1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright 2011 Bayard G. Bell <buffer.g.overflow@gmail.com>.
27 * All rights reserved. Use is subject to license terms.
28 * Copyright 2020 Joyent, Inc.
29 */
30
31 /*
32 * Kernel's linker/loader
33 */
34
35 #include <sys/types.h>
36 #include <sys/param.h>
37 #include <sys/sysmacros.h>
38 #include <sys/systm.h>
39 #include <sys/user.h>
40 #include <sys/kmem.h>
41 #include <sys/reboot.h>
42 #include <sys/bootconf.h>
43 #include <sys/debug.h>
44 #include <sys/uio.h>
45 #include <sys/file.h>
46 #include <sys/vnode.h>
47 #include <sys/user.h>
48 #include <sys/mman.h>
49 #include <vm/as.h>
50 #include <vm/seg_kp.h>
51 #include <vm/seg_kmem.h>
52 #include <sys/elf.h>
53 #include <sys/elf_notes.h>
54 #include <sys/vmsystm.h>
55 #include <sys/kdi.h>
56 #include <sys/atomic.h>
57 #include <sys/kmdb.h>
58
59 #include <sys/link.h>
60 #include <sys/kobj.h>
61 #include <sys/ksyms.h>
62 #include <sys/disp.h>
63 #include <sys/modctl.h>
64 #include <sys/varargs.h>
65 #include <sys/kstat.h>
66 #include <sys/kobj_impl.h>
67 #include <sys/fs/decomp.h>
68 #include <sys/callb.h>
69 #include <sys/cmn_err.h>
70 #include <sys/tnf_probe.h>
71 #include <sys/zmod.h>
72
73 #include <krtld/reloc.h>
74 #include <krtld/kobj_kdi.h>
75 #include <sys/sha1.h>
76 #include <sys/crypto/elfsign.h>
77
78 #if !defined(_OBP)
79 #include <sys/bootvfs.h>
80 #endif
81
82 /*
83 * do_symbols() error codes
84 */
85 #define DOSYM_UNDEF -1 /* undefined symbol */
86 #define DOSYM_UNSAFE -2 /* MT-unsafe driver symbol */
87
88 #if !defined(_OBP)
89 static void synthetic_bootaux(char *, val_t *);
90 #endif
91
92 static struct module *load_exec(val_t *, char *);
93 static void load_linker(val_t *);
94 static struct modctl *add_primary(const char *filename, int);
95 static int bind_primary(val_t *, int);
96 static int load_primary(struct module *, int);
97 static int load_kmdb(val_t *);
98 static int get_progbits(struct module *, struct _buf *);
99 static int get_syms(struct module *, struct _buf *);
100 static int get_ctf(struct module *, struct _buf *);
101 static void get_signature(struct module *, struct _buf *);
102 static int do_common(struct module *);
103 static void add_dependent(struct module *, struct module *);
104 static int do_dependents(struct modctl *, char *, size_t);
105 static int do_symbols(struct module *, Elf64_Addr);
106 static void module_assign(struct modctl *, struct module *);
107 static void free_module_data(struct module *);
108 static char *depends_on(struct module *);
109 static char *getmodpath(const char *);
110 static char *basename(char *);
111 static void attr_val(val_t *);
112 static char *find_libmacro(char *);
113 static char *expand_libmacro(char *, char *, char *);
114 static int read_bootflags(void);
115 static int kobj_comp_setup(struct _buf *, struct compinfo *);
116 static int kobj_uncomp_blk(struct _buf *, caddr_t, uint_t);
117 static int kobj_read_blks(struct _buf *, caddr_t, uint_t, uint_t);
118 static int kobj_boot_open(char *, int);
119 static int kobj_boot_close(int);
120 static int kobj_boot_seek(int, off_t, off_t);
121 static int kobj_boot_read(int, caddr_t, size_t);
122 static int kobj_boot_fstat(int, struct bootstat *);
123 static int kobj_boot_compinfo(int, struct compinfo *);
124
125 static Sym *lookup_one(struct module *, const char *);
126 static void sym_insert(struct module *, char *, symid_t);
127 static Sym *sym_lookup(struct module *, Sym *);
128
129 static struct kobjopen_tctl *kobjopen_alloc(char *filename);
130 static void kobjopen_free(struct kobjopen_tctl *ltp);
131 static void kobjopen_thread(struct kobjopen_tctl *ltp);
132 static int kobj_is_compressed(intptr_t);
133
134 extern int kcopy(const void *, void *, size_t);
135 extern int elf_mach_ok(Ehdr *);
136 extern int alloc_gottable(struct module *, caddr_t *, caddr_t *);
137
138 #if !defined(_OBP)
139 extern int kobj_boot_mountroot(void);
140 #endif
141
142 static void tnf_unsplice_probes(uint_t, struct modctl *);
143 extern tnf_probe_control_t *__tnf_probe_list_head;
144 extern tnf_tag_data_t *__tnf_tag_list_head;
145
146 extern int modrootloaded;
147 extern int swaploaded;
148 extern int bop_io_quiesced;
149 extern int last_module_id;
150
151 extern char stubs_base[];
152 extern char stubs_end[];
153
154 #ifdef KOBJ_DEBUG
155 /*
156 * Values that can be or'd in to kobj_debug and their effects:
157 *
158 * D_DEBUG - misc. debugging information.
159 * D_SYMBOLS - list symbols and their values as they are entered
160 * into the hash table
161 * D_RELOCATIONS - display relocation processing information
162 * D_LOADING - display information about each module as it
163 * is loaded.
164 */
165 int kobj_debug = 0;
166
167 #define KOBJ_MARK(s) if (kobj_debug & D_DEBUG) \
168 (_kobj_printf(ops, "%d", __LINE__), _kobj_printf(ops, ": %s\n", s))
169 #else
170 #define KOBJ_MARK(s) /* discard */
171 #endif
172
173 #define MODPATH_PROPNAME "module-path"
174
175 #ifdef MODDIR_SUFFIX
176 static char slash_moddir_suffix_slash[] = MODDIR_SUFFIX "/";
177 #else
178 #define slash_moddir_suffix_slash ""
179 #endif
180
181 #define _moddebug get_weakish_int(&moddebug)
182 #define _modrootloaded get_weakish_int(&modrootloaded)
183 #define _swaploaded get_weakish_int(&swaploaded)
184 #define _ioquiesced get_weakish_int(&bop_io_quiesced)
185
186 #define mod(X) (struct module *)((X)->modl_modp->mod_mp)
187
188 void *romp; /* rom vector (opaque to us) */
189 struct bootops *ops; /* bootops vector */
190 void *dbvec; /* debug vector */
191
192 /*
193 * kobjopen thread control structure
194 */
195 struct kobjopen_tctl {
196 ksema_t sema;
197 char *name; /* name of file */
198 struct vnode *vp; /* vnode return from vn_open() */
199 int Errno; /* error return from vnopen */
200 };
201
202 /*
203 * Structure for defining dynamically expandable library macros
204 */
205
206 struct lib_macro_info {
207 char *lmi_list; /* ptr to list of possible choices */
208 char *lmi_macroname; /* pointer to macro name */
209 ushort_t lmi_ba_index; /* index into bootaux vector */
210 ushort_t lmi_macrolen; /* macro length */
211 } libmacros[] = {
212 { NULL, "CPU", BA_CPU, 0 },
213 { NULL, "MMU", BA_MMU, 0 }
214 };
215
216 #define NLIBMACROS sizeof (libmacros) / sizeof (struct lib_macro_info)
217
218 char *boot_cpu_compatible_list; /* make $CPU available */
219
220 char *kobj_module_path; /* module search path */
221 vmem_t *text_arena; /* module text arena */
222 static vmem_t *data_arena; /* module data & bss arena */
223 static vmem_t *ctf_arena; /* CTF debug data arena */
224 static struct modctl *kobj_modules = NULL; /* modules loaded */
225 int kobj_mmu_pagesize; /* system pagesize */
226 static int lg_pagesize; /* "large" pagesize */
227 static int kobj_last_module_id = 0; /* id assignment */
228 static kmutex_t kobj_lock; /* protects mach memory list */
229
230 /*
231 * The following functions have been implemented by the kernel.
232 * However, many 3rd party drivers provide their own implementations
233 * of these functions. When such drivers are loaded, messages
234 * indicating that these symbols have been multiply defined will be
235 * emitted to the console. To avoid alarming customers for no good
236 * reason, we simply suppress such warnings for the following set of
237 * functions.
238 */
239 static char *suppress_sym_list[] =
240 {
241 "strstr",
242 "strncat",
243 "strlcat",
244 "strlcpy",
245 "strspn",
246 "memcpy",
247 "memset",
248 "memmove",
249 "memcmp",
250 "memchr",
251 "__udivdi3",
252 "__divdi3",
253 "__umoddi3",
254 "__moddi3",
255 NULL /* This entry must exist */
256 };
257
258 /* indexed by KOBJ_NOTIFY_* */
259 static kobj_notify_list_t *kobj_notifiers[KOBJ_NOTIFY_MAX + 1];
260
261 /*
262 * TNF probe management globals
263 */
264 tnf_probe_control_t *__tnf_probe_list_head = NULL;
265 tnf_tag_data_t *__tnf_tag_list_head = NULL;
266 int tnf_changed_probe_list = 0;
267
268 /*
269 * Prefix for statically defined tracing (SDT) DTrace probes.
270 */
271 const char *sdt_prefix = "__dtrace_probe_";
272
273 /*
274 * Beginning and end of the kernel's dynamic text/data segments.
275 */
276 static caddr_t _text;
277 static caddr_t _etext;
278 static caddr_t _data;
279
280 /*
281 * The sparc linker doesn't create a memory location
282 * for a variable named _edata, so _edata can only be
283 * referred to, not modified. krtld needs a static
284 * variable to modify it - within krtld, of course -
285 * outside of krtld, e_data is used in all kernels.
286 */
287 #if defined(__sparc)
288 static caddr_t _edata;
289 #else
290 extern caddr_t _edata;
291 #endif
292
293 Addr dynseg = 0; /* load address of "dynamic" segment */
294 size_t dynsize; /* "dynamic" segment size */
295
296
297 int standalone = 1; /* an unwholey kernel? */
298 int use_iflush; /* iflush after relocations */
299
300 /*
301 * _kobj_printf() and _vkobj_printf()
302 *
303 * Common printf function pointer. Can handle only one conversion
304 * specification in the format string. Some of the functions invoked
305 * through this function pointer cannot handle more that one conversion
306 * specification in the format string.
307 */
308 void (*_kobj_printf)(void *, const char *, ...); /* printf routine */
309 void (*_vkobj_printf)(void *, const char *, va_list); /* vprintf routine */
310
311 /*
312 * Standalone function pointers for use within krtld.
313 * Many platforms implement optimized platmod versions of
314 * utilities such as bcopy and any such are not yet available
315 * until the kernel is more completely stitched together.
316 * See kobj_impl.h
317 */
318 void (*kobj_bcopy)(const void *, void *, size_t);
319 void (*kobj_bzero)(void *, size_t);
320 size_t (*kobj_strlcat)(char *, const char *, size_t);
321
322 static kobj_stat_t kobj_stat;
323
324 #define MINALIGN 8 /* at least a double-word */
325
326 int
327 get_weakish_int(int *ip)
328 {
329 if (standalone)
330 return (0);
331 return (ip == NULL ? 0 : *ip);
332 }
333
334 static void *
335 get_weakish_pointer(void **ptrp)
336 {
337 if (standalone)
338 return (0);
339 return (ptrp == NULL ? 0 : *ptrp);
340 }
341
342 /*
343 * XXX fix dependencies on "kernel"; this should work
344 * for other standalone binaries as well.
345 *
346 * XXX Fix hashing code to use one pointer to
347 * hash entries.
348 * |----------|
349 * | nbuckets |
350 * |----------|
351 * | nchains |
352 * |----------|
353 * | bucket[] |
354 * |----------|
355 * | chain[] |
356 * |----------|
357 */
358
359 /*
360 * Load, bind and relocate all modules that
361 * form the primary kernel. At this point, our
362 * externals have not been relocated.
363 */
364 void
365 kobj_init(
366 void *romvec,
367 void *dvec,
368 struct bootops *bootvec,
369 val_t *bootaux)
370 {
371 struct module *mp;
372 struct modctl *modp;
373 Addr entry;
374 char filename[MAXPATHLEN];
375
376 /*
377 * Save these to pass on to
378 * the booted standalone.
379 */
380 romp = romvec;
381 dbvec = dvec;
382
383 ops = bootvec;
384 kobj_setup_standalone_vectors();
385
386 KOBJ_MARK("Entered kobj_init()");
387
388 (void) BOP_GETPROP(ops, "whoami", filename);
389
390 /*
391 * We don't support standalone debuggers anymore. The use of kadb
392 * will interfere with the later use of kmdb. Let the user mend
393 * their ways now. Users will reach this message if they still
394 * have the kadb binary on their system (perhaps they used an old
395 * bfu, or maybe they intentionally copied it there) and have
396 * specified its use in a way that eluded our checking in the boot
397 * program.
398 */
399 if (dvec != NULL) {
400 _kobj_printf(ops, "\nWARNING: Standalone debuggers such as "
401 "kadb are no longer supported\n\n");
402 goto fail;
403 }
404
405 #if defined(_OBP)
406 /*
407 * OBP allows us to read both the ramdisk and
408 * the underlying root fs when root is a disk.
409 * This can lower incidences of unbootable systems
410 * when the archive is out-of-date with the /etc
411 * state files.
412 */
413 if (BOP_MOUNTROOT() != BOOT_SVC_OK) {
414 _kobj_printf(ops, "can't mount boot fs\n");
415 goto fail;
416 }
417 #else
418 {
419 /* on x86, we always boot with a ramdisk */
420 (void) kobj_boot_mountroot();
421
422 /*
423 * Now that the ramdisk is mounted, finish boot property
424 * initialization.
425 */
426 read_bootenvrc();
427 }
428
429 #if !defined(_UNIX_KRTLD)
430 /*
431 * 'unix' is linked together with 'krtld' into one executable and
432 * the early boot code does -not- hand us any of the dynamic metadata
433 * about the executable. In particular, it does not read in, map or
434 * otherwise look at the program headers. We fake all that up now.
435 *
436 * We do this early as DTrace static probes and tnf probes both call
437 * undefined references. We have to process those relocations before
438 * calling any of them.
439 *
440 * OBP tells kobj_start() where the ELF image is in memory, so it
441 * synthesized bootaux before kobj_init() was called
442 */
443 if (bootaux[BA_PHDR].ba_ptr == NULL)
444 synthetic_bootaux(filename, bootaux);
445
446 #endif /* !_UNIX_KRTLD */
447 #endif /* _OBP */
448
449 /*
450 * Save the interesting attribute-values
451 * (scanned by kobj_boot).
452 */
453 attr_val(bootaux);
454
455 /*
456 * Set the module search path.
457 */
458 kobj_module_path = getmodpath(filename);
459
460 boot_cpu_compatible_list = find_libmacro("CPU");
461
462 /*
463 * These two modules have actually been
464 * loaded by boot, but we finish the job
465 * by introducing them into the world of
466 * loadable modules.
467 */
468
469 mp = load_exec(bootaux, filename);
470 load_linker(bootaux);
471
472 /*
473 * Load all the primary dependent modules.
474 */
475 if (load_primary(mp, KOBJ_LM_PRIMARY) == -1)
476 goto fail;
477
478 /*
479 * Glue it together.
480 */
481 if (bind_primary(bootaux, KOBJ_LM_PRIMARY) == -1)
482 goto fail;
483
484 entry = bootaux[BA_ENTRY].ba_val;
485
486 /*
487 * Get the boot flags
488 */
489 bootflags(ops);
490
491 if (boothowto & RB_VERBOSE)
492 kobj_lm_dump(KOBJ_LM_PRIMARY);
493
494 kobj_kdi_init();
495
496 if (boothowto & RB_KMDB) {
497 if (load_kmdb(bootaux) < 0)
498 goto fail;
499 }
500
501 /*
502 * Post setup.
503 */
504 s_text = _text;
505 e_text = _etext;
506 s_data = _data;
507 e_data = _edata;
508
509 kobj_sync_instruction_memory(s_text, e_text - s_text);
510
511 #ifdef KOBJ_DEBUG
512 if (kobj_debug & D_DEBUG)
513 _kobj_printf(ops,
514 "krtld: transferring control to: 0x%p\n", entry);
515 #endif
516
517 /*
518 * Make sure the mod system knows about the modules already loaded.
519 */
520 last_module_id = kobj_last_module_id;
521 bcopy(kobj_modules, &modules, sizeof (modules));
522 modp = &modules;
523 do {
524 if (modp->mod_next == kobj_modules)
525 modp->mod_next = &modules;
526 if (modp->mod_prev == kobj_modules)
527 modp->mod_prev = &modules;
528 } while ((modp = modp->mod_next) != &modules);
529
530 standalone = 0;
531
532 #ifdef KOBJ_DEBUG
533 if (kobj_debug & D_DEBUG)
534 _kobj_printf(ops,
535 "krtld: really transferring control to: 0x%p\n", entry);
536 #endif
537
538 /* restore printf/bcopy/bzero vectors before returning */
539 kobj_restore_vectors();
540
541 #if defined(_DBOOT)
542 /*
543 * krtld was called from a dboot ELF section, the embedded
544 * dboot code contains the real entry via bootaux
545 */
546 exitto((caddr_t)entry);
547 #else
548 /*
549 * krtld was directly called from startup
550 */
551 return;
552 #endif
553
554 fail:
555
556 _kobj_printf(ops, "krtld: error during initial load/link phase\n");
557
558 #if !defined(_UNIX_KRTLD)
559 _kobj_printf(ops, "\n");
560 _kobj_printf(ops, "krtld could neither locate nor resolve symbols"
561 " for:\n");
562 _kobj_printf(ops, " %s\n", filename);
563 _kobj_printf(ops, "in the boot archive. Please verify that this"
564 " file\n");
565 _kobj_printf(ops, "matches what is found in the boot archive.\n");
566 _kobj_printf(ops, "You may need to boot using the Solaris failsafe to"
567 " fix this.\n");
568 bop_panic("Unable to boot");
569 #endif
570 }
571
572 #if !defined(_UNIX_KRTLD) && !defined(_OBP)
573 /*
574 * Synthesize additional metadata that describes the executable if
575 * krtld's caller didn't do it.
576 *
577 * (When the dynamic executable has an interpreter, the boot program
578 * does all this for us. Where we don't have an interpreter, (or a
579 * even a boot program, perhaps) we have to do this for ourselves.)
580 */
581 static void
582 synthetic_bootaux(char *filename, val_t *bootaux)
583 {
584 Ehdr ehdr;
585 caddr_t phdrbase;
586 struct _buf *file;
587 int i, n;
588
589 /*
590 * Elf header
591 */
592 KOBJ_MARK("synthetic_bootaux()");
593 KOBJ_MARK(filename);
594 file = kobj_open_file(filename);
595 if (file == (struct _buf *)-1) {
596 _kobj_printf(ops, "krtld: failed to open '%s'\n", filename);
597 return;
598 }
599 KOBJ_MARK("reading program headers");
600 if (kobj_read_file(file, (char *)&ehdr, sizeof (ehdr), 0) < 0) {
601 _kobj_printf(ops, "krtld: %s: failed to read ehder\n",
602 filename);
603 return;
604 }
605
606 /*
607 * Program headers
608 */
609 bootaux[BA_PHNUM].ba_val = ehdr.e_phnum;
610 bootaux[BA_PHENT].ba_val = ehdr.e_phentsize;
611 n = ehdr.e_phentsize * ehdr.e_phnum;
612
613 phdrbase = kobj_alloc(n, KM_WAIT | KM_TMP);
614
615 if (kobj_read_file(file, phdrbase, n, ehdr.e_phoff) < 0) {
616 _kobj_printf(ops, "krtld: %s: failed to read phdrs\n",
617 filename);
618 return;
619 }
620 bootaux[BA_PHDR].ba_ptr = phdrbase;
621 kobj_close_file(file);
622 KOBJ_MARK("closed file");
623
624 /*
625 * Find the dynamic section address
626 */
627 for (i = 0; i < ehdr.e_phnum; i++) {
628 Phdr *phdr = (Phdr *)(phdrbase + ehdr.e_phentsize * i);
629
630 if (phdr->p_type == PT_DYNAMIC) {
631 bootaux[BA_DYNAMIC].ba_ptr = (void *)phdr->p_vaddr;
632 break;
633 }
634 }
635 KOBJ_MARK("synthetic_bootaux() done");
636 }
637 #endif /* !_UNIX_KRTLD && !_OBP */
638
639 /*
640 * Set up any global information derived
641 * from attribute/values in the boot or
642 * aux vector.
643 */
644 static void
645 attr_val(val_t *bootaux)
646 {
647 Phdr *phdr;
648 int phnum, phsize;
649 int i;
650
651 KOBJ_MARK("attr_val()");
652 kobj_mmu_pagesize = bootaux[BA_PAGESZ].ba_val;
653 lg_pagesize = bootaux[BA_LPAGESZ].ba_val;
654 use_iflush = bootaux[BA_IFLUSH].ba_val;
655
656 phdr = (Phdr *)bootaux[BA_PHDR].ba_ptr;
657 phnum = bootaux[BA_PHNUM].ba_val;
658 phsize = bootaux[BA_PHENT].ba_val;
659 for (i = 0; i < phnum; i++) {
660 phdr = (Phdr *)(bootaux[BA_PHDR].ba_val + i * phsize);
661
662 if (phdr->p_type != PT_LOAD) {
663 continue;
664 }
665 /*
666 * Bounds of the various segments.
667 */
668 if (!(phdr->p_flags & PF_X)) {
669 #if defined(_RELSEG)
670 /*
671 * sparc kernel puts the dynamic info
672 * into a separate segment, which is
673 * free'd in bop_fini()
674 */
675 ASSERT(phdr->p_vaddr != 0);
676 dynseg = phdr->p_vaddr;
677 dynsize = phdr->p_memsz;
678 #else
679 ASSERT(phdr->p_vaddr == 0);
680 #endif
681 } else {
682 if (phdr->p_flags & PF_W) {
683 _data = (caddr_t)phdr->p_vaddr;
684 _edata = _data + phdr->p_memsz;
685 } else {
686 _text = (caddr_t)phdr->p_vaddr;
687 _etext = _text + phdr->p_memsz;
688 }
689 }
690 }
691
692 /* To do the kobj_alloc, _edata needs to be set. */
693 for (i = 0; i < NLIBMACROS; i++) {
694 if (bootaux[libmacros[i].lmi_ba_index].ba_ptr != NULL) {
695 libmacros[i].lmi_list = kobj_alloc(
696 strlen(bootaux[libmacros[i].lmi_ba_index].ba_ptr) +
697 1, KM_WAIT);
698 (void) strcpy(libmacros[i].lmi_list,
699 bootaux[libmacros[i].lmi_ba_index].ba_ptr);
700 }
701 libmacros[i].lmi_macrolen = strlen(libmacros[i].lmi_macroname);
702 }
703 }
704
705 /*
706 * Set up the booted executable.
707 */
708 static struct module *
709 load_exec(val_t *bootaux, char *filename)
710 {
711 struct modctl *cp;
712 struct module *mp;
713 Dyn *dyn;
714 Sym *sp;
715 int i, lsize, osize, nsize, allocsize;
716 char *libname, *tmp;
717 char path[MAXPATHLEN];
718
719 #ifdef KOBJ_DEBUG
720 if (kobj_debug & D_DEBUG)
721 _kobj_printf(ops, "module path '%s'\n", kobj_module_path);
722 #endif
723
724 KOBJ_MARK("add_primary");
725 cp = add_primary(filename, KOBJ_LM_PRIMARY);
726
727 KOBJ_MARK("struct module");
728 mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
729 cp->mod_mp = mp;
730
731 /*
732 * We don't have the following information
733 * since this module is an executable and not
734 * a relocatable .o.
735 */
736 mp->symtbl_section = 0;
737 mp->shdrs = NULL;
738 mp->strhdr = NULL;
739
740 /*
741 * Since this module is the only exception,
742 * we cons up some section headers.
743 */
744 KOBJ_MARK("symhdr");
745 mp->symhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
746
747 KOBJ_MARK("strhdr");
748 mp->strhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
749
750 mp->symhdr->sh_type = SHT_SYMTAB;
751 mp->strhdr->sh_type = SHT_STRTAB;
752 /*
753 * Scan the dynamic structure.
754 */
755 for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
756 dyn->d_tag != DT_NULL; dyn++) {
757 switch (dyn->d_tag) {
758 case DT_SYMTAB:
759 mp->symspace = mp->symtbl = (char *)dyn->d_un.d_ptr;
760 mp->symhdr->sh_addr = dyn->d_un.d_ptr;
761 break;
762 case DT_HASH:
763 mp->nsyms = *((uint_t *)dyn->d_un.d_ptr + 1);
764 mp->hashsize = *(uint_t *)dyn->d_un.d_ptr;
765 break;
766 case DT_STRTAB:
767 mp->strings = (char *)dyn->d_un.d_ptr;
768 mp->strhdr->sh_addr = dyn->d_un.d_ptr;
769 break;
770 case DT_STRSZ:
771 mp->strhdr->sh_size = dyn->d_un.d_val;
772 break;
773 case DT_SYMENT:
774 mp->symhdr->sh_entsize = dyn->d_un.d_val;
775 break;
776 }
777 }
778
779 /*
780 * Collapse any DT_NEEDED entries into one string.
781 */
782 nsize = osize = 0;
783 allocsize = MAXPATHLEN;
784
785 KOBJ_MARK("depends_on");
786 mp->depends_on = kobj_alloc(allocsize, KM_WAIT);
787
788 for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
789 dyn->d_tag != DT_NULL; dyn++)
790 if (dyn->d_tag == DT_NEEDED) {
791 char *_lib;
792
793 libname = mp->strings + dyn->d_un.d_val;
794 if (strchr(libname, '$') != NULL) {
795 if ((_lib = expand_libmacro(libname,
796 path, path)) != NULL)
797 libname = _lib;
798 else
799 _kobj_printf(ops, "krtld: "
800 "load_exec: fail to "
801 "expand %s\n", libname);
802 }
803 lsize = strlen(libname);
804 nsize += lsize;
805 if (nsize + 1 > allocsize) {
806 KOBJ_MARK("grow depends_on");
807 tmp = kobj_alloc(allocsize + MAXPATHLEN,
808 KM_WAIT);
809 bcopy(mp->depends_on, tmp, osize);
810 kobj_free(mp->depends_on, allocsize);
811 mp->depends_on = tmp;
812 allocsize += MAXPATHLEN;
813 }
814 bcopy(libname, mp->depends_on + osize, lsize);
815 *(mp->depends_on + nsize) = ' '; /* separate */
816 nsize++;
817 osize = nsize;
818 }
819 if (nsize) {
820 mp->depends_on[nsize - 1] = '\0'; /* terminate the string */
821 /*
822 * alloc with exact size and copy whatever it got over
823 */
824 KOBJ_MARK("realloc depends_on");
825 tmp = kobj_alloc(nsize, KM_WAIT);
826 bcopy(mp->depends_on, tmp, nsize);
827 kobj_free(mp->depends_on, allocsize);
828 mp->depends_on = tmp;
829 } else {
830 kobj_free(mp->depends_on, allocsize);
831 mp->depends_on = NULL;
832 }
833
834 mp->flags = KOBJ_EXEC|KOBJ_PRIM; /* NOT a relocatable .o */
835 mp->symhdr->sh_size = mp->nsyms * mp->symhdr->sh_entsize;
836 /*
837 * We allocate our own table since we don't
838 * hash undefined references.
839 */
840 KOBJ_MARK("chains");
841 mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
842 KOBJ_MARK("buckets");
843 mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
844
845 mp->text = _text;
846 mp->data = _data;
847
848 mp->text_size = _etext - _text;
849 mp->data_size = _edata - _data;
850
851 cp->mod_text = mp->text;
852 cp->mod_text_size = mp->text_size;
853
854 mp->filename = cp->mod_filename;
855
856 #ifdef KOBJ_DEBUG
857 if (kobj_debug & D_LOADING) {
858 _kobj_printf(ops, "krtld: file=%s\n", mp->filename);
859 _kobj_printf(ops, "\ttext: 0x%p", mp->text);
860 _kobj_printf(ops, " size: 0x%x\n", mp->text_size);
861 _kobj_printf(ops, "\tdata: 0x%p", mp->data);
862 _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
863 }
864 #endif /* KOBJ_DEBUG */
865
866 /*
867 * Insert symbols into the hash table.
868 */
869 for (i = 0; i < mp->nsyms; i++) {
870 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
871
872 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
873 continue;
874 #if defined(__sparc)
875 /*
876 * Register symbols are ignored in the kernel
877 */
878 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER)
879 continue;
880 #endif /* __sparc */
881
882 sym_insert(mp, mp->strings + sp->st_name, i);
883 }
884
885 KOBJ_MARK("load_exec done");
886 return (mp);
887 }
888
889 /*
890 * Set up the linker module (if it's compiled in, LDNAME is NULL)
891 */
892 static void
893 load_linker(val_t *bootaux)
894 {
895 struct module *kmp = (struct module *)kobj_modules->mod_mp;
896 struct module *mp;
897 struct modctl *cp;
898 int i;
899 Shdr *shp;
900 Sym *sp;
901 int shsize;
902 char *dlname = (char *)bootaux[BA_LDNAME].ba_ptr;
903
904 /*
905 * On some architectures, krtld is compiled into the kernel.
906 */
907 if (dlname == NULL)
908 return;
909
910 cp = add_primary(dlname, KOBJ_LM_PRIMARY);
911
912 mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
913
914 cp->mod_mp = mp;
915 mp->hdr = *(Ehdr *)bootaux[BA_LDELF].ba_ptr;
916 shsize = mp->hdr.e_shentsize * mp->hdr.e_shnum;
917 mp->shdrs = kobj_alloc(shsize, KM_WAIT);
918 bcopy(bootaux[BA_LDSHDR].ba_ptr, mp->shdrs, shsize);
919
920 for (i = 1; i < (int)mp->hdr.e_shnum; i++) {
921 shp = (Shdr *)(mp->shdrs + (i * mp->hdr.e_shentsize));
922
923 if (shp->sh_flags & SHF_ALLOC) {
924 if (shp->sh_flags & SHF_WRITE) {
925 if (mp->data == NULL)
926 mp->data = (char *)shp->sh_addr;
927 } else if (mp->text == NULL) {
928 mp->text = (char *)shp->sh_addr;
929 }
930 }
931 if (shp->sh_type == SHT_SYMTAB) {
932 mp->symtbl_section = i;
933 mp->symhdr = shp;
934 mp->symspace = mp->symtbl = (char *)shp->sh_addr;
935 }
936 }
937 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
938 mp->flags = KOBJ_INTERP|KOBJ_PRIM;
939 mp->strhdr = (Shdr *)
940 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
941 mp->strings = (char *)mp->strhdr->sh_addr;
942 mp->hashsize = kobj_gethashsize(mp->nsyms);
943
944 mp->symsize = mp->symhdr->sh_size + mp->strhdr->sh_size + sizeof (int) +
945 (mp->hashsize + mp->nsyms) * sizeof (symid_t);
946
947 mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
948 mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
949
950 mp->bss = bootaux[BA_BSS].ba_val;
951 mp->bss_align = 0; /* pre-aligned during allocation */
952 mp->bss_size = (uintptr_t)_edata - mp->bss;
953 mp->text_size = _etext - mp->text;
954 mp->data_size = _edata - mp->data;
955 mp->filename = cp->mod_filename;
956 cp->mod_text = mp->text;
957 cp->mod_text_size = mp->text_size;
958
959 /*
960 * Now that we've figured out where the linker is,
961 * set the limits for the booted object.
962 */
963 kmp->text_size = (size_t)(mp->text - kmp->text);
964 kmp->data_size = (size_t)(mp->data - kmp->data);
965 kobj_modules->mod_text_size = kmp->text_size;
966
967 #ifdef KOBJ_DEBUG
968 if (kobj_debug & D_LOADING) {
969 _kobj_printf(ops, "krtld: file=%s\n", mp->filename);
970 _kobj_printf(ops, "\ttext:0x%p", mp->text);
971 _kobj_printf(ops, " size: 0x%x\n", mp->text_size);
972 _kobj_printf(ops, "\tdata:0x%p", mp->data);
973 _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
974 }
975 #endif /* KOBJ_DEBUG */
976
977 /*
978 * Insert the symbols into the hash table.
979 */
980 for (i = 0; i < mp->nsyms; i++) {
981 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
982
983 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
984 continue;
985 if (ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
986 if (sp->st_shndx == SHN_COMMON)
987 sp->st_shndx = SHN_ABS;
988 }
989 sym_insert(mp, mp->strings + sp->st_name, i);
990 }
991
992 }
993
994 static kobj_notify_list_t **
995 kobj_notify_lookup(uint_t type)
996 {
997 ASSERT(type != 0 && type < sizeof (kobj_notifiers) /
998 sizeof (kobj_notify_list_t *));
999
1000 return (&kobj_notifiers[type]);
1001 }
1002
1003 int
1004 kobj_notify_add(kobj_notify_list_t *knp)
1005 {
1006 kobj_notify_list_t **knl;
1007
1008 knl = kobj_notify_lookup(knp->kn_type);
1009
1010 knp->kn_next = NULL;
1011 knp->kn_prev = NULL;
1012
1013 mutex_enter(&kobj_lock);
1014
1015 if (*knl != NULL) {
1016 (*knl)->kn_prev = knp;
1017 knp->kn_next = *knl;
1018 }
1019 (*knl) = knp;
1020
1021 mutex_exit(&kobj_lock);
1022 return (0);
1023 }
1024
1025 int
1026 kobj_notify_remove(kobj_notify_list_t *knp)
1027 {
1028 kobj_notify_list_t **knl = kobj_notify_lookup(knp->kn_type);
1029 kobj_notify_list_t *tknp;
1030
1031 mutex_enter(&kobj_lock);
1032
1033 /* LINTED */
1034 if (tknp = knp->kn_next)
1035 tknp->kn_prev = knp->kn_prev;
1036
1037 /* LINTED */
1038 if (tknp = knp->kn_prev)
1039 tknp->kn_next = knp->kn_next;
1040 else
1041 *knl = knp->kn_next;
1042
1043 mutex_exit(&kobj_lock);
1044
1045 return (0);
1046 }
1047
1048 /*
1049 * Notify all interested callbacks of a specified change in module state.
1050 */
1051 static void
1052 kobj_notify(int type, struct modctl *modp)
1053 {
1054 kobj_notify_list_t *knp;
1055
1056 if (modp->mod_loadflags & MOD_NONOTIFY || standalone)
1057 return;
1058
1059 mutex_enter(&kobj_lock);
1060
1061 for (knp = *(kobj_notify_lookup(type)); knp != NULL; knp = knp->kn_next)
1062 knp->kn_func(type, modp);
1063
1064 /*
1065 * KDI notification must be last (it has to allow for work done by the
1066 * other notification callbacks), so we call it manually.
1067 */
1068 kobj_kdi_mod_notify(type, modp);
1069
1070 mutex_exit(&kobj_lock);
1071 }
1072
1073 /*
1074 * Create the module path.
1075 */
1076 static char *
1077 getmodpath(const char *filename)
1078 {
1079 char *path = kobj_zalloc(MAXPATHLEN, KM_WAIT);
1080
1081 /*
1082 * Platform code gets first crack, then add
1083 * the default components
1084 */
1085 mach_modpath(path, filename);
1086 if (*path != '\0')
1087 (void) strcat(path, " ");
1088 return (strcat(path, MOD_DEFPATH));
1089 }
1090
1091 static struct modctl *
1092 add_primary(const char *filename, int lmid)
1093 {
1094 struct modctl *cp;
1095
1096 cp = kobj_zalloc(sizeof (struct modctl), KM_WAIT);
1097
1098 cp->mod_filename = kobj_alloc(strlen(filename) + 1, KM_WAIT);
1099
1100 /*
1101 * For symbol lookup, we assemble our own
1102 * modctl list of the primary modules.
1103 */
1104
1105 (void) strcpy(cp->mod_filename, filename);
1106 cp->mod_modname = basename(cp->mod_filename);
1107
1108 /* set values for modinfo assuming that the load will work */
1109 cp->mod_prim = 1;
1110 cp->mod_loaded = 1;
1111 cp->mod_installed = 1;
1112 cp->mod_loadcnt = 1;
1113 cp->mod_loadflags = MOD_NOAUTOUNLOAD;
1114
1115 cp->mod_id = kobj_last_module_id++;
1116
1117 /*
1118 * Link the module in. We'll pass this info on
1119 * to the mod squad later.
1120 */
1121 if (kobj_modules == NULL) {
1122 kobj_modules = cp;
1123 cp->mod_prev = cp->mod_next = cp;
1124 } else {
1125 cp->mod_prev = kobj_modules->mod_prev;
1126 cp->mod_next = kobj_modules;
1127 kobj_modules->mod_prev->mod_next = cp;
1128 kobj_modules->mod_prev = cp;
1129 }
1130
1131 kobj_lm_append(lmid, cp);
1132
1133 return (cp);
1134 }
1135
1136 static int
1137 bind_primary(val_t *bootaux, int lmid)
1138 {
1139 struct modctl_list *linkmap = kobj_lm_lookup(lmid);
1140 struct modctl_list *lp;
1141 struct module *mp;
1142
1143 /*
1144 * Do common symbols.
1145 */
1146 for (lp = linkmap; lp; lp = lp->modl_next) {
1147 mp = mod(lp);
1148
1149 /*
1150 * Don't do common section relocations for modules that
1151 * don't need it.
1152 */
1153 if (mp->flags & (KOBJ_EXEC|KOBJ_INTERP))
1154 continue;
1155
1156 if (do_common(mp) < 0)
1157 return (-1);
1158 }
1159
1160 /*
1161 * Resolve symbols.
1162 */
1163 for (lp = linkmap; lp; lp = lp->modl_next) {
1164 mp = mod(lp);
1165
1166 if (do_symbols(mp, 0) < 0)
1167 return (-1);
1168 }
1169
1170 /*
1171 * Do relocations.
1172 */
1173 for (lp = linkmap; lp; lp = lp->modl_next) {
1174 mp = mod(lp);
1175
1176 if (mp->flags & KOBJ_EXEC) {
1177 Dyn *dyn;
1178 Word relasz = 0, relaent = 0;
1179 Word shtype;
1180 char *rela = NULL;
1181
1182 for (dyn = (Dyn *)bootaux[BA_DYNAMIC].ba_ptr;
1183 dyn->d_tag != DT_NULL; dyn++) {
1184 switch (dyn->d_tag) {
1185 case DT_RELASZ:
1186 case DT_RELSZ:
1187 relasz = dyn->d_un.d_val;
1188 break;
1189 case DT_RELAENT:
1190 case DT_RELENT:
1191 relaent = dyn->d_un.d_val;
1192 break;
1193 case DT_RELA:
1194 shtype = SHT_RELA;
1195 rela = (char *)dyn->d_un.d_ptr;
1196 break;
1197 case DT_REL:
1198 shtype = SHT_REL;
1199 rela = (char *)dyn->d_un.d_ptr;
1200 break;
1201 }
1202 }
1203 if (relasz == 0 ||
1204 relaent == 0 || rela == NULL) {
1205 _kobj_printf(ops, "krtld: bind_primary(): "
1206 "no relocation information found for "
1207 "module %s\n", mp->filename);
1208 return (-1);
1209 }
1210 #ifdef KOBJ_DEBUG
1211 if (kobj_debug & D_RELOCATIONS)
1212 _kobj_printf(ops, "krtld: relocating: file=%s "
1213 "KOBJ_EXEC\n", mp->filename);
1214 #endif
1215 if (do_relocate(mp, rela, shtype, relasz/relaent,
1216 relaent, (Addr)mp->text) < 0)
1217 return (-1);
1218 } else {
1219 if (do_relocations(mp) < 0)
1220 return (-1);
1221 }
1222
1223 kobj_sync_instruction_memory(mp->text, mp->text_size);
1224 }
1225
1226 for (lp = linkmap; lp; lp = lp->modl_next) {
1227 mp = mod(lp);
1228
1229 /*
1230 * We need to re-read the full symbol table for the boot file,
1231 * since we couldn't use the full one before. We also need to
1232 * load the CTF sections of both the boot file and the
1233 * interpreter (us).
1234 */
1235 if (mp->flags & KOBJ_EXEC) {
1236 struct _buf *file;
1237 int n;
1238
1239 file = kobj_open_file(mp->filename);
1240 if (file == (struct _buf *)-1)
1241 return (-1);
1242 if (kobj_read_file(file, (char *)&mp->hdr,
1243 sizeof (mp->hdr), 0) < 0)
1244 return (-1);
1245 n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1246 mp->shdrs = kobj_alloc(n, KM_WAIT);
1247 if (kobj_read_file(file, mp->shdrs, n,
1248 mp->hdr.e_shoff) < 0)
1249 return (-1);
1250 if (get_syms(mp, file) < 0)
1251 return (-1);
1252 if (get_ctf(mp, file) < 0)
1253 return (-1);
1254 kobj_close_file(file);
1255 mp->flags |= KOBJ_RELOCATED;
1256
1257 } else if (mp->flags & KOBJ_INTERP) {
1258 struct _buf *file;
1259
1260 /*
1261 * The interpreter path fragment in mp->filename
1262 * will already have the module directory suffix
1263 * in it (if appropriate).
1264 */
1265 file = kobj_open_path(mp->filename, 1, 0);
1266 if (file == (struct _buf *)-1)
1267 return (-1);
1268 if (get_ctf(mp, file) < 0)
1269 return (-1);
1270 kobj_close_file(file);
1271 mp->flags |= KOBJ_RELOCATED;
1272 }
1273 }
1274
1275 return (0);
1276 }
1277
1278 static struct modctl *
1279 mod_already_loaded(char *modname)
1280 {
1281 struct modctl *mctl = kobj_modules;
1282
1283 do {
1284 if (strcmp(modname, mctl->mod_filename) == 0)
1285 return (mctl);
1286 mctl = mctl->mod_next;
1287
1288 } while (mctl != kobj_modules);
1289
1290 return (NULL);
1291 }
1292
1293 /*
1294 * Load all the primary dependent modules.
1295 */
1296 static int
1297 load_primary(struct module *mp, int lmid)
1298 {
1299 struct modctl *cp;
1300 struct module *dmp;
1301 char *p, *q;
1302 char modname[MODMAXNAMELEN];
1303
1304 if ((p = mp->depends_on) == NULL)
1305 return (0);
1306
1307 /* CONSTANTCONDITION */
1308 while (1) {
1309 /*
1310 * Skip space.
1311 */
1312 while (*p && (*p == ' ' || *p == '\t'))
1313 p++;
1314 /*
1315 * Get module name.
1316 */
1317 q = modname;
1318 while (*p && *p != ' ' && *p != '\t')
1319 *q++ = *p++;
1320
1321 if (q == modname)
1322 break;
1323
1324 *q = '\0';
1325 /*
1326 * Check for dup dependencies.
1327 */
1328 if (strcmp(modname, "dtracestubs") == 0 ||
1329 mod_already_loaded(modname) != NULL)
1330 continue;
1331
1332 cp = add_primary(modname, lmid);
1333 cp->mod_busy = 1;
1334 /*
1335 * Load it.
1336 */
1337 (void) kobj_load_module(cp, 1);
1338 cp->mod_busy = 0;
1339
1340 if ((dmp = cp->mod_mp) == NULL) {
1341 cp->mod_loaded = 0;
1342 cp->mod_installed = 0;
1343 cp->mod_loadcnt = 0;
1344 return (-1);
1345 }
1346
1347 add_dependent(mp, dmp);
1348 dmp->flags |= KOBJ_PRIM;
1349
1350 /*
1351 * Recurse.
1352 */
1353 if (load_primary(dmp, lmid) == -1) {
1354 cp->mod_loaded = 0;
1355 cp->mod_installed = 0;
1356 cp->mod_loadcnt = 0;
1357 return (-1);
1358 }
1359 }
1360 return (0);
1361 }
1362
1363 static int
1364 console_is_usb_serial(void)
1365 {
1366 char *console;
1367 int len, ret;
1368
1369 if ((len = BOP_GETPROPLEN(ops, "console")) == -1)
1370 return (0);
1371
1372 console = kobj_zalloc(len, KM_WAIT|KM_TMP);
1373 (void) BOP_GETPROP(ops, "console", console);
1374 ret = (strcmp(console, "usb-serial") == 0);
1375 kobj_free(console, len);
1376
1377 return (ret);
1378 }
1379
1380 static int
1381 load_kmdb(val_t *bootaux)
1382 {
1383 struct modctl *mctl;
1384 struct module *mp;
1385 Sym *sym;
1386
1387 if (console_is_usb_serial()) {
1388 _kobj_printf(ops, "kmdb not loaded "
1389 "(unsupported on usb serial console)\n");
1390 return (0);
1391 }
1392
1393 _kobj_printf(ops, "Loading kmdb...\n");
1394
1395 if ((mctl = add_primary("misc/kmdbmod", KOBJ_LM_DEBUGGER)) == NULL)
1396 return (-1);
1397
1398 mctl->mod_busy = 1;
1399 (void) kobj_load_module(mctl, 1);
1400 mctl->mod_busy = 0;
1401
1402 if ((mp = mctl->mod_mp) == NULL)
1403 return (-1);
1404
1405 mp->flags |= KOBJ_PRIM;
1406
1407 if (load_primary(mp, KOBJ_LM_DEBUGGER) < 0)
1408 return (-1);
1409
1410 if (boothowto & RB_VERBOSE)
1411 kobj_lm_dump(KOBJ_LM_DEBUGGER);
1412
1413 if (bind_primary(bootaux, KOBJ_LM_DEBUGGER) < 0)
1414 return (-1);
1415
1416 if ((sym = lookup_one(mctl->mod_mp, "kctl_boot_activate")) == NULL)
1417 return (-1);
1418
1419 #ifdef KOBJ_DEBUG
1420 if (kobj_debug & D_DEBUG) {
1421 _kobj_printf(ops, "calling kctl_boot_activate() @ 0x%lx\n",
1422 sym->st_value);
1423 _kobj_printf(ops, "\tops 0x%p\n", ops);
1424 _kobj_printf(ops, "\tromp 0x%p\n", romp);
1425 }
1426 #endif
1427
1428 if (((kctl_boot_activate_f *)sym->st_value)(ops, romp, 0,
1429 (const char **)kobj_kmdb_argv) < 0)
1430 return (-1);
1431
1432 return (0);
1433 }
1434
1435 /*
1436 * Return a string listing module dependencies.
1437 */
1438 static char *
1439 depends_on(struct module *mp)
1440 {
1441 Sym *sp;
1442 char *depstr, *q;
1443
1444 /*
1445 * The module doesn't have a depends_on value, so let's try it the
1446 * old-fashioned way - via "_depends_on"
1447 */
1448 if ((sp = lookup_one(mp, "_depends_on")) == NULL)
1449 return (NULL);
1450
1451 q = (char *)sp->st_value;
1452
1453 #ifdef KOBJ_DEBUG
1454 /*
1455 * _depends_on is a deprecated interface, so we warn about its use
1456 * irrespective of subsequent processing errors. How else are we going
1457 * to be able to deco this interface completely?
1458 * Changes initially limited to DEBUG because third-party modules
1459 * should be flagged to developers before general use base.
1460 */
1461 _kobj_printf(ops,
1462 "Warning: %s uses deprecated _depends_on interface.\n",
1463 mp->filename);
1464 _kobj_printf(ops, "Please notify module developer or vendor.\n");
1465 #endif
1466
1467 /*
1468 * Idiot checks. Make sure it's
1469 * in-bounds and NULL terminated.
1470 */
1471 if (kobj_addrcheck(mp, q) || q[sp->st_size - 1] != '\0') {
1472 _kobj_printf(ops, "Error processing dependency for %s\n",
1473 mp->filename);
1474 return (NULL);
1475 }
1476
1477 depstr = (char *)kobj_alloc(strlen(q) + 1, KM_WAIT);
1478 (void) strcpy(depstr, q);
1479
1480 return (depstr);
1481 }
1482
1483 void
1484 kobj_getmodinfo(void *xmp, struct modinfo *modinfo)
1485 {
1486 struct module *mp;
1487 mp = (struct module *)xmp;
1488
1489 modinfo->mi_base = mp->text;
1490 modinfo->mi_size = mp->text_size + mp->data_size;
1491 }
1492
1493 /*
1494 * kobj_export_ksyms() performs the following services:
1495 *
1496 * (1) Migrates the symbol table from boot/kobj memory to the ksyms arena.
1497 * (2) Removes unneeded symbols to save space.
1498 * (3) Reduces memory footprint by using VM_BESTFIT allocations.
1499 * (4) Makes the symbol table visible to /dev/ksyms.
1500 */
1501 static void
1502 kobj_export_ksyms(struct module *mp)
1503 {
1504 Sym *esp = (Sym *)(mp->symtbl + mp->symhdr->sh_size);
1505 Sym *sp, *osp;
1506 char *name;
1507 size_t namelen;
1508 struct module *omp;
1509 uint_t nsyms;
1510 size_t symsize = mp->symhdr->sh_entsize;
1511 size_t locals = 1;
1512 size_t strsize;
1513
1514 /*
1515 * Make a copy of the original module structure.
1516 */
1517 omp = kobj_alloc(sizeof (struct module), KM_WAIT);
1518 bcopy(mp, omp, sizeof (struct module));
1519
1520 /*
1521 * Compute the sizes of the new symbol table sections.
1522 */
1523 for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1524 if (osp->st_value == 0)
1525 continue;
1526 if (sym_lookup(omp, osp) == NULL)
1527 continue;
1528 name = omp->strings + osp->st_name;
1529 namelen = strlen(name);
1530 if (ELF_ST_BIND(osp->st_info) == STB_LOCAL)
1531 locals++;
1532 nsyms++;
1533 strsize += namelen + 1;
1534 }
1535
1536 mp->nsyms = nsyms;
1537 mp->hashsize = kobj_gethashsize(mp->nsyms);
1538
1539 /*
1540 * ksyms_lock must be held as writer during any operation that
1541 * modifies ksyms_arena, including allocation from same, and
1542 * must not be dropped until the arena is vmem_walk()able.
1543 */
1544 rw_enter(&ksyms_lock, RW_WRITER);
1545
1546 /*
1547 * Allocate space for the new section headers (symtab and strtab),
1548 * symbol table, buckets, chains, and strings.
1549 */
1550 mp->symsize = (2 * sizeof (Shdr)) + (nsyms * symsize) +
1551 (mp->hashsize + mp->nsyms) * sizeof (symid_t) + strsize;
1552
1553 if (mp->flags & KOBJ_NOKSYMS) {
1554 mp->symspace = kobj_alloc(mp->symsize, KM_WAIT);
1555 } else {
1556 mp->symspace = vmem_alloc(ksyms_arena, mp->symsize,
1557 VM_BESTFIT | VM_SLEEP);
1558 }
1559 bzero(mp->symspace, mp->symsize);
1560
1561 /*
1562 * Divvy up symspace.
1563 */
1564 mp->shdrs = mp->symspace;
1565 mp->symhdr = (Shdr *)mp->shdrs;
1566 mp->strhdr = (Shdr *)(mp->symhdr + 1);
1567 mp->symtbl = (char *)(mp->strhdr + 1);
1568 mp->buckets = (symid_t *)(mp->symtbl + (nsyms * symsize));
1569 mp->chains = (symid_t *)(mp->buckets + mp->hashsize);
1570 mp->strings = (char *)(mp->chains + nsyms);
1571
1572 /*
1573 * Fill in the new section headers (symtab and strtab).
1574 */
1575 mp->hdr.e_shnum = 2;
1576 mp->symtbl_section = 0;
1577
1578 mp->symhdr->sh_type = SHT_SYMTAB;
1579 mp->symhdr->sh_addr = (Addr)mp->symtbl;
1580 mp->symhdr->sh_size = nsyms * symsize;
1581 mp->symhdr->sh_link = 1;
1582 mp->symhdr->sh_info = locals;
1583 mp->symhdr->sh_addralign = sizeof (Addr);
1584 mp->symhdr->sh_entsize = symsize;
1585
1586 mp->strhdr->sh_type = SHT_STRTAB;
1587 mp->strhdr->sh_addr = (Addr)mp->strings;
1588 mp->strhdr->sh_size = strsize;
1589 mp->strhdr->sh_addralign = 1;
1590
1591 /*
1592 * Construct the new symbol table.
1593 */
1594 for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1595 if (osp->st_value == 0)
1596 continue;
1597 if (sym_lookup(omp, osp) == NULL)
1598 continue;
1599 name = omp->strings + osp->st_name;
1600 namelen = strlen(name);
1601 sp = (Sym *)(mp->symtbl + symsize * nsyms);
1602 bcopy(osp, sp, symsize);
1603 bcopy(name, mp->strings + strsize, namelen);
1604 sp->st_name = strsize;
1605 sym_insert(mp, name, nsyms);
1606 nsyms++;
1607 strsize += namelen + 1;
1608 }
1609
1610 rw_exit(&ksyms_lock);
1611
1612 /*
1613 * Free the old section headers -- we'll never need them again.
1614 */
1615 if (!(mp->flags & KOBJ_PRIM)) {
1616 uint_t shn;
1617 Shdr *shp;
1618
1619 for (shn = 1; shn < omp->hdr.e_shnum; shn++) {
1620 shp = (Shdr *)(omp->shdrs + shn * omp->hdr.e_shentsize);
1621 switch (shp->sh_type) {
1622 case SHT_RELA:
1623 case SHT_REL:
1624 if (shp->sh_addr != 0) {
1625 kobj_free((void *)shp->sh_addr,
1626 shp->sh_size);
1627 }
1628 break;
1629 }
1630 }
1631 kobj_free(omp->shdrs, omp->hdr.e_shentsize * omp->hdr.e_shnum);
1632 }
1633 /*
1634 * Discard the old symbol table and our copy of the module strucure.
1635 */
1636 if (!(mp->flags & KOBJ_PRIM))
1637 kobj_free(omp->symspace, omp->symsize);
1638 kobj_free(omp, sizeof (struct module));
1639 }
1640
1641 static void
1642 kobj_export_ctf(struct module *mp)
1643 {
1644 char *data = mp->ctfdata;
1645 size_t size = mp->ctfsize;
1646
1647 if (data != NULL) {
1648 if (_moddebug & MODDEBUG_NOCTF) {
1649 mp->ctfdata = NULL;
1650 mp->ctfsize = 0;
1651 } else {
1652 mp->ctfdata = vmem_alloc(ctf_arena, size,
1653 VM_BESTFIT | VM_SLEEP);
1654 bcopy(data, mp->ctfdata, size);
1655 }
1656
1657 if (!(mp->flags & KOBJ_PRIM))
1658 kobj_free(data, size);
1659 }
1660 }
1661
1662 void
1663 kobj_export_module(struct module *mp)
1664 {
1665 kobj_export_ksyms(mp);
1666 kobj_export_ctf(mp);
1667
1668 mp->flags |= KOBJ_EXPORTED;
1669 }
1670
1671 static int
1672 process_dynamic(struct module *mp, char *dyndata, char *strdata)
1673 {
1674 char *path = NULL, *depstr = NULL;
1675 int allocsize = 0, osize = 0, nsize = 0;
1676 char *libname, *tmp;
1677 int lsize;
1678 Dyn *dynp;
1679
1680 for (dynp = (Dyn *)dyndata; dynp && dynp->d_tag != DT_NULL; dynp++) {
1681 switch (dynp->d_tag) {
1682 case DT_NEEDED:
1683 /*
1684 * Read the DT_NEEDED entries, expanding the macros they
1685 * contain (if any), and concatenating them into a
1686 * single space-separated dependency list.
1687 */
1688 libname = (ulong_t)dynp->d_un.d_ptr + strdata;
1689
1690 if (strchr(libname, '$') != NULL) {
1691 char *_lib;
1692
1693 if (path == NULL)
1694 path = kobj_alloc(MAXPATHLEN, KM_WAIT);
1695 if ((_lib = expand_libmacro(libname, path,
1696 path)) != NULL)
1697 libname = _lib;
1698 else {
1699 _kobj_printf(ops, "krtld: "
1700 "process_dynamic: failed to expand "
1701 "%s\n", libname);
1702 }
1703 }
1704
1705 lsize = strlen(libname);
1706 nsize += lsize;
1707 if (nsize + 1 > allocsize) {
1708 tmp = kobj_alloc(allocsize + MAXPATHLEN,
1709 KM_WAIT);
1710 if (depstr != NULL) {
1711 bcopy(depstr, tmp, osize);
1712 kobj_free(depstr, allocsize);
1713 }
1714 depstr = tmp;
1715 allocsize += MAXPATHLEN;
1716 }
1717 bcopy(libname, depstr + osize, lsize);
1718 *(depstr + nsize) = ' '; /* separator */
1719 nsize++;
1720 osize = nsize;
1721 break;
1722
1723 case DT_FLAGS_1:
1724 if (dynp->d_un.d_val & DF_1_IGNMULDEF)
1725 mp->flags |= KOBJ_IGNMULDEF;
1726 if (dynp->d_un.d_val & DF_1_NOKSYMS)
1727 mp->flags |= KOBJ_NOKSYMS;
1728
1729 break;
1730 }
1731 }
1732
1733 /*
1734 * finish up the depends string (if any)
1735 */
1736 if (depstr != NULL) {
1737 *(depstr + nsize - 1) = '\0'; /* overwrite separator w/term */
1738 if (path != NULL)
1739 kobj_free(path, MAXPATHLEN);
1740
1741 tmp = kobj_alloc(nsize, KM_WAIT);
1742 bcopy(depstr, tmp, nsize);
1743 kobj_free(depstr, allocsize);
1744 depstr = tmp;
1745
1746 mp->depends_on = depstr;
1747 }
1748
1749 return (0);
1750 }
1751
1752 static int
1753 do_dynamic(struct module *mp, struct _buf *file)
1754 {
1755 Shdr *dshp, *dstrp, *shp;
1756 char *dyndata, *dstrdata;
1757 int dshn, shn, rc;
1758
1759 /* find and validate the dynamic section (if any) */
1760
1761 for (dshp = NULL, shn = 1; shn < mp->hdr.e_shnum; shn++) {
1762 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
1763 switch (shp->sh_type) {
1764 case SHT_DYNAMIC:
1765 if (dshp != NULL) {
1766 _kobj_printf(ops, "krtld: get_dynamic: %s, ",
1767 mp->filename);
1768 _kobj_printf(ops,
1769 "multiple dynamic sections\n");
1770 return (-1);
1771 } else {
1772 dshp = shp;
1773 dshn = shn;
1774 }
1775 break;
1776 }
1777 }
1778
1779 if (dshp == NULL)
1780 return (0);
1781
1782 if (dshp->sh_link > mp->hdr.e_shnum) {
1783 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1784 _kobj_printf(ops, "no section for sh_link %d\n", dshp->sh_link);
1785 return (-1);
1786 }
1787 dstrp = (Shdr *)(mp->shdrs + dshp->sh_link * mp->hdr.e_shentsize);
1788
1789 if (dstrp->sh_type != SHT_STRTAB) {
1790 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1791 _kobj_printf(ops, "sh_link not a string table for section %d\n",
1792 dshn);
1793 return (-1);
1794 }
1795
1796 /* read it from disk */
1797
1798 dyndata = kobj_alloc(dshp->sh_size, KM_WAIT|KM_TMP);
1799 if (kobj_read_file(file, dyndata, dshp->sh_size, dshp->sh_offset) < 0) {
1800 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1801 _kobj_printf(ops, "error reading section %d\n", dshn);
1802
1803 kobj_free(dyndata, dshp->sh_size);
1804 return (-1);
1805 }
1806
1807 dstrdata = kobj_alloc(dstrp->sh_size, KM_WAIT|KM_TMP);
1808 if (kobj_read_file(file, dstrdata, dstrp->sh_size,
1809 dstrp->sh_offset) < 0) {
1810 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1811 _kobj_printf(ops, "error reading section %d\n", dshp->sh_link);
1812
1813 kobj_free(dyndata, dshp->sh_size);
1814 kobj_free(dstrdata, dstrp->sh_size);
1815 return (-1);
1816 }
1817
1818 /* pull the interesting pieces out */
1819
1820 rc = process_dynamic(mp, dyndata, dstrdata);
1821
1822 kobj_free(dyndata, dshp->sh_size);
1823 kobj_free(dstrdata, dstrp->sh_size);
1824
1825 return (rc);
1826 }
1827
1828 void
1829 kobj_set_ctf(struct module *mp, caddr_t data, size_t size)
1830 {
1831 if (!standalone) {
1832 if (mp->ctfdata != NULL) {
1833 if (vmem_contains(ctf_arena, mp->ctfdata,
1834 mp->ctfsize)) {
1835 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
1836 } else {
1837 kobj_free(mp->ctfdata, mp->ctfsize);
1838 }
1839 }
1840 }
1841
1842 /*
1843 * The order is very important here. We need to make sure that
1844 * consumers, at any given instant, see a consistent state. We'd
1845 * rather they see no CTF data than the address of one buffer and the
1846 * size of another.
1847 */
1848 mp->ctfdata = NULL;
1849 membar_producer();
1850 mp->ctfsize = size;
1851 mp->ctfdata = data;
1852 membar_producer();
1853 }
1854
1855 int
1856 kobj_load_module(struct modctl *modp, int use_path)
1857 {
1858 char *filename = modp->mod_filename;
1859 char *modname = modp->mod_modname;
1860 int i;
1861 int n;
1862 struct _buf *file;
1863 struct module *mp = NULL;
1864 #ifdef MODDIR_SUFFIX
1865 int no_suffixdir_drv = 0;
1866 #endif
1867
1868 mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
1869
1870 /*
1871 * We need to prevent kmdb's symbols from leaking into /dev/ksyms.
1872 * kmdb contains a bunch of symbols with well-known names, symbols
1873 * which will mask the real versions, thus causing no end of trouble
1874 * for mdb.
1875 */
1876 if (strcmp(modp->mod_modname, "kmdbmod") == 0)
1877 mp->flags |= KOBJ_NOKSYMS;
1878
1879 file = kobj_open_path(filename, use_path, 1);
1880 if (file == (struct _buf *)-1) {
1881 #ifdef MODDIR_SUFFIX
1882 file = kobj_open_path(filename, use_path, 0);
1883 #endif
1884 if (file == (struct _buf *)-1) {
1885 kobj_free(mp, sizeof (*mp));
1886 goto bad;
1887 }
1888 #ifdef MODDIR_SUFFIX
1889 /*
1890 * There is no driver module in the ISA specific (suffix)
1891 * subdirectory but there is a module in the parent directory.
1892 */
1893 if (strncmp(filename, "drv/", 4) == 0) {
1894 no_suffixdir_drv = 1;
1895 }
1896 #endif
1897 }
1898
1899 mp->filename = kobj_alloc(strlen(file->_name) + 1, KM_WAIT);
1900 (void) strcpy(mp->filename, file->_name);
1901
1902 if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) {
1903 _kobj_printf(ops, "kobj_load_module: %s read header failed\n",
1904 modname);
1905 kobj_free(mp->filename, strlen(file->_name) + 1);
1906 kobj_free(mp, sizeof (*mp));
1907 goto bad;
1908 }
1909 for (i = 0; i < SELFMAG; i++) {
1910 if (mp->hdr.e_ident[i] != ELFMAG[i]) {
1911 if (_moddebug & MODDEBUG_ERRMSG)
1912 _kobj_printf(ops, "%s not an elf module\n",
1913 modname);
1914 kobj_free(mp->filename, strlen(file->_name) + 1);
1915 kobj_free(mp, sizeof (*mp));
1916 goto bad;
1917 }
1918 }
1919 /*
1920 * It's ELF, but is it our ISA? Interpreting the header
1921 * from a file for a byte-swapped ISA could cause a huge
1922 * and unsatisfiable value to be passed to kobj_alloc below
1923 * and therefore hang booting.
1924 */
1925 if (!elf_mach_ok(&mp->hdr)) {
1926 if (_moddebug & MODDEBUG_ERRMSG)
1927 _kobj_printf(ops, "%s not an elf module for this ISA\n",
1928 modname);
1929 kobj_free(mp->filename, strlen(file->_name) + 1);
1930 kobj_free(mp, sizeof (*mp));
1931 #ifdef MODDIR_SUFFIX
1932 /*
1933 * The driver mod is not in the ISA specific subdirectory
1934 * and the module in the parent directory is not our ISA.
1935 * If it is our ISA, for now we will silently succeed.
1936 */
1937 if (no_suffixdir_drv == 1) {
1938 cmn_err(CE_CONT, "?NOTICE: %s: 64-bit driver module"
1939 " not found\n", modname);
1940 }
1941 #endif
1942 goto bad;
1943 }
1944
1945 /*
1946 * All modules, save for unix, should be relocatable (as opposed to
1947 * dynamic). Dynamic modules come with PLTs and GOTs, which can't
1948 * currently be processed by krtld.
1949 */
1950 if (mp->hdr.e_type != ET_REL) {
1951 if (_moddebug & MODDEBUG_ERRMSG)
1952 _kobj_printf(ops, "%s isn't a relocatable (ET_REL) "
1953 "module\n", modname);
1954 kobj_free(mp->filename, strlen(file->_name) + 1);
1955 kobj_free(mp, sizeof (*mp));
1956 goto bad;
1957 }
1958
1959 n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1960 mp->shdrs = kobj_alloc(n, KM_WAIT);
1961
1962 if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) {
1963 _kobj_printf(ops, "kobj_load_module: %s error reading "
1964 "section headers\n", modname);
1965 kobj_free(mp->shdrs, n);
1966 kobj_free(mp->filename, strlen(file->_name) + 1);
1967 kobj_free(mp, sizeof (*mp));
1968 goto bad;
1969 }
1970
1971 kobj_notify(KOBJ_NOTIFY_MODLOADING, modp);
1972 module_assign(modp, mp);
1973
1974 /* read in sections */
1975 if (get_progbits(mp, file) < 0) {
1976 _kobj_printf(ops, "%s error reading sections\n", modname);
1977 goto bad;
1978 }
1979
1980 if (do_dynamic(mp, file) < 0) {
1981 _kobj_printf(ops, "%s error reading dynamic section\n",
1982 modname);
1983 goto bad;
1984 }
1985
1986 modp->mod_text = mp->text;
1987 modp->mod_text_size = mp->text_size;
1988
1989 /* read in symbols; adjust values for each section's real address */
1990 if (get_syms(mp, file) < 0) {
1991 _kobj_printf(ops, "%s error reading symbols\n",
1992 modname);
1993 goto bad;
1994 }
1995
1996 /*
1997 * If we didn't dependency information from the dynamic section, look
1998 * for it the old-fashioned way.
1999 */
2000 if (mp->depends_on == NULL)
2001 mp->depends_on = depends_on(mp);
2002
2003 if (get_ctf(mp, file) < 0) {
2004 _kobj_printf(ops, "%s debug information will not "
2005 "be available\n", modname);
2006 }
2007
2008 /* primary kernel modules do not have a signature section */
2009 if (!(mp->flags & KOBJ_PRIM))
2010 get_signature(mp, file);
2011
2012 #ifdef KOBJ_DEBUG
2013 if (kobj_debug & D_LOADING) {
2014 _kobj_printf(ops, "krtld: file=%s\n", mp->filename);
2015 _kobj_printf(ops, "\ttext:0x%p", mp->text);
2016 _kobj_printf(ops, " size: 0x%x\n", mp->text_size);
2017 _kobj_printf(ops, "\tdata:0x%p", mp->data);
2018 _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
2019 }
2020 #endif /* KOBJ_DEBUG */
2021
2022 /*
2023 * For primary kernel modules, we defer
2024 * symbol resolution and relocation until
2025 * all primary objects have been loaded.
2026 */
2027 if (!standalone) {
2028 int ddrval, dcrval;
2029 char *dependent_modname;
2030 /* load all dependents */
2031 dependent_modname = kobj_zalloc(MODMAXNAMELEN, KM_WAIT);
2032 ddrval = do_dependents(modp, dependent_modname, MODMAXNAMELEN);
2033
2034 /*
2035 * resolve undefined and common symbols,
2036 * also allocates common space
2037 */
2038 if ((dcrval = do_common(mp)) < 0) {
2039 switch (dcrval) {
2040 case DOSYM_UNSAFE:
2041 _kobj_printf(ops, "WARNING: mod_load: "
2042 "MT-unsafe module '%s' rejected\n",
2043 modname);
2044 break;
2045 case DOSYM_UNDEF:
2046 _kobj_printf(ops, "WARNING: mod_load: "
2047 "cannot load module '%s'\n",
2048 modname);
2049 if (ddrval == -1) {
2050 _kobj_printf(ops, "WARNING: %s: ",
2051 modname);
2052 _kobj_printf(ops,
2053 "unable to resolve dependency, "
2054 "module '%s' not found\n",
2055 dependent_modname);
2056 }
2057 break;
2058 }
2059 }
2060 kobj_free(dependent_modname, MODMAXNAMELEN);
2061 if (dcrval < 0)
2062 goto bad;
2063
2064 /* process relocation tables */
2065 if (do_relocations(mp) < 0) {
2066 _kobj_printf(ops, "%s error doing relocations\n",
2067 modname);
2068 goto bad;
2069 }
2070
2071 if (mp->destination) {
2072 off_t off = (uintptr_t)mp->destination & PAGEOFFSET;
2073 caddr_t base = (caddr_t)mp->destination - off;
2074 size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2075
2076 hat_unload(kas.a_hat, base, size, HAT_UNLOAD_UNLOCK);
2077 vmem_free(heap_arena, base, size);
2078 }
2079
2080 /* sync_instruction_memory */
2081 kobj_sync_instruction_memory(mp->text, mp->text_size);
2082 kobj_export_module(mp);
2083 kobj_notify(KOBJ_NOTIFY_MODLOADED, modp);
2084 }
2085 kobj_close_file(file);
2086 return (0);
2087 bad:
2088 if (file != (struct _buf *)-1)
2089 kobj_close_file(file);
2090 if (modp->mod_mp != NULL)
2091 free_module_data(modp->mod_mp);
2092
2093 module_assign(modp, NULL);
2094 return ((file == (struct _buf *)-1) ? ENOENT : EINVAL);
2095 }
2096
2097 int
2098 kobj_load_primary_module(struct modctl *modp)
2099 {
2100 struct modctl *dep;
2101 struct module *mp;
2102
2103 if (kobj_load_module(modp, 0) != 0)
2104 return (-1);
2105
2106 mp = modp->mod_mp;
2107 mp->flags |= KOBJ_PRIM;
2108
2109 /* Bind new module to its dependents */
2110 if (mp->depends_on != NULL && (dep =
2111 mod_already_loaded(mp->depends_on)) == NULL) {
2112 #ifdef KOBJ_DEBUG
2113 if (kobj_debug & D_DEBUG) {
2114 _kobj_printf(ops, "krtld: failed to resolve deps "
2115 "for primary %s\n", modp->mod_modname);
2116 }
2117 #endif
2118 return (-1);
2119 }
2120
2121 add_dependent(mp, dep->mod_mp);
2122
2123 /*
2124 * Relocate it. This module may not be part of a link map, so we
2125 * can't use bind_primary.
2126 */
2127 if (do_common(mp) < 0 || do_symbols(mp, 0) < 0 ||
2128 do_relocations(mp) < 0) {
2129 #ifdef KOBJ_DEBUG
2130 if (kobj_debug & D_DEBUG) {
2131 _kobj_printf(ops, "krtld: failed to relocate "
2132 "primary %s\n", modp->mod_modname);
2133 }
2134 #endif
2135 return (-1);
2136 }
2137
2138 return (0);
2139 }
2140
2141 static void
2142 module_assign(struct modctl *cp, struct module *mp)
2143 {
2144 if (standalone) {
2145 cp->mod_mp = mp;
2146 return;
2147 }
2148 mutex_enter(&mod_lock);
2149 cp->mod_mp = mp;
2150 cp->mod_gencount++;
2151 mutex_exit(&mod_lock);
2152 }
2153
2154 void
2155 kobj_unload_module(struct modctl *modp)
2156 {
2157 struct module *mp = modp->mod_mp;
2158
2159 if ((_moddebug & MODDEBUG_KEEPTEXT) && mp) {
2160 _kobj_printf(ops, "text for %s ", mp->filename);
2161 _kobj_printf(ops, "was at %p\n", mp->text);
2162 mp->text = NULL; /* don't actually free it */
2163 }
2164
2165 kobj_notify(KOBJ_NOTIFY_MODUNLOADING, modp);
2166
2167 /*
2168 * Null out mod_mp first, so consumers (debuggers) know not to look
2169 * at the module structure any more.
2170 */
2171 mutex_enter(&mod_lock);
2172 modp->mod_mp = NULL;
2173 mutex_exit(&mod_lock);
2174
2175 kobj_notify(KOBJ_NOTIFY_MODUNLOADED, modp);
2176 free_module_data(mp);
2177 }
2178
2179 static void
2180 free_module_data(struct module *mp)
2181 {
2182 struct module_list *lp, *tmp;
2183 int ksyms_exported = 0;
2184
2185 lp = mp->head;
2186 while (lp) {
2187 tmp = lp;
2188 lp = lp->next;
2189 kobj_free((char *)tmp, sizeof (*tmp));
2190 }
2191
2192 rw_enter(&ksyms_lock, RW_WRITER);
2193 if (mp->symspace) {
2194 if (vmem_contains(ksyms_arena, mp->symspace, mp->symsize)) {
2195 vmem_free(ksyms_arena, mp->symspace, mp->symsize);
2196 ksyms_exported = 1;
2197 } else {
2198 if (mp->flags & KOBJ_NOKSYMS)
2199 ksyms_exported = 1;
2200 kobj_free(mp->symspace, mp->symsize);
2201 }
2202 }
2203 rw_exit(&ksyms_lock);
2204
2205 if (mp->ctfdata) {
2206 if (vmem_contains(ctf_arena, mp->ctfdata, mp->ctfsize))
2207 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
2208 else
2209 kobj_free(mp->ctfdata, mp->ctfsize);
2210 }
2211
2212 if (mp->sigdata)
2213 kobj_free(mp->sigdata, mp->sigsize);
2214
2215 /*
2216 * We did not get far enough into kobj_export_ksyms() to free allocated
2217 * buffers because we encounted error conditions. Free the buffers.
2218 */
2219 if ((ksyms_exported == 0) && (mp->shdrs != NULL)) {
2220 uint_t shn;
2221 Shdr *shp;
2222
2223 for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2224 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2225 switch (shp->sh_type) {
2226 case SHT_RELA:
2227 case SHT_REL:
2228 if (shp->sh_addr != 0)
2229 kobj_free((void *)shp->sh_addr,
2230 shp->sh_size);
2231 break;
2232 }
2233 }
2234 err_free_done:
2235 if (!(mp->flags & KOBJ_PRIM)) {
2236 kobj_free(mp->shdrs,
2237 mp->hdr.e_shentsize * mp->hdr.e_shnum);
2238 }
2239 }
2240
2241 if (mp->bss)
2242 vmem_free(data_arena, (void *)mp->bss, mp->bss_size);
2243
2244 if (mp->fbt_tab)
2245 kobj_texthole_free(mp->fbt_tab, mp->fbt_size);
2246
2247 if (mp->textwin_base)
2248 kobj_textwin_free(mp);
2249
2250 if (mp->sdt_probes != NULL) {
2251 sdt_probedesc_t *sdp = mp->sdt_probes, *next;
2252
2253 while (sdp != NULL) {
2254 next = sdp->sdpd_next;
2255 kobj_free(sdp->sdpd_name, strlen(sdp->sdpd_name) + 1);
2256 kobj_free(sdp, sizeof (sdt_probedesc_t));
2257 sdp = next;
2258 }
2259 }
2260
2261 if (mp->sdt_tab)
2262 kobj_texthole_free(mp->sdt_tab, mp->sdt_size);
2263 if (mp->text)
2264 vmem_free(text_arena, mp->text, mp->text_size);
2265 if (mp->data)
2266 vmem_free(data_arena, mp->data, mp->data_size);
2267 if (mp->depends_on)
2268 kobj_free(mp->depends_on, strlen(mp->depends_on)+1);
2269 if (mp->filename)
2270 kobj_free(mp->filename, strlen(mp->filename)+1);
2271
2272 kobj_free((char *)mp, sizeof (*mp));
2273 }
2274
2275 static int
2276 get_progbits(struct module *mp, struct _buf *file)
2277 {
2278 struct proginfo *tp, *dp, *sdp;
2279 Shdr *shp;
2280 reloc_dest_t dest = NULL;
2281 uintptr_t bits_ptr;
2282 uintptr_t text = 0, data, textptr;
2283 uint_t shn;
2284 int err = -1;
2285
2286 tp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2287 dp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2288 sdp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2289 /*
2290 * loop through sections to find out how much space we need
2291 * for text, data, (also bss that is already assigned)
2292 */
2293 if (get_progbits_size(mp, tp, dp, sdp) < 0)
2294 goto done;
2295
2296 mp->text_size = tp->size;
2297 mp->data_size = dp->size;
2298
2299 if (standalone) {
2300 caddr_t limit = _data;
2301
2302 if (lg_pagesize && _text + lg_pagesize < limit)
2303 limit = _text + lg_pagesize;
2304
2305 mp->text = kobj_segbrk(&_etext, mp->text_size,
2306 tp->align, limit);
2307 /*
2308 * If we can't grow the text segment, try the
2309 * data segment before failing.
2310 */
2311 if (mp->text == NULL) {
2312 mp->text = kobj_segbrk(&_edata, mp->text_size,
2313 tp->align, 0);
2314 }
2315
2316 mp->data = kobj_segbrk(&_edata, mp->data_size, dp->align, 0);
2317
2318 if (mp->text == NULL || mp->data == NULL)
2319 goto done;
2320
2321 } else {
2322 if (text_arena == NULL)
2323 kobj_vmem_init(&text_arena, &data_arena);
2324
2325 /*
2326 * some architectures may want to load the module on a
2327 * page that is currently read only. It may not be
2328 * possible for those architectures to remap their page
2329 * on the fly. So we provide a facility for them to hang
2330 * a private hook where the memory they assign the module
2331 * is not the actual place where the module loads.
2332 *
2333 * In this case there are two addresses that deal with the
2334 * modload.
2335 * 1) the final destination of the module
2336 * 2) the address that is used to view the newly
2337 * loaded module until all the relocations relative to 1
2338 * above are completed.
2339 *
2340 * That is what dest is used for below.
2341 */
2342 mp->text_size += tp->align;
2343 mp->data_size += dp->align;
2344
2345 mp->text = kobj_text_alloc(text_arena, mp->text_size);
2346
2347 /*
2348 * a remap is taking place. Align the text ptr relative
2349 * to the secondary mapping. That is where the bits will
2350 * be read in.
2351 */
2352 if (kvseg.s_base != NULL && !vmem_contains(heaptext_arena,
2353 mp->text, mp->text_size)) {
2354 off_t off = (uintptr_t)mp->text & PAGEOFFSET;
2355 size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2356 caddr_t map = vmem_alloc(heap_arena, size, VM_SLEEP);
2357 caddr_t orig = mp->text - off;
2358 pgcnt_t pages = size / PAGESIZE;
2359
2360 dest = (reloc_dest_t)(map + off);
2361 text = ALIGN((uintptr_t)dest, tp->align);
2362
2363 while (pages--) {
2364 hat_devload(kas.a_hat, map, PAGESIZE,
2365 hat_getpfnum(kas.a_hat, orig),
2366 PROT_READ | PROT_WRITE | PROT_EXEC,
2367 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
2368 map += PAGESIZE;
2369 orig += PAGESIZE;
2370 }
2371 /*
2372 * Since we set up a non-cacheable mapping, we need
2373 * to flush any old entries in the cache that might
2374 * be left around from the read-only mapping.
2375 */
2376 dcache_flushall();
2377 }
2378 if (mp->data_size)
2379 mp->data = vmem_alloc(data_arena, mp->data_size,
2380 VM_SLEEP | VM_BESTFIT);
2381 }
2382 textptr = (uintptr_t)mp->text;
2383 textptr = ALIGN(textptr, tp->align);
2384 mp->destination = dest;
2385
2386 /*
2387 * This is the case where a remap is not being done.
2388 */
2389 if (text == 0)
2390 text = ALIGN((uintptr_t)mp->text, tp->align);
2391 data = ALIGN((uintptr_t)mp->data, dp->align);
2392
2393 /* now loop though sections assigning addresses and loading the data */
2394 for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2395 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2396 if (!(shp->sh_flags & SHF_ALLOC))
2397 continue;
2398
2399 if ((shp->sh_flags & SHF_WRITE) == 0)
2400 bits_ptr = text;
2401 else
2402 bits_ptr = data;
2403
2404 bits_ptr = ALIGN(bits_ptr, shp->sh_addralign);
2405
2406 if (shp->sh_type == SHT_NOBITS) {
2407 /*
2408 * Zero bss.
2409 */
2410 bzero((caddr_t)bits_ptr, shp->sh_size);
2411 shp->sh_type = SHT_PROGBITS;
2412 } else {
2413 if (kobj_read_file(file, (char *)bits_ptr,
2414 shp->sh_size, shp->sh_offset) < 0)
2415 goto done;
2416 }
2417
2418 if (shp->sh_flags & SHF_WRITE) {
2419 shp->sh_addr = bits_ptr;
2420 } else {
2421 textptr = ALIGN(textptr, shp->sh_addralign);
2422 shp->sh_addr = textptr;
2423 textptr += shp->sh_size;
2424 }
2425
2426 bits_ptr += shp->sh_size;
2427 if ((shp->sh_flags & SHF_WRITE) == 0)
2428 text = bits_ptr;
2429 else
2430 data = bits_ptr;
2431 }
2432
2433 err = 0;
2434 done:
2435 /*
2436 * Free and mark as freed the section headers here so that
2437 * free_module_data() does not have to worry about this buffer.
2438 *
2439 * This buffer is freed here because one of the possible reasons
2440 * for error is a section with non-zero sh_addr and in that case
2441 * free_module_data() would have no way of recognizing that this
2442 * buffer was unallocated.
2443 */
2444 if (err != 0) {
2445 kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum);
2446 mp->shdrs = NULL;
2447 }
2448
2449 (void) kobj_free(tp, sizeof (struct proginfo));
2450 (void) kobj_free(dp, sizeof (struct proginfo));
2451 (void) kobj_free(sdp, sizeof (struct proginfo));
2452
2453 return (err);
2454 }
2455
2456 /*
2457 * Go through suppress_sym_list to see if "multiply defined"
2458 * warning of this symbol should be suppressed. Return 1 if
2459 * warning should be suppressed, 0 otherwise.
2460 */
2461 static int
2462 kobj_suppress_warning(char *symname)
2463 {
2464 int i;
2465
2466 for (i = 0; suppress_sym_list[i] != NULL; i++) {
2467 if (strcmp(suppress_sym_list[i], symname) == 0)
2468 return (1);
2469 }
2470
2471 return (0);
2472 }
2473
2474 static int
2475 get_syms(struct module *mp, struct _buf *file)
2476 {
2477 uint_t shn;
2478 Shdr *shp;
2479 uint_t i;
2480 Sym *sp, *ksp;
2481 char *symname;
2482 int dosymtab = 0;
2483
2484 /*
2485 * Find the interesting sections.
2486 */
2487 for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2488 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2489 switch (shp->sh_type) {
2490 case SHT_SYMTAB:
2491 mp->symtbl_section = shn;
2492 mp->symhdr = shp;
2493 dosymtab++;
2494 break;
2495
2496 case SHT_RELA:
2497 case SHT_REL:
2498 /*
2499 * Already loaded.
2500 */
2501 if (shp->sh_addr)
2502 continue;
2503
2504 /* KM_TMP since kobj_free'd in do_relocations */
2505 shp->sh_addr = (Addr)
2506 kobj_alloc(shp->sh_size, KM_WAIT|KM_TMP);
2507
2508 if (kobj_read_file(file, (char *)shp->sh_addr,
2509 shp->sh_size, shp->sh_offset) < 0) {
2510 _kobj_printf(ops, "krtld: get_syms: %s, ",
2511 mp->filename);
2512 _kobj_printf(ops, "error reading section %d\n",
2513 shn);
2514 return (-1);
2515 }
2516 break;
2517 }
2518 }
2519
2520 /*
2521 * This is true for a stripped executable. In the case of
2522 * 'unix' it can be stripped but it still contains the SHT_DYNSYM,
2523 * and since that symbol information is still present everything
2524 * is just fine.
2525 */
2526 if (!dosymtab) {
2527 if (mp->flags & KOBJ_EXEC)
2528 return (0);
2529 _kobj_printf(ops, "krtld: get_syms: %s ",
2530 mp->filename);
2531 _kobj_printf(ops, "no SHT_SYMTAB symbol table found\n");
2532 return (-1);
2533 }
2534
2535 /*
2536 * get the associated string table header
2537 */
2538 if ((mp->symhdr == 0) || (mp->symhdr->sh_link >= mp->hdr.e_shnum))
2539 return (-1);
2540 mp->strhdr = (Shdr *)
2541 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
2542
2543 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
2544 mp->hashsize = kobj_gethashsize(mp->nsyms);
2545
2546 /*
2547 * Allocate space for the symbol table, buckets, chains, and strings.
2548 */
2549 mp->symsize = mp->symhdr->sh_size +
2550 (mp->hashsize + mp->nsyms) * sizeof (symid_t) + mp->strhdr->sh_size;
2551 mp->symspace = kobj_zalloc(mp->symsize, KM_WAIT|KM_SCRATCH);
2552
2553 mp->symtbl = mp->symspace;
2554 mp->buckets = (symid_t *)(mp->symtbl + mp->symhdr->sh_size);
2555 mp->chains = mp->buckets + mp->hashsize;
2556 mp->strings = (char *)(mp->chains + mp->nsyms);
2557
2558 if (kobj_read_file(file, mp->symtbl,
2559 mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0 ||
2560 kobj_read_file(file, mp->strings,
2561 mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0)
2562 return (-1);
2563
2564 /*
2565 * loop through the symbol table adjusting values to account
2566 * for where each section got loaded into memory. Also
2567 * fill in the hash table.
2568 */
2569 for (i = 1; i < mp->nsyms; i++) {
2570 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
2571 if (sp->st_shndx < SHN_LORESERVE) {
2572 if (sp->st_shndx >= mp->hdr.e_shnum) {
2573 _kobj_printf(ops, "%s bad shndx ",
2574 file->_name);
2575 _kobj_printf(ops, "in symbol %d\n", i);
2576 return (-1);
2577 }
2578 shp = (Shdr *)
2579 (mp->shdrs +
2580 sp->st_shndx * mp->hdr.e_shentsize);
2581 if (!(mp->flags & KOBJ_EXEC))
2582 sp->st_value += shp->sh_addr;
2583 }
2584
2585 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
2586 continue;
2587 if (sp->st_name >= mp->strhdr->sh_size)
2588 return (-1);
2589
2590 symname = mp->strings + sp->st_name;
2591
2592 if (!(mp->flags & KOBJ_EXEC) &&
2593 ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
2594 ksp = kobj_lookup_all(mp, symname, 0);
2595
2596 if (ksp && ELF_ST_BIND(ksp->st_info) == STB_GLOBAL &&
2597 !kobj_suppress_warning(symname) &&
2598 sp->st_shndx != SHN_UNDEF &&
2599 sp->st_shndx != SHN_COMMON &&
2600 ksp->st_shndx != SHN_UNDEF &&
2601 ksp->st_shndx != SHN_COMMON) {
2602 /*
2603 * Unless this symbol is a stub, it's multiply
2604 * defined. Multiply-defined symbols are
2605 * usually bad, but some objects (kmdb) have
2606 * a legitimate need to have their own
2607 * copies of common functions.
2608 */
2609 if ((standalone ||
2610 ksp->st_value < (uintptr_t)stubs_base ||
2611 ksp->st_value >= (uintptr_t)stubs_end) &&
2612 !(mp->flags & KOBJ_IGNMULDEF)) {
2613 _kobj_printf(ops,
2614 "%s symbol ", file->_name);
2615 _kobj_printf(ops,
2616 "%s multiply defined\n", symname);
2617 }
2618 }
2619 }
2620
2621 sym_insert(mp, symname, i);
2622 }
2623
2624 return (0);
2625 }
2626
2627 static int
2628 get_ctf(struct module *mp, struct _buf *file)
2629 {
2630 char *shstrtab, *ctfdata;
2631 size_t shstrlen;
2632 Shdr *shp;
2633 uint_t i;
2634
2635 if (_moddebug & MODDEBUG_NOCTF)
2636 return (0); /* do not attempt to even load CTF data */
2637
2638 if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2639 _kobj_printf(ops, "krtld: get_ctf: %s, ",
2640 mp->filename);
2641 _kobj_printf(ops, "corrupt e_shstrndx %u\n",
2642 mp->hdr.e_shstrndx);
2643 return (-1);
2644 }
2645
2646 shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2647 shstrlen = shp->sh_size;
2648 shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2649
2650 if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2651 _kobj_printf(ops, "krtld: get_ctf: %s, ",
2652 mp->filename);
2653 _kobj_printf(ops, "error reading section %u\n",
2654 mp->hdr.e_shstrndx);
2655 kobj_free(shstrtab, shstrlen);
2656 return (-1);
2657 }
2658
2659 for (i = 0; i < mp->hdr.e_shnum; i++) {
2660 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2661
2662 if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2663 strcmp(shstrtab + shp->sh_name, ".SUNW_ctf") == 0) {
2664 ctfdata = kobj_alloc(shp->sh_size, KM_WAIT|KM_SCRATCH);
2665
2666 if (kobj_read_file(file, ctfdata, shp->sh_size,
2667 shp->sh_offset) < 0) {
2668 _kobj_printf(ops, "krtld: get_ctf: %s, error "
2669 "reading .SUNW_ctf data\n", mp->filename);
2670 kobj_free(ctfdata, shp->sh_size);
2671 kobj_free(shstrtab, shstrlen);
2672 return (-1);
2673 }
2674
2675 mp->ctfdata = ctfdata;
2676 mp->ctfsize = shp->sh_size;
2677 break;
2678 }
2679 }
2680
2681 kobj_free(shstrtab, shstrlen);
2682 return (0);
2683 }
2684
2685 #define SHA1_DIGEST_LENGTH 20 /* SHA1 digest length in bytes */
2686
2687 /*
2688 * Return the hash of the ELF sections that are memory resident.
2689 * i.e. text and data. We skip a SHT_NOBITS section since it occupies
2690 * no space in the file. We use SHA1 here since libelfsign uses
2691 * it and both places need to use the same algorithm.
2692 */
2693 static void
2694 crypto_es_hash(struct module *mp, char *hash, char *shstrtab)
2695 {
2696 uint_t shn;
2697 Shdr *shp;
2698 SHA1_CTX ctx;
2699
2700 SHA1Init(&ctx);
2701
2702 for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2703 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2704 if (!(shp->sh_flags & SHF_ALLOC) || shp->sh_size == 0)
2705 continue;
2706
2707 /*
2708 * The check should ideally be shp->sh_type == SHT_NOBITS.
2709 * However, we can't do that check here as get_progbits()
2710 * resets the type.
2711 */
2712 if (strcmp(shstrtab + shp->sh_name, ".bss") == 0)
2713 continue;
2714 #ifdef KOBJ_DEBUG
2715 if (kobj_debug & D_DEBUG)
2716 _kobj_printf(ops,
2717 "krtld: crypto_es_hash: updating hash with"
2718 " %s data size=%d\n", shstrtab + shp->sh_name,
2719 shp->sh_size);
2720 #endif
2721 ASSERT(shp->sh_addr != 0);
2722 SHA1Update(&ctx, (const uint8_t *)shp->sh_addr, shp->sh_size);
2723 }
2724
2725 SHA1Final((uchar_t *)hash, &ctx);
2726 }
2727
2728 /*
2729 * Get the .SUNW_signature section for the module, it it exists.
2730 *
2731 * This section exists only for crypto modules. None of the
2732 * primary modules have this section currently.
2733 */
2734 static void
2735 get_signature(struct module *mp, struct _buf *file)
2736 {
2737 char *shstrtab, *sigdata = NULL;
2738 size_t shstrlen;
2739 Shdr *shp;
2740 uint_t i;
2741
2742 if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2743 _kobj_printf(ops, "krtld: get_signature: %s, ",
2744 mp->filename);
2745 _kobj_printf(ops, "corrupt e_shstrndx %u\n",
2746 mp->hdr.e_shstrndx);
2747 return;
2748 }
2749
2750 shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2751 shstrlen = shp->sh_size;
2752 shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2753
2754 if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2755 _kobj_printf(ops, "krtld: get_signature: %s, ",
2756 mp->filename);
2757 _kobj_printf(ops, "error reading section %u\n",
2758 mp->hdr.e_shstrndx);
2759 kobj_free(shstrtab, shstrlen);
2760 return;
2761 }
2762
2763 for (i = 0; i < mp->hdr.e_shnum; i++) {
2764 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2765 if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2766 strcmp(shstrtab + shp->sh_name,
2767 ELF_SIGNATURE_SECTION) == 0) {
2768 filesig_vers_t filesig_version;
2769 size_t sigsize = shp->sh_size + SHA1_DIGEST_LENGTH;
2770 sigdata = kobj_alloc(sigsize, KM_WAIT|KM_SCRATCH);
2771
2772 if (kobj_read_file(file, sigdata, shp->sh_size,
2773 shp->sh_offset) < 0) {
2774 _kobj_printf(ops, "krtld: get_signature: %s,"
2775 " error reading .SUNW_signature data\n",
2776 mp->filename);
2777 kobj_free(sigdata, sigsize);
2778 kobj_free(shstrtab, shstrlen);
2779 return;
2780 }
2781 filesig_version = ((struct filesignatures *)sigdata)->
2782 filesig_sig.filesig_version;
2783 if (!(filesig_version == FILESIG_VERSION1 ||
2784 filesig_version == FILESIG_VERSION3)) {
2785 /* skip versions we don't understand */
2786 kobj_free(sigdata, sigsize);
2787 kobj_free(shstrtab, shstrlen);
2788 return;
2789 }
2790
2791 mp->sigdata = sigdata;
2792 mp->sigsize = sigsize;
2793 break;
2794 }
2795 }
2796
2797 if (sigdata != NULL) {
2798 crypto_es_hash(mp, sigdata + shp->sh_size, shstrtab);
2799 }
2800
2801 kobj_free(shstrtab, shstrlen);
2802 }
2803
2804 static void
2805 add_dependent(struct module *mp, struct module *dep)
2806 {
2807 struct module_list *lp;
2808
2809 for (lp = mp->head; lp; lp = lp->next) {
2810 if (lp->mp == dep)
2811 return; /* already on the list */
2812 }
2813
2814 if (lp == NULL) {
2815 lp = kobj_zalloc(sizeof (*lp), KM_WAIT);
2816
2817 lp->mp = dep;
2818 lp->next = NULL;
2819 if (mp->tail)
2820 mp->tail->next = lp;
2821 else
2822 mp->head = lp;
2823 mp->tail = lp;
2824 }
2825 }
2826
2827 static int
2828 do_dependents(struct modctl *modp, char *modname, size_t modnamelen)
2829 {
2830 struct module *mp;
2831 struct modctl *req;
2832 char *d, *p, *q;
2833 int c;
2834 char *err_modname = NULL;
2835
2836 mp = modp->mod_mp;
2837
2838 if ((p = mp->depends_on) == NULL)
2839 return (0);
2840
2841 for (;;) {
2842 /*
2843 * Skip space.
2844 */
2845 while (*p && (*p == ' ' || *p == '\t'))
2846 p++;
2847 /*
2848 * Get module name.
2849 */
2850 d = p;
2851 q = modname;
2852 c = 0;
2853 while (*p && *p != ' ' && *p != '\t') {
2854 if (c < modnamelen - 1) {
2855 *q++ = *p;
2856 c++;
2857 }
2858 p++;
2859 }
2860
2861 if (q == modname)
2862 break;
2863
2864 if (c == modnamelen - 1) {
2865 char *dep = kobj_alloc(p - d + 1, KM_WAIT|KM_TMP);
2866
2867 (void) strncpy(dep, d, p - d + 1);
2868 dep[p - d] = '\0';
2869
2870 _kobj_printf(ops, "%s: dependency ", modp->mod_modname);
2871 _kobj_printf(ops, "'%s' too long ", dep);
2872 _kobj_printf(ops, "(max %d chars)\n", modnamelen);
2873
2874 kobj_free(dep, p - d + 1);
2875
2876 return (-1);
2877 }
2878
2879 *q = '\0';
2880 if ((req = mod_load_requisite(modp, modname)) == NULL) {
2881 #ifndef KOBJ_DEBUG
2882 if (_moddebug & MODDEBUG_LOADMSG) {
2883 #endif /* KOBJ_DEBUG */
2884 _kobj_printf(ops,
2885 "%s: unable to resolve dependency, ",
2886 modp->mod_modname);
2887 _kobj_printf(ops, "cannot load module '%s'\n",
2888 modname);
2889 #ifndef KOBJ_DEBUG
2890 }
2891 #endif /* KOBJ_DEBUG */
2892 if (err_modname == NULL) {
2893 /*
2894 * This must be the same size as the modname
2895 * one.
2896 */
2897 err_modname = kobj_zalloc(MODMAXNAMELEN,
2898 KM_WAIT);
2899
2900 /*
2901 * We can use strcpy() here without fearing
2902 * the NULL terminator because the size of
2903 * err_modname is the same as one of modname,
2904 * and it's filled with zeros.
2905 */
2906 (void) strcpy(err_modname, modname);
2907 }
2908 continue;
2909 }
2910
2911 add_dependent(mp, req->mod_mp);
2912 mod_release_mod(req);
2913
2914 }
2915
2916 if (err_modname != NULL) {
2917 /*
2918 * Copy the first module name where you detect an error to keep
2919 * its behavior the same as before.
2920 * This way keeps minimizing the memory use for error
2921 * modules, and this might be important at boot time because
2922 * the memory usage is a crucial factor for booting in most
2923 * cases. You can expect more verbose messages when using
2924 * a debug kernel or setting a bit in moddebug.
2925 */
2926 bzero(modname, MODMAXNAMELEN);
2927 (void) strcpy(modname, err_modname);
2928 kobj_free(err_modname, MODMAXNAMELEN);
2929 return (-1);
2930 }
2931
2932 return (0);
2933 }
2934
2935 static int
2936 do_common(struct module *mp)
2937 {
2938 int err;
2939
2940 /*
2941 * first time through, assign all symbols defined in other
2942 * modules, and count up how much common space will be needed
2943 * (bss_size and bss_align)
2944 */
2945 if ((err = do_symbols(mp, 0)) < 0)
2946 return (err);
2947 /*
2948 * increase bss_size by the maximum delta that could be
2949 * computed by the ALIGN below
2950 */
2951 mp->bss_size += mp->bss_align;
2952 if (mp->bss_size) {
2953 if (standalone)
2954 mp->bss = (uintptr_t)kobj_segbrk(&_edata, mp->bss_size,
2955 MINALIGN, 0);
2956 else
2957 mp->bss = (uintptr_t)vmem_alloc(data_arena,
2958 mp->bss_size, VM_SLEEP | VM_BESTFIT);
2959 bzero((void *)mp->bss, mp->bss_size);
2960 /* now assign addresses to all common symbols */
2961 if ((err = do_symbols(mp, ALIGN(mp->bss, mp->bss_align))) < 0)
2962 return (err);
2963 }
2964 return (0);
2965 }
2966
2967 static int
2968 do_symbols(struct module *mp, Elf64_Addr bss_base)
2969 {
2970 int bss_align;
2971 uintptr_t bss_ptr;
2972 int err;
2973 int i;
2974 Sym *sp, *sp1;
2975 char *name;
2976 int assign;
2977 int resolved = 1;
2978
2979 /*
2980 * Nothing left to do (optimization).
2981 */
2982 if (mp->flags & KOBJ_RESOLVED)
2983 return (0);
2984
2985 assign = (bss_base) ? 1 : 0;
2986 bss_ptr = bss_base;
2987 bss_align = 0;
2988 err = 0;
2989
2990 for (i = 1; i < mp->nsyms; i++) {
2991 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * i);
2992 /*
2993 * we know that st_name is in bounds, since get_sections
2994 * has already checked all of the symbols
2995 */
2996 name = mp->strings + sp->st_name;
2997 if (sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON)
2998 continue;
2999 #if defined(__sparc)
3000 /*
3001 * Register symbols are ignored in the kernel
3002 */
3003 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) {
3004 if (*name != '\0') {
3005 _kobj_printf(ops, "%s: named REGISTER symbol ",
3006 mp->filename);
3007 _kobj_printf(ops, "not supported '%s'\n",
3008 name);
3009 err = DOSYM_UNDEF;
3010 }
3011 continue;
3012 }
3013 #endif /* __sparc */
3014 /*
3015 * TLS symbols are ignored in the kernel
3016 */
3017 if (ELF_ST_TYPE(sp->st_info) == STT_TLS) {
3018 _kobj_printf(ops, "%s: TLS symbol ",
3019 mp->filename);
3020 _kobj_printf(ops, "not supported '%s'\n",
3021 name);
3022 err = DOSYM_UNDEF;
3023 continue;
3024 }
3025
3026 if (ELF_ST_BIND(sp->st_info) != STB_LOCAL) {
3027 if ((sp1 = kobj_lookup_all(mp, name, 0)) != NULL) {
3028 sp->st_shndx = SHN_ABS;
3029 sp->st_value = sp1->st_value;
3030 continue;
3031 }
3032 }
3033
3034 if (sp->st_shndx == SHN_UNDEF) {
3035 resolved = 0;
3036
3037 if (strncmp(name, sdt_prefix, strlen(sdt_prefix)) == 0)
3038 continue;
3039
3040 /*
3041 * If it's not a weak reference and it's
3042 * not a primary object, it's an error.
3043 * (Primary objects may take more than
3044 * one pass to resolve)
3045 */
3046 if (!(mp->flags & KOBJ_PRIM) &&
3047 ELF_ST_BIND(sp->st_info) != STB_WEAK) {
3048 _kobj_printf(ops, "%s: undefined symbol",
3049 mp->filename);
3050 _kobj_printf(ops, " '%s'\n", name);
3051 /*
3052 * Try to determine whether this symbol
3053 * represents a dependency on obsolete
3054 * unsafe driver support. This is just
3055 * to make the warning more informative.
3056 */
3057 if (strcmp(name, "sleep") == 0 ||
3058 strcmp(name, "unsleep") == 0 ||
3059 strcmp(name, "wakeup") == 0 ||
3060 strcmp(name, "bsd_compat_ioctl") == 0 ||
3061 strcmp(name, "unsafe_driver") == 0 ||
3062 strncmp(name, "spl", 3) == 0 ||
3063 strncmp(name, "i_ddi_spl", 9) == 0)
3064 err = DOSYM_UNSAFE;
3065 if (err == 0)
3066 err = DOSYM_UNDEF;
3067 }
3068 continue;
3069 }
3070 /*
3071 * It's a common symbol - st_value is the
3072 * required alignment.
3073 */
3074 if (sp->st_value > bss_align)
3075 bss_align = sp->st_value;
3076 bss_ptr = ALIGN(bss_ptr, sp->st_value);
3077 if (assign) {
3078 sp->st_shndx = SHN_ABS;
3079 sp->st_value = bss_ptr;
3080 }
3081 bss_ptr += sp->st_size;
3082 }
3083 if (err)
3084 return (err);
3085 if (assign == 0 && mp->bss == 0) {
3086 mp->bss_align = bss_align;
3087 mp->bss_size = bss_ptr;
3088 } else if (resolved) {
3089 mp->flags |= KOBJ_RESOLVED;
3090 }
3091
3092 return (0);
3093 }
3094
3095 uint_t
3096 kobj_hash_name(const char *p)
3097 {
3098 uint_t g;
3099 uint_t hval;
3100
3101 hval = 0;
3102 while (*p) {
3103 hval = (hval << 4) + *p++;
3104 if ((g = (hval & 0xf0000000)) != 0)
3105 hval ^= g >> 24;
3106 hval &= ~g;
3107 }
3108 return (hval);
3109 }
3110
3111 /* look for name in all modules */
3112 uintptr_t
3113 kobj_getsymvalue(char *name, int kernelonly)
3114 {
3115 Sym *sp;
3116 struct modctl *modp;
3117 struct module *mp;
3118 uintptr_t value = 0;
3119
3120 if ((sp = kobj_lookup_kernel(name)) != NULL)
3121 return ((uintptr_t)sp->st_value);
3122
3123 if (kernelonly)
3124 return (0); /* didn't find it in the kernel so give up */
3125
3126 mutex_enter(&mod_lock);
3127 modp = &modules;
3128 do {
3129 mp = (struct module *)modp->mod_mp;
3130 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3131 (sp = lookup_one(mp, name))) {
3132 value = (uintptr_t)sp->st_value;
3133 break;
3134 }
3135 } while ((modp = modp->mod_next) != &modules);
3136 mutex_exit(&mod_lock);
3137 return (value);
3138 }
3139
3140 /* look for a symbol near value. */
3141 char *
3142 kobj_getsymname(uintptr_t value, ulong_t *offset)
3143 {
3144 char *name = NULL;
3145 struct modctl *modp;
3146
3147 struct modctl_list *lp;
3148 struct module *mp;
3149
3150 /*
3151 * Loop through the primary kernel modules.
3152 */
3153 for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3154 mp = mod(lp);
3155
3156 if ((name = kobj_searchsym(mp, value, offset)) != NULL)
3157 return (name);
3158 }
3159
3160 mutex_enter(&mod_lock);
3161 modp = &modules;
3162 do {
3163 mp = (struct module *)modp->mod_mp;
3164 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3165 (name = kobj_searchsym(mp, value, offset)))
3166 break;
3167 } while ((modp = modp->mod_next) != &modules);
3168 mutex_exit(&mod_lock);
3169 return (name);
3170 }
3171
3172 /* return address of symbol and size */
3173
3174 uintptr_t
3175 kobj_getelfsym(char *name, void *mp, int *size)
3176 {
3177 Sym *sp;
3178
3179 if (mp == NULL)
3180 sp = kobj_lookup_kernel(name);
3181 else
3182 sp = lookup_one(mp, name);
3183
3184 if (sp == NULL)
3185 return (0);
3186
3187 *size = (int)sp->st_size;
3188 return ((uintptr_t)sp->st_value);
3189 }
3190
3191 uintptr_t
3192 kobj_lookup(struct module *mod, const char *name)
3193 {
3194 Sym *sp;
3195
3196 sp = lookup_one(mod, name);
3197
3198 if (sp == NULL)
3199 return (0);
3200
3201 return ((uintptr_t)sp->st_value);
3202 }
3203
3204 char *
3205 kobj_searchsym(struct module *mp, uintptr_t value, ulong_t *offset)
3206 {
3207 Sym *symtabptr;
3208 char *strtabptr;
3209 int symnum;
3210 Sym *sym;
3211 Sym *cursym;
3212 uintptr_t curval;
3213
3214 *offset = (ulong_t)-1l; /* assume not found */
3215 cursym = NULL;
3216
3217 if (kobj_addrcheck(mp, (void *)value) != 0)
3218 return (NULL); /* not in this module */
3219
3220 strtabptr = mp->strings;
3221 symtabptr = (Sym *)mp->symtbl;
3222
3223 /*
3224 * Scan the module's symbol table for a symbol <= value
3225 */
3226 for (symnum = 1, sym = symtabptr + 1;
3227 symnum < mp->nsyms; symnum++, sym = (Sym *)
3228 ((uintptr_t)sym + mp->symhdr->sh_entsize)) {
3229 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) {
3230 if (ELF_ST_BIND(sym->st_info) != STB_LOCAL)
3231 continue;
3232 if (ELF_ST_TYPE(sym->st_info) != STT_OBJECT &&
3233 ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3234 continue;
3235 }
3236
3237 curval = (uintptr_t)sym->st_value;
3238
3239 if (curval > value)
3240 continue;
3241
3242 /*
3243 * If one or both are functions...
3244 */
3245 if (ELF_ST_TYPE(sym->st_info) == STT_FUNC || (cursym != NULL &&
3246 ELF_ST_TYPE(cursym->st_info) == STT_FUNC)) {
3247 /* Ignore if the address is out of the bounds */
3248 if (value - sym->st_value >= sym->st_size)
3249 continue;
3250
3251 if (cursym != NULL &&
3252 ELF_ST_TYPE(cursym->st_info) == STT_FUNC) {
3253 /* Prefer the function to the non-function */
3254 if (ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3255 continue;
3256
3257 /* Prefer the larger of the two functions */
3258 if (sym->st_size <= cursym->st_size)
3259 continue;
3260 }
3261 } else if (value - curval >= *offset) {
3262 continue;
3263 }
3264
3265 *offset = (ulong_t)(value - curval);
3266 cursym = sym;
3267 }
3268 if (cursym == NULL)
3269 return (NULL);
3270
3271 return (strtabptr + cursym->st_name);
3272 }
3273
3274 Sym *
3275 kobj_lookup_all(struct module *mp, char *name, int include_self)
3276 {
3277 Sym *sp;
3278 struct module_list *mlp;
3279 struct modctl_list *clp;
3280 struct module *mmp;
3281
3282 if (include_self && (sp = lookup_one(mp, name)) != NULL)
3283 return (sp);
3284
3285 for (mlp = mp->head; mlp; mlp = mlp->next) {
3286 if ((sp = lookup_one(mlp->mp, name)) != NULL &&
3287 ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3288 return (sp);
3289 }
3290
3291 /*
3292 * Loop through the primary kernel modules.
3293 */
3294 for (clp = kobj_lm_lookup(KOBJ_LM_PRIMARY); clp; clp = clp->modl_next) {
3295 mmp = mod(clp);
3296
3297 if (mmp == NULL || mp == mmp)
3298 continue;
3299
3300 if ((sp = lookup_one(mmp, name)) != NULL &&
3301 ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3302 return (sp);
3303 }
3304 return (NULL);
3305 }
3306
3307 Sym *
3308 kobj_lookup_kernel(const char *name)
3309 {
3310 struct modctl_list *lp;
3311 struct module *mp;
3312 Sym *sp;
3313
3314 /*
3315 * Loop through the primary kernel modules.
3316 */
3317 for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3318 mp = mod(lp);
3319
3320 if (mp == NULL)
3321 continue;
3322
3323 if ((sp = lookup_one(mp, name)) != NULL)
3324 return (sp);
3325 }
3326 return (NULL);
3327 }
3328
3329 static Sym *
3330 lookup_one(struct module *mp, const char *name)
3331 {
3332 symid_t *ip;
3333 char *name1;
3334 Sym *sp;
3335
3336 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3337 ip = &mp->chains[*ip]) {
3338 sp = (Sym *)(mp->symtbl +
3339 mp->symhdr->sh_entsize * *ip);
3340 name1 = mp->strings + sp->st_name;
3341 if (strcmp(name, name1) == 0 &&
3342 ELF_ST_TYPE(sp->st_info) != STT_FILE &&
3343 sp->st_shndx != SHN_UNDEF &&
3344 sp->st_shndx != SHN_COMMON)
3345 return (sp);
3346 }
3347 return (NULL);
3348 }
3349
3350 /*
3351 * Lookup a given symbol pointer in the module's symbol hash. If the symbol
3352 * is hashed, return the symbol pointer; otherwise return NULL.
3353 */
3354 static Sym *
3355 sym_lookup(struct module *mp, Sym *ksp)
3356 {
3357 char *name = mp->strings + ksp->st_name;
3358 symid_t *ip;
3359 Sym *sp;
3360
3361 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3362 ip = &mp->chains[*ip]) {
3363 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * *ip);
3364 if (sp == ksp)
3365 return (ksp);
3366 }
3367 return (NULL);
3368 }
3369
3370 static void
3371 sym_insert(struct module *mp, char *name, symid_t index)
3372 {
3373 symid_t *ip;
3374
3375 #ifdef KOBJ_DEBUG
3376 if (kobj_debug & D_SYMBOLS) {
3377 static struct module *lastmp = NULL;
3378 Sym *sp;
3379 if (lastmp != mp) {
3380 _kobj_printf(ops,
3381 "krtld: symbol entry: file=%s\n",
3382 mp->filename);
3383 _kobj_printf(ops,
3384 "krtld:\tsymndx\tvalue\t\t"
3385 "symbol name\n");
3386 lastmp = mp;
3387 }
3388 sp = (Sym *)(mp->symtbl +
3389 index * mp->symhdr->sh_entsize);
3390 _kobj_printf(ops, "krtld:\t[%3d]", index);
3391 _kobj_printf(ops, "\t0x%lx", sp->st_value);
3392 _kobj_printf(ops, "\t%s\n", name);
3393 }
3394 #endif
3395
3396 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3397 ip = &mp->chains[*ip]) {
3398 ;
3399 }
3400 *ip = index;
3401 }
3402
3403 struct modctl *
3404 kobj_boot_mod_lookup(const char *modname)
3405 {
3406 struct modctl *mctl = kobj_modules;
3407
3408 do {
3409 if (strcmp(modname, mctl->mod_modname) == 0)
3410 return (mctl);
3411 } while ((mctl = mctl->mod_next) != kobj_modules);
3412
3413 return (NULL);
3414 }
3415
3416 /*
3417 * Determine if the module exists.
3418 */
3419 int
3420 kobj_path_exists(char *name, int use_path)
3421 {
3422 struct _buf *file;
3423
3424 file = kobj_open_path(name, use_path, 1);
3425 #ifdef MODDIR_SUFFIX
3426 if (file == (struct _buf *)-1)
3427 file = kobj_open_path(name, use_path, 0);
3428 #endif /* MODDIR_SUFFIX */
3429 if (file == (struct _buf *)-1)
3430 return (0);
3431 kobj_close_file(file);
3432 return (1);
3433 }
3434
3435 /*
3436 * fullname is dynamically allocated to be able to hold the
3437 * maximum size string that can be constructed from name.
3438 * path is exactly like the shell PATH variable.
3439 */
3440 struct _buf *
3441 kobj_open_path(char *name, int use_path, int use_moddir_suffix)
3442 {
3443 char *p, *q;
3444 char *pathp;
3445 char *pathpsave;
3446 char *fullname;
3447 int maxpathlen;
3448 struct _buf *file;
3449
3450 #if !defined(MODDIR_SUFFIX)
3451 use_moddir_suffix = B_FALSE;
3452 #endif
3453
3454 if (!use_path)
3455 pathp = ""; /* use name as specified */
3456 else
3457 pathp = kobj_module_path;
3458 /* use configured default path */
3459
3460 pathpsave = pathp; /* keep this for error reporting */
3461
3462 /*
3463 * Allocate enough space for the largest possible fullname.
3464 * since path is of the form <directory> : <directory> : ...
3465 * we're potentially allocating a little more than we need to
3466 * but we'll allocate the exact amount when we find the right directory.
3467 * (The + 3 below is one for NULL terminator and one for the '/'
3468 * we might have to add at the beginning of path and one for
3469 * the '/' between path and name.)
3470 */
3471 maxpathlen = strlen(pathp) + strlen(name) + 3;
3472 /* sizeof includes null */
3473 maxpathlen += sizeof (slash_moddir_suffix_slash) - 1;
3474 fullname = kobj_zalloc(maxpathlen, KM_WAIT);
3475
3476 for (;;) {
3477 p = fullname;
3478 if (*pathp != '\0' && *pathp != '/')
3479 *p++ = '/'; /* path must start with '/' */
3480 while (*pathp && *pathp != ':' && *pathp != ' ')
3481 *p++ = *pathp++;
3482 if (p != fullname && p[-1] != '/')
3483 *p++ = '/';
3484 if (use_moddir_suffix) {
3485 char *b = basename(name);
3486 char *s;
3487
3488 /* copy everything up to the base name */
3489 q = name;
3490 while (q != b && *q)
3491 *p++ = *q++;
3492 s = slash_moddir_suffix_slash;
3493 while (*s)
3494 *p++ = *s++;
3495 /* copy the rest */
3496 while (*b)
3497 *p++ = *b++;
3498 } else {
3499 q = name;
3500 while (*q)
3501 *p++ = *q++;
3502 }
3503 *p = 0;
3504 if ((file = kobj_open_file(fullname)) != (struct _buf *)-1) {
3505 kobj_free(fullname, maxpathlen);
3506 return (file);
3507 }
3508 while (*pathp == ' ' || *pathp == ':')
3509 pathp++;
3510 if (*pathp == 0)
3511 break;
3512
3513 }
3514 kobj_free(fullname, maxpathlen);
3515 if (_moddebug & MODDEBUG_ERRMSG) {
3516 _kobj_printf(ops, "can't open %s,", name);
3517 _kobj_printf(ops, " path is %s\n", pathpsave);
3518 }
3519 return ((struct _buf *)-1);
3520 }
3521
3522 intptr_t
3523 kobj_open(char *filename)
3524 {
3525 struct vnode *vp;
3526 int fd;
3527
3528 if (_modrootloaded) {
3529 struct kobjopen_tctl *ltp = kobjopen_alloc(filename);
3530 int Errno;
3531
3532 /*
3533 * Hand off the open to a thread who has a
3534 * stack size capable handling the request.
