1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright 2012 Jason King. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 /* 31 * Copyright 2019, Joyent, Inc. 32 */ 33 34 /* 35 * CTF DWARF conversion theory. 36 * 37 * DWARF data contains a series of compilation units. Each compilation unit 38 * generally refers to an object file or what once was, in the case of linked 39 * binaries and shared objects. Each compilation unit has a series of what DWARF 40 * calls a DIE (Debugging Information Entry). The set of entries that we care 41 * about have type information stored in a series of attributes. Each DIE also 42 * has a tag that identifies the kind of attributes that it has. 43 * 44 * A given DIE may itself have children. For example, a DIE that represents a 45 * structure has children which represent members. Whenever we encounter a DIE 46 * that has children or other values or types associated with it, we recursively 47 * process those children first so that way we can then refer to the generated 48 * CTF type id while processing its parent. This reduces the amount of unknowns 49 * and fixups that we need. It also ensures that we don't accidentally add types 50 * that an overzealous compiler might add to the DWARF data but aren't used by 51 * anything in the system. 52 * 53 * Once we do a conversion, we store a mapping in an AVL tree that goes from the 54 * DWARF's die offset, which is relative to the given compilation unit, to a 55 * ctf_id_t. 56 * 57 * Unfortunately, some compilers actually will emit duplicate entries for a 58 * given type that look similar, but aren't quite. To that end, we go through 59 * and do a variant on a merge once we're done processing a single compilation 60 * unit which deduplicates all of the types that are in the unit. 61 * 62 * Finally, if we encounter an object that has multiple compilation units, then 63 * we'll convert all of the compilation units separately and then do a merge, so 64 * that way we can result in one single ctf_file_t that represents everything 65 * for the object. 66 * 67 * Conversion Steps 68 * ---------------- 69 * 70 * Because a given object we've been given to convert may have multiple 71 * compilation units, we break the work into two halves. The first half 72 * processes each compilation unit (potentially in parallel) and then the second 73 * half optionally merges all of the dies in the first half. First, we'll cover 74 * what's involved in converting a single ctf_cu_t's dwarf to CTF. This covers 75 * the work done in ctf_dwarf_convert_one(). 76 * 77 * An individual ctf_cu_t, which represents a compilation unit, is converted to 78 * CTF in a series of multiple passes. 79 * 80 * Pass 1: During the first pass we walk all of the top-level dies and if we 81 * find a function, variable, struct, union, enum or typedef, we recursively 82 * transform all of its types. We don't recurse or process everything, because 83 * we don't want to add some of the types that compilers may add which are 84 * effectively unused. 85 * 86 * During pass 1, if we encounter any structures or unions we mark them for 87 * fixing up later. This is necessary because we may not be able to determine 88 * the full size of a structure at the beginning of time. This will happen if 89 * the DWARF attribute DW_AT_byte_size is not present for a member. Because of 90 * this possibility we defer adding members to structures or even converting 91 * them during pass 1 and save that for pass 2. Adding all of the base 92 * structures without any of their members helps deal with any circular 93 * dependencies that we might encounter. 94 * 95 * Pass 2: This pass is used to do the first half of fixing up structures and 96 * unions. Rather than walk the entire type space again, we actually walk the 97 * list of structures and unions that we marked for later fixing up. Here, we 98 * iterate over every structure and add members to the underlying ctf_file_t, 99 * but not to the structs themselves. One might wonder why we don't, and the 100 * main reason is that libctf requires a ctf_update() be done before adding the 101 * members to structures or unions. 102 * 103 * Pass 3: This pass is used to do the second half of fixing up structures and 104 * unions. During this part we always go through and add members to structures 105 * and unions that we added to the container in the previous pass. In addition, 106 * we set the structure and union's actual size, which may have additional 107 * padding added by the compiler, it isn't simply the last offset. DWARF always 108 * guarantees an attribute exists for this. Importantly no ctf_id_t's change 109 * during pass 2. 110 * 111 * Pass 4: The next phase is to add CTF entries for all of the symbols and 112 * variables that are present in this die. During pass 1 we added entries to a 113 * map for each variable and function. During this pass, we iterate over the 114 * symbol table and when we encounter a symbol that we have in our lists of 115 * translated information which matches, we then add it to the ctf_file_t. 116 * 117 * Pass 5: Here we go and look for any weak symbols and functions and see if 118 * they match anything that we recognize. If so, then we add type information 119 * for them at this point based on the matching type. 120 * 121 * Pass 6: This pass is actually a variant on a merge. The traditional merge 122 * process expects there to be no duplicate types. As such, at the end of 123 * conversion, we do a dedup on all of the types in the system. The 124 * deduplication process is described in lib/libctf/common/ctf_merge.c. 125 * 126 * Once pass 6 is done, we've finished processing the individual compilation 127 * unit. 128 * 129 * The following steps reflect the general process of doing a conversion. 130 * 131 * 1) Walk the dwarf section and determine the number of compilation units 132 * 2) Create a ctf_cu_t for each compilation unit 133 * 3) Add all ctf_cu_t's to a workq 134 * 4) Have the workq process each die with ctf_dwarf_convert_one. This itself 135 * is comprised of several steps, which were already enumerated. 136 * 5) If we have multiple cu's, we do a ctf merge of all the dies. The mechanics 137 * of the merge are discussed in lib/libctf/common/ctf_merge.c. 138 * 6) Free everything up and return a ctf_file_t to the user. If we only had a 139 * single compilation unit, then we give that to the user. Otherwise, we 140 * return the merged ctf_file_t. 141 * 142 * Threading 143 * --------- 144 * 145 * The process has been designed to be amenable to threading. Each compilation 146 * unit has its own type stream, therefore the logical place to divide and 147 * conquer is at the compilation unit. Each ctf_cu_t has been built to be able 148 * to be processed independently of the others. It has its own libdwarf handle, 149 * as a given libdwarf handle may only be used by a single thread at a time. 150 * This allows the various ctf_cu_t's to be processed in parallel by different 151 * threads. 152 * 153 * All of the ctf_cu_t's are loaded into a workq which allows for a number of 154 * threads to be specified and used as a thread pool to process all of the 155 * queued work. We set the number of threads to use in the workq equal to the 156 * number of threads that the user has specified. 157 * 158 * After all of the compilation units have been drained, we use the same number 159 * of threads when performing a merge of multiple compilation units, if they 160 * exist. 161 * 162 * While all of these different parts do support and allow for multiple threads, 163 * it's important that when only a single thread is specified, that it be the 164 * calling thread. This allows the conversion routines to be used in a context 165 * that doesn't allow additional threads, such as rtld. 166 * 167 * Common DWARF Mechanics and Notes 168 * -------------------------------- 169 * 170 * At this time, we really only support DWARFv2, though support for DWARFv4 is 171 * mostly there. There is no intent to support DWARFv3. 172 * 173 * Generally types for something are stored in the DW_AT_type attribute. For 174 * example, a function's return type will be stored in the local DW_AT_type 175 * attribute while the arguments will be in child DIEs. There are also various 176 * times when we don't have any DW_AT_type. In that case, the lack of a type 177 * implies, at least for C, that its C type is void. Because DWARF doesn't emit 178 * one, we have a synthetic void type that we create and manipulate instead and 179 * pass it off to consumers on an as-needed basis. If nothing has a void type, 180 * it will not be emitted. 181 * 182 * Architecture Specific Parts 183 * --------------------------- 184 * 185 * The CTF tooling encodes various information about the various architectures 186 * in the system. Importantly, the tool assumes that every architecture has a 187 * data model where long and pointer are the same size. This is currently the 188 * case, as the two data models illumos supports are ILP32 and LP64. 189 * 190 * In addition, we encode the mapping of various floating point sizes to various 191 * types for each architecture. If a new architecture is being added, it should 192 * be added to the list. The general design of the ctf conversion tools is to be 193 * architecture independent. eg. any of the tools here should be able to convert 194 * any architecture's DWARF into ctf; however, this has not been rigorously 195 * tested and more importantly, the ctf routines don't currently write out the 196 * data in an endian-aware form, they only use that of the currently running 197 * library. 198 */ 199 200 #include <libctf_impl.h> 201 #include <sys/avl.h> 202 #include <sys/debug.h> 203 #include <gelf.h> 204 #include <libdwarf.h> 205 #include <dwarf.h> 206 #include <libgen.h> 207 #include <workq.h> 208 #include <errno.h> 209 210 #define DWARF_VERSION_TWO 2 211 #define DWARF_VARARGS_NAME "..." 212 213 /* 214 * Dwarf may refer recursively to other types that we've already processed. To 215 * see if we've already converted them, we look them up in an AVL tree that's 216 * sorted by the DWARF id. 217 */ 218 typedef struct ctf_dwmap { 219 avl_node_t cdm_avl; 220 Dwarf_Off cdm_off; 221 Dwarf_Die cdm_die; 222 ctf_id_t cdm_id; 223 boolean_t cdm_fix; 224 } ctf_dwmap_t; 225 226 typedef struct ctf_dwvar { 227 ctf_list_t cdv_list; 228 char *cdv_name; 229 ctf_id_t cdv_type; 230 boolean_t cdv_global; 231 } ctf_dwvar_t; 232 233 typedef struct ctf_dwfunc { 234 ctf_list_t cdf_list; 235 char *cdf_name; 236 ctf_funcinfo_t cdf_fip; 237 ctf_id_t *cdf_argv; 238 boolean_t cdf_global; 239 } ctf_dwfunc_t; 240 241 typedef struct ctf_dwbitf { 242 ctf_list_t cdb_list; 243 ctf_id_t cdb_base; 244 uint_t cdb_nbits; 245 ctf_id_t cdb_id; 246 } ctf_dwbitf_t; 247 248 /* 249 * The ctf_cu_t represents a single top-level DWARF die unit. While generally, 250 * the typical object file has only a single die, if we're asked to convert 251 * something that's been linked from multiple sources, multiple dies will exist. 252 */ 253 typedef struct ctf_die { 254 Elf *cu_elf; /* shared libelf handle */ 255 char *cu_name; /* basename of the DIE */ 256 ctf_merge_t *cu_cmh; /* merge handle */ 257 ctf_list_t cu_vars; /* List of variables */ 258 ctf_list_t cu_funcs; /* List of functions */ 259 ctf_list_t cu_bitfields; /* Bit field members */ 260 Dwarf_Debug cu_dwarf; /* libdwarf handle */ 261 Dwarf_Die cu_cu; /* libdwarf compilation unit */ 262 Dwarf_Off cu_cuoff; /* cu's offset */ 263 Dwarf_Off cu_maxoff; /* maximum offset */ 264 ctf_file_t *cu_ctfp; /* output CTF file */ 265 avl_tree_t cu_map; /* map die offsets to CTF types */ 266 char *cu_errbuf; /* error message buffer */ 267 size_t cu_errlen; /* error message buffer length */ 268 size_t cu_ptrsz; /* object's pointer size */ 269 boolean_t cu_bigend; /* is it big endian */ 270 boolean_t cu_doweaks; /* should we convert weak symbols? */ 271 uint_t cu_mach; /* machine type */ 272 ctf_id_t cu_voidtid; /* void pointer */ 273 ctf_id_t cu_longtid; /* id for a 'long' */ 274 } ctf_cu_t; 275 276 static int ctf_dwarf_offset(ctf_cu_t *, Dwarf_Die, Dwarf_Off *); 277 static int ctf_dwarf_convert_die(ctf_cu_t *, Dwarf_Die); 278 static int ctf_dwarf_convert_type(ctf_cu_t *, Dwarf_Die, ctf_id_t *, int); 279 280 static int ctf_dwarf_function_count(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *, 281 boolean_t); 282 static int ctf_dwarf_convert_fargs(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *, 283 ctf_id_t *); 284 285 /* 286 * This is a generic way to set a CTF Conversion backend error depending on what 287 * we were doing. Unless it was one of a specific set of errors that don't 288 * indicate a programming / translation bug, eg. ENOMEM, then we transform it 289 * into a CTF backend error and fill in the error buffer. 290 */ 291 static int 292 ctf_dwarf_error(ctf_cu_t *cup, ctf_file_t *cfp, int err, const char *fmt, ...) 293 { 294 va_list ap; 295 int ret; 296 size_t off = 0; 297 ssize_t rem = cup->cu_errlen; 298 if (cfp != NULL) 299 err = ctf_errno(cfp); 300 301 if (err == ENOMEM) 302 return (err); 303 304 ret = snprintf(cup->cu_errbuf, rem, "die %s: ", cup->cu_name); 305 if (ret < 0) 306 goto err; 307 off += ret; 308 rem = MAX(rem - ret, 0); 309 310 va_start(ap, fmt); 311 ret = vsnprintf(cup->cu_errbuf + off, rem, fmt, ap); 312 va_end(ap); 313 if (ret < 0) 314 goto err; 315 316 off += ret; 317 rem = MAX(rem - ret, 0); 318 if (fmt[strlen(fmt) - 1] != '\n') { 319 (void) snprintf(cup->cu_errbuf + off, rem, 320 ": %s\n", ctf_errmsg(err)); 321 } 322 va_end(ap); 323 return (ECTF_CONVBKERR); 324 325 err: 326 cup->cu_errbuf[0] = '\0'; 327 return (ECTF_CONVBKERR); 328 } 329 330 /* 331 * DWARF often opts to put no explicit type to describe a void type. eg. if we 332 * have a reference type whose DW_AT_type member doesn't exist, then we should 333 * instead assume it points to void. Because this isn't represented, we 334 * instead cause it to come into existence. 335 */ 336 static ctf_id_t 337 ctf_dwarf_void(ctf_cu_t *cup) 338 { 339 if (cup->cu_voidtid == CTF_ERR) { 340 ctf_encoding_t enc = { CTF_INT_SIGNED, 0, 0 }; 341 cup->cu_voidtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_ROOT, 342 "void", &enc); 343 if (cup->cu_voidtid == CTF_ERR) { 344 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 345 "failed to create void type: %s\n", 346 ctf_errmsg(ctf_errno(cup->cu_ctfp))); 347 } 348 } 349 350 return (cup->cu_voidtid); 351 } 352 353 /* 354 * There are many different forms that an array index may take. However, we just 355 * always force it to be of a type long no matter what. Therefore we use this to 356 * have a single instance of long across everything. 357 */ 358 static ctf_id_t 359 ctf_dwarf_long(ctf_cu_t *cup) 360 { 361 if (cup->cu_longtid == CTF_ERR) { 362 ctf_encoding_t enc; 363 364 enc.cte_format = CTF_INT_SIGNED; 365 enc.cte_offset = 0; 366 /* All illumos systems are LP */ 367 enc.cte_bits = cup->cu_ptrsz * 8; 368 cup->cu_longtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT, 369 "long", &enc); 370 if (cup->cu_longtid == CTF_ERR) { 371 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 372 "failed to create long type: %s\n", 373 ctf_errmsg(ctf_errno(cup->cu_ctfp))); 374 } 375 376 } 377 378 return (cup->cu_longtid); 379 } 380 381 static int 382 ctf_dwmap_comp(const void *a, const void *b) 383 { 384 const ctf_dwmap_t *ca = a; 385 const ctf_dwmap_t *cb = b; 386 387 if (ca->cdm_off > cb->cdm_off) 388 return (1); 389 if (ca->cdm_off < cb->cdm_off) 390 return (-1); 391 return (0); 392 } 393 394 static int 395 ctf_dwmap_add(ctf_cu_t *cup, ctf_id_t id, Dwarf_Die die, boolean_t fix) 396 { 397 int ret; 398 avl_index_t index; 399 ctf_dwmap_t *dwmap; 400 Dwarf_Off off; 401 402 VERIFY(id > 0 && id < CTF_MAX_TYPE); 403 404 if ((ret = ctf_dwarf_offset(cup, die, &off)) != 0) 405 return (ret); 406 407 if ((dwmap = ctf_alloc(sizeof (ctf_dwmap_t))) == NULL) 408 return (ENOMEM); 409 410 dwmap->cdm_die = die; 411 dwmap->cdm_off = off; 412 dwmap->cdm_id = id; 413 dwmap->cdm_fix = fix; 414 415 ctf_dprintf("dwmap: %p %" DW_PR_DUx "->%d\n", dwmap, off, id); 416 VERIFY(avl_find(&cup->cu_map, dwmap, &index) == NULL); 417 avl_insert(&cup->cu_map, dwmap, index); 418 return (0); 419 } 420 421 static int 422 ctf_dwarf_attribute(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, 423 Dwarf_Attribute *attrp) 424 { 425 int ret; 426 Dwarf_Error derr; 427 428 if ((ret = dwarf_attr(die, name, attrp, &derr)) == DW_DLV_OK) 429 return (0); 430 if (ret == DW_DLV_NO_ENTRY) { 431 *attrp = NULL; 432 return (ENOENT); 433 } 434 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 435 "failed to get attribute for type: %s\n", 436 dwarf_errmsg(derr)); 437 return (ECTF_CONVBKERR); 438 } 439 440 static int 441 ctf_dwarf_ref(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, Dwarf_Off *refp) 442 { 443 int ret; 444 Dwarf_Attribute attr; 445 Dwarf_Error derr; 446 447 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0) 448 return (ret); 449 450 if (dwarf_formref(attr, refp, &derr) == DW_DLV_OK) { 451 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR); 452 return (0); 453 } 454 455 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 456 "failed to get unsigned attribute for type: %s\n", 457 dwarf_errmsg(derr)); 458 return (ECTF_CONVBKERR); 459 } 460 461 static int 462 ctf_dwarf_refdie(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, 463 Dwarf_Die *diep) 464 { 465 int ret; 466 Dwarf_Off off; 467 Dwarf_Error derr; 468 469 if ((ret = ctf_dwarf_ref(cup, die, name, &off)) != 0) 470 return (ret); 471 472 off += cup->cu_cuoff; 473 if ((ret = dwarf_offdie(cup->cu_dwarf, off, diep, &derr)) != 474 DW_DLV_OK) { 475 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 476 "failed to get die from offset %" DW_PR_DUu ": %s\n", 477 off, dwarf_errmsg(derr)); 478 return (ECTF_CONVBKERR); 479 } 480 481 return (0); 482 } 483 484 static int 485 ctf_dwarf_signed(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, 486 Dwarf_Signed *valp) 487 { 488 int ret; 489 Dwarf_Attribute attr; 490 Dwarf_Error derr; 491 492 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0) 493 return (ret); 494 495 if (dwarf_formsdata(attr, valp, &derr) == DW_DLV_OK) { 496 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR); 497 return (0); 498 } 499 500 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 501 "failed to get unsigned attribute for type: %s\n", 502 dwarf_errmsg(derr)); 503 return (ECTF_CONVBKERR); 504 } 505 506 static int 507 ctf_dwarf_unsigned(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, 508 Dwarf_Unsigned *valp) 509 { 510 int ret; 511 Dwarf_Attribute attr; 512 Dwarf_Error derr; 513 514 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0) 515 return (ret); 516 517 if (dwarf_formudata(attr, valp, &derr) == DW_DLV_OK) { 518 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR); 519 return (0); 520 } 521 522 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 523 "failed to get unsigned attribute for type: %s\n", 524 dwarf_errmsg(derr)); 525 return (ECTF_CONVBKERR); 526 } 527 528 static int 529 ctf_dwarf_boolean(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, 530 Dwarf_Bool *val) 531 { 532 int ret; 533 Dwarf_Attribute attr; 534 Dwarf_Error derr; 535 536 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0) 537 return (ret); 538 539 if (dwarf_formflag(attr, val, &derr) == DW_DLV_OK) { 540 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR); 541 return (0); 542 } 543 544 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 545 "failed to get boolean attribute for type: %s\n", 546 dwarf_errmsg(derr)); 547 548 return (ECTF_CONVBKERR); 549 } 550 551 static int 552 ctf_dwarf_string(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, char **strp) 553 { 554 int ret; 555 char *s; 556 Dwarf_Attribute attr; 557 Dwarf_Error derr; 558 559 *strp = NULL; 560 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0) 561 return (ret); 562 563 if (dwarf_formstring(attr, &s, &derr) == DW_DLV_OK) { 564 if ((*strp = ctf_strdup(s)) == NULL) 565 ret = ENOMEM; 566 else 567 ret = 0; 568 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR); 569 return (ret); 570 } 571 572 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 573 "failed to get string attribute for type: %s\n", 574 dwarf_errmsg(derr)); 575 return (ECTF_CONVBKERR); 576 } 577 578 static int 579 ctf_dwarf_member_location(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Unsigned *valp) 580 { 581 int ret; 582 Dwarf_Error derr; 583 Dwarf_Attribute attr; 584 Dwarf_Locdesc *loc; 585 Dwarf_Signed locnum; 586 587 if ((ret = ctf_dwarf_attribute(cup, die, DW_AT_data_member_location, 588 &attr)) != 0) 589 return (ret); 590 591 if (dwarf_loclist(attr, &loc, &locnum, &derr) != DW_DLV_OK) { 592 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 593 "failed to obtain location list for member offset: %s", 594 dwarf_errmsg(derr)); 595 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR); 596 return (ECTF_CONVBKERR); 597 } 598 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR); 599 600 if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) { 601 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 602 "failed to parse location structure for member"); 603 dwarf_dealloc(cup->cu_dwarf, loc->ld_s, DW_DLA_LOC_BLOCK); 604 dwarf_dealloc(cup->cu_dwarf, loc, DW_DLA_LOCDESC); 605 return (ECTF_CONVBKERR); 606 } 607 608 *valp = loc->ld_s->lr_number; 609 610 dwarf_dealloc(cup->cu_dwarf, loc->ld_s, DW_DLA_LOC_BLOCK); 611 dwarf_dealloc(cup->cu_dwarf, loc, DW_DLA_LOCDESC); 612 return (0); 613 } 614 615 616 static int 617 ctf_dwarf_offset(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Off *offsetp) 618 { 619 Dwarf_Error derr; 620 621 if (dwarf_dieoffset(die, offsetp, &derr) == DW_DLV_OK) 622 return (0); 623 624 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 625 "failed to get die offset: %s\n", 626 dwarf_errmsg(derr)); 627 return (ECTF_CONVBKERR); 628 } 629 630 /* simpler variant for debugging output */ 631 static Dwarf_Off 632 ctf_die_offset(Dwarf_Die die) 633 { 634 Dwarf_Off off = -1; 635 Dwarf_Error derr; 636 637 (void) dwarf_dieoffset(die, &off, &derr); 638 return (off); 639 } 640 641 static int 642 ctf_dwarf_tag(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half *tagp) 643 { 644 Dwarf_Error derr; 645 646 if (dwarf_tag(die, tagp, &derr) == DW_DLV_OK) 647 return (0); 648 649 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 650 "failed to get tag type: %s\n", 651 dwarf_errmsg(derr)); 652 return (ECTF_CONVBKERR); 653 } 654 655 static int 656 ctf_dwarf_sib(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *sibp) 657 { 658 Dwarf_Error derr; 659 int ret; 660 661 *sibp = NULL; 662 ret = dwarf_siblingof(cup->cu_dwarf, base, sibp, &derr); 663 if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY) 664 return (0); 665 666 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 667 "failed to sibling from die: %s\n", 668 dwarf_errmsg(derr)); 669 return (ECTF_CONVBKERR); 670 } 671 672 static int 673 ctf_dwarf_child(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *childp) 674 { 675 Dwarf_Error derr; 676 int ret; 677 678 *childp = NULL; 679 ret = dwarf_child(base, childp, &derr); 680 if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY) 681 return (0); 682 683 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 684 "failed to child from die: %s\n", 685 dwarf_errmsg(derr)); 686 return (ECTF_CONVBKERR); 687 } 688 689 /* 690 * Compilers disagree on what to do to determine if something has global 691 * visiblity. Traditionally gcc has used DW_AT_external to indicate this while 692 * Studio has used DW_AT_visibility. We check DW_AT_visibility first and then 693 * fall back to DW_AT_external. Lack of DW_AT_external implies that it is not. 694 */ 695 static int 696 ctf_dwarf_isglobal(ctf_cu_t *cup, Dwarf_Die die, boolean_t *igp) 697 { 698 int ret; 699 Dwarf_Signed vis; 700 Dwarf_Bool ext; 701 702 if ((ret = ctf_dwarf_signed(cup, die, DW_AT_visibility, &vis)) == 0) { 703 *igp = vis == DW_VIS_exported; 704 return (0); 705 } else if (ret != ENOENT) { 706 return (ret); 707 } 708 709 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_external, &ext)) != 