1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
  24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
  25  * Copyright (c) 2014 Integros [integros.com]
  26  * Copyright (c) 2017, Intel Corporation.
  27  */
  28 
  29 #include <sys/sysmacros.h>
  30 #include <sys/zfs_context.h>
  31 #include <sys/fm/fs/zfs.h>
  32 #include <sys/spa.h>
  33 #include <sys/txg.h>
  34 #include <sys/spa_impl.h>
  35 #include <sys/vdev_impl.h>
  36 #include <sys/vdev_trim.h>
  37 #include <sys/zio_impl.h>
  38 #include <sys/zio_compress.h>
  39 #include <sys/zio_checksum.h>
  40 #include <sys/dmu_objset.h>
  41 #include <sys/arc.h>
  42 #include <sys/ddt.h>
  43 #include <sys/blkptr.h>
  44 #include <sys/zfeature.h>
  45 #include <sys/time.h>
  46 #include <sys/dsl_scan.h>
  47 #include <sys/metaslab_impl.h>
  48 #include <sys/abd.h>
  49 #include <sys/cityhash.h>
  50 #include <sys/dsl_crypt.h>
  51 
  52 /*
  53  * ==========================================================================
  54  * I/O type descriptions
  55  * ==========================================================================
  56  */
  57 const char *zio_type_name[ZIO_TYPES] = {
  58         "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
  59         "zio_ioctl", "z_trim"
  60 };
  61 
  62 boolean_t zio_dva_throttle_enabled = B_TRUE;
  63 
  64 /*
  65  * ==========================================================================
  66  * I/O kmem caches
  67  * ==========================================================================
  68  */
  69 kmem_cache_t *zio_cache;
  70 kmem_cache_t *zio_link_cache;
  71 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
  72 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
  73 
  74 #ifdef _KERNEL
  75 extern vmem_t *zio_alloc_arena;
  76 #endif
  77 
  78 #define ZIO_PIPELINE_CONTINUE           0x100
  79 #define ZIO_PIPELINE_STOP               0x101
  80 
  81 /* Mark IOs as "slow" if they take longer than 30 seconds */
  82 int zio_slow_io_ms = (30 * MILLISEC);
  83 
  84 #define BP_SPANB(indblkshift, level) \
  85         (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
  86 #define COMPARE_META_LEVEL      0x80000000ul
  87 /*
  88  * The following actions directly effect the spa's sync-to-convergence logic.
  89  * The values below define the sync pass when we start performing the action.
  90  * Care should be taken when changing these values as they directly impact
  91  * spa_sync() performance. Tuning these values may introduce subtle performance
  92  * pathologies and should only be done in the context of performance analysis.
  93  * These tunables will eventually be removed and replaced with #defines once
  94  * enough analysis has been done to determine optimal values.
  95  *
  96  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
  97  * regular blocks are not deferred.
  98  */
  99 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
 100 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
 101 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
 102 
 103 /*
 104  * An allocating zio is one that either currently has the DVA allocate
 105  * stage set or will have it later in its lifetime.
 106  */
 107 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
 108 
 109 boolean_t       zio_requeue_io_start_cut_in_line = B_TRUE;
 110 
 111 #ifdef ZFS_DEBUG
 112 int zio_buf_debug_limit = 16384;
 113 #else
 114 int zio_buf_debug_limit = 0;
 115 #endif
 116 
 117 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
 118 
 119 void
 120 zio_init(void)
 121 {
 122         size_t c;
 123         vmem_t *data_alloc_arena = NULL;
 124 
 125 #ifdef _KERNEL
 126         data_alloc_arena = zio_alloc_arena;
 127 #endif
 128         zio_cache = kmem_cache_create("zio_cache",
 129             sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 130         zio_link_cache = kmem_cache_create("zio_link_cache",
 131             sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 132 
 133         /*
 134          * For small buffers, we want a cache for each multiple of
 135          * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
 136          * for each quarter-power of 2.
 137          */
 138         for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
 139                 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
 140                 size_t p2 = size;
 141                 size_t align = 0;
 142                 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
 143 
 144                 while (!ISP2(p2))
 145                         p2 &= p2 - 1;
 146 
 147 #ifndef _KERNEL
 148                 /*
 149                  * If we are using watchpoints, put each buffer on its own page,
 150                  * to eliminate the performance overhead of trapping to the
 151                  * kernel when modifying a non-watched buffer that shares the
 152                  * page with a watched buffer.
 153                  */
 154                 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
 155                         continue;
 156 #endif
 157                 if (size <= 4 * SPA_MINBLOCKSIZE) {
 158                         align = SPA_MINBLOCKSIZE;
 159                 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
 160                         align = MIN(p2 >> 2, PAGESIZE);
 161                 }
 162 
 163                 if (align != 0) {
 164                         char name[36];
 165                         (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
 166                         zio_buf_cache[c] = kmem_cache_create(name, size,
 167                             align, NULL, NULL, NULL, NULL, NULL, cflags);
 168 
 169                         /*
 170                          * Since zio_data bufs do not appear in crash dumps, we
 171                          * pass KMC_NOTOUCH so that no allocator metadata is
 172                          * stored with the buffers.
 173                          */
 174                         (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
 175                         zio_data_buf_cache[c] = kmem_cache_create(name, size,
 176                             align, NULL, NULL, NULL, NULL, data_alloc_arena,
 177                             cflags | KMC_NOTOUCH);
 178                 }
 179         }
 180 
 181         while (--c != 0) {
 182                 ASSERT(zio_buf_cache[c] != NULL);
 183                 if (zio_buf_cache[c - 1] == NULL)
 184                         zio_buf_cache[c - 1] = zio_buf_cache[c];
 185 
 186                 ASSERT(zio_data_buf_cache[c] != NULL);
 187                 if (zio_data_buf_cache[c - 1] == NULL)
 188                         zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
 189         }
 190 
 191         zio_inject_init();
 192 }
 193 
 194 void
 195 zio_fini(void)
 196 {
 197         size_t c;
 198         kmem_cache_t *last_cache = NULL;
 199         kmem_cache_t *last_data_cache = NULL;
 200 
 201         for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
 202                 if (zio_buf_cache[c] != last_cache) {
 203                         last_cache = zio_buf_cache[c];
 204                         kmem_cache_destroy(zio_buf_cache[c]);
 205                 }
 206                 zio_buf_cache[c] = NULL;
 207 
 208                 if (zio_data_buf_cache[c] != last_data_cache) {
 209                         last_data_cache = zio_data_buf_cache[c];
 210                         kmem_cache_destroy(zio_data_buf_cache[c]);
 211                 }
 212                 zio_data_buf_cache[c] = NULL;
 213         }
 214 
 215         kmem_cache_destroy(zio_link_cache);
 216         kmem_cache_destroy(zio_cache);
 217 
 218         zio_inject_fini();
 219 }
 220 
 221 /*
 222  * ==========================================================================
 223  * Allocate and free I/O buffers
 224  * ==========================================================================
 225  */
 226 
 227 /*
 228  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
 229  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
 230  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
 231  * excess / transient data in-core during a crashdump.
 232  */
 233 void *
 234 zio_buf_alloc(size_t size)
 235 {
 236         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 237 
 238         VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 239 
 240         return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
 241 }
 242 
 243 /*
 244  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
 245  * crashdump if the kernel panics.  This exists so that we will limit the amount
 246  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
 247  * of kernel heap dumped to disk when the kernel panics)
 248  */
 249 void *
 250 zio_data_buf_alloc(size_t size)
 251 {
 252         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 253 
 254         VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 255 
 256         return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
 257 }
 258 
 259 void
 260 zio_buf_free(void *buf, size_t size)
 261 {
 262         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 263 
 264         VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 265 
 266         kmem_cache_free(zio_buf_cache[c], buf);
 267 }
 268 
 269 void
 270 zio_data_buf_free(void *buf, size_t size)
 271 {
 272         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 273 
 274         VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 275 
 276         kmem_cache_free(zio_data_buf_cache[c], buf);
 277 }
 278 
 279 /* ARGSUSED */
 280 static void
 281 zio_abd_free(void *abd, size_t size)
 282 {
 283         abd_free((abd_t *)abd);
 284 }
 285 
 286 /*
 287  * ==========================================================================
 288  * Push and pop I/O transform buffers
 289  * ==========================================================================
 290  */
 291 void
 292 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
 293     zio_transform_func_t *transform)
 294 {
 295         zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
 296 
 297         /*
 298          * Ensure that anyone expecting this zio to contain a linear ABD isn't
 299          * going to get a nasty surprise when they try to access the data.
 300          */
 301         IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
 302 
 303         zt->zt_orig_abd = zio->io_abd;
 304         zt->zt_orig_size = zio->io_size;
 305         zt->zt_bufsize = bufsize;
 306         zt->zt_transform = transform;
 307 
 308         zt->zt_next = zio->io_transform_stack;
 309         zio->io_transform_stack = zt;
 310 
 311         zio->io_abd = data;
 312         zio->io_size = size;
 313 }
 314 
 315 void
 316 zio_pop_transforms(zio_t *zio)
 317 {
 318         zio_transform_t *zt;
 319 
 320         while ((zt = zio->io_transform_stack) != NULL) {
 321                 if (zt->zt_transform != NULL)
 322                         zt->zt_transform(zio,
 323                             zt->zt_orig_abd, zt->zt_orig_size);
 324 
 325                 if (zt->zt_bufsize != 0)
 326                         abd_free(zio->io_abd);
 327 
 328                 zio->io_abd = zt->zt_orig_abd;
 329                 zio->io_size = zt->zt_orig_size;
 330                 zio->io_transform_stack = zt->zt_next;
 331 
 332                 kmem_free(zt, sizeof (zio_transform_t));
 333         }
 334 }
 335 
 336 /*
 337  * ==========================================================================
 338  * I/O transform callbacks for subblocks, decompression, and decryption
 339  * ==========================================================================
 340  */
 341 static void
 342 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
 343 {
 344         ASSERT(zio->io_size > size);
 345 
 346         if (zio->io_type == ZIO_TYPE_READ)
 347                 abd_copy(data, zio->io_abd, size);
 348 }
 349 
 350 static void
 351 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
 352 {
 353         if (zio->io_error == 0) {
 354                 void *tmp = abd_borrow_buf(data, size);
 355                 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
 356                     zio->io_abd, tmp, zio->io_size, size);
 357                 abd_return_buf_copy(data, tmp, size);
 358 
 359                 if (ret != 0)
 360                         zio->io_error = SET_ERROR(EIO);
 361         }
 362 }
 363 
 364 static void
 365 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
 366 {
 367         int ret;
 368         void *tmp;
 369         blkptr_t *bp = zio->io_bp;
 370         spa_t *spa = zio->io_spa;
 371         uint64_t dsobj = zio->io_bookmark.zb_objset;
 372         uint64_t lsize = BP_GET_LSIZE(bp);
 373         dmu_object_type_t ot = BP_GET_TYPE(bp);
 374         uint8_t salt[ZIO_DATA_SALT_LEN];
 375         uint8_t iv[ZIO_DATA_IV_LEN];
 376         uint8_t mac[ZIO_DATA_MAC_LEN];
 377         boolean_t no_crypt = B_FALSE;
 378 
 379         ASSERT(BP_USES_CRYPT(bp));
 380         ASSERT3U(size, !=, 0);
 381 
 382         if (zio->io_error != 0)
 383                 return;
 384 
 385         /*
 386          * Verify the cksum of MACs stored in an indirect bp. It will always
 387          * be possible to verify this since it does not require an encryption
 388          * key.
 389          */
 390         if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
 391                 zio_crypt_decode_mac_bp(bp, mac);
 392 
 393                 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
 394                         /*
 395                          * We haven't decompressed the data yet, but
 396                          * zio_crypt_do_indirect_mac_checksum() requires
 397                          * decompressed data to be able to parse out the MACs
 398                          * from the indirect block. We decompress it now and
 399                          * throw away the result after we are finished.
 400                          */
 401                         tmp = zio_buf_alloc(lsize);
 402                         ret = zio_decompress_data(BP_GET_COMPRESS(bp),
 403                             zio->io_abd, tmp, zio->io_size, lsize);
 404                         if (ret != 0) {
 405                                 ret = SET_ERROR(EIO);
 406                                 goto error;
 407                         }
 408                         ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
 409                             tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
 410                         zio_buf_free(tmp, lsize);
 411                 } else {
 412                         ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
 413                             zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
 414                 }
 415                 abd_copy(data, zio->io_abd, size);
 416 
 417                 if (ret != 0)
 418                         goto error;
 419 
 420                 return;
 421         }
 422 
 423         /*
 424          * If this is an authenticated block, just check the MAC. It would be
 425          * nice to separate this out into its own flag, but for the moment
 426          * enum zio_flag is out of bits.
 427          */
 428         if (BP_IS_AUTHENTICATED(bp)) {
 429                 if (ot == DMU_OT_OBJSET) {
 430                         ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
 431                             dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
 432                 } else {
 433                         zio_crypt_decode_mac_bp(bp, mac);
 434                         ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
 435                             zio->io_abd, size, mac);
 436                 }
 437                 abd_copy(data, zio->io_abd, size);
 438 
 439                 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
 440                         ret = zio_handle_decrypt_injection(spa,
 441                             &zio->io_bookmark, ot, ECKSUM);
 442                 }
 443                 if (ret != 0)
 444                         goto error;
 445 
 446                 return;
 447         }
 448 
 449         zio_crypt_decode_params_bp(bp, salt, iv);
 450 
 451         if (ot == DMU_OT_INTENT_LOG) {
 452                 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
 453                 zio_crypt_decode_mac_zil(tmp, mac);
 454                 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
 455         } else {
 456                 zio_crypt_decode_mac_bp(bp, mac);
 457         }
 458 
 459         ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
 460             BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
 461             zio->io_abd, &no_crypt);
 462         if (no_crypt)
 463                 abd_copy(data, zio->io_abd, size);
 464 
 465         if (ret != 0)
 466                 goto error;
 467 
 468         return;
 469 
 470 error:
 471         /* assert that the key was found unless this was speculative */
 472         ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
 473 
 474         /*
 475          * If there was a decryption / authentication error return EIO as
 476          * the io_error. If this was not a speculative zio, create an ereport.
 477          */
 478         if (ret == ECKSUM) {
 479                 zio->io_error = SET_ERROR(EIO);
 480                 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
 481                         spa_log_error(spa, &zio->io_bookmark);
 482                         zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
 483                             spa, NULL, &zio->io_bookmark, zio, 0, 0);
 484                 }
 485         } else {
 486                 zio->io_error = ret;
 487         }
 488 }
 489 
 490 /*
 491  * ==========================================================================
 492  * I/O parent/child relationships and pipeline interlocks
 493  * ==========================================================================
 494  */
 495 zio_t *
 496 zio_walk_parents(zio_t *cio, zio_link_t **zl)
 497 {
 498         list_t *pl = &cio->io_parent_list;
 499 
 500         *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
 501         if (*zl == NULL)
 502                 return (NULL);
 503 
 504         ASSERT((*zl)->zl_child == cio);
 505         return ((*zl)->zl_parent);
 506 }
 507 
 508 zio_t *
 509 zio_walk_children(zio_t *pio, zio_link_t **zl)
 510 {
 511         list_t *cl = &pio->io_child_list;
 512 
 513         ASSERT(MUTEX_HELD(&pio->io_lock));
 514 
 515         *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
 516         if (*zl == NULL)
 517                 return (NULL);
 518 
 519         ASSERT((*zl)->zl_parent == pio);
 520         return ((*zl)->zl_child);
 521 }
 522 
 523 zio_t *
 524 zio_unique_parent(zio_t *cio)
 525 {
 526         zio_link_t *zl = NULL;
 527         zio_t *pio = zio_walk_parents(cio, &zl);
 528 
 529         VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
 530         return (pio);
 531 }
 532 
 533 void
 534 zio_add_child(zio_t *pio, zio_t *cio)
 535 {
 536         zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
 537 
 538         /*
 539          * Logical I/Os can have logical, gang, or vdev children.
 540          * Gang I/Os can have gang or vdev children.
 541          * Vdev I/Os can only have vdev children.
 542          * The following ASSERT captures all of these constraints.
 543          */
 544         ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
 545 
 546         zl->zl_parent = pio;
 547         zl->zl_child = cio;
 548 
 549         mutex_enter(&pio->io_lock);
 550         mutex_enter(&cio->io_lock);
 551 
 552         ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
 553 
 554         for (int w = 0; w < ZIO_WAIT_TYPES; w++)
 555                 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
 556 
 557         list_insert_head(&pio->io_child_list, zl);
 558         list_insert_head(&cio->io_parent_list, zl);
 559 
 560         pio->io_child_count++;
 561         cio->io_parent_count++;
 562 
 563         mutex_exit(&cio->io_lock);
 564         mutex_exit(&pio->io_lock);
 565 }
 566 
 567 static void
 568 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
 569 {
 570         ASSERT(zl->zl_parent == pio);
 571         ASSERT(zl->zl_child == cio);
 572 
 573         mutex_enter(&pio->io_lock);
 574         mutex_enter(&cio->io_lock);
 575 
 576         list_remove(&pio->io_child_list, zl);
 577         list_remove(&cio->io_parent_list, zl);
 578 
 579         pio->io_child_count--;
 580         cio->io_parent_count--;
 581 
 582         mutex_exit(&cio->io_lock);
 583         mutex_exit(&pio->io_lock);
 584 
 585         kmem_cache_free(zio_link_cache, zl);
 586 }
 587 
 588 static boolean_t
 589 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
 590 {
 591         boolean_t waiting = B_FALSE;
 592 
 593         mutex_enter(&zio->io_lock);
 594         ASSERT(zio->io_stall == NULL);
 595         for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
 596                 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
 597                         continue;
 598 
 599                 uint64_t *countp = &zio->io_children[c][wait];
 600                 if (*countp != 0) {
 601                         zio->io_stage >>= 1;
 602                         ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
 603                         zio->io_stall = countp;
 604                         waiting = B_TRUE;
 605                         break;
 606                 }
 607         }
 608         mutex_exit(&zio->io_lock);
 609         return (waiting);
 610 }
 611 
 612 static void
 613 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
 614 {
 615         uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
 616         int *errorp = &pio->io_child_error[zio->io_child_type];
 617 
 618         mutex_enter(&pio->io_lock);
 619         if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
 620                 *errorp = zio_worst_error(*errorp, zio->io_error);
 621         pio->io_reexecute |= zio->io_reexecute;
 622         ASSERT3U(*countp, >, 0);
 623 
 624         (*countp)--;
 625 
 626         if (*countp == 0 && pio->io_stall == countp) {
 627                 zio_taskq_type_t type =
 628                     pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
 629                     ZIO_TASKQ_INTERRUPT;
 630                 pio->io_stall = NULL;
 631                 mutex_exit(&pio->io_lock);
 632                 /*
 633                  * Dispatch the parent zio in its own taskq so that
 634                  * the child can continue to make progress. This also
 635                  * prevents overflowing the stack when we have deeply nested
 636                  * parent-child relationships.
