Print this page
12399 kobj printf functions should be checked
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/krtld/kobj.c
+++ new/usr/src/uts/common/krtld/kobj.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 23 * Use is subject to license terms.
24 24 */
25 25 /*
26 26 * Copyright 2011 Bayard G. Bell <buffer.g.overflow@gmail.com>.
27 27 * All rights reserved. Use is subject to license terms.
28 28 * Copyright 2020 Joyent, Inc.
29 29 */
30 30
31 31 /*
32 32 * Kernel's linker/loader
33 33 */
34 34
35 35 #include <sys/types.h>
36 36 #include <sys/param.h>
37 37 #include <sys/sysmacros.h>
38 38 #include <sys/systm.h>
39 39 #include <sys/user.h>
40 40 #include <sys/kmem.h>
41 41 #include <sys/reboot.h>
42 42 #include <sys/bootconf.h>
43 43 #include <sys/debug.h>
44 44 #include <sys/uio.h>
45 45 #include <sys/file.h>
46 46 #include <sys/vnode.h>
47 47 #include <sys/user.h>
48 48 #include <sys/mman.h>
49 49 #include <vm/as.h>
50 50 #include <vm/seg_kp.h>
51 51 #include <vm/seg_kmem.h>
52 52 #include <sys/elf.h>
53 53 #include <sys/elf_notes.h>
54 54 #include <sys/vmsystm.h>
55 55 #include <sys/kdi.h>
56 56 #include <sys/atomic.h>
57 57 #include <sys/kmdb.h>
58 58
59 59 #include <sys/link.h>
60 60 #include <sys/kobj.h>
61 61 #include <sys/ksyms.h>
62 62 #include <sys/disp.h>
63 63 #include <sys/modctl.h>
64 64 #include <sys/varargs.h>
65 65 #include <sys/kstat.h>
66 66 #include <sys/kobj_impl.h>
67 67 #include <sys/fs/decomp.h>
68 68 #include <sys/callb.h>
69 69 #include <sys/cmn_err.h>
70 70 #include <sys/tnf_probe.h>
71 71 #include <sys/zmod.h>
72 72
73 73 #include <krtld/reloc.h>
74 74 #include <krtld/kobj_kdi.h>
75 75 #include <sys/sha1.h>
76 76 #include <sys/crypto/elfsign.h>
77 77
78 78 #if !defined(_OBP)
79 79 #include <sys/bootvfs.h>
80 80 #endif
81 81
82 82 /*
83 83 * do_symbols() error codes
84 84 */
85 85 #define DOSYM_UNDEF -1 /* undefined symbol */
86 86 #define DOSYM_UNSAFE -2 /* MT-unsafe driver symbol */
87 87
88 88 #if !defined(_OBP)
89 89 static void synthetic_bootaux(char *, val_t *);
90 90 #endif
91 91
92 92 static struct module *load_exec(val_t *, char *);
93 93 static void load_linker(val_t *);
94 94 static struct modctl *add_primary(const char *filename, int);
95 95 static int bind_primary(val_t *, int);
96 96 static int load_primary(struct module *, int);
97 97 static int load_kmdb(val_t *);
98 98 static int get_progbits(struct module *, struct _buf *);
99 99 static int get_syms(struct module *, struct _buf *);
100 100 static int get_ctf(struct module *, struct _buf *);
101 101 static void get_signature(struct module *, struct _buf *);
102 102 static int do_common(struct module *);
103 103 static void add_dependent(struct module *, struct module *);
104 104 static int do_dependents(struct modctl *, char *, size_t);
105 105 static int do_symbols(struct module *, Elf64_Addr);
106 106 static void module_assign(struct modctl *, struct module *);
107 107 static void free_module_data(struct module *);
108 108 static char *depends_on(struct module *);
109 109 static char *getmodpath(const char *);
110 110 static char *basename(char *);
111 111 static void attr_val(val_t *);
112 112 static char *find_libmacro(char *);
113 113 static char *expand_libmacro(char *, char *, char *);
114 114 static int read_bootflags(void);
115 115 static int kobj_comp_setup(struct _buf *, struct compinfo *);
116 116 static int kobj_uncomp_blk(struct _buf *, caddr_t, uint_t);
117 117 static int kobj_read_blks(struct _buf *, caddr_t, uint_t, uint_t);
118 118 static int kobj_boot_open(char *, int);
119 119 static int kobj_boot_close(int);
120 120 static int kobj_boot_seek(int, off_t, off_t);
121 121 static int kobj_boot_read(int, caddr_t, size_t);
122 122 static int kobj_boot_fstat(int, struct bootstat *);
123 123 static int kobj_boot_compinfo(int, struct compinfo *);
124 124
125 125 static Sym *lookup_one(struct module *, const char *);
126 126 static void sym_insert(struct module *, char *, symid_t);
127 127 static Sym *sym_lookup(struct module *, Sym *);
128 128
129 129 static struct kobjopen_tctl *kobjopen_alloc(char *filename);
130 130 static void kobjopen_free(struct kobjopen_tctl *ltp);
131 131 static void kobjopen_thread(struct kobjopen_tctl *ltp);
132 132 static int kobj_is_compressed(intptr_t);
133 133
134 134 extern int kcopy(const void *, void *, size_t);
135 135 extern int elf_mach_ok(Ehdr *);
136 136 extern int alloc_gottable(struct module *, caddr_t *, caddr_t *);
137 137
138 138 #if !defined(_OBP)
139 139 extern int kobj_boot_mountroot(void);
140 140 #endif
141 141
142 142 static void tnf_unsplice_probes(uint_t, struct modctl *);
143 143 extern tnf_probe_control_t *__tnf_probe_list_head;
144 144 extern tnf_tag_data_t *__tnf_tag_list_head;
145 145
146 146 extern int modrootloaded;
147 147 extern int swaploaded;
148 148 extern int bop_io_quiesced;
149 149 extern int last_module_id;
150 150
151 151 extern char stubs_base[];
152 152 extern char stubs_end[];
153 153
154 154 #ifdef KOBJ_DEBUG
155 155 /*
156 156 * Values that can be or'd in to kobj_debug and their effects:
157 157 *
158 158 * D_DEBUG - misc. debugging information.
159 159 * D_SYMBOLS - list symbols and their values as they are entered
160 160 * into the hash table
161 161 * D_RELOCATIONS - display relocation processing information
162 162 * D_LOADING - display information about each module as it
163 163 * is loaded.
164 164 */
165 165 int kobj_debug = 0;
166 166
167 167 #define KOBJ_MARK(s) if (kobj_debug & D_DEBUG) \
168 168 (_kobj_printf(ops, "%d", __LINE__), _kobj_printf(ops, ": %s\n", s))
169 169 #else
170 170 #define KOBJ_MARK(s) /* discard */
171 171 #endif
172 172
173 173 #define MODPATH_PROPNAME "module-path"
174 174
175 175 #ifdef MODDIR_SUFFIX
176 176 static char slash_moddir_suffix_slash[] = MODDIR_SUFFIX "/";
177 177 #else
178 178 #define slash_moddir_suffix_slash ""
179 179 #endif
180 180
181 181 #define _moddebug get_weakish_int(&moddebug)
182 182 #define _modrootloaded get_weakish_int(&modrootloaded)
183 183 #define _swaploaded get_weakish_int(&swaploaded)
184 184 #define _ioquiesced get_weakish_int(&bop_io_quiesced)
185 185
186 186 #define mod(X) (struct module *)((X)->modl_modp->mod_mp)
187 187
188 188 void *romp; /* rom vector (opaque to us) */
189 189 struct bootops *ops; /* bootops vector */
190 190 void *dbvec; /* debug vector */
191 191
192 192 /*
193 193 * kobjopen thread control structure
194 194 */
195 195 struct kobjopen_tctl {
196 196 ksema_t sema;
197 197 char *name; /* name of file */
198 198 struct vnode *vp; /* vnode return from vn_open() */
199 199 int Errno; /* error return from vnopen */
200 200 };
201 201
202 202 /*
203 203 * Structure for defining dynamically expandable library macros
204 204 */
205 205
206 206 struct lib_macro_info {
207 207 char *lmi_list; /* ptr to list of possible choices */
208 208 char *lmi_macroname; /* pointer to macro name */
209 209 ushort_t lmi_ba_index; /* index into bootaux vector */
210 210 ushort_t lmi_macrolen; /* macro length */
211 211 } libmacros[] = {
212 212 { NULL, "CPU", BA_CPU, 0 },
213 213 { NULL, "MMU", BA_MMU, 0 }
214 214 };
215 215
216 216 #define NLIBMACROS sizeof (libmacros) / sizeof (struct lib_macro_info)
217 217
218 218 char *boot_cpu_compatible_list; /* make $CPU available */
219 219
220 220 char *kobj_module_path; /* module search path */
221 221 vmem_t *text_arena; /* module text arena */
222 222 static vmem_t *data_arena; /* module data & bss arena */
223 223 static vmem_t *ctf_arena; /* CTF debug data arena */
224 224 static struct modctl *kobj_modules = NULL; /* modules loaded */
225 225 int kobj_mmu_pagesize; /* system pagesize */
226 226 static int lg_pagesize; /* "large" pagesize */
227 227 static int kobj_last_module_id = 0; /* id assignment */
228 228 static kmutex_t kobj_lock; /* protects mach memory list */
229 229
230 230 /*
231 231 * The following functions have been implemented by the kernel.
232 232 * However, many 3rd party drivers provide their own implementations
233 233 * of these functions. When such drivers are loaded, messages
234 234 * indicating that these symbols have been multiply defined will be
235 235 * emitted to the console. To avoid alarming customers for no good
236 236 * reason, we simply suppress such warnings for the following set of
237 237 * functions.
238 238 */
239 239 static char *suppress_sym_list[] =
240 240 {
241 241 "strstr",
242 242 "strncat",
243 243 "strlcat",
244 244 "strlcpy",
245 245 "strspn",
246 246 "memcpy",
247 247 "memset",
248 248 "memmove",
249 249 "memcmp",
250 250 "memchr",
251 251 "__udivdi3",
252 252 "__divdi3",
253 253 "__umoddi3",
254 254 "__moddi3",
255 255 NULL /* This entry must exist */
256 256 };
257 257
258 258 /* indexed by KOBJ_NOTIFY_* */
259 259 static kobj_notify_list_t *kobj_notifiers[KOBJ_NOTIFY_MAX + 1];
260 260
261 261 /*
262 262 * TNF probe management globals
263 263 */
264 264 tnf_probe_control_t *__tnf_probe_list_head = NULL;
265 265 tnf_tag_data_t *__tnf_tag_list_head = NULL;
266 266 int tnf_changed_probe_list = 0;
267 267
268 268 /*
269 269 * Prefix for statically defined tracing (SDT) DTrace probes.
270 270 */
271 271 const char *sdt_prefix = "__dtrace_probe_";
272 272
273 273 /*
274 274 * Beginning and end of the kernel's dynamic text/data segments.
275 275 */
276 276 static caddr_t _text;
277 277 static caddr_t _etext;
278 278 static caddr_t _data;
279 279
280 280 /*
281 281 * The sparc linker doesn't create a memory location
282 282 * for a variable named _edata, so _edata can only be
283 283 * referred to, not modified. krtld needs a static
284 284 * variable to modify it - within krtld, of course -
285 285 * outside of krtld, e_data is used in all kernels.
286 286 */
287 287 #if defined(__sparc)
288 288 static caddr_t _edata;
289 289 #else
290 290 extern caddr_t _edata;
291 291 #endif
292 292
293 293 Addr dynseg = 0; /* load address of "dynamic" segment */
294 294 size_t dynsize; /* "dynamic" segment size */
295 295
296 296
297 297 int standalone = 1; /* an unwholey kernel? */
↓ open down ↓ |
297 lines elided |
↑ open up ↑ |
298 298 int use_iflush; /* iflush after relocations */
299 299
300 300 /*
301 301 * _kobj_printf() and _vkobj_printf()
302 302 *
303 303 * Common printf function pointer. Can handle only one conversion
304 304 * specification in the format string. Some of the functions invoked
305 305 * through this function pointer cannot handle more that one conversion
306 306 * specification in the format string.
307 307 */
308 -void (*_kobj_printf)(void *, const char *, ...); /* printf routine */
309 -void (*_vkobj_printf)(void *, const char *, va_list); /* vprintf routine */
308 +void (*_kobj_printf)(void *, const char *, ...) __KPRINTFLIKE(2);
309 +void (*_vkobj_printf)(void *, const char *, va_list) __KVPRINTFLIKE(2);
310 310
311 311 /*
312 312 * Standalone function pointers for use within krtld.
313 313 * Many platforms implement optimized platmod versions of
314 314 * utilities such as bcopy and any such are not yet available
315 315 * until the kernel is more completely stitched together.
316 316 * See kobj_impl.h
317 317 */
318 318 void (*kobj_bcopy)(const void *, void *, size_t);
319 319 void (*kobj_bzero)(void *, size_t);
320 320 size_t (*kobj_strlcat)(char *, const char *, size_t);
321 321
322 322 static kobj_stat_t kobj_stat;
323 323
324 324 #define MINALIGN 8 /* at least a double-word */
325 325
326 326 int
327 327 get_weakish_int(int *ip)
328 328 {
329 329 if (standalone)
330 330 return (0);
331 331 return (ip == NULL ? 0 : *ip);
332 332 }
333 333
334 334 static void *
335 335 get_weakish_pointer(void **ptrp)
336 336 {
337 337 if (standalone)
338 338 return (0);
339 339 return (ptrp == NULL ? 0 : *ptrp);
340 340 }
341 341
342 342 /*
343 343 * XXX fix dependencies on "kernel"; this should work
344 344 * for other standalone binaries as well.
345 345 *
346 346 * XXX Fix hashing code to use one pointer to
347 347 * hash entries.
348 348 * |----------|
349 349 * | nbuckets |
350 350 * |----------|
351 351 * | nchains |
352 352 * |----------|
353 353 * | bucket[] |
354 354 * |----------|
355 355 * | chain[] |
356 356 * |----------|
357 357 */
358 358
359 359 /*
360 360 * Load, bind and relocate all modules that
361 361 * form the primary kernel. At this point, our
362 362 * externals have not been relocated.
363 363 */
364 364 void
365 365 kobj_init(
366 366 void *romvec,
367 367 void *dvec,
368 368 struct bootops *bootvec,
369 369 val_t *bootaux)
370 370 {
371 371 struct module *mp;
372 372 struct modctl *modp;
373 373 Addr entry;
374 374 char filename[MAXPATHLEN];
375 375
376 376 /*
377 377 * Save these to pass on to
378 378 * the booted standalone.
379 379 */
380 380 romp = romvec;
381 381 dbvec = dvec;
382 382
383 383 ops = bootvec;
384 384 kobj_setup_standalone_vectors();
385 385
386 386 KOBJ_MARK("Entered kobj_init()");
387 387
388 388 (void) BOP_GETPROP(ops, "whoami", filename);
389 389
390 390 /*
391 391 * We don't support standalone debuggers anymore. The use of kadb
392 392 * will interfere with the later use of kmdb. Let the user mend
393 393 * their ways now. Users will reach this message if they still
394 394 * have the kadb binary on their system (perhaps they used an old
395 395 * bfu, or maybe they intentionally copied it there) and have
396 396 * specified its use in a way that eluded our checking in the boot
397 397 * program.
398 398 */
399 399 if (dvec != NULL) {
400 400 _kobj_printf(ops, "\nWARNING: Standalone debuggers such as "
401 401 "kadb are no longer supported\n\n");
402 402 goto fail;
403 403 }
404 404
405 405 #if defined(_OBP)
406 406 /*
407 407 * OBP allows us to read both the ramdisk and
408 408 * the underlying root fs when root is a disk.
409 409 * This can lower incidences of unbootable systems
410 410 * when the archive is out-of-date with the /etc
411 411 * state files.
412 412 */
413 413 if (BOP_MOUNTROOT() != BOOT_SVC_OK) {
414 414 _kobj_printf(ops, "can't mount boot fs\n");
415 415 goto fail;
416 416 }
417 417 #else
418 418 {
419 419 /* on x86, we always boot with a ramdisk */
420 420 (void) kobj_boot_mountroot();
421 421
422 422 /*
423 423 * Now that the ramdisk is mounted, finish boot property
424 424 * initialization.
425 425 */
426 426 read_bootenvrc();
427 427 }
428 428
429 429 #if !defined(_UNIX_KRTLD)
430 430 /*
431 431 * 'unix' is linked together with 'krtld' into one executable and
432 432 * the early boot code does -not- hand us any of the dynamic metadata
433 433 * about the executable. In particular, it does not read in, map or
434 434 * otherwise look at the program headers. We fake all that up now.
435 435 *
436 436 * We do this early as DTrace static probes and tnf probes both call
437 437 * undefined references. We have to process those relocations before
438 438 * calling any of them.
439 439 *
440 440 * OBP tells kobj_start() where the ELF image is in memory, so it
441 441 * synthesized bootaux before kobj_init() was called
442 442 */
443 443 if (bootaux[BA_PHDR].ba_ptr == NULL)
444 444 synthetic_bootaux(filename, bootaux);
445 445
446 446 #endif /* !_UNIX_KRTLD */
447 447 #endif /* _OBP */
448 448
449 449 /*
450 450 * Save the interesting attribute-values
451 451 * (scanned by kobj_boot).
452 452 */
453 453 attr_val(bootaux);
454 454
455 455 /*
456 456 * Set the module search path.
457 457 */
458 458 kobj_module_path = getmodpath(filename);
459 459
460 460 boot_cpu_compatible_list = find_libmacro("CPU");
461 461
462 462 /*
463 463 * These two modules have actually been
464 464 * loaded by boot, but we finish the job
465 465 * by introducing them into the world of
466 466 * loadable modules.
467 467 */
468 468
469 469 mp = load_exec(bootaux, filename);
470 470 load_linker(bootaux);
471 471
472 472 /*
473 473 * Load all the primary dependent modules.
474 474 */
475 475 if (load_primary(mp, KOBJ_LM_PRIMARY) == -1)
476 476 goto fail;
477 477
478 478 /*
479 479 * Glue it together.
480 480 */
481 481 if (bind_primary(bootaux, KOBJ_LM_PRIMARY) == -1)
482 482 goto fail;
483 483
484 484 entry = bootaux[BA_ENTRY].ba_val;
485 485
486 486 /*
487 487 * Get the boot flags
488 488 */
489 489 bootflags(ops);
490 490
491 491 if (boothowto & RB_VERBOSE)
492 492 kobj_lm_dump(KOBJ_LM_PRIMARY);
493 493
494 494 kobj_kdi_init();
495 495
496 496 if (boothowto & RB_KMDB) {
497 497 if (load_kmdb(bootaux) < 0)
498 498 goto fail;
499 499 }
500 500
501 501 /*
502 502 * Post setup.
503 503 */
↓ open down ↓ |
184 lines elided |
↑ open up ↑ |
504 504 s_text = _text;
505 505 e_text = _etext;
506 506 s_data = _data;
507 507 e_data = _edata;
508 508
509 509 kobj_sync_instruction_memory(s_text, e_text - s_text);
510 510
511 511 #ifdef KOBJ_DEBUG
512 512 if (kobj_debug & D_DEBUG)
513 513 _kobj_printf(ops,
514 - "krtld: transferring control to: 0x%p\n", entry);
514 + "krtld: transferring control to: 0x%lx\n", entry);
515 515 #endif
516 516
517 517 /*
518 518 * Make sure the mod system knows about the modules already loaded.
519 519 */
520 520 last_module_id = kobj_last_module_id;
521 521 bcopy(kobj_modules, &modules, sizeof (modules));
522 522 modp = &modules;
523 523 do {
524 524 if (modp->mod_next == kobj_modules)
525 525 modp->mod_next = &modules;
526 526 if (modp->mod_prev == kobj_modules)
527 527 modp->mod_prev = &modules;
528 528 } while ((modp = modp->mod_next) != &modules);
529 529
530 530 standalone = 0;
531 531
532 532 #ifdef KOBJ_DEBUG
533 533 if (kobj_debug & D_DEBUG)
534 534 _kobj_printf(ops,
535 - "krtld: really transferring control to: 0x%p\n", entry);
535 + "krtld: really transferring control to: 0x%lx\n", entry);
536 536 #endif
537 537
538 538 /* restore printf/bcopy/bzero vectors before returning */
539 539 kobj_restore_vectors();
540 540
541 541 #if defined(_DBOOT)
542 542 /*
543 543 * krtld was called from a dboot ELF section, the embedded
544 544 * dboot code contains the real entry via bootaux
545 545 */
546 546 exitto((caddr_t)entry);
547 547 #else
548 548 /*
549 549 * krtld was directly called from startup
550 550 */
551 551 return;
552 552 #endif
553 553
554 554 fail:
555 555
556 556 _kobj_printf(ops, "krtld: error during initial load/link phase\n");
557 557
558 558 #if !defined(_UNIX_KRTLD)
559 559 _kobj_printf(ops, "\n");
560 560 _kobj_printf(ops, "krtld could neither locate nor resolve symbols"
561 561 " for:\n");
562 562 _kobj_printf(ops, " %s\n", filename);
563 563 _kobj_printf(ops, "in the boot archive. Please verify that this"
564 564 " file\n");
565 565 _kobj_printf(ops, "matches what is found in the boot archive.\n");
566 566 _kobj_printf(ops, "You may need to boot using the Solaris failsafe to"
567 567 " fix this.\n");
568 568 bop_panic("Unable to boot");
569 569 #endif
570 570 }
571 571
572 572 #if !defined(_UNIX_KRTLD) && !defined(_OBP)
573 573 /*
574 574 * Synthesize additional metadata that describes the executable if
575 575 * krtld's caller didn't do it.
576 576 *
577 577 * (When the dynamic executable has an interpreter, the boot program
578 578 * does all this for us. Where we don't have an interpreter, (or a
579 579 * even a boot program, perhaps) we have to do this for ourselves.)
580 580 */
581 581 static void
582 582 synthetic_bootaux(char *filename, val_t *bootaux)
583 583 {
584 584 Ehdr ehdr;
585 585 caddr_t phdrbase;
586 586 struct _buf *file;
587 587 int i, n;
588 588
589 589 /*
590 590 * Elf header
591 591 */
592 592 KOBJ_MARK("synthetic_bootaux()");
593 593 KOBJ_MARK(filename);
594 594 file = kobj_open_file(filename);
595 595 if (file == (struct _buf *)-1) {
596 596 _kobj_printf(ops, "krtld: failed to open '%s'\n", filename);
597 597 return;
598 598 }
599 599 KOBJ_MARK("reading program headers");
600 600 if (kobj_read_file(file, (char *)&ehdr, sizeof (ehdr), 0) < 0) {
601 601 _kobj_printf(ops, "krtld: %s: failed to read ehder\n",
602 602 filename);
603 603 return;
604 604 }
605 605
606 606 /*
607 607 * Program headers
608 608 */
609 609 bootaux[BA_PHNUM].ba_val = ehdr.e_phnum;
610 610 bootaux[BA_PHENT].ba_val = ehdr.e_phentsize;
611 611 n = ehdr.e_phentsize * ehdr.e_phnum;
612 612
613 613 phdrbase = kobj_alloc(n, KM_WAIT | KM_TMP);
614 614
615 615 if (kobj_read_file(file, phdrbase, n, ehdr.e_phoff) < 0) {
616 616 _kobj_printf(ops, "krtld: %s: failed to read phdrs\n",
617 617 filename);
618 618 return;
619 619 }
620 620 bootaux[BA_PHDR].ba_ptr = phdrbase;
621 621 kobj_close_file(file);
622 622 KOBJ_MARK("closed file");
623 623
624 624 /*
625 625 * Find the dynamic section address
626 626 */
627 627 for (i = 0; i < ehdr.e_phnum; i++) {
628 628 Phdr *phdr = (Phdr *)(phdrbase + ehdr.e_phentsize * i);
629 629
630 630 if (phdr->p_type == PT_DYNAMIC) {
631 631 bootaux[BA_DYNAMIC].ba_ptr = (void *)phdr->p_vaddr;
632 632 break;
633 633 }
634 634 }
635 635 KOBJ_MARK("synthetic_bootaux() done");
636 636 }
637 637 #endif /* !_UNIX_KRTLD && !_OBP */
638 638
639 639 /*
640 640 * Set up any global information derived
641 641 * from attribute/values in the boot or
642 642 * aux vector.
643 643 */
644 644 static void
645 645 attr_val(val_t *bootaux)
646 646 {
647 647 Phdr *phdr;
648 648 int phnum, phsize;
649 649 int i;
650 650
651 651 KOBJ_MARK("attr_val()");
652 652 kobj_mmu_pagesize = bootaux[BA_PAGESZ].ba_val;
653 653 lg_pagesize = bootaux[BA_LPAGESZ].ba_val;
654 654 use_iflush = bootaux[BA_IFLUSH].ba_val;
655 655
656 656 phdr = (Phdr *)bootaux[BA_PHDR].ba_ptr;
657 657 phnum = bootaux[BA_PHNUM].ba_val;
658 658 phsize = bootaux[BA_PHENT].ba_val;
659 659 for (i = 0; i < phnum; i++) {
660 660 phdr = (Phdr *)(bootaux[BA_PHDR].ba_val + i * phsize);
661 661
662 662 if (phdr->p_type != PT_LOAD) {
663 663 continue;
664 664 }
665 665 /*
666 666 * Bounds of the various segments.
667 667 */
668 668 if (!(phdr->p_flags & PF_X)) {
669 669 #if defined(_RELSEG)
670 670 /*
671 671 * sparc kernel puts the dynamic info
672 672 * into a separate segment, which is
673 673 * free'd in bop_fini()
674 674 */
675 675 ASSERT(phdr->p_vaddr != 0);
676 676 dynseg = phdr->p_vaddr;
677 677 dynsize = phdr->p_memsz;
678 678 #else
679 679 ASSERT(phdr->p_vaddr == 0);
680 680 #endif
681 681 } else {
682 682 if (phdr->p_flags & PF_W) {
683 683 _data = (caddr_t)phdr->p_vaddr;
684 684 _edata = _data + phdr->p_memsz;
685 685 } else {
686 686 _text = (caddr_t)phdr->p_vaddr;
687 687 _etext = _text + phdr->p_memsz;
688 688 }
689 689 }
690 690 }
691 691
692 692 /* To do the kobj_alloc, _edata needs to be set. */
693 693 for (i = 0; i < NLIBMACROS; i++) {
694 694 if (bootaux[libmacros[i].lmi_ba_index].ba_ptr != NULL) {
695 695 libmacros[i].lmi_list = kobj_alloc(
696 696 strlen(bootaux[libmacros[i].lmi_ba_index].ba_ptr) +
697 697 1, KM_WAIT);
698 698 (void) strcpy(libmacros[i].lmi_list,
699 699 bootaux[libmacros[i].lmi_ba_index].ba_ptr);
700 700 }
701 701 libmacros[i].lmi_macrolen = strlen(libmacros[i].lmi_macroname);
702 702 }
703 703 }
704 704
705 705 /*
706 706 * Set up the booted executable.
707 707 */
708 708 static struct module *
709 709 load_exec(val_t *bootaux, char *filename)
710 710 {
711 711 struct modctl *cp;
712 712 struct module *mp;
713 713 Dyn *dyn;
714 714 Sym *sp;
715 715 int i, lsize, osize, nsize, allocsize;
716 716 char *libname, *tmp;
717 717 char path[MAXPATHLEN];
718 718
719 719 #ifdef KOBJ_DEBUG
720 720 if (kobj_debug & D_DEBUG)
721 721 _kobj_printf(ops, "module path '%s'\n", kobj_module_path);
722 722 #endif
723 723
724 724 KOBJ_MARK("add_primary");
725 725 cp = add_primary(filename, KOBJ_LM_PRIMARY);
726 726
727 727 KOBJ_MARK("struct module");
728 728 mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
729 729 cp->mod_mp = mp;
730 730
731 731 /*
732 732 * We don't have the following information
733 733 * since this module is an executable and not
734 734 * a relocatable .o.
735 735 */
736 736 mp->symtbl_section = 0;
737 737 mp->shdrs = NULL;
738 738 mp->strhdr = NULL;
739 739
740 740 /*
741 741 * Since this module is the only exception,
742 742 * we cons up some section headers.
743 743 */
744 744 KOBJ_MARK("symhdr");
745 745 mp->symhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
746 746
747 747 KOBJ_MARK("strhdr");
748 748 mp->strhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
749 749
750 750 mp->symhdr->sh_type = SHT_SYMTAB;
751 751 mp->strhdr->sh_type = SHT_STRTAB;
752 752 /*
753 753 * Scan the dynamic structure.
754 754 */
755 755 for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
756 756 dyn->d_tag != DT_NULL; dyn++) {
757 757 switch (dyn->d_tag) {
758 758 case DT_SYMTAB:
759 759 mp->symspace = mp->symtbl = (char *)dyn->d_un.d_ptr;
760 760 mp->symhdr->sh_addr = dyn->d_un.d_ptr;
761 761 break;
762 762 case DT_HASH:
763 763 mp->nsyms = *((uint_t *)dyn->d_un.d_ptr + 1);
764 764 mp->hashsize = *(uint_t *)dyn->d_un.d_ptr;
765 765 break;
766 766 case DT_STRTAB:
767 767 mp->strings = (char *)dyn->d_un.d_ptr;
768 768 mp->strhdr->sh_addr = dyn->d_un.d_ptr;
769 769 break;
770 770 case DT_STRSZ:
771 771 mp->strhdr->sh_size = dyn->d_un.d_val;
772 772 break;
773 773 case DT_SYMENT:
774 774 mp->symhdr->sh_entsize = dyn->d_un.d_val;
775 775 break;
776 776 }
777 777 }
778 778
779 779 /*
780 780 * Collapse any DT_NEEDED entries into one string.
781 781 */
782 782 nsize = osize = 0;
783 783 allocsize = MAXPATHLEN;
784 784
785 785 KOBJ_MARK("depends_on");
786 786 mp->depends_on = kobj_alloc(allocsize, KM_WAIT);
787 787
788 788 for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
789 789 dyn->d_tag != DT_NULL; dyn++)
790 790 if (dyn->d_tag == DT_NEEDED) {
791 791 char *_lib;
792 792
793 793 libname = mp->strings + dyn->d_un.d_val;
794 794 if (strchr(libname, '$') != NULL) {
795 795 if ((_lib = expand_libmacro(libname,
796 796 path, path)) != NULL)
797 797 libname = _lib;
798 798 else
799 799 _kobj_printf(ops, "krtld: "
800 800 "load_exec: fail to "
801 801 "expand %s\n", libname);
802 802 }
803 803 lsize = strlen(libname);
804 804 nsize += lsize;
805 805 if (nsize + 1 > allocsize) {
806 806 KOBJ_MARK("grow depends_on");
807 807 tmp = kobj_alloc(allocsize + MAXPATHLEN,
808 808 KM_WAIT);
809 809 bcopy(mp->depends_on, tmp, osize);
810 810 kobj_free(mp->depends_on, allocsize);
811 811 mp->depends_on = tmp;
812 812 allocsize += MAXPATHLEN;
813 813 }
814 814 bcopy(libname, mp->depends_on + osize, lsize);
815 815 *(mp->depends_on + nsize) = ' '; /* separate */
816 816 nsize++;
817 817 osize = nsize;
818 818 }
819 819 if (nsize) {
820 820 mp->depends_on[nsize - 1] = '\0'; /* terminate the string */
821 821 /*
822 822 * alloc with exact size and copy whatever it got over
823 823 */
824 824 KOBJ_MARK("realloc depends_on");
825 825 tmp = kobj_alloc(nsize, KM_WAIT);
826 826 bcopy(mp->depends_on, tmp, nsize);
827 827 kobj_free(mp->depends_on, allocsize);
828 828 mp->depends_on = tmp;
829 829 } else {
830 830 kobj_free(mp->depends_on, allocsize);
831 831 mp->depends_on = NULL;
832 832 }
833 833
834 834 mp->flags = KOBJ_EXEC|KOBJ_PRIM; /* NOT a relocatable .o */
835 835 mp->symhdr->sh_size = mp->nsyms * mp->symhdr->sh_entsize;
836 836 /*
837 837 * We allocate our own table since we don't
838 838 * hash undefined references.
839 839 */
840 840 KOBJ_MARK("chains");
841 841 mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
842 842 KOBJ_MARK("buckets");
843 843 mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
844 844
845 845 mp->text = _text;
846 846 mp->data = _data;
847 847
848 848 mp->text_size = _etext - _text;
849 849 mp->data_size = _edata - _data;
↓ open down ↓ |
304 lines elided |
↑ open up ↑ |
850 850
851 851 cp->mod_text = mp->text;
852 852 cp->mod_text_size = mp->text_size;
853 853
854 854 mp->filename = cp->mod_filename;
855 855
856 856 #ifdef KOBJ_DEBUG
857 857 if (kobj_debug & D_LOADING) {
858 858 _kobj_printf(ops, "krtld: file=%s\n", mp->filename);
859 859 _kobj_printf(ops, "\ttext: 0x%p", mp->text);
860 - _kobj_printf(ops, " size: 0x%x\n", mp->text_size);
860 + _kobj_printf(ops, " size: 0x%lx\n", mp->text_size);
861 861 _kobj_printf(ops, "\tdata: 0x%p", mp->data);
862 - _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
862 + _kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size);
863 863 }
864 864 #endif /* KOBJ_DEBUG */
865 865
866 866 /*
867 867 * Insert symbols into the hash table.
868 868 */
869 869 for (i = 0; i < mp->nsyms; i++) {
870 870 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
871 871
872 872 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
873 873 continue;
874 874 #if defined(__sparc)
875 875 /*
876 876 * Register symbols are ignored in the kernel
877 877 */
878 878 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER)
879 879 continue;
880 880 #endif /* __sparc */
881 881
882 882 sym_insert(mp, mp->strings + sp->st_name, i);
883 883 }
884 884
885 885 KOBJ_MARK("load_exec done");
886 886 return (mp);
887 887 }
888 888
889 889 /*
890 890 * Set up the linker module (if it's compiled in, LDNAME is NULL)
891 891 */
892 892 static void
893 893 load_linker(val_t *bootaux)
894 894 {
895 895 struct module *kmp = (struct module *)kobj_modules->mod_mp;
896 896 struct module *mp;
897 897 struct modctl *cp;
898 898 int i;
899 899 Shdr *shp;
900 900 Sym *sp;
901 901 int shsize;
902 902 char *dlname = (char *)bootaux[BA_LDNAME].ba_ptr;
903 903
904 904 /*
905 905 * On some architectures, krtld is compiled into the kernel.
906 906 */
907 907 if (dlname == NULL)
908 908 return;
909 909
910 910 cp = add_primary(dlname, KOBJ_LM_PRIMARY);
911 911
912 912 mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
913 913
914 914 cp->mod_mp = mp;
915 915 mp->hdr = *(Ehdr *)bootaux[BA_LDELF].ba_ptr;
916 916 shsize = mp->hdr.e_shentsize * mp->hdr.e_shnum;
917 917 mp->shdrs = kobj_alloc(shsize, KM_WAIT);
918 918 bcopy(bootaux[BA_LDSHDR].ba_ptr, mp->shdrs, shsize);
919 919
920 920 for (i = 1; i < (int)mp->hdr.e_shnum; i++) {
921 921 shp = (Shdr *)(mp->shdrs + (i * mp->hdr.e_shentsize));
922 922
923 923 if (shp->sh_flags & SHF_ALLOC) {
924 924 if (shp->sh_flags & SHF_WRITE) {
925 925 if (mp->data == NULL)
926 926 mp->data = (char *)shp->sh_addr;
927 927 } else if (mp->text == NULL) {
928 928 mp->text = (char *)shp->sh_addr;
929 929 }
930 930 }
931 931 if (shp->sh_type == SHT_SYMTAB) {
932 932 mp->symtbl_section = i;
933 933 mp->symhdr = shp;
934 934 mp->symspace = mp->symtbl = (char *)shp->sh_addr;
935 935 }
936 936 }
937 937 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
938 938 mp->flags = KOBJ_INTERP|KOBJ_PRIM;
939 939 mp->strhdr = (Shdr *)
940 940 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
941 941 mp->strings = (char *)mp->strhdr->sh_addr;
942 942 mp->hashsize = kobj_gethashsize(mp->nsyms);
943 943
944 944 mp->symsize = mp->symhdr->sh_size + mp->strhdr->sh_size + sizeof (int) +
945 945 (mp->hashsize + mp->nsyms) * sizeof (symid_t);
946 946
947 947 mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
948 948 mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
949 949
950 950 mp->bss = bootaux[BA_BSS].ba_val;
951 951 mp->bss_align = 0; /* pre-aligned during allocation */
952 952 mp->bss_size = (uintptr_t)_edata - mp->bss;
953 953 mp->text_size = _etext - mp->text;
954 954 mp->data_size = _edata - mp->data;
955 955 mp->filename = cp->mod_filename;
956 956 cp->mod_text = mp->text;
957 957 cp->mod_text_size = mp->text_size;
958 958
959 959 /*
960 960 * Now that we've figured out where the linker is,
↓ open down ↓ |
88 lines elided |
↑ open up ↑ |
961 961 * set the limits for the booted object.
962 962 */
963 963 kmp->text_size = (size_t)(mp->text - kmp->text);
964 964 kmp->data_size = (size_t)(mp->data - kmp->data);
965 965 kobj_modules->mod_text_size = kmp->text_size;
966 966
967 967 #ifdef KOBJ_DEBUG
968 968 if (kobj_debug & D_LOADING) {
969 969 _kobj_printf(ops, "krtld: file=%s\n", mp->filename);
970 970 _kobj_printf(ops, "\ttext:0x%p", mp->text);
971 - _kobj_printf(ops, " size: 0x%x\n", mp->text_size);
971 + _kobj_printf(ops, " size: 0x%lx\n", mp->text_size);
972 972 _kobj_printf(ops, "\tdata:0x%p", mp->data);
973 - _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
973 + _kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size);
974 974 }
975 975 #endif /* KOBJ_DEBUG */
976 976
977 977 /*
978 978 * Insert the symbols into the hash table.
979 979 */
980 980 for (i = 0; i < mp->nsyms; i++) {
981 981 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
982 982
983 983 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
984 984 continue;
985 985 if (ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
986 986 if (sp->st_shndx == SHN_COMMON)
987 987 sp->st_shndx = SHN_ABS;
988 988 }
989 989 sym_insert(mp, mp->strings + sp->st_name, i);
990 990 }
991 991
992 992 }
993 993
994 994 static kobj_notify_list_t **
995 995 kobj_notify_lookup(uint_t type)
996 996 {
997 997 ASSERT(type != 0 && type < sizeof (kobj_notifiers) /
998 998 sizeof (kobj_notify_list_t *));
999 999
1000 1000 return (&kobj_notifiers[type]);
1001 1001 }
1002 1002
1003 1003 int
1004 1004 kobj_notify_add(kobj_notify_list_t *knp)
1005 1005 {
1006 1006 kobj_notify_list_t **knl;
1007 1007
1008 1008 knl = kobj_notify_lookup(knp->kn_type);
1009 1009
1010 1010 knp->kn_next = NULL;
1011 1011 knp->kn_prev = NULL;
1012 1012
1013 1013 mutex_enter(&kobj_lock);
1014 1014
1015 1015 if (*knl != NULL) {
1016 1016 (*knl)->kn_prev = knp;
1017 1017 knp->kn_next = *knl;
1018 1018 }
1019 1019 (*knl) = knp;
1020 1020
1021 1021 mutex_exit(&kobj_lock);
1022 1022 return (0);
1023 1023 }
1024 1024
1025 1025 int
1026 1026 kobj_notify_remove(kobj_notify_list_t *knp)
1027 1027 {
1028 1028 kobj_notify_list_t **knl = kobj_notify_lookup(knp->kn_type);
1029 1029 kobj_notify_list_t *tknp;
1030 1030
1031 1031 mutex_enter(&kobj_lock);
1032 1032
1033 1033 /* LINTED */
1034 1034 if (tknp = knp->kn_next)
1035 1035 tknp->kn_prev = knp->kn_prev;
1036 1036
1037 1037 /* LINTED */
1038 1038 if (tknp = knp->kn_prev)
1039 1039 tknp->kn_next = knp->kn_next;
1040 1040 else
1041 1041 *knl = knp->kn_next;
1042 1042
1043 1043 mutex_exit(&kobj_lock);
1044 1044
1045 1045 return (0);
1046 1046 }
1047 1047
1048 1048 /*
1049 1049 * Notify all interested callbacks of a specified change in module state.
1050 1050 */
1051 1051 static void
1052 1052 kobj_notify(int type, struct modctl *modp)
1053 1053 {
1054 1054 kobj_notify_list_t *knp;
1055 1055
1056 1056 if (modp->mod_loadflags & MOD_NONOTIFY || standalone)
1057 1057 return;
1058 1058
1059 1059 mutex_enter(&kobj_lock);
1060 1060
1061 1061 for (knp = *(kobj_notify_lookup(type)); knp != NULL; knp = knp->kn_next)
1062 1062 knp->kn_func(type, modp);
1063 1063
1064 1064 /*
1065 1065 * KDI notification must be last (it has to allow for work done by the
1066 1066 * other notification callbacks), so we call it manually.
1067 1067 */
1068 1068 kobj_kdi_mod_notify(type, modp);
1069 1069
1070 1070 mutex_exit(&kobj_lock);
1071 1071 }
1072 1072
1073 1073 /*
1074 1074 * Create the module path.
1075 1075 */
1076 1076 static char *
1077 1077 getmodpath(const char *filename)
1078 1078 {
1079 1079 char *path = kobj_zalloc(MAXPATHLEN, KM_WAIT);
1080 1080
1081 1081 /*
1082 1082 * Platform code gets first crack, then add
1083 1083 * the default components
1084 1084 */
1085 1085 mach_modpath(path, filename);
1086 1086 if (*path != '\0')
1087 1087 (void) strcat(path, " ");
1088 1088 return (strcat(path, MOD_DEFPATH));
1089 1089 }
1090 1090
1091 1091 static struct modctl *
1092 1092 add_primary(const char *filename, int lmid)
1093 1093 {
1094 1094 struct modctl *cp;
1095 1095
1096 1096 cp = kobj_zalloc(sizeof (struct modctl), KM_WAIT);
1097 1097
1098 1098 cp->mod_filename = kobj_alloc(strlen(filename) + 1, KM_WAIT);
1099 1099
1100 1100 /*
1101 1101 * For symbol lookup, we assemble our own
1102 1102 * modctl list of the primary modules.
1103 1103 */
1104 1104
1105 1105 (void) strcpy(cp->mod_filename, filename);
1106 1106 cp->mod_modname = basename(cp->mod_filename);
1107 1107
1108 1108 /* set values for modinfo assuming that the load will work */
1109 1109 cp->mod_prim = 1;
1110 1110 cp->mod_loaded = 1;
1111 1111 cp->mod_installed = 1;
1112 1112 cp->mod_loadcnt = 1;
1113 1113 cp->mod_loadflags = MOD_NOAUTOUNLOAD;
1114 1114
1115 1115 cp->mod_id = kobj_last_module_id++;
1116 1116
1117 1117 /*
1118 1118 * Link the module in. We'll pass this info on
1119 1119 * to the mod squad later.
1120 1120 */
1121 1121 if (kobj_modules == NULL) {
1122 1122 kobj_modules = cp;
1123 1123 cp->mod_prev = cp->mod_next = cp;
1124 1124 } else {
1125 1125 cp->mod_prev = kobj_modules->mod_prev;
1126 1126 cp->mod_next = kobj_modules;
1127 1127 kobj_modules->mod_prev->mod_next = cp;
1128 1128 kobj_modules->mod_prev = cp;
1129 1129 }
1130 1130
1131 1131 kobj_lm_append(lmid, cp);
1132 1132
1133 1133 return (cp);
1134 1134 }
1135 1135
1136 1136 static int
1137 1137 bind_primary(val_t *bootaux, int lmid)
1138 1138 {
1139 1139 struct modctl_list *linkmap = kobj_lm_lookup(lmid);
1140 1140 struct modctl_list *lp;
1141 1141 struct module *mp;
1142 1142
1143 1143 /*
1144 1144 * Do common symbols.
1145 1145 */
1146 1146 for (lp = linkmap; lp; lp = lp->modl_next) {
1147 1147 mp = mod(lp);
1148 1148
1149 1149 /*
1150 1150 * Don't do common section relocations for modules that
1151 1151 * don't need it.
1152 1152 */
1153 1153 if (mp->flags & (KOBJ_EXEC|KOBJ_INTERP))
1154 1154 continue;
1155 1155
1156 1156 if (do_common(mp) < 0)
1157 1157 return (-1);
1158 1158 }
1159 1159
1160 1160 /*
1161 1161 * Resolve symbols.
1162 1162 */
1163 1163 for (lp = linkmap; lp; lp = lp->modl_next) {
1164 1164 mp = mod(lp);
1165 1165
1166 1166 if (do_symbols(mp, 0) < 0)
1167 1167 return (-1);
1168 1168 }
1169 1169
1170 1170 /*
1171 1171 * Do relocations.
1172 1172 */
1173 1173 for (lp = linkmap; lp; lp = lp->modl_next) {
1174 1174 mp = mod(lp);
1175 1175
1176 1176 if (mp->flags & KOBJ_EXEC) {
1177 1177 Dyn *dyn;
1178 1178 Word relasz = 0, relaent = 0;
1179 1179 char *rela = NULL;
1180 1180
1181 1181 for (dyn = (Dyn *)bootaux[BA_DYNAMIC].ba_ptr;
1182 1182 dyn->d_tag != DT_NULL; dyn++) {
1183 1183 switch (dyn->d_tag) {
1184 1184 case DT_RELASZ:
1185 1185 case DT_RELSZ:
1186 1186 relasz = dyn->d_un.d_val;
1187 1187 break;
1188 1188 case DT_RELAENT:
1189 1189 case DT_RELENT:
1190 1190 relaent = dyn->d_un.d_val;
1191 1191 break;
1192 1192 case DT_RELA:
1193 1193 rela = (char *)dyn->d_un.d_ptr;
1194 1194 break;
1195 1195 case DT_REL:
1196 1196 rela = (char *)dyn->d_un.d_ptr;
1197 1197 break;
1198 1198 }
1199 1199 }
1200 1200 if (relasz == 0 ||
1201 1201 relaent == 0 || rela == NULL) {
1202 1202 _kobj_printf(ops, "krtld: bind_primary(): "
1203 1203 "no relocation information found for "
1204 1204 "module %s\n", mp->filename);
1205 1205 return (-1);
1206 1206 }
1207 1207 #ifdef KOBJ_DEBUG
1208 1208 if (kobj_debug & D_RELOCATIONS)
1209 1209 _kobj_printf(ops, "krtld: relocating: file=%s "
1210 1210 "KOBJ_EXEC\n", mp->filename);
1211 1211 #endif
1212 1212 if (do_relocate(mp, rela, relasz/relaent, relaent,
1213 1213 (Addr)mp->text) < 0)
1214 1214 return (-1);
1215 1215 } else {
1216 1216 if (do_relocations(mp) < 0)
1217 1217 return (-1);
1218 1218 }
1219 1219
1220 1220 kobj_sync_instruction_memory(mp->text, mp->text_size);
1221 1221 }
1222 1222
1223 1223 for (lp = linkmap; lp; lp = lp->modl_next) {
1224 1224 mp = mod(lp);
1225 1225
1226 1226 /*
1227 1227 * We need to re-read the full symbol table for the boot file,
1228 1228 * since we couldn't use the full one before. We also need to
1229 1229 * load the CTF sections of both the boot file and the
1230 1230 * interpreter (us).
1231 1231 */
1232 1232 if (mp->flags & KOBJ_EXEC) {
1233 1233 struct _buf *file;
1234 1234 int n;
1235 1235
1236 1236 file = kobj_open_file(mp->filename);
1237 1237 if (file == (struct _buf *)-1)
1238 1238 return (-1);
1239 1239 if (kobj_read_file(file, (char *)&mp->hdr,
1240 1240 sizeof (mp->hdr), 0) < 0)
1241 1241 return (-1);
1242 1242 n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1243 1243 mp->shdrs = kobj_alloc(n, KM_WAIT);
1244 1244 if (kobj_read_file(file, mp->shdrs, n,
1245 1245 mp->hdr.e_shoff) < 0)
1246 1246 return (-1);
1247 1247 if (get_syms(mp, file) < 0)
1248 1248 return (-1);
1249 1249 if (get_ctf(mp, file) < 0)
1250 1250 return (-1);
1251 1251 kobj_close_file(file);
1252 1252 mp->flags |= KOBJ_RELOCATED;
1253 1253
1254 1254 } else if (mp->flags & KOBJ_INTERP) {
1255 1255 struct _buf *file;
1256 1256
1257 1257 /*
1258 1258 * The interpreter path fragment in mp->filename
1259 1259 * will already have the module directory suffix
1260 1260 * in it (if appropriate).
1261 1261 */
1262 1262 file = kobj_open_path(mp->filename, 1, 0);
1263 1263 if (file == (struct _buf *)-1)
1264 1264 return (-1);
1265 1265 if (get_ctf(mp, file) < 0)
1266 1266 return (-1);
1267 1267 kobj_close_file(file);
1268 1268 mp->flags |= KOBJ_RELOCATED;
1269 1269 }
1270 1270 }
1271 1271
1272 1272 return (0);
1273 1273 }
1274 1274
1275 1275 static struct modctl *
1276 1276 mod_already_loaded(char *modname)
1277 1277 {
1278 1278 struct modctl *mctl = kobj_modules;
1279 1279
1280 1280 do {
1281 1281 if (strcmp(modname, mctl->mod_filename) == 0)
1282 1282 return (mctl);
1283 1283 mctl = mctl->mod_next;
1284 1284
1285 1285 } while (mctl != kobj_modules);
1286 1286
1287 1287 return (NULL);
1288 1288 }
1289 1289
1290 1290 /*
1291 1291 * Load all the primary dependent modules.
1292 1292 */
1293 1293 static int
1294 1294 load_primary(struct module *mp, int lmid)
1295 1295 {
1296 1296 struct modctl *cp;
1297 1297 struct module *dmp;
1298 1298 char *p, *q;
1299 1299 char modname[MODMAXNAMELEN];
1300 1300
1301 1301 if ((p = mp->depends_on) == NULL)
1302 1302 return (0);
1303 1303
1304 1304 /* CONSTANTCONDITION */
1305 1305 while (1) {
1306 1306 /*
1307 1307 * Skip space.
1308 1308 */
1309 1309 while (*p && (*p == ' ' || *p == '\t'))
1310 1310 p++;
1311 1311 /*
1312 1312 * Get module name.
1313 1313 */
1314 1314 q = modname;
1315 1315 while (*p && *p != ' ' && *p != '\t')
1316 1316 *q++ = *p++;
1317 1317
1318 1318 if (q == modname)
1319 1319 break;
1320 1320
1321 1321 *q = '\0';
1322 1322 /*
1323 1323 * Check for dup dependencies.
1324 1324 */
1325 1325 if (strcmp(modname, "dtracestubs") == 0 ||
1326 1326 mod_already_loaded(modname) != NULL)
1327 1327 continue;
1328 1328
1329 1329 cp = add_primary(modname, lmid);
1330 1330 cp->mod_busy = 1;
1331 1331 /*
1332 1332 * Load it.
1333 1333 */
1334 1334 (void) kobj_load_module(cp, 1);
1335 1335 cp->mod_busy = 0;
1336 1336
1337 1337 if ((dmp = cp->mod_mp) == NULL) {
1338 1338 cp->mod_loaded = 0;
1339 1339 cp->mod_installed = 0;
1340 1340 cp->mod_loadcnt = 0;
1341 1341 return (-1);
1342 1342 }
1343 1343
1344 1344 add_dependent(mp, dmp);
1345 1345 dmp->flags |= KOBJ_PRIM;
1346 1346
1347 1347 /*
1348 1348 * Recurse.
1349 1349 */
1350 1350 if (load_primary(dmp, lmid) == -1) {
1351 1351 cp->mod_loaded = 0;
1352 1352 cp->mod_installed = 0;
1353 1353 cp->mod_loadcnt = 0;
1354 1354 return (-1);
1355 1355 }
1356 1356 }
1357 1357 return (0);
1358 1358 }
1359 1359
1360 1360 static int
1361 1361 console_is_usb_serial(void)
1362 1362 {
1363 1363 char *console;
1364 1364 int len, ret;
1365 1365
1366 1366 if ((len = BOP_GETPROPLEN(ops, "console")) == -1)
1367 1367 return (0);
1368 1368
1369 1369 console = kobj_zalloc(len, KM_WAIT|KM_TMP);
1370 1370 (void) BOP_GETPROP(ops, "console", console);
1371 1371 ret = (strcmp(console, "usb-serial") == 0);
1372 1372 kobj_free(console, len);
1373 1373
1374 1374 return (ret);
1375 1375 }
1376 1376
1377 1377 static int
1378 1378 load_kmdb(val_t *bootaux)
1379 1379 {
1380 1380 struct modctl *mctl;
1381 1381 struct module *mp;
1382 1382 Sym *sym;
1383 1383
1384 1384 if (console_is_usb_serial()) {
1385 1385 _kobj_printf(ops, "kmdb not loaded "
1386 1386 "(unsupported on usb serial console)\n");
1387 1387 return (0);
1388 1388 }
1389 1389
1390 1390 _kobj_printf(ops, "Loading kmdb...\n");
1391 1391
1392 1392 if ((mctl = add_primary("misc/kmdbmod", KOBJ_LM_DEBUGGER)) == NULL)
1393 1393 return (-1);
1394 1394
1395 1395 mctl->mod_busy = 1;
1396 1396 (void) kobj_load_module(mctl, 1);
1397 1397 mctl->mod_busy = 0;
1398 1398
1399 1399 if ((mp = mctl->mod_mp) == NULL)
1400 1400 return (-1);
1401 1401
1402 1402 mp->flags |= KOBJ_PRIM;
1403 1403
1404 1404 if (load_primary(mp, KOBJ_LM_DEBUGGER) < 0)
1405 1405 return (-1);
1406 1406
1407 1407 if (boothowto & RB_VERBOSE)
1408 1408 kobj_lm_dump(KOBJ_LM_DEBUGGER);
1409 1409
1410 1410 if (bind_primary(bootaux, KOBJ_LM_DEBUGGER) < 0)
1411 1411 return (-1);
1412 1412
1413 1413 if ((sym = lookup_one(mctl->mod_mp, "kctl_boot_activate")) == NULL)
1414 1414 return (-1);
1415 1415
1416 1416 #ifdef KOBJ_DEBUG
1417 1417 if (kobj_debug & D_DEBUG) {
1418 1418 _kobj_printf(ops, "calling kctl_boot_activate() @ 0x%lx\n",
1419 1419 sym->st_value);
1420 1420 _kobj_printf(ops, "\tops 0x%p\n", ops);
1421 1421 _kobj_printf(ops, "\tromp 0x%p\n", romp);
1422 1422 }
1423 1423 #endif
1424 1424
1425 1425 if (((kctl_boot_activate_f *)sym->st_value)(ops, romp, 0,
1426 1426 (const char **)kobj_kmdb_argv) < 0)
1427 1427 return (-1);
1428 1428
1429 1429 return (0);
1430 1430 }
1431 1431
1432 1432 /*
1433 1433 * Return a string listing module dependencies.
1434 1434 */
1435 1435 static char *
1436 1436 depends_on(struct module *mp)
1437 1437 {
1438 1438 Sym *sp;
1439 1439 char *depstr, *q;
1440 1440
1441 1441 /*
1442 1442 * The module doesn't have a depends_on value, so let's try it the
1443 1443 * old-fashioned way - via "_depends_on"
1444 1444 */
1445 1445 if ((sp = lookup_one(mp, "_depends_on")) == NULL)
1446 1446 return (NULL);
1447 1447
1448 1448 q = (char *)sp->st_value;
1449 1449
1450 1450 #ifdef KOBJ_DEBUG
1451 1451 /*
1452 1452 * _depends_on is a deprecated interface, so we warn about its use
1453 1453 * irrespective of subsequent processing errors. How else are we going
1454 1454 * to be able to deco this interface completely?
1455 1455 * Changes initially limited to DEBUG because third-party modules
1456 1456 * should be flagged to developers before general use base.
1457 1457 */
1458 1458 _kobj_printf(ops,
1459 1459 "Warning: %s uses deprecated _depends_on interface.\n",
1460 1460 mp->filename);
1461 1461 _kobj_printf(ops, "Please notify module developer or vendor.\n");
1462 1462 #endif
1463 1463
1464 1464 /*
1465 1465 * Idiot checks. Make sure it's
1466 1466 * in-bounds and NULL terminated.
1467 1467 */
1468 1468 if (kobj_addrcheck(mp, q) || q[sp->st_size - 1] != '\0') {
1469 1469 _kobj_printf(ops, "Error processing dependency for %s\n",
1470 1470 mp->filename);
1471 1471 return (NULL);
1472 1472 }
1473 1473
1474 1474 depstr = (char *)kobj_alloc(strlen(q) + 1, KM_WAIT);
1475 1475 (void) strcpy(depstr, q);
1476 1476
1477 1477 return (depstr);
1478 1478 }
1479 1479
1480 1480 void
1481 1481 kobj_getmodinfo(void *xmp, struct modinfo *modinfo)
1482 1482 {
1483 1483 struct module *mp;
1484 1484 mp = (struct module *)xmp;
1485 1485
1486 1486 modinfo->mi_base = mp->text;
1487 1487 modinfo->mi_size = mp->text_size + mp->data_size;
1488 1488 }
1489 1489
1490 1490 /*
1491 1491 * kobj_export_ksyms() performs the following services:
1492 1492 *
1493 1493 * (1) Migrates the symbol table from boot/kobj memory to the ksyms arena.
1494 1494 * (2) Removes unneeded symbols to save space.
1495 1495 * (3) Reduces memory footprint by using VM_BESTFIT allocations.
1496 1496 * (4) Makes the symbol table visible to /dev/ksyms.
1497 1497 */
1498 1498 static void
1499 1499 kobj_export_ksyms(struct module *mp)
1500 1500 {
1501 1501 Sym *esp = (Sym *)(mp->symtbl + mp->symhdr->sh_size);
1502 1502 Sym *sp, *osp;
1503 1503 char *name;
1504 1504 size_t namelen;
1505 1505 struct module *omp;
1506 1506 uint_t nsyms;
1507 1507 size_t symsize = mp->symhdr->sh_entsize;
1508 1508 size_t locals = 1;
1509 1509 size_t strsize;
1510 1510
1511 1511 /*
1512 1512 * Make a copy of the original module structure.
1513 1513 */
1514 1514 omp = kobj_alloc(sizeof (struct module), KM_WAIT);
1515 1515 bcopy(mp, omp, sizeof (struct module));
1516 1516
1517 1517 /*
1518 1518 * Compute the sizes of the new symbol table sections.
1519 1519 */
1520 1520 for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1521 1521 if (osp->st_value == 0)
1522 1522 continue;
1523 1523 if (sym_lookup(omp, osp) == NULL)
1524 1524 continue;
1525 1525 name = omp->strings + osp->st_name;
1526 1526 namelen = strlen(name);
1527 1527 if (ELF_ST_BIND(osp->st_info) == STB_LOCAL)
1528 1528 locals++;
1529 1529 nsyms++;
1530 1530 strsize += namelen + 1;
1531 1531 }
1532 1532
1533 1533 mp->nsyms = nsyms;
1534 1534 mp->hashsize = kobj_gethashsize(mp->nsyms);
1535 1535
1536 1536 /*
1537 1537 * ksyms_lock must be held as writer during any operation that
1538 1538 * modifies ksyms_arena, including allocation from same, and
1539 1539 * must not be dropped until the arena is vmem_walk()able.
1540 1540 */
1541 1541 rw_enter(&ksyms_lock, RW_WRITER);
1542 1542
1543 1543 /*
1544 1544 * Allocate space for the new section headers (symtab and strtab),
1545 1545 * symbol table, buckets, chains, and strings.
1546 1546 */
1547 1547 mp->symsize = (2 * sizeof (Shdr)) + (nsyms * symsize) +
1548 1548 (mp->hashsize + mp->nsyms) * sizeof (symid_t) + strsize;
1549 1549
1550 1550 if (mp->flags & KOBJ_NOKSYMS) {
1551 1551 mp->symspace = kobj_alloc(mp->symsize, KM_WAIT);
1552 1552 } else {
1553 1553 mp->symspace = vmem_alloc(ksyms_arena, mp->symsize,
1554 1554 VM_BESTFIT | VM_SLEEP);
1555 1555 }
1556 1556 bzero(mp->symspace, mp->symsize);
1557 1557
1558 1558 /*
1559 1559 * Divvy up symspace.
1560 1560 */
1561 1561 mp->shdrs = mp->symspace;
1562 1562 mp->symhdr = (Shdr *)mp->shdrs;
1563 1563 mp->strhdr = (Shdr *)(mp->symhdr + 1);
1564 1564 mp->symtbl = (char *)(mp->strhdr + 1);
1565 1565 mp->buckets = (symid_t *)(mp->symtbl + (nsyms * symsize));
1566 1566 mp->chains = (symid_t *)(mp->buckets + mp->hashsize);
1567 1567 mp->strings = (char *)(mp->chains + nsyms);
1568 1568
1569 1569 /*
1570 1570 * Fill in the new section headers (symtab and strtab).
1571 1571 */
1572 1572 mp->hdr.e_shnum = 2;
1573 1573 mp->symtbl_section = 0;
1574 1574
1575 1575 mp->symhdr->sh_type = SHT_SYMTAB;
1576 1576 mp->symhdr->sh_addr = (Addr)mp->symtbl;
1577 1577 mp->symhdr->sh_size = nsyms * symsize;
1578 1578 mp->symhdr->sh_link = 1;
1579 1579 mp->symhdr->sh_info = locals;
1580 1580 mp->symhdr->sh_addralign = sizeof (Addr);
1581 1581 mp->symhdr->sh_entsize = symsize;
1582 1582
1583 1583 mp->strhdr->sh_type = SHT_STRTAB;
1584 1584 mp->strhdr->sh_addr = (Addr)mp->strings;
1585 1585 mp->strhdr->sh_size = strsize;
1586 1586 mp->strhdr->sh_addralign = 1;
1587 1587
1588 1588 /*
1589 1589 * Construct the new symbol table.
1590 1590 */
1591 1591 for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1592 1592 if (osp->st_value == 0)
1593 1593 continue;
1594 1594 if (sym_lookup(omp, osp) == NULL)
1595 1595 continue;
1596 1596 name = omp->strings + osp->st_name;
1597 1597 namelen = strlen(name);
1598 1598 sp = (Sym *)(mp->symtbl + symsize * nsyms);
1599 1599 bcopy(osp, sp, symsize);
1600 1600 bcopy(name, mp->strings + strsize, namelen);
1601 1601 sp->st_name = strsize;
1602 1602 sym_insert(mp, name, nsyms);
1603 1603 nsyms++;
1604 1604 strsize += namelen + 1;
1605 1605 }
1606 1606
1607 1607 rw_exit(&ksyms_lock);
1608 1608
1609 1609 /*
1610 1610 * Free the old section headers -- we'll never need them again.
1611 1611 */
1612 1612 if (!(mp->flags & KOBJ_PRIM)) {
1613 1613 uint_t shn;
1614 1614 Shdr *shp;
1615 1615
1616 1616 for (shn = 1; shn < omp->hdr.e_shnum; shn++) {
1617 1617 shp = (Shdr *)(omp->shdrs + shn * omp->hdr.e_shentsize);
1618 1618 switch (shp->sh_type) {
1619 1619 case SHT_RELA:
1620 1620 case SHT_REL:
1621 1621 if (shp->sh_addr != 0) {
1622 1622 kobj_free((void *)shp->sh_addr,
1623 1623 shp->sh_size);
1624 1624 }
1625 1625 break;
1626 1626 }
1627 1627 }
1628 1628 kobj_free(omp->shdrs, omp->hdr.e_shentsize * omp->hdr.e_shnum);
1629 1629 }
1630 1630 /*
1631 1631 * Discard the old symbol table and our copy of the module strucure.
1632 1632 */
1633 1633 if (!(mp->flags & KOBJ_PRIM))
1634 1634 kobj_free(omp->symspace, omp->symsize);
1635 1635 kobj_free(omp, sizeof (struct module));
1636 1636 }
1637 1637
1638 1638 static void
1639 1639 kobj_export_ctf(struct module *mp)
1640 1640 {
1641 1641 char *data = mp->ctfdata;
1642 1642 size_t size = mp->ctfsize;
1643 1643
1644 1644 if (data != NULL) {
1645 1645 if (_moddebug & MODDEBUG_NOCTF) {
1646 1646 mp->ctfdata = NULL;
1647 1647 mp->ctfsize = 0;
1648 1648 } else {
1649 1649 mp->ctfdata = vmem_alloc(ctf_arena, size,
1650 1650 VM_BESTFIT | VM_SLEEP);
1651 1651 bcopy(data, mp->ctfdata, size);
1652 1652 }
1653 1653
1654 1654 if (!(mp->flags & KOBJ_PRIM))
1655 1655 kobj_free(data, size);
1656 1656 }
1657 1657 }
1658 1658
1659 1659 void
1660 1660 kobj_export_module(struct module *mp)
1661 1661 {
1662 1662 kobj_export_ksyms(mp);
1663 1663 kobj_export_ctf(mp);
1664 1664
1665 1665 mp->flags |= KOBJ_EXPORTED;
1666 1666 }
1667 1667
1668 1668 static int
1669 1669 process_dynamic(struct module *mp, char *dyndata, char *strdata)
1670 1670 {
1671 1671 char *path = NULL, *depstr = NULL;
1672 1672 int allocsize = 0, osize = 0, nsize = 0;
1673 1673 char *libname, *tmp;
1674 1674 int lsize;
1675 1675 Dyn *dynp;
1676 1676
1677 1677 for (dynp = (Dyn *)dyndata; dynp && dynp->d_tag != DT_NULL; dynp++) {
1678 1678 switch (dynp->d_tag) {
1679 1679 case DT_NEEDED:
1680 1680 /*
1681 1681 * Read the DT_NEEDED entries, expanding the macros they
1682 1682 * contain (if any), and concatenating them into a
1683 1683 * single space-separated dependency list.
1684 1684 */
1685 1685 libname = (ulong_t)dynp->d_un.d_ptr + strdata;
1686 1686
1687 1687 if (strchr(libname, '$') != NULL) {
1688 1688 char *_lib;
1689 1689
1690 1690 if (path == NULL)
1691 1691 path = kobj_alloc(MAXPATHLEN, KM_WAIT);
1692 1692 if ((_lib = expand_libmacro(libname, path,
1693 1693 path)) != NULL)
1694 1694 libname = _lib;
1695 1695 else {
1696 1696 _kobj_printf(ops, "krtld: "
1697 1697 "process_dynamic: failed to expand "
1698 1698 "%s\n", libname);
1699 1699 }
1700 1700 }
1701 1701
1702 1702 lsize = strlen(libname);
1703 1703 nsize += lsize;
1704 1704 if (nsize + 1 > allocsize) {
1705 1705 tmp = kobj_alloc(allocsize + MAXPATHLEN,
1706 1706 KM_WAIT);
1707 1707 if (depstr != NULL) {
1708 1708 bcopy(depstr, tmp, osize);
1709 1709 kobj_free(depstr, allocsize);
1710 1710 }
1711 1711 depstr = tmp;
1712 1712 allocsize += MAXPATHLEN;
1713 1713 }
1714 1714 bcopy(libname, depstr + osize, lsize);
1715 1715 *(depstr + nsize) = ' '; /* separator */
1716 1716 nsize++;
1717 1717 osize = nsize;
1718 1718 break;
1719 1719
1720 1720 case DT_FLAGS_1:
1721 1721 if (dynp->d_un.d_val & DF_1_IGNMULDEF)
1722 1722 mp->flags |= KOBJ_IGNMULDEF;
1723 1723 if (dynp->d_un.d_val & DF_1_NOKSYMS)
1724 1724 mp->flags |= KOBJ_NOKSYMS;
1725 1725
1726 1726 break;
1727 1727 }
1728 1728 }
1729 1729
1730 1730 /*
1731 1731 * finish up the depends string (if any)
1732 1732 */
1733 1733 if (depstr != NULL) {
1734 1734 *(depstr + nsize - 1) = '\0'; /* overwrite separator w/term */
1735 1735 if (path != NULL)
1736 1736 kobj_free(path, MAXPATHLEN);
1737 1737
1738 1738 tmp = kobj_alloc(nsize, KM_WAIT);
1739 1739 bcopy(depstr, tmp, nsize);
1740 1740 kobj_free(depstr, allocsize);
1741 1741 depstr = tmp;
1742 1742
1743 1743 mp->depends_on = depstr;
1744 1744 }
1745 1745
1746 1746 return (0);
1747 1747 }
1748 1748
1749 1749 static int
1750 1750 do_dynamic(struct module *mp, struct _buf *file)
1751 1751 {
1752 1752 Shdr *dshp, *dstrp, *shp;
1753 1753 char *dyndata, *dstrdata;
1754 1754 int dshn, shn, rc;
1755 1755
1756 1756 /* find and validate the dynamic section (if any) */
1757 1757
1758 1758 for (dshp = NULL, shn = 1; shn < mp->hdr.e_shnum; shn++) {
1759 1759 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
1760 1760 switch (shp->sh_type) {
1761 1761 case SHT_DYNAMIC:
1762 1762 if (dshp != NULL) {
1763 1763 _kobj_printf(ops, "krtld: get_dynamic: %s, ",
1764 1764 mp->filename);
1765 1765 _kobj_printf(ops,
1766 1766 "multiple dynamic sections\n");
1767 1767 return (-1);
1768 1768 } else {
1769 1769 dshp = shp;
1770 1770 dshn = shn;
1771 1771 }
1772 1772 break;
1773 1773 }
1774 1774 }
1775 1775
1776 1776 if (dshp == NULL)
1777 1777 return (0);
1778 1778
1779 1779 if (dshp->sh_link > mp->hdr.e_shnum) {
1780 1780 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1781 1781 _kobj_printf(ops, "no section for sh_link %d\n", dshp->sh_link);
1782 1782 return (-1);
1783 1783 }
1784 1784 dstrp = (Shdr *)(mp->shdrs + dshp->sh_link * mp->hdr.e_shentsize);
1785 1785
1786 1786 if (dstrp->sh_type != SHT_STRTAB) {
1787 1787 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1788 1788 _kobj_printf(ops, "sh_link not a string table for section %d\n",
1789 1789 dshn);
1790 1790 return (-1);
1791 1791 }
1792 1792
1793 1793 /* read it from disk */
1794 1794
1795 1795 dyndata = kobj_alloc(dshp->sh_size, KM_WAIT|KM_TMP);
1796 1796 if (kobj_read_file(file, dyndata, dshp->sh_size, dshp->sh_offset) < 0) {
1797 1797 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1798 1798 _kobj_printf(ops, "error reading section %d\n", dshn);
1799 1799
1800 1800 kobj_free(dyndata, dshp->sh_size);
1801 1801 return (-1);
1802 1802 }
1803 1803
1804 1804 dstrdata = kobj_alloc(dstrp->sh_size, KM_WAIT|KM_TMP);
1805 1805 if (kobj_read_file(file, dstrdata, dstrp->sh_size,
1806 1806 dstrp->sh_offset) < 0) {
1807 1807 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1808 1808 _kobj_printf(ops, "error reading section %d\n", dshp->sh_link);
1809 1809
1810 1810 kobj_free(dyndata, dshp->sh_size);
1811 1811 kobj_free(dstrdata, dstrp->sh_size);
1812 1812 return (-1);
1813 1813 }
1814 1814
1815 1815 /* pull the interesting pieces out */
1816 1816
1817 1817 rc = process_dynamic(mp, dyndata, dstrdata);
1818 1818
1819 1819 kobj_free(dyndata, dshp->sh_size);
1820 1820 kobj_free(dstrdata, dstrp->sh_size);
1821 1821
1822 1822 return (rc);
1823 1823 }
1824 1824
1825 1825 void
1826 1826 kobj_set_ctf(struct module *mp, caddr_t data, size_t size)
1827 1827 {
1828 1828 if (!standalone) {
1829 1829 if (mp->ctfdata != NULL) {
1830 1830 if (vmem_contains(ctf_arena, mp->ctfdata,
1831 1831 mp->ctfsize)) {
1832 1832 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
1833 1833 } else {
1834 1834 kobj_free(mp->ctfdata, mp->ctfsize);
1835 1835 }
1836 1836 }
1837 1837 }
1838 1838
1839 1839 /*
1840 1840 * The order is very important here. We need to make sure that
1841 1841 * consumers, at any given instant, see a consistent state. We'd
1842 1842 * rather they see no CTF data than the address of one buffer and the
1843 1843 * size of another.
1844 1844 */
1845 1845 mp->ctfdata = NULL;
1846 1846 membar_producer();
1847 1847 mp->ctfsize = size;
1848 1848 mp->ctfdata = data;
1849 1849 membar_producer();
1850 1850 }
1851 1851
1852 1852 int
1853 1853 kobj_load_module(struct modctl *modp, int use_path)
1854 1854 {
1855 1855 char *filename = modp->mod_filename;
1856 1856 char *modname = modp->mod_modname;
1857 1857 int i;
1858 1858 int n;
1859 1859 struct _buf *file;
1860 1860 struct module *mp = NULL;
1861 1861 #ifdef MODDIR_SUFFIX
1862 1862 int no_suffixdir_drv = 0;
1863 1863 #endif
1864 1864
1865 1865 mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
1866 1866
1867 1867 /*
1868 1868 * We need to prevent kmdb's symbols from leaking into /dev/ksyms.
1869 1869 * kmdb contains a bunch of symbols with well-known names, symbols
1870 1870 * which will mask the real versions, thus causing no end of trouble
1871 1871 * for mdb.
1872 1872 */
1873 1873 if (strcmp(modp->mod_modname, "kmdbmod") == 0)
1874 1874 mp->flags |= KOBJ_NOKSYMS;
1875 1875
1876 1876 file = kobj_open_path(filename, use_path, 1);
1877 1877 if (file == (struct _buf *)-1) {
1878 1878 #ifdef MODDIR_SUFFIX
1879 1879 file = kobj_open_path(filename, use_path, 0);
1880 1880 #endif
1881 1881 if (file == (struct _buf *)-1) {
1882 1882 kobj_free(mp, sizeof (*mp));
1883 1883 goto bad;
1884 1884 }
1885 1885 #ifdef MODDIR_SUFFIX
1886 1886 /*
1887 1887 * There is no driver module in the ISA specific (suffix)
1888 1888 * subdirectory but there is a module in the parent directory.
1889 1889 */
1890 1890 if (strncmp(filename, "drv/", 4) == 0) {
1891 1891 no_suffixdir_drv = 1;
1892 1892 }
1893 1893 #endif
1894 1894 }
1895 1895
1896 1896 mp->filename = kobj_alloc(strlen(file->_name) + 1, KM_WAIT);
1897 1897 (void) strcpy(mp->filename, file->_name);
1898 1898
1899 1899 if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) {
1900 1900 _kobj_printf(ops, "kobj_load_module: %s read header failed\n",
1901 1901 modname);
1902 1902 kobj_free(mp->filename, strlen(file->_name) + 1);
1903 1903 kobj_free(mp, sizeof (*mp));
1904 1904 goto bad;
1905 1905 }
1906 1906 for (i = 0; i < SELFMAG; i++) {
1907 1907 if (mp->hdr.e_ident[i] != ELFMAG[i]) {
1908 1908 if (_moddebug & MODDEBUG_ERRMSG)
1909 1909 _kobj_printf(ops, "%s not an elf module\n",
1910 1910 modname);
1911 1911 kobj_free(mp->filename, strlen(file->_name) + 1);
1912 1912 kobj_free(mp, sizeof (*mp));
1913 1913 goto bad;
1914 1914 }
1915 1915 }
1916 1916 /*
1917 1917 * It's ELF, but is it our ISA? Interpreting the header
1918 1918 * from a file for a byte-swapped ISA could cause a huge
1919 1919 * and unsatisfiable value to be passed to kobj_alloc below
1920 1920 * and therefore hang booting.
1921 1921 */
1922 1922 if (!elf_mach_ok(&mp->hdr)) {
1923 1923 if (_moddebug & MODDEBUG_ERRMSG)
1924 1924 _kobj_printf(ops, "%s not an elf module for this ISA\n",
1925 1925 modname);
1926 1926 kobj_free(mp->filename, strlen(file->_name) + 1);
1927 1927 kobj_free(mp, sizeof (*mp));
1928 1928 #ifdef MODDIR_SUFFIX
1929 1929 /*
1930 1930 * The driver mod is not in the ISA specific subdirectory
1931 1931 * and the module in the parent directory is not our ISA.
1932 1932 * If it is our ISA, for now we will silently succeed.
1933 1933 */
1934 1934 if (no_suffixdir_drv == 1) {
1935 1935 cmn_err(CE_CONT, "?NOTICE: %s: 64-bit driver module"
1936 1936 " not found\n", modname);
1937 1937 }
1938 1938 #endif
1939 1939 goto bad;
1940 1940 }
1941 1941
1942 1942 /*
1943 1943 * All modules, save for unix, should be relocatable (as opposed to
1944 1944 * dynamic). Dynamic modules come with PLTs and GOTs, which can't
1945 1945 * currently be processed by krtld.
1946 1946 */
1947 1947 if (mp->hdr.e_type != ET_REL) {
1948 1948 if (_moddebug & MODDEBUG_ERRMSG)
1949 1949 _kobj_printf(ops, "%s isn't a relocatable (ET_REL) "
1950 1950 "module\n", modname);
1951 1951 kobj_free(mp->filename, strlen(file->_name) + 1);
1952 1952 kobj_free(mp, sizeof (*mp));
1953 1953 goto bad;
1954 1954 }
1955 1955
1956 1956 n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1957 1957 mp->shdrs = kobj_alloc(n, KM_WAIT);
1958 1958
1959 1959 if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) {
1960 1960 _kobj_printf(ops, "kobj_load_module: %s error reading "
1961 1961 "section headers\n", modname);
1962 1962 kobj_free(mp->shdrs, n);
1963 1963 kobj_free(mp->filename, strlen(file->_name) + 1);
1964 1964 kobj_free(mp, sizeof (*mp));
1965 1965 goto bad;
1966 1966 }
1967 1967
1968 1968 kobj_notify(KOBJ_NOTIFY_MODLOADING, modp);
1969 1969 module_assign(modp, mp);
1970 1970
1971 1971 /* read in sections */
1972 1972 if (get_progbits(mp, file) < 0) {
1973 1973 _kobj_printf(ops, "%s error reading sections\n", modname);
1974 1974 goto bad;
1975 1975 }
1976 1976
1977 1977 if (do_dynamic(mp, file) < 0) {
1978 1978 _kobj_printf(ops, "%s error reading dynamic section\n",
1979 1979 modname);
1980 1980 goto bad;
1981 1981 }
1982 1982
1983 1983 modp->mod_text = mp->text;
1984 1984 modp->mod_text_size = mp->text_size;
1985 1985
1986 1986 /* read in symbols; adjust values for each section's real address */
1987 1987 if (get_syms(mp, file) < 0) {
1988 1988 _kobj_printf(ops, "%s error reading symbols\n",
1989 1989 modname);
1990 1990 goto bad;
1991 1991 }
1992 1992
1993 1993 /*
1994 1994 * If we didn't dependency information from the dynamic section, look
1995 1995 * for it the old-fashioned way.
1996 1996 */
1997 1997 if (mp->depends_on == NULL)
1998 1998 mp->depends_on = depends_on(mp);
1999 1999
2000 2000 if (get_ctf(mp, file) < 0) {
2001 2001 _kobj_printf(ops, "%s debug information will not "
2002 2002 "be available\n", modname);
↓ open down ↓ |
1019 lines elided |
↑ open up ↑ |
2003 2003 }
2004 2004
2005 2005 /* primary kernel modules do not have a signature section */
2006 2006 if (!(mp->flags & KOBJ_PRIM))
2007 2007 get_signature(mp, file);
2008 2008
2009 2009 #ifdef KOBJ_DEBUG
2010 2010 if (kobj_debug & D_LOADING) {
2011 2011 _kobj_printf(ops, "krtld: file=%s\n", mp->filename);
2012 2012 _kobj_printf(ops, "\ttext:0x%p", mp->text);
2013 - _kobj_printf(ops, " size: 0x%x\n", mp->text_size);
2013 + _kobj_printf(ops, " size: 0x%lx\n", mp->text_size);
2014 2014 _kobj_printf(ops, "\tdata:0x%p", mp->data);
2015 - _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
2015 + _kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size);
2016 2016 }
2017 2017 #endif /* KOBJ_DEBUG */
2018 2018
2019 2019 /*
2020 2020 * For primary kernel modules, we defer
2021 2021 * symbol resolution and relocation until
2022 2022 * all primary objects have been loaded.
2023 2023 */
2024 2024 if (!standalone) {
2025 2025 int ddrval, dcrval;
2026 2026 char *dependent_modname;
2027 2027 /* load all dependents */
2028 2028 dependent_modname = kobj_zalloc(MODMAXNAMELEN, KM_WAIT);
2029 2029 ddrval = do_dependents(modp, dependent_modname, MODMAXNAMELEN);
2030 2030
2031 2031 /*
2032 2032 * resolve undefined and common symbols,
2033 2033 * also allocates common space
2034 2034 */
2035 2035 if ((dcrval = do_common(mp)) < 0) {
2036 2036 switch (dcrval) {
2037 2037 case DOSYM_UNSAFE:
2038 2038 _kobj_printf(ops, "WARNING: mod_load: "
2039 2039 "MT-unsafe module '%s' rejected\n",
2040 2040 modname);
2041 2041 break;
2042 2042 case DOSYM_UNDEF:
2043 2043 _kobj_printf(ops, "WARNING: mod_load: "
2044 2044 "cannot load module '%s'\n",
2045 2045 modname);
2046 2046 if (ddrval == -1) {
2047 2047 _kobj_printf(ops, "WARNING: %s: ",
2048 2048 modname);
2049 2049 _kobj_printf(ops,
2050 2050 "unable to resolve dependency, "
2051 2051 "module '%s' not found\n",
2052 2052 dependent_modname);
2053 2053 }
2054 2054 break;
2055 2055 }
2056 2056 }
2057 2057 kobj_free(dependent_modname, MODMAXNAMELEN);
2058 2058 if (dcrval < 0)
2059 2059 goto bad;
2060 2060
2061 2061 /* process relocation tables */
2062 2062 if (do_relocations(mp) < 0) {
2063 2063 _kobj_printf(ops, "%s error doing relocations\n",
2064 2064 modname);
2065 2065 goto bad;
2066 2066 }
2067 2067
2068 2068 if (mp->destination) {
2069 2069 off_t off = (uintptr_t)mp->destination & PAGEOFFSET;
2070 2070 caddr_t base = (caddr_t)mp->destination - off;
2071 2071 size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2072 2072
2073 2073 hat_unload(kas.a_hat, base, size, HAT_UNLOAD_UNLOCK);
2074 2074 vmem_free(heap_arena, base, size);
2075 2075 }
2076 2076
2077 2077 /* sync_instruction_memory */
2078 2078 kobj_sync_instruction_memory(mp->text, mp->text_size);
2079 2079 kobj_export_module(mp);
2080 2080 kobj_notify(KOBJ_NOTIFY_MODLOADED, modp);
2081 2081 }
2082 2082 kobj_close_file(file);
2083 2083 return (0);
2084 2084 bad:
2085 2085 if (file != (struct _buf *)-1)
2086 2086 kobj_close_file(file);
2087 2087 if (modp->mod_mp != NULL)
2088 2088 free_module_data(modp->mod_mp);
2089 2089
2090 2090 module_assign(modp, NULL);
2091 2091 return ((file == (struct _buf *)-1) ? ENOENT : EINVAL);
2092 2092 }
2093 2093
2094 2094 int
2095 2095 kobj_load_primary_module(struct modctl *modp)
2096 2096 {
2097 2097 struct modctl *dep;
2098 2098 struct module *mp;
2099 2099
2100 2100 if (kobj_load_module(modp, 0) != 0)
2101 2101 return (-1);
2102 2102
2103 2103 dep = NULL;
2104 2104 mp = modp->mod_mp;
2105 2105 mp->flags |= KOBJ_PRIM;
2106 2106
2107 2107 /* Bind new module to its dependents */
2108 2108 if (mp->depends_on != NULL && (dep =
2109 2109 mod_already_loaded(mp->depends_on)) == NULL) {
2110 2110 #ifdef KOBJ_DEBUG
2111 2111 if (kobj_debug & D_DEBUG) {
2112 2112 _kobj_printf(ops, "krtld: failed to resolve deps "
2113 2113 "for primary %s\n", modp->mod_modname);
2114 2114 }
2115 2115 #endif
2116 2116 return (-1);
2117 2117 }
2118 2118
2119 2119 if (dep != NULL)
2120 2120 add_dependent(mp, dep->mod_mp);
2121 2121
2122 2122 /*
2123 2123 * Relocate it. This module may not be part of a link map, so we
2124 2124 * can't use bind_primary.
2125 2125 */
2126 2126 if (do_common(mp) < 0 || do_symbols(mp, 0) < 0 ||
2127 2127 do_relocations(mp) < 0) {
2128 2128 #ifdef KOBJ_DEBUG
2129 2129 if (kobj_debug & D_DEBUG) {
2130 2130 _kobj_printf(ops, "krtld: failed to relocate "
2131 2131 "primary %s\n", modp->mod_modname);
2132 2132 }
2133 2133 #endif
2134 2134 return (-1);
2135 2135 }
2136 2136
2137 2137 return (0);
2138 2138 }
2139 2139
2140 2140 static void
2141 2141 module_assign(struct modctl *cp, struct module *mp)
2142 2142 {
2143 2143 if (standalone) {
2144 2144 cp->mod_mp = mp;
2145 2145 return;
2146 2146 }
2147 2147 mutex_enter(&mod_lock);
2148 2148 cp->mod_mp = mp;
2149 2149 cp->mod_gencount++;
2150 2150 mutex_exit(&mod_lock);
2151 2151 }
2152 2152
2153 2153 void
2154 2154 kobj_unload_module(struct modctl *modp)
2155 2155 {
2156 2156 struct module *mp = modp->mod_mp;
2157 2157
2158 2158 if ((_moddebug & MODDEBUG_KEEPTEXT) && mp) {
2159 2159 _kobj_printf(ops, "text for %s ", mp->filename);
2160 2160 _kobj_printf(ops, "was at %p\n", mp->text);
2161 2161 mp->text = NULL; /* don't actually free it */
2162 2162 }
2163 2163
2164 2164 kobj_notify(KOBJ_NOTIFY_MODUNLOADING, modp);
2165 2165
2166 2166 /*
2167 2167 * Null out mod_mp first, so consumers (debuggers) know not to look
2168 2168 * at the module structure any more.
2169 2169 */
2170 2170 mutex_enter(&mod_lock);
2171 2171 modp->mod_mp = NULL;
2172 2172 mutex_exit(&mod_lock);
2173 2173
2174 2174 kobj_notify(KOBJ_NOTIFY_MODUNLOADED, modp);
2175 2175 free_module_data(mp);
2176 2176 }
2177 2177
2178 2178 static void
2179 2179 free_module_data(struct module *mp)
2180 2180 {
2181 2181 struct module_list *lp, *tmp;
2182 2182 int ksyms_exported = 0;
2183 2183
2184 2184 lp = mp->head;
2185 2185 while (lp) {
2186 2186 tmp = lp;
2187 2187 lp = lp->next;
2188 2188 kobj_free((char *)tmp, sizeof (*tmp));
2189 2189 }
2190 2190
2191 2191 rw_enter(&ksyms_lock, RW_WRITER);
2192 2192 if (mp->symspace) {
2193 2193 if (vmem_contains(ksyms_arena, mp->symspace, mp->symsize)) {
2194 2194 vmem_free(ksyms_arena, mp->symspace, mp->symsize);
2195 2195 ksyms_exported = 1;
2196 2196 } else {
2197 2197 if (mp->flags & KOBJ_NOKSYMS)
2198 2198 ksyms_exported = 1;
2199 2199 kobj_free(mp->symspace, mp->symsize);
2200 2200 }
2201 2201 }
2202 2202 rw_exit(&ksyms_lock);
2203 2203
2204 2204 if (mp->ctfdata) {
2205 2205 if (vmem_contains(ctf_arena, mp->ctfdata, mp->ctfsize))
2206 2206 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
2207 2207 else
2208 2208 kobj_free(mp->ctfdata, mp->ctfsize);
2209 2209 }
2210 2210
2211 2211 if (mp->sigdata)
2212 2212 kobj_free(mp->sigdata, mp->sigsize);
2213 2213
2214 2214 /*
2215 2215 * We did not get far enough into kobj_export_ksyms() to free allocated
2216 2216 * buffers because we encounted error conditions. Free the buffers.
2217 2217 */
2218 2218 if ((ksyms_exported == 0) && (mp->shdrs != NULL)) {
2219 2219 uint_t shn;
2220 2220 Shdr *shp;
2221 2221
2222 2222 for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2223 2223 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2224 2224 switch (shp->sh_type) {
2225 2225 case SHT_RELA:
2226 2226 case SHT_REL:
2227 2227 if (shp->sh_addr != 0)
2228 2228 kobj_free((void *)shp->sh_addr,
2229 2229 shp->sh_size);
2230 2230 break;
2231 2231 }
2232 2232 }
2233 2233 err_free_done:
2234 2234 if (!(mp->flags & KOBJ_PRIM)) {
2235 2235 kobj_free(mp->shdrs,
2236 2236 mp->hdr.e_shentsize * mp->hdr.e_shnum);
2237 2237 }
2238 2238 }
2239 2239
2240 2240 if (mp->bss)
2241 2241 vmem_free(data_arena, (void *)mp->bss, mp->bss_size);
2242 2242
2243 2243 if (mp->fbt_tab)
2244 2244 kobj_texthole_free(mp->fbt_tab, mp->fbt_size);
2245 2245
2246 2246 if (mp->textwin_base)
2247 2247 kobj_textwin_free(mp);
2248 2248
2249 2249 if (mp->sdt_probes != NULL) {
2250 2250 sdt_probedesc_t *sdp = mp->sdt_probes, *next;
2251 2251
2252 2252 while (sdp != NULL) {
2253 2253 next = sdp->sdpd_next;
2254 2254 kobj_free(sdp->sdpd_name, strlen(sdp->sdpd_name) + 1);
2255 2255 kobj_free(sdp, sizeof (sdt_probedesc_t));
2256 2256 sdp = next;
2257 2257 }
2258 2258 }
2259 2259
2260 2260 if (mp->sdt_tab)
2261 2261 kobj_texthole_free(mp->sdt_tab, mp->sdt_size);
2262 2262 if (mp->text)
2263 2263 vmem_free(text_arena, mp->text, mp->text_size);
2264 2264 if (mp->data)
2265 2265 vmem_free(data_arena, mp->data, mp->data_size);
2266 2266 if (mp->depends_on)
2267 2267 kobj_free(mp->depends_on, strlen(mp->depends_on)+1);
2268 2268 if (mp->filename)
2269 2269 kobj_free(mp->filename, strlen(mp->filename)+1);
2270 2270
2271 2271 kobj_free((char *)mp, sizeof (*mp));
2272 2272 }
2273 2273
2274 2274 static int
2275 2275 get_progbits(struct module *mp, struct _buf *file)
2276 2276 {
2277 2277 struct proginfo *tp, *dp, *sdp;
2278 2278 Shdr *shp;
2279 2279 reloc_dest_t dest = NULL;
2280 2280 uintptr_t bits_ptr;
2281 2281 uintptr_t text = 0, data, textptr;
2282 2282 uint_t shn;
2283 2283 int err = -1;
2284 2284
2285 2285 tp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2286 2286 dp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2287 2287 sdp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2288 2288 /*
2289 2289 * loop through sections to find out how much space we need
2290 2290 * for text, data, (also bss that is already assigned)
2291 2291 */
2292 2292 if (get_progbits_size(mp, tp, dp, sdp) < 0)
2293 2293 goto done;
2294 2294
2295 2295 mp->text_size = tp->size;
2296 2296 mp->data_size = dp->size;
2297 2297
2298 2298 if (standalone) {
2299 2299 caddr_t limit = _data;
2300 2300
2301 2301 if (lg_pagesize && _text + lg_pagesize < limit)
2302 2302 limit = _text + lg_pagesize;
2303 2303
2304 2304 mp->text = kobj_segbrk(&_etext, mp->text_size,
2305 2305 tp->align, limit);
2306 2306 /*
2307 2307 * If we can't grow the text segment, try the
2308 2308 * data segment before failing.
2309 2309 */
2310 2310 if (mp->text == NULL) {
2311 2311 mp->text = kobj_segbrk(&_edata, mp->text_size,
2312 2312 tp->align, 0);
2313 2313 }
2314 2314
2315 2315 mp->data = kobj_segbrk(&_edata, mp->data_size, dp->align, 0);
2316 2316
2317 2317 if (mp->text == NULL || mp->data == NULL)
2318 2318 goto done;
2319 2319
2320 2320 } else {
2321 2321 if (text_arena == NULL)
2322 2322 kobj_vmem_init(&text_arena, &data_arena);
2323 2323
2324 2324 /*
2325 2325 * some architectures may want to load the module on a
2326 2326 * page that is currently read only. It may not be
2327 2327 * possible for those architectures to remap their page
2328 2328 * on the fly. So we provide a facility for them to hang
2329 2329 * a private hook where the memory they assign the module
2330 2330 * is not the actual place where the module loads.
2331 2331 *
2332 2332 * In this case there are two addresses that deal with the
2333 2333 * modload.
2334 2334 * 1) the final destination of the module
2335 2335 * 2) the address that is used to view the newly
2336 2336 * loaded module until all the relocations relative to 1
2337 2337 * above are completed.
2338 2338 *
2339 2339 * That is what dest is used for below.
2340 2340 */
2341 2341 mp->text_size += tp->align;
2342 2342 mp->data_size += dp->align;
2343 2343
2344 2344 mp->text = kobj_text_alloc(text_arena, mp->text_size);
2345 2345
2346 2346 /*
2347 2347 * a remap is taking place. Align the text ptr relative
2348 2348 * to the secondary mapping. That is where the bits will
2349 2349 * be read in.
