1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright (c) 2017, Intel Corporation. 27 */ 28 29 #include <sys/sysmacros.h> 30 #include <sys/zfs_context.h> 31 #include <sys/fm/fs/zfs.h> 32 #include <sys/spa.h> 33 #include <sys/txg.h> 34 #include <sys/spa_impl.h> 35 #include <sys/vdev_impl.h> 36 #include <sys/vdev_trim.h> 37 #include <sys/zio_impl.h> 38 #include <sys/zio_compress.h> 39 #include <sys/zio_checksum.h> 40 #include <sys/dmu_objset.h> 41 #include <sys/arc.h> 42 #include <sys/ddt.h> 43 #include <sys/blkptr.h> 44 #include <sys/zfeature.h> 45 #include <sys/time.h> 46 #include <sys/dsl_scan.h> 47 #include <sys/metaslab_impl.h> 48 #include <sys/abd.h> 49 #include <sys/cityhash.h> 50 #include <sys/dsl_crypt.h> 51 52 /* 53 * ========================================================================== 54 * I/O type descriptions 55 * ========================================================================== 56 */ 57 const char *zio_type_name[ZIO_TYPES] = { 58 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim", 59 "zio_ioctl", "z_trim" 60 }; 61 62 boolean_t zio_dva_throttle_enabled = B_TRUE; 63 64 /* 65 * ========================================================================== 66 * I/O kmem caches 67 * ========================================================================== 68 */ 69 kmem_cache_t *zio_cache; 70 kmem_cache_t *zio_link_cache; 71 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 72 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 73 74 #ifdef _KERNEL 75 extern vmem_t *zio_alloc_arena; 76 #endif 77 78 #define ZIO_PIPELINE_CONTINUE 0x100 79 #define ZIO_PIPELINE_STOP 0x101 80 81 /* Mark IOs as "slow" if they take longer than 30 seconds */ 82 int zio_slow_io_ms = (30 * MILLISEC); 83 84 #define BP_SPANB(indblkshift, level) \ 85 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 86 #define COMPARE_META_LEVEL 0x80000000ul 87 /* 88 * The following actions directly effect the spa's sync-to-convergence logic. 89 * The values below define the sync pass when we start performing the action. 90 * Care should be taken when changing these values as they directly impact 91 * spa_sync() performance. Tuning these values may introduce subtle performance 92 * pathologies and should only be done in the context of performance analysis. 93 * These tunables will eventually be removed and replaced with #defines once 94 * enough analysis has been done to determine optimal values. 95 * 96 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 97 * regular blocks are not deferred. 98 */ 99 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 100 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */ 101 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 102 103 /* 104 * An allocating zio is one that either currently has the DVA allocate 105 * stage set or will have it later in its lifetime. 106 */ 107 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 108 109 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE; 110 111 #ifdef ZFS_DEBUG 112 int zio_buf_debug_limit = 16384; 113 #else 114 int zio_buf_debug_limit = 0; 115 #endif 116 117 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 118 119 void 120 zio_init(void) 121 { 122 size_t c; 123 vmem_t *data_alloc_arena = NULL; 124 125 #ifdef _KERNEL 126 data_alloc_arena = zio_alloc_arena; 127 #endif 128 zio_cache = kmem_cache_create("zio_cache", 129 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 130 zio_link_cache = kmem_cache_create("zio_link_cache", 131 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 132 133 /* 134 * For small buffers, we want a cache for each multiple of 135 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 136 * for each quarter-power of 2. 137 */ 138 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 139 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 140 size_t p2 = size; 141 size_t align = 0; 142 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0; 143 144 while (!ISP2(p2)) 145 p2 &= p2 - 1; 146 147 #ifndef _KERNEL 148 /* 149 * If we are using watchpoints, put each buffer on its own page, 150 * to eliminate the performance overhead of trapping to the 151 * kernel when modifying a non-watched buffer that shares the 152 * page with a watched buffer. 153 */ 154 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 155 continue; 156 #endif 157 if (size <= 4 * SPA_MINBLOCKSIZE) { 158 align = SPA_MINBLOCKSIZE; 159 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 160 align = MIN(p2 >> 2, PAGESIZE); 161 } 162 163 if (align != 0) { 164 char name[36]; 165 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 166 zio_buf_cache[c] = kmem_cache_create(name, size, 167 align, NULL, NULL, NULL, NULL, NULL, cflags); 168 169 /* 170 * Since zio_data bufs do not appear in crash dumps, we 171 * pass KMC_NOTOUCH so that no allocator metadata is 172 * stored with the buffers. 173 */ 174 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 175 zio_data_buf_cache[c] = kmem_cache_create(name, size, 176 align, NULL, NULL, NULL, NULL, data_alloc_arena, 177 cflags | KMC_NOTOUCH); 178 } 179 } 180 181 while (--c != 0) { 182 ASSERT(zio_buf_cache[c] != NULL); 183 if (zio_buf_cache[c - 1] == NULL) 184 zio_buf_cache[c - 1] = zio_buf_cache[c]; 185 186 ASSERT(zio_data_buf_cache[c] != NULL); 187 if (zio_data_buf_cache[c - 1] == NULL) 188 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 189 } 190 191 zio_inject_init(); 192 } 193 194 void 195 zio_fini(void) 196 { 197 size_t c; 198 kmem_cache_t *last_cache = NULL; 199 kmem_cache_t *last_data_cache = NULL; 200 201 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 202 if (zio_buf_cache[c] != last_cache) { 203 last_cache = zio_buf_cache[c]; 204 kmem_cache_destroy(zio_buf_cache[c]); 205 } 206 zio_buf_cache[c] = NULL; 207 208 if (zio_data_buf_cache[c] != last_data_cache) { 209 last_data_cache = zio_data_buf_cache[c]; 210 kmem_cache_destroy(zio_data_buf_cache[c]); 211 } 212 zio_data_buf_cache[c] = NULL; 213 } 214 215 kmem_cache_destroy(zio_link_cache); 216 kmem_cache_destroy(zio_cache); 217 218 zio_inject_fini(); 219 } 220 221 /* 222 * ========================================================================== 223 * Allocate and free I/O buffers 224 * ========================================================================== 225 */ 226 227 /* 228 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 229 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 230 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 231 * excess / transient data in-core during a crashdump. 232 */ 233 void * 234 zio_buf_alloc(size_t size) 235 { 236 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 237 238 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 239 240 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 241 } 242 243 /* 244 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 245 * crashdump if the kernel panics. This exists so that we will limit the amount 246 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 247 * of kernel heap dumped to disk when the kernel panics) 248 */ 249 void * 250 zio_data_buf_alloc(size_t size) 251 { 252 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 253 254 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 255 256 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 257 } 258 259 void 260 zio_buf_free(void *buf, size_t size) 261 { 262 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 263 264 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 265 266 kmem_cache_free(zio_buf_cache[c], buf); 267 } 268 269 void 270 zio_data_buf_free(void *buf, size_t size) 271 { 272 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 273 274 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 275 276 kmem_cache_free(zio_data_buf_cache[c], buf); 277 } 278 279 /* ARGSUSED */ 280 static void 281 zio_abd_free(void *abd, size_t size) 282 { 283 abd_free((abd_t *)abd); 284 } 285 286 /* 287 * ========================================================================== 288 * Push and pop I/O transform buffers 289 * ========================================================================== 290 */ 291 void 292 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 293 zio_transform_func_t *transform) 294 { 295 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 296 297 /* 298 * Ensure that anyone expecting this zio to contain a linear ABD isn't 299 * going to get a nasty surprise when they try to access the data. 300 */ 301 IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data)); 302 303 zt->zt_orig_abd = zio->io_abd; 304 zt->zt_orig_size = zio->io_size; 305 zt->zt_bufsize = bufsize; 306 zt->zt_transform = transform; 307 308 zt->zt_next = zio->io_transform_stack; 309 zio->io_transform_stack = zt; 310 311 zio->io_abd = data; 312 zio->io_size = size; 313 } 314 315 void 316 zio_pop_transforms(zio_t *zio) 317 { 318 zio_transform_t *zt; 319 320 while ((zt = zio->io_transform_stack) != NULL) { 321 if (zt->zt_transform != NULL) 322 zt->zt_transform(zio, 323 zt->zt_orig_abd, zt->zt_orig_size); 324 325 if (zt->zt_bufsize != 0) 326 abd_free(zio->io_abd); 327 328 zio->io_abd = zt->zt_orig_abd; 329 zio->io_size = zt->zt_orig_size; 330 zio->io_transform_stack = zt->zt_next; 331 332 kmem_free(zt, sizeof (zio_transform_t)); 333 } 334 } 335 336 /* 337 * ========================================================================== 338 * I/O transform callbacks for subblocks, decompression, and decryption 339 * ========================================================================== 340 */ 341 static void 342 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 343 { 344 ASSERT(zio->io_size > size); 345 346 if (zio->io_type == ZIO_TYPE_READ) 347 abd_copy(data, zio->io_abd, size); 348 } 349 350 static void 351 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 352 { 353 if (zio->io_error == 0) { 354 void *tmp = abd_borrow_buf(data, size); 355 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 356 zio->io_abd, tmp, zio->io_size, size); 357 abd_return_buf_copy(data, tmp, size); 358 359 if (ret != 0) 360 zio->io_error = SET_ERROR(EIO); 361 } 362 } 363 364 static void 365 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) 366 { 367 int ret; 368 void *tmp; 369 blkptr_t *bp = zio->io_bp; 370 spa_t *spa = zio->io_spa; 371 uint64_t dsobj = zio->io_bookmark.zb_objset; 372 uint64_t lsize = BP_GET_LSIZE(bp); 373 dmu_object_type_t ot = BP_GET_TYPE(bp); 374 uint8_t salt[ZIO_DATA_SALT_LEN]; 375 uint8_t iv[ZIO_DATA_IV_LEN]; 376 uint8_t mac[ZIO_DATA_MAC_LEN]; 377 boolean_t no_crypt = B_FALSE; 378 379 ASSERT(BP_USES_CRYPT(bp)); 380 ASSERT3U(size, !=, 0); 381 382 if (zio->io_error != 0) 383 return; 384 385 /* 386 * Verify the cksum of MACs stored in an indirect bp. It will always 387 * be possible to verify this since it does not require an encryption 388 * key. 389 */ 390 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { 391 zio_crypt_decode_mac_bp(bp, mac); 392 393 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 394 /* 395 * We haven't decompressed the data yet, but 396 * zio_crypt_do_indirect_mac_checksum() requires 397 * decompressed data to be able to parse out the MACs 398 * from the indirect block. We decompress it now and 399 * throw away the result after we are finished. 400 */ 401 tmp = zio_buf_alloc(lsize); 402 ret = zio_decompress_data(BP_GET_COMPRESS(bp), 403 zio->io_abd, tmp, zio->io_size, lsize); 404 if (ret != 0) { 405 ret = SET_ERROR(EIO); 406 goto error; 407 } 408 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, 409 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); 410 zio_buf_free(tmp, lsize); 411 } else { 412 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 413 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); 414 } 415 abd_copy(data, zio->io_abd, size); 416 417 if (ret != 0) 418 goto error; 419 420 return; 421 } 422 423 /* 424 * If this is an authenticated block, just check the MAC. It would be 425 * nice to separate this out into its own flag, but for the moment 426 * enum zio_flag is out of bits. 427 */ 428 if (BP_IS_AUTHENTICATED(bp)) { 429 if (ot == DMU_OT_OBJSET) { 430 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, 431 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); 432 } else { 433 zio_crypt_decode_mac_bp(bp, mac); 434 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, 435 zio->io_abd, size, mac); 436 } 437 abd_copy(data, zio->io_abd, size); 438 439 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { 440 ret = zio_handle_decrypt_injection(spa, 441 &zio->io_bookmark, ot, ECKSUM); 442 } 443 if (ret != 0) 444 goto error; 445 446 return; 447 } 448 449 zio_crypt_decode_params_bp(bp, salt, iv); 450 451 if (ot == DMU_OT_INTENT_LOG) { 452 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); 453 zio_crypt_decode_mac_zil(tmp, mac); 454 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); 455 } else { 456 zio_crypt_decode_mac_bp(bp, mac); 457 } 458 459 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), 460 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, 461 zio->io_abd, &no_crypt); 462 if (no_crypt) 463 abd_copy(data, zio->io_abd, size); 464 465 if (ret != 0) 466 goto error; 467 468 return; 469 470 error: 471 /* assert that the key was found unless this was speculative */ 472 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); 473 474 /* 475 * If there was a decryption / authentication error return EIO as 476 * the io_error. If this was not a speculative zio, create an ereport. 477 */ 478 if (ret == ECKSUM) { 479 zio->io_error = SET_ERROR(EIO); 480 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 481 spa_log_error(spa, &zio->io_bookmark); 482 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 483 spa, NULL, &zio->io_bookmark, zio, 0, 0); 484 } 485 } else { 486 zio->io_error = ret; 487 } 488 } 489 490 /* 491 * ========================================================================== 492 * I/O parent/child relationships and pipeline interlocks 493 * ========================================================================== 494 */ 495 zio_t * 496 zio_walk_parents(zio_t *cio, zio_link_t **zl) 497 { 498 list_t *pl = &cio->io_parent_list; 499 500 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 501 if (*zl == NULL) 502 return (NULL); 503 504 ASSERT((*zl)->zl_child == cio); 505 return ((*zl)->zl_parent); 506 } 507 508 zio_t * 509 zio_walk_children(zio_t *pio, zio_link_t **zl) 510 { 511 list_t *cl = &pio->io_child_list; 512 513 ASSERT(MUTEX_HELD(&pio->io_lock)); 514 515 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 516 if (*zl == NULL) 517 return (NULL); 518 519 ASSERT((*zl)->zl_parent == pio); 520 return ((*zl)->zl_child); 521 } 522 523 zio_t * 524 zio_unique_parent(zio_t *cio) 525 { 526 zio_link_t *zl = NULL; 527 zio_t *pio = zio_walk_parents(cio, &zl); 528 529 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 530 return (pio); 531 } 532 533 void 534 zio_add_child(zio_t *pio, zio_t *cio) 535 { 536 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 537 538 /* 539 * Logical I/Os can have logical, gang, or vdev children. 540 * Gang I/Os can have gang or vdev children. 541 * Vdev I/Os can only have vdev children. 542 * The following ASSERT captures all of these constraints. 543 */ 544 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 545 546 zl->zl_parent = pio; 547 zl->zl_child = cio; 548 549 mutex_enter(&pio->io_lock); 550 mutex_enter(&cio->io_lock); 551 552 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 553 554 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 555 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 556 557 list_insert_head(&pio->io_child_list, zl); 558 list_insert_head(&cio->io_parent_list, zl); 559 560 pio->io_child_count++; 561 cio->io_parent_count++; 562 563 mutex_exit(&cio->io_lock); 564 mutex_exit(&pio->io_lock); 565 } 566 567 static void 568 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 569 { 570 ASSERT(zl->zl_parent == pio); 571 ASSERT(zl->zl_child == cio); 572 573 mutex_enter(&pio->io_lock); 574 mutex_enter(&cio->io_lock); 575 576 list_remove(&pio->io_child_list, zl); 577 list_remove(&cio->io_parent_list, zl); 578 579 pio->io_child_count--; 580 cio->io_parent_count--; 581 582 mutex_exit(&cio->io_lock); 583 mutex_exit(&pio->io_lock); 584 585 kmem_cache_free(zio_link_cache, zl); 586 } 587 588 static boolean_t 589 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 590 { 591 boolean_t waiting = B_FALSE; 592 593 mutex_enter(&zio->io_lock); 594 ASSERT(zio->io_stall == NULL); 595 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 596 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 597 continue; 598 599 uint64_t *countp = &zio->io_children[c][wait]; 600 if (*countp != 0) { 601 zio->io_stage >>= 1; 602 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 603 zio->io_stall = countp; 604 waiting = B_TRUE; 605 break; 606 } 607 } 608 mutex_exit(&zio->io_lock); 609 return (waiting); 610 } 611 612 static void 613 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 614 { 615 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 616 int *errorp = &pio->io_child_error[zio->io_child_type]; 617 618 mutex_enter(&pio->io_lock); 619 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 620 *errorp = zio_worst_error(*errorp, zio->io_error); 621 pio->io_reexecute |= zio->io_reexecute; 622 ASSERT3U(*countp, >, 0); 623 624 (*countp)--; 625 626 if (*countp == 0 && pio->io_stall == countp) { 627 zio_taskq_type_t type = 628 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 629 ZIO_TASKQ_INTERRUPT; 630 pio->io_stall = NULL; 631 mutex_exit(&pio->io_lock); 632 /* 633 * Dispatch the parent zio in its own taskq so that 634 * the child can continue to make progress. This also 635 * prevents overflowing the stack when we have deeply nested 636 * parent-child relationships. 