 637                  */
 638                 zio_taskq_dispatch(pio, type, B_FALSE);
 639         } else {
 640                 mutex_exit(&pio->io_lock);
 641         }
 642 }
 643 
 644 static void
 645 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
 646 {
 647         if (zio->io_child_error[c] != 0 && zio->io_error == 0)
 648                 zio->io_error = zio->io_child_error[c];
 649 }
 650 
 651 int
 652 zio_bookmark_compare(const void *x1, const void *x2)
 653 {
 654         const zio_t *z1 = x1;
 655         const zio_t *z2 = x2;
 656 
 657         if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
 658                 return (-1);
 659         if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
 660                 return (1);
 661 
 662         if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
 663                 return (-1);
 664         if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
 665                 return (1);
 666 
 667         if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
 668                 return (-1);
 669         if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
 670                 return (1);
 671 
 672         if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
 673                 return (-1);
 674         if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
 675                 return (1);
 676 
 677         if (z1 < z2)
 678                 return (-1);
 679         if (z1 > z2)
 680                 return (1);
 681 
 682         return (0);
 683 }
 684 
 685 /*
 686  * ==========================================================================
 687  * Create the various types of I/O (read, write, free, etc)
 688  * ==========================================================================
 689  */
 690 static zio_t *
 691 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 692     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
 693     void *private, zio_type_t type, zio_priority_t priority,
 694     enum zio_flag flags, vdev_t *vd, uint64_t offset,
 695     const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline)
 696 {
 697         zio_t *zio;
 698 
 699         IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
 700         ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
 701         ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
 702 
 703         ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
 704         ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
 705         ASSERT(vd || stage == ZIO_STAGE_OPEN);
 706 
 707         IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
 708 
 709         zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
 710         bzero(zio, sizeof (zio_t));
 711 
 712         mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
 713         cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
 714 
 715         list_create(&zio->io_parent_list, sizeof (zio_link_t),
 716             offsetof(zio_link_t, zl_parent_node));
 717         list_create(&zio->io_child_list, sizeof (zio_link_t),
 718             offsetof(zio_link_t, zl_child_node));
 719         metaslab_trace_init(&zio->io_alloc_list);
 720 
 721         if (vd != NULL)
 722                 zio->io_child_type = ZIO_CHILD_VDEV;
 723         else if (flags & ZIO_FLAG_GANG_CHILD)
 724                 zio->io_child_type = ZIO_CHILD_GANG;
 725         else if (flags & ZIO_FLAG_DDT_CHILD)
 726                 zio->io_child_type = ZIO_CHILD_DDT;
 727         else
 728                 zio->io_child_type = ZIO_CHILD_LOGICAL;
 729 
 730         if (bp != NULL) {
 731                 zio->io_bp = (blkptr_t *)bp;
 732                 zio->io_bp_copy = *bp;
 733                 zio->io_bp_orig = *bp;
 734                 if (type != ZIO_TYPE_WRITE ||
 735                     zio->io_child_type == ZIO_CHILD_DDT)
 736                         zio->io_bp = &zio->io_bp_copy;        /* so caller can free */
 737                 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
 738                         zio->io_logical = zio;
 739                 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
 740                         pipeline |= ZIO_GANG_STAGES;
 741         }
 742 
 743         zio->io_spa = spa;
 744         zio->io_txg = txg;
 745         zio->io_done = done;
 746         zio->io_private = private;
 747         zio->io_type = type;
 748         zio->io_priority = priority;
 749         zio->io_vd = vd;
 750         zio->io_offset = offset;
 751         zio->io_orig_abd = zio->io_abd = data;
 752         zio->io_orig_size = zio->io_size = psize;
 753         zio->io_lsize = lsize;
 754         zio->io_orig_flags = zio->io_flags = flags;
 755         zio->io_orig_stage = zio->io_stage = stage;
 756         zio->io_orig_pipeline = zio->io_pipeline = pipeline;
 757         zio->io_pipeline_trace = ZIO_STAGE_OPEN;
 758 
 759         zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
 760         zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
 761 
 762         if (zb != NULL)
 763                 zio->io_bookmark = *zb;
 764 
 765         if (pio != NULL) {
 766                 if (zio->io_metaslab_class == NULL)
 767                         zio->io_metaslab_class = pio->io_metaslab_class;
 768                 if (zio->io_logical == NULL)
 769                         zio->io_logical = pio->io_logical;
 770                 if (zio->io_child_type == ZIO_CHILD_GANG)
 771                         zio->io_gang_leader = pio->io_gang_leader;
 772                 zio_add_child(pio, zio);
 773         }
 774 
 775         return (zio);
 776 }
 777 
 778 static void
 779 zio_destroy(zio_t *zio)
 780 {
 781         metaslab_trace_fini(&zio->io_alloc_list);
 782         list_destroy(&zio->io_parent_list);
 783         list_destroy(&zio->io_child_list);
 784         mutex_destroy(&zio->io_lock);
 785         cv_destroy(&zio->io_cv);
 786         kmem_cache_free(zio_cache, zio);
 787 }
 788 
 789 zio_t *
 790 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
 791     void *private, enum zio_flag flags)
 792 {
 793         zio_t *zio;
 794 
 795         zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
 796             ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
 797             ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
 798 
 799         return (zio);
 800 }
 801 
 802 zio_t *
 803 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
 804 {
 805         return (zio_null(NULL, spa, NULL, done, private, flags));
 806 }
 807 
 808 void
 809 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
 810 {
 811         if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
 812                 zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
 813                     bp, (longlong_t)BP_GET_TYPE(bp));
 814         }
 815         if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
 816             BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
 817                 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
 818                     bp, (longlong_t)BP_GET_CHECKSUM(bp));
 819         }
 820         if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
 821             BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
 822                 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
 823                     bp, (longlong_t)BP_GET_COMPRESS(bp));
 824         }
 825         if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
 826                 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
 827                     bp, (longlong_t)BP_GET_LSIZE(bp));
 828         }
 829         if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
 830                 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
 831                     bp, (longlong_t)BP_GET_PSIZE(bp));
 832         }
 833 
 834         if (BP_IS_EMBEDDED(bp)) {
 835                 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
 836                         zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
 837                             bp, (longlong_t)BPE_GET_ETYPE(bp));
 838                 }
 839         }
 840 
 841         /*
 842          * Do not verify individual DVAs if the config is not trusted. This
 843          * will be done once the zio is executed in vdev_mirror_map_alloc.
 844          */
 845         if (!spa->spa_trust_config)
 846                 return;
 847 
 848         /*
 849          * Pool-specific checks.
 850          *
 851          * Note: it would be nice to verify that the blk_birth and
 852          * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
 853          * allows the birth time of log blocks (and dmu_sync()-ed blocks
 854          * that are in the log) to be arbitrarily large.
 855          */
 856         for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
 857                 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
 858                 if (vdevid >= spa->spa_root_vdev->vdev_children) {
 859                         zfs_panic_recover("blkptr at %p DVA %u has invalid "
 860                             "VDEV %llu",
 861                             bp, i, (longlong_t)vdevid);
 862                         continue;
 863                 }
 864                 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
 865                 if (vd == NULL) {
 866                         zfs_panic_recover("blkptr at %p DVA %u has invalid "
 867                             "VDEV %llu",
 868                             bp, i, (longlong_t)vdevid);
 869                         continue;
 870                 }
 871                 if (vd->vdev_ops == &vdev_hole_ops) {
 872                         zfs_panic_recover("blkptr at %p DVA %u has hole "
 873                             "VDEV %llu",
 874                             bp, i, (longlong_t)vdevid);
 875                         continue;
 876                 }
 877                 if (vd->vdev_ops == &vdev_missing_ops) {
 878                         /*
 879                          * "missing" vdevs are valid during import, but we
 880                          * don't have their detailed info (e.g. asize), so
 881                          * we can't perform any more checks on them.
 882                          */
 883                         continue;
 884                 }
 885                 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
 886                 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
 887                 if (BP_IS_GANG(bp))
 888                         asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
 889                 if (offset + asize > vd->vdev_asize) {
 890                         zfs_panic_recover("blkptr at %p DVA %u has invalid "
 891                             "OFFSET %llu",
 892                             bp, i, (longlong_t)offset);
 893                 }
 894         }
 895 }
 896 
 897 boolean_t
 898 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
 899 {
 900         uint64_t vdevid = DVA_GET_VDEV(dva);
 901 
 902         if (vdevid >= spa->spa_root_vdev->vdev_children)
 903                 return (B_FALSE);
 904 
 905         vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
 906         if (vd == NULL)
 907                 return (B_FALSE);
 908 
 909         if (vd->vdev_ops == &vdev_hole_ops)
 910                 return (B_FALSE);
 911 
 912         if (vd->vdev_ops == &vdev_missing_ops) {
 913                 return (B_FALSE);
 914         }
 915 
 916         uint64_t offset = DVA_GET_OFFSET(dva);
 917         uint64_t asize = DVA_GET_ASIZE(dva);
 918 
 919         if (BP_IS_GANG(bp))
 920                 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
 921         if (offset + asize > vd->vdev_asize)
 922                 return (B_FALSE);
 923 
 924         return (B_TRUE);
 925 }
 926 
 927 zio_t *
 928 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
 929     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
 930     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
 931 {
 932         zio_t *zio;
 933 
 934         zfs_blkptr_verify(spa, bp);
 935 
 936         zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
 937             data, size, size, done, private,
 938             ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
 939             ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
 940             ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
 941 
 942         return (zio);
 943 }
 944 
 945 zio_t *
 946 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
 947     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
 948     zio_done_func_t *ready, zio_done_func_t *children_ready,
 949     zio_done_func_t *physdone, zio_done_func_t *done,
 950     void *private, zio_priority_t priority, enum zio_flag flags,
 951     const zbookmark_phys_t *zb)
 952 {
 953         zio_t *zio;
 954 
 955         ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
 956             zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
 957             zp->zp_compress >= ZIO_COMPRESS_OFF &&
 958             zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
 959             DMU_OT_IS_VALID(zp->zp_type) &&
 960             zp->zp_level < 32 &&
 961             zp->zp_copies > 0 &&
 962             zp->zp_copies <= spa_max_replication(spa));
 963 
 964         zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
 965             ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
 966             ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
 967             ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
 968 
 969         zio->io_ready = ready;
 970         zio->io_children_ready = children_ready;
 971         zio->io_physdone = physdone;
 972         zio->io_prop = *zp;
 973 
 974         /*
 975          * Data can be NULL if we are going to call zio_write_override() to
 976          * provide the already-allocated BP.  But we may need the data to
 977          * verify a dedup hit (if requested).  In this case, don't try to
 978          * dedup (just take the already-allocated BP verbatim). Encrypted
 979          * dedup blocks need data as well so we also disable dedup in this
 980          * case.
 981          */
 982         if (data == NULL &&
 983             (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
 984                 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
 985         }
 986 
 987         return (zio);
 988 }
 989 
 990 zio_t *
 991 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
 992     uint64_t size, zio_done_func_t *done, void *private,
 993     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
 994 {
 995         zio_t *zio;
 996 
 997         zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
 998             ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
 999             ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1000 
1001         return (zio);
1002 }
1003 
1004 void
1005 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1006 {
1007         ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1008         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1009         ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1010         ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1011 
1012         /*
1013          * We must reset the io_prop to match the values that existed
1014          * when the bp was first written by dmu_sync() keeping in mind
1015          * that nopwrite and dedup are mutually exclusive.
1016          */
1017         zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1018         zio->io_prop.zp_nopwrite = nopwrite;
1019         zio->io_prop.zp_copies = copies;
1020         zio->io_bp_override = bp;
1021 }
1022 
1023 void
1024 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1025 {
1026 
1027         zfs_blkptr_verify(spa, bp);
1028 
1029         /*
1030          * The check for EMBEDDED is a performance optimization.  We
1031          * process the free here (by ignoring it) rather than
1032          * putting it on the list and then processing it in zio_free_sync().
1033          */
1034         if (BP_IS_EMBEDDED(bp))
1035                 return;
1036         metaslab_check_free(spa, bp);
1037 
1038         /*
1039          * Frees that are for the currently-syncing txg, are not going to be
1040          * deferred, and which will not need to do a read (i.e. not GANG or
1041          * DEDUP), can be processed immediately.  Otherwise, put them on the
1042          * in-memory list for later processing.
1043          *
1044          * Note that we only defer frees after zfs_sync_pass_deferred_free
1045          * when the log space map feature is disabled. [see relevant comment
1046          * in spa_sync_iterate_to_convergence()]
1047          */
1048         if (BP_IS_GANG(bp) ||
1049             BP_GET_DEDUP(bp) ||
1050             txg != spa->spa_syncing_txg ||
1051             (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1052             !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1053                 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1054         } else {
1055                 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
1056         }
1057 }
1058 
1059 zio_t *
1060 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1061     enum zio_flag flags)
1062 {
1063         zio_t *zio;
1064         enum zio_stage stage = ZIO_FREE_PIPELINE;
1065 
1066         ASSERT(!BP_IS_HOLE(bp));
1067         ASSERT(spa_syncing_txg(spa) == txg);
1068 
1069         if (BP_IS_EMBEDDED(bp))
1070                 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1071 
1072         metaslab_check_free(spa, bp);
1073         arc_freed(spa, bp);
1074         dsl_scan_freed(spa, bp);
1075 
1076         /*
1077          * GANG and DEDUP blocks can induce a read (for the gang block header,
1078          * or the DDT), so issue them asynchronously so that this thread is
1079          * not tied up.
1080          */
1081         if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
1082                 stage |= ZIO_STAGE_ISSUE_ASYNC;
1083 
1084         zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1085             BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1086             flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
1087 
1088         return (zio);
1089 }
1090 
1091 zio_t *
1092 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1093     zio_done_func_t *done, void *private, enum zio_flag flags)
1094 {
1095         zio_t *zio;
1096 
1097         zfs_blkptr_verify(spa, bp);
1098 
1099         if (BP_IS_EMBEDDED(bp))
1100                 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1101 
1102         /*
1103          * A claim is an allocation of a specific block.  Claims are needed
1104          * to support immediate writes in the intent log.  The issue is that
1105          * immediate writes contain committed data, but in a txg that was
1106          * *not* committed.  Upon opening the pool after an unclean shutdown,
1107          * the intent log claims all blocks that contain immediate write data
1108          * so that the SPA knows they're in use.
1109          *
1110          * All claims *must* be resolved in the first txg -- before the SPA
1111          * starts allocating blocks -- so that nothing is allocated twice.
1112          * If txg == 0 we just verify that the block is claimable.
1113          */
1114         ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1115             spa_min_claim_txg(spa));
1116         ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1117         ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));       /* zdb(1M) */
1118 
1119         zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1120             BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1121             flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1122         ASSERT0(zio->io_queued_timestamp);
1123 
1124         return (zio);
1125 }
1126 
1127 zio_t *
1128 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1129     zio_done_func_t *done, void *private, enum zio_flag flags)
1130 {
1131         zio_t *zio;
1132         int c;
1133 
1134         if (vd->vdev_children == 0) {
1135                 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1136                     ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1137                     ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1138 
1139                 zio->io_cmd = cmd;
1140         } else {
1141                 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1142 
1143                 for (c = 0; c < vd->vdev_children; c++)
1144                         zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1145                             done, private, flags));
1146         }
1147 
1148         return (zio);
1149 }
1150 
1151 zio_t *
1152 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1153     zio_done_func_t *done, void *private, zio_priority_t priority,
1154     enum zio_flag flags, enum trim_flag trim_flags)
1155 {
1156         zio_t *zio;
1157 
1158         ASSERT0(vd->vdev_children);
1159         ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1160         ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1161         ASSERT3U(size, !=, 0);
1162 
1163         zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1164             private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1165             vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1166         zio->io_trim_flags = trim_flags;
1167 
1168         return (zio);
1169 }
1170 
1171 zio_t *
1172 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1173     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1174     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1175 {
1176         zio_t *zio;
1177 
1178         ASSERT(vd->vdev_children == 0);
1179         ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1180             offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1181         ASSERT3U(offset + size, <=, vd->vdev_psize);
1182 
1183         zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1184             private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1185             offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1186 
1187         zio->io_prop.zp_checksum = checksum;
1188 
1189         return (zio);
1190 }
1191 
1192 zio_t *
1193 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1194     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1195     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1196 {
1197         zio_t *zio;
1198 
1199         ASSERT(vd->vdev_children == 0);
1200         ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1201             offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1202         ASSERT3U(offset + size, <=, vd->vdev_psize);
1203 
1204         zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1205             private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1206             offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1207 
1208         zio->io_prop.zp_checksum = checksum;
1209 
1210         if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1211                 /*
1212                  * zec checksums are necessarily destructive -- they modify
1213                  * the end of the write buffer to hold the verifier/checksum.
1214                  * Therefore, we must make a local copy in case the data is
1215                  * being written to multiple places in parallel.
1216                  */
1217                 abd_t *wbuf = abd_alloc_sametype(data, size);
1218                 abd_copy(wbuf, data, size);
1219 
1220                 zio_push_transform(zio, wbuf, size, size, NULL);
1221         }
1222 
1223         return (zio);
1224 }
1225 
1226 /*
1227  * Create a child I/O to do some work for us.
1228  */
1229 zio_t *
1230 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1231     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1232     enum zio_flag flags, zio_done_func_t *done, void *private)
1233 {
1234         enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1235         zio_t *zio;
1236 
1237         /*
1238          * vdev child I/Os do not propagate their error to the parent.
1239          * Therefore, for correct operation the caller *must* check for
1240          * and handle the error in the child i/o's done callback.