0) { 710 if (ret == ENOENT) { 711 *igp = B_FALSE; 712 return (0); 713 } 714 return (ret); 715 } 716 *igp = ext != 0 ? B_TRUE : B_FALSE; 717 return (0); 718 } 719 720 static int 721 ctf_dwarf_die_elfenc(Elf *elf, ctf_cu_t *cup, char *errbuf, size_t errlen) 722 { 723 GElf_Ehdr ehdr; 724 725 if (gelf_getehdr(elf, &ehdr) == NULL) { 726 (void) snprintf(errbuf, errlen, 727 "failed to get ELF header: %s\n", 728 elf_errmsg(elf_errno())); 729 return (ECTF_CONVBKERR); 730 } 731 732 cup->cu_mach = ehdr.e_machine; 733 734 if (ehdr.e_ident[EI_CLASS] == ELFCLASS32) { 735 cup->cu_ptrsz = 4; 736 VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_ILP32) == 0); 737 } else if (ehdr.e_ident[EI_CLASS] == ELFCLASS64) { 738 cup->cu_ptrsz = 8; 739 VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_LP64) == 0); 740 } else { 741 (void) snprintf(errbuf, errlen, 742 "unknown ELF class %d", ehdr.e_ident[EI_CLASS]); 743 return (ECTF_CONVBKERR); 744 } 745 746 if (ehdr.e_ident[EI_DATA] == ELFDATA2LSB) { 747 cup->cu_bigend = B_FALSE; 748 } else if (ehdr.e_ident[EI_DATA] == ELFDATA2MSB) { 749 cup->cu_bigend = B_TRUE; 750 } else { 751 (void) snprintf(errbuf, errlen, 752 "unknown ELF data encoding: %hhu", ehdr.e_ident[EI_DATA]); 753 return (ECTF_CONVBKERR); 754 } 755 756 return (0); 757 } 758 759 typedef struct ctf_dwarf_fpent { 760 size_t cdfe_size; 761 uint_t cdfe_enc[3]; 762 } ctf_dwarf_fpent_t; 763 764 typedef struct ctf_dwarf_fpmap { 765 uint_t cdf_mach; 766 ctf_dwarf_fpent_t cdf_ents[4]; 767 } ctf_dwarf_fpmap_t; 768 769 static const ctf_dwarf_fpmap_t ctf_dwarf_fpmaps[] = { 770 { EM_SPARC, { 771 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, 772 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, 773 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 774 { 0, { 0 } } 775 } }, 776 { EM_SPARC32PLUS, { 777 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, 778 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, 779 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 780 { 0, { 0 } } 781 } }, 782 { EM_SPARCV9, { 783 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, 784 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, 785 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 786 { 0, { 0 } } 787 } }, 788 { EM_386, { 789 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, 790 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, 791 { 12, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 792 { 0, { 0 } } 793 } }, 794 { EM_X86_64, { 795 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, 796 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, 797 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 798 { 0, { 0 } } 799 } }, 800 { EM_NONE } 801 }; 802 803 static int 804 ctf_dwarf_float_base(ctf_cu_t *cup, Dwarf_Signed type, ctf_encoding_t *enc) 805 { 806 const ctf_dwarf_fpmap_t *map = &ctf_dwarf_fpmaps[0]; 807 const ctf_dwarf_fpent_t *ent; 808 uint_t col = 0, mult = 1; 809 810 for (map = &ctf_dwarf_fpmaps[0]; map->cdf_mach != EM_NONE; map++) { 811 if (map->cdf_mach == cup->cu_mach) 812 break; 813 } 814 815 if (map->cdf_mach == EM_NONE) { 816 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 817 "Unsupported machine type: %d\n", cup->cu_mach); 818 return (ENOTSUP); 819 } 820 821 if (type == DW_ATE_complex_float) { 822 mult = 2; 823 col = 1; 824 } else if (type == DW_ATE_imaginary_float || 825 type == DW_ATE_SUN_imaginary_float) { 826 col = 2; 827 } 828 829 ent = &map->cdf_ents[0]; 830 for (ent = &map->cdf_ents[0]; ent->cdfe_size != 0; ent++) { 831 if (ent->cdfe_size * mult * 8 == enc->cte_bits) { 832 enc->cte_format = ent->cdfe_enc[col]; 833 return (0); 834 } 835 } 836 837 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 838 "failed to find valid fp mapping for encoding %d, size %d bits\n", 839 type, enc->cte_bits); 840 return (EINVAL); 841 } 842 843 static int 844 ctf_dwarf_dwarf_base(ctf_cu_t *cup, Dwarf_Die die, int *kindp, 845 ctf_encoding_t *enc) 846 { 847 int ret; 848 Dwarf_Signed type; 849 850 if ((ret = ctf_dwarf_signed(cup, die, DW_AT_encoding, &type)) != 0) 851 return (ret); 852 853 switch (type) { 854 case DW_ATE_unsigned: 855 case DW_ATE_address: 856 *kindp = CTF_K_INTEGER; 857 enc->cte_format = 0; 858 break; 859 case DW_ATE_unsigned_char: 860 *kindp = CTF_K_INTEGER; 861 enc->cte_format = CTF_INT_CHAR; 862 break; 863 case DW_ATE_signed: 864 *kindp = CTF_K_INTEGER; 865 enc->cte_format = CTF_INT_SIGNED; 866 break; 867 case DW_ATE_signed_char: 868 *kindp = CTF_K_INTEGER; 869 enc->cte_format = CTF_INT_SIGNED | CTF_INT_CHAR; 870 break; 871 case DW_ATE_boolean: 872 *kindp = CTF_K_INTEGER; 873 enc->cte_format = CTF_INT_SIGNED | CTF_INT_BOOL; 874 break; 875 case DW_ATE_float: 876 case DW_ATE_complex_float: 877 case DW_ATE_imaginary_float: 878 case DW_ATE_SUN_imaginary_float: 879 case DW_ATE_SUN_interval_float: 880 *kindp = CTF_K_FLOAT; 881 if ((ret = ctf_dwarf_float_base(cup, type, enc)) != 0) 882 return (ret); 883 break; 884 default: 885 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 886 "encountered unknown DWARF encoding: %d", type); 887 return (ECTF_CONVBKERR); 888 } 889 890 return (0); 891 } 892 893 /* 894 * Different compilers (at least GCC and Studio) use different names for types. 895 * This parses the types and attempts to unify them. If this fails, we just fall 896 * back to using the DWARF itself. 897 */ 898 static int 899 ctf_dwarf_parse_base(const char *name, int *kindp, ctf_encoding_t *enc, 900 char **newnamep) 901 { 902 char buf[256]; 903 char *base, *c, *last; 904 int nlong = 0, nshort = 0, nchar = 0, nint = 0; 905 int sign = 1; 906 907 if (strlen(name) + 1 > sizeof (buf)) 908 return (EINVAL); 909 910 (void) strlcpy(buf, name, sizeof (buf)); 911 for (c = strtok_r(buf, " ", &last); c != NULL; 912 c = strtok_r(NULL, " ", &last)) { 913 if (strcmp(c, "signed") == 0) { 914 sign = 1; 915 } else if (strcmp(c, "unsigned") == 0) { 916 sign = 0; 917 } else if (strcmp(c, "long") == 0) { 918 nlong++; 919 } else if (strcmp(c, "char") == 0) { 920 nchar++; 921 } else if (strcmp(c, "short") == 0) { 922 nshort++; 923 } else if (strcmp(c, "int") == 0) { 924 nint++; 925 } else { 926 /* 927 * If we don't recognize any of the tokens, we'll tell 928 * the caller to fall back to the dwarf-provided 929 * encoding information. 930 */ 931 return (EINVAL); 932 } 933 } 934 935 if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2) 936 return (EINVAL); 937 938 if (nchar > 0) { 939 if (nlong > 0 || nshort > 0 || nint > 0) 940 return (EINVAL); 941 base = "char"; 942 } else if (nshort > 0) { 943 if (nlong > 0) 944 return (EINVAL); 945 base = "short"; 946 } else if (nlong > 0) { 947 base = "long"; 948 } else { 949 base = "int"; 950 } 951 952 if (nchar > 0) 953 enc->cte_format = CTF_INT_CHAR; 954 else 955 enc->cte_format = 0; 956 957 if (sign > 0) 958 enc->cte_format |= CTF_INT_SIGNED; 959 960 (void) snprintf(buf, sizeof (buf), "%s%s%s", 961 (sign ? "" : "unsigned "), 962 (nlong > 1 ? "long " : ""), 963 base); 964 965 *newnamep = ctf_strdup(buf); 966 if (*newnamep == NULL) 967 return (ENOMEM); 968 *kindp = CTF_K_INTEGER; 969 return (0); 970 } 971 972 static int 973 ctf_dwarf_create_base(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot, 974 Dwarf_Off off) 975 { 976 int ret; 977 char *name, *nname; 978 Dwarf_Unsigned sz; 979 int kind; 980 ctf_encoding_t enc; 981 ctf_id_t id; 982 983 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0) 984 return (ret); 985 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &sz)) != 0) { 986 goto out; 987 } 988 ctf_dprintf("Creating base type %s from off %llu, size: %d\n", name, 989 off, sz); 990 991 bzero(&enc, sizeof (ctf_encoding_t)); 992 enc.cte_bits = sz * 8; 993 if ((ret = ctf_dwarf_parse_base(name, &kind, &enc, &nname)) == 0) { 994 ctf_free(name, strlen(name) + 1); 995 name = nname; 996 } else { 997 if (ret != EINVAL) 998 return (ret); 999 ctf_dprintf("falling back to dwarf for base type %s\n", name); 1000 if ((ret = ctf_dwarf_dwarf_base(cup, die, &kind, &enc)) != 0) 1001 return (ret); 1002 } 1003 1004 id = ctf_add_encoded(cup->cu_ctfp, isroot, name, &enc, kind); 1005 if (id == CTF_ERR) { 1006 ret = ctf_errno(cup->cu_ctfp); 1007 } else { 1008 *idp = id; 1009 ret = ctf_dwmap_add(cup, id, die, B_FALSE); 1010 } 1011 out: 1012 ctf_free(name, strlen(name) + 1); 1013 return (ret); 1014 } 1015 1016 /* 1017 * Getting a member's offset is a surprisingly intricate dance. It works as 1018 * follows: 1019 * 1020 * 1) If we're in DWARFv4, then we either have a DW_AT_data_bit_offset or we 1021 * have a DW_AT_data_member_location. We won't have both. Thus we check first 1022 * for DW_AT_data_bit_offset, and if it exists, we're set. 1023 * 1024 * Next, if we have a bitfield and we don't have a DW_AT_data_bit_offset, then 1025 * we have to grab the data location and use the following dance: 1026 * 1027 * 2) Gather the set of DW_AT_byte_size, DW_AT_bit_offset, and DW_AT_bit_size. 1028 * Of course, the DW_AT_byte_size may be omitted, even though it isn't always. 1029 * When it's been omitted, we then have to say that the size is that of the 1030 * underlying type, which forces that to be after a ctf_update(). Here, we have 1031 * to do different things based on whether or not we're using big endian or 1032 * little endian to obtain the proper offset. 1033 */ 1034 static int 1035 ctf_dwarf_member_offset(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t mid, 1036 ulong_t *offp) 1037 { 1038 int ret; 1039 Dwarf_Unsigned loc, bitsz, bytesz; 1040 Dwarf_Signed bitoff; 1041 size_t off; 1042 ssize_t tsz; 1043 1044 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_data_bit_offset, 1045 &loc)) == 0) { 1046 *offp = loc; 1047 return (0); 1048 } else if (ret != ENOENT) { 1049 return (ret); 1050 } 1051 1052 if ((ret = ctf_dwarf_member_location(cup, die, &loc)) != 0) 1053 return (ret); 1054 off = loc * 8; 1055 1056 if ((ret = ctf_dwarf_signed(cup, die, DW_AT_bit_offset, 1057 &bitoff)) != 0) { 1058 if (ret != ENOENT) 1059 return (ret); 1060 *offp = off; 1061 return (0); 1062 } 1063 1064 /* At this point we have to have DW_AT_bit_size */ 1065 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0) 1066 return (ret); 1067 1068 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, 1069 &bytesz)) != 0) { 1070 if (ret != ENOENT) 1071 return (ret); 1072 if ((tsz = ctf_type_size(cup->cu_ctfp, mid)) == CTF_ERR) { 1073 int e = ctf_errno(cup->cu_ctfp); 1074 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 1075 "failed to get type size: %s", ctf_errmsg(e)); 1076 return (ECTF_CONVBKERR); 1077 } 1078 } else { 1079 tsz = bytesz; 1080 } 1081 tsz *= 8; 1082 if (cup->cu_bigend == B_TRUE) { 1083 *offp = off + bitoff; 1084 } else { 1085 *offp = off + tsz - bitoff - bitsz; 1086 } 1087 1088 return (0); 1089 } 1090 1091 /* 1092 * We need to determine if the member in question is a bitfield. If it is, then 1093 * we need to go through and create a new type that's based on the actual base 1094 * type, but has a different size. We also rename the type as a result to help 1095 * deal with future collisions. 1096 * 1097 * Here we need to look and see if we have a DW_AT_bit_size value. If we have a 1098 * bit size member and it does not equal the byte size member, then we need to 1099 * create a bitfield type based on this. 1100 * 1101 * Note: When we support DWARFv4, there may be a chance that we need to also 1102 * search for the DW_AT_byte_size if we don't have a DW_AT_bit_size member. 1103 */ 1104 static int 1105 ctf_dwarf_member_bitfield(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp) 1106 { 1107 int ret; 1108 Dwarf_Unsigned bitsz; 1109 ctf_encoding_t e; 1110 ctf_dwbitf_t *cdb; 1111 ctf_dtdef_t *dtd; 1112 ctf_id_t base = *idp; 1113 int kind; 1114 1115 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0) { 1116 if (ret == ENOENT) 1117 return (0); 1118 return (ret); 1119 } 1120 1121 ctf_dprintf("Trying to deal with bitfields on %d:%d\n", base, bitsz); 1122 /* 1123 * Given that we now have a bitsize, time to go do something about it. 1124 * We're going to create a new type based on the current one, but first 1125 * we need to find the base type. This means we need to traverse any 1126 * typedef's, consts, and volatiles until we get to what should be 1127 * something of type integer or enumeration. 1128 */ 1129 VERIFY(bitsz < UINT32_MAX); 1130 dtd = ctf_dtd_lookup(cup->cu_ctfp, base); 1131 VERIFY(dtd != NULL); 1132 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); 1133 while (kind == CTF_K_TYPEDEF || kind == CTF_K_CONST || 1134 kind == CTF_K_VOLATILE) { 1135 dtd = ctf_dtd_lookup(cup->cu_ctfp, dtd->dtd_data.ctt_type); 1136 VERIFY(dtd != NULL); 1137 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); 1138 } 1139 ctf_dprintf("got kind %d\n", kind); 1140 VERIFY(kind == CTF_K_INTEGER || kind == CTF_K_ENUM); 1141 1142 /* 1143 * As surprising as it may be, it is strictly possible to create a 1144 * bitfield that is based on an enum. Of course, the C standard leaves 1145 * enums sizing as an ABI concern more or less. To that effect, today on 1146 * all illumos platforms the size of an enum is generally that of an 1147 * int as our supported data models and ABIs all agree on that. So what 1148 * we'll do is fake up a CTF encoding here to use. In this case, we'll 1149 * treat it as an unsigned value of whatever size the underlying enum 1150 * currently has (which is in the ctt_size member of its dynamic type 1151 * data). 1152 */ 1153 if (kind == CTF_K_INTEGER) { 1154 e = dtd->dtd_u.dtu_enc; 1155 } else { 1156 bzero(&e, sizeof (ctf_encoding_t)); 1157 e.cte_bits = dtd->dtd_data.ctt_size * NBBY; 1158 } 1159 1160 for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL; 1161 cdb = ctf_list_next(cdb)) { 1162 if (cdb->cdb_base == base && cdb->cdb_nbits == bitsz) 1163 break; 1164 } 1165 1166 /* 1167 * Create a new type if none exists. We name all types in a way that is 1168 * guaranteed not to conflict with the corresponding C type. We do this 1169 * by using the ':' operator. 1170 */ 1171 if (cdb == NULL) { 1172 size_t namesz; 1173 char *name; 1174 1175 e.cte_bits = bitsz; 1176 namesz = snprintf(NULL, 0, "%s:%d", dtd->dtd_name, 1177 (uint32_t)bitsz); 1178 name = ctf_alloc(namesz + 1); 1179 if (name == NULL) 1180 return (ENOMEM); 1181 cdb = ctf_alloc(sizeof (ctf_dwbitf_t)); 1182 if (cdb == NULL) { 1183 ctf_free(name, namesz + 1); 1184 return (ENOMEM); 1185 } 1186 (void) snprintf(name, namesz + 1, "%s:%d", dtd->dtd_name, 1187 (uint32_t)bitsz); 1188 1189 cdb->cdb_base = base; 1190 cdb->cdb_nbits = bitsz; 1191 cdb->cdb_id = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT, 1192 name, &e); 1193 if (cdb->cdb_id == CTF_ERR) { 1194 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 1195 "failed to get add bitfield type %s: %s", name, 1196 ctf_errmsg(ctf_errno(cup->cu_ctfp))); 1197 ctf_free(name, namesz + 1); 1198 ctf_free(cdb, sizeof (ctf_dwbitf_t)); 1199 return (ECTF_CONVBKERR); 1200 } 1201 ctf_free(name, namesz + 1); 1202 ctf_list_append(&cup->cu_bitfields, cdb); 1203 } 1204 1205 *idp = cdb->cdb_id; 1206 1207 return (0); 1208 } 1209 1210 static int 1211 ctf_dwarf_fixup_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t base, boolean_t add) 1212 { 1213 int ret, kind; 1214 Dwarf_Die child, memb; 1215 Dwarf_Unsigned size; 1216 ulong_t nsz; 1217 1218 kind = ctf_type_kind(cup->cu_ctfp, base); 1219 VERIFY(kind != CTF_ERR); 1220 VERIFY(kind == CTF_K_STRUCT || kind == CTF_K_UNION); 1221 1222 /* 1223 * Members are in children. However, gcc also allows empty ones. 1224 */ 1225 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0) 1226 return (ret); 1227 if (child == NULL) 1228 return (0); 1229 1230 memb = child; 1231 while (memb != NULL) { 1232 Dwarf_Die sib, tdie; 1233 Dwarf_Half tag; 1234 ctf_id_t mid; 1235 char *mname; 1236 ulong_t memboff = 0; 1237 1238 if ((ret = ctf_dwarf_tag(cup, memb, &tag)) != 0) 1239 return (ret); 1240 1241 if (tag != DW_TAG_member) 1242 continue; 1243 1244 if ((ret = ctf_dwarf_refdie(cup, memb, DW_AT_type, &tdie)) != 0) 1245 return (ret); 1246 1247 if ((ret = ctf_dwarf_convert_type(cup, tdie, &mid, 1248 CTF_ADD_NONROOT)) != 0) 1249 return (ret); 1250 ctf_dprintf("Got back type id: %d\n", mid); 1251 1252 /* 1253 * If we're not adding a member, just go ahead and return. 1254 */ 1255 if (add == B_FALSE) { 1256 if ((ret = ctf_dwarf_member_bitfield(cup, memb, 1257 &mid)) != 0) 1258 return (ret); 1259 goto next; 1260 } 1261 1262 if ((ret = ctf_dwarf_string(cup, memb, DW_AT_name, 1263 &mname)) != 0 && ret != ENOENT) 1264 return (ret); 1265 if (ret == ENOENT) 1266 mname = NULL; 1267 1268 if (kind == CTF_K_UNION) { 1269 memboff = 0; 1270 } else if ((ret = ctf_dwarf_member_offset(cup, memb, mid, 1271 &memboff)) != 0) { 1272 if (mname != NULL) 1273 ctf_free(mname, strlen(mname) + 1); 1274 return (ret); 1275 } 1276 1277 if ((ret = ctf_dwarf_member_bitfield(cup, memb, &mid)) != 0) 1278 return (ret); 1279 1280 ret = ctf_add_member(cup->cu_ctfp, base, mname, mid, memboff); 1281 if (ret == CTF_ERR) { 1282 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 1283 "failed to add member %s: %s", 1284 mname, ctf_errmsg(ctf_errno(cup->cu_ctfp))); 1285 if (mname != NULL) 1286 ctf_free(mname, strlen(mname) + 1); 1287 return (ECTF_CONVBKERR); 1288 } 1289 1290 if (mname != NULL) 1291 ctf_free(mname, strlen(mname) + 1); 1292 1293 next: 1294 if ((ret = ctf_dwarf_sib(cup, memb, &sib)) != 0) 1295 return (ret); 1296 memb = sib; 1297 } 1298 1299 /* 1300 * If we're not adding members, then we don't know the final size of the 1301 * structure, so end here. 1302 */ 1303 if (add == B_FALSE) 1304 return (0); 1305 1306 /* Finally set the size of the structure to the actual byte size */ 1307 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &size)) != 0) 1308 return (ret); 1309 nsz = size; 1310 if ((ctf_set_size(cup->cu_ctfp, base, nsz)) == CTF_ERR) { 1311 int e = ctf_errno(cup->cu_ctfp); 1312 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 1313 "failed to set type size for %d to 0x%x: %s", base, 1314 (uint32_t)size, ctf_errmsg(e)); 1315 return (ECTF_CONVBKERR); 1316 } 1317 1318 return (0); 1319 } 1320 1321 static int 1322 ctf_dwarf_create_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, 1323 int kind, int isroot) 1324 { 1325 int ret; 1326 char *name; 1327 ctf_id_t base; 1328 Dwarf_Die child; 1329 Dwarf_Bool decl; 1330 1331 /* 1332 * Deal with the terribly annoying case of anonymous structs and unions. 1333 * If they don't have a name, set the name to the empty string. 1334 */ 1335 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 && 1336 ret != ENOENT) 1337 return (ret); 1338 if (ret == ENOENT) 1339 name = NULL; 1340 1341 /* 1342 * We need to check if we just have a declaration here. If we do, then 1343 * instead of creating an actual structure or union, we're just going to 1344 * go ahead and create a forward. During a dedup or merge, the forward 1345 * will be replaced with the real thing. 1346 */ 1347 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, 1348 &decl)) != 0) { 1349 if (ret != ENOENT) 1350 return (ret); 1351 decl = 0; 1352 } 1353 1354 if (decl != 0) { 1355 base = ctf_add_forward(cup->cu_ctfp, isroot, name, kind); 1356 } else if (kind == CTF_K_STRUCT) { 1357 base = ctf_add_struct(cup->cu_ctfp, isroot, name); 1358 } else { 1359 base = ctf_add_union(cup->cu_ctfp, isroot, name); 1360 } 1361 ctf_dprintf("added sou %s (%d) (%d)\n", name, kind, base); 1362 if (name != NULL) 1363 ctf_free(name, strlen(name) + 1); 1364 if (base == CTF_ERR) 1365 return (ctf_errno(cup->cu_ctfp)); 1366 *idp = base; 1367 1368 /* 1369 * If it's just a declaration, we're not going to mark it for fix up or 1370 * do anything else. 1371 */ 1372 if (decl == B_TRUE) 1373 return (ctf_dwmap_add(cup, base, die, B_FALSE)); 1374 if ((ret = ctf_dwmap_add(cup, base, die, B_TRUE)) != 0) 1375 return (ret); 1376 1377 /* 1378 * Members are in children. However, gcc also allows empty ones. 1379 */ 1380 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0) 1381 return (ret); 1382 if (child == NULL) 1383 return (0); 1384 1385 return (0); 1386 } 1387 1388 static int 1389 ctf_dwarf_create_array_range(ctf_cu_t *cup, Dwarf_Die range, ctf_id_t *idp, 1390 ctf_id_t base, int isroot) 1391 { 1392 int ret; 1393 Dwarf_Die sib; 1394 Dwarf_Unsigned val; 1395 Dwarf_Signed sval; 1396 ctf_arinfo_t ar; 1397 1398 ctf_dprintf("creating array range\n"); 1399 1400 if ((ret = ctf_dwarf_sib(cup, range, &sib)) != 0) 1401 return (ret); 1402 if (sib != NULL) { 1403 ctf_id_t id; 1404 if ((ret = ctf_dwarf_create_array_range(cup, sib, &id, 1405 base, CTF_ADD_NONROOT)) != 0) 1406 return (ret); 1407 ar.ctr_contents = id; 1408 } else { 1409 ar.ctr_contents = base; 1410 } 1411 1412 if ((ar.ctr_index = ctf_dwarf_long(cup)) == CTF_ERR) 1413 return (ctf_errno(cup->cu_ctfp)); 1414 1415 /* 1416 * Array bounds can be signed or unsigned, but there are several kinds 1417 * of signless forms (data1, data2, etc) that take their sign from the 1418 * routine that is trying to interpret them. That is, data1 can be 1419 * either signed or unsigned, depending on whether you use the signed or 1420 * unsigned accessor function. GCC will use the signless forms to store 1421 * unsigned values which have their high bit set, so we need to try to 1422 * read them first as unsigned to get positive values. We could also 1423 * try signed first, falling back to unsigned if we got a negative 1424 * value. 1425 */ 1426 if ((ret = ctf_dwarf_unsigned(cup, range, DW_AT_upper_bound, 1427 &val)) == 0) { 1428 ar.ctr_nelems = val + 1; 1429 } else if (ret != ENOENT) { 1430 return (ret); 1431 } else if ((ret = ctf_dwarf_signed(cup, range, DW_AT_upper_bound, 1432 &sval)) == 0) { 1433 ar.ctr_nelems = sval + 1; 1434 } else if (ret != ENOENT) { 1435 return (ret); 1436 } else { 1437 ar.ctr_nelems = 0; 1438 } 1439 1440 if ((*idp = ctf_add_array(cup->cu_ctfp, isroot, &ar)) == CTF_ERR) 1441 return (ctf_errno(cup->cu_ctfp)); 1442 1443 return (0); 1444 } 1445 1446 /* 1447 * Try and create an array type. First, the kind of the array is specified in 1448 * the DW_AT_type entry. Next, the number of entries is stored in a more 1449 * complicated form, we should have a child that has the DW_TAG_subrange type. 1450 */ 1451 static int 1452 ctf_dwarf_create_array(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot) 1453 { 1454 int ret; 1455 Dwarf_Die tdie, rdie; 1456 ctf_id_t tid; 1457 Dwarf_Half rtag; 1458 1459 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) 1460 return (ret); 1461 if ((ret = ctf_dwarf_convert_type(cup, tdie, &tid, 1462 CTF_ADD_NONROOT)) != 0) 1463 return (ret); 1464 1465 if ((ret = ctf_dwarf_child(cup, die, &rdie)) != 0) 1466 return (ret); 1467 if ((ret = ctf_dwarf_tag(cup, rdie, &rtag)) != 0) 1468 return (ret); 1469 if (rtag != DW_TAG_subrange_type) { 1470 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 1471 "encountered array without DW_TAG_subrange_type child\n"); 1472 return (ECTF_CONVBKERR); 1473 } 1474 1475 /* 1476 * The compiler may opt to describe a multi-dimensional array as one 1477 * giant array or it may opt to instead encode it as a series of 1478 * subranges. If it's the latter, then for each subrange we introduce a 1479 * type. We can always use the base type. 1480 */ 1481 if ((ret = ctf_dwarf_create_array_range(cup, rdie, idp, tid, 1482 isroot)) != 0) 1483 return (ret); 1484 ctf_dprintf("Got back id %d\n", *idp); 1485 return (ctf_dwmap_add(cup, *idp, die, B_FALSE)); 1486 } 1487 1488 /* 1489 * Given "const int const_array3[11]", GCC7 at least will create a DIE tree of 1490 * DW_TAG_const_type:DW_TAG_array_type:DW_Tag_const_type:<member_type>. 1491 * 1492 * Given C's syntax, this renders out as "const const int const_array3[11]". To 1493 * get closer to round-tripping (and make the unit tests work), we'll peek for 1494 * this case, and avoid adding the extraneous qualifier if we see that the 1495 * underlying array referent already has the same qualifier. 1496 * 1497 * This is unfortunately less trivial than it could be: this issue applies to 1498 * qualifier sets like "const volatile", as well as multi-dimensional arrays, so 1499 * we need to descend down those. 1500 * 1501 * Returns CTF_ERR on error, or a boolean value otherwise. 1502 */ 1503 static int 1504 needed_array_qualifier(ctf_cu_t *cup, int kind, ctf_id_t ref_id) 1505 { 1506 const ctf_type_t *t; 1507 ctf_arinfo_t arinfo; 1508 int akind; 1509 1510 if (kind != CTF_K_CONST && kind != CTF_K_VOLATILE && 1511 kind != CTF_K_RESTRICT) 1512 return (1); 1513 1514 if ((t = ctf_dyn_lookup_by_id(cup->cu_ctfp, ref_id)) == NULL) 1515 return (CTF_ERR); 1516 1517 if (LCTF_INFO_KIND(cup->cu_ctfp, t->ctt_info) != CTF_K_ARRAY) 1518 return (1); 1519 1520 if (ctf_dyn_array_info(cup->cu_ctfp, ref_id, &arinfo) != 0) 1521 return (CTF_ERR); 1522 1523 ctf_id_t id = arinfo.ctr_contents; 1524 1525 for (;;) { 1526 if ((t = ctf_dyn_lookup_by_id(cup->cu_ctfp, id)) == NULL) 1527 return (CTF_ERR); 1528 1529 akind = LCTF_INFO_KIND(cup->cu_ctfp, t->ctt_info); 1530 1531 if (akind == kind) 1532 break; 1533 1534 if (akind == CTF_K_ARRAY) { 1535 if (ctf_dyn_array_info(cup->cu_ctfp, 1536 id, &arinfo) != 0) 1537 return (CTF_ERR); 1538 id = arinfo.ctr_contents; 1539 continue; 1540 } 1541 1542 if (akind != CTF_K_CONST && akind != CTF_K_VOLATILE && 1543 akind != CTF_K_RESTRICT) 1544 break; 1545 1546 id = t->ctt_type; 1547 } 1548 1549 if (kind == akind) { 1550 ctf_dprintf("ignoring extraneous %s qualifier for array %d\n", 1551 ctf_kind_name(cup->cu_ctfp, kind), ref_id); 1552 } 1553 1554 return (kind != akind); 1555 } 1556 1557 static int 1558 ctf_dwarf_create_reference(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, 1559 int kind, int isroot) 1560 { 1561 int ret; 1562 ctf_id_t id; 1563 Dwarf_Die tdie; 1564 char *name; 1565 size_t namelen; 1566 1567 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 && 1568 ret != ENOENT) 1569 return (ret); 1570 if (ret == ENOENT) { 1571 name = NULL; 1572 namelen = 0; 1573 } else { 1574 namelen = strlen(name); 1575 } 1576 1577 ctf_dprintf("reference kind %d %s\n", kind, name != NULL ? name : "<>"); 1578 1579 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) { 1580 if (ret != ENOENT) { 1581 ctf_free(name, namelen); 1582 return (ret); 1583 } 1584 if ((id = ctf_dwarf_void(cup)) == CTF_ERR) { 1585 ctf_free(name, namelen); 1586 return (ctf_errno(cup->cu_ctfp)); 1587 } 1588 } else { 1589 if ((ret = ctf_dwarf_convert_type(cup, tdie, &id, 1590 CTF_ADD_NONROOT)) != 0) { 1591 ctf_free(name, namelen); 1592 return (ret); 1593 } 1594 } 1595 1596 if ((ret = needed_array_qualifier(cup, kind, id)) <= 0) { 1597 if (ret != 0) { 1598 ret = (ctf_errno(cup->cu_ctfp)); 1599 } else { 1600 *idp = id; 1601 } 1602 1603 ctf_free(name, namelen); 1604 return (ret); 1605 } 1606 1607 if ((*idp = ctf_add_reftype(cup->cu_ctfp, isroot, name, id, kind)) == 1608 CTF_ERR) { 1609 ctf_free(name, namelen); 1610 return (ctf_errno(cup->cu_ctfp)); 1611 } 1612 1613 ctf_free(name, namelen); 1614 return (ctf_dwmap_add(cup, *idp, die, B_FALSE)); 1615 } 1616 1617 static int 1618 ctf_dwarf_create_enum(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot) 1619 { 1620 int ret; 1621 ctf_id_t id; 1622 Dwarf_Die child; 1623 char *name; 1624 1625 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 && 1626 ret != ENOENT) 1627 return (ret); 1628 if (ret == ENOENT) 1629 name = NULL; 1630 id = ctf_add_enum(cup->cu_ctfp, isroot, name); 1631 ctf_dprintf("added enum %s (%d)\n", name, id); 1632 if (name != NULL) 1633 ctf_free(name, strlen(name) + 1); 1634 if (id == CTF_ERR) 1635 return (ctf_errno(cup->cu_ctfp)); 1636 *idp = id; 1637 if ((ret = ctf_dwmap_add(cup, id, die, B_FALSE)) != 0) 1638 return (ret); 1639 1640 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0) { 1641 if (ret == ENOENT) 1642 ret = 0; 1643 return (ret); 1644 } 1645 1646 while (child != NULL) { 1647 Dwarf_Half tag; 1648 Dwarf_Signed sval; 1649 Dwarf_Unsigned uval; 1650 Dwarf_Die arg = child; 1651 int eval; 1652 1653 if ((ret = ctf_dwarf_sib(cup, arg, &child)) != 0) 1654 return (ret); 1655 1656 if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0) 1657 return (ret); 1658 1659 if (tag != DW_TAG_enumerator) { 1660 if ((ret = ctf_dwarf_convert_type(cup, arg, NULL, 1661 CTF_ADD_NONROOT)) != 0) 1662 return (ret); 1663 continue; 1664 } 1665 1666 /* 1667 * DWARF v4 section 5.7 tells us we'll always have names. 1668 */ 1669 if ((ret = ctf_dwarf_string(cup, arg, DW_AT_name, &name)) != 0) 1670 return (ret); 1671 1672 /* 1673 * We have to be careful here: newer GCCs generate DWARF where 1674 * an unsigned value will happily pass ctf_dwarf_signed(). 1675 * Since negative values will fail ctf_dwarf_unsigned(), we try 1676 * that first to make sure we get the right value. 1677 */ 1678 if ((ret = ctf_dwarf_unsigned(cup, arg, DW_AT_const_value, 1679 &uval)) == 0) { 1680 eval = (int)uval; 1681 } else if ((ret = ctf_dwarf_signed(cup, arg, DW_AT_const_value, 1682 &sval)) == 0) { 1683 eval = sval; 1684 } 1685 1686 if (ret != 0) { 1687 if (ret != ENOENT) 1688 return (ret); 1689 1690 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 1691 "encountered enumeration without constant value\n"); 1692 return (ECTF_CONVBKERR); 1693 } 1694 1695 ret = ctf_add_enumerator(cup->cu_ctfp, id, name, eval); 1696 if (ret == CTF_ERR) { 1697 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 1698 "failed to add enumarator %s (%d) to %d\n", 1699 name, eval, id); 1700 ctf_free(name, strlen(name) + 1); 1701 return (ctf_errno(cup->cu_ctfp)); 1702 } 1703 ctf_free(name, strlen(name) + 1); 1704 } 1705 1706 return (0); 1707 } 1708 1709 /* 1710 * For a function pointer, walk over and process all of its children, unless we 1711 * encounter one that's just a declaration. In which case, we error on it. 1712 */ 1713 static int 1714 ctf_dwarf_create_fptr(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot) 1715 { 1716 int ret; 1717 Dwarf_Bool b; 1718 ctf_funcinfo_t fi; 1719 Dwarf_Die retdie; 1720 ctf_id_t *argv = NULL; 1721 1722 bzero(&fi, sizeof (ctf_funcinfo_t)); 1723 1724 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) != 0) { 1725 if (ret != ENOENT) 1726 return (ret); 1727 } else { 1728 if (b != 0) 1729 return (EPROTOTYPE); 1730 } 1731 1732 /* 1733 * Return type is in DW_AT_type, if none, it returns void. 1734 */ 1735 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &retdie)) != 0) { 1736 if (ret != ENOENT) 1737 return (ret); 1738 if ((fi.ctc_return = ctf_dwarf_void(cup)) == CTF_ERR) 1739 return (ctf_errno(cup->cu_ctfp)); 1740 } else { 1741 if ((ret = ctf_dwarf_convert_type(cup, retdie, &fi.ctc_return, 1742 CTF_ADD_NONROOT)) != 0) 1743 return (ret); 1744 } 1745 1746 if ((ret = ctf_dwarf_function_count(cup, die, &fi, B_TRUE)) != 0) { 1747 return (ret); 1748 } 1749 1750 if (fi.ctc_argc != 0) { 1751 argv = ctf_alloc(sizeof (ctf_id_t) * fi.ctc_argc); 1752 if (argv == NULL) 1753 return (ENOMEM); 1754 1755 if ((ret = ctf_dwarf_convert_fargs(cup, die, &fi, argv)) != 0) { 1756 ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc); 1757 return (ret); 1758 } 1759 } 1760 1761 if ((*idp = ctf_add_funcptr(cup->cu_ctfp, isroot, &fi, argv)) == 1762 CTF_ERR) { 1763 ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc); 1764 return (ctf_errno(cup->cu_ctfp)); 1765 } 1766 1767 ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc); 1768 return (ctf_dwmap_add(cup, *idp, die, B_FALSE)); 1769 } 1770 1771 static int 1772 ctf_dwarf_convert_type(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, 1773 int isroot) 1774 { 1775 int ret; 1776 Dwarf_Off offset; 1777 Dwarf_Half tag; 1778 ctf_dwmap_t lookup, *map; 1779 ctf_id_t id; 1780 1781 if (idp == NULL) 1782 idp = &id; 1783 1784 if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0) 1785 return (ret); 1786 1787 if (offset > cup->cu_maxoff) { 1788 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 1789 "die offset %llu beyond maximum for header %llu\n", 1790 offset, cup->cu_maxoff); 1791 return (ECTF_CONVBKERR); 1792 } 1793 1794 /* 1795 * If we've already added an entry for this offset, then we're done. 1796 */ 1797 lookup.cdm_off = offset; 1798 if ((map = avl_find(&cup->cu_map, &lookup, NULL)) != NULL) { 1799 *idp = map->cdm_id; 1800 return (0); 1801 } 1802 1803 if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0) 1804 return (ret); 1805 1806 ret = ENOTSUP; 1807 switch (tag) { 1808 case DW_TAG_base_type: 1809 ctf_dprintf("base\n"); 1810 ret = ctf_dwarf_create_base(cup, die, idp, isroot, offset); 1811 break; 1812 case DW_TAG_array_type: 1813 ctf_dprintf("array\n"); 1814 ret = ctf_dwarf_create_array(cup, die, idp, isroot); 1815 break; 1816 case DW_TAG_enumeration_type: 1817 ctf_dprintf("enum\n"); 1818 ret = ctf_dwarf_create_enum(cup, die, idp, isroot); 1819 break; 1820 case DW_TAG_pointer_type: 1821 ctf_dprintf("pointer\n"); 1822 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_POINTER, 1823 isroot); 1824 break; 1825 case DW_TAG_structure_type: 1826 ctf_dprintf("struct\n"); 1827 ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_STRUCT, 1828 isroot); 1829 break; 1830 case DW_TAG_subroutine_type: 1831 ctf_dprintf("fptr\n"); 1832 ret = ctf_dwarf_create_fptr(cup, die, idp, isroot); 1833 break; 1834 case DW_TAG_typedef: 1835 ctf_dprintf("typedef\n"); 1836 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_TYPEDEF, 1837 isroot); 1838 break; 1839 case DW_TAG_union_type: 1840 ctf_dprintf("union\n"); 1841 ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_UNION, 1842 isroot); 1843 break; 1844 case DW_TAG_const_type: 1845 ctf_dprintf("const\n"); 1846 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_CONST, 1847 isroot); 1848 break; 1849 case DW_TAG_volatile_type: 1850 ctf_dprintf("volatile\n"); 1851 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_VOLATILE, 1852 isroot); 1853 break; 1854 case DW_TAG_restrict_type: 1855 ctf_dprintf("restrict\n"); 1856 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_RESTRICT, 1857 isroot); 1858 break; 1859 default: 1860 ctf_dprintf("ignoring tag type %x\n", tag); 1861 *idp = CTF_ERR; 1862 ret = 0; 1863 break; 1864 } 1865 ctf_dprintf("ctf_dwarf_convert_type tag specific handler returned %d\n", 1866 ret); 1867 1868 return (ret); 1869 } 1870 1871 static int 1872 ctf_dwarf_walk_lexical(ctf_cu_t *cup, Dwarf_Die die) 1873 { 1874 int ret; 1875 Dwarf_Die child; 1876 1877 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0) 1878 return (ret); 1879 1880 if (child == NULL) 1881 return (0); 1882 1883 return (ctf_dwarf_convert_die(cup, die)); 1884 } 1885 1886 static int 1887 ctf_dwarf_function_count(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip, 1888 boolean_t fptr) 1889 { 1890 int ret; 1891 Dwarf_Die child, sib, arg; 1892 1893 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0) 1894 return (ret); 1895 1896 arg = child; 1897 while (arg != NULL) { 1898 Dwarf_Half tag; 1899 1900 if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0) 1901 return (ret); 1902 1903 /* 1904 * We have to check for a varargs type declaration. This will 1905 * happen in one of two ways. If we have a function pointer 1906 * type, then it'll be done with a tag of type 1907 * DW_TAG_unspecified_parameters. However, it only means we have 1908 * a variable number of arguments, if we have more than one 1909 * argument found so far. Otherwise, when we have a function 1910 * type, it instead uses a formal parameter whose name is '...' 1911 * to indicate a variable arguments member. 1912 * 1913 * Also, if we have a function pointer, then we have to expect 1914 * that we might not get a name at all. 1915 */ 1916 if (tag == DW_TAG_formal_parameter && fptr == B_FALSE) { 1917 char *name; 1918 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, 1919 &name)) != 0) 1920 return (ret); 1921 if (strcmp(name, DWARF_VARARGS_NAME) == 0) 1922 fip->ctc_flags |= CTF_FUNC_VARARG; 1923 else 1924 fip->ctc_argc++; 1925 ctf_free(name, strlen(name) + 1); 1926 } else if (tag == DW_TAG_formal_parameter) { 1927 fip->ctc_argc++; 1928 } else if (tag == DW_TAG_unspecified_parameters && 1929 fip->ctc_argc > 0) { 1930 fip->ctc_flags |= CTF_FUNC_VARARG; 1931 } 1932 if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0) 1933 return (ret); 1934 arg = sib; 1935 } 1936 1937 return (0); 1938 } 1939 1940 static int 1941 ctf_dwarf_convert_fargs(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip, 1942 ctf_id_t *argv) 1943 { 1944 int ret; 1945 int i = 0; 1946 Dwarf_Die child, sib, arg; 1947 1948 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0) 1949 return (ret); 1950 1951 arg = child; 1952 while (arg != NULL) { 1953 Dwarf_Half tag; 1954 1955 if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0) 1956 return (ret); 1957 if (tag == DW_TAG_formal_parameter) { 1958 Dwarf_Die tdie; 1959 1960 if ((ret = ctf_dwarf_refdie(cup, arg, DW_AT_type, 1961 &tdie)) != 0) 1962 return (ret); 1963 1964 if ((ret = ctf_dwarf_convert_type(cup, tdie, &argv[i], 1965 CTF_ADD_ROOT)) != 0) 1966 return (ret); 1967 i++; 1968 1969 /* 1970 * Once we hit argc entries, we're done. This ensures we 1971 * don't accidentally hit a varargs which should be the 1972 * last entry. 1973 */ 1974 if (i == fip->ctc_argc) 1975 break; 1976 } 1977 1978 if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0) 1979 return (ret); 1980 arg = sib; 1981 } 1982 1983 return (0); 1984 } 1985 1986 static int 1987 ctf_dwarf_convert_function(ctf_cu_t *cup, Dwarf_Die die) 1988 { 1989 ctf_dwfunc_t *cdf; 1990 Dwarf_Die tdie; 1991 Dwarf_Bool b; 1992 char *name; 1993 int ret; 1994 1995 /* 1996 * Functions that don't have a name are generally functions that have 1997 * been inlined and thus most information about them has been lost. If 1998 * we can't get a name, then instead of returning ENOENT, we silently 1999 * swallow the error. 2000 */ 2001 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0) { 2002 if (ret == ENOENT) 2003 return (0); 2004 return (ret); 2005 } 2006 2007 ctf_dprintf("beginning work on function %s (die %llx)\n", 2008 name, ctf_die_offset(die)); 2009 2010 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) != 0) { 2011 if (ret != ENOENT) 2012 return (ret); 2013 } else if (b != 0) { 2014 /* 2015 * GCC7 at least creates empty DW_AT_declarations for functions 2016 * defined in headers. As they lack details on the function 2017 * prototype, we need to ignore them. If we later actually 2018 * see the relevant function's definition, we will see another 2019 * DW_TAG_subprogram that is more complete. 2020 */ 2021 ctf_dprintf("ignoring declaration of function %s (die %llx)\n", 2022 name, ctf_die_offset(die)); 2023 return (0); 2024 } 2025 2026 if ((cdf = ctf_alloc(sizeof (ctf_dwfunc_t))) == NULL) { 2027 ctf_free(name, strlen(name) + 1); 2028 return (ENOMEM); 2029 } 2030 bzero(cdf, sizeof (ctf_dwfunc_t)); 2031 cdf->cdf_name = name; 2032 2033 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) == 0) { 2034 if ((ret = ctf_dwarf_convert_type(cup, tdie, 2035 &(cdf->cdf_fip.ctc_return), CTF_ADD_ROOT)) != 0) { 2036 ctf_free(name, strlen(name) + 1); 2037 ctf_free(cdf, sizeof (ctf_dwfunc_t)); 2038 return (ret); 2039 } 2040 } else if (ret != ENOENT) { 2041 ctf_free(name, strlen(name) + 1); 2042 ctf_free(cdf, sizeof (ctf_dwfunc_t)); 2043 return (ret); 2044 } else { 2045 if ((cdf->cdf_fip.ctc_return = ctf_dwarf_void(cup)) == 2046 CTF_ERR) { 2047 ctf_free(name, strlen(name) + 1); 2048 ctf_free(cdf, sizeof (ctf_dwfunc_t)); 2049 return (ctf_errno(cup->cu_ctfp)); 2050 } 2051 } 2052 2053 /* 2054 * A function has a number of children, some of which may not be ones we 2055 * care about. Children that we care about have a type of 2056 * DW_TAG_formal_parameter. We're going to do two passes, the first to 2057 * count the arguments, the second to process them. Afterwards, we 2058 * should be good to go ahead and add this function. 2059 * 2060 * Note, we already got the return type by going in and grabbing it out 2061 * of the DW_AT_type. 2062 */ 2063 if ((ret = ctf_dwarf_function_count(cup, die, &cdf->cdf_fip, 2064 B_FALSE)) != 0) { 2065 ctf_free(name, strlen(name) + 1); 2066 ctf_free(cdf, sizeof (ctf_dwfunc_t)); 2067 return (ret); 2068 } 2069 2070 ctf_dprintf("beginning to convert function arguments %s\n", name); 2071 if (cdf->cdf_fip.ctc_argc != 0) { 2072 uint_t argc = cdf->cdf_fip.ctc_argc; 2073 cdf->cdf_argv = ctf_alloc(sizeof (ctf_id_t) * argc); 2074 if (cdf->cdf_argv == NULL) { 2075 ctf_free(name, strlen(name) + 1); 2076 ctf_free(cdf, sizeof (ctf_dwfunc_t)); 2077 return (ENOMEM); 2078 } 2079 if ((ret = ctf_dwarf_convert_fargs(cup, die, 2080 &cdf->cdf_fip, cdf->cdf_argv)) != 0) { 2081 ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) * argc); 2082 ctf_free(name, strlen(name) + 1); 2083 ctf_free(cdf, sizeof (ctf_dwfunc_t)); 2084 return (ret); 2085 } 2086 } else { 2087 cdf->cdf_argv = NULL; 2088 } 2089 2090 if ((ret = ctf_dwarf_isglobal(cup, die, &cdf->cdf_global)) != 0) { 2091 ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) * 2092 cdf->cdf_fip.ctc_argc); 2093 ctf_free(name, strlen(name) + 1); 2094 ctf_free(cdf, sizeof (ctf_dwfunc_t)); 2095 return (ret); 2096 } 2097 2098 ctf_list_append(&cup->cu_funcs, cdf); 2099 return (ret); 2100 } 2101 2102 /* 2103 * Convert variables, but only if they're not prototypes and have names. 2104 */ 2105 static int 2106 ctf_dwarf_convert_variable(ctf_cu_t *cup, Dwarf_Die die) 2107 { 2108 int ret; 2109 char *name; 2110 Dwarf_Bool b; 2111 Dwarf_Die tdie; 2112 ctf_id_t id; 2113 ctf_dwvar_t *cdv; 2114 2115 /* Skip "Non-Defining Declarations" */ 2116 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) == 0) { 2117 if (b != 0) 2118 return (0); 2119 } else if (ret != ENOENT) { 2120 return (ret); 2121 } 2122 2123 /* 2124 * If we find a DIE of "Declarations Completing Non-Defining 2125 * Declarations", we will use the referenced type's DIE. This isn't 2126 * quite correct, e.g. DW_AT_decl_line will be the forward declaration 2127 * not this site. It's sufficient for what we need, however: in 2128 * particular, we should find DW_AT_external as needed there. 2129 */ 2130 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_specification, 2131 &tdie)) == 0) { 2132 Dwarf_Off offset; 2133 if ((ret = ctf_dwarf_offset(cup, tdie, &offset)) != 0) 2134 return (ret); 2135 ctf_dprintf("die 0x%llx DW_AT_specification -> die 0x%llx\n", 2136 ctf_die_offset(die), ctf_die_offset(tdie)); 2137 die = tdie; 2138 } else if (ret != ENOENT) { 2139 return (ret); 2140 } 2141 2142 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 && 2143 ret != ENOENT) 2144 return (ret); 2145 if (ret == ENOENT) 2146 return (0); 2147 2148 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) { 2149 ctf_free(name, strlen(name) + 1); 2150 return (ret); 2151 } 2152 2153 if ((ret = ctf_dwarf_convert_type(cup, tdie, &id, 2154 CTF_ADD_ROOT)) != 0) 2155 return (ret); 2156 2157 if ((cdv = ctf_alloc(sizeof (ctf_dwvar_t))) == NULL) { 2158 ctf_free(name, strlen(name) + 1); 2159 return (ENOMEM); 2160 } 2161 2162 cdv->cdv_name = name; 2163 cdv->cdv_type = id; 2164 2165 if ((ret = ctf_dwarf_isglobal(cup, die, &cdv->cdv_global)) != 0) { 2166 ctf_free(cdv, sizeof (ctf_dwvar_t)); 2167 ctf_free(name, strlen(name) + 1); 2168 return (ret); 2169 } 2170 2171 ctf_list_append(&cup->cu_vars, cdv); 2172 return (0); 2173 } 2174 2175 /* 2176 * Walk through our set of top-level types and process them. 2177 */ 2178 static int 2179 ctf_dwarf_walk_toplevel(ctf_cu_t *cup, Dwarf_Die die) 2180 { 2181 int ret; 2182 Dwarf_Off offset; 2183 Dwarf_Half tag; 2184 2185 if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0) 2186 return (ret); 2187 2188 if (offset > cup->cu_maxoff) { 2189 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 2190 "die offset %llu beyond maximum for header %llu\n", 2191 offset, cup->cu_maxoff); 2192 return (ECTF_CONVBKERR); 2193 } 2194 2195 if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0) 2196 return (ret); 2197 2198 ret = 0; 2199 switch (tag) { 2200 case DW_TAG_subprogram: 2201 ctf_dprintf("top level func\n"); 2202 ret = ctf_dwarf_convert_function(cup, die); 2203 break; 2204 case DW_TAG_variable: 2205 ctf_dprintf("top level var\n"); 2206 ret = ctf_dwarf_convert_variable(cup, die); 2207 break; 2208 case DW_TAG_lexical_block: 2209 ctf_dprintf("top level block\n"); 2210 ret = ctf_dwarf_walk_lexical(cup, die); 2211 break; 2212 case DW_TAG_enumeration_type: 2213 case DW_TAG_structure_type: 2214 case DW_TAG_typedef: 2215 case DW_TAG_union_type: 2216 ctf_dprintf("top level type\n"); 2217 ret = ctf_dwarf_convert_type(cup, die, NULL, B_TRUE); 2218 break; 2219 default: 2220 break; 2221 } 2222 2223 return (ret); 2224 } 2225 2226 2227 /* 2228 * We're given a node. At this node we need to convert it and then proceed to 2229 * convert any siblings that are associaed with this die. 2230 */ 2231 static int 2232 ctf_dwarf_convert_die(ctf_cu_t *cup, Dwarf_Die die) 2233 { 2234 while (die != NULL) { 2235 int ret; 2236 Dwarf_Die sib; 2237 2238 if ((ret = ctf_dwarf_walk_toplevel(cup, die)) != 0) 2239 return (ret); 2240 2241 if ((ret = ctf_dwarf_sib(cup, die, &sib)) != 0) 2242 return (ret); 2243 die = sib; 2244 } 2245 return (0); 2246 } 2247 2248 static int 2249 ctf_dwarf_fixup_die(ctf_cu_t *cup, boolean_t addpass) 2250 { 2251 ctf_dwmap_t *map; 2252 2253 for (map = avl_first(&cup->cu_map); map != NULL; 2254 map = AVL_NEXT(&cup->cu_map, map)) { 2255 int ret; 2256 if (map->cdm_fix == B_FALSE) 2257 continue; 2258 if ((ret = ctf_dwarf_fixup_sou(cup, map->cdm_die, map->cdm_id, 2259 addpass)) != 0) 2260 return (ret); 2261 } 2262 2263 return (0); 2264 } 2265 2266 /* 2267 * The DWARF information about a symbol and the information in the symbol table 2268 * may not be the same due to symbol reduction that is performed by ld due to a 2269 * mapfile or other such directive. We process weak symbols at a later time. 2270 * 2271 * The following are the rules that we employ: 2272 * 2273 * 1. A DWARF function that is considered exported matches STB_GLOBAL entries 2274 * with the same name. 2275 * 2276 * 2. A DWARF function that is considered exported matches STB_LOCAL entries 2277 * with the same name and the same file. This case may happen due to mapfile 2278 * reduction. 2279 * 2280 * 3. A DWARF function that is not considered exported matches STB_LOCAL entries 2281 * with the same name and the same file. 2282 * 2283 * 4. A DWARF function that has the same name as the symbol table entry, but the 2284 * files do not match. This is considered a 'fuzzy' match. This may also happen 2285 * due to a mapfile reduction. Fuzzy matching is only used when we know that the 2286 * file in question refers to the primary object. This is because when a symbol 2287 * is reduced in a mapfile, it's always going to be tagged as a local value in 2288 * the generated output and it is considered as to belong to the primary file 2289 * which is the first STT_FILE symbol we see. 2290 */ 2291 static boolean_t 2292 ctf_dwarf_symbol_match(const char *symtab_file, const char *symtab_name, 2293 uint_t symtab_bind, const char *dwarf_file, const char *dwarf_name, 2294 boolean_t dwarf_global, boolean_t *is_fuzzy) 2295 { 2296 *is_fuzzy = B_FALSE; 2297 2298 if (symtab_bind != STB_LOCAL && symtab_bind != STB_GLOBAL) { 2299 return (B_FALSE); 2300 } 2301 2302 if (strcmp(symtab_name, dwarf_name) != 0) { 2303 return (B_FALSE); 2304 } 2305 2306 if (symtab_bind == STB_GLOBAL) { 2307 return (dwarf_global); 2308 } 2309 2310 if (strcmp(symtab_file, dwarf_file) == 0) { 2311 return (B_TRUE); 2312 } 2313 2314 if (dwarf_global) { 2315 *is_fuzzy = B_TRUE; 2316 return (B_TRUE); 2317 } 2318 2319 return (B_FALSE); 2320 } 2321 2322 static ctf_dwfunc_t * 2323 ctf_dwarf_match_func(ctf_cu_t *cup, const char *file, const char *name, 2324 uint_t bind, boolean_t primary) 2325 { 2326 ctf_dwfunc_t *cdf, *fuzzy = NULL; 2327 2328 if (bind == STB_WEAK) 2329 return (NULL); 2330 2331 if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL)) 2332 return (NULL); 2333 2334 for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL; 2335 cdf = ctf_list_next(cdf)) { 2336 boolean_t is_fuzzy = B_FALSE; 2337 2338 if (ctf_dwarf_symbol_match(file, name, bind, cup->cu_name, 2339 cdf->cdf_name, cdf->cdf_global, &is_fuzzy)) { 2340 if (is_fuzzy) { 2341 if (primary) { 2342 fuzzy = cdf; 2343 } 2344 continue; 2345 } else { 2346 return (cdf); 2347 } 2348 } 2349 } 2350 2351 return (fuzzy); 2352 } 2353 2354 static ctf_dwvar_t * 2355 ctf_dwarf_match_var(ctf_cu_t *cup, const char *file, const char *name, 2356 uint_t bind, boolean_t primary) 2357 { 2358 ctf_dwvar_t *cdv, *fuzzy = NULL; 2359 2360 if (bind == STB_WEAK) 2361 return (NULL); 2362 2363 if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL)) 2364 return (NULL); 2365 2366 for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL; 2367 cdv = ctf_list_next(cdv)) { 2368 boolean_t is_fuzzy = B_FALSE; 2369 2370 if (ctf_dwarf_symbol_match(file, name, bind, cup->cu_name, 2371 cdv->cdv_name, cdv->cdv_global, &is_fuzzy)) { 2372 if (is_fuzzy) { 2373 if (primary) { 2374 fuzzy = cdv; 2375 } 2376 } else { 2377 return (cdv); 2378 } 2379 } 2380 } 2381 2382 return (fuzzy); 2383 } 2384 2385 static int 2386 ctf_dwarf_conv_funcvars_cb(const Elf64_Sym *symp, ulong_t idx, 2387 const char *file, const char *name, boolean_t primary, void *arg) 2388 { 2389 int ret; 2390 uint_t bind, type; 2391 ctf_cu_t *cup = arg; 2392 2393 bind = GELF_ST_BIND(symp->st_info); 2394 type = GELF_ST_TYPE(symp->st_info); 2395 2396 /* 2397 * Come back to weak symbols in another pass 2398 */ 2399 if (bind == STB_WEAK) 2400 return (0); 2401 2402 if (type == STT_OBJECT) { 2403 ctf_dwvar_t *cdv = ctf_dwarf_match_var(cup, file, name, 2404 bind, primary); 2405 if (cdv == NULL) 2406 return (0); 2407 ret = ctf_add_object(cup->cu_ctfp, idx, cdv->cdv_type); 2408 ctf_dprintf("added object %s->%ld\n", name, cdv->cdv_type); 2409 } else { 2410 ctf_dwfunc_t *cdf = ctf_dwarf_match_func(cup, file, name, 2411 bind, primary); 2412 if (cdf == NULL) 2413 return (0); 2414 ret = ctf_add_function(cup->cu_ctfp, idx, &cdf->cdf_fip, 2415 cdf->cdf_argv); 2416 ctf_dprintf("added function %s\n", name); 2417 } 2418 2419 if (ret == CTF_ERR) { 2420 return (ctf_errno(cup->cu_ctfp)); 2421 } 2422 2423 return (0); 2424 } 2425 2426 static int 2427 ctf_dwarf_conv_funcvars(ctf_cu_t *cup) 2428 { 2429 return (ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_funcvars_cb, cup)); 2430 } 2431 2432 /* 2433 * If we have a weak symbol, attempt to find the strong symbol it will resolve 2434 * to. Note: the code where this actually happens is in sym_process() in 2435 * cmd/sgs/libld/common/syms.c 2436 * 2437 * Finding the matching symbol is unfortunately not trivial. For a symbol to be 2438 * a candidate, it must: 2439 * 2440 * - have the same type (function, object) 2441 * - have the same value (address) 2442 * - have the same size 2443 * - not be another weak symbol 2444 * - belong to the same section (checked via section index) 2445 * 2446 * To perform this check, we first iterate over the symbol table. For each weak 2447 * symbol that we encounter, we then do a second walk over the symbol table, 2448 * calling ctf_dwarf_conv_check_weak(). If a symbol matches the above, then it's 2449 * either a local or global symbol. If we find a global symbol then we go with 2450 * it and stop searching for additional matches. 2451 * 2452 * If instead, we find a local symbol, things are more complicated. The first 2453 * thing we do is to try and see if we have file information about both symbols 2454 * (STT_FILE). If they both have file information and it matches, then we treat 2455 * that as a good match and stop searching for additional matches. 2456 * 2457 * Otherwise, this means we have a non-matching file and a local symbol. We 2458 * treat this as a candidate and if we find a better match (one of the two cases 2459 * above), use that instead. There are two different ways this can happen. 2460 * Either this is a completely different symbol, or it's a once-global symbol 2461 * that was scoped to local via a mapfile. In the former case, curfile is 2462 * likely inaccurate since the linker does not preserve the needed curfile in 2463 * the order of the symbol table (see the comments about locally scoped symbols 2464 * in libld's update_osym()). As we can't tell this case from the former one, 2465 * we use this symbol iff no other matching symbol is found. 2466 * 2467 * What we really need here is a SUNW section containing weak<->strong mappings 2468 * that we can consume. 2469 */ 2470 typedef struct ctf_dwarf_weak_arg { 2471 const Elf64_Sym *cweak_symp; 2472 const char *cweak_file; 2473 boolean_t cweak_candidate; 2474 ulong_t cweak_idx; 2475 } ctf_dwarf_weak_arg_t; 2476 2477 static int 2478 ctf_dwarf_conv_check_weak(const Elf64_Sym *symp, ulong_t idx, const char *file, 2479 const char *name, boolean_t primary, void *arg) 2480 { 2481 ctf_dwarf_weak_arg_t *cweak = arg; 2482 2483 const Elf64_Sym *wsymp = cweak->cweak_symp; 2484 2485 ctf_dprintf("comparing weak to %s\n", name); 2486 2487 if (GELF_ST_BIND(symp->st_info) == STB_WEAK) { 2488 return (0); 2489 } 2490 2491 if (GELF_ST_TYPE(wsymp->st_info) != GELF_ST_TYPE(symp->st_info)) { 2492 return (0); 2493 } 2494 2495 if (wsymp->st_value != symp->st_value) { 2496 return (0); 2497 } 2498 2499 if (wsymp->st_size != symp->st_size) { 2500 return (0); 2501 } 2502 2503 if (wsymp->st_shndx != symp->st_shndx) { 2504 return (0); 2505 } 2506 2507 /* 2508 * Check if it's a weak candidate. 2509 */ 2510 if (GELF_ST_BIND(symp->st_info) == STB_LOCAL && 2511 (file == NULL || cweak->cweak_file == NULL || 2512 strcmp(file, cweak->cweak_file) != 0)) { 2513 cweak->cweak_candidate = B_TRUE; 2514 cweak->cweak_idx = idx; 2515 return (0); 2516 } 2517 2518 /* 2519 * Found a match, break. 2520 */ 2521 cweak->cweak_idx = idx; 2522 return (1); 2523 } 2524 2525 static int 2526 ctf_dwarf_duplicate_sym(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx) 2527 { 2528 ctf_id_t id = ctf_lookup_by_symbol(cup->cu_ctfp, matchidx); 2529 2530 /* 2531 * If we matched something that for some reason didn't have type data, 2532 * we don't consider that a fatal error and silently swallow it. 2533 */ 2534 if (id == CTF_ERR) { 2535 if (ctf_errno(cup->cu_ctfp) == ECTF_NOTYPEDAT) 2536 return (0); 2537 else 2538 return (ctf_errno(cup->cu_ctfp)); 2539 } 2540 2541 if (ctf_add_object(cup->cu_ctfp, idx, id) == CTF_ERR) 2542 return (ctf_errno(cup->cu_ctfp)); 2543 2544 return (0); 2545 } 2546 2547 static int 2548 ctf_dwarf_duplicate_func(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx) 2549 { 2550 int ret; 2551 ctf_funcinfo_t fip; 2552 ctf_id_t *args = NULL; 2553 2554 if (ctf_func_info(cup->cu_ctfp, matchidx, &fip) == CTF_ERR) { 2555 if (ctf_errno(cup->cu_ctfp) == ECTF_NOFUNCDAT) 2556 return (0); 2557 else 2558 return (ctf_errno(cup->cu_ctfp)); 2559 } 2560 2561 if (fip.ctc_argc != 0) { 2562 args = ctf_alloc(sizeof (ctf_id_t) * fip.ctc_argc); 2563 if (args == NULL) 2564 return (ENOMEM); 2565 2566 if (ctf_func_args(cup->cu_ctfp, matchidx, fip.ctc_argc, args) == 2567 CTF_ERR) { 2568 ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc); 2569 return (ctf_errno(cup->cu_ctfp)); 2570 } 2571 } 2572 2573 ret = ctf_add_function(cup->cu_ctfp, idx, &fip, args); 2574 if (args != NULL) 2575 ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc); 2576 if (ret == CTF_ERR) 2577 return (ctf_errno(cup->cu_ctfp)); 2578 2579 return (0); 2580 } 2581 2582 static int 2583 ctf_dwarf_conv_weaks_cb(const Elf64_Sym *symp, ulong_t idx, const char *file, 2584 const char *name, boolean_t primary, void *arg) 2585 { 2586 int ret, type; 2587 ctf_dwarf_weak_arg_t cweak; 2588 ctf_cu_t *cup = arg; 2589 2590 /* 2591 * We only care about weak symbols. 2592 */ 2593 if (GELF_ST_BIND(symp->st_info) != STB_WEAK) 2594 return (0); 2595 2596 type = GELF_ST_TYPE(symp->st_info); 2597 ASSERT(type == STT_OBJECT || type == STT_FUNC); 2598 2599 /* 2600 * For each weak symbol we encounter, we need to do a second iteration 2601 * to try and find a match. We should probably think about other 2602 * techniques to try and save us time in the future. 2603 */ 2604 cweak.cweak_symp = symp; 2605 cweak.cweak_file = file; 2606 cweak.cweak_candidate = B_FALSE; 2607 cweak.cweak_idx = 0; 2608 2609 ctf_dprintf("Trying to find weak equiv for %s\n", name); 2610 2611 ret = ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_check_weak, &cweak); 2612 VERIFY(ret == 0 || ret == 1); 2613 2614 /* 2615 * Nothing was ever found, we're not going to add anything for this 2616 * entry. 2617 */ 2618 if (ret == 0 && cweak.cweak_candidate == B_FALSE) { 2619 ctf_dprintf("found no weak match for %s\n", name); 2620 return (0); 2621 } 2622 2623 /* 2624 * Now, finally go and add the type based on the match. 2625 */ 2626 ctf_dprintf("matched weak symbol %lu to %lu\n", idx, cweak.cweak_idx); 2627 if (type == STT_OBJECT) { 2628 ret = ctf_dwarf_duplicate_sym(cup, idx, cweak.cweak_idx); 2629 } else { 2630 ret = ctf_dwarf_duplicate_func(cup, idx, cweak.cweak_idx); 2631 } 2632 2633 return (ret); 2634 } 2635 2636 static int 2637 ctf_dwarf_conv_weaks(ctf_cu_t *cup) 2638 { 2639 return (ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_weaks_cb, cup)); 2640 } 2641 2642 /* ARGSUSED */ 2643 static int 2644 ctf_dwarf_convert_one(void *arg, void *unused) 2645 { 2646 int ret; 2647 ctf_file_t *dedup; 2648 ctf_cu_t *cup = arg; 2649 2650 ctf_dprintf("converting die: %s\n", cup->cu_name); 2651 ctf_dprintf("max offset: %x\n", cup->cu_maxoff); 2652 VERIFY(cup != NULL); 2653 2654 ret = ctf_dwarf_convert_die(cup, cup->cu_cu); 2655 ctf_dprintf("ctf_dwarf_convert_die (%s) returned %d\n", cup->cu_name, 2656 ret); 2657 if (ret != 0) { 2658 return (ret); 2659 } 2660 if (ctf_update(cup->cu_ctfp) != 0) { 2661 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0, 2662 "failed to update output ctf container")); 2663 } 2664 2665 ret = ctf_dwarf_fixup_die(cup, B_FALSE); 2666 ctf_dprintf("ctf_dwarf_fixup_die (%s) returned %d\n", cup->cu_name, 2667 ret); 2668 if (ret != 0) { 2669 return (ret); 2670 } 2671 if (ctf_update(cup->cu_ctfp) != 0) { 2672 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0, 2673 "failed to update output ctf container")); 2674 } 2675 2676 ret = ctf_dwarf_fixup_die(cup, B_TRUE); 2677 ctf_dprintf("ctf_dwarf_fixup_die (%s) returned %d\n", cup->cu_name, 2678 ret); 2679 if (ret != 0) { 2680 return (ret); 2681 } 2682 if (ctf_update(cup->cu_ctfp) != 0) { 2683 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0, 2684 "failed to update output ctf container")); 2685 } 2686 2687 2688 if ((ret = ctf_dwarf_conv_funcvars(cup)) != 0) { 2689 return (ctf_dwarf_error(cup, NULL, ret, 2690 "failed to convert strong functions and variables")); 2691 } 2692 2693 if (ctf_update(cup->cu_ctfp) != 0) { 2694 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0, 2695 "failed to update output ctf container")); 2696 } 2697 2698 if (cup->cu_doweaks == B_TRUE) { 2699 if ((ret = ctf_dwarf_conv_weaks(cup)) != 0) { 2700 return (ctf_dwarf_error(cup, NULL, ret, 2701 "failed to convert weak functions and variables")); 2702 } 2703 2704 if (ctf_update(cup->cu_ctfp) != 0) { 2705 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0, 2706 "failed to update output ctf container")); 2707 } 2708 } 2709 2710 ctf_phase_dump(cup->cu_ctfp, "pre-dwarf-dedup", cup->cu_name); 2711 ctf_dprintf("adding inputs for dedup\n"); 2712 if ((ret = ctf_merge_add(cup->cu_cmh, cup->cu_ctfp)) != 0) { 2713 return (ctf_dwarf_error(cup, NULL, ret, 2714 "failed to add inputs for merge")); 2715 } 2716 2717 ctf_dprintf("starting dedup of %s\n", cup->cu_name); 2718 if ((ret = ctf_merge_dedup(cup->cu_cmh, &dedup)) != 0) { 2719 return (ctf_dwarf_error(cup, NULL, ret, 2720 "failed to deduplicate die")); 2721 } 2722 ctf_close(cup->cu_ctfp); 2723 cup->cu_ctfp = dedup; 2724 ctf_phase_dump(cup->cu_ctfp, "post-dwarf-dedup", cup->cu_name); 2725 2726 return (0); 2727 } 2728 2729 /* 2730 * Note, we expect that if we're returning a ctf_file_t from one of the dies, 2731 * say in the single node case, it's been saved and the entry here has been set 2732 * to NULL, which ctf_close happily ignores. 2733 */ 2734 static void 2735 ctf_dwarf_free_die(ctf_cu_t *cup) 2736 { 2737 ctf_dwfunc_t *cdf, *ndf; 2738 ctf_dwvar_t *cdv, *ndv; 2739 ctf_dwbitf_t *cdb, *ndb; 2740 ctf_dwmap_t *map; 2741 void *cookie; 2742 Dwarf_Error derr; 2743 2744 ctf_dprintf("Beginning to free die: %p\n", cup); 2745 cup->cu_elf = NULL; 2746 ctf_dprintf("Trying to free name: %p\n", cup->cu_name); 2747 if (cup->cu_name != NULL) 2748 ctf_free(cup->cu_name, strlen(cup->cu_name) + 1); 2749 ctf_dprintf("Trying to free merge handle: %p\n", cup->cu_cmh); 2750 if (cup->cu_cmh != NULL) { 2751 ctf_merge_fini(cup->cu_cmh); 2752 cup->cu_cmh = NULL; 2753 } 2754 2755 ctf_dprintf("Trying to free functions\n"); 2756 for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL; cdf = ndf) { 2757 ndf = ctf_list_next(cdf); 2758 ctf_free(cdf->cdf_name, strlen(cdf->cdf_name) + 1); 2759 if (cdf->cdf_fip.ctc_argc != 0) { 2760 ctf_free(cdf->cdf_argv, 2761 sizeof (ctf_id_t) * cdf->cdf_fip.ctc_argc); 2762 } 2763 ctf_free(cdf, sizeof (ctf_dwfunc_t)); 2764 } 2765 2766 ctf_dprintf("Trying to free variables\n"); 2767 for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL; cdv = ndv) { 2768 ndv = ctf_list_next(cdv); 2769 ctf_free(cdv->cdv_name, strlen(cdv->cdv_name) + 1); 2770 ctf_free(cdv, sizeof (ctf_dwvar_t)); 2771 } 2772 2773 ctf_dprintf("Trying to free bitfields\n"); 2774 for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL; cdb = ndb) { 2775 ndb = ctf_list_next(cdb); 2776 ctf_free(cdb, sizeof (ctf_dwbitf_t)); 2777 } 2778 2779 ctf_dprintf("Trying to clean up dwarf_t: %p\n", cup->cu_dwarf); 2780 if (cup->cu_dwarf != NULL) 2781 (void) dwarf_finish(cup->cu_dwarf, &derr); 2782 cup->cu_dwarf = NULL; 2783 ctf_close(cup->cu_ctfp); 2784 2785 cookie = NULL; 2786 while ((map = avl_destroy_nodes(&cup->cu_map, &cookie)) != NULL) { 2787 ctf_free(map, sizeof (ctf_dwmap_t)); 2788 } 2789 avl_destroy(&cup->cu_map); 2790 cup->cu_errbuf = NULL; 2791 } 2792 2793 static void 2794 ctf_dwarf_free_dies(ctf_cu_t *cdies, int ndies) 2795 { 2796 int i; 2797 2798 ctf_dprintf("Beginning to free dies\n"); 2799 for (i = 0; i < ndies; i++) { 2800 ctf_dwarf_free_die(&cdies[i]); 2801 } 2802 2803 ctf_free(cdies, sizeof (ctf_cu_t) * ndies); 2804 } 2805 2806 static int 2807 ctf_dwarf_count_dies(Dwarf_Debug dw, Dwarf_Error *derr, int *ndies, 2808 char *errbuf, size_t errlen) 2809 { 2810 int ret; 2811 Dwarf_Half vers; 2812 Dwarf_Unsigned nexthdr; 2813 2814 while ((ret = dwarf_next_cu_header(dw, NULL, &vers, NULL, NULL, 2815 &nexthdr, derr)) != DW_DLV_NO_ENTRY) { 2816 if (ret != DW_DLV_OK) { 2817 (void) snprintf(errbuf, errlen, 2818 "file does not contain valid DWARF data: %s\n", 2819 dwarf_errmsg(*derr)); 2820 return (ECTF_CONVBKERR); 2821 } 2822 2823 if (vers != DWARF_VERSION_TWO) { 2824 (void) snprintf(errbuf, errlen, 2825 "unsupported DWARF version: %d\n", vers); 2826 return (ECTF_CONVBKERR); 2827 } 2828 *ndies = *ndies + 1; 2829 } 2830 2831 return (0); 2832 } 2833 2834 static int 2835 ctf_dwarf_init_die(int fd, Elf *elf, ctf_cu_t *cup, int ndie, char *errbuf, 2836 size_t errlen) 2837 { 2838 int ret; 2839 Dwarf_Unsigned hdrlen, abboff, nexthdr; 2840 Dwarf_Half addrsz; 2841 Dwarf_Unsigned offset = 0; 2842 Dwarf_Error derr; 2843 2844 while ((ret = dwarf_next_cu_header(cup->cu_dwarf, &hdrlen, NULL, 2845 &abboff, &addrsz, &nexthdr, &derr)) != DW_DLV_NO_ENTRY) { 2846 char *name; 2847 Dwarf_Die cu, child; 2848 2849 /* Based on the counting above, we should be good to go */ 2850 VERIFY(ret == DW_DLV_OK); 2851 if (ndie > 0) { 2852 ndie--; 2853 offset = nexthdr; 2854 continue; 2855 } 2856 2857 /* 2858 * Compilers are apparently inconsistent. Some emit no DWARF for 2859 * empty files and others emit empty compilation unit. 2860 */ 2861 cup->cu_voidtid = CTF_ERR; 2862 cup->cu_longtid = CTF_ERR; 2863 cup->cu_elf = elf; 2864 cup->cu_maxoff = nexthdr - 1; 2865 cup->cu_ctfp = ctf_fdcreate(fd, &ret); 2866 if (cup->cu_ctfp == NULL) 2867 return (ret); 2868 2869 avl_create(&cup->cu_map, ctf_dwmap_comp, sizeof (ctf_dwmap_t), 2870 offsetof(ctf_dwmap_t, cdm_avl)); 2871 cup->cu_errbuf = errbuf; 2872 cup->cu_errlen = errlen; 2873 bzero(&cup->cu_vars, sizeof (ctf_list_t)); 2874 bzero(&cup->cu_funcs, sizeof (ctf_list_t)); 2875 bzero(&cup->cu_bitfields, sizeof (ctf_list_t)); 2876 2877 if ((ret = ctf_dwarf_die_elfenc(elf, cup, errbuf, 2878 errlen)) != 0) 2879 return (ret); 2880 2881 if ((ret = ctf_dwarf_sib(cup, NULL, &cu)) != 0) 2882 return (ret); 2883 2884 if (cu == NULL) { 2885 (void) snprintf(errbuf, errlen, 2886 "file does not contain DWARF data"); 2887 return (ECTF_CONVNODEBUG); 2888 } 2889 2890 if ((ret = ctf_dwarf_child(cup, cu, &child)) != 0) 2891 return (ret); 2892 2893 if (child == NULL) { 2894 (void) snprintf(errbuf, errlen, 2895 "file does not contain DWARF data"); 2896 return (ECTF_CONVNODEBUG); 2897 } 2898 2899 cup->cu_cuoff = offset; 2900 cup->cu_cu = child; 2901 2902 if ((cup->cu_cmh = ctf_merge_init(fd, &ret)) == NULL) 2903 return (ret); 2904 2905 if (ctf_dwarf_string(cup, cu, DW_AT_name, &name) == 0) { 2906 size_t len = strlen(name) + 1; 2907 char *b = basename(name); 2908 cup->cu_name = strdup(b); 2909 ctf_free(name, len); 2910 } 2911 break; 2912 } 2913 2914 return (0); 2915 } 2916 2917 /* 2918 * This is our only recourse to identify a C source file that is missing debug 2919 * info: it will be mentioned as an STT_FILE, but not have a compile unit entry. 2920 * (A traditional ctfmerge works on individual files, so can identify missing 2921 * DWARF more directly, via ctf_has_c_source() on the .o file.) 2922 * 2923 * As we operate on basenames, this can of course miss some cases, but it's 2924 * better than not checking at all. 2925 * 2926 * We explicitly whitelist some CRT components. Failing that, there's always 2927 * the -m option. 2928 */ 2929 static boolean_t 2930 c_source_has_debug(const char *file, ctf_cu_t *cus, size_t nr_cus) 2931 { 2932 const char *basename = strrchr(file, '/'); 2933 2934 if (basename == NULL) 2935 basename = file; 2936 else 2937 basename++; 2938 2939 if (strcmp(basename, "common-crt.c") == 0 || 2940 strcmp(basename, "gmon.c") == 0 || 2941 strcmp(basename, "dlink_init.c") == 0 || 2942 strcmp(basename, "dlink_common.c") == 0 || 2943 strncmp(basename, "crt", strlen("crt")) == 0 || 2944 strncmp(basename, "values-", strlen("values-")) == 0) 2945 return (B_TRUE); 2946 2947 for (size_t i = 0; i < nr_cus; i++) { 2948 if (strcmp(basename, cus[i].cu_name) == 0) 2949 return (B_TRUE); 2950 } 2951 2952 return (B_FALSE); 2953 } 2954 2955 static int 2956 ctf_dwarf_check_missing(ctf_cu_t *cus, size_t nr_cus, Elf *elf, 2957 char *errmsg, size_t errlen) 2958 { 2959 Elf_Scn *scn, *strscn; 2960 Elf_Data *data, *strdata; 2961 GElf_Shdr shdr; 2962 ulong_t i; 2963 2964 scn = NULL; 2965 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2966 if (gelf_getshdr(scn, &shdr) == NULL) { 2967 (void) snprintf(errmsg, errlen, 2968 "failed to get section header: %s\n", 2969 elf_errmsg(elf_errno())); 2970 return (EINVAL); 2971 } 2972 2973 if (shdr.sh_type == SHT_SYMTAB) 2974 break; 2975 } 2976 2977 if (scn == NULL) 2978 return (0); 2979 2980 if ((strscn = elf_getscn(elf, shdr.sh_link)) == NULL) { 2981 (void) snprintf(errmsg, errlen, 2982 "failed to get str section: %s\n", 2983 elf_errmsg(elf_errno())); 2984 return (EINVAL); 2985 } 2986 2987 if ((data = elf_getdata(scn, NULL)) == NULL) { 2988 (void) snprintf(errmsg, errlen, "failed to read section: %s\n", 2989 elf_errmsg(elf_errno())); 2990 return (EINVAL); 2991 } 2992 2993 if ((strdata = elf_getdata(strscn, NULL)) == NULL) { 2994 (void) snprintf(errmsg, errlen, 2995 "failed to read string table: %s\n", 2996 elf_errmsg(elf_errno())); 2997 return (EINVAL); 2998 } 2999 3000 for (i = 0; i < shdr.sh_size / shdr.sh_entsize; i++) { 3001 GElf_Sym sym; 3002 const char *file; 3003 size_t len; 3004 3005 if (gelf_getsym(data, i, &sym) == NULL) { 3006 (void) snprintf(errmsg, errlen, 3007 "failed to read sym %lu: %s\n", 3008 i, elf_errmsg(elf_errno())); 3009 return (EINVAL); 3010 } 3011 3012 if (GELF_ST_TYPE(sym.st_info) != STT_FILE) 3013 continue; 3014 3015 file = (const char *)((uintptr_t)strdata->d_buf + sym.st_name); 3016 len = strlen(file); 3017 if (len < 2 || strncmp(".c", &file[len - 2], 2) != 0) 3018 continue; 3019 3020 if (!c_source_has_debug(file, cus, nr_cus)) { 3021 (void) snprintf(errmsg, errlen, 3022 "file %s is missing debug info\n", file); 3023 return (ECTF_CONVNODEBUG); 3024 } 3025 } 3026 3027 return (0); 3028 } 3029 3030 int 3031 ctf_dwarf_convert(int fd, Elf *elf, uint_t nthrs, uint_t flags, 3032 ctf_file_t **fpp, char *errbuf, size_t errlen) 3033 { 3034 int err, ret, ndies, i; 3035 Dwarf_Debug dw; 3036 Dwarf_Error derr; 3037 ctf_cu_t *cdies = NULL, *cup; 3038 workq_t *wqp = NULL; 3039 3040 *fpp = NULL; 3041 3042 ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw, &derr); 3043 if (ret != DW_DLV_OK) { 3044 if (ret == DW_DLV_NO_ENTRY || 3045 dwarf_errno(derr) == DW_DLE_DEBUG_INFO_NULL) { 3046 (void) snprintf(errbuf, errlen, 3047 "file does not contain DWARF data\n"); 3048 return (ECTF_CONVNODEBUG); 3049 } 3050 3051 (void) snprintf(errbuf, errlen, 3052 "dwarf_elf_init() failed: %s\n", dwarf_errmsg(derr)); 3053 return (ECTF_CONVBKERR); 3054 } 3055 3056 /* 3057 * Iterate over all of the compilation units and create a ctf_cu_t for 3058 * each of them. This is used to determine if we have zero, one, or 3059 * multiple dies to convert. If we have zero, that's an error. If 3060 * there's only one die, that's the simple case. No merge needed and 3061 * only a single Dwarf_Debug as well. 3062 */ 3063 ndies = 0; 3064 err = ctf_dwarf_count_dies(dw, &derr, &ndies, errbuf, errlen); 3065 3066 ctf_dprintf("found %d DWARF CUs\n", ndies); 3067 3068 if (ndies == 0) { 3069 (void) snprintf(errbuf, errlen, 3070 "file does not contain DWARF data\n"); 3071 return (ECTF_CONVNODEBUG); 3072 } 3073 3074 (void) dwarf_finish(dw, &derr); 3075 cdies = ctf_alloc(sizeof (ctf_cu_t) * ndies); 3076 if (cdies == NULL) { 3077 return (ENOMEM); 3078 } 3079 3080 bzero(cdies, sizeof (ctf_cu_t) * ndies); 3081 3082 for (i = 0; i < ndies; i++) { 3083 cup = &cdies[i]; 3084 ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, 3085 &cup->cu_dwarf, &derr); 3086 if (ret != 0) { 3087 ctf_free(cdies, sizeof (ctf_cu_t) * ndies); 3088 (void) snprintf(errbuf, errlen, 3089 "failed to initialize DWARF: %s\n", 3090 dwarf_errmsg(derr)); 3091 return (ECTF_CONVBKERR); 3092 } 3093 3094 err = ctf_dwarf_init_die(fd, elf, cup, i, errbuf, errlen); 3095 if (err != 0) 3096 goto out; 3097 3098 cup->cu_doweaks = ndies > 1 ? B_FALSE : B_TRUE; 3099 } 3100 3101 if (!(flags & CTF_ALLOW_MISSING_DEBUG) && 3102 (err = ctf_dwarf_check_missing(cdies, ndies, 3103 elf, errbuf, errlen)) != 0) 3104 goto out; 3105 3106 /* 3107 * If we only have one compilation unit, there's no reason to use 3108 * multiple threads, even if the user requested them. After all, they 3109 * just gave us an upper bound. 3110 */ 3111 if (ndies == 1) 3112 nthrs = 1; 3113 3114 if (workq_init(&wqp, nthrs) == -1) { 3115 err = errno; 3116 goto out; 3117 } 3118 3119 for (i = 0; i < ndies; i++) { 3120 cup = &cdies[i]; 3121 ctf_dprintf("adding cu %s: %p, %x %x\n", cup->cu_name, 3122 cup->cu_cu, cup->cu_cuoff, cup->cu_maxoff); 3123 if (workq_add(wqp, cup) == -1) { 3124 err = errno; 3125 goto out; 3126 } 3127 } 3128 3129 ret = workq_work(wqp, ctf_dwarf_convert_one, NULL, &err); 3130 if (ret == WORKQ_ERROR) { 3131 err = errno; 3132 goto out; 3133 } else if (ret == WORKQ_UERROR) { 3134 ctf_dprintf("internal convert failed: %s\n", 3135 ctf_errmsg(err)); 3136 goto out; 3137 } 3138 3139 ctf_dprintf("Determining next phase: have %d CUs\n", ndies); 3140 if (ndies != 1) { 3141 ctf_merge_t *cmp; 3142 3143 cmp = ctf_merge_init(fd, &err); 3144 if (cmp == NULL) 3145 goto out; 3146 3147 ctf_dprintf("setting threads\n"); 3148 if ((err = ctf_merge_set_nthreads(cmp, nthrs)) != 0) { 3149 ctf_merge_fini(cmp); 3150 goto out; 3151 } 3152 3153 for (i = 0; i < ndies; i++) { 3154 cup = &cdies[i]; 3155 if ((err = ctf_merge_add(cmp, cup->cu_ctfp)) != 0) { 3156 ctf_merge_fini(cmp); 3157 goto out; 3158 } 3159 } 3160 3161 ctf_dprintf("performing merge\n"); 3162 err = ctf_merge_merge(cmp, fpp); 3163 if (err != 0) { 3164 ctf_dprintf("failed merge!\n"); 3165 *fpp = NULL; 3166 ctf_merge_fini(cmp); 3167 goto out; 3168 } 3169 ctf_merge_fini(cmp); 3170 err = 0; 3171 ctf_dprintf("successfully converted!\n"); 3172 } else { 3173 err = 0; 3174 *fpp = cdies->cu_ctfp; 3175 cdies->cu_ctfp = NULL; 3176 ctf_dprintf("successfully converted!\n"); 3177 } 3178 3179 out: 3180 workq_fini(wqp); 3181 ctf_dwarf_free_dies(cdies, ndies); 3182 return (err); 3183 }