637 */ 638 zio_taskq_dispatch(pio, type, B_FALSE); 639 } else { 640 mutex_exit(&pio->io_lock); 641 } 642 } 643 644 static void 645 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 646 { 647 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 648 zio->io_error = zio->io_child_error[c]; 649 } 650 651 int 652 zio_bookmark_compare(const void *x1, const void *x2) 653 { 654 const zio_t *z1 = x1; 655 const zio_t *z2 = x2; 656 657 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 658 return (-1); 659 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 660 return (1); 661 662 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 663 return (-1); 664 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 665 return (1); 666 667 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 668 return (-1); 669 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 670 return (1); 671 672 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 673 return (-1); 674 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 675 return (1); 676 677 if (z1 < z2) 678 return (-1); 679 if (z1 > z2) 680 return (1); 681 682 return (0); 683 } 684 685 /* 686 * ========================================================================== 687 * Create the various types of I/O (read, write, free, etc) 688 * ========================================================================== 689 */ 690 static zio_t * 691 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 692 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 693 void *private, zio_type_t type, zio_priority_t priority, 694 enum zio_flag flags, vdev_t *vd, uint64_t offset, 695 const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline) 696 { 697 zio_t *zio; 698 699 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); 700 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 701 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 702 703 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 704 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 705 ASSERT(vd || stage == ZIO_STAGE_OPEN); 706 707 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); 708 709 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 710 bzero(zio, sizeof (zio_t)); 711 712 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 713 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 714 715 list_create(&zio->io_parent_list, sizeof (zio_link_t), 716 offsetof(zio_link_t, zl_parent_node)); 717 list_create(&zio->io_child_list, sizeof (zio_link_t), 718 offsetof(zio_link_t, zl_child_node)); 719 metaslab_trace_init(&zio->io_alloc_list); 720 721 if (vd != NULL) 722 zio->io_child_type = ZIO_CHILD_VDEV; 723 else if (flags & ZIO_FLAG_GANG_CHILD) 724 zio->io_child_type = ZIO_CHILD_GANG; 725 else if (flags & ZIO_FLAG_DDT_CHILD) 726 zio->io_child_type = ZIO_CHILD_DDT; 727 else 728 zio->io_child_type = ZIO_CHILD_LOGICAL; 729 730 if (bp != NULL) { 731 zio->io_bp = (blkptr_t *)bp; 732 zio->io_bp_copy = *bp; 733 zio->io_bp_orig = *bp; 734 if (type != ZIO_TYPE_WRITE || 735 zio->io_child_type == ZIO_CHILD_DDT) 736 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 737 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 738 zio->io_logical = zio; 739 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 740 pipeline |= ZIO_GANG_STAGES; 741 } 742 743 zio->io_spa = spa; 744 zio->io_txg = txg; 745 zio->io_done = done; 746 zio->io_private = private; 747 zio->io_type = type; 748 zio->io_priority = priority; 749 zio->io_vd = vd; 750 zio->io_offset = offset; 751 zio->io_orig_abd = zio->io_abd = data; 752 zio->io_orig_size = zio->io_size = psize; 753 zio->io_lsize = lsize; 754 zio->io_orig_flags = zio->io_flags = flags; 755 zio->io_orig_stage = zio->io_stage = stage; 756 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 757 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 758 759 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 760 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 761 762 if (zb != NULL) 763 zio->io_bookmark = *zb; 764 765 if (pio != NULL) { 766 if (zio->io_metaslab_class == NULL) 767 zio->io_metaslab_class = pio->io_metaslab_class; 768 if (zio->io_logical == NULL) 769 zio->io_logical = pio->io_logical; 770 if (zio->io_child_type == ZIO_CHILD_GANG) 771 zio->io_gang_leader = pio->io_gang_leader; 772 zio_add_child(pio, zio); 773 } 774 775 return (zio); 776 } 777 778 static void 779 zio_destroy(zio_t *zio) 780 { 781 metaslab_trace_fini(&zio->io_alloc_list); 782 list_destroy(&zio->io_parent_list); 783 list_destroy(&zio->io_child_list); 784 mutex_destroy(&zio->io_lock); 785 cv_destroy(&zio->io_cv); 786 kmem_cache_free(zio_cache, zio); 787 } 788 789 zio_t * 790 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 791 void *private, enum zio_flag flags) 792 { 793 zio_t *zio; 794 795 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 796 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 797 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 798 799 return (zio); 800 } 801 802 zio_t * 803 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 804 { 805 return (zio_null(NULL, spa, NULL, done, private, flags)); 806 } 807 808 void 809 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp) 810 { 811 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 812 zfs_panic_recover("blkptr at %p has invalid TYPE %llu", 813 bp, (longlong_t)BP_GET_TYPE(bp)); 814 } 815 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 816 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 817 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu", 818 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 819 } 820 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 821 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 822 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu", 823 bp, (longlong_t)BP_GET_COMPRESS(bp)); 824 } 825 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 826 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu", 827 bp, (longlong_t)BP_GET_LSIZE(bp)); 828 } 829 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 830 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu", 831 bp, (longlong_t)BP_GET_PSIZE(bp)); 832 } 833 834 if (BP_IS_EMBEDDED(bp)) { 835 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) { 836 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu", 837 bp, (longlong_t)BPE_GET_ETYPE(bp)); 838 } 839 } 840 841 /* 842 * Do not verify individual DVAs if the config is not trusted. This 843 * will be done once the zio is executed in vdev_mirror_map_alloc. 844 */ 845 if (!spa->spa_trust_config) 846 return; 847 848 /* 849 * Pool-specific checks. 850 * 851 * Note: it would be nice to verify that the blk_birth and 852 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 853 * allows the birth time of log blocks (and dmu_sync()-ed blocks 854 * that are in the log) to be arbitrarily large. 855 */ 856 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 857 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]); 858 if (vdevid >= spa->spa_root_vdev->vdev_children) { 859 zfs_panic_recover("blkptr at %p DVA %u has invalid " 860 "VDEV %llu", 861 bp, i, (longlong_t)vdevid); 862 continue; 863 } 864 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 865 if (vd == NULL) { 866 zfs_panic_recover("blkptr at %p DVA %u has invalid " 867 "VDEV %llu", 868 bp, i, (longlong_t)vdevid); 869 continue; 870 } 871 if (vd->vdev_ops == &vdev_hole_ops) { 872 zfs_panic_recover("blkptr at %p DVA %u has hole " 873 "VDEV %llu", 874 bp, i, (longlong_t)vdevid); 875 continue; 876 } 877 if (vd->vdev_ops == &vdev_missing_ops) { 878 /* 879 * "missing" vdevs are valid during import, but we 880 * don't have their detailed info (e.g. asize), so 881 * we can't perform any more checks on them. 882 */ 883 continue; 884 } 885 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 886 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]); 887 if (BP_IS_GANG(bp)) 888 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 889 if (offset + asize > vd->vdev_asize) { 890 zfs_panic_recover("blkptr at %p DVA %u has invalid " 891 "OFFSET %llu", 892 bp, i, (longlong_t)offset); 893 } 894 } 895 } 896 897 boolean_t 898 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 899 { 900 uint64_t vdevid = DVA_GET_VDEV(dva); 901 902 if (vdevid >= spa->spa_root_vdev->vdev_children) 903 return (B_FALSE); 904 905 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 906 if (vd == NULL) 907 return (B_FALSE); 908 909 if (vd->vdev_ops == &vdev_hole_ops) 910 return (B_FALSE); 911 912 if (vd->vdev_ops == &vdev_missing_ops) { 913 return (B_FALSE); 914 } 915 916 uint64_t offset = DVA_GET_OFFSET(dva); 917 uint64_t asize = DVA_GET_ASIZE(dva); 918 919 if (BP_IS_GANG(bp)) 920 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 921 if (offset + asize > vd->vdev_asize) 922 return (B_FALSE); 923 924 return (B_TRUE); 925 } 926 927 zio_t * 928 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 929 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 930 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 931 { 932 zio_t *zio; 933 934 zfs_blkptr_verify(spa, bp); 935 936 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 937 data, size, size, done, private, 938 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 939 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 940 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 941 942 return (zio); 943 } 944 945 zio_t * 946 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 947 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 948 zio_done_func_t *ready, zio_done_func_t *children_ready, 949 zio_done_func_t *physdone, zio_done_func_t *done, 950 void *private, zio_priority_t priority, enum zio_flag flags, 951 const zbookmark_phys_t *zb) 952 { 953 zio_t *zio; 954 955 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 956 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 957 zp->zp_compress >= ZIO_COMPRESS_OFF && 958 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 959 DMU_OT_IS_VALID(zp->zp_type) && 960 zp->zp_level < 32 && 961 zp->zp_copies > 0 && 962 zp->zp_copies <= spa_max_replication(spa)); 963 964 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 965 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 966 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 967 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 968 969 zio->io_ready = ready; 970 zio->io_children_ready = children_ready; 971 zio->io_physdone = physdone; 972 zio->io_prop = *zp; 973 974 /* 975 * Data can be NULL if we are going to call zio_write_override() to 976 * provide the already-allocated BP. But we may need the data to 977 * verify a dedup hit (if requested). In this case, don't try to 978 * dedup (just take the already-allocated BP verbatim). Encrypted 979 * dedup blocks need data as well so we also disable dedup in this 980 * case. 981 */ 982 if (data == NULL && 983 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { 984 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 985 } 986 987 return (zio); 988 } 989 990 zio_t * 991 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 992 uint64_t size, zio_done_func_t *done, void *private, 993 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 994 { 995 zio_t *zio; 996 997 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 998 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 999 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 1000 1001 return (zio); 1002 } 1003 1004 void 1005 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 1006 { 1007 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1008 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1009 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1010 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 1011 1012 /* 1013 * We must reset the io_prop to match the values that existed 1014 * when the bp was first written by dmu_sync() keeping in mind 1015 * that nopwrite and dedup are mutually exclusive. 1016 */ 1017 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 1018 zio->io_prop.zp_nopwrite = nopwrite; 1019 zio->io_prop.zp_copies = copies; 1020 zio->io_bp_override = bp; 1021 } 1022 1023 void 1024 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 1025 { 1026 1027 zfs_blkptr_verify(spa, bp); 1028 1029 /* 1030 * The check for EMBEDDED is a performance optimization. We 1031 * process the free here (by ignoring it) rather than 1032 * putting it on the list and then processing it in zio_free_sync(). 1033 */ 1034 if (BP_IS_EMBEDDED(bp)) 1035 return; 1036 metaslab_check_free(spa, bp); 1037 1038 /* 1039 * Frees that are for the currently-syncing txg, are not going to be 1040 * deferred, and which will not need to do a read (i.e. not GANG or 1041 * DEDUP), can be processed immediately. Otherwise, put them on the 1042 * in-memory list for later processing. 1043 * 1044 * Note that we only defer frees after zfs_sync_pass_deferred_free 1045 * when the log space map feature is disabled. [see relevant comment 1046 * in spa_sync_iterate_to_convergence()] 1047 */ 1048 if (BP_IS_GANG(bp) || 1049 BP_GET_DEDUP(bp) || 1050 txg != spa->spa_syncing_txg || 1051 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && 1052 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) { 1053 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 1054 } else { 1055 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0))); 1056 } 1057 } 1058 1059 zio_t * 1060 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1061 enum zio_flag flags) 1062 { 1063 zio_t *zio; 1064 enum zio_stage stage = ZIO_FREE_PIPELINE; 1065 1066 ASSERT(!BP_IS_HOLE(bp)); 1067 ASSERT(spa_syncing_txg(spa) == txg); 1068 1069 if (BP_IS_EMBEDDED(bp)) 1070 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1071 1072 metaslab_check_free(spa, bp); 1073 arc_freed(spa, bp); 1074 dsl_scan_freed(spa, bp); 1075 1076 /* 1077 * GANG and DEDUP blocks can induce a read (for the gang block header, 1078 * or the DDT), so issue them asynchronously so that this thread is 1079 * not tied up. 1080 */ 1081 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) 1082 stage |= ZIO_STAGE_ISSUE_ASYNC; 1083 1084 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1085 BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 1086 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage); 1087 1088 return (zio); 1089 } 1090 1091 zio_t * 1092 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1093 zio_done_func_t *done, void *private, enum zio_flag flags) 1094 { 1095 zio_t *zio; 1096 1097 zfs_blkptr_verify(spa, bp); 1098 1099 if (BP_IS_EMBEDDED(bp)) 1100 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1101 1102 /* 1103 * A claim is an allocation of a specific block. Claims are needed 1104 * to support immediate writes in the intent log. The issue is that 1105 * immediate writes contain committed data, but in a txg that was 1106 * *not* committed. Upon opening the pool after an unclean shutdown, 1107 * the intent log claims all blocks that contain immediate write data 1108 * so that the SPA knows they're in use. 1109 * 1110 * All claims *must* be resolved in the first txg -- before the SPA 1111 * starts allocating blocks -- so that nothing is allocated twice. 1112 * If txg == 0 we just verify that the block is claimable. 1113 */ 1114 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, 1115 spa_min_claim_txg(spa)); 1116 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 1117 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */ 1118 1119 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1120 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 1121 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 1122 ASSERT0(zio->io_queued_timestamp); 1123 1124 return (zio); 1125 } 1126 1127 zio_t * 1128 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 1129 zio_done_func_t *done, void *private, enum zio_flag flags) 1130 { 1131 zio_t *zio; 1132 int c; 1133 1134 if (vd->vdev_children == 0) { 1135 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1136 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1137 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 1138 1139 zio->io_cmd = cmd; 1140 } else { 1141 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 1142 1143 for (c = 0; c < vd->vdev_children; c++) 1144 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 1145 done, private, flags)); 1146 } 1147 1148 return (zio); 1149 } 1150 1151 zio_t * 1152 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1153 zio_done_func_t *done, void *private, zio_priority_t priority, 1154 enum zio_flag flags, enum trim_flag trim_flags) 1155 { 1156 zio_t *zio; 1157 1158 ASSERT0(vd->vdev_children); 1159 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 1160 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 1161 ASSERT3U(size, !=, 0); 1162 1163 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, 1164 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, 1165 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); 1166 zio->io_trim_flags = trim_flags; 1167 1168 return (zio); 1169 } 1170 1171 zio_t * 1172 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1173 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1174 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1175 { 1176 zio_t *zio; 1177 1178 ASSERT(vd->vdev_children == 0); 1179 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1180 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1181 ASSERT3U(offset + size, <=, vd->vdev_psize); 1182 1183 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1184 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1185 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1186 1187 zio->io_prop.zp_checksum = checksum; 1188 1189 return (zio); 1190 } 1191 1192 zio_t * 1193 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1194 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1195 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1196 { 1197 zio_t *zio; 1198 1199 ASSERT(vd->vdev_children == 0); 1200 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1201 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1202 ASSERT3U(offset + size, <=, vd->vdev_psize); 1203 1204 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1205 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1206 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1207 1208 zio->io_prop.zp_checksum = checksum; 1209 1210 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1211 /* 1212 * zec checksums are necessarily destructive -- they modify 1213 * the end of the write buffer to hold the verifier/checksum. 1214 * Therefore, we must make a local copy in case the data is 1215 * being written to multiple places in parallel. 1216 */ 1217 abd_t *wbuf = abd_alloc_sametype(data, size); 1218 abd_copy(wbuf, data, size); 1219 1220 zio_push_transform(zio, wbuf, size, size, NULL); 1221 } 1222 1223 return (zio); 1224 } 1225 1226 /* 1227 * Create a child I/O to do some work for us. 1228 */ 1229 zio_t * 1230 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1231 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1232 enum zio_flag flags, zio_done_func_t *done, void *private) 1233 { 1234 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1235 zio_t *zio; 1236 1237 /* 1238 * vdev child I/Os do not propagate their error to the parent. 1239 * Therefore, for correct operation the caller *must* check for 1240 * and handle the error in the child i/o's done callback. 1241 * The only exceptions are i/os that we don't care about 1242 * (OPTIONAL or REPAIR). 1243 */ 1244 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1245 done != NULL); 1246 1247 if (type == ZIO_TYPE_READ && bp != NULL) { 1248 /* 1249 * If we have the bp, then the child should perform the 1250 * checksum and the parent need not. This pushes error 1251 * detection as close to the leaves as possible and 1252 * eliminates redundant checksums in the interior nodes. 1253 */ 1254 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1255 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1256 } 1257 1258 if (vd->vdev_ops->vdev_op_leaf) { 1259 ASSERT0(vd->vdev_children); 1260 offset += VDEV_LABEL_START_SIZE; 1261 } 1262 1263 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1264 1265 /* 1266 * If we've decided to do a repair, the write is not speculative -- 1267 * even if the original read was. 1268 */ 1269 if (flags & ZIO_FLAG_IO_REPAIR) 1270 flags &= ~ZIO_FLAG_SPECULATIVE; 1271 1272 /* 1273 * If we're creating a child I/O that is not associated with a 1274 * top-level vdev, then the child zio is not an allocating I/O. 1275 * If this is a retried I/O then we ignore it since we will 1276 * have already processed the original allocating I/O. 1277 */ 1278 if (flags & ZIO_FLAG_IO_ALLOCATING && 1279 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1280 ASSERT(pio->io_metaslab_class != NULL); 1281 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); 1282 ASSERT(type == ZIO_TYPE_WRITE); 1283 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1284 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1285 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1286 pio->io_child_type == ZIO_CHILD_GANG); 1287 1288 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1289 } 1290 1291 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1292 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1293 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1294 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1295 1296 zio->io_physdone = pio->io_physdone; 1297 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1298 zio->io_logical->io_phys_children++; 1299 1300 return (zio); 1301 } 1302 1303 zio_t * 1304 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1305 zio_type_t type, zio_priority_t priority, enum zio_flag flags, 1306 zio_done_func_t *done, void *private) 1307 { 1308 zio_t *zio; 1309 1310 ASSERT(vd->vdev_ops->vdev_op_leaf); 1311 1312 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1313 data, size, size, done, private, type, priority, 1314 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1315 vd, offset, NULL, 1316 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1317 1318 return (zio); 1319 } 1320 1321 void 1322 zio_flush(zio_t *zio, vdev_t *vd) 1323 { 1324 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1325 NULL, NULL, 1326 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1327 } 1328 1329 void 1330 zio_shrink(zio_t *zio, uint64_t size) 1331 { 1332 ASSERT3P(zio->io_executor, ==, NULL); 1333 ASSERT3P(zio->io_orig_size, ==, zio->io_size); 1334 ASSERT3U(size, <=, zio->io_size); 1335 1336 /* 1337 * We don't shrink for raidz because of problems with the 1338 * reconstruction when reading back less than the block size. 1339 * Note, BP_IS_RAIDZ() assumes no compression. 1340 */ 1341 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1342 if (!BP_IS_RAIDZ(zio->io_bp)) { 1343 /* we are not doing a raw write */ 1344 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1345 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1346 } 1347 } 1348 1349 /* 1350 * ========================================================================== 1351 * Prepare to read and write logical blocks 1352 * ========================================================================== 1353 */ 1354 1355 static int 1356 zio_read_bp_init(zio_t *zio) 1357 { 1358 blkptr_t *bp = zio->io_bp; 1359 uint64_t psize = 1360 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1361 1362 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1363 1364 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1365 zio->io_child_type == ZIO_CHILD_LOGICAL && 1366 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1367 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1368 psize, psize, zio_decompress); 1369 } 1370 1371 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || 1372 BP_HAS_INDIRECT_MAC_CKSUM(bp)) && 1373 zio->io_child_type == ZIO_CHILD_LOGICAL) { 1374 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1375 psize, psize, zio_decrypt); 1376 } 1377 1378 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1379 int psize = BPE_GET_PSIZE(bp); 1380 void *data = abd_borrow_buf(zio->io_abd, psize); 1381 1382 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1383 decode_embedded_bp_compressed(bp, data); 1384 abd_return_buf_copy(zio->io_abd, data, psize); 1385 } else { 1386 ASSERT(!BP_IS_EMBEDDED(bp)); 1387 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1388 } 1389 1390 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1391 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1392 1393 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1394 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1395 1396 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1397 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1398 1399 return (ZIO_PIPELINE_CONTINUE); 1400 } 1401 1402 static int 1403 zio_write_bp_init(zio_t *zio) 1404 { 1405 if (!IO_IS_ALLOCATING(zio)) 1406 return (ZIO_PIPELINE_CONTINUE); 1407 1408 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1409 1410 if (zio->io_bp_override) { 1411 blkptr_t *bp = zio->io_bp; 1412 zio_prop_t *zp = &zio->io_prop; 1413 1414 ASSERT(bp->blk_birth != zio->io_txg); 1415 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1416 1417 *bp = *zio->io_bp_override; 1418 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1419 1420 if (BP_IS_EMBEDDED(bp)) 1421 return (ZIO_PIPELINE_CONTINUE); 1422 1423 /* 1424 * If we've been overridden and nopwrite is set then 1425 * set the flag accordingly to indicate that a nopwrite 1426 * has already occurred. 1427 */ 1428 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1429 ASSERT(!zp->zp_dedup); 1430 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1431 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1432 return (ZIO_PIPELINE_CONTINUE); 1433 } 1434 1435 ASSERT(!zp->zp_nopwrite); 1436 1437 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1438 return (ZIO_PIPELINE_CONTINUE); 1439 1440 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1441 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1442 1443 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && 1444 !zp->zp_encrypt) { 1445 BP_SET_DEDUP(bp, 1); 1446 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1447 return (ZIO_PIPELINE_CONTINUE); 1448 } 1449 1450 /* 1451 * We were unable to handle this as an override bp, treat 1452 * it as a regular write I/O. 1453 */ 1454 zio->io_bp_override = NULL; 1455 *bp = zio->io_bp_orig; 1456 zio->io_pipeline = zio->io_orig_pipeline; 1457 } 1458 1459 return (ZIO_PIPELINE_CONTINUE); 1460 } 1461 1462 static int 1463 zio_write_compress(zio_t *zio) 1464 { 1465 spa_t *spa = zio->io_spa; 1466 zio_prop_t *zp = &zio->io_prop; 1467 enum zio_compress compress = zp->zp_compress; 1468 blkptr_t *bp = zio->io_bp; 1469 uint64_t lsize = zio->io_lsize; 1470 uint64_t psize = zio->io_size; 1471 int pass = 1; 1472 1473 /* 1474 * If our children haven't all reached the ready stage, 1475 * wait for them and then repeat this pipeline stage. 1476 */ 1477 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1478 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1479 return (ZIO_PIPELINE_STOP); 1480 } 1481 1482 if (!IO_IS_ALLOCATING(zio)) 1483 return (ZIO_PIPELINE_CONTINUE); 1484 1485 if (zio->io_children_ready != NULL) { 1486 /* 1487 * Now that all our children are ready, run the callback 1488 * associated with this zio in case it wants to modify the 1489 * data to be written. 1490 */ 1491 ASSERT3U(zp->zp_level, >, 0); 1492 zio->io_children_ready(zio); 1493 } 1494 1495 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1496 ASSERT(zio->io_bp_override == NULL); 1497 1498 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1499 /* 1500 * We're rewriting an existing block, which means we're 1501 * working on behalf of spa_sync(). For spa_sync() to 1502 * converge, it must eventually be the case that we don't 1503 * have to allocate new blocks. But compression changes 1504 * the blocksize, which forces a reallocate, and makes 1505 * convergence take longer. Therefore, after the first 1506 * few passes, stop compressing to ensure convergence. 1507 */ 1508 pass = spa_sync_pass(spa); 1509 1510 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1511 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1512 ASSERT(!BP_GET_DEDUP(bp)); 1513 1514 if (pass >= zfs_sync_pass_dont_compress) 1515 compress = ZIO_COMPRESS_OFF; 1516 1517 /* Make sure someone doesn't change their mind on overwrites */ 1518 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1519 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1520 } 1521 1522 /* If it's a compressed write that is not raw, compress the buffer. */ 1523 if (compress != ZIO_COMPRESS_OFF && 1524 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1525 void *cbuf = zio_buf_alloc(lsize); 1526 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize); 1527 if (psize == 0 || psize == lsize) { 1528 compress = ZIO_COMPRESS_OFF; 1529 zio_buf_free(cbuf, lsize); 1530 } else if (!zp->zp_dedup && !zp->zp_encrypt && 1531 psize <= BPE_PAYLOAD_SIZE && 1532 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1533 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1534 encode_embedded_bp_compressed(bp, 1535 cbuf, compress, lsize, psize); 1536 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1537 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1538 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1539 zio_buf_free(cbuf, lsize); 1540 bp->blk_birth = zio->io_txg; 1541 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1542 ASSERT(spa_feature_is_active(spa, 1543 SPA_FEATURE_EMBEDDED_DATA)); 1544 return (ZIO_PIPELINE_CONTINUE); 1545 } else { 1546 /* 1547 * Round up compressed size up to the ashift 1548 * of the smallest-ashift device, and zero the tail. 1549 * This ensures that the compressed size of the BP 1550 * (and thus compressratio property) are correct, 1551 * in that we charge for the padding used to fill out 1552 * the last sector. 1553 */ 1554 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 1555 size_t rounded = (size_t)P2ROUNDUP(psize, 1556 1ULL << spa->spa_min_ashift); 1557 if (rounded >= lsize) { 1558 compress = ZIO_COMPRESS_OFF; 1559 zio_buf_free(cbuf, lsize); 1560 psize = lsize; 1561 } else { 1562 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1563 abd_take_ownership_of_buf(cdata, B_TRUE); 1564 abd_zero_off(cdata, psize, rounded - psize); 1565 psize = rounded; 1566 zio_push_transform(zio, cdata, 1567 psize, lsize, NULL); 1568 } 1569 } 1570 1571 /* 1572 * We were unable to handle this as an override bp, treat 1573 * it as a regular write I/O. 1574 */ 1575 zio->io_bp_override = NULL; 1576 *bp = zio->io_bp_orig; 1577 zio->io_pipeline = zio->io_orig_pipeline; 1578 1579 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && 1580 zp->zp_type == DMU_OT_DNODE) { 1581 /* 1582 * The DMU actually relies on the zio layer's compression 1583 * to free metadnode blocks that have had all contained 1584 * dnodes freed. As a result, even when doing a raw 1585 * receive, we must check whether the block can be compressed 1586 * to a hole. 1587 */ 1588 psize = zio_compress_data(ZIO_COMPRESS_EMPTY, 1589 zio->io_abd, NULL, lsize); 1590 if (psize == 0) 1591 compress = ZIO_COMPRESS_OFF; 1592 } else { 1593 ASSERT3U(psize, !=, 0); 1594 } 1595 1596 /* 1597 * The final pass of spa_sync() must be all rewrites, but the first 1598 * few passes offer a trade-off: allocating blocks defers convergence, 1599 * but newly allocated blocks are sequential, so they can be written 1600 * to disk faster. Therefore, we allow the first few passes of 1601 * spa_sync() to allocate new blocks, but force rewrites after that. 1602 * There should only be a handful of blocks after pass 1 in any case. 1603 */ 1604 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1605 BP_GET_PSIZE(bp) == psize && 1606 pass >= zfs_sync_pass_rewrite) { 1607 VERIFY3U(psize, !=, 0); 1608 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1609 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1610 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1611 } else { 1612 BP_ZERO(bp); 1613 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1614 } 1615 1616 if (psize == 0) { 1617 if (zio->io_bp_orig.blk_birth != 0 && 1618 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1619 BP_SET_LSIZE(bp, lsize); 1620 BP_SET_TYPE(bp, zp->zp_type); 1621 BP_SET_LEVEL(bp, zp->zp_level); 1622 BP_SET_BIRTH(bp, zio->io_txg, 0); 1623 } 1624 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1625 } else { 1626 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1627 BP_SET_LSIZE(bp, lsize); 1628 BP_SET_TYPE(bp, zp->zp_type); 1629 BP_SET_LEVEL(bp, zp->zp_level); 1630 BP_SET_PSIZE(bp, psize); 1631 BP_SET_COMPRESS(bp, compress); 1632 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1633 BP_SET_DEDUP(bp, zp->zp_dedup); 1634 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1635 if (zp->zp_dedup) { 1636 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1637 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1638 ASSERT(!zp->zp_encrypt || 1639 DMU_OT_IS_ENCRYPTED(zp->zp_type)); 1640 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1641 } 1642 if (zp->zp_nopwrite) { 1643 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1644 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1645 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1646 } 1647 } 1648 return (ZIO_PIPELINE_CONTINUE); 1649 } 1650 1651 static int 1652 zio_free_bp_init(zio_t *zio) 1653 { 1654 blkptr_t *bp = zio->io_bp; 1655 1656 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1657 if (BP_GET_DEDUP(bp)) 1658 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1659 } 1660 1661 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1662 1663 return (ZIO_PIPELINE_CONTINUE); 1664 } 1665 1666 /* 1667 * ========================================================================== 1668 * Execute the I/O pipeline 1669 * ========================================================================== 1670 */ 1671 1672 static void 1673 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1674 { 1675 spa_t *spa = zio->io_spa; 1676 zio_type_t t = zio->io_type; 1677 int flags = (cutinline ? TQ_FRONT : 0); 1678 1679 /* 1680 * If we're a config writer or a probe, the normal issue and 1681 * interrupt threads may all be blocked waiting for the config lock. 1682 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1683 */ 1684 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1685 t = ZIO_TYPE_NULL; 1686 1687 /* 1688 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1689 */ 1690 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1691 t = ZIO_TYPE_NULL; 1692 1693 /* 1694 * If this is a high priority I/O, then use the high priority taskq if 1695 * available. 1696 */ 1697 if ((zio->io_priority == ZIO_PRIORITY_NOW || 1698 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) && 1699 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1700 q++; 1701 1702 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1703 1704 /* 1705 * NB: We are assuming that the zio can only be dispatched 1706 * to a single taskq at a time. It would be a grievous error 1707 * to dispatch the zio to another taskq at the same time. 1708 */ 1709 ASSERT(zio->io_tqent.tqent_next == NULL); 1710 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1711 flags, &zio->io_tqent); 1712 } 1713 1714 static boolean_t 1715 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1716 { 1717 kthread_t *executor = zio->io_executor; 1718 spa_t *spa = zio->io_spa; 1719 1720 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1721 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1722 uint_t i; 1723 for (i = 0; i < tqs->stqs_count; i++) { 1724 if (taskq_member(tqs->stqs_taskq[i], executor)) 1725 return (B_TRUE); 1726 } 1727 } 1728 1729 return (B_FALSE); 1730 } 1731 1732 static int 1733 zio_issue_async(zio_t *zio) 1734 { 1735 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1736 1737 return (ZIO_PIPELINE_STOP); 1738 } 1739 1740 void 1741 zio_interrupt(zio_t *zio) 1742 { 1743 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1744 } 1745 1746 void 1747 zio_delay_interrupt(zio_t *zio) 1748 { 1749 /* 1750 * The timeout_generic() function isn't defined in userspace, so 1751 * rather than trying to implement the function, the zio delay 1752 * functionality has been disabled for userspace builds. 1753 */ 1754 1755 #ifdef _KERNEL 1756 /* 1757 * If io_target_timestamp is zero, then no delay has been registered 1758 * for this IO, thus jump to the end of this function and "skip" the 1759 * delay; issuing it directly to the zio layer. 1760 */ 1761 if (zio->io_target_timestamp != 0) { 1762 hrtime_t now = gethrtime(); 1763 1764 if (now >= zio->io_target_timestamp) { 1765 /* 1766 * This IO has already taken longer than the target 1767 * delay to complete, so we don't want to delay it 1768 * any longer; we "miss" the delay and issue it 1769 * directly to the zio layer. This is likely due to 1770 * the target latency being set to a value less than 1771 * the underlying hardware can satisfy (e.g. delay 1772 * set to 1ms, but the disks take 10ms to complete an 1773 * IO request). 1774 */ 1775 1776 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1777 hrtime_t, now); 1778 1779 zio_interrupt(zio); 1780 } else { 1781 hrtime_t diff = zio->io_target_timestamp - now; 1782 1783 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 1784 hrtime_t, now, hrtime_t, diff); 1785 1786 (void) timeout_generic(CALLOUT_NORMAL, 1787 (void (*)(void *))zio_interrupt, zio, diff, 1, 0); 1788 } 1789 1790 return; 1791 } 1792 #endif 1793 1794 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 1795 zio_interrupt(zio); 1796 } 1797 1798 /* 1799 * Execute the I/O pipeline until one of the following occurs: 1800 * 1801 * (1) the I/O completes 1802 * (2) the pipeline stalls waiting for dependent child I/Os 1803 * (3) the I/O issues, so we're waiting for an I/O completion interrupt 1804 * (4) the I/O is delegated by vdev-level caching or aggregation 1805 * (5) the I/O is deferred due to vdev-level queueing 1806 * (6) the I/O is handed off to another thread. 1807 * 1808 * In all cases, the pipeline stops whenever there's no CPU work; it never 1809 * burns a thread in cv_wait(). 1810 * 1811 * There's no locking on io_stage because there's no legitimate way 1812 * for multiple threads to be attempting to process the same I/O. 1813 */ 1814 static zio_pipe_stage_t *zio_pipeline[]; 1815 1816 void 1817 zio_execute(zio_t *zio) 1818 { 1819 zio->io_executor = curthread; 1820 1821 ASSERT3U(zio->io_queued_timestamp, >, 0); 1822 1823 while (zio->io_stage < ZIO_STAGE_DONE) { 1824 enum zio_stage pipeline = zio->io_pipeline; 1825 enum zio_stage stage = zio->io_stage; 1826 int rv; 1827 1828 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1829 ASSERT(ISP2(stage)); 1830 ASSERT(zio->io_stall == NULL); 1831 1832 do { 1833 stage <<= 1; 1834 } while ((stage & pipeline) == 0); 1835 1836 ASSERT(stage <= ZIO_STAGE_DONE); 1837 1838 /* 1839 * If we are in interrupt context and this pipeline stage 1840 * will grab a config lock that is held across I/O, 1841 * or may wait for an I/O that needs an interrupt thread 1842 * to complete, issue async to avoid deadlock. 1843 * 1844 * For VDEV_IO_START, we cut in line so that the io will 1845 * be sent to disk promptly. 1846 */ 1847 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 1848 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 1849 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 1850 zio_requeue_io_start_cut_in_line : B_FALSE; 1851 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 1852 return; 1853 } 1854 1855 zio->io_stage = stage; 1856 zio->io_pipeline_trace |= zio->io_stage; 1857 rv = zio_pipeline[highbit64(stage) - 1](zio); 1858 1859 if (rv == ZIO_PIPELINE_STOP) 1860 return; 1861 1862 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 1863 } 1864 } 1865 1866 /* 1867 * ========================================================================== 1868 * Initiate I/O, either sync or async 1869 * ========================================================================== 1870 */ 1871 int 1872 zio_wait(zio_t *zio) 1873 { 1874 int error; 1875 1876 ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN); 1877 ASSERT3P(zio->io_executor, ==, NULL); 1878 1879 zio->io_waiter = curthread; 1880 ASSERT0(zio->io_queued_timestamp); 1881 zio->io_queued_timestamp = gethrtime(); 1882 1883 zio_execute(zio); 1884 1885 mutex_enter(&zio->io_lock); 1886 while (zio->io_executor != NULL) 1887 cv_wait(&zio->io_cv, &zio->io_lock); 1888 mutex_exit(&zio->io_lock); 1889 1890 error = zio->io_error; 1891 zio_destroy(zio); 1892 1893 return (error); 1894 } 1895 1896 void 1897 zio_nowait(zio_t *zio) 1898 { 1899 ASSERT3P(zio->io_executor, ==, NULL); 1900 1901 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 1902 zio_unique_parent(zio) == NULL) { 1903 /* 1904 * This is a logical async I/O with no parent to wait for it. 1905 * We add it to the spa_async_root_zio "Godfather" I/O which 1906 * will ensure they complete prior to unloading the pool. 1907 */ 1908 spa_t *spa = zio->io_spa; 1909 1910 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio); 1911 } 1912 1913 ASSERT0(zio->io_queued_timestamp); 1914 zio->io_queued_timestamp = gethrtime(); 1915 zio_execute(zio); 1916 } 1917 1918 /* 1919 * ========================================================================== 1920 * Reexecute, cancel, or suspend/resume failed I/O 1921 * ========================================================================== 1922 */ 1923 1924 static void 1925 zio_reexecute(zio_t *pio) 1926 { 1927 zio_t *cio, *cio_next; 1928 1929 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 1930 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 1931 ASSERT(pio->io_gang_leader == NULL); 1932 ASSERT(pio->io_gang_tree == NULL); 1933 1934 pio->io_flags = pio->io_orig_flags; 1935 pio->io_stage = pio->io_orig_stage; 1936 pio->io_pipeline = pio->io_orig_pipeline; 1937 pio->io_reexecute = 0; 1938 pio->io_flags |= ZIO_FLAG_REEXECUTED; 1939 pio->io_pipeline_trace = 0; 1940 pio->io_error = 0; 1941 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1942 pio->io_state[w] = 0; 1943 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1944 pio->io_child_error[c] = 0; 1945 1946 if (IO_IS_ALLOCATING(pio)) 1947 BP_ZERO(pio->io_bp); 1948 1949 /* 1950 * As we reexecute pio's children, new children could be created. 1951 * New children go to the head of pio's io_child_list, however, 1952 * so we will (correctly) not reexecute them. The key is that 1953 * the remainder of pio's io_child_list, from 'cio_next' onward, 1954 * cannot be affected by any side effects of reexecuting 'cio'. 1955 */ 1956 zio_link_t *zl = NULL; 1957 mutex_enter(&pio->io_lock); 1958 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 1959 cio_next = zio_walk_children(pio, &zl); 1960 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1961 pio->io_children[cio->io_child_type][w]++; 1962 mutex_exit(&pio->io_lock); 1963 zio_reexecute(cio); 1964 mutex_enter(&pio->io_lock); 1965 } 1966 mutex_exit(&pio->io_lock); 1967 1968 /* 1969 * Now that all children have been reexecuted, execute the parent. 1970 * We don't reexecute "The Godfather" I/O here as it's the 1971 * responsibility of the caller to wait on it. 1972 */ 1973 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 1974 pio->io_queued_timestamp = gethrtime(); 1975 zio_execute(pio); 1976 } 1977 } 1978 1979 void 1980 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) 1981 { 1982 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1983 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1984 "failure and the failure mode property for this pool " 1985 "is set to panic.", spa_name(spa)); 1986 1987 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, 1988 NULL, NULL, 0, 0); 1989 1990 mutex_enter(&spa->spa_suspend_lock); 1991 1992 if (spa->spa_suspend_zio_root == NULL) 1993 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 1994 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 1995 ZIO_FLAG_GODFATHER); 1996 1997 spa->spa_suspended = reason; 1998 1999 if (zio != NULL) { 2000 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 2001 ASSERT(zio != spa->spa_suspend_zio_root); 2002 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2003 ASSERT(zio_unique_parent(zio) == NULL); 2004 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 2005 zio_add_child(spa->spa_suspend_zio_root, zio); 2006 } 2007 2008 mutex_exit(&spa->spa_suspend_lock); 2009 } 2010 2011 int 2012 zio_resume(spa_t *spa) 2013 { 2014 zio_t *pio; 2015 2016 /* 2017 * Reexecute all previously suspended i/o. 2018 */ 2019 mutex_enter(&spa->spa_suspend_lock); 2020 spa->spa_suspended = ZIO_SUSPEND_NONE; 2021 cv_broadcast(&spa->spa_suspend_cv); 2022 pio = spa->spa_suspend_zio_root; 2023 spa->spa_suspend_zio_root = NULL; 2024 mutex_exit(&spa->spa_suspend_lock); 2025 2026 if (pio == NULL) 2027 return (0); 2028 2029 zio_reexecute(pio); 2030 return (zio_wait(pio)); 2031 } 2032 2033 void 2034 zio_resume_wait(spa_t *spa) 2035 { 2036 mutex_enter(&spa->spa_suspend_lock); 2037 while (spa_suspended(spa)) 2038 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 2039 mutex_exit(&spa->spa_suspend_lock); 2040 } 2041 2042 /* 2043 * ========================================================================== 2044 * Gang blocks. 2045 * 2046 * A gang block is a collection of small blocks that looks to the DMU 2047 * like one large block. When zio_dva_allocate() cannot find a block 2048 * of the requested size, due to either severe fragmentation or the pool 2049 * being nearly full, it calls zio_write_gang_block() to construct the 2050 * block from smaller fragments. 2051 * 2052 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 2053 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 2054 * an indirect block: it's an array of block pointers. It consumes 2055 * only one sector and hence is allocatable regardless of fragmentation. 2056 * The gang header's bps point to its gang members, which hold the data. 2057 * 2058 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 2059 * as the verifier to ensure uniqueness of the SHA256 checksum. 2060 * Critically, the gang block bp's blk_cksum is the checksum of the data, 2061 * not the gang header. This ensures that data block signatures (needed for 2062 * deduplication) are independent of how the block is physically stored. 2063 * 2064 * Gang blocks can be nested: a gang member may itself be a gang block. 2065 * Thus every gang block is a tree in which root and all interior nodes are 2066 * gang headers, and the leaves are normal blocks that contain user data. 2067 * The root of the gang tree is called the gang leader. 2068 * 2069 * To perform any operation (read, rewrite, free, claim) on a gang block, 2070 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 2071 * in the io_gang_tree field of the original logical i/o by recursively 2072 * reading the gang leader and all gang headers below it. This yields 2073 * an in-core tree containing the contents of every gang header and the 2074 * bps for every constituent of the gang block. 2075 * 2076 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 2077 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 2078 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 2079 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 2080 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 2081 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 2082 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 2083 * of the gang header plus zio_checksum_compute() of the data to update the 2084 * gang header's blk_cksum as described above. 2085 * 2086 * The two-phase assemble/issue model solves the problem of partial failure -- 2087 * what if you'd freed part of a gang block but then couldn't read the 2088 * gang header for another part? Assembling the entire gang tree first 2089 * ensures that all the necessary gang header I/O has succeeded before 2090 * starting the actual work of free, claim, or write. Once the gang tree 2091 * is assembled, free and claim are in-memory operations that cannot fail. 2092 * 2093 * In the event that a gang write fails, zio_dva_unallocate() walks the 2094 * gang tree to immediately free (i.e. insert back into the space map) 2095 * everything we've allocated. This ensures that we don't get ENOSPC 2096 * errors during repeated suspend/resume cycles due to a flaky device. 2097 * 2098 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 2099 * the gang tree, we won't modify the block, so we can safely defer the free 2100 * (knowing that the block is still intact). If we *can* assemble the gang 2101 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 2102 * each constituent bp and we can allocate a new block on the next sync pass. 2103 * 2104 * In all cases, the gang tree allows complete recovery from partial failure. 2105 * ========================================================================== 2106 */ 2107 2108 static void 2109 zio_gang_issue_func_done(zio_t *zio) 2110 { 2111 abd_put(zio->io_abd); 2112 } 2113 2114 static zio_t * 2115 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2116 uint64_t offset) 2117 { 2118 if (gn != NULL) 2119 return (pio); 2120 2121 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 2122 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 2123 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2124 &pio->io_bookmark)); 2125 } 2126 2127 static zio_t * 2128 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2129 uint64_t offset) 2130 { 2131 zio_t *zio; 2132 2133 if (gn != NULL) { 2134 abd_t *gbh_abd = 2135 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2136 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2137 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 2138 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2139 &pio->io_bookmark); 2140 /* 2141 * As we rewrite each gang header, the pipeline will compute 2142 * a new gang block header checksum for it; but no one will 2143 * compute a new data checksum, so we do that here. The one 2144 * exception is the gang leader: the pipeline already computed 2145 * its data checksum because that stage precedes gang assembly. 2146 * (Presently, nothing actually uses interior data checksums; 2147 * this is just good hygiene.) 2148 */ 2149 if (gn != pio->io_gang_leader->io_gang_tree) { 2150 abd_t *buf = abd_get_offset(data, offset); 2151 2152 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 2153 buf, BP_GET_PSIZE(bp)); 2154 2155 abd_put(buf); 2156 } 2157 /* 2158 * If we are here to damage data for testing purposes, 2159 * leave the GBH alone so that we can detect the damage. 2160 */ 2161 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 2162 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2163 } else { 2164 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2165 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 2166 zio_gang_issue_func_done, NULL, pio->io_priority, 2167 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2168 } 2169 2170 return (zio); 2171 } 2172 2173 /* ARGSUSED */ 2174 static zio_t * 2175 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2176 uint64_t offset) 2177 { 2178 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 2179 ZIO_GANG_CHILD_FLAGS(pio))); 2180 } 2181 2182 /* ARGSUSED */ 2183 static zio_t * 2184 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2185 uint64_t offset) 2186 { 2187 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 2188 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 2189 } 2190 2191 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2192 NULL, 2193 zio_read_gang, 2194 zio_rewrite_gang, 2195 zio_free_gang, 2196 zio_claim_gang, 2197 NULL 2198 }; 2199 2200 static void zio_gang_tree_assemble_done(zio_t *zio); 2201 2202 static zio_gang_node_t * 2203 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2204 { 2205 zio_gang_node_t *gn; 2206 2207 ASSERT(*gnpp == NULL); 2208 2209 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2210 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2211 *gnpp = gn; 2212 2213 return (gn); 2214 } 2215 2216 static void 2217 zio_gang_node_free(zio_gang_node_t **gnpp) 2218 { 2219 zio_gang_node_t *gn = *gnpp; 2220 2221 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2222 ASSERT(gn->gn_child[g] == NULL); 2223 2224 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2225 kmem_free(gn, sizeof (*gn)); 2226 *gnpp = NULL; 2227 } 2228 2229 static void 2230 zio_gang_tree_free(zio_gang_node_t **gnpp) 2231 { 2232 zio_gang_node_t *gn = *gnpp; 2233 2234 if (gn == NULL) 2235 return; 2236 2237 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2238 zio_gang_tree_free(&gn->gn_child[g]); 2239 2240 zio_gang_node_free(gnpp); 2241 } 2242 2243 static void 2244 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2245 { 2246 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2247 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2248 2249 ASSERT(gio->io_gang_leader == gio); 2250 ASSERT(BP_IS_GANG(bp)); 2251 2252 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2253 zio_gang_tree_assemble_done, gn, gio->io_priority, 2254 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2255 } 2256 2257 static void 2258 zio_gang_tree_assemble_done(zio_t *zio) 2259 { 2260 zio_t *gio = zio->io_gang_leader; 2261 zio_gang_node_t *gn = zio->io_private; 2262 blkptr_t *bp = zio->io_bp; 2263 2264 ASSERT(gio == zio_unique_parent(zio)); 2265 ASSERT(zio->io_child_count == 0); 2266 2267 if (zio->io_error) 2268 return; 2269 2270 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2271 if (BP_SHOULD_BYTESWAP(bp)) 2272 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2273 2274 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2275 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2276 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2277 2278 abd_put(zio->io_abd); 2279 2280 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2281 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2282 if (!BP_IS_GANG(gbp)) 2283 continue; 2284 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2285 } 2286 } 2287 2288 static void 2289 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2290 uint64_t offset) 2291 { 2292 zio_t *gio = pio->io_gang_leader; 2293 zio_t *zio; 2294 2295 ASSERT(BP_IS_GANG(bp) == !!gn); 2296 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2297 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2298 2299 /* 2300 * If you're a gang header, your data is in gn->gn_gbh. 2301 * If you're a gang member, your data is in 'data' and gn == NULL. 2302 */ 2303 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2304 2305 if (gn != NULL) { 2306 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2307 2308 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2309 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2310 if (BP_IS_HOLE(gbp)) 2311 continue; 2312 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2313 offset); 2314 offset += BP_GET_PSIZE(gbp); 2315 } 2316 } 2317 2318 if (gn == gio->io_gang_tree) 2319 ASSERT3U(gio->io_size, ==, offset); 2320 2321 if (zio != pio) 2322 zio_nowait(zio); 2323 } 2324 2325 static int 2326 zio_gang_assemble(zio_t *zio) 2327 { 2328 blkptr_t *bp = zio->io_bp; 2329 2330 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2331 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2332 2333 zio->io_gang_leader = zio; 2334 2335 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2336 2337 return (ZIO_PIPELINE_CONTINUE); 2338 } 2339 2340 static int 2341 zio_gang_issue(zio_t *zio) 2342 { 2343 blkptr_t *bp = zio->io_bp; 2344 2345 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 2346 return (ZIO_PIPELINE_STOP); 2347 } 2348 2349 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2350 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2351 2352 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2353 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2354 0); 2355 else 2356 zio_gang_tree_free(&zio->io_gang_tree); 2357 2358 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2359 2360 return (ZIO_PIPELINE_CONTINUE); 2361 } 2362 2363 static void 2364 zio_write_gang_member_ready(zio_t *zio) 2365 { 2366 zio_t *pio = zio_unique_parent(zio); 2367 zio_t *gio = zio->io_gang_leader; 2368 dva_t *cdva = zio->io_bp->blk_dva; 2369 dva_t *pdva = pio->io_bp->blk_dva; 2370 uint64_t asize; 2371 2372 if (BP_IS_HOLE(zio->io_bp)) 2373 return; 2374 2375 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2376 2377 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2378 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2379 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2380 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2381 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2382 2383 mutex_enter(&pio->io_lock); 2384 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2385 ASSERT(DVA_GET_GANG(&pdva[d])); 2386 asize = DVA_GET_ASIZE(&pdva[d]); 2387 asize += DVA_GET_ASIZE(&cdva[d]); 2388 DVA_SET_ASIZE(&pdva[d], asize); 2389 } 2390 mutex_exit(&pio->io_lock); 2391 } 2392 2393 static void 2394 zio_write_gang_done(zio_t *zio) 2395 { 2396 /* 2397 * The io_abd field will be NULL for a zio with no data. The io_flags 2398 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 2399 * check for it here as it is cleared in zio_ready. 2400 */ 2401 if (zio->io_abd != NULL) 2402 abd_put(zio->io_abd); 2403 } 2404 2405 static int 2406 zio_write_gang_block(zio_t *pio) 2407 { 2408 spa_t *spa = pio->io_spa; 2409 metaslab_class_t *mc = spa_normal_class(spa); 2410 blkptr_t *bp = pio->io_bp; 2411 zio_t *gio = pio->io_gang_leader; 2412 zio_t *zio; 2413 zio_gang_node_t *gn, **gnpp; 2414 zio_gbh_phys_t *gbh; 2415 abd_t *gbh_abd; 2416 uint64_t txg = pio->io_txg; 2417 uint64_t resid = pio->io_size; 2418 uint64_t lsize; 2419 int copies = gio->io_prop.zp_copies; 2420 int gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 2421 zio_prop_t zp; 2422 int error; 2423 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 2424 2425 /* 2426 * encrypted blocks need DVA[2] free so encrypted gang headers can't 2427 * have a third copy. 2428 */ 2429 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP) 2430 gbh_copies = SPA_DVAS_PER_BP - 1; 2431 2432 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2433 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2434 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2435 ASSERT(has_data); 2436 2437 flags |= METASLAB_ASYNC_ALLOC; 2438 VERIFY(zfs_refcount_held(&mc->mc_alloc_slots[pio->io_allocator], 2439 pio)); 2440 2441 /* 2442 * The logical zio has already placed a reservation for 2443 * 'copies' allocation slots but gang blocks may require 2444 * additional copies. These additional copies 2445 * (i.e. gbh_copies - copies) are guaranteed to succeed 2446 * since metaslab_class_throttle_reserve() always allows 2447 * additional reservations for gang blocks. 2448 */ 2449 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2450 pio->io_allocator, pio, flags)); 2451 } 2452 2453 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2454 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2455 &pio->io_alloc_list, pio, pio->io_allocator); 2456 if (error) { 2457 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2458 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2459 ASSERT(has_data); 2460 2461 /* 2462 * If we failed to allocate the gang block header then 2463 * we remove any additional allocation reservations that 2464 * we placed here. The original reservation will 2465 * be removed when the logical I/O goes to the ready 2466 * stage. 2467 */ 2468 metaslab_class_throttle_unreserve(mc, 2469 gbh_copies - copies, pio->io_allocator, pio); 2470 } 2471 pio->io_error = error; 2472 return (ZIO_PIPELINE_CONTINUE); 2473 } 2474 2475 if (pio == gio) { 2476 gnpp = &gio->io_gang_tree; 2477 } else { 2478 gnpp = pio->io_private; 2479 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2480 } 2481 2482 gn = zio_gang_node_alloc(gnpp); 2483 gbh = gn->gn_gbh; 2484 bzero(gbh, SPA_GANGBLOCKSIZE); 2485 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 2486 2487 /* 2488 * Create the gang header. 2489 */ 2490 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2491 zio_write_gang_done, NULL, pio->io_priority, 2492 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2493 2494 /* 2495 * Create and nowait the gang children. 2496 */ 2497 for (int g = 0; resid != 0; resid -= lsize, g++) { 2498 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2499 SPA_MINBLOCKSIZE); 2500 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2501 2502 zp.zp_checksum = gio->io_prop.zp_checksum; 2503 zp.zp_compress = ZIO_COMPRESS_OFF; 2504 zp.zp_type = DMU_OT_NONE; 2505 zp.zp_level = 0; 2506 zp.zp_copies = gio->io_prop.zp_copies; 2507 zp.zp_dedup = B_FALSE; 2508 zp.zp_dedup_verify = B_FALSE; 2509 zp.zp_nopwrite = B_FALSE; 2510 zp.zp_encrypt = gio->io_prop.zp_encrypt; 2511 zp.zp_byteorder = gio->io_prop.zp_byteorder; 2512 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN); 2513 bzero(zp.zp_iv, ZIO_DATA_IV_LEN); 2514 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN); 2515 2516 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2517 has_data ? abd_get_offset(pio->io_abd, pio->io_size - 2518 resid) : NULL, lsize, lsize, &zp, 2519 zio_write_gang_member_ready, NULL, NULL, 2520 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 2521 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2522 2523 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2524 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2525 ASSERT(has_data); 2526 2527 /* 2528 * Gang children won't throttle but we should 2529 * account for their work, so reserve an allocation 2530 * slot for them here. 2531 */ 2532 VERIFY(metaslab_class_throttle_reserve(mc, 2533 zp.zp_copies, cio->io_allocator, cio, flags)); 2534 } 2535 zio_nowait(cio); 2536 } 2537 2538 /* 2539 * Set pio's pipeline to just wait for zio to finish. 2540 */ 2541 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2542 2543 zio_nowait(zio); 2544 2545 return (ZIO_PIPELINE_CONTINUE); 2546 } 2547 2548 /* 2549 * The zio_nop_write stage in the pipeline determines if allocating a 2550 * new bp is necessary. The nopwrite feature can handle writes in 2551 * either syncing or open context (i.e. zil writes) and as a result is 2552 * mutually exclusive with dedup. 2553 * 2554 * By leveraging a cryptographically secure checksum, such as SHA256, we 2555 * can compare the checksums of the new data and the old to determine if 2556 * allocating a new block is required. Note that our requirements for 2557 * cryptographic strength are fairly weak: there can't be any accidental 2558 * hash collisions, but we don't need to be secure against intentional 2559 * (malicious) collisions. To trigger a nopwrite, you have to be able 2560 * to write the file to begin with, and triggering an incorrect (hash 2561 * collision) nopwrite is no worse than simply writing to the file. 2562 * That said, there are no known attacks against the checksum algorithms 2563 * used for nopwrite, assuming that the salt and the checksums 2564 * themselves remain secret. 2565 */ 2566 static int 2567 zio_nop_write(zio_t *zio) 2568 { 2569 blkptr_t *bp = zio->io_bp; 2570 blkptr_t *bp_orig = &zio->io_bp_orig; 2571 zio_prop_t *zp = &zio->io_prop; 2572 2573 ASSERT(BP_GET_LEVEL(bp) == 0); 2574 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2575 ASSERT(zp->zp_nopwrite); 2576 ASSERT(!zp->zp_dedup); 2577 ASSERT(zio->io_bp_override == NULL); 2578 ASSERT(IO_IS_ALLOCATING(zio)); 2579 2580 /* 2581 * Check to see if the original bp and the new bp have matching 2582 * characteristics (i.e. same checksum, compression algorithms, etc). 2583 * If they don't then just continue with the pipeline which will 2584 * allocate a new bp. 2585 */ 2586 if (BP_IS_HOLE(bp_orig) || 2587 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2588 ZCHECKSUM_FLAG_NOPWRITE) || 2589 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || 2590 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2591 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2592 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2593 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2594 return (ZIO_PIPELINE_CONTINUE); 2595 2596 /* 2597 * If the checksums match then reset the pipeline so that we 2598 * avoid allocating a new bp and issuing any I/O. 2599 */ 2600 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2601 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 2602 ZCHECKSUM_FLAG_NOPWRITE); 2603 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 2604 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 2605 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 2606 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 2607 sizeof (uint64_t)) == 0); 2608 2609 *bp = *bp_orig; 2610 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2611 zio->io_flags |= ZIO_FLAG_NOPWRITE; 2612 } 2613 2614 return (ZIO_PIPELINE_CONTINUE); 2615 } 2616 2617 /* 2618 * ========================================================================== 2619 * Dedup 2620 * ========================================================================== 2621 */ 2622 static void 2623 zio_ddt_child_read_done(zio_t *zio) 2624 { 2625 blkptr_t *bp = zio->io_bp; 2626 ddt_entry_t *dde = zio->io_private; 2627 ddt_phys_t *ddp; 2628 zio_t *pio = zio_unique_parent(zio); 2629 2630 mutex_enter(&pio->io_lock); 2631 ddp = ddt_phys_select(dde, bp); 2632 if (zio->io_error == 0) 2633 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 2634 2635 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 2636 dde->dde_repair_abd = zio->io_abd; 2637 else 2638 abd_free(zio->io_abd); 2639 mutex_exit(&pio->io_lock); 2640 } 2641 2642 static int 2643 zio_ddt_read_start(zio_t *zio) 2644 { 2645 blkptr_t *bp = zio->io_bp; 2646 2647 ASSERT(BP_GET_DEDUP(bp)); 2648 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2649 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2650 2651 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2652 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2653 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 2654 ddt_phys_t *ddp = dde->dde_phys; 2655 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 2656 blkptr_t blk; 2657 2658 ASSERT(zio->io_vsd == NULL); 2659 zio->io_vsd = dde; 2660 2661 if (ddp_self == NULL) 2662 return (ZIO_PIPELINE_CONTINUE); 2663 2664 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2665 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 2666 continue; 2667 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 2668 &blk); 2669 zio_nowait(zio_read(zio, zio->io_spa, &blk, 2670 abd_alloc_for_io(zio->io_size, B_TRUE), 2671 zio->io_size, zio_ddt_child_read_done, dde, 2672 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 2673 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 2674 } 2675 return (ZIO_PIPELINE_CONTINUE); 2676 } 2677 2678 zio_nowait(zio_read(zio, zio->io_spa, bp, 2679 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 2680 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 2681 2682 return (ZIO_PIPELINE_CONTINUE); 2683 } 2684 2685 static int 2686 zio_ddt_read_done(zio_t *zio) 2687 { 2688 blkptr_t *bp = zio->io_bp; 2689 2690 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 2691 return (ZIO_PIPELINE_STOP); 2692 } 2693 2694 ASSERT(BP_GET_DEDUP(bp)); 2695 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2696 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2697 2698 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2699 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2700 ddt_entry_t *dde = zio->io_vsd; 2701 if (ddt == NULL) { 2702 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 2703 return (ZIO_PIPELINE_CONTINUE); 2704 } 2705 if (dde == NULL) { 2706 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 2707 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 2708 return (ZIO_PIPELINE_STOP); 2709 } 2710 if (dde->dde_repair_abd != NULL) { 2711 abd_copy(zio->io_abd, dde->dde_repair_abd, 2712 zio->io_size); 2713 zio->io_child_error[ZIO_CHILD_DDT] = 0; 2714 } 2715 ddt_repair_done(ddt, dde); 2716 zio->io_vsd = NULL; 2717 } 2718 2719 ASSERT(zio->io_vsd == NULL); 2720 2721 return (ZIO_PIPELINE_CONTINUE); 2722 } 2723 2724 static boolean_t 2725 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 2726 { 2727 spa_t *spa = zio->io_spa; 2728 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); 2729 2730 /* We should never get a raw, override zio */ 2731 ASSERT(!(zio->io_bp_override && do_raw)); 2732 2733 /* 2734 * Note: we compare the original data, not the transformed data, 2735 * because when zio->io_bp is an override bp, we will not have 2736 * pushed the I/O transforms. That's an important optimization 2737 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 2738 * However, we should never get a raw, override zio so in these 2739 * cases we can compare the io_data directly. This is useful because 2740 * it allows us to do dedup verification even if we don't have access 2741 * to the original data (for instance, if the encryption keys aren't 2742 * loaded). 2743 */ 2744 2745 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2746 zio_t *lio = dde->dde_lead_zio[p]; 2747 2748 if (lio != NULL && do_raw) { 2749 return (lio->io_size != zio->io_size || 2750 abd_cmp(zio->io_abd, lio->io_abd, 2751 zio->io_size) != 0); 2752 } else if (lio != NULL) { 2753 return (lio->io_orig_size != zio->io_orig_size || 2754 abd_cmp(zio->io_orig_abd, lio->io_orig_abd, 2755 zio->io_orig_size) != 0); 2756 } 2757 } 2758 2759 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2760 ddt_phys_t *ddp = &dde->dde_phys[p]; 2761 2762 if (ddp->ddp_phys_birth != 0 && do_raw) { 2763 blkptr_t blk = *zio->io_bp; 2764 uint64_t psize; 2765 abd_t *tmpabd; 2766 int error; 2767 2768 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 2769 psize = BP_GET_PSIZE(&blk); 2770 2771 if (psize != zio->io_size) 2772 return (B_TRUE); 2773 2774 ddt_exit(ddt); 2775 2776 tmpabd = abd_alloc_for_io(psize, B_TRUE); 2777 2778 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, 2779 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 2780 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2781 ZIO_FLAG_RAW, &zio->io_bookmark)); 2782 2783 if (error == 0) { 2784 if (abd_cmp(tmpabd, zio->io_abd, psize) != 0) 2785 error = SET_ERROR(ENOENT); 2786 } 2787 2788 abd_free(tmpabd); 2789 ddt_enter(ddt); 2790 return (error != 0); 2791 } else if (ddp->ddp_phys_birth != 0) { 2792 arc_buf_t *abuf = NULL; 2793 arc_flags_t aflags = ARC_FLAG_WAIT; 2794 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 2795 blkptr_t blk = *zio->io_bp; 2796 int error; 2797 2798 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 2799 2800 if (BP_GET_LSIZE(&blk) != zio->io_orig_size) 2801 return (B_TRUE); 2802 2803 ddt_exit(ddt); 2804 2805 /* 2806 * Intuitively, it would make more sense to compare 2807 * io_abd than io_orig_abd in the raw case since you 2808 * don't want to look at any transformations that have 2809 * happened to the data. However, for raw I/Os the 2810 * data will actually be the same in io_abd and 2811 * io_orig_abd, so all we have to do is issue this as 2812 * a raw ARC read. 2813 */ 2814 if (do_raw) { 2815 zio_flags |= ZIO_FLAG_RAW; 2816 ASSERT3U(zio->io_size, ==, zio->io_orig_size); 2817 ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd, 2818 zio->io_size)); 2819 ASSERT3P(zio->io_transform_stack, ==, NULL); 2820 } 2821 2822 error = arc_read(NULL, spa, &blk, 2823 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 2824 zio_flags, &aflags, &zio->io_bookmark); 2825 2826 if (error == 0) { 2827 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 2828 zio->io_orig_size) != 0) 2829 error = SET_ERROR(ENOENT); 2830 arc_buf_destroy(abuf, &abuf); 2831 } 2832 2833 ddt_enter(ddt); 2834 return (error != 0); 2835 } 2836 } 2837 2838 return (B_FALSE); 2839 } 2840 2841 static void 2842 zio_ddt_child_write_ready(zio_t *zio) 2843 { 2844 int p = zio->io_prop.zp_copies; 2845 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2846 ddt_entry_t *dde = zio->io_private; 2847 ddt_phys_t *ddp = &dde->dde_phys[p]; 2848 zio_t *pio; 2849 2850 if (zio->io_error) 2851 return; 2852 2853 ddt_enter(ddt); 2854 2855 ASSERT(dde->dde_lead_zio[p] == zio); 2856 2857 ddt_phys_fill(ddp, zio->io_bp); 2858 2859 zio_link_t *zl = NULL; 2860 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 2861 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 2862 2863 ddt_exit(ddt); 2864 } 2865 2866 static void 2867 zio_ddt_child_write_done(zio_t *zio) 2868 { 2869 int p = zio->io_prop.zp_copies; 2870 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2871 ddt_entry_t *dde = zio->io_private; 2872 ddt_phys_t *ddp = &dde->dde_phys[p]; 2873 2874 ddt_enter(ddt); 2875 2876 ASSERT(ddp->ddp_refcnt == 0); 2877 ASSERT(dde->dde_lead_zio[p] == zio); 2878 dde->dde_lead_zio[p] = NULL; 2879 2880 if (zio->io_error == 0) { 2881 zio_link_t *zl = NULL; 2882 while (zio_walk_parents(zio, &zl) != NULL) 2883 ddt_phys_addref(ddp); 2884 } else { 2885 ddt_phys_clear(ddp); 2886 } 2887 2888 ddt_exit(ddt); 2889 } 2890 2891 static void 2892 zio_ddt_ditto_write_done(zio_t *zio) 2893 { 2894 int p = DDT_PHYS_DITTO; 2895 zio_prop_t *zp = &zio->io_prop; 2896 blkptr_t *bp = zio->io_bp; 2897 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2898 ddt_entry_t *dde = zio->io_private; 2899 ddt_phys_t *ddp = &dde->dde_phys[p]; 2900 ddt_key_t *ddk = &dde->dde_key; 2901 2902 ddt_enter(ddt); 2903 2904 ASSERT(ddp->ddp_refcnt == 0); 2905 ASSERT(dde->dde_lead_zio[p] == zio); 2906 dde->dde_lead_zio[p] = NULL; 2907 2908 if (zio->io_error == 0) { 2909 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum)); 2910 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP); 2911 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp)); 2912 if (ddp->ddp_phys_birth != 0) 2913 ddt_phys_free(ddt, ddk, ddp, zio->io_txg); 2914 ddt_phys_fill(ddp, bp); 2915 } 2916 2917 ddt_exit(ddt); 2918 } 2919 2920 static int 2921 zio_ddt_write(zio_t *zio) 2922 { 2923 spa_t *spa = zio->io_spa; 2924 blkptr_t *bp = zio->io_bp; 2925 uint64_t txg = zio->io_txg; 2926 zio_prop_t *zp = &zio->io_prop; 2927 int p = zp->zp_copies; 2928 int ditto_copies; 2929 zio_t *cio = NULL; 2930 zio_t *dio = NULL; 2931 ddt_t *ddt = ddt_select(spa, bp); 2932 ddt_entry_t *dde; 2933 ddt_phys_t *ddp; 2934 2935 ASSERT(BP_GET_DEDUP(bp)); 2936 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 2937 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 2938 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 2939 2940 ddt_enter(ddt); 2941 dde = ddt_lookup(ddt, bp, B_TRUE); 2942 ddp = &dde->dde_phys[p]; 2943 2944 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 2945 /* 2946 * If we're using a weak checksum, upgrade to a strong checksum 2947 * and try again. If we're already using a strong checksum, 2948 * we can't resolve it, so just convert to an ordinary write. 2949 * (And automatically e-mail a paper to Nature?) 2950 */ 2951 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 2952 ZCHECKSUM_FLAG_DEDUP)) { 2953 zp->zp_checksum = spa_dedup_checksum(spa); 2954 zio_pop_transforms(zio); 2955 zio->io_stage = ZIO_STAGE_OPEN; 2956 BP_ZERO(bp); 2957 } else { 2958 zp->zp_dedup = B_FALSE; 2959 BP_SET_DEDUP(bp, B_FALSE); 2960 } 2961 ASSERT(!BP_GET_DEDUP(bp)); 2962 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2963 ddt_exit(ddt); 2964 return (ZIO_PIPELINE_CONTINUE); 2965 } 2966 2967 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp); 2968 ASSERT(ditto_copies < SPA_DVAS_PER_BP); 2969 2970 if (ditto_copies > ddt_ditto_copies_present(dde) && 2971 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) { 2972 zio_prop_t czp = *zp; 2973 2974 czp.zp_copies = ditto_copies; 2975 2976 /* 2977 * If we arrived here with an override bp, we won't have run 2978 * the transform stack, so we won't have the data we need to 2979 * generate a child i/o. So, toss the override bp and restart. 2980 * This is safe, because using the override bp is just an 2981 * optimization; and it's rare, so the cost doesn't matter. 2982 */ 2983 if (zio->io_bp_override) { 2984 zio_pop_transforms(zio); 2985 zio->io_stage = ZIO_STAGE_OPEN; 2986 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2987 zio->io_bp_override = NULL; 2988 BP_ZERO(bp); 2989 ddt_exit(ddt); 2990 return (ZIO_PIPELINE_CONTINUE); 2991 } 2992 2993 dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 2994 zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL, 2995 NULL, zio_ddt_ditto_write_done, dde, zio->io_priority, 2996 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2997 2998 zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL); 2999 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio; 3000 } 3001 3002 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 3003 if (ddp->ddp_phys_birth != 0) 3004 ddt_bp_fill(ddp, bp, txg); 3005 if (dde->dde_lead_zio[p] != NULL) 3006 zio_add_child(zio, dde->dde_lead_zio[p]); 3007 else 3008 ddt_phys_addref(ddp); 3009 } else if (zio->io_bp_override) { 3010 ASSERT(bp->blk_birth == txg); 3011 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 3012 ddt_phys_fill(ddp, bp); 3013 ddt_phys_addref(ddp); 3014 } else { 3015 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 3016 zio->io_orig_size, zio->io_orig_size, zp, 3017 zio_ddt_child_write_ready, NULL, NULL, 3018 zio_ddt_child_write_done, dde, zio->io_priority, 3019 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3020 3021 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 3022 dde->dde_lead_zio[p] = cio; 3023 } 3024 3025 ddt_exit(ddt); 3026 3027 if (cio) 3028 zio_nowait(cio); 3029 if (dio) 3030 zio_nowait(dio); 3031 3032 return (ZIO_PIPELINE_CONTINUE); 3033 } 3034 3035 ddt_entry_t *freedde; /* for debugging */ 3036 3037 static int 3038 zio_ddt_free(zio_t *zio) 3039 { 3040 spa_t *spa = zio->io_spa; 3041 blkptr_t *bp = zio->io_bp; 3042 ddt_t *ddt = ddt_select(spa, bp); 3043 ddt_entry_t *dde; 3044 ddt_phys_t *ddp; 3045 3046 ASSERT(BP_GET_DEDUP(bp)); 3047 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3048 3049 ddt_enter(ddt); 3050 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 3051 ddp = ddt_phys_select(dde, bp); 3052 ddt_phys_decref(ddp); 3053 ddt_exit(ddt); 3054 3055 return (ZIO_PIPELINE_CONTINUE); 3056 } 3057 3058 /* 3059 * ========================================================================== 3060 * Allocate and free blocks 3061 * ========================================================================== 3062 */ 3063 3064 static zio_t * 3065 zio_io_to_allocate(spa_t *spa, int allocator) 3066 { 3067 zio_t *zio; 3068 3069 ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator])); 3070 3071 zio = avl_first(&spa->spa_alloc_trees[allocator]); 3072 if (zio == NULL) 3073 return (NULL); 3074 3075 ASSERT(IO_IS_ALLOCATING(zio)); 3076 3077 /* 3078 * Try to place a reservation for this zio. If we're unable to 3079 * reserve then we throttle. 3080 */ 3081 ASSERT3U(zio->io_allocator, ==, allocator); 3082 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, 3083 zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) { 3084 return (NULL); 3085 } 3086 3087 avl_remove(&spa->spa_alloc_trees[allocator], zio); 3088 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 3089 3090 return (zio); 3091 } 3092 3093 static int 3094 zio_dva_throttle(zio_t *zio) 3095 { 3096 spa_t *spa = zio->io_spa; 3097 zio_t *nio; 3098 metaslab_class_t *mc; 3099 3100 /* locate an appropriate allocation class */ 3101 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, 3102 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); 3103 3104 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 3105 !mc->mc_alloc_throttle_enabled || 3106 zio->io_child_type == ZIO_CHILD_GANG || 3107 zio->io_flags & ZIO_FLAG_NODATA) { 3108 return (ZIO_PIPELINE_CONTINUE); 3109 } 3110 3111 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3112 3113 ASSERT3U(zio->io_queued_timestamp, >, 0); 3114 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3115 3116 zbookmark_phys_t *bm = &zio->io_bookmark; 3117 /* 3118 * We want to try to use as many allocators as possible to help improve 3119 * performance, but we also want logically adjacent IOs to be physically 3120 * adjacent to improve sequential read performance. We chunk each object 3121 * into 2^20 block regions, and then hash based on the objset, object, 3122 * level, and region to accomplish both of these goals. 3123 */ 3124 zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object, 3125 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count; 3126 mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]); 3127 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3128 zio->io_metaslab_class = mc; 3129 avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio); 3130 nio = zio_io_to_allocate(spa, zio->io_allocator); 3131 mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]); 3132 3133 if (nio == zio) 3134 return (ZIO_PIPELINE_CONTINUE); 3135 3136 if (nio != NULL) { 3137 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3138 /* 3139 * We are passing control to a new zio so make sure that 3140 * it is processed by a different thread. We do this to 3141 * avoid stack overflows that can occur when parents are 3142 * throttled and children are making progress. We allow 3143 * it to go to the head of the taskq since it's already 3144 * been waiting. 3145 */ 3146 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE); 3147 } 3148 return (ZIO_PIPELINE_STOP); 3149 } 3150 3151 static void 3152 zio_allocate_dispatch(spa_t *spa, int allocator) 3153 { 3154 zio_t *zio; 3155 3156 mutex_enter(&spa->spa_alloc_locks[allocator]); 3157 zio = zio_io_to_allocate(spa, allocator); 3158 mutex_exit(&spa->spa_alloc_locks[allocator]); 3159 if (zio == NULL) 3160 return; 3161 3162 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 3163 ASSERT0(zio->io_error); 3164 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 3165 } 3166 3167 static int 3168 zio_dva_allocate(zio_t *zio) 3169 { 3170 spa_t *spa = zio->io_spa; 3171 metaslab_class_t *mc; 3172 blkptr_t *bp = zio->io_bp; 3173 int error; 3174 int flags = 0; 3175 3176 if (zio->io_gang_leader == NULL) { 3177 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3178 zio->io_gang_leader = zio; 3179 } 3180 3181 ASSERT(BP_IS_HOLE(bp)); 3182 ASSERT0(BP_GET_NDVAS(bp)); 3183 ASSERT3U(zio->io_prop.zp_copies, >, 0); 3184 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 3185 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 3186 3187 if (zio->io_flags & ZIO_FLAG_NODATA) 3188 flags |= METASLAB_DONT_THROTTLE; 3189 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) 3190 flags |= METASLAB_GANG_CHILD; 3191 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) 3192 flags |= METASLAB_ASYNC_ALLOC; 3193 3194 /* 3195 * if not already chosen, locate an appropriate allocation class 3196 */ 3197 mc = zio->io_metaslab_class; 3198 if (mc == NULL) { 3199 mc = spa_preferred_class(spa, zio->io_size, 3200 zio->io_prop.zp_type, zio->io_prop.zp_level, 3201 zio->io_prop.zp_zpl_smallblk); 3202 zio->io_metaslab_class = mc; 3203 } 3204 3205 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3206 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3207 &zio->io_alloc_list, zio, zio->io_allocator); 3208 3209 /* 3210 * Fallback to normal class when an alloc class is full 3211 */ 3212 if (error == ENOSPC && mc != spa_normal_class(spa)) { 3213 /* 3214 * If throttling, transfer reservation over to normal class. 3215 * The io_allocator slot can remain the same even though we 3216 * are switching classes. 3217 */ 3218 if (mc->mc_alloc_throttle_enabled && 3219 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { 3220 metaslab_class_throttle_unreserve(mc, 3221 zio->io_prop.zp_copies, zio->io_allocator, zio); 3222 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; 3223 3224 mc = spa_normal_class(spa); 3225 VERIFY(metaslab_class_throttle_reserve(mc, 3226 zio->io_prop.zp_copies, zio->io_allocator, zio, 3227 flags | METASLAB_MUST_RESERVE)); 3228 } else { 3229 mc = spa_normal_class(spa); 3230 } 3231 zio->io_metaslab_class = mc; 3232 3233 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3234 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3235 &zio->io_alloc_list, zio, zio->io_allocator); 3236 } 3237 3238 if (error != 0) { 3239 zfs_dbgmsg("%s: metaslab allocation failure: zio %p, " 3240 "size %llu, error %d", spa_name(spa), zio, zio->io_size, 3241 error); 3242 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 3243 return (zio_write_gang_block(zio)); 3244 zio->io_error = error; 3245 } 3246 3247 return (ZIO_PIPELINE_CONTINUE); 3248 } 3249 3250 static int 3251 zio_dva_free(zio_t *zio) 3252 { 3253 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 3254 3255 return (ZIO_PIPELINE_CONTINUE); 3256 } 3257 3258 static int 3259 zio_dva_claim(zio_t *zio) 3260 { 3261 int error; 3262 3263 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 3264 if (error) 3265 zio->io_error = error; 3266 3267 return (ZIO_PIPELINE_CONTINUE); 3268 } 3269 3270 /* 3271 * Undo an allocation. This is used by zio_done() when an I/O fails 3272 * and we want to give back the block we just allocated. 3273 * This handles both normal blocks and gang blocks. 3274 */ 3275 static void 3276 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 3277 { 3278 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 3279 ASSERT(zio->io_bp_override == NULL); 3280 3281 if (!BP_IS_HOLE(bp)) 3282 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 3283 3284 if (gn != NULL) { 3285 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 3286 zio_dva_unallocate(zio, gn->gn_child[g], 3287 &gn->gn_gbh->zg_blkptr[g]); 3288 } 3289 } 3290 } 3291 3292 /* 3293 * Try to allocate an intent log block. Return 0 on success, errno on failure. 3294 */ 3295 int 3296 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, 3297 blkptr_t *old_bp, uint64_t size, boolean_t *slog) 3298 { 3299 int error = 1; 3300 zio_alloc_list_t io_alloc_list; 3301 3302 ASSERT(txg > spa_syncing_txg(spa)); 3303 3304 metaslab_trace_init(&io_alloc_list); 3305 3306 /* 3307 * Block pointer fields are useful to metaslabs for stats and debugging. 3308 * Fill in the obvious ones before calling into metaslab_alloc(). 3309 */ 3310 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3311 BP_SET_PSIZE(new_bp, size); 3312 BP_SET_LEVEL(new_bp, 0); 3313 3314 /* 3315 * When allocating a zil block, we don't have information about 3316 * the final destination of the block except the objset it's part 3317 * of, so we just hash the objset ID to pick the allocator to get 3318 * some parallelism. 3319 */ 3320 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 3321 txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL, 3322 cityhash4(0, 0, 0, 3323 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count); 3324 if (error == 0) { 3325 *slog = TRUE; 3326 } else { 3327 error = metaslab_alloc(spa, spa_normal_class(spa), size, 3328 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID, 3329 &io_alloc_list, NULL, cityhash4(0, 0, 0, 3330 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count); 3331 if (error == 0) 3332 *slog = FALSE; 3333 } 3334 metaslab_trace_fini(&io_alloc_list); 3335 3336 if (error == 0) { 3337 BP_SET_LSIZE(new_bp, size); 3338 BP_SET_PSIZE(new_bp, size); 3339 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 3340 BP_SET_CHECKSUM(new_bp, 3341 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 3342 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 3343 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3344 BP_SET_LEVEL(new_bp, 0); 3345 BP_SET_DEDUP(new_bp, 0); 3346 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 3347 3348 /* 3349 * encrypted blocks will require an IV and salt. We generate 3350 * these now since we will not be rewriting the bp at 3351 * rewrite time. 3352 */ 3353 if (os->os_encrypted) { 3354 uint8_t iv[ZIO_DATA_IV_LEN]; 3355 uint8_t salt[ZIO_DATA_SALT_LEN]; 3356 3357 BP_SET_CRYPT(new_bp, B_TRUE); 3358 VERIFY0(spa_crypt_get_salt(spa, 3359 dmu_objset_id(os), salt)); 3360 VERIFY0(zio_crypt_generate_iv(iv)); 3361 3362 zio_crypt_encode_params_bp(new_bp, salt, iv); 3363 } 3364 } else { 3365 zfs_dbgmsg("%s: zil block allocation failure: " 3366 "size %llu, error %d", spa_name(spa), size, error); 3367 } 3368 3369 return (error); 3370 } 3371 3372 /* 3373 * ========================================================================== 3374 * Read and write to physical devices 3375 * ========================================================================== 3376 */ 3377 3378 /* 3379 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3380 * stops after this stage and will resume upon I/O completion. 3381 * However, there are instances where the vdev layer may need to 3382 * continue the pipeline when an I/O was not issued. Since the I/O 3383 * that was sent to the vdev layer might be different than the one 3384 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3385 * force the underlying vdev layers to call either zio_execute() or 3386 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3387 */ 3388 static int 3389 zio_vdev_io_start(zio_t *zio) 3390 { 3391 vdev_t *vd = zio->io_vd; 3392 uint64_t align; 3393 spa_t *spa = zio->io_spa; 3394 3395 zio->io_delay = 0; 3396 3397 ASSERT(zio->io_error == 0); 3398 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3399 3400 if (vd == NULL) { 3401 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3402 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3403 3404 /* 3405 * The mirror_ops handle multiple DVAs in a single BP. 3406 */ 3407 vdev_mirror_ops.vdev_op_io_start(zio); 3408 return (ZIO_PIPELINE_STOP); 3409 } 3410 3411 ASSERT3P(zio->io_logical, !=, zio); 3412 if (zio->io_type == ZIO_TYPE_WRITE) { 3413 ASSERT(spa->spa_trust_config); 3414 3415 /* 3416 * Note: the code can handle other kinds of writes, 3417 * but we don't expect them. 3418 */ 3419 if (zio->io_vd->vdev_removing) { 3420 ASSERT(zio->io_flags & 3421 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3422 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 3423 } 3424 } 3425 3426 align = 1ULL << vd->vdev_top->vdev_ashift; 3427 3428 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3429 P2PHASE(zio->io_size, align) != 0) { 3430 /* Transform logical writes to be a full physical block size. */ 3431 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3432 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3433 ASSERT(vd == vd->vdev_top); 3434 if (zio->io_type == ZIO_TYPE_WRITE) { 3435 abd_copy(abuf, zio->io_abd, zio->io_size); 3436 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3437 } 3438 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3439 } 3440 3441 /* 3442 * If this is not a physical io, make sure that it is properly aligned 3443 * before proceeding. 3444 */ 3445 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3446 ASSERT0(P2PHASE(zio->io_offset, align)); 3447 ASSERT0(P2PHASE(zio->io_size, align)); 3448 } else { 3449 /* 3450 * For physical writes, we allow 512b aligned writes and assume 3451 * the device will perform a read-modify-write as necessary. 3452 */ 3453 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3454 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3455 } 3456 3457 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3458 3459 /* 3460 * If this is a repair I/O, and there's no self-healing involved -- 3461 * that is, we're just resilvering what we expect to resilver -- 3462 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3463 * This prevents spurious resilvering. 3464 * 3465 * There are a few ways that we can end up creating these spurious 3466 * resilver i/os: 3467 * 3468 * 1. A resilver i/o will be issued if any DVA in the BP has a 3469 * dirty DTL. The mirror code will issue resilver writes to 3470 * each DVA, including the one(s) that are not on vdevs with dirty 3471 * DTLs. 3472 * 3473 * 2. With nested replication, which happens when we have a 3474 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 3475 * For example, given mirror(replacing(A+B), C), it's likely that 3476 * only A is out of date (it's the new device). In this case, we'll 3477 * read from C, then use the data to resilver A+B -- but we don't 3478 * actually want to resilver B, just A. The top-level mirror has no 3479 * way to know this, so instead we just discard unnecessary repairs 3480 * as we work our way down the vdev tree. 3481 * 3482 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 3483 * The same logic applies to any form of nested replication: ditto 3484 * + mirror, RAID-Z + replacing, etc. 3485 * 3486 * However, indirect vdevs point off to other vdevs which may have 3487 * DTL's, so we never bypass them. The child i/os on concrete vdevs 3488 * will be properly bypassed instead. 