1241          * The only exceptions are i/os that we don't care about
1242          * (OPTIONAL or REPAIR).
1243          */
1244         ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1245             done != NULL);
1246 
1247         if (type == ZIO_TYPE_READ && bp != NULL) {
1248                 /*
1249                  * If we have the bp, then the child should perform the
1250                  * checksum and the parent need not.  This pushes error
1251                  * detection as close to the leaves as possible and
1252                  * eliminates redundant checksums in the interior nodes.
1253                  */
1254                 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1255                 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1256         }
1257 
1258         if (vd->vdev_ops->vdev_op_leaf) {
1259                 ASSERT0(vd->vdev_children);
1260                 offset += VDEV_LABEL_START_SIZE;
1261         }
1262 
1263         flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1264 
1265         /*
1266          * If we've decided to do a repair, the write is not speculative --
1267          * even if the original read was.
1268          */
1269         if (flags & ZIO_FLAG_IO_REPAIR)
1270                 flags &= ~ZIO_FLAG_SPECULATIVE;
1271 
1272         /*
1273          * If we're creating a child I/O that is not associated with a
1274          * top-level vdev, then the child zio is not an allocating I/O.
1275          * If this is a retried I/O then we ignore it since we will
1276          * have already processed the original allocating I/O.
1277          */
1278         if (flags & ZIO_FLAG_IO_ALLOCATING &&
1279             (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1280                 ASSERT(pio->io_metaslab_class != NULL);
1281                 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1282                 ASSERT(type == ZIO_TYPE_WRITE);
1283                 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1284                 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1285                 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1286                     pio->io_child_type == ZIO_CHILD_GANG);
1287 
1288                 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1289         }
1290 
1291         zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1292             done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1293             ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1294         ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1295 
1296         zio->io_physdone = pio->io_physdone;
1297         if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1298                 zio->io_logical->io_phys_children++;
1299 
1300         return (zio);
1301 }
1302 
1303 zio_t *
1304 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1305     zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1306     zio_done_func_t *done, void *private)
1307 {
1308         zio_t *zio;
1309 
1310         ASSERT(vd->vdev_ops->vdev_op_leaf);
1311 
1312         zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1313             data, size, size, done, private, type, priority,
1314             flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1315             vd, offset, NULL,
1316             ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1317 
1318         return (zio);
1319 }
1320 
1321 void
1322 zio_flush(zio_t *zio, vdev_t *vd)
1323 {
1324         zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1325             NULL, NULL,
1326             ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1327 }
1328 
1329 void
1330 zio_shrink(zio_t *zio, uint64_t size)
1331 {
1332         ASSERT3P(zio->io_executor, ==, NULL);
1333         ASSERT3P(zio->io_orig_size, ==, zio->io_size);
1334         ASSERT3U(size, <=, zio->io_size);
1335 
1336         /*
1337          * We don't shrink for raidz because of problems with the
1338          * reconstruction when reading back less than the block size.
1339          * Note, BP_IS_RAIDZ() assumes no compression.
1340          */
1341         ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1342         if (!BP_IS_RAIDZ(zio->io_bp)) {
1343                 /* we are not doing a raw write */
1344                 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1345                 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1346         }
1347 }
1348 
1349 /*
1350  * ==========================================================================
1351  * Prepare to read and write logical blocks
1352  * ==========================================================================
1353  */
1354 
1355 static int
1356 zio_read_bp_init(zio_t *zio)
1357 {
1358         blkptr_t *bp = zio->io_bp;
1359         uint64_t psize =
1360             BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1361 
1362         ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1363 
1364         if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1365             zio->io_child_type == ZIO_CHILD_LOGICAL &&
1366             !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1367                 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1368                     psize, psize, zio_decompress);
1369         }
1370 
1371         if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1372             BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1373             zio->io_child_type == ZIO_CHILD_LOGICAL) {
1374                 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1375                     psize, psize, zio_decrypt);
1376         }
1377 
1378         if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1379                 int psize = BPE_GET_PSIZE(bp);
1380                 void *data = abd_borrow_buf(zio->io_abd, psize);
1381 
1382                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1383                 decode_embedded_bp_compressed(bp, data);
1384                 abd_return_buf_copy(zio->io_abd, data, psize);
1385         } else {
1386                 ASSERT(!BP_IS_EMBEDDED(bp));
1387                 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1388         }
1389 
1390         if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1391                 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1392 
1393         if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1394                 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1395 
1396         if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1397                 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1398 
1399         return (ZIO_PIPELINE_CONTINUE);
1400 }
1401 
1402 static int
1403 zio_write_bp_init(zio_t *zio)
1404 {
1405         if (!IO_IS_ALLOCATING(zio))
1406                 return (ZIO_PIPELINE_CONTINUE);
1407 
1408         ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1409 
1410         if (zio->io_bp_override) {
1411                 blkptr_t *bp = zio->io_bp;
1412                 zio_prop_t *zp = &zio->io_prop;
1413 
1414                 ASSERT(bp->blk_birth != zio->io_txg);
1415                 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1416 
1417                 *bp = *zio->io_bp_override;
1418                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1419 
1420                 if (BP_IS_EMBEDDED(bp))
1421                         return (ZIO_PIPELINE_CONTINUE);
1422 
1423                 /*
1424                  * If we've been overridden and nopwrite is set then
1425                  * set the flag accordingly to indicate that a nopwrite
1426                  * has already occurred.
1427                  */
1428                 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1429                         ASSERT(!zp->zp_dedup);
1430                         ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1431                         zio->io_flags |= ZIO_FLAG_NOPWRITE;
1432                         return (ZIO_PIPELINE_CONTINUE);
1433                 }
1434 
1435                 ASSERT(!zp->zp_nopwrite);
1436 
1437                 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1438                         return (ZIO_PIPELINE_CONTINUE);
1439 
1440                 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1441                     ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1442 
1443                 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1444                     !zp->zp_encrypt) {
1445                         BP_SET_DEDUP(bp, 1);
1446                         zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1447                         return (ZIO_PIPELINE_CONTINUE);
1448                 }
1449 
1450                 /*
1451                  * We were unable to handle this as an override bp, treat
1452                  * it as a regular write I/O.
1453                  */
1454                 zio->io_bp_override = NULL;
1455                 *bp = zio->io_bp_orig;
1456                 zio->io_pipeline = zio->io_orig_pipeline;
1457         }
1458 
1459         return (ZIO_PIPELINE_CONTINUE);
1460 }
1461 
1462 static int
1463 zio_write_compress(zio_t *zio)
1464 {
1465         spa_t *spa = zio->io_spa;
1466         zio_prop_t *zp = &zio->io_prop;
1467         enum zio_compress compress = zp->zp_compress;
1468         blkptr_t *bp = zio->io_bp;
1469         uint64_t lsize = zio->io_lsize;
1470         uint64_t psize = zio->io_size;
1471         int pass = 1;
1472 
1473         /*
1474          * If our children haven't all reached the ready stage,
1475          * wait for them and then repeat this pipeline stage.
1476          */
1477         if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1478             ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1479                 return (ZIO_PIPELINE_STOP);
1480         }
1481 
1482         if (!IO_IS_ALLOCATING(zio))
1483                 return (ZIO_PIPELINE_CONTINUE);
1484 
1485         if (zio->io_children_ready != NULL) {
1486                 /*
1487                  * Now that all our children are ready, run the callback
1488                  * associated with this zio in case it wants to modify the
1489                  * data to be written.
1490                  */
1491                 ASSERT3U(zp->zp_level, >, 0);
1492                 zio->io_children_ready(zio);
1493         }
1494 
1495         ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1496         ASSERT(zio->io_bp_override == NULL);
1497 
1498         if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1499                 /*
1500                  * We're rewriting an existing block, which means we're
1501                  * working on behalf of spa_sync().  For spa_sync() to
1502                  * converge, it must eventually be the case that we don't
1503                  * have to allocate new blocks.  But compression changes
1504                  * the blocksize, which forces a reallocate, and makes
1505                  * convergence take longer.  Therefore, after the first
1506                  * few passes, stop compressing to ensure convergence.
1507                  */
1508                 pass = spa_sync_pass(spa);
1509 
1510                 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1511                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1512                 ASSERT(!BP_GET_DEDUP(bp));
1513 
1514                 if (pass >= zfs_sync_pass_dont_compress)
1515                         compress = ZIO_COMPRESS_OFF;
1516 
1517                 /* Make sure someone doesn't change their mind on overwrites */
1518                 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1519                     spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1520         }
1521 
1522         /* If it's a compressed write that is not raw, compress the buffer. */
1523         if (compress != ZIO_COMPRESS_OFF &&
1524             !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1525                 void *cbuf = zio_buf_alloc(lsize);
1526                 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1527                 if (psize == 0 || psize == lsize) {
1528                         compress = ZIO_COMPRESS_OFF;
1529                         zio_buf_free(cbuf, lsize);
1530                 } else if (!zp->zp_dedup && !zp->zp_encrypt &&
1531                     psize <= BPE_PAYLOAD_SIZE &&
1532                     zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1533                     spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1534                         encode_embedded_bp_compressed(bp,
1535                             cbuf, compress, lsize, psize);
1536                         BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1537                         BP_SET_TYPE(bp, zio->io_prop.zp_type);
1538                         BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1539                         zio_buf_free(cbuf, lsize);
1540                         bp->blk_birth = zio->io_txg;
1541                         zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1542                         ASSERT(spa_feature_is_active(spa,
1543                             SPA_FEATURE_EMBEDDED_DATA));
1544                         return (ZIO_PIPELINE_CONTINUE);
1545                 } else {
1546                         /*
1547                          * Round up compressed size up to the ashift
1548                          * of the smallest-ashift device, and zero the tail.
1549                          * This ensures that the compressed size of the BP
1550                          * (and thus compressratio property) are correct,
1551                          * in that we charge for the padding used to fill out
1552                          * the last sector.
1553                          */
1554                         ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1555                         size_t rounded = (size_t)P2ROUNDUP(psize,
1556                             1ULL << spa->spa_min_ashift);
1557                         if (rounded >= lsize) {
1558                                 compress = ZIO_COMPRESS_OFF;
1559                                 zio_buf_free(cbuf, lsize);
1560                                 psize = lsize;
1561                         } else {
1562                                 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1563                                 abd_take_ownership_of_buf(cdata, B_TRUE);
1564                                 abd_zero_off(cdata, psize, rounded - psize);
1565                                 psize = rounded;
1566                                 zio_push_transform(zio, cdata,
1567                                     psize, lsize, NULL);
1568                         }
1569                 }
1570 
1571                 /*
1572                  * We were unable to handle this as an override bp, treat
1573                  * it as a regular write I/O.
1574                  */
1575                 zio->io_bp_override = NULL;
1576                 *bp = zio->io_bp_orig;
1577                 zio->io_pipeline = zio->io_orig_pipeline;
1578 
1579         } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1580             zp->zp_type == DMU_OT_DNODE) {
1581                 /*
1582                  * The DMU actually relies on the zio layer's compression
1583                  * to free metadnode blocks that have had all contained
1584                  * dnodes freed. As a result, even when doing a raw
1585                  * receive, we must check whether the block can be compressed
1586                  * to a hole.
1587                  */
1588                 psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1589                     zio->io_abd, NULL, lsize);
1590                 if (psize == 0)
1591                         compress = ZIO_COMPRESS_OFF;
1592         } else {
1593                 ASSERT3U(psize, !=, 0);
1594         }
1595 
1596         /*
1597          * The final pass of spa_sync() must be all rewrites, but the first
1598          * few passes offer a trade-off: allocating blocks defers convergence,
1599          * but newly allocated blocks are sequential, so they can be written
1600          * to disk faster.  Therefore, we allow the first few passes of
1601          * spa_sync() to allocate new blocks, but force rewrites after that.
1602          * There should only be a handful of blocks after pass 1 in any case.
1603          */
1604         if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1605             BP_GET_PSIZE(bp) == psize &&
1606             pass >= zfs_sync_pass_rewrite) {
1607                 VERIFY3U(psize, !=, 0);
1608                 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1609                 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1610                 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1611         } else {
1612                 BP_ZERO(bp);
1613                 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1614         }
1615 
1616         if (psize == 0) {
1617                 if (zio->io_bp_orig.blk_birth != 0 &&
1618                     spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1619                         BP_SET_LSIZE(bp, lsize);
1620                         BP_SET_TYPE(bp, zp->zp_type);
1621                         BP_SET_LEVEL(bp, zp->zp_level);
1622                         BP_SET_BIRTH(bp, zio->io_txg, 0);
1623                 }
1624                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1625         } else {
1626                 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1627                 BP_SET_LSIZE(bp, lsize);
1628                 BP_SET_TYPE(bp, zp->zp_type);
1629                 BP_SET_LEVEL(bp, zp->zp_level);
1630                 BP_SET_PSIZE(bp, psize);
1631                 BP_SET_COMPRESS(bp, compress);
1632                 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1633                 BP_SET_DEDUP(bp, zp->zp_dedup);
1634                 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1635                 if (zp->zp_dedup) {
1636                         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1637                         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1638                         ASSERT(!zp->zp_encrypt ||
1639                             DMU_OT_IS_ENCRYPTED(zp->zp_type));
1640                         zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1641                 }
1642                 if (zp->zp_nopwrite) {
1643                         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1644                         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1645                         zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1646                 }
1647         }
1648         return (ZIO_PIPELINE_CONTINUE);
1649 }
1650 
1651 static int
1652 zio_free_bp_init(zio_t *zio)
1653 {
1654         blkptr_t *bp = zio->io_bp;
1655 
1656         if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1657                 if (BP_GET_DEDUP(bp))
1658                         zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1659         }
1660 
1661         ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1662 
1663         return (ZIO_PIPELINE_CONTINUE);
1664 }
1665 
1666 /*
1667  * ==========================================================================
1668  * Execute the I/O pipeline
1669  * ==========================================================================
1670  */
1671 
1672 static void
1673 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1674 {
1675         spa_t *spa = zio->io_spa;
1676         zio_type_t t = zio->io_type;
1677         int flags = (cutinline ? TQ_FRONT : 0);
1678 
1679         /*
1680          * If we're a config writer or a probe, the normal issue and
1681          * interrupt threads may all be blocked waiting for the config lock.
1682          * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1683          */
1684         if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1685                 t = ZIO_TYPE_NULL;
1686 
1687         /*
1688          * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1689          */
1690         if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1691                 t = ZIO_TYPE_NULL;
1692 
1693         /*
1694          * If this is a high priority I/O, then use the high priority taskq if
1695          * available.
1696          */
1697         if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1698             zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1699             spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1700                 q++;
1701 
1702         ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1703 
1704         /*
1705          * NB: We are assuming that the zio can only be dispatched
1706          * to a single taskq at a time.  It would be a grievous error
1707          * to dispatch the zio to another taskq at the same time.
1708          */
1709         ASSERT(zio->io_tqent.tqent_next == NULL);
1710         spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1711             flags, &zio->io_tqent);
1712 }
1713 
1714 static boolean_t
1715 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1716 {
1717         kthread_t *executor = zio->io_executor;
1718         spa_t *spa = zio->io_spa;
1719 
1720         for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1721                 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1722                 uint_t i;
1723                 for (i = 0; i < tqs->stqs_count; i++) {
1724                         if (taskq_member(tqs->stqs_taskq[i], executor))
1725                                 return (B_TRUE);
1726                 }
1727         }
1728 
1729         return (B_FALSE);
1730 }
1731 
1732 static int
1733 zio_issue_async(zio_t *zio)
1734 {
1735         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1736 
1737         return (ZIO_PIPELINE_STOP);
1738 }
1739 
1740 void
1741 zio_interrupt(zio_t *zio)
1742 {
1743         zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1744 }
1745 
1746 void
1747 zio_delay_interrupt(zio_t *zio)
1748 {
1749         /*
1750          * The timeout_generic() function isn't defined in userspace, so
1751          * rather than trying to implement the function, the zio delay
1752          * functionality has been disabled for userspace builds.
1753          */
1754 
1755 #ifdef _KERNEL
1756         /*
1757          * If io_target_timestamp is zero, then no delay has been registered
1758          * for this IO, thus jump to the end of this function and "skip" the
1759          * delay; issuing it directly to the zio layer.
1760          */
1761         if (zio->io_target_timestamp != 0) {
1762                 hrtime_t now = gethrtime();
1763 
1764                 if (now >= zio->io_target_timestamp) {
1765                         /*
1766                          * This IO has already taken longer than the target
1767                          * delay to complete, so we don't want to delay it
1768                          * any longer; we "miss" the delay and issue it
1769                          * directly to the zio layer. This is likely due to
1770                          * the target latency being set to a value less than
1771                          * the underlying hardware can satisfy (e.g. delay
1772                          * set to 1ms, but the disks take 10ms to complete an
1773                          * IO request).
1774                          */
1775 
1776                         DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1777                             hrtime_t, now);
1778 
1779                         zio_interrupt(zio);
1780                 } else {
1781                         hrtime_t diff = zio->io_target_timestamp - now;
1782 
1783                         DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1784                             hrtime_t, now, hrtime_t, diff);
1785 
1786                         (void) timeout_generic(CALLOUT_NORMAL,
1787                             (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1788                 }
1789 
1790                 return;
1791         }
1792 #endif
1793 
1794         DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1795         zio_interrupt(zio);
1796 }
1797 
1798 /*
1799  * Execute the I/O pipeline until one of the following occurs:
1800  *
1801  *      (1) the I/O completes
1802  *      (2) the pipeline stalls waiting for dependent child I/Os
1803  *      (3) the I/O issues, so we're waiting for an I/O completion interrupt
1804  *      (4) the I/O is delegated by vdev-level caching or aggregation
1805  *      (5) the I/O is deferred due to vdev-level queueing
1806  *      (6) the I/O is handed off to another thread.
1807  *
1808  * In all cases, the pipeline stops whenever there's no CPU work; it never
1809  * burns a thread in cv_wait().
1810  *
1811  * There's no locking on io_stage because there's no legitimate way
1812  * for multiple threads to be attempting to process the same I/O.
1813  */
1814 static zio_pipe_stage_t *zio_pipeline[];
1815 
1816 void
1817 zio_execute(zio_t *zio)
1818 {
1819         zio->io_executor = curthread;
1820 
1821         ASSERT3U(zio->io_queued_timestamp, >, 0);
1822 
1823         while (zio->io_stage < ZIO_STAGE_DONE) {
1824                 enum zio_stage pipeline = zio->io_pipeline;
1825                 enum zio_stage stage = zio->io_stage;
1826                 int rv;
1827 
1828                 ASSERT(!MUTEX_HELD(&zio->io_lock));
1829                 ASSERT(ISP2(stage));
1830                 ASSERT(zio->io_stall == NULL);
1831 
1832                 do {
1833                         stage <<= 1;
1834                 } while ((stage & pipeline) == 0);
1835 
1836                 ASSERT(stage <= ZIO_STAGE_DONE);
1837 
1838                 /*
1839                  * If we are in interrupt context and this pipeline stage
1840                  * will grab a config lock that is held across I/O,
1841                  * or may wait for an I/O that needs an interrupt thread
1842                  * to complete, issue async to avoid deadlock.
1843                  *
1844                  * For VDEV_IO_START, we cut in line so that the io will
1845                  * be sent to disk promptly.
1846                  */
1847                 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1848                     zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1849                         boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1850                             zio_requeue_io_start_cut_in_line : B_FALSE;
1851                         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1852                         return;
1853                 }
1854 
1855                 zio->io_stage = stage;
1856                 zio->io_pipeline_trace |= zio->io_stage;
1857                 rv = zio_pipeline[highbit64(stage) - 1](zio);
1858 
1859                 if (rv == ZIO_PIPELINE_STOP)
1860                         return;
1861 
1862                 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1863         }
1864 }
1865 
1866 /*
1867  * ==========================================================================
1868  * Initiate I/O, either sync or async
1869  * ==========================================================================
1870  */
1871 int
1872 zio_wait(zio_t *zio)
1873 {
1874         int error;
1875 
1876         ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN);
1877         ASSERT3P(zio->io_executor, ==, NULL);
1878 
1879         zio->io_waiter = curthread;
1880         ASSERT0(zio->io_queued_timestamp);
1881         zio->io_queued_timestamp = gethrtime();
1882 
1883         zio_execute(zio);
1884 
1885         mutex_enter(&zio->io_lock);
1886         while (zio->io_executor != NULL)
1887                 cv_wait(&zio->io_cv, &zio->io_lock);
1888         mutex_exit(&zio->io_lock);
1889 
1890         error = zio->io_error;
1891         zio_destroy(zio);
1892 
1893         return (error);
1894 }
1895 
1896 void
1897 zio_nowait(zio_t *zio)
1898 {
1899         ASSERT3P(zio->io_executor, ==, NULL);
1900 
1901         if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1902             zio_unique_parent(zio) == NULL) {
1903                 /*
1904                  * This is a logical async I/O with no parent to wait for it.
1905                  * We add it to the spa_async_root_zio "Godfather" I/O which
1906                  * will ensure they complete prior to unloading the pool.
1907                  */
1908                 spa_t *spa = zio->io_spa;
1909 
1910                 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1911         }
1912 
1913         ASSERT0(zio->io_queued_timestamp);
1914         zio->io_queued_timestamp = gethrtime();
1915         zio_execute(zio);
1916 }
1917 
1918 /*
1919  * ==========================================================================
1920  * Reexecute, cancel, or suspend/resume failed I/O
1921  * ==========================================================================
1922  */
1923 
1924 static void
1925 zio_reexecute(zio_t *pio)
1926 {
1927         zio_t *cio, *cio_next;
1928 
1929         ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1930         ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1931         ASSERT(pio->io_gang_leader == NULL);
1932         ASSERT(pio->io_gang_tree == NULL);
1933 
1934         pio->io_flags = pio->io_orig_flags;
1935         pio->io_stage = pio->io_orig_stage;
1936         pio->io_pipeline = pio->io_orig_pipeline;
1937         pio->io_reexecute = 0;
1938         pio->io_flags |= ZIO_FLAG_REEXECUTED;
1939         pio->io_pipeline_trace = 0;
1940         pio->io_error = 0;
1941         for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1942                 pio->io_state[w] = 0;
1943         for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1944                 pio->io_child_error[c] = 0;
1945 
1946         if (IO_IS_ALLOCATING(pio))
1947                 BP_ZERO(pio->io_bp);
1948 
1949         /*
1950          * As we reexecute pio's children, new children could be created.
1951          * New children go to the head of pio's io_child_list, however,
1952          * so we will (correctly) not reexecute them.  The key is that
1953          * the remainder of pio's io_child_list, from 'cio_next' onward,
1954          * cannot be affected by any side effects of reexecuting 'cio'.
1955          */
1956         zio_link_t *zl = NULL;
1957         mutex_enter(&pio->io_lock);
1958         for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1959                 cio_next = zio_walk_children(pio, &zl);
1960                 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1961                         pio->io_children[cio->io_child_type][w]++;
1962                 mutex_exit(&pio->io_lock);
1963                 zio_reexecute(cio);
1964                 mutex_enter(&pio->io_lock);
1965         }
1966         mutex_exit(&pio->io_lock);
1967 
1968         /*
1969          * Now that all children have been reexecuted, execute the parent.
1970          * We don't reexecute "The Godfather" I/O here as it's the
1971          * responsibility of the caller to wait on it.
1972          */
1973         if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1974                 pio->io_queued_timestamp = gethrtime();
1975                 zio_execute(pio);
1976         }
1977 }
1978 
1979 void
1980 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
1981 {
1982         if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1983                 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1984                     "failure and the failure mode property for this pool "
1985                     "is set to panic.", spa_name(spa));
1986 
1987         zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
1988             NULL, NULL, 0, 0);
1989 
1990         mutex_enter(&spa->spa_suspend_lock);
1991 
1992         if (spa->spa_suspend_zio_root == NULL)
1993                 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1994                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1995                     ZIO_FLAG_GODFATHER);
1996 
1997         spa->spa_suspended = reason;
1998 
1999         if (zio != NULL) {
2000                 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2001                 ASSERT(zio != spa->spa_suspend_zio_root);
2002                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2003                 ASSERT(zio_unique_parent(zio) == NULL);
2004                 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2005                 zio_add_child(spa->spa_suspend_zio_root, zio);
2006         }
2007 
2008         mutex_exit(&spa->spa_suspend_lock);
2009 }
2010 
2011 int
2012 zio_resume(spa_t *spa)
2013 {
2014         zio_t *pio;
2015 
2016         /*
2017          * Reexecute all previously suspended i/o.
2018          */
2019         mutex_enter(&spa->spa_suspend_lock);
2020         spa->spa_suspended = ZIO_SUSPEND_NONE;
2021         cv_broadcast(&spa->spa_suspend_cv);
2022         pio = spa->spa_suspend_zio_root;
2023         spa->spa_suspend_zio_root = NULL;
2024         mutex_exit(&spa->spa_suspend_lock);
2025 
2026         if (pio == NULL)
2027                 return (0);
2028 
2029         zio_reexecute(pio);
2030         return (zio_wait(pio));
2031 }
2032 
2033 void
2034 zio_resume_wait(spa_t *spa)
2035 {
2036         mutex_enter(&spa->spa_suspend_lock);
2037         while (spa_suspended(spa))
2038                 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2039         mutex_exit(&spa->spa_suspend_lock);
2040 }
2041 
2042 /*
2043  * ==========================================================================
2044  * Gang blocks.
2045  *
2046  * A gang block is a collection of small blocks that looks to the DMU
2047  * like one large block.  When zio_dva_allocate() cannot find a block
2048  * of the requested size, due to either severe fragmentation or the pool
2049  * being nearly full, it calls zio_write_gang_block() to construct the
2050  * block from smaller fragments.
2051  *
2052  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2053  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2054  * an indirect block: it's an array of block pointers.  It consumes
2055  * only one sector and hence is allocatable regardless of fragmentation.
2056  * The gang header's bps point to its gang members, which hold the data.
2057  *
2058  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2059  * as the verifier to ensure uniqueness of the SHA256 checksum.
2060  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2061  * not the gang header.  This ensures that data block signatures (needed for
2062  * deduplication) are independent of how the block is physically stored.
2063  *
2064  * Gang blocks can be nested: a gang member may itself be a gang block.
2065  * Thus every gang block is a tree in which root and all interior nodes are
2066  * gang headers, and the leaves are normal blocks that contain user data.
2067  * The root of the gang tree is called the gang leader.
2068  *
2069  * To perform any operation (read, rewrite, free, claim) on a gang block,
2070  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2071  * in the io_gang_tree field of the original logical i/o by recursively
2072  * reading the gang leader and all gang headers below it.  This yields
2073  * an in-core tree containing the contents of every gang header and the
2074  * bps for every constituent of the gang block.
2075  *
2076  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2077  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2078  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2079  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2080  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2081  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2082  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2083  * of the gang header plus zio_checksum_compute() of the data to update the
2084  * gang header's blk_cksum as described above.
2085  *
2086  * The two-phase assemble/issue model solves the problem of partial failure --
2087  * what if you'd freed part of a gang block but then couldn't read the
2088  * gang header for another part?  Assembling the entire gang tree first
2089  * ensures that all the necessary gang header I/O has succeeded before
2090  * starting the actual work of free, claim, or write.  Once the gang tree
2091  * is assembled, free and claim are in-memory operations that cannot fail.
2092  *
2093  * In the event that a gang write fails, zio_dva_unallocate() walks the
2094  * gang tree to immediately free (i.e. insert back into the space map)
2095  * everything we've allocated.  This ensures that we don't get ENOSPC
2096  * errors during repeated suspend/resume cycles due to a flaky device.
2097  *
2098  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2099  * the gang tree, we won't modify the block, so we can safely defer the free
2100  * (knowing that the block is still intact).  If we *can* assemble the gang
2101  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2102  * each constituent bp and we can allocate a new block on the next sync pass.
2103  *
2104  * In all cases, the gang tree allows complete recovery from partial failure.
2105  * ==========================================================================
2106  */
2107 
2108 static void
2109 zio_gang_issue_func_done(zio_t *zio)
2110 {
2111         abd_put(zio->io_abd);
2112 }
2113 
2114 static zio_t *
2115 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2116     uint64_t offset)
2117 {
2118         if (gn != NULL)
2119                 return (pio);
2120 
2121         return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2122             BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2123             NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2124             &pio->io_bookmark));
2125 }
2126 
2127 static zio_t *
2128 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2129     uint64_t offset)
2130 {
2131         zio_t *zio;
2132 
2133         if (gn != NULL) {
2134                 abd_t *gbh_abd =
2135                     abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2136                 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2137                     gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2138                     pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2139                     &pio->io_bookmark);
2140                 /*
2141                  * As we rewrite each gang header, the pipeline will compute
2142                  * a new gang block header checksum for it; but no one will
2143                  * compute a new data checksum, so we do that here.  The one
2144                  * exception is the gang leader: the pipeline already computed
2145                  * its data checksum because that stage precedes gang assembly.
2146                  * (Presently, nothing actually uses interior data checksums;
2147                  * this is just good hygiene.)
2148                  */
2149                 if (gn != pio->io_gang_leader->io_gang_tree) {
2150                         abd_t *buf = abd_get_offset(data, offset);
2151 
2152                         zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2153                             buf, BP_GET_PSIZE(bp));
2154 
2155                         abd_put(buf);
2156                 }
2157                 /*
2158                  * If we are here to damage data for testing purposes,
2159                  * leave the GBH alone so that we can detect the damage.
2160                  */
2161                 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2162                         zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2163         } else {
2164                 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2165                     abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2166                     zio_gang_issue_func_done, NULL, pio->io_priority,
2167                     ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2168         }
2169 
2170         return (zio);
2171 }
2172 
2173 /* ARGSUSED */
2174 static zio_t *
2175 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2176     uint64_t offset)
2177 {
2178         return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2179             ZIO_GANG_CHILD_FLAGS(pio)));
2180 }
2181 
2182 /* ARGSUSED */
2183 static zio_t *
2184 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2185     uint64_t offset)
2186 {
2187         return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2188             NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2189 }
2190 
2191 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2192         NULL,
2193         zio_read_gang,
2194         zio_rewrite_gang,
2195         zio_free_gang,
2196         zio_claim_gang,
2197         NULL
2198 };
2199 
2200 static void zio_gang_tree_assemble_done(zio_t *zio);
2201 
2202 static zio_gang_node_t *
2203 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2204 {
2205         zio_gang_node_t *gn;
2206 
2207         ASSERT(*gnpp == NULL);
2208 
2209         gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2210         gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2211         *gnpp = gn;
2212 
2213         return (gn);
2214 }
2215 
2216 static void
2217 zio_gang_node_free(zio_gang_node_t **gnpp)
2218 {
2219         zio_gang_node_t *gn = *gnpp;
2220 
2221         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2222                 ASSERT(gn->gn_child[g] == NULL);
2223 
2224         zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2225         kmem_free(gn, sizeof (*gn));
2226         *gnpp = NULL;
2227 }
2228 
2229 static void
2230 zio_gang_tree_free(zio_gang_node_t **gnpp)
2231 {
2232         zio_gang_node_t *gn = *gnpp;
2233 
2234         if (gn == NULL)
2235                 return;
2236 
2237         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2238                 zio_gang_tree_free(&gn->gn_child[g]);
2239 
2240         zio_gang_node_free(gnpp);
2241 }
2242 
2243 static void
2244 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2245 {
2246         zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2247         abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2248 
2249         ASSERT(gio->io_gang_leader == gio);
2250         ASSERT(BP_IS_GANG(bp));
2251 
2252         zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2253             zio_gang_tree_assemble_done, gn, gio->io_priority,
2254             ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2255 }
2256 
2257 static void
2258 zio_gang_tree_assemble_done(zio_t *zio)
2259 {
2260         zio_t *gio = zio->io_gang_leader;
2261         zio_gang_node_t *gn = zio->io_private;
2262         blkptr_t *bp = zio->io_bp;
2263 
2264         ASSERT(gio == zio_unique_parent(zio));
2265         ASSERT(zio->io_child_count == 0);
2266 
2267         if (zio->io_error)
2268                 return;
2269 
2270         /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2271         if (BP_SHOULD_BYTESWAP(bp))
2272                 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2273 
2274         ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2275         ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2276         ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2277 
2278         abd_put(zio->io_abd);
2279 
2280         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2281                 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2282                 if (!BP_IS_GANG(gbp))
2283                         continue;
2284                 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2285         }
2286 }
2287 
2288 static void
2289 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2290     uint64_t offset)
2291 {
2292         zio_t *gio = pio->io_gang_leader;
2293         zio_t *zio;
2294 
2295         ASSERT(BP_IS_GANG(bp) == !!gn);
2296         ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2297         ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2298 
2299         /*
2300          * If you're a gang header, your data is in gn->gn_gbh.
2301          * If you're a gang member, your data is in 'data' and gn == NULL.
2302          */
2303         zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2304 
2305         if (gn != NULL) {
2306                 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2307 
2308                 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2309                         blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2310                         if (BP_IS_HOLE(gbp))
2311                                 continue;
2312                         zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2313                             offset);
2314                         offset += BP_GET_PSIZE(gbp);
2315                 }
2316         }
2317 
2318         if (gn == gio->io_gang_tree)
2319                 ASSERT3U(gio->io_size, ==, offset);
2320 
2321         if (zio != pio)
2322                 zio_nowait(zio);
2323 }
2324 
2325 static int
2326 zio_gang_assemble(zio_t *zio)
2327 {
2328         blkptr_t *bp = zio->io_bp;
2329 
2330         ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2331         ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2332 
2333         zio->io_gang_leader = zio;
2334 
2335         zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2336 
2337         return (ZIO_PIPELINE_CONTINUE);
2338 }
2339 
2340 static int
2341 zio_gang_issue(zio_t *zio)
2342 {
2343         blkptr_t *bp = zio->io_bp;
2344 
2345         if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2346                 return (ZIO_PIPELINE_STOP);
2347         }
2348 
2349         ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2350         ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2351 
2352         if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2353                 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2354                     0);
2355         else
2356                 zio_gang_tree_free(&zio->io_gang_tree);
2357 
2358         zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2359 
2360         return (ZIO_PIPELINE_CONTINUE);
2361 }
2362 
2363 static void
2364 zio_write_gang_member_ready(zio_t *zio)
2365 {
2366         zio_t *pio = zio_unique_parent(zio);
2367         zio_t *gio = zio->io_gang_leader;
2368         dva_t *cdva = zio->io_bp->blk_dva;
2369         dva_t *pdva = pio->io_bp->blk_dva;
2370         uint64_t asize;
2371 
2372         if (BP_IS_HOLE(zio->io_bp))
2373                 return;
2374 
2375         ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2376 
2377         ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2378         ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2379         ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2380         ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2381         ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2382 
2383         mutex_enter(&pio->io_lock);
2384         for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2385                 ASSERT(DVA_GET_GANG(&pdva[d]));
2386                 asize = DVA_GET_ASIZE(&pdva[d]);
2387                 asize += DVA_GET_ASIZE(&cdva[d]);
2388                 DVA_SET_ASIZE(&pdva[d], asize);
2389         }
2390         mutex_exit(&pio->io_lock);
2391 }
2392 
2393 static void
2394 zio_write_gang_done(zio_t *zio)
2395 {
2396         /*
2397          * The io_abd field will be NULL for a zio with no data.  The io_flags
2398          * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2399          * check for it here as it is cleared in zio_ready.
2400          */
2401         if (zio->io_abd != NULL)
2402                 abd_put(zio->io_abd);
2403 }
2404 
2405 static int
2406 zio_write_gang_block(zio_t *pio)
2407 {
2408         spa_t *spa = pio->io_spa;
2409         metaslab_class_t *mc = spa_normal_class(spa);
2410         blkptr_t *bp = pio->io_bp;
2411         zio_t *gio = pio->io_gang_leader;
2412         zio_t *zio;
2413         zio_gang_node_t *gn, **gnpp;
2414         zio_gbh_phys_t *gbh;
2415         abd_t *gbh_abd;
2416         uint64_t txg = pio->io_txg;
2417         uint64_t resid = pio->io_size;
2418         uint64_t lsize;
2419         int copies = gio->io_prop.zp_copies;
2420         int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2421         zio_prop_t zp;
2422         int error;
2423         boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2424 
2425         /*
2426          * encrypted blocks need DVA[2] free so encrypted gang headers can't
2427          * have a third copy.