3535 */
3536 if (curthread != &t0) {
3537 (void) thread_create(NULL, DEFAULTSTKSZ * 2,
3538 kobjopen_thread, ltp, 0, &p0, TS_RUN, maxclsyspri);
3539 sema_p(<p->sema);
3540 Errno = ltp->Errno;
3541 vp = ltp->vp;
3542 } else {
3543 /*
3544 * 1098067: module creds should not be those of the
3545 * caller
3546 */
3547 cred_t *saved_cred = curthread->t_cred;
3548 curthread->t_cred = kcred;
3549 Errno = vn_openat(filename, UIO_SYSSPACE, FREAD, 0, &vp,
3550 0, 0, rootdir, -1);
3551 curthread->t_cred = saved_cred;
3552 }
3553 kobjopen_free(ltp);
3554
3555 if (Errno) {
3556 if (_moddebug & MODDEBUG_ERRMSG) {
3557 _kobj_printf(ops,
3558 "kobj_open: vn_open of %s fails, ",
3559 filename);
3560 _kobj_printf(ops, "Errno = %d\n", Errno);
3561 }
3562 return (-1);
3563 } else {
3564 if (_moddebug & MODDEBUG_ERRMSG) {
3565 _kobj_printf(ops, "kobj_open: '%s'", filename);
3566 _kobj_printf(ops, " vp = %p\n", vp);
3567 }
3568 return ((intptr_t)vp);
3569 }
3570 } else {
3571 fd = kobj_boot_open(filename, 0);
3572
3573 if (_moddebug & MODDEBUG_ERRMSG) {
3574 if (fd < 0)
3575 _kobj_printf(ops,
3576 "kobj_open: can't open %s\n", filename);
3577 else {
3578 _kobj_printf(ops, "kobj_open: '%s'", filename);
3579 _kobj_printf(ops, " descr = 0x%x\n", fd);
3580 }
3581 }
3582 return ((intptr_t)fd);
3583 }
3584 }
3585
3586 /*
3587 * Calls to kobj_open() are handled off to this routine as a separate thread.
3588 */
3589 static void
3590 kobjopen_thread(struct kobjopen_tctl *ltp)
3591 {
3592 kmutex_t cpr_lk;
3593 callb_cpr_t cpr_i;
3594
3595 mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL);
3596 CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "kobjopen");
3597 ltp->Errno = vn_open(ltp->name, UIO_SYSSPACE, FREAD, 0, &(ltp->vp),
3598 0, 0);
3599 sema_v(<p->sema);
3600 mutex_enter(&cpr_lk);
3601 CALLB_CPR_EXIT(&cpr_i);
3602 mutex_destroy(&cpr_lk);
3603 thread_exit();
3604 }
3605
3606 /*
3607 * allocate and initialize a kobjopen thread structure
3608 */
3609 static struct kobjopen_tctl *
3610 kobjopen_alloc(char *filename)
3611 {
3612 struct kobjopen_tctl *ltp = kmem_zalloc(sizeof (*ltp), KM_SLEEP);
3613
3614 ASSERT(filename != NULL);
3615
3616 ltp->name = kmem_alloc(strlen(filename) + 1, KM_SLEEP);
3617 bcopy(filename, ltp->name, strlen(filename) + 1);
3618 sema_init(<p->sema, 0, NULL, SEMA_DEFAULT, NULL);
3619 return (ltp);
3620 }
3621
3622 /*
3623 * free a kobjopen thread control structure
3624 */
3625 static void
3626 kobjopen_free(struct kobjopen_tctl *ltp)
3627 {
3628 sema_destroy(<p->sema);
3629 kmem_free(ltp->name, strlen(ltp->name) + 1);
3630 kmem_free(ltp, sizeof (*ltp));
3631 }
3632
3633 int
3634 kobj_read(intptr_t descr, char *buf, uint_t size, uint_t offset)
3635 {
3636 int stat;
3637 ssize_t resid;
3638
3639 if (_modrootloaded) {
3640 if ((stat = vn_rdwr(UIO_READ, (struct vnode *)descr, buf, size,
3641 (offset_t)offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3642 &resid)) != 0) {
3643 _kobj_printf(ops,
3644 "vn_rdwr failed with error 0x%x\n", stat);
3645 return (-1);
3646 }
3647 return (size - resid);
3648 } else {
3649 int count = 0;
3650
3651 if (kobj_boot_seek((int)descr, (off_t)0, offset) != 0) {
3652 _kobj_printf(ops,
3653 "kobj_read: seek 0x%x failed\n", offset);
3654 return (-1);
3655 }
3656
3657 count = kobj_boot_read((int)descr, buf, size);
3658 if (count < size) {
3659 if (_moddebug & MODDEBUG_ERRMSG) {
3660 _kobj_printf(ops,
3661 "kobj_read: req %d bytes, ", size);
3662 _kobj_printf(ops, "got %d\n", count);
3663 }
3664 }
3665 return (count);
3666 }
3667 }
3668
3669 void
3670 kobj_close(intptr_t descr)
3671 {
3672 if (_moddebug & MODDEBUG_ERRMSG)
3673 _kobj_printf(ops, "kobj_close: 0x%lx\n", descr);
3674
3675 if (_modrootloaded) {
3676 struct vnode *vp = (struct vnode *)descr;
3677 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL);
3678 VN_RELE(vp);
3679 } else
3680 (void) kobj_boot_close((int)descr);
3681 }
3682
3683 int
3684 kobj_fstat(intptr_t descr, struct bootstat *buf)
3685 {
3686 if (buf == NULL)
3687 return (-1);
3688
3689 if (_modrootloaded) {
3690 vattr_t vattr;
3691 struct vnode *vp = (struct vnode *)descr;
3692 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3693 return (-1);
3694
3695 /*
3696 * The vattr and bootstat structures are similar, but not
3697 * identical. We do our best to fill in the bootstat structure
3698 * from the contents of vattr (transfering only the ones that
3699 * are obvious.
3700 */
3701
3702 buf->st_mode = (uint32_t)vattr.va_mode;
3703 buf->st_nlink = (uint32_t)vattr.va_nlink;
3704 buf->st_uid = (int32_t)vattr.va_uid;
3705 buf->st_gid = (int32_t)vattr.va_gid;
3706 buf->st_rdev = (uint64_t)vattr.va_rdev;
3707 buf->st_size = (uint64_t)vattr.va_size;
3708 buf->st_atim.tv_sec = (int64_t)vattr.va_atime.tv_sec;
3709 buf->st_atim.tv_nsec = (int64_t)vattr.va_atime.tv_nsec;
3710 buf->st_mtim.tv_sec = (int64_t)vattr.va_mtime.tv_sec;
3711 buf->st_mtim.tv_nsec = (int64_t)vattr.va_mtime.tv_nsec;
3712 buf->st_ctim.tv_sec = (int64_t)vattr.va_ctime.tv_sec;
3713 buf->st_ctim.tv_nsec = (int64_t)vattr.va_ctime.tv_nsec;
3714 buf->st_blksize = (int32_t)vattr.va_blksize;
3715 buf->st_blocks = (int64_t)vattr.va_nblocks;
3716
3717 return (0);
3718 }
3719
3720 return (kobj_boot_fstat((int)descr, buf));
3721 }
3722
3723
3724 struct _buf *
3725 kobj_open_file(char *name)
3726 {
3727 struct _buf *file;
3728 struct compinfo cbuf;
3729 intptr_t fd;
3730
3731 if ((fd = kobj_open(name)) == -1) {
3732 return ((struct _buf *)-1);
3733 }
3734
3735 file = kobj_zalloc(sizeof (struct _buf), KM_WAIT|KM_TMP);
3736 file->_fd = fd;
3737 file->_name = kobj_alloc(strlen(name)+1, KM_WAIT|KM_TMP);
3738 file->_cnt = file->_size = file->_off = 0;
3739 file->_ln = 1;
3740 file->_ptr = file->_base;
3741 (void) strcpy(file->_name, name);
3742
3743 /*
3744 * Before root is mounted, we must check
3745 * for a compressed file and do our own
3746 * buffering.
3747 */
3748 if (_modrootloaded) {
3749 file->_base = kobj_zalloc(MAXBSIZE, KM_WAIT);
3750 file->_bsize = MAXBSIZE;
3751
3752 /* Check if the file is compressed */
3753 file->_iscmp = kobj_is_compressed(fd);
3754 } else {
3755 if (kobj_boot_compinfo(fd, &cbuf) != 0) {
3756 kobj_close_file(file);
3757 return ((struct _buf *)-1);
3758 }
3759 file->_iscmp = cbuf.iscmp;
3760 if (file->_iscmp) {
3761 if (kobj_comp_setup(file, &cbuf) != 0) {
3762 kobj_close_file(file);
3763 return ((struct _buf *)-1);
3764 }
3765 } else {
3766 file->_base = kobj_zalloc(cbuf.blksize, KM_WAIT|KM_TMP);
3767 file->_bsize = cbuf.blksize;
3768 }
3769 }
3770 return (file);
3771 }
3772
3773 static int
3774 kobj_comp_setup(struct _buf *file, struct compinfo *cip)
3775 {
3776 struct comphdr *hdr;
3777
3778 /*
3779 * read the compressed image into memory,
3780 * so we can deompress from there
3781 */
3782 file->_dsize = cip->fsize;
3783 file->_dbuf = kobj_alloc(cip->fsize, KM_WAIT|KM_TMP);
3784 if (kobj_read(file->_fd, file->_dbuf, cip->fsize, 0) != cip->fsize) {
3785 kobj_free(file->_dbuf, cip->fsize);
3786 return (-1);
3787 }
3788
3789 hdr = kobj_comphdr(file);
3790 if (hdr->ch_magic != CH_MAGIC_ZLIB || hdr->ch_version != CH_VERSION ||
3791 hdr->ch_algorithm != CH_ALG_ZLIB || hdr->ch_fsize == 0 ||
3792 !ISP2(hdr->ch_blksize)) {
3793 kobj_free(file->_dbuf, cip->fsize);
3794 return (-1);
3795 }
3796 file->_base = kobj_alloc(hdr->ch_blksize, KM_WAIT|KM_TMP);
3797 file->_bsize = hdr->ch_blksize;
3798 return (0);
3799 }
3800
3801 void
3802 kobj_close_file(struct _buf *file)
3803 {
3804 kobj_close(file->_fd);
3805 if (file->_base != NULL)
3806 kobj_free(file->_base, file->_bsize);
3807 if (file->_dbuf != NULL)
3808 kobj_free(file->_dbuf, file->_dsize);
3809 kobj_free(file->_name, strlen(file->_name)+1);
3810 kobj_free(file, sizeof (struct _buf));
3811 }
3812
3813 int
3814 kobj_read_file(struct _buf *file, char *buf, uint_t size, uint_t off)
3815 {
3816 int b_size, c_size;
3817 int b_off; /* Offset into buffer for start of bcopy */
3818 int count = 0;
3819 int page_addr;
3820
3821 if (_moddebug & MODDEBUG_ERRMSG) {
3822 _kobj_printf(ops, "kobj_read_file: size=%x,", size);
3823 _kobj_printf(ops, " offset=%x at", off);
3824 _kobj_printf(ops, " buf=%x\n", buf);
3825 }
3826
3827 /*
3828 * Handle compressed (gzip for now) file here. First get the
3829 * compressed size, then read the image into memory and finally
3830 * call zlib to decompress the image at the supplied memory buffer.
3831 */
3832 if (file->_iscmp == CH_MAGIC_GZIP) {
3833 ulong_t dlen;
3834 vattr_t vattr;
3835 struct vnode *vp = (struct vnode *)file->_fd;
3836 ssize_t resid;
3837 int err = 0;
3838
3839 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3840 return (-1);
3841
3842 file->_dbuf = kobj_alloc(vattr.va_size, KM_WAIT|KM_TMP);
3843 file->_dsize = vattr.va_size;
3844
3845 /* Read the compressed file into memory */
3846 if ((err = vn_rdwr(UIO_READ, vp, file->_dbuf, vattr.va_size,
3847 (offset_t)(0), UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3848 &resid)) != 0) {
3849
3850 _kobj_printf(ops, "kobj_read_file :vn_rdwr() failed, "
3851 "error code 0x%x\n", err);
3852 return (-1);
3853 }
3854
3855 dlen = size;
3856
3857 /* Decompress the image at the supplied memory buffer */
3858 if ((err = z_uncompress(buf, &dlen, file->_dbuf,
3859 vattr.va_size)) != Z_OK) {
3860 _kobj_printf(ops, "kobj_read_file: z_uncompress "
3861 "failed, error code : 0x%x\n", err);
3862 return (-1);
3863 }
3864
3865 if (dlen != size) {
3866 _kobj_printf(ops, "kobj_read_file: z_uncompress "
3867 "failed to uncompress (size returned 0x%x , "
3868 "expected size: 0x%x)\n", dlen, size);
3869 return (-1);
3870 }
3871
3872 return (0);
3873 }
3874
3875 while (size) {
3876 page_addr = F_PAGE(file, off);
3877 b_size = file->_size;
3878 /*
3879 * If we have the filesystem page the caller's referring to
3880 * and we have something in the buffer,
3881 * satisfy as much of the request from the buffer as we can.
3882 */
3883 if (page_addr == file->_off && b_size > 0) {
3884 b_off = B_OFFSET(file, off);
3885 c_size = b_size - b_off;
3886 /*
3887 * If there's nothing to copy, we're at EOF.
3888 */
3889 if (c_size <= 0)
3890 break;
3891 if (c_size > size)
3892 c_size = size;
3893 if (buf) {
3894 if (_moddebug & MODDEBUG_ERRMSG)
3895 _kobj_printf(ops, "copying %x bytes\n",
3896 c_size);
3897 bcopy(file->_base+b_off, buf, c_size);
3898 size -= c_size;
3899 off += c_size;
3900 buf += c_size;
3901 count += c_size;
3902 } else {
3903 _kobj_printf(ops, "kobj_read: system error");
3904 count = -1;
3905 break;
3906 }
3907 } else {
3908 /*
3909 * If the caller's offset is page aligned and
3910 * the caller want's at least a filesystem page and
3911 * the caller provided a buffer,
3912 * read directly into the caller's buffer.
3913 */
3914 if (page_addr == off &&
3915 (c_size = F_BLKS(file, size)) && buf) {
3916 c_size = kobj_read_blks(file, buf, c_size,
3917 page_addr);
3918 if (c_size < 0) {
3919 count = -1;
3920 break;
3921 }
3922 count += c_size;
3923 if (c_size != F_BLKS(file, size))
3924 break;
3925 size -= c_size;
3926 off += c_size;
3927 buf += c_size;
3928 /*
3929 * Otherwise, read into our buffer and copy next time
3930 * around the loop.
3931 */
3932 } else {
3933 file->_off = page_addr;
3934 c_size = kobj_read_blks(file, file->_base,
3935 file->_bsize, page_addr);
3936 file->_ptr = file->_base;
3937 file->_cnt = c_size;
3938 file->_size = c_size;
3939 /*
3940 * If a _filbuf call or nothing read, break.
3941 */
3942 if (buf == NULL || c_size <= 0) {
3943 count = c_size;
3944 break;
3945 }
3946 }
3947 if (_moddebug & MODDEBUG_ERRMSG)
3948 _kobj_printf(ops, "read %x bytes\n", c_size);
3949 }
3950 }
3951 if (_moddebug & MODDEBUG_ERRMSG)
3952 _kobj_printf(ops, "count = %x\n", count);
3953
3954 return (count);
3955 }
3956
3957 static int
3958 kobj_read_blks(struct _buf *file, char *buf, uint_t size, uint_t off)
3959 {
3960 int ret;
3961
3962 ASSERT(B_OFFSET(file, size) == 0 && B_OFFSET(file, off) == 0);
3963 if (file->_iscmp) {
3964 uint_t blks;
3965 int nret;
3966
3967 ret = 0;
3968 for (blks = size / file->_bsize; blks != 0; blks--) {
3969 nret = kobj_uncomp_blk(file, buf, off);
3970 if (nret == -1)
3971 return (-1);
3972 buf += nret;
3973 off += nret;
3974 ret += nret;
3975 if (nret < file->_bsize)
3976 break;
3977 }
3978 } else
3979 ret = kobj_read(file->_fd, buf, size, off);
3980 return (ret);
3981 }
3982
3983 static int
3984 kobj_uncomp_blk(struct _buf *file, char *buf, uint_t off)
3985 {
3986 struct comphdr *hdr = kobj_comphdr(file);
3987 ulong_t dlen, slen;
3988 caddr_t src;
3989 int i;
3990
3991 dlen = file->_bsize;
3992 i = off / file->_bsize;
3993 src = file->_dbuf + hdr->ch_blkmap[i];
3994 if (i == hdr->ch_fsize / file->_bsize)
3995 slen = file->_dsize - hdr->ch_blkmap[i];
3996 else
3997 slen = hdr->ch_blkmap[i + 1] - hdr->ch_blkmap[i];
3998 if (z_uncompress(buf, &dlen, src, slen) != Z_OK)
3999 return (-1);
4000 return (dlen);
4001 }
4002
4003 int
4004 kobj_filbuf(struct _buf *f)
4005 {
4006 if (kobj_read_file(f, NULL, f->_bsize, f->_off + f->_size) > 0)
4007 return (kobj_getc(f));
4008 return (-1);
4009 }
4010
4011 void
4012 kobj_free(void *address, size_t size)
4013 {
4014 if (standalone)
4015 return;
4016
4017 kmem_free(address, size);
4018 kobj_stat.nfree_calls++;
4019 kobj_stat.nfree += size;
4020 }
4021
4022 void *
4023 kobj_zalloc(size_t size, int flag)
4024 {
4025 void *v;
4026
4027 if ((v = kobj_alloc(size, flag)) != 0) {
4028 bzero(v, size);
4029 }
4030
4031 return (v);
4032 }
4033
4034 void *
4035 kobj_alloc(size_t size, int flag)
4036 {
4037 /*
4038 * If we are running standalone in the
4039 * linker, we ask boot for memory.
4040 * Either it's temporary memory that we lose
4041 * once boot is mapped out or we allocate it
4042 * permanently using the dynamic data segment.
4043 */
4044 if (standalone) {
4045 #if defined(_OBP)
4046 if (flag & (KM_TMP | KM_SCRATCH))
4047 return (bop_temp_alloc(size, MINALIGN));
4048 #else
4049 if (flag & (KM_TMP | KM_SCRATCH))
4050 return (BOP_ALLOC(ops, 0, size, MINALIGN));
4051 #endif
4052 return (kobj_segbrk(&_edata, size, MINALIGN, 0));
4053 }
4054
4055 kobj_stat.nalloc_calls++;
4056 kobj_stat.nalloc += size;
4057
4058 return (kmem_alloc(size, (flag & KM_NOWAIT) ? KM_NOSLEEP : KM_SLEEP));
4059 }
4060
4061 /*
4062 * Allow the "mod" system to sync up with the work
4063 * already done by kobj during the initial loading
4064 * of the kernel. This also gives us a chance
4065 * to reallocate memory that belongs to boot.
4066 */
4067 void
4068 kobj_sync(void)
4069 {
4070 struct modctl_list *lp, **lpp;
4071
4072 /*
4073 * The module path can be set in /etc/system via 'moddir' commands
4074 */
4075 if (default_path != NULL)
4076 kobj_module_path = default_path;
4077 else
4078 default_path = kobj_module_path;
4079
4080 ksyms_arena = vmem_create("ksyms", NULL, 0, sizeof (uint64_t),
4081 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4082
4083 ctf_arena = vmem_create("ctf", NULL, 0, sizeof (uint_t),
4084 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4085
4086 /*
4087 * Move symbol tables from boot memory to ksyms_arena.
4088 */
4089 for (lpp = kobj_linkmaps; *lpp != NULL; lpp++) {
4090 for (lp = *lpp; lp != NULL; lp = lp->modl_next)
4091 kobj_export_module(mod(lp));
4092 }
4093 }
4094
4095 caddr_t
4096 kobj_segbrk(caddr_t *spp, size_t size, size_t align, caddr_t limit)
4097 {
4098 uintptr_t va, pva;
4099 size_t alloc_pgsz = kobj_mmu_pagesize;
4100 size_t alloc_align = BO_NO_ALIGN;
4101 size_t alloc_size;
4102
4103 /*
4104 * If we are using "large" mappings for the kernel,
4105 * request aligned memory from boot using the
4106 * "large" pagesize.
4107 */
4108 if (lg_pagesize) {
4109 alloc_align = lg_pagesize;
4110 alloc_pgsz = lg_pagesize;
4111 }
4112
4113 #if defined(__sparc)
4114 /* account for redzone */
4115 if (limit)
4116 limit -= alloc_pgsz;
4117 #endif /* __sparc */
4118
4119 va = ALIGN((uintptr_t)*spp, align);
4120 pva = P2ROUNDUP((uintptr_t)*spp, alloc_pgsz);
4121 /*
4122 * Need more pages?
4123 */
4124 if (va + size > pva) {
4125 uintptr_t npva;
4126
4127 alloc_size = P2ROUNDUP(size - (pva - va), alloc_pgsz);
4128 /*
4129 * Check for overlapping segments.
4130 */
4131 if (limit && limit <= *spp + alloc_size) {
4132 return ((caddr_t)0);
4133 }
4134
4135 npva = (uintptr_t)BOP_ALLOC(ops, (caddr_t)pva,
4136 alloc_size, alloc_align);
4137
4138 if (npva == 0) {
4139 _kobj_printf(ops, "BOP_ALLOC failed, 0x%lx bytes",
4140 alloc_size);
4141 _kobj_printf(ops, " aligned %lx", alloc_align);
4142 _kobj_printf(ops, " at 0x%lx\n", pva);
4143 return (NULL);
4144 }
4145 }
4146 *spp = (caddr_t)(va + size);
4147
4148 return ((caddr_t)va);
4149 }
4150
4151 /*
4152 * Calculate the number of output hash buckets.
4153 * We use the next prime larger than n / 4,
4154 * so the average hash chain is about 4 entries.
4155 * More buckets would just be a waste of memory.
4156 */
4157 uint_t
4158 kobj_gethashsize(uint_t n)
4159 {
4160 int f;
4161 int hsize = MAX(n / 4, 2);
4162
4163 for (f = 2; f * f <= hsize; f++)
4164 if (hsize % f == 0)
4165 hsize += f = 1;
4166
4167 return (hsize);
4168 }
4169
4170 /*
4171 * Get the file size.
4172 *
4173 * Before root is mounted, files are compressed in the boot_archive ramdisk
4174 * (in the memory). kobj_fstat would return the compressed file size.
4175 * In order to get the uncompressed file size, read the file to the end and
4176 * count its size.
4177 */
4178 int
4179 kobj_get_filesize(struct _buf *file, uint64_t *size)
4180 {
4181 int err = 0;
4182 ssize_t resid;
4183 uint32_t buf;
4184
4185 if (_modrootloaded) {
4186 struct bootstat bst;
4187
4188 if (kobj_fstat(file->_fd, &bst) != 0)
4189 return (EIO);
4190 *size = bst.st_size;
4191
4192 if (file->_iscmp == CH_MAGIC_GZIP) {
4193 /*
4194 * Read the last 4 bytes of the compressed (gzip)
4195 * image to get the size of its uncompressed
4196 * version.
4197 */
4198 if ((err = vn_rdwr(UIO_READ, (struct vnode *)file->_fd,
4199 (char *)(&buf), 4, (offset_t)(*size - 4),
4200 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid))
4201 != 0) {
4202 _kobj_printf(ops, "kobj_get_filesize: "
4203 "vn_rdwr() failed with error 0x%x\n", err);
4204 return (-1);
4205 }
4206
4207 *size = (uint64_t)buf;
4208 }
4209 } else {
4210
4211 #if defined(_OBP)
4212 struct bootstat bsb;
4213
4214 if (file->_iscmp) {
4215 struct comphdr *hdr = kobj_comphdr(file);
4216
4217 *size = hdr->ch_fsize;
4218 } else if (kobj_boot_fstat(file->_fd, &bsb) != 0)
4219 return (EIO);
4220 else
4221 *size = bsb.st_size;
4222 #else
4223 char *buf;
4224 int count;
4225 uint64_t offset = 0;
4226
4227 buf = kmem_alloc(MAXBSIZE, KM_SLEEP);
4228 do {
4229 count = kobj_read_file(file, buf, MAXBSIZE, offset);
4230 if (count < 0) {
4231 kmem_free(buf, MAXBSIZE);
4232 return (EIO);
4233 }
4234 offset += count;
4235 } while (count == MAXBSIZE);
4236 kmem_free(buf, MAXBSIZE);
4237
4238 *size = offset;
4239 #endif
4240 }
4241
4242 return (0);
4243 }
4244
4245 static char *
4246 basename(char *s)
4247 {
4248 char *p, *q;
4249
4250 q = NULL;
4251 p = s;
4252 do {
4253 if (*p == '/')
4254 q = p;
4255 } while (*p++);
4256 return (q ? q + 1 : s);
4257 }
4258
4259 void
4260 kobj_stat_get(kobj_stat_t *kp)
4261 {
4262 *kp = kobj_stat;
4263 }
4264
4265 int
4266 kobj_getpagesize()
4267 {
4268 return (lg_pagesize);
4269 }
4270
4271 void
4272 kobj_textwin_alloc(struct module *mp)
4273 {
4274 ASSERT(MUTEX_HELD(&mod_lock));
4275
4276 if (mp->textwin != NULL)
4277 return;
4278
4279 /*
4280 * If the text is not contained in the heap, then it is not contained
4281 * by a writable mapping. (Specifically, it's on the nucleus page.)
4282 * We allocate a read/write mapping for this module's text to allow
4283 * the text to be patched without calling hot_patch_kernel_text()
4284 * (which is quite slow).
4285 */
4286 if (!vmem_contains(heaptext_arena, mp->text, mp->text_size)) {
4287 uintptr_t text = (uintptr_t)mp->text;
4288 uintptr_t size = (uintptr_t)mp->text_size;
4289 uintptr_t i;
4290 caddr_t va;
4291 size_t sz = ((text + size + PAGESIZE - 1) & PAGEMASK) -
4292 (text & PAGEMASK);
4293
4294 va = mp->textwin_base = vmem_alloc(heap_arena, sz, VM_SLEEP);
4295
4296 for (i = text & PAGEMASK; i < text + size; i += PAGESIZE) {
4297 hat_devload(kas.a_hat, va, PAGESIZE,
4298 hat_getpfnum(kas.a_hat, (caddr_t)i),
4299 PROT_READ | PROT_WRITE,
4300 HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
4301 va += PAGESIZE;
4302 }
4303
4304 mp->textwin = mp->textwin_base + (text & PAGEOFFSET);
4305 } else {
4306 mp->textwin = mp->text;
4307 }
4308 }
4309
4310 void
4311 kobj_textwin_free(struct module *mp)
4312 {
4313 uintptr_t text = (uintptr_t)mp->text;
4314 uintptr_t tsize = (uintptr_t)mp->text_size;
4315 size_t size = (((text + tsize + PAGESIZE - 1) & PAGEMASK) -
4316 (text & PAGEMASK));
4317
4318 mp->textwin = NULL;
4319
4320 if (mp->textwin_base == NULL)
4321 return;
4322
4323 hat_unload(kas.a_hat, mp->textwin_base, size, HAT_UNLOAD_UNLOCK);
4324 vmem_free(heap_arena, mp->textwin_base, size);
4325 mp->textwin_base = NULL;
4326 }
4327
4328 static char *
4329 find_libmacro(char *name)
4330 {
4331 int lmi;
4332
4333 for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4334 if (strcmp(name, libmacros[lmi].lmi_macroname) == 0)
4335 return (libmacros[lmi].lmi_list);
4336 }
4337 return (NULL);
4338 }
4339
4340 /*
4341 * Check for $MACRO in tail (string to expand) and expand it in path at pathend
4342 * returns path if successful, else NULL
4343 * Support multiple $MACROs expansion and the first valid path will be returned
4344 * Caller's responsibility to provide enough space in path to expand
4345 */
4346 char *
4347 expand_libmacro(char *tail, char *path, char *pathend)
4348 {
4349 char c, *p, *p1, *p2, *path2, *endp;
4350 int diff, lmi, macrolen, valid_macro, more_macro;
4351 struct _buf *file;
4352
4353 /*
4354 * check for $MACROS between nulls or slashes
4355 */
4356 p = strchr(tail, '$');
4357 if (p == NULL)
4358 return (NULL);
4359 for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4360 macrolen = libmacros[lmi].lmi_macrolen;
4361 if (strncmp(p + 1, libmacros[lmi].lmi_macroname, macrolen) == 0)
4362 break;
4363 }
4364
4365 valid_macro = 0;
4366 if (lmi < NLIBMACROS) {
4367 /*
4368 * The following checks are used to restrict expansion of
4369 * macros to those that form a full directory/file name
4370 * and to keep the behavior same as before. If this
4371 * restriction is removed or no longer valid in the future,
4372 * the checks below can be deleted.
4373 */
4374 if ((p == tail) || (*(p - 1) == '/')) {
4375 c = *(p + macrolen + 1);
4376 if (c == '/' || c == '\0')
4377 valid_macro = 1;
4378 }
4379 }
4380
4381 if (!valid_macro) {
4382 p2 = strchr(p, '/');
4383 /*
4384 * if no more macro to expand, then just copy whatever left
4385 * and check whether it exists
4386 */
4387 if (p2 == NULL || strchr(p2, '$') == NULL) {
4388 (void) strcpy(pathend, tail);
4389 if ((file = kobj_open_path(path, 1, 1)) !=
4390 (struct _buf *)-1) {
4391 kobj_close_file(file);
4392 return (path);
4393 } else
4394 return (NULL);
4395 } else {
4396 /*
4397 * copy all chars before '/' and call expand_libmacro()
4398 * again
4399 */
4400 diff = p2 - tail;
4401 bcopy(tail, pathend, diff);
4402 pathend += diff;
4403 *(pathend) = '\0';
4404 return (expand_libmacro(p2, path, pathend));
4405 }
4406 }
4407
4408 more_macro = 0;
4409 if (c != '\0') {
4410 endp = p + macrolen + 1;
4411 if (strchr(endp, '$') != NULL)
4412 more_macro = 1;
4413 } else
4414 endp = NULL;
4415
4416 /*
4417 * copy lmi_list and split it into components.
4418 * then put the part of tail before $MACRO into path
4419 * at pathend
4420 */
4421 diff = p - tail;
4422 if (diff > 0)
4423 bcopy(tail, pathend, diff);
4424 path2 = pathend + diff;
4425 p1 = libmacros[lmi].lmi_list;
4426 while (p1 && (*p1 != '\0')) {
4427 p2 = strchr(p1, ':');
4428 if (p2) {
4429 diff = p2 - p1;
4430 bcopy(p1, path2, diff);
4431 *(path2 + diff) = '\0';
4432 } else {
4433 diff = strlen(p1);
4434 bcopy(p1, path2, diff + 1);
4435 }
4436 /* copy endp only if there isn't any more macro to expand */
4437 if (!more_macro && (endp != NULL))
4438 (void) strcat(path2, endp);
4439 file = kobj_open_path(path, 1, 1);
4440 if (file != (struct _buf *)-1) {
4441 kobj_close_file(file);
4442 /*
4443 * if more macros to expand then call expand_libmacro(),
4444 * else return path which has the whole path
4445 */
4446 if (!more_macro || (expand_libmacro(endp, path,
4447 path2 + diff) != NULL)) {
4448 return (path);
4449 }
4450 }
4451 if (p2)
4452 p1 = ++p2;
4453 else
4454 return (NULL);
4455 }
4456 return (NULL);
4457 }
4458
4459 static void
4460 tnf_add_notifyunload(kobj_notify_f *fp)
4461 {
4462 kobj_notify_list_t *entry;
4463
4464 entry = kobj_alloc(sizeof (kobj_notify_list_t), KM_WAIT);
4465 entry->kn_type = KOBJ_NOTIFY_MODUNLOADING;
4466 entry->kn_func = fp;
4467 (void) kobj_notify_add(entry);
4468 }
4469
4470 /* ARGSUSED */
4471 static void
4472 tnf_unsplice_probes(uint_t what, struct modctl *mod)
4473 {
4474 tnf_probe_control_t **p;
4475 tnf_tag_data_t **q;
4476 struct module *mp = mod->mod_mp;
4477
4478 if (!(mp->flags & KOBJ_TNF_PROBE))
4479 return;
4480
4481 for (p = &__tnf_probe_list_head; *p; )
4482 if (kobj_addrcheck(mp, (char *)*p) == 0)
4483 *p = (*p)->next;
4484 else
4485 p = &(*p)->next;
4486
4487 for (q = &__tnf_tag_list_head; *q; )
4488 if (kobj_addrcheck(mp, (char *)*q) == 0)
4489 *q = (tnf_tag_data_t *)(*q)->tag_version;
4490 else
4491 q = (tnf_tag_data_t **)&(*q)->tag_version;
4492
4493 tnf_changed_probe_list = 1;
4494 }
4495
4496 int
4497 tnf_splice_probes(int boot_load, tnf_probe_control_t *plist,
4498 tnf_tag_data_t *tlist)
4499 {
4500 int result = 0;
4501 static int add_notify = 1;
4502
4503 if (plist) {
4504 tnf_probe_control_t *pl;
4505
4506 for (pl = plist; pl->next; )
4507 pl = pl->next;
4508
4509 if (!boot_load)
4510 mutex_enter(&mod_lock);
4511 tnf_changed_probe_list = 1;
4512 pl->next = __tnf_probe_list_head;
4513 __tnf_probe_list_head = plist;
4514 if (!boot_load)
4515 mutex_exit(&mod_lock);
4516 result = 1;
4517 }
4518
4519 if (tlist) {
4520 tnf_tag_data_t *tl;
4521
4522 for (tl = tlist; tl->tag_version; )
4523 tl = (tnf_tag_data_t *)tl->tag_version;
4524
4525 if (!boot_load)
4526 mutex_enter(&mod_lock);
4527 tl->tag_version = (tnf_tag_version_t *)__tnf_tag_list_head;
4528 __tnf_tag_list_head = tlist;
4529 if (!boot_load)
4530 mutex_exit(&mod_lock);
4531 result = 1;
4532 }
4533 if (!boot_load && result && add_notify) {
4534 tnf_add_notifyunload(tnf_unsplice_probes);
4535 add_notify = 0;
4536 }
4537 return (result);
4538 }
4539
4540 char *kobj_file_buf;
4541 int kobj_file_bufsize;
4542
4543 /*
4544 * This code is for the purpose of manually recording which files
4545 * needs to go into the boot archive on any given system.
4546 *
4547 * To enable the code, set kobj_file_bufsize in /etc/system
4548 * and reboot the system, then use mdb to look at kobj_file_buf.
4549 */
4550 static void
4551 kobj_record_file(char *filename)
4552 {
4553 static char *buf;
4554 static int size = 0;
4555 int n;
4556
4557 if (kobj_file_bufsize == 0) /* don't bother */
4558 return;
4559
4560 if (kobj_file_buf == NULL) { /* allocate buffer */
4561 size = kobj_file_bufsize;
4562 buf = kobj_file_buf = kobj_alloc(size, KM_WAIT|KM_TMP);
4563 }
4564
4565 n = snprintf(buf, size, "%s\n", filename);
4566 if (n > size)
4567 n = size;
4568 size -= n;
4569 buf += n;
4570 }
4571
4572 static int
4573 kobj_boot_fstat(int fd, struct bootstat *stp)
4574 {
4575 #if defined(_OBP)
4576 if (!standalone && _ioquiesced)
4577 return (-1);
4578 return (BOP_FSTAT(ops, fd, stp));
4579 #else
4580 return (BRD_FSTAT(bfs_ops, fd, stp));
4581 #endif
4582 }
4583
4584 static int
4585 kobj_boot_open(char *filename, int flags)
4586 {
4587 #if defined(_OBP)
4588
4589 /*
4590 * If io via bootops is quiesced, it means boot is no longer
4591 * available to us. We make it look as if we can't open the
4592 * named file - which is reasonably accurate.
4593 */
4594 if (!standalone && _ioquiesced)
4595 return (-1);
4596
4597 kobj_record_file(filename);
4598 return (BOP_OPEN(filename, flags));
4599 #else /* x86 */
4600 kobj_record_file(filename);
4601 return (BRD_OPEN(bfs_ops, filename, flags));
4602 #endif
4603 }
4604
4605 static int
4606 kobj_boot_close(int fd)
4607 {
4608 #if defined(_OBP)
4609 if (!standalone && _ioquiesced)
4610 return (-1);
4611
4612 return (BOP_CLOSE(fd));
4613 #else /* x86 */
4614 return (BRD_CLOSE(bfs_ops, fd));
4615 #endif
4616 }
4617
4618 /*ARGSUSED*/
4619 static int
4620 kobj_boot_seek(int fd, off_t hi, off_t lo)
4621 {
4622 #if defined(_OBP)
4623 return (BOP_SEEK(fd, lo) == -1 ? -1 : 0);
4624 #else
4625 return (BRD_SEEK(bfs_ops, fd, lo, SEEK_SET));
4626 #endif
4627 }
4628
4629 static int
4630 kobj_boot_read(int fd, caddr_t buf, size_t size)
4631 {
4632 #if defined(_OBP)
4633 return (BOP_READ(fd, buf, size));
4634 #else
4635 return (BRD_READ(bfs_ops, fd, buf, size));
4636 #endif
4637 }
4638
4639 static int
4640 kobj_boot_compinfo(int fd, struct compinfo *cb)
4641 {
4642 return (boot_compinfo(fd, cb));
4643 }
4644
4645 /*
4646 * Check if the file is compressed (for now we handle only gzip).
4647 * It returns CH_MAGIC_GZIP if the file is compressed and 0 otherwise.
4648 */
4649 static int
4650 kobj_is_compressed(intptr_t fd)
4651 {
4652 struct vnode *vp = (struct vnode *)fd;
4653 ssize_t resid;
4654 uint16_t magic_buf;
4655 int err = 0;
4656
4657 if ((err = vn_rdwr(UIO_READ, vp, (caddr_t)((intptr_t)&magic_buf),
4658 sizeof (magic_buf), (offset_t)(0),
4659 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) {
4660
4661 _kobj_printf(ops, "kobj_is_compressed: vn_rdwr() failed, "
4662 "error code 0x%x\n", err);
4663 return (0);
4664 }
4665
4666 if (magic_buf == CH_MAGIC_GZIP)
4667 return (CH_MAGIC_GZIP);
4668
4669 return (0);
4670 }