2350 2350 */
2351 2351 if (kvseg.s_base != NULL && !vmem_contains(heaptext_arena,
2352 2352 mp->text, mp->text_size)) {
2353 2353 off_t off = (uintptr_t)mp->text & PAGEOFFSET;
2354 2354 size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2355 2355 caddr_t map = vmem_alloc(heap_arena, size, VM_SLEEP);
2356 2356 caddr_t orig = mp->text - off;
2357 2357 pgcnt_t pages = size / PAGESIZE;
2358 2358
2359 2359 dest = (reloc_dest_t)(map + off);
2360 2360 text = ALIGN((uintptr_t)dest, tp->align);
2361 2361
2362 2362 while (pages--) {
2363 2363 hat_devload(kas.a_hat, map, PAGESIZE,
2364 2364 hat_getpfnum(kas.a_hat, orig),
2365 2365 PROT_READ | PROT_WRITE | PROT_EXEC,
2366 2366 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
2367 2367 map += PAGESIZE;
2368 2368 orig += PAGESIZE;
2369 2369 }
2370 2370 /*
2371 2371 * Since we set up a non-cacheable mapping, we need
2372 2372 * to flush any old entries in the cache that might
2373 2373 * be left around from the read-only mapping.
2374 2374 */
2375 2375 dcache_flushall();
2376 2376 }
2377 2377 if (mp->data_size)
2378 2378 mp->data = vmem_alloc(data_arena, mp->data_size,
2379 2379 VM_SLEEP | VM_BESTFIT);
2380 2380 }
2381 2381 textptr = (uintptr_t)mp->text;
2382 2382 textptr = ALIGN(textptr, tp->align);
2383 2383 mp->destination = dest;
2384 2384
2385 2385 /*
2386 2386 * This is the case where a remap is not being done.
2387 2387 */
2388 2388 if (text == 0)
2389 2389 text = ALIGN((uintptr_t)mp->text, tp->align);
2390 2390 data = ALIGN((uintptr_t)mp->data, dp->align);
2391 2391
2392 2392 /* now loop though sections assigning addresses and loading the data */
2393 2393 for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2394 2394 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2395 2395 if (!(shp->sh_flags & SHF_ALLOC))
2396 2396 continue;
2397 2397
2398 2398 if ((shp->sh_flags & SHF_WRITE) == 0)
2399 2399 bits_ptr = text;
2400 2400 else
2401 2401 bits_ptr = data;
2402 2402
2403 2403 bits_ptr = ALIGN(bits_ptr, shp->sh_addralign);
2404 2404
2405 2405 if (shp->sh_type == SHT_NOBITS) {
2406 2406 /*
2407 2407 * Zero bss.
2408 2408 */
2409 2409 bzero((caddr_t)bits_ptr, shp->sh_size);
2410 2410 shp->sh_type = SHT_PROGBITS;
2411 2411 } else {
2412 2412 if (kobj_read_file(file, (char *)bits_ptr,
2413 2413 shp->sh_size, shp->sh_offset) < 0)
2414 2414 goto done;
2415 2415 }
2416 2416
2417 2417 if (shp->sh_flags & SHF_WRITE) {
2418 2418 shp->sh_addr = bits_ptr;
2419 2419 } else {
2420 2420 textptr = ALIGN(textptr, shp->sh_addralign);
2421 2421 shp->sh_addr = textptr;
2422 2422 textptr += shp->sh_size;
2423 2423 }
2424 2424
2425 2425 bits_ptr += shp->sh_size;
2426 2426 if ((shp->sh_flags & SHF_WRITE) == 0)
2427 2427 text = bits_ptr;
2428 2428 else
2429 2429 data = bits_ptr;
2430 2430 }
2431 2431
2432 2432 err = 0;
2433 2433 done:
2434 2434 /*
2435 2435 * Free and mark as freed the section headers here so that
2436 2436 * free_module_data() does not have to worry about this buffer.
2437 2437 *
2438 2438 * This buffer is freed here because one of the possible reasons
2439 2439 * for error is a section with non-zero sh_addr and in that case
2440 2440 * free_module_data() would have no way of recognizing that this
2441 2441 * buffer was unallocated.
2442 2442 */
2443 2443 if (err != 0) {
2444 2444 kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum);
2445 2445 mp->shdrs = NULL;
2446 2446 }
2447 2447
2448 2448 (void) kobj_free(tp, sizeof (struct proginfo));
2449 2449 (void) kobj_free(dp, sizeof (struct proginfo));
2450 2450 (void) kobj_free(sdp, sizeof (struct proginfo));
2451 2451
2452 2452 return (err);
2453 2453 }
2454 2454
2455 2455 /*
2456 2456 * Go through suppress_sym_list to see if "multiply defined"
2457 2457 * warning of this symbol should be suppressed. Return 1 if
2458 2458 * warning should be suppressed, 0 otherwise.
2459 2459 */
2460 2460 static int
2461 2461 kobj_suppress_warning(char *symname)
2462 2462 {
2463 2463 int i;
2464 2464
2465 2465 for (i = 0; suppress_sym_list[i] != NULL; i++) {
2466 2466 if (strcmp(suppress_sym_list[i], symname) == 0)
2467 2467 return (1);
2468 2468 }
2469 2469
2470 2470 return (0);
2471 2471 }
2472 2472
2473 2473 static int
2474 2474 get_syms(struct module *mp, struct _buf *file)
2475 2475 {
2476 2476 uint_t shn;
2477 2477 Shdr *shp;
2478 2478 uint_t i;
2479 2479 Sym *sp, *ksp;
2480 2480 char *symname;
2481 2481 int dosymtab = 0;
2482 2482
2483 2483 /*
2484 2484 * Find the interesting sections.
2485 2485 */
2486 2486 for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2487 2487 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2488 2488 switch (shp->sh_type) {
2489 2489 case SHT_SYMTAB:
2490 2490 mp->symtbl_section = shn;
2491 2491 mp->symhdr = shp;
2492 2492 dosymtab++;
2493 2493 break;
2494 2494
2495 2495 case SHT_RELA:
2496 2496 case SHT_REL:
2497 2497 /*
2498 2498 * Already loaded.
2499 2499 */
2500 2500 if (shp->sh_addr)
2501 2501 continue;
2502 2502
2503 2503 /* KM_TMP since kobj_free'd in do_relocations */
2504 2504 shp->sh_addr = (Addr)
2505 2505 kobj_alloc(shp->sh_size, KM_WAIT|KM_TMP);
2506 2506
2507 2507 if (kobj_read_file(file, (char *)shp->sh_addr,
2508 2508 shp->sh_size, shp->sh_offset) < 0) {
2509 2509 _kobj_printf(ops, "krtld: get_syms: %s, ",
2510 2510 mp->filename);
2511 2511 _kobj_printf(ops, "error reading section %d\n",
2512 2512 shn);
2513 2513 return (-1);
2514 2514 }
2515 2515 break;
2516 2516 }
2517 2517 }
2518 2518
2519 2519 /*
2520 2520 * This is true for a stripped executable. In the case of
2521 2521 * 'unix' it can be stripped but it still contains the SHT_DYNSYM,
2522 2522 * and since that symbol information is still present everything
2523 2523 * is just fine.
2524 2524 */
2525 2525 if (!dosymtab) {
2526 2526 if (mp->flags & KOBJ_EXEC)
2527 2527 return (0);
2528 2528 _kobj_printf(ops, "krtld: get_syms: %s ",
2529 2529 mp->filename);
2530 2530 _kobj_printf(ops, "no SHT_SYMTAB symbol table found\n");
2531 2531 return (-1);
2532 2532 }
2533 2533
2534 2534 /*
2535 2535 * get the associated string table header
2536 2536 */
2537 2537 if ((mp->symhdr == 0) || (mp->symhdr->sh_link >= mp->hdr.e_shnum))
2538 2538 return (-1);
2539 2539 mp->strhdr = (Shdr *)
2540 2540 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
2541 2541
2542 2542 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
2543 2543 mp->hashsize = kobj_gethashsize(mp->nsyms);
2544 2544
2545 2545 /*
2546 2546 * Allocate space for the symbol table, buckets, chains, and strings.
2547 2547 */
2548 2548 mp->symsize = mp->symhdr->sh_size +
2549 2549 (mp->hashsize + mp->nsyms) * sizeof (symid_t) + mp->strhdr->sh_size;
2550 2550 mp->symspace = kobj_zalloc(mp->symsize, KM_WAIT|KM_SCRATCH);
2551 2551
2552 2552 mp->symtbl = mp->symspace;
2553 2553 mp->buckets = (symid_t *)(mp->symtbl + mp->symhdr->sh_size);
2554 2554 mp->chains = mp->buckets + mp->hashsize;
2555 2555 mp->strings = (char *)(mp->chains + mp->nsyms);
2556 2556
2557 2557 if (kobj_read_file(file, mp->symtbl,
2558 2558 mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0 ||
2559 2559 kobj_read_file(file, mp->strings,
2560 2560 mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0)
2561 2561 return (-1);
2562 2562
2563 2563 /*
2564 2564 * loop through the symbol table adjusting values to account
2565 2565 * for where each section got loaded into memory. Also
2566 2566 * fill in the hash table.
2567 2567 */
2568 2568 for (i = 1; i < mp->nsyms; i++) {
2569 2569 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
2570 2570 if (sp->st_shndx < SHN_LORESERVE) {
2571 2571 if (sp->st_shndx >= mp->hdr.e_shnum) {
2572 2572 _kobj_printf(ops, "%s bad shndx ",
2573 2573 file->_name);
2574 2574 _kobj_printf(ops, "in symbol %d\n", i);
2575 2575 return (-1);
2576 2576 }
2577 2577 shp = (Shdr *)
2578 2578 (mp->shdrs +
2579 2579 sp->st_shndx * mp->hdr.e_shentsize);
2580 2580 if (!(mp->flags & KOBJ_EXEC))
2581 2581 sp->st_value += shp->sh_addr;
2582 2582 }
2583 2583
2584 2584 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
2585 2585 continue;
2586 2586 if (sp->st_name >= mp->strhdr->sh_size)
2587 2587 return (-1);
2588 2588
2589 2589 symname = mp->strings + sp->st_name;
2590 2590
2591 2591 if (!(mp->flags & KOBJ_EXEC) &&
2592 2592 ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
2593 2593 ksp = kobj_lookup_all(mp, symname, 0);
2594 2594
2595 2595 if (ksp && ELF_ST_BIND(ksp->st_info) == STB_GLOBAL &&
2596 2596 !kobj_suppress_warning(symname) &&
2597 2597 sp->st_shndx != SHN_UNDEF &&
2598 2598 sp->st_shndx != SHN_COMMON &&
2599 2599 ksp->st_shndx != SHN_UNDEF &&
2600 2600 ksp->st_shndx != SHN_COMMON) {
2601 2601 /*
2602 2602 * Unless this symbol is a stub, it's multiply
2603 2603 * defined. Multiply-defined symbols are
2604 2604 * usually bad, but some objects (kmdb) have
2605 2605 * a legitimate need to have their own
2606 2606 * copies of common functions.
2607 2607 */
2608 2608 if ((standalone ||
2609 2609 ksp->st_value < (uintptr_t)stubs_base ||
2610 2610 ksp->st_value >= (uintptr_t)stubs_end) &&
2611 2611 !(mp->flags & KOBJ_IGNMULDEF)) {
2612 2612 _kobj_printf(ops,
2613 2613 "%s symbol ", file->_name);
2614 2614 _kobj_printf(ops,
2615 2615 "%s multiply defined\n", symname);
2616 2616 }
2617 2617 }
2618 2618 }
2619 2619
2620 2620 sym_insert(mp, symname, i);
2621 2621 }
2622 2622
2623 2623 return (0);
2624 2624 }
2625 2625
2626 2626 static int
2627 2627 get_ctf(struct module *mp, struct _buf *file)
2628 2628 {
2629 2629 char *shstrtab, *ctfdata;
2630 2630 size_t shstrlen;
2631 2631 Shdr *shp;
2632 2632 uint_t i;
2633 2633
2634 2634 if (_moddebug & MODDEBUG_NOCTF)
2635 2635 return (0); /* do not attempt to even load CTF data */
2636 2636
2637 2637 if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2638 2638 _kobj_printf(ops, "krtld: get_ctf: %s, ",
2639 2639 mp->filename);
2640 2640 _kobj_printf(ops, "corrupt e_shstrndx %u\n",
2641 2641 mp->hdr.e_shstrndx);
2642 2642 return (-1);
2643 2643 }
2644 2644
2645 2645 shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2646 2646 shstrlen = shp->sh_size;
2647 2647 shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2648 2648
2649 2649 if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2650 2650 _kobj_printf(ops, "krtld: get_ctf: %s, ",
2651 2651 mp->filename);
2652 2652 _kobj_printf(ops, "error reading section %u\n",
2653 2653 mp->hdr.e_shstrndx);
2654 2654 kobj_free(shstrtab, shstrlen);
2655 2655 return (-1);
2656 2656 }
2657 2657
2658 2658 for (i = 0; i < mp->hdr.e_shnum; i++) {
2659 2659 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2660 2660
2661 2661 if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2662 2662 strcmp(shstrtab + shp->sh_name, ".SUNW_ctf") == 0) {
2663 2663 ctfdata = kobj_alloc(shp->sh_size, KM_WAIT|KM_SCRATCH);
2664 2664
2665 2665 if (kobj_read_file(file, ctfdata, shp->sh_size,
2666 2666 shp->sh_offset) < 0) {
2667 2667 _kobj_printf(ops, "krtld: get_ctf: %s, error "
2668 2668 "reading .SUNW_ctf data\n", mp->filename);
2669 2669 kobj_free(ctfdata, shp->sh_size);
2670 2670 kobj_free(shstrtab, shstrlen);
2671 2671 return (-1);
2672 2672 }
2673 2673
2674 2674 mp->ctfdata = ctfdata;
2675 2675 mp->ctfsize = shp->sh_size;
2676 2676 break;
2677 2677 }
2678 2678 }
2679 2679
2680 2680 kobj_free(shstrtab, shstrlen);
2681 2681 return (0);
2682 2682 }
2683 2683
2684 2684 #define SHA1_DIGEST_LENGTH 20 /* SHA1 digest length in bytes */
2685 2685
2686 2686 /*
2687 2687 * Return the hash of the ELF sections that are memory resident.
2688 2688 * i.e. text and data. We skip a SHT_NOBITS section since it occupies
2689 2689 * no space in the file. We use SHA1 here since libelfsign uses
2690 2690 * it and both places need to use the same algorithm.
2691 2691 */
2692 2692 static void
2693 2693 crypto_es_hash(struct module *mp, char *hash, char *shstrtab)
2694 2694 {
2695 2695 uint_t shn;
2696 2696 Shdr *shp;
2697 2697 SHA1_CTX ctx;
2698 2698
2699 2699 SHA1Init(&ctx);
2700 2700
2701 2701 for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2702 2702 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2703 2703 if (!(shp->sh_flags & SHF_ALLOC) || shp->sh_size == 0)
2704 2704 continue;
2705 2705
2706 2706 /*
↓ open down ↓ |
681 lines elided |
↑ open up ↑ |
2707 2707 * The check should ideally be shp->sh_type == SHT_NOBITS.
2708 2708 * However, we can't do that check here as get_progbits()
2709 2709 * resets the type.
2710 2710 */
2711 2711 if (strcmp(shstrtab + shp->sh_name, ".bss") == 0)
2712 2712 continue;
2713 2713 #ifdef KOBJ_DEBUG
2714 2714 if (kobj_debug & D_DEBUG)
2715 2715 _kobj_printf(ops,
2716 2716 "krtld: crypto_es_hash: updating hash with"
2717 - " %s data size=%d\n", shstrtab + shp->sh_name,
2718 - shp->sh_size);
2717 + " %s data size=%lx\n", shstrtab + shp->sh_name,
2718 + (size_t)shp->sh_size);
2719 2719 #endif
2720 2720 ASSERT(shp->sh_addr != 0);
2721 2721 SHA1Update(&ctx, (const uint8_t *)shp->sh_addr, shp->sh_size);
2722 2722 }
2723 2723
2724 2724 SHA1Final((uchar_t *)hash, &ctx);
2725 2725 }
2726 2726
2727 2727 /*
2728 2728 * Get the .SUNW_signature section for the module, it it exists.
2729 2729 *
2730 2730 * This section exists only for crypto modules. None of the
2731 2731 * primary modules have this section currently.
2732 2732 */
2733 2733 static void
2734 2734 get_signature(struct module *mp, struct _buf *file)
2735 2735 {
2736 2736 char *shstrtab, *sigdata = NULL;
2737 2737 size_t shstrlen;
2738 2738 Shdr *shp;
2739 2739 uint_t i;
2740 2740
2741 2741 if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2742 2742 _kobj_printf(ops, "krtld: get_signature: %s, ",
2743 2743 mp->filename);
2744 2744 _kobj_printf(ops, "corrupt e_shstrndx %u\n",
2745 2745 mp->hdr.e_shstrndx);
2746 2746 return;
2747 2747 }
2748 2748
2749 2749 shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2750 2750 shstrlen = shp->sh_size;
2751 2751 shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2752 2752
2753 2753 if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2754 2754 _kobj_printf(ops, "krtld: get_signature: %s, ",
2755 2755 mp->filename);
2756 2756 _kobj_printf(ops, "error reading section %u\n",
2757 2757 mp->hdr.e_shstrndx);
2758 2758 kobj_free(shstrtab, shstrlen);
2759 2759 return;
2760 2760 }
2761 2761
2762 2762 for (i = 0; i < mp->hdr.e_shnum; i++) {
2763 2763 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2764 2764 if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2765 2765 strcmp(shstrtab + shp->sh_name,
2766 2766 ELF_SIGNATURE_SECTION) == 0) {
2767 2767 filesig_vers_t filesig_version;
2768 2768 size_t sigsize = shp->sh_size + SHA1_DIGEST_LENGTH;
2769 2769 sigdata = kobj_alloc(sigsize, KM_WAIT|KM_SCRATCH);
2770 2770
2771 2771 if (kobj_read_file(file, sigdata, shp->sh_size,
2772 2772 shp->sh_offset) < 0) {
2773 2773 _kobj_printf(ops, "krtld: get_signature: %s,"
2774 2774 " error reading .SUNW_signature data\n",
2775 2775 mp->filename);
2776 2776 kobj_free(sigdata, sigsize);
2777 2777 kobj_free(shstrtab, shstrlen);
2778 2778 return;
2779 2779 }
2780 2780 filesig_version = ((struct filesignatures *)sigdata)->
2781 2781 filesig_sig.filesig_version;
2782 2782 if (!(filesig_version == FILESIG_VERSION1 ||
2783 2783 filesig_version == FILESIG_VERSION3)) {
2784 2784 /* skip versions we don't understand */
2785 2785 kobj_free(sigdata, sigsize);
2786 2786 kobj_free(shstrtab, shstrlen);
2787 2787 return;
2788 2788 }
2789 2789
2790 2790 mp->sigdata = sigdata;
2791 2791 mp->sigsize = sigsize;
2792 2792 break;
2793 2793 }
2794 2794 }
2795 2795
2796 2796 if (sigdata != NULL) {
2797 2797 crypto_es_hash(mp, sigdata + shp->sh_size, shstrtab);
2798 2798 }
2799 2799
2800 2800 kobj_free(shstrtab, shstrlen);
2801 2801 }
2802 2802
2803 2803 static void
2804 2804 add_dependent(struct module *mp, struct module *dep)
2805 2805 {
2806 2806 struct module_list *lp;
2807 2807
2808 2808 for (lp = mp->head; lp; lp = lp->next) {
2809 2809 if (lp->mp == dep)
2810 2810 return; /* already on the list */
2811 2811 }
2812 2812
2813 2813 if (lp == NULL) {
2814 2814 lp = kobj_zalloc(sizeof (*lp), KM_WAIT);
2815 2815
2816 2816 lp->mp = dep;
2817 2817 lp->next = NULL;
2818 2818 if (mp->tail)
2819 2819 mp->tail->next = lp;
2820 2820 else
2821 2821 mp->head = lp;
2822 2822 mp->tail = lp;
2823 2823 }
2824 2824 }
2825 2825
2826 2826 static int
2827 2827 do_dependents(struct modctl *modp, char *modname, size_t modnamelen)
2828 2828 {
2829 2829 struct module *mp;
2830 2830 struct modctl *req;
2831 2831 char *d, *p, *q;
2832 2832 int c;
2833 2833 char *err_modname = NULL;
2834 2834
2835 2835 mp = modp->mod_mp;
2836 2836
2837 2837 if ((p = mp->depends_on) == NULL)
2838 2838 return (0);
2839 2839
2840 2840 for (;;) {
2841 2841 /*
2842 2842 * Skip space.
2843 2843 */
2844 2844 while (*p && (*p == ' ' || *p == '\t'))
2845 2845 p++;
2846 2846 /*
2847 2847 * Get module name.
2848 2848 */
2849 2849 d = p;
2850 2850 q = modname;
2851 2851 c = 0;
2852 2852 while (*p && *p != ' ' && *p != '\t') {
2853 2853 if (c < modnamelen - 1) {
2854 2854 *q++ = *p;
2855 2855 c++;
2856 2856 }
2857 2857 p++;
2858 2858 }
2859 2859
2860 2860 if (q == modname)
↓ open down ↓ |
132 lines elided |
↑ open up ↑ |
2861 2861 break;
2862 2862
2863 2863 if (c == modnamelen - 1) {
2864 2864 char *dep = kobj_alloc(p - d + 1, KM_WAIT|KM_TMP);
2865 2865
2866 2866 (void) strncpy(dep, d, p - d + 1);
2867 2867 dep[p - d] = '\0';
2868 2868
2869 2869 _kobj_printf(ops, "%s: dependency ", modp->mod_modname);
2870 2870 _kobj_printf(ops, "'%s' too long ", dep);
2871 - _kobj_printf(ops, "(max %d chars)\n", modnamelen);
2871 + _kobj_printf(ops, "(max %d chars)\n", (int)modnamelen);
2872 2872
2873 2873 kobj_free(dep, p - d + 1);
2874 2874
2875 2875 return (-1);
2876 2876 }
2877 2877
2878 2878 *q = '\0';
2879 2879 if ((req = mod_load_requisite(modp, modname)) == NULL) {
2880 2880 #ifndef KOBJ_DEBUG
2881 2881 if (_moddebug & MODDEBUG_LOADMSG) {
2882 2882 #endif /* KOBJ_DEBUG */
2883 2883 _kobj_printf(ops,
2884 2884 "%s: unable to resolve dependency, ",
2885 2885 modp->mod_modname);
2886 2886 _kobj_printf(ops, "cannot load module '%s'\n",
2887 2887 modname);
2888 2888 #ifndef KOBJ_DEBUG
2889 2889 }
2890 2890 #endif /* KOBJ_DEBUG */
2891 2891 if (err_modname == NULL) {
2892 2892 /*
2893 2893 * This must be the same size as the modname
2894 2894 * one.
2895 2895 */
2896 2896 err_modname = kobj_zalloc(MODMAXNAMELEN,
2897 2897 KM_WAIT);
2898 2898
2899 2899 /*
2900 2900 * We can use strcpy() here without fearing
2901 2901 * the NULL terminator because the size of
2902 2902 * err_modname is the same as one of modname,
2903 2903 * and it's filled with zeros.
2904 2904 */
2905 2905 (void) strcpy(err_modname, modname);
2906 2906 }
2907 2907 continue;
2908 2908 }
2909 2909
2910 2910 add_dependent(mp, req->mod_mp);
2911 2911 mod_release_mod(req);
2912 2912
2913 2913 }
2914 2914
2915 2915 if (err_modname != NULL) {
2916 2916 /*
2917 2917 * Copy the first module name where you detect an error to keep
2918 2918 * its behavior the same as before.
2919 2919 * This way keeps minimizing the memory use for error
2920 2920 * modules, and this might be important at boot time because
2921 2921 * the memory usage is a crucial factor for booting in most
2922 2922 * cases. You can expect more verbose messages when using
2923 2923 * a debug kernel or setting a bit in moddebug.
2924 2924 */
2925 2925 bzero(modname, MODMAXNAMELEN);
2926 2926 (void) strcpy(modname, err_modname);
2927 2927 kobj_free(err_modname, MODMAXNAMELEN);
2928 2928 return (-1);
2929 2929 }
2930 2930
2931 2931 return (0);
2932 2932 }
2933 2933
2934 2934 static int
2935 2935 do_common(struct module *mp)
2936 2936 {
2937 2937 int err;
2938 2938
2939 2939 /*
2940 2940 * first time through, assign all symbols defined in other
2941 2941 * modules, and count up how much common space will be needed
2942 2942 * (bss_size and bss_align)
2943 2943 */
2944 2944 if ((err = do_symbols(mp, 0)) < 0)
2945 2945 return (err);
2946 2946 /*
2947 2947 * increase bss_size by the maximum delta that could be
2948 2948 * computed by the ALIGN below
2949 2949 */
2950 2950 mp->bss_size += mp->bss_align;
2951 2951 if (mp->bss_size) {
2952 2952 if (standalone)
2953 2953 mp->bss = (uintptr_t)kobj_segbrk(&_edata, mp->bss_size,
2954 2954 MINALIGN, 0);
2955 2955 else
2956 2956 mp->bss = (uintptr_t)vmem_alloc(data_arena,
2957 2957 mp->bss_size, VM_SLEEP | VM_BESTFIT);
2958 2958 bzero((void *)mp->bss, mp->bss_size);
2959 2959 /* now assign addresses to all common symbols */
2960 2960 if ((err = do_symbols(mp, ALIGN(mp->bss, mp->bss_align))) < 0)
2961 2961 return (err);
2962 2962 }
2963 2963 return (0);
2964 2964 }
2965 2965
2966 2966 static int
2967 2967 do_symbols(struct module *mp, Elf64_Addr bss_base)
2968 2968 {
2969 2969 int bss_align;
2970 2970 uintptr_t bss_ptr;
2971 2971 int err;
2972 2972 int i;
2973 2973 Sym *sp, *sp1;
2974 2974 char *name;
2975 2975 int assign;
2976 2976 int resolved = 1;
2977 2977
2978 2978 /*
2979 2979 * Nothing left to do (optimization).
2980 2980 */
2981 2981 if (mp->flags & KOBJ_RESOLVED)
2982 2982 return (0);
2983 2983
2984 2984 assign = (bss_base) ? 1 : 0;
2985 2985 bss_ptr = bss_base;
2986 2986 bss_align = 0;
2987 2987 err = 0;
2988 2988
2989 2989 for (i = 1; i < mp->nsyms; i++) {
2990 2990 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * i);
2991 2991 /*
2992 2992 * we know that st_name is in bounds, since get_sections
2993 2993 * has already checked all of the symbols
2994 2994 */
2995 2995 name = mp->strings + sp->st_name;
2996 2996 if (sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON)
2997 2997 continue;
2998 2998 #if defined(__sparc)
2999 2999 /*
3000 3000 * Register symbols are ignored in the kernel
3001 3001 */
3002 3002 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) {
3003 3003 if (*name != '\0') {
3004 3004 _kobj_printf(ops, "%s: named REGISTER symbol ",
3005 3005 mp->filename);
3006 3006 _kobj_printf(ops, "not supported '%s'\n",
3007 3007 name);
3008 3008 err = DOSYM_UNDEF;
3009 3009 }
3010 3010 continue;
3011 3011 }
3012 3012 #endif /* __sparc */
3013 3013 /*
3014 3014 * TLS symbols are ignored in the kernel
3015 3015 */
3016 3016 if (ELF_ST_TYPE(sp->st_info) == STT_TLS) {
3017 3017 _kobj_printf(ops, "%s: TLS symbol ",
3018 3018 mp->filename);
3019 3019 _kobj_printf(ops, "not supported '%s'\n",
3020 3020 name);
3021 3021 err = DOSYM_UNDEF;
3022 3022 continue;
3023 3023 }
3024 3024
3025 3025 if (ELF_ST_BIND(sp->st_info) != STB_LOCAL) {
3026 3026 if ((sp1 = kobj_lookup_all(mp, name, 0)) != NULL) {
3027 3027 sp->st_shndx = SHN_ABS;
3028 3028 sp->st_value = sp1->st_value;
3029 3029 continue;
3030 3030 }
3031 3031 }
3032 3032
3033 3033 if (sp->st_shndx == SHN_UNDEF) {
3034 3034 resolved = 0;
3035 3035
3036 3036 if (strncmp(name, sdt_prefix, strlen(sdt_prefix)) == 0)
3037 3037 continue;
3038 3038
3039 3039 /*
3040 3040 * If it's not a weak reference and it's
3041 3041 * not a primary object, it's an error.
3042 3042 * (Primary objects may take more than
3043 3043 * one pass to resolve)
3044 3044 */
3045 3045 if (!(mp->flags & KOBJ_PRIM) &&
3046 3046 ELF_ST_BIND(sp->st_info) != STB_WEAK) {
3047 3047 _kobj_printf(ops, "%s: undefined symbol",
3048 3048 mp->filename);
3049 3049 _kobj_printf(ops, " '%s'\n", name);
3050 3050 /*
3051 3051 * Try to determine whether this symbol
3052 3052 * represents a dependency on obsolete
3053 3053 * unsafe driver support. This is just
3054 3054 * to make the warning more informative.
3055 3055 */
3056 3056 if (strcmp(name, "sleep") == 0 ||
3057 3057 strcmp(name, "unsleep") == 0 ||
3058 3058 strcmp(name, "wakeup") == 0 ||
3059 3059 strcmp(name, "bsd_compat_ioctl") == 0 ||
3060 3060 strcmp(name, "unsafe_driver") == 0 ||
3061 3061 strncmp(name, "spl", 3) == 0 ||
3062 3062 strncmp(name, "i_ddi_spl", 9) == 0)
3063 3063 err = DOSYM_UNSAFE;
3064 3064 if (err == 0)
3065 3065 err = DOSYM_UNDEF;
3066 3066 }
3067 3067 continue;
3068 3068 }
3069 3069 /*
3070 3070 * It's a common symbol - st_value is the
3071 3071 * required alignment.
3072 3072 */
3073 3073 if (sp->st_value > bss_align)
3074 3074 bss_align = sp->st_value;
3075 3075 bss_ptr = ALIGN(bss_ptr, sp->st_value);
3076 3076 if (assign) {
3077 3077 sp->st_shndx = SHN_ABS;
3078 3078 sp->st_value = bss_ptr;
3079 3079 }
3080 3080 bss_ptr += sp->st_size;
3081 3081 }
3082 3082 if (err)
3083 3083 return (err);
3084 3084 if (assign == 0 && mp->bss == 0) {
3085 3085 mp->bss_align = bss_align;
3086 3086 mp->bss_size = bss_ptr;
3087 3087 } else if (resolved) {
3088 3088 mp->flags |= KOBJ_RESOLVED;
3089 3089 }
3090 3090
3091 3091 return (0);
3092 3092 }
3093 3093
3094 3094 uint_t
3095 3095 kobj_hash_name(const char *p)
3096 3096 {
3097 3097 uint_t g;
3098 3098 uint_t hval;
3099 3099
3100 3100 hval = 0;
3101 3101 while (*p) {
3102 3102 hval = (hval << 4) + *p++;
3103 3103 if ((g = (hval & 0xf0000000)) != 0)
3104 3104 hval ^= g >> 24;
3105 3105 hval &= ~g;
3106 3106 }
3107 3107 return (hval);
3108 3108 }
3109 3109
3110 3110 /* look for name in all modules */
3111 3111 uintptr_t
3112 3112 kobj_getsymvalue(char *name, int kernelonly)
3113 3113 {
3114 3114 Sym *sp;
3115 3115 struct modctl *modp;
3116 3116 struct module *mp;
3117 3117 uintptr_t value = 0;
3118 3118
3119 3119 if ((sp = kobj_lookup_kernel(name)) != NULL)
3120 3120 return ((uintptr_t)sp->st_value);
3121 3121
3122 3122 if (kernelonly)
3123 3123 return (0); /* didn't find it in the kernel so give up */
3124 3124
3125 3125 mutex_enter(&mod_lock);
3126 3126 modp = &modules;
3127 3127 do {
3128 3128 mp = (struct module *)modp->mod_mp;
3129 3129 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3130 3130 (sp = lookup_one(mp, name))) {
3131 3131 value = (uintptr_t)sp->st_value;
3132 3132 break;
3133 3133 }
3134 3134 } while ((modp = modp->mod_next) != &modules);
3135 3135 mutex_exit(&mod_lock);
3136 3136 return (value);
3137 3137 }
3138 3138
3139 3139 /* look for a symbol near value. */
3140 3140 char *
3141 3141 kobj_getsymname(uintptr_t value, ulong_t *offset)
3142 3142 {
3143 3143 char *name = NULL;
3144 3144 struct modctl *modp;
3145 3145
3146 3146 struct modctl_list *lp;
3147 3147 struct module *mp;
3148 3148
3149 3149 /*
3150 3150 * Loop through the primary kernel modules.
3151 3151 */
3152 3152 for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3153 3153 mp = mod(lp);
3154 3154
3155 3155 if ((name = kobj_searchsym(mp, value, offset)) != NULL)
3156 3156 return (name);
3157 3157 }
3158 3158
3159 3159 mutex_enter(&mod_lock);
3160 3160 modp = &modules;
3161 3161 do {
3162 3162 mp = (struct module *)modp->mod_mp;
3163 3163 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3164 3164 (name = kobj_searchsym(mp, value, offset)))
3165 3165 break;
3166 3166 } while ((modp = modp->mod_next) != &modules);
3167 3167 mutex_exit(&mod_lock);
3168 3168 return (name);
3169 3169 }
3170 3170
3171 3171 /* return address of symbol and size */
3172 3172
3173 3173 uintptr_t
3174 3174 kobj_getelfsym(char *name, void *mp, int *size)
3175 3175 {
3176 3176 Sym *sp;
3177 3177
3178 3178 if (mp == NULL)
3179 3179 sp = kobj_lookup_kernel(name);
3180 3180 else
3181 3181 sp = lookup_one(mp, name);
3182 3182
3183 3183 if (sp == NULL)
3184 3184 return (0);
3185 3185
3186 3186 *size = (int)sp->st_size;
3187 3187 return ((uintptr_t)sp->st_value);
3188 3188 }
3189 3189
3190 3190 uintptr_t
3191 3191 kobj_lookup(struct module *mod, const char *name)
3192 3192 {
3193 3193 Sym *sp;
3194 3194
3195 3195 sp = lookup_one(mod, name);
3196 3196
3197 3197 if (sp == NULL)
3198 3198 return (0);
3199 3199
3200 3200 return ((uintptr_t)sp->st_value);
3201 3201 }
3202 3202
3203 3203 char *
3204 3204 kobj_searchsym(struct module *mp, uintptr_t value, ulong_t *offset)
3205 3205 {
3206 3206 Sym *symtabptr;
3207 3207 char *strtabptr;
3208 3208 int symnum;
3209 3209 Sym *sym;
3210 3210 Sym *cursym;
3211 3211 uintptr_t curval;
3212 3212
3213 3213 *offset = (ulong_t)-1l; /* assume not found */
3214 3214 cursym = NULL;
3215 3215
3216 3216 if (kobj_addrcheck(mp, (void *)value) != 0)
3217 3217 return (NULL); /* not in this module */
3218 3218
3219 3219 strtabptr = mp->strings;
3220 3220 symtabptr = (Sym *)mp->symtbl;
3221 3221
3222 3222 /*
3223 3223 * Scan the module's symbol table for a symbol <= value
3224 3224 */
3225 3225 for (symnum = 1, sym = symtabptr + 1;
3226 3226 symnum < mp->nsyms; symnum++, sym = (Sym *)
3227 3227 ((uintptr_t)sym + mp->symhdr->sh_entsize)) {
3228 3228 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) {
3229 3229 if (ELF_ST_BIND(sym->st_info) != STB_LOCAL)
3230 3230 continue;
3231 3231 if (ELF_ST_TYPE(sym->st_info) != STT_OBJECT &&
3232 3232 ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3233 3233 continue;
3234 3234 }
3235 3235
3236 3236 curval = (uintptr_t)sym->st_value;
3237 3237
3238 3238 if (curval > value)
3239 3239 continue;
3240 3240
3241 3241 /*
3242 3242 * If one or both are functions...
3243 3243 */
3244 3244 if (ELF_ST_TYPE(sym->st_info) == STT_FUNC || (cursym != NULL &&
3245 3245 ELF_ST_TYPE(cursym->st_info) == STT_FUNC)) {
3246 3246 /* Ignore if the address is out of the bounds */
3247 3247 if (value - sym->st_value >= sym->st_size)
3248 3248 continue;
3249 3249
3250 3250 if (cursym != NULL &&
3251 3251 ELF_ST_TYPE(cursym->st_info) == STT_FUNC) {
3252 3252 /* Prefer the function to the non-function */
3253 3253 if (ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3254 3254 continue;
3255 3255
3256 3256 /* Prefer the larger of the two functions */
3257 3257 if (sym->st_size <= cursym->st_size)
3258 3258 continue;
3259 3259 }
3260 3260 } else if (value - curval >= *offset) {
3261 3261 continue;
3262 3262 }
3263 3263
3264 3264 *offset = (ulong_t)(value - curval);
3265 3265 cursym = sym;
3266 3266 }
3267 3267 if (cursym == NULL)
3268 3268 return (NULL);
3269 3269
3270 3270 return (strtabptr + cursym->st_name);
3271 3271 }
3272 3272
3273 3273 Sym *
3274 3274 kobj_lookup_all(struct module *mp, char *name, int include_self)
3275 3275 {
3276 3276 Sym *sp;
3277 3277 struct module_list *mlp;
3278 3278 struct modctl_list *clp;
3279 3279 struct module *mmp;
3280 3280
3281 3281 if (include_self && (sp = lookup_one(mp, name)) != NULL)
3282 3282 return (sp);
3283 3283
3284 3284 for (mlp = mp->head; mlp; mlp = mlp->next) {
3285 3285 if ((sp = lookup_one(mlp->mp, name)) != NULL &&
3286 3286 ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3287 3287 return (sp);
3288 3288 }
3289 3289
3290 3290 /*
3291 3291 * Loop through the primary kernel modules.
3292 3292 */
3293 3293 for (clp = kobj_lm_lookup(KOBJ_LM_PRIMARY); clp; clp = clp->modl_next) {
3294 3294 mmp = mod(clp);
3295 3295
3296 3296 if (mmp == NULL || mp == mmp)
3297 3297 continue;
3298 3298
3299 3299 if ((sp = lookup_one(mmp, name)) != NULL &&
3300 3300 ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3301 3301 return (sp);
3302 3302 }
3303 3303 return (NULL);
3304 3304 }
3305 3305
3306 3306 Sym *
3307 3307 kobj_lookup_kernel(const char *name)
3308 3308 {
3309 3309 struct modctl_list *lp;
3310 3310 struct module *mp;
3311 3311 Sym *sp;
3312 3312
3313 3313 /*
3314 3314 * Loop through the primary kernel modules.
3315 3315 */
3316 3316 for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3317 3317 mp = mod(lp);
3318 3318
3319 3319 if (mp == NULL)
3320 3320 continue;
3321 3321
3322 3322 if ((sp = lookup_one(mp, name)) != NULL)
3323 3323 return (sp);
3324 3324 }
3325 3325 return (NULL);
3326 3326 }
3327 3327
3328 3328 static Sym *
3329 3329 lookup_one(struct module *mp, const char *name)
3330 3330 {
3331 3331 symid_t *ip;
3332 3332 char *name1;
3333 3333 Sym *sp;
3334 3334
3335 3335 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3336 3336 ip = &mp->chains[*ip]) {
3337 3337 sp = (Sym *)(mp->symtbl +
3338 3338 mp->symhdr->sh_entsize * *ip);
3339 3339 name1 = mp->strings + sp->st_name;
3340 3340 if (strcmp(name, name1) == 0 &&
3341 3341 ELF_ST_TYPE(sp->st_info) != STT_FILE &&
3342 3342 sp->st_shndx != SHN_UNDEF &&
3343 3343 sp->st_shndx != SHN_COMMON)
3344 3344 return (sp);
3345 3345 }
3346 3346 return (NULL);
3347 3347 }
3348 3348
3349 3349 /*
3350 3350 * Lookup a given symbol pointer in the module's symbol hash. If the symbol
3351 3351 * is hashed, return the symbol pointer; otherwise return NULL.
3352 3352 */
3353 3353 static Sym *
3354 3354 sym_lookup(struct module *mp, Sym *ksp)
3355 3355 {
3356 3356 char *name = mp->strings + ksp->st_name;
3357 3357 symid_t *ip;
3358 3358 Sym *sp;
3359 3359
3360 3360 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3361 3361 ip = &mp->chains[*ip]) {
3362 3362 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * *ip);
3363 3363 if (sp == ksp)
3364 3364 return (ksp);
3365 3365 }
3366 3366 return (NULL);
3367 3367 }
3368 3368
3369 3369 static void
3370 3370 sym_insert(struct module *mp, char *name, symid_t index)
3371 3371 {
3372 3372 symid_t *ip;
3373 3373
3374 3374 #ifdef KOBJ_DEBUG
3375 3375 if (kobj_debug & D_SYMBOLS) {
3376 3376 static struct module *lastmp = NULL;
3377 3377 Sym *sp;
3378 3378 if (lastmp != mp) {
3379 3379 _kobj_printf(ops,
3380 3380 "krtld: symbol entry: file=%s\n",
3381 3381 mp->filename);
3382 3382 _kobj_printf(ops,
3383 3383 "krtld:\tsymndx\tvalue\t\t"
3384 3384 "symbol name\n");
3385 3385 lastmp = mp;
3386 3386 }
3387 3387 sp = (Sym *)(mp->symtbl +
3388 3388 index * mp->symhdr->sh_entsize);
3389 3389 _kobj_printf(ops, "krtld:\t[%3d]", index);
3390 3390 _kobj_printf(ops, "\t0x%lx", sp->st_value);
3391 3391 _kobj_printf(ops, "\t%s\n", name);
3392 3392 }
3393 3393 #endif
3394 3394
3395 3395 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3396 3396 ip = &mp->chains[*ip]) {
3397 3397 ;
3398 3398 }
3399 3399 *ip = index;
3400 3400 }
3401 3401
3402 3402 struct modctl *
3403 3403 kobj_boot_mod_lookup(const char *modname)
3404 3404 {
3405 3405 struct modctl *mctl = kobj_modules;
3406 3406
3407 3407 do {
3408 3408 if (strcmp(modname, mctl->mod_modname) == 0)
3409 3409 return (mctl);
3410 3410 } while ((mctl = mctl->mod_next) != kobj_modules);
3411 3411
3412 3412 return (NULL);
3413 3413 }
3414 3414
3415 3415 /*
3416 3416 * Determine if the module exists.
3417 3417 */
3418 3418 int
3419 3419 kobj_path_exists(char *name, int use_path)
3420 3420 {
3421 3421 struct _buf *file;
3422 3422
3423 3423 file = kobj_open_path(name, use_path, 1);
3424 3424 #ifdef MODDIR_SUFFIX
3425 3425 if (file == (struct _buf *)-1)
3426 3426 file = kobj_open_path(name, use_path, 0);
3427 3427 #endif /* MODDIR_SUFFIX */
3428 3428 if (file == (struct _buf *)-1)
3429 3429 return (0);
3430 3430 kobj_close_file(file);
3431 3431 return (1);
3432 3432 }
3433 3433
3434 3434 /*
3435 3435 * fullname is dynamically allocated to be able to hold the
3436 3436 * maximum size string that can be constructed from name.
3437 3437 * path is exactly like the shell PATH variable.
3438 3438 */
3439 3439 struct _buf *
3440 3440 kobj_open_path(char *name, int use_path, int use_moddir_suffix)
3441 3441 {
3442 3442 char *p, *q;
3443 3443 char *pathp;
3444 3444 char *pathpsave;
3445 3445 char *fullname;
3446 3446 int maxpathlen;
3447 3447 struct _buf *file;
3448 3448
3449 3449 #if !defined(MODDIR_SUFFIX)
3450 3450 use_moddir_suffix = B_FALSE;
3451 3451 #endif
3452 3452
3453 3453 if (!use_path)
3454 3454 pathp = ""; /* use name as specified */
3455 3455 else
3456 3456 pathp = kobj_module_path;
3457 3457 /* use configured default path */
3458 3458
3459 3459 pathpsave = pathp; /* keep this for error reporting */
3460 3460
3461 3461 /*
3462 3462 * Allocate enough space for the largest possible fullname.
3463 3463 * since path is of the form <directory> : <directory> : ...
3464 3464 * we're potentially allocating a little more than we need to
3465 3465 * but we'll allocate the exact amount when we find the right directory.
3466 3466 * (The + 3 below is one for NULL terminator and one for the '/'
3467 3467 * we might have to add at the beginning of path and one for
3468 3468 * the '/' between path and name.)
3469 3469 */
3470 3470 maxpathlen = strlen(pathp) + strlen(name) + 3;
3471 3471 /* sizeof includes null */
3472 3472 maxpathlen += sizeof (slash_moddir_suffix_slash) - 1;
3473 3473 fullname = kobj_zalloc(maxpathlen, KM_WAIT);
3474 3474
3475 3475 for (;;) {
3476 3476 p = fullname;
3477 3477 if (*pathp != '\0' && *pathp != '/')
3478 3478 *p++ = '/'; /* path must start with '/' */
3479 3479 while (*pathp && *pathp != ':' && *pathp != ' ')
3480 3480 *p++ = *pathp++;
3481 3481 if (p != fullname && p[-1] != '/')
3482 3482 *p++ = '/';
3483 3483 if (use_moddir_suffix) {
3484 3484 char *b = basename(name);
3485 3485 char *s;
3486 3486
3487 3487 /* copy everything up to the base name */
3488 3488 q = name;
3489 3489 while (q != b && *q)
3490 3490 *p++ = *q++;
3491 3491 s = slash_moddir_suffix_slash;
3492 3492 while (*s)
3493 3493 *p++ = *s++;
3494 3494 /* copy the rest */
3495 3495 while (*b)
3496 3496 *p++ = *b++;
3497 3497 } else {
3498 3498 q = name;
3499 3499 while (*q)
3500 3500 *p++ = *q++;
3501 3501 }
3502 3502 *p = 0;
3503 3503 if ((file = kobj_open_file(fullname)) != (struct _buf *)-1) {
3504 3504 kobj_free(fullname, maxpathlen);
3505 3505 return (file);
3506 3506 }
3507 3507 while (*pathp == ' ' || *pathp == ':')
3508 3508 pathp++;
3509 3509 if (*pathp == 0)
3510 3510 break;
3511 3511
3512 3512 }
3513 3513 kobj_free(fullname, maxpathlen);
3514 3514 if (_moddebug & MODDEBUG_ERRMSG) {
3515 3515 _kobj_printf(ops, "can't open %s,", name);
3516 3516 _kobj_printf(ops, " path is %s\n", pathpsave);
3517 3517 }
3518 3518 return ((struct _buf *)-1);
3519 3519 }
3520 3520
3521 3521 intptr_t
3522 3522 kobj_open(char *filename)
3523 3523 {
3524 3524 struct vnode *vp;
3525 3525 int fd;
3526 3526
3527 3527 if (_modrootloaded) {
3528 3528 struct kobjopen_tctl *ltp = kobjopen_alloc(filename);
3529 3529 int Errno;
3530 3530
3531 3531 /*
3532 3532 * Hand off the open to a thread who has a
3533 3533 * stack size capable handling the request.
3534 3534 */
3535 3535 if (curthread != &t0) {
3536 3536 (void) thread_create(NULL, DEFAULTSTKSZ * 2,
3537 3537 kobjopen_thread, ltp, 0, &p0, TS_RUN, maxclsyspri);
3538 3538 sema_p(<p->sema);
3539 3539 Errno = ltp->Errno;
3540 3540 vp = ltp->vp;
3541 3541 } else {
3542 3542 /*
3543 3543 * 1098067: module creds should not be those of the
3544 3544 * caller
3545 3545 */
3546 3546 cred_t *saved_cred = curthread->t_cred;
3547 3547 curthread->t_cred = kcred;
3548 3548 Errno = vn_openat(filename, UIO_SYSSPACE, FREAD, 0, &vp,
3549 3549 0, 0, rootdir, -1);
3550 3550 curthread->t_cred = saved_cred;
3551 3551 }
3552 3552 kobjopen_free(ltp);
3553 3553
3554 3554 if (Errno) {
3555 3555 if (_moddebug & MODDEBUG_ERRMSG) {
3556 3556 _kobj_printf(ops,
3557 3557 "kobj_open: vn_open of %s fails, ",
3558 3558 filename);
3559 3559 _kobj_printf(ops, "Errno = %d\n", Errno);
3560 3560 }
3561 3561 return (-1);
3562 3562 } else {
3563 3563 if (_moddebug & MODDEBUG_ERRMSG) {
3564 3564 _kobj_printf(ops, "kobj_open: '%s'", filename);
3565 3565 _kobj_printf(ops, " vp = %p\n", vp);
3566 3566 }
3567 3567 return ((intptr_t)vp);
3568 3568 }
3569 3569 } else {
3570 3570 fd = kobj_boot_open(filename, 0);
3571 3571
3572 3572 if (_moddebug & MODDEBUG_ERRMSG) {
3573 3573 if (fd < 0)
3574 3574 _kobj_printf(ops,
3575 3575 "kobj_open: can't open %s\n", filename);
3576 3576 else {
3577 3577 _kobj_printf(ops, "kobj_open: '%s'", filename);
3578 3578 _kobj_printf(ops, " descr = 0x%x\n", fd);
3579 3579 }
3580 3580 }
3581 3581 return ((intptr_t)fd);
3582 3582 }
3583 3583 }
3584 3584
3585 3585 /*
3586 3586 * Calls to kobj_open() are handled off to this routine as a separate thread.
3587 3587 */
3588 3588 static void
3589 3589 kobjopen_thread(struct kobjopen_tctl *ltp)
3590 3590 {
3591 3591 kmutex_t cpr_lk;
3592 3592 callb_cpr_t cpr_i;
3593 3593
3594 3594 mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL);
3595 3595 CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "kobjopen");
3596 3596 ltp->Errno = vn_open(ltp->name, UIO_SYSSPACE, FREAD, 0, &(ltp->vp),
3597 3597 0, 0);
3598 3598 sema_v(<p->sema);
3599 3599 mutex_enter(&cpr_lk);
3600 3600 CALLB_CPR_EXIT(&cpr_i);
3601 3601 mutex_destroy(&cpr_lk);
3602 3602 thread_exit();
3603 3603 }
3604 3604
3605 3605 /*
3606 3606 * allocate and initialize a kobjopen thread structure
3607 3607 */
3608 3608 static struct kobjopen_tctl *
3609 3609 kobjopen_alloc(char *filename)
3610 3610 {
3611 3611 struct kobjopen_tctl *ltp = kmem_zalloc(sizeof (*ltp), KM_SLEEP);
3612 3612
3613 3613 ASSERT(filename != NULL);
3614 3614
3615 3615 ltp->name = kmem_alloc(strlen(filename) + 1, KM_SLEEP);
3616 3616 bcopy(filename, ltp->name, strlen(filename) + 1);
3617 3617 sema_init(<p->sema, 0, NULL, SEMA_DEFAULT, NULL);
3618 3618 return (ltp);
3619 3619 }
3620 3620
3621 3621 /*
3622 3622 * free a kobjopen thread control structure
3623 3623 */
3624 3624 static void
3625 3625 kobjopen_free(struct kobjopen_tctl *ltp)
3626 3626 {
3627 3627 sema_destroy(<p->sema);
3628 3628 kmem_free(ltp->name, strlen(ltp->name) + 1);
3629 3629 kmem_free(ltp, sizeof (*ltp));
3630 3630 }
3631 3631
3632 3632 int
3633 3633 kobj_read(intptr_t descr, char *buf, uint_t size, uint_t offset)
3634 3634 {
3635 3635 int stat;
3636 3636 ssize_t resid;
3637 3637
3638 3638 if (_modrootloaded) {
3639 3639 if ((stat = vn_rdwr(UIO_READ, (struct vnode *)descr, buf, size,
3640 3640 (offset_t)offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3641 3641 &resid)) != 0) {
3642 3642 _kobj_printf(ops,
3643 3643 "vn_rdwr failed with error 0x%x\n", stat);
3644 3644 return (-1);
3645 3645 }
3646 3646 return (size - resid);
3647 3647 } else {
3648 3648 int count = 0;
3649 3649
3650 3650 if (kobj_boot_seek((int)descr, (off_t)0, offset) != 0) {
3651 3651 _kobj_printf(ops,
3652 3652 "kobj_read: seek 0x%x failed\n", offset);
3653 3653 return (-1);
3654 3654 }
3655 3655
3656 3656 count = kobj_boot_read((int)descr, buf, size);
3657 3657 if (count < size) {
3658 3658 if (_moddebug & MODDEBUG_ERRMSG) {
3659 3659 _kobj_printf(ops,
3660 3660 "kobj_read: req %d bytes, ", size);
3661 3661 _kobj_printf(ops, "got %d\n", count);
3662 3662 }
3663 3663 }
3664 3664 return (count);
3665 3665 }
3666 3666 }
3667 3667
3668 3668 void
3669 3669 kobj_close(intptr_t descr)
3670 3670 {
3671 3671 if (_moddebug & MODDEBUG_ERRMSG)
3672 3672 _kobj_printf(ops, "kobj_close: 0x%lx\n", descr);
3673 3673
3674 3674 if (_modrootloaded) {
3675 3675 struct vnode *vp = (struct vnode *)descr;
3676 3676 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL);
3677 3677 VN_RELE(vp);
3678 3678 } else
3679 3679 (void) kobj_boot_close((int)descr);
3680 3680 }
3681 3681
3682 3682 int
3683 3683 kobj_fstat(intptr_t descr, struct bootstat *buf)
3684 3684 {
3685 3685 if (buf == NULL)
3686 3686 return (-1);
3687 3687
3688 3688 if (_modrootloaded) {
3689 3689 vattr_t vattr;
3690 3690 struct vnode *vp = (struct vnode *)descr;
3691 3691 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3692 3692 return (-1);
3693 3693
3694 3694 /*
3695 3695 * The vattr and bootstat structures are similar, but not
3696 3696 * identical. We do our best to fill in the bootstat structure
3697 3697 * from the contents of vattr (transfering only the ones that
3698 3698 * are obvious.
3699 3699 */
3700 3700
3701 3701 buf->st_mode = (uint32_t)vattr.va_mode;
3702 3702 buf->st_nlink = (uint32_t)vattr.va_nlink;
3703 3703 buf->st_uid = (int32_t)vattr.va_uid;
3704 3704 buf->st_gid = (int32_t)vattr.va_gid;
3705 3705 buf->st_rdev = (uint64_t)vattr.va_rdev;
3706 3706 buf->st_size = (uint64_t)vattr.va_size;
3707 3707 buf->st_atim.tv_sec = (int64_t)vattr.va_atime.tv_sec;
3708 3708 buf->st_atim.tv_nsec = (int64_t)vattr.va_atime.tv_nsec;
3709 3709 buf->st_mtim.tv_sec = (int64_t)vattr.va_mtime.tv_sec;
3710 3710 buf->st_mtim.tv_nsec = (int64_t)vattr.va_mtime.tv_nsec;
3711 3711 buf->st_ctim.tv_sec = (int64_t)vattr.va_ctime.tv_sec;
3712 3712 buf->st_ctim.tv_nsec = (int64_t)vattr.va_ctime.tv_nsec;
3713 3713 buf->st_blksize = (int32_t)vattr.va_blksize;
3714 3714 buf->st_blocks = (int64_t)vattr.va_nblocks;
3715 3715
3716 3716 return (0);
3717 3717 }
3718 3718
3719 3719 return (kobj_boot_fstat((int)descr, buf));
3720 3720 }
3721 3721
3722 3722
3723 3723 struct _buf *
3724 3724 kobj_open_file(char *name)
3725 3725 {
3726 3726 struct _buf *file;
3727 3727 struct compinfo cbuf;
3728 3728 intptr_t fd;
3729 3729
3730 3730 if ((fd = kobj_open(name)) == -1) {
3731 3731 return ((struct _buf *)-1);
3732 3732 }
3733 3733
3734 3734 file = kobj_zalloc(sizeof (struct _buf), KM_WAIT|KM_TMP);
3735 3735 file->_fd = fd;
3736 3736 file->_name = kobj_alloc(strlen(name)+1, KM_WAIT|KM_TMP);
3737 3737 file->_cnt = file->_size = file->_off = 0;
3738 3738 file->_ln = 1;
3739 3739 file->_ptr = file->_base;
3740 3740 (void) strcpy(file->_name, name);
3741 3741
3742 3742 /*
3743 3743 * Before root is mounted, we must check
3744 3744 * for a compressed file and do our own
3745 3745 * buffering.
3746 3746 */
3747 3747 if (_modrootloaded) {
3748 3748 file->_base = kobj_zalloc(MAXBSIZE, KM_WAIT);
3749 3749 file->_bsize = MAXBSIZE;
3750 3750
3751 3751 /* Check if the file is compressed */
3752 3752 file->_iscmp = kobj_is_compressed(fd);
3753 3753 } else {
3754 3754 if (kobj_boot_compinfo(fd, &cbuf) != 0) {
3755 3755 kobj_close_file(file);
3756 3756 return ((struct _buf *)-1);
3757 3757 }
3758 3758 file->_iscmp = cbuf.iscmp;
3759 3759 if (file->_iscmp) {
3760 3760 if (kobj_comp_setup(file, &cbuf) != 0) {
3761 3761 kobj_close_file(file);
3762 3762 return ((struct _buf *)-1);
3763 3763 }
3764 3764 } else {
3765 3765 file->_base = kobj_zalloc(cbuf.blksize, KM_WAIT|KM_TMP);
3766 3766 file->_bsize = cbuf.blksize;
3767 3767 }
3768 3768 }
3769 3769 return (file);
3770 3770 }
3771 3771
3772 3772 static int
3773 3773 kobj_comp_setup(struct _buf *file, struct compinfo *cip)
3774 3774 {
3775 3775 struct comphdr *hdr;
3776 3776
3777 3777 /*
3778 3778 * read the compressed image into memory,
3779 3779 * so we can deompress from there
3780 3780 */
3781 3781 file->_dsize = cip->fsize;
3782 3782 file->_dbuf = kobj_alloc(cip->fsize, KM_WAIT|KM_TMP);
3783 3783 if (kobj_read(file->_fd, file->_dbuf, cip->fsize, 0) != cip->fsize) {
3784 3784 kobj_free(file->_dbuf, cip->fsize);
3785 3785 return (-1);
3786 3786 }
3787 3787
3788 3788 hdr = kobj_comphdr(file);
3789 3789 if (hdr->ch_magic != CH_MAGIC_ZLIB || hdr->ch_version != CH_VERSION ||
3790 3790 hdr->ch_algorithm != CH_ALG_ZLIB || hdr->ch_fsize == 0 ||
3791 3791 !ISP2(hdr->ch_blksize)) {
3792 3792 kobj_free(file->_dbuf, cip->fsize);
3793 3793 return (-1);
3794 3794 }
3795 3795 file->_base = kobj_alloc(hdr->ch_blksize, KM_WAIT|KM_TMP);
3796 3796 file->_bsize = hdr->ch_blksize;
3797 3797 return (0);
3798 3798 }
3799 3799
3800 3800 void
3801 3801 kobj_close_file(struct _buf *file)
3802 3802 {
3803 3803 kobj_close(file->_fd);
3804 3804 if (file->_base != NULL)
3805 3805 kobj_free(file->_base, file->_bsize);
3806 3806 if (file->_dbuf != NULL)
3807 3807 kobj_free(file->_dbuf, file->_dsize);
3808 3808 kobj_free(file->_name, strlen(file->_name)+1);
3809 3809 kobj_free(file, sizeof (struct _buf));
3810 3810 }
3811 3811
3812 3812 int
↓ open down ↓ |
931 lines elided |
↑ open up ↑ |
3813 3813 kobj_read_file(struct _buf *file, char *buf, uint_t size, uint_t off)
3814 3814 {
3815 3815 int b_size, c_size;
3816 3816 int b_off; /* Offset into buffer for start of bcopy */
3817 3817 int count = 0;
3818 3818 int page_addr;
3819 3819
3820 3820 if (_moddebug & MODDEBUG_ERRMSG) {
3821 3821 _kobj_printf(ops, "kobj_read_file: size=%x,", size);
3822 3822 _kobj_printf(ops, " offset=%x at", off);
3823 - _kobj_printf(ops, " buf=%x\n", buf);
3823 + _kobj_printf(ops, " buf=%lx\n", (uintptr_t)buf);
3824 3824 }
3825 3825
3826 3826 /*
3827 3827 * Handle compressed (gzip for now) file here. First get the
3828 3828 * compressed size, then read the image into memory and finally
3829 3829 * call zlib to decompress the image at the supplied memory buffer.
3830 3830 */
3831 3831 if (file->_iscmp == CH_MAGIC_GZIP) {
3832 3832 ulong_t dlen;
3833 3833 vattr_t vattr;
3834 3834 struct vnode *vp = (struct vnode *)file->_fd;
3835 3835 ssize_t resid;
3836 3836 int err = 0;
3837 3837
3838 3838 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3839 3839 return (-1);
3840 3840
3841 3841 file->_dbuf = kobj_alloc(vattr.va_size, KM_WAIT|KM_TMP);
3842 3842 file->_dsize = vattr.va_size;
3843 3843
3844 3844 /* Read the compressed file into memory */
3845 3845 if ((err = vn_rdwr(UIO_READ, vp, file->_dbuf, vattr.va_size,
3846 3846 (offset_t)(0), UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3847 3847 &resid)) != 0) {
3848 3848
3849 3849 _kobj_printf(ops, "kobj_read_file :vn_rdwr() failed, "
3850 3850 "error code 0x%x\n", err);
3851 3851 return (-1);
3852 3852 }
3853 3853
3854 3854 dlen = size;
3855 3855
↓ open down ↓ |
22 lines elided |
↑ open up ↑ |
3856 3856 /* Decompress the image at the supplied memory buffer */
3857 3857 if ((err = z_uncompress(buf, &dlen, file->_dbuf,
3858 3858 vattr.va_size)) != Z_OK) {
3859 3859 _kobj_printf(ops, "kobj_read_file: z_uncompress "
3860 3860 "failed, error code : 0x%x\n", err);
3861 3861 return (-1);
3862 3862 }
3863 3863
3864 3864 if (dlen != size) {
3865 3865 _kobj_printf(ops, "kobj_read_file: z_uncompress "
3866 - "failed to uncompress (size returned 0x%x , "
3866 + "failed to uncompress (size returned 0x%lx , "
3867 3867 "expected size: 0x%x)\n", dlen, size);
3868 3868 return (-1);
3869 3869 }
3870 3870
3871 3871 return (0);
3872 3872 }
3873 3873
3874 3874 while (size) {
3875 3875 page_addr = F_PAGE(file, off);
3876 3876 b_size = file->_size;
3877 3877 /*
3878 3878 * If we have the filesystem page the caller's referring to
3879 3879 * and we have something in the buffer,
3880 3880 * satisfy as much of the request from the buffer as we can.
3881 3881 */
3882 3882 if (page_addr == file->_off && b_size > 0) {
3883 3883 b_off = B_OFFSET(file, off);
3884 3884 c_size = b_size - b_off;
3885 3885 /*
3886 3886 * If there's nothing to copy, we're at EOF.
3887 3887 */
3888 3888 if (c_size <= 0)
3889 3889 break;
3890 3890 if (c_size > size)
3891 3891 c_size = size;
3892 3892 if (buf) {
3893 3893 if (_moddebug & MODDEBUG_ERRMSG)
3894 3894 _kobj_printf(ops, "copying %x bytes\n",
3895 3895 c_size);
3896 3896 bcopy(file->_base+b_off, buf, c_size);
3897 3897 size -= c_size;
3898 3898 off += c_size;
3899 3899 buf += c_size;
3900 3900 count += c_size;
3901 3901 } else {
3902 3902 _kobj_printf(ops, "kobj_read: system error");
3903 3903 count = -1;
3904 3904 break;
3905 3905 }
3906 3906 } else {
3907 3907 /*
3908 3908 * If the caller's offset is page aligned and
3909 3909 * the caller want's at least a filesystem page and
3910 3910 * the caller provided a buffer,
3911 3911 * read directly into the caller's buffer.
3912 3912 */
3913 3913 if (page_addr == off &&
3914 3914 (c_size = F_BLKS(file, size)) && buf) {
3915 3915 c_size = kobj_read_blks(file, buf, c_size,
3916 3916 page_addr);
3917 3917 if (c_size < 0) {
3918 3918 count = -1;
3919 3919 break;
3920 3920 }
3921 3921 count += c_size;
3922 3922 if (c_size != F_BLKS(file, size))
3923 3923 break;
3924 3924 size -= c_size;
3925 3925 off += c_size;
3926 3926 buf += c_size;
3927 3927 /*
3928 3928 * Otherwise, read into our buffer and copy next time
3929 3929 * around the loop.
3930 3930 */
3931 3931 } else {
3932 3932 file->_off = page_addr;
3933 3933 c_size = kobj_read_blks(file, file->_base,
3934 3934 file->_bsize, page_addr);
3935 3935 file->_ptr = file->_base;
3936 3936 file->_cnt = c_size;
3937 3937 file->_size = c_size;
3938 3938 /*
3939 3939 * If a _filbuf call or nothing read, break.
3940 3940 */
3941 3941 if (buf == NULL || c_size <= 0) {
3942 3942 count = c_size;
3943 3943 break;
3944 3944 }
3945 3945 }
3946 3946 if (_moddebug & MODDEBUG_ERRMSG)
3947 3947 _kobj_printf(ops, "read %x bytes\n", c_size);
3948 3948 }
3949 3949 }
3950 3950 if (_moddebug & MODDEBUG_ERRMSG)
3951 3951 _kobj_printf(ops, "count = %x\n", count);
3952 3952
3953 3953 return (count);
3954 3954 }
3955 3955
3956 3956 static int
3957 3957 kobj_read_blks(struct _buf *file, char *buf, uint_t size, uint_t off)
3958 3958 {
3959 3959 int ret;
3960 3960
3961 3961 ASSERT(B_OFFSET(file, size) == 0 && B_OFFSET(file, off) == 0);
3962 3962 if (file->_iscmp) {
3963 3963 uint_t blks;
3964 3964 int nret;
3965 3965
3966 3966 ret = 0;
3967 3967 for (blks = size / file->_bsize; blks != 0; blks--) {
3968 3968 nret = kobj_uncomp_blk(file, buf, off);
3969 3969 if (nret == -1)
3970 3970 return (-1);
3971 3971 buf += nret;
3972 3972 off += nret;
3973 3973 ret += nret;
3974 3974 if (nret < file->_bsize)
3975 3975 break;
3976 3976 }
3977 3977 } else
3978 3978 ret = kobj_read(file->_fd, buf, size, off);
3979 3979 return (ret);
3980 3980 }
3981 3981
3982 3982 static int
3983 3983 kobj_uncomp_blk(struct _buf *file, char *buf, uint_t off)
3984 3984 {
3985 3985 struct comphdr *hdr = kobj_comphdr(file);
3986 3986 ulong_t dlen, slen;
3987 3987 caddr_t src;
3988 3988 int i;
3989 3989
3990 3990 dlen = file->_bsize;
3991 3991 i = off / file->_bsize;
3992 3992 src = file->_dbuf + hdr->ch_blkmap[i];
3993 3993 if (i == hdr->ch_fsize / file->_bsize)
3994 3994 slen = file->_dsize - hdr->ch_blkmap[i];
3995 3995 else
3996 3996 slen = hdr->ch_blkmap[i + 1] - hdr->ch_blkmap[i];
3997 3997 if (z_uncompress(buf, &dlen, src, slen) != Z_OK)
3998 3998 return (-1);
3999 3999 return (dlen);
4000 4000 }
4001 4001
4002 4002 int
4003 4003 kobj_filbuf(struct _buf *f)
4004 4004 {
4005 4005 if (kobj_read_file(f, NULL, f->_bsize, f->_off + f->_size) > 0)
4006 4006 return (kobj_getc(f));
4007 4007 return (-1);
4008 4008 }
4009 4009
4010 4010 void
4011 4011 kobj_free(void *address, size_t size)
4012 4012 {
4013 4013 if (standalone)
4014 4014 return;
4015 4015
4016 4016 kmem_free(address, size);
4017 4017 kobj_stat.nfree_calls++;
4018 4018 kobj_stat.nfree += size;
4019 4019 }
4020 4020
4021 4021 void *
4022 4022 kobj_zalloc(size_t size, int flag)
4023 4023 {
4024 4024 void *v;
4025 4025
4026 4026 if ((v = kobj_alloc(size, flag)) != 0) {
4027 4027 bzero(v, size);
4028 4028 }
4029 4029
4030 4030 return (v);
4031 4031 }
4032 4032
4033 4033 void *
4034 4034 kobj_alloc(size_t size, int flag)
4035 4035 {
4036 4036 /*
4037 4037 * If we are running standalone in the
4038 4038 * linker, we ask boot for memory.
4039 4039 * Either it's temporary memory that we lose
4040 4040 * once boot is mapped out or we allocate it
4041 4041 * permanently using the dynamic data segment.
4042 4042 */
4043 4043 if (standalone) {
4044 4044 #if defined(_OBP)
4045 4045 if (flag & (KM_TMP | KM_SCRATCH))
4046 4046 return (bop_temp_alloc(size, MINALIGN));
4047 4047 #else
4048 4048 if (flag & (KM_TMP | KM_SCRATCH))
4049 4049 return (BOP_ALLOC(ops, 0, size, MINALIGN));
4050 4050 #endif
4051 4051 return (kobj_segbrk(&_edata, size, MINALIGN, 0));
4052 4052 }
4053 4053
4054 4054 kobj_stat.nalloc_calls++;
4055 4055 kobj_stat.nalloc += size;
4056 4056
4057 4057 return (kmem_alloc(size, (flag & KM_NOWAIT) ? KM_NOSLEEP : KM_SLEEP));
4058 4058 }
4059 4059
4060 4060 /*
4061 4061 * Allow the "mod" system to sync up with the work
4062 4062 * already done by kobj during the initial loading
4063 4063 * of the kernel. This also gives us a chance
4064 4064 * to reallocate memory that belongs to boot.
4065 4065 */
4066 4066 void
4067 4067 kobj_sync(void)
4068 4068 {
4069 4069 struct modctl_list *lp, **lpp;
4070 4070
4071 4071 /*
4072 4072 * The module path can be set in /etc/system via 'moddir' commands
4073 4073 */
4074 4074 if (default_path != NULL)
4075 4075 kobj_module_path = default_path;
4076 4076 else
4077 4077 default_path = kobj_module_path;
4078 4078
4079 4079 ksyms_arena = vmem_create("ksyms", NULL, 0, sizeof (uint64_t),
4080 4080 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4081 4081
4082 4082 ctf_arena = vmem_create("ctf", NULL, 0, sizeof (uint_t),
4083 4083 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4084 4084
4085 4085 /*
4086 4086 * Move symbol tables from boot memory to ksyms_arena.
4087 4087 */
4088 4088 for (lpp = kobj_linkmaps; *lpp != NULL; lpp++) {
4089 4089 for (lp = *lpp; lp != NULL; lp = lp->modl_next)
4090 4090 kobj_export_module(mod(lp));
4091 4091 }
4092 4092 }
4093 4093
4094 4094 caddr_t
4095 4095 kobj_segbrk(caddr_t *spp, size_t size, size_t align, caddr_t limit)
4096 4096 {
4097 4097 uintptr_t va, pva;
4098 4098 size_t alloc_pgsz = kobj_mmu_pagesize;
4099 4099 size_t alloc_align = BO_NO_ALIGN;
4100 4100 size_t alloc_size;
4101 4101
4102 4102 /*
4103 4103 * If we are using "large" mappings for the kernel,
4104 4104 * request aligned memory from boot using the
4105 4105 * "large" pagesize.
4106 4106 */
4107 4107 if (lg_pagesize) {
4108 4108 alloc_align = lg_pagesize;
4109 4109 alloc_pgsz = lg_pagesize;
4110 4110 }
4111 4111
4112 4112 #if defined(__sparc)
4113 4113 /* account for redzone */
4114 4114 if (limit)
4115 4115 limit -= alloc_pgsz;
4116 4116 #endif /* __sparc */
4117 4117
4118 4118 va = ALIGN((uintptr_t)*spp, align);
4119 4119 pva = P2ROUNDUP((uintptr_t)*spp, alloc_pgsz);
4120 4120 /*
4121 4121 * Need more pages?
4122 4122 */
4123 4123 if (va + size > pva) {
4124 4124 uintptr_t npva;
4125 4125
4126 4126 alloc_size = P2ROUNDUP(size - (pva - va), alloc_pgsz);
4127 4127 /*
4128 4128 * Check for overlapping segments.
4129 4129 */
4130 4130 if (limit && limit <= *spp + alloc_size) {
4131 4131 return ((caddr_t)0);
4132 4132 }
4133 4133
4134 4134 npva = (uintptr_t)BOP_ALLOC(ops, (caddr_t)pva,
4135 4135 alloc_size, alloc_align);
4136 4136
4137 4137 if (npva == 0) {
4138 4138 _kobj_printf(ops, "BOP_ALLOC failed, 0x%lx bytes",
4139 4139 alloc_size);
4140 4140 _kobj_printf(ops, " aligned %lx", alloc_align);
4141 4141 _kobj_printf(ops, " at 0x%lx\n", pva);
4142 4142 return (NULL);
4143 4143 }
4144 4144 }
4145 4145 *spp = (caddr_t)(va + size);
4146 4146
4147 4147 return ((caddr_t)va);
4148 4148 }
4149 4149
4150 4150 /*
4151 4151 * Calculate the number of output hash buckets.
4152 4152 * We use the next prime larger than n / 4,
4153 4153 * so the average hash chain is about 4 entries.
4154 4154 * More buckets would just be a waste of memory.
4155 4155 */
4156 4156 uint_t
4157 4157 kobj_gethashsize(uint_t n)
4158 4158 {
4159 4159 int f;
4160 4160 int hsize = MAX(n / 4, 2);
4161 4161
4162 4162 for (f = 2; f * f <= hsize; f++)
4163 4163 if (hsize % f == 0)
4164 4164 hsize += f = 1;
4165 4165
4166 4166 return (hsize);
4167 4167 }
4168 4168
4169 4169 /*
4170 4170 * Get the file size.
4171 4171 *
4172 4172 * Before root is mounted, files are compressed in the boot_archive ramdisk
4173 4173 * (in the memory). kobj_fstat would return the compressed file size.
4174 4174 * In order to get the uncompressed file size, read the file to the end and
4175 4175 * count its size.
4176 4176 */
4177 4177 int
4178 4178 kobj_get_filesize(struct _buf *file, uint64_t *size)
4179 4179 {
4180 4180 int err = 0;
4181 4181 ssize_t resid;
4182 4182 uint32_t buf;
4183 4183
4184 4184 if (_modrootloaded) {
4185 4185 struct bootstat bst;
4186 4186
4187 4187 if (kobj_fstat(file->_fd, &bst) != 0)
4188 4188 return (EIO);
4189 4189 *size = bst.st_size;
4190 4190
4191 4191 if (file->_iscmp == CH_MAGIC_GZIP) {
4192 4192 /*
4193 4193 * Read the last 4 bytes of the compressed (gzip)
4194 4194 * image to get the size of its uncompressed
4195 4195 * version.
4196 4196 */
4197 4197 if ((err = vn_rdwr(UIO_READ, (struct vnode *)file->_fd,
4198 4198 (char *)(&buf), 4, (offset_t)(*size - 4),
4199 4199 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid))
4200 4200 != 0) {
4201 4201 _kobj_printf(ops, "kobj_get_filesize: "
4202 4202 "vn_rdwr() failed with error 0x%x\n", err);
4203 4203 return (-1);
4204 4204 }
4205 4205
4206 4206 *size = (uint64_t)buf;
4207 4207 }
4208 4208 } else {
4209 4209
4210 4210 #if defined(_OBP)
4211 4211 struct bootstat bsb;
4212 4212
4213 4213 if (file->_iscmp) {
4214 4214 struct comphdr *hdr = kobj_comphdr(file);
4215 4215
4216 4216 *size = hdr->ch_fsize;
4217 4217 } else if (kobj_boot_fstat(file->_fd, &bsb) != 0)
4218 4218 return (EIO);
4219 4219 else
4220 4220 *size = bsb.st_size;
4221 4221 #else
4222 4222 char *buf;
4223 4223 int count;
4224 4224 uint64_t offset = 0;
4225 4225
4226 4226 buf = kmem_alloc(MAXBSIZE, KM_SLEEP);
4227 4227 do {
4228 4228 count = kobj_read_file(file, buf, MAXBSIZE, offset);
4229 4229 if (count < 0) {
4230 4230 kmem_free(buf, MAXBSIZE);
4231 4231 return (EIO);
4232 4232 }
4233 4233 offset += count;
4234 4234 } while (count == MAXBSIZE);
4235 4235 kmem_free(buf, MAXBSIZE);
4236 4236
4237 4237 *size = offset;
4238 4238 #endif
4239 4239 }
4240 4240
4241 4241 return (0);
4242 4242 }
4243 4243
4244 4244 static char *
4245 4245 basename(char *s)
4246 4246 {
4247 4247 char *p, *q;
4248 4248
4249 4249 q = NULL;
4250 4250 p = s;
4251 4251 do {
4252 4252 if (*p == '/')
4253 4253 q = p;
4254 4254 } while (*p++);
4255 4255 return (q ? q + 1 : s);
4256 4256 }
4257 4257
4258 4258 void
4259 4259 kobj_stat_get(kobj_stat_t *kp)
4260 4260 {
4261 4261 *kp = kobj_stat;
4262 4262 }
4263 4263
4264 4264 int
4265 4265 kobj_getpagesize()
4266 4266 {
4267 4267 return (lg_pagesize);
4268 4268 }
4269 4269
4270 4270 void
4271 4271 kobj_textwin_alloc(struct module *mp)
4272 4272 {
4273 4273 ASSERT(MUTEX_HELD(&mod_lock));
4274 4274
4275 4275 if (mp->textwin != NULL)
4276 4276 return;
4277 4277
4278 4278 /*
4279 4279 * If the text is not contained in the heap, then it is not contained
4280 4280 * by a writable mapping. (Specifically, it's on the nucleus page.)
4281 4281 * We allocate a read/write mapping for this module's text to allow
4282 4282 * the text to be patched without calling hot_patch_kernel_text()
4283 4283 * (which is quite slow).
4284 4284 */
4285 4285 if (!vmem_contains(heaptext_arena, mp->text, mp->text_size)) {
4286 4286 uintptr_t text = (uintptr_t)mp->text;
4287 4287 uintptr_t size = (uintptr_t)mp->text_size;
4288 4288 uintptr_t i;
4289 4289 caddr_t va;
4290 4290 size_t sz = ((text + size + PAGESIZE - 1) & PAGEMASK) -
4291 4291 (text & PAGEMASK);
4292 4292
4293 4293 va = mp->textwin_base = vmem_alloc(heap_arena, sz, VM_SLEEP);
4294 4294
4295 4295 for (i = text & PAGEMASK; i < text + size; i += PAGESIZE) {
4296 4296 hat_devload(kas.a_hat, va, PAGESIZE,
4297 4297 hat_getpfnum(kas.a_hat, (caddr_t)i),
4298 4298 PROT_READ | PROT_WRITE,
4299 4299 HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
4300 4300 va += PAGESIZE;
4301 4301 }
4302 4302
4303 4303 mp->textwin = mp->textwin_base + (text & PAGEOFFSET);
4304 4304 } else {
4305 4305 mp->textwin = mp->text;
4306 4306 }
4307 4307 }
4308 4308
4309 4309 void
4310 4310 kobj_textwin_free(struct module *mp)
4311 4311 {
4312 4312 uintptr_t text = (uintptr_t)mp->text;
4313 4313 uintptr_t tsize = (uintptr_t)mp->text_size;
4314 4314 size_t size = (((text + tsize + PAGESIZE - 1) & PAGEMASK) -
4315 4315 (text & PAGEMASK));
4316 4316
4317 4317 mp->textwin = NULL;
4318 4318
4319 4319 if (mp->textwin_base == NULL)
4320 4320 return;
4321 4321
4322 4322 hat_unload(kas.a_hat, mp->textwin_base, size, HAT_UNLOAD_UNLOCK);
4323 4323 vmem_free(heap_arena, mp->textwin_base, size);
4324 4324 mp->textwin_base = NULL;
4325 4325 }
4326 4326
4327 4327 static char *
4328 4328 find_libmacro(char *name)
4329 4329 {
4330 4330 int lmi;
4331 4331
4332 4332 for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4333 4333 if (strcmp(name, libmacros[lmi].lmi_macroname) == 0)
4334 4334 return (libmacros[lmi].lmi_list);
4335 4335 }
4336 4336 return (NULL);
4337 4337 }
4338 4338
4339 4339 /*
4340 4340 * Check for $MACRO in tail (string to expand) and expand it in path at pathend
4341 4341 * returns path if successful, else NULL
4342 4342 * Support multiple $MACROs expansion and the first valid path will be returned
4343 4343 * Caller's responsibility to provide enough space in path to expand
4344 4344 */
4345 4345 char *
4346 4346 expand_libmacro(char *tail, char *path, char *pathend)
4347 4347 {
4348 4348 char c, *p, *p1, *p2, *path2, *endp;
4349 4349 int diff, lmi, macrolen, valid_macro, more_macro;
4350 4350 struct _buf *file;
4351 4351
4352 4352 /*
4353 4353 * check for $MACROS between nulls or slashes
4354 4354 */
4355 4355 p = strchr(tail, '$');
4356 4356 if (p == NULL)
4357 4357 return (NULL);
4358 4358 for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4359 4359 macrolen = libmacros[lmi].lmi_macrolen;
4360 4360 if (strncmp(p + 1, libmacros[lmi].lmi_macroname, macrolen) == 0)
4361 4361 break;
4362 4362 }
4363 4363
4364 4364 valid_macro = 0;
4365 4365 if (lmi < NLIBMACROS) {
4366 4366 /*
4367 4367 * The following checks are used to restrict expansion of
4368 4368 * macros to those that form a full directory/file name
4369 4369 * and to keep the behavior same as before. If this
4370 4370 * restriction is removed or no longer valid in the future,
4371 4371 * the checks below can be deleted.
4372 4372 */
4373 4373 if ((p == tail) || (*(p - 1) == '/')) {
4374 4374 c = *(p + macrolen + 1);
4375 4375 if (c == '/' || c == '\0')
4376 4376 valid_macro = 1;
4377 4377 }
4378 4378 }
4379 4379
4380 4380 if (!valid_macro) {
4381 4381 p2 = strchr(p, '/');
4382 4382 /*
4383 4383 * if no more macro to expand, then just copy whatever left
4384 4384 * and check whether it exists
4385 4385 */
4386 4386 if (p2 == NULL || strchr(p2, '$') == NULL) {
4387 4387 (void) strcpy(pathend, tail);
4388 4388 if ((file = kobj_open_path(path, 1, 1)) !=
4389 4389 (struct _buf *)-1) {
4390 4390 kobj_close_file(file);
4391 4391 return (path);
4392 4392 } else
4393 4393 return (NULL);
4394 4394 } else {
4395 4395 /*
4396 4396 * copy all chars before '/' and call expand_libmacro()
4397 4397 * again
4398 4398 */
4399 4399 diff = p2 - tail;
4400 4400 bcopy(tail, pathend, diff);
4401 4401 pathend += diff;
4402 4402 *(pathend) = '\0';
4403 4403 return (expand_libmacro(p2, path, pathend));
4404 4404 }
4405 4405 }
4406 4406
4407 4407 more_macro = 0;
4408 4408 if (c != '\0') {
4409 4409 endp = p + macrolen + 1;
4410 4410 if (strchr(endp, '$') != NULL)
4411 4411 more_macro = 1;
4412 4412 } else
4413 4413 endp = NULL;
4414 4414
4415 4415 /*
4416 4416 * copy lmi_list and split it into components.
4417 4417 * then put the part of tail before $MACRO into path
4418 4418 * at pathend
4419 4419 */
4420 4420 diff = p - tail;
4421 4421 if (diff > 0)
4422 4422 bcopy(tail, pathend, diff);
4423 4423 path2 = pathend + diff;
4424 4424 p1 = libmacros[lmi].lmi_list;
4425 4425 while (p1 && (*p1 != '\0')) {
4426 4426 p2 = strchr(p1, ':');
4427 4427 if (p2) {
4428 4428 diff = p2 - p1;
4429 4429 bcopy(p1, path2, diff);
4430 4430 *(path2 + diff) = '\0';
4431 4431 } else {
4432 4432 diff = strlen(p1);
4433 4433 bcopy(p1, path2, diff + 1);
4434 4434 }
4435 4435 /* copy endp only if there isn't any more macro to expand */
4436 4436 if (!more_macro && (endp != NULL))
4437 4437 (void) strcat(path2, endp);
4438 4438 file = kobj_open_path(path, 1, 1);
4439 4439 if (file != (struct _buf *)-1) {
4440 4440 kobj_close_file(file);
4441 4441 /*
4442 4442 * if more macros to expand then call expand_libmacro(),
4443 4443 * else return path which has the whole path
4444 4444 */
4445 4445 if (!more_macro || (expand_libmacro(endp, path,
4446 4446 path2 + diff) != NULL)) {
4447 4447 return (path);
4448 4448 }
4449 4449 }
4450 4450 if (p2)
4451 4451 p1 = ++p2;
4452 4452 else
4453 4453 return (NULL);
4454 4454 }
4455 4455 return (NULL);
4456 4456 }
4457 4457
4458 4458 static void
4459 4459 tnf_add_notifyunload(kobj_notify_f *fp)
4460 4460 {
4461 4461 kobj_notify_list_t *entry;
4462 4462
4463 4463 entry = kobj_alloc(sizeof (kobj_notify_list_t), KM_WAIT);
4464 4464 entry->kn_type = KOBJ_NOTIFY_MODUNLOADING;
4465 4465 entry->kn_func = fp;
4466 4466 (void) kobj_notify_add(entry);
4467 4467 }
4468 4468
4469 4469 /* ARGSUSED */
4470 4470 static void
4471 4471 tnf_unsplice_probes(uint_t what, struct modctl *mod)
4472 4472 {
4473 4473 tnf_probe_control_t **p;
4474 4474 tnf_tag_data_t **q;
4475 4475 struct module *mp = mod->mod_mp;
4476 4476
4477 4477 if (!(mp->flags & KOBJ_TNF_PROBE))
4478 4478 return;
4479 4479
4480 4480 for (p = &__tnf_probe_list_head; *p; )
4481 4481 if (kobj_addrcheck(mp, (char *)*p) == 0)
4482 4482 *p = (*p)->next;
4483 4483 else
4484 4484 p = &(*p)->next;
4485 4485
4486 4486 for (q = &__tnf_tag_list_head; *q; )
4487 4487 if (kobj_addrcheck(mp, (char *)*q) == 0)
4488 4488 *q = (tnf_tag_data_t *)(*q)->tag_version;
4489 4489 else
4490 4490 q = (tnf_tag_data_t **)&(*q)->tag_version;
4491 4491
4492 4492 tnf_changed_probe_list = 1;
4493 4493 }
4494 4494
4495 4495 int
4496 4496 tnf_splice_probes(int boot_load, tnf_probe_control_t *plist,
4497 4497 tnf_tag_data_t *tlist)
4498 4498 {
4499 4499 int result = 0;
4500 4500 static int add_notify = 1;
4501 4501
4502 4502 if (plist) {
4503 4503 tnf_probe_control_t *pl;
4504 4504
4505 4505 for (pl = plist; pl->next; )
4506 4506 pl = pl->next;
4507 4507
4508 4508 if (!boot_load)
4509 4509 mutex_enter(&mod_lock);
4510 4510 tnf_changed_probe_list = 1;
4511 4511 pl->next = __tnf_probe_list_head;
4512 4512 __tnf_probe_list_head = plist;
4513 4513 if (!boot_load)
4514 4514 mutex_exit(&mod_lock);
4515 4515 result = 1;
4516 4516 }
4517 4517
4518 4518 if (tlist) {
4519 4519 tnf_tag_data_t *tl;
4520 4520
4521 4521 for (tl = tlist; tl->tag_version; )
4522 4522 tl = (tnf_tag_data_t *)tl->tag_version;
4523 4523
4524 4524 if (!boot_load)
4525 4525 mutex_enter(&mod_lock);
4526 4526 tl->tag_version = (tnf_tag_version_t *)__tnf_tag_list_head;
4527 4527 __tnf_tag_list_head = tlist;
4528 4528 if (!boot_load)
4529 4529 mutex_exit(&mod_lock);
4530 4530 result = 1;
4531 4531 }
4532 4532 if (!boot_load && result && add_notify) {
4533 4533 tnf_add_notifyunload(tnf_unsplice_probes);
4534 4534 add_notify = 0;
4535 4535 }
4536 4536 return (result);
4537 4537 }
4538 4538
4539 4539 char *kobj_file_buf;
4540 4540 int kobj_file_bufsize;
4541 4541
4542 4542 /*
4543 4543 * This code is for the purpose of manually recording which files
4544 4544 * needs to go into the boot archive on any given system.
4545 4545 *
4546 4546 * To enable the code, set kobj_file_bufsize in /etc/system
4547 4547 * and reboot the system, then use mdb to look at kobj_file_buf.
4548 4548 */
4549 4549 static void
4550 4550 kobj_record_file(char *filename)
4551 4551 {
4552 4552 static char *buf;
4553 4553 static int size = 0;
4554 4554 int n;
4555 4555
4556 4556 if (kobj_file_bufsize == 0) /* don't bother */
4557 4557 return;
4558 4558
4559 4559 if (kobj_file_buf == NULL) { /* allocate buffer */
4560 4560 size = kobj_file_bufsize;
4561 4561 buf = kobj_file_buf = kobj_alloc(size, KM_WAIT|KM_TMP);
4562 4562 }
4563 4563
4564 4564 n = snprintf(buf, size, "%s\n", filename);
4565 4565 if (n > size)
4566 4566 n = size;
4567 4567 size -= n;
4568 4568 buf += n;
4569 4569 }
4570 4570
4571 4571 static int
4572 4572 kobj_boot_fstat(int fd, struct bootstat *stp)
4573 4573 {
4574 4574 #if defined(_OBP)
4575 4575 if (!standalone && _ioquiesced)
4576 4576 return (-1);
4577 4577 return (BOP_FSTAT(ops, fd, stp));
4578 4578 #else
4579 4579 return (BRD_FSTAT(bfs_ops, fd, stp));
4580 4580 #endif
4581 4581 }
4582 4582
4583 4583 static int
4584 4584 kobj_boot_open(char *filename, int flags)
4585 4585 {
4586 4586 #if defined(_OBP)
4587 4587
4588 4588 /*
4589 4589 * If io via bootops is quiesced, it means boot is no longer
4590 4590 * available to us. We make it look as if we can't open the
4591 4591 * named file - which is reasonably accurate.
4592 4592 */
4593 4593 if (!standalone && _ioquiesced)
4594 4594 return (-1);
4595 4595
4596 4596 kobj_record_file(filename);
4597 4597 return (BOP_OPEN(filename, flags));
4598 4598 #else /* x86 */
4599 4599 kobj_record_file(filename);
4600 4600 return (BRD_OPEN(bfs_ops, filename, flags));
4601 4601 #endif
4602 4602 }
4603 4603
4604 4604 static int
4605 4605 kobj_boot_close(int fd)
4606 4606 {
4607 4607 #if defined(_OBP)
4608 4608 if (!standalone && _ioquiesced)
4609 4609 return (-1);
4610 4610
4611 4611 return (BOP_CLOSE(fd));
4612 4612 #else /* x86 */
4613 4613 return (BRD_CLOSE(bfs_ops, fd));
4614 4614 #endif
4615 4615 }
4616 4616
4617 4617 /*ARGSUSED*/
4618 4618 static int
4619 4619 kobj_boot_seek(int fd, off_t hi, off_t lo)
4620 4620 {
4621 4621 #if defined(_OBP)
4622 4622 return (BOP_SEEK(fd, lo) == -1 ? -1 : 0);
4623 4623 #else
4624 4624 return (BRD_SEEK(bfs_ops, fd, lo, SEEK_SET));
4625 4625 #endif
4626 4626 }
4627 4627
4628 4628 static int
4629 4629 kobj_boot_read(int fd, caddr_t buf, size_t size)
4630 4630 {
4631 4631 #if defined(_OBP)
4632 4632 return (BOP_READ(fd, buf, size));
4633 4633 #else
4634 4634 return (BRD_READ(bfs_ops, fd, buf, size));
4635 4635 #endif
4636 4636 }
4637 4637
4638 4638 static int
4639 4639 kobj_boot_compinfo(int fd, struct compinfo *cb)
4640 4640 {
4641 4641 return (boot_compinfo(fd, cb));
4642 4642 }
4643 4643
4644 4644 /*
4645 4645 * Check if the file is compressed (for now we handle only gzip).
4646 4646 * It returns CH_MAGIC_GZIP if the file is compressed and 0 otherwise.
4647 4647 */
4648 4648 static int
4649 4649 kobj_is_compressed(intptr_t fd)
4650 4650 {
4651 4651 struct vnode *vp = (struct vnode *)fd;
4652 4652 ssize_t resid;
4653 4653 uint16_t magic_buf;
4654 4654 int err = 0;
4655 4655
4656 4656 if ((err = vn_rdwr(UIO_READ, vp, (caddr_t)((intptr_t)&magic_buf),
4657 4657 sizeof (magic_buf), (offset_t)(0),
4658 4658 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) {
4659 4659
4660 4660 _kobj_printf(ops, "kobj_is_compressed: vn_rdwr() failed, "
4661 4661 "error code 0x%x\n", err);
4662 4662 return (0);
4663 4663 }
4664 4664
4665 4665 if (magic_buf == CH_MAGIC_GZIP)
4666 4666 return (CH_MAGIC_GZIP);
4667 4667
4668 4668 return (0);
4669 4669 }
↓ open down ↓ |
793 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX