1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
  24  * Use is subject to license terms.
  25  *
  26  * Copyright (c) 2010, Intel Corporation.
  27  * All rights reserved.
  28  *
  29  * Copyright 2020 Joyent, Inc.
  30  */
  31 
  32 /*
  33  * This file contains the functionality that mimics the boot operations
  34  * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
  35  * The x86 kernel now does everything on its own.
  36  */
  37 
  38 #include <sys/types.h>
  39 #include <sys/bootconf.h>
  40 #include <sys/bootsvcs.h>
  41 #include <sys/bootinfo.h>
  42 #include <sys/multiboot.h>
  43 #include <sys/multiboot2.h>
  44 #include <sys/multiboot2_impl.h>
  45 #include <sys/bootvfs.h>
  46 #include <sys/bootprops.h>
  47 #include <sys/varargs.h>
  48 #include <sys/param.h>
  49 #include <sys/machparam.h>
  50 #include <sys/machsystm.h>
  51 #include <sys/archsystm.h>
  52 #include <sys/boot_console.h>
  53 #include <sys/framebuffer.h>
  54 #include <sys/cmn_err.h>
  55 #include <sys/systm.h>
  56 #include <sys/promif.h>
  57 #include <sys/archsystm.h>
  58 #include <sys/x86_archext.h>
  59 #include <sys/kobj.h>
  60 #include <sys/privregs.h>
  61 #include <sys/sysmacros.h>
  62 #include <sys/ctype.h>
  63 #include <sys/fastboot.h>
  64 #ifdef __xpv
  65 #include <sys/hypervisor.h>
  66 #include <net/if.h>
  67 #endif
  68 #include <vm/kboot_mmu.h>
  69 #include <vm/hat_pte.h>
  70 #include <sys/kobj.h>
  71 #include <sys/kobj_lex.h>
  72 #include <sys/pci_cfgspace_impl.h>
  73 #include <sys/fastboot_impl.h>
  74 #include <sys/acpi/acconfig.h>
  75 #include <sys/acpi/acpi.h>
  76 #include <sys/ddipropdefs.h>      /* For DDI prop types */
  77 
  78 static int have_console = 0;    /* set once primitive console is initialized */
  79 static char *boot_args = "";
  80 
  81 /*
  82  * Debugging macros
  83  */
  84 static uint_t kbm_debug = 0;
  85 #define DBG_MSG(s)      { if (kbm_debug) bop_printf(NULL, "%s", s); }
  86 #define DBG(x)          { if (kbm_debug)                        \
  87         bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x));     \
  88         }
  89 
  90 #define PUT_STRING(s) {                         \
  91         char *cp;                               \
  92         for (cp = (s); *cp; ++cp)               \
  93                 bcons_putchar(*cp);             \
  94         }
  95 
  96 /* callback to boot_fb to set shadow frame buffer */
  97 extern void boot_fb_shadow_init(bootops_t *);
  98 
  99 bootops_t bootop;       /* simple bootops we'll pass on to kernel */
 100 struct bsys_mem bm;
 101 
 102 /*
 103  * Boot info from "glue" code in low memory. xbootp is used by:
 104  *      do_bop_phys_alloc(), do_bsys_alloc() and read_bootenvrc().
 105  */
 106 static struct xboot_info *xbootp;
 107 static uintptr_t next_virt;     /* next available virtual address */
 108 static paddr_t next_phys;       /* next available physical address from dboot */
 109 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */
 110 
 111 /*
 112  * buffer for vsnprintf for console I/O
 113  */
 114 #define BUFFERSIZE      512
 115 static char buffer[BUFFERSIZE];
 116 
 117 /*
 118  * stuff to store/report/manipulate boot property settings.
 119  */
 120 typedef struct bootprop {
 121         struct bootprop *bp_next;
 122         char *bp_name;
 123         int bp_flags;                   /* DDI prop type */
 124         uint_t bp_vlen;                 /* 0 for boolean */
 125         char *bp_value;
 126 } bootprop_t;
 127 
 128 static bootprop_t *bprops = NULL;
 129 static char *curr_page = NULL;          /* ptr to avail bprop memory */
 130 static int curr_space = 0;              /* amount of memory at curr_page */
 131 
 132 #ifdef __xpv
 133 start_info_t *xen_info;
 134 shared_info_t *HYPERVISOR_shared_info;
 135 #endif
 136 
 137 /*
 138  * some allocator statistics
 139  */
 140 static ulong_t total_bop_alloc_scratch = 0;
 141 static ulong_t total_bop_alloc_kernel = 0;
 142 
 143 static void build_firmware_properties(struct xboot_info *);
 144 
 145 static int early_allocation = 1;
 146 
 147 int force_fastreboot = 0;
 148 volatile int fastreboot_onpanic = 0;
 149 int post_fastreboot = 0;
 150 #ifdef  __xpv
 151 volatile int fastreboot_capable = 0;
 152 #else
 153 volatile int fastreboot_capable = 1;
 154 #endif
 155 
 156 /*
 157  * Information saved from current boot for fast reboot.
 158  * If the information size exceeds what we have allocated, fast reboot
 159  * will not be supported.
 160  */
 161 multiboot_info_t saved_mbi;
 162 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
 163 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
 164 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
 165 int saved_cmdline_len = 0;
 166 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
 167 
 168 /*
 169  * Turn off fastreboot_onpanic to avoid panic loop.
 170  */
 171 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
 172 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
 173 
 174 /*
 175  * Pointers to where System Resource Affinity Table (SRAT), System Locality
 176  * Information Table (SLIT) and Maximum System Capability Table (MSCT)
 177  * are mapped into virtual memory
 178  */
 179 ACPI_TABLE_SRAT *srat_ptr = NULL;
 180 ACPI_TABLE_SLIT *slit_ptr = NULL;
 181 ACPI_TABLE_MSCT *msct_ptr = NULL;
 182 
 183 /*
 184  * Arbitrary limit on number of localities we handle; if
 185  * this limit is raised to more than UINT16_MAX, make sure
 186  * process_slit() knows how to handle it.
 187  */
 188 #define SLIT_LOCALITIES_MAX     (4096)
 189 
 190 #define SLIT_NUM_PROPNAME       "acpi-slit-localities"
 191 #define SLIT_PROPNAME           "acpi-slit"
 192 
 193 /*
 194  * Allocate aligned physical memory at boot time. This allocator allocates
 195  * from the highest possible addresses. This avoids exhausting memory that
 196  * would be useful for DMA buffers.
 197  */
 198 paddr_t
 199 do_bop_phys_alloc(uint64_t size, uint64_t align)
 200 {
 201         paddr_t pa = 0;
 202         paddr_t start;
 203         paddr_t end;
 204         struct memlist  *ml = (struct memlist *)xbootp->bi_phys_install;
 205 
 206         /*
 207          * Be careful if high memory usage is limited in startup.c
 208          * Since there are holes in the low part of the physical address
 209          * space we can treat physmem as a pfn (not just a pgcnt) and
 210          * get a conservative upper limit.
 211          */
 212         if (physmem != 0 && high_phys > pfn_to_pa(physmem))
 213                 high_phys = pfn_to_pa(physmem);
 214 
 215         /*
 216          * find the highest available memory in physinstalled
 217          */
 218         size = P2ROUNDUP(size, align);
 219         for (; ml; ml = ml->ml_next) {
 220                 start = P2ROUNDUP(ml->ml_address, align);
 221                 end = P2ALIGN(ml->ml_address + ml->ml_size, align);
 222                 if (start < next_phys)
 223                         start = P2ROUNDUP(next_phys, align);
 224                 if (end > high_phys)
 225                         end = P2ALIGN(high_phys, align);
 226 
 227                 if (end <= start)
 228                         continue;
 229                 if (end - start < size)
 230                         continue;
 231 
 232                 /*
 233                  * Early allocations need to use low memory, since
 234                  * physmem might be further limited by bootenv.rc
 235                  */
 236                 if (early_allocation) {
 237                         if (pa == 0 || start < pa)
 238                                 pa = start;
 239                 } else {
 240                         if (end - size > pa)
 241                                 pa = end - size;
 242                 }
 243         }
 244         if (pa != 0) {
 245                 if (early_allocation)
 246                         next_phys = pa + size;
 247                 else
 248                         high_phys = pa;
 249                 return (pa);
 250         }
 251         bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
 252             ") Out of memory\n", size, align);
 253         /*NOTREACHED*/
 254 }
 255 
 256 uintptr_t
 257 alloc_vaddr(size_t size, paddr_t align)
 258 {
 259         uintptr_t rv;
 260 
 261         next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
 262         rv = (uintptr_t)next_virt;
 263         next_virt += size;
 264         return (rv);
 265 }
 266 
 267 /*
 268  * Allocate virtual memory. The size is always rounded up to a multiple
 269  * of base pagesize.
 270  */
 271 
 272 /*ARGSUSED*/
 273 static caddr_t
 274 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
 275 {
 276         paddr_t a = align;      /* same type as pa for masking */
 277         uint_t pgsize;
 278         paddr_t pa;
 279         uintptr_t va;
 280         ssize_t s;              /* the aligned size */
 281         uint_t level;
 282         uint_t is_kernel = (virthint != 0);
 283 
 284         if (a < MMU_PAGESIZE)
 285                 a = MMU_PAGESIZE;
 286         else if (!ISP2(a))
 287                 prom_panic("do_bsys_alloc() incorrect alignment");
 288         size = P2ROUNDUP(size, MMU_PAGESIZE);
 289 
 290         /*
 291          * Use the next aligned virtual address if we weren't given one.
 292          */
 293         if (virthint == NULL) {
 294                 virthint = (caddr_t)alloc_vaddr(size, a);
 295                 total_bop_alloc_scratch += size;
 296         } else {
 297                 total_bop_alloc_kernel += size;
 298         }
 299 
 300         /*
 301          * allocate the physical memory
 302          */
 303         pa = do_bop_phys_alloc(size, a);
 304 
 305         /*
 306          * Add the mappings to the page tables, try large pages first.
 307          */
 308         va = (uintptr_t)virthint;
 309         s = size;
 310         level = 1;
 311         pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
 312         if (xbootp->bi_use_largepage && a == pgsize) {
 313                 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
 314                     s >= pgsize) {
 315                         kbm_map(va, pa, level, is_kernel);
 316                         va += pgsize;
 317                         pa += pgsize;
 318                         s -= pgsize;
 319                 }
 320         }
 321 
 322         /*
 323          * Map remaining pages use small mappings
 324          */
 325         level = 0;
 326         pgsize = MMU_PAGESIZE;
 327         while (s > 0) {
 328                 kbm_map(va, pa, level, is_kernel);
 329                 va += pgsize;
 330                 pa += pgsize;
 331                 s -= pgsize;
 332         }
 333         return (virthint);
 334 }
 335 
 336 /*
 337  * Free virtual memory - we'll just ignore these.
 338  */
 339 /*ARGSUSED*/
 340 static void
 341 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
 342 {
 343         bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
 344             (void *)virt, size);
 345 }
 346 
 347 /*
 348  * Old interface
 349  */
 350 /*ARGSUSED*/
 351 static caddr_t
 352 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size,
 353     int align, int flags)
 354 {
 355         prom_panic("unsupported call to BOP_EALLOC()\n");
 356         return (0);
 357 }
 358 
 359 
 360 static void
 361 bsetprop(int flags, char *name, int nlen, void *value, int vlen)
 362 {
 363         uint_t size;
 364         uint_t need_size;
 365         bootprop_t *b;
 366 
 367         /*
 368          * align the size to 16 byte boundary
 369          */
 370         size = sizeof (bootprop_t) + nlen + 1 + vlen;
 371         size = (size + 0xf) & ~0xf;
 372         if (size > curr_space) {
 373                 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
 374                 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
 375                 curr_space = need_size;
 376         }
 377 
 378         /*
 379          * use a bootprop_t at curr_page and link into list
 380          */
 381         b = (bootprop_t *)curr_page;
 382         curr_page += sizeof (bootprop_t);
 383         curr_space -=  sizeof (bootprop_t);
 384         b->bp_next = bprops;
 385         bprops = b;
 386 
 387         /*
 388          * follow by name and ending zero byte
 389          */
 390         b->bp_name = curr_page;
 391         bcopy(name, curr_page, nlen);
 392         curr_page += nlen;
 393         *curr_page++ = 0;
 394         curr_space -= nlen + 1;
 395 
 396         /*
 397          * set the property type
 398          */
 399         b->bp_flags = flags & DDI_PROP_TYPE_MASK;
 400 
 401         /*
 402          * copy in value, but no ending zero byte
 403          */
 404         b->bp_value = curr_page;
 405         b->bp_vlen = vlen;
 406         if (vlen > 0) {
 407                 bcopy(value, curr_page, vlen);
 408                 curr_page += vlen;
 409                 curr_space -= vlen;
 410         }
 411 
 412         /*
 413          * align new values of curr_page, curr_space
 414          */
 415         while (curr_space & 0xf) {
 416                 ++curr_page;
 417                 --curr_space;
 418         }
 419 }
 420 
 421 static void
 422 bsetprops(char *name, char *value)
 423 {
 424         bsetprop(DDI_PROP_TYPE_STRING, name, strlen(name),
 425             value, strlen(value) + 1);
 426 }
 427 
 428 static void
 429 bsetprop32(char *name, uint32_t value)
 430 {
 431         bsetprop(DDI_PROP_TYPE_INT, name, strlen(name),
 432             (void *)&value, sizeof (value));
 433 }
 434 
 435 static void
 436 bsetprop64(char *name, uint64_t value)
 437 {
 438         bsetprop(DDI_PROP_TYPE_INT64, name, strlen(name),
 439             (void *)&value, sizeof (value));
 440 }
 441 
 442 static void
 443 bsetpropsi(char *name, int value)
 444 {
 445         char prop_val[32];
 446 
 447         (void) snprintf(prop_val, sizeof (prop_val), "%d", value);
 448         bsetprops(name, prop_val);
 449 }
 450 
 451 /*
 452  * to find the type of the value associated with this name
 453  */
 454 /*ARGSUSED*/
 455 int
 456 do_bsys_getproptype(bootops_t *bop, const char *name)
 457 {
 458         bootprop_t *b;
 459 
 460         for (b = bprops; b != NULL; b = b->bp_next) {
 461                 if (strcmp(name, b->bp_name) != 0)
 462                         continue;
 463                 return (b->bp_flags);
 464         }
 465         return (-1);
 466 }
 467 
 468 /*
 469  * to find the size of the buffer to allocate
 470  */
 471 /*ARGSUSED*/
 472 int
 473 do_bsys_getproplen(bootops_t *bop, const char *name)
 474 {
 475         bootprop_t *b;
 476 
 477         for (b = bprops; b; b = b->bp_next) {
 478                 if (strcmp(name, b->bp_name) != 0)
 479                         continue;
 480                 return (b->bp_vlen);
 481         }
 482         return (-1);
 483 }
 484 
 485 /*
 486  * get the value associated with this name
 487  */
 488 /*ARGSUSED*/
 489 int
 490 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
 491 {
 492         bootprop_t *b;
 493 
 494         for (b = bprops; b; b = b->bp_next) {
 495                 if (strcmp(name, b->bp_name) != 0)
 496                         continue;
 497                 bcopy(b->bp_value, value, b->bp_vlen);
 498                 return (0);
 499         }
 500         return (-1);
 501 }
 502 
 503 /*
 504  * get the name of the next property in succession from the standalone
 505  */
 506 /*ARGSUSED*/
 507 static char *
 508 do_bsys_nextprop(bootops_t *bop, char *name)
 509 {
 510         bootprop_t *b;
 511 
 512         /*
 513          * A null name is a special signal for the 1st boot property
 514          */
 515         if (name == NULL || strlen(name) == 0) {
 516                 if (bprops == NULL)
 517                         return (NULL);
 518                 return (bprops->bp_name);
 519         }
 520 
 521         for (b = bprops; b; b = b->bp_next) {
 522                 if (name != b->bp_name)
 523                         continue;
 524                 b = b->bp_next;
 525                 if (b == NULL)
 526                         return (NULL);
 527                 return (b->bp_name);
 528         }
 529         return (NULL);
 530 }
 531 
 532 /*
 533  * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
 534  */
 535 static int
 536 parse_value(char *p, uint64_t *retval)
 537 {
 538         int adjust = 0;
 539         uint64_t tmp = 0;
 540         int digit;
 541         int radix = 10;
 542 
 543         *retval = 0;
 544         if (*p == '-' || *p == '~')
 545                 adjust = *p++;
 546 
 547         if (*p == '0') {
 548                 ++p;
 549                 if (*p == 0)
 550                         return (0);
 551                 if (*p == 'x' || *p == 'X') {
 552                         radix = 16;
 553                         ++p;
 554                 } else {
 555                         radix = 8;
 556                         ++p;
 557                 }
 558         }
 559         while (*p) {
 560                 if ('0' <= *p && *p <= '9')
 561                         digit = *p - '0';
 562                 else if ('a' <= *p && *p <= 'f')
 563                         digit = 10 + *p - 'a';
 564                 else if ('A' <= *p && *p <= 'F')
 565                         digit = 10 + *p - 'A';
 566                 else
 567                         return (-1);
 568                 if (digit >= radix)
 569                         return (-1);
 570                 tmp = tmp * radix + digit;
 571                 ++p;
 572         }
 573         if (adjust == '-')
 574                 tmp = -tmp;
 575         else if (adjust == '~')
 576                 tmp = ~tmp;
 577         *retval = tmp;
 578         return (0);
 579 }
 580 
 581 static boolean_t
 582 unprintable(char *value, int size)
 583 {
 584         int i;
 585 
 586         if (size <= 0 || value[0] == '\0')
 587                 return (B_TRUE);
 588 
 589         for (i = 0; i < size; i++) {
 590                 if (value[i] == '\0')
 591                         return (i != (size - 1));
 592 
 593                 if (!isprint(value[i]))
 594                         return (B_TRUE);
 595         }
 596         return (B_FALSE);
 597 }
 598 
 599 /*
 600  * Print out information about all boot properties.
 601  * buffer is pointer to pre-allocated space to be used as temporary
 602  * space for property values.
 603  */
 604 static void
 605 boot_prop_display(char *buffer)
 606 {
 607         char *name = "";
 608         int i, len, flags, *buf32;
 609         int64_t *buf64;
 610 
 611         bop_printf(NULL, "\nBoot properties:\n");
 612 
 613         while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
 614                 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
 615                 (void) do_bsys_getprop(NULL, name, buffer);
 616                 len = do_bsys_getproplen(NULL, name);
 617                 flags = do_bsys_getproptype(NULL, name);
 618                 bop_printf(NULL, "len=%d ", len);
 619 
 620                 switch (flags) {
 621                 case DDI_PROP_TYPE_INT:
 622                         len = len / sizeof (int);
 623                         buf32 = (int *)buffer;
 624                         for (i = 0; i < len; i++) {
 625                                 bop_printf(NULL, "%08x", buf32[i]);
 626                                 if (i < len - 1)
 627                                         bop_printf(NULL, ".");
 628                         }
 629                         break;
 630                 case DDI_PROP_TYPE_STRING:
 631                         bop_printf(NULL, "%s", buffer);
 632                         break;
 633                 case DDI_PROP_TYPE_INT64:
 634                         len = len / sizeof (int64_t);
 635                         buf64 = (int64_t *)buffer;
 636                         for (i = 0; i < len; i++) {
 637                                 bop_printf(NULL, "%016" PRIx64, buf64[i]);
 638                                 if (i < len - 1)
 639                                         bop_printf(NULL, ".");
 640                         }
 641                         break;
 642                 default:
 643                         if (!unprintable(buffer, len)) {
 644                                 buffer[len] = 0;
 645                                 bop_printf(NULL, "%s", buffer);
 646                                 break;
 647                         }
 648                         for (i = 0; i < len; i++) {
 649                                 bop_printf(NULL, "%02x", buffer[i] & 0xff);
 650                                 if (i < len - 1)
 651                                         bop_printf(NULL, ".");
 652                         }
 653                         break;
 654                 }
 655                 bop_printf(NULL, "\n");
 656         }
 657 }
 658 
 659 /*
 660  * 2nd part of building the table of boot properties. This includes:
 661  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
 662  *
 663  * lines look like one of:
 664  * ^$
 665  * ^# comment till end of line
 666  * setprop name 'value'
 667  * setprop name value
 668  * setprop name "value"
 669  *
 670  * we do single character I/O since this is really just looking at memory
 671  */
 672 void
 673 read_bootenvrc(void)
 674 {
 675         int fd;
 676         char *line;
 677         int c;
 678         int bytes_read;
 679         char *name;
 680         int n_len;
 681         char *value;
 682         int v_len;
 683         char *inputdev; /* these override the command line if serial ports */
 684         char *outputdev;
 685         char *consoledev;
 686         uint64_t lvalue;
 687         int use_xencons = 0;
 688         extern int bootrd_debug;
 689 
 690 #ifdef __xpv
 691         if (!DOMAIN_IS_INITDOMAIN(xen_info))
 692                 use_xencons = 1;
 693 #endif /* __xpv */
 694 
 695         DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
 696         fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
 697         DBG(fd);
 698 
 699         line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
 700         while (fd >= 0) {
 701 
 702                 /*
 703                  * get a line
 704                  */
 705                 for (c = 0; ; ++c) {
 706                         bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
 707                         if (bytes_read == 0) {
 708                                 if (c == 0)
 709                                         goto done;
 710                                 break;
 711                         }
 712                         if (line[c] == '\n')
 713                                 break;
 714                 }
 715                 line[c] = 0;
 716 
 717                 /*
 718                  * ignore comment lines
 719                  */
 720                 c = 0;
 721                 while (ISSPACE(line[c]))
 722                         ++c;
 723                 if (line[c] == '#' || line[c] == 0)
 724                         continue;
 725 
 726                 /*
 727                  * must have "setprop " or "setprop\t"
 728                  */
 729                 if (strncmp(line + c, "setprop ", 8) != 0 &&
 730                     strncmp(line + c, "setprop\t", 8) != 0)
 731                         continue;
 732                 c += 8;
 733                 while (ISSPACE(line[c]))
 734                         ++c;
 735                 if (line[c] == 0)
 736                         continue;
 737 
 738                 /*
 739                  * gather up the property name
 740                  */
 741                 name = line + c;
 742                 n_len = 0;
 743                 while (line[c] && !ISSPACE(line[c]))
 744                         ++n_len, ++c;
 745 
 746                 /*
 747                  * gather up the value, if any
 748                  */
 749                 value = "";
 750                 v_len = 0;
 751                 while (ISSPACE(line[c]))
 752                         ++c;
 753                 if (line[c] != 0) {
 754                         value = line + c;
 755                         while (line[c] && !ISSPACE(line[c]))
 756                                 ++v_len, ++c;
 757                 }
 758 
 759                 if (v_len >= 2 && value[0] == value[v_len - 1] &&
 760                     (value[0] == '\'' || value[0] == '"')) {
 761                         ++value;
 762                         v_len -= 2;
 763                 }
 764                 name[n_len] = 0;
 765                 if (v_len > 0)
 766                         value[v_len] = 0;
 767                 else
 768                         continue;
 769 
 770                 /*
 771                  * ignore "boot-file" property, it's now meaningless
 772                  */
 773                 if (strcmp(name, "boot-file") == 0)
 774                         continue;
 775                 if (strcmp(name, "boot-args") == 0 &&
 776                     strlen(boot_args) > 0)
 777                         continue;
 778 
 779                 /*
 780                  * If a property was explicitly set on the command line
 781                  * it will override a setting in bootenv.rc. We make an
 782                  * exception for a property from the bootloader such as:
 783                  *
 784                  * console="text,ttya,ttyb,ttyc,ttyd"
 785                  *
 786                  * In such a case, picking the first value here (as
 787                  * lookup_console_devices() does) is at best a guess; if
 788                  * bootenv.rc has a value, it's probably better.
 789                  */
 790                 if (strcmp(name, "console") == 0) {
 791                         char propval[BP_MAX_STRLEN] = "";
 792 
 793                         if (do_bsys_getprop(NULL, name, propval) == -1 ||
 794                             strchr(propval, ',') != NULL)
 795                                 bsetprops(name, value);
 796                         continue;
 797                 }
 798 
 799                 if (do_bsys_getproplen(NULL, name) == -1)
 800                         bsetprops(name, value);
 801         }
 802 done:
 803         if (fd >= 0)
 804                 (void) BRD_CLOSE(bfs_ops, fd);
 805 
 806 
 807         /*
 808          * Check if we have to limit the boot time allocator
 809          */
 810         if (do_bsys_getproplen(NULL, "physmem") != -1 &&
 811             do_bsys_getprop(NULL, "physmem", line) >= 0 &&
 812             parse_value(line, &lvalue) != -1) {
 813                 if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
 814                         physmem = (pgcnt_t)lvalue;
 815                         DBG(physmem);
 816                 }
 817         }
 818         early_allocation = 0;
 819 
 820         /*
 821          * Check for bootrd_debug.
 822          */
 823         if (find_boot_prop("bootrd_debug"))
 824                 bootrd_debug = 1;
 825 
 826         /*
 827          * check to see if we have to override the default value of the console
 828          */
 829         if (!use_xencons) {
 830                 inputdev = line;
 831                 v_len = do_bsys_getproplen(NULL, "input-device");
 832                 if (v_len > 0)
 833                         (void) do_bsys_getprop(NULL, "input-device", inputdev);
 834                 else
 835                         v_len = 0;
 836                 inputdev[v_len] = 0;
 837 
 838                 outputdev = inputdev + v_len + 1;
 839                 v_len = do_bsys_getproplen(NULL, "output-device");
 840                 if (v_len > 0)
 841                         (void) do_bsys_getprop(NULL, "output-device",
 842                             outputdev);
 843                 else
 844                         v_len = 0;
 845                 outputdev[v_len] = 0;
 846 
 847                 consoledev = outputdev + v_len + 1;
 848                 v_len = do_bsys_getproplen(NULL, "console");
 849                 if (v_len > 0) {
 850                         (void) do_bsys_getprop(NULL, "console", consoledev);
 851                         if (post_fastreboot &&
 852                             strcmp(consoledev, "graphics") == 0) {
 853                                 bsetprops("console", "text");
 854                                 v_len = strlen("text");
 855                                 bcopy("text", consoledev, v_len);
 856                         }
 857                 } else {
 858                         v_len = 0;
 859                 }
 860                 consoledev[v_len] = 0;
 861                 bcons_post_bootenvrc(inputdev, outputdev, consoledev);
 862         } else {
 863                 /*
 864                  * Ensure console property exists
 865                  * If not create it as "hypervisor"
 866                  */
 867                 v_len = do_bsys_getproplen(NULL, "console");
 868                 if (v_len < 0)
 869                         bsetprops("console", "hypervisor");
 870                 inputdev = outputdev = consoledev = "hypervisor";
 871                 bcons_post_bootenvrc(inputdev, outputdev, consoledev);
 872         }
 873 
 874         if (find_boot_prop("prom_debug") || kbm_debug)
 875                 boot_prop_display(line);
 876 }
 877 
 878 /*
 879  * print formatted output
 880  */
 881 /*ARGSUSED*/
 882 void
 883 vbop_printf(void *ptr, const char *fmt, va_list ap)
 884 {
 885         if (have_console == 0)
 886                 return;
 887 
 888         (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
 889         PUT_STRING(buffer);
 890 }
 891 
 892 /*PRINTFLIKE2*/
 893 void
 894 bop_printf(void *bop, const char *fmt, ...)
 895 {
 896         va_list ap;
 897 
 898         va_start(ap, fmt);
 899         vbop_printf(bop, fmt, ap);
 900         va_end(ap);
 901 }
 902 
 903 /*
 904  * Another panic() variant; this one can be used even earlier during boot than
 905  * prom_panic().
 906  */
 907 /*PRINTFLIKE1*/
 908 void
 909 bop_panic(const char *fmt, ...)
 910 {
 911         va_list ap;
 912 
 913         va_start(ap, fmt);
 914         bop_printf(NULL, fmt, ap);
 915         va_end(ap);
 916 
 917         bop_printf(NULL, "\nPress any key to reboot.\n");
 918         (void) bcons_getchar();
 919         bop_printf(NULL, "Resetting...\n");
 920         pc_reset();
 921 }
 922 
 923 /*
 924  * Do a real mode interrupt BIOS call
 925  */
 926 typedef struct bios_regs {
 927         unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
 928 } bios_regs_t;
 929 typedef int (*bios_func_t)(int, bios_regs_t *);
 930 
 931 /*ARGSUSED*/
 932 static void
 933 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
 934 {
 935 #if defined(__xpv)
 936         prom_panic("unsupported call to BOP_DOINT()\n");
 937 #else   /* __xpv */
 938         static int firsttime = 1;
 939         bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
 940         bios_regs_t br;
 941 
 942         /*
 943          * We're about to disable paging; we shouldn't be PCID enabled.
 944          */
 945         if (getcr4() & CR4_PCIDE)
 946                 prom_panic("do_bsys_doint() with PCID enabled\n");
 947 
 948         /*
 949          * The first time we do this, we have to copy the pre-packaged
 950          * low memory bios call code image into place.
 951          */
 952         if (firsttime) {
 953                 extern char bios_image[];
 954                 extern uint32_t bios_size;
 955 
 956                 bcopy(bios_image, (void *)bios_func, bios_size);
 957                 firsttime = 0;
 958         }
 959 
 960         br.ax = rp->eax.word.ax;
 961         br.bx = rp->ebx.word.bx;
 962         br.cx = rp->ecx.word.cx;
 963         br.dx = rp->edx.word.dx;
 964         br.bp = rp->ebp.word.bp;
 965         br.si = rp->esi.word.si;
 966         br.di = rp->edi.word.di;
 967         br.ds = rp->ds;
 968         br.es = rp->es;
 969 
 970         DBG_MSG("Doing BIOS call...");
 971         DBG(br.ax);
 972         DBG(br.bx);
 973         DBG(br.dx);
 974         rp->eflags = bios_func(intnum, &br);
 975         DBG_MSG("done\n");
 976 
 977         rp->eax.word.ax = br.ax;
 978         rp->ebx.word.bx = br.bx;
 979         rp->ecx.word.cx = br.cx;
 980         rp->edx.word.dx = br.dx;
 981         rp->ebp.word.bp = br.bp;
 982         rp->esi.word.si = br.si;
 983         rp->edi.word.di = br.di;
 984         rp->ds = br.ds;
 985         rp->es = br.es;
 986 #endif /* __xpv */
 987 }
 988 
 989 static struct boot_syscalls bop_sysp = {
 990         bcons_getchar,
 991         bcons_putchar,
 992         bcons_ischar,
 993 };
 994 
 995 static char *whoami;
 996 
 997 #define BUFLEN  64
 998 
 999 #if defined(__xpv)
1000 
1001 static char namebuf[32];
1002 
1003 static void
1004 xen_parse_props(char *s, char *prop_map[], int n_prop)
1005 {
1006         char **prop_name = prop_map;
1007         char *cp = s, *scp;
1008 
1009         do {
1010                 scp = cp;
1011                 while ((*cp != '\0') && (*cp != ':'))
1012                         cp++;
1013 
1014                 if ((scp != cp) && (*prop_name != NULL)) {
1015                         *cp = '\0';
1016                         bsetprops(*prop_name, scp);
1017                 }
1018 
1019                 cp++;
1020                 prop_name++;
1021                 n_prop--;
1022         } while (n_prop > 0);
1023 }
1024 
1025 #define VBDPATHLEN      64
1026 
1027 /*
1028  * parse the 'xpv-root' property to create properties used by
1029  * ufs_mountroot.
1030  */
1031 static void
1032 xen_vbdroot_props(char *s)
1033 {
1034         char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
1035         const char lnamefix[] = "/dev/dsk/c0d";
1036         char *pnp;
1037         char *prop_p;
1038         char mi;
1039         short minor;
1040         long addr = 0;
1041 
1042         pnp = vbdpath + strlen(vbdpath);
1043         prop_p = s + strlen(lnamefix);
1044         while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
1045                 addr = addr * 10 + *prop_p++ - '0';
1046         (void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
1047         pnp = vbdpath + strlen(vbdpath);
1048         if (*prop_p == 's')
1049                 mi = 'a';
1050         else if (*prop_p == 'p')
1051                 mi = 'q';
1052         else
1053                 ASSERT(0); /* shouldn't be here */
1054         prop_p++;
1055         ASSERT(*prop_p != '\0');
1056         if (ISDIGIT(*prop_p)) {
1057                 minor = *prop_p - '0';
1058                 prop_p++;
1059                 if (ISDIGIT(*prop_p)) {
1060                         minor = minor * 10 + *prop_p - '0';
1061                 }
1062         } else {
1063                 /* malformed root path, use 0 as default */
1064                 minor = 0;
1065         }
1066         ASSERT(minor < 16); /* at most 16 partitions */
1067         mi += minor;
1068         *pnp++ = ':';
1069         *pnp++ = mi;
1070         *pnp++ = '\0';
1071         bsetprops("fstype", "ufs");
1072         bsetprops("bootpath", vbdpath);
1073 
1074         DBG_MSG("VBD bootpath set to ");
1075         DBG_MSG(vbdpath);
1076         DBG_MSG("\n");
1077 }
1078 
1079 /*
1080  * parse the xpv-nfsroot property to create properties used by
1081  * nfs_mountroot.
1082  */
1083 static void
1084 xen_nfsroot_props(char *s)
1085 {
1086         char *prop_map[] = {
1087                 BP_SERVER_IP,   /* server IP address */
1088                 BP_SERVER_NAME, /* server hostname */
1089                 BP_SERVER_PATH, /* root path */
1090         };
1091         int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1092 
1093         bsetprops("fstype", "nfs");
1094 
1095         xen_parse_props(s, prop_map, n_prop);
1096 
1097         /*
1098          * If a server name wasn't specified, use a default.
1099          */
1100         if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
1101                 bsetprops(BP_SERVER_NAME, "unknown");
1102 }
1103 
1104 /*
1105  * Extract our IP address, etc. from the "xpv-ip" property.
1106  */
1107 static void
1108 xen_ip_props(char *s)
1109 {
1110         char *prop_map[] = {
1111                 BP_HOST_IP,             /* IP address */
1112                 NULL,                   /* NFS server IP address (ignored in */
1113                                         /* favour of xpv-nfsroot) */
1114                 BP_ROUTER_IP,           /* IP gateway */
1115                 BP_SUBNET_MASK,         /* IP subnet mask */
1116                 "xpv-hostname",         /* hostname (ignored) */
1117                 BP_NETWORK_INTERFACE,   /* interface name */
1118                 "xpv-hcp",              /* host configuration protocol */
1119         };
1120         int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1121         char ifname[IFNAMSIZ];
1122 
1123         xen_parse_props(s, prop_map, n_prop);
1124 
1125         /*
1126          * A Linux dom0 administrator expects all interfaces to be
1127          * called "ethX", which is not the case here.
1128          *
1129          * If the interface name specified is "eth0", presume that
1130          * this is really intended to be "xnf0" (the first domU ->
1131          * dom0 interface for this domain).
1132          */
1133         if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
1134             (strcmp("eth0", ifname) == 0)) {
1135                 bsetprops(BP_NETWORK_INTERFACE, "xnf0");
1136                 bop_printf(NULL,
1137                     "network interface name 'eth0' replaced with 'xnf0'\n");
1138         }
1139 }
1140 
1141 #else   /* __xpv */
1142 
1143 static void
1144 setup_rarp_props(struct sol_netinfo *sip)
1145 {
1146         char buf[BUFLEN];       /* to hold ip/mac addrs */
1147         uint8_t *val;
1148 
1149         val = (uint8_t *)&sip->sn_ciaddr;
1150         (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1151             val[0], val[1], val[2], val[3]);
1152         bsetprops(BP_HOST_IP, buf);
1153 
1154         val = (uint8_t *)&sip->sn_siaddr;
1155         (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1156             val[0], val[1], val[2], val[3]);
1157         bsetprops(BP_SERVER_IP, buf);
1158 
1159         if (sip->sn_giaddr != 0) {
1160                 val = (uint8_t *)&sip->sn_giaddr;
1161                 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1162                     val[0], val[1], val[2], val[3]);
1163                 bsetprops(BP_ROUTER_IP, buf);
1164         }
1165 
1166         if (sip->sn_netmask != 0) {
1167                 val = (uint8_t *)&sip->sn_netmask;
1168                 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1169                     val[0], val[1], val[2], val[3]);
1170                 bsetprops(BP_SUBNET_MASK, buf);
1171         }
1172 
1173         if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1174                 bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1175                     sip->sn_mactype, sip->sn_maclen);
1176         } else {
1177                 val = sip->sn_macaddr;
1178                 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1179                     val[0], val[1], val[2], val[3], val[4], val[5]);
1180                 bsetprops(BP_BOOT_MAC, buf);
1181         }
1182 }
1183 
1184 #endif  /* __xpv */
1185 
1186 static void
1187 build_panic_cmdline(const char *cmd, int cmdlen)
1188 {
1189         int proplen;
1190         size_t arglen;
1191 
1192         arglen = sizeof (fastreboot_onpanic_args);
1193         /*
1194          * If we allready have fastreboot-onpanic set to zero,
1195          * don't add them again.
1196          */
1197         if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1198             proplen <=  sizeof (fastreboot_onpanic_cmdline)) {
1199                 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1200                     fastreboot_onpanic_cmdline);
1201                 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1202                         arglen = 1;
1203         }
1204 
1205         /*
1206          * construct fastreboot_onpanic_cmdline
1207          */
1208         if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1209                 DBG_MSG("Command line too long: clearing "
1210                     FASTREBOOT_ONPANIC "\n");
1211                 fastreboot_onpanic = 0;
1212         } else {
1213                 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1214                 if (arglen != 1)
1215                         bcopy(fastreboot_onpanic_args,
1216                             fastreboot_onpanic_cmdline + cmdlen, arglen);
1217                 else
1218                         fastreboot_onpanic_cmdline[cmdlen] = 0;
1219         }
1220 }
1221 
1222 
1223 #ifndef __xpv
1224 /*
1225  * Construct boot command line for Fast Reboot. The saved_cmdline
1226  * is also reported by "eeprom bootcmd".
1227  */
1228 static void
1229 build_fastboot_cmdline(struct xboot_info *xbp)
1230 {
1231         saved_cmdline_len =  strlen(xbp->bi_cmdline) + 1;
1232         if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1233                 DBG(saved_cmdline_len);
1234                 DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1235                 fastreboot_capable = 0;
1236         } else {
1237                 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline,
1238                     saved_cmdline_len);
1239                 saved_cmdline[saved_cmdline_len - 1] = '\0';
1240                 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1241         }
1242 }
1243 
1244 /*
1245  * Save memory layout, disk drive information, unix and boot archive sizes for
1246  * Fast Reboot.
1247  */
1248 static void
1249 save_boot_info(struct xboot_info *xbi)
1250 {
1251         multiboot_info_t *mbi = xbi->bi_mb_info;
1252         struct boot_modules *modp;
1253         int i;
1254 
1255         bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1256         if (mbi->mmap_length > sizeof (saved_mmap)) {
1257                 DBG_MSG("mbi->mmap_length too big: clearing "
1258                     "fastreboot_capable\n");
1259                 fastreboot_capable = 0;
1260         } else {
1261                 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1262                     mbi->mmap_length);
1263         }
1264 
1265         if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1266                 if (mbi->drives_length > sizeof (saved_drives)) {
1267                         DBG(mbi->drives_length);
1268                         DBG_MSG("mbi->drives_length too big: clearing "
1269                             "fastreboot_capable\n");
1270                         fastreboot_capable = 0;
1271                 } else {
1272                         bcopy((void *)(uintptr_t)mbi->drives_addr,
1273                             (void *)saved_drives, mbi->drives_length);
1274                 }
1275         } else {
1276                 saved_mbi.drives_length = 0;
1277                 saved_mbi.drives_addr = 0;
1278         }
1279 
1280         /*
1281          * Current file sizes.  Used by fastboot.c to figure out how much
1282          * memory to reserve for panic reboot.
1283          * Use the module list from the dboot-constructed xboot_info
1284          * instead of the list referenced by the multiboot structure
1285          * because that structure may not be addressable now.
1286          */
1287         saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1288         for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1289             i < xbi->bi_module_cnt; i++, modp++) {
1290                 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1291         }
1292 }
1293 #endif  /* __xpv */
1294 
1295 /*
1296  * Import boot environment module variables as properties, applying
1297  * blacklist filter for variables we know we will not use.
1298  *
1299  * Since the environment can be relatively large, containing many variables
1300  * used only for boot loader purposes, we will use a blacklist based filter.
1301  * To keep the blacklist from growing too large, we use prefix based filtering.
1302  * This is possible because in many cases, the loader variable names are
1303  * using a structured layout.
1304  *
1305  * We will not overwrite already set properties.
1306  *
1307  * Note that the menu items in particular can contain characters not
1308  * well-handled as bootparams, such as spaces, brackets, and the like, so that's
1309  * another reason.
1310  */
1311 static struct bop_blacklist {
1312         const char *bl_name;
1313         int bl_name_len;
1314 } bop_prop_blacklist[] = {
1315         { "ISADIR", sizeof ("ISADIR") },
1316         { "acpi", sizeof ("acpi") },
1317         { "autoboot_delay", sizeof ("autoboot_delay") },
1318         { "beansi_", sizeof ("beansi_") },
1319         { "beastie", sizeof ("beastie") },
1320         { "bemenu", sizeof ("bemenu") },
1321         { "boot.", sizeof ("boot.") },
1322         { "bootenv", sizeof ("bootenv") },
1323         { "currdev", sizeof ("currdev") },
1324         { "dhcp.", sizeof ("dhcp.") },
1325         { "interpret", sizeof ("interpret") },
1326         { "kernel", sizeof ("kernel") },
1327         { "loaddev", sizeof ("loaddev") },
1328         { "loader_", sizeof ("loader_") },
1329         { "mainansi_", sizeof ("mainansi_") },
1330         { "mainmenu_", sizeof ("mainmenu_") },
1331         { "maintoggled_", sizeof ("maintoggled_") },
1332         { "menu_timeout_command", sizeof ("menu_timeout_command") },
1333         { "menuset_", sizeof ("menuset_") },
1334         { "module_path", sizeof ("module_path") },
1335         { "nfs.", sizeof ("nfs.") },
1336         { "optionsansi_", sizeof ("optionsansi_") },
1337         { "optionsmenu_", sizeof ("optionsmenu_") },
1338         { "optionstoggled_", sizeof ("optionstoggled_") },
1339         { "pcibios", sizeof ("pcibios") },
1340         { "prompt", sizeof ("prompt") },
1341         { "smbios", sizeof ("smbios") },
1342         { "tem", sizeof ("tem") },
1343         { "twiddle_divisor", sizeof ("twiddle_divisor") },
1344         { "zfs_be", sizeof ("zfs_be") },
1345 };
1346 
1347 /*
1348  * Match the name against prefixes in above blacklist. If the match was
1349  * found, this name is blacklisted.
1350  */
1351 static boolean_t
1352 name_is_blacklisted(const char *name)
1353 {
1354         int i, n;
1355 
1356         n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]);
1357         for (i = 0; i < n; i++) {
1358                 if (strncmp(bop_prop_blacklist[i].bl_name, name,
1359                     bop_prop_blacklist[i].bl_name_len - 1) == 0) {
1360                         return (B_TRUE);
1361                 }
1362         }
1363         return (B_FALSE);
1364 }
1365 
1366 static void
1367 process_boot_environment(struct boot_modules *benv)
1368 {
1369         char *env, *ptr, *name, *value;
1370         uint32_t size, name_len, value_len;
1371 
1372         if (benv == NULL || benv->bm_type != BMT_ENV)
1373                 return;
1374         ptr = env = benv->bm_addr;
1375         size = benv->bm_size;
1376         do {
1377                 name = ptr;
1378                 /* find '=' */
1379                 while (*ptr != '=') {
1380                         ptr++;
1381                         if (ptr > env + size) /* Something is very wrong. */
1382                                 return;
1383                 }
1384                 name_len = ptr - name;
1385                 if (sizeof (buffer) <= name_len)
1386                         continue;
1387 
1388                 (void) strncpy(buffer, name, sizeof (buffer));
1389                 buffer[name_len] = '\0';
1390                 name = buffer;
1391 
1392                 value_len = 0;
1393                 value = ++ptr;
1394                 while ((uintptr_t)ptr - (uintptr_t)env < size) {
1395                         if (*ptr == '\0') {
1396                                 ptr++;
1397                                 value_len = (uintptr_t)ptr - (uintptr_t)env;
1398                                 break;
1399                         }
1400                         ptr++;
1401                 }
1402 
1403                 /* Did we reach the end of the module? */
1404                 if (value_len == 0)
1405                         return;
1406 
1407                 if (*value == '\0')
1408                         continue;
1409 
1410                 /* Is this property already set? */
1411                 if (do_bsys_getproplen(NULL, name) >= 0)
1412                         continue;
1413 
1414                 /* Translate netboot variables */
1415                 if (strcmp(name, "boot.netif.gateway") == 0) {
1416                         bsetprops(BP_ROUTER_IP, value);
1417                         continue;
1418                 }
1419                 if (strcmp(name, "boot.netif.hwaddr") == 0) {
1420                         bsetprops(BP_BOOT_MAC, value);
1421                         continue;
1422                 }
1423                 if (strcmp(name, "boot.netif.ip") == 0) {
1424                         bsetprops(BP_HOST_IP, value);
1425                         continue;
1426                 }
1427                 if (strcmp(name, "boot.netif.netmask") == 0) {
1428                         bsetprops(BP_SUBNET_MASK, value);
1429                         continue;
1430                 }
1431                 if (strcmp(name, "boot.netif.server") == 0) {
1432                         bsetprops(BP_SERVER_IP, value);
1433                         continue;
1434                 }
1435                 if (strcmp(name, "boot.netif.server") == 0) {
1436                         if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0)
1437                                 bsetprops(BP_SERVER_IP, value);
1438                         continue;
1439                 }
1440                 if (strcmp(name, "boot.nfsroot.server") == 0) {
1441                         if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0)
1442                                 bsetprops(BP_SERVER_IP, value);
1443                         continue;
1444                 }
1445                 if (strcmp(name, "boot.nfsroot.path") == 0) {
1446                         bsetprops(BP_SERVER_PATH, value);
1447                         continue;
1448                 }
1449 
1450                 if (name_is_blacklisted(name) == B_TRUE)
1451                         continue;
1452 
1453                 /* Create new property. */
1454                 bsetprops(name, value);
1455 
1456                 /* Avoid reading past the module end. */
1457                 if (size <= (uintptr_t)ptr - (uintptr_t)env)
1458                         return;
1459         } while (*ptr != '\0');
1460 }
1461 
1462 /*
1463  * 1st pass at building the table of boot properties. This includes:
1464  * - values set on the command line: -B a=x,b=y,c=z ....
1465  * - known values we just compute (ie. from xbp)
1466  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1467  *
1468  * the grub command line looked like:
1469  * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1470  *
1471  * whoami is the same as boot-file
1472  */
1473 static void
1474 build_boot_properties(struct xboot_info *xbp)
1475 {
1476         char *name;
1477         int name_len;
1478         char *value;
1479         int value_len;
1480         struct boot_modules *bm, *rdbm, *benv = NULL;
1481         char *propbuf;
1482         int quoted = 0;
1483         int boot_arg_len;
1484         uint_t i, midx;
1485         char modid[32];
1486 #ifndef __xpv
1487         static int stdout_val = 0;
1488         uchar_t boot_device;
1489         char str[3];
1490 #endif
1491 
1492         /*
1493          * These have to be done first, so that kobj_mount_root() works
1494          */
1495         DBG_MSG("Building boot properties\n");
1496         propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1497         DBG((uintptr_t)propbuf);
1498         if (xbp->bi_module_cnt > 0) {
1499                 bm = xbp->bi_modules;
1500                 rdbm = NULL;
1501                 for (midx = i = 0; i < xbp->bi_module_cnt; i++) {
1502                         if (bm[i].bm_type == BMT_ROOTFS) {
1503                                 rdbm = &bm[i];
1504                                 continue;
1505                         }
1506                         if (bm[i].bm_type == BMT_HASH ||
1507                             bm[i].bm_type == BMT_FONT ||
1508                             bm[i].bm_name == NULL)
1509                                 continue;
1510 
1511                         if (bm[i].bm_type == BMT_ENV) {
1512                                 if (benv == NULL)
1513                                         benv = &bm[i];
1514                                 else
1515                                         continue;
1516                         }
1517 
1518                         (void) snprintf(modid, sizeof (modid),
1519                             "module-name-%u", midx);
1520                         bsetprops(modid, (char *)bm[i].bm_name);
1521                         (void) snprintf(modid, sizeof (modid),
1522                             "module-addr-%u", midx);
1523                         bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr);
1524                         (void) snprintf(modid, sizeof (modid),
1525                             "module-size-%u", midx);
1526                         bsetprop64(modid, (uint64_t)bm[i].bm_size);
1527                         ++midx;
1528                 }
1529                 if (rdbm != NULL) {
1530                         bsetprop64("ramdisk_start",
1531                             (uint64_t)(uintptr_t)rdbm->bm_addr);
1532                         bsetprop64("ramdisk_end",
1533                             (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size);
1534                 }
1535         }
1536 
1537         /*
1538          * If there are any boot time modules or hashes present, then disable
1539          * fast reboot.
1540          */
1541         if (xbp->bi_module_cnt > 1) {
1542                 fastreboot_disable(FBNS_BOOTMOD);
1543         }
1544 
1545 #ifndef __xpv
1546         /*
1547          * Disable fast reboot if we're using the Multiboot 2 boot protocol,
1548          * since we don't currently support MB2 info and module relocation.
1549          * Note that fast reboot will have already been disabled if multiple
1550          * modules are present, since the current implementation assumes that
1551          * we only have a single module, the boot_archive.
1552          */
1553         if (xbp->bi_mb_version != 1) {
1554                 fastreboot_disable(FBNS_MULTIBOOT2);
1555         }
1556 #endif
1557 
1558         DBG_MSG("Parsing command line for boot properties\n");
1559         value = xbp->bi_cmdline;
1560 
1561         /*
1562          * allocate memory to collect boot_args into
1563          */
1564         boot_arg_len = strlen(xbp->bi_cmdline) + 1;
1565         boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1566         boot_args[0] = 0;
1567         boot_arg_len = 0;
1568 
1569 #ifdef __xpv
1570         /*
1571          * Xen puts a lot of device information in front of the kernel name
1572          * let's grab them and make them boot properties.  The first
1573          * string w/o an "=" in it will be the boot-file property.
1574          */
1575         (void) strcpy(namebuf, "xpv-");
1576         for (;;) {
1577                 /*
1578                  * get to next property
1579                  */
1580                 while (ISSPACE(*value))
1581                         ++value;
1582                 name = value;
1583                 /*
1584                  * look for an "="
1585                  */
1586                 while (*value && !ISSPACE(*value) && *value != '=') {
1587                         value++;
1588                 }
1589                 if (*value != '=') { /* no "=" in the property */
1590                         value = name;
1591                         break;
1592                 }
1593                 name_len = value - name;
1594                 value_len = 0;
1595                 /*
1596                  * skip over the "="
1597                  */
1598                 value++;
1599                 while (value[value_len] && !ISSPACE(value[value_len])) {
1600                         ++value_len;
1601                 }
1602                 /*
1603                  * build property name with "xpv-" prefix
1604                  */
1605                 if (name_len + 4 > 32) { /* skip if name too long */
1606                         value += value_len;
1607                         continue;
1608                 }
1609                 bcopy(name, &namebuf[4], name_len);
1610                 name_len += 4;
1611                 namebuf[name_len] = 0;
1612                 bcopy(value, propbuf, value_len);
1613                 propbuf[value_len] = 0;
1614                 bsetprops(namebuf, propbuf);
1615 
1616                 /*
1617                  * xpv-root is set to the logical disk name of the xen
1618                  * VBD when booting from a disk-based filesystem.
1619                  */
1620                 if (strcmp(namebuf, "xpv-root") == 0)
1621                         xen_vbdroot_props(propbuf);
1622                 /*
1623                  * While we're here, if we have a "xpv-nfsroot" property
1624                  * then we need to set "fstype" to "nfs" so we mount
1625                  * our root from the nfs server.  Also parse the xpv-nfsroot
1626                  * property to create the properties that nfs_mountroot will
1627                  * need to find the root and mount it.
1628                  */
1629                 if (strcmp(namebuf, "xpv-nfsroot") == 0)
1630                         xen_nfsroot_props(propbuf);
1631 
1632                 if (strcmp(namebuf, "xpv-ip") == 0)
1633                         xen_ip_props(propbuf);
1634                 value += value_len;
1635         }
1636 #endif
1637 
1638         while (ISSPACE(*value))
1639                 ++value;
1640         /*
1641          * value now points at the boot-file
1642          */
1643         value_len = 0;
1644         while (value[value_len] && !ISSPACE(value[value_len]))
1645                 ++value_len;
1646         if (value_len > 0) {
1647                 whoami = propbuf;
1648                 bcopy(value, whoami, value_len);
1649                 whoami[value_len] = 0;
1650                 bsetprops("boot-file", whoami);
1651                 /*
1652                  * strip leading path stuff from whoami, so running from
1653                  * PXE/miniroot makes sense.
1654                  */
1655                 if (strstr(whoami, "/platform/") != NULL)
1656                         whoami = strstr(whoami, "/platform/");
1657                 bsetprops("whoami", whoami);
1658         }
1659 
1660         /*
1661          * Values forcibly set boot properties on the command line via -B.
1662          * Allow use of quotes in values. Other stuff goes on kernel
1663          * command line.
1664          */
1665         name = value + value_len;
1666         while (*name != 0) {
1667                 /*
1668                  * anything not " -B" is copied to the command line
1669                  */
1670                 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1671                         boot_args[boot_arg_len++] = *name;
1672                         boot_args[boot_arg_len] = 0;
1673                         ++name;
1674                         continue;
1675                 }
1676 
1677                 /*
1678                  * skip the " -B" and following white space
1679                  */
1680                 name += 3;
1681                 while (ISSPACE(*name))
1682                         ++name;
1683                 while (*name && !ISSPACE(*name)) {
1684                         value = strstr(name, "=");
1685                         if (value == NULL)
1686                                 break;
1687                         name_len = value - name;
1688                         ++value;
1689                         value_len = 0;
1690                         quoted = 0;
1691                         for (; ; ++value_len) {
1692                                 if (!value[value_len])
1693                                         break;
1694 
1695                                 /*
1696                                  * is this value quoted?
1697                                  */
1698                                 if (value_len == 0 &&
1699                                     (value[0] == '\'' || value[0] == '"')) {
1700                                         quoted = value[0];
1701                                         ++value_len;
1702                                 }
1703 
1704                                 /*
1705                                  * In the quote accept any character,
1706                                  * but look for ending quote.
1707                                  */
1708                                 if (quoted) {
1709                                         if (value[value_len] == quoted)
1710                                                 quoted = 0;
1711                                         continue;
1712                                 }
1713 
1714                                 /*
1715                                  * a comma or white space ends the value
1716                                  */
1717                                 if (value[value_len] == ',' ||
1718                                     ISSPACE(value[value_len]))
1719                                         break;
1720                         }
1721 
1722                         if (value_len == 0) {
1723                                 bsetprop(DDI_PROP_TYPE_ANY, name, name_len,
1724                                     NULL, 0);
1725                         } else {
1726                                 char *v = value;
1727                                 int l = value_len;
1728                                 if (v[0] == v[l - 1] &&
1729                                     (v[0] == '\'' || v[0] == '"')) {
1730                                         ++v;
1731                                         l -= 2;
1732                                 }
1733                                 bcopy(v, propbuf, l);
1734                                 propbuf[l] = '\0';
1735                                 bsetprop(DDI_PROP_TYPE_STRING, name, name_len,
1736                                     propbuf, l + 1);
1737                         }
1738                         name = value + value_len;
1739                         while (*name == ',')
1740                                 ++name;
1741                 }
1742         }
1743 
1744         /*
1745          * set boot-args property
1746          * 1275 name is bootargs, so set
1747          * that too
1748          */
1749         bsetprops("boot-args", boot_args);
1750         bsetprops("bootargs", boot_args);
1751 
1752         process_boot_environment(benv);
1753 
1754 #ifndef __xpv
1755         /*
1756          * Build boot command line for Fast Reboot
1757          */
1758         build_fastboot_cmdline(xbp);
1759 
1760         if (xbp->bi_mb_version == 1) {
1761                 multiboot_info_t *mbi = xbp->bi_mb_info;
1762                 int netboot;
1763                 struct sol_netinfo *sip;
1764 
1765                 /*
1766                  * set the BIOS boot device from GRUB
1767                  */
1768                 netboot = 0;
1769 
1770                 /*
1771                  * Save various boot information for Fast Reboot
1772                  */
1773                 save_boot_info(xbp);
1774 
1775                 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1776                         boot_device = mbi->boot_device >> 24;
1777                         if (boot_device == 0x20)
1778                                 netboot++;
1779                         str[0] = (boot_device >> 4) + '0';
1780                         str[1] = (boot_device & 0xf) + '0';
1781                         str[2] = 0;
1782                         bsetprops("bios-boot-device", str);
1783                 } else {
1784                         netboot = 1;
1785                 }
1786 
1787                 /*
1788                  * In the netboot case, drives_info is overloaded with the
1789                  * dhcp ack. This is not multiboot compliant and requires
1790                  * special pxegrub!
1791                  */
1792                 if (netboot && mbi->drives_length != 0) {
1793                         sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1794                         if (sip->sn_infotype == SN_TYPE_BOOTP)
1795                                 bsetprop(DDI_PROP_TYPE_BYTE,
1796                                     "bootp-response",
1797                                     sizeof ("bootp-response"),
1798                                     (void *)(uintptr_t)mbi->drives_addr,
1799                                     mbi->drives_length);
1800                         else if (sip->sn_infotype == SN_TYPE_RARP)
1801                                 setup_rarp_props(sip);
1802                 }
1803         } else {
1804                 multiboot2_info_header_t *mbi = xbp->bi_mb_info;
1805                 multiboot_tag_bootdev_t *bootdev = NULL;
1806                 multiboot_tag_network_t *netdev = NULL;
1807 
1808                 if (mbi != NULL) {
1809                         bootdev = dboot_multiboot2_find_tag(mbi,
1810                             MULTIBOOT_TAG_TYPE_BOOTDEV);
1811                         netdev = dboot_multiboot2_find_tag(mbi,
1812                             MULTIBOOT_TAG_TYPE_NETWORK);
1813                 }
1814                 if (bootdev != NULL) {
1815                         DBG(bootdev->mb_biosdev);
1816                         boot_device = bootdev->mb_biosdev;
1817                         str[0] = (boot_device >> 4) + '0';
1818                         str[1] = (boot_device & 0xf) + '0';
1819                         str[2] = 0;
1820                         bsetprops("bios-boot-device", str);
1821                 }
1822                 if (netdev != NULL) {
1823                         bsetprop(DDI_PROP_TYPE_BYTE,
1824                             "bootp-response", sizeof ("bootp-response"),
1825                             (void *)(uintptr_t)netdev->mb_dhcpack,
1826                             netdev->mb_size -
1827                             sizeof (multiboot_tag_network_t));
1828                 }
1829         }
1830 
1831         bsetprop32("stdout", stdout_val);
1832 #endif /* __xpv */
1833 
1834         /*
1835          * more conjured up values for made up things....
1836          */
1837 #if defined(__xpv)
1838         bsetprops("mfg-name", "i86xpv");
1839         bsetprops("impl-arch-name", "i86xpv");
1840 #else
1841         bsetprops("mfg-name", "i86pc");
1842         bsetprops("impl-arch-name", "i86pc");
1843 #endif
1844 
1845         /*
1846          * Build firmware-provided system properties
1847          */
1848         build_firmware_properties(xbp);
1849 
1850         /*
1851          * XXPV
1852          *
1853          * Find out what these are:
1854          * - cpuid_feature_ecx_include
1855          * - cpuid_feature_ecx_exclude
1856          * - cpuid_feature_edx_include
1857          * - cpuid_feature_edx_exclude
1858          *
1859          * Find out what these are in multiboot:
1860          * - netdev-path
1861          * - fstype
1862          */
1863 }
1864 
1865 #ifdef __xpv
1866 /*
1867  * Under the Hypervisor, memory usable for DMA may be scarce. One
1868  * very likely large pool of DMA friendly memory is occupied by
1869  * the boot_archive, as it was loaded by grub into low MFNs.
1870  *
1871  * Here we free up that memory by copying the boot archive to what are
1872  * likely higher MFN pages and then swapping the mfn/pfn mappings.
1873  */
1874 #define PFN_2GIG        0x80000
1875 static void
1876 relocate_boot_archive(struct xboot_info *xbp)
1877 {
1878         mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1879         struct boot_modules *bm = xbp->bi_modules;
1880         uintptr_t va;
1881         pfn_t va_pfn;
1882         mfn_t va_mfn;
1883         caddr_t copy;
1884         pfn_t copy_pfn;
1885         mfn_t copy_mfn;
1886         size_t  len;
1887         int slop;
1888         int total = 0;
1889         int relocated = 0;
1890         int mmu_update_return;
1891         mmu_update_t t[2];
1892         x86pte_t pte;
1893 
1894         /*
1895          * If all MFN's are below 2Gig, don't bother doing this.
1896          */
1897         if (max_mfn < PFN_2GIG)
1898                 return;
1899         if (xbp->bi_module_cnt < 1) {
1900                 DBG_MSG("no boot_archive!");
1901                 return;
1902         }
1903 
1904         DBG_MSG("moving boot_archive to high MFN memory\n");
1905         va = (uintptr_t)bm->bm_addr;
1906         len = bm->bm_size;
1907         slop = va & MMU_PAGEOFFSET;
1908         if (slop) {
1909                 va += MMU_PAGESIZE - slop;
1910                 len -= MMU_PAGESIZE - slop;
1911         }
1912         len = P2ALIGN(len, MMU_PAGESIZE);
1913 
1914         /*
1915          * Go through all boot_archive pages, swapping any low MFN pages
1916          * with memory at next_phys.
1917          */
1918         while (len != 0) {
1919                 ++total;
1920                 va_pfn = mmu_btop(va - ONE_GIG);
1921                 va_mfn = mfn_list[va_pfn];
1922                 if (mfn_list[va_pfn] < PFN_2GIG) {
1923                         copy = kbm_remap_window(next_phys, 1);
1924                         bcopy((void *)va, copy, MMU_PAGESIZE);
1925                         copy_pfn = mmu_btop(next_phys);
1926                         copy_mfn = mfn_list[copy_pfn];
1927 
1928                         pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1929                         if (HYPERVISOR_update_va_mapping(va, pte,
1930                             UVMF_INVLPG | UVMF_LOCAL))
1931                                 bop_panic("relocate_boot_archive():  "
1932                                     "HYPERVISOR_update_va_mapping() failed");
1933 
1934                         mfn_list[va_pfn] = copy_mfn;
1935                         mfn_list[copy_pfn] = va_mfn;
1936 
1937                         t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1938                         t[0].val = va_pfn;
1939                         t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1940                         t[1].val = copy_pfn;
1941                         if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1942                             DOMID_SELF) != 0 || mmu_update_return != 2)
1943                                 bop_panic("relocate_boot_archive():  "
1944                                     "HYPERVISOR_mmu_update() failed");
1945 
1946                         next_phys += MMU_PAGESIZE;
1947                         ++relocated;
1948                 }
1949                 len -= MMU_PAGESIZE;
1950                 va += MMU_PAGESIZE;
1951         }
1952         DBG_MSG("Relocated pages:\n");
1953         DBG(relocated);
1954         DBG_MSG("Out of total pages:\n");
1955         DBG(total);
1956 }
1957 #endif /* __xpv */
1958 
1959 #if !defined(__xpv)
1960 /*
1961  * simple description of a stack frame (args are 32 bit only currently)
1962  */
1963 typedef struct bop_frame {
1964         struct bop_frame *old_frame;
1965         pc_t retaddr;
1966         long arg[1];
1967 } bop_frame_t;
1968 
1969 void
1970 bop_traceback(bop_frame_t *frame)
1971 {
1972         pc_t pc;
1973         int cnt;
1974         char *ksym;
1975         ulong_t off;
1976 
1977         bop_printf(NULL, "Stack traceback:\n");
1978         for (cnt = 0; cnt < 30; ++cnt) {     /* up to 30 frames */
1979                 pc = frame->retaddr;
1980                 if (pc == 0)
1981                         break;
1982                 ksym = kobj_getsymname(pc, &off);
1983                 if (ksym)
1984                         bop_printf(NULL, "  %s+%lx", ksym, off);
1985                 else
1986                         bop_printf(NULL, "  0x%lx", pc);
1987 
1988                 frame = frame->old_frame;
1989                 if (frame == 0) {
1990                         bop_printf(NULL, "\n");
1991                         break;
1992                 }
1993                 bop_printf(NULL, "\n");
1994         }
1995 }
1996 
1997 struct trapframe {
1998         ulong_t error_code;     /* optional */
1999         ulong_t inst_ptr;
2000         ulong_t code_seg;
2001         ulong_t flags_reg;
2002         ulong_t stk_ptr;
2003         ulong_t stk_seg;
2004 };
2005 
2006 void
2007 bop_trap(ulong_t *tfp)
2008 {
2009         struct trapframe *tf = (struct trapframe *)tfp;
2010         bop_frame_t fakeframe;
2011         static int depth = 0;
2012 
2013         /*
2014          * Check for an infinite loop of traps.
2015          */
2016         if (++depth > 2)
2017                 bop_panic("Nested trap");
2018 
2019         bop_printf(NULL, "Unexpected trap\n");
2020 
2021         /*
2022          * adjust the tf for optional error_code by detecting the code selector
2023          */
2024         if (tf->code_seg != B64CODE_SEL)
2025                 tf = (struct trapframe *)(tfp - 1);
2026         else
2027                 bop_printf(NULL, "error code           0x%lx\n",
2028                     tf->error_code & 0xffffffff);
2029 
2030         bop_printf(NULL, "instruction pointer  0x%lx\n", tf->inst_ptr);
2031         bop_printf(NULL, "code segment         0x%lx\n", tf->code_seg & 0xffff);
2032         bop_printf(NULL, "flags register       0x%lx\n", tf->flags_reg);
2033         bop_printf(NULL, "return %%rsp          0x%lx\n", tf->stk_ptr);
2034         bop_printf(NULL, "return %%ss           0x%lx\n", tf->stk_seg & 0xffff);
2035         bop_printf(NULL, "%%cr2                 0x%lx\n", getcr2());
2036 
2037         /* grab %[er]bp pushed by our code from the stack */
2038         fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
2039         fakeframe.retaddr = (pc_t)tf->inst_ptr;
2040         bop_printf(NULL, "Attempting stack backtrace:\n");
2041         bop_traceback(&fakeframe);
2042         bop_panic("unexpected trap in early boot");
2043 }
2044 
2045 extern void bop_trap_handler(void);
2046 
2047 static gate_desc_t *bop_idt;
2048 
2049 static desctbr_t bop_idt_info;
2050 
2051 /*
2052  * Install a temporary IDT that lets us catch errors in the boot time code.
2053  * We shouldn't get any faults at all while this is installed, so we'll
2054  * just generate a traceback and exit.
2055  */
2056 static void
2057 bop_idt_init(void)
2058 {
2059         int t;
2060 
2061         bop_idt = (gate_desc_t *)
2062             do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2063         bzero(bop_idt, MMU_PAGESIZE);
2064         for (t = 0; t < NIDT; ++t) {
2065                 /*
2066                  * Note that since boot runs without a TSS, the
2067                  * double fault handler cannot use an alternate stack (64-bit).
2068                  */
2069                 set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL,
2070                     SDT_SYSIGT, TRP_KPL, 0);
2071         }
2072         bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
2073         bop_idt_info.dtr_base = (uintptr_t)bop_idt;
2074         wr_idtr(&bop_idt_info);
2075 }
2076 #endif  /* !defined(__xpv) */
2077 
2078 /*
2079  * This is where we enter the kernel. It dummies up the boot_ops and
2080  * boot_syscalls vectors and jumps off to _kobj_boot()
2081  */
2082 void
2083 _start(struct xboot_info *xbp)
2084 {
2085         bootops_t *bops = &bootop;
2086         extern void _kobj_boot();
2087 
2088         /*
2089          * 1st off - initialize the console for any error messages
2090          */
2091         xbootp = xbp;
2092 #ifdef __xpv
2093         HYPERVISOR_shared_info = (void *)xbp->bi_shared_info;
2094         xen_info = xbp->bi_xen_start_info;
2095 #endif
2096 
2097 #ifndef __xpv
2098         if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
2099             FASTBOOT_MAGIC) {
2100                 post_fastreboot = 1;
2101                 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
2102         }
2103 #endif
2104 
2105         bcons_init(xbp);
2106         have_console = 1;
2107 
2108         /*
2109          * enable debugging
2110          */
2111         if (find_boot_prop("kbm_debug") != NULL)
2112                 kbm_debug = 1;
2113 
2114         DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
2115         DBG_MSG((char *)xbp->bi_cmdline);
2116         DBG_MSG("\n\n\n");
2117 
2118         /*
2119          * physavail is no longer used by startup
2120          */
2121         bm.physinstalled = xbp->bi_phys_install;
2122         bm.pcimem = xbp->bi_pcimem;
2123         bm.rsvdmem = xbp->bi_rsvdmem;
2124         bm.physavail = NULL;
2125 
2126         /*
2127          * initialize the boot time allocator
2128          */
2129         next_phys = xbp->bi_next_paddr;
2130         DBG(next_phys);
2131         next_virt = (uintptr_t)xbp->bi_next_vaddr;
2132         DBG(next_virt);
2133         DBG_MSG("Initializing boot time memory management...");
2134 #ifdef __xpv
2135         {
2136                 xen_platform_parameters_t p;
2137 
2138                 /* This call shouldn't fail, dboot already did it once. */
2139                 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
2140                 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
2141                 DBG(xen_virt_start);
2142         }
2143 #endif
2144         kbm_init(xbp);
2145         DBG_MSG("done\n");
2146 
2147         /*
2148          * Fill in the bootops vector
2149          */
2150         bops->bsys_version = BO_VERSION;
2151         bops->boot_mem = &bm;
2152         bops->bsys_alloc = do_bsys_alloc;
2153         bops->bsys_free = do_bsys_free;
2154         bops->bsys_getproplen = do_bsys_getproplen;
2155         bops->bsys_getprop = do_bsys_getprop;
2156         bops->bsys_nextprop = do_bsys_nextprop;
2157         bops->bsys_printf = bop_printf;
2158         bops->bsys_doint = do_bsys_doint;
2159 
2160         /*
2161          * BOP_EALLOC() is no longer needed
2162          */
2163         bops->bsys_ealloc = do_bsys_ealloc;
2164 
2165 #ifdef __xpv
2166         /*
2167          * On domain 0 we need to free up some physical memory that is
2168          * usable for DMA. Since GRUB loaded the boot_archive, it is
2169          * sitting in low MFN memory. We'll relocated the boot archive
2170          * pages to high PFN memory.
2171          */
2172         if (DOMAIN_IS_INITDOMAIN(xen_info))
2173                 relocate_boot_archive(xbp);
2174 #endif
2175 
2176 #ifndef __xpv
2177         /*
2178          * Install an IDT to catch early pagefaults (shouldn't have any).
2179          * Also needed for kmdb.
2180          */
2181         bop_idt_init();
2182 #endif
2183         /* Set up the shadow fb for framebuffer console */
2184         boot_fb_shadow_init(bops);
2185 
2186         /*
2187          * Start building the boot properties from the command line
2188          */
2189         DBG_MSG("Initializing boot properties:\n");
2190         build_boot_properties(xbp);
2191 
2192         if (find_boot_prop("prom_debug") || kbm_debug) {
2193                 char *value;
2194 
2195                 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2196                 boot_prop_display(value);
2197         }
2198 
2199         /*
2200          * jump into krtld...
2201          */
2202         _kobj_boot(&bop_sysp, NULL, bops, NULL);
2203 }
2204 
2205 
2206 /*ARGSUSED*/
2207 static caddr_t
2208 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
2209 {
2210         panic("Attempt to bsys_alloc() too late\n");
2211         return (NULL);
2212 }
2213 
2214 /*ARGSUSED*/
2215 static void
2216 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
2217 {
2218         panic("Attempt to bsys_free() too late\n");
2219 }
2220 
2221 void
2222 bop_no_more_mem(void)
2223 {
2224         DBG(total_bop_alloc_scratch);
2225         DBG(total_bop_alloc_kernel);
2226         bootops->bsys_alloc = no_more_alloc;
2227         bootops->bsys_free = no_more_free;
2228 }
2229 
2230 
2231 /*
2232  * Set ACPI firmware properties
2233  */
2234 
2235 static caddr_t
2236 vmap_phys(size_t length, paddr_t pa)
2237 {
2238         paddr_t start, end;
2239         caddr_t va;
2240         size_t  len, page;
2241 
2242 #ifdef __xpv
2243         pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
2244 #endif
2245         start = P2ALIGN(pa, MMU_PAGESIZE);
2246         end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
2247         len = end - start;
2248         va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
2249         for (page = 0; page < len; page += MMU_PAGESIZE)
2250                 kbm_map((uintptr_t)va + page, start + page, 0, 0);
2251         return (va + (pa & MMU_PAGEOFFSET));
2252 }
2253 
2254 static uint8_t
2255 checksum_table(uint8_t *tp, size_t len)
2256 {
2257         uint8_t sum = 0;
2258 
2259         while (len-- > 0)
2260                 sum += *tp++;
2261 
2262         return (sum);
2263 }
2264 
2265 static int
2266 valid_rsdp(ACPI_TABLE_RSDP *rp)
2267 {
2268 
2269         /* validate the V1.x checksum */
2270         if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0)
2271                 return (0);
2272 
2273         /* If pre-ACPI 2.0, this is a valid RSDP */
2274         if (rp->Revision < 2)
2275                 return (1);
2276 
2277         /* validate the V2.x checksum */
2278         if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0)
2279                 return (0);
2280 
2281         return (1);
2282 }
2283 
2284 /*
2285  * Scan memory range for an RSDP;
2286  * see ACPI 3.0 Spec, 5.2.5.1
2287  */
2288 static ACPI_TABLE_RSDP *
2289 scan_rsdp(paddr_t *paddrp, size_t len)
2290 {
2291         paddr_t paddr = *paddrp;
2292         caddr_t ptr;
2293 
2294         ptr = vmap_phys(len, paddr);
2295 
2296         while (len > 0) {
2297                 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 &&
2298                     valid_rsdp((ACPI_TABLE_RSDP *)ptr)) {
2299                         *paddrp = paddr;
2300                         return ((ACPI_TABLE_RSDP *)ptr);
2301                 }
2302 
2303                 ptr += ACPI_RSDP_SCAN_STEP;
2304                 paddr += ACPI_RSDP_SCAN_STEP;
2305                 len -= ACPI_RSDP_SCAN_STEP;
2306         }
2307 
2308         return (NULL);
2309 }
2310 
2311 /*
2312  * Locate the ACPI RSDP.  We search in a particular order:
2313  *
2314  * - If the bootloader told us the location of the RSDP (via the EFI system
2315  *   table), try that first.
2316  * - Otherwise, look in the EBDA and BIOS memory as per ACPI 5.2.5.1 (legacy
2317  *   case).
2318  * - Finally, our bootloader may have a copy of the RSDP in its info: this might
2319  *   get freed after boot, so we always prefer to find the original RSDP first.
2320  *
2321  * Once found, we set acpi-root-tab property (a physical address) for the
2322  * benefit of acpica, acpidump etc.
2323  */
2324 
2325 static ACPI_TABLE_RSDP *
2326 find_rsdp(struct xboot_info *xbp)
2327 {
2328         ACPI_TABLE_RSDP *rsdp = NULL;
2329         paddr_t paddr = 0;
2330 
2331         if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) {
2332                 (void) do_bsys_getprop(NULL, "acpi-root-tab", &paddr);
2333                 rsdp = scan_rsdp(&paddr, sizeof (*rsdp));
2334         }
2335 
2336 #ifndef __xpv
2337         if (rsdp == NULL && xbp->bi_acpi_rsdp != NULL) {
2338                 paddr = (uintptr_t)xbp->bi_acpi_rsdp;
2339                 rsdp = scan_rsdp(&paddr, sizeof (*rsdp));
2340         }
2341 #endif
2342 
2343         if (rsdp == NULL) {
2344                 uint16_t *ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t),
2345                     ACPI_EBDA_PTR_LOCATION);
2346                 paddr = *ebda_seg << 4;
2347                 rsdp = scan_rsdp(&paddr, ACPI_EBDA_WINDOW_SIZE);
2348         }
2349 
2350         if (rsdp == NULL) {
2351                 paddr = ACPI_HI_RSDP_WINDOW_BASE;
2352                 rsdp = scan_rsdp(&paddr, ACPI_HI_RSDP_WINDOW_SIZE);
2353         }
2354 
2355 #ifndef __xpv
2356         if (rsdp == NULL && xbp->bi_acpi_rsdp_copy != NULL) {
2357                 paddr = (uintptr_t)xbp->bi_acpi_rsdp_copy;
2358                 rsdp = scan_rsdp(&paddr, sizeof (*rsdp));
2359         }
2360 #endif
2361 
2362         if (rsdp == NULL) {
2363                 bop_printf(NULL, "no RSDP found!\n");
2364                 return (NULL);
2365         }
2366 
2367         if (kbm_debug)
2368                 bop_printf(NULL, "RSDP found at physical 0x%lx\n", paddr);
2369 
2370         if (do_bsys_getproplen(NULL, "acpi-root-tab") != sizeof (uint64_t))
2371                 bsetprop64("acpi-root-tab", paddr);
2372 
2373         return (rsdp);
2374 }
2375 
2376 static ACPI_TABLE_HEADER *
2377 map_fw_table(paddr_t table_addr)
2378 {
2379         ACPI_TABLE_HEADER *tp;
2380         size_t len = MAX(sizeof (*tp), MMU_PAGESIZE);
2381 
2382         /*
2383          * Map at least a page; if the table is larger than this, remap it
2384          */
2385         tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr);
2386         if (tp->Length > len)
2387                 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr);
2388         return (tp);
2389 }
2390 
2391 static ACPI_TABLE_HEADER *
2392 find_fw_table(ACPI_TABLE_RSDP *rsdp, char *signature)
2393 {
2394         static int revision = 0;
2395         static ACPI_TABLE_XSDT *xsdt;
2396         static int len;
2397         paddr_t xsdt_addr;
2398         ACPI_TABLE_HEADER *tp;
2399         paddr_t table_addr;
2400         int     n;
2401 
2402         if (strlen(signature) != ACPI_NAME_SIZE)
2403                 return (NULL);
2404 
2405         /*
2406          * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
2407          * understand this code.  If we haven't already found the RSDT/XSDT,
2408          * revision will be 0. Find the RSDP and check the revision
2409          * to find out whether to use the RSDT or XSDT.  If revision is
2410          * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
2411          * use the XSDT.  If the XSDT address is 0, though, fall back to
2412          * revision 1 and use the RSDT.
2413          */
2414         if (revision == 0) {
2415                 if (rsdp == NULL)
2416                         return (NULL);
2417 
2418                 revision = rsdp->Revision;
2419                 /*
2420                  * ACPI 6.0 states that current revision is 2
2421                  * from acpi_table_rsdp definition:
2422                  * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+
2423                  */
2424                 if (revision > 2)
2425                         revision = 2;
2426                 switch (revision) {
2427                 case 2:
2428                         /*
2429                          * Use the XSDT unless BIOS is buggy and
2430                          * claims to be rev 2 but has a null XSDT
2431                          * address
2432                          */
2433                         xsdt_addr = rsdp->XsdtPhysicalAddress;
2434                         if (xsdt_addr != 0)
2435                                 break;
2436                         /* FALLTHROUGH */
2437                 case 0:
2438                         /* treat RSDP rev 0 as revision 1 internally */
2439                         revision = 1;
2440                         /* FALLTHROUGH */
2441                 case 1:
2442                         /* use the RSDT for rev 0/1 */
2443                         xsdt_addr = rsdp->RsdtPhysicalAddress;
2444                         break;
2445                 default:
2446                         /* unknown revision */
2447                         revision = 0;
2448                         break;
2449                 }
2450 
2451                 if (revision == 0)
2452                         return (NULL);
2453 
2454                 /* cache the XSDT info */
2455                 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr);
2456                 len = (xsdt->Header.Length - sizeof (xsdt->Header)) /
2457                     ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2458         }
2459 
2460         /*
2461          * Scan the table headers looking for a signature match
2462          */
2463         for (n = 0; n < len; n++) {
2464                 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt;
2465                 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] :
2466                     xsdt->TableOffsetEntry[n];
2467 
2468                 if (table_addr == 0)
2469                         continue;
2470                 tp = map_fw_table(table_addr);
2471                 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) {
2472                         return (tp);
2473                 }
2474         }
2475         return (NULL);
2476 }
2477 
2478 static void
2479 process_mcfg(ACPI_TABLE_MCFG *tp)
2480 {
2481         ACPI_MCFG_ALLOCATION *cfg_baap;
2482         char *cfg_baa_endp;
2483         int64_t ecfginfo[4];
2484 
2485         cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp));
2486         cfg_baa_endp = ((char *)tp) + tp->Header.Length;
2487         while ((char *)cfg_baap < cfg_baa_endp) {
2488                 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) {
2489                         ecfginfo[0] = cfg_baap->Address;
2490                         ecfginfo[1] = cfg_baap->PciSegment;
2491                         ecfginfo[2] = cfg_baap->StartBusNumber;
2492                         ecfginfo[3] = cfg_baap->EndBusNumber;
2493                         bsetprop(DDI_PROP_TYPE_INT64,
2494                             MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2495                             ecfginfo, sizeof (ecfginfo));
2496                         break;
2497                 }
2498                 cfg_baap++;
2499         }
2500 }
2501 
2502 #ifndef __xpv
2503 static void
2504 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp,
2505     uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array)
2506 {
2507         ACPI_SUBTABLE_HEADER *item, *end;
2508         uint32_t cpu_count = 0;
2509         uint32_t cpu_possible_count = 0;
2510 
2511         /*
2512          * Determine number of CPUs and keep track of "final" APIC ID
2513          * for each CPU by walking through ACPI MADT processor list
2514          */
2515         end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2516         item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2517 
2518         while (item < end) {
2519                 switch (item->Type) {
2520                 case ACPI_MADT_TYPE_LOCAL_APIC: {
2521                         ACPI_MADT_LOCAL_APIC *cpu =
2522                             (ACPI_MADT_LOCAL_APIC *) item;
2523 
2524                         if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2525                                 if (cpu_apicid_array != NULL)
2526                                         cpu_apicid_array[cpu_count] = cpu->Id;
2527                                 cpu_count++;
2528                         }
2529                         cpu_possible_count++;
2530                         break;
2531                 }
2532                 case ACPI_MADT_TYPE_LOCAL_X2APIC: {
2533                         ACPI_MADT_LOCAL_X2APIC *cpu =
2534                             (ACPI_MADT_LOCAL_X2APIC *) item;
2535 
2536                         if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2537                                 if (cpu_apicid_array != NULL)
2538                                         cpu_apicid_array[cpu_count] =
2539                                             cpu->LocalApicId;
2540                                 cpu_count++;
2541                         }
2542                         cpu_possible_count++;
2543                         break;
2544                 }
2545                 default:
2546                         if (kbm_debug)
2547                                 bop_printf(NULL, "MADT type %d\n", item->Type);
2548                         break;
2549                 }
2550 
2551                 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
2552         }
2553         if (cpu_countp)
2554                 *cpu_countp = cpu_count;
2555         if (cpu_possible_countp)
2556                 *cpu_possible_countp = cpu_possible_count;
2557 }
2558 
2559 static void
2560 process_madt(ACPI_TABLE_MADT *tp)
2561 {
2562         uint32_t cpu_count = 0;
2563         uint32_t cpu_possible_count = 0;
2564         uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */
2565 
2566         if (tp != NULL) {
2567                 /* count cpu's */
2568                 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL);
2569 
2570                 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL,
2571                     cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE);
2572                 if (cpu_apicid_array == NULL)
2573                         bop_panic("Not enough memory for APIC ID array");
2574 
2575                 /* copy IDs */
2576                 process_madt_entries(tp, NULL, NULL, cpu_apicid_array);
2577 
2578                 /*
2579                  * Make boot property for array of "final" APIC IDs for each
2580                  * CPU
2581                  */
2582                 bsetprop(DDI_PROP_TYPE_INT,
2583                     BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2584                     cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array));
2585         }
2586 
2587         /*
2588          * Check whether property plat-max-ncpus is already set.
2589          */
2590         if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2591                 /*
2592                  * Set plat-max-ncpus to number of maximum possible CPUs given
2593                  * in MADT if it hasn't been set.
2594                  * There's no formal way to detect max possible CPUs supported
2595                  * by platform according to ACPI spec3.0b. So current CPU
2596                  * hotplug implementation expects that all possible CPUs will
2597                  * have an entry in MADT table and set plat-max-ncpus to number
2598                  * of entries in MADT.
2599                  * With introducing of ACPI4.0, Maximum System Capability Table
2600                  * (MSCT) provides maximum number of CPUs supported by platform.
2601                  * If MSCT is unavailable, fall back to old way.
2602                  */
2603                 if (tp != NULL)
2604                         bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
2605         }
2606 
2607         /*
2608          * Set boot property boot-max-ncpus to number of CPUs existing at
2609          * boot time. boot-max-ncpus is mainly used for optimization.
2610          */
2611         if (tp != NULL)
2612                 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
2613 
2614         /*
2615          * User-set boot-ncpus overrides firmware count
2616          */
2617         if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2618                 return;
2619 
2620         /*
2621          * Set boot property boot-ncpus to number of active CPUs given in MADT
2622          * if it hasn't been set yet.
2623          */
2624         if (tp != NULL)
2625                 bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
2626 }
2627 
2628 static void
2629 process_srat(ACPI_TABLE_SRAT *tp)
2630 {
2631         ACPI_SUBTABLE_HEADER *item, *end;
2632         int i;
2633         int proc_num, mem_num;
2634 #pragma pack(1)
2635         struct {
2636                 uint32_t domain;
2637                 uint32_t apic_id;
2638                 uint32_t sapic_id;
2639         } processor;
2640         struct {
2641                 uint32_t domain;
2642                 uint32_t x2apic_id;
2643         } x2apic;
2644         struct {
2645                 uint32_t domain;
2646                 uint64_t addr;
2647                 uint64_t length;
2648                 uint32_t flags;
2649         } memory;
2650 #pragma pack()
2651         char prop_name[30];
2652         uint64_t maxmem = 0;
2653 
2654         if (tp == NULL)
2655                 return;
2656 
2657         proc_num = mem_num = 0;
2658         end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2659         item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2660         while (item < end) {
2661                 switch (item->Type) {
2662                 case ACPI_SRAT_TYPE_CPU_AFFINITY: {
2663                         ACPI_SRAT_CPU_AFFINITY *cpu =
2664                             (ACPI_SRAT_CPU_AFFINITY *) item;
2665 
2666                         if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2667                                 break;
2668                         processor.domain = cpu->ProximityDomainLo;
2669                         for (i = 0; i < 3; i++)
2670                                 processor.domain +=
2671                                     cpu->ProximityDomainHi[i] << ((i + 1) * 8);
2672                         processor.apic_id = cpu->ApicId;
2673                         processor.sapic_id = cpu->LocalSapicEid;
2674                         (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2675                             proc_num);
2676                         bsetprop(DDI_PROP_TYPE_INT,
2677                             prop_name, strlen(prop_name), &processor,
2678                             sizeof (processor));
2679                         proc_num++;
2680                         break;
2681                 }
2682                 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: {
2683                         ACPI_SRAT_MEM_AFFINITY *mem =
2684                             (ACPI_SRAT_MEM_AFFINITY *)item;
2685 
2686                         if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
2687                                 break;
2688                         memory.domain = mem->ProximityDomain;
2689                         memory.addr = mem->BaseAddress;
2690                         memory.length = mem->Length;
2691                         memory.flags = mem->Flags;
2692                         (void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2693                             mem_num);
2694                         bsetprop(DDI_PROP_TYPE_INT,
2695                             prop_name, strlen(prop_name), &memory,
2696                             sizeof (memory));
2697                         if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
2698                             (memory.addr + memory.length > maxmem)) {
2699                                 maxmem = memory.addr + memory.length;
2700                         }
2701                         mem_num++;
2702                         break;
2703                 }
2704                 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: {
2705                         ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
2706                             (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
2707 
2708                         if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2709                                 break;
2710                         x2apic.domain = x2cpu->ProximityDomain;
2711                         x2apic.x2apic_id = x2cpu->ApicId;
2712                         (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2713                             proc_num);
2714                         bsetprop(DDI_PROP_TYPE_INT,
2715                             prop_name, strlen(prop_name), &x2apic,
2716                             sizeof (x2apic));
2717                         proc_num++;
2718                         break;
2719                 }
2720                 default:
2721                         if (kbm_debug)
2722                                 bop_printf(NULL, "SRAT type %d\n", item->Type);
2723                         break;
2724                 }
2725 
2726                 item = (ACPI_SUBTABLE_HEADER *)
2727                     (item->Length + (uintptr_t)item);
2728         }
2729 
2730         /*
2731          * The maximum physical address calculated from the SRAT table is more
2732          * accurate than that calculated from the MSCT table.
2733          */
2734         if (maxmem != 0) {
2735                 plat_dr_physmax = btop(maxmem);
2736         }
2737 }
2738 
2739 static void
2740 process_slit(ACPI_TABLE_SLIT *tp)
2741 {
2742 
2743         /*
2744          * Check the number of localities; if it's too huge, we just
2745          * return and locality enumeration code will handle this later,
2746          * if possible.
2747          *
2748          * Note that the size of the table is the square of the
2749          * number of localities; if the number of localities exceeds
2750          * UINT16_MAX, the table size may overflow an int when being
2751          * passed to bsetprop() below.
2752          */
2753         if (tp->LocalityCount >= SLIT_LOCALITIES_MAX)
2754                 return;
2755 
2756         bsetprop64(SLIT_NUM_PROPNAME, tp->LocalityCount);
2757         bsetprop(DDI_PROP_TYPE_BYTE,
2758             SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry,
2759             tp->LocalityCount * tp->LocalityCount);
2760 }
2761 
2762 static ACPI_TABLE_MSCT *
2763 process_msct(ACPI_TABLE_MSCT *tp)
2764 {
2765         int last_seen = 0;
2766         int proc_num = 0;
2767         ACPI_MSCT_PROXIMITY *item, *end;
2768         extern uint64_t plat_dr_options;
2769 
2770         ASSERT(tp != NULL);
2771 
2772         end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp);
2773         for (item = (void *)((uintptr_t)tp + tp->ProximityOffset);
2774             item < end;
2775             item = (void *)(item->Length + (uintptr_t)item)) {
2776                 /*
2777                  * Sanity check according to section 5.2.19.1 of ACPI 4.0.
2778                  * Revision     1
2779                  * Length       22
2780                  */
2781                 if (item->Revision != 1 || item->Length != 22) {
2782                         cmn_err(CE_CONT,
2783                             "?boot: unknown proximity domain structure in MSCT "
2784                             "with Revision(%d), Length(%d).\n",
2785                             (int)item->Revision, (int)item->Length);
2786                         return (NULL);
2787                 } else if (item->RangeStart > item->RangeEnd) {
2788                         cmn_err(CE_CONT,
2789                             "?boot: invalid proximity domain structure in MSCT "
2790                             "with RangeStart(%u), RangeEnd(%u).\n",
2791                             item->RangeStart, item->RangeEnd);
2792                         return (NULL);
2793                 } else if (item->RangeStart != last_seen) {
2794                         /*
2795                          * Items must be organized in ascending order of the
2796                          * proximity domain enumerations.
2797                          */
2798                         cmn_err(CE_CONT,
2799                             "?boot: invalid proximity domain structure in MSCT,"
2800                             " items are not orginized in ascending order.\n");
2801                         return (NULL);
2802                 }
2803 
2804                 /*
2805                  * If ProcessorCapacity is 0 then there would be no CPUs in this
2806                  * domain.
2807                  */
2808                 if (item->ProcessorCapacity != 0) {
2809                         proc_num += (item->RangeEnd - item->RangeStart + 1) *
2810                             item->ProcessorCapacity;
2811                 }
2812 
2813                 last_seen = item->RangeEnd - item->RangeStart + 1;
2814                 /*
2815                  * Break out if all proximity domains have been processed.
2816                  * Some BIOSes may have unused items at the end of MSCT table.
2817                  */
2818                 if (last_seen > tp->MaxProximityDomains) {
2819                         break;
2820                 }
2821         }
2822         if (last_seen != tp->MaxProximityDomains + 1) {
2823                 cmn_err(CE_CONT,
2824                     "?boot: invalid proximity domain structure in MSCT, "
2825                     "proximity domain count doesn't match.\n");
2826                 return (NULL);
2827         }
2828 
2829         /*
2830          * Set plat-max-ncpus property if it hasn't been set yet.
2831          */
2832         if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2833                 if (proc_num != 0) {
2834                         bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
2835                 }
2836         }
2837 
2838         /*
2839          * Use Maximum Physical Address from the MSCT table as upper limit for
2840          * memory hot-adding by default. It may be overridden by value from
2841          * the SRAT table or the "plat-dr-physmax" boot option.
2842          */
2843         plat_dr_physmax = btop(tp->MaxAddress + 1);
2844 
2845         /*
2846          * Existence of MSCT implies CPU/memory hotplug-capability for the
2847          * platform.
2848          */
2849         plat_dr_options |= PLAT_DR_FEATURE_CPU;
2850         plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
2851 
2852         return (tp);
2853 }
2854 
2855 #else /* __xpv */
2856 static void
2857 enumerate_xen_cpus()
2858 {
2859         processorid_t   id, max_id;
2860 
2861         /*
2862          * User-set boot-ncpus overrides enumeration
2863          */
2864         if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2865                 return;
2866 
2867         /*
2868          * Probe every possible virtual CPU id and remember the
2869          * highest id present; the count of CPUs is one greater
2870          * than this.  This tacitly assumes at least cpu 0 is present.
2871          */
2872         max_id = 0;
2873         for (id = 0; id < MAX_VIRT_CPUS; id++)
2874                 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2875                         max_id = id;
2876 
2877         bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
2878 
2879 }
2880 #endif /* __xpv */
2881 
2882 /*ARGSUSED*/
2883 static void
2884 build_firmware_properties(struct xboot_info *xbp)
2885 {
2886         ACPI_TABLE_HEADER *tp = NULL;
2887         ACPI_TABLE_RSDP *rsdp;
2888 
2889 #ifndef __xpv
2890         if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) {
2891                 bsetprops("efi-systype", "64");
2892                 bsetprop64("efi-systab",
2893                     (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2894                 if (kbm_debug)
2895                         bop_printf(NULL, "64-bit UEFI detected.\n");
2896         } else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) {
2897                 bsetprops("efi-systype", "32");
2898                 bsetprop64("efi-systab",
2899                     (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2900                 if (kbm_debug)
2901                         bop_printf(NULL, "32-bit UEFI detected.\n");
2902         }
2903 
2904         if (xbp->bi_smbios != NULL) {
2905                 bsetprop64("smbios-address",
2906                     (uint64_t)(uintptr_t)xbp->bi_smbios);
2907         }
2908 
2909         rsdp = find_rsdp(xbp);
2910 
2911         if ((tp = find_fw_table(rsdp, ACPI_SIG_MSCT)) != NULL)
2912                 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp);
2913         else
2914                 msct_ptr = NULL;
2915 
2916         if ((tp = find_fw_table(rsdp, ACPI_SIG_MADT)) != NULL)
2917                 process_madt((ACPI_TABLE_MADT *)tp);
2918 
2919         if ((srat_ptr = (ACPI_TABLE_SRAT *)
2920             find_fw_table(rsdp, ACPI_SIG_SRAT)) != NULL)
2921                 process_srat(srat_ptr);
2922 
2923         if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(rsdp, ACPI_SIG_SLIT))
2924                 process_slit(slit_ptr);
2925 
2926         tp = find_fw_table(rsdp, ACPI_SIG_MCFG);
2927 #else /* __xpv */
2928         enumerate_xen_cpus();
2929         if (DOMAIN_IS_INITDOMAIN(xen_info))
2930                 tp = find_fw_table(rsdp, ACPI_SIG_MCFG);
2931 #endif /* __xpv */
2932         if (tp != NULL)
2933                 process_mcfg((ACPI_TABLE_MCFG *)tp);
2934 }
2935 
2936 /*
2937  * fake up a boot property for deferred early console output
2938  * this is used by both graphical boot and the (developer only)
2939  * USB serial console
2940  */
2941 void *
2942 defcons_init(size_t size)
2943 {
2944         static char *p = NULL;
2945 
2946         p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2947         *p = 0;
2948         bsetprop32("deferred-console-buf", (uint32_t)((uintptr_t)&p));
2949         return (p);
2950 }
2951 
2952 /*ARGSUSED*/
2953 int
2954 boot_compinfo(int fd, struct compinfo *cbp)
2955 {
2956         cbp->iscmp = 0;
2957         cbp->blksize = MAXBSIZE;
2958         return (0);
2959 }
2960 
2961 /*
2962  * Get an integer value for given boot property
2963  */
2964 int
2965 bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2966 {
2967         int             boot_prop_len;
2968         char            str[BP_MAX_STRLEN];
2969         u_longlong_t    value;
2970 
2971         boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2972         if (boot_prop_len < 0 || boot_prop_len >= sizeof (str) ||
2973             BOP_GETPROP(bootops, prop_name, str) < 0 ||
2974             kobj_getvalue(str, &value) == -1)
2975                 return (-1);
2976 
2977         if (prop_value)
2978                 *prop_value = value;
2979 
2980         return (0);
2981 }
2982 
2983 int
2984 bootprop_getstr(const char *prop_name, char *buf, size_t buflen)
2985 {
2986         int boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2987 
2988         if (boot_prop_len < 0 || boot_prop_len >= buflen ||
2989             BOP_GETPROP(bootops, prop_name, buf) < 0)
2990                 return (-1);
2991 
2992         return (0);
2993 }