1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 /*
  26  * Copyright 2011 Bayard G. Bell <buffer.g.overflow@gmail.com>.
  27  * All rights reserved. Use is subject to license terms.
  28  * Copyright (c) 2018, Joyent, Inc.
  29  */
  30 
  31 /*
  32  * Kernel's linker/loader
  33  */
  34 
  35 #include <sys/types.h>
  36 #include <sys/param.h>
  37 #include <sys/sysmacros.h>
  38 #include <sys/systm.h>
  39 #include <sys/user.h>
  40 #include <sys/kmem.h>
  41 #include <sys/reboot.h>
  42 #include <sys/bootconf.h>
  43 #include <sys/debug.h>
  44 #include <sys/uio.h>
  45 #include <sys/file.h>
  46 #include <sys/vnode.h>
  47 #include <sys/user.h>
  48 #include <sys/mman.h>
  49 #include <vm/as.h>
  50 #include <vm/seg_kp.h>
  51 #include <vm/seg_kmem.h>
  52 #include <sys/elf.h>
  53 #include <sys/elf_notes.h>
  54 #include <sys/vmsystm.h>
  55 #include <sys/kdi.h>
  56 #include <sys/atomic.h>
  57 #include <sys/kmdb.h>
  58 
  59 #include <sys/link.h>
  60 #include <sys/kobj.h>
  61 #include <sys/ksyms.h>
  62 #include <sys/disp.h>
  63 #include <sys/modctl.h>
  64 #include <sys/varargs.h>
  65 #include <sys/kstat.h>
  66 #include <sys/kobj_impl.h>
  67 #include <sys/fs/decomp.h>
  68 #include <sys/callb.h>
  69 #include <sys/cmn_err.h>
  70 #include <sys/tnf_probe.h>
  71 #include <sys/zmod.h>
  72 
  73 #include <krtld/reloc.h>
  74 #include <krtld/kobj_kdi.h>
  75 #include <sys/sha1.h>
  76 #include <sys/crypto/elfsign.h>
  77 
  78 #if !defined(_OBP)
  79 #include <sys/bootvfs.h>
  80 #endif
  81 
  82 /*
  83  * do_symbols() error codes
  84  */
  85 #define DOSYM_UNDEF             -1      /* undefined symbol */
  86 #define DOSYM_UNSAFE            -2      /* MT-unsafe driver symbol */
  87 
  88 #if !defined(_OBP)
  89 static void synthetic_bootaux(char *, val_t *);
  90 #endif
  91 
  92 static struct module *load_exec(val_t *, char *);
  93 static void load_linker(val_t *);
  94 static struct modctl *add_primary(const char *filename, int);
  95 static int bind_primary(val_t *, int);
  96 static int load_primary(struct module *, int);
  97 static int load_kmdb(val_t *);
  98 static int get_progbits(struct module *, struct _buf *);
  99 static int get_syms(struct module *, struct _buf *);
 100 static int get_ctf(struct module *, struct _buf *);
 101 static void get_signature(struct module *, struct _buf *);
 102 static int do_common(struct module *);
 103 static void add_dependent(struct module *, struct module *);
 104 static int do_dependents(struct modctl *, char *, size_t);
 105 static int do_symbols(struct module *, Elf64_Addr);
 106 static void module_assign(struct modctl *, struct module *);
 107 static void free_module_data(struct module *);
 108 static char *depends_on(struct module *);
 109 static char *getmodpath(const char *);
 110 static char *basename(char *);
 111 static void attr_val(val_t *);
 112 static char *find_libmacro(char *);
 113 static char *expand_libmacro(char *, char *, char *);
 114 static int read_bootflags(void);
 115 static int kobj_comp_setup(struct _buf *, struct compinfo *);
 116 static int kobj_uncomp_blk(struct _buf *, caddr_t, uint_t);
 117 static int kobj_read_blks(struct _buf *, caddr_t, uint_t, uint_t);
 118 static int kobj_boot_open(char *, int);
 119 static int kobj_boot_close(int);
 120 static int kobj_boot_seek(int, off_t, off_t);
 121 static int kobj_boot_read(int, caddr_t, size_t);
 122 static int kobj_boot_fstat(int, struct bootstat *);
 123 static int kobj_boot_compinfo(int, struct compinfo *);
 124 
 125 static Sym *lookup_one(struct module *, const char *);
 126 static void sym_insert(struct module *, char *, symid_t);
 127 static Sym *sym_lookup(struct module *, Sym *);
 128 
 129 static struct kobjopen_tctl *kobjopen_alloc(char *filename);
 130 static void kobjopen_free(struct kobjopen_tctl *ltp);
 131 static void kobjopen_thread(struct kobjopen_tctl *ltp);
 132 static int kobj_is_compressed(intptr_t);
 133 
 134 extern int kcopy(const void *, void *, size_t);
 135 extern int elf_mach_ok(Ehdr *);
 136 extern int alloc_gottable(struct module *, caddr_t *, caddr_t *);
 137 
 138 #if !defined(_OBP)
 139 extern int kobj_boot_mountroot(void);
 140 #endif
 141 
 142 static void tnf_unsplice_probes(uint_t, struct modctl *);
 143 extern tnf_probe_control_t *__tnf_probe_list_head;
 144 extern tnf_tag_data_t *__tnf_tag_list_head;
 145 
 146 extern int modrootloaded;
 147 extern int swaploaded;
 148 extern int bop_io_quiesced;
 149 extern int last_module_id;
 150 
 151 extern char stubs_base[];
 152 extern char stubs_end[];
 153 
 154 #ifdef KOBJ_DEBUG
 155 /*
 156  * Values that can be or'd in to kobj_debug and their effects:
 157  *
 158  *      D_DEBUG         - misc. debugging information.
 159  *      D_SYMBOLS       - list symbols and their values as they are entered
 160  *                        into the hash table
 161  *      D_RELOCATIONS   - display relocation processing information
 162  *      D_LOADING       - display information about each module as it
 163  *                        is loaded.
 164  */
 165 int kobj_debug = 0;
 166 
 167 #define KOBJ_MARK(s)    if (kobj_debug & D_DEBUG)   \
 168         (_kobj_printf(ops, "%d", __LINE__), _kobj_printf(ops, ": %s\n", s))
 169 #else
 170 #define KOBJ_MARK(s)    /* discard */
 171 #endif
 172 
 173 #define MODPATH_PROPNAME        "module-path"
 174 
 175 #ifdef MODDIR_SUFFIX
 176 static char slash_moddir_suffix_slash[] = MODDIR_SUFFIX "/";
 177 #else
 178 #define slash_moddir_suffix_slash       ""
 179 #endif
 180 
 181 #define _moddebug       get_weakish_int(&moddebug)
 182 #define _modrootloaded  get_weakish_int(&modrootloaded)
 183 #define _swaploaded     get_weakish_int(&swaploaded)
 184 #define _ioquiesced     get_weakish_int(&bop_io_quiesced)
 185 
 186 #define mod(X)          (struct module *)((X)->modl_modp->mod_mp)
 187 
 188 void    *romp;          /* rom vector (opaque to us) */
 189 struct bootops *ops;    /* bootops vector */
 190 void *dbvec;            /* debug vector */
 191 
 192 /*
 193  * kobjopen thread control structure
 194  */
 195 struct kobjopen_tctl {
 196         ksema_t         sema;
 197         char            *name;          /* name of file */
 198         struct vnode    *vp;            /* vnode return from vn_open() */
 199         int             Errno;          /* error return from vnopen    */
 200 };
 201 
 202 /*
 203  * Structure for defining dynamically expandable library macros
 204  */
 205 
 206 struct lib_macro_info {
 207         char    *lmi_list;              /* ptr to list of possible choices */
 208         char    *lmi_macroname;         /* pointer to macro name */
 209         ushort_t lmi_ba_index;          /* index into bootaux vector */
 210         ushort_t lmi_macrolen;          /* macro length */
 211 } libmacros[] = {
 212         { NULL, "CPU", BA_CPU, 0 },
 213         { NULL, "MMU", BA_MMU, 0 }
 214 };
 215 
 216 #define NLIBMACROS      sizeof (libmacros) / sizeof (struct lib_macro_info)
 217 
 218 char *boot_cpu_compatible_list;                 /* make $CPU available */
 219 
 220 char *kobj_module_path;                         /* module search path */
 221 vmem_t  *text_arena;                            /* module text arena */
 222 static vmem_t *data_arena;                      /* module data & bss arena */
 223 static vmem_t *ctf_arena;                       /* CTF debug data arena */
 224 static struct modctl *kobj_modules = NULL;      /* modules loaded */
 225 int kobj_mmu_pagesize;                          /* system pagesize */
 226 static int lg_pagesize;                         /* "large" pagesize */
 227 static int kobj_last_module_id = 0;             /* id assignment */
 228 static kmutex_t kobj_lock;                      /* protects mach memory list */
 229 
 230 /*
 231  * The following functions have been implemented by the kernel.
 232  * However, many 3rd party drivers provide their own implementations
 233  * of these functions.  When such drivers are loaded, messages
 234  * indicating that these symbols have been multiply defined will be
 235  * emitted to the console.  To avoid alarming customers for no good
 236  * reason, we simply suppress such warnings for the following set of
 237  * functions.
 238  */
 239 static char *suppress_sym_list[] =
 240 {
 241         "strstr",
 242         "strncat",
 243         "strlcat",
 244         "strlcpy",
 245         "strspn",
 246         "memcpy",
 247         "memset",
 248         "memmove",
 249         "memcmp",
 250         "memchr",
 251         "__udivdi3",
 252         "__divdi3",
 253         "__umoddi3",
 254         "__moddi3",
 255         NULL            /* This entry must exist */
 256 };
 257 
 258 /* indexed by KOBJ_NOTIFY_* */
 259 static kobj_notify_list_t *kobj_notifiers[KOBJ_NOTIFY_MAX + 1];
 260 
 261 /*
 262  * TNF probe management globals
 263  */
 264 tnf_probe_control_t     *__tnf_probe_list_head = NULL;
 265 tnf_tag_data_t          *__tnf_tag_list_head = NULL;
 266 int                     tnf_changed_probe_list = 0;
 267 
 268 /*
 269  * Prefix for statically defined tracing (SDT) DTrace probes.
 270  */
 271 const char              *sdt_prefix = "__dtrace_probe_";
 272 
 273 /*
 274  * Beginning and end of the kernel's dynamic text/data segments.
 275  */
 276 static caddr_t _text;
 277 static caddr_t _etext;
 278 static caddr_t _data;
 279 
 280 /*
 281  * The sparc linker doesn't create a memory location
 282  * for a variable named _edata, so _edata can only be
 283  * referred to, not modified.  krtld needs a static
 284  * variable to modify it - within krtld, of course -
 285  * outside of krtld, e_data is used in all kernels.
 286  */
 287 #if defined(__sparc)
 288 static caddr_t _edata;
 289 #else
 290 extern caddr_t _edata;
 291 #endif
 292 
 293 Addr dynseg = 0;        /* load address of "dynamic" segment */
 294 size_t dynsize;         /* "dynamic" segment size */
 295 
 296 
 297 int standalone = 1;                     /* an unwholey kernel? */
 298 int use_iflush;                         /* iflush after relocations */
 299 
 300 /*
 301  * _kobj_printf() and _vkobj_printf()
 302  *
 303  * Common printf function pointer. Can handle only one conversion
 304  * specification in the format string. Some of the functions invoked
 305  * through this function pointer cannot handle more that one conversion
 306  * specification in the format string.
 307  */
 308 void (*_kobj_printf)(void *, const char *, ...);        /* printf routine */
 309 void (*_vkobj_printf)(void *, const char *, va_list);   /* vprintf routine */
 310 
 311 /*
 312  * Standalone function pointers for use within krtld.
 313  * Many platforms implement optimized platmod versions of
 314  * utilities such as bcopy and any such are not yet available
 315  * until the kernel is more completely stitched together.
 316  * See kobj_impl.h
 317  */
 318 void (*kobj_bcopy)(const void *, void *, size_t);
 319 void (*kobj_bzero)(void *, size_t);
 320 size_t (*kobj_strlcat)(char *, const char *, size_t);
 321 
 322 static kobj_stat_t kobj_stat;
 323 
 324 #define MINALIGN        8       /* at least a double-word */
 325 
 326 int
 327 get_weakish_int(int *ip)
 328 {
 329         if (standalone)
 330                 return (0);
 331         return (ip == NULL ? 0 : *ip);
 332 }
 333 
 334 static void *
 335 get_weakish_pointer(void **ptrp)
 336 {
 337         if (standalone)
 338                 return (0);
 339         return (ptrp == NULL ? 0 : *ptrp);
 340 }
 341 
 342 /*
 343  * XXX fix dependencies on "kernel"; this should work
 344  * for other standalone binaries as well.
 345  *
 346  * XXX Fix hashing code to use one pointer to
 347  * hash entries.
 348  *      |----------|
 349  *      | nbuckets |
 350  *      |----------|
 351  *      | nchains  |
 352  *      |----------|
 353  *      | bucket[] |
 354  *      |----------|
 355  *      | chain[]  |
 356  *      |----------|
 357  */
 358 
 359 /*
 360  * Load, bind and relocate all modules that
 361  * form the primary kernel. At this point, our
 362  * externals have not been relocated.
 363  */
 364 void
 365 kobj_init(
 366         void *romvec,
 367         void *dvec,
 368         struct bootops *bootvec,
 369         val_t *bootaux)
 370 {
 371         struct module *mp;
 372         struct modctl *modp;
 373         Addr entry;
 374         char filename[MAXPATHLEN];
 375 
 376         /*
 377          * Save these to pass on to
 378          * the booted standalone.
 379          */
 380         romp = romvec;
 381         dbvec = dvec;
 382 
 383         ops = bootvec;
 384         kobj_setup_standalone_vectors();
 385 
 386         KOBJ_MARK("Entered kobj_init()");
 387 
 388         (void) BOP_GETPROP(ops, "whoami", filename);
 389 
 390         /*
 391          * We don't support standalone debuggers anymore.  The use of kadb
 392          * will interfere with the later use of kmdb.  Let the user mend
 393          * their ways now.  Users will reach this message if they still
 394          * have the kadb binary on their system (perhaps they used an old
 395          * bfu, or maybe they intentionally copied it there) and have
 396          * specified its use in a way that eluded our checking in the boot
 397          * program.
 398          */
 399         if (dvec != NULL) {
 400                 _kobj_printf(ops, "\nWARNING: Standalone debuggers such as "
 401                     "kadb are no longer supported\n\n");
 402                 goto fail;
 403         }
 404 
 405 #if defined(_OBP)
 406         /*
 407          * OBP allows us to read both the ramdisk and
 408          * the underlying root fs when root is a disk.
 409          * This can lower incidences of unbootable systems
 410          * when the archive is out-of-date with the /etc
 411          * state files.
 412          */
 413         if (BOP_MOUNTROOT() != BOOT_SVC_OK) {
 414                 _kobj_printf(ops, "can't mount boot fs\n");
 415                 goto fail;
 416         }
 417 #else
 418         {
 419                 /* on x86, we always boot with a ramdisk */
 420                 (void) kobj_boot_mountroot();
 421 
 422                 /*
 423                  * Now that the ramdisk is mounted, finish boot property
 424                  * initialization.
 425                  */
 426                 boot_prop_finish();
 427         }
 428 
 429 #if !defined(_UNIX_KRTLD)
 430         /*
 431          * 'unix' is linked together with 'krtld' into one executable and
 432          * the early boot code does -not- hand us any of the dynamic metadata
 433          * about the executable. In particular, it does not read in, map or
 434          * otherwise look at the program headers. We fake all that up now.
 435          *
 436          * We do this early as DTrace static probes and tnf probes both call
 437          * undefined references.  We have to process those relocations before
 438          * calling any of them.
 439          *
 440          * OBP tells kobj_start() where the ELF image is in memory, so it
 441          * synthesized bootaux before kobj_init() was called
 442          */
 443         if (bootaux[BA_PHDR].ba_ptr == NULL)
 444                 synthetic_bootaux(filename, bootaux);
 445 
 446 #endif  /* !_UNIX_KRTLD */
 447 #endif  /* _OBP */
 448 
 449         /*
 450          * Save the interesting attribute-values
 451          * (scanned by kobj_boot).
 452          */
 453         attr_val(bootaux);
 454 
 455         /*
 456          * Set the module search path.
 457          */
 458         kobj_module_path = getmodpath(filename);
 459 
 460         boot_cpu_compatible_list = find_libmacro("CPU");
 461 
 462         /*
 463          * These two modules have actually been
 464          * loaded by boot, but we finish the job
 465          * by introducing them into the world of
 466          * loadable modules.
 467          */
 468 
 469         mp = load_exec(bootaux, filename);
 470         load_linker(bootaux);
 471 
 472         /*
 473          * Load all the primary dependent modules.
 474          */
 475         if (load_primary(mp, KOBJ_LM_PRIMARY) == -1)
 476                 goto fail;
 477 
 478         /*
 479          * Glue it together.
 480          */
 481         if (bind_primary(bootaux, KOBJ_LM_PRIMARY) == -1)
 482                 goto fail;
 483 
 484         entry = bootaux[BA_ENTRY].ba_val;
 485 
 486         /*
 487          * Get the boot flags
 488          */
 489         bootflags(ops);
 490 
 491         if (boothowto & RB_VERBOSE)
 492                 kobj_lm_dump(KOBJ_LM_PRIMARY);
 493 
 494         kobj_kdi_init();
 495 
 496         if (boothowto & RB_KMDB) {
 497                 if (load_kmdb(bootaux) < 0)
 498                         goto fail;
 499         }
 500 
 501         /*
 502          * Post setup.
 503          */
 504         s_text = _text;
 505         e_text = _etext;
 506         s_data = _data;
 507         e_data = _edata;
 508 
 509         kobj_sync_instruction_memory(s_text, e_text - s_text);
 510 
 511 #ifdef  KOBJ_DEBUG
 512         if (kobj_debug & D_DEBUG)
 513                 _kobj_printf(ops,
 514                     "krtld: transferring control to: 0x%p\n", entry);
 515 #endif
 516 
 517         /*
 518          * Make sure the mod system knows about the modules already loaded.
 519          */
 520         last_module_id = kobj_last_module_id;
 521         bcopy(kobj_modules, &modules, sizeof (modules));
 522         modp = &modules;
 523         do {
 524                 if (modp->mod_next == kobj_modules)
 525                         modp->mod_next = &modules;
 526                 if (modp->mod_prev == kobj_modules)
 527                         modp->mod_prev = &modules;
 528         } while ((modp = modp->mod_next) != &modules);
 529 
 530         standalone = 0;
 531 
 532 #ifdef  KOBJ_DEBUG
 533         if (kobj_debug & D_DEBUG)
 534                 _kobj_printf(ops,
 535                     "krtld: really transferring control to: 0x%p\n", entry);
 536 #endif
 537 
 538         /* restore printf/bcopy/bzero vectors before returning */
 539         kobj_restore_vectors();
 540 
 541 #if defined(_DBOOT)
 542         /*
 543          * krtld was called from a dboot ELF section, the embedded
 544          * dboot code contains the real entry via bootaux
 545          */
 546         exitto((caddr_t)entry);
 547 #else
 548         /*
 549          * krtld was directly called from startup
 550          */
 551         return;
 552 #endif
 553 
 554 fail:
 555 
 556         _kobj_printf(ops, "krtld: error during initial load/link phase\n");
 557 
 558 #if !defined(_UNIX_KRTLD)
 559         _kobj_printf(ops, "\n");
 560         _kobj_printf(ops, "krtld could neither locate nor resolve symbols"
 561             " for:\n");
 562         _kobj_printf(ops, "    %s\n", filename);
 563         _kobj_printf(ops, "in the boot archive. Please verify that this"
 564             " file\n");
 565         _kobj_printf(ops, "matches what is found in the boot archive.\n");
 566         _kobj_printf(ops, "You may need to boot using the Solaris failsafe to"
 567             " fix this.\n");
 568         bop_panic("Unable to boot");
 569 #endif
 570 }
 571 
 572 #if !defined(_UNIX_KRTLD) && !defined(_OBP)
 573 /*
 574  * Synthesize additional metadata that describes the executable if
 575  * krtld's caller didn't do it.
 576  *
 577  * (When the dynamic executable has an interpreter, the boot program
 578  * does all this for us.  Where we don't have an interpreter, (or a
 579  * even a boot program, perhaps) we have to do this for ourselves.)
 580  */
 581 static void
 582 synthetic_bootaux(char *filename, val_t *bootaux)
 583 {
 584         Ehdr ehdr;
 585         caddr_t phdrbase;
 586         struct _buf *file;
 587         int i, n;
 588 
 589         /*
 590          * Elf header
 591          */
 592         KOBJ_MARK("synthetic_bootaux()");
 593         KOBJ_MARK(filename);
 594         file = kobj_open_file(filename);
 595         if (file == (struct _buf *)-1) {
 596                 _kobj_printf(ops, "krtld: failed to open '%s'\n", filename);
 597                 return;
 598         }
 599         KOBJ_MARK("reading program headers");
 600         if (kobj_read_file(file, (char *)&ehdr, sizeof (ehdr), 0) < 0) {
 601                 _kobj_printf(ops, "krtld: %s: failed to read ehder\n",
 602                     filename);
 603                 return;
 604         }
 605 
 606         /*
 607          * Program headers
 608          */
 609         bootaux[BA_PHNUM].ba_val = ehdr.e_phnum;
 610         bootaux[BA_PHENT].ba_val = ehdr.e_phentsize;
 611         n = ehdr.e_phentsize * ehdr.e_phnum;
 612 
 613         phdrbase = kobj_alloc(n, KM_WAIT | KM_TMP);
 614 
 615         if (kobj_read_file(file, phdrbase, n, ehdr.e_phoff) < 0) {
 616                 _kobj_printf(ops, "krtld: %s: failed to read phdrs\n",
 617                     filename);
 618                 return;
 619         }
 620         bootaux[BA_PHDR].ba_ptr = phdrbase;
 621         kobj_close_file(file);
 622         KOBJ_MARK("closed file");
 623 
 624         /*
 625          * Find the dynamic section address
 626          */
 627         for (i = 0; i < ehdr.e_phnum; i++) {
 628                 Phdr *phdr = (Phdr *)(phdrbase + ehdr.e_phentsize * i);
 629 
 630                 if (phdr->p_type == PT_DYNAMIC) {
 631                         bootaux[BA_DYNAMIC].ba_ptr = (void *)phdr->p_vaddr;
 632                         break;
 633                 }
 634         }
 635         KOBJ_MARK("synthetic_bootaux() done");
 636 }
 637 #endif  /* !_UNIX_KRTLD && !_OBP */
 638 
 639 /*
 640  * Set up any global information derived
 641  * from attribute/values in the boot or
 642  * aux vector.
 643  */
 644 static void
 645 attr_val(val_t *bootaux)
 646 {
 647         Phdr *phdr;
 648         int phnum, phsize;
 649         int i;
 650 
 651         KOBJ_MARK("attr_val()");
 652         kobj_mmu_pagesize = bootaux[BA_PAGESZ].ba_val;
 653         lg_pagesize = bootaux[BA_LPAGESZ].ba_val;
 654         use_iflush = bootaux[BA_IFLUSH].ba_val;
 655 
 656         phdr = (Phdr *)bootaux[BA_PHDR].ba_ptr;
 657         phnum = bootaux[BA_PHNUM].ba_val;
 658         phsize = bootaux[BA_PHENT].ba_val;
 659         for (i = 0; i < phnum; i++) {
 660                 phdr = (Phdr *)(bootaux[BA_PHDR].ba_val + i * phsize);
 661 
 662                 if (phdr->p_type != PT_LOAD) {
 663                         continue;
 664                 }
 665                 /*
 666                  * Bounds of the various segments.
 667                  */
 668                 if (!(phdr->p_flags & PF_X)) {
 669 #if defined(_RELSEG)
 670                         /*
 671                          * sparc kernel puts the dynamic info
 672                          * into a separate segment, which is
 673                          * free'd in bop_fini()
 674                          */
 675                         ASSERT(phdr->p_vaddr != 0);
 676                         dynseg = phdr->p_vaddr;
 677                         dynsize = phdr->p_memsz;
 678 #else
 679                         ASSERT(phdr->p_vaddr == 0);
 680 #endif
 681                 } else {
 682                         if (phdr->p_flags & PF_W) {
 683                                 _data = (caddr_t)phdr->p_vaddr;
 684                                 _edata = _data + phdr->p_memsz;
 685                         } else {
 686                                 _text = (caddr_t)phdr->p_vaddr;
 687                                 _etext = _text + phdr->p_memsz;
 688                         }
 689                 }
 690         }
 691 
 692         /* To do the kobj_alloc, _edata needs to be set. */
 693         for (i = 0; i < NLIBMACROS; i++) {
 694                 if (bootaux[libmacros[i].lmi_ba_index].ba_ptr != NULL) {
 695                         libmacros[i].lmi_list = kobj_alloc(
 696                             strlen(bootaux[libmacros[i].lmi_ba_index].ba_ptr) +
 697                             1, KM_WAIT);
 698                         (void) strcpy(libmacros[i].lmi_list,
 699                             bootaux[libmacros[i].lmi_ba_index].ba_ptr);
 700                 }
 701                 libmacros[i].lmi_macrolen = strlen(libmacros[i].lmi_macroname);
 702         }
 703 }
 704 
 705 /*
 706  * Set up the booted executable.
 707  */
 708 static struct module *
 709 load_exec(val_t *bootaux, char *filename)
 710 {
 711         struct modctl *cp;
 712         struct module *mp;
 713         Dyn *dyn;
 714         Sym *sp;
 715         int i, lsize, osize, nsize, allocsize;
 716         char *libname, *tmp;
 717         char path[MAXPATHLEN];
 718 
 719 #ifdef KOBJ_DEBUG
 720         if (kobj_debug & D_DEBUG)
 721                 _kobj_printf(ops, "module path '%s'\n", kobj_module_path);
 722 #endif
 723 
 724         KOBJ_MARK("add_primary");
 725         cp = add_primary(filename, KOBJ_LM_PRIMARY);
 726 
 727         KOBJ_MARK("struct module");
 728         mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
 729         cp->mod_mp = mp;
 730 
 731         /*
 732          * We don't have the following information
 733          * since this module is an executable and not
 734          * a relocatable .o.
 735          */
 736         mp->symtbl_section = 0;
 737         mp->shdrs = NULL;
 738         mp->strhdr = NULL;
 739 
 740         /*
 741          * Since this module is the only exception,
 742          * we cons up some section headers.
 743          */
 744         KOBJ_MARK("symhdr");
 745         mp->symhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
 746 
 747         KOBJ_MARK("strhdr");
 748         mp->strhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
 749 
 750         mp->symhdr->sh_type = SHT_SYMTAB;
 751         mp->strhdr->sh_type = SHT_STRTAB;
 752         /*
 753          * Scan the dynamic structure.
 754          */
 755         for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
 756             dyn->d_tag != DT_NULL; dyn++) {
 757                 switch (dyn->d_tag) {
 758                 case DT_SYMTAB:
 759                         mp->symspace = mp->symtbl = (char *)dyn->d_un.d_ptr;
 760                         mp->symhdr->sh_addr = dyn->d_un.d_ptr;
 761                         break;
 762                 case DT_HASH:
 763                         mp->nsyms = *((uint_t *)dyn->d_un.d_ptr + 1);
 764                         mp->hashsize = *(uint_t *)dyn->d_un.d_ptr;
 765                         break;
 766                 case DT_STRTAB:
 767                         mp->strings = (char *)dyn->d_un.d_ptr;
 768                         mp->strhdr->sh_addr = dyn->d_un.d_ptr;
 769                         break;
 770                 case DT_STRSZ:
 771                         mp->strhdr->sh_size = dyn->d_un.d_val;
 772                         break;
 773                 case DT_SYMENT:
 774                         mp->symhdr->sh_entsize = dyn->d_un.d_val;
 775                         break;
 776                 }
 777         }
 778 
 779         /*
 780          * Collapse any DT_NEEDED entries into one string.
 781          */
 782         nsize = osize = 0;
 783         allocsize = MAXPATHLEN;
 784 
 785         KOBJ_MARK("depends_on");
 786         mp->depends_on = kobj_alloc(allocsize, KM_WAIT);
 787 
 788         for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
 789             dyn->d_tag != DT_NULL; dyn++)
 790                 if (dyn->d_tag == DT_NEEDED) {
 791                         char *_lib;
 792 
 793                         libname = mp->strings + dyn->d_un.d_val;
 794                         if (strchr(libname, '$') != NULL) {
 795                                 if ((_lib = expand_libmacro(libname,
 796                                     path, path)) != NULL)
 797                                         libname = _lib;
 798                                 else
 799                                         _kobj_printf(ops, "krtld: "
 800                                             "load_exec: fail to "
 801                                             "expand %s\n", libname);
 802                         }
 803                         lsize = strlen(libname);
 804                         nsize += lsize;
 805                         if (nsize + 1 > allocsize) {
 806                                 KOBJ_MARK("grow depends_on");
 807                                 tmp = kobj_alloc(allocsize + MAXPATHLEN,
 808                                     KM_WAIT);
 809                                 bcopy(mp->depends_on, tmp, osize);
 810                                 kobj_free(mp->depends_on, allocsize);
 811                                 mp->depends_on = tmp;
 812                                 allocsize += MAXPATHLEN;
 813                         }
 814                         bcopy(libname, mp->depends_on + osize, lsize);
 815                         *(mp->depends_on + nsize) = ' '; /* separate */
 816                         nsize++;
 817                         osize = nsize;
 818                 }
 819         if (nsize) {
 820                 mp->depends_on[nsize - 1] = '\0'; /* terminate the string */
 821                 /*
 822                  * alloc with exact size and copy whatever it got over
 823                  */
 824                 KOBJ_MARK("realloc depends_on");
 825                 tmp = kobj_alloc(nsize, KM_WAIT);
 826                 bcopy(mp->depends_on, tmp, nsize);
 827                 kobj_free(mp->depends_on, allocsize);
 828                 mp->depends_on = tmp;
 829         } else {
 830                 kobj_free(mp->depends_on, allocsize);
 831                 mp->depends_on = NULL;
 832         }
 833 
 834         mp->flags = KOBJ_EXEC|KOBJ_PRIM;     /* NOT a relocatable .o */
 835         mp->symhdr->sh_size = mp->nsyms * mp->symhdr->sh_entsize;
 836         /*
 837          * We allocate our own table since we don't
 838          * hash undefined references.
 839          */
 840         KOBJ_MARK("chains");
 841         mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
 842         KOBJ_MARK("buckets");
 843         mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
 844 
 845         mp->text = _text;
 846         mp->data = _data;
 847 
 848         mp->text_size = _etext - _text;
 849         mp->data_size = _edata - _data;
 850 
 851         cp->mod_text = mp->text;
 852         cp->mod_text_size = mp->text_size;
 853 
 854         mp->filename = cp->mod_filename;
 855 
 856 #ifdef  KOBJ_DEBUG
 857         if (kobj_debug & D_LOADING) {
 858                 _kobj_printf(ops, "krtld: file=%s\n", mp->filename);
 859                 _kobj_printf(ops, "\ttext: 0x%p", mp->text);
 860                 _kobj_printf(ops, " size: 0x%x\n", mp->text_size);
 861                 _kobj_printf(ops, "\tdata: 0x%p", mp->data);
 862                 _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
 863         }
 864 #endif /* KOBJ_DEBUG */
 865 
 866         /*
 867          * Insert symbols into the hash table.
 868          */
 869         for (i = 0; i < mp->nsyms; i++) {
 870                 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
 871 
 872                 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
 873                         continue;
 874 #if defined(__sparc)
 875                 /*
 876                  * Register symbols are ignored in the kernel
 877                  */
 878                 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER)
 879                         continue;
 880 #endif  /* __sparc */
 881 
 882                 sym_insert(mp, mp->strings + sp->st_name, i);
 883         }
 884 
 885         KOBJ_MARK("load_exec done");
 886         return (mp);
 887 }
 888 
 889 /*
 890  * Set up the linker module (if it's compiled in, LDNAME is NULL)
 891  */
 892 static void
 893 load_linker(val_t *bootaux)
 894 {
 895         struct module *kmp = (struct module *)kobj_modules->mod_mp;
 896         struct module *mp;
 897         struct modctl *cp;
 898         int i;
 899         Shdr *shp;
 900         Sym *sp;
 901         int shsize;
 902         char *dlname = (char *)bootaux[BA_LDNAME].ba_ptr;
 903 
 904         /*
 905          * On some architectures, krtld is compiled into the kernel.
 906          */
 907         if (dlname == NULL)
 908                 return;
 909 
 910         cp = add_primary(dlname, KOBJ_LM_PRIMARY);
 911 
 912         mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
 913 
 914         cp->mod_mp = mp;
 915         mp->hdr = *(Ehdr *)bootaux[BA_LDELF].ba_ptr;
 916         shsize = mp->hdr.e_shentsize * mp->hdr.e_shnum;
 917         mp->shdrs = kobj_alloc(shsize, KM_WAIT);
 918         bcopy(bootaux[BA_LDSHDR].ba_ptr, mp->shdrs, shsize);
 919 
 920         for (i = 1; i < (int)mp->hdr.e_shnum; i++) {
 921                 shp = (Shdr *)(mp->shdrs + (i * mp->hdr.e_shentsize));
 922 
 923                 if (shp->sh_flags & SHF_ALLOC) {
 924                         if (shp->sh_flags & SHF_WRITE) {
 925                                 if (mp->data == NULL)
 926                                         mp->data = (char *)shp->sh_addr;
 927                         } else if (mp->text == NULL) {
 928                                 mp->text = (char *)shp->sh_addr;
 929                         }
 930                 }
 931                 if (shp->sh_type == SHT_SYMTAB) {
 932                         mp->symtbl_section = i;
 933                         mp->symhdr = shp;
 934                         mp->symspace = mp->symtbl = (char *)shp->sh_addr;
 935                 }
 936         }
 937         mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
 938         mp->flags = KOBJ_INTERP|KOBJ_PRIM;
 939         mp->strhdr = (Shdr *)
 940             (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
 941         mp->strings = (char *)mp->strhdr->sh_addr;
 942         mp->hashsize = kobj_gethashsize(mp->nsyms);
 943 
 944         mp->symsize = mp->symhdr->sh_size + mp->strhdr->sh_size + sizeof (int) +
 945             (mp->hashsize + mp->nsyms) * sizeof (symid_t);
 946 
 947         mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
 948         mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
 949 
 950         mp->bss = bootaux[BA_BSS].ba_val;
 951         mp->bss_align = 0;   /* pre-aligned during allocation */
 952         mp->bss_size = (uintptr_t)_edata - mp->bss;
 953         mp->text_size = _etext - mp->text;
 954         mp->data_size = _edata - mp->data;
 955         mp->filename = cp->mod_filename;
 956         cp->mod_text = mp->text;
 957         cp->mod_text_size = mp->text_size;
 958 
 959         /*
 960          * Now that we've figured out where the linker is,
 961          * set the limits for the booted object.
 962          */
 963         kmp->text_size = (size_t)(mp->text - kmp->text);
 964         kmp->data_size = (size_t)(mp->data - kmp->data);
 965         kobj_modules->mod_text_size = kmp->text_size;
 966 
 967 #ifdef  KOBJ_DEBUG
 968         if (kobj_debug & D_LOADING) {
 969                 _kobj_printf(ops, "krtld: file=%s\n", mp->filename);
 970                 _kobj_printf(ops, "\ttext:0x%p", mp->text);
 971                 _kobj_printf(ops, " size: 0x%x\n", mp->text_size);
 972                 _kobj_printf(ops, "\tdata:0x%p", mp->data);
 973                 _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
 974         }
 975 #endif /* KOBJ_DEBUG */
 976 
 977         /*
 978          * Insert the symbols into the hash table.
 979          */
 980         for (i = 0; i < mp->nsyms; i++) {
 981                 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
 982 
 983                 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
 984                         continue;
 985                 if (ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
 986                         if (sp->st_shndx == SHN_COMMON)
 987                                 sp->st_shndx = SHN_ABS;
 988                 }
 989                 sym_insert(mp, mp->strings + sp->st_name, i);
 990         }
 991 
 992 }
 993 
 994 static kobj_notify_list_t **
 995 kobj_notify_lookup(uint_t type)
 996 {
 997         ASSERT(type != 0 && type < sizeof (kobj_notifiers) /
 998             sizeof (kobj_notify_list_t *));
 999 
1000         return (&kobj_notifiers[type]);
1001 }
1002 
1003 int
1004 kobj_notify_add(kobj_notify_list_t *knp)
1005 {
1006         kobj_notify_list_t **knl;
1007 
1008         knl = kobj_notify_lookup(knp->kn_type);
1009 
1010         knp->kn_next = NULL;
1011         knp->kn_prev = NULL;
1012 
1013         mutex_enter(&kobj_lock);
1014 
1015         if (*knl != NULL) {
1016                 (*knl)->kn_prev = knp;
1017                 knp->kn_next = *knl;
1018         }
1019         (*knl) = knp;
1020 
1021         mutex_exit(&kobj_lock);
1022         return (0);
1023 }
1024 
1025 int
1026 kobj_notify_remove(kobj_notify_list_t *knp)
1027 {
1028         kobj_notify_list_t **knl = kobj_notify_lookup(knp->kn_type);
1029         kobj_notify_list_t *tknp;
1030 
1031         mutex_enter(&kobj_lock);
1032 
1033         /* LINTED */
1034         if (tknp = knp->kn_next)
1035                 tknp->kn_prev = knp->kn_prev;
1036 
1037         /* LINTED */
1038         if (tknp = knp->kn_prev)
1039                 tknp->kn_next = knp->kn_next;
1040         else
1041                 *knl = knp->kn_next;
1042 
1043         mutex_exit(&kobj_lock);
1044 
1045         return (0);
1046 }
1047 
1048 /*
1049  * Notify all interested callbacks of a specified change in module state.
1050  */
1051 static void
1052 kobj_notify(int type, struct modctl *modp)
1053 {
1054         kobj_notify_list_t *knp;
1055 
1056         if (modp->mod_loadflags & MOD_NONOTIFY || standalone)
1057                 return;
1058 
1059         mutex_enter(&kobj_lock);
1060 
1061         for (knp = *(kobj_notify_lookup(type)); knp != NULL; knp = knp->kn_next)
1062                 knp->kn_func(type, modp);
1063 
1064         /*
1065          * KDI notification must be last (it has to allow for work done by the
1066          * other notification callbacks), so we call it manually.
1067          */
1068         kobj_kdi_mod_notify(type, modp);
1069 
1070         mutex_exit(&kobj_lock);
1071 }
1072 
1073 /*
1074  * Create the module path.
1075  */
1076 static char *
1077 getmodpath(const char *filename)
1078 {
1079         char *path = kobj_zalloc(MAXPATHLEN, KM_WAIT);
1080 
1081         /*
1082          * Platform code gets first crack, then add
1083          * the default components
1084          */
1085         mach_modpath(path, filename);
1086         if (*path != '\0')
1087                 (void) strcat(path, " ");
1088         return (strcat(path, MOD_DEFPATH));
1089 }
1090 
1091 static struct modctl *
1092 add_primary(const char *filename, int lmid)
1093 {
1094         struct modctl *cp;
1095 
1096         cp = kobj_zalloc(sizeof (struct modctl), KM_WAIT);
1097 
1098         cp->mod_filename = kobj_alloc(strlen(filename) + 1, KM_WAIT);
1099 
1100         /*
1101          * For symbol lookup, we assemble our own
1102          * modctl list of the primary modules.
1103          */
1104 
1105         (void) strcpy(cp->mod_filename, filename);
1106         cp->mod_modname = basename(cp->mod_filename);
1107 
1108         /* set values for modinfo assuming that the load will work */
1109         cp->mod_prim = 1;
1110         cp->mod_loaded = 1;
1111         cp->mod_installed = 1;
1112         cp->mod_loadcnt = 1;
1113         cp->mod_loadflags = MOD_NOAUTOUNLOAD;
1114 
1115         cp->mod_id = kobj_last_module_id++;
1116 
1117         /*
1118          * Link the module in. We'll pass this info on
1119          * to the mod squad later.
1120          */
1121         if (kobj_modules == NULL) {
1122                 kobj_modules = cp;
1123                 cp->mod_prev = cp->mod_next = cp;
1124         } else {
1125                 cp->mod_prev = kobj_modules->mod_prev;
1126                 cp->mod_next = kobj_modules;
1127                 kobj_modules->mod_prev->mod_next = cp;
1128                 kobj_modules->mod_prev = cp;
1129         }
1130 
1131         kobj_lm_append(lmid, cp);
1132 
1133         return (cp);
1134 }
1135 
1136 static int
1137 bind_primary(val_t *bootaux, int lmid)
1138 {
1139         struct modctl_list *linkmap = kobj_lm_lookup(lmid);
1140         struct modctl_list *lp;
1141         struct module *mp;
1142 
1143         /*
1144          * Do common symbols.
1145          */
1146         for (lp = linkmap; lp; lp = lp->modl_next) {
1147                 mp = mod(lp);
1148 
1149                 /*
1150                  * Don't do common section relocations for modules that
1151                  * don't need it.
1152                  */
1153                 if (mp->flags & (KOBJ_EXEC|KOBJ_INTERP))
1154                         continue;
1155 
1156                 if (do_common(mp) < 0)
1157                         return (-1);
1158         }
1159 
1160         /*
1161          * Resolve symbols.
1162          */
1163         for (lp = linkmap; lp; lp = lp->modl_next) {
1164                 mp = mod(lp);
1165 
1166                 if (do_symbols(mp, 0) < 0)
1167                         return (-1);
1168         }
1169 
1170         /*
1171          * Do relocations.
1172          */
1173         for (lp = linkmap; lp; lp = lp->modl_next) {
1174                 mp = mod(lp);
1175 
1176                 if (mp->flags & KOBJ_EXEC) {
1177                         Dyn *dyn;
1178                         Word relasz = 0, relaent = 0;
1179                         Word shtype;
1180                         char *rela = NULL;
1181 
1182                         for (dyn = (Dyn *)bootaux[BA_DYNAMIC].ba_ptr;
1183                             dyn->d_tag != DT_NULL; dyn++) {
1184                                 switch (dyn->d_tag) {
1185                                 case DT_RELASZ:
1186                                 case DT_RELSZ:
1187                                         relasz = dyn->d_un.d_val;
1188                                         break;
1189                                 case DT_RELAENT:
1190                                 case DT_RELENT:
1191                                         relaent = dyn->d_un.d_val;
1192                                         break;
1193                                 case DT_RELA:
1194                                         shtype = SHT_RELA;
1195                                         rela = (char *)dyn->d_un.d_ptr;
1196                                         break;
1197                                 case DT_REL:
1198                                         shtype = SHT_REL;
1199                                         rela = (char *)dyn->d_un.d_ptr;
1200                                         break;
1201                                 }
1202                         }
1203                         if (relasz == 0 ||
1204                             relaent == 0 || rela == NULL) {
1205                                 _kobj_printf(ops, "krtld: bind_primary(): "
1206                                     "no relocation information found for "
1207                                     "module %s\n", mp->filename);
1208                                 return (-1);
1209                         }
1210 #ifdef  KOBJ_DEBUG
1211                         if (kobj_debug & D_RELOCATIONS)
1212                                 _kobj_printf(ops, "krtld: relocating: file=%s "
1213                                     "KOBJ_EXEC\n", mp->filename);
1214 #endif
1215                         if (do_relocate(mp, rela, shtype, relasz/relaent,
1216                             relaent, (Addr)mp->text) < 0)
1217                                 return (-1);
1218                 } else {
1219                         if (do_relocations(mp) < 0)
1220                                 return (-1);
1221                 }
1222 
1223                 kobj_sync_instruction_memory(mp->text, mp->text_size);
1224         }
1225 
1226         for (lp = linkmap; lp; lp = lp->modl_next) {
1227                 mp = mod(lp);
1228 
1229                 /*
1230                  * We need to re-read the full symbol table for the boot file,
1231                  * since we couldn't use the full one before.  We also need to
1232                  * load the CTF sections of both the boot file and the
1233                  * interpreter (us).
1234                  */
1235                 if (mp->flags & KOBJ_EXEC) {
1236                         struct _buf *file;
1237                         int n;
1238 
1239                         file = kobj_open_file(mp->filename);
1240                         if (file == (struct _buf *)-1)
1241                                 return (-1);
1242                         if (kobj_read_file(file, (char *)&mp->hdr,
1243                             sizeof (mp->hdr), 0) < 0)
1244                                 return (-1);
1245                         n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1246                         mp->shdrs = kobj_alloc(n, KM_WAIT);
1247                         if (kobj_read_file(file, mp->shdrs, n,
1248                             mp->hdr.e_shoff) < 0)
1249                                 return (-1);
1250                         if (get_syms(mp, file) < 0)
1251                                 return (-1);
1252                         if (get_ctf(mp, file) < 0)
1253                                 return (-1);
1254                         kobj_close_file(file);
1255                         mp->flags |= KOBJ_RELOCATED;
1256 
1257                 } else if (mp->flags & KOBJ_INTERP) {
1258                         struct _buf *file;
1259 
1260                         /*
1261                          * The interpreter path fragment in mp->filename
1262                          * will already have the module directory suffix
1263                          * in it (if appropriate).
1264                          */
1265                         file = kobj_open_path(mp->filename, 1, 0);
1266                         if (file == (struct _buf *)-1)
1267                                 return (-1);
1268                         if (get_ctf(mp, file) < 0)
1269                                 return (-1);
1270                         kobj_close_file(file);
1271                         mp->flags |= KOBJ_RELOCATED;
1272                 }
1273         }
1274 
1275         return (0);
1276 }
1277 
1278 static struct modctl *
1279 mod_already_loaded(char *modname)
1280 {
1281         struct modctl *mctl = kobj_modules;
1282 
1283         do {
1284                 if (strcmp(modname, mctl->mod_filename) == 0)
1285                         return (mctl);
1286                 mctl = mctl->mod_next;
1287 
1288         } while (mctl != kobj_modules);
1289 
1290         return (NULL);
1291 }
1292 
1293 /*
1294  * Load all the primary dependent modules.
1295  */
1296 static int
1297 load_primary(struct module *mp, int lmid)
1298 {
1299         struct modctl *cp;
1300         struct module *dmp;
1301         char *p, *q;
1302         char modname[MODMAXNAMELEN];
1303 
1304         if ((p = mp->depends_on) == NULL)
1305                 return (0);
1306 
1307         /* CONSTANTCONDITION */
1308         while (1) {
1309                 /*
1310                  * Skip space.
1311                  */
1312                 while (*p && (*p == ' ' || *p == '\t'))
1313                         p++;
1314                 /*
1315                  * Get module name.
1316                  */
1317                 q = modname;
1318                 while (*p && *p != ' ' && *p != '\t')
1319                         *q++ = *p++;
1320 
1321                 if (q == modname)
1322                         break;
1323 
1324                 *q = '\0';
1325                 /*
1326                  * Check for dup dependencies.
1327                  */
1328                 if (strcmp(modname, "dtracestubs") == 0 ||
1329                     mod_already_loaded(modname) != NULL)
1330                         continue;
1331 
1332                 cp = add_primary(modname, lmid);
1333                 cp->mod_busy = 1;
1334                 /*
1335                  * Load it.
1336                  */
1337                 (void) kobj_load_module(cp, 1);
1338                 cp->mod_busy = 0;
1339 
1340                 if ((dmp = cp->mod_mp) == NULL) {
1341                         cp->mod_loaded = 0;
1342                         cp->mod_installed = 0;
1343                         cp->mod_loadcnt = 0;
1344                         return (-1);
1345                 }
1346 
1347                 add_dependent(mp, dmp);
1348                 dmp->flags |= KOBJ_PRIM;
1349 
1350                 /*
1351                  * Recurse.
1352                  */
1353                 if (load_primary(dmp, lmid) == -1) {
1354                         cp->mod_loaded = 0;
1355                         cp->mod_installed = 0;
1356                         cp->mod_loadcnt = 0;
1357                         return (-1);
1358                 }
1359         }
1360         return (0);
1361 }
1362 
1363 static int
1364 console_is_usb_serial(void)
1365 {
1366         char *console;
1367         int len, ret;
1368 
1369         if ((len = BOP_GETPROPLEN(ops, "console")) == -1)
1370                 return (0);
1371 
1372         console = kobj_zalloc(len, KM_WAIT|KM_TMP);
1373         (void) BOP_GETPROP(ops, "console", console);
1374         ret = (strcmp(console, "usb-serial") == 0);
1375         kobj_free(console, len);
1376 
1377         return (ret);
1378 }
1379 
1380 static int
1381 load_kmdb(val_t *bootaux)
1382 {
1383         struct modctl *mctl;
1384         struct module *mp;
1385         Sym *sym;
1386 
1387         if (console_is_usb_serial()) {
1388                 _kobj_printf(ops, "kmdb not loaded "
1389                     "(unsupported on usb serial console)\n");
1390                 return (0);
1391         }
1392 
1393         _kobj_printf(ops, "Loading kmdb...\n");
1394 
1395         if ((mctl = add_primary("misc/kmdbmod", KOBJ_LM_DEBUGGER)) == NULL)
1396                 return (-1);
1397 
1398         mctl->mod_busy = 1;
1399         (void) kobj_load_module(mctl, 1);
1400         mctl->mod_busy = 0;
1401 
1402         if ((mp = mctl->mod_mp) == NULL)
1403                 return (-1);
1404 
1405         mp->flags |= KOBJ_PRIM;
1406 
1407         if (load_primary(mp, KOBJ_LM_DEBUGGER) < 0)
1408                 return (-1);
1409 
1410         if (boothowto & RB_VERBOSE)
1411                 kobj_lm_dump(KOBJ_LM_DEBUGGER);
1412 
1413         if (bind_primary(bootaux, KOBJ_LM_DEBUGGER) < 0)
1414                 return (-1);
1415 
1416         if ((sym = lookup_one(mctl->mod_mp, "kctl_boot_activate")) == NULL)
1417                 return (-1);
1418 
1419 #ifdef  KOBJ_DEBUG
1420         if (kobj_debug & D_DEBUG) {
1421                 _kobj_printf(ops, "calling kctl_boot_activate() @ 0x%lx\n",
1422                     sym->st_value);
1423                 _kobj_printf(ops, "\tops 0x%p\n", ops);
1424                 _kobj_printf(ops, "\tromp 0x%p\n", romp);
1425         }
1426 #endif
1427 
1428         if (((kctl_boot_activate_f *)sym->st_value)(ops, romp, 0,
1429             (const char **)kobj_kmdb_argv) < 0)
1430                 return (-1);
1431 
1432         return (0);
1433 }
1434 
1435 /*
1436  * Return a string listing module dependencies.
1437  */
1438 static char *
1439 depends_on(struct module *mp)
1440 {
1441         Sym *sp;
1442         char *depstr, *q;
1443 
1444         /*
1445          * The module doesn't have a depends_on value, so let's try it the
1446          * old-fashioned way - via "_depends_on"
1447          */
1448         if ((sp = lookup_one(mp, "_depends_on")) == NULL)
1449                 return (NULL);
1450 
1451         q = (char *)sp->st_value;
1452 
1453 #ifdef KOBJ_DEBUG
1454         /*
1455          * _depends_on is a deprecated interface, so we warn about its use
1456          * irrespective of subsequent processing errors. How else are we going
1457          * to be able to deco this interface completely?
1458          * Changes initially limited to DEBUG because third-party modules
1459          * should be flagged to developers before general use base.
1460          */
1461         _kobj_printf(ops,
1462             "Warning: %s uses deprecated _depends_on interface.\n",
1463             mp->filename);
1464         _kobj_printf(ops, "Please notify module developer or vendor.\n");
1465 #endif
1466 
1467         /*
1468          * Idiot checks. Make sure it's
1469          * in-bounds and NULL terminated.
1470          */
1471         if (kobj_addrcheck(mp, q) || q[sp->st_size - 1] != '\0') {
1472                 _kobj_printf(ops, "Error processing dependency for %s\n",
1473                     mp->filename);
1474                 return (NULL);
1475         }
1476 
1477         depstr = (char *)kobj_alloc(strlen(q) + 1, KM_WAIT);
1478         (void) strcpy(depstr, q);
1479 
1480         return (depstr);
1481 }
1482 
1483 void
1484 kobj_getmodinfo(void *xmp, struct modinfo *modinfo)
1485 {
1486         struct module *mp;
1487         mp = (struct module *)xmp;
1488 
1489         modinfo->mi_base = mp->text;
1490         modinfo->mi_size = mp->text_size + mp->data_size;
1491 }
1492 
1493 /*
1494  * kobj_export_ksyms() performs the following services:
1495  *
1496  * (1) Migrates the symbol table from boot/kobj memory to the ksyms arena.
1497  * (2) Removes unneeded symbols to save space.
1498  * (3) Reduces memory footprint by using VM_BESTFIT allocations.
1499  * (4) Makes the symbol table visible to /dev/ksyms.
1500  */
1501 static void
1502 kobj_export_ksyms(struct module *mp)
1503 {
1504         Sym *esp = (Sym *)(mp->symtbl + mp->symhdr->sh_size);
1505         Sym *sp, *osp;
1506         char *name;
1507         size_t namelen;
1508         struct module *omp;
1509         uint_t nsyms;
1510         size_t symsize = mp->symhdr->sh_entsize;
1511         size_t locals = 1;
1512         size_t strsize;
1513 
1514         /*
1515          * Make a copy of the original module structure.
1516          */
1517         omp = kobj_alloc(sizeof (struct module), KM_WAIT);
1518         bcopy(mp, omp, sizeof (struct module));
1519 
1520         /*
1521          * Compute the sizes of the new symbol table sections.
1522          */
1523         for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1524                 if (osp->st_value == 0)
1525                         continue;
1526                 if (sym_lookup(omp, osp) == NULL)
1527                         continue;
1528                 name = omp->strings + osp->st_name;
1529                 namelen = strlen(name);
1530                 if (ELF_ST_BIND(osp->st_info) == STB_LOCAL)
1531                         locals++;
1532                 nsyms++;
1533                 strsize += namelen + 1;
1534         }
1535 
1536         mp->nsyms = nsyms;
1537         mp->hashsize = kobj_gethashsize(mp->nsyms);
1538 
1539         /*
1540          * ksyms_lock must be held as writer during any operation that
1541          * modifies ksyms_arena, including allocation from same, and
1542          * must not be dropped until the arena is vmem_walk()able.
1543          */
1544         rw_enter(&ksyms_lock, RW_WRITER);
1545 
1546         /*
1547          * Allocate space for the new section headers (symtab and strtab),
1548          * symbol table, buckets, chains, and strings.
1549          */
1550         mp->symsize = (2 * sizeof (Shdr)) + (nsyms * symsize) +
1551             (mp->hashsize + mp->nsyms) * sizeof (symid_t) + strsize;
1552 
1553         if (mp->flags & KOBJ_NOKSYMS) {
1554                 mp->symspace = kobj_alloc(mp->symsize, KM_WAIT);
1555         } else {
1556                 mp->symspace = vmem_alloc(ksyms_arena, mp->symsize,
1557                     VM_BESTFIT | VM_SLEEP);
1558         }
1559         bzero(mp->symspace, mp->symsize);
1560 
1561         /*
1562          * Divvy up symspace.
1563          */
1564         mp->shdrs = mp->symspace;
1565         mp->symhdr = (Shdr *)mp->shdrs;
1566         mp->strhdr = (Shdr *)(mp->symhdr + 1);
1567         mp->symtbl = (char *)(mp->strhdr + 1);
1568         mp->buckets = (symid_t *)(mp->symtbl + (nsyms * symsize));
1569         mp->chains = (symid_t *)(mp->buckets + mp->hashsize);
1570         mp->strings = (char *)(mp->chains + nsyms);
1571 
1572         /*
1573          * Fill in the new section headers (symtab and strtab).
1574          */
1575         mp->hdr.e_shnum = 2;
1576         mp->symtbl_section = 0;
1577 
1578         mp->symhdr->sh_type = SHT_SYMTAB;
1579         mp->symhdr->sh_addr = (Addr)mp->symtbl;
1580         mp->symhdr->sh_size = nsyms * symsize;
1581         mp->symhdr->sh_link = 1;
1582         mp->symhdr->sh_info = locals;
1583         mp->symhdr->sh_addralign = sizeof (Addr);
1584         mp->symhdr->sh_entsize = symsize;
1585 
1586         mp->strhdr->sh_type = SHT_STRTAB;
1587         mp->strhdr->sh_addr = (Addr)mp->strings;
1588         mp->strhdr->sh_size = strsize;
1589         mp->strhdr->sh_addralign = 1;
1590 
1591         /*
1592          * Construct the new symbol table.
1593          */
1594         for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1595                 if (osp->st_value == 0)
1596                         continue;
1597                 if (sym_lookup(omp, osp) == NULL)
1598                         continue;
1599                 name = omp->strings + osp->st_name;
1600                 namelen = strlen(name);
1601                 sp = (Sym *)(mp->symtbl + symsize * nsyms);
1602                 bcopy(osp, sp, symsize);
1603                 bcopy(name, mp->strings + strsize, namelen);
1604                 sp->st_name = strsize;
1605                 sym_insert(mp, name, nsyms);
1606                 nsyms++;
1607                 strsize += namelen + 1;
1608         }
1609 
1610         rw_exit(&ksyms_lock);
1611 
1612         /*
1613          * Free the old section headers -- we'll never need them again.
1614          */
1615         if (!(mp->flags & KOBJ_PRIM)) {
1616                 uint_t  shn;
1617                 Shdr    *shp;
1618 
1619                 for (shn = 1; shn < omp->hdr.e_shnum; shn++) {
1620                         shp = (Shdr *)(omp->shdrs + shn * omp->hdr.e_shentsize);
1621                         switch (shp->sh_type) {
1622                         case SHT_RELA:
1623                         case SHT_REL:
1624                                 if (shp->sh_addr != 0) {
1625                                         kobj_free((void *)shp->sh_addr,
1626                                             shp->sh_size);
1627                                 }
1628                                 break;
1629                         }
1630                 }
1631                 kobj_free(omp->shdrs, omp->hdr.e_shentsize * omp->hdr.e_shnum);
1632         }
1633         /*
1634          * Discard the old symbol table and our copy of the module strucure.
1635          */
1636         if (!(mp->flags & KOBJ_PRIM))
1637                 kobj_free(omp->symspace, omp->symsize);
1638         kobj_free(omp, sizeof (struct module));
1639 }
1640 
1641 static void
1642 kobj_export_ctf(struct module *mp)
1643 {
1644         char *data = mp->ctfdata;
1645         size_t size = mp->ctfsize;
1646 
1647         if (data != NULL) {
1648                 if (_moddebug & MODDEBUG_NOCTF) {
1649                         mp->ctfdata = NULL;
1650                         mp->ctfsize = 0;
1651                 } else {
1652                         mp->ctfdata = vmem_alloc(ctf_arena, size,
1653                             VM_BESTFIT | VM_SLEEP);
1654                         bcopy(data, mp->ctfdata, size);
1655                 }
1656 
1657                 if (!(mp->flags & KOBJ_PRIM))
1658                         kobj_free(data, size);
1659         }
1660 }
1661 
1662 void
1663 kobj_export_module(struct module *mp)
1664 {
1665         kobj_export_ksyms(mp);
1666         kobj_export_ctf(mp);
1667 
1668         mp->flags |= KOBJ_EXPORTED;
1669 }
1670 
1671 static int
1672 process_dynamic(struct module *mp, char *dyndata, char *strdata)
1673 {
1674         char *path = NULL, *depstr = NULL;
1675         int allocsize = 0, osize = 0, nsize = 0;
1676         char *libname, *tmp;
1677         int lsize;
1678         Dyn *dynp;
1679 
1680         for (dynp = (Dyn *)dyndata; dynp && dynp->d_tag != DT_NULL; dynp++) {
1681                 switch (dynp->d_tag) {
1682                 case DT_NEEDED:
1683                         /*
1684                          * Read the DT_NEEDED entries, expanding the macros they
1685                          * contain (if any), and concatenating them into a
1686                          * single space-separated dependency list.
1687                          */
1688                         libname = (ulong_t)dynp->d_un.d_ptr + strdata;
1689 
1690                         if (strchr(libname, '$') != NULL) {
1691                                 char *_lib;
1692 
1693                                 if (path == NULL)
1694                                         path = kobj_alloc(MAXPATHLEN, KM_WAIT);
1695                                 if ((_lib = expand_libmacro(libname, path,
1696                                     path)) != NULL)
1697                                         libname = _lib;
1698                                 else {
1699                                         _kobj_printf(ops, "krtld: "
1700                                             "process_dynamic: failed to expand "
1701                                             "%s\n", libname);
1702                                 }
1703                         }
1704 
1705                         lsize = strlen(libname);
1706                         nsize += lsize;
1707                         if (nsize + 1 > allocsize) {
1708                                 tmp = kobj_alloc(allocsize + MAXPATHLEN,
1709                                     KM_WAIT);
1710                                 if (depstr != NULL) {
1711                                         bcopy(depstr, tmp, osize);
1712                                         kobj_free(depstr, allocsize);
1713                                 }
1714                                 depstr = tmp;
1715                                 allocsize += MAXPATHLEN;
1716                         }
1717                         bcopy(libname, depstr + osize, lsize);
1718                         *(depstr + nsize) = ' '; /* separator */
1719                         nsize++;
1720                         osize = nsize;
1721                         break;
1722 
1723                 case DT_FLAGS_1:
1724                         if (dynp->d_un.d_val & DF_1_IGNMULDEF)
1725                                 mp->flags |= KOBJ_IGNMULDEF;
1726                         if (dynp->d_un.d_val & DF_1_NOKSYMS)
1727                                 mp->flags |= KOBJ_NOKSYMS;
1728 
1729                         break;
1730                 }
1731         }
1732 
1733         /*
1734          * finish up the depends string (if any)
1735          */
1736         if (depstr != NULL) {
1737                 *(depstr + nsize - 1) = '\0'; /* overwrite separator w/term */
1738                 if (path != NULL)
1739                         kobj_free(path, MAXPATHLEN);
1740 
1741                 tmp = kobj_alloc(nsize, KM_WAIT);
1742                 bcopy(depstr, tmp, nsize);
1743                 kobj_free(depstr, allocsize);
1744                 depstr = tmp;
1745 
1746                 mp->depends_on = depstr;
1747         }
1748 
1749         return (0);
1750 }
1751 
1752 static int
1753 do_dynamic(struct module *mp, struct _buf *file)
1754 {
1755         Shdr *dshp, *dstrp, *shp;
1756         char *dyndata, *dstrdata;
1757         int dshn, shn, rc;
1758 
1759         /* find and validate the dynamic section (if any) */
1760 
1761         for (dshp = NULL, shn = 1; shn < mp->hdr.e_shnum; shn++) {
1762                 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
1763                 switch (shp->sh_type) {
1764                 case SHT_DYNAMIC:
1765                         if (dshp != NULL) {
1766                                 _kobj_printf(ops, "krtld: get_dynamic: %s, ",
1767                                     mp->filename);
1768                                 _kobj_printf(ops,
1769                                     "multiple dynamic sections\n");
1770                                 return (-1);
1771                         } else {
1772                                 dshp = shp;
1773                                 dshn = shn;
1774                         }
1775                         break;
1776                 }
1777         }
1778 
1779         if (dshp == NULL)
1780                 return (0);
1781 
1782         if (dshp->sh_link > mp->hdr.e_shnum) {
1783                 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1784                 _kobj_printf(ops, "no section for sh_link %d\n", dshp->sh_link);
1785                 return (-1);
1786         }
1787         dstrp = (Shdr *)(mp->shdrs + dshp->sh_link * mp->hdr.e_shentsize);
1788 
1789         if (dstrp->sh_type != SHT_STRTAB) {
1790                 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1791                 _kobj_printf(ops, "sh_link not a string table for section %d\n",
1792                     dshn);
1793                 return (-1);
1794         }
1795 
1796         /* read it from disk */
1797 
1798         dyndata = kobj_alloc(dshp->sh_size, KM_WAIT|KM_TMP);
1799         if (kobj_read_file(file, dyndata, dshp->sh_size, dshp->sh_offset) < 0) {
1800                 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1801                 _kobj_printf(ops, "error reading section %d\n", dshn);
1802 
1803                 kobj_free(dyndata, dshp->sh_size);
1804                 return (-1);
1805         }
1806 
1807         dstrdata = kobj_alloc(dstrp->sh_size, KM_WAIT|KM_TMP);
1808         if (kobj_read_file(file, dstrdata, dstrp->sh_size,
1809             dstrp->sh_offset) < 0) {
1810                 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1811                 _kobj_printf(ops, "error reading section %d\n", dshp->sh_link);
1812 
1813                 kobj_free(dyndata, dshp->sh_size);
1814                 kobj_free(dstrdata, dstrp->sh_size);
1815                 return (-1);
1816         }
1817 
1818         /* pull the interesting pieces out */
1819 
1820         rc = process_dynamic(mp, dyndata, dstrdata);
1821 
1822         kobj_free(dyndata, dshp->sh_size);
1823         kobj_free(dstrdata, dstrp->sh_size);
1824 
1825         return (rc);
1826 }
1827 
1828 void
1829 kobj_set_ctf(struct module *mp, caddr_t data, size_t size)
1830 {
1831         if (!standalone) {
1832                 if (mp->ctfdata != NULL) {
1833                         if (vmem_contains(ctf_arena, mp->ctfdata,
1834                             mp->ctfsize)) {
1835                                 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
1836                         } else {
1837                                 kobj_free(mp->ctfdata, mp->ctfsize);
1838                         }
1839                 }
1840         }
1841 
1842         /*
1843          * The order is very important here.  We need to make sure that
1844          * consumers, at any given instant, see a consistent state.  We'd
1845          * rather they see no CTF data than the address of one buffer and the
1846          * size of another.
1847          */
1848         mp->ctfdata = NULL;
1849         membar_producer();
1850         mp->ctfsize = size;
1851         mp->ctfdata = data;
1852         membar_producer();
1853 }
1854 
1855 int
1856 kobj_load_module(struct modctl *modp, int use_path)
1857 {
1858         char *filename = modp->mod_filename;
1859         char *modname = modp->mod_modname;
1860         int i;
1861         int n;
1862         struct _buf *file;
1863         struct module *mp = NULL;
1864 #ifdef MODDIR_SUFFIX
1865         int no_suffixdir_drv = 0;
1866 #endif
1867 
1868         mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
1869 
1870         /*
1871          * We need to prevent kmdb's symbols from leaking into /dev/ksyms.
1872          * kmdb contains a bunch of symbols with well-known names, symbols
1873          * which will mask the real versions, thus causing no end of trouble
1874          * for mdb.
1875          */
1876         if (strcmp(modp->mod_modname, "kmdbmod") == 0)
1877                 mp->flags |= KOBJ_NOKSYMS;
1878 
1879         file = kobj_open_path(filename, use_path, 1);
1880         if (file == (struct _buf *)-1) {
1881 #ifdef MODDIR_SUFFIX
1882                 file = kobj_open_path(filename, use_path, 0);
1883 #endif
1884                 if (file == (struct _buf *)-1) {
1885                         kobj_free(mp, sizeof (*mp));
1886                         goto bad;
1887                 }
1888 #ifdef MODDIR_SUFFIX
1889                 /*
1890                  * There is no driver module in the ISA specific (suffix)
1891                  * subdirectory but there is a module in the parent directory.
1892                  */
1893                 if (strncmp(filename, "drv/", 4) == 0) {
1894                         no_suffixdir_drv = 1;
1895                 }
1896 #endif
1897         }
1898 
1899         mp->filename = kobj_alloc(strlen(file->_name) + 1, KM_WAIT);
1900         (void) strcpy(mp->filename, file->_name);
1901 
1902         if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) {
1903                 _kobj_printf(ops, "kobj_load_module: %s read header failed\n",
1904                     modname);
1905                 kobj_free(mp->filename, strlen(file->_name) + 1);
1906                 kobj_free(mp, sizeof (*mp));
1907                 goto bad;
1908         }
1909         for (i = 0; i < SELFMAG; i++) {
1910                 if (mp->hdr.e_ident[i] != ELFMAG[i]) {
1911                         if (_moddebug & MODDEBUG_ERRMSG)
1912                                 _kobj_printf(ops, "%s not an elf module\n",
1913                                     modname);
1914                         kobj_free(mp->filename, strlen(file->_name) + 1);
1915                         kobj_free(mp, sizeof (*mp));
1916                         goto bad;
1917                 }
1918         }
1919         /*
1920          * It's ELF, but is it our ISA?  Interpreting the header
1921          * from a file for a byte-swapped ISA could cause a huge
1922          * and unsatisfiable value to be passed to kobj_alloc below
1923          * and therefore hang booting.
1924          */
1925         if (!elf_mach_ok(&mp->hdr)) {
1926                 if (_moddebug & MODDEBUG_ERRMSG)
1927                         _kobj_printf(ops, "%s not an elf module for this ISA\n",
1928                             modname);
1929                 kobj_free(mp->filename, strlen(file->_name) + 1);
1930                 kobj_free(mp, sizeof (*mp));
1931 #ifdef MODDIR_SUFFIX
1932                 /*
1933                  * The driver mod is not in the ISA specific subdirectory
1934                  * and the module in the parent directory is not our ISA.
1935                  * If it is our ISA, for now we will silently succeed.
1936                  */
1937                 if (no_suffixdir_drv == 1) {
1938                         cmn_err(CE_CONT, "?NOTICE: %s: 64-bit driver module"
1939                             " not found\n", modname);
1940                 }
1941 #endif
1942                 goto bad;
1943         }
1944 
1945         /*
1946          * All modules, save for unix, should be relocatable (as opposed to
1947          * dynamic).  Dynamic modules come with PLTs and GOTs, which can't
1948          * currently be processed by krtld.
1949          */
1950         if (mp->hdr.e_type != ET_REL) {
1951                 if (_moddebug & MODDEBUG_ERRMSG)
1952                         _kobj_printf(ops, "%s isn't a relocatable (ET_REL) "
1953                             "module\n", modname);
1954                 kobj_free(mp->filename, strlen(file->_name) + 1);
1955                 kobj_free(mp, sizeof (*mp));
1956                 goto bad;
1957         }
1958 
1959         n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1960         mp->shdrs = kobj_alloc(n, KM_WAIT);
1961 
1962         if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) {
1963                 _kobj_printf(ops, "kobj_load_module: %s error reading "
1964                     "section headers\n", modname);
1965                 kobj_free(mp->shdrs, n);
1966                 kobj_free(mp->filename, strlen(file->_name) + 1);
1967                 kobj_free(mp, sizeof (*mp));
1968                 goto bad;
1969         }
1970 
1971         kobj_notify(KOBJ_NOTIFY_MODLOADING, modp);
1972         module_assign(modp, mp);
1973 
1974         /* read in sections */
1975         if (get_progbits(mp, file) < 0) {
1976                 _kobj_printf(ops, "%s error reading sections\n", modname);
1977                 goto bad;
1978         }
1979 
1980         if (do_dynamic(mp, file) < 0) {
1981                 _kobj_printf(ops, "%s error reading dynamic section\n",
1982                     modname);
1983                 goto bad;
1984         }
1985 
1986         modp->mod_text = mp->text;
1987         modp->mod_text_size = mp->text_size;
1988 
1989         /* read in symbols; adjust values for each section's real address */
1990         if (get_syms(mp, file) < 0) {
1991                 _kobj_printf(ops, "%s error reading symbols\n",
1992                     modname);
1993                 goto bad;
1994         }
1995 
1996         /*
1997          * If we didn't dependency information from the dynamic section, look
1998          * for it the old-fashioned way.
1999          */
2000         if (mp->depends_on == NULL)
2001                 mp->depends_on = depends_on(mp);
2002 
2003         if (get_ctf(mp, file) < 0) {
2004                 _kobj_printf(ops, "%s debug information will not "
2005                     "be available\n", modname);
2006         }
2007 
2008         /* primary kernel modules do not have a signature section */
2009         if (!(mp->flags & KOBJ_PRIM))
2010                 get_signature(mp, file);
2011 
2012 #ifdef  KOBJ_DEBUG
2013         if (kobj_debug & D_LOADING) {
2014                 _kobj_printf(ops, "krtld: file=%s\n", mp->filename);
2015                 _kobj_printf(ops, "\ttext:0x%p", mp->text);
2016                 _kobj_printf(ops, " size: 0x%x\n", mp->text_size);
2017                 _kobj_printf(ops, "\tdata:0x%p", mp->data);
2018                 _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
2019         }
2020 #endif /* KOBJ_DEBUG */
2021 
2022         /*
2023          * For primary kernel modules, we defer
2024          * symbol resolution and relocation until
2025          * all primary objects have been loaded.
2026          */
2027         if (!standalone) {
2028                 int ddrval, dcrval;
2029                 char *dependent_modname;
2030                 /* load all dependents */
2031                 dependent_modname = kobj_zalloc(MODMAXNAMELEN, KM_WAIT);
2032                 ddrval = do_dependents(modp, dependent_modname, MODMAXNAMELEN);
2033 
2034                 /*
2035                  * resolve undefined and common symbols,
2036                  * also allocates common space
2037                  */
2038                 if ((dcrval = do_common(mp)) < 0) {
2039                         switch (dcrval) {
2040                         case DOSYM_UNSAFE:
2041                                 _kobj_printf(ops, "WARNING: mod_load: "
2042                                     "MT-unsafe module '%s' rejected\n",
2043                                     modname);
2044                                 break;
2045                         case DOSYM_UNDEF:
2046                                 _kobj_printf(ops, "WARNING: mod_load: "
2047                                     "cannot load module '%s'\n",
2048                                     modname);
2049                                 if (ddrval == -1) {
2050                                         _kobj_printf(ops, "WARNING: %s: ",
2051                                             modname);
2052                                         _kobj_printf(ops,
2053                                             "unable to resolve dependency, "
2054                                             "module '%s' not found\n",
2055                                             dependent_modname);
2056                                 }
2057                                 break;
2058                         }
2059                 }
2060                 kobj_free(dependent_modname, MODMAXNAMELEN);
2061                 if (dcrval < 0)
2062                         goto bad;
2063 
2064                 /* process relocation tables */
2065                 if (do_relocations(mp) < 0) {
2066                         _kobj_printf(ops, "%s error doing relocations\n",
2067                             modname);
2068                         goto bad;
2069                 }
2070 
2071                 if (mp->destination) {
2072                         off_t   off = (uintptr_t)mp->destination & PAGEOFFSET;
2073                         caddr_t base = (caddr_t)mp->destination - off;
2074                         size_t  size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2075 
2076                         hat_unload(kas.a_hat, base, size, HAT_UNLOAD_UNLOCK);
2077                         vmem_free(heap_arena, base, size);
2078                 }
2079 
2080                 /* sync_instruction_memory */
2081                 kobj_sync_instruction_memory(mp->text, mp->text_size);
2082                 kobj_export_module(mp);
2083                 kobj_notify(KOBJ_NOTIFY_MODLOADED, modp);
2084         }
2085         kobj_close_file(file);
2086         return (0);
2087 bad:
2088         if (file != (struct _buf *)-1)
2089                 kobj_close_file(file);
2090         if (modp->mod_mp != NULL)
2091                 free_module_data(modp->mod_mp);
2092 
2093         module_assign(modp, NULL);
2094         return ((file == (struct _buf *)-1) ? ENOENT : EINVAL);
2095 }
2096 
2097 int
2098 kobj_load_primary_module(struct modctl *modp)
2099 {
2100         struct modctl *dep;
2101         struct module *mp;
2102 
2103         if (kobj_load_module(modp, 0) != 0)
2104                 return (-1);
2105 
2106         mp = modp->mod_mp;
2107         mp->flags |= KOBJ_PRIM;
2108 
2109         /* Bind new module to its dependents */
2110         if (mp->depends_on != NULL && (dep =
2111             mod_already_loaded(mp->depends_on)) == NULL) {
2112 #ifdef  KOBJ_DEBUG
2113                 if (kobj_debug & D_DEBUG) {
2114                         _kobj_printf(ops, "krtld: failed to resolve deps "
2115                             "for primary %s\n", modp->mod_modname);
2116                 }
2117 #endif
2118                 return (-1);
2119         }
2120 
2121         add_dependent(mp, dep->mod_mp);
2122 
2123         /*
2124          * Relocate it.  This module may not be part of a link map, so we
2125          * can't use bind_primary.
2126          */
2127         if (do_common(mp) < 0 || do_symbols(mp, 0) < 0 ||
2128             do_relocations(mp) < 0) {
2129 #ifdef  KOBJ_DEBUG
2130                 if (kobj_debug & D_DEBUG) {
2131                         _kobj_printf(ops, "krtld: failed to relocate "
2132                             "primary %s\n", modp->mod_modname);
2133                 }
2134 #endif
2135                 return (-1);
2136         }
2137 
2138         return (0);
2139 }
2140 
2141 static void
2142 module_assign(struct modctl *cp, struct module *mp)
2143 {
2144         if (standalone) {
2145                 cp->mod_mp = mp;
2146                 return;
2147         }
2148         mutex_enter(&mod_lock);
2149         cp->mod_mp = mp;
2150         cp->mod_gencount++;
2151         mutex_exit(&mod_lock);
2152 }
2153 
2154 void
2155 kobj_unload_module(struct modctl *modp)
2156 {
2157         struct module *mp = modp->mod_mp;
2158 
2159         if ((_moddebug & MODDEBUG_KEEPTEXT) && mp) {
2160                 _kobj_printf(ops, "text for %s ", mp->filename);
2161                 _kobj_printf(ops, "was at %p\n", mp->text);
2162                 mp->text = NULL;     /* don't actually free it */
2163         }
2164 
2165         kobj_notify(KOBJ_NOTIFY_MODUNLOADING, modp);
2166 
2167         /*
2168          * Null out mod_mp first, so consumers (debuggers) know not to look
2169          * at the module structure any more.
2170          */
2171         mutex_enter(&mod_lock);
2172         modp->mod_mp = NULL;
2173         mutex_exit(&mod_lock);
2174 
2175         kobj_notify(KOBJ_NOTIFY_MODUNLOADED, modp);
2176         free_module_data(mp);
2177 }
2178 
2179 static void
2180 free_module_data(struct module *mp)
2181 {
2182         struct module_list *lp, *tmp;
2183         int ksyms_exported = 0;
2184 
2185         lp = mp->head;
2186         while (lp) {
2187                 tmp = lp;
2188                 lp = lp->next;
2189                 kobj_free((char *)tmp, sizeof (*tmp));
2190         }
2191 
2192         rw_enter(&ksyms_lock, RW_WRITER);
2193         if (mp->symspace) {
2194                 if (vmem_contains(ksyms_arena, mp->symspace, mp->symsize)) {
2195                         vmem_free(ksyms_arena, mp->symspace, mp->symsize);
2196                         ksyms_exported = 1;
2197                 } else {
2198                         if (mp->flags & KOBJ_NOKSYMS)
2199                                 ksyms_exported = 1;
2200                         kobj_free(mp->symspace, mp->symsize);
2201                 }
2202         }
2203         rw_exit(&ksyms_lock);
2204 
2205         if (mp->ctfdata) {
2206                 if (vmem_contains(ctf_arena, mp->ctfdata, mp->ctfsize))
2207                         vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
2208                 else
2209                         kobj_free(mp->ctfdata, mp->ctfsize);
2210         }
2211 
2212         if (mp->sigdata)
2213                 kobj_free(mp->sigdata, mp->sigsize);
2214 
2215         /*
2216          * We did not get far enough into kobj_export_ksyms() to free allocated
2217          * buffers because we encounted error conditions. Free the buffers.
2218          */
2219         if ((ksyms_exported == 0) && (mp->shdrs != NULL)) {
2220                 uint_t shn;
2221                 Shdr *shp;
2222 
2223                 for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2224                         shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2225                         switch (shp->sh_type) {
2226                         case SHT_RELA:
2227                         case SHT_REL:
2228                                 if (shp->sh_addr != 0)
2229                                         kobj_free((void *)shp->sh_addr,
2230                                             shp->sh_size);
2231                                 break;
2232                         }
2233                 }
2234 err_free_done:
2235                 if (!(mp->flags & KOBJ_PRIM)) {
2236                         kobj_free(mp->shdrs,
2237                             mp->hdr.e_shentsize * mp->hdr.e_shnum);
2238                 }
2239         }
2240 
2241         if (mp->bss)
2242                 vmem_free(data_arena, (void *)mp->bss, mp->bss_size);
2243 
2244         if (mp->fbt_tab)
2245                 kobj_texthole_free(mp->fbt_tab, mp->fbt_size);
2246 
2247         if (mp->textwin_base)
2248                 kobj_textwin_free(mp);
2249 
2250         if (mp->sdt_probes != NULL) {
2251                 sdt_probedesc_t *sdp = mp->sdt_probes, *next;
2252 
2253                 while (sdp != NULL) {
2254                         next = sdp->sdpd_next;
2255                         kobj_free(sdp->sdpd_name, strlen(sdp->sdpd_name) + 1);
2256                         kobj_free(sdp, sizeof (sdt_probedesc_t));
2257                         sdp = next;
2258                 }
2259         }
2260 
2261         if (mp->sdt_tab)
2262                 kobj_texthole_free(mp->sdt_tab, mp->sdt_size);
2263         if (mp->text)
2264                 vmem_free(text_arena, mp->text, mp->text_size);
2265         if (mp->data)
2266                 vmem_free(data_arena, mp->data, mp->data_size);
2267         if (mp->depends_on)
2268                 kobj_free(mp->depends_on, strlen(mp->depends_on)+1);
2269         if (mp->filename)
2270                 kobj_free(mp->filename, strlen(mp->filename)+1);
2271 
2272         kobj_free((char *)mp, sizeof (*mp));
2273 }
2274 
2275 static int
2276 get_progbits(struct module *mp, struct _buf *file)
2277 {
2278         struct proginfo *tp, *dp, *sdp;
2279         Shdr *shp;
2280         reloc_dest_t dest = NULL;
2281         uintptr_t bits_ptr;
2282         uintptr_t text = 0, data, textptr;
2283         uint_t shn;
2284         int err = -1;
2285 
2286         tp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2287         dp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2288         sdp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2289         /*
2290          * loop through sections to find out how much space we need
2291          * for text, data, (also bss that is already assigned)
2292          */
2293         if (get_progbits_size(mp, tp, dp, sdp) < 0)
2294                 goto done;
2295 
2296         mp->text_size = tp->size;
2297         mp->data_size = dp->size;
2298 
2299         if (standalone) {
2300                 caddr_t limit = _data;
2301 
2302                 if (lg_pagesize && _text + lg_pagesize < limit)
2303                         limit = _text + lg_pagesize;
2304 
2305                 mp->text = kobj_segbrk(&_etext, mp->text_size,
2306                     tp->align, limit);
2307                 /*
2308                  * If we can't grow the text segment, try the
2309                  * data segment before failing.
2310                  */
2311                 if (mp->text == NULL) {
2312                         mp->text = kobj_segbrk(&_edata, mp->text_size,
2313                             tp->align, 0);
2314                 }
2315 
2316                 mp->data = kobj_segbrk(&_edata, mp->data_size, dp->align, 0);
2317 
2318                 if (mp->text == NULL || mp->data == NULL)
2319                         goto done;
2320 
2321         } else {
2322                 if (text_arena == NULL)
2323                         kobj_vmem_init(&text_arena, &data_arena);
2324 
2325                 /*
2326                  * some architectures may want to load the module on a
2327                  * page that is currently read only. It may not be
2328                  * possible for those architectures to remap their page
2329                  * on the fly. So we provide a facility for them to hang
2330                  * a private hook where the memory they assign the module
2331                  * is not the actual place where the module loads.
2332                  *
2333                  * In this case there are two addresses that deal with the
2334                  * modload.
2335                  * 1) the final destination of the module
2336                  * 2) the address that is used to view the newly
2337                  * loaded module until all the relocations relative to 1
2338                  * above are completed.
2339                  *
2340                  * That is what dest is used for below.
2341                  */
2342                 mp->text_size += tp->align;
2343                 mp->data_size += dp->align;
2344 
2345                 mp->text = kobj_text_alloc(text_arena, mp->text_size);
2346 
2347                 /*
2348                  * a remap is taking place. Align the text ptr relative
2349                  * to the secondary mapping. That is where the bits will
2350                  * be read in.
2351                  */
2352                 if (kvseg.s_base != NULL && !vmem_contains(heaptext_arena,
2353                     mp->text, mp->text_size)) {
2354                         off_t   off = (uintptr_t)mp->text & PAGEOFFSET;
2355                         size_t  size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2356                         caddr_t map = vmem_alloc(heap_arena, size, VM_SLEEP);
2357                         caddr_t orig = mp->text - off;
2358                         pgcnt_t pages = size / PAGESIZE;
2359 
2360                         dest = (reloc_dest_t)(map + off);
2361                         text = ALIGN((uintptr_t)dest, tp->align);
2362 
2363                         while (pages--) {
2364                                 hat_devload(kas.a_hat, map, PAGESIZE,
2365                                     hat_getpfnum(kas.a_hat, orig),
2366                                     PROT_READ | PROT_WRITE | PROT_EXEC,
2367                                     HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
2368                                 map += PAGESIZE;
2369                                 orig += PAGESIZE;
2370                         }
2371                         /*
2372                          * Since we set up a non-cacheable mapping, we need
2373                          * to flush any old entries in the cache that might
2374                          * be left around from the read-only mapping.
2375                          */
2376                         dcache_flushall();
2377                 }
2378                 if (mp->data_size)
2379                         mp->data = vmem_alloc(data_arena, mp->data_size,
2380                             VM_SLEEP | VM_BESTFIT);
2381         }
2382         textptr = (uintptr_t)mp->text;
2383         textptr = ALIGN(textptr, tp->align);
2384         mp->destination = dest;
2385 
2386         /*
2387          * This is the case where a remap is not being done.
2388          */
2389         if (text == 0)
2390                 text = ALIGN((uintptr_t)mp->text, tp->align);
2391         data = ALIGN((uintptr_t)mp->data, dp->align);
2392 
2393         /* now loop though sections assigning addresses and loading the data */
2394         for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2395                 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2396                 if (!(shp->sh_flags & SHF_ALLOC))
2397                         continue;
2398 
2399                 if ((shp->sh_flags & SHF_WRITE) == 0)
2400                         bits_ptr = text;
2401                 else
2402                         bits_ptr = data;
2403 
2404                 bits_ptr = ALIGN(bits_ptr, shp->sh_addralign);
2405 
2406                 if (shp->sh_type == SHT_NOBITS) {
2407                         /*
2408                          * Zero bss.
2409                          */
2410                         bzero((caddr_t)bits_ptr, shp->sh_size);
2411                         shp->sh_type = SHT_PROGBITS;
2412                 } else {
2413                         if (kobj_read_file(file, (char *)bits_ptr,
2414                             shp->sh_size, shp->sh_offset) < 0)
2415                                 goto done;
2416                 }
2417 
2418                 if (shp->sh_flags & SHF_WRITE) {
2419                         shp->sh_addr = bits_ptr;
2420                 } else {
2421                         textptr = ALIGN(textptr, shp->sh_addralign);
2422                         shp->sh_addr = textptr;
2423                         textptr += shp->sh_size;
2424                 }
2425 
2426                 bits_ptr += shp->sh_size;
2427                 if ((shp->sh_flags & SHF_WRITE) == 0)
2428                         text = bits_ptr;
2429                 else
2430                         data = bits_ptr;
2431         }
2432 
2433         err = 0;
2434 done:
2435         /*
2436          * Free and mark as freed the section headers here so that
2437          * free_module_data() does not have to worry about this buffer.
2438          *
2439          * This buffer is freed here because one of the possible reasons
2440          * for error is a section with non-zero sh_addr and in that case
2441          * free_module_data() would have no way of recognizing that this
2442          * buffer was unallocated.
2443          */
2444         if (err != 0) {
2445                 kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum);
2446                 mp->shdrs = NULL;
2447         }
2448 
2449         (void) kobj_free(tp, sizeof (struct proginfo));
2450         (void) kobj_free(dp, sizeof (struct proginfo));
2451         (void) kobj_free(sdp, sizeof (struct proginfo));
2452 
2453         return (err);
2454 }
2455 
2456 /*
2457  * Go through suppress_sym_list to see if "multiply defined"
2458  * warning of this symbol should be suppressed.  Return 1 if
2459  * warning should be suppressed, 0 otherwise.
2460  */
2461 static int
2462 kobj_suppress_warning(char *symname)
2463 {
2464         int     i;
2465 
2466         for (i = 0; suppress_sym_list[i] != NULL; i++) {
2467                 if (strcmp(suppress_sym_list[i], symname) == 0)
2468                         return (1);
2469         }
2470 
2471         return (0);
2472 }
2473 
2474 static int
2475 get_syms(struct module *mp, struct _buf *file)
2476 {
2477         uint_t          shn;
2478         Shdr    *shp;
2479         uint_t          i;
2480         Sym     *sp, *ksp;
2481         char            *symname;
2482         int             dosymtab = 0;
2483 
2484         /*
2485          * Find the interesting sections.
2486          */
2487         for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2488                 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2489                 switch (shp->sh_type) {
2490                 case SHT_SYMTAB:
2491                         mp->symtbl_section = shn;
2492                         mp->symhdr = shp;
2493                         dosymtab++;
2494                         break;
2495 
2496                 case SHT_RELA:
2497                 case SHT_REL:
2498                         /*
2499                          * Already loaded.
2500                          */
2501                         if (shp->sh_addr)
2502                                 continue;
2503 
2504                         /* KM_TMP since kobj_free'd in do_relocations */
2505                         shp->sh_addr = (Addr)
2506                             kobj_alloc(shp->sh_size, KM_WAIT|KM_TMP);
2507 
2508                         if (kobj_read_file(file, (char *)shp->sh_addr,
2509                             shp->sh_size, shp->sh_offset) < 0) {
2510                                 _kobj_printf(ops, "krtld: get_syms: %s, ",
2511                                     mp->filename);
2512                                 _kobj_printf(ops, "error reading section %d\n",
2513                                     shn);
2514                                 return (-1);
2515                         }
2516                         break;
2517                 }
2518         }
2519 
2520         /*
2521          * This is true for a stripped executable.  In the case of
2522          * 'unix' it can be stripped but it still contains the SHT_DYNSYM,
2523          * and since that symbol information is still present everything
2524          * is just fine.
2525          */
2526         if (!dosymtab) {
2527                 if (mp->flags & KOBJ_EXEC)
2528                         return (0);
2529                 _kobj_printf(ops, "krtld: get_syms: %s ",
2530                     mp->filename);
2531                 _kobj_printf(ops, "no SHT_SYMTAB symbol table found\n");
2532                 return (-1);
2533         }
2534 
2535         /*
2536          * get the associated string table header
2537          */
2538         if ((mp->symhdr == 0) || (mp->symhdr->sh_link >= mp->hdr.e_shnum))
2539                 return (-1);
2540         mp->strhdr = (Shdr *)
2541             (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
2542 
2543         mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
2544         mp->hashsize = kobj_gethashsize(mp->nsyms);
2545 
2546         /*
2547          * Allocate space for the symbol table, buckets, chains, and strings.
2548          */
2549         mp->symsize = mp->symhdr->sh_size +
2550             (mp->hashsize + mp->nsyms) * sizeof (symid_t) + mp->strhdr->sh_size;
2551         mp->symspace = kobj_zalloc(mp->symsize, KM_WAIT|KM_SCRATCH);
2552 
2553         mp->symtbl = mp->symspace;
2554         mp->buckets = (symid_t *)(mp->symtbl + mp->symhdr->sh_size);
2555         mp->chains = mp->buckets + mp->hashsize;
2556         mp->strings = (char *)(mp->chains + mp->nsyms);
2557 
2558         if (kobj_read_file(file, mp->symtbl,
2559             mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0 ||
2560             kobj_read_file(file, mp->strings,
2561             mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0)
2562                 return (-1);
2563 
2564         /*
2565          * loop through the symbol table adjusting values to account
2566          * for where each section got loaded into memory.  Also
2567          * fill in the hash table.
2568          */
2569         for (i = 1; i < mp->nsyms; i++) {
2570                 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
2571                 if (sp->st_shndx < SHN_LORESERVE) {
2572                         if (sp->st_shndx >= mp->hdr.e_shnum) {
2573                                 _kobj_printf(ops, "%s bad shndx ",
2574                                     file->_name);
2575                                 _kobj_printf(ops, "in symbol %d\n", i);
2576                                 return (-1);
2577                         }
2578                         shp = (Shdr *)
2579                             (mp->shdrs +
2580                             sp->st_shndx * mp->hdr.e_shentsize);
2581                         if (!(mp->flags & KOBJ_EXEC))
2582                                 sp->st_value += shp->sh_addr;
2583                 }
2584 
2585                 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
2586                         continue;
2587                 if (sp->st_name >= mp->strhdr->sh_size)
2588                         return (-1);
2589 
2590                 symname = mp->strings + sp->st_name;
2591 
2592                 if (!(mp->flags & KOBJ_EXEC) &&
2593                     ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
2594                         ksp = kobj_lookup_all(mp, symname, 0);
2595 
2596                         if (ksp && ELF_ST_BIND(ksp->st_info) == STB_GLOBAL &&
2597                             !kobj_suppress_warning(symname) &&
2598                             sp->st_shndx != SHN_UNDEF &&
2599                             sp->st_shndx != SHN_COMMON &&
2600                             ksp->st_shndx != SHN_UNDEF &&
2601                             ksp->st_shndx != SHN_COMMON) {
2602                                 /*
2603                                  * Unless this symbol is a stub, it's multiply
2604                                  * defined.  Multiply-defined symbols are
2605                                  * usually bad, but some objects (kmdb) have
2606                                  * a legitimate need to have their own
2607                                  * copies of common functions.
2608                                  */
2609                                 if ((standalone ||
2610                                     ksp->st_value < (uintptr_t)stubs_base ||
2611                                     ksp->st_value >= (uintptr_t)stubs_end) &&
2612                                     !(mp->flags & KOBJ_IGNMULDEF)) {
2613                                         _kobj_printf(ops,
2614                                             "%s symbol ", file->_name);
2615                                         _kobj_printf(ops,
2616                                             "%s multiply defined\n", symname);
2617                                 }
2618                         }
2619                 }
2620 
2621                 sym_insert(mp, symname, i);
2622         }
2623 
2624         return (0);
2625 }
2626 
2627 static int
2628 get_ctf(struct module *mp, struct _buf *file)
2629 {
2630         char *shstrtab, *ctfdata;
2631         size_t shstrlen;
2632         Shdr *shp;
2633         uint_t i;
2634 
2635         if (_moddebug & MODDEBUG_NOCTF)
2636                 return (0); /* do not attempt to even load CTF data */
2637 
2638         if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2639                 _kobj_printf(ops, "krtld: get_ctf: %s, ",
2640                     mp->filename);
2641                 _kobj_printf(ops, "corrupt e_shstrndx %u\n",
2642                     mp->hdr.e_shstrndx);
2643                 return (-1);
2644         }
2645 
2646         shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2647         shstrlen = shp->sh_size;
2648         shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2649 
2650         if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2651                 _kobj_printf(ops, "krtld: get_ctf: %s, ",
2652                     mp->filename);
2653                 _kobj_printf(ops, "error reading section %u\n",
2654                     mp->hdr.e_shstrndx);
2655                 kobj_free(shstrtab, shstrlen);
2656                 return (-1);
2657         }
2658 
2659         for (i = 0; i < mp->hdr.e_shnum; i++) {
2660                 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2661 
2662                 if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2663                     strcmp(shstrtab + shp->sh_name, ".SUNW_ctf") == 0) {
2664                         ctfdata = kobj_alloc(shp->sh_size, KM_WAIT|KM_SCRATCH);
2665 
2666                         if (kobj_read_file(file, ctfdata, shp->sh_size,
2667                             shp->sh_offset) < 0) {
2668                                 _kobj_printf(ops, "krtld: get_ctf: %s, error "
2669                                     "reading .SUNW_ctf data\n", mp->filename);
2670                                 kobj_free(ctfdata, shp->sh_size);
2671                                 kobj_free(shstrtab, shstrlen);
2672                                 return (-1);
2673                         }
2674 
2675                         mp->ctfdata = ctfdata;
2676                         mp->ctfsize = shp->sh_size;
2677                         break;
2678                 }
2679         }
2680 
2681         kobj_free(shstrtab, shstrlen);
2682         return (0);
2683 }
2684 
2685 #define SHA1_DIGEST_LENGTH      20      /* SHA1 digest length in bytes */
2686 
2687 /*
2688  * Return the hash of the ELF sections that are memory resident.
2689  * i.e. text and data.  We skip a SHT_NOBITS section since it occupies
2690  * no space in the file. We use SHA1 here since libelfsign uses
2691  * it and both places need to use the same algorithm.
2692  */
2693 static void
2694 crypto_es_hash(struct module *mp, char *hash, char *shstrtab)
2695 {
2696         uint_t shn;
2697         Shdr *shp;
2698         SHA1_CTX ctx;
2699 
2700         SHA1Init(&ctx);
2701 
2702         for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2703                 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2704                 if (!(shp->sh_flags & SHF_ALLOC) || shp->sh_size == 0)
2705                         continue;
2706 
2707                 /*
2708                  * The check should ideally be shp->sh_type == SHT_NOBITS.
2709                  * However, we can't do that check here as get_progbits()
2710                  * resets the type.
2711                  */
2712                 if (strcmp(shstrtab + shp->sh_name, ".bss") == 0)
2713                         continue;
2714 #ifdef  KOBJ_DEBUG
2715                 if (kobj_debug & D_DEBUG)
2716                         _kobj_printf(ops,
2717                             "krtld: crypto_es_hash: updating hash with"
2718                             " %s data size=%d\n", shstrtab + shp->sh_name,
2719                             shp->sh_size);
2720 #endif
2721                 ASSERT(shp->sh_addr != 0);
2722                 SHA1Update(&ctx, (const uint8_t *)shp->sh_addr, shp->sh_size);
2723         }
2724 
2725         SHA1Final((uchar_t *)hash, &ctx);
2726 }
2727 
2728 /*
2729  * Get the .SUNW_signature section for the module, it it exists.
2730  *
2731  * This section exists only for crypto modules. None of the
2732  * primary modules have this section currently.
2733  */
2734 static void
2735 get_signature(struct module *mp, struct _buf *file)
2736 {
2737         char *shstrtab, *sigdata = NULL;
2738         size_t shstrlen;
2739         Shdr *shp;
2740         uint_t i;
2741 
2742         if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2743                 _kobj_printf(ops, "krtld: get_signature: %s, ",
2744                     mp->filename);
2745                 _kobj_printf(ops, "corrupt e_shstrndx %u\n",
2746                     mp->hdr.e_shstrndx);
2747                 return;
2748         }
2749 
2750         shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2751         shstrlen = shp->sh_size;
2752         shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2753 
2754         if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2755                 _kobj_printf(ops, "krtld: get_signature: %s, ",
2756                     mp->filename);
2757                 _kobj_printf(ops, "error reading section %u\n",
2758                     mp->hdr.e_shstrndx);
2759                 kobj_free(shstrtab, shstrlen);
2760                 return;
2761         }
2762 
2763         for (i = 0; i < mp->hdr.e_shnum; i++) {
2764                 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2765                 if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2766                     strcmp(shstrtab + shp->sh_name,
2767                     ELF_SIGNATURE_SECTION) == 0) {
2768                         filesig_vers_t filesig_version;
2769                         size_t sigsize = shp->sh_size + SHA1_DIGEST_LENGTH;
2770                         sigdata = kobj_alloc(sigsize, KM_WAIT|KM_SCRATCH);
2771 
2772                         if (kobj_read_file(file, sigdata, shp->sh_size,
2773                             shp->sh_offset) < 0) {
2774                                 _kobj_printf(ops, "krtld: get_signature: %s,"
2775                                     " error reading .SUNW_signature data\n",
2776                                     mp->filename);
2777                                 kobj_free(sigdata, sigsize);
2778                                 kobj_free(shstrtab, shstrlen);
2779                                 return;
2780                         }
2781                         filesig_version = ((struct filesignatures *)sigdata)->
2782                             filesig_sig.filesig_version;
2783                         if (!(filesig_version == FILESIG_VERSION1 ||
2784                             filesig_version == FILESIG_VERSION3)) {
2785                                 /* skip versions we don't understand */
2786                                 kobj_free(sigdata, sigsize);
2787                                 kobj_free(shstrtab, shstrlen);
2788                                 return;
2789                         }
2790 
2791                         mp->sigdata = sigdata;
2792                         mp->sigsize = sigsize;
2793                         break;
2794                 }
2795         }
2796 
2797         if (sigdata != NULL) {
2798                 crypto_es_hash(mp, sigdata + shp->sh_size, shstrtab);
2799         }
2800 
2801         kobj_free(shstrtab, shstrlen);
2802 }
2803 
2804 static void
2805 add_dependent(struct module *mp, struct module *dep)
2806 {
2807         struct module_list *lp;
2808 
2809         for (lp = mp->head; lp; lp = lp->next) {
2810                 if (lp->mp == dep)
2811                         return; /* already on the list */
2812         }
2813 
2814         if (lp == NULL) {
2815                 lp = kobj_zalloc(sizeof (*lp), KM_WAIT);
2816 
2817                 lp->mp = dep;
2818                 lp->next = NULL;
2819                 if (mp->tail)
2820                         mp->tail->next = lp;
2821                 else
2822                         mp->head = lp;
2823                 mp->tail = lp;
2824         }
2825 }
2826 
2827 static int
2828 do_dependents(struct modctl *modp, char *modname, size_t modnamelen)
2829 {
2830         struct module *mp;
2831         struct modctl *req;
2832         char *d, *p, *q;
2833         int c;
2834         char *err_modname = NULL;
2835 
2836         mp = modp->mod_mp;
2837 
2838         if ((p = mp->depends_on) == NULL)
2839                 return (0);
2840 
2841         for (;;) {
2842                 /*
2843                  * Skip space.
2844                  */
2845                 while (*p && (*p == ' ' || *p == '\t'))
2846                         p++;
2847                 /*
2848                  * Get module name.
2849                  */
2850                 d = p;
2851                 q = modname;
2852                 c = 0;
2853                 while (*p && *p != ' ' && *p != '\t') {
2854                         if (c < modnamelen - 1) {
2855                                 *q++ = *p;
2856                                 c++;
2857                         }
2858                         p++;
2859                 }
2860 
2861                 if (q == modname)
2862                         break;
2863 
2864                 if (c == modnamelen - 1) {
2865                         char *dep = kobj_alloc(p - d + 1, KM_WAIT|KM_TMP);
2866 
2867                         (void) strncpy(dep, d,  p - d + 1);
2868                         dep[p - d] = '\0';
2869 
2870                         _kobj_printf(ops, "%s: dependency ", modp->mod_modname);
2871                         _kobj_printf(ops, "'%s' too long ", dep);
2872                         _kobj_printf(ops, "(max %d chars)\n", modnamelen);
2873 
2874                         kobj_free(dep, p - d + 1);
2875 
2876                         return (-1);
2877                 }
2878 
2879                 *q = '\0';
2880                 if ((req = mod_load_requisite(modp, modname)) == NULL) {
2881 #ifndef KOBJ_DEBUG
2882                         if (_moddebug & MODDEBUG_LOADMSG) {
2883 #endif  /* KOBJ_DEBUG */
2884                                 _kobj_printf(ops,
2885                                     "%s: unable to resolve dependency, ",
2886                                     modp->mod_modname);
2887                                 _kobj_printf(ops, "cannot load module '%s'\n",
2888                                     modname);
2889 #ifndef KOBJ_DEBUG
2890                         }
2891 #endif  /* KOBJ_DEBUG */
2892                         if (err_modname == NULL) {
2893                                 /*
2894                                  * This must be the same size as the modname
2895                                  * one.
2896                                  */
2897                                 err_modname = kobj_zalloc(MODMAXNAMELEN,
2898                                     KM_WAIT);
2899 
2900                                 /*
2901                                  * We can use strcpy() here without fearing
2902                                  * the NULL terminator because the size of
2903                                  * err_modname is the same as one of modname,
2904                                  * and it's filled with zeros.
2905                                  */
2906                                 (void) strcpy(err_modname, modname);
2907                         }
2908                         continue;
2909                 }
2910 
2911                 add_dependent(mp, req->mod_mp);
2912                 mod_release_mod(req);
2913 
2914         }
2915 
2916         if (err_modname != NULL) {
2917                 /*
2918                  * Copy the first module name where you detect an error to keep
2919                  * its behavior the same as before.
2920                  * This way keeps minimizing the memory use for error
2921                  * modules, and this might be important at boot time because
2922                  * the memory usage is a crucial factor for booting in most
2923                  * cases. You can expect more verbose messages when using
2924                  * a debug kernel or setting a bit in moddebug.
2925                  */
2926                 bzero(modname, MODMAXNAMELEN);
2927                 (void) strcpy(modname, err_modname);
2928                 kobj_free(err_modname, MODMAXNAMELEN);
2929                 return (-1);
2930         }
2931 
2932         return (0);
2933 }
2934 
2935 static int
2936 do_common(struct module *mp)
2937 {
2938         int err;
2939 
2940         /*
2941          * first time through, assign all symbols defined in other
2942          * modules, and count up how much common space will be needed
2943          * (bss_size and bss_align)
2944          */
2945         if ((err = do_symbols(mp, 0)) < 0)
2946                 return (err);
2947         /*
2948          * increase bss_size by the maximum delta that could be
2949          * computed by the ALIGN below
2950          */
2951         mp->bss_size += mp->bss_align;
2952         if (mp->bss_size) {
2953                 if (standalone)
2954                         mp->bss = (uintptr_t)kobj_segbrk(&_edata, mp->bss_size,
2955                             MINALIGN, 0);
2956                 else
2957                         mp->bss = (uintptr_t)vmem_alloc(data_arena,
2958                             mp->bss_size, VM_SLEEP | VM_BESTFIT);
2959                 bzero((void *)mp->bss, mp->bss_size);
2960                 /* now assign addresses to all common symbols */
2961                 if ((err = do_symbols(mp, ALIGN(mp->bss, mp->bss_align))) < 0)
2962                         return (err);
2963         }
2964         return (0);
2965 }
2966 
2967 static int
2968 do_symbols(struct module *mp, Elf64_Addr bss_base)
2969 {
2970         int bss_align;
2971         uintptr_t bss_ptr;
2972         int err;
2973         int i;
2974         Sym *sp, *sp1;
2975         char *name;
2976         int assign;
2977         int resolved = 1;
2978 
2979         /*
2980          * Nothing left to do (optimization).
2981          */
2982         if (mp->flags & KOBJ_RESOLVED)
2983                 return (0);
2984 
2985         assign = (bss_base) ? 1 : 0;
2986         bss_ptr = bss_base;
2987         bss_align = 0;
2988         err = 0;
2989 
2990         for (i = 1; i < mp->nsyms; i++) {
2991                 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * i);
2992                 /*
2993                  * we know that st_name is in bounds, since get_sections
2994                  * has already checked all of the symbols
2995                  */
2996                 name = mp->strings + sp->st_name;
2997                 if (sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON)
2998                         continue;
2999 #if defined(__sparc)
3000                 /*
3001                  * Register symbols are ignored in the kernel
3002                  */
3003                 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) {
3004                         if (*name != '\0') {
3005                                 _kobj_printf(ops, "%s: named REGISTER symbol ",
3006                                     mp->filename);
3007                                 _kobj_printf(ops, "not supported '%s'\n",
3008                                     name);
3009                                 err = DOSYM_UNDEF;
3010                         }
3011                         continue;
3012                 }
3013 #endif  /* __sparc */
3014                 /*
3015                  * TLS symbols are ignored in the kernel
3016                  */
3017                 if (ELF_ST_TYPE(sp->st_info) == STT_TLS) {
3018                         _kobj_printf(ops, "%s: TLS symbol ",
3019                             mp->filename);
3020                         _kobj_printf(ops, "not supported '%s'\n",
3021                             name);
3022                         err = DOSYM_UNDEF;
3023                         continue;
3024                 }
3025 
3026                 if (ELF_ST_BIND(sp->st_info) != STB_LOCAL) {
3027                         if ((sp1 = kobj_lookup_all(mp, name, 0)) != NULL) {
3028                                 sp->st_shndx = SHN_ABS;
3029                                 sp->st_value = sp1->st_value;
3030                                 continue;
3031                         }
3032                 }
3033 
3034                 if (sp->st_shndx == SHN_UNDEF) {
3035                         resolved = 0;
3036 
3037                         if (strncmp(name, sdt_prefix, strlen(sdt_prefix)) == 0)
3038                                 continue;
3039 
3040                         /*
3041                          * If it's not a weak reference and it's
3042                          * not a primary object, it's an error.
3043                          * (Primary objects may take more than
3044                          * one pass to resolve)
3045                          */
3046                         if (!(mp->flags & KOBJ_PRIM) &&
3047                             ELF_ST_BIND(sp->st_info) != STB_WEAK) {
3048                                 _kobj_printf(ops, "%s: undefined symbol",
3049                                     mp->filename);
3050                                 _kobj_printf(ops, " '%s'\n", name);
3051                                 /*
3052                                  * Try to determine whether this symbol
3053                                  * represents a dependency on obsolete
3054                                  * unsafe driver support.  This is just
3055                                  * to make the warning more informative.
3056                                  */
3057                                 if (strcmp(name, "sleep") == 0 ||
3058                                     strcmp(name, "unsleep") == 0 ||
3059                                     strcmp(name, "wakeup") == 0 ||
3060                                     strcmp(name, "bsd_compat_ioctl") == 0 ||
3061                                     strcmp(name, "unsafe_driver") == 0 ||
3062                                     strncmp(name, "spl", 3) == 0 ||
3063                                     strncmp(name, "i_ddi_spl", 9) == 0)
3064                                         err = DOSYM_UNSAFE;
3065                                 if (err == 0)
3066                                         err = DOSYM_UNDEF;
3067                         }
3068                         continue;
3069                 }
3070                 /*
3071                  * It's a common symbol - st_value is the
3072                  * required alignment.
3073                  */
3074                 if (sp->st_value > bss_align)
3075                         bss_align = sp->st_value;
3076                 bss_ptr = ALIGN(bss_ptr, sp->st_value);
3077                 if (assign) {
3078                         sp->st_shndx = SHN_ABS;
3079                         sp->st_value = bss_ptr;
3080                 }
3081                 bss_ptr += sp->st_size;
3082         }
3083         if (err)
3084                 return (err);
3085         if (assign == 0 && mp->bss == 0) {
3086                 mp->bss_align = bss_align;
3087                 mp->bss_size = bss_ptr;
3088         } else if (resolved) {
3089                 mp->flags |= KOBJ_RESOLVED;
3090         }
3091 
3092         return (0);
3093 }
3094 
3095 uint_t
3096 kobj_hash_name(const char *p)
3097 {
3098         uint_t g;
3099         uint_t hval;
3100 
3101         hval = 0;
3102         while (*p) {
3103                 hval = (hval << 4) + *p++;
3104                 if ((g = (hval & 0xf0000000)) != 0)
3105                         hval ^= g >> 24;
3106                 hval &= ~g;
3107         }
3108         return (hval);
3109 }
3110 
3111 /* look for name in all modules */
3112 uintptr_t
3113 kobj_getsymvalue(char *name, int kernelonly)
3114 {
3115         Sym             *sp;
3116         struct modctl   *modp;
3117         struct module   *mp;
3118         uintptr_t       value = 0;
3119 
3120         if ((sp = kobj_lookup_kernel(name)) != NULL)
3121                 return ((uintptr_t)sp->st_value);
3122 
3123         if (kernelonly)
3124                 return (0);     /* didn't find it in the kernel so give up */
3125 
3126         mutex_enter(&mod_lock);
3127         modp = &modules;
3128         do {
3129                 mp = (struct module *)modp->mod_mp;
3130                 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3131                     (sp = lookup_one(mp, name))) {
3132                         value = (uintptr_t)sp->st_value;
3133                         break;
3134                 }
3135         } while ((modp = modp->mod_next) != &modules);
3136         mutex_exit(&mod_lock);
3137         return (value);
3138 }
3139 
3140 /* look for a symbol near value. */
3141 char *
3142 kobj_getsymname(uintptr_t value, ulong_t *offset)
3143 {
3144         char *name = NULL;
3145         struct modctl *modp;
3146 
3147         struct modctl_list *lp;
3148         struct module *mp;
3149 
3150         /*
3151          * Loop through the primary kernel modules.
3152          */
3153         for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3154                 mp = mod(lp);
3155 
3156                 if ((name = kobj_searchsym(mp, value, offset)) != NULL)
3157                         return (name);
3158         }
3159 
3160         mutex_enter(&mod_lock);
3161         modp = &modules;
3162         do {
3163                 mp = (struct module *)modp->mod_mp;
3164                 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3165                     (name = kobj_searchsym(mp, value, offset)))
3166                         break;
3167         } while ((modp = modp->mod_next) != &modules);
3168         mutex_exit(&mod_lock);
3169         return (name);
3170 }
3171 
3172 /* return address of symbol and size */
3173 
3174 uintptr_t
3175 kobj_getelfsym(char *name, void *mp, int *size)
3176 {
3177         Sym *sp;
3178 
3179         if (mp == NULL)
3180                 sp = kobj_lookup_kernel(name);
3181         else
3182                 sp = lookup_one(mp, name);
3183 
3184         if (sp == NULL)
3185                 return (0);
3186 
3187         *size = (int)sp->st_size;
3188         return ((uintptr_t)sp->st_value);
3189 }
3190 
3191 uintptr_t
3192 kobj_lookup(struct module *mod, const char *name)
3193 {
3194         Sym *sp;
3195 
3196         sp = lookup_one(mod, name);
3197 
3198         if (sp == NULL)
3199                 return (0);
3200 
3201         return ((uintptr_t)sp->st_value);
3202 }
3203 
3204 char *
3205 kobj_searchsym(struct module *mp, uintptr_t value, ulong_t *offset)
3206 {
3207         Sym *symtabptr;
3208         char *strtabptr;
3209         int symnum;
3210         Sym *sym;
3211         Sym *cursym;
3212         uintptr_t curval;
3213 
3214         *offset = (ulong_t)-1l;         /* assume not found */
3215         cursym  = NULL;
3216 
3217         if (kobj_addrcheck(mp, (void *)value) != 0)
3218                 return (NULL);          /* not in this module */
3219 
3220         strtabptr  = mp->strings;
3221         symtabptr  = (Sym *)mp->symtbl;
3222 
3223         /*
3224          * Scan the module's symbol table for a symbol <= value
3225          */
3226         for (symnum = 1, sym = symtabptr + 1;
3227             symnum < mp->nsyms; symnum++, sym = (Sym *)
3228             ((uintptr_t)sym + mp->symhdr->sh_entsize)) {
3229                 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) {
3230                         if (ELF_ST_BIND(sym->st_info) != STB_LOCAL)
3231                                 continue;
3232                         if (ELF_ST_TYPE(sym->st_info) != STT_OBJECT &&
3233                             ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3234                                 continue;
3235                 }
3236 
3237                 curval = (uintptr_t)sym->st_value;
3238 
3239                 if (curval > value)
3240                         continue;
3241 
3242                 /*
3243                  * If one or both are functions...
3244                  */
3245                 if (ELF_ST_TYPE(sym->st_info) == STT_FUNC || (cursym != NULL &&
3246                     ELF_ST_TYPE(cursym->st_info) == STT_FUNC)) {
3247                         /* Ignore if the address is out of the bounds */
3248                         if (value - sym->st_value >= sym->st_size)
3249                                 continue;
3250 
3251                         if (cursym != NULL &&
3252                             ELF_ST_TYPE(cursym->st_info) == STT_FUNC) {
3253                                 /* Prefer the function to the non-function */
3254                                 if (ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3255                                         continue;
3256 
3257                                 /* Prefer the larger of the two functions */
3258                                 if (sym->st_size <= cursym->st_size)
3259                                         continue;
3260                         }
3261                 } else if (value - curval >= *offset) {
3262                         continue;
3263                 }
3264 
3265                 *offset = (ulong_t)(value - curval);
3266                 cursym = sym;
3267         }
3268         if (cursym == NULL)
3269                 return (NULL);
3270 
3271         return (strtabptr + cursym->st_name);
3272 }
3273 
3274 Sym *
3275 kobj_lookup_all(struct module *mp, char *name, int include_self)
3276 {
3277         Sym *sp;
3278         struct module_list *mlp;
3279         struct modctl_list *clp;
3280         struct module *mmp;
3281 
3282         if (include_self && (sp = lookup_one(mp, name)) != NULL)
3283                 return (sp);
3284 
3285         for (mlp = mp->head; mlp; mlp = mlp->next) {
3286                 if ((sp = lookup_one(mlp->mp, name)) != NULL &&
3287                     ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3288                         return (sp);
3289         }
3290 
3291         /*
3292          * Loop through the primary kernel modules.
3293          */
3294         for (clp = kobj_lm_lookup(KOBJ_LM_PRIMARY); clp; clp = clp->modl_next) {
3295                 mmp = mod(clp);
3296 
3297                 if (mmp == NULL || mp == mmp)
3298                         continue;
3299 
3300                 if ((sp = lookup_one(mmp, name)) != NULL &&
3301                     ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3302                         return (sp);
3303         }
3304         return (NULL);
3305 }
3306 
3307 Sym *
3308 kobj_lookup_kernel(const char *name)
3309 {
3310         struct modctl_list *lp;
3311         struct module *mp;
3312         Sym *sp;
3313 
3314         /*
3315          * Loop through the primary kernel modules.
3316          */
3317         for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3318                 mp = mod(lp);
3319 
3320                 if (mp == NULL)
3321                         continue;
3322 
3323                 if ((sp = lookup_one(mp, name)) != NULL)
3324                         return (sp);
3325         }
3326         return (NULL);
3327 }
3328 
3329 static Sym *
3330 lookup_one(struct module *mp, const char *name)
3331 {
3332         symid_t *ip;
3333         char *name1;
3334         Sym *sp;
3335 
3336         for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3337             ip = &mp->chains[*ip]) {
3338                 sp = (Sym *)(mp->symtbl +
3339                     mp->symhdr->sh_entsize * *ip);
3340                 name1 = mp->strings + sp->st_name;
3341                 if (strcmp(name, name1) == 0 &&
3342                     ELF_ST_TYPE(sp->st_info) != STT_FILE &&
3343                     sp->st_shndx != SHN_UNDEF &&
3344                     sp->st_shndx != SHN_COMMON)
3345                         return (sp);
3346         }
3347         return (NULL);
3348 }
3349 
3350 /*
3351  * Lookup a given symbol pointer in the module's symbol hash.  If the symbol
3352  * is hashed, return the symbol pointer; otherwise return NULL.
3353  */
3354 static Sym *
3355 sym_lookup(struct module *mp, Sym *ksp)
3356 {
3357         char *name = mp->strings + ksp->st_name;
3358         symid_t *ip;
3359         Sym *sp;
3360 
3361         for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3362             ip = &mp->chains[*ip]) {
3363                 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * *ip);
3364                 if (sp == ksp)
3365                         return (ksp);
3366         }
3367         return (NULL);
3368 }
3369 
3370 static void
3371 sym_insert(struct module *mp, char *name, symid_t index)
3372 {
3373         symid_t *ip;
3374 
3375 #ifdef KOBJ_DEBUG
3376         if (kobj_debug & D_SYMBOLS) {
3377                 static struct module *lastmp = NULL;
3378                 Sym *sp;
3379                 if (lastmp != mp) {
3380                         _kobj_printf(ops,
3381                             "krtld: symbol entry: file=%s\n",
3382                             mp->filename);
3383                         _kobj_printf(ops,
3384                             "krtld:\tsymndx\tvalue\t\t"
3385                             "symbol name\n");
3386                         lastmp = mp;
3387                 }
3388                 sp = (Sym *)(mp->symtbl +
3389                     index * mp->symhdr->sh_entsize);
3390                 _kobj_printf(ops, "krtld:\t[%3d]", index);
3391                 _kobj_printf(ops, "\t0x%lx", sp->st_value);
3392                 _kobj_printf(ops, "\t%s\n", name);
3393         }
3394 #endif
3395 
3396         for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3397             ip = &mp->chains[*ip]) {
3398                 ;
3399         }
3400         *ip = index;
3401 }
3402 
3403 struct modctl *
3404 kobj_boot_mod_lookup(const char *modname)
3405 {
3406         struct modctl *mctl = kobj_modules;
3407 
3408         do {
3409                 if (strcmp(modname, mctl->mod_modname) == 0)
3410                         return (mctl);
3411         } while ((mctl = mctl->mod_next) != kobj_modules);
3412 
3413         return (NULL);
3414 }
3415 
3416 /*
3417  * Determine if the module exists.
3418  */
3419 int
3420 kobj_path_exists(char *name, int use_path)
3421 {
3422         struct _buf *file;
3423 
3424         file = kobj_open_path(name, use_path, 1);
3425 #ifdef  MODDIR_SUFFIX
3426         if (file == (struct _buf *)-1)
3427                 file = kobj_open_path(name, use_path, 0);
3428 #endif  /* MODDIR_SUFFIX */
3429         if (file == (struct _buf *)-1)
3430                 return (0);
3431         kobj_close_file(file);
3432         return (1);
3433 }
3434 
3435 /*
3436  * fullname is dynamically allocated to be able to hold the
3437  * maximum size string that can be constructed from name.
3438  * path is exactly like the shell PATH variable.
3439  */
3440 struct _buf *
3441 kobj_open_path(char *name, int use_path, int use_moddir_suffix)
3442 {
3443         char *p, *q;
3444         char *pathp;
3445         char *pathpsave;
3446         char *fullname;
3447         int maxpathlen;
3448         struct _buf *file;
3449 
3450 #if !defined(MODDIR_SUFFIX)
3451         use_moddir_suffix = B_FALSE;
3452 #endif
3453 
3454         if (!use_path)
3455                 pathp = "";             /* use name as specified */
3456         else
3457                 pathp = kobj_module_path;
3458                                         /* use configured default path */
3459 
3460         pathpsave = pathp;              /* keep this for error reporting */
3461 
3462         /*
3463          * Allocate enough space for the largest possible fullname.
3464          * since path is of the form <directory> : <directory> : ...
3465          * we're potentially allocating a little more than we need to
3466          * but we'll allocate the exact amount when we find the right directory.
3467          * (The + 3 below is one for NULL terminator and one for the '/'
3468          * we might have to add at the beginning of path and one for
3469          * the '/' between path and name.)
3470          */
3471         maxpathlen = strlen(pathp) + strlen(name) + 3;
3472         /* sizeof includes null */
3473         maxpathlen += sizeof (slash_moddir_suffix_slash) - 1;
3474         fullname = kobj_zalloc(maxpathlen, KM_WAIT);
3475 
3476         for (;;) {
3477                 p = fullname;
3478                 if (*pathp != '\0' && *pathp != '/')
3479                         *p++ = '/';     /* path must start with '/' */
3480                 while (*pathp && *pathp != ':' && *pathp != ' ')
3481                         *p++ = *pathp++;
3482                 if (p != fullname && p[-1] != '/')
3483                         *p++ = '/';
3484                 if (use_moddir_suffix) {
3485                         char *b = basename(name);
3486                         char *s;
3487 
3488                         /* copy everything up to the base name */
3489                         q = name;
3490                         while (q != b && *q)
3491                                 *p++ = *q++;
3492                         s = slash_moddir_suffix_slash;
3493                         while (*s)
3494                                 *p++ = *s++;
3495                         /* copy the rest */
3496                         while (*b)
3497                                 *p++ = *b++;
3498                 } else {
3499                         q = name;
3500                         while (*q)
3501                                 *p++ = *q++;
3502                 }
3503                 *p = 0;
3504                 if ((file = kobj_open_file(fullname)) != (struct _buf *)-1) {
3505                         kobj_free(fullname, maxpathlen);
3506                         return (file);
3507                 }
3508                 while (*pathp == ' ' || *pathp == ':')
3509                         pathp++;
3510                 if (*pathp == 0)
3511                         break;
3512 
3513         }
3514         kobj_free(fullname, maxpathlen);
3515         if (_moddebug & MODDEBUG_ERRMSG) {
3516                 _kobj_printf(ops, "can't open %s,", name);
3517                 _kobj_printf(ops, " path is %s\n", pathpsave);
3518         }
3519         return ((struct _buf *)-1);
3520 }
3521 
3522 intptr_t
3523 kobj_open(char *filename)
3524 {
3525         struct vnode *vp;
3526         int fd;
3527 
3528         if (_modrootloaded) {
3529                 struct kobjopen_tctl *ltp = kobjopen_alloc(filename);
3530                 int Errno;
3531 
3532                 /*
3533                  * Hand off the open to a thread who has a
3534                  * stack size capable handling the request.
3535                  */
3536                 if (curthread != &t0) {
3537                         (void) thread_create(NULL, DEFAULTSTKSZ * 2,
3538                             kobjopen_thread, ltp, 0, &p0, TS_RUN, maxclsyspri);
3539                         sema_p(&ltp->sema);
3540                         Errno = ltp->Errno;
3541                         vp = ltp->vp;
3542                 } else {
3543                         /*
3544                          * 1098067: module creds should not be those of the
3545                          * caller
3546                          */
3547                         cred_t *saved_cred = curthread->t_cred;
3548                         curthread->t_cred = kcred;
3549                         Errno = vn_openat(filename, UIO_SYSSPACE, FREAD, 0, &vp,
3550                             0, 0, rootdir, -1);
3551                         curthread->t_cred = saved_cred;
3552                 }
3553                 kobjopen_free(ltp);
3554 
3555                 if (Errno) {
3556                         if (_moddebug & MODDEBUG_ERRMSG) {
3557                                 _kobj_printf(ops,
3558                                     "kobj_open: vn_open of %s fails, ",
3559                                     filename);
3560                                 _kobj_printf(ops, "Errno = %d\n", Errno);
3561                         }
3562                         return (-1);
3563                 } else {
3564                         if (_moddebug & MODDEBUG_ERRMSG) {
3565                                 _kobj_printf(ops, "kobj_open: '%s'", filename);
3566                                 _kobj_printf(ops, " vp = %p\n", vp);
3567                         }
3568                         return ((intptr_t)vp);
3569                 }
3570         } else {
3571                 fd = kobj_boot_open(filename, 0);
3572 
3573                 if (_moddebug & MODDEBUG_ERRMSG) {
3574                         if (fd < 0)
3575                                 _kobj_printf(ops,
3576                                     "kobj_open: can't open %s\n", filename);
3577                         else {
3578                                 _kobj_printf(ops, "kobj_open: '%s'", filename);
3579                                 _kobj_printf(ops, " descr = 0x%x\n", fd);
3580                         }
3581                 }
3582                 return ((intptr_t)fd);
3583         }
3584 }
3585 
3586 /*
3587  * Calls to kobj_open() are handled off to this routine as a separate thread.
3588  */
3589 static void
3590 kobjopen_thread(struct kobjopen_tctl *ltp)
3591 {
3592         kmutex_t        cpr_lk;
3593         callb_cpr_t     cpr_i;
3594 
3595         mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL);
3596         CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "kobjopen");
3597         ltp->Errno = vn_open(ltp->name, UIO_SYSSPACE, FREAD, 0, &(ltp->vp),
3598             0, 0);
3599         sema_v(&ltp->sema);
3600         mutex_enter(&cpr_lk);
3601         CALLB_CPR_EXIT(&cpr_i);
3602         mutex_destroy(&cpr_lk);
3603         thread_exit();
3604 }
3605 
3606 /*
3607  * allocate and initialize a kobjopen thread structure
3608  */
3609 static struct kobjopen_tctl *
3610 kobjopen_alloc(char *filename)
3611 {
3612         struct kobjopen_tctl *ltp = kmem_zalloc(sizeof (*ltp), KM_SLEEP);
3613 
3614         ASSERT(filename != NULL);
3615 
3616         ltp->name = kmem_alloc(strlen(filename) + 1, KM_SLEEP);
3617         bcopy(filename, ltp->name, strlen(filename) + 1);
3618         sema_init(&ltp->sema, 0, NULL, SEMA_DEFAULT, NULL);
3619         return (ltp);
3620 }
3621 
3622 /*
3623  * free a kobjopen thread control structure
3624  */
3625 static void
3626 kobjopen_free(struct kobjopen_tctl *ltp)
3627 {
3628         sema_destroy(&ltp->sema);
3629         kmem_free(ltp->name, strlen(ltp->name) + 1);
3630         kmem_free(ltp, sizeof (*ltp));
3631 }
3632 
3633 int
3634 kobj_read(intptr_t descr, char *buf, uint_t size, uint_t offset)
3635 {
3636         int stat;
3637         ssize_t resid;
3638 
3639         if (_modrootloaded) {
3640                 if ((stat = vn_rdwr(UIO_READ, (struct vnode *)descr, buf, size,
3641                     (offset_t)offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3642                     &resid)) != 0) {
3643                         _kobj_printf(ops,
3644                             "vn_rdwr failed with error 0x%x\n", stat);
3645                         return (-1);
3646                 }
3647                 return (size - resid);
3648         } else {
3649                 int count = 0;
3650 
3651                 if (kobj_boot_seek((int)descr, (off_t)0, offset) != 0) {
3652                         _kobj_printf(ops,
3653                             "kobj_read: seek 0x%x failed\n", offset);
3654                         return (-1);
3655                 }
3656 
3657                 count = kobj_boot_read((int)descr, buf, size);
3658                 if (count < size) {
3659                         if (_moddebug & MODDEBUG_ERRMSG) {
3660                                 _kobj_printf(ops,
3661                                     "kobj_read: req %d bytes, ", size);
3662                                 _kobj_printf(ops, "got %d\n", count);
3663                         }
3664                 }
3665                 return (count);
3666         }
3667 }
3668 
3669 void
3670 kobj_close(intptr_t descr)
3671 {
3672         if (_moddebug & MODDEBUG_ERRMSG)
3673                 _kobj_printf(ops, "kobj_close: 0x%lx\n", descr);
3674 
3675         if (_modrootloaded) {
3676                 struct vnode *vp = (struct vnode *)descr;
3677                 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL);
3678                 VN_RELE(vp);
3679         } else
3680                 (void) kobj_boot_close((int)descr);
3681 }
3682 
3683 int
3684 kobj_fstat(intptr_t descr, struct bootstat *buf)
3685 {
3686         if (buf == NULL)
3687                 return (-1);
3688 
3689         if (_modrootloaded) {
3690                 vattr_t vattr;
3691                 struct vnode *vp = (struct vnode *)descr;
3692                 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3693                         return (-1);
3694 
3695                 /*
3696                  * The vattr and bootstat structures are similar, but not
3697                  * identical.  We do our best to fill in the bootstat structure
3698                  * from the contents of vattr (transfering only the ones that
3699                  * are obvious.
3700                  */
3701 
3702                 buf->st_mode = (uint32_t)vattr.va_mode;
3703                 buf->st_nlink = (uint32_t)vattr.va_nlink;
3704                 buf->st_uid = (int32_t)vattr.va_uid;
3705                 buf->st_gid = (int32_t)vattr.va_gid;
3706                 buf->st_rdev = (uint64_t)vattr.va_rdev;
3707                 buf->st_size = (uint64_t)vattr.va_size;
3708                 buf->st_atim.tv_sec = (int64_t)vattr.va_atime.tv_sec;
3709                 buf->st_atim.tv_nsec = (int64_t)vattr.va_atime.tv_nsec;
3710                 buf->st_mtim.tv_sec = (int64_t)vattr.va_mtime.tv_sec;
3711                 buf->st_mtim.tv_nsec = (int64_t)vattr.va_mtime.tv_nsec;
3712                 buf->st_ctim.tv_sec = (int64_t)vattr.va_ctime.tv_sec;
3713                 buf->st_ctim.tv_nsec = (int64_t)vattr.va_ctime.tv_nsec;
3714                 buf->st_blksize = (int32_t)vattr.va_blksize;
3715                 buf->st_blocks = (int64_t)vattr.va_nblocks;
3716 
3717                 return (0);
3718         }
3719 
3720         return (kobj_boot_fstat((int)descr, buf));
3721 }
3722 
3723 
3724 struct _buf *
3725 kobj_open_file(char *name)
3726 {
3727         struct _buf *file;
3728         struct compinfo cbuf;
3729         intptr_t fd;
3730 
3731         if ((fd = kobj_open(name)) == -1) {
3732                 return ((struct _buf *)-1);
3733         }
3734 
3735         file = kobj_zalloc(sizeof (struct _buf), KM_WAIT|KM_TMP);
3736         file->_fd = fd;
3737         file->_name = kobj_alloc(strlen(name)+1, KM_WAIT|KM_TMP);
3738         file->_cnt = file->_size = file->_off = 0;
3739         file->_ln = 1;
3740         file->_ptr = file->_base;
3741         (void) strcpy(file->_name, name);
3742 
3743         /*
3744          * Before root is mounted, we must check
3745          * for a compressed file and do our own
3746          * buffering.
3747          */
3748         if (_modrootloaded) {
3749                 file->_base = kobj_zalloc(MAXBSIZE, KM_WAIT);
3750                 file->_bsize = MAXBSIZE;
3751 
3752                 /* Check if the file is compressed */
3753                 file->_iscmp = kobj_is_compressed(fd);
3754         } else {
3755                 if (kobj_boot_compinfo(fd, &cbuf) != 0) {
3756                         kobj_close_file(file);
3757                         return ((struct _buf *)-1);
3758                 }
3759                 file->_iscmp = cbuf.iscmp;
3760                 if (file->_iscmp) {
3761                         if (kobj_comp_setup(file, &cbuf) != 0) {
3762                                 kobj_close_file(file);
3763                                 return ((struct _buf *)-1);
3764                         }
3765                 } else {
3766                         file->_base = kobj_zalloc(cbuf.blksize, KM_WAIT|KM_TMP);
3767                         file->_bsize = cbuf.blksize;
3768                 }
3769         }
3770         return (file);
3771 }
3772 
3773 static int
3774 kobj_comp_setup(struct _buf *file, struct compinfo *cip)
3775 {
3776         struct comphdr *hdr;
3777 
3778         /*
3779          * read the compressed image into memory,
3780          * so we can deompress from there
3781          */
3782         file->_dsize = cip->fsize;
3783         file->_dbuf = kobj_alloc(cip->fsize, KM_WAIT|KM_TMP);
3784         if (kobj_read(file->_fd, file->_dbuf, cip->fsize, 0) != cip->fsize) {
3785                 kobj_free(file->_dbuf, cip->fsize);
3786                 return (-1);
3787         }
3788 
3789         hdr = kobj_comphdr(file);
3790         if (hdr->ch_magic != CH_MAGIC_ZLIB || hdr->ch_version != CH_VERSION ||
3791             hdr->ch_algorithm != CH_ALG_ZLIB || hdr->ch_fsize == 0 ||
3792             !ISP2(hdr->ch_blksize)) {
3793                 kobj_free(file->_dbuf, cip->fsize);
3794                 return (-1);
3795         }
3796         file->_base = kobj_alloc(hdr->ch_blksize, KM_WAIT|KM_TMP);
3797         file->_bsize = hdr->ch_blksize;
3798         return (0);
3799 }
3800 
3801 void
3802 kobj_close_file(struct _buf *file)
3803 {
3804         kobj_close(file->_fd);
3805         if (file->_base != NULL)
3806                 kobj_free(file->_base, file->_bsize);
3807         if (file->_dbuf != NULL)
3808                 kobj_free(file->_dbuf, file->_dsize);
3809         kobj_free(file->_name, strlen(file->_name)+1);
3810         kobj_free(file, sizeof (struct _buf));
3811 }
3812 
3813 int
3814 kobj_read_file(struct _buf *file, char *buf, uint_t size, uint_t off)
3815 {
3816         int b_size, c_size;
3817         int b_off;      /* Offset into buffer for start of bcopy */
3818         int count = 0;
3819         int page_addr;
3820 
3821         if (_moddebug & MODDEBUG_ERRMSG) {
3822                 _kobj_printf(ops, "kobj_read_file: size=%x,", size);
3823                 _kobj_printf(ops, " offset=%x at", off);
3824                 _kobj_printf(ops, " buf=%x\n", buf);
3825         }
3826 
3827         /*
3828          * Handle compressed (gzip for now) file here. First get the
3829          * compressed size, then read the image into memory and finally
3830          * call zlib to decompress the image at the supplied memory buffer.
3831          */
3832         if (file->_iscmp == CH_MAGIC_GZIP) {
3833                 ulong_t dlen;
3834                 vattr_t vattr;
3835                 struct vnode *vp = (struct vnode *)file->_fd;
3836                 ssize_t resid;
3837                 int err = 0;
3838 
3839                 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3840                         return (-1);
3841 
3842                 file->_dbuf = kobj_alloc(vattr.va_size, KM_WAIT|KM_TMP);
3843                 file->_dsize = vattr.va_size;
3844 
3845                 /* Read the compressed file into memory */
3846                 if ((err = vn_rdwr(UIO_READ, vp, file->_dbuf, vattr.va_size,
3847                     (offset_t)(0), UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3848                     &resid)) != 0) {
3849 
3850                         _kobj_printf(ops, "kobj_read_file :vn_rdwr() failed, "
3851                             "error code 0x%x\n", err);
3852                         return (-1);
3853                 }
3854 
3855                 dlen = size;
3856 
3857                 /* Decompress the image at the supplied memory buffer */
3858                 if ((err = z_uncompress(buf, &dlen, file->_dbuf,
3859                     vattr.va_size)) != Z_OK) {
3860                         _kobj_printf(ops, "kobj_read_file: z_uncompress "
3861                             "failed, error code : 0x%x\n", err);
3862                         return (-1);
3863                 }
3864 
3865                 if (dlen != size) {
3866                         _kobj_printf(ops, "kobj_read_file: z_uncompress "
3867                             "failed to uncompress (size returned 0x%x , "
3868                             "expected size: 0x%x)\n", dlen, size);
3869                         return (-1);
3870                 }
3871 
3872                 return (0);
3873         }
3874 
3875         while (size) {
3876                 page_addr = F_PAGE(file, off);
3877                 b_size = file->_size;
3878                 /*
3879                  * If we have the filesystem page the caller's referring to
3880                  * and we have something in the buffer,
3881                  * satisfy as much of the request from the buffer as we can.
3882                  */
3883                 if (page_addr == file->_off && b_size > 0) {
3884                         b_off = B_OFFSET(file, off);
3885                         c_size = b_size - b_off;
3886                         /*
3887                          * If there's nothing to copy, we're at EOF.
3888                          */
3889                         if (c_size <= 0)
3890                                 break;
3891                         if (c_size > size)
3892                                 c_size = size;
3893                         if (buf) {
3894                                 if (_moddebug & MODDEBUG_ERRMSG)
3895                                         _kobj_printf(ops, "copying %x bytes\n",
3896                                             c_size);
3897                                 bcopy(file->_base+b_off, buf, c_size);
3898                                 size -= c_size;
3899                                 off += c_size;
3900                                 buf += c_size;
3901                                 count += c_size;
3902                         } else {
3903                                 _kobj_printf(ops, "kobj_read: system error");
3904                                 count = -1;
3905                                 break;
3906                         }
3907                 } else {
3908                         /*
3909                          * If the caller's offset is page aligned and
3910                          * the caller want's at least a filesystem page and
3911                          * the caller provided a buffer,
3912                          * read directly into the caller's buffer.
3913                          */
3914                         if (page_addr == off &&
3915                             (c_size = F_BLKS(file, size)) && buf) {
3916                                 c_size = kobj_read_blks(file, buf, c_size,
3917                                     page_addr);
3918                                 if (c_size < 0) {
3919                                         count = -1;
3920                                         break;
3921                                 }
3922                                 count += c_size;
3923                                 if (c_size != F_BLKS(file, size))
3924                                         break;
3925                                 size -= c_size;
3926                                 off += c_size;
3927                                 buf += c_size;
3928                         /*
3929                          * Otherwise, read into our buffer and copy next time
3930                          * around the loop.
3931                          */
3932                         } else {
3933                                 file->_off = page_addr;
3934                                 c_size = kobj_read_blks(file, file->_base,
3935                                     file->_bsize, page_addr);
3936                                 file->_ptr = file->_base;
3937                                 file->_cnt = c_size;
3938                                 file->_size = c_size;
3939                                 /*
3940                                  * If a _filbuf call or nothing read, break.
3941                                  */
3942                                 if (buf == NULL || c_size <= 0) {
3943                                         count = c_size;
3944                                         break;
3945                                 }
3946                         }
3947                         if (_moddebug & MODDEBUG_ERRMSG)
3948                                 _kobj_printf(ops, "read %x bytes\n", c_size);
3949                 }
3950         }
3951         if (_moddebug & MODDEBUG_ERRMSG)
3952                 _kobj_printf(ops, "count = %x\n", count);
3953 
3954         return (count);
3955 }
3956 
3957 static int
3958 kobj_read_blks(struct _buf *file, char *buf, uint_t size, uint_t off)
3959 {
3960         int ret;
3961 
3962         ASSERT(B_OFFSET(file, size) == 0 && B_OFFSET(file, off) == 0);
3963         if (file->_iscmp) {
3964                 uint_t blks;
3965                 int nret;
3966 
3967                 ret = 0;
3968                 for (blks = size / file->_bsize; blks != 0; blks--) {
3969                         nret = kobj_uncomp_blk(file, buf, off);
3970                         if (nret == -1)
3971                                 return (-1);
3972                         buf += nret;
3973                         off += nret;
3974                         ret += nret;
3975                         if (nret < file->_bsize)
3976                                 break;
3977                 }
3978         } else
3979                 ret = kobj_read(file->_fd, buf, size, off);
3980         return (ret);
3981 }
3982 
3983 static int
3984 kobj_uncomp_blk(struct _buf *file, char *buf, uint_t off)
3985 {
3986         struct comphdr *hdr = kobj_comphdr(file);
3987         ulong_t dlen, slen;
3988         caddr_t src;
3989         int i;
3990 
3991         dlen = file->_bsize;
3992         i = off / file->_bsize;
3993         src = file->_dbuf + hdr->ch_blkmap[i];
3994         if (i == hdr->ch_fsize / file->_bsize)
3995                 slen = file->_dsize - hdr->ch_blkmap[i];
3996         else
3997                 slen = hdr->ch_blkmap[i + 1] - hdr->ch_blkmap[i];
3998         if (z_uncompress(buf, &dlen, src, slen) != Z_OK)
3999                 return (-1);
4000         return (dlen);
4001 }
4002 
4003 int
4004 kobj_filbuf(struct _buf *f)
4005 {
4006         if (kobj_read_file(f, NULL, f->_bsize, f->_off + f->_size) > 0)
4007                 return (kobj_getc(f));
4008         return (-1);
4009 }
4010 
4011 void
4012 kobj_free(void *address, size_t size)
4013 {
4014         if (standalone)
4015                 return;
4016 
4017         kmem_free(address, size);
4018         kobj_stat.nfree_calls++;
4019         kobj_stat.nfree += size;
4020 }
4021 
4022 void *
4023 kobj_zalloc(size_t size, int flag)
4024 {
4025         void *v;
4026 
4027         if ((v = kobj_alloc(size, flag)) != 0) {
4028                 bzero(v, size);
4029         }
4030 
4031         return (v);
4032 }
4033 
4034 void *
4035 kobj_alloc(size_t size, int flag)
4036 {
4037         /*
4038          * If we are running standalone in the
4039          * linker, we ask boot for memory.
4040          * Either it's temporary memory that we lose
4041          * once boot is mapped out or we allocate it
4042          * permanently using the dynamic data segment.
4043          */
4044         if (standalone) {
4045 #if defined(_OBP)
4046                 if (flag & (KM_TMP | KM_SCRATCH))
4047                         return (bop_temp_alloc(size, MINALIGN));
4048 #else
4049                 if (flag & (KM_TMP | KM_SCRATCH))
4050                         return (BOP_ALLOC(ops, 0, size, MINALIGN));
4051 #endif
4052                 return (kobj_segbrk(&_edata, size, MINALIGN, 0));
4053         }
4054 
4055         kobj_stat.nalloc_calls++;
4056         kobj_stat.nalloc += size;
4057 
4058         return (kmem_alloc(size, (flag & KM_NOWAIT) ? KM_NOSLEEP : KM_SLEEP));
4059 }
4060 
4061 /*
4062  * Allow the "mod" system to sync up with the work
4063  * already done by kobj during the initial loading
4064  * of the kernel.  This also gives us a chance
4065  * to reallocate memory that belongs to boot.
4066  */
4067 void
4068 kobj_sync(void)
4069 {
4070         struct modctl_list *lp, **lpp;
4071 
4072         /*
4073          * The module path can be set in /etc/system via 'moddir' commands
4074          */
4075         if (default_path != NULL)
4076                 kobj_module_path = default_path;
4077         else
4078                 default_path = kobj_module_path;
4079 
4080         ksyms_arena = vmem_create("ksyms", NULL, 0, sizeof (uint64_t),
4081             segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4082 
4083         ctf_arena = vmem_create("ctf", NULL, 0, sizeof (uint_t),
4084             segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4085 
4086         /*
4087          * Move symbol tables from boot memory to ksyms_arena.
4088          */
4089         for (lpp = kobj_linkmaps; *lpp != NULL; lpp++) {
4090                 for (lp = *lpp; lp != NULL; lp = lp->modl_next)
4091                         kobj_export_module(mod(lp));
4092         }
4093 }
4094 
4095 caddr_t
4096 kobj_segbrk(caddr_t *spp, size_t size, size_t align, caddr_t limit)
4097 {
4098         uintptr_t va, pva;
4099         size_t alloc_pgsz = kobj_mmu_pagesize;
4100         size_t alloc_align = BO_NO_ALIGN;
4101         size_t alloc_size;
4102 
4103         /*
4104          * If we are using "large" mappings for the kernel,
4105          * request aligned memory from boot using the
4106          * "large" pagesize.
4107          */
4108         if (lg_pagesize) {
4109                 alloc_align = lg_pagesize;
4110                 alloc_pgsz = lg_pagesize;
4111         }
4112 
4113 #if defined(__sparc)
4114         /* account for redzone */
4115         if (limit)
4116                 limit -= alloc_pgsz;
4117 #endif  /* __sparc */
4118 
4119         va = ALIGN((uintptr_t)*spp, align);
4120         pva = P2ROUNDUP((uintptr_t)*spp, alloc_pgsz);
4121         /*
4122          * Need more pages?
4123          */
4124         if (va + size > pva) {
4125                 uintptr_t npva;
4126 
4127                 alloc_size = P2ROUNDUP(size - (pva - va), alloc_pgsz);
4128                 /*
4129                  * Check for overlapping segments.
4130                  */
4131                 if (limit && limit <= *spp + alloc_size) {
4132                         return ((caddr_t)0);
4133                 }
4134 
4135                 npva = (uintptr_t)BOP_ALLOC(ops, (caddr_t)pva,
4136                     alloc_size, alloc_align);
4137 
4138                 if (npva == 0) {
4139                         _kobj_printf(ops, "BOP_ALLOC failed, 0x%lx bytes",
4140                             alloc_size);
4141                         _kobj_printf(ops, " aligned %lx", alloc_align);
4142                         _kobj_printf(ops, " at 0x%lx\n", pva);
4143                         return (NULL);
4144                 }
4145         }
4146         *spp = (caddr_t)(va + size);
4147 
4148         return ((caddr_t)va);
4149 }
4150 
4151 /*
4152  * Calculate the number of output hash buckets.
4153  * We use the next prime larger than n / 4,
4154  * so the average hash chain is about 4 entries.
4155  * More buckets would just be a waste of memory.
4156  */
4157 uint_t
4158 kobj_gethashsize(uint_t n)
4159 {
4160         int f;
4161         int hsize = MAX(n / 4, 2);
4162 
4163         for (f = 2; f * f <= hsize; f++)
4164                 if (hsize % f == 0)
4165                         hsize += f = 1;
4166 
4167         return (hsize);
4168 }
4169 
4170 /*
4171  * Get the file size.
4172  *
4173  * Before root is mounted, files are compressed in the boot_archive ramdisk
4174  * (in the memory). kobj_fstat would return the compressed file size.
4175  * In order to get the uncompressed file size, read the file to the end and
4176  * count its size.
4177  */
4178 int
4179 kobj_get_filesize(struct _buf *file, uint64_t *size)
4180 {
4181         int err = 0;
4182         ssize_t resid;
4183         uint32_t buf;
4184 
4185         if (_modrootloaded) {
4186                 struct bootstat bst;
4187 
4188                 if (kobj_fstat(file->_fd, &bst) != 0)
4189                         return (EIO);
4190                 *size = bst.st_size;
4191 
4192                 if (file->_iscmp == CH_MAGIC_GZIP) {
4193                         /*
4194                          * Read the last 4 bytes of the compressed (gzip)
4195                          * image to get the size of its uncompressed
4196                          * version.
4197                          */
4198                         if ((err = vn_rdwr(UIO_READ, (struct vnode *)file->_fd,
4199                             (char *)(&buf), 4, (offset_t)(*size - 4),
4200                             UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid))
4201                             != 0) {
4202                                 _kobj_printf(ops, "kobj_get_filesize: "
4203                                     "vn_rdwr() failed with error 0x%x\n", err);
4204                                 return (-1);
4205                         }
4206 
4207                         *size =  (uint64_t)buf;
4208                 }
4209         } else {
4210 
4211 #if defined(_OBP)
4212                 struct bootstat bsb;
4213 
4214                 if (file->_iscmp) {
4215                         struct comphdr *hdr = kobj_comphdr(file);
4216 
4217                         *size = hdr->ch_fsize;
4218                 } else if (kobj_boot_fstat(file->_fd, &bsb) != 0)
4219                         return (EIO);
4220                 else
4221                         *size = bsb.st_size;
4222 #else
4223                 char *buf;
4224                 int count;
4225                 uint64_t offset = 0;
4226 
4227                 buf = kmem_alloc(MAXBSIZE, KM_SLEEP);
4228                 do {
4229                         count = kobj_read_file(file, buf, MAXBSIZE, offset);
4230                         if (count < 0) {
4231                                 kmem_free(buf, MAXBSIZE);
4232                                 return (EIO);
4233                         }
4234                         offset += count;
4235                 } while (count == MAXBSIZE);
4236                 kmem_free(buf, MAXBSIZE);
4237 
4238                 *size = offset;
4239 #endif
4240         }
4241 
4242         return (0);
4243 }
4244 
4245 static char *
4246 basename(char *s)
4247 {
4248         char *p, *q;
4249 
4250         q = NULL;
4251         p = s;
4252         do {
4253                 if (*p == '/')
4254                         q = p;
4255         } while (*p++);
4256         return (q ? q + 1 : s);
4257 }
4258 
4259 void
4260 kobj_stat_get(kobj_stat_t *kp)
4261 {
4262         *kp = kobj_stat;
4263 }
4264 
4265 int
4266 kobj_getpagesize()
4267 {
4268         return (lg_pagesize);
4269 }
4270 
4271 void
4272 kobj_textwin_alloc(struct module *mp)
4273 {
4274         ASSERT(MUTEX_HELD(&mod_lock));
4275 
4276         if (mp->textwin != NULL)
4277                 return;
4278 
4279         /*
4280          * If the text is not contained in the heap, then it is not contained
4281          * by a writable mapping.  (Specifically, it's on the nucleus page.)
4282          * We allocate a read/write mapping for this module's text to allow
4283          * the text to be patched without calling hot_patch_kernel_text()
4284          * (which is quite slow).
4285          */
4286         if (!vmem_contains(heaptext_arena, mp->text, mp->text_size)) {
4287                 uintptr_t text = (uintptr_t)mp->text;
4288                 uintptr_t size = (uintptr_t)mp->text_size;
4289                 uintptr_t i;
4290                 caddr_t va;
4291                 size_t sz = ((text + size + PAGESIZE - 1) & PAGEMASK) -
4292                     (text & PAGEMASK);
4293 
4294                 va = mp->textwin_base = vmem_alloc(heap_arena, sz, VM_SLEEP);
4295 
4296                 for (i = text & PAGEMASK; i < text + size; i += PAGESIZE) {
4297                         hat_devload(kas.a_hat, va, PAGESIZE,
4298                             hat_getpfnum(kas.a_hat, (caddr_t)i),
4299                             PROT_READ | PROT_WRITE,
4300                             HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
4301                         va += PAGESIZE;
4302                 }
4303 
4304                 mp->textwin = mp->textwin_base + (text & PAGEOFFSET);
4305         } else {
4306                 mp->textwin = mp->text;
4307         }
4308 }
4309 
4310 void
4311 kobj_textwin_free(struct module *mp)
4312 {
4313         uintptr_t text = (uintptr_t)mp->text;
4314         uintptr_t tsize = (uintptr_t)mp->text_size;
4315         size_t size = (((text + tsize + PAGESIZE - 1) & PAGEMASK) -
4316             (text & PAGEMASK));
4317 
4318         mp->textwin = NULL;
4319 
4320         if (mp->textwin_base == NULL)
4321                 return;
4322 
4323         hat_unload(kas.a_hat, mp->textwin_base, size, HAT_UNLOAD_UNLOCK);
4324         vmem_free(heap_arena, mp->textwin_base, size);
4325         mp->textwin_base = NULL;
4326 }
4327 
4328 static char *
4329 find_libmacro(char *name)
4330 {
4331         int lmi;
4332 
4333         for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4334                 if (strcmp(name, libmacros[lmi].lmi_macroname) == 0)
4335                         return (libmacros[lmi].lmi_list);
4336         }
4337         return (NULL);
4338 }
4339 
4340 /*
4341  * Check for $MACRO in tail (string to expand) and expand it in path at pathend
4342  * returns path if successful, else NULL
4343  * Support multiple $MACROs expansion and the first valid path will be returned
4344  * Caller's responsibility to provide enough space in path to expand
4345  */
4346 char *
4347 expand_libmacro(char *tail, char *path, char *pathend)
4348 {
4349         char c, *p, *p1, *p2, *path2, *endp;
4350         int diff, lmi, macrolen, valid_macro, more_macro;
4351         struct _buf *file;
4352 
4353         /*
4354          * check for $MACROS between nulls or slashes
4355          */
4356         p = strchr(tail, '$');
4357         if (p == NULL)
4358                 return (NULL);
4359         for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4360                 macrolen = libmacros[lmi].lmi_macrolen;
4361                 if (strncmp(p + 1, libmacros[lmi].lmi_macroname, macrolen) == 0)
4362                         break;
4363         }
4364 
4365         valid_macro = 0;
4366         if (lmi < NLIBMACROS) {
4367                 /*
4368                  * The following checks are used to restrict expansion of
4369                  * macros to those that form a full directory/file name
4370                  * and to keep the behavior same as before.  If this
4371                  * restriction is removed or no longer valid in the future,
4372                  * the checks below can be deleted.
4373                  */
4374                 if ((p == tail) || (*(p - 1) == '/')) {
4375                         c = *(p + macrolen + 1);
4376                         if (c == '/' || c == '\0')
4377                                 valid_macro = 1;
4378                 }
4379         }
4380 
4381         if (!valid_macro) {
4382                 p2 = strchr(p, '/');
4383                 /*
4384                  * if no more macro to expand, then just copy whatever left
4385                  * and check whether it exists
4386                  */
4387                 if (p2 == NULL || strchr(p2, '$') == NULL) {
4388                         (void) strcpy(pathend, tail);
4389                         if ((file = kobj_open_path(path, 1, 1)) !=
4390                             (struct _buf *)-1) {
4391                                 kobj_close_file(file);
4392                                 return (path);
4393                         } else
4394                                 return (NULL);
4395                 } else {
4396                         /*
4397                          * copy all chars before '/' and call expand_libmacro()
4398                          * again
4399                          */
4400                         diff = p2 - tail;
4401                         bcopy(tail, pathend, diff);
4402                         pathend += diff;
4403                         *(pathend) = '\0';
4404                         return (expand_libmacro(p2, path, pathend));
4405                 }
4406         }
4407 
4408         more_macro = 0;
4409         if (c != '\0') {
4410                 endp = p + macrolen + 1;
4411                 if (strchr(endp, '$') != NULL)
4412                         more_macro = 1;
4413         } else
4414                 endp = NULL;
4415 
4416         /*
4417          * copy lmi_list and split it into components.
4418          * then put the part of tail before $MACRO into path
4419          * at pathend
4420          */
4421         diff = p - tail;
4422         if (diff > 0)
4423                 bcopy(tail, pathend, diff);
4424         path2 = pathend + diff;
4425         p1 = libmacros[lmi].lmi_list;
4426         while (p1 && (*p1 != '\0')) {
4427                 p2 = strchr(p1, ':');
4428                 if (p2) {
4429                         diff = p2 - p1;
4430                         bcopy(p1, path2, diff);
4431                         *(path2 + diff) = '\0';
4432                 } else {
4433                         diff = strlen(p1);
4434                         bcopy(p1, path2, diff + 1);
4435                 }
4436                 /* copy endp only if there isn't any more macro to expand */
4437                 if (!more_macro && (endp != NULL))
4438                         (void) strcat(path2, endp);
4439                 file = kobj_open_path(path, 1, 1);
4440                 if (file != (struct _buf *)-1) {
4441                         kobj_close_file(file);
4442                         /*
4443                          * if more macros to expand then call expand_libmacro(),
4444                          * else return path which has the whole path
4445                          */
4446                         if (!more_macro || (expand_libmacro(endp, path,
4447                             path2 + diff) != NULL)) {
4448                                 return (path);
4449                         }
4450                 }
4451                 if (p2)
4452                         p1 = ++p2;
4453                 else
4454                         return (NULL);
4455         }
4456         return (NULL);
4457 }
4458 
4459 static void
4460 tnf_add_notifyunload(kobj_notify_f *fp)
4461 {
4462         kobj_notify_list_t *entry;
4463 
4464         entry = kobj_alloc(sizeof (kobj_notify_list_t), KM_WAIT);
4465         entry->kn_type = KOBJ_NOTIFY_MODUNLOADING;
4466         entry->kn_func = fp;
4467         (void) kobj_notify_add(entry);
4468 }
4469 
4470 /* ARGSUSED */
4471 static void
4472 tnf_unsplice_probes(uint_t what, struct modctl *mod)
4473 {
4474         tnf_probe_control_t **p;
4475         tnf_tag_data_t **q;
4476         struct module *mp = mod->mod_mp;
4477 
4478         if (!(mp->flags & KOBJ_TNF_PROBE))
4479                 return;
4480 
4481         for (p = &__tnf_probe_list_head; *p; )
4482                 if (kobj_addrcheck(mp, (char *)*p) == 0)
4483                         *p = (*p)->next;
4484                 else
4485                         p = &(*p)->next;
4486 
4487         for (q = &__tnf_tag_list_head; *q; )
4488                 if (kobj_addrcheck(mp, (char *)*q) == 0)
4489                         *q = (tnf_tag_data_t *)(*q)->tag_version;
4490                 else
4491                         q = (tnf_tag_data_t **)&(*q)->tag_version;
4492 
4493         tnf_changed_probe_list = 1;
4494 }
4495 
4496 int
4497 tnf_splice_probes(int boot_load, tnf_probe_control_t *plist,
4498     tnf_tag_data_t *tlist)
4499 {
4500         int result = 0;
4501         static int add_notify = 1;
4502 
4503         if (plist) {
4504                 tnf_probe_control_t *pl;
4505 
4506                 for (pl = plist; pl->next; )
4507                         pl = pl->next;
4508 
4509                 if (!boot_load)
4510                         mutex_enter(&mod_lock);
4511                 tnf_changed_probe_list = 1;
4512                 pl->next = __tnf_probe_list_head;
4513                 __tnf_probe_list_head = plist;
4514                 if (!boot_load)
4515                         mutex_exit(&mod_lock);
4516                 result = 1;
4517         }
4518 
4519         if (tlist) {
4520                 tnf_tag_data_t *tl;
4521 
4522                 for (tl = tlist; tl->tag_version; )
4523                         tl = (tnf_tag_data_t *)tl->tag_version;
4524 
4525                 if (!boot_load)
4526                         mutex_enter(&mod_lock);
4527                 tl->tag_version = (tnf_tag_version_t *)__tnf_tag_list_head;
4528                 __tnf_tag_list_head = tlist;
4529                 if (!boot_load)
4530                         mutex_exit(&mod_lock);
4531                 result = 1;
4532         }
4533         if (!boot_load && result && add_notify) {
4534                 tnf_add_notifyunload(tnf_unsplice_probes);
4535                 add_notify = 0;
4536         }
4537         return (result);
4538 }
4539 
4540 char *kobj_file_buf;
4541 int kobj_file_bufsize;
4542 
4543 /*
4544  * This code is for the purpose of manually recording which files
4545  * needs to go into the boot archive on any given system.
4546  *
4547  * To enable the code, set kobj_file_bufsize in /etc/system
4548  * and reboot the system, then use mdb to look at kobj_file_buf.
4549  */
4550 static void
4551 kobj_record_file(char *filename)
4552 {
4553         static char *buf;
4554         static int size = 0;
4555         int n;
4556 
4557         if (kobj_file_bufsize == 0)     /* don't bother */
4558                 return;
4559 
4560         if (kobj_file_buf == NULL) {    /* allocate buffer */
4561                 size = kobj_file_bufsize;
4562                 buf = kobj_file_buf = kobj_alloc(size, KM_WAIT|KM_TMP);
4563         }
4564 
4565         n = snprintf(buf, size, "%s\n", filename);
4566         if (n > size)
4567                 n = size;
4568         size -= n;
4569         buf += n;
4570 }
4571 
4572 static int
4573 kobj_boot_fstat(int fd, struct bootstat *stp)
4574 {
4575 #if defined(_OBP)
4576         if (!standalone && _ioquiesced)
4577                 return (-1);
4578         return (BOP_FSTAT(ops, fd, stp));
4579 #else
4580         return (BRD_FSTAT(bfs_ops, fd, stp));
4581 #endif
4582 }
4583 
4584 static int
4585 kobj_boot_open(char *filename, int flags)
4586 {
4587 #if defined(_OBP)
4588 
4589         /*
4590          * If io via bootops is quiesced, it means boot is no longer
4591          * available to us.  We make it look as if we can't open the
4592          * named file - which is reasonably accurate.
4593          */
4594         if (!standalone && _ioquiesced)
4595                 return (-1);
4596 
4597         kobj_record_file(filename);
4598         return (BOP_OPEN(filename, flags));
4599 #else /* x86 */
4600         kobj_record_file(filename);
4601         return (BRD_OPEN(bfs_ops, filename, flags));
4602 #endif
4603 }
4604 
4605 static int
4606 kobj_boot_close(int fd)
4607 {
4608 #if defined(_OBP)
4609         if (!standalone && _ioquiesced)
4610                 return (-1);
4611 
4612         return (BOP_CLOSE(fd));
4613 #else /* x86 */
4614         return (BRD_CLOSE(bfs_ops, fd));
4615 #endif
4616 }
4617 
4618 /*ARGSUSED*/
4619 static int
4620 kobj_boot_seek(int fd, off_t hi, off_t lo)
4621 {
4622 #if defined(_OBP)
4623         return (BOP_SEEK(fd, lo) == -1 ? -1 : 0);
4624 #else
4625         return (BRD_SEEK(bfs_ops, fd, lo, SEEK_SET));
4626 #endif
4627 }
4628 
4629 static int
4630 kobj_boot_read(int fd, caddr_t buf, size_t size)
4631 {
4632 #if defined(_OBP)
4633         return (BOP_READ(fd, buf, size));
4634 #else
4635         return (BRD_READ(bfs_ops, fd, buf, size));
4636 #endif
4637 }
4638 
4639 static int
4640 kobj_boot_compinfo(int fd, struct compinfo *cb)
4641 {
4642         return (boot_compinfo(fd, cb));
4643 }
4644 
4645 /*
4646  * Check if the file is compressed (for now we handle only gzip).
4647  * It returns CH_MAGIC_GZIP if the file is compressed and 0 otherwise.
4648  */
4649 static int
4650 kobj_is_compressed(intptr_t fd)
4651 {
4652         struct vnode *vp = (struct vnode *)fd;
4653         ssize_t resid;
4654         uint16_t magic_buf;
4655         int err = 0;
4656 
4657         if ((err = vn_rdwr(UIO_READ, vp, (caddr_t)((intptr_t)&magic_buf),
4658             sizeof (magic_buf), (offset_t)(0),
4659             UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) {
4660 
4661                 _kobj_printf(ops, "kobj_is_compressed: vn_rdwr() failed, "
4662                     "error code 0x%x\n", err);
4663                 return (0);
4664         }
4665 
4666         if (magic_buf == CH_MAGIC_GZIP)
4667                 return (CH_MAGIC_GZIP);
4668 
4669         return (0);
4670 }