Print this page
12259 CTF shouldn't assume enum size
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libctf/common/ctf_dwarf.c
+++ new/usr/src/lib/libctf/common/ctf_dwarf.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
↓ open down ↓ |
20 lines elided |
↑ open up ↑ |
21 21 /*
22 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 23 * Use is subject to license terms.
24 24 */
25 25 /*
26 26 * Copyright 2012 Jason King. All rights reserved.
27 27 * Use is subject to license terms.
28 28 */
29 29
30 30 /*
31 - * Copyright 2019, Joyent, Inc.
31 + * Copyright 2020 Joyent, Inc.
32 32 */
33 33
34 34 /*
35 35 * CTF DWARF conversion theory.
36 36 *
37 37 * DWARF data contains a series of compilation units. Each compilation unit
38 38 * generally refers to an object file or what once was, in the case of linked
39 39 * binaries and shared objects. Each compilation unit has a series of what DWARF
40 40 * calls a DIE (Debugging Information Entry). The set of entries that we care
41 41 * about have type information stored in a series of attributes. Each DIE also
42 42 * has a tag that identifies the kind of attributes that it has.
43 43 *
44 44 * A given DIE may itself have children. For example, a DIE that represents a
45 45 * structure has children which represent members. Whenever we encounter a DIE
46 46 * that has children or other values or types associated with it, we recursively
47 47 * process those children first so that way we can then refer to the generated
48 48 * CTF type id while processing its parent. This reduces the amount of unknowns
49 49 * and fixups that we need. It also ensures that we don't accidentally add types
50 50 * that an overzealous compiler might add to the DWARF data but aren't used by
51 51 * anything in the system.
52 52 *
53 53 * Once we do a conversion, we store a mapping in an AVL tree that goes from the
54 54 * DWARF's die offset, which is relative to the given compilation unit, to a
55 55 * ctf_id_t.
56 56 *
57 57 * Unfortunately, some compilers actually will emit duplicate entries for a
58 58 * given type that look similar, but aren't quite. To that end, we go through
59 59 * and do a variant on a merge once we're done processing a single compilation
60 60 * unit which deduplicates all of the types that are in the unit.
61 61 *
62 62 * Finally, if we encounter an object that has multiple compilation units, then
63 63 * we'll convert all of the compilation units separately and then do a merge, so
64 64 * that way we can result in one single ctf_file_t that represents everything
65 65 * for the object.
66 66 *
67 67 * Conversion Steps
68 68 * ----------------
69 69 *
70 70 * Because a given object we've been given to convert may have multiple
71 71 * compilation units, we break the work into two halves. The first half
72 72 * processes each compilation unit (potentially in parallel) and then the second
73 73 * half optionally merges all of the dies in the first half. First, we'll cover
74 74 * what's involved in converting a single ctf_cu_t's dwarf to CTF. This covers
75 75 * the work done in ctf_dwarf_convert_one().
76 76 *
77 77 * An individual ctf_cu_t, which represents a compilation unit, is converted to
78 78 * CTF in a series of multiple passes.
79 79 *
80 80 * Pass 1: During the first pass we walk all of the top-level dies and if we
81 81 * find a function, variable, struct, union, enum or typedef, we recursively
82 82 * transform all of its types. We don't recurse or process everything, because
83 83 * we don't want to add some of the types that compilers may add which are
84 84 * effectively unused.
85 85 *
86 86 * During pass 1, if we encounter any structures or unions we mark them for
87 87 * fixing up later. This is necessary because we may not be able to determine
88 88 * the full size of a structure at the beginning of time. This will happen if
89 89 * the DWARF attribute DW_AT_byte_size is not present for a member. Because of
90 90 * this possibility we defer adding members to structures or even converting
91 91 * them during pass 1 and save that for pass 2. Adding all of the base
92 92 * structures without any of their members helps deal with any circular
93 93 * dependencies that we might encounter.
94 94 *
95 95 * Pass 2: This pass is used to do the first half of fixing up structures and
96 96 * unions. Rather than walk the entire type space again, we actually walk the
97 97 * list of structures and unions that we marked for later fixing up. Here, we
98 98 * iterate over every structure and add members to the underlying ctf_file_t,
99 99 * but not to the structs themselves. One might wonder why we don't, and the
100 100 * main reason is that libctf requires a ctf_update() be done before adding the
101 101 * members to structures or unions.
102 102 *
103 103 * Pass 3: This pass is used to do the second half of fixing up structures and
104 104 * unions. During this part we always go through and add members to structures
105 105 * and unions that we added to the container in the previous pass. In addition,
106 106 * we set the structure and union's actual size, which may have additional
107 107 * padding added by the compiler, it isn't simply the last offset. DWARF always
108 108 * guarantees an attribute exists for this. Importantly no ctf_id_t's change
109 109 * during pass 2.
110 110 *
111 111 * Pass 4: The next phase is to add CTF entries for all of the symbols and
112 112 * variables that are present in this die. During pass 1 we added entries to a
113 113 * map for each variable and function. During this pass, we iterate over the
114 114 * symbol table and when we encounter a symbol that we have in our lists of
115 115 * translated information which matches, we then add it to the ctf_file_t.
116 116 *
117 117 * Pass 5: Here we go and look for any weak symbols and functions and see if
118 118 * they match anything that we recognize. If so, then we add type information
119 119 * for them at this point based on the matching type.
120 120 *
121 121 * Pass 6: This pass is actually a variant on a merge. The traditional merge
122 122 * process expects there to be no duplicate types. As such, at the end of
123 123 * conversion, we do a dedup on all of the types in the system. The
124 124 * deduplication process is described in lib/libctf/common/ctf_merge.c.
125 125 *
126 126 * Once pass 6 is done, we've finished processing the individual compilation
127 127 * unit.
128 128 *
129 129 * The following steps reflect the general process of doing a conversion.
130 130 *
131 131 * 1) Walk the dwarf section and determine the number of compilation units
132 132 * 2) Create a ctf_cu_t for each compilation unit
133 133 * 3) Add all ctf_cu_t's to a workq
134 134 * 4) Have the workq process each die with ctf_dwarf_convert_one. This itself
135 135 * is comprised of several steps, which were already enumerated.
136 136 * 5) If we have multiple cu's, we do a ctf merge of all the dies. The mechanics
137 137 * of the merge are discussed in lib/libctf/common/ctf_merge.c.
138 138 * 6) Free everything up and return a ctf_file_t to the user. If we only had a
139 139 * single compilation unit, then we give that to the user. Otherwise, we
140 140 * return the merged ctf_file_t.
141 141 *
142 142 * Threading
143 143 * ---------
144 144 *
145 145 * The process has been designed to be amenable to threading. Each compilation
146 146 * unit has its own type stream, therefore the logical place to divide and
147 147 * conquer is at the compilation unit. Each ctf_cu_t has been built to be able
148 148 * to be processed independently of the others. It has its own libdwarf handle,
149 149 * as a given libdwarf handle may only be used by a single thread at a time.
150 150 * This allows the various ctf_cu_t's to be processed in parallel by different
151 151 * threads.
152 152 *
153 153 * All of the ctf_cu_t's are loaded into a workq which allows for a number of
154 154 * threads to be specified and used as a thread pool to process all of the
155 155 * queued work. We set the number of threads to use in the workq equal to the
156 156 * number of threads that the user has specified.
157 157 *
158 158 * After all of the compilation units have been drained, we use the same number
159 159 * of threads when performing a merge of multiple compilation units, if they
160 160 * exist.
161 161 *
162 162 * While all of these different parts do support and allow for multiple threads,
163 163 * it's important that when only a single thread is specified, that it be the
164 164 * calling thread. This allows the conversion routines to be used in a context
165 165 * that doesn't allow additional threads, such as rtld.
166 166 *
167 167 * Common DWARF Mechanics and Notes
168 168 * --------------------------------
169 169 *
170 170 * At this time, we really only support DWARFv2, though support for DWARFv4 is
171 171 * mostly there. There is no intent to support DWARFv3.
172 172 *
173 173 * Generally types for something are stored in the DW_AT_type attribute. For
174 174 * example, a function's return type will be stored in the local DW_AT_type
175 175 * attribute while the arguments will be in child DIEs. There are also various
176 176 * times when we don't have any DW_AT_type. In that case, the lack of a type
177 177 * implies, at least for C, that its C type is void. Because DWARF doesn't emit
178 178 * one, we have a synthetic void type that we create and manipulate instead and
179 179 * pass it off to consumers on an as-needed basis. If nothing has a void type,
180 180 * it will not be emitted.
181 181 *
182 182 * Architecture Specific Parts
183 183 * ---------------------------
184 184 *
185 185 * The CTF tooling encodes various information about the various architectures
186 186 * in the system. Importantly, the tool assumes that every architecture has a
187 187 * data model where long and pointer are the same size. This is currently the
188 188 * case, as the two data models illumos supports are ILP32 and LP64.
189 189 *
190 190 * In addition, we encode the mapping of various floating point sizes to various
191 191 * types for each architecture. If a new architecture is being added, it should
192 192 * be added to the list. The general design of the ctf conversion tools is to be
193 193 * architecture independent. eg. any of the tools here should be able to convert
194 194 * any architecture's DWARF into ctf; however, this has not been rigorously
195 195 * tested and more importantly, the ctf routines don't currently write out the
196 196 * data in an endian-aware form, they only use that of the currently running
197 197 * library.
198 198 */
199 199
200 200 #include <libctf_impl.h>
201 201 #include <sys/avl.h>
202 202 #include <sys/debug.h>
203 203 #include <gelf.h>
204 204 #include <libdwarf.h>
205 205 #include <dwarf.h>
206 206 #include <libgen.h>
207 207 #include <workq.h>
208 208 #include <errno.h>
209 209
210 210 #define DWARF_VERSION_TWO 2
211 211 #define DWARF_VARARGS_NAME "..."
212 212
213 213 /*
214 214 * Dwarf may refer recursively to other types that we've already processed. To
215 215 * see if we've already converted them, we look them up in an AVL tree that's
216 216 * sorted by the DWARF id.
217 217 */
218 218 typedef struct ctf_dwmap {
219 219 avl_node_t cdm_avl;
220 220 Dwarf_Off cdm_off;
221 221 Dwarf_Die cdm_die;
222 222 ctf_id_t cdm_id;
223 223 boolean_t cdm_fix;
224 224 } ctf_dwmap_t;
225 225
226 226 typedef struct ctf_dwvar {
227 227 ctf_list_t cdv_list;
228 228 char *cdv_name;
229 229 ctf_id_t cdv_type;
230 230 boolean_t cdv_global;
231 231 } ctf_dwvar_t;
232 232
233 233 typedef struct ctf_dwfunc {
234 234 ctf_list_t cdf_list;
235 235 char *cdf_name;
236 236 ctf_funcinfo_t cdf_fip;
237 237 ctf_id_t *cdf_argv;
238 238 boolean_t cdf_global;
239 239 } ctf_dwfunc_t;
240 240
241 241 typedef struct ctf_dwbitf {
242 242 ctf_list_t cdb_list;
243 243 ctf_id_t cdb_base;
244 244 uint_t cdb_nbits;
245 245 ctf_id_t cdb_id;
246 246 } ctf_dwbitf_t;
247 247
248 248 /*
249 249 * The ctf_cu_t represents a single top-level DWARF die unit. While generally,
250 250 * the typical object file has only a single die, if we're asked to convert
251 251 * something that's been linked from multiple sources, multiple dies will exist.
252 252 */
253 253 typedef struct ctf_die {
254 254 Elf *cu_elf; /* shared libelf handle */
255 255 char *cu_name; /* basename of the DIE */
256 256 ctf_merge_t *cu_cmh; /* merge handle */
257 257 ctf_list_t cu_vars; /* List of variables */
258 258 ctf_list_t cu_funcs; /* List of functions */
259 259 ctf_list_t cu_bitfields; /* Bit field members */
260 260 Dwarf_Debug cu_dwarf; /* libdwarf handle */
261 261 Dwarf_Die cu_cu; /* libdwarf compilation unit */
262 262 Dwarf_Off cu_cuoff; /* cu's offset */
263 263 Dwarf_Off cu_maxoff; /* maximum offset */
264 264 ctf_file_t *cu_ctfp; /* output CTF file */
265 265 avl_tree_t cu_map; /* map die offsets to CTF types */
266 266 char *cu_errbuf; /* error message buffer */
267 267 size_t cu_errlen; /* error message buffer length */
268 268 size_t cu_ptrsz; /* object's pointer size */
269 269 boolean_t cu_bigend; /* is it big endian */
270 270 boolean_t cu_doweaks; /* should we convert weak symbols? */
271 271 uint_t cu_mach; /* machine type */
272 272 ctf_id_t cu_voidtid; /* void pointer */
273 273 ctf_id_t cu_longtid; /* id for a 'long' */
274 274 } ctf_cu_t;
275 275
276 276 static int ctf_dwarf_offset(ctf_cu_t *, Dwarf_Die, Dwarf_Off *);
277 277 static int ctf_dwarf_convert_die(ctf_cu_t *, Dwarf_Die);
278 278 static int ctf_dwarf_convert_type(ctf_cu_t *, Dwarf_Die, ctf_id_t *, int);
279 279
280 280 static int ctf_dwarf_function_count(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *,
281 281 boolean_t);
282 282 static int ctf_dwarf_convert_fargs(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *,
283 283 ctf_id_t *);
284 284
285 285 /*
286 286 * This is a generic way to set a CTF Conversion backend error depending on what
287 287 * we were doing. Unless it was one of a specific set of errors that don't
288 288 * indicate a programming / translation bug, eg. ENOMEM, then we transform it
289 289 * into a CTF backend error and fill in the error buffer.
290 290 */
291 291 static int
292 292 ctf_dwarf_error(ctf_cu_t *cup, ctf_file_t *cfp, int err, const char *fmt, ...)
293 293 {
294 294 va_list ap;
295 295 int ret;
296 296 size_t off = 0;
297 297 ssize_t rem = cup->cu_errlen;
298 298 if (cfp != NULL)
299 299 err = ctf_errno(cfp);
300 300
301 301 if (err == ENOMEM)
302 302 return (err);
303 303
304 304 ret = snprintf(cup->cu_errbuf, rem, "die %s: ", cup->cu_name);
305 305 if (ret < 0)
306 306 goto err;
307 307 off += ret;
308 308 rem = MAX(rem - ret, 0);
309 309
310 310 va_start(ap, fmt);
311 311 ret = vsnprintf(cup->cu_errbuf + off, rem, fmt, ap);
312 312 va_end(ap);
313 313 if (ret < 0)
314 314 goto err;
315 315
316 316 off += ret;
317 317 rem = MAX(rem - ret, 0);
318 318 if (fmt[strlen(fmt) - 1] != '\n') {
319 319 (void) snprintf(cup->cu_errbuf + off, rem,
320 320 ": %s\n", ctf_errmsg(err));
321 321 }
322 322 va_end(ap);
323 323 return (ECTF_CONVBKERR);
324 324
325 325 err:
326 326 cup->cu_errbuf[0] = '\0';
327 327 return (ECTF_CONVBKERR);
328 328 }
329 329
330 330 /*
331 331 * DWARF often opts to put no explicit type to describe a void type. eg. if we
332 332 * have a reference type whose DW_AT_type member doesn't exist, then we should
333 333 * instead assume it points to void. Because this isn't represented, we
334 334 * instead cause it to come into existence.
335 335 */
336 336 static ctf_id_t
337 337 ctf_dwarf_void(ctf_cu_t *cup)
338 338 {
339 339 if (cup->cu_voidtid == CTF_ERR) {
340 340 ctf_encoding_t enc = { CTF_INT_SIGNED, 0, 0 };
341 341 cup->cu_voidtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_ROOT,
342 342 "void", &enc);
343 343 if (cup->cu_voidtid == CTF_ERR) {
344 344 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
345 345 "failed to create void type: %s\n",
346 346 ctf_errmsg(ctf_errno(cup->cu_ctfp)));
347 347 }
348 348 }
349 349
350 350 return (cup->cu_voidtid);
351 351 }
352 352
353 353 /*
354 354 * There are many different forms that an array index may take. However, we just
355 355 * always force it to be of a type long no matter what. Therefore we use this to
356 356 * have a single instance of long across everything.