3489 */ 3490 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3491 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3492 zio->io_txg != 0 && /* not a delegated i/o */ 3493 vd->vdev_ops != &vdev_indirect_ops && 3494 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3495 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3496 zio_vdev_io_bypass(zio); 3497 return (ZIO_PIPELINE_CONTINUE); 3498 } 3499 3500 if (vd->vdev_ops->vdev_op_leaf && (zio->io_type == ZIO_TYPE_READ || 3501 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM)) { 3502 3503 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 3504 return (ZIO_PIPELINE_CONTINUE); 3505 3506 if ((zio = vdev_queue_io(zio)) == NULL) 3507 return (ZIO_PIPELINE_STOP); 3508 3509 if (!vdev_accessible(vd, zio)) { 3510 zio->io_error = SET_ERROR(ENXIO); 3511 zio_interrupt(zio); 3512 return (ZIO_PIPELINE_STOP); 3513 } 3514 zio->io_delay = gethrtime(); 3515 } 3516 3517 vd->vdev_ops->vdev_op_io_start(zio); 3518 return (ZIO_PIPELINE_STOP); 3519 } 3520 3521 static int 3522 zio_vdev_io_done(zio_t *zio) 3523 { 3524 vdev_t *vd = zio->io_vd; 3525 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3526 boolean_t unexpected_error = B_FALSE; 3527 3528 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3529 return (ZIO_PIPELINE_STOP); 3530 } 3531 3532 ASSERT(zio->io_type == ZIO_TYPE_READ || 3533 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM); 3534 3535 if (zio->io_delay) 3536 zio->io_delay = gethrtime() - zio->io_delay; 3537 3538 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 3539 3540 vdev_queue_io_done(zio); 3541 3542 if (zio->io_type == ZIO_TYPE_WRITE) 3543 vdev_cache_write(zio); 3544 3545 if (zio_injection_enabled && zio->io_error == 0) 3546 zio->io_error = zio_handle_device_injection(vd, 3547 zio, EIO); 3548 3549 if (zio_injection_enabled && zio->io_error == 0) 3550 zio->io_error = zio_handle_label_injection(zio, EIO); 3551 3552 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) { 3553 if (!vdev_accessible(vd, zio)) { 3554 zio->io_error = SET_ERROR(ENXIO); 3555 } else { 3556 unexpected_error = B_TRUE; 3557 } 3558 } 3559 } 3560 3561 ops->vdev_op_io_done(zio); 3562 3563 if (unexpected_error) 3564 VERIFY(vdev_probe(vd, zio) == NULL); 3565 3566 return (ZIO_PIPELINE_CONTINUE); 3567 } 3568 3569 /* 3570 * This function is used to change the priority of an existing zio that is 3571 * currently in-flight. This is used by the arc to upgrade priority in the 3572 * event that a demand read is made for a block that is currently queued 3573 * as a scrub or async read IO. Otherwise, the high priority read request 3574 * would end up having to wait for the lower priority IO. 3575 */ 3576 void 3577 zio_change_priority(zio_t *pio, zio_priority_t priority) 3578 { 3579 zio_t *cio, *cio_next; 3580 zio_link_t *zl = NULL; 3581 3582 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 3583 3584 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { 3585 vdev_queue_change_io_priority(pio, priority); 3586 } else { 3587 pio->io_priority = priority; 3588 } 3589 3590 mutex_enter(&pio->io_lock); 3591 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 3592 cio_next = zio_walk_children(pio, &zl); 3593 zio_change_priority(cio, priority); 3594 } 3595 mutex_exit(&pio->io_lock); 3596 } 3597 3598 /* 3599 * For non-raidz ZIOs, we can just copy aside the bad data read from the 3600 * disk, and use that to finish the checksum ereport later. 3601 */ 3602 static void 3603 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 3604 const abd_t *good_buf) 3605 { 3606 /* no processing needed */ 3607 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 3608 } 3609 3610 /*ARGSUSED*/ 3611 void 3612 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) 3613 { 3614 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); 3615 3616 abd_copy(abd, zio->io_abd, zio->io_size); 3617 3618 zcr->zcr_cbinfo = zio->io_size; 3619 zcr->zcr_cbdata = abd; 3620 zcr->zcr_finish = zio_vsd_default_cksum_finish; 3621 zcr->zcr_free = zio_abd_free; 3622 } 3623 3624 static int 3625 zio_vdev_io_assess(zio_t *zio) 3626 { 3627 vdev_t *vd = zio->io_vd; 3628 3629 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3630 return (ZIO_PIPELINE_STOP); 3631 } 3632 3633 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3634 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 3635 3636 if (zio->io_vsd != NULL) { 3637 zio->io_vsd_ops->vsd_free(zio); 3638 zio->io_vsd = NULL; 3639 } 3640 3641 if (zio_injection_enabled && zio->io_error == 0) 3642 zio->io_error = zio_handle_fault_injection(zio, EIO); 3643 3644 /* 3645 * If the I/O failed, determine whether we should attempt to retry it. 3646 * 3647 * On retry, we cut in line in the issue queue, since we don't want 3648 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 3649 */ 3650 if (zio->io_error && vd == NULL && 3651 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 3652 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 3653 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 3654 zio->io_error = 0; 3655 zio->io_flags |= ZIO_FLAG_IO_RETRY | 3656 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 3657 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 3658 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 3659 zio_requeue_io_start_cut_in_line); 3660 return (ZIO_PIPELINE_STOP); 3661 } 3662 3663 /* 3664 * If we got an error on a leaf device, convert it to ENXIO 3665 * if the device is not accessible at all. 3666 */ 3667 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 3668 !vdev_accessible(vd, zio)) 3669 zio->io_error = SET_ERROR(ENXIO); 3670 3671 /* 3672 * If we can't write to an interior vdev (mirror or RAID-Z), 3673 * set vdev_cant_write so that we stop trying to allocate from it. 3674 */ 3675 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 3676 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 3677 vd->vdev_cant_write = B_TRUE; 3678 } 3679 3680 /* 3681 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 3682 * attempts will ever succeed. In this case we set a persistent 3683 * boolean flag so that we don't bother with it in the future. 3684 */ 3685 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 3686 zio->io_type == ZIO_TYPE_IOCTL && 3687 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 3688 vd->vdev_nowritecache = B_TRUE; 3689 3690 if (zio->io_error) 3691 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3692 3693 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3694 zio->io_physdone != NULL) { 3695 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 3696 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 3697 zio->io_physdone(zio->io_logical); 3698 } 3699 3700 return (ZIO_PIPELINE_CONTINUE); 3701 } 3702 3703 void 3704 zio_vdev_io_reissue(zio_t *zio) 3705 { 3706 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3707 ASSERT(zio->io_error == 0); 3708 3709 zio->io_stage >>= 1; 3710 } 3711 3712 void 3713 zio_vdev_io_redone(zio_t *zio) 3714 { 3715 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 3716 3717 zio->io_stage >>= 1; 3718 } 3719 3720 void 3721 zio_vdev_io_bypass(zio_t *zio) 3722 { 3723 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3724 ASSERT(zio->io_error == 0); 3725 3726 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 3727 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 3728 } 3729 3730 /* 3731 * ========================================================================== 3732 * Encrypt and store encryption parameters 3733 * ========================================================================== 3734 */ 3735 3736 3737 /* 3738 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for 3739 * managing the storage of encryption parameters and passing them to the 3740 * lower-level encryption functions. 3741 */ 3742 static int 3743 zio_encrypt(zio_t *zio) 3744 { 3745 zio_prop_t *zp = &zio->io_prop; 3746 spa_t *spa = zio->io_spa; 3747 blkptr_t *bp = zio->io_bp; 3748 uint64_t psize = BP_GET_PSIZE(bp); 3749 uint64_t dsobj = zio->io_bookmark.zb_objset; 3750 dmu_object_type_t ot = BP_GET_TYPE(bp); 3751 void *enc_buf = NULL; 3752 abd_t *eabd = NULL; 3753 uint8_t salt[ZIO_DATA_SALT_LEN]; 3754 uint8_t iv[ZIO_DATA_IV_LEN]; 3755 uint8_t mac[ZIO_DATA_MAC_LEN]; 3756 boolean_t no_crypt = B_FALSE; 3757 3758 /* the root zio already encrypted the data */ 3759 if (zio->io_child_type == ZIO_CHILD_GANG) 3760 return (ZIO_PIPELINE_CONTINUE); 3761 3762 /* only ZIL blocks are re-encrypted on rewrite */ 3763 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) 3764 return (ZIO_PIPELINE_CONTINUE); 3765 3766 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { 3767 BP_SET_CRYPT(bp, B_FALSE); 3768 return (ZIO_PIPELINE_CONTINUE); 3769 } 3770 3771 /* if we are doing raw encryption set the provided encryption params */ 3772 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { 3773 ASSERT0(BP_GET_LEVEL(bp)); 3774 BP_SET_CRYPT(bp, B_TRUE); 3775 BP_SET_BYTEORDER(bp, zp->zp_byteorder); 3776 if (ot != DMU_OT_OBJSET) 3777 zio_crypt_encode_mac_bp(bp, zp->zp_mac); 3778 3779 /* dnode blocks must be written out in the provided byteorder */ 3780 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && 3781 ot == DMU_OT_DNODE) { 3782 void *bswap_buf = zio_buf_alloc(psize); 3783 abd_t *babd = abd_get_from_buf(bswap_buf, psize); 3784 3785 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 3786 abd_copy_to_buf(bswap_buf, zio->io_abd, psize); 3787 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, 3788 psize); 3789 3790 abd_take_ownership_of_buf(babd, B_TRUE); 3791 zio_push_transform(zio, babd, psize, psize, NULL); 3792 } 3793 3794 if (DMU_OT_IS_ENCRYPTED(ot)) 3795 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); 3796 return (ZIO_PIPELINE_CONTINUE); 3797 } 3798 3799 /* indirect blocks only maintain a cksum of the lower level MACs */ 3800 if (BP_GET_LEVEL(bp) > 0) { 3801 BP_SET_CRYPT(bp, B_TRUE); 3802 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, 3803 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), 3804 mac)); 3805 zio_crypt_encode_mac_bp(bp, mac); 3806 return (ZIO_PIPELINE_CONTINUE); 3807 } 3808 3809 /* 3810 * Objset blocks are a special case since they have 2 256-bit MACs 3811 * embedded within them. 3812 */ 3813 if (ot == DMU_OT_OBJSET) { 3814 ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); 3815 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 3816 BP_SET_CRYPT(bp, B_TRUE); 3817 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, 3818 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); 3819 return (ZIO_PIPELINE_CONTINUE); 3820 } 3821 3822 /* unencrypted object types are only authenticated with a MAC */ 3823 if (!DMU_OT_IS_ENCRYPTED(ot)) { 3824 BP_SET_CRYPT(bp, B_TRUE); 3825 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, 3826 zio->io_abd, psize, mac)); 3827 zio_crypt_encode_mac_bp(bp, mac); 3828 return (ZIO_PIPELINE_CONTINUE); 3829 } 3830 3831 /* 3832 * Later passes of sync-to-convergence may decide to rewrite data 3833 * in place to avoid more disk reallocations. This presents a problem 3834 * for encryption because this consitutes rewriting the new data with 3835 * the same encryption key and IV. However, this only applies to blocks 3836 * in the MOS (particularly the spacemaps) and we do not encrypt the 3837 * MOS. We assert that the zio is allocating or an intent log write 3838 * to enforce this. 3839 */ 3840 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); 3841 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); 3842 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); 3843 ASSERT3U(psize, !=, 0); 3844 3845 enc_buf = zio_buf_alloc(psize); 3846 eabd = abd_get_from_buf(enc_buf, psize); 3847 abd_take_ownership_of_buf(eabd, B_TRUE); 3848 3849 /* 3850 * For an explanation of what encryption parameters are stored 3851 * where, see the block comment in zio_crypt.c. 3852 */ 3853 if (ot == DMU_OT_INTENT_LOG) { 3854 zio_crypt_decode_params_bp(bp, salt, iv); 3855 } else { 3856 BP_SET_CRYPT(bp, B_TRUE); 3857 } 3858 3859 /* Perform the encryption. This should not fail */ 3860 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, 3861 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 3862 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); 3863 3864 /* encode encryption metadata into the bp */ 3865 if (ot == DMU_OT_INTENT_LOG) { 3866 /* 3867 * ZIL blocks store the MAC in the embedded checksum, so the 3868 * transform must always be applied. 3869 */ 3870 zio_crypt_encode_mac_zil(enc_buf, mac); 3871 zio_push_transform(zio, eabd, psize, psize, NULL); 3872 } else { 3873 BP_SET_CRYPT(bp, B_TRUE); 3874 zio_crypt_encode_params_bp(bp, salt, iv); 3875 zio_crypt_encode_mac_bp(bp, mac); 3876 3877 if (no_crypt) { 3878 ASSERT3U(ot, ==, DMU_OT_DNODE); 3879 abd_free(eabd); 3880 } else { 3881 zio_push_transform(zio, eabd, psize, psize, NULL); 3882 } 3883 } 3884 3885 return (ZIO_PIPELINE_CONTINUE); 3886 } 3887 3888 /* 3889 * ========================================================================== 3890 * Generate and verify checksums 3891 * ========================================================================== 3892 */ 3893 static int 3894 zio_checksum_generate(zio_t *zio) 3895 { 3896 blkptr_t *bp = zio->io_bp; 3897 enum zio_checksum checksum; 3898 3899 if (bp == NULL) { 3900 /* 3901 * This is zio_write_phys(). 3902 * We're either generating a label checksum, or none at all. 3903 */ 3904 checksum = zio->io_prop.zp_checksum; 3905 3906 if (checksum == ZIO_CHECKSUM_OFF) 3907 return (ZIO_PIPELINE_CONTINUE); 3908 3909 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 3910 } else { 3911 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 3912 ASSERT(!IO_IS_ALLOCATING(zio)); 3913 checksum = ZIO_CHECKSUM_GANG_HEADER; 3914 } else { 3915 checksum = BP_GET_CHECKSUM(bp); 3916 } 3917 } 3918 3919 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 3920 3921 return (ZIO_PIPELINE_CONTINUE); 3922 } 3923 3924 static int 3925 zio_checksum_verify(zio_t *zio) 3926 { 3927 zio_bad_cksum_t info; 3928 blkptr_t *bp = zio->io_bp; 3929 int error; 3930 3931 ASSERT(zio->io_vd != NULL); 3932 3933 if (bp == NULL) { 3934 /* 3935 * This is zio_read_phys(). 3936 * We're either verifying a label checksum, or nothing at all. 3937 */ 3938 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 3939 return (ZIO_PIPELINE_CONTINUE); 3940 3941 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 3942 } 3943 3944 if ((error = zio_checksum_error(zio, &info)) != 0) { 3945 zio->io_error = error; 3946 if (error == ECKSUM && 3947 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 3948 zfs_ereport_start_checksum(zio->io_spa, 3949 zio->io_vd, &zio->io_bookmark, zio, 3950 zio->io_offset, zio->io_size, NULL, &info); 3951 } 3952 } 3953 3954 return (ZIO_PIPELINE_CONTINUE); 3955 } 3956 3957 /* 3958 * Called by RAID-Z to ensure we don't compute the checksum twice. 3959 */ 3960 void 3961 zio_checksum_verified(zio_t *zio) 3962 { 3963 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 3964 } 3965 3966 /* 3967 * ========================================================================== 3968 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 3969 * An error of 0 indicates success. ENXIO indicates whole-device failure, 3970 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 3971 * indicate errors that are specific to one I/O, and most likely permanent. 3972 * Any other error is presumed to be worse because we weren't expecting it. 3973 * ========================================================================== 3974 */ 3975 int 3976 zio_worst_error(int e1, int e2) 3977 { 3978 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 3979 int r1, r2; 3980 3981 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 3982 if (e1 == zio_error_rank[r1]) 3983 break; 3984 3985 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 3986 if (e2 == zio_error_rank[r2]) 3987 break; 3988 3989 return (r1 > r2 ? e1 : e2); 3990 } 3991 3992 /* 3993 * ========================================================================== 3994 * I/O completion 3995 * ========================================================================== 3996 */ 3997 static int 3998 zio_ready(zio_t *zio) 3999 { 4000 blkptr_t *bp = zio->io_bp; 4001 zio_t *pio, *pio_next; 4002 zio_link_t *zl = NULL; 4003 4004 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, 4005 ZIO_WAIT_READY)) { 4006 return (ZIO_PIPELINE_STOP); 4007 } 4008 4009 if (zio->io_ready) { 4010 ASSERT(IO_IS_ALLOCATING(zio)); 4011 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 4012 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 4013 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 4014 4015 zio->io_ready(zio); 4016 } 4017 4018 if (bp != NULL && bp != &zio->io_bp_copy) 4019 zio->io_bp_copy = *bp; 4020 4021 if (zio->io_error != 0) { 4022 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4023 4024 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4025 ASSERT(IO_IS_ALLOCATING(zio)); 4026 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4027 ASSERT(zio->io_metaslab_class != NULL); 4028 4029 /* 4030 * We were unable to allocate anything, unreserve and 4031 * issue the next I/O to allocate. 4032 */ 4033 metaslab_class_throttle_unreserve( 4034 zio->io_metaslab_class, zio->io_prop.zp_copies, 4035 zio->io_allocator, zio); 4036 zio_allocate_dispatch(zio->io_spa, zio->io_allocator); 4037 } 4038 } 4039 4040 mutex_enter(&zio->io_lock); 4041 zio->io_state[ZIO_WAIT_READY] = 1; 4042 pio = zio_walk_parents(zio, &zl); 4043 mutex_exit(&zio->io_lock); 4044 4045 /* 4046 * As we notify zio's parents, new parents could be added. 4047 * New parents go to the head of zio's io_parent_list, however, 4048 * so we will (correctly) not notify them. The remainder of zio's 4049 * io_parent_list, from 'pio_next' onward, cannot change because 4050 * all parents must wait for us to be done before they can be done. 4051 */ 4052 for (; pio != NULL; pio = pio_next) { 4053 pio_next = zio_walk_parents(zio, &zl); 4054 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 4055 } 4056 4057 if (zio->io_flags & ZIO_FLAG_NODATA) { 4058 if (BP_IS_GANG(bp)) { 4059 zio->io_flags &= ~ZIO_FLAG_NODATA; 4060 } else { 4061 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 4062 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 4063 } 4064 } 4065 4066 if (zio_injection_enabled && 4067 zio->io_spa->spa_syncing_txg == zio->io_txg) 4068 zio_handle_ignored_writes(zio); 4069 4070 return (ZIO_PIPELINE_CONTINUE); 4071 } 4072 4073 /* 4074 * Update the allocation throttle accounting. 4075 */ 4076 static void 4077 zio_dva_throttle_done(zio_t *zio) 4078 { 4079 zio_t *lio = zio->io_logical; 4080 zio_t *pio = zio_unique_parent(zio); 4081 vdev_t *vd = zio->io_vd; 4082 int flags = METASLAB_ASYNC_ALLOC; 4083 4084 ASSERT3P(zio->io_bp, !=, NULL); 4085 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 4086 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 4087 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 4088 ASSERT(vd != NULL); 4089 ASSERT3P(vd, ==, vd->vdev_top); 4090 ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY))); 4091 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 4092 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 4093 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 4094 4095 /* 4096 * Parents of gang children can have two flavors -- ones that 4097 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 4098 * and ones that allocated the constituent blocks. The allocation 4099 * throttle needs to know the allocating parent zio so we must find 4100 * it here. 4101 */ 4102 if (pio->io_child_type == ZIO_CHILD_GANG) { 4103 /* 4104 * If our parent is a rewrite gang child then our grandparent 4105 * would have been the one that performed the allocation. 4106 */ 4107 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 4108 pio = zio_unique_parent(pio); 4109 flags |= METASLAB_GANG_CHILD; 4110 } 4111 4112 ASSERT(IO_IS_ALLOCATING(pio)); 4113 ASSERT3P(zio, !=, zio->io_logical); 4114 ASSERT(zio->io_logical != NULL); 4115 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4116 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 4117 ASSERT(zio->io_metaslab_class != NULL); 4118 4119 mutex_enter(&pio->io_lock); 4120 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, 4121 pio->io_allocator, B_TRUE); 4122 mutex_exit(&pio->io_lock); 4123 4124 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, 4125 pio->io_allocator, pio); 4126 4127 /* 4128 * Call into the pipeline to see if there is more work that 4129 * needs to be done. If there is work to be done it will be 4130 * dispatched to another taskq thread. 4131 */ 4132 zio_allocate_dispatch(zio->io_spa, pio->io_allocator); 4133 } 4134 4135 static int 4136 zio_done(zio_t *zio) 4137 { 4138 spa_t *spa = zio->io_spa; 4139 zio_t *lio = zio->io_logical; 4140 blkptr_t *bp = zio->io_bp; 4141 vdev_t *vd = zio->io_vd; 4142 uint64_t psize = zio->io_size; 4143 zio_t *pio, *pio_next; 4144 zio_link_t *zl = NULL; 4145 4146 /* 4147 * If our children haven't all completed, 4148 * wait for them and then repeat this pipeline stage. 4149 */ 4150 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 4151 return (ZIO_PIPELINE_STOP); 4152 } 4153 4154 /* 4155 * If the allocation throttle is enabled, then update the accounting. 4156 * We only track child I/Os that are part of an allocating async 4157 * write. We must do this since the allocation is performed 4158 * by the logical I/O but the actual write is done by child I/Os. 4159 */ 4160 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 4161 zio->io_child_type == ZIO_CHILD_VDEV) { 4162 ASSERT(zio->io_metaslab_class != NULL); 4163 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); 4164 zio_dva_throttle_done(zio); 4165 } 4166 4167 /* 4168 * If the allocation throttle is enabled, verify that 4169 * we have decremented the refcounts for every I/O that was throttled. 4170 */ 4171 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4172 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4173 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4174 ASSERT(bp != NULL); 4175 4176 metaslab_group_alloc_verify(spa, zio->io_bp, zio, 4177 zio->io_allocator); 4178 VERIFY(zfs_refcount_not_held( 4179 &zio->io_metaslab_class->mc_alloc_slots[zio->io_allocator], 4180 zio)); 4181 } 4182 4183 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 4184 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 4185 ASSERT(zio->io_children[c][w] == 0); 4186 4187 if (bp != NULL && !BP_IS_EMBEDDED(bp)) { 4188 ASSERT(bp->blk_pad[0] == 0); 4189 ASSERT(bp->blk_pad[1] == 0); 4190 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 4191 (bp == zio_unique_parent(zio)->io_bp)); 4192 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 4193 zio->io_bp_override == NULL && 4194 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 4195 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp)); 4196 ASSERT(BP_COUNT_GANG(bp) == 0 || 4197 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 4198 } 4199 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 4200 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig)); 4201 } 4202 4203 /* 4204 * If there were child vdev/gang/ddt errors, they apply to us now. 4205 */ 4206 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 4207 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 4208 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 4209 4210 /* 4211 * If the I/O on the transformed data was successful, generate any 4212 * checksum reports now while we still have the transformed data. 4213 */ 4214 if (zio->io_error == 0) { 4215 while (zio->io_cksum_report != NULL) { 4216 zio_cksum_report_t *zcr = zio->io_cksum_report; 4217 uint64_t align = zcr->zcr_align; 4218 uint64_t asize = P2ROUNDUP(psize, align); 4219 abd_t *adata = zio->io_abd; 4220 4221 if (asize != psize) { 4222 adata = abd_alloc(asize, B_TRUE); 4223 abd_copy(adata, zio->io_abd, psize); 4224 abd_zero_off(adata, psize, asize - psize); 4225 } 4226 4227 zio->io_cksum_report = zcr->zcr_next; 4228 zcr->zcr_next = NULL; 4229 zcr->zcr_finish(zcr, adata); 4230 zfs_ereport_free_checksum(zcr); 4231 4232 if (asize != psize) 4233 abd_free(adata); 4234 } 4235 } 4236 4237 zio_pop_transforms(zio); /* note: may set zio->io_error */ 4238 4239 vdev_stat_update(zio, psize); 4240 4241 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { 4242 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { 4243 /* 4244 * We want to only increment our slow IO counters if 4245 * the IO is valid (i.e. not if the drive is removed). 4246 * 4247 * zfs_ereport_post() will also do these checks, but 4248 * it can also have other failures, so we need to 4249 * increment the slow_io counters independent of it. 4250 */ 4251 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, 4252 zio->io_spa, zio->io_vd, zio)) { 4253 mutex_enter(&zio->io_vd->vdev_stat_lock); 4254 zio->io_vd->vdev_stat.vs_slow_ios++; 4255 mutex_exit(&zio->io_vd->vdev_stat_lock); 4256 4257 zfs_ereport_post(FM_EREPORT_ZFS_DELAY, 4258 zio->io_spa, zio->io_vd, &zio->io_bookmark, 4259 zio, 0, 0); 4260 } 4261 } 4262 } 4263 4264 if (zio->io_error) { 4265 /* 4266 * If this I/O is attached to a particular vdev, 4267 * generate an error message describing the I/O failure 4268 * at the block level. We ignore these errors if the 4269 * device is currently unavailable. 4270 */ 4271 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 4272 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, 4273 &zio->io_bookmark, zio, 0, 0); 4274 4275 if ((zio->io_error == EIO || !(zio->io_flags & 4276 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 4277 zio == lio) { 4278 /* 4279 * For logical I/O requests, tell the SPA to log the 4280 * error and generate a logical data ereport. 4281 */ 4282 spa_log_error(spa, &zio->io_bookmark); 4283 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, 4284 &zio->io_bookmark, zio, 0, 0); 4285 } 4286 } 4287 4288 if (zio->io_error && zio == lio) { 4289 /* 4290 * Determine whether zio should be reexecuted. This will 4291 * propagate all the way to the root via zio_notify_parent(). 4292 */ 4293 ASSERT(vd == NULL && bp != NULL); 4294 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4295 4296 if (IO_IS_ALLOCATING(zio) && 4297 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 4298 if (zio->io_error != ENOSPC) 4299 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 4300 else 4301 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4302 } 4303 4304 if ((zio->io_type == ZIO_TYPE_READ || 4305 zio->io_type == ZIO_TYPE_FREE) && 4306 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 4307 zio->io_error == ENXIO && 4308 spa_load_state(spa) == SPA_LOAD_NONE && 4309 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 4310 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4311 4312 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 4313 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4314 4315 /* 4316 * Here is a possibly good place to attempt to do 4317 * either combinatorial reconstruction or error correction 4318 * based on checksums. It also might be a good place 4319 * to send out preliminary ereports before we suspend 4320 * processing. 4321 */ 4322 } 4323 4324 /* 4325 * If there were logical child errors, they apply to us now. 4326 * We defer this until now to avoid conflating logical child 4327 * errors with errors that happened to the zio itself when 4328 * updating vdev stats and reporting FMA events above. 4329 */ 4330 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 4331 4332 if ((zio->io_error || zio->io_reexecute) && 4333 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 4334 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 4335 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 4336 4337 zio_gang_tree_free(&zio->io_gang_tree); 4338 4339 /* 4340 * Godfather I/Os should never suspend. 4341 */ 4342 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 4343 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 4344 zio->io_reexecute = 0; 4345 4346 if (zio->io_reexecute) { 4347 /* 4348 * This is a logical I/O that wants to reexecute. 4349 * 4350 * Reexecute is top-down. When an i/o fails, if it's not 4351 * the root, it simply notifies its parent and sticks around. 4352 * The parent, seeing that it still has children in zio_done(), 4353 * does the same. This percolates all the way up to the root. 4354 * The root i/o will reexecute or suspend the entire tree. 4355 * 4356 * This approach ensures that zio_reexecute() honors 4357 * all the original i/o dependency relationships, e.g. 4358 * parents not executing until children are ready. 4359 */ 4360 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4361 4362 zio->io_gang_leader = NULL; 4363 4364 mutex_enter(&zio->io_lock); 4365 zio->io_state[ZIO_WAIT_DONE] = 1; 4366 mutex_exit(&zio->io_lock); 4367 4368 /* 4369 * "The Godfather" I/O monitors its children but is 4370 * not a true parent to them. It will track them through 4371 * the pipeline but severs its ties whenever they get into 4372 * trouble (e.g. suspended). This allows "The Godfather" 4373 * I/O to return status without blocking. 4374 */ 4375 zl = NULL; 4376 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 4377 pio = pio_next) { 4378 zio_link_t *remove_zl = zl; 4379 pio_next = zio_walk_parents(zio, &zl); 4380 4381 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 4382 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 4383 zio_remove_child(pio, zio, remove_zl); 4384 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 4385 } 4386 } 4387 4388 if ((pio = zio_unique_parent(zio)) != NULL) { 4389 /* 4390 * We're not a root i/o, so there's nothing to do 4391 * but notify our parent. Don't propagate errors 4392 * upward since we haven't permanently failed yet. 4393 */ 4394 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 4395 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 4396 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 4397 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 4398 /* 4399 * We'd fail again if we reexecuted now, so suspend 4400 * until conditions improve (e.g. device comes online). 4401 */ 4402 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); 4403 } else { 4404 /* 4405 * Reexecution is potentially a huge amount of work. 4406 * Hand it off to the otherwise-unused claim taskq. 4407 */ 4408 ASSERT(zio->io_tqent.tqent_next == NULL); 4409 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM, 4410 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio, 4411 0, &zio->io_tqent); 4412 } 4413 return (ZIO_PIPELINE_STOP); 4414 } 4415 4416 ASSERT(zio->io_child_count == 0); 4417 ASSERT(zio->io_reexecute == 0); 4418 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 4419 4420 /* 4421 * Report any checksum errors, since the I/O is complete. 4422 */ 4423 while (zio->io_cksum_report != NULL) { 4424 zio_cksum_report_t *zcr = zio->io_cksum_report; 4425 zio->io_cksum_report = zcr->zcr_next; 4426 zcr->zcr_next = NULL; 4427 zcr->zcr_finish(zcr, NULL); 4428 zfs_ereport_free_checksum(zcr); 4429 } 4430 4431 /* 4432 * It is the responsibility of the done callback to ensure that this 4433 * particular zio is no longer discoverable for adoption, and as 4434 * such, cannot acquire any new parents. 4435 */ 4436 if (zio->io_done) 4437 zio->io_done(zio); 4438 4439 mutex_enter(&zio->io_lock); 4440 zio->io_state[ZIO_WAIT_DONE] = 1; 4441 mutex_exit(&zio->io_lock); 4442 4443 zl = NULL; 4444 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 4445 zio_link_t *remove_zl = zl; 4446 pio_next = zio_walk_parents(zio, &zl); 4447 zio_remove_child(pio, zio, remove_zl); 4448 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 4449 } 4450 4451 if (zio->io_waiter != NULL) { 4452 mutex_enter(&zio->io_lock); 4453 zio->io_executor = NULL; 4454 cv_broadcast(&zio->io_cv); 4455 mutex_exit(&zio->io_lock); 4456 } else { 4457 zio_destroy(zio); 4458 } 4459 4460 return (ZIO_PIPELINE_STOP); 4461 } 4462 4463 /* 4464 * ========================================================================== 4465 * I/O pipeline definition 4466 * ========================================================================== 4467 */ 4468 static zio_pipe_stage_t *zio_pipeline[] = { 4469 NULL, 4470 zio_read_bp_init, 4471 zio_write_bp_init, 4472 zio_free_bp_init, 4473 zio_issue_async, 4474 zio_write_compress, 4475 zio_encrypt, 4476 zio_checksum_generate, 4477 zio_nop_write, 4478 zio_ddt_read_start, 4479 zio_ddt_read_done, 4480 zio_ddt_write, 4481 zio_ddt_free, 4482 zio_gang_assemble, 4483 zio_gang_issue, 4484 zio_dva_throttle, 4485 zio_dva_allocate, 4486 zio_dva_free, 4487 zio_dva_claim, 4488 zio_ready, 4489 zio_vdev_io_start, 4490 zio_vdev_io_done, 4491 zio_vdev_io_assess, 4492 zio_checksum_verify, 4493 zio_done 4494 }; 4495 4496 4497 4498 4499 /* 4500 * Compare two zbookmark_phys_t's to see which we would reach first in a 4501 * pre-order traversal of the object tree. 4502 * 4503 * This is simple in every case aside from the meta-dnode object. For all other 4504 * objects, we traverse them in order (object 1 before object 2, and so on). 4505 * However, all of these objects are traversed while traversing object 0, since 4506 * the data it points to is the list of objects. Thus, we need to convert to a 4507 * canonical representation so we can compare meta-dnode bookmarks to 4508 * non-meta-dnode bookmarks. 4509 * 4510 * We do this by calculating "equivalents" for each field of the zbookmark. 4511 * zbookmarks outside of the meta-dnode use their own object and level, and 4512 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 4513 * blocks this bookmark refers to) by multiplying their blkid by their span 4514 * (the number of L0 blocks contained within one block at their level). 4515 * zbookmarks inside the meta-dnode calculate their object equivalent 4516 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 4517 * level + 1<<31 (any value larger than a level could ever be) for their level. 4518 * This causes them to always compare before a bookmark in their object 4519 * equivalent, compare appropriately to bookmarks in other objects, and to 4520 * compare appropriately to other bookmarks in the meta-dnode. 4521 */ 4522 int 4523 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 4524 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 4525 { 4526 /* 4527 * These variables represent the "equivalent" values for the zbookmark, 4528 * after converting zbookmarks inside the meta dnode to their 4529 * normal-object equivalents. 4530 */ 4531 uint64_t zb1obj, zb2obj; 4532 uint64_t zb1L0, zb2L0; 4533 uint64_t zb1level, zb2level; 4534 4535 if (zb1->zb_object == zb2->zb_object && 4536 zb1->zb_level == zb2->zb_level && 4537 zb1->zb_blkid == zb2->zb_blkid) 4538 return (0); 4539 4540 /* 4541 * BP_SPANB calculates the span in blocks. 4542 */ 4543 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 4544 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 4545 4546 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 4547 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4548 zb1L0 = 0; 4549 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 4550 } else { 4551 zb1obj = zb1->zb_object; 4552 zb1level = zb1->zb_level; 4553 } 4554 4555 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 4556 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4557 zb2L0 = 0; 4558 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 4559 } else { 4560 zb2obj = zb2->zb_object; 4561 zb2level = zb2->zb_level; 4562 } 4563 4564 /* Now that we have a canonical representation, do the comparison. */ 4565 if (zb1obj != zb2obj) 4566 return (zb1obj < zb2obj ? -1 : 1); 4567 else if (zb1L0 != zb2L0) 4568 return (zb1L0 < zb2L0 ? -1 : 1); 4569 else if (zb1level != zb2level) 4570 return (zb1level > zb2level ? -1 : 1); 4571 /* 4572 * This can (theoretically) happen if the bookmarks have the same object 4573 * and level, but different blkids, if the block sizes are not the same. 4574 * There is presently no way to change the indirect block sizes 4575 */ 4576 return (0); 4577 } 4578 4579 /* 4580 * This function checks the following: given that last_block is the place that 4581 * our traversal stopped last time, does that guarantee that we've visited 4582 * every node under subtree_root? Therefore, we can't just use the raw output 4583 * of zbookmark_compare. We have to pass in a modified version of 4584 * subtree_root; by incrementing the block id, and then checking whether 4585 * last_block is before or equal to that, we can tell whether or not having 4586 * visited last_block implies that all of subtree_root's children have been 4587 * visited. 4588 */ 4589 boolean_t 4590 zbookmark_subtree_completed(const dnode_phys_t *dnp, 4591 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 4592 { 4593 zbookmark_phys_t mod_zb = *subtree_root; 4594 mod_zb.zb_blkid++; 4595 ASSERT(last_block->zb_level == 0); 4596 4597 /* The objset_phys_t isn't before anything. */ 4598 if (dnp == NULL) 4599 return (B_FALSE); 4600 4601 /* 4602 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 4603 * data block size in sectors, because that variable is only used if 4604 * the bookmark refers to a block in the meta-dnode. Since we don't 4605 * know without examining it what object it refers to, and there's no 4606 * harm in passing in this value in other cases, we always pass it in. 4607 * 4608 * We pass in 0 for the indirect block size shift because zb2 must be 4609 * level 0. The indirect block size is only used to calculate the span 4610 * of the bookmark, but since the bookmark must be level 0, the span is 4611 * always 1, so the math works out. 4612 * 4613 * If you make changes to how the zbookmark_compare code works, be sure 4614 * to make sure that this code still works afterwards. 4615 */ 4616 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 4617 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 4618 last_block) <= 0); 4619 }