2428          */
2429         if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2430                 gbh_copies = SPA_DVAS_PER_BP - 1;
2431 
2432         int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2433         if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2434                 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2435                 ASSERT(has_data);
2436 
2437                 flags |= METASLAB_ASYNC_ALLOC;
2438                 VERIFY(zfs_refcount_held(&mc->mc_alloc_slots[pio->io_allocator],
2439                     pio));
2440 
2441                 /*
2442                  * The logical zio has already placed a reservation for
2443                  * 'copies' allocation slots but gang blocks may require
2444                  * additional copies. These additional copies
2445                  * (i.e. gbh_copies - copies) are guaranteed to succeed
2446                  * since metaslab_class_throttle_reserve() always allows
2447                  * additional reservations for gang blocks.
2448                  */
2449                 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2450                     pio->io_allocator, pio, flags));
2451         }
2452 
2453         error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2454             bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2455             &pio->io_alloc_list, pio, pio->io_allocator);
2456         if (error) {
2457                 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2458                         ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2459                         ASSERT(has_data);
2460 
2461                         /*
2462                          * If we failed to allocate the gang block header then
2463                          * we remove any additional allocation reservations that
2464                          * we placed here. The original reservation will
2465                          * be removed when the logical I/O goes to the ready
2466                          * stage.
2467                          */
2468                         metaslab_class_throttle_unreserve(mc,
2469                             gbh_copies - copies, pio->io_allocator, pio);
2470                 }
2471                 pio->io_error = error;
2472                 return (ZIO_PIPELINE_CONTINUE);
2473         }
2474 
2475         if (pio == gio) {
2476                 gnpp = &gio->io_gang_tree;
2477         } else {
2478                 gnpp = pio->io_private;
2479                 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2480         }
2481 
2482         gn = zio_gang_node_alloc(gnpp);
2483         gbh = gn->gn_gbh;
2484         bzero(gbh, SPA_GANGBLOCKSIZE);
2485         gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2486 
2487         /*
2488          * Create the gang header.
2489          */
2490         zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2491             zio_write_gang_done, NULL, pio->io_priority,
2492             ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2493 
2494         /*
2495          * Create and nowait the gang children.
2496          */
2497         for (int g = 0; resid != 0; resid -= lsize, g++) {
2498                 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2499                     SPA_MINBLOCKSIZE);
2500                 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2501 
2502                 zp.zp_checksum = gio->io_prop.zp_checksum;
2503                 zp.zp_compress = ZIO_COMPRESS_OFF;
2504                 zp.zp_type = DMU_OT_NONE;
2505                 zp.zp_level = 0;
2506                 zp.zp_copies = gio->io_prop.zp_copies;
2507                 zp.zp_dedup = B_FALSE;
2508                 zp.zp_dedup_verify = B_FALSE;
2509                 zp.zp_nopwrite = B_FALSE;
2510                 zp.zp_encrypt = gio->io_prop.zp_encrypt;
2511                 zp.zp_byteorder = gio->io_prop.zp_byteorder;
2512                 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
2513                 bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
2514                 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
2515 
2516                 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2517                     has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2518                     resid) : NULL, lsize, lsize, &zp,
2519                     zio_write_gang_member_ready, NULL, NULL,
2520                     zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2521                     ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2522 
2523                 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2524                         ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2525                         ASSERT(has_data);
2526 
2527                         /*
2528                          * Gang children won't throttle but we should
2529                          * account for their work, so reserve an allocation
2530                          * slot for them here.
2531                          */
2532                         VERIFY(metaslab_class_throttle_reserve(mc,
2533                             zp.zp_copies, cio->io_allocator, cio, flags));
2534                 }
2535                 zio_nowait(cio);
2536         }
2537 
2538         /*
2539          * Set pio's pipeline to just wait for zio to finish.
2540          */
2541         pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2542 
2543         zio_nowait(zio);
2544 
2545         return (ZIO_PIPELINE_CONTINUE);
2546 }
2547 
2548 /*
2549  * The zio_nop_write stage in the pipeline determines if allocating a
2550  * new bp is necessary.  The nopwrite feature can handle writes in
2551  * either syncing or open context (i.e. zil writes) and as a result is
2552  * mutually exclusive with dedup.
2553  *
2554  * By leveraging a cryptographically secure checksum, such as SHA256, we
2555  * can compare the checksums of the new data and the old to determine if
2556  * allocating a new block is required.  Note that our requirements for
2557  * cryptographic strength are fairly weak: there can't be any accidental
2558  * hash collisions, but we don't need to be secure against intentional
2559  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2560  * to write the file to begin with, and triggering an incorrect (hash
2561  * collision) nopwrite is no worse than simply writing to the file.
2562  * That said, there are no known attacks against the checksum algorithms
2563  * used for nopwrite, assuming that the salt and the checksums
2564  * themselves remain secret.
2565  */
2566 static int
2567 zio_nop_write(zio_t *zio)
2568 {
2569         blkptr_t *bp = zio->io_bp;
2570         blkptr_t *bp_orig = &zio->io_bp_orig;
2571         zio_prop_t *zp = &zio->io_prop;
2572 
2573         ASSERT(BP_GET_LEVEL(bp) == 0);
2574         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2575         ASSERT(zp->zp_nopwrite);
2576         ASSERT(!zp->zp_dedup);
2577         ASSERT(zio->io_bp_override == NULL);
2578         ASSERT(IO_IS_ALLOCATING(zio));
2579 
2580         /*
2581          * Check to see if the original bp and the new bp have matching
2582          * characteristics (i.e. same checksum, compression algorithms, etc).
2583          * If they don't then just continue with the pipeline which will
2584          * allocate a new bp.
2585          */
2586         if (BP_IS_HOLE(bp_orig) ||
2587             !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2588             ZCHECKSUM_FLAG_NOPWRITE) ||
2589             BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2590             BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2591             BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2592             BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2593             zp->zp_copies != BP_GET_NDVAS(bp_orig))
2594                 return (ZIO_PIPELINE_CONTINUE);
2595 
2596         /*
2597          * If the checksums match then reset the pipeline so that we
2598          * avoid allocating a new bp and issuing any I/O.
2599          */
2600         if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2601                 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2602                     ZCHECKSUM_FLAG_NOPWRITE);
2603                 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2604                 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2605                 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2606                 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2607                     sizeof (uint64_t)) == 0);
2608 
2609                 *bp = *bp_orig;
2610                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2611                 zio->io_flags |= ZIO_FLAG_NOPWRITE;
2612         }
2613 
2614         return (ZIO_PIPELINE_CONTINUE);
2615 }
2616 
2617 /*
2618  * ==========================================================================
2619  * Dedup
2620  * ==========================================================================
2621  */
2622 static void
2623 zio_ddt_child_read_done(zio_t *zio)
2624 {
2625         blkptr_t *bp = zio->io_bp;
2626         ddt_entry_t *dde = zio->io_private;
2627         ddt_phys_t *ddp;
2628         zio_t *pio = zio_unique_parent(zio);
2629 
2630         mutex_enter(&pio->io_lock);
2631         ddp = ddt_phys_select(dde, bp);
2632         if (zio->io_error == 0)
2633                 ddt_phys_clear(ddp);    /* this ddp doesn't need repair */
2634 
2635         if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2636                 dde->dde_repair_abd = zio->io_abd;
2637         else
2638                 abd_free(zio->io_abd);
2639         mutex_exit(&pio->io_lock);
2640 }
2641 
2642 static int
2643 zio_ddt_read_start(zio_t *zio)
2644 {
2645         blkptr_t *bp = zio->io_bp;
2646 
2647         ASSERT(BP_GET_DEDUP(bp));
2648         ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2649         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2650 
2651         if (zio->io_child_error[ZIO_CHILD_DDT]) {
2652                 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2653                 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2654                 ddt_phys_t *ddp = dde->dde_phys;
2655                 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2656                 blkptr_t blk;
2657 
2658                 ASSERT(zio->io_vsd == NULL);
2659                 zio->io_vsd = dde;
2660 
2661                 if (ddp_self == NULL)
2662                         return (ZIO_PIPELINE_CONTINUE);
2663 
2664                 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2665                         if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2666                                 continue;
2667                         ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2668                             &blk);
2669                         zio_nowait(zio_read(zio, zio->io_spa, &blk,
2670                             abd_alloc_for_io(zio->io_size, B_TRUE),
2671                             zio->io_size, zio_ddt_child_read_done, dde,
2672                             zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2673                             ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2674                 }
2675                 return (ZIO_PIPELINE_CONTINUE);
2676         }
2677 
2678         zio_nowait(zio_read(zio, zio->io_spa, bp,
2679             zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2680             ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2681 
2682         return (ZIO_PIPELINE_CONTINUE);
2683 }
2684 
2685 static int
2686 zio_ddt_read_done(zio_t *zio)
2687 {
2688         blkptr_t *bp = zio->io_bp;
2689 
2690         if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
2691                 return (ZIO_PIPELINE_STOP);
2692         }
2693 
2694         ASSERT(BP_GET_DEDUP(bp));
2695         ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2696         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2697 
2698         if (zio->io_child_error[ZIO_CHILD_DDT]) {
2699                 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2700                 ddt_entry_t *dde = zio->io_vsd;
2701                 if (ddt == NULL) {
2702                         ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2703                         return (ZIO_PIPELINE_CONTINUE);
2704                 }
2705                 if (dde == NULL) {
2706                         zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2707                         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2708                         return (ZIO_PIPELINE_STOP);
2709                 }
2710                 if (dde->dde_repair_abd != NULL) {
2711                         abd_copy(zio->io_abd, dde->dde_repair_abd,
2712                             zio->io_size);
2713                         zio->io_child_error[ZIO_CHILD_DDT] = 0;
2714                 }
2715                 ddt_repair_done(ddt, dde);
2716                 zio->io_vsd = NULL;
2717         }
2718 
2719         ASSERT(zio->io_vsd == NULL);
2720 
2721         return (ZIO_PIPELINE_CONTINUE);
2722 }
2723 
2724 static boolean_t
2725 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2726 {
2727         spa_t *spa = zio->io_spa;
2728         boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
2729 
2730         /* We should never get a raw, override zio */
2731         ASSERT(!(zio->io_bp_override && do_raw));
2732 
2733         /*
2734          * Note: we compare the original data, not the transformed data,
2735          * because when zio->io_bp is an override bp, we will not have
2736          * pushed the I/O transforms.  That's an important optimization
2737          * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2738          * However, we should never get a raw, override zio so in these
2739          * cases we can compare the io_data directly. This is useful because
2740          * it allows us to do dedup verification even if we don't have access
2741          * to the original data (for instance, if the encryption keys aren't
2742          * loaded).
2743          */
2744 
2745         for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2746                 zio_t *lio = dde->dde_lead_zio[p];
2747 
2748                 if (lio != NULL && do_raw) {
2749                         return (lio->io_size != zio->io_size ||
2750                             abd_cmp(zio->io_abd, lio->io_abd,
2751                             zio->io_size) != 0);
2752                 } else if (lio != NULL) {
2753                         return (lio->io_orig_size != zio->io_orig_size ||
2754                             abd_cmp(zio->io_orig_abd, lio->io_orig_abd,
2755                             zio->io_orig_size) != 0);
2756                 }
2757         }
2758 
2759         for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2760                 ddt_phys_t *ddp = &dde->dde_phys[p];
2761 
2762                 if (ddp->ddp_phys_birth != 0 && do_raw) {
2763                         blkptr_t blk = *zio->io_bp;
2764                         uint64_t psize;
2765                         abd_t *tmpabd;
2766                         int error;
2767 
2768                         ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2769                         psize = BP_GET_PSIZE(&blk);
2770 
2771                         if (psize != zio->io_size)
2772                                 return (B_TRUE);
2773 
2774                         ddt_exit(ddt);
2775 
2776                         tmpabd = abd_alloc_for_io(psize, B_TRUE);
2777 
2778                         error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
2779                             psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
2780                             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2781                             ZIO_FLAG_RAW, &zio->io_bookmark));
2782 
2783                         if (error == 0) {
2784                                 if (abd_cmp(tmpabd, zio->io_abd, psize) != 0)
2785                                         error = SET_ERROR(ENOENT);
2786                         }
2787 
2788                         abd_free(tmpabd);
2789                         ddt_enter(ddt);
2790                         return (error != 0);
2791                 } else if (ddp->ddp_phys_birth != 0) {
2792                         arc_buf_t *abuf = NULL;
2793                         arc_flags_t aflags = ARC_FLAG_WAIT;
2794                         int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2795                         blkptr_t blk = *zio->io_bp;
2796                         int error;
2797 
2798                         ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2799 
2800                         if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
2801                                 return (B_TRUE);
2802 
2803                         ddt_exit(ddt);
2804 
2805                         /*
2806                          * Intuitively, it would make more sense to compare
2807                          * io_abd than io_orig_abd in the raw case since you
2808                          * don't want to look at any transformations that have
2809                          * happened to the data. However, for raw I/Os the
2810                          * data will actually be the same in io_abd and
2811                          * io_orig_abd, so all we have to do is issue this as
2812                          * a raw ARC read.
2813                          */
2814                         if (do_raw) {
2815                                 zio_flags |= ZIO_FLAG_RAW;
2816                                 ASSERT3U(zio->io_size, ==, zio->io_orig_size);
2817                                 ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd,
2818                                     zio->io_size));
2819                                 ASSERT3P(zio->io_transform_stack, ==, NULL);
2820                         }
2821 
2822                         error = arc_read(NULL, spa, &blk,
2823                             arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2824                             zio_flags, &aflags, &zio->io_bookmark);
2825 
2826                         if (error == 0) {
2827                                 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2828                                     zio->io_orig_size) != 0)
2829                                         error = SET_ERROR(ENOENT);
2830                                 arc_buf_destroy(abuf, &abuf);
2831                         }
2832 
2833                         ddt_enter(ddt);
2834                         return (error != 0);
2835                 }
2836         }
2837 
2838         return (B_FALSE);
2839 }
2840 
2841 static void
2842 zio_ddt_child_write_ready(zio_t *zio)
2843 {
2844         int p = zio->io_prop.zp_copies;
2845         ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2846         ddt_entry_t *dde = zio->io_private;
2847         ddt_phys_t *ddp = &dde->dde_phys[p];
2848         zio_t *pio;
2849 
2850         if (zio->io_error)
2851                 return;
2852 
2853         ddt_enter(ddt);
2854 
2855         ASSERT(dde->dde_lead_zio[p] == zio);
2856 
2857         ddt_phys_fill(ddp, zio->io_bp);
2858 
2859         zio_link_t *zl = NULL;
2860         while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2861                 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2862 
2863         ddt_exit(ddt);
2864 }
2865 
2866 static void
2867 zio_ddt_child_write_done(zio_t *zio)
2868 {
2869         int p = zio->io_prop.zp_copies;
2870         ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2871         ddt_entry_t *dde = zio->io_private;
2872         ddt_phys_t *ddp = &dde->dde_phys[p];
2873 
2874         ddt_enter(ddt);
2875 
2876         ASSERT(ddp->ddp_refcnt == 0);
2877         ASSERT(dde->dde_lead_zio[p] == zio);
2878         dde->dde_lead_zio[p] = NULL;
2879 
2880         if (zio->io_error == 0) {
2881                 zio_link_t *zl = NULL;
2882                 while (zio_walk_parents(zio, &zl) != NULL)
2883                         ddt_phys_addref(ddp);
2884         } else {
2885                 ddt_phys_clear(ddp);
2886         }
2887 
2888         ddt_exit(ddt);
2889 }
2890 
2891 static void
2892 zio_ddt_ditto_write_done(zio_t *zio)
2893 {
2894         int p = DDT_PHYS_DITTO;
2895         zio_prop_t *zp = &zio->io_prop;
2896         blkptr_t *bp = zio->io_bp;
2897         ddt_t *ddt = ddt_select(zio->io_spa, bp);
2898         ddt_entry_t *dde = zio->io_private;
2899         ddt_phys_t *ddp = &dde->dde_phys[p];
2900         ddt_key_t *ddk = &dde->dde_key;
2901 
2902         ddt_enter(ddt);
2903 
2904         ASSERT(ddp->ddp_refcnt == 0);
2905         ASSERT(dde->dde_lead_zio[p] == zio);
2906         dde->dde_lead_zio[p] = NULL;
2907 
2908         if (zio->io_error == 0) {
2909                 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2910                 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2911                 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2912                 if (ddp->ddp_phys_birth != 0)
2913                         ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2914                 ddt_phys_fill(ddp, bp);
2915         }
2916 
2917         ddt_exit(ddt);
2918 }
2919 
2920 static int
2921 zio_ddt_write(zio_t *zio)
2922 {
2923         spa_t *spa = zio->io_spa;
2924         blkptr_t *bp = zio->io_bp;
2925         uint64_t txg = zio->io_txg;
2926         zio_prop_t *zp = &zio->io_prop;
2927         int p = zp->zp_copies;
2928         int ditto_copies;
2929         zio_t *cio = NULL;
2930         zio_t *dio = NULL;
2931         ddt_t *ddt = ddt_select(spa, bp);
2932         ddt_entry_t *dde;
2933         ddt_phys_t *ddp;
2934 
2935         ASSERT(BP_GET_DEDUP(bp));
2936         ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2937         ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2938         ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
2939 
2940         ddt_enter(ddt);
2941         dde = ddt_lookup(ddt, bp, B_TRUE);
2942         ddp = &dde->dde_phys[p];
2943 
2944         if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2945                 /*
2946                  * If we're using a weak checksum, upgrade to a strong checksum
2947                  * and try again.  If we're already using a strong checksum,
2948                  * we can't resolve it, so just convert to an ordinary write.
2949                  * (And automatically e-mail a paper to Nature?)
2950                  */
2951                 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2952                     ZCHECKSUM_FLAG_DEDUP)) {
2953                         zp->zp_checksum = spa_dedup_checksum(spa);
2954                         zio_pop_transforms(zio);
2955                         zio->io_stage = ZIO_STAGE_OPEN;
2956                         BP_ZERO(bp);
2957                 } else {
2958                         zp->zp_dedup = B_FALSE;
2959                         BP_SET_DEDUP(bp, B_FALSE);
2960                 }
2961                 ASSERT(!BP_GET_DEDUP(bp));
2962                 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2963                 ddt_exit(ddt);
2964                 return (ZIO_PIPELINE_CONTINUE);
2965         }
2966 
2967         ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2968         ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2969 
2970         if (ditto_copies > ddt_ditto_copies_present(dde) &&
2971             dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2972                 zio_prop_t czp = *zp;
2973 
2974                 czp.zp_copies = ditto_copies;
2975 
2976                 /*
2977                  * If we arrived here with an override bp, we won't have run
2978                  * the transform stack, so we won't have the data we need to
2979                  * generate a child i/o.  So, toss the override bp and restart.
2980                  * This is safe, because using the override bp is just an
2981                  * optimization; and it's rare, so the cost doesn't matter.
2982                  */
2983                 if (zio->io_bp_override) {
2984                         zio_pop_transforms(zio);
2985                         zio->io_stage = ZIO_STAGE_OPEN;
2986                         zio->io_pipeline = ZIO_WRITE_PIPELINE;
2987                         zio->io_bp_override = NULL;
2988                         BP_ZERO(bp);
2989                         ddt_exit(ddt);
2990                         return (ZIO_PIPELINE_CONTINUE);
2991                 }
2992 
2993                 dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2994                     zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
2995                     NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2996                     ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2997 
2998                 zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
2999                 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
3000         }
3001 
3002         if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3003                 if (ddp->ddp_phys_birth != 0)
3004                         ddt_bp_fill(ddp, bp, txg);
3005                 if (dde->dde_lead_zio[p] != NULL)
3006                         zio_add_child(zio, dde->dde_lead_zio[p]);
3007                 else
3008                         ddt_phys_addref(ddp);
3009         } else if (zio->io_bp_override) {
3010                 ASSERT(bp->blk_birth == txg);
3011                 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3012                 ddt_phys_fill(ddp, bp);
3013                 ddt_phys_addref(ddp);
3014         } else {
3015                 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3016                     zio->io_orig_size, zio->io_orig_size, zp,
3017                     zio_ddt_child_write_ready, NULL, NULL,
3018                     zio_ddt_child_write_done, dde, zio->io_priority,
3019                     ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3020 
3021                 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3022                 dde->dde_lead_zio[p] = cio;
3023         }
3024 
3025         ddt_exit(ddt);
3026 
3027         if (cio)
3028                 zio_nowait(cio);
3029         if (dio)
3030                 zio_nowait(dio);
3031 
3032         return (ZIO_PIPELINE_CONTINUE);
3033 }
3034 
3035 ddt_entry_t *freedde; /* for debugging */
3036 
3037 static int
3038 zio_ddt_free(zio_t *zio)
3039 {
3040         spa_t *spa = zio->io_spa;
3041         blkptr_t *bp = zio->io_bp;
3042         ddt_t *ddt = ddt_select(spa, bp);
3043         ddt_entry_t *dde;
3044         ddt_phys_t *ddp;
3045 
3046         ASSERT(BP_GET_DEDUP(bp));
3047         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3048 
3049         ddt_enter(ddt);
3050         freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3051         ddp = ddt_phys_select(dde, bp);
3052         ddt_phys_decref(ddp);
3053         ddt_exit(ddt);
3054 
3055         return (ZIO_PIPELINE_CONTINUE);
3056 }
3057 
3058 /*
3059  * ==========================================================================
3060  * Allocate and free blocks
3061  * ==========================================================================
3062  */
3063 
3064 static zio_t *
3065 zio_io_to_allocate(spa_t *spa, int allocator)
3066 {
3067         zio_t *zio;
3068 
3069         ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
3070 
3071         zio = avl_first(&spa->spa_alloc_trees[allocator]);
3072         if (zio == NULL)
3073                 return (NULL);
3074 
3075         ASSERT(IO_IS_ALLOCATING(zio));
3076 
3077         /*
3078          * Try to place a reservation for this zio. If we're unable to
3079          * reserve then we throttle.
3080          */
3081         ASSERT3U(zio->io_allocator, ==, allocator);
3082         if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3083             zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
3084                 return (NULL);
3085         }
3086 
3087         avl_remove(&spa->spa_alloc_trees[allocator], zio);
3088         ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3089 
3090         return (zio);
3091 }
3092 
3093 static int
3094 zio_dva_throttle(zio_t *zio)
3095 {
3096         spa_t *spa = zio->io_spa;
3097         zio_t *nio;
3098         metaslab_class_t *mc;
3099 
3100         /* locate an appropriate allocation class */
3101         mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3102             zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3103 
3104         if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3105             !mc->mc_alloc_throttle_enabled ||
3106             zio->io_child_type == ZIO_CHILD_GANG ||
3107             zio->io_flags & ZIO_FLAG_NODATA) {
3108                 return (ZIO_PIPELINE_CONTINUE);
3109         }
3110 
3111         ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3112 
3113         ASSERT3U(zio->io_queued_timestamp, >, 0);
3114         ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3115 
3116         zbookmark_phys_t *bm = &zio->io_bookmark;
3117         /*
3118          * We want to try to use as many allocators as possible to help improve
3119          * performance, but we also want logically adjacent IOs to be physically
3120          * adjacent to improve sequential read performance. We chunk each object
3121          * into 2^20 block regions, and then hash based on the objset, object,
3122          * level, and region to accomplish both of these goals.
3123          */
3124         zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
3125             bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3126         mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
3127         ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3128         zio->io_metaslab_class = mc;
3129         avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
3130         nio = zio_io_to_allocate(spa, zio->io_allocator);
3131         mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
3132 
3133         if (nio == zio)
3134                 return (ZIO_PIPELINE_CONTINUE);
3135 
3136         if (nio != NULL) {
3137                 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3138                 /*
3139                  * We are passing control to a new zio so make sure that
3140                  * it is processed by a different thread. We do this to
3141                  * avoid stack overflows that can occur when parents are
3142                  * throttled and children are making progress. We allow
3143                  * it to go to the head of the taskq since it's already
3144                  * been waiting.
3145                  */
3146                 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
3147         }
3148         return (ZIO_PIPELINE_STOP);
3149 }
3150 
3151 static void
3152 zio_allocate_dispatch(spa_t *spa, int allocator)
3153 {
3154         zio_t *zio;
3155 
3156         mutex_enter(&spa->spa_alloc_locks[allocator]);
3157         zio = zio_io_to_allocate(spa, allocator);
3158         mutex_exit(&spa->spa_alloc_locks[allocator]);
3159         if (zio == NULL)
3160                 return;
3161 
3162         ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3163         ASSERT0(zio->io_error);
3164         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3165 }
3166 
3167 static int
3168 zio_dva_allocate(zio_t *zio)
3169 {
3170         spa_t *spa = zio->io_spa;
3171         metaslab_class_t *mc;
3172         blkptr_t *bp = zio->io_bp;
3173         int error;
3174         int flags = 0;
3175 
3176         if (zio->io_gang_leader == NULL) {
3177                 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3178                 zio->io_gang_leader = zio;
3179         }
3180 
3181         ASSERT(BP_IS_HOLE(bp));
3182         ASSERT0(BP_GET_NDVAS(bp));
3183         ASSERT3U(zio->io_prop.zp_copies, >, 0);
3184         ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3185         ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3186 
3187         if (zio->io_flags & ZIO_FLAG_NODATA)
3188                 flags |= METASLAB_DONT_THROTTLE;
3189         if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3190                 flags |= METASLAB_GANG_CHILD;
3191         if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3192                 flags |= METASLAB_ASYNC_ALLOC;
3193 
3194         /*
3195          * if not already chosen, locate an appropriate allocation class
3196          */
3197         mc = zio->io_metaslab_class;
3198         if (mc == NULL) {
3199                 mc = spa_preferred_class(spa, zio->io_size,
3200                     zio->io_prop.zp_type, zio->io_prop.zp_level,
3201                     zio->io_prop.zp_zpl_smallblk);
3202                 zio->io_metaslab_class = mc;
3203         }
3204 
3205         error = metaslab_alloc(spa, mc, zio->io_size, bp,
3206             zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3207             &zio->io_alloc_list, zio, zio->io_allocator);
3208 
3209         /*
3210          * Fallback to normal class when an alloc class is full
3211          */
3212         if (error == ENOSPC && mc != spa_normal_class(spa)) {
3213                 /*
3214                  * If throttling, transfer reservation over to normal class.
3215                  * The io_allocator slot can remain the same even though we
3216                  * are switching classes.
3217                  */
3218                 if (mc->mc_alloc_throttle_enabled &&
3219                     (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3220                         metaslab_class_throttle_unreserve(mc,
3221                             zio->io_prop.zp_copies, zio->io_allocator, zio);
3222                         zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3223 
3224                         mc = spa_normal_class(spa);
3225                         VERIFY(metaslab_class_throttle_reserve(mc,
3226                             zio->io_prop.zp_copies, zio->io_allocator, zio,
3227                             flags | METASLAB_MUST_RESERVE));
3228                 } else {
3229                         mc = spa_normal_class(spa);
3230                 }
3231                 zio->io_metaslab_class = mc;
3232 
3233                 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3234                     zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3235                     &zio->io_alloc_list, zio, zio->io_allocator);
3236         }
3237 
3238         if (error != 0) {
3239                 zfs_dbgmsg("%s: metaslab allocation failure: zio %p, "
3240                     "size %llu, error %d", spa_name(spa), zio, zio->io_size,
3241                     error);
3242                 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
3243                         return (zio_write_gang_block(zio));
3244                 zio->io_error = error;
3245         }
3246 
3247         return (ZIO_PIPELINE_CONTINUE);
3248 }
3249 
3250 static int
3251 zio_dva_free(zio_t *zio)
3252 {
3253         metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3254 
3255         return (ZIO_PIPELINE_CONTINUE);
3256 }
3257 
3258 static int
3259 zio_dva_claim(zio_t *zio)
3260 {
3261         int error;
3262 
3263         error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3264         if (error)
3265                 zio->io_error = error;
3266 
3267         return (ZIO_PIPELINE_CONTINUE);
3268 }
3269 
3270 /*
3271  * Undo an allocation.  This is used by zio_done() when an I/O fails
3272  * and we want to give back the block we just allocated.
3273  * This handles both normal blocks and gang blocks.
3274  */
3275 static void
3276 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3277 {
3278         ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3279         ASSERT(zio->io_bp_override == NULL);
3280 
3281         if (!BP_IS_HOLE(bp))
3282                 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3283 
3284         if (gn != NULL) {
3285                 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3286                         zio_dva_unallocate(zio, gn->gn_child[g],
3287                             &gn->gn_gbh->zg_blkptr[g]);
3288                 }
3289         }
3290 }
3291 
3292 /*
3293  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3294  */
3295 int
3296 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3297     blkptr_t *old_bp, uint64_t size, boolean_t *slog)
3298 {
3299         int error = 1;
3300         zio_alloc_list_t io_alloc_list;
3301 
3302         ASSERT(txg > spa_syncing_txg(spa));
3303 
3304         metaslab_trace_init(&io_alloc_list);
3305 
3306         /*
3307          * Block pointer fields are useful to metaslabs for stats and debugging.
3308          * Fill in the obvious ones before calling into metaslab_alloc().
3309          */
3310         BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3311         BP_SET_PSIZE(new_bp, size);
3312         BP_SET_LEVEL(new_bp, 0);
3313 
3314         /*
3315          * When allocating a zil block, we don't have information about
3316          * the final destination of the block except the objset it's part
3317          * of, so we just hash the objset ID to pick the allocator to get
3318          * some parallelism.
3319          */
3320         error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3321             txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL,
3322             cityhash4(0, 0, 0,
3323             os->os_dsl_dataset->ds_object) % spa->spa_alloc_count);
3324         if (error == 0) {
3325                 *slog = TRUE;
3326         } else {
3327                 error = metaslab_alloc(spa, spa_normal_class(spa), size,
3328                     new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID,
3329                     &io_alloc_list, NULL, cityhash4(0, 0, 0,
3330                     os->os_dsl_dataset->ds_object) % spa->spa_alloc_count);
3331                 if (error == 0)
3332                         *slog = FALSE;
3333         }
3334         metaslab_trace_fini(&io_alloc_list);
3335 
3336         if (error == 0) {
3337                 BP_SET_LSIZE(new_bp, size);
3338                 BP_SET_PSIZE(new_bp, size);
3339                 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3340                 BP_SET_CHECKSUM(new_bp,
3341                     spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3342                     ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3343                 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3344                 BP_SET_LEVEL(new_bp, 0);
3345                 BP_SET_DEDUP(new_bp, 0);
3346                 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3347 
3348                 /*
3349                  * encrypted blocks will require an IV and salt. We generate
3350                  * these now since we will not be rewriting the bp at
3351                  * rewrite time.
3352                  */
3353                 if (os->os_encrypted) {
3354                         uint8_t iv[ZIO_DATA_IV_LEN];
3355                         uint8_t salt[ZIO_DATA_SALT_LEN];
3356 
3357                         BP_SET_CRYPT(new_bp, B_TRUE);
3358                         VERIFY0(spa_crypt_get_salt(spa,
3359                             dmu_objset_id(os), salt));
3360                         VERIFY0(zio_crypt_generate_iv(iv));
3361 
3362                         zio_crypt_encode_params_bp(new_bp, salt, iv);
3363                 }
3364         } else {
3365                 zfs_dbgmsg("%s: zil block allocation failure: "
3366                     "size %llu, error %d", spa_name(spa), size, error);
3367         }
3368 
3369         return (error);
3370 }
3371 
3372 /*
3373  * ==========================================================================
3374  * Read and write to physical devices
3375  * ==========================================================================
3376  */
3377 
3378 /*
3379  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3380  * stops after this stage and will resume upon I/O completion.
3381  * However, there are instances where the vdev layer may need to
3382  * continue the pipeline when an I/O was not issued. Since the I/O
3383  * that was sent to the vdev layer might be different than the one
3384  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3385  * force the underlying vdev layers to call either zio_execute() or
3386  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3387  */
3388 static int
3389 zio_vdev_io_start(zio_t *zio)
3390 {
3391         vdev_t *vd = zio->io_vd;
3392         uint64_t align;
3393         spa_t *spa = zio->io_spa;
3394 
3395         zio->io_delay = 0;
3396 
3397         ASSERT(zio->io_error == 0);
3398         ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3399 
3400         if (vd == NULL) {
3401                 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3402                         spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3403 
3404                 /*
3405                  * The mirror_ops handle multiple DVAs in a single BP.
3406                  */
3407                 vdev_mirror_ops.vdev_op_io_start(zio);
3408                 return (ZIO_PIPELINE_STOP);
3409         }
3410 
3411         ASSERT3P(zio->io_logical, !=, zio);
3412         if (zio->io_type == ZIO_TYPE_WRITE) {
3413                 ASSERT(spa->spa_trust_config);
3414 
3415                 /*
3416                  * Note: the code can handle other kinds of writes,
3417                  * but we don't expect them.
3418                  */
3419                 if (zio->io_vd->vdev_removing) {
3420                         ASSERT(zio->io_flags &
3421                             (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3422                             ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3423                 }
3424         }
3425 
3426         align = 1ULL << vd->vdev_top->vdev_ashift;
3427 
3428         if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3429             P2PHASE(zio->io_size, align) != 0) {
3430                 /* Transform logical writes to be a full physical block size. */
3431                 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3432                 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3433                 ASSERT(vd == vd->vdev_top);
3434                 if (zio->io_type == ZIO_TYPE_WRITE) {
3435                         abd_copy(abuf, zio->io_abd, zio->io_size);
3436                         abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3437                 }
3438                 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3439         }
3440 
3441         /*
3442          * If this is not a physical io, make sure that it is properly aligned
3443          * before proceeding.
3444          */
3445         if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3446                 ASSERT0(P2PHASE(zio->io_offset, align));
3447                 ASSERT0(P2PHASE(zio->io_size, align));
3448         } else {
3449                 /*
3450                  * For physical writes, we allow 512b aligned writes and assume
3451                  * the device will perform a read-modify-write as necessary.
3452                  */
3453                 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3454                 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3455         }
3456 
3457         VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3458 
3459         /*
3460          * If this is a repair I/O, and there's no self-healing involved --
3461          * that is, we're just resilvering what we expect to resilver --
3462          * then don't do the I/O unless zio's txg is actually in vd's DTL.
3463          * This prevents spurious resilvering.
3464          *
3465          * There are a few ways that we can end up creating these spurious
3466          * resilver i/os:
3467          *
3468          * 1. A resilver i/o will be issued if any DVA in the BP has a
3469          * dirty DTL.  The mirror code will issue resilver writes to
3470          * each DVA, including the one(s) that are not on vdevs with dirty
3471          * DTLs.
3472          *
3473          * 2. With nested replication, which happens when we have a
3474          * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3475          * For example, given mirror(replacing(A+B), C), it's likely that
3476          * only A is out of date (it's the new device). In this case, we'll
3477          * read from C, then use the data to resilver A+B -- but we don't
3478          * actually want to resilver B, just A. The top-level mirror has no
3479          * way to know this, so instead we just discard unnecessary repairs
3480          * as we work our way down the vdev tree.
3481          *
3482          * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3483          * The same logic applies to any form of nested replication: ditto
3484          * + mirror, RAID-Z + replacing, etc.
3485          *
3486          * However, indirect vdevs point off to other vdevs which may have
3487          * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3488          * will be properly bypassed instead.
3489          */
3490         if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3491             !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3492             zio->io_txg != 0 &&      /* not a delegated i/o */
3493             vd->vdev_ops != &vdev_indirect_ops &&
3494             !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3495                 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3496                 zio_vdev_io_bypass(zio);
3497                 return (ZIO_PIPELINE_CONTINUE);
3498         }
3499 
3500         if (vd->vdev_ops->vdev_op_leaf && (zio->io_type == ZIO_TYPE_READ ||
3501             zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM)) {
3502 
3503                 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3504                         return (ZIO_PIPELINE_CONTINUE);
3505 
3506                 if ((zio = vdev_queue_io(zio)) == NULL)
3507                         return (ZIO_PIPELINE_STOP);
3508 
3509                 if (!vdev_accessible(vd, zio)) {
3510                         zio->io_error = SET_ERROR(ENXIO);
3511                         zio_interrupt(zio);
3512                         return (ZIO_PIPELINE_STOP);
3513                 }
3514                 zio->io_delay = gethrtime();
3515         }
3516 
3517         vd->vdev_ops->vdev_op_io_start(zio);
3518         return (ZIO_PIPELINE_STOP);
3519 }
3520 
3521 static int
3522 zio_vdev_io_done(zio_t *zio)
3523 {
3524         vdev_t *vd = zio->io_vd;
3525         vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3526         boolean_t unexpected_error = B_FALSE;
3527 
3528         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3529                 return (ZIO_PIPELINE_STOP);
3530         }
3531 
3532         ASSERT(zio->io_type == ZIO_TYPE_READ ||
3533             zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3534 
3535         if (zio->io_delay)
3536                 zio->io_delay = gethrtime() - zio->io_delay;
3537 
3538         if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3539 
3540                 vdev_queue_io_done(zio);
3541 
3542                 if (zio->io_type == ZIO_TYPE_WRITE)
3543                         vdev_cache_write(zio);
3544 
3545                 if (zio_injection_enabled && zio->io_error == 0)
3546                         zio->io_error = zio_handle_device_injection(vd,
3547                             zio, EIO);
3548 
3549                 if (zio_injection_enabled && zio->io_error == 0)
3550                         zio->io_error = zio_handle_label_injection(zio, EIO);
3551 
3552                 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3553                         if (!vdev_accessible(vd, zio)) {
3554                                 zio->io_error = SET_ERROR(ENXIO);
3555                         } else {
3556                                 unexpected_error = B_TRUE;
3557                         }
3558                 }
3559         }
3560 
3561         ops->vdev_op_io_done(zio);
3562 
3563         if (unexpected_error)
3564                 VERIFY(vdev_probe(vd, zio) == NULL);
3565 
3566         return (ZIO_PIPELINE_CONTINUE);
3567 }
3568 
3569 /*
3570  * This function is used to change the priority of an existing zio that is
3571  * currently in-flight. This is used by the arc to upgrade priority in the
3572  * event that a demand read is made for a block that is currently queued
3573  * as a scrub or async read IO. Otherwise, the high priority read request
3574  * would end up having to wait for the lower priority IO.
3575  */
3576 void
3577 zio_change_priority(zio_t *pio, zio_priority_t priority)
3578 {
3579         zio_t *cio, *cio_next;
3580         zio_link_t *zl = NULL;
3581 
3582         ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3583 
3584         if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3585                 vdev_queue_change_io_priority(pio, priority);
3586         } else {
3587                 pio->io_priority = priority;
3588         }
3589 
3590         mutex_enter(&pio->io_lock);
3591         for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3592                 cio_next = zio_walk_children(pio, &zl);
3593                 zio_change_priority(cio, priority);
3594         }
3595         mutex_exit(&pio->io_lock);
3596 }
3597 
3598 /*
3599  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3600  * disk, and use that to finish the checksum ereport later.
3601  */
3602 static void
3603 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3604     const abd_t *good_buf)
3605 {
3606         /* no processing needed */
3607         zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3608 }
3609 
3610 /*ARGSUSED*/
3611 void
3612 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3613 {
3614         void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3615 
3616         abd_copy(abd, zio->io_abd, zio->io_size);
3617 
3618         zcr->zcr_cbinfo = zio->io_size;
3619         zcr->zcr_cbdata = abd;
3620         zcr->zcr_finish = zio_vsd_default_cksum_finish;
3621         zcr->zcr_free = zio_abd_free;
3622 }
3623 
3624 static int
3625 zio_vdev_io_assess(zio_t *zio)
3626 {
3627         vdev_t *vd = zio->io_vd;
3628 
3629         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3630                 return (ZIO_PIPELINE_STOP);
3631         }
3632 
3633         if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3634                 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3635 
3636         if (zio->io_vsd != NULL) {
3637                 zio->io_vsd_ops->vsd_free(zio);
3638                 zio->io_vsd = NULL;
3639         }
3640 
3641         if (zio_injection_enabled && zio->io_error == 0)
3642                 zio->io_error = zio_handle_fault_injection(zio, EIO);
3643 
3644         /*
3645          * If the I/O failed, determine whether we should attempt to retry it.
3646          *
3647          * On retry, we cut in line in the issue queue, since we don't want
3648          * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3649          */
3650         if (zio->io_error && vd == NULL &&
3651             !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3652                 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));  /* not a leaf */
3653                 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));   /* not a leaf */
3654                 zio->io_error = 0;
3655                 zio->io_flags |= ZIO_FLAG_IO_RETRY |
3656                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3657                 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3658                 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3659                     zio_requeue_io_start_cut_in_line);
3660                 return (ZIO_PIPELINE_STOP);
3661         }
3662 
3663         /*
3664          * If we got an error on a leaf device, convert it to ENXIO
3665          * if the device is not accessible at all.
3666          */
3667         if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3668             !vdev_accessible(vd, zio))
3669                 zio->io_error = SET_ERROR(ENXIO);
3670 
3671         /*
3672          * If we can't write to an interior vdev (mirror or RAID-Z),
3673          * set vdev_cant_write so that we stop trying to allocate from it.
3674          */
3675         if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3676             vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3677                 vd->vdev_cant_write = B_TRUE;
3678         }
3679 
3680         /*
3681          * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3682          * attempts will ever succeed. In this case we set a persistent
3683          * boolean flag so that we don't bother with it in the future.
3684          */
3685         if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3686             zio->io_type == ZIO_TYPE_IOCTL &&
3687             zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3688                 vd->vdev_nowritecache = B_TRUE;
3689 
3690         if (zio->io_error)
3691                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3692 
3693         if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3694             zio->io_physdone != NULL) {
3695                 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3696                 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3697                 zio->io_physdone(zio->io_logical);
3698         }
3699 
3700         return (ZIO_PIPELINE_CONTINUE);
3701 }
3702 
3703 void
3704 zio_vdev_io_reissue(zio_t *zio)
3705 {
3706         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3707         ASSERT(zio->io_error == 0);
3708 
3709         zio->io_stage >>= 1;
3710 }
3711 
3712 void
3713 zio_vdev_io_redone(zio_t *zio)
3714 {
3715         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3716 
3717         zio->io_stage >>= 1;
3718 }
3719 
3720 void
3721 zio_vdev_io_bypass(zio_t *zio)
3722 {
3723         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3724         ASSERT(zio->io_error == 0);
3725 
3726         zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3727         zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3728 }
3729 
3730 /*
3731  * ==========================================================================
3732  * Encrypt and store encryption parameters
3733  * ==========================================================================
3734  */
3735 
3736 
3737 /*
3738  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
3739  * managing the storage of encryption parameters and passing them to the
3740  * lower-level encryption functions.
3741  */
3742 static int
3743 zio_encrypt(zio_t *zio)
3744 {
3745         zio_prop_t *zp = &zio->io_prop;
3746         spa_t *spa = zio->io_spa;
3747         blkptr_t *bp = zio->io_bp;
3748         uint64_t psize = BP_GET_PSIZE(bp);
3749         uint64_t dsobj = zio->io_bookmark.zb_objset;
3750         dmu_object_type_t ot = BP_GET_TYPE(bp);
3751         void *enc_buf = NULL;
3752         abd_t *eabd = NULL;
3753         uint8_t salt[ZIO_DATA_SALT_LEN];
3754         uint8_t iv[ZIO_DATA_IV_LEN];
3755         uint8_t mac[ZIO_DATA_MAC_LEN];
3756         boolean_t no_crypt = B_FALSE;
3757 
3758         /* the root zio already encrypted the data */
3759         if (zio->io_child_type == ZIO_CHILD_GANG)
3760                 return (ZIO_PIPELINE_CONTINUE);
3761 
3762         /* only ZIL blocks are re-encrypted on rewrite */
3763         if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
3764                 return (ZIO_PIPELINE_CONTINUE);
3765 
3766         if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
3767                 BP_SET_CRYPT(bp, B_FALSE);
3768                 return (ZIO_PIPELINE_CONTINUE);
3769         }
3770 
3771         /* if we are doing raw encryption set the provided encryption params */
3772         if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
3773                 ASSERT0(BP_GET_LEVEL(bp));
3774                 BP_SET_CRYPT(bp, B_TRUE);
3775                 BP_SET_BYTEORDER(bp, zp->zp_byteorder);
3776                 if (ot != DMU_OT_OBJSET)
3777                         zio_crypt_encode_mac_bp(bp, zp->zp_mac);
3778 
3779                 /* dnode blocks must be written out in the provided byteorder */
3780                 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
3781                     ot == DMU_OT_DNODE) {
3782                         void *bswap_buf = zio_buf_alloc(psize);
3783                         abd_t *babd = abd_get_from_buf(bswap_buf, psize);
3784 
3785                         ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
3786                         abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
3787                         dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
3788                             psize);
3789 
3790                         abd_take_ownership_of_buf(babd, B_TRUE);
3791                         zio_push_transform(zio, babd, psize, psize, NULL);
3792                 }
3793 
3794                 if (DMU_OT_IS_ENCRYPTED(ot))
3795                         zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
3796                 return (ZIO_PIPELINE_CONTINUE);
3797         }
3798 
3799         /* indirect blocks only maintain a cksum of the lower level MACs */
3800         if (BP_GET_LEVEL(bp) > 0) {
3801                 BP_SET_CRYPT(bp, B_TRUE);
3802                 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
3803                     zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
3804                     mac));
3805                 zio_crypt_encode_mac_bp(bp, mac);
3806                 return (ZIO_PIPELINE_CONTINUE);
3807         }
3808 
3809         /*
3810          * Objset blocks are a special case since they have 2 256-bit MACs
3811          * embedded within them.
3812          */
3813         if (ot == DMU_OT_OBJSET) {
3814                 ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
3815                 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
3816                 BP_SET_CRYPT(bp, B_TRUE);
3817                 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
3818                     zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
3819                 return (ZIO_PIPELINE_CONTINUE);
3820         }
3821 
3822         /* unencrypted object types are only authenticated with a MAC */
3823         if (!DMU_OT_IS_ENCRYPTED(ot)) {
3824                 BP_SET_CRYPT(bp, B_TRUE);
3825                 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
3826                     zio->io_abd, psize, mac));
3827                 zio_crypt_encode_mac_bp(bp, mac);
3828                 return (ZIO_PIPELINE_CONTINUE);
3829         }
3830 
3831         /*
3832          * Later passes of sync-to-convergence may decide to rewrite data
3833          * in place to avoid more disk reallocations. This presents a problem
3834          * for encryption because this consitutes rewriting the new data with
3835          * the same encryption key and IV. However, this only applies to blocks
3836          * in the MOS (particularly the spacemaps) and we do not encrypt the
3837          * MOS. We assert that the zio is allocating or an intent log write
3838          * to enforce this.
3839          */
3840         ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
3841         ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
3842         ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
3843         ASSERT3U(psize, !=, 0);
3844 
3845         enc_buf = zio_buf_alloc(psize);
3846         eabd = abd_get_from_buf(enc_buf, psize);
3847         abd_take_ownership_of_buf(eabd, B_TRUE);
3848 
3849         /*
3850          * For an explanation of what encryption parameters are stored
3851          * where, see the block comment in zio_crypt.c.
3852          */
3853         if (ot == DMU_OT_INTENT_LOG) {
3854                 zio_crypt_decode_params_bp(bp, salt, iv);
3855         } else {
3856                 BP_SET_CRYPT(bp, B_TRUE);
3857         }
3858 
3859         /* Perform the encryption. This should not fail */
3860         VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
3861             BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
3862             salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
3863 
3864         /* encode encryption metadata into the bp */
3865         if (ot == DMU_OT_INTENT_LOG) {
3866                 /*
3867                  * ZIL blocks store the MAC in the embedded checksum, so the
3868                  * transform must always be applied.
3869                  */
3870                 zio_crypt_encode_mac_zil(enc_buf, mac);
3871                 zio_push_transform(zio, eabd, psize, psize, NULL);
3872         } else {
3873                 BP_SET_CRYPT(bp, B_TRUE);
3874                 zio_crypt_encode_params_bp(bp, salt, iv);
3875                 zio_crypt_encode_mac_bp(bp, mac);
3876 
3877                 if (no_crypt) {
3878                         ASSERT3U(ot, ==, DMU_OT_DNODE);
3879                         abd_free(eabd);
3880                 } else {
3881                         zio_push_transform(zio, eabd, psize, psize, NULL);
3882                 }
3883         }
3884 
3885         return (ZIO_PIPELINE_CONTINUE);
3886 }
3887 
3888 /*
3889  * ==========================================================================
3890  * Generate and verify checksums
3891  * ==========================================================================
3892  */
3893 static int
3894 zio_checksum_generate(zio_t *zio)
3895 {
3896         blkptr_t *bp = zio->io_bp;
3897         enum zio_checksum checksum;
3898 
3899         if (bp == NULL) {
3900                 /*
3901                  * This is zio_write_phys().
3902                  * We're either generating a label checksum, or none at all.
3903                  */
3904                 checksum = zio->io_prop.zp_checksum;
3905 
3906                 if (checksum == ZIO_CHECKSUM_OFF)
3907                         return (ZIO_PIPELINE_CONTINUE);
3908 
3909                 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3910         } else {
3911                 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3912                         ASSERT(!IO_IS_ALLOCATING(zio));
3913                         checksum = ZIO_CHECKSUM_GANG_HEADER;
3914                 } else {
3915                         checksum = BP_GET_CHECKSUM(bp);
3916                 }
3917         }
3918 
3919         zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3920 
3921         return (ZIO_PIPELINE_CONTINUE);
3922 }
3923 
3924 static int
3925 zio_checksum_verify(zio_t *zio)
3926 {
3927         zio_bad_cksum_t info;
3928         blkptr_t *bp = zio->io_bp;
3929         int error;
3930 
3931         ASSERT(zio->io_vd != NULL);
3932 
3933         if (bp == NULL) {
3934                 /*
3935                  * This is zio_read_phys().
3936                  * We're either verifying a label checksum, or nothing at all.
3937                  */
3938                 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3939                         return (ZIO_PIPELINE_CONTINUE);
3940 
3941                 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3942         }
3943 
3944         if ((error = zio_checksum_error(zio, &info)) != 0) {
3945                 zio->io_error = error;
3946                 if (error == ECKSUM &&
3947                     !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3948                         zfs_ereport_start_checksum(zio->io_spa,
3949                             zio->io_vd, &zio->io_bookmark, zio,
3950                             zio->io_offset, zio->io_size, NULL, &info);
3951                 }
3952         }
3953 
3954         return (ZIO_PIPELINE_CONTINUE);
3955 }
3956 
3957 /*
3958  * Called by RAID-Z to ensure we don't compute the checksum twice.
3959  */
3960 void
3961 zio_checksum_verified(zio_t *zio)
3962 {
3963         zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3964 }
3965 
3966 /*
3967  * ==========================================================================
3968  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3969  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3970  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3971  * indicate errors that are specific to one I/O, and most likely permanent.
3972  * Any other error is presumed to be worse because we weren't expecting it.
3973  * ==========================================================================
3974  */
3975 int
3976 zio_worst_error(int e1, int e2)
3977 {
3978         static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3979         int r1, r2;
3980 
3981         for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3982                 if (e1 == zio_error_rank[r1])
3983                         break;
3984 
3985         for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3986                 if (e2 == zio_error_rank[r2])
3987                         break;
3988 
3989         return (r1 > r2 ? e1 : e2);
3990 }
3991 
3992 /*
3993  * ==========================================================================
3994  * I/O completion
3995  * ==========================================================================
3996  */
3997 static int
3998 zio_ready(zio_t *zio)
3999 {
4000         blkptr_t *bp = zio->io_bp;
4001         zio_t *pio, *pio_next;
4002         zio_link_t *zl = NULL;
4003 
4004         if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4005             ZIO_WAIT_READY)) {
4006                 return (ZIO_PIPELINE_STOP);
4007         }
4008 
4009         if (zio->io_ready) {
4010                 ASSERT(IO_IS_ALLOCATING(zio));
4011                 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4012                     (zio->io_flags & ZIO_FLAG_NOPWRITE));
4013                 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4014 
4015                 zio->io_ready(zio);
4016         }
4017 
4018         if (bp != NULL && bp != &zio->io_bp_copy)
4019                 zio->io_bp_copy = *bp;
4020 
4021         if (zio->io_error != 0) {
4022                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4023 
4024                 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4025                         ASSERT(IO_IS_ALLOCATING(zio));
4026                         ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4027                         ASSERT(zio->io_metaslab_class != NULL);
4028 
4029                         /*
4030                          * We were unable to allocate anything, unreserve and
4031                          * issue the next I/O to allocate.
4032                          */
4033                         metaslab_class_throttle_unreserve(
4034                             zio->io_metaslab_class, zio->io_prop.zp_copies,
4035                             zio->io_allocator, zio);
4036                         zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4037                 }
4038         }
4039 
4040         mutex_enter(&zio->io_lock);
4041         zio->io_state[ZIO_WAIT_READY] = 1;
4042         pio = zio_walk_parents(zio, &zl);
4043         mutex_exit(&zio->io_lock);
4044 
4045         /*
4046          * As we notify zio's parents, new parents could be added.
4047          * New parents go to the head of zio's io_parent_list, however,
4048          * so we will (correctly) not notify them.  The remainder of zio's
4049          * io_parent_list, from 'pio_next' onward, cannot change because
4050          * all parents must wait for us to be done before they can be done.
4051          */
4052         for (; pio != NULL; pio = pio_next) {
4053                 pio_next = zio_walk_parents(zio, &zl);
4054                 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
4055         }
4056 
4057         if (zio->io_flags & ZIO_FLAG_NODATA) {
4058                 if (BP_IS_GANG(bp)) {
4059                         zio->io_flags &= ~ZIO_FLAG_NODATA;
4060                 } else {
4061                         ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4062                         zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4063                 }
4064         }
4065 
4066         if (zio_injection_enabled &&
4067             zio->io_spa->spa_syncing_txg == zio->io_txg)
4068                 zio_handle_ignored_writes(zio);
4069 
4070         return (ZIO_PIPELINE_CONTINUE);
4071 }
4072 
4073 /*
4074  * Update the allocation throttle accounting.
4075  */
4076 static void
4077 zio_dva_throttle_done(zio_t *zio)
4078 {
4079         zio_t *lio = zio->io_logical;
4080         zio_t *pio = zio_unique_parent(zio);
4081         vdev_t *vd = zio->io_vd;
4082         int flags = METASLAB_ASYNC_ALLOC;
4083 
4084         ASSERT3P(zio->io_bp, !=, NULL);
4085         ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4086         ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4087         ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4088         ASSERT(vd != NULL);
4089         ASSERT3P(vd, ==, vd->vdev_top);
4090         ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
4091         ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4092         ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4093         ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4094 
4095         /*
4096          * Parents of gang children can have two flavors -- ones that
4097          * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4098          * and ones that allocated the constituent blocks. The allocation
4099          * throttle needs to know the allocating parent zio so we must find
4100          * it here.
4101          */
4102         if (pio->io_child_type == ZIO_CHILD_GANG) {
4103                 /*
4104                  * If our parent is a rewrite gang child then our grandparent
4105                  * would have been the one that performed the allocation.
4106                  */
4107                 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4108                         pio = zio_unique_parent(pio);
4109                 flags |= METASLAB_GANG_CHILD;
4110         }
4111 
4112         ASSERT(IO_IS_ALLOCATING(pio));
4113         ASSERT3P(zio, !=, zio->io_logical);
4114         ASSERT(zio->io_logical != NULL);
4115         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4116         ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4117         ASSERT(zio->io_metaslab_class != NULL);
4118 
4119         mutex_enter(&pio->io_lock);
4120         metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4121             pio->io_allocator, B_TRUE);
4122         mutex_exit(&pio->io_lock);
4123 
4124         metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4125             pio->io_allocator, pio);
4126 
4127         /*
4128          * Call into the pipeline to see if there is more work that
4129          * needs to be done. If there is work to be done it will be
4130          * dispatched to another taskq thread.
4131          */
4132         zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4133 }
4134 
4135 static int
4136 zio_done(zio_t *zio)
4137 {
4138         spa_t *spa = zio->io_spa;
4139         zio_t *lio = zio->io_logical;
4140         blkptr_t *bp = zio->io_bp;
4141         vdev_t *vd = zio->io_vd;
4142         uint64_t psize = zio->io_size;
4143         zio_t *pio, *pio_next;
4144         zio_link_t *zl = NULL;
4145 
4146         /*
4147          * If our children haven't all completed,
4148          * wait for them and then repeat this pipeline stage.
4149          */
4150         if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4151                 return (ZIO_PIPELINE_STOP);
4152         }
4153 
4154         /*
4155          * If the allocation throttle is enabled, then update the accounting.
4156          * We only track child I/Os that are part of an allocating async
4157          * write. We must do this since the allocation is performed
4158          * by the logical I/O but the actual write is done by child I/Os.
4159          */
4160         if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4161             zio->io_child_type == ZIO_CHILD_VDEV) {
4162                 ASSERT(zio->io_metaslab_class != NULL);
4163                 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4164                 zio_dva_throttle_done(zio);
4165         }
4166 
4167         /*
4168          * If the allocation throttle is enabled, verify that
4169          * we have decremented the refcounts for every I/O that was throttled.
4170          */
4171         if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4172                 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4173                 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4174                 ASSERT(bp != NULL);
4175 
4176                 metaslab_group_alloc_verify(spa, zio->io_bp, zio,
4177                     zio->io_allocator);
4178                 VERIFY(zfs_refcount_not_held(
4179                     &zio->io_metaslab_class->mc_alloc_slots[zio->io_allocator],
4180                     zio));
4181         }
4182 
4183         for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4184                 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4185                         ASSERT(zio->io_children[c][w] == 0);
4186 
4187         if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
4188                 ASSERT(bp->blk_pad[0] == 0);
4189                 ASSERT(bp->blk_pad[1] == 0);
4190                 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
4191                     (bp == zio_unique_parent(zio)->io_bp));
4192                 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
4193                     zio->io_bp_override == NULL &&
4194                     !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4195                         ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
4196                         ASSERT(BP_COUNT_GANG(bp) == 0 ||
4197                             (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
4198                 }
4199                 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4200                         VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
4201         }
4202 
4203         /*
4204          * If there were child vdev/gang/ddt errors, they apply to us now.
4205          */
4206         zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4207         zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4208         zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4209 
4210         /*
4211          * If the I/O on the transformed data was successful, generate any
4212          * checksum reports now while we still have the transformed data.
4213          */
4214         if (zio->io_error == 0) {
4215                 while (zio->io_cksum_report != NULL) {
4216                         zio_cksum_report_t *zcr = zio->io_cksum_report;
4217                         uint64_t align = zcr->zcr_align;
4218                         uint64_t asize = P2ROUNDUP(psize, align);
4219                         abd_t *adata = zio->io_abd;
4220 
4221                         if (asize != psize) {
4222                                 adata = abd_alloc(asize, B_TRUE);
4223                                 abd_copy(adata, zio->io_abd, psize);
4224                                 abd_zero_off(adata, psize, asize - psize);
4225                         }
4226 
4227                         zio->io_cksum_report = zcr->zcr_next;
4228                         zcr->zcr_next = NULL;
4229                         zcr->zcr_finish(zcr, adata);
4230                         zfs_ereport_free_checksum(zcr);
4231 
4232                         if (asize != psize)
4233                                 abd_free(adata);
4234                 }
4235         }
4236 
4237         zio_pop_transforms(zio);        /* note: may set zio->io_error */
4238 
4239         vdev_stat_update(zio, psize);
4240 
4241         if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4242                 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4243                         /*
4244                          * We want to only increment our slow IO counters if
4245                          * the IO is valid (i.e. not if the drive is removed).
4246                          *
4247                          * zfs_ereport_post() will also do these checks, but
4248                          * it can also have other failures, so we need to
4249                          * increment the slow_io counters independent of it.
4250                          */
4251                         if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4252                             zio->io_spa, zio->io_vd, zio)) {
4253                                 mutex_enter(&zio->io_vd->vdev_stat_lock);
4254                                 zio->io_vd->vdev_stat.vs_slow_ios++;
4255                                 mutex_exit(&zio->io_vd->vdev_stat_lock);
4256 
4257                                 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4258                                     zio->io_spa, zio->io_vd, &zio->io_bookmark,
4259                                     zio, 0, 0);
4260                         }
4261                 }
4262         }
4263 
4264         if (zio->io_error) {
4265                 /*
4266                  * If this I/O is attached to a particular vdev,
4267                  * generate an error message describing the I/O failure
4268                  * at the block level.  We ignore these errors if the
4269                  * device is currently unavailable.
4270                  */
4271                 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
4272                         zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd,
4273                             &zio->io_bookmark, zio, 0, 0);
4274 
4275                 if ((zio->io_error == EIO || !(zio->io_flags &
4276                     (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4277                     zio == lio) {
4278                         /*
4279                          * For logical I/O requests, tell the SPA to log the
4280                          * error and generate a logical data ereport.
4281                          */
4282                         spa_log_error(spa, &zio->io_bookmark);
4283                         zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL,
4284                             &zio->io_bookmark, zio, 0, 0);
4285                 }
4286         }
4287 
4288         if (zio->io_error && zio == lio) {
4289                 /*
4290                  * Determine whether zio should be reexecuted.  This will
4291                  * propagate all the way to the root via zio_notify_parent().
4292                  */
4293                 ASSERT(vd == NULL && bp != NULL);
4294                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4295 
4296                 if (IO_IS_ALLOCATING(zio) &&
4297                     !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4298                         if (zio->io_error != ENOSPC)
4299                                 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4300                         else
4301                                 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4302                 }
4303 
4304                 if ((zio->io_type == ZIO_TYPE_READ ||
4305                     zio->io_type == ZIO_TYPE_FREE) &&
4306                     !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4307                     zio->io_error == ENXIO &&
4308                     spa_load_state(spa) == SPA_LOAD_NONE &&
4309                     spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
4310                         zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4311 
4312                 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4313                         zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4314 
4315                 /*
4316                  * Here is a possibly good place to attempt to do
4317                  * either combinatorial reconstruction or error correction
4318                  * based on checksums.  It also might be a good place
4319                  * to send out preliminary ereports before we suspend
4320                  * processing.
4321                  */
4322         }
4323 
4324         /*
4325          * If there were logical child errors, they apply to us now.
4326          * We defer this until now to avoid conflating logical child
4327          * errors with errors that happened to the zio itself when
4328          * updating vdev stats and reporting FMA events above.
4329          */
4330         zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4331 
4332         if ((zio->io_error || zio->io_reexecute) &&
4333             IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4334             !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4335                 zio_dva_unallocate(zio, zio->io_gang_tree, bp);
4336 
4337         zio_gang_tree_free(&zio->io_gang_tree);
4338 
4339         /*
4340          * Godfather I/Os should never suspend.
4341          */
4342         if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4343             (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4344                 zio->io_reexecute = 0;
4345 
4346         if (zio->io_reexecute) {
4347                 /*
4348                  * This is a logical I/O that wants to reexecute.
4349                  *
4350                  * Reexecute is top-down.  When an i/o fails, if it's not
4351                  * the root, it simply notifies its parent and sticks around.
4352                  * The parent, seeing that it still has children in zio_done(),
4353                  * does the same.  This percolates all the way up to the root.
4354                  * The root i/o will reexecute or suspend the entire tree.
4355                  *
4356                  * This approach ensures that zio_reexecute() honors
4357                  * all the original i/o dependency relationships, e.g.
4358                  * parents not executing until children are ready.
4359                  */
4360                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4361 
4362                 zio->io_gang_leader = NULL;
4363 
4364                 mutex_enter(&zio->io_lock);
4365                 zio->io_state[ZIO_WAIT_DONE] = 1;
4366                 mutex_exit(&zio->io_lock);
4367 
4368                 /*
4369                  * "The Godfather" I/O monitors its children but is
4370                  * not a true parent to them. It will track them through
4371                  * the pipeline but severs its ties whenever they get into
4372                  * trouble (e.g. suspended). This allows "The Godfather"
4373                  * I/O to return status without blocking.
4374                  */
4375                 zl = NULL;
4376                 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4377                     pio = pio_next) {
4378                         zio_link_t *remove_zl = zl;
4379                         pio_next = zio_walk_parents(zio, &zl);
4380 
4381                         if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4382                             (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4383                                 zio_remove_child(pio, zio, remove_zl);
4384                                 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4385                         }
4386                 }
4387 
4388                 if ((pio = zio_unique_parent(zio)) != NULL) {
4389                         /*
4390                          * We're not a root i/o, so there's nothing to do
4391                          * but notify our parent.  Don't propagate errors
4392                          * upward since we haven't permanently failed yet.
4393                          */
4394                         ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4395                         zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4396                         zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4397                 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4398                         /*
4399                          * We'd fail again if we reexecuted now, so suspend
4400                          * until conditions improve (e.g. device comes online).
4401                          */
4402                         zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4403                 } else {
4404                         /*
4405                          * Reexecution is potentially a huge amount of work.
4406                          * Hand it off to the otherwise-unused claim taskq.
4407                          */
4408                         ASSERT(zio->io_tqent.tqent_next == NULL);
4409                         spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
4410                             ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
4411                             0, &zio->io_tqent);
4412                 }
4413                 return (ZIO_PIPELINE_STOP);
4414         }
4415 
4416         ASSERT(zio->io_child_count == 0);
4417         ASSERT(zio->io_reexecute == 0);
4418         ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4419 
4420         /*
4421          * Report any checksum errors, since the I/O is complete.
4422          */
4423         while (zio->io_cksum_report != NULL) {
4424                 zio_cksum_report_t *zcr = zio->io_cksum_report;
4425                 zio->io_cksum_report = zcr->zcr_next;
4426                 zcr->zcr_next = NULL;
4427                 zcr->zcr_finish(zcr, NULL);
4428                 zfs_ereport_free_checksum(zcr);
4429         }
4430 
4431         /*
4432          * It is the responsibility of the done callback to ensure that this
4433          * particular zio is no longer discoverable for adoption, and as
4434          * such, cannot acquire any new parents.
4435          */
4436         if (zio->io_done)
4437                 zio->io_done(zio);
4438 
4439         mutex_enter(&zio->io_lock);
4440         zio->io_state[ZIO_WAIT_DONE] = 1;
4441         mutex_exit(&zio->io_lock);
4442 
4443         zl = NULL;
4444         for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4445                 zio_link_t *remove_zl = zl;
4446                 pio_next = zio_walk_parents(zio, &zl);
4447                 zio_remove_child(pio, zio, remove_zl);
4448                 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4449         }
4450 
4451         if (zio->io_waiter != NULL) {
4452                 mutex_enter(&zio->io_lock);
4453                 zio->io_executor = NULL;
4454                 cv_broadcast(&zio->io_cv);
4455                 mutex_exit(&zio->io_lock);
4456         } else {
4457                 zio_destroy(zio);
4458         }
4459 
4460         return (ZIO_PIPELINE_STOP);
4461 }
4462 
4463 /*
4464  * ==========================================================================
4465  * I/O pipeline definition
4466  * ==========================================================================
4467  */
4468 static zio_pipe_stage_t *zio_pipeline[] = {
4469         NULL,
4470         zio_read_bp_init,
4471         zio_write_bp_init,
4472         zio_free_bp_init,
4473         zio_issue_async,
4474         zio_write_compress,
4475         zio_encrypt,
4476         zio_checksum_generate,
4477         zio_nop_write,
4478         zio_ddt_read_start,
4479         zio_ddt_read_done,
4480         zio_ddt_write,
4481         zio_ddt_free,
4482         zio_gang_assemble,
4483         zio_gang_issue,
4484         zio_dva_throttle,
4485         zio_dva_allocate,
4486         zio_dva_free,
4487         zio_dva_claim,
4488         zio_ready,
4489         zio_vdev_io_start,
4490         zio_vdev_io_done,
4491         zio_vdev_io_assess,
4492         zio_checksum_verify,
4493         zio_done
4494 };
4495 
4496 
4497 
4498 
4499 /*
4500  * Compare two zbookmark_phys_t's to see which we would reach first in a
4501  * pre-order traversal of the object tree.
4502  *
4503  * This is simple in every case aside from the meta-dnode object. For all other
4504  * objects, we traverse them in order (object 1 before object 2, and so on).
4505  * However, all of these objects are traversed while traversing object 0, since
4506  * the data it points to is the list of objects.  Thus, we need to convert to a
4507  * canonical representation so we can compare meta-dnode bookmarks to
4508  * non-meta-dnode bookmarks.
4509  *
4510  * We do this by calculating "equivalents" for each field of the zbookmark.
4511  * zbookmarks outside of the meta-dnode use their own object and level, and
4512  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4513  * blocks this bookmark refers to) by multiplying their blkid by their span
4514  * (the number of L0 blocks contained within one block at their level).
4515  * zbookmarks inside the meta-dnode calculate their object equivalent
4516  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4517  * level + 1<<31 (any value larger than a level could ever be) for their level.
4518  * This causes them to always compare before a bookmark in their object
4519  * equivalent, compare appropriately to bookmarks in other objects, and to
4520  * compare appropriately to other bookmarks in the meta-dnode.
4521  */
4522 int
4523 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4524     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4525 {
4526         /*
4527          * These variables represent the "equivalent" values for the zbookmark,
4528          * after converting zbookmarks inside the meta dnode to their
4529          * normal-object equivalents.
4530          */
4531         uint64_t zb1obj, zb2obj;
4532         uint64_t zb1L0, zb2L0;
4533         uint64_t zb1level, zb2level;
4534 
4535         if (zb1->zb_object == zb2->zb_object &&
4536             zb1->zb_level == zb2->zb_level &&
4537             zb1->zb_blkid == zb2->zb_blkid)
4538                 return (0);
4539 
4540         /*
4541          * BP_SPANB calculates the span in blocks.
4542          */
4543         zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4544         zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4545 
4546         if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4547                 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4548                 zb1L0 = 0;
4549                 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4550         } else {
4551                 zb1obj = zb1->zb_object;
4552                 zb1level = zb1->zb_level;
4553         }
4554 
4555         if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4556                 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4557                 zb2L0 = 0;
4558                 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4559         } else {
4560                 zb2obj = zb2->zb_object;
4561                 zb2level = zb2->zb_level;
4562         }
4563 
4564         /* Now that we have a canonical representation, do the comparison. */
4565         if (zb1obj != zb2obj)
4566                 return (zb1obj < zb2obj ? -1 : 1);
4567         else if (zb1L0 != zb2L0)
4568                 return (zb1L0 < zb2L0 ? -1 : 1);
4569         else if (zb1level != zb2level)
4570                 return (zb1level > zb2level ? -1 : 1);
4571         /*
4572          * This can (theoretically) happen if the bookmarks have the same object
4573          * and level, but different blkids, if the block sizes are not the same.
4574          * There is presently no way to change the indirect block sizes
4575          */
4576         return (0);
4577 }
4578 
4579 /*
4580  *  This function checks the following: given that last_block is the place that
4581  *  our traversal stopped last time, does that guarantee that we've visited
4582  *  every node under subtree_root?  Therefore, we can't just use the raw output
4583  *  of zbookmark_compare.  We have to pass in a modified version of
4584  *  subtree_root; by incrementing the block id, and then checking whether
4585  *  last_block is before or equal to that, we can tell whether or not having
4586  *  visited last_block implies that all of subtree_root's children have been
4587  *  visited.
4588  */
4589 boolean_t
4590 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4591     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4592 {
4593         zbookmark_phys_t mod_zb = *subtree_root;
4594         mod_zb.zb_blkid++;
4595         ASSERT(last_block->zb_level == 0);
4596 
4597         /* The objset_phys_t isn't before anything. */
4598         if (dnp == NULL)
4599                 return (B_FALSE);
4600 
4601         /*
4602          * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4603          * data block size in sectors, because that variable is only used if
4604          * the bookmark refers to a block in the meta-dnode.  Since we don't
4605          * know without examining it what object it refers to, and there's no
4606          * harm in passing in this value in other cases, we always pass it in.
4607          *
4608          * We pass in 0 for the indirect block size shift because zb2 must be
4609          * level 0.  The indirect block size is only used to calculate the span
4610          * of the bookmark, but since the bookmark must be level 0, the span is
4611          * always 1, so the math works out.
4612          *
4613          * If you make changes to how the zbookmark_compare code works, be sure
4614          * to make sure that this code still works afterwards.
4615          */
4616         return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4617             1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4618             last_block) <= 0);
4619 }