357 357 */
358 358 static ctf_id_t
359 359 ctf_dwarf_long(ctf_cu_t *cup)
360 360 {
361 361 if (cup->cu_longtid == CTF_ERR) {
362 362 ctf_encoding_t enc;
363 363
364 364 enc.cte_format = CTF_INT_SIGNED;
365 365 enc.cte_offset = 0;
366 366 /* All illumos systems are LP */
367 367 enc.cte_bits = cup->cu_ptrsz * 8;
368 368 cup->cu_longtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT,
369 369 "long", &enc);
370 370 if (cup->cu_longtid == CTF_ERR) {
371 371 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
372 372 "failed to create long type: %s\n",
373 373 ctf_errmsg(ctf_errno(cup->cu_ctfp)));
374 374 }
375 375
376 376 }
377 377
378 378 return (cup->cu_longtid);
379 379 }
380 380
381 381 static int
382 382 ctf_dwmap_comp(const void *a, const void *b)
383 383 {
384 384 const ctf_dwmap_t *ca = a;
385 385 const ctf_dwmap_t *cb = b;
386 386
387 387 if (ca->cdm_off > cb->cdm_off)
388 388 return (1);
389 389 if (ca->cdm_off < cb->cdm_off)
390 390 return (-1);
391 391 return (0);
392 392 }
393 393
394 394 static int
395 395 ctf_dwmap_add(ctf_cu_t *cup, ctf_id_t id, Dwarf_Die die, boolean_t fix)
396 396 {
397 397 int ret;
398 398 avl_index_t index;
399 399 ctf_dwmap_t *dwmap;
400 400 Dwarf_Off off;
401 401
402 402 VERIFY(id > 0 && id < CTF_MAX_TYPE);
403 403
404 404 if ((ret = ctf_dwarf_offset(cup, die, &off)) != 0)
405 405 return (ret);
406 406
407 407 if ((dwmap = ctf_alloc(sizeof (ctf_dwmap_t))) == NULL)
408 408 return (ENOMEM);
409 409
410 410 dwmap->cdm_die = die;
411 411 dwmap->cdm_off = off;
412 412 dwmap->cdm_id = id;
413 413 dwmap->cdm_fix = fix;
414 414
415 415 ctf_dprintf("dwmap: %p %" DW_PR_DUx "->%d\n", dwmap, off, id);
416 416 VERIFY(avl_find(&cup->cu_map, dwmap, &index) == NULL);
417 417 avl_insert(&cup->cu_map, dwmap, index);
418 418 return (0);
419 419 }
420 420
421 421 static int
422 422 ctf_dwarf_attribute(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
423 423 Dwarf_Attribute *attrp)
424 424 {
425 425 int ret;
426 426 Dwarf_Error derr;
427 427
428 428 if ((ret = dwarf_attr(die, name, attrp, &derr)) == DW_DLV_OK)
429 429 return (0);
430 430 if (ret == DW_DLV_NO_ENTRY) {
431 431 *attrp = NULL;
432 432 return (ENOENT);
433 433 }
434 434 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
435 435 "failed to get attribute for type: %s\n",
436 436 dwarf_errmsg(derr));
437 437 return (ECTF_CONVBKERR);
438 438 }
439 439
440 440 static int
441 441 ctf_dwarf_ref(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, Dwarf_Off *refp)
442 442 {
443 443 int ret;
444 444 Dwarf_Attribute attr;
445 445 Dwarf_Error derr;
446 446
447 447 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
448 448 return (ret);
449 449
450 450 if (dwarf_formref(attr, refp, &derr) == DW_DLV_OK) {
451 451 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
452 452 return (0);
453 453 }
454 454
455 455 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
456 456 "failed to get unsigned attribute for type: %s\n",
457 457 dwarf_errmsg(derr));
458 458 return (ECTF_CONVBKERR);
459 459 }
460 460
461 461 static int
462 462 ctf_dwarf_refdie(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
463 463 Dwarf_Die *diep)
464 464 {
465 465 int ret;
466 466 Dwarf_Off off;
467 467 Dwarf_Error derr;
468 468
469 469 if ((ret = ctf_dwarf_ref(cup, die, name, &off)) != 0)
470 470 return (ret);
471 471
472 472 off += cup->cu_cuoff;
473 473 if ((ret = dwarf_offdie(cup->cu_dwarf, off, diep, &derr)) !=
474 474 DW_DLV_OK) {
475 475 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
476 476 "failed to get die from offset %" DW_PR_DUu ": %s\n",
477 477 off, dwarf_errmsg(derr));
478 478 return (ECTF_CONVBKERR);
479 479 }
480 480
481 481 return (0);
482 482 }
483 483
484 484 static int
485 485 ctf_dwarf_signed(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
486 486 Dwarf_Signed *valp)
487 487 {
488 488 int ret;
489 489 Dwarf_Attribute attr;
490 490 Dwarf_Error derr;
491 491
492 492 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
493 493 return (ret);
494 494
495 495 if (dwarf_formsdata(attr, valp, &derr) == DW_DLV_OK) {
496 496 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
497 497 return (0);
498 498 }
499 499
500 500 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
501 501 "failed to get unsigned attribute for type: %s\n",
502 502 dwarf_errmsg(derr));
503 503 return (ECTF_CONVBKERR);
504 504 }
505 505
506 506 static int
507 507 ctf_dwarf_unsigned(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
508 508 Dwarf_Unsigned *valp)
509 509 {
510 510 int ret;
511 511 Dwarf_Attribute attr;
512 512 Dwarf_Error derr;
513 513
514 514 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
515 515 return (ret);
516 516
517 517 if (dwarf_formudata(attr, valp, &derr) == DW_DLV_OK) {
518 518 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
519 519 return (0);
520 520 }
521 521
522 522 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
523 523 "failed to get unsigned attribute for type: %s\n",
524 524 dwarf_errmsg(derr));
525 525 return (ECTF_CONVBKERR);
526 526 }
527 527
528 528 static int
529 529 ctf_dwarf_boolean(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
530 530 Dwarf_Bool *val)
531 531 {
532 532 int ret;
533 533 Dwarf_Attribute attr;
534 534 Dwarf_Error derr;
535 535
536 536 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
537 537 return (ret);
538 538
539 539 if (dwarf_formflag(attr, val, &derr) == DW_DLV_OK) {
540 540 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
541 541 return (0);
542 542 }
543 543
544 544 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
545 545 "failed to get boolean attribute for type: %s\n",
546 546 dwarf_errmsg(derr));
547 547
548 548 return (ECTF_CONVBKERR);
549 549 }
550 550
551 551 static int
552 552 ctf_dwarf_string(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, char **strp)
553 553 {
554 554 int ret;
555 555 char *s;
556 556 Dwarf_Attribute attr;
557 557 Dwarf_Error derr;
558 558
559 559 *strp = NULL;
560 560 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
561 561 return (ret);
562 562
563 563 if (dwarf_formstring(attr, &s, &derr) == DW_DLV_OK) {
564 564 if ((*strp = ctf_strdup(s)) == NULL)
565 565 ret = ENOMEM;
566 566 else
567 567 ret = 0;
568 568 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
569 569 return (ret);
570 570 }
571 571
572 572 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
573 573 "failed to get string attribute for type: %s\n",
574 574 dwarf_errmsg(derr));
575 575 return (ECTF_CONVBKERR);
576 576 }
577 577
578 578 static int
579 579 ctf_dwarf_member_location(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Unsigned *valp)
580 580 {
581 581 int ret;
582 582 Dwarf_Error derr;
583 583 Dwarf_Attribute attr;
584 584 Dwarf_Locdesc *loc;
585 585 Dwarf_Signed locnum;
586 586
587 587 if ((ret = ctf_dwarf_attribute(cup, die, DW_AT_data_member_location,
588 588 &attr)) != 0)
589 589 return (ret);
590 590
591 591 if (dwarf_loclist(attr, &loc, &locnum, &derr) != DW_DLV_OK) {
592 592 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
593 593 "failed to obtain location list for member offset: %s",
594 594 dwarf_errmsg(derr));
595 595 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
596 596 return (ECTF_CONVBKERR);
597 597 }
598 598 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
599 599
600 600 if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
601 601 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
602 602 "failed to parse location structure for member");
603 603 dwarf_dealloc(cup->cu_dwarf, loc->ld_s, DW_DLA_LOC_BLOCK);
604 604 dwarf_dealloc(cup->cu_dwarf, loc, DW_DLA_LOCDESC);
605 605 return (ECTF_CONVBKERR);
606 606 }
607 607
608 608 *valp = loc->ld_s->lr_number;
609 609
610 610 dwarf_dealloc(cup->cu_dwarf, loc->ld_s, DW_DLA_LOC_BLOCK);
611 611 dwarf_dealloc(cup->cu_dwarf, loc, DW_DLA_LOCDESC);
612 612 return (0);
613 613 }
614 614
615 615
616 616 static int
617 617 ctf_dwarf_offset(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Off *offsetp)
618 618 {
619 619 Dwarf_Error derr;
620 620
621 621 if (dwarf_dieoffset(die, offsetp, &derr) == DW_DLV_OK)
622 622 return (0);
623 623
624 624 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
625 625 "failed to get die offset: %s\n",
626 626 dwarf_errmsg(derr));
627 627 return (ECTF_CONVBKERR);
628 628 }
629 629
630 630 /* simpler variant for debugging output */
631 631 static Dwarf_Off
632 632 ctf_die_offset(Dwarf_Die die)
633 633 {
634 634 Dwarf_Off off = -1;
635 635 Dwarf_Error derr;
636 636
637 637 (void) dwarf_dieoffset(die, &off, &derr);
638 638 return (off);
639 639 }
640 640
641 641 static int
642 642 ctf_dwarf_tag(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half *tagp)
643 643 {
644 644 Dwarf_Error derr;
645 645
646 646 if (dwarf_tag(die, tagp, &derr) == DW_DLV_OK)
647 647 return (0);
648 648
649 649 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
650 650 "failed to get tag type: %s\n",
651 651 dwarf_errmsg(derr));
652 652 return (ECTF_CONVBKERR);
653 653 }
654 654
655 655 static int
656 656 ctf_dwarf_sib(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *sibp)
657 657 {
658 658 Dwarf_Error derr;
659 659 int ret;
660 660
661 661 *sibp = NULL;
662 662 ret = dwarf_siblingof(cup->cu_dwarf, base, sibp, &derr);
663 663 if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY)
664 664 return (0);
665 665
666 666 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
667 667 "failed to sibling from die: %s\n",
668 668 dwarf_errmsg(derr));
669 669 return (ECTF_CONVBKERR);
670 670 }
671 671
672 672 static int
673 673 ctf_dwarf_child(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *childp)
674 674 {
675 675 Dwarf_Error derr;
676 676 int ret;
677 677
678 678 *childp = NULL;
679 679 ret = dwarf_child(base, childp, &derr);
680 680 if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY)
681 681 return (0);
682 682
683 683 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
684 684 "failed to child from die: %s\n",
685 685 dwarf_errmsg(derr));
686 686 return (ECTF_CONVBKERR);
687 687 }
688 688
689 689 /*
690 690 * Compilers disagree on what to do to determine if something has global
691 691 * visiblity. Traditionally gcc has used DW_AT_external to indicate this while
692 692 * Studio has used DW_AT_visibility. We check DW_AT_visibility first and then
693 693 * fall back to DW_AT_external. Lack of DW_AT_external implies that it is not.
694 694 */
695 695 static int
696 696 ctf_dwarf_isglobal(ctf_cu_t *cup, Dwarf_Die die, boolean_t *igp)
697 697 {
698 698 int ret;
699 699 Dwarf_Signed vis;
700 700 Dwarf_Bool ext;
701 701
702 702 if ((ret = ctf_dwarf_signed(cup, die, DW_AT_visibility, &vis)) == 0) {
703 703 *igp = vis == DW_VIS_exported;
704 704 return (0);
705 705 } else if (ret != ENOENT) {
706 706 return (ret);
707 707 }
708 708
709 709 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_external, &ext)) != 0) {
710 710 if (ret == ENOENT) {
711 711 *igp = B_FALSE;
712 712 return (0);
713 713 }
714 714 return (ret);
715 715 }
716 716 *igp = ext != 0 ? B_TRUE : B_FALSE;
717 717 return (0);
718 718 }
719 719
720 720 static int
721 721 ctf_dwarf_die_elfenc(Elf *elf, ctf_cu_t *cup, char *errbuf, size_t errlen)
722 722 {
723 723 GElf_Ehdr ehdr;
724 724
725 725 if (gelf_getehdr(elf, &ehdr) == NULL) {
726 726 (void) snprintf(errbuf, errlen,
727 727 "failed to get ELF header: %s\n",
728 728 elf_errmsg(elf_errno()));
729 729 return (ECTF_CONVBKERR);
730 730 }
731 731
732 732 cup->cu_mach = ehdr.e_machine;
733 733
734 734 if (ehdr.e_ident[EI_CLASS] == ELFCLASS32) {
735 735 cup->cu_ptrsz = 4;
736 736 VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_ILP32) == 0);
737 737 } else if (ehdr.e_ident[EI_CLASS] == ELFCLASS64) {
738 738 cup->cu_ptrsz = 8;
739 739 VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_LP64) == 0);
740 740 } else {
741 741 (void) snprintf(errbuf, errlen,
742 742 "unknown ELF class %d", ehdr.e_ident[EI_CLASS]);
743 743 return (ECTF_CONVBKERR);
744 744 }
745 745
746 746 if (ehdr.e_ident[EI_DATA] == ELFDATA2LSB) {
747 747 cup->cu_bigend = B_FALSE;
748 748 } else if (ehdr.e_ident[EI_DATA] == ELFDATA2MSB) {
749 749 cup->cu_bigend = B_TRUE;
750 750 } else {
751 751 (void) snprintf(errbuf, errlen,
752 752 "unknown ELF data encoding: %hhu", ehdr.e_ident[EI_DATA]);
753 753 return (ECTF_CONVBKERR);
754 754 }
755 755
756 756 return (0);
757 757 }
758 758
759 759 typedef struct ctf_dwarf_fpent {
760 760 size_t cdfe_size;
761 761 uint_t cdfe_enc[3];
762 762 } ctf_dwarf_fpent_t;
763 763
764 764 typedef struct ctf_dwarf_fpmap {
765 765 uint_t cdf_mach;
766 766 ctf_dwarf_fpent_t cdf_ents[4];
767 767 } ctf_dwarf_fpmap_t;
768 768
769 769 static const ctf_dwarf_fpmap_t ctf_dwarf_fpmaps[] = {
770 770 { EM_SPARC, {
771 771 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
772 772 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
773 773 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
774 774 { 0, { 0 } }
775 775 } },
776 776 { EM_SPARC32PLUS, {
777 777 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
778 778 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
779 779 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
780 780 { 0, { 0 } }
781 781 } },
782 782 { EM_SPARCV9, {
783 783 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
784 784 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
785 785 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
786 786 { 0, { 0 } }
787 787 } },
788 788 { EM_386, {
789 789 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
790 790 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
791 791 { 12, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
792 792 { 0, { 0 } }
793 793 } },
794 794 { EM_X86_64, {
795 795 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
796 796 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
797 797 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
798 798 { 0, { 0 } }
799 799 } },
800 800 { EM_NONE }
801 801 };
802 802
803 803 static int
804 804 ctf_dwarf_float_base(ctf_cu_t *cup, Dwarf_Signed type, ctf_encoding_t *enc)
805 805 {
806 806 const ctf_dwarf_fpmap_t *map = &ctf_dwarf_fpmaps[0];
807 807 const ctf_dwarf_fpent_t *ent;
808 808 uint_t col = 0, mult = 1;
809 809
810 810 for (map = &ctf_dwarf_fpmaps[0]; map->cdf_mach != EM_NONE; map++) {
811 811 if (map->cdf_mach == cup->cu_mach)
812 812 break;
813 813 }
814 814
815 815 if (map->cdf_mach == EM_NONE) {
816 816 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
817 817 "Unsupported machine type: %d\n", cup->cu_mach);
818 818 return (ENOTSUP);
819 819 }
820 820
821 821 if (type == DW_ATE_complex_float) {
822 822 mult = 2;
823 823 col = 1;
824 824 } else if (type == DW_ATE_imaginary_float ||
825 825 type == DW_ATE_SUN_imaginary_float) {
826 826 col = 2;
827 827 }
828 828
829 829 ent = &map->cdf_ents[0];
830 830 for (ent = &map->cdf_ents[0]; ent->cdfe_size != 0; ent++) {
831 831 if (ent->cdfe_size * mult * 8 == enc->cte_bits) {
832 832 enc->cte_format = ent->cdfe_enc[col];
833 833 return (0);
834 834 }
835 835 }
836 836
837 837 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
838 838 "failed to find valid fp mapping for encoding %d, size %d bits\n",
839 839 type, enc->cte_bits);
840 840 return (EINVAL);
841 841 }
842 842
843 843 static int
844 844 ctf_dwarf_dwarf_base(ctf_cu_t *cup, Dwarf_Die die, int *kindp,
845 845 ctf_encoding_t *enc)
846 846 {
847 847 int ret;
848 848 Dwarf_Signed type;
849 849
850 850 if ((ret = ctf_dwarf_signed(cup, die, DW_AT_encoding, &type)) != 0)
851 851 return (ret);
852 852
853 853 switch (type) {
854 854 case DW_ATE_unsigned:
855 855 case DW_ATE_address:
856 856 *kindp = CTF_K_INTEGER;
857 857 enc->cte_format = 0;
858 858 break;
859 859 case DW_ATE_unsigned_char:
860 860 *kindp = CTF_K_INTEGER;
861 861 enc->cte_format = CTF_INT_CHAR;
862 862 break;
863 863 case DW_ATE_signed:
864 864 *kindp = CTF_K_INTEGER;
865 865 enc->cte_format = CTF_INT_SIGNED;
866 866 break;
867 867 case DW_ATE_signed_char:
868 868 *kindp = CTF_K_INTEGER;
869 869 enc->cte_format = CTF_INT_SIGNED | CTF_INT_CHAR;
870 870 break;
871 871 case DW_ATE_boolean:
872 872 *kindp = CTF_K_INTEGER;
873 873 enc->cte_format = CTF_INT_SIGNED | CTF_INT_BOOL;
874 874 break;
875 875 case DW_ATE_float:
876 876 case DW_ATE_complex_float:
877 877 case DW_ATE_imaginary_float:
878 878 case DW_ATE_SUN_imaginary_float:
879 879 case DW_ATE_SUN_interval_float:
880 880 *kindp = CTF_K_FLOAT;
881 881 if ((ret = ctf_dwarf_float_base(cup, type, enc)) != 0)
882 882 return (ret);
883 883 break;
884 884 default:
885 885 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
886 886 "encountered unknown DWARF encoding: %d", type);
887 887 return (ECTF_CONVBKERR);
888 888 }
889 889
890 890 return (0);
891 891 }
892 892
893 893 /*
894 894 * Different compilers (at least GCC and Studio) use different names for types.
895 895 * This parses the types and attempts to unify them. If this fails, we just fall
896 896 * back to using the DWARF itself.
897 897 */
898 898 static int
899 899 ctf_dwarf_parse_base(const char *name, int *kindp, ctf_encoding_t *enc,
900 900 char **newnamep)
901 901 {
902 902 char buf[256];
903 903 char *base, *c, *last;
904 904 int nlong = 0, nshort = 0, nchar = 0, nint = 0;
905 905 int sign = 1;
906 906
907 907 if (strlen(name) + 1 > sizeof (buf))
908 908 return (EINVAL);
909 909
910 910 (void) strlcpy(buf, name, sizeof (buf));
911 911 for (c = strtok_r(buf, " ", &last); c != NULL;
912 912 c = strtok_r(NULL, " ", &last)) {
913 913 if (strcmp(c, "signed") == 0) {
914 914 sign = 1;
915 915 } else if (strcmp(c, "unsigned") == 0) {
916 916 sign = 0;
917 917 } else if (strcmp(c, "long") == 0) {
918 918 nlong++;
919 919 } else if (strcmp(c, "char") == 0) {
920 920 nchar++;
921 921 } else if (strcmp(c, "short") == 0) {
922 922 nshort++;
923 923 } else if (strcmp(c, "int") == 0) {
924 924 nint++;
925 925 } else {
926 926 /*
927 927 * If we don't recognize any of the tokens, we'll tell
928 928 * the caller to fall back to the dwarf-provided
929 929 * encoding information.
930 930 */
931 931 return (EINVAL);
932 932 }
933 933 }
934 934
935 935 if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
936 936 return (EINVAL);
937 937
938 938 if (nchar > 0) {
939 939 if (nlong > 0 || nshort > 0 || nint > 0)
940 940 return (EINVAL);
941 941 base = "char";
942 942 } else if (nshort > 0) {
943 943 if (nlong > 0)
944 944 return (EINVAL);
945 945 base = "short";
946 946 } else if (nlong > 0) {
947 947 base = "long";
948 948 } else {
949 949 base = "int";
950 950 }
951 951
952 952 if (nchar > 0)
953 953 enc->cte_format = CTF_INT_CHAR;
954 954 else
955 955 enc->cte_format = 0;
956 956
957 957 if (sign > 0)
958 958 enc->cte_format |= CTF_INT_SIGNED;
959 959
960 960 (void) snprintf(buf, sizeof (buf), "%s%s%s",
961 961 (sign ? "" : "unsigned "),
962 962 (nlong > 1 ? "long " : ""),
963 963 base);
964 964
965 965 *newnamep = ctf_strdup(buf);
966 966 if (*newnamep == NULL)
967 967 return (ENOMEM);
968 968 *kindp = CTF_K_INTEGER;
969 969 return (0);
970 970 }
971 971
972 972 static int
973 973 ctf_dwarf_create_base(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot,
974 974 Dwarf_Off off)
975 975 {
976 976 int ret;
977 977 char *name, *nname;
978 978 Dwarf_Unsigned sz;
979 979 int kind;
980 980 ctf_encoding_t enc;
981 981 ctf_id_t id;
982 982
983 983 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0)
984 984 return (ret);
985 985 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &sz)) != 0) {
986 986 goto out;
987 987 }
988 988 ctf_dprintf("Creating base type %s from off %llu, size: %d\n", name,
989 989 off, sz);
990 990
991 991 bzero(&enc, sizeof (ctf_encoding_t));
992 992 enc.cte_bits = sz * 8;
993 993 if ((ret = ctf_dwarf_parse_base(name, &kind, &enc, &nname)) == 0) {
994 994 ctf_free(name, strlen(name) + 1);
995 995 name = nname;
996 996 } else {
997 997 if (ret != EINVAL)
998 998 return (ret);
999 999 ctf_dprintf("falling back to dwarf for base type %s\n", name);
1000 1000 if ((ret = ctf_dwarf_dwarf_base(cup, die, &kind, &enc)) != 0)
1001 1001 return (ret);
1002 1002 }
1003 1003
1004 1004 id = ctf_add_encoded(cup->cu_ctfp, isroot, name, &enc, kind);
1005 1005 if (id == CTF_ERR) {
1006 1006 ret = ctf_errno(cup->cu_ctfp);
1007 1007 } else {
1008 1008 *idp = id;
1009 1009 ret = ctf_dwmap_add(cup, id, die, B_FALSE);
1010 1010 }
1011 1011 out:
1012 1012 ctf_free(name, strlen(name) + 1);
1013 1013 return (ret);
1014 1014 }
1015 1015
1016 1016 /*
1017 1017 * Getting a member's offset is a surprisingly intricate dance. It works as
1018 1018 * follows:
1019 1019 *
1020 1020 * 1) If we're in DWARFv4, then we either have a DW_AT_data_bit_offset or we
1021 1021 * have a DW_AT_data_member_location. We won't have both. Thus we check first
1022 1022 * for DW_AT_data_bit_offset, and if it exists, we're set.
1023 1023 *
1024 1024 * Next, if we have a bitfield and we don't have a DW_AT_data_bit_offset, then
1025 1025 * we have to grab the data location and use the following dance:
1026 1026 *
1027 1027 * 2) Gather the set of DW_AT_byte_size, DW_AT_bit_offset, and DW_AT_bit_size.
1028 1028 * Of course, the DW_AT_byte_size may be omitted, even though it isn't always.
1029 1029 * When it's been omitted, we then have to say that the size is that of the
1030 1030 * underlying type, which forces that to be after a ctf_update(). Here, we have
1031 1031 * to do different things based on whether or not we're using big endian or
1032 1032 * little endian to obtain the proper offset.
1033 1033 */
1034 1034 static int
1035 1035 ctf_dwarf_member_offset(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t mid,
1036 1036 ulong_t *offp)
1037 1037 {
1038 1038 int ret;
1039 1039 Dwarf_Unsigned loc, bitsz, bytesz;
1040 1040 Dwarf_Signed bitoff;
1041 1041 size_t off;
1042 1042 ssize_t tsz;
1043 1043
1044 1044 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_data_bit_offset,
1045 1045 &loc)) == 0) {
1046 1046 *offp = loc;
1047 1047 return (0);
1048 1048 } else if (ret != ENOENT) {
1049 1049 return (ret);
1050 1050 }
1051 1051
1052 1052 if ((ret = ctf_dwarf_member_location(cup, die, &loc)) != 0)
1053 1053 return (ret);
1054 1054 off = loc * 8;
1055 1055
1056 1056 if ((ret = ctf_dwarf_signed(cup, die, DW_AT_bit_offset,
1057 1057 &bitoff)) != 0) {
1058 1058 if (ret != ENOENT)
1059 1059 return (ret);
1060 1060 *offp = off;
1061 1061 return (0);
1062 1062 }
1063 1063
1064 1064 /* At this point we have to have DW_AT_bit_size */
1065 1065 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0)
1066 1066 return (ret);
1067 1067
1068 1068 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size,
1069 1069 &bytesz)) != 0) {
1070 1070 if (ret != ENOENT)
1071 1071 return (ret);
1072 1072 if ((tsz = ctf_type_size(cup->cu_ctfp, mid)) == CTF_ERR) {
1073 1073 int e = ctf_errno(cup->cu_ctfp);
1074 1074 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1075 1075 "failed to get type size: %s", ctf_errmsg(e));
1076 1076 return (ECTF_CONVBKERR);
1077 1077 }
1078 1078 } else {
1079 1079 tsz = bytesz;
1080 1080 }
1081 1081 tsz *= 8;
1082 1082 if (cup->cu_bigend == B_TRUE) {
1083 1083 *offp = off + bitoff;
1084 1084 } else {
1085 1085 *offp = off + tsz - bitoff - bitsz;
1086 1086 }
1087 1087
1088 1088 return (0);
1089 1089 }
1090 1090
1091 1091 /*
1092 1092 * We need to determine if the member in question is a bitfield. If it is, then
1093 1093 * we need to go through and create a new type that's based on the actual base
1094 1094 * type, but has a different size. We also rename the type as a result to help
1095 1095 * deal with future collisions.
1096 1096 *
1097 1097 * Here we need to look and see if we have a DW_AT_bit_size value. If we have a
1098 1098 * bit size member and it does not equal the byte size member, then we need to
1099 1099 * create a bitfield type based on this.
1100 1100 *
1101 1101 * Note: When we support DWARFv4, there may be a chance that we need to also
1102 1102 * search for the DW_AT_byte_size if we don't have a DW_AT_bit_size member.
1103 1103 */
1104 1104 static int
1105 1105 ctf_dwarf_member_bitfield(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp)
1106 1106 {
1107 1107 int ret;
1108 1108 Dwarf_Unsigned bitsz;
1109 1109 ctf_encoding_t e;
1110 1110 ctf_dwbitf_t *cdb;
1111 1111 ctf_dtdef_t *dtd;
1112 1112 ctf_id_t base = *idp;
1113 1113 int kind;
1114 1114
1115 1115 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0) {
1116 1116 if (ret == ENOENT)
1117 1117 return (0);
1118 1118 return (ret);
1119 1119 }
1120 1120
1121 1121 ctf_dprintf("Trying to deal with bitfields on %d:%d\n", base, bitsz);
1122 1122 /*
1123 1123 * Given that we now have a bitsize, time to go do something about it.
1124 1124 * We're going to create a new type based on the current one, but first
1125 1125 * we need to find the base type. This means we need to traverse any
1126 1126 * typedef's, consts, and volatiles until we get to what should be
1127 1127 * something of type integer or enumeration.
1128 1128 */
1129 1129 VERIFY(bitsz < UINT32_MAX);
1130 1130 dtd = ctf_dtd_lookup(cup->cu_ctfp, base);
1131 1131 VERIFY(dtd != NULL);
1132 1132 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
1133 1133 while (kind == CTF_K_TYPEDEF || kind == CTF_K_CONST ||
1134 1134 kind == CTF_K_VOLATILE) {
1135 1135 dtd = ctf_dtd_lookup(cup->cu_ctfp, dtd->dtd_data.ctt_type);
1136 1136 VERIFY(dtd != NULL);
1137 1137 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
1138 1138 }
1139 1139 ctf_dprintf("got kind %d\n", kind);
1140 1140 VERIFY(kind == CTF_K_INTEGER || kind == CTF_K_ENUM);
1141 1141
1142 1142 /*
1143 1143 * As surprising as it may be, it is strictly possible to create a
1144 1144 * bitfield that is based on an enum. Of course, the C standard leaves
1145 1145 * enums sizing as an ABI concern more or less. To that effect, today on
1146 1146 * all illumos platforms the size of an enum is generally that of an
1147 1147 * int as our supported data models and ABIs all agree on that. So what
1148 1148 * we'll do is fake up a CTF encoding here to use. In this case, we'll
1149 1149 * treat it as an unsigned value of whatever size the underlying enum
1150 1150 * currently has (which is in the ctt_size member of its dynamic type
1151 1151 * data).
1152 1152 */
1153 1153 if (kind == CTF_K_INTEGER) {
1154 1154 e = dtd->dtd_u.dtu_enc;
1155 1155 } else {
1156 1156 bzero(&e, sizeof (ctf_encoding_t));
1157 1157 e.cte_bits = dtd->dtd_data.ctt_size * NBBY;
1158 1158 }
1159 1159
1160 1160 for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL;
1161 1161 cdb = ctf_list_next(cdb)) {
1162 1162 if (cdb->cdb_base == base && cdb->cdb_nbits == bitsz)
1163 1163 break;
1164 1164 }
1165 1165
1166 1166 /*
1167 1167 * Create a new type if none exists. We name all types in a way that is
1168 1168 * guaranteed not to conflict with the corresponding C type. We do this
1169 1169 * by using the ':' operator.
1170 1170 */
1171 1171 if (cdb == NULL) {
1172 1172 size_t namesz;
1173 1173 char *name;
1174 1174
1175 1175 e.cte_bits = bitsz;
1176 1176 namesz = snprintf(NULL, 0, "%s:%d", dtd->dtd_name,
1177 1177 (uint32_t)bitsz);
1178 1178 name = ctf_alloc(namesz + 1);
1179 1179 if (name == NULL)
1180 1180 return (ENOMEM);
1181 1181 cdb = ctf_alloc(sizeof (ctf_dwbitf_t));
1182 1182 if (cdb == NULL) {
1183 1183 ctf_free(name, namesz + 1);
1184 1184 return (ENOMEM);
1185 1185 }
1186 1186 (void) snprintf(name, namesz + 1, "%s:%d", dtd->dtd_name,
1187 1187 (uint32_t)bitsz);
1188 1188
1189 1189 cdb->cdb_base = base;
1190 1190 cdb->cdb_nbits = bitsz;
1191 1191 cdb->cdb_id = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT,
1192 1192 name, &e);
1193 1193 if (cdb->cdb_id == CTF_ERR) {
1194 1194 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1195 1195 "failed to get add bitfield type %s: %s", name,
1196 1196 ctf_errmsg(ctf_errno(cup->cu_ctfp)));
1197 1197 ctf_free(name, namesz + 1);
1198 1198 ctf_free(cdb, sizeof (ctf_dwbitf_t));
1199 1199 return (ECTF_CONVBKERR);
1200 1200 }
1201 1201 ctf_free(name, namesz + 1);
1202 1202 ctf_list_append(&cup->cu_bitfields, cdb);
1203 1203 }
1204 1204
1205 1205 *idp = cdb->cdb_id;
↓ open down ↓ |
1164 lines elided |
↑ open up ↑ |
1206 1206
1207 1207 return (0);
1208 1208 }
1209 1209
1210 1210 static int
1211 1211 ctf_dwarf_fixup_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t base, boolean_t add)
1212 1212 {
1213 1213 int ret, kind;
1214 1214 Dwarf_Die child, memb;
1215 1215 Dwarf_Unsigned size;
1216 - ulong_t nsz;
1217 1216
1218 1217 kind = ctf_type_kind(cup->cu_ctfp, base);
1219 1218 VERIFY(kind != CTF_ERR);
1220 1219 VERIFY(kind == CTF_K_STRUCT || kind == CTF_K_UNION);
1221 1220
1222 1221 /*
1223 1222 * Members are in children. However, gcc also allows empty ones.
1224 1223 */
1225 1224 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1226 1225 return (ret);
1227 1226 if (child == NULL)
1228 1227 return (0);
1229 1228
1230 1229 memb = child;
1231 1230 while (memb != NULL) {
1232 1231 Dwarf_Die sib, tdie;
1233 1232 Dwarf_Half tag;
1234 1233 ctf_id_t mid;
1235 1234 char *mname;
1236 1235 ulong_t memboff = 0;
1237 1236
1238 1237 if ((ret = ctf_dwarf_tag(cup, memb, &tag)) != 0)
1239 1238 return (ret);
1240 1239
1241 1240 if (tag != DW_TAG_member)
1242 1241 continue;
1243 1242
1244 1243 if ((ret = ctf_dwarf_refdie(cup, memb, DW_AT_type, &tdie)) != 0)
1245 1244 return (ret);
1246 1245
1247 1246 if ((ret = ctf_dwarf_convert_type(cup, tdie, &mid,
1248 1247 CTF_ADD_NONROOT)) != 0)
1249 1248 return (ret);
1250 1249 ctf_dprintf("Got back type id: %d\n", mid);
1251 1250
1252 1251 /*
1253 1252 * If we're not adding a member, just go ahead and return.
1254 1253 */
1255 1254 if (add == B_FALSE) {
1256 1255 if ((ret = ctf_dwarf_member_bitfield(cup, memb,
1257 1256 &mid)) != 0)
1258 1257 return (ret);
1259 1258 goto next;
1260 1259 }
1261 1260
1262 1261 if ((ret = ctf_dwarf_string(cup, memb, DW_AT_name,
1263 1262 &mname)) != 0 && ret != ENOENT)
1264 1263 return (ret);
1265 1264 if (ret == ENOENT)
1266 1265 mname = NULL;
1267 1266
1268 1267 if (kind == CTF_K_UNION) {
1269 1268 memboff = 0;
1270 1269 } else if ((ret = ctf_dwarf_member_offset(cup, memb, mid,
1271 1270 &memboff)) != 0) {
1272 1271 if (mname != NULL)
1273 1272 ctf_free(mname, strlen(mname) + 1);
1274 1273 return (ret);
1275 1274 }
1276 1275
1277 1276 if ((ret = ctf_dwarf_member_bitfield(cup, memb, &mid)) != 0)
1278 1277 return (ret);
1279 1278
1280 1279 ret = ctf_add_member(cup->cu_ctfp, base, mname, mid, memboff);
1281 1280 if (ret == CTF_ERR) {
1282 1281 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1283 1282 "failed to add member %s: %s",
1284 1283 mname, ctf_errmsg(ctf_errno(cup->cu_ctfp)));
1285 1284 if (mname != NULL)
1286 1285 ctf_free(mname, strlen(mname) + 1);
1287 1286 return (ECTF_CONVBKERR);
1288 1287 }
1289 1288
1290 1289 if (mname != NULL)
1291 1290 ctf_free(mname, strlen(mname) + 1);
1292 1291
1293 1292 next:
1294 1293 if ((ret = ctf_dwarf_sib(cup, memb, &sib)) != 0)
1295 1294 return (ret);
1296 1295 memb = sib;
1297 1296 }
1298 1297
↓ open down ↓ |
72 lines elided |
↑ open up ↑ |
1299 1298 /*
1300 1299 * If we're not adding members, then we don't know the final size of the
1301 1300 * structure, so end here.
1302 1301 */
1303 1302 if (add == B_FALSE)
1304 1303 return (0);
1305 1304
1306 1305 /* Finally set the size of the structure to the actual byte size */
1307 1306 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &size)) != 0)
1308 1307 return (ret);
1309 - nsz = size;
1310 - if ((ctf_set_size(cup->cu_ctfp, base, nsz)) == CTF_ERR) {
1308 + if ((ctf_set_size(cup->cu_ctfp, base, size)) == CTF_ERR) {
1311 1309 int e = ctf_errno(cup->cu_ctfp);
1312 1310 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1313 1311 "failed to set type size for %d to 0x%x: %s", base,
1314 1312 (uint32_t)size, ctf_errmsg(e));
1315 1313 return (ECTF_CONVBKERR);
1316 1314 }
1317 1315
1318 1316 return (0);
1319 1317 }
1320 1318
1321 1319 static int
1322 1320 ctf_dwarf_create_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1323 1321 int kind, int isroot)
1324 1322 {
1325 1323 int ret;
1326 1324 char *name;
1327 1325 ctf_id_t base;
1328 1326 Dwarf_Die child;
1329 1327 Dwarf_Bool decl;
1330 1328
1331 1329 /*
1332 1330 * Deal with the terribly annoying case of anonymous structs and unions.
1333 1331 * If they don't have a name, set the name to the empty string.
1334 1332 */
1335 1333 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1336 1334 ret != ENOENT)
1337 1335 return (ret);
1338 1336 if (ret == ENOENT)
1339 1337 name = NULL;
1340 1338
1341 1339 /*
1342 1340 * We need to check if we just have a declaration here. If we do, then
1343 1341 * instead of creating an actual structure or union, we're just going to
1344 1342 * go ahead and create a forward. During a dedup or merge, the forward
1345 1343 * will be replaced with the real thing.
1346 1344 */
1347 1345 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration,
1348 1346 &decl)) != 0) {
1349 1347 if (ret != ENOENT)
1350 1348 return (ret);
1351 1349 decl = 0;
1352 1350 }
1353 1351
1354 1352 if (decl != 0) {
1355 1353 base = ctf_add_forward(cup->cu_ctfp, isroot, name, kind);
1356 1354 } else if (kind == CTF_K_STRUCT) {
1357 1355 base = ctf_add_struct(cup->cu_ctfp, isroot, name);
1358 1356 } else {
1359 1357 base = ctf_add_union(cup->cu_ctfp, isroot, name);
1360 1358 }
1361 1359 ctf_dprintf("added sou %s (%d) (%d)\n", name, kind, base);
1362 1360 if (name != NULL)
1363 1361 ctf_free(name, strlen(name) + 1);
1364 1362 if (base == CTF_ERR)
1365 1363 return (ctf_errno(cup->cu_ctfp));
1366 1364 *idp = base;
1367 1365
1368 1366 /*
1369 1367 * If it's just a declaration, we're not going to mark it for fix up or
1370 1368 * do anything else.
1371 1369 */
1372 1370 if (decl == B_TRUE)
1373 1371 return (ctf_dwmap_add(cup, base, die, B_FALSE));
1374 1372 if ((ret = ctf_dwmap_add(cup, base, die, B_TRUE)) != 0)
1375 1373 return (ret);
1376 1374
1377 1375 /*
1378 1376 * Members are in children. However, gcc also allows empty ones.
1379 1377 */
1380 1378 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1381 1379 return (ret);
1382 1380 if (child == NULL)
1383 1381 return (0);
1384 1382
1385 1383 return (0);
1386 1384 }
1387 1385
1388 1386 static int
1389 1387 ctf_dwarf_create_array_range(ctf_cu_t *cup, Dwarf_Die range, ctf_id_t *idp,
1390 1388 ctf_id_t base, int isroot)
1391 1389 {
1392 1390 int ret;
1393 1391 Dwarf_Die sib;
1394 1392 Dwarf_Unsigned val;
1395 1393 Dwarf_Signed sval;
1396 1394 ctf_arinfo_t ar;
1397 1395
1398 1396 ctf_dprintf("creating array range\n");
1399 1397
1400 1398 if ((ret = ctf_dwarf_sib(cup, range, &sib)) != 0)
1401 1399 return (ret);
1402 1400 if (sib != NULL) {
1403 1401 ctf_id_t id;
1404 1402 if ((ret = ctf_dwarf_create_array_range(cup, sib, &id,
1405 1403 base, CTF_ADD_NONROOT)) != 0)
1406 1404 return (ret);
1407 1405 ar.ctr_contents = id;
1408 1406 } else {
1409 1407 ar.ctr_contents = base;
1410 1408 }
1411 1409
1412 1410 if ((ar.ctr_index = ctf_dwarf_long(cup)) == CTF_ERR)
1413 1411 return (ctf_errno(cup->cu_ctfp));
1414 1412
1415 1413 /*
1416 1414 * Array bounds can be signed or unsigned, but there are several kinds
1417 1415 * of signless forms (data1, data2, etc) that take their sign from the
1418 1416 * routine that is trying to interpret them. That is, data1 can be
1419 1417 * either signed or unsigned, depending on whether you use the signed or
1420 1418 * unsigned accessor function. GCC will use the signless forms to store
1421 1419 * unsigned values which have their high bit set, so we need to try to
1422 1420 * read them first as unsigned to get positive values. We could also
1423 1421 * try signed first, falling back to unsigned if we got a negative
1424 1422 * value.
1425 1423 */
1426 1424 if ((ret = ctf_dwarf_unsigned(cup, range, DW_AT_upper_bound,
1427 1425 &val)) == 0) {
1428 1426 ar.ctr_nelems = val + 1;
1429 1427 } else if (ret != ENOENT) {
1430 1428 return (ret);
1431 1429 } else if ((ret = ctf_dwarf_signed(cup, range, DW_AT_upper_bound,
1432 1430 &sval)) == 0) {
1433 1431 ar.ctr_nelems = sval + 1;
1434 1432 } else if (ret != ENOENT) {
1435 1433 return (ret);
1436 1434 } else {
1437 1435 ar.ctr_nelems = 0;
1438 1436 }
1439 1437
1440 1438 if ((*idp = ctf_add_array(cup->cu_ctfp, isroot, &ar)) == CTF_ERR)
1441 1439 return (ctf_errno(cup->cu_ctfp));
1442 1440
1443 1441 return (0);
1444 1442 }
1445 1443
1446 1444 /*
1447 1445 * Try and create an array type. First, the kind of the array is specified in
1448 1446 * the DW_AT_type entry. Next, the number of entries is stored in a more
1449 1447 * complicated form, we should have a child that has the DW_TAG_subrange type.
1450 1448 */
1451 1449 static int
1452 1450 ctf_dwarf_create_array(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1453 1451 {
1454 1452 int ret;
1455 1453 Dwarf_Die tdie, rdie;
1456 1454 ctf_id_t tid;
1457 1455 Dwarf_Half rtag;
1458 1456
1459 1457 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0)
1460 1458 return (ret);
1461 1459 if ((ret = ctf_dwarf_convert_type(cup, tdie, &tid,
1462 1460 CTF_ADD_NONROOT)) != 0)
1463 1461 return (ret);
1464 1462
1465 1463 if ((ret = ctf_dwarf_child(cup, die, &rdie)) != 0)
1466 1464 return (ret);
1467 1465 if ((ret = ctf_dwarf_tag(cup, rdie, &rtag)) != 0)
1468 1466 return (ret);
1469 1467 if (rtag != DW_TAG_subrange_type) {
1470 1468 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1471 1469 "encountered array without DW_TAG_subrange_type child\n");
1472 1470 return (ECTF_CONVBKERR);
1473 1471 }
1474 1472
1475 1473 /*
1476 1474 * The compiler may opt to describe a multi-dimensional array as one
1477 1475 * giant array or it may opt to instead encode it as a series of
1478 1476 * subranges. If it's the latter, then for each subrange we introduce a
1479 1477 * type. We can always use the base type.
1480 1478 */
1481 1479 if ((ret = ctf_dwarf_create_array_range(cup, rdie, idp, tid,
1482 1480 isroot)) != 0)
1483 1481 return (ret);
1484 1482 ctf_dprintf("Got back id %d\n", *idp);
1485 1483 return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1486 1484 }
1487 1485
1488 1486 /*
1489 1487 * Given "const int const_array3[11]", GCC7 at least will create a DIE tree of
1490 1488 * DW_TAG_const_type:DW_TAG_array_type:DW_Tag_const_type:<member_type>.
1491 1489 *
1492 1490 * Given C's syntax, this renders out as "const const int const_array3[11]". To
1493 1491 * get closer to round-tripping (and make the unit tests work), we'll peek for
1494 1492 * this case, and avoid adding the extraneous qualifier if we see that the
1495 1493 * underlying array referent already has the same qualifier.
1496 1494 *
1497 1495 * This is unfortunately less trivial than it could be: this issue applies to
1498 1496 * qualifier sets like "const volatile", as well as multi-dimensional arrays, so
1499 1497 * we need to descend down those.
1500 1498 *
1501 1499 * Returns CTF_ERR on error, or a boolean value otherwise.
1502 1500 */
1503 1501 static int
1504 1502 needed_array_qualifier(ctf_cu_t *cup, int kind, ctf_id_t ref_id)
1505 1503 {
1506 1504 const ctf_type_t *t;
1507 1505 ctf_arinfo_t arinfo;
1508 1506 int akind;
1509 1507
1510 1508 if (kind != CTF_K_CONST && kind != CTF_K_VOLATILE &&
1511 1509 kind != CTF_K_RESTRICT)
1512 1510 return (1);
1513 1511
1514 1512 if ((t = ctf_dyn_lookup_by_id(cup->cu_ctfp, ref_id)) == NULL)
1515 1513 return (CTF_ERR);
1516 1514
1517 1515 if (LCTF_INFO_KIND(cup->cu_ctfp, t->ctt_info) != CTF_K_ARRAY)
1518 1516 return (1);
1519 1517
1520 1518 if (ctf_dyn_array_info(cup->cu_ctfp, ref_id, &arinfo) != 0)
1521 1519 return (CTF_ERR);
1522 1520
1523 1521 ctf_id_t id = arinfo.ctr_contents;
1524 1522
1525 1523 for (;;) {
1526 1524 if ((t = ctf_dyn_lookup_by_id(cup->cu_ctfp, id)) == NULL)
1527 1525 return (CTF_ERR);
1528 1526
1529 1527 akind = LCTF_INFO_KIND(cup->cu_ctfp, t->ctt_info);
1530 1528
1531 1529 if (akind == kind)
1532 1530 break;
1533 1531
1534 1532 if (akind == CTF_K_ARRAY) {
1535 1533 if (ctf_dyn_array_info(cup->cu_ctfp,
1536 1534 id, &arinfo) != 0)
1537 1535 return (CTF_ERR);
1538 1536 id = arinfo.ctr_contents;
1539 1537 continue;
1540 1538 }
1541 1539
1542 1540 if (akind != CTF_K_CONST && akind != CTF_K_VOLATILE &&
1543 1541 akind != CTF_K_RESTRICT)
1544 1542 break;
1545 1543
1546 1544 id = t->ctt_type;
1547 1545 }
1548 1546
1549 1547 if (kind == akind) {
1550 1548 ctf_dprintf("ignoring extraneous %s qualifier for array %d\n",
1551 1549 ctf_kind_name(cup->cu_ctfp, kind), ref_id);
1552 1550 }
1553 1551
1554 1552 return (kind != akind);
1555 1553 }
1556 1554
1557 1555 static int
1558 1556 ctf_dwarf_create_reference(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1559 1557 int kind, int isroot)
1560 1558 {
1561 1559 int ret;
1562 1560 ctf_id_t id;
1563 1561 Dwarf_Die tdie;
1564 1562 char *name;
1565 1563 size_t namelen;
1566 1564
1567 1565 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1568 1566 ret != ENOENT)
1569 1567 return (ret);
1570 1568 if (ret == ENOENT) {
1571 1569 name = NULL;
1572 1570 namelen = 0;
1573 1571 } else {
1574 1572 namelen = strlen(name);
1575 1573 }
1576 1574
1577 1575 ctf_dprintf("reference kind %d %s\n", kind, name != NULL ? name : "<>");
1578 1576
1579 1577 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) {
1580 1578 if (ret != ENOENT) {
1581 1579 ctf_free(name, namelen);
1582 1580 return (ret);
1583 1581 }
1584 1582 if ((id = ctf_dwarf_void(cup)) == CTF_ERR) {
1585 1583 ctf_free(name, namelen);
1586 1584 return (ctf_errno(cup->cu_ctfp));
1587 1585 }
1588 1586 } else {
1589 1587 if ((ret = ctf_dwarf_convert_type(cup, tdie, &id,
1590 1588 CTF_ADD_NONROOT)) != 0) {
1591 1589 ctf_free(name, namelen);
1592 1590 return (ret);
1593 1591 }
1594 1592 }
1595 1593
1596 1594 if ((ret = needed_array_qualifier(cup, kind, id)) <= 0) {
1597 1595 if (ret != 0) {
1598 1596 ret = (ctf_errno(cup->cu_ctfp));
1599 1597 } else {
1600 1598 *idp = id;
1601 1599 }
1602 1600
1603 1601 ctf_free(name, namelen);
1604 1602 return (ret);
1605 1603 }
1606 1604
↓ open down ↓ |
286 lines elided |
↑ open up ↑ |
1607 1605 if ((*idp = ctf_add_reftype(cup->cu_ctfp, isroot, name, id, kind)) ==
1608 1606 CTF_ERR) {
1609 1607 ctf_free(name, namelen);
1610 1608 return (ctf_errno(cup->cu_ctfp));
1611 1609 }
1612 1610
1613 1611 ctf_free(name, namelen);
1614 1612 return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1615 1613 }
1616 1614
1615 +/*
1616 + * Get the size of the type of a particular die. Note that this is a simple
1617 + * version that doesn't attempt to traverse further than expecting a single
1618 + * sized type reference (so no qualifiers etc.). Nor does it attempt to do as
1619 + * much as ctf_type_size() - which we cannot use here as that doesn't look up
1620 + * dynamic types, and we don't yet want to do a ctf_update().
1621 + */
1617 1622 static int
1618 -ctf_dwarf_create_enum(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1623 +ctf_dwarf_get_type_size(ctf_cu_t *cup, Dwarf_Die die, size_t *sizep)
1619 1624 {
1625 + const ctf_type_t *t;
1626 + Dwarf_Die tdie;
1627 + ctf_id_t tid;
1620 1628 int ret;
1621 - ctf_id_t id;
1629 +
1630 + if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0)
1631 + return (ret);
1632 +
1633 + if ((ret = ctf_dwarf_convert_type(cup, tdie, &tid,
1634 + CTF_ADD_NONROOT)) != 0)
1635 + return (ret);
1636 +
1637 + if ((t = ctf_dyn_lookup_by_id(cup->cu_ctfp, tid)) == NULL)
1638 + return (ENOENT);
1639 +
1640 + *sizep = ctf_get_ctt_size(cup->cu_ctfp, t, NULL, NULL);
1641 + return (0);
1642 +}
1643 +
1644 +static int
1645 +ctf_dwarf_create_enum(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1646 +{
1647 + size_t size = 0;
1622 1648 Dwarf_Die child;
1649 + ctf_id_t id;
1623 1650 char *name;
1651 + int ret;
1624 1652
1625 1653 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1626 1654 ret != ENOENT)
1627 1655 return (ret);
1628 1656 if (ret == ENOENT)
1629 1657 name = NULL;
1630 - id = ctf_add_enum(cup->cu_ctfp, isroot, name);
1658 +
1659 + (void) ctf_dwarf_get_type_size(cup, die, &size);
1660 +
1661 + id = ctf_add_enum(cup->cu_ctfp, isroot, name, size);
1631 1662 ctf_dprintf("added enum %s (%d)\n", name, id);
1632 1663 if (name != NULL)
1633 1664 ctf_free(name, strlen(name) + 1);
1634 1665 if (id == CTF_ERR)
1635 1666 return (ctf_errno(cup->cu_ctfp));
1636 1667 *idp = id;
1637 1668 if ((ret = ctf_dwmap_add(cup, id, die, B_FALSE)) != 0)
1638 1669 return (ret);
1639 1670
1640 1671 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0) {
1641 1672 if (ret == ENOENT)
1642 1673 ret = 0;
1643 1674 return (ret);
1644 1675 }
1645 1676
1646 1677 while (child != NULL) {
1647 1678 Dwarf_Half tag;
1648 1679 Dwarf_Signed sval;
1649 1680 Dwarf_Unsigned uval;
1650 1681 Dwarf_Die arg = child;
1651 1682 int eval;
1652 1683
1653 1684 if ((ret = ctf_dwarf_sib(cup, arg, &child)) != 0)
1654 1685 return (ret);
1655 1686
1656 1687 if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1657 1688 return (ret);
1658 1689
1659 1690 if (tag != DW_TAG_enumerator) {
1660 1691 if ((ret = ctf_dwarf_convert_type(cup, arg, NULL,
1661 1692 CTF_ADD_NONROOT)) != 0)
1662 1693 return (ret);
1663 1694 continue;
1664 1695 }
1665 1696
1666 1697 /*
1667 1698 * DWARF v4 section 5.7 tells us we'll always have names.
1668 1699 */
1669 1700 if ((ret = ctf_dwarf_string(cup, arg, DW_AT_name, &name)) != 0)
1670 1701 return (ret);
1671 1702
1672 1703 /*
1673 1704 * We have to be careful here: newer GCCs generate DWARF where
1674 1705 * an unsigned value will happily pass ctf_dwarf_signed().
1675 1706 * Since negative values will fail ctf_dwarf_unsigned(), we try
1676 1707 * that first to make sure we get the right value.
1677 1708 */
1678 1709 if ((ret = ctf_dwarf_unsigned(cup, arg, DW_AT_const_value,
1679 1710 &uval)) == 0) {
1680 1711 eval = (int)uval;
1681 1712 } else if ((ret = ctf_dwarf_signed(cup, arg, DW_AT_const_value,
1682 1713 &sval)) == 0) {
1683 1714 eval = sval;
1684 1715 }
1685 1716
1686 1717 if (ret != 0) {
1687 1718 if (ret != ENOENT)
1688 1719 return (ret);
1689 1720
1690 1721 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1691 1722 "encountered enumeration without constant value\n");
1692 1723 return (ECTF_CONVBKERR);
1693 1724 }
1694 1725
1695 1726 ret = ctf_add_enumerator(cup->cu_ctfp, id, name, eval);
1696 1727 if (ret == CTF_ERR) {
1697 1728 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1698 1729 "failed to add enumarator %s (%d) to %d\n",
1699 1730 name, eval, id);
1700 1731 ctf_free(name, strlen(name) + 1);
1701 1732 return (ctf_errno(cup->cu_ctfp));
1702 1733 }
1703 1734 ctf_free(name, strlen(name) + 1);
1704 1735 }
1705 1736
1706 1737 return (0);
1707 1738 }
1708 1739
1709 1740 /*
1710 1741 * For a function pointer, walk over and process all of its children, unless we
1711 1742 * encounter one that's just a declaration. In which case, we error on it.
1712 1743 */
1713 1744 static int
1714 1745 ctf_dwarf_create_fptr(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1715 1746 {
1716 1747 int ret;
1717 1748 Dwarf_Bool b;
1718 1749 ctf_funcinfo_t fi;
1719 1750 Dwarf_Die retdie;
1720 1751 ctf_id_t *argv = NULL;
1721 1752
1722 1753 bzero(&fi, sizeof (ctf_funcinfo_t));
1723 1754
1724 1755 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) != 0) {
1725 1756 if (ret != ENOENT)
1726 1757 return (ret);
1727 1758 } else {
1728 1759 if (b != 0)
1729 1760 return (EPROTOTYPE);
1730 1761 }
1731 1762
1732 1763 /*
1733 1764 * Return type is in DW_AT_type, if none, it returns void.
1734 1765 */
1735 1766 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &retdie)) != 0) {
1736 1767 if (ret != ENOENT)
1737 1768 return (ret);
1738 1769 if ((fi.ctc_return = ctf_dwarf_void(cup)) == CTF_ERR)
1739 1770 return (ctf_errno(cup->cu_ctfp));
1740 1771 } else {
1741 1772 if ((ret = ctf_dwarf_convert_type(cup, retdie, &fi.ctc_return,
1742 1773 CTF_ADD_NONROOT)) != 0)
1743 1774 return (ret);
1744 1775 }
1745 1776
1746 1777 if ((ret = ctf_dwarf_function_count(cup, die, &fi, B_TRUE)) != 0) {
1747 1778 return (ret);
1748 1779 }
1749 1780
1750 1781 if (fi.ctc_argc != 0) {
1751 1782 argv = ctf_alloc(sizeof (ctf_id_t) * fi.ctc_argc);
1752 1783 if (argv == NULL)
1753 1784 return (ENOMEM);
1754 1785
1755 1786 if ((ret = ctf_dwarf_convert_fargs(cup, die, &fi, argv)) != 0) {
1756 1787 ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
1757 1788 return (ret);
1758 1789 }
1759 1790 }
1760 1791
1761 1792 if ((*idp = ctf_add_funcptr(cup->cu_ctfp, isroot, &fi, argv)) ==
1762 1793 CTF_ERR) {
1763 1794 ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
1764 1795 return (ctf_errno(cup->cu_ctfp));
1765 1796 }
1766 1797
1767 1798 ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
1768 1799 return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1769 1800 }
1770 1801
1771 1802 static int
1772 1803 ctf_dwarf_convert_type(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1773 1804 int isroot)
1774 1805 {
1775 1806 int ret;
1776 1807 Dwarf_Off offset;
1777 1808 Dwarf_Half tag;
1778 1809 ctf_dwmap_t lookup, *map;
1779 1810 ctf_id_t id;
1780 1811
1781 1812 if (idp == NULL)
1782 1813 idp = &id;
1783 1814
1784 1815 if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0)
1785 1816 return (ret);
1786 1817
1787 1818 if (offset > cup->cu_maxoff) {
1788 1819 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1789 1820 "die offset %llu beyond maximum for header %llu\n",
1790 1821 offset, cup->cu_maxoff);
1791 1822 return (ECTF_CONVBKERR);
1792 1823 }
1793 1824
1794 1825 /*
1795 1826 * If we've already added an entry for this offset, then we're done.
1796 1827 */
1797 1828 lookup.cdm_off = offset;
1798 1829 if ((map = avl_find(&cup->cu_map, &lookup, NULL)) != NULL) {
1799 1830 *idp = map->cdm_id;
1800 1831 return (0);
1801 1832 }
1802 1833
1803 1834 if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0)
1804 1835 return (ret);
1805 1836
1806 1837 ret = ENOTSUP;
1807 1838 switch (tag) {
1808 1839 case DW_TAG_base_type:
1809 1840 ctf_dprintf("base\n");
1810 1841 ret = ctf_dwarf_create_base(cup, die, idp, isroot, offset);
1811 1842 break;
1812 1843 case DW_TAG_array_type:
1813 1844 ctf_dprintf("array\n");
1814 1845 ret = ctf_dwarf_create_array(cup, die, idp, isroot);
1815 1846 break;
1816 1847 case DW_TAG_enumeration_type:
1817 1848 ctf_dprintf("enum\n");
1818 1849 ret = ctf_dwarf_create_enum(cup, die, idp, isroot);
1819 1850 break;
1820 1851 case DW_TAG_pointer_type:
1821 1852 ctf_dprintf("pointer\n");
1822 1853 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_POINTER,
1823 1854 isroot);
1824 1855 break;
1825 1856 case DW_TAG_structure_type:
1826 1857 ctf_dprintf("struct\n");
1827 1858 ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_STRUCT,
1828 1859 isroot);
1829 1860 break;
1830 1861 case DW_TAG_subroutine_type:
1831 1862 ctf_dprintf("fptr\n");
1832 1863 ret = ctf_dwarf_create_fptr(cup, die, idp, isroot);
1833 1864 break;
1834 1865 case DW_TAG_typedef:
1835 1866 ctf_dprintf("typedef\n");
1836 1867 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_TYPEDEF,
1837 1868 isroot);
1838 1869 break;
1839 1870 case DW_TAG_union_type:
1840 1871 ctf_dprintf("union\n");
1841 1872 ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_UNION,
1842 1873 isroot);
1843 1874 break;
1844 1875 case DW_TAG_const_type:
1845 1876 ctf_dprintf("const\n");
1846 1877 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_CONST,
1847 1878 isroot);
1848 1879 break;
1849 1880 case DW_TAG_volatile_type:
1850 1881 ctf_dprintf("volatile\n");
1851 1882 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_VOLATILE,
1852 1883 isroot);
1853 1884 break;
1854 1885 case DW_TAG_restrict_type:
1855 1886 ctf_dprintf("restrict\n");
1856 1887 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_RESTRICT,
1857 1888 isroot);
1858 1889 break;
1859 1890 default:
1860 1891 ctf_dprintf("ignoring tag type %x\n", tag);
1861 1892 *idp = CTF_ERR;
1862 1893 ret = 0;
1863 1894 break;
1864 1895 }
1865 1896 ctf_dprintf("ctf_dwarf_convert_type tag specific handler returned %d\n",
1866 1897 ret);
1867 1898
1868 1899 return (ret);
1869 1900 }
1870 1901
1871 1902 static int
1872 1903 ctf_dwarf_walk_lexical(ctf_cu_t *cup, Dwarf_Die die)
1873 1904 {
1874 1905 int ret;
1875 1906 Dwarf_Die child;
1876 1907
1877 1908 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1878 1909 return (ret);
1879 1910
1880 1911 if (child == NULL)
1881 1912 return (0);
1882 1913
1883 1914 return (ctf_dwarf_convert_die(cup, die));
1884 1915 }
1885 1916
1886 1917 static int
1887 1918 ctf_dwarf_function_count(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip,
1888 1919 boolean_t fptr)
1889 1920 {
1890 1921 int ret;
1891 1922 Dwarf_Die child, sib, arg;
1892 1923
1893 1924 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1894 1925 return (ret);
1895 1926
1896 1927 arg = child;
1897 1928 while (arg != NULL) {
1898 1929 Dwarf_Half tag;
1899 1930
1900 1931 if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1901 1932 return (ret);
1902 1933
1903 1934 /*
1904 1935 * We have to check for a varargs type declaration. This will
1905 1936 * happen in one of two ways. If we have a function pointer
1906 1937 * type, then it'll be done with a tag of type
1907 1938 * DW_TAG_unspecified_parameters. However, it only means we have
1908 1939 * a variable number of arguments, if we have more than one
1909 1940 * argument found so far. Otherwise, when we have a function
1910 1941 * type, it instead uses a formal parameter whose name is '...'
1911 1942 * to indicate a variable arguments member.
1912 1943 *
1913 1944 * Also, if we have a function pointer, then we have to expect
1914 1945 * that we might not get a name at all.
1915 1946 */
1916 1947 if (tag == DW_TAG_formal_parameter && fptr == B_FALSE) {
1917 1948 char *name;
1918 1949 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name,
1919 1950 &name)) != 0)
1920 1951 return (ret);
1921 1952 if (strcmp(name, DWARF_VARARGS_NAME) == 0)
1922 1953 fip->ctc_flags |= CTF_FUNC_VARARG;
1923 1954 else
1924 1955 fip->ctc_argc++;
1925 1956 ctf_free(name, strlen(name) + 1);
1926 1957 } else if (tag == DW_TAG_formal_parameter) {
1927 1958 fip->ctc_argc++;
1928 1959 } else if (tag == DW_TAG_unspecified_parameters &&
1929 1960 fip->ctc_argc > 0) {
1930 1961 fip->ctc_flags |= CTF_FUNC_VARARG;
1931 1962 }
1932 1963 if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0)
1933 1964 return (ret);
1934 1965 arg = sib;
1935 1966 }
1936 1967
1937 1968 return (0);
1938 1969 }
1939 1970
1940 1971 static int
1941 1972 ctf_dwarf_convert_fargs(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip,
1942 1973 ctf_id_t *argv)
1943 1974 {
1944 1975 int ret;
1945 1976 int i = 0;
1946 1977 Dwarf_Die child, sib, arg;
1947 1978
1948 1979 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1949 1980 return (ret);
1950 1981
1951 1982 arg = child;
1952 1983 while (arg != NULL) {
1953 1984 Dwarf_Half tag;
1954 1985
1955 1986 if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1956 1987 return (ret);
1957 1988 if (tag == DW_TAG_formal_parameter) {
1958 1989 Dwarf_Die tdie;
1959 1990
1960 1991 if ((ret = ctf_dwarf_refdie(cup, arg, DW_AT_type,
1961 1992 &tdie)) != 0)
1962 1993 return (ret);
1963 1994
1964 1995 if ((ret = ctf_dwarf_convert_type(cup, tdie, &argv[i],
1965 1996 CTF_ADD_ROOT)) != 0)
1966 1997 return (ret);
1967 1998 i++;
1968 1999
1969 2000 /*
1970 2001 * Once we hit argc entries, we're done. This ensures we
1971 2002 * don't accidentally hit a varargs which should be the
1972 2003 * last entry.
1973 2004 */
1974 2005 if (i == fip->ctc_argc)
1975 2006 break;
1976 2007 }
1977 2008
1978 2009 if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0)
1979 2010 return (ret);
1980 2011 arg = sib;
1981 2012 }
1982 2013
1983 2014 return (0);
1984 2015 }
1985 2016
1986 2017 static int
1987 2018 ctf_dwarf_convert_function(ctf_cu_t *cup, Dwarf_Die die)
1988 2019 {
1989 2020 ctf_dwfunc_t *cdf;
1990 2021 Dwarf_Die tdie;
1991 2022 Dwarf_Bool b;
1992 2023 char *name;
1993 2024 int ret;
1994 2025
1995 2026 /*
1996 2027 * Functions that don't have a name are generally functions that have
1997 2028 * been inlined and thus most information about them has been lost. If
1998 2029 * we can't get a name, then instead of returning ENOENT, we silently
1999 2030 * swallow the error.
2000 2031 */
2001 2032 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0) {
2002 2033 if (ret == ENOENT)
2003 2034 return (0);
2004 2035 return (ret);
2005 2036 }
2006 2037
2007 2038 ctf_dprintf("beginning work on function %s (die %llx)\n",
2008 2039 name, ctf_die_offset(die));
2009 2040
2010 2041 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) != 0) {
2011 2042 if (ret != ENOENT)
2012 2043 return (ret);
2013 2044 } else if (b != 0) {
2014 2045 /*
2015 2046 * GCC7 at least creates empty DW_AT_declarations for functions
2016 2047 * defined in headers. As they lack details on the function
2017 2048 * prototype, we need to ignore them. If we later actually
2018 2049 * see the relevant function's definition, we will see another
2019 2050 * DW_TAG_subprogram that is more complete.
2020 2051 */
2021 2052 ctf_dprintf("ignoring declaration of function %s (die %llx)\n",
2022 2053 name, ctf_die_offset(die));
2023 2054 return (0);
2024 2055 }
2025 2056
2026 2057 if ((cdf = ctf_alloc(sizeof (ctf_dwfunc_t))) == NULL) {
2027 2058 ctf_free(name, strlen(name) + 1);
2028 2059 return (ENOMEM);
2029 2060 }
2030 2061 bzero(cdf, sizeof (ctf_dwfunc_t));
2031 2062 cdf->cdf_name = name;
2032 2063
2033 2064 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) == 0) {
2034 2065 if ((ret = ctf_dwarf_convert_type(cup, tdie,
2035 2066 &(cdf->cdf_fip.ctc_return), CTF_ADD_ROOT)) != 0) {
2036 2067 ctf_free(name, strlen(name) + 1);
2037 2068 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2038 2069 return (ret);
2039 2070 }
2040 2071 } else if (ret != ENOENT) {
2041 2072 ctf_free(name, strlen(name) + 1);
2042 2073 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2043 2074 return (ret);
2044 2075 } else {
2045 2076 if ((cdf->cdf_fip.ctc_return = ctf_dwarf_void(cup)) ==
2046 2077 CTF_ERR) {
2047 2078 ctf_free(name, strlen(name) + 1);
2048 2079 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2049 2080 return (ctf_errno(cup->cu_ctfp));
2050 2081 }
2051 2082 }
2052 2083
2053 2084 /*
2054 2085 * A function has a number of children, some of which may not be ones we
2055 2086 * care about. Children that we care about have a type of
2056 2087 * DW_TAG_formal_parameter. We're going to do two passes, the first to
2057 2088 * count the arguments, the second to process them. Afterwards, we
2058 2089 * should be good to go ahead and add this function.
2059 2090 *
2060 2091 * Note, we already got the return type by going in and grabbing it out
2061 2092 * of the DW_AT_type.
2062 2093 */
2063 2094 if ((ret = ctf_dwarf_function_count(cup, die, &cdf->cdf_fip,
2064 2095 B_FALSE)) != 0) {
2065 2096 ctf_free(name, strlen(name) + 1);
2066 2097 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2067 2098 return (ret);
2068 2099 }
2069 2100
2070 2101 ctf_dprintf("beginning to convert function arguments %s\n", name);
2071 2102 if (cdf->cdf_fip.ctc_argc != 0) {
2072 2103 uint_t argc = cdf->cdf_fip.ctc_argc;
2073 2104 cdf->cdf_argv = ctf_alloc(sizeof (ctf_id_t) * argc);
2074 2105 if (cdf->cdf_argv == NULL) {
2075 2106 ctf_free(name, strlen(name) + 1);
2076 2107 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2077 2108 return (ENOMEM);
2078 2109 }
2079 2110 if ((ret = ctf_dwarf_convert_fargs(cup, die,
2080 2111 &cdf->cdf_fip, cdf->cdf_argv)) != 0) {
2081 2112 ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) * argc);
2082 2113 ctf_free(name, strlen(name) + 1);
2083 2114 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2084 2115 return (ret);
2085 2116 }
2086 2117 } else {
2087 2118 cdf->cdf_argv = NULL;
2088 2119 }
2089 2120
2090 2121 if ((ret = ctf_dwarf_isglobal(cup, die, &cdf->cdf_global)) != 0) {
2091 2122 ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) *
2092 2123 cdf->cdf_fip.ctc_argc);
2093 2124 ctf_free(name, strlen(name) + 1);
2094 2125 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2095 2126 return (ret);
2096 2127 }
2097 2128
2098 2129 ctf_list_append(&cup->cu_funcs, cdf);
2099 2130 return (ret);
2100 2131 }
2101 2132
2102 2133 /*
2103 2134 * Convert variables, but only if they're not prototypes and have names.
2104 2135 */
2105 2136 static int
2106 2137 ctf_dwarf_convert_variable(ctf_cu_t *cup, Dwarf_Die die)
2107 2138 {
2108 2139 int ret;
2109 2140 char *name;
2110 2141 Dwarf_Bool b;
2111 2142 Dwarf_Die tdie;
2112 2143 ctf_id_t id;
2113 2144 ctf_dwvar_t *cdv;
2114 2145
2115 2146 /* Skip "Non-Defining Declarations" */
2116 2147 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) == 0) {
2117 2148 if (b != 0)
2118 2149 return (0);
2119 2150 } else if (ret != ENOENT) {
2120 2151 return (ret);
2121 2152 }
2122 2153
2123 2154 /*
2124 2155 * If we find a DIE of "Declarations Completing Non-Defining
2125 2156 * Declarations", we will use the referenced type's DIE. This isn't
2126 2157 * quite correct, e.g. DW_AT_decl_line will be the forward declaration
2127 2158 * not this site. It's sufficient for what we need, however: in
2128 2159 * particular, we should find DW_AT_external as needed there.
2129 2160 */
2130 2161 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_specification,
2131 2162 &tdie)) == 0) {
2132 2163 Dwarf_Off offset;
2133 2164 if ((ret = ctf_dwarf_offset(cup, tdie, &offset)) != 0)
2134 2165 return (ret);
2135 2166 ctf_dprintf("die 0x%llx DW_AT_specification -> die 0x%llx\n",
2136 2167 ctf_die_offset(die), ctf_die_offset(tdie));
2137 2168 die = tdie;
2138 2169 } else if (ret != ENOENT) {
2139 2170 return (ret);
2140 2171 }
2141 2172
2142 2173 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
2143 2174 ret != ENOENT)
2144 2175 return (ret);
2145 2176 if (ret == ENOENT)
2146 2177 return (0);
2147 2178
2148 2179 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) {
2149 2180 ctf_free(name, strlen(name) + 1);
2150 2181 return (ret);
2151 2182 }
2152 2183
2153 2184 if ((ret = ctf_dwarf_convert_type(cup, tdie, &id,
2154 2185 CTF_ADD_ROOT)) != 0)
2155 2186 return (ret);
2156 2187
2157 2188 if ((cdv = ctf_alloc(sizeof (ctf_dwvar_t))) == NULL) {
2158 2189 ctf_free(name, strlen(name) + 1);
2159 2190 return (ENOMEM);
2160 2191 }
2161 2192
2162 2193 cdv->cdv_name = name;
2163 2194 cdv->cdv_type = id;
2164 2195
2165 2196 if ((ret = ctf_dwarf_isglobal(cup, die, &cdv->cdv_global)) != 0) {
2166 2197 ctf_free(cdv, sizeof (ctf_dwvar_t));
2167 2198 ctf_free(name, strlen(name) + 1);
2168 2199 return (ret);
2169 2200 }
2170 2201
2171 2202 ctf_list_append(&cup->cu_vars, cdv);
2172 2203 return (0);
2173 2204 }
2174 2205
2175 2206 /*
2176 2207 * Walk through our set of top-level types and process them.
2177 2208 */
2178 2209 static int
2179 2210 ctf_dwarf_walk_toplevel(ctf_cu_t *cup, Dwarf_Die die)
2180 2211 {
2181 2212 int ret;
2182 2213 Dwarf_Off offset;
2183 2214 Dwarf_Half tag;
2184 2215
2185 2216 if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0)
2186 2217 return (ret);
2187 2218
2188 2219 if (offset > cup->cu_maxoff) {
2189 2220 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
2190 2221 "die offset %llu beyond maximum for header %llu\n",
2191 2222 offset, cup->cu_maxoff);
2192 2223 return (ECTF_CONVBKERR);
2193 2224 }
2194 2225
2195 2226 if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0)
2196 2227 return (ret);
2197 2228
2198 2229 ret = 0;
2199 2230 switch (tag) {
2200 2231 case DW_TAG_subprogram:
2201 2232 ctf_dprintf("top level func\n");
2202 2233 ret = ctf_dwarf_convert_function(cup, die);
2203 2234 break;
2204 2235 case DW_TAG_variable:
2205 2236 ctf_dprintf("top level var\n");
2206 2237 ret = ctf_dwarf_convert_variable(cup, die);
2207 2238 break;
2208 2239 case DW_TAG_lexical_block:
2209 2240 ctf_dprintf("top level block\n");
2210 2241 ret = ctf_dwarf_walk_lexical(cup, die);
2211 2242 break;
2212 2243 case DW_TAG_enumeration_type:
2213 2244 case DW_TAG_structure_type:
2214 2245 case DW_TAG_typedef:
2215 2246 case DW_TAG_union_type:
2216 2247 ctf_dprintf("top level type\n");
2217 2248 ret = ctf_dwarf_convert_type(cup, die, NULL, B_TRUE);
2218 2249 break;
2219 2250 default:
2220 2251 break;
2221 2252 }
2222 2253
2223 2254 return (ret);
2224 2255 }
2225 2256
2226 2257
2227 2258 /*
2228 2259 * We're given a node. At this node we need to convert it and then proceed to
2229 2260 * convert any siblings that are associaed with this die.
2230 2261 */
2231 2262 static int
2232 2263 ctf_dwarf_convert_die(ctf_cu_t *cup, Dwarf_Die die)
2233 2264 {
2234 2265 while (die != NULL) {
2235 2266 int ret;
2236 2267 Dwarf_Die sib;
2237 2268
2238 2269 if ((ret = ctf_dwarf_walk_toplevel(cup, die)) != 0)
2239 2270 return (ret);
2240 2271
2241 2272 if ((ret = ctf_dwarf_sib(cup, die, &sib)) != 0)
2242 2273 return (ret);
2243 2274 die = sib;
2244 2275 }
2245 2276 return (0);
2246 2277 }
2247 2278
2248 2279 static int
2249 2280 ctf_dwarf_fixup_die(ctf_cu_t *cup, boolean_t addpass)
2250 2281 {
2251 2282 ctf_dwmap_t *map;
2252 2283
2253 2284 for (map = avl_first(&cup->cu_map); map != NULL;
2254 2285 map = AVL_NEXT(&cup->cu_map, map)) {
2255 2286 int ret;
2256 2287 if (map->cdm_fix == B_FALSE)
2257 2288 continue;
2258 2289 if ((ret = ctf_dwarf_fixup_sou(cup, map->cdm_die, map->cdm_id,
2259 2290 addpass)) != 0)
2260 2291 return (ret);
2261 2292 }
2262 2293
2263 2294 return (0);
2264 2295 }
2265 2296
2266 2297 /*
2267 2298 * The DWARF information about a symbol and the information in the symbol table
2268 2299 * may not be the same due to symbol reduction that is performed by ld due to a
2269 2300 * mapfile or other such directive. We process weak symbols at a later time.
2270 2301 *
2271 2302 * The following are the rules that we employ:
2272 2303 *
2273 2304 * 1. A DWARF function that is considered exported matches STB_GLOBAL entries
2274 2305 * with the same name.
2275 2306 *
2276 2307 * 2. A DWARF function that is considered exported matches STB_LOCAL entries
2277 2308 * with the same name and the same file. This case may happen due to mapfile
2278 2309 * reduction.
2279 2310 *
2280 2311 * 3. A DWARF function that is not considered exported matches STB_LOCAL entries
2281 2312 * with the same name and the same file.
2282 2313 *
2283 2314 * 4. A DWARF function that has the same name as the symbol table entry, but the
2284 2315 * files do not match. This is considered a 'fuzzy' match. This may also happen
2285 2316 * due to a mapfile reduction. Fuzzy matching is only used when we know that the
2286 2317 * file in question refers to the primary object. This is because when a symbol
2287 2318 * is reduced in a mapfile, it's always going to be tagged as a local value in
2288 2319 * the generated output and it is considered as to belong to the primary file
2289 2320 * which is the first STT_FILE symbol we see.
2290 2321 */
2291 2322 static boolean_t
2292 2323 ctf_dwarf_symbol_match(const char *symtab_file, const char *symtab_name,
2293 2324 uint_t symtab_bind, const char *dwarf_file, const char *dwarf_name,
2294 2325 boolean_t dwarf_global, boolean_t *is_fuzzy)
2295 2326 {
2296 2327 *is_fuzzy = B_FALSE;
2297 2328
2298 2329 if (symtab_bind != STB_LOCAL && symtab_bind != STB_GLOBAL) {
2299 2330 return (B_FALSE);
2300 2331 }
2301 2332
2302 2333 if (strcmp(symtab_name, dwarf_name) != 0) {
2303 2334 return (B_FALSE);
2304 2335 }
2305 2336
2306 2337 if (symtab_bind == STB_GLOBAL) {
2307 2338 return (dwarf_global);
2308 2339 }
2309 2340
2310 2341 if (strcmp(symtab_file, dwarf_file) == 0) {
2311 2342 return (B_TRUE);
2312 2343 }
2313 2344
2314 2345 if (dwarf_global) {
2315 2346 *is_fuzzy = B_TRUE;
2316 2347 return (B_TRUE);
2317 2348 }
2318 2349
2319 2350 return (B_FALSE);
2320 2351 }
2321 2352
2322 2353 static ctf_dwfunc_t *
2323 2354 ctf_dwarf_match_func(ctf_cu_t *cup, const char *file, const char *name,
2324 2355 uint_t bind, boolean_t primary)
2325 2356 {
2326 2357 ctf_dwfunc_t *cdf, *fuzzy = NULL;
2327 2358
2328 2359 if (bind == STB_WEAK)
2329 2360 return (NULL);
2330 2361
2331 2362 if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL))
2332 2363 return (NULL);
2333 2364
2334 2365 for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL;
2335 2366 cdf = ctf_list_next(cdf)) {
2336 2367 boolean_t is_fuzzy = B_FALSE;
2337 2368
2338 2369 if (ctf_dwarf_symbol_match(file, name, bind, cup->cu_name,
2339 2370 cdf->cdf_name, cdf->cdf_global, &is_fuzzy)) {
2340 2371 if (is_fuzzy) {
2341 2372 if (primary) {
2342 2373 fuzzy = cdf;
2343 2374 }
2344 2375 continue;
2345 2376 } else {
2346 2377 return (cdf);
2347 2378 }
2348 2379 }
2349 2380 }
2350 2381
2351 2382 return (fuzzy);
2352 2383 }
2353 2384
2354 2385 static ctf_dwvar_t *
2355 2386 ctf_dwarf_match_var(ctf_cu_t *cup, const char *file, const char *name,
2356 2387 uint_t bind, boolean_t primary)
2357 2388 {
2358 2389 ctf_dwvar_t *cdv, *fuzzy = NULL;
2359 2390
2360 2391 if (bind == STB_WEAK)
2361 2392 return (NULL);
2362 2393
2363 2394 if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL))
2364 2395 return (NULL);
2365 2396
2366 2397 for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL;
2367 2398 cdv = ctf_list_next(cdv)) {
2368 2399 boolean_t is_fuzzy = B_FALSE;
2369 2400
2370 2401 if (ctf_dwarf_symbol_match(file, name, bind, cup->cu_name,
2371 2402 cdv->cdv_name, cdv->cdv_global, &is_fuzzy)) {
2372 2403 if (is_fuzzy) {
2373 2404 if (primary) {
2374 2405 fuzzy = cdv;
2375 2406 }
2376 2407 } else {
2377 2408 return (cdv);
2378 2409 }
2379 2410 }
2380 2411 }
2381 2412
2382 2413 return (fuzzy);
2383 2414 }
2384 2415
2385 2416 static int
2386 2417 ctf_dwarf_conv_funcvars_cb(const Elf64_Sym *symp, ulong_t idx,
2387 2418 const char *file, const char *name, boolean_t primary, void *arg)
2388 2419 {
2389 2420 int ret;
2390 2421 uint_t bind, type;
2391 2422 ctf_cu_t *cup = arg;
2392 2423
2393 2424 bind = GELF_ST_BIND(symp->st_info);
2394 2425 type = GELF_ST_TYPE(symp->st_info);
2395 2426
2396 2427 /*
2397 2428 * Come back to weak symbols in another pass
2398 2429 */
2399 2430 if (bind == STB_WEAK)
2400 2431 return (0);
2401 2432
2402 2433 if (type == STT_OBJECT) {
2403 2434 ctf_dwvar_t *cdv = ctf_dwarf_match_var(cup, file, name,
2404 2435 bind, primary);
2405 2436 if (cdv == NULL)
2406 2437 return (0);
2407 2438 ret = ctf_add_object(cup->cu_ctfp, idx, cdv->cdv_type);
2408 2439 ctf_dprintf("added object %s->%ld\n", name, cdv->cdv_type);
2409 2440 } else {
2410 2441 ctf_dwfunc_t *cdf = ctf_dwarf_match_func(cup, file, name,
2411 2442 bind, primary);
2412 2443 if (cdf == NULL)
2413 2444 return (0);
2414 2445 ret = ctf_add_function(cup->cu_ctfp, idx, &cdf->cdf_fip,
2415 2446 cdf->cdf_argv);
2416 2447 ctf_dprintf("added function %s\n", name);
2417 2448 }
2418 2449
2419 2450 if (ret == CTF_ERR) {
2420 2451 return (ctf_errno(cup->cu_ctfp));
2421 2452 }
2422 2453
2423 2454 return (0);
2424 2455 }
2425 2456
2426 2457 static int
2427 2458 ctf_dwarf_conv_funcvars(ctf_cu_t *cup)
2428 2459 {
2429 2460 return (ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_funcvars_cb, cup));
2430 2461 }
2431 2462
2432 2463 /*
2433 2464 * If we have a weak symbol, attempt to find the strong symbol it will resolve
2434 2465 * to. Note: the code where this actually happens is in sym_process() in
2435 2466 * cmd/sgs/libld/common/syms.c
2436 2467 *
2437 2468 * Finding the matching symbol is unfortunately not trivial. For a symbol to be
2438 2469 * a candidate, it must:
2439 2470 *
2440 2471 * - have the same type (function, object)
2441 2472 * - have the same value (address)
2442 2473 * - have the same size
2443 2474 * - not be another weak symbol
2444 2475 * - belong to the same section (checked via section index)
2445 2476 *
2446 2477 * To perform this check, we first iterate over the symbol table. For each weak
2447 2478 * symbol that we encounter, we then do a second walk over the symbol table,
2448 2479 * calling ctf_dwarf_conv_check_weak(). If a symbol matches the above, then it's
2449 2480 * either a local or global symbol. If we find a global symbol then we go with
2450 2481 * it and stop searching for additional matches.
2451 2482 *
2452 2483 * If instead, we find a local symbol, things are more complicated. The first
2453 2484 * thing we do is to try and see if we have file information about both symbols
2454 2485 * (STT_FILE). If they both have file information and it matches, then we treat
2455 2486 * that as a good match and stop searching for additional matches.
2456 2487 *
2457 2488 * Otherwise, this means we have a non-matching file and a local symbol. We
2458 2489 * treat this as a candidate and if we find a better match (one of the two cases
2459 2490 * above), use that instead. There are two different ways this can happen.
2460 2491 * Either this is a completely different symbol, or it's a once-global symbol
2461 2492 * that was scoped to local via a mapfile. In the former case, curfile is
2462 2493 * likely inaccurate since the linker does not preserve the needed curfile in
2463 2494 * the order of the symbol table (see the comments about locally scoped symbols
2464 2495 * in libld's update_osym()). As we can't tell this case from the former one,
2465 2496 * we use this symbol iff no other matching symbol is found.
2466 2497 *
2467 2498 * What we really need here is a SUNW section containing weak<->strong mappings
2468 2499 * that we can consume.
2469 2500 */
2470 2501 typedef struct ctf_dwarf_weak_arg {
2471 2502 const Elf64_Sym *cweak_symp;
2472 2503 const char *cweak_file;
2473 2504 boolean_t cweak_candidate;
2474 2505 ulong_t cweak_idx;
2475 2506 } ctf_dwarf_weak_arg_t;
2476 2507
2477 2508 static int
2478 2509 ctf_dwarf_conv_check_weak(const Elf64_Sym *symp, ulong_t idx, const char *file,
2479 2510 const char *name, boolean_t primary, void *arg)
2480 2511 {
2481 2512 ctf_dwarf_weak_arg_t *cweak = arg;
2482 2513
2483 2514 const Elf64_Sym *wsymp = cweak->cweak_symp;
2484 2515
2485 2516 ctf_dprintf("comparing weak to %s\n", name);
2486 2517
2487 2518 if (GELF_ST_BIND(symp->st_info) == STB_WEAK) {
2488 2519 return (0);
2489 2520 }
2490 2521
2491 2522 if (GELF_ST_TYPE(wsymp->st_info) != GELF_ST_TYPE(symp->st_info)) {
2492 2523 return (0);
2493 2524 }
2494 2525
2495 2526 if (wsymp->st_value != symp->st_value) {
2496 2527 return (0);
2497 2528 }
2498 2529
2499 2530 if (wsymp->st_size != symp->st_size) {
2500 2531 return (0);
2501 2532 }
2502 2533
2503 2534 if (wsymp->st_shndx != symp->st_shndx) {
2504 2535 return (0);
2505 2536 }
2506 2537
2507 2538 /*
2508 2539 * Check if it's a weak candidate.
2509 2540 */
2510 2541 if (GELF_ST_BIND(symp->st_info) == STB_LOCAL &&
2511 2542 (file == NULL || cweak->cweak_file == NULL ||
2512 2543 strcmp(file, cweak->cweak_file) != 0)) {
2513 2544 cweak->cweak_candidate = B_TRUE;
2514 2545 cweak->cweak_idx = idx;
2515 2546 return (0);
2516 2547 }
2517 2548
2518 2549 /*
2519 2550 * Found a match, break.
2520 2551 */
2521 2552 cweak->cweak_idx = idx;
2522 2553 return (1);
2523 2554 }
2524 2555
2525 2556 static int
2526 2557 ctf_dwarf_duplicate_sym(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx)
2527 2558 {
2528 2559 ctf_id_t id = ctf_lookup_by_symbol(cup->cu_ctfp, matchidx);
2529 2560
2530 2561 /*
2531 2562 * If we matched something that for some reason didn't have type data,
2532 2563 * we don't consider that a fatal error and silently swallow it.
2533 2564 */
2534 2565 if (id == CTF_ERR) {
2535 2566 if (ctf_errno(cup->cu_ctfp) == ECTF_NOTYPEDAT)
2536 2567 return (0);
2537 2568 else
2538 2569 return (ctf_errno(cup->cu_ctfp));
2539 2570 }
2540 2571
2541 2572 if (ctf_add_object(cup->cu_ctfp, idx, id) == CTF_ERR)
2542 2573 return (ctf_errno(cup->cu_ctfp));
2543 2574
2544 2575 return (0);
2545 2576 }
2546 2577
2547 2578 static int
2548 2579 ctf_dwarf_duplicate_func(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx)
2549 2580 {
2550 2581 int ret;
2551 2582 ctf_funcinfo_t fip;
2552 2583 ctf_id_t *args = NULL;
2553 2584
2554 2585 if (ctf_func_info(cup->cu_ctfp, matchidx, &fip) == CTF_ERR) {
2555 2586 if (ctf_errno(cup->cu_ctfp) == ECTF_NOFUNCDAT)
2556 2587 return (0);
2557 2588 else
2558 2589 return (ctf_errno(cup->cu_ctfp));
2559 2590 }
2560 2591
2561 2592 if (fip.ctc_argc != 0) {
2562 2593 args = ctf_alloc(sizeof (ctf_id_t) * fip.ctc_argc);
2563 2594 if (args == NULL)
2564 2595 return (ENOMEM);
2565 2596
2566 2597 if (ctf_func_args(cup->cu_ctfp, matchidx, fip.ctc_argc, args) ==
2567 2598 CTF_ERR) {
2568 2599 ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc);
2569 2600 return (ctf_errno(cup->cu_ctfp));
2570 2601 }
2571 2602 }
2572 2603
2573 2604 ret = ctf_add_function(cup->cu_ctfp, idx, &fip, args);
2574 2605 if (args != NULL)
2575 2606 ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc);
2576 2607 if (ret == CTF_ERR)
2577 2608 return (ctf_errno(cup->cu_ctfp));
2578 2609
2579 2610 return (0);
2580 2611 }
2581 2612
2582 2613 static int
2583 2614 ctf_dwarf_conv_weaks_cb(const Elf64_Sym *symp, ulong_t idx, const char *file,
2584 2615 const char *name, boolean_t primary, void *arg)
2585 2616 {
2586 2617 int ret, type;
2587 2618 ctf_dwarf_weak_arg_t cweak;
2588 2619 ctf_cu_t *cup = arg;
2589 2620
2590 2621 /*
2591 2622 * We only care about weak symbols.
2592 2623 */
2593 2624 if (GELF_ST_BIND(symp->st_info) != STB_WEAK)
2594 2625 return (0);
2595 2626
2596 2627 type = GELF_ST_TYPE(symp->st_info);
2597 2628 ASSERT(type == STT_OBJECT || type == STT_FUNC);
2598 2629
2599 2630 /*
2600 2631 * For each weak symbol we encounter, we need to do a second iteration
2601 2632 * to try and find a match. We should probably think about other
2602 2633 * techniques to try and save us time in the future.
2603 2634 */
2604 2635 cweak.cweak_symp = symp;
2605 2636 cweak.cweak_file = file;
2606 2637 cweak.cweak_candidate = B_FALSE;
2607 2638 cweak.cweak_idx = 0;
2608 2639
2609 2640 ctf_dprintf("Trying to find weak equiv for %s\n", name);
2610 2641
2611 2642 ret = ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_check_weak, &cweak);
2612 2643 VERIFY(ret == 0 || ret == 1);
2613 2644
2614 2645 /*
2615 2646 * Nothing was ever found, we're not going to add anything for this
2616 2647 * entry.
2617 2648 */
2618 2649 if (ret == 0 && cweak.cweak_candidate == B_FALSE) {
2619 2650 ctf_dprintf("found no weak match for %s\n", name);
2620 2651 return (0);
2621 2652 }
2622 2653
2623 2654 /*
2624 2655 * Now, finally go and add the type based on the match.
2625 2656 */
2626 2657 ctf_dprintf("matched weak symbol %lu to %lu\n", idx, cweak.cweak_idx);
2627 2658 if (type == STT_OBJECT) {
2628 2659 ret = ctf_dwarf_duplicate_sym(cup, idx, cweak.cweak_idx);
2629 2660 } else {
2630 2661 ret = ctf_dwarf_duplicate_func(cup, idx, cweak.cweak_idx);
2631 2662 }
2632 2663
2633 2664 return (ret);
2634 2665 }
2635 2666
2636 2667 static int
2637 2668 ctf_dwarf_conv_weaks(ctf_cu_t *cup)
2638 2669 {
2639 2670 return (ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_weaks_cb, cup));
2640 2671 }
2641 2672
2642 2673 /* ARGSUSED */
2643 2674 static int
2644 2675 ctf_dwarf_convert_one(void *arg, void *unused)
2645 2676 {
2646 2677 int ret;
2647 2678 ctf_file_t *dedup;
2648 2679 ctf_cu_t *cup = arg;
2649 2680
2650 2681 ctf_dprintf("converting die: %s\n", cup->cu_name);
2651 2682 ctf_dprintf("max offset: %x\n", cup->cu_maxoff);
2652 2683 VERIFY(cup != NULL);
2653 2684
2654 2685 ret = ctf_dwarf_convert_die(cup, cup->cu_cu);
2655 2686 ctf_dprintf("ctf_dwarf_convert_die (%s) returned %d\n", cup->cu_name,
2656 2687 ret);
2657 2688 if (ret != 0) {
2658 2689 return (ret);
2659 2690 }
2660 2691 if (ctf_update(cup->cu_ctfp) != 0) {
2661 2692 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2662 2693 "failed to update output ctf container"));
2663 2694 }
2664 2695
2665 2696 ret = ctf_dwarf_fixup_die(cup, B_FALSE);
2666 2697 ctf_dprintf("ctf_dwarf_fixup_die (%s) returned %d\n", cup->cu_name,
2667 2698 ret);
2668 2699 if (ret != 0) {
2669 2700 return (ret);
2670 2701 }
2671 2702 if (ctf_update(cup->cu_ctfp) != 0) {
2672 2703 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2673 2704 "failed to update output ctf container"));
2674 2705 }
2675 2706
2676 2707 ret = ctf_dwarf_fixup_die(cup, B_TRUE);
2677 2708 ctf_dprintf("ctf_dwarf_fixup_die (%s) returned %d\n", cup->cu_name,
2678 2709 ret);
2679 2710 if (ret != 0) {
2680 2711 return (ret);
2681 2712 }
2682 2713 if (ctf_update(cup->cu_ctfp) != 0) {
2683 2714 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2684 2715 "failed to update output ctf container"));
2685 2716 }
2686 2717
2687 2718
2688 2719 if ((ret = ctf_dwarf_conv_funcvars(cup)) != 0) {
2689 2720 return (ctf_dwarf_error(cup, NULL, ret,
2690 2721 "failed to convert strong functions and variables"));
2691 2722 }
2692 2723
2693 2724 if (ctf_update(cup->cu_ctfp) != 0) {
2694 2725 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2695 2726 "failed to update output ctf container"));
2696 2727 }
2697 2728
2698 2729 if (cup->cu_doweaks == B_TRUE) {
2699 2730 if ((ret = ctf_dwarf_conv_weaks(cup)) != 0) {
2700 2731 return (ctf_dwarf_error(cup, NULL, ret,
2701 2732 "failed to convert weak functions and variables"));
2702 2733 }
2703 2734
2704 2735 if (ctf_update(cup->cu_ctfp) != 0) {
2705 2736 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2706 2737 "failed to update output ctf container"));
2707 2738 }
2708 2739 }
2709 2740
2710 2741 ctf_phase_dump(cup->cu_ctfp, "pre-dwarf-dedup", cup->cu_name);
2711 2742 ctf_dprintf("adding inputs for dedup\n");
2712 2743 if ((ret = ctf_merge_add(cup->cu_cmh, cup->cu_ctfp)) != 0) {
2713 2744 return (ctf_dwarf_error(cup, NULL, ret,
2714 2745 "failed to add inputs for merge"));
2715 2746 }
2716 2747
2717 2748 ctf_dprintf("starting dedup of %s\n", cup->cu_name);
2718 2749 if ((ret = ctf_merge_dedup(cup->cu_cmh, &dedup)) != 0) {
2719 2750 return (ctf_dwarf_error(cup, NULL, ret,
2720 2751 "failed to deduplicate die"));
2721 2752 }
2722 2753 ctf_close(cup->cu_ctfp);
2723 2754 cup->cu_ctfp = dedup;
2724 2755 ctf_phase_dump(cup->cu_ctfp, "post-dwarf-dedup", cup->cu_name);
2725 2756
2726 2757 return (0);
2727 2758 }
2728 2759
2729 2760 /*
2730 2761 * Note, we expect that if we're returning a ctf_file_t from one of the dies,
2731 2762 * say in the single node case, it's been saved and the entry here has been set
2732 2763 * to NULL, which ctf_close happily ignores.
2733 2764 */
2734 2765 static void
2735 2766 ctf_dwarf_free_die(ctf_cu_t *cup)
2736 2767 {
2737 2768 ctf_dwfunc_t *cdf, *ndf;
2738 2769 ctf_dwvar_t *cdv, *ndv;
2739 2770 ctf_dwbitf_t *cdb, *ndb;
2740 2771 ctf_dwmap_t *map;
2741 2772 void *cookie;
2742 2773 Dwarf_Error derr;
2743 2774
2744 2775 ctf_dprintf("Beginning to free die: %p\n", cup);
2745 2776 cup->cu_elf = NULL;
2746 2777 ctf_dprintf("Trying to free name: %p\n", cup->cu_name);
2747 2778 if (cup->cu_name != NULL)
2748 2779 ctf_free(cup->cu_name, strlen(cup->cu_name) + 1);
2749 2780 ctf_dprintf("Trying to free merge handle: %p\n", cup->cu_cmh);
2750 2781 if (cup->cu_cmh != NULL) {
2751 2782 ctf_merge_fini(cup->cu_cmh);
2752 2783 cup->cu_cmh = NULL;
2753 2784 }
2754 2785
2755 2786 ctf_dprintf("Trying to free functions\n");
2756 2787 for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL; cdf = ndf) {
2757 2788 ndf = ctf_list_next(cdf);
2758 2789 ctf_free(cdf->cdf_name, strlen(cdf->cdf_name) + 1);
2759 2790 if (cdf->cdf_fip.ctc_argc != 0) {
2760 2791 ctf_free(cdf->cdf_argv,
2761 2792 sizeof (ctf_id_t) * cdf->cdf_fip.ctc_argc);
2762 2793 }
2763 2794 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2764 2795 }
2765 2796
2766 2797 ctf_dprintf("Trying to free variables\n");
2767 2798 for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL; cdv = ndv) {
2768 2799 ndv = ctf_list_next(cdv);
2769 2800 ctf_free(cdv->cdv_name, strlen(cdv->cdv_name) + 1);
2770 2801 ctf_free(cdv, sizeof (ctf_dwvar_t));
2771 2802 }
2772 2803
2773 2804 ctf_dprintf("Trying to free bitfields\n");
2774 2805 for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL; cdb = ndb) {
2775 2806 ndb = ctf_list_next(cdb);
2776 2807 ctf_free(cdb, sizeof (ctf_dwbitf_t));
2777 2808 }
2778 2809
2779 2810 ctf_dprintf("Trying to clean up dwarf_t: %p\n", cup->cu_dwarf);
2780 2811 if (cup->cu_dwarf != NULL)
2781 2812 (void) dwarf_finish(cup->cu_dwarf, &derr);
2782 2813 cup->cu_dwarf = NULL;
2783 2814 ctf_close(cup->cu_ctfp);
2784 2815
2785 2816 cookie = NULL;
2786 2817 while ((map = avl_destroy_nodes(&cup->cu_map, &cookie)) != NULL) {
2787 2818 ctf_free(map, sizeof (ctf_dwmap_t));
2788 2819 }
2789 2820 avl_destroy(&cup->cu_map);
2790 2821 cup->cu_errbuf = NULL;
2791 2822 }
2792 2823
2793 2824 static void
2794 2825 ctf_dwarf_free_dies(ctf_cu_t *cdies, int ndies)
2795 2826 {
2796 2827 int i;
2797 2828
2798 2829 ctf_dprintf("Beginning to free dies\n");
2799 2830 for (i = 0; i < ndies; i++) {
2800 2831 ctf_dwarf_free_die(&cdies[i]);
2801 2832 }
2802 2833
2803 2834 ctf_free(cdies, sizeof (ctf_cu_t) * ndies);
2804 2835 }
2805 2836
2806 2837 static int
2807 2838 ctf_dwarf_count_dies(Dwarf_Debug dw, Dwarf_Error *derr, int *ndies,
2808 2839 char *errbuf, size_t errlen)
2809 2840 {
2810 2841 int ret;
2811 2842 Dwarf_Half vers;
2812 2843 Dwarf_Unsigned nexthdr;
2813 2844
2814 2845 while ((ret = dwarf_next_cu_header(dw, NULL, &vers, NULL, NULL,
2815 2846 &nexthdr, derr)) != DW_DLV_NO_ENTRY) {
2816 2847 if (ret != DW_DLV_OK) {
2817 2848 (void) snprintf(errbuf, errlen,
2818 2849 "file does not contain valid DWARF data: %s\n",
2819 2850 dwarf_errmsg(*derr));
2820 2851 return (ECTF_CONVBKERR);
2821 2852 }
2822 2853
2823 2854 if (vers != DWARF_VERSION_TWO) {
2824 2855 (void) snprintf(errbuf, errlen,
2825 2856 "unsupported DWARF version: %d\n", vers);
2826 2857 return (ECTF_CONVBKERR);
2827 2858 }
2828 2859 *ndies = *ndies + 1;
2829 2860 }
2830 2861
2831 2862 return (0);
2832 2863 }
2833 2864
2834 2865 static int
2835 2866 ctf_dwarf_init_die(int fd, Elf *elf, ctf_cu_t *cup, int ndie, char *errbuf,
2836 2867 size_t errlen)
2837 2868 {
2838 2869 int ret;
2839 2870 Dwarf_Unsigned hdrlen, abboff, nexthdr;
2840 2871 Dwarf_Half addrsz;
2841 2872 Dwarf_Unsigned offset = 0;
2842 2873 Dwarf_Error derr;
2843 2874
2844 2875 while ((ret = dwarf_next_cu_header(cup->cu_dwarf, &hdrlen, NULL,
2845 2876 &abboff, &addrsz, &nexthdr, &derr)) != DW_DLV_NO_ENTRY) {
2846 2877 char *name;
2847 2878 Dwarf_Die cu, child;
2848 2879
2849 2880 /* Based on the counting above, we should be good to go */
2850 2881 VERIFY(ret == DW_DLV_OK);
2851 2882 if (ndie > 0) {
2852 2883 ndie--;
2853 2884 offset = nexthdr;
2854 2885 continue;
2855 2886 }
2856 2887
2857 2888 /*
2858 2889 * Compilers are apparently inconsistent. Some emit no DWARF for
2859 2890 * empty files and others emit empty compilation unit.
2860 2891 */
2861 2892 cup->cu_voidtid = CTF_ERR;
2862 2893 cup->cu_longtid = CTF_ERR;
2863 2894 cup->cu_elf = elf;
2864 2895 cup->cu_maxoff = nexthdr - 1;
2865 2896 cup->cu_ctfp = ctf_fdcreate(fd, &ret);
2866 2897 if (cup->cu_ctfp == NULL)
2867 2898 return (ret);
2868 2899
2869 2900 avl_create(&cup->cu_map, ctf_dwmap_comp, sizeof (ctf_dwmap_t),
2870 2901 offsetof(ctf_dwmap_t, cdm_avl));
2871 2902 cup->cu_errbuf = errbuf;
2872 2903 cup->cu_errlen = errlen;
2873 2904 bzero(&cup->cu_vars, sizeof (ctf_list_t));
2874 2905 bzero(&cup->cu_funcs, sizeof (ctf_list_t));
2875 2906 bzero(&cup->cu_bitfields, sizeof (ctf_list_t));
2876 2907
2877 2908 if ((ret = ctf_dwarf_die_elfenc(elf, cup, errbuf,
2878 2909 errlen)) != 0)
2879 2910 return (ret);
2880 2911
2881 2912 if ((ret = ctf_dwarf_sib(cup, NULL, &cu)) != 0)
2882 2913 return (ret);
2883 2914
2884 2915 if (cu == NULL) {
2885 2916 (void) snprintf(errbuf, errlen,
2886 2917 "file does not contain DWARF data");
2887 2918 return (ECTF_CONVNODEBUG);
2888 2919 }
2889 2920
2890 2921 if ((ret = ctf_dwarf_child(cup, cu, &child)) != 0)
2891 2922 return (ret);
2892 2923
2893 2924 if (child == NULL) {
2894 2925 (void) snprintf(errbuf, errlen,
2895 2926 "file does not contain DWARF data");
2896 2927 return (ECTF_CONVNODEBUG);
2897 2928 }
2898 2929
2899 2930 cup->cu_cuoff = offset;
2900 2931 cup->cu_cu = child;
2901 2932
2902 2933 if ((cup->cu_cmh = ctf_merge_init(fd, &ret)) == NULL)
2903 2934 return (ret);
2904 2935
2905 2936 if (ctf_dwarf_string(cup, cu, DW_AT_name, &name) == 0) {
2906 2937 size_t len = strlen(name) + 1;
2907 2938 char *b = basename(name);
2908 2939 cup->cu_name = strdup(b);
2909 2940 ctf_free(name, len);
2910 2941 }
2911 2942 break;
2912 2943 }
2913 2944
2914 2945 return (0);
2915 2946 }
2916 2947
2917 2948 /*
2918 2949 * This is our only recourse to identify a C source file that is missing debug
2919 2950 * info: it will be mentioned as an STT_FILE, but not have a compile unit entry.
2920 2951 * (A traditional ctfmerge works on individual files, so can identify missing
2921 2952 * DWARF more directly, via ctf_has_c_source() on the .o file.)
2922 2953 *
2923 2954 * As we operate on basenames, this can of course miss some cases, but it's
2924 2955 * better than not checking at all.
2925 2956 *
2926 2957 * We explicitly whitelist some CRT components. Failing that, there's always
2927 2958 * the -m option.
2928 2959 */
2929 2960 static boolean_t
2930 2961 c_source_has_debug(const char *file, ctf_cu_t *cus, size_t nr_cus)
2931 2962 {
2932 2963 const char *basename = strrchr(file, '/');
2933 2964
2934 2965 if (basename == NULL)
2935 2966 basename = file;
2936 2967 else
2937 2968 basename++;
2938 2969
2939 2970 if (strcmp(basename, "common-crt.c") == 0 ||
2940 2971 strcmp(basename, "gmon.c") == 0 ||
2941 2972 strcmp(basename, "dlink_init.c") == 0 ||
2942 2973 strcmp(basename, "dlink_common.c") == 0 ||
2943 2974 strncmp(basename, "crt", strlen("crt")) == 0 ||
2944 2975 strncmp(basename, "values-", strlen("values-")) == 0)
2945 2976 return (B_TRUE);
2946 2977
2947 2978 for (size_t i = 0; i < nr_cus; i++) {
2948 2979 if (strcmp(basename, cus[i].cu_name) == 0)
2949 2980 return (B_TRUE);
2950 2981 }
2951 2982
2952 2983 return (B_FALSE);
2953 2984 }
2954 2985
2955 2986 static int
2956 2987 ctf_dwarf_check_missing(ctf_cu_t *cus, size_t nr_cus, Elf *elf,
2957 2988 char *errmsg, size_t errlen)
2958 2989 {
2959 2990 Elf_Scn *scn, *strscn;
2960 2991 Elf_Data *data, *strdata;
2961 2992 GElf_Shdr shdr;
2962 2993 ulong_t i;
2963 2994
2964 2995 scn = NULL;
2965 2996 while ((scn = elf_nextscn(elf, scn)) != NULL) {
2966 2997 if (gelf_getshdr(scn, &shdr) == NULL) {
2967 2998 (void) snprintf(errmsg, errlen,
2968 2999 "failed to get section header: %s\n",
2969 3000 elf_errmsg(elf_errno()));
2970 3001 return (EINVAL);
2971 3002 }
2972 3003
2973 3004 if (shdr.sh_type == SHT_SYMTAB)
2974 3005 break;
2975 3006 }
2976 3007
2977 3008 if (scn == NULL)
2978 3009 return (0);
2979 3010
2980 3011 if ((strscn = elf_getscn(elf, shdr.sh_link)) == NULL) {
2981 3012 (void) snprintf(errmsg, errlen,
2982 3013 "failed to get str section: %s\n",
2983 3014 elf_errmsg(elf_errno()));
2984 3015 return (EINVAL);
2985 3016 }
2986 3017
2987 3018 if ((data = elf_getdata(scn, NULL)) == NULL) {
2988 3019 (void) snprintf(errmsg, errlen, "failed to read section: %s\n",
2989 3020 elf_errmsg(elf_errno()));
2990 3021 return (EINVAL);
2991 3022 }
2992 3023
2993 3024 if ((strdata = elf_getdata(strscn, NULL)) == NULL) {
2994 3025 (void) snprintf(errmsg, errlen,
2995 3026 "failed to read string table: %s\n",
2996 3027 elf_errmsg(elf_errno()));
2997 3028 return (EINVAL);
2998 3029 }
2999 3030
3000 3031 for (i = 0; i < shdr.sh_size / shdr.sh_entsize; i++) {
3001 3032 GElf_Sym sym;
3002 3033 const char *file;
3003 3034 size_t len;
3004 3035
3005 3036 if (gelf_getsym(data, i, &sym) == NULL) {
3006 3037 (void) snprintf(errmsg, errlen,
3007 3038 "failed to read sym %lu: %s\n",
3008 3039 i, elf_errmsg(elf_errno()));
3009 3040 return (EINVAL);
3010 3041 }
3011 3042
3012 3043 if (GELF_ST_TYPE(sym.st_info) != STT_FILE)
3013 3044 continue;
3014 3045
3015 3046 file = (const char *)((uintptr_t)strdata->d_buf + sym.st_name);
3016 3047 len = strlen(file);
3017 3048 if (len < 2 || strncmp(".c", &file[len - 2], 2) != 0)
3018 3049 continue;
3019 3050
3020 3051 if (!c_source_has_debug(file, cus, nr_cus)) {
3021 3052 (void) snprintf(errmsg, errlen,
3022 3053 "file %s is missing debug info\n", file);
3023 3054 return (ECTF_CONVNODEBUG);
3024 3055 }
3025 3056 }
3026 3057
3027 3058 return (0);
3028 3059 }
3029 3060
3030 3061 int
3031 3062 ctf_dwarf_convert(int fd, Elf *elf, uint_t nthrs, uint_t flags,
3032 3063 ctf_file_t **fpp, char *errbuf, size_t errlen)
3033 3064 {
3034 3065 int err, ret, ndies, i;
3035 3066 Dwarf_Debug dw;
3036 3067 Dwarf_Error derr;
3037 3068 ctf_cu_t *cdies = NULL, *cup;
3038 3069 workq_t *wqp = NULL;
3039 3070
3040 3071 *fpp = NULL;
3041 3072
3042 3073 ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw, &derr);
3043 3074 if (ret != DW_DLV_OK) {
3044 3075 if (ret == DW_DLV_NO_ENTRY ||
3045 3076 dwarf_errno(derr) == DW_DLE_DEBUG_INFO_NULL) {
3046 3077 (void) snprintf(errbuf, errlen,
3047 3078 "file does not contain DWARF data\n");
3048 3079 return (ECTF_CONVNODEBUG);
3049 3080 }
3050 3081
3051 3082 (void) snprintf(errbuf, errlen,
3052 3083 "dwarf_elf_init() failed: %s\n", dwarf_errmsg(derr));
3053 3084 return (ECTF_CONVBKERR);
3054 3085 }
3055 3086
3056 3087 /*
3057 3088 * Iterate over all of the compilation units and create a ctf_cu_t for
3058 3089 * each of them. This is used to determine if we have zero, one, or
3059 3090 * multiple dies to convert. If we have zero, that's an error. If
3060 3091 * there's only one die, that's the simple case. No merge needed and
3061 3092 * only a single Dwarf_Debug as well.
3062 3093 */
3063 3094 ndies = 0;
3064 3095 err = ctf_dwarf_count_dies(dw, &derr, &ndies, errbuf, errlen);
3065 3096
3066 3097 ctf_dprintf("found %d DWARF CUs\n", ndies);
3067 3098
3068 3099 if (ndies == 0) {
3069 3100 (void) snprintf(errbuf, errlen,
3070 3101 "file does not contain DWARF data\n");
3071 3102 return (ECTF_CONVNODEBUG);
3072 3103 }
3073 3104
3074 3105 (void) dwarf_finish(dw, &derr);
3075 3106 cdies = ctf_alloc(sizeof (ctf_cu_t) * ndies);
3076 3107 if (cdies == NULL) {
3077 3108 return (ENOMEM);
3078 3109 }
3079 3110
3080 3111 bzero(cdies, sizeof (ctf_cu_t) * ndies);
3081 3112
3082 3113 for (i = 0; i < ndies; i++) {
3083 3114 cup = &cdies[i];
3084 3115 ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL,
3085 3116 &cup->cu_dwarf, &derr);
3086 3117 if (ret != 0) {
3087 3118 ctf_free(cdies, sizeof (ctf_cu_t) * ndies);
3088 3119 (void) snprintf(errbuf, errlen,
3089 3120 "failed to initialize DWARF: %s\n",
3090 3121 dwarf_errmsg(derr));
3091 3122 return (ECTF_CONVBKERR);
3092 3123 }
3093 3124
3094 3125 err = ctf_dwarf_init_die(fd, elf, cup, i, errbuf, errlen);
3095 3126 if (err != 0)
3096 3127 goto out;
3097 3128
3098 3129 cup->cu_doweaks = ndies > 1 ? B_FALSE : B_TRUE;
3099 3130 }
3100 3131
3101 3132 if (!(flags & CTF_ALLOW_MISSING_DEBUG) &&
3102 3133 (err = ctf_dwarf_check_missing(cdies, ndies,
3103 3134 elf, errbuf, errlen)) != 0)
3104 3135 goto out;
3105 3136
3106 3137 /*
3107 3138 * If we only have one compilation unit, there's no reason to use
3108 3139 * multiple threads, even if the user requested them. After all, they
3109 3140 * just gave us an upper bound.
3110 3141 */
3111 3142 if (ndies == 1)
3112 3143 nthrs = 1;
3113 3144
3114 3145 if (workq_init(&wqp, nthrs) == -1) {
3115 3146 err = errno;
3116 3147 goto out;
3117 3148 }
3118 3149
3119 3150 for (i = 0; i < ndies; i++) {
3120 3151 cup = &cdies[i];
3121 3152 ctf_dprintf("adding cu %s: %p, %x %x\n", cup->cu_name,
3122 3153 cup->cu_cu, cup->cu_cuoff, cup->cu_maxoff);
3123 3154 if (workq_add(wqp, cup) == -1) {
3124 3155 err = errno;
3125 3156 goto out;
3126 3157 }
3127 3158 }
3128 3159
3129 3160 ret = workq_work(wqp, ctf_dwarf_convert_one, NULL, &err);
3130 3161 if (ret == WORKQ_ERROR) {
3131 3162 err = errno;
3132 3163 goto out;
3133 3164 } else if (ret == WORKQ_UERROR) {
3134 3165 ctf_dprintf("internal convert failed: %s\n",
3135 3166 ctf_errmsg(err));
3136 3167 goto out;
3137 3168 }
3138 3169
3139 3170 ctf_dprintf("Determining next phase: have %d CUs\n", ndies);
3140 3171 if (ndies != 1) {
3141 3172 ctf_merge_t *cmp;
3142 3173
3143 3174 cmp = ctf_merge_init(fd, &err);
3144 3175 if (cmp == NULL)
3145 3176 goto out;
3146 3177
3147 3178 ctf_dprintf("setting threads\n");
3148 3179 if ((err = ctf_merge_set_nthreads(cmp, nthrs)) != 0) {
3149 3180 ctf_merge_fini(cmp);
3150 3181 goto out;
3151 3182 }
3152 3183
3153 3184 for (i = 0; i < ndies; i++) {
3154 3185 cup = &cdies[i];
3155 3186 if ((err = ctf_merge_add(cmp, cup->cu_ctfp)) != 0) {
3156 3187 ctf_merge_fini(cmp);
3157 3188 goto out;
3158 3189 }
3159 3190 }
3160 3191
3161 3192 ctf_dprintf("performing merge\n");
3162 3193 err = ctf_merge_merge(cmp, fpp);
3163 3194 if (err != 0) {
3164 3195 ctf_dprintf("failed merge!\n");
3165 3196 *fpp = NULL;
3166 3197 ctf_merge_fini(cmp);
3167 3198 goto out;
3168 3199 }
3169 3200 ctf_merge_fini(cmp);
3170 3201 err = 0;
3171 3202 ctf_dprintf("successfully converted!\n");
3172 3203 } else {
3173 3204 err = 0;
3174 3205 *fpp = cdies->cu_ctfp;
3175 3206 cdies->cu_ctfp = NULL;
3176 3207 ctf_dprintf("successfully converted!\n");
3177 3208 }
3178 3209
3179 3210 out:
3180 3211 workq_fini(wqp);
3181 3212 ctf_dwarf_free_dies(cdies, ndies);
3182 3213 return (err);
3183 3214 }
↓ open down ↓ |
1543 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX