         zt->zt_next = zio->io_transform_stack;
 310         zio->io_transform_stack = zt;
 311 
 312         zio->io_abd = data;
 313         zio->io_size = size;
 314 }
 315 
 316 void
 317 zio_pop_transforms(zio_t *zio)
 318 {
 319         zio_transform_t *zt;
 320 
 321         while ((zt = zio->io_transform_stack) != NULL) {
 322                 if (zt->zt_transform != NULL)
 323                         zt->zt_transform(zio,
 324                             zt->zt_orig_abd, zt->zt_orig_size);
 325 
 326                 if (zt->zt_bufsize != 0)
 327                         abd_free(zio->io_abd);
 328 
 329                 zio->io_abd = zt->zt_orig_abd;
 330                 zio->io_size = zt->zt_orig_size;
 331                 zio->io_transform_stack = zt->zt_next;
 332 
 333                 kmem_free(zt, sizeof (zio_transform_t));
 334         }
 335 }
 336 
 337 /*
 338  * ==========================================================================
 339  * I/O transform callbacks for subblocks, decompression, and decryption
 340  * ==========================================================================
 341  */
 342 static void
 343 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
 344 {
 345         ASSERT(zio->io_size > size);
 346 
 347         if (zio->io_type == ZIO_TYPE_READ)
 348                 abd_copy(data, zio->io_abd, size);
 349 }
 350 
 351 static void
 352 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
 353 {
 354         if (zio->io_error == 0) {
 355                 void *tmp = abd_borrow_buf(data, size);
 356                 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
 357                     zio->io_abd, tmp, zio->io_size, size);
 358                 abd_return_buf_copy(data, tmp, size);
 359 
 360                 if (ret != 0)
 361                         zio->io_error = SET_ERROR(EIO);
 362         }
 363 }
 364 
 365 static void
 366 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
 367 {
 368         int ret;
 369         void *tmp;
 370         blkptr_t *bp = zio->io_bp;
 371         spa_t *spa = zio->io_spa;
 372         uint64_t dsobj = zio->io_bookmark.zb_objset;
 373         uint64_t lsize = BP_GET_LSIZE(bp);
 374         dmu_object_type_t ot = BP_GET_TYPE(bp);
 375         uint8_t salt[ZIO_DATA_SALT_LEN];
 376         uint8_t iv[ZIO_DATA_IV_LEN];
 377         uint8_t mac[ZIO_DATA_MAC_LEN];
 378         boolean_t no_crypt = B_FALSE;
 379 
 380         ASSERT(BP_USES_CRYPT(bp));
 381         ASSERT3U(size, !=, 0);
 382 
 383         if (zio->io_error != 0)
 384                 return;
 385 
 386         /*
 387          * Verify the cksum of MACs stored in an indirect bp. It will always
 388          * be possible to verify this since it does not require an encryption
 389          * key.
 390          */
 391         if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
 392                 zio_crypt_decode_mac_bp(bp, mac);
 393 
 394                 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
 395                         /*
 396                          * We haven't decompressed the data yet, but
 397                          * zio_crypt_do_indirect_mac_checksum() requires
 398                          * decompressed data to be able to parse out the MACs
 399                          * from the indirect block. We decompress it now and
 400                          * throw away the result after we are finished.
 401                          */
 402                         tmp = zio_buf_alloc(lsize);
 403                         ret = zio_decompress_data(BP_GET_COMPRESS(bp),
 404                             zio->io_abd, tmp, zio->io_size, lsize);
 405                         if (ret != 0) {
 406                                 ret = SET_ERROR(EIO);
 407                                 goto error;
 408                         }
 409                         ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
 410                             tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
 411                         zio_buf_free(tmp, lsize);
 412                 } else {
 413                         ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
 414                             zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
 415                 }
 416                 abd_copy(data, zio->io_abd, size);
 417 
 418                 if (ret != 0)
 419                         goto error;
 420 
 421                 return;
 422         }
 423 
 424         /*
 425          * If this is an authenticated block, just check the MAC. It would be
 426          * nice to separate this out into its own flag, but for the moment
 427          * enum zio_flag is out of bits.
 428          */
 429         if (BP_IS_AUTHENTICATED(bp)) {
 430                 if (ot == DMU_OT_OBJSET) {
 431                         ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
 432                             dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
 433                 } else {
 434                         zio_crypt_decode_mac_bp(bp, mac);
 435                         ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
 436                             zio->io_abd, size, mac);
 437                 }
 438                 abd_copy(data, zio->io_abd, size);
 439 
 440                 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
 441                         ret = zio_handle_decrypt_injection(spa,
 442                             &zio->io_bookmark, ot, ECKSUM);
 443                 }
 444                 if (ret != 0)
 445                         goto error;
 446 
 447                 return;
 448         }
 449 
 450         zio_crypt_decode_params_bp(bp, salt, iv);
 451 
 452         if (ot == DMU_OT_INTENT_LOG) {
 453                 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
 454                 zio_crypt_decode_mac_zil(tmp, mac);
 455                 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
 456         } else {
 457                 zio_crypt_decode_mac_bp(bp, mac);
 458         }
 459 
 460         ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
 461             BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
 462             zio->io_abd, &no_crypt);
 463         if (no_crypt)
 464                 abd_copy(data, zio->io_abd, size);
 465 
 466         if (ret != 0)
 467                 goto error;
 468 
 469         return;
 470 
 471 error:
 472         /* assert that the key was found unless this was speculative */
 473         ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
 474 
 475         /*
 476          * If there was a decryption / authentication error return EIO as
 477          * the io_error. If this was not a speculative zio, create an ereport.
 478          */
 479         if (ret == ECKSUM) {
 480                 zio->io_error = SET_ERROR(EIO);
 481                 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
 482                         spa_log_error(spa, &zio->io_bookmark);
 483                         zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
 484                             spa, NULL, &zio->io_bookmark, zio, 0, 0);
 485                 }
 486         } else {
 487                 zio->io_error = ret;
 488         }
 489 }
 490 
 491 /*
 492  * ==========================================================================
 493  * I/O parent/child relationships and pipeline interlocks
 494  * ==========================================================================
 495  */
 496 zio_t *
 497 zio_walk_parents(zio_t *cio, zio_link_t **zl)
 498 {
 499         list_t *pl = &cio->io_parent_list;
 500 
 501         *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
 502         if (*zl == NULL)
 503                 return (NULL);
 504 
 505         ASSERT((*zl)->zl_child == cio);
 506         return ((*zl)->zl_parent);
 507 }
 508 
 509 zio_t *
 510 zio_walk_children(zio_t *pio, zio_link_t **zl)
 511 {
 512         list_t *cl = &pio->io_child_list;
 513 
 514         ASSERT(MUTEX_HELD(&pio->io_lock));
 515 
 516         *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
 517         if (*zl == NULL)
 518                 return (NULL);
 519 
 520         ASSERT((*zl)->zl_parent == pio);
 521         return ((*zl)->zl_child);
 522 }
 523 
 524 zio_t *
 525 zio_unique_parent(zio_t *cio)
 526 {
 527         zio_link_t *zl = NULL;
 528         zio_t *pio = zio_walk_parents(cio, &zl);
 529 
 530         VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
 531         return (pio);
 532 }
 533 
 534 void
 535 zio_add_child(zio_t *pio, zio_t *cio)
 536 {
 537         zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
 538 
 539         /*
 540          * Logical I/Os can have logical, gang, or vdev children.
 541          * Gang I/Os can have gang or vdev children.
 542          * Vdev I/Os can only have vdev children.
 543          * The following ASSERT captures all of these constraints.
 544          */
 545         ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
 546 
 547         zl->zl_parent = pio;
 548         zl->zl_child = cio;
 549 
 550         mutex_enter(&pio->io_lock);
 551         mutex_enter(&cio->io_lock);
 552 
 553         ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
 554 
 555         for (int w = 0; w < ZIO_WAIT_TYPES; w++)
 556                 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
 557 
 558         list_insert_head(&pio->io_child_list, zl);
 559         list_insert_head(&cio->io_parent_list, zl);
 560 
 561         pio->io_child_count++;
 562         cio->io_parent_count++;
 563 
 564         mutex_exit(&cio->io_lock);
 565         mutex_exit(&pio->io_lock);
 566 }
 567 
 568 static void
 569 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
 570 {
 571         ASSERT(zl->zl_parent == pio);
 572         ASSERT(zl->zl_child == cio);
 573 
 574         mutex_enter(&pio->io_lock);
 575         mutex_enter(&cio->io_lock);
 576 
 577         list_remove(&pio->io_child_list, zl);
 578         list_remove(&cio->io_parent_list, zl);
 579 
 580         pio->io_child_count--;
 581         cio->io_parent_count--;
 582 
 583         mutex_exit(&cio->io_lock);
 584         mutex_exit(&pio->io_lock);
 585 
 586         kmem_cache_free(zio_link_cache, zl);
 587 }
 588 
 589 static boolean_t
 590 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
 591 {
 592         boolean_t waiting = B_FALSE;
 593 
 594         mutex_enter(&zio->io_lock);
 595         ASSERT(zio->io_stall == NULL);
 596         for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
 597                 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
 598                         continue;
 599 
 600                 uint64_t *countp = &zio->io_children[c][wait];
 601                 if (*countp != 0) {
 602                         zio->io_stage >>= 1;
 603                         ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
 604                         zio->io_stall = countp;
 605                         waiting = B_TRUE;
 606                         break;
 607                 }
 608         }
 609         mutex_exit(&zio->io_lock);
 610         return (waiting);
 611 }
 612 
 613 static void
 614 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
 615 {
 616         uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
 617         int *errorp = &pio->io_child_error[zio->io_child_type];
 618 
 619         mutex_enter(&pio->io_lock);
 620         if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
 621                 *errorp = zio_worst_error(*errorp, zio->io_error);
 622         pio->io_reexecute |= zio->io_reexecute;
 623         ASSERT3U(*countp, >, 0);
 624 
 625         (*countp)--;
 626 
 627         if (*countp == 0 && pio->io_stall == countp) {
 628                 zio_taskq_type_t type =
 629                     pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
 630                     ZIO_TASKQ_INTERRUPT;
 631                 pio->io_stall = NULL;
 632                 mutex_exit(&pio->io_lock);
 633                 /*
 634                  * Dispatch the parent zio in its own taskq so that
 635                  * the child can continue to make progress. This also
 636                  * prevents overflowing the stack when we have deeply nested
 637                  * parent-child relationships.
 638                  */
 639                 zio_taskq_dispatch(pio, type, B_FALSE);
 640         } else {
 641                 mutex_exit(&pio->io_lock);
 642         }
 643 }
 644 
 645 static void
 646 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
 647 {
 648         if (zio->io_child_error[c] != 0 && zio->io_error == 0)
 649                 zio->io_error = zio->io_child_error[c];
 650 }
 651 
 652 int
 653 zio_bookmark_compare(const void *x1, const void *x2)
 654 {
 655         const zio_t *z1 = x1;
 656         const zio_t *z2 = x2;
 657 
 658         if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
 659                 return (-1);
 660         if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
 661                 return (1);
 662 
 663         if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
 664                 return (-1);
 665         if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
 666                 return (1);
 667 
 668         if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
 669                 return (-1);
 670         if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
 671                 return (1);
 672 
 673         if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
 674                 return (-1);
 675         if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
 676                 return (1);
 677 
 678         if (z1 < z2)
 679                 return (-1);
 680         if (z1 > z2)
 681                 return (1);
 682 
 683         return (0);
 684 }
 685 
 686 /*
 687  * ==========================================================================
 688  * Create the various types of I/O (read, write, free, etc)
 689  * ==========================================================================
 690  */
 691 static zio_t *
 692 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 693     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
 694     void *private, zio_type_t type, zio_priority_t priority,
 695     enum zio_flag flags, vdev_t *vd, uint64_t offset,
 696     const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline)
 697 {
 698         zio_t *zio;
 699 
 700         IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
 701         ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
 702         ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
 703 
 704         ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
 705         ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
 706         ASSERT(vd || stage == ZIO_STAGE_OPEN);
 707 
 708         IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
 709 
 710         zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
 711         bzero(zio, sizeof (zio_t));
 712 
 713         mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
 714         cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
 715 
 716         list_create(&zio->io_parent_list, sizeof (zio_link_t),
 717             offsetof(zio_link_t, zl_parent_node));
 718         list_create(&zio->io_child_list, sizeof (zio_link_t),
 719             offsetof(zio_link_t, zl_child_node));
 720         metaslab_trace_init(&zio->io_alloc_list);
 721 
 722         if (vd != NULL)
 723                 zio->io_child_type = ZIO_CHILD_VDEV;
 724         else if (flags & ZIO_FLAG_GANG_CHILD)
 725                 zio->io_child_type = ZIO_CHILD_GANG;
 726         else if (flags & ZIO_FLAG_DDT_CHILD)
 727                 zio->io_child_type = ZIO_CHILD_DDT;
 728         else
 729                 zio->io_child_type = ZIO_CHILD_LOGICAL;
 730 
 731         if (bp != NULL) {
 732                 zio->io_bp = (blkptr_t *)bp;
 733                 zio->io_bp_copy = *bp;
 734                 zio->io_bp_orig = *bp;
 735                 if (type != ZIO_TYPE_WRITE ||
 736                     zio->io_child_type == ZIO_CHILD_DDT)
 737                         zio->io_bp = &zio->io_bp_copy;        /* so caller can free */
 738                 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
 739                         zio->io_logical = zio;
 740                 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
 741                         pipeline |= ZIO_GANG_STAGES;
 742         }
 743 
 744         zio->io_spa = spa;
 745         zio->io_txg = txg;
 746         zio->io_done = done;
 747         zio->io_private = private;
 748         zio->io_type = type;
 749         zio->io_priority = priority;
 750         zio->io_vd = vd;
 751         zio->io_offset = offset;
 752         zio->io_orig_abd = zio->io_abd = data;
 753         zio->io_orig_size = zio->io_size = psize;
 754         zio->io_lsize = lsize;
 755         zio->io_orig_flags = zio->io_flags = flags;
 756         zio->io_orig_stage = zio->io_stage = stage;
 757         zio->io_orig_pipeline = zio->io_pipeline = pipeline;
 758         zio->io_pipeline_trace = ZIO_STAGE_OPEN;
 759 
 760         zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
 761         zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
 762 
 763         if (zb != NULL)
 764                 zio->io_bookmark = *zb;
 765 
 766         if (pio != NULL) {
 767                 if (zio->io_metaslab_class == NULL)
 768                         zio->io_metaslab_class = pio->io_metaslab_class;
 769                 if (zio->io_logical == NULL)
 770                         zio->io_logical = pio->io_logical;
 771                 if (zio->io_child_type == ZIO_CHILD_GANG)
 772                         zio->io_gang_leader = pio->io_gang_leader;
 773                 zio_add_child(pio, zio);
 774         }
 775 
 776         return (zio);
 777 }
 778 
 779 static void
 780 zio_destroy(zio_t *zio)
 781 {
 782         metaslab_trace_fini(&zio->io_alloc_list);
 783         list_destroy(&zio->io_parent_list);
 784         list_destroy(&zio->io_child_list);
 785         mutex_destroy(&zio->io_lock);
 786         cv_destroy(&zio->io_cv);
 787         kmem_cache_free(zio_cache, zio);
 788 }
 789 
 790 zio_t *
 791 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
 792     void *private, enum zio_flag flags)
 793 {
 794         zio_t *zio;
 795 
 796         zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
 797             ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
 798             ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
 799 
 800         return (zio);
 801 }
 802 
 803 zio_t *
 804 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
 805 {
 806         return (zio_null(NULL, spa, NULL, done, private, flags));
 807 }
 808 
 809 void
 810 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
 811 {
 812         if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
 813                 zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
 814                     bp, (longlong_t)BP_GET_TYPE(bp));
 815         }
 816         if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
 817             BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
 818                 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
 819                     bp, (longlong_t)BP_GET_CHECKSUM(bp));
 820         }
 821         if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
 822             BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
 823                 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
 824                     bp, (longlong_t)BP_GET_COMPRESS(bp));
 825         }
 826         if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
 827                 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
 828                     bp, (longlong_t)BP_GET_LSIZE(bp));
 829         }
 830         if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
 831                 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
 832                     bp, (longlong_t)BP_GET_PSIZE(bp));
 833         }
 834 
 835         if (BP_IS_EMBEDDED(bp)) {
 836                 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
 837                         zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
 838                             bp, (longlong_t)BPE_GET_ETYPE(bp));
 839                 }
 840         }
 841 
 842         /*
 843          * Do not verify individual DVAs if the config is not trusted. This
 844          * will be done once the zio is executed in vdev_mirror_map_alloc.
 845          */
 846         if (!spa->spa_trust_config)
 847                 return;
 848 
 849         /*
 850          * Pool-specific checks.
 851          *
 852          * Note: it would be nice to verify that the blk_birth and
 853          * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
 854          * allows the birth time of log blocks (and dmu_sync()-ed blocks
 855          * that are in the log) to be arbitrarily large.
 856          */
 857         for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
 858                 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
 859                 if (vdevid >= spa->spa_root_vdev->vdev_children) {
 860                         zfs_panic_recover("blkptr at %p DVA %u has invalid "
 861                             "VDEV %llu",
 862                             bp, i, (longlong_t)vdevid);
 863                         continue;
 864                 }
 865                 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
 866                 if (vd == NULL) {
 867                         zfs_panic_recover("blkptr at %p DVA %u has invalid "
 868                             "VDEV %llu",
 869                             bp, i, (longlong_t)vdevid);
 870                         continue;
 871                 }
 872                 if (vd->vdev_ops == &vdev_hole_ops) {
 873                         zfs_panic_recover("blkptr at %p DVA %u has hole "
 874                             "VDEV %llu",
 875                             bp, i, (longlong_t)vdevid);
 876                         continue;
 877                 }
 878                 if (vd->vdev_ops == &vdev_missing_ops) {
 879                         /*
 880                          * "missing" vdevs are valid during import, but we
 881                          * don't have their detailed info (e.g. asize), so
 882                          * we can't perform any more checks on them.
 883                          */
 884                         continue;
 885                 }
 886                 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
 887                 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
 888                 if (BP_IS_GANG(bp))
 889                         asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
 890                 if (offset + asize > vd->vdev_asize) {
 891                         zfs_panic_recover("blkptr at %p DVA %u has invalid "
 892                             "OFFSET %llu",
 893                             bp, i, (longlong_t)offset);
 894                 }
 895         }
 896 }
 897 
 898 boolean_t
 899 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
 900 {
 901         uint64_t vdevid = DVA_GET_VDEV(dva);
 902 
 903         if (vdevid >= spa->spa_root_vdev->vdev_children)
 904                 return (B_FALSE);
 905 
 906         vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
 907         if (vd == NULL)
 908                 return (B_FALSE);
 909 
 910         if (vd->vdev_ops == &vdev_hole_ops)
 911                 return (B_FALSE);
 912 
 913         if (vd->vdev_ops == &vdev_missing_ops) {
 914                 return (B_FALSE);
 915         }
 916 
 917         uint64_t offset = DVA_GET_OFFSET(dva);
 918         uint64_t asize = DVA_GET_ASIZE(dva);
 919 
 920         if (BP_IS_GANG(bp))
 921                 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
 922         if (offset + asize > vd->vdev_asize)
 923                 return (B_FALSE);
 924 
 925         return (B_TRUE);
 926 }
 927 
 928 zio_t *
 929 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
 930     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
 931     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
 932 {
 933         zio_t *zio;
 934 
 935         zfs_blkptr_verify(spa, bp);
 936 
 937         zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
 938             data, size, size, done, private,
 939             ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
 940             ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
 941             ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
 942 
 943         return (zio);
 944 }
 945 
 946 zio_t *
 947 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
 948     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
 949     zio_done_func_t *ready, zio_done_func_t *children_ready,
 950     zio_done_func_t *physdone, zio_done_func_t *done,
 951     void *private, zio_priority_t priority, enum zio_flag flags,
 952     const zbookmark_phys_t *zb)
 953 {
 954         zio_t *zio;
 955 
 956         ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
 957             zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
 958             zp->zp_compress >= ZIO_COMPRESS_OFF &&
 959             zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
 960             DMU_OT_IS_VALID(zp->zp_type) &&
 961             zp->zp_level < 32 &&
 962             zp->zp_copies > 0 &&
 963             zp->zp_copies <= spa_max_replication(spa));
 964 
 965         zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
 966             ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
 967             ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
 968             ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
 969 
 970         zio->io_ready = ready;
 971         zio->io_children_ready = children_ready;
 972         zio->io_physdone = physdone;
 973         zio->io_prop = *zp;
 974 
 975         /*
 976          * Data can be NULL if we are going to call zio_write_override() to
 977          * provide the already-allocated BP.  But we may need the data to
 978          * verify a dedup hit (if requested).  In this case, don't try to
 979          * dedup (just take the already-allocated BP verbatim). Encrypted
 980          * dedup blocks need data as well so we also disable dedup in this
 981          * case.
 982          */
 983         if (data == NULL &&
 984             (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
 985                 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
 986         }
 987 
 988         return (zio);
 989 }
 990 
 991 zio_t *
 992 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
 993     uint64_t size, zio_done_func_t *done, void *private,
 994     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
 995 {
 996         zio_t *zio;
 997 
 998         zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
 999             ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1000             ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1001 
1002         return (zio);
1003 }
1004 
1005 void
1006 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1007 {
1008         ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1009         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1010         ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1011         ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1012 
1013         /*
1014          * We must reset the io_prop to match the values that existed
1015          * when the bp was first written by dmu_sync() keeping in mind
1016          * that nopwrite and dedup are mutually exclusive.
1017          */
1018         zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1019         zio->io_prop.zp_nopwrite = nopwrite;
1020         zio->io_prop.zp_copies = copies;
1021         zio->io_bp_override = bp;
1022 }
1023 
1024 void
1025 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1026 {
1027 
1028         zfs_blkptr_verify(spa, bp);
1029 
1030         /*
1031          * The check for EMBEDDED is a performance optimization.  We
1032          * process the free here (by ignoring it) rather than
1033          * putting it on the list and then processing it in zio_free_sync().
1034          */
1035         if (BP_IS_EMBEDDED(bp))
1036                 return;
1037         metaslab_check_free(spa, bp);
1038 
1039         /*
1040          * Frees that are for the currently-syncing txg, are not going to be
1041          * deferred, and which will not need to do a read (i.e. not GANG or
1042          * DEDUP), can be processed immediately.  Otherwise, put them on the
1043          * in-memory list for later processing.
1044          *
1045          * Note that we only defer frees after zfs_sync_pass_deferred_free
1046          * when the log space map feature is disabled. [see relevant comment
1047          * in spa_sync_iterate_to_convergence()]
1048          */
1049         if (BP_IS_GANG(bp) ||
1050             BP_GET_DEDUP(bp) ||
1051             txg != spa->spa_syncing_txg ||
1052             (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1053             !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1054                 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1055         } else {
1056                 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
1057         }
1058 }
1059 
1060 zio_t *
1061 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1062     enum zio_flag flags)
1063 {
1064         zio_t *zio;
1065         enum zio_stage stage = ZIO_FREE_PIPELINE;
1066 
1067         ASSERT(!BP_IS_HOLE(bp));
1068         ASSERT(spa_syncing_txg(spa) == txg);
1069 
1070         if (BP_IS_EMBEDDED(bp))
1071                 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1072 
1073         metaslab_check_free(spa, bp);
1074         arc_freed(spa, bp);
1075         dsl_scan_freed(spa, bp);
1076 
1077         /*
1078          * GANG and DEDUP blocks can induce a read (for the gang block header,
1079          * or the DDT), so issue them asynchronously so that this thread is
1080          * not tied up.
1081          */
1082         if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
1083                 stage |= ZIO_STAGE_ISSUE_ASYNC;
1084 
1085         zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1086             BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1087             flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
1088 
1089         return (zio);
1090 }
1091 
1092 zio_t *
1093 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1094     zio_done_func_t *done, void *private, enum zio_flag flags)
1095 {
1096         zio_t *zio;
1097 
1098         zfs_blkptr_verify(spa, bp);
1099 
1100         if (BP_IS_EMBEDDED(bp))
1101                 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1102 
1103         /*
1104          * A claim is an allocation of a specific block.  Claims are needed
1105          * to support immediate writes in the intent log.  The issue is that
1106          * immediate writes contain committed data, but in a txg that was
1107          * *not* committed.  Upon opening the pool after an unclean shutdown,
1108          * the intent log claims all blocks that contain immediate write data
1109          * so that the SPA knows they're in use.
1110          *
1111          * All claims *must* be resolved in the first txg -- before the SPA
1112          * starts allocating blocks -- so that nothing is allocated twice.
1113          * If txg == 0 we just verify that the block is claimable.
1114          */
1115         ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1116             spa_min_claim_txg(spa));
1117         ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1118         ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));       /* zdb(1M) */
1119 
1120         zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1121             BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1122             flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1123         ASSERT0(zio->io_queued_timestamp);
1124 
1125         return (zio);
1126 }
1127 
1128 zio_t *
1129 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1130     zio_done_func_t *done, void *private, enum zio_flag flags)
1131 {
1132         zio_t *zio;
1133         int c;
1134 
1135         if (vd->vdev_children == 0) {
1136                 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1137                     ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1138                     ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1139 
1140                 zio->io_cmd = cmd;
1141         } else {
1142                 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1143 
1144                 for (c = 0; c < vd->vdev_children; c++)
1145                         zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1146                             done, private, flags));
1147         }
1148 
1149         return (zio);
1150 }
1151 
1152 zio_t *
1153 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1154     zio_done_func_t *done, void *private, zio_priority_t priority,
1155     enum zio_flag flags, enum trim_flag trim_flags)
1156 {
1157         zio_t *zio;
1158 
1159         ASSERT0(vd->vdev_children);
1160         ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1161         ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1162         ASSERT3U(size, !=, 0);
1163 
1164         zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1165             private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1166             vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1167         zio->io_trim_flags = trim_flags;
1168 
1169         return (zio);
1170 }
1171 
1172 zio_t *
1173 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1174     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1175     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1176 {
1177         zio_t *zio;
1178 
1179         ASSERT(vd->vdev_children == 0);
1180         ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1181             offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1182         ASSERT3U(offset + size, <=, vd->vdev_psize);
1183 
1184         zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1185             private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1186             offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1187 
1188         zio->io_prop.zp_checksum = checksum;
1189 
1190         return (zio);
1191 }
1192 
1193 zio_t *
1194 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1195     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1196     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1197 {
1198         zio_t *zio;
1199 
1200         ASSERT(vd->vdev_children == 0);
1201         ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1202             offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1203         ASSERT3U(offset + size, <=, vd->vdev_psize);
1204 
1205         zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1206             private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1207             offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1208 
1209         zio->io_prop.zp_checksum = checksum;
1210 
1211         if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1212                 /*
1213                  * zec checksums are necessarily destructive -- they modify
1214                  * the end of the write buffer to hold the verifier/checksum.
1215                  * Therefore, we must make a local copy in case the data is
1216                  * being written to multiple places in parallel.
1217                  */
1218                 abd_t *wbuf = abd_alloc_sametype(data, size);
1219                 abd_copy(wbuf, data, size);
1220 
1221                 zio_push_transform(zio, wbuf, size, size, NULL);
1222         }
1223 
1224         return (zio);
1225 }
1226 
1227 /*
1228  * Create a child I/O to do some work for us.
1229  */
1230 zio_t *
1231 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1232     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1233     enum zio_flag flags, zio_done_func_t *done, void *private)
1234 {
1235         enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1236         zio_t *zio;
1237 
1238         /*
1239          * vdev child I/Os do not propagate their error to the parent.
1240          * Therefore, for correct operation the caller *must* check for
1241          * and handle the error in the child i/o's done callback.
1242          * The only exceptions are i/os that we don't care about
1243          * (OPTIONAL or REPAIR).
1244          */
1245         ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1246             done != NULL);
1247 
1248         if (type == ZIO_TYPE_READ && bp != NULL) {
1249                 /*
1250                  * If we have the bp, then the child should perform the
1251                  * checksum and the parent need not.  This pushes error
1252                  * detection as close to the leaves as possible and
1253                  * eliminates redundant checksums in the interior nodes.
1254                  */
1255                 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1256                 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1257         }
1258 
1259         if (vd->vdev_ops->vdev_op_leaf) {
1260                 ASSERT0(vd->vdev_children);
1261                 offset += VDEV_LABEL_START_SIZE;
1262         }
1263 
1264         flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1265 
1266         /*
1267          * If we've decided to do a repair, the write is not speculative --
1268          * even if the original read was.
1269          */
1270         if (flags & ZIO_FLAG_IO_REPAIR)
1271                 flags &= ~ZIO_FLAG_SPECULATIVE;
1272 
1273         /*
1274          * If we're creating a child I/O that is not associated with a
1275          * top-level vdev, then the child zio is not an allocating I/O.
1276          * If this is a retried I/O then we ignore it since we will
1277          * have already processed the original allocating I/O.
1278          */
1279         if (flags & ZIO_FLAG_IO_ALLOCATING &&
1280             (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1281                 ASSERT(pio->io_metaslab_class != NULL);
1282                 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1283                 ASSERT(type == ZIO_TYPE_WRITE);
1284                 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1285                 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1286                 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1287                     pio->io_child_type == ZIO_CHILD_GANG);
1288 
1289                 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1290         }
1291 
1292         zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1293             done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1294             ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1295         ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1296 
1297         zio->io_physdone = pio->io_physdone;
1298         if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1299                 zio->io_logical->io_phys_children++;
1300 
1301         return (zio);
1302 }
1303 
1304 zio_t *
1305 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1306     zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1307     zio_done_func_t *done, void *private)
1308 {
1309         zio_t *zio;
1310 
1311         ASSERT(vd->vdev_ops->vdev_op_leaf);
1312 
1313         zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1314             data, size, size, done, private, type, priority,
1315             flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1316             vd, offset, NULL,
1317             ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1318 
1319         return (zio);
1320 }
1321 
1322 void
1323 zio_flush(zio_t *zio, vdev_t *vd)
1324 {
1325         zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1326             NULL, NULL,
1327             ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1328 }
1329 
1330 void
1331 zio_shrink(zio_t *zio, uint64_t size)
1332 {
1333         ASSERT3P(zio->io_executor, ==, NULL);
1334         ASSERT3P(zio->io_orig_size, ==, zio->io_size);
1335         ASSERT3U(size, <=, zio->io_size);
1336 
1337         /*
1338          * We don't shrink for raidz because of problems with the
1339          * reconstruction when reading back less than the block size.
1340          * Note, BP_IS_RAIDZ() assumes no compression.
1341          */
1342         ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1343         if (!BP_IS_RAIDZ(zio->io_bp)) {
1344                 /* we are not doing a raw write */
1345                 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1346                 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1347         }
1348 }
1349 
1350 /*
1351  * ==========================================================================
1352  * Prepare to read and write logical blocks
1353  * ==========================================================================
1354  */
1355 
1356 static int
1357 zio_read_bp_init(zio_t *zio)
1358 {
1359         blkptr_t *bp = zio->io_bp;
1360         uint64_t psize =
1361             BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1362 
1363         ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1364 
1365         if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1366             zio->io_child_type == ZIO_CHILD_LOGICAL &&
1367             !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1368                 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1369                     psize, psize, zio_decompress);
1370         }
1371 
1372         if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1373             BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1374             zio->io_child_type == ZIO_CHILD_LOGICAL) {
1375                 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1376                     psize, psize, zio_decrypt);
1377         }
1378 
1379         if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1380                 int psize = BPE_GET_PSIZE(bp);
1381                 void *data = abd_borrow_buf(zio->io_abd, psize);
1382 
1383                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1384                 decode_embedded_bp_compressed(bp, data);
1385                 abd_return_buf_copy(zio->io_abd, data, psize);
1386         } else {
1387                 ASSERT(!BP_IS_EMBEDDED(bp));
1388                 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1389         }
1390 
1391         if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1392                 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1393 
1394         if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1395                 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1396 
1397         if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1398                 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1399 
1400         return (ZIO_PIPELINE_CONTINUE);
1401 }
1402 
1403 static int
1404 zio_write_bp_init(zio_t *zio)
1405 {
1406         if (!IO_IS_ALLOCATING(zio))
1407                 return (ZIO_PIPELINE_CONTINUE);
1408 
1409         ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1410 
1411         if (zio->io_bp_override) {
1412                 blkptr_t *bp = zio->io_bp;
1413                 zio_prop_t *zp = &zio->io_prop;
1414 
1415                 ASSERT(bp->blk_birth != zio->io_txg);
1416                 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1417 
1418                 *bp = *zio->io_bp_override;
1419                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1420 
1421                 if (BP_IS_EMBEDDED(bp))
1422                         return (ZIO_PIPELINE_CONTINUE);
1423 
1424                 /*
1425                  * If we've been overridden and nopwrite is set then
1426                  * set the flag accordingly to indicate that a nopwrite
1427                  * has already occurred.
1428                  */
1429                 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1430                         ASSERT(!zp->zp_dedup);
1431                         ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1432                         zio->io_flags |= ZIO_FLAG_NOPWRITE;
1433                         return (ZIO_PIPELINE_CONTINUE);
1434                 }
1435 
1436                 ASSERT(!zp->zp_nopwrite);
1437 
1438                 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1439                         return (ZIO_PIPELINE_CONTINUE);
1440 
1441                 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1442                     ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1443 
1444                 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1445                     !zp->zp_encrypt) {
1446                         BP_SET_DEDUP(bp, 1);
1447                         zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1448                         return (ZIO_PIPELINE_CONTINUE);
1449                 }
1450 
1451                 /*
1452                  * We were unable to handle this as an override bp, treat
1453                  * it as a regular write I/O.
1454                  */
1455                 zio->io_bp_override = NULL;
1456                 *bp = zio->io_bp_orig;
1457                 zio->io_pipeline = zio->io_orig_pipeline;
1458         }
1459 
1460         return (ZIO_PIPELINE_CONTINUE);
1461 }
1462 
1463 static int
1464 zio_write_compress(zio_t *zio)
1465 {
1466         spa_t *spa = zio->io_spa;
1467         zio_prop_t *zp = &zio->io_prop;
1468         enum zio_compress compress = zp->zp_compress;
1469         blkptr_t *bp = zio->io_bp;
1470         uint64_t lsize = zio->io_lsize;
1471         uint64_t psize = zio->io_size;
1472         int pass = 1;
1473 
1474         /*
1475          * If our children haven't all reached the ready stage,
1476          * wait for them and then repeat this pipeline stage.
1477          */
1478         if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1479             ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1480                 return (ZIO_PIPELINE_STOP);
1481         }
1482 
1483         if (!IO_IS_ALLOCATING(zio))
1484                 return (ZIO_PIPELINE_CONTINUE);
1485 
1486         if (zio->io_children_ready != NULL) {
1487                 /*
1488                  * Now that all our children are ready, run the callback
1489                  * associated with this zio in case it wants to modify the
1490                  * data to be written.
1491                  */
1492                 ASSERT3U(zp->zp_level, >, 0);
1493                 zio->io_children_ready(zio);
1494         }
1495 
1496         ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1497         ASSERT(zio->io_bp_override == NULL);
1498 
1499         if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1500                 /*
1501                  * We're rewriting an existing block, which means we're
1502                  * working on behalf of spa_sync().  For spa_sync() to
1503                  * converge, it must eventually be the case that we don't
1504                  * have to allocate new blocks.  But compression changes
1505                  * the blocksize, which forces a reallocate, and makes
1506                  * convergence take longer.  Therefore, after the first
1507                  * few passes, stop compressing to ensure convergence.
1508                  */
1509                 pass = spa_sync_pass(spa);
1510 
1511                 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1512                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1513                 ASSERT(!BP_GET_DEDUP(bp));
1514 
1515                 if (pass >= zfs_sync_pass_dont_compress)
1516                         compress = ZIO_COMPRESS_OFF;
1517 
1518                 /* Make sure someone doesn't change their mind on overwrites */
1519                 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1520                     spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1521         }
1522 
1523         /* If it's a compressed write that is not raw, compress the buffer. */
1524         if (compress != ZIO_COMPRESS_OFF &&
1525             !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1526                 void *cbuf = zio_buf_alloc(lsize);
1527                 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1528                 if (psize == 0 || psize == lsize) {
1529                         compress = ZIO_COMPRESS_OFF;
1530                         zio_buf_free(cbuf, lsize);
1531                 } else if (!zp->zp_dedup && !zp->zp_encrypt &&
1532                     psize <= BPE_PAYLOAD_SIZE &&
1533                     zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1534                     spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1535                         encode_embedded_bp_compressed(bp,
1536                             cbuf, compress, lsize, psize);
1537                         BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1538                         BP_SET_TYPE(bp, zio->io_prop.zp_type);
1539                         BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1540                         zio_buf_free(cbuf, lsize);
1541                         bp->blk_birth = zio->io_txg;
1542                         zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1543                         ASSERT(spa_feature_is_active(spa,
1544                             SPA_FEATURE_EMBEDDED_DATA));
1545                         return (ZIO_PIPELINE_CONTINUE);
1546                 } else {
1547                         /*
1548                          * Round up compressed size up to the ashift
1549                          * of the smallest-ashift device, and zero the tail.
1550                          * This ensures that the compressed size of the BP
1551                          * (and thus compressratio property) are correct,
1552                          * in that we charge for the padding used to fill out
1553                          * the last sector.
1554                          */
1555                         ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1556                         size_t rounded = (size_t)P2ROUNDUP(psize,
1557                             1ULL << spa->spa_min_ashift);
1558                         if (rounded >= lsize) {
1559                                 compress = ZIO_COMPRESS_OFF;
1560                                 zio_buf_free(cbuf, lsize);
1561                                 psize = lsize;
1562                         } else {
1563                                 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1564                                 abd_take_ownership_of_buf(cdata, B_TRUE);
1565                                 abd_zero_off(cdata, psize, rounded - psize);
1566                                 psize = rounded;
1567                                 zio_push_transform(zio, cdata,
1568                                     psize, lsize, NULL);
1569                         }
1570                 }
1571 
1572                 /*
1573                  * We were unable to handle this as an override bp, treat
1574                  * it as a regular write I/O.
1575                  */
1576                 zio->io_bp_override = NULL;
1577                 *bp = zio->io_bp_orig;
1578                 zio->io_pipeline = zio->io_orig_pipeline;
1579 
1580         } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1581             zp->zp_type == DMU_OT_DNODE) {
1582                 /*
1583                  * The DMU actually relies on the zio layer's compression
1584                  * to free metadnode blocks that have had all contained
1585                  * dnodes freed. As a result, even when doing a raw
1586                  * receive, we must check whether the block can be compressed
1587                  * to a hole.
1588                  */
1589                 psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1590                     zio->io_abd, NULL, lsize);
1591                 if (psize == 0)
1592                         compress = ZIO_COMPRESS_OFF;
1593         } else {
1594                 ASSERT3U(psize, !=, 0);
1595         }
1596 
1597         /*
1598          * The final pass of spa_sync() must be all rewrites, but the first
1599          * few passes offer a trade-off: allocating blocks defers convergence,
1600          * but newly allocated blocks are sequential, so they can be written
1601          * to disk faster.  Therefore, we allow the first few passes of
1602          * spa_sync() to allocate new blocks, but force rewrites after that.
1603          * There should only be a handful of blocks after pass 1 in any case.
1604          */
1605         if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1606             BP_GET_PSIZE(bp) == psize &&
1607             pass >= zfs_sync_pass_rewrite) {
1608                 VERIFY3U(psize, !=, 0);
1609                 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1610                 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1611                 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1612         } else {
1613                 BP_ZERO(bp);
1614                 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1615         }
1616 
1617         if (psize == 0) {
1618                 if (zio->io_bp_orig.blk_birth != 0 &&
1619                     spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1620                         BP_SET_LSIZE(bp, lsize);
1621                         BP_SET_TYPE(bp, zp->zp_type);
1622                         BP_SET_LEVEL(bp, zp->zp_level);
1623                         BP_SET_BIRTH(bp, zio->io_txg, 0);
1624                 }
1625                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1626         } else {
1627                 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1628                 BP_SET_LSIZE(bp, lsize);
1629                 BP_SET_TYPE(bp, zp->zp_type);
1630                 BP_SET_LEVEL(bp, zp->zp_level);
1631                 BP_SET_PSIZE(bp, psize);
1632                 BP_SET_COMPRESS(bp, compress);
1633                 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1634                 BP_SET_DEDUP(bp, zp->zp_dedup);
1635                 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1636                 if (zp->zp_dedup) {
1637                         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1638                         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1639                         ASSERT(!zp->zp_encrypt ||
1640                             DMU_OT_IS_ENCRYPTED(zp->zp_type));
1641                         zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1642                 }
1643                 if (zp->zp_nopwrite) {
1644                         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1645                         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1646                         zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1647                 }
1648         }
1649         return (ZIO_PIPELINE_CONTINUE);
1650 }
1651 
1652 static int
1653 zio_free_bp_init(zio_t *zio)
1654 {
1655         blkptr_t *bp = zio->io_bp;
1656 
1657         if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1658                 if (BP_GET_DEDUP(bp))
1659                         zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1660         }
1661 
1662         ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1663 
1664         return (ZIO_PIPELINE_CONTINUE);
1665 }
1666 
1667 /*
1668  * ==========================================================================
1669  * Execute the I/O pipeline
1670  * ==========================================================================
1671  */
1672 
1673 static void
1674 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1675 {
1676         spa_t *spa = zio->io_spa;
1677         zio_type_t t = zio->io_type;
1678         int flags = (cutinline ? TQ_FRONT : 0);
1679 
1680         /*
1681          * If we're a config writer or a probe, the normal issue and
1682          * interrupt threads may all be blocked waiting for the config lock.
1683          * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1684          */
1685         if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1686                 t = ZIO_TYPE_NULL;
1687 
1688         /*
1689          * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1690          */
1691         if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1692                 t = ZIO_TYPE_NULL;
1693 
1694         /*
1695          * If this is a high priority I/O, then use the high priority taskq if
1696          * available.
1697          */
1698         if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1699             zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1700             spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1701                 q++;
1702 
1703         ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1704 
1705         /*
1706          * NB: We are assuming that the zio can only be dispatched
1707          * to a single taskq at a time.  It would be a grievous error
1708          * to dispatch the zio to another taskq at the same time.
1709          */
1710         ASSERT(zio->io_tqent.tqent_next == NULL);
1711         spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1712             flags, &zio->io_tqent);
1713 }
1714 
1715 static boolean_t
1716 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1717 {
1718         kthread_t *executor = zio->io_executor;
1719         spa_t *spa = zio->io_spa;
1720 
1721         for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1722                 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1723                 uint_t i;
1724                 for (i = 0; i < tqs->stqs_count; i++) {
1725                         if (taskq_member(tqs->stqs_taskq[i], executor))
1726                                 return (B_TRUE);
1727                 }
1728         }
1729 
1730         return (B_FALSE);
1731 }
1732 
1733 static int
1734 zio_issue_async(zio_t *zio)
1735 {
1736         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1737 
1738         return (ZIO_PIPELINE_STOP);
1739 }
1740 
1741 void
1742 zio_interrupt(zio_t *zio)
1743 {
1744         zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1745 }
1746 
1747 void
1748 zio_delay_interrupt(zio_t *zio)
1749 {
1750         /*
1751          * The timeout_generic() function isn't defined in userspace, so
1752          * rather than trying to implement the function, the zio delay
1753          * functionality has been disabled for userspace builds.
1754          */
1755 
1756 #ifdef _KERNEL
1757         /*
1758          * If io_target_timestamp is zero, then no delay has been registered
1759          * for this IO, thus jump to the end of this function and "skip" the
1760          * delay; issuing it directly to the zio layer.
1761          */
1762         if (zio->io_target_timestamp != 0) {
1763                 hrtime_t now = gethrtime();
1764 
1765                 if (now >= zio->io_target_timestamp) {
1766                         /*
1767                          * This IO has already taken longer than the target
1768                          * delay to complete, so we don't want to delay it
1769                          * any longer; we "miss" the delay and issue it
1770                          * directly to the zio layer. This is likely due to
1771                          * the target latency being set to a value less than
1772                          * the underlying hardware can satisfy (e.g. delay
1773                          * set to 1ms, but the disks take 10ms to complete an
1774                          * IO request).
1775                          */
1776 
1777                         DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1778                             hrtime_t, now);
1779 
1780                         zio_interrupt(zio);
1781                 } else {
1782                         hrtime_t diff = zio->io_target_timestamp - now;
1783 
1784                         DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1785                             hrtime_t, now, hrtime_t, diff);
1786 
1787                         (void) timeout_generic(CALLOUT_NORMAL,
1788                             (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1789                 }
1790 
1791                 return;
1792         }
1793 #endif
1794 
1795         DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1796         zio_interrupt(zio);
1797 }
1798 
1799 /*
1800  * Execute the I/O pipeline until one of the following occurs:
1801  *
1802  *      (1) the I/O completes
1803  *      (2) the pipeline stalls waiting for dependent child I/Os
1804  *      (3) the I/O issues, so we're waiting for an I/O completion interrupt
1805  *      (4) the I/O is delegated by vdev-level caching or aggregation
1806  *      (5) the I/O is deferred due to vdev-level queueing
1807  *      (6) the I/O is handed off to another thread.
1808  *
1809  * In all cases, the pipeline stops whenever there's no CPU work; it never
1810  * burns a thread in cv_wait().
1811  *
1812  * There's no locking on io_stage because there's no legitimate way
1813  * for multiple threads to be attempting to process the same I/O.
1814  */
1815 static zio_pipe_stage_t *zio_pipeline[];
1816 
1817 void
1818 zio_execute(zio_t *zio)
1819 {
1820         zio->io_executor = curthread;
1821 
1822         ASSERT3U(zio->io_queued_timestamp, >, 0);
1823 
1824         while (zio->io_stage < ZIO_STAGE_DONE) {
1825                 enum zio_stage pipeline = zio->io_pipeline;
1826                 enum zio_stage stage = zio->io_stage;
1827                 int rv;
1828 
1829                 ASSERT(!MUTEX_HELD(&zio->io_lock));
1830                 ASSERT(ISP2(stage));
1831                 ASSERT(zio->io_stall == NULL);
1832 
1833                 do {
1834                         stage <<= 1;
1835                 } while ((stage & pipeline) == 0);
1836 
1837                 ASSERT(stage <= ZIO_STAGE_DONE);
1838 
1839                 /*
1840                  * If we are in interrupt context and this pipeline stage
1841                  * will grab a config lock that is held across I/O,
1842                  * or may wait for an I/O that needs an interrupt thread
1843                  * to complete, issue async to avoid deadlock.
1844                  *
1845                  * For VDEV_IO_START, we cut in line so that the io will
1846                  * be sent to disk promptly.
1847                  */
1848                 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1849                     zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1850                         boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1851                             zio_requeue_io_start_cut_in_line : B_FALSE;
1852                         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1853                         return;
1854                 }
1855 
1856                 zio->io_stage = stage;
1857                 zio->io_pipeline_trace |= zio->io_stage;
1858                 rv = zio_pipeline[highbit64(stage) - 1](zio);
1859 
1860                 if (rv == ZIO_PIPELINE_STOP)
1861                         return;
1862 
1863                 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1864         }
1865 }
1866 
1867 /*
1868  * ==========================================================================
1869  * Initiate I/O, either sync or async
1870  * ==========================================================================
1871  */
1872 int
1873 zio_wait(zio_t *zio)
1874 {
1875         int error;
1876 
1877         ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN);
1878         ASSERT3P(zio->io_executor, ==, NULL);
1879 
1880         zio->io_waiter = curthread;
1881         ASSERT0(zio->io_queued_timestamp);
1882         zio->io_queued_timestamp = gethrtime();
1883 
1884         zio_execute(zio);
1885 
1886         mutex_enter(&zio->io_lock);
1887         while (zio->io_executor != NULL)
1888                 cv_wait(&zio->io_cv, &zio->io_lock);
1889         mutex_exit(&zio->io_lock);
1890 
1891         error = zio->io_error;
1892         zio_destroy(zio);
1893 
1894         return (error);
1895 }
1896 
1897 void
1898 zio_nowait(zio_t *zio)
1899 {
1900         ASSERT3P(zio->io_executor, ==, NULL);
1901 
1902         if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1903             zio_unique_parent(zio) == NULL) {
1904                 /*
1905                  * This is a logical async I/O with no parent to wait for it.
1906                  * We add it to the spa_async_root_zio "Godfather" I/O which
1907                  * will ensure they complete prior to unloading the pool.
1908                  */
1909                 spa_t *spa = zio->io_spa;
1910 
1911                 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1912         }
1913 
1914         ASSERT0(zio->io_queued_timestamp);
1915         zio->io_queued_timestamp = gethrtime();
1916         zio_execute(zio);
1917 }
1918 
1919 /*
1920  * ==========================================================================
1921  * Reexecute, cancel, or suspend/resume failed I/O
1922  * ==========================================================================
1923  */
1924 
1925 static void
1926 zio_reexecute(zio_t *pio)
1927 {
1928         zio_t *cio, *cio_next;
1929 
1930         ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1931         ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1932         ASSERT(pio->io_gang_leader == NULL);
1933         ASSERT(pio->io_gang_tree == NULL);
1934 
1935         pio->io_flags = pio->io_orig_flags;
1936         pio->io_stage = pio->io_orig_stage;
1937         pio->io_pipeline = pio->io_orig_pipeline;
1938         pio->io_reexecute = 0;
1939         pio->io_flags |= ZIO_FLAG_REEXECUTED;
1940         pio->io_pipeline_trace = 0;
1941         pio->io_error = 0;
1942         for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1943                 pio->io_state[w] = 0;
1944         for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1945                 pio->io_child_error[c] = 0;
1946 
1947         if (IO_IS_ALLOCATING(pio))
1948                 BP_ZERO(pio->io_bp);
1949 
1950         /*
1951          * As we reexecute pio's children, new children could be created.
1952          * New children go to the head of pio's io_child_list, however,
1953          * so we will (correctly) not reexecute them.  The key is that
1954          * the remainder of pio's io_child_list, from 'cio_next' onward,
1955          * cannot be affected by any side effects of reexecuting 'cio'.
1956          */
1957         zio_link_t *zl = NULL;
1958         mutex_enter(&pio->io_lock);
1959         for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1960                 cio_next = zio_walk_children(pio, &zl);
1961                 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1962                         pio->io_children[cio->io_child_type][w]++;
1963                 mutex_exit(&pio->io_lock);
1964                 zio_reexecute(cio);
1965                 mutex_enter(&pio->io_lock);
1966         }
1967         mutex_exit(&pio->io_lock);
1968 
1969         /*
1970          * Now that all children have been reexecuted, execute the parent.
1971          * We don't reexecute "The Godfather" I/O here as it's the
1972          * responsibility of the caller to wait on it.
1973          */
1974         if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1975                 pio->io_queued_timestamp = gethrtime();
1976                 zio_execute(pio);
1977         }
1978 }
1979 
1980 void
1981 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
1982 {
1983         if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1984                 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1985                     "failure and the failure mode property for this pool "
1986                     "is set to panic.", spa_name(spa));
1987 
1988         cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
1989             "failure and has been suspended; `zpool clear` will be required "
1990             "before the pool can be written to.", spa_name(spa));
1991 
1992         zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
1993             NULL, NULL, 0, 0);
1994 
1995         mutex_enter(&spa->spa_suspend_lock);
1996 
1997         if (spa->spa_suspend_zio_root == NULL)
1998                 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1999                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2000                     ZIO_FLAG_GODFATHER);
2001 
2002         spa->spa_suspended = reason;
2003 
2004         if (zio != NULL) {
2005                 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2006                 ASSERT(zio != spa->spa_suspend_zio_root);
2007                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2008                 ASSERT(zio_unique_parent(zio) == NULL);
2009                 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2010                 zio_add_child(spa->spa_suspend_zio_root, zio);
2011         }
2012 
2013         mutex_exit(&spa->spa_suspend_lock);
2014 }
2015 
2016 int
2017 zio_resume(spa_t *spa)
2018 {
2019         zio_t *pio;
2020 
2021         /*
2022          * Reexecute all previously suspended i/o.
2023          */
2024         mutex_enter(&spa->spa_suspend_lock);
2025         spa->spa_suspended = ZIO_SUSPEND_NONE;
2026         cv_broadcast(&spa->spa_suspend_cv);
2027         pio = spa->spa_suspend_zio_root;
2028         spa->spa_suspend_zio_root = NULL;
2029         mutex_exit(&spa->spa_suspend_lock);
2030 
2031         if (pio == NULL)
2032                 return (0);
2033 
2034         zio_reexecute(pio);
2035         return (zio_wait(pio));
2036 }
2037 
2038 void
2039 zio_resume_wait(spa_t *spa)
2040 {
2041         mutex_enter(&spa->spa_suspend_lock);
2042         while (spa_suspended(spa))
2043                 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2044         mutex_exit(&spa->spa_suspend_lock);
2045 }
2046 
2047 /*
2048  * ==========================================================================
2049  * Gang blocks.
2050  *
2051  * A gang block is a collection of small blocks that looks to the DMU
2052  * like one large block.  When zio_dva_allocate() cannot find a block
2053  * of the requested size, due to either severe fragmentation or the pool
2054  * being nearly full, it calls zio_write_gang_block() to construct the
2055  * block from smaller fragments.
2056  *
2057  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2058  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2059  * an indirect block: it's an array of block pointers.  It consumes
2060  * only one sector and hence is allocatable regardless of fragmentation.
2061  * The gang header's bps point to its gang members, which hold the data.
2062  *
2063  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2064  * as the verifier to ensure uniqueness of the SHA256 checksum.
2065  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2066  * not the gang header.  This ensures that data block signatures (needed for
2067  * deduplication) are independent of how the block is physically stored.
2068  *
2069  * Gang blocks can be nested: a gang member may itself be a gang block.
2070  * Thus every gang block is a tree in which root and all interior nodes are
2071  * gang headers, and the leaves are normal blocks that contain user data.
2072  * The root of the gang tree is called the gang leader.
2073  *
2074  * To perform any operation (read, rewrite, free, claim) on a gang block,
2075  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2076  * in the io_gang_tree field of the original logical i/o by recursively
2077  * reading the gang leader and all gang headers below it.  This yields
2078  * an in-core tree containing the contents of every gang header and the
2079  * bps for every constituent of the gang block.
2080  *
2081  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2082  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2083  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2084  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2085  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2086  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2087  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2088  * of the gang header plus zio_checksum_compute() of the data to update the
2089  * gang header's blk_cksum as described above.
2090  *
2091  * The two-phase assemble/issue model solves the problem of partial failure --
2092  * what if you'd freed part of a gang block but then couldn't read the
2093  * gang header for another part?  Assembling the entire gang tree first
2094  * ensures that all the necessary gang header I/O has succeeded before
2095  * starting the actual work of free, claim, or write.  Once the gang tree
2096  * is assembled, free and claim are in-memory operations that cannot fail.
2097  *
2098  * In the event that a gang write fails, zio_dva_unallocate() walks the
2099  * gang tree to immediately free (i.e. insert back into the space map)
2100  * everything we've allocated.  This ensures that we don't get ENOSPC
2101  * errors during repeated suspend/resume cycles due to a flaky device.
2102  *
2103  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2104  * the gang tree, we won't modify the block, so we can safely defer the free
2105  * (knowing that the block is still intact).  If we *can* assemble the gang
2106  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2107  * each constituent bp and we can allocate a new block on the next sync pass.
2108  *
2109  * In all cases, the gang tree allows complete recovery from partial failure.
2110  * ==========================================================================
2111  */
2112 
2113 static void
2114 zio_gang_issue_func_done(zio_t *zio)
2115 {
2116         abd_put(zio->io_abd);
2117 }
2118 
2119 static zio_t *
2120 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2121     uint64_t offset)
2122 {
2123         if (gn != NULL)
2124                 return (pio);
2125 
2126         return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2127             BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2128             NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2129             &pio->io_bookmark));
2130 }
2131 
2132 static zio_t *
2133 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2134     uint64_t offset)
2135 {
2136         zio_t *zio;
2137 
2138         if (gn != NULL) {
2139                 abd_t *gbh_abd =
2140                     abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2141                 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2142                     gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2143                     pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2144                     &pio->io_bookmark);
2145                 /*
2146                  * As we rewrite each gang header, the pipeline will compute
2147                  * a new gang block header checksum for it; but no one will
2148                  * compute a new data checksum, so we do that here.  The one
2149                  * exception is the gang leader: the pipeline already computed
2150                  * its data checksum because that stage precedes gang assembly.
2151                  * (Presently, nothing actually uses interior data checksums;
2152                  * this is just good hygiene.)
2153                  */
2154                 if (gn != pio->io_gang_leader->io_gang_tree) {
2155                         abd_t *buf = abd_get_offset(data, offset);
2156 
2157                         zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2158                             buf, BP_GET_PSIZE(bp));
2159 
2160                         abd_put(buf);
2161                 }
2162                 /*
2163                  * If we are here to damage data for testing purposes,
2164                  * leave the GBH alone so that we can detect the damage.
2165                  */
2166                 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2167                         zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2168         } else {
2169                 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2170                     abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2171                     zio_gang_issue_func_done, NULL, pio->io_priority,
2172                     ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2173         }
2174 
2175         return (zio);
2176 }
2177 
2178 /* ARGSUSED */
2179 static zio_t *
2180 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2181     uint64_t offset)
2182 {
2183         return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2184             ZIO_GANG_CHILD_FLAGS(pio)));
2185 }
2186 
2187 /* ARGSUSED */
2188 static zio_t *
2189 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2190     uint64_t offset)
2191 {
2192         return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2193             NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2194 }
2195 
2196 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2197         NULL,
2198         zio_read_gang,
2199         zio_rewrite_gang,
2200         zio_free_gang,
2201         zio_claim_gang,
2202         NULL
2203 };
2204 
2205 static void zio_gang_tree_assemble_done(zio_t *zio);
2206 
2207 static zio_gang_node_t *
2208 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2209 {
2210         zio_gang_node_t *gn;
2211 
2212         ASSERT(*gnpp == NULL);
2213 
2214         gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2215         gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2216         *gnpp = gn;
2217 
2218         return (gn);
2219 }
2220 
2221 static void
2222 zio_gang_node_free(zio_gang_node_t **gnpp)
2223 {
2224         zio_gang_node_t *gn = *gnpp;
2225 
2226         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2227                 ASSERT(gn->gn_child[g] == NULL);
2228 
2229         zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2230         kmem_free(gn, sizeof (*gn));
2231         *gnpp = NULL;
2232 }
2233 
2234 static void
2235 zio_gang_tree_free(zio_gang_node_t **gnpp)
2236 {
2237         zio_gang_node_t *gn = *gnpp;
2238 
2239         if (gn == NULL)
2240                 return;
2241 
2242         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2243                 zio_gang_tree_free(&gn->gn_child[g]);
2244 
2245         zio_gang_node_free(gnpp);
2246 }
2247 
2248 static void
2249 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2250 {
2251         zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2252         abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2253 
2254         ASSERT(gio->io_gang_leader == gio);
2255         ASSERT(BP_IS_GANG(bp));
2256 
2257         zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2258             zio_gang_tree_assemble_done, gn, gio->io_priority,
2259             ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2260 }
2261 
2262 static void
2263 zio_gang_tree_assemble_done(zio_t *zio)
2264 {
2265         zio_t *gio = zio->io_gang_leader;
2266         zio_gang_node_t *gn = zio->io_private;
2267         blkptr_t *bp = zio->io_bp;
2268 
2269         ASSERT(gio == zio_unique_parent(zio));
2270         ASSERT(zio->io_child_count == 0);
2271 
2272         if (zio->io_error)
2273                 return;
2274 
2275         /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2276         if (BP_SHOULD_BYTESWAP(bp))
2277                 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2278 
2279         ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2280         ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2281         ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2282 
2283         abd_put(zio->io_abd);
2284 
2285         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2286                 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2287                 if (!BP_IS_GANG(gbp))
2288                         continue;
2289                 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2290         }
2291 }
2292 
2293 static void
2294 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2295     uint64_t offset)
2296 {
2297         zio_t *gio = pio->io_gang_leader;
2298         zio_t *zio;
2299 
2300         ASSERT(BP_IS_GANG(bp) == !!gn);
2301         ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2302         ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2303 
2304         /*
2305          * If you're a gang header, your data is in gn->gn_gbh.
2306          * If you're a gang member, your data is in 'data' and gn == NULL.
2307          */
2308         zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2309 
2310         if (gn != NULL) {
2311                 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2312 
2313                 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2314                         blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2315                         if (BP_IS_HOLE(gbp))
2316                                 continue;
2317                         zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2318                             offset);
2319                         offset += BP_GET_PSIZE(gbp);
2320                 }
2321         }
2322 
2323         if (gn == gio->io_gang_tree)
2324                 ASSERT3U(gio->io_size, ==, offset);
2325 
2326         if (zio != pio)
2327                 zio_nowait(zio);
2328 }
2329 
2330 static int
2331 zio_gang_assemble(zio_t *zio)
2332 {
2333         blkptr_t *bp = zio->io_bp;
2334 
2335         ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2336         ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2337 
2338         zio->io_gang_leader = zio;
2339 
2340         zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2341 
2342         return (ZIO_PIPELINE_CONTINUE);
2343 }
2344 
2345 static int
2346 zio_gang_issue(zio_t *zio)
2347 {
2348         blkptr_t *bp = zio->io_bp;
2349 
2350         if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2351                 return (ZIO_PIPELINE_STOP);
2352         }
2353 
2354         ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2355         ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2356 
2357         if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2358                 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2359                     0);
2360         else
2361                 zio_gang_tree_free(&zio->io_gang_tree);
2362 
2363         zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2364 
2365         return (ZIO_PIPELINE_CONTINUE);
2366 }
2367 
2368 static void
2369 zio_write_gang_member_ready(zio_t *zio)
2370 {
2371         zio_t *pio = zio_unique_parent(zio);
2372         zio_t *gio = zio->io_gang_leader;
2373         dva_t *cdva = zio->io_bp->blk_dva;
2374         dva_t *pdva = pio->io_bp->blk_dva;
2375         uint64_t asize;
2376 
2377         if (BP_IS_HOLE(zio->io_bp))
2378                 return;
2379 
2380         ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2381 
2382         ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2383         ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2384         ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2385         ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2386         ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2387 
2388         mutex_enter(&pio->io_lock);
2389         for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2390                 ASSERT(DVA_GET_GANG(&pdva[d]));
2391                 asize = DVA_GET_ASIZE(&pdva[d]);
2392                 asize += DVA_GET_ASIZE(&cdva[d]);
2393                 DVA_SET_ASIZE(&pdva[d], asize);
2394         }
2395         mutex_exit(&pio->io_lock);
2396 }
2397 
2398 static void
2399 zio_write_gang_done(zio_t *zio)
2400 {
2401         /*
2402          * The io_abd field will be NULL for a zio with no data.  The io_flags
2403          * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2404          * check for it here as it is cleared in zio_ready.
2405          */
2406         if (zio->io_abd != NULL)
2407                 abd_put(zio->io_abd);
2408 }
2409 
2410 static int
2411 zio_write_gang_block(zio_t *pio)
2412 {
2413         spa_t *spa = pio->io_spa;
2414         metaslab_class_t *mc = spa_normal_class(spa);
2415         blkptr_t *bp = pio->io_bp;
2416         zio_t *gio = pio->io_gang_leader;
2417         zio_t *zio;
2418         zio_gang_node_t *gn, **gnpp;
2419         zio_gbh_phys_t *gbh;
2420         abd_t *gbh_abd;
2421         uint64_t txg = pio->io_txg;
2422         uint64_t resid = pio->io_size;
2423         uint64_t lsize;
2424         int copies = gio->io_prop.zp_copies;
2425         int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2426         zio_prop_t zp;
2427         int error;
2428         boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2429 
2430         /*
2431          * encrypted blocks need DVA[2] free so encrypted gang headers can't
2432          * have a third copy.
2433          */
2434         if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2435                 gbh_copies = SPA_DVAS_PER_BP - 1;
2436 
2437         int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2438         if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2439                 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2440                 ASSERT(has_data);
2441 
2442                 flags |= METASLAB_ASYNC_ALLOC;
2443                 VERIFY(zfs_refcount_held(&mc->mc_alloc_slots[pio->io_allocator],
2444                     pio));
2445 
2446                 /*
2447                  * The logical zio has already placed a reservation for
2448                  * 'copies' allocation slots but gang blocks may require
2449                  * additional copies. These additional copies
2450                  * (i.e. gbh_copies - copies) are guaranteed to succeed
2451                  * since metaslab_class_throttle_reserve() always allows
2452                  * additional reservations for gang blocks.
2453                  */
2454                 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2455                     pio->io_allocator, pio, flags));
2456         }
2457 
2458         error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2459             bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2460             &pio->io_alloc_list, pio, pio->io_allocator);
2461         if (error) {
2462                 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2463                         ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2464                         ASSERT(has_data);
2465 
2466                         /*
2467                          * If we failed to allocate the gang block header then
2468                          * we remove any additional allocation reservations that
2469                          * we placed here. The original reservation will
2470                          * be removed when the logical I/O goes to the ready
2471                          * stage.
2472                          */
2473                         metaslab_class_throttle_unreserve(mc,
2474                             gbh_copies - copies, pio->io_allocator, pio);
2475                 }
2476                 pio->io_error = error;
2477                 return (ZIO_PIPELINE_CONTINUE);
2478         }
2479 
2480         if (pio == gio) {
2481                 gnpp = &gio->io_gang_tree;
2482         } else {
2483                 gnpp = pio->io_private;
2484                 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2485         }
2486 
2487         gn = zio_gang_node_alloc(gnpp);
2488         gbh = gn->gn_gbh;
2489         bzero(gbh, SPA_GANGBLOCKSIZE);
2490         gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2491 
2492         /*
2493          * Create the gang header.
2494          */
2495         zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2496             zio_write_gang_done, NULL, pio->io_priority,
2497             ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2498 
2499         /*
2500          * Create and nowait the gang children.
2501          */
2502         for (int g = 0; resid != 0; resid -= lsize, g++) {
2503                 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2504                     SPA_MINBLOCKSIZE);
2505                 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2506 
2507                 zp.zp_checksum = gio->io_prop.zp_checksum;
2508                 zp.zp_compress = ZIO_COMPRESS_OFF;
2509                 zp.zp_type = DMU_OT_NONE;
2510                 zp.zp_level = 0;
2511                 zp.zp_copies = gio->io_prop.zp_copies;
2512                 zp.zp_dedup = B_FALSE;
2513                 zp.zp_dedup_verify = B_FALSE;
2514                 zp.zp_nopwrite = B_FALSE;
2515                 zp.zp_encrypt = gio->io_prop.zp_encrypt;
2516                 zp.zp_byteorder = gio->io_prop.zp_byteorder;
2517                 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
2518                 bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
2519                 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
2520 
2521                 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2522                     has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2523                     resid) : NULL, lsize, lsize, &zp,
2524                     zio_write_gang_member_ready, NULL, NULL,
2525                     zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2526                     ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2527 
2528                 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2529                         ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2530                         ASSERT(has_data);
2531 
2532                         /*
2533                          * Gang children won't throttle but we should
2534                          * account for their work, so reserve an allocation
2535                          * slot for them here.
2536                          */
2537                         VERIFY(metaslab_class_throttle_reserve(mc,
2538                             zp.zp_copies, cio->io_allocator, cio, flags));
2539                 }
2540                 zio_nowait(cio);
2541         }
2542 
2543         /*
2544          * Set pio's pipeline to just wait for zio to finish.
2545          */
2546         pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2547 
2548         zio_nowait(zio);
2549 
2550         return (ZIO_PIPELINE_CONTINUE);
2551 }
2552 
2553 /*
2554  * The zio_nop_write stage in the pipeline determines if allocating a
2555  * new bp is necessary.  The nopwrite feature can handle writes in
2556  * either syncing or open context (i.e. zil writes) and as a result is
2557  * mutually exclusive with dedup.
2558  *
2559  * By leveraging a cryptographically secure checksum, such as SHA256, we
2560  * can compare the checksums of the new data and the old to determine if
2561  * allocating a new block is required.  Note that our requirements for
2562  * cryptographic strength are fairly weak: there can't be any accidental
2563  * hash collisions, but we don't need to be secure against intentional
2564  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2565  * to write the file to begin with, and triggering an incorrect (hash
2566  * collision) nopwrite is no worse than simply writing to the file.
2567  * That said, there are no known attacks against the checksum algorithms
2568  * used for nopwrite, assuming that the salt and the checksums
2569  * themselves remain secret.
2570  */
2571 static int
2572 zio_nop_write(zio_t *zio)
2573 {
2574         blkptr_t *bp = zio->io_bp;
2575         blkptr_t *bp_orig = &zio->io_bp_orig;
2576         zio_prop_t *zp = &zio->io_prop;
2577 
2578         ASSERT(BP_GET_LEVEL(bp) == 0);
2579         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2580         ASSERT(zp->zp_nopwrite);
2581         ASSERT(!zp->zp_dedup);
2582         ASSERT(zio->io_bp_override == NULL);
2583         ASSERT(IO_IS_ALLOCATING(zio));
2584 
2585         /*
2586          * Check to see if the original bp and the new bp have matching
2587          * characteristics (i.e. same checksum, compression algorithms, etc).
2588          * If they don't then just continue with the pipeline which will
2589          * allocate a new bp.
2590          */
2591         if (BP_IS_HOLE(bp_orig) ||
2592             !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2593             ZCHECKSUM_FLAG_NOPWRITE) ||
2594             BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2595             BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2596             BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2597             BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2598             zp->zp_copies != BP_GET_NDVAS(bp_orig))
2599                 return (ZIO_PIPELINE_CONTINUE);
2600 
2601         /*
2602          * If the checksums match then reset the pipeline so that we
2603          * avoid allocating a new bp and issuing any I/O.
2604          */
2605         if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2606                 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2607                     ZCHECKSUM_FLAG_NOPWRITE);
2608                 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2609                 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2610                 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2611                 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2612                     sizeof (uint64_t)) == 0);
2613 
2614                 *bp = *bp_orig;
2615                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2616                 zio->io_flags |= ZIO_FLAG_NOPWRITE;
2617         }
2618 
2619         return (ZIO_PIPELINE_CONTINUE);
2620 }
2621 
2622 /*
2623  * ==========================================================================
2624  * Dedup
2625  * ==========================================================================
2626  */
2627 static void
2628 zio_ddt_child_read_done(zio_t *zio)
2629 {
2630         blkptr_t *bp = zio->io_bp;
2631         ddt_entry_t *dde = zio->io_private;
2632         ddt_phys_t *ddp;
2633         zio_t *pio = zio_unique_parent(zio);
2634 
2635         mutex_enter(&pio->io_lock);
2636         ddp = ddt_phys_select(dde, bp);
2637         if (zio->io_error == 0)
2638                 ddt_phys_clear(ddp);    /* this ddp doesn't need repair */
2639 
2640         if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2641                 dde->dde_repair_abd = zio->io_abd;
2642         else
2643                 abd_free(zio->io_abd);
2644         mutex_exit(&pio->io_lock);
2645 }
2646 
2647 static int
2648 zio_ddt_read_start(zio_t *zio)
2649 {
2650         blkptr_t *bp = zio->io_bp;
2651 
2652         ASSERT(BP_GET_DEDUP(bp));
2653         ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2654         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2655 
2656         if (zio->io_child_error[ZIO_CHILD_DDT]) {
2657                 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2658                 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2659                 ddt_phys_t *ddp = dde->dde_phys;
2660                 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2661                 blkptr_t blk;
2662 
2663                 ASSERT(zio->io_vsd == NULL);
2664                 zio->io_vsd = dde;
2665 
2666                 if (ddp_self == NULL)
2667                         return (ZIO_PIPELINE_CONTINUE);
2668 
2669                 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2670                         if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2671                                 continue;
2672                         ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2673                             &blk);
2674                         zio_nowait(zio_read(zio, zio->io_spa, &blk,
2675                             abd_alloc_for_io(zio->io_size, B_TRUE),
2676                             zio->io_size, zio_ddt_child_read_done, dde,
2677                             zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2678                             ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2679                 }
2680                 return (ZIO_PIPELINE_CONTINUE);
2681         }
2682 
2683         zio_nowait(zio_read(zio, zio->io_spa, bp,
2684             zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2685             ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2686 
2687         return (ZIO_PIPELINE_CONTINUE);
2688 }
2689 
2690 static int
2691 zio_ddt_read_done(zio_t *zio)
2692 {
2693         blkptr_t *bp = zio->io_bp;
2694 
2695         if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
2696                 return (ZIO_PIPELINE_STOP);
2697         }
2698 
2699         ASSERT(BP_GET_DEDUP(bp));
2700         ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2701         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2702 
2703         if (zio->io_child_error[ZIO_CHILD_DDT]) {
2704                 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2705                 ddt_entry_t *dde = zio->io_vsd;
2706                 if (ddt == NULL) {
2707                         ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2708                         return (ZIO_PIPELINE_CONTINUE);
2709                 }
2710                 if (dde == NULL) {
2711                         zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2712                         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2713                         return (ZIO_PIPELINE_STOP);
2714                 }
2715                 if (dde->dde_repair_abd != NULL) {
2716                         abd_copy(zio->io_abd, dde->dde_repair_abd,
2717                             zio->io_size);
2718                         zio->io_child_error[ZIO_CHILD_DDT] = 0;
2719                 }
2720                 ddt_repair_done(ddt, dde);
2721                 zio->io_vsd = NULL;
2722         }
2723 
2724         ASSERT(zio->io_vsd == NULL);
2725 
2726         return (ZIO_PIPELINE_CONTINUE);
2727 }
2728 
2729 static boolean_t
2730 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2731 {
2732         spa_t *spa = zio->io_spa;
2733         boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
2734 
2735         /* We should never get a raw, override zio */
2736         ASSERT(!(zio->io_bp_override && do_raw));
2737 
2738         /*
2739          * Note: we compare the original data, not the transformed data,
2740          * because when zio->io_bp is an override bp, we will not have
2741          * pushed the I/O transforms.  That's an important optimization
2742          * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2743          * However, we should never get a raw, override zio so in these
2744          * cases we can compare the io_data directly. This is useful because
2745          * it allows us to do dedup verification even if we don't have access
2746          * to the original data (for instance, if the encryption keys aren't
2747          * loaded).
2748          */
2749 
2750         for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2751                 zio_t *lio = dde->dde_lead_zio[p];
2752 
2753                 if (lio != NULL && do_raw) {
2754                         return (lio->io_size != zio->io_size ||
2755                             abd_cmp(zio->io_abd, lio->io_abd,
2756                             zio->io_size) != 0);
2757                 } else if (lio != NULL) {
2758                         return (lio->io_orig_size != zio->io_orig_size ||
2759                             abd_cmp(zio->io_orig_abd, lio->io_orig_abd,
2760                             zio->io_orig_size) != 0);
2761                 }
2762         }
2763 
2764         for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2765                 ddt_phys_t *ddp = &dde->dde_phys[p];
2766 
2767                 if (ddp->ddp_phys_birth != 0 && do_raw) {
2768                         blkptr_t blk = *zio->io_bp;
2769                         uint64_t psize;
2770                         abd_t *tmpabd;
2771                         int error;
2772 
2773                         ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2774                         psize = BP_GET_PSIZE(&blk);
2775 
2776                         if (psize != zio->io_size)
2777                                 return (B_TRUE);
2778 
2779                         ddt_exit(ddt);
2780 
2781                         tmpabd = abd_alloc_for_io(psize, B_TRUE);
2782 
2783                         error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
2784                             psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
2785                             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2786                             ZIO_FLAG_RAW, &zio->io_bookmark));
2787 
2788                         if (error == 0) {
2789                                 if (abd_cmp(tmpabd, zio->io_abd, psize) != 0)
2790                                         error = SET_ERROR(ENOENT);
2791                         }
2792 
2793                         abd_free(tmpabd);
2794                         ddt_enter(ddt);
2795                         return (error != 0);
2796                 } else if (ddp->ddp_phys_birth != 0) {
2797                         arc_buf_t *abuf = NULL;
2798                         arc_flags_t aflags = ARC_FLAG_WAIT;
2799                         int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2800                         blkptr_t blk = *zio->io_bp;
2801                         int error;
2802 
2803                         ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2804 
2805                         if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
2806                                 return (B_TRUE);
2807 
2808                         ddt_exit(ddt);
2809 
2810                         /*
2811                          * Intuitively, it would make more sense to compare
2812                          * io_abd than io_orig_abd in the raw case since you
2813                          * don't want to look at any transformations that have
2814                          * happened to the data. However, for raw I/Os the
2815                          * data will actually be the same in io_abd and
2816                          * io_orig_abd, so all we have to do is issue this as
2817                          * a raw ARC read.
2818                          */
2819                         if (do_raw) {
2820                                 zio_flags |= ZIO_FLAG_RAW;
2821                                 ASSERT3U(zio->io_size, ==, zio->io_orig_size);
2822                                 ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd,
2823                                     zio->io_size));
2824                                 ASSERT3P(zio->io_transform_stack, ==, NULL);
2825                         }
2826 
2827                         error = arc_read(NULL, spa, &blk,
2828                             arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2829                             zio_flags, &aflags, &zio->io_bookmark);
2830 
2831                         if (error == 0) {
2832                                 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2833                                     zio->io_orig_size) != 0)
2834                                         error = SET_ERROR(ENOENT);
2835                                 arc_buf_destroy(abuf, &abuf);
2836                         }
2837 
2838                         ddt_enter(ddt);
2839                         return (error != 0);
2840                 }
2841         }
2842 
2843         return (B_FALSE);
2844 }
2845 
2846 static void
2847 zio_ddt_child_write_ready(zio_t *zio)
2848 {
2849         int p = zio->io_prop.zp_copies;
2850         ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2851         ddt_entry_t *dde = zio->io_private;
2852         ddt_phys_t *ddp = &dde->dde_phys[p];
2853         zio_t *pio;
2854 
2855         if (zio->io_error)
2856                 return;
2857 
2858         ddt_enter(ddt);
2859 
2860         ASSERT(dde->dde_lead_zio[p] == zio);
2861 
2862         ddt_phys_fill(ddp, zio->io_bp);
2863 
2864         zio_link_t *zl = NULL;
2865         while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2866                 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2867 
2868         ddt_exit(ddt);
2869 }
2870 
2871 static void
2872 zio_ddt_child_write_done(zio_t *zio)
2873 {
2874         int p = zio->io_prop.zp_copies;
2875         ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2876         ddt_entry_t *dde = zio->io_private;
2877         ddt_phys_t *ddp = &dde->dde_phys[p];
2878 
2879         ddt_enter(ddt);
2880 
2881         ASSERT(ddp->ddp_refcnt == 0);
2882         ASSERT(dde->dde_lead_zio[p] == zio);
2883         dde->dde_lead_zio[p] = NULL;
2884 
2885         if (zio->io_error == 0) {
2886                 zio_link_t *zl = NULL;
2887                 while (zio_walk_parents(zio, &zl) != NULL)
2888                         ddt_phys_addref(ddp);
2889         } else {
2890                 ddt_phys_clear(ddp);
2891         }
2892 
2893         ddt_exit(ddt);
2894 }
2895 
2896 static void
2897 zio_ddt_ditto_write_done(zio_t *zio)
2898 {
2899         int p = DDT_PHYS_DITTO;
2900         zio_prop_t *zp = &zio->io_prop;
2901         blkptr_t *bp = zio->io_bp;
2902         ddt_t *ddt = ddt_select(zio->io_spa, bp);
2903         ddt_entry_t *dde = zio->io_private;
2904         ddt_phys_t *ddp = &dde->dde_phys[p];
2905         ddt_key_t *ddk = &dde->dde_key;
2906 
2907         ddt_enter(ddt);
2908 
2909         ASSERT(ddp->ddp_refcnt == 0);
2910         ASSERT(dde->dde_lead_zio[p] == zio);
2911         dde->dde_lead_zio[p] = NULL;
2912 
2913         if (zio->io_error == 0) {
2914                 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2915                 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2916                 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2917                 if (ddp->ddp_phys_birth != 0)
2918                         ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2919                 ddt_phys_fill(ddp, bp);
2920         }
2921 
2922         ddt_exit(ddt);
2923 }
2924 
2925 static int
2926 zio_ddt_write(zio_t *zio)
2927 {
2928         spa_t *spa = zio->io_spa;
2929         blkptr_t *bp = zio->io_bp;
2930         uint64_t txg = zio->io_txg;
2931         zio_prop_t *zp = &zio->io_prop;
2932         int p = zp->zp_copies;
2933         int ditto_copies;
2934         zio_t *cio = NULL;
2935         zio_t *dio = NULL;
2936         ddt_t *ddt = ddt_select(spa, bp);
2937         ddt_entry_t *dde;
2938         ddt_phys_t *ddp;
2939 
2940         ASSERT(BP_GET_DEDUP(bp));
2941         ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2942         ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2943         ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
2944 
2945         ddt_enter(ddt);
2946         dde = ddt_lookup(ddt, bp, B_TRUE);
2947         ddp = &dde->dde_phys[p];
2948 
2949         if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2950                 /*
2951                  * If we're using a weak checksum, upgrade to a strong checksum
2952                  * and try again.  If we're already using a strong checksum,
2953                  * we can't resolve it, so just convert to an ordinary write.
2954                  * (And automatically e-mail a paper to Nature?)
2955                  */
2956                 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2957                     ZCHECKSUM_FLAG_DEDUP)) {
2958                         zp->zp_checksum = spa_dedup_checksum(spa);
2959                         zio_pop_transforms(zio);
2960                         zio->io_stage = ZIO_STAGE_OPEN;
2961                         BP_ZERO(bp);
2962                 } else {
2963                         zp->zp_dedup = B_FALSE;
2964                         BP_SET_DEDUP(bp, B_FALSE);
2965                 }
2966                 ASSERT(!BP_GET_DEDUP(bp));
2967                 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2968                 ddt_exit(ddt);
2969                 return (ZIO_PIPELINE_CONTINUE);
2970         }
2971 
2972         ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2973         ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2974 
2975         if (ditto_copies > ddt_ditto_copies_present(dde) &&
2976             dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2977                 zio_prop_t czp = *zp;
2978 
2979                 czp.zp_copies = ditto_copies;
2980 
2981                 /*
2982                  * If we arrived here with an override bp, we won't have run
2983                  * the transform stack, so we won't have the data we need to
2984                  * generate a child i/o.  So, toss the override bp and restart.
2985                  * This is safe, because using the override bp is just an
2986                  * optimization; and it's rare, so the cost doesn't matter.
2987                  */
2988                 if (zio->io_bp_override) {
2989                         zio_pop_transforms(zio);
2990                         zio->io_stage = ZIO_STAGE_OPEN;
2991                         zio->io_pipeline = ZIO_WRITE_PIPELINE;
2992                         zio->io_bp_override = NULL;
2993                         BP_ZERO(bp);
2994                         ddt_exit(ddt);
2995                         return (ZIO_PIPELINE_CONTINUE);
2996                 }
2997 
2998                 dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2999                     zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
3000                     NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
3001                     ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3002 
3003                 zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
3004                 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
3005         }
3006 
3007         if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3008                 if (ddp->ddp_phys_birth != 0)
3009                         ddt_bp_fill(ddp, bp, txg);
3010                 if (dde->dde_lead_zio[p] != NULL)
3011                         zio_add_child(zio, dde->dde_lead_zio[p]);
3012                 else
3013                         ddt_phys_addref(ddp);
3014         } else if (zio->io_bp_override) {
3015                 ASSERT(bp->blk_birth == txg);
3016                 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3017                 ddt_phys_fill(ddp, bp);
3018                 ddt_phys_addref(ddp);
3019         } else {
3020                 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3021                     zio->io_orig_size, zio->io_orig_size, zp,
3022                     zio_ddt_child_write_ready, NULL, NULL,
3023                     zio_ddt_child_write_done, dde, zio->io_priority,
3024                     ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3025 
3026                 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3027                 dde->dde_lead_zio[p] = cio;
3028         }
3029 
3030         ddt_exit(ddt);
3031 
3032         if (cio)
3033                 zio_nowait(cio);
3034         if (dio)
3035                 zio_nowait(dio);
3036 
3037         return (ZIO_PIPELINE_CONTINUE);
3038 }
3039 
3040 ddt_entry_t *freedde; /* for debugging */
3041 
3042 static int
3043 zio_ddt_free(zio_t *zio)
3044 {
3045         spa_t *spa = zio->io_spa;
3046         blkptr_t *bp = zio->io_bp;
3047         ddt_t *ddt = ddt_select(spa, bp);
3048         ddt_entry_t *dde;
3049         ddt_phys_t *ddp;
3050 
3051         ASSERT(BP_GET_DEDUP(bp));
3052         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3053 
3054         ddt_enter(ddt);
3055         freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3056         ddp = ddt_phys_select(dde, bp);
3057         ddt_phys_decref(ddp);
3058         ddt_exit(ddt);
3059 
3060         return (ZIO_PIPELINE_CONTINUE);
3061 }
3062 
3063 /*
3064  * ==========================================================================
3065  * Allocate and free blocks
3066  * ==========================================================================
3067  */
3068 
3069 static zio_t *
3070 zio_io_to_allocate(spa_t *spa, int allocator)
3071 {
3072         zio_t *zio;
3073 
3074         ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
3075 
3076         zio = avl_first(&spa->spa_alloc_trees[allocator]);
3077         if (zio == NULL)
3078                 return (NULL);
3079 
3080         ASSERT(IO_IS_ALLOCATING(zio));
3081 
3082         /*
3083          * Try to place a reservation for this zio. If we're unable to
3084          * reserve then we throttle.
3085          */
3086         ASSERT3U(zio->io_allocator, ==, allocator);
3087         if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3088             zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
3089                 return (NULL);
3090         }
3091 
3092         avl_remove(&spa->spa_alloc_trees[allocator], zio);
3093         ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3094 
3095         return (zio);
3096 }
3097 
3098 static int
3099 zio_dva_throttle(zio_t *zio)
3100 {
3101         spa_t *spa = zio->io_spa;
3102         zio_t *nio;
3103         metaslab_class_t *mc;
3104 
3105         /* locate an appropriate allocation class */
3106         mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3107             zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3108 
3109         if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3110             !mc->mc_alloc_throttle_enabled ||
3111             zio->io_child_type == ZIO_CHILD_GANG ||
3112             zio->io_flags & ZIO_FLAG_NODATA) {
3113                 return (ZIO_PIPELINE_CONTINUE);
3114         }
3115 
3116         ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3117 
3118         ASSERT3U(zio->io_queued_timestamp, >, 0);
3119         ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3120 
3121         zbookmark_phys_t *bm = &zio->io_bookmark;
3122         /*
3123          * We want to try to use as many allocators as possible to help improve
3124          * performance, but we also want logically adjacent IOs to be physically
3125          * adjacent to improve sequential read performance. We chunk each object
3126          * into 2^20 block regions, and then hash based on the objset, object,
3127          * level, and region to accomplish both of these goals.
3128          */
3129         zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
3130             bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3131         mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
3132         ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3133         zio->io_metaslab_class = mc;
3134         avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
3135         nio = zio_io_to_allocate(spa, zio->io_allocator);
3136         mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
3137 
3138         if (nio == zio)
3139                 return (ZIO_PIPELINE_CONTINUE);
3140 
3141         if (nio != NULL) {
3142                 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3143                 /*
3144                  * We are passing control to a new zio so make sure that
3145                  * it is processed by a different thread. We do this to
3146                  * avoid stack overflows that can occur when parents are
3147                  * throttled and children are making progress. We allow
3148                  * it to go to the head of the taskq since it's already
3149                  * been waiting.
3150                  */
3151                 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
3152         }
3153         return (ZIO_PIPELINE_STOP);
3154 }
3155 
3156 static void
3157 zio_allocate_dispatch(spa_t *spa, int allocator)
3158 {
3159         zio_t *zio;
3160 
3161         mutex_enter(&spa->spa_alloc_locks[allocator]);
3162         zio = zio_io_to_allocate(spa, allocator);
3163         mutex_exit(&spa->spa_alloc_locks[allocator]);
3164         if (zio == NULL)
3165                 return;
3166 
3167         ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3168         ASSERT0(zio->io_error);
3169         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3170 }
3171 
3172 static int
3173 zio_dva_allocate(zio_t *zio)
3174 {
3175         spa_t *spa = zio->io_spa;
3176         metaslab_class_t *mc;
3177         blkptr_t *bp = zio->io_bp;
3178         int error;
3179         int flags = 0;
3180 
3181         if (zio->io_gang_leader == NULL) {
3182                 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3183                 zio->io_gang_leader = zio;
3184         }
3185 
3186         ASSERT(BP_IS_HOLE(bp));
3187         ASSERT0(BP_GET_NDVAS(bp));
3188         ASSERT3U(zio->io_prop.zp_copies, >, 0);
3189         ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3190         ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3191 
3192         if (zio->io_flags & ZIO_FLAG_NODATA)
3193                 flags |= METASLAB_DONT_THROTTLE;
3194         if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3195                 flags |= METASLAB_GANG_CHILD;
3196         if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3197                 flags |= METASLAB_ASYNC_ALLOC;
3198 
3199         /*
3200          * if not already chosen, locate an appropriate allocation class
3201          */
3202         mc = zio->io_metaslab_class;
3203         if (mc == NULL) {
3204                 mc = spa_preferred_class(spa, zio->io_size,
3205                     zio->io_prop.zp_type, zio->io_prop.zp_level,
3206                     zio->io_prop.zp_zpl_smallblk);
3207                 zio->io_metaslab_class = mc;
3208         }
3209 
3210         error = metaslab_alloc(spa, mc, zio->io_size, bp,
3211             zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3212             &zio->io_alloc_list, zio, zio->io_allocator);
3213 
3214         /*
3215          * Fallback to normal class when an alloc class is full
3216          */
3217         if (error == ENOSPC && mc != spa_normal_class(spa)) {
3218                 /*
3219                  * If throttling, transfer reservation over to normal class.
3220                  * The io_allocator slot can remain the same even though we
3221                  * are switching classes.
3222                  */
3223                 if (mc->mc_alloc_throttle_enabled &&
3224                     (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3225                         metaslab_class_throttle_unreserve(mc,
3226                             zio->io_prop.zp_copies, zio->io_allocator, zio);
3227                         zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3228 
3229                         mc = spa_normal_class(spa);
3230                         VERIFY(metaslab_class_throttle_reserve(mc,
3231                             zio->io_prop.zp_copies, zio->io_allocator, zio,
3232                             flags | METASLAB_MUST_RESERVE));
3233                 } else {
3234                         mc = spa_normal_class(spa);
3235                 }
3236                 zio->io_metaslab_class = mc;
3237 
3238                 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3239                     zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3240                     &zio->io_alloc_list, zio, zio->io_allocator);
3241         }
3242 
3243         if (error != 0) {
3244                 zfs_dbgmsg("%s: metaslab allocation failure: zio %p, "
3245                     "size %llu, error %d", spa_name(spa), zio, zio->io_size,
3246                     error);
3247                 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
3248                         return (zio_write_gang_block(zio));
3249                 zio->io_error = error;
3250         }
3251 
3252         return (ZIO_PIPELINE_CONTINUE);
3253 }
3254 
3255 static int
3256 zio_dva_free(zio_t *zio)
3257 {
3258         metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3259 
3260         return (ZIO_PIPELINE_CONTINUE);
3261 }
3262 
3263 static int
3264 zio_dva_claim(zio_t *zio)
3265 {
3266         int error;
3267 
3268         error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3269         if (error)
3270                 zio->io_error = error;
3271 
3272         return (ZIO_PIPELINE_CONTINUE);
3273 }
3274 
3275 /*
3276  * Undo an allocation.  This is used by zio_done() when an I/O fails
3277  * and we want to give back the block we just allocated.
3278  * This handles both normal blocks and gang blocks.
3279  */
3280 static void
3281 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3282 {
3283         ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3284         ASSERT(zio->io_bp_override == NULL);
3285 
3286         if (!BP_IS_HOLE(bp))
3287                 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3288 
3289         if (gn != NULL) {
3290                 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3291                         zio_dva_unallocate(zio, gn->gn_child[g],
3292                             &gn->gn_gbh->zg_blkptr[g]);
3293                 }
3294         }
3295 }
3296 
3297 /*
3298  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3299  */
3300 int
3301 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3302     blkptr_t *old_bp, uint64_t size, boolean_t *slog)
3303 {
3304         int error = 1;
3305         zio_alloc_list_t io_alloc_list;
3306 
3307         ASSERT(txg > spa_syncing_txg(spa));
3308 
3309         metaslab_trace_init(&io_alloc_list);
3310 
3311         /*
3312          * Block pointer fields are useful to metaslabs for stats and debugging.
3313          * Fill in the obvious ones before calling into metaslab_alloc().
3314          */
3315         BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3316         BP_SET_PSIZE(new_bp, size);
3317         BP_SET_LEVEL(new_bp, 0);
3318 
3319         /*
3320          * When allocating a zil block, we don't have information about
3321          * the final destination of the block except the objset it's part
3322          * of, so we just hash the objset ID to pick the allocator to get
3323          * some parallelism.
3324          */
3325         error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3326             txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL,
3327             cityhash4(0, 0, 0,
3328             os->os_dsl_dataset->ds_object) % spa->spa_alloc_count);
3329         if (error == 0) {
3330                 *slog = TRUE;
3331         } else {
3332                 error = metaslab_alloc(spa, spa_normal_class(spa), size,
3333                     new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID,
3334                     &io_alloc_list, NULL, cityhash4(0, 0, 0,
3335                     os->os_dsl_dataset->ds_object) % spa->spa_alloc_count);
3336                 if (error == 0)
3337                         *slog = FALSE;
3338         }
3339         metaslab_trace_fini(&io_alloc_list);
3340 
3341         if (error == 0) {
3342                 BP_SET_LSIZE(new_bp, size);
3343                 BP_SET_PSIZE(new_bp, size);
3344                 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3345                 BP_SET_CHECKSUM(new_bp,
3346                     spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3347                     ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3348                 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3349                 BP_SET_LEVEL(new_bp, 0);
3350                 BP_SET_DEDUP(new_bp, 0);
3351                 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3352 
3353                 /*
3354                  * encrypted blocks will require an IV and salt. We generate
3355                  * these now since we will not be rewriting the bp at
3356                  * rewrite time.
3357                  */
3358                 if (os->os_encrypted) {
3359                         uint8_t iv[ZIO_DATA_IV_LEN];
3360                         uint8_t salt[ZIO_DATA_SALT_LEN];
3361 
3362                         BP_SET_CRYPT(new_bp, B_TRUE);
3363                         VERIFY0(spa_crypt_get_salt(spa,
3364                             dmu_objset_id(os), salt));
3365                         VERIFY0(zio_crypt_generate_iv(iv));
3366 
3367                         zio_crypt_encode_params_bp(new_bp, salt, iv);
3368                 }
3369         } else {
3370                 zfs_dbgmsg("%s: zil block allocation failure: "
3371                     "size %llu, error %d", spa_name(spa), size, error);
3372         }
3373 
3374         return (error);
3375 }
3376 
3377 /*
3378  * ==========================================================================
3379  * Read and write to physical devices
3380  * ==========================================================================
3381  */
3382 
3383 /*
3384  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3385  * stops after this stage and will resume upon I/O completion.
3386  * However, there are instances where the vdev layer may need to
3387  * continue the pipeline when an I/O was not issued. Since the I/O
3388  * that was sent to the vdev layer might be different than the one
3389  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3390  * force the underlying vdev layers to call either zio_execute() or
3391  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3392  */
3393 static int
3394 zio_vdev_io_start(zio_t *zio)
3395 {
3396         vdev_t *vd = zio->io_vd;
3397         uint64_t align;
3398         spa_t *spa = zio->io_spa;
3399 
3400         zio->io_delay = 0;
3401 
3402         ASSERT(zio->io_error == 0);
3403         ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3404 
3405         if (vd == NULL) {
3406                 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3407                         spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3408 
3409                 /*
3410                  * The mirror_ops handle multiple DVAs in a single BP.
3411                  */
3412                 vdev_mirror_ops.vdev_op_io_start(zio);
3413                 return (ZIO_PIPELINE_STOP);
3414         }
3415 
3416         ASSERT3P(zio->io_logical, !=, zio);
3417         if (zio->io_type == ZIO_TYPE_WRITE) {
3418                 ASSERT(spa->spa_trust_config);
3419 
3420                 /*
3421                  * Note: the code can handle other kinds of writes,
3422                  * but we don't expect them.
3423                  */
3424                 if (zio->io_vd->vdev_removing) {
3425                         ASSERT(zio->io_flags &
3426                             (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3427                             ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3428                 }
3429         }
3430 
3431         align = 1ULL << vd->vdev_top->vdev_ashift;
3432 
3433         if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3434             P2PHASE(zio->io_size, align) != 0) {
3435                 /* Transform logical writes to be a full physical block size. */
3436                 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3437                 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3438                 ASSERT(vd == vd->vdev_top);
3439                 if (zio->io_type == ZIO_TYPE_WRITE) {
3440                         abd_copy(abuf, zio->io_abd, zio->io_size);
3441                         abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3442                 }
3443                 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3444         }
3445 
3446         /*
3447          * If this is not a physical io, make sure that it is properly aligned
3448          * before proceeding.
3449          */
3450         if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3451                 ASSERT0(P2PHASE(zio->io_offset, align));
3452                 ASSERT0(P2PHASE(zio->io_size, align));
3453         } else {
3454                 /*
3455                  * For physical writes, we allow 512b aligned writes and assume
3456                  * the device will perform a read-modify-write as necessary.
3457                  */
3458                 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3459                 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3460         }
3461 
3462         VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3463 
3464         /*
3465          * If this is a repair I/O, and there's no self-healing involved --
3466          * that is, we're just resilvering what we expect to resilver --
3467          * then don't do the I/O unless zio's txg is actually in vd's DTL.
3468          * This prevents spurious resilvering.
3469          *
3470          * There are a few ways that we can end up creating these spurious
3471          * resilver i/os:
3472          *
3473          * 1. A resilver i/o will be issued if any DVA in the BP has a
3474          * dirty DTL.  The mirror code will issue resilver writes to
3475          * each DVA, including the one(s) that are not on vdevs with dirty
3476          * DTLs.
3477          *
3478          * 2. With nested replication, which happens when we have a
3479          * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3480          * For example, given mirror(replacing(A+B), C), it's likely that
3481          * only A is out of date (it's the new device). In this case, we'll
3482          * read from C, then use the data to resilver A+B -- but we don't
3483          * actually want to resilver B, just A. The top-level mirror has no
3484          * way to know this, so instead we just discard unnecessary repairs
3485          * as we work our way down the vdev tree.
3486          *
3487          * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3488          * The same logic applies to any form of nested replication: ditto
3489          * + mirror, RAID-Z + replacing, etc.
3490          *
3491          * However, indirect vdevs point off to other vdevs which may have
3492          * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3493          * will be properly bypassed instead.
3494          */
3495         if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3496             !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3497             zio->io_txg != 0 &&      /* not a delegated i/o */
3498             vd->vdev_ops != &vdev_indirect_ops &&
3499             !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3500                 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3501                 zio_vdev_io_bypass(zio);
3502                 return (ZIO_PIPELINE_CONTINUE);
3503         }
3504 
3505         if (vd->vdev_ops->vdev_op_leaf && (zio->io_type == ZIO_TYPE_READ ||
3506             zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM)) {
3507 
3508                 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3509                         return (ZIO_PIPELINE_CONTINUE);
3510 
3511                 if ((zio = vdev_queue_io(zio)) == NULL)
3512                         return (ZIO_PIPELINE_STOP);
3513 
3514                 if (!vdev_accessible(vd, zio)) {
3515                         zio->io_error = SET_ERROR(ENXIO);
3516                         zio_interrupt(zio);
3517                         return (ZIO_PIPELINE_STOP);
3518                 }
3519                 zio->io_delay = gethrtime();
3520         }
3521 
3522         vd->vdev_ops->vdev_op_io_start(zio);
3523         return (ZIO_PIPELINE_STOP);
3524 }
3525 
3526 static int
3527 zio_vdev_io_done(zio_t *zio)
3528 {
3529         vdev_t *vd = zio->io_vd;
3530         vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3531         boolean_t unexpected_error = B_FALSE;
3532 
3533         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3534                 return (ZIO_PIPELINE_STOP);
3535         }
3536 
3537         ASSERT(zio->io_type == ZIO_TYPE_READ ||
3538             zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3539 
3540         if (zio->io_delay)
3541                 zio->io_delay = gethrtime() - zio->io_delay;
3542 
3543         if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3544 
3545                 vdev_queue_io_done(zio);
3546 
3547                 if (zio->io_type == ZIO_TYPE_WRITE)
3548                         vdev_cache_write(zio);
3549 
3550                 if (zio_injection_enabled && zio->io_error == 0)
3551                         zio->io_error = zio_handle_device_injection(vd,
3552                             zio, EIO);
3553 
3554                 if (zio_injection_enabled && zio->io_error == 0)
3555                         zio->io_error = zio_handle_label_injection(zio, EIO);
3556 
3557                 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3558                         if (!vdev_accessible(vd, zio)) {
3559                                 zio->io_error = SET_ERROR(ENXIO);
3560                         } else {
3561                                 unexpected_error = B_TRUE;
3562                         }
3563                 }
3564         }
3565 
3566         ops->vdev_op_io_done(zio);
3567 
3568         if (unexpected_error)
3569                 VERIFY(vdev_probe(vd, zio) == NULL);
3570 
3571         return (ZIO_PIPELINE_CONTINUE);
3572 }
3573 
3574 /*
3575  * This function is used to change the priority of an existing zio that is
3576  * currently in-flight. This is used by the arc to upgrade priority in the
3577  * event that a demand read is made for a block that is currently queued
3578  * as a scrub or async read IO. Otherwise, the high priority read request
3579  * would end up having to wait for the lower priority IO.
3580  */
3581 void
3582 zio_change_priority(zio_t *pio, zio_priority_t priority)
3583 {
3584         zio_t *cio, *cio_next;
3585         zio_link_t *zl = NULL;
3586 
3587         ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3588 
3589         if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3590                 vdev_queue_change_io_priority(pio, priority);
3591         } else {
3592                 pio->io_priority = priority;
3593         }
3594 
3595         mutex_enter(&pio->io_lock);
3596         for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3597                 cio_next = zio_walk_children(pio, &zl);
3598                 zio_change_priority(cio, priority);
3599         }
3600         mutex_exit(&pio->io_lock);
3601 }
3602 
3603 /*
3604  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3605  * disk, and use that to finish the checksum ereport later.
3606  */
3607 static void
3608 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3609     const abd_t *good_buf)
3610 {
3611         /* no processing needed */
3612         zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3613 }
3614 
3615 /*ARGSUSED*/
3616 void
3617 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3618 {
3619         void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3620 
3621         abd_copy(abd, zio->io_abd, zio->io_size);
3622 
3623         zcr->zcr_cbinfo = zio->io_size;
3624         zcr->zcr_cbdata = abd;
3625         zcr->zcr_finish = zio_vsd_default_cksum_finish;
3626         zcr->zcr_free = zio_abd_free;
3627 }
3628 
3629 static int
3630 zio_vdev_io_assess(zio_t *zio)
3631 {
3632         vdev_t *vd = zio->io_vd;
3633 
3634         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3635                 return (ZIO_PIPELINE_STOP);
3636         }
3637 
3638         if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3639                 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3640 
3641         if (zio->io_vsd != NULL) {
3642                 zio->io_vsd_ops->vsd_free(zio);
3643                 zio->io_vsd = NULL;
3644         }
3645 
3646         if (zio_injection_enabled && zio->io_error == 0)
3647                 zio->io_error = zio_handle_fault_injection(zio, EIO);
3648 
3649         /*
3650          * If the I/O failed, determine whether we should attempt to retry it.
3651          *
3652          * On retry, we cut in line in the issue queue, since we don't want
3653          * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3654          */
3655         if (zio->io_error && vd == NULL &&
3656             !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3657                 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));  /* not a leaf */
3658                 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));   /* not a leaf */
3659                 zio->io_error = 0;
3660                 zio->io_flags |= ZIO_FLAG_IO_RETRY |
3661                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3662                 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3663                 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3664                     zio_requeue_io_start_cut_in_line);
3665                 return (ZIO_PIPELINE_STOP);
3666         }
3667 
3668         /*
3669          * If we got an error on a leaf device, convert it to ENXIO
3670          * if the device is not accessible at all.
3671          */
3672         if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3673             !vdev_accessible(vd, zio))
3674                 zio->io_error = SET_ERROR(ENXIO);
3675 
3676         /*
3677          * If we can't write to an interior vdev (mirror or RAID-Z),
3678          * set vdev_cant_write so that we stop trying to allocate from it.
3679          */
3680         if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3681             vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3682                 vd->vdev_cant_write = B_TRUE;
3683         }
3684 
3685         /*
3686          * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3687          * attempts will ever succeed. In this case we set a persistent
3688          * boolean flag so that we don't bother with it in the future.
3689          */
3690         if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3691             zio->io_type == ZIO_TYPE_IOCTL &&
3692             zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3693                 vd->vdev_nowritecache = B_TRUE;
3694 
3695         if (zio->io_error)
3696                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3697 
3698         if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3699             zio->io_physdone != NULL) {
3700                 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3701                 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3702                 zio->io_physdone(zio->io_logical);
3703         }
3704 
3705         return (ZIO_PIPELINE_CONTINUE);
3706 }
3707 
3708 void
3709 zio_vdev_io_reissue(zio_t *zio)
3710 {
3711         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3712         ASSERT(zio->io_error == 0);
3713 
3714         zio->io_stage >>= 1;
3715 }
3716 
3717 void
3718 zio_vdev_io_redone(zio_t *zio)
3719 {
3720         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3721 
3722         zio->io_stage >>= 1;
3723 }
3724 
3725 void
3726 zio_vdev_io_bypass(zio_t *zio)
3727 {
3728         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3729         ASSERT(zio->io_error == 0);
3730 
3731         zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3732         zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3733 }
3734 
3735 /*
3736  * ==========================================================================
3737  * Encrypt and store encryption parameters
3738  * ==========================================================================
3739  */
3740 
3741 
3742 /*
3743  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
3744  * managing the storage of encryption parameters and passing them to the
3745  * lower-level encryption functions.
3746  */
3747 static int
3748 zio_encrypt(zio_t *zio)
3749 {
3750         zio_prop_t *zp = &zio->io_prop;
3751         spa_t *spa = zio->io_spa;
3752         blkptr_t *bp = zio->io_bp;
3753         uint64_t psize = BP_GET_PSIZE(bp);
3754         uint64_t dsobj = zio->io_bookmark.zb_objset;
3755         dmu_object_type_t ot = BP_GET_TYPE(bp);
3756         void *enc_buf = NULL;
3757         abd_t *eabd = NULL;
3758         uint8_t salt[ZIO_DATA_SALT_LEN];
3759         uint8_t iv[ZIO_DATA_IV_LEN];
3760         uint8_t mac[ZIO_DATA_MAC_LEN];
3761         boolean_t no_crypt = B_FALSE;
3762 
3763         /* the root zio already encrypted the data */
3764         if (zio->io_child_type == ZIO_CHILD_GANG)
3765                 return (ZIO_PIPELINE_CONTINUE);
3766 
3767         /* only ZIL blocks are re-encrypted on rewrite */
3768         if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
3769                 return (ZIO_PIPELINE_CONTINUE);
3770 
3771         if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
3772                 BP_SET_CRYPT(bp, B_FALSE);
3773                 return (ZIO_PIPELINE_CONTINUE);
3774         }
3775 
3776         /* if we are doing raw encryption set the provided encryption params */
3777         if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
3778                 ASSERT0(BP_GET_LEVEL(bp));
3779                 BP_SET_CRYPT(bp, B_TRUE);
3780                 BP_SET_BYTEORDER(bp, zp->zp_byteorder);
3781                 if (ot != DMU_OT_OBJSET)
3782                         zio_crypt_encode_mac_bp(bp, zp->zp_mac);
3783 
3784                 /* dnode blocks must be written out in the provided byteorder */
3785                 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
3786                     ot == DMU_OT_DNODE) {
3787                         void *bswap_buf = zio_buf_alloc(psize);
3788                         abd_t *babd = abd_get_from_buf(bswap_buf, psize);
3789 
3790                         ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
3791                         abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
3792                         dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
3793                             psize);
3794 
3795                         abd_take_ownership_of_buf(babd, B_TRUE);
3796                         zio_push_transform(zio, babd, psize, psize, NULL);
3797                 }
3798 
3799                 if (DMU_OT_IS_ENCRYPTED(ot))
3800                         zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
3801                 return (ZIO_PIPELINE_CONTINUE);
3802         }
3803 
3804         /* indirect blocks only maintain a cksum of the lower level MACs */
3805         if (BP_GET_LEVEL(bp) > 0) {
3806                 BP_SET_CRYPT(bp, B_TRUE);
3807                 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
3808                     zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
3809                     mac));
3810                 zio_crypt_encode_mac_bp(bp, mac);
3811                 return (ZIO_PIPELINE_CONTINUE);
3812         }
3813 
3814         /*
3815          * Objset blocks are a special case since they have 2 256-bit MACs
3816          * embedded within them.
3817          */
3818         if (ot == DMU_OT_OBJSET) {
3819                 ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
3820                 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
3821                 BP_SET_CRYPT(bp, B_TRUE);
3822                 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
3823                     zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
3824                 return (ZIO_PIPELINE_CONTINUE);
3825         }
3826 
3827         /* unencrypted object types are only authenticated with a MAC */
3828         if (!DMU_OT_IS_ENCRYPTED(ot)) {
3829                 BP_SET_CRYPT(bp, B_TRUE);
3830                 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
3831                     zio->io_abd, psize, mac));
3832                 zio_crypt_encode_mac_bp(bp, mac);
3833                 return (ZIO_PIPELINE_CONTINUE);
3834         }
3835 
3836         /*
3837          * Later passes of sync-to-convergence may decide to rewrite data
3838          * in place to avoid more disk reallocations. This presents a problem
3839          * for encryption because this consitutes rewriting the new data with
3840          * the same encryption key and IV. However, this only applies to blocks
3841          * in the MOS (particularly the spacemaps) and we do not encrypt the
3842          * MOS. We assert that the zio is allocating or an intent log write
3843          * to enforce this.
3844          */
3845         ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
3846         ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
3847         ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
3848         ASSERT3U(psize, !=, 0);
3849 
3850         enc_buf = zio_buf_alloc(psize);
3851         eabd = abd_get_from_buf(enc_buf, psize);
3852         abd_take_ownership_of_buf(eabd, B_TRUE);
3853 
3854         /*
3855          * For an explanation of what encryption parameters are stored
3856          * where, see the block comment in zio_crypt.c.
3857          */
3858         if (ot == DMU_OT_INTENT_LOG) {
3859                 zio_crypt_decode_params_bp(bp, salt, iv);
3860         } else {
3861                 BP_SET_CRYPT(bp, B_TRUE);
3862         }
3863 
3864         /* Perform the encryption. This should not fail */
3865         VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
3866             BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
3867             salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
3868 
3869         /* encode encryption metadata into the bp */
3870         if (ot == DMU_OT_INTENT_LOG) {
3871                 /*
3872                  * ZIL blocks store the MAC in the embedded checksum, so the
3873                  * transform must always be applied.
3874                  */
3875                 zio_crypt_encode_mac_zil(enc_buf, mac);
3876                 zio_push_transform(zio, eabd, psize, psize, NULL);
3877         } else {
3878                 BP_SET_CRYPT(bp, B_TRUE);
3879                 zio_crypt_encode_params_bp(bp, salt, iv);
3880                 zio_crypt_encode_mac_bp(bp, mac);
3881 
3882                 if (no_crypt) {
3883                         ASSERT3U(ot, ==, DMU_OT_DNODE);
3884                         abd_free(eabd);
3885                 } else {
3886                         zio_push_transform(zio, eabd, psize, psize, NULL);
3887                 }
3888         }
3889 
3890         return (ZIO_PIPELINE_CONTINUE);
3891 }
3892 
3893 /*
3894  * ==========================================================================
3895  * Generate and verify checksums
3896  * ==========================================================================
3897  */
3898 static int
3899 zio_checksum_generate(zio_t *zio)
3900 {
3901         blkptr_t *bp = zio->io_bp;
3902         enum zio_checksum checksum;
3903 
3904         if (bp == NULL) {
3905                 /*
3906                  * This is zio_write_phys().
3907                  * We're either generating a label checksum, or none at all.
3908                  */
3909                 checksum = zio->io_prop.zp_checksum;
3910 
3911                 if (checksum == ZIO_CHECKSUM_OFF)
3912                         return (ZIO_PIPELINE_CONTINUE);
3913 
3914                 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3915         } else {
3916                 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3917                         ASSERT(!IO_IS_ALLOCATING(zio));
3918                         checksum = ZIO_CHECKSUM_GANG_HEADER;
3919                 } else {
3920                         checksum = BP_GET_CHECKSUM(bp);
3921                 }
3922         }
3923 
3924         zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3925 
3926         return (ZIO_PIPELINE_CONTINUE);
3927 }
3928 
3929 static int
3930 zio_checksum_verify(zio_t *zio)
3931 {
3932         zio_bad_cksum_t info;
3933         blkptr_t *bp = zio->io_bp;
3934         int error;
3935 
3936         ASSERT(zio->io_vd != NULL);
3937 
3938         if (bp == NULL) {
3939                 /*
3940                  * This is zio_read_phys().
3941                  * We're either verifying a label checksum, or nothing at all.
3942                  */
3943                 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3944                         return (ZIO_PIPELINE_CONTINUE);
3945 
3946                 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3947         }
3948 
3949         if ((error = zio_checksum_error(zio, &info)) != 0) {
3950                 zio->io_error = error;
3951                 if (error == ECKSUM &&
3952                     !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3953                         zfs_ereport_start_checksum(zio->io_spa,
3954                             zio->io_vd, &zio->io_bookmark, zio,
3955                             zio->io_offset, zio->io_size, NULL, &info);
3956                 }
3957         }
3958 
3959         return (ZIO_PIPELINE_CONTINUE);
3960 }
3961 
3962 /*
3963  * Called by RAID-Z to ensure we don't compute the checksum twice.
3964  */
3965 void
3966 zio_checksum_verified(zio_t *zio)
3967 {
3968         zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3969 }
3970 
3971 /*
3972  * ==========================================================================
3973  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3974  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3975  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3976  * indicate errors that are specific to one I/O, and most likely permanent.
3977  * Any other error is presumed to be worse because we weren't expecting it.
3978  * ==========================================================================
3979  */
3980 int
3981 zio_worst_error(int e1, int e2)
3982 {
3983         static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3984         int r1, r2;
3985 
3986         for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3987                 if (e1 == zio_error_rank[r1])
3988                         break;
3989 
3990         for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3991                 if (e2 == zio_error_rank[r2])
3992                         break;
3993 
3994         return (r1 > r2 ? e1 : e2);
3995 }
3996 
3997 /*
3998  * ==========================================================================
3999  * I/O completion
4000  * ==========================================================================
4001  */
4002 static int
4003 zio_ready(zio_t *zio)
4004 {
4005         blkptr_t *bp = zio->io_bp;
4006         zio_t *pio, *pio_next;
4007         zio_link_t *zl = NULL;
4008 
4009         if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4010             ZIO_WAIT_READY)) {
4011                 return (ZIO_PIPELINE_STOP);
4012         }
4013 
4014         if (zio->io_ready) {
4015                 ASSERT(IO_IS_ALLOCATING(zio));
4016                 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4017                     (zio->io_flags & ZIO_FLAG_NOPWRITE));
4018                 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4019 
4020                 zio->io_ready(zio);
4021         }
4022 
4023         if (bp != NULL && bp != &zio->io_bp_copy)
4024                 zio->io_bp_copy = *bp;
4025 
4026         if (zio->io_error != 0) {
4027                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4028 
4029                 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4030                         ASSERT(IO_IS_ALLOCATING(zio));
4031                         ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4032                         ASSERT(zio->io_metaslab_class != NULL);
4033 
4034                         /*
4035                          * We were unable to allocate anything, unreserve and
4036                          * issue the next I/O to allocate.
4037                          */
4038                         metaslab_class_throttle_unreserve(
4039                             zio->io_metaslab_class, zio->io_prop.zp_copies,
4040                             zio->io_allocator, zio);
4041                         zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4042                 }
4043         }
4044 
4045         mutex_enter(&zio->io_lock);
4046         zio->io_state[ZIO_WAIT_READY] = 1;
4047         pio = zio_walk_parents(zio, &zl);
4048         mutex_exit(&zio->io_lock);
4049 
4050         /*
4051          * As we notify zio's parents, new parents could be added.
4052          * New parents go to the head of zio's io_parent_list, however,
4053          * so we will (correctly) not notify them.  The remainder of zio's
4054          * io_parent_list, from 'pio_next' onward, cannot change because
4055          * all parents must wait for us to be done before they can be done.
4056          */
4057         for (; pio != NULL; pio = pio_next) {
4058                 pio_next = zio_walk_parents(zio, &zl);
4059                 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
4060         }
4061 
4062         if (zio->io_flags & ZIO_FLAG_NODATA) {
4063                 if (BP_IS_GANG(bp)) {
4064                         zio->io_flags &= ~ZIO_FLAG_NODATA;
4065                 } else {
4066                         ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4067                         zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4068                 }
4069         }
4070 
4071         if (zio_injection_enabled &&
4072             zio->io_spa->spa_syncing_txg == zio->io_txg)
4073                 zio_handle_ignored_writes(zio);
4074 
4075         return (ZIO_PIPELINE_CONTINUE);
4076 }
4077 
4078 /*
4079  * Update the allocation throttle accounting.
4080  */
4081 static void
4082 zio_dva_throttle_done(zio_t *zio)
4083 {
4084         zio_t *lio = zio->io_logical;
4085         zio_t *pio = zio_unique_parent(zio);
4086         vdev_t *vd = zio->io_vd;
4087         int flags = METASLAB_ASYNC_ALLOC;
4088 
4089         ASSERT3P(zio->io_bp, !=, NULL);
4090         ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4091         ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4092         ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4093         ASSERT(vd != NULL);
4094         ASSERT3P(vd, ==, vd->vdev_top);
4095         ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
4096         ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4097         ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4098         ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4099 
4100         /*
4101          * Parents of gang children can have two flavors -- ones that
4102          * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4103          * and ones that allocated the constituent blocks. The allocation
4104          * throttle needs to know the allocating parent zio so we must find
4105          * it here.
4106          */
4107         if (pio->io_child_type == ZIO_CHILD_GANG) {
4108                 /*
4109                  * If our parent is a rewrite gang child then our grandparent
4110                  * would have been the one that performed the allocation.
4111                  */
4112                 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4113                         pio = zio_unique_parent(pio);
4114                 flags |= METASLAB_GANG_CHILD;
4115         }
4116 
4117         ASSERT(IO_IS_ALLOCATING(pio));
4118         ASSERT3P(zio, !=, zio->io_logical);
4119         ASSERT(zio->io_logical != NULL);
4120         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4121         ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4122         ASSERT(zio->io_metaslab_class != NULL);
4123 
4124         mutex_enter(&pio->io_lock);
4125         metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4126             pio->io_allocator, B_TRUE);
4127         mutex_exit(&pio->io_lock);
4128 
4129         metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4130             pio->io_allocator, pio);
4131 
4132         /*
4133          * Call into the pipeline to see if there is more work that
4134          * needs to be done. If there is work to be done it will be
4135          * dispatched to another taskq thread.
4136          */
4137         zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4138 }
4139 
4140 static int
4141 zio_done(zio_t *zio)
4142 {
4143         spa_t *spa = zio->io_spa;
4144         zio_t *lio = zio->io_logical;
4145         blkptr_t *bp = zio->io_bp;
4146         vdev_t *vd = zio->io_vd;
4147         uint64_t psize = zio->io_size;
4148         zio_t *pio, *pio_next;
4149         zio_link_t *zl = NULL;
4150 
4151         /*
4152          * If our children haven't all completed,
4153          * wait for them and then repeat this pipeline stage.
4154          */
4155         if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4156                 return (ZIO_PIPELINE_STOP);
4157         }
4158 
4159         /*
4160          * If the allocation throttle is enabled, then update the accounting.
4161          * We only track child I/Os that are part of an allocating async
4162          * write. We must do this since the allocation is performed
4163          * by the logical I/O but the actual write is done by child I/Os.
4164          */
4165         if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4166             zio->io_child_type == ZIO_CHILD_VDEV) {
4167                 ASSERT(zio->io_metaslab_class != NULL);
4168                 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4169                 zio_dva_throttle_done(zio);
4170         }
4171 
4172         /*
4173          * If the allocation throttle is enabled, verify that
4174          * we have decremented the refcounts for every I/O that was throttled.
4175          */
4176         if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4177                 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4178                 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4179                 ASSERT(bp != NULL);
4180 
4181                 metaslab_group_alloc_verify(spa, zio->io_bp, zio,
4182                     zio->io_allocator);
4183                 VERIFY(zfs_refcount_not_held(
4184                     &zio->io_metaslab_class->mc_alloc_slots[zio->io_allocator],
4185                     zio));
4186         }
4187 
4188         for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4189                 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4190                         ASSERT(zio->io_children[c][w] == 0);
4191 
4192         if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
4193                 ASSERT(bp->blk_pad[0] == 0);
4194                 ASSERT(bp->blk_pad[1] == 0);
4195                 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
4196                     (bp == zio_unique_parent(zio)->io_bp));
4197                 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
4198                     zio->io_bp_override == NULL &&
4199                     !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4200                         ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
4201                         ASSERT(BP_COUNT_GANG(bp) == 0 ||
4202                             (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
4203                 }
4204                 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4205                         VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
4206         }
4207 
4208         /*
4209          * If there were child vdev/gang/ddt errors, they apply to us now.
4210          */
4211         zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4212         zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4213         zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4214 
4215         /*
4216          * If the I/O on the transformed data was successful, generate any
4217          * checksum reports now while we still have the transformed data.
4218          */
4219         if (zio->io_error == 0) {
4220                 while (zio->io_cksum_report != NULL) {
4221                         zio_cksum_report_t *zcr = zio->io_cksum_report;
4222                         uint64_t align = zcr->zcr_align;
4223                         uint64_t asize = P2ROUNDUP(psize, align);
4224                         abd_t *adata = zio->io_abd;
4225 
4226                         if (asize != psize) {
4227                                 adata = abd_alloc(asize, B_TRUE);
4228                                 abd_copy(adata, zio->io_abd, psize);
4229                                 abd_zero_off(adata, psize, asize - psize);
4230                         }
4231 
4232                         zio->io_cksum_report = zcr->zcr_next;
4233                         zcr->zcr_next = NULL;
4234                         zcr->zcr_finish(zcr, adata);
4235                         zfs_ereport_free_checksum(zcr);
4236 
4237                         if (asize != psize)
4238                                 abd_free(adata);
4239                 }
4240         }
4241 
4242         zio_pop_transforms(zio);        /* note: may set zio->io_error */
4243 
4244         vdev_stat_update(zio, psize);
4245 
4246         if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4247                 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4248                         /*
4249                          * We want to only increment our slow IO counters if
4250                          * the IO is valid (i.e. not if the drive is removed).
4251                          *
4252                          * zfs_ereport_post() will also do these checks, but
4253                          * it can also have other failures, so we need to
4254                          * increment the slow_io counters independent of it.
4255                          */
4256                         if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4257                             zio->io_spa, zio->io_vd, zio)) {
4258                                 mutex_enter(&zio->io_vd->vdev_stat_lock);
4259                                 zio->io_vd->vdev_stat.vs_slow_ios++;
4260                                 mutex_exit(&zio->io_vd->vdev_stat_lock);
4261 
4262                                 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4263                                     zio->io_spa, zio->io_vd, &zio->io_bookmark,
4264                                     zio, 0, 0);
4265                         }
4266                 }
4267         }
4268 
4269         if (zio->io_error) {
4270                 /*
4271                  * If this I/O is attached to a particular vdev,
4272                  * generate an error message describing the I/O failure
4273                  * at the block level.  We ignore these errors if the
4274                  * device is currently unavailable.
4275                  */
4276                 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
4277                         zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd,
4278                             &zio->io_bookmark, zio, 0, 0);
4279 
4280                 if ((zio->io_error == EIO || !(zio->io_flags &
4281                     (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4282                     zio == lio) {
4283                         /*
4284                          * For logical I/O requests, tell the SPA to log the
4285                          * error and generate a logical data ereport.
4286                          */
4287                         spa_log_error(spa, &zio->io_bookmark);
4288                         zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL,
4289                             &zio->io_bookmark, zio, 0, 0);
4290                 }
4291         }
4292 
4293         if (zio->io_error && zio == lio) {
4294                 /*
4295                  * Determine whether zio should be reexecuted.  This will
4296                  * propagate all the way to the root via zio_notify_parent().
4297                  */
4298                 ASSERT(vd == NULL && bp != NULL);
4299                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4300 
4301                 if (IO_IS_ALLOCATING(zio) &&
4302                     !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4303                         if (zio->io_error != ENOSPC)
4304                                 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4305                         else
4306                                 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4307                 }
4308 
4309                 if ((zio->io_type == ZIO_TYPE_READ ||
4310                     zio->io_type == ZIO_TYPE_FREE) &&
4311                     !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4312                     zio->io_error == ENXIO &&
4313                     spa_load_state(spa) == SPA_LOAD_NONE &&
4314                     spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
4315                         zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4316 
4317                 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4318                         zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4319 
4320                 /*
4321                  * Here is a possibly good place to attempt to do
4322                  * either combinatorial reconstruction or error correction
4323                  * based on checksums.  It also might be a good place
4324                  * to send out preliminary ereports before we suspend
4325                  * processing.
4326                  */
4327         }
4328 
4329         /*
4330          * If there were logical child errors, they apply to us now.
4331          * We defer this until now to avoid conflating logical child
4332          * errors with errors that happened to the zio itself when
4333          * updating vdev stats and reporting FMA events above.
4334          */
4335         zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4336 
4337         if ((zio->io_error || zio->io_reexecute) &&
4338             IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4339             !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4340                 zio_dva_unallocate(zio, zio->io_gang_tree, bp);
4341 
4342         zio_gang_tree_free(&zio->io_gang_tree);
4343 
4344         /*
4345          * Godfather I/Os should never suspend.
4346          */
4347         if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4348             (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4349                 zio->io_reexecute = 0;
4350 
4351         if (zio->io_reexecute) {
4352                 /*
4353                  * This is a logical I/O that wants to reexecute.
4354                  *
4355                  * Reexecute is top-down.  When an i/o fails, if it's not
4356                  * the root, it simply notifies its parent and sticks around.
4357                  * The parent, seeing that it still has children in zio_done(),
4358                  * does the same.  This percolates all the way up to the root.
4359                  * The root i/o will reexecute or suspend the entire tree.
4360                  *
4361                  * This approach ensures that zio_reexecute() honors
4362                  * all the original i/o dependency relationships, e.g.
4363                  * parents not executing until children are ready.
4364                  */
4365                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4366 
4367                 zio->io_gang_leader = NULL;
4368 
4369                 mutex_enter(&zio->io_lock);
4370                 zio->io_state[ZIO_WAIT_DONE] = 1;
4371                 mutex_exit(&zio->io_lock);
4372 
4373                 /*
4374                  * "The Godfather" I/O monitors its children but is
4375                  * not a true parent to them. It will track them through
4376                  * the pipeline but severs its ties whenever they get into
4377                  * trouble (e.g. suspended). This allows "The Godfather"
4378                  * I/O to return status without blocking.
4379                  */
4380                 zl = NULL;
4381                 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4382                     pio = pio_next) {
4383                         zio_link_t *remove_zl = zl;
4384                         pio_next = zio_walk_parents(zio, &zl);
4385 
4386                         if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4387                             (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4388                                 zio_remove_child(pio, zio, remove_zl);
4389                                 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4390                         }
4391                 }
4392 
4393                 if ((pio = zio_unique_parent(zio)) != NULL) {
4394                         /*
4395                          * We're not a root i/o, so there's nothing to do
4396                          * but notify our parent.  Don't propagate errors
4397                          * upward since we haven't permanently failed yet.
4398                          */
4399                         ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4400                         zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4401                         zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4402                 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4403                         /*
4404                          * We'd fail again if we reexecuted now, so suspend
4405                          * until conditions improve (e.g. device comes online).
4406                          */
4407                         zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4408                 } else {
4409                         /*
4410                          * Reexecution is potentially a huge amount of work.
4411                          * Hand it off to the otherwise-unused claim taskq.
4412                          */
4413                         ASSERT(zio->io_tqent.tqent_next == NULL);
4414                         spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
4415                             ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
4416                             0, &zio->io_tqent);
4417                 }
4418                 return (ZIO_PIPELINE_STOP);
4419         }
4420 
4421         ASSERT(zio->io_child_count == 0);
4422         ASSERT(zio->io_reexecute == 0);
4423         ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4424 
4425         /*
4426          * Report any checksum errors, since the I/O is complete.
4427          */
4428         while (zio->io_cksum_report != NULL) {
4429                 zio_cksum_report_t *zcr = zio->io_cksum_report;
4430                 zio->io_cksum_report = zcr->zcr_next;
4431                 zcr->zcr_next = NULL;
4432                 zcr->zcr_finish(zcr, NULL);
4433                 zfs_ereport_free_checksum(zcr);
4434         }
4435 
4436         /*
4437          * It is the responsibility of the done callback to ensure that this
4438          * particular zio is no longer discoverable for adoption, and as
4439          * such, cannot acquire any new parents.
4440          */
4441         if (zio->io_done)
4442                 zio->io_done(zio);
4443 
4444         mutex_enter(&zio->io_lock);
4445         zio->io_state[ZIO_WAIT_DONE] = 1;
4446         mutex_exit(&zio->io_lock);
4447 
4448         zl = NULL;
4449         for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4450                 zio_link_t *remove_zl = zl;
4451                 pio_next = zio_walk_parents(zio, &zl);
4452                 zio_remove_child(pio, zio, remove_zl);
4453                 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4454         }
4455 
4456         if (zio->io_waiter != NULL) {
4457                 mutex_enter(&zio->io_lock);
4458                 zio->io_executor = NULL;
4459                 cv_broadcast(&zio->io_cv);
4460                 mutex_exit(&zio->io_lock);
4461         } else {
4462                 zio_destroy(zio);
4463         }
4464 
4465         return (ZIO_PIPELINE_STOP);
4466 }
4467 
4468 /*
4469  * ==========================================================================
4470  * I/O pipeline definition
4471  * ==========================================================================
4472  */
4473 static zio_pipe_stage_t *zio_pipeline[] = {
4474         NULL,
4475         zio_read_bp_init,
4476         zio_write_bp_init,
4477         zio_free_bp_init,
4478         zio_issue_async,
4479         zio_write_compress,
4480         zio_encrypt,
4481         zio_checksum_generate,
4482         zio_nop_write,
4483         zio_ddt_read_start,
4484         zio_ddt_read_done,
4485         zio_ddt_write,
4486         zio_ddt_free,
4487         zio_gang_assemble,
4488         zio_gang_issue,
4489         zio_dva_throttle,
4490         zio_dva_allocate,
4491         zio_dva_free,
4492         zio_dva_claim,
4493         zio_ready,
4494         zio_vdev_io_start,
4495         zio_vdev_io_done,
4496         zio_vdev_io_assess,
4497         zio_checksum_verify,
4498         zio_done
4499 };
4500 
4501 
4502 
4503 
4504 /*
4505  * Compare two zbookmark_phys_t's to see which we would reach first in a
4506  * pre-order traversal of the object tree.
4507  *
4508  * This is simple in every case aside from the meta-dnode object. For all other
4509  * objects, we traverse them in order (object 1 before object 2, and so on).
4510  * However, all of these objects are traversed while traversing object 0, since
4511  * the data it points to is the list of objects.  Thus, we need to convert to a
4512  * canonical representation so we can compare meta-dnode bookmarks to
4513  * non-meta-dnode bookmarks.
4514  *
4515  * We do this by calculating "equivalents" for each field of the zbookmark.
4516  * zbookmarks outside of the meta-dnode use their own object and level, and
4517  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4518  * blocks this bookmark refers to) by multiplying their blkid by their span
4519  * (the number of L0 blocks contained within one block at their level).
4520  * zbookmarks inside the meta-dnode calculate their object equivalent
4521  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4522  * level + 1<<31 (any value larger than a level could ever be) for their level.
4523  * This causes them to always compare before a bookmark in their object
4524  * equivalent, compare appropriately to bookmarks in other objects, and to
4525  * compare appropriately to other bookmarks in the meta-dnode.
4526  */
4527 int
4528 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4529     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4530 {
4531         /*
4532          * These variables represent the "equivalent" values for the zbookmark,
4533          * after converting zbookmarks inside the meta dnode to their
4534          * normal-object equivalents.
4535          */
4536         uint64_t zb1obj, zb2obj;
4537         uint64_t zb1L0, zb2L0;
4538         uint64_t zb1level, zb2level;
4539 
4540         if (zb1->zb_object == zb2->zb_object &&
4541             zb1->zb_level == zb2->zb_level &&
4542             zb1->zb_blkid == zb2->zb_blkid)
4543                 return (0);
4544 
4545         /*
4546          * BP_SPANB calculates the span in blocks.
4547          */
4548         zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4549         zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4550 
4551         if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4552                 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4553                 zb1L0 = 0;
4554                 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4555         } else {
4556                 zb1obj = zb1->zb_object;
4557                 zb1level = zb1->zb_level;
4558         }
4559 
4560         if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4561                 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4562                 zb2L0 = 0;
4563                 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4564         } else {
4565                 zb2obj = zb2->zb_object;
4566                 zb2level = zb2->zb_level;
4567         }
4568 
4569         /* Now that we have a canonical representation, do the comparison. */
4570         if (zb1obj != zb2obj)
4571                 return (zb1obj < zb2obj ? -1 : 1);
4572         else if (zb1L0 != zb2L0)
4573                 return (zb1L0 < zb2L0 ? -1 : 1);
4574         else if (zb1level != zb2level)
4575                 return (zb1level > zb2level ? -1 : 1);
4576         /*
4577          * This can (theoretically) happen if the bookmarks have the same object
4578          * and level, but different blkids, if the block sizes are not the same.
4579          * There is presently no way to change the indirect block sizes
4580          */
4581         return (0);
4582 }
4583 
4584 /*
4585  *  This function checks the following: given that last_block is the place that
4586  *  our traversal stopped last time, does that guarantee that we've visited
4587  *  every node under subtree_root?  Therefore, we can't just use the raw output
4588  *  of zbookmark_compare.  We have to pass in a modified version of
4589  *  subtree_root; by incrementing the block id, and then checking whether
4590  *  last_block is before or equal to that, we can tell whether or not having
4591  *  visited last_block implies that all of subtree_root's children have been
4592  *  visited.
4593  */
4594 boolean_t
4595 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4596     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4597 {
4598         zbookmark_phys_t mod_zb = *subtree_root;
4599         mod_zb.zb_blkid++;
4600         ASSERT(last_block->zb_level == 0);
4601 
4602         /* The objset_phys_t isn't before anything. */
4603         if (dnp == NULL)
4604                 return (B_FALSE);
4605 
4606         /*
4607          * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4608          * data block size in sectors, because that variable is only used if
4609          * the bookmark refers to a block in the meta-dnode.  Since we don't
4610          * know without examining it what object it refers to, and there's no
4611          * harm in passing in this value in other cases, we always pass it in.
4612          *
4613          * We pass in 0 for the indirect block size shift because zb2 must be
4614          * level 0.  The indirect block size is only used to calculate the span
4615          * of the bookmark, but since the bookmark must be level 0, the span is
4616          * always 1, so the math works out.
4617          *
4618          * If you make changes to how the zbookmark_compare code works, be sure
4619          * to make sure that this code still works afterwards.
4620          */
4621         return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4622             1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4623             last_block) <= 0